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Compared with a single physical antenna, an antenna array
has the capability for efective interference suppression/
beamforming, direction of arrival (DOA) estimation, target
tracking, and localization with its additional spatial degrees
of freedom (DOFs) exploited by advanced signal processing
algorithms [1–4]. It has received considerable attention
given its wide range of applications in radar, sonar, sensor
networks, navigation, biomedical engineering, wireless
communications, etc., and one good example is the 2020
IEEE 5-Minute Video Clip Contest (5-MICC) about
beamforming with more than 5000 researchers casting their
votes in the process [5]. In particular, the antenna array
design and signal processing is one of the fundamental
techniques in wireless communication systems of the 5G and
beyond since the two underpinning 5G technologies,
massive multiple-input multiple-output (MIMO) and mil-
limetre wave communications, are all based on antenna
array systems [6, 7]. It will continue playing a signifcant role
in many other aspects in the future, such as Internet of
Tings (IoT) and integrated sensing and communication
(ISAC) [8–10], both of which are potential technologies for
6G wireless communication systems and intelligent trans-
portation systems with extensive research activities already
attracted in the community.

Given the continued importance of design and signal
processing for antenna arrays and also following the success
of the frst special issue published in 2016 focusing on the
same topic [11], we were approached by the journal ofce to
organize a second special issue with the same topic.Te aim of

this current special issue is to present the most recent ad-
vances in the area of design and signal processing for various
antenna arrays and their applications, by inviting both review
articles and original contributions from researchers working
in this very important area, and in total, we received 15
submissions and 6 were accepted for publication.

Te accepted papers cover a wide range of topics within
the specifed area of the special issue. Roughly speaking, they
fall into the following four main topics. Te frst topic is
antenna design for array applications, including one paper
titled “Development of a Pin Diode-Based Beam-Switching
Single-Layer Refectarray Antenna” [12]; the second topic is
antenna array pattern synthesis, including one paper titled
“Two-Dimensional Beampattern Synthesis for Polarized
Smart Antenna Array and Its Sparse Array Optimization”
[13]; the third topic is direction/angle of arrival estimation,
including two papers, titled “Tinned Virtual Array for
Cramer Rao Bound Optimization in MIMO Radar” and
“Nonuniformly Spaced Array with the Direct Data Domain
Method for 2D Angle-of-Arrival Measurement in Electronic
Support Measures Application from 6 to 18GHz” [14, 15],
respectively; the last topic is target detection and localization
(range/velocity/angle estimation) based on antenna arrays,
including two papers, titled “Spread Sea Clutter Suppression
in HF Hybrid Sky-Surface Wave Radars Based on General
Parameterized Time-Frequency Analysis” and “Maximum
Likelihood Angle-Range Estimation for Monostatic FDA-
MIMO Radar with Extended Range Ambiguity Using
Subarrays” [16, 17], respectively.
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By transmitting multiple independent waveforms at the transmit side and processing echoes of spatial targets at the receive side,
Multiple Input Multiple Output (MIMO) radar enjoys virtual array aperture expansion and more degree of freedom (DOF), both
of which favors the application of direction finding or estimation of direction of arrival (DOA). ,e expanded virtual aperture
provides higher angular resolution which also promotes the precision of DOA estimation, and the extra DOF brought by
waveform diversity can be leveraged to focus energy in certain spatial region for better direction-finding capacity. However,
beamspace methods which match certain beampatterns suffer from deteriorated performance and complexity in implementation,
and the advantage of virtual array aperture is limited by its virtual element redundancy. As an important performance indicator of
DOA estimation, Cramer–Rao Bound (CRB) is closely connected to the array configuration of the system. To reduce the
complexity of the system and improve CRB performance at the same time, in this paper, the virtual array of MIMO radar is
designed directly by selecting outputs frommatched filters at the receive side. For the sake of fair comparison, both scenarios with
and without priori directions are considered to obtain optimized virtual array configuration, respectively. ,e original com-
binatorial problems are approximated by sequential convex approximations methods which produce solutions with efficiency.
Numerical results demonstrate that the proposed method can provide thinned virtual arrays with excellent CRB performance.

1. Introduction

In various applications of radar system, such as beam-
forming and interference suppression, the Direction of
Arrival (DOA) is often needed as a priori information [1].
Inversely, the performance of DOA estimation can be im-
proved by proper beamforming and interference suppres-
sion [2]. ,erefore, DOA estimation is a prerequisite for
various applications as well as the purpose after other
processing procedures, which is of great importance to the
array of the radar system [3].

,e performance of DOA estimation is related to the
properties of array, which includes the aperture and structure
of the array. In MIMO radar, each element of transmit array
sends one of multiple independent waveforms, the echoes of
which are received by the receive array and processed through
matched filters. ,e data after matched filtering operation is

equivalent to the one received by an array with larger array
aperture, which is often referred to as virtual array. ,e
aperture of virtual array is usually larger than that of both
transmit and receive array, which is helpful for DOA esti-
mation since larger aperture is productive for angle resolution
[4]. However, such expansion of virtual array aperture is
limited by the redundancy of virtual array elements rendered
by the adoption of uniform array configuration at both
transmit and receive side. Even though both transmit array
and receive array are uniformly distributed without spatial
tapering in most cases of MIMO radar, the virtual array
configuration obtained by the spatial convolution of transmit
array and receive array is characterized by the fact that one
element in the virtual array may correspond to several pairs
consisting of elements from both transmit array and receive
array, producing redundancies of virtual array elements [5].
Such redundancy not only leads to the waste of element

Hindawi
International Journal of Antennas and Propagation
Volume 2021, Article ID 1408498, 13 pages
https://doi.org/10.1155/2021/1408498

mailto:wbhgroup@aliyun.com
https://orcid.org/0000-0001-8510-616X
https://orcid.org/0000-0001-7425-0502
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1408498


resources and increase of hardware complexity but also
produces array shading effect which often adds unwanted
weights on the virtual array elements, contributing to the
reduction of array performance. To tackle the redundancy of
virtual array and reduce the hardware cost and complexity of
the system, references [6–8] propose to model the virtual
array as polynomial and decompose the polynomial to obtain
thinned polynomials which represent both transmit array and
receive array. In these problems, the virtual array is given as a
uniform one to eliminate negative effects brought by un-
wanted weights in the virtual array and obtain thinned
transmit and receive arrays to reduce hardware complexity.
However, the number of possible solutions, i.e., the possible
combinations of thinned transmit and receive arrays, are
limited due to the intrinsic nature of spatial convolution. To
enlarge the scope of solution space and obtain larger virtual
aperture while preserving the thinned transmit array and
receive array, mathematical tools such as difference sets [9],
cyclic difference sets [10], and almost difference sets [11], as
well as numerical optimization methods such as genetic al-
gorithm [12] and simulated annealing [13] are proposed to
obtain more available solutions for thinned transmit and
receive array given the same number of elements, whereas the
optimality of solutions depends on the initial points for the
numerical problems and the computational complexity of the
problem is much larger than polynomial decomposition. To
obtain an even larger virtual aperture with thinned transmit
array and receive array, coprime array [14–16] and nested
array [17–19] are proposed together with the difference co-
array processing method, which utilizes O(N) elements to
achieve O(N2) or even O(N4) DOF. In this way, larger DOF
promotes parameter identifiability and angular resolution of
the array, but such difference co-array-based array configu-
ration is prone to error and distortion from the multipath
effect in practical applications. ,ese array configurations for
the MIMO radar are focused on improving DOA estimation
performance by expanding virtual array aperture using
thinned transmit array and receive array [20]. However, larger
virtual aperture does not necessarily translate to higher es-
timation precision of the MIMO radar [21].

,e performance of DOA estimation depends on the
effective array aperture on the direction to be estimated,
which means that the array configuration with the best DOA
estimation performance is determined by the DOA to be
estimated [22]. In fact, as a metric representing the limit
performance of array and DOA estimation, the Cramer–Rao
Bound (CRB) is closely related to the array configuration of
the system and the estimated direction [23]. Meanwhile, in
practical applications of direction finding, priori informa-
tion on the estimated direction is often available. ,erefore,
in order to fully utilize DOF from the configuration of the
virtual array to achieve lower total CRB, a thinned virtual
array is proposed. ,e work of this paper is summarized as
follows:

(1) ,e signal model of the MIMO radar is proposed, in
which the virtual array expansion and the connec-
tion between virtual array configurations are dis-
cussed. Since the performance of DOA estimation or

CRB of the MIMO radar depends on the structure of
virtual array, the connection between virtual array
structure, fisher information matrix (FIM), and CRB
is discussed to reveal the impact of array configu-
ration on the direction-finding performance of
certain spatial targets, and analytical expressions are
derived.

(2) Due to the uniformity in the distribution of elements
in both transmit array and receive array, elements in
the virtual array are redundant. Reducing such re-
dundancy not only decreases the hardware com-
plexity and waste of system resources but also
provides potential for utilizing the DOF provided
from the configuration of the array by incorporating
priori DOA information in the structure of thinned
array to achieve lower total CRB of the system. In this
way, the redundancy of the virtual array structure is
analysed and relation between the total CRB and
virtual array configuration is generalized to derive
the CRB expression of thinned virtual array
configuration.

(3) Based on these analyses, the optimization problem
for obtaining thinned virtual array is proposed. Both
the scenario with and without directional informa-
tion are considered. Because of the fractional
structure and nonconvex constraints, the solution to
the original form of the proposed problem requires
enumeration with high-computational complexity.
To solve the problem efficiently, the Dinkelbach
method is used to approximate the original problem
into a series of subproblems, all of which can be
solved iteratively.,e final solution to the problem is
obtained by solving another optimal integer con-
straint problem. Numerical results show CRB and
DOA estimation performance to validate the ad-
vantage of the proposed thinned virtual array.

It should be noted that the goal of this paper is thinning
the virtual array configuration directly through turning off
some of matched filters on the receive side rather than
designing thinned transmit and receive arrays to obtain
thinned virtual array. Compared to thinning transmit array
and receive array, respectively, the proposed scheme has the
following advantages:

(1) Even though thinning transmit and receive arrays
separately achieve more reduction of hardware re-
sources than thinning virtual array directly, such
separated scheme has fewer DOF for increased
performance due to limited number of virtual array
structures formed by spatial convolution of transmit
and receive array structures, whose combinations are
also limited. Meanwhile, the joint scheme can pro-
duce arbitrary virtual array configuration by turning
off matched filters and thus enjoys more possibilities
for increased system performance.

(2) ,e direct thinning of virtual array entails a pre-
condition that the virtual array must be fully filled
or at least one virtual element exists at the sensor
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positions of the obtained array. In other words, the
joint scheme requires both transmit array and re-
ceive array to be fully filled, which appears to waste
hardware resources than that of the separated
scheme. However, the precondition of fully filled
also implies that the proposed joint scheme can be
achieved without changing configuration of phys-
ical elements in transmit array and receive array.
,is enables fast deployment of the proposed
scheme on obsolete systems with filled arrays, and
fast reconfiguration of virtual array on the MIMO
radar at work. ,e proposed scheme is neither
better than any other existing ways of thinning
virtual arrays nor the one with lowest cost or fastest
speed. Rather, this scheme is proposed to provide a
possibility to improve the direction-finding per-
formance with more DOF on existing MIMO radar
systems.

,e rest of the paper is organized as follows. Section 2
introduces the signal model, which deals with virtual array
aperture expansion in the MIMO radar, redundancy in
virtual array structure, and the connection between virtual
array and CRB. ,e design of thinned virtual array for
optimization of CRB is discussed in Section 3, considering
both scenarios with and without priori directional infor-
mation. Numerical results are provided in Section 4, fol-
lowed by conclusion in Section 5.

2. Signal Model

Consider a MIMO radar system with transmit array of Mt

elements and receive array of Mr elements. ,e position of
the mth transmit array element is (xm, ym)(m � 1, . . . ,

Mt) and the position of the nth receive array element is
(xn, yn)(n � 1, . . . , Mr). Assume that the distance between
transmit and receive arrays is much fewer than wave-
length λ so that the target direction with respect to
transmit array is the same as the target direction with
respect to receive array, and all elements in both transmit
and receive arrays share the same carrier frequency Fc. It
is also assumed that there are L targets with elevation
angles θl(l � 1, . . . , L) and azimuth angles ϕl(l � 1, . . . , L).
In the transmit array, each element transmits an or-
thogonal waveform towards the target, and the complex
envelope of the waveform at the mth element can be
denoted as

sm(t) � ρϕm(t), m � 1, . . . , Mt, (1)

where t denotes fast-time index, i.e., the time index within a
radar pulse, ρ is the energy coefficient of waveform to
normalize the sum of energy of all transmitted waveforms as
constant, And ϕm(t) is the mth orthogonal baseband
waveform. After up conversion, the signal sent from the mth
element can be correspondingly denoted as sm(t)exp
(j2πFct), where the term exp(j2πFct) represents the carrier.

,e radar echo signal at the lth target is represented as

r1(t, τ) � ρβl(τ)aT θl( ϕ(t)exp j2πFct( , (2)

where βl(τ) denotes the reflection coefficient of the lth target,
a(θl) is the transmit steering vector corresponding to the lth
target, and ϕ(t) � [ϕ1(t), ϕ2(t), . . . , ϕMl

(t)]T is the vector
consists of Mt orthogonal waveforms. It should be noted that
the reflection coefficient within a single radar pulse remains
the same yet different between different pulses.

All orthogonal waveforms from the transmit array is re-
flected from the target and captured by the receive array. ,e
received signal is then down-converted to baseband by mul-
tiplying with exp(−j2πFct). In this way, the Mr × 1 baseband
equivalent of received echo signal can be expressed as

x(t, τ) � 
L

l�1
rl(t, τ)exp −j2πFct( b θl(  + z(t, τ), (3)

where τ represents slow time index, which is the index of
radar pulse, b(θl) denotes the steering vector corresponding
to the lth target with direction θl, and z(t, τ) is an Mr × 1
Gaussian white noise.

2.1.VirtualArrayAperture Expansion. ,e transmit steering
vector and receive steering vector can be expressed as

a(θ) � exp jk0 x1ux + y1uy , . . . , jk0 xMt
ux + yMt

uy  
T
,

b(θ) � exp jk0 x1ux + y1uy , . . . , jk0 xMr
ux + yMr

uy  
T
,

(4)

where k0 � (2π/λ), ux � cos θ cos ϕ, and uy � cos θ sinϕ.
Since the transmitted equivalent waveforms are or-

thogonal or linearly independent from each other, the
component corresponding to a single waveform can be
extracted using matched filters on the receive array. After
going through the down conversion at the receiver side, the
Mr × 1 baseband equivalent data vector corresponding to
the m th orthogonal waveform can be expressed as

xm(τ) � 
T
x(t, τ)ϕ∗m(t)dt, m � 1, . . . , Mt. (5)

Stacking all data component vectors corresponding to
different waveforms in a columnwise manner, an MtMr × 1
virtual data vector can be obtained as

v(τ) � ρ
L

l�1
βl(τ) a θl( ⊗ b θl( (  + z(τ)

� ρ
L

l�1
βl(τ)u θl(  + z(τ),

(6)

where

u(θ) � a(θ) ⊗ b(θ) (7)

denotes MtMr × 1 virtual array steering vector and z(τ) is
MtMr × 1 noise term with covariance matrix as σ2zIMtMr

It can be inferred from (7) that the virtual data vector can
be seen as a signal received by an MtMr × 1 array. ,is is
equivalent to the case that spatial signal is received by a
virtual array with larger aperture, which is depicted in
Figure 1. Usually, an array with larger aperture implies better
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DOA estimation performance, yet this is not the case with
MIMO radar virtual array. To demonstrate the effect of
virtual array design on the performance of direction finding,
the connection between virtual array structure and CRB is to
discussed in Section 2.2.

2.2. Connection between Virtual Array and CRB. To simplify
subsequent analysis, the following vectors are defined based
on the location of array elements:

x � x1 + x1, x1 + x2, . . . , x1 + xMr
, x2 + x1, . . . , x2 + xMr

, . . . , xMt
+ xMr

 
T
,

y � y1 + y1, y1 + y2, . . . , y1 + yMr
, y2 + y1, . . . , y2 + yMr

, . . . , yMt
+ yMr

 
T
,

xx � x1 + x1( 
2
, . . . , x1 + xMr

 
2
, x2 + x1( 

2
, . . . , x2 + xMr

 
2
, . . . , xMt

+ xMr
 

2
 

T

,

yy � y1 + y1( 
2
, . . . , y1 + yMr

 
2
, y2 + y1( 

2
, . . . , y2 + yMr

 
2
, . . . , yMt

+ yMr
 

2
 

T

,

xy � x1 + x1(  y1 + y1( , . . . , xMt
+ xMr

  yMt
+ yMr

  
T
.

(8)

Assume that a target locates at (θ, ϕ), where θ is the
elevation and ϕ is the azimuth. During one specific pulse, the
kth sample signal received by the system is y(k), k �

0, 1, . . . , N − 1. Stack all data by columns to form new
column vector:

z � v(0)
T
, . . . , v(N − 1)

T
 

T
. (9)

Let the array response of system in the noise-free con-
dition be

u(k) � 
L

l�1
ρβlb θl, ϕl( aT θl,ϕl( ϕ(k). (10)

,en,

E z{ } � u � u(0)
T
, . . . , u(N − 1)

T
 

T
. (11)

,is means that the received data z conforms to the
complex Gaussian distribution with u as mean and σ2zIMrK as
covariance matrix, which also implies that the estimator z is
the minimum variance unbiased estimator of u. ,e
probability density function (PDF) is

p(z,Ω) �
1

πMrNσ2MrN
z

exp −
1
σ2z

(z − u)
H

(z − u) . (12)

For the existence of minimum variance, it is assumed
that the PDF satisfies the regularity condition:

E
z lnp(z,Ω)

zΩ
  � 0, for allΩ, (13)

where the expectation operator is taken with respect to the
PDF p(z,Ω). For each element in the parameter vector
Ω � [θ, ϕ]T, the lower bound of the estimation variance of
each element exists. Such lower bound is the so-called CRB.
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Figure 1: Virtual array expansion.
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CRB can be derived by conducting inverse operation on the
Fisher information matrix:

var Ωi ≥ J− 1
 

ii
, 1≤ i≤ 2, (14)

where var(•) denotes the variance, Ωi is the estimate of the
ith element in the parameter vector, and [J− 1]ii denotes the
(i, i) element in the inverse of the Fisher information matrix
J, which is the ith element on the diagonal.

,e element of the Fisher information matrix can be
given by the following expression:

Ji,j � f Ωi,Ωj  � E
z lnp(z,Ω)

zΩi

z lnp(z,Ω)

zΩj

 . (15)

,e Fisher information matrix, therefore, can be
expressed as

J �
f(θ, θ) f(θ, ϕ)

f(ϕ, θ) f(ϕ, ϕ)
 . (16)

Among all elements in the matrix, the Fisher informa-
tion corresponding to the parameter θ is

f(θ, θ) � Gsin2 θ Qxxcos
2 ϕ + Qyysin

2 ϕ + Qxy sin(2ϕ) ,

(17)

where G represents the constant term irrelevant to the di-
rections and Qxx, Qyy, and Qxy are called inertia momen-
tum, which are defined as follows:

Qxx � 

Mt

m�1


Mr

n�1
xm + xn( 

2
� 1TXx,

Qyy � 

Mt

m�1


Mr

n�1
ym + yn( 

2
� 1Tyy,

Qxy � 

Mt

m�1


Mr

n�1
xm + xn(  ym + yn(  � 1Txy.

(18)

,e Fisher information corresponding to the parameter
ϕ is

f(ϕ, ϕ) � Gcos2 θ Qxxsin
2 ϕ + Qyycos

2 ϕ − Qxy sin(2ϕ) .

(19)

Note that the matrix J is symmetric, and the cross-term is
therefore

f(θ, ϕ) � f(θ, ϕ)

�
G

4
sin(2θ) Qxx − Qyy sin(2ϕ) − 2Qxy cos(2ϕ) .

(20)

,e derivation of (17), (19), and (20) is provided in
Appendix A.

As discussed above, the CRB matrix is defined to be the
inverse of the matrix J so that the CRB of parameter θ can be
expressed as

C(θ, θ) � f(ϕ, ϕ) f(θ, θ)f(ϕ, ϕ) − f
2
(θ, ϕ) 

−1
. (21)

Similarly, the CRB of parameter ϕ can be expressed as

C(ϕ, ϕ) � f(θ, θ) f(θ, θ)f(ϕ,ϕ) − f
2
(θ, ϕ) 

−1
. (22)

It can be revealed from above that the array configu-
ration has an important impact on CRB through inertia
momentum. In the same way, the virtual array configuration
has an effect on the CRB of the MIMO radar through inertia
momentum of virtual array elements. ,e redundancy of
elements in virtual array from uniform virtual array con-
figuration and the comparison between thinning transmit
array and receive array and thinning virtual array are dis-
cussed in Section 2.3.

2.3. Redundancy in Virtual Array Structure. It has been
mentioned in Section 2.2 that the virtual data vector ob-
tained from the matched filtering on the Mr × 1 receive
array, which receives echoes of orthogonal waveforms from
Mt × 1 transmit array, can be considered as the signal re-
ceived by anMtMr × 1 array. In this way, a virtual array with
virtual expanded aperture is achieved, which is helpful for
DOA estimation. However, multiple elements occupy the
same locations in the virtual array, causing the redundancy
in the virtual array. ,ese redundant elements not only
renders inadequate use of virtual elements from the transmit
array and receive array but also affects the output of virtual
elements brought by intrinsic weighting from the redun-
dancy. ,e redundancy of elements in the virtual array is
sketched in Figure 2, where the height on each location
denotes the number of repetitive elements in the virtual
array aperture, which implies the level of redundancy. Such
redundancy cannot be eliminated through the thinning in
transmit array or receive array since the virtual array steering
vector is constructed by the spatial convolution of transmit
and receive steering vectors. Furthermore, the DOF in
thinning transmit array and receive array separately is
limited due to the fact that once an element in transmit array
or receive array is not in their thinned counterparts, all
virtual elements corresponding to the discarded element are
not in the thinned virtual array. To reduce the redundancy in
the virtual array and increase the DOF in the design of
thinned virtual array, more flexible ways of thinning are
needed.

To serve the purpose of increasing DOF for designing
thinned virtual array, the structure of MIMO is considered.
In the receive array of the MIMO radar, each element is
followed by several matched filters, each of which corre-
sponds to one independent waveforms from transmit array
so that each waveform component in the echoes can be
separated after match filtering operation. In this way, each
element in the receive array is followed by Mr matched
filters, paired with Mt orthogonal waveforms in the transmit
array; the total number of matched filters is MtMr, which is
the same as the dimensions of virtual steering vector and
virtual data vector. In fact, thanks to the orthogonality of
waveforms, each output data component from eachmatched
filters is equivalent to the output from element in the virtual
array which takes virtual location determined by its
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corresponding transmit and receive elements. When some
matched filters are failed or unable to produce normal re-
sults, such failure of matched filters can also be seen as that of
virtual elements. ,erefore, by adjusting the output of each
matched filter, different elements in the virtual array can be
selected to implement specific virtual array configuration so
that the redundancy of virtual array elements is reduced and
the DOF in the virtual array is utilized in a more flexible
manner, e.g., exploiting the connection between the virtual
array structure and system performance.

To realize the direct thinning of virtual array, a virtual
array thinning vector is defined as w ∈ 0, 1{ }MtMr , which
means w only contains ones and zeros. For each element in
w, 1 indicates that this element is in the thinned virtual array
and 0 indicates that this element is not. Assuming that K

elements are to be selected from MtMr elements to compose
thinned virtual array, the gravity center of the thinned
virtual array can be expressed as

xc �
1
K



MtMr

i

wixi �
1
K
wTx,

yc �
1
K



MtMr

i

wiyi �
1
K
wTy,

(23)

where wi denotes the ith elements in the vector w. For the
sake of simplicity and without the loss of generality, assume
the gravity center of virtual thinned array locates at the
origin of the plane, i.e.,

xc �
1
K
wTx � 0,

yc �
1
K
wTy � 0.

(24)

,emoment of inertia in the thinned virtual array can be
expressed as

Qwxx � wTxx, (25)

Qwyy � wTyy, (26)

Qwxy � wTxy. (27)

In this way, the element in the Fisher information matrix
of thinned virtual array can be rewritten as

fw(θ, θ) � Gsin2θ · Qwxxcos
2ϕ + Qwyysin

2ϕ + Qwxy sin(2ϕ) ,

fw(ϕ,ϕ) � Gcos2θ · Qwxxsin
2ϕ + Qwyycos

2ϕ + Qwxy sin(2ϕ) ,

fw(θ, ϕ) �
G

4
sin(2θ) · Qwxx − Qwyy sin(2ϕ) − 2Qwxy cos(2ϕ) .

(28)

3. Design of Thinned Virtual Array for
Optimization of CRB

In Section 2.2, the connection between virtual array con-
figuration and CRB is revealed, indicating the reduction
redundancy and inflexibility in virtual array design can be
avoided by directly thinning virtual array through selection
of matched filters on the receiver array. ,e specific con-
figuration of thinned virtual array, however, should be
considered carefully in the specific condition. If priori di-
rection of the target is not available or not considered, the
thinned virtual array with the best CRB performance is the
one that meets the isotropic condition; if priori direction of
target is available, the virtual array with optimized CRB
performance depends on the given information of the target.
Note that the optimization of CRB usually takes the trace
minimization of the CRB matrix, namely, to solve the fol-
lowing problem:

min
c

tr(C). (29)

,e thinned virtual array without or with priori direction
is to be considered in the following.

3.1. 4inned Virtual Array without Priori Direction. In the
case where no priori information on target direction is
available, the best thinned virtual array is isotropic, namely,
the CRB performance should be decoupled from elevation
and azimuth angles of the target. ,erefore, the following
conditions is to be satisfied:

Qwxx � Qwyy � Q,

Qwxy � 0,
(30)

so that the CRB matrix can be rewritten as

4

3

2

1

0

1
10 0

–1 –1

Redundancy

Figure 2: Redundancy in virtual array.

6 International Journal of Antennas and Propagation



C � J− 1
�
1
G

1
cos2θ Q

0

0
1

sin2θ Q

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (31)

which also implies

min
Q

1
sin2θcos2θ Q

. (32)

Note that (32) holds for any angle θ. ,e problem can
thus be rewritten as

max
Q

Q. (33)

It can be implied from (25), (26), and (33) that the
optimized isotropic thinned virtual array is composed of
elements on the aperture boundaries. ,is is because
boundary elements ensures the largest possible array ap-
erture to obtain the largest Q, which is in accordance with
the observation in [4]. However, as also pointed out by [4],
the optimized isotropic thinned virtual array without ap-
erture limit does not exist since the Q value can be arbitrarily
large by expanding aperture on every direction so that CRB
can be reduced arbitrarily. ,is also implies that CRB, which
is small enough, can be obtained by a virtual array aperture
which is large enough, which is impractical in real-world
applications. Besides, the design focused on expanding
virtual array aperture renders ambiguity, which is not
suitable for the applications which needs enhanced DOA
estimation performance.

Meanwhile, the isotropic condition in (30) adds the
constraint that the virtual array is symmetric around the
gravity center of the aperture, which is difficult to satisfy too.
Furthermore, even with constraints on the array aperture,
since the array only contains boundary elements, the best
possible isotropic array still suffers from high sidelobes,
which affects the performance of DOA estimation.

To mitigate the effect of high sidelobes from boundary
aperture, the following problem is to be considered:

max
w

wTxx

s.t. w ∈ 0, 1{ }
MtMr

wTx � 0

wTy � 0

1Tw � K

wTxy � 0

wT xx − yy  � 0

wTCt,jw ≤ δt,j,

(34)

where 1 denotes all-one vector, Ct,j � real(vt,jvH
t,j) and is the

cross-correlation vector between the target steering vector
and the steering vector of the jth interference, and δt,j

represents desired peak sidelobe.

Note that (34) is not convex due to the binary constraint,
and this combinatorial problem is to be solved through
exhaustive search. To reduce computational complexity
from exhaustive search, it is necessary to seek a balance or a
trade-off between computational complexity and efficiency
through convex approximation to the original problem. In
this paper, a sequential convex approximation of (34) is
proposed. Specifically, the binary constraint w ∈ 0, 1{ } is
equivalent to the difference between two convex constraints,
i.e.,

A: w ∈ [0, 1],

B: wTw − wT1< 0,
(35)

where 1 denotes a vector of all ones.
,is means that the binary constraint w ∈ 0, 1{ } in (34)

can be expressed as a maximization problem, namely,

max
w

wTw − wT1

s.t. w ∈ [0, 1].
(36)

It is evident that the objective function does not meet the
requirement for the maximization problem. However, the
term can be approximated in an affine form by its first-order
Taylor decomposition. Note that the derivative ofwTw is 2w,
and thus the objective function in the kth iteration can be
approximated by

2wTw(k)
− w(k)Tw(k)

− wT1. (37)

,erefore, (34) can be approximated by iterative convex
problems as follows:

max
w

wT xx + 2μw(k)
− μ1  − w(k)Tw(k)

s.t. w ∈ 0, 1{ }
MtMr

wTx � 0

wTy � 0

1Tw � K

wTxy � 0

wT xx − yy  � 0

wTCt,jw ≤ δt,j,

(38)

where μ is the parameter controlling CRB and the degree of
thinning in the array. By adjusting μ properly, the trade-off
between the CRB and the degree of thinning can be achieved.

,e direct thinning of virtual array without priori di-
rection is summarized in Table 1.

3.2. 4inned Virtual Array with Priori Direction. It can be
inferred from (17), (19), and (20) that each element in the
Fisher information matrix is connected to both the DOA of
target and array configuration. Such connection also implies
that the array configuration with optimized CRB perfor-
mance is angle specific, namely, an array that is optimal for
one target direction is not for another target direction.
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Considering the condition with priori direction, the iso-
tropic virtual array proposed in Section 3.1 is not the most
desirable. Instead, the array only needs to detect certain
regions of interest with high precision while it still preserves
the capacity to detect targets outside those regions. If priori
information of target direction is available, e.g., from the
results from detection of the isotropic array over the whole
angle region, the optimal thinned virtual array can be ob-
tained through optimizing the CRBmatrix over the sector of
interest, which exploits the DOF from direct thinning of
virtual array and the connection between CRB and virtual
array configuration.

,e elevation θ and azimuth ϕ of a single target is as-
sumed priori known in the following discussions. Since the
CRB matrix is the inverse of the Fisher information matrix,
the elements on the main diagonal of CRB matrix can be
expressed as

Cθθ �
1
G

·
1

sin2θ
·
Qwxxsin

2ϕ + Qwyycos
2ϕ − Qwxy sin(2ϕ)

QwxxQwyy − Q
2
wxy

,

(39)

Cϕϕ �
1
G

·
1

cos2θ
·
Qwxxcos

2ϕ + Qwyysin
2ϕ − Qwxy sin(2ϕ)

QwxxQwyy − Q
2
wxy

.

(40)

,e derivation for (39) and (40) are provided in the
supplementary material.

To optimize the CRB of virtual array, the trace of the
CRB matrix is the target, which is

tr(C) �
1
G

·
αQwxx + βQwyy + ζQwxy

QwxxQwyy − Q
2
wxy

, (41)

where

α �
sin2ϕ
sin2θ

+
cos2ϕ
cos2θ

, (42)

β �
cos2ϕ
sin2θ

+
sin2ϕ
cos2θ

, (43)

ζ �
sin(2ϕ)

cos2θ
−
sin(2ϕ)

sin2θ
. (44)

,e elements in the thinned virtual array is selected by
choosing the MtMr × 1 binary vector w, where elements
with index of zero values is not included in the thinned
virtual array and elements with index of ones is included in

the thinned virtual array. ,e design of thinned virtual array
with minimized trace of the CRB matrix can therefore be
represented as

min
w

wT
αxx1

T
+ βyy1

T
+ ζxy1

T
 w

wT xxy
T
y − xyx

T
y w

s.t. wTx � 0

wTy � 0

1Tw � K,

(45)

where α � (α/K), β � (β/K), and ζ � (ζ/K).
Note that problem (45) is a fraction of quadratic terms

which is nonconvex, thus cannot be solved using convex
methods. To avoid large computational complexity from
exhaustive search, problem (45) can be approximated by
introducing matrix variableW. According to the property of
the trace of matrix, (45) can be rewritten as

min
w,W

tr(WN)

tr(WD)

s.t. wTx � 0

wTy � 0

1Tw � K,

W≥wwT
,

(46)

where N � αxx1T + βyy1T + ζxy1T, and D � xxyT
y − xyxT

y .
Note that the fraction structure (tr(WN)/tr(WD)) is

still nonconvex. To facilitate the solution of (46), it should be
noted that the fractional problem is usually transformed as
the following problem:

F(η) � tr(WN) − ηtr(WD). (47)

(47) can be solved using the Dinkelbach method, which
is briefly given as follows:

Step 1: initialize the parameter η(1) and ε, where η(1) is
the initial value of η and ε is the threshold value where
the function F(η) converges.
Step 2: given η(k), the following problem is to be solved
to obtain the optimal value w(k), W(k) and corre-
sponding function value F(η(k)):

min
w,W

F η(k)
 

s.t. wTx � 0

wTy � 0

1Tw � K,

W≥wwT
,

(48)

Step 3: if F(η(k))≤ ε, the iteration terminates; w(k) and
W(k) are the output. Otherwise, let

Table 1: ,inning virtual array without priori direction.

Steps Procedure
Step 1 Initialize parameters μ, w(0), and I; set k � 0
Step 2 If sidelobe level is to be considered, determine j and δt,j

Step 3 Solve problem (32) or (34) to obtain w(k)

Step 4 k � k + 1; if k< I, go to step 3; if k≥ I, go to step 5
Step 5 w(I) consists of indices of selected active elements
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η(k+1)
�
tr W(k)N 

tr W(k)
D 

, (49)

and go back to Step 2.

It should be noted that the optimal parameter w(k) does
not meet the constraint of the original problem (45), and
optimal thinned binary vector is to be deduced by solving the
optimal integer constrained problem. Specifically, in order
to obtain vector w with zeros and ones as each element, the
following problem is to be solved.

min
w

w − w(k)
�����

�����

s.t. w ∈ 0, 1{ }
MtMr



MtMr

i�1
wi � K.

(50)

,e design of thinned virtual array with priori direction
is summarized in Table 2.

4. Simulation Results

In this section, the advantage of the proposed thinned virtual
array is validated by simulation results. To give a fair
comparison between difference array configurations, nu-
merical simulations in several scenarios are to be considered.
First, in the case without priori direction, the virtual array
formed by linear transmit array and receive array is thinned,
which can be divided into two types, namely, the isotropic
(type 1) which only cares about CRB performance and
another type (type 2) that takes into consideration both the
CRB and sidelobe performance. ,e performance of type 1
and type 2 are compared to demonstrate the difference
between these two methods. Next, in the case with priori
direction, the virtual array formed by square transmit array
and receive array is thinned, which involves three types,
namely, the isotropic (type 3) which does not consider the
priori direction, the directional (type 4) which is thinned
based on the priori direction, and the one with wrong priori
direction (type 5). ,e performance of type 3, type 4, and
type 5 are compared to demonstrate that type 4 has the
lowest total CRB which achieves better DOA estimation
performance. Lastly, to prove the universal efficacy of the
proposed thinned virtual array, the total CRB of multiple
different directional thinned virtual arrays (type 4), obtained
with corresponding elevation and azimuth, is compared with
the total CRB of the isotropic (type 3) thinned virtual array
and that of the one with priori direction other than the actual
target direction (type 5).

4.1. Example 1. To provide comparison between different
linear thinned virtual arrays, a linear MIMO radar array is
considered, which is composed of Mt � 5 transmit elements
and Mr � 5 receive elements.,e interelement distance dt is
half of wavelength in transmit array, and the distance be-
tween elements in the receive array is set as dr � Mtdt to
expand array aperture as much as possible. In different

thinned virtual arrays, the number of virtual elements is
chosen to be K � 10. Assume a single target locates at
θ � 10°, and the target direction is estimated using the
maximum likelihood method. For type 2 array, the maxi-
mum allowed sidelobe is set to be ζ � −10 dB. Problems (33)
and (34) are solved separately to obtain the optimal type 1
array and type 2 array, which is shown in Figures 3 and 4.

As shown in Figures 3 and 4, since it only considers the
CRB performance, the elements in the optimal type 1 array is
concentrated on two sides of the array to achieve the largest
aperture which in turn produces the largest moment of
inertia. In contrast, the distribution of elements in the
optimal type 2 array is more even since it considers
counteracting sidelobes.

,e overall beampattern of two types of virtual array in
conventional beamforming is exhibited in Figure 5.

As revealed in Figure 5, the optimal type 1 array has
narrower mainlobe, which agrees with the fact that type 1
array concentrates its elements on the edge of its aperture.
However, higher sidelobe also appears in the isotropic type 1
array since virtual elements concentrate on two sides of the
virtual aperture. In contrast, the optimal type 2 array has
lower sidelobe than type 1 array does, but the mainlobe
width of the optimal type 2 array is wider than that of
optimal type 1 array due to the changed distribution of
elements in the virtual array. ,e observation above reveals
proper balance or trade-off between mainlobe width and
sidelobe level, depending on actual applications.

To give a fair comparison between different virtual arrays
and minimize the effect of DOA estimation methods, the
maximum likelihoodmethod is adopted in this section. Note
that the DOA estimates by the maximum likelihood method
is also the maximum likelihood estimate of true target di-
rections, which converges to CRB asymptotically. ,e Mean
Square Error (MSE) and CRB of different thinned virtual
array under different SNR conditions are depicted in
Figure 6.

As indicated in Figure 6, the CRB of type 1 array is lower
than the CRB of type 2 array. Nevertheless, in the low SNR
condition ranging from 0 dB to 5 dB, the threshold SNR of
type 2 array is lower than that of type 1 array. ,is implies
that type 2 array performs better in low SNR region than
type 1 array. ,e comparison between two types of thinned
virtual array indicates that incorporating the beampattern
performance into the design process, lower SNR threshold
or better noise reduction capacity can be achieved which
helps to improve DOA estimation performance in low SNR
region.

Table 2: ,inning virtual array with priori direction.

Steps Procedure

Step 1 Initialize parameters W(0), w(0), η(0), ε, K, and (θ,ϕ)

Set k � 0
Step 2 Obtain parameter α, β, and ζ from (θ,ϕ)

Step 3 Given η(k), solve problem (43)
Obtain w(k) and W(k)

Step 4 k � k + 1, and obtain w(k+1) by (44)
Step 5 Solve problem (45) to obtain the binary w

International Journal of Antennas and Propagation 9



4.2.Example2. In this example, the performance of different
thinned virtual arrays is compared in the scenario with priori
direction.

Consider a planar MIMO radar array, where Mt � 9
and Mr � 9. Both transmit and receive arrays take on
uniform square structure with interelement distance
being half of wavelength, as depicted in Figures 7 and 8.
,is indicates that the virtual array exhibits a 5 × 5 square
layout with 25 effective virtual elements, as depicted in
Figure 9. Assume that a single target locates with ele-
vation θ � 18° and azimuth ϕ � 156°. Problem (33) and
problem (46) are solved to obtain the isotropic thinned
virtual array which does not take into account the priori
direction (type 3) and the directional thinned virtual
array which incorporates the priori direction in the de-
sign of thinned virtual array (type 4). Both the two types
of thinned virtual array structures are shown in Fig-
ures 10 and 11.

As depicted in Figures 10 and 11, the elements in the
optimal type 3 array are located on the boundary of array
and are symmetric around the gravity center of virtual array
aperture. In contrast, the elements in the optimal type 4
array which takes into account priori direction do not locate
on the boundary of array but conforms to distribution that
changes according to the priori direction. Even though el-
ements are not on the boundary of the aperture of type 4
array, they are still symmetric around the gravity center due
to the symmetry of moment of inertia and the even number
of elements.

Similarly to the case in Example 1, the correlation
method is exploited to estimation DOA of the target by two
types of thinned virtual arrays. In different SNR conditions,
the total MSE of both elevation and azimuth and the total
CRB is shown in Figure 12.

As exhibited in Figure 12, the total CRB of the optimal
type 4 array is lower than that of the optimal type 3 array.
,e comparison between the total MSE of two types of array
indicates that the total MSE of the optimal type 4 array is
close to CRB even in low SNR condition (less than −2 dB);
the total MSE of the optimal type 3 array, however, does not
converge to the total CRB until the SNR is larger than 3 dB.
In other words, the SNR threshold of type 4 array is 5 dB
lower than that of type 3 array.,ese observations imply that
the priori direction information contributes to total MSE
performance in the low SNR condition. ,e optimal type 4
array introduces priori information and enjoys low total
MSE even in low SNR condition, while the optimal type 3
array has higher SNR threshold since the priori direction
information is not present in the isotropic thinned virtual
array.

4.3. Example 3. In this example, the generality of the per-
formance of directional thinned virtual array in cases with
different priori directions is demonstrated. Assume that the
SNR is 10 dB, the azimuth angles changes from 0° to 180°
with 1° as step; other conditions remain the same as in
Example 2. In each case with different azimuth angles, the
total CRB of isotropic thinned virtual array (type 3), di-
rectional thinned virtual array (type 4), and the thinned
virtual array with priori azimuth at 150 (type 5) are depicted
in Figure 13.
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Figure 3: Type 1 array configuration.
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As displayed in Figure 13, the total CRB of the optimal
type 3 array is constant over different azimuth angles since
the virtual array is isotropic. In comparison, the total CRB of
the optimal type 4 array experiences fluctuation over dif-
ferent azimuth angles, but remains close and is lower than
that of isotropic type 3 array. For the directional type 5 array,
its total CRB is low when the direction of actual target
coincides with the priori one; however, when the direction of
the actual target is different from the priori direction, the
total CRB increases, indicating the direction-finding per-
formance of virtual thinned array is reduced since its DOA
estimation is misled by the wrong priori information. ,ese
observations indicate that when elevation is fixed yet azi-
muth sweeps over different angles, by taking the optimal
thinned virtual array on each direction, the total CRB re-
mains lower than that of isotropic thinned virtual array
while remaining constant compared to the optimal direc-
tional thinned virtual array with fixed priori direction.,ese
observations also indicate that reconfiguration of thinned
virtual array according to priori information of spatial
targets is a feasible way of obtaining total CRB which is lower
than that of isotropic thinned virtual array over different
spatial angles.

5. Conclusions

In this paper, the method for designing thinned virtual
arrays in the MIMO radar is proposed. ,e connection
between total CRB and virtual array is analysed, based on
which the thinning of virtual array is proposed both in case
with and without priori directions. In order to solve the
quadratic fractional problems efficiently, the original non-
convex problem is approximated by a series of convex
problems which can be solved iteratively, the solution of
which is used as the reference point in the optimal integer

constraint problem to obtain the binary solution which
satisfies the requirement of the original problem. Simulation
results show that the thinned virtual array can achieve
proper balance between DOA estimation and sidelobe
performance when no priori direction is present. When
priori direction is available, the directional thinned virtual
array achieves lower total CRB and total MSE than the
isotropic thinned virtual array without priori direction does.
Future work may include implementation of rapid changing
of virtual array structure through matched filters and
adaptive virtual array reconfiguration in real-time
applications.
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*is paper presents a practical demonstration for the design and development of a switchable planar reflectarray using PIN diodes
in the X-band frequency range.Waveguide scattering parameter measurements for the unit cells and far-fieldmeasurements of the
periodic reflectarrays have been carried out to verify the predicted results. Reflectarray unit cell measurements demonstrated a
frequency tunability of 0.36GHz with a dynamic phase range of 226°. On the other hand, the designed 6× 6 periodic reflectarray
has been shown to achieve beam switching from +6° to −6° with different switching states of PIN diodes. *is type of beam
switching can be used in satellite communication for specific region coverage.

1. Introduction

Reflectarray is principally a planar reflector which consists of
an array of resonant microstrip patch elements printed on a
dielectric substrate and is illuminated by a feed horn.
Reflectarrays offer the simplicity and high gain associated
with their reflector counterparts, while providing fast,
adaptive beam-forming capabilities of phased arrays at the
same time. On the other hand, limited bandwidth and higher
loss are some of the major drawbacks of reflectarrays that
limit their use in many applications, as discussed in [1–5].

*e design of beam-forming or beam-switching reflec-
tarray depends on the reflectarray configuration where the
reflected phase from each of the resonant elements can be
controlled either mechanically or electronically. *e re-
flected beam can be directed in the desired direction, which
makes a reflectarray capable of achieving a wide-angle
electronic beam scanning. Such a beam-forming approach
can have many advantages over traditional tunable antenna
array architectures, including a significant reduction in

hardware required per element and increased efficiency [6].
Researchers have investigated different techniques for beam
steering antennas such as the use of nonlinear dielectric
materials [7–9], the integration of Radio Frequency
Microelectro Mechanical Systems (RF MEMS) as switches
[10, 11], loading varactor diodes with the patch elements and
varying the varactor capacitance by using various biasing
[12, 13], using aperture coupled elements where the tuning
circuit can be located on the nonresonating surface of the
element in order to control the contributed phase from each
element [14], and using mechanical movement of the an-
tenna [15]. Some other researchers have also proposed the
use of PIN diodes for beam switching where the diodes can
be switched ON and OFF using an external biasing circuit,
and hence, the reflectarray beam can be controlled [16–19].
However, most of these works propose complex multilayer
design topology using various dielectric substrates.

*is work presents the design and analysis of switchable
reflectarrays for beam shaping realization with optimum
reflection loss and enhanced bandwidth performance. PIN
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diodes have been used for beam switching in reflectarrays
demonstrated through simulations and measurements of
unit cells, as well as periodic arrays.*e reflectarray unit cells
comprise of an optimum performance single layer structure
having printed patch elements with incorporated slot and
gap configurations. *e proposed design demonstrates a
simple structure with reduced chances of mutual coupling
between the adjacent elements of reflectarray.

2. Frequency Switchable Reflectarray Unit Cells

Reflectarray unit cells were designed in the X-band frequency
range using Rogers Rt/D 5880 (εr � 2.2, tan δ � 0.0009), and
PIN diodes were integrated into the gap introduced on the
slot embedded patch element, as shown in Figure 1(a). *e
detailed design configuration and analysis of the rectangular
slot embedded patch elements have already been presented by
in [20]. Waveguide scattering parameter measurements [21]
were carried out for a unit cell that comprised of two patch
elements with dimensions of Lp×Wp � 9.4mm× 10mm
each, which were printed on a substrate of
Ls×Ws� 15mm× 30mm. *e slot length was kept at
0.6mm, while the width was 0.5Wp. *e vertical gap was
introduced with a 0.6mm width in order to fit the PIN diode.

For the electronic switching of a PIN diode-based design,
a GaAS MA4GP907 PIN diode manufactured by MACOM
was used. *is PIN diode has a series capacitance of 0.025pF
and low series resistance of 4.2Ω. *e PIN diodes were
soldered on the surface of the patch element and were
powered by a power supply using a biasing circuit. 1.33V
were supplied, and a 100Ω resistor was used. RF choke was
implemented using quarter-wavelength segments and radial
stub on the biasing circuit in order to block RF from
reaching to the power supply. DC block capacitors were not
required in this case because there is no physical connection
between the RF source (network analyzer) and DC source
(power supply). Figure 1(b) shows the fabricated unit cells
and complete setup for frequency switchable reflectarray
unit cell scattering parameter measurements.

Reflection loss and the reflection phase were measured
within an X-band frequency range, and a close agreement
between measured and simulated results was observed.
Figure 2(a) shows a comparison between measured and
simulated reflection loss curves for fabricated samples. It can
be observed from Figure 2(a) that, in the OFF state of PIN
diode, the measured resonant frequency is close to the
simulated resonant frequency. *e fabricated unit cell res-
onated at 9.40GHz with a reflection loss of 2.60 dB, while the
simulations for OFF state of PIN diode provided a resonant
frequency of 9.38GHz with 1.61 dB reflection loss. When the
PIN diodes were switched ON, a clear change in frequency
was observed for the fabricated samples. In the ON state, the
measured resonant frequency was observed to be 9.04GHz
with reflection losses of 3.91 dB. At the same time, the
simulation results for the ON state of the PIN diode
exhibited a reflection loss of 2.88 dB at a resonant frequency
of 8.99GHz. *e maximum discrepancy between measured
and simulated reflection loss was observed to be 0.99 dB and
1.03 dB in OFF and ON states of PIN diodes, respectively.

Moreover, extra noise or ripples with a maximum level of
0.25 dB were observed. *e reason for this discrepancy can
be fabrication quality, which may be affected by the sol-
dering of diodes and photoetching process, as well as the
difference between actual material properties and the
properties given in the datasheet. Figure 2(b) shows the
comparison between the measured and simulated reflection
phase. A close agreement between the measured and sim-
ulated phase can be observed in Figure 2(b) except the
ripples found towards the edges of the measured curves.
*ese ripples can be linked to the same sources, which
caused a discrepancy in the reflection loss curves. As shown
in Figure 2(a), the dynamic phase range (Δφd) was calculated
at the central frequency of two resonant curves in OFF and
ON states of PIN diodes. It can be observed from that a
maximum frequency tunability of 0.36GHz and a dynamic
phase range of 226° were demonstrated by the PIN diode-
based unit cell measurements. *e results are in close
agreement with the results obtained by 3D EM simulators of
CST MWS and Ansoft HFSS, which practically validates the
proposed design.

3. Switchable Periodic Reflectarray Design

After the characterization of the reflectarray unit cells and the
achievement of the required progressive phase distribution,
switchable periodic reflectarrays were designed. In order to
design the periodic arrays, a mathematical model has been
developed which guides to the exact placement of the unit
cells in the array environment. *e developed mathematical
model has then been applied to design the periodic arrays and
perform the far-field measurements. *e following sections
will explain the procedure and result in details.

3.1. Mathematical Modelling for the Periodic Reflectarray
Design. In order to design a reflectarray antenna, the most
imperative scrutiny is the analysis of the total electric field on
the patch elements printed on the dielectric substrate with a
conductive ground plane on the other side. *e total electric
field on a reflectarray consists of the incident field and the
reflected and scattered elements of the field. *erefore, the
total electric field can be given by

Et � 1 + R θi,φi(  + S θi,φi, Li, Wi(   · E0e
jk0 xui+yvi− zcosθi( ).

(1)

In the case of a waveguide simulator technique, the
general relation for the total electric field excited in the
Y-direction can be written as

Etw � GYY
· JY + EYinc l + GYY , (2)

where G is Green’s function, J is the current density, and l is
the length of the unit cell patch element, and JY can be given
by

JY � 
n

Anφn(x, y), (3)
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where An is the unknown vector coefficient and φn is the
required phase from an individual patch element of a
reflectarray in order to form a progressive phase
distribution.

In order to calculate the phase shift for the elements on
the X-axis, trigonometric identities can be used as follows:

φ � −
2π
3

cot− 1 f

xi ± ΔX
, (4)

where f is the vertical distance of feed from the surface of the
array and xi is the distance between the center of the ith
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Figure 1: Reflectarray unit cell. (a) Proposed design configuration. (b) Fabricated unit cell, biasing circuit, and complete measurements setup.
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Figure 2: PIN diode-based active unit cells of reflectarrays. (a) Measured and simulated reflection loss curves. (b) Measured and simulated
reflection phase curves.
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element and the point perpendicular to the feed and φ is in
degrees. Once φ is calculated for different values of x� xi,
y� 0, the phase shift for all the array elements can be ob-
tained.*is method simplifies the calculation of the required
phase shift from each of the array elements and reduces the
complexity and time required for the periodic reflectarray
design. *e abovementioned technique can also be used for
the progressive phase distribution with offset feed reflec-
tarrays as shown in Figure 3. In the case of offset feed
reflectarrays, ΔX has to be introduced as the distance be-
tween the feed and the line perpendicular to the array centre.
Figure 3 shows the geometry of the centre feed and offset
feed reflectarrays for different planar reflector designs. *e
feeds F1 and F2 are placed at the offset distance of
ΔX � X0 − X2and ΔX � X0 − X2, respectively.

*e abovementioned analysis provides a general formula
for the design of a planar reflector with progressive phase
distribution for any dielectric material and either centre or
offset feed configuration. In order to obtain the progressive
phase distribution of a planar reflector designed with dif-
ferent dielectric substrates, the material properties should be
incorporated in equation (4). *e material properties affect
the reflection coefficient (Γ), which affects the reflection
phase of the planar reflector. In the case of reflectarray
antennas, Γ depends on the attenuation due to dielectric and
conductor loss, which are given by

αd �
ω
2

�������

μ0ϵ0ϵr( 



tan δ,

αc �
8.68

WZm

������
ωμ0
2σc

 



,

(5)

where αd and αc are attenuation due to dielectric and copper
loss, respectively.

After incorporation of the effects of dielectric and copper
attenuation on Γ and reflection phase of the planar reflector,
equation (4) can be written as

φ � −
2π
3

cot− 1 f

K xi ± ΔXf 
. (6)

In equation (6), K is a variable that relates ϕ with Γ and
depends on resonant frequency and material properties,
which affect the radiated and scattered fields. *e value of K
will be higher for the materials with higher values of di-
electric permittivity and loss tangent. *erefore, K is directly
proportional to attenuation due to the dielectric and con-
ductor, and K can be given by

K � C · αd + αc( , (7)

where C is a compensation variable and varies with different
design requirements and materials used. Finally, equation
(6) can be written as

φ � −
2π
3
cot− 1 f

C · αd + αc(  xi ± ΔXf 
. (8)

In order to implement the mathematical model for
periodic arrays designed using different dielectric materials,

the compensation factor C can be expanded by relating C,
with different material properties, and finally, the reflection
phase of the individual elements can be given by

ϕ � −
2π
3

cot− 1 f

x εr/ tan δ(  αd + αc(  xi ± Xf 
, (9)

where x is a constant that has to be derived for different
materials. Values of C have been estimated as a function of
material properties and the desired frequency range.

In order to demonstrate the functionality of the devel-
oped mathematical modelling, phase distribution for dif-
ferent offset fed reflectarrays was obtained. An offset of 0.5λ
(15mm for 10GHz) has been used for five different feed
positions placed at f� f0 (centre feed), f� f0−λ, f� f0 + λ,
f� f0−1/2λ, and f� f0+1/2λ. *e required reflection phases
for progressive phase distribution of planar reflectors with
different offset feed positions are shown in Figure 4. It can be
observed from Figure 4 that a phase shift is required because
of an offset in the feed position. However, for a particular
design (constant number of elements and material prop-
erties), the phase values obtained bymathematical modelling
for a radius of the circle are independent of the feed
positions.

3.2. ArrayDesign andFar-FieldMeasurements. Active arrays
with a 6× 6 slot and gap embedded patch elements were
designed and fabricated, and the PIN diodes were incor-
porated on half of the resonant elements (18 diodes) for the
demonstration of radiation pattern measurements of beam-
switching reflectarrays. In order to achieve the progressive
phase distribution using the individual unit cells of reflec-
tarray, the phase shift was obtained by varying the width of
the rectangular slots. *ere were no changes made in the
dimensions of the gap and properties of the PIN diodes.

*e PIN diodes were forward biased with a 1.33 V
forward voltage and a biasing resistance of 100Ω. *ere-
fore, the total current demanded by the antenna was
239.4mA. Figure 5 shows the fabricated 6× 6 element
reflectarray with connectors attached to it. As shown in
Figure 5, the biasing circuit was used to bias the 18 PIN

F1

f1 f0

f2

φ2
φ0

φ1

x2

x0
x1

F0 F2

Figure 3: Reflection phase from different feed points in a planar
reflector.

4 International Journal of Antennas and Propagation



–60 –40 –20 0 20 40 60
–180

–150
–120

–90
–60

–30
0

30
60

90
120

150
180

X (mm)

Re
fle

ct
io

n 
ph

as
e (

de
gr

ee
s)

f = fo
f = fo – λ
f = fo – 1/2λ

f = fo + λ
f = fo + 1/2λ

(a)

–60 –40 –20 0 20 40 60

–60

–40

–20

0

20

40

60

X (mm)

Y 
(m

m
)

Phase = ±180° 
Phase = ±171° 
Phase = ±165° 

Phase = ±154° 
Phase = ±125° 
Phase = ±075° 

(b)

–30 –10 10 30 50 70 90

–30

–10

10

30

50

70

90

X (mm)

Y 
(m

m
)

Phase = ±180° 
Phase = ±171° 
Phase = ±165° 

Phase = ±154° 
Phase = ±125° 
Phase = ±075° 

(c)

–90 –70 –50 –30 –10 10 30

–90

–70

–50

–30

–10

10

30

X (mm)

Y 
(m

m
)

Phase = ±180° 
Phase = ±171° 
Phase = ±165° 

Phase = ±154° 
Phase = ±125° 
Phase = ±075° 

(d)

Figure 4: Continued.
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diodes where the power was supplied using a power supply
placed inside the anechoic chamber. *e reflectarray an-
tenna was placed at a far-field distance from a standard
X-band transmitting horn antenna. *e feed horn has a
gain of around 7.5 dB at 10GHz. *e transmitter and

receiver were connected with a control station and a
network analyzer placed outside the chamber. A turntable
was used to rotate the reflectarray antenna, and far-field
measurement results were stored in the control station. A
very close agreement between measured and simulated far-
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Figure 4: Required reflection phase curves for a planar reflector (8× 8 elements) (a) with different feed positions, (b) f� f0 (centre feed), (c)
f� f0−λ, (d) f� f0 + λ, (e) f� f0−1/2λ, and (f) f� f0 + 1/2λ.

Figure 5: Fabricated 6× 6 element active array, biasing circuit, and complete far-field measurement setup for an active reflectarray antenna.
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field radiation pattern results was demonstrated where
measured 3 dB beamwidth of 13.3° for 0° beam was ob-
served as compared to 3 dB beamwidth of 12.9° generated
during simulations as shown in Figure 6.

A switched beam of +6° was achieved by forward biasing
(ON state) of the diodes keeping the diodes on the right side
of the array. *erefore, half of the array resonant elements
on the left side, without diodes, were considered to be in the
OFF state of PIN diodes. In the OFF state, a PIN diode acts as
an open circuit with a very low series capacitance. Keeping
this in view, the assumption of elements without diodes as in
the OFF state can be acceptable for demonstration purposes.
A switched beam of −6° was demonstrated by changing the
configuration of reflectarray in such a way that the PIN diode
loaded elements were placed on the left side of the array.*is
was achievable because of the symmetricity of the reflec-
tarray design and positioning of the PIN diodes. *e
switched beam configurations also provided a good agree-
ment between simulated and measured results. Figure 7(a)
shows a comparison between measured and simulated

results for +6° switched beam configuration, where mea-
sured and simulated 3 dB beamwidth were observed to be
13.2° and 13.8°, respectively. While for −6°, switched beam
measured 3 dB beamwidth was observed to be 13.3° as
compared to the simulated 3 dB beamwidth of 14.0° as
shown in Figure 7(b). *e maximum discrepancy in the case
of active reflectarray antenna design was observed to be 0.7°;
however, the trend of beam switching for measured radia-
tion patterns is similar to the simulated radiation patterns.
Moreover the cross polarization levels were observed to be
below −20 dB which are considered satisfactory for this type
of antenna.

*e comparison between the measured and simulated
antenna gains was also carried out as shown in Table 1. A
maximum gain of 13 dB was observed in the case of 0° beam.
*e gain was observed to be slightly lower in the case of
switched beams which can be due to the effects caused by the
introduction of PIN diodes. *e −1 dB gain bandwidth was
also obtained for the 0° beam by measuring the gain at
different frequencies and observing the bandwidth at 1 dB
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Figure 6: Measured and simulated radiation patterns for 0° primary beam at 10GHz.
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Figure 7: Measured and simulated radiation patterns of reflectarrays. (a) +6° switched beam. (b) −6° switched beam at 10GHz.
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below the maximum gain at 10GHz. Figure 8 shows the
comparison between the simulated and measured results of
gain at different frequencies in the X-band frequency range.
*e 1 dB was observed to be 32% or 3.2GHz as demon-
strated in Figure 8.

Generally, there are some discrepancies observed by the
comparison of simulated and measured results of different
performance parameters. *e discrepancy in the measured
and simulated results can mainly be attributed to the losses
added because of the additional circuitry used for biasing of
active reflectarrays. *e PIN diodes were soldered on the
resonant patch elements using conducting materials, which
can add up to the conductor losses. Moreover, during the
fabrication and soldering process, the arrays were exposed to
very high temperatures. *is high temperature can vary the
material properties of the dielectric substrate, and the sol-
dering can affect the conductivity of the copper used for
resonant patches. Overall, it can be concluded that the re-
sults successfully demonstrated the feasibility of applying the
developed technique for the design of switchable reflectar-
rays for beam-shaping realization.

4. Conclusions

Switchable reflectarrays for beam-shaping realization can be
designed using PIN diodes on the slot and gap embedded
resonant patch elements of reflectarrays.*e performance of
the unit cells and the PIN diodes has to be optimized for the
effective design of active reflectarrays. Furthermore, the
sidelobe levels and 3 dB beamwidth demonstrated in this

work can be improved by increasing the number of elements
in the periodic array. Such beam switching can be used in a
number of applications, including Earth observatory sys-
tems, where a geostationary orbit can cover the whole Earth
within ±9°.
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In this paper, we consider the joint angle-range estimation in monostatic FDA-MIMO radar. +e transmit subarrays are first
utilized to expand the range ambiguity, and the maximum likelihood estimation (MLE) algorithm is first proposed to improve the
estimation performance. +e range ambiguity is a serious problem in monostatic FDA-MIMO radar, which can reduce the
detection range of targets. To extend the unambiguous range, we propose to divide the transmitting array into subarrays. +en,
within the unambiguous range, the maximum likelihood (ML) algorithm is proposed to estimate the angle and range with high
accuracy and high resolution. In the ML algorithm, the joint angle-range estimation problem becomes a high-dimensional search
problem; thus, it is computationally expensive. To reduce the computation load, the alternating projectionML (AP-ML) algorithm
is proposed by transforming the high-dimensional search into a series of one-dimensional search iteratively. With the proposed
AP-ML algorithm, the angle and range are automatically paired. Simulation results show that transmitting subarray can extend the
range ambiguity of monostatic FDA-MIMO radar and obtain a lower cramer-rao low bound (CRLB) for range estimation.
Moreover, the proposed AP-ML algorithm is superior over the traditional estimation algorithms in terms of the estimation
accuracy and resolution.

1. Introduction

+e frequency diverse array (FDA) concept was first pro-
posed at the 2006 IEEE Radar Conference and has received
widespread attention because of its range-dependent beam
pattern [1–3]. +e FDA range-dependent beam pattern is
generated by the different carrier frequencies of the array
elements; that is, there is a frequency increment between the
FDA array element carrier frequency, and the frequency
increment is much smaller than the reference array element
carrier frequency. Compared with traditional phased array,
the FDA has obvious advantages in applications such as
beamforming [4], target detection and positioning [5], de-
ceptive jamming suppression [6], and secure communica-
tion [7].

+e multiple input multiple output (MIMO) radar has
excellent spatial resolution and target detection performance

[8, 9]. Combining FDA and MIMO radar can increase FDA
degrees-of-freedom (DOFs). +ere are two types of FDA-
MIMO radar, which are the bistatic FDA-MIMO radar and
the monostatic FDA-MIMO radar.+e bistatic FDA-MIMO
radar has the serious problem of angle-range coupling,
which increases the difficulty of joint angle-range estimation
[10]. However, the angle and range parameters are decou-
pled in the monostatic FDA-MIMO radar, which facilitates
the joint angle-range estimation [11].

Although the angle and range parameters are decoupled
in the monostatic FDA-MIMO radar, there exists another
serious problem of range ambiguity. +e problem of un-
ambiguous range in the monostatic FDA-MIMO radar was
pointed in [12], where the maximum unambiguous range
was derived. In monostatic FDA-MIMO radar, only within a
limited range, the range of target can be estimated without
ambiguity, and the unambiguous range is inversely
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proportional to the frequency increment. To our best
knowledge, there is only one work discussing how to extend
the unambiguous range of monostatic FDA-MIMO radar at
present. Inspired by [5], reference [13] proposed double-
pulses method to extend the unambiguous range, which is to
transmit double-pulses with different frequency increments
at different times. However, transmitting double-pulses at
different times will reduce the real-time performance of the
radar system. Inspired by the method of angle and range
decoupled using subarrays in traditional FDA (uniform
linear array and uniform frequency increment) radar [14]
and bistatic FDA-MIMO radar [10], we propose to extend
the range ambiguity for the monostatic FDA-MIMO radar
using subarrays. In this method, the FDA transmitting array
is uniformly divided into subarrays with different frequency
increments. Compared with the double-pulse method, the
proposed method can reduce the time cost of the monostatic
FDA-MIMO radar system. Meanwhile, in traditional
monostatic FDA-MIMO radar, reducing the frequency in-
crement can extend the unambiguous range. However, re-
ducing the frequency increment, the cramer-rao low bound
(CRLB) of the range estimation will increase accordingly.
+e proposed transmitting subarrays can solve this con-
tradictory problem, and a lower-range estimation CRLB
while extending the unambiguous range can be obtained.

In addition, the joint angle and range estimation with
unambiguous range in monostatic FDA-MIMO radars has
received a lot of attention. In [15], the angle and range
estimation CRLB, MSE, and resolution of monostatic FDA-
MIMO radar were analysed and compared with traditional
MIMO radar, which illustrated the advantages of monostatic
FDA-MIMO radar. +e multiple signal classification
(MUSIC) algorithm was utilized in monostatic FDA-MIMO
radar [16], where the resolution threshold for angle and
range estimation was analysed. In [17], the estimation of
signal parameters via rotational invariance techniques
(ESPRIT) algorithm was used to estimate the target angle
and range without search. Compared with the searching
algorithm (e.g., MUSIC), the calculation cost of ESPRIT
algorithm is reduced, but the estimation accuracy is lower
than the searching algorithm. In [18], by using the
sparseness of the target in the space, the sparse model of the
received signal in monostatic FDA-MIMO radar was
established. +e sparse model was solved using convex
optimization, and finally the angle and range were estimated
in a single snapshot. In [12], the design of the coprime array
was applied to the monostatic FDA-MIMO radar, which
further improves the DOFs. At the same time, an angle and
range estimation based on Bayesian learning algorithm was
proposed. Reconstruction algorithm based on compressed
sensing always subject to the grid-mismatch effect and
deteriorating the estimation performance [19]. +e off-grid
angle and range estimation approach for monostatic FDA-
MIMO radar with single snapshot based on decoupled
atomic norm minimization (DANM) is proposed in [20].
And the estimation performance is better than orthogonal
matching pursuit (OMP).

In above related works, the classic MUSIC and ESPRIT
algorithms are widely used in angle and range estimation for

monostatic FDA-MIMO. However, as a classic parameter
estimation algorithm, maximum likelihood estimation
(MLE) [21] has not been discussed for angle and range
estimation in monostatic FDA-MIMO radar. According to
the estimation theory, the estimation performance of MLE is
better than MUSIC and ESPRIT algorithms, and the esti-
mation result is closer to the parameter estimation CRLB.
Considering this paucity, in this paper, we first utilize the
MLE algorithm to estimate angle and range jointly in the
monostatic FDA-MIMO radar. +e log-likelihood function
of angle-range estimation is derived, and the maximum
likelihood (ML) cost function of the angle and range is
obtained. Since the cost function of MLE requires high-
dimensional search, the computation load is heavy. To
improve the computational efficiency, we propose the al-
ternating projection (AP) ML algorithm, which transforms
the high-dimensional search into a series of one-dimen-
sional iterative search [22]. In addition, the angle and range
are automatically paired during the iteration.

In this paper, the transmitting steering vector of tra-
ditional FDA and FDA with subarrays are derived, based
on which the signal model of monostatic FDA-MIMO
radar with transmitting subarrays is given.+en, the reason
and principle of extending unambiguous range by trans-
mitting subarrays are illustrated. +e expression for the
unambiguous range of the proposed method is derived and
compared with the existing method. After extending the
range ambiguity, we utilize the MLE algorithm within the
unambiguous range to estimate the angle and range jointly
in monostatic FDA-MIMO radar. To further reduce the
computational load, the AP-MLE is proposed. In the
simulation results, the effectiveness of the proposed
method to expand the range ambiguity is verified. +e
CRLB of angle and range is derived. +e estimation per-
formance of the proposed AP-ML estimation algorithm is
evaluated, which confirms the superiority of the proposed
method in the monostatic FDA-MIMO radar with
subarrays.

+e main contributions of this paper are summarized as
follows:

(i) +e method to extend the range ambiguity by
transmitting subarrays is proposed in the monostatic
FDA-MIMO radar. Compared with the existing
method of decreasing the frequency increment in
monostatic FDA-MIMO radar, the proposed
method can obtain a lower range estimate CRLB.
Compared with the existing double-pulse method,
the proposed method can reduce the time cost of the
radar system.

(ii) +e AP-ML algorithm for joint angle and range
estimation in the monostatic FDA-MIMO radar
with transmitting subarrays is proposed.+e specific
algorithm flow is given, and the estimation perfor-
mance is evaluated. Simulation results show that the
estimation accuracy and resolution ability of the
proposed AP-MLE algorithm are significantly su-
perior over the classic MUSIC and ESPRIT
algorithms.
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Notations: Superscripts [·]T, [·]H, and (·)− 1 denote
complex transpose, conjugate transpose, and inverse oper-
ation, respectively. ⊗ denotes Kronecker product. lcm(·)

denotes least common multiple operation. ∝ means pro-
portional relationship. trace(·) denotes trace operation. ⊙
denotes Hadamard product. Re(·) means taking the real
part. 12×2 represents 2× 2 matrix filled with ones.

2. Signal Model

+e frequency diverse array is different from the traditional
array in that there is a nonzero frequency increment Δf in
the carrier frequency between its array elements, and this
frequency increment Δf is much smaller than the carrier
frequency of the reference array element. +e carrier fre-
quency of the m-th array element is

fm � f1 +(m − 1)Δf, m � 1, 2, . . . , M, (1)

where f1 represents the reference array element carrier
frequency, and M represents the number of array elements.

In this paper, we consider a monostatic FDA-MIMO
radar system with transmitting subarrays. +e transmitting
subarray monostatic FDA-MIMO radar system is shown in
Figure 1. +e transmitting array is uniformly divided into K
subarrays, where each subarray is a ULA with M array el-
ements, the spacing between subarrays element and sub-
arrays is dt. Assuming the frequency increment of the k-th
subarray is Δfk. Receiving array is a ULA with N array
elements, and the spacing between receiving array elements
is dr.

Suppose there is a target at the far field of the monostatic
FDA-MIMO radar. +e angle of the target relative to the
array is θ, and the two-way propagation range of the target is
r. In this case, the transmitting steering vector of trans-
mitting array is [10]

at(θ, r) � at1(θ, r)
T
, . . . , atk(θ, r)

T
, . . . , atK(θ, r)

T
 

T
,

(2)

where atk(θ, r) is the transmitting steering vector of the k-th
subarray and atk(θ, r) can be expressed as [1–3]

atk(θ, r) � e
−j(2π/c) (k− 1)Mdtf1 sin(θ)− fk,1− f1,1( )r( ) 1, . . . , e

−j(M− 1)Δφk(θ,r)
 

T
,

(3)

where Δφk(θ, r) � (2π/c)(dtf1 sin(θ) − Δfkr) and c is
speed of light. fk,1 represents the carrier frequency of the
first element of the k-th subarray, and definition fk,m

represents the carrier frequency of them-th element of the k-
th subarray, which can be written as

fk,m � fk,1 +(m − 1)Δfk, m � 1, 2, . . . , M. (4)

If K� 1 or Δf1 � · · · � Δfk � · · · � ΔfK and fk,1 �

fk−1,1 + MΔfk−1, the transmitting subarrays degenerates
into nontransmitting subarrays (transmitting frequency
diverse array with ULA and uniform frequency increment).

Assuming the transmitting subarrays transmit KM or-
thogonal signals, the narrow-band complex signal

transmitted by the m-th element in the k-th subarray can be
expressed as

sk,m(t) � ϕk,m(t)e
j2πfk,mt

, (5)

where ϕk,m(t) represents the km-th orthogonal signal.
Suppose there are P static and irrelevant targets in the far

field. +e transmitting subarrays transmit KM signals, after
the target is reflected, the signal is received and sampled by
the receiving array, after matched filtering, the received
signal can be written as [10, 20]

x(l) � 
P

p�1
ar θp ⊗ at θp, rp βp(l) + n(l), l � 1, . . . , L,

(6)

where L is snapshots of the received signal, θp indicates the
angle (direction of arrival (DOA) and direction of departure
(DOD)) of the p-th target, and rp indicates the two-way
range for the p-th target. βp(l) represents the complex
amplitude of the received p-th target, and
ar(θp) � [1, . . . , ej(2π/c)(N− 1)drf1 sin(θp)]T is the receiving ar-
ray steering vector. n(l) is the MN-dimensional complex
Gaussian noise vector with zero mean and variance of σ2.

Equation (6) can be written as

x(l) � Aβ(l) + n(l), l � 1, . . . , L, (7)

where A � [ar(θ1)⊗ at(θ1, r1), . . . , ar(θP)⊗ at(θP, rP)] ∈ C
KNM×P is the array manifold matrix, β(l) � [β1(l), . . . , βp

(l), . . . , βP(l)]T ∈ CP×1 is the complex amplitude vector of P
targets.

3. Extend theRangeAmbiguity Using Subarrays

In traditional radar system, ambiguity range is caused by
range-folded echo due to pulse repetition frequency (PRF).
However, in FDA-MIMO radar, the angle-range of the target
can be estimated jointly. Similarly, the range ambiguity
problem also exists in FDA-MIMO radar. +e range am-
biguity in FDA-MIMO radar is caused by the multiple peak
values in range dimension of the angle-range beamforming
[13]. In this section, we explain the range ambiguity problem
from the angle-range estimation principle. In this case, the
problem of the multiple peak values in range dimension of
the angle-range beamforming turns into the multiple peak
values in range dimension of the angle-range spectrum. In
addition, we use method of subarrays to extend the range
between the multiple peaks and it is equivalent to extending
unambiguous range in FDA-MIMO radar.

It can be seen from equation (7) that the angle and range
in monostatic FDA-MIMO are decoupled. +e angle of the
target can be estimated separately from the receiving
steering vector. Subsequently, the range of the target can be
estimated from the transmitting steering vector. When es-
timating the angle and range of p-th target for transmitting
frequency diverse array with ULA and uniform frequency
increment, it is equivalent to estimating the phase difference
Δφ(θp, rp) � (2π/c)(dtf1 sin θp − Δfrp) in the
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transmitting steering vector and the phase difference
Δφ(θp) � (2π/c)(drf1 sin θp) in the receiving steering
vector. Obviously, the angle θp of p-th target can be esti-
mated from the receiving steering vector without unam-
biguous. +e range rp of p-th target can be estimated from
the transmitting steering vector. However, the phase dif-
ference Δφ(θp, rp) is ambiguous with range.

We suppose the estimated value ϕ for the phase dif-
ference Δφ(θp, rp) by the estimation algorithms is in the
range of [−π, π), i.e., ϕ ∈ [−π, π). +e range of the p-th target
can be retrieved from the equation Δφ(θp, rp) � ϕ,
ϕ ∈ [−π, π). We assume that the truth value of the p-th target
range is rt and the truth value of the p-th target angle is θt.
+en, we have

2π
c

  dtf1 sin θt − Δf rt + qramb( (  � ϕ, q � 0, ±1, ±2, . . . ,

(8)

where ramb is the ambiguity range. From (8), we can see that
ramb � c/Δf, which means that the range ambiguity is de-
termined by the frequency increment Δf. We can also

conclude that there is a periodic ambiguity in the estimated
range and the periodic range is c/Δf. +at means the
maximum unambiguous detection range of monostatic
FDA-MIMO radar is c/Δf and the maximum unambiguous
range is inversely proportional to the frequency increment.
Hence, we propose the subarrays method to handle the
ambiguity range and extend the maximum unambiguous
range.

In this paper, we utilize the method of transmitting
subarrays to extend the maximum unambiguous range for
monostatic FDA-MIMO radar. In the transmitting sub-
arrays, the frequency increment of the k-th subarray is Δfk.
When range of the target estimated from the transmitter
with transmitting subarrays, it is equivalent to estimating the
phase difference Δφk(θp, rp) � (2π/c)(dtf1 sin θp − Δfkrp)

in the transmitting steering vector and angle of the p-th
target estimated from receiving steering vector before. We
suppose the estimated value ϕk for the phase difference
Δφk(θp, rp) of k-th subarray by the estimation algorithms is
in the range of [−π, π), i.e., ϕk ∈ [−π, π). In this case, the
ambiguous rule of transmitting subarrays is determined by

2π
c

  dtf1 sin θt − Δf1 rt + q1r
1
amb   � ϕ1, q1 � 0, ±1, ±2, . . . ,

⋮

2π
c

  dtf1 sin θt − Δfk rt + qkr
k
amb   � ϕk, qk � 0, ±1, ±2, . . . ,

⋮

2π
c

  dtf1 sin θt − ΔfK rt + qKr
K
amb   � ϕK, qK � 0, ±1, ±2, . . . ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where rk
amb is the maximum unambiguous range of the k-th

subarray. Similarly, we can conclude that there is a periodic
ambiguity in the range estimated by k-the subarray and the

periodic range is c/Δfk. From equation (9), we can conclude
that the maximum unambiguous range of transmitting
subarrays satisfies

... ... ...

Δf1 Δfk ΔfK

θ θ θ

(a)

...

θ

(b)

Figure 1: Transmitting subarrays monostatic FDA-MIMO radar system. (a) Transmitting array. (b) Receiving array.
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qr
max
amb � q1r

1
amb � · · · � qkr

k
amb � · · · � qKr

K
amb, q � 0, ±1, ±2, . . . ,

(10)

where rmax
amb is the maximum unambiguous range of trans-

mitting subarrays. Hence, from the equations (9) and (10),
the maximum unambiguous range of monostatic FDA-
MIMO radar with transmitting subarrays is

r
max
amb � lcm

c

Δf1
, . . . ,

c

Δfk

, . . . ,
c

ΔfK

 . (11)

From equation (11), if ((c/Δf1), . . . , (c/Δfk), . . . ,

(c/ΔfK)) satisfies the coprime relationship, the maximum
unambiguous range is (c/Δf1) × · · · × (c/Δfk)

× · · · × (c/ΔfK). +erefore, a reasonable configuration of the
transmitting subarrays can greatly extend the unambiguous
range of themonostatic FDA-MIMO radar. On the contrary,
if K� 1 or Δf1 � · · · � Δfk � · · · � ΔfK and
fk,1 � fk−1,1 + MΔfk−1, transmitting subarrays degenerate
into nontransmitting subarrays, the unambiguous range will
be greatly reduced.

Maximum unambiguous range of traditional, double-
pulses, and transmitting subarrays monostatic FDA-MIMO
radar is shown in Table 1. +e maximum unambiguous
range of traditional monostatic FDA-MIMO radar is c/Δf.
+e maximum unambiguous range of transmitting double-
pluses monostatic FDA-MIMO radar is
lcm((c/Δf1), (c/Δf2)) and the maximum unambiguous
range of transmitting subarrays monostatic FDA-MIMO
radar is lcm((c/Δf1), . . . , (c/Δfk), . . . , (c/ΔfK)). +erefore,
both the method of double-pulse and transmitting subarrays
can extend the maximum unambiguous range. If the method
of double-pulse is to obtain the same size of the maximum
unambiguous range as the transmitting subarrays, it is
necessary to transmit K-pulses with different frequency
increments at different times, which will greatly increase the
time cost of the radar system. Compared with the method of
double-pulses, the method of transmitting subarrays can
reduce the time cost of the radar system.

4. The AP-ML Algorithm for Angle-
Range Estimation

4.1. ML Algorithm for Angle-Range Estimation. In this part,
the MLE algorithm is used to estimate angle and range for
monostatic FDA-MIMO. First, the log-likelihood function
of angle and range estimation is derived. Second, through
simplification, the ML cost function about angle and range
estimation is obtained. Finally, an AP algorithm is used for
dimensionality reduction iterative search. In iterative search,
angle and range are automatically matched, and no addi-
tional angle and range matching algorithm is required.

According to equation (7) array receiving signal model,
the parameter to be estimated is η � θT, rT,Z, σ2 , where

θ � θ1, θ2, . . . , θP 
T
, (12a)

r � r1, r2, . . . , rP 
T

, (12b)

Z � β(1)
T
, . . . , β(l)

T
, . . . , β(L)

T
 . (12c)

Under the complex Gaussian noise with zero mean
variance of σ2, suppose the noises are independent of each
other, the noise and signal also satisfy the independent
relationship. At this time, the array received signal obeys
X ∼ Nc(AS, σ2IKMN) [23], and the joint probability density
function (PDF) of X can be represented as

fX(X; η) � 
L

l�1

1

2πσ2 
KMN/2 exp −

(x(l) − Aβ(l))
H

(x(l) − Aβ(l))

2σ2
 ,

(13)

where X � [x(1), . . . , x(l), . . . , x(L)].
By performing the logarithm operation on the joint PDF,

the log-likelihood function is obtained as

L(η) � ln fX(X; η)  � −
KMNL

2
ln 2πσ2 

−
1
2σ2



L

l�1
(x(l) − Aβ(l))

H
(x(l) − Aβ(l)).

(14)

By taking the derivative of σ2setting the derivative
function to zero, we can obtain the maximum likelihood
estimation of σ2 as

σ2 �
1

KMNL


L

l�1
(x(l) − Aβ(l))

H
(x(l) − Aβ(l)). (15)

Substituting σ2 into equation (13), the new log-likeli-
hood function as

L(θ, r,Z) � −
KMNL

2
−
KMNL

2

· ln
2π

KMNL


L

l�1
(x(l) − Aβ(l))

H
(x(l) − Aβ(l))⎛⎝ ⎞⎠.

(16)

From equation (16), the new log-likelihood function
satisfies the following relationship:

L(θ, r,Z)∝ − 
L

l�1
(x(l) − Aβ(l))

H
(x(l) − Aβ(l)). (17)

+en, the maximum likelihood estimation of angle and
range becomes

(θ, r, Z)ML � argmax
θ,r,Z

(L(θ, r,Z)). (18)

Because x(l) � Aβ(l) + n(l) is a linear model about β(l),
we can know from the best likelihood estimation theorem of
the linear model

β(l)ML � AHA 
− 1
AHx(l). (19)

Taking equations (19) into (18) and simplifying, the
maximum likelihood cost function for angle and range
estimation can be described as
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(θ, r)ML � arg max
θ,r

trace PAR( , (20)

where PA � A(AHA)− 1AH is the projection matrix and R �

(1/L) 
L
l�1 x(l)xH(l) is the signal covariance matrix.

ML cost function is a high-dimensional search problem.
When the number of targets is P, a global search will be
conducted in the 2P-dimensional space. In order to improve
the calculation efficiency, we further simplify the 2P-di-
mensional search into a series of one-dimensional iterative
search by AP algorithm.

4.2. AP Iterative Search for ML Cost Function. AP algorithm
is a simple and effective method to solve the multidimen-
sional searching problem. It simplifies the multidimensional
searching into a series of one-dimensional searching and
thus can greatly reduce the computational load. However, if
the objective function is not convex, the initial value of the
parameter will greatly influence the result of searching. In
order to prevent the algorithm from falling into the local
optimal value, a good initialization parameter value is very
important. +e method in [24] is used to initialize angle and
range.

Firstly, the first group of angle and range initial values is
obtained as follows:

θ
(0)

1 , r
(0)
1  � arg max

θ,r
trace Par(θ)⊗at(θ,r)R . (21)

After that, the second group of angle and range is solved
by

θ
(0)

2 , r
(0)
2  � arg max

θ,r
trace P

ar
θ

(0)

1 ⊗ at
θ

(0)

1 ,r
(0)

1 ,ar(θ)⊗at(θ,r) 
R

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
.

(22)

According to the method of equations (21) and (22),
initialize the P groups of angle and range in sequence.

Next, iteratively update the P groups of angle and range
until the algorithm iteration stop condition is satisfied. In the
iterative process, perform a one-dimensional search for
angle and range, respectively:

θ
(j+1)

p � arg max
θ

trace P A Θ(j)( ),ar(θ)⊗ at θ,r
(j)

p  
R , (23)

r
(j+1)
p � argmax

r
trace P

A Θ(j)( ),ar
θ

(j)

p ⊗ at
θ

(j)

p ,r  
R

⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(24)

where Θ(j) represents the P-1 pair angle and range from the
j-th iteration, which can be described as

Θ(j)
� θ(j)

1 , r
(j)
1 , . . . , θ(j)

p−1, r
(j)
p−1 , θ(j)

p+1, r
(j)
p+1 , . . . , θ(j)

P , r
(j)

P  .

(25)

Finally, the iteration stop condition is

θ
(j+1)

p − θ
(j)

p



≤ δ, (26)

r
(j+1)
p − r

(j)
p



≤ ε, (27)

where p � 1, . . . , P, δ, and ε are error thresholds. When (26)
and (27) are satisfied at the same time or the iteration reaches
the maximum number, the iteration stops.

+e steps for the angle and range estimation in
monostatic FDA-MIMO radar using AP-MLE are described
as follows:

Step 1: j� 0, initialize the angle-range parameters
according to equations (21) and (22).
Step 2: j� j+ 1, iteratively and update the angle and
range parameters according to equations (23) and (24).
Step 3: if (26) and (27) are satisfied, or the maximum
number of iterations is reached, the algorithm stops,
otherwise repeat Step 2.

5. Simulation Results

In this part, we design some experiments to prove the ef-
ficiency of the proposed method of transmitting subarrays to
extend the unambiguous range for monostatic FDA-MIMO
radar and the superiority of the proposed AP-ML angle and
range estimation for monostatic FDA-MIMO radar.

5.1. Simulation 1. In order to verify the effectiveness of the
proposed transmitting subarrays to extend the unambiguous
range for monostatic FDA-MIMO radar, simulation 1 gives
the unambiguous range of transmitting subarrays mono-
static FDA-MIMO radar and nontransmitting subarrays
monostatic FDA-MIMO radar by MUSIC spectrum.

Consider the number of transmitting subarrays is K� 2,
the number of subarrays elements is M� 6, and the fre-
quency increment Δf1 of the first subarray is 2 kHz. +e
frequency increment Δf2 of the second subarray is 5 kHz.
+e carrier frequency of the first subarray reference array
element is 10GHz, and the carrier frequency of the second
subarray reference array element is 10.000012GHz. +e
number of array elements of the receiving array is N� 8, and
dt � dr � (c/2fKM). Suppose a target is located at (20°,
50 km), under the conditions of signal-to-noise ratio
(SNR)� 20 dB, and the number of snapshots L is 100, the
following gives the monostatic FDA-MIMO MUSIC spec-
trum with frequency increment Δf1 � Δf2 � 2 kHz,
Δf1 � Δf2 � 5 kHz, and Δf1 � 2 kHz, Δf2 � 5 kHz.

Table 1: Maximum unambiguous range of traditional, double-pulses, and transmitting subarrays monostatic FDA-MIMO radar.

FDA Traditional Double-pulses Transmitting subarrays
Maximum unambiguous range (m) c/Δf lcm((c/Δf1), (c/Δf2)) lcm((c/Δf1), . . . , (c/Δfk), . . . , (c/ΔfK))
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Figure 2 shows the MUSIC spectrum with
Δf1 � Δf2 � 2 kHz; in this case, the unambiguous range of
nontransmitting subarrays (traditional FDA) is 150 km.
Figure 3 shows the MUSIC spectrum with
Δf1 � Δf2 � 5 kHz; in this case, the unambiguous range of
nontransmitting subarrays is 60 km. Figure 4 shows the
MUSIC spectrum with Δf1 � 2 kHz and Δf2 � 5 kHz; in
this case, the unambiguous range of transmitting subarrays
is 300 km. Comparing Figures 2 and 3, under the traditional
FDA, the unambiguous range is inversely proportional to
the frequency increment. Comparing Figures 2–4, it can be
concluded that the proposed transmitting subarrays can
extend the unambiguous range for monostatic FDA-MIMO
radar.

5.2. Simulation 2. In order to verify the correctness of the
proposed AP-ML angle and range estimation for trans-
mitting subarrays monostatic FDA-MIMO radar, simula-
tion 2 gives the estimation result of AP-MLE.

Suppose three targets located at (−10°, 151 km), (5°,
152 km), and (30°, 154 km), and transmitting subarrays
K� 2, the number of each subarray elements M� 6,
Δf1 � 2 kHz, and Δf2 � 5 kHz. Obviously three targets are
within the unambiguous range. In the case of SNR� 10 dB
and snapshot number L� 100, 100 Monte Carlo simulation
results are given in Figure 5. +e angle search step is 0.05°,
and the range search step is 5m.

Figure 5 shows the angle and range estimation results of
AP-MLE within the unambiguous range. From Figure 5, we
can know the AP-MLE algorithm can complete the angle
and range estimation for transmitting subarrays monostatic
FDA-MIMO radar. At SNR� 10 dB, 100 estimations are
closer to the real angle and range. In addition, in the AP
iteration, the 3 groups of angle and range are automatically
paired without additional pairing algorithm.

5.3. Simulation 3. Simulation 3 uses the average number of
iterations curves versus SNR to represent the efficiency of the
AP-ML angle and range estimation for transmitting sub-
arrays monostatic FDA-MIMO radar. +e simulation
conditions are the same as for simulation 2.

Figure 6 gives the average number of iterations curves
versus SNR of AP-ML angle and range estimation for
transmitting subarrays monostatic FDA-MIMO radar. As
the SNR increases, the number of iterations required de-
creases. When SNR is greater than or equal to 20 dB, AP-
MLE only needs about two iterations and the efficiency of
the AP-MLE is significant.

5.4. Simulation 4. In order to evaluate the estimation per-
formance of the AP-MLE algorithm, the AP-MLE root mean
square error (RMSE) of the angle and range against the SNR
is compared with the MUSIC algorithm, ESPRIT algorithm
(angle and range pairing algorithm in [25]), paper [13], and
angle-range estimation CRLB.+e CRLB expression is given
by equation (28), the angle and range RMSE expressions are
given by equations (35) and (36).

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

×105

–90 –60 –30 0 30 60 90
Angle (deg)

0

–10

–20

–30

–40

–50

–60

–70

Ra
ng

e (
m

)

Figure 2: MUSIC spectrum with Δf1 � Δf2 � 2 kHz.
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Figure 3: MUSIC spectrum with Δf1 � Δf2 � 5 kHz.
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Figure 4: MUSIC spectrum with Δf1 � 2 kHz and Δf2 � 5 kHz.
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CRLB(Θ) �
σ2

2L
Re CHP⊥AC ⊙ Rβ ⊗ 12×2   

− 1
, (28)

where

Θ � θ1, r1, . . . , θp, rp, . . . , θP, rP 
T
,

(29)

C � d θ1( ,d r1( , . . . ,d θp , d rp , . . . , d θP( , d rP(  ,

(30)

d θp  �
zar θP( ⊗ at θP, rP( 

zθP

, (31)

d rp  �
zar θP( ⊗ at θP, rP( 

zrP

, (32)

Rβ �
1
L



L

l�1
β(l)βH

(l), (33)

P⊥A � I − PA. (34)

From equations (31) and (32), the frequency increments
have a significant effect on the CRLB of range estimation and
have no significant effect on the CRLB of angle estimation.
+erefore, we mainly consider the effect of the frequency
increment setting on the CRLB of range estimate in this
simulation.

RMSEθ �
1
P



P

p�1

��������������

1
D



D

d�1

θ
d

p − θp 
2




, (35)

RMSEr �
1
P



P

p�1

�������������

1
D



D

d�1
r

d
p − rp 

2




, (36)

where θ
d

p is the angle value of the p-th target estimated at the
d-th time, rd

p is the range value of the p-th target estimated at
the d-th time, and D is the number of Monte Carlo
simulations.

Suppose three targets are located at (−5°, 11 km),(10°,
13 km), and (35°, 14 km), where the angle search step is
0.01° and the range search step is 1 m. +e number of
simulations D � 200 and other simulation conditions are
the same as simulation 2.

Figure 7 shows angle CRLB and RMSE curves versus SNR
and Figure 8 shows range CRLB and RMSE curves versus SNR.
From Figures 7 and 8, as the SNR increases, the angle and range
RMSE of paper [13], MUSIC, ESPRIT, AP-MLE, and CRLBs
decrease continuously. However, the angle and range RMSE of
AP-MLE is closest to angle and range CRLB. So, the perfor-
mance of angle and range estimation of AP-MLE is better than
paper [13], MUSIC, and ESPRIT, and the ESPRIT is the worst.

Next, according to the range estimation CRLB with
Δf1 � Δf2 � 2 kHz, Δf1 � Δf2 � 3 kHz, Δf1 � Δf2 �

5 kHz, and Δf1 � 2 kHz, Δf2 � 5 kHz in Figure 8, the
nontransmitting subarrays monostatic FDA-MIMO radar
range estimation CRLB decreases with increasing frequency.
However, from equation (8), the max unambiguous range
decreases with increasing frequency. Hence, it is impossible
to obtain a low-range CRLB and a large unambiguous range
at the same time in nontransmitting subarrays monostatic
FDA-MIMO radar. However, lower-range estimation CRLB
and large unambiguous range can be obtained at the same
time in transmitting subarrays monostatic FDA-MIMO
radar. +at means the proposed transmitting subarrays can
solve the relationship between the low-range estimation
CRLB and large unambiguous range contradiction.

5.5. Simulation 5. We measure resolution by the resolution
probability of the targets. +e expression for the threshold is
χ � min[(

����������������������
(θp1 − θp2)

2 + (rp1 − rp2)
2


)/2], p1, p2 � 1, . . . ,
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P, p1 ≠p2. If the absolute error of the estimation than χ, the
estimation is considered a failure resolution. +e estimation
angle and range are mapped to the wrong target, which leads
to a large error, so that the different targets cannot be
distinguished correctly.

Assume that two targets are located at (10°, 11 km) and
(15°, 11.5 km). Other simulation conditions are the same as
simulation 2.

Figure 9 gives the resolution probability curves versus
SNR. From Figure 9, as the SNR increases, the resolution

probability of AP-MLE reaches 1 at the fastest. From the
trend of the curve change, we can conclude the resolution
probability of AP-MLE is the best, MUSIC is second, paper
[13] is third, and the ESPRIT is the slowest. In addition, the
resolution capability of AP-MLE is obviously greater than
paper [13], MUSIC, and ESPRIT, and the ESPRITalgorithm.

6. Conclusions

+is paper proposes to extend the unambiguous range of the
monostatic FDA-MIMO radar using the transmitting sub-
arrays. Meanwhile, the proposed transmitting subarrays can
solve the relationship between the low range estimation
CRLB and large unambiguous range contradiction. In ad-
dition, the AP-ML angle and range estimation for mono-
static FDA-MIMO radar are proposed. +e simulation
results prove the superiority of AP-ML angle and range
estimation for monostatic FDA-MIMO radar in estimation
accuracy and resolution.
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)is paper introduces a 2D angle-of-arrival (AoA) estimator, which has a 6–18GHz 7-element nonuniformly spaced array (NSA)
and a Direct Data Domain- (D3-) based AoA algorithm for a 2D isotropic-element planar array (IEPA). A 2D calibration and
data-transformation method is developed to convert the NSA data to the output of the IEPA, so that the NSA-measured data can
be used in the D3 algorithm. Using the steering vector (SV) of the IEPA and the results derived from the D3 method, a new 2D
AoA searching method is also developed, which offers frequency-independent performance defined by the probability of AoA
estimation, when the required estimation accuracy and signal-to-noise ratio (SNR) are given. For the applications of electronic
support measures, this paper also presents the use of precalculated SV and data-transformation matrix databases built on
preselected frequency points and a 2D-angle grid that is close to uniformly distributed directions.)e simulation results show that
with good SNR (≥15 dB), the estimator can have 50% probability of AoA estimation with root mean square error (RMSE) less than
or equal to 1° using just a few samples from the NSA. Moreover, the study focuses on the applications with low SNR by using more
samples from the NSA. Results show that the estimator has 52% and 80% probabilities of AoA estimation with RMSE ≤1° and 5°,
respectively, for phase- or frequency-modulated radar pulses, when the SNR is within [−10, 0] dB. )e study also shows that the
estimator prefers a circular-shaped planar array with a triangular interelement pattern, since it presents more symmetrical
characteristics from different azimuth angles.

1. Introduction

)e angle-of-arrival (AoA) of the signal of interest (SOI) is
the most important measurement parameter in an electronic
support measures (ESM) system to de-interleave intercepted
radar signals, especially in detecting and classifying low
probability of intercept signals [1]. Traditionally, spinning
direction-finding (DF) antenna, amplitude-comparison,
phase-comparison, and interferometry methods are popular
AoA measurement methods in ESM systems [2–10]. In
addition, there are many microwave DF systems developed
for wireless communication applications [11]. From a signal-
processing perspective, there are a number of algorithms
used for signal DF applications. Among them, multiple
signal classification (MUSIC) [12] and estimation of signal

parameters via rotation invariance techniques (ESPIRT) [13]
have been used for many years with different array con-
figurations for different applications. As examples, currently,
these methods are used for 2D AoA estimations for mixed
circular and noncircular incident signals for massive mul-
tiple-input multiple-output systems [14] and for uniform
rectangular array [15]. However, to apply these methods, a
stable signal environment is generally required, since the
signal covariance matrix needs to be formed. A new ap-
proach for AoA estimation was introduced using infor-
mation geometry (IG) [16]. Based on IG, Dong et al. [17]
introduced a simple scaling transform-based information
geometry (STRIG) method, which has more consistent
performance than the original IG method while having a
high AoA estimation resolution. Lonkeng and Zhuang [18]
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presented a research on 2D DF estimation using arbitrary
arrays in MIMO systems and introduced the 2D Fourier
domain line search MUSIC algorithm. Krishnaveni et al.
[19], Devendra and Manjunathachari [20], and Barua et al.
[21] have surveyed some directions of arrival methods.Many
other AoA estimators have also been developed, which focus
on different array structures and faster processing speeds.
Some examples are given in [22–28].

)ere are also some AoA estimation methods that are
based on compressive sensing (CS) theory [29–31]. Gurbuz
et al. [32, 33] applied CS to estimate acoustic wave AoA by
focusing on one receiving channel sampling at Nyquist rate
and the other channels sampling at CS rate. Using the target
bearing as a sparse vector, Cevher et al. [34] demonstrated
multielement circular acoustic sensor arrays to obtain the
bearings of multiple sources by applying an l1-norm min-
imization solution called the Dantzig selector [35]. Wu and
Elangage [36] introduced a CS-based ultra-wideband 2D
AoA estimation scheme that can estimate AoA of the SOI
from 2 to 18GHz without any a priori knowledge of the
intercepted signals. Other examples of treating AoA esti-
mation as a sparse recovery problem can be found in
[37–40]. Bayesian CS- (BCS-) based AoA estimation was also
developed in [41–43]. )e key advantage of the BCS AoA
estimator is its ability to estimate signal AoA with few
measured data from each element in the array.

To estimate the AoA of SOI in a nonstationary envi-
ronment and to avoid having to form a signal covariance
matrix, the Direct Data Domain (D3) method was intro-
duced [44–47]. Using the D3 method and the concept of
signal cyclostationarity, Sarker et al. [48] introduced a
method that can handle a number of signals along with their
various coherent and noncoherent multipaths and inter-
ferences, even when the number of signals exceeds the
number of antenna elements.)is was demonstrated using a
12-element uniform linear array. Some examples of using
the D3method for AoA estimations can be found in [49–54].

Most aforementioned methods and their usages on
antenna arrays are suitable for narrow-band applications, as
the array elements and their configurations closely relate to
the signal wavelengths. Hence, they can be used mainly for
AoA estimations in communication applications. Interfer-
ometry-based AoA measurement systems have been widely
used in ESM systems for 2D AoA measurements in ultra-
wide frequency ranges [2–4]. It is desirable to use the longest
possible baseline in the array, to achieve low variance
measurement results. However, longer baselines require
higher signal-to-noise ratios (SNRs) in order to resolve the
ambiguity using the associated trigonometric functions. In
addition, even if the wideband antenna elements, such as
cavity-backed spiral antennas (CBSA), are used in the five-
element array in [2], the spacing of the short baseline in the
array is chosen to be less than half of the wavelength of the
highest frequency of interest. As a result, several different
five-element interferometers are required to cover a wide
operational frequency range. )is results in a large antenna
array footprint. Pasala et al. [5] introduced a three-element
interferometer array that used multimodes in the elements

to avoid the short baseline required in the conventional five-
element array configuration. )e long baseline (larger array
footprint) is still required to resolve the ambiguity. However,
these large-footprint arrays are problematic for small air-
borne platforms, such as CubeSats (U-class spacecraft) [55],
small unmanned aerial vehicles [56, 57], and drones.

In this paper, we propose a novel 2D angle-of-arrival
(AoA) estimator for ESM applications from 6 to 18GHz in
low SNR environments with frequency-independent per-
formance, when the SNR and the required estimation ac-
curacy are given. )is includes the following contributions:

(i) A 2D 7-element compact nonuniformly spaced
array (NSA) is designed with CBSA elements op-
erating from 6 to 18GHz, which has an array
footprint that is smaller than a circle having a
41.4mm radius.

(ii) A 2D AoA measurement system applies the D3
method on the measured time-domain data
(snapshots) from the 7-element NSA. )is includes
the following:

(a) A 2D data transformation from the 7-element
NSA-measured data to a 2D isotropic-element
planar array (IEPA) data is introduced in order
to use the NSA data in the D3 method for AoA
estimation, and six different 2D IEPAs are
considered.

(b) Using 2D IEPA steering vector (SV) and the
results derived from the D3 method, a new
objective function is introduced for searching
the AoA of the SOI solution in both azimuth
(Az) and elevation (El) angles. )is (1) avoids
having to solve the ambiguity problem en-
countered in interferometric arrays and (2)
gives the estimator a frequency-independent
performance.

(c) Using a 3D icosphere, a 2D-angle grid is in-
troduced to give a near-uniform angular dis-
tribution in the field of view (FOV) of the 7-
element NSA. On this grid, the data-transfor-
mation matrix database and SVs of IEPAs are
precalculated at a list of preselected frequency
points and stored in a computer prior to AoA
estimations. Hence, the estimator can be used
for ESM applications without a priori knowl-
edge of the SOI.

(iii) Since the focus of this development is ESM appli-
cation in low SNR environments, different SNR
levels are studied with four different commonly
used radar waveforms. )ey are the following: (1) a
13-chip Barker-coded waveform, (2) a 20-chip two-
valued frequency-coded waveform [58], (3) a 16-
chip poly-phase-coded waveform, and (4) a ultra-
wideband (100MHz chirp) frequency-modulated
continuous waveform (FMCW).
In addition to the above contributions, the findings
of this study are highlighted as follows:
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(i) )e preferred IEPA for this application has a cir-
cular-shape, which also has the least number of
elements.

(ii) )e new AoA estimation scheme shows frequency-
independent performance defined by the proba-
bility of AoA estimation, when the required AoA
estimation accuracy is specified for a fixed SNR.)is
performance results from using the nonuniformly
(nonregularly) spaced CBSA array, applying the 2D
data transformation to convert measured data from
the NSA to a planar array and then using the new 2D
AoA searching method introduced in this paper.

(iii) In general, the more snapshots used in AoA esti-
mation, the better the accuracy that can be achieved
or the higher the probability of AoA estimation for a
given SNR and desired accuracy.

(iv) )e estimator can estimate 2D AoA using few
snapshots in a high SNR environment.

)e paper is organized as follows: )e 7-element NSA
design is presented in Section 2. )e AoA estimation al-
gorithm for a planar array with isotropic radiators in free
space is then discussed in Section 3. Section 4 presents a 2D
data transformation that maps the time-domain sampled
data (or snapshots) from the 7-element NSA to the data of an
IEPA, so that the D3 method introduced in Section 3 can be
applied. Section 5 discusses how to apply the AoA estimation
method to an ESM system with ultrawide frequency range
without a priori knowledge of the frequency of the SOI. )e
simulation results and discussion are presented in Section 6.
)e last section gives the conclusions and future work.)ere
are four appendixes in this paper. Appendix A defines the six
IEPAs. A description of the 2D-angle grid on the vertices of a
unit icosphere is given in Appendix B. Four commonly used
radar waveforms with their parameters are given in Ap-
pendix C. Appendix D explains the reasons why the esti-
mator has frequency-independent performance with respect
to the probability of AoA estimation mentioned above.

2. Design of a 7-Element 6–18GHz NSA

Figure 1 illustrates the 7-element CBSA array, and Figure 2
shows nonuniform interelement spacings. )e element lo-
cations in XY-plane are given in Table 1. )e reasons for
choosing the element locations are to ensure that (1) element
spacings in X and Y directions are as close to half the
wavelength of the highest operational frequency as possible,
(2) the distances between adjacent element centers are bigger
than the diameter of the CBSA element, and (3) the overall
array footprint is as small as possible. As a result, the average
element spacing in both X and Y directions is about
8.44mm, which is a little bigger than half of the free-space
wavelength at 18GHz, i.e., 8.33mm.)e element used in the
NSA is a commercial-off-the-shelf 6 to 18GHz CBSA with
24.4mm diameter. In addition to ultra-wideband opera-
tional frequency band of the array, another advantage of
using the CBSA element is the possibility of neglecting the
performance changes caused by the mutual coupling

between adjacent elements in the array [59]. It is mainly
because the element has about 80° to 100° 3 dB beamwidth in
its broadside and very low radiation, when El-angle ap-
proaches 0°. Examples of measured antenna radiation can be
found in [60].
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Figure 1: A 3D illustration of the 7-element CBSA NSA. )e
phase-reference center is at the first element center.
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Figure 2: )e top view of element centers with interelement
spacings (unit is in mm).

Table 1: Antenna element locations.

Element pxn (mm) pyn (mm) pzn (mm)

1 0.0 0.0 0.0
2 24.74 6.79 0.0
3 6.79 24.74 0.0
4 −18.75 16.87 0.0
5 −25.90 −7.94 0.0
6 −7.94 −25.90 0.0
7 16.87 −18.75 0.0
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3. AoA Estimation from a Planar Array with
Isotropic Elements

Before discussing the AoA estimation algorithm for the
NSA, this section briefly presents the AoA estimation al-
gorithm for a planar array with isotropic elements, which is
the 2D version of the development given in [48]. Although,
in this study, the D3 method was applied to 2D planar arrays
given in Appendix A, the AoA estimation method proposed
in this section can also be applicable to other sparse array
structures, such as 2D nested array [22].

3.1. SOI Representation. )e intercepted signal output at the
nth antenna element in an IEPA can be expressed as a
complex envelop signal:

xn(t) � An(t)e
j2πfct+ϕ( ) + ℵ(t) +Ω, (1)

where A, fc and ϕ are the amplitude, frequency and initial
phase of the waveform of the SOI, respectively.ℵ is the white
Gaussian noise added by the receiver. In the following
simulations, it is added to the signal in each receiving
channel based on the signal-to-noise ratio (SNR) defined in
each simulation and the power of the SOI.
n � (1, 2, . . . , NN) and NN is the total number of elements
in the IEPA. Ω represents other unwanted signals, such as
jamming signals. Since signal collision or pulse collision is
not considered in this study, Ω is excluded in the latter
equations. If the received signal in (1) is sampled at a set of
time instants m � (1, 2, . . . , M, M + 1), the collected data
can be expressed as

xn(m) � An(m)e
j2πfc·m·dt+ϕ( ) +ℵ(m), (2)

where dt is the temporal sampling interval.
If the phase reference is at the center element of the

array, and it is located at the origin of the coordinate system,
the received signal of the mth snapshot at the nth element is

xn(m) � An(m)e
(j2π/λ) pxn cos(El)cos(Az)+pyn cos(El)sin(Az)+pzn sin(El)[ ]{ }

+ ℵ(m),

(3)

where λ is the SOI free-space wavelength, (Az,El) is the SOI
incident direction, and (pxn, pyn, pzn) are given in Table 1.

3.2. Cyclostationarity of the SOI. )e cyclostationarity is a
nonlinear transformation operating on a signal, and it
generates finite-strength additive sine-wave components
that result in spectral lines [61]. A signal x(t) is assumed to

be having a cyclostationary feature with cycle-frequency η, if
and only if the product x(t) · x(t − τ), for some delay τ,
shows a spectral line at frequency η.

)e signals to be detected in our problem are cosine-
wave based signals, for example,

A(t)cos 2πfct( . (4)

Let us assume the second-order nonlinear transforma-
tion, which is equivalent to multiplying the signal with its
shifted version or simply to square the SOI; the new signal
has a cycle-frequency η that can be

A
2
(t) · cos2 2πfct(  �

A
2
(t)

2
 cos(2πηt) + constant, (5)

η� 2fc, (6)

where it assumes that the delay or shift is zero. )e complex
envelope form of (5) is

A
2
(t)e

j2πηt
. (7)

In many applications, the SOI cyclostationary infor-
mation is a priori known information, for example, the
cycle-frequency of the carrier frequency between two
communication sites. However, in ESM, the intercepted
signal frequency (fc) has to be estimated.

3.3. D3-Based AoAMethod for an IEPA. First, let us apply a
second-order nonlinear transform to the signal in (2) as we
did in (5) and then regroup the transformed signals into the
signal with cycle-frequency and other frequency compo-
nents. We have

x
2
n(m) � A

2
(m)e

j2πη·m·dt
+ Others, (8)

where Others includes other frequency components not
around η � 2fc and noise. Note that, in this study, the signal
collision is not considered; i.e., the signal to be processed
only has one carrier in the current RF receiver band, even
though the receiver can be tuned from 6 to 18GHz. Using
M+ 1 temporal snapshots from each element of an
NN-element IEPA, the following matrix equation can be
constructed. )e detailed derivation and discussion are
given in Chapter 7 of [48] for a linear array case. Here, we
extend it to the 2D planar array application:

Z(NN+1) ×MWM×1 � E(NN+1)×1, (9)

where

Z �

1 · · · e
j2π(M−1)η·dt

x
2
1(1) − x

2
1(2)e

−j2πη·dt
· · · x

2
1(M) − x

2
1(M + 1)e

−j2πη·dt

⋮ · · · ⋮

x
2
NN(1) − x

2
NN(2)e

−j2πη·dt
· · · x

2
NN(M) − x

2
NN(M + 1)e

−j2πη·dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10)
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W is the unknown weight vector that can be detailed as

W �

w1

w2

⋮

wM

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

and E is the excitation vector, given as

E �

C

0

⋮

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

)e length of column vector E is NN + 1, and the
constant C can be arbitrarily selected and it also satisfies the
following relation with weight vector:

C � 
M

m�1
wme

j2π(m−1)η·dt
. (13)

However, (13) is not a necessary condition since the
constant C gets factored out in the final AoA computation.
Equation (13) expresses that the sum of the weights produces
a gain factor C, when they are applied to the SOI at the cycle-
frequency. )e Moore–Penrose pseudo-inverse was used to
solve (9) in order to obtain W, which has ‖W‖2 � C/

��
M

√
.

)e elements from the second row and after in (10) can
be written as x2

n(m) − x2
n(m + 1)e−j2πη·dt, which tells that the

SOI component at the cycle-frequency η � 2fc is removed
from the matrix elements. )us, the weight vector W ob-
tained from (9) minimizes the noise and other frequency
components and simultaneously satisfies (13). )is is one of
the reasons why the algorithm has the ability to measure
weak signals from noise and can give a good estimation of
the AoA of the SOI.

)e advantages of (9) are as follows: (1) the temporal data
are directly used without being converted to frequency
domain, and no covariance matrix is required and (2) the
number of time-domain snapshots can be very small, e.g.,
M + 1 � 2, in high SNR cases. Hence, it can be used in
dynamic signal environments with good SNR.

3.4. Detecting SOI by Estimating Its AoA Using IEPA. For a
given element n in an IEPA, when the (n + 1)th row ofmatrix
Z in (10) is multiplied with the weight-vector W, one has



M

m�1
x
2
n(m) − x

2
n(m + 1) · e

−j2πη·dt
 wm � 0. (14)

From (14), considering wm ≠ 0, ej2πη·dt ≠ 0, and (13), the
following equation can be derived:

1
C



M

m�1
x
2
n(m)wm � e

j4π/λest( ) pxncos(El)cos(Az)+pyncos(El)sin(Az)[ ]{ },

(15)

where it is assumed that pzn � 0, λest � (c/fcest
), and c is the

speed of light in free space. Equation (15) unveils some
important results including the following:

(i) )e operation 
M
m�1 x2

n(m)wm means that the
weight vector applies a filter to the squared values of
snapshots.

(ii) )e sum of the filtered data in the Item-1 above only
relates to the AoA of SOI.

(iii) )e weights only can be used to filter the current set
of squared values of snapshots used in (9) to
minimize the undesired signal at the output. If
snapshots are changed, the weights obtained from
(9) will be changed accordingly, but the sumwill not
be changed.

)e Item-3 in the above discussion reflects the dynamic
nature of this method, where the processing only deals with
the current set of snapshots fed to (9).

Since (15) uses the nth element’s measured snapshots and
has two unknowns (Az,El), the solution can be calculated
using any two elements in the array to form two equations
from (15). However, we are going to introduce a new ap-
proach to find AoA in the following sections, which uses the
IEPA SV and a 2D searching method. )e advantage of the
new approach is the ability to avoid having to pick answers
from an unlimited number of solutions of inverse trigo-
nometric functions and the possibility of finding AoA so-
lution with no dependency on frequency at a fixed SNR.)e
reason for the frequency-independent behavior is discussed
in Appendix D.

)is new AoA searching method is the second important
reason that explains why our scheme can robustly measure
the weak signals and how it can offer a good estimation of
AOA of the SOI.)e novelty of this approach is using all the
NN elements together for the AoA solution, rather than
using a few elements in the array to find the AoA solution
from inverse trigonometric functions.

3.5. IEPA Steering Vector andObjective Function. If an IEPA
is located at the origin of the Cartesian coordinate system, its
SV for an incoming plane wave is

sv �

e
jk· r→1

e
jk· r→2

⋮

e
jk· r→n

⋮

e
jk· r→NN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (16)

where k is the wave vector and r→n is the displacement vector
from the signal source to the nth element in the array.

If the center element of the array is located at the origin
and its phase is used as the phase reference, then the array SV
becomes
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sv(az, el) �

e
j(2π/λ) px1 cos(el)cos(az)+ py1 cos(el)sin(az)[ ]

e
j(2π/λ) px2 cos(el)cos(az)+ py2 cos(el)sin(az)[ ]

⋮

1

⋮

e
j(2π/λ) pxn cos(el)cos(az)+ pyn cos(el)sin(az)[ ]

⋮

e
j(2π/λ) pxNN cos(el)cos(az)+ pyNN cos(el)sin(az)[ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(17)

)e SV at the center element is equal to one. It is also
assumed that all the elements have the same locations in z
direction.

Comparing (17) with (15), one can find that in order to
estimate the AoA (Az,El), a 2D searching method can be
used to find (aze, ele) by

min
az�aze

el�ele



NN

n�1
sv2n(az, el) −

1
C



M

m�1
x
2
n(m)wm





2

, (18)

where sv2n is the square of svn at the nth isotropic element in
(17) with λ � λest, which is the same as the right side of (15).
)e details of the searching method will be given in Section
5.

4. AoA Estimation Using the 7-Element NSA-
Measured Snapshots

)is section discusses how to use snapshots from the 7-
element NSA to estimate the AOA of the SOI by taking
advantage of the 2D D3-based AoA method discussed in the
last section.

4.1. 2D Transformation Matrix to Convert 7-Element NSA-
MeasuredData to IEPAData in Free Space. Consider a setup
for the 7-element NSA calibration. A far-field source at
frequency fc is placed along the direction (az(p), el(p)),
and the measured phasor voltages at 7 output ports can be
expressed as yn(p, fc) (n � 1, 2, . . . , 7). Here, p indicates the
source at the pth direction. If this source is moved in total P

directions and at each direction, one collects the phasor
voltage at each element, a measured data matrix Y7×P(fc)

can be obtained. )en, replacing the NSA by an NN-ele-
ment IEPA and performing the same measurement, the
output phasor voltage matrix from the planar array
UNN×P(fc) can be created. In reality, instead of making
measurement, it can be calculated, since the isotropic ele-
ment in free space does not exist.

)e goal is to find the best-fit data-transformationmatrix
that satisfies

TNN×7 fc(  · Y7×P fc(  � UNN×P fc( . (19)

)is equation can be solved using the least square
method. It is achieved by minimizing the following function:

min
T�I

UNN×P fc(  − TNN×7 fc(  · Y7×P fc( 
����

����, (20)

where I is the best-fit transformation matrix. In order to
have a unique solution of (20), the number of P directions
must be greater than or equal to the number of antenna
elements in the planar array.

For frequency fc, the transformation matrix (I) has to
be stored in computer memory. )en, during the operation,
snapshots Y7×1(m,Az,El, fc) from the NSA can be con-
verted to snapshots of the NN-element IEPA by

UNN×1 m,Az,El, fc(  � INN×7 fc( Y7×1 m,Az,El, fc( ,

(21)

where the incident direction (Az, El) of SOI should be
within the limits of those directions during the calibration,
but not necessary to be one of the P directions. )is is called
the off-grid case. After that, the AoA of SOI can be estimated
using the algorithm discussed in the previous section.

Note that different frequencies fc have different trans-
formation matrices. Obtaining the transformation matrices
for the 6–18GHz radar ESM applications without a priori
knowledge of the frequency of SOI is discussed in Section 5.

4.2. Discussion. )e calibration method and the data-
transformation given in (19) to (21) can be applied to planar
arrays of any size and any shape. Six different IEPAs are used
in this study to demonstrate the approach. )ese arrays are
presented in Appendix A.

In real applications, the data-transformation introduced
in this section

(i) eliminates the nonuniformity in the real array,
which means it transfers a NSA into a regular-
spaced IEPA

(ii) converts a 3D real antenna problem into an iso-
tropic-element regular-spaced array problem in free
space

(iii) takes into account the mutual coupling between el-
ements in a real array, when the Ymatrix is measured

(iv) removes the inconsistency among receiver channels,
when the NSA elements are connected to RF
receivers

(v) can remove the electromagnetic interferences by the
presence of near-field scatterers, for example, the
body of the platform, if the calibrationmeasurement
is performed with a platform in a big microwave
anechoic chamber

5. Application of the Method to ESM

In the discussion of Sections 3 and 4, although the snapshots
measured in time domain are used in (10) and (15) to
calculate the weight vector in (11), the method still requires
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the carrier frequency of the intercepted radar signal for the
following purposes:

(i) To obtain the cycle-frequency
(ii) To determine the IEPA SV
(iii) To determine the data-transformation matrix,

which has to be obtained and stored in computer
memory prior to AoA measurements

Unfortunately, in radar ESM applications, the SOI
carrier frequency has to be estimated (fcest

). )is section
introduces an approach to deal with this problem.

First, let us discuss how to obtain the precalculated SV
database and the transformation matrix I database for a
given IEPA based on the 2D-angle grid introduced in Ap-
pendix B. )en, we give the detailed steps of using these
databases for AoA estimations.

5.1. Precalculated SV Database and I Database. From 6 to
18GHz, total 2401 equal-spaced frequency points (fci

) are
preselected to develop the databases, so that the frequency
step is 5MHz. For an IEPA, the SV database can be written
as

squared SV fci
, z  � sv2n azz(p), elz(p), fci

 , (22)

where n � 1, 2, . . . , NN and i � 1, 2, . . . , 2401.
z � 1, 2, . . . , 36, and p is the pth direction in the zth angle
zone shown in Figure 17(a) in Appendix
B. Ptotal � 

36
z�1P(z) � 29495, where P(z) is the total di-

rections in the zth angle zone.
)e I matrix used in (21) is developed in each angle

zone at every frequency (fci
) and can be written as

INN×7 fci
, z . (23)

Basically, the number of directions P in (19) is replaced
by P(z) in each angle zone. Hence, for each planar array, at
every frequency point and within each angle zone, a pair of
precalculated squared-SV and I matrix is saved in the
computer memory.

5.2. AoA Measurement without a Priori Knowledge of the
Carrier of the SOI. During the AoA measurement, once the
fcest

is obtained from the ESM system, the closest frequency
point (fcI

) in (fci
, i � 1, 2, . . . , 2401) can be found and the

corresponding squared SV(fcI
, z) and INN×7(fcI

, z) are
used in the AoA estimation. To search AoA solution, the
second term in (18) obtained by the D3 method is compared
with the first term at each direction defined by the 2D-angle
grid in Figure 17(a) in Appendix B through 36 angle zones.
)en, the direction that gives the minimum sum value in
(18) is used as the solution.

6. Simulation Results and Discussion

In this section, the simulation results are first presented
based on the probability of AoA measurement versus SNR
under the conditions of (1) different RMSE requirements

and (2) using different (M + 1) snapshots during estima-
tions. )e RMSE of each AoA estimation is defined as

��������������

(ΔAz)2 +(ΔEl)2

2
,



(24)

where ΔAz and ΔEl are the measurement errors in Az- and
El-angle, respectively.)en, the estimation errors in Az- and
El-angles are discussed. Finally, the results of the use of a
small number of snapshots for AoA estimation under high
SNR conditions are also shown.

Simulation cases consist of the data which are processed
by the six planar arrays on four different waveforms using
different number of snapshots (M + 1) that varies from 2 to
1025. In each case,

(i) A section of M + 1 consecutive snapshots is sent to
AoA calculation. )e starting point of a section of
M + 1 data is randomly selected within a pulse of
different waveforms discussed in Appendix C.

(ii) )ere is a total of 100000 AoA estimations.
(iii) )e incident wave in each AoA estimation is gen-

erated as follows:

(a) )e carrier frequency is uniform-randomly
picked in [6, 18] GHz.

(b) )e SNR of each processed signal is uniform-
randomly chosen in [−20, 20] dB. It is assumed
that the seven receivers add the same noise
power to the received signals.)e noise power is
calculated based on the received signal power,
and the noise has white Gaussian distribution.

(c) )e incident direction in off-grid case is also
uniform-randomly selected in the FOV.

6.1. Probability of AoA Estimation

6.1.1. Comparison with Different IEPAs. Tables 2–5 provide
the SNRs that yield 50% or better probability of AoA esti-
mation using 129, 257, 513, and 1025 snapshots, respectively,
from the six different arrays (described in Appendix A)
under different estimation accuracy requirements. In these
tables, the values in bold, but not italicized, show the lowest
SNR in a group of 6 SNRs produced by the 6 planar arrays,
and the bold italic and normal italic values indicate the
largest and the second largest SNRs in a data group, re-
spectively. An IEPA with a lower SNR in a group means that
it has a better capability of measuring AoA than the arrays
with higher SNRs. )is is because the array can estimate
AoA of weaker signals than the rest of arrays which need
stronger signals for the same accuracy.

From these tables, one can observe that Array-3 has 41
out of 64 values given in bold and Array-5 scores 21. )is
indicates that Array-3 is the best array among the 6 planar
arrays to give a good AoA estimation, and Array-5 is the next
to Array-3. Note that both of these two arrays are circular-
shaped planar arrays with different interelement patterns.

On the other hand, one can see that Array-6 and Array-1
share the most bold-italicized and italic values. Array-6 has 50
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bold-italicized and 7 italic values, and Array-1 has 11 bold-
italicized and 38 italic values.)ismakes Array-6 to be the least
favorite array among the 6 IEPAs, and Array-1 is the next. It is
interesting to note that both Array-6 and Array-1 are rect-
angular-shaped planar arrays with different interelement
patterns.

)e above observation shows that our AoA estimation
method prefers the planar array with symmetrical element
distribution that can be seen from different Az-angles. In ad-
dition, Array-3 has the least number of elements. Hence it needs
shorter computation time than the other arrays. Since Array-3 is
themost favorable planar array out of the 6 arrays, the discussion
in the rest of this paper uses the data produced by Array-3.

6.1.2. Probability of AoA Estimation versus SNR.
Figures 3 and 4 show the results of probabilities of AoA
estimation fromArray-3 with estimation accuracies of 1° and
5°, respectively. Each subplot of these figures has 4 curves
that present the results of 4 waveforms. From them, the
following observations can be made:

(i) When shorter snapshots are used in AoA calcula-
tions, i.e., subplots of in Figures 3(a) and (b) and
Figures 4(a) and (b), the 4 curves of the 4 waveforms
are very close to each other.

(ii) When the number of snapshots is increased, the
method still gives very close results for the first three
waveforms, but the result of WF-4 starts deviating

from other results as shown in Figures 3(c) and (d)
and Figures 4(c) and (d). Eventually, when M + 1 �

1025 in Figures 3(d) and 4(d), the results are worse
than those in Figures 3(a–c) and Figures 4(a–c).)is is
because a longer sequence of FMCW snapshots covers
a wider frequency range than those with a shorter
sequence of snapshots. Hence it gives a bigger carrier
frequency estimation error during calculations that
degrades the probability of AoA estimation. Note that,
in this study, a 100MHz chirp signal has been used.

(iii) In general, when more snapshots are used in the
calculations, better estimation results can be achieved.
)is can also be clearly observed in Figure 5.

6.2. AoA Estimation versus Frequency and SNR. )e prob-
abilities of AoA estimation versus frequency and SNR
are shown in Figures 6–9 for four different waveforms.
From these figures, the following observations can be
made:

(i) For a given estimation accuracy, i.e., RMSE, at
different frequencies, the method has about the
same AoA estimation performance against the SNR.
)e explanation of this performance can be found in
Appendix D.

(ii) Again, the corresponding subplots in first three
figures are basically similar, i.e., the method gives
similar estimation performances for WF-1 to WF-3.

Table 2: SNR (dB) values when arrays can produce 50% correct results using 129 snapshots under different estimation accuracies.

RMSE≤ 1° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 2° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 5° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 10° (Array-1, 2, 3, 4, 5, 6)
WF-1 0.58/−0.94/−1.00/−0.42/−0.79/0.87 −2.30/−3.85/−4.04/−2.34/−3.50/−2.02 −5.12/−6.56/−6.74/−5.27/−6.50/−5.04 −6.90/−7.92/−7.79/−7.03/−8.03/−6.94
WF-2 0.71/−0.89/−0.95/0.28/−0.84/0.95 −2.16/−3.83/−3.91/−2.21/−3.65/−1.81 −5.04/−6.43/−6.62 /−5.01/−6.58/−4.98 −6.89/−8.02/−7.87/−6.87/−8.10/−6.71
WF-3 0.63/−0.90/−1.00/0.57/−0.70/0.92 −2.19/−3.74/−3.82/−2.24/−3.63/−1.96 −5.05/−6.75/−6.67/−5.18/−6.40/−4.88 −6.97/−7.81/−7.85/−6.86/−7.99/−6.80
WF-4 0.81/−0.75/−0.81/0.48/−0.65/0.87 −2.11/−3.78/−3.85/−2.34/−3.61/−1.88 −5.06/−6.69/−6.66/−5.07/−6.70/−4.92 −6.91/−7.87/−7.68/−6.96/−7.98/−6.71

Table 4: SNR (dB) values when arrays can produce 50% correct results using 513 snapshots under different estimation accuracies.

RMSE≤ 1° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 2° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 5° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 10° (Array-1, 2, 3, 4, 5, 6)
WF-1 −3.29/−5.00/−4.99/−3.36/−4.77/−3.07 −5.68/−7.59/−7.66/−5.82/−7.47/−5.69 −8.47/−9.91/−9.87/−8.40/−9.94/−8.38 −10.20/−11.33/−11.06/−10.11/−11.37/−10.29
WF-2 −3.30/−4.88/−5.15/−3.41/−4.84/−2.97 −5.60/−7.39/−7.68/−5.66/−7.33/−5.56 −8.37/−9.99/−10.10/−8.45/−9.04/−8.18 −10.24/−11.17/−11.06/−10.28/−11.20/−10.17
WF-3 −3.24/−5.01/−5.04/−3.32/−4.95/−2.83 −5.76/−7.60/−7.82/−5.93/−7.38/−5.64 −8.41/−9.88/−9.99/−8.55/−9.90/−8.53 −10.13/−11.12/−11.24/−10.06/−11.28/−9.94
WF-4 −2.06/−3.71/−3.72/−2.23/−3.63/−1.87 −4.54/−6.36/−6.52/−4.81/−6.19/−4.24 −7.16/−8.91/−8.92/−7.37/−8.70/−7.11 −8.92/−10.06/−10.03/−8.93/−10.18/−8.87

Table 3: SNR (dB) values when arrays can produce 50% correct results using 257 snapshots under different estimation accuracies.

RMSE≤ 1° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 2° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 5° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 10° (Array-1, 2, 3, 4, 5, 6)
WF-1 −1.33/−2.95/−3.13/−1.58/−3.03/−1.18 −4.03/−5.72/−5.71/−4.01/−5.76/−3.88 −6.80/−8.13/−8.38/−6.86/−8.34/−6.83 −8.75/−9.56/−9.50/−8.06/−9.58/−8.48
WF-2 −1.26/−2.90/−3.19/−1.39/−2.67/−1.16 −3.94/−5.55/−5.76/−4.12/−5.61/−3.93 −6.85/−8.14/−8.27/−6.92/−8.55/−6.59 −8.43/−9.50/−9.60/−8.62/−9.69/−8.67
WF-3 −1.28/−2.99/−3.23/−1.62/−2.88/−1.20 −4.15/−5.74/−5.86/−4.36/−5.55/−3.85 −6.86/−8.39/−8.22/−6.94/−8.53/−6.70 −8.54/−9.56/−9.57/−8.58/−9.81/−8.60
WF-4 −1.12/−2.53/−2.85/−1.31/−2.62/−0.95 −3.38/−5.25/−5.59/−3.94/−5.07/−3.63 −6.41/−7.98/−7.87/−6.38/−8.28/−6.43 −8.32/−9.36/−9.51/−8.26/−9.35/−8.20

Table 5: SNR (dB) values when arrays can produce 50% correct results using 1025 snapshots under different estimation accuracies.

RMSE≤ 1° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 2° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 5° (Array-1, 2, 3, 4, 5, 6) RMSE≤ 10° (Array-1, 2, 3, 4, 5, 6)
WF-1 −4.98/−6.72/−6.99/−5.18/−6.73/−4.78 −7.46/−9.18/−9.59/−7.45/−8.97/−7.27 −10.06/−11.73/−11.79/−10.25/−11.54/−9.98 −11.87/−12.86/−12.56/−11.75/−12.96/−11.66
WF-2 −4.83/−6.72/−6.85/−5.05/−6.49/−4.71 −7.20/−9.01/−9.11/−7.39/−8.91/−7.07 −9.88/−11.40/−11.50/−9.99/−11.48/−9.98 −11.35/−12.57/−12.60/−11.46/−12.75/−11.36
WF-3 −4.88/−6.66/−6.91/−5.21/−6.48/−4.92 −7.50/−9.11/−9.43/−7.43/−9.17/−7.22 −10.02/−11.51/−11.81/−10.10/−11.58/−10.08 −11.84/−12.72/−12.73/−11.73/−13.03/−11.69
WF-4 −0.63/−0.63/−0.97/0.71/−0.54/1.25 −3.57/−3.57/−3.58/−2.01/−3.27/−1.77 −5.92/−5.92/−6.06/−4.66/−6.34/−4.48 −7.50/−7.50/−7.48/−6.50/−7.51/−6.31
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(iii) )e subplots in Figure 9 are different from the
corresponding subplots in the other figures, and the
performances are not as good as in the other figures
due to the reason discussed above.

6.3. Estimation Error Distributions in Az and El.
Figures 10–13 show the histograms of estimation errors of
Az and El, when SNR is in different ranges with
M + 1 � 1025. By comparing the left column and the right
column in each figure, one can find the following:

(i) )e Az-error spreads wider than El-error, which
indicates that the AoA estimation method produces
better estimation results in El than in Az

(ii) )e lower the SNR, the wider the spread as expected
(iii) Array-3 has almost the same estimation error dis-

tributions when it processes the first three
waveforms

Tables 6–9 list the percentages of the absolute value of
estimation errors that are less than or equal to 1° and 5°,
when the SNR is in different ranges and M + 1 � 1025. )e
results shown in these tables confirm that the method has
better estimation in El-angle than in Az-angle, which results
from the definitions of Az- and El-angles.

Data in these tables also show the following:

(i) When the SNR increases from [0 10] dB to [10 20]
dB, the method does not improve much of its es-
timation accuracy.

(ii) From Tables 6 and 7, when the SNR is greater than
0dB, the estimation performance ismainly determined
by the Az-angle estimation. )e results in columns of
“Both Az and El” and “Az” are very close to each other,
and the results in columns of “El” are better than those
in columns of “Az” for both |Er|≤ 1° and |Er|≤ 5° cases.

(iii) From Table 8 (−10 dB≤ SNR≤ 0 dB), although the
SNR is less than 0 dB, the overall estimation per-
formance is slightly less than that of Az-angle es-
timation accuracy in both |Er|≤ 1° and |Er|≤ 5°
cases. )is means that the method starts producing
bigger estimation errors in El. Nevertheless, the
method still can produce better than 52% and 80%
probabilities of AoA estimation with errors less than
or equal to 1° and 5°, respectively, for the first three
waveforms and better than 33% and 67% proba-
bilities of AoA estimation with errors less than and
equal to 1° and 5° for WF-4 with 513 snapshots.

(iv) When the SNR is in [−20 −10] dB, the method still
has the capability of making some estimations and
produce better than 20% probability of AoA esti-
mation with errors within 5° for the first three
waveforms.
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Figure 3: Probability of AoA measurement of Array-3, when RMSE≤ 1°. Dashed line is WF-4 result.
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6.4. Probability of AoA Estimation Using Few Snapshots.
To study the AoA estimation performance of themethod in a
good SNR environment, a total of 100000 SNR samples are
randomly picked in [−20 50] dB, and the results are shown in
Figure 14. )ere are four groups of curves in each subplot of

the figure. )ey represent the use of 2, 3, 5, and 9 snapshots
in the estimations. In each group of curves, there are four
curves for four waveforms. Figure 14 shows that the method
can have good probability of AoA estimation using just a few
snapshots from the 7-element NSA. For example, with about
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Table 6: Array-3 probability of AoA estimation using 1025 snapshots (10 dB≤ SNR≤ 20 dB).

Both Az and El, |Er|≤ 1° |Er|≤ 5° Az, |Er|≤ 1° |Er|≤ 5° El, |Er|≤ 1° |Er|≤ 5°

WF-1 85.76% 96.42% 85.84% 96.50% 99.81% 99.87%
WF-2 85.66% 96.47% 85.76% 96.55% 99.79% 99.85%
WF-3 85.64% 96.37% 85.71% 96.44% 99.83% 99.87%
WF-4 75.91% 91.19% 76.64% 91.32% 93.97% 96.69%

Table 9: Array-3 probability of AoA estimation using 1025 snapshots (−20 dB≤ SNR≤−10 dB and last line using 513 snapshots).

Both Az and El, |Er|≤ 1° |Er|≤ 5° Az, |Er|≤ 1° |Er|≤ 5° El, |Er|≤ 1° |Er|≤ 5°

WF-1 3.33% 21.27% 7.14% 23.51% 17.46% 45.82%
WF-2 3.18% 20.74% 7.16% 23.14% 16.65% 45.60%
WF-3 3.18% 21.51% 7.21% 23.89% 17.68% 46.09%
WF-4 1.21% 9.10% 3.20% 11.76% 9.20% 31.07%
WF-4 1.05% 10.04% 3.32% 12.73% 9.36% 33.10%

Table 7: Array-3 probability of AoA estimation using 1025 snapshots (0 dB≤ SNR≤ 10 dB).

Both Az and El, |Er|≤ 1° |Er|≤ 5° Az, |Er|≤ 1° |Er|≤ 5° El, |Er|≤ 1° |Er|≤ 5°

WF-1 83.86% 96.19% 83.99% 96.27% 99.69% 99.78%
WF-2 83.11% 95.82% 83.22% 95.92% 99.71% 99.77%
WF-3 84.75% 96.14% 83.81% 96.20% 99.77% 99.85%
WF-4 59.92% 80.77% 61.85% 81.10% 82.06% 90.45%

Table 8: Array-3 probability of AoA estimation using 1025 snapshots (−10 dB≤ SNR≤ 0 dB and last line using 513 snapshots).

Both Az and El, |Er|≤ 1° |Er|≤ 5° Az, |Er|≤ 1° |Er|≤ 5° El, |Er|≤ 1° |Er|≤ 5°

WF-1 53.63% 81.48% 56.60% 81.54% 83.20% 91.35%
WF-2 52.32% 80.07% 55.31% 80.17% 82.03% 90.55%
WF-3 52.75% 80.66% 55.47% 80.72% 83.31% 90.11%
WF-4 26.30% 51.05% 30.01% 52.22% 49.32% 69.31%
WF-4 33.28% 67.64% 38.46% 67.93% 64.92% 83.51%
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15 dB SNR and 3 snapshots, the method can have 50%
probability of AoA estimation with RMSE≤ 1°.

6.5. Discussion. From all the subplots (a) in Figures 3–5
and Figure 14, one can find that, just by increasing SNR,
it cannot make the method to yield close to 100%
probability of AoA estimation with RMSE ≤ 1°. )is is

determined by the density of the angles on the 2D-angle
grid (for example, Ptotal � 29495 in this study) in the 7-
element NSA FOV and the number of frequency samples
(Ftotal � 2401) in [6, 18] GHz used to precalculate SV and
I databases. Increasing these numbers will enhance the
performance of the method. However, it will slow down
the calculation on a regular desktop computer. By using
other means of hardware such as dedicated FPGA with

(a) (b)

(c) (d)

(e) (f )

Figure 15: Six planar arrays; black dots are the 7-element NSA (see the text for more details).
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Figure 16: An example of a 2D-angle grid formed by an icosphere-based mesh; 7-element NSA phase-reference center and the icosphere
center are collocated at the origin of the XYZ-coordinate system.

Table 10: Different 2D-angle grids.

Nsubdiv Number of angles within FOV (Ptotal) Rough order of angle resolution (deg)

4 462 4.32
5 1841 2.16
6 7371 1.08
7 29495 0.54
8 117927 0.27
)e bold text indicates that Nsubdiv � 7 is used in this study.
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Table 11: FMCW signal parameters.

Sweep bandwidth (MHz) Sweep direction Sweep time Number of sweeps
100 Triangle 500 μs 2
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Figure 22: )e comparison between the values of the first term (blue oooo) and the imaginary part of the second term (red ∗∗∗∗) of (D.2)
with SNR�∞, when the frequency is at 10GHz, the incident direction is from (143.75° 84.66°) to Array-3, the waveform is WF-1, and the
number of snapshots is 512. Blue plus signs are the real part of the second term in (D.2). (a) Freq� 6GHz; (b) Freq� 8GHz; (c)
Freq� 10GHz; (d) Freq� 14GHz; (e) Freq� 16GHz; (f ) Freq� 18GHz.
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fast access memory, the speed of the calculation can be
accelerated.

7. Conclusions

)is paper introduces a new radar signal AoA estimator using a
7-element 6–18GHz CBSA NSA and a 2D D3 method suitable
for ESM applications. Unlike the 3- and 5-element CBSA arrays
that are commonly used by interferometry-based AoA
methods, our array can be installed on small airborne platforms.
)e paper also introduces a 2D calibration and data-trans-
formation method that allows an IEPA to use the 7-element
NSA-measured data for AoA estimations and converts a full 3D
antenna problem into a 3D free-space problem. To calculate the
AoA, a new 2D AoA search method has been developed by
taking the advantages of the SV of the IEPA and 2D D3 results,
which avoids having to resolve the ambiguity encountered in
interferometer arrays and also results in frequency-independent
performance. )e simulation results show that with high SNR
(≥15dB), the estimator can have 50% probability of AoA es-
timationwith RMSE≤ 1° using just few temporal samples.More
importantly, with more temporal snapshots, the estimator has
52% and 80% probabilities of AoA estimation with RMSE≤ 1°
and 5°, respectively, for phase- or frequency-modulated radar
pulses, when the SNR is between −10 and 0dB. Although the
performance can degrade for an ultra-wideband FMCW radar
signal (for example, the 100MHz chirp-signal used here), it can
still achieve 33% and 67% probabilities of AoA estimation with
RMSE≤ 1° and 5°, respectively, when SNR is between −10dB
and 0dB. Future work is needed to improve the performance of
the AoA estimation for ultra-wideband FMCW signals in low
SNR conditions.)e study also shows that the estimator prefers
a circular-shaped planar array with a triangular interelement
pattern, since this array presents more symmetrical charac-
teristics when it is seen from different Az angles. In order to
facilitate the practical use of this AoA estimator in ESM ap-
plications, i.e., as there is no a priori knowledge of the SOI, this
paper also presents the use of precalculated SV andI-databases,
which are built on a 2D-angle-grid with more uniformly dis-
tributed directions with a set of preselected frequency points.
)e AoA calculation can be further improved by using a denser
2D-angle-grid, more frequency points for database calculations,
and dedicated hardware with fast access memory.

Appendix

A. 2D Planar Arrays with Isotropic Elements

Six different shapes of planar arrays were used in the study.
)ese arrays are shown from Figure 15, and they are as
follows:

(i) Array-1 (a): uniform-spaced rectangular array with
81 elements (white circles); element spacing is 7mm
in both x and y directions. )e array center is at the
41st element.

(ii) Array-2 (b): uniform-spaced hexagonal array with
61 elements (white circles); the element spacing in

each triangular is 7mm in both x and y directions.
)e array center is at the 31st element.

(iii) Array-3 (c): circular planar array with triangular
grid with 57 elements (white circles); the element
spacing in each triangular grid is 7mm. )e array
center is at the 31st element.

(iv) Array-4 (d): hexagonal planar array with rectan-
gular grid with 77 elements (white circles); the el-
ement spacing is 7mm in both x and y directions.
)e array center is at the 39th element.

(v) Array-5 (e): circular planar array with rectangular
grid with 69 elements (white circles); the element
spacing is 7mm in both x and y directions.)e array
center is at the 35th element.

(vi) Array-6 (f): rectangular planar array with triangular
grid with 81 elements (white circles); the element
spacing in each triangular grid is 7mm. )e array
center is at the 41st element.

)e following can be found:

(i) Arrays have different isotropic-element distribution
patterns;

(ii) Since the patterns are different, the total number of
isotropic elements (NN) is also different;

(iii) )e aperture size of each plane array is about the
same as that of the 7-element NSA;

(iv) )e center element in an array is collocated with the
first element of the 7-element NSA.

B. Definition of 2D-Angle Grid by Vertices of a
Unit Icosphere

It is known that the incident angles defined on a UV-sphere
[62], which are frequently used in antenna analysis, have
muchmore dense directions near north and south poles than
near the equator. In order to obtain more uniform angular
distributions for AoA searching using (18), a 2D-angle grid
defined by the unit icosphere [63] is used in this study. )e
2D-angle grid is formed by subdividing the triangles of a
regular icosahedron, and the number of subdivisions
(Nsubdiv) determines the density of the vertices on the surface
of an icosphere [64]. Figure 16 shows an example of the 2D-
angle grid. Since the CBSA has about 100° 3 dB antenna
beamwidth, in this study, the FOV of the 7-element NSA
is defined within [Az1 Az2] × [El1 El2] � [−180° 180°] ×

[40° 90°], which are indicated by the asterisks in the example
shown in Figure 16.

Table 10 gives the number of total directions (vertices)
within the FOV and their corresponding angular resolutions
with respect to the number of subdivisions of the triangles
of a regular icosahedron. Averaged El-angle difference be-
tween the vertex on z-axis and surrounding 6 vertices
(marked by “×” in Figure 16) gives a rough order of angle
resolution. Considering the AoA estimation accuracy and
calculation speed, Nsubdiv � 7 is used in this study. )is 2D-
angle grid with angle zones within the FOV is shown in
Figure 17.
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C. Four Commonly Used Radar Signals

C.1. Barker Code of Length Equal to 13. )e 13-chip Barker
code is shown in Figure 18, which is a binary-phase shift-
keying modulation. In our simulations, the duration of
each chip (tb) is 200 ns, so the total pulse width (PW) is
2.6 μs.

C.2. Two-Valued Frequency-Coded Waveform. Figure 19
shows the information of a 20-chip two-valued frequency-
coded waveform, which is given in Table I of [58]. )e two-
valued frequency-coded waveforms presented in [58] can
yield near-perfect periodic autocorrelation function for radar
applications, when the number of chips is a multiple of 4 and
the frequency values are ±1/4tb, where tbis the bit duration.
)e duration of each chip in Figure 19 is 200 ns, and the total
PW is 4 μs. )e two frequency values are ±1.25MHz. )is
20-chip two-valued frequency-coded waveform is a kind of
binary-frequency shift-keying modulation.

C.3. Poly-Phase Waveform. A 16-chip P1 poly-phase
waveform is shown in Figure 20. Each chip width is 1 μs, and
the total PW is 16 μs.

C.4. FMCW. )e frequency change of the FMCWwaveform
used in this study is shown in Figure 21. Its parameters are
given in Table 11. Note that it has a very wide linear fre-
quency change during chirping.

D. Explanation of the Frequency-
Independent Performance

From Figures 6–8, one can observe that, for a given AoA
estimation accuracy requirement (e.g., RMSE≤ 1°) and the
probability of AoA estimation (e.g., 50%), the required SNR
is close to a constant, when the frequency is from 6 to
18GHz. )e following gives the explanation.

Taking natural log of both (15) and squared of (17), (18)
can be rewritten as

min
az�aze

el�ele

1
λest
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In this equation, the λ−1
est term can be removed, as it is a

constant. )en, one has the following equation:

min
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It can be seen that during the solution search, the second
term (after the minus sign in (D.2)) has to match or be very
close to a variable (the first term before minus sign in (D.2)),
which is only determined by the direction and locations of
the elements in an IEPA. Since the first term is frequency
independent, the second term must also be frequency in-
dependent. )e following simulation results support this
conclusion.

Figure 22 shows the comparison between the first term
and the imaginary part of the second term in (D.2) at each
element in Array-3, when SNR is equal to infinity. One can
see that the imaginary part of the second term in (D.2) does
not change when the frequency changes at a given incident
direction.

Figure 23 shows that the values of the first term and the
imaginary part of the second term in (D.2) at each element in
Array-3 get closer to each other as SNR improves. )e
performances of the probability of AoA estimation at dif-
ferent frequencies are close to each other at different SNR
levels as shown in Figure 24.
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In high-frequency (HF) hybrid sky-surface wave radar, the first-order sea clutter broadening is severe under the action of
ionospheric phase disturbance and bistatic angles. In this paper, a cascaded method is described to suppress the spread sea clutter.
Firstly, the radar configuration and sea clutter broadening model are introduced based on the newly developed integrated HF sky-
surface wave experimental system. In the cascaded processing method, a new ionospheric decontamination method based on
general parameterized time-frequency (GPTF) analysis is proposed to estimate or correct the ionospheric phase distortion with
large amplitude. 1en, the forward-backward linear prediction (FBLP) algorithm is used to suppress the spread sea clutter caused
by bistatic angle. Simulation results show that such ionospheric decontamination method based on GPTF is helpful for the large-
amplitude ionospheric contamination when the target masking effect happens even after ionospheric phase decontamination.
Finally, the proposed method is examined by the measured data. Experimental results indicate that the proposed method can well
suppress the broadening sea clutter for HF hybrid sky-surface wave radars.

1. Introduction

Ship detection is an important mission of the HF over-the-
horizon radar. Based on the propagation mode associated
with sky-wave transmitting and surface wave receiving, HF
hybrid sky-surface wave radar not only maintains the su-
periority of HF sky-wave radar which has a long detection
range and wide coverage, the advantage of HF surface wave
radar which has a stable propagation channel but also keeps
a good invisibility and anti-interference ability [1–4].
However, the sea clutter under this combined propagation
mode with sky-wave transmitting and shore-based receiving
is influenced by composite factors such as the bistatic angle
and ionospheric phase disturbance. Among the influencing
factors of the spectrum spread of sea clutter, it is unclear
whether the ionospheric disturbance or the bistatic angle
dominates. In addition, sea clutter is also affected by marine
dynamics factors. 1erefore, under this hybrid propagation

mode radar, the spectrum of first-order sea clutter is
complicated [5, 6].

Based on the hybrid operating mode of sky-wave
transmitting and ground-wave receiving, HF hybrid sky-
surface wave radar is expected to improve detection prob-
ability for ships by overcoming defects of existing sky-wave
and ground-wave OTH radar and making complementary
advantages of both. Ionosphere is a dispersive, hierarchical,
and nonstationary medium. Unfortunately, the ionospheric
disturbance often causes the sea clutter spectrum and target
to spread in the frequency domain, rendering extended
coherent integration pointless. On the other hand, HF hy-
brid sky-surface wave radar is actually a bistatic radar
system. 1e receiving beam width is wide for the array
aperture of our radar experimental system. 1us, the sea
clutter spectrum will show different broadening character-
istics in the different resolution cells. What is worse, ion-
ospheric phase disturbance further contributes to the sea
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clutter spectrum broadening. 1us, the broadening of the
first-order sea clutter spectrum is very severe under the
influence of ionosphere and bistatic angles. In the process of
cascade processing of broadened sea clutter in this paper,
ionospheric phase decontamination was first processed. At
this time, decontaminated broadening sea clutter is only
caused by bistatic angles. 1erefore, the broadening sea
clutter suppression was processed after decontamination.

For the ionospheric phase path disturbance, the method
of extracting the contamination function is often used for
compensation. 1e current ionospheric phase disturbance
suppression method extracts the frequency modulation
function by estimating the instantaneous frequency varia-
tion of the broadened echo spectrum, thereby obtaining the
ionospheric phase disturbance correction function, and then
correcting the echo signal by using the obtained correction
function. It can sharpen the broadened echo spectrum and
improve the target detection performance of the radar. For
ionospheric contamination with small amplitude, the maxi-
mum entropy spectrum estimationmethod, the phase gradient
algorithm (PGA) method [7], the minimum entropy searching
method, the eigendecomposition (ED) method, and the
piecewise polynomial phase modeling (PPPM) method [8, 9]
are typical methods.1ese methods require that the broadened
Bragg peak is extracted to estimate the instantaneous fre-
quency. Time-frequency analysis is a more effective method for
ionospheric decontamination, especially large-amplitude ion-
ospheric contamination. Currently, nonparametric time-fre-
quency analysis methods are mainly used, such as short-time
Fourier transform (STFT), Winger–Ville distribution (WVD),
pseudo-WVD distribution (PWVD) method, and smooth
pseudo-WVD distribution (SPWVD) method. However, those
methods are sensitive to the signal-to-noise ratio and are af-
fected by cross-term interference and resolution limitations.
Especially for the ionospheric contamination with large am-
plitude, these methods often fail. Currently, the main technical
approach to detect the ship target is the sea clutter suppression
method. Representative algorithms include sea clutter can-
cellation method, subspace class method, and singular value
decomposition (SVD) method, but these algorithms are dif-
ficult to effectively suppress nonstationary broadened sea
clutter [8–10].

In 1997, Melyanovski [1] mentioned the HF hybrid sky-
surface wave radar system and explored the feasibility.
Riddolls [3, 4] discussed the ship target detection perfor-
mance of this radar and analyzed the limits on the radar
resolution capability in 2007 and 2008. Zhao et al. [5]
presented an experimental study of HF passive bistatic radar
via hybrid sky-surface wave mode based on Digital Radio
Mondiale digital amplitude modulation broadcasting in
2013 and analyzed the target detection performance. In 2014,
Li et al. [6] analyzed the characteristics of frequency shift and
broadening sea clutter based on the newly developed inte-
grated HF sky-surface wave experimental system. Experi-
mental results show that some sea clutter broadening is
serious and the ship target is difficult to effectively detect. In
2015, Li et al. [11] proposed a cascaded processing method
for broadening sea clutter by S2-method and FBLP. 1e S2
transform method is a nonparametric method, which can

suppress cross-term interference to a certain extent, but the
resolution and the time-frequency characteristics of the signals
cannot be accurately described. In this paper, a cascaded
method for ionospheric decontamination and sea clutter
suppression to enable detection of ship target is proposed. 1e
method utilizes an important property of the GPTF and FBLP
to suppress the broadening sea clutter. GPTF is a parameterized
time-frequency analysis method. Compared with the S2-
method, it has better resolution and no cross-term interference.
And a novel estimator for the instantaneous frequency of the
Bragg lines based on GPTF is proposed.

1e content of this paper is organized as follows. Firstly,
the radar configuration and sea clutter broadeningmodel are
described based on the newly developed integrated HF sky-
surface wave experimental system. Secondly, a cascaded
processing method for ionospheric decontamination and sea
clutter suppression is presented. In this method, the time-
frequency analysis method based on GPTF is proposed to
correct the ionospheric phase contamination with large
amplitude. 1en, the FBLP algorithm is used to suppress the
broadening bistatic sea clutter caused by bistatic angle,
which is based on the prior knowledge of distribution
characteristics and the multidimensional feature of first-
order sea clutter [12]. Finally, the proposed method is ex-
amined by the measured data. Compared with the tradi-
tional nonparametric time-frequency analysis method, the
ionospheric pollution function extracted by the GPTF
method is more accurate. Experimental results indicate that
the proposed method can well suppress the broadening sea
clutter for HF hybrid sky-surface wave radars. 1e research
in this dissertation will provide the theory and technology
foundation to detect the target over the horizon under the
broadening sea clutter in HF hybrid sky-surface wave radar.

2. First-Order Sea Clutter Broadening
Characteristics and Model

2.1. System Layout. Based on the propagation mode asso-
ciated with sky and surface wave, the HF hybrid sky-surface
wave radar not only maintains the superiority of HF sky-
wave radar which has a long detection range and wide
coverage, the advantage of HF surface radar which has a
stable propagation channel but also keeps a good invisibility
and anti-interference ability. 1e system layout of the HF
hybrid sky-surface wave radar is shown in Figure 1 [6]. 1e
beams generated by the sky-wave radar are reflected by
ionosphere tomonitored sea area (path P1 andP2).1en, the
sea echo of the monitored sea area arrives at the surface wave
radar station by ground-wave diffraction (path Rr1

andRr2
).

In Figure 1, TR� L is the baseline length between the
transmitting and receiving stations; Rri

is the distance be-
tween the target and receiving station; θri

is the angle be-
tween the Rri

and L; h is the ionospheric height; D is the
ground distance; and βHi

is bistatic angle.

2.2. First-Order Sea Clutter Bragg Frequency. 1us, the total
Bragg frequency expression for HF hybrid sky-surface wave
radar can be written as follows [6, 13]:
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fBragg � ±0.102 × 10−3

������������������

f0 cos
βi

2
 

cosΔi + 1
2



+ fiono,

(1)

where fiono is the Doppler shift caused by ionospheric
disturbance, βi is bistatic angle, and Δi is the grazing angle.

1erefore, the maximum covering range of the first-
order sea clutter Bragg frequency can be obtained by the
following formula [6, 13]:
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(2)

where fiono max and fiono min represent the maximum and
minimum Doppler shift value caused by ionosphere. 1us,
the Bragg frequency of first-order sea clutter is a function of
frequency, azimuth, range, and ionospheric state.

2.3. First-Order Sea Clutter Broadening Model. For a sea
clutter scattering cell at a certain range and beam di-
rection in HF hybrid sky-surface wave radar, the
broadening sea clutter model can be written as follows
[6, 13], considering the combined actions of bistatic angle
and ionosphere:

s(t) � 
K

i�1
ai(t) · exp j2πfBraggt  + exp −j2πfBraggt  

· exp jϕi(t)( ,

(3)

where ai(t) is the amplitude of sea clutter signal, which
meets Gaussian distribution; fBragg (i � 1, . . . , K) is the K
complex frequency component within the Bragg frequency
band, and fBragg min ≤fBragg ≤fBragg max; and ϕi(t) is the
ionospheric phase contamination function.
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Figure 1: Geometry and layout diagram of HF sky-surface wave radar.
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3. Ionosphere Decontamination Method
Based on GPTF

3.1. Basic Principle of GPTF. Ionospheric disturbances have
the characteristics of change rapidly over time. Compared
with the nonparametric time-frequency analysis method, the
parameterized time-frequency analysis method selects the
appropriate kernel describing the nonstationary signal by
introducing themodel of the prior signal information.When
the kernel form is consistent with the analyzed signal, the
time-frequency resolution can be effectively improved. 1e
typical methods have adaptive chirp wavelet decomposition,
atomic decomposition, and polynomial Fourier transform,
etc., but suchmethods mainly use polynomial kernels, which
are not suitable for analyzing strong time-varying nonsta-
tionary signals that change faster with time.

1emethod of short-time Fourier transform (STFT) is to
window the signal based on the Fourier transform. 1e
default window signal is approximately stationary. It can
simultaneously describe the signal in the time domain and
the frequency domain, thus reflecting the variation of the
signal spectrum over time. Since the fixed-length window
function cannot capture the change of the signal frequency
in time, the time-frequency representation of the STFT is
poorly concentrated, and the time-frequency characteristics
of the signals cannot be accurately described. 1e general-
ized parameterized time-frequency analysis method uses the
frequency rotation operator to rotate the time-frequency
characteristics of the nonstationary signal by introducing the
frequency rotation and translation operator, so that the
signal tends to be stable, and then, the STFT is used for the
rotated signal, and finally, the frequency is utilized. 1e
translation operator shifts the signal time-frequency char-
acteristics to the true ridge position. Since the signal ana-
lyzed by STFT is an approximate stationary signal, the
generalized parameterized time-frequency analysis can ef-
fectively improve the time-frequency resolution, and there is
no cross-term interference.

Assuming that the instantaneous frequency of the signal
is an arbitrary function fm(t), the complex signal form at

this time is sr(t) � e
j2π  fm(t)dt. 1e generalized parame-

terized time-frequency analysis of the signal can be
expressed as follows [14]:

TF t0, f;P(  � 
∞

−∞
s(τ)g

∗
σ τ − t0( e

− j2πfτdτ

s(τ) � sr(τ) ·ΦR
P(τ) · ΦS

t0 ,P(τ)

ΦR
P(τ) � e

−j2π  κP(τ)dτ

ΦS
t0 ,P(τ) � ej2·π·τ·κP t0( )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4)

wherein the instantaneous frequency of sr(τ) is an arbitrary
function, κP(τ) is a transform kernel representing of the
generalized parametric time-frequency analysis, P is a
transform kernel parameter, ΦR

P(τ) is a frequency rotation
operator, ΦS

t0 ,P(τ) is a frequency shift operator, and gσ(τ) is
a window function of the time-frequency transform.

According to formula (4), the basic process of GPTF
analysis can be described as follows. Firstly, the signal is
rotated in the time-frequency plane, that is, the instanta-
neous frequency fm(τ) of the signal is subtracted from
κP(τ), and then, the signal is translated on the time-fre-
quency plane by the frequency increment κP(t0). Finally, the
window function is used tomake a STFTon the signal.When
κP(τ) � fm(τ), the signal forms after the signal sr(τ) is
rotated and translated as shown in the following equation:

s(τ) � sr(τ) · ΦR
P(τ) ·ΦS

t0 ,P(τ)

� e
j2π  fm(τ)dτ

· e
−j2π  κP(τ)dτ

· e
j2π·τ·κP t0( )

� e
j2π·τ·κP t0( ).

(5)

At this time, the instantaneous frequency κP(t0) of the
signal s(τ) does not change with time, and the signal s(τ) is a
stationary signal. At this time, the STFT is performed on the
signal s(τ), and the time-frequency concentration is sig-
nificantly improved compared to the nonstationary signal. It
can be seen from (4) and (5) that the frequency rotation
operator and the translation operator are determined by
selecting appropriate transformation kernel parameters, and
the nonstationary signal is rotated and translated to stabilize
the signal for the purpose of improving the time-frequency
resolution by the determined frequency rotation operator
and the frequency translation operator. It can be seen that
the time-frequency resolution of the GPTF analysis is closely
related to the accuracy of the transform kernel parameters.
From the above analysis, the key to GPTF analysis is to
estimate the parameters of the transform kernel.

3.2. Estimation Method for Transforming Kernel Parameters.
According to the introduction of the principle of GPTF in
Section 3.1, the working mechanism is actually the STFT
based on the frequency rotation operator and the translation
operator. When the selected transform kernel matches the
time-frequency characteristic of the analyzed signal, the
rotated signal is close to the stationary signal, the time-
frequency resolution is high after STFT. 1e description of
the time-frequency characteristics of the stationary signal is
accurate. It can be seen that the accuracy of the transform
kernel parameter determines the performance of the GPTF
method, which affects its performance in analyzing non-
stationary signals. In [14], a method for estimating trans-
form kernel parameters using the principle of time-
frequency feature approximation is proposed. 1e time-
frequency feature approximation principle indicates that the
more accurate the transform kernel parameter estimation,
the higher the time-frequency concentration. According to
the time-frequency feature approximation principle, if the
transform kernel parameter estimation is more accurate, the
time-frequency concentration is higher. 1e principle of
time-frequency approximation can be represented in
Figure 2.

It can be seen from Figure 2 that the GPTF analysis
method achieves the iterative optimization of the transform
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kernel parameters by combining the precision of the
transform kernel parameters with the time-frequency con-
centration. 1e above principle is based on the generalized
parametric time-frequency analysis to cyclically approxi-
mate and solve the signal time-frequency characteristics, so
as to obtain the most suitable transform kernel parameters.
According to the principle of time-frequency approxima-
tion, the detailed steps of transforming the kernel parameter
estimation are as follows:

Step 1:determining the transform kernel form
according to the signal priori form.
Step 2: the number of iterations i � 0, initializing the
transformation kernel parameters P0.
Step 4: performing parameterized time-frequency
analysis TF(t0, f;Pi) on the signal according to
equation (4).
Step 4: detecting the peak ridge line f

i

m(t) in the time-
frequency diagram.
Step 5: according to the ridge line form, select a suitable
fitting method, and fit the ridge line and estimate
transformation kernel parameter Pi.
Step 6: the number of iterations is increased by one, and
the transformation kernel parameter is updated Pi � Pi.
Step 7: calculating a termination condition
Λ �  f

i

m(t) − f
i−1
m (t)dt/  f

i

m(t)dt, where f
i

m(t) is the
peak ridge of the ith iteration and f

i−1
m (t) is the peak

ridge of the i − 1th iteration, which needs to be noted
that f

0
m(t) � 0.

Step 8: setting the termination condition parameter ζ.
1e size of this value depends on the situation. If it is
too large, the calculation amount is too large, and if it is
too small, the accuracy of the extracted time-frequency
line is not high.
Step 9: comparing the size of Λ and ζ, when ζ >Λ,
return to step 3. When ζ ≤Λ, perform step 10.
Step 10: outputting a transformation kernel parameter
to obtain a time-frequency curve.

According to the above steps of transforming the kernel
parameter estimation, the flowchart of the design is shown in
Figure 3.

3.3. Ionospheric Decontamination Based on GPTF. Based on
the above analysis process and steps, the derivation process
of ionospheric decontamination based on GPTF is as
follows:

Step 1: assume that the signal after the ionospheric
contamination is expressed as follows [7–9]:

sp � exp jm2π sin 2πf0t( exp j2πf1t( ( , (6)

where m is the amplitude coefficient, f0 is the modu-
lation frequency, and f1 is the fixed frequency.
Step 2: derive the signal and obtain the Doppler curve
form, which can be expressed as follows:

f(t) � m2πf0 cos 2πf0t(  + f1. (7)

Since the cosine Doppler curve of the signal has peri-
odicity, the ridge line is fitted using the Fourier series for the
curve. 1e Doppler instantaneous frequency form is known.
Since the Doppler curve is known to be a cosine form by
prior knowledge, the transform kernel of the applied har-
monics is as follows:

f(t) � 
∞

m�1
bm cos m2πfct(  + b0. (8)

1ere is a certain relationship between the cosine series
coefficient of the curve and its Fourier transform coefficient.
Consider the Fourier transform to find the coefficients of the
cosine series of each order. 1e discrete form of the Doppler
curve parameter estimation method is derived as follows.

Radar sampling interval Δt � 1/PRF; equation (8) dis-
cretization is expressed as follows:

Initialize transform kernel
parameters i = 0

Signal GPTF representation
TF (t0, f; Pi)

Termination
condition

Output transform kernel
parameter Pi

No

Yes

Fitting ridge line and
estimating kernel parameters

Pi
~

i = i + 1 update transform
kernel parameters Pi = Pi

~

Detecting peak ridges
f i

m (t)~

Figure 3: 1e flowchart of transform kernel parameter estimation.

Higher concentration �e more appropriate
the parameters

�e more accurate the
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Figure 2: Time-frequency approximation principle.
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f(n · Δt) � fd(n · Δt) + b0, (9)

where fd(n · Δt) � 
∞
m�1 bm cos(m · 2πfcnΔt).

After equation (9) is truncated by adding a rectangular
window, the spectrum of each order cosine series becomes a
sinc function form. In this case, in order to eliminate the
influence of the sinc side lobes of the cosine series spectrum
of each order on the spectrum of other order cosine series,
the rectangular window length is set to
TT � (1/fc), (2/fc), (3/fc). In this way, the peak of the
cosine series spectrum of other orders will be located at the
zero point of the side lobe of the spectrum of each order
cosine series, so as to eliminate the interference between the
spectra. 1erefore, in the latter experiment, the accumula-
tion time is required to be an integer multiple of the period.
When the accumulation time is not an integer multiple, the
signal can be truncated, so this method requires at least one
periodic signal. Without loss of generality, set TT � i/fc, at
this time N � i/fcΔt. Similarly, the Fourier transform of the
N point in the harmonic form fd(n · Δt) in (9) is obtained as
follows:

Fd(k) � 
N−1

n�0
fd(nΔt)e−j(2π/N)kn

� 
N−1

n�0


∞

m�1
bm cos m

2πi

N
n ⎡⎣ ⎤⎦e

−j(2π/N)kn

� 
∞

m�1
bm 

N−1

n�0
cos

2πi

N
n · mi cos

2π
N

n · k ⎡⎣ ⎤⎦

− j 
∞

m�1
bm 

N−1

n�0
cos

2π
N

n · mi sin
2π
N

n · k ⎡⎣ ⎤⎦.

(10)

According to the characteristics of the orthogonal
trigonometric function set, formula (10) can be reduced to

Fd(k) �

bm

N

2
, k � mi,

0, else.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(11)

1e transformation kernel parameter can be obtained as
follows:

bm �
2
N

real Fd(k)( ( k � mi,

b0 �
λ
2
2real Fd(1)( 

NΔt
.

(12)

4. Bistatic Sea Clutter Suppression Method
Based on FBLP Algorithm

If the dominant factor of sea clutter broadening is the bistatic
angle, or the sea clutter disturbed by the ionospheric phase
path has been dedisturbed, then the suppression of bistatic

sea clutter is required. At present, there are few studies on
the problem of HF radar bistatic sea clutter suppression.1e
bistatic sea clutter shows different characteristics from
monostatic sea clutter, and it makes the traditional Bragg
line theoretical prediction or monostatic sea clutter char-
acteristic suppression methods fail. At present, there are two
main ideas for the bistatic sea clutter suppression method
[15–17]: one is the sea clutter method based on singular
value decomposition (SVD) [15], and the other is based on
the sinusoidal signal parameter estimation method, such as
the root cancellation method and the CLEAN method. 1e
root cancellation method and the CLEAN algorithm are
simple to implement, but the number of iterations is difficult
to determine accurately. 1e SVD algorithm can suppress
sea clutter better, but the amount of computation is large.
When the target is located near the first-order Bragg peak,
the three algorithms may lose part of the target information.

Based on this, this paper uses the FBLP algorithm to
suppress the sea clutter. 1e FBLP algorithm of this paper
was previously a conference paper by authors, which was
published in [12]. 1is algorithm uses the first-order sea
clutter Bragg band distribution feature as a priori knowledge
and combines the multidimensional characteristics of the
measured sea clutter data. 1e method can effectively and
accurately identify the first-order sea clutter and can better
suppress the sea clutter while retaining the target. And the
calculation amount is small. Firstly, the bistatic first-order
sea clutter signal model is introduced. Secondly, the theo-
retical Bragg band range is determined in advance on the
first-order sea clutter distance-Doppler spectrum. 1en the
FBLP algorithm is used to establish the forward and
backward prediction matrix to estimate the sea clutter signal
parameters. 1en, based on the multidimensional charac-
teristics of the measured sea clutter, the first-order sea clutter
signal is better identified and extracted by the signal-to-noise
ratio threshold method and the symmetry detection matrix.
Finally, the amplitude of each sea clutter frequency com-
ponent is zeroed to achieve the purpose of suppressing sea
clutter.

4.1. Multidimensional Feature Analysis of Sea Clutter
Spectrum. When the CLEAN or root cancellation algo-
rithms are used to suppress sea clutter for traditional SVD, it
is necessary to detect sea clutter firstly in order to suppress
sea clutter. However, due to the influence of wind direction
or ocean current in the actual marine environment, the
characteristics of the sea clutter spectrum are complex,
which makes the identification and extraction of the first-
order sea clutter difficult, resulting in insufficient sea clutter
suppression and the formation of false targets and tracks.

Figure 4(a) shows the range-Doppler spectrum of the
first-order sea clutter measured by high-frequency hybrid
sky-surface wave radar. From the measured graphs, we can
also see that the first-order sea clutter exhibits multidimen-
sional characteristics. It can be seen from Figure 4(a) that the
first-order sea clutter spectrum of the close-range gate shows
good continuity and symmetry in both the range and the
Doppler dimension. Figure 4(a) shows the sea clutter spectrum
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of continuous distance gates. Due to the influence of wind
direction, the amplitude of the first-order sea clutter positive
and negative Bragg peaks shows asymmetry in Figure 4(b).

4.2. Parameter Estimation of Sea Clutter Signal Based on
Linear Prediction Model. For a bistatic HF radar with the
hybrid operating mode of sky-wave transmitting and
ground-wave receiving, it is assumed that there are K
complex sinusoidal components in the Bragg band in the
scattering unit. 1erefore, the bistatic first-order sea clutter
model after ionospheric phase path disturbance suppression
can also be written as follows [6, 12]:

y(n) � 
K

i�1
aie

j2πfBi
(n− 1)Ts+jφi , n � 1, 2, . . . , N, (13)

where ai, fBi
, and φi are, respectively, the amplitude of each

signal component, first-order sea clutter Bragg frequency,
and phase. Ts is the signal sampling period, and N is the
signal sequence length. Here, fBmin

≤fBi
≤fBmax

,
[fBmin

, fBmax
] is the boundary of the frequency band caused

by the bistatic angle in the scattering unit.
1e parameters of each sea clutter signal are estimated

below based on a linear predictionmethod.When the signal-
to-noise ratio (SNR) is sufficiently high, the sea clutter signal
can be written as the sum of the first L weights:

y(n) � − 
L

i�1
y(n − i) · αi, (14)

where αi stands for the weight coefficients.
Besides, so as to track the time-varying behavior of the

sea clutter, the coefficients of the prediction error filter must
be estimated over short data segments so that the filter
coefficients could be updated adaptively. And the prediction
equation matrix, which is defined in [18], could be expressed
as follows:

y(L) y(L − 1) . . . y(1)

y(L + 1) y(L) . . . y(2)

⋮ ⋮ ⋱ ⋮

y(N − 1) y(N − 2) . . . y(N − 1)

y∗(2) y∗(3) . . . y∗(L + 1)

y∗(3) y∗(4) . . . y∗(L + 2)

⋮ ⋮ ⋱ ⋮

y∗(N − L) y∗(N − L + 1) . . . y∗(N)
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.

(15)

Simply, we denote as

A · α � −y. (16)

And the weight coefficient matrix α could be estimated
by the following equation:

α � −A−1y. (17)

As the linear equations above are overdetermined, the
total least square method is used to solve this problem [18],
namely:

α � −A−1y � − AHA 
−1
AHy, (18)
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Figure 4: 1e range-Doppler spectrum and asymmetry of the measured sea clutter in HF sky-surface wave radar. (a) Range-Doppler
spectrum of actual sea clutter. (b) 1e asymmetry of actual sea clutter spectrum.
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where H indicates the conjugate transpose. Simultaneously,
the order of prediction error filter polynomial L could be
determined in [18], which satisfies the inequality as follows:

M≤L≤ N −
M

2
 . (19)

1at is to say, the order of prediction error filter should
exceed the estimated signal number. Afterwards, we define
frequency estimation matrix as follows:

f � f1, f2, . . . , fM , (20)

where

fk � 1, e
− sk , e

−2sk , . . . , e
−Lsk , k � 1, 2, . . . , M. (21)

It is easy to observe that each row in A is a linear
combination of L linearly independent vectors in fk. 1at is
to say, the rank of A is M as long as A has at least M rows.
1us, the dimension of null space in A is L + 1 − M di-
mension. In addition, as αk lies in the null space of A, we
have

α0 + α1e
−5k + α2e

−2sk + · · · + αLe
−Lsk � 0. (22)

1e signal frequency could be estimated from the roots
of (22). Besides, in order to obtain the amplitude and initial
phase of each signal, we define the following matrix equation
as follows:

β01 β02 . . . β0M
β11 β22 . . . β1M
⋮ ⋮ ⋮ ⋮

βN−1
1 βN−1

2 . . . βN−1
M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h1

h2

h3

h4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

y(1)

y(2)

⋮

y(N)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

Simply, we denote as

R · h � Y, (24)

where βk
i � ej2πfik/fs , h � (RHR)−1RHY, in which fs rep-

resents the sampling frequency and N is the sampling
number. In addition, the amplitude and initial phase could
be obtained after taking the manipulation of the absolute
and angular value of h, respectively:

ak � hk


, k � 1, . . . , M,

φk � arctan
Im hk( 

Re hk( 
  k � 1, . . . , M,

(25)

where Im(·) and Re(·) represent taking the imaginary and
real parts of the signal, respectively.

4.3. First-Order Sea Clutter Suppression. 1rough the pre-
vious analysis, in order to better achieve the purpose of
suppressing sea clutter based on the FBLP algorithm, we use
the first-order sea clutter obtained in the theoretical Bragg
band of the range-Doppler spectrum, combined with the
multidimensional features of the measured first-order sea
clutter to better identify and suppress sea clutter. First, the
range of the sea clutter Bragg band is determined in advance

on the range-Doppler spectrum, and then, the FBLP algo-
rithm is used to extract and estimate the parameters of the
sea clutter signal. Based on the previous processing, we use
the SNR threshold method defined below to determine the
number of first-order sea clutter signals of interest. Specially,
we suppose S as the number of signals, and the total power of
sea clutter echo could be obtained by the following equation:

P � 
N

n�1
yn



2
, (26)

where N is the number of signal sampling points. 1en the
power of each signal and noise is given by

Pk �
1
N



N

n�1
akβ

n−1
k



2

� ak



2 1 − βk



2N

N 1 − βk



2

 
k � 1, 2, . . . , S,

Pnoise �
1
N



N

n�1
yn − 

S

k�1
akβ

n−1
k





2

.

(27)

1e SNR of each signal is given by

SNRk �
Pk

Pnoise
, k � 1, 2, . . . , S. (28)

According to the local dominant characteristics of sea
clutter, the SNR of each signal component can be compared
with the threshold to screen out the suspected sea clutter
signal. 1en, according to the frequency domain symmetry
property of the sea clutter, combined with the frequency
estimation matrix f, each estimated frequency is pre-
processed as follows:

fi
′ �

fi + fB, fi < 0,

fi − fB, fi > 0,
 (29)

where fB is the theoretical Bragg scattering frequency, λ
indicates the wave length, and g is the acceleration of gravity.
Afterwards, we define the feature detection matrix (FDM) as
follows [12]:

F �

f(1, 2) f(1, 3) f(1, 4) . . . f(1, M)

0 f(2, 3) f(2, 4) . . . f(2, M)

0 0 f(3, 4) . . . f(3, M)

0 0 0 . . . f(M − 1, M)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (30)

where f(i, j) � |fi
′ − fj
′|, i � 1, . . . , S − 1; j � i + 1, . . . , S.

1e processing diagram of bistatic sea clutter suppres-
sion based on FBLP algorithm is shown in Figure 5. By
performing a two-dimensional search on the triangular
matrix F and finding the minimum value, the frequency
component (fx, fy) satisfying the symmetry is obtained,
that is, the component is the Bragg frequency corresponding
to the first-order sea clutter. Finally, the corresponding
amplitude in the amplitude matrix A corresponding to the
component is zeroed Ax � 0 andAy � 0. 1is completes the
cancellation of the first-order sea clutter. In addition,
considering the asymmetry of the first-order sea clutter
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positive and negative peaks caused by the wind direction,
since the sea clutter maintains good continuity in the range
dimension, it can be adopted as a reference by using adjacent
distance gates. 1e above FDM detection step is then
corrected.

5. Cascaded Decontamination and Suppression
Algorithm Performance Analysis

5.1. Simulation Data Analysis. Simulation parameter setting
is as follows: the signal type is a linear frequency modulated
(LFM) signal, pulse repetition period is PRT� 40ms, pulse
accumulation time is T� 40 s, operating frequency is
f0 �13MHz, sea clutter Bragg frequency is fB � 0.3750Hz,
signal-to-noise ratio (SNR) is SNR� 10 dB, and ionosphere
contamination function is sp(t) � 0.5∗ 2∗pi∗
sin(2∗pi∗ 0.1∗ t). Figure 6(a) shows the contaminated sea
clutter and decontaminated sea clutter spectrum by S2-
method, STFT, and GPTF, Figure 6(b) shows the estimated
phase contamination by S2-method, STFT, and GPTF,
Figure 6(c) shows decontaminated sea clutter spectrum by
GPTF, Figure 6(d) shows the broadening sea clutter sup-
pression based on the FBLP algorithm.

Figure 6 shows the simulation results of sea clutter
suppression with ionospheric phase disturbance based on
GPTF and FBLP and the target Doppler frequency

ftarget � 0.75Hz. It can be seen from Figure 6 that the sea
clutter can still be effectively suppressed by GPTF and FBLP
and the target can be clearly seen. As can be seen from the
above results, the approach based on GPTF can be used for
correcting ionospheric contamination with large amplitude.
And compared to the traditional time-frequency analysis
methods, this method has high time-frequency resolution
and no cross-term interference.

5.2. Experimental Data Analysis. 1e performance of ion-
osphere decontamination based on GPTF is verified by the
measured data of HF sky-wave radar. 1e measured data
have been processed by the traditional range-Doppler-azi-
muth processing. 1e echo accumulation time is 40ms. 1e
results of ionospheric decontamination based on GPTF at
range gate� 60 and azimuth angle DBF� 3° and at range
gate� 100 and azimuth angle DBF� 5° are shown in
Figures 7(a)-7(b). 1e green curve in the figure represents
the contaminated echo spectrum.1e red curve in the figure
represents the decontaminated echo spectrum after the
GPTF. 1e black curve in the figure represents the decon-
taminated echo spectrum after the S2-method. It can be seen
from the above processing results that the GPTF method has
better ionospheric decontamination performance than the
S2-method.

Sea clutter echo signal

�e range of first-order sea clutter
Bragg band

Constructing linear prediction
matrix equations

Estimating sea clutter signal
parameters

First-order sea clutter signal
recognition and extraction

�reshold method based on SNR

Construct FDM detection matrix

Find signals that satisfy symmetry

Reference adjacent range gateDetermine whether
symmetry is satisfied

Amplitude corresponding to the
sea clutter signal return to zero

Reconstruct the suppressed sea
clutter signals

Figure 5: 1e processing diagram of bistatic sea clutter suppression based on the FBLP algorithm.
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In order to justify the effectiveness of the cascade sup-
pression processing method based on GPTF and FBLP
proposed in this paper, the following uses the measured data
of HF sky-surface wave radar to verify. 1e measured data
were acquired using the newly developed “high-frequency
sky-surface wave radar experimental platform.” 1e mea-
sured data have been processed by the traditional range-
Doppler-azimuth processing. 1e echo accumulation time is
50 s.1e suppressed sea clutter spectrum by GPTF and FBLP
algorithm at range gate� 35 and azimuth angle DBF� 10° is
shown in Figures 8(a)-8(b) among them, the added target
Doppler velocity ftarget � −0.6Hz.

As shown in Figures 8(a)-8(b), the contaminated sea
clutter can be effectively suppressed by GPTF and the
broadening sea clutter is obviously sharpened, as indicated
by the red line. On this basis, the FBLP algorithm can ef-
fectively suppress the sea clutter, as indicated by the green
line. From Figures 8(a)-8(b), we can see that the target can be
effectively detected and SCR increased. 1is method can
steadily and effectively sharpen severe sea clutter spectrum
contaminated by ionospheric phase perturbation with large
amplitude. Finally, it should be pointed out that we use
different measured data to make many tests for the cascaded
suppression method. And we found that, in most cases, this
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Figure 6: Sea clutter suppression with ionospheric phase disturbance based on GPTF and FBLP. (a) Contaminated sea clutter and
decontaminated sea clutter spectrum by S2-method, STFT, and GPTF. (b) Estimated phase contamination by PGA, STFT, and GPTF. (c)
Decontaminated sea clutter spectrum by GPTF. (d) 1e broadening sea clutter suppression based on the FBLP algorithm.
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method can lead to good decontamination and suppression
effect, which sufficiently shows its robustness.

6. Conclusions

Ship detection is an important mission of the HF hybrid sky-
surface wave radar. 1e sea clutter spectrum is influenced by
composite factors such as the bistatic angle and ionospheric
phase disturbance. 1us, an ionospheric decontamination
and sea clutter suppression method for HF hybrid sky-

surface wave radars based on GPTF analysis is proposed. In
this method, the time-frequency analysis method based on
GPTF is proposed to correct the ionospheric phase con-
tamination with large amplitude. Compared with the tra-
ditional nonparametric time-frequency analysis method, the
phase contamination function extracted by this GPTF
method has higher accuracy. At this time, the FBLP algo-
rithm is used to suppress the sharped sea clutter spectrum.
Finally, the proposed method is examined by measured data.
Experimental results indicate that the proposed method can
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Figure 8:1e broadening sea clutter suppression based on GPTF and FBLP algorithm. (a) Decontamination result by GPTFmethod. (b) Sea
clutter suppression by FBLP.
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well suppress the broadening sea clutter for HF hybrid sky-
surface wave radar. Although some positive results have
been obtained, it must be pointed that there is still a need for
more studies and improvements.
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Polarized smart antenna array has attracted considerable interest due to its capacity of matched reception or interference
suppression for active sensing systems. Existing literature does not take full advantage of the combination of polarization isolation
and smart antennas and only focuses on uniform linear array (ULA). In this paper, an innovative synthesis two-dimensional
beampattern method with a null that has cross-polarization for polarized planar arrays is proposed in the first stage. 'is method
aims to further enhance the capability of interference suppression whose optimization problem can be solved by second-order
conic programming. In the second stage, a new sparse array-optimized method for the polarized antenna array is proposed to
reduce the high cost caused by the planar array that is composed of polarized dipole antennas. Numerical examples are provided to
demonstrate the advantages of the proposed approach over state-of-the-art methods.

1. Introduction

Smart antennas increase the capacity of communication
systems by improving signal-to-noise ratio (SNR) in mobile
communications [1, 2]. Adaptive array coherently combines
multipath components of the desired signal and null in-
terfering signals from different directions of arrival from the
desired signal. In terms of the capability to match reception
and suppress interference, the adaptive array is also applied
in modern radar systems [3, 4]. However, this kind of
conventional space-time adaptive technology has its own
limitations, especially in intentional interference. 'us,
polarization diversity is a potential solution [5–8]. Polari-
zation diversity not only reflects complete information on
electromagnetic waves of targets but also is an additional
degree of freedom that can be exploited in response to
dynamic environments. Polarization diversity can maximize
the received SNR when matching the target polarization and
can isolate the interfering signal from the desired signal
when cross-polarizing the interfering signal. Considering
this advantage, two synthesizing methods are introduced to
design an electromagnetic beam with desired power and
polarization [5, 9]. According to the literature [5, 9], dipole

antennas are suitable for generating arbitrary polarization
with a pair of orthogonal far-field electric vectors. Polarized
arrays can transmit a beampattern that can be selected freely
to design a desired null and polarization around areas of
interest. An effective approach to suppress strong interfer-
ence is based on the principle of polarization mismatch
factor; that is, the polarization in the specific region that
corresponds to the direction of strong interference is crossed
to that of strong interference to isolate the interference signal
energy at the receiver as much as possible. 'us, the
beamforming for polarized antenna array has become a
popular research topic in recent years [10, 11]. However,
most existing literature studies on polarized beamforming
are only based on a simple uniform linear array (ULA) due
to the high-dimensional weight matrix. A Fábry–Perot
cavity antenna with a reconfigurable partially reflecting
surface is proposed to produce dual-polarized 2D beams
[12]. Realizing the compatibility of this kind of antenna with
space-time adaptive processing technology based on ULA is
difficult, additionally, for the planar array composed of
polarized dipole antennas. A planar array generally com-
prises dozens or even hundreds of dipole antenna elements
at the cost of high-precision hardware for its
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implementation [13]. 'us, sparse array design is essential
for satisfying the function of using a finite number of ele-
ments to realize the polarization vector beam.

Unlike the conventional phase arrays, the sparse array
design for polarized smart array must be a constrained
optimization problem [14–18]. One particular constraint is
polarization matching, which is an inequality constraint.
'is constraint means that the optimization problem cannot
be solved by the single-objective optimization algorithm.
Transforming constraint optimization into multiobjective
optimization or adding a penalty function in the fitness
function is necessary to solve such a constrained optimi-
zation problem [19]. Scholars proposed multiobjective al-
gorithms based on a new evolutionary pattern in recent
decades. According to [20], the optimization problem with
inequality constraint can be transformed into a multi-
objective optimization problem. 'is problem can be solved
using the multiobjective differential evolution (MODE) al-
gorithm. In this work, the multioptimization design of a
sparse antenna array for polarized smart antennas is
addressed following the MODE algorithm.

'e rest of this paper is organized as follows. 'e signal
model for the polarized antenna is introduced in Section 2.
Second-order cone programming (SOCP) is presented in
Section 3 to solve the optimization problem of the 2D
polarized beampattern design. Multiobjective differential
evolution is applied to solve the multiobjective optimization
problem in Section 4. Numerical simulations are presented
in Section 5, and the conclusions are presented in Section 6.

2. Signal Model

2.1. Representation of Polarization State. 'e polarization
state of the far-field electric field can be characterized by its
polarization ellipse. 'e polarization ellipse is the most
frequently used representation of polarization states. 'e
polarization angle can be defined as the angle between the
major axis of the ellipse and a reference vector to orient the
ellipse in space. In the ellipse, the polarization state can be
defined by its polarization axial ratio and angle. 'e electric
field produces an ellipse over one period when plotted on a
2D plane normal to the propagation direction. 'e po-
larization axial ratio is the ratio of the major to minor axes
of the ellipse. 'is ratio also determines the circularity (low
axial ratio) and linearity (high axial ratio) of the
polarization.

In Figure 1, α is called the orientation angle (the angle
between the major semiaxis of the ellipse and the H-axis)
and β is the ellipse angle (the angle measuring the ratio of the
two semiaxes). If the amplitude of the electromagnetic wave
is ignored, then the polarization state of electromagnetic
waves can be characterized by parameter pair (α, β). 'is
state is called the geometric descriptor of polarization state.
When β � 0 , the resultant polarization is linear; moreover,
α � 0 provides a horizontal polarization and β � (π/2) leads
to a vertical polarization. However, for β � ± (π/4), the
resultant polarization is circular for any orientation angle α.

'e mathematical relationship between electric field and
polarization ellipse parameters can be expressed as follows:

E � A ·
cos α −sin α

sin α cos α
  · cos β j sin β 

T

� A ·
cos α cos β − j sin α sin β

sin α cos β + j cos α sin β
 

�
EH

EV
 .

(1)

In (1), the first item on the right is the rotation matrix,
and second one is the ellipticity vector; A �

�����������

|EH|2 + |EV|2


represents the energy of an electromagnetic wave.
'e complex electric field vector can also be defined as

follows:

E � A
cos c

sin cejδ . (2)

In (2), tan c � (AH/AV) represents the ratio between the
amplitude of vertical and horizontal channel electric fields, δ �

ϕV − ϕH is the phase difference between the vertical and the
horizontal channel components, c ∈ [0, (π/2)], and
δ ∈ [0, 2π]. Given that the energy information of electromag-
netic wave is not considered in this study, the parameter pair is
reversible to the polarization state of electromagnetic wave.
'us, the parameter pair can be called the phase descriptor of
polarization state of electromagnetic wave. If (EH/EV) � cejδ

and (EH)2 + (EV)2 ≠ 0, then the relationship between geo-
metric and phase descriptors can be expressed as follows:

α � tan− 1 −2c cos δ
1 − c2

 ,

β � arcsin

������������������
1 − 2c/(1 + c)2 sin δ


−

������������������
1 + 2c/(1 + c)2 sin δ



2
.

(3)

2.2. Polarized Vector Array Response. Suppose r is a unit
vector representing a spatial direction in R3, which can be
expressed as follows:

β < 0

β > 0

cos β

sin β

H

V

α

Figure 1: Polarization ellipse.
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r � sin θ cosφ sin θ sinφ cos θ 
T
. (4)

In (4), θ ∈ [−π/2, π/2] is pitch, and φ ∈ [0, 2π] is
azimuth:

θ≜
zr

zθ
� cos θ cosφ cos θ sinφ −sin θ 

T
,

φ≜
1

sin θ
zr

zφ
� −sinφ cosφ 0 

T
,

(5)

where (r, θ, φ) can be described as a right-hand coordinate
system, as shown in Figure 2.

If the plane wave is traveling along the r→-direction, the
electric field is orthogonal to τ and lies in the plane spanned
by (rH, rV). Polarized vector antennas comprising orthog-
onal electric and magnetic dipoles are considered. In this
spatial coordinate system (rH, rV), each of the six dipoles has
the following responses (ignoring a common constant that is
determined by the antenna parameters and the distance to
the antenna).

In this paper, we simplified the representation of polari-
zation state in the coordinate system and only considered the
electric field and magnetic field along the x direction.'us, the
polarized antennas have the responses as follows (regardless of
the antenna parameters and the distance to the antenna):

vE
x(r) � −sinφ cos θ cosφ ,

vM
x (r) � cos θ cosφ sinφ .

(6)

If the antenna only comprises electric and magnetic
dipole elements along r, then the response is as follows:

V(r) � vE
x vM

x 
T
. (7)

Moreover, for a given antenna response V(r) ∈ Cp×2,
v(r; H) and v(r; V) are used to denote the response to theH
and V channels, respectively, or as a formula.

V(r) � [v(r; H), v(r; V)]. (8)

3. Two-Dimensional Beampattern Synthesis for
Polarized Smart Antenna Array

A two-dimensional beamforming method for polarized
smart antenna array is proposed in this section. Xiao and
Nehorai designed a null and sidelobe polarization for the
polarized beampattern [6]. However, the null and polari-
zation controls of the sidelobe are independent, which did
not maximize the advantages of polarization isolation and
null. SOCP is still adopted to deal with the two-dimensional
beamforming for polarized antenna arrays. Different from
the previous literature, this section extends it to two-di-
mensional polarization beamforming. Here, the weight
matrixω is synthesized to generate a beampattern. Suppose a
uniform planar array comprises N × N antennas with an
element spacing d (half wavelength), as shown in.

According to the array model shown in Figure 3, the
weighting matrix ω is introduced in this section to be the
concatenation of all ωn×n:

ω �

ωT
11 ωT

12 . . . ωT
1N

ωT
21 ωT

22 . . . ωT
2N

⋮ ⋮ ⋱ ⋮

ωT
N1 ωT

N2 . . . ωT
NN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (9)

where

ω � ωH
,ωV

 
T
. (10)

For convenience of calculation, the N × N matrix ωT
NN is

transformed into 1 × N2 column vectors as follows:

ωH
� ωH

1 ,ωH
2 , . . . ,ωH

N2 ,

ωV
� ωV

1 ,ωV
2 , . . . ,ωV

N2 .
(11)

Given the location of actual element xn: 1≤ n≤N2,
which has the N2 candidate positions, the array response,
as a function of spatial direction r, can be expressed as
follows:

x

yφ

φ

θ

θ
z r

Figure 2: Spatial coordinate system.

H
Vw1

H w2
H w3

H wN
H

wN
Vw3

V
w1

V
w2

V

H
V

H
V

H
V

H
V

H
V

H
V

H
V

H
V

H
V

H
VHwN2 VwN2

H
V

wN + 1
H wN + 2
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H

wN + 1

Hw(N – 1) N + 1
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Figure 3: Dual-polarized smart antenna array.
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AF(r) � e
− jψ1(r)

, e
− jψ2(r)

, . . . , e
− jψN2(r)

 
T
, (12)

where ψn(r) � kr · xn and k � (2π/λ) is the wave number.
'us, in terms of the vector antenna response V(r), the

N2 × 2 vector antenna array response is further obtained as
follows:

A(r) � AF(r)⊗V(r) � e− jψ1(r)V(r) · · · e− jψN2(r)V(r) 
T
.

(13)

'e antenna array response of H and V channels is
defined as follows:

A(r; H) � AF(r)⊗ v(r; H),

A(r; V) � AF(r)⊗ v(r; V).
(14)

'e normalized electrical field emitted from the antenna
array (ignoring the common carrier and the baseband signal
s(t)) can be expressed as follows:

E(r) � A(r)Tω, (15)

where E(r; H) and E(r; V) are used to denote the decom-
position of E(r):

E(r; H) � A(r; H)
Tω, (16)

E(r; V) � A(r; V)
Tω. (17)

Along r, the polarization state can be determined by the
ratio between E(r; H) and E(r; V), and the transmitting
power can be expressed as ‖E(r)‖2 � |E(r; H)|2 + |E(r; V)|2:

E(r) � (AF(r)⊗V(r))Tω

� V(r)T
sH sV 

T
,

(18)

where ωH
n and ωV

n are the complex weights of the horizontal
and vertical channels, respectively. sH(r) and sV(r) are,
respectively, defined as follows:

s
H

(r)≜AF(r)TωH
,

s
V

(r)≜AF(r)TωV
.

(19)

'e selection of ω under maximal sidelobe minimization
is one of the problems in achieving the following goals.

(1) Maximize the power of the main beam (at direction
r0) and match polarization parameter pair (μ, ]); the
region of main beam is denoted by Sm)

(2) Minimize power of sidelobe (this region is denoted
by Sr at direction rs)

(3) A desired null in the directions of interferers (gen-
erally located in the sidelobe region and denoted by
Sn), which has cross-polarization constraint (αp, βp)

Based on above, the polarized beampattern synthesis
problem can be formulated as follows:
min
rs∈Sr

τ

subject to

E r0(  �
��
E0


ejϕ

cos μ −cos μ

sin μ cos μ
 

cos ]

j sin ]
 

max
rs∈Sr

E rs; H( 
����

����
2

+ E rs; V( 
����

����
2

 ≤ τ2; rs ∈ Sr

EH rn( 

EV rn( 
⎡⎣ ⎤⎦ �

��
P

√
ejϕ

cos αp sin αp

−sin αp cos αp

⎡⎣ ⎤⎦
cos βp

j sin βp

⎡⎣ ⎤⎦

E rn; H( 
����

����
2

+ E rn; V( 
����

����
2 ≤ ε2, rn ∈ Sn.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where τ is the optimal solution, which measures the
beampattern power gain over the sidelobes and does not
depend on the main beam polarization. 'e third constraint
directly determines the polarization of notch and its depth
(ε �

��
P

√
). When ω is a column vector of 1 × N2, the above

optimization mode is also applicable to the synthesis of the
polarized beampattern for ULA. 'is condition is a vector
optimization problem that is difficult to solve using an
optimization algorithm. 'us, this optimization problem is
split into two equivalent scalar optimization problems as
follows:

Horizontal channel is

min
ω(H)

max
rs∈Sr

EH rs( 



2

subject to E rm(  � (cos μ cos ] + j sin μ sin ])

E rn(  � ε(p − c, q − c) · cos αp cos βp + j sin αp sin βp , rn ∈ Sn.

(21)

Vertical channel is

min
ω(V)

max
rs∈Sr

EV rs( 



2

subject to E r0(  � (−sin μ cos ] + j cos μ sin ])

E rn(  � ε(p − c, q − c) · −sin αp cos βp + j cos αp sin βp , rn ∈ Sn.

(22)
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In (21) and (22), ε is called the null concave matrix for
polarized smart antenna array and is introduced as follows:

ε �

20lg ε(p−c,q−c) 20lg ε(p−c+1,q−c) . . . 20lg ε(p+c,q−c)

20lg ε(p−c,q−c+1) 20lg ε(p−c+1,q−c+1) . . . 20lg ε(p+c,q−c+1)

⋮ ⋮ ⋱ ⋮

20lg ε(p−c,q+c) 20lg ε(p−c+1,q+c) . . . 20lg ε(p+c,q+c)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(23)

where p � (p − c, . . . , p − 1, p, p + 1, . . . , p + c), q � (q − c,

. . . , q − 1, q, q + 1, . . . , q + c), and c is a constant. 'e above
optimized problem is convex and is also an SOCP problem.

4. Sparse Array Design for Polarized
Smart Antenna

Pattern performance and polarization constraint for the
polarized smart antenna must be considered in the sparse

process of antenna array [21]. 'e optimization model must
be a multiconstraint problem, including the unequal con-
straints, to accomplish both purposes. Following [22, 23], a
two-stage design approach is adopted to deal with the sparse
array design for polarized smart antenna. In the first stage,
the weight matrix ω is synthesized to generate a pattern for
N × N polarized antenna array with an N2 antenna element,
as mentioned in Section 3. In the second stage, the element
positions of the full array are treated as candidate positions
that are selected by a sparse array with M antenna elements.

Mean square error of polarization matching in interest
area (PMSE) is defined as an objective function, whereas the
peak sidelobe levels (PSLLs) minimization of sparse array
design is another objective function [24]. 'is optimization
problem of PMSE can be constructed as follows:

f(x) �
1
K



K

k�1
α θk,φk(  − αbest θk,φk(  

2
+ β θk,φk(  − βbest θk,φk(  

2
 , (24)

where K is the number of sampling points in the far-field
area for the optimal polarized beampattern.

'e optimization problem for a sparse antenna array
design aimed at polarization matching to control the
designed polarization as desired in the interesting region can
be written as follows:
min f(x)

subject to

−Nx ≤m≤Nx, − Ny ≤ n≤Ny

a Nx, 0(  � 1, a −Nx, 0(  � 1

a 0, −Ny  � 1, a 0, Ny  � 1

PSLLs − δ < 0


Nx

m�−Nx



Ny

n�−Ny

amn � T

E θi−c,φj−c 

FFmax




≤ ε(i − c, j − c), i, j � 1, 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

where the first three constraints fix the four sides of the
antenna aperture, δ is the tolerance value for PSLLs in the
fourth constraint (which is an inequality constraint), the
fifth constraint sets the actual number of elements (T), and

the last constraint realizes the depth and polarization of null
(FFmax is the peak of the main lobe). Following the idea of
multiobjective optimization, the inequality constraint can be
regarded as another objective function in the evolution
process [24]. 'is constraint can be optimized in parallel
implementation as follows:
min f1(x), f2(x)( 

subject to

−Nx ≤m≤Nx, − Ny ≤ n≤Ny

a Nx, 0(  � 1, a −Nx, 0(  � 1

a 0, −Ny  � 1, a 0, Ny  � 1


Nx

m�−Nx



Ny

n�−Ny

amn � T

E θi−c,φj−c 

FFmax




≤ ε(i − c, j − c), i, j � 1, 2, . . . .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(26)

where f1(x) is defined in (23) and f2(x) � PSLLs. Inspired
by [23], the MODE algorithm is suitable for this kind of
multiobjective optimization problem and is designed to
handle a multiset of solutions in a single iteration. In the
multiobjective domain, the MODE aims to identify a set of
Pareto optimal solutions to operate the selection of the best
individual for the mutation (Appendix A). At the end of the
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evolutionary search, the nondominated solution archive is
passed through a dominance filter to yield the global near-
Pareto-optimal frontier (Appendixes B and C) [23, 25]. 'e
individual representation (Initial and Coding) needs to be
explained as follows.

4.1. Initial. Let x
j

i,G denote the initial value of the j pa-
rameter in the ith population at generation G , which is
shown as follows:

x
j

i,G � rand(0, 1) · x
j
max − x

j

min  + x
j

min, i � 1, . . . ,NP, j � 1, . . . , D,

(27)

where D � N2 − 4, and rand(0, 1) is a uniformly distributed
random variable within the range [0, 1], and x

j
max and x

j

min
are the lower and upper bounds of the jth variable pa-
rameter, respectively. 'e individual in the ith population at
generation G can be obtained in its vector form as follows:

xi,G � x
1
, x

2
, . . . , x

D
 . (28)

4.2.Coding. 'e initial value of the antenna position is set as
the partition points of a planar array aperture. 'e random
perturbation is controlled by xi,G, and binary coded ps

denotes the location of actual elements, which is shown as
follows:

ps(n, n) � sort(x)
T
, n � 1, . . . , N

2
− 4, (29)

where sort(·) denotes the real variables that are sorted by size
as integer variables converted into binary codes.

'e whole process of sparse array design using MODE
algorithm can be summarized as follows (Algorithm 1).

Steps 3–5 evaluate the fitness function at these 2NP
solutions at each generation G, select the NP fittest solutions
via fast nondominated sorting, and store them in the current
population pop c. In our approach, fast nondominated
sorting is applied to guarantee that the population maintains
its original size, and the nondominated solutions in the
population are identified at each generation of the evolution
process. 'e nondominated solutions are saved in the ad-
vanced population that corresponds to the feasible solution
[26]. Otherwise, the infeasible solution is reserved in the
current population.

5. Numerical Example

'e simulation results are presented in this section to il-
lustrate the effectiveness of the proposed method. Consid-
ering the preliminary results reported in [6, 9], the
application of the SOCP to polarized beampattern synthesis
must be investigated. 'us, the polarized beampattern
synthesis is introduced for polarized smart antenna based on
ULA in Example 1. 'is example highlights the continuity
and innovation of the proposed method. 'e cross-polari-
zation is added on the null of the beampattern to improve
the capability of interference suppression in the sidelobe
region, which is different from [6]. Example 2 synthesizes the
2D polarization beampattern and obtains the corresponding

polarization state for the polarized smart antenna array.
Example 3 realizes the sparse array design of the 2D po-
larized smart antenna array.

5.1. Polarized Beampattern with a Null that Has Cross-Po-
larization Based on ULA. Assume that a strong interference
is located at an azimuth angle of θ � 23°, and its polarization
state can be depicted with polarization ellipse parameters of
α � 80° and β � 25°. 'us, a desired null (SLL≤ −50 dB)
with (α � −10° and β� 25°) that is located at θ ∈ (20°, 25°)
must be designed. 'e entire angle area is θ ∈ (−90°, 90°)
with 1° angular spacing (such that K � 181 ). Assume a
strong interference is at the azimuth angle of θ � 23°. 'e
polarization state of this strong interference can be depicted
with polarization ellipse parameters of α � 80°and β � 25°.
'e desired null (SLL � −50 dB) with α � −10° and β� 25°,
which is located at θ � [20°, 25°], must be designed.

Figure 4(a) depicts a polarized beampattern with one
desired polarization. 'e result shows that the polarization
can be controlled such that the interference of the known
source is isolated, and the gain of the main lobe is 16 dB.
Figure 4(b) presents that the desired polarization ellipse
parameter is a constant in the entire angle region. Figure 5(a)
depicts a polarized beampattern with the desired null. 'e
result also shows that the depth of the obtained null can
reach −24 dB compared with the maximum peak sidelobe
level. However, Figure 5(b) displays that the curve of the
polarization ellipse parameter in the entire angle area is not
constant, except for the main lobe region; that is, no law
exists.

Figure 6(a) shows the beampattern of the proposed
method. Figure 6(b) displays that the curve of the polari-
zation ellipse parameter in the entire angle area is not
constant; that is, no law exists. However, this curve meets the
interests in that region, such as the main lobe and jamming
direction. 'us, all these findings justify the efforts to
prevent jamming due to polarization mismatch.

5.2. Two-Dimensional Beampattern Synthesis for Polarized
Smart Antenna Array. Similar to Example 1, SOCP is ap-
plied to optimize the 2D polarized beamform as mentioned
in Section 3. 'e only difference from the previous example
is that the variable is no longer a column vector but a matrix.
'us, the weight matrix must be transformed into column
vectors again. Assume that a planar array of 10 × 10
(N � 10) is synthesized and satisfies the following con-
straints: (1) 'e distance between any pair of elements is
equal to dc � 0.5λ. (2) All elements are allocated on a fixed
aperture of 4.5λ × 4.5λ. (3) 'e main beam is targeted at φ �

20° and θ � 20° with beam width of 7.5° and polarization
constraint (μ, ]) � (10°, 20°). (4) 'e null is located at
φ ∈ (60°, 63°) and θ ∈ (60°, 62°) with the polarization con-
straint (αi, βi) � (25°, 35°). 'erefore, the coordinate vector
of the null concave in the sidelobe region is equal to
p � (60°, 61°, 62°), q � (60°, 61°, 62°), and the depth is
20 · lgε � 60 dB(ε � 0.001). According to the optimization
model defined by equations (16) and (17), CVX MOSEKY
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solver is used to solve the two equivalent scalar problems
[27]. 'e following results are obtained.

For clarity, 3D and contour figures represent the op-
timized beampattern. A null concave with the average
depth of −91.5 dB is located at θ ∈ (60°, 62°) and
ϕ ∈ (60°, 62°) in Figure 7. Compared to the maximum peak
sidelobe (−16.5 dB), the polarized beampattern obtained a
suppression gain with −75 dB. α and β are also represented
by a surface to verify the polarization state of 2D polarized
beampattern, as shown in Figure 8. Different from the

previous example, the polarization state of interesting area
cannot be directly observed from the curved surface.
However, if the tangent of the surface is used for repre-
sentation, then the polarization state values of null concave
cannot be fully expressed. 'us, a table is used to express
the corresponding polarization state values at several
sampling points of interesting areas, as shown in Tables 1
and 2.

Tables 1 and 2 suggest that the polarization parameter
pair (α, β) is consistent with the experimental setting, where

Input: ω, NP, M, N, G max
Step 1: initial. a(Nx, 0) � 1, a(−Nx, 0) � 1, a(0, −Ny) � 1, a(0, Ny) � 1; G � 1, . . . , G maxx

j

i,G � rand(0, 1), i � 1, . . . ,NP,

j � 1, . . . , N2

Step 2: coding. xi,G⟶ ps, f1(x) is defined in (24), f2(x) � PSLLs(x)

For p⟵ 1 to NP do
Step 3: mutation. Randomly select three distinct individuals, xr1, xr2, and xr3, who are all different from the target individual.

Generate a perturbed individual Ui by Ui,G+1 � xtb,G + F(xr2,G + xr3,G)

'e scaling factor F ∈ [0, 2] is constant. xtb,G denotes the best individuals among the three individuals, which is mean that the
one has best fitness function value
Step 4: crossover. 'e objective function value of each trial vector f(vi,G) is compared with that of its corresponding target vector

f(xi,G). 'e vector with the smaller fitness value will be retained in the next generation. Generate a trial individual as follows:

vi,G+1 �
vi,G, if f(vi,G)<f(xi,G),

xi,G, otherwise.

calculate the fitness value of Vi,G+1, p � p + NP
Step 5: Pareto dominance
If (Vi dominates xi)

replace xi by Vi in the current population pop c, and then add xi to the advanced population pop a

Else
add Vi to the advanced population pop a

End
end
NP fittest solutions is select in every fast nondominated sorting and save them in pop c; ps,best is the ps with the lowest fitness value

of f1(x)

Output: ps,best⟶ As⟶ p � AH
s ω

ALGORITHM 1: MODE algorithm.
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Figure 4: First method of polarized beampattern in [6]. (a) Beampattern. (b) Polarization.
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p and q, respectively, refer to the sampling points of themain
lobe and null concave, as defined in (18). Similar to Example
1, the constraint of polarization matching cannot guarantee
the polarization state outside the region of interest.

5.3. Sparse Array Optimization of Polarized Smart Antenna
Using MODE. 'e MODE algorithm is applied for sparse
antenna array design to verify the effectiveness of the
method mentioned in Section 4. Given its particularity, this
optimization problem is suitable for the multiobjective
differential evolution algorithm. 'us, we only apply the
multiobjective differential evolution algorithm to its sparse

array optimization. Herein, the sparse rate is set as 75%.
'us, M � 75 antenna elements selected from 100 candi-
date positions (N � 10×10 planar array) are used. Other
simulation conditions remain the same as those in Example
2. 'e parameters of MODE are defined and applied as
follows:

(1) Population size: NP � 100
(2) Initial range: xmax � 1,xmin � 0
(3) Mutation probability: F � 0.8
(4) Crossover probability: CR � 0.3
(5) Maximum number of iterations: G max � 200
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Figure 5: Second method of polarized beampattern in [6]. (a) Beampattern. (b) Polarization.
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Figure 6: Proposed method of polarized beampattern. (a) Beampattern. (b) Polarization.
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SOCP is repeated to establish the optimum covariance
matrix ω, and the evolution process continues until the
maximum number of iterations for testing convergence is
reached. 'e results are shown as follows.

'e red asterisks in Figure 9(a) record all the infeasible
solution sets, and the black diamonds represent the feasible
solution sets in one run. To balance the performance of both
PMSE and PSLL, the solution (PMSE� 0.0086 and
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Figure 7: Polarized beampattern using the proposed method. (a)'e 3D polarized beampattern. (b)'e contour of polarized beampattern.
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Figure 8: 'e surface of polarization parameter pair using the proposed method. (a) Orientation angle. (b) Ellipse angle.

Table 1: Polarization state in the main lobe.

Sampling points 1 2 3 4 5 6 7 8 9
p 19 19 19 20 20 20 21 21 21
q 19 20 21 19 20 21 19 20 21
μ 9.80 9.90 8.05 10.00 10.00 9.01 8.05 9.20 9.80
] 19.79 19.90 19.99 20.97 20.97 20.00 20.05 21.95 21.70

Table 2: Polarization state in the null.

Sampling points 1 2 3 4 5 6 7 8 9
p 60 60 60 61 61 61 62 62 62
q 60 61 62 60 61 62 60 61 62
αi 24.79 24.90 24.99 25.00 25.00 25.00 25.05 24.95 24.70
βi 34.89 33.34 36.89 35.00 35.00 37.90 34.56 36.90 39.00
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Figure 9: Pareto fronts produced by MODE. (a) Pareto fronts. (b) Position of antenna.
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PSLL� 0.009) marked by the dotted circle should be the best
choice in experience. Figure 9(b) shows the selected antenna
positions corresponding to the best solution, and the sparse rate
is set to 75%. In Figure 10, it is easy to see that the average PSLL
is about −10dB, and the depth of null obtained is −50dB.'ose
performances are worse than those in Figure 7. 'is finding is
due to the decrease in the number of array elements, which leads
to increased sidelobe levels. However, the performance of po-
larizationmatching in the interesting area and the PSLLs outside
the beampattern is balanced.'e restriction for the polarization
matching in this study is to maintain the best approximation of
polarization matching while keeping the sidelobe level as flat as
possible, as shown in Figures 9 and 10. Figure 11 shows the
surface value of the polarization ellipse parameter that uses the
MODE. As previously described, we still cannot see the po-
larization state of interest region in Figure 11. 'us, the cor-
responding polarization states are shown in Tables 3 and 4,
respectively.

Table 5 shows the chosen PMSE and PSLLs in ten in-
dependent runs.

Table 5 summarizes the results of MODE in 10 runs. 'e
highest PMSE is below 0.0091, whereas all PSLLs slightly
fluctuate around 0.009. 'is finding suggests the stability of
PSLLs obtained using MODE. MODE has almost the same
running time as DE despite the constraint added by the
former to the optimization problem.Moreover, MODE has a
simpler algorithm structure than that of DE. 'ese argu-
ments justify efforts to prevent PMSE.

6. Conclusions

A novel two-stage design approach for the sparse antenna
array design of 2D polarized smart antenna arrays is

proposed in this work. A new model of optimal polarized
beampattern optimization problem based on SOCP is for-
mulated in the first stage. A multiobjective optimization
problem for sparse arrays, which can be solved by MODE, is
then proposed in the second stage. Compared with the
existing method in [6], the cross-polarization on the null is
constrained to maximize the capability of interferer sup-
pression while retaining the polarization matched reception
in the main lobe. 'is method is extended to the two-di-
mensional polarized antenna array. Given the substantial
hardware cost, the MODE algorithm based on Pareto
technique is proposed to obtain the sparse array. In this
algorithm, the PMSE in the interest area is presented as
another objective function to be optimized. 'e simulation
results reveal that MODE outperforms other algorithms in
terms of sparse arrays while maintaining polarization
matching performance.

Although only beampattern synthesis and sparse array
for polarized smart antenna array are considered, the effect
of the matching reception and interference suppression is
not evaluated in practical application. 'e extension of this
method to the detection and interference suppression of
systems is part of future studies.

Appendix

A. Opposition-Based Learning

Proof. 'e opposition-based learning is introduced to
generate opposite solutions in the initialization to increase
the chances of starting with the fittest solution [20], which
can be expressed as follows:

Table 4: Polarization state in the region of null concave.

Sampling points 1 2 3 4 5 6 7 8 9
p 60 60 60 61 61 61 62 62 62
q 60 61 62 60 61 62 60 61 62
αi 23.79 25.49 24.50 23.30 24.20 26.11 25.52 28.7782 25.2064
βi 32.15 31.89 32.25 35.04 35.46 34.24 34.20 35.00 36.56

Table 3: Polarization state in the region of the main lobe.

Sampling points 1 2 3 4 5 6 7 8 9
p 19 19 19 20 20 20 21 21 21
q 19 20 21 19 20 21 19 20 21
μ 9.32 8.85 9.2621 10.91 10.00 10.07 10.00 10.01 10.80
] 19.85 20.00 20.05 19.86 20.00 20.00 21.11 20.00 21.30

Table 5: Performance of MODE in 10 runs.

Algorithm: MODE
Index of runs

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

PMSE 0.0086 0.0086 0.0087 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086 0.0086
PSLLs 0.0090 0.0090 0.0091 0.0090 0.0090 0.0091 0.0091 0.0090 0.0090 0.0089
Iterations 27 27 27 27 27 27 28 25 28 26
Runtime 15/00 15/04 15/66 15/20 15/25 15/23 15/12 15/00 15/27 15/25
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max + x
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min  − x
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i , i � 1, . . . ,NP, j � 1, . . . , D.

(A.1)

□

B. Pareto Dominance

Proof. A solution x1 is said to dominate another solution x2
under the following conditions:

(1) ∀m ∈ (1, . . . , Mobj): fm(x1)≤fm(x2)

(2) ∃m ∈ (1, . . . , Mobj): fm(x1)<fm(x2)

where Mobj is the number of objective functions and fm(·) is
the corresponding fitness function. Any individual that is
not dominated by any other member is considered
nondominated. □

C. Fast Nondominated Sorting

Proof. Assume a Pareto optimal set denoted by S. np denotes
the number of dominated solutions, while Sp is a set of
solutions dominated by the solution p [20].

For every solution p in S, both np and Sp are calculated.
All solutions in the first nondominated front F1 clear their
domination count to zero. Afterwards, when np � 0, each
solution p visits eachmember q of its set Sp, and np � np − 1.
Any member q is saved in a separate list P. 'ese members
belong to the second nondominated front F2. Each member
of P and the third front F3 are identified. 'is process
continues until all fronts have been identified. □
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