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In this work, a novel hybrid neuro-fuzzy classifier (HNFC) technique is proposed for producing more accuracy in input data
classification. The inputs are fuzzified using a generalized membership function. The fuzzification matrix helps to create
connectivity between input pattern and degree of membership to various classes in the dataset. According to that, the
classification process is performed for the input data. This novel method is applied for ten number of benchmark datasets.
During preprocessing, the missing data is replaced with the mean value. Then, the statistical correlation is applied for selecting
the important features from the dataset. After applying a data transformation technique, the values normalized. Initially, fuzzy
logic has been applied for the input dataset; then, the neural network is applied to measure the performance. The result of the
proposed method is evaluated with supervised classification techniques such as radial basis function neural network (RBFNN)
and adaptive neuro-fuzzy inference system (ANFIS). Classifier performance is evaluated by measures like accuracy and error
rate. From the investigation, the proposed approach provided 86.2% of classification accuracy for the breast cancer dataset
compared to other two approaches.

1. Introduction

Recently, data mining plays a major role in both industry
and research organizations due to the accessibility of the
huge volume of data and transforms these data into signifi-
cant information and knowledge. Mainly classification [1]
is the approach determining a classifier that compares and
predict a target class with an unidentified class label. During

the training phase, it follows two phases; a classifier is devel-
oped, as well as its relevant class variables. During the test
phase, a set of features are applied to approximate the level
of the classifier.

Before the data classification process, many preprocess-
ing procedures have been applied. The artificial neural net-
work (ANN) can do intellectual responsibilities like the
human brain. A popular trustworthy classification method
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from the NN is the multilayer backpropagation network [2].
And a radial basis function [3] is a dominant neural
approach that uses radial basis procedures. In that, neuron
parameters are considered for producing better
performance.

The artificial neural network (ANN) is a trendy data
modeling approach which can carry out intelligent tasks in
the same way as the human brain. ANN is well suitable for
high-precision and high-learning ability purpose. One of
the reliable approaches of data classification from the neural
network area is the multilayer perceptron backpropagation
network (MLPBPN) approach [4]. The output of this neural
network technique is the linear combination of radial basis
functions of inputs and neuron factors. RBFNNs helps for
classification, function approximation, and prediction of
time series applications.

The discrete-time linear dynamical systems [5] are used
to make a spirit for the approximation. It includes time-
varying systems by recurrent neural networks (RNNs). For
the subclass of linear time-invariant (LTI) systems, learning
a differential equation is the easiest feasible mathematical
incarnation. In the experimental results, the dynamics of
physical, biological, mechanical, or chemical procedures
are recognized from practical input-output traces. An adap-
tive proportional-integral controller is used along with the
proper gain variation according to the adaptive neuro-
fuzzy inference system (ANFIS) to promise high perfor-
mances of electric drive models with respect to the paramet-
ric differences.

In a fuzzy approach, the selected attributes are linked
with a degree of membership to various groups. Both NN
and fuzzy approaches are flexible to measure I/O correla-
tions. Fuzzy systems consider figurative as well as quality-
based data. The condition-oriented neuro-fuzzy approach
is categorized as the linguistic fuzzy modeling that deals with
the inference and fuzzy modeling technique like the Sugeno
model which considers accuracy [6].

The modular neural network is an incorporation of
smaller subcomplete neural network models [7]. Each model
functions separately on a subportion of larger size pattern
vectors. There are two ways of modularizing the neural net-
work, i.e., modularizing learning and modularizing struc-
ture. The modular learning for pattern classification of
hand-written Hindi alphabets is considered. Here, twenty-
four individual subneural networks have been considered
for first phase computing. Then, the collective outputs of
the first phase are applied as input to the global neural net-
work. Thus, the output of the second phase presents the
desired classification of the given large training set. Neural
networks of the first phase are trained locally for decom-
posed input patterns with gradient descent learning.
Updated weights of the first phase are mapped to the global
neural network. The global neural network is further trained
for the collective output patterns of the first phase comput-
ing. Here, decomposition and replication concepts have
been applied to perform the classification task [8].

A forecast time series model [9] is proposed which uses
generalized regression neural networks. The objective is to
take advantage of their inherent properties to produce fast

and accurate forecasts. The key modeling decisions are
involved in forecasting with generalized regression neural
networks. For every modeling decision, several strategies
are proposed. Each strategy is analyzed in terms of forecast
accuracy and computational time. Apart from the modeling
decisions, any successful time series forecasting methodol-
ogy has to be able to capture the seasonal and trend patterns
found in a time series. There are three different forecasting
models proposed such as the sigmoid function regression
model [9], the feedforward neural network, and the recur-
rent neural network model. The models were trained, com-
pared, and validated using gas consumption data.

A novel adaptive backstepping approach is used to man-
age the induction motor (IM) rotor resistance tracking issue.
The robustness of the device can be forecast with the exper-
imental results. The various parameters are determined such
as rotor resistance, sensitivity abd torque [10].

The genetic optimization algorithm [11] was applied to
train the neural networks, and the Levenberg-Marquardt
algorithm was applied to attain the parameters of the sig-
moid model. From the results, it shows that both neural net-
work models perform similarly and are superior to the
sigmoid model. The models were prepared for use in con-
junction with a weather forecasting service to generate day-
ahead or within-day forecasts and are relevant to any geo-
graphical area.

The risk management framework is used to represent
digitally the product of probability and consequence. In the
conventional approach, it has been increasingly discussed
to include strength of evidence combined with the tradi-
tional consequence and probability. It also focuses on
addressing these challenges and makes the risk expression
fully digital analysis and visualization. In the proposed
approach to address the challenges by forming a fuzzy logic
index based on fuzzy logic theory, this enables a transfer
from a linguistic variable to a digital one. Then, it can be
applied into a node size index to express its practical appli-
cation. It enables an improved risk visualization, risk man-
agement, and risk communication for system analysis,
towards risk digitalization.

The rule-based neuro-fuzzy approach [12] is split into
two categories: the linguistic fuzzy modeling which can focus
on interpretability, primarily the Mamdani model, and the
fuzzy modeling that concentrated on accuracy, primarily
the Sugeno model or Takagi-Sugeno-Kang (TSK) model.
This rule-based approach normally applies the concept of
the adaptive neural network. An adaptive network [13] is a
network of nodes and directed links that is functionally
equivalent to a fuzzy inference system.

In that, IF-THEN conditions are generated [14]. Individ-
ual nodes are attached with some significant parameters.
The Sugeno model fuzzy rule is represented as

IF a isM and b isN , THENZ = f a, bð Þ, ð1Þ

where M and N are the fuzzy sets in the rule and “Z” is an
output function.

This research work is arranged in this paper as follows:
Section 2 describes the interrelated concepts carried out in
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this research domain. Section 3 explains artificial neural net-
work classification approach functionalities Section 4
explains the architecture and learning method of the
RBFNN classifier. Section 5 explains the step by step proce-
dure for the proposed neuro-fuzzy approach. Section 6 dis-
cusses the performance analysis and results, and finally,
Section 7 concludes the paper.

2. Related Work

The fuzzy neural networks (FNN) are proposed, which have
the main objective of practicing numerical relationships and
practicing numerical and perception oriented information. It
can reduce error rate and find the connection weights as well
as bias values. A particle swarm optimization [2] is matched
with the backpropagation approach for training the dataset.
It produces maximum accuracy in prediction.

A novel hybrid forecasting approach [15] is based on the
firefly algorithm. In that, an algorithm optimizer is combined
with the adaptive neuro-fuzzy inference system for assessing
the fragmentation. The proposed hybrid models were evalu-
ated based on the statistical criteria such as coefficient of calcu-
lation and Nash and Sutcliffe. The adaptive neuro-fuzzy
inference system (ANFIS) [16] is proposed to determine axial
velocity and flow depth in a 90° sharp bend. The velocity and
flow depth data for five discharge rates are applied for training
and testing the models. In the ANFIS training phase, the two
algorithms are backpropagation and a hybrid of backpropaga-
tion and least squares. In the proposed model design, the grid
partitioning and subclustering methods are applied for gener-
ating the fuzzy inference system.

The fuzzy set theory [17] is used to describe an essential
involvement to fuzzy concepts in data mining techniques. It
manages interpretable and subjective information. A sliding
window approach is used to produce time series subse-
quences and then analyze the fuzzy item sets. It handles tem-
poral data to determine association rules.

The Adaptive Genetic Fuzzy System (AGFS) [18] is used
for optimizing rules in the healthcare data classification. The
main objective is to produce optimized rules from data.
Fuzzy set theory [19] in machine learning deals with tech-
niques for applying automated induction approaches and
pattern extraction from experiential data.

A novel fuzzy partition learning approach [20] is used
for applying artificial immune system methods for improv-
ing classification accuracy. An efficient CRM-data mining
framework [21] is used to establish tight customer relation-
ships and deal with the association between organizations
and customers in order to take a decision. With the develop-
ment of the database, the volume of data in the database
increases quickly and sensitive data is protected by applying
some security mechanism.

A genetic algorithm (GA) [22] is engaged to determine
the optimal selection of adaptive neuro-fuzzy inference sys-
tem (ANFIS) membership functions and the evolutionary
design of a generalized group method of data handling
(GMDH) structure for prediction of the side weir discharge
coefficient. The Singular Value Decomposition (SVD)
method is applied to measure the linear parameters of the

ANFIS classifier and linear coefficient vectors in GMDH.
The uncertainty investigation is also performed to measure
the quantitative performance of all types of models.

The multilayer perceptron network [23] is applied with
three types of training algorithms which include variable learn-
ing rate (MLP-GDX), resilient backpropagation (MLP-RP), and
Levenberg-Marquardt (MLPLM) [23, 24]. These approaches
were studied based on the ability to approximate the sediment
transport in a clean pipe. Model ANN that employs volumetric
sediment concentration (CV), median relative size of particles,
ratio of median diameter particle size to hydraulic radius, and
overall sediment friction factor as input parameters is more
accurate than the other existing models.

The subfeature selection of the attributes [24] uses fuzzy
methodologies to preserve privacy of the users in the distrib-
uted environment. An effective knowledge extraction
approach is proposed which can get knowledge in terms of
rules. At first, train the model and prune the decision tree
to take out optimized rules. A correlation-oriented feature
selection is introduced with a linear search approach for car-
diac arrhythmia disease classification.

An adaptive neuro-fuzzy-embedded subtractive cluster-
ing (ANFIS-SC) [25] approach is applied for evaluating the
abutment scour hole depth under clear water condition with
uniform bed sediments. The accuracy of the ANFIS-SC
approach is compared with that of two other ANFIS
approaches embedded with fuzzy C-mean clustering [26]
and grid partitioning. The decisive factors on the abutment
scour hole depth include the ratio of the average diameter
of particle size to abutment transverse length, excess Froude
number of the abutment, shape factor, and the ratio of
approach stream depth to abutment transverse length.

A genetic algorithm [27] is used for training neural net-
works, and analysis is made to compute the convergence
error rate in a neural network. A hybrid fuzzy min-max neu-
ral network [28] is proposed, which is suitable for outlier
detection. A hybrid algorithm with respect to a genetic algo-
rithm and particle swarm optimization technique can also be
applied to model a fuzzy neural network. A fuzzy wavelet
neural network (FWNN) technique is another approach
for obtaining better accuracy in classification.

The multilayer perceptron neural network [29] applies
the artificial neural network to pick up the essential charac-
teristics of the input layer of the network. A fuzzy radial
basis polynomial network design approach [30, 31] is suit-
able for granular information classification. An automated
healthcare classification technique [32] is introduced for
wavelet transformation (WT). It is helpful in the decision
support system for medical practitioners.

Neural network-based sentiment classification
approaches [33, 34] such as BPNN and probabilistic NN
approaches using different stages of word granularity are
compared as attributes.

3. ANFIS Architecture

Consider the fuzzy inference method has two input values
such as “x” and “y,” and “s” is the output. The Sugeno fuzzy
method has two if-then rule constraints shown in Figure 1:
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(i) If x has value X1 and y has value Y1, then s1 = p1x
+ q1y + r1

(ii) If x has value X2 and y has value Y2, then s2 = p2x
+ q2y + r2

Layer 1: all the nodes are represented in

O1,i = µXi xð Þ, for i = 1, 2⋯ ,

O1,i = µYi−2 xð Þ, for i = 3, 4⋯ ,
ð2Þ

where “x” or “y” is the input to the node “i” and Xi (or Yi−2)
is an associated node.

The generalized bell function is represented by

μXi xð Þ = 1
1 + x − nið Þ/lij j2m

, ð3Þ

where fli, mi, nig is the argument set. When parameters
are modified, the bell-shaped function varies consequently.
These parameters are called as premise parameters.

Layer 2: in that, all the nodes are fixed. Its output is
determined by finding a product of inputs. It is represented
by

O2,i =wi = μXi xð ÞμYi xð Þ, where i = 1, 2: ð4Þ

Layer 3: the node evaluates the proportion of the ith

rule’s weighted value to the summation of the value of all

weighted rules. It is denoted by

O3,i = �wi =
wi

w1 +w2
, i = 1, 2: ð5Þ

Layer 4: in that, all nodes are adaptive in nature. It is
denoted by

O4,i = �wif i = �wi lix +miy + nið Þ, ð6Þ

where �wi represents a normalized weighted value of the out-
put layer and fli,mi, nig is the consequential attribute set.

Layer 5: one node can measure the resultant value by the
sum of all inputs. It is denoted by

Output =O5,1 =〠
i

�wif i =
∑iwi f i
∑iwi

: ð7Þ

This network is the same as the Sugeno fuzzy model with
respect to functionality. But structure-wise, it is different.

4. Radial Basis Function Networks

4.1. Architecture and Learning Methods. The activation stage
in the hidden layer is denoted by

wi = Ri vð Þ = Ri
x − uik k
σi

� �
, i = 1, 2,⋯M, ð8Þ

where “v” represents the input vector, ui denotes the vector
with the similar measurement like v, M denotes the count,
and Rið:Þ is the ith radial basis function. Weighted value have
not been assigned among the input and the hidden layer
shown in Figure 2.

Normally, Ri ð:Þ represents the Gaussian function in

Ri vð Þ = exp −
v − uik k2
2σ2i

� �
: ð9Þ

The activation stage wi measured by the ith hidden layer
is greatest. In RBFN, the overall output is calculated as the
weighted sum of the outputs related to the attributes. It is
represented by

d vð Þ = 〠
H

i=1
ciwi =H〠

H

i=1
ciRi vð Þ, ð10Þ

X1

X2

Y1

Y2

∑

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

x
w1

w2ʹ

w1ʹ

w2

x,y

x,y

w1ʹs1

w2ʹs2

Output

y

Figure 1: ANFIS architecture layer-wise representation.
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Figure 2: Input, hidden, and output layer of the RBFNN model.
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where ci is represented as the connection weight between
the field and the output. It is denoted in

d vð Þ = ∑H
i=1ciwi

∑H
i=1wi

=
∑H

i=1ciRi vð Þ
∑H

i=1Ri vð Þ
: ð11Þ

Both FIS and RBFN have a procedure whereby it can
generate a center-weighted radical-shaped function. In the

following constraints, an RBFN and a FIS have equal
functionality:

(i) Both RBFN and FIS utilize the identical aggregation
approach such as weighted sum and weighted
average

(ii) The receptive field unit’s count in the RBFN is
equivalent to the if-then rule condition in the fuzzy
approach

.

.

.

Y1

Y2

YJ

MLPBPN
Input vector

Apply
fuzzy
logic

Apply to
ANN

J-dimensional
pattern

I × J dimensional vector

Classifier

Apply
defuzzification

Mf1,1 (Y1)
Mf1,2 (Y1)

.

.

.
mf1,I (Y1)

.

.

.
MfJ,1 (YJ)
MfJ ,2 (YJ)

.

.

.
MfJ,I (YJ)

Figure 3: Proposed neuro-fuzzy classification approach.

j∑
m

Output1

Output2

Outputs

.

.

Weight1,n

Weight

Weight2,n

Weightm,n

Biasn

Weighted sumInput (previous
layer outputs)

1 + e–Netm

1Outputn =

Netn = ∑ weightm,n × Outputm + biasnm

Figure 4: MLPBPN architecture layer-wise procedure.
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Figure 5: Detailed steps for the development of the proposed system.
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(iii) Subsequent radial basis function and fuzzy rule rep-
resentation have similar response to the input

5. Proposed Method

The proposed approach can perform the selected features
from a set of input prototypes, fuzzifies the equivalent proto-
type measures, and applies a membership function of each
prototype in classes. Consider the input patterns (N), set of
classes (M), and attributes (k). The proposed classification
approach is shown in Figure 3.

The proposed technique contains three steps:
Step 1. In this fuzzification stage, a matrix order J × I is

produced that contains the membership degree of J patterns.
Every data element in this matrix is denoted as mf m,n ðymÞ,
where ym represents the mth input pattern vector value,
where m = 1, 2,⋯, J and n = 1, 2,⋯, I. The membership
function is represented as

Mfm,n ðymÞ =membership pattern from classm to n,
where the mth pattern ym = xm1, xm2,⋯, xmk:

The input pattern vector “y” is represented by

y = y1, y2,⋯yJ
� �T

: ð12Þ

A generalized bell-shaped membership function is used
which is based on three parameters such as p, q, and r as
given by

mf y : p, q, rð Þ = 1
1 + y − rð Þ/pj j2q : ð13Þ

The resultant membership of the pattern vector matrix y
is denoted by

MF yð Þ =

mf 1,1 y1ð Þ mf 1,2 y1ð Þ mf 1,3 y1ð Þ ⋯ mf 1,I y1ð Þ
mf 2,1 y2ð Þ mf 2,2 y2ð Þ mf 2,3 y2ð Þ ⋯ mf 2,I y2ð Þ
mf 3,1 y3ð Þ mf 3,2 y3ð Þ mf 3,3 y3ð Þ ⋯ mf 3,I y3ð Þ

⋯ ⋯ ⋯ ⋯ ⋯

mf J ,1 yJ
� �

mf J ,2 yJ
� �

mf J ,3 yJ
� �

⋯ mf J ,I yJ
� �

2
666666664

3
777777775
,

ð14Þ

where mf m,n ðymÞ is the member of mth pattern of input
values “y” where m = 1, 2,⋯, J .

Step 2. In this step, MLPBPN is constructed. It converts
the matrix values into an M ×N vector by transposing it.
This converted vector value is applied as input to the
classifier.

A distinctive MLPBPN approach has a one input and
output layer and a minimum one hidden layer. It demon-
strates two types of procedures: feedforward and backpropa-
gation. The nodes are associated in a feedforward approach.
The input nodes are linked to the hidden nodes, and the hid-
den elements are entirely related to the output layer ele-
ments. The input and hidden nodes are linked with the
weighted value. All weighted values of nodes are preferred
arbitrarily shown in Figure 4.

In the backpropagation method, the happening of errors
and the learning process such as revising the weighted value
and biases are transmitted in the reverse route beginning
from the output level to the internal values. This procedure
is replicated many times. The main objective is to reduce
the root-mean-square error among the forecast and actual
values up to completion of the preparation process or the
final condition attained [35–39].

The predicted output of element “n” is represented by

Outputn =
1

1 + e−Netm
, ð15Þ

where Netn is the total input of element “n” in this
model. The total input value is represented as a sum of the
connection strengths and the result from the previous stage.
It is represented in

Netn =〠
m

weightm,n × Outputm + biasn, ð16Þ

where weightm,n is the connection strength of the con-
nection from element “m” in the preceding stage to unit “n
.” Outputm is the output of element “m” from the previous
stage, and biasm is the bias of the element.

The total of squared error values from the predictable
result is measured by

Error =
1
2
〠
n

Targetn −Outputnð Þ2: ð17Þ

The weighted value of the backpropagation network
model is changed to decrease this error. It is denoted in

ΔWeight∞−
∂Error
∂Weight

: ð18Þ

The final output stage “n” with a weight value, weightm,n,

Table 1: List of features of the breast cancer dataset.

S. no List of attributes Type of data

1 Age Numeric

2 Mefalsepause Numeric

3 Tumor size Numeric

4 Inv-falsedes Numeric

5 Falsede-caps Numeric

6 Deg-malig Numeric

7 Breast quad Numeric

8 Irradiat Numeric

9 Class Categorical
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is determined by

ΔWeightm,n∞−
∂Error

∂Weightm,n
,

ΔWeightm,n = −η
∂Error

∂Outputn
×
∂Outputn
∂Netn

×
∂Netn

∂Weightm,n
,

ð19Þ

where η denotes the learning rate. Here, the weight
updating formula is represented as

Weightm,n =Weightm,n + ΔWeightm,n: ð20Þ

Table 2: Detailed performance comparison for three classifiers.

Datasets Classifiers Acc (%) TP rate/recall (%) FP rate (%) Precision (%) F-measure (%) TT (sec)

Breast cancer

HNFC 86.2 85.2 14.8 85.5 85.2 1521.2

RBFNN 83.3 82.3 17.7 82.8 82.3 1821.5

ANFIS 82.2 80.5 19.5 82.1 80.5 1712.2

Diabetes

HNFC 85.4 83.5 16.5 82.6 83.5 1514.6

RBFNN 80.4 78.6 21.4 79.6 78.6 1815.2

ANFIS 79.2 77.5 22.5 78.5 77.5 1945.2

E. coli

HNFC 75.9 74.2 25.3 76.5 74.2 1612.2

RBFNN 73.6 72.8 27.2 71.6 72.8 1812.2

ANFIS 72.8 71.5 28.5 72.1 71.5 1921.2

Liver disorder

HNFC 78.8 77.8 22.2 77.8 77.8 1621.2

RBFNN 76.8 74.5 25.5 74.5 74.5 1752.6

ANFIS 70.2 71.5 28.5 71.5 71.5 1721.6

Primary tumor

HNFC 80.4 80.2 19.8 78.5 80.2 1825.5

RBFNN 78.6 77.3 22.7 75.6 77.3 2112.5

ANFIS 77.6 75.8 24.2 72.8 75.8 2512.6

Mushroom

HNFC 92.5 91.1 8.9 90.5 91.1 1321.2

RBFNN 90.6 88.5 11.5 89.5 88.5 1521.9

ANFIS 88.9 87.8 12.2 87.2 87.8 1569.3

Ionosphere

HNFC 95.5 94.1 5.9 93.5 94.1 1125.6

RBFNN 93.6 92.5 7.5 91.3 92.5 1253.2

ANFIS 92.2 90.1 9.9 89.6 90.1 1245.6

Credit-g

HNFC 96.8 94.6 5.4 89.5 94.6 1325.2

RBFNN 93.8 92.2 7.8 90.6 92.2 1452.2

ANFIS 91.8 90.8 9.2 89.9 90.8 1441.3

Anneal-org

HNFC 95.9 94.8 5.2 93.5 94.8 1221.2

RBFNN 93.8 92.5 7.5 91.8 92.5 1362.3

ANFIS 91.5 90.6 9.4 90.6 90.6 1401.2

Iris

HNFC 96.8 95.6 4.4 95.2 95.6 1323.1

RBFNN 94.2 94.1 5.9 93.6 94.1 1391.2

ANFIS 93.5 92.5 7.5 90.8 92.5 1423.2

0
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Figure 6: Performance measures for the breast cancer dataset.
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Similarly, bias updation is performed by

biasn = biasn + Δbiasn: ð21Þ

In the MLPBPN approach, only one hidden layer is used.
The neural network approach uses gradient descent with
impetus as supervised conditions. Both hidden and last
layers follow the tan sigmoidal transfer function.

The input layer nodes are equivalent to the amount of
input features in the datasets. In the same way, the count
of resultant nodes is equal to the quantity of class labels.
The elements in the hidden layer are denoted as L in

L = Input featurecount + Total classcountð Þ ∗ 2
3
: ð22Þ

Step 3. In this defuzzification stage, the proposed classi-
fier classifies and defuzzifies the activation result. The input
prototype is selected to the class “n” with the highest mem-
bership label.

5.1. Detailed Procedure

(Step 1) Apply data cleaning in which preprocessing of
data is performed by eliminating or decreasing
noise. The attribute missing values are replaced
by its mean value.

(Step 2) Apply data selection in which statistical correla-
tion analysis is applied to remove duplicate fea-
tures, and then, only the relevant features can
be collected.

(Step 3) Apply transformation of data in which normal-
ization is applied to the dataset. The neural
network-based technique involves transforma-
tion of values ranging from −1.0 to +1.0.

(Step 4) The data is separated into two subsets, training
and test datasets, after preprocessing.

(Step 5) In the training stage, the data is applied to the
proposed system for creating a prototype. It
also implemented for both RBFNN and ANFIS
approaches for developing other classifiers.

(Step 6) In the testing stage, three classifiers such as
NFS, RBFNN, and ANFIS are applied for calcu-
lating its performance.

(Step 7) The performance measures of these models are
compared.

The detailed procedure is shown in Figure 5.

6. Results and Analysis

In our experiment, three classification approaches such as
HNFC, RBFNN, and ANFIS are applied on benchmark data-
sets, namely, primary tumor, breast cancer, E. coli, mush-
room, diabetes, ionosphere, liver disorder, Credit-g,
Anneal-org, and iris. From the machine learning repository

using the R tool, there are 50,000 records that are created
for each dataset and compare its performance. In the breast
cancer dataset, it has ten numbers of features such as age,
mefalsepause, tumor size, inv-falsedes, falsede-caps, deg-
malig, breast, breast-quad, and irradiat. All the features are
multivariate categorical type of attributes.

A performance comparison has been done by consider-
ing various metrics such as accuracy, TP-rate, FP-rate, preci-
sion, F-measure, and root mean square error (RMSE). From
the experimental outcomes given in Table 1, for the above
specified datasets, the proposed HNFC method has pro-
duced better classification accuracy compared to other two
approaches such as RBFNN and ANFIS.

6.1. Performance Measures. The performances of the classi-
fiers are evaluated as per the following metrics:

6.1.1. Confusion Matrix. The confusion matrix is an illustra-
tion which gives the detailed visualization of the classification
performance. Each column represents the records in a predicted
variable. The row denotes the records in an actual variable.

(i) True positive is a count of correct and positively
classified objects

(ii) False positive is a count of incorrectly classified
instances which are positive

(iii) False negative is a count of incorrectly classified
instances which are negative

(iv) True negative is a count of correctly classified
objects that are negative

Accuracy of the correctly classified instance is deter-
mined by

accuracy = tp + tn
tp + tn + fp + fn

: ð23Þ
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datasets.
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The relation of the forecast positive objects which are
accurate is determined by

Precision =
tp

tp + fp
: ð24Þ

The relation of negative objects which are incorrectly
classified as positive is represented by

FP‐rate = fp
fp + tn

: ð25Þ

The relation of positive objects which are suitably classi-
fied is calculated by

recall = tp‐rate = tp
tp + tn

: ð26Þ

In some situations, maximum recall value may be
important. To increase the performance measures, both pre-
cision recall values are represented by

F‐measure =
2 ∗ precision ∗ recall
precision + recall

: ð27Þ

From Table 2, while the breast cancer dataset is taken as
input and applied to existing classifiers such as RBFNN and
ANFIS, it produces the accuracy of 83.3% and 82.2%, respec-
tively. But at the same time, for the proposed hybrid neuro-
fuzzy classification, it gives 86.2%. It is comparatively higher
than that of the other two approaches. Root mean square
error is also low (0.323) for the proposed system. Time com-
plexity is high compared to that of other decision tree classi-
fication approaches. But this drawback can be overcome by
means of producing maximum accuracy in classifications.
The existing approaches with the proposed algorithms have

been applied for other datasets such as diabetes, liver disor-
der, E. coli, primary tumor, mushroom, ionosphere, Credit-
g, Anneal-org, and iris. The performance comparison has
been shown in Figures 6 and 7.

Figure 8 denotes the various features of the breast cancer
dataset and relationship among various data items in the
dataset. Red color circle denotes the recurrence events, and
blue color denotes no recurrent events in the dataset.

From the above experimental graphs, for the breast can-
cer dataset, a number of instances are distributed and the
class labels are indicated in red and blue color circle format.
With respect to various attribute values, the distribution
ranges and values will be varied. The chart representation
indicates the accuracy for the various existing algorithms
such as the radial basis function neural network and adap-
tive network-based fuzzy inference system; the proposed
hybrid neuro-fuzzy classifier provides better classification
accuracy for the various input data such as breast cancer,
diabetes, E. coli, liver disorder, primary tumor, mushroom,
ionosphere, Credit-g, Anneal-org, and iris.

7. Conclusion

In this paper, we compared the proposed HNFC approach
with RBFNN and ANFIS classification. The classifiers were
experimented with ten UCI repository datasets. From the
experimental outcome, the proposed classifier produces
86.2% better performance in classification of datasets com-
pared to the existing algorithms. Similarly, this classifier pro-
vides better performance in classifying the input data. And it
also provides a valuable contribution to the performance
improvement of conventional classification approaches in
the data mining research field. Still there is a research open-
ing to apply other classifiers to predict the disease based the
medical records.

Figure 8: Distribution and recurrent relationship among features in the dataset.
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Impulse indicator saturation is a popular method for outlier detection in time series modeling, which outperforms the least
trimmed squares (LTS), M-estimator, and MM-estimator. However, using the IIS method for outlier detection in cross-
sectional analysis has remained unexplored. In this paper, we probe the feasibility of the IIS method for cross-sectional data.
Meanwhile, we are interested in forecasting performance and covariate selection in the presence of outliers. IIS method uses
Autometrics techniques to estimate the covariates and outlier as the number of covariates P > n observations. Besides
Autometrics, regularization techniques are a well-known method for covariate selection and forecasting in high-dimensional
analysis. However, the efficiency of regularization techniques for the IIS method has remained unexplored. For this purpose,
we explore the efficiency of regularization techniques for out-of-sample forecast in the presence of outliers with 6 and 4
standard deviations (SD) and orthogonal covariates. The simulation results indicate that SCAD and MCP outperform in
forecasting and covariate selection with 4 SD (20% and 5% outliers) compared to Autometrics. However, LASSO and
AdaLASSO select more covariates than SCAD and MCP and possess higher RMSE. Overall, regularization techniques possess
the least RMSE than Autometrics, as Autometrics possesses the least average gauge at the cost of the least average potency. We
use COVID-19 cross-sectional data collected from 1 July 2021 to 30 September 2021 for real data analysis. The SCAD and
MCP select CRP level, gender, and other comorbidities as an important predictor of hospital stay with the least out-of-sample
RMSE of 7.45 and 7.50, respectively.

1. Introduction

The ordinary least squares (OLS) approach has been a
widely chosen technique among the numerous available
methods in regression analysis because it is computationally
straightforward and possesses the best linear unbiased esti-
mate. However, it possesses strong assumptions on the dis-
tribution of error (ε) termed as ε ~N (0, σ), which is
usually violated while dealing with real data analysis. The
leading cause of distortion is outliers, which violates the nor-

mality assumption of residuals. Outlying data in the depen-
dent and regressor variables pose a risk to least squares
regression since they might negatively impact the estimate
if they go unreported. Even cross-sectional data with high
quality contain outliers; however, it is rare in time series eco-
nomic data (because of the differencing variables) [1].

Robust regression techniques are used significantly in
the literature of outlier presences. Langford and Lewis [2]
well defined an outlier as data points that look inconsistent
with the rest of the data. Such influential points are
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frequently concealed from the user since they do not always
appear in the standard least-squares residual graph [3].
Zaman et al. [1] indicate that the OLS residuals are ineffec-
tive in finding outliers in small and big sample sizes, whereas
Rousseeuw and Leroy [4] demonstrate several real data sets
in which the OLS residuals miss to detect any outliers
despite significant outliers. However, new statistical proce-
dures have been proposed that are less susceptible to out-
liers; Rousseeuw [5] introduced the primary feasible robust
regression estimators (least median squares (LMS), least
trimmed squares (LTS), and variations) that perform cor-
rectly even when a high number of outliers are present.
Huber M estimation, MM estimation, least absolute value
method (LAV), and S estimation are examples of robust
approaches [6–8]. A conspicuous technique is established
on Huber’s M-estimators, which offer robustness in location
parameters. Regrettably, generalizations to regression
models miss the mark to accomplish robustness. As Rous-
seeuw [5] illustrates, regression M-estimators likewise have
a 0% breakdown value. The generalization of MM-
estimators likewise fails to attain large breakdown values. A
direct method to robust regression is to use LTS analysis in
huge residuals. The LTS analysis discards outlying observa-
tions and then can run a standard OLS regression, proposed
in Rousseeuw [5]. However, removing too many data points
in the case of too many outlier observations turns the risk of
the final regression model not reflecting the association that
the econometrician wants to assess [1].

On the contrary, Doornik [9] and Johansen and Nielsen
[10] illustrate the impulse indicator saturation (IIS) as a
robust estimator. Similarly, Johansen and Nielsen [10]
describe and demonstrate that a split-sample estimator for
the indicator-saturated regression model is a one-step M-
estimator that is iterated twice. Doornik [9] illustrates that
robustified least squares and indicator saturation are more
efficient than least trimmed squares. When the covariates
are static and only outliers occur in the dependent variable’s
data, M estimation works effectively. The impulse indicator
saturation method was initially designed to detect unidenti-
fied numbers of outliers with indefinite magnitudes at uncer-
tain points in the sample, together with the start and end of
observations [11]. However, the step indicator saturation
(SIS) method is a modified version of IIS techniques for mul-
tiple break detection. Indicator saturation (IS) is used as a
border term that detects outlier (via IIS) and multiple break
shifts (via SIS) and simultaneously estimates the underlying
modeling [9–13].

As the IS method possesses the number of candidates
regressor more than the number of data points, the OLS esti-
mates fail to estimate the thriving model. However, Auto-
metrics handles such phenomena efficiently regardless of
candidate regressors exceeding the number of observations;
due to this reason, IS method is feasible to estimate via Auto-
metrics. Autometrics uses extending and contracting
multiple-path search algorithms with user-specified signifi-
cance levels through the model selection process. However,
the choice of the significance level is the trade-off between
the irrelevant and relevant dummy indicators or regressors,
with tight significance level (0.001) significant variable omit-

ted in the final model whereas, with 0.05 significance level,
the model consists of irrelevant regressors [13–15].

Other than Autometrics, regularization techniques are
emerging techniques when the number of covariates excel
the number of data points (observations); some of these
popular techniques are Least Absolute Subset Selection
Operator (LASSO), Adaptive LASSO, Smoothly Clipped
Absolute Deviations (SCAD), and Minimax Concave Pen-
alty (MCP) [16–19]. However, every few studies compare
the computational efficiencies of Autometrics with regulari-
zation techniques [20] [21–23] for covariate selection and
forecasting under the normality assumption. They do not
consider outliers with the IIS setup. As it is challenging to
choose the level of significance for thriving models in Auto-
metrics, the regularization techniques can be used as an
alternative model selection method in this case. Up to date,
the prevailing studies do not compare the computational
efficiency of regularization techniques with Autometrics in
cross-sectional analysis with outlier in IIS setup. This study
is aimed at analyzing the computational efficiency of regu-
larization techniques with IIS setup in cross-sectional phe-
nomena. The computational proficiency of these methods
is evaluated with potency, gauge, and out-of-sample Root
Mean Square Error (RMSE) in the simulation experiment.
For the simulation experiment, the Data Generating Process
(DGP), we opt with the orthogonal regressors and possess
three scenarios 5%, 10%, and 20% outlying observations
with 4 and 6 standard deviation (SD). Meanwhile, in DGP,
we intake orthogonal cases for this purpose we use some
well-known orthogonal techniques of regularization like
LASSO, Adaptive LASSO, Smoothly Clipped Absolute Devi-
ation (SCAD), and Minimax Concave Penalty (MCP)
[16–19].

Outlier detection is a rapidly developing procedure in
the healthcare and medical data industries, and it is a signif-
icant source of concern. Hauskrecht et al. [24] study data-
driven outlier-based surveillance and forewarning system
that uses data from former patient cases. Wilson et al. [25]
used the outlier identification method for hypoglycemia
safety in patients, calculating a flair outlier value within a
year, comparator group, and A1c threshold while consider-
ing at hazard population proportions. Jyothi et al. [26] used
outlier detection in healthcare data, a key source of concern
for health insurers. The development of a Supervised Outlier
Detection Approach in Healthcare Claims (SODAC) and
carried out in two parts. Noma et al. [27] offer optimal effect
measures for network meta-analysis models with mislaid
outcomes and appropriate degree of freedom adjustments.
The real data application of the IIS method in healthcare
and medicine with outliers for cross-sectional analysis does
not exist in the current literature [24–30]. To probe the effi-
cacy of the IIS method estimated via regularization tech-
niques for real data techniques, we use COVID-19 cross-
sectional surveillance data, which has been collected from
July 2021 to 30 September 2021 in Isolation Hospital and
Infectious Treatment Center (IHITC) Islamabad. We aim
to analyze the factors associated with prolonging the length
of hospital stay of COVID-19 patients in the capital territory
of Islamabad.
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2. Outlier Detection and Model
Selection Techniques

2.1. Impulse Indicator Saturation. Impulse indicator satura-
tion is a popular method of outlier detection as it already
dominates the existing outlier selection techniques like least
trimmed squares (LTS), M-estimator, and MM-estimator [9,
10]. Usually, in multivariate regression, we assume that error
is normally distributed, which is usually violated in real data
analysis. In the equation below, we assume that error is not
normally distrusted, and α is the intercept of the model, y
is the continuous dependent variable, and xji is the orthogo-
nal regressors, where j = 1, 2, 3,⋯, k number of orthogonal
regressors and i = 1, 2, 3,⋯, n observations.

yi = α + 〠
k

j=1
βjxji + εi: ð1Þ

As in equation (1), the error is not normally distributed
due to the presence of an outlier; in this case, the IIS method
introduces an impulse dummy indicator to each of the data
points, and the above equation would be

yi = α + 〠
k

j=1
βjxji + 〠

n

i=1
γiI + εi, ð2Þ

where

I =

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋱ 0
⋮ ⋮ ⋮ 1 ⋮

0 0 0 0 1

2666666664

3777777775
: ð3Þ

Here, I is an identity matrix of each corresponding
observation in the above equation. I1′ = ð1, 0, 0,⋯⋯ ::, 0Þ,
I2′ = ð0, 1, 0, 0,⋯⋯ , 0Þ, and Ii′= ð0, 0, 0,⋯⋯ :,1Þ. The
OLS estimate is not feasible to estimate the above General-
ized Unrestricted Model (GUM). Estimating the above equa-
tion is possible because Autometrics (created on general-to-
specific modeling) is used to detect the outlier and estimate
the model instantaneously. In the general-to-specific meth-
odology, each observation would have one dummy variable,
and additional exogenous variables can be considered that
possibly distress the dependent variable [10, 12].

2.2. Model Selection Methods. There are two main fields of
model selection methods when covariates are higher than
the number of data points: the regularization technique
and the classical (general-to-specific, Autometrics)
approach. The classical method (Autometrics) is initiated
by a saturated model and uses the multipath search process
to eliminate insignificant covariates. The model selection is
primarily dependent on the preset significance threshold.
On the other hand, the regularization approach applies spar-

sity to the p-dimensional vector of parameters, resulting in
numerous parameters of covariates equal to zero. This
approach resolves the issues that arise in high dimensional-
ity. We go through each of these methods further; however,
we only looked at orthogonal regularization approaches.

2.2.1. Autometrics. The general-to-specific model procedure,
presented by Hoover et al. [31], combines several compo-
nents of Krolzig and Hendry [32]. PcGets is a second-
generation extension of general-to-specific method; it
extends and clarifies Hoover and Perez’s methodology [32,
33]. Modifying the existing techniques, Doornik [9] intro-
duced Autometrics which is based on the same concept of
general to specialized (gets) modeling. Autometrics is a
third-generation algorithm based on the same concept of
PcGets.

Autometrics employs a tree path search that includes
multistep simplifications along several pathways. The
GUM contains all covariates at first and estimates them
using the OLS technique, removing statistically insignificant
covariates; the compact model’s reliability is tested at each
individual stage to guarantee consistency with the test diag-
nostics. Autometrics employs a tree-path exploration strat-
egy that involves multiple multistep simplifications. The
ultimate models are constructed that used a tree-path
approach and assessed using screening procedures; the
parameters are automatically eliminated if the parameter
estimates are statistically irrelevant. Autometrics retests their
union once a high number of terminal models are discov-
ered. A novel GUM is formed once the “surviving” terminal
models are merged, permitting another tree-path search rep-
etition. The whole search procedure is completed by reexa-
mining the terminal models and their consolidations. If a
large number of models pass all of the tests, the final deci-
sion is made on specified information criteria.

The test diagnostics are being used to ensure the simple
models, whereas inclusive tests are used to resolve several
terminal models. Epprecht et al. [20] argue that Autometrics
is a kind of black box technique. While developing modeling
techniques, the user can select among 1-cut and tight signif-
icance level and nominal significance level. The multipath
technique in Autometrics identifies multiple breaks/outliers
more effectively and has reduced estimator variance [34].
The multipath technique eliminates path reliance by
employing a tree structure and alike stepwise sequential
backward, an integral function of the gets package in R soft-
ware [15].

2.2.2. Regularization Techniques. Other than Autometrics,
regularization approaches manage saturated models with
irrelevant variables even if the amount of regressors excel
the quantity of data points (observations), shrinking the
irrelevant parameters to zero with a nearly biased estimate.
The Least Absolute Shrinkage and Selection Operator
(LASSO) was introduced by Tibshirani [17]. It is a standard
estimation method in a linear regression framework due to
its decreased computing cost. The LASSO does not hold an
oracle property; Zou [19] proposed Adaptive LASSO. The
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regularization penalty is defined in

bγ j = argminbγ 〠n
i=1

yi − α − 〠
k

j=1
βjxji − γiI

 !
+ λp γj

��� ���� �
: ð4Þ

In the above equation, y is a continuous dependent var-
iable, x is an orthogonal covariate, and I is the impulse
dummy for outliers. The following regularization techniques
contemplate different choices for the penalty function,
which is summarized in Table 1.

Lassoð Þpλ j
γj

��� ���� �
= λj γj j: ð5Þ

The “L1 penalty” for the LASSO estimator is the subse-
quent term in the preceding equation, and it primes to a
sparse solution with a very precise set of parameters exactly
equivalent to zero through a particular level of bias. The
choice of λ determines the quantity of reduction, and it var-
ies from 0 < λ <∞.

Zou [19] revealed that the LASSO method violated the
oracle property and proposed the Adaptive LASSO as a
modest and effective alternative. On the other hand, the
coefficients in LASSO are altogether penalized similarly in
the “L1 penalty.” Nevertheless, in the AdaLASSO method,
individual parameter is assigned its own weight. Zou [19]
demonstrated that if the weights are data-dependent and
correctly set, the AdaLASSO may have the best outcomes
and exhibit the oracle property.

Adaptive Lassoð Þ pλ j
γj

��� ���� �
= λ jwj γj j, wherewj = bγ j

��� ���−τ:
ð6Þ

ŵj = 1/jbγ∗
j jτ, τ > 0, and bγ∗

j is a preliminary parameter
estimate. The weights of irrelevant parameters approach
infinity as the sample increases, whereas relevant parameters
approach a finite constant. Zou [19] suggested using the OLS
technique to estimate bγ∗

j . On the other hand, the OLS
approach does not work as soon as the amount of candidate
regressors excel the quantity of data points (observations). A
ridge estimate might be used as a preliminary estimator in
this scenario.

Fan and Li [16] introduced a new approach that satisfied
the condition of unbiased, sparsity, and continuity known as
Smoothly Clipped Absolute Deviation (SCAD).

SCAD = λ

γj j if γj j ≤ λ,

−
γ2 − 2aλ γj j + λ2
� �

2 a + 1ð Þλ if λ < γj j ≤ aλ and

1
2 a + 1ð Þλ if γj j ≥ aλ

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
:

ð7Þ

Distinct to LASSO, SCAD uses two tuning parameters α
and λ; Pðγ ∣ λ, αÞ of SCAD method is known as folded con-

cave penalty that depends on λ in a nonmultiplicative way;
hence, λPðαÞ = Pðα ∣ λÞ. In addition, the tuning parameter
ðλÞ affects the penalty’s concavity. The objective function’s
intensification is determined by λ and α, λ being chosen
via cross-validation and α is fixed equal to 3.7 [16].

Zhang [18] proposed the Minimax Concave Penalty
(MCP), a nonconvex regularization approach that uses
spares zone up to a specified choice of threshold to produce
an unbiased estimate.

MCP = λ
λ −

γj j
α

sign γð Þ if γj j ≤ αλ

�
0 if γj j > αλ

8><>:
9>=>;: ð8Þ

MCP employs the pjðjγjj ; λ ; αÞ regularization pathway,
which is constructed on a family of nonconvex penalty func-
tions through two tuning parameters λ and α, whereas α is
constant and λ is chosen by cross-validation. The λ tuning
parameter regulates the degree of penalty shrinking and con-
cavity. Because the maximum concavity is minimized, MCP
minimizes the convexity of the spares to a greater extent
[18]. SCAD and MCP estimates fall to the folded concave
penalty family since the PðÞ penalty function is neither con-
vex nor concave.

2.2.3. Selection Criteria for Tuning Parameter. The selection
of tuning parameter is critical since it determines the com-
plication of the chosen model. The selection of the suitable
tuning parameters results in a compact model with accurate
forecast performance. In order to achieve prediction opti-
mality, the tuning parameter is commonly selected by a
cross-validation technique. The aim is to retrieve the pri-
mary collection of sparse covariates. Covariate selection typ-
ically needs a more substantial penalty parameter than
optimum prediction [35]. The information criteria like
Akaike Information Criteria (AIC) or Bayesian Information
Criteria (BIC) are used as another approach for penalizing
the likelihood through the degrees of freedom of the fitted
model. Degrees of freedom are frequently used to measure
the complication of a model fit, and we can use them to

Table 1: Regularization penalties.

Method Penalty function

LASSO P :ð Þ = 〠
k

j=1
pλ j

γj

��� ���� �

AdaLASSO P :ð Þ = λ〠
k

j=1
ŵj γj

��� ���
1

SCAD P :ð Þ = 〠
k

j=1
pj γj

��� ��� ; λ ; α� �

MCP P :ð Þ = 〠
k

j=1
pj γj

��� ��� ; λ ; α� �
pλ j

ð:Þ is a function denoted as penalty function, and λ j is the function
parameter.
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decide how much regularization to utilize. Meanwhile, in
terms of covariate selection and out-of-sample forecast,
WLAdaLASSO with a BIC-based tuning parameter pos-
sesses optimal results [23, 36].

BIC = n log bσ2
� �

+ log nð Þ + df ŷð Þ, ð9Þ

whereas bσ2 = n−1∑n
i=1ðyi − ŷiÞ2 and df ̂ðyÞ signifies the

degrees of freedom of the fitted model. The BIC-based tun-
ing parameter, on the other hand, is superior to cross-
validation for covariate selection, although there is no theo-
retical justification [35]. Henceforth, the BIC-based tuning
parameter is used for outlier and covariate selection in sim-
ulation and real data analysis.

2.3. Theoretical Assessment. The study is aimed at evaluating
the out-of-sample forecasting performance of regularization
methods in the presence of an outlier in the IIS setup. How-
ever, other than out-of-sample RMSE, we also emphasize the
average gauge and potency in the simulation study. Gauge is
defined as the empirical null retention frequency of how
insignificant variables/outliers are reserved, whereas potency
is identified as correct covariate/outlier identifications. The
assessment of regularization methods and Automatics was
evaluated via an accurate zero identification taken as
potency and improper zero identification denoted as gauge
[37]. If the considered techniques appropriately classify the
model, the evaluations of the subsequent parameters should
be expected:

(1) The gauge is getting close to the significance level
(0.05) or the tight significance level (0.01 or 0.001)

E
ckirr
kirr

 !
⟶ α: ð10Þ

(2) When estimating techniques are used to estimate the
exact model efficiently, potency approaches 1

E
ckrel
krel

 !
⟶ 1: ð11Þ

For out-of-sample RMSE, we randomly trained our
model on 90% of observations, and 10% of observations
were discarded to test the model’s accuracy in terms of
RMSE [23]. The RMSE of regularization techniques, even
in an outlier, is expected to be smaller than Autometrics.
However, LASSO will retain more regressor variables than
SCAD, MCP, and Autometrics.

3. Data Generating Process and Simulation
Experiment Result

The Data Generating Process (DG) in this section has opted
from [9] where the models consist of irrelevant regressors

Table 2: Simulated results with different percentages of outliers
with 6 SD.

20% outliers

Gauge Potency

SCAD 0.222 0.367

MCP 0.222 0.367

LASSO 0.611 0.767

AdaLASSO 0.333 0.433

Auto(0.05) 0.011 0.100

Auto(0.01) 0.011 0.100

10% outliers

SCAD 0.100 0.500

MCP 0.140 0.550

LASSO 0.650 0.850

AdaLASSO 0.220 0.600

Auto(0.05) 0.010 0.200

Auto(0.01) 0.000 0.200

5% outliers

SCAD 0.048 0.600

MCP 0.048 0.600

LASSO 0.591 0.933

AdaLASSO 0.124 0.667

Auto(0.05) 0.000 0.534

Auto(0.01) 0.000 0.534

Table 3: Simulated results with different percentages of outliers
with 4 SD.

20% outliers

Gauge Potency

SCAD 0.222 1.000

MCP 0.144 1.000

LASSO 0.611 0.967

AdaLASSO 0.189 0.933

Auto(0.05) 0.000 0.367

Auto(0.01) 0.011 0.367

10% outliers

SCAD 0.230 0.600

MCP 0.150 0.550

LASSO 0.650 0.850

AdaLASSO 0.360 0.700

Auto(0.05) 0.000 0.500

Auto(0.01) 0.000 0.500

5% outliers

SCAD 0.114 0.667

MCP 0.095 0.667

LASSO 0.657 0.867

AdaLASSO 0.352 0.667

Auto(0.05) 0.000 0.667

Auto(0.01) 0.000 0.667
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and outliers. We assumed well scatter outlier among DGP
with 5%, 10%, and 20% observations, which is different from
Doornik [9], as it has been illustrated 20% outlier at the end
of observations with magnitude coefficients equal to 6 in the
static DGP, where the DGP can be defined as

yi = 0:1 + 〠
k

j=1
βjxji + 6 τð Þ + εi, ð12Þ

where β1 =⋯⋯ = βk∗ = 1 whereas k∗ is equal to 10 and
the rest of the other beta coefficients equal zero, and k = 20
with i = 1, 2,⋯, 100 observations. The regressors xji ~ IIDð
0, 1Þ and ε ~ IIDð0, 1Þ, whereas the outlying observations ð
τÞ are equal to 5%, 10%, and 20% with 6 SD and 4 SD of
error term. To estimate the above DGP, we use the General-
ized Unrestricted Model (GUM) and introduce an impulse
dummy indicator for each observation in the model. The
experiment is repeated 1000 times.

3.1. Simulation Experiment Result. The comparison is
assessed under scenarios with 5%, 10%, and 20% scattered
outliers with 6 SD and 4 SD. The glmnet package for R soft-
ware is used to estimate LASSO and AdaLASSO. For MCP
and SCAD estimation, we use the ncvreg package of R; the
ncvreg package uses a coordinate descent algorithm, while
for Autometrics we use the gets package of R. To achieve
our study objective, we use a static DGP with orthogonal
covariates and dummy indicator saturation opts from
Doornik [9]. It provides a convenient base for comparing

regularization techniques with Autometrics in the presences
of outliers. Outcomes of the simulated scenarios are obtain-
able in Table 2. Table 2 illustrates the average gauge and
potency Autometrics and regularization techniques; how-
ever, the RMSE error of the out-of-sample forecast has been
presented below. We use Auto as an acronym of Auto-
metrics in the tables and figures, and the computational
efficiency of Autometrics is assessed with 0.05 and 0.01
significance levels.

Table 2 demonstrates the results of regularization tech-
niques with Autometrics for covariate selection and outlier
detection in potency and gauge. The result indicates that
with a 20% and 6 SD outlier, Autometrics performs worse
in average potency among all existing techniques. On the
contrary, LASSO possesses the highest gauge and potency
among regularization techniques. Meanwhile, SCAD and
MCP accomplish similar performance in both average
gauge and potency. The simulation result specifies that as
the outlier percentage decreases to 10%, the performance
of considered methods increases in average potency. How-
ever, the performance of SCAD and MCP improved with
both gauge and potency. With 5% outlying observation,
the considered techniques improved further. The SCAD
and MCP estimate retains 60% average potency with an
average gauge equal 5%.

In Table 3, the result indicates that with 20% and 4 SD
outliers, Autometrics performs worse among all existing
techniques in average potency; however, the average potency
of SCAD and MCP drastically increased compared to out-
liers with 6 SD. Meanwhile, significant improvement in the

3.030

1.176 1.083
0.914

1.078
1.219

1.104

3.030

3.325
3.464 3.412

3.861

SCAD MCP LASSO AdaLASSO Auto (0.05) Auto (0.01)

Outlier with 6SD

Outlier with 4SD

Figure 1: Average RMSE with less than 5% outliers.
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average potency of the regularization technique with 4 SD
outlier has been observed over 6 SD, whereas the perfor-
mance of the average gauge remains the same in both
seniors. On the contrary, LASSO possesses the highest gauge
and potency among regularization techniques, similar to
outliers with 6 SD. Compared to LASSO and SCAD, MCP
performs significantly in gauge equal to 0.095 and 0.114 of
SCAD with a 5% outlier. The simulation result shows that
as the outlier percentage decreases to 10%, the performance
of considered regularization methods decreases in average
potency, whereas the average gauge remains similar to 20%
outliers.

Overall, the simulation result indicates that outliers with
4 SD and 5% outlying observation regularization techniques
perform better than 6 SD outliers in terms of average

potency, whereas the average gauge of regularization tech-
niques with 6 SD is lower than 4 SD outliers. The Auto-
metrics possesses the least average gauge in all scenarios
(5%, 10%, and 20%, 6 SD and 4 SD) at the rate of the smal-
lest average potency among all considered techniques. In
contrast, LASSO possesses the highest potency and gauge
of all other methods.

Figures 1–3 represent the out-of-sample forecasting per-
formance of the considered methods. The graphs illustrate
that the average RMSE error of LASSO with 20% and 10%
outlier observations is the least among all considered tech-
niques. The result aligns with existing literature as LASSO
possesses the least forecasting error and selects a more irrel-
evant regressor (which can be observed from Table 1) [38].
However, with less than 5% outlier observations, the SCAD

4.163

1.225
0.950

1.297
1.537 1.413

1.185

4.162 4.048 4.103 4.158
4.419

SCAD MCP LASSO AdaLASSO Auto (0.05) Auto (0.01)

Outlier with 6SD
Outlier with 4SD

Figure 3: Average RMSE with 20% outliers.

1.1791.191 1.145
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0.923

1.220

1.552

2.882

SCAD MCP LASSO AdaLASSO Auto (0.05) Auto (0.01)

Outlier with 6SD
Outlier with 4SD

Figure 2: Average RMSE with 10% outliers.
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and MCP possess the least RMSE 3.03 than all other tech-
niques, even less than Autometrics. We observed that Auto-
metrics with 5% outliers possesses the least gauge but retain
higher RMSE than SCAD and MCP. Autometrics with 0.05
level of significance possesses the least RMSE than 0.01 level
of significance, the fact that Autometrics with 0.01 level of
significance omits relevant regressors which increases the
average RMSE.

There is a significant improvement in average RMSE
with 4 SD with 5% and 20% outliers compared to 6 SD with
5% and 20% outliers. This difference can be justified as with
5% and 4 SD outliers, the average potency is higher (means
that method correctly identified the correct variables/
dummy indicator) compared to 6 SD, which ultimately
impact the out-of-sample RMSE, and the same pattern can
be observed with 20% outliers and 6 SD the average potency
is least due to this reason the out-of-sample RMSE increases.
However, the average potency of 20% outliers with 4 SD is
close to 1 for regularization techniques; due to this, the

out-of-sample RMSE of regularization techniques is the least
compared to 6 SD, as shown in Figure 3. On the contrary, as
10% and 4 SD and 10% and 6 SD outliers, the performance
of considered methods is aligned in average potency, and
consequently, the average RMSE are almost similar observed
in Figure 2.

4. Real Data Analysis

Coronavirus disease 2019 (COVID-19) is a global outbreak
triggered by coronavirus 2, which origins severe acute respira-
tory illness (SARS-CoV-2). The World Health Organization
declared COVID-19 a pandemic in March 2020. Meanwhile,
the confirmed number of cases around the globe has been
reported as 504,079,039, with 6,204,155 fatalities as of April
20, 2022 (https://covid19.who.int). However, Pakistan is not
among the nations with the uppermost number of COVID-
19 cases and fatalities. The initial case of COVID-19 was iden-
tified in Pakistan on February 25, 2020. Up to April 20, 2022,
1,527,411 COVID cases had been reported, with 30,364 fatal-
ities (https://covid19.who.int/region/emro/country/pk).
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Figure 4: Correlation graph.
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Figure 6: Residual box plot of linear regression.

Table 4: Real data analysis with covariate selection and number of
selected outliers.

SCAD number of selected outliers (28)

Variable Gender CRP level
Other

comorbidities

Coefficient 0.24463 0.00083 0.20533

MCP number of selected outliers (31)

Variable Gender CRP level
Other

comorbidities

Coefficient 0.22493 0.0004 0.2585

LASSO number of selected outliers (204)

Variable Age Gender CRP level
Other

comorbidities

Coefficient 0.00225 0.55747 0.00282 1.3966

Auto(0.05) number of selected outliers (14)

Variable
CRP
level

Other
comorbidities

Coefficient 0.00766 0.9653
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Coronavirus pneumonia (COVID-19) is a worldwide
health emergency because of its quick transmission and high
death rate [39]. The clinical and physiological characteristics
of SARS-CoV-2, as well as diagnostic approaches, have been
studied all over the world [40]. During this pandemic, scien-
tists and physicians face a global challenge in patient care
and suitable treatment techniques, including creating an
effective vaccine. Different diagnostic indicators have played
a significant role in diagnosing and controlling the status of
SARS-CoV-2 patients [41]. C-reactive protein (CRP) levels
can be used as a biomarker to help diagnose pneumonia
early, and individuals with severe lung infections have
increased CRP levels [42]. Patients with COVID-19 have
higher serum C-reactive protein (CRP) levels, which are
used to help classify, diagnose, and make a prognosis of
the disease [43]. This analysis is aimed at investigating the
relationship between the length of hospital stay and CRP
level, gender, age, diabetes, patient discharge status, and
other comorbidities with permission of hospital authorities
and consent of patient’s privacy. The data was gathered from
Isolation Hospital and Infectious Treatment Center (IHITC)
in Islamabad from July 2021 to 30 September 2021. A total
of 275 patients agreed to join in the study between July
and September. All the patients admitted they belonged to
Rawalpindi and Islamabad regions. We extracted informa-
tion for each individual, including age, gender, diabetic sta-
tus, comorbidities, length of hospital stay, CRP level, and
patient discharge status. Figure 4 illustrates the correlation
graph of considered variables; this indicates the positive cor-
relation between the hospital stay and CRP level with corre-
lation equals 0.2 and negative correlation with other
comorbidities with -0.1. However, patients’ survival and
age are positively associated with hospital stay with a corre-
lation equal 0.2 and 0.1, respectively. Figure 5 illustrates the
box plot of the hospital stay. It indicates that the minimum
length of hospital stay equals 1 and maximum 41, as the hos-
pital stay is the dependent variable and contains an outlier,
as shown in Figure 5. Furthermore, the residual plot of linear

regression presented in Figure 6 confirms outliers in model
residuals. For the out-of-sample forecast, we randomly train
the model on 90% of observations (233) and validate 10% of
observations (26) [23, 44, 45].

After the confirmation of outlier in the data set, the esti-
mated model with the IIS method is defined

Hospital stay = β0 + β1gender + β2age + β3diabetes + β4CRP
+ β5survival + β6other comorbidities

+ 〠
233

i=1
γiIi + εi:

ð13Þ

Table 4 indicates that SCAD and MCP perform similarly
in covariate selection, as gender, CRP level, and other
comorbidities are significant variables which increase the
length of hospital stay. However, SCAD selected 28 outliers,
and MCP selected 31 slightly higher than SCAD.

The real data analysis confirms that the LASSO estimates
more covariates and outliers than other regularization tech-
niques, aligned with our simulation findings. LASSO selects
four more than covariates selected via SCAD and MCP.
Autometrics with a 5% significance chooses two covariates
and 14 outliers. AdaLASSO and Autometrics with a 1% sig-
nificance do not select any covariate, only retain outliers.
Overall, real data analysis indicates that gender, CRP level,
and other comorbidities are significant covariates. These
indicator dummies can be interpreted as an observed hetero-
geneity of individuals, which prolonged hospital stay length.
We report the RMSE of regularization techniques in
Figure 7.

The above figure indicates that SCAD and MCP outper-
form out-of-sample RMSE compared to all other considered
techniques. As expected, the LASSO selected more indicator
dummies and retained higher RMSE than SCAD and MCP.
With 0.01 (level of significance), Autometrics holds the

7.45 7.50 7.59 7.43

9.28

10.27

SCAD MCP LASSO AdaLASSO Auto (0.05) Auto (0.01)

Figure 7: Out-of-sample RMSE of real data analysis.
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highest RMSE compared to all other techniques because it
dropped relevant covariate simulation finding aligned with
existing studies of [20, 23]. Autometrics with tight signifi-
cance levels omits relevant variables due to this RMSE
increase (as observed from the simulation graph and table).
In contrast, with a nominal significance level (0.05), Auto-
metrics possesses higher RMSE than regularization
techniques.

5. Conclusion

In cross-sectional data analysis, outlier occurred most fre-
quently than the time series analysis, although outlier
detection is a quick operation in healthcare and medical
data, which is a significant cause of concern. Overall anal-
ysis indicates that regularization techniques perform more
significantly than Autometrics in out-of-sample forecasting
and covariate selection in simulation and real data analy-
sis. However, the IIS method estimated via SCAD and
MCP compromises promising covariate selection and fore-
casting results among regularization techniques. Regulari-
zation techniques with 20% and 4 SD outliers possess a
higher average gauge than 20% and 6 SD. Conversely,
5% and 4 SD outlier’s regularization technique possesses
a higher average gauge than 5% and 4 SD outliers. Overall,
with 4 SD outliers, the out-of-sample RMSE is optimal
than 6 SD.

On the contrary, the LASSO estimates more outliers and
covariates in simulation experiments and real data analysis
than other regularization techniques. The real data analysis
confirms the simulation findings, as the SCAD and MCP
possess a minimum out-of-sample RMSE than Autometrics
and LASSO. The real data analysis indicates that SCAD
and MCP select three covariates, gender, CRP level, and
other comorbidities, and possess the least RMSE. The real
result is aligned with simulation findings as SCAD and
MCP retain the highest potency and least RMSE compared
to Autometrics. In contrast, LASSO possesses the highest
gauge in simulation study compared to all considered tech-
niques; the finding is aligned with real analysis as it retained
the highest outliers. The concept of the IS method for outlier
detection in the cross-sectional analysis would help to pre-
serve unobserved heterogeneity in cross-sectional analysis,
which simultaneously declines the RMSE of the estimated
model. Our study proves that the IIS method for outlier
detection and covariate selection estimated via SCAD and
MCP gives more precise results than Autometrics in orthog-
onal covariates and outlier presences.
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Pakistan is still one of the five countries contributing to half of the child deaths worldwide and holds a low ratio of infant survival.
A high rate of poverty, low level of education, limited health facilities, rural-urban inequalities, and political uncertainty are the
main reasons for this condition. Survival models that evaluate the performance of models over simulated and real data set may
serve as an effective technique to determine accurate complex systems. The present study proposed an efficient extension of the
recent parametric technique for risk assessment of infant mortality to address complex survival systems in the presence of
extreme observations. This extended method integrated four distributions with the basic algorithm using a real data set of
infant survival without extreme observations. The proposed models are compared with the standard partial least squares-Cox
regression (PLS-CoxR), and higher efficiency of these proposed algorithms is observed for handling complex survival time
systems for risk assessment. The algorithm is also used to analyze simulated data set for further verification of results. The
optimal model revealed that the mother’s age, type of residence, wealth index, permission to go to a medical facility, distance
to a health facility, and awareness about tuberculosis significantly affected the survival time of infants. The flexibility and
continuity of extended parametric methods support the implementation of public health surveillance data effectively for data-
oriented evaluation. The findings may support projecting targeted interventions, producing awareness, and implementing
policies planned to reduce infant mortality.

1. Introduction

Strong statistical survival techniques are the demand of the
era for authentic and reliable results for deeply examining
complex survival and mortality patterns. Nonparametric
survival techniques including the Kaplan-Meier product-
limit method [1], the Gehan’s generalized Wilcoxon test
[2], and the log-rank test [3] were extensively used in older
times. The Cox’s regression model remained the most popu-
lar and widely used semiparametric survival technique if the
proportional hazards assumption is fulfilled [4]. In recent
times, flexible parametric models (FPM) are considered as
a better alternative to nonparametric and semiparametric
methods as they produce estimates with higher efficiency
and lower standard errors [5]. In addition, these models
consider full likelihood to draw more precise inferences

and easily interpretable results. So far, the FPM has been
employed various probability distributions to estimate sur-
vival functions. The exponential probability distribution
supports as the baseline to handle survival time. The Wei-
bull, Gompertz, generalized gamma, and generalized F-
distribution are commonly practiced too. The FPM is also
able to efficiently investigate the relationship of covariates
with survival response [5]. The partial least squares-Cox
regression (PLS-CoxR) integrates PLS with the Cox model
to address survival time response with collinear covariates
[6] since the Cox regression is restricted with inflexible esti-
mates of the cumulative hazard and survival functions as
being incomplete. Hence, the PLS-CoxR model is restricted
in the long-term estimation with unsmooth functions.

The flexible parametric models (FPMs) are recom-
mended to compute hazard and cumulative hazard
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functions for covariates to extrapolate the survival model.
The FPM can estimate continuous survival and hazard func-
tions instead of a step representation due to its flexibility [7].

Despite considerable improvement towards increasing
infant survival, nearly six million child deaths are recorded
every year, before attaining their fifth birthday [8]. By the
end of 2015, a minor proportion of developing countries
have met the fourth target of Millennium Development Goal
(MDG) which is intended to increase the child survival rate
by two-thirds [9]. The recently described Sustainable Devel-
opment Goals (SDG) seek to forward the objectives origi-
nated by the MDG. The third SDG is to reduce the under-
five mortality rate (U5MR) to 25 deaths per 1000 live births
by 2030 [10]. Previous literature evidenced that five coun-
tries including China, Congo, Nigeria, India, and Pakistan
possess nearly half of under-five mortality in the world
[11]. Pakistan has the sixth largest population in the world
with 188 million people [12]. In 2018, Pakistan’s infant mor-
tality rate (IMR) was 61 deaths per 1000 live births. Due to
political instability, civil conflicts, poverty, lower educational
level, unavailability of health facilities, and disparities
regarding the area in Pakistan, 70% MDG targets were not
achieved [13]. Understanding the factors affecting infant
mortality is significantly informative to health professionals,
practitioners, and health policymakers for the improvement
of population health status through effective interventions.

Within this line, the partial least squares flexible paramet-
ric model (PLS-FPM) is developed to analyze the complex sur-
vival systems in the presence of extreme observations for risk
and hazard assessment [14]. The present study extended the
PLS-FPM to collinear predictors having moderate trend
observations using four alternative probability distributions.

The results exposed the flexible dynamics of the
extended method to obtain smooth survival and hazards
estimates in the presence of multicollinearity. This model
can be implemented in the field of genetics, biology, engi-
neering, medicine, social sciences, or behavioral sciences
for system reliability and risk assessment. The formal state-
ments of the problem are the following:

(i) Selection of optimum model by execution of four
distribution integrated with the PLS-FPM oversimu-
lated and real data set having collinear predictors
and moderate observation

(ii) Identification of significant risk factors of infant
mortality in Pakistani

2. Methodology

The PLS-CoxR model is considered as the benchmark
method in the present study, and the PLS-FP model with
four different distributions is the proposed technique.

2.1. The Cox Regression Model. The Cox model has the form

λ tð Þ = λo tð Þexp β1X1 + β2X2+⋯+βpXp

� �
= λo tð Þexp β′X

h i
,

ð1Þ

where λoðtÞ represents the baseline hazard function, β is the
vector of regression estimates, and X denotes a ðn ∗ pÞ
matrix of predictors.

2.2. The Partial Least Squares-Cox Regression Model. The
PLS-CoxR model is employed as the reference method in
the present study. Suppose the survival time is represented
by t and xj = x1j, x2j,⋯, xnj be the vector of p correlated
covariates with n samples. The model estimates k compo-
nents for p correlated predictors and assumes the hazard
estimate as

λ tð Þ = λo tð Þexp β1S1 + β2S2+⋯+βpSk
� �

= λo tð Þexp β′S
h i

,

ð2Þ

where S represents a ðn ∗ kÞ matrix of components.

2.3. Flexible Parametric Survival Model (FPSM). Let T repre-
sent a nonnegative continuous survival response and let X is
the vector of predictors x1,⋯, xp over a sample of size n.
The survival function is the probability of being alive at
time t and is represented by SðtÞ = PrðT > tÞ for a vector
of covariates at time t with the cumulative distribution func-
tion FðtÞ = PrðT ≤ tÞ. Then the cumulative hazard or risk
function is

Λ tð Þ =
ðt
0
λ xð Þdx: ð3Þ

Any distribution ranges over t ∈ ½0,∞�, and it may serve as
survival distribution. The survival distributions included in
this study as FPSM are as follows:

2.3.1. The Gompertz Distribution. A survival response T fol-
lowing a Gompertz distribution with parameters (b > 0, η > 0
) exhibits the survival function

S tð Þ = exp −
b
η

eηt − 1
� �� �

, ð4Þ

and the cumulative hazard function as

Λ tð Þ = b
η

eηt − 1
� �

: ð5Þ

The Gompertz distribution is also an extreme value dis-
tribution with increasing hazard function.

2.3.2. The Generalized Gamma Distribution. The generalized
gamma distribution with parameters (β, σ, κ) has survival
function as

S tð Þ = 1 − Γκ−2 e−βtκ/σ ; κ−2
� i

: ð6Þ

The hazard function of the generalized gamma function
is increasing, decreasing, bathtub, and arc-shaped [15].
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2.3.3. The Generalized F-Distribution. The density function
of generalized F-distribution with 2ν1 and 2ν1 is

f tð Þ = ν1e
t/ν2

� �ν1 1 + ν1e
t/ν2

� �− ν1+ν2ð Þβ ν1, ν2ð Þ−1, ð7Þ

where βðν1, ν2Þ is the beta function and then the survival
function is

S tð Þ =
ðν2 ν2+ν1etð Þ−1

0
χν2−1 1 − χð Þν1−1β ν2, ν1ð Þ−1dx, ð8Þ

where χ denotes the chi-square distribution. This distribu-
tion is useful for testing different parametric forms as it
includes other distributions as limiting or special cases.

2.3.4. The Exponential Distribution. The survival time T has
an exponential distribution with rate parameter λ having
density function

f tð Þ = λexp −λtð Þ, ð9Þ

then the survival function is

S tð Þ = exp −λtð Þ, ð10Þ

and the cumulative hazard function is

Λ tð Þ = λt: ð11Þ

Several other probability distributions can be employed
in FPM. The interpretation for regression coefficients of
FPM is the same as for semiparametric models. The FPM
provides a more stabilized cumulative hazard function than
the semiparametric model. For instance, the Weibull models
produce the hazard function as a continuous straight trend.
The PLSR model integrated with FPM addressing general-
ized gamma (GG), generalized F (GF), exponential, and
Gompertz distribution is included in the present study for
improved model performance for multicollinear covariates.

2.4. The Partial Least Squares Flexible Parametric (FP)
Model. The proposed model assumes the occurrence of an
event e at time t in the presence of censoring, and let X be
the matrix of p correlated predictors x1,⋯, xp for a sample of
size n. The method computes the FP model for S components
(as S ≤ p) computed from PLSR for survival response and X as
a matrix of predictors. The PLS-FPmodel assumes that someA
is equal to the number of components to be predicted (where
A ≤ p), then for a = 1, 2,⋯, A, the algorithm runs:

(1) Loading weights are computed by

wa = X′a−1ta−1: ð12Þ

Loading weights are normalized to have length equal to 1
by

wa ⟵
Xa−1′ ta−1
Xa−1′ ta−1

�� �� : ð13Þ

(2) Score vector sa is computed by

sa = Xa−1wa: ð14Þ

The risk function for FPSM is computed as

Λ tð Þ =
ðt
0
λ sð Þds: ð15Þ

(3) If a < A return to 1

The PLS-FP model is a two-stage procedure. At the first
stage, the PLS-FP regression model computes components of
PLS regression with time as response outcome and correlated
covariates as predictors. Then, it executes the FP model with
survival time as response and components of PLSR as explana-
tory factors at the later stage. This method produces efficient
estimates with increased accuracy for collinear predictors.
Hence, it is recommended to use in the case of collinear data
as it is a conjugate of PLS and FP models. The PLSR model is
also coupled with a filter-based factor selectionmethod, namely,
“loading weights” to identify the significant factors [16, 17].

2.5. Simulated Survival Data Generated from Gompertz
Distributions. The R-package namely “simsurv” is used for
the generation of simulated survival data [18] with moderate
observation and collinear predictors. The data follows Gom-
pertz distribution with 0.1 and 0.1 scale and shape parame-
ters, respectively. The correlation among predictors is
established as ð0:9, 0:8, 0:7, 0:6, 0:5, 0:4, 0:3, 0:2, 0:1, 0Þ for
100 samples with 30 predictors.

2.6. Infant Survival Times Data. This study used secondary
data, obtained from the Demographic and Health Surveys
(DHS), gathered during 2012-2013 from Pakistan. Hence,
no ethical concerns are required to conduct this study [19].
The present analysis used data set of infants aged 1-
12months in Pakistan. Due to missing and incomplete
information, infants dead within one month of birth are
excluded from the analysis. A total of 697 infants belonging
to Pakistan and 83 predictor variables are included.

3. Results

The PLS-FPM parameterized with generalized gamma, gener-
alized F, exponential, and Gompertz distribution are modeled
on simulated data generated from Gompertz distribution to
observe the variation in efficiency for multicollinear data.
The left panel of Figure 1 showed the efficiency of models
established by AIC and indicated that coupled with PLSR,
the FPM models showed the higher efficiency over simulated
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data having known correlation structure. Similar results based
on BIC, as shown in Figure 1(b), are observed. The simulation
analysis demonstrated that the proposed models are efficient
and reliable in terms of performance for the corresponding
distributions. The analysis over simulation recommended
the practical application of proposed models to examine sur-

vival response along with correlated covariates in a more flex-
ible manner.

Before analyzing the real data set, multicollinearity
among covariates is verified to justify the application of
PLS. For this purpose, correlations structure for infant sur-
vival data is examined. The biplot for infant survival data
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Figure 2: A biplot visualizing the correlations between the covariates on the first two principal components for infant survival data set.
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Figure 1: The comparison of the PLS-Cox model with the PLS-FPM parameterized over generalized gamma (GG), generalized F (GF),
exponential, and Gompertz distribution for simulating survival response generated from Gompertz distribution based on AIC and BIC.
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presented in Figure 2 clearly portrayed the correlation
between covariates showing close points of occurrence.

Real data set of infant survival with 12 months of censor-
ing is considered in this analysis. Discarding outliers, 83
covariates measured over 577 observations (infants) were
included in the final sample to compare survival models.
The data set is randomly split into testing (30%) and training
data (70%) for reliable results. After verification of multicol-
linearity among covariates, the PLS-FPM parameterized
over Gompertz, generalized gamma, generalized F, and
exponential distribution are analyzed. The PLS-Cox model
for survival time is considered as the reference method.
Figure 3 showed the efficiency of models measured by AIC
and BIC which demonstrated the higher performance of
modified models compared to the PLS-Cox over infant sur-
vival data. The proposed models based on the parametric
approach performed better due to their additional flexibility.
Flexible parametric models integrated with PLSR parameter-
ized with generalized gamma (GG), generalized F (GF),
exponential, and Gompertz distribution showed increased
accuracy compared to the Cox model integrated with PLS.

The Gompertz distribution is modeled into the
innovation-imitation paradigm, and its hazard function works
as a convex function. These properties develop their flexibility
to use as flexible parametric distribution in survival models.
Hence, it increased the performance of the model incorpo-
rated with PLS compared to the semiparametric model, due
to its flexible nature. Based on AIC and BIC, it is concluded
that the PLS-FPM parameterized over generalized F (GF) is
the best-fitted model and hence further executed for influen-
tial factor selection. PLS-FP model based on generalized F-
distribution with location parameter μ is found to be the most

efficient model over infant survival times data. In this model,
covariates on the corresponding parameter represent the
accelerated failure time (AFT)model which speeds up or slows
down the passage of time. A detailed illustration of PLS-FP
model parameterization is presented in Table 1 to describe
the corresponding location, scale, shape, and rate parameter
of the associated distribution.

Figure 4 showed the cumulative hazards regression esti-
mates for the reference method and the PLS-FPM integrated
with generalized gamma (GG), generalized F (GF), exponen-
tial, and Gompertz distribution for infant mortality data.
The proposed PLS-FPM delivered smooth regression coeffi-
cients of the hazard functions extrapolated to a time of
12months showing consistent estimates. The reference
model showed unsmooth hazard trends with odd fluctua-
tions for certain time intervals shown in Figure 4.

For modeling the survival time data, the PLS-FPM
parameterized over generalized F (GF) is applied, and a
well-known factor selection method of PLS, namely, loading
weights, is used to estimate the regression coefficients of

Table 1: A description of corresponding parameter of each
distribution used in the PLS-FPM for infant survival data set is
presented.

Parameter
Model Location Scale Shape Rate

FPM pls gomp — — 0.231 -7.20

FPM pls gg 4.32 -0.32 0.56 —

FPM pls gf 4.37 -1.44 -0.11, 2.96 —

FPM pls g — — 0.77 -3.56
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Figure 3: The comparison of reference model with the PLS-FPM parameterized over generalized gamma (GG), generalized F (GF),
exponential, and Gompertz distribution on the basis of AIC and BIC for infant survival are presented.
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Figure 4: The cumulative hazard estimates of the PLS-Cox and the PLS-FPM parameterized over generalized gamma (GG), generalized F
(GF), exponential, and Gompertz distribution for infant survival data.

Table 2: The coefficient estimates of influential factors for infant survival obtained by the PLS-FPM coupled with GF-distribution.

Factor Coefficient

Mother’s age -0.2599634

Province 0.1152137

Type of place of residence -0.2259600

Selected for domestic violence module -0.1314814

Mother’s educational level 0.1150733

Type of toilet facility 0.1306607

Household has: television 0.1123271

Main roof material -0.1824950

Relationship to household head -0.1462302

Sex of household head 0.1263040

Toilet facilities shared with other households 0.1128781

Wealth index -0.2221866

Total children ever born 0.1440127

Sons died 0.1444297

Daughters died 0.1380171

Used contraceptive methods 0.1255910

Have mosquito bed net for sleeping -0.1472814

Getting medical help for self: getting permission to go 0.2765390

Getting medical help for self: getting money needed for treatment 0.1091858

Getting medical help for self: distance to health facility 0.2711795

Getting medical help for self: having to take transport 0.1405939

Getting medical help for self: not wanting to go alone 0.1932727

Heard of tuberculosis or TB -0.2165038

Person who usually decides on visits to family or relatives -0.1273039

Preceding birth interval (in months) -0.1647803

Duration of breastfeeding -0.1697750

Blood relation with husband -0.1285042

Total pregnancy outcomes -0.1926369
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significant factors. The estimates of important predictors
associated with infant mortality are presented in Table 2.

After analysis, 28 influential factors out of 80 which sig-
nificantly affect infant survival in Pakistan are observed. A
negative relationship of mother’s age, region, selection for
domestic violence, main roof material, relationship to house-
hold head, wealth index, availability of mosquito bed net,
awareness about tuberculosis (TB), decision power to visit
family, preceding birth interval, duration of breastfeeding,
blood relation with husband, and total pregnancy outcomes
are found for infant survival. Furthermore, positive associa-
tion of province, mother’s education, toilet facility, availabil-
ity of television, sex of household head, shared toilet,
number of total children, number of dead son and daugh-
ters, use of contraception, availability of permission, money,
transport, and attendant for medical facility and distance to
a medical facility was observed.

4. Discussion

Estimating the hazard and survival functions that flexibly
explain complex systems remained a hard and computation-
ally challenging task. Hence, the candidate models are usually
limited in studies to allow for evaluations and comparisons.
However, nonparametric and semiparametric survival
methods can peculate model structures as unsmooth estimates
are evaluated. The present study extended the PLS-FPM [14]
to correlated predictors having moderate trend observations
using four alternative probability distributions. The PLS-
FPM extends previous survival approaches that either perform
semiparametric analyses or use nonparametric methods, while
analysis of all previous methods was limited due to their
inflexible nature. To administrate all four shaped hazard func-
tions, distribution fitting is implemented over defined simu-
lated survival data set.

Most previous literature used the Cox regression model
for infant survival analysis [20]. Very few recent studies used
FPM to examine infant survival analysis [21]. The PLS-FPM
is compared with the reference method for both simulated
and a real data set for collinear covariates. A previous study
proposed the PLS-FPM integrated with Gamma, Weibull,
log-logistic, and log-normal distributions for data with
extreme observations to examine four real data sets of breast
cancer survival time and identify the significantly associated
gene signatures for each data set. The study found that the
PLS-FPM has higher performance than the traditional
PLS-Cox model [14]. Consistent with the previous study,
the present study found the higher efficiency of the PLS-
FPM compared to the PLS-Cox regression method for data
sets with moderate observations. The PLS-FPM coupled
with Gompertz distribution is found to be the optimum
model to estimate hazard functions using AIC for simulated
survival data following Gompertz distribution. The effi-
ciency of the algorithms flexibly increases the model accu-
racy to a greater extent even considering correlated
predictors. This accuracy suggested that hazard, as well as
survival functions, can be accurately computed by smooth
trends for the survival response. A recent study proposed
the partial least squares spline modeling approach by inte-

grating PLS with restricted cubic spline model and com-
pared it with the PLS-Cox model [22]. The study estimated
the risk factors of infant mortality in Pakistan by using the
PLS-spline model based on the odds scale with one knot.
This study also examine the important factors of infant mor-
tality by executing the optimal model, namely, the PLS-FPM
parameterized over generalized F (GF), and identified the
influential factors which are also determined by various pre-
vious studies. Consistent with the recent literature, the pres-
ent study evidenced that mother’s age, region, selection for
domestic violence, relationship to household head, wealth
index, awareness about tuberculosis (TB), decision power
to visit family, preceding birth interval, and blood relation
with husband [22] are significantly associated with infant
mortality. Some other previous literature also supported
the association of main roof material [23, 24], availability
of mosquito bed net [25], duration of breastfeeding [26],
and total pregnancy outcomes [27] with infant survival sim-
ilar to the present study.

Various previous studies also observed the positive asso-
ciation of province [28], mother’s educational level [29],
type of toilet facility [30], availability of television [31], sex
of household head [32], shared toilet [33], number of total
children [34], number of died son and daughters [35], use
of contraception [36], and availability of permission, money,
transport, distance and attendant for medical facility [37, 38]
with infant survival which is consistent with the current
study. Last but not least, the PLS-FPM not only can extrap-
olate survival response besides the availability of follow-up
information but also sponsors variant hazard shapes. The
PLS-FPM is suggested as a helpful parametric addition for
the estimation and prediction of survival response. This
model is recommended to use in reliability theory for risk
assessment.
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Factor discovery of public health surveillance data is a crucial problem and extremely challenging from a scientific viewpoint with
enormous applications in research studies. In this study, the main focus is to introduce the improved survival regression
technique in the presence of multicollinearity, and hence, the partial least squares spline modeling approach is proposed. The
proposed method is compared with the benchmark partial least squares Cox regression model in terms of accuracy based on
the Akaike information criterion. Further, the optimal model is practiced on a real data set of infant mortality obtained from
the Pakistan Demographic and Health Survey. This model is implemented to assess the significant risk factors of infant
mortality. The recommended features contain key information about infant survival and could be useful in public health
surveillance-related research.

1. Introduction

Survival approach is a common regression modeling method
used for prognostic analysis as it examines the relationship
between the covariates, the response, and the time until the
occurrence of an event. The framework for survival analysis
is based on the Cox proportional hazard (PH) model due to
its ease of computing the hazard ratio (HR) without needing
to estimate the baseline hazard function. The Cox PH model
maximizes the partial likelihood function which estimates
the regression parameters but not the baseline hazard func-
tion. Consequently, the survival probability and the hazard
rates can be estimated only at the event times and not for
the long-term evaluations [1].

Parametric survival models specify the probability distri-
bution to estimate the absolute measure of effect in time to
event response. A common specification is the Weibull dis-

tribution in these models to estimate the baseline hazard
hoðtÞ. A parametric survival model with a scale parameter
(λ > 0), a shape parameter (γ > 0), and time (t) is defined
as hoðtÞ = λγtγ−1. For the absolute measure of effect, the
Weibull distribution can generally facilitate accurate predic-
tions for a constant, monotonically decreasing or monotoni-
cally increasing hazards. However, for more complex hazard
functions, the parametric survival model specifying a Weibull
function will lead to inaccurate predictions [2].

The Royston and Parmer model is an advanced type of
flexible parametric survival model featuring a restricted cubic
spline to model more complex hazard shapes and to estimate
a continuous function [3]. This model considers the baseline
log cumulative hazard function on the log timescale. For
Weibull distribution, this function is ln ðHðtÞ ∣ ziÞ = ln ðλÞ
+ γ ln ðtÞ + βzi where ln ðλÞ and γ ln ðtÞ represent the base-
line hazard with respect to log time and βzi denotes the
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vector of predictors. This function can be generalized as ln
ðHðtÞ ∣ ziÞ = ln ½HoðtÞ� + βzi where ln ½HoðtÞ� describes a
general baseline log cumulative hazard function. Royston
and Parmar used a restricted cubic spline to model the base-
line hazard function on the log timescale. A restricted or nat-
ural cubic spline has an additional restriction featuring the
first and last subfunctions beyond the boundary knots as lin-
ear instead of cubic. A restricted cubic spline can be mathe-
matically expressed as [15] sðzÞ = η0 + η1x1 + η2x2 +⋯ +
ηK−1xK−1K , where K denotes the number of knots, xi repre-
sents derived variables, and ηi describes the coefficients for
these variables. This spline has the ability to fit complex
shapes of baseline log cumulative hazard functions improv-
ing the stability of the function [4].

Multivariate survival regression models assume that there
is no multicollinearity among covariates. Most of the survival
methods are not appropriate to model large data with corre-
lated covariates. The partial least squares (PLS) regression is
considered as a good alternate of traditional regression
methods in the presence of multicollinearity [5, 6].

Therefore, the partial least squares-Cox (PLS-Cox)
regression model was developed to analyze survival systems
in the presence of multicollinearity [7]. Due to several limi-
tations of the PLS-Cox regression model, the PLS flexible
parametric (PLS-FP) survival regression model is proposed
to estimate smooth hazard ratios of predictors and corre-
sponding cumulative hazard functions and to extrapolate
the survival model [2]. However, the major limitation of
the PLS-FP model is that it is not appropriate for all complex
shapes of hazard function. The motivation of this research
was to develop a survival model that has the ability to model
complex shapes in the presence of multicollinearity. The
proposed method is developed by integrating partial least
squares with the Royston and Parmer restricted cubic spline
model, hence the named as the partial least squares spline
(PLS-spline) model. This model has the ability to fit more
complex shapes of baseline log cumulative hazard functions.
The efficiency of the partial least squares spline (PLS-spline)
model is tested using simulated data by examining its perfor-
mance on different scales with various spline knots. The pro-
posed model is applied to a real data set of infant mortality
to estimate the hazard function and regression coefficients.
The analyses based on different scales using simulated and
real data set reveal the efficiency of these models to estimate
baseline log cumulative hazard functions in the presence of
multicollinearity.

2. Materials and Methods

2.1. The Cox Proportional Hazard Model. For the occurrence
of an event at time t, the Cox model assumes the hazard
function in the presence of censoring

λ tð Þ = λo tð Þ exp β′X
h i

, ð1Þ

where λoðtÞ is the baseline hazard function, β is the vec-
tor of coefficients, and X is a ðn ∗ pÞ matrix of covariates. In
this model, the baseline hazard function is unspecified.

2.2. The Partial Least Squares-Cox (PLS-Cox) Regression
Model. Partial least squares-Cox (PLS-Cox) regression
model is used as a benchmark model in this study. Let t rep-
resent the survival time and X ∈ℝn∗P. The partial least
squares model computes k latent components for p corre-
lated covariates; then, the Cox model assumes the baseline
hazard function as

λ tð Þ = λo tð Þ exp β′S
h i

, ð2Þ

where λoðtÞ is the unspecified baseline hazard function,
β is the vector of coefficients, and S is a ðn ∗ kÞ matrix of
components. The hyperparameters are found by maximum
likelihood estimation method.

2.3. The Royston-Parmar Spline Model. In the context of the
PH model, the Royston-Parmar (RP) model can be
expressed as

ln H tð Þ ∣ xið Þ = s ln tð Þ ∣ η, koð Þ + βxi, ð3Þ

where sðln ðtÞ ∣ η, koÞ describes a restricted cubic spline that is
a function of the derived variables η and the number of knots
ko. Generally, three different scales, hazard, odds, or normal,
are used to model the RP spline model. When no knots are
specified, the restricted cubic spline reduces to theWeibull dis-
tribution if the scale is hazard. For odds and normal scales, no
knots give log-logistic and lognormal models, respectively.

2.4. Partial Least Squares Spline (PLS-Spline) Survival
Regression Algorithm. Let X ∈ℝn∗P denote the matrix of p
correlated covariates x1,⋯, xp for a sample of size n. The algo-
rithm executes the FP model based on the C components (as

1: function PLS model X, t, e, a where X is the covariate matrix, t is the time, eis the event, andc is the number of components.
2: wðcÞ =Xt

ðc−1ÞT ðc−1Þ loading weights

3: wðcÞ ⟵wðcÞ/‖wðcÞ‖ normalized loading weights
4: sðcÞ =Xðc−1ÞwðcÞ score vector
5: pðcÞ =Xt

ðc−1ÞðsðcÞ/stðcÞsðcÞÞX-loadings
6: qc = T t

ðc−1ÞðsðcÞ/stðcÞsðcÞÞt-loadings ⊳ repeat the above steps until c < C

7: forc = 1 to Cdo
8: fRPfSurvðt, eÞggc ~∑C

c=1 s
c ⊳ Royston and Parmer (RP) restricted cubic spline model on PLSR components.

Algorithm 1: Partial least squares spline (PLS-spline) model.
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C ≤ p) of PLSR computed with time T as a response variable
andX as a matrix of covariates for c = 1, 2,⋯, C. The pseudo-
code for the proposed PLS-spline model is expressed as
follows.

2.5. Data Simulation. Simulated data is generated using the
simsurv R-package to evaluate the efficiency of existing and
proposed survival models. The simulated data set is gener-
ated from Weibull distribution for the scale parameter
(λ = 0:1) and shape parameter (k = 1:5) over 5 years of cen-
soring. The correlation structure between 200 covariates
ranged from 0 to 0.9 over 100 samples.

2.6. Real Data Set. This study used publically available sec-
ondary data, borrowed from the Demographic and Health
Survey (DHS), collected during 2012-13 from Pakistan with
the support of the United States Agency for International
Development and ICF International. Therefore, there are no
ethical concerns involved in this work, and no ethics review
is required for this study [8]. The secondary data of infants
from birth to aged 12 months born to ever married women
aged 15-49 years in Pakistan is used in this study. The out-
come of interest was infant survival within 12 months after
first month of birth. The sample consists of 80 infants belong-
ing to Pakistan, and 86 covariates are included.

3. Results

3.1. Simulation-Based Results. UsingWeibull distribution, the
high dimensional simulated data set having multicollinearity
is generated. The constructed data is then split into test and
training sets with 70 : 30 to train and evaluate the performance
of benchmark and proposed methods. The hazard, odds, or
normal scales are modeled each with zero and one knot.

The PLS-spline model with different knots measured on
different scales is fitted over the simulated data set generated
from Weibull distribution to access the performance of
models based on the Akaike information criterion (AIC)
and Bayesian information criterion (BIC). Figure 1 shows
the comparison between the standard, PLS-Cox regression
model, and six PLS-spline models with different knots based
on various scales. The proposed PLS-spline models based on
the hazard scale with zero knot and one knot are symbolized
as RP plsHo and RP plsH1, respectively. Similarly, RP plsO
and RP plsN stand for odds and normal scales accordingly.
Figure 1 shows that the PLS-spline model based on all three
scales with one knot has the highest performance compared
to the PLS-Cox and PLS-spline models with zero knot. But it
is also clear from Figure 1 that the PLS-spline model having
zero knot showed even higher efficiency than the benchmark
PLS-Cox method. Figure 2 shows the efficiency comparison
based on the BIC defending performance based on AIC.

3.2. Application

3.2.1. Infant Survival Time Data Set. A cluster heat map pre-
sented in Figure 3 is used to show the magnitudes of corre-
lation among covariates. Negative correlations are shown in
blue color, and positive correlations are presented in red.
High intensity of colors shows higher correlation among
corresponding variables. Only 36 covariates are selected for
examining multicollinearity for comprehendible visualiza-
tion. Figure 3 clearly portrays the correlation between covar-
iates showing intense colors.

The presence of multicollinearity is evident in the heat
map. Hence, the existence of multicollinearity among covar-
iates in high dimensional survival data is detected visually.
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Figure 1: The efficiency of benchmark and proposed survival
methods for simulated data set based on AIC is presented.
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Figure 2: The efficiency of existing and proposed survival methods
for simulated data set based on BIC is presented.
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The high dimensional infant survival data set having
multicollinearity is used for comparison of models and iden-
tification of risk factors of infant mortality. The sample data
is split into test and training sets with 70 : 30 to evaluate the
efficiency of PLS survival methods.

The PLS-spline models with zero and one knot are fitted
over the real data set to access the performance of models
based on different scales using AIC and BIC. Figure 4 shows
the comparison presenting the higher efficiency of all
proposed methods compared to PLS-Cox based on AIC. Also,
the highest performance of RP plsO1 is observed in Figure 4
compared to other RP pls methods. This result showed that
the proposed PLS-spline model based on the odds scale with
one knot is the optimal model for the observed data.

Figure 5 shows the comparison of models based on BIC.
The visual representation showed that the PLS-spline model
based on the odds scale with zero and one knot has nearly
the same efficiency. On the basis of both model assessment
criteria, we may conclude that the PLS-spline model based
on the odds scale is the best fitted model for the observed
data. For identification of significant risk factors, the PLS-
spline model based on the hazard scale with one knot is exe-
cuted as being best fitted.

Table 1 presents the selected influential risk factors of
infant mortality by using the RP plsO1 as being the optimal
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Figure 3: The heat map for infant survival time data.
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Figure 4: The efficiency of existing and proposed survival methods
for infant survival data set based on AIC is presented.
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model. After analysis, 27 influential factors are found signif-
icantly associated with infant mortality in Pakistan. The pos-
itive association of mother’ age, type of place of region, de
facto place of residence, relationship of mother to household
head, type of cooking fuel, number of births in last five years,
distance, transport and accompany to health facility,
mother’s occupation, person who usually decides on respon-
dent’s health care, person who usually decides on visits to
family or relatives, person who usually decides what to do
with money husband earns, succeeding birth interval, and
blood relation with husband is found for infant mortality.
Furthermore, negative association of region, selection for
domestic violence, household has motorcycle/scooter, read-
ing newspaper or magazine, watching television, wealth
index, awareness of tuberculosis and hepatitis, beating justi-
fied if wife neglects the children or argues with husband or if
wife burns the food, and preceding birth interval is observed.

Figure 6 shows the estimates of the baseline cumulative
hazards from the PLS-spline model measured on hazard,
normal, and odds scales with zero and one knot for the
data set of infant survival. All six PLS-spline models pro-
duce smooth estimates of the baseline cumulative hazards
extrapolated to time of 12 months showing consistent esti-
mates. The PLS-spline model based on the odds scale with
one knot is represented by the red line in Figure 6 show-
ing the lowest cumulative hazard for the first 4 months
after birth, moderate increase in the fifth month, and max-
imum at the sixth month.

4. Discussion

Alongside advances in statistical techniques, several modifi-
cations are suggested for survival analysis to improve
efficiency of the model. Yang et al. [9] introduced Deep-
CoxPH, an estimation strategy based on deep learning and
the Cox model which is proposed to improve the risk strat-

ification for overall survival analysis. Rueda et al. [10] used
discrete-time Markov chain theory and the Cox regression
to predict survival function. The authors also employed a
parametric analysis for comparison and variable selection.
Another study developed an algorithm as a conjugate of
the parametric model and partial least squares in the pres-
ence of extreme observations to enhance model performance
[2]. In this study, the PLS-spline model is proposed to treat
survival response with collinear predictors using the spline
strategy based on different scales with various knots regard-
ing better model performance and superior interpretation
potential. To examine hazard function with higher accuracy,
the PLS-spline model is proposed by integrating PLS and the
Royston and Parmer spline model in the presence of multi-
collinearity. The proposed model is compared with the PLS-
Cox model using simulated and real data sets for efficiency
comparison. The PLS-spline model with one knot over haz-
ard, odds, and normal scales turns out to be the best model
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Figure 5: The efficiency of existing and proposed survival methods
for infant survival data set based on BIC is presented.

Table 1: Regression estimates of finally fitted PLS-spline model
based on odds scale with one knot to select influential factors of
infant mortality.

Selected factor Estimate

Mother’s age 0.156

Region of residence -0.191

Type of place of residence 0.257

De facto place of residence 0.258

Selected for domestic violence module -0.164

Household has motorcycle/scooter -0.133

Relationship of mother to household head 0.125

Reading newspaper or magazine -0.108

Watching television -0.222

Type of cooking fuel 0.133

Wealth index -0.146

Number of births in last five years 0.103

Getting medical help for self: problem due to
distance to health facility

0.197

Getting medical help for self: problem having to
take transport

0.185

Getting medical help for self: not wanting to go alone 0.255

Awareness of tuberculosis -0.126

Mother’s occupation 0.129

Person who usually decides on respondent’s health care 0.247

Person who usually decides on visits to family
or relatives

0.170

Person who usually decides what to do with
money husband earns

0.253

Beating justified if wife neglects the children -0.191

Beating justified if wife argues with husband -0.178

Beating justified if wife burns the food -0.106

Preceding birth interval -0.126

Succeeding birth interval 0.100

Blood relation with husband 0.153

Awareness about hepatitis -0.147
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to estimate cumulative hazards based on AIC and BIC over
simulated data generated from Weibull distribution. More
importantly, for known simulated data, the PLS-spline
model showed better performance than the PLS-Cox model.
For the real data set of infant mortality, the PLS-spline
model with one knot over the odds scale is observed to be
optimal model. The finally selected model is used to identify
the influential risk factors of infant mortality in Pakistan.
Maternal age, occupation, and place of residence are found
to be significant predictors of infant mortality in the present
study. Previous studies observed that younger and older
maternal ages are significantly associated with infant mortal-
ity [11]. Another study reported that the region of residence
and working status of mother are statistically significant risk
factors for stunted, underweight, and wasted children [12].
Consistent with literature, domestic violence is found to be
significantly associated with infant mortality [13]. The pres-
ent study observed that an increase in media awareness
(watching television and reading newspaper) and wealth
level could decrease the ratio of infant mortality. Literature
described that media exposure and income level are associ-
ated with maternal outcomes [14, 12]. Availability and utili-
zation of health facility is determined an important risk
factor of mortality rate among infants. Several former stud-
ies verified that health expenditure potentially reduces
maternal and infant mortalities across different countries
[15, 16]. Closely similar to previous literature, birth interval
and consanguineous marriage showed a significant associa-
tion with infant mortality [17, 18]. The overall accuracy of
the proposed algorithm enhances the model performance
to a higher extent, considering collinear covariates. This effi-
ciency suggests that survival function, hazard function,
cumulative hazard function, and parameters of distribution
for the survival time data with unknown distribution can

be estimated more efficiently in terms of smooth lines. The
PLS-spline model is viewed as a useful addition to the tool-
box of estimation and prediction of survival time response
for the widely used PLS-Cox model in the survival settings.

5. Conclusion

The proposed PLS-spline model based on different scales
with various knots is shown to be a better choice regarding
model performance and superior interpretation potential.
Using the PLS-spline model based on the odds scale with
one knot, the influential factors identified as the important
predictors of infant mortality are in agreement with other
studies. So, the PLS-spline model has the potential as a
multivariate survival technique in scientific research to treat
high-dimensional correlated survival times data more
efficiently.
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Introduction. According to the World Health Organization (2020), obesity is a growing problem worldwide. In fact, obesity is
characterized as an epidemic. Objective. The aim of this paper is to use a logistic regression model as one of the generalized
linear models and decision tree as one of the machine learning in order to assess the knowledge of the risk factors for obesity
among citizens in Saudi Arabia. Methods and Materials. A cross-sectional questionnaire was given to the general population in
KSA, using Google forms, to collect data. A total of 1369 people responded. Results. The findings showed that there is
widespread knowledge of risk factors for obesity among citizens in Saudi Arabia. Participants’ knowledge of risk factors was
very high (95.5%). In addition, a significant association was found between demographics (gender, age, and level of education)
and knowledge of risk factors for obesity, in assessing variables for knowledge of the risk factors for obesity in relation to the
demographics of gender and level of education. In addition, from decision tree results, we found that level of education and
marital status were the most important variables to affect knowledge of risk factors for obesity among respondents. The
accuracy of correctly classified cases was 95.5%, the same in logistic regression and decision tree. Conclusion. The majority of
participants saw regular exercise and diet as an essential way to reduce obesity; however, awareness campaigns should be
maintained in order to avoid complacency and combat the disease.

1. Introduction

According to the World Health Organization, obesity is a
growing problem worldwide. In fact, obesity is characterized
as an epidemic, affecting nearly 650 million adults world-
wide. Specifically, about 13% of the adult population world-
wide is considered obese [1].

In Saudi Arabia, obesity is a growing problem. A system-
atic analysis of data from 33 years before 2014 revealed that
Saudi Arabia was one of the top seven countries with the
most severe rises in both male and female obesity rates [2].
Nearly 35% of Saudi adults are obese, with females having
higher rates than males (41% vs. 31%) [3]. There was evi-
dence to suggest that obesity is set to worsen in the decades
to come [4]. Obese persons are more likely to develop heart
disease, hypertension, stroke, type 2 diabetes, and other

adverse health outcomes than nonobese persons. From an
economic perspective, obesity costs the country about $147
billion in 2008 American dollars annually, and the annual
cost is rising substantially over the past 10 years or so.

A variety of studies addressed the topic of obesity and its
causes, which provided statistical data that show its preva-
lence and the associated factors. Among these studies is a
study by Mosli et al. [5], which discovered the association
between educational level and income level with odds of
being obese among adults in KSA. In contrast to participants
with advanced education or higher, ignorant participants
and those with rudimentary schooling had higher chances
of corpulence. In any case, members with low pay had lower
chances than members who had higher pay.

A study by Al-Raddadi et al. [6] is aimed at studying the
relationship of demographic and way of life factors, recently
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demonstrated to be related to overabundant weight in differ-
ent populaces, and BMI in the grown-up populace of Jeddah
of KSA. In the study, there were 1419 persons: 667 males
and 752 females. 30.1% males and 35.6% females were the
prevalence of overweight and obesity, the prevalence
increased to 60 years, and it decreased in the older age group
in both genders. In males, the risk of obesity increased with
obtaining a postgraduate degree, and the rate decreases with
increased physical activity, and in females, obesity increased
the risk of prediabetes and diabetes; the risk of prediabetes,
diabetes, dyslipidemia, and hypertension increases with
increasing BMI.

The study of Al-Qahtani [7] was aimed at appraising the
commonness of overweight and obesity among grown-ups
going to essential medical service settings, southwestern district
of the KSA. Data on BMI estimation was recorded for 1649 out
of 1681 individuals (98.1%). The general mean weight was
74:1 ± 15:81kg, and that for males was 77:69 ± 16:14kg versus
69:37 ± 14:02kg for females. The general predominance of
overweight and stoutness was, individually, 38.3% and 27.6%.
Smoking was not essentially connected with corpulence,
though hypertension was altogether connected with weight.
The danger of overweight or corpulence essentially expanded
from the most elevated to the least month-to-month pay. High
spread of obesity and overweight should be considered a public
health worry to be trailed by explicit mediations at the network
level with multidisciplinary exercises beginning from child-
hood as an early stage counteraction program.

The point of the study of Aljabri et al. [8] was to assess
obesity and overweight in Saudi women of childbearing
age. Age was 32:3 ± 9:1 years (least 15 and most extreme
49 years), 5.8% (165) were lean, 26.6% (759) were of typical
weight, 27.6% (785) were overweight, 22.4% (637) were
obese Grade I, and 11.1% (316) were large Grade II while
6.6% (187) were beefy beyond belief (obese Grade III). The
recurrence of overweight and stoutness expanded with the
advance of age gathering, and dismal corpulence was most
elevated in the 40-long-term age gathering. Except if quick
advances are taken to contain the expanding commonness
of weight, the medical care costs for ongoing sicknesses will
represent a colossal budgetary weight to the KSA.

Albin Saleh et al. [9] assessed obesity commonness
among kids and teenagers in Al-Ahsa, KSA, for the year
2016 and decided the connected preventable danger factors.
Obesity and overweight were 29.6% (10.8% overweight, 3.8%
fat, and 15% obese large). The prevalence of obesity and
overweight was altogether connected with youth weight,
parental overweight, mother’s work, family pay, fast food,
actual dormancy, and time spent sitting in front of the TV.
There is an earnest need to spread mindfulness about obe-
sity, and the anticipation programs that include schools
and families are the vital systems for controlling the current
epidemic of overweight and obesity.

Alshammari and Elasbali [10] measured the prevalence
paces of obesity in Hail City in KSA. 80.83% (1455/1800)
have fully responded to all required parameters of the
1800, 52% (756/1455) were females and 48% (699/1455)
were males, and 60.34% (878/1455) were found obese and
overweight, with females’ proportion more than males. Obe-

sity and overweight are common in Hail City in KSA with
generally higher females’ susceptibility.

Al-Hazzaa et al. [11] sought to give updated estimates of
obesity and overweight prevalence from three main cities in
Saudi Arabia, namely, Riyadh, Al-Khobar, and Jeddah, with
members of 2,908 auxiliary school understudies aged 14 to
19 years; the prevalence of overweight was 19.5 percent in
individuals and 20.8 percent in girls, while stoutness was
24.1 percent in males and 14 percent in females. The pre-
dominance of obesity in males and females was 35.9% and
30.3%, respectively. Such high pervasiveness of obesity and
overweight is a significant public health concern.

Al-Ateeq and Al-Hargan [12] looked at the potential
relationship between obesity and the method of transporta-
tion to neighborhood offices, social climate, type of work,
and actual movement at neighborhood offices and at home.
Of the participants, 33.7% were overweight and only 39.2%
were obese. Most of the members traveled to work (98%),
school (90.2%), shopping centers (95.7%), eateries (91.5%),
social visits (84%), mosques (84.3%), and markets (50.2%).
The rate of obesity was higher among members who drove
(45%) than among those who walked (30%) to the market
stores. Thus, the proposed paper’s principal goal is to assess
the knowledge of the risk factors for obesity among citizens
in Saudi Arabia towards the risk factors for obesity.

Knowledge is the ability to learn, retain, and apply
knowledge; it is a combination of comprehension, experi-
ence, discernment, and skill.

Many researches have reported the varied prevalence of
obesity and overweight among Saudi residents, but there is
little information on individuals’ knowledge of the risk fac-
tors for obesity. As a result, the findings of this study are crit-
ical since they will assist in the management of obesity.

Nonetheless, there has been an expanded interest in
defining new factual models or new groups of measurable
models to give a superior depiction of the issues viable. For
more details, we refer to Abdulrahman and Alamri [13]
and Abdulrahman [14].

2. Materials and Methods

2.1. The Questionnaire. A questionnaire was used in this
assessment to allow individuals to identify obesity risk fac-
tors. The questionnaire comprised two sections. Section
one included questions on personal information, including
gender, age, marital status, educational qualifications, and
occupation. The other section contained ten questions on
the causes of obesity. The participants were asked to deter-
mine the main cause of obesity among the following reasons:

(i) Heredity is one of the most important causes of
obesity

(ii) Diet pattern has a significant impact on the causes
of obesity

(iii) Consumption of sugars and starches is a major
cause of obesity

(iv) Lack of exercise is a major cause of obesity
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(v) Lack of sleep of a person may expose him to
obesity

(vi) Some hormones such as leptin can increase obesity

(vii) Taking some medications may expose a person to
obesity

(viii) As a person gets older, he is at risk of obesity

(ix) Some diseases that affect a person are exposed to
obesity

(x) Mental state is one of the most important causes of
obesity

The target populace was 748 male responders and 621
female respondents.

2.2. Data Analysis and Study Test. Table 1 shows demo-
graphic characteristics such as age, gender, education level,
marital status, and work. All participants spoke Arabic fluently.
SPSS version 25.0 was used to analyze the data. Quantitative
analysis entailed calculating frequencies and percentages for
demographic data, which were then tested using inferential sta-
tistics. Pearson’s chi-squared test was used to evaluate the anal-
yses’ goodness of fit; homogeneity, to compare respondents
(groups) in a specified variable; and independence, to deter-
mine whether respondent cohorts exhibited distinct answers.

2.3. Binary Logistic Regression Model. Binary logistic regres-
sion is a statistical method used to investigate a variety of
subjects in medical research [15, 16]. It helps researchers
to predict whether an event will occur or not based on pre-
dictor factors [17].

The odds ratios for each of the model’s independent vari-
ables (age, gender, marital status, level of education, and work)
were estimated using logistic regression. When the odds ratio
is more than one, it shows a positive relationship, and when it
is less than one, it suggests a negative correlation. To forecast a
logit transformation of the likelihood of the presence of the
attribute of interest, use the following formula:

Logit pð Þ = b0 + b1X1 + b2X2+⋯+bkXk: ð1Þ

Here, p is the probability of the occurrence of the property
of interest.

The logged chances are defined as the logit transformation:

Odds = p
1 − p

: ð2Þ

Here, p indicates the probability of a characteristic’s pres-
ence, 1 − p represents the probability of a characteristic’s
absence, and

Logit pð Þ = loglog p
1 − p

: ð3Þ

The logit is a function that translates probability values
from ð0, 1Þð0, 1Þ to real numbers ð−∞,∞Þ.

2.4. Decision Tree. A decision is a flowchart-like structure in
which each internal node represents a test on an attribute,
each branch of the tree represents a test outcome, and each
leaf node stores a class label.

The Chi-square Automatic Interaction Detector
(CHAID) method utilized in this research detects such dif-
ferences by employing two tests to assess the relationship
between the dependent and independent variables [18].
The CHAID process begins by identifying independent var-
iables that have a statistically significant relationship with
the dependent or target variable.

Decision tree techniques may be used to choose the most
relevant input variables that should be utilized to build deci-
sion tree models, which can then be used to formulate clin-
ical hypotheses and inform further research.

The data mining technique of decision tree analysis
offers an alternative means of identifying specific variables
affected by knowledge of the risk factors for obesity among
the respondents, which included the model of participants’
gender, age, marital status, education, level of education,
and work.

The information gain may be used to select the appropri-
ate attribute to utilize for data classification:

G Að Þ = I p, nð Þ − 〠
v

i=1

pi+ni
p + n

I pi, nið Þ, ð4Þ

Table 1: The demographic information.

Variable Frequency Percent

Gender

Male 748 54.6

Female 621 45.4

Age

Less than 18 76 5.6

18-30 602 44.0

30-40 394 28.8

40 and more 297 21.7

Marital status

Married 871 63.6

Unmarried 498 36.4

Level of education

Primary and middle school 45 3.3

Secondary school 215 15.7

University student 923 67.4

Postgraduate 186 13.6

Work

Government employee 616 45.0

Private sector 177 12.9

I do not work 576 42.1
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where p is the probability that the tuple belongs to class V
and n is the number of attributes in the class:

I p, nð Þ = p
p + n

log2
p

p + n
−

p
p + n

log2
n

p + n
: ð5Þ

A binary outcome value for the i object is represented by
n and p and takes zero and one values [17].

3. Results

The reliability analysis result showed that Cronbach’s alpha
was 0.68 for 10 items. Therefore, there was internal consis-
tency of the scales. Hence, this instrument used in this study
had a high reliability value (Alnagar et al. [19]).

The demographic information is shown in Table 1. Of
the 1369 samples analyzed, n = 748 (54.6%) were male and
n = 621 (45.4%) were female; the majority of the partici-
pants’ (n = 602, 44.0%) ages range from 18 to30 while the
percentage of respondents with ages less than 18 was n =
76 (5.6%).

According to their marital status, n = 871 (63.6%) of
respondents are married and n = 498 (36.4%) are unmarried.
The majority of participates were university students
(n = 923, 67.4%) while the percentage of respondents with
postgraduate education levels were n = 186 (13.6%).

Table 2 shows that the participants’ knowledge of the
risk factors for obesity was very high (95.5%). Specifically,
they were most knowledgeable about diet (99.3%), fast food
(96.6%), heredity (74.3%), lack of exercise (93.5%), lack of
sleep (82.8%), hormones (98.2%), increased age (67.3%),
some diseases (90.4%), and mental stress (87.1%).

Table 3 shows the association between several demo-
graphic variables and knowledge of risk factors for obesity
among respondents; females had significantly higher
(97.1%) knowledge of risk factors for obesity than males
(94.3%). Moreover, respondents of age ranging from 30 to
40 had significantly higher (96.7%) knowledge of risk factors
for obesity than those of ages less than 18 (88.2%). Majority
of the respondents married had 96.1% high knowledge of
risk factors for obesity than those unmarried (94.9%), so
there was no association between knowledge of risk factors
for obesity and marital status.

University students had significantly higher (96.9%)
knowledge of risk factors for obesity than primary and mid-
dle school students (94.3%). Private workers had high
(96.6%) knowledge of risk factors for obesity than those that
do not work (95.1%), so there is no association between
knowledge of risk factors for obesity and work.

In sum, there were associations between knowledge of
risk factors for obesity among the respondents and variables
(gender, age, and level of education).

Table 4 shows a binary logistic regression model to esti-
mate variables affected on knowledge of risk factors for obe-
sity among respondents, including the model of participants’
gender, age, marital status, education, level of education, and
work. Items emerged as significant (p ≤ 0:05) from the logis-
tic regression analysis model; we found that gender and level
of education were both variables affecting knowledge of risk

factors for obesity among respondents. Gender as a variable
showed a good odds ratio of 2.261 at 95% confidence inter-
val (CI = 1:189, 4.301). There was a high knowledge of risk
factors for obesity among respondents from those with level
of education, with odds ratio = 2:054 (95% CI = 1:426,
2.957).

The classification results for the decision tree for knowl-
edge of risk factors for obesity among respondents are
shown in Table 5. The percentages of cases that were cor-
rectly classified were 95.5%, which demonstrates the accu-
racy of the decision tree model.

Table 2: Participants’ knowledge of the risk factors for obesity.

Variable Knowledge Percent

Poor knowledge 61 4.5

Good knowledge 1308 95.5

Heredity 1018 74.3

Diet 1359 99.3

Fast food 1322 96.6

Lack of exercise 1280 93.5

Lack of sleep 1134 82.8

Some hormones 1344 98.2

Taking some medications 1300 95

The older a person 930 67.9

Some diseases 1238 90.4

Mental stress 1192 87.1

Table 3: Association between several demographic variables and
knowledge of risk factors for obesity among respondents.

Variable Poor Good p value

Gender 0.001

Male 43 (5.7%) 705 (94.3%)

Female 18 (2.9%) 603 (97.1%)

Age 0.007

Less than 18 9 (11.8%) 67 (88.2)

18-30 29 (4.8%) 573 (95.2%)

30-40 13 (3.3%) 381 (96.7%)

40 and more 10 (3.4%) 287 (96.6%)

Marital status 0.191

Married 34 (3.9%) 837 (96.1%)

Unmarried 27 (5.4%) 471 (94.6)

Level of education 0.001

Primary and middle school 8 (17.8%) 37 (82.2%)

Secondary school 18 (8.4%) 197 (91.2%)

University student 29 (3.1%) 894 (96.9%)

Postgraduate 6 (3.2%) 180 (96.8%)

Work 0.704

Government employee 27 (4.4%) 589 (95.6%)

Private work 6 (3.4%) 171 (96.6%)

I do not work 28 (4.9%) 548 (95.1%)
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Table 6 shows that decision trees were used to gain infor-
mation to determine which variables are most important to
affect knowledge of risk factors for obesity among respon-
dents. Age, level of education, and marital status were the
most important variables to affect knowledge of risk factors
for obesity among respondents.

4. Discussion and Conclusion

The findings of this study are that there is widespread
knowledge of risk factors for obesity among citizens in Saudi
Arabia; it agrees with [20]. The participants’ knowledge of
obesity risk factors was generally high (95.5%). In addition,
there was a high knowledge of risk factors for obesity among
respondents from those with a level of education. A signifi-
cant association was found between demographics (gender,
age, and level of education) and knowledge of risk factors
for obesity; it agrees with [21]. A decision tree was used to
gain information to determine which variables are most
important to affect knowledge of risk factors for obesity
among respondents; the percentages of cases that were cor-
rectly classified are 95.5%, which demonstrates the accuracy
of the decision tree model.

Accuracy of correctly classified cases was the same in
two methods. However, the results are different in the logis-
tic regression and decision tree; in the logistic regression
analysis model, we found that both gender and level of edu-
cation variables affected knowledge of risk factors for obesity
among respondents. Age, level of education, and marital sta-
tus were the most important variables to affect knowledge of
risk factors for obesity among respondents.

Logistic regression is a statistical approach for modeling
the probability p of an occurrence in terms of one or more
predictor variables’ values. The model is made up of two
parts: a binary tree structure that depicts the data divisions
and a series of basic linear logistic models, one for each par-
tition. This is the division of model complexity that makes
the model easy to interpret. In conclusion, the majority of
participants saw regular exercise and diet as an essential
way to reduce obesity; however, awareness campaigns
should be maintained in order to avoid complacency and
combat the disease.
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