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We have proposed an image adaptive watermarking method by using contourlet transform. Firstly, we have selected high-energy
image blocks as the watermark embedding space through segmenting the original image into nonoverlapping blocks and designed
a watermark embedded strength factor by taking advantage of the human visual saliency model. To achieve dynamic adjustability
of the multiplicative watermark embedding parameter, the relationship between watermark embedded strength factor and
watermarked image quality is developed through experiments with the peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM), respectively. Secondly, to detect the watermark information, the generalized Gaussian distribution (GGD)
has been utilized to model the contourlet coefficients. Furthermore, positions of the blocks selected, watermark embedding factor,
and watermark size have been used as side information for watermark decoding. Finally, several experiments have been conducted
on eight images, and the results prove the effectiveness of the proposed watermarking approach. Concretely, our watermarking
method has good imperceptibility and strong robustness when against Gaussian noise, JPEG compression, scaling, rotation,
median filtering, and Gaussian filtering attack.

1. Introduction

Transmitting and sharing digital multimedia have become
more convenient with the rapid development of the network.
However, such phenomenon results in security issues, such
as authentication, copyright protection, and fingerprinting
[1–7]. Digital watermarking can be used as an effective
method to address these problems. Generally, in the
watermarking process, some useful information (e.g., wa-
termark data) is embedded into an original signal while
ensuring its quality. Furthermore, robustness and imper-
ceptibility are the main factors in digital image water-
marking. Many image watermarking algorithms have been
presented in the literature. On the basis of the embedding
method, most algorithms can be divided into three cate-
gories, namely, additive, quantization, and multiplication-
based watermarking algorithms.

For the additive-embedding watermarking approach, the
watermark information is directly added to the host image

coefficients or image block of the same size. Generally, the
coefficients can be obtained from some common transforms,
including discrete wavelet transform (DWT), discrete cosine
transform (DCT), and Fourier transform. (e additive-
embedding watermarking embeds the watermark infor-
mation in the most important frequency domain of image
perception, which is similar to the spread spectrum com-
munication idea in the communication system. Cox et al. [8]
first designed a digital watermarking method based on the
idea of spread spectrum, which embedded watermark data in
the important perception transformation coefficient of the
host signal by applying the spread spectrum principle. Cox’s
spread spectrum watermarking algorithm has been con-
sidered a representative method. (e only deficiency is that
the digital watermarking algorithm requires participation of
the original image when detecting watermark information,
indicating that it is not a blind watermarking algorithm.
Subsequently, Cheng et al. [9] proposed an additive
watermarking approach, which detects the watermark by
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using the generalized Gaussian distribution (GGD). Ex-
periments show that this distribution can effectively control
the detection error probability of the watermark. Liu et al.
[10] transformed the test signal into the DCT domain.
Moreover, a local optimal detectionmodel that is suitable for
any host signal was derived by conducting hypothesis testing
analysis in this domain. Although these methods [9, 10] can
detect watermark information effectively, their parameter
estimation process is complex. To address this problem,
Kwitt et al. [11] proposed a lightweight blind optimal de-
tector for additive watermarking; it is expected to be useful
in resisting watermark desynchronization. Zhang et al. [12]
proposed a high-security additive watermarking algorithm
by utilizing gyrator transform and matrix decomposition. A
key innovation of this algorithm is to adopt an invariant
integer wavelet transform, which transforms the image
wavelet coefficients into integers, thereby enhancing the
performance of the watermarking.

In the quantization-based watermarking method, the
main procedure is to embed the watermark data into the
host signal by designing a corresponding quantizer. (e
watermark data are detected according to the quantization
interval of the image transform coefficient to extract wa-
termark. Many watermarking methods with quantization
scheme have been proposed in recent years. Chen et al.
proposed a digital watermarking method with the quanti-
zation index modulation (QIM) scheme; it is the most
representative quantization watermarking algorithm based
on edge information coding [13]. QIM has the character-
istics of high capacity, blind detection, and simple imple-
mentation. However, QIM watermarking has two main
shortcomings. First, it is sensitive to amplitude scaling at-
tacks; second, it is not robust to gain attacks. Researchers
proposed corresponding improvement methods to address
these problems. In view of the sensitivity of the QIM
watermarking method to scaling attacks, researchers mainly
improved it in accordance with the quantization step size. To
solve the inconsistency of quantization step between the
embedded end and the receiver end, as well as the adapt-
ability problem of quantization step, several watermarking
methods have been proposed, such as rational dither
modulation [14] and adaptive QIM [15]. Furthermore, to
enhance the robustness of the QIM watermarking against
gain attack, the quantization watermarking [16], sample
projection-based quantization [17], P-norm ratio-based
quantization [18], angle quantization [19], complex wavelet
domain l1 norm quantization [20], and random projection-
based quantization methods [21] have been proposed one
after another. (ese quantization watermarking methods
mainly aim to enable the watermark algorithm to obtain
invariance to the scaling or gain attacks, and the watermark
has strong robustness performance in resisting compression,
filtering, and gain attacks. However, the performance of
these quantization methods in desynchronization attacks is
still inadequate. To further enhance the robustness of
quantization watermarking, some researchers have designed
corresponding quantization watermarking algorithms by
combining the just noticeable distortion (JND) model,
image texture complexity, and texture direction features,

such as texture direction quantization [22], pair quantization
based on extended JND [23, 24], and mixed modulation
quantization using singular value decomposition [25]. (ese
quantization methods are combined with image features;
they can retain image orientation features and reduce image
distortion after watermark embedding. However, these
methods are generally vulnerable to noise attack.

(e performance of the multiplicative embedding-based
watermarking method is similar to that of the quantization
watermarking method. (e multiplicative watermarking
algorithm is usually combined with the human visual per-
ception model, and the embedded strength factor varies with
the intensity of the original signal. Moreover, a good trade-
off between imperceptibility and robustness can be achieved
in the multiplicative watermarking algorithm. Akhaee et al.
[26] developed an image watermarking method based on a
“scaling” strategy by using the Watson entropy visual
masking.(e watermark data were embedded into the image
block with high entropy to improve the invisibility of the
watermark. (e algorithm is robust against Gaussian fil-
tering, Gaussian noise, and scaling attacks. However, the
entropy value of the image block changes after embedding
the watermark; this finding is inconsistent with the entropy
of the image block prior to embedding the watermark,
thereby reducing the robustness of the watermark against
synchronization attacks. Subsequently, Akhaee et al. [27]
proposed a scaling-based image watermarking method
with contourlet transform in a noisy environment. Ex-
periments demonstrated that the robustness of this
watermarking method is good. However, the algorithm has
high complexity. Different from the Watson entropy visual
masking, Khalilian et al. [28] proposed a multiplicative
watermarking algorithm by taking advantage of the visual
saliency model. (ey designed an adaptive embedding
factor by combining visual saliency and texture masking.
On the one hand, the embedding factor should increase
with the distance from the significant region of the image.
On the other hand, the watermark embedding strength
should be larger in regions with rich texture. (is method
improves the robustness of the watermarking when against
some common image processing attacks. However, the
performance of their watermarking still needs to be en-
hanced in terms of resisting antidesynchronization attack.
Moreover, some visual attention-based watermarking
methods have been presented in the last few years. For
example, Bhowmik et al. [29] embedded high-strength and
low-strength watermarks into significant and insignificant
regions of vision, respectively, thereby improving the
watermarking performance. Hernandez et al. [30] pro-
posed a video watermarking algorithm that took full ad-
vantage of the video’s spatiotemporal characteristics and
minimized the perceived redundancy of the video. (us,
the trade-off between imperceptibility and robustness has
been achieved in their method. Yadav et al. [31] developed
an image watermarking algorithm by using an adaptive
embedded factor, which only used image variance infor-
mation to compute watermark embedded factor. However,
the performance of this method is weak when resisting
rotation attacks.
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Inspired by literature [28], an image watermarking al-
gorithm was developed based on the visual saliency model in
the contourlet transform domain.(emain contributions of
our work are summarized as follows:

(1) An adaptive watermark embedded strength factor is
exploited with a visual saliency model, which can
achieve a good trade-off between the robustness and
imperceptibility of the watermarking.

(2) (e watermark information was embedded into the
contourlet coefficients with high energy that can
enhance the imperceptibility of watermarking.

(e remainder of this paper is organized as follows. (e
belief concept of the contourlet transform is introduced in
Section 2. Section 3 introduces the proposed watermark
embedding and detection method. Section 4 shows the
experimental results of the proposed watermarking and the
comparative results with other watermarking approaches.
Finally, the conclusions are summarized in Section 5.

2. Brief Introduction of Contourlet Transform

In 2005, Do et al. [32] proposed a “real” 2D representation of
images, that is, the contourlet transform. It captures the
segmented conic curves of an image by using different
subband scales and frequencies, which have directivity and
anisotropy, thereby enabling the contourlet transform to
obtain a “sparser” representation. (us, the contourlet
transform has the characteristics of sparse representation at
both spatial and directional resolutions. In contourlet
transform,multiscale and directional analyses are performed
separately. First, the image was transformed into one coarse
version plus a set of band-pass images by the Laplacian
pyramid (LP)method. Second, each LP band-pass image was
decomposed into a number of subbands with 2D quincunx
filtering and critical subsampling. (erefore, the contourlet
transform can decompose images into multidirectional
subbands at multiple scales. Figure 1 illustrates a diagram of
the contourlet transform. Furthermore, we have utilized the
contourlet toolbox to decompose the “Peppers” image [32].
Figure 2 shows the result of applying the contourlet
transform on the “Peppers” image. (e figure clearly shows
that the contourlet transform can decompose the “Peppers”
image into multidirectional subbands.

3. Watermark Embedding and Decoding

In this section, Figure 3 shows the proposed watermark
embedding and watermark detection procedure. As shown
in Figure 3, we embed the watermark data into the con-
tourlet coefficients with high energy in our implementation.
In addition, we utilize the visual saliency model to construct
the watermark embedded strength factor; thus, a trade-off
between the invisibility and robustness of the watermark can
be achieved elegantly with the watermark embedded
strength factor. In the watermark detection stage, we model
the contourlet coefficients with GGD to detect the water-
mark due to the non-Gaussian property of the contourlet
coefficients.

3.1. Proposed Watermark Embedding. (e procedure of the
proposed watermark embedding in Figure 3(a) can be
generalized as follows:

Step 1: We segment the host image into L × L blocks
and select the first N image blocks with high energy.
(e energy is calculated as the sum of the squares of the
absolute values of the pixels of the image block.
Consequently, the energy of block [28] can be com-
puted by E � 􏽐

M
m�1 􏽐

N
n�1 ‖B(m, n)‖2, where M × N

denotes the size of the image block B and
(m, n)represents the positions of image block. Gen-
erally, a larger value of the energy of image block
implies that this image region contains more important
coefficients and should be considered a significant
image block in comparison with other image blocks.
(erefore, to improve the robustness of the water-
marking, the watermark is embedded into the image
blocks with high energy.
Step 2: (en, we decompose each selected image block
by using a two-level contourlet transform. (us, we
embed the watermark data into the coefficients of low-
frequency subband. (e host contourlet coefficient
vectors are denoted as x � [x1, x2, ..., xn], and the
watermarked contourlet coefficient vectors are denoted
as y � [y1, y2, ..., yn]. Suppose that the watermark is
w � [w1, w2, ..., wn] with n components
andwi ∈ − 1, 1{ }; the watermark embedding process can
be expressed as follows:

y � x(1 + αw), (1)

where α denotes the embedded strength factor and its
value was calculated in Section 3.2.
Step 3: Repeat Step 2 for each image block.
Step 4: Two-level inverse contourlet transform on the
watermarked image subband is performed, and it is
combined with the image subbands, which are not
embedded watermark information, to obtain the whole
watermarked image.

3.2. Watermark Embedded Strength Factor. (e JND
threshold has been widely applied in the field of image
processing. Its value is often higher in the image texture
region [33]. On the basis of [33], the image texture region

↓ (2,2)

…

Image

Bandpass
directioinal
subbands

Figure 1: (e diagram of the contourlet transform.
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can hide more information without being perceived by
human eyes. (erefore, the embedded strength factor can
select a high value. Literature [27] used this fact to develop
an image watermarking algorithm. Literature [34] shows
that the human visual system tends to focus on the salient
areas of an image. As a result, the image salient area hides
more distortion, and the embedded strength factor can be
enhanced. (erefore, to calculate the embedded strength
factor, we take advantage of the texture masking and visual

saliency model in this study. (e calculation process is
summarized as follows.

First, we use a two-level contourlet transform to de-
compose the host image, which obtains a low-frequency
subband, four subbands, and eight subbands from the
coarsest scale to the finest scale (Figure 2). (erefore, we
compute the energy of directional subband of each block
according to the property of the image texture masking. (e
calculation can be expressed as follows:

Figure 2: Contourlet transform of the “Peppers” image using two levels [32].

Segment the image into
L × L Blocks

Block Selection with
high energy

Contourlet
Transform

 Watermark
embedding
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Combine selected
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High energy block positions
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Watermark capacity
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(a)

Segment the image into
L × L Blocks

Select the N higher
energy blocks

GGD detector for
extracting the watermark

Contourlet
Transform

Side
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watermark

High energy block positions

Embedded strength factor and watermark capacity

Watermarked
image

(b)

Figure 3: Block diagram of the proposed method. (a) Watermark embedding. (b) Watermark detection.
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EH � 􏽘
12

i�1
EHi

, (2)

where EHi
is the i-th directional subband’s energy of each

image block. Each image block has 12 directional subbands
after the two-level decomposition with contourlet trans-
form. Suppose that 􏽥EH denotes the average energy of twelve
image blocks. When increasing the average energy, the
watermark embedded strength factor could increase cor-
respondingly. Hence, according to [27], the watermark
embedded strength factor of the high-frequency part can be
written as follows:

αHF � η − ρ · e
− ζ·􏽥EH , (3)

where η, ρ, and ζ are set to 1.025, 0.02, and ×, respectively.
(ese parameters are determined by experimental simula-
tion. In the right part of equation (3), for αHF, the parameter
η is set to 1.025 for larger image energy 􏽥EH , when the
exponential function vanishes. (is parameter is set to 1.025
in our experiments mainly because it maintains the imper-
ceptibility of the image when used in high image energy when
the exponential term disappears. On the contrary, for small
image energy, we set parameter ρ to 0.02. Parameter ζ has an
important effect in the increasing rate of watermark em-
bedded strength factor; its value is set to × mainly because it
can achieve a good trade-off between the robustness and
imperceptibility of the watermarking. (erefore, the pa-
rameter setting of the watermark embedded strength factor is
mainly based on the size of image energy. (e main reason is
to embed the watermark information while maintaining the
imperceptibility of the image watermark.

(en, inspired by [35], we modified the embedded strength
factor, which is denoted by αHF by applying visual saliency.
Suppose that DS represents the saliency distance of each block
and Dmax

s denotes the maximum saliency distance in all image
blocks. (erefore, the watermark embedded strength factor can
be expressed by 1 + 0.02/Dmax

s Ds. Finally, the modified wa-
termark embedded strength factor can be represented as follows:

α � αHF × 1 +
0.02
D

max
s

Ds􏼠 􏼡 − 1.0

� η − ρ · e
− ζ·􏽥EH􏼒 􏼓 × 1 +

0.02
D

max
s

Ds􏼠 􏼡 − 1.0.

(4)

3.3. Watermark Decoding. In this section, we model the
contourlet coefficients by the GGD. (e probability density
function of the GGD model is represented as follows:

pX(x) � Ae
− (β|x− μ|)c( ), (5)

where A � βc/2Γ(1/c), B � 1/σ(Γ(3/c)/Γ(1/c))1/2, and
μ, σ denote the mean value and variance, respectively. Γ(·) is
the gamma function when Γ(z) � 􏽒

∞
0 e− ttz− 1dt, z> 0, and c

denotes the shape parameter. Watermark detection can
perform the detection and evaluation of signals. (e hy-
pothesis test can be drawn as follows, using the likelihood
ratio test (LRT):

H0: α � 0(nowatermark)

H1: α> 0(watermark)
,􏼨 (6)

where H0 and H1 are the null and alternative hypotheses.
According to the statistical signal processing method, the
maximum likelihood ratio can be represented as follows:

l(y) �
p y|H1( 􏼁

p y|H0( 􏼁
≈

p y|H1( 􏼁

p(y|0)
. (7)

Proofs of (7) are as follows [36]:

􏽚
1

− 1
Py yi|wi( 􏼁dwi � 􏽚

1

− 1

1
1 + αiwi

× Px

yi

1 + αiwi

􏼠 􏼡dwi.

(8)

Let t � yi/(1 + αiwi). (en, the integrand substitutes t

for wi; (8) can be rewritten as follows:

􏽚
1

− 1
Py yi|wi( 􏼁dwi � 􏽚

yi/ 1− αi( )

yi/ 1+αi( )

1
λit

× Px(t)dt. (9)

One order Taylor series of (1/αitPx(t)) around yi is
expanded as follows:

1
αit

Px(t) �
1

αiyi

Px yi( 􏼁 +
d

dt

1
αit

Px(t)􏼠 􏼡|t�yi
t − yi( 􏼁. (10)

(erefore, (10) is rewritten as follows:

􏽚
1

− 1
Py yi|wi( 􏼁dwi � 􏽚

yi/ 1− αi( )

yi/ 1+αi( )

1
λiyi

Px yi( 􏼁dt +
d

dt

1
αit

Px(t)􏼠 􏼡|t�yi
􏽚

yi/ 1− αi( )

yi/ 1+αi( )
t − yi( 􏼁dt. (11)

αi≪ 1, d/dt(1/αitPx(t))|t�yi
􏽒

yi/(1− αi)

yi/(1+αi)
(t − yi)dt is ap-

proximately zero in (11). (erefore, equation (11) can be
further expressed as follows:
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􏽚
1

− 1
Py yi|wi( 􏼁dwi ≈ 􏽚

yi/ 1− αi( )

yi/ 1+αi( )

1
αiyi

Px yi( 􏼁dt �
1

αiyi

Px yi( 􏼁
2αiyi

1 − α2i
� 2Px yi( 􏼁. (12)

(erefore, P(y|H0) ≈ 1/2N 􏽑
N
i�1(2Px(yi)) � P(y|0). On the basis of the analysis, we can rewrite themaximum

likelihood ratio by combining watermark embedding (1) and
the GGD model as follows:

l(y) � ln
P y|H1( 􏼁

P y|H0( 􏼁
≈ ln

P y|H1( 􏼁

P(y|0)
� ln

􏽑
N
i�1 A/1 + αiwi exp − βiyi/1 + αiwi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c

􏼐 􏼑􏼐 􏼑

􏽑
N
i�1 A exp − βiyi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c

􏼐 􏼑􏼐 􏼑.
(13)

Furthermore, equation (13) can be simply represented as
follows:

l(y) � 􏽘
N

i�1
− αiwi + c|βy|

cαiwi( 􏼁. (14)

(us, we can write the watermark detector as follows:

T(y) �
zl(y)

zαi

� 􏽘
N

i�1
− wi + c βyi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
c
wi􏼐 􏼑. (15)

Next, we can compute the watermark detection
threshold. (e Gaussian distribution characteristic of the
watermark detector under the null hypothesis condition and
its mean is zero. As a result, we can calculate the watermark
detection threshold as follows:

τ � σTQ
− 1

Pf􏼐 􏼑, (16)

where τ denotes the watermark detection threshold,

σT �

�������

􏽐
N
i�1 cw2

i

􏽱

represents the variance, and

Q(x) � (1/
���
2π

√
) 􏽒

+∞
x

exp(− t2/2)dt denotes the right-tail
probability of the Gaussian distribution.
Pf � P(T(y)> τ|H0) � Q(τ/σT) represents the false alarm
probability.

Generally, false alarm is generated due to the existence of
the watermark information detected in the unwatermarked
image. A missed alarm is the phenomenon in which the
watermark detector does not detect the watermark infor-
mation in the watermarked image. (erefore, the receiver
operating characteristic (ROC) curve of the watermarking
can be derived as follows.

Suppose P0 denotes the detection probability of water-
mark. Hence, (1 − P0) can represent the missed alarm
probability. According to the statistical hypotheses and the
central limit theorem, the mean and variance of the dis-
tribution of the host image and watermarked image can be
estimated; they are denoted as μT0

, μT1
and σT0

, σT1
, re-

spectively. As a result, P0 can be written as follows:

Pd � Q
σT0

Q
− 1

Pf􏼐 􏼑 + μT0
− μT1

σT1

⎛⎝ ⎞⎠, (17)

where σT0
≈ σT1

, μT0
� 0, and μT1

� (1/N 􏽐
N
i�1 αi) · σ2T0

. Let
SNR � μT1

/σT1
� (1/N 􏽐

N
i�1 αi) · σT0

.

Finally, the ROC relationship can be defined as follows:

Pd � Q Q
− 1

Pf􏼐 􏼑 − SNR􏼐 􏼑. (18)

4. Experimental Results

In this regard, to verify the effectiveness of the proposed
watermarking method, several experiments have been
performed, including the imperceptibility, robustness, and
performance of watermark detection. We have compared
the proposed watermarking with other related watermarking
approaches. All experiments have been performed on a PC
with 4.0GHz Intel Core i7 CPU and 16 G RAM. (e
simulation software was MATLAB R2018a that ran in 64-bit
Windows 10. In summary, the simulation settings are
provided in Table 1.

4.1. Imperceptibility Test. We have tested eight standard
images, which include Lena, Barbara, Bridge, Boat, Elaine,
Mandrill, Peppers, and Man, to demonstrate the invisibility
of the proposed method; the size of each standard image is
512× 512. In our implementation, a two-level contourlet
transform has been applied to decompose each image block.
(e filters are set to “Pivka.” Figure 4 only shows the host
images and their watermarked version made by applying our
method with 16×16 blocks and a 512-bit watermark ca-
pacity due to the limited space. Figure 4 shows that the
imperceptibility of our method is satisfied. (erefore,
finding the difference between the original image and their
watermarked version is difficult.

In addition, the embedded strength factor can be
adapted and adjusted according to the watermark capacity
to further enhance the performance of the proposed
method. (e relationship between the embedded param-
eter and watermarked image quality is developed through
experiments, and the results are shown in Figures 5 and 6 .
(e performance is mainly measured by peak signal-to-
noise ratio (PSNR) and structural similarity index measure
(SSIM) [37]. As shown in Figures 5 and 6, when the wa-
termark embedded strength factor increases, the values of
PSNR and SSIM decrease. (e range of embedded strength
factor can be set within 0.005 to 0.025 to balance the
imperceptibility, robustness, and watermark capacity of
watermarking.
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Table 1: Experimental parameter settings.

Parameter name Configuration
Experimental platform Window 10, MATLAB R2018a
Test images Lena, Barbara, Bridge, Boat, Elaine, Mandrill, Peppers, and Man
Image size 512× 512
Wavelet filters of contourlet transform Pivka
Watermark length (bits) 512
Decomposition level Two-level
Performance evaluation PSNR, SSIM, and bit error rate (BER)

Figure 4: Original and watermarked versions: Lena, Barbara, Bridge, Boat, Elaine, Mandrill, Peppers, andMan. For each image, the left and
right parts denote the original image and the watermarked image, respectively.
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4.2. Robustness Test. In this section, to assess the robustness
of the proposed watermarking, several experiments have
been performed in common image processing and some
geometric attacks. (ese attacks include additive whiten
Gaussian noise, salt and pepper noise, median filtering,
rotation, cropping, flipping, scaling, JPEG compression, and
Gaussian filtering attack. Furthermore, to evaluate the ef-
fectiveness of our watermarking method, we have compared
it with other related watermarking approaches, which in-
clude the methods in [27, 31] and [38]. Moreover, the ro-
bustness performance is measured through the bit error rate
(BER).

We have performed two common experiments under JPEG
compression and Gaussian noise attack. (e result is shown in
Figures 7 and 8. In this work, the watermark capacity is 512 bits.
Figure 7 shows that our method has satisfying robustness on
JPEG compression attack. Similarly, Figure 8 shows that our
watermarking method has good robustness against Gaussian
noise attacks. Moreover, Tables 2 and 3 show the comparison of
the performance of our method with other methods under
common image processing, geometric, and combined attacks.
All watermarking methods, for the purpose of comparison, use
the same watermark capacity. (e watermark capacity of all
methods is also 512 bits in Tables 2 and 3.
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Figure 5: PSNR versus watermark embedded strength factor with
watermark capacity 2048.
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Figure 8: BER (%) results under Gaussian noise attack.
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Table 2: BER (%) results of various watermarking methods under common attacks.

Image Methods Gaus.noi. 20 Salt.Pep.0.05 JPEG 20% Gau.filt. 3 x 3 Med.filt. 3 x 3

Lena

Method [27] 3.02 3.43 5.63 — —
Method [31] 2.41 13.78 9.24 1.19 1.56
Method [38] 6.29 — 20.76 1.83 4.95
Proposed 2.25 11.24 4.83 2.86 3.72

Barbara

Method [27] 2.56 3.95 2.14 — —
Method [31] 1.89 10.26 8.30 0.82 1.65
Method [38] 7.34 — 18.85 1.49 5.36
Proposed 2.08 5.23 2.35 1.73 2.20

Bridge

Method [27] 2.94 9.44 6.79 — —
Method [31] 3.81 12.50 8.96 2.49 2.16
Method [38] 6.93 — 19.50 1.68 5.18
Proposed 2.59 9.69 2.61 3.80 5.43

Boat

Method [27] 3.12 10.17 5.29 — —
Method [31] 4.93 14.98 7.42 1.85 3.26
Method [38] 6.68 — 18.20 1.56 5.64
Proposed 2.34 12.05 2.58 2.23 6.69

Elaine

Method [27] 2.59 13.30 3.68 — —
Method [31] 2.08 15.19 5.89 2.79 4.92
Method [38] 6.34 — 17.35 2.76 5.54
Proposed 2.13 14.58 0.87 2.55 6.80

Mandrill

Method [27] 1.78 4.87 3.22 — —
Method [31] 2.34 10.48 6.45 1.38 2.64
Method [38] 5.95 — 18.29 1.82 5.97
Proposed 1.82 7.67 1.33 2.19 4.50

Peppers

Method [27] 5.70 12.79 6.86 — —
Method [31] 4.48 15.24 5.53 2.64 1.75
Method [38] 8.60 — 19.42 1.76 6.08
Proposed 4.27 12.87 2.73 2.39 1.44

Man

Method [27] 4.39 13.02 8.46 — —
Method [31] 3.66 10.82 11.25 4.89 6.88
Method [38] 7.08 — 22.07 2.10 5.83
Proposed 2.45 11.77 4.94 4.75 5.32

Table 3: BER (%) results of various watermarking methods under geometric attacks.

Image Methods Rot.10° Scal. 0.75 Crop.50% Rot.5 + Scal .5

Lena

Method [27] 10.22 27.34 29.45 30.24
Method [31] 12.76 22.08 26.17 29.46
Method [38] 17.49 20.89 22.32 34.58
Proposed 9.68 19.97 20.80 21.73

Barbara

Method [27] 9.34 32.29 30.13 28.71
Method [31] 11.92 27.44 26.49 25.82
Method [38] 18.24 24.12 25.69 37.61
Proposed 6.60 26.80 16.32 20.94

Bridge

Method [27] 7.38 9.65 32.74 31.18
Method [31] 17.82 19.54 25.58 24.19
Method [38] 19.23 23.47 27.48 39.69
Proposed 9.56 16.89 24.22 23.71

Boat

Method [27] 9.51 18.36 28.67 28.40
Method [31] 8.84 24.07 20.34 29.33
Method [38] 15.02 28.73 26.85 38.87
Proposed 5.97 25.99 22.76 22.25

Elaine Method [27] 11.35 21.43 27.50 27.42
Method [31] 16.24 28.30 19.38 25.78
Method [38] 20.43 35.66 21.80 35.93
Proposed 10.33 30.12 16.14 25.39

Mandrill Method [27] 8.98 12.46 24.55 27.16
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Table 2 shows the results of the simulation experiments
under common image processing attacks, which cover
Gaussian noise with noise variance 20, Salt and Pepper noise
with noise variance of 0.05, JPEG compression with a quality
factor of 20%, Gaussian filtering with the windows of size
3× 3, and median filtering with the windows of size 5× 5.
Table 3 shows the results of the simulation experiments
under geometric attacks, including the rotation attack with
10° angle, amplitude scaling attack with factor 0.75, cropping
with factor 50%, combination attack with rotation of 5°
angle, and scaling with a factor of 0.50.

As shown in Tables 2 and 3, the proposed watermarking
method has slightly better performance than the image
watermarking methods. (is finding is mainly due to the
application of the following factors. First, we embed the
watermark information into the image blocks with high
energy in the contourlet transform domain. Second, the
watermark embedded strength factor was constructed by
taking advantage of the visual saliency model and texture
masking. (us, embedding the watermark can be adapted.
As such, a good trade-off between the invisibility and ro-
bustness of the watermark can be achieved. Finally, the
watermark detection performance can be improved by the
GGD model.

However, the proposed watermark detector relies on
partial original image feature information, such as positions
of image blocks; thus, the proposed algorithm becomes
semiblind. In the subsequent work, we will design a blind
watermarking method.

4.3. Performance of Watermark Detection. (e GGD is used
to model the contourlet coefficients to further demonstrate
the detection performance, and the ROC is utilized to
measure the performance of watermark detection according
to equation (18) of Section 3.3. Figure 9 shows the results and
indicates that the detection performance of our method is
satisfied. (e main reason is that the contourlet coefficient
distribution is highly nonlinear, and the GGD fits the
contourlet coefficient effectively.

However, the proposed watermarking method performs
weakly when resisting other attacks, including combina-
tional attack amplitude scaling and JPEG compression, Salt
and Pepper and Gaussian noise, and global affine

transformation and histogram equalization attack. (ese
problems will be addressed by developing some matrix
decomposition-based watermarking methods or deep
learning-based watermarking algorithms in our future work.

5. Conclusion

We have developed an image watermarking algorithm by
using the visual saliency model in the contourlet domain. In
watermark embedding, high-energy image blocks are se-
lected for the watermark embedding space, and the water-
mark embedded strength factor is exploited by taking
advantage of texture masking and visual salience. (e wa-
termark can be embedded into the contourlet coefficients
adaptively by using this strategy. For watermark decoding,
the GGD model is used to describe the contourlet coeffi-
cients, and the ROC has been derived by applying the
statistic signal processing method. Finally, we have per-
formed several experiments to demonstrate the proposed
method. Simulation results show that our watermarking

Table 3: Continued.

Image Methods Rot.10° Scal. 0.75 Crop.50% Rot.5 + Scal .5
Method [31] 7.22 20.79 20.18 24.23
Method [38] 22.06 29.78 24.57 36.94
Proposed 6.50 17.43 12.84 19.59

Peppers Method [27] 12.45 23.78 29.43 29.68
Method [31] 13.39 18.76 21.80 30.49
Method [38] 18.87 27.26 23.18 38.68
Proposed 6.07 19.59 13.67 23.67

Man Method [27] 9.94 14.41 27.86 27.45
Method [31] 10.18 21.78 19.44 22.97
Method [38] 21.50 26.15 23.07 36.34
Proposed 7.83 20.42 10.29 21.80
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Figure 9: Performance of watermark detection for different
images.
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method has satisfied imperceptibility and robustness. In the
future work, a novel watermark detection approach will be
designed using the deep learning or generative adversarial
network method.

Data Availability
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With the rapid development of face synthesis techniques, things are going from bad to worse as high-quality fake face
images are unnoticeable by human eyes, which has brought serious public confidence and security problems. (us,
effective detection of face image forgeries is in urgent need. We observe that some subtle artificial artifacts in spatial
domain can be easily recognized in transformation domain, and most facial features have an inherent directional cor-
relation, and generative models would ruffle this kind of distribution pattern. Inspired by this, we propose a two-stream
dual-tree complex wavelet-based face forgery network (DCWNet) to expose face image forgeries. Specifically, dual-tree
complex wavelet transform is exploited to obtain six directional features (±75°, ±45°, ±15°) of different frequency
components from original images, and a direction correlation extraction (DCE) block is presented to capture the direction
correlation. (en, the direction pattern-aware clues and the original image are taken as two complementary network
inputs. We also explore how specific frequency components work in face forgery detection and propose a new multiscale
channel attention mechanism for features fusion. (e experimental results prove that the proposed DCWNet outperforms
the state-of-the-art methods in open datasets such as FaceForensics++ and achieves high robustness against lossy
image compression.

1. Introduction

In recent years, various deep learning technologies such as
FaceSwap [1], Deepfake [2], and Face2Face [3] have pre-
sented for facial image manipulations which change the
attributes of face images. Besides, some generative adver-
sarial network- (GAN-) [4] based works can even create fake
faces without target images. As shown in Figure 1, these
artificial products seem scarily real that it is difficult to find
fake face images from real ones by naked eyes. (is brings
great threats to public information security. For example,
these techniques might be used to produce pornographic
videos or scams. (us, how to distinguish real and fake face
images has attracted more attentions in the community of
image content security.

Many works have been proposed to use artificial intel-
ligence (AI) to fight with AI, namely, using deep learning

methods to differentiate real images from fake ones. Among
them, some sophisticated convolutional neural network
(CNN) structures [7–10] were proposed or they were
combined with hand-crafted features [11–13] to achieve
better performance. However, what makes CNNs be much
more perceptive than humans? Some researchers tried to
provide some explanations to this from frequency domain
[14–17]. Nevertheless, the conventional frequency-domain
transformation methods, such as FFT [18] and DCT [19], do
not keep well the spatial information of the original image.
(at is, the images with distinct visual contents might have
the same spectral amplitudes. (us, vanilla CNN structures
might be inapplicable. In [16], the frequency features
extracted by frequency-aware decomposition (FAD) and
local frequency statistics (LFS) were combined with sliding
window DCT (SWDCT) to preserve the spatial structure of
the image to some extent.
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Wavelet transform has been widely used in various
image applications such as denoising, compression, and
texture classification. Compared with fast Fourier transform
(FFT) and other transforms, wavelet transform preserves
well multiscale image spatial structure, which makes it to be
known as textual microscope. (is motivates us that wavelet
transform might be compatible with CNN for face forgery
detection tasks.

(e direction-related details such as facial contour,
wrinkles, and light-shadow cross lines are intuitive yet ef-
fective for face image forensics. Dual-tree complex wavelet
transformation (DTCWT) was proposed to overcome the
translation sensitivity, which has higher directional selec-
tivity than traditional wavelets [20]. We exploit the DTCWT
to reveal the correlation between facial features in different
directions. Moreover, wavelet transformation decomposes
the original image into multiple scales. Among them, the
low-level features provide richer details, whereas the high-
level features provide more semantics information. It is well-
known that both low-frequency and high-frequency infor-
mation is useful for image classification tasks [21]. Is it the
same for face image forensics? If so, what is the role each
component plays in face forgery detection and how can we
fuse multiscale features?

In this work, we propose a novel two-stream deep
network for face image forgery detection. One stream
exploits DTCWTto learn multiscale directional features. In
Figure 2, we show the results of the two-stage DTCWT on
the original face image. Each stage contains six different
directional features. (e other stream takes the original
image as input which provides low-frequency and pixel-
level information for the network. Moreover, to fully ex-
ploit different frequency components, we propose a mul-
tiscale channel attention (MSCA) mechanism to fuse
multiscale frequency-domain features from direction
correlation extraction (DCE) block. (e main works and
contributions are three-fold: (1) DTCWT is combined with
CNN for face image forensics. It addresses face forgery
detection from a new perspective, in which a novel DCE

block is proposed to extract the correlation features. (2) A
MSCA mechanism is proposed to improve feature fusion
efficiency. (3) We demonstrate that face image forensics is
different from image classification, and the influence of
various frequency components on face forgery detection is
well studied.

(e remainder of this paper is organized as follows:
Section 2 summarizes the related works. Section 3 presents
the proposed DCWNet. Section 4 reports the experimental
results, and conclusion is given in Section 5.

2. Related Work

(e recent AI-enabled face forgeries can generate fake face
images without any noticeable artificial artifacts. CNNs have
achieved great success compared with the earlier works
which exploit hand-crafted features [22, 23]. Many face
forgery detection works have been presented for better
accuracy or interpretability.

2.1. Pixel-Level Forgery Detection. (e most widely used
method is to input the original images into CNN, either in
RGB or HSV color space. In [24], Dang et al. proposed a
CNN-based approach integrated with an attention mech-
anism to improve the feature maps. Inspired by image
steganalysis, Nataraj et al. proposed to combine pixel
cooccurrence matrices with CNN for face forgery detection
[13]. (e model was trained on the dataset generated by
CycleGAN [25] and had an extra test on face images
generated by different GAN structures (StarGAN [26]). (e
experimental results showed that their work has good
generalization capability. Afchar et al. proposed to use two
existing networks, namely, Meso-4 and Meso-Inception-4,
to exploit the mesoscopic properties of the images [27].
(ey achieved an accuracy of the ACC up to 98.4%. Guo
et al. proposed an adaptive manipulation trace extraction
network (AMTEN) [14]. It predicts manipulation traces by
an adaptive convolution layer, which are also reused to

(a)

(b)

Figure 1: Real and fake face images. (a) Real face images. (b) From left to right, fake face images generated by Deepfake, FaceSwap,
Face2Face, Neural Textures [5], and StyleGAN [6].
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maximize manipulation artifacts. For various face forger-
ies, AMTEN achieved an average accuracy of 98.52%.
Nirkin et al. thought that Deepfake methods produce
discrepancies between faces and their context. (eir ap-
proach involved two networks and used the recognition
signals from these two networks to detect such discrep-
ancies [28]. In addition, recurrent neural network (RNN)
was also exploited by considering face images with tem-
poral properties [29–31]. Some other works exploited vi-
sual artifacts such as 3D head poses incoherence for better
explanations [32–34]. Chen et al. proposed an improved
Xception model for GAN-generated faces [35]. (ey re-
moved the four residual blocks of Xception to avoid the
overfitting problem, and the dilated convolution is used to
replace the common convolution layer. (e proposed
model performed well on their locally GAN-based gen-
erated face (LGGF) dataset.

2.2. Frequency-Based Forgery Detection. Image transfor-
mation refers to transforming an original image from the
spatial domain to other domains such as frequency. (e
common image transformations include discrete cosine
transform [19], fast Fourier transform [18], and wavelet
transform [36], which are widely used in various image
applications such as edge enhancement, image smoothing,
and texture analysis.

In recent years, transform domain processing has been
introduced into face forensics. Qian et al. proposed a
novel F3-Net [16], which exploits frequency-aware
decomposed image components and local frequency
statistics. F3-Net performs well on the FaceForensics++
dataset, especially for low-quality images. Liu et al. found
that the phase spectrum is more sensitive to the up-sample
operation than the amplitude spectrum and proposed to
expose the up-sample traces by exploiting the phase
spectrum [37]. Gong et al. exploited 2D DCTfor each RGB
channel of the original image and then used AutoGAN
[38] to synthesize GAN artifacts in any image without
pretrained model [15].

2.3. Attention Mechanism. (e attention mechanism gen-
erates a set of weighting coefficients, which are often
adaptively weighted to strengthen interested regions and
suppress irrelevant background regions. (ere are three

common attention mechanisms. (e first one is the channel
attention. In SENet [39], global average pooling is used to
obtain the mean value of the channels as the input of the
following fully connected layer. In ECANet [40], 1× 1
convolutions replace the fully connected layer to pay more
attention to the relationship between adjacent channels. (e
second one is the spatial attention mechanism which re-
inforces local areas in each channel. One of the most out-
standing works is CBAM [41]. (e third one is the self-
attention [42], which models the global context through the
self-attention mechanism and effectively captures long-
distance feature dependencies.

3. Our Approach

3.1.DirectionCorrelationExtractionBlock. Face images have
rich directional information such as wrinkles, facial con-
tours, and light and shadow boundaries. (ey have distri-
bution patterns under specific facial movements. (at is,
there are spatial correlations among them.(e AI-generated
fake faces might have weak relevances. (is can be used as
the clue for face forensics, which motivates us to design a
DCE block to expose this, as shown in Figure 3. Conv means
convolution operation, BN represents batch normalization,
and ReLu is the activation function.

Directional correlation contains two parts: (1) local
correlation inside each direction map. (2) Correlation
among different direction maps. For local features, we ap-
plied 3× 3 convolutions on each type of directional feature
maps, respectively.

fn,i � In ∗ C1,i, C2,i, . . . , Cm,i􏽨 􏽩, n � 1, 2, . . . , m{ }, i � 1, 2 . . . k{ }, (1)

where In are the face feature maps of the nth direction
obtained by DTCWT; Ci denotes the convolution kernels;
and fn,i represents the features extracted with Ci in direction
n. In this work, bothm and k are set to 6. For each input, we
obtain the feature maps of six channels, which are con-
catenated to obtain Flocal.

Flocal � concat f1,1 . . . f1,k􏽨 􏽩, . . . fm,1 . . . fm,k􏽨 􏽩􏼐 􏼑. (2)

(e SE block [39] is an existing channel attention
method. (e input multichannel feature maps are taken into
the global average pooling to obtain the weight array.
Considering the characteristics of the wavelet coefficients,

-75° -45° -15° 15° 45° 75°

Stage 1

Stage 2

Figure 2: Results of two-stage dual-tree complex wavelet transform. Stage 1 is the result of the first wavelet transform on the original image
and stage 2 is the second. Each stage contains six different direction features (±75°, ±45°, ±15°).
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MSCA is adopted to extract features among directional
channels (we will demonstrate MSCA in Subsection 3.2.2).

Fouput � c1×1 ∗MSCAfc Flocal( 􏼁. (3)

Note that the original 1× 1 convolution in MSCA is
replaced with a fully connected layer (MSCAfc). (e reason
behind this is that the 1× 1 convolution pays more attention
to the correlation among adjacent channels. In contrast, the
fully connected layer is a point-to-multipoint relationship,
which comprehensively describes the relationship between
interval channels. Besides extracting the correlation between
channels, the MSCAfc block also reduces redundant infor-
mation in local features. (us, DCE focuses on directional
components. (en, we apply a 1× 1 convolution operation
C1×1 to further exploit interchannel correlation. In this
manner, the same directional features share the convolution
kernel in wavelet transform.

3.2. Attention-Based Multiscale Feature Fusion. In essence,
multiscale wavelet transform is the stepped dichotomization
of the original image frequency. How each frequency
component works for face forensics task and how to ef-
fectively fuse the directional features obtained from the
multiscale wavelet transform? (us, we proposed a new
attention-based feature fusion method.

3.2.1. .e Impacts of Frequency Components on Face
Forensics. Face forgery detection is different from the tra-
ditional image classification tasks. As claimed in [21], the
deep network models for image classification exploit both
low-frequency and high-frequency information, both con-
tribute to final classification. We conduct a preliminary
experiment by selecting 10k face images in which real and
fake ratios are half. (e fake face images are generated by
four face image forgeries. ResNet18 is exploited for exper-
iments. (ese images are reconstructed by FFT with r as the
radius to keep the centre frequency component
(Figure 4(a)).(e training and testing processes are recorded
in Figure 4(b). (e horizontal axis is the number of epochs
trained, and the vertical axis is the ACC. r is the radius of
masking. (e larger the r is, the more the high-frequency

components are retained. From it, we can observe the fol-
lowing: (1) for low-frequency images, the network converges
much quickly, and three epochs are enough. (2) (e initial
accuracy is continuously improved with the increasing of the
high-frequency components. (3) With the introduction of
higher frequency components, the network benefits less, and
even the accuracy drops.

From the above observations (1) and (2), the network
should learn some features from low-frequency compo-
nents. Note that the frequency components are exploited in
parallel, which is different from the conventional image
classification [21]. Actually, this is also consistent with our
common sense. As we know, image classification is usually
of semantic level, whereas face tampering detection is a fine-
grained classification task. From the observation (3), since
the image often contains some noises that usually exist in the
high-frequency components, the accumulation of high-
frequency components also brings some difficulties to
network learning.

3.2.2. Multiscale Channel Attention. Wavelet transform
can provide multiscale image description due to diverse
frequency components. Both high-frequency and low-
frequency components benefit for face forgery detection.
(us, fusing features is a key issue. (e weights of the
conventional channel attention mechanisms are based on
the mean values of channels, e.g., SENet [39]. Although
they work, yet ignore some important local information
in the subimportant feature channels. (is drawback
inhibits wavelet transform from exerting its capability of
detail representation. Inspired by the receptive field of
human visual cortex neurons, we propose a multiscale
channel attention (MSCA) mechanism, which considers
the importance of local features and minimizes the side
effect of noises. Figure 5 shows the proposed MSCA. Cn
denotes different DCE feature maps. (ey are concen-
trated as Ca.

Ca � concat C1, C2, . . . , Cn( 􏼁. (4)

We perform maximum pooling with the kernels of 3× 3,
5× 5, and 7× 7 on Ca. For each pooling, we get a 1× 1
channel array by global average pooling.

I1

FlocalI2

Conv
3×3,6

Conv
1×1,3

BN ReLu

Conv
3×3,6 BN ReLu

concat MSCA(fc)

Famong Foutput

Figure 3: Directional correlation extraction block.

4 Security and Communication Networks



ws � Avg Ca ∗Maxpools×s( 􏼁, s � 3, 5, 7{ }. (5)

Next, we transpose and concentrate them to 3×1
channels, then we use a 1× 1 convolutional operation (C1×1)
to obtain wf . (e final output is obtained by multiplying Ca
with wf.

wf � concat w3, w5, w7( 􏼁∗C1×1, (6)

output � wf ⊙ Ca. (7)

(e maximum pooling strategy strengthens local fea-
tures, while average pooling highlights global information.
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Figure 4: Exploring the effectiveness of different frequencies. (a) (e original image is transformed by FFT, and we retain and reconstruct
frequencies within the circle of radius (r). (b) (e accuracy variation when using different frequency components during training.
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Figure 5: Multiscale channel attention (MSCA).
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(us, the assignment of the weights for each channel is
comprehensively considered by using MSCA. Please note
that the directional features use high-frequency compo-
nents. (e experiment in Subsection 3.2.1 proves that the
low-frequency components also play a role in the model
training. (us, we use a two-stream network to exploit the
low-frequency information and pixel-level features
simultaneously.

Based on the above methods, we proposed our
DCWNet, and Figure 6 shows the framework of the
complete work.

4. Experimental Results and Analysis

4.1. Experimental Setting. Image Dataset. FaceForensics++
is the most recent face manipulation dataset, which has
been widely used in existing works [33, 43]. It is expanded
from the FaceForensics dataset with three quality levels,
namely, RAW (raw), HQ (high quality), and LQ (low
quality). For the FaceForensics dataset, each level includes
1,000 videos, which are directly collected from YouTube
without tampering. (e same amounts of fake videos are
generated by four face forgeries including Deepfake,
Face2Face, FaceSwap, and Neural Textures. In addition, the
FaceForensics++ dataset also contains 363 real videos from
28 actors under 16 scenes. (us, the FaceForensics++
dataset has 1,363 real videos and 4,000 fake videos for each
quality. We extract 60 frames for each real video at equal
interval and 16 frames for each fake video. (e MTCNN
[44] is used to crop the face images. (us, we have 63k fake
face images and 63k real face images, totally 126k face
images. We divide them into 85k, 35k, and 6k face images
as the training set, the testing set, and the validation set,
respectively. In addition, the DFDC preview [45] dataset,
which is a preview dataset of the Deepfake Detection
Challenge, is also used for experiments. It contains 1131
real videos and 4119 fake videos. We obtain 120k face
images from the DFDC preview dataset.

Evaluation Metrics. To evaluate the effectiveness of our
model, we exploit two widely used metrics, namely, clas-
sification accuracy (ACC) and area under receiver operating
characteristic curve (AUC). (e closer the ACC is to 100%

and the AUC is to 1, the better the performance the network
achieves.

Experiment Details.(e ResNet34, which was pretrained
on ImageNet [46], is exploited as the backbone for two
streams. (e Kaiming Batch Normalization is used for
initialization. (e networks are optimized via SGD with 0.9
as the momentum and 0.0005 as the weight decay.We set the
base learning rate as 0.02 and use StepLR as the learning rate
scheduler with half the learning rate per step. (e batch size
is 64 and we train the model for about 14k iterations. (e
whole work is completed upon PyTorch 1.1.0 with two
Nvidia GeForce GTX 1080 Ti GPUs. To speed up the
training process, we save the results of wavelet transform
into local disk in NumPy format.

4.2. Comparisons with the Existing Works. (e proposed
DCWNet is tested on different quality image datasets that
consist of fake images produced by different image
tampering methods. Experimental comparisons are made
among the proposed approach and the existing works.
For the FaceForensics++ dataset, the experimental results
are shown in Table 1. Apparently, the proposed DCWNet
achieves a pretty high ACC (98.73%) and AUC (0.999) on
the FaceForensics++ (HQ) dataset.

For the LQ dataset, DCWNet also achieves desirable
results with the ACC of 97.91% and the AUC of 0.994.
Compared to the baseline networks (ResNet34), DCWNet
achieves the improvement of ACC about 2.05%. (is proves
that the DCE block is effective. Figure 7 reports the ROC
curves for different face forgery detection methods. We also
conduct the experiments on the DFDC preview dataset with
the same experimental setting. Table 2 reports the experi-
mental results.

For different face manipulations, we also test our model.
Specifically, there are four face manipulations for the fake
images in the FaceForensics++ dataset. Each face manipu-
lation has 31k images. Among them, 22k, 8k, and 1k are used
for training, testing, and validation, respectively. Similar
experimental results are obtained, which are reported in
Table 3.
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Figure 6: (e framework of the proposed DCWNet.
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4.3. Ablation Study

4.3.1. .e DCE Block. To prove the contribution of the
proposed DCWNet, ablation study is conducted. We first
explore the influence of the number of directions, and the
experimental results are recorded in Table 4. Even with
features from one direction, the DCE stream achieves high
ACC and AUC. (is proves that the DCE block is powerful
for local feature representation. With more features from
multiple directions, the detection accuracies improve
greatly. (is implies that the features extracted from

different directions are complimentary to each other. We
also compare the effect of the FC layer and 1× 1 convolution
used in MSCA. We observe that with the using of more
directions, FC is better than 1× 1 convolution.

Figure 8 shows some feature maps extracted from the
DCE block.We can notice that the attention responses of the
fake images are distracted, whereas those of the real images
are compact. (e reason behind this is that the directional
features are not strongly correlated in fake face images, while
they are more uniform for real face images.

Table 1: Results on the FaceForensics++ dataset with LQ and HQ.

Methods ACC (LQ) (%) AUC (LQ) ACC (HQ) (%) AUC (HQ)
Meso-4 [27] 54.38 0.542 60.63 0.660
Meso-Incep [27] 58.30 0.694 64.49 0.734
HP-CNN [11] 62.59 0.683 64.09 0.712
Constrained Conv [47] 80.05 0.883 83.40 0.920
AMTEN [14] 83.76 0.868 85.69 0.917
XceptionNet [9] 88.04 0.974 92.29 0.985
ResNet34 [8] 93.93 0.753 96.68 0.803
DCWNet(ResNet34) 97.91 0.994 98.73 0.999
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ResNet34 (AUC=0.8030)
HP-Net (AUC=0.7122)
Meso-Incep (AUC=0.7344)
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Xception (AUC=0.9850)

Figure 7: ROC curve for different face forgery detection methods.

Table 2: (e experimental results on the DFDC preview dataset.

Methods ACC (%) AUC
Meso-4 [27] 53.71 0.553
Meso-Incep [27] 58.16 0.654
HP-CNN [11] 61.49 0.675
Constrained Conv [47] 81.01 0.877
AMTEN [14] 88.83 0.892
XceptionNet [9] 89.37 0.969
ResNet34 [8] 94.52 0.736
DCWNet(ResNet34) 97.31 0.920
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4.3.2. MSCA. To prove the effectiveness of MSCA, we use
different feature fusion methods for the DCE feature maps.
(e experimental results are reported in Table 5. Specifically,
we conduct experiments for the first (S1) and second (S2)
stages of the wavelet transform, respectively. (e element-
wise addition, self-attention (SE), and MSCA are used for
feature fusion. From Table 5, the MSCA achieves the best
feature fusion. Figure 9 also compares the feature maps from
the DCE stream between SE and MSCA.

5. Conclusion

In this work, we propose a two-stream DCWNet for face
forgery detection. One stream uses the DCE block to exploit
the multiscale directional correlation. To fuse the DCE
feature maps of different scales, MSCA is proposed. (e
other stream uses the original image as input. (e experi-
mental results showed that DCWNet achieves desirable

Table 3: Detection results for different face manipulations.

Methods Deepfake (%) Face2Face (%) FaceSwap (%) Neural Textures (%)
Meso-4 [27] 53.31 61.80 62.08 50.33
Meso-Incep [27] 76.01 71.12 71.69 50.30
HP-CNN [11] 86.03 81.48 89.30 77.07
Constrained Conv [47] 82.39 81.63 88.57 79.15
AMTEN [14] 86.56 84.76 80.12 76.07
XceptionNet [9] 97.51 97.24 97.11 79.41
ResNet34 [8] 98.32 98.35 97.90 95.90
DCWNet(ResNet34) 99.54 99.55 98.84 96.24

Table 4: Ablation study of the DCE block for different number of directions.

Direction
Conv 1× 1 FC

ACC (%) AUC ACC (%) AUC
(+15°) 89.24 0.908 90.03 0.898
(+15°, +45°) 91.19 0.932 90.42 0.906
(+15°, +45°, +75°) 92.88 0.929 92.74 0.938
(+15°, +45°, +75°, −15°) 92.87 0.923 93.28 0.942
(+15°, +45°, +75°, −15°, +45°) 93.40 0.946 94.38 0.948
(+15°, +45°, +75°, −15°, −45°, +75°) 93.77 0.956 95.34 0.962

Fake Real

Original

DCE
Feature

Figure 8: Feature maps from DCE block.

Table 5: Comparisons among three feature fusion methods.

Components S1 (%) S2 (%) Addition (S1, S2) (%) SE (S1, S2) (%) MSCA (S1, S2) (%)
ACC 95.34 94.98 95.28 95.46 96.81

fake

real

Original s1 s2 SE (s1,s2) MSCA (s1,s2)

Figure 9: (e feature maps from different fusion methods.
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results on the FaceForensics++ and DFDC preview datasets.
From the ablation study, we observe that real and fake faces
have different featuremaps that learned from the DCE block.
(is proves that the correlation of direction distribution is
valuable for face forgery detection. Moreover, the effec-
tiveness of the proposed MSCA is verified by comparisons
with existing feature fusion methods. We also explore how
different frequency components contribute to face forgery
detection, which provides some interpretability for face
forensics.

Data Availability

(e data used to support the findings of this study are
available from the corresponding author upon request.
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Traditional machine learning-based steganalysis methods on compressed speech have achieved great success in the field of
communication security. However, previous studies lacked mathematical modeling of the correlation between codewords, and
there is still room for improvement in steganalysis for small-sized and low embedding rate samples. To deal with the challenge, we
use Bayesian networks to measure different types of correlations between codewords in linear prediction code and present
F3SNet—a four-step strategy: embedding, encoding, attention, and classification for quantization index modulation steganalysis
of compressed speech based on the hierarchical attention network. Among them, embedding converts codewords into high-
density numerical vectors, encoding uses thememory characteristics of LSTM to retainmore information by distributing it among
all its vectors, and attention further determines which vectors have a greater impact on the final classification result. To evaluate
the performance of F3SNet, wemake a comprehensive comparison of F3SNet with existing steganographymethods. Experimental
results show that F3SNet surpasses the state-of-the-art methods, particularly for small-sized and low embedding rate samples.

1. Introduction

As an effective way to secretly transfer information over the
Internet, steganography uses the redundancy of digital
carriers to accomplish secret information embedding. In
recent years, due to the pervasiveness of streaming media
technologies, VoIP steganography and their countermea-
sures have become one of the hot topics in information
hiding [1–3].

Among many VoIP applications for band-limited
channels and wireless communication, speech coders such
as G.729, G.713.1, Adaptive Multirate (AMR), and Enhanced
Full Rate (EFR) have become essential components in
mobile and wireless communication. How to exploit the
redundancy existing in the encoding process to achieve
steganography is a new research hotspot. Some methods
which embed secret messages into the bitstream during the
encoding process have been proposed, such as quantization
index modulation (QIM) steganography [4–6], fixed

codebook (FCB) steganography [7–9], and pitch modulation
(PM) steganography [10, 11].

As the counterpart of steganography, steganalysis is not
only to ensure that steganography is not maliciously abused
but also a key technique for evaluating the performance of
steganography algorithms. Machine learning algorithms,
especially support vector machine (SVM), have been widely
used in the field of steganalysis of both traditional media and
VoIP streams. For QIM steganography, S. Li et al. proposed a
variety of detection methods [12, 13]. In [12], they presented
a statistical model to extract the quantitative feature vectors
of the index distribution characteristics (IDC). In another
work, Li et al. [13] further presented a model called the
quantization codeword correlation network (QCCN) to
quantify the correlation characteristics of the vertices in the
correlation network. For FCB steganography, Miao et al. [14]
first presented a Markov Transition Probabilities- (MTP-)
based detection method and an entropy-based detection
method to detect the steganography of compressed speech.
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To improve the performance, Ren et al. [15] used the sta-
tistical probability of Same Pulse Position (SPP) in the same
track to accurately distinguish covers from stegos. For PM
steganography, Liu et al. [16] extracted the statistics of the
high-frequency spectrum and the mel-cepstrum coefficients
of the second-order derivative for detecting audio steg-
anography. Li et al. [17] proposed a network model to
quantify the correlation characteristics of the adaptive
codebook. Undoubtedly, steganalysis of compressed speech
based on machine learning has made great progress.

However, such methods mentioned above are facing
some challenges. Firstly, as steganography becomes more
sophisticated [7, 8, 18], the extracted statistical features for
steganalysis are evolving from low dimensions and sim-
plicity to high dimensions and complexity [19]. Secondly,
information hiding technology is gradually developing to-
wards randomization and fine granularity, that is, within the
allowable range of carrier distortion, secret information is
first divided into small segments, and then, carriers of
different lengths are randomly selected to achieve fine-
grained steganography with different embedding rates.
Nevertheless, most existing steganalysis methods do not
perform well [14, 15], especially for small-sized and low
embedding rate samples.

Fortunately, the emergence of neural networks (NNs)
has brought hope to deal with these challenges. In 2018, Lin
et al. [20] first introduced neural networks (NNs) to the
steganalysis of compressed speech. &ey proposed Re-
current Neural Network- (RNN-) based steganalysis model
(RNN-SM) to detect the disparities in codeword correla-
tions caused by QIM steganography. In 2019, Chen et al.
proposed a steganalytic scheme by combining RNN and
Convolutional Neural Network (CNN) for FCB steg-
anography. However, sequence coding based on CNN or
RNN is still a local coding method, and it models the local
dependency of input information. In [21], Vaswani et al.
argued that the attention mechanism can completely re-
place LSTM and convolutional neural networks. Inspired
by their work, we integrate the attention mechanism and
RNN and propose a deep network model to mine infor-
mation that reflects changes in the correlation between
codewords before and after steganography.

In this paper, we introduce F3SNet, a four-step strategy
for QIM steganalysis based on hierarchical encoding rep-
resentations. In F3SNet, the RNN encoder is used to keep
much more information by being distributed among all its
vectors, and the attention mechanism is used to decide
which vectors should be paid more attention to.&e practice
has proved that F3SNet is very sensitive to the weak signal
changes brought by steganography, especially for small-size
and low embedding rate samples.

In summary, this work makes the following
contributions:

(1) We first use the Bayesian network (BN) to establish a
framework for uncertainty knowledge expression
and reasoning and then calculate the link strength
between different nodes as a measure of the strength
of the codeword correlation. &e process of

quantification analysis serves as an essential step
towards effective detection using a deep learning
framework.

(2) We present F3SNet, a four-step strategy for QIM
steganalysis method based on the hierarchical at-
tention network. &rough a four-step strategy, we
encode the numerical codeword vectors into mul-
tiple memory vectors, then select a set of vectors that
have the greatest impact on the classification result to
prevent information overload, and finally achieve
efficient steganography classification, even in special
cases, such as small size and low embedding rate.

(3) To evaluate the performance of F3SNet, we perform
comprehensive experiments on detection accuracy
(ACC), false positive rate (FPR), and false negative
rate (FNR) of the algorithm under different lengths
and different embedding rates. Furthermore, we
compare F3SNet with several existing algorithms,
such as IDC [12], QCCN [13], RNN-SM [20], and
FCEM [22] methods under different embedding
rates and different lengths. &e experimental results
show that our algorithm is superior to other state-of-
the-art algorithms.

&e rest of the paper is structured as follows. Section 2
reviews related work on existing steganography and steg-
analysis of compressed speech. Section 3 provides an
overview of linear prediction analysis and QIM steganog-
raphy. Section 4 discusses correlations using the Bayesian
network. Section 5 details the design and implementation of
F3SNet, followed by experiments and discussions in Section
6. Finally, we conclude the paper and discuss future work in
Section 7.

2. Related Works

In 2010, Ding and Ping [23] used the histogram features of
the pulse position parameter to train the SVM classifier to
distinguish cover and stego speech. In 2011, Huang et al. [24]
employed the second detection and regression analysis not
only to detect the hidden message but also to estimate the
length of embedded messages. However, their method is a
relatively dedicated steganography method. Li et al. [12]
designed statistical models to extract the quantitative feature
vectors of these characteristics for detecting QIM steg-
anography using the SVM classifier. Furthermore, Li et al.
[13] built a QCCN model, extracted feature vectors from
split quantization codewords, and then trained a high-
performance SVM classifier.

In addition, for FCB steganography, Miao et al. [14] used
the Markov property of speech parameters to propose a
detection method based on MTP and entropy in 2013. Ren
et al. [15] proposed an AMR steganalysis algorithm based on
the probability of the same pulse position in the same track
in 2015. For better performance, in 2016, Tian et al. [19]
characterized AMR speech exploiting the statistical prop-
erties of pulse pairs and presented a steganalysis of AMR
speech based on the multidimensional feature selection
mechanism. For pitch modulation steganography, Li et al.
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[17] proposed a network model to quantify the correlation
between the adaptive codebook.&e SVM classifier was used
in the above three papers.

In recent years, with the application of different types of
deep learning, many novel algorithms have been proposed
for steganalysis and forgery based on image, audio, and
video [25–27]. Compared with the conventional methods
with handcrafted features [13, 19, 28, 29], the algorithms
based on deep learning can significantly improve the de-
tection performance. In 2015, Qian et al. [30] proposed a
customized CNN for image steganalysis. &e model could
capture the complex dependencies in images and achieve
better detection performance than the Spatial Rich Model
(SRM). Xu et al. [31, 32] proposed a CNN architecture that is
more suitable for image steganalysis and enhanced it by
improving the statistical model in the subsequent layers and
preventing overfitting. Ye et al. [33] proposed a CNN-based
image steganalysis method, which uses an activation func-
tion called truncated linear unit (TLU), and improved the
steganalysis ability by incorporating the knowledge of se-
lection channel. In 2016, Paulin et al. [34] presented an audio
steganalysis method using deep belief networks (DBN).
Compared with SVM and Gaussian mixture model (GMM),
the proposed DBN-based steganalysis method could get
higher classification accuracy. In 2017, Chen et al. [35]
designed a novel CNN to detect audio steganography in the
time domain. However, due to different signal character-
istics, these algorithms are difficult to directly apply to
compressed speech.

In 2018, Lin et al. [20] proposed the codeword corre-
lationmodel based on RNN.&ey used a supervised learning
framework to train RNN-SM. Experiments showed that
RNN-SM achieved better detection results regardless of
short sample length or low embedding rate. In 2019, Chen
et al. [36] proposed a steganalytic scheme by combining
RNN and CNN. &ey utilized RNN to extract higher level
contextual representations of FCBs and CNN to fuse spatial-
temporal features for the steganalysis. Experiments results
validated that their method outperforms the existing state-
of-the-art methods. In 2019 and 2020, Hao et al. [22, 37]
successively proposed hierarchical representation network
and multihead attention-based network to extract correla-
tion features for QIM steganalysis. Both methods signifi-
cantly improve the best result especially in detecting both
short and low embedded speech samples. Inspired by their
work, we proposed a new model called F3SNet based on the
hierarchical attention network to model the spatial and
temporal characteristics of the quantization index in LPC
and further improve the accuracy of detecting CNV steg-
anography [4].

3. Background

3.1. Linear Prediction Analysis. As the basis of low-rate
speech coding, the basic idea of linear predictive analysis
(LPA) is to use the correlation of the speech signal to ap-
proximate the sample value at the current moment with the
linear combination of several past speech samples. Linear
predictive coding is mainly divided into three processes:

LPA, line spectrum pair (LSP) analysis, and vector quan-
tization (VQ). First, the speech signal can be regarded as the
output produced by an input sequence μ(n) exciting an all-
pole system H(z). &e transfer function of the system is

H(z) �
G

1 − 􏽐
p
i�1 αiz

− i
, (1)

where G is a constant, p is the order of the model, and αi is a
real number. &e p prediction coefficients form a p-di-
mensional vector, which is the linear prediction coefficient.

However, the LPC coefficient fluctuates greatly, and the
error of a certain LPC coefficient will make a greater impact
on the entire frequency domain. &erefore, the LPC coef-
ficient is not suitable for direct quantization and needs to be
further transformed into the line spectrum frequency pa-
rameter LSF (line spectrum frequency). To further balance
the bit rate and quantization accuracy, vector quantization
technology is used to search the codebook for the codeword
vector C

→
k that is closest to the vector p

→ to be quantized in a
certain distance, and the sequence number k of the code-
word vector is obtained as the quantization result.

3.2. QIM Steganography. &e intrinsic essence of QIM
steganography is that there is redundancy in the quanti-
zation codebook, and the suboptimal codebook parameters
caused by steganography have little impact on the speech
quality.

Chen et al. first proposed a steganography method
suitable for QIM of static digital carriers such as image, text,
audio, and video [38]. Assume that the secret information to
be transmitted is from the set S � sk|1≤ k≤ n􏼈 􏼉. &e sender
wants to hide secret information sk. First, the codebook D is
divided into n disjoint subsets C � ck|1≤ k≤ n􏼈 􏼉. &en, he
(or she) establishes the mapping: f: sk⟶ ck. For the input
vector X to be quantized, only the codeword closest to X is
searched in subcodebook f(sk). &e receiver extracts secret
information by checking which part of the codebook the
codeword belongs to.

In 2009, Xiao et al. [4] combined the QIM method with
VQ in the encoding process of compressed speech and
proposed a novel steganography algorithm based on com-
plementary neighbor vertices (CNV). Given N codewords,
every codeword is m-dimensional. Xiao et al. used graph
theory to establish a graph G(V, E) in the code space, which
can be defined as follows:

V � Vi|0≤ i≤N, |Vi|� m􏼈 􏼉,

E � 〈vi, vj〉|d Vi, Vj􏼐 􏼑 �

��������������

􏽘

m

i�1
xi − yi( 􏼁

2⎛⎝ ⎞⎠

􏽶
􏽴⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

where Vi is the ith codeword in the codebook. Each edge
represents a certain relationship between codewords, and
the weight of the edge is defined as the Euclidean distance
between any two codewords. In Xiao’s paper, he gave a graph
construction algorithm and proved that the graph can be
two-colorable. In the process, the vertices of the same color

Security and Communication Networks 3



were assigned to the same subset. &e dyeing operations
were repeated until all vertices have been assigned, to obtain
different partitioned subsets of the codebook. Finally, each
codeword is in the opposite part to its nearest neighbor.
Suppose X is the input value to be quantized. In this case, the
additional quantization distortion caused by CNV steg-
anography can be given:

L(X, 􏽢Y) � d(X􏽢Y) − d(XY). (3)

It can be proved that the algorithm can minimize the
signal distortion and significantly improve the undetect-
ability and robustness of CNV steganography. &is paper
implements steganalysis for the CNV algorithm.

4. Codewords Correlation Modeling
and Analysis

To fully describe the correlation between codewords in LPC,
we use the BN to model the codewords and then analyze the
correlation. BN can be represented as a 2-tuple 〈G, θ〉, where
G � (V, E) denotes a directed acyclic graph and θ denotes a
set of conditional probabilities, called network parameters.

Suppose there are S frames, each of which contains N

codewords. V and E represent the set of vertices and the set
of edges in the directed graph G, respectively, which can be
expressed as follows:

V � V1[m], V2[m], . . . , VN[m]􏼈 􏼉, m ∈ 0, 1, . . . , S − 1{ },

E � 〈vi, vj〉􏽮 􏽯|vi ∈ V1[i], V2[i], . . . , VN[i]􏼈 􏼉, vj ∈ V1[j], V2[j], . . . , VN[j]􏼈 􏼉􏽮 􏽯,

⎧⎨

⎩ (4)

where L(0≤L≤ (S − 1)) denotes the relative distance of
different frames. If j − i � 0, 〈vi, vj〉 stands for the edge in
the interframe. If j − i≥ 1, 〈vi, vj〉 stands for the edge in the
intraframe. Once the vertices and edges of the directed
graph G are determined, the network parameters θ can be
computed to characterize the dependencies between the
vertices. &erefore, the following formula can be
established:

Θ � P Λi|Vi( 􏼁, i � 1, 2, . . . , N􏼈 􏼉, (5)

where Vi is the set of parent nodes of node Λi. &e
construction of BN includes structure learning and pa-
rameter learning, and parameter learning depends on
structure learning. Structure learning refers to finding a
network structure that is as similar as possible to the data
for any given dataset D � D1,􏼈 D2, . . . , Dn}. In the paper,
the K2 algorithm based on Bayesian scoring rules is used
to find the network with the largest probability under a
given dataset. According to the Bayesian formula,

P(G|D) �
P(G)P(D|G)

P(D)
, (6)

where P (G) is the prior knowledge of the network structure
G and the dataset D is known information and is inde-
pendent of the network structure, and we have

max argGP(G|D) � max argGP(G)P(D|G). (7)

Since P(G)P(D|G)∝ log P(G) + log P(D|G), the
Bayesian score is defined as follows:

Score(G, D) � log P(G) + log P(D|G). (8)

Assuming that the prior distribution of the parameter Θ
obeys the Dirichlet distribution, let ri represent the number
of values of the ith variable, qi represent the number of

possible values of the parent node of the ith variable, mijk

represent the number of samples whose parent node is the
jth value when the ith node in the Bayesian network takes
the kth value, and αijk is a hyperparameter, and
α(ij∗) � 􏽐kαijk, mij∗ � 􏽐kmijk; then,

Score(G, D) � 􏽘
n

i�1
􏽘

qi

j�1
log
Γ αij⋆􏼐 􏼑

Γ αij⋆ + mij⋆􏼐 􏼑
+ 􏽘

ri

k�1
log
Γ αijk + mijk􏼐 􏼑

Γ αijk􏼐 􏼑
⎡⎢⎣ ⎤⎥⎦,

(9)

where Γ(·) is the gamma function and n represents the
number of variables. It has been proved that the K2 algo-
rithm can almost learn the Bayesian network when the node
priority is completely correct.

To verify the effectiveness of BN, we select a 40-second
speech segment, compress it with a G.729 vocoder, and
then extract 4000 sets of quantized codewords. In the
experiment, we construct the BN with 9 vertices and then
perform parameter learning. Using the above K2 algo-
rithm, the learned network structure is shown in Figure 1.
&e intraframe codeword correlation is mainly reflected
between codeword l1 and codeword l2 and between
codeword l1 and codeword l3, and the interframe corre-
lation is mainly reflected in the first codewords of the two
consecutive frames. How to measure and visualize the link
strength between different codewords? For that purpose,
Imme [39] proposed a measurement method for discrete
Bayesian networks based on mutual information and
conditional mutual information. In his method, X and Z

are both the parent nodes of Y, and P(y|x, z) is given by
the conditional probability table of y; given x and z, link
strength is defined as

LSblind(X⟶ Y) � 􏽢E(Y|Z) − 􏽢E(Y|X, Z), (10)

where
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􏽢E(Y|Z) �
1

#(X)#(Z)
􏽘

x,y,z

P(y|x, z)log2
#(X)

􏽐xP(y|x, z)
,

􏽢E(Y|X, Z) �
1

#(X)#(Z)
􏽘

x,y,z

P(y|x, z)log2 P(y|x, z),

(11)

where #(X) denotes the number of discrete states of X.
Conveniently, the LinkStrength package in MATLAB’s
Bayes Net Toolbox (BNT) provides functions to calculate
and visualize entropy, connection strength, and link
strength for discrete Bayesian networks. For simplicity, we
only use link strength in this paper. Figure 2 shows blind
average link strength.

In the link strength graph, the value of the link strength is
indicated by the number next to the arrow. As indicated by
the blind average link strength in Figure 2, most links are
quite strong. Especially, the link strengths between the first
codewords of two consecutive frames are 3.472 and 3.582,
respectively, which are the two connections with the largest
value. &is demonstrates that the correlation between
consecutive frames is the strongest. Next, it can be observed
that in three consecutive frames, the link strength between
the first codeword and the third codeword is greater than the
link strength between the first codeword and the second
codeword. For example, in the first frame, the former value is
1.996 and the latter value is 1.953, which is 4.3% higher.&is
implies that the correlation between the first and the third
codeword is stronger than that between the first and the
second codeword. Furthermore, the absence of links be-
tween other vertices does not mean that there are no cor-
relations between them. It is just that the correlations are too
weak and optimized by the learned model. Of course, the
weak links can be measured by manually adding the link
relationship in the graph.

As can be seen, the correlations between codewords in
LPC are complex. &e correlation measure proposed in [20]
uses conditional probability, provided that it is based on the
Markovian modeling of the codeword sequence. However,
our method is based on Bayesian networks, which are closer
to the true distribution of the codeword sequence. &us, it is
necessary to find a novel method to improve the traditional
detection method. Steganalysis based on deep learning can
automatically extract the intrinsic features of the carrier,
avoiding the complexity of establishing the model. &ere-
fore, we propose a steganalysis method that utilizes the
advantages of RNN and attention mechanism.

5. Proposed Method

Till now, we can formally present our F3SNet, which is an
architecture based on a hierarchical attention network. &e
structure is shown in Figure 3. It includes an embedding
layer, multilayer attention layer, and a classifier. Among
them, the multilayer attention layer adopts a two-layer
structure and includes a single codeword encoder, a code-
word attention layer, a codeword sequence encoder, and a
codeword sequence attention layer.

&e steganography classification is briefly summarized as
follows. Simply feed in an input array and get the codeword
vectors and codeword sequence matrices. &e codeword
vectors are taken as the input and sent to the first attention
layer. &e compressed vector representations of the code-
words are provided by LSTM, and then, some important
vectors that can reflect the correlation of the codeword are
extracted by the attention mechanism. Simultaneously, these
codeword sequence matrices enter the second attention
layer. After the same operation, a sequence-level expression
that summarizes all information in the entire speech is
obtained. Finally, the obtained representations are further
used as classification features to achieve steganography
classification by a fully connected network. For the con-
venience of verification, we choose keras as the steganalysis
framework. Below we describe the details of different
components.

5.1. Input. As we know, speech has a hierarchical structure
similar to that of a document, which can be divided into
different sentences, and each sentence contains a corre-
sponding number of words. As a result, one speech can be
divided into codeword sequences and codewords. Each
codeword sequence and codeword contains unique infor-
mation. To fully mine this information, we use a hierarchical
attention network to model the structure of the quantized
codewords. Here, two types of input data with different
shapes are required.

Assume that there are S frames in a given speech sample
of duration L(s). We extract the codeword index and pack
all indices of a speech sample into a vector X with size
(S × 3). X1 is the first layer input, and the format is as
follows:

V1 V4 V7 V9

V8V6V5V3V2

Figure 1: 9-node Bayesian network structure.

1.996 2.079 2.097

1.953 1.977 2.033

3.472 3.582V1 V4 V7

V9

V8

V6

V5

V3

V2

Figure 2: Link strengths using blind average.
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X1 � l00, l10, l20, l01, l11, l21, . . . , l0(S−1), l1(S−1), l2(S−1)􏽨 􏽩, (12)

where lij(0≤ i≤ 2, 0≤ j≤ S − 1) denotes the ith index in the
jth frame. For the second layer input, we take the L-len
speech as a unit and pack the codeword indices of the S

frame into a matrix as

X2 �

l00 l01 · · · l0(S−1)

l10 l11 · · · l1(S−1)

l20 l21 · · · l2(S−1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (13)

5.2. Embed. &e embedding layer is used as the first hidden
layer in our model, which converts the quantized codeword
index sequence (QIS) into a fixed-size vector sequence.
&rough the embedding layer, a continuous, distributed QIS
representation can be obtained and can effectively charac-
terize the correlations between different codewords. In
principle, a set of two-dimensional tensors with shape
(batchsize, S × 3) is fed into the embedding layer. And, they
are used as ‘indices’ to select a permutation of inner trainable
weights matrix WMax num×D, where D represents the output
dimension of the embedding layer.

In our experiment, matrix WMax num×D is initialized
randomly, which is regarded as a part of the deep learning
model, and updated during the model learning process.
After multiple epochs, the entire correlations between
codewords are correctly expressed. Using this learned
weight, the final outputs are a batch of 3-dimensional tensors
with shape (batchsize, S × 3, D), which are the encoded
representations.

As can be seen in Section 6.3, the comparison between
model #1 and #4 shows that the embedding layer can sig-
nificantly improve the classification accuracy.

5.3. Encode. &e embedding layer is followed by the LSTM
coding layer. LSTM mainly processes the encoded sequence
from left to right through three-gated logics (forgetting gate,
input gate, and output gate) and returns an ordered list of
hidden states h1, h2, . . . , hT􏼈 􏼉 as well as an ordered list of
output vectors y1, y2, . . . , yT􏼈 􏼉. As shown in Figure 4, the
LSTM cell remembers values over arbitrary time intervals,
while the three gates regulate the flow of information into
and out of the cell.

&ere are eight groups of parameters that need to be
learned throughout the LSTM network, which are the
weight matrices and the corresponding bias terms of the
three gates. &e parameters are defined as follows: for-
gotten gate weight matrix Wf and its bias term bf, input
gate weight matrix Wi and its bias term bi, output gate
weight matrix Wo and its bias term bo, and cell state weight
matrix Wc and its bias term bc. For clarity, the four weight
matrices are further subdivided into Wif, Whf, Wii, Whi,
Wio, Who, Wic, and Whc. Taking the forget gate as an
example, the calculation process of giving the control
factor and retaining how much memory is given. In each
LSTM cell, the two weight matrices connecting the input
node to the hidden node are, respectively, the input
weights (Wif) and the hidden node feedback weights
(Whf). First, the network output ht−1 at time t − 1 is
combined with the current network input xt and then
linearly transformed to obtain uT

f. &e mathematical
process is briefly described as follows:

u
t
f � Wif Whf􏽨 􏽩

xt

ht−1
􏼢 􏼣 + bf. (14)

&en, uT
f is mapped to 0 ∼ q(1) by the nonlinear acti-

vation function to obtain the control factor of the forget gate,
which can be described as
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ft � f u
T
f􏼐 􏼑. (15)

In a similar way, the control factor it of the input gate
and the control factor ot of the output gate can be calculated.
At each time step t, LSTM cell outputs two vectors: the
memory ct from the current block and the output ht of the
current block, i.e.,

ct � ft · ct−1 + it · f u
t
c􏼐 􏼑,

ht � f u
t
o􏼐 􏼑 · f ct( 􏼁,

⎧⎪⎨

⎪⎩
(16)

where the symbol f(·) represents the activation function,
two types of activation functions ReLU or Tanh are used in
the LSTM cell, and symbol “·” means multiplication by
elements. Finally, LSTM will give an output sequence of
dimension L × P × Q (Q � M × D), where L is the length of
the samples, P is the batch size,M is the hidden size, andD is
the network direction (D � 1 indicates a one-direction
network; D � 2 indicates a bidirection network). In the
work, the output vectors HLSTM

T � [h1′, . . . , hT
′] of the LSTM

layer further serve as input for the attention layer.

5.4.Attend. As mentioned above, the encoder is able to keep
much more information by distributing it among all its
vectors. Moreover, not all vectors contribute equally to the
final classification. Hence, the attention mechanism (AM) is
introduced to extract such vectors that are important to the
steganalysis and aggregate the representation of those in-
formative vectors to form the feature vectors. As illustrated
in Figure 5, attention can be divided into two steps. One is to
calculate the attention distribution based on all input in-
formation; the other is to calculate the weighted average of
the input information based on the attention distribution.

Given the input sequence HLSTM
T , and then it is passed to

a dense layer with activation tanh. A set of intermediate
vectors is obtained:

U � u1, . . . , uT􏼂 􏼃 � tan h WH
LSTM
T􏼐 􏼑 ∈RDu×N

� tan h W h1′, . . . , hT
′􏼂 􏼃( 􏼁,

(17)

where W is the parameter matrix of the dense layer. &e
attention distribution can be then derived by comparing the
output ut of the dense layer with a trainable context vector u

and normalizing with a softmax:

αnt �
exp s ut, un( 􏼁( 􏼁

􏽐kexp s uj, un􏼐 􏼑􏼐 􏼑
. (18)

Using the scaled dot product model, the scoring function
is obtained, denoted as s(ut, un) � uT

t un/
��
D

√
(D is the di-

mension of the input vector). Let αnj represent the weight of
the j-th input concerned by the n-th output. For each input
vector, get the weighted average output vector h′

′
n:

hn
″ � 􏽘

T

t�1
αntht
′, (19)

where n, t ∈ [1, T] is the position of the output and input
vector sequence. Finally, the output vector sequence HATT �

[h1″, . . . , hT
″] containing the most information is obtained,

which is used as a classification feature for steganalysis.

5.5. Classify. After several neural network layers, high-level
reasoning in F3SNet is done via a fully connected (FC)
classifier. &e classifier is shown in Figure 3. &e FC layer
calculates the probability that the speech sample belongs to a
normal set and stego set. No matter how many FC layers are
passed, it is still regarded as a linear transformation, which
implements the conversion from the P × Q feature matrix to
the P × 2 classification result matrix. Assume that the pa-
rameters in the FC layers of our network, namely, the
weights and bias terms, are denoted by WF(size, 2 × Q) and
bF (size 2), respectively. Note that each batch of samples
shares the same set of parameters. &e output array
y(sizeP × 2) can be calculated as

y � σ htWF + bF( 􏼁, (20)

where σ is the sigmoid function.
In a nutshell, there are three reasons why F3SNet is

effective for small samples and low embedding rate samples.
Firstly, the embedding layer is more conducive to expressing
the correlation between codewords. Secondly, and most
importantly, the integration of multilayer RNN and AM
facilitates the extraction of speech spatiotemporal features.
&irdly, similar to words, sentences, and paragraphs in NLP
that can express information of different dimensions, more
features can be extracted from the two dimensions of
codewords and sequences. &e following experiment can
well prove the effectiveness of F3SNet.

6. Experiments and Discussions

6.1. Experimental Setup. To the best of our knowledge, there
is no public database in speech steganography and steg-
analysis to date. Previous works used self-generated speech
samples for experimentation. To facilitate the comparison of
algorithm performance, we use the speech sample set
published by Lin et al. on GitHub (https://github.com/
fjxmlzn/NN-SM/). In this paper, we divide the original
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samples into 5-second samples of equal length and then
convert the audio into PCM format with 8KHz sampling
rate, 16 bits per sample, and stereo by Cool Edit Pro 2.1.
Finally, a cover database with a total of 5120 different speech
samples isestablished.

As described in Section 3.2, the steganography method
was involved in the experiment, namely, CNV steganog-
raphy [4]. For each sample in the cover database, several bits
of randomly generated secret data are separately embedded
into the cover speech. &e actual number of embedded bits
depends on sample length and embedding rate. At the same
time, different sample lengths and different embedding rates
also have a direct impact on the detection accuracy of the
proposed steganalysis algorithm. Additionally, the normal
signals are assigned to the negative category, and the stego
samples were selected from the positive and negative cat-
egories to construct a training set and a test set, respectively.
To evaluate the performance of F3SNet, three statistical
indicators are used to measure the classification efficacy of
F3SNet, i.e., false positive rate (FPR), false negative rate
(FNR), and accuracy (ACC).

Firstly, to evaluate the effect of different sample lengths
on the performance of F3SNet, we give the sample lengths of
0.1 , 0.2 s, 0.4 s, 0.6 s, 0.8 s, 1 s, 2 s, 4 s, and 5 s with 20% and
40% embedding rate, respectively. As mentioned before,
many existing algorithms have good detection accuracy for
large-sized samples, but they do not perform well for small-
sized samples. &erefore, we focus on how well F3SNet
performs for small-sized samples.

&en, to evaluate the effectiveness of F3SNet at different
embedding rates, the normal signals and the stego signals
with different embedding rates (ER) are grouped. &erefore,
embedding rates in the experiment are chosen to be 100%,
80%, 60%, 40%, 20%, and 10%, respectively. At the same
time, we focus on the performance of F3SNet for small-sized

samples. &e length of the sample is set to 0.2 s and 1 s in the
experiment.

&irdly, as described above, for steganography based on
compressed speech, researchers have successively developed
a variety of steganalysis methods. Among them, the typical
algorithms are IDC [12], QCCN [13], RNN-SM [20], and
FCEM [22]. Below we will compare the performance of these
state-of-the-art algorithms and F3SNet using different
lengths and different embedding rates.

6.2. Determining Hyperparameters of F3SNet. &e hyper-
parameters in our model involved include the output di-
mension of the embedding layer, the number of LSTM
hidden units, the recurrent layers of LSTM, the dropout rate,
batch size, epoch, and so on. All these hyperparameters are
determined by cross-validation on the training set and
validation set.

For a given network model, hyperparameters such as the
dimension of the embedding layer, the number of LSTM
hidden unit, and the recurrent layers of LSTM are deter-
mined by cross-validation on the training set and validation
set. Taking into account classification accuracy and training
time, we collect a total of 102, 400 speech samples with a
length of 1 s (cut from the above database) and then divide
them into the training set and validation set in 7: 3 ratio. To
optimize the tuning process of the model, the Adam opti-
mizer was used for model training. &e learning rate is done
in the default way.

In our implementation, the programs run on a single
GPU in the deep learning server, which has “Intel (R) Xeon
(R) CPU E5-2620 V4 @ 2.10 GHZ ,” 64GB memory, and 4
NVIDIA GeForce GTX 2080 Ti GPUs. Moreover, the
memory size and processing power of the GPU are 11GB
and 11.3 TFLOPS in double precision, respectively.

hn″

h1′q h2′ hT′

α1 α2 αT

Softmax

DenseDense Dense

ff f

…

…

Figure 5: &e attention mechanism.

8 Security and Communication Networks



Normally, it has the ability to accommodate most of the
implementation in deep learning architecture. &us, based
on the GPU server resources in our lab, the final parameters
are as follows. Batch size was set to 128.&e dimension of the
embedding layer is 100.&e dimension of word LSTM is 100.
&e dimension of sentence LSTM is 50. &e recurrent layer
of LSTM is 1. It is worth mentioning that the current pa-
rameter values are not necessarily optimal, and one may find
a more balanced point of accuracy and time cost through
experiments.

6.3. Comparison with Different Network Model. Different
models have different learning capabilities. Generally
speaking, the more complex themodel, the stronger the deep
learning capabilities, but the greater the resource overhead.
Here, we use classification accuracy and training time as
evaluation metrics to compare six types of models, as shown
in Table 1. As can be seen from the above, F3SNet uses a
hierarchical attention model. Models #2, #3, and #4 are
variants obtained by modifying the proposed model in the
paper. For example, model #2 only considers a single-layer
attention structure, model #3 does not use a LSTM layer,
and model #4 does not use an embedding layer. In addition,
model #5 and #6 are the two deep learning models pro-
posed before [20, 22], and both are compared here.

For the classification accuracy metric, 1 s speech samples
are selected, and the embedding rate starts from 0.1 and
increases at a growth rate of 10%. After 10 iterations, the
maximum accuracy is plotted on the Y-axis and the em-
bedding rate is plotted on the X-axis, as shown in Figure 6.
We can find that, as the embedding rate increases, the
classification accuracy of all models is significantly im-
proved, and F3SNet is the best among all embedding rates,
which shows that the model has excellentsteganography
feature learning capabilities. It can be said that the em-
bedding layer and multilayer attention mechanism make
F3SNet show better performance. However, it can be seen
from Figure 7 that the training time of model #1 is relatively
long, which is a price that must be paid to improve accuracy.
In some applications, the time overhead is an “acceptable
metric” and the accuracy is a “satisficing metric.” &at is, the
classifier is required to achieve a certain accuracy within the
acceptable range of time overhead. Ourmodel can be applied
to these occasions.

6.4. Performance Testing

6.4.1. Test Results at Different Lengths. In the experiment,
nine different length speech samples with 20% and 40%
embedding rates were selected to test the validity of F3SNet
under different conditions, especially for short samples. &e
results are listed in Table 2.

Clearly, for 0.1 s samples, our algorithm still achieves
70.12% and 83.98% detection rates when the embedding
rates are 20% and 40%, respectively, which is significantly
better than the state-of-art algorithms. In addition, for each
fixed embedding rate, the detection accuracy is proportional
to the sample length. &is means that the longer the sample,

the higher the detection accuracy. When the sample length is
increased to 5 , the detection accuracy of the proposed al-
gorithm corresponding to the above two embedding rates
reaches 95.46% and 99.9%, respectively. Furthermore, it can
be seen that, as the speech length gradually increases to 5 s,
the detection accuracy of the algorithm under each candi-
date length fluctuates within a relatively small range.
However, when the sample length changes from 1 s to 5 s, the
detection accuracy increases more clearly. Taking the em-
bedding rate of 40% as an example, the sample length was
increased from 0.1 s to 1 s, and the detection accuracy in-
creased by 10.65%. However, the sample increased from 1 s
to 5 s, and the detection accuracy only increased by 5.27%.

From another angle, we can make some observations
about FNR and FPR. Regardless of the embedding rate, the
FNR of different lengths is significantly greater than the FPR.
&is shows that the missed detection rate is higher than the
false alarm rate in our detection algorithm. &erefore, the
algorithm is suitable for some application environments that
do not require high missing detection rates, such as online
real-time detection.

6.4.2. Test Results at Different Embedding Rates. &is ex-
periment evaluates the performance of F3SNet with fixed
length and different embedding rates. &e results are shown
in Table 3.

From the experimental results above, we can find that
there is a positive relationship between the detection ac-
curacy rate and embedding rate (ER in Table 3). For samples
with a length of 0.2 s, when the embedding rate is 10%, the
detection accuracy is 62.3%, and as the embedding rate rises
to 40%, the detection accuracy is up to 87.11%. Finally, the
detection accuracy ends up at 98.88% under 100% em-
bedding rate.

At the same time, for fixed-length samples, when the
embedding rate is low, the embedding rate increases by a
certain percentage, and the accuracy rate increases ac-
cordingly. However, when the embedding increases to a
certain value, the increase in accuracy is not significant.
Similarly, for a 0.2-second sample, the embedding rate
ranges from 20% to 100%, each time increasing by 20%, and
the ratios of the increase in detection accuracy are12.4%,
7.27%, 2.84%, and 1.66%, respectively. In addition, two
conclusions can be drawn from the horizontal comparison
of different sample lengths. First, the longer the sample, the
higher the detection rate. Second, when the embedding rate
is lower, the sample length increases by a certain value and
the detection accuracy increases more significantly.

6.4.3. Comparison with Existing Algorithms. We focus on
comparing the detection accuracy of various algorithms for
different sample lengths (0.2 s, 0.4 s, 0.6 s, 0.8 s, 1 s, and 2 s)
with embedding rates 20%, 40%, and 60%, respectively. &e
results are shown in Figures 8–10 . Comparing, we conclude
that, as the sample length increases, the detection accuracy of
all algorithms participating in the comparison keeps in-
creasing, and FNR and FPR keep decreasing, despite
occasional fluctuations. In addition, according to the
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Table 1: Experiment with different types of network models.

Number Network model Hyperparameters

Model #1 F3SNet

&e dimension of embedding layer� 100, the number of word
LSTM hidden unit� 100, the number of sentence LSTM hidden

unit� 50, dropout� 0.5, dropout_recurrent� 0.5, batch
size� 128, and epoch� 50

Model #2 Embedding + LSTM+Self_Attention +Dense
&e dimension of embedding layer� 100, the number of LSTM
hidden unit� 100, dropout� 0.5, dropout_recurrent� 0.5, batch

size� 128, and epoch� 50

Model #3 Embedding + Self_Attention + Self_Attention +Dense &e dimension of embedding layer� 100, dropout� 0.5,
batchsize� 128, epoch� 50.

Model #4 LSTM+Self_Attention +BiLSTM+Self_Attention +Dense
&e number of word LSTM hidden unit� 100, the number of

sentence LSTM hidden unit� 100, dropout� 0.5,
dropout_recurrent� 0.5, batch size� 128, and epoch� 50

Model #5 Embedding +Multi-head Attention +Dense ([22]) &e dimension of embedding layer� 100, heads� 8,
head_size� 32, dropout� 0.5, batchsize� 128, epoch� 50.

Model #6 LSTM+LSTM+Dense ([20]) &e number of the first LSTM hidden unit� 50, the number of the
second LSTM hidden unit� 50, batch size� 128, and epoch� 50
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Figure 6: &e accuracy of different models.
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Figure 7: &e time cost of different models.

10 Security and Communication Networks



Table 3: Detection results under different embedding rates (sample length: 0.2 s and 1 s).

Sample length (s) Embedding rate (%) ACC (%) FNR (%) FPR (%)

0.2

10 62.30 58.763 13.666
20 74.71 37.451 13.417
40 87.11 17.083 8.549
60 94.38 7.892 3.271
80 97.22 3.783 1.770
100 98.88 1.130 1.116

1

10 71.19 33.845 23.582
20 83.45 16.488 16.618
40 94.63 4.762 5.962
60 98.44 1.760 1.366
80 99.51 0.869 0.098
100 99.95 0.095 0

Table 2: Detection results for different length samples (embedding rate: 20% and 40%).

Embedding rate (%) Sample length (s) ACC (%) FNR (%) FPR (%)

20

0.1 70.12 47.328 12.266
0.2 74.71 37.451 13.417
0.4 76.46 32.393 14.608
0.6 80.18 25.911 15.306
0.8 81.59 21.816 14.694
1.0 83.45 16.488 16.618
2.0 90.58 11.868 6.961
4.0 94.63 4.485 6.3
5.0 95.46 5.769 3.274

40

0.1 83.98 25.882 6.225
0.2 87.11 17.083 8.549
0.4 90.53 11.874 7.094
0.6 92.48 8.847 6.238
0.8 95.07 5.058 4.804
1.0 94.63 4.762 5.962
2.0 98.14 2.649 1.069
4.0 99.66 0.294 0.390
5.0 99.90 0 0.194
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Figure 8: Performance comparison under 20% embedding rate. (a) ACC under different sample lengths. (b) FPR under different sample
lengths. (c) FNR under different sample lengths.
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Figure 9: Performance comparison under 40% embedding rate. (a) ACC under different sample lengths. (b) FPR under different sample
lengths. (c) FNR under different sample lengths.
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Figure 10: Performance comparison under 60% embedding rate. (a) ACC under different sample lengths. (b) FPR under different sample
lengths. (c) FNR under different sample lengths.
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Figure 11: Performance comparison for 0.2 s samples. (a) ACC under different embedding rates. (b) FPR under different embedding rates.
(c) FNR under different embedding rates.
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performance distribution curve in Figure 8, the five types
of algorithms can be divided into three different perfor-
mance ranges. &e detection algorithms IDC and QCCN
based on traditional machine learning have poor per-
formance, RNN-SM is in the middle, and FCEM and
F3SNet have the best performance. And, among all the
algorithms, the performance of F3SNet has obvious ad-
vantages. On average, F3SNet leads RNN-SM by about
15.41% and FCEM by about 2.48%. Furthermore, from the
longitudinal comparison of the three graphs, two con-
clusions can be drawn. Firstly, in the case of 20% em-
bedding rate, ACC, FPR, and FPR fluctuate significantly,
indicating that the detection efficiency is low at this time
and it is susceptible to noise. Secondly, when the sample
length is fixed, the higher the embedding rate, the higher
the detection accuracy and the lower the FPR and FNR.
For example, with a fixed length of 0.2 s, when the

embedding rate is 20%, the accuracy of F3SNet is about
74%. If the embedding rate is increased to 40%, the de-
tection accuracy will increase to 87%.

In addition, to further evaluate the performance of
F3SNet, the detection accuracy of different algorithms under
different embedding rates (10%, 20%, 40%, 60%, 80%, and
100%) is tested. Here, we select three samples with lengths of
0.2 s, 0.8 s, and 2 sseparately for the experiment. &e results
are presented in Figures 11–13. We can see that, as the
embedding rate increases, the detection accuracy of all al-
gorithms is increasing, and F3SNet has the best performance
among all algorithms. Taking 2 s as an example, when the
embedding rate is 20%, the detection accuracy of F3SNet
can reach 90.58%. In contrast, the other algorithms are
64.7%, 66.45%, 68.35%, and 87.89%, respectively. Besides,
IDC, QCCN, and RNN-SM can hardly obtain effective
detection.

F3SNet
IDC
QCCN

RNN-SM
FCEM

0 0.1 0.2 0.3 0.4 0.5
Embedding rate

0.6 0.7 0.8 0.9 1

A
cc

ur
ac

y

0.3
0.35

0.4
0.45

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

(a)

F3SNet
IDC
QCCN

RNN-SM
FCEM

0 0.1 0.2 0.3 0.4 0.5
Embedding rate

0.6 0.7 0.8 0.9 1

Fa
lse

 N
eg

at
iv

e R
at

e

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.1

0

(b)

F3SNet
IDC
QCCN

RNN-SM
FCEM

0 0.1 0.2 0.3 0.4 0.5
Embedding rate

0.6 0.7 0.8 0.9 1

Fa
lse

 P
os

iti
ve

 R
at

e

0.8

0.6

0.7

0.5

0.4

0.3

0.2

0.1

0

(c)

Figure 12: Performance comparison for 0.8 s samples. (a) ACC under different embedding rates. (b) FPR under different embedding rates.
(c) FNR under different embedding rates.
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Figure 13: Performance comparison for 2 s samples. (a) ACC under different embedding rates. (b) FPR under different embedding rates.
(c) FNR under different embedding rates.
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7. Conclusion and Future Work

In this paper, we mainly focus on how to use the hierarchical
attention network to detect the disparities in the correlation
of LPC coefficients before and after steganography. First, to
demonstrate the existence and complexity of the correlation,
we performed Bayesian network modeling on the quantized
codeword index and then calculated the link strength be-
tween different nodes as a measure of the strength of the
codewords’ correlation. &en, we propose a four-step
strategy for QIM steganalysis based on HAN, which can
automatically extract the features reflecting the correlation.

In the proposed model, the LSTM layer and the attention
layer are two core components. &e former considers
possible dependencies in the codebook structure because of
its memory properties in time series, and the latter further
determines which vectors have a greater impact on the final
classification result, thereby effectively avoiding information
overload. Experimental results showed that even for speech
with a length of 1 s, F3SNet could effectively detect QIM
steganography under an embedding rate of 10% and out-
performs FCEM by about 5.27%.

It must be noted that F3SNet currently can only detect
QIM steganography. A future research suggestion would be
extending the method to detect other steganography with
compressed speech.
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Recent progress in deep learning, in particular the generative models, makes it easier to synthesize sophisticated forged faces in
videos, leading to severe threats on social media about personal privacy and reputation. It is therefore highly necessary to develop
forensics approaches to distinguish those forged videos from the authentic. Existing works are absorbed in exploring frame-level
cues but insufficient in leveraging affluent temporal information. Although some approaches identify forgeries from the per-
spective of motion inconsistency, there is so far not a promising spatiotemporal feature fusion strategy. Towards this end, we
propose the Channel-Wise Spatiotemporal Aggregation (CWSA) module to fuse deep features of continuous video frames
without any recurrent units. Our approach starts by cropping the face region with some background remained, which transforms
the learning objective frommanipulations to the difference between pristine and manipulated pixels. A deep convolutional neural
network (CNN) with skip connections that are conducive to the preservation of detection-helpful low-level features is then utilized
to extract frame-level features./e CWSAmodule finally makes the real or fake decision by aggregating deep features of the frame
sequence. Evaluation against a list of large facial video manipulation benchmarks has illustrated its effectiveness. On all three
datasets, FaceForensics++, Celeb-DF, and DeepFake Detection Challenge Preview, the proposed approach outperforms the state-
of-the-art methods with significant advantages.

1. Introduction

/e rapid development of social networks and the emer-
gence of various mobile applications have promoted the
creation and dissemination of digital videos. /ese videos
generally contain rich contents of individuals with regard to
face and voice, which are very significant biological infor-
mation for identity authentication. However, manipulation
of these videos will seriously undermine their authenticity.
Due to the ever-developing artificial intelligence technolo-
gies, existing tools make manipulation easier than ever and
more imperceptible. Meantime, the convenient creation and
spread of multimedia contents make it uncomplicated for an
attacker to obtain their desired material and carry out

malicious purposes by these tools. /is has become a po-
tential threat to ethics, law, and personal privacy and raised a
great alarm. It is therefore of great practical significance to
study effective forensics technologies to distinguish these
fake videos. However, facial manipulation did not attract too
much attention before because the conventional digital
image editing methods are easy to spot by naked eyes, and
the forensics technologies have been at an advantage until
the appearance of deep learning based forgery technologies.

However, in recent years, deep learning based face
synthesis, manipulation, and swap technologies which are
generally referred to as the term DeepFakes have brought
new challenges to face forensics. /e original DeepFakes can
only swap two faces using a pair of autoencoders that share
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the same encoder but is composed of different decoders.
/ey are trained to reconstruct the source and target face
images, respectively. Once trained, the target decoder can
generate a realistic face image of target identity with the
expressions of the source face by being fed with the source
face representation output from the source encoder.

Original DeepFakes always produces obvious artifacts
when warping faces back to the target images, and this defect
has been utilized by the existing approach [1]. In recent
years, the continuous development of generative networks
can generate very photo-realistic fake faces or completely
synthesize videos from a single image and even from portrait
paintings [2]. /is puts forward higher requirements for
forensics approaches in terms of detection accuracy and
generalization ability. /e forensics approaches have also
been developing with the help of deep learning and previous
work in digital forensics. According to the clues used, the
detection approaches of face video manipulation can be
mainly divided into two: intraframe information based and
interframe information based. /e former focuses on spatial
artifacts and realizes video manipulation detection by
processing independent frames. /e latter captures the
dynamic flaws in videos through temporal models like
Recurrent Neural Network (RNN) [3] or optical flow [4].

In this paper, we adopt a novel approach to capture the
interframe cues by aggregating deep feature sequences
channel wisely. It achieves better performance with relatively
few parameters. /e main contributions of this paper are
summarized as follows:

A novel module CWSA is proposed to exploit temporal
information by aggregating deep features of consecu-
tive frames but different channels. With a powerful
feature extraction backbone EfficientNet B0 [5], our
approach reaches the state-of-the-art level on three
large datasets.
It is revealed that by keeping the moderate background
in face cropping preprocessing, models can learn the
difference between pristine and manipulated pixels to
obtain gains in detection accuracy.
We demonstrate that skip connection preserves the
detection-helpful low-level features well. /us it plays a
central role when deep models are used for extracting
frame-level features.

/is paper is organized as follows. In Section 2, we briefly
introduce the existing forensics approaches. In Section 3, we
give a detailed description of our approach. /e experi-
mental results and analysis are presented in Section 4, and
we make a conclusion and prospects for future work in
Section 5.

2. Related Work

2.1. Manipulation Forensics. Before the emergence of deep
learning based forgery technologies, conventional multi-
media contents manipulation such as removal, copy-move,
and splicing were realized with image editing technologies.
/e research of multimedia forensics has been committed to

solving the problems of detecting this kind of manipulation
for long. /ese manipulations tend to leave obvious clues,
particularly in statistical characteristics caused by editing or
compression. Considering this, Cozzolino et al. have pro-
posed a feature-based splicing detection method. /eir al-
gorithm computes local features from the cooccurrence
matrix of the image residuals, and the parameters extracted
from different images were proved to be efficacious on both
detection and localization [6]. Similarly, the study in [7]
discovered the influence of times of JPEG compression that
images go through.With the help of the Nonnegative Matrix
Factorization model and histograms of Discrete Cosine
Transform, multiple JPEG compression can be successfully
detected and indirectly, the authenticity of images.

Another kind of popular approach is to discover clues
that are related to the camera itself. In 2006, Lukas et al.
proposed to identity camera models through photoresponse
nonuniformity, a pattern that reveals the different sensitivity
of pixels to light caused by the inhomogeneity of silicon
wafers [8]. Researchers also found out camera-related pat-
terns left in out-camera processing history. In [9], Cozzolino
et al. have researched to detect and localize forgeries by a
camera-based noise pattern. /is noise pattern is produced
during the compression or gamma correction and can be
seen as unique fingerprints of specific camera models.
However, the estimation of this noise requires a considerable
number of samples, and when encountered with an un-
known camera model, detection approaches based on noise
pattern would show weakness.

2.2. GAN Forensics. Using the Adversarial Generative Net-
work (GAN), many fake images or videos are completely
generated instead of manipulated. /is somehow reduces the
performance of earlier detection approaches. Inspired by the
camera fingerprints, recent researches try to analyze the fin-
gerprints in generated images and explore the feasibility of
attributing fake images to a GAN with certain architecture.
Moreover, Zhang et al. proposed an AutoGAN to simulate
artifacts produced by common GANs and detect GAN-gen-
erated images using spectrum features [10]. In [11], Cozzolino
et al. attempted to spoof a smart pretrained embedder which is
originally used to distinguish camera traces in capturing
images. /eir work revealed the vulnerabilities of current
approaches. Durall et al. also investigated the artifacts left out
of visual content. /ey analyzed the differences in the classical
frequency domain and constructed 1D power spectrum sta-
tistics. Using this feature, a simple binary classifier trained with
few annotated samples can achieve good performance [12].
Color abnormality is also a strong hint for GAN-generated
content. In [13], McCloskey et al. demonstrated that GAN
generators may leak some clues when converting feature
representations to red, green, and blue pixels. Li et al. analyzed
the difference between pristine and generated images in HSV,
YCbCr, and RGB color spaces, and a statistical feature set was
proposed to characterize the difference [14]. More directly,
Nataraj et al. trained their CNN detector on cooccurrence
matrices extracted from the RGB channels in the space domain
and achieved competitive performance as well [15].
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2.3. DeepFakes Forensics. Recently, many novel deep
learning based technologies have also shown astonishing
performance in face synthesis, among which the most
famous is DeepFakes. Along with the continuous devel-
opment of DeepFakes, the corresponding forensics tech-
nologies are also being researched. Similar to previous
studies, early work mainly focused on detecting visual
artifacts. Li et al. simulated the DeepFakes artifacts by
Gaussian blur and affine warpage, and their evaluations
indicated the simulated artifacts can make CNN detectors
more robust [1]. Some other work focuses on dynamic
defects in the temporal domain. In the pipeline of [3], a
CNN is used as a spatial feature extraction backbone, and
an RNN is connected to the backbone, aggregating the
CNN outputs over time and makes final classifications.
Zhou et al. aggregated short-term, long-term, and global
statistics to characterize the relations among different face
regions. /eir evaluations indicated these relations, espe-
cially the temporal order within the tracklet, are infor-
mative for recognizing temporal inconsistency in
manipulated face sequences [16]. Actually, most dynamic
artifacts based detection approaches utilize a CNN back-
bone to firstly extract features of every single frame.

Facial expression habits are unique from person to
person and are extremely hard to simulate. /erefore,
DeepFakes may leave traces in respect to personality be-
havior habits and sometimes even the physical law of mo-
tions or illuminations. For example, by modeling the face
and head movements as the unique speaking pattern of a
specific individual, the high prediction error can be a strong
hint of fake. Biological signals such as eye blinking and pulse
are also discriminating cues to expose DeepFakes. Li et al.
observed that the regular eye blinking cannot be realized in
the synthesized videos, and they proposed a CNN and Long
Short-Term Memory (LSTM) joint architecture to expose
DeepFakes by predicting the eye blinking [17]. By the
noncontact heart rate detection technology, it is easy to
detect whether there is a regular heart rate in videos and
identify the video authenticity. Similarly, Fernandes et al.
proposed to estimate the heart rates in DeepFakes videos by
Neural-ODE trained with normalized heart rate [18]. Due to
insufficient datasets, the research on DeepFakes detection
was seriously hindered in early time. To promote the re-
search of DeepFakes detection, many large-scale datasets are
made and open-sourced. Rossler et al. introduced a large
facial manipulation dataset with 4k forged videos named
Faceforensics++ created by four different approaches [19].
Recently, Facebook released a database containing 19154
pristine and 100K forged videos for the DeepFakes Detection
Challenge (DFDC). /ere are various background condi-
tions and manipulation approaches that are great challenges
for detection approaches [20]. Li et al. proposed a new large
scale benchmark named Celeb-DF that contains 5639 so-
phisticated DeepFakes videos [21]. /ough some existing
methods can expose fake videos, they generally make the
video-level real/fake classification by fusing the predictions
of several frames. /is does not actually leverage the features
of consecutive frames and leaves some room for fake video
detection. To end this, we propose the CWSA module to

accurately capture the temporal cues by fusing deep features
of consecutive frames.

3. The Channel-Wise
Spatiotemporal Aggregation

/is section presents details of our proposed approach.
Given a face patch sequence, the weights-sharing backbone
extracts deep features of each patch. /e proposed CWSA
module then recombines the feature maps into a new feature
sequence which is then compressed to a vector and con-
nected to a single neural unit for real or fake classification.
/e complete pipeline of our approach is shown in Figure 1.

We propose a simple but effective module CWSA as in
Figure 2. /e proposed module is easy to cooperate with a
backbone and serves as CWSA Net for face video forensics.
Specifically, given a deep feature sequence of successive
frames produced by the backbone, although it is unknown to
us about the semantics of a specific channel, we hypothesis
that feature maps of the same channels but different frames
contain dynamic information as successive frames do. By
stacking the feature maps of different frames with the same
channel and carrying out further feature extraction sepa-
rately, we can capture both frame-level artifacts and more
refined interframe defects.

For every input frame, the backbone produces a feature
map of size F ∈ RH×W×C, where H and W denote the res-
olutions and C denotes the channels. For a video clip that
contains N successive frames, the weights-sharing backbone
generates a set of feature maps of size F′ ∈ RN×H×W×C. Our
approach firstly decomposes F′ into base feature map
fN,C

n�1,c�1 ∈ R
H×Wand recombines them by going through N

and stacking f that has the equal c:

Fnew � fn�1,∗, fn�2,∗, . . . , fn�N,∗􏽨 􏽩. (1)

where [·] denotes channel-wise stacking. As in Figure 2, we
finally get a new feature set with size C × Fnew ∈ RH×W×N,
and in this paper, C equals to 1280 as we use EfficientNet B0
and H and W are both equal to 7.

/e following up layers that deal with Fnew are all
weights-sharing, i.e., repeated C times to reduce the number
of parameters. Batch Normalization is the first layer to avoid
internal covariate shift that may seriously hindrance the
training. Next, are convolution and LeakyReLU blocks with
128, 64, and 1 kernels with no downsampling and padding.
A single feature map will happen to be converted to a single
element, and regardless of the length of the input sequence,
we will get a feature vector of size iC×1. A single neural with
sigmoid activation is connected to it and makes the clas-
sification fake or real. /e pipeline of the proposed CWSA is
summarized in Algorithm 1.

4. Evaluation and Discussion

4.1. Experimental Settings

4.1.1. Datasets and Preprocessing. In this work, we have
carried out evaluations on a list of large scale fake face video
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Figure 2: /e architecture of the CWSA module; a colorful rectangle denotes a feature map output from the backbone.

Require: k Training face video clips V1, V2, . . . , Vk; Corresponding label y1, y2, . . . , yN.
1: for each i ∈ k do
2: Decompose Vi into the sequence of n frames V1

i , V2
i , . . . , Vn

i ;
3: Detect and crop faces frames from V1

i , V2
i , . . . , Vn

i , then denote them as V′1i , V′2i , . . . , V′ni ;
4: end for
5: Feed V′1i , V′2i , . . . , V′ni into the backbone, producing a set of feature maps F′ ∈ RN×H×W×C;
6: Decompose F′ into fN,C

n�1,c�1 ∈ R
H×W;

7: Combine f by going through N and stacking f that has the equal c, producing C × Fnew ∈ RH×W×N;
8: Feed Fnew into weights-sharing classifier, producing ypred;
9: Calculating binary classification error between y and ypred;
10: Update the parameters of the model by back propagation;
Ensure: Optimal model for fake face detection

ALGORITHM 1: /e CWSA algorithm.
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datasets: FaceForensics++ [19], Celeb-DF [21], and DFDC
Preview [20].

FaceForensics++ consists of 1000 pristine and 4000
forged videos evenly created by four different forgery
methods: DeepFakes, Face2Face, FaceSwap, and Neu-
ralTextures. In the following parts, we refer Face-
Forensics++ as FF++ and its subsets as DF, F2F, FS, and NT
for simplicity.

Celeb-DF includes 590 pristine and 5639 forged videos
created by advance DeepFakes technology. /e source
videos are publicly available YouTube video clips, including
59 celebrities of different genders, ages, and races. In this
work, we use the second version of this dataset which
contains another 300 pristine videos from YouTube.

Facebook DeepFake Detection Challenge Preview
(DFDC-P) is the early release for this competition, which
composes 1131 pristine of 66 actors, and 4113 forged videos
created by two face synthesis algorithms.

Table 1 lists some more basic information about total
frame numbers and video sizes.

Because the face region only makes up a tiny proportion
in videos, it is necessary to crop off the face patches to reduce
interference of redundant backgrounds and computation
cost. /us, we design a novel face cropping strategy which is
proved to be beneficial for fake detection.

In the stage of preprocessing, we first detect faces in
videos and then carry out face cropping, which raises a
question about the optimal cropping strategy. In our earlier
work, we naturally held that the characteristic of forged
pixels is what a CNNmainly learns. In this case, we only have
to crop off faces according to the results of face detection,
and no more operations are required.

However, the evaluations reveal that by feeding inputs
that include both pristine and forged pixels, deep CNNs can
learn more about their difference. /at is, networks may be
benefited from this kind of input by detecting its global
consistency. To validate if remaining some pristine pixels
could help us with detection, we further evaluate two ad-
ditional face cropping strategies for comparison:

(1) Crop off a convey hull of the detected face along with
the key points of facial contour. /e pixel density of
other regions is set as 0.

(2) Crop off a minimal square that encloses the detected
face with no extra margin.

(3) Crop off a minimal square that encloses the detected
face and expand it by a factor of 1.4.

Samples of all three face cropping strategies are shown in
Figure 3. Table 2 presents the performance between different
face cropping strategies of image-level classification accu-
racy on EfficientNet B0. Obviously, by retaining more
pristine pixels, the network is able to make some gain in
accuracy. /is is consistent on different datasets.

In order to verify the effect of the extended clipping
factor on feature extraction, we add a simple ablation ex-
periment based on EfficientNet B0. /e experimental results
on NT, which is a subset of FF++ and is a highly compressed
version, are shown in Table 3. Obviously, the larger the

margin is, the more the detection accuracy is, but the gain
stops when expanding the original margin by a factor of 1.3.
/e detection accuracy decreases gradually with the increase
of the factor, when it is greater than 1.3.

For this result, we think the reason is that the square of
1.3 is 1.69, whose half is about 0.85. When the square
enclosing the detected face has no extra margin, the face
region accounts for about 0.85 of the entire image region.
/erefore, the factor of 1.3 makes the ratio between the
number of face pixels and background pixels close to 1 :1.
/at is, the ratio between the number of true and forged
pixels is close to 1 :1. We consider that preserving an ap-
propriate proportion of true and forged pixels in the de-
tection data is helpful to improve detection accuracy. We
compare the accuracy convergence of different extended
clipping factors in the training process of the whole model
and display it in Figure 4. Weighing the accuracy and sta-
bility, we finally choose the factor of 1.4, which performs
better and generalizes well to different datasets overall.

Specifically, given F(x, y, w, h) that represent the co-
ordinates of the upper left, width, and height of the detected
face respectively α denotes the expanding coefficient that
controls the size of the margin. We first compute the center
position of this rectangle as shown in equation (2), and then
generate new F(x, y, w, h) as in equation (3), and accord-
ingly cut off a square. We then resize the expanded faces to a
uniform size regardless of the resolutions of the original
videos, we set size � 224 and α � 1.4 in this work.

Pc � x +
w

2
, y +

h

2
􏼠 􏼡, (2)

Rectnew � F Pc − α ·
max(w, h)

2
,􏼠 􏼡

Pc − α ·
max(w, h)

2
,

α · max(w, h),

α · max(w, h)).

(3)

Considering that the head movements in videos are in a
limited region in the short term, it is unwise to detect faces
for every frame. /erefore, we only detect a portion of
frames at regular intervals. For the undetected frames, we
crop off faces by the detection results of the previously
detected frame. In this paper, we detect faces for every 20
frames since the videos commonly contain 30 or 24 frames
per second.

4.1.2. Hyperparameters. /e performance is reported dif-
ferently: frame-level accuracy is used to evaluate the per-
formance of backbones that can only take single frames as
input; video clip level accuracy is used to evaluate the models
that take short sequences of consecutive frames. As in Ta-
ble 4, the training of backbones and CWSANet both consists
of 40 epochs without early stopping. We use minibatch
stochastic gradient descent as the optimizer and set learning
rate� 0.01, momentum� 0.9, and learning rate decays by
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2.375e-4 per epoch. For models trained on face images, batch
size� 32 and iterations� 50. For CWSA Net, batch size� 16
due to memory limit and iterations� 100 for adequate
training samples in each epoch. All performances are re-
ported on 3200 random test samples.

In terms of evaluation metrics, we consider video fo-
rensics a binary classification task and adopt the metric binary
classification accuracy that represents how many samples are
correctly classified. Although pristine and forged videos in
DFDC-P and Celeb-DF are unbalanced, we deliberately pick
up samples of each class with a 50% probability to make it
balanced in both training and testing.We also report the AUC
(area under the curve) for comprehensive assessments.

Note that there is not any data augmentation used in this
work. However, it is highly possible to achieve better results
with appropriate augmentation, training hyperparameters,
and other tricks. We choose not to do so because the aim of
this work is to study the characteristics of deep models used
for face forgery detection and the effectiveness of our
approach.

4.2. Backbone Selection. /e backbone is a key component
that extracts deep features preliminarily. /us, we system-
atically investigate the performance of different deep CNNs
in fake face detection to determine the most task-orient one.

Table 1: Basic information of datasets used in this work.

Dataset Real/fake Frames (k) Size
FF++ 1000/4000 509.9/2039.6 480p,720p,1080p
DFDC-P 1131/4113 88.4/1783.3 180p–2160p
Celeb-DF 890/5639 358.8/2116.8 Multiple
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Figure 3: Results of three different face cropping strategies.

Table 2: Binary classification accuracy (%) of different face cropping strategies.

Cropping type DF NT Celeb-DF
Convey hull 99.03 95.78 92.59
No-margin 99.09 97.34 91.88
1.4×margin 99.31 99.13 93.97
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EfficientNet B0 [5] shows its remarkable potential, and we
consider it the backbone of our approach.

It is hard to design a face forensics task-oriented model
from scratch. Although neural architecture search tech-
nology may help, it could lead to overfitting on specific
datasets. /e existing research on computer vision, espe-
cially general image classification on ImageNet, has provided
some off-the-shelf deep models that perform preeminently
on image feature extraction. However, their performance on
ImageNet cannot be the only point of reference due to the
difference between general image classification and forgery
detection. It is not clear enough about how model archi-
tectures, internal modules, and layer combinations affect the
detection performance. To this end, we systematically in-
vestigate the difference between various deep models.

As in Table 5, we evaluate a list of models and there is
indeed some consistency when deep models are applied in
forensics detection. Empirically, we chose models that can be
divided by different standards. Considering skip connections
and inceptionmodules are the twomost popular and effective
components to construct modern deep models, the first
standard classifies the chosen models by whether it contains
skip connections (EfficientNet B0 [5] & Xception [22]) or not
(Inception V3 [23] & MobileNet V1 [24]), and the second
classifies by if the model contains inception modules (In-
ception V3 &Xception) or not (EfficientNet B0 &MobileNet
V1). To classify real/forgery face patches, the output of the
last convolution layer in all these models is compressed by a
global average pooling to produce a feature vector, and a
single neural unit with sigmoid activation is connected to it
for classification.

It can be seen from Table 5 that skip connection is the key
factor affecting detection accuracy. /is is not evident
enough on FF++ since the accuracies are saturated. On
DFDC-P, it becomes more obvious, and the gap expands to
27% on Celeb-DF. A reasonable explanation is that low-level
features help to expose facial manipulations, and skip con-
nection can directly deliver these features to the downstream
of models. To validate this, we remove the skip connections in
EfficientNet B0 and Xception. On FF++, the performance of
both models without skip connections seriously decreases
and is even much worse than the other two. /is is also can
be seen on two other datasets, and their performance de-
grades to the same level as those models without skip
connections. Overall, EfficientNet B0 performs best and
generalizes well to different datasets and is an ideal backbone
for image level feature extraction.

To further verify this, we define the variance distribution
of the last dense layer as the Neural Activity of deep models:

Neural Activity � 􏽘
N

i�1

O1
i − μ1( 􏼁

2

N
, ..., 􏽘

N

i�1

OL
i − μL( 􏼁

2

N
⎡⎣ ⎤⎦

T

.

(4)

where for the dense layer with L units, Ol
i denotes the output

of l-th neural unit of i-th sample, and μl denotes the mean
output value of l-th neural over N samples. Because a neural
unit of the last dense layer with a larger variance will
contribute more to the final classification. Accordingly, an
intensive Neural Activity indicates that most units are active
at the same level and approximately equally contribute to
final classification. We calculate the variances of every unit
in the last dense layer of four models over N � 3200 test
samples. Because performance on Celeb-DF is the most
variable, thus we display the Neural Activity on four models
by box plots in Figure 5. For Xception and EfficientNet B0,
the first and the third quartiles are very close, which rep-
resents that their Neural Activity is very intensive, and most
units contribute to detection. For the rest two, this range is
relatively larger, which means there are many lazy units that
contribute less to detection.

4.3. Performance of theProposedApproach. On DFDC-P and
Celeb-DF, we carry out sufficient experiments of different
video clip lengths, and the results are shown in Tables 6 and
7, and the best results are shown in bold. /e first column
shows the performance of the EfficientNet B0 backbone on
frames. Obviously, CWSA Net effectively improves the
detection accuracy, and the longer the input sequence length
is, the more the detection accuracy is. But this gain stops
when the length is about 12 and is not continuing when the
length further raises. As for parameters, the EfficientNet B0
backbone is the major part and contains about 4.05 M
parameters. For the following layers, an input with 3 frames
only needs extra 79234 parameters, and then for each ad-
ditional frame, only additional 1152 parameters are re-
quired. We also evaluate the commonly used CNN-LSTM
architecture with the same experimental hyperparameters.
For the CNN-LSTM, it also leverages EfficientNet B0 as the
backbone, and a 2048-unit LSTM takes the global average
pooled outputs of the backbone which is a 1280-d vector.
/e LSTM is followed by a 512-d dense layer and a single
neural to make the prediction. OnDFDC-P, the CNN-LSTM
even performs worse than the backbone. Although it indeed
makes some gains on Celeb-DF that increases with sequence
length, our CWSA Net still outperforms the CNN-LSTM.

In order to verify the superiority of the CWSA module,
we compare it with a method that is a simple average fusion
of each frame. In addition, we also compare the CWSA
module with traditional RNN and LSTM based on the same
feature extraction backbone (EfficientNet B0). Table 8
presents a comparison of the accuracy of these methods
on NT, which is the subset of FF++. It should be noted that
the NT used here is highly compressed, which is of lower
quality. Obviously, the performance of RNN and LSTM is
not very good, even not as effective as the simple average
fusion of each frame. We consider that this is because RNN

Table 3: Binary classification accuracy (%) of different face
cropping strategies on highly compressed NT.

Cropping type Compressed NT
1.1×margin 75.32
1.2×margin 75.64
1.3×margin 76.12
1.4×margin 75.48
1.5×margin 74.30
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Figure 4: /e comparison of accuracy convergence of different extended clipping factors.

Table 4: Training settings of different parts.

Settings Training backbones Training CWSA net
Batch size 32 16
Iteration 50 100
Epoch 40 40
Optimizer SGD SGD
Learning rate 0.01 0.01
Momentum 0.9 0.9
Decay 2.375e− 4 2.375e− 4
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and LSTM lose the spatial feature information within each
frame when aggregating temporal features, resulting in a
negative impact. From the experimental results, compared

with the traditional RNN and LSTM, the proposed CWSA
module performs better.

Table 9 presents a comparison of accuracy between our
approach and the state-of-the-art on all three datasets. Al-
though the CWSANet is a little weaker on Celeb-DF, it is, on
average, better than the state-of-the-art approach. Even on
FF++, the accuracy almost saturates, CWSA Net still has a

Table 5: Binary classification accuracy (%) (higher is better) of different backbones on frames.

Model DF F2F FS NT DFDC-P Celeb-DF
EfficientNet B0 [5] 99.31 99.69 99.53 99.13 81.97 93.97
Xception [22] 99.22 99.62 99.56 99.00 80.75 94.84
Inception V3 [23] 98.84 99.78 99.47 98.24 79.72 66.19
MobileNet V1 [24] 99.16 98.75 99.53 98.47 79.09 66.69
EfficientNet B0(w/o skip) 83.56 58.62 58.84 60.94 76.31 66.66
Xception (w/o skip) 94.91 58.80 64.62 53.91 65.44 67.50

Table 6: Binary classification accuracy (%) (higher is better) on
video clips on the DFDC-P dataset.

Model 1 3 6 9 12 15 18
CWSA net 81.97 84.76 83.14 82.75 85.28 84.81 83.19
CNN-LSTM — 79.08 80.50 80.28 80.78 81.91 79.75

Table 7: Binary classification accuracy (%) (higher is better) on
video clips on the Celeb-DF dataset.

Model 1 3 6 9 12 15 18
CWSA net 93.97 95.86 96.27 96.17 97.12 96.91 95.28
CNN-LSTM — 95.22 95.06 95.13 96.53 96.38 95.28
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Figure 5: Neural activity of four models on Celeb-DF.

Table 8: Binary classification accuracy (%) (higher is better)
comparison based on the same backbone on highly compressed NT
datasets.

Approach Compressed NT
CWSA 80.6
Simple fusion 79.4
LSTM 76.0
RNN 75.6
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significant advantage. Also, it is worth noting that DFDC-P
is obviously the most challenging dataset. Both methods are
not very ideal in detection accuracy. However, CWSA Net
still surpasses the state-of-the-art by 2.9%, which is a sig-
nificant improvement.

A whole comparison based on AUC is in Table 10. /ere
are variousmethods that derive from different perspectives on
the list. CWSA Net achieves the highest AUC scores on both
Celeb-DF and DFDC-P, demonstrating its efficiency. And
obviously, compared to most of the other methods, CWSA
Net improves the detection performance by a great gap.

We also compare the accuracy and AUC on all four
subsets of FF++ with multiple detection methods in Ta-
bles 11 and 12. In this part, the results are provided by the
EfficientNet B0 backbone only, and nothing expect the
specially designed face cropping strategy is used. Apparently,
our approach achieves the state-of-the-art level on average,
and it goes beyond other methods on 3 out of 4 subsets.
Although FF++ is rather easy to be exposed, and some of the
previous methods perform nearly 100% in terms of both
AUC and binary classification accuracy, our approach still
shows obvious advantages on this dataset. /ese excellent
results are not only because of the Efficient B0 but also
because of the face cropping scheme presented in this work.

4.4. Analysis. We present some failure cases of forged face
detection with our proposed approach on highly compressed
NT, as shown in Figure 6. For the first type of failure case
shown in Figures 6(a) and 6(b), it is obvious that the face
detector fails to correctly extract the face from the highly
compressed image, which directly degrades the detection
accuracy of the forged face. /erefore, improving the ro-
bustness of the face detector can effectively solve such
failures. For the second type of failure case, we adjust the
color contrast of the images for a better display of the details
and show them in Figures 6(c) and 6(d). Actually, color
contrast is also one of themain factors affecting the detection
of fake faces. In order to deal with such failures, digital image
processing methods can be used to preprocess the samples
with low color contrast. For the last type of failure case
shown in Figures 6(e) and 6(f), the samples wrongly detected
are video frames with different face poses. Due to the rel-
atively few video frames of the side face in the datasets, the
detection model is not sensitive to such samples, resulting in
detection accuracy not being good enough. /erefore, the
model can perform better with appropriate data
augmentation.

Our work is one of the few existing methods in the field of
fake face video detection that utilizes both airspace features
and time domain features, and in Section 4.3, the

experimental results have demonstrated its effectiveness.
Differently, previous methods have focused on searching for
clues of forgery at the image level [9, 19, 29]. Although these
methods have had some success, they still leave room for
improvement in terms of detection accuracy since they do not
take advantage of significant temporal differences between
real and fake as well. And our method attempts to further
exploit temporal features to improve detection accuracy while
maintaining the use of spatial features. In fact, we are not the
first to consider this [3], but previous work destroyed the
spatial structure of spatial features before extracting temporal
features. /is inevitably leads to a degradation of accuracy
feature representation. /us, the difference is that the pro-
posed method extracts spatial-temporal features at the same
stage, which mitigates the deterioration of spatial features,
leading to advantages across multiple datasets.

4.5. IndustrialApplications. Currently, the negative effects of
the fake face videos mainly remain on the network, as
presented in Figure 7, and due to the constraints of laws and
policies, they are not too excessive to bring serious adverse
effects. However, these face manipulation technologies are
nonnegligible threats to the systems that rely on face rec-
ognition in real word, not just in cyber world. A normal face
recognition system without a strong face antispoofing
module often requires the user to make corresponding facial
movements as instructed to verify his legitimacy. If this step
is passed, the system will retrieve the captured faces from a
local or cloud-based database to further determine whether
he/she is authorized or not. But this kind of face recognition
system without forgery algorithms or modules usually
cannot resist face-swap attacks.

Table 9: Binary classification accuracy (%) (higher is better)
comparison of ours and the state-of-the-art approach on three
datasets.

Approach Celeb-DF DFDC-P FF++ Average
Ours 97.1 85.3 99.4 93.9
Biometric [25] 98.5 82.4 98.9 93.3

Table 10: AUC (higher is better) comparison on Celeb-DF and
DFDC-P datasets.

Approach Celeb-DF DFDC-P
Ours 0.997 0.925
Metric learning [26] 0.992 —
Face X-ray [27] 0.748 —
Fakespotter [28] 0.668 —
Mesonet [29] — 0.753

Table 11: Binary classification accuracy (%) (higher is better)
comparison on FF++ datasets.

Approach DF F2F FS NT Average
Ours 99.31 99.69 99.53 99.13 99.42
Xception [19] — — — — 99.26
Fakespotter [28] — — — — 98.50
CNN-RNN [3] 96.90 94.35 96.30 — 95.85

Table 12: AUC (higher is better) comparison on FF++ datasets.

Approach DF F2F FS NT Average
Ours 0.997 1.0 0.999 0.988 0.996
CNN-RNN [3] 0.996 0.984 0.994 — 0.991
Face X-ray [28] 0.992 0.991 0.992 0.989 0.991
Camera noise [9] 0.963 0.939 0.978 — 0.960
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Face recognition technology, due to its convenience and
remarkable, has been applied in a few interactive intelligent
applications. In those scenarios with high security require-
ments, these easily exposed face recognition systems have a
number of security implications. Exiting face recognition
systems are vulnerable to presentation attacks ranging from
makeup, print, 3D-mask, etc. In recent years, in order to ensure
the security of face recognition systems, face antispoofing
(FAS) technology is also highly concerned [31]. Yu et al.
proposed the first FAS method based on neural architecture
search to discover the well-suited task-aware networks [32].
However, the forged face can also indirectly attack the face
recognition system in these ways, which can hardly be ignored.
/e hacker may leverage the face-swap algorithms to simulate
the facial movements following the instruction and print or

display the forged face on some medium like paper or elec-
tronic screen in order to deceive the system. /is calls the
requirement of an additional fake face detection module in the
first phase of the face recognition system to eliminate the safety
hazards, as shown in Figure 8. More importantly, the forgery
algorithm in the real-life scenario is unknown, and the de-
tection algorithm needs to be highly robust to multiple forgery
types. /e CSWA tested on benchmark containing different
types of face swapping and reenactment, which are both ca-
pable of assaulting face recognition systems, can assist these
systems in defending these attacks. To ensure user experience,
face recognition systems usually require the entire pipeline to
be relatively fast, so the face forgery detection module can only
acquire a short video of the face, but ourmethod only requires a
limited number of frames to achieve high precision detection.

Figure 7: Fake faces videos circulating on the Internet [30].

(a) (b) (c)

(d) (e) (f )

Figure 6: Failure cases on highly compressed NT. (a, c, e) Video frame. (b, d, f ) Extracted face.
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5. Conclusion and Future Work

In this paper, we describe a novel forensic module named
CWSA to detect face video manipulations. To take a close
look at the problem of manipulation detection using deep
CNNs, we first study the influence of face cropping strategies
and architectures of different networks. We find that in face
cropping, a suitable margin helps models perform better.
And skip connections that pass low-level features down-
stream are also very beneficial in this task. On these bases, we
propose our simple but smart CWSA Net that recombines
feature maps belonging to the same channel from consec-
utive frames and fuses them by separately convoluting the
new feature map sets. Our approach is demonstrated to be
very competitive by the evaluations on three large-scale face
video manipulation benchmarks. It achieves the state-of-
the-art level on average and goes beyond other methods on
most of the datasets. On the most challenging dataset
DFDC-P, the performance of both our and the state-of-the-
art approaches is not very ideal but the CWSA Net still
surpasses it by 2.9%, which is a significant improvement.

Our work indicates some opportunities for future re-
search, as it proves the feasibility of detecting forged faces
from spatial and temporal perspectives. Firstly, although the
CWSA module aggregates interframe features without
destructing their spatial structure, there is no further con-
straint on the interesting regions. /at is, the module treats
different locations of features equally. Intuitively, the
amount of information about forgery flaws exposed in the
time domain varies across regions, and the more informed
regions are supposed to be more focused. /us, we can turn
to the attention mechanism, but due to the lack of ground
truth of interested regions, we have to design an attention
module in an unsupervised or semisupervised manner.
Another opportunity for future work is domain general-
ization. Existing detection approaches, including ours, are
not robust enough to unknown types of fakes, but facing
unknown attacks is common in real-life scenarios, and the
ability to generalize to an unknown domain is essential if we
want our approach to be more pragmatic. To this end, in
future work, we expect our approach to be more than just a

binary classifier, but to aggregate real faces through metric
learning while making the fake face as separate from the real
face as possible, in this case, the fake face detection tasks is
viewed as anomaly detection tasks.

Data Availability
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Using the convolutional neural network (CNN) method for image emotion recognition is a research hotspot of deep learning.
Previous studies tend to use visual features obtained from a global perspective and ignore the role of local visual features in
emotional arousal. Moreover, the CNN shallow feature maps contain image content information; such maps obtained from
shallow layers directly to describe low-level visual features may lead to redundancy. In order to enhance image emotion rec-
ognition performance, an improved CNN is proposed in this work. Firstly, the saliency detection algorithm is used to locate the
emotional region of the image, which is served as the supplementary information to conduct emotion recognition better.
Secondly, the Gram matrix transform is performed on the CNN shallow feature maps to decrease the redundancy of image
content information. Finally, a new loss function is designed by using hard labels and probability labels of image emotion category
to reduce the influence of image emotion subjectivity. Extensive experiments have been conducted on benchmark datasets,
including FI (Flickr and Instagram), IAPSsubset, ArtPhoto, and Abstract. 'e experimental results show that compared with the
existing approaches, our method has a good application prospect.

1. Introduction

Image sentiment analysis is becoming a research hotspot in
the field of computer vision [1–6]. It is more difficult to
analyze images at the emotional level compared with the
recognition of objects in images [7–13] mainly because of the
complexity and subjectivity of emotions [4]. First of all, due
to the complexity of emotion, image emotion recognition
work is to analyze the image at the emotional level, and the
expression of emotion is also affected by numerous feature
information [14], so it is difficult to design a discriminative
representation feature to cover enough feature information,
such as color, texture, and semantic information. Secondly,
due to the subjectivity of image emotion, people with dif-
ferent lives and cultural backgrounds may have different
emotional responses to the same image which makes it
difficult to collect hard emotion labels of the image and lead
to the uncertainty of the image’s category label.

In previous studies, many researchers have proposed
methods to solve the complexity and subjectivity of image
emotion. For instance, Borth et al. [14] developed a visual
sentiment ontology, which consisted of 1200 concepts and
associated classifiers, and each concept was composed of an
adjective expressing emotion and a noun related to object or
scene. In the work of image emotion analysis, manual
features, including color, texture, composition, balance, and
harmony [2, 15, 16], are first used to analyze the emotion of
the image. However, handmade features are unable to fully
express the relationship between visual information and
emotional arousal because handmade features cannot cover
the important features related to image emotion [17].

Recently, researchers began using CNNs to solve difficult
problems in image sentiment classification to further im-
prove classification performance [1]. Different from the
manual features, CNN can learn image representation in an
end-to-end manner. Research results have proved that deep
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CNN features are better than manual features in image
emotion recognition [17]. However, due to the complexity
and subjectivity of emotions, analyzing images at the
emotional level is a more challenging task compared with
traditional visual tasks, such as object classification and
detection in the image. For the complexity of image emotion,
most images can cause different emotional reactions, rather
than a unique emotion. Previous studies mainly used visual
features extracted from the global view of the image for
emotion recognition, while ignored the fact that expression
of image emotion mainly depends on the local regions of an
image. Figure 1 shows the image samples and the main
regions in them to evoke emotion. Obviously, some local
regions of the image contain more emotional information
than others. Besides, Alameda-Pineda et al. [18] pointed out
that CNNs were unable to effectively extract emotional
information from abstract paintings, which means emotions
not only are induced by image semantics but also are
conveyed through low-level visual features, such as texture,
color, and shape.

In order to understand how CNNs designed for object
recognition task works in image emotion recognition task,
many studies on deep feature representation on convolu-
tional neural network processing level have been conducted.
Research shows that emotion recognition of the deep model
is mainly based on semantic features of images, which can
explain the successful application of CNN in image emotion
recognition [2]. On the other hand, when the image is
processed by the deeper CNN layers, the low-level visual
features are gradually reduced. In some cases, people pay
more attention to the background of the image than to the
object in the image, that is, nonobject components may be
more emotional than image contents [18].'is requires us to
introduce the low-level visual features of the image when
designing the classification features, but if we directly use the
feature map obtained from the shallow network to describe
the low-level visual features, there will be a problem of
redundancy because the feature map also contains the image
content information. Inspired by the work of image style
transformation [19–21], we apply Gram matrix transfor-
mation on the feature maps from the shallow layers of the
network to reduce the redundancy of image content.

In order to enhance the image emotion recognition
performance, the CNN is proposed to improve with the
following. Firstly, use the saliency detection method to
extract the features of the local emotional regions to better
invoke the emotions. Secondly, introduce multiple side
branch structures in network to obtain the feature maps of
the shallow layers and use the Gram matrix to transform the
feature maps to decrease redundancy. Finally, design a new
loss function by using the hard labels and probability labels
of image emotion categories to reduce the impact of image
emotion subjectivity on classification.

In summary, the contributions of our paper are sum-
marized as follows:

(1) Use saliency detection algorithm to locate the
emotional region in the image and extract the fea-
tures of the emotional region in the image, which can
avoid the noise information in the nonemotional
region and give more attention to the local emotional
regions.

(2) Design a method to calculate the Gram matrix of the
feature map. After Gram matrix transformation, the
redundancy of the image content information in the
feature map is reduced, and new low-level visual
features are obtained.

(3) Propose a new loss function by using the hard labels
and probability labels of image emotion categories to
reduce the impact of image emotion subjectivity on
classification.

'e remainder of this paper is as follows. In Section 2, we
summarized and reviewed the related work of image
emotion recognition and image saliency detection. Section 3
introduced our model and improvement work. Section 4
introduced the datasets used in the experiment and pre-
sented the experimental results and analysis of this work. In
Section 5, our main work and future research keys are
summarized.

2. Related Works

'e analysis of images and videos on the emotional level has
attracted the attention of more and more researchers
[22–25], and a lot of research works have been carried out. In
this section, we focus on reviewing the related work of image
emotion analysis and image saliency detection.

2.1. ImageEmotionAnalysis. In the work of image sentiment
classification, the method of designing multilevel visual
features of images and applying them to image sentiment
analysis has been widely tracked. Yanulevskaya et al. [15]
first proposed low-level visual features, including Gabor and
Wiccest features, to classify the emotions of artworks. Soli
and Lenz [26] introduced an image descriptor based on color
and emotion. 'is method is derived from psychophysical
experiments for image classification and uses SIFT features
for emotion prediction. Machajdik and Hanbury [2], based
on art and psychological theories, defined a rich handcrafted
middle-level feature from the aspects of composition, color
change, and texture. Zhao et al. [16] introduced the middle-
level visual features designed based on the concept of
principle-of-art to extract emotion features (PAEF) to
classify image emotion. However, compared with the fea-
tures extracted from the CNN model, these manual features
are mainly concentrated on low-level visual features. Due to
the limited feature types and lack of exploration of high-level
semantic information in images, it is difficult to cover all
important factors related to image emotions.
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In recent years, due to the excellent performance of CNN
methods, researchers have applied the CNN method in
image emotion analysis. Peng et al. [27] first applied the
pretrained CNN model on ImageNet [28] for image senti-
ment analysis and achieved excellent classification results.
You et al. [29] introduced a progressive strategy training to
train the CNN model on a large-scale web image dataset to
detect the emotion of the image. Rao et al. [17] proposed a
multi-instance learning framework in order to obtain the
multilevel deep representations of an image and obtained an
exciting recognition result. You et al. [30] used the attention
model to extract local emotional region features for emo-
tional analysis. Yang et al. [31] proposed coupled CNN with
two branches, which used both global and local information
of an image. However, most of the studies did not fully use
the local emotional regions of image, which limited the
classification performance of the model.

2.2. Saliency Detection. Due to the powerful representation
ability of deep features, the saliency detection method based
on deep learning gradually surpasses the traditional method
based on manual features [32–34]. Inspired by fully con-
volutional networks [35], more and more researches paid
attention to predict the saliency map at the pixel level. Liu
et al. [36] introduced an attention mechanism to guide the
feature integration process by a U-shape model. Liu et al.
[37] proposed a two-stage network algorithm.'e algorithm
generates a rough saliency map and combines local context
information to refine the saliency map recursively and hi-
erarchically. Hou et al. [38] introduced short connections in
the multiscale side output to capture fine details. Zhang et al.
[39] used a bidirectional structure to pass messages between
the multilevel features extracted by the convolutional neural
network to better predict the saliency map. Xiao et al. [40]

first used a distracted detection network D-Net to crop the
interference region in the image and then used the saliency
detection network S-Net for saliency detection.

3. The Proposed Method

In order to improve image emotion recognition perfor-
mance, an improved CNN is proposed, and the framework
of our method is shown in Figure 2. 'e model includes the
following improved components. (1) Two input branches:
one is the original image input branch, and the other is the
saliency image input branch. In the first branch, the network
structure is modified based on Inception-v4 [41]. Firstly, the
fully connected layer after the last convolutional layer in the
Inception-v4 network is removed. Secondly, the side branch
structure is introduced at three different depths of the
network, and each side branch structure is composed of a
convolutional layer and the convolution kernel size is 1 × 1.
In the second branch, the network structure is also modified
based on Inception-v4, and the fully connected layer after
the last convolutional layer is removed. (2) 'ree fully
connected layers work after the two branch inputs are
completed. (3) A softmax layer generates the probability of
each category and works after the fully connected layers.

In the input branch of the original image, the image
semantic features on the global view are obtained from the
last fully connected layer, and the feature maps from the
multiple layers of the network are obtained from the side
branches, and these feature maps are used as the input to
calculate the Gram matrix. In the input branch of saliency
map, the feature of local emotion region is extracted from
the last convolution layer. Semantic features, local emotional
features, and low-level visual features of the image are in-
tegrated into the hybrid representation features of image
emotion classification. Finally, the hybrid representation

(a)

(b)

Figure 1: Examples of emotion images and emotion arouse regions. (a) Images from the image emotion datasets. (b) Visualization of the
main regions to invoke emotions.
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features are input into the final fully connection layer and
Softmax layer to predict the emotion category.

3.1. Saliency Detection and Local Emotional Features’
Extraction. 'e human visual system only processes the
vital part of image and meanwhile pays little attention to
other parts, which prove that the human visual system has a
certain mechanism to choose possible object positions when
observing objects. So, the researchers consider that the
object regions in the image are an emotional region with
more emotions. In fact, the local regions covered by objects
are more likely to attract people’s attention and arouse their
emotion. 'e saliency of the image highlights the degree of
human attention to information-rich region and represents
the different visual perceptions presented by different re-
gions in the image. Based on the image saliency features, the
saliency detection is used to locate the local region covered
by objects in the image and extract the local emotional
features of the image.

Firstly, image saliency detection algorithm is used to
generate saliency image Y � y1, y2, . . . , yn􏼈 􏼉, yi ∈ Rw×h,
from corresponding original images X � x1, x2, . . . , xn􏼈 􏼉,
xi ∈ R3×w×h, where w and h represent the width and height of
the image, respectively. 'e saliency image is a binary image,
and the size of the saliency image is the same as that of the
original image. 'e element value of the object region of the
original image is 1, while the element value of the nonobject

region is 0. 'us, the local emotion region T can be cal-
culated according to

T � X•Y, (1)

where • is the operator to multiply the elements of matrix X
and the matrix Y.'en, input T into the saliency image input
branch of the Siamese network to extract the local emotional
features of the image.

3.2. Gram Matrix and Low-Level Visual Feature Extraction.
'e low-level visual features of the image are mainly con-
centrated in the shallow layers of the neural network [17].
'ere exists a problem of redundancy if we directly use the
feature map obtained from the shallow layer of the network
to describe the low-level visual features because the feature
map also contains the image content information (e.g.,
objects and general scenery) [18].

In this paper, the low-level visual features are trans-
formed by Gram matrix operation to reduce the redun-
dancy. For each layer, use the feature maps to calculate the
Gram matrix with the following steps. Firstly, vectorize each
feature map Fi of size w × w in the convolutional layer to
obtain a one-dimensional vector of length L � w × w. Sec-
ondly, combine one-dimensional vectors in the order of the
feature maps to obtain a matrix F ∈ RN×L, where N repre-
sents the number of feature maps in the convolutional layer.

low-level 
feature

global feature

concat ⊕

so
ftm

ax

Emotional 
distribution loss

Classification loss

local feature

(a) Obtaining multi-level visual 
features of image

side branch structures

Gram Matrix

(b) Calculating the Gram matrix of the 
feature maps

(c) Extracting local emotional features

(d) A new loss function

Figure 2: An overview of the proposed model. (a) 'e multilevel visual features are extracted by multiple side branch structures. (b) 'e
Gram matrix of feature maps is calculated to reduce redundancy. (c) 'e saliency detection algorithm is used to locate the local emotion
region of the image. (d) 'e hard label and probability label of image emotion category is used to design a new loss function.
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Finally, calculate the Gram matrix M ∈ RN×N of this con-
volutional layer according to

M � FF
T

. (2)

Each element Mij in the Gram matrix is the inner
product between the Fi and Fj, which can be obtained by

Mij � 􏽘
k

FikFjk. (3)

'e procedure is summarized in Algorithm 1.

3.3. Loss Function of Emotional Subjectivity Constraint. In
the collection of affective image data, the majority voting
strategy is widely used to obtain the emotional label of the
image. We calculate the distribution of image emotion based
on the label probability to reduce the subjective influence of
image emotion. 'e emotion theory research shows that the
relationship between two emotions determines their simi-
larity, and the two emotions from similar to completely
opposite can be represented by Mikels’ wheel [42]. As shown
in Figure 3, a distance equation dist(ei, ei−1 � ″feart″) is
defined in Mikels’ wheel to quantify two emotional rela-
tionships. For example, the distance between the emotion
fear and the emotion sadness is dist(fear, sadness) � 1, and
the distance between the emotion fear and the emotion
disgust is dist(fear, disgust) � 2, which indicates that the
similarity between the emotion sadness and the emotion fear
is higher.

Based on the definition of distance in Mikels’ Wheel, the
probability distribution of dominant emotion and other
emotion can be calculated according to

f(i) �

1/distij􏼐 􏼑

􏽐i≠j 1/distij􏼐 􏼑
1 − p
∗
j􏼐 􏼑, i ∈ V,

0, i ∉ V,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(4)

where j is the dominant emotion category of the image, V
denotes all the sentiment of the same polarity with the
dominant emotion j, p∗j is the probability of dominant
emotion, and f(i) is the probability of other emotions
except the dominant emotion j. So, the probability distri-
bution label of image emotion d(i) � d1, d2, . . . , dn|n � 8􏼈 􏼉

can be obtained, and the sum of probabilities distribution
􏽐 di is normalized to 1.

'rough using the hard label and probability distribu-
tion label, a new loss function can be designed according to

Lsubj � (1 − λ)Lcls + λLkl, (5)

where Lcls is the cross-entropy classification loss, and it can
be calculated by

Lcls � − 􏽘
i

yilog pi( 􏼁, (6)

where yi is the ground truth label and pi represents the
probability that the image belongs to the i emotion category.
'en, the Kullback–Leibler divergence [43] is used to

measure the loss between probability distribution label d(i)

and predict emotion distribution pi. Here, λ controls the
weight of Lkl, and Lkl can be calculated by

Lkl � 􏽘
i

d(i)log pi( 􏼁. (7)

4. Experiments and Results

In this section, our method is compared with other methods
on FI, IAPSsubset, ArtPhoto, and Abstract datasets to
evaluate our model.

4.1. Datasets. In the work of image emotion analysis, the
widely used datasets mainly include FI, IAPSsubset, Art-
Photo, and Abstract, and the number of image samples in
these datasets is shown in Table 1.

Flickr and Instagram (FI) [1]: this emotional dataset
consists of about 23308 affective images. 'ese pictures are
collected by using 8 emotions as search keywords on Flickr
and Instagram social networking sites. 'en, these images
were further labeled by Amazon Mechanical Turk, and the
label of each image was done by five people voting.

In fact, the actual number of images that can be acquired
in this dataset is 22,598 because the network connection for
some images has failed. Table 2 shows the statistics of the
number of available images.

IAPSsubset [2]: international affective image system
(IAPS) is an international general emotion image dataset,
which is widely used in image emotion classification. 'e
dataset contains 1182 documentary-style natural images.
Mikels et al. [42] selected 395 images from IAPs dataset and
mapped them to eight emotion categories.

ArtPhoto [2]: in this dataset, photos are selected from the
art photo-sharing website with emotion category as the
search keyword, with a total of 806 photos. 'e emotional
category of a photo is determined by the artist who uploaded
it.

Abstract [2]: this dataset contains 228 abstract paintings.
'e emotional category of each abstract painting is decided
by 14 different people. 'e emotion that gets the most votes
is the emotion category of each image.

4.2. ImplementationDetails. 'e experiment was conducted
on a computer based on the Pytorch environment. 'e
computer used Intel(R) Xeon(R) CPU E5-2640 2.40GHz
CPU and NVIDA GeForce GTX TITAN GPU (12G
memory). Our classification model is a Siamese network,
and the backbone networks of the two branches are In-
ception-v4. 'e images in the dataset are randomly divided
into training set (80%) and test set (20%): the training set
totally has 18,078 images, and the test set totally has 4519
images. 'e image first scales the image in the range of [320,
480] based on the shortest side, then flips the image hori-
zontally to obtain a mirror image, and then randomly crops
299× 299 image blocks from the original image and the
mirror image as the input of the model. We use the pa-
rameters pretrained on ImageNet to initialize the backbone
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network of the model and use the stochastic gradient descent
method to optimize the model. 'e parameters of our model
are set as follows: the learning rate of model is set to 0.001,

and the weight decay is set to 0.0001. In particular, the
learning rate is divided by 10 after every 5 epochs.'emodel
is trained for up 20 epochs. 'e specific parameter settings
are shown Table 3. Since the backbone network is a pre-
trained model, the learning rate of the backbone network is
set to 1/10 of the global learning rate for fine tuning.

4.3. Baseline

4.3.1. Handcrafted Features. In terms of handcrafted design
features, GCH/LCH/GCH+BoW [44] used SIFT features
based on bag-of-words to establish a 64-bit color histogram
model for global color histogram (GCH) and local color
histogram (LCH). Zhao et al. [16] introduced the middle-
level visual features designed based on the concept of
principles-of-art to extracted emotion features (PAEF) to
classify image emotion. Rao et al. [45] proposed an emotion
classification method based on multiscale blocks. Pyramid
segmentation and simple linear iterative clustering (SLIC)
method are used to segment the image into multiscale
blocks. SentiBank [14] developed a visual sentiment on-
tology, which consist of 1200 concepts and associated
classifiers, and each concept is composed of an adjective
expressing emotion and a noun related to the object or scene.

4.3.2. Deep Features. In terms of deep features, AlexNet [8],
VGG-16 [9], and Inception-v4 [41] all fine tune the pre-
trained weights on the ImageNet dataset and complete the

Input: feature map Fi of size w × w

Output: Gram matrix M ∈ RN×N

Step 1: for each feature map Fi,
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Step 3: get the transposed matrix FT ∈ RN×L of matrix F ∈ RN×L, and compute the Grammatrix M ∈ RN×N according to equation (3).

ALGORITHM 1: Procedure for applying the Gram matrix to convert the feature map.
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Figure 3: Mikels’ emotion wheel and example of the emotion
distance for emotion fear and other emotion [42].

Table 1: Statistics of the number of images in each image emotion
datasets

Dataset IAPSsubset Artphoto Abstract FI
Amusement 37 101 25 4942
Anger 8 77 3 1266
Awe 54 102 15 3151
Contentment 63 70 63 5374
Disgust 74 70 18 1658
Excitement 55 105 36 2963
Fear 42 115 36 1032
Sadness 62 166 32 2922
Sum 395 806 228 23308

Table 2: Statistics of the number of available images in FI emotion
dataset.

Categories Number of
samples Categories Number of

samples Sum

Awe 3036 Disgust 1631
Contentment 5268 Fear 1009
Excitement 2808 Sadness 2771
Amusement 4847 Anger 1228
Sum 15959 6639 22598
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emotion classification with the help of transfer learning.
Deep SentiBank [46] proposed 2089-dim adjective-noun
pair features based on CNN. PCNN [29] proposed a pro-
gressive strategy training to train the CNN model on the
large-scale web image dataset to detect the emotion of the
image. On the basis of AlexNet, Rao [17] obtained multilevel
deep features by constructing multiple side branches in the
network. Yang [47] proposed a learning method based on
label distribution, which aims to solve the subjective
problem of image emotion. WSCNet [31] proposed a weakly
supervised coupled convolutional network with two
branches.

4.4. ExperimentalValidation. In this paper, the classification
model for large-scale emotional image dataset (FI) is ini-
tialized by using the parameters pretrained on the ImageNet
dataset and then fine tuning the model on the FI dataset to
complete the classification task. For small-scale datasets
(IAPSsubset, Artphoto, and Abstract), the classification
model is initialized by using the parameters pretrained on
the FI dataset and then further fine tuning the model to
complete the classification tasks.

4.4.1. 9e Effectiveness of Local Emotional Feature. To val-
idate the effectiveness of the local emotional features, we
designed a comparative experiment on the FI dataset. (1)
Our model only uses the global feature from the last con-
volutional layer of the original image input branch of our
model and low-level visual features. (2) Our model only uses
the local emotional feature extracted from the local emo-
tional region of the image. (3) Our model uses hybrid
classification features composed of global semantic features,
local emotional features, and low-level visual features. Ta-
ble 4 shows the classification performance of our model with
the three configurations on the FI dataset. Specifically, the
global view only means that the model uses the global se-
mantic feature and the low-level visual features, the emo-
tional region only means that the model only uses the local
emotional feature extracted from the local emotional region
of the image, and the global view+ emotional region means
that the model uses hybrid classification features composed
of global semantic features, local emotional features, and
low-level visual features. As shown in Table 4, the model in
(1) only uses global semantic features and low-level visual
features, while the model in (3) uses local emotional features
as supplementary information, and the classification accu-
racy of the model is improved about 4%, which shows that
combining emotional features from local emotional regions
can effectively improve emotional classification performance

than using global features only. In (2), when the model only
uses the features from the local emotional region, the
classification performance of the model is severely reduced,
which illustrates the importance of extracting semantic
features from the global view of the image.

In Figure 4, the classification confusion matrixes of our
model are shown in the two configurations of whether or not
to use image local emotional features. It can be seen that
applying local emotional features can enhance the classifi-
cation performance of model and produce a more balanced
recognition result for each emotion category.

4.4.2. 9e Effectiveness of Gram Matrix Transform. In order
to get more low-level visual features, we introduce multiple
side branches into the network. Each side branch is com-
posed of a convolution layer. We apply Algorithm 1 to each
side branch, respectively, and transform the feature map to
obtain the low-level visual feature of the image
Gi|i � 1, 2, 3, . . .􏼈 􏼉. As shown in Table 5, C represents a
hybrid feature composed of global semantic features and
local emotional features, L represents the low-level visual
features described by the feature map directly, and G rep-
resents the low-level visual features captured from the
feature map by using the Gram matrix. In Table 5, the best
classification result can be obtained by combining the fea-
ture C and feature G1, G2, G3􏼈 􏼉. 'e low-level visual features
captured from the feature map can get better classification
results. It also can be seen that when L4, L5or G4, G5from the
high layers of the network are added, the classification ac-
curacies decreased. Adding feature G4, G5 has less effect on
classification performance compared with adding feature L4
and L5. 'is shows that the Gram matrix transform can
effectively reduce the redundancy of image content infor-
mation in the feature map.

4.4.3. 9e Effectiveness of Loss Function. Our new loss
function Lsubj is designed by using the hard labels and
probability labels of image emotion categories, trying to
reduce the impactive of image emotion subjectivity. Dif-
ferent from the cross-entropy loss function Lcls, Lsubj

maximizes the difference between emotion classes and
emphasizes the relationship between emotion categories by
comprehensively constraining the classification loss and
emotion distribution loss. 'e two loss functions mentioned
above were used to conduct comparative experimental on
the FI dataset, and the results are shown in Table 6. As can be
seen, the classification performance of the model has been
improved after applying the Lsubj loss function. In particular,
the classification accuracy of our model is improved by
about 1.4% after applying the Lsubj loss function, which
shows the effectiveness of our loss function.

Table 3: Initial parameters of our model.

Parameters Value
Learning rate 0.001
Weight decay 0.0001
Momentum 0.9
Batch size 32
Epoch 20

Table 4: 'e classification accuracy on the FI dataset.

Method Accuracy (%)
Global view only 66.14
Emotional region only 59.82
Global view+ emotional region (ours) 70.23
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4.4.4.9e Choice of Parameter λ. In this work, parameter λ is
used to control the weight of classification loss and senti-
ment distribution loss. When λ is set to 0, the proposed loss
function is the cross-entropy loss, and λ is set to 1 and
indicates that the proposed loss function is equal to KL loss
essentially. Figure 5 shows the accuracy change under dif-
ferent values of parameterλ. When λ increases from 0 to 0.4,
the classification performance has a significant

improvement. However, when it further increases to more
than 0.5, the classification accuracy begins to decrease.
Figure 5 shows that when the weight of Led is set too large, it
may lead too much ambiguity.

4.5. Compare with the Other Methods

4.5.1. Compare on Large-Scale Datasets. To further indicate
the effectiveness of the proposed model, we compare it with
the methods shown in Table 7. Our model has obviously
achieved better results compared with the method based on
manual features of SentiBank [14] through using hybrid
representation features, which consist of global sematic,
local visual, and low-level visual features. We can see that the
performance of our model is better than those of CNN
networks specifically proposed for object recognition tasks
in Table 7, such as AlexNet [8], VGG-19 [9], and Inception-
v4 [41]. Moreover, our model achieves better classification
performance compared with the deep learning model pro-
posed for image emotion classification, such as Yang et al.
[47], MldrNet [17], and WSCNet [31], which shows the
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Figure 4: Classification confusion matrix on the FI dataset. (a) Our model without local emotional feature. (b) Our model with local
emotional feature.

Table 5: Comparison of classification results on the FI dataset using different feature combinations.

Method Accuracy (%)
C 67.8
C + L1􏼈 􏼉 68.20
C + L1, L2􏼈 􏼉 68.67
C + L1, L2, L3􏼈 􏼉 69.12
C + L1, L2, L3, L4􏼈 􏼉 67.52
C + L1, L2, L3, L4, L5􏼈 􏼉 67.13
C 67.8
C + G1􏼈 􏼉 68.54
C + G1, G2􏼈 􏼉 69.30
C + G1, G2, G3􏼈 􏼉 70.23
C + G1, G2, G3, G4􏼈 􏼉 68.74
C + G1, G2, G3, G4, G5􏼈 􏼉 68.31

Table 6: Comparison of classification results on the FI dataset
using different loss functions.

Method Accuracy (%)
AlexNet + Lcls 58.61
ResNet101 + Lcls 60.82
Inception-v4 + Lcls 60.75
Ours + Lcls 70.23
AlexNet + Lsubj 60.32
ResNet101 + Lsubj 62.77
Inception-v4 + Lsubj 62.66
Ours + Lsubj 71.65
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effectiveness of our global and local hybrid representation
features, as well as the effectiveness of our loss function.

4.5.2. Compare on Small-Scale Datasets. In order to verify
the performance of the model more comprehensively, we
also designed a comparative experiment on a small dataset,
including IAPSsubset, Abstract, and ArtPhoto. Before the

experiment, we randomly divided the image samples of each
category in the dataset into 5 batches. 'en, 5-fold cross
validation is performed to obtain results. Especially, the
emotion category anger has only 8 and 3 samples in the
Abstract and IAPSsubset datasets, respectively, performing
5-fold cross validation is not enough. 'erefore, the clas-
sification result of emotion anger on these two datasets is not
reported. 'e experiment results are shown in Figures 6–8.
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Figure 5: Impact of different λ on the FI dataset.

Table 7: Comparison of classification performance on the FI dataset.

Method Accuracy (%)
AlexNet [8] 58.61
VGG-16 [9] 59.75
Inception-v4 [41] 60.75
MldrNet [17] 67.75
Yang [47] 67.64
WSCNet [31] 70.07
Ours 71.65
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Figure 6: Performance evaluation on the IAPSsubset dataset.
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Our method outperforms to Machajdik et al. [2], Zhao et al.
[16], and MldrNet [17] in IAPSsubset, Abstract, and
Artphoto.

5. Conclusions

In this paper, a CNN framework based on saliency detection
and Gram matrix is proposed to improve image emotion
recognition performance, and ourmethod have been applied
on many famous problems, including FI (Flickr and
Instagram), IAPSsubset, ArtPhoto, and Abstract. 'e clas-
sification accuracies have been compared with those of other
competing methods in the literatures, and the results show
that our method has improved the image emotion recog-
nition performance. 'rough experimental analyzing, it can
be drawn that saliency detection, Gram matrix transfor-
mation, and new loss function are effective in increasing
recognition accuracy, which indicates that the proposed
method has potential application ability. In the future work,
our main task is to integrate this improved CNN into the
actual applications and conduct emotion recognition for
video data automatically to better serve the society.

Data Availability

'e datasets used in this study are Flickr and Instagram (FI)
(https://onedrive.live.com/?authkey�%21AH57YMUbsP%2
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tion�defaultclick), Abstract (https://www.imageemotion.
org/testImages_abstract.zip), IAPSsubset (https://www.
csea.phhp.ufl.edu/media.html), and ArtPhoto(https://www.
imageemotion.org/testImages_artphoto.zip).
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[43] F. Pérez-Cruz, “Kullback-Leibler divergence estimation of
continuous distributions,” in Proceedings of the 2008 IEEE
International Symposium on Information 9eory, pp. 1666–
1670, Toronto, Canada, July 2008.

[44] S. Siersdorfer, E. Minack, F. Deng, and J. Hare, “Analyzing
and predicting sentiment of images on the social web,” in
Proceedings of the 18th ACM International Conference on
Multimedia, pp. 715–718, Firenze, Italy, October 2010.

[45] T. Rao, M. Xu, H. Liu, J. Wang, and I. Burnett, “Multi-scale
blocks based image emotion classification using multiple
instance learning,” in Proceedings of the 2016 IEEE

International Conference on Image Processing (ICIP),
pp. 634–638, Phoenix, AZ, USA, August 2016.

[46] T. Chen, D. Borth, T. Darrell, and S. F. Chang, “Deep-
sentibank: visual sentiment concept classification with deep
convolutional neural networks,” 2014, https://arxiv.org/abs/
1410.8586.

[47] J. Yang, D. She, and M. Sun, “Joint image emotion classifi-
cation and distribution learning via deep convolutional neural
network,” in Proceedings of the Twenty-Sixth International
Joint Conference on Artificial Intelligence, pp. 3266–3272,
Melbourne, Australia, August 2017.

12 Security and Communication Networks

https://arxiv.org/abs/1410.8586
https://arxiv.org/abs/1410.8586


Research Article
Detection of GAN-Synthesized Image Based on Discrete
Wavelet Transform

Guihua Tang , Lei Sun , Xiuqing Mao , Song Guo , Hongmeng Zhang ,
and Xiaoqin Wang

Information Engineering University, Zhengzhou 450001, China

Correspondence should be addressed to Lei Sun; sl0221@sina.com

Received 25 January 2021; Revised 13 April 2021; Accepted 3 June 2021; Published 16 June 2021

Academic Editor: Beijing Chen

Copyright © 2021 Guihua Tang et al. )is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Recently, generative adversarial networks (GANs) and its variants have shown impressive ability in image synthesis. )e
synthesized fake images spread widely on the Internet, and it is challenging for Internet users to identify the authenticity, which
poses huge security risk to the society. However, compared with the powerful image synthesis technology, the detection of GAN-
synthesized images is still in its infancy and face a variety of challenges. In this study, a method named fake images discriminator
(FID) is proposed, which detects that GAN-synthesized fake images use the strong spectral correlation in the imaging process of
natural color images. )e proposed method first converts the color image into three color components of R, G, and B. Discrete
wavelet transform (DWT) is then applied to RGB components separately. Finally, the correlation coefficient between the subband
images is used as a feature vector for authenticity classification. Experimental results show that the proposed FIDmethod achieves
impressive effectiveness on the StyleGAN2-synthesized faces and multitype fake images synthesized with the state-of-the-art
GANs. Also, the FID method exhibits good robustness against the four common perturbation attacks.

1. Introduction

With the remarkable development of artificial intelligence (AI)
and progress of high-performance computing hardware, image
synthesis technology has evolved dramatically. )e Internet
users share a large number of multimedia contents on social
media every day. It is challenging to identify authenticity of
these contents, posing huge security risk to social. In particular,
the generative adversarial networks (GANs) proposed in 2014
[1] have spawned a new type of image synthesis method. )e
images synthesized by four typical GANs are shown in Figure 1,
which are really hard for humans to distinguish at the first
glance. Besides, GAN’s powerful image synthesis and editing
capabilities bring new industrial value. For example, it can be
used to create virtual characters, perform video rendering and
sound simulation in film production, and create a new way of
communication. However, security and privacy concerns are
also raised. If these fake contents are disseminated as news
materials, they will damage the reputation of news organiza-
tions and the public’s confidence in themedia and evenmislead
the public opinion and disturb the social order. )e

increasingly open network environment creates an ideal space
for the spread of fake information. In the countries such as
Britain and France, there have been cases of using deep-
learning forgery technology to produce fake images, deceive the
public to even conduct espionage. )e hazard and impact of
synthesized images has spread throughout the world, resulting
in ethical, legal, and security problems. It is extremely urgent to
find effective techniques for detection of fake images.

GAN-synthesized images show impressively high
quality. Accordingly, the detection of GAN-synthesized
images has become a hot research field. Various detection
methods for GAN-synthesized images have been proposed
successively [2–5] and achieved good results. However, with
the increasing variety and quality of GAN-synthesized
images, as well as the various perturbation attacks, these
methods begin to expose their limitations.

To overcome the limitation in existingmethods for detecting
GAN-synthesized images, a method named fake images dis-
criminator (FID) is proposed in this study. )e FID method
relies on both the discrete wavelet transform (DWT) and the
standard correlation coefficient to extract the spectral correlation
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of natural color images. Besides, the support vector machine
(SVM) was used for classification. Experimental results show
that the FID method outperforms prior works of AutoGAN [6]
and FakeSpotter [7] on StyleGAN2-synthesized faces and
maintains robustness in tackling four common perturbation
attacks. An additional experiment is conducted on images forged
by other state-of-the-art (SOTA) GANs, and the FID method
also achieves good effectiveness onmultiple types of fake images.

)e main contributions of this study are as follows:

(1) FID method: the fake images discriminator (FID)
method employs the DWT and the standard corre-
lation coefficient to detect fake images. )rough the
analysis of the imaging process of natural color im-
ages, it is found that the spectral correlation between
RGBs can be utilized to distinguish GAN-synthesized
images, which is also robust against the four common
perturbation attacks at various intensities.

(2) )e first comprehensive evaluation is on typical
GAN-synthesized images. Experiments are con-
ducted on high-quality fake images synthesized with
SOTA GANs. )ese fake images include faces,
buildings, animals, natural scenes, and so on. Ex-
perimental results indicate good effectiveness and
robustness of the proposed FID method.

(3) Extensibility: the FID method is based on the im-
aging process of natural color images and the
analysis on the difference between real and GAN-
synthesized images. )is difference may be wide-
spread in fake images, and it could be extended to
other AI-synthesized images and DeepFake.

)e rest of the study is organized as follows. Section 2
reviews the related literature of GAN-synthesized images and
detection methods. Section 3 describes the imaging process of
digital images, followed by the presentation of the proposed
FIDmethod in Section 4.)e experimental results and analysis
are illustrated in Section 5. Section 6 concludes the study.

2. Related Work

Digital image forensics is a technology that distinguishes the
authenticity, completeness, and source of image content. It
mainly includes active forensics technology and passive (blind)

forensics technology [8]. Active forensics is suitable for an
image authentication scenario where digital signatures, digital
watermarks, or digital fingerprinting have been embedded in
digital images in advance. But in the actual environment, most
images do not have embedded prior information, which limits
the application of active forensics technology. Passive forensics
does not require any prior information, and the images are
identified based on the changes of image characteristics caused
by the forgery operation. Currently, most of the detection
methods for GAN-synthesized images conforms to the passive
forensics. In the following sections, the latest developments in
GAN-synthesized images and image forgery detection
methods will be discussed.

2.1. GAN-Based Images Synthesis Methods. Generally, the
GAN contains a generator and a discriminator. )e gen-
erator synthesizes images and the discriminator differenti-
ates between the fake and real images. )e generator and
discriminator play game mutually and finally achieve a
dynamic balance. Since it is first proposed in 2014, the GAN
has shown an impressive ability in image synthesis, the most
studied area of GAN applications.

Entire face synthesis means that a facial image can be
wholly synthesized with GANs, and the synthesized faces do
not exist in the world. In entire face synthesis, the pro-
gressive growing of GANs (PGGAN) [9] and style-based
generator architecture for GANs (StyleGAN) [10, 11], re-
leased by NVIDIA, produce an unprecedented high-quality
and high-resolution entire synthesis face. As one of the
models that can generate images with highest quality,
StyleGAN has a new generator architecture proposed by
NVIDIA. Without affecting other layers, the input of each
layer is modified separately to control the visual features
represented by each layer. CycleGAN [12] has achieved
remarkable success in image-to-image conversion in two
domains. Since each pair of image domains requires inde-
pendent modeling, the scalability and robustness of
CycleGAN are limited for processing of more than two
domains. STGAN [13] and StarGAN [14] focus on face
editing through manipulating the attributes and expressions
of humans’ faces, such as changing the color of hair, facial
decorations, and expressions. StarGAN designed a generator
of star structure to perform image-to-image conversion for
multiple domains. )e unified model architecture of Star-
GAN allows training datasets from multiple domains si-
multaneously in a single network. STGAN aims to improve
the accuracy and quality of attribute manipulation. FaceApp,
ZAO, and FaceSwap employ GANs to produce DeepFake
which involves the swap of person’s face [15, 16].

GANs can be applied in numerous aspects of image
synthesis and swapping personal identities. In many cases,
the fake images synthesized with SOTA GANs are nearly
indistinguishable to humans. We cannot believe our eyes
anymore in the media.

2.2. Detection of GAN-Synthesized Images. Traditional fo-
rensics-based techniques [17–19] usually analyze the traces
inducted in image synthesis and inspect the pixel-level

CycleGAN PGGAN

StarGAN StyleGAN

Figure 1: Fake images synthesized with various GANs.
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disparities in real and fake images. Compared with tradi-
tional fake images, GAN-synthesized images have better
quality, and no traces are inducted in image mosaic.
)erefore, the effectiveness of these detection methods is
greatly reduced. Also, these methods are sensitive to per-
turbation attacks like blur that is common in media images.

Nataraj et al. [3] built a pixel-level image detectionmodel
based on the deep neural network (DNN) and detected
GAN-synthesized images by extract co-occurrence matrices
on three color channels in the pixel domain. McCloskey et al.
[2] found that the frequency of saturated pixels in GAN-
synthesized images is limited due to the normalization
operation in the generator. Also, the statistical relationship
of color component of GAN-synthesized images is different
from natural images. )ough corresponding detection
strategies are designed using these two clues, it is vulnerable
to noise and adversarial examples attacks.

Another way to detect GAN-synthesized images is to
learn the difference between real and fake images with DNN.
Stehouwer et al. [20] introduced an attention mechanism to
improve facial forgery detection and manipulated region
localization. Wang et al. [21] used ResNet-50 to design a
binary classifier to detect images synthesized by the con-
volutional neural network (CNN). Zhang et al. [6] explored
the fingerprint of GAN [22] and proposed a classifier model
named AutoGAN based on the input of frequency spectrum.
AutoGAN identifies the artifacts inducted in the upsampling
component of the GAN so as to realize the detection of
GAN-synthesized images. )e DNN-based methods [21, 23,
24] achieve better performance than the methods based on
traditional image forensics and pixel-level differences. Other
work explores various special features to study the disparities
between real and synthesized facial images. For example, the
uncoordinated facial features of the fake faces is exposed
through the facial landmarks [4]. Lyu et al. [5] used the
difference in head pose as the classification characteristic.
However, GAN technology progresses rapidly, making the
GAN features extracted by the above detection methods
hard to keep good durability and universality. Besides, these
works are vulnerable to common perturbation attacks, and
robustness is essential for detecting fake images in the wild.
)e FakeSpotter proposed by Wang et al. [7] depends on
monitoring neuron behaviors to spot AI-synthesized fake
faces. )is approach exhibited effectiveness on SOTA GANs
and robustness against perturbation attacks.

3. Study on Spectral Correlation of
Digital Imaging

Spectral correlation means the correlation existing between
the three color components in finite neighboring pixels of
color images. In the color imaging system, most consumer-
grade digital cameras use one CCD or CMOS, and the
imaging process of natural color image is shown in Figure 2.

)e single-sensor camera obtains the color information
of the image through a color filter array (CFA). )e Bayer
CFA is the most widely used array, using an alternate
sampling mode, the RGB components are shown in Figure 3.
)e number of sampling in the G channel is twice of that in

the R and B channels, which conforms to the spatial sen-
sitivity of the human visual system to different spectral
wavelengths. Since only one color component is captured
per pixel, the CFA interpolation algorithm is needed to
calculate the missing two color values at the pixel.

)e main task of the CFA interpolation algorithm is the
reconstruction of RGB images, specifically, to estimate the
missing two color values from the neighborhood pixels.
)ere are many CFA interpolation algorithms, such as the
nearest neighbor, bilinear, bicubic, and convolution inter-
polation algorithms.)ese algorithms perform interpolation
mainly in the neighborhood of a one-color channel. Taking
bilinear algorithm as an example, each color component of
R1 is estimated as follows:

R1 � R1, (1)

G R1( 􏼁 �
G1 + G2 + G3 + G4

4
, (2)

B R1( 􏼁 �
B1 + B2 + B3 + B4

4
. (3)

)is example illustrates that the estimated color com-
ponent is directly related to the value of the color pixels
captured in the neighborhood, so there must be a strong
spectral correlation between all RGB pixels of a real image.
No matter which CFA interpolation algorithm is used to
reconstruct the digital color image, all involve the neigh-
borhood sampling values of 3 color components when es-
timating the missing color component, which leads to a
strong spectral correlation existing in the R, G, and B
channels.

Unlike the generation process of natural color images,
the GAN trains the network with a large amount of data to
synthesize images, which inevitably lead to the differences in
some features, especially the spectral correlation between

Color image

Camera
lens

CCD
sensorADCDSPImage

file

Filter

Figure 2: )e single-CCD imaging process.

G R G R

B G B G

G R G R

B G B G

Figure 3: )e Bayer CFA.
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RGB components of color images. To further prove the
differences between GAN-synthesized images and real im-
ages, four types of GAN-synthesized images and real images,
respectively, performed DWT in RGB channel, and the
kernel density curve of transformed RGB components is
shown in Figure 4.

Each figure includes three curves, representing the
kernel density curve of the R, G, and B. )e first row shows
the RGB component distribution of the GAN-synthesized
images; the RGB component of the second row is from the
real images. It can be seen that the real image has similar
kernel density curve on the three color channels, and the
peaks and valleys appearing areas are highly coincident. )e
RGB components of the GAN-synthesized images are rel-
atively independent, and the correlation cannot be clearly
seen.

In conclusion, strong spectral correlation between RGB
is caused by the interpolation operation in the color imaging
process, while GAN-synthesized images do not have this
characteristic. )erefore, GAN-synthesized images can be
recognized based on this difference.

4. Our Method

)e imaging process of natural color image causes high
spectral correlation. In contrast, synthesizing fake images
with the GAN can weaken or even eliminate this correlation.
Consequently, the proposed method for detecting GAN-
synthesized image employs wavelet multiscale decomposi-
tion to extract the correlation characteristics between the
spectra of RGB channels. )e FID method includes two
stages of feature extraction and classification. )e block
diagram of this method is shown in Figure 5.

4.1. Features Extraction. DWTcan decompose an image into
subband coefficients that represent different direction in-
formation in same scale. Decomposing the two-dimensional
image f(x, y) with DWT, it can obtain

f(x, y) � W
A

j
+ 􏽘

k≥ j

W
H
k + W

V
k + W

D
k􏼐 􏼑,

(4)

where WA

j
is the low-frequency approximation under scale j,

and Wi
k, i� {H, V, D}, k≥ j is the detailed component in the

horizontal, vertical, and diagonal directions under different
scales of the image. )e multiresolution decomposition
capability of pyramid wavelet transform can decompose the
image information layer by layer, so it is widely used to
extract image features, especially the statistical features in the
spatial domain.

DWT is utilized to construct the correlation between the
frequency spectrums of images in the three color spaces.
Also, the correlation coefficient is used to measure the
constructed correlation. )e specific feature extraction
process is described as follows:

(1) RGB channels separation: since a stronger statistical
correlation of the three color components exists in
the RGB color space. )e color image is first

converted into the three independent color com-
ponents of R, G, and B.

(2) DWT: each color component is decomposed by
level-1 DWT and divided into four subband images
(plus the low-frequency approximation itself ).
)erefore, 12 subband images can be obtained from
a color image.

(3) Calculate the correlation coefficient matrix FNCC.)e
co-correlation coefficient is a basic measure of
correlation. )e standard correlation function is
used tomeasure the correlation between the subband
images of the three color components. )e detailed
calculation process is shown in Figure 6.
)e correlation coefficient NCC(I1, I2) corresponds
subband image of two color components, and its
calculation is shown in equation (2). After calcu-
lating all wavelet subband images, 3 correlation
coefficient matrix FNCC can be obtained.

NCC I1, I2( 􏼁 �
􏽐I1

􏽐I2
I1 − E I1( 􏼁( 􏼁 I2 − E I2( 􏼁( 􏼁

��������������

􏽐I1
I1 − E I1( 􏼁( 􏼁

2
􏽱 ��������������

􏽐I2
I2 − E I2( 􏼁( 􏼁

2
􏽱 .

(5)

E(I1) and E(I2) in equation (2) are themeans of gray
images I1 and I2, respectively. )e calculation is
shown in equation (3). M×N is the image size.

E(I) �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
I(i, j). (6)

(4) Extracting matrix feature: by calculating the four
matrix features (kurtosis, mean, skewness, and
standard deviation) of real and GAN-synthesized
images separately, it is found that the real and GAN-
synthesized images have the largest difference in
kurtosis feature, which can better distinguish the real
and GAN-synthesized images. )e experimental
results are shown in Figure 7.

)e experimental results show that the difference be-
tween real and GAN-synthesized images in kurtosis is the
largest. )erefore, the kurtosis ku of FNCC is chosen as the
final measurement for spectrum correlation of the color
image, and its calculation is shown as follows:

ku �
E f(i, j) − (1/M × N) 􏽐

M
i�1 􏽐

N
j�1 f(i, j)􏼐 􏼑

4
􏼔 􏼕

(E[(f(i, j) − μ)2])
2 , (7)

where f(i, j) represents the element of FNCC, and the size of
FNCC is M×N. )ree kurtosis values can be obtained by
calculating the kurtosis of the correlation matrix FNCC (RG),
FNCC (RB), and FNCC (GB), respectively.

4.2. Classification. SVM is commonly used for pattern
recognition, classification, and regression analysis. LibSVM
[25] is a tool library for SVM developed by Professor Chih-
Jen Lin in 2001, which can be used for data classification or
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regression conveniently. Since the focus of this study is to
employ DWT for feature extraction, there is no special re-
quirement for the classification, and the final feature used for
classification is a set of three-dimensional vectors in a simple
form. )erefore, LibSVM is used in this study to implement
a simple binary classifier, and the radial basis function (RBF)
kernel is used to train the SVM for classification.

κ xi, xj􏼐 􏼑 � e
− g xi − xj

����
����
2

, g> 0, (8)

where xi, xj is a vector; g is the only hyperparameter of RBF;
‖xi − xj‖ indicates the vector norm.)e grid-search method
is used to optimize the parameters.

5. Result and Analysis

In this section, experiments are conducted to evaluate the
effectiveness of the proposed FIDmethod in detecting GAN-
synthesized images and its robustness against the four
common perturbation attacks. First, experiments are con-
ducted on StyleGAN2-synthesized faces, and the results are
compared with that of recently published work, i.e., Auto-
GAN and FakeSpotter.

5.1. Experimental Setup

5.1.1. Data Collection. For the experiment, real faces are
collected from CelebFaces Attributes Dataset (CelebA) [26]
due to its good diversity. StyleGAN2 is used to synthesize
fake faces. To ensure the diversity and high-quality of the
fake image dataset, the various images produced by other
newest GANs (e.g., StarGAN and PGGAN) are used. Table 1
presents statistics of the collected fake image dataset from
[21]. )e first column shows the data type, where variety
means that there are more than ten different types of fake
images (e.g., building, animals, airplane, and so on). )e
second column denotes the source of real faces for syn-
thesizing fake images. )e last column indicates the source
of synthesized fake images, released by official, collected
from online, or synthesized by ourselves.

5.1.2. Implementation Details. Binary classifier is imple-
mented by LibSVM for detecting fake images, and the kernel
function is RBF. )e training dataset includes 5,000 real and

5,000 StyleGAN2-synthesized faces and 1,000 real and 1,000
StyleGAN2-synthesized faces for test. )e training dataset
and the test dataset are employed for evaluating the effec-
tiveness and robustness of the FID method. Four common
perturbation attacks are selected to evaluate the robustness,
namely, compression, blur, resizing, and adding noise.

5.1.3. Evaluation Metrics. In detecting StyleGAN2-synthe-
sized faces, eight popular metrics are adopted to obtain a
comprehensive performance evaluation of the FID method.
Also, the performance is compared with prior works, i.e.,
AutoGAN and FakeSpotter. Specifically, the precision, re-
call, F1-score, accuracy, AP (average precision), AUC (area
under curve of receiver operating characteristics), FPR
(false-positive rate), and FNR (false-negative rate) are re-
ported. )e AUC is also used as a metric to evaluate the
performance of the FID method in tackling the four per-
turbation attacks and detecting other GANs-synthesized
images.

5.2. Detection Performance. In the section, the influence of
DWT levels for detecting StyleGAN2-synthesized face is first
explored. In the feature extraction stage, 1000 real and 1000
StyleGAN2-synthesized faces are subjected to multilevel
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Figure 7: Matrix features of real and GAN-synthesized images. (a) Kurtosis. (b) Mean. (c) Skewness. (d) Standard deviation.

Table 1: Dataset description.

Fake images GAN type Collection Total
Entire synthesis faces StyleGAN2 Officially released 6 k
Bedroom

StyleGAN [21] 12.0 kCat
Car
Variety BigGAN [27] [21] 4.0 k
Apple

CycleGAN [21] 2.6 k

Horse
Orange
Summer
Winter
Zebra
Variety GauGAN [28] [21] 10.0 k
Variety PGGAN [21] 8.0 k
Variety PixelRNN Self-synthesis 3 k
Edited faces StarGAN [21] 4.0 k
Edited faces DiscoGAN Self-synthesis 1.2 k
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DWT, and the AUC score is adopted to evaluate the per-
formance. )e experimental results are shown in Figure 8.
)e overall value of AUC fluctuates with the increase of the
DWT level. )e AUC score is the highest when the DWT
level equals 1, so the level-1 DWT is selected to extract the
spectral correlation.

)e performance of the three methods, i.e., the FID,
AutoGAN, and FakeSpotter, in detecting StyleGAN2-syn-
thesized faces is measured, and the result is given in Table 2.
AutoGAN is an open-source work published in 2019 that
exploits the artifacts in GAN-synthesized images and detects
the fake images with a classifier based on the deep neural
network. FakeSpotter spots AI-synthesized fake faces
through monitoring the neuron behaviors. Experimental
results demonstrate that the FID method outperforms
AutoGAN and FakeSpotter for all eight metrics, achieving
competitive performance with a high detection rate and low
false alarm rate in detecting the StyleGAN2-synthesized
faces.

To illustrate the performance of the FID method in
balancing the precision and recall, the precision and recall
curves are presented in Figure 9 as well. )e proposed
method achieves a good balance between precision and
recall on StyleGAN2-synthesized faces.

5.3. Robustness Analysis. Since image transformations are
common, especially in the social media, the objective of
robustness analysis is to evaluate the capabilities of the FID
method against perturbation attacks. Four different per-
turbation attacks (compression, blur, resizing, and adding
noise) under different intensities are used for evaluation, and
the AUC is taken as a metric for the performance evaluation.

As for the four perturbation attacks, the compression
quality measures the intensity of compression. 0 and 100,
respectively, are the maximum and minimum values. Blur
indicates that the Gaussian blur is employed to faces. )e
value of Gaussian kernel standard deviation is adjusted to
control the intensity of blur, and the Gaussian kernel size is
(3, 3). In resizing, the scale factor is applied to control the
size of an image in horizontal and vertical axes.)eGaussian
additive noise is added to produce noisy images, and the
variance is used for controlling the intensity of the noise.

)e experimental results of the FID method against the
four common perturbation attacks are shown in Figure 10.
As the intensity of perturbation attacks increases, the AUC
score of the FIDmethod fluctuates within a small range. Due
to the interpolation and quantization operations in the
resizing and compression, the pixel relationship in finite
neighborhood changes, making a relatively obvious varia-
tion. )e FID method achieves an AUC score of about 80%
and more than 85% for tackling the compression and
resizing attacks, respectively. Besides, the AUC score of the
FIDmethod is more than 95% for tackling the blur and noise
attacks under different intensities.

Similarly, the proposed FID method is evaluated on other
GANs-synthesized image datasets, which contain rich image
types, and the results are compared with AutoGAN; the
training datasets and the test datasets were divided in 5 to 1.

)e AP score is also taken as a metric for performance
evaluation, and the experimental results are given in Table 3.
It can be seen that the FID method always maintains a good
performance for different types of images synthesized with
SOTA GANs. Because the pretrained model was trained on
CycleGAN and StarGAN, AutoGAN obtained 100% AP on
CycleGAN and StarGAN. DiscoGAN and CycleGAN have a
similar architecture, so AutoGAN also achieved a good
performance on DiscoGAN. While on other GANs, except
BigGAN, FID has achieved better performance compared to
AutoGAN. )e performance of the FID method in detecting
images synthesized by BigGAN, PGGAN, and StyleGAN are
not as high as other types of fake images. )e reason for the
inferior performance could be that the fake images synthe-
sized by BigGAN and PGGAN involve more image types and
more complicated image content; thus, the feature vector for
classification is more scattered in the hyperplane. FID got a
relatively low AP on StyleGAN, because StyleGAN-synthe-
sized image has high quality and contains three types, more
difficult to detect. Although GauGAN also contains a variety
of images, the quality of the images is not good, and AP
arrives at 91.22%. )e AP of detecting other types of fake
images is also above 90%. According to the experimental
results, the detection of fake images with complex types is still
challenging.

5.4. Discussion. )e proposed FID method achieves im-
pressive effectiveness in detecting SOTA GANs-synthesized
images. Also, the method exhibits satisfactory robustness
against the four common perturbation attacks. Since the
compression attack changes the pixel relationship in the
finite neighborhood and affects the spectral correlation of
color images, the performance degradation of the FID
method under compression attack is relatively obvious.

However, the FID method also has some limitations.
For example, the performance of detecting fake images of
multiple types is inferior than that of a single type. )e
content in fake images of multiple types is quite different,
making the distribution of the extracted feature vectors in
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Table 2: Performance of FakeSpotter, AutoGAN, and FID.

Precision Recall F1 Accuracy AP AUC FPR FNR
FID 0.9845 0.9845 0.9845 0.9845 0.9889 0.9901 0.021 0.015
FakeSpotter 0.912 0.924 0.918 0.919 0.881 0.919 0.076 0.087
AutoGAN 0.757 0.663 0.707 0.725 0.67 0.725 0.033 0.213

Recall

Pr
ec

isi
on

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.00.0

2-class precision-recall curve

Figure 9: Precision-recall curves of StyleGAN2-synthesized faces.
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the hyperplane more scattered. )is brings challenges to
the classification and inevitably leads to a declined de-
tection effect. )e detection of multitype fake images may
be a trend in the future, which poses a challenge and calls
for effective approaches.

6. Conclusion and Future Research Directions

)e rapid development of AI technology makes it possible to
produce fake content (e.g., fake audio, fake video, and fake
image) that can deceive humans, posing potential challenges
to the society and people. )is study proposes a method for
detecting GAN-synthesized fake images based on DWTand
the standard correlation coefficient. Also, the RGB corre-
lation introduced in the imaging process of natural color
images are studied. Besides, an extensive evaluation of the
FID method on detecting fake images synthesized by
StyleGAN2 and several typical SOTA fake images is per-
formed. Experimental results show that the proposed
method achieves effectiveness in detecting GAN-synthesized
fake images and exhibits robustness against common per-
turbation attacks. Furthermore, the analysis on the differ-
ence between real and fake images in the image imaging
process could be extended to other AI-synthesized images.

)e research on forgery and fake detection is funda-
mental, and it is necessary to establish a powerful defense
mechanism to avoid AI risks. Currently, the face swap is
common with DeepFake, and application of the FID method
to DeepFake could be our future work.

Data Availability

)e related images used to support the findings of the study
are at https://github.com/NVlabs/stylegan2 and https://
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In recent years, fatigue driving has been a serious threat to the traffic safety, which makes the research of fatigue detection a
hotspot field. Research on fatigue recognition has a great significance to improve the traffic safety. However, the existing fatigue
detection methods still have room for improvement in detection accuracy and efficiency. In order to detect whether the driver has
fatigue driving, this paper proposes a fatigue state recognition algorithm.*emethod first uses MTCNN (multitask convolutional
neural network) to detect human face, and then DLIB (an open-source software library) is used to locate facial key points to extract
the fatigue feature vector of each frame.*e fatigue feature vectors of multiple frames are spliced into a temporal feature sequence
and sent to the LSTM (long short-termmemory) network to obtain a final fatigue feature value. Experiments show that compared
with other methods, the fatigue state recognition algorithm proposed in this paper has achieved better results in accuracy. *e
average accuracy of the proposedmethod in detecting key points of the face is as high as 93%, and the running time is less than half
of the ordinary DLIB method.

1. Introduction

Automobiles have become the most popular tools of
transportation. As the frequency of automobile use con-
tinues to increase, traffic accidents are also increasing. In
many traffic accidents, fatigue driving is one of the main
reasons. Fatigue driving has caused many major traffic ac-
cidents, which caused huge losses to people’s lives and
properties.

Relevant Chinese traffic laws stipulate that driving for 4
hours without a break is fatigue driving. In a survey in the
United States, more than half of the drivers admitted that
they had fatigue driven [1]. When a driver is fatigued, his
concentration, judgment ability, and reaction sensitivity are
reduced [2]. *ese factors will make traffic accidents more
likely to occur. Long-distance driving is the most prone to
fatigue driving and often causes the safety accidents.
*erefore, fatigue driving detection technology has become
a research hotspot in the field of the traffic safety.

At present, fatigue detection methods are divided into
the following categories: methods based on the physiological

information, methods based on the vehicle status, methods
based on the computer vision, and methods based on the
information fusion models [3].

Physiological information mainly refers to the driver’s
breathing rate, pulse, blood pressure, and heart rate. *ese
parameters can quickly and accurately reflect a person’s
physical and mental state. *e detection methods based on
the physiological information not only have strong real-time
performance but also have high accuracy [4]. However, the
driver needs to wear related equipment during the detection
process, which will affect the normal operation of the driver,
so that the practical applications are limited.*e status of the
vehicle refers to the vehicle’s trajectory, steering wheel
manipulation, and lane deviation. *ese detection methods
indirectly analyze the driver fatigue state by analyzing ve-
hicle information [5]. *e main disadvantage of these
methods is low accuracy. *e detection methods based on
the computer vision can quickly and accurately detect the
driver fatigue state by capturing and analyzing the driver’s
face video in real-time. *ese methods do not need the
driver to wear the related equipment and have good
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performance in the terms of detection rate and reliability.
*e main difficulty of these methods is face image pro-
cessing. Information fusion methods are the comprehensive
use of the physiological information, vehicle information,
and computer vision algorithms to detect the driver’s fatigue
state.*e advantage is that it can improve the accuracy of the
detection, but the disadvantage is that it is difficult to es-
tablish an information fusion model and obtain various
information.

*e main contribution of this paper is to propose a new,
high-precision, real-time fatigue detection method based on
the computer vision. We combine MTCNN and DLIB to-
gether, which allows us to extract the facial features fast and
accurately and then combine the facial features of multiple
frames to make our fatigue judgment results more accurate.
*is method first divides the video into image frames and
cuts out the facial area through MTCNN and then uses the
DLIB library to extract the fatigue features of the eye and
mouth for each image frame. Finally, multiple frames of the
fatigue feature are input into the recognition network based
on LSTM to obtain fatigue judgment results.

2. Related Work

In recent years, many scholars and institutions have con-
ducted a lot of researches on the fatigue driving detection
based on the computer vision.

D’orazio et al. proposed an algorithm by eye detection.
*e algorithm used iris geometric information to determine
the entire image [6]. Sun et al. studied the relationship be-
tween the closed eyes and the fatigue, and they used PER-
CLOS to detect the driver’s fatigue and obtained better test
results [7]. Ma et al. designed a system to detect the fatigue
driving state at night. *ey used a deep framework based on
ConNN and verified it on their own dataset [8]. Zhang et al.
created a model to solve the influence of the sunglasses on the
fatigue detection, which used the IRF dataset [9]. Gupta et al.
observed the facial features of the driver through a camera and
classified the fatigue levels through principal component
analysis and support vector machine (SVM) classifier [10].
Junaedi and Akbar calculated PERCLOS by detecting the eyes
and used it to judge the fatigue.*ey used the YawDD dataset
[11]. Savas and Becerikli tried to use the SVM algorithm to
detect driver fatigue. In their study, they used the number of
yawns, the internal area of the mouth, and the number of
blinks to determine the driver fatigue level on the dataset [12].
Amodio et al. designed a driver state detection system based
on pupil light reflection.*ey used the pupil size contour and
SVM classifier to judge the driver’s state [13]. Li et al. designed
a human behavior recognition classification system based on
ConNN.*ey proposed a face recognition algorithm based on
LBP-EHMM [14]. Liu et al. proposed a driver fatigue de-
tection algorithm using a two-stream network model with
multiple facial features. *ey applied gamma correction to
enhance the image contrast to obtain better results [15]. Savaş
and Becerikli proposed a multitask convective neural network
model to detect driver drowsiness/fatigue. *e features of the
eyes andmouth were used tomodel the behavior of the driver.
*e changes in these characteristics were used to monitor the

driver’s fatigue [16]. Liu et al. proposed a fatigue detection
algorithm based on the deep learning facial expression
analysis. *ey trained a facial key point detection model
through multiple local binary patterns and AdaBoost clas-
sifiers [17]. Ed-Doughmi et al. proposed a method to analyze
and predict driver drowsiness by applying a recurrent neural
network on the driver’s face in sequence frames. *ey used a
3D convolutional network based on a repetitive neural net-
work architecture of a multilayer model to detect the driver’s
drowsiness [18].

Yawning and frequent blinking are the most obvious
signs of driver fatigue. *erefore, the first task is to deter-
mine the human eyes’ state and mouth’s state. *ere are
generally two ways to detect the eyes and mouth. One is to
directly detect the positions of the eyes andmouth.*e other
is to firstly find the facial area and then detect the positions of
the eyes and mouth. *e human face has more information,
and the features are more stable than the human eyes.
Cutting out the face area can reduce the test range of the eye
position and avoid the interference of the background.

*e existing face detection algorithms can be divided
into two categories: one is a multilevel detection algorithm
based on the proposed region. *e other is the target de-
tection algorithm based on anchor frame [19]. *e repre-
sentative algorithms of the former are Faster-RCNN [20]
and MTCNN [21]. *e representative algorithms of the
latter are S3FD [22] and SSH [23]. Compared with tradi-
tional learning methods, detection methods based on deep
learning do not require manual feature extraction. With the
support of a large amount of training data, the detection
performance will be greatly improved.

Fatigue driving is a continuous behavior. *erefore, the
fatigue detection method based on continuous multiple
frames will definitely be better than the single framemethod.
Donahue proposed the LRCN framework [24], which can
process continuous multiple frames of relevant information
to perform behavior recognition and classification.

3. Methodology

*e framework proposed in this paper is shown in Figure 1.
We will introduce the implementation details of each part in
detail.

3.1. Face Detection. In this task, we use MTCNN for face
detection, which is based on deep learning and can quickly
and efficiently complete face detection and face alignment
[25]. MTCNN can detect five key points of the face: left and
right corners of the mouth, nose, and left and right eyes.
However, the five key points are not enough to extract facial
fatigue information, so we use MTCNN just for face de-
tection. MTCNN includes three subnets: proposal network
(P-Net), refine network (R-Net), and output network (O-
Net). MTCNN is composed of cascades of them [26].

3.1.1. P-Net. *e main task of this network is to obtain the
bounding box and regression vector of the candidate window.
After the candidate window is calibrated, nonmaximum
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suppression is used to eliminate highly overlapping windows.
P-Net is a regional proposal network for face regions. *e
network uses a face classifier to determine whether there is a
face in the area and uses border regression and a locator of
facial key points to make a preliminary proposal of the face
area. *is part will output many candidate windows and use
these windows as the input of R-Net.

3.1.2. R-Net. *e main task of this network is to eliminate
false samples and continue to obtain bounding boxes and
regression vectors. Unlike the previous network, R-Net has a
more complete connection layer.When the test sample passes
the P-Net layer, many candidate windows are gotten. *e
network will filter out a large number of wrong candidate
windows. Finally, bounding-box regression and non-maxi-
mum suppression (NMS) were performed on the selected
candidate boxes to further optimize the prediction results.

3.1.3. O-Net. *is network is more complicated than the
first two networks. O-Net has a 256 fully connected layer.
After further filtering the candidate window of R-Net, this
layer of network will also calculate the position of the facial
feature points. In addition, this operation can eliminate the
influence of some obstructions, such as sunglasses, hats, and
ordinary glasses.

3.2. Facial Key Point Detection. In this phase of the task, we
use DLIB to label the key points of the face. DLIB can be
regarded as a machine learning toolbox, which is designed to
solve the extraction of key points of human faces. DLIB has
received widespread attention once it is launched, and it can
be applied to mobile devices or large-scale high-performance
computing environments. Like many open-source libraries,
DLIB can be used by researchers for free.We choose the DLIB
library because it can provide training and extraction tools for
68 facial key points. We can use it to obtain 68 facial key
points and use these key points to extract fatigue features [27].

3.2.1. Closed-Eye Detection. Obviously, when people’s eyes
are open, the distance between the upper and lower feature
points of the eyes will be relatively large. When the eyes are
closed, the distance becomes smaller. *e EYE value is cal-
culated by using the distance of the eye feature points. Among
the 68 feature points on the face, the eye points correspond to
37–42 and 43–48, respectively. Figures 2 and 3, respectively,
show the state of open and closed eyes.

*e calculation formula of EYE values is as follows:

EYE �
P38 − P42

����
���� + P39 − P41

����
����

2 P37 − P40
����

����
. (1)

*e numerator represents the Euclidean distance be-
tween the vertical feature points of the eyes, and the de-
nominator is the Euclidean distance between the horizontal
feature points of the eyes. *e Euclidean distance between
two points is calculated as follows:

Dis(a, b) �

�����������������������������

Pa · x − Pb · x( 􏼁
2

+ Pa · y − Pb · y( 􏼁
2

􏽱

, (2)

where Pa · x and Pa · y represent the coordinates x and y of
point a, respectively, and the horizontal and vertical Eu-
clidean distances of the eye can be expressed as follows:

Eyeh � Dis P37, P40( 􏼁, (3)

Eyev � Mean Dis P38, P42( 􏼁,Dis P39, P41( 􏼁( 􏼁, (4)

where Mean(A, B) means the average of A and B, and then
the aspect ratio of the eye can be expressed as follows:

EYEleft �
Eyev

Eyeh

. (5)

Since the value calculation process of the left and right
eyes is the same, the calculation process of the right eye will
not be repeated.*e eye feature vector (EFV) is composed of
EYEleft and EYEright.

Driving video

Fatigue judgement

Blinking
frequency

Yawning
frequency

LSTM

Temporal features
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…
Eye
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Mouth
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MTCNN
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Face key points

Figure 1: Framework of fatigue detection.
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3.2.2. Yawn Detection. Yawn detection is similar to closed
eye detection. *e key points of the mouth are 61–68. *ese
points make up the key points of our inner lips. Some
scholars use the key points of the outer lips. However, due to
the individual lip differences, the calculated value will not be
accurate enough. *e MOUTH value is calculated by using
the distance of themouth feature points, which can judge the
state of the mouth. *e mouth feature vector (MFV) only
consists of MOUTH. Figures 4 and 5 show the open and
closed states of the mouth, respectively.

*e horizontal and vertical Euclidean distances of the
mouth can be expressed as follows:

Mouthv � Mean Dis P62, P68( 􏼁,Dis P63, P67( 􏼁,Dis P64, P66( 􏼁( 􏼁,

(6)

Mouthh � Dis P61, P65( 􏼁, (7)

where Mean(A, B, C) means the average of A, B, and C.
*en, the aspect ratio of the mouth can be expressed as

follows:

MOUTH �
Mouthv

Mouthh

. (8)

3.3. Fatigue Recognition Network. Many existing fatigue
identification methods only use a single fatigue feature,
which will lead to many misjudgments. Assuming that only
the mouth information is used to determine whether you are
tired, it is likely to misjudge your speech as fatigue [28].
*erefore, the fatigue detection results obtained by analyzing
one single frame are not accurate. Inspired by LRCN [24], a
two-stage fatigue identification method is designed in this

paper. *e first stage is splitting the input video into frames
of pictures. *e fatigue vector of a single frame is extracted
through MTCNN and DLIB, and the information of mul-
tiple consecutive frames is combined to form a temporal
feature vector. *e second stage is as follows: these fatigue
feature sequences are input into the LSTM-based network to
identify the fatigue state.

3.3.1. Temporal Fatigue Characteristic Sequence. *e feature
extraction task needs to extract the eyes and mouth state
values of each frame. *erefore, we set the single frame
feature vector length to 3. *e fatigue feature vector of a
single frame image is as follows:

fn � Valueleye,Valuereye,Valuemouth􏽮 􏽯, (9)

where Valueleye and Valuereye represent the state of the left
eye and the right eye and Valuemouth represents the state of
the mouth.

*e feature vector of each frame is 1 × 3. So, we splice the
feature vectors of multiple frames, and a temporal feature
sequence of n × 3 will be formed. *e vector length is 3, and
the number of spliced frames is n. *e splicing process is
shown in Figure 6.

P40

P39P38

P37

P42 P41

Figure 2: Eye open state diagram.
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P39
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P40

Figure 3: Eye-closed state diagram.
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Figure 4: Mouth open-state diagram.

P66P67P68
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Figure 5: Mouth closed-state diagram.
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As shown in Figure 6, the length of the time window is a
key parameter to construct the temporal fatigue charac-
teristic sequence. If the length is too short, the obtained
sequence may not be able to completely cover the fatigue
state, and the excessively long time window will cause the
sequence to contain too much redundant information.
Another key parameter is the number of the skipped
frames. Since the information of adjacent frames will be
almost the same, it is not necessary to extract the infor-
mation of each frame, which will cause a lot of waste of
calculation and greatly reduce the efficiency. We split each
video sample at a rate of two frames per second. Since the
fatigue process usually does not exceed three seconds, we
chose a time window length of 6 and skipped frames
number of 2.

3.3.2. Fatigue Recognition Network Based on LSTM.
LSTM is carefully designed to avoid the problem of long
dependencies. Remembering long historical information is
actually a default behavior. LSTMworks very well on various
problems and is now widely used in pattern recognition.
Based on this idea, a fatigue identification network based on
LSTM is applied in this paper. Its structure is shown in
Figure 7.

As shown in Figure 7, the input of the LSTM network is
a sequence of time features. *e time feature sequence is
composed of six single frame feature vectors. *erefore, the
length of LSTM is also 6. LSTM will return a probability
value, which represents the probability of driver fatigue in
the current time window. When the probability value is
more than 0.5 or equal to 0.5, we set this value to 1 and
indicate that the driver is in a state of fatigue during the
current period. When the probability value is less than 0.5,
we set this value to 0, which indicates that the driver is
awake during the current period. As long as a period is
judged to be fatigued, we will treat the video as a fatigue
sample.

4. Experiment

4.1. Dataset. In the experimental part, we selected the
YawDD dataset and self-built dataset to verify the perfor-
mance of the method.

4.1.1. YawDD Video Dataset. *e dataset is collected by
Abtahi et al. [29], which was captured in a static environ-
ment. *e collectors gathered a large number of volunteers.
*e volunteer group was composed of drivers of different
skin colors, sexes, and ages. *ey did different actions
according to the instructions as normal driving, talking, and
yawning. Each volunteer was shot multiple videos.When the
driver wears pure black sunglasses, the human eye cannot
recognize the eye condition of driver. *erefore, we selected
100 videos where volunteers were not wearing pure black
sunglasses, including 50 men and 50 women for testing. A
part of the dataset is shown in Figure 8.

4.1.2. Self-Built Dataset. In the YawDD dataset, some
drivers in the video do not yawn naturally, but just open
their mouths to make a yawning action. In order to capture
themost natural fatigue state as much as possible, our fatigue
video samples are all taken after the volunteers get off work.
After working for a long time, most people are more prone
to fatigue. We cannot guarantee that every sample captures
the natural yawning action, but we filmed the behavior that
fits the most natural fatigue. Our algorithm was tested on
behaviors often associated with fatigue versus actual fatigue.
Second, the proportion of yellow people in the YawDD
dataset is low, mostly whites and Indians. Adding a self-built
dataset can help reduce the difference in experimental results
caused by races of different skin colors.

Self-built dataset was collected by our experimental
team. We gathered 10 volunteers and each was shot two
videos: one is a normal video, and the other is a fatigue video;
they included closing eyes, talking, laughing, and yawning.
*ese videos had slightly different face orientations, mouth
shapes, and whether they wear glasses, and they were col-
lected under different lighting conditions. Part of the dataset
is shown in Figure 9.

4.2. Experimental Results and Analysis. *e platform of this
experiment is Windows 10, the processor is Inter(R) Cor-
eTM i7-9700k, the main frequency of the CPU is 3.6 GHZ,
and the memory is 8 GB. *e programming language is
Python. In the experiment, we split the video dataset into
images and use MTCNN to detect and crop the face images.
After cropping the face image, the DLIB library is used to
mark the key points of the face to calculate the state value of
the eye and mouth. By calculating the aspect ratio of the eyes
and the mouth, we can perform closed eye detection and
yawn detection. In order to verify the performance of the
proposed algorithm, we compare our algorithm with the key
point detection algorithms proposed in recent years. *e
experimental results are shown in Tables 1 and 2.

Tables 1 and 2, respectively, show the detection accuracy
of our model and other methods in the YawDD dataset and
the self-built dataset. It can be seen that our model is sig-
nificantly better than other algorithms. *e method pro-
posed in this paper has a higher eye-mouth marking rate
than other methods. Compared with the Viola–Jones al-
gorithm, our method has significantly better results in the
detection of faces, eyes, and mouths. Second, the detection
results on the YawDD dataset are slightly lower than the self-
built dataset. *is may be due to the small number of videos
in our self-built dataset. *ere is not much difference in
actual detection results. Next, we compare the detection time
between different methods.

Tables 3 and 4, respectively, show the detection time of
our model and other methods in the YawDD dataset and
self-built dataset. *e Viola–Jones algorithm uses integral
images to calculate its Haar-like features, which greatly
reduces the amount of calculation. However, this algorithm
was originally used to detect frontal face images, and it is not
very robust to the detection of side face images.*erefore, its
detection accuracy is low. *e head pose estimation

Security and Communication Networks 5
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algorithm mainly uses the DLIB library to detect facial key
points. *e method proposed in this paper first uses
MTCNN to extract the face and then uses the DLIB library to
detect the key points of the face. In the process of detecting
the key points of the eyes and mouth, the head pose esti-
mation algorithm uses DLIB to detect the entire picture,
which increases the amount of calculation and the detection
rate is low. It can be seen from the data in the two tables that
ourmethod has a longer detection time than the Viola–Jones
algorithm, but our average detection accuracy is 11%–15%
higher than the Viola–Jones algorithm. Compared with the
head pose estimation algorithm, the detection time is re-
duced by half, and the accuracy is increased by 8%–10%.
Finally, we compared the accuracy of fatigue detection.

Tables 5 and 6 , respectively, show the fatigue detection
accuracy of our model and other methods in the YawDD
dataset and self-built dataset. *is study selected videos of
drivers driving normally, talking, laughing, and yawning from
the dataset and analyzed the results of driver fatigue through
the state of the eyes and mouth. We use MTCNN+DLIB,
DLIB+LSTM, head pose estimation method, and Viola-
–Jones method to compare the results with the method in this
paper. When using DLIB+LSTM to detect the fatigue state,
DLIB directly detects the entire picture, which not only takes a
long time to detect but also has lower accuracy. *e facial key
points’ detection accuracy directly affects the judgment of the
fatigue state. When we use MTCNN+DLIB to detect the
fatigue state, we only rely on the fatigue feature value of a

(a) (b) (c)

Figure 9: Self-built dataset.

Table 1: Detection accuracy of different areas in the YawDD dataset.

Algorithm Face detection accuracy
(%)

Eye detection accuracy
(%)

Mouth detection accuracy
(%)

Average detection accuracy
(%)

Head pose estimation
[27] 83 82 83 82.7

Viola–Jones [30] 73 79 81 77.7
Proposed 98 91 89 92.7

Table 2: Detection accuracy of different areas in the self-built dataset.

Algorithm Face detection accuracy
(%)

Eye detection accuracy
(%)

Mouth detection accuracy
(%)

Average detection accuracy
(%)

Head pose estimation
[27] 85 84 85 84.7

Viola–Jones [30] 77 83 84 81.3
Proposed 97 90 92 93

Security and Communication Networks 7



single frame to determine the fatigue state, but fatigue is a
continuous time behavior. So, the accuracy of this detection
method is significantly lower than our method. In addition to
these two methods, we also select two methods with superior
performance to compare with our method. It can be seen
from the result in Tables 5 and 6 that the accuracy rate of our
method has reached 88%–90%.

5. Conclusion

We proposed a fatigue detection algorithm based on facial
key points and long short-term memory. Since the face
contains more features than the eyes and mouth, it is easier
to be detected. So, we first obtained the face image and
marked the key points of the eyes and mouth in the face
image. *is can reduce the scope of the eyes and mouth test
and also avoid the interference of the background area in the
image. Fatigue is a continuous behavior. It is easy to make
misjudgments if the result only relies on the eye and mouth
features of a single frame, so we split the fatigue feature
values of a single frame into a temporal fatigue feature
sequence and sent it to LSTM network. Although our
method is superior to other methods in the extraction ac-
curacy of facial key points and the final fatigue

determination accuracy, the detection performance under
insufficient light still needs to be improved. Our next step is
to study fatigue driving detection in complex lighting en-
vironments and focus on the challenge of fatigue testing
under poor light conditions, such as strong light and weak
light. *ese application scenes are more practical and more
difficult. When an automobile enters a tunnel or runs at
night, how can we recognize the driver’s fatigue driving
behavior in time? *is direction is also one of the current
researches focuses in the field of fatigue driving detection.
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In this study, to achieve the possibility of predicting face by skull automatically, we propose a craniofacial reconstruction method
based on the end-to-end deep convolutional neural network. +ree-dimensional volume data are obtained from 1447 head CT
scans of Chinese people of different ages. +e facial and skull surface data are projected onto two-dimensional space to generate a
two-dimensional elevation map, and then, use the deep convolution neural network to realize the prediction of skull to face shape
in two-dimensional space. +e encoder and decoder are composed of first feature extraction through the encoder and then as the
input of the decoder to generate the craniofacial restoration image. In order to accurately describe the features of different scales,
we adopt an U-shaped codec structure with cross-layer connections. +erefore, the output features are decomposed with the
features of the corresponding scales in the encoding stage to achieve the integration of different scales while restoring the feature
scales in the compression and decoding stage. Meanwhile, the U-net structures help to avoid the problem of loss of detail features
in the downsampling process. We use supervised learning to obtain the prediction model from skull to facial elevation map. Back-
projection operation is performed afterwards to generate facial surface data in 3D space. Experiments show that the proposed
method in this study can effectively achieve craniofacial reconstruction, and for most part of the face, restoration error is
controlled within 2mm.

1. Introduction

Craniofacial reconstruction is a technique producing a
reconstructed face from a human skull. Based on the rela-
tionship between the skull and face in forensic medicine,
anthropology, and anatomy, this technique has been widely
used in criminal investigation and archaeology. +e tradi-
tional craniofacial reconstruction is mainly implemented
manually by experts, based on the anatomical law of the
human head and face on the plaster model of the victim’s
skull and according to the relationship between the soft
tissue of the human head and face and the morphological
characteristics of the face and skull. +e facial appearance of
the victim is gradually reproduced with adding rubber clay

and other materials. +is method usually requires a com-
plicated process, high cost, and time-consuming. In addi-
tion, the result largely depends on the practitioner’s
experience, so its application in criminal investigations
based on timeliness and truthfulness is greatly restricted.

With the development of computer visualization and
virtual three-dimensional technology, computer-aided cra-
niofacial reconstruction technology has greatly reduced the
repair time and work difficulty and reduced the subjective
deviation factors, which has attracted widespread attention.
+e current reconstruction methods are based on either
template [1] or feature points [2, 3]. For the template-based
methods, a face template set in advance is required. In the
reconstruction process, the template is deformed according
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to the shape of the skull until the feature points on the face
template match with the feature points estimated from the
skull. Reconstruction can be based on fixed templates [4–7]
or dynamic templates [8–14]. +e feature points-based
methods first estimate the soft tissue thickness of the facial
key points and then restores the facial surface. Although
feature points based methods have been practically applied
in the field of forensics, there are still limitations, which are
mainly reflected in two aspects. First, in the process of re-
covering complete face surface from sparse feature point
information, the loss of facial details will be inevitable.
Second, human interaction is often required to ensure the
accuracy of feature points positioning, which result in an
extra anthropic factor.

Craniofacial reconstruction is essentially a problem of
sample generation based on reference data. With the rapid
development of deep learning technology, data generation
based on the convolutional neural network shows significant
advantages, among which the representative technologies
are the variational autoencoder (VAE) [15, 16] and gener-
ative adversarial network (GAN) [17]. Both VAE and GAN
attempt to learn the mapping of hidden space variables to
real data distribution through training samples. +e dif-
ference is that VAE calculates the mean and variance of
samples through the neural network, constrains them to
obey standard normal distribution, and then samples out
hidden variables for reconstruction [18]; while, the GAN
adopts the idea of game theory and directly measures the
distance between real distribution and generated distribu-
tion through the discriminator, forcing the generator to
generate a more realistic distribution. In recent years, the
GAN has received extensive attention from the industry, and
many variants have been derived, such as the WGAN [19],
CGAN [20], Pix2Pix [21], and BEGAN [22].

+e convolution neural networks have also been introduced
into the field of craniofacial reconstruction. Li et al. [23] pro-
posed to use a convolutional neural network based on a codec
structure, which canwell predict the distribution of skeleton soft
tissue. +e method is with high computation cost, and high
performance hardware requirements are also needed, but the
generated results are not satisfying. Yuan et al. [24] used the
GAN to reconstruct 3D face images. Limited by the data
amount and computing power, the author use sparse repre-
sentation of 3D data to reduce the computation cost and im-
prove the recovery ability; Liu and Xin [25] proposed a
prediction method based on the autoencoder and GAN.
Candidate faces are generated through the autoencoder. +e
human face and skull are superimposed to determine the best
face. +e GAN is used afterwards to optimize the results. Such
scheme is essentially a deep learning version of the template-
based method. Although the reconstruction accuracy is rela-
tively high, the common problem of the template method is
inevitable, that is, the generation process is cumbersome, and
the network structure is complex.

Based on the above research, we propose an end-to-end
facial morphology prediction method based on the deep
convolutional neural network to automatically estimate face
information from skull data. For the proposed method,
named cylindrical facial projection residual net (CFPRN), it

needs neither preset face template nor feature point de-
tection. In order to ignore unnecessary calculations, we do
not reconstruct the face data directly in 3D space but try to
estimate the face elevation map in 2D cylindrical projection
space, and back-projection operation is performed after-
wards to get the 3D face surface. We use U-shape network
structure so as to adapt with features of different scales. +e
CFPRN is easy to implement, and experiments have verified
the robustness and accuracy of the proposed method.

2. Data Preprocessing

2.1. Data Segmentation. +e objective of craniofacial re-
construction is to recover the 3D face surface data from 3D
skull data. Both data are obtained from 3D head CTscan.+e
face surface can be simply retrieved via threshold seg-
mentation, as shown in Figure 1(a); however, due to the
complexity distribution of soft tissue and cartilage,
threshold segmentation is not suitable for the skull. In
order to obtain a clean skull structure, we choose to use
adaptive threshold segmentation with a sliding window.
+e size of the sliding window is set to be 7∗7∗7. +e
comparison of global and adaptive thresholding is shown in
Figures 1(b) and 1(c).

2.2. Projection and Back-Projection. For craniofacial recon-
struction task based on convolutional neural networks, the 3D
volume data obtained via head CT scans are usually with ex-
cessive data volume [26]. +e existing hardware conditions are
difficult to meet the problem of constructing a feature network
directly for 3D data under the original resolution. In fact, during
the reconstruction, only the surface of the skull and the face
needs to be considered.+erefore, we use projection operations
to map the 3D data to the 2D space for calculation. Considering
that the human head is close to a circle in the cross-section and
in order to avoid the inconsistency of the resolution in the
vertical axis, we use a cylindrical projection surface.+e plane
projection and sphere projection are not considered because
the former leads to inconsistent resolution in vertical di-
rection, and the latter results in inconsistent resolution in
different horizontal slices. As shown in Figure 2(a), the cross-
section of the CT scan is the XOY plane, and the Z-axis is
perpendicular to the cross-section. +e coronal plane and the
sagittal plane are the XOZ plane and the YOZ plane, re-
spectively. Figure 2(b) shows the projected plane coordinate
system.

+e coordinate transform between 3D space and the
cylindrical projection plane is defined as follows. For
projection,

u � arctan
x′

y′
􏼠 􏼡∗

n

π
� α∗

n

π
,

v � z′,

r �

���������

x′2 + y′2􏼐 􏼑

􏽱

.

(1)

For back-projection,

2 Security and Communication Networks



x′ � r sin
uπ
2n

􏼒 􏼓,

y′ � r cos
uπ
2n

􏼒 􏼓,

z′ � v,

(2)

where x′, y′, z′ are the coordinates from the 3D space, and
u, v are the coordinates from the projection plane. r is the
pixel value of the 2D projected altitude map which repre-
sents the distance from the point to the projection axis in 3D
space. +us, the depth information in 3D facial and skull
surface is preserved in the projection and back-projection
steps. 2n is the total sample number in U axis.

3. Network Architecture

+e network structure refers to the encoder-decoder
structure of U-net [27] and draws on the relevant ideas of the
CGAN [20], Pix2Pix [21], and other networks to realize an
end-to-end network.

In the encoder-decoder structure, the first half of the
network acts as an encoder, which successively is down-
sampling through pooling, convolution with strides, to
extract deep features from the input image. +e second half
of the network acts as a decoder, which successively is
upsampling through deconvolution, interpolation, to map
the feature output by the encoder back to the size of the
previous level. In the meantime, cross-layer connection is
considered, so that the high-level feature map after being
upsampled by the decoder and the low-level feature map of
the same scale in the encoder are connected in the channel
dimension, and feature information of different scales are
merged to make the prediction result more accurate and
stable. Figure 3 shows the specific structure of the proposed
network.

+e network is generally divided into two parts: encoder
module and decoder module.

+e encoder module is mainly composed of a con-
volutional layer and five convBlocks; each convBlock, as

shown in the bottom right of Figure 3, contains a leaky
Relu activation layer, a 3∗3 convolutional layer, and a
group normalization layer. +e encoder module performs
6 downsampling in total, and the pooling operation is
replaced by a convolution operation with a step size of 2
so as to retain more feature information.

+e decoder module is composed of five deconvBlocks
and a convolutional layer. Each deconvBlock, as shown in
the bottom right of Figure 3, contains a leaky Relu acti-
vation layer, an upsampling layer, a 3∗3 convolutional
layer, and a group normalization layer. +e decoder
module performs upsampling 6 times in total; bilinear
interpolation is considered for upsampling, expanding the
height and width of the feature map by 2 each time. +e
feature map after each upsampling is connected in the
channel dimension with the feature map of the corre-
sponding scale in the encoder. +rough such a cross-layer
connection, the deep and shallow features can be effectively
merged.

In the meantime, we use some tricks to improve the
performance of the entire network. (i) Replace decon-
volution with a structure of upsampling using bilinear
interpolation and convolution, which can effectively
avoid the checkerboard effect [28]. (ii) Replace Relu with
leaky Relu, which can effectively reduce the dead neurons.
Replace pooling operation with convolution operation
with a step size of 2 to retain more features. (iii) Use
group normalization [29] instead of batch normalization
which can effectively avoid the impact of batch size on the
training results.

We use normalized skull elevation map as network input.
+e data range is limited to (−1, 1).+enormalization can speed
up the convergence of the network and increase the general-
ization ability of the model. For the supervised data, we have 2
options: one is to use the face elevation map directly and the
other is to use the residual between the face and skull surface
(mentioned as “face” and “res,” respectively, in the experiment
section).

+e loss is defined as the distance between predicted
and real face elevation map. We use mean square error

(a) (b) (c)

Figure 1: Result of adaptive threshold segmentation. (a) 3D face image. (b) 3D skull via thresholding. (c) 3D skull via adaptive thresholding.
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(MSE) to define the loss function, which represents the
average value of the square of the difference between the
predicted and the real elevation map. +e expression is as
follows:

MSE(x, y) �
1
m

􏽘

m

i�1
xi − yi( 􏼁

2
, (3)

where m denotes the number of pixels, and the terms x, y

denote the predicted and the label value, respectively.

4. Experiment

4.1. Data Description. +e dataset used for experiment is
acquired from the head cone-beam CT scan from NewTom
5G. +e dataset contains CT data of 1447 participants from
Affiliated Hospital of Stomatology, Nanjing Medical Uni-
versity. Each sample has 540 CT slices, the resolution for
each slice is 610× 610, and the pixel size is 0.3mm∗0.3mm.
1310 samples were randomly selected as training set, and the
validation set is composed of the rest 137 samples.

4.2. Evaluation Indices. Peak signal-to-noise ratio (PSNR)
and structural similarity (SSIM) [30] is chosen as evaluation
indices for the experiments. +e peak signal-to-noise ratio
(PSNR) measures the ratio between the energy of the peak
signal and the average energy of the noise, which is com-
monly used for signal recovery quality. +e PSNR is defined
as

PSNR � 10 log10
MAX2

MSE
, (4)

where MAX denotes the maximum pixel value in the data,
and MSE is the mean square error. Besides PSNR, SSIM is
considered for the similarity measure between the ground
truth and the predictions. +e SSIM measures image sim-
ilarity from three aspects of brightness, contrast, and

structure, with value range (0, 1), and larger value stands for
smaller image distortion.

5. Results and Discussion

5.1. Result. We intuitively visualized the experimental re-
sults. Figure 4 shows the input elevation map of the skull.
Figure 5 shows that the prediction results of the face ele-
vation map correspond to skulls in Figure 4 and the cor-
responding ground truth. We can see the predicted result is
very close to the ground truth. Pseudocolour maps shown in
Figure 6 visualize the difference between the output and the
ground truth (in percentage), from which we may see that
the error mainly occurs in the eyes, nose, and mouth area.
Obviously, because of the cavity in the skull, it is impossible
to accurately predict the eyes and nose.

We use the predicted elevation map to generate 3D facial
data through back-projection. +e generated 3D face is
compared with ground truth.+e difference map is shown in
Figure 7, fromwhich wemay see that for most part, the error
is limited to 1mm.

5.2. Comparison. We have repeated experiments on dif-
ferent network architectures and different image sizes. +e
specific results are given in the table, and the bold line is our
proposed one. Table 1 indicates that the proposed CFPRN is
with high accuracy and shows best performance among all
the candidates. +e abbreviation “Res” means the network
output is the residual of the face and skull, and the ab-
breviation “Face” means the network output is the face
surface directly. Table 2 indicates that the CFPRNworks well
under different resolution settings.

5.3. Error Analysis

(1) In order to simplify the network and improve efficiency,
we reduce the dimension of the input, which causes a
partial loss of data accuracy. After the prediction is

P′ (x′, y′, z′)

Z

X

Y

rα

(a)

P (u = αn/π′v = z′) = r)

U

V

(b)

Figure 2: Cylindrical projection. (a) 3D face image before projection. (b) 2D face image after projection.
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(a) (b) (c) (d)

Figure 5: Continued.
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Figure 3: Network structure.

(a) (b) (c) (d)

Figure 4: Input skull images. (a) Skull 1. (b) Skull 2. (c) Skull 3. (d) Skull 4.
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(e) (f ) (g) (h)

Figure 5: Comparison between label face and predicted face. (a) Prediction face 1. (b) Prediction face 2. (c) Prediction face 3. (d) Prediction
face 4. (e) Label face 1. (f ) Label face 2. (g) Label face 3. (h) Label face 4.

(a)

(c)

(b)

(d)
–0.15

–0.10

–0.05

0.00

0.05

0.10

0.15

Colour spectrum/100%

Figure 6: 2D difference maps. (a) Difference map of face 1. (b) Difference map of face 2. (c) Difference map of face 3. (d) Difference map of
face 4 colour spectrum/100%.
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completed, back-projection is performed, which may
also cause extra error transfer.

(2) From the error map, we may see that basically, all
samples have large errors in the part of the nose and
eyes. +is is because the skull has holes in the eyes
and nose, which cannot be accurately predicted, and
this might be overcome by introducing much more
samples.

6. Conclusion and Prospects

In this study, we propose an end-to-end deep learning
method for craniofacial reconstruction. +e main contribu-
tion of the proposed method can be summarized as follows:

(1) We use projection and back projection for the
transfer between 3D skull and face data into 2D
elevation map. Instead of performing craniofacial

(a) (b)

(c) (d)

2.0000

–2.0000

1.3333

–1.3333

0.6667

–0.6667

0.0000

Colour spectrum/100% 

Figure 7: 3D difference maps. (a) Difference map of face 1. (b) Difference map of face 2. (c) Difference map of face 3. (d) Difference map of
face 4 colour spectrum/mm.

Table 1: Results of different network architectures.

Network RMSE PSNR SSIM
Inception ResNet U, Res 11.245456 31.477464 0.979727
Res, Pix2Pix, group norm 10.770702 31.938354 0.968041
Face, Pix2Pix, group norm 10.16162 32.424038 0.987716
Face, Pix2Pix, batch norm 10.724989 31.925444 0.986937

Table 2: Results of different network generation sizes.

Size RMSE PSNR SSIM
Pix2Pix, 128∗90 10.258215 32.379723 0.990736
Pix2Pix, 256∗180 10.348463 32.392857 0.990038
Pix2Pix, 512∗360 10.16162 32.424038 0.987716
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reconstruction in 3D space, the recovery runs in 2D
space.+e face elevation map is estimated according to
the skull elevationmap. Such design largely reduces the
data size and computation cost, so that the proposed
method is available on consumer graphics cards.

(2) We design an U-shaped end-to-end network to fit for
the features in different scales. +e accuracy and
robustness of the prediction are guaranteed
according to the experiment results.

According to our experiment results, we can also make
further prospects:

(1) We should expand the amount of samples. Divide
samples according to gender and age to balance the
distribution of sample data.

(2) +e eyes and nose of the skull should be hollowed out
or filled. Because the specific shape of the face in
these parts cannot be inferred from the skull, it is
helpful to reduce the impact on the experimental
results by hollowing out or filling these parts.

(3) We will try other network architectures, such as the
conditional GAN. By introducing more conditions,
we may provide subdivided predictions with higher
accuracy.

Data Availability

All the experiment data are obtained from Affiliated
Hospital of Stomatology, Nanjing Medical University. +e
access to the original data is restricted due to the patient
privacy. However, the data used to support the findings of
this study are available from the corresponding author
upon request.
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Recently, various Deepfake detection methods have been proposed, and most of them are based on convolutional neural networks
(CNNs). (ese detection methods suffer from overfitting on the source dataset and do not perform well on cross-domain datasets
which have different distributions from the source dataset. To address these limitations, a new method named FeatureTransfer is
proposed in this paper, which is a two-stage Deepfake detection method combining with transfer learning. Firstly, (e CNN
model pretrained on a third-party large-scale Deepfake dataset can be used to extract the more transferable feature vectors of
Deepfake videos in the source and target domains. Secondly, these feature vectors are fed into the domain-adversarial neural
network based on backpropagation (BP-DANN) for unsupervised domain adaptive training, where the videos in the source
domain have real or fake labels, while the videos in the target domain are unlabelled. (e experimental results indicate that the
proposed method FeatureTransfer can effectively solve the overfitting problem in Deepfake detection and greatly improve the
performance of cross-dataset evaluation.

1. Introduction

Recently, the Deepfake video generation technology has
attracted much attention, especially the popular Deepfake
application called “ZAO”.(e application requires the user to
provide a clear personal face image and complete facial
feature verification, but the image collection protocol is not
user-friendly. (e majority of users express anxiety about the
security of face information. In addition, the Deepfake
technology could also be used to create fake news, posing
threats to user privacy and social security [1–6]. (us, it is
critical to detect the Deepfake images or videos for face fo-
rensics. As we know, Deepfake detection, a branch of face
forensics, is a binary classification task. (e goal of face fo-
rensics is to detect whether a face in image or video has been
created or manipulated.

(e Deepfake video detection method mainly uses deep
learning technology, which is usually composed of two parts:

face detection and classification. As for face detection [7–9],
MTCNN (multitask convolutional neural network) [7] and
dlib [8] are mostly used as face detectors. As for the classi-
fication part, some researchers detect the Deepfake videos
with the visible artifacts in the videos. For example, Matern
et al. [10] found the inconsistent color of the left and right eyes
and the geometric deformations of teeth in Deepfake videos.
Li et al. [11] found that the people in Deepfake videos blink
less frequently. Yang et al. [12] detected videos Deepfake
through the cue of inconsistent head poses. Li et al. [13]
exposed Deepfake videos by detecting face warping artifacts.
(esemethods are effective for detecting some early Deepfake
videos. However, with the development of Deepfake video
generation technology, the visible artifacts used by these
methods can be significantly reduced, degrading the per-
formance of some artifacts-based methods. (erefore, some
other cues in Deepfake videos need to be found for detection.
Zhang et al. [14] found that the upsample or transposed
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convolution used by the Deepfake technology inevitably re-
sults in a checkerboard effect on the generated face. Based on
this, they proposed that CNN can be used to learn the
checkerboard effect characteristics to detect Deepfake videos
by directly inputting the face images extracted from video
frames, such as MesoNet [15] and XceptionNet [16]. Unlike
the spatial cues mentioned above, the temporal flickering, i.e.,
inconsistent temporal changes in videos, can be taken as the
temporal cues in Deepfake videos. To make full use of both
spatial and temporal cues in Deepfake videos, Guera et al. [17]
and Chen et al. [18] combined CNN and recurrent neural
networks (RNNs) to detect Deepfake videos. Unfortunately,
Li et al. [19] found that most of the Deepfake detection
methods trained and tested on specific datasets can achieve
satisfactory performance, but their performances are signif-
icantly reduced when themethods are tested on cross-domain
datasets, indicating that these methods are overfitting on a
specific dataset. To improve the generalization ability of the
methods on cross-domain datasets, multitask learning ap-
proaches [20–22] were introduced for Deepfake detection.
Specifically, Nguyen et al. [20] developed a multitask learning
approach to simultaneously perform classification, recon-
struction, and segmentation of manipulated facial images.
Cozzolino et al. [21] proposed the “ForensicTransfer” by
combining classification and reconstruction, while Li et al.
[22] proposed the “Face X-Ray” to detect Deepfake videos
based on blending boundaries by combining classification
and segmentation. However, those methods still need to
improve the performance of the cross-dataset evaluation
because they tend to train the classifier on a single small-scale
dataset (i.e., FaceForensics++ [16] dataset), which is difficult
to be generalized to other unseen datasets generated by using
unseen Deepfake manipulation methods.

To make the Deepfake video detection method more
robust on cross-domain datasets, this paper proposes a new
method called FeatureTransfer, which is based on unsuper-
vised domain adaptation. Extensive experiments demonstrate
that the proposed method FeatureTransfer can improve the
Deepfake detection performance of cross-dataset evaluation.
(e contributions of this work are summarized as follows:

(1) (e unsupervised domain adaptation is first used to
detect Deepfake videos in this work. A two-stage
training pipeline called FeatureTransfer is designed
for Deepfake detection.

(2) (e feature extractor in preprocessing stage is pre-
trained on a large-scale Deepfake dataset DFDC-P
[23] to extract more transferable feature vectors.

(3) Based on BP (backpropagation) and DANN (do-
main-adversarial neural network), an unsupervised
domain adaptive network called BP-DANN is
proposed.

(e remainder of this paper is organized as follows. In
Section 2, the related works are presented. In Section 3, our
proposed method is described in detail. In Section 4, we
provide comprehensive experimental results and analysis, as
well as ablation studies. Finally, concluding remarks are
drawn in Section 5.

2. Related Work

While themain focus of our work lies in the field of Deepfake
detection, FeatureTransfer also intersects with the field of
transfer learning, especially unsupervised domain adapta-
tion. In the section, we clearly review previous Deepfake
detection methods and transfer learning methods.

2.1. Deepfake Detection. To detect the Deepfake images or
videos, most of the previous works are based on deep
learning methods, which can be categorized into two de-
tectionmethods: CNN-basedmethods [10, 13, 15, 16, 20–22]
and RCNN-based methods [11, 17, 18]. (e CNN-based
methods extract face images from video frames and input
them into the CNN for training and prediction to obtain the
image-level result. (ese methods only use spatial infor-
mation of a single frame in Deepfake videos. In addition,
Qian et al. [24] detected Deepfake videos by mining clues in
the frequency domain instead of the RGB domain. By
contrast, the RCNN-based methods need a sequence of
video frames for training and prediction to obtain the video-
level result. (ese methods use both CNN and RNN, and
they are called RCNN.(erefore, the RCNN-based methods
can make full use of spatial and temporal information of
Deepfake videos. Moreover, some Deepfake detection
methods [12, 25] are based on traditional machine learning
methods, Yang et al. [12] and Ciftci et al. [25] used SVM
(support vector machine) as a classifier by extracting
handcrafted features, such as biological signals. Finally, the
methods mentioned above are summarized in Table 1.

2.2. Transfer Learning and Domain Adaptation. Transfer
learning is an important branch of deep learning, which
uses the knowledge of the source domain to assist the
model in learning the knowledge of the target domain
faster and better. Recently, transfer learning has been
widely used in the field of forensics [21, 26, 27]. For ex-
ample, loading the pretrained weight of ImageNet to the
model before the model is trained is a simple transfer
learning. Cozzolino et al. [21] trained the ForensicTransfer
on the samples from the source domain and then per-
formed fine-tuning with a small number of samples from
the target domain to improve the performance of the
ForensicTransfer on the target domain.

As a key field in transfer learning, domain adaptation
aims to make the distribution of the source domain and the
target domain in the feature space as close as possible.
Meanwhile, the target model trained in the source domain
can be transferred to the target domain to obtain good
performance. Most works exploiting deep domain adapta-
tion are based on discrepancy measurement. For instance,
correlation alignment (CORAL) [28] and maximum mean
discrepancy (MMD) [29] are used to reduce the distribution
divergence between domains. Some works are based on
discrepancy measurement domain-adversarial learning,
such as domain-adversarial neural network (DANN) [30],
multiadversarial domain adaptation (MADA) [31], and
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transfer learning with dynamic adversarial adaptation net-
work (DAAN) [32].

FeatureTransfer is a CNN-based method. In this work, a
third-party Deepfake dataset is first used to train the CNN to
extract the feature vectors of the face images. (en, the do-
main-adversarial neural network based on backpropagation
(BP-DANN) is exploited for feature transfer training, which
can improve the performance of Deepfake on cross-domain
datasets.

3. Proposed Method

In this section, we introduce the details of the proposed
method FeatureTransfer. Unlike the end-to-end adversarial
training method NANN, FeatureTransfer exploits a two-stage
adversarial training pipeline. As shown in Figure 1, the Fea-
tureTransfer is composed of two parts: (a) the preprocessing
stage, including face detection and feature vector extraction,
and (b) BP-DANN unsupervised domain adaptive module.

3.1.Motivation. Most of the methods studying cross-dataset
evaluationmainly trained the model on the FaceForensics++
[16] dataset or other small-scale datasets and then tested it
on other datasets. Unfortunately, the methods used to
generate Deepfake videos on different datasets are often
different, which may lead to great gaps in the generated
videos. As a result, it is difficult to train a model with good
detection ability for all or most of the Deepfake datasets on a
specific small-scale Deepfake dataset. In addition, many
forensics methods are data-driven, so it is important to find a
large-scale training model of the Deepfake dataset which
contains a variety of Deepfake generation methods. For-
tunately, a large-scale Deepfake dataset DFDC-F [23], in-
cluding 23654 real videos and 104500 fake videos, meets our
data-driven requirements. (e fake videos in the DFDC-F
dataset were created by different methods, including
Deepfake Autoencoder (DFAE) [33], MM/NN face swap
[34], NTH [35], and FSGAN [36].(us, the feature extractor
CNN pretrained on the DFDC-F dataset can be used to
extract more transferable feature vectors, which will be fed
into BP-DANN for unsupervised domain adaptive training.

3.2. Problem Definition. In the unsupervised domain ad-
aptation for Deepfake detection, it is assumed that the
source distribution is Ds � (x, y)|x ∈ Xs, y ∈ Ys􏼈 􏼉, where
Xs and Ys are the input and label space of the source
domain, respectively. Meanwhile, the target distribution is
Dt � (x, y)|x ∈ Xt, y ∈ Yt􏼈 􏼉, where Xt and Yt are the input
and label space of the target domain. However, the input
samples in the source domain are labelled but unlabelled in
the target domain. Ds and Dt have the same label space so
that Ys � Yt � 0, 1{ }, where “0” represents the real image or
video and “1” represents the fake image or video. Moreover,
each input x, the feature vector extracted from CNN in the
preprocessing stage, has a domain label d � 0 if x ∈ Xs

while d � 1 if x ∈ Xt. (e distributions between the two
domains are similar, i.e., Ds ∩Dt ≠∅ and Ds ≠Dt. (is
work aims to extract the more generalized feature vectors
from the pretrained CNN in the preprocessing stage and
design a deep neural network that enables learning of
transferable features f � Gf(x) and adaptive classifier y �

Gy(f) to reduce the gap between the two domains, such
that the target risk E(x,y)∼Dt

[Gy(Gf(x))≠y] can be
bounded by minimizing the source risk and the cross-
domain discrepancy.

3.3. Preprocessing Stage. In the preprocessing stage, the face
detection network MTCNN is first used to obtain the face
region of the video frame, and the region is expanded by 1.2
times to crop the face image and save it. (en, the CNN (i.e.,
se_resnext101_32× 4 d [37]) is pretrained on the third-party
large-scale Deepfake dataset (i.e., DFDC-F [23]). Finally, the
face images are fed into the CNN to extract the feature
vectors with 2048 dimensions. (e extracted feature vectors
are saved so that they can be quickly loaded to the BP-
DANN for unsupervised domain adaptive training.

3.4. Domain-Adversarial Network. (e DANN can learn
domain-invariant features through end-to-end adversarial
training. (e learning procedure is a two-player game: the
first player is the domain discriminator Gd that is trained to
distinguish the source domain from the target domain; the
second player is the feature extractor Gf which extracts
domain-invariant features that can confuse the domain
discriminator. In the adversarial training for the two players,
the parameter θf of feature extractor Gf is learned by
maximizing the loss of the domain discriminator Gd, while
the parameter θd of domain discriminator Gd is learned by
minimizing the loss of the domain discriminator. In addi-
tion, the loss of label classifier Gy is also minimized. (e
overall loss function of DANN can be formalized as

L θf, θy, θd􏼐 􏼑 �
1
ns

􏽘
xi∈Ds

Ly Gy Gf xi; θf􏼐 􏼑; θy􏼐 􏼑, yi􏼐 􏼑

−
λ

ns + nt

􏽘

xi∈ Ds
⋃Dt( )

Ld Gd Gf xi; θf􏼐 􏼑; θd􏼐 􏼑, di􏼐 􏼑,

(1)

Table 1: A summary of Deepfake detection methods.

Method Classifier Description
Matern et al. [10] CNN Handcrafted
Li et al. [13] CNN Self-supervised
MesoNet [15] CNN RGB
XceptionNet [16] CNN RGB
Nguyen et al. [20] CNN Multitask
ForensicTransfer [21] CNN Multitask
Face X-Ray [22] CNN Multitask
Qian et al. [24] CNN Frequency
Li et al. [11] CNN+LSTM Handcrafted
Guera et al. [17] CNN+LSTM RGB
Chen et al. [18] CNN+LSTM RGB
Yang et al. [12] SVM Handcrafted
FakeCatcher [25] SVM Handcrafted
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where ns and nt are the number of samples in the source
domain and the target domain, respectively, di ∈ 0, 1{ } is the
domain label of xi, Ly is the loss for label prediction while Ld

is the loss for domain discriminator, and λ is a hyper-
parameter to trade-off the label classifier and the domain
discriminator in the optimization problem. Based on
equation (2) and equation (3), the optimization problem is
to find the optimal parameters 􏽢θf, 􏽢θy, and 􏽢θd that deliver a
saddle point of equation (1) after the training converges.

􏽢θf, 􏽢θy􏼐 􏼑 � argmin
θf,θy

L θf, θy, 􏽢θd􏼐 􏼑, (2)

􏽢θd􏼐 􏼑 � argmin
θd

L θf, θy, 􏽢θd􏼐 􏼑 . (3)

3.5. BP-DANNNetwork Architecture. As shown in Figure 1,
the network architecture of the proposed BP-DANN con-
sists of three parts: feature extractor Gf, label classifier Gy,
and domain discriminator Gd. (ese three parts are built by
BP structure. Gf is composed of two fully connected layers,
i.e., Lf(N0, N1) and Lf(N1, N2). (e input and output
dimensions of Lf(N0, N1) are N0 and N1, where N0 is 2048
and N1 is 512. N2 in Lf(N1, N2) is set as 64. Gy is composed
of a dropout layer with probability (p) of 0.5 and a fully
connected layer Ly(N2, 2). Gd is composed of two fully
connected layers, i.e., Ld(N2, N2) and Ld(N2, 2). To obtain
the more appropriate values of N1, N2, and p, the grid
search is used for traversal search in this work.

4. Experiment

4.1. Dataset. In this section, the datasets related to the ex-
periment are first introduced. (en, the details of the

experiment implementation are given, and the experimental
results are finally analyzed.

(e DeepfakeTIMIT (DF-TIMIT) [38] dataset contains
640 Deepfake videos generated with a GAN-based
method [39] and based on VidTIMIT [40] dataset. (e
videos are divided into two equal subsets: lower quality
(LQ) and higher quality (HQ). In our experiment, we
add 320 real videos of 32 related subjects in VidTIMIT,
and the LQ subset is used for test.
(e FaceForensics++ (FF) [16] dataset contains 1000
pristine (P) videos and 4000 fake videos generated by
using the four most advanced facial manipulation
methods, including DeepFakes (DF), Face2Face (F2F),
FaceSwap (FS), and NeuralTextures (NT). (is dataset
covers three versions of compression qualities: Raw,
c23, and c40. In our experiment, the FF-DF and FF-FS
subsets with a compression quality of c23 are taken.
(e DeepFakeDetection (DFD) [41] contains 363 real
videos and 3068 Deepfake videos released by Google.
Similar to FF, this dataset also covers three versions of
compression qualities, including Raw, c23, and c40. In
our experiment, c23 is taken.
(e Celeb-DF [19] includes 408 real videos and 795
synthesized videos generated by using an improved
version of the Deepfake algorithm.
(e DFDC [23] dataset contains two versions: DFDC-
Preview (DFDC-P) [42] and DFDC-Final (DFDC-F)
[23]. (e DFDC-P includes 1131 real videos and 4113
fake videos. (e DFDC-F was released for the Deepfake
Detection Challenge, and it includes 23654 real videos
and 104500 fake videos. In our experiment, DFDC-F is
taken to pretrain the CNN (i.e., se_resnext101_32× 4 d),
and DFDC-P is used for test.
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Figure 1: (e pipeline of the proposed method FeatureTransfer. In the preprocessing stage, we obtain the face images of the video frame
from the source and target domain and then feed them into CNN to extract the feature vectors. In the unsupervised domain adaptation
stage, the BP-DANN consists of a feature extractor Gf (green), a label classifier Gy (blue), and a domain discriminator Gd (red).(e gradient
reversal layer connects Gf and Gd to realize unsupervised domain adaptation, and it multiplies the gradient by a certain negative constant
during the backpropagation-based training.
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As mentioned above, 30 frames are extracted from each
video at equal intervals.(en, the face region of each frame is
detected and saved as a face image. To balance the real and
fake face images in DFDC-F, 30 frames from each fake video
are extracted, but 150 frames from each real video are
extracted. (e numbers of face images in each dataset are
listed in Table 2.

4.2. Implementation Details. Unlike the end-to-end adver-
sarial learning training in DANN, a two-stage training
strategy is adopted for FeatureTransfer.

In the first stage, a large-scale Deepfake dataset DFDC-F
is used to train the CNN (i.e., se_resnext101_32× 4 d). (e
CNN was initialized with pretrained weights on ImageNet,
such that it can be used to extract more transferable feature
vectors. (e batch size is set to 128, and the total training
epoch is 10. (e Adam optimizer is used, where the initial
learning rate is set to 2×10−3 and weight decay of 4×10−5.
After training, the CNN is used to extract the feature vectors
of images, and the feature vectors are saved according to
different datasets.

In the second stage, the feature vectors are loaded, and
the BP-DANN is then trained. During the unsupervised
domain adaptive adversarial training, the feature vectors of
FF-DF (train set) are selected as the source domain, while the
feature vectors of other test datasets are selected as the target
domain. It should be noted that, due to a large number of
images in the DFD, DFDC-P, and Celeb-DF datasets, only
10% of the images (the number of real and fake images is the
same) in each dataset are used as the target domain for
unsupervised adversarial training, and all images in each
dataset are then tested after training. As for FF-FS and DF-
TIMIT datasets, all images in the datasets are used as the
target domain for unsupervised adversarial training, where
the batch size is set to 128 and the total training epoch is 50.
Instead of SGD used in DANN, the Adam optimizer with an
initial learning rate of 1× 10−4 is used. To suppress noisy
signals from the domain classifier at the early stages of the
training procedure, the hyperparameter λ in equation (1) is
changed from 0 to 1 gradually based on the following
equation:

λ �
2

1 + exp(−c × p)
− 1, (4)

where p is the training progress linearly changing from 0 to 1
and c is set to 10.

4.3. Results andAnalysis. (e proposed method is compared
with previous Deepfake detection methods, including
Xception [16], FSSpotter [18], Face X-Ray [22], and
se_resnext101_32× 4 d [37]. (e cross-domain Deepfake
detection results are exhibited in terms of AUC (area under
the curve) and ERR (equal error rate) on recently released
datasets, such as DF-TIMIT, FF-FS (test set), DFD, DFDC-P,
and Celeb-DF.(e pretrained weight (all c23. p) provided by

the author is loaded into Xception, and the model is then
directly used to test on other datasets without retraining.
Similarly, the se_resnext101_32× 4 d is trained on DFDC-F,
and the trained model is then directly used to test on other
datasets without retraining. Due to the lack of open-source
code for FSSpotter and Face X-Ray, the experimental results
in the corresponding papers are directly used for compar-
ison. (e result with the clip length (T) of 1 in FSSpotter
trained on FF-DF dataset is chosen as the image-level result.
(e Face X-Ray in the paper is trained on FF and BI [22]
datasets.

Table 3 listed the cross-domain performance of all
compared methods on different datasets. It can be seen that
FeatureTransfer achieves the best performance on DFDC-P
(seen dataset) and Celeb-DF (unseen dataset) compared to
other methods in terms of AUC and ERR. Also, Feature-
Transfer obtains a comparable result in FF-FS (unseen facial
manipulations), DFD (unseen dataset), and DF-TIMIT
(unseen dataset). In addition, Xception obtains the best
performance on DF-TIMIT (unseen dataset) and FF-FS
(seen dataset), while Face X-Ray obtains the best perfor-
mance on DFD (unseen dataset) in terms of AUC and ERR.
(e performance of FSSpotter is relatively general, which
could be caused by the fact that FSSpotter was only trained on
the FF-DF dataset. However, the AUC result of the proposed
method is only 2.24% lower than that of Xception on DF-
TIMIT and 2.24% lower than that of Face X-Ray on DFD.
Compared with se_resnext101_32× 4 d, FeatureTransfer
achieves a performance improvement ranged from 1% to 8%
in terms of AUC on different datasets, especially 8% on the
Celeb-DF. Compared with Xception, se_resnext101_32× 4 d
obtains better performance on more datasets, and this is why
se_resnext101_32× 4 d is used as the feature extractor of
FeatureTransfer. In general, the results indicate that Featur-
eTransfer achieves better or comparable performance on
cross-dataset evaluation, which mainly benefits from the
more transferable feature vectors extracted from the deeper
CNN called se_resnext101_32× 4 d that was pretrained on a
large-scale dataset DFDC-F. Moreover, using unsupervised
domain adaptation can also improve the performance of the
unlabelled Deepfake datasets in target domain.

4.4. Ablation Studies. To confirm the effectiveness of the
proposed method, we explore the effect of different level
evaluation and the effect of different training strategies in
this section.

4.5. Effect of Different Level Evaluation. To verify the effec-
tiveness and better generalization of the proposed method
on different levels of evaluation, the results of image level
and video level are compared. To get the video-level result,
the prediction score for video is the predicted probability
that the video is fake, which is calculated by averaging the
scores of face images extracted from frames of a video. It can
be seen from the image-level and video-level results shown
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in Figure 2 that the video-level results are significantly
improved on each dataset in terms of AUC (%).

4.6. Effect of Different Training Strategies. To demonstrate
the benefits of the two-stage training strategy used in the
proposed method, the experiments are conducted with the
proposed FeatureTransfer and DANN having the same
training epoch of 20. It should be noted that only the feature
vectors of the source domain FF-DF (train set) and the target
domain FF-FS (validation set) are used for unsupervised
adversarial learning in our proposed method Feature-
Transfer. (e trained model is then directly evaluated on
other datasets without additional adversarial learning. (e
backbone of DANN is se_resnext101_32× 4 d, and DANN is
trained by using an end-to-end training strategy with FF-DF
(train set) as the source dataset and FF-FS (validation set) as
the target dataset. As shown in Figure 3, in terms of AUC (%),
the image-level results of FeatureTransfer using the two-stage

training strategy are significantly improved on each dataset
compared withDANNusing the end-to-end training strategy.

5. Conclusions

In this work, FeatureTransfer, a two-stage Deepfake de-
tection method based on unsupervised domain adaptation,
is proposed. (e feature vectors extracted from CNN are
used for adversarial transfer learning in BP-DANN, which
contributes to better performance than the end-to-end
adversarial learning. Moreover, the feature extractor CNN
pretrained on a large-scale Deepfake dataset can be used to
extract more transferable feature vectors, which greatly
reduce the gap between the source domain and the target
domain during unsupervised domain adaptive training. (e
experimental results indicate that the proposed method
achieves better and comparable performance for cross-do-
main Deepfake detection compared with previous methods.

Table 3: (e image-level results of all compared methods in terms of AUC (%) and EER (%) on each dataset.

Method
Test set

DF-TIMIT FF-FS DFD DFDC-P Celeb-DF
AUC ERR AUC ERR AUC ERR AUC ERR AUC ERR

Xception [16] 98.80 5.95 99.56 2.74 83.06 25.92 82.10 27.23 72.54 34.71
FSS [18] 97.33 — — — — — — — 76.26 —
X-Ray [22] — — 98.00 - 95.40 8.37 80.92 27.54 80.58 26.70
Se_Res [37] 90.61 16.22 84.52 22.83 89.02 21.06 97.99 6.25 78.21 29.80
FT (ours) 96.56 8.05 88.62 19.52 91.00 16.21 98.77 5.75 86.21 22.42
Note.(e “FSS,” “X-Ray,” “Se_Res,” and “FT” are the short forms of “FSSpotter,” “Face X-Ray,” “se_resnext101_32× 4 d,” and “FeatureTransfer,” respectively.
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Figure 2: (e results of different levels in terms of AUC (%) on
each dataset.
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Figure 3: (e image-level results of different training strategies in
terms of AUC (%) on each dataset.

Table 2: (e numbers of face images from each dataset.

FF-DF FF-FS DF-TIMIT DFD Celeb-DF DFDC-P DFDC-F
Train Test Valid Test LQ

Real 21600 4200 4200 4200 9600 10890 12240 33897 2839521
Fake 21600 4200 4200 4200 9600 91740 23850 123412 2885045
Note. “Valid” is the short form of validation.
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However, there are still some limitations in our work. It is
not an end-to-end detection method, and it needs a large-
scale Deepfake dataset to pretrain the CNN to extract more
transferable features, which takes a lot of time. (us, in
future work, we will devote ourselves to studying an end-to-
end domain adaptive Deepfake detection method that does
not require pretrained feature extractors.
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User authentication for accurate biometric systems is becoming necessary in modern real-world applications. Authentication
systems based on biometric identifiers such as faces and fingerprints are being applied in a variety of fields in preference over
existing password input methods. Face imaging is the most widely used biometric identifier because the registration and au-
thentication process is noncontact and concise. However, it is comparatively easy to acquire face images using SNS, etc., and there
is a problem of forgery via photos and videos. To solve this problem, much research on face spoofing detection has been
conducted. In this paper, we propose a method for face spoofing detection based on convolution neural networks using the color
and texture information of face images. +e color-texture information combined with luminance and color difference channels is
analyzed using a local binary pattern descriptor. Color-texture information is analyzed using the Cb, S, and V bands in the color
spaces. +e CASIA-FASD dataset was used to verify the proposed scheme.+e proposed scheme showed better performance than
state-of-the-art methods developed in previous studies. Considering the AI FPGA board, the performance of existingmethods was
evaluated and compared with the method proposed herein. Based on these results, it was confirmed that the proposed method can
be effectively implemented in edge environments.

1. Introduction

Recently, authentication systems based on biometric in-
formation have been applied to various mobile devices such
as smartphones, and many users perform identity authen-
tication using facial or fingerprint information instead of the
existing password input methods. In addition, biometric
authentication is being applied to bank transactions and
mobile payment applications. As a result, researchers are
greatly interested in developing high-performance authen-
tication systems.

Among user biometric information, face images are the
most widely used biometric identifier because the associated
registration and authentication processes are noncontact

and concise. However, face images are very easy to acquire
using social networks, etc., and are vulnerable against var-
ious spoofing techniques, including printed photos and
video replay. To solve this problem, research utilizing
software solutions have become popular, rather than anti-
spoofing hardware solutions using additional sensors. +ese
software approaches can be classified into motion-based
methods and texture-based methods [1].

+e motion-based counterfeit face detection method
measures eye/head movement, eye blinking, and changes in
facial expression [2, 3]. In the case of counterfeit face de-
tection methods utilizing eyes, note that a still face such as in
a photograph does not exhibit eye blinking or pupil
movement, as opposed to real human faces which exhibit
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relatively large amounts of movement over time. +is
method is very simple and fast. However, this method
classifies a spoofing face using only eye movement and thus
cannot defend against simple attack variations that focus on
and accurately emulate the eye area based on a photo.

+e texture-based spoofing face detection method
mainly uses lighting characteristics that appear differently
between 2D plane and 3D stereoscopic objects or uses a fine
texture difference between the spoofing face data and live
face data through an external medium such as printing
[4–8].+is methodmainly uses a local image descriptor such
as an LBP (local binary pattern) [9] to express differences in
the texture characteristics between live and spoofing face
images. Such texture-based methods have been actively
researched due to the advantages of easy implementation
and short detection times; however, these methods have
difficulty classifying liveness faces in nonuniform images or
images with large amounts of noise. Recently, researchers
have been working on the detection of spoofing faces using
convolutional neural networks (CNNs) [10, 11]. Since this
method can effectively derive features through learning, its
performance is improved over existing texture-based de-
tection methods.

Although the field of spoofing face detection has de-
veloped tremendously, the existing methods mainly focus on
the brightness information of face images. More specifically,
other color information, which is similar to brightness in-
formation, is often overlooked in spoofing face detection.
+erefore, by considering both color and brightness infor-
mation of face images, a method was proposed that inde-
pendently extracts texture features from the brightness space
and color space of the face image using an LBP [12].

+e difference between a real face and spoofing face is
discriminated using a descriptor (such as an LBP) that
encodes comparison results with respect to surrounding
pixel values in a binary pattern at all pixel locations.
However, since it is possible to produce high-resolution
images, it is very difficult to distinguish detailed surface
differences between real faces and spoofing faces using only
pixel brightness.

In this paper, we propose a liveness face detection
method based on a convolutional neural network utilizing
the color and texture information of a face image. +e
proposed method analyzes the combined color-texture in-
formation in terms of its luminance and color difference
channels using an LBP descriptor. For color-texture infor-
mation analysis, the Cb, S, and H bands are used from the
color spaces.

+e rest of the paper is organized as follows. In Section 2,
the related key technologies are illustrated. +e proposed
scheme for our color-texture-based antispoofing is presented
in Section 3. Section 4 thoroughly presents the results and
discussion. Finally, conclusions are presented in Section 5.

2. Related Works

2.1. Face Antispoofing. Conventional face antispoofing
methods generally create spoofing patterns by extracting
features from face images. Classic local descriptors such as

LBP [13], SIFT [14], SURF [15], HOG [16], and DoG [17] are
used to extract frame level functions, while methods such as
dynamic texture [18], micromotion [19], and eye blinking
[20] extract video features.

Recently, several deep learning-based methods have
been studied to prevent face spoofing at the frame and video
levels. In frame level methods [21–24], the pretrained CNN
model is fine-tuned to extract features from the binary
classification setup [25–27].

2.2. Color Spaces. RGB is a color space commonly used for
sensing and displaying color images. However, its use in
image analysis is typically limited because the three colors
(red, green, and blue) are not separated according to lumi-
nance and color difference information.+us, it is common to
additionally convert the RGB information into YCbCr and
HSV information before use.+ese two latter color spaces are
based on luminance and chrominance information [28–31].
In particular, the YCbCr Color space separates RGB into
luminance (Y), chrominance blue, and chrominance red.
Similarly, the HSV color space uses the hue and saturation
dimensions to define the color differences of the image, and
the value dimension corresponds to the luminance.

2.3. LBP (Local Binary Pattern). LBPs [32, 33] are a feature
developed for classifying image textures. Since then, LBPs
have been used for face recognition. LBPs are a simple
operation used for image analysis and recognition and are
robust to changes in discrimination and lighting. Equation
(1) is an LBP equation:

LBP(p, r) � 􏽘

p−1

p�1
s gp − gc􏼐 􏼑2p

, (1)

s(x) �
1, if x≥ 0,

0, otherwise.
􏼨 (2)

Here, gp ranges over the pixel values excluding the
center pixel and gc is the center pixel in equation (1). In
Figure 1, P is the number of adjacent pixels and R is the
radius of the circle. Figure 2 shows an example result of LBP
operation applied to a real photo [34].

3. Proposed Scheme for Color-Texture-
Based Antispoofing

+e RGB color space contains three color components, red,
green, and blue; the YCbCr color space contains brightness
and saturation information, and the HSV color space
contains three components: hue, saturation, and brightness.
Each color space contains different information and has its
own characteristics. RGB contains rich spatial information
that most closely resembles the colors seen by humans, while
the YCbCr and HSV color spaces contain information that is
more sensitive to brightness. +e RGB color space can be
converted into HSV and YCbCr, and the specific calculation
is as follows:
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Figure 1: Example of a local binary pattern.
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Figure 2: Visualization of LBP operation performed on each color band image.
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V � max(R, G, B),

S �

V − min(R, G, B)

V
, if V≠ 0,

0, if V � 0,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

H �

60(G − B)

V − min(R, G, B)
, if V � R,

120 +
60(B − R)

V − min(R, G, B)
, if V � G,

240 +
60(R − G)

V − min(R, G, B)
, if V � B,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if H< 0, H � H + 360.

(3)

+e YCbCr calculation formula is shown as

Y � 0.299R + 0.587G + 0.114B,

Cb � 0.564(B − Y),

Cr � 0.713(R − Y).

(4)

In existing methods, RGB face images are converted
into the YCbCr and HSV color spaces, and the spoofing
images are classified by applying an LBP to each color
space. However, this method increases the amount of
computation because it uses a 6-channel color space.
Figure 3 shows a conceptual diagram of the existing
methods.

In this paper, we use a 3-channel color space consisting
of Cb, S, and V, from which many facial features can be
derived. +e proposed method aims toward high-speed
processing and robustness against lighting changes in face
antispoofing. Figure 4 shows a conceptual diagram of the
proposed scheme.

+e advantages of this approach are summarized as
follows:

(1) +is proposed scheme reduces false detection by
using a 3-channel color space in which sufficient
facial feature information is expressed

(2) +is proposed scheme uses less memory with fewer
feature dimensions, thus enabling high-speed
processing

4. Performance Evaluation

4.1. Train/Test Dataset. In this paper, we performed a
spoofing face detection test using the CASIA Face Anti-
spoofing Database (CASIA-FASD) [35] for performance
evaluation. CASIA-FASD consists of real face videos and
fake face videos acquired from 50 different users. +e real
face videos consist of three types of videos: low quality,
medium quality, and high quality. Similarly, the fake face
videos consist of three types of fake attack videos: printed
photo attacks, cut photo attacks, and video relay attacks.

Videos for 20 people are used for learning, while the
remaining videos for 30 people are used for performance
evaluation.

We extracted each frame from the CASIA-FASD dataset
videos images for performance evaluation. In total, 4,577 live
face images, 5,054 printed photo attack images, 2,368 cut
photo attack images, and 4,429 video replay attack images
were used for learning. In addition, 5,912 live face images,
7,450 printed photo attack images, 4,437 cut photo attack
images, and 5,652 video replay attack images were used for
evaluation. Table 1 shows detailed information on data
partitioning of CASIA-FASD.

4.2. Experimental Setup. In this paper, we used FPGA for
performance evaluation. We evaluated the performance of
the proposed scheme by using the AI Accelerator of FPGA.
+e specifications of FPGA and the implemented board are
shown in Figure 5.

Zynq® UltraScale+™ MPSoC devices provide 64-bit
processor scalability while combining real-time control with
soft and hard engines for graphics, video, waveform, and
packet processing. Built on a common real-time processor
and programmable logic-equipped platform, three distinct
variants (dual application processor (CG) devices, quad
application processor and GPU (EG) devices, and video
codec (EV) devices) are included, creating numerous pos-
sibilities for various applications such as 5G wireless, next-
generation ADAS, and industrial internet-of-things tech-
nologies [36].

Vitis AI is Xilinx’s development stack for AI inference on
Xilinx hardware platforms, including both edge devices and
Alveo cards. It consists of an optimized IP, tools, libraries,
models, and example designs. Vitis AI is designed with high
efficiency and ease of use in mind, leading to great potential
for AI acceleration on Xilinx FPGA and ACAP [37].

Face antispoofing detection uses AlexNet based on CNN.
AlexNet is a basic model utilizing a convolutional layer, a
pooling layer, and a fully connected layer [38].

AlexNet consists of five convolution layers and three
full-connected (FC) layers, where the last FC layer uses
softmax as an active function for category classification.
Figure 6 shows Alexnet’s CNN architecture.

4.3. Experimental Analysis Method. To evaluate the pro-
posed scheme, we measured the HTER (Half Total Error
Rate) in the CASIA-FASD dataset. +e HTER is calculated
using the false acceptance rate (FAR) and false rejection rate
(FRR) in the attack dataset, both of which are defined below.
+e HTER calculation is given as follows [39]:

HTER �
FAR + FRR

2
. (5)

+e FAR [40] is a measure of how likely the biometric
security system will incorrectly accept an access attempt by
an unauthorized user. A system’s FAR typically is defined as
the ratio of the number of false acceptances divided by the
number of identification attempts.
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Figure 4: Conceptual diagram of the proposed scheme.

Table 1: Details on data partitioning in CASIA-FASD.

Type Genuine images (ea)
Spoof images (ea)

Printed photo attacks Cut photo attacks Video replay attacks Total
Training set 4,577 5,054 2,368 4,429 11,851
Testing set 5,912 7,450 4,437 5,652 17,539
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Figure 3: Conceptual diagram of existing methods.
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+e FRR [41] is a measure of how likely the biometric
security systemwill incorrectly reject an access attempt by an
authorized user. A system’s FRR typically is defined as the
ratio of the number of false rejections divided by the number
of identification attempts.

Smaller HTER values indicate good performance, where
HTER is defined using only misclassification ratios. Addi-
tionally, the EER (equal error rate) refers to the rate at which
the FRR and FAR values converge to one another, where a
small value also indicates good performance.

+e EER [42] is a biometric security system algorithm
used to predetermine the threshold values for the FAR and
FRR.When the rates are equal, the common value is referred
to as the equal error rate. +e lower the ERR, the better the
accuracy of the biometric system.

ROC (receiver operating characteristic) curve is a
graphical plot that illustrates the diagnostic ability of a bi-
nary classifier system as its discrimination threshold is
varied.+e ROC curve is created by plotting the true positive
rate (TPR) against the false positive rate (FPR) at various
threshold settings.

AUC (area under the curve) is the area under the ROC
Curve. If the AUC value is high, it means that the model for
classifying objects has excellent performance.

4.4. Experimental Results and Discussion. To verify the
performance of the proposed scheme, eight scenarios were
compared and tested using the CASIA-FASD attack dataset.

Table 2 shows HTERs according to eight different sce-
narios in the CASIA-FASD dataset. +e proposed method
showed improved performance for printed photo attacks,
cut photo attacks, and video replay attacks. Figure 7 shows
the performance comparison for the CASIA-FASD dataset.

Table 3 shows the EER values according to eight different
scenarios for the CASIA-FASD dataset. Compared with the
proposed scheme, only the “YCbCr_lbp +HSV_lbp” scheme
has good EER performance.

+e receiver operating characteristic (ROC) curves are
presented. +ese curves show the error of the false positive
rates against the true positive rates. ROC curves are best used
for comparing the performance of various systems. Figures 8
and 9 show the ROC curves generated for each scenario in
the CASIA-FASD dataset.

Table 4 shows the FAR, FRR, and area under the curve
(AUC) results according to eight different scenarios in the
CASIA-FASD dataset. A high AUC indicates good
performance.

Table 5 shows the accuracy for different facial spoofing
attacks. +e accuracy for YCbCr_lbp +HSV_lbp is the
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Figure 5: AI FPGA board.
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Table 2: Performance of various scenarios on the CASIA-FASD dataset.

Scenario
HTER (%)

Printed photo attacks Cut photo attacks Video replay attacks Total
YCbCr 13.05 12.41 10.28 11.92
HSV 6.34 5.34 5.34 5.67
YCbCr_lbp 2.80 3.05 1.30 2.38
HSV_lbp 9.70 9.16 8.85 9.24
YCbCr +HSV 5.66 4.55 4.55 4.92
YCbCr_lbp +HSV 5.53 4.52 4.50 4.85
YCbCr_lbp +HSV_lbp 2.78 2.53 2.12 2.48
Proposed approach 2.46 1.24 0.57 1.42

14.00
12.00
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8.00
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0.00

YCbCr YCbCr_Ibp YCbCr + HSV YCbCr_Ibp
+ HSV

YCbCr_Ibp
+ HSV_Ibp

HSV HSV_Ibp Proposed

Photo attack scenario
Cut photo attack scenario

Video replay attack scenario
Total

HTER

Figure 7: Performance comparison for the CASIA-FASD dataset.

Table 3: Equal error rate values for the CASIA-FASD dataset.

Scenario
EER (%)

Printed photo attacks Cut photo attacks Video replay attacks Total
YCbCr 25.22 18.39 5.39 16.98
HSV 10.14 0.00 12.66 13.23
YCbCr_lbp 14.55 19.35 27.68 23.16
HSV_lbp 11.09 3.57 12.16 10.76
YCbCr +HSV 6.13 0.00 12.95 11.09
YCbCr_lbp +HSV 7.09 0.02 8.22 7.58
YCbCr_lbp +HSV_lbp 7.29 5.56 6.52 9.50
Proposed approach 10.79 12.91 7.76 10.22
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Figure 8: Continued.
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highest, but the proposed method shows similar
performance.

+e overall test results of this paper are shown in Table 6.
Compared to the already existing YCbCr_lbp +HSV_lbp
method, the method proposed in this paper has improved

performance with respect to printed photo attacks (0.18%),
cut photo attacks (0.69%), and video replay attacks (1.52%),
with an overall performance improvement of 0.73%. Ad-
ditionally, the ERR was low, while the accuracy values were
similar. Overall, the YCbCr_lbp +HSV_lbp method showed
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Figure 8: Receiver operating characteristic curves for the (a) YCbCr, (b) HSV, (c) YCbCr_lbp, and (d) HSV_lbp scenarios.
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proposed scenarios.

8 Security and Communication Networks



similar performance but uses six color space channels, while
the proposed method uses only three-color space channels,
leading to a faster calculation speed.

5. Conclusions

In this paper, we proposed a face antispoofing method
utilizing CNN learning and inference and constructed im-
portant parameters by extracting texture information via an
LBP from the face image color space. CASIA-FASDwas used
as the dataset for performance verification. Images were
extracted from videos and divided into printed photo at-
tacks, cut photo attacks, and video replay attacks. +ese
images extracted from the CASIA-FASD dataset were used
for both training and evaluation. It was confirmed that the
detection performance was improved by separating the color
space from the face image in addition to the Cb, S, and V
color space, which is useful for antispoofing. In previous
studies, a 6-channel (YCbCr +HSV) color space was typi-
cally used, leading to large computational costs. On the
contrary, the proposed approach reduces the computational
load by instead considering only three (Cb, S, V) color space
channels. Considering the AI FPGA board, the

performances of the existing methods were evaluated with
that of the proposed scheme. It was confirmed that the
proposed method can be effectively used in edge
environments.

As future work, we want to verify the performance
against another well-known face spoof dataset. In addition,
we plan to conduct performance tests between databases.
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With the rapid development of interactive multimedia services and camera sensor networks, the number of network videos is
exploding, which has formed a natural carrier library for steganography. In this study, a coverless steganography scheme based on
motion analysis of video is proposed. For every video in the database, the robust histograms of oriented optical flow (RHOOF) are
obtained, and the index database is constructed. +e hidden information bits are mapped to the hash sequences of RHOOF, and
the corresponding indexes are sent by the sender. At the receiver, through calculating hash sequences of RHOOF from the cover
video, the secret information can be extracted successfully. During the whole process, the cover video remains original without any
modification and has a strong ability to resist steganalysis. +e capacity is investigated and shows good improvement. +e
robustness performance is prominent against most attacks such as pepper and salt noise, speckle noise, MPEG-4 compression, and
motion JPEG 2000 compression. Compared with the existing coverless information hiding schemes based on images, the
proposed method not only obtains a good trade-off between hiding information capacity and robustness but also can achieve
higher hiding success rate and lower transmission data load, which shows good practicability and feasibility.

1. Introduction

In recent years, the demand for information hiding con-
tinues to grow, especially for cloud computing environ-
ments. Traditional information hiding technologies usually
embed secret information in the carrier [1–5] and lead to
variable modification of carrier features. +e steganography
schemes that hide information by constructing the mapping
relationship between cover features and secret information
[6, 7] or using autogeneration technology [8–10] have
aroused the interest of many researchers, which have a
strong ability to resist steganalysis.

Most existing coverless steganography schemes are
based on text and images. +e text-based methods dug out
the text features such as Chinese numeral expression [11],
word rank map [12], or word frequency [13, 14] and
quantified them. +en, the mapping relationship between
text features and secret information was established, and the
indexes were constructed. While in the image-based
methods, the key problem is how to extract the main features
of an image efficiently, which have been extensively studied

in previous research studies [15–19]. In the method pro-
posed by Zhou et al. [6], the secret information was con-
verted to bits and divided into several data segments. +e
image with the same hash sequence as the data segment was
selected and transmitted to the receiver as the cover image,
fromwhich the receiver could extract the secret information.
Zheng et al. [20] used the direction information of scale-
invariant feature transform (SIFT) points to design image
hash and used the inverted index of quad-tree structure to
improve the capacity and retrieval efficiency. An algorithm
based on histograms of oriented gradients (HOG) was
proposed by Zhou et al. [21], which obtained the hash se-
quences from the nonoverlapping blocks of the image. After
block discrete cosine transformation (DCT) [22] or discrete
wavelet transformation (DWT) [23], the relationship be-
tween coefficients of adjacent blocks was used to generate
robust feature sequences. It can improve the capacity of
hiding information by partitioning the image, but the ro-
bustness will be reduced by a larger partition number. Zou
et al. [24] and Cao et al. [25] used average pixel values of
subimages, which achieve a high hiding success rate and
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capacity. In [26], LBP feature of the medical image was
extracted and mapped to privacy information. Recently, Luo
et al. [27] used recognized objects to hide secret information.

At the same time, live network platforms and video
social applications are becoming more and more popular
[28]. A large number of short videos have been generated
and spread on the Internet, which provides sufficient carrier
for information hiding. Compared with image, video not
only has texture, shape, and color features but also has rich
spatial and temporal features, from which some motion
characteristics can be mined. +eoretically, motion char-
acteristic is robust and cannot easily be tampered with,
which is suitable for steganography. +is motivates us to
design a novel coverless steganography scheme based on
short videos by constructing a mapping function between
the motion characteristics and information bits.

Existing research results of coverless steganography
based on videos are still rare. Some researchers have pro-
posed some zero-watermarking technologies for copyright
protection of video, which constructed watermark infor-
mation by extracting video features. Li et al. [29] proposed a
zero-watermarking algorithm based on logarithmic polar
coordinate transformation. After 2D-DWT and 3D-DCT
transformation of the original image, the zero-watermarking
was realized by transforming the logarithmic polar coor-
dinates. Liu et al. [30] proposed a zero-watermarking
scheme for three-dimensional video, which extracted the
features of two-dimensional video frames and depth maps to
generate copyright information and used secret sharing
schemes to achieve copyright protection. Compared with the
zero-watermarking algorithms, coverless steganography
based on videos has a higher requirement for capacity.

As shown in Figure 1, there is a baby walking in the
video. +e simplest mapping function is to connect the
stepping of different feet with different information bits as
the following equation:

fmap �
0, action is “step left, ”

1, action is “step right.”
􏼨 (1)

+en, the continuous stepping of the baby can represent
a sequence of information bits. However, this kind of
mapping has some shortcomings: first, the stepping char-
acteristic is semantic and can easily be understood and
cracked. Second, the calculation complexity of stepping
recognition is still relatively high, although the motion
analysis and tracking of a video have achieved significant
progress recently [31, 32]. +ird, the capacity of information
hiding is low since only one bit is hidden in every frame.
+erefore, how to mine the nonsemantic motion charac-
teristic and construct a correlated mapping function for
information bits is the key issue of coverless steganography
based on videos.

Video recognition has been studied in depth by a lot of
researchers, and many algorithms have been proposed.
Optical flow c is the most classical method for video analysis
[33–37]. In this work, we mainly study the optical flow
characteristics of video and map them with hidden infor-
mation to realize coverless steganography. +e main

contributions of this work are as follows: first, we construct a
novel coverless steganography scheme based on motion
analysis of video. Second, the mapping algorithm between
the robust directional characteristics of video optical flow
and secret information is proposed and optimized. Finally,
information hiding capacity, robustness performance, effi-
ciency, hiding success rate, and transmission data load of the
proposed scheme are analysed and compared with the
existing coverless steganography schemes based on images.

+e study is organized as follows: preliminaries are
introduced in the second section, and the proposed method
is described in the third section. Experimental results and
comparisons are shown in the fourth section. Finally, we
conclude this study in the last section.

2. Preliminaries

2.1. Optical Flow. Optical flow is the instantaneous velocity
distribution of the brightness pattern, which is caused by the
movements of objects [33, 34] and has been applied widely
for motion analysis. In recent studies, the optical flow was
used to estimate the traffic flow parameters of moving ve-
hicles in different scenarios and shew effectiveness [35, 36].
Lv et al. realized subpixel image registration based on the
optical flow model and feature-point matching [37].

+e basic idea of the optical flow method is to find the
corresponding relationship between adjacent frames in the
image sequence using the change of pixels in time domain.
+en, the motion information of objects can be calculated.

Assuming there is a pixel (x, y, t) in one frame, its light
intensity is expressed as I(x, y, t). It moves to (x′, y′, t′) in
the next frame. According to the assumption of constant
brightness, we can get the following equation:

I(x, y, t) � I x′, y′, t′( 􏼁 � I(x + dx, y + dy, t + dt). (2)

+e Taylor series approximation is applied to equation
(2); then, we can get

I(x, y, t) � I(x, y, t) +
zI

zx
dx +

zI

zy
dy +

zI

zt
dt + ε, (3)

where ε is the second-order infinitesimal term and can be
neglected. +erefore, equation (3) can be transformed to

zI

zx

dx

dt
+

zI

zy

dy

dt
+

zI

zt
� 0. (4)

0 1

Figure 1: Mapping between motion characteristic and information
bit.
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Assuming u and v are the velocity vectors of optical flow
along the X axis and Y axis, respectively, we have

u �
dx

dt
,

v �
dy

dt
.

(5)

Equation (4) can be transformed as

Ixu + Iyv + It � 0, (6)

where Ix � zI/zx, Iy � zI/zy, and It � zI/zt. +is is the
basic constraint equation of optical flow.

In order to solve the above equations and achieve the value
of the unknown u and v, there are two classicalmethods. One is
a global differential method, which assumes that the optical
flow changes smoothly over the entire image. +e other is a
local differentialmethod, which assumes that themotion vector
remains constant over a small spatial domain. +erefore, it is
suitable for small motion detection, but fails for large motion
detection. In order to improve this defect, the pyramidal
implementation was proposed by Bouguet [38].

+e pyramid layering method was used to reduce the size
of the image layer by layer, thereby reducing the motion
displacement of the object between two frames. +e process
is shown in Figure 2, and the specific steps are as follows:

Step1: A pyramid is created for every frame, and the
resolution is sequentially lowered from the bottom to
the top.
Step2: Starting at the top level, the optical flow at every
point in the top-level image is obtained by minimizing
the minimum matching error sum within the neigh-
bourhood of each point. Assuming d is the optical flow,
the residual function is defined as [38]

ε(d, ) � ε dx, dy􏼐 􏼑 � 􏽘

ux+wx

x�ux−wx

􏽘

uy+wy

y�uy−wy

· I(x, y) − J x + dx, y + dy􏼐 􏼑􏼐 􏼑
2
,

(7)

where (ux, uy) is the point of the original image I and
(ux + dx, uy + dy) is the point of the target image J.
Supposing there are L layers of the pyramid, the first
layer is the original image. If the total displacement is d,
then the displacement for each layer is

d
L

�
d

2L
. (8)

Step 3: +e optical flow of the layer L is propagated to
the layer L− 1 as follows:

g
L− 1

� 2 g
L

+ d
L

􏼐 􏼑. (9)

For the layer l, the calculation of optical flow is based on
the minimization of the sum of matching error for all points
in the neighbourhood area, as the following equation:

εl
d

l
􏼐 􏼑 � εl

d
l
x, d

l
y􏼐 􏼑 � 􏽘

ul
x+wx

x�ul
x−wx

􏽘

ul
y+wy

y�ul
y−wy

· I
l
(x, y) − J

l
x + g

l
x + d

l
x, y + g

l
y + d

l
y􏼐 􏼑􏼐 􏼑

2
.

(10)

It is propagated down the pyramid until it reaches the
bottom layer. +en, the optical flow is calculated by

d � g
1

+ d
1
. (11)

2.2. Robust Histogram of Oriented Optical Flow. Since the
size of the moving target usually changes with time in a
video, the dimension of the corresponding optical flow
descriptor will also change. At the same time, the original
optical flow is also sensitive to the background noise, scale
change, and the direction of motion. For information hiding,
the extracted features are expected to bemore stable, which can
gain better robustness. +erefore, it is necessary to find a
method based on the optical flow that can not only characterize
the temporal motion information but also be insensitive to
scale. Histogram of oriented optical flow (HOOF) was pro-
posed by Chaudhry et al. [39]. +e scale invariance of HOOF
feature was achieved by the normalized histogram. In order to
further enhance the robustness, the robust histogram of ori-
ented optical flow (RHOOF) is achieved by only counting the
number of optical flows located in the directional bins, while
the amplitude information is ignored.+ismeans that RHOOF
will not be affected by the amplitude variation of optical flow,
which is different from the original HOOF.

For every two frames, the optical flow is calculated. And
then, the directional angle of the optical flow vector can be
achieved by

θ � atan 2
y

x
􏼒 􏼓, (12)

where atan2(·) is a four-quadrant inverse tangent function, x
is the horizontal component, and y is the vertical component
of optical flow vector. +e range of θ is [−π, π]. If the angle
range is divided into several groups, then the histogram
distribution is statistically obtained. As shown in Figure 3,

Original image

Layer 2

Layer 1

Layer L

Propagate

Figure 2: Pyramid layering process.
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the bin number of the histogram is 6 and the bin size is π/3,
whichmeans that the angle range of optical flow is divided to
6 groups. +e distribution of the angles is shown in the
histogram on the right. +e sum of the possibilities of all
groups is 1.

3. Proposed Coverless Steganography Scheme

Our proposed coverless steganography scheme based on
videos is shown in Figure 4. +e framework mainly includes
three parts: index construction, secret information hiding,
and secret information extraction. First, the video database is
composed of multiple videos with different topics. +e video
database is shared by both secret information sender and
receiver, which can be stored on cloud platform to save the
storage space of the end user. Second, calculate RHOOF for
every video in the video database. After the hash sequences
of RHOOF are calculated, the video index database is
constructed. +e construction of video database and index
database is the basis of coverless information hiding.

During the information hiding process, the secret in-
formation needs to be preprocessed and divided to binary bit
groups. Every bit group can be mapped to a hash sequence of
RHOOF. After searching in the video index database, the
appropriate one or several videos are selected as cover, and
the corresponding mapping indexes are returned to the
sender. +e mapping indexes will be sent to the receiver. At
the receiver, cover video can be found accurately and effi-
ciently according to the received mapping indexes. +rough
calculating the hash sequences of RHOOF from the cover
video, the secret information can be recovered successfully.
During the whole process, the cover video remains original
without any modification. +erefore, it can resist the de-
tection of steganalysis.

3.1. Generation of Hash Sequence. As described previously,
RHOOF can reflect the main movement characteristic of the
video. We propose a hash sequence generation method
based on RHOOF as shown in Figure 5. For the two adjacent

frames (assuming as frame i and frame i+ 1) of a video, they
are transformed to gray scale first. Second, the two frames
are median filtered in order to suppress the possible noise
and protect the edge information.+ird, the pixel changes of
these two frames are calculated, and the oriented optical
flows are achieved as described in the previous section. We
can analyse the orientation values of optical flow. +e his-
togram is calculated in several bins for every subblock. In
Figure 5, we set the number of subblocks to 4 and the
number of bins to 8 as an example.

Assuming the histogram is denoted as

H � h1, h2, . . . , hN􏼈 􏼉, (13)

where N is the number of the bins. We set the threshold as

thres � 􏽘
N

i�1

hi

N
+ th0, (14)

where th0 is a correction factor. +en, the hash sequence
b1b2 . . . bN is achieved by comparing the histogram value
with the threshold as the following equation:

bi �

1, if hi ≥ thres,

0, if hi < thres,

1≤ i≤N.

⎧⎪⎪⎨

⎪⎪⎩
(15)

3.2. Construction of Video Index Database. In order to find
the cover video efficiently and accurately, the construction of
video index database is necessary and important. +erefore,
we construct an efficient index database with two levels as
shown in Figure 6. +e first level index is the hash sequence
and the second level index contains the information items of
cover video and cover frame.

+e index items are sorted by the hash sequence. Here,
the bin number is also set to 8 as an example. +erefore, the
value of hash sequence varies from “00000000” to
“11111111” in the index table. For every index item cor-
responding to the hash sequence, index ID, video ID, frame
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Figure 3: +e principle of the histogram of oriented optical flow.
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ID, and subblock ID are contained in the index database.
Index ID is the serial number of an index, which is in-
cremental. Video ID means the storage path and the name
of the cover video. Frame ID means the corresponding
frame, and subblock ID means the corresponding sub-
block. With such information, the cover video can be
found accurately, and the hash sequence can be calculated
efficiently and conveniently. For one hash sequence, it is
possible to contain multiple index items, which means
there are multiple cover subblocks with the same hash
sequence in the video database. In this situation, any index
item can be chosen in principle for subsequent secret
information mapping.

3.3. Secret Information Hiding. During secret information
hiding, how to map the secret information to the cover video
efficiently is the most critical part. +e whole process is
summarized as follows:

Step 1: construct a video database, which is shared by
both the sender and the receiver
Step 2: for each video in the library, the frame optical
flows are obtained as described in the previous section
Step 3: the directional angle of the optical flow vector is
calculated by equation (12)
Step 4: for every frame, the robust histogram distri-
bution is statistically counted in subblocks based on the
oriental information of optical flow. +e hash se-
quences are obtained as described previously.
Step 5: construct the video index database as described
previously
Step 6: the secret information needs to be preprocessed
before sending. Assuming the length of the secret in-
formation is k bits, it will be divided intom segments as

m � ⌈
k

N
⌉, (16)

whereN is the bin number of RHOOF statistics. For the
last segment, “0” bits are padded to the tail, and the
number of the padding bits is

p � ⌈
k

N
⌉ · N − k. (17)

Step 7: for every segment, we search the corresponding
index item in the index database, which has the hash
sequence equal to the information bits. It is possible
that there aremultiple index itemsmapping to the same
hash sequence. In order to increase the efficiency of
information extraction, we should choose the index
items with the same video file as much as possible. For
the same video file, the mapping index item with
smaller index ID will be chosen.
Step 8: the information of mapping indexes corre-
sponding to the secret information segments will be sent
to the receiver. In order to enhance security, the index
information can be encrypted before transmission.

+e detailed algorithm of index database construction is
described in Algorithm 1.

+e information hiding algorithm at the sender is de-
scribed in Algorithm 2.

3.4. Extraction of Secret Information. At the receiver, by
calculating the hash sequence of RHOOF based on the cover
video, the secret information can be extracted successfully.
+e process of secret information extraction is as follows:

Step 1: after receiving the index information sent by the
transmitter, the receiver will decrypt it first if necessary.
+en, the index items will be analysed, and video ID,
frame ID, and subblock ID can be obtained.
Step 2: the corresponding frame can be found
according to video ID and frame ID.+e optical flow of
the corresponding frame is calculated as described
previously.
Step 3: the directional angle of the optical flow vector is
calculated by equation (12)
Step 4: the robust histogram distribution is statistically
counted in subblocks according to the oriented in-
formation of the optical flow. +e hash sequence is
obtained.
Step 5: repeat steps 1–4 until all the hash sequences
corresponding to the mapping index items have been
extracted
Step 6: after connecting the hash sequences and re-
moving the padding bits from the tail, the bitstream of
secret information is recovered successfully

+e detailed algorithm of secret information extraction
is described in Algorithm 3.

As shown in Figure 7, there is an example of trans-
mission and extraction of the secret bitstream as
“11111111000000.” +e bin number N is 8. As mentioned
before, the length of padded bitstream should be an integral
multiple of N. +erefore, the bitstream is padded with one
“0” bit at the tail first, which makes the length of bitstream as
16. +en, the padded bitstream is segmented to 2 groups of
8 bits. Next, the hash sequences equal to the segmented
bitstream “11111111” and “00000010” are searched in the
video index database. From Figure 6, it can be seen that there
are multiple index items corresponding to the hash se-
quences “11111111” and “00000010.” +e index items with
index ID as 902 and 9 are selected since they have the same
video ID, which are marked with green as shown in Figure 6.
+erefore, the video “walking.avi” is our cover video. At the
receiver, RHOOF are calculated based on frame 220 and 221
and frame 23 and 24 of “walking.avi.” +en, the hash se-
quences “11111111” and “00000010” are achieved from the
subblock 2 and the subblock 4 separately. After removing the
padding bit “0” from the tail, the secret bitstream
“111111110000001” can be recovered successfully.

3.5. Algorithm Improvement. One prerequisite of the optical
flow method is that the brightness should remain constant.
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In the case of noise or random interference, the optical flow
value will be greatly affected, which will lead to wrong ex-
traction of the hidden information. +erefore, the algorithm
is further optimized with an averaging window applied.
Before the optical flow is calculated, we update the data of
every frame by averaging the pixel values of adjacent frames.

+rough this smoothing operation, the influence of noise
and random interference can be reduced. +e improved
algorithm of index database construction is described in
Algorithm 4.

+e improved information extraction algorithm is de-
scribed in Algorithm 5.

Input: video database V � V1, V2, . . . , Vd􏼈 􏼉, number of videos d, smoothing window size for optical flow calculationW, number
of LK pyramid level L, and bin number N.
Output: video index database I � Ind1, . . . , Ind2N􏼈 􏼉

(1) For i� 1: d
(2) Decompose video to pictures: P�VideoToFrame (Vi)
(3) For j� 1: FrameNum-1
(4) Convert RGB to gray: Rj �Rgb2gray (Pj), Rj+1 �Rgb2gray (Pj+1)
(5) Median filtering: Mj �medfilt (Rj), Mj+1 �medfilt (Rj+1),
(6) Calculate the hierarchical optical flow matrixes between frame j and j+ 1: (u, v)�HierarchicalLK (Mj,Mj+1, W, L)
(7) Calculate RHOOF and hash sequences in subblocks

For s� 1: subblock_num
(8) H s �RHOOF (u, v, N)
(9) Hashs �HashCalc (Hs)
(10) Link MySQL and update index database: index item-> {index ID, video ID, frame ID, subblock ID}
(11) End for
(12) End for
(13) End for

ALGORITHM 1: Index database construction.

Input: video index database I � Ind1, . . . , Ind2N􏼈 􏼉, secret information bitstream B � b1, b2, . . . , bk􏼈 􏼉

Output: mapping index set Im � Ind1, . . . , Indm􏼈 􏼉, number of index items m
(1) Padding the secret information bitstream: B′ � pad(B)

(2) Divide B′ to m segments
(3) For i� 1 :m
(4) Search the corresponding index item and update the index set as Im � Im, Indi􏼈 􏼉

(5) End for
(6) Send the mapping index set Im to the receiver

ALGORITHM 2: Information hiding.

Input: video database V � V1, V2, . . . , Vd􏼈 􏼉, smoothing window size for optical flow calculationW, number of LK pyramid level
L, bin number N, mapped index set Im � Ind1, . . . , Indm􏼈 􏼉, and number of index items m
Output: secret information bitstream B � b1, b2, . . . , bk􏼈 􏼉

(1) For i� 1 :m
(2) Get video ID, frame ID, and subblock ID from the index item i
(3) P�VideoToFrame (Vvideo ID)
(4) Convert RGB to gray: R1 �Rgb2gray (PFrame_ID), R2 �Rgb2gray (PFrame_ID +1),
(5) Median filtering: M1 �medfilt (R1), M2 �medfilt (R2)
(6) Calculate the hierarchical optical flow matrixes between corresponding frames: (u, v)�HierarchicalLK (M1, M2, W, L)
(7) Calculate the gradient histogram of optical flow of the corresponding subblock: HSubblock_ID � gradientHist (u, v, N)
(8) Hsi �HashCalc (HSubblock_ID)
(10) End for
(11) Connect all the segments as {Hs1, Hs2, . . ., Hsm}
(12) Remove padding bits, and the secret information bitstream is recovered: B � b1, b2, . . . , bk􏼈 􏼉

ALGORITHM 3: Information extraction.
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“111111110000001”

Figure 7: Example of the secret information transmission and extraction.

Input: video database V � V1, V2, . . . , Vd􏼈 􏼉, number of the videos d, frame averaging window length avg_L, smoothing window
size for the optical flow calculation W, number of the LK pyramid level L, and bin number N
Output: video index database I � Ind1, ..., Ind2N􏼈 􏼉

(1) For i� 1 : d
(2) Decompose video to pictures: P�VideoToFrame (Vi)
(3) For j� 1: FrameNum-avg_L+ 1
(4) Initialize R_sum as all zero
(5) For k� 0: avg_L− 1
(6) Convert RGB to gray: orig_Rj+k �Rgb2gray (Pj+k)
(7) R_sum�R_sum+orig_Rj+k
(8) End for
(9) R j �R_sum/avg_L
(10) End for
(11) For j� 1: FrameNum− avg_L
(12) Repeat step 1–10 of Algorithm 1.
(13) End for
(14) End for

ALGORITHM 4: Improved index database construction.

Input: video database V � V1, V2, . . . , Vd􏼈 􏼉, frame averaging window length avg_L, smoothing window size for optical flow
calculation W, number of LK pyramid level L, bin number N, mapped index set Im � Ind1, . . . , Indm􏼈 􏼉, and number of index
items m
Output: secret information bitstream B � b1, b2, . . . , bk􏼈 􏼉

(1) For i� 1 :m
(2) Get video ID, frame ID, and subblock ID from the index item i
(3) P�VideoToFrame (V_video ID)
(4) For j� 1: FrameNum-avg_L+ 1
(5) Initialize R_sum as all zero
(6) For k� 0: avg_L− 1
(7) Convert RGB to gray: orig_Rj+k �Rgb2gray (Pj+k)
(8) R_sum�R_sum+orig_Rj+k
(9) End for
(10) R j �R_sum/avg_L
(11) End for
(12) Median filtering: M1 �medfilt (RFrame ID), M2 �medfilt (RFrame ID+1)
(13) Repeat step 6–8 of Algorithm 3.
(14) End for
(15) Connect all the segments as: {Hs1, Hs2, . . ., Hsm}
(16) Remove padding bits and the secret information bitstream is recovered: B � b1, b2, . . . , bk􏼈 􏼉

ALGORITHM 5: Improved information extraction.
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4. Experimental Results and Analysis

+e experiments are conducted with the Intel(R) Core (TM)
i7-6500X CPU @ 2.50GHz and 16.00GB RAM. Matlab
2018b is used for algorithm simulation, and MySQL
workbench 6.3 is used for the index database construction.

A video database is used for the test, which is composed
by videos with different movements and scenarios that are
randomly chosen from UCF101 and HMDB51 datasets as
shown in Figure 8. +e file size of the videos is about
200∼800KB, and the duration time is about 2∼10 seconds.

4.1.CapacityAnalysis. +e bit number of the generated hash
sequence based on the cover video determines the capacity
of information hiding. Assuming the frame number of the
video is F, the number of optical flow images should be F− 1.
Every optical flow image will be divided into S subblock, and
the oriented histogram are statistically counted in N bins.
+erefore, for every optical flow image, the number of
mapped bits is:

C � S · N. (18)

+en for every video, the number of mapped bits is:

C′ � S · N · (F − 1). (19)

It can be seen that the capacity of information hiding in
our scheme is related to the bin numberN, subblock number
S, and frame number F. For a specific video, the frame
number is fixed, and then, the capacity is determined by the
number of bins and subblocks. +e larger the N and S are,
the larger the capacity is. We compare the capacity of single
optical flow image in our scheme with existing coverless
information hiding schemes based on single image in Ta-
ble 1. Here, in the proposed method, the subblock number is
set as 4 and the bin number is set as 8.

For a secret message to be hidden, if the capacity of single
image is larger, a smaller number of cover images will be
needed. Assuming the length of the secret information is
K bits, the capacity of single image isC bits; then, the number
of required cover images is

Mimage � ⌈
K

C
⌉. (20)

With the same hidden information, the number of
images needed for different methods is compared in Table 2.
It can be seen that our proposed method (set S� 4,N� 8) has
a larger capacity than other methods. With the increment of
S andN, the capacity will be even enlargedmore. However, if
N is increased, the size of video database needs also to be
enlarged in order to ensure the success rate of information
mapping. And the robustness will also be affected by the
variation of S andN, which will be further investigated in the
next tests.

4.2. Robustness Analysis. We investigate the robustness
against pepper and salt noise, Gauss noise, and speckle noise
with different parameters for performance evaluation. For a

video, the compression transformation is used commonly.
+erefore, the effect of compressed MPEG-4 transformation
(.mp4 file) and compressed motion JPEG 2000 file trans-
formation (.mj2 file) are also investigated. Assuming the
original bitstream is b1b2 . . . bm and the extracted bit se-
quence is b1′b2′ . . . bm

′, the accuracy rate is calculated by

ACC �
􏽐

m
i�1 f(i)

m
, (21)

where

f(i) �
1, if bi � bi

′,

0, if bi ≠ bi
′.

⎧⎨

⎩ (22)

+e results of accuracy rate against different types of
attacks with different bin number N are shown in Table 3, in
which the subblock number S is fixed as 4. It can be seen that
the robustness of the proposed scheme is good, especially
against salt and pepper noise and MPEG-4 compression. At
the same time, the increment of bin number will lead to the
decrease of accuracy. It is because the smaller bin number
will cause bigger bin size, which is less sensitive to the
variation of angle distribution. But according to equation
(19), the capacity will be decreased with the lower bin
number.

+e accuracy results with different types of attacks and
different subblock number S are also investigated as given in
Table 4. Here, the bin number N is fixed as 8. It can be seen
that the effect of subblock number S is relatively small and
the variation trend is irregular. +e reason is that the spatial
distribution of the optical flow is different for various types
of videos. +erefore, according to equation (19), we can
increase the capacity of information hiding by increasing the
subblock number if necessary.

4.3. Improvement Analysis of Frame Averaging. We inves-
tigate the performance improvement of introducing the
frame averaging window before calculating optical flow.
Here, the length of frame averaging window is set as 10,
which means that the data of every frame are updated by
averaging the pixel values of adjacent 10 frames. +e
comparison of accuracy rate with different types of noises
and compression is shown in Figures 9–12, where the
subblock number is set as 4 and the bin number is set as 4, 8,
12, and 16, respectively.

It can be seen that frame averaging operation can im-
prove the robustness significantly. Figure 9 is the accuracy
comparison with compression attacks, which shows that the
improvement for mj2 compression is much larger than for
mp4 compression. For mj2 compression, the accuracy rate is
increased bymore than 7% with any bin number, while there
is only weak improvement for mp4 compression. Figures 10
and 11 show the accuracy comparison with Gaussian noise
and speckle noise, respectively, in which both have signif-
icant improvement. +e increment of accuracy rate is even
bigger when the bin number is increased. However, for salt
and pepper noise, the accuracy rate will be decreased with
frame averaging operation, as shown in Figure 12. And the
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larger the bin number is, the more obvious the impact is.
+is is because that salt and pepper noise is approximately
equal in the amplitude but randomly distributed in different
locations. +erefore, frame averaging calculation may pos-
sibly cause some clean pixels to be contaminated conversely.

4.4. Robustness Comparison with Different Methods. We use
the methods based on images for performance comparison

after transferring the videos to frame images. +e latest
DWT method [22], DCT method [23], and Hash method
[20] are considered and tested based on our video database.
During tests, the subblock number of the DWTmethod and
the DCT method is set as 8. +e subblock number of our
method is 4, and the bin number is also set as 4.+e accuracy
with Gaussian noise, salt and pepper noise, and video
compression transformations in the different methods are
shown in Figures 13–15. It can be seen that the proposed

Figure 8: Video database.

Table 1: Capacity comparison.

Method Pixel method [6] Hash method [20] DCT method [22] DWT method [23] Proposed method
Capacity 8 bit 18 bit 1∼15 bit 1∼15 bit 32 bit

Table 2: Number of needed images with the same hidden information.

Size of hidden information 1 B 10 B 100 B 1 kB
Pixel method [6] 1 10 100 1024
Hash method [20] 2 6 46 457
DCT method [22] 2∼9 7∼81 55∼801 548∼8193
DWT method [23] 2∼9 7∼81 55∼801 548∼8193
Proposed method 1 3 25 256

Table 3: Accuracy with different attacks and bin number N.

Attack
Accuracy

N� 4 N� 8 N� 12 N� 16
Salt and pepper (σ � 0.001) 0.9991 0.9986 0.9972 0.9950
Salt and pepper (σ � 0.005) 0.9964 0.9923 0.9890 0.9834
Salt and pepper (σ � 0.01) 0.9937 0.9877 0.9785 0.9686
Gauss (σ � 0.001) 0.8337 0.7005 0.6141 0.5133
Gauss (σ � 0.005) 0.8218 0.6485 0.5521 0.4438
Gauss (σ � 0.01) 0.8156 0.6198 0.5211 0.4104
Speckle (σ � 0.001) 0.8835 0.8235 0.7610 0.7037
Speckle (σ � 0.005) 0.8738 0.8098 0.7377 0.6743
Speckle (σ � 0.01) 0.8677 0.8000 0.7278 0.6596
Compressed MPEG-4 file with H.264 (.mp4 file) 0.9806 0.9589 0.9353 0.9126
Compressed motion JPEG 2000 file (.mj2 file) 0.8962 0.8476 0.8028 0.7599
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method has good performance with salt and pepper noise
and video compression, while it is more sensitive to
Gaussian noise compared with other three methods. Al-
though the overall accuracy performance of the proposed
method is slightly worse than the DWT method and the
DCTmethod, the accuracy rate still can arrive at 0.97 for
most cases. However, the hiding information capacity of
our method is 16 bits for every frame, which is twice that
of the DWTmethod and the DCTmethod during the tests.
+erefore, our proposed method has obtained a good
trade-off between steganographic capacity and
robustness.

4.5. Hiding Success Rate Analysis. For coverless information
hiding based on feature mapping, the extracted feature
sequences should not only ensure the robustness but also
reflect the differences of features. +erefore, under the
premise of a given database, the success rate of information
hiding is also an important indicator to measure the fea-
sibility and the practicability of the secret transmission
scheme. Assuming that every hidden information segment

contains n bits, the number of different mapping sequences
that can be generated by the current video library is k, and
the hiding success rate is

Rsuc �
k

2N
. (23)

In the test, the videos are chosen randomly from
UCF101 and HMDB51 datasets. +e success rate of our
scheme is compared with the DWTmethod and the DCT
method.+e subblock number of all the three algorithms is
set as 8. +e results are shown in Figure 16. It can be seen
that the hiding success rate increases with the increment of
the number of the videos. With the same number of videos,
the hiding success rate of our method is much higher than
other two methods. With only about 70 videos, our
method can achieve a hiding success rate as more than
90%. +e improvement of hiding success rate comes from
the consideration of the optical flow features between
adjacent frames in our method. However, the DWT
method and the DCTmethod based on images only focus
on every separate frame and the adjacent frames usually
have similar texture features. +erefore, the generated bit
sequences also have high similarity, which will reduce the
hiding success rate.

4.6. Complexity and Efficiency Analysis. +e complexity of
the proposed method mainly lies in the construction of
the video index database because the RHOOF of every
video frame needs to be calculated. However, the video
index database only needs to be constructed once in
advance at the sender. During real secret transmission, we
only need to consider the time cost of the specific secret
information hiding and extraction, in which the main
work load lies in the feature analysis of the cover frames.
We investigate the efficiency of different methods based
on the time cost of hiding information bits with the same
length. In Table 5, the time cost of different methods is
listed, where “s/B” means the number of seconds that are
required for hiding one information byte. It can be seen
that the time cost of our method is more than other
methods due to the complexity of hierarchical optical flow
calculation.

Table 4: Accuracy with different attacks and subblock number.

Attack
Accuracy

S� 1 S� 2 S� 4 S� 8
Salt and pepper (σ � 0.001) 0.9980 0.9982 0.9986 0.9975
Salt and pepper (σ � 0.005) 0.9952 0.9952 0.9923 0.9930
Salt and pepper (σ � 0.01) 0.9896 0.9884 0.9877 0.9867
Gauss (σ � 0.001) 0.6583 0.6821 0.7005 0.7132
Gauss (σ � 0.005) 0.5994 0.6310 0.6485 0.6688
Gauss (σ � 0.01) 0.5695 0.6015 0.6198 0.6425
Speckle (σ � 0.001) 0.8176 0.8059 0.8235 0.8268
Speckle (σ � 0.005) 0.8074 0.7899 0.8098 0.8149
Speckle (σ � 0.01) 0.7934 0.7825 0.8000 0.8059
Compressed MPEG-4 file with H.264 (.mp4 file) 0.9665 0.9635 0.9589 0.9526
Compressed motion JPEG 2000 file (.mj2 file) 0.8240 0.8331 0.8476 0.8542

6 8 10 12 14 164
Number of bin

0.75

0.8

0.85

0.9

0.95

1

Ac
cu

ra
cy

Acc with mj2
compress
Acc with mj4
compress

Improved acc with
mj2 compress
Improved acc with
mj4 compress

Figure 9: Accuracy improvement with compression.
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4.7. Transmission Data Load Analysis. In the proposed
steganography scheme, the video database is shared by both
the sender and the receiver. During the information hiding
process, the secret information will be preprocessed and
mapped to the hash sequences of RHOOF. After searching in
the video index database, the corresponding mapping in-
dexes will be sent to the receiver. +en, the receiver can find
the cover video from the video database. +erefore, the data

transmission load only includes the contents of the index
item as video ID, frame ID, and subblock ID. Assuming the
size of the secret information is n byte, the transmission
loads of different methods are analysed in Table 6. Here, the
subblock number of the DWTmethod and the DCTmethod
is 8. It can be seen that the transmission load of our scheme is
greatly reduced since the cover video need not to be
transmitted. But the sender and the receiver are required to

Acc with pepper noise (α = 0.001)
Acc with pepper noise (α = 0.005)
Acc with pepper noise (α = 0.01)

Improved acc with pepper noise (α = 0.001)
Improved acc with pepper noise (α = 0.005)
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Figure 12: Accuracy improvement with salt and pepper noise.

1.2

1

0.8

0.6

0.4

0.2

0

Ac
cu

ra
cy

Salt and pepper
0.001

Salt and pepper
0.01

Salt and pepper
0.005

Noise type

DWT method
DCT method

Hash method
Proposed method
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share and update the video database synchronously to en-
sure the successful information hiding and extraction.

5. Conclusion

In this study, a coverless steganography scheme based on
motion analysis of videos is proposed. +e capacity, ro-
bustness, hiding success rate, time cost, and transmission
data load have been investigated and compared with the
existing methods. It is shown that the proposed method not
only obtains a good trade-off between hiding information
capacity and robustness but also achieves higher hiding
success rate and lower transmission data load, which shows
good practicability and feasibility. However, the time cost of
our method is higher due to the complexity of hierarchical
optical flow calculation. We will try to improve the efficiency
in the future work.
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rar and the HMDB51 data are available at http://serre-lab.
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Table 6: Comparison of transmission data load.

Transmission data load for n byte secret
information

Pixel method [6] n cover images
Hash method
[20] ⌈8n/18⌉ + 1 cover images

DCT method
[22] N+ 1 cover images + side information

DWT method
[23] n+ 1 cover images + auxiliary information

Proposed
method n indexes

Table 5: Time cost comparison.

Methods Hash [20] DCT [22] DWT [23] Proposed
Time cost 0.5006 s/B 0.3748 s/B 0.5085 s/B 1.1874 s/B
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)e deepfake technology is conveniently abused with the low technology threshold, whichmay bring the huge social security risks.
As GAN-based synthesis technology is becoming stronger, various methods are difficult to classify the fake content effectively.
However, although the fake content generated by GANs can deceive the human eyes, it ignores the biological signals hidden in the
face video. In this paper, we proposed a novel video forensics method with multidimensional biological signals, which extracting
the difference of the biological signal between real and fake videos from three dimensions. )e experimental results show that our
method achieves 98% accuracy on the main public dataset. Compared with other technologies, the proposed method only extracts
fake video information and is not limited to a specific generation method, so it is not affected by synthetic methods and has
good adaptability.

1. Introduction

With the rapid advancement of computer vision and digital
content processing technology, face tampering is no longer
limited to pictures, some deep learning technologies (e.g.,
deepfake) can be utilized to generate human faces in videos,
which are very similar to natural face videos taken by using
digital cameras, but it is difficult to distinguish them with the
naked eyes. )e recent research study by Korshunov [1] shows
that fake videos can easily deceive the face recognition system,
and some serious security risks, such as fake news, have been
raised by them.

Deepfake technology is the result of scientific and
technological progress and the rapid development of arti-
ficial intelligence technology, and it has broad application
prospects. For example, deepfake technology is used in
entertainment industries such as films, which can save time
and labor costs. However, if this technology is abused by
criminals, it will also cause a serious crisis, and it can even
forge the speeches of world leaders, seriously endangering
political security. )erefore, the forensics of deepfake videos
is of great significance. At present, the forensics method of
deepfake video is mainly based on intraframe or interframe

information by analyzing the difference between real and
fake videos.

In this paper, we propose a deepfake video forensics
method based on multidimensional biological signals. Re-
cent work shows that heart rate signals can be used to ef-
fectively distinguish between real and fake videos [2, 3].
Although GANs can generate fake content that deceive
human eyes, it destroys the original biological signals of the
real video, such as heart rate signals. )erefore, we can
classify the real and fake videos by extracting and analyzing
the biological signals in the videos. Our main contributions
are as follows:

(1) We propose a synthetic video forensics method,
which mainly analyses the different biological signals
between real and fake videos to detect the spoofed
content.

(2) We further explore the distinct information in the
multidimensional scene to ensure the technological
efficiency. )at is, we utilize the RGB space to
concentrate on the color variations, the YUV space
to concentrate on brightness alteration, and the
chrominance method to reduce noise effects.

Hindawi
Security and Communication Networks
Volume 2021, Article ID 6626974, 8 pages
https://doi.org/10.1155/2021/6626974

mailto:yedp@whu.edu.cn
https://orcid.org/0000-0002-3991-1405
https://orcid.org/0000-0003-2510-9523
https://orcid.org/0000-0002-3863-0417
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6626974


(3) We analyzed the shortcomings of traditional pho-
toplethysmography (PPG) and used a deep neural
network to realize the classification of real and fake
videos. )e experimental results show that the deep
models can reach high detection accuracy, which is
about 98% on the main public dataset.

)e rest of this paper is organized as follows. Section 2
introduces related work, including the development of PPG
and deepfake video forensics. Section 3 describes the pro-
posed method in detail. Section 4 shows the details and
results of our experiment. In Section 5, we conclude and give
the future work.

2. Related Work

2.1. Deepfake. Deepfakes are fake videos digitally manipu-
lated to depict people saying and doing things that never
actually happened. Deepfakes rely on neural networks that
analyze large sets of data samples to learn to mimic a
person’s facial expressions and mannerisms. )e process
involves feeding footage of two people into a deep learning
algorithm to train it to swap faces.

)e overall pipeline of the basic deepfake is shown in
Figure 1. )e autoencoder is usually formed by two convolu-
tional neural networks (the encoder and the decoder). )e
encoder converts the input target’s face to a vector.)ere is only
one single encoder regardless of the identities of the subjects to
ensure the encoder captures identity-independent attributes
such as facial expressions. On the other hand, each identity has a
dedicated decoder, which generates a face of the corresponding
subject from the vector. Specifically, an encoder-decoder pair is
formed alternatively using encoder and decoder for input face of
each subject, and their parameters are optimized to minimize
the reconstruction errors. )e parameter update is performed
with the back-propagation until convergence.)e training stage
can be stated as

min LA �
1
N

􏽘
i�1

Fi − DA E Fi; θ( 􏼁; ϕA( 􏼁
����

����
2
,

min LB �
1
N

􏽘
i�1

Fi − DB E Fi; θ( 􏼁; ϕB( 􏼁
����

����
2
,

(1)

where L denotes the loss value of the autoencoder; N is the
number of input data of the network; Fi is the input face
image; θ is the weight of encoder E; and V is the weights of
decoder D.

In the converting stage, the trained decoder B is used to
decode the latent vector of face A to obtain the face-
swapping image of A. Similarly, we can use the trained
decoder A to decode the latent vector of face B to obtain the
face-swapping image of B.)e converting stage can be stated
as

FA
′ � DB E FA; θ( 􏼁; ϕB( 􏼁,

FB
′ � DA E FB; θ( 􏼁; ϕA( 􏼁,

(2)

where F denotes the original face and F′ denotes the fake
face.

2.2. Biological Signals. Biological signal extraction was
originally used in the medical field to detect whether the
patient’s heart rate (HR) or other signals are normal, so that
the doctor can observe the abnormal biological signal of the
patient in time. However, electrocardiogram (ECG) leads,
pulse oximeters, and other detectors all require specific
sensors to be connected to the human body. To avoid the use
of intrusive sensors, computer vision researchers have
proposed a method of noncontact remote HR measure-
ments, based on observing subtle changes in color and
motion in the RGB video, such as remote photo-
plethysmography (PPG) [4, 5].

Balakrishnan et al. [6] show that heart activity can cause
head movements, which can be used to extract heart rate
estimates from video streams. Tulyakov proposed a chro-
minance method, which can effectively improve the accu-
racy of heart rate estimation [5]. Niu proposed a remote
heart rate estimation method based on deep learning and
achieved good results [7].

2.3. Forgery Detection. To deal with the possible harm
caused by deepfake videos, researchers are exploring ef-
fective methods to classify real and fake videos. Because
deepfake is also a forgery of images, early detection methods
can learn from the forgery detection method of images.
Recently, a bunch of high-efficient detectors with the new
algorithms have been proposed to improve the performance
of tampering detection and localization [8, 9]. Also, in order
to specifically detect deepfake forgery, researchers classify
real and fake videos based on intraframe information,
interframe information, or special artifact.

Nguyen et al. [10] proposed a capsule network that
can detect various kinds of attacks, from presentation
attacks using printed images and replayed videos to at-
tacks using fake videos created using deep learning. It
uses fewer parameters than traditional convolutional
neural networks with similar performance. Do et al. [11]
used a deep convolutional neural network (VGGFace) for
detecting real/fake images from GANs. Afchar et al. [12]
exploited features at a mesoscopic level, instead of purely
microscopic and macroscopic features, and proposed
mesonet and meso-4 net, which have a low number of
parameters. Bonettini et al. [13] combined CNNs, at-
tention layers, and siamese training and achieved good
performance on DFDC. Li and Lyu [14] created negative
data only using a simple image processing operation,
rather than using deepfake to produce, and then used
CNN models to classify the videos. Zhao [15] formulated
deepfake detection as a fine-grained classification prob-
lem and proposed a new multiattentional deepfake de-
tection network. Liu [16] proposed a novel Spatial-Phase
Shallow Learning (SPSL) method, which combines the
spatial image and phase spectrum to capture the
upsampling artifacts of face forgery to improve the
transferability.

Güera and Delp [17], based on temporal inconsistencies
between frames, used CNN (frame feature extraction) and
RNN (temporal sequence analysis) for real and fake video
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classification. Sabir et al. [18] also proposed the CNN+RNN
method, but they used face alignment and bidirectional
recurrency.

Agarwal et al. [19] tracked facial and head movements
and then extracted the presence and strength of specific
action units and classified real and fake video by SVM. Li
et al. [20] used CNN and RNN to detect abnormal blinking
in fake videos. Yang et al. [21] classified real and fake videos
by the inconsistency of 3D head poses. Li et al. [22] de-
tected whether the input image can be decomposed into
the blending of two images from different sources. Wang
et al. based on monitoring neuron behaviors to spot AI-
synthesized fake faces [23].

3. Method

In this section, we first analyze the discrepant biological
signals between real and fake videos. )en, we point out the
inefficiency of the traditional PPG method for detecting the
deepfake video. Lastly, we propose a deepfake video fo-
rensics method based on the inconsistency of biological
signals, and experimental results of the evaluation verify the
effectiveness of our method.

3.1. Deepfake Detection with Biological Signals. Although
PPG technology has been developed for a long time, it is not
easy to extract heart rate signals in an unrestricted envi-
ronment. We analyzed the method of manually extracting
heart rate signals from the face video using computer vision;
Figure 2 shows that these methods cannot distinguish fake
videos from real videos. We selected a pair of real and fake
videos from the DeepFakeDetection (DFD) dataset and used
the Kalman filter [24] method to estimate heart rate signals
from them. )e result shows that the difference in heart rate
signals between real and fake videos is not obvious.

Generally, to eliminate motion artifacts and noise caused by
environmental changes and extract pure heart rate signals
better, the videos are always processed by denoising and fil-
tering. However, these technologies destroy the abnormal heart
rate signals in the fake video, which cause the weak classification
effect. )erefore, we map the video to ppg_map and classify it
through the deep network to achieve the effect of deepfake video
classification based on different heart rate extraction algorithms.
In detail, given a video Vmmc5 (� {T1, T2, T3 . . .. . . Tk})
including k frames, for each frame, we first extract the face and
make face alignment.)en, the skin segmentation is performed
to remove the influence of the background. Next, the face image

is divided into n blocks (R1, R2, R3 . . . Rn), which are inde-
pendent on each other. Lastly, we calculate the signal value in
each block from multidimension. )e signal values of different
blocks in the same frame are arranged in columns, and the
signal values of the same block in different frames are arranged
in rows to form our ppg_map. )en, these ppg_maps are used
to train the CNN classification model, as shown in Figure 3.

In the process of generating ppg_map, it is necessary to
avoid the adverse effects of the head movement and back-
ground of the characters. We will discuss this in detail in
Section 3.2.

3.2. ppg_Map Generation. )e beating of the human heart
causes the periodic constriction of blood vessels, which
affects the skin’s reflection of light. )is change is not easily
detectable by the human eyes, but it can be detected and
recorded by optical instruments. )e facial area in the face
video can well reflect the heart rate information of the
human body. So, we located the facial area and extracted the
biological signals.

3.2.1. Face Detection and Alignment. In order to make the
detection faster and simpler, the Viola and Jones method
[25] is utilized to detect human faces. However, because the
faces in the video will not be fixed at a certain position and
angle, we align the detected faces by rotating the face to keep
both eyes at the same level. On the other hand, the face area
detected by the Viola–Jones method is larger than the real
face area and contains more background area; we further
adjust the region of interest (ROI). In other words, we lo-
cated 81 landmarks and used four points (1, 8, 15, and 71) as
reference points to adjust the face region (Figure 4) to make
the ROI include as many face regions as possible.

3.2.2. Skin Detection and Segmentation. )ebiological signals
are extracted from the facial skin, so we reduce the negative
influence of other nonskin areas, such as eyes, hair, and
background areas. Meanwhile, this will also reduce the dis-
turbance caused by eye blinking and lipmotions. Consequently,
in the video frame, we first adopt the skin detection algorithm to
gain the main facial skin information. )en, as a mask, the skin
area is used to extract the facial skin and remove the background
and nonskin areas.

3.2.3. Blocks Division and Signal Extraction. Now, we have
made the skin detection and segmentation to make
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Figure 1: Overview of the deepfake procedure. (a) )e training stage of deepfake. (b) )e converting stage of deepfake.
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biological signals clearer. )en, the video frame is divided
into m∗ n blocks for extracting biological signals from every
block. )e PPG method mainly extracts heart rate signals
from three dimensions [4–6]. )at is, the RGB dimension
intuitively reflects the changes in the color of the human
face, the YUV dimension pays more attention to changes in

brightness, and the chrominance dimension can effectively
eliminate environmental artifacts and errors caused by head
movement. So, we extract biological signals from RGB color
space, YUV color space, and chrominance dimension.

(1) Color Space Dimension. We split the block into three
channels of RGB (YUV) and calculate the pixel average of
each channel for all blocks. )en, 3 sequences of length
m∗ n can be derived in a frame. Meanwhile, the same block
in different frames is also changed with frames. When these
procedures are employed in T frames, we can get a three-
dimensional matrix with the shape T∗N∗ 3, where T de-
notes the number of frames,N denotes the number of blocks,
and 3 represents three channels (RGB or YUV). Each row of
the matrix represents the change of the same block on
different frames, and each column represents the changes of
different blocks in the same frame.

(2) Chrominance Dimension. We calculate the average
chrominance of each block [5]. For each pixel, the chro-
minance signal C is computed as the linear combination of
two signals Xf and Yf:
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Figure 3: Overview of the proposed method.

Figure 4: Refining the face ROI. We locate 81 landmarks on the
face and use the four points (1, 8, 15, and 71) as benchmarks to
further adjust the detected facial area to reduce the background
area.
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Figure 2: Comparison of real and fake video heart rate. )e horizontal axis represents the number of frames of the video, and the vertical
axis represents the detected heart rate.
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C � Xf − αYf ,

α �
σ(Xf)
σ(Yf)

,

(3)

where σ (Xf) and σ (Yf) denote the standard deviations of Xf
and Yf.)e signals Xf and Yf are band-passed filtered signals
obtained, respectively, from the signals X and Y,

X � 3Rn − 2Gn,

Y � 1.5Rn + Gn − 1.5Bn,
(4)

where Rn, Gn, and Bn are the normalized values of the
individual color channels. When we adopt the operations for
all blocks and T frames, we can get a two-dimensional matrix
with the shape T∗N.

)ese matrices are stored as color maps (three-dimen-
sional matrix) and grayscale maps (two-dimensional matrix)
to form the corresponding ppg_map. )en, we move the
sliding window to generate the next ppg_map the same way.

3.3. CNN-Based Classification. We use a CNN classifier to
classify the generated ppg_map. )e network consists of six
convolutional layers, using the ‘relu’ activation function, fol-
lowed by a flatten layer. )ere are two fully connected layers
after convolutional layers. )e last fully connected layer uses
‘softmax’ as the activation function and outputs the scores of the
positive and negative classes. In order to avoid overfitting, we
added a dropout layer, as shown in Figure 5.

For each dimension in Section 3.2.3, we trained the
model and get the accuracy on the testing set. Furthermore,
we combine the signals of three dimensions to make the final
decision.

4. Results

In this section, we will introduce the details of our exper-
iment. First, we describe the dataset we used. )en, we
provide detailed experimental settings and the result of the
experiment.

4.1. Dataset. We used three public datasets to train and test
our method. For each dataset, we generated the ppg_maps
and divided it into a training set, validation set, and testing
set according to the ratio of 6 : 2:2. We optimize our model
on the training set and validation set and then get the fo-
rensics accuracy on the testing set.

4.1.1. Face Forensics++. )e FF++ dataset is proposed by
Andreas [26], consisting of 1000 original video sequences that
have been manipulated with four automated face manipulation
methods: Deepfakes, Face2Face, FaceSwap, andNeuralTextures.
)e data have been sourced from 977 YouTube videos, and all
videos contain a trackable mostly frontal face without occlu-
sions which enables automated tampering methods to generate
realistic forgeries. Owing to the Face2Face and NeuralTextures
method in the FF++ dataset does not tamper the whole face (we
obtain biological signals from the whole face, and when the
tampering part is too small, it will reduce effectiveness of the

method), we mainly verify our method on Deepfakes and
FaceSwap datasets.

4.1.2. DeepFake Detection. )e DFD dataset contains 363
original videos performed by actors and 3068 manipu-
lated videos. )ese actors are required to perform dif-
ferent actions and then implement face-swap technology
between different actors. To better extract the biological
signals from the face, we chose a few specific actions, such
as “podium speech happy” and “talking still.” In these
actions, the face is well facing the camera, and there are
not too many interference factors. )erefore, we used 176
real videos and 754 fake videos from DFD. )e biggest
problem with the DFD dataset is the imbalance of positive
and negative samples. So, we should expand the real
video. )e principle of expansion is any segment of the
real video also is a real video. So we use the idea of sliding
window to generate ppg_map. When processing real
video, the stride of the sliding window is smaller than the
length of sliding window, as shown in Figure 6. After
expansion, we are equivalent to using 704 real videos and
754 fake videos.

4.1.3. UADFV. )e UADFV dataset is proposed by Yang
et al. [21], which contains 49 real videos and 49 fake videos.
)e average length of each video is about 11 seconds, and the
resolution is 294× 500 pixels.

4.2. Experiment Setting and Results. For generating ppg_map,
we divide the face frame into 8∗ 8 blocks (N� 64) and used
64 frames (T� 64) to generate a ppg_map (which means the
length of sliding window is 64), so the pixels of each
ppg_maps are 64× 64. Figure 7 shows a schematic of
ppg_map.

We implemented this code on a workstation with four
2080Ti GPU cards. )e model was trained using RMSprop
for 160 epochs with a learning rate of 0.0004.

We used the Deepfakes dataset in FF++ (RGB di-
mension) to verify the effectiveness of the model. )e
accuracy and loss values of this model on the training set
are shown in Figure 8. It can be seen from Figure 8 that as
the epochs increase, the classification accuracy of the
model is gradually increased, while the loss value is
gradually decreased, and it stabilizes at 160 epochs, which
illustrates the effectiveness of the model in this paper.

In order to prove the advantage of multidimensional
signals, we analyzed the classification accuracy of single-
dimensional signals and multidimensional signals, as shown
in Table 1. )e accuracy can be improved obviously when
using multidimensional (M-D) signals.

4.3. Comparison. In order to verify the effectiveness of the
method, a comparative experiment was carried out with the
model mentioned in FaceForensics++, and the comparison
results are shown in Table 2. )e results show that our
method has higher detection accuracy than other methods.
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Figure 6: Different ways to generate ppg_map for real and fake videos. (a) When dealing with fake video, the stride of the sliding window is
equal to the length of the sliding window. (b)When dealing with a real video, the stride of the sliding window is smaller than the length of the
sliding window.
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Figure 5: CNN architecture. We used six convolution layers with max pooling, followed by a flatten layer and dense layers.
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Figure 7: Schematic diagram of the ppg_map. (a) )e ppg_maps generated by real videos. (b) )e ppg_maps generated by fake videos.
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5. Conclusions

In this paper, we propose a forensics method based on
biological signals, through a deep neural network to
realize the classification of real and fake videos. )e
deepfake cannot effectively retain the biological signals in
the face video. Consequently, we use multidimensional
biological signals to analyze the differences between real
and fake videos. However, some deepfake videos are hard
to be exposed under the complicated conditions such as
unstable character movements and complex scene
switching. We hope that the deepfake detection in these
scenarios could be solved effectively by using signal
enhancement and denoising in the near future work.
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In this paper, we propose a privacy protection scheme using image dual-inpainting and data hiding. In the proposed scheme, the
privacy contents in the original image are concealed, which are reversible that the privacy content can be perfectly recovered. We
use an interactive approach to select the areas to be protected, that is, the protection data. To address the disadvantage that single
image inpainting is susceptible to forensic localization, we propose a dual-inpainting algorithm to implement the object removal
task.-e protection data is embedded into the image with object removed using a popular data hiding method.We further use the
pattern noise forensic detection and the objective metrics to assess the proposed method. -e results on different scenarios show
that the proposed scheme can achieve better visual quality and antiforensic capability than the state-of-the-art works.

1. Introduction

Photo sharing has become a widespread user activity with
the advent of intelligent mobile devices and online social
networks (OSN). Image distributions cause privacy concerns
and the requirement to modify permissions since the shared
content contains sensitive data of users. By providing unique
rights to selected communicating parties in OSN, users’
security and privacy can be strengthened. A well-established
form of privacy protection is to blur a part of an image,
which can be achieved by various image processing tech-
niques, for example, blurring, mosaic, masking, and object
removal, as shown in Figure 1. In these methods, the first
three must introduce a significant amount of distortion to
hide the underlying content. Object removal provides more
natural viewing conditions and is able to protect the content.
-is process is reversible such that the original data can be
accessed with permissions [1].

After object removal in an image, the broken parts can be
inpainted using the surrounding contents. Generally, image
inpainting algorithms can be divided into three groups,
including the statistical-based, the diffusion-based, the
patch-based, and the deep generative models-based methods
[2, 3]. Statistical methods use parametric models to describe

textures but fail when additional intensity gradients are
applied [4]. Diffusion-based methods propagate pixels from
the known areas of the image [5–7] using smoothness priors;
however, blurring occurs when large and high-frequency
regions need to be inpainted. Patch-based and deep gen-
erative models are the most widely used, where the former
fills the holes in the image using the patch from local or
global search regions [8–12] and the latter exploits semantics
learned from large-scale datasets [13–15]. None of the
inpainting algorithms have considered the secrecy of the
inpainted areas from the security perspective. -e inpainted
images are easy to be detected and located by forensic
algorithms.

In this paper, we propose a new privacy protection
scheme using image inpainting and data hiding, which
realizes the antiforensics capability. When considering the
undetectability of edge inpainting, we use the algorithm of
the DFNet network [16]. -e regions around the broken
edge are inpainted twice, and the inpainting results are fused
to achieve the capability of antiforensics. By combining
image dual-inpainting and data hiding, a privacy protection
scheme with antiforensics capability is realized. We combine
local variation within and between channels and use the
popular data hiding algorithm HILL [17] to embed the
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protection data.-e rest of this paper is organized as follows:
we introduce the related works in Section 2. -e proposed
method is depicted in Section 3. Experimental results and
analysis are provided in Section 4. Section 5 concludes the
whole paper.

2. Related Works

In this section, we introduce the works that are related to the
proposed method, including the image inpainting, the data
hiding, and the image forensics.

2.1. Image Inpainting. Image inpainting is a method to fill
the missing information in an image and is quite important
in the field of image processing. Nowadays, the deep gen-
erative models-based methods are widely used in the field of
image inpainting [14, 18–23]. Numerous methods can be
divided into two categories [24]. One approach is to use an
effective loss function or construct an attention model to fill
in the missing regions to try to make the content more
realistic.-ey use the content in the background to fill, and a
better way is to fix the unknown region by partial convo-
lution [18]. -e other approach focuses on structural con-
sistency. To ensure the continuity of the image structure,
these approaches usually adopt edge-based contextual
priors. For example, [19] designed an edge linking strategy
that can well solve the image semantic structure inconsis-
tency problem.

Regardless of the inpainting method, there is a dis-
continuous transition zone at the edge of the inpainting.-is
area will become a forensic object and thus easy to locate the
inpainting area by someone who is interested, which is quite
unsafe. In order to not only achieve a good visual effect but
also secure safety, a smooth transition needs to be achieved
in advance. An iterative method to optimize the pixel
gradients in the edge transition regions is proposed in [25],.
-e quality of fusion depends on whether the incorporated
content is consistent with the original content in terms of
gradient changes. -us, Hong et al. [16] design a learnable
fusion block to implement pixel-level fusion in the transition
region, which is named deep fusion network for image
completion (DFNet). -e results show that DFNet has su-
perior performances, especially in the aspects of harmonious
texture transition, texture detail, and semantic structural
consistency.

2.2. Data Hiding. To further optimize the data embedding
problem in information hiding, adaptive embedding algo-
rithms are widely proposed. Among them, STC (Syndrome
Trellis Coding) [26] based adaptive architectures are most

preferred by researchers. -is method uses a predefined
distortion function to minimize the additive distortion
between stego and cover. For themultiscale characteristics of
the image space, the design of the distortion function has
attracted more andmore attention. For instance, Li et al. [17]
proposed a new distortion function for image information
hiding. -e cost function is composed of a high-pass filter
and two low-pass filters. -e high-pass filter is used to locate
the difficult-to-predict parts of an image and then employ
the low-pass filters to make the low-cost values more
clustered. Furthermore, the methods of MiPOD (Mini-
mizing the Power of Optimal Detector) [27] and ASO
(Adaptive Steganography by Oracle) [28] were proposed one
after another. In addition, a number of distortion functions
have been proposed for JPEG steganography as well, such as
IUERD (Improved UERD) [29], UED (Uniform Embedding
Distortion) [30], and RBV (Residual Blocks Value) [31].

In addition, some work uses machine learning algo-
rithms to design steganalysis tools to detect steganography.
Most of these approaches learn a general steganography
model through a supervised strategy and then use it to
distinguish suspicious images [32–35]. With the rapid de-
velopment of deep learning, the performance of steganalysis
has been greatly improved [36–38]. However, depth features
still have limitations in steganalysis [39]. For example, the
truncation and quantization operations in the feature ex-
traction process are difficult to be learned by existing net-
works. -erefore, feature extraction is still a challenge in
steganalysis, and many rich feature sets have been used for
JPEGY steganalysis. -e main available feature sets include
JPEG rich-model [40], DCTR GFR (Gabor filter residuals)
[41], and DCTR (Discrete Cosine Transform Residual) [42].
In the classification process, the ensemble classifier is
considered to be effective in measuring the feature set
[43, 44].

2.3. Image Forensics. Currently, there are two forensic
methods of detecting image inpainting [45, 46]. In [45], the
authors find that the Laplacian operations along the isophote
direction in the inpainted regions are different from the
other regions. Accordingly, the inpainted regions can be
identified by exploring the changes of local variances be-
tween intra- and interchannels. In [46], noise pattern
analysis is used to locate the inpainted regions. For the
images captured by one camera, the noise patterns in each
image are approximately the same and vice versa. -erefore,
the noise pattern can be used as the fingerprint for a camera,
which is widely adopted in image forensics.

-e noise pattern analysis algorithm in [46] is popular.
In this model, the pixel values can be constructed by ideal

Figure 1: Common privacy protection methods: (a) original image; (b) blurring; (c) mosaic; (d) masking; and (e) object removal.
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pixel values, multiplicative noises, and various additive
noises, which can be expressed by

I � f((I + K) · O) + a, (1)

where I andO are the actual pixel and ideal pixel value of the
natural scene, a is the sum of various additive noises, f(∙) is
the camera processing like CFA interpolation, and K is the
coefficient for noise pattern. In equation (1), the multipli-
cative noise K·O is the theoretical expression of the noise
pattern, which is a multiplicative noise in the high fre-
quencies related to the image contents. Generally, we can use
a low-pass filter to remove the additive noises. -e residual
noise is then used to estimate the noise pattern [47], as
shown in the following equation:

p � I − F(I), (2)

where F(∙) is the low-pass filter and p is the estimated noise
pattern. -e noise pattern can be used to distinguish the
content from different images. -erefore, the inpainted
region can be detected after extracting the noise pattern from
each part of the image.

During inpainting, since there are limited pixels around
the damaged regions, each diffusion is smoothed based on
the surrounding pixels to accomplish the diffusion. -ere-
fore, the pixels located in the inpainted region satisfy
In

t (i, j) � 0, which means that the results of Laplacian op-
eration on this position remain unchanged along the iso-
phote direction after the diffusion-based inpainting. -e
Laplacian variation along the isophote direction can be
calculated by

δΔI(i,j) � ΔI(i, j) − ΔI iv, jv( 􏼁, ∀(i, j)εI (3)

where ΔI(i, j) is the (i, j)-th Laplacian value and ΔI(iv, jv) is
the result of Laplacian operation on a virtual pixel on
(iv, jv). -e virtual pixel is located at the direction of
∇I⊥(i, j), and its distance to the pixel I(i, j) is identical to 1.

3. Proposed Method

In this section, we present an antiforensic framework to
perform object removal in images using dual-inpainting and
data hiding. As shown in Figure 2, the proposed framework
contains four parts. We first select the protected area in-
teractively and calculate the percentage of the area in the
whole image. -en, the background with the missing pro-
tected area was inpainted. In order to achieve a satisfactory
visual effect and be as forensic-free as possible, an image
dual-inpainting algorithm is proposed, as shown in Figure 3
and described in Section 3.1–3.3. For the inpainted image,
region segmentation is performed based on the changes of
local variances between the intra- and interchannels.
Meanwhile, the protected region is embedded into the
background after converting it into a bitstream by com-
bining the HILL embedding algorithm and considering the
segmentation. On the recipient side, we can extract the
embedded data, fuse it with the background image, and
recover the original image.

3.1. Protection Region Selection. We interactively specify the
area in an image to be protected, which also means that the
hidden area is determined. After that, we calculate the
number of the pixels to be hidden, including the values and
coordinates of these RGB pixels. -e pixels are converted
into bit stream for embedding. We define the bits of each
pixel as 5× 9, in which “5” stands for pixel values in three
channels, horizontal and vertical coordinate values, and “9”
means that we convert each decimal to 9 bits. In a color
image, information can be embedded in all three channels at
each position. -us, the maximum amount of embeddable
information is three times the image size. -e maximum
embedding ratio T is calculated to be 6.66% per image. Let t
be the proportion of the selected protection region. -e
proportion should be smaller than a predefined threshold
T. An example of the interactive region selection is shown in
Figure 4.

3.2. Background Processing. After specifying the protection
area, we remove the contents in this area and inpaint the
image.When inpainting large areas, it is often not possible to
perfectly blend the inpainted area with the existing content,
especially in the edge areas [16]. To fill this gap, the DFNet
network [23] introduces a fusion block, which combines the
structural and texture data and smoothly blends them
during the inpainting process. As shown in Figure 5, I is the
input image, Fk is the feature maps from k-th layer, and Ik is
resize of I. -e learnable function M is designed to extract
the raw completion Ck from feature maps Fk, which is as
follows:

Ck � M Fk( 􏼁, (4)

where M denotes the channel conversion operation, which
converts n channel feature maps into 3-channel images
under the condition of constant resolution.

In addition, another learning function A is used to
generate the alpha composition map ak:

ak � A Fk, Ik( 􏼁. (5)

Map ak usually is obtained by synthesis from a single
channel or 3 channels for imagewise alpha composition.
Previous experience has demonstrated that channelwise
alpha composition performs better. A is a convolutional
module which consists of 3 convolutional layers with kernel
sizes of 1, 3, and 1, respectively.-e final result Ik

′ is achieved
by

Ik
′ � B ak, Ck, Ik( 􏼁 � ak ∗Ck + 1 − ak( 􏼁∗ Ik. (6)

-e fusion blockmakes the image inpainted by the DFNet
network almost visually free of edge discontinuity. Although
the DFNet network achieves good visual results, it is not
suitable for privacy protection since it can be easily localized
for forensics. For example, pattern noise of the image de-
tection reveals clear artifacts in the restoration edge area. To
conceal these traces and achieve the privacy-preserving,
further manipulation of the inpainting image is required.
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-e detection area is mostly found in the edge area of the
restoration, so we consider secondary processing of the edge
area to eliminate the traces left during the restoration
process. In this process, we used the mathematical mor-
phology of the dilation operation and the erosion operation.
In the dilation operation, the structural element B is used as
an external window to increase the overall boundary of the
target image. In the erosion operation, the structural ele-
ments serve as the internal windows to eliminate the
boundary of the image. -e dilation operation is expressed
by equation (7) and erosion operation can be expressed by
equation (8):

I⊕B � (i, j)|B(i,j) ∩ I≠∅􏽮 􏽯, (7)

IΘB � (i, j)|B(i,j)⊆I􏽮 􏽯, (8)

B(i,j) � (x, y)|x � m + i, y � n + j, (m, n) ∈ B􏼈 􏼉. (9)

-e specific dual-inpainting process is shown in
Figure 3. Firstly, the background image should be
inpainted using the DFNet network. -en, we apply a
mathematical morphological dilation operation on the
edges of the broken region mask map. Based on this mask
map, secondary inpainting of the primary inpainted image
is performed in the region. In addition, mathematical
morphology erosion operation is then applied to the
secondary inpainted region, leaving only a portion of the
region close to the edge. Note that the dilation operation
uses a larger size of structural elements than that of the
erosion operation to ensure the results of the secondary

inpainting of the lower edge are preserved. -e results of
the secondary inpainting of the edge region are fused with
the primary repair map to obtain a graph of the experi-
mental results of antiedging detection.

3.3. Area Segmentation and Data Hiding. To hide the secret
data of the protection region, we employ the popular data
hiding framework which can be achieved by STC [17]. We
improve the popular cost function HILL for STC to fit the
requirements in our method.

In the STC framework, the theoretical minimum steg-
anography distortion D for the marked image with an
embedding amount of c (bits) can be defined as

D � 􏽘
M

i�1
􏽘

N

j�1
p

+
i,jρ

+
i,j + p

−
i,jρ

−
i,j􏼐 􏼑,

p
+
i,j �

e
− λρ+

i,j

1 + e
−λρ+

i,j + e
−λρ−

i,j􏼐 􏼑
,

p
−
i,j �

e
− λρ−

i,j

1 + e
−λρ+

i,j + e
−λρ−

i,j􏼐 􏼑
,

(10)

where p+
i,j and p−

i,j are the probabilities of adding 1 or
subtracting 1 on ci,j, 0<p+

i,j + p−
i,j < 1, and ρi,j stands for the

distortion values used to measure the effects of modification.
-e parameter λ (λ> 0) is used to make the ternary data
entropy of the modification probability identical to the
capacity c, as shown in the following equation:

Original image Protection region
selection

Region ratio (t)
calculation

Dual image
inpainting

Bits stream
converting

Segmentation

Data
embedding

Data extraction
Pixel

convertingFusion

Background processing

Foreground processing

Protected image

Protection
data

Background image

Figure 2: Architecture of the proposed scheme.

DFNet 

inpainting

Dual 

inpainting

Fusion

Figure 3: Dual-inpainting process architecture.
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Figure 4: Protection region selection. (a) Interactive selection. (b) Protected areas. (c) Background image.
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+
i,jlog2p

+
i,j + p

−
i,jlog2p

−
i,j􏽮 + 1 − p

+
i,j − p

−
i,j􏼐 􏼑log2 1 − p

+
i,j − p

−
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To achieve the minimum distortion D, STC encoding is
used. Let the secret bitsm� [m1,m2, . . .,mc]T ∈ {0, 1}c, cover
pixels c� [c1, c2, . . ., cMN]T, and stego pixels y� [y1, y2, . . .,
yMN]T. -en, m can be embedded into c using

Emb(c, m) � arg min
yl∈C(m)

D(c, y),

D(c, y) � 􏽘
ci ≠yi

ρ yi−ci( )
i ,

(12)

where yl ∈ {0, 1}MN is the least significant bits of the stego
image, C(m)� {z ∈ {0, 1}MN|Hz�m} is the companion set of
m, and H ∈ {0, 1}c×MN is a predefined low-density parity test
matrix related to embedding speed and embedding effi-
ciency. -e embedded bits m can be extracted simply by a
matrix multiplication operation:

m � Hyl. (13)

To fit the requirements in our method, we improve the
popular cost functionHILL for STC by combining variations
within and between adjacent pixel channels. Specifically, we
divide the cover image into four regions (marked with green,
blue, black, and red in Figure 6) using the cost values of HILL
and edge connectivity. -e pixel complexity of the four
regions decreases in the order of green, blue, black, and red.
In other words, the green region has the most complex pixels
and is the best embedding region for the whole image.
-erefore, secret bits are embedded into the green region
preferentially.

4. Experimental Results

-is section presents the experimental evaluation results.
Firstly, we introduce the database employed and the
corresponding parameters. -en, experiments for each
part are presented in turn and their validity is
demonstrated.

4.1. Performance for Antiforensics. To evaluate the perfor-
mance of antiforensics, we randomly select images from the
database for validation and interactively select the areas to be
protected, as mentioned in Section 2.

In each image, the selection of the protected area is
irregular shape generally. For later embedding of data, we
strictly controlled the ratio of protected areas to the image to
less than 6.66%.We use two separate forensic approaches for
the forensic analysis of our results: one is pattern forensics by
pattern noise, and the other one is based on changes between
and within adjacent pixel channels.

Firstly, we select 50 landscape images sized 512× 512
from Today’s Headlines. As shown in Figure 7, we selected
four of them, I1, I2, I3, and I4 in turn. Table 1 lists the space
proportion t and the number of pixels to be embedded in the
whole image of the corresponding protection area of the four
images in Figure 7. Figure 7(c) shows the images after being
inpainted based on DFNet, Figure 7(e) shows the images
after being inpainted by our method, and Figures 7(d) and
7(f ) show the pattern noise maps of Figures 7(c)∼7(e), re-
spectively. Comparing with the ground truth Figure 7(b), we
find that Figure 7(d) has obvious traces at the repair edges,
whichmakes the repair region easy to be forensically located.
While our method overcomes this drawback well, it is
difficult to forensically locate our tampered region from the
pattern noise forensic aspect only. It shows that our aspect
has a good antipattern noise forensic effect.

In Figure 8, we show the experimental results for five
images (M1, M1, M3, M4, and M5) in the UCID database,
sized 384× 512. Table 2 lists the space proportion t and the
number of pixels to be embedded in the whole image of the
corresponding protection area of the four images in Figure 8.
Two traditional methods and a deep learning method are
used for comparison, where the traditional methods are
edge-oriented and Delaunay-oriented provided by G’MIC
[48], a full-featured open-source framework for image
processing. -e deep learning-based one is the DFNet
method mentioned in [16].

A

M

B
Input image (I)

Feature maps (Fk)

Resize

Scaled input (Ik) 

Raw completion (Ck)

Alpha composition map (ak) Completion result (I′k) 

Missing area Learnable function

Figure 5: Illustration of fusion block.
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Comparing from the subjective vision, both our ex-
perimental results and the deep learningmethod outperform
the traditional method and achieve good visual connectivity
at the edges. In particular, in row 7 of Figure 8, the effect at
the red petal achieves a good visual effect after blending with
the primary restored image by our secondary processing of
the restored edges.

In addition, we localized the inpainted image for fo-
rensics by the forensic algorithm proposed in [46], as
shown in the even rows of Figure 7. -e traditional
restoration-based algorithm is easy to be detected and
located, and the DFNet-based restoration also achieved
good antiforensic results. However, the images obtained
by our method are more suitable to hide the area to be
protected. In particular, the results are better when the
area to be protected accounts for less than 4% of the whole
image.

In Table 3, we show the F1 values of the five images in
Figure 8, where a smaller F1 value indicates a worse ability to
correctly locate the image and indicates that we have a better
antiforensic effect. We can see from Table 3 that our method
is superior in terms of objective indicators.

4.2. Experiment Setup. In our experiments, we use the free
user-shared image dataset provided by Today’s Headlines,
which contains a large number of people landscapes, and
various life images. We also use the UCID database. Based
on themaximum amount of data that can be embedded in an
image, it can be calculated that the size of the protected area
must not exceed 6.66% of the whole image (T� 6.66%) no
matter how large the image size is. For the structural ele-
ments for the mathematical morphology of the background
process, the circular structure is employed since it has a

(a) (b)

(c) (d)

Figure 6: Examples for area segmentation. (a) Original image. (b) -e result of area segmentation.
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smoother edge where the structure size is 10 for the dilation
operation and 5 for the erosion operation.

To evaluate the performance of image dual-inpainting
against detection and localization, we adopt F1-score, peak
signal-to-noise ratio (PSNR), and mean square error (MSE)
objective indicators to evaluate the inpainting results:

F1 �
2TP

(2TP + FN + FP)
, (14)

where TP (true positive), FN (false negative), and FP (false
positive) stand for the number of detected inpainted pixels,
undetected inpainted pixels, and wrongly detected un-
touched pixels, respectively:

PSNR � 10 × log10
2552 ∗MN

􏽐
M
i�1 􏽐

N
j�1 [B(i, j) − A(i, j)]

2,

MSE �
1

M × N
􏽘

M

i�1
􏽘

N

j�1
[B(i, j) − A(i, j)]

2
,

(15)

where A(i, j) and B(i, j) are the original image and the
inpainted image, respectively.

4.3. Reversibility Analysis. In this section, we show that our
privacy protection method is effective during communica-
tion or sharing. Meanwhile, our method is fully reversible,
which enables data to be extracted when it reaches the re-
cipient side.

In Figure 9, we show five sets of comparisons between
the recovered images and the original images.-e first two
of which are from the Today’s Headlines database and the
last three from the UCID database. In the prerecovery and
embedding image operations, there is no damage or
tampering to the regions other than the region to be
protected. -erefore, under the condition of having the
pixel values and coordinates of the region to be protected,
the original images can be recovered.

Figure 7: Examples from Today’s Headlines. (a) Original image; (b) ground truth; (c) images inpainted via DFNet; (d) the pattern noise of
(c); (e) images restored via our method; and (f) the pattern noise of (e).

Table 1: -e percentage of protected areas in the whole image(t) and the total number of pixels in the protected area(p), I1, I2, I3, and I4
represent the four pictures in Figure 7, respectively.

Image I1 I2 I3 I4
T 1.52% 3.99% 3.51% 5.53%
P 3985 10459 9201 14497
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(a) (b) (c) (d) (e)

Figure 8: Examples from the UCID database. Rows 1, 3, 5, 7, and 9: from left to right, the first image is the original image, and the second to
the fifth images represent the inpainted image by references [16, 48] and our method, respectively. Rows 2, 4, 6, 8, 10: from left to right, the
first image is ground truth, and the second to the fifth images represent the localization result calculated by forensic algorithm 2.
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5. Conclusion

Currently, most of the privacy protection methods only
focus on visual quality, while the real protection needs to
be considered from the perspective of image security
analysis. We propose a reversible privacy protection
scheme using image dual-inpainting and data hiding, in
which the original image can be perfectly recovered.
Experimental results show that after the inpainting of the
image with the removal of the area to be protected by the
dual-inpainting algorithm, antiforensics for the two
current methods for target removal forensics can be
achieved. -e later embedding and extraction of the
protected region also achieve an effective combination of
the two research directions of antiforensics and steg-
anography. In addition, reversible privacy protection not
only effectively stops snooping but also guarantees that
the original image can be recovered when needed.

Data Availability

In our experiments, we use the free user-shared image
dataset provided by Today’s Headlines, which contains a
large number of people landscapes and various life images.
We also use the UCID database.
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Most existing face authentication systems have limitations when facing the challenge raised by presentation attacks, which
probably leads to some dangerous activities when using facial unlocking for smart device, facial access to control system, and face
scan payment. Accordingly, as a security guarantee to prevent the face authentication from being attacked, the study of face
presentation attack detection is developed in this community. In this work, a face presentation attack detector is designed based on
residual color texture representation (RCTR). Existingmethods lack of effective data preprocessing, and we propose to adopt DW-
filter for obtaining residual image, which can effectively improve the detection efficiency. Subsequently, powerful CM texture
descriptor is introduced, which performs better than widely used descriptors such as LBP or LPQ. Additionally, representative
texture features are extracted from not only RGB space but also more discriminative color spaces such as HSV, YCbCr, and CIE
1976 L∗a∗b (LAB). Meanwhile, the RCTR is fed into the well-designed classifier. Specifically, we compare and analyze the
performance of advanced classifiers, among which an ensemble classifier based on a probabilistic voting decision is our optimal
choice. Extensive experimental results empirically verify the proposed face presentation attack detector’s superior performance
both in the cases of intradataset and interdataset (mismatched training-testing samples) evaluation.

1. Introduction

Face authentication technology is widely deployed in real
life. However, most existing face authentication systems are
vulnerable to presentation attacks (PAs). For clarity, the
bona fide and the PA samples are illustrated in Figure 1.
Generally speaking, compared with the bona fide faces, the
PA samples are generated by presenting spoofing artifacts
toward face authentication system.

Since deep learning (DL) shows its outstanding potential
in resolving image classification tasks, numerous DL-based
methods are proposed by utilizing deep networks to extract
deep features from images such as [1–6]. It is known that
DL-based methods can achieve excellent performance when
obtaining enough training data, but in face presentation
attack detection task, the diversity and amount of training
data is often not satisfied, and overfitting is also a vexing
problem. To enable a presentation attack detection system be
applicable to various environment, domain adaptation [7]

manner is explored to resolve the overfitting. Moreover,
similar to the two-stream strategy utilized in copy-move
forgery [8], there is also two-stream-based method for
learning fusion features to resolve PA detection problem [9].

Compared with DL-based methods, hand-crafted fea-
ture-basedmethods paymore attention to extract predefined
specific patterns, which are more explainable. We can
mainly divide these techniques into three categories: mo-
tion-related cue [10–13], image quality [14–16], and texture-
based analysis [17–24]. Motion-related cue-based methods
are highly robust in some specific cases, but the general-
ization ability is not satisfactory. Image quality artifact-based
methods are not robust enough and computationally
complex. By contrary, the performances of texture-based
analysis methods are more preferable.

It is known that, in image forensics field, effective data
preprocessing can obviously improve the algorithm’s per-
formance. For example, in [25], a Laplacian filter is used for
input enhancement. And, in [26], the Schmid filter is used to
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enhance texture information. However, to the best of our
best knowledge, in face antispoofing field, there is still a lack
of effective measure of preprocessing. In this work, a novel
perspective is introduced that nuisance noise can interfer-
ence extracting representative features from face images, and
we introduce a wavelet-based filter to preprocess the original
image, which can successfully make the model perform
better. *e assumption is inspired by that in the process of
using image sensors such as CCD and CMOS to capture
images; due to the influence of the sensor material prop-
erties, electronic components, and circuit structure, various
noises will be introduced, such as Gaussian noise, salt and
pepper noise, speckle noise, shot noise, and white noise.
However, such noise does not seem to be helpful for face PA
detection. *erefore, analytical experiments are conducted
to investigate how the difference changed between the bona
fide and the PA faces by using residual (noise-free) images
instead of original images (see Tables 1 and 2 ). For more
intuitive, discrete wavelet transform is applied to conduct a
similarity-based analysis, which is specifically described in
Figure 2. By applying a discrete wavelet filtering (DW-fil-
tering), compared with the original image, the similarity
between the bona fide face and the PA from residual image is
the lowest, meaning that the features extracted from both
bona fide face and PA from residual image can be more
discriminative than the others. Besides, since the effective-
ness of texture analysis in color spaces is verified in [21],
which utilizes two local texture descriptors (CoALBP and
LPQ) and one classifier such as SVM, an assumption can be
further drawn that if a high efficient classifier such as en-
semble one, together with more discriminative descriptors
for color residual texture representation is adopted, the
performance of the detector can be further improved. *e
contributions of this paper can be summarized as follows:

In RGB space, luminance and chrominance informa-
tion cannot be effectively characterized. However, the
concerning color information stored in different
channels is of importance for generating more dis-
criminative color features. *erefore, many works
consider extracting features by using HSV, YCbCr
space, or fusion of them. Nevertheless, for the differ-
entiability of various color channels and the best
combination of them, there is still a lack of deep

exploration. In the following sections, we have con-
ducted extensive analytical experiments and in-depth
discussions on this issue. A total of four color spaces are
taken into account, namely, RGB, HSV, YCbCr, and
LAB.
Existing methods lack of effective data preprocessing. In
fact, an effective preprocessing operation can signifi-
cantly improve the performance of the detector. In the
preprocessing stage of this work, we propose to adopt
DW-filter for obtaining residual image, which effectively

Figure 1: Cropped example face images extracted from the FASD. From the left to the right: genuine face, print attack, and replay attack,
respectively.

Table 1: *e Chi-square distances (i.e., dχ2 ) for different color
channels in original images. Larger dχ2 value is indicated in bold
compared to Table 2.

Color channel FASD RAD MSU
RGB-R 154.0 115.1 94.5
RGB-G 278.3 120.7 103.6
RGB-B 323.3 130.3 114.1
HSV-H 1062.7 766.0 717.0
HSV-S 404.4 242.4 304.7
HSV-V 188.1 115.4 100.8
YCbCr-Y 253.6 198.2 103.8
YCbCr-Cb 191.6 311.4 141.3
YCbCr-Cr 147.5 206.3 127.5
LAB-L 235.6 120.1 102.3
LAB-A 151.2 177.7 146.8
LAB-B 182.7 212.3 151.8

Table 2: *e Chi-square distances (i.e., dχ2 ) for different color
channels in residual images. Larger dχ2 value is indicated in bold
compared to Table 1.

Color channel FASD RAD MSU
RGB-R 165.0 118.6 99.3
RGB-G 289.4 122.9 106.6
RGB-B 328.9 130.6 114.4
HSV-H 1123.4 942.6 818.7
HSV-S 482.2 239.7 307.2
HSV-V 203.7 126.7 99.4
YCbCr-Y 253.1 199.3 103.6
YCbCr-Cb 200.7 313.0 253.4
YCbCr-Cr 246.9 212.8 250.1
LAB-L 239.6 120.0 107.4
LAB-A 418.7 325.3 287.5
LAB-B 198.7 213.8 262.6
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alleviates the interference caused by nuisance noise while
retaining valuable information for presentation attack
detection. Meanwhile, extensive analytical experiments
are conducted to further verify the effectiveness of the
utilization of the residual image.
Among texture-based arts, the optimal choice of the de-
scriptor is not well investigated. *us, we mainly describe
and analyze five widely used texture descriptors, namely,
the CM, LBP, CoALBP, LPQ, and BSIF. According to the
experimental results, the CM feature outperforms others in
color spaces. Accordingly, our proposed RCTR is con-
structed relying on the powerful CM feature extracted in
color channels of the residual image.
Most existing hand-crafted feature-based methods use
single classifier such as SVM, which cannot always
perform well. In this work, the performance of three
widely adopted classifiers is well investigated, including
LDA, SVM, and XGBoost. And, an ensemble classifier
based on the probabilistic voting decision is designed.
In the case of inter- or intradataset testing, our RCTR-
based detector that employs the ensemble classifier
shows satisfactory performance.

*e remainder of this paper is organized as follows. In
Section 2, the related works are presented. In Section 3, our
proposed approach is described in detail. *ree benchmark
face presentation attack datasets are introduced in Section 4.
In Section 5, we provide comprehensive experimental results
and analysis. Last but not least, concluding remarks are
drawn in Section 6.

2. Related Works

To address the challenge introduced by face presentation
attacks, many presentation attack detection techniques have
been proposed, which can be arbitrarily formulated into two
categories: deep learning-based methods and hand-crafted
feature-based methods. *e specific overview is extended as
follows.

2.1. Deep Learning-Based Methods. Deep learning can
achieve promising results in the field of computer vision,
which is also very effective when tackling face presentation
attack detection task. In [2], CNN is utilized to extract deep
features, and SVM is employed instead of fully connected
layers for classification. Atoum et al. [27] present a two-
stream network architecture to learn patch-based and depth-
based features, and the classification result is determined by
the fusion scores of both two streams. Rather than merely
extracting spatial feature, a 3D-CNN structure is proposed
in [6] to exploit the spatial-temporal features, which can
capture more visual cues that are indeed useful for face
presentation attack detection task. Meanwhile, a domain
generalization regularization approach is incorporated for
further enhancing the model generalization ability. Previous
deep learning-based face presentation attack detection ap-
proaches formulate the task as a binary classification
problem. Liu et al. [28] emphasize the importance of aux-
iliary supervision. Specifically, a CNN-RNN architecture is
proposed to utilize depth map information and rPPG
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Figure 2: *e CS of the bona fide and the PA samples. Residual image is obtained by DW-filter, where “Residual Image�Original
Image−Noise Image.” θ is the angle corresponding to the CS, which is inversely proportional to the image similarity.
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(remote Photoplethysmography) signs, which can both
exploit spoof patterns across spatial and temporal domains.
In [29], an augmented dataset is collected in a specific image
synthesis way, which can further improve the robustness of
the model.

DL-based methods usually have superior classification
accuracy when training and testing samples belong to similar
scenes. However, due to heavily relying on a large-scale well-
designed dataset, the performance of many DL-based
methods will sharply decrease when dealing with mis-
matched training and testing samples. Poor generalizability
is more serious in earlier DL-based methods [3]. And, in
recent works [30–32], such defect is significantly improved.

2.2. Hand-Crafted Feature-Based Methods. *e methodol-
ogies in this category mainly rely on defining specific pat-
terns in advance for extracting discriminative features.
Given that face presentation attack samples tend to be static,
motion analysis-based schemes are developed, such as eye
blinking [10], mouth movement [11], and just holistic face
region movement analysis [13]. In general, the biometric
information can be successfully obtained by analyzing the
optical flow in specific areas of the image. Although the
motion-related cue-based methods perform well when
dealing with print attack, they may fail to complete the task
of replay attack detection, where the motion-related cue for
presentation attack detection can be easily inferred. Besides,
image quality also can be a vital measurement toward face
presentation attack detection. Galbally et al. [15] propose to
resolve presentation attacks by calculating prominent factors
among 25 image quality metrics. Di et al. [16] introduce an
image distortion analysis countermeasure by evaluating four
presentation attack patterns: specular reflection caused by
display device, image blurriness, chromatic distribution
variation, and poor color diversity. However, due to heavy
computation, these methods are not efficient enough. It is
worth mentioning that although various hand-crafted fea-
ture-based methods are proposed, there is still a lack of
effective preprocessing to further improve the performance
of the detector.

In addition, the effectiveness of texture descriptors in
resolving face presentation attack problems has been verified
by some works. For instance, multiscale local binary pattern
(MSLBP) descriptor is designed for face presentation attack
detection in [17], and a novel facial texture representation is
introduced by using the spatial and temporal extensions of
the local binary pattern (LBP-TOP) [33]. Besides, it is worth
noting that Boulkenafet et al. [21] present a novel and ap-
pealing face presentation attack countermeasure by using
color texture features, based on the assumption that gray-
scale images are often used to display illuminance infor-
mation, while more helpful color information are discarded.
In fact, the RGB image cannot completely separate the lu-
minance and chrominance signals while color texture fea-
tures can be well extracted fromHSV and YCbCr spaces. It is
well-known that print attacks utilize photos of legitimate
users to fool the face recognition system, while replay attacks
often utilize electronic device such as mobile or tablet. Due

to the restriction of the limited color gamut, the fake faces
presented on the display device often show color
degradation.

*e effectiveness of texture descriptors and color space
features in resolving face presentation attack detection task
are verified. However, the discriminative features are gen-
erally extracted from original pixels in spatial domain, which
are more or less impacted by nuisance noise introduced
during image capturing. Besides, the study of combining
various texture features within different color spaces to
achieve the optimal color texture features still remains open
in this community. Additionally, to the best of our
knowledge, one single classifier cannot always bring optimal
prediction results, compared with the powerful ensemble
classifier. In virtue of our theoretical and empirical analysis
in this paper, those negative factors can lead to bad detection
results when training samples are mismatched with testing
samples. To address those challenges, dependent of residual
image via DW-filtering, it is proposed to design a high ef-
ficient ensemble face presentation attack detector based on
RCTR.

3. Proposed Method

In this section, we specifically present the RCTR-based face
presentation attack detection method. For clarity, let us first
illustrate the overall framework in Figure 3. First of all, face
alignment is applied to calibrate the face region from full
frame. Next, a DW-filter is utilized to process the high-
frequency coefficients in order to obtainmore discriminative
residual image.*en, the residual image is transformed from
RGB into another color space (e.g., YCbCr). Subsequently,
texture descriptor is applied to extract rich texture infor-
mation, in which a comprehensive representation is con-
structed by combining optimal descriptor feature vectors,
namely, RCTR. Finally, we design an ensemble classifier with
the effective strategy of probabilistic voting decision, which
can successfully complete the task of face presentation attack
detection.

3.1. Analysis of Color Space. *e samples of PA face are
passed through different cameras or printing mediums (such
as photos, mobiles, and tablets), so they can actually be called
a kind of recaptured image. *erefore, we can assume that
when generating PA samples, inherent differences in color
channel between the bona fide and PA images are intro-
duced during the recapturing process. *is is due to the
color gamut caused by the display medium and other defects
in color reproduction, such as display imperfection, or noise
signals. Compared to bona fide face samples, the camera
used to capture the target face photos also brings about
imperfect color reproduction. *us, it is reasonable to use
color images instead of gray-scale images for face presen-
tation attack analysis. RGB is widely used, but other color
spaces are also worthy of attention. Because color compo-
nent and luminance component cannot be perfectly char-
acterized in RGB space, it can be better discriminated in
other space such as HSV. *ere are various color spaces
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which have been proposed, and we consider analyzing bona
fide face and PA images in four different color spaces: RGB,
HSV, YCbCr, and LAB. *erefore, a metric is designed to
examine which color space or channel is more distin-
guishable and details of the metric are as follows.

Firstly, for given image I with the size l × l, the corre-
lation coefficient between the adjacent pixels in each color
component Ic (c ∈ R, G, B1, H, S, V, Y,Cb,Cr, L, A, B2􏼈 􏼉) are
calculated, which can be formulated as

m
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where I
c represents themean pixel value of Ic. For simplicity,

we only consider the diagonally adjacent pixels. It can be
drawn that the larger the mc

i , the higher the relevance be-
tween the adjacent pixel values of given I

c.
Subsequently, for given bona fide face image set, mc

i of
each image is calculated and the corresponding histogram
Hc

bf can be constructed. And, for the given PA image set, the
histogram Hc

pa can be obtained in the same way. *en, Chi-
square distance is used to measure the similarity between the
two histograms, which can be formulated as

dχ2 H
c
bf, H

c
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, (2)

where b is the bin index of the histogram. Similarly, the
larger the dχ2 , more significant the difference between the
bona fide images and the PA images.

To evaluate the disparities between the bona fide face and
the PA face in each color component, 10000 bona fide face
images and 10000 PA face images are extracted from FASD,
RAD, and MSU dataset, respectively, to perform analytical
experiments. As introduced above, mc

i s of all images is
calculated, the corresponding histograms Hc

bf and Hc
pa are

obtained, and their dχ2 s are also calculated, which can be
seen in Table 1. *roughout the results of the three datasets,
the dχ2 values in RGB space are relatively stable (the
maximum is 323.3, and the minimum is 94.5); this is because
color components and luminance components are not well
separated. As for the results on FASD, it can be observed that
when using H channel, the dχ2 value is 1062.7, which is

significantly larger than any other channel. And, the result of
the S channel is 404.4, which is the second largest. As for the
V channel, the dχ2 value is relatively small. *is is meaning
that the bona fide faces and the PA images are more dis-
tinguishable in color components (i.e., H and S channel)
than in luminance component (i.e., V channel). As for
YCbCr and LAB spaces, the differences between color
component and luminance component are not as obvious as
in HSV space. Similar conclusions can also be drawn from
the results of RAD and MSU dataset.

Besides, only conducting analytical experiments are not
enough to predict the actual situation; thus, extensive ex-
periments are conducted to further investigate the benefit of
color spaces transforming for face presentation attack de-
tection (see Figure 4, for details).

3.2. Generation of the Residual Image. Face presentation
attacks are implemented by printing human faces on various
display media, such as A4 paper, mobile, and tablet screen.
*ough bona fide or PA samples are presented toward face
authentication system, the nuisance noise is unavoidably
introduced during image capturing process. A reasonable
assumption can be made that nuisance noise existing in the
face image, including bona fide and PA samples, might more
or less impact the effectiveness of presentation attack de-
tection, while the features extracted from the residual face
image are more discriminative than that of original face
image.*erefore, we propose to apply DW-filter for residual
image extraction. It is important to study whether applying
DW-filtering preprocessing operation in our scheme is ef-
fective to suppress nuisance noise from face image and
meanwhile helpful to learn color texture features for pre-
sentation attack detection. To visually verify our hypothesis,
we conduct the face image similarity-based analysis (see
Figure 2 for illustration). By applying DW-filter, we segment
the original face image to residual and noise one.Meanwhile,
the statistical histogram of the pixels of each image is used to
evaluate the similarity between two classes of face images,
which is measured by the CS (cosine similarity):

CS(X, Y) �
X · Y
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Figure 3: A pipeline of our proposed face presentation attack detection method, and YCbCr space is used here as an instance.
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where ‖ · ‖ denotes the 2-norm and xi or yi represents the
frequency in ith gray level of histogram from compared
images. In Figure 2, we can observe that the CS between the
noise images of bona fide and PA faces is 0.841. Meanwhile,
we also observe that the CS between original images is 0.809,
larger than 0.759 from residual images. *at is because the
noise components in face images are filtered out, which
makes the inherent defects introduced by presentation at-
tack operation to bemore discriminative. In addition, we can
also notice that the CS of noise image is higher than that of
the original images, which further proves the interference
effect of nuisance noise.

To further verify the effectiveness of the use of residual
image, similar analytic experiments following the settings in
Section 3.1 are conducted; the only difference is that the
residual image is used instead of the original image (see
Table 2, for illustration). It can be observed that compared to
Table 1, most dχ2 values for residual images are generally
larger than that for original images; only a few color channels
show a slight decrease (all larger dχ2 values are indicated in
bold in the table). Specifically, when using original images on
RAD, the dχ2 value of H channel is 766.0, and this value is
increased to 942.6 when using residual images. Furthermore,
for residual images, color components become more dis-
tinguishable in YCbCr and LAB spaces. Specifically, the dχ2
value of Cb channel for residual images is 246.9, while the
counterpart for original images is 147.5. And, the dχ2 value of
A channel for residual images is 418.7, while the counterpart
for original images is just 151.2.

Based on the above analysis, we can draw that the
discrimination between the bona fide and the PA faces can
be further enhanced by adopting residual image instead of
the original one. *at is undoubtedly beneficial for pre-
sentation attack detection. *us, prior to feature extraction
such as residual color texture representation in this paper, it
can hold true that we first proceed the preprocessing by
using an effective filter.

*e proposed algorithm needs to preprocess an inquiry
face image by filtering. DW-filter serves as a useful tool to
preliminary acquire the residual image (see Figure 2 for
instance). DW-filter has performed its powerful advantage at
decomposing high and low frequencies [34]. *e application
of 2D-DWT in image processing is mainly to decompose the
inquiry image through multiscale decomposition. A 2D-
DWTprocess over an original image I with the size l × l can
be formulated by

f2D−DWT(I) �
ILL IHL

ILH IHH
􏼢 􏼣, (4)

where the original image I is decomposed into four sub-
images: ILL, IHL, ILH, and IHH with the size l/2 × l/2. ILL
corresponds to the approximation component (low fre-
quency) of the image, while the remaining three IHL, ILH,
and IHH correspond to the horizontal detail component,
vertical detail component, and diagonal detail component,
respectively. As shown in Figure 2, when performing DWT
filtering, the similarity between genuine face and fake face is
reduced. In this case, the noise component is weakened after
filtering, while the valuable information for presentation
attack detection is preserved.

In particular, let us conduct DW-filtering proposed in
[35], which can be formulated by

Wλ �
sgn(|w| − λ), |w|≥ λ,

0, |w|< λ,
􏼨 (5)

where W represents the wavelet coefficients to be filtered,
sgn(·) is the sign function, and λ is the given threshold. In
this work, we take the thresholding as a filter to preprocess
face images. For instance, the sqtwolog threshold can be
calculated by

λ � 2
������

2 log(l)

􏽱

. (6)
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Specifically, let us introduce the process of the DW-
filtering based on 2 layer decomposition in three steps:

*e widely adopted haar wavelet base is selected, and
the given original face image is decomposed by ap-
plying MALLAT decomposition algorithm [34]. Ac-
cordingly, the wavelet coefficients of each layer are
successfully obtained.
Based on the given threshold λ, the high-frequency
components obtained by decomposing each layer are
quantized, while the low-frequency component re-
mains unchanged.
By means of MALLAT reconstruction algorithm, the
low-frequency component of the 2nd layer after de-
composition and the high-frequency components of
each layer are reconstructed by inverse DWT, and fi-
nally, the residual face image by wavelet thresholding is
generated.

3.3. Feature Extraction by Texture Descriptor. Based on the
previous analysis, we decide to extract texture features from
multiple color channels in residual images. It should be
noted that color texture features are obtained by applying
descriptors not only in gray-scale image but also in color
channels. *at is because the color image can provide more
valuable information for presentation attack detection,
which is beneficial to improve detector’s robustness and
accuracy. In this work, the co-occurrence matrix [36] is
employed, which is widely used in image texture analysis.
Moreover, widely adopted descriptors such as the LBP [37],

LPQ [38], CoALBP [39], and BSIF [40] are also introduced.
In this section, we mainly overview these descriptors.

3.3.1. CM. *e co-occurrence matrix (CM) describes the
distribution of intensity and information about the relative
position of adjacent pixels in the image, which can measure
the correlation among adjacent pixels and hence gather
valuable information from recurrent micropatterns. Before
calculating CM, for given image I, first-order differential
operator is applied to suppress the image content, namely,

􏽢I(x, y) � I(x, y) − I(x, y + 1), (7)

where (x, y) denotes the pixel coordinate and 􏽢I is the
resulting image. It should be noted that only horizontal
difference is considered here. As a result, the dynamic range
of the image content is much narrower so that more reliable
statistical description can be carried out. Subsequently, a
truncating operation is conducted because there are too
many distinct element values in the original image, which
could result in huge dimension of the CM feature vector.*e
truncated image is calculated as follows:

T(x, y) �

c, 􏽢I(x, y)≥ c,

􏽢I(x, y), −c< 􏽢I(x, y)< c,

−c, 􏽢I(x, y)≤ − c,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

where c> 0 is the truncation threshold, and the result T is
then used to compute the CM. Typically, a d order CM of the
2D array T can be obtained by

CM θ1, θ2, . . . , θd( 􏼁 �
1
N

􏽘 1 T(x, y) � θ1, T(x + Δx, y + Δy) � θ2, . . . ,􏼂

T(x +(d − 1)Δx, y +(d − 1)Δy) � θd􏼃,

(9)

where θ1, θ2, . . . , θd are the index, 1(·) is the indicator
function, N is the normalization factor, and Δx and Δy are
the offsets. *e effectiveness of the CM is validated in
steganography detection [36] and face recognition [41].
However, in face presentation attack detection field, the use
of the CM is not well explored.

3.3.2. LBP. *e Local Binary Patterns (LBP) perform very
well when depicting image structure information such as
edges.*e LBP is obtained via comparing each central pixel to
its neighborhood one in the block, where the LBP features are
described as a binary sequence, which can be formulated by

LBPp,r xc, yc( 􏼁 � 􏽘
P−1

p�0
s gp − gc􏼐 􏼑2p

, s(k) �
1, if k≥ 0,

0, otherwise,
􏼨

(10)

where gc denotes the value at the central pixel coordinate
(xc, yc), while gp, p ∈ 0, 1, 2, . . . , P − 1{ }, represents the

value of the neighboring pixel in the block, and r denotes the
radius. For instance, when r � 1, P equals to 8. *en, the
binary patterns are collected by statistical histograms to
represent the image texture information. In general, high
robustness toward luminance variation, rotation invariance,
and low-computational complexity are the advantages of
LBP descriptor. When a face image is tested, we cannot
guarantee that it is correctly presented in front of a digital
camera of presentation attack detector. *us, the robustness
of resisting rotation attack is crucial. However, the LBP
feature contains only intensity relationships between adja-
cent pixels and lack of spatial relationship information,
which raises the performance limitation.

3.3.3. CoALBP. For the sake of compensating the missing
spatial relationship information in the LBP features, the co-
occurrence of adjacent local binary patterns (CoALBP) is
proposed in [39]. In this method, two simplified LBP
configurations, denoted as LBP (+) and LBP (×), are

Security and Communication Networks 7



introduced. LBP (+) considers two horizontal and two
vertical pixels, while LBP(×) considers four diagonal pixels.
Before calculating the co-occurrence information of LBPs,
each LBP is transformed to its vector form by using Kro-
necker delta:

Vi(B) � δi,l(lbp(B)),

δa,b �
1, if a≠ b,

0, otherwise,
􏼨

(11)

where i ∈ 0, 1, 2, . . . , n − 1{ }, n is the number of neighbor
pixels, B is the position vector in an image intensity I, and
l(lbp(·)) denotes a decimal number label of lbp(·). For
example, if the given binary sequence is 0010, the corre-
sponding label is 2. If all possible LBP label values are in the
range [0, N] (N � 2n), an N × N autocorrelation feature
matrix H can be calculated by

H(D) � 􏽘
B∈I

V(B)V(B + D)
T
, (12)

where D is the displacement vector between two LBPs. Four
displacement vector are set as follows: D1 � (ΔB, 0)T,
D2 � (ΔB,ΔB)T, D3 � (0,ΔB)T, and D4 � (−ΔB,ΔB)T,
which correspond to the direction of 0°, 45°, 90°, and 135°. At
last, the four resulting matrices are concatenated to form the
final CoALBP feature. It should be noted that although the
CoALBP descriptor preserves more spatial information than
LBP, the high dimension of CoALBP feature increases the
computation cost of training a classifier.

3.3.4. LPQ. *e local phase quantization (LPQ) is originally
proposed by [38] to solve the problem of inaccurate clas-
sification caused by image blurring.*e LPQ descriptor uses
local phase information, which is extracted through the
short time Fourier transform (STFT) based on the square
region. *e resulting STFT within the region of g × g sur-
rounding the central pixel position m from the given image
is defined by

Fu(m) � w
T
ux, (13)

where wu represents the basis vector of the 2D discrete
Fourier transform at the frequency u and x denotes the
vector containing all pixels in the region of l × l. Specifically,
the Fourier complex coefficients are calculated at four 2D
frequencies: u0 � (s, 0)T, u1 � (s, s)T, u2 � (0, s)T, and
u3 � (s, s)T, where s is a small scalar and s≪ 1. *en, the
basic LPQ feature can be formulated by

Q(m) � RC Q
c
(m)􏼈 􏼉, IC Q

c
(m)􏼈 􏼉􏼂 􏼃,

Q
c
(m) � Fu0

(m), Fu1
(m), Fu2

(m), Fu3
(m)􏽮 􏽯,

(14)

where RC ·{ } and IC ·{ } mean to return the real component
and imaginary component of a complex number, respec-
tively. In addition, each element of Q(m) is quantized as a
binary sequence by a preliminary defined function. At last,
the resulting binary sequence is represented as decimal
integer values in the range [0, 255] and collected into feature
histogram, which is similar to LBP. While LPQ is known to

possess invariance to blurring effects, as discussed in [16], it
is possible that image blurring is relevant to face presen-
tation attack.

3.3.5. BSIF. Without loss of generality, the optimal selection
of local features can effectively capture the relevant structure
characteristics of the image. Alternatively, the binarized
statistical image features (BSIF) [40] are adopted in a
manner, in which an inquiry image is convolved with a
linear filter, and then, the binary code of the filter response is
obtained. By means of independent component analysis
(ICA), the weight values of the filters are learned from a set
of natural image patches by maximizing the statistical in-
dependence of the filter responses. Given an image block C

and a bank of linear filters with the same size, the con-
volutional response ri is computed by

ri � C∗Wi, (15)

where Wi denotes the filter, i ∈ 1, . . . , n{ }. Specifically, in this
work, 8 filters are used (i.e., n � 8). And, then, the binarized
feature is obtained:

bi �
1, if ri ≥ 0,

0, otherwise.
􏼨 (16)

It should be noted that the filter Wi has been well-trained
by learning a set of heterogenous natural images which is
different from the face images. *erefore, the BSIF features
can avoid tedious filter design and parameter tuning.
Moreover, the BSIF descriptor is capable of serving as a
general descriptor to deal with various presentation attack
scenarios in the practical detection.

3.4.Designof theClassifier. After extracting valid features, an
efficient and accurate classifier is supposed to design.
Various classifiers are adopted in face presentation attack
detection (see [12, 42–44], for instance). In general, the
monotone classifier structure equipped with fixed param-
eters possibly leads to the deviation of classification results.
In order to achieve high level detection accuracy and gen-
eralization ability, we intend to investigate the following
classifiers and select the optimal scheme of designing a
classifier based on the proposed color residual texture
representation.

3.4.1. LDA. Linear discriminant analysis (LDA) is a su-
pervised approach that is widely adopted in the field of face
recognition [45] and face presentation attack detection [12],
which can be used for both dimensionality reduction and
classification. *e objective of LDA is to find a proper
projection that maximizes the between-class scatter matrix
and minimizes the within-class scatter matrix in the pro-
jective feature space. In the past, the image data was directly
used as input, but when dealing with the high-dimensional
face data, LDA often suffers from the small sample size
problem. In this work, we extract texture descriptors with
strong expressiveness from face images and relatively low
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dimension features are extracted. *en, LDA can also be
used as a classifier to be considered.

3.4.2. SVM. Support vector machine (SVM) is a kind of
classifier of generalized model for binary classification tasks
based on supervised learning. By utilizing the kernel
method, nonlinear classification tasks can also be accom-
plished. Due to the outstanding property of sparsity and
robustness, SVM is often used when resolving face recog-
nition missions [46]. *e decision boundary of SVM is the
maximum margin hyperplane for the solution of learning
samples. Furthermore, SVM uses hinge loss functions to
calculate empirical risks and adds regularization terms to the
solution system to optimize structural risks. Face presen-
tation attack detection can be considered as a binary clas-
sification task, and support vector machines are classifiers
with the potential to cope with such task. More importantly,
the feature size obtained by our hand-crafted feature-based
method is relatively large, and SVM performs well when
learning high-dimensional feature vectors.

3.4.3. XGBoost. By optimizing the boosting algorithm on
the basis of gradient boosting decision tree (GBDT), extreme
gradient boosting (XGBoost) has been employed to resolve
the classification and regression problems in many fields
[47]. In fact, XGBoost is still based on the tree model.
Hundreds of tree models with low classification accuracy are
combined to iterate continuously, and each iteration gen-
erates a new tree. XGBoost adds a regular term to the cost
function to control complexity. From the perspective of bias-
variance trade off, the regular term reduces the variation of
the model, makes the learned model simpler, and prevents
overfitting. When conducting face presentation attack de-
tection, a detector based on XGBoost classification possibly
produces superior generalization ability dealing with het-
erogenous data.

3.4.4. Ensemble Classifier. As [48] states, to make an en-
semble decision, constituent classifiers should be heterog-
enous, and meanwhile, their classification performances
should be comparable. Accordingly, three base classifiers
(LDA, SVM, and XGBoost) are selected in our well-designed
ensemble classifier. Actually, we have also tried other kinds
of classifiers, such as Naive Bayesian and Decision Tree.
However, these two classifiers are not adopted in our design
due to unsatisfying performance. *e scheme of voting
decision can be referred to as a soft voting, which is not a
simple majority rule. Specifically, the average of the prob-
ability that all model prediction samples are in a certain class
is taken as the threshold, and the corresponding class with
the highest probability will bring the final prediction result.
As Figure 5 illustrates, Classifier 1 and Classifier 2 both
predict the test sample “Bona Fide,” and only Classifier 3
outputs “PA,” while after the soft voting decision, the final
result is still “PA.” *e experimental results in Section 5.4
also can verify that our carefully designed voting scheme
produces better performance than using single classifier.

4. Description of the Benchmark Datasets

In this work, four challenging benchmark datasets are used
to evaluate our proposed detector: CASIA Face Antispoofing
Dataset (FASD), Replay-Attack Dataset (RAD), MSU Mo-
bile Face Spoof Dataset (MSU), and ROSE-YOUTU Face
Liveness Detection Dataset (ROSE). For clarity, a summary
of the four datasets is illustrated in Table 3. Detailed de-
scriptions of the four datasets are given as follows.

4.1. CASIA Face Antispoofing Dataset. *e CASIA Face
Antispoofing Dataset [49], released in 2012, consists of 600
video clips from 50 different clients. *ere are three attack
types involved. (1)Warped Photo Attack. *e photograph of
the legitimate client is presented to the camera, and the
movement of the face is simulated by bending the photo. (2)
Cut Photo Attack. *e eye area in the face photo is cut out
and a person blinks behind the paper hole. (3) Replay Video
Attack. High-resolution video of face is displayed on a tablet.
*ere are three imaging quality level used to record the
whole real accesses and spoofing attacks. (1) Low-quality,
with 640 × 480 resolution, captured by a cheap USB-camera.
(2) Normal-quality, with 480 × 640 resolution, captured by
another USB-camera better than the former. (3) High-
quality, with 1280 × 720 resolution, captured by a Sony
NEX-5 camera. *e recordings of the total 50 clients are
established, in which 20 clients are split into training set and
remaining 30 clients into testing set.

4.2. Replay-AttackDataset. *e Idiap Replay-Attack Dataset
[19], released in 2012, includes 1200 video recordings of both
real accesses and spoofing attacks from 50 subjects. *e
video recordings are collected at two different stationary
conditions. (1) Controlled. Uniform background scenes and
lighting equipment are applied. (2) Adverse. Background is
not uniform and only natural day-light illuminates. Under
the same environments, each client is taken two high-res-
olution photos with Canon PowerShot SX150 IS and iPhone
3GS, respectively. *ese recordings are utilized to fabricate
the spoofing attack samples. In total, there are three attack

LDA SVM XGboost

Bona fide PA

70% 30% 40%60% 85%15%

P(Real) = (0.7 + 0.6 + 0.15)/3 = 0.483

P(Fake) = (0.3+ 0.4 + 0.85)/3 = 0.517
Predict: PA

Figure 5: A toy example of the voting decision. For clarity, three
base classifiers are used here.
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scenarios. (1) Print. High-resolution face photos are printed
on A4 papers and displayed in front of the camera. (2)
Mobile. High-resolution pictures and videos are displayed
on an iPhone screen. (3) High-def. *e photographs and
videos are shown on an iPad screen with 1024 × 768 reso-
lution. All recordings of 50 clients are partitioned into three
disjoint subsets: (1) Train, (2) Development, and (3) Test,
with 15, 15, and 20 clients, respectively.

4.3. MSU Mobile Face Spoof Dataset. *e MSU Mobile Face
Spoof Dataset [16], released in 2014, consists of 440 video clips
of genuine and fake faces taken from 55 clients in total, while
280 recordings corresponding to 35 clients’ subset are available.
Two types of cameras are used to collect the data: a built-in
camera of Macbook Air 13,” referred to as laptop camera, with
640 × 480 resolution and a front-facing camera of Google
Nexus 5, referred to as Android camera, with a resolution of
720 × 480. *ere are two spoofing attack types included. (1)
Printed Photo. To generate the printed attack samples; a HD
photograph of the client’s face is captured by the Canon 550D
camera, with 5184 × 3456 resolution. *en, the photo is
printed on an A3 paper using a HP color printer. (2) Video
Replay. *e video of the client’s face is first recorded using a
Canon 550D camera and an iPhone 5S back-facing camera.
*e Canon camera is used to capture a HD video with 1920 ×

1088 resolution, which is replayed on an iPad Air screen. And,
the iPhone 5S is used to capture another HD video with 1920 ×

1080 resolution, which is replayed on the iPhone 5S screen.

4.4. ROSE-YOUTU Face Liveness Detection Dataset. *e
ROSE-YOUTU Face Liveness Detection Dataset [7], re-
leased in 2018. ROSE dataset consists 3350 videos from 20
clients. For each client, there are 150–200 video clips with
the average duration about 10 seconds. Five types of mobiles
are used to collect the dataset: a Hasee smart-phone with the
resolution of 640 × 480, a Huawei smart-phone with a
resolution of 640 × 480, an iPad 4 with the resolution of
640 × 480, an iPhone 5s with resolution of 1280 × 720, and a
ZTE smart-phone with resolution of 1280 × 7200. *ree
spoofing attack types are considered: (1) printed paper at-
tack: to generate fake samples; still printed paper and
quivering printed paper (A4 size) are used, (2) video replay

attack: face videos are displayed on Lenovo LCD screen and
Mac screen, and (3) masking attack: masks with and without
cropping are presented.

5. Experimental Results and Analysis

5.1. Experimental Setup. As prior works [19, 21, 50], the face
video recordings in FASD, RAD MSU, and ROSE datasets are
split into single-face region frame, and frame-based experi-
ments are conducted. All face images are normalized into 64 ×

64 size after face alignment; the facial landmarks are localized
by using Dlib 19.14.0 [51]. *e parameter settings of the de-
scriptors are shown as follows: when extracting the CM feature,
two first-order differential operators are applied (in horizontal
direction and vertical direction), the truncation threshold
c � 2, and the order is set as d � 3. And, the offsets are chosen
as (Δx,Δy) ∈ (0, 1), (1, 0){ }. As for LBP feature, the param-
eters P � 8 and R � 1. As for CoALBP feature, LBP (+) is used
with radius R � 1 and the corresponding ΔB � 2. *e pa-
rameters for the LPQ descriptor are g � 7 and s � 1/7. At last,
the filter size of BSIF features is set as 7 × 7. *e dimension of
the texture feature extracted by using the CM, LBP, CoALBP,
LPQ, and BSIF on single channel is 75, 59, 1024, 256, and 256,
respectively. Additionally, scikit-learn toolkit [52] is used for
model training and parameter fine-tuning.

In the following experiments, equal error rate (EER) is
used as a metric. In general, a threshold is adopted to cal-
culate the false reject rate (FRR) and the false accept rate
(FAR). When these two rates are equal by adjusting the
threshold, the common value is referred to as EER. Besides,
HTER also serves as another metric for evaluation (advised
on RAD), which can be formulated by

HTER �
FAR(τ, D) + FRR(τ, D)

2
, (17)

where τ is the value of the EER estimated on the dataset D. It
should be noted that the smaller EER or HTER represents
the better detection result.

5.2. Validation of the Residual Color Texture Representation.
In this section, the CM descriptor is used as an instance to
verify the effectiveness of employing RCTR. Both

Table 3: A summary of the four publicly available face spoofing datasets FASD, RAD, MSU, and ROSE.

Dataset Release time Subjects Video number Acquisition camera Attack scenarios

FASD 2012 50 600 (150 genuine, 450 fake)
Low-quality camera (640× 480) (1) Warped photo

Normal-quality camera (480× 640) (2) Cut photo
Sony NEX-5 camera (1280× 720) (3) Replay video

RAD 2012 50 1200 (200 genuine, 1000 fake) MacBook 13″ camera (320× 240)
(1) Print
(2) Mobile
(3) High-def

MSU 2014 55 (35 available) 280 (110 genuine, 330 fake) MacBook air 13″ camera (640× 480) (1) Printed photo
Google nexus 5 camera (720× 480) (2) Replayed video

ROSE 2018 20 3350 (500 genuine, 2850 fake)

Hasee phone (640× 480) (1) Printed paper
Huawei phone (640× 480) (2) Video replay

iPad 4 (640× 480)
(3) MaskingiPhone 5s (1280× 720)

ZTE phone (1280× 720)
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benchmark FASD and MSU are used for testing. In Figure 4,
the EER of the CM features extracted from gray-scale image,
RGB, HSV, YCbCr, and LAB spaces are presented, where the
SVM classifier is used. As can be clearly observed, the results
obtained by using residual images are generally better than
that of using original images both on the two datasets. *us,
it can hold true that, by using the residual image instead of
the original image, the interference of nuisance noise can be
effectively reduced, while more discriminative features for
presentation attack detection can be extracted. More im-
portantly, the effectiveness of color space transforming can
also be verified in Figure 4. When considering the EER of the
CM features extracted from residual images, the worst result
is shown in the case of gray scale both on FASD and MSU.
Besides, the lowest EER on FASD is 4.5% when using HSV
space, and the best performance on MSU is 5.6% in the case
of YCbCr.

5.3. PerformanceComparison ofDifferent TextureDescriptors.
In this part, the performance of the LBP, CoALBP, LPQ,
BSIF, and CM descriptors are evaluated on FASD, where
SVM classifier is employed, as shown in Figure 6. It can be
observed that the EERs of the CM descriptor (brown col-
umn) is obviously lower than that of the other four types of
descriptors in the cases of RGB, HSV YCbCr, and LAB, and
the CoALBP descriptor (red column) performs best in the
case of gray scale. Since the performance of all descriptors is
relatively poor in gray-scale space, we only consider using
RGB, HSV, YCbCr, and LAB spaces. *us, the CM de-
scriptor is selected to construct the final RCTR.

5.4. Evaluation of Different Classifiers. Subsequently, the
EER results of the CM features on benchmark FASD by
employing different classifiers are presented, as shown in
Table 4. And, for fair comparison, the average EERs of each
classifier is also presented. It can be observed that, basically,
our proposed ensemble classifier maintains the lowest EER
in most cases except in gray scale. Moreover, the average
EER of ensemble classifier is 10.7%, which is still the lowest
among four powerful classifiers. Obviously, our proposed
probabilistic decision-based ensemble classifier can perform
better than using single classifier such as LDA, SVM, or
XGBoost.

5.5. Fusion of the Residual Color Texture Representation.
In this section, the fusion performance of color spaces for
RCTR is well-explored. A total of four color spaces are
considered, namely, RGB, HSV, YCbCr, and LAB. As dis-
cussed above, the CM descriptor is selected to extract texture
features from residual images to construct the RCTR, and
the ensemble classifier is employed. Extensive experiments
based on different color space fusions are conducted, in
which the benchmark FASD and MSU are used for evalu-
ation, as can be seen in Table 5. Furthermore, the perfor-
mance of the combination of only color components is also
explored. Specifically, {H,S,Cb,Cr} means the RCTR
extracted from H, S, Cb, and Cr channels.

As shown in Table 5, when combining the features of all
four color spaces, the optimal performance of RCTR can be
achieved on MSU (with the EER of 2.0%). As for FASD,
when combining RGB, HSV, and YCbCr spaces, the lowest
EER (1.6%) is obtained. Meanwhile, the EER of the RCTR
extracted from {H,S,Cb,Cr} is 4.9% and 6.5%, respectively,
which is not as good as combining all color spaces.

When considering the average value, the EER when
combining all four spaces is the lowest (1.9%). And, it can be
clearly observed that when combining three color or four
spaces, the EERs of the detector are generally lower than
those only combining two spaces. *en, we can draw that, in
most cases, by combining the RCTR features of more color
spaces, the performance of our face PA detector can be
further improved.

25

20

15

10

5

0

EE
R 

(%
)

Gray RGB HSV YCbCr LAB

LBP
CoALBP
LPQ

BSIF
CM

Figure 6: *e EER results of the LBP, CoALBP, LPQ, BSIF, and
CM features extracted from various color spaces.

Table 4:*e EER results of the CM features extracted from various
color spaces when using LDA, SVM XGBoost, and Ensemble
Classifier.

Color space LDA SVM XGBoost Ensemble
Gray 30.6 27.4 26.1 27.2
RGB 8.3 7.6 6.9 6.3
HSV 5.5 4.7 5.6 4.4
YCbCr 9.7 9.1 9.0 8.1
LAB 8.5 7.8 9.7 7.5
Average 12.5 11.3 11.5 10.7

Table 5: *e performance of various color space combinations of
RCTR when employing ensemble classifier.

Color space fusion FASD MSU Average
EER EER EER

RGB+HSV 2.4 5.3 3.95
RGB+YCbCr 3.5 3.2 3.35
HSV+YCbCr 2.1 2.3 2.20
RGB+HSV+YCbCr 1.6 2.5 2.05
HSV+YCbCr + LAB 2.0 2.3 2.15
All spaces 1.8 2.0 1.90
{H,S,Cb,Cr} 4.9 5.5 5.20
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5.6. Intradataset Performance in Comparison with the State of
the Art. In this section, we evaluate the performance for
identifying the bona fide and the PA images in the case that
the training and testing data are matched. Tables 6–8 present
the experimental results of our proposed method and the
state-of-the-art techniques ([12, 16, 21, 33, 53, 54, 55, 56, 57]
for hand-crafted feature-based methods and
[2, 3, 9, 27, 58, 59] for DL-based methods). *e results of the
RCTR combining four color spaces are used for comparison.
It should be noted that, as reported in [16], because only a
portion samples (high-quality) of FASD were used for
evaluation, for fair comparison, the result is not listed in
Table 6. And, since the EER is not adopted in [16, 55], we
only cite HTER results on RAD.

From Table 6, we can observe that DRL-FAS [59] out-
performs other methods both on FASD and RAD. Our
method outperforms most methods except [59] on FASD
and shows competitive performance on RAD. Motion Mag
algorithm [12] also achieves the best HTER on RAD, but
suffers significant degradation when testing on FASD.
Meanwhile, it can be seen that the performance of most
hand-crafted feature-based approaches and DL-based
methods are satisfactory on RAD. *e reason lies on that
when collecting the data of RAD; the photo capture con-
dition is relatively simple, i.e., only one kind of camera is
adopted.

As can be clearly observed in Table 7, our RCTR-based
detector achieves the lowest EER onMSU (2.0%). And, from
Table 8, it is observed that DRL-FAS [59] achieves best
performance on ROSE, with an EER of 1.8%. Our method
gets the second place, with an EER of 10.7%, which is the best
performance among hand-crafted feature-based methods
[21, 57] and better than DL-based method [60]. In con-
clusion, these results indicate that the bona fide and the PA
images can be accurately identified by employing our
proposed RCTR-based ensemble classifier.

5.7. Interdataset PerformanceComparisonwith the State of the
Art. To evaluate the performance of the detector when
training and testing samples are mismatched, cross testing
among all three datasets is conducted. *e HTER results of
our RCTR-based detector when combining all four spaces
and only using H, S, Cb, and Cr channels are presented in
Table 9. It is observed that SSR-FCN [61] performs best when
training on FASD and testing on RAD (with an HTER of
19.9%), but in another case, the performance of SSR-FCN is
relatively poor (41.9%). When training on RAD and testing
on FASD, auxiliary [28] outperforms other methods (with
the EER of 28.4%). As for our proposed method (RCTR-{H,
S, Cb, Cr}), the HTER is 31.8% and 39.6%, respectively,
which significantly outperforms the methods proposed in
[3, 12, 33, 55] while comparable with outstanding arts in
[9, 28, 29, 59, 60]. It is worth noting that the HTER of RCTR-
all spaces is higher than RCTR-{H,S,Cb,Cr}. *is phe-
nomenon can be explained as follows: when capturing the
face records, the scene’s brightness condition of different
datasets is not consistent, so the RCTR feature extracted in
complete color spaces containing the luminance

Table 6: Performance comparison with the state-of-the-art
methods on FASD and RAD. “-” represents that the results are not
available.

Method FASD RAD
EER EER HTER

LBP-TOP [33] 10.0 7.9 7.6
LDP-TOP [53] 8.9 2.5 1.8
Motion Mag [12] 14.4 0.2 0.0
IDA [16] — 7.4 —
Dynamic [54] 21.8 5.3 3.8
Spectral cubes [55] 14.0 — 2.8
CVLBC [56] 6.5 1.7 0.8
Color LBP [57] 7.1 0.9 4.9
Color [21] 2.1 0.4 2.8
Deep CNN [3] 7.4 6.1 2.1
Partial CNN [2] 4.5 2.9 4.3
LBP-Net [58] 2.5 0.6 1.3
Fusion CNN [27] 2.7 0.8 0.7
MobileNet + attention [9] 4.2 0.1 0.3
ResNet + attention [9] 3.1 0.2 0.4
DRL-FAS [59] 0.2 0.0 0.0
RCTR-all spaces (ours) 1.8 0.7 2.1

Table 7: Performance comparison with the state-of-the-art
methods on MSU.

Method EER
LBP+ SVM baseline 14.7
DoG-LBP+ SVM baseline 23.1
IDA [16] 8.5
LDP-TOP [53] 6.5
Color LBP [57] 10.6
Color [21] 4.9
RCTR-all spaces (ours) 2.0

Table 8: Performance comparison with the state-of-the-art
methods on ROSE.

Method EER
LBP+ SVM baseline 34.1
Color LBP [57] 27.6
Color [21] 13.9
De-spoofing [60] 12.3
DRL-FAS [59] 1.8
RCTR-all spaces (ours) 10.7

Table 9: Interdataset testing comparison on the FASD dataset
versus the RAD in terms of HTER.

Method Train Test Train Test AverageFASD RAD RAD FASD
LBP-TOP [33] 49.7 60.6 55.2
Motion Mag [12] 50.1 49.7 49.9
Spectral cubes [55] 34.4 50.0 42.2
Deep CNN [3] 48.5 45.5 47.0
Auxiliary [28] 27.6 28.4 28.0
De-spoofing [60] 28.5 41.1 34.8
STASN [29] 31.5 30.9 31.2
MobileNet + attention [9] 30.0 33.4 31.7
ResNet + attention [9] 36.2 34.7 35.5
DRL-FAS [59] 28.4 33.2 30.8
SSR-FCN [61] 19.9 41.9 27.0
RCTR-all spaces (ours) 37.1 42.0 39.6
RCTR-{H,S,Cb,Cr} (ours) 31.8 39.5 35.7
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information is not as good as in the color component, i.e., H,
S, Cb, and Cr.

Besides, it can be observed that when training on FASD
and testing on RAD, the result is better than training on
RAD and testing on FASD. *e reason lies in FASD which
has more types of cameras and more attack scenarios; thus,
the detector is more robust. However, the manner of col-
lecting the recordings of RAD dataset is relatively simple,
and the lack of diversity in training data leads to poor
performance of the detector when testing on new dataset.

In Table 10, more comprehensive experiments are
conducted to compare our method with other color texture-
based methods [21, 57]. It can be seen that when training on
FASD and testing on MSU, the HTER of our proposed
detector is lowest. Similarly, our proposed method performs
best in half of the cases. In addition, the average HTER of our
proposed detector is 32.5%, which is also the lowest.*e well
performance of our proposed algorithm using color residual
texture representation when testing on mismatched samples
can be attributed to the generalization ability of the CM
feature and the highly robust ensemble classifier.

5.8. Performance versus Training Set Scale. In this part, we
investigate on how the scale of training data impacts the
performance of the proposed method. Specifically, the
training set scale is increased from 10% to 90%, with a step of
10%, and the remaining data are used for validation. 10-
folds’ validation experiments are conducted, and each ex-
periment randomly selects face images to form the training
set; the average of the results are taken as the final result.
Prediction accuracy (ACC for short) is used as metric, that
is, the ratio of correct predictions to the total testing samples.
As illustrated in Figure 7, as the scale of training data in-
creases, the ACC of our proposed presentation attack de-
tector is gradually improved. And, when using only 10%
training data, the ACC of our RCTR-based detector on all
three datasets is higher than 95.5%. *e empirical study
indicates that our proposed method can achieve excellent
prediction accuracy with a small-scale training data. In
addition, since DL-based methods are data-driven, so the
performance of them is likely to be unsatisfactory when
there is insufficient training data.

5.9. Time Complexity Analysis. We conduct time con-
sumption statistical experiments to analyze the processing
time. All methods considered are implemented by using
Matlab2017a and Python 3.6 on an Intel Core i7 2.8GHz
CPU and 16GB RAMPC. A total of 500 videos are used, and
the number of frames of each video is between 300 and 400.

*e average processing time of each video is recorded, which
is shown in Table 11. It can be observed that our method can
achieve a competitive time consumption compared with
other methods (with an average processing time of 15.6
second), which indicates the good real-time detection ability
of the proposed method. Furthermore, our method has
better detection accuracy compared with other methods.

6. Conclusion

In this paper, we propose a RCTR-based detector to address
the challenge raised by face PA. First, by considering the
nuisance noise existing in face image, a DW-filter is applied
to eliminate such interference, after which more discrimi-
native residual images are obtained. Next, the RGB image
should be transformed to more representative spaces such as
HSV, YCbCr, and LAB. Dependent on the powerful texture
descriptor CM, the RCTR feature is extracted from multiple
color channels. Besides, an ensemble classifier is carefully
designed based on a probabilistic voting rule to make the
prediction. Extensive analytical experiments are conducted

Table 10: Interdataset testing comparison with color texture-based methods on FASD, RAD, and MSU datasets in terms of HTER.

Method Training FASD RAD MSU
Average

Testing RAD MSU FASD MSU FASD RAD
Color LBP [57] 47.0 36.6 39.6 35.2 49.6 42.0 41.7
Color [21] 30.3 20.4 37.7 34.1 46.0 33.9 33.7
RCTR-{H,S,Cb,Cr} (ours) 31.8 19.1 39.5 29.0 41.3 34.4 32.5
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Figure 7: Performance of the proposed method versus the training
set scale.

Table 11: Processing time (per video) of our method and some
baseline methods.

Method Time (second)
LBP + SVM baseline 10.3
Color LBP [57] 12.2
Color [21] 21.9
RCTR-all spaces (ours) 15.6
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to verify the effectiveness of transforming color space and
employing residual image. Four challenging benchmark
datasets FASD, RAD, MSU, and ROSE are used to evaluate
our proposed method, and our proposed RCTR-based de-
tector shows preferable performance in the cases of both
intradataset and interdataset testing.
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