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Neuroengineering is an emerging discipline in the field of
medical and biological engineering with the aim of under-
standing, modulating, enhancing, or repairing neuronal sys-
tems, which are obviously the most complex systems of the
human body. During the last decade or so, neuroengineering
has been growing rapidly and expanded its applications from
interpreting and processing neuronal signals to interfacing
the neural systems with external devices to restore lost func-
tions. Despite its short history, neuroengineering has now
become one of the most important topics in the current
biomedical engineering research. As in other interdisci-
plinary fields, computational methods have played key roles
in the development of neuroengineering.

Considering the aforementioned trends, it seems natural
that neuroengineering is selected as the theme of this special
issue. This special issue includes eleven high-quality, peer-
reviewed articles that might provide researchers in the field
of neuroscience, engineering, psychology, and computational
sciences with the current state-of-the-art knowledge of this
emerging interdisciplinary research field.

The paper “Trial-by-trial adaptation of movements during
mental practice under force field” by M. N. Anwar and S.
H. Khan studied how motor imagery influences trial-to-trial
learning in a robot based adaptation task.The results showed
that reaching movements performed with motor imagery
have relatively a more focused generalization pattern and a
higher learning rate in training direction.

The paper “Evaluation of EEG features in decoding indi-
vidual finger movements from one hand” by R. Xiao and L.
Ding investigates the existence of a broadband feature in EEG

to discriminate individual fingers from one hand, with the
significantly higher average decoding accuracy than guess
level by the spectral principal component analysis (PCA).

The paper “Coercively adjusted auto regression model for
forecasting in epilepsy EEG” by S.-H. Kim et al. proposes a
coercively adjusted auto regression (CA-AR) method to fore-
cast future values from a multivariate epilepsy EEG time
series with higher accuracy and improved computational
efficiency.

The paper “A mixed L2 norm regularized HRF estimation
method for rapid event-related fMRI experiments” by Y. Lei
et al. presents a new regularization framework to identify
trial-specific BOLD responses in extremely rapid event-
related fMRI experiments, where BOLD responses are heavily
overlapped from adjacent trials. It is demonstrated that the
technique significantly improves the classification accuracy
in decoding brain tasks in a rapid four-category object
classification experiment.

The paper “Development of the complex general linear
model in the Fourier domain: application to fMRI multiple
input-output evoked responses on single subjects” by D. E. Rio
et al. describes a statistical time series analysis in the Fourier
domain based on a linear time invariant model to process
multivariate data from fMRI experiments, particularly for
single subjects.

The paper “Continuous- and discrete-time stimulus
sequences for high stimulus rate paradigm in evoked potential
studies” by T. Wang et al. suggests using continuous-
time stimulus sequences for the high stimulus rate
paradigm to obtain auditory evoked potentials (AEPs) from
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electroencephalography (EEG). Both the analytic results and
simulation experiments revealed the advantages of using the
continuous-time sequences over traditional discrete-time
sequences in terms of the reliability of reconstructed AEPs.

The review paper “A review on the computational methods
for emotional state estimation from the human EEG” by M.-
K. Kim et al. summarizes the state-of-the-art computational
methods used to extract features for emotional states from
EEG signals and to classify those features into one of many
emotional states. The readers of the journal would find this
review helpful for understanding howmathematicalmethods
are employed for affective computing based on EEG.

The paper “Information analysis on neural tuning in
dorsal premotor cortex for reaching and grasping” by Y. Cao
et al. investigates the contribution of the dorsal premotor
cortex (PMd) in reaching and grasping experiments with
monkeys. It is identified that, within PMd, there are neurons
that only engage in reaching, neurons that only engage in
grasping, and neurons that engage in both.This phenomenon
is further validated in a decoding experiment using different
sets/subsets of neurons in PMd.

The paper “Modiolus-hugging intracochlear electrode
array with shape memory alloy” by K. S. Min et al. presents
a novel intracochlear electrode which can deliver a more
efficient electrical stimulation in human cochlea to aid people
with a severe hearing loss. They propose to use a shape-
memory-alloy embedded electrode to reduce the distance
between the electrode and the target cells.

The paper “Corticomuscular coherence analysis on hand
movement distinction for active rehabilitation” by X. Lou et al.
evaluated corticomuscular coherence (CMC) between EEG
and EMG signals recorded during voluntary hand opening
tasks and found that the CMC values can detect voluntary
hand opening with high accuracy. Their results suggest that
CMC analysis can be a promising tool for active hand
rehabilitation of patients with stroke.

The paper “A sound processor for cochlear implant using
a simple dual path nonlinear model of basilar membrane” by
K. H. Kim et al. proposed a new active nonlinear model of
the frequency response of the basilar membrane in biological
cochlea called the simple dual path nonlinear (SDPN) model
and a novel sound processing strategy for cochlear implants
(CIs) based upon this model.
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A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed
and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally
developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a
repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated
on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically
carried out in the time domain where the data has a high temporal correlation.These analyses generally employ parametric models
of the hemodynamic response function (HRF)where prewhitening of the data is attempted using autoregressive (AR)models for the
noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive,
and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function
(HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or
drug induced) that may alter the form of the response function.

1. Introduction

The study of human brain cognitive function has been greatly
enhanced by advances made in functional magnetic reso-
nance imaging (fMRI) over the past few decades. The most
important technique developed for this purpose utilizes
changes in blood oxygen level instigated by stimulus-induced
neuronal activation [1].These changes in blood-oxygen levels
produce localized variations in magnetic susceptibility and
can be seen in T2∗-weighted MRI time series data [2, 3].
These time series data, referred to as blood-oxygen-level-de-
pendent (BOLD) fMRI, typically have a low temporal signal-
to-noise-ratio (SNR) [4] as well as high temporal correlation
[5] that can make them difficult to analyze.

FunctionalMRI data analysis from its initial development
has largely been implemented in the time domain [6, 7]. The
major temporal focused fMRI analysis software packages are
AFNI, SPM, and FSL [7–9] although many other analysis
packages are also available and in current use. Generally these
temporal domain focused analyses have been extended, to
incorporate the statistical methodology of general linear
models (GLMs) [8, 10, 11]. While almost exclusively used to
analyze group data, GLMs have also been used for individual
subject analysis [12]. In either case, the GLM approach re-
quires a number of important assumptions bemeant [13], that
include foremost that the noise in the time series be inde-
pendent and identically distributed (i.i.d), that is, ∼N(0,𝜎I).
Since BOLD fMRI data has significant autocorrelation, it is
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necessary to attempt to remove the correlation in the data or
incorporate into the GLM analysis a model for the noise that
takes this into account. These corrections generally take the
form of prewhitening techniques [8, 10], autoregressive (AR)
models [14], and restricted maximum likelihood (ReML)
methods [15, 16]. However, prewhitening or AR modeling
of the fMRI BOLD data has been shown to have limitations
[17] and these methods may in many instances only reduce
nonwhite residual to about 40% of the total voxels [13, 18].

Besides the autocorrelation problem, there are additional
major sources of error inmodelingBOLDresponses that arise
in “standard” temporal-based analysis of fMRI time series
data. Primarily, a priori assumptions as to a general paramet-
ric form of the hemodynamic response function (HRF) are
often required [19] that could vary over the brain or from
experimental conditions [20]. Seldom are these assumptions
tested as to their validity for each new experimental design or
at every voxel to be analyzed. This incorrect modeling of the
HRF can lead to increased variance in the coefficients of tem-
poral-based GLM analyses ultimately affecting the power to
detect changes in the BOLD response and in general degrad-
ing the validity of the model [21, 22]. Furthermore, it is often
the case that additional parametric functions and regression
coefficients are typically included in temporal-based GLM
models to correct for other perceived confounds. These
effects can include those of signal drift, head motion [23, 24],
and time shifts errors seen in multislice acquisition of fMRI
data [25]. However, it has been stated that even small errors
inmodeling can result in the loss of statistical power [21], and
the inclusion of inappropriate effects can lead to an increase
of activated voxels yet reducing the validity of themodel [26].

Many of potential sources of error associated with apply-
ing the GLM framework in the temporal domain can be elim-
inated or mediated by implementing the GLM in the Fourier
or spectral domain. An important advantage of a Fourier-
based methodology [27, 28] is that the statistics at different
frequencies are asymptotically independent so that statistical
tests in the complex domain, that parallel those for the real
domain, can be more easily and directly constructed. In par-
ticular, Brillinger [29] developed a spectral domain approach
for evoked response experiments that can be adapted to the
analysis of single subject BOLD fMRI time series data. In this
publication, in response to experimental designs that include
repeatedmeasure data, we extend the Fourier-basedmethod-
ology previously developed to analyze fMRI data for multiple
input (stimuli) and single output (one fMRI run).This exten-
sion enables us to analyze evoked responses fMRI BOLD data
for single subjects that have multiple stimulus inputs and
multiple outputs (that is repeated runs fMRI data which we
will refer to as “states”). The corresponding mathematical
extensions to the theory provide the first full multivariate
approach in the Fourier domain of the GLM as applied to
evoked response fMRI BOLD data.

Moreover, as previouslymentioned, the use of parametric
models for the hemodynamic response function (HRF),
somewhat separate from the statistical analysis of fMRI data
is another drawback in temporal-based analysis of fMRI data
[19, 20] that is naturally addressed in a spectral domain
approach. As the Fourier-based GLM incorporates voxelwise

nonparametric estimates of the hemodynamic transfer func-
tion (HTF) (HRF in the frequency domain) and is focused
on hypothesis testing of this estimation. Additional positive
consequences of performing hypothesis testing of the HTF in
the spectral domain is that signal drift corrections as imple-
mented in the temporal domain are unnecessary as the signal
mean differences are not tested; time shift errors are also of
no importance since the analysis is carried out in the spectral
domain; andfinallymotion artifacts should bemediated since
the BOLD response generally has a spectral power distribu-
tion that is different than that for head motion.

Whereas it should be mentioned that some earlier papers
have also used Fourier-domain-based approaches to analyze
BOLD fMRI time series data, they have been of limited scope.
One of the earliest attempts at a Fourier-based analysis of
fMRI was that by Lange and Zeger [30] that focused on the
analysis of data obtained from a block experimental design
and used a parametric form of the HRF. Another early paper
that analyzed fMRI data in the frequency domain was by
Marchini and Ripley [31]; however, it was restricted to peri-
odic stimuli. A more recent paper, based on the work by
Brillinger [27], is that by Bai et al. [32]. It focused on obtain-
ing unbiased estimates of the HRF using stochastic rather
than deterministic input stimuli (the usual design for fMRI
experiments). It uses a weighted estimate of the transfer func-
tion and appropriate chi-square statistics to analyze sample
data from an fMRI experiment with a “simple” design. In
contrast, our paper has deterministic inputs or stimuli and an
unweighted estimate of the transfer function, an approach
that provides estimates with minimum mean square error
and focuses on inference testing. Thus, the paper by Bai et al.
[32] is attempting to find the best estimate to the transfer
function, but not necessarily carrying out multivariate sta-
tistical hypotheses testing. Therefore, as previously stated the
development in this paper is toward a full “multivariate”
approach for hypothesis testing to perform signal detection in
the spectral domain using an extension of the general linear
model methodology in the complex domain.

2. The General Linear Model in the Fourier
Domain for Multivariate Output

2.1. Model. Previously, a general linear model in the Fourier,
domain to model single or univariate fMRI time series was
presented [33–35]. In this model, a simple scalar quantity,
s(𝑡), represented the fMRI time series. In order to model a
repeated measures experimental design with multiple fMRI
time series for a single subject, themodel is extended to incor-
porate multivariate output as follows. Let

s (𝑡) = 𝜇 + r (𝑡) ∗ a (𝑡) + 𝜀 (𝑡) , (1)

where s(𝑡) now represents a matrix of size 1 × 𝑆 whose
elements consist ofmultiple (𝑆) time series or repeated BOLD
fMRI runs for a single subject collected at discrete time points
𝑡 (𝑡 = 1 ⋅ ⋅ ⋅ 𝑇) and spatial coordinate 𝑥 = (𝑥, 𝑦, 𝑧) (or voxel
position, implicit). 𝜇 is a matrix (size 1 × 𝑆) whose entries
consist of constant values (with respect to time) for each time
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series. The fixed deterministic input stimuli represented by
r(𝑡) have no spatial dependency. Multiple (𝑅) input stimuli
require that r(𝑡) be represented by a 1 × 𝑅 size matrix, and
correspondingly the response function a(𝑡) is represented by
a matrix of size 𝑅 × 𝑆. The symbol ∗ represents a convolution
of the entries of the matrix product of r(𝑡) and a(𝑡). Thus,
each stimulus input type and repeated BOLD fMRI run has a
single response function represented by a single matrix entry
in a(𝑡) and calculated at every spatial coordinate 𝑥 (implicit).
Each entry of the 1 × 𝑅matrix r(𝑡) is a time series having the
same length as the collected fMRI time series and consists of
0 s or 1 s at each time point 𝑡, where a value of 1 represents
a stimulus presentation at that time. The error in the data is
represented by 𝜀(𝑡) a matrix of size 1 × 𝑆 and assumes that
the noise is stationary with zeromean for each corresponding
fMRI BOLD time series collected.

Transforming this model (via the complex Fourier trans-
form) to the frequency domain, we have

s̃ (𝜆
𝑘
) = r̃ (𝜆

𝑘
) ã (𝜆
𝑘
) + �̃� (𝜆

𝑘
) , (2)

where 𝜆
𝑘
= 2𝜋𝑘/𝑇 and 𝑘 represents the wave or frequency

number. ã(𝜆
𝑘
), the HRFs representation in the Fourier do-

main is henceforth referred to as the hemodynamic transfer
function orHTF. Periodograms [36] are constructed from the
spectral forms of the stimulus input r̃(𝜆

𝑘
) and BOLD outputs

s̃(𝜆
𝑘
)matrices as follows:

I
𝛼𝛽

(𝜆
𝑘
) = (2𝜋𝑇)

−1

�̃�(𝜆
𝑘
)
𝐻

𝛽 (𝜆
𝑘
) , (3)

where 𝛼, 𝛽 = {r, s}, 𝜆
𝑘
= 2𝜋𝑘/𝑇 and the superscript𝐻 refers

to the Hermitian transpose. Estimates of the cross-spectral
functions are then constructed [27] as follows:

f̂
𝛼𝛽

(𝜆) = (2𝑚 + 1)
−1

𝑚

∑

𝑘=−𝑚

I
𝛼𝛽

(𝜆
𝑘
) , (4)

where 𝜆 denotes the center frequency of a band of frequencies
2𝑚 + 1 in width and provides stable estimates of the cross-
spectral functions.The cross-spectral functions take a slightly
different form [27] for the band centered at zero frequency.
However, in applications to fMRI time series data, this band
is discarded because it includes artifacts (e.g., low-frequency
motion drift) and is not used in this paper. The band size
chosen is based on statistical power considerations and the
spectrum of the input power [34].

An estimate of the hemodynamic transfer function (HTF)
[27, 34, 37] is given by

Â (𝜆) = [f̂
𝑟𝑟
(𝜆)]
−1

f̂
𝑟𝑠
(𝜆) 𝑅 × 𝑆, (5)

where thematrix size is included for clarity.Note that amatrix
entry ⟨Â(𝜆)⟩

𝑖𝑗
in (5) contains the HTF associated with the 𝑖th

stimulus input and the 𝑗th repeated run.

2.2. Hypothesis Testing of theHemodynamic Transfer Function.
Consider the hypothesis

𝐻
0
: B𝑎 (𝜆)C𝑇 = 0, (6)

where B is the matrix that allows us to construct hypothesis
test for multiple input stimuli and has size 𝑏 × 𝑅, where 𝑏

can range from 1 to 𝑅. For example, setting the B matrix to
the identity matrix I (size 𝑅 × 𝑅) would test whether any
input stimuli would evoke a response in the BOLD signal.
C is a matrix of size 𝑐 × 𝑆 where 𝑐 ranges from 1 to 𝑆. This
matrix allows us to construct hypothesis tests associated with
the 𝑆 repeated runs for each subject. For example, taking
B = [1 0] and C = [0 1 0] would test the HTF associated
with the BOLD response to the first stimulus type and the
second repeated run on a subject. Of particular interest is the
case for which the B and Cmatrices are identity matrices, of
sizes𝑅 and 𝑆, respectively.We refer to this case as the omnibus
case, that is, 𝐹

2𝑏𝑐;2ℎ
(𝜆;B = I,C = I) which is related to how

well the model generally fits the BOLD fMRI data [34].
The test of the null hypothesis (6) takes the form of the

following 𝐹-distribution:

𝐹
2𝑏𝑐;2ℎ

(𝜆) =
ℎ

𝑏𝑐

1 − 𝑈(𝜆)
1/𝑑

𝑈(𝜆)
1/𝑑

=
ℎ
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[𝑈(𝜆)

−1/𝑑

− 1] , (7)

where

𝑑 =
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{

√
𝑏
2

𝑐
2

− 4

𝑏
2
+ 𝑐
2
− 5

𝑏
2

+ 𝑐
2

̸=5

1 𝑏
2

+ 𝑐
2

= 5,

ℎ = [2𝑚 + 1 − 𝑅 − (
𝑐 − 𝑏 + 1

2
)] 𝑑 −

𝑏𝑐

2
+ 1

(8)

at each spatial position (implicit) and band (represented by its
center frequency 𝜆). This 𝐹-distribution simplifies to a more
easily recognizable form [34] in the univariate or single fMRI
run case, that is the ratio of the explained (by the HTF) to
unexplained variance.

The construct for the current 𝐹-distribution is based on
Rao’s approximation to the 𝑈-statistics [38]. The form of the
complex 𝑈-statistics for the model presented is based on an
extension of the multivariate general linear model [39] from
the real to complex domain. It has the following form:

𝑈
2𝑏;2𝑐;2(2𝑚+1+𝑏−𝑐−𝑅)

(𝜆) =
detG
𝑐
(𝜆)

det [G
𝑐
(𝜆) +H (𝜆)]

, (9)

G
𝑐
(𝜆) = CG (𝜆)C𝑇, 𝑐 × 𝑐, (10)

where

G (𝜆) = (2𝑚 + 1)

× {f̂
𝑠𝑠
(𝜆) − f̂

𝑠𝑟
(𝜆) [f̂
𝑟𝑟
(𝜆)]
−1

f̂
𝑟𝑠
(𝜆)} , 𝑆 × 𝑆,

(11)

H (𝜆) = (2𝑚 + 1)E(𝜆)𝐻[V (𝜆)]
−1E (𝜆) , 𝑐 × 𝑐, (12)

where

E (𝜆) = BÂ (𝜆)C𝑇, 𝑏 × 𝑐,

V (𝜆) = B[f̂
𝑟𝑟
(𝜆)]
−1

B𝑇, 𝑏 × 𝑏,

(13)
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Factors of 2, associated with the degrees of freedom in (7) and
(9), are required to account for the cross-spectral estimations
having both real and imaginary parts. Note that all terms
in (12) except that for f̂

𝑟𝑟
(𝜆) and correspondingly V(𝜆) are

implicit functions of the spatial coordinates 𝑥 = (𝑥, 𝑦, 𝑧) or
voxel position.

3. Methods

3.1. Experimental Design and Data Acquisition. The exper-
iment consisted of the following paradigm. An alcohol-de-
pendent and control subject taken from a larger study using
event-related fMRI [40] was investigated. The experiment
consisted of obtaining three separate BOLD fMRI images per
subject. During each acquisition, which we will henceforth
refer to as a state, the exact same visual input stimulus se-
quencewas presented to the subject.These visual images were
chosen from the International Affective Picture System [41].
Each image was presented for two seconds with a random
interstimulus interval from 0 to 8 sec. Each subject was then
asked to evaluate the visual stimuli, having either positive
(pos) or negative (neg) valence using one of two buttons avail-
able for them to press using three separate criteria (counter-
balanced order).

Specifically, subjects were asked to:

(i) evaluate the environment of the presented image
(whether it is indoor or outdoor) for which the col-
lected BOLD time series is referred to as the cognitive
state;

(ii) evaluate the emotional valence of the presented
image, if you liked it or did not like it, for which the
collected BOLD time series is referred to as the emo-
tion state;

(iii) do not evaluate the image and simply press a button
when presented with an image for which the collected
BOLD time series is referred to as the passive state.

Henceforth, we will refer to the three BOLD fMRI time series
collected for each subject as the cognitive (cog), emotion
(emo), or passive (pas) state.

3.2. Experimental Scanning Parameters. Images were col-
lected on a 3TGEMRI scanner (General Electric,Milwaukee,
WI, USA), using a standard quadrature head coil. The fMRI
scans consisted of 156 temporal volumes (64 × 64 × 16) con-
sisting of 5mm thick slices with in-plane sampling of 3.75 ×
3.75mmusing aT2∗-weighted echo-planar sequencewithTR
= 2 s, TE = 40ms, and flip angle 30∘. Structural scans were
acquired using a T1-weightedMP-RAGE sequence with TR =
100ms, TE = 7ms, and flip angle 90∘.

3.3. Image Preprocessing. Preprocessing of the fMRI single
subject images consisted of the following steps.

(1) Spatial registration of all functional temporal volumes
to the tenth-time volume collected in the passive run

using the AFNI [7] program 3dvolreg.The AFNI pro-
gram 3dAutomaskwas also used to construct a binary
mask (inside brain versus outside brain) for the func-
tional images.

(2) Within-slice (2-dimensional) spatial smoothing using
a Gaussian filter 8mm full width half-maximum
(FWHM) was applied to the coregistered images pro-
duced from step 1.

(3) Structural-to-functional MRI registration and
restricted-to-affine transformations within subject
using the AFNI program 3dAllineate [42] were per-
formed. That is, the tenth-time volume or BOLD
image from the passive run (see step 1) was registered
to the subject’s own structural MRI volume image.

Notably no other preprocessing of the data was made (and
nonewas required [34]) in contrast to standard preprocessing
of fMRI data in the time domain [23–25, 43].

3.4. Analysis of Multivariate Data in the Fourier Domain. All
statistical tests were performed on an Apple Mac Pro Dual-
Core 2.66GHz computer using the SRView program (unpub-
lished) developed for general fMRI data analysis. SRView is
programmed in C++, with a X11-based GUI with embedded
functional calls or a batch mode that uses tcl/tk as a scripting
language. C shell scripts can also be used to invoke multiple
runs of SRView. Typical calculations that include all hypoth-
esis tests usually take twenty minutes or less.

Statistical tests of the null hypothesis (6) were carried out
using the corresponding 𝐹-statistics (7) with appropriate B
and C matrices chosen for a specific test. A band size of 13
frequencies (𝑚 = 6) was chosen based on the observed spec-
tral power distributions and from previously analyzed data
results [34, 35, 37]. Once a uniform band size was chosen the
partitioning of the Fourier frequencies into bands and asso-
ciated center frequencies was set. The band centered at zero
frequency (𝜆 = 0)was discarded because it contains a number
of low-frequency artifacts. These are most prominently asso-
ciated with motion and possibly signal drift. Therefore the
elimination of this band is equivalent to applying a high-pass
frequency filter to the time series data. After discarding this
zero-band and limiting the highest frequency band to have an
upper bound less than or equal to the Nyquist frequency, we
produced five bands of equal size. 𝐹-statistics (6) were then
calculated as a function of the center frequency 𝜆 of these
bands.

Initially, model goodness of fit was explored using the
omnibus hypothesis test 𝐻

0
: A(𝜆) = 0 using the 𝐹-test

statistic (7) with B and C matrices set as identity matrices.
These tests were carried out at every voxel within the scope
of the brain masks produced in the preprocessing steps (see
Section 3.3). These tests performed at every voxel indicated
whether any of the stimuli produced a significant response
at any center frequency. The resultant spatial patterns are
presented using multiple 𝑃-level mask (typical for reporting
fMRI activity in temporal-based analysis). A color look-
up-table (LUT) is used to present these threshold values.
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Input: Select multiple 𝑃-values 𝑃
0
, . . . , 𝑃

𝑛
and associated color values in LUT

Calculate corresponding 𝐹-value, 𝐹(𝑃
0
), . . . , 𝐹(𝑃

𝑛
) | dof (2𝑏𝑐; 2ℎ)

Loop over voxels within brain mask
Extract 𝐹-values at voxel, indexed by band numbers
Loop over band numbers

Get 𝐹 for band
if (𝐹 < 𝐹(𝑃

0
)maskPixel = 0

if (𝐹 ≥ 𝐹(𝑃
0
) and 𝐹 < 𝐹(𝑃

1
)) maskPixel = 1

...
if (𝐹 ≥ 𝐹(𝑃

𝑛−1
) and 𝐹 < 𝐹(𝑃

𝑛
)) maskPixel = 𝑛

if (𝐹 ≥ 𝐹(𝑃
𝑛
)) maskPixel = 𝑛 + 1

End loop over band numbers
End loop over image voxels
Output: multi-value mask and associated color LUT

Algorithm 1

Table 1: Compilation of omnibus and interaction hypothesis tests and associated matrices with resultant figures.

Test no. Subject type slices presented Hypothesis test Hypothesis matrices Figure no.
B C

1
Subj: control
Slices:
occipital, language

Omnibus I
(identity matrix) I 2

2
Subj: alcoholic
Slices: occipital,
language

Omnibus I I 3

3 Subj: control, alcoholic
Slices: all Interaction [1 −1] [

1 −1 0

0 1 −1
] See text

The algorithm for production of the multiple 𝑃-level mask in
the Fourier domain is shown in Algorithm 1.

To help control for multiple tests (that is limiting the
number of false positives), all voxels originally sampled
within the full brain mask were further restricted by statis-
tically based “voxel limiting” spatial masks as follows. The
omnibus 𝐹-test images (related to measure of model fit—see
Section 2.2) at each center frequencywere strictly threshold at
𝑃 = .001 to produce binarymasks for each band.Thesemasks
were then combined using a Boolean OR operation to pro-
duce one spatial binary mask, henceforth referred to as the
omnibus mask. This mask enabled us to limit the number of
voxels looked at with the specific inference tests for inter-
action, main and simple effects for the ANOVA design pre-
sented.This yielded approximately 7% of the brain mask vox-
els for the alcoholic subject. Next, a mask based on the inter-
action hypothesis test was produced. The test for interaction
between stimuli and states produced a mask used to exclude
those voxels in which an interaction was seen. Additional
multivariate tests for state effects were also used to further
spatially restrict subsequent hypothesis tests. The algorithm
for application of these hierarchical embedded masks is pre-
sented in Figure 1, where we present the flow chart associated
with a voxel as it is either included or excluded in a mask,
whose construct is based on the specific criteria being tested.
Note that less stringent criteria were applied to univariate-
based hypothesis tests where only the simple omnibus test

based mask was applied so as to more easily compare the
results to the previously published analysis of this data [40].

Finally, in this analysis no attemptwasmade to investigate
the frequency structure of the response since the temporal
sampling rate or TR was relatively long and only a few bands
were available for testing. For a more detailed look at fre-
quency-specific hypothesis testing, see Rio et al.’s work [34]
where the TR was 400ms and the acquired fMRI series were
1400 time points long.

4. Results and Discussion

4.1. Omnibus Hypothesis Test and Test for Interaction. The
construction of the omnibus hypothesis test for the control
and alcoholic subjects is performed first. This consisted in
applying the 𝐹-test (6) with full-rank matrices B and C set
to I to test the hypothesis of whether any input stimuli or
output run produced a significant response. Table 1 lists the
test, and selected image slices (showing relevant results) are
presented in Figures 2 and 3. In both figures, we see significant
activation in the occipital regions of the brain that can
generally be attributed to the visual stimuli being processed.
Additionally, for the alcoholic subject, we see strong activa-
tion in the languages regions (both Broca’s and Wernicke’s
areas—bottom of Figure 3) as well as some more muted acti-
vation (associated with a larger 𝑃 value) in the amygdala (top
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 Difference for states
Section 4.2: Table 2;
Figure 4, rows 2–4

Stimulus effect
Section 4.2: Table 2;
 Figure 4, last row

Omnibus
Section 4.1: Table 1;

 Figures 2, 3

Yes

Yes

Apply brain mask
(Is it within?)

Voxel

Stop

Stop

Interaction
Section 4.1: Table 1

see text

No

Stop

Stop

Stop
No

Yes 

No

Univariate
Section 4.3: Table 3;

State effect
Section 4.2: Table 2; Figure 4, 

top row

Yes

No

Yes-reject null hypotheisis
No-accept null hypothesis 

Hypothesis
testing

within brain

To compare with
previous papers

Apply whole
brain mask

Figures 5–7

Figure 1: Diagram showing the sequential processing of a voxel in terms of hypotheses test applied. Only voxels for which the null hypothesis
is rejected (except in the case of the interaction) proceed to the next test. For a complete description of tests and associated figures, see the
indicated sections referred to in the flow chart.

of Figure 3). No such activation occurs in the control subject
in the language area or in the amygdala (Figure 2).

A test for interaction was also performed (see Table 1).
This test for parallel profiles based on the differential response

of positive to negative stimuli for the output vector of cogni-
tive, emotional, and passive states. This produced only a few
activated voxels (not shown in any figure) in the control
and alcoholic subjects. Most notably in the alcoholic subject
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Control subject
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0.0007 3.927
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and
amygdala 

Omnibus test

Slice through
language region 

P value and associated
F-value

1

1

1

P F

Figure 2: Control subject: inference results for omnibus hypothesis test shows BOLD response in the occipital region of the brain, visual
stream. Note that the red blue and green lines indicate the correspondence between the orthogonal slices presented. There is no activation in
the language region for the slice presented or any other slice through the language regions (not presented).

a small loosely connected set of three voxels in the left insula
region that was not seen in the control subject. It is interesting
to note that this is an important region of the brain linked to
emotion and cognitive functioning.

4.2. Multivariate Repeated Measures Hypothesis Testing. The
main effects were investigated using multivariate repeated
measures hypothesis tests (see Table 2).The images presented
in Figure 4 are those for a control and alcoholic subjects for
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Alcoholic subject

0.0001 4.892
0.0003 4.337
0.0005 4.088
0.0007 3.927

0.001 3.758

Multivariate hypothesis test

Omnibus test

Slice through
occipital region

and
amygdala

Omnibus test

Two slices through
language regions 

P value and associated
F-value

2

2
2

2 P F

Figure 3: Alcoholic subject: inference results for omnibus hypothesis test shows BOLD response in the occipital region of the brain, visual
stream. Note that the red blue and green lines indicate the correspondence between the orthogonal slices presented. Also interestingly, the
amygdala and language areas for the two slices presented show a BOLD response not seen in the control subject (Figure 2).

transversal slices that cut through the occipital region of the
brain posteriorly and through the amygdala in the medial
anterior. The first hypothesis tested is that for the state effect,
that is, whether the stimulus inputs, positive and negative,
showed a differential response in the state vector consisting of

the cognitive, emotional, or passive functionalMRI runs.The
degrees of freedom for the 𝐹-distribution used in this test
are (4, 20) (with 𝑏 = 1, 𝑐 = 2; see Table 2, Test no. 4 and
(7)). Next are presented the results for the following hypothe-
ses: the effect between the cognitive and emotional states;
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Table 2: Compilation of multivariate repeated measures hypothesis tests and associated matrices with resultant figures.

Test no. Brief description of hypothesis test Hypothesis matrices Figure no.
B C

4 State effect
differentiation between states [1 1] [

1 −1 0

0 1 −1
] 4

5 State effect: cog versus emo [1 1] [1 −1 0]

46 State effect: emo versus pas [1 1] [0 1 −1]

7 State effect: cog versus pas [1 1] [1 0 −1]

8 Stimulus effect
differentiation between stimuli [1 −1] [1 1 1] 4

Table 3: Compilation of univariate hypothesis tests and associated matrices with resultant figures.

Test no. Subject type; slices presented Hypothesis test Hypothesis matrices Figure no.
B C

9 Alcoholic; occipital Neg; emo versus pas [0 1] [0 1 −1]

510 Alcoholic; occipital Neg; cog versus pas [0 1] [1 0 −1]

11 Alcoholic; occipital Neg; cog versus emo [0 1] [1 −1 0]

12 Control, alcoholic; occipital Neg; pas [0 1] [0 0 1]

6

13 Control, alcoholic; occipital Neg; cog [0 1] [1 0 0]

14 Control, alcoholic; occipital Neg; emo [0 1] [0 1 0]

15 Control, alcoholic; occipital Pos; emo [1 0] [0 1 0]

16 Control, alcoholic; occipital Stimulus effect; emo [1 −1] [0 1 0]

17 Alcoholic; occipital State effect-cog [1 1] [1 0 0]

7

18 Alcoholic; occipital State effect-emo [1 1] [0 1 0]

19 Alcoholic; occipital State effect-pas [1 1] [0 0 1]

20 Alcoholic; language Neg; emo [0 1] [0 1 0]

21 Alcoholic; language Pos; emo [1 0] [0 1 0]

22 Alcoholic; language Stimulus effect; emo [1 −1] [0 1 0]

the effect between the emotional, and passive states and the
effect between the cognitive and emotional states. Finally, the
hypothesis for stimulus effect is presented, that is, whether a
differential response was seen between positive and negative
input stimuli across the state vector, that is, the cognitive,
emotional, or passive functional MRI runs. The degrees of
freedom for the 𝐹-distribution used in these test are (2, 22)
(with 𝑏 = 1, 𝑐 = 1; see Table 2, Tests nos. 5–8 and (7)).
Generally, it is seen in Figure 4 that the alcoholic subject
shows a pattern of BOLD response not seen in the control
subject for any of the hypotheses tested, especially in the
amygdala (medial anterior brain structure). However, no
direct between-subject inference test is available for the single
subject analysis presented.

4.3. Univariate Simple Effects Hypothesis Testing. The remain-
ing hypothesis tests to be presented are simple effects tests
(see Table 3). In Figure 5, we focus generally on comparisons
between the output states in the amygdala, that is, the differ-
ential responses between the emotional, passive, and cogni-
tive states for the negative stimuli input in the alcoholic sub-
ject.The largest (that is spatially extended region) differences
occur between the emotional and passive states or the cogni-
tive and passive states in this alcoholic subject. The stimulus

effect hypothesis (bottom row of Figure 5 and also presented
in Figure 4) also shows a differential response between the
positive and negative stimuli in this same region.

We next present some simple effects of hypothesis test
results for both the control and alcoholic subjects in Figure 6
that again present results on a transversal slice that includes
the amygdala. These hypothesis tests, testing simple effects
associated with one or the other stimulus input and one of the
output states, passive, cognitive, or emotional, showminimal
activation except possibly for the emotional state. In Figure 6
(last row) is presented the activationmask associated with the
stimulus effect, that is, the differential response of the input
stimuli in the emotional run, which shows some differential
response to the stimuli in the amygdala.

Finally, in Figure 7 are presented the results for simple
effects univariate hypothesis tests. They include hypothesis
tests for the negative, positive, or stimulus effect (differential
response between the inputs, positive and negative stimulus
inputs) for the cognitive state, emotional state and passive
state for the alcoholic subject in both the amygdala and lan-
guage areas of the brain. Here, we see increased activation in
the emotional and passive runs as compared to the cognitive
run in the amygdala and the occipital region. Particularly in
the language regions, both Broca andWernicke’s (bottom two
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Multivariate hypothesis test
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 0.003 7.653
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Figure 4: Multivariate repeated measures hypothesis tests for the control and alcoholic subjects are presented for a slice representative of the
amygdala (media anterior) in the brain. The hypothesis tests show significant BOLD activation in the alcoholic subject in the amygdala for
both a state effect and stimulus effect. Differences between the cognitive, emotional and passive states are also seen. Finally, while no direct
hypothesis test between subjects can be made, we see in the control subject generally a more subdued BOLD response in all cases.

rows of images in Figure 7), we see substantial activation
for the positive or negative stimuli and a somewhat smaller
activated region for the stimulus effect (that is differential test
between input stimuli) for the emotional run. The cognitive
and passive runswere either not as active or generally inactive
for these simple effects hypotheses tests and are not presented.

4.4. Hypothesis Testing in the Temporal Domain: A Sample
Result from a Previous Study. A previous temporal-based
analysis result for a slice that includes both Broca’s and Wer-
nicke’s language areas of the brain for the alcoholic subject
used in our Fourier-based fMRI analysis is presented. The
control subject’s result is not presented since our omnibus
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Figure 5: Univariate simple effects hypothesis test results are presented for the alcoholic subject for a slice representative of the amygdala
(media anterior) in the brain. Focusing on the negative stimulus input and comparisons between the three output states, that is, emotional
versus passive states, cognitive versus passive states, and cognitive versus emotional states. For context, an additional hypothesis test result
(also see Figure 4) is presented showing the stimulus effect.

hypothesis test results (Figure 1) showed no activation in this
region. The result presented here is the exact single subject
analysis incorporated into the group analysis by Gilman et al.
[40] employed to produce a major result of that paper (see
Section 5). Comparison to the full group results is beyond
the scope of this paper; however, a qualitative comparison can
be made to the single subject alcoholic subject used in both
papers.The single slice (Figure 8) covers the same anatomical
regions as the slices presented in the two bottom rows of
Figure 7. Activation is seen in the language area of the brain,
similar to that produced in the group results [40] as well as
in other regions of lesser interest in this particular subject.
While no straightforward comparison of the 𝐹-statistic result
(Figure 7, bottom two rows) and the 𝑡-statistics result (Fig-
ure 8) is possible, multiple 𝑃 value spatial results are shown
in both figures. Note that a region presented with a value of
.001 means that this includes all voxels in which the statistic
had a threshold in which 𝑃 < .001. Using this as a guide, it is
possible to observe similar language regions seen in both
analyses; however, the temporal-based analysis seems to be

more generous in its assignments of activated region based
on 𝑃 values tested, especially in the hypothesis test results for
the positive stimuli. This also gives rise to activated regions
for the stimulus effect (last image on the right) not seen in
the Fourier-based analysis method.The additional regions of
activation are typical in temporal-based analysis that use less
general forms for the noise error [13] and are not an indication
of increased sensitivity with these tests. In fact, the group
analysis using this subject corrects this problem where many
of these activated regions are no longer significant. On the
other hand, the language region for the emotional run, as seen
in the Fouriermethod, is one of themajor activated regions in
the temporal-based group analysis that turns out to be impor-
tant.

5. Conclusion

Extensions have been developed and presented to the com-
plex general linear model with multiple inputs and outputs
that provides a statistically rigorous methodology to analyze
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Figure 6: A sampling of univariate simple effects hypothesis test results at a slice level that includes the amygdala for the control and alcoholic
subjects. Focusing on the negative stimulus input for the three states (repeated BOLD fMRI image runs), passive, that is, cognitive, and emo-
tional in the first three rows. BOLD response is most extensive in the emotional state. The fourth row shows the positive stimulus, emotional
state BOLD response. Finally, in the last row is presented the stimulus response for the emotional state. See Table 3 for a description of all the
matrices used to test these hypotheses.

fMRI time series data for single subjects based on the theory
developed byBrillinger [27, 29]. In doing so,we have incorpo-
rated the standard notation of the general linear model in the
real domain as presented by Timm [39] for multiple subjects
and adapted it to the case of spectral bands. This approach
allows the stochastic portion of the data to be modeled by

a more general form for the noise and therefore fewer restric-
tions on the structure of the covariance matrix as compared
to current time-based analyses. This is especially important
in the analysis of single subject data where the assumptions
on the noise structure can be critical to the calculation of the
accompanying statistics [13].
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Figure 7: Univariate simple effects hypothesis tests results for the alcoholic subject at three slice levels that include the amygdala and the
language areas of the brain are presented. Particularly note the increased activation shown in the emotional state in the amygdala. On the
bottom two rows are presented: the hypothesis tests for the emotional state for each individual input stimulus as well as the stimulus effect
through slices that include both Broca’s and Wernicke’s language areas of the brain. The resultants indicate that the emotional state was the
major contributor to the omnibus hypothesis test results shown in Figure 3 in the language area.

This methodology inherently incorporates voxel-specific
nonparametric estimation of the hemodynamic transfer
functions (hemodynamic response function in the time do-
main) that are central to the inference testing procedure.
Thus, this methodology is centered on hypothesis testing
of this transfer function for all constructed multivariate or

univariate tests and does not require separate and possibly
problematic a priori assumptions for the form of the hemo-
dynamic response function as often required in time-based
fMRI analysis [13, 19, 20]. In particular, the lack of a require-
ment to make a priori assumptions about the hemodynamic
response function form makes this method particularly
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Figure 8: Temporal 𝑡-based statistical hypothesis test results for the emotional run in the same alcoholic subject analyzed in the Fourier
domain (Figure 7, last two rows—Tests nos. 20–22). This exact single subject analysis was incorporated into the group of alcoholics used to
produce a major result in the original paper by Gilman et al. [40]. Activation in both Broca’s and Wernicke’s language areas of the brain is
shown in this single slice as well as a number of other regions of less interest.

useful in experiments designs where either drugs or the
experimental manipulation itself may alter the form of the
hemodynamic response function. This can, for instance
happen with the introduction of a vasoactive drug, such as
alcohol, to a subject during part of an experimental procedure
[20].

Finally, by limiting the number of preprocessing steps
and/or regressors, our Fourier-based GLM approach should
mediate or eliminate many potential sources of error for sin-
gle subject analysis addressed in the paper by Monti [13].

In regard to the comparison of this Fourier domain
approach to the usual temporal-domain-based analyses, we
can say the following. Hypotheses tested by these two meth-
ods are entirely different. In the temporal domain, a paramet-
rically defined HRF family of functions is used to produce
regressors associated with the stimulus input. Typically,
amplitudes of the associatedHRFs for specific stimuli provide
the regression coefficients. Other regressors of noninterest
are included for motion, and detrending of the time series
data is also performed in this methodological approach.
Statistics are then constructed to test the null hypothesis,
essentially that the coefficient of the stimuli associated HRFs
are zero. In contrast, the Fourier-based method for single
subject hypothesis tests completely different. We focused on
comparing the entire shape of the HTFs rather than simply
comparing the amplitude of HRFs with a similar underlying
shape as is often done in the temporal domain.This is accom-
plished by constructing hypothesis tests is directly on the
HTF shape as represented by its spectral profile. Here voxel-
specific HTFs are estimated as a direct response to the stimuli
presented.That is, a spatially varyingmeasure of the response
to the stimuli is presented by the hemodynamic system

associated with the brain.The specific and general advantages
to this approach are mentioned in previous paragraphs.

From an experimental design chosen to demonstrate the
use of this methodology, we have presented the analysis of a
single control and alcoholic subject.This design incorporated
multiple visual stimuli input and acquired multiple-output
state fMRI data. While not rigorously comparable, we see
that this analysis shows similar regions of BOLD response
to those seen in the original temporal-based group analysis
of this data. This can best be summed up by quoting from
the conclusion of the original paper by Gilman et al. [40],
“Alcoholic patients appear to use brain language areas more
than non-alcoholics while making judgments about the
setting or liking of emotionally arousing visual images. This
increased activation may reflect a compensatory recruitment
of brain regions to perform simple decision-making tasks.”Of
additional importance, the choice of this experimental design
for use in our demonstration has also allowed us to present a
systematic approach to avoiding bias inmultivariate hypothe-
sis testing by incorporating hierarchical embedded restricting
masks.This is an important step in controlling the number of
false positives inmultivariate-based analysis of fMRI imaging
data. Planned extensions would also incorporate a method of
false discovery proportion across voxels to further enhance
results.

In conclusion, the results obtained from this analysis pro-
vide additional confirmation that this methodological ap-
proach, previously applied to an experimental design with
multiple input stimuli and one output with a fast sampling
rate (TR = 400ms) and Poisson’s distributed stimuli [34] can
be applied to an experimental design with a more typical
design matrix and slower sampling rate (TR = 2 s) that also
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incorporates multiple (or repeated) fMRI runs for each
subject. Having now incorporated multiple input and output
hypothesis testing into the Fourier-basedGLMapproach, this
paper provides a foundation to extend this development to
the analysis of subject groups in the Fourier domain. Finally
while group-based extensions to this methodology will be
presented in future publications, let us end by quoting a com-
ment made by Savoy [44], “That ironically it may someday
turn out that the information from a few brains, thoroughly
studied, will reveal more about universal aspects of human
brain function and organization than the current torrent of
studies from large collections of brains.”
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Previous studies have shown that the dorsal premotor cortex (PMd) neurons are relevant to reaching as well as grasping. In order
to investigate their specific contribution to reaching and grasping, respectively, we design two experimental paradigms to separate
these two factors. Twomonkeys are instructed to reach in four directions but grasp the same object and grasp four different objects
but reach in the same direction. Activities of the neuron ensemble in PMd of the two monkeys are collected while performing the
tasks. Mutual information (MI) is carried out to quantitatively evaluate the neurons’ tuning property in both tasks. We find that
there exist neurons in PMd that are tuned only to reaching, tuned only to grasping, and tuned to both tasks. When applied with
a support vector machine (SVM), the movement decoding accuracy by the tuned neuron subset in either task is quite close to
the performance by full ensemble. Furthermore, the decoding performance improves significantly by adding the neurons tuned to
both tasks into the neurons tuned to one property only. These results quantitatively distinguish the diversity of the neurons tuned
to reaching and grasping in the PMd area and verify their corresponding contributions to BMI decoding.

1. Introduction

Motor brain-machine interfaces (mBMIs) interpret the
motor intents from neural signals to control the external
devices, such as the computer curser and the robot arm [1–
5]. In the previous studies, the subjects, usually nonhuman
primates, are required to manipulate a joy stick in a 2D
plane or 3D space to track the target, which mostly focus
on the arm movement [6, 7]. Thanks to the occurrence
of the artificial prostheses with multi-degrees of freedom
and the stable recoding systems, we could step into more
complicated paradigms. A few researchers have started to
work on elaborate grasping tasks [8–10], which involve the
movement of fingers with different gestures.

Previous studies have shown that there are several cortical
areas relevant to the reaching and the grasping movements,
such as the primary motor cortex (M1), the ventral premotor
cortex (PMv), and the dorsal premotor cortex (PMd) [10–13].

Specially, neurophysiological studies havemanifested that the
PMd area mostly relates to the proximal arm movements
[14, 15]. Some neurons fire more frequently when moving
towards the preferred direction. Burnod et al. have found that
when the initial armposition varied across theworking space,
the directional preferences of the PMd neurons changed
significantly [14]. Messier and Kalaska have proposed a boot-
strapping method to estimate the probability that neurons
were tuned based on the intertrial variability when the
monkey was performing a whole-arm reaching movement in
a plane. Significant directional tuning of the neurons in PMd
was relatively constant throughout the trials [15]. But recently,
some studies have reported that there are also some neurons
related to grasping in PMd [16, 17]. Raos et al. firstly found
that when the monkey was grasping different shaped objects,
the recorded neuron firings in PMd were sensitive for a
preferred type of shape [16, 17]. Some researchers suggest that
in the PMd area the neural representations of reaching are
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not completely separated from grasping [17, 18], that is, there
are grasp-related neurons in this area. This phenomenon
indicates the existence of the neurons tuned to both reaching
and grasping tasks. To study their combined representation,
Stark et al. performed a mixed paradigm which required
the monkey to grasp one of three different objects in six
directions [12]. He found that there are neurons related to
reaching as well as grasping in PMd. However, the paradigm
in [12] combined reaching and grasping in the same trial,
which may influence each other because the reaching is
always preshaped by the grasping gesture.

In this paper, we are interested in studying the tuning
property of the PMd neurons related to reaching and grasp-
ing, respectively. Two experimental paradigms are designed
to separate these two factors. Two monkeys are instructed
to reach in four directions but grasp the same object in
the first experiment, named as “Reaching task.” In the
second experiment, the monkeys are instructed to grasp four
different objects with different gestures but reach in the same
direction, named as “Grasping task.” Activities of neuron
ensemble in PMd are collected while performing the tasks.
We propose to use mutual information (MI) to quantitatively
discriminate the neurons tuned to reaching and grasping,
respectively. In order to verify the contribution of the
tuned neurons in PMd, a support vector machine (SVM) is
implemented to decode the activities of the tuned neurons to
the corresponding movement and compared with the perfor-
mance by full ensemble in both reaching and grasping tasks.
The decoding is further used to validate if there exist neurons
tuned to both tasks, and how much they contribute to the
motor decoding.The experimental setup and data acquisition
are shown in Section 2.1, followed by the introduction of the
mutual information method measuring the neurons’ tuning
characteristic and the implementation of the decoding algo-
rithm SVM. Results are shown and explained in Section 3.
Conclusion and discussion are in Section 4.

2. Materials and Methods

2.1. Experimental Setup. The paradigm of motor brain-
machine interface was designed and implemented in Qiushi
Academy for Advanced Studies at Zhejiang University. Two
rhesus macaques (male), named B03 and B04, were trained
separately to perform two different tasks: the Reaching task
and the Grasping task with one of their dominant hands
(right hand for B03 and left hand for B04), as illustrated in
Figures 1(a) and 1(b). In the Reaching task, four identical
objects are fixed on the four corners of a transparent resin
glass board, and the monkeys are required to stretch out to
grasp the target object in different directions. While in the
Grasping task, one object with a certain shape is fixed on the
same position of the board (indicating the same direction),
and the monkeys are required to grasp it with a specific
gesture in each trial.There are four objects in our experiment,
namely, a small cylinder, a rectangle plate, a ring, and a cone.
One object is grasped for a certain number of trials and
changed to another.

During the task, the monkey sits in a primate chair with
his head fixed. An LCDmonitor ismounted behind the board
to illuminate the target object area, as a cue to instruct the
monkeys to start the trial. The trial sequence is shown in
Figure 1(c).

Themonkey sits in darkness during the intertrial interval
(1∼2.5 s) with his hand resting on the clapboard. When the
cue is on (Light ON), the monkey is required to stretch out
and grasp the target object within 600ms, and hold it for
1∼2 s until the cue is off (Light OFF). After Light OFF, the
monkey releases the object andwithdraws his hand to the rest
position. When a trial is completed successfully, the monkey
would receive water rewards. The training durations are 2∼3
months before the monkeys successfully perform the tasks.

2.2. Neural Data Acquisition. The neural data are collected
from the Utahmicroelectrode array (Blackrock, 96 channels)
chronically implanted in the hand area of PMd, contra-
lateral to the trained hand (left hemisphere for B03 and right
hemisphere for B04).The surgical procedures are the same as
described in [19]. All experimental procedures in this study
conformed to the Guide for the Care and Use of Laboratory
Animals (China Ministry of Health) and were approved by
the Animal Care Committee at Zhejiang University, China.

Neural activities are recorded by the Cerberus data
acquisition system (Blackrock, USA). Signals were amplified
and analog-filtered by the Butterworth band-pass filter at
0.3–7500Hz and further digitized (14 bit resolution, 30 kHz
sample rate) and digitally filtered (Butterworth high pass
filter) at 250Hz. The spike activities were detected from the
filtered signal by a threshold valuemethod (the threshold was
−5.5 times of the root mean square of the baseline signal).
And the spike timings were recorded. Spike activities were
sorted by Offline Sorter (Plexon, USA). Different spike wave-
forms were discriminated by a time-amplitude discriminator
and a principle component analysis (PCA) algorithm [20].
Each neuronwas identified by observing the spike waveforms
and the channel locations based on the above spike sorting
method. In addition, the event timings of Light ON, Light
OFF, and rewardingwere also recorded synchronously via the
digital input port of the Cerberus system.

2.3. Data Analysis. To analyze neural activities in the two
tasks, we mainly focus on the period from the resting state
to stretch out, grasp, and hold. For each trial, we extract 0.5 s
before Light ON to 1.7 s after Light ON for Monkey B03 and
1.3 s after Light ON for B04 (B04 moved faster than B03).

For the desired period, neurons’ firing rates are binned in
a 100ms window. Firstly, a one-way ANOVA test is applied to
observe whether the neurons fire significantly different from
the rest state when performing the tasks. Then a quantitative
method, mutual information, is introduced to measure the
information amount between the neural firings and the target
task. In order to directly exploit the timing of the neurons’
firing, we examine the spike indicator (whether there is a
spike or not) every 10ms. The mutual information between



Computational and Mathematical Methods in Medicine 3

(a) Reaching task (b) Grasping task

Light ON Light OFF Water reward

Monkey
movement

Event

Rest Reach
grasp Hold Release Withdraw Rest

(c)

Figure 1: Experimental setup and the trial sequence. (a) The Reaching task. The monkeys were trained to grasp the identical objects in four
directions. (b)The Grasping task.Themonkeys were trained to grasp four different objects, namely, a small cylinder, a rectangle plate, a ring,
and a cone, in the same direction. (c) The time sequence of a single trial.

the neural activities and the task (reaching or grasping) is
defined as
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, and 𝑦

4
represent four different actions

in either task, and 𝑝(𝑦) represents the probability of the
corresponding action (in our experiments, it is 1/4 due to the
same trial numbers); 𝑝(spk | 𝑦) represents the conditional
probability of the corresponding firing rate (0 or 1) for a
certain action; and 𝑝(spk) represents the probability of the
corresponding firing rate of the target task. Please refer to
[21, 22] for details. We calculate the cumulative sum of the
neurons’ MI according to a descending order for each task.
When the cumulative sum of the MI reaches 90 percent of
the total amount, the last MI that has been added is regarded
as the threshold for the task.The threshold is applied to divide
the neurons into the tuned ones and nontuned ones and
calculated session by session, respectively.

An SVM is implemented as a decoder to quantify the
contribution of the tuned neurons to the BMI decoding.
Firstly, a subset of the tuned neurons according to the
thresholds described above is used in classification, compared
with the decoding by full ensemble, respectively, for the two
tasks. Noticing that there might be overlaps between the
neurons tuned to reaching and the neurons tuned to grasping,
that is, the neurons tuned to reaching as well as grasping,

we separate them from the neurons tuned to one property
only and compare the decoding performance including or
excluding them.

An SVMmodel maps the neural data into a high-dimen-
sion space by a kernel function, and different categories are
divided by a hyper plane. For a specific SVMmodel, the hyper
plane is optimized by (2), according to the statistical learning
theory [23]:
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where 𝑦
𝑡
represents the category of different movements, and

𝑋
𝑡
represents the neural firing rate, which is an 𝑛 by𝑚 vector

(𝑛 is the number of neurons in a session, and𝑚 is the number
of bins). In our experiment, 𝑚 is 18 for B03 and 14 for B04.
The parameters 𝑢 and 𝑏 indicate the normal vector of a hyper
plane and its offset. The goal of (2) is to find an optimal
separation plane which is farthest away from the nearest
neural data in both classes. The parameter 𝜀

𝑡
is a dummy

variable. The regularization term makes sure that the neural
data in the training set is misclassified with a cost, because
there is noise and other measurement errors. The parameter
𝐶 is used for controlling the balance between the overtraining
and the generalization in testing. In our experiment, we
take radial basis function as the kernel function. And the
parameters of the radial function 𝛾 and 𝐶 are determined
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by a 2-fold cross validation.The algorithm is implemented in
MATLAB using open source library LIBSVM [24].We would
like to remark at this point that SVM is not the only option
to evaluate the decoding performance. Any effective classifier
may work here.

3. Results

The goal of this work is to find out how a certain neuron
in the PMd area is tuned to reaching and grasping, and this
section shows some example neurons with different tuning
characteristics, followed by the quantitative analysis of the
neurons’ tuning properties for different tasks; and the last step
is to verify the contribution of the tuned neurons to the BMI
decoding.

5 sessions of neural signals for each monkey were
obtained during a period of half a month. In each session,
monkeys were required to do both Reaching task (100 trials
divided in 25 trials for each reaching direction) and Grasping
task (200 trials divided in 50 trials for each grasping gesture).
For Monkey B03, neural data were recorded from 96 chan-
nels, and for Monkey B04, neural data were recorded from
64 channels. After offline sorting, 22–47 neurons (from B03)
and 30–66 neurons (from B04) were isolated in each session.

3.1. Observing Neurons’ Tuning Activities in Time. To give
an intuitively view of the neurons’ tuning characteristic in
the Reaching and the Grasping tasks, we average the firing
rates across trials in one session for each task. Here, we
plot four example neurons (Figure 2) which show different
firing patterns during the tasks. The average firing rates in
each task are aligned by the time of Light ON and plotted
in the same figure. Neurons A and B are selected from one
session of B03, and Neurons C and D are selected from one
session of B04. We can see that Neuron A fires significantly
higher than the baseline in the two tasks. And the four
curves both in the Reaching task (corresponding to the four
reaching directions) and the Grasping task (corresponding
to the four grasping gestures) are scattered. Therefore, we
consider Neuron A as tuned to both tasks. For Neuron B,
the firing curves in the Reaching task can be discriminated
but grouped together in the Grasping task. We consider it as
tuned to reaching only. The firing pattern of Neuron C is just
contrary toNeuron B, andwe regarded it as tuned to grasping
only. And for Neuron D, which fires at the baseline level in
both tasks, is regarded as no-tuning.

To inspect whether the neurons’ tuning properties com-
monly exist or not, a one-way ANOVA test (𝑃 < 0.05)
has been carried out [25]. Task-related responses of each
neuron are statistically assessed by comparing the firing rates
between themovement state and the rest state. In the reaching
task, 80.96% of the neurons from B03 show significant differ-
ence in the firing rate relative to the baseline. The percentage
is 72.41% for B04. These neurons are classified as reaching-
related ones. In the Grasping task, the percentages are 88.02%
and 86.59%, respectively, for B03 and B04.These neurons are
classified as grasping-related ones (one-way ANOVA, 𝑃 <
0.05). Among the reaching-related neurons, a large fraction
(84.04% for B03 and 68.26% for B04) further shows reaching

tuning property (the firing rates for at least one reaching
direction in at least two bins were significantly different to
the others). This situation is the same as the grasping-related
neurons, 92.03% and 73.88% for B03 and B04 show grasping
tuning property, respectively, (one-way ANOVA, 𝑃 < 0.05).
These results show that amajority of the neurons show tuning
property to the Reaching and the Grasping tasks.

3.2. Mutual Information Analysis. To evaluate the neurons’
tuning characteristic quantitatively, the mutual information
(MI) between each neuron and the corresponding task is cal-
culated. For each neuron there are twoMI values respectively
for the reaching and the grasping task.

Figure 3 displays the MI values for the two tasks in one
session. The MI values in the two tasks reflect some char-
acteristics. Some neurons exhibit large MI in reaching (blue
bar) while very small MI in grasping (red bar), suggesting
that they are more sensitive to the reaching task. By contrast,
some display largeMI in graspingwhile smallMI in reaching,
suggesting they are involved in grasping. Besides, there are
also some neurons presenting large MI in both tasks, which
indicates that they are related to both conditions.

Note that the four example neurons shown in Figure 2
are marked by the asterisks in the above figure, and the
corresponding neuron signs are instructed by the arrows
under the 𝑥-axis. Neuron A, ranking first in the upper panel,
which is regarded as tuned to both conditions in Figure 2,
shows largeMI values in both tasks.NeuronB,which tuned to
reaching only, exhibits largeMI in reaching while smallMI in
grasping. Neuron C, ranking 23 in the bottom panel, displays
large MI only in grasping. And Neuron D shows small MI in
both conditions. This demonstrates that a neuron’s tuning to
a task reveals large MI in the corresponding task, and the MI
can indicate a neuron’s tuning property.

A threshold method on MI is employed to quantitatively
evaluate a neuron’s tuning property. If the MI values in
reaching and grasping exceed the thresholds of both tasks,
the neuron is tuned to both conditions. If the MI of one task
is greater than the task’s threshold but the MI of another
task is below the task’s threshold, the neuron is defined as
tuned to one condition only. Table 1 shows the contribution
of the tuned neurons in the corresponding task, that is, the
percentage of the information provided by the tuned neurons,
which are averaged across five sessions. The number of the
corresponding tuned neurons is also given in the brackets.
Take Monkey B03 as an example, in the Reaching task, the
information provided by the neurons tuned only to reaching
and those tuned to both conditions, respectively, accounts for
30.74% and 54.81%. And in the Grasping task, the proportion
is 27.77% and 60.94%, respectively, for the neurons tuned only
to grasping and the neurons tuned to both conditions. The
information distribution for Monkey B04 is similar to B03.

It is interesting to notice that the contribution of the
neurons tuned to both conditions is much larger than that of
the neurons tuned to only one property in both tasks. One
possible reason may be the number of the neurons tuned
to both conditions is averagely greater than the number of
the neurons tuned to one property only. The reveal of the
large number of the neurons that tuned to both conditions
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Figure 2:The tuning activities of four example neurons frombothmonkeys during the Reaching and theGrasping tasks.The𝑥-axis represents
the times (in seconds) from the rest state (about 0.4-0.5 s) to themovement state (about 1.4–1.7 s).The 𝑦-axis represents the firing rate (in Hz).
The vertical line in each panel represents the time of Light ON, which is defined as 0 s. Each row shows the variation of the same neuron’s firing
rates in the two tasks (left: the Reaching task; right: the Grasping task). Neurons A and B are from the first session of B03, and Neurons C and
D are from the third session of B04.The four different colors in one plot represent four different actions of a task. Specifically, in the Reaching
task, the red color indicates reaching to the direction of upper-left corner (D1), the green color indicates reaching to the direction of upper-
right corner (D2), the blue color indicates reaching to the direction of lower-left corner (D3), and the light blue color indicates reaching to
the direction of lower-right corner (D4). In the Grasping task, the red color indicates grasping the cylinder, the green color indicates grasping
the plate, the blue color indicates grasping the ring, and the light blue color indicates grasping the cone.

is consistent with the study [12] that shows there exist PMd
neurons that tuned to grasping as well as reaching.

3.3. Decoding Verification. To verify the correlation between
the neurons’ tuning property and the tasks, we adopt the SVM

to check the decoding performance by full ensemble versus
the tunedneuron subset versus the top 10well-tuned neurons.
The decoding results are depicted in Figure 4.

Compared with the decoding by full ensemble, the tuned
neuron subset achieves quite close accuracy in both tasks
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Figure 3:Themutual information in one session for the two tasks.The 𝑥-axis represents the neurons, and the 𝑦-axis represents theMI values
in the Reaching and the Grasping tasks. The blue bars represent the Reaching task, and the red bars represent the grasping task. The upper
panel is for Monkey B03, and the bottom one is for B04. The asterisks represent the four neurons shown in Figure 2, which are instructed by
four arrows under the 𝑥-axis.

Table 1: The percentage of the information provided by the tuned neurons in the Reaching and the Grasping task. The number shown in the
brackets represents the corresponding tuned neurons.

Monkey

The contribution of the tuned neurons in the two tasks
Reaching task Grasping task

Tuned only to reaching
(averaged number of

neurons)

Tuned to both conditions
(averaged number of

neurons)

Tuned only to grasping
(averaged number of

neurons)

Tuned to both conditions
(averaged number of

neurons)
B03 30.74% (7) 54.81% (9) 27.77% (5) 60.94% (9)
B04 23.16% (9) 65.51% (14) 30.4% (9) 57.89% (14)

for the two monkeys, and even using the top 10 well-tuned
neurons can get a comparable performance. These results
suggest that the tuned neurons contain the majority of the
information related to the corresponding task, and even a
small subset of well-tuned neurons is able to achieve an
excellent decoding performance.

In Figure 4, the tuned neuron subset in each task contains
two types of tuned neurons, that is, the neurons tuned to one
property only and the neurons tuned to both conditions. To
investigate the role of the neurons tuned to both conditions,
we further compare the decoding by adding them into the
neurons tuned only to one property.

Figure 5 includes three neurons subsets, namely, the sub-
set a, the subset b, and the subset c, representing, respectively,
the neurons tuned only to reaching, the neurons tuned only

to grasping, and the neurons tuned to both conditions. The
light blue bars represent the decoding by the subset tuned
only to one property (i.e., the subset a in the Reaching task
and the subset b in the Grasping task), and the yellow bars
represent the decoding by two types of tuned neurons (the
neurons tuned to one property only plus the neurons tuned
to both conditions, that is, the subset a plus the subset c in
the Reaching task and the subset b plus the subset c in the
Grasping task). Adding the subset c to the subset a or the
subset b, the decoding accuracy significantly increases both
in the Reaching and the Grasping tasks, and the improve-
ment is about 50.9%–70.6%. For the significant decoding
performance improvement, one possible reason is the greater
number of the neurons for the combination of the two
types of tuned neurons. Another possibility is that the tuned
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Figure 4: The decoding results by full ensemble versus the tuned neuron subset versus the top 10 well-tuned neurons. The 𝑥-axis represents
the sessions, and the 𝑦-axis represents the decoding accuracy. The red line represents the decoding by full ensemble, the blue line represents
the decoding by the tuned neuron subset, and the green line represents the decoding by the top 10 well-tuned neurons. The top two panels
show the decoding in the Reaching (left) and the Grasping tasks (right) for Monkey B03. The bottom panels are for B04.

neurons in the combined group make a better integration
of the neuron circuits that can form a complete and more
complicated reaching and grasping action. Hoshi and Tanji
in their reviews have demonstrated that the neurons in PMd
receive multiple aspects of motor information (including
arm use, target location, and instructedmovement direction)
that encodes in a circuit to form an appropriate action
[26–29]. These studies indicate that the PMd has played a
major role in integrating multi-information to formulate a
complicated movement. Therefore, the combined groups of
the tuned neurons may make a better integration of different
information that eventually achieves a precise prediction of
the output movement.

4. Conclusion and Discussion

In the current work, we have studied the tuning characteristic
of the neurons in the PMd area in reaching and grasping,

respectively. We design two BMI behavior paradigms which
keep one factor constant but change another. The first
condition is a “Reaching task” which requires the monkeys to
reach in four different directions but grasp the same object.
The other condition is a “Grasping task” which requires the
monkeys to grasp four different objects but reach in the same
direction. We propose to utilize mutual information (MI) to
quantitatively evaluate the neurons’ tuning property in both
tasks. We find that there exist neurons in PMd that are tuned
only to reaching, tuned only to grasping, and tuned to both
tasks. When applied with a support vector machine (SVM),
themovement decoding accuracy by the tuned neuron subset
in either task is quite close to the performance by full
ensemble. Our results demonstrate the diversity of neural
tuning to reaching and grasping in the PMd area. The tuning
characteristic of the PMd neurons in the Reaching and the
Grasping tasks can be significant.The tuned neurons contain
more information related to the movement.
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Figure 5: The decoding performance by different neuron subsets. The 𝑦-axis represents the decoding accuracy. The blue bars represent the
decoding by the subset tuned to one property only, and the yellow bars represent the decoding by two types of tuned neurons (the subset tuned
to one property only plus the subset tuned to both conditions). The left panel is for the Reaching task and the right panel for the Grasping
task. In each panel, the left group is for B03 and the right group for B04. The subset a represents the neurons tuned only to reaching, the
subset b represents the neurons tuned only to grasping, and the subset c represents the neurons tuned to both conditions.

An interesting phenomenon is that theMI of the neurons
tuned to both conditions is larger than that of the neurons
tuned to one property only in both tasks. One possible
reason may be that the number of the neurons tuned to
both conditions is greater than the number of the neurons
tuned to one property only. The reveal of the large number
of the neurons that tuned to both conditions is consistent
with the study [12] that shows there exist PMd neurons that
tuned to grasping as well as reaching. The larger number
may also cause improvement of the decoding performance
when combining such neurons tuned to both conditions
with the subset tuned to one property only. Furthermore,
the tuned neurons in the combined group may make a
better integration of the neuron circuits that can form a
more complicated reaching and grasping action, which can
contribute to the better decoding of multimotor information
from PMd neurons. The mechanism of neural activities for
the reaching or grasping task requires further study.
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Brain state decoding or “mind reading” via multivoxel pattern analysis (MVPA) has become a popular focus of functional magnetic
resonance imaging (fMRI) studies. In brain decoding, stimulus presentation rate is increased as fast as possible to collect many
training samples and obtain an effective and reliable classifier or computational model. However, for extremely rapid event-related
experiments, the blood-oxygen-level-dependent (BOLD) signals evoked by adjacent trials are heavily overlapped in the time
domain. Thus, identifying trial-specific BOLD responses is difficult. In addition, voxel-specific hemodynamic response function
(HRF),which is useful inMVPA, should be used in estimation to decrease the loss ofweak information across voxels and obtain fine-
grained spatial information. Regularizationmethods have beenwidely used to increase the efficiency ofHRF estimates. In this study,
we propose a regularization framework called mixed L2 norm regularization. This framework involves Tikhonov regularization
and an additional L2 norm regularization term to calculate reliable HRF estimates. This technique improves the accuracy of HRF
estimates and significantly increases the classification accuracy of the brain decoding task when applied to a rapid event-related
four-category object classification experiment. At last, some essential issues such as the impact of low-frequency fluctuation (LFF)
and the influence of smoothing are discussed for rapid event-related experiments.

1. Introduction
In the last decade, multivoxel pattern analysis (MVPA) has
become a widely used analysis method in cognitive neu-
roscience especially in decoding brain activities at different
states [1–4]. MVPA mainly focuses on single-trial blood-
oxygen-level-dependent (BOLD) responses to identify differ-
ent brain states. In some experiments, to obtain an effective
and reliable classifier or computational model, numerous
samples should be collected using rapid event-related designs
[3]. However, for rapid event-related designs, the overlap-
ping of BOLD signals in the time domain encumbers the
extraction of a real trial-specific BOLD response, which is
important for MVPA. Hence, the accurate estimation of a
trial-specific BOLD response is a challenging problem in
rapid event-related MVPA.

Traditional estimating approaches are mainly classi-
fied into two groups. Model-based methods involve prior
hemodynamic response function (HRF), whereasmodel-free
methods have no assumptions on the shape of HRF. Model-
based methods differ in the assumptions of the shape of HRF,

such as the canonical double gamma function [5], Poisson
function [6], radial basis function [7], and inverse logit
function [8]. Previous reports revealed the capability of HRFs
in the traditional univariate statistical analysis especially in
activation-based analysis. However, most brain state decod-
ing experiments or information-based analysis aim to obtain
fine-grained spatial activation patterns that can help improve
the performance of our decoding model [9]. Therefore,
an accurate estimation that reflects real neural activities
is necessary to obtain more fine-grained spatial activation
patterns. In these cases, we cannot ignore the high variation in
the temporal responses of different voxels across individuals
as well as across tasks, regions of the brain, and different days
within individuals [10]. Hence, model-free methods that are
more sensitive and accurate have been widely used [11, 12].

For a model-free method, a voxel-specific HRF contains
one free parameter for each time point. Thus, an HRF of
arbitrary shape of each voxel that provides much more flex-
ibility in data analysis can be obtained. In a model-free
method, the first step is always to estimate a voxel-specific
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HRF and use this HRF to deconvolve BOLD signals [13].
When estimating a voxel-specific HRF, the BOLD response
is often assumed to be a linear time-invariant (LTI) system
[14]. Then, one of the main solutions is to represent the
HRF with a linear combination of basis functions [15, 16].
Another solution is to treat the HRF at each point as a free
parameter [17]. This paper alternatively focuses on the latter
one. Modeling low-frequency fluctuation (LFF) is another
problem inHRF estimation that should be addressed [18].The
linear drift in the obtained images is a challenging problem
in fMRI data analysis because of the poor HRF estimates. A
simple strategy for removing linear drift is to detrend time-
series data as a preprocessing step [19, 20]. Alternatively, LFF
may be modeled in a nuisance matrix consisting of some
basis functions as regressors. This strategy enables not only
linear detrending but also LFF removal to some extent [21],
resulting in a more flexible and efficient detrending model.

Given that BOLD images have high noise, regulariza-
tion is a popular technique that allows constraints to be
imposed on HRF estimates to suppress the impact of noises
when employing a parameter-free model. The smooth finite-
impulse response (FIR) method [22] is a good example of
regularization to smooth estimates. Tikhonov regularization
may also be used to impose smoothness [23]. In [24, 25],
Tikhonov regularization is combined with generalized cross-
validation (GCV) to reduce the computational burden
involved in parameter selection. Accordingly, Tikhonov reg-
ularization is also used in this paper. However, smoothness
is only one of the local features of a signal, which could
not reflect the global structure of a signal. Therefore, in
extremely rapid event-related experiments, considering only
smoothness is not enough to suppress the overlapping of
different events, resulting in deformed HRF shape. Hence,
we add an additional L2 regularization component into the
estimationmodel with Tikhonov regularization, calledmixed
L2 norm (MN) regularization. Using this regularization
method, we cannot only retain the smooth feature of HRFs
but also prevent the significant overlapping of adjacent
events. Furthermore, this method is a parameter-free model,
indicating that it is adaptive to the variability of HRFs across
voxels and individuals.

We first outlined the HRF and response estimation
methods, especially the proposed MN estimation method
and the classification approach used to assess their perfor-
mances. All methods were applied to four-category object
classification data to compare the classification accuracy.
We also compared the classification performances between
object responsive (OR) voxels and voxels in the early visual
cortex. Finally, we discussed the role of LFF and the impact
of smoothness in MVPA.

2. Materials and Methods

2.1. Subjects. Ten healthy subjects (six males and four
females) participated in this fMRI study. The study was
approved by the Institutional Review Board of China
National Digital Switching System Engineering and Technol-
ogy Research Center. All subjects provided written informed
consent and had normal vision.

2.2. Stimuli. The stimuli consisted of four categories (car,
animal, building, and human face) of color images, including
50 different images in each category. All images were cropped
to the center (700 pixels× 700 pixels) and placed onto a gray-
scale background.

Visual stimuli were rear-projected onto a screen in the
scanner bore using a luminance-calibrated LCD projector
driven by a PC.The subjects viewed the screen from amirror.
The display resolution was 1024 × 768, and the stimulus
presentation script was written using MATLAB (The Math-
works) and Psychtoolbox 3.0 (http://psychtoolbox.org/).

2.3. Experimental Design. Each subject participated in three
task runs, four localizer runs, and one retinotopic mapping
run. In the task runs, images were presented in a 4 s stimulus
trial. In each trial, an image was first presented for 2 s, and
the gray background was presented for the last 2 s. Each
presentation consisted of an image being periodically flashed
ON-OFF, where ON corresponds to the presentation of the
image for 200ms and OFF corresponds to the presentation
of the gray background for 200ms. The first two task runs
consisted of 70 distinct images randomly presented once for
each time. The last task run consisted of 60 distinct images
also randomly presented once for each time. After every five
stimulus trials, a blank trial that lasted for 4 s was conducted
as a break.

In localizer runs, the subjects were presented with blocks
of images for each category. Each run consisted of 12 blocks,
with 6 task blocks and 6 control blocks. The task block lasted
the same time as the control block for 30 s. Each localizer
run consisted of six images randomly selected from the same
image category. Each task block consisted of an image being
periodically flashed ON-OFF, where ON corresponds to the
presentation of the image for 200ms andOFF corresponds to
the presentation of the gray background for 200ms. The OR
voxels were a set of voxels that were strongly activated in at
least one localizer run (t-test, 𝑃 = 0.005, family-wise error
corrected).

Another standard retinotopic mapping run with polar
stimuli was performed to delineate the early visual areas on
a flattened cortex.

2.4. Data Acquisition. Thedata were collected using a 3-T GE
Discovery 750 (General Electric, Fairfield, CT, USA) scanner
with a standard head coil at the Imaging Center of Henan
Province. For each subject, a standard gradient-echo-planar
imaging series was used to collect functional images with the
following parameters: repetition time (TR), 2000ms; echo
time (TE), 30ms; field of view, 220mm× 220mm; matrix
size, 64× 64; 39 slices; slice thickness, 3.5mm; flip angle (FA),
80∘; and voxel size, 3.4mm× 3.4mm× 3.5mm. In addition,
a high-resolution three-dimensional T1-weighted anatomical
image was acquired (TR, 8.268ms; TE, 3.24ms; FA, 12∘).

2.5. Data Preprocessing. All fMRI data were preprocessed
with SPM8 (Statistical Parametric Mapping, http://www.fil
.ion.ucl.ac.uk/spm/software/spm8/) and REST (http://www
.restfmri.net/). The first 10 volumes of each run were dis-
carded because of the instability of initial magnetic resonance
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imaging signal and adaptation of subjects to the circum-
stance. Then, slice timing was performed on all functional
images. The images were realigned to the first image in the
first run for motion correction. We used REST to remove the
linear drift in each run.

For retinotopic mapping analysis, FreeSurfer (http://
surfer.nmr.mgh.harvard.edu/) was used to reconstruct a T1-
weighted anatomical image. Then, the realigned retinotopic
mapping images were registered to the anatomical image to
obtain the registration file. The following retinotopic analysis
was consistent with [26].

2.6. HRF Estimation

2.6.1. BasicModel. In ourmodel, the BOLD signal is assumed
to be an LTI system with respect to the stimulus. Then, the
measured BOLD time series is modeled as the convolution
of an input signal. The hemodynamic response function is as
follows:

𝑦 (𝑡) = ℎ (𝑡) ∗ 𝑠 (𝑡) =

𝐿−1

∑

𝑘=0

ℎ (𝑘) 𝑠 (𝑡 − 𝑘) , (1)

where 𝑦(𝑡) represents the fMRI time series, ℎ(𝑡) represents
the HRF, 𝑠(𝑡) represents the stimulus vector, and 𝐿 indicates
the discrete time length of the HRF. This model can also be
rewritten in matrix form:

y = Sh, (2)

where y is a column vector of length𝑁 (𝑁 being the number
of time points of the fMRI time series), S is the stimulus
convolution matrix with a dimension of 𝑁 × 𝐿, and h is a
column vector of length 𝐿. The stimulus convolution matrix
consists of shifted versions of a binary sequence, where ones
indicate event occurrences.

Considering LFF and other noises, additional nuisance
parts should be added to the above model. In this case, a set
of Legendre polynomials of degrees 0 through 3, which are
pairwise orthogonal, is used as regressors to compensate for
LFF [21]. An autoregressive stochastic process of order one
is also added [27]. Upon the incorporation of the nuisance
parts, the HRF estimating model can be written as follows:

y = Sh + Pb + 𝜖, (3)

where P represents the nuisance matrix of dimension𝑁 × 𝐵
consisting of Legendre polynomials of degrees 0 through 3,
b is a column nuisance parameter vector of length 4, and 𝜖
represents the stochastic noise.

2.6.2. Least-Square Estimation with AR (1) (LSAR) Noise
Model. The LSAR of the HRF estimation problem can be
achieved through the following steps (details can be found
in [28]):

(1) perform the ordinary least squares (OLS) method on
=W[h b]T + 𝜖, whereW = [S P], to obtain 𝜖;

(2) use 𝜖 to create a transformation matrix L with auto-
correlation coefficients. Then, transform the original

regression model y = W[h b]T + 𝜖 using L to Ly =
LW[h b]T + L𝜖;

(3) conduct an OLS regression on the transformed for-
mulation ỹ = W̃[h b]T + �̃� to obtain the real ĥ.

2.7. MN Estimation. Regularization is a common scalariza-
tion method for solving problems such as in the above-
mentioned basic model. The most common form of regular-
ization is called Tikhonov regularization, which results in a
convex optimization problem [29]:

minimize ‖Ax − b‖2 + 𝛿‖x‖2. (4)

For various values of 𝛿 > 0, this problemhas the following
analytical solution:

x = (ATA + 𝛿I)
−1
ATb. (5)

This optimization problem can be extended in several
ways. One useful extension is to add a regularization term
with the form of ‖Dx‖ in place of ‖x‖. In many cases,
the matrix D represents an approximate differentiation or
second-order differentiation operator; so ‖Dx‖ represents a
measure of the variation or smoothness of x. In the HRF
estimation, we assume that it is smooth; so the second-order
differentiation operator D is used in the regularization term
to achieve a smooth result:

minimize ‖Ax − b‖
2
+ 𝛿‖Dx‖

2
. (6)

Another problem in the HRF estimation of rapid event-
related experiments is the overlapping of adjacent events.
When the interstimulus interval (ISI) is extremely short (e.g.,
2 s), overlapping encumbers the calculation of the hemo-
dynamic response function because the BOLD responses
evoked by different events could not be separated successfully.
To address the instability of the estimate, we also assume
that the BOLD responses evoked by pulsed stimuli quickly
return to the baseline. In this study, we assume that the
BOLD responses return to the baseline 10 s after pulsed
stimuli. In addition, the HRF should start from zero. Based
on these assumptions, we can use a regularization term to
constrain the solution. In our study, we aim to suppress the
impact of overlapping, retaining the profile of HRF. Thus, to
depict the character of the hemodynamic response, we use a
regularization term as follows:

minimize ‖Ax − b‖
2
+ 𝛾 ∑

𝑖=1,𝑖>10

𝑥(𝑖)
2

. (7)

This formulation can bewritten inmatrix form as follows:
minimize ‖Ax − b‖

2
+ 𝛾‖Cx‖

2
, (8)

where

C =

[
[
[
[
[
[
[
[
[

[

1

0

d 0
0

0 1

d
1

]
]
]
]
]
]
]
]
]

]

. (9)
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Figure 1: Simulation results of the HRF estimates using Tikhonov regularization. The 𝑥-axis indicates the time relative to the event onset
(TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was normalized by dividing it by its maximum value.

Considering the above-mentioned regularization terms,
the mixed L2 norm (MN) regularization could be written as

minimize 󵄩󵄩󵄩󵄩Sh + Pb−y
󵄩󵄩󵄩󵄩

2

2
+ 𝛿
2

‖Dh‖2
2
+ 𝛾
2

‖Ch‖2
2
. (10)

Then, the HRF estimator derived is

ℎ̂ = (STJS + 𝛿2DTD + 𝛾2CTC) STJy, (11)

where J = (I−PPT
). 𝛿 and 𝛾 are trade-off parameters to adjust

the weight of the different regularization terms.
Using this new regularization term, smoothness and prior

information about the HRF shape can be added to the
estimation process. Hence, the noise caused by short ISI is
removed.

2.8. Simulation Study: Tikhonov Regularization versus MN
Regularization. To understand the difference between Tik-
honov regularization and MN regularization, we first com-
pared the HRF estimation result in a simulation study.
Figure 1 shows the result of this simulation study using Tik-
honov regularization, where the ISI was set to 2 s and the
duration of stimuli was also set to 2 s. Time series was
produced by convolving the stimulus vector with canonical
double gamma HRF. Then, the Gaussian white noise of
different signal-to-noise ratios (SNRs) was added to it. The
result implied that with decreasing SNR, the overlapping

increasingly destabilized the tail of the HRF estimates. Fig-
ure 2 shows the result of the same simulation study usingMN
regularization. Compared with Figure 1, the result shows that
when an additional regularization term was employed, most
of the instability in the HRF estimates was suppressed. Based
on this simulation study, the MN regularization method
showed a great improvement in estimating HRF in a rapid
event-related experiment.

2.9. Response EstimationMethod. When voxel-specific HRFs
are computed, we should deconvolve the time-series with
the HRFs to obtain the real trial-specific BOLD responses.
Reference [13] compared many deconcolving methods for
multivoxel pattern classification analysis, such as FIR, ridge
regression, partial least square, and support vector regression.
In the following section, we will focus on the least square
separate (LS-S) model.

In a rapid event-related fMRI data analysis, the traditional
general linearmodel (GLM) suffers from collinearity induced
by the correlation between trial-specific regressors. This
collinearity could result in highly variable and unreliable
estimates because of the lack of information that is unique
to specific trials [13]. To reduce collinearity, we can modify
the strategy of regressor construction or use regularization
methods such as ridge regression [30] and partial least square
[31]. In this paper, we use a regressor construction strategy
called LS-S [13], which runs a GLM for each trial. The trial
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Figure 2: Simulation results of the HRF estimates using mixed-norm regularization. The 𝑥-axis indicates the time relative to the event onset
(TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was normalized by dividing it by its maximum value.

Trial 1 Trial 𝑁

𝛽 𝛽· · ·

· · ·

𝛽1 𝛽𝑁𝛽Nuis 𝛽Nuis
( ) ( )

𝑋𝑇1 𝑋𝑇𝑁

Figure 3: LS-S model. The design matrix has two regressors, one for the trial of interest and another for all other trials simultaneously. 𝑋
𝑇1

aims to obtain the activation estimate for trial 1.Therefore, a regressor is conducted for trial 1, and a second regressor is conducted for all other
trials. The estimate for 𝛽

1
based on this design is the estimate activation for trial 1. This method is repeated𝑁 times to obtain the estimates

for all𝑁 trials.

is modeled as the regressor of interest, and all other trials are
combined into a single nuisance regressor. Thus, if we have
𝑁 trials, we need to run the LS-S model 𝑁 times to obtain
each trial-specific response. The LS-S model is illustrated in
Figure 3.

2.10. Classification Method and Statistical Analysis. As a
widely used linear classifier, linear support vector machine
(SVM) has been proved efficient in handling high-
dimensional data. In our study, we also used the linear
SVM based on LIBSVM [32] to compare the classification
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Table 1: Mean number of voxels across all subjects used in different
methods. Unselected voxels were all located in OR areas or early
visual areas. Voxels were selected from the unselected voxel set
based on the selection criterion. Object responsive (OR) voxels were
strongly activated in localizer runs (𝑡-test, 𝑃 = 0.005, familywise
error corrected). Retinovoxels were located in the early visual area,
which was delineated via retinotopic mapping analysis.

OLS LS-AR (1) MN
OR

Unselected 2682 2682 2682
Selected 387 ± 127 425 ± 163 1334 ± 246

Retino
Unselected 1290 1290 1290
Selected 221 ± 103 276 ± 112 721 ± 175

performances of the different estimation methods. The
dataset was divided into five parts, and a fivefold “leave-
one-out” cross-validation was applied to obtain the average
classification accuracy. Lastly, the classification performances
of the different methods were statistically compared using
Wilcoxon signed-rank pair test.

3. Results and Discussion

This study aims to find an efficient method for estimating
voxel-specific HRFs in a rapid event-related design fMRI
study, which could deconvolve the BOLD time series to
obtain the real BOLD activation signals associated with
specific stimuli. The three task runs are divided into two
parts. The third task run with 60 images is used to estimate
voxel-specific HRFs and the other two task runs are used for
classification analysis. In the following, we present the results
of the analysis. Some essential aspects of this problem are also
discussed.

3.1. Comparison of Different HRF Estimation Methods. To
evaluate the performance of different HRF estimation meth-
ods in decoding brain states, we compared the classification
accuracy of OLS, LS-AR (1), MN, and canonical double
gamma HRF. Given the noise of the fMRI BOLD signals, we
found that not all of the estimated HRFs of the voxels are
acceptable. Considering this problem, we proposed a voxel
selection criterion based on the prior knowledge about the
BOLD responses. We assumed that ℎ(0) was near zero and
that the minimum value of normalized ℎ(𝑡) could not be
less than −1. Furthermore, after 12 s, the BOLD responses
should fall to the baseline. In other words, the voxel should
be removed if it satisfies the following condition: |ℎ(0)| > 0.3,
max(ℎ(𝑡 | 𝑡 > 12 s)) > 0.4, and min(ℎ(𝑡)) > −1, where ℎ(𝑡) is
the estimated HRF of a voxel.

Table 1 shows the mean number of voxels across all
subjects before and after selection. The result indicates that
good HRF estimates for all voxels could not be obtained in
OR areas or early visual areas because of the noise in the
time series. Therefore, invalid voxels were eliminated under
the above-mentioned selection criterion. In addition, owing

to the regularization, we obtained more voxels using the new
MN estimation method.

In the simulation study, the MN method showed its
capability in rapid event-related experiments. Here, the HRF
estimation of the different methods was compared using real
data. Figure 4 shows one of the subjects’ estimated HRFs in
the OR areas. Figures 4(a) and 4(b) show the significant
overlapping of the time series and a fake peak in the end of the
estimatedHRF using theOLS or LS-AR (1)method.However,
in the MN estimation method, the fake peak was strongly
suppressed because of the additional regularization term, as
shown in Figure 4(c). Figure 4(d) shows the canonical double
gamma function [33].

The shape of the estimated HRFs intuitively showed the
difference of the investigated methods. However, the shape
could not be used to quantify this difference. Therefore,
the classification accuracy based on real data was used
to compare quantitatively the different methods. Figure 5
shows the mean classification accuracy of the different HRF
estimation methods across all subjects. For the different
estimation methods, the classification results were 80.96%,
72.25%, 69.76%, 72.74%, 72.25%, and 71.51%. The results
indicate that MN performed significantly better than the
other five methods (Wilcoxon signed-rank pair test, 𝑃 =

0.01).
The number of voxels after selection by different methods

was different. The effect of the size of voxel set should there-
fore be considered.We appliedMN to the voxel set selected by
OLS or LSAR to investigate the impact of the size of voxel set.
Figure 6 shows that MN also performed significantly better
thanOLS and LSARusing the voxels selected by LSARorOLS
(Wilcoxon signed-rank pair test, 𝑃 = 0.01). For the different
estimation methods, the classification results were 80.96%,
72.25%, 69.76%, 79.59%, and 78.88%. This result indicates
that the MN estimation method improved the classification
accuracy and not the number of voxels.

Recent studies have illustrated the shape of HRF [5]. As
a widely known model, the canonical HRF has been success-
fully used in fMRI studies, especially in univariate analysis
or activation-based analysis. However, with the development
of high-resolution fMRI, information-based analysis was
applied for brain decoding [34]. In the present study, when
voxel-specific HRFs were used, the classification accuracy
significantly increased.

Many studies suggested that the fMRI time series has tem-
poral autocorrelation between residual errors [27]. However,
the present results indicated no significant differences in the
classification accuracy between the least-square models with
and without AR (1).

In ourMN estimationmethod, no assumption ismade on
the noise model, and the only task is the selection of regular-
ization parameters. Considering that the selection of proper
regularization parameters is one of the most important steps
in solving regularization problems, many articles focused on
the regularization parameter selection strategy to improve
the performance of regularization, such as generalized cross-
validation (GCV) [35], Bayesian information criterion (BIC)
[36], and Akaike information criterion (AIC) [37]. In the
present study, to simplify the problem, we selected the best
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Figure 4: Inspection of the HRF estimates of the different methods. The lines in different colors represent the different HRF estimates of the
voxels. The 𝑥-axis indicates the time relative to the event onset (TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was
normalized by dividing it by its maximum value.

one from a set of parameters. Although this strategy might
not identify the best parameters, this method also performed
significantly better than the other methods.

3.2. Impact of Smoothing on Brain Decoding. We compared
the classification accuracy of the smoothed and unsmoothed
data to investigate the impact of smoothing on brain
decoding. Figure 7 shows the classification accuracies of
the different HRF estimation methods. For the smoothed
data, the classification results were 81.03%, 69.74%, 67.23%,
74.39%, 72.49%, and 70.3%. For the unsmoothed data, the
classification results were 80.96%, 72.25%, 69.76%, 72.74%,
72.25%, and 71.51%. The results implied no significant differ-
ence between the smoothed and unsmoothed data in brain
decoding (Wilcoxon signed-rank pair test, 𝑃 = 0.01). This
conclusion is consistent with the finding of a previous study
[38].

Smoothing is a standard preprocessing step in traditional
activation-based or univariate analysis. However, in MVPA,

whether smoothing should be conducted is unclear [38–
40]. Many studies smooth the fMRI data before analysis
to increase the SNR [41–43]. However, considering that
smoothingmay blur data, some studies omitted smoothing in
analysis [1–3]. To preserve fine-grained pattern information,
[39] suggested that smoothing should be omitted or strongly
reduced.

Our result in this study implies that smoothing may not
decrease the sensitivity and performance of brain decoding.
However, this result does not mean that smoothing does
not blur the fine-grained weak spatial information across
voxels. A detailed explanation is given by [40]. If a study does
not focus on subvoxel information sources or fine-grained
information, smoothing would not matter.

3.3. Effect of LFF. The LFF compensation model is widely
used in estimating voxel-specific HRFs. Figure 8 shows a
comparison of the estimated HRF using LS-AR (1) with and
without the LFF model in one of our subjects. Based on the
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Figure 5: Bars show the classification accuracies of the different
HRF estimation methods (cHRF-MN, canonical HRF with voxels
selected by MN; cHRF-LSAR, canonical HRF with voxels selected
by LSAR; and cHRF-OLS, canonical HRF with voxels selected by
OLS). Error bars show the standard error of the mean classification
accuracy across subjects.
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Figure 6: Effect of the size of voxel set. MN-LSAR, mixed-norm
estimation was applied to the voxel set selected by LSAR; MN-OLS,
mixed-norm estimation was applied to the voxel set selected by
OLS. Error bars show the standard error of the mean classification
accuracy across subjects.

results, LFF had a large impact on HRF estimates. However,
when we deconvolved the BOLD response from the fMRI
time series, the impact of LFF was ignored. By contrast, in
the MVPA analysis, wherein one of our goals is to exploit
the information of weakly activated voxels, LFF significantly
reduced the classification accuracy.

In the current study, we compared the classification
performances of the response estimation method with and
without the LFF compensation component. Figure 9 illus-
trates the effect of LFF in brain decoding. For the model with
LFF, the classification results were 80.96%, 72.25%, 69.76%,
72.74%, 72.25%, and 71.51%. For the model without LFF, the
classification results were 73.81%, 65.04%, 63.3%, 72.09%,
71.1%, and 69.23%.These results indicated that themodelwith
LFF compensation performed significantly better than that
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Figure 7: Comparison of smooth and unsmooth data. Classification
accuracies estimated with fivefold leave-one-out cross-validation.
Each method was applied to both unsmooth and smooth data to
investigate the impact of smoothing. cHRF-MN, canonical HRF
with voxels selected by MN; and cHRF-LSAR, canonical HRF with
voxels selected by LSAR; cHRF-OLS, canonical HRF with voxels
selected by OLS. Error bars show the standard error of the mean
classification accuracy across subjects.

without LFF compensation (Wilcoxon signed-rank pair test,
𝑃 = 0.01). Interestingly, no significant difference was found
between the models with and without the LFF compensation
component using canonical HRF. Our results implied that
LFF plays an important role not only in HRF estimation but
also in response estimation.

3.4. Classification Performances of Different Masks. For each
subject, we defined a mask of OR voxels in the occipital
and temporal cortex that responded strongly in at least
one of the four localizer runs. Then, nearly 3000 voxels
were selected for each subject. The voxels in these areas
were previously shown to provide information about object
category [1, 44]. We also tested the classification accuracy
in early visual areas, which were delineated by retinotopic
mapping [26]. The classification accuracies in both masks
are summarized in Figure 10. The classification results for
the OR voxels were 80.96%, 72.25%, 69.76%, 72.74%, 72.25%,
and 71.51%.The classification results for the retinovoxels were
79.99%, 65.59%, 64.67%, 68.83%, 66.24%, and 66.05%. The
results showed that the OR voxels performed better than the
retinovoxels in all six cases (significantly better in LSAR,OLS,
cHRF-MN, cHRF-LSAR, and cHRF-OLS. Wilcoxon signed-
rank pair test, 𝑃 = 0.05).

These results demonstrated that the object category
information has a distributed representation in the occipital
and temporal areas. This information could improve the
performance of classification. Therefore, localizer runs are
necessary in object-related brain decoding experiments. Fur-
thermore, in a brain-computer interface system with visual
information, the spatially distributed information in large
areas should not be ignored to obtain a better result.
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Figure 8: Comparison of HRF estimates with and without LFF. The lines in different colors represent the different HRF estimates of the
voxels. The 𝑥-axis indicates the time relative to the event onset (TR= 2 s), and the 𝑦-axis indicates the BOLD signal. Each HRF estimate was
normalized by dividing it by its maximum value.
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Figure 9: Comparison of classification accuracies with and without
the LFF compensation component. Classification accuracies esti-
mated with fivefold leave-one-out cross-validation. Each method
was applied to bothmodels with and without LFF data to investigate
the impact of LFF. cHRF-MN, canonicalHRFwith voxels selected by
MN; cHRF-LSAR, canonical HRFwith voxels selected by LSAR; and
cHRF-OLS, canonical HRF with voxels selected by OLS. Error bars
show the standard error of the mean classification accuracy across
subjects.

4. Conclusions

In this paper, we propose a new HRF estimation method
that uses Tikhonov regularization and additional shape reg-
ularization term to address the HRF estimation problem in
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Figure 10: Comparison of classification accuracies in object respon-
sive (OR) or early visual areas. OR voxels were strongly activated
in localizer runs (t-test, 𝑃 = 0.005, family-wise error corrected).
Retinovoxels were located in the early visual area, which was delin-
eated via retinotopic mapping analysis. Classification accuracies
estimated with fivefold leave-one-out cross-validation. cHRF-MN,
canonical HRF with voxels selected by MN; cHRF-LSAR, canonical
HRF with voxels selected by LSAR; and cHRF-OLS, canonical HRF
with voxels selected by OLS. Error bars show the standard error of
the mean classification accuracy across subjects.

rapid event-related experiments and suppress the overlapping
of adjacent events. To test its performance, we applied this
method to four-category object classification data.The results
showed a significant improvement in classification perfor-
mance, which proved that the new MN regularization HRF
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estimation method was more efficient than the others. Some
essential issues in MVPA were also discussed in this paper,
including the role of LFF in response estimation, the effect
of data smoothing, and the differences in the classification
accuracy between OR voxels and retinovoxels. Based on this
work, we conclude that LFF compensation is necessary in
MVPA analysis and that smoothing is an alternative. More-
over, spatially distributed information should be considered
to obtain the best classification performance.
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In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity
significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because
the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the
modiolus tominimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-
(SMA-) embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration
force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is
fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in
a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact
pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated
using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible
for clinical applications.

1. Introduction

During the past several decades, cochlear implant systems
have been established as a successful treatment for people
suffering from severe hearing impairment due to hair cell loss.
In general, a cochlear implant system consists of amultichan-
nel intracochlear electrode, electronics in a hermetic package,
and an external speech processor with a signal and power
transmission coil. Briefly, the system converts sound signals
into electrical signals and divides into multiple channels
with different frequencies at the external speech processor.
These signals then are radio-frequency- (RF-) modulated
and transferred to the receiver/stimulator ASIC chip in a
hermetic package through a transcutaneous coil link. After
demodulation, the signals generate stimulating current pulses

for each channel. Through the intracochlear electrode array,
the current pulses stimulate ganglion cells in the inner ear,
inducing auditory sensations in the recipients. The most
important parts of the functionality of a cochlear implant
are design of electrode array. Todays, insertion of a cochlear
electrode array becomes far more important because it is
required that newly developed electrode array can preserve
residual hearing, be inserted deeper region of scala tympani,
and stimulate targets more efficiently [1].

One of the challenges to improve the current cochlear
implant system is to realize spatially high-resolution electrical
stimulation to restore sound perception close to normal
hearing. To achieve this goal, it is essential to locate the
intracochlear electrode array close to the spiral ganglia, the
target of the electrical stimulation, because the current will



2 Computational and Mathematical Methods in Medicine

diffuse and stimulate a large number of ganglia with low
specificity if the electrode is located far from the target cells.
In general, the electrode of a cochlear implant is inserted into
the scala tympani because it has the largest cross-sectional
area and an easy surgical operation site as shown in Figure 1.
Stimulating currents flowing from the electrode site stimulate
the ganglion cells located in the direction of the cochlear
modiolus. Therefore, it is desired that the electrode is located
close to the modiolus, as depicted in Figure 1(b), to reduce
the distance between the electrode and the ganglia and
increase the spatial specificity of the electrical stimulation [2].
When implanting the electrode array into the scala tympani,
however, a straight shape is desirable to facilitate insertion by
surgeons. If the electrode array is straight after molding with
elastic silicon rubber, the electrode array is located along with
the outer wall radius of the scala tympani due to the elastic
restoration force of the electrode (Figure 1(a)).

Several strategies have been developed and employed for
commercial cochlear implant systems to locate the electrode
close to the modiolus. Advanced Bionics, Inc. and Cochlear
Ltd. have developed modiolus-hugging electrodes using a
preformed carrier which is held straight by an internal stylet
before and during the insertion process [3]. After the partial
insertion of the electrode and stylet, the electrode is pushed
to its full insertion depth while holding the stylet at the same
position. The electrode returns to its original spiral shape
while being pushed toward the modiolus [4, 5]. Accordingly,
the insertion depth of the stylet is critical in modiolus-
hugging electrode array surgery. If the stylet is inserted far
deeper into the cochleostomy, the electrode tip will come into
contact with the cochlear outer wall, which may damage the
spiral ligament or penetrate into the scala vestibuli. On the
other hand, if the insertion depth of the stylet is too short,
the apical curve of the electrode will curl before the first
turn of the scala tympani [6]. Another method for modiolus-
hugging was to insert an additional silastic structure called
a positioner along the outside of the electrode after its
insertion. The positioner pushes the electrode toward the
modiolus, which locates the electrode sites in the vicinity
of the ganglion cells [7]. However, when using this method,
surgeons must undertake a precise insertion process twice.
In addition, it was reported that the enlarged hole for the
additional insertion of the positioner can cause meningitis
[8].

In order to overcome these disadvantages, it was proposed
to make the stylet with shape memory alloy (SMA), which
converts its initial straight shape into a curved shape at the
body temperature [9]. With this method, the electrode hugs
the modiolus once it is inserted into the scala tympani by the
restoration force of SMA stylets, during which the modiolus-
hugging shape is memorized. However, it is not easy to pull
out the electrode or to reinsert it once it is inserted because
the SMA force always exists at the temperature of the human
body. The heat from the surgeon’s hands may also trigger
SMA transformation before the insertion of the electrode.

In the present study, we propose an intracochlear elec-
trode embedded with SMA without the drawbacks related
to the transition temperature of the human body. Similar
to the previous method, the SMA is pretreated to have

a modiolus-hugging shape above its transition temperature.
However, because the SMA is transformed into itsmemorized
shape slightly above the body temperature, the electrode can
be handled by a surgeon without SMA transformation during
the insertion process. The transformation into the modiolus-
hugging shape can be controlled by heating via an electrical
current to the SMA after the insertion. We developed an
eight-channel intracochlear electrode in which SMA wire is
embedded. A finite element analysis was performed to verify
the mechanical safety of the electrode array compared with
conventional electrode arrays.

2. Materials and Methods

2.1. Shape Memory Alloy. The shape memory alloy (SMA)
has two different phases: martensite and austenite.Martensite
is the relatively soft and easily deformable phase of shape
memory alloys, and it exists at a lower temperature. Austenite,
the stronger phase of shape memory alloys, occurs at higher
temperatures. Above a specific temperature, the deformed
SMA in martensite is transformed into the austenite phase,
which is configured as the original shape of the wire. The
temperatures at which the transformation begins and ends
are defined as𝑇

𝑚
and𝑇
𝑎
(Figure 2), respectively. In this study,

𝑇
𝑚
is defined as higher than the temperature of the human

body in order to prevent the SMA from being transformed by
heat from the surgeon’s hands or by the patient’s body while
inserting the electrode into the cochlear scala tympani. 𝑇

𝑎
is

defined as low as possible so as not to cause tissue damage
by the heat generated from the SMA. Using titanium-nickel
alloy, the SMA is prepared such that𝑇

𝑚
is 40∘C and𝑇

𝑎
is 45∘C

(Jin-Sung Ltd., Eui Wang, Korea).
The human cochlear canal is a spiral structure with 2.5

turns. If straightened, its length is approximately 32mm
from the base to the apex of the cochlea. However, the
maximum insertion angle of the intracochlear electrodes is
usually 360∘ and less than 25mm in length, as shown in the
modeling result of the trace of the electrode tip in Figure 3.
In Figure 3(b), the smallest radius of curvature of the trace
is 2.38mm. To simplify the fabrication of SMA wires to
be embedded in electrodes, the displacement on the 𝑧-axis
(0.336mm)was ignored because it ismuch smaller than those
of the 𝑥- and 𝑦-axes, as depicted in Figure 3. The SMA wires
(0.1mm diameter) were fabricated in the shape of a spring
whose curvature is 4.7mm in diameter so that it can ensure
that the curvature hugs the modiolus. The SMA spring was
cut to have a length of 15mm and an angle of 360∘.

2.2. Electrode Fabrication and Transformation Test. An eight-
channel intracochlear electrode array was fabricated. In
this process, the ball-shaped sites are made from Teflon-
coated 25 𝜇m (dia.) 90% Pt/10% Ir-alloy wire (A-M systems,
Inc., USA) by melting the wire with an oxygen/acetylene
minitorch. The diameter of the ball sites is 420 𝜇m.The balls
are fixed at a hole in the bottommold, as depicted in Figure 4,
using silicone elastomer MED 4211 (Nusil, Ltd., USA). Both
ends of the SMA wire are soldered with the same wires as
the electrodes. The SMA wire is straightened and is then
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Figure 1: 3D models of intracochlear electrode arrays inserted into the cochlea for stimulation on ganglion cells. (a) Straight intracochlear
electrode without modiolus-hugging characteristics. (b) Modiolus-hugging intracochlear electrode (GC: ganglion cell, SM: scala media, SV:
scala vestibuli, ST: scala tympani, and BM: basilar membrane).
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Figure 2: Transformation of shape memory alloy (SMA): (a) SMA changes its straight shape (martensite) into the modiolus-hugging shape
(austenite), (b) the SMA transformation is triggered by resistive heating of electrical current.
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Figure 3: Trace of electrode tip during the insertion into scala tympani of human cochlea (all units are mm in this picture): (a) 3D trajectory
of the electrode tip and (b) the trajectory of the electrode tip projected on 𝑥-𝑦 plane.
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Figure 4: Fabrication of the SMA-embedded ball-type intracochlear electrode: (a) ball site fixation at a hole in the bottom mold and (b)
fixation of eight-channel ball electrodes and the SMA wire at bottom and top molds, respectively.

fixed at the top mold with the elastomer. After joining two
molds, degassed silicone elastomer is injected into the inlet.
To prevent the SMA from being transformed, the elastomer
is cured at room temperature for 2 days and then at 150∘C
for 30 minutes to complete the curing. The distance between
adjacent sites is 1.8mm.The total length of the electrode to be
inserted into the cochlea is 21.5mm.The electrode diameters
were 0.6mm at the apex and 0.8mm at the base.

To determine if the fabricated SMA-embedded elec-
trode array is transformed into the modiolus-hugging shape,
various amplitudes of electrical current are applied to wires
connected to both ends of the SMA. The electrode is
also inserted into a clear human cochlear model, and the
restoration force of the SMA triggered by resistive heating is
applied to verify that the electrode can change its shape into
a modiolus-hugging shape.

Figure 5: Eight-channel SMA-embedded intracochlear electrode
array (scale bar: 2mm).

2.3. Electrode Insertion Simulation. It was reported that the
insertion of a cochlear electrode may cause trauma at the
basilar membrane, which is very thin and soft [10–12].
Researchers inserted electrodes into the cochleae of human
cadavers or the cochleae of animals in an effort to prove
the mechanical safety of the electrodes [13–15]. It is also
known that the trauma can be predicted by the stiffness



Computational and Mathematical Methods in Medicine 5

of the electrodes [6]. We performed a finite element anal-
ysis on the pressure generated by electrode insertion using
a three-dimensional simulation (ANSYS 14 Workbench,
ANSYS, Inc., USA). The three-dimensional human cochlear
model is reconstructed using Rhinoceros (Robert McNeel &
Associates, USA). First, a human scala tympani image is used
for the base model of the cross-section of the entire scala
tympani.The outline of the cross-section of the scala tympani
is arranged along a curve defined in cylindrical coordinates as
follows:

𝑅 = 1.14987𝑒
0.075458𝜑

,

ℎ = 3.23203𝑒
−0.126636𝜑

,

(1)

where 𝑅 is radius from the central axis of cochlear spiral, ℎ is
height along the spiral axis and 𝜑 is cochlear angle (0∼5𝜋).

The patterns are then rescaled so that the areas fit
cross-sectional areas along the depths [16]. The centers of
the mass of the rescaled patterns are positioned along the
aforementioned cochlear curve. The surface of the scala
tympani is generated by connecting the closed curves. The
electrode is modeled with diameters of 0.6mm at the apex
and 0.8mm at the base. Eight platinum-iridium wire models
are linearly arranged along the 𝑧-axis, which is parallel to the
modiolus. The nitinol (Ti-Ni alloy) wire is modeled at the
bottom of the platinum-iridium wire arrays. Table 1 depicts
the material properties used in the finite element analysis.
Because the SMA-embedded electrode array is designed
to be inserted under the martensite temperature (𝑇

𝑚
), the

mechanical parameters of martensite are used for the SMA.
The stress-strain value of the SMA-embedded electrode can
be expressed by the following equation using the nonlinear
uniaxial stress-total strain relationship [17]:
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where 𝜎 = stress at strain 𝜀, 𝐸
𝑐
, 𝐸
𝑠
, 𝐸
𝑤
= Young’s modulus

of silicone elastomer, SMA, and Pt/Ir wire, respectively, and
𝑓
𝑐
, 𝑓
𝑠
, 𝑓
𝑤
= the ultimate compressive strengths of silicone

elastomer, SMA, and Pt/Ir wire, respectively.
Based on the stress-strain formula, the pressure at the

electrode tip during the insertion process is calculated
because insertion trauma tends to occur at the interface of
the electrode tip and the cochlear tissue. The pressure over
the electrode is also simulated by a time-lapse method. After
completing the insertion process, the contact pressures are
obtained along the electrode length. The displacement and
fixed constraints are defined at the base plane of the electrode
array and the scala tympani, respectively. The electrode array
is inserted from the center of the cross-section of the scala
tympani at 80∘.The electrode array model is rotated by 10∘ on
the 𝑧-axis.The electrodemodel is inserted to 18mm, which is
360∘ in terms of the cochlear angle. In the analysis, the stress
intensity at the interface of the electrode is calculated.

Table 1: Mechanical parameters of human cochlea and materials of
intracochlear electrodes.

Material Elastic modulus Poisson’s ratio
Bone (cochlear inner wall) [18] 20GPa 0.3
Pt/Ir/PTFE [19] 8.27GPa 0.3
Silicone elastomer [20] 0.45MPa 0.5
TiNi (martensite) [21] 28GPa 0.33

3. Result

The SMA-embedded eight-channel electrode array is fabri-
cated as shown in Figure 5.The SMAwire is seen through the
transparent silicone elastomer envelope. The electrical cur-
rent through the SMA wire is increased while observing the
electrode’s shape. The electrical current-generated resistive
heat at the SMA begins to induce the transformation of the
electrode shape froma current level of approximately 150mA,
as shown in Figure 6(a).When the current level was increased
to 208mA, the transformation was completed by changing
the electrode into themodiolus-hugging shape asmemorized
in the SMA wire (Figure 6(d)). This result indicates that the
SMA phase is shifted from martensite to austenite by the
resistive heat generated by the electrical current. During this
heating process, the maximum power dissipation was 75mW.

The electrode without SMA is located along the outer wall
of the transparent scala tympani model (Figure 7(a)). For an
electrode with an SMA stylet, the electrode hugs the central
𝑧-axis of the model, as shown in Figure 7(b), after applying
electrical current through the SMA. In order to mimic an
actual surgical situation, the cochlear model was filled with
lubricant prior to the insertion of the electrode [2].

The trajectories of the electrode array with the SMA
are visualized in a 2D cross-section of the scala tympani
(Figure 8). The insertion process begins from the location
with a cochlear angle of 80∘ (Figure 8(a)) and is performed
up to 18mm in depth representing a cochlear angle of 360∘.
The electrode initially came into contact with the wall of the
cochlea at a cochlear angle of 135∘ when it was inserted to a
depth of 6mm.As it was inserted further into the cochlea, the
electrode continued to bend and conform to the curvature
of the cochlear outer wall. The insertion was finished when
the tip reached the position with a cochlear angle of 360∘
(Figure 8(d)) and a total insertion depth of 18mm. The
stress applied to the electrode is shown in different colors in
Figure 8.

In order to verify the feasibility of SMA-embedded
electrodes, two mechanical parameters are evaluated using a
finite element analysis. First, the contact pressures at the elec-
trode tip during insertion are shown in Figure 9. Second, after
the insertion is completed, the contact pressure distribution is
calculated along the length of the electrode array and shown
in Figure 10. To compare conventional electrode arrays, for
both tests, 16-channel electrode arrays are employed with
different arrangements of wires. Previously, it was reported
that the maximum and the minimum contact pressure levels
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(a) 150 mA (b) 180 mA (c) 195 mA

(d) 200 mA

Figure 6: Electrode transformation induced by resistive heating of electrical current through the embedded SMA wire.

(a) (b)

Figure 7: Insertion test into a transparent plastic cochlear model: (a) electrode without SMA: (b) electrode with a modiolus-hugging SMA.

occur when the wires in the electrode are assembled along the
vertical and horizontal planes, respectively [16]. The contact
pressures at the electrode tip are evaluated because it was
previously reported thatmost traumatic events arose between
the electrode tip and basilar membrane.

As shown in Figure 9, the contact pressure increased
steeply after the electrode tip initially came into contact with
the inner wall at a cochlear angle of approximately 100∘.
The maximum value of the contact pressure is 1.58MPa
during insertion at 180∘. It decreased and converged to

0.9MPa during the rest of insertion process. In terms of
the electrode position and deformation, this result indicates
that the maximum contact pressure at the electrode tip is
attributed to the initial bending of the straight electrode.
Moreover, the pressure becomes constant once the electrode
bends to fit to the curvature of the cochlear outer wall
from its original straight shape. After the completion of
the electrode insertion process, as depicted in Figure 10,
the maximum pressure occurs approximately at 200∘,
where the deformation begins. The pressure decreased from
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Figure 8: Cross-sectional views of 3D simulation of pressure distribution on the electrode during electrode insertion into cochlea.

200∘ to 275∘ and increased again to the apical region of the
electrode.

4. Discussion

In this study, we developed an eight-channel, SMA-
embedded, intracochlear electrode. The intracochlear
electrode could be located in the vicinity of spiral ganglion
cells via the formation of a modiolus-hugging shape of the
SMA. When using this method, the electrode maintains
a straight shape during the insertion process and then
transforms into a curved shape which can surround the
cochlear modiolus. This proposed method reduces the
distance between stimulation electrode sites and the targeted
spiral ganglion cells, which enables an effective stimulation
with lower power while increasing the operation time
using a battery. Moreover, the discrimination between
channels is also improved due to the reduced amount of
current spreading. The proposed intracochlear electrode has
advantages in that it does not produce a vacant lumen due
to the stylet removal process, creating a possible infection
route, and does not require the insertion of an additional
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Figure 9: Contact pressures at the electrode tip during insertion.

insert structure to fill the cavity of the scala tympani, which
has been used commercially for modiolus-hugging.

On the other hand, there are other factors to consider.
There is a possibility that the heat generated by the electrical
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Figure 10: Contact pressure distributions along the length of the
electrode after insertion.

current can damage the tissue surrounding the electrodes.
However, the transition temperature was adjusted from 40∘C
to 45∘C, which is close to the body temperature, and the SMA
wire is insulated by thick silicone rubber. Though not proved
in this paper, redundant heat accumulation can be avoided
by applying current pulses instead of a constant current flow.
Electrical safety should be also considered. In this study, the
transformation of the SMA required about 200mA of DC
electrical current. This amount was much higher than the
stimulation current, with its maximum amplitude of only
several mA. In order to avoid stimulating adjacent cells with
this large amount of current, it should be ensured that the
entire current path is perfectly insulated properly at least dur-
ing the implantation process. Using the proposed technique,
advanced intracochlear electrodes with segmented SMAs can
also be developed. If each SMA segment is converted to a
curved shape of the martensite phase in an orderly process
from the apex to the base, electrode insertion into the scala
tympani can be done with little insertion force. In addition,
even after complete insertion, the position of the electrode
can be adjusted by applying electrical current through specific
SMA segments if necessary [22].

In this study, three-dimensional modeling of the scala
tympani is done using a cross-sectional outline of an actual
cochlear image to calculate the contact pressure during and
after electrode insertion. This is a simplified model of the
human cochlea because the cochlear duct does not consist of
only the scala tympani. Although the scala tympani model is
sufficient to draw a conclusion about general insertion safety,
a full cochlear model is required to analyze complicated
failure modes. To generate a realistic cochlear model, the
cross-sections should be reconfigured including the basilar
membrane and other canals such as the scala media and scala
vestibuli.

The simulation results indicate that the eight-channel
SMA-embedded electrode has a comparable stiffness as 16
channel cochlear electrode which was reported previously
[16]. The stiffness of the intracochlear electrodes is one

of the most important parameters determining the safety
of electrode insertion, as a stiffer electrode incurs greater
risk of penetrating through the basilar membrane during
the insertion process. Using the typical method of cochlear
electrode fabrication of molding metal wires with a silicone
rubber carrier, the stiffness of the electrode is determined
by the number and the diameter of the metal wires. In
this study, to show the feasibility of the modiolus-hugging
SMA-embedded electrode, an electrode with eight channels
is fabricated instead of more than 10 channels. In order to
achieve a SMA-embedded electrode with more channels, the
diameter of the SMA wire needs to be increased to ensure
sufficient restoration force, or the diameters of the individual
metal wires should be decreased. In addition, the overall
stiffness of the electrode needs to be within a range such that
safe insertion is ensured without damage to the cochlea.

As an alternative method to realize a high-density
cochlear electrode array with SMA, a micropatterned elec-
trode array based on thin film can be employed [23]. Using
this method, a SMA-embedded electrode can be fabricated
without a reduction of the number of channels because the
thin-film-based electrode can have a much larger number
of channels without increasing the stiffness of the electrode,
unlike a wire-based electrode array. However, themechanical
insertion behavior of an electrode based on a thin-film array
should be evaluated, including the stiffness, insertion depth,
and rotation of the electrode tip in an in vitro study or via a
simulation.

To employ this method in clinical cochlear implant
procedures, the biocompatibility of the SMAmaterial should
be proven during long-term implantation assessments. Due
to the superelasticity and the large deformation capability of
TiNi SMA, it has been used for several medical applications,
such as orthodontic arch wires; orthopedic implants; and
stents for coronaries, esophagi, or large intestines. Despite
these applications, the toxicity of TiNi alloys has remained
controversial for long-term applications due to the high
nickel content. However, recent studies have reported that
TiNi can be implanted into the human body for long-
term use because an oxidized layer of TiO

2
on the TiNi

surface prevents the possible loosening of nickel. This type of
passivated TiO

2
layer is known to be very stable chemically

and mechanically [24]. Therefore, TiNi SMA is expected to
be used in regular medical applications such as cochlear
implants in the near future [25, 26].
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Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal
model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation
along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we
studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed
reachingmovements with or without motor imagery in a velocity-dependent force field.The results show that reaching movements
performedwithmotor imagery have relatively amore focused generalization pattern and a higher learning rate in training direction.

1. Introduction

Mental simulation of various actions can be used as a tool for
studying theoretical concepts about cognitive neuroscience.
Motor imagery, a subcategory of mental simulation, is an
internal reproduction of a specific motor action without any
overt motor output and is widely used for improving the
motor performance. In relation to it, the underlying neuro-
logical mechanisms activated by mentally rehearsing motor
actions are quite similar to the ones activated during actual
physical movements [1]. There is a high overlap between
the active brain regions of subjects undergoing movement
execution and the movement imagination [2]. It provides the
idea that motor imagery might help the CNS in the learning
process and can be used in conjunctionwith physical training
to improve motor performance [2–5]. As an example, it is
used for improving the performance of athletes and sports
men [6]; experiencedmusicians have usedmotor imagery for
improving coordination between complex spatial and timing
components of a musical composition [2]. It is also used,
for speeding up the recovery process of stroke patients and
neurological rehabilitation [7], for motion accuracy, and for

adaptation to the changing dynamics and arm kinematics
[5, 8].

In the current study we consider a task in which subjects
make series of reaching movements in the presence of exter-
nal dynamics, that is, an externally imposed force field from
a mechanical robot. The force field introduces significant
errors in contrast to the movements that take place in the
absence of any external force field.These errors gradually fade
out with practice as the nervous system adapts to the newly
imposed dynamics; this recovery of performance is “motor
adaptation” [9].The force field is switched off unexpectedly in
some trials during adaptation; these trails are termed as “catch
trials” and they help in investigating the properties of internal
model that human nervous system updates to predict and
neutralize the error. The trajectories formed during the catch
trials are quite similar in shape but opposite in direction to
the trajectories that are observed at the sudden introduction
of force field (also termed as “after effects”). This supports the
notion that model-based motor commands are generated by
central nervous system (CNS). There are predominantly two
modes in human motor control mechanism: feedback and
feedforward. During the early learning stage, internal model



2 Computational and Mathematical Methods in Medicine

is evolved and learning is achieved through sensorimotor
feedbackmechanism. After sufficient practice, motor systems
adapt with external environment and operate autonomously
in feedforward mode; this is called as “late learning” [10].

Human brain formulates internal model in such a way
that motor learning in one direction has a positive impact
on learning in other adjacent directions.This effect gradually
decreases as the difference in directions increases. The ability
to apply what has been learned in one context to other
contexts is termed as the “generalization” of motor learning.
When generalization increases learning in some contexts,
it is called as “transfer.” In some contexts, generalization
diminishes learning and it is said to be causing an “inter-
ference” [11]. It shows that the model evolved by human
nervous system learns beyond the boundaries of training data
and its output is broadly adapted across the state space of
motor commands [9]. In the contexts where generalization
is detrimental, it is usually due to the large alteration in
the learning problem associated with comparatively small
contextual changes. This is relevant to our experiment where
a large change in direction, that is, around 135

∘ to 180
∘,

has an associated small change in context. This is also true
in general; for example, driving car in the reverse direction
or counting backward is difficult as compared to normal
routine.

The current work is focused on howCNS learns to control
and compensate errors in imagined reachingmovements and
how an error experienced in one direction can affect the
reaching movements in other directions, with or without
motor imagery. In other words, an investigation is made to
answer howmental practice affects the generalization pattern
of internal learning model developed by CNS. Up to the best
of our knowledge, the relation between generalization and
motor imagery in reaching movements has not been studied
explicitly. By motor imagery, we mean that the individual
subjects imagine the subsequent movement before actually
performing it (MI group). The group of subjects without
any conscious intent before starting movement or has not
mentally rehearsed the upcoming movement constitutes the
no motor imagery group (No-MI group).

At this stage we develop our initial hypothesis as follows.

(1) Themotor imagery affects the generalization function
in such a way that it transfers the learning in nearby
directions.

(2) The group of subjects who rehearsed the taskmentally
prior to their physical action will have a high learning
rate in the direction of training and associated direc-
tions.

(3) The group of subjects who rehearsed the taskmentally
prior to the physical action will have a more focused
generalization pattern with respect to the No-MI
group.

The composition of the remaining paper is as follows.
Section 2 describes the related work. Methods and materials
are explained in Section 3. Results are outlined in Section 4.
The conclusion and future work are included in Section 5.

2. Related Work

Mussa-Ivaldi and Bizzi studied the possible ways in which
the information about force field dynamics was perceived by
the CNS. Finding the movement path based on perception
of force field is a complex inverse dynamics problem, and
brain forms an internal model composed of motor primitives
to solve this inverse problem. This internal model is updated
regularly to conform with the ever-changing environmental
and physical dynamics [12]. Robotic manipulandum systems
are widely used to study the underlying dynamics of motor
commands issued by CNS [13].

Previous studies suggest that motor imagery has a con-
structive effect on the humanmotor performance. It has been
argued that the covert mental practice is a cost effective,
easily accessible strategy to improve motor performance of
affected body parts after stroke [14]. Gentili et al. have studied
the associated question of how imagination and mental
execution of physical activities can help in learning process.
It is found that although subjects with physical training
(without imagery) have good learning rate than the subjects
undergoing mental training (without any sensorimotor feed-
back), yet the movement rhythms and adaptation rates were
identical. Authors proposed that the internal forward model
of human brain provides state estimation to improve motor
performance during imagery [5].

3. Materials and Methods

3.1. Experimental Setup. We considered a behavioral task
for studying the effect of motor imagery on trial-by-trial
motor learning. The subjects performed center out reaching
movements by using a robotic manipulandum. An external
force field was generated by the robotic manipulandum for
desired perturbations in a plane during the movements. The
subjects, then, had to adapt to the new environment. This
helped in studying the adaptive capabilities of human motor
system Figure 1(a).

The experimental setup shown in Figure 1(a) was the
same as [8]. In this setup the Braccio di Ferro robot (see [15]
for details) was used to generate the forces and record the
motion paths. The plane of motion was restricted to only
two dimensions for the ease of analysis. Fourteen-channel
EEG was recorded using gold cup electrodes (g.EEGcap
g.tec, Guger Technologies OEG, Graz, Austria). The elec-
trodes were placed at central locations (C3, C1, Cz, C2, and
C4), frontal locations (F3, Fz, and F4), parietal locations
(P3, Pz, and P4), and temporal locations (T3 and T4) by
adapting international 10–20 electrode placement system.
Left earlobe and right earlobe were used as reference and
ground, respectively. Analogue EEG signals were amplified
and band-pass filtered (0.1–100Hz) by the EEG amplifier
(g.BSamp g.tec, Guger Technologies OEG, Austria). The
signals were then sampled at 256Hz (NIDAQ 6040-E) and
were stored for later offline analysis. The online feedback
was provided by a software application based on BCI2000
[16].
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Figure 1: Experimental setup and trial protocol.

3.1.1. Subjects. Total 12 subjects participated in this experi-
ment. Eleven of the subjects were right handed, while one
left handed subject was present. Before undertaking the
experiment, a screening process was performed in which
EEG patterns of all subjects were analyzed. During this
process, each subject was asked to rest for 3 seconds (base
line) followed by imagining hand movements for 2 seconds,
and a total of 96 trials were conducted in this way. Then,

for each subject, we identified the spectral bandwidth and
the electrode locations that correlated most with the motor
imagery. The most responsive spectral bandwidth and elec-
trode locations were then used for online feedback. We also
calculated the “coefficient of determination” for each subject.
It acts as a measure to determine the quality of human
intention that can be inferred from the EEG signal. It is
expressed as a correlation coefficient defined over a bivariate
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signal composed of EEG signal 𝑥 during motor imagery and
a task condition signal 𝑦 that consists of EEG signal during
rest period:

𝑟
2

=
𝜎 (𝑥, 𝑦)

2

𝜎
2
(𝑥) ⋅ 𝜎

2
(𝑦)

, (1)

where 𝑟
2 value was calculated from each electrode. After

screening, the subjects were randomly assigned to two exper-
imental protocols as folows: “with imagery” (6 subjects, 1M
and 5 F,mean age 23±1.5 years) and “no imagery” (6 subjects,
3M and 3 F, mean age 25 ± 2.8 years).

3.2. Experimental Procedures. The subjects sat on a chair
in front of the manipulandum. The height and position
of the seat were adjusted so that the arm could be kept
horizontally at shoulder level pointing towards the center
of the work space. In normal position, the elbow and the
shoulder joints were flexed about 90

∘ and 45
∘, respectively.

The experimental protocol was displayed to the subjects on
a 19󸀠󸀠 LCD computer screen placed about 1m away at eye
level. The subjects performed 10 cm reaching movements
with dominant hand. The targets were displayed on a black
background as white circles of 1 cm diameter appeared at
one of the eight random locations (0∘, 45∘, 90∘, 135∘, 180∘,
225
∘, 270∘, and 315

∘). The current position of the hand along
with target was continuously displayed on the computer
screen.

The experiment was organized into sets; each set con-
sisted of a sequence of 48 target presentations, with target
appeared at 8 different positions, 6 times each. Every set lasted
for approximately 7 ∼ 8 minutes, and the subjects were
allowed to take rest between sets. Each movement started
from the center of the work space. In order to initiate a
movement, the subject had to hold the cue at the starting
point (initial position of the target). Once the cue is in center
of the target, the target changed its color to gray; after 4 s
it shifted to one of the eight random outer positions and
turn into red. At this point, the “imagery” group subjects
were required to “imagine” the hand movement toward the
target. EEG signals were continuously recorded and after
every 300ms a spectral estimate in the most responsive
frequency bandwas calculated.This valuewas comparedwith
the threshold value to detect the presence/absence of event-
related EEG desynchronisation (ERD).The binary signal was
transmitted to the robot and used for changing the color of
the target, that is, red to yellow to green. A “go” signal is
then generated (target color turning into green), indicating
that the actual movement could start. This signal can only be
generated if either of the following conditions was fulfilled:

(1) the subject successfully generated 5 ERDs or
(2) the 3 sec time limit of waiting was reached.

In the “no imagery” experiments, only condition (2)

was applied and the subjects had to wait for 1.5 to 3 sec
randomly between target appearance and the “go” signal. On
“go” signal, the subjects were required to move as fast and
as accurate as possible. Subjects were encouraged to keep an

approximately constant movement timings and to avoid eye
blinking and head movements or throat clearing during the
imagery and movement phase. The next trial started as soon
the subject placed the cursor inside the target at the central
initial position.

Movements were performed under three different condi-
tions: (i) null field (robot generated no force, 5 target sets);
(ii) force field (velocity dependent force field was turned on,
5 target sets); (iii) after-effect (no field again, 2 target sets).
During force field trials, the robot generated a viscous curl
field that perturbed the reaching movements. The force field
was perpendicular to the instantaneous hand velocity vector
with magnitude proportional to the velocity

𝐹 = 𝐵 ⋅ ], (2)

where,

𝐵 = [
0 −𝑏

𝑏 0
]N × sm−1, (3)

where the viscous coefficient 𝑏 is 12N ⋅ m−1 ⋅ s−1. The
hand velocity vector (and its subsequent derivatives) was
estimated online by means of a numerical differentiation
technique. During the field sets, “catch trials” were inserted
in which the force field was unexpectedly turned off. The
probability of occurrence of one catch trial was set to 1/6,
which corresponds to one catch trial per direction per set.

3.3. Data Analysis

3.3.1. Screening. During screening phase, the recorded EEG
data was arranged into 1 s long epochs and mean was
removed. A 20th-order autoregressive model was used for
estimating the power spectral density. The spectrum was
calculated from 0Hz to 40Hz at every 0.2Hz, and then
spectral average wasmade into 2Hz bins for 96 hand imagery
trials and compared them with the rest period. The averaged
spectral change (spectra at rest condition minus spectra
during imagery) was also estimated during the screening
process. Screening gave an overview about the most respon-
sive electrode and the maximum change in the ERD. This
information was the basis of online feedback.

3.3.2. Online Feedback. EEG signals were recorded in 300ms
blocks, and for each block the software application esti-
mated the power spectral density. The online ERD detection
threshold was set at the 80% of the averaged spectral change
from the base measurement during the rest period. Thus,
for each subject the threshold was different and it was 80%
of the maximum spectral change he/she could produce. As
a result, a binary signal, that is, 1 (presence of a ERD) or
a 0 (no ERD) was generated after every 300ms and was
used to change the color of the target from red to yellow to
green.

3.3.3. Familiarization Session. For each subject, we tested the
error measurements for normal distribution using Shapiro-
Wilk, Kolmogorov-Smirnov, and Lilliefors tests. It turned out
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that the distributions were normal (𝑃 ≤ 0.01). Equivalent
variances were tested using Hartley, Cochran, and Bartlett
tests.

3.3.4. Adaptation Session. Hand trajectories were sampled at
100Hz. The 𝑥 and 𝑦 components were smoothed with a 6th-
order Savitzky-Golay filter (window size 270ms, equivalent
cut-off frequency of around 7Hz). The first three-time
derivative was estimated for the following indicators ofmotor
performance

Aiming Error. Aiming error provides angular difference
between the required target direction and the actual hand
movement direction in the early phase of the movement,
that is, 300ms from movement onset. This error provides
information about the lateral deviation and is used as a
general measure of curvature.

Learning Index. The learning process was quantified by using
an indicator similar to that proposed by [17]. This measure is
independent of the magnitude of force field and other user-
specific parameters such as the net compliance of the arm:

𝐼learning =
−𝑦
𝑐

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑐
− 𝑦
𝑓

󵄨󵄨󵄨󵄨󵄨

, (4)

where 𝑦
𝑓
and 𝑦

𝑐
are the 300ms aiming errors in the field and

catch trials, respectively. Both error measures were adjusted
for any bias present in the last null field set. Therefore, errors
were always referred to change from errors in the null set.

3.4. State SpaceModeling. Internal model developed by brain
is composed of a set of primitives that translate desired
movement trajectories into required motor commands. In an
event of external perturbation, motor commands are issued
to minimize its effects. The forces produced as a result can be
expressed in terms of desired position and velocity primitive
functions 𝑔

𝑗
[18]:

O = 𝑊
𝑇

⋅ 𝑔 (𝑥,
𝑑𝑥

𝑑𝑡
) | 𝑔 = [𝑔

1
, 𝑔
2
, . . . , 𝑔

𝑗
]
𝑇

, (5)

𝑊
𝑇 is the experience dependent weighted matrix which is

adjusted according to

Δ𝑊
𝑖
= −𝜂 ⋅ 𝑔 (𝑥

𝑖
,
𝑑𝑥
𝑖

𝑑𝑡
) . (6)

The shape of the primitives in the above equations can
be found out by fitting a linear state space model over
experimental data. Such a fit is possible as explained in
[17, 19]. Although, various types of models can be used
for dynamic system modeling, we used prediction error
estimate method (PEM) to identify a structured linear state
space model. PEM algorithm is quite similar to maximum
likelihood estimation used in time series analysis [20].

Let us suppose that we have eight dimensional input force
field signal denoted by 𝑓(𝑛), which triggers maximum speed

path error of 𝑒(𝑛)with sample number 𝑛. If we have data upto
Nth sample a set of input output pairs can be defined as,

X = {𝑓 (𝑛) , 𝑒 (𝑛)} | 1 ≤ 𝑛 ≤ 𝑁. (7)

Here, the input 𝑓(𝑛) is dependent on the trial which may be
a force field trial (FF), simple null field trial (NF) or null field
catch trial (C) after the removal of force field;

𝑡 ∈ {C,NF, FF} . (8)

Linear state space model can be represented as a predictor
model that estimates (𝑁 + 1)th output sample:

𝑒 ([𝑁 + 1] | 𝑁; 𝜑) = F (X
𝑁
, 𝜑) . (9)

Using an iterative procedure, an estimate of parameter vector
𝑒
𝑁+1

is generated for (𝑁+ 1)th output. 𝑒
𝑁+1

depends both on
samples from 1 ⋅ ⋅ ⋅ 𝑁 and parameter vector 𝜑. 𝜑 represents
the parametrization, and F(⋅) is the function defined on
observed data [20]:

F (X
𝑁
, 𝜑) = 𝐻

𝑒
(𝑞, 𝜑) 𝑒 (𝑛) + 𝐻

𝑓
(𝑞, 𝜑) 𝑓 (𝑛)

=

𝑁

∑

𝑘 = 1

ℎ
𝑒
(𝑘) 𝑒 (𝑛 − 𝑘) +

𝑁

∑

𝑘=1

ℎ
𝑓
(𝑘) 𝑓 (𝑛 − 𝑘) ,

(10)

where 𝑞 is a shift operator and 𝐻
𝑒
and 𝐻

𝑓
are the linear time

or shift invariant filters which we will specify in a further
discussion. State space equations are given by

̇𝑥 (𝑛 + 1) = 𝐴 (𝜑) 𝑥 (𝑛) + 𝐵 (𝜑) 𝑓 (𝑛) ,

𝑒 (𝑛) = 𝐶 (𝜑) 𝑥 (𝑛) + 𝐷𝑓 (𝑛) .

(11)

The linear state space model is estimated based on the
assumption that the data has been generated according to (11).
PEM tries to minimize a weighted norm of estimation error.
In our case, where there is only one output, this cost function
𝜉
𝑁
(⋅) is given by

𝜉
𝑁

(𝑅, 𝑆) =
1

𝑆
2
(𝑞, 𝜑)

𝑁

∑

𝑡=1

ΔΔ
𝑇

,

Δ = 𝑒 (𝑛) − 𝑒 (𝑛 | 𝜑) ,

(12)

where 𝑒(𝑛 | 𝜑) is the output estimate of model, and PEM
produces an output which is optimal in least squares sense.
𝑁 is the number of data values of errors during hand-
reaching experiments. In the cost function estimated output
is supposed to be:

𝑒 (𝑛 | 𝜑) = 𝑅 (𝑞, 𝜑) ⋅ 𝑓 (𝑛) , (13)

where𝑓(𝑛) is the input of themodel. Here,𝑅(𝑞, 𝜑) and 𝑆(𝑞, 𝜑)

are the matrices that can be described in terms of state space
matrices. In turn, they define filters as follows:

𝐻
𝑒
(𝑞, 𝜑) = [𝐼 − 𝑆

−1

(𝑞, 𝜑)] ,

𝐻
𝑓
(𝑞, 𝜑) = 𝑆

−1

(𝑞, 𝜑) 𝑅 (𝑞, 𝜑) .

(14)
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PEM is a fast algorithm and has similar merits as that
of maximum likelihood estimation. However, it requires
accurate parameterization andmay get stuck in localminima.
The initial parameters were estimated using a numerical
algorithm for subspace state space system identification
that projects both input and output data to find optimal
state sequence (N4SID Algorithm by van Overschee and de
Moor [21]). These sequences can be interpreted in terms
of states of a parallel bank of Kalman filters. By using this
interpretation, state space system matrices can be easily
determined from the given data with no requirement of
providing parameterization for nonzero initial conditions
[21]. This algorithm uses QR decomposition and singular
value decomposition.Thus, it is numerically stable and always
converges to a finite value. With these benefits, we used it
for finding an initial estimate of state space matrices of linear
model.

In our experiments, the force field magnitude and direc-
tion (anticlockwise) were kept constant and its presence or
absence was recorded using normalized integers;

𝑓 (𝑛) = {
+1, if 𝑡 ∈ {C,NF} ,
−1, if 𝑡 ∈ {FF} .

(15)

On each sampled input, a value of −1 indicates the presence of
force field while a value of 1 indicates a catch trial or null field.
Similar discrete scalar representation of force fieldmagnitude
was adopted byThoroughman and Shadmehr [18] and Smith
and Shadmehr [17].

Instead of using coordinate information in maximum
errors, we used the relationship between actual arm compli-
ance and the angular error. The details of the derivation can
be found in [17]. In general, the two-dimensional compliance
matrix is given by

[
𝑥

𝑦
] = [

𝐷
11

𝐷
12

𝐷
21

𝐷
22

] [
𝑓
𝑥

𝑓
𝑦

] . (16)

This two-dimensional compliance matrix can be trans-
formed to one-dimensional oppositional compliance having
a value in each direction of motion. The magnitude of one-
dimensional compliancematrix depends on direction of force
and three parameters 𝐷

11
, 𝐷
22
, 𝐷
21
, and 𝐷

12
, see [17] for

details. Briefly,

𝐷
1
(󰜚) =

𝐷
11

+ 𝐷
22

2
+

𝐷
11

− 𝐷
22

2
cos (2󰜚)

+
𝐷
12

+ 𝐷
21

2
sin (2󰜚) .

(17)

We parameterized𝐷matrix of the state space model with
the value of 𝐷

1
(󰜚).

3.5. Measuring Goodness of Fit. We also compared the vari-
ances of estimated output and the actual errors (see Figure 2)
to account for the goodness of fit of our model. We defined
our goodness of measure by 𝛿 [19] as follows:

𝛿 = 1 −
∑
𝑁

𝑛=1

󵄩󵄩󵄩󵄩𝑒 (𝑛) − 𝑒
0
(𝑛)

󵄩󵄩󵄩󵄩

∑
𝑁

𝑛=1

󵄩󵄩󵄩󵄩𝑒 (𝑛) − 𝑒
0
(𝑛)

󵄩󵄩󵄩󵄩

, (18)

where 𝑒
0
(𝑛) is a baseline model obtained by setting

matrices 𝐵 and 𝐷 to zero. In (11),

̇𝑥 (𝑛 + 1) = 𝐴 (𝜑) 𝑥 (𝑛) ,

𝑒
0
(𝑛) = 𝐶 (𝜑) 𝑥 (𝑛) .

(19)

For our experiments, the model fit was reasonably good
in subjects data (with amean𝜇 ≅ 82%and standard deviation
𝜎 ≅ 0.078). In comparison, Krakauer et al. in [11] do not
report the error numerically, although authors state that
model parameters are chosen such that themean square error
between model prediction and actual experimental data is
minimized.Thoroughman and Shadmehr have reported 60%
model fitness in their experiments related to human motor
learning [18]. Donchin et al. have documented percentage
deviation in model and actual output to be 77% [19]. Scheidt
et al. report the variance accounted for (VAF) of 84% as the
measure of error of their model [22]. In the nutshell, our
model fit is competitive with the results reported in previous
model-based studies.

4. Results and Discussion

Figure 4 shows the group averaged ERD patterns during the
online feedback. The subjects in No-MI group were waiting
for the “Go” signal, while the subjects from MI group were
imagining upcoming movement. Both groups showed ERDs,
however, ERDs in MI group were more prominent.

From themodel parameters it is found that the directional
changes of equal magnitude have nearly same estimated
values. For the sake of convenience we reduced the number
of free parameters to 5 by averaging the parameters on same
directional difference values. Let 𝐵𝑖

𝑗
be the vector in direction

𝑗 for user 𝑖. Thus, for each direction 𝑗, we can formulate a
matrixD

𝑗
for both MI and No-MI subjects as follows:

D
𝑗
= [𝐵
𝑗

1

, 𝐵
𝑗

2

, . . . , 𝐵
𝑗

6

]
𝑇

. (20)

A new matrix M can be defined over to reduce the free
parameters to 5 by averaging the values on similar distance
from peak learning rate. Each column M

𝑙
can be defined by

vectors

M
𝑙
=

𝐵
𝑖

𝑗+𝑘
+ 𝐵
𝑖

𝑗+𝑘

2
0 ≤ 𝑘 ≤ 4, (21)

where 𝑗 + 𝑘 wraps around in an event of dimension outflow.

4.1. Statistical Analysis of Model Parameters. The variables
were found to be normally distributedwhen Shapiro-Wilk𝑊-
test was applied. Setting the null hypothesis that the variables
came from a normal distribution, we found the 𝑃 values
which were greater than the threshold of 0.05 in all cases.
Next, wemade comparison of relationships between variables
(the learning rate in various directions) belonging to MI and
No-MI groups by a parametric statistical test named 𝑡-test.
We found that theMI group has higher learning rate than the
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Figure 2: Time series of actual movement errors and the corresponding model predictions are shown. The changing trend of model output
conforms with the actual movement errors. For the sake of clarity, the values are plotted after averaging every 5 samples.

corresponding No-MI group in all directions. In direction 0
∘,

the learning rate of MI group is 0.203 ± 0.019 and for No-
MI group’s 0.175 ± 0.024 (𝑃 = 0.046). In direction 45

∘, MI
group: 0.175 ± 0.026; No-MI group: 0.155 ± 0.023 (𝑃 = 0.05).
In direction 90

∘, MI group has learning rate 0.184 ± 0.015

in contrast to No-MI group’s 0.145 ± 0.031 (𝑃 = 0.020).
In direction 135

∘, MI group: 0.195 ± 0.016; No-MI group:
0.155 ± 0.031 (𝑃 = 0.023). In direction 180

∘, MI group
has learning rate 0.224 ± 0.019 in contrast to No-MI group
0.168 ± 0.033 (𝑃 = 0.005). In direction 225

∘, MI group:
0.197 ± 0.019, while No-MI group: 0.161 ± 0.030 (𝑃 = 0.039).
In direction 270

∘, MI group has learning rate 0.189 ± 0.024,
while No-MI group 0.148 ± 0.025 (𝑃 = 0.016). In direction

315
∘, MI group has learning rate of 0.207 ± 0.029 and No-MI

group of 0.165 ± 0.022 (𝑃 = 0.021). See Figure 5 for a plot of
comparison between MI and No-MI groups.

The effect of learning in one direction on immediate next
direction was also analyzed. Along 0

∘ the transfer of learning
rate for MI group is = 0.112 ± 0.007, and for No-MI group it
was 0.08 ± 0.009 (𝑃 = 0.037). In direction 45

∘, MI group has
transfer of learning rate 0.125 ± 0.009 in contrast to No-MI
group 0.092 ± 0.018 (𝑃 = 0.021). In direction 90

∘; MI group:
0.104 ± 0.006 and No-MI group: 0.087 ± 0.012 (𝑃 = 0.039).
In direction 135

∘; MI group: 0.131 ± 0.004 in contrast to No-
MI group: 0.077 ± 0.006 (𝑃 = 0.019). In direction 180

∘; MI
group: 0.122 ± 0.009 and No-MI group: 0.087 ± 0.014 (𝑃 =
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Figure 3: Generalization patterns in 4 directions are shown. Free parameters are reduced to 5 by averaging the parameters existing at same
directional difference values. Shaded regions show the deviation in parameter values across all subjects.

0.025). In direction 225
∘; MI group: 0.099 ± 0.011 and No-

MI group: 0.081 ± 0.023 (𝑃 = 0.055). In direction 270
∘; MI

group: 0.114 ± 0.012 and No-MI group: 0.100 ± 0.016 (𝑃 =

0.032). In direction 315
∘; MI group: 0.108 ± 0.019 in contrast

to No-MI group: 0.072 ± 0.022 (𝑃 = 0.041). See Figure 6 for
a comparison between MI and No-MI groups.

Next, we studied the generalization patterns for MI and
No-MI groups averaged over all the subjects in each group,
see Figure 7. Student’s 𝑡-test was performed to account for
the significance level of results. Variables were found to be
significantly different forMI andNo-MI groupswith𝑃 values
< 0.05 in all directions except in direction 90

∘. The mean

values of learning rate of all users with associated standard
deviation are shown in Figure 7. It must be noted that the
absolute values of learning rates in directions 135

∘ and 180
∘

are shown for the sake of easy comparison with learning rates
in other directions.

4.2. Insights. Generalization patterns along directions 0
∘,

45
∘, 90∘, and 135

∘ degrees are shown in Figure 3. Also from
Figures 5, 6, and 7 it is evident that the subjects with motor
imagery have higher learning rates as compared to those of
No-MI subjects. Mental rehearsal has focused the learning
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Figure 4: Figure shows averaged ERDpatterns in bothMI (in black)
andNo-MI (in dotted gray) groups.TheERDwas calculated for each
direction and was averaged within the sets. MI group has shown
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Figure 5: Motor learning rate in all directions is shown. The solid
bars represent mean values while corresponding standard deviation
values are represented by the limits put on bars.

rate in one particular direction (the one in which training
is performed). Generally, in both groups the trial-to-trial
transfer of learning has decreased as the directional difference
increase, but the transfer rate is higher inMI group. In case of
90
∘ directional difference, the averaged generalization pattern

shows that the mean and SD for both MI ad No-MI are not
significantly different. This can be attributed to the fact that
the perpendicular motion is unique and not much difficult
to perform. Thus the learning transfer is less as compared to
other direction. All the models were found to have a good fit
and stable eigenvalues as shown in Figure 8.
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5. Conclusion

In this study we compared the performance of two groups of
subjects (MI and No-MI) in a center out-reaching movement
task under a force field. The small number of subjects in
both groups is a limitation of this study and suggests the
need for caution in the interpretation of our results. However,
this study helped us to investigate the trial to trial effect of
motor imagery on learning. It turned out that our initial three
hypotheses were true (see Section 1). MI group has a higher
learning rate and transfer of learning as compared to No-MI
group and has a more focused generalization pattern. These
results show positive influence of motor imagery and suggest
that motor learning can be facilitated by mentally rehearsing
the upcoming movement and could be used to increase the
rate of adaptation.
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Figure 8: Polar plots for the eigenvalues of all odd subjects are shown. These plots signify that the model built for each subject is stable with
the eigenvalues lying inside the unit circle.
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Recently, data with complex characteristics such as epilepsy electroencephalography (EEG) time series has emerged. Epilepsy EEG
data has special characteristics including nonlinearity, nonnormality, and nonperiodicity.Therefore, it is important to find a suitable
forecastingmethod that covers these special characteristics. In this paper, we propose a coercively adjusted autoregression (CA-AR)
method that forecasts future values from a multivariable epilepsy EEG time series. We use the technique of random coefficients,
which forcefully adjusts the coefficients with−1 and 1.The fractal dimension is used to determine the order of the CA-ARmodel.We
applied the CA-ARmethod reflecting special characteristics of data to forecast the future value of epilepsy EEG data. Experimental
results show that when compared to previous methods, the proposed method can forecast faster and accurately.

1. Introduction

Forecasting time series data predicts future values by discov-
ering a set of rules or identifying patterns from past data.
Linear regression models for forecasting time series such as
autoregressive (AR), moving average (MA), and autoregres-
sive moving average (ARMA) are widely used [1]. However,
these methods have difficulty obtaining accurate forecasts
when the time series data has nonlinear characteristics that
constantly change. Thus, soft computing techniques, such
as fuzzy logic and neural networks, have been developed
to resolve the problems of linear approach considering
nonlinear properties and uncertainty of time series data [2, 3].

EEG time series signals obtained from a brain have
irregular and complex wave structures. They also include a
large amount of noise. Epilepsy EEG data is a representative
example of a complex time series. Epilepsy is a disease defined
by abnormal electrical activity in the brain that is central
to the diagnosis of epilepsy. Epilepsy EEG signals display
changes over time through constant interaction with external
factors [4]. Noise is included within the complexity of
epilepsy EEG data during measurements. Epilepsy EEG data
is difficult to forecast because it has special characteristics,

such as nonlinearity, abnormalities, and noise. Therefore,
it is important to select an appropriate forecasting method
because these characteristics affect the forecasting accuracy.

In recent years, studies have been conducted to auto-
matically detect and predict epilepsy seizures using EEG
data. Univariate, bivariate, and multivariate algorithms were
proposed to solve the problem of seizure detection and
prediction based on the EEG analysis of single or multiple
electrodes [5–7]. Rabbi et al. applied nonlinear dynamics
based on unvaried characteristic measurements to extract a
correlation dimension from the intracranial EEG recordings
and designed a fuzzy rule-based system for seizure prediction
[8]. Iasemidis et al. proposed an adaptive seizure prediction
algorithm (ASPA) based on the convergence of the short-
termmaximum Lyapunov exponents (STLmax) among criti-
cal electrodes in the preseizure phase [9]. Liu et al. introduced
a seizure prediction approach using particle filtering [10].
Also, Shahidi Zandi et al. proposed a method to predict
seizures by analyzing the entropy level corresponding to zero-
crossing intervals in scalp EEG and its derivatives [11]. Many
researchers also used autoregressive and spectral analysis for
forecasting by extracting seizure precursors from the EEG
data [12, 13]. However, these researchers used approaches that
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were based on the linear data or unvaried characteristics of
data.

We can give the following problem definition.

Problem Definition. Given a time series data which includes
special characteristics such as nonlinearity, nonnormality,
and nonperiodicity, a forecasting model attempts to forecast
the values over some future time period.More formally, given
a time series of Epilepsy EEG 𝑋 = 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑡
, we forecast

the value of 𝑥
𝑡+𝑛

. 𝑥
𝑡
is the value of the time series at time 𝑡,

and 𝑛 is the forecasting length.
In this paper, we propose an adaptive forecasting algo-

rithm that adjusts its coefficients of the autoregressive (AR)
model forcedly. To forecast the future values of epilepsy EEG
data including special characteristics, we use the random
coefficients with −1 and 1 and the fractal dimension which
the order of the CA-AR model determines. We conduct
experiments with sets of EEG time series to evaluate the
suitability of our forecasting approach. The experimental
results demonstrate that the proposed method provides
better forecasting performance than previous methods. The
proposed algorithm provides the following benefits: (1)
seizure forecasting and warning to patients about seizures
and (2) actively probing the characteristics of seizure onset.

The remainder of the paper is organized as follows. In
Section 2, we describe the proposed method for forecasting.
The experiment results are compared with the other methods
in Section 3. In Section 4, we discuss the related work on the
prediction and analysis of seizures. Finally, we present our
conclusions in Section 5.

2. Materials and Methods

An autoregressive model is a simple model to estimate the
future value of a series using previous input values.TheAR(𝑝)
model represents a stochastic process using a general form of
order 𝑝 as shown in (1):

𝑋
𝑡
= 𝑐 + 𝜑

1
𝑋
𝑡−1
+ 𝜑
2
𝑋
𝑡−2
+ ⋅ ⋅ ⋅ + 𝜑

𝑝
𝑋
𝑡−𝑝
+ 𝜀
𝑡
,

𝑋
𝑡
= 𝑐 +

𝑝

∑

𝑖=1

𝜑
𝑖
𝑋
𝑡−𝑖
+ 𝜀
𝑡
,

(1)

where𝑋
𝑡
is the observation at time 𝑡, 𝜑

𝑝
is the autoregressive

coefficient of 𝑝th order, and 𝜀
𝑡
is white noise normally

distributed with mean zero and variance 𝜎2 at time 𝑡.
An important feature of the AR model is utilizing recent

past observations in the process of estimating the current
observation𝑋

𝑡
at time 𝑡. That is, the current observation can

be estimated by a linear weighted sum of previous obser-
vations. The weights denote the auto-regression coefficients.
The problem in AR analysis is the assumption that data is
stationary and linear, and it must derive the best values for
coefficients given a series 𝑋

𝑡
. Several methods have been

used to estimate AR parameters, such as Yule-Walker, least
squares, and Burg’s method [1]. It has been shown that for
large data samples these estimation techniques should lead to
approximately the same parameter values. The Yule-Walker
method applied the AR model to the signals by minimizing

the forward forecasting error in a least squares sense. The
unknown parameter 𝜑 is estimated as follows:

𝜑 =
∑
𝑝

𝑖=1
𝑋
𝑡
𝑋
𝑡−𝑖

∑
𝑝

𝑖=1
𝑋
2

𝑡−𝑖

. (2)

Under the assumption that 𝜀
𝑡
is normally distributed, this is

also the maximum likelihood estimate of 𝜑. The distribution
of 𝜑 has been studied extensively. Unfortunately, the exact
distribution of 𝜑 is unknown. Asymptotically, if |𝜑| < 1, it
has a normal distribution, while if |𝜑| > 1, it is a Cauchy
distribution. In addition, if |𝜑| = 1, it is a nonstandard
distribution [14]. These distributions can be used to approx-
imate the finite sample distribution of 𝜑. This suggests that
the distribution would not adequately approximate the finite
sample distribution, especially near the discontinuity point
of 𝜑 = 1, because the exact distribution of 𝜑 is continuous
for all values of 𝜑. It has been found that, unless 𝜑 is close to
zero, these distributions do not approximate the distribution
of finite samples well. The nonstandard limiting distribution
when |𝜑| = 1 seems to give a good approximation of the finite
sample distribution when |𝜑| is close to 1. However, it is too
complex for practical use since an accurate approximation to
this nonstandard limiting distribution can be obtained from
the asymptotic expansion [15]. In this study, our aim is to
find a forecasting method suitable for epilepsy EEG data.
More specifically, suppose that {𝜑

𝑡
} is an independent and

identically distributed sequence defined by

𝜑
𝑡
= {

𝜃 with probability 𝛼,
−𝜃 with probability 1 − 𝛼,

(3)

where 0 ≤ 𝜃 < ∞ and 0 < 𝛼 < 1. From (3), we have 𝜑 =
𝐸(𝜑
𝑡
) = 2(𝛼−1)𝜃, 𝐸(𝜑2

𝑡
) = 𝜃
2, and 𝜎2

𝜑
= 𝜃
2

−𝜑
2

= 4𝛼(1−𝛼)𝜃
2

[16].
In particular, if we take 𝜃 = 𝑝, we obtain a special case

of an AR(𝑝) process [16]. We study this special case in this
paper. As a motivation for the model in (3) for {𝜑

𝑡
} with

𝜃 = 𝑝, consider the order of the standard flexible coefficient
AR(𝑝)model given in (1). If 𝜑 = 1, we have (4) leading to the
standard random model from (1):

𝑋
(𝑝)

𝑡
=

𝑡−𝑝

∑

𝑖=1

𝜀
𝑡−𝑖
. (4)

If we put 𝜑 = −1, we have

𝑋
(𝑝)

𝑡
=

𝑡−𝑝

∑

𝑖=1

− (1)
𝑖

𝜀
𝑡−𝑖
. (5)

Both models (4) and (5) correspond to the standard (critical
case) unit root [17]. A model that generalizes (4) and (5) is

𝑋
𝑡
=

𝑡−𝑝

∑

𝑖=1

𝜉
𝑡𝑖
𝜀
𝑡−𝑖
, (6)

where the random coefficients {𝜉
𝑡𝑖
} take the values 1 or−1.The

model in (6) can be viewed as a generalization of the standard
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randomwhere the successive jumps go up or down according
as 𝜉
𝑡𝑖
= 1 or −1.

Epilepsy EEG data has special characteristics, such as
nonlinearity and abnormal and nonstandard distributions
[4]. Therefore, in this study, when EEG data has an abnormal
distribution,we forcefully adjust the coefficients ofAR. In this
paper, the ARmodel is the basis of our coercively adjustedAR
model (CA-AR). This model can be expressed as follows:

𝑋
𝑡
= 𝑐 +

𝑝

∑

𝑖=1

𝜋
𝑡𝑝
⋅ 𝑋
𝑡−𝑖
+ 𝜀
𝑡
, (7)

where 𝜋
𝑡𝑝
is random coefficients with 𝜑 = 1 and 𝜑 = −1, with

𝜋
𝑡1
= 1 and |𝜋

𝑡𝑝
| = 1 for all 𝑡 and 𝑝. 𝑝 has an important

role in AR modeling since it determines the order of the
coefficients. In the autoregressive model, to determine the
order of the AR model is an important issue [18]. The order
of an AR model, 𝑝, must be appropriately selected because it
determines the efficiency of the autoregressive model. If 𝑝 is
smaller, then the estimation error is higher while calculation
speed is faster. On the other hand, if 𝑝 is bigger, there are
drawbacks requiring more computation time without any
decreases in estimation error. Therefore, in order to resolve
these drawbacks, an optimal way to determine the order of
the AR model is required.

In this paper, the fractal dimension is used to determine
the order of the CA-AR model. To calculate the fractal
dimension, we apply the box-countingmethod [19].The box-
counting method is one of the most common methods to
obtain the fractal dimensions using boxes that are big enough
to cover the measured signal 𝑆 [20]. In other words, when the
length of one side of the square is 𝜀 (𝜀 > 0) and the number
of square boxes is 𝑁

𝜀
, the box-counting dimension of 𝑆 is

𝑁
𝜀
(𝑆) ∼ 1/𝜀

𝑑 and 𝜀 → 0. It can be expressed as the box-
counting dimension of 𝑆, 𝑑, and the positive constant, 𝑘:

lim
𝜀→0

𝑁
𝜀
(𝑆)

1/𝜀
𝑑

= 𝑘. (8)

By taking logs on both sides of (8), we get

lim
𝜀→0

(ln𝑁
𝜀
(𝑆) + 𝑑 ln 𝜀) = ln 𝑘. (9)

Fractal dimension 𝑑 is given by (10):

𝑑 = lim
𝜀→0

ln 𝑘 − ln𝑁
𝜀
(𝑆)

ln 𝜀
= − lim
𝜀→0

ln𝑁
𝜀
(𝑆)

ln 𝜀
, (10)

where ln 𝑘 is excluded while the denominator 𝜀 → 0. Also,
0 < 𝜀 < 1, and if ln 𝜀 is a negative number, 𝑑 will be a positive
number. If the log-diagram of ln 𝜀 verses ln𝑁

𝜀
is a straight

line, the fractal dimension is the slope of this straight line (as
shown in Figure 3).

In this paper, the measured value 𝑑 using (10) is defined
as the order of AR, 𝑝, and it is applied to the CA-AR(𝑝)
model. In other words, to predict epileptic seizures from EEG
data, the future value 𝑋

𝑡
is predicted using 𝑋

𝑡−1
, . . . , 𝑋

𝑡−𝑝
,

the observed values from the past. This paper will show that
special case of epileptic seizure where 𝑋

𝑡
is predicted by

𝑋
𝑡−1
, . . . , 𝑋

𝑡−𝑝
, where the series 𝑋

𝑡
is AR(𝑝) using (7). The

estimated AR model is then used for prediction by applying
the least squares estimation.

3. Results

In this section we present the empirical verification of our
data analysis to forecast epilepsy EEG data. EEG datasets
are provided in [4], and epilepsy EEG data set composed
the five EEG datasets 5 (denoted by A∼E). A and B datasets
are recorded in the relaxed awake state of healthy volunteers
(eye open or closed). C and D are measured during seizure
free intervals, and E contained seizure activity. These five
EEG datasets contain 100 single channel EEG segments of
23.6 sec duration, and they are sampled at 173.61Hz. For our
experiments, we used only three datasets such as A, C, and E.

3.1. Detection of Special Characteristics. In this paper, we
proposed a novel approach to help in the improvement of
epileptic seizure forecasting in nonlinear and nonperiodic
EEG signals. In this section, we first analyze the charac-
teristics of epilepsy EEG data which show nonlinearity and
periodicity by applying cepstrum and lag plots.The cepstrum
is employed to extract periodicities or repeated patterns [21].
The cepstrum analysis of a spectrum will have peaks corre-
sponding to the spacing of the harmonics and sidebands.The
𝑥-axis of the cepstrum shows frequency, and peaks in the cep-
strum are related to periodicities. The cepstrum is employed
to find the periodicity in Subjects A, C, and E. Figure 1(a)
demonstrates the 50th original signal of Subject E recorded
during seizure activity and Figure 1(b) displays the measured
periodicity using the cepstrum. Figure 1(a) seems to have a
periodicwavewithin the original signal.However, Figure 1(b)
does not have any periodicity. In addition, Subjects A and C
also do not show the periodicity.

Even though the periodicities in the original signal
repeatedly appear as a sinusoidal wave during seizure activity,
when we applied the cepstrum to the seizure activity signals,
the results differ from the original signal. Seizure activity
signals do not have any periodicity. We observed that our
experimental results of the seizure activity signals by the
cepstrum do not have any periodicity. Therefore, since most
conventional forecasting or prediction approaches require
periodicity in observed data, these approaches are not appro-
priate for the nonperiodic seizure activity signals.

In this paper we also applied lag plots to find hidden
characteristics in the data. Lag plots are useful in the analysis
of cyclical data [22]. A lag plot checks whether a dataset is
random or not. In addition, they provide the autocorrelation
of the data. Figure 2(a) shows the first raw signal of Subject
A’s epilepsy EEG time series. The lag plot of Subject A is
shown in Figures 2(b) and 2(c), where the lag 𝐿 = 1 and
𝐿 = 20, respectively. Figure 2(b) shows a definite linear
structure in the lag plot, which was hidden in Figure 2(a).
That is, this lag plot exhibits a linear pattern. If the data is
strongly nonrandom, we are able to apply an autoregressive
model that might be appropriate for prediction. Figure 2(c)
shows the Gaussian distribution of Subject A plotted with
a lag of 𝐿 = 20 by plotting 𝑥

𝑡
versus 𝑥

𝑡−20
. Figure 2(d)

is the first raw signal of Subject C. Figures 2(e) and 2(f)
show lag plots for 𝐿 = 1 and 𝐿 = 20, respectively. In
the case of 𝐿 = 1, linear patterns are shown for both
Subject A and Subject C. Figure 2(f) shows similar results
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Figure 1: Periodicity detection using cepstrum in Subject E.

to Figure 2(c). However, Figures 2(h) and 2(i) for Subject E
differ from Subject A and Subject C. In the case of 𝐿 = 20

shown in Figure 2(i), it is a mixture of Gaussian distribution.
Generally, when a lag plot has a nonrandom pattern, the
data can be predicted using conventional methods. However,
the epilepsy EEG dataset shows random patterns that are
difficult to be predicted by conventional approaches.Thus, we
need a suitable method for forecasting of EEG signals whose
characteristics are nonlinearity and nonperiodicity.

3.2. The Order of CA-AR Choice (Box-Counting) for Forecast-
ing. In this section, we present how the order of CA-AR is
determined using fractal dimension. We use box-counting
analysis which is a common method for fractal dimension
estimation. It is also known that it is easy, automatically
computable, and applicable to patterns with or without
self-similarity [20]. However, this technique, including the
processing of data and definition of the range of grid size,
requires proper implementation to be effective in practice.
In this study, the grid size is changed from 0.1 to 10000
in multiplication of 2 [22]. The slope of the linear part of
the plot is the estimated fractal dimension 𝑑 of the epilepsy
dataset. In this method each signal is covered by a sequence
of grids of ascending sizes. Two values are recorded for
each of the grids: the number of square boxes intersected
by the signal, 𝑁

𝜀
(𝑆), and the side-length of the squares, 𝜀.

The slope 𝑑 of the straight line formed by plotting log(𝑁
𝜀
(𝑆))

against log(1/𝜀) indicates the degree of complexity or fractal
dimension between 1 and 2 (1 ≤ 𝑑 ≤ 2) [23]. A signal
with a fractal dimension of 1 or 2 is considered as completely
differentiable or very rough and irregular, respectively.

We measured the fractal dimension of the 100 single
signals from each subject to determine the order of CA-AR
using box-counting analysis. Figure 3 illustrates the plot of
log(𝑁

𝜀
(𝑆)) versus log(1/𝜀) based on the grid sizes. The log-

log plots of Figure 3 are used to estimate the fractal dimension

that is computed from the slope of the plot. Figures 3(a), 3(b),
and 3(c) are the log-log plot for the fractal dimension of the
1st signals of Subject A, Subject C, and Subject E. This graph
clearly displays a horizontal straight line when the grid size is
small or too big. Deviation from a linear straight line can be
expected to lead to underestimation of the fractal dimension
value for the skeleton of a signal.

We applied the box-counting method to estimate the
fractal dimension of the Phase Space from a signal of each
subject. The vector space of the delay coordinate vectors
is termed the Phase Space [22]. The observation sequence
is represented by the series 𝑥

𝑡
, which gives the value of

the time series at time 𝑡. That is, we can define 𝑉 =

[𝑥
𝑡
, 𝑥
𝑡−𝜏
, 𝑥
𝑡−2𝜏
, . . . , 𝑥

𝑡−𝐿𝜏
]. 𝜏 is a real number greater than zero

termed the time delay, and 𝐿 is any integer greater than zero.
The vector 𝑉 is termed the delay coordinate vector, because
its terms are the time-delayed data values from the time
series. Given time series 𝑥

𝑡
and lag 𝐿, we form all the delay

coordinate vectors from 𝑥
𝑡
. The Phase Space is a (𝐿 + 1)-

dimensional space.
Figure 4 demonstrates the estimated fractal dimensions.

The 𝑥-axis and 𝑦-axis denote the Phase Space (time delay
space) and slope, respectively. This implies that a lag length
of one is sufficient to reconstruct the state space.

Figure 4 shows fractal dimension of few signal, and we
confirm some particular results; if the dimension of signal 𝑥

𝑡

increases, the fractal dimension (slope) increases. As a result
of Figure 4, in the case of Subjects A and C, signals mostly
have a fractal dimension between 5 and 7, while Subject E
exhibits a fractal dimension between 2 and 4 when time
delay is 20. That is, Subjects A and C exhibit an average
slope between 4 and 5. However, in the case of Subject E,
the seizure activity represents an average slope of 2.5. When
the time delay dimension increases, the fractal dimension
increases. However, the plot of fractal dimension versus lag
length shows that fractal dimension does not significantly
increase, as lag length is incremented.This experiment shows
the determination of the value of parameters using log-log
plots for time series prediction. That is, we select the round-
up integer of the average slope values of all normal signals
as Subjects A and C for the order 𝑝 of CA-AR, because we
must predict abnormal behavior that dropped out of the past
pattern. We ran the CA-AR model with the round-up integer
“5” of the average of the slope of all signals for forecasting.
To verify that the selected 𝑝 = 5 is the optimal order,
we measured the forecasting error of each signal from each
subject. That result can be confirmed in Section 3.3.

3.3. Forecast Accuracy. To evaluate the reliability of optimal
order for our model, we measured Root Mean Square Error
(RMSE) of forecasting from all signals of each subject. An
autoregressivemodel of order𝑝 implies that the current value
of the time series is being predicted based on past 𝑝th data
of the same random variable. Thus, an autoregressive model
of order 𝑝 can be expressed using the 𝑝 previous values of
the time series. Let 𝑋

1
, 𝑋
2
, . . ., be successive instances of the

random variable 𝑋, measured at regular intervals of time.
We applied the standard AR model and CA-AR (coercively
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Figure 2: Lag plots: epilepsy EEG dataset. Subject A is shown in (a). This appears hard to predict. (d) is Subject C, and Subject E is shown
in (g). (b), (e), and (h) show the two-dimensional lag plots of 𝑥

𝑡
versus 𝑥

𝑡−1
, for each subject. (c), (f), and (i) are lag plots of 𝑥

𝑡
versus 𝑥

𝑡−20
,

respectively.

adjusted coefficient with 𝜑 = 1 or −1) model to forecast the
new𝑋

𝑡
of the epilepsy EEG data.

We forecasted the signals from 481 to 500 time points
by the proposed model and compared the forecasting errors
between the optimal order that decided by the average of
fractal dimensions and the other orders. For forecasting, we
used the 𝑝 past values of time series, and 𝑝 is selected by
fractal dimension. If 𝑝 = 5, our model uses from 476 to 480
time points to forecast 481 time point. Table 1 shows RMSE
results of several signals that were measured between the
original values and the generated values by the model. RMSE
is comparedwhen the orders are 3, 5, 10, and 15 for AR and the
proposedmethod. In the case of𝑝 = 5 in the proposedmodel,
RMSE has a higher accuracy than 𝑝 = 3, 𝑝 = 10, and 𝑝 = 15
in Subjects A, C, and E. In case of the standard AR, Subjects
A, C and E exhibited the lowest RMSE in 𝑝 = 5, similar to the
proposedmethod. As shown in Table 1, the proposedmethod
is exhibits a lower error rate than standard AR, and when 𝑝 is
5, the lowest RMSE exhibited in Subject E among the subjects.
Thus, we confirm that optimal order is 5, and it is used as
the order of the CA-AR during experiments to verify the

efficiency. The order of the proposed method is determined
with the round-up integer of the average fractal dimension
that it is measured from all normal signals as Subjects A and
C.

Figure 5 shows the result of the forecast snapshot of
Subjects A, C, and E, using the CA-AR and standard AR
models. Plots (a), (c), and (e) show a specific case of a 20-
time step prediction of the 20th electrode, and plots (b), (d),
and (f) provide the prediction result for the 80th electrode
signal. The original signal is shown in Figure 5(a), from the
time 481 to 500 in red line with the star point marker. The
plus signmarker shows the forecasted signals by the proposed
method (green line) and the pointmarker plots the forecasted
signals by standard AR (blue line). These plots confirm that
our forecasting method outperforms the conventional AR
method.

In this paper, we compared the forecasting results among
several existing methods and CA-AR method. Table 2 shows
the forecasting results using existing methods of linear and
nonlinear prediction (Artificial Neural Networks [3], Fuzzy
[2, 24], Nearest Neighbors [25], and the proposedmethod) of
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Figure 3: Fractal dimension: the log-log plot about the 1st signal (a vector 𝑥
𝑡
) for each of Subjects A, C, and E.

the 7th electrode signal in Subject E. For the experiments, we
used a single signal of each subject to measure the forecasting
error in each forecasting method. Also, to measure forecast-
ing errors of existingmethods, we derived the partial training
signals from original signals that are from the starting points
to 500 time points or 1000 time points of signal. For example,
when the existing method tries to forecast the length of 150
time points, 1 to 500 time points or 1000 time point of the
signal are used for training. However, our method still uses
only 5 time points to forecast the future values of 150 time
points. CA-AR considers from the time 496 to 500 to forecast
the future values of the time 501, and it used from the time
497 to 501 to forecast the time 502.

As a result of Table 2, the proposed method shows lower
error rates than existing forecastingmethods. In case ofANN,
RMSE is gradually increasedwhen the forecasting time points
increase. However, our proposedmethod is unaffected by the
length of the forecasting time points because it used only the
order 𝑝 of AR. Besides, even though the length of forecasting
time points increased, the error rate of the forecasting result
did not show much change in our model. In case of the
Fuzzy-based method, it performs the batch process using all
of the previous values to estimate the new value.Thus, we quit

measuring the forecasting error because it requires very long
execution time.

Table 3 measures the forecasting time using the existing
methods as in Table 2. For example, if the training time
duration of ANN (Artificial Neural Networks) is 500 and
the forecasting time duration is 150, then 0.5304 represents
the execution time to forecast from the time 501 to 650.
Fuzzy-based method [2, 24] was excluded from the 1500-
forecasting time point test, because it already exhibited the
highest forecasting time compared to the other methods in
the 150-time point forecasting test. The proposed method
achieves much faster forecasting time than ANN (Artificial
Neural Networks) and NN (Nearest Neighbors). When the
training time point or forecasting time point increases, the
existingmethods incrementally increase the forecasting time.
However, since the proposed CA-AR method uses only a few
observed values, it maintains a steady time. In the case of
epilepsy seizure, we assume that it should be able to inform a
patient a few minutes or several hours before the beginning
of a seizure.

We evaluated forecasting error with each signal in each
subject, and Table 4 shows the results. This experiment is
done to measure the future values of the length of 500 time
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Figure 4: Fractal dimension of time delay space: (a) the 13th electrode of each subject, (b) the 14th electrode, (c) 17th electrode, and (d) 23rd
electrode.

points using the observed signal from the time 1 to 500. That
is, single signal has 4096 time points, and the existingmethod
used from the time 1 to 500 of single signal for learning.Mod-
els forecast from the time 501 to 1000 through learning. In this
paper, we measured RMSE between the original signals and
the forecasted signals. As a result of Table 4, Subjects C and E
indicated the lowest average forecasting error rate when NN
algorithm was used. However, NN method required much
learning time compared to our method. That is, the values of
1 to 500 in NN will be the training period for the forecasted
value of 501. For the forecast of 502, the training period
is 1 : 501. On the other hand, our method provides the fast
computation time because its training period is 407 to 501
for the forecast of 502. Besides, the difference of error rate
between NN and CA-AR is very small.

Our method needs only the past values of 𝑝 that are
determined by fractal dimension to forecast the future values.
Therefore, it guarantees the fastest computation time for

learning to forecast the epileptic seizure. We measured the
execution time of each model during forecasting the time
length of 1000, 2000, and 3000. We can confirm the result
of several signals from Table 5. In this experiment, we used
each signal of Subject E and training signal used from the
time 1 to 500 or 1000 time points of each signal in the existing
method. As a result of Table 5, the lowest RMSE of forecasting
is appeared in NN method except when CA-AR forecasted
the length of the 2000 times using the length of the 1000
times as training signals. However, we need to look at the
execution time of the whole forecasting method. NNmethod
provided good forecasting results. However, it needs longer
execution time. In addition, when the length of forecasting
time increases, the execution time also increases.

The accuracy of time series forecasting is a very important
factor to many decision processes, and hence the research for
improving the effectiveness of forecasting models has lasted.
Both the neural network and the AR model capture all of the
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Table 1: Root Mean Square Error of forecast using CA-AR and AR.

Electrode Proposed method Standard AR
𝑃 = 3 𝑃 = 5 𝑃 = 10 𝑃 = 15 𝑃 = 3 𝑃 = 5 𝑃 = 10 𝑃 = 15

RMSE of Subject A
7 0.1878 0.1320 0.0419 0.0523 1.0044 0.8149 0.5294 0.5399
15 0.3766 0.5306 0.9532 0.9942 0.9947 0.9514 0.9985 1.3158
20 0.2629 0.1525 0.1943 0.3741 1.0003 1.0071 1.0478 1.0128
27 0.1226 0.0757 0.1347 0.0897 1.0093 1.0961 1.2423 1.3061
35 0.0213 0.0559 0.0348 0.0563 0.9995 0.9299 0.8068 0.8334
50 0.1271 0.1436 0.1093 0.1339 1.0038 0.9907 1.0183 1.1479
60 0.0356 0.0273 0.0332 0.0070 0.8364 0.5043 0.7012 0.5120
70 0.0554 0.0449 0.0369 0.0402 0.9960 0.9987 0.9937 1.0352
80 0.0101 0.0068 0.0078 0.0110 0.4783 0.3180 0.2287 0.2108
87 0.1368 0.1458 0.1524 0.1370 1.0011 0.9736 1.0224 1.3125
95 0.0999 0.0677 0.0902 0.0385 1.0025 1.0141 1.0118 0.9709
Average 0.1306 0.1257 0.1626 0.1758 0.9388 0.8726 0.8728 0.9270

RMSE of Subject C
7 0.0302 0.0427 0.0372 0.0939 0.9501 0.5978 0.6480 0.6142
15 0.8090 0.7386 0.8873 1.5213 1.4048 1.1270 1.2222 1.8517
20 0.0384 0.0305 0.0335 0.0798 0.9979 0.9496 0.8857 0.8286
27 0.1288 0.1376 0.1122 0.1107 0.9469 1.02888 1.0845 0.7823
35 0.0495 0.0394 0.0428 0.1079 1.0635 1.0051 0.9715 0.9691
50 0.0369 0.0500 0.0437 0.0694 1.0187 0.9474 0.9118 0.8815
60 0.0319 0.0412 0.0282 0.1105 0.9208 0.6429 0.7676 0.7703
70 0.1612 0.1302 0.1527 0.0376 1.0973 1.3006 1.2392 1.3000
80 0.1068 0.1126 0.1087 0.1012 1.2428 1.4660 1.4313 1.4892
87 0.1478 0.1470 0.1621 0.0706 1.1839 1.5971 1.6903 1.9786
95 0.1158 0.1105 0.1141 0.0710 1.6958 1.7924 1.6513 1.6922
Average 0.1506 0.1437 0.1566 0.2158 1.1384 1.1322 1.1367 1.1962

RMSE of Subject E
7 0.2225 0.0098 0.0074 0.0272 0.9566 0.9761 0.7667 0.7669
15 0.0709 0.0749 0.0763 0.0739 1.0041 0.9226 0.9306 0.9534
20 0.1757 0.0540 0.1248 0.1429 1.2710 1.1595 0.9591 0.3047
27 0.0661 0.0494 0.0822 0.1094 1.1139 0.9623 1.1128 0.8602
35 0.1138 0.0375 0.0605 0.0774 1.0139 1.0181 1.2581 2.8540
50 0.0345 0.0310 0.0121 0.1890 0.7694 0.8749 0.8942 1.6892
60 0.0062 0.0343 0.0109 0.0794 0.8563 0.6543 0.8975 1.0238
70 0.0975 0.0246 0.0590 0.0450 0.1912 1.1594 1.7443 1.5908
80 0.0642 0.0237 0.0517 0.1455 0.5931 0.5950 3.4392 9.2907
87 0.0039 0.0802 0.1155 0.1507 1.0098 0.5522 0.5753 0.6716
95 0.1567 0.0389 0.1023 0.1285 1.2754 1.1505 1.0432 0.619
Average 0.0920 0.0417 0.0639 0.1063 0.9141 0.9114 1.2383 1.8749

patterns in the data [26]. Our method also can capture the
patterns of data because it was based on the AR model. In
epilepsy EEGdata, the amplitude betweennormal and seizure
signal presents a great difference. If a pattern of the generated
signals by the proposedmodel deviates from the past pattern,
CA-AR can regard these as the epileptic seizure. However, the
proposed model does not separately determine or measure

the sliding timewindow length to detect the change of pattern
in this paper. The goal of this study is to provide the fast run
time andhigh forecasting accuracy in time series data that has
special characteristics such as the nonperiodicity and non-
linearity. Through our experiments results, we can guarantee
the fast execution time and accuracy between original signal
and generated signal from our model.
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Table 2: Root Mean Square Error of forecast comparison.

Forecasting time
points

500 (training time points) 1000 (training time points)
ANN Fuzzy NN CA-AR (5) ANN Fuzzy NN CA-AR (5)

150 0.2059 0.1210 0.1462 0.0162 0.1297 0.0721 0.0950 0.0114
1500 0.6174 — 0.1050 0.0541 0.3221 — 0.0887 0.0533
2000 0.6328 — 0.0998 0.0487 0.356 — 0.0918 0.0486
2500 0.7607 — 0.0995 0.0497 0.3741 — 0.0910 0.0507
3000 0.7801 — 0.0976 0.0480 0.3613 — 0.0874 0.0479

Table 3: Forecast time comparisons.

Forecasting
time points

500 (training time points) 1000 (training time points)
ANN Fuzzy NN CA-AR (5) ANN Fuzzy NN CA-AR (5)

150 0.5304 186.94 1.060 0.0780 4.430 675.38 1.669 0.0156
1500 0.9516 — 13.722 0.0499 5.004 — 13.887 0.0811
2000 0.9953 — 20.439 0.0749 4.995 — 20.689 0.0718
2500 0.9766 — 28.189 0.0967 5.098 — 29.178 0.0874
3000 1.0764 — 32.723 0.0748 5.248 — 37.272 0.0736

Table 4: The measured forecasting error with several signals from each subject.

Electrode Subject A Subject C Subject E

NN Fuzzy ANN CA-AR
(5) NN Fuzzy ANN CA-AR

(5) NN Fuzzy ANN CA-AR
(5)

4 0.320 0.050 0.429 0.019 0.013 0.031 0.156 0.023 0.018 0.044 0.136 0.029
8 0.086 0.050 0.177 0.127 0.010 0.018 0.093 0.018 0.002 0.121 0.086 0.016
35 0.043 0.086 0.113 0.056 0.045 0.029 0.394 0.078 0.069 0.169 0.203 0.038
70 0.145 0.058 0.166 0.045 0.038 0.048 0.130 0.066 0.012 0.072 0.038 0.025
95 0.093 0.087 0.173 0.068 0.030 0.061 0.111 0.024 0.013 0.081 0.115 0.039
Average 0.137 0.066 0.212 0.063 0.027 0.037 0.177 0.042 0.023 0.097 0.115 0.029

4. Discussion

Epilepsy is a common neurological disorder in which some
nerve cells spasmodically incur excessive electricity for a
short time. Seizure predictions are mostly handled by sta-
tistical analysis methods from the EEG recordings of brain
activity. The forecasting of epilepsy seizures can be used as a
warning about seizures occurring on certain time scales by
estimating the change in brain waves. That is, the forecasting
of seizures alerts patients before an epilepsy seizure occurs.
As a result, they could avoid potentially dangerous situations
such as brain damage or injury during seizures.

In recent years, much research has looked into the
prediction of epilepsy seizures using EEG data. Mormann
et al. [27] analyzed bivariate EEG signals for seizure pre-
diction. They analyzed the synchrony of EEG data using
mean phase coherence (MPC) and maximum linear cross-
correlation between EEG signal pairs. Schelter et al. [28]
used MPC and obtained a proportion of seizures that were
correctly predicted. Chávez et al. [29] analyzed the focal
epilepsy EEG data for seizure prediction using non-linear
regression analysis and phase synchrony. Winterhalder et al.

[30] suggested the “seizure prediction characteristic” based
on clinical and statistical considerations and compared to the
performance of seizure predictionmethods using concepts of
linear and nonlinear time series analysis. This work indicates
the uncertainty of predictions made by the use of the seizure
occurrence period (SOP), in which the seizure is expected.
However, it can be expressed when the independent variables
are continuous. Moreover, these methods assume that the
data has normality and independence.

Li and Yao [31] proposed prediction methods based on
the wavelet transform and fuzzy similarity measurements
of EEG data. This method is divided into two steps: to
calculate the entropy of the EEG data and to calculate
similarity between variables. Li and Ouyang [32] proposed
the dynamical similarity measure based on a similarity index
to predict epileptic seizures using EEG data. Gigola et al.
[33] analyzed the time domain of different types of epilepsy
to predict epileptic seizures using wavelet analysis based on
the evolution of accumulated energy. Maiwald et al. [34]
evaluated three nonlinear methods for seizure prediction:
dynamical similarity index, correlation dimension, and accu-
mulated energy. These methods can extract robust features
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Figure 5: Forecast comparison: (a) and (b) plot forecasts of the 20th and 80th electrode of Subject A to compare the proposed and standard
AR methods. (c) and (d) show forecast plots of Subject C. (e) and (f) display the forecast plot of the 20th and 80th electrode of Subject E,
respectively.

from EEG data. However, part of these methods is performed
based on the window unit and it is not sufficient for clinical
applications.

Several techniques have been proposed to analyze char-
acteristics of seizures via various methods. Liu et al. [35]
measured the fractal dimension of the human cerebellum
in magnetic resonance images (MRI) of 24 healthy young
subjects using the box-counting method. Esteller et al. [36]
determined the fractal dimension in the cortex electroen-
cephalogram (IEEG, ECoG), using the Katz algorithm.Their
results show that an electrographic seizure in the Electro-
corticography (ECoG) occurs when there is an increase
of complexity. Sackellares et al. [37] found that temporal
lobe epilepsy is characterized by episodic paroxysmal elec-
trical discharges (ictal activity). These discharges consist of
organized synchronous activity of mesial temporal neurons,

particularly those of the hippocampus. However, proper
interpretation of such analyses has not been thoroughly
addressed.

In this paper, we proposed a new CA-AR forecasting
method based on the AR model that can forecast the seizure
of complex epilepsy EEG data by applying the property of
nonstandard distribution from [14]. The CA-AR model is
suited to time series data with special characteristics, such as
abnormality, noise, nonlinearity, and nonperiodicity.

5. Conclusions

Epilepsy may be caused by a number of unrelated conditions,
including damage resulting from high fever, stroke, toxicity,
or electrolyte imbalances. An algorithm capable of effective
real-time epileptic seizure prediction will allow the patient
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Table 5: Comparison of the foresting error rates and the execution time between the existing methods and the proposed method.

Forecasting
time points Electrodes

RMSE Execution time (sec)
500 (training) 1000 (training) 500 (training) 1000 (training)

ANN NN CA-AR
(5) ANN NN CA-AR

(5) ANN NN CA-AR
(5) ANN NN CA-AR

(5)

1000

4 0.091 0.020 0.047 0.13 0.023 0.05 1.01 7.44 0.08 5.34 9.11 0.06
8 0.039 0.006 0.043 0.055 0.016 0.051 0.08 7.75 0.03 5.01 8.86 0.06
35 0.228 0.072 0.039 0.192 0.062 0.045 0.90 7.64 0.08 4.90 8.78 0.05
70 0.057 0.010 0.056 0.049 0.011 0.054 0.10 7.57 0.08 4.48 8.63 0.06
95 0.091 0.032 0.044 0.145 0.038 0.034 0.94 7.44 0.06 4.70 8.75 0.05

Average 0.101 0.028 0.046 0.114 0.03 0.047 0.61 7.57 0.07 4.88 8.83 0.06

2000

4 0.217 0.021 0.046 0.245 0.03 0.038 1.11 20.55 0.08 4.87 20.14 0.05
8 0.060 0.019 0.047 0.082 0.027 0.018 1.11 20.64 0.08 5.55 20.87 0.05
35 0.253 0.063 0.052 0.191 0.088 0.048 0.83 20.31 0.06 4.91 21.03 0.05
70 0.058 0.015 0.049 0.046 0.012 0.033 1.01 20.12 0.08 4.52 20.94 0.04
95 0.173 0.037 0.048 0.198 0.038 0.048 0.92 20.58 0.08 5.12 20.47 0.05

Average 0.152 0.031 0.048 0.152 0.039 0.037 1.00 20.44 0.07 5.00 20.69 0.05

3000

4 0.376 0.029 0.052 0.399 0.019 0.051 0.92 32.74 0.08 5.79 38.31 0.05
8 0.094 0.015 0.051 0.112 0.032 0.051 1.22 32.39 0.03 5.68 36.47 0.05
35 0.259 0.070 0.049 0.213 0.087 0.047 0.98 32.40 0.08 4.76 36.57 0.05
70 0.055 0.023 0.048 0.044 0.013 0.046 1.33 32.79 0.08 5.13 37.53 0.05
95 0.227 0.049 0.050 0.233 0.059 0.049 0.94 33.29 0.11 4.88 37.47 0.05

Average 0.202 0.037 0.050 0.2 0.042 0.049 1.08 32.72 0.07 5.25 37.27 0.05

to take appropriate precautions minimizing the risk of a
seizure attack or injuries resulting from such an attack.
Conventional methods for forecasting or prediction of data
require periodicity in the observed data. However, when we
applied the cepstrum, seizure activity signals did not exhibit
periodicity. In addition, we could distinguish whether the
epilepsy EEG data is random or nonrandom using the lag
plot. If the lag plot has a nonrandom pattern, it can be used
for prediction by conventional approaches.However, our data
appears to have a random distribution.

This study proposed the random coefficients appropriate
for random distribution data. Further, we used the log-log
plots (box-counting) using the concept of fractal dimensions
to forecast epilepsy EEG data to estimate the vital forecasting
optimal order 𝑝 in our CA-AR model. Our experimen-
tal results demonstrate that CA-AR (coercively adjusted
autoregressive) is the most suitable forecasting method for
nonperiodic data. It does not require complex calculations
and conducts fast forecasting compared to other methods. In
addition, ourmethod generates future valuesmore accurately
or similar than other methods. The experiments on epilepsy
EEG data show that our method is not only fast and scalable
but also accurate in achieving low prediction errors.

Future research could focus on extending CA-AR to
perform forecasting on a multiple, coevolving time series
which includes linear or non-linear correlations and period-
icity or nonperiodicity. A more ambitious direction would
be to automatically readjust the parameter and coefficient
equations.
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With the advancements in modern signal processing techniques, the field of brain-computer interface (BCI) is progressing fast
towards noninvasiveness. One challenge still impeding these developments is the limited number of features, especially movement-
related features, available to generate control signals for noninvasive BCIs. A few recent studies investigated several movement-
related features, such as spectral features in electrocorticography (ECoG) data obtained through a spectral principal component
analysis (PCA) and direct use of EEG temporal data, and demonstrated the decoding of individual fingers. The present paper
evaluated multiple movement-related features under the same task, that is, discriminating individual fingers from one hand using
noninvasive EEG. The present results demonstrate the existence of a broadband feature in EEG to discriminate individual fingers,
which has only been identified previously in ECoG. It further shows that multiple spectral features obtained from the spectral
PCA yield an average decoding accuracy of 45.2%, which is significantly higher than the guess level (𝑃 < 0.05) and other features
investigated (𝑃 < 0.05), including EEG spectral power changes in alpha and beta bands and EEG temporal data. The decoding
of individual fingers using noninvasive EEG is promising to improve number of features for control, which can facilitate the
development of noninvasive BCI applications with rich complexity.

1. Introduction

Brain-computer interface (BCI) is an assistive technology,
which decodes neurophysiological signals from the human
brain and translates them into commands to control external
devices, such as computer programs, electrical wheelchairs,
and neuroprosthesis [1–4]. For people with severe motor
disabilities, BCI provides an alternative approach to com-
municate with the external world without going through
damaged motor output pathways [5, 6].

In terms of measurements utilized, BCIs can be cate-
gorized into invasive and noninvasive ones. Invasive BCIs
mainly use local field potential (LFP) and electrocorticogra-
phy (ECoG) [7–12]. Both techniques record neuroelectrical
activities of the brain with high spatiotemporal resolution
and signal-to-noise ratio (SNR) [12], while the implantation
of electrodes poses a potential risk for BCI users. On the
other side, noninvasive BCIs take advantage of noninvasive
measurements, for example, electroencephalography (EEG),

magnetoencephalography (MEG), and functional magnetic
resonance imaging (fMRI) [13–19]. All of them require no
surgeries for applications. Among these noninvasive tech-
niques, EEGhas beenwidely adopted in BCIs [2–4, 13–15, 20],
due to its merits of easy setup, mobility, and low cost, as well
as providing signals with reasonable SNR and high temporal
resolution.

Due to the advancements in biomedical equipment and
signal processing techniques, the field of noninvasive BCI
grows rapidly with several patterns of brain activities that
have been identified and applied for noninvasive applications.
The most popular ones include features extracted from
motor execution/imagery of certain human body parts
[13, 14, 21], event-related P300 [22, 23], steady-state visual
evoked potentials (SSVEP) [24], and some others. Motor
execution/imagery elicits power changes in alpha/beta bands,
that is, event-related desynchronization/synchronization
(ERD/ERS) [21], which have been widely used in cursor tasks
and neuroprosthesis [3, 13, 25, 26]. However, a remaining
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challenge of applying movement-related features in nonin-
vasive BCIs is the limited number of distinguishable patterns
available in order to generate more control signals, which
largely confines the complexity of noninvasive BCIs to only
simple tasks.

During the past decade, many efforts have been made
using EEG to decode movements of large body parts of
the human. For example, Doud et al. decoded movements
from upper limbs for continuous BCI control [27]; Gu et al.
investigated the feasibility of discriminating type and speed
of wrist movements [28]; Zhou et al. performed classification
onmovements from elbow and shoulder using EEG [29]; and
one of our previous studies discriminated different types of
motor imageries from both hands [30], only to name a few.
To further increase the number of control signals for BCI,
decoding movements of fine body parts, such as individual
fingers from one hand, is a viable mean [31–34], while there
are some difficulties, particularly with the use of noninvasive
EEG. Compared to invasive measurements, the relatively
poor spatial resolution of EEG makes it hard to decode
individual finger movements, since they activate adjacent
brain regions [35]. Furthermore, neural signals are further
attenuated and smeared by the Dura mater, cerebrospinal
fluid, and skull before reaching the head surface, whichmakes
it even harder to discriminate movements from fine body
parts using EEG. A recent study [36] has achieved promising
decoding performance using temporal EEG data as features,
when classifying movements from four fingers of one hand.
It demonstrated the existence of discriminative information
of individual finger movements in EEG. Another study
uses information extracted from ECoG to decode individual
finger movements [37], which are projections of spectral
powers on spectral principal components (PCs) obtained by
principal component analysis (PCA), and suggests a new type
of decomposition for spectral feature extraction. While these
studies provide possible approaches to extract features for
decoding individual fingers from one hand, they are carried
out under different experimental conditions and using differ-
ent signals, making it hard to compare their performance in
discriminating individual fingers. Furthermore, the efficacy
of use of spectral PCs from EEG has not been demonstrated,
particularly as compared with other features in decoding
finger movements. The comparison of these features can
provide a reference for feature extraction in such decoding
tasks.

The present study evaluated three types of EEG fea-
tures, including projections on spectral PC(s) (single PCs
or multiple PCs), ERD/ERS (in both alpha and beta bands),
and temporal data, when subjects performed the same task,
that is, individual finger movements of one hand. Differ-
ent features from a same set of channels were extracted
and single-trial EEG data were then classified to decode
individual fingers using a support vector machine (SVM)
technique [38]. The decoding accuracies were statistically
compared against the guess level and among different types
of features. The confusion matrices classifying individual
fingers using EEG were constructed. The present results
indicated that EEG features using both spectral PC projection
coefficients and temporal data produced decoding accuracies

significantly higher than the guess level (𝑃 < 0.05), while the
decoding accuracies using ERD/ERS features from individual
frequency bands (i.e., alpha and beta bands) did not reach
the significant level.The present results further suggested that
the combined EEG features from the first three spectral PCs
provide significant better decoding accuracies (an average
accuracy of 45.2% across all subjects) for individual finger
movements than all other features investigated (𝑃 < 0.05),
which was supported by results in confusionmatrices as well.
These findings demonstrate a newway to extract EEG features
for decoding individual fingers of one hand, which can
facilitate the development of noninvasive BCI applications
with rich complexity.

2. Materials and Methods

2.1. Subjects and Experimental Protocol. Six subjects (mean
age: 27.3, range: 22∼32, all right handed), who had no
previous experience with the current experimental protocol,
volunteered to participate in the study. All subjects provided
written informed consents prior to taking up the experi-
ments. The study was approved by the Institutional Review
Board of the University of Oklahoma.

The experiments were conducted in a dim-lighted and
electrically shielded chamber room to reduce environmental
noise. During the experiments, subjects either rested or
performed repetitive movements of individual fingers from
one hand according to visually presented cues. The stimuli
were presented using E-Prime software (Psychology Software
Tools, Inc., Pittsburgh, PA, USA) as illustrated in Figure 1(a).
In the first two seconds of the trial, the computer screen was
black, allowing time of necessary blinking or swallowing for
subjects. After that, a fixation appeared in the center of screen
for two seconds. During this time window, subjects were
instructed to sit still and stare at the fixation, which provided
data for resting conditions without artifacts. In the last two
seconds of the trial, one of five words (thumb, index, middle,
ring, and little) was randomly chosen and presented on the
screen, cueing subjects to perform repetitive movements of
corresponding fingers. Most subjects finished one session
including 80 trials for each finger in total 40 minutes. One
subject reported difficulties in finishing the entire session and
finished a session with 60 trials for each finger instead. Data
from one subject were excluded from further analysis due to
poor recording quality with large EEG artifacts.

2.2. EEG Recording and Preprocessing. EEG data were
acquired from a 128-channel sensor net using the Geodesic
EEG System 300 (Electrical Geodesic Inc., OR, USA). The
channel layout is depicted as black dots in Figure 1(b). The
EEG signals were sampled at 250Hz and referenced to a
channel on vertex.

The raw EEG data recorded were firstly high-pass filtered
at 0.3Hz. A 60Hz notch filter with 0.3Hz transition band
was then applied to the data to reduce the influence from
power line noise. To further increase the SNR of data,
an independent component analysis (ICA) was performed
using the EEGLAB toolbox [39, 40] to remove independent
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Figure 1: Experimental trial design and EEG sensor layout. (a) Each
trial consists of three segments: 2 s for rest, 2 s for fixation, and 2 s
for movement. (b) Channel locations for EEG sensor net. Each dot
denotes an EEG sensor and each cross denotes a channel selected for
decoding.

components (ICs) related to electrooculogram (EOG), elec-
trocardiogram (ECG), electromyogram (EMG), and other
common artifacts. There were usually 10 to 20 ICs identified
and rejected as artifacts in each subject. After temporal
filtering, the EEG data went through a spatial filter named
as common average reference (CAR), which could further
increase the SNR of data [41]:

𝑉CAR (𝑛, 𝑡) = 𝑉 (𝑛, 𝑡) −
1

𝑁

𝑁

∑

𝑖=1

V (𝑖, 𝑡) , (1)

where 𝑉CAR(𝑛, 𝑡) denotes the common average referenced
potential at channel 𝑛 and sample point 𝑡. It was calculated
by subtracting EEG potential𝑉(𝑛, 𝑡) at channel 𝑛 and sample
point 𝑡 to the average potential of total 𝑁 channels at that
sample point.

After the previous preprocessing steps, the EEG data
were segmented into 6-second epochs according to the trial
structure depicted in Figure 1(a). One-second segment data
centered at the last two seconds for movements, that is, 4.5–
5.5 s of each epoch, were used to decode individual fingers,
since maximal actions of fingers in most subjects were shown
in this time window. 500ms data from the onset of stimuli
were not used for decoding, since subjects were preparing
movements before execution [42]. In accordance with data

for movements, their corresponding resting data were also
selected as one-second segments, which were located in the
middle of fixation, that is, 2.5–3.5 s of each epoch. Movement
data and resting data, together with the corresponding labels
that indicate the fingers moved, were then combined for later
processing.

2.3. Feature Extraction

2.3.1. Features from Spectral PCA Decomposition. The PCA
method [43] was performed on EEG spectral powers to
identify common spectral patterns across conditions. It
transferred original signals into projections along uncor-
related principal components, which represented multiple
common spectral patterns in all conditions. The use of PCA
not only reduced the dimension of feature space but also
identified features accounting for large variations in data.
Both characteristics could improve decoding performance in
classification problems.

The extraction of these spectral features involvedmultiple
steps as the following. EEG segment data were firstly trans-
ferred into spectral powers, by calculating power spectral
density (PSD) for each trial (bothmovement data and resting
data) with

𝑃
𝑛
(𝑓,𝑚) =

1

𝑇
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,

𝐻 (𝑡) =
(1 + cos (2𝜋𝑡/𝑇))
2

,

(2)

where𝑃
𝑛
(𝑓,𝑚) denoted PSD at channel 𝑛 and frequency𝑓 for

segment m.𝐻(𝑡) represented the Hanning window, with the
window length𝑇 set as 250 sample points.The range of𝑓was
from 1 to 125Hz, due to the sampling frequency of 250Hz.

Before performing PCA on data, the PSDs for each trial
were normalized by

�̃�
𝑛
(𝑓,𝑚) = ln (𝑃

𝑛
(𝑓,𝑚)) − ln( 1

𝑀
⋅

𝑀

∑

𝑝=1

𝑃
𝑛
(𝑓,𝑚)) , (3)

where the normalized PSD �̃�
𝑛
(𝑓,𝑚) was the log-transferred

division between PSD of each segment data and the mean
of all segment data (including movements and resting). The
symbols f, m, n, and𝑀 denote frequency, segment, channel
numbers, and the total number of segments, respectively.This
operation compensated the uneven distribution characteris-
tic of EEG spectral powers, which followed the power law
and emphasized on low-frequency components. It also put
the proportions of EEG spectral powers from0 to 1 and from 1
to infinity on an equal footing, where one indicated the mean
PSD of all segment data [37].
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After the normalization, the spectral PCA decomposition
started by calculating the second moment tensor of distribu-
tion function for EEG spectral powers [37] by

𝐶 (𝑓, 𝑓
󸀠

) =

𝑀

∑

𝑚=1

�̃�
𝑛
(𝑓,𝑚) ⋅ �̃�

𝑛
(𝑓
󸀠

, 𝑚) , (4)

where 𝑓 and 𝑓󸀠 were frequencies from 1 to 125Hz. The
constructed matrix measured how well spectral powers at
two frequencies vary together along different segment data
(i.e., different trials). Then, eigenvalues and eigenvectors
of the matrix were calculated using a MATLAB (R2011a,
the MathWorks, Natick, MA) function named “eig.” The
eigenvectors were rearranged according to their correspond-
ing eigenvalues in a descending order. These eigenvectors
were spectral principal components (PCs) that represented
different common spectral patterns in EEG spectral powers
across conditions, ordered with decreasing significance. Each
segment data was then projected onto these spectral PCs and
the resulting projection coefficients were features used for
classification.

The projection coefficients on the single PCs (i.e., the
first PC and the second PC) and multiple PCs (i.e., com-
bined first three PCs) were chosen to evaluate the decoding
performance with features obtained from spectral PCs. The
channels, marked by crosses in Figure 1(b), were selected for
performing spectral PCA and decoding, which covered the
posterior frontal cortex, motor cortex, and parietal cortex.

2.3.2. Features from Individual Frequency Bands and Tempo-
ral Data. The extractions of both features from individual
frequency bands and temporal data were performed on the
same EEG segments used for spectral PCA analysis for the
purpose of comparison. The first step in acquiring features
in individual frequency bands was to transfer temporal EEG
data into spectral powers in the frequency domain, whichwas
achieved using (2) as well. After that, the spectral powers at
8–12Hz (i.e., alpha band) and 13–30Hz (i.e., beta band) were
selected as movement-related features to decode individual
finger movements. For using temporal data as movement-
related features, EEG potentials from all movement segments
were downsampled to 25Hz by choosing one sample out of
every ten samples, which was adopted from a previous study
[36].This operation reduced the computational workload for
decoding tasks later, leaving 25 samples in each segment as
decoding features.

2.4. Permutation and Classification. To evaluate decoding
accuracies, the sequence of segments was randomly per-
muted 30 times before feature extraction and classification.
The corresponding labels were permuted as well, in line with
the segments. After each permutation, 80% of the data were
selected as the training set and the remaining as the testing
set. The features being evaluated in the present study were
obtained only from the training set, which made sure that no
data in the testing set were involved in building classifiers.

A support vector machine (SVM) classifier [44] was
adopted for decoding. The SVM classifier used a kernel

method to map training data into a high dimensional space,
where different classes of data could be linearly separated.
Next, it searched for a hyperplane, which maximized the
margin constructed by support vectors among different
classes. The acquired hyperplane then served to distinguish
data from different classes. In the present study, the LIBSVM
toolbox was implemented using radial basis function (RBF)
as kernel function [38]. For different features evaluated, the
paired feature data and their labels in the training set were
used to train the SVM classifiers. The trained classifiers were
then used to predict labels of EEG segment data in the testing
set. Finally, predicted labels were compared to true labels
for these segments in the testing set to compute decoding
accuracies with the use of different types of features.

2.5. Evaluation of Decoding Performance. To evaluate the
performance of decoding individual finger movements using
these features, the decoding accuracies acquired by different
features were compared with the guess level using one-
sample 𝑡-test. The guess level for 5-class classification prob-
lems was 20%. To compare the decoding performance of
each pair of features, pairwise 𝑡-tests were performed on
decoding accuracy data obtained from them. All 𝑡-tests were
implemented using a MATLAB function named “𝑡-test.” In
addition, confusion matrices were constructed from data of
decoding accuracies using each type of features to assess their
decoding accuracies on individual fingers as well as their
structures of misclassification.

3. Results

3.1. Features from Spectral PCA Decomposition. Features
from spectral PCA decomposition were evaluated from two
aspects, that is, the profiles of PCs (i.e., the amplitude
structure as a function of frequency) and the spatial patterns
of projection coefficients over EEG electrodes (Figure 1(b))
for different fingers. Figure 2(a) presents the profiles of the
first three spectral PCs, which account for most variations
in data (over 90% in average among all subjects). The first
PC for each subject (blue curves) presents a broadband
phenomenon, which is flat and positive across all frequencies.
The phenomenon is consistent with results in the recent
ECoG study [37], suggesting that the similar spectral pattern
indicative of finger movements can be identified in EEG
as in invasive ECoG. The second PC (red curves) mainly
peaks at alpha band and beta band, which suggests the
similar ERD/ERS phenomena within alpha and beta bands
as discussed in Section 2.3.2 (also see Figure 3(a)). The third
PC (black curves) exhibits small variations in low-frequency
bands, which may represent some residual activities in low-
frequency bands besides the first two PCs.

To evaluate the spatial patterns of features from the
spectral PCA, projection coefficients on the first PC for
different fingers were plotted in Figure 2(b). It reveals that
the projections of EEG data from different brain regions
on the same spectral structure (as denoted by the spectral
PC) present distinct patterns during finger movements.
Projection coefficients on electrodes over both left and right
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Figure 2: Spectral PC features from PCA decomposition. (a)
Profiles of the first three PCs. (b) Topographies of projection
coefficients on the first PC from movements of different fingers.

motor cortices have large negative values, while they are
more towards zeros on electrodes over the parietal cortex.
More importantly, these distinct patterns covering different
brain regions elicit variations to certain extents whenmoving
different fingers from the same hand, with more obvious
phenomena on the parietal cortex.

3.2. Features Using Spectral Powers and Temporal Data. All
subjects moved fingers from the right hand, which elicited
power changes in channels from the motor cortex on the
left motor cortex (i.e., the contralateral side) [6, 21]. Hence,
spectral powers averaged over all segments belonging to
one condition from a channel on the left motor cortex
were chosen to display (Figure 3(a)). The selected channel
was marked by the red dot on the scalp map. It shows
that all finger movements elicit power decreases in both
alpha band (enclosed by 1st and 2nd vertical lines) and beta
band (enclosed by 2nd and 3rd vertical lines) compared
to the resting (denoted by the cyan curve), while spectral
powers in alpha band presentmuch larger decrease. However,
no major differences in spectral powers among different
finger movement conditions can be readily identified in
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Figure 3: Illustration of averaged alpha/beta power changes and
averaged temporal EEG data from a channel (the red dot) over
the left motor cortex. (a) Average spectral powers as a function of
frequency calculated from movement and resting segment data. (b)
Average temporal EEG data from different fingers. Zero indicates
the onset of movement cues.

both frequency bands. This observation suggests features of
spectral powers from individual frequency bands may not
suffice the task of decoding movements of fine body parts,
that is, individual finger movements.

The same channel on the leftmotor cortex was selected to
present features in temporal data averaged over all segments
belonging to one finger aligning to the onset of movements
(Figure 3(b)). The first vertical line indicates the onset of
movement cues, and the following two vertical lines define
the segments of data selected for extracting temporal patterns
to decode individual finger movements. Average temporal
waveforms from movements of different fingers are depicted
using different colors. It presents similar EEG patterns
prior to onset of movements, while distinct fluctuations
in amplitudes are shown from different finger movements
after stimulus onsets, particularly in the window selected
for decoding. This difference in temporal data is utilized to
decode individual finger movements from one hand.
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3.3. Classification Accuracies Using Different Features.
Figure 4 summarizes the decoding accuracies in discrimi-
nating individual finger movements of one hand using
differently computed features from EEG. Each bar in
the figure presents the mean, together with the standard
deviation, of decoding accuracies from all subjects and all
permutations using one type of the features.The figure shows
that all features produce average decoding accuracies above
the guess level, which is indicated by the red dash dotted line.
It also demonstrates that different features yield different
average decoding accuracies, with projection coefficients
on multiple spectral PCs, the highest (45.2%), followed
by temporal data (39.2%), projection coefficients on single
PCs (the first PC: 37.6% and the second PC: 32.2%), and
then spectral powers in alpha band (29.3%) and beta band
(26.8%).

3.4. Evaluation of Decoding Performance. To evaluate decod-
ing performance using different features, one-sample 𝑡-tests
were firstly conducted between different features and the
guess level. The results, as presented in Table 1, indicate most
features produce decoding accuracies significantly higher
than the guess level (𝑃 < 0.05), except for spectral powers
in alpha band and in beta band. Comparison of decoding
performance among different features was achieved by con-
ducting pair-wise 𝑡 tests on every two different features. The
results in Table 1 demonstrate that projection coefficients on
multiple spectral PCs produce an average decoding accuracy
significantly higher than those achieved by all other features
(𝑃 < 0.05). The decoding performance of temporal data
is better than the single PC and spectral powers in both
alpha and beta bands, while the difference is not significant
as compared with data from the first PC (𝑃 > 0.05).
Furthermore, the second PC (with combined features from
both alpha and beta bands since it peaks on both frequency
bands) indicates significantly better decoding accuracy than
individual features from either alpha band or beta band.

To further examine the decoding performance of dif-
ferent features, confusion matrices for decoding each finger
were computed (Figure 5). The present results indicate that
entries on the main diagonal are most prominent for all
features. It suggests that labels of trials in the testing set are
mostly classified to the corresponding fingers correctly. It
also can be observed that other large entries are mainly on
either superdiagonal or subdiagonal lines of each confusion
matrix, suggesting most misclassified trials were classified to
neighbored fingers, rather than other fingers far away. When
comparing confusion matrices from different features, the
EEG feature of spectral PC project coefficients shows much
less confusions than other EEG features, which is supported
by decoding accuracy data. The EEG features from the first
spectral PCprojection coefficients and the temporal data have
similar general performance in terms of confusion matrices,
while these matrices further indicate different performance
of these features on different fingers (e.g., the most confused
finger is the index finger using first spectral PC projection
coefficients and is the ring finger using temporal EEG data).
The similar phenomenon is also observed in comparing other
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Figure 4: Comparison of decoding accuracies averaged over all
subjects using different EEG features. The red dash dotted line
indicates the guess level for 5-class classification problems.

pairs of features. Again, the confusion matrix data indicate
that the feature of alpha or beta band EEG signal changes has
less power in discriminating different fingers.

4. Discussion

In the development of noninvasive BCI applications, move-
ment-related features are capable of providing BCI users with
voluntary and intuitive control by extracting information
from motor execution/imagination of certain body parts
[45]. Movements of large body parts, such as hands, arms,
and feet, have been successfully decoded using spectral
powers from the low-frequency bands (i.e., alpha and beta
bands) to generate control signals for noninvasive BCI [27–
30, 46–48]. However, to develop BCI applications with rich
complexity, the current available control features are not
sufficient. Several BCI studies explored different aspects of
movement-related information including projections from
PCA decomposition and temporal waveforms [36, 37]. Their
results suggest decoding movements from fine body parts,
that is, individual finger movements, as one of promising
approaches to improve the number of control features for
BCI applications. These studies were carried out under
different experimental conditions and using different signals,
for example, invasive ECoG and noninvasive EEG, making it
infeasible to compare the decoding performance of different
features in discriminating individual finger movements from
one hand in a unified configuration.The aim of present study
is to evaluate features from a spectral PCA decomposition
[37], spectral powers in individual frequency bands, and
temporal data under the same protocol, that is, the discrimi-
nation of individual finger movements from one hand using
noninvasive EEG.

For EEG features from spectral PCA decomposition,
profiles and projections of the first three PCs are evaluated
in the present study (Figure 2), since they account for most
variations in data. The first PC shows a broadband phe-
nomenon, which is consistent with the results in ECoG based
BCI studies [37]. The result demonstrates, for the first time,
that the features extracted from ECoG using spectral PCA
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Table 1: Summary of 𝑡-test results on decoding accuracies using different features, as well as the guess level (20%). The bold entries indicate
significant difference (𝑃 < 0.05).

1st PC 2nd PC First 3 PCs Alpha band Beta band Temporal amplitudes Guess level
1st PC — 0.1390 0.0470 0.0595 0.0191 0.5030 0.0092
2nd PC — — 0.0096 0.5245 0.1552 0.0290 0.0246
First 3 PCs — — — 0.0310 0.0142 0.0446 0.0105
Alpha band — — — — 0.2482 0.0312 0.0635
Beta band — — — — — 0.0089 0.0763
Temporal amplitudes — — — — — — 0.0099

First PC Second PC Combination of first 3 PCs

Alpha band powers Beta band powers Temporal data
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Figure 5: Confusion matrices for different types of EEG features. Horizontal axis: predicted labels for fingers; vertical axis: true labels for
fingers.

decomposition also reside in EEG. In addition, the spatial
patterns of projection coefficients on the first PC vary in
movements of different fingers, suggesting that such a feature
can be used to decode individual fingers from one hand.
The resulting decoding accuracy that is significantly higher
than the guess level (𝑃 < 0.05) further demonstrates the
feasibility of using the broadband feature in EEG to dis-
criminate individual fingers. Both the second and third PCs
show large peaks in alpha and beta bands, which resemble
ERD/ERS phenomena (particularly the second PC) [37] that
are also demonstrated in EEG features of alpha/beta band
spectral power changes (Figure 3(a)) in the present study. For
EEG features of alpha/beta power changes, while they have

demonstrated the promising performance in discriminating
movements of large body parts in the literature [27–29],
their decoding accuracies are not significantly higher than
the guess level (𝑃 > 0.05) in discriminating individual
fingers. This is consistent with the previous reports using
ECoG data [37, 49] that low-frequency EEG components are
more smeared and not spatially specific to individual fingers
as compared with high-frequency EEG components (e.g.,
gamma band). It is worth noting that the broadband feature
of the first spectral PC encompasses both low- and high-
frequency EEG components. Lastly, the difference in EEG
temporal data caused by movement of different fingers can
be observed in averaged EEG data (Figure 3(b)). The present
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study further demonstrates the direct use of single-trial EEG
temporal data (without any feature extraction techniques) in
discriminating individual fingers, which shows comparable
accuracies as reported in the literature [36].

These three types of EEG features have different discrim-
ination performance in decoding individual fingers from one
hand, as indicated by the data of decoding accuracy (Figure 4)
and confusion matrix (Figure 5). In terms of decoding accu-
racy, the EEG feature from multiple spectral PCs yields the
highest accuracy (i.e., 45.2% in decoding five fingers from
one hand) among all studied features. The discrimination
performance usingmultiple PCs exceeds those achieved from
the use of any single PCs (𝑃 < 0.05), which suggestmovement
of fingers causes changes in EEG in a broad frequency
range possibly contributed by multiple neural substrates,
consistent with movement of other large body parts [27–
29]. The better discrimination performance using multiple
PCs further indicates movement-related changes in different
frequency bands are independent, where all EEG frequency
components contribute to the improved decoding accuracy.
The discrimination performance using the first spectral PC
is significantly better than the second PC (𝑃 < 0.05).
The fact suggests that EEG spectral power changes in high-
frequency bands (conveyed in the first PC) are more specific
to individual finger movements than low-frequency EEG
power changes [49, 50], similar to what is discussed above
for ERD/ERS phenomena. Features from EEG temporal data
produce the second best discrimination performance, which
provides the direct evidence that useful information exists in
noninvasive EEG data to decode individual fingers [36]. Its
performance decrease as compared with the use of multiple
spectral PCs might be caused by common changes presented
in EEG data from all types of movements. It is noted that
the use of the second PC yields significantly higher decoding
accuracy than the guess level (𝑃 < 0.05) and higher
decoding accuracy than individual alpha band or beta band
power changes. Since the second PC resembles the combined
phenomenon in both alpha and beta bands, the fact indicates
the discrimination performance using EEG low-frequency
components in decoding individual fingers can be improved
when multiple frequency bands are integrated.

Meanwhile, it is important to note that the discrimination
performance using EEG data is lower than those achieved
by invasive measurements [33, 51, 52] due to relatively poor
spatial resolution and low SNR of EEG. While the present
study demonstrates a useful feature available in EEG to
decoding individual fingers noninvasively, several practical
factors can be considered to further improve the performance
of EEG-based system in decoding fingers. EEG features
can be enhanced by grouping and averaging a number of
trials from the same fingers. Moreover, while a universe
channel set is selected for different features to achieve a
fair comparison in the present study, distinct channel sets
should be investigated to acquire optimal discrimination
performance. Furthermore, some spatial filtering algorithms,
such as common spatial patterns (CSP) [53], are able to better
reveal valuable spatial patterns of EEG features than simply
selecting channel sets, which could improve the detection of
features and, thus, the decoding performance.

5. Conclusion

The present study evaluated the discrimination performance
from three types of EEG features, including spectral features
obtained using PCA, alpha/beta band power changes, and
EEG temporal data, in decoding individual fingermovements
from one hand. The experimental results demonstrate the
feasibility of a broadband feature in EEG in discriminating
individual fingers. Moreover, it is demonstrated that the
use of multiple PCs (i.e., the first three PCs) can achieve
the best decoding accuracy (45.2%) among all investigated
EEG features. EEG temporal data yield a slightly lower
decoding accuracy than spectral PC features. The present
study further indicates that alpha/beta power changes do not
contain sufficient information about fine individual finger
movements, while they contribute to improved decoding
accuracy when combined with other features. The findings
in the present study provide a reference in selecting features
for decoding individual fingers from one hand, which could
largely increase the number of features for BCI applications
and advance the state of the art of noninvasive BCI with rich
complexity in control.
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We propose a new active nonlinear model of the frequency response of the basilar membrane in biological cochlea called the
simple dual path nonlinear (SDPN) model and a novel sound processing strategy for cochlear implants (CIs) based upon this
model. The SDPN model was developed to utilize the advantages of the level-dependent frequency response characteristics of the
basilar membrane for robust formant representation under noisy conditions. In comparison to the dual resonance nonlinear model
(DRNL) which was previously proposed as an active nonlinear model of the basilar membrane, the SDPN model can reproduce
similar level-dependent frequency responses with amuch simpler structure and is thus better suited for incorporation intoCI sound
processors. By the analysis of dominant frequency component, it was confirmed that the formants of speech are more robustly
represented after frequency decomposition by the nonlinear filterbank using SDPN, compared to a linear bandpass filter array
which is used in conventional strategies. Acoustic simulation and hearing experiments in subjects with normal hearing showed
that the proposed strategy results in better syllable recognition under speech-shaped noise compared to the conventional strategy
based on fixed linear bandpass filters.

1. Introduction

Cochlear implants (CIs) have been used successfully for the
restoration of hearing function in cases of profound sen-
sorineural hearing loss by stimulation of spiral ganglia using
electrical pulses. The parameters of the electrical pulses
are determined from incoming sound via sound processing
strategy. Despite the great progress over a period ofmore than
two decades, many issues remain to be resolved to achieve
successful restoration of hearing in noisy environments,
melody recognition, and reduction of cognitive load in the
patients [1]. Hearing in a noisy environment is especially
important for practical purposes.

Several methods can be utilized for the improvement
of CI. Among them, the development of novel sound
processing strategies is particularly useful because it can
be accomplished by modifying embedded programs in the
speech processor and does not require a change of hardware.

A sound-processing strategy is defined here as an algorithm
to generate electrical stimulation pulses based on the pro-
cessing of incoming sound waveforms and is also called
an encoding strategy. More accurate imitation of normal
auditory function is a promising approach for CI sound-
processing strategy development [1–3].

It has been suggested that speech perception performance
can be improved considerably by adopting an active non-
linear model of the basilar membrane in the cochlea, called
the dual resonance nonlinear (DRNL) model [2, 3]. The use
of DRNL model was shown to be beneficial for the repre-
sentation of the information of the formants, which mean
the resonances in the vocal tract and are reflected in speech
spectra as spectral peaks [2, 3].The formants are known to be
encoded in population responses of the auditory nerves [4, 5].
They are very important cues for speech perception, since the
information on formants is crucial for the representation of
vowels. It is also imperative for consonant representation, as
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relative strength of each subband is then determinedwith an envelope detector tomodulate the amplitudes of stimulus pulses after logarithmic
compression. (b) The frequency decomposition stage for the conventional strategy based on a fixed linear bandpass filter array. (c) The
frequency decomposition stage for the proposed strategy based on the SDPN model.

formant transition provides a valuable piece of information
for the identification of consonants, such as plosives, stops,
and fricatives [6].

The aforementionedCI performance improvement by the
use of active nonlinear model of the basilar membrane may
result from robust representation of formants under noisy
conditions. The DRNL model was first applied to a CI sound
processor and improved speech perception performance was
verified from one listener [2]. It was also reported that
the DRNL-based sound-processing strategy provides robust
formant representation characteristics and enhances vowel
perception [3]. The DRNL model was originally developed
for quantitative description of the physiological properties
of the basilar membrane and to provide a satisfactory fit to
experimental results. Thus, the DRNL model includes many
parameters that should be determined from experimental
data, and its structure is rather complicated for adoption in
CI devices. Therefore, a simpler model may be implemented
without compromising the advantages of the DRNL model.

Here, we propose a new active nonlinear model of the
frequency response of the basilar membrane, called the

simple dual path nonlinear (SDPN)model and a novel sound-
processing strategy based on this model. The aim of the
present study is only to utilize the advantages of the active
nonlinear response and not to replicate the physiological
properties of the basilar membrane in biological cochlea in
detail. A subset of results has been presented in a conference
proceeding [7].

2. Methods

2.1. Proposed Sound-Processing Strategy. Figure 1(a) shows
the general structure of the sound processor for a CI. The
incoming sound is decomposed into multiple frequency
bands (stage 2 in Figure 1(a)), and then the relative strength
of each subband is obtained from an envelope detector
(stage 3) to modulate the amplitudes of stimulus pulses after
logarithmic compression. This structure was motivated by
place coding (tonotopy) of the basilar membrane and most
modern CI devices are based on this structure [8–10]. In the
strategy proposed in this paper, the frequency decomposition
stage is replaced with a simple active nonlinear filter model
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Figure 2: (a) Block diagram of the DRNL model. The output of each cochlear partition is represented as a summation of the outputs from a
linear and a nonlinear pathway. (b) Block diagram of the proposed SDPN model.

of the basilar membrane with variable response instead of a
fixed linear bandpass filter which is employed in conventional
CIs. The variable response characteristic originates from the
input-dependent tuning property of the basilar membrane
resulting from active motility of outer hair cells (OHC) [11]
and this active nonlinear response property contributes to
robust representation of speech cues under noisy conditions
[12].

Figures 1(b) and 1(c) illustrate the differences between the
conventional and proposed strategies. Both can be regarded
as having the structure shown in Figure 1(a). In the con-
ventional strategy (Figure 1(b)), a fixed linear bandpass filter
array, is adopted as the frequency decomposition block of
Figure 1(a). In contrast, in the proposed strategy (Figure 1(c)),
frequency decomposition is performed by the SDPN model
array. The output from each channel can be regarded as a
bandpass-filtered version of the input, similarly to the con-
ventional strategy. However, the frequency response property
is nonlinear and level dependent. Subsequently, the relative
strength of each channel is calculated by applying envelope
detectors to the outputs from each SDPN. The envelopes
are used to modulate the amplitudes of the current pulses
in clinical applications involving electrical stimulation; for
acoustic simulation, the amplitudes of sinusoids are modu-
lated instead of pulse amplitudes. This is described later in
detail (Section 3.4).

Figure 2(a) illustrates the dual resonance nonlinear
(DRNL)modelwhichwas developed for quantitative descrip-
tion of the physiological properties of the basilar membrane

and to provide a satisfactory fit to experimental results [12].
The output of each cochlear partition is represented as a sum-
mation of the outputs from linear and nonlinear pathways
in the DRNL model. The linear pathway consists of a linear
gain, a gammatone bandpass filter, and a Butterworth lowpass
filter. The nonlinear path includes broken-stick nonlinearity
between two bandpass filters so that its contribution to the
total output is determined by the input signal level.Thedetails
of the DRNL model and parameters were reported in [12].
The effective center frequencies of the linear and nonlinear
pathways are slightly different. The relative contributions of
the two pathways are variable because of the nonlinear gain
in the nonlinear pathway, and therefore the overall response
characteristics such as gain and bandwidth are also variable.
The DRNL model can replicate the frequency response
of biological cochlea in that the level-dependent tuning
and level-dependent gain properties could be reproduced
successfully [12]. Compared to other models with similar
purposes, it is relatively simple and computationally efficient.
However, the DRNLmodel includesmany parameters and its
structure is rather too complicated for adoption inCI devices.

The block diagram of the SDPN model is shown in
Figure 2(b). While developing the SDPN model, we did
not attempt to reproduce experimental results regarding the
neurophysiological properties of the basilar membranes to
the numerical details.The purpose here was to implement
the level-dependent frequency response characteristics of the
biological cochlea. As in the DRNL model, the incoming
sound is passed to two pathways.The linear pathway consists
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Figure 3: The frequency response of the proposed SDPN model
when the center frequency is set to 1500Hz. When the input
amplitude is low, the contribution of the nonlinear pathway is
relatively large so that the overall response shows a sharp frequency
selectivity determined by the tip filter. As the amplitude increases,
the contribution of linear pathway becomes dominant, and the
overall frequency response therefore becomes broader.

of a linear gain (fixed to 6 here) and a broad bandpass filter,
which is called the tail filter. The nonlinear pathway is made
of a sharper bandpass filter, which is called the tip filter,
and a compressive nonlinearity that is employed to mimic
the saturation properties of the OHC. The nonlinearity is
expressed as 𝑦 = 2 arctan(15𝑥). Both the tail and tip filters
are composed of Butterworth bandpass filters (tail filter: 2nd
order, tip filter: 4th order). The bandwidth of the tail filter is
set to be three times larger than that of the tip filter. To realize
the variable response properties, the relative contribution of
each pathway is controlled according to the input level (root
mean square value) by the nonlinearity. The overall output
from one channel of the frequency decomposition block is
obtained by summing the outputs from the two pathways.
As discussed later in Section 3 (Figure 3), this method
allows the implementation of active nonlinear frequency
response characteristics of biological cochlea with much
lower computational costs than the DRNL model.

After frequency decomposition, the envelopes of each
channel output are obtained. We used a conventional enve-
lope detector consisting of a rectifier and a low-pass filter.
In addition, we also examined the advantages of using an
enhanced envelope detector proposed byGeurts andWouters
[13]. This is based on the adaptation effect resulting from the
synapse between inner hair cells and auditory nerves and
utilizes a combination of two envelope detectors, namely, a
standard envelope detector consisting of a full-wave rectifier
and a 4th order Butterworth low-pass filter with 400-Hz
cutoff frequency and another for extraction of slowly varying
envelope with a low-pass filter cutoff frequency of 20Hz.

By comparing the two envelopes, it is possible to determine
the temporal points where rapid transient changes occur,
and additional gain can be applied at these time points
for emphasis of the transients. The detailed algorithm was
reported in [13].

2.2. Acoustic Simulation. Acoustic simulation can be used to
predict performance trends of CI sound-processing strategies
and has therefore been utilized for many studies of the
development of novel strategies [14]. We adopted sinusoidal
modulation for the synthesis of acoustic waveforms, as
in many previous studies on CI sound-processing strategy
development [14, 15]. The center frequencies of the channels
were chosen according to the method of Loizou et al. [16], as
this enables systematic computation of the filter bandwidths
and is used in current CI devices. Logarithmic filter spacing
was used for 4-channel implementation, and semilogarithmic
mel spacing was used for 8 and 12 channels. Detailed values
of the center frequencies and bandwidths are listed in Table 1.

The method of acoustic simulation in the conventional
strategy was similar to that of Dorman et al. [17]. After fre-
quency decomposition of incoming sound by a linear band-
pass filter array, an envelope detector consisting of a full-wave
rectifier and a 4th order Butterworth low-pass filter (cutoff
frequency: 400Hz) was applied. The detected envelopes
were used to modulate the sinusoids with frequencies the
same as the center frequencies listed in Table 1. Finally, the
amplitude-modulated sinusoids from all the channels were
summed.

For the generation of an acoustic waveform correspond-
ing to the proposed strategy, frequency decomposition was
performed by an array of SDPN models, and then the
envelopes of the outputs from each SDPN model were
extracted by envelope detectors. Either conventional or
enhanced envelope detectors were adopted. The amplitudes
of sinusoids were modulated according to the outputs from
the envelope detectors. The frequencies of sinusoids were the
same as in the simulation using the conventional strategy.
Note that we assigned one sinusoid per channel, as the center
frequencies of the tail and tip filters were identical. Thus,
the results of acoustic simulation can be readily compared
to those of the conventional strategy. This is different from
the case of acoustic simulation of the DRNL-based sound-
processing strategy [2, 3], where two sinusoids should be
used to simulate one channel due to the different center
frequencies of linear and nonlinear pathways.

2.3. Hearing Experiment. Ten subjects with normal hear-
ing volunteered to participate in the hearing experiment
(mean ± SD age: 25.8 ± 4.08 years; 6 men, 4 women). All
subjects were undergraduate or graduate students of Yonsei
University. The experimental procedure was reviewed and
approved by a local ethics review committee.The experiments
were performed under two noise conditions: without any
noise (i.e., signal-to-noise ratio (SNR) of ∞ dB) and with
speech-shaped noise (SSN) of 2 dB SNR. The SSN here was
generated by applying a 2nd order Butterworth low-pass filter
(cutoff frequency 1100Hz) to white Gaussian noise (WGN) as
described previously [18] so that its spectral shape was similar
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Table 1: Center frequencies and bandwidths of the filter arrays used for frequency decomposition.

(a) 4 Channel implementation

Ch. 1 Ch. 2 Ch. 3 Ch. 4
CFs and BWs of BPFs (in conventional strategy)

CF (Hz) 460 953 1971 4078
BW (Hz) 321 664 1373 2426

CFs and BWs of tip and tail BPFs (in proposed strategy)

CF (Hz) 460 953 1971 4078
BW of tip filter (Hz) 321 664 1373 2426
BW of tail filter (Hz) 107 221.3 457.7 808.7

(b) 8 Channel implementation

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8
CFs and BWs of BPFs (in conventional strategy)

CF (Hz) 394 692 1064 1528 2109 2834 3740 4871
BW (Hz) 265 331 431 516 645 805 1006 1257

CFs and BWs of tip and tail BPFs (in proposed strategy)

CF (Hz) 394 692 1064 1528 2109 2834 3740 4871
BW of tip filter (Hz) 265 331 431 516 645 805 1006 1257
BW of tail filter (Hz) 83.3 110.3 143.7 172 215 268.3 335.3 419

(c) 12 Channel implementation

Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5 Ch. 6 Ch. 7 Ch. 8 Ch. 9 Ch. 10 Ch. 11 Ch. 12
CFs and BWs of BPFs (in conventional strategy)

CF (Hz) 274 453 662 905 1190 1521 1908 2359 2885 3499 4215 5050
BW (Hz) 165 193 225 262 306 357 416 486 567 661 771 900

CFs and BWs of tip and tail BPFs (in proposed strategy)
CF (Hz) 274 453 662 905 1190 1521 1908 2359 2885 3499 4215 5050
BW of tip filter (Hz) 165 193 225 262 306 357 416 486 567 661 771 900
BW of tail filter (Hz) 55 64.3 75 87.3 102 119 138.7 162 189 220.3 257 300
CF: center frequency, BPF: bandpass filter, BW: bandwidth.

to that of speech waveforms. The number of channels was
varied to 4, 8, or 12 channels.

Syllable identification tests were performed using closed-
set tasks. Consonant-vowel-consonant-vowel (CVCV) disyl-
lables were constructed mainly to test vowel perception
performance. Each speech token was fixed to the form of
/sVda/; that is, only the first vowel was changed whereas the
others were fixed to /s/, /d/, and /a/. The first vowel was
selected from /a/, / e/, /o/, /u/, /i/, and /e/. This CVCV form
is more natural for the Korean language and was therefore
used instead of the CVC-type monosyllables frequently
utilized in vowel perception tests in previous studies [13,
17]. Vowel-consonant-vowel (VCV) type monosyllables were
also constructed. The vowels at the beginning and end were
the same and fixed to /a/. The consonants between vowels
were selected from /g/, /b/, /m/, /n/, /s/, and /j/. Thus, the
speech materials were of the /aCa/ type. A total of 72-
/sVda-/ type disyllables and 72-/aCa-/ type monosyllables
were generated (72 = 6 consonants/vowels × 2 strategies
(conventional/SDPN-based) × 2 noise levels × 3 channel

types). Two experimental sessions were performed with the
same subjects; the first compared conventional and SDPN-
based strategies, and the second compared the conventional
strategy with that based on the SDPN and the enhanced
envelope detector.

The acoustic waveforms of speech tokens were generated
by 16-bit mono analog-to-digital conversion at sampling
rate of 22.050 kHz and stored as .wav files. The stored files
were played by clicking icons displayed in a graphical user
interface on a personal computer prepared for the experimen-
tal run. The speech tokens were presented binaurally using
headphones (Sennheiser HD25SP1) and a 16-bit sound card
(SoundMAX integrated digital audio soundcard). The sound
level was controlled to be comfortable for each subject (range:
∼70–80 dB). A 5min training session was given before the
main experiment. Each speech token was presented once.
The conditions of sound processing strategies and noise
conditions were randomized across subjects. If the subjects
requested, the waveforms were played once more. After
hearing each speech token, the subjects were instructed to
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choose the presented syllable among six given examples as
correctly as possible, and the percentage of correct answers
was scored.

3. Results

3.1. Variable Frequency Response of the SDPN Model. Fig-
ure 3 shows the frequency response of the proposed SDPN
model with a center frequency of 1500Hz. When the input
amplitude was low (35 dB sound pressure level (SPL)), the
contribution of the nonlinear pathway was relatively large,
and so the overall response showed sharp frequency selec-
tivity determined by the tip filter. Peak gain was 9.44, and
the full width at half maximum (FWHM) was 140.27Hz. As
the amplitude increased (85 dB SPL), the contribution of the
linear pathway became dominant, and the overall frequency
response became broader (FWHM = 424.08Hz). Mean-
while, the overall gain decreased due to the compressive non-
linearity (peak gain = 4.26). Overall, the frequency response
of the SDPNmodel showed level-dependent behavior, which
was similar to that of the biological cochlea. Compared to
the DRNL model, the proposed simplified structure could
be executed very quickly. For example, to process 1 s of
sound, the CPU time was 0.054 ± 0.012 s (mean ± SD) for

the SDPN model, whereas that for the DRNL was 1.33 ±
0.034 s (average of 40 trials, Matlab implementation, 3.0GHz
Pentium4 processor, 2 GBRAM).That is, the processing time
for the proposed SDPN model was only about 1/24.6 that of
the DRNL model.

3.2. Formant Representation under Noisy Conditions. The
superiority of the active nonlinear models for robust rep-
resentation of formants under noisy conditions could be
demonstrated by dominant frequency component analysis,
that is, by plotting the maximum frequencies of the output
from each cochlear partition as a function of the center
frequency [19]. We divided the frequency range from 100Hz
to 10 kHz in 181 partitions and observed the output from each
cochlear partition. Figure 4 shows the results of dominant
frequency component analysis after frequency decomposi-
tion using the fixed linear bandpass filter, the DRNL model,
and the proposed SDPN model (input: vowel /i/, under
quiet conditions, 5 dB WGN, and 5 dB SSN). Particularly
under noisy conditions, the maximum frequencies of the
outputs from active nonlinear models (DRNL and SDPN)
were concentrated at the location of formant frequencies,
as shown by the horizontal lines at the formants, whereas
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Figure 5: FER1 ((a) and (c)) and FER2 ((b) and (d)) at various sound pressure levels (SPLs) for the vowel /i/. (a) and (b) underWGN of 2.5 dB
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those from the linear filterbank model were determined by
the center frequencies of each channel so that the data points
were more concentrated at diagonal locations. Thus, the
proposed SDPN model is more effective for robust formant
representation under noisy conditions than the linear filter
array and has advantages similar to those of theDRNLmodel.
Similar results were also obtained for /a/ and /u/.

From the results of dominant frequency component anal-
ysis, formant representation performance could be quantified
by counting the number of cochlear partitions the maximum
output frequencies of which were determined by the for-
mant frequencies. We defined two formant extraction ratios
(FERs), FER1 and FER2, as the ratios of cochlear partitions
with maximum output frequencies that were the same as the
1st and 2nd formant frequencies, respectively. FER1 and FER2
can be regarded as good quantitative measures of saliency
of the formant representation in the output speech. Since
the performance of nonlinear models could vary according
to the input level as the response characteristic changes
with respect to the input level, we observed the changes in
formant representation performance at various SPLs. Figure 5
shows FER1 and FER2 for the vowel /i/ as functions of input
amplitude under conditions of WGN and SSN of 5 dB SNR.
For a wide range of input levels, the SDPN yielded higher
FER1 and FER2 compared to the linear bandpass filter under
both WGN and SSN.The FERs of the linear model remained

constant except for slight fluctuations due to error. As shown
in Figures 5(a) and 5(b), the SDPN resulted in higher values
of FER1 at all input amplitudes underWGN.The FER2 of the
SDPNwas also higher than that of the linear model when the
SPL was higher than 40 dB. This indicated that the SDPN is
advantageous for the formant representation for typical SPL
levels. The SDPN was also superior when the SSN was added
as background noise (Figures 5(b) and 5(d)).

3.3. Enhanced Envelope Detector. Figure 6 shows the envel-
opes of 4 channels obtained from conventional (Figure 6(a))
and enhanced (Figure 6(b)) envelope detectors after fre-
quency decomposition using the SDPN model. The arrows
in Figure 6(b) indicate the time points where the enhanced
envelope detector effectively emphasized the point of speech
onset. Particularly, for the input speech “/aka/,” the onset
point of /k/ was significantly accentuated in Figure 6(b).

3.4. Acoustic Simulation andHearing Experiment. The results
of hearing experiments using acoustic simulation of the pro-
posed sound-processing strategy based on the SDPN model
are shown in Figure 7. The percentages of correct answers
were plotted as functions of the number of channels for 4, 8,
and 12 channels. For all conditions, the proposed strategy was
considerably superior to the conventional strategy. Although
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Figure 6: The envelopes obtained from (a) conventional and (b) enhanced envelope detectors after frequency decomposition by the SDPN
model. The arrows in (b) indicate emphasis of speech onset.
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Figure 7: Results of syllable identification tests using the sound-processing strategy based on the SDPN and the conventional envelope
detector (under quiet conditions or SSN of 2 dB SSN). (a) 4 channels. (b) 8 channels. (c) 12 channels.
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Figure 8: Results of syllable identification tests using the sound-processing strategy based on the SDPN and the enhanced envelope detector
(under quiet conditions or SSN of 2 dB SSN). (a) 4 channels. (b) 8 channels. (c) 12 channels.

statistical significance (𝑃 < 0.05) was not reached for some
conditions, the proposed strategy yieldedmuch better speech
perception performance for all conditions; all 𝑃-values were
<0.0762 and approached statistical significance. Figure 8
shows the results of hearing experiments using a strategy
based on the SDPN and the enhanced envelope detector. For
quiet conditions, the proposed strategy was better than the
conventional one for all channel conditions. The superiority
was statistically significant for all channel conditions (t-test,
𝑃 < 0.05 for 4 channels, and 𝑃 < 0.01 for 8 and 12
channels). Under SSN of 2 dB SNR, the proposed strategy
provided considerably better syllable identification for all
channel conditions (t-test, 𝑃 < 0.05 for 4 and 8 channels,
𝑃 = 0.06 for 12 channels).

4. Discussion

In this study, we proposed a simple active nonlinear model
of basilar membrane in the cochlea and developed a novel
sound-processing strategy for the CIs based on this model.

Acoustic simulation andhearing experiments in subjectswith
normal hearing indicated that the proposed strategy provides
enhanced syllable identification performance under condi-
tions of speech-shaped noise, compared to the conventional
strategy using a fixed linear bandpass filter array.

Some previous experimental studies indicated that the
active nonlinear frequency response property contributes
significantly to robust representation of formant information
in noisy environments. Several models were suggested to
reproduce this property [11, 20, 21]. For example, Deng
and Geisler [11] proposed a nonlinear differential equation
model with a variable damping term to simulate a level-
dependent compression effect and successfully reconstructed
the response characteristics of the biological cochlea that are
beneficial for robust spectral cue representation under noise.
This implies that the speech perception performance of CIs
can be improved by adopting the active nonlinear response
property, as demonstrated by the enhanced performance of
CI sound-processing strategy based on the DRNL model
[2, 3].
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Although the DRNL model is one of the most efficient
models in terms of computational costs, its purposes are
to quantitative description of the physiological properties of
the basilar membrane and to replicate detailed experimental
results. The complicated structure and numerous parameters
of the DRNL model make it unsuitable for the CI sound pro-
cessor. The motivation for development of the SDPN model
was to simplify the DRNL model without compromising its
advantages due to the adaptive nonlinear frequency response.
The SDPN model was developed as a further simplification
of the DRNL model, with the purpose of developing a CI
sound-processing strategy.The emphasis was on reproducing
the input-dependent response characteristics of biological
cochlea qualitatively. Many building blocks and parameters
of the DRNL model were not necessary to implement the
level-dependent frequency response of the biological cochlea,
because they were adopted for the detailed replication of
experimental results and are not essential to our goal here.
The proposed SDPN is much simpler than the DRNL but
can still provide the level-dependent frequency response,
which is beneficial for real-time processing with lower power
consumption due to less computation.

The results of dominant frequency analysis verified that
more robust formant representation under SSN could be
obtained from the proposed SDPN model. When the SDPN
model was used, the output frequency was dominated by
formant frequencies in much more cochlear partitions com-
pared to the case of the linear bandpass filterbank (Figures 4
and 5). Despite the simplification, the formant representation
performance of the SDPN model was comparable to that
of the DRNL presented in [3], as can be verified by the
results of dominant frequency component analysis and FERs.
This suggests that the detailed imitation of the frequency
response characteristics of the human basilar membrane is
not essential for the improvement of CI speech perception
performance. This is in contrast with a previous study [2] in
which a detailedmodel of human basilarmembrane based on
the DRNL model was adopted in the CI sound processor.

The comparison between the envelopes extracted by
two envelope detectors shown in Figure 6 showed that the
enhanced envelope detector provides the emphasis of speech
onset points, which is often weak in amplitude.This property
may contribute to the improvement of the perception of stop,
fricative, and plosive consonants. This was confirmed from
the hearing experiments using acoustic simulation (Figures 7
and 8), as the use of the enhanced envelope detector provided
further improvement of the SDPN-based strategy in speech
perception.

A new sound-processing strategy for CI should be applied
in clinical tests for more comprehensive verification. This
requires themodulation of electrical pulse trains based on the
sound processor output. The proposed SDPN-based strategy
was developed so that it employs one amplitude-modulated
pulse train per channel in actual CI devices.Thus, it is readily
applicable to the existing hardware of current CIs.

In conclusion, we proposed a simple novelmodel of active
nonlinear characteristics of biological cochlea and developed
a sound-processing strategy for CI based on the model.
The proposed SDPN model was based on the function of

the basilar membrane so that a level-dependent frequency
response can be reproduced; it is much simpler than the
DRNL model and is thus better suited for incorporation into
CI sound processors.The SDPN-based strategywas evaluated
by spectral analysis and hearing experiments in subjects with
normal hearing. The results indicated that the use of the
SDPN model provides advantages similar to those of the
DRNL-based strategy in that the formant is more robustly
represented under noisy conditions. Further improvement in
speech perception under noisy conditions was possible by
adopting an enhanced envelope detector.
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Active rehabilitation involves patient’s voluntary thoughts as the control signals of restore device to assist stroke rehabilitation.
Although restoration of hand opening stands importantly in patient’s daily life, it is difficult to distinguish the voluntary finger
extension from thumb adduction and finger flexion using stroke patients’ electroencephalography (EMG) on single muscle activity.
We propose to implement corticomuscular coherence analysis on electroencephalography (EEG) and EMG signals on Extensor
Digitorum to extract their intention involved in hand opening. EEG and EMG signals of 8 subjects are simultaneously collected
when executing 4 hand movement tasks (finger extension, thumb adduction, finger flexion, and rest). We explore the spatial and
temporal distribution of the coherence and observe statistically significant corticomuscular coherence appearing at left motor
cortical area and different patterns within beta frequency range for 4 movement tasks. Linear discriminate analysis is applied on
the coherence pattern to distinguish finger extension from thumb adduction, finger flexion, and rest. The classification results are
greater than those by EEG only. The results indicate the possibility to detect voluntary hand opening based on coherence analysis
between single muscle EMG signal and single EEG channel located in motor cortical area, which potentially helps active hand
rehabilitation for stroke patients.

1. Introduction

Stroke is one of the leading causes of death in the world
[1, 2]. In addition to the high death rate, most stroke patients
may lose many daily activities, such as walking, grasping,
and speaking [3]. To restore the losing motor functions of
a stroke patient, rehabilitation therapies are often necessary
and proven to be effective [4–9]. Studies on fMRI, PET, and
TMS had shown that some areas of the stroke patient’s brain
indicated reorganization [8–10], which played an important
role for restore of patients’ function. There are mainly two
kinds of rehabilitation: passive rehabilitation and active
rehabilitation. The passive rehabilitation directly stimulates

the affected muscles in therapies without involving patients’
volition, such as physical training, electrical stimulation (ES)
[11–14]. On the contrary, active rehabilitation is that stroke
patients’ volition is a necessary part in rehabilitation, inwhich
themuscles are stimulated to be active only when the patients
intent to do so. More importantly, active rehabilitation was
proved to be more effective to restore stroke patient’ motor
function and improve the performance of brain plasticity [15–
17]. Electromyography (EMG) or electroencephalography
(EEG) signals had been utilized and proved to be as useful
tools when volition was involved in active rehabilitation
[18–21]. EMG, as the control signals of ES, could be adopted
to help restore stroke patients’ walk and grasp functions
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[18–20]. However, the muscles are usually coactive, spastic,
or amyotrophic for stroke patients [22]. The voluntary
intention extract from such signals may not be reliable.

In therapies, restoration of hand function is usually a
common procedure for stroke patients, since the loss of
normal hand function can cause great difficulties in daily life.
One of the most challenge movements is that the therapist
needs to help patient to open hand, because the patient’s
hand is usually spastically closed [23, 24]. Extensor Digito-
rum is the muscle that mainly involved in finger extension
(corresponding to hand opening). Although finger extension
can be differentiated from thumb adduction and finger
flexion (corresponding to hand closing) with EMG signals
on extensor digitorum [25–27] for healthy subjects, it is not
easy to classify different hand movements for stroke patients,
since the muscles are coactive, spastic, or amyotrophic [22].
Therefore, extracting the intention of single muscle activity
that involved in hand opening, and distinguishing from the
hand closing, is meaningful for hand function restoration.

EEG is one of the approaches to interpret patient move-
ment intentions [21]. For example, motor imagery (MI) can
be used to distinguish rest from movements, or right from
left motor imagery. In Pfurtscheller and Neuper’s study, ES
was controlled by EEG signals to help patient with spinal cord
injury to restore grasp function [21]. However, EEG in his
study utilize MI that could only distinguish left from right
movement and it is difficult to classify different ipsilateral
hand actions, such as finger extension (corresponding to
hand opening), thumb adduction, and finger flexion (corre-
sponding to hand closing) [28–31]. Since EMG signals are
induced from EEG signals, the coherence is observed only
in correlated EEG-EMG signals [32]. Even though coactive
muscles or spasticity was observed in stroke patient’s ipsi-
lateral hand muscle, the cortico-muscular coherence (CMC)
may not exist, because the collected EMG signals do not
involve patient volition [32]. Conway et al. firstly described
CMC existing in magnetocephalography (MEG) and first
dorsal interosseous muscles surface EMG [33]. Mima and
Hallett extracted coherence between EEG and right Abductor
Pollicis Brevis muscle EMG and described CMC mechanism
[34, 35].The arm and hand coherence had overlap area shown
in Mima and Steger’s study [36].

In this paper, we propose to analyze cortico-muscular
coherence between EMG and EEG signals to distinguish
voluntary ipsilateral hand opening, hand closing, and rest
state. The EMG signals of Extensor Digitorum (ED) muscle
and 35 channels of EEG signals are simultaneously collected
when 8 subjects are instructed to voluntarily execute right
finger extension, thumb adduction, finger flexion, and rest.
We observe the spatial distribution of the EEG channels when
the cortico-muscular coherence reaches peak value. Then
brain channel corresponding to the voluntary movement is
fixed in left motor cortex, and CMC value over different
frequency within beta range is explored for 4 different
executions. After the temporal and spatial feature extraction,
we apply t-test to check if the coherence between EMG
on ED and EEG signals is statistically different among 4
movement states across all subjects. We finally implement
linear discriminate analysis to classify finger extension from

Table 1: Character of subjects.

Subject Age Gender Handedness
1 25 Male Right
2 27 Male Right
3 24 Male Right
4 24 Male Right
5 23 Female Right
6 23 Male Right
7 24 Male Right
8 23 Male Right

thumb adduction, from finger flexion, and from rest states
based on cortico-muscular coherence value.

2. Materials and Methods

2.1. Subjects and Experiments Paradigm. We recruit 8 normal
right-handed volunteers in this study without any healthy
neurology disease history (7 males and 1 female, mean age
24.13 ± 1.36, as shown in Table 1). The subject’s handedness is
tested by the Edinburgh inventory [37]. All subjects are given
informed written consent in the experiment and the protocol
is approved by the ethics committees Zhejiang University.

The subjects are seated comfortably in front of table
and asked to perform four simple hand movement tasks
(finger extension (corresponding to hand opening), thumb
adduction, finger flexion (corresponding to hand closing)
and rest).The first three handmovements mainly correspond
to Extensor Digitorum (ED), Abductor Pollicis Brevis (APB)
and Flexor Digitorum (FD) muscles, respectively. In order to
standardize experiment condition, an orthosis is used to fix
subjects’ finger and upper limb is fixed on the armrest (as
shown in Figure 1(b)).

The total experiment contains two main parts. Firstly,
the subjects are asked to finish the maximum volunteer
contraction (MVC) test [38]. To compare different subject
and same subject at different time, MVC test is necessary,
because EMG amplitudes are different among subjects, so are
the maximum EMG of the same subject. The subjects are
asked to do three separately above-mentioned muscle MVC
test, and the hand is fixed by a splint (as shown in Figure 1(b)).
We take ED muscle for an example here.

There are three states in whole MVC test hinted on
monitor (as shown in Figure 2(a)), ready, action, and rest.
The subject should keep 10 s maximum finger extension with
action hint in themonitor.The subject is asked to finishMVC
test three times for each muscle. The average of this duration
EMG amplitude is donated as EMGmax [38].

After the MVC test, each subject is asked to activate the
target muscle with amplitude close to 25% of EMGmax as
follows.

EMG
𝑝
=

EMG
𝑟

EMGmax
, (1)

where EMG
𝑟
is real-time EMG signal displayed in real-time

feedback bar and EMGmax is the maximum EMG signal from
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Figure 1: (a) Top view of 35 channel quick cap and the mapping to 64 Ch quick cap name. (b) Demonstration of the experiment setup. (c)
Extensor Digitorum (ED), Abductor Pollicis Brevis (APB), and Flexor Digitorum (FD) muscles position.

MVC. EMG
𝑝
is proportional of EMG signals and displayed

in real time to instruct the subjects.
A real-time feedback bar is shown to the subject for pre-

cise control of the EMG amplitude (as shown in Figure 2(b)).
The subject should keep the activity of any other muscle than
the target one as minimal as possible. For example, when
ED is the target muscle, APB and FD should be in the rest
state. In each trial, the durations of the ready state, action
state, and rest state are 1 s, 40 s, and 5 s, respectively, (as
shown in Figure 2(b)). The subject should be prepared in the
ready state to reduce onset artifacts in the action state and
minimize eye blinks and irrelevant movements during the
action state.There are total 6 trials for each handmovements.
The subjects should perform four hand movements: finger
extension, thumb adduction, finger flexion, and rest.

2.2. EEG and EMG Acquisition. EEG signals are recorded
from 64 scalp positions system using the international 10–20
system (Synamp2, Compumedics Inc., Charlotte, NC, USA)
referenced to right mastoid and ground at AFz, and motor
cortex related 35 positions are recorded (as shown in Fig-
ure 1(a)). EEG signals are filtered by a 1Hz–200Hz band-pass
filter and sampling frequency is 1000Hz. Before recording,
the reference surface skin is prepared with neuroprep and
alcohol to lower the impedance under 5 kΩ with Ag/AgCl
electrodes.

MVC test
Start Action 

 

Rest Ready
5 s 5 s1 s 40 s

(a)

Start Ready Action Rest

25% 100%0%

EMG value

Experiment

5 s 5 s1 s 40 s

(b)

Figure 2: (a) The scheme of the MVC test and (b) upper is the
scheme of the experiment and bottom is the real feedback bar. The
subject is asked to maintain 25% EMGmax.

EMG signals are recorded by surface electrodes with
band-pass filter between 5 and 200Hz and sampling fre-
quency is 1000Hz using neuroscan Synamp2 EMG acquisi-
tion. The Ag/AgCl electrodes are applied on three surface
muscles (ED, APB, and FD) with using electrical stimulation
which fixed the position. The distance between a pair of
electrodes is 5 cm in ED and FDmuscles, 1 cm inAPBmuscle.
All electrode impedances are kept under 5 kΩ.
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2.3. Signal Analysis. EOG is recorded in EEG and EMG
acquisition at the same time to remove signals contaminated
with eye movement. After removing artifacts and EOG in the
EEG and EMG signals trial by trial, we partition the EEG
and EMG signals into nonoverlapping segments of 1024ms,
which has a frequency resolution of 0.976Hz. There are 150–
190 seconds of available data collected for all subjects. Here
we adopt uniformly 150 segments to estimate CMCvalue over
the whole frequency range. Coherence spectrum is calculated
with a fast Fourier transform algorithm:

𝐶 (𝑓, ch) =
𝐶
𝑥𝑦
(𝑓, ch)

𝐶
𝑥𝑥
(𝑓, ch) 𝐶

𝑦𝑦
(𝑓, ch)
, (2)

where 𝑓 is frequency and ch is channel. 𝐶
𝑥𝑦
(𝑓, ch) is cross-

spectrum of EEG and EMG, and 𝐶
𝑥𝑥
(𝑓, ch) and 𝐶

𝑦𝑦
(𝑓, ch)

are autospectrum of EEG and EMG signal, respectively.
Therefore, CMC is function of frequency and channel. The
confidence level is calculated in

CL
𝜕
= 1 − (1 − 𝜕)

1/(𝑁−1)

, (3)

where 𝛼 is confidence level,𝑁 is the number of segments. (𝛼
is 95% in our study and correspondence to 𝑃 value is 0.05;
𝑁 is 150 in our study.) CL represents the confidential limit.
If the value is above CL, the coherence is considered to be
significant.

In order to classify finger extension from thumb adduc-
tion, finger flexion, and rest, we explore the spatial and
temporal distribution of CMC on ED muscle and EMG
signals during the above-mentioned handmovements, which
refers to channel and frequency respectively. For simple
expression, here we define a few abbreviations below.

CMCFE max = ED muscle CMC peak value in finger
extension movement. “FE” represents finger exten-
sion.
CMCTA max = ED muscle CMC peak value in thumb
adduction movement. “TA” represents thumb adduc-
tion.
CMCFF max = ED muscle CMC peak value in finger
flexion movement. “FF” represents finger flexion.
CMCREST max = ED muscle CMC peak value in rest.
𝐹FE max = the frequency which reaches CMCFE max.
ChFE max = the channel which provides CMCFE max.

We first compare the maximal CMC value of ED mus-
cle (CMCFE max versus CMCTA max, and CMCFE max versus
CMCFF max) across the all frequency and all EEG channels to
see whether there is a significant difference across subjects in
ED CMC peak value in finger extension other than thumb
adduction or finger flexion. Next, we then generate the
topographical distribution of CMC on the scalp, find out the
most related cortical area, which means that the channel is
fixed at ChFE max and observe the maximal CMC value of ED
muscle across the frequency range. t-test is applied to check
if there is significant difference across subjects between finger
extension and the 3 other movement tasks. Then, we obtain

Table 2: Number of segments for each subject.

Subject 1 2 3 4 5 8 7 8
Number of segments 25 23 25 22 20 25 21 23

the tuning frequency of finger extension (𝐹FE max) at themost
related EEG channel. t-test is again used to check whether
the ED CMC value acquired at ChFE max and 𝐹FE max has a
significant difference across subjects in finger extension from
the other two above mentioned movements and rest.

If we could successfully classify the significant coherence
of finger extension from other movement tasks, it provides
promise to detect voluntary hand opening (versus hand
closing) during active therapy. Here we divide signals into
20–30 segments for each subject (as shown in Table 2). The
length of the segment is chosen when there is CMC value
appeared above the significant value. We calculate CMC
value within beta frequency between the collected EMG
signals and the most related motor cortical channel. Linear
discriminate analysis is applied on the CMC vector (across
beta frequency) to calculate the classification accuracy in
distinguishing finger extension from thumb adduction, finger
extension, and rest for each subject.

3. Results

We first compare the maximal CMC value of ED mus-
cle (CMCFE max versus CMCTA max and CMCFE max versus
CMCFF max) across the all frequency, and all EEG channels.
With t-test, there is no significant difference in finger exten-
sion from thumb adduction and finger flexion in channel,
frequency and peak coherence value.

An example of the topographical distribution of EDCMC
value in the different actions is shown in Figure 3. At 𝐹FE max,
ED muscle CMC value is more obvious in finger extension
and finger flexion than in thumb adduction, and rest. As seen
from the Figure 3, the significant EDmuscle CMChas overlap
in channels on left motor cortex between finger extension
with thumb adduction, finger flexion and rest.

We fix the channel at ChFE max and observe the CMC
value across frequencies. We calculate the maximal ED
muscleCMCvalue of fourmovement tasks across frequencies
at ChFE max as shown in Table 3.With t-test, there is no signif-
icant difference between finger extension and finger flexion
in ED CMC value. And there is no significant difference in
finger extension from thumb adduction, finger flexion, and
rest in frequency. But there is a significant difference at ED
CMC value in finger extension from thumb adduction and
rest; the 𝑃 values are 0.0102 and 0.0161, respectively, at 𝛼 =
0.05.

Figure 4 shows an example of the distribution of ED
CMC collected on ChFE max across beta frequency range for
4 different movement tasks. We can see that the ED CMC
peak value appears at different frequencies for fourmovement
tasks.

Then, we obtain the tuning frequency of finger extension
(𝐹FE max) at the most related EEG channel. The ED CMC
values acquired at ChFE max and 𝐹FE max for four movement
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Figure 3: The topographical distribution of ED muscle CMC value on finger extension, thumb adduction, finger flexion, and rest. The
significant ED muscle CMC has overlap in these mentioned movements around C3. The significant value was 0.0199, and the color bar
was corresponding to CMC value bar. The peak coherence position and frequency are 15 and 20.51Hz, respectively, in finger extension. The
peak coherence position and frequency are 2 and 15.1367Hz, respectively, in thumb adduction. The peak coherence position and frequency
are 9 and 26.37Hz, respectively, in finger flexion.

tasks that are shown inTable 4.The result of t-test shows there
is significant difference across subjects in finger extension
from the other three movements in ED muscle CMC value
with the 𝑃 values are 0.000000205, 0.000089, and 0.00012
respectively at 𝛼 = 0.05 (as shown in Table 4). It is obvious
to linearly classify ED CMC in finger extension from other
two movements and rest (as shown in Figure 5).

Without too finely tuning on the frequency, we calculated
CMC value within beta frequency between the collected
EMG signals and the most related motor cortical channel.
Linear discriminate analysis is applied on the CMC vector
(across beta frequency) to classify finger extension from
thumb adduction, finger extension, and rest for each subject.
Fourfold cross-validation is adopted in LDA analysis. To
show the superiority of our method, the classification results
by CMC are compared with EEG in this study. This is
because in healthy subject, finger extension could be easily

classified from thumb adduction, finger extension and rest.
But it is difficult in stroke patient due to abnormal coactive
muscle and spasticity [22]. Study has shown that the average
classification accuracy was 71.6% in moderately impaired
subjects and only 37.9% in severely impaired subjects [22].
The voluntary intention extract from such signals may not
be reliable. Therefore, good classification results by EMG do
not necessarily result in good performance in patients. Here
we classify finger extension from thumb adduction, finger
flexion, and rest using CMC and by EEG only at the same
channels (as shown in Figure 6).

The average accuracies across subjects by CMC are
78.96 ± 4.29%, 81.00 ± 7.34%, and 78.025 ± 9.39%, respec-
tively, to distinguish finger extension from thumb adduction,
finger flexion, and rest (see Table 5). It indicates the possibility
to detect voluntary hand opening (versus hand closing) based
on coherence analysis between EMG signal on one single
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Figure 4: Subject 3. ED muscle CMC exists in finger extension, thumb adduction, finger flexion, and rest with peak appearing at different
four handmovement tasks. EDmuscle CMC peak value is in 20.51Hz, 15.14Hz, 26.37Hz and 28.32Hz for finger extension, thumb adduction,
finger flexion, and rest, respectively.

muscle and one EEG channel located on motor cortical area.
The average accuracies by EEG across subjects are 71.27 ±
12.32%, 71.12 ± 12.80%, and 81.39 ± 11.52%, respectively, (see
Table 5). CMC classification accuracy is around 10% higher
in average and less variance than EEG classification in thumb
adduction and finger flexion, which is the main function
(hand opening) we focused on for hand rehabilitation. The
classification results on finger extension versus rest by CMC
and EEG are similar (less average and less variance), which
matches the good performance by EEG to distinguish move-
ment from rest [39].

Furthermore, we do the 3-class classification (finger
extension versus thumb adduction versus finger flexion) to
extract finger extension. The best two subjects’ accuracies by
CMC are 75.80% and 79.56%. The mean accuracy of the 8
patients by CMC is 69%, which is greater than 64% by EEG.

4. Discussion and Conclusion

Active rehabilitation involves patients’ voluntary movement
intention. It is effective to restore stroke patient’ motor
function, such as hand opening (one of the most challenge
movements) [23, 24]. In this study, we focus on finger
extension, which is mainly involved in hand opening. EMG
could be easily to extract such intention, while it is not
reliable to extract such intention due to the abnormal coactive

muscles and spasticity in stroke patient [22]. EEG can be used
to interpret patient movement intentions, but it is not good
enough to distinguish ipsilateral hand movements [28–31].
Cortico-muscular coherence exists between EEG and EMG
even on the abnormal muscle when stroke patient’s inten-
tion appears [40]. We propose to analyze cortico-muscular
coherence between EMG and EEG signals to distinguish
voluntary ipsilateral hand opening, hand closing, and rest
state. The EMG signals of Extensor Digitorum (ED) muscle
and EEG signals are simultaneously collected when 8 subjects
are instructed to voluntarily execute right finger extension,
thumb adduction and finger flexion, and rest. We observe
significant cortico-muscular coherence appearing at the left
motor cortical area of the EEG channels, which is consistent
with findings in Mima and Hallett’s study [36] and shows
different patterns within beta frequency range for 4 different
executions. Statistical t-test shows that the coherence values
of finger extension collected at tuning frequency and themost
related channel are statically different from 3 other states,
respectively, across all subjects. We apply linear discriminate
analysis on the coherence pattern within beta range and
average accuracy to distinguish finger extension state from
thumb adduction, finger flexion, and rest. CMC classification
accuracy is around 10% higher in average and less variance
than the performance using EEG only in distinguishing
finger extension from thumb adduction and finger flexion,
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Figure 5: ED muscle CMC values at ChFE max and 𝐹FE max in finger extension could be classified from thumb adduction, finger flexion, and
rest. Finger extension versus thumb adduction (a). Finger extension versus finger flexion (b). Finger extension versus rest (c). Blue circle is
EDmuscle CMC values in finger extension. Red circle is EDmuscle CMC value in thumb adduction. Red asterisk is EDmuscle CMC value in
finger flexion. Red cross is EDmuscle CMC value in rest. Green l line distinctly classified ED EMC in finger extension from thumb adduction,
finger flexion, and rest.

Table 3: ED muscle CMC on four movements at ChFE max (Ch is channel).

Subject Ch
Finger extension Thumb adduction Finger flexion Rest

Peak Frequency Peak∗ Frequency Peak Frequency Peak∗ Frequency
CMC (Hz) CMC (Hz) CMC (Hz) CMC (Hz)

1 24 0.0242 35.64 0.0234 35.64 0.0377 35.16 0.0185 17.09
2 9 0.0443 15.63 0.0207 37.10 0.0356 30.27 0.0192 41.02
3 15 0.0255 20.51 0.0187 15.13 0.0222 26.37 0.0204 28.32
4 2 0.0302 12.70 0.0296 12.70 0.0346 10.25 0.0300 33.20
5 9 0.0266 36.62 0.0221 33.69 0.0128 12.70 0.0248 29.97
6 24 0.0286 13.18 0.0243 10.25 0.019 25.88 0.0255 30.76
7 16 0.029 37.60 0.0172 13.18 0.0116 32.23 0.0207 40.53
8 24 0.0396 21.00 0.024 13.67 0.0273 31.25 0.0211 10.25
Mean / 0.031 24.11 0.0225 21.42 0.0251 25.51 0.0225 29.89
SD / 0.0071 10.80 0.0038 11.75 0.0103 9.19 0.0039 10.64
∗Represents that there is significant difference compared with finger extension. The ED CMC value compared in finger extension from thumb adduction and
rest is significant and the P values are 0.0102 and 0.0161, respectively, at 𝛼 = 0.05.

which is the main function (hand opening) we focused on
for hand rehabilitation. The classification results on finger
extension versus rest by CMC and EEG are similar (less
average but less variance), which matches the results that
EEG can be used to distinguish movement from rest [39].
Furthermore, the classification results on finger extension out
of 3 classes (finger extension versus thumb adduction versus
finger flexion) by CMC are also greater than the performance
by EEG only.

The results indicate the possibility to detect voluntary
hand opening based on coherence analysis between one
single muscle EMG signal and one EEG channel located on
motor cortical area. One of the challenges is to accurately
capture the instantaneous CMC value in real-time recoding.
In the real application, EEG and EMC signals can be recorded
from the patients at the same time.The significant coherence
(CMC) value can be estimated to better classify the voluntary
finger extension than EEG only and used as a more accurate
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Table 4: ED muscle CMC value in four movements at ChFE max and FFE max.

Subject Channel Frequency (Hz) Finger extension Thumb adduction Finger flexion Rest
Peak∗ Peak∗ Peak∗ Peak∗

1 24 35.64 0.0242 0.000736 0.0331 0.0021
2 9 15.63 0.0443 0.0056 0.007 0.0022
3 15 20.51 0.0255 0.0066 0.0025 0.0076
4 2 12.70 0.0302 0.0296 0.0045 0.000017
5 9 36.62 0.0266 0.0103 0.0022 0.0044
6 24 13.18 0.0286 0.0025 0.0015 0.0023
7 16 37.60 0.029 0.0063 0.0038 0.0114
8 24 21.00 0.0396 0.0022 0.0019 0.0051
Mean / 24.11 0.0310 0.0080 0.0071 0.0044
SD / 10.79 0.0071 0.0093 0.0107 0.0037
∗represents that there is significant difference compared with finger extension. The P values are 0.000000205, 0.000089, and 0.00012, respectively, at 𝛼 = 0.05.
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Figure 6: Classification accuracies are shown in the figure to distin-
guish finger extension from thumb adduction (a), finger flexion (b),
and rest (c). FE, TA, FF are finger extension, thumb adduction and
finger flexion, respectively. Green represents classification based on
CMCand yellow represents classification based onEEG.The average
accuracies by CMC and EEG are shown in Table 5.

Table 5: Average accuracies of CMC and EEG classification.

FE versus TA FE versus FF FE versus REST
CMC 78.96 ± 4.29% 81.00 ± 7.34% 78.025 ± 9.39%
EEG 71.27± 12.32% 71.12 ± 12.80% 81.39 ± 11.52%

control signal to evoke the electrical stimulation in active
rehabilitation for hand movement. With further experiments

on stroke patients, CMC needs to be compared with EMG
on abnormal muscles to classify the hand movement. It will
eventually help develop a new rehabilitation protocol that can
benefit the hand rehabilitation for stroke survivors.
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To obtain reliable transient auditory evoked potentials (AEPs) from EEGs recorded using high stimulus rate (HSR) paradigm, it
is critical to design the stimulus sequences of appropriate frequency properties. Traditionally, the individual stimulus events in a
stimulus sequence occur only at discrete time points dependent on the sampling frequency of the recording system and the duration
of stimulus sequence.This dependency likely causes the implementation of suboptimal stimulus sequences, sacrificing the reliability
of resultingAEPs. In this paper, we explicate the use of continuous-time stimulus sequence forHSR paradigm,which is independent
of the discrete electroencephalogram (EEG) recording system. We employ simulation studies to examine the applicability of the
continuous-time stimulus sequences and the impacts of sampling frequency on AEPs in traditional studies using discrete-time
design. Results from these studies show that the continuous-time sequences can offer better frequency properties and improve
the reliability of recovered AEPs. Furthermore, we find that the errors in the recovered AEPs depend critically on the sampling
frequencies of experimental systems, and their relationship can be fitted using a reciprocal function. As such, our study contributes
to the literature by demonstrating the applicability and advantages of continuous-time stimulus sequences forHSR paradigm and by
revealing the relationship between the reliability of AEPs and sampling frequencies of the experimental systems when discrete-time
stimulus sequences are used in traditional manner for the HSR paradigm.

1. Introduction

In studying the auditory evoked potentials (AEPs), high
stimulus-rate (HSR) paradigm featuring shorter and irregular
interstimulus intervals (ISIs) has been proposed by Delgado
and Özdamar [1] and applied to various investigations [2–4].
The specific technique proposed in [1] is generally named as
continuous loop average deconvolution (CLAD). For CLAD,
the presence of stimulus and silence is, respectively, repre-
sented by “1” and “0.” As such a stimulus sweep containing
multiple stimulus events is described by a binary sequence. A
typical sweep contains a number of “1s” and a large number
“0s.” Due to the fact that the ISIs have to be so short for
the HSR paradigm that the brain responses to consecutive
stimulus events overlap, this binary sequence that constitutes
a sweep of stimulus and the sweep response that contains a
number of overlapped transient-responses are transformed
into the frequency domain to solve the overlapping problem
in order to recover the transient responses (see Section 2.1 for

more details). This process is usually termed as deconvolu-
tion.

As shown by Jewett et al. [5], any chosen stimulus sweep
needs to satisfy the noise attenuation property to avoid
distorting transient responses in the deconvolution process.
As far as this peroperty is concerned, the ISIs must be
irregularly distributed in a sweep rather than a fixed ISI
as in the conventional recording paradigm. On the other
hand, most practical applications require that such ISI-jitters
should be as small as possible so that the linear convolution
model is valid [5, 6]. The noise attenuation property, which
is a major criterion for judging its appropriateness, can
be straightforwardly understood in Fourier domain (for
details, please see (1d) and (5) below). The generation of
stimulus sequences with the desired property is in essence
an optimization problem, which is important and dependent
on various factors in practice. Typically, a minimal temporal
resolution (i.e., the analogy-to-digital (AD) conversion rate
for EEG recording) and the number of stimulus events are
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first chosen for the stimulus sweep for a given experiment.
Since the stimulus sequence is optimized at given temporal
resolution, we term it as discrete-time sequence. The tem-
poral resolution is crucial for finding a good discrete-time
stimulus sequence in that the AD rate is supposed to be
as high as possible in order to increase the searching space
for a sequence optimization method. However, the use of
high temporal resolution imposes challenges for the search
of optimal sequence. It either makes the optimization prone
to local minima issue or increases computational expense
when exhaustive searching strategy is used. Another issue
is that when it is chosen, the optimal stimulus sequence
should be used at the specific AD rate according to the chosen
temporal resolution at which the optimal stimulus sequence
is established.

In reality, different recording systems may not always be
operated at the frequency exactly identical to that chosen for
stimulus sweep design. When a recording system works at
a different frequency, the timing of the onsets of stimulus
events in the discrete-time stimulus sweep is to be resam-
pled. It is unclear about the impacts of the resampling and
actual AD rate on the deconvolution performance.Moreover,
many optimization methods can only deal with continuous
variables for the convenience of being exposed to certain
mathematic operations [7, 8]. In this case, the optimal
timing of stimulus events is a continuous variable, and we
term the stimulus sweep as the continuous-time stimulus
sequence, which need to be discretized in time domain to
be used in actual experiments. The temporal resolution of
the discretization is also determined by the AD rate for the
actual application. As such, it is important to understand how
the AD rate influences the performance of HSR paradigm
no matter a resampling or discretization of optimal stimulus
sequence is necessary.

To address these critical questions, in this paper, we
derived the frequency representation of a continuous-time
impulse sequence to solve the deconvolution problem for the
HSR paradigm. Using simulated EEGs (based on real AEP
data and simulated noises) and four optimized continuous-
time stimulus sequences, we demonstrate the applicability
and the advantages of continuous-time stimulus sequences
forHSRparadigm.We also illustrate the relationship between
the AD rate for discretizing a continuous-time sequence and
the errors in terms of temporal locations of stimulus impulse,
frequency properties of discretized stimulus sequence, and
the deconvolved AEP as compared to the ground truth AEP.

2. The Convolution Model for HSR Paradigm

2.1. Discrete-Time Convolution. Under discrete HSR condi-
tion, the observed sweep-response 𝑦[𝑛Δ

𝑡
] can be modeled as

a circulant discrete convolution between the binary stimulus
sequence 𝑠[𝑛Δ

𝑡
] and a transient response 𝑥[𝑛Δ

𝑡
], that is,

𝑦 [𝑛Δ
𝑡
] = 𝑠 [𝑛Δ

𝑡
] ⊗ 𝑥 [𝑛Δ

𝑡
] + 𝑒 [𝑛Δ

𝑡
]

=

𝑁

∑

𝑖=1

(𝑠 [𝑛Δ
𝑡
− 𝑖] mod 𝑁)𝑥 [𝑛Δ

𝑡
] + 𝑒 [𝑛Δ

𝑡
] ,

(1a)

where ⊗ denotes circulant convolution; 𝑒[𝑛Δ
𝑡
] represents an

additive noise term for any undesired contribution to 𝑦[𝑛Δ
𝑡
];

Δ
𝑡
is the interval between two discrete samples, or in other

word, the reciprocal of the analogue-to-digital (AD) rate 𝑓
𝑠

(i.e., Δ
𝑡
= 1/𝑓

𝑠
);𝑁 is the number of discrete samples for the

duration of a stimulus sweep.
Note that the circulant convolution is adopted in (1a).

This is because the stimulus sequence 𝑠[𝑛Δ
𝑡
] is delivered

to the subject repetitively in the HSR paradigm. As such,
𝑦[𝑛Δ
𝑡
], 𝑥[𝑛Δ

𝑡
], and 𝑒[𝑛Δ

𝑡
] are of the same length 𝑁, or the

same time duration 𝑇 = 𝑁/𝑓
𝑠
. In practice, the recorded

raw electroencephalograms (EEGs) are epoched according
to the stimulus sweep rather than to individual stimulus
impulse (each stimulus sweep contains a number of stimulus
impulses depending on the particular experiment design),
and averaged over a number of sweeps to attenuate the
noise level. Equation (1a) is usually referred to the case after
averaging.

Equation (1a) can be represented in Fourier domain as

𝑌 [𝑗𝑚𝑓
0
] = 𝑆 [𝑗𝑚𝑓

0
]𝑋 [𝑗𝑚𝑓

0
] + 𝐸 [𝑗𝑚𝑓

0
] , (1b)

where 𝑓
0

= 1/𝑇 and the capital letters correspond to
the discrete Fourier transforms of their counterparts (e.g.,
𝑋[𝑗𝑚𝑓

0
] denotes the discrete Fourier transform of 𝑥[𝑛Δ

𝑡
]),

𝑋[𝑗𝑚𝑓
0
] =

𝑁

∑

𝑖=1

𝑥 [𝑛Δ
𝑡
] + 𝑒
−𝑗(2𝜋/𝑁)𝑚𝑛

,

𝑚 = 1, 2, . . . , 𝑁.

(1c)

From (1b) one can solve the transient response 𝑥[𝑛Δ
𝑡
]

in the frequency domain (i.e., 𝑋[𝑗𝑚𝑓
0
]) in a straightforward

way using an inverse filter as done by the CLAD [1]. Consider

�̂� [𝑗𝑚𝑓
0
] =

𝑌 [𝑗𝑚𝑓
0
]

𝑆 [𝑗𝑚𝑓
0
]
+
𝐸 [𝑗𝑚𝑓

0
]

𝑆 [𝑗𝑚𝑓
0
]

= 𝑋 [𝑗𝑚𝑓
0
] +

𝐸 [𝑗𝑚𝑓
0
] 𝑆
∗

[𝑗𝑚𝑓
0
]

󵄨󵄨󵄨󵄨𝑆 [𝑗𝑚𝑓0]
󵄨󵄨󵄨󵄨

.

(1d)

Based on (1d), it is obvious that distortion of the solution
𝑋[𝑗𝑚𝑓

0
] can happen at some frequency bins where |𝑆[𝑗𝑚𝑓

0
]|

approaches to zeros, since small |𝑆[𝑗𝑚𝑓
0
]| can amplify the

noise components 𝐸[𝑗𝑚𝑓
0
].

To address this issue, Jewett et al. [5] propose a scheme
to examine the values of |𝑆[𝑗𝑚𝑓

0
]|within the frequency band

of interest and make sure that these values are larger than a
preset threshold. In a following study, Jewett et al. [7] offered
a number of binary stimulus sequences according to this
criterion.

2.2. Continuous-Time Convolution. Knowing the frequency
property of a stimulus sequence can assist the assessment of
the noise attenuation performance of the inverse filter for
the deconvolution problem [8]. Early studies such as those
by Jewett et al. [5, 7] guiding the selection of appropriate
stimulus sequences have made the HSR scheme practical
for actual applications and thus significantly contributed to
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the development of HSR paradigms. However, the optimal
stimulus sequences used in the literature [7] so far are AD
rate dependent and thus not generalizable due to the need of
resampling when the actual AD rate differs from that used for
stimulus sequence optimization. As such, there are twomajor
drawbacks in optimizing the stimulus sequences in discrete
form. First, the optimized sequence may not be optimal if the
sequence is resampled with a different rate.This means that it
is impossible to generate a sequence for general use; instead,
optimization algorithm is to be employed to generate a good
sequence according to the AD rate for each given experiment.
Second, optimization in discrete form makes it hard to know
how the AD rates influence the performance of an optimized
sequence.

In this section, we derive the continuous-time con-
volution relationship between the stimulus sequence and
transient response, and the estimation of transient response
in a general form.

Similar to the 𝑦[𝑛Δ
𝑡
] in (1a), the observable EEG sweep

𝑦(𝑡) can be represented as the circulant convolution between
transient response𝑥(𝑡) and stimulus 𝑠(𝑡), with error term 𝑒(𝑡):

𝑦 (𝑡) = 𝑠 (𝑡) ⊗ 𝑥 (𝑡) + 𝑒 (𝑡)

= ∫

𝑇

0

𝑠 (𝜏) 𝑥 (𝑡 − 𝜏) mod 𝑇𝑑𝜏 + 𝑒 (𝑡) , 𝑡 ∈ [0, 𝑇] .

(2)

Since all the variables (except the error term 𝑒(𝑡)) in (2)
can be considered as periodical functions (with a period of𝑇)
due to the repetitive stimulation manner, the key difference
here from (1a) is that the stimulus events in 𝑠(𝑡) can happen
at any time point 𝑡 within the period 𝑇, rather than the
discrete time points determined by the AD rate. The Fourier
transform of such signals as 𝑥(𝑡) is in discrete form:

𝐹 [𝑥 (𝑡)] = 𝑋 (𝑗𝑘𝑓
0
) = ∫

𝑇

0

𝑥 (𝑡) 𝑒
−𝑗2𝜋𝑘𝑓

0
𝑑𝑡, (3)

where 𝐹[⋅] denotes Fourier transform operator, and 𝑓
0
= 1/𝑇

represents the repetition rate of the stimulus sweep and thus
the discrete frequency resolution for signals (e.g.,𝑋 in (3)) to
be presented in Fourier domain.We can rewrite (2) in Fourier
domain:

𝑌 (𝑗𝑘𝑓
0
) = 𝑆 (𝑗𝑘𝑓

0
)𝑋 (𝑗𝑘𝑓

0
) + 𝐸 (𝑗𝑘𝑓

0
) . (4)

The transient response 𝑥(𝑡) can be estimated in Fourier
domain as

�̂� (𝑗𝑘𝑓
0
) =

𝑌 (𝑗𝑘𝑓
0
)

𝑆 (𝑗𝑘𝑓
0
)
+
𝐸 (𝑗𝑘𝑓

0
)

𝑆 (𝑗𝑘𝑓
0
)

= 𝑋 (𝑗𝑘𝑓
0
) +

𝐸 (𝑗𝑘𝑓
0
) 𝑆
∗

(𝑗𝑘𝑓
0
)

󵄨󵄨󵄨󵄨𝑆 (𝑗𝑘𝑓0)
󵄨󵄨󵄨󵄨

.

(5)

Distortion of the estimated transient response is intro-
duced in the second term of the right hand side of (5). The
noise term 𝐸(𝑗𝑘𝑓

0
) is to be amplified by the inverse filter

𝑆(𝑗𝑘𝑓
0
)
−1 at some frequency bins where |𝑆(𝑗𝑘𝑓

0
)
−1

| is small.
As such, it is critical to study in detail the properties of the
inverse filter 𝑆(𝑗𝑘𝑓

0
)
−1 and we will do so in Section 2.3.

Equation (5) shows that as far as these continuous peri-
odical signals are concerned, the error term’s contribution
to the estimation of 𝑥(𝑡) depends only on 𝑓

0
but not the

AD rate 𝑓
𝑠
as in (1d). Note that the frequency range of

the solution can be infinite in theory, but in practice, the
energy of transient signal 𝑥(𝑡) is bounded within a relatively
narrow frequency band of interest and only the continuous-
time stimulus sequences can be of unlimited frequency range,
which is to be detailed below.

2.3. The Properties of Continuous-Time Stimulus Sequence.
A stimulus sequence 𝑠(𝑡) for one experiment sweep can be
described as a 𝑃 impulses train. We use delta functions
of delay 𝑡

𝑝
(𝑝 = 1, 2, . . . , 𝑃) to represent the occurrence

of stimulus impulses and their summation to represent the
stimulus sweep:

𝑠 (𝑡) =

𝑃

∑

𝑝=1

𝛿 (𝑡 − 𝑡
𝑝
) . (6)

In this continuous-time form of stimulus sequence, the 𝑡
𝑝

is a continuous variable, that is, 𝑡
𝑝
∈ [0, 𝑇]. Figure 1(a) shows

an example sweepwith stimulus impulses occurring at 17 time
points. The Fourier transform of (6) is

𝐹 [𝑠 (𝑡)] = 𝑆 (𝑗𝑓) =

𝑃

∑

𝑝=1

𝑒
−𝑗2𝜋𝑓𝑡

𝑝 . (7)

This is a continuous function in the frequency domain
[9]. In a given experiment, the stimulus sweep (Figure 1(a))
is repetitively delivered to the subject to stimulate the brain
responses for EEG recording. As such, the whole stimulus
sequence (Figure 1(b)) is modeled as a convolution between
the impulses train 𝑠(𝑡) and a summation of delta functions
𝛿
𝑇
(𝑡):

𝑠
𝑇
(𝑡) = 𝑠 (𝑡) ∗ 𝛿

𝑇
(𝑡) , (8)

where 𝛿
𝑇
(𝑡) is a periodic function with period 𝑇 defined as

𝛿
𝑇
(𝑡) =

+∞

∑

𝑞=−∞

𝛿 (𝑡 − 𝑞𝑇) . (9)

The Fourier transform of (9) is

𝐹 [𝛿
𝑇
(𝑡)] = 2𝜋𝑓

0

∞

∑

𝑘=−∞

𝛿 (𝑓 − 𝑘𝑓
0
) . (10)

Equation (10) shows that the Fourier transform of a
periodical delta sequence is also a delta train with the interval
of 𝑓
0
.
Based on (8) and (10), the Fourier transform of the

periodical stimulus 𝑠
𝑇
(𝑡) is

𝑆
𝑇
(𝑗𝑓) = 2𝜋𝑓

0
𝑆 (𝑗𝑓)

+∞

∑

𝑘=−∞

𝛿 (𝑓 − 𝑘𝑓
0
) . (11)

Equation (11) indicates that the spectrum 𝑆
𝑇
(𝑗𝑓) is a

discrete sampling of the continuous function 𝑆(𝑗𝑓) in (7) by
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the delta function train at the interval of 𝑓
0
. Plugging 𝑆(𝑗𝑓)

in (7) into (11), we get

𝑆
𝑇
(𝑗𝑓) = 2𝜋𝑓

0

𝑃

∑

𝑝=1

+∞

∑

𝑘=−∞

𝑒
−𝑗2𝜋𝑓𝑡

𝑝𝛿 (𝑓 − 𝑘𝑓
0
) , (12)

which can be rewritten as follow given the sampling property
of the delta function 𝛿(𝑓 − 𝑘𝑓

0
):

𝑆
𝑇
(𝑗𝑘𝑓
0
) = 2𝜋𝑓

0

𝑃

∑

𝑝=1

𝑒
−𝑗2𝜋𝑓

0
𝑡
𝑝
. (13)

Equation (13) is the Fourier spectrum of the stimulus
impulse-sequence, which includes infinite number of fre-
quencies defined by 𝑘𝑓

0
since 𝑘 can be any integer. In real

experiment, however, signals and noises are limited within
a frequency band, say [𝑓

𝐿
, 𝑓
𝐻
]. While 𝑓

𝐿
and 𝑓

𝐻
can be of

arbitrary real values in theory, we should round off them to
the multiples of 𝑓

0
in practice, say [𝑓

󸀠

𝐿
, 𝑓
󸀠

𝐻
], in the discrete

frequency domain:

[𝑓
󸀠

𝐿
, 𝑓
󸀠

𝐻
] = [𝑘

𝐿
𝑓
0
, 𝑘
𝐻
𝑓
0
] , (14)

where 𝑘
𝐿
= ⌈𝑓
𝐿
/𝑓
0
⌉ and 𝑘

𝐻
= ⌊𝑓
𝐻
/𝑓
0
⌋ are the frequency

domain indexes for the frequency band of interest.
As shown in (5), the inverse filter 𝑆(𝑗𝑘𝑓

0
)
−1 critically

determines the error term’s contribution to the distortion of
deconvolved transient response 𝑥(𝑡). To limit the distortion,
it is necessary to constrain the Fourier energy distribution
of the stimulus sequence as follows so that the noise term
𝐸(𝑗𝑘𝑓

0
) in (5) is at least not amplified. Assume

󵄨󵄨󵄨󵄨𝑆𝑇 (𝑗𝑘𝑓0)
󵄨󵄨󵄨󵄨

−1

≤ 𝜃, 𝑘 = 𝑘
𝐿
, . . . , 𝑘

𝐻
, (15)

where 𝜃 is a threshold usually set at 1 to make sure that
the noise term within the frequency bins of interest is at
most maintaining its original energy if not attenuated by the
inverse filter.

Figure 1(c) illustrates that the example stimulus loop
in Figure 1(a) meets this criterion in that the inverse filter
satisfies |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

< 1 in the chosen frequency band
[𝑓
󸀠

𝐿
, 𝑓
󸀠

𝐻
].

To further evaluate the overall quality of the stimulus
sequence in (6), a measure called noise gain factor (NGF) can
be defined accordingly [10] as

NGF =
1

𝑓
󸀠

𝐻
− 𝑓
󸀠

𝐿

𝑘
𝐻

∑

𝑘=𝑘
𝐿

󵄨󵄨󵄨󵄨𝑆𝑇 (𝑗𝑘𝑓0)
󵄨󵄨󵄨󵄨

−1

, (16)

which represents the average of noise gain factor at each
frequency 𝑘𝑓

0
.

3. Experiments and Results

3.1. Stimulus Impulse Sequences. In this section, we gen-
erate continuous-time stimulus sequences to be used for
examining the impact of AD rates on the performance of
inverse filtering in solving the transient AEPs. Using various

optimization methods [11], these stimulus sequences can be
found to satisfy the constraint in (15). Here we employed a
modified optimization method called differential evolution
algorithm [12] to obtain the optimal continuous-time stim-
ulus sequences. The value of threshold 𝜃 in (15) was set to
1. Since the details of the optimization are beyond the scope
of this paper, we directly provide the four impulse sequences
(Table 1) generated for our study.

These four sequences are given in the form of ISI-series
which can be expressed as Δ𝑡

𝑝
= 𝑡
𝑝+1

− 𝑡
𝑝
, where 𝑡

𝑝
= 𝑇

if 𝑝 = 𝑃. Note that the temporal resolution of the stimulus
events in the sequence is infinity in theory. In Table 1, we
show Δ𝑡

𝑝
in the second decimal place only. These sequences

are used to study the characteristics of 40Hz steady-state
responses which is a main application of HSR paradigms
[2, 4]. Here, the jitter ratio (JR) in Table 1 is defined as JR =

[max{Δ𝑡
𝑝
} −min{Δ𝑡

𝑝
}]/max{Δ𝑡

𝑝
} in percentage to measure

the inhomogeneity of the stimulus interval. The applications
of HSR paradigms usually requires a low jitter (small JR)
stimulation to approach the case of steady state recordings
while satisfying the constraint of (15) within the frequency
band of interest (8–122Hz, see Figures 4 and 5) in which the
majority of energy of the simulated EEG signal falls.

3.2. EEG Data Simulation. In actual experiments, the
recorded EEGs (including transient AEPs and noises) are
band-limited signals. They are digitized in time and ampli-
tude according to Nyquist-Shannon sampling theorem. In
this study, we use a real AEP signal previouslymeasured using
CLAD method [8] as the AEP component (𝑥(𝑡)) and the
additive noise (i.e., 𝑒(𝑡)) generated from a 1/𝑓 process [13] to
simulate background EEGsmixed with inherent artifacts and
noise. In our practice, the 𝑒(𝑡) is filtered by a band-pass filter
to eliminate frequency outside [8, 500]Hz as a recording sys-
tem usually does in experiments for the recording of middle
latency response and 40Hz steady state response. Note that
𝑥(𝑡) and 𝑒(𝑡) are both band-limited signals which in this case
fall in frequency range [8, 500]Hz. In theory, there is no error
when resampling them at a different AD rate as long as the
sampling theorem is satisfied. In this study the original signals
𝑥(𝑡) and 𝑒(𝑡) were obtained at AD rate of 20 kHz and then
resampled into other rates as needed. We chose a frequency
band [8, 500]Hz for the simulated EEG signal to emulate
the actual signal from recorded EEGs, which usually have
a cut off frequency at 500Hz in real experiment. However,
this frequency band is broader than that ([8, 122]Hz) we
used in optimizing our stimulus sequence in Section 3.1.
Theoretically, we should avoid this inconsistency by either
generating stimulus sequence satisfactory within [8, 500]Hz
or filtering the EEG signal to [8, 122]Hz. In practice, we found
it was much more difficult, if not impossible, to optimize
the stimulus sequence for broad frequency range. Although
the stimulus sequences in this paper are optimized for a
frequency band narrower than that for the EEG signal, there
was no data point of |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1 measure within the range

of [0, 500]Hz to be extremely large. Moreover, the energy of
EEG signals beyond range [8, 122]Hz is very low since the
AEP is a very narrow band signal and the noise is simulated
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Figure 1: (a) A schematic diagram of a stimulus loop that contains 17 individual stimulus impulses to indicate the repetitive presentations in
an experiment. (b) A sweep of stimulus sequence with impulses occurring at 𝑡

𝑝
(𝑝 = 1, 2, 3, . . . , 17) to represent a period of stimulus loop in

time domain (𝑇 = 1545.5ms; 𝑓
0
= 0.647Hz). (c) A portion of the Fourier spectrum of the inverse filter |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1. Note that within the

frequency band of interest ([𝑓󸀠
𝐿
, 𝑓
󸀠

𝐻
] = [5, 120]Hz), |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1 is all below the threshold (𝜃 = 1).

Table 1: Four optimized stimulus impulse sequences obtained using differential evolution algorithm.

Sequence
(ID, JR, NGF) Stimulus interval (Δ𝑡

𝑝
in ms, rounded to the second decimal place for this table only)

Seq 1
11.95%,
0.43

27.21, 22.34, 27.16, 21.40, 21.43, 23.26, 27.18, 24.38, 26.19, 21.48, 27.16, 24.32, 27.05, 23.57, 24.02, 26.30, 27.04, 21.40, 23.41,
27.21, 22.16, 24.62, 21.47, 22.37, 22.54, 27.19, 27.21, 21.40, 21.40, 21.49, 27.21, 22.57, 25.52, 25.15, 27.21, 21.40, 21.40, 27.21,
24.92, 21.40, 25.93, 27.21, 27.21, 21.43, 21.74, 22.23, 27.20, 26.74, 27.21, 21.40, 24.39, 21.49, 24.38, 27.21, 22.54, 27.20, 21.40,
21.86, 27.21, 21.97, 22.59, 25.09, 27.15, 21.48, 26.27

Seq 2
12.40%
0.50

23.49, 21.91, 27.96, 27.96, 21.79, 21.79, 24.88, 27.96, 24.36, 21.79, 26.27, 23.13, 26.82, 27.96, 21.79, 27.96, 23.67, 22.83, 27.96,
21.79, 22.40, 27.96, 27.96, 21.91, 21.79, 27.96, 23.33, 27.96, 21.79, 27.96, 21.91, 27.94, 26.77, 21.79, 24.64, 27.25, 21.79, 24.89,
27.96, 25.00

Seq 3
12.88%
0.49

28.38, 21.90, 28.38, 23.20, 21.90, 28.38, 28.24, 21.90, 25.00, 28.38, 21.90, 28.38, 28.38, 22.24, 25.10, 28.38, 28.38, 24.72,
21.90, 28.37, 25.12, 27.13, 23.68, 21.90, 21.90, 28.38, 21.90, 24.35, 22.14, 28.24, 28.38, 23.78, 22.29, 28.38, 22.07, 25.35,
21.90, 28.38, 25.00, 21.90

Seq 4
12.60%
0.49

26.40, 27.75, 21.66, 27.90, 21.94, 27.91, 21.66, 22.67, 23.90, 27.64, 27.91, 21.88, 21.66, 21.66, 27.91, 27.91, 21.66, 27.03, 27.42,
26.29, 21.66, 25.65, 27.90, 21.66, 27.89, 25.77, 21.66, 21.66, 26.10, 27.91, 21.66, 24.73, 27.91, 21.66, 27.90, 24.01, 21.66, 27.90,
21.66, 23.63

using a 1/𝑓 process. As such, noise will not be over amplified
by the inverse filtering in this study and their contribution to
the distortion of deconvolved AEP is limited.

3.3. Errors Introduced by the Temporal Discretization. The
interstimulus interval of continuous-time stimulus sequence
can be discretized at required temporal resolution. The
discretization will introduce round off errors no matter how
high is sampling frequency𝑓

𝑠
. Accordingly, the Fourier of the

discretized counterpart will differ from that of the original
continuous-time stimulus sequence.

Thediscretized temporal location 𝑡󸀠
𝑝
of a stimulus impulse

at 𝑡
𝑝
(𝑝 = 1, 2, . . . , 𝑃) with respect to the onset of a stimulus-

sweep is

𝑡
󸀠

𝑝
= round

(𝑡
𝑝
𝑓
𝑠
)

𝑓
𝑠

. (17)
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Table 2: The errors between estimated and true solution at various AD rates for four sequences.

Seq. ID SNR (dB) AD rate (kHz)
Inf 1 2 3 4 5 7 9 11 15 20 25

Seq 1
9.5 2.02 20.53 12.65 10.31 8.85 7.87 6.67 5.94 5.29 4.58 3.96 3.54
0 8.24 68.01 43.29 35.02 29.79 26.66 22.55 20.02 17.89 15.50 13.41 12.00

−6.0 18.51 141.81 91.21 73.72 62.67 56.15 47.48 42.10 37.68 32.63 28.22 25.27

Seq 2
9.5 4.19 31.52 21.39 17.91 15.40 14.05 11.72 10.26 9.40 8.02 6.98 6.43
0 9.52 78.32 52.98 44.67 38.33 35.15 29.23 25.55 23.44 19.99 17.44 6.23

−6.0 18.14 149.64 101.20 85.47 73.32 67.31 55.94 48.87 44.83 38.25 33.39 31.15

Seq 3
9.5 5.02 27.32 18.70 15.48 13.67 11.78 10.07 8.83 8.00 6.85 5.96 5.32
0 10.60 63.02 42.47 35.49 31.81 26.83 23.06 20.21 18.27 15.66 13.63 12.17

−6.0 19.13 117.29 78.61 65.94 59.41 49.73 42.81 37.53 33.89 29.07 25.29 22.57

Seq 4
9.5 3.48 21.60 15.11 12.64 10.88 9.63 8.31 7.35 6.52 5.63 4.85 4.37
0 10.79 67.96 47.93 39.82 34.17 30.32 26.14 23.13 20.61 17.75 15.30 13.76

−6.0 22.53 139.85 98.80 81.91 70.28 62.39 53.76 47.56 42.44 36.51 31.48 28.31
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Figure 2: The graphic representation of the relationship between 𝛾
𝑡

and 𝑓
𝑠
. The data points for four datasets are fit using a reciprocal

function: 𝛾
𝑡
= 11.78/𝑓

𝑠
− 0.01363, (𝑅2 = 0.9982). The location of

maximal curvature is at 𝑓
𝑠
= 3.43 kHz.

The normalized root-mean-square error is defined as
an overall measure of the errors caused by the tempo-
ral discretization of the continuous-time stimulus impulse
sequence

𝛾
𝑡
=
𝑃

𝑇
√

1

𝑃

𝑃

∑

𝑝=1

(𝑡
𝑝
− 𝑡
󸀠

𝑝
)
2

. (18)

To examine the error introduced by the temporal dis-
cretization of four stimulus sequences in Table 1, we calcu-
lated 𝛾

𝑡
at different temporal resolutions determined by the

AD rates (from 1 kHz to 25 kHz). The results are presented in
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0

2

4

6

8

10

12

14

16

18

Frequency (kHz)

Seq 1
Seq 2

Seq 3
Seq 4

𝛾
𝑓

(%
)

Figure 3:The graphic representation of the relationship between 𝛾
𝑓

and 𝑓
𝑠
. The data points for four datasets are fit using a reciprocal

function: 𝛾
𝑓
= 14.25/𝑓

𝑠
− 0.003574, (𝑅2 = 0.9983). The location of

maximal curvature is at 𝑓
𝑠
= 3.77 kHz.

Figure 2. Consistent with results for the four sets of stimulus
sequences, the 𝛾

𝑡
decreases as sampling frequency increases.

The results can be fit by a reciprocal function: 𝛾
𝑡
= 11.78/𝑓

𝑠
−

0.01363, (𝑅2 = 0.9982) and the location ofmaximal curvature
𝑓
𝑠
= 3.43 kHz.
As seen above, the temporal discretization introduces

errors of the temporal location of the stimulus impulses,
causing the difference between 𝑆

𝑇
(𝑗𝑘𝑓
0
) and 𝑆[𝑗𝑘𝑓

0
]. We

need to examine whether an optimized continuous-time
stimulus sequence 𝑠(𝑡) still satisfies the constraint in (15) after



Computational and Mathematical Methods in Medicine 7

1

0.5

0
0 20 40 60 80 100 120

𝑓𝑠 = 1000Hz

∣𝑆(𝑗𝑘𝑓0)∣
−1

Frequency (Hz)𝑓𝐿 𝑓𝐻

∣𝑆[𝑗𝑘𝑓0]∣
−1

(a)

0 20 40 60 80 100 120
𝑓𝐿

𝑓𝐻

0.2

0.1

0

−0.1

−0.2

Frequency (Hz)

∣𝑆(𝑗𝑘𝑓0)∣
−1
− ∣𝑆[𝑗𝑘𝑓0]∣

−1

(b)

Figure 4: Comparison with respect to the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure

between the continuous-time stimulus sequence and its discrete-
time counterpart at discretization frequency of 𝑓

𝑠
= 1 kHz. (a) The

plot of the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure for the continuous-time stimulus

sequence (data points in “𝑥”) and that for the corresponding
discrete-time stimulus sequence (data points in “𝑜,” discretization
frequency 𝑓

𝑠
= 1 kHz). (b) The difference between the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

measures, respectively, for continuous-time and discrete-time stim-
ulus sequences.

discretization. We define relative root-mean-square error in
frequency domain as

𝛾
𝑓
=

√∑
𝑘
𝐻

𝑘=𝑘
𝐿

(
󵄨󵄨󵄨󵄨𝑆𝑇 (𝑗𝑘𝑓0)

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨𝑆[𝑗𝑘𝑓0]

󵄨󵄨󵄨󵄨)
2

√∑
𝑘
𝐻

𝑘=𝑘
𝐿

󵄨󵄨󵄨󵄨𝑆 (𝑗𝑘𝑓0)
󵄨󵄨󵄨󵄨

2

× 100%. (19)

Using the same four dataset in Table 1, we calculate 𝛾
𝑓

with respect to each AD rate from 1 kHz to 25 kHz. The
resulting 𝛾

𝑓
is shown inFigure 3.Again, the data points can be

well-fit with a reciprocal function: 𝛾
𝑓
= 14.25/𝑓

𝑠
− 0.003574,

(𝑅2 = 0.9983), and the location of its maximal curvature is at
𝑓
𝑠
= 3.77 kHz.
Figure 3 shows that the error of stimulus sequence

in Fourier domain caused by the temporal discretization
decreases with the increase of sampling rate. But the error
will not completely disappear. Based on the fit function
𝛾
𝑓
= 14.25/𝑓

𝑠
− 0.003574, the maximal curvature occurs at

𝑓
𝑠𝑐

= 3.77 kHz, indicating that, in the range [0, 3.77] kHz,
𝛾
𝑓
decreases rapidly with the increase of 𝑓

𝑠
. However, 𝛾

𝑓

decreases at amuch low rate when𝑓
𝑠
is greater than 3.77 kHz.

These results suggest that the 𝛾
𝑓
is very sensitive to low

1

0.5

0
0 20 40 60 80 100 120

∣𝑆(𝑗𝑘𝑓0)∣
−1

Frequency (Hz)𝑓𝐿
𝑓𝐻

𝑓𝑠 = 20000Hz

∣𝑆[𝑗𝑘𝑓0]∣
−1

(a)

𝑓𝐿
𝑓𝐻

0 20 40 60 80 100 120

0.2

0.1

0

−0.1

−0.2

Frequency (Hz)

∣𝑆(𝑗𝑘𝑓0)∣
−1
− ∣𝑆[𝑗𝑘𝑓0]∣

−1

(b)

Figure 5: Comparison with respect to the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure

between the continuous-time stimulus sequence and its discrete-
time counterpart at discretization frequency of 𝑓

𝑠
= 20 kHz. (a)The

plot of the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure for the continuous-time stimulus

sequence (data points in “𝑥”) and that for the corresponding
discrete-time stimulus sequence (data points in “𝑜”, discretization
frequency 𝑓

𝑠
= 20 kHz). (b)The difference between the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

measures, respectively, for continuous-time and discrete-time stim-
ulus sequences.

AD rate, and that it is critical to increase the AD rate to a
frequency higher than 3.77 kHz.

Here we use one stimulus sequence to exemplify the
differences caused by discretization at two different AD
rates: 𝑓

𝑠1
= 1 kHz, which is below the critical 𝑓

𝑠𝑐

(3.77 kHz) and 𝑓
𝑠2

= 20 kHz, which is above the critical 𝑓
𝑠𝑐

(3.77 kHz). Figure 4(a) illustrates the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measure of

the continuous-time stimulus sequence (data points labeled
with cross “𝑥”) and that of the corresponding discrete-time
stimulus sequence (data points labeled with open circle “𝑜”)
at an AD rate of 𝑓

𝑠
= 1 kHz. Within the frequency range

of interest [𝑓
𝐿

= 8Hz, 𝑓
𝐻

= 122Hz], the inverse filter
based on the discretized stimulus sequence satisfies (15) at
most frequency bins. However, at some frequency bins, its
|𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1measure is greater than 1.The difference between

the continuous-time and discrete-time stimulus sequence
at each frequency bin is plotted in Figure 4(b). Clearly,
the discretization causes errors at most frequency bins at
amplitudes within the range from −0.25 to 0.25.

Figure 5 shows the similar contents as Figure 4, except
that the continuous-time stimulus sequence is discretized
at a higher AD rate of 𝑓

𝑠
= 20 kHz. Figure 5(a) depicts

the |𝑆
𝑇
(𝑗𝑘𝑓
0
)|
−1 measures for continuous-time (data points
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labeled with “𝑥”) and discrete-time (data points in open
circles “𝑜”) stimulus sequences. Again, the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1

measure within most frequency bins for the discrete-time
stimulus sequence satisfies (15). However, we can also see
some data points stick out of the threshold of 1. The differ-
ence between the |𝑆

𝑇
(𝑗𝑘𝑓
0
)|
−1 measures for the continuous-

time and discrete-time stimulus sequences is shown in
Figure 5(b). We can see that at 𝑓

𝑠
= 20 kHz, the difference

at most frequency bins is close to zero. When compared
to Figure 4(b), Figure 5(b) clearly show that 𝑓

𝑠
= 20 kHz

has substantial advantage over 𝑓
𝑠
= 1 kHz in maintaining

the discrete stimulus sequence satisfactory to the condition
described in (15). Importantly, if the AD rate is low, the
discrete stimulus sequence may violate the condition and
cause overamplification of noise components in the recorded
EEG and distort the deconvolved transient AEPs. The results
also suggest that using AD ratemuch higher than the Nyquist
sampling rate is necessary to minimize the error introduced
from temporal discretization.

3.4. Noise Attenuation Effects of Discretization Frequency.
Although the continuous-time stimulus sequence 𝑠(𝑡) is
frequency unlimited (𝑆(𝑗𝑘𝑓

0
) in Fourier domain, where 𝑘 can

be any integer), the frequency range of interest is determined
by the nonzero values of the product of 𝑆(𝑗𝑘𝑓

0
)and 𝑋(𝑗𝑘𝑓

0
)

as indicated in (4). In this study, the recorded EEG is band-
pass filtered within [8–500]Hz.The transient response 𝑥(𝑡) is
obtained by applying inverse Fourier transformon �̂�(𝑗𝑘𝑓

0
) in

(5):

�̂�
𝑐
(𝑛Δ
𝑡
) = 𝐹
−1

{�̂� (𝑗𝑘𝑓
0
)} , 𝑛 = 1, 2, . . . , 𝑁;

8Hz ≤ 𝑘𝑓
0
≤ 500Hz.

(20)

Likewise, the inverse Fourier transform of �̂�[𝑗𝑚𝑓
0
] in

(1d) will give the time domain signal for the discrete binary
sequence:

�̂�
𝑑
[𝑛Δ
𝑡
] = 𝐹
−1

{�̂� [𝑗𝑚𝑓
0
]} , 𝑛 = 1, 2, . . . , 𝑁;

8Hz ≤ 𝑚𝑓
0
≤ 500Hz.

(21)

To quantify the difference between the estimated and
the true solutions for both continuous and discrete stimulus
sequence, we can define root mean square error for �̂�

𝑐
(𝑛Δ
𝑡
)

𝛾
𝑥
𝑐

=

√∑
𝑁

𝑛=1
(�̂�
𝑐
[𝑛] − 𝑥 (𝑛Δ

𝑡
))
2

√∑
𝑁

𝑛=1
𝑥 (𝑛Δ

𝑡
)
2

× 100%. (22)

By replacing �̂�
𝑐
(𝑛Δ
𝑡
) with �̂�

𝑑
[𝑛Δ
𝑡
] in (22), we can define

the root mean square error 𝛾
𝑥
𝑑

for �̂�
𝑑
(𝑛Δ
𝑡
). As stated

previously, an original copy of additive 1/𝑓random noise is
then rescaled and/or resampled to accommodate conditions
with different AD rates and signal-to-noise ratios (SNRs),
where the latter is defined as

SNR = 20 log
√∑
𝑁

𝑛=1
𝑥 (𝑛Δ

𝑡
)
2

√∑
𝑁

𝑛=1
𝑒 (𝑛Δ
𝑡
)
2

. (23)
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Figure 6:The errors between estimated and true solution at various
AD rates (1–25 kHz) as well as the case of continuous-time sequence
(tick “c” in the horizontal coordinate). Four sequences are examined
under three SNR conditions (see the legend). 𝛾

𝑥
in the vertical

coordinate implies both errors of 𝛾
𝑥𝑐
and 𝛾

𝑥𝑑
.

To examine the relationship between AD rate and 𝛾
𝑥
𝑐

,
we simulated the discretization at 𝑓

𝑠
= 1–25 kHz and three

SNR conditions (9.5 dB, 0 dB, and −6.0 dB). The resulting
𝛾
𝑥
𝑐

is shown in Table 2, where in the first column (AD rate
= Inf) means the errors for the continuous-time stimulus
sequence condition and 𝛾

𝑥
𝑐

results for this condition serve
the references for all other AD rates. From Table 2, we can
see that the errors for high SNR EEGs are much smaller
than those for low SNR EEGs, and the errors decrease as AD
rate increases. These phenomena are consistent across four
stimulus sequences. Figure 6 is a graphic representation of the
results. It shows that low SNR EEGs are more vulnerable to
low AD rates, and the increase AD rate is more beneficial for
low SNR signal on the other hand.

To gain more straightforward understanding of above
results, we choose to present the resulting AEPs from dif-
ferent SNR conditions and at two representative AD rates.
Figure 7(a) shows the results at AD rate of 1 kHz. It is
clear that the AEPs recovered from high SNR EEGs (the
top panel) using continuous-time and discrete-time stimulus
sequence are both very close to the original AEP used for
the simulation study. However, the difference between the
recoveredAEPs becomes significantwhen the SNR is low (the
third panel in Figure 7(a)). At same time, we can see that the
AEPs recovered using continuous-time stimulus sequence are
closer than the ones from discrete-time stimulus sequence
to the original AEP. Figure 7(b) shows the results at AD
rate of 20 kHz. Similar to the phenomena in Figure 7(a), the
AEPs (the top panel in Figure 7(b)) recovered from high
SNR EEGs are very close to the original AEP used in this
study. When the SNR is getting worse, for example −6 dB as
in the third panel in Figure 7(b), the recovered AEP is less
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Figure 7: Comparison of transient AEPs solved by CLAD method at different SNR conditions and at two representative discretization
frequencies. (a) AEPs (the original in dashed blue, the one recovered based on continuous-time stimulus sequence in thin red, and the
one recovered based on discrete-time stimulus sequence in black).The discretization frequency (AD rate) 𝑓

𝑠
= 1 kHz; and the SNRs for three

panels from top to bottom are, respectively, 9.5, 0 and −6.0 dB. (b) Same as (a) except the discretization frequency 𝑓
𝑠
= 20 kHz.

close to the original AEP. Consistent to that exemplified in
Figure 7(a), the AEPs recovered based on continuous-time
stimulus sequence better resemble the original AEP than
those based on discrete-time stimulus sequence. Moreover,
the AEPs from high AD rate (𝑓

𝑠
= 20 kHz) of discretization

resemble more closely to the original AEP than those from
low AD rate of discretization. As such, it becomes obvious
that increasing AD rate will reduce the distortions in the
recovered transient AEP. More importantly, this positive
impact of high AD rate is more significant for low SNR
recordings.

4. Discussion and Conclusion

Solving the transient AEPs in frequency domain under HSR
paradigm has been investigated and implemented recently
using discrete-time stimulus sequences (e.g., in [1–5, 7, 8, 10]).
Since the frequency characteristics of a stimulus sequence

critically influence the performance of deconvolution algo-
rithms in the presence of noises in EEG recordings, one needs
to select or generate appropriate sequences to satisfy certain
criteria (e.g., (15)). However, it is challenging to generate an
optimal discrete-time stimulus sequence when the occurring
time points of stimulus impulses are subject to the constraint
of the AD rate of the experiment systems.This is because the-
oretically it only has a limited number of possible solutions.
Although continuous sequences generated by an optimum
methodmight be ready for use, one needs to answer twomore
questions: (1) how to present such sequences into the practical
recordings in digital form; (2) how to quantify the errors
and impacts due to the discretization of the continuous-time
stimulus sequences.

This paper answers the first question by explicating
the frequency presentation of continuous-time stimulus
sequences and its use in solving the transient AEP using
deconvolution algorithm. As detailed before, the repetitive
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continuous-time stimulus sequences have discrete frequen-
cies in the Fourier domain and as such the convolutionmodel
and deconvolution algorithm can be similarly presented as
for the discrete-time time system. In practice, the continuous-
time stimulus sequences can be approximated using very high
temporal resolution discrete-time stimulus sequences. For
example, the temporal resolution for the stimulus sequences
in Table 1 can be rounded to the 4th decimal place, equivalent
to a sampling frequency at MHz level, which is well above
the characteristic frequency (∼4 kHz) in Figures 2 and 3 and
makes the discretization errors negligible in applications.
Furthermore, simulation studies are used to examine the
applicability of the theory and quantify the errors and impacts
when a continuous-time stimulus sequence is temporally
discretized. The results show that using continuous-time
stimulus sequences in the HSR paradigm has significant
advantages over using discrete-time stimulus sequences in
recovering the transient AEPs. This study also reveals a
reciprocal relationship between errors introduced by the
discretization of continuous-time stimulus sequence into
discrete-time counterpart and the discretization frequencies.
Note that we here used the absolute errors to quantify the
impact of sampling rate of discrete-time stimulus sequences.
But absolute errors should not be considered the only choice.
In fact, other metrics such as correlation coefficient can
be a good measure when the shape of waveform is of the
researchers’ only concern. In typical AEP studies, researchers
are usually interested in both the shape and amplitude of the
signals. In any case, the results in this paper suggest that when
discrete-time stimulus sequence is used, a high frequency
system is more likely to offer reliable recovered AEPs under
HSR paradigm.

To conclude, this study demonstrates the applicability
and advantages of continuous-time stimulus sequences for
AEP studies using HSR paradigm and reveals the reciprocal
relationship between the errors in recovered AEPs and the
sampling frequencies of the experimental systems when
discrete-time stimulus sequences are used in traditional
manner for the HSR paradigm.
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A growing number of affective computing researches recently developed a computer system that can recognize an emotional state
of the human user to establish affective human-computer interactions. Various measures have been used to estimate emotional
states, including self-report, startle response, behavioral response, autonomic measurement, and neurophysiologic measurement.
Among them, inferring emotional states from electroencephalography (EEG) has received considerable attention as EEG could
directly reflect emotional states with relatively low costs and simplicity. Yet, EEG-based emotional state estimation requires well-
designed computational methods to extract information from complex and noisy multichannel EEG data. In this paper, we review
the computational methods that have been developed to deduct EEG indices of emotion, to extract emotion-related features, or
to classify EEG signals into one of many emotional states. We also propose using sequential Bayesian inference to estimate the
continuous emotional state in real time.We present current challenges for building an EEG-based emotion recognition system and
suggest some future directions.

1. Introduction

An emotional state refers to a psychological and physiolog-
ical state in which emotions and behaviors are interrelated
and appraised within a context [1]. From the psychological
aspects, the space of the emotional state can be built from
the discrete model or the dimensional model. In the discrete
model, an emotional state is defined as a set of a finite
number of discrete states corresponding to one of core
emotions, including anger, fear, disgust, surprise, happiness,
and sadness, or a combination of them [2]. The dimensional
model defines an emotional state spatially with the basic
dimensions of emotion such as valence and arousal and
interprets an emotion through the levels of each dimension
[3]. These emotion models have been used for systematical
and multilateral analyses of emotion [3]. Based on the
emotion models, neurophysiologic mechanisms under the
emotional state have been vigorously investigated. Broadly,
it has been documented that the emotional processes per-
formed at the ventral and dorsal systems in the human brain

are functionally different [4]. The ventral system, including
ventral anterior cingulate gyrus and some ventral areas of
prefrontal cortex (ventromedial prefrontal cortex and medial
orbitofrontal cortex), is involved in the production of emo-
tional states and the regulation of affective responses, whereas
the dorsal system, including dorsal anterior cingulate gyrus,
some dorsal areas of prefrontal cortex (dorsolateral, posterior
dorsolateral, and mid-dorsolateral prefrontal cortex), and
hippocampus, is involved in effortful emotion regulation and
subsequent behavior [4, 5].

Recently, affective computing (AC) has emerged as a
converging technology blending emotion into human com-
puter interaction (HCI) [6]. AC, often called emotion aware
computing, builds emotional interactions between a human
and a computer by measuring the emotional state through
behavioral and physiological signals and developing compu-
tational models for the emotional state [6, 7]. One of the
key elements in AC is emotion recognition that estimates the
emotional state of users from their behavioral and physio-
logical responses [7]. Emotion recognition aims to advance
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the intelligence of computer for creating affective user inter-
faces and to enhance the quality of psychiatric health care.

A variety of measures have been used for emotion
recognition including self-report, startle response, behavioral
response, autonomic measurement, and neurophysiologic
measurement [3]. Self-report readily acquires emotional
responses according to the emotion modeling framework
but makes it difficult to track rapid affective changes and
needs to rely on the outcome from self-estimation of the
emotional state [3, 8]. The startle response magnitude using
electromyography (EMG) measures unconscious myoneu-
ral responses but assesses only partial aspects of emotion
(e.g., arousal level) [3, 9]. Behavioral measurement detects
changes in facial and/or whole-body behavior using EMG
or video image, but needs an assumption that EMG signals
directly correspond to a specific emotional state [3, 10].
Autonomic measurement can objectively detect emotion-
related physiological responses of autonomic nervous system
(ANS), such as skin conductance responses (SCRs) and heart
rate variability (HRV), but only access the subspaces of the
emotional state [3, 11]. Neurophysiologic measurement based
on electrophysiological and neuroimaging techniques can
detect a wide range of dynamics of the emotional state by
directly accessing the fundamental structure in the brain
from which an emotional state emerges [3, 12]. Hence,
neurophysiologic measurements clearly provide the most
direct and comprehensive means for emotion recognition.

A large body of research has investigated neural correlates
of emotion in humans usingmanynoninvasive sensormodal-
ities, each presenting unique characteristics with respect to
spatiotemporal resolution andmobility. Functional magnetic
resonance imaging (fMRI) has been used to find cortical
and subcortical structures implicated in emotional states [13].
MEG has also been used to find emotion-related neural
signals from specific sources in a timely manner with fine
spatial and temporal resolutions [14]. But the cost and
immobility of fMRI andMEGprevents thesemodalities from
being used for practical emotion recognition systems [15,
16]. EEG, although suffering from its poor spatial resolution
and high susceptibility to noise, has been widely used to
investigate the brain dynamics relative to emotion as it
enables the detection of immediate responses to emotional
stimuli with an excellent temporal resolution [17–21]. Being
developed to become more cost-effective and mobile with
increased practicability and less physical restriction [22],
EEG, not without its downsides, still carries critical advan-
tages in practical usage and therefore has been a primary
option for the development of online emotion recognition
systems. In fact, there have been a growing number of efforts
to recognize a person’s emotion in real time using EEG.
For example, EmoRate developed as a commercial product
(Emotiv Corp., CA, USA) detects the flow of the emotional
state while user is watching a film [23]. Brown et al. proposed
an EEG-based affective computer system that measures
the state of valence and transmits it via a wireless link
[24].

The development of an EEG-based emotion recognition
system requires computational models that describe how the
emotional state is represented in EEG signals and how one

can estimate an emotional state from EEG signals. Despite
a long history of searching for EEG indices of emotion, less
attention has been paid to the computational models for
emotional state estimation. Hence, we feel needs for a review
of the state-of-the-art computational models for emotional
state estimation to subserve the development of advanced
emotion recognition methods. This paper will review the
current computationalmethods of emotional state estimation
from the humanEEGwith discussion on challenges and some
future directions.

This paper will particularly focus on the following aspects
of EEG-based emotional state estimation models. First, it
will start with a quick review on EEG correlates of emotion,
including definition of the emotional state space, the design
of emotional stimuli, and the EEG indices of emotion. Then,
it will revisit the computational methods to extract EEG
features relative to emotional states and to estimate emotional
states from EEG. We will also propose a mathematical
approach to the estimation of continuous emotional state
based on Bayesian inference.

2. EEG Correlates of Emotion

Finding EEG correlates of emotional states should begin with
how to define the emotional state space. The emotional state
space can be largely categorized into a discrete space and
a continuous space. The discrete state space draws upon
the discrete emotion model and contains a set of discrete
experiential emotional states. The discrete emotional state
comprises seven to ten core emotions such as happiness,
surprise, sadness, anger, disgust, contempt, and fear [2,
25] and sometimes expands to contain a large number of
emotions with the synonyms of these core emotions [25].
The continuous state space is built from the dimensional
emotion model and represents an emotional state as a
vector in a multidimensional space. This vector space of
the continuous emotional state depends on the definition
a basis. For instance, the circumplex model, developed by
Russell, describes an emotional state in a two-dimensional
circular space with the arousal and valence dimensions [26].
Various psychological models define emotional dimensions
that subsequently constitute the basis for the emotional state
space [25, 27–30].

Based on the construction of the emotional state space,
the investigation of EEG correlates of emotion should also
address how to determine experimental stimuli to induce
emotions. Typically, emotional stimuli are selected to cover
desired arousal levels and valence states, and presented in
different modalities including the visual, auditory, tactile, or
odor stimulation. The ground truth of the emotional state
induced by a stimulus is secured by exploiting the self-
ratings of subjects or using the standard stimulus sets such
as the international affective picture system (IAPS) or the
international affective digitized sound system (IADS). The
IAPS provides a set of normative pictures for emotional
stimuli to induce emotional changes and attention levels [31].
The IADS embodies acoustic stimuli to induce emotions,
sometimes together with the IAPS [32]. These international
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affective systems are known to be independent of culture, sex,
and age [33].

A number of neuropsychological studies have reported
EEGcorrelates of emotion.These EEG features can be broadly
placed in one of two domains: time domain and frequency
domain. In the time domain, several components of event-
related potentials (ERPs) reflected underlying emotional
states [34]. These ERP components can be encapsulated in
a chronological order: P1 and N1 components generated
in a short latency from stimulus onset, N2 and P2 in a
middle latency, and P3 and slow cortical potential (SCP)
in a long latency. The ERP components of short to middle
latencies have been shown to correlate with valence [34–37],
whereas with the ERP components ofmiddle to long latencies
have been shown to correlate with arousal [38–41]. Basically,
the computation of ERPs requires averaging EEG signals
over multiple trials, rendering ERP features inappropriate
for online computing. However, recent developments of the
single-trial ERP computation methods increase a possibility
to use ERP features for online emotional state estimation [42–
46].

In the frequency domain, the spectral power in various
frequency bands has been implicated in the emotional state.
The alpha power varied with the valence state [47] or with
discrete emotions such as happiness, sadness, and fear [18].
Specifically, the frontal asymmetry of the alpha power has
been repeatedly reported as a steady correlate of valence [48].
The subsequent studies have suggested that the frontal alpha
asymmetry may reflect the approach/avoidance aspects of
emotion, rather than valence per se [49]. The event-related
synchronization (ERS) and desynchronization (ERD) of the
gamma power has been related to some emotions such as
happiness and sadness [50–52]. The ERS of the theta power
has also been modulated during transitions in the emotional
state [18, 53–55].

Besides the waveforms and the spectral power, the
interactive properties between a pair of EEG oscillations
such as phase synchronization and coherence have also
been implicated in emotional processes. For instance, the
phase synchronization level between the frontal and right
temporoparietal areas varied with the emotional states of
energetic, tension, and hedonic arousal [56].The EEG coher-
ence across the prefrontal and posterior beta oscillations was
increased by viewing high arousal images [57]. Also, increases
in the gamma phase synchronization index were induced
by unpleasant visual stimuli [58]. As the emotional process
engages a large-scale network of the neural structures in the
brain, these multichannel analyses of EEG across the brain
will reveal more signatures of emotion as they do for other
cognitive functions [59–64]. In short, a brief summary of the
EEG correlates of emotion is presented in Table 1.

3. Computational Methods to Estimate
Emotional States

The computational methods to estimate the emotional state
have been designed based on various EEG features related
to emotional processes. As most EEG analysis methods are

EEG signals

Preprocessing

Feature
extraction

Classification

Emotional states

∙ Noise reduction
∙ Spatial filtering
∙ Temporal filtering

∙ Spectral power
∙ ERPs
∙ Phase synchronization

∙ Dimensional emotions

∙ Discrete emotions

Figure 1: Overall emotional state estimation process. The overall
emotional state estimation procedure. EEG signals are recorded
during emotional situations and passed through the preprocessing
step including noise reduction and spatial and temporal filtering.
The features related with the emotional states such as spectral power,
ERP, and phase synchronization are extracted from the preprocessed
EEG signals. These features are used to estimate emotional states by
classification methods.

accompanied by preprocesses for reducing the artifacts, so
is the emotional state estimation method. Figure 1 illustrates
overall processing steps to estimate the emotional state
from EEG signals. The recorded EEG signals in response
to affective stimuli pass through the preprocessing step
in which noise reduction algorithms and spatiotemporal
filtering methods are employed to enhance the signal-to-
noise power ratio (SNR). Then, the feature extraction step
determines specific band powers, ERPs, and phase coupling
indices correlated with the target emotional states. Usually,
this feature selection process is optimized by mathematical
methods to achieve maximum emotional estimation accu-
racy. The classification step estimates the most probable
emotional state from the selected EEG features. The number
of class depends on the definition of the emotional state space,
such as the continuous state of arousal and valence, or the
discrete states.

As the preprocessing methods are relatively general to
a variety of EEG signal processing applications, here we
focus on the feature extraction and emotion classification
methods. We first review the computational methods to
extract emotion-related features from EEG, followed by the
classification algorithms used to estimate the emotional state
from the EEG features. The feature extraction methods
usually build a computational model to find emotion-related
features based on neurophysiologic and neuropsychological
knowledge. Unlike the feature extractionmethods, the classi-
fication methods draw more upon signal processing theories
such as machine learning and statistical signal processing.
It has been of interest how each of these two steps impact
on estimation accuracy. On one hand, the feature extraction
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seems to bemore closely tied to estimation performance since
without pointing to the very features correlatedwith emotion,
it is implausible to build a correct model. On the other
hand, the classification algorithms should also be carefully
designed to fit to the characteristics of the feature space;
for instance, using a linear classifier for highly nonlinear
feature structures would not make much sense. In general,
one should weigh coherence between a feature space and a
classifier for increasing estimation accuracy.

3.1. Feature Extraction Methods. As for valence-related fea-
tures, it has been shown that positive and negative emotions
induce asymmetric modulations in the frontal alpha power
of EEG, leading to a relative decrease in the left frontal
alpha power for positive emotions and a decrease in the right
for negative emotions [65]. This frontal alpha asymmetry
provides an effective index for valence by computing a
difference between the left and right alpha powers, here
denoted as 𝐿 and 𝑅 respectively, divided by the sum of both:

Index = 𝐿 − 𝑅
𝐿 + 𝑅

. (1)

The computation of the spectral power in the alpha band has
been executed by a number ofmethods, including the squares
of the EEGamplitude filtered through an alpha bandpass filter
[53], Fourier transform [66], power spectral density [18, 21],
and wavelet transform [7, 67, 68]. Most of these methods are
well established and can readily be implemented in real time.

As for arousal-related features, one can extract the spec-
tral power features such as the frontal midline theta power
similar to the alpha power. Recently, more advanced compu-
tational methods have been proposed to evaluate emotional
arousal. For instance, Asymmetry index (AsI) assesses emo-
tion elicitation by computing a multidimensional directed
information (MDI) between EEG channels [69]:

𝑆
𝑛
= 𝑆
𝑋𝑌

𝑛
+ 𝑆
𝑌𝑋

𝑛
,

𝑆
𝑓
= 𝑆
𝑋𝑌

𝑓
+ 𝑆
𝑌𝑋

𝑓
,

AsI = (𝑆
𝑛
− 𝑆
𝑓
) ×

√2

2
.

(2)

𝑆
𝑋𝑌

𝑓
indicates the total amount of information flowing from

left hemisphere signals, 𝑋, to right hemisphere signals, 𝑌,
when the subject has emotional feelings. 𝑆

𝑓
refers to the

total bidirectional information with emotion. 𝑆𝑋𝑌
𝑛

indicates
the same directional information from 𝑋 to 𝑌 but when the
subject does not have emotional feelings, and 𝑆

𝑛
refers to

the total bidirectional information without emotion. AsI can
effectively indicate whether an emotional state is elicited or
not [69]. BesidesAsI, the variance of potentials froma specific
channel over different EEG channels has been used as an
emotion-related feature [68]. Also, the entropy of EEG signals
has been used to extract information related to emotion from
intrusive noise [68].

As for individual discrete emotions, a typical approach
is to search through all the possible EEG channels, spec-
tral bands, and time segments for a set of features that

maximizes the accuracy of emotional state estimation. This
approach adopts a greedy search method with supervised
learning, often resulting in different optimal feature sets
for each individual. To overcome this issue of subject-by-
subject variability, a higher order crossing (HOC) analysis
was developed to implement a user-independent emotion
recognition system [70]. The HOC analysis aims to find EEG
features with respect to six affective traits, including surprise,
disgust, anger, fear, happiness, and sadness [70]. The HOC
model is given as:

𝐷
𝑛
=

𝑚

∑

𝑖=2

(𝑋
𝑖
[𝑛] − 𝑋

𝑖−1
[𝑛])
2

,

𝑖 = 1, . . . , 𝑚; 𝑛 = 1, 2, 3, . . . ,

𝐹𝑉HOC = [𝐷1, 𝐷2, . . . , 𝐷𝐿] , 1 < 𝐿 ≤ Maximum order.
(3)

𝐷
𝑛
is the simplified version of the HOC feature that counts

the number of zero-crossing from a high-pass filtered,
standardized EEG time series. Zero-crossing indicates an
event at which the signal amplitude passed through a zero-
line with the change of polarity. The zero-crossing counts
often represent oscillation properties more robustly than the
spectral power. A vector of the simple HOCs is constructed
to contain the features related to emotion. A higher value
of 𝑛 means decreases in the discrimination power of the
simple HOC because different processes can yield almost the
same 𝐷

𝑛
. 𝑋
𝑖
[𝑛] indicates a binary time series with zeros and

ones: at time instant 𝑖 where 𝑋
𝑖
[𝑛] = 0 if the amplitude of

the filtered signal is negative and 𝑋
𝑖
[𝑛] = 1 otherwise. 𝑚

indicates the length of the time series 𝑋
𝑖
. The EEG feature

vector is defined as 𝐹𝑉HOC that consists of multiple simple
HOCs [70].The computational methods to extract emotional
features from EEG are summarized in Table 2.

3.2. Emotion Classification Methods. The EEG feature vector
provides observations from which an emotional state can be
inferred. Commonly, a classifier has been used for decoding
the feature vector into one of possible emotional states.
A number of classification methods have been used for
emotional state estimation, including discriminant analysis
(DA), support vectormachine (SVM), k-nearest neighbor (k-
NN), and theMahalanobis distance (MD) basedmethod. DA
performs dimensionality reduction in a high-dimensional
feature space onto a low-dimensional space with an aim to
maximize the Fisher discriminant ratio, 𝑆, of between-class
scatter, 𝐶

𝐵
, to within-class scatter, 𝐶

𝑊
, [42, 71–76].

𝑆 = tr (𝐶
𝐵
𝐶
−1

𝑊
) . (4)

A larger 𝑆 value indicates greater separation between classes.
The dimensionality of the low-dimensional space varies from
one up to the number of classes minus one.

SVM is derived from DA but determines a decision
boundary in a kernel space instead of the original feature
space. SVM finds an optimal hyperplane, 𝐻(𝑥), and the
hypermargin of the decision boundary in the feature space
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using a supervised learning method. The classifier 𝑢(𝑥
𝑖
)

classifies a new input feature vector 𝑥
𝑗
using a classification

rule given by

𝑢 (𝑥
𝑖
) = sgn(∑

𝑥
𝑖
∈v
𝛼
𝑖
𝑡
𝑖
𝐹 (𝑥
𝑖
, 𝑥
𝑗
) + 𝑏) , 𝑡

𝑖
∈ target space.

(5)

Here, v indicates a set of the support vectors that are used
to determine themaximummargin hyperplane, and𝐹(𝑥

𝑖
, 𝑥
𝑗
)

denotes the kernel function of the SVM classifier. 𝑏 denotes
an offset parameter, 𝑥

𝑖
does training input vectors, and 𝛼

𝑖

does nonzero weights on each support vector [7, 77–80].
Various kernel functions have been proposed such as the
Gaussian function or polynomials. SVM offers advantages of
good generalizability for nonlinear feature spaces.

The k-NN algorithm determines the class of a new feature
vector according to the number of nearest vectors in the
training set surrounding a new feature vector [73, 81]. k
is a parameter determining the encircled boundary. The k-
NN algorithm depends on how to define a distance between
feature vectors, which is subject to be affected by the curse of
dimensionality [81, 82].

The MD-based method, has been widely used in the
clustering analysis, not only for distance, but also with
correlation coefficient and the standard deviation [83, 84]:

MD = (x − 𝜇
𝑐
)
𝑇C−1
𝑐
(x − 𝜇

𝑐
) . (6)

C−1 and 𝜇
𝑐
indicate the inverse of the covariance matrix and

the mean vector of a class 𝑐, respectively. MD converges to
Euclidean distance when the covariance matrix of feature
vectors becomes the identify matrix [84]. Basically, when a
new feature vector arrives, the MD-based classifier compares
the distance of the vector to each class using MD and
chooses the class with the smallest distance.The classification
methods that have been used for emotional state estimation
are summarized in Table 2.

4. A Generative Model for Online Tracking of
Emotional States

As described earlier, most computational models estimating
emotional states have focused on the discrete state space
and classified EEG features into one of a finite number of
emotional states. This approach generally suits well to the
case of a static determination of which emotion is induced
by a given stimulus. Yet, for the development of an online
emotion recognition system, where continuous tracking of
the emotional state may play an important role, the current
approach might be suboptimal because they do not take
temporal dynamics of the emotional state into account.
Another downside of the current approach originates from
their direct modeling framework. Amodel in this framework
builds a direct input-output mapping from the observed EEG
signal to the emotional state. Although this framework may
be able to provide a reasonable solution just for the purpose
of improving classification accuracy, it does not exploit prior

information of the emotional state as well as dynamics of the
emotional state. These shortcomings make it difficult to gain
useful insights on the neural mechanism of emotion. Also,
it is often desirable to incorporate prior information of the
dynamics of the emotional state within a model, especially
for tracking emotional state continuously over time.

To address these issues, we propose a computational
modeling approach based on the generative modeling frame-
work [85–87]. Our approach focuses on tracking the change
of the emotional state over time from EEG signal. In this
approach, a generative model depicts how EEG signal is
generated from a hidden emotional state. Also, a prior model
explains how the emotional state changes over time. Inte-
grating these two models, we infer a most likely emotional
state from an observed EEG signal. Differences between
the generative and direct models can be illustrated in a
probabilistic view where a goal is to estimate a conditional
probability of emotional state variables given EEG observa-
tions as accurately as possible. Suppose that a random vector
x denotes hidden emotional states and a random vector y
denotes observed EEG data (e.g., an EEG feature vector). An
estimation model aims to optimize a parameter set, 𝜃, for the
following conditional probability:

𝑝 (x | y, 𝜃) . (7)

A direct model forms a functional relationship from y to x
with 𝜃, the parameter set of a function 𝑓(⋅),

x = 𝑓 (y; 𝜃) + e, (8)

where e is a residual vector. In many cases, the residual vector
is assumed to follow the Gaussian distribution. Parameter
estimation of 𝜃 can be accomplished by many standard solu-
tions such as maximum likelihood [88]. On the other hand,
a generative model uses maximum a posteriori (MAP) or the
Bayesian inference to estimate the conditional probability,

𝑝 (x | y, 𝜃) = 1

𝐷
𝑝 (y | x, 𝜃) 𝑝 (x) , (9)

where 𝐷 represents a constant representing the integral of
𝑝(y). The posterior 𝑝(x | y, 𝜃) is estimated by the product of
𝑝(y | x, 𝜃), the likelihood of observation y given a state x, and
𝑝(x), the prior of the state x. The parameter set 𝜃 is used
to model a generative relation from x to y. In terms of the
EEG correlate of the emotional state, the likelihood describes
how the observed EEG signal is generated from an emotional
state, the prior describes a probability of each emotional state,
and the posterior describes which emotional state most likely
elicits the observed EEG signal.

Here, we extend this generative approach to take into
account the temporal dynamics of the emotional state. We
use sequential Bayesian inference to track a time-varying
emotional state from EEG signal [89]. To this end, we first
assume that the emotional state is defined in a continuous
space. An example of a continuous state space consists of
two emotional dimensions, such as valence and arousal. The
valence dimension ranges from negative values to positive
values. The arousal dimension ranges from low to high
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arousal levels. A key point is that an emotional state varies
over a continuous space, instead of altering between discrete
values. This does not mean that we need to assign an explicit
emotion to every possible point in the emotional state space.
A specific area or volume in the state space can represent a
single emotion.

The generative model is then formulated as follows. Let
x
𝑡
be an emotional state vector and y

𝑡
an EEG signal vector

at time instant 𝑡. x
𝑡
contains a set of emotional state variables

(e.g., x
𝑡
= [𝑥
1,𝑡
, 𝑥
2,𝑡
, 𝑥
3,𝑡
], where 𝑥

1,𝑡
is the valence dimension,

𝑥
2,𝑡

is the arousal dimension, and 𝑥
3,𝑡

is the dominance
dimension). y

𝑡
contains a set of EEG features selected to be

related to emotion (e.g., the power of certain frequency band
at a selected channel). The goal of the model is to find the
most probable emotional state given a series of observation
from the beginning, y

1
, . . . , y

𝑡
(assuming observation begins

at 𝑡 = 1). The posterior is formed as

𝑝 (x
𝑡
| y
1
, . . . y
𝑡
) . (10)

The posterior can be rewritten as a recursive equation,

𝑝 (x
𝑡
| y
1
, . . . , y

𝑡
)

= 𝑝 (y
𝑡
| x
𝑡
) ∫𝑝 (x

𝑡
| x
𝑡−1
) 𝑝 (x
𝑡−1
| y
𝑡
, . . . , y

𝑡−1
) 𝑑x
𝑡−1
.

(11)

Note that the likelihood, 𝑝(y
𝑡
| x
𝑡
), depends only on the cur-

rent time 𝑡. The prior, 𝑝(x
𝑡
| y
𝑡−1
), represents state transition

from 𝑡 − 1 to 𝑡, assuming the first-order Markov process.
The dynamics of emotional state is embedded in the prior,
whereas the generative process of the EEG features from an
emotional state is modeled by the likelihood.The integral can
be approximately computed by a number of methods with
different model assumptions [89].

As this approximation relies on the recursion of the
posterior, inference of an emotional state from EEG signal
operates sequentially over time. This property enables our
model fit well to the purpose of tracking emotional states
continuously. In fact, the sequential Bayesian inferencemodel
(or called a Bayesian filter) has been widely adopted for many
neuroengineering studies (e.g., see [90–94]). Our model may
provide an effectiveway for online emotion aware computing,
especially when we need to keep track of changes in the
emotional state from EEG measurements continuously over
time, for instance, tracking emotional changes while a subject
is watching movies [95].

5. Discussion

In this paper, we overviewed the computational methods
used for emotional state estimation. We first briefly gave
an overview of the EEG correlates of emotion. Then, we
revisited the computational methods to extract EEG features
correlated with the continuous and discrete emotional states.
We also described the classification methods to discriminate
a particular emotional state from EEG features. Finally, we
proposed a computational approach based on the generative
modeling framework that may suit well to tracking the

emotional state over time. These computational methods for
emotional state estimation will serve as a key element for
practical online emotion recognition systems for affective
computing.

While affective computing has attracted attentions in the
HCI field with a promise to develop a novel user interface,
the development of the computational methods to estimate
the emotional state still requires further understanding of
emotion processes and their neurophysiologic substrates
[96]. Especially, the estimation of emotional states from
the human EEG has been posed only as a relatively simple
classification problem with a few discrete emotions. The
development of a real-time emotional state tracking system
would require a more rigorous definition of the emotional
state space suitable for estimation models.

Exploration of the EEG signatures of emotion that can
span a broad area of the emotional state space or represent a
number of different discrete emotions should continue. Such
investigations may need to overcome many existing chal-
lenges. In particular, finding such EEG signatures of emotion
that are invariant across individuals will be important for
general emotion recognition systems [69]. As the emotion-
related features have been mostly found in the frontal EEG
signal, online algorithms to overcome the eye movement
artifact should be continuously developed [97–99]. Also,
bringing the EEG-based emotion recognition system out to
the normal users would require a simple yet efficient EEG
sensor. A new EEG sensor should meet some criteria such
as stabilization of a signal to noise ratio (SNR), reduction of
noise elicited from hair, optimization of active dry electrodes,
development of multi-channel wireless communication, and
sustainment of the quality of EEG signals over a long
period [100–103]. Many previous studies have estimated
the emotional state by analyzing the EEG responding to
specific emotional stimuli. However, this emotion-induction
paradigm has a limitation that the EEG signals can be
modulated by the stimulus properties irrelevant to emotion
[21]. Hence, a computational model that can predict the
emotional state with various stimuli may be required for real-
world applications.

The computational methods to estimate the emotional
state may improve further with several advances in com-
putational models. First, a model that can associate the
dynamics of EEG signal with the dynamics of cognitive
emotional process will provide a basis for constructing
a novel emotional state estimation method. The current
methods only capture the static properties in the EEG
pattern in response to emotional stimuli. If a new model can
embrace the temporal dynamics of emotional information
processing in the human cognitive system and find EEG
correlates of those dynamical properties, it will estimate the
emotional state more precisely. Second, the quest for novel
EEG signatures of the emotional state should be pursued. In
particular, interactive properties between EEG signals such as
cross-frequency coupling and effective connectivity pattern
may be worth exploring to find novel EEG correlates of
emotion. Third, inference of emotion-related information
from high-dimensional and nonlinear EEG data poses an
interesting problem to develop and apply the state-of-the-art
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machine learning algorithms. So far, only a few basic learning
algorithms have been applied for emotional state estimation,
but it is likely that emotion recognition would benefit from
more advanced statistical learning and pattern recognition
algorithms. With these advances, we foresee that the com-
putational models of emotional estimation would play a key
role in future consumer devices. Before long, they can bring
serendipity to device users by estimating emotional states in
a natural and nonintrusive way.
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[99] S. Romero, M. A. Mañanas, and M. J. Barbanoj, “A comparative
study of automatic techniques for ocular artifact reduction in
spontaneous EEG signals based on clinical target variables: a
simulation case,” Computers in Biology and Medicine, vol. 38,
no. 3, pp. 348–360, 2008.

[100] Y. M. Chi, Y. T. Wang, Y. Wang, C. Maier, T. P. Jung, and G.
Cauwenberghs, “Dry and noncontact EEG sensors for mobile
brain-computer interfaces,” IEEE Trans Neural Syst Rehabil Eng,
vol. 20, no. 2, pp. 228–235, 2012.

[101] L. D. Liao, I. J. Wang, S. F. Chen, J. Y. Chang, and C. T. Lin,
“Design, fabrication and experimental validation of a novel dry-
contact sensor for measuring electroencephalography signals
without skin preparation,” Sensors, vol. 11, no. 6, pp. 5819–5834,
2011.

[102] Y. M. Chi, T. P. Jung, and G. Cauwenberghs, “Dry-contact and
noncontact biopotential electrodes: methodological review,”
IEEE Reviews in Biomedical Engineering, vol. 3, pp. 106–119,
2010.

[103] C. T. Lin, L. D. Liao, Y. H. Liu, I. J. Wang, B. S. Lin, and J. Y.
Chang, “Novel dry polymer foam electrodes for long-term EEG
measurement,” IEEE Transactions on Biomedical Engineering,
vol. 58, no. 5, pp. 1200–1207, 2011.

[104] A. H. Kemp, M. A. Gray, P. Eide, R. B. Silberstein, and P.
J. Nathan, “Steady-state visually evoked potential topography
during processing of emotional valence in healthy subjects,”
NeuroImage, vol. 17, no. 4, pp. 1684–1692, 2002.

[105] O. Pollatos, W. Kirsch, and R. Schandry, “On the relationship
between interoceptive awareness, emotional experience, and
brain processes,” Cognitive Brain Research, vol. 25, no. 3, pp.
948–962, 2005.

[106] T. Baumgartner, M. Esslen, and L. Jäncke, “From emotion
perception to emotion experience: emotions evoked by pictures
and classical music,” International Journal of Psychophysiology,
vol. 60, no. 1, pp. 34–43, 2006.

[107] M. Li and B. L. Lu, “Emotion classification based on gamma-
band EEG,” Conference Proceedings: IEEE Engineering in
Medicine and Biology Society, vol. 2009, pp. 1323–1326, 2009.

[108] C. Lithari, C. A. Frantzidis, C. Papadelis et al., “Are femalesmore
responsive to emotional stimuli? A neurophysiological study
across arousal and valence dimensions,” Brain Topography, vol.
23, no. 1, pp. 27–40, 2010.

[109] K. S. Park, H. Choi, K. J. Lee, J. Y. Lee, K. O. An, and E. J.
Kim, “Emotion recognition based on the asymmetric left and
right activation,” International Journal of Medicine and Medical
Sciences, vol. 3, no. 6, pp. 201–209, 2011.

[110] R.Degabriele, J. Lagopoulos, andG.Malhi, “Neural correlates of
emotional face processing in bipolar disorder: an event-related
potential study,” Journal of Affective Disorders, vol. 133, no. 1-2,
pp. 212–220, 2011.

[111] Y. P. Lin, C. H. Wang, T. P. Jung et al., “EEG-based emotion
recognition in music listening,” IEEE Transactions on Biomedi-
cal Engineering, vol. 57, no. 7, pp. 1798–1806, 2010.

[112] S. A. Hosseini, M. A. Khalilzadeh, M. B. Naghibi-Sistani, and
V. Niazmand, “Higher order spectra analysis of EEG signals in
emotional stress states,” in Proceedings of the 2nd International
Conference on Information Technology and Computer Science
(ITCS ’10), pp. 60–63, Kiev, Ukraine, July 2010.

[113] X. W. Wang, D. Nie, and B. L. Lu, “EEG-based emotion recog-
nition using frequency domain features and support vector
machines,” inNeural Information Processing, vol. 7062 ofLecture
Notes in Computer Science, pp. 734–743, 2011.

[114] K. Stelios and L. J. Hadjidimitriou, “Toward an EEG-based
recognition of music liking using time-frequency analysis,”
IEEE Transactions on Biomedical Engineering, vol. 59, no. 12, pp.
3498–3510, 2012.


