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J. A. G.a-Rodŕıguez, Spain
Leszek Gasinski, Poland
György Gát, Hungary
Vladimir Georgiev, Italy
Lorenzo Giacomelli, Italy
Jaume Giné, Spain
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Tero Kilpeläinen, Finland
Sung G. Kim, Republic of Korea
Ljubisa Kocinac, Serbia
Andrei Korobeinikov, Spain
Pekka Koskela, Finland
Victor Kovtunenko, Austria
Ren-Jieh Kuo, Taiwan
Pavel Kurasov, Sweden
Milton C. L. Filho, Brazil
Miroslaw Lachowicz, Poland
Kunquan Lan, Canada
Ruediger Landes, USA
Irena Lasiecka, USA
Matti Lassas, Finland
Chun-Kong Law, Taiwan
Ming-Yi Lee, Taiwan
Gongbao Li, China
Elena Litsyn, Israel
Yansheng Liu, China
Shengqiang Liu, China
Carlos Lizama, Chile
Guozhen Lu, USA
Jinhu Lü, China
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Some Further Generalizations of Hölder’s Inequality and Related Results on Fractal Space,
Guang-Sheng Chen, H. M. Srivastava, Pin Wang, and Wei Wei
Volume 2014, Article ID 832802, 7 pages

A Novel Analytical Technique to Obtain Kink Solutions for Higher Order Nonlinear Fractional
Evolution Equations, Qazi Mahmood Ul Hassan, Jamshad Ahmad, and Muhammad Shakeel
Volume 2014, Article ID 213482, 11 pages

Applications of the Novel (𝐺/𝐺)-Expansion Method for a Time Fractional Simplified Modified
Camassa-Holm (MCH) Equation, Muhammad Shakeel, Qazi Mahmood Ul-Hassan, and Jamshad Ahmad
Volume 2014, Article ID 601961, 16 pages

Solvability of an Integral Equation of Volterra-Wiener-Hopf Type, Nurgali K. Ashirbayev, Józef Banaś,
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It is indeed a fairly common practice for scientific research
journals and scientific research periodicals to publish special
issues as well as conference proceedings. Quite frequently,
these special issues are devoted exclusively to specific topics
and/or are dedicated respectfully to commemorate the cel-
ebrated works of renowned research scientists. This special
issue is an outcome of the ongoing importance and popularity
of such topics as the theory and applications of various fami-
lies of differential, integral, and integrodifferential equations
as well as their fractional counterparts and associated integral
and other transformations. We choose here to summarize
most (if not all) of the main investigations which are con-
tained in this special issue.

To begin with, C. Bianca et al. have investigated the exis-
tence problems for a partial integrodifferential equation with
thermostat and time delay. Several Krasnoselskii type hybrid
fixed point theorems together with their applications involv-
ing fractional integral equations are presented in the work by
H.M. Srivastava et al. N.Wan et al. have studied the stabilized
discretization in spline element method for solutions of
some two-dimensional Navier-Stokes problems. Algorithmic
investigation for a system of integral equations has been
presented by Abdujabar Rasulov, Adem Kilicman, Zaini-
din Eshkuvatov, and Gulnora Raimova. I. Area et al. have
derived fractional derivatives and primitives of several peri-
odic functions. Applications of a local fractional functional
method in solving diffusion equations on Cantor sets are
discussed by Y. Cao et al. A study of higher-order sequential

fractional differential inclusions with nonlocal three-point
boundary conditions is presented by B. Ahmad and S. K.
Ntouyas. D. Liu et al. have considered the Gerber-Shiu
expected penalty function for the risk model with depen-
dence and a constant dividend barrier. Some generalizations
of convex functions on fractal sets are given by H. Mo and
X. Sui. H. Guo et al. have successfully applied a Jacobi-
collocation method for the second kind Volterra integral
equationswith a smooth kernel. Solutions of initial-boundary
value problems for local fractional differential equation by
means of local fractional Fourier series method are presented
by Y. Zhang. X.-F. Niu et al., on the other hand, have
studied some local fractional derivative boundary value
problems for the Tricomi equation arising in fractal transonic
flow. Existence of solutions for fractional 𝑞-integrodifference
equations with nonlocal fractional 𝑞-integral conditions is
discussed by S. Asawasamrit et al. Further generalizations of
the celebrated Hölder’s inequality and related results on frac-
tal space are presented by G.-S. Chen et al. Q. M. Ul Hassan
et al. introduce and study an analytical technique for finding
solutions for higher-order nonlinear fractional evolution
equations. Applications of some expansion techniques for
solving the time-fractional modified Camassa-Holm (MCH)
equation are discussed by M. Shakeel et al. N. K. Ashirbayev
et al. consider the problem of solvability of an integral equa-
tion of Volterra-Wiener-Hopf type. Exact solutions of some
nonlinear wave equations by the exp-function method are
derived by M. Hu et al. E. Malkawi and D. Baleanu have
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investigated some fractional Killing-Yano tensors and Killing
vectors using the Caputo (or, more accurately, the Liouville-
Caputo) derivative in one- and two-dimensional curved
space.
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In this note we correct some discrepancies that appeared in
the paper by rewriting some statements and deleting proof of
some theorems which already exist in our previous paper.

After examining different sections in the paper “Kras-
nosel’skii Type Hybrid Fixed Point Theorems and Their
Applications to Fractional Integral Equations,” we found
some discrepancies. In this note, we slightly modify some
of discrepancies by rewriting some statements and deleting
proof of some theorems which already exist in our previous
paper to achieve our claim.

We rewrite page 1, left side, line 1–line 4 (from Introduc-
tion), as follows.

The main result of Nieto and Rodŕıguez-López [1] is the
following hybrid fixed point theorem.

We rewrite page 1, left side, line 1-line 2 (from bottom), as
follows.

Another version of the above fixed point theorem can be
stated as follows.

We rewrite page 2, left side, line 22–line 39, as follows.
The fixed point result of Heikkilä and Lakshmikantham

[3] which originates all the above theoretical results differen-
tiates in the convergence criteria of the sequence of iterations
of the monotone mapping is as follows.

We rewrite page 2, left side, line 1–line 7 (from bottom),
and right side, line 1–line 13, as follows.

Recently, Dhage [4, 5] and Bedre et al. [6] have obtained
the Krasnosel’skii type fixed point theorems for monotone
mappings.

We rewrite page 2, right side, line 11-line 12 (frombottom),
as follows.

Now we consider the following definitions.
We rewrite page 3, left side, line 7–line 10 (from bottom),

as follows.
We now state the basic hybrid fixed point results by Bedre

et al. [6] using the argument from algebra, analysis, and
geometry. The slight generalization of Theorem 4 and Dhage
[8] using𝑀-contraction is stated as follows.

We delete the proof of Theorem 14 and Corollary 15 and
rewrite the statements as follows.

Theorem 14 (see Bedre et al. [6]). Let (𝑋, ⪯) be a partially
ordered set and suppose that there exists a metric 𝑑 in 𝑋 such
that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 → 𝑋 be a
monotone function (nondecreasing or nonincreasing) such that
there exists an𝑀-function 𝜑𝑇 such that

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≦ 𝜑𝑇 (𝑑 (𝑥, 𝑦)) (6)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋 satisfying 𝜑𝑇(𝑟) <
𝑟 (𝑟 > 0). Suppose that either 𝑇 is continuous or 𝑋 is such
that if 𝑥𝑛 → 𝑥 is a sequence in 𝑋 whose consecutive terms
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are comparable, then there exists a subsequence {𝑥𝑛𝑘}𝑘∈N of
{𝑥𝑛}𝑛∈N such that every term comparable to the limit 𝑥. If there
exists 𝑥0 ∈ 𝑋 with 𝑥0 ≦ 𝑇(𝑥0) or 𝑥0 ≧ 𝑇(𝑥0), then 𝑇 has a
fixed point which is unique if “every pair of elements in 𝑋 has
a lower and an upper bound.”

Corollary 15 (see Bedre et al. [6]). Let (𝑋, ⪯) be a partially
ordered set and suppose that there exists a metric 𝑑 in 𝑋 such
that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 → 𝑋 be a
monotone function (nondecreasing or nonincreasing) such that
there exists an𝑀-function𝜑𝑇 and a positive integer 𝑝 such that

𝑑 (𝑇
𝑝
(𝑥) , 𝑇

𝑝
(𝑦)) ≦ 𝜑𝑇 (𝑑 (𝑥, 𝑦)) (7)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋 satisfying 𝜑𝑇(𝑟) <
𝑟 (𝑟 > 0). Suppose that either 𝑇 is continuous or 𝑋 is such
that if 𝑥𝑛 → 𝑥 is a sequence in 𝑋 whose consecutive terms
are comparable, then there exists a subsequence {𝑥𝑛𝑘}𝑘∈N of
{𝑥𝑛}𝑛∈N such that every term comparable to the limit 𝑥. If there
exists 𝑥0 ∈ 𝑋 with 𝑥0 ≦ 𝑇(𝑥0) or 𝑥0 ≧ 𝑇(𝑥0), then 𝑇 has a
fixed point which is unique if “every pair of elements in X has a
lower and an upper bound.”

We rewrite page 4, left side, line 7–line 15 (from bottom),
as follows.

We now consider the following definition.
We rewrite page 4, right side, line 6–line 11 (frombottom),

as follows.
The following Krasnosel’skii type fixed point theorem is

proved in Dhage [5].
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The definition of Caputo fractional derivative is given and some of its properties are discussed in detail. After then, the existence
of the solution and the dependency of the solution upon the initial value for Cauchy type problem with fractional Caputo nabla
derivative are studied. Also the explicit solutions to homogeneous equations and nonhomogeneous equations are derived by using
Laplace transform method.

1. Introduction

Fractional differential equation theory has gained consider-
able popularity and importance due to their numerous appli-
cations in many fields of science and engineering including
physics, population dynamics, chemical technology, biotech-
nology, aerodynamics, electrodynamics of complex medium,
polymer rheology, control of dynamical systems, and so on
(see, e.g., [1–4], and the references therein). On the other
hand, in real applications, it is not always continuous case,
but also discrete case. For example, in recent papers [5–8], in
order to deeply understand the background of the discrete
dynamics behaviors, some interesting results are obtained
by applying the discrete fractional calculus to discrete chaos
behaviors. In [9–12], the delta type discrete fractional calculus
is studied. In [13, 14], the nabla type discrete fractional
calculus is studied. In [15], the theory of fractional back-
ward difference equations (i.e., the nabla type fractional
difference equations) has been studied in detail. So how to
unify continuous fractional calculus and discrete fractional
calculus is a natural problem. In order to unify differential
equations and difference equations, Hilger [16] proposed
firstly the time scale and then some relevant basic theories are
studied by some authors (see [17–22]). Recently, some authors
studied fractional calculus on time scales (see [23–25]), where
Williams [24] gives a definition of fractional integral and
derivative on time scales to unify three cases of specific time

scales, which improved the results in [23]. Bastos gives defini-
tion of fractionalΔ-integral andΔ-derivative on time scales in
[25]. The delta fractional calculus and Laplace transform on
some specific discrete time scales are also discussed in [26–
28]. In the light of the above work, we further studied the
theory of fractional integral and derivative on general time
scales in [29], where∇-Laplace transform, fractional∇-power
function, ∇-Mittag-Leffler function, fractional ∇-integrals,
and fractional ∇-differential on time scales are defined. Some
of their properties are discussed in detail. After then, by using
Laplace transform method, the existence of the solution and
the dependency of the solution upon the initial value for
Cauchy type problem with Riemann-Liouville fractional ∇-
derivative are studied. Also the explicit solutions to homoge-
neous equations and nonhomogeneous equations are derived
by using Laplace transform method. But there is a short-
coming for Riemann-Liouville fractional ∇-derivative. That
is, Cauchy type problem with Riemann-Liouville fractional
order derivative and the Laplace transform of Riemann-
Liouville fractional order derivative require the initial condi-
tions in terms of non-integer derivatives, which are very dif-
ficult to be interpreted from the physical point of view. Thus
this paper’s focus on defining nabla type Caputo fractional
derivative on time scales proves some useful property about
Caputo fractional derivative and then studies some Caputo
fractional differential equations on time scales.
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The structure of this paper is as follows. In Section 2,
we give some preliminaries about time scales, generalized ∇-
power function, and Riemann-Liouville ∇-integral and ∇-
derivative. In Section 3, we present the definitions and the
properties of the Caputo nabla derivative on time scales in
detail. Then in Section 4, Cauchy type problem with Caputo
fractional derivative is discussed. For the Caputo fractional
differential initial value problem, we discuss the dependency
of the solution upon the initial value. In Section 5, by applying
the Laplace transform method, we study the fractional
order linear differential equations with Caputo fractional
derivative. We derive explicit solutions and fundamental
system of solutions to homogeneous equations with constant
coefficients and find particular solution and general solutions
of the corresponding nonhomogeneous equations.

2. Preliminaries

First, we present some preliminaries about time scales in [17].

Definition 1 (see [17]). A time scale T is a nonempty closed
subset of the real numbers.

Definition 2 (see [17]). For 𝑡 ∈ T one defines the forward
jump operator 𝜎 : T → T by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} , (1)

while the backward jump operator 𝜌 : T → T is defined by

𝜌 (𝑡) := sup {𝑠 ∈ T : 𝑠 < 𝑡} . (2)

If 𝜎(𝑡) > 𝑡, we say that 𝑡 is right-scattered, while if 𝜌(𝑡) < 𝑡,
we say that 𝑡 is left-scattered. Points that are right-scattered
and left-scattered at the same time are called isolated. Also,
if 𝑡 < sup T and 𝜎(𝑡) = 𝑡, then 𝑡 is called right-dense, and if
𝑡 > inf T and 𝜌(𝑡) = 𝑡, then 𝑡 is called left-dense. Finally, the
graininess function ] : T → [0,∞) is defined by

] (𝑡) := 𝑡 − 𝜌 (𝑡) . (3)

Definition 3 (see [17]). If T has a right-scattered minimum
𝑚, then one defines T𝑘 = T − {𝑚}; otherwise T𝑘 = T . Assume
𝑓 : T → R is a function and let 𝑡 ∈ T𝑘. Then one defines
𝑓

∇
(𝑡) to be the number (provided it exists) with the property

that given any 𝜀 > 0, there is a neighborhood 𝑈 of 𝑡 (i.e.,
𝑈 = (𝑡 − 𝛿, 𝑡 + 𝛿) ∩ T for some 𝛿 > 0) such that

[𝑓 (𝜌 (𝑡)) − 𝑓 (𝑠)] − 𝑓

∇
(𝑡) [𝜌 (𝑡) − 𝑠]


≤ 𝜀

𝜌 (𝑡) − 𝑠


∀𝑠 ∈ 𝑈.

(4)

We call 𝑓∇
(𝑡) the nabla derivative of 𝑓 at 𝑡.

Definition 4 (see [17]). A function 𝑓 : T → R is called
regulated provided its right-sided limits exist (finite) at all
right-dense points in T and its left-sided limits exist (finite)
at all left-dense points in T . A function 𝑓 : T → R is called
ld-continuous provided it is continuous at left-dense points in
T and its right-sided limits exist (finite) at right-dense points
in T .

Definition 5 (see [17, page 100]). The generalized nabla type
polynomials are the functions ℎ̂𝑘 : T

2
:= T ×T → R, 𝑘 ∈ N0,

defined recursively as follows. The function ℎ̂0 is

ℎ̂0 (𝑡, 𝑠) = 1 ∀𝑠, 𝑡 ∈ T , (5)

and given ℎ̂𝑘 for 𝑘 ∈ N0, the function ℎ̂𝑘+1 is

ℎ̂𝑘+1 (𝑡, 𝑠) = ∫

𝑡

𝑠
ℎ̂𝑘 (𝜏, 𝑠) ∇𝜏 ∀𝑠, 𝑡 ∈ T . (6)

Definition 6 (see [18, page 38]). The generalized delta type
polynomials are the functions ℎ𝑘 : T

2
:= T ×T → R, 𝑘 ∈ N0,

defined recursively as follows. The function ℎ0 is

ℎ0 (𝑡, 𝑠) = 1 ∀𝑠, 𝑡 ∈ T , (7)

and given ℎ𝑘 for 𝑘 ∈ N0, the function ℎ𝑘+1 is

ℎ𝑘+1 (𝑡, 𝑠) = ∫

𝑡

𝑠
ℎ𝑘 (𝜏, 𝑠) Δ𝜏 ∀𝑠, 𝑡 ∈ T . (8)

It is similar to the discussion in the reference [17, (page
103)] for 𝑛 ∈ N0 and ld-continuous functions 𝑝𝑖 : T → R,
1 ≤ 𝑖 ≤ 𝑛, we consider the 𝑛th order linear dynamic equation

𝐿𝑦 = 0, where 𝐿𝑦 = 𝑦
∇𝑛
+

𝑛

∑

𝑖=1

𝑝𝑖𝑦
∇𝑛−𝑖

. (9)

Definition 7 (see [17]). One defines the Cauchy function 𝑦 :

T × T𝑘𝑛 → R for the linear dynamic equation (9) to be for
each fixed 𝑠 ∈ T𝑘𝑛 the solution of the initial value problem

𝐿𝑦 = 0, 𝑦
∇𝑖
(𝜌 (𝑠) , 𝑠) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 2,

𝑦
∇𝑛−1

(𝜌 (𝑠) , 𝑠) = 1.

(10)

Remark 8 (see [17]). Note that

𝑦 (𝑡, 𝑠) := ℎ̂𝑛−1 (𝑡, 𝜌 (𝑠)) (11)

is the Cauchy function for 𝑦∇𝑛 .

Theorem9 (see [17] (variation of constants)). Let𝛼 ∈ T𝑘𝑛 and
𝑡 ∈ T . If 𝑓 ∈ 𝐶𝑙𝑑, then the solution of the initial value problem

𝐿𝑦 = 𝑓 (𝑡) ,

𝑦
∇𝑖
(𝛼) = 0, 0 ≤ 𝑖 ≤ 𝑛 − 1

(12)

is given by

𝑦 (𝑡) = ∫

𝑡

𝛼
𝑦 (𝑡, 𝜏) 𝑓 (𝜏) ∇𝜏, (13)

where 𝑦(𝑡, 𝜏) is the Cauchy function for (9).

Theorem 10 (see [17] (Taylor’s Formula)). Let 𝑛 ∈ N. Suppose
the function 𝑓 is such that 𝑓∇𝑛+1 is ld-continuous on T𝑘𝑛+1 . Let
𝛼 ∈ T𝑘𝑛 , 𝑡 ∈ T . Then one has

𝑓 (𝑡) =

𝑛

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝛼) 𝑓
∇𝑘
(𝛼) + ∫

𝑡

𝛼
ℎ̂𝑛 (𝑡, 𝜌 (𝜏)) 𝑓

∇𝑛+1
(𝜏) ∇𝜏.

(14)
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Definition 11 (see [24]). A subset 𝐼 ⊂ T is called a time scale
interval, if it is of the form 𝐼 = 𝐴∩T for some real interval𝐴 ⊂

R. For a time scale interval 𝐼, a function 𝑓 : 𝐼 → R is said to
be left-dense absolutely continuous if for all 𝜀 > 0 there exist
𝛿 > 0 such that ∑𝑛

𝑘=1 |𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| < 𝜀 whenever a disjoint
finite collection of subtime scale intervals (𝑎𝑘, 𝑏𝑘] ∩ T ⊂ 𝐼 for
1 ≤ 𝑘 ≤ 𝑛 satisfies ∑𝑛

𝑘=1 |𝑏𝑘 − 𝑎𝑘| < 𝛿. One denotes 𝑓 ∈ 𝐴𝐶∇.
If 𝑓∇𝑚−1

∈ 𝐴𝐶, then one denotes 𝑓 ∈ 𝐴𝐶
𝑚
∇ .

Theorem 12 (see [4]). Let𝑋 be a normed linear space,C ⊂ 𝑋

a convex set, and 𝑈 open inC with 𝜃 ∈ 𝑈. Let 𝑇 : 𝑈 → C be
a continuous and compact mapping. Then either

(i) the mapping 𝑇 has a fixed point in 𝑈, or
(ii) there exists 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 = 𝜆𝑇𝑢.

The following results can be found in our recent paper
[29].

Lemma 13 (see [29]). Let 𝐸 ⊂ T − {max T} be a measurable
set. If 𝑓 : T → R is integrable on 𝐸, then

∫
𝐸
𝑓

𝜎
(𝑠) Δ𝑠 = ∫

𝐸
𝑓 (𝑠) ∇𝑠. (15)

From now on, let T be a time scale such that sup T = ∞

and fix 𝑡0 ∈ T .

Definition 14 (see [29]). Assume that 𝑥 : T → R is regulated
and 𝑡0 ∈ T . Then the Laplace transform of 𝑥 is defined by

L∇,𝑡0
{𝑥} (𝑧) = ∫

∞

𝑡0

𝑥 (𝑡) 𝑒
𝜌
⊖]𝑧

(𝑡, 𝑡0) ∇𝑡. (16)

for 𝑧 ∈ D{𝑥}, where D{𝑥} consists of all complex numbers
𝑧 ∈ R] for which the improper integral exists.

Theorem 15 (see [29]). Assume that 𝑥 : T → C is such that
𝑥
∇𝑘 is regulated. Then

L∇,𝑡0
{𝑥

∇𝑘
} (𝑧) = 𝑧

𝑘
L∇,𝑡0

{𝑥} (𝑧) −

𝑘−1

∑

𝑖=0

𝑧
𝑘−𝑖−1

𝑥
∇𝑖
(𝑡0) (17)

for those regressive 𝑧 ∈C satisfying lim𝑡→∞{𝑥
∇𝑖
(𝑡)𝑒⊖]𝑧

(𝑡, 𝑡0)}=

0, 𝑖 = 0, 1, . . . , 𝑘 − 1.

Definition 16 (see [29]). One defines fractional generalized
∇-power function on time scales

ℎ̂𝛼 (𝑡, 𝑡0) = L
−1
∇,𝑡0

{
1

𝑧𝛼+1
} (𝑡) (𝛼 > −1) (18)

to those regressive 𝑧 ∈ C\{0}, 𝑡 ≥ 𝑡0; and for 𝑡 < 𝑡0, ℎ̂𝛼(𝑡, 𝑡0) =

0.

Here we introduce generalized ∇-derivative on time
scales:

∫𝑓
∇
𝑔∇𝑡 = −∫𝑓

𝜌
𝑔
∇
∇𝑡. (19)

Since ℎ̂𝛼(𝑡, 𝑡0) (𝛼 > −1) is integral, we can consider it as
a generalized function, and thus we can define ℎ̂𝛼(𝑡, 𝑡0) =

𝐷∇ℎ̂𝛼+1(𝑡, 𝑡0) for −2 < 𝛼 ≤ −1, where 𝐷∇ here means a
generalized derivative. In the sameway,we can define ℎ̂𝛼(𝑡, 𝑡0)

for 𝛼 ≤ −1.
For 𝛼 > 0, we have

ℎ̂𝛼 (𝑡0, 𝑡0) = 0. (20)

Definition 17 (see [29]). For a given 𝑓 : [𝑡0,∞)T → C, the
solution of the shifting problem

𝑢
∇𝑡 (𝑡, 𝜌 (𝑠)) = −𝑢

∇𝑠 (𝑡, 𝑠) , 𝑡, 𝑠 ∈ T , 𝑡 ≥ 𝑠 ≥ 𝑡0,

𝑢 (𝑡, 𝑡0) = 𝑓 (𝑡) , 𝑡 ∈ T , 𝑡 ≥ 𝑡0,

(21)

is denoted by 𝑓 and is called the shift of 𝑓.

Definition 18 (see [29]). For given functions 𝑓, 𝑔 : T → R,
their convolution 𝑓 ∗ 𝑔 is defined by

(𝑓 ∗ 𝑔) (𝑡) = ∫

𝑡

𝑡0

𝑓 (𝑡, 𝜌 (𝜏)) 𝑔 (𝜏) ∇𝜏, 𝑡 ∈ T , (22)

where𝑓 is the shift of𝑓, which is introduced in Definition 17.

Definition 19 (see [29]). Fractional generalized ∇-power
function ℎ̂𝛼(𝑡, 𝑠) on time scales is defined as the shift of
ℎ̂𝛼(𝑡, 𝑡0); that is,

ℎ̂𝛼 (𝑡, 𝑠) =
̃
ℎ̂𝛼 (⋅, 𝑡0) (𝑡, 𝑠) (𝑡 ≥ 𝑠 ≥ 𝑡0) .

(23)

In this paper, we always denote Ω := [𝑡0, 𝑡1]T a finite
interval on a time scale T (sup T = ∞).

Definition 20 (see [29]). Let 𝑡, 𝑡0 ∈ Ω.The Riemann-Liouville
fractional ∇-integral 𝐼𝛼∇,𝑡0

𝑓 of order 𝛼 > 0 is defined by

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡) := ℎ̂𝛼−1 (𝑡, 𝑡0) ∗ 𝑓 (𝑡)

= ∫

𝑡

𝑡0

̃
ℎ̂𝛼−1(⋅, 𝑡0) (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏

= ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏 (𝑡 > 𝑡0) .

(24)

Definition 21 (see [29]). Let 𝑡, 𝑡0 ∈ Ω. The Riemann-Liouville
fractional ∇-derivative𝐷𝛼

∇,𝑡0
𝑓 of order 𝛼 ≥ 0 is defined by

𝐷
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑚
∇ 𝐼

𝑚−𝛼
∇,𝑡0

𝑓 (𝑡) (𝑚 = [𝛼] + 1; 𝑡 > 𝑡0) . (25)

Throughout this paper, we denote 𝑓∇𝑛
= 𝐷

𝑛
∇𝑓 = 𝐷

𝑛
∇,𝑡0

𝑓,
𝑛 ∈ N.

Property 1 (see [29]). Let𝛼 ≥ 0,𝑚 = [𝛼]+1, 𝛽 > 0, 𝑡, 𝑡0 ∈ Ω𝑘𝑚 .
Then

(1) 𝐼
𝛼
∇,𝑡0

ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛼+𝛽−1 (𝑡, 𝑡0) , (𝛼 > 0) ;

(2)𝐷
𝛼
∇,𝑡0

ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝛼−1 (𝑡, 𝑡0) , (𝛼 ≥ 0) .

(26)
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Property 2 (see [29]). If 𝛼 > 0 and 𝛽 > 0, then the equation

𝐼
𝛼
∇,𝑡0

𝐼
𝛽
∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼+𝛽
∇,𝑡0

𝑓 (𝑡) (27)

is satisfied at almost every point 𝑡 ∈ Ω for𝑓(𝑡) ∈ 𝐿∇,𝑝(Ω) (1 ≤

𝑝 ≤ ∞).

Property 3 (see [29]). If 𝛼 > 0 and 𝑓(𝑡) ∈ 𝐿∇,𝑝(Ω) (1 ≤ 𝑝 ≤

∞), then the following equality

𝐷
𝛼
∇,𝑡0

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) (28)

holds almost everywhere onΩ.

Property 4 (see [29]). If 𝛼 > 𝛽 > 0, then, for 𝑓(𝑡) ∈

𝐿∇,𝑝(Ω) (1 ≤ 𝑝 ≤ ∞), the relation

𝐷
𝛽
∇,𝑡0

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼−𝛽
∇,𝑡0

𝑓 (𝑡) (29)

holds almost everywhere onΩ. In particular, when𝛽 = 𝑘 ∈ N

and 𝛼 > 𝑘, then

𝐷
𝑘
∇,𝑡0

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼−𝑘
∇,𝑡0

𝑓 (𝑡) . (30)

Property 5 (see [29]). Let 𝛼 > 0,𝑚 = [𝛼]+1 and let𝑓𝑚−𝛼(𝑡) =

𝐼
𝑚−𝛼
∇,𝑡0

𝑓(𝑡).

(1) If 1 ≤ 𝑝 ≤ ∞ and 𝑓(𝑡) ∈ 𝐼𝛼∇,𝑡0
(𝐿∇,𝑝), then

𝐼
𝛼
∇,𝑡0

𝐷
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) . (31)

(2) If 𝑓(𝑡) ∈ 𝐿∇,1(Ω) and 𝑓𝑚−𝛼(𝑡) ∈ 𝐴𝐶
𝑚
∇ (Ω), then the

equality

𝐼
𝛼
∇,𝑡0

𝐷
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) −

𝑚

∑

𝑘=1

ℎ̂𝛼−𝑘 (𝑡, 𝑡0)𝐷
𝛼−𝑘
∇,𝑡0

𝑓 (𝑡0) (32)

holds almost everywhere on Ω, where 𝐷𝛼−𝑚
∇,𝑡0

𝑦(𝑡0) =

lim𝑡→ 𝑡+
0

𝐼
𝑚−𝛼
∇,𝑡0

𝑦(𝑡).

Lemma 22 (see [29]). Let 𝛼 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚 (𝑚 ∈ N)

and 𝑓 : Ω → R. For 𝑡0, 𝑡 ∈ Ω𝑘𝑚 with 𝑡0 < 𝑡. Then one has the
following.

(1) If 𝑓 ∈ 𝐿∇,𝑝(Ω), then

L∇,𝑡0
{𝐼

𝛼
∇,𝑡0

𝑓 (𝑡)} (𝑧) =
1

𝑧𝛼
L∇,𝑡0

{𝑓 (𝑡)} (𝑧) . (33)

(2) If 𝑓 ∈ 𝐴𝐶
𝑚
∇ (Ω), then

L∇,𝑡0
{𝐷

𝛼
∇,𝑡0

𝑓 (𝑡)} (𝑧)

= 𝑧
𝛼
L∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑚

∑

𝑗=1

𝑧
𝑗−1

𝐷
𝛼−𝑗
∇,𝑡0

𝑓 (𝑡0) ,

(34)

for those regressive 𝑧 ∈ C satisfying
lim𝑡→∞{𝐷

𝑗
∇𝐼

𝑚−𝛼
∇,𝑡0

𝑓(𝑡)𝑒⊖]𝑧
(𝑡, 𝑡0)} = 0, 𝑗 = 0, 1, . . . , 𝑚 − 1.

Definition 23 (see [29]). ∇-Mittag-Leffler function is defined
as

∇𝐹𝛼,𝛽 (𝜆; 𝑡, 𝑡0) =

∞

∑

𝑗=0

𝜆
𝑗
ℎ̂𝛼𝑗+𝛽−1 (𝑡, 𝑡0) (35)

provided the right-hand series is convergent, where 𝛼, 𝛽 > 0,
𝜆 ∈ R.

Theorem 24 (see [29]). The Laplace transform of ∇-Mittag-
Leffler function is

L∇,𝑡0
{

∇
𝐹𝛼,𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧) =

𝑧
𝛼−𝛽

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼
) . (36)

By differentiating 𝑘 times with respect to 𝜆 on both sides
of the formula in the theorem above, we get the following
result:

L∇,𝑡0
{
𝜕
𝑘

𝜕𝜆𝑘
∇
𝐹𝛼,𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧) =

𝑘!𝑧
𝛼−𝛽

(𝑧𝛼 − 𝜆)
𝑘+1

. (37)

3. Definition and Properties of Caputo
Fractional Derivative on Time Scales

Definition 25. Let 𝑡, 𝑡0 ∈ Ω. The Caputo fractional derivative
of order 𝛼 ≥ 0 is defined via Riemann-Liouville fractional
derivative by

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) := 𝐷
𝛼
∇,𝑡0

[𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇𝑘
(𝑡0)]

(𝑡 > 𝑡0) ,

(38)

where

𝑚 = [𝛼] + 1 for 𝛼 ∉ N; 𝑚 = 𝛼 for 𝛼 ∈ N. (39)

In particular, when 0 < 𝛼 < 1, the relation (38) takes the
following forms:

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼
∇,𝑡0

[𝑓 (𝑡) − 𝑓 (𝑡0)] . (40)

If 𝛼 ∉ N, then the Caputo fractional derivative coincides
with the Riemann-Liouville fractional derivative in the fol-
lowing case:

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼
∇,𝑡0

𝑓 (𝑡) , (41)

if 𝑓∇𝑘
(𝑡0) = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1,𝑚 = [𝛼] + 1).

In particular, when 0 < 𝛼 < 1, we have

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼
∇,𝑡0

𝑓 (𝑡) , when 𝑓 (𝑡0) = 0. (42)

If 𝛼 = 𝑚 ∈ N and the usual nabla derivative 𝑓∇𝑚
(𝑡) of

order𝑚 exists, then 𝐶
𝐷

𝑚
∇,𝑡0

𝑓(𝑡) coincides with 𝑓∇𝑚
(𝑡):

𝐶
𝐷

𝑚
∇,𝑡0

𝑓 (𝑡) = 𝑓
∇𝑚

(𝑡) (𝑚 ∈ N) . (43)
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The Caputo fractional derivative 𝐶
𝐷

𝛼
∇,𝑡0

𝑓(𝑡) is defined for
functions 𝑓(𝑡) for which the Riemann-Liouville fractional
derivative of the right-hand sides of (38) exists. In particular,
they are defined for 𝑓(𝑡) belonging to the space 𝐴𝐶

𝑚
∇ (Ω)

of absolutely continuous functions defined in Definition 11.
Thus the following statement holds.

Property 6. Let 𝛼 ≥ 0 and let 𝑚 be given by (39). If 𝑓(𝑡) ∈
𝐴𝐶

𝑚
∇ (Ω), then the Caputo fractional derivative 𝐶

𝐷
𝛼
∇,𝑡0

𝑓(𝑡)

exists almost everywhere onΩ𝑘𝑚 .

(a) If 𝛼 ∉ N, 𝐶𝐷𝛼
∇,𝑡0

𝑓(𝑡) is represented by

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = ℎ̂𝑚−𝛼−1 (𝑡, 𝑡0) ∗ 𝑓
∇𝑚

(𝑡) =: 𝐼
𝑚−𝛼
∇,𝑡0

𝐷
𝑚
∇𝑓 (𝑡) ,

(44)

where 𝑚 = [𝛼] + 1. Thus when 𝛼 ∉ N, 𝐶
𝐷

𝛼
∇,𝑡0

𝑓(𝑡0) = 0,
where the notation 𝐶

𝐷
𝛼
∇,𝑡0

𝑓(𝑡0) denote the limit of 𝐶
𝐷

𝛼
∇,𝑡0

𝑓(𝑡)

as 𝑡 → 𝑡
+
0 .

In particular, when 0 < 𝛼 < 1 and 𝑓(𝑡) ∈ 𝐴𝐶∇(Ω),

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = ℎ̂−𝛼 (𝑡, 𝑡0) ∗ 𝑓
∇
(𝑡) =: 𝐼

1−𝛼
∇,𝑡0

𝑓
∇
(𝑡) . (45)

(b) If 𝛼 = 𝑚 ∈ N, then 𝐶
𝐷

𝛼
∇,𝑡0

𝑓(𝑡) is represented by (43).
In particular,

𝐶
𝐷

0
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) . (46)

Proof. (a) By Taylor’s formula on time scales

𝑓 (𝑡) =

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇𝑘
(𝑡0) + ∫

𝑡

𝑡0

ℎ̂𝑚−1 (𝑡, 𝜌 (𝜏)) 𝑓
∇𝑚

(𝜏) ∇𝜏

=

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇𝑘
(𝑡0) + 𝐼

𝑚
∇,𝑡0

𝑓
∇𝑚

(𝑡)

(47)

and using (29), we have

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼
∇,𝑡0

[𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇𝑘
(𝑡0)]

= 𝐷
𝛼
∇,𝑡0

𝐼
𝑚
∇,𝑡0

𝑓
∇𝑚

(𝑡)

= 𝐼
𝑚−𝛼
∇,𝑡0

𝑓
∇𝑚

(𝑡) .

(48)

(b) If 𝛼 = 𝑚 ∈ N, then (38) takes the form

𝐶
𝐷

𝑚
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑚
∇,𝑡0

[𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝑓
∇𝑘
(𝑡0)] , (49)

and, from Taylor’s formula and (28), we derive 𝐶
𝐷

𝑚
∇,𝑡0

𝑓(𝑡) =

𝑓
∇𝑚
(𝑡).

Property 7. Let 𝛼 > 0 and let 𝑚 be given by (39), 𝛽 > 0, 𝑡 ∈
Ω𝑘𝑚 . Then

𝐶
𝐷

𝛼
∇,𝑡0

ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝛼−1 (𝑡, 𝑡0) (𝛽 > 𝑚) , (50)

𝐶
𝐷

𝛼
∇,𝑡0

ℎ̂𝑘 (𝑡, 𝑡0) = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1) . (51)

In particular,
𝐶
𝐷

𝛼
∇,𝑡0

1 = 0. (52)

Proof. FromProperty 6 and (26), it is obtained that for 𝛼 ∉ N,
𝐶
𝐷

𝛼
∇,𝑡0

ℎ̂𝛽−1 (𝑡, 𝑡0) = 𝐼
𝑚−𝛼
∇,𝑡0

𝐷
𝑚
∇ ℎ̂𝛽−1 (𝑡, 𝑡0)

= 𝐼
𝑚−𝛼
∇,𝑡0

ℎ̂𝛽−𝑚−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝛼−1 (𝑡, 𝑡0) ,

𝐶
𝐷

𝛼
∇,𝑡0

ℎ̂𝑘 (𝑡, 𝑡0) = 𝐼
𝑚−𝛼
∇,𝑡0

𝐷
𝑚
∇ ℎ̂𝑘 (𝑡, 𝑡0) = 𝐼

𝑚−𝛼
∇,𝑡0

0 = 0

(𝑘 = 0, 1, . . . , 𝑚 − 1, 𝑡 > 𝑡0) ,

(53)

while for 𝛼 = 𝑚 ∈ N,
𝐶
𝐷

𝑚
∇,𝑡0

ℎ̂𝛽−1 (𝑡, 𝑡0) = 𝐷
𝑚
∇ ℎ̂𝛽−1 (𝑡, 𝑡0) = ℎ̂𝛽−𝑚−1 (𝑡, 𝑡0) ,

𝐶
𝐷

𝑚
∇,𝑡0

ℎ̂𝑘 (𝑡, 𝑡0) = 𝐷
𝑚
∇ ℎ̂𝑘 (𝑡, 𝑡0) = 0

(𝑘 = 0, 1, . . . , 𝑚 − 1, 𝑡 > 𝑡0) .

(54)

Property 8. Let 𝛼 > 0 and let 𝑓(𝑡) ∈ 𝐿∇,∞(Ω) or 𝑓(𝑡) ∈

𝐴𝐶∇(Ω). Then
𝐶
𝐷

𝛼
∇,𝑡0

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) . (55)

Proof. Let 𝑓(𝑡) ∈ 𝐿∇,∞(Ω)(𝑓(𝑡) ∈ 𝐴𝐶∇(Ω)), and let 𝛼 > 0

and 𝑘 = 0, 1, . . . , 𝑚 − 1. Since 𝑓(𝑡) ∈ 𝐿∇,∞(Ω)(𝑓(𝑡) ∈

𝐴𝐶∇(Ω)), then for a.e. (for any) 𝑡 ∈ Ω𝑘𝑚 , we get

𝐼
𝛼−𝑘
∇,𝑡0

𝑓 (𝑡) = ∫

𝑡

𝑡0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏) ∇𝜏 ≤ 𝐾
2
ℎ̂1 (𝑡, 𝑡0)

(where max
𝑡,𝜏∈Ω

{
𝑓
𝐿∇,∞

,
𝑓
𝐴𝐶∇

,

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏))


} ≤ 𝐾)

(56)

for any 𝑘 = 0, 1, . . . , 𝑚 − 1 = [𝛼], and hence

𝐷
𝑘
∇𝐼

𝛼
∇,𝑡0

𝑓 (𝑡0) = 𝐼
𝛼−𝑘
∇,𝑡0

𝑓 (𝑡0) = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1) .

(57)

Thus using (41) for 𝛼 ∉ N with 𝑓(𝑡) replaced by 𝐼𝛼∇,𝑡0
𝑓(𝑡) and

(28), we derive
𝐶
𝐷

𝛼
∇,𝑡0

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) . (58)

For 𝛼 = 𝑚 ∈ N,
𝐶
𝐷

𝛼
∇,𝑡0

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝑚
∇,𝑡0

𝐼
𝑚
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) . (59)
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Property 9. Let 𝛼 > 0 and let 𝑚 be given by (39). If 𝑓(𝑡) ∈
𝐴𝐶

𝑚
∇ (Ω), then

𝐼
𝛼
∇,𝑡0

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0)𝐷
𝑘
∇,𝑡0

𝑓 (𝑡0) . (60)

In particular, if 0 < 𝛼 ≤ 1 and 𝑓(𝑡) ∈ 𝐴𝐶∇(Ω), then

𝐼
𝛼
∇,𝑡0

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝑓 (𝑡) − 𝑓 (𝑡0) . (61)

Proof. Let 𝛼 ∉ N. If 𝑓(𝑡) ∈ 𝐴𝐶
𝑚
∇ (Ω), then using Property 6,

(27) and (32), we have

𝐼
𝛼
∇,𝑡0

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐼
𝛼
∇,𝑡0

𝐼
𝑚−𝛼
∇,𝑡0

𝐷
𝑚
∇𝑓 (𝑡) = 𝐼

𝑚
∇,𝑡0

𝐷
𝑚
∇𝑓 (𝑡)

= 𝑓 (𝑡) −

𝑚−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0)𝐷
𝑘
∇,𝑡0

𝑓 (𝑡0) .

(62)

For 𝛼 = 𝑚 ∈ N, the result is obvious from Property 6 and
(32).

Property 10. Assume that 𝑓(𝑡) ∈ 𝐴𝐶
𝑚
∇ (Ω) and 𝑚 − 1 < 𝛽 <

𝛼 < 𝑚. Then, for all 𝑘 ∈ {1, . . . , 𝑚 − 1},
𝐶
𝐷

𝛼−𝑚+𝑘
∇,𝑡0

𝐷
𝑚−𝑘
∇,𝑡0

𝑓 (𝑡) =
𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) , (63)

𝐶
𝐷

𝛼−𝛽
∇,𝑡0

𝐶
𝐷

𝛽
∇,𝑡0

𝑓 (𝑡) =
𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) (64)

for all 𝑡 ∈ Ω𝑘𝑚 .

Proof. For each 𝑘 ∈ {1, . . . , 𝑚 − 1}, by Property 6,
𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) = 𝐼
𝑚−𝛼
∇,𝑡0

𝐷
𝑚
∇𝑓 (𝑡)

= ∫

𝑡

𝑡0

ℎ̂𝑚−𝛼−1 (𝑡, 𝜌 (𝑠))𝐷
𝑚
∇𝑓 (𝑠) ∇𝑠

= ∫

𝑡

𝑡0

ℎ̂𝑘−(𝛼−(𝑚−𝑘))−1 (𝑡, 𝜌 (𝑠))𝐷
𝑘
∇𝐷

𝑚−𝑘
∇ 𝑓 (𝑠) ∇𝑠.

(65)

Noting that𝛼−(𝑚−𝑘) ∈ (𝑘−1, 𝑘) and according to Property 6,
we have

∫

𝑡

𝑡0

ℎ̂𝑘−(𝛼−(𝑚−𝑘))−1 (𝑡, 𝜌 (𝑠))𝐷
𝑘
∇𝐷

𝑚−𝑘
∇ 𝑓 (𝑠) ∇𝑠

=
𝐶
𝐷

𝛼−𝑚+𝑘
∇,𝑡0

𝐷
𝑚−𝑘
∇,𝑡0

𝑓 (𝑡) .

(66)

Thus (63) holds.
Now, for all 𝛼0, 𝛽0 ∈ (0, 1) with 𝛼0 + 𝛽0 < 1, we have
𝐶
𝐷

𝛼0
∇,𝑡0

𝐶
𝐷

𝛽0
∇,𝑡0

𝑓 (𝑡) =
𝐶
𝐷

𝛼0+𝛽0
∇,𝑡0

𝑓 (𝑡) =
𝐶
𝐷

𝛽0
∇,𝑡0

𝐶
𝐷

𝛼0
∇,𝑡0

𝑓 (𝑡) .

(67)

In fact, from Property 6, we can get 𝐶
𝐷

𝛽0
∇,𝑡0

𝑓(𝑡0) = 0. Since
𝛼0, 𝛽0 ∈ (0, 1), then by (41), (29), and Property 6

𝐶
𝐷

𝛼0
∇,𝑡0

𝐶
𝐷

𝛽0
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼0
∇,𝑡0

𝐶
𝐷

𝛽0
∇,𝑡0

𝑓 (𝑡) = 𝐷
𝛼0
∇,𝑡0

𝐼
1−𝛽0
∇,𝑡0

𝑓
∇
(𝑡)

= 𝐼
1−𝛽0−𝛼0
∇,𝑡0

𝑓
∇
(𝑡) =

𝐶
𝐷

𝛼0+𝛽0
∇,𝑡0

𝑓 (𝑡) .

(68)

Similarly, we have 𝐶
𝐷

𝛽0
∇,𝑡0

𝐶
𝐷

𝛼0
∇,𝑡0

𝑓(𝑡) =
𝐶
𝐷

𝛼0+𝛽0
∇,𝑡0

𝑓(𝑡).Thus (67)
holds. Then, by using (63) and (67), we have that

𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡) =
𝐶
𝐷

𝛼−𝑚+1
∇,𝑡0

𝐷
𝑚−1
∇ 𝑓 (𝑡)

=
𝐶
𝐷

(𝛼−𝛽)+(𝛽−𝑚+1)
∇,𝑡0

𝐷
𝑚−1
∇ 𝑓 (𝑡)

=
𝐶
𝐷

𝛼−𝛽
∇,𝑡0

𝐶
𝐷

𝛽−𝑚+1
∇,𝑡0

𝐷
𝑚−1
∇ 𝑓 (𝑡)

=
𝐶
𝐷

𝛼−𝛽
∇,𝑡0

𝐶
𝐷

𝛽
∇,𝑡0

𝑓 (𝑡) .

(69)

That is, (64) holds. The results follow.

The next assertion yields the Laplace transform of the
Caputo fractional nabla derivative.

Property 11. Let 𝛼 > 0, 𝑚 − 1 < 𝛼 ≤ 𝑚 (𝑚 ∈ N) be such that
𝑓(𝑡) ∈ 𝐴𝐶

𝑚
∇ (Ω). Then

L∇,𝑡0
{
𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡)} (𝑧)

= 𝑧
𝛼
L∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑚−1

∑

𝑘=0

𝑧
𝛼−𝑘−1

𝑓
∇𝑘
(𝑡0)

(70)

for those regressive 𝑧 ∈ C satisfying lim𝑡→∞{𝑓
∇𝑘
(𝑡)𝑒⊖]𝑧

(𝑡,

𝑡0)} = 0 (𝑘 = 0, 1, . . . , 𝑚 − 1).
In particular, if 0 < 𝛼 ≤ 1, then

L∇,𝑡0
{
𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡)} (𝑧) = 𝑧
𝛼
L∇,𝑡0

{𝑓 (𝑡)} (𝑧) − 𝑧
𝛼−1

𝑓 (𝑡0)

(71)

for those regressive 𝑧 ∈ C satisfying lim𝑡→∞{𝑓(𝑡)𝑒⊖]𝑧
(𝑡,

𝑡0)} = 0.

Proof. By Property 6, (33), and (17), for 𝛼 ∉ N, we have

L∇,𝑡0
{
𝐶
𝐷

𝛼
∇,𝑡0

𝑓 (𝑡)} (𝑧)

= L∇,𝑡0
{𝐼

𝑚−𝛼
∇,𝑡0

𝐷
𝑚
∇𝑓 (𝑡)} (𝑧)

=
1

𝑧𝑚−𝛼
L∇,𝑡0

{𝐷
𝑚
∇𝑓 (𝑡)} (𝑧)

=
1

𝑧𝑚−𝛼
[𝑧

𝑚
L∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑚−1

∑

𝑘=0

𝑧
𝑚−𝑘−1

𝑓
∇𝑘
(𝑡0)]

= 𝑧
𝛼
L∇,𝑡0

{𝑓 (𝑡)} (𝑧) −

𝑚−1

∑

𝑘=0

𝑧
𝛼−𝑘−1

𝑓
∇𝑘
(𝑡0) ,

(72)

and for 𝛼 = 𝑚 ∈ N, we have

L∇,𝑡0
{
𝐶
𝐷

𝑚
∇,𝑡0

𝑓 (𝑡)} (𝑧) = L∇,𝑡0
{𝑓

∇𝑚
(𝑡)} (𝑧)

= 𝑧
𝑚
L∇,𝑡0

{𝑓 (𝑡)} (𝑧)

−

𝑚−1

∑

𝑘=0

𝑧
𝑚−𝑘−1

𝑓
∇𝑘
(𝑡0) .

(73)

The result follows.
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Remark 26. (1) For Riemann-Liouville fractional derivative,

𝐷
𝛼
∇,𝑡0

1 = ℎ̂−𝛼 (𝑡, 𝑡0) (0 < 𝛼 < 1) , (74)

while for the Caputo fractional derivative,
𝐶
𝐷

𝛼
∇,𝑡0

1 = 0, (75)

which shows that the Caputo fractional derivative is more
near to the usual sense derivative than Riemann-Liouville
fractional derivative.

(2) Comparing (34) and (70), we know that the Laplace
transform of the Caputo fractional derivative involves only
initial value with integer order derivative, such as𝑓∇𝑘

(𝑡0), 𝑘 =

0, 1, . . . , 𝑚 − 1, while the Laplace transform of the Riemann-
Liouville fractional derivative is related to initial value with
fractional order derivative which is difficult to understand
the physics background, such as 𝐷𝛼−𝑘

∇,𝑡0
𝑓(𝑡0), 𝑘 = 1, . . . , 𝑚.

Thus, the Caputo fractional derivative is used more widely in
realistic applications.

4. The Cauchy Problem with Caputo
Fractional Derivative

4.1. Existence and Uniqueness of the Solution to the Cauchy
Type Problem. In this section we consider the nonlinear
differential equation of order 𝛼 > 0:

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) (76)

involving the Caputo fractional derivative 𝐶
𝐷

𝛼
∇,𝑡0

𝑦(𝑡), defined
in (38), with the initial conditions

𝐷
𝑘
∇𝑦 (𝑡0) = 𝑏𝑘, 𝑏𝑘 ∈ R (𝑘 = 0, 1, . . . , 𝑚 − 1; 𝑚 = − [−𝛼]) .

(77)

We give the conditions for a unique solution 𝑦(𝑡) to this
problem in the space 𝐴𝐶𝑚

∇ (Ω). Our investigations are based
on reducing the problem (76)-(77) to the integral equation

𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 + ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏.

(78)

First we establish an equivalence between the problem (76)-
(77) and the integral equation (78).

Theorem 27. Let 𝛼 > 0 and let𝑚 be given by (39). Let𝐺 be an
open set in R and let 𝑓 : Ω × 𝐺 → R be a function such that,
for any 𝑦 ∈ 𝐺, 𝑓(𝑡, 𝑦) ∈ 𝐴𝐶∇(Ω). If 𝑦(𝑡) ∈ 𝐴𝐶

𝑚
∇ (Ω), then

𝑦(𝑡) satisfies the relation (76)-(77) if and only if 𝑦(𝑡) satisfies
the Volterra integral equation (78).

Proof. First we prove the necessity. Let 𝑦(𝑡) be the solution to
the Cauchy problem (76)-(77). Applying the operator 𝐼𝛼∇,𝑡0

to
(76) and taking into account

𝐼
𝛼
∇,𝑡0

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) = 𝑦 (𝑡) −

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0)𝐷
𝑗
∇,𝑡0

𝑦 (𝑡0) (79)

and (77), we arrive at the integral equation (78) since 𝑦(𝑡) ∈
𝐴𝐶

𝑚
∇ (Ω).

Inversely, if 𝑦(𝑡) satisfies (78), for 𝑓(𝑡, 𝑦) ∈ 𝐴𝐶∇(Ω),
applying the operator 𝐶

𝐷
𝛼
∇,𝑡0

to both sides of (78) and taking
into account (51) and (55), we have

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

𝐶
𝐷

𝛼
∇,𝑡0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 +
𝐶
𝐷

𝛼
∇,𝑡0

𝐼
𝛼
∇,𝑡0

𝑓 (𝑡, 𝑦 (𝑡))

= 𝑓 (𝑡, 𝑦 (𝑡)) .

(80)

In addition, by term-by-termdifferentiation of (78) and using
(51), we have

𝐷
𝑘
∇𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

𝐷
𝑘
∇ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 + 𝐷

𝑘
∇𝐼

𝛼
∇,𝑡0

𝑓 (𝑡, 𝑦 (𝑡))

=

𝑚−1

∑

𝑗=0

𝐷
𝑘
∇ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏

=

𝑘−1

∑

𝑗=0

𝐷
𝑘
∇ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗 +

𝑚−1

∑

𝑗=𝑘

𝐷
𝑘
∇ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏

=

𝑚−1

∑

𝑗=𝑘

ℎ̂𝑗−𝑘 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑘−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏

(81)

for 𝑘 = 0, 1, . . . , 𝑚 − 1. Thus we obtain relations in (77) by
letting 𝑡 = 𝑡0 in (81).

In the following, we bring into Lipschitzian-type condi-
tion:

𝑓 (𝑡, 𝑦1 (𝑡)) − 𝑓 (𝑡, 𝑦2 (𝑡))
 ≤ 𝐴

𝑦1 (𝑡) − 𝑦2 (𝑡)
 , (82)

where 𝐴 > 0 does not depend on 𝑡 ∈ Ω. We will derive a
unique solution to the Cauchy problem (76)-(77).

Theorem 28. Let 𝛼 > 0 and let 𝑚 be given by (39). Let
𝐺 be an open set in R and 𝑓 : Ω × 𝐺 → R a function
such that, for any 𝑦 ∈ 𝐺, 𝑓(𝑡, 𝑦) ∈ 𝐴𝐶∇(Ω), 𝑦(𝑡) ∈

𝐴𝐶
𝑚
∇ (Ω). Let 𝑓(𝑡, 𝑦) satisfies the Lipschitzian condition (82),

andmax𝑦∈𝐺,𝑡,𝑠∈Ω{|𝑓(𝑡, 𝑦)|, |ℎ̂𝛼−1(𝑡, 𝑠)|} ≤ 𝑀. Then there exists
a unique solution 𝑦(𝑡) to initial value problem (76)-(77).

Proof. Since the Cauchy type problem (76)-(77) and the
nonlinear Volterra integral equation (78) are equivalent, we
only need to prove there exists a unique solution to (78).
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We define function sequences:

𝑦𝑙 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦𝑙−1 (𝜏)) ∇𝜏

(𝑙 = 1, 2, . . .) ,

(83)

where

𝑦0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗. (84)

To simplify our proof, without loss of generality, we assume
that 𝐺 is large enough such that 𝑦𝑙(𝑡) ∈ 𝐺, ∀𝑡 ∈ Ω, ∀𝑙.

We obtain by inductive method that

𝑦𝑙 (𝑡) − 𝑦𝑙−1 (𝑡)
 ≤ 𝐴

𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0) . (85)

In fact, for 𝑙 = 1, since max𝑦∈𝐺,𝑡,𝑠∈Ω{|𝑓(𝑡, 𝑦)|, |ℎ̂𝛼−1(𝑡, 𝑠)|} ≤

𝑀, we have

𝑦1 (𝑡) − 𝑦0 (𝑡)
 ≤ ∫

𝑡

𝑡0


ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))



𝑓 (𝜏, 𝑦0 (𝜏))
 ∇𝜏

≤ 𝑀
2
∫

𝑡

𝑡0

∇𝜏 = 𝑀
2
ℎ̂1 (𝑡, 𝑡0) .

(86)

If
𝑦𝑙−1 (𝑡) − 𝑦𝑙−2 (𝑡)

 ≤ 𝐴
𝑙−2
𝑀

𝑙
ℎ̂𝑙−1 (𝑡, 𝑡0) , (87)

then
𝑦𝑙 (𝑡) − 𝑦𝑙−1 (𝑡)



≤ ∫

𝑡

𝑡0


ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))



𝑓 (𝜏, 𝑦𝑙−1 (𝜏)) − 𝑓 (𝜏, 𝑦𝑙−2 (𝜏))
 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡0

𝑦𝑙−1 (𝜏) − 𝑦𝑙−2 (𝜏)
 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡0

𝐴
𝑙−2
𝑀

𝑙
ℎ̂𝑙−1 (𝜏, 𝑡0) ∇𝜏

= 𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0) .

(88)

According to
∞

∑

𝑙=1

𝑦𝑙 (𝑡) − 𝑦𝑙−1 (𝑡)
 ≤

∞

∑

𝑙=1

𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=1

(𝐴𝑀)
𝑙
ℎ𝑙 (𝜎 (𝑡) , 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=1

(𝐴𝑀)
𝑙 (𝜎 (𝑡) − 𝑡0)

𝑙

𝑙!

(89)

and byWeierstrass discriminance, we obtain 𝑦𝑙(𝑡) convergent
uniformly and the limit is the solution. Thus we prove the
existence of solution.

Next we will show the uniqueness. Assume 𝑧(𝑡) is another
solution to (78); that is,

𝑧 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑧 (𝜏)) ∇𝜏. (90)

Since

max
𝑦∈𝐺,𝑡,𝑠∈Ω

{
𝑓 (𝑡, 𝑦)

 ,

ℎ̂𝛼−1 (𝑡, 𝑠)


} ≤ 𝑀, (91)

we have

𝑦0 (𝑡) − 𝑧 (𝑡)
 ≤ ∫

𝑡

𝑡0


ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))



𝑓 (𝜏, 𝑧 (𝜏))
 ∇𝜏

≤ 𝑀
2
∫

𝑡

𝑡0

∇𝜏 = 𝑀
2
ℎ̂1 (𝑡, 𝑡0) .

(92)

If
𝑦𝑙−1 (𝑡) − 𝑧 (𝑡)

 ≤ 𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝑡, 𝑡0) , (93)

then
𝑦𝑙 (𝑡) − 𝑧 (𝑡)



≤ ∫

𝑡

𝑡0


ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))



𝑓 (𝜏, 𝑦𝑙−1 (𝜏)) − 𝑓 (𝜏, 𝑧 (𝜏))
 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡0

𝑦𝑙−1 (𝜏) − 𝑧 (𝜏)
 ∇𝜏

≤ 𝐴𝑀∫

𝑡

𝑡0

𝐴
𝑙−1
𝑀

𝑙+1
ℎ̂𝑙 (𝜏, 𝑡0) ∇𝜏

≤ 𝐴
𝑙
𝑀

𝑙+2
ℎ̂𝑙+1 (𝑡, 𝑡0) .

(94)

By mathematical induction, we have
𝑦𝑙 (𝑡) − 𝑧 (𝑡)

 ≤ 𝐴
𝑙
𝑀

𝑙+2
ℎ̂𝑙+1 (𝑡, 𝑡0) . (95)

and then we get that
∞

∑

𝑙=0

𝑦𝑙 (𝑡) − 𝑧 (𝑡)
 ≤

∞

∑

𝑙=0

𝐴
𝑙
𝑀

𝑙+2
ℎ̂𝑙+1 (𝑡, 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=0

(𝐴𝑀)
𝑙+1
ℎ𝑙+1 (𝜎 (𝑡) , 𝑡0)

≤
𝑀

𝐴

∞

∑

𝑙=0

(𝐴𝑀)
𝑙+1 (𝜎(𝑡) − 𝑡0)

𝑙+1

(𝑙 + 1)!
.

(96)

Thus, lim𝑙→∞|𝑦𝑙(𝑡) − 𝑧(𝑡)| = 0, and then we have 𝑧(𝑡) = 𝑦(𝑡)

owing to the uniqueness of the limit. The result follows.

In the following, we consider generalized Cauchy type
problems:

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡) ,
𝐶
𝐷

𝛼1
∇,𝑡0

𝑦 (𝑡) , . . . ,
𝐶
𝐷

𝛼𝑙
∇,𝑡0

𝑦 (𝑡))

(0 = 𝛼0 ≤ 𝛼1 ≤ ⋅ ⋅ ⋅ ≤ 𝛼𝑙 ≤ 𝛼) ,

𝐷
𝑘
∇,𝑡0

𝑦 (𝑡0) = 𝑏𝑘 (𝑘 = 1, . . . , 𝑚, 𝛼 = − [−𝛼]) .

(97)
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Theorem 29. Let 𝛼 > 0, 𝐺 be an open set and let 𝑓 : Ω ×

𝐺 → R be a function such that, for any (𝑦, 𝑦1, . . . , 𝑦𝑙) ∈ 𝐺,
𝑓(𝑡, 𝑦, 𝑦1, . . . , 𝑦𝑙) ∈ 𝐴𝐶∇(Ω). If 𝑦(𝑡) ∈ 𝐴𝐶

𝑚
∇ (Ω), then 𝑦(𝑡)

satisfies (97) if and only if 𝑦(𝑡) satisfies the integral equation

𝑦 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗

+ ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))

× 𝑓 (𝜏, 𝑦 (𝜏) ,
𝐶
𝐷

𝛼1
∇,𝑡0

𝑦 (𝜏) , . . . ,
𝐶
𝐷

𝛼𝑙
∇,𝑡0

𝑦 (𝜏)) ∇𝜏.

(98)

Suppose that 𝑓 satisfies generalized Lipschitzian condi-
tion:

𝑓 (𝑡, 𝑦0, 𝑦1, . . . , 𝑦𝑙) − 𝑓 (𝑡, 𝑧0, 𝑧1, . . . , 𝑧𝑙)


≤ 𝐴[

[

𝑙

∑

𝑗=0


𝑦𝑗 − 𝑧𝑗


]

]

(𝐴 > 0) .

(99)

According to the theorem above and the proof of
Theorem 28, we have the following theorem.

Theorem 30. Let the condition of Theorem 29 be valid. If 𝑓
satisfies Lipschitzian condition (99) and max𝑦∈𝐺,𝑡,𝑠∈Ω{|𝑓(𝑡, 𝑦,

𝑦1, . . . , 𝑦𝑙)|, |ℎ̂𝛼−1(𝑡, 𝑠)|} ≤ 𝑀 holds, then there exists a unique
solution 𝑦(𝑡) to initial value problem (97).

4.2.TheDependency of the Solution upon the Initial Value. We
consider Caputo fractional differential initial value problem
again:

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝑘
∇𝑦 (𝑡0) = 𝑏𝑘 (𝑘 = 0, 1, . . . , 𝑚 − 1; 𝑚 = − [−𝛼]) ,

(100)

where 𝛼 > 0.
UsingTheorem 27, we have

𝑦 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦 (𝜏)) ∇𝜏, (101)

where

𝑦0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗. (102)

Suppose 𝑧(𝑡) is the solution to the initial value problem:

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝐷
𝑘
∇𝑦 (𝑡0) = 𝑐𝑘 (𝑘 = 0, 1, . . . , 𝑚 − 1; 𝑚 = − [−𝛼]) .

(103)

We denote ‖𝑦‖ := sup𝑡∈Ω𝑦(𝑡). We can derive the dependency
of the solution upon the initial value.

Theorem 31. Let 𝑦(𝑡), 𝑧(𝑡) be the solutions to (100) and (103),
respectively, and let 𝑡0, 𝑡, 𝑠 ∈ Ω, |ℎ̂𝛼−1(𝑡, 𝑠)| ≤ 𝑀. Suppose 𝑓
satisfies the Lipschitz condition; that is,

𝑓 (𝑡, 𝑧) − 𝑓 (𝑡, 𝑦)
 ≤ 𝐴

𝑧 − 𝑦
 (𝐴 > 0) . (104)

Then we have

𝑧 (𝑡) − 𝑦 (𝑡)
 ≤

𝑧0 − 𝑦0


∞

∑

𝑗=0

(𝐴𝑀)
𝑗 (𝜎(𝑡) − 𝑡0)

𝑗

𝑗!
, ∀𝑡 ∈ Ω.

(105)

Proof. By the proof of Theorem 28, we know that 𝑦(𝑡) =

lim𝑚→∞𝑦𝑚(𝑡), 𝑧(𝑡) = lim𝑚→∞𝑧𝑚(𝑡), where

𝑦0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑏𝑗,

𝑦𝑚 (𝑡) = 𝑦0 (𝑡) + ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑦𝑚−1 (𝜏)) ∇𝜏,

𝑧0 (𝑡) =

𝑚−1

∑

𝑗=0

ℎ̂𝑗 (𝑡, 𝑡0) 𝑐𝑗,

𝑧𝑚 (𝑡) = 𝑧0 (𝑡) + ∫

𝑡

𝑡0

ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏)) 𝑓 (𝜏, 𝑧𝑚−1 (𝜏)) ∇𝜏.

(106)

Using the Lipschitz condition, we have

𝑧1 (𝑡) − 𝑦1 (𝑡)


≤
𝑧0 − 𝑦0



+ ∫

𝑡

𝑡0


ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))



𝑓 (𝜏, 𝑧0 (𝜏)) − 𝑓 (𝜏, 𝑦0 (𝜏))
 ∇𝜏

≤
𝑧0 − 𝑦0

 +𝑀∫

𝑡

𝑡0

𝐴
𝑧0 (𝜏) − 𝑦0 (𝜏)

 ∇𝜏

≤
𝑧0 − 𝑦0

 +
𝑧0 − 𝑦0

 𝐴𝑀∫

𝑡

𝑡0

∇𝜏

=
𝑧0 − 𝑦0

 +
𝑧0 − 𝑦0

 𝐴𝑀ℎ̂1 (𝑡, 𝑡0)

=
𝑧0 − 𝑦0

 [1 + 𝐴𝑀ℎ̂1 (𝑡, 𝑡0)] .

(107)

Suppose

𝑧𝑚−1 (𝑡) − 𝑦𝑚−1 (𝑡)
 ≤

𝑧0 − 𝑦0


𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝑡, 𝑡0) ,

(108)
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then
𝑧𝑚 (𝑡) − 𝑦𝑚 (𝑡)



≤
𝑧0 − 𝑦0



+ ∫

𝑡

𝑡0


ℎ̂𝛼−1 (𝑡, 𝜌 (𝜏))



×
𝑓 (𝜏, 𝑧𝑚−1 (𝜏)) − 𝑓 (𝜏, 𝑦𝑚−1 (𝜏))

 ∇𝜏

≤
𝑧0 − 𝑦0



+𝑀∫

𝑡

𝑡0

𝐴
𝑧𝑚−1 (𝜏) − 𝑦𝑚−1 (𝜏)

 ∇𝜏

≤
𝑧0 − 𝑦0



+𝑀∫

𝑡

𝑡0

𝐴
𝑧0 − 𝑦0



𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝜏, 𝑡0) ∇𝜏

=
𝑧0 − 𝑦0

 +
𝑧0 − 𝑦0



𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗+1

∫

𝑡

𝑡0

ℎ̂𝑗 (𝜏, 𝑡0) ∇𝜏

=
𝑧0 − 𝑦0

 +
𝑧0 − 𝑦0



𝑚−1

∑

𝑗=0

(𝐴𝑀)
𝑗+1

ℎ̂𝑗+1 (𝑡, 𝑡0)

=
𝑧0 − 𝑦0



𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝑡, 𝑡0) .

(109)

According to mathematical induction, we have

𝑧𝑚 (𝑡) − 𝑦𝑚 (𝑡)
 ≤

𝑧0 − 𝑦0


𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ̂𝑗 (𝑡, 𝑡0)

≤
𝑧0 − 𝑦0



𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗
ℎ𝑗 (𝜎 (𝑡) , 𝑡0)

≤
𝑧0 − 𝑦0



𝑚

∑

𝑗=0

(𝐴𝑀)
𝑗 (𝜎(𝑡) − 𝑡0)

𝑗

𝑗!
.

(110)

Taking the limit𝑚 → ∞, we obtain that

𝑧 (𝑡) − 𝑦 (𝑡)
 ≤

𝑧0 − 𝑦0


∞

∑

𝑗=0

(𝐴𝑀)
𝑗 (𝜎(𝑡) − 𝑡0)

𝑗

𝑗!
, (111)

and the proof is completed.

4.3. Initial Value Problems for Nonlinear Term Containing
Fractional Derivative. In this section, we are interested in the
nonlinear differential equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡)) (𝑡 ∈ Ω, 𝑡 > 𝑡0) , (112)

of fractional order 𝛼 ∈ (𝑚−1,𝑚), where 𝛽 ∈ (𝑛−1, 𝑛),𝑚, 𝑛 ∈
N, and 𝛼 > 𝛽, with the initial conditions

𝐷
𝑘
∇,𝑡0

𝑢 (𝑡0) = 𝜂𝑘, 𝑘 = 0, . . . , 𝑚 − 1. (113)

We obtain the existence of at least one solution for integral
equations using the Leray-Schauder Nonlinear Alternative
for several types of initial value problems and establish
sufficient conditions for unique solutions using the Banach
contraction principle.

Our objective is to find solutions to the initial value
problem (112) and (113) in the space 𝐴𝐶𝑚

∇ (Ω). There are two
cases to investigate: 𝑛 − 1 < 𝛽 < 𝑛 ≤ 𝑚 − 1 < 𝛼 < 𝑚 and
𝑛 − 1 < 𝛽 < 𝛼 < 𝑛.

Throughout this section, we suppose that the following
are satisfied:

(𝐻1) 𝑓 : Ω × R → R is a ld-continuously and nabla
differentiable function;

(𝐻2) there exist nonnegative functions 𝑎1, 𝑎2 ∈ 𝐴𝐶∇(Ω)

such that |𝑓(𝑡, 𝑧)| ≤ 𝑎1(𝑡) + 𝑎2(𝑡)|𝑧|;

(𝐻3) 𝑓(𝑡0, 0) = 0 and 𝑓(𝑡, 0) ̸= 0 on a compact subinterval
ofΩ \ {𝑡0}.

The following shows that the solvability of the initial value
problem (112) and (113) is equivalent to that of the Volterra-
type integral equation (115) in the space 𝐴𝐶∇(Ω).

Lemma 32. Let 𝑛 − 1 < 𝛽 < 𝑛 ≤ 𝑚 − 1 < 𝛼 < 𝑚 and
assume that (𝐻1) and (𝐻3) hold. A function 𝑢(𝑡) ∈ 𝐴𝐶

𝑚
∇ (Ω)

is a solution of the initial value problem (112) and (113) if and
only if

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡0

ℎ̂𝑛−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠, 𝑡 ∈ Ω,

(114)

where V ∈ 𝐴𝐶∇(Ω) is a solution of the integral equation

V (𝑡) =
𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠.

(115)

Proof. By (63), we have

𝐶
𝐷

𝛼−𝑛
∇,𝑡0

𝐷
𝑛
∇𝑢 (𝑡) =

𝐶
𝐷

𝛼
∇,𝑡0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡)) . (116)
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By using Property 6, 𝐶𝐷𝛽
∇,𝑡0

𝑢(𝑡) = 𝐼
𝑛−𝛽
∇,𝑡0

𝐷
𝑛
∇𝑢(𝑡), thus we have

𝐶
𝐷

𝛼−𝑛
∇,𝑡0

𝐷
𝑛
∇𝑢 (𝑡) = 𝑓(𝑡, ∫

𝑡

𝑡0

ℎ̂𝑛−𝛽−1 (𝑡, 𝜌 (𝜏))𝐷
𝑛
∇𝑢 (𝜏) ∇𝜏) .

(117)

Let V(𝑡) = 𝐷
𝑛
∇𝑢(𝑡), by usingTheorem 27, we obtain

V (𝑡) =
𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0)𝐷
𝑖
∇V (𝑡0)

+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠.

(118)

As 𝐷𝑖
∇V(𝑡) = 𝐷

𝑛+𝑖
∇ 𝑢(𝑡) and by (113), the above equation

transforms into (115). An application of Definition 7 and
Theorem 9 yields (114) in view of V(𝑡) = 𝐷

𝑛
∇𝑢(𝑡) and (113).

To prove the converse, let V ∈ 𝐴𝐶∇(Ω) be a solution of
(115). Since V ∈ 𝐴𝐶∇(Ω), the function

𝑠 → ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏 (119)

is ld-continuous on Ω \ {𝑡0} and so is

𝑠 → 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏) . (120)

We have

𝐷
𝑛
∇𝑢 (𝑡) = V (𝑡)

=

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))𝐷
𝑛
∇𝑢 (𝜏) ∇𝜏)∇𝑠

=

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖 + 𝐼
𝛼−𝑛
∇,𝑡0

𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡)) .

(121)

Since 𝛼 − 𝑛 ∈ (𝑚 − 𝑛 − 1,𝑚 − 𝑛), by

𝐶
𝐷

𝛼
∇,𝑡0

𝑢 (𝑡) =
𝐶
𝐷

𝛼−𝑛
∇,𝑡0

𝐷
𝑛
∇𝑢 (𝑡)

=
𝐶
𝐷

𝛼−𝑛
∇,𝑡0

(

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖)

+
𝐶
𝐷

𝛼−𝑛
∇,𝑡0

𝐼
𝛼−𝑛
∇,𝑡0

𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡))

= 𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡)) ,

(122)

so 𝑢 is a solution of (112) in view of (𝐻1). By absolute
continuity of the integral, differentiating (115), we obtain

𝐷
𝑘
∇V (𝑡) =

𝑚−𝑛−1

∑

𝑖=0

𝐷
𝑘
∇ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ 𝐷
𝑘
∇𝐼

𝛼−𝑛
∇,𝑡0

𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡))

=

𝑘−1

∑

𝑖=0

𝐷
𝑘
∇ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖 +

𝑚−𝑛−1

∑

𝑖=𝑘

𝐷
𝑘
∇ℎ̂𝑖 (𝑡, 𝑡0) 𝜂𝑛+𝑖

+ 𝐷
𝑘
∇𝐼

𝛼−𝑛
∇,𝑡0

𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡))

= 0 +

𝑚−𝑛−1

∑

𝑖=𝑘

ℎ̂𝑖−𝑘 (𝑡, 𝑡0) 𝜂𝑛+𝑖 + 𝐼
𝛼−𝑛−𝑘
∇,𝑡0

𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡))

(123)

for each 𝑘 = 0, . . . , 𝑚 − 𝑛 − 1. Thus, 𝐷𝑛+𝑘
∇ 𝑢(𝑡0) = 𝐷

𝑘
∇V(𝑡0) =

𝜂𝑛+𝑘, 𝑘 = 0, . . . , 𝑚−𝑛−1; that is,𝐷𝑖
∇𝑢(𝑡0) = 𝜂𝑖, 𝑖 = 𝑛, . . . , 𝑚−1.

On the other hand, from (114),

𝐷
𝑖
∇𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐷

𝑖
∇𝐼

𝑛
∇,𝑡0

V (𝑡)

=

𝑖−1

∑

𝑘=0

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 +

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐼

𝑛−𝑖
∇,𝑡0

V (𝑡)

=

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐼

𝑛−𝑖
∇,𝑡0

V (𝑡)

(124)

and thus 𝐷𝑖
∇𝑢(𝑡0) = 𝜂𝑖 (𝑖 = 0, . . . , 𝑛 − 1). Also it is easy to see

that𝐷𝑚−𝑛
∇ V(𝑡) = 𝐷

𝑚
∇𝑢(𝑡) ∈ 𝐴𝐶∇(Ω).

For the sake of brevity, by 𝜙, we denote the first term in
the right-hand side of (115).

Theorem 33. Suppose that (𝐻1)–(𝐻3) hold. Then the integral
equation (115) has a solution in 𝐴𝐶∇(Ω) provided

𝐴 = sup
𝑡∈Ω

∫

𝑡

𝑡0

(

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))



× ∫

𝑠

𝑡0


ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))


∇𝜏) 𝑎2 (𝑠) ∇𝑠 < 1,

0 < 𝐵 = sup
𝑡∈Ω

(
𝜙 (𝑡)

 + ∫

𝑡

𝑡0


ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))


𝑎1 (𝑠) ∇𝑠) < ∞.

(125)

Proof. In the normed space (𝐴𝐶∇(Ω), ‖ ⋅ ‖0) with the sup-
norm ‖ ⋅ ‖0, we define the mapping 𝑇 by

(𝑇V) (𝑡) = 𝜙 (𝑡)
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+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

(126)

for all 𝑡 ∈ Ω. Indeed, one can easily verify that the mapping
𝑇 is well defined and 𝑇 : 𝐴𝐶∇(Ω) → 𝐴𝐶∇(Ω).

Let

𝑈 = {V ∈ 𝐴𝐶∇ (Ω) : ‖V‖0 < 𝑅} (127)

with

𝑅 =
𝐵

1 − 𝐴
> 0. (128)

LetC ⊂ 𝐴𝐶∇(Ω) be defined byC = 𝑈.
Let V ∈ 𝑈; that is, ‖V‖0 ≤ 𝑅. Then

‖𝑇V‖0

= sup
𝑡∈Ω



𝜙 (𝑡)

+ ∫

𝑡

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠


≤ sup
𝑡∈Ω

(
𝜙 (𝑡)



+ ∫

𝑡

𝑡0


ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))



×



𝑓 (𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)


∇𝑠)

≤ sup
𝑡∈Ω

(
𝜙 (𝑡)



+ ∫

𝑡

𝑡0


ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))



× (𝑎1 (𝑠) + 𝑎2 (𝑠)

×∫

𝑠

𝑡0


ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))


|V (𝜏)| ∇𝜏)∇𝑠)

≤ sup
𝑡∈Ω

(
𝜙 (𝑡)

 + ∫

𝑡

𝑡0


ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))


𝑎1 (𝑠) ∇𝑠)

+ sup
𝑡∈Ω

∫

𝑡

𝑡0

(

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))



× ∫

𝑠

𝑡0


ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))


∇𝜏) 𝑎2 (𝑠) ∇𝑠‖V‖0

= 𝐵 + 𝐴‖V‖0

≤ 𝐵 + 𝐴𝑅

= 𝑅,

(129)

which shows that 𝑇V ∈ C.
In addition,

(𝑇V) (𝑡1) − (𝑇V) (𝑡2)


≤
𝜙 (𝑡1) − 𝜙 (𝑡2)



+



∫

𝑡1

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡1, 𝜌 (𝑠))

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡2

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡2, 𝜌 (𝑠))

×𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠


=



𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡1, 𝑡0) 𝜂𝑛+𝑖 −

𝑚−𝑛−1

∑

𝑖=0

ℎ̂𝑖 (𝑡2, 𝑡0) 𝜂𝑛+𝑖



+



∫

𝑡1

𝑡0

∫

𝑡1

𝜌(𝑠)
ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡2

𝑡0

∫

𝑡2

𝜌(𝑠)
ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

×𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠


≤



𝑚−𝑛−1

∑

𝑖=0

∫

𝑡1

𝑡0

ℎ̂𝑖−1 (𝜏, 𝑡0) ∇𝜏𝜂𝑛+𝑖

−

𝑚−𝑛−1

∑

𝑖=0

∫

𝑡2

𝑡0

ℎ̂𝑖−1 (𝜏, 𝑡0) ∇𝜏𝜂𝑛+𝑖



+



∫

𝑡1

𝑡0

∫

𝑡1

𝜌(𝑠)
ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃
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× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡1

𝑡0

∫

𝑡2

𝜌(𝑠)
ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠


+



∫

𝑡1

𝑡0

∫

𝑡2

𝜌(𝑠)
ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠

− ∫

𝑡2

𝑡0

∫

𝑡2

𝜌(𝑠)
ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃

× 𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠


≤

𝑚−𝑛−1

∑

𝑖=0



∫

𝑡1

𝑡2

ℎ̂𝑖−1 (𝜏, 𝑡0) ∇𝜏𝜂𝑛+𝑖



+ ∫

𝑡1

𝑡0



∫

𝑡1

𝑡2

ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃



×



𝑓 (𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)


∇𝑠

+ ∫

𝑡1

𝑡2



∫

𝑡2

𝜌(𝑠)
ℎ̂𝛼−𝑛−2 (𝜃, 𝜌 (𝑠)) ∇𝜃



×



𝑓 (𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)


∇𝑠

≤ 𝑀

𝑚−𝑛−1

∑

𝑖=0

𝜂𝑛+𝑖

𝑡1 − 𝑡2

 + 𝑀
2 𝑡1 − 𝑡2

 + 𝑀
𝑡1 − 𝑡2



= (𝑀

𝑚−𝑛−1

∑

𝑖=0

𝜂𝑛+𝑖
 + 𝑀

2
+𝑀)

𝑡1 − 𝑡2
 ,

(130)

where max𝜏,𝜃,𝑠,𝑡1,𝑡2∈Ω{ℎ̂𝑖−1(𝜏, 𝑡0) (𝑖 = 0, . . . , 𝑚 − 𝑛 − 1),
ℎ̂𝛼−𝑛−2(𝜃, 𝜌(𝑠)),∫

𝑡1

𝑡0
|𝑓(𝑠, ∫

𝑠

𝑡0
ℎ̂𝑛−𝛽−1(𝑠, 𝜌(𝜏))V(𝜏)∇𝜏)|∇𝑠,∫

𝑡1

𝑡2
|𝑓(𝑠,

∫
𝑠

𝑡0
ℎ̂𝑛−𝛽−1(𝑠, 𝜌(𝜏))V(𝜏)∇𝜏)|∇𝑠} ≤ 𝑀.
Thus, 𝑇V is equicontinuous on Ω. This shows that 𝑇 is a

compact mapping.
Consider the eigenvalue problem

V = 𝜆𝑇V, 𝜆 ∈ (0, 1) . (131)

Under the assumption that V is a solution of (131) for a 𝜆 ∈

(0, 1), one obtains

‖V‖0

= sup
𝑡∈Ω



𝜆𝜙 (𝑡)

+ 𝜆∫

𝑡

𝑡0

ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))

×𝑓(𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)∇𝑠


< sup
𝑡∈Ω

(
𝜙 (𝑡)



+ ∫

𝑡

𝑡0


ℎ̂𝛼−𝑛−1 (𝑡, 𝜌 (𝑠))



×



𝑓 (𝑠, ∫

𝑠

𝑡0

ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏)) V (𝜏) ∇𝜏)


∇𝑠)

≤ 𝐵 + 𝐴‖V‖0 ≤ 𝑅,

(132)

which shows that V ∉ 𝜕𝑈. ByTheorem 12, 𝑇 has a fixed point
in 𝑈, which we denote by V0, such that ‖V0‖0 ≤ 𝑅.

It follows from Lemma 32 that

𝑢0 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡0

ℎ̂𝑛−1 (𝑡, 𝜌 (𝑠)) V0 (𝑠) ∇𝑠, 𝑡 ∈ Ω,

(133)

is a solution of (112) and (113).
In the following, we will discuss another case: 𝑛−1 < 𝛽 <

𝛼 < 𝑛.

Lemma 34. Let 𝑛 − 1 < 𝛽 < 𝛼 < 𝑛 and suppose that (𝐻1) and
(𝐻3) hold. A function 𝑢 ∈ 𝐴𝐶

𝑛
∇(Ω) is a solution of the initial

value problem (112) and (113) if and only if

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡0

ℎ̂𝛽−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠, 𝑡 ∈ Ω,

(134)

where V ∈ 𝐴𝐶∇(Ω) is a solution of

V (𝑡) = ∫

𝑡

𝑡0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠. (135)

Proof. Let 𝑢 ∈ 𝐴𝐶𝑛
∇(Ω) be a solution of the

𝐶
𝐷

𝛼−𝛽
∇,𝑡0

𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡) =
𝐶
𝐷

𝛼
∇,𝑡0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡)) , (136)

which, after the substitution V(𝑡) = 𝐶
𝐷

𝛽
∇,𝑡0

𝑢(𝑡), becomes

𝐶
𝐷

𝛼−𝛽
∇,𝑡0

V (𝑡) = 𝑓 (𝑡, V (𝑡)) . (137)
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Next, by Property 9 and (113)

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡0

ℎ̂𝛽−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠,

V (𝑡) = V (𝑡0) + ∫
𝑡

𝑡0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠.

(138)

By Property 6, we have that V(𝑡0) =
𝐶
𝐷

𝛽
∇,𝑡0

𝑢(𝑡0) = 0, and thus
the above equation becomes (135).

Conversely, let V ∈ 𝐴𝐶∇(Ω) be a solution of the integral
equation (135); that is,

V (𝑡) = ∫

𝑡

𝑡0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠, (139)

𝑢 (𝑡) =

𝑛−1

∑

𝑘=0

ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + ∫

𝑡

𝑡0

ℎ̂𝛽−1 (𝑡, 𝜌 (𝑠)) V (𝑠) ∇𝑠. (140)

Then, by (𝐻1),

𝐶
𝐷

𝛼−𝛽
∇,𝑡0

V (𝑡) = 𝑓 (𝑡, V (𝑡)) , 𝑡 ∈ Ω, 𝑡 > 𝑡0, (141)

and 𝐶
𝐷

𝛽
∇,𝑡0

𝑢(𝑡) = V(𝑡). Hence

𝐶
𝐷

𝛼−𝛽
∇,𝑡0

𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡) = 𝑓 (𝑡,
𝐶
𝐷

𝛽
∇,𝑡0

𝑢 (𝑡)) (𝑡 ∈ Ω, 𝑡 > 𝑡0) ,

(142)

and we obtain (112). Also, it follows from (140) that 𝑢 ∈

𝐴𝐶
𝑛
∇(Ω) and (113) are satisfied since, for 𝑖 = 0, . . . , 𝑛 − 1,

𝐷
𝑖
∇𝑢 (𝑡)

=

𝑛−1

∑

𝑘=0

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐷

𝑖
∇𝐼

𝛽
∇,𝑡0

V (𝑡)

=

𝑖−1

∑

𝑘=0

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 +

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐷

𝑖
∇𝐼

𝛽
∇,𝑡0

V (𝑡)

=

𝑛−1

∑

𝑘=𝑖

𝐷
𝑖
∇ℎ̂𝑘 (𝑡, 𝑡0) 𝜂𝑘 + 𝐼

𝛽−𝑖
∇,𝑡0

V (𝑡) .

(143)

Our next existence result corresponds to the case 𝑛 − 1 <
𝛽 < 𝛼 < 𝑛.

Theorem 35. Suppose that (𝐻1)–(𝐻3) are satisfied. Then the
integral equation (135) has a solution in 𝐴𝐶∇(Ω) provided

𝐴 = sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝑎2 (𝑠) ∇𝑠 < 1,

0 < 𝐵 = sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝑎1 (𝑠) ∇𝑠 < ∞.

(144)

Proof. We endow 𝐴𝐶∇(Ω) with the sup-norm and define, for
V ∈ 𝐴𝐶∇(Ω), the mapping 𝑇 by

𝑇V (𝑡) = ∫

𝑡

𝑡0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠. (145)

The mapping 𝑇 is well defined and 𝑇 : 𝐴𝐶∇(Ω) → 𝐴𝐶∇(Ω).
Let

𝑈 = {V ∈ 𝐴𝐶∇ (Ω) : ‖V‖0 < 𝑅} (146)
with

𝑅 =
𝐵

1 − 𝐴
> 0. (147)

LetC ⊂ 𝐴𝐶∇(Ω) be defined byC = 𝑈.
If V ∈ 𝑈, then

‖𝑇V‖0 = sup
𝑡∈Ω



∫

𝑡

𝑡0

ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠)) 𝑓 (𝑠, V (𝑠)) ∇𝑠


≤ sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))



𝑓 (𝑠, V (𝑠))
 ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


(𝑎1 (𝑠) + 𝑎2 (𝑠) |V (𝑠)|) ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝑎1 (𝑠) ∇𝑠

+ sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝑎2 (𝑠) ∇𝑠‖V‖0

= 𝐵 + 𝐴‖V‖0

≤ 𝑅;

(148)

that is, 𝑇 : 𝑈 → C. Certainly, 𝑇 : 𝑈 → C is continuous and
compact. Consider

V = 𝜆𝑇V, 𝜆 ∈ (0, 1) . (149)
The rest of the proof is the same as the corresponding part of
the proof of Theorem 30.

The uniqueness results are based on applications of the
Banach contraction principle.

The main assumption in the existence theorems below is
that

(𝐻4) for each 𝑅 > 0, there exists a nonnegative
function 𝛾 such that |𝑓(𝑡, 𝑧1(𝑡)) − 𝑓(𝑡, 𝑧2(𝑡))| ≤

𝛾(𝑡)|𝑧1 − 𝑧2|, 𝑡 ∈ Ω, 𝑧1, 𝑧2 ∈ R.
Thefirst uniqueness result is for the case 𝑛−1 < 𝛽 < 𝛼 < 𝑛.

Theorem36. Suppose that (𝐻1), (𝐻3), and (𝐻4) hold. Assume
that

𝜁 = sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝛾 (𝑠) ∇𝑠 < 1,

0 < sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))



𝑓 (𝑠, 0)
 ∇𝑠 < ∞.

(150)

Then the integral equation (135) has a unique solution.
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Proof. In the Banach spaceB = (𝐴𝐶∇(Ω), ‖ ⋅ ‖0)we defineC
by

C = {V ∈ B : ‖V‖0 ≤ 𝑅} , (151)

where

𝑅 =
1

1 − 𝜁
sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))



𝑓 (𝑠, 0)
 ∇𝑠. (152)

We define the mapping 𝑇 : 𝐴𝐶∇(Ω) → 𝐴𝐶∇(Ω) as in the
proof of Theorem 31.

If V ∈ C, then

‖𝑇V‖0 ≤ ‖𝑇V − 𝑇𝜃‖0 + ‖𝑇𝜃‖0

≤ 𝜁‖V‖0 + sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))



𝑓 (𝑠, 0)
 ∇𝑠

= 𝜁‖V‖0 + (1 − 𝜁) 𝑅

≤ 𝑅;

(153)

that is, 𝑇 : C → C.
Let V1, V2 ∈ C. Then

𝑇V1 − 𝑇V2
0

= sup
𝑡∈Ω

𝑇V1 − 𝑇V2


≤ sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))



𝑓 (𝑠, V1 (𝑠)) − 𝑓 (𝑠, V2 (𝑠))
 ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝛾 (𝑠)

V1 (𝑠) − V2 (𝑠)
 ∇𝑠

≤ sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝛾 (𝑠) ∇𝑠

V1 − V2
0

≤ 𝜁
V1 − V2

0;

(154)

that is, 𝑇 is a contraction since 𝜁 < 1.
By the Banach contraction principle, 𝑇 has a unique fixed

point, which is a solution of the integral equation (135).

For the case 𝑛 − 1 < 𝛽 < 𝑛 ≤ 𝑚 − 1 < 𝛼 < 𝑚, the
uniqueness result is given without proof.

Theorem 37. Suppose that (𝐻1), (𝐻3), and (𝐻4) hold and
assume that

𝜁 = sup
𝑡∈Ω

∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))


𝛾 (𝑠)

× (∫

𝑠

𝑡0


ℎ̂𝑛−𝛽−1 (𝑠, 𝜌 (𝜏))


∇𝜏)∇𝑠 < 1.

(155)

Assume further that

0 < sup
𝑡∈Ω

(
𝜙 (𝑡)

 + ∫

𝑡

𝑡0


ℎ̂𝛼−𝛽−1 (𝑡, 𝜌 (𝑠))



𝑓 (𝑠, 0)
 ∇𝑠) < ∞.

(156)

Then the integral equation (115) has a unique solution.

5. Laplace Transform Method for
Solving Ordinary Differential Equations
with Caputo Fractional Derivatives

5.1. Homogeneous Equations with Constant Coefficients. In
this section we apply the Laplace transformmethod to derive
explicit solutions to homogeneous equations of the form

𝑚

∑

𝑘=1

𝐴𝑘 [
𝐶
𝐷

𝛼𝑘
∇,𝑡0

𝑦 (𝑡)] + 𝐴0𝑦 (𝑡) = 0

(𝑚 ∈ N; 0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚;

𝑙 − 1 < 𝛼𝑚 < 𝑙, 𝑙 ∈ N, 𝑡0, 𝑡 ∈ Ω𝑘𝑙 , 𝑡 > 𝑡0)

(157)

involving the Caputo fractional derivatives 𝐶
𝐷

𝛼𝑘
∇,𝑡0

𝑦 (𝑘 =

1, . . . , 𝑚), with real constants 𝐴𝑘 ∈ R (𝑘 = 0, . . . , 𝑚 − 1) and
𝐴𝑚 = 1.

The Laplace transform method is based on the formula:

L∇,𝑡0
{
𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡)} (𝑧)

= 𝑧
𝛼
L∇,𝑡0

{𝑦 (𝑡)} (𝑧)

−

𝑙−1

∑

𝑗=0

𝑑𝑗𝑧
𝛼−𝑗−1

(𝑙 − 1 < 𝛼 ≤ 𝑙 ∈ N) ,

(158)

𝑑𝑗 = 𝐷
𝑗
∇𝑦 (𝑡0) (𝑗 = 0, . . . , 𝑙 − 1) . (159)

First, we derive explicit solutions to (157) with𝑚 = 1:

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 𝜆 ∈ R) .
(160)

In order to prove our result, we also need the following
definition and lemma.

Definition 38. The function𝑊(𝑡) is defined by

𝑊(𝑡) = det ((𝐷𝑘
∇𝑦𝑗) (𝑡))

𝑛

𝑘,𝑗=1
(𝑡 ∈ Ω𝑘𝑛) . (161)

Lemma 39. The solutions 𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) are linearly
independent if and only if𝑊(𝑡

∗
) ̸= 0 at some point 𝑡∗ ∈ Ω.

Proof. Wefirst prove sufficiency. If, to the contrary, 𝑦𝑗(𝑡) (𝑗 =

1, 2, . . . , 𝑛) are linearly dependent in Ω, then there exist 𝑛
constants {𝑐𝑗}

𝑛
𝑗=1, not all zero, such that

((𝐷
𝑘
∇,𝑡0

𝑦𝑗) (𝑡))
𝑛

𝑘,𝑗=1
(

𝑐1

𝑐2
.
.
.

𝑐𝑛

) ≡ 0 (162)

holds, and thus, 𝑊(𝑡) ≡ 0 which leads to a contradiction.
Therefore, if 𝑊(𝑡

∗
) ̸= 0 at some point 𝑡∗ ∈ Ω, then

𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) are linearly independent. Nowwe prove
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the necessity. Suppose, to the contrary, for any 𝑡 ∈ Ω,𝑊(𝑡) =

0. Consider the equations

((𝐷
𝑘
∇,𝑡0

𝑦𝑗) (𝑡
∗
))

𝑛

𝑘,𝑗=1
𝐶 = 0, (163)

where 𝑡∗ ∈ Ω, 𝐶 = (

𝑐1
𝑐2
...
𝑐𝑛

). As𝑊(𝑡
∗
) = 0, the equations have

nontrivial solution 𝑐𝑗 (𝑗 = 1, 2, . . . , 𝑛). Now we construct a
function using these constants:

𝑦 (𝑡) =

𝑛

∑

𝑗=1

𝑐𝑗𝑦𝑗 (𝑡) , (164)

and we get 𝑦(𝑡) as a solution. From (163), we obtain that 𝑦(𝑡)
satisfies initial value condition

𝐷
𝑘
∇,𝑡0

𝑦 (𝑡
∗
) = 0, 𝑘 = 1, . . . , 𝑛. (165)

However, 𝑦(𝑡) = 0 is also a solution to equation satisfying the
initial value condition. By the uniqueness of solution, we have

𝑛

∑

𝑗=1

𝑐𝑗𝑦𝑗 (𝑡) = 0, (166)

and thus, 𝑦𝑗(𝑡) (𝑗 = 1, 2, . . . , 𝑛) are linearly dependant
which leads to a contradiction. Thus, if the solutions
𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) are linearly independent, then𝑊(𝑡

∗
) ̸=

0 at some point 𝑡∗ ∈ Ω. The result follows.

The following statements hold.

Theorem 40. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N) and 𝜆 ∈ R. Then the
functions

𝑦𝑗 (𝑡) = ∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) (𝑗 = 0, . . . , 𝑙 − 1) (167)

yield the fundamental system of solutions to (160).

Proof. Applying the Laplace transform to (160) and taking
(158) into account, we have

L∇,𝑡0
{𝑦 (𝑡)} (𝑧) =

𝑙−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆
, (168)

where 𝑑𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are given by (159).
Formula (36) with 𝛽 = 𝑗 + 1 yields

L∇,𝑡0
{

∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)} (𝑧) =

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆
(|𝜆| < |𝑧|

𝛼
) . (169)

Thus, from (168), we derive the following solution to (160):

𝑦 (𝑡) =

𝑙−1

∑

𝑗=0

𝑑𝑗𝑦𝑗 (𝑡) , 𝑦𝑗 (𝑡) =∇ 𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) . (170)

It is easily verified that the functions 𝑦𝑗(𝑡) are solutions to
(160):

𝐶
𝐷

𝛼
∇,𝑡0

[
∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)] = 𝜆∇𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)

(𝑗 = 0, . . . , 𝑙 − 1) .

(171)

In fact,

𝐶
𝐷

𝛼
∇,𝑡0

[
∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)]

=
𝐶
𝐷

𝛼
∇,𝑡0

[

∞

∑

𝑘=0

𝜆
𝑘
ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)]

=
𝐶
𝐷

𝛼
∇,𝑡0

𝜆
0
ℎ̂𝑗 (𝑡, 𝑡0) +

𝐶
𝐷

𝛼
∇,𝑡0

∞

∑

𝑘=1

𝜆
𝑘
ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)

= 0 +

∞

∑

𝑘=1

𝜆
𝑘
ℎ̂(𝑘−1)𝛼+𝑗 (𝑡, 𝑡0)

=

∞

∑

𝑘=0

𝜆
𝑘+1

ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)

= 𝜆

∞

∑

𝑘=0

𝜆
𝑘
ℎ̂𝑘𝛼+𝑗 (𝑡, 𝑡0)

= 𝜆
∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) .

(172)

Moreover,

𝐷
𝑘
∇𝑦𝑗 (𝑡) = 𝐷

𝑘
∇∇𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0)

= 𝐷
𝑘
∇ [

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗 (𝑡, 𝑡0)] =

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗−𝑘 (𝑡, 𝑡0) .

(173)

It follows from (173) and (20) that

𝐷
𝑘
∇𝑦𝑗 (𝑡0) = 0 (𝑘, 𝑗 = 0, . . . , 𝑙 − 1; 𝑗 > 𝑘) ,

𝐷
𝑘
∇𝑦𝑘 (𝑡0) = 1 (𝑘 = 0, . . . , 𝑙 − 1) .

(174)

If 𝑗 < 𝑘, then

𝐷
𝑘
∇𝑦𝑗 (𝑡0) = 𝐷

𝑘
∇ℎ̂𝑗 (𝑡, 𝑡0) + 𝐷

𝑘
∇

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗 (𝑡, 𝑡0)

= 0 +

∞

∑

𝑠=1

𝜆
𝑠
ℎ̂𝑠𝛼+𝑗−𝑘 (𝑡, 𝑡0)

=

∞

∑

𝑠=0

𝜆
𝑠+1
ℎ̂𝑠𝛼+𝛼+𝑗−𝑘 (𝑡, 𝑡0) ,

(175)

and, since 𝛼 + 𝑗 − 𝑘 ≥ 𝛼 + 1 − 𝑙 > 0 for any 𝑘, 𝑗 = 0, . . . , 𝑙 − 1,
the following relations hold:

𝐷
𝑘
∇𝑦𝑗 (𝑡0) = 0 (𝑘, 𝑗 = 0, . . . , 𝑙 − 1; 𝑗 < 𝑘) . (176)

By (174) and (176), the Wronskian function

𝑊(𝑡) = det (𝐷𝑘
∇𝑦𝑗 (𝑡))

𝑙−1

𝑘,𝑗=0
(177)

at 𝑡0 is equal to 1:𝑊(𝑡0) = 1.Then 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙−1) yield
the fundamental system of solutions to (160).
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Corollary 41. The equation
𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡0; 0 < 𝛼 ≤ 1; 𝜆 ∈ R)

(178)

has its solution given by

𝑦 (𝑡) =
∇
𝐹𝛼,1 (𝜆; 𝑡, 𝑡0) , (179)

while the equation
𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 0 (𝑡 > 𝑡0; 1 < 𝛼 ≤ 2; 𝜆 ∈ R)

(180)

has the fundamental system of solutions given by

𝑦0 (𝑡) = ∇
𝐹𝛼,1 (𝜆; 𝑡, 𝑡0) , 𝑦1 (𝑡) = ∇

𝐹𝛼,2 (𝜆; 𝑡, 𝑡0) . (181)

Next we derive the explicit solutions to (157) with𝑚 = 2:
𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼)

(182)

with 𝜆, 𝜇 ∈ R.

Theorem 42. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 0 < 𝛽 < 𝛼, and
𝜆, 𝜇 ∈ R. Then the functions

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝑗+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0) ,

𝑗 = 0, . . . , 𝑚 − 1;

(183)

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0) ,

𝑗 = 𝑚, . . . , 𝑙 − 1

(184)

yield the fundamental system of solutions to (182), provided
that the series in (183) and (184) are convergent.

Proof. Let 𝑚 − 1 < 𝛽 ≤ 𝑚 (𝑚 ≤ 𝑙; 𝑚 ∈ N). Applying the
Laplace transform to (182) and using (158), we obtain

L∇,𝑡0
{𝑦 (𝑡)} (𝑧) =

𝑙−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇

− 𝜆

𝑚−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛽−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
,

(185)

where 𝑑𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are given by (159).
For 𝑧 ∈ C and |𝜇𝑧−𝛽/(𝑧𝛼−𝛽

− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
=

𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

1 − (𝜇𝑧−𝛽/ (𝑧𝛼−𝛽 − 𝜆))

=

∞

∑

𝑛=0

𝜇
𝑛 𝑧

−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

.

(186)

In addition, for 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
𝛼−𝑗−1−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛽𝑛+𝑗+1)

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0)} (𝑧) ,

𝑧
𝛽−𝑗−1−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛽𝑛+𝑗+1+𝛼−𝛽)

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝑗+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧) .

(187)

From (185) and (187), we derive the solution to (182):

𝑦 (𝑡) =

𝑙−1

∑

𝑗=0

𝑑𝑗𝑦𝑗 (𝑡) , (188)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (183) for 𝑗 =

0, . . . , 𝑚−1 and by (184) for 𝑗 = 𝑚, . . . , 𝑙−1. For 𝑘 = 0, . . . , 𝑙−1,
the direct evaluation yields

𝐷
𝑘
∇𝑦𝑗 (𝑡)

= 𝐷
𝑘
∇ [

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝑗+1 (𝜆; 𝑡, 𝑡0)

−𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝑗+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0)]

=

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
𝐷

𝑘
∇ [

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗 (𝑡, 𝑡0)]

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
𝐷

𝑘
∇ [

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗+𝛼−𝛽 (𝑡, 𝑡0)]

=

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗−𝑘 (𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗+𝛼−𝛽−𝑘 (𝑡, 𝑡0)

(𝑗 = 0, . . . , 𝑚 − 1) ,

𝐷
𝑘
∇𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+𝛽𝑛+𝑗−𝑘 (𝑡, 𝑡0)

(𝑗 = 𝑚, . . . , 𝑙 − 1) .

(189)

For 𝑗 > 𝑘,𝐷
𝑘
∇𝑦𝑗(𝑡0) = 0, and for 𝑗 = 𝑘,𝐷

𝑘
∇𝑦𝑗(𝑡0) = 1. Thus

we have𝑊(𝑡0) = 1. Thus the functions 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1)
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in (183) and (184) are linearly independent solutions to (182).
The result follows.

Corollary 43. The equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑙 − 1 < 𝛼 ≤ 𝑙; 𝑙 ∈ N; 0 < 𝛽 < 𝛼)

(190)

has its fundamental system of solutions given by

𝑦𝑗 (𝑡) =∇ 𝐹𝛼−𝛽,𝑗+1 (𝜆; 𝑡, 𝑡0) − 𝜆∇𝐹𝛼−𝛽,𝛼−𝛽+𝑗+1

(𝑗 = 0, . . . , 𝑚 − 1) ,

𝑦𝑗 (𝑡) =∇ 𝐹𝛼−𝛽,𝑗+1 (𝜆; 𝑡, 𝑡0) (𝑗 = 𝑚, . . . , 𝑙 − 1) .

(191)

Corollary 44. The equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 0 < 𝛽 < 𝛼 ≤ 1; 𝜆, 𝜇 ∈ R)

(192)

has its solution by

𝑦0 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+1 (𝜆; 𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+1+𝛼−𝛽 (𝜆; 𝑡, 𝑡0) .

(193)

In particular,

𝑦0 (𝑡) =∇ 𝐹𝛼−𝛽,1 (𝜆; 𝑡, 𝑡0) − 𝜆∇𝐹𝛼−𝛽,𝛼−𝛽+1 (𝜆; 𝑡, 𝑡0) (194)

is a solution to the equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 0 < 𝛽 < 𝛼 ≤ 1; 𝜆 ∈ R) .

(195)

Corollary 45. The equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 0, (196)

where 𝑡 > 𝑡0; 1 < 𝛼 ≤ 2, 0 < 𝛽 < 𝛼; 𝜆, 𝜇 ∈ R, has one solution
𝑦0(𝑡), given by (193), and a second solution 𝑦1(𝑡) given by

𝑦1 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+2 (𝜆; 𝑡, 𝑡0)

− 𝜆

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+𝛼−𝛽+2 (𝜆; 𝑡, 𝑡0)

(197)

for 1 < 𝛽 < 𝛼, while, for 0 < 𝛽 ≤ 1, by

𝑦1 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛽𝑛+2 (𝜆; 𝑡, 𝑡0) . (198)

In particular, the equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 1 < 𝛼 ≤ 2, 0 < 𝛽 < 𝛼; 𝜆 ∈ R)

(199)

has one solution 𝑦0(𝑡) given by (194), and a second 𝑦1(𝑡) given
by

𝑦1 (𝑡) =∇ 𝐹𝛼−𝛽,2 (𝜆; 𝑡, 𝑡0) − 𝜆∇𝐹𝛼−𝛽,𝛼−𝛽+2 (𝜆; 𝑡, 𝑡0) (200)

for 1 < 𝛽 < 𝛼, while for 0 < 𝛽 ≤ 1, by

𝑦1 (𝑡) =∇ 𝐹𝛼−𝛽,2 (𝜆; 𝑡, 𝑡0) . (201)

Finally, we find explicit solutions to (157) with any 𝑚 ∈

N \ {1, 2}. It is convenient to rewrite (157) in the form (202)

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=0

𝐴𝑘
𝐶
𝐷

𝛼𝑘
∇,𝑡0

𝑦 (𝑡) = 0

(𝑡 > 𝑡0; 𝑚 ∈ N \ {1, 2} ; 0 = 𝛼0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚−2 < 𝛽 < 𝛼;

𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R) .

(202)

Theorem 46. Let 𝛼, 𝛽, 𝛼𝑚−2, . . . , 𝛼0 and 𝑙, 𝑙𝑚−1, . . . , 𝑙0 ∈

N0 (𝑚 ∈ N \ {1, 2}) be such that

0 = 𝛼0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚−2 < 𝛽 < 𝛼,

0 = 𝑙0 ≤ 𝑙1 ≤ ⋅ ⋅ ⋅ ≤ 𝑙𝑚−1 ≤ 𝑙,

𝑙 − 1 < 𝛼 ≤ 𝑙,

𝑙𝑚−1 − 1 < 𝛽 ≤ 𝑙𝑚−1,

𝑙𝑘 − 1 < 𝛼𝑘 ≤ 𝑙𝑘

(𝑘 = 0, . . . , 𝑚 − 2) ,

(203)

and let 𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R. Then the fundamental system of
solutions to (202) is given by the formulas

𝑦𝑗 (𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

− 𝜆
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛼−𝛼𝑘+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)}

(204)
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for 𝑗 = 0, . . . , 𝑙𝑚−2 − 1; by

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

−𝜆
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)}

(205)

for 𝑗 = 𝑙𝑚−2, . . . , 𝑙𝑚−1 − 1; and by

𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)

(206)

for 𝑗 = 𝑙𝑚−1, . . . , 𝑙 − 1.

Proof. Applying the Laplace transform to (202) and using
(158), we obtain

L∇,𝑡0
{𝑦 (𝑡)} (𝑧) =

𝑙−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘

− 𝜆

𝑙𝑚−1−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛽−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝑙𝑘−1

∑

𝑗=0

𝑑𝑗

𝑧
𝛼𝑘−𝑗−1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘
,

(207)

where 𝑑𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are given by (159).
For 𝑧 ∈ C and | ∑𝑚−2

𝑘=0 𝐴𝑘𝑧
𝛼𝑘−𝛽/(𝑧

𝛼−𝛽
− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘

=
𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

(1 − (∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘−𝛽/ (𝑧𝛼−𝛽 − 𝜆)))

=

∞

∑

𝑛=0

𝑧
−𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(

𝑚−2

∑

𝑘=0

𝐴𝑘𝑧
𝛼𝑘−𝛽)

𝑛

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]
𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

,

(208)

if we also take into account the following relation:

(𝑥0 + ⋅ ⋅ ⋅ + 𝑥𝑚−2)
𝑛
= ( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

𝑚−2

∏

]=0
𝑥
𝑘]
] ,

(209)

where the summation is taken over all 𝑘0, . . . , 𝑘𝑚−2 ∈ N0 such
that 𝑘0 + ⋅ ⋅ ⋅ + 𝑘𝑚−2 = 𝑛.

In addition, for 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
𝛼−𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) ,

(210)

𝑧
𝛽−𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼−𝛽+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) ,

(211)

𝑧
𝛼𝑘−𝑗−1−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
𝑧
(𝛼−𝛽)−(𝛼−𝛼𝑘+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘])

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼−𝛼𝑘+𝑗+1+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) .

(212)

From (210) to (212), we derive the solution to (202):

𝑦 (𝑡) =

𝑙−1

∑

𝑗=0

𝑑𝑗𝑦𝑗 (𝑡) , (213)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (204) for 𝑗 =

0, . . . , 𝑙𝑚−2−1, by (205) for 𝑗 = 𝑙𝑚−2, . . . , 𝑙𝑚−1−1, and by (206)
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for 𝑗 = 𝑙𝑚−1, . . . , 𝑙−1. For 𝑘 = 0, . . . , 𝑙−1, the direct evaluation
yields

𝐷
𝑘
∇𝑦𝑗 (𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ 𝐷
𝑘
∇ {

𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗
(𝑡, 𝑡0)

− 𝜆
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗+𝛼−𝛽
(𝑡, 𝑡0)

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝜕
𝑛

𝜕𝜆𝑛

×

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗+𝛼−𝛼𝑘
(𝑡, 𝑡0)}

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘
(𝑡, 𝑡0)

− 𝜆
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘+𝛼−𝛽
(𝑡, 𝑡0)

−

𝑚−2

∑

𝑘=0

𝐴𝑘

𝜕
𝑛

𝜕𝜆𝑛

×

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘+𝛼−𝛼𝑘
(𝑡, 𝑡0)}

(214)

for 𝑗 = 0, . . . , 𝑙𝑚−2 − 1,

𝐷
𝑘
∇𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

⋅ {
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘
(𝑡, 𝑡0) − 𝜆

𝜕
𝑛

𝜕𝜆𝑛

×

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘+𝛼−𝛽
(𝑡, 𝑡0)}

(215)

for 𝑗 = 𝑙𝑚−2, . . . , 𝑙𝑚−1 − 1, and

𝐷
𝑘
∇𝑦𝑗 (𝑡) =

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!
[

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

×
𝜕
𝑛

𝜕𝜆𝑛

∞

∑

𝑠=0

𝜆
𝑠
ℎ̂𝑠(𝛼−𝛽)+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]+𝑗−𝑘
(𝑡, 𝑡0)

(216)

for 𝑗 = 𝑙𝑚−1, . . . , 𝑙 − 1. For 𝑗 > 𝑘,𝐷
𝑘
∇𝑦𝑗(𝑡0) = 0, and for 𝑗 =

𝑘,𝐷
𝑘
∇𝑦𝑗(𝑡0) = 1. Thus we have𝑊(𝑡0) = 1. Thus the functions

𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙−1) in (204)–(206) are linearly independent
solutions to (202). The result follows.

5.2. Nonhomogeneous Equations with Constant Coefficients.
In this section, we still use Laplace transform method to find
general solutions to the corresponding nonhomogeneous
equations

𝑚

∑

𝑘=1

𝐴𝑘 [
𝐶
𝐷

𝛼𝑘
∇,𝑡0

𝑦 (𝑡)] + 𝐴0𝑦 (𝑡) = 𝑓 (𝑡)

(𝑚 ∈ N; 0 < 𝛼1 < ⋅ ⋅ ⋅ < 𝛼𝑚;

𝑙 − 1 < 𝛼𝑚 < 𝑙, 𝑙 ∈ N, 𝑡0, 𝑡 ∈ Ω𝑘𝑙 , 𝑡 > 𝑡0)

(217)

with real coefficients 𝐴𝑘 ∈ R (𝑘 = 0, . . . , 𝑚) and a given
function 𝑓(𝑡). The general solution to (217) is a sum of
its particular solution and of the general solution to the
corresponding homogeneous equation (157). It is sufficient to
construct a particular solution to (217).

By (158) and (159), for suitable functions 𝑦, the Laplace
transform of 𝐶

𝐷
𝛼
∇,𝑡0

𝑦 is given by

L∇,𝑡0
{
𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡)} (𝑧) = 𝑧
𝛼
L∇,𝑡0

{𝑦 (𝑡)} (𝑧) . (218)

Applying the Laplace transform to (217) and taking (218) into
account, we have

[𝐴0 +

𝑚

∑

𝑘=1

𝐴𝑘𝑧
𝛼𝑘]L∇,𝑡0

{𝑦 (𝑡)} (𝑧) = L∇,𝑡0
{𝑓 (𝑡)} (𝑧) .

(219)

Using the inverse Laplace transformL−1
∇ fromherewe obtain

a particular solution to (217) in the form

𝑦 (𝑡) = L
−1
∇,𝑡0

[
L∇,𝑡0

{𝑓 (𝑡)} (𝑧)

𝐴0 + ∑
𝑚
𝑘=1 𝐴𝑘𝑧

𝛼𝑘
] (𝑡) . (220)

Using the Laplace convolution formula

L∇,𝑡0
{𝑓 ∗ 𝑔} (𝑧) = L∇,𝑡0

{𝑓} (𝑧)L∇,𝑡0
{𝑔} (𝑧) , (221)

we can introduce the Laplace fractional analog of the Green
function as follows:

𝐺𝛼1 ,...,𝛼𝑚
(𝑡) = L

−1
∇,𝑡0

{
1

𝑃𝛼1,...,𝛼𝑚
(𝑧)

} (𝑡) ,

𝑃𝛼1,...,𝛼𝑚
(𝑧) = 𝐴0 +

𝑚

∑

𝑘=1

𝐴𝑘𝑧
𝛼𝑘 ,

(222)

and express a particular solution of (217) in the form of the
Laplace convolution 𝐺𝛼1 ,...,𝛼𝑚

(𝑡) and 𝑓(𝑡)

𝑦 (𝑡) = 𝐺𝛼1 ,...,𝛼𝑚
(𝑡) ∗ 𝑓 (𝑡) . (223)
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Theorem 47. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 𝜆 ∈ R, and 𝑓(𝑡) be a
given function. Then the equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆𝑦 (𝑡) = 𝑓 (𝑡) (224)

is solvable, and its general solution is given by

𝑦 (𝑡) =∇ 𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡) +

𝑙−1

∑

𝑗=0

𝑐𝑗 ∇
𝐹𝛼,𝑗+1 (𝜆; 𝑡, 𝑡0) , (225)

where 𝑐𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are arbitrary real constants.
In particular, the general solutions to (224) with 0 < 𝛼 ≤ 1

and 1 < 𝛼 ≤ 2 have the forms

𝑦 (𝑡) =
∇
𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡) + 𝑐0∇𝐹𝛼,1 (𝜆; 𝑡, 𝑡0) , (226)

𝑦 (𝑡) =
∇
𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡) + 𝑐0∇𝐹𝛼,1 (𝜆, 𝑡, 𝑡0)

+𝑐1∇𝐹𝛼,2 (𝜆; 𝑡, 𝑡0) ,

(227)

respectively, where 𝑐0 and 𝑐1 are arbitrary real constants.

Proof. Equation (224) is (217) with 𝑚 = 1, 𝛼1 = 𝛼, 𝐴1 = 1,
𝐴0 = −𝜆 and (222) takes the form

𝐺𝛼 (𝑡) = L
−1
∇,𝑡0

{
1

𝑧𝛼 − 𝜆
} (𝑡) =∇ 𝐹𝛼,𝛼 (𝜆; 𝑡, 𝑡0) . (228)

Thus (223), with 𝐺𝛼1 ,...,𝛼𝑚
(𝑡) = 𝐺𝛼(𝑡), and Theorem 40 yield

(225). Theorem is proved.

Theorem 48. Let 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N), 0 < 𝛽 < 𝛼, 𝜆, 𝜇 ∈ R,
and let 𝑓(𝑥) be a given function. Then the equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) − 𝜇𝑦 (𝑡) = 𝑓 (𝑡) (229)

is solvable, and its general solution has the form

𝑦 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
∇
𝐹𝛼−𝛽,𝛼+𝑛𝛽 (𝜆, 𝑡, 𝑡0) ∗ 𝑓 (𝑡) +

𝑙−1

∑

𝑗=0

𝑐𝑗𝑦𝑗 (𝑡) ,

(230)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (183) and (184) and
𝑐𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are arbitrary real constants.

Proof. Equation (229) is the same as (217) with𝑚 = 2, 𝛼2 = 𝛼,
𝛼1 = 𝛽, 𝐴2 = 1, 𝐴1 = −𝜆, 𝐴0 = −𝜇, and (222) is given by

𝐺𝛼,𝛽;𝜆,𝜇 (𝑡) = L
−1
∇,𝑡0

{
1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
} (𝑡) . (231)

For 𝑧 ∈ C and |𝜇𝑧−𝛽/(𝑧𝛼−𝛽
− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − 𝜇
=

𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

1 − (𝜇𝑧−𝛽/ (𝑧𝛼−𝛽 − 𝜆))

=

∞

∑

𝑛=0

𝜇
𝑛
𝑧
−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(232)

and then we get

𝐺𝛼,𝛽;𝜆,𝜇 (𝑡) = L
−1
∇,𝑡0

{

∞

∑

𝑛=0

𝜇
𝑛 𝑧

−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

} (𝑡) . (233)

In addition, for 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
−𝛽−𝑛𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼+𝑛𝛽 (𝜆; 𝑡, 𝑡0)} (𝑧)

(234)

and hence (233) takes the following form:

𝐺𝛼,𝛽;𝜆,𝜇 (𝑡) =

∞

∑

𝑛=0

𝜇
𝑛

𝑛!

𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼+𝑛𝛽 (𝜆; 𝑡, 𝑡0) . (235)

Thus the result in (230) follows from (223) with 𝐺𝛼1 ,...,𝛼𝑚
(𝑡) =

𝐺𝛼,𝛽;𝜆,𝜇(𝑡) andTheorem 42.

Theorem 49. Let 𝑚 ∈ N \ {1, 2}, 𝑙 − 1 < 𝛼 ≤ 𝑙 (𝑙 ∈ N),
𝛽, 𝛼1, . . . , 𝛼𝑚−2 be such that 𝛼 > 𝛽 > 𝛼𝑚−2 > ⋅ ⋅ ⋅ > 𝛼1 >

𝛼0 = 0, and let 𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R, and let 𝑓(𝑡) be a given
function. The equation

𝐶
𝐷

𝛼
∇,𝑡0

𝑦 (𝑡) − 𝜆
𝐶
𝐷

𝛽
∇,𝑡0

𝑦 (𝑡) −

𝑚−2

∑

𝑘=0

𝐴𝑘
𝐶
𝐷

𝛼𝑘
∇,𝑡0

𝑦 (𝑡) = 𝑓 (𝑡)

(𝑚 ∈ N \ {1, 2} ; 𝛼 > 𝛽 > 𝛼𝑚−2 > ⋅ ⋅ ⋅ > 𝛼1 > 𝛼0 = 0;

𝜆, 𝐴0, . . . , 𝐴𝑚−2 ∈ R)

(236)

is solvable, and its general solution is given by

𝑦 (𝑡)

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
1

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]

𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0) ∗ 𝑓 (𝑡)

+

𝑙−1

∑

𝑗=0

𝑐𝑗𝑦𝑗 (𝑡) ,

(237)

where 𝑦𝑗(𝑡) (𝑗 = 0, . . . , 𝑙 − 1) are given by (204)–(206) and
𝑐𝑗 (𝑗 = 0, . . . , 𝑙 − 1) are arbitrary real constants.

Proof. Equation (236) is the same equation as (217) with 𝛼𝑚 =

𝛼, 𝛼𝑚−1 = 𝛽, 𝐴𝑚 = 1, 𝐴𝑚−1 = −𝜆, and with −𝐴𝑘 instead of
𝐴𝑘 for 𝑘 = 0, . . . , 𝑚 − 2. Since 𝛼0 = 0, (222) takes the form

𝐺𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆
(𝑡) = L

−1
∇,𝑡0

{
1

𝑧𝛼 − 𝜆𝛼𝛽 − ∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘
} (𝑡) .

(238)
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For 𝑧 ∈ C and | ∑𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘−𝛽/(𝑧
𝛼−𝛽

− 𝜆)| < 1, we have

1

𝑧𝛼 − 𝜆𝑧𝛽 − ∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘

=
𝑧
−𝛽

𝑧𝛼−𝛽 − 𝜆
⋅

1

(1 − (∑
𝑚−2
𝑘=0 𝐴𝑘𝑧

𝛼𝑘−𝛽/ (𝑧𝛼−𝛽 − 𝜆)))

=

∞

∑

𝑛=0

𝑧
−𝛽

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

(

𝑚−2

∑

𝑘=0

𝐴𝑘𝑧
𝛼𝑘−𝛽)

𝑛

=

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]
𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

,

(239)

if we also take into account the following relation:

(𝑥0 + ⋅ ⋅ ⋅ + 𝑥𝑚−2)
𝑛
= ( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

𝑚−2

∏

]=0
𝑥
𝑘]
] ,

(240)

where the summation is taken over all 𝑘0, . . . , 𝑘𝑚−2 ∈ N0 such
that 𝑘0 + ⋅ ⋅ ⋅ + 𝑘𝑚−2 = 𝑛, and then we get

𝐺𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆
(𝑡)

= L
−1
∇,𝑡0

{

{

{

∞

∑

𝑛=0

( ∑

𝑘0+⋅⋅⋅+𝑘𝑚−2=𝑛

)
𝑛!

𝑘0! ⋅ ⋅ ⋅ 𝑘𝑚−2!

× [

𝑚−2

∏

]=0
(𝐴])

𝑘]
]
𝑧
−𝛽−∑

𝑚−2

𝜐=0
(𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

} (𝑡) .

(241)

For 𝑧 ∈ C and |𝜆𝑧𝛽−𝛼| < 1, we have

𝑧
−𝛽−∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]

(𝑧𝛼−𝛽 − 𝜆)
𝑛+1

=
1

𝑛!
L∇,𝑡0

{
𝜕
𝑛

𝜕𝜆𝑛 ∇
𝐹𝛼−𝛽,𝛼+∑

𝑚−2

]=0 (𝛽−𝛼])𝑘]
(𝜆; 𝑡, 𝑡0)} (𝑧) .

(242)

Thus the result in (237) follows from (223) with 𝐺𝛼1 ,...,𝛼𝑚
(𝑡) =

𝐺𝛼1 ,...,𝛼𝑚−2,𝛽,𝛼;𝜆
(𝑡) andTheorem 46.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Authors’ Contribution

All authors contributed equally and significantly in writing
this paper. All authors read and approved the final paper.

Acknowledgments

The authors would like to thank the referees for their useful
comments and suggestions. This work was supported by the
National Natural Science Foundation of China (11171286) and
by Jiangsu Province Colleges andUniversities Undergraduate
Scientific Research Innovative Program (CXZZ12-0974).

References

[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory
and Applications of Fractional Differentia Equation, Elsevier,
London, UK, 2006.

[2] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Inte-
grals and Derivatives, Gordon and Breach Science Publishers,
Yverdon, Switzerland, 1993.

[3] I. Podlubny, Fractional Differential Equations, Academic Press,
San Diego, Calif, USA, 1999.

[4] N. Kosmatov, “Integral equations and initial value problems for
nonlinear differential equations of fractional order,” Nonlinear
Analysis:Theory,Methods&Applications, vol. 70, no. 7, pp. 2521–
2529, 2009.

[5] G. C. Guo and D. Baleanu, “Chaos synchronization of the
discrete fractional logistic map,” Signal Processing, vol. 102, pp.
96–99, 2014.

[6] G. C. Guo and D. Baleanu, “Discrete chaos in fractional delayed
logistic maps,” Nonlinear Dynamics, 2014.

[7] G. Wu and D. Baleanu, “Discrete fractional logistic map and its
chaos,” Nonlinear Dynamics, vol. 75, no. 1-2, pp. 283–287, 2014.

[8] G. C. Wu, D. Baleanu, and S. D. Zeng, “Discrete chaos in
fractional sine and standard maps,” Physics Letters A, vol. 378,
no. 5-6, pp. 484–487, 2014.

[9] F. M. Atici and P. W. Eloe, “Initial value problems in discrete
fractional calculus,” Proceedings of the American Mathematical
Society, vol. 137, no. 3, pp. 981–989, 2009.
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We establish a global existence theorem, and uniqueness and stability of solutions of the Cauchy problem for the Fourier-
transformed Fokker-Planck-Boltzmann equation with singular Maxwellian kernel, which may be viewed as a kinetic model for
the stochastic time-evolution of characteristic functions governed by Brownian motion and collision dynamics.

1. Introduction

In this paper, we consider the Cauchy problem for the space-
homogeneous Fokker-Planck-Boltzmann equation which
takes the form

𝜕𝑡𝑓 (V, 𝑡) = 𝑄 (𝑓, 𝑓) (V, 𝑡) + ]Δ𝑓 (V, 𝑡)

for (V, 𝑡) ∈ R
3
× (0,∞) ,

𝑓 (V, 0) = 𝑓0 (V) for V ∈ R
3
.

(1)

Here, the diffusion constant ] ≥ 0, 𝑓0 is a nonnegative initial
datum and 𝑄(𝑓) stands for the collision term defined as

𝑄 (𝑓, 𝑓) (V)

= ∫
R3
∫
S2
𝑏 (k ⋅ 𝜎) [𝑓 (V) 𝑓 (V∗) − 𝑓 (V) 𝑓 (V∗)] 𝑑𝜎 𝑑V∗

(2)

for each scalar-valued function 𝑓 on R3 where

V =
V + V∗
2

+

V − V∗


2
𝜎,

V∗ =
V + V∗
2

−

V − V∗


2
𝜎,

k = V − V∗
V − V∗



,

(3)

the collision kernel 𝑏 is a nonnegative function on [−1, 1], and
𝑑𝜎 denotes the area measure on the unit sphere S2.

In kinetic theory of a rarefied gas, the Fokker-Planck-
Boltzmann equation (1) models the single-particle distribu-
tion function 𝑓 of its molecules which evolve under binary
and elastic collision dynamics as well as Brownian motion
(see below). Each pair (V, V∗) represents the postcollision
velocities of two molecules colliding with velocities (V, V∗).

The collision kernel 𝑏 is an implicitly-defined function
which represents a specific type of collision dynamics in
terms of the deviation angle 𝜃 defined by cos 𝜃 = k ⋅ 𝜎. In a
physically relevant model known as the Maxwellian kernel, it
is customary to assume that 𝑏(cos 𝜃) is supported in [0, 𝜋/2],
bounded away from 𝜃 = 0, but develops a singularity at 𝜃 = 0

in the form

𝑏 (cos 𝜃) sin 𝜃 ∼ 𝜃
−3/2 as 𝜃 → 0+, (4)
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which accounts for grazing collisions in the long-range inter-
actions.

The Maxwellian kernel is a special instance of

𝐵 =
V − V∗


𝜆
𝑏 (cos 𝜃) (−3 < 𝜆 ≤ 2) , (5)

known as the collision kernel of inverse-power potential type,
and we refer to Villani’s review paper [1] for more details.
Besides the physically relevant assumption (4) on 𝑏, a sim-
plified one is that

‖𝑏‖𝐿1(S2) = 2𝜋∫

𝜋/2

0
𝑏 (cos 𝜃) sin 𝜃 𝑑𝜃 < +∞, (6)

referred to as Grad’s angular cutoff assumption.
The inhomogeneous Fokker-Planck-Boltzmann equation

reads

𝜕𝑡𝑓 + V ⋅ ∇𝑥𝑓 = 𝑄 (𝑓, 𝑓) + ]Δ V𝑓 in R
3
×R
3
× (0,∞)

(7)

for the unknown density 𝑓 = 𝑓(𝑥, V, 𝑡), where the space
variable 𝑥 ∈ R3 stands for the position. In the case when
the collision kernel 𝐵 takes form (5) and the angular part 𝑏
satisfies certain cutoff assumption of type (6), let us mention
some of the earlier works on the Cauchy problem for (7).
In the small perturbations of the vacuum state, a global
existence result is obtained by Hamdache [2]. In the context
of renormalized solutions, global existence and stability of
solutionswith large data are established byDiPerna and Lions
[3]. In the linearized context around the global Maxwellian
𝑀(V) = (2𝜋)

−3/2 exp(−|V|2/2), global existence or asymptotic
behavior of solutions is investigated by Li andMatsumura [4],
Xiong et al. [5], and Zhong and Li [6]. We also refer to Li [7]
for the diffusive property of solutions and further references
cited in the aforementioned work.

As for the homogeneous Fokker-Planck-Boltzmann
equation, we are aware only of results of Goudon [8] for
the global existence of a weak solution in the case when
the collision kernel is given by (5) with −3 < 𝜆 < −2

and 𝑏 satisfies a singular condition of type (4). For the
homogeneous Boltzmann equation, however, more extensive
results are available. We refer to Arkeryd [9, 10], Goudon [8],
and Villani [11] and to the references cited therein.

We recall that the Fourier transform of a complex Borel
measure 𝜇 on R3 is defined by

𝜇 (𝜉) = ∫
R3
𝑒
−𝑖𝜉⋅V

𝑑𝜇 (V) (𝜉 ∈ R
3
) , (8)

which extends to any tempered distribution on R3 via
the usual functional pairing relations. If 𝜇 is a probability
measure, that is, a nonnegative Borel measure with unit mass,
𝜇 is said to be a characteristic function.

From a probability theory point of view, Cauchy problem
(1), with an initial probability density 𝑓0, could be considered
as a governing equation for the time-evolution of a family
of probability densities {𝑓(⋅, 𝑡)}𝑡≥0 and, hence, it is natural
to study the problem on the Fourier transform side for it is

fundamental in probability theory to investigate a probability
distribution through its characteristic function.

In [12], Bobylev discovered a remarkably simple formula
for the Fourier transform of the collision term which reads

[𝑄 (𝑓, 𝑓)] ̂ (𝜉)

= ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝑓 (𝜉
+
) 𝑓 (𝜉
−
) − 𝑓 (𝜉) 𝑓 (0)] 𝑑𝜎,

𝜉
+
=
𝜉 +

𝜉
 𝜎

2
, 𝜉

−
=
𝜉 −

𝜉
 𝜎

2

(9)

for each nonzero 𝜉 ∈ R3. To simplify, we introduce the
Boltzmann-Bobylev operatorB defined by

B (𝜙) (𝜉) = ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉) 𝜙 (0)] 𝑑𝜎

(10)

for each complex-valued function 𝜙 on R3. In view of
Bobylev’s formula, the Fourier-transformed version of (1)
takes the form

(𝜕𝑡 + ] 𝜉

2
) 𝜙 (𝜉, 𝑡) = B (𝜙) (𝜉, 𝑡)

for (𝜉, 𝑡) ∈ R
3
× (0,∞) ,

𝜙 (𝜉, 0) = 𝜙0 (𝜉) for 𝜉 ∈ R
3
,

(11)

which is equivalent to the integral equation

𝜙 (𝜉, 𝑡) = 𝑒
−]|𝜉|2𝑡

𝜙0 (𝜉) + ∫

𝑡

0
𝑒
−]|𝜉|2(𝑡−𝜏)

B (𝜙) (𝜉, 𝜏) 𝑑𝜏, (12)

provided that differentiation under the integral sign was
permissible.

In the theory of stochastic processes, a Markov process
{𝑋𝑡}𝑡≥0 in any Euclidean space R𝑛, with stationary indepen-
dent increments, for which the characteristic functions of
its continuous transition probability densities are given by
the Gaussian family {𝑒−|𝜉|

2𝑡
}𝑡≥0 is known as Brownian motion

or the symmetric stable Lévi process of index 2 (see [13]).
Hence, Cauchy problem (11)may be viewed as a kineticmodel
for the stochastic time-evolution of characteristic functions
governed by Brownian motion and Maxwellian collision
dynamics. Formore detailed interpretations andmotivations,
we refer to the inspiring paper [14] of Bisi et al. which deals
with Cauchy problem (11) in the inelastic setting.

In this paper, we are concerned about global existence and
uniqueness and stability of solutions of Cauchy problem (11)
in the space of characteristic functions. Before proceeding
further, let us describe briefly some of the earlier works
about the Cauchy problem for the corresponding Fourier-
transformed Boltzmann equation:

𝜕𝑡𝜙 (𝜉, 𝑡) = B (𝜙) (𝜉, 𝑡)

for (𝜉, 𝑡) ∈ R
3
× (0,∞) ,

𝜙 (𝜉, 0) = 𝜙0 (𝜉) for 𝜉 ∈ R
3

(13)
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for which the Maxwellian kernel 𝑏 is assumed to satisfy the
singular or noncutoff condition as described in (4).

(a) It is Pulvirenti and Toscani [15] who first established
a global existence of solution to (13) on the space of
characteristic functions 𝜙 satisfying

𝜙 (0) = 1, ∇𝜙 (0) = 0, Δ𝜙 (0) = −3. (14)

They also proved uniqueness and stability of solutions
in terms of Tanaka’s functionals related with proba-
bilistic Wasserstein distance.

(b) In [16], Toscani and Villani proved uniqueness and
stability, on the same solution space, with respect to
the Fourier-based metric 𝑑2 which is a particular case
of

𝑑𝛼 (𝑓, 𝑔) =
𝜙 − 𝜓

𝛼 = sup
𝜉∈R3

𝜙 (𝜉) − 𝜓 (𝜉)


𝜉

𝛼 (15)

for each 𝛼 ≥ 0 where 𝜙 = 𝑓 and 𝜓 = 𝑔 (see
also [17] for the properties of Fourier-based metrics
and their applications to the Boltzmann and Fokker-
Planck-Boltzmann equations in the inelastic setting).

(c) In [18], Bobylev and Cercignani constructed an
explicit class of self-similar solutions whose proba-
bility densities possess infinite energy for all time.
Specifically, they exhibited a class of characteristic
functions Φ(𝜉, 𝑡) satisfying (13) and ΔΦ(0, 𝑡) = −∞

for all 𝑡 ≥ 0.
(d) In [19], Cannone and Karch established global
existence and uniqueness and stability of solutions
on the spaceK𝛼, to be explained below, which turns
out to be larger than the solution space of Pulvirenti
and Toscani and closely related with infinite energy
solutions. In [20], Morimoto improved their work
by weakening the assumptions on the kernel and
providing another proof of uniqueness.

As to Cauchy problem (11), our aim is to establish global
existence and uniqueness and stability of solutions on the
space introduced by Cannone andKarch [19]. Following their
notation, letK be the set of all characteristic functions onR3.
For 0 < 𝛼 ≤ 2, let

K
𝛼
= {𝜙 ∈ K :

𝜙 − 1
𝛼 = sup
𝜉∈R3

𝜙 (𝜉) − 1


𝜉

𝛼 < +∞} . (16)

While K𝛼 is not a vector space, it is a complete metric
space with respect to the Fourier-based metric 𝑑𝛼 defined
in (15) (for the proofs and further properties, see [19]). As a
monotonically indexed family, the embedding

{1} ⊂ K
𝛽
⊂ K
𝛼
⊂ K (17)

holds for 0 < 𝛼 ≤ 𝛽 ≤ 2. Any characteristic function 𝜙

satisfying (14) clearly belongs toK2. More extensively, it can

be trivially verified that if 𝜇 is a probability measure on R3

such that

∫
R3
|V|𝛼 𝜇 (𝑑V) < +∞ (18)

with the additional assumption that the first-order moments
vanish in the case 1 < 𝛼 ≤ 2, then 𝜇 ∈ K𝛼. The reverse
implication, however, is false as it can be seen from the Lévi
characteristic function 𝜇(𝜉) = 𝑒

−|𝜉|𝛼 with 0 < 𝛼 < 2 which
belongs toK𝛼 but

∫
R3
|V|𝛼 𝜇 (𝑑V) = +∞. (19)

As ameans of treating singularity, we followMorimoto to
consider weak integrability of the kernel 𝑏 in the form

∫

𝜋/2

0
𝑏 (cos 𝜃) sin 𝜃 sin𝛼0 (𝜃

2
)𝑑𝜃 < +∞ (20)

with 0 < 𝛼0 ≤ 2. It is certainly satisfied by the trueMaxwellian
kernel 𝑏 which behaves like (4) as long as 𝛼0 > 1/2. In
addition, we will consider

𝜆𝛼 = ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


)(

𝜉
+

𝛼
+
𝜉
−

𝛼

𝜉

𝛼 − 1)𝑑𝜎

= 2𝜋∫

𝜋/2

0
𝑏 (cos 𝜃) sin 𝜃

× [cos𝛼 (𝜃
2
) + sin𝛼 (𝜃

2
) − 1] 𝑑𝜃

(21)

for 0 < 𝛼 ≤ 2, which is independent of 𝜉 ̸= 0 and finite under
condition (20) for all 𝛼0 ≤ 𝛼 ≤ 2. Introduced by Cannone and
Karch, these quantities will serve as the stability exponents.

To state our results, we set down the precise solution
spaces. Let 𝑇 > 0 be arbitrary. As it is customary, we denote
by 𝐶([0, 𝑇];K𝛼) the space of all complex-valued functions 𝜙
on R3 × [0, 𝑇] such that 𝜙(⋅, 𝑡) ∈ K𝛼(R3) for each 𝑡 ∈ [0, 𝑇]

and the map 𝑡 → ‖𝜙(𝑡) − 1‖𝛼 is continuous on [0, 𝑇]. By
the Riemann-Lebesgue lemma, each characteristic function
is continuous inR3 and, hence, the space continuity is alluded
in the definition of 𝐶([0, 𝑇];K𝛼).

In consideration of time regularity, we will writeΩ𝛼(R3 ×
[0, 𝑇]) for the space of 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) such that 𝜙(𝜉, ⋅) ∈
𝐶([0, 𝑇]), 𝜕𝑡𝜙(𝜉, ⋅) ∈ 𝐶((0, 𝑇)) for each fixed 𝜉 ∈ R3. We put

Ω
𝛼
(R
3
× [0,∞)) = ⋃

𝑇>0

Ω
𝛼
(R
3
× [0, 𝑇]) . (22)

Our main result for global existence is as follows.

Theorem 1. Assume that the collision kernel 𝑏 satisfies a weak
integrability condition (20) for some 0 < 𝛼0 ≤ 2 and 𝛼0 ≤ 𝛼 ≤

2. Then, for any initial datum 𝜙0 ∈ K𝛼, there exists a classical
solution 𝜙 to the Cauchy problem (11) in the space Ω𝛼(R3 ×
[0,∞)) satisfying

𝜙 (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) . (23)
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A distinctive feature is the existence of a solution satisfy-
ing the stated maximum growth estimate which asserts in a
sense that the solution stays within Brownian motion for all
time.

To state our main result for stability and uniqueness, we
put

Ω
𝛼
] (R
3
× [0,∞))

= { 𝜙 ∈ Ω
𝛼
(R3 × [0,∞)) :

𝜙 (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) } .

(24)

Theorem 2. Under the same hypotheses on 𝛼, 𝑏 as in Theo-
rem 1, if 𝜙, 𝜓 are solutions to Cauchy problem (11) in the space
Ω
𝛼
] (R
3
×[0,∞)) corresponding to the initial data 𝜙0, 𝜓0 ∈ K𝛼,

respectively, then, for all 𝑡 ≥ 0,

sup
𝜉∈R3

[𝑒
]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) − 𝜓 (𝜉, 𝑡)


𝜉

𝛼 ]

≤ 𝑒
𝜆𝛼𝑡 sup
𝜉∈R3

𝜙0 (𝜉) − 𝜓0 (𝜉)


𝜉

𝛼 .

(25)

In particular, for any initial datum 𝜙0 ∈ K𝛼, Cauchy problem
(11) has at most one solution in the space Ω𝛼] (R

3
× [0,∞)).

Upon setting ] = 0, both theorems are reduced to those
of Cannone and Karch and Morimoto. In fact, due to a
special structure of the Boltzmann-Bobylev operator, to be
explained below, the existence theorem is an almost instant
consequence of their existence theorem except for some
technical points. On the other hand, the stability theorem is
not so straightforward and our proof will be carried out along
Gronwall-type reasonings.

As some functionals or expressions involving the space
and time variables are too lengthy to put effectively, we will
often abbreviate the space variables for simplicity in the
sequel.

2. Preliminaries

A well-known Fourier transform formula states that

𝑒
−|𝜉|2𝑡

=
1

(4𝜋𝑡)
3/2

∫
R3
𝑒
−𝑖𝜉⋅V

𝑒
−|V|2/4𝑡

𝑑V (𝜉 ∈ R
3
, 𝑡 > 0) (26)

and, hence, it is clear that the Gaussian family {𝑒−|𝜉|
2𝑡
}𝑡≥0 ⊂

K whose probability densities are self-similar Gaussian
functions (see, e.g., [21]).

Lemma 3. If 0 < 𝛼 ≤ 2 and 𝑡 > 0, then

sup
𝜉∈R3

1 − 𝑒
−|𝜉|2𝑡

𝜉

𝛼 ≤ 𝑡

𝛼/2
. (27)

Proof. Observe that

sup
𝜉∈R3

1 − 𝑒
−|𝜉|2𝑡

𝜉

𝛼 = 𝑡

𝛼/2
⋅ sup
𝑟>0

𝑔𝛼 (𝑟)

with 𝑔𝛼 (𝑟) = (
1 − 𝑒
−𝑟

𝑟𝛼/2
) .

(28)

Since 𝑔𝛼 is a smooth function on (0,∞) with

𝑔𝛼 (𝑟) ≤ min (𝑟1−𝛼/2, 1) ,

lim
𝑟→0+

𝑔𝛼 (𝑟) = lim
𝑟→∞

𝑔𝛼 (𝑟) = 0,

(29)

the assertion follows.

TheBoltzmann-Bobylev operator defined in (10) takes the
form

B (𝜙) (𝜉) = ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜎 (30)

for each characteristic function 𝜙. We setB(𝜙)(0) = 0 in the
sequel.

For a nonzero 𝜉 ∈ R3, by considering a parametrization
of the unit sphere in terms of the deviation angle from 𝜉/|𝜉|,
it is well known that

B (𝜙) (𝜉) = ∫

𝜋/2

0
𝑏 (cos 𝜃) sin 𝜃

× {∫
S1(𝜉)

[𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜔}𝑑𝜃

(31)

in whichS1(𝜉) = S2∩𝜉⊥ and 𝑑𝜔 denotes the areameasure on
the unit circle S1 ⊂ R3. As it is defined in (9), the spherical
variables 𝜉+, 𝜉− are expressed in terms of 𝜃, 𝜔 via

𝜎 = cos 𝜃 𝜉
𝜉


+ sin 𝜃𝜔. (32)

The following are due toMorimoto [20, page 555].We put

𝜇𝛼 = 2𝜋∫

𝜋/2

0
𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃

2
)𝑑𝜃, (33)

which is finite under condition (20) for any 𝛼0 ≤ 𝛼 ≤ 2.

Lemma 4. For 0 < 𝛼 ≤ 2, assume that the kernel 𝑏 satisfies
the condition 𝜇𝛼 < +∞. Let 𝜙 ∈ K𝛼 and 𝜉 ∈ R3 − {0}. Then,


∫
S1(𝜉)

[𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜔



≤ 16𝜋
𝜙 − 1

𝛼
𝜉

𝛼 sin𝛼 (𝜃

2
)

(34)

for each 𝜃 ∈ (0, 𝜋/2]. Moreover,
B (𝜙) (𝜉)

 ≤ 8𝜇𝛼
𝜙 − 1

𝛼
𝜉

𝛼
. (35)
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As an application, we have the following time-continuity
property.

Lemma 5. For 0 < 𝛼 ≤ 2, assume that the kernel 𝑏 satisfies
the condition 𝜇𝛼 < +∞ and 𝑇 > 0. If 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) and
𝜙(𝜉, ⋅) ∈ 𝐶([0, 𝑇]) for each 𝜉 ∈ R3, thenB(𝜙)(𝜉, ⋅) ∈ 𝐶([0, 𝑇])

for each 𝜉 ∈ R3.

Proof. Fix a nonzero 𝜉 ∈ R3 and 𝑡0 ∈ [0, 𝑇]. For any sequence
(𝑡𝑛) ⊂ [0, 𝑇] with 𝑡𝑛 → 𝑡0, we may write, with the aid of (31),

B (𝜙) (𝜉, 𝑡𝑛)

= ∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
, 𝑡𝑛) 𝜙 (𝜉

−
, 𝑡𝑛) − 𝜙 (𝜉, 𝑡𝑛)] 𝑑𝜎

= ∫

𝜋/2

0
𝑏 (cos 𝜃) sin 𝜃𝐴𝑛 (𝜉, 𝜃) 𝑑𝜃 where

𝐴𝑛 (𝜉, 𝜃) = ∫
S1(𝜉)

[𝜙 (𝜉
+
, 𝑡𝑛) 𝜙 (𝜉

−
, 𝑡𝑛) − 𝜙 (𝜉, 𝑡𝑛)] 𝑑𝜔.

(36)

By the estimate (34), we notice that

𝐴𝑛 (𝜉, 𝜃)
 ≤ 16𝜋

𝜙 (𝑡𝑛) − 1
𝛼
𝜉

𝛼 sin𝛼 (𝜃

2
)

≤ 16𝜋𝐶𝛼 (𝑇)
𝜉

𝛼 sin𝛼 (𝜃

2
) where

𝐶𝛼 (𝑇) = max
𝑡∈[0,𝑇]

𝜙(𝑡) − 1
𝛼 .

(37)

By the continuity of 𝑡 → ‖𝜙(𝑡) − 1‖𝛼, we have 𝐶𝛼(𝑇) < +∞.
Since

𝑏 (cos 𝜃) sin 𝜃 𝐴𝑛 (𝜉, 𝜃)


≤ 16𝜋𝐶𝛼 (𝑇)
𝜉

𝛼
𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃

2
)

≡ 𝐴 (𝜉, 𝜃)

(38)

uniformly in 𝑛 and the definition of 𝜇𝛼 gives

∫

𝜋/2

0
𝐴 (𝜉, 𝜃) 𝑑𝜃 = 8𝜇𝛼𝐶𝛼 (𝑇)

𝜉

𝛼
< +∞, (39)

we may apply Lebesgue’s dominated convergence
theorem to evaluate the limit under the integral sign
lim𝑛→∞B(𝜙)(𝜉, 𝑡𝑛) = B(𝜙)(𝜉, 𝑡0), which proves continuity
at 𝑡0.

3. Global Existence

An important feature of the Boltzmann-Bobylev operatorB
is that it satisfies the pointwise identity

𝑒
ℎ(𝑡)|𝜉|2

B (𝜙) (𝜉, 𝑡) = B (𝑒
ℎ(𝑡)|𝜉|2

𝜙) (𝜉, 𝑡) (40)

for any scalar-valued function ℎ defined on [0,∞) and for
any scalar-valued function 𝜙 on R3 × [0,∞), which results

from |𝜉
+
|
2
+ |𝜉
−
|
2
= |𝜉|
2 for all 𝜉 ∈ R3 and 𝜎 ∈ S2. As a

consequence, at the formal level, it is straightforward to find
that if 𝜙 is a solution to Cauchy problem (13) of the Fourier-
transformed Boltzmann equation, then 𝑒−]|𝜉|

2𝑡
𝜙 is a solution

to Cauchy problem (11) of our consideration.
To be rigorous, we begin with quoting the existence

theorem of Cannone and Karch [19] and Morimoto [20] in
a combined manner.

Theorem 6. Assume that 𝑏 satisfies (20) for some 0 < 𝛼0 ≤ 2.
Let 𝛼0 ≤ 𝛼 ≤ 2 and 𝜙0 ∈ K𝛼. Then, there exists a unique
classical solution𝜙 to Cauchy problem (13) in the spaceΩ𝛼(R3×
[0,∞)).

Remark 7. In their work, Cannone and Karch constructed a
unique solution on the space 𝐶([0,∞);K𝛼) without men-
tioning time-regularity conditions. SinceK𝛼 is not a Banach
space, the meaning of a classical solution to Cauchy problem
(20) is not so clear in this space. Inspecting their proof and
making use of the time continuity of the Boltzmann-Bobylev
operator as stated in Lemma 5, however, it is not hard to find
that their solution is indeed a classical solution in the space
Ω
𝛼
(R3 × [0,∞)) for which the partial derivative in time is

taken in the usual pointwise sense.
Let us consider an equivalent formulation of (13):

𝜙 (𝜉, 𝑡) = 𝜙0 (𝜉) + ∫

𝑡

0
B (𝜙) (𝜉, 𝜏) 𝑑𝜏, (41)

where the time integration is taken in the usual Riemann
sense. By Lemma 5, if 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) and 𝜙(𝜉, 𝑡) is
continuous in 𝑡 for each fixed 𝜉, then this integral is well
defined for a kernel 𝑏 satisfying 𝜇𝛼 < +∞.

We will need a technical lemma in support ofTheorem 6.

Lemma 8. For 0 < 𝛼 ≤ 2, let 𝜇𝛼 < +∞ and 𝜙0 ∈ K𝛼. Assume
that 𝜙 ∈ 𝐶([0, 𝑇];K𝛼) and 𝜙(𝜉, 𝑡) is continuous in 𝑡 ∈ [0, 𝑇]

for each fixed 𝜉. If𝜙 is a solution to (41), then, for all 𝑠, 𝑡 ∈ [0, 𝑇],

(i) 𝜙 (𝑡) − 1
𝛼 ≤ 𝑒

8𝜇𝛼𝑡 𝜙0 − 1
𝛼 ,

(ii) 𝜙 (𝑡) − 𝜙 (𝑠)
𝛼 ≤ (8𝜇𝛼𝑒

8𝜇𝛼𝑇 𝜙0 − 1
𝛼) |𝑡 − 𝑠| .

(42)

Proof. (i) An application of Lemma 4 yields

𝜙 (𝑡) − 1
𝛼 ≤

𝜙0 − 1
𝛼 + 8𝜇𝛼 ∫

𝑡

0

𝜙 (𝜏) − 1
𝛼 𝑑𝜏,

(43)

which yields the desired estimate in view of Gronwall’s
lemma.

(ii) Assuming 𝑠 < 𝑡, we apply Lemma 4 once again to find
𝜙 (𝑡) − 𝜙 (𝑠)

𝛼

≤ ∫

𝑡

𝑠
sup
𝜉∈R3

B (𝜙) (𝜉, 𝜏)


𝜉

𝛼 𝑑𝜏

≤ 8𝜇𝛼 (max
𝜏∈[0,𝑇]

𝜙 (𝜏) − 1
𝛼) |𝑡 − 𝑠| ,

(44)

which yields the desired estimate upon combining with (i).
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Proof of Theorem 1. Since the stated assumptions on 𝑏 and 𝜙0
are the same as those of Theorem 6, there exists a unique
solution 𝜙 to Cauchy problem (13) in the space Ω

𝛼
(R3 ×

[0,∞)). Put

Φ (𝜉, 𝑡) = 𝑒
−]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) . (45)

We will verify that Φ is a solution to Cauchy problem (11)
satisfying the stated maximum growth estimate.

(i) Clearly Φ(⋅, 𝑡) ∈ K for any fixed 𝑡 ≥ 0. Moreover,
Lemma 3 gives

Φ (𝜉, 𝑡) − 1


𝜉

𝛼

≤ 𝑒
−]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) − 1


𝜉

𝛼 +

1 − 𝑒
−]|𝜉|2𝑡

𝜉

𝛼

≤
𝜙 (𝑡) − 1

𝛼 + (]𝑡)
𝛼/2

,

(46)

which implies Φ(⋅, 𝑡) ∈ K𝛼 for any fixed 𝑡 ≥ 0 with

‖Φ (𝑡) − 1‖𝛼 ≤ 𝑒
8𝜇𝛼𝑡 𝜙0 − 1

𝛼 + (]𝑡)
𝛼/2

. (47)

(ii) For 𝑠, 𝑡 ∈ [0, 𝑇], with an arbitrary 𝑇 > 0, writing

Φ (𝑡) − Φ (𝑠) = −𝑒
−]|𝜉|2𝑠

[1 − 𝑒
−]|𝜉|2(𝑡−𝑠)

] 𝜙 (𝑡)

+ 𝑒
−]|𝜉|2𝑠

[𝜙 (𝑡) − 𝜙 (𝑠)] ,

(48)

we deduce from Lemmas 3 and 8
‖Φ (𝑡) − Φ (𝑠)‖𝛼

≤ (] |𝑡 − 𝑠|)𝛼/2 + 𝜙 (𝑡) − 𝜙 (𝑠)
𝛼

≤ 𝐶𝑇 |𝑡 − 𝑠|
𝛼/2 where

𝐶𝑇 = ]𝛼/2 + 8𝜇𝛼𝑒
8𝜇𝛼𝑇 𝜙0 − 1

𝛼 𝑇
1−𝛼/2

.

(49)

Thus, themap 𝑡→ ‖Φ(𝑡)−1‖𝛼 is Lipschitz continuous
in [0, 𝑇] for

‖Φ (𝑡) − 1‖𝛼 − ‖Φ (𝑠) − 1‖𝛼
 ≤ ‖Φ (𝑡) − Φ (𝑠)‖𝛼 . (50)

Therefore, Φ ∈ Ω
𝛼
(R3 × [0,∞)) for the time-regularity

conditions are obviously valid. In particular, Lemmas 4 and 5
imply thatB(Φ) is well defined with

B (Φ) (𝜉, 𝑡)
 ≤ 8𝜇𝛼 ‖Φ (𝑡) − 1‖𝛼

𝜉

𝛼 (51)

for each (𝜉, 𝑡) ∈ R3 × [0,∞) andB(Φ)(𝜉, 𝑡) is continuous in
𝑡 for each 𝜉. Clearly, Φ(𝜉, 0) = 𝜙0(𝜉). We calculate

𝜕𝑡Φ (𝜉, 𝑡)

= −] 𝜉

2
𝑒
−]|𝜉|2𝑡

𝜙 (𝜉, 𝑡) + 𝑒
−]|𝜉|2𝑡

𝜕𝑡𝜙 (𝜉, 𝑡)

= −] 𝜉

2
Φ (𝜉, 𝑡) + 𝑒

−]|𝜉|2𝑡
B (𝜙) (𝜉, 𝑡)

= −] 𝜉

2
Φ (𝜉, 𝑡) +B (Φ) (𝜉, 𝑡)

(52)

for all (𝜉, 𝑡) ∈ R3 × (0,∞), where we have used (40). Thus,Φ
satisfies Cauchy problem (11). Since it is obvious that

Φ (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) , (53)

our proof of Theorem 1 is complete.

Remark 9. In our forthcoming paper [22], we study the
Cauchy problem for the Boltzmann equation coupled with
fractional Laplacian diffusion terms on the Fourier transform
side in which we give direct proofs of global existence.

4. Uniqueness and Stability of Solutions

To proceed our proof for stability of solutions, we begin with
estimating the time-growth behavior of ‖𝜙(𝑡) − 1‖𝛼 for each
solution 𝜙 of Cauchy problem (11) or integral equation (12).

Lemma 10. Under the same hypotheses on 𝛼, 𝑏, 𝜙 as stated in
Lemma 8, if 𝜙 is a solution to (12), then

𝜙 (𝑡) − 1
𝛼 ≤ 𝑒

8𝜇𝛼𝑡 [
𝜙0 − 1

𝛼 + (]𝑡)
𝛼/2
]

(𝑡 ≥ 0) .

(54)

Proof. Writing

𝜙 (𝜉, 𝑡) − 1

𝜉

𝛼 =

𝑒
−]|𝜉|2𝑡

𝜙0 (𝜉) − 1

𝜉

𝛼

+ ∫

𝑡

0
𝑒
−]|𝜉|2(𝑡−𝜏)B (𝜙) (𝜉, 𝜏)

𝜉

𝛼 𝑑𝜏

(55)

and applying Lemma 4, it is straightforward to obtain

𝜙 (𝑡) − 1
𝛼 ≤

𝜙0 − 1
𝛼 + (]𝑡)

𝛼/2

+ 8𝜇𝛼 ∫

𝑡

0

𝜙 (𝜏) − 1
𝛼 𝑑𝜏.

(56)

A Gronwall-type argument yields
𝜙 (𝑡) − 1

𝛼

≤ 𝑒
8𝜇𝛼𝑡 {

𝜙0 − 1
𝛼 +

𝛼]𝛼/2

2
∫

𝑡

0
𝑒
−8𝜇𝛼𝜏𝜏

𝛼/2−1
𝑑𝜏}

≤ 𝑒
8𝜇𝛼𝑡 [

𝜙0 − 1
𝛼 + (]𝑡)

𝛼/2
] .

(57)

Proof ofTheorem 2. Wewill prove the stated stability inequal-
ity for each 𝑡 ∈ [0, 𝑇] with an arbitrarily fixed 𝑇 > 0.

Let us consider a monotone sequence (𝑏𝑛) of kernels
obtained from 𝑏 by cutting off the singularity at 𝜃 = 0 in the
manner

𝑏𝑛 (cos 𝜃) = 𝑏 (cos 𝜃) 𝜒[1/𝑛,𝜋/2] (𝜃) , 𝑛 = 1, 2, . . . . (58)

Since 𝑏 is assumed to be at least bounded away from 𝜃 = 0,
it is clear that each 𝑏𝑛 is integrable on the unit sphere, 𝑏𝑛 ≤ 𝑏
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and 𝑏𝑛 → 𝑏monotonically. Setting 𝑏𝑟𝑛 = 𝑏 − 𝑏𝑛 for each 𝑛, we
introduce two sequences of operators (G𝑛), (R𝑛) defined by

G𝑛 (𝜙) (𝜉) = ∫
S2
𝑏𝑛 (

𝜉 ⋅ 𝜎
𝜉


) 𝜙 (𝜉
+
) 𝜙 (𝜉
−
) 𝑑𝜎,

R𝑛 (𝜙) (𝜉) = ∫
S2
𝑏
𝑟
𝑛 (

𝜉 ⋅ 𝜎
𝜉


) [𝜙 (𝜉
+
) 𝜙 (𝜉
−
) − 𝜙 (𝜉)] 𝑑𝜎.

(59)

Suppose that 𝜙, 𝜓 ∈ Ω
𝛼
] (R
3
× [0,∞)) are solutions to

Cauchy problem (11) with the initial data 𝜙0, 𝜓0 ∈ K𝛼,
respectively. Then,

𝜕𝑡 (𝜙 − 𝜓) + (
𝑏𝑛

1 + ] 𝜉

2
) (𝜙 − 𝜓)

= [G𝑛 (𝜙) −G𝑛 (𝜓)] + [R𝑛 (𝜙) −R𝑛 (𝜓)]

(60)

for which we denote

𝑏𝑛
1 = 2𝜋∫

𝜋/2

1/𝑛
𝑏 (cos 𝜃) sin 𝜃 𝑑𝜃 < +∞. (61)

Upon setting

𝑈 (𝜉, 𝑡) = 𝑒
]|𝜉|2𝑡

[
𝜙 (𝜉, 𝑡) − 𝜓 (𝜉, 𝑡)

𝜉

𝛼 ] (62)

for 𝜉 ̸= 0 and 𝑈(0, 𝑡) = 0, the above identity implies


𝜕𝑡 [𝑒
‖𝑏𝑛‖1𝑡𝑈 (𝜉, 𝑡)]



≤ 𝑒
(‖𝑏𝑛‖1+]|𝜉|

2)𝑡

× {



G𝑛 (𝜙) −G𝑛 (𝜓)
𝜉

𝛼



+



R𝑛 (𝜙) −R𝑛 (𝜓)
𝜉

𝛼



} .

(63)

Let 𝜌 > 0 be arbitrary. Put 𝑈𝜌(𝑡) = sup|𝜉|≤𝜌|𝑈(𝜉, 𝑡)| and

𝛾𝑛,𝛼 = ∫
S2
𝑏𝑛 (

𝜉 ⋅ 𝜎
𝜉


)(

𝜉
+

𝛼
+
𝜉
−

𝛼

𝜉

𝛼 )𝑑𝜎

= 2𝜋∫

𝜋/2

1/𝑛
𝑏 (cos 𝜃) sin 𝜃 [cos𝛼 (𝜃

2
) + sin𝛼 (𝜃

2
)] 𝑑𝜃.

(64)

For |𝜉| ≤ 𝜌, we make use of |𝜉+| ≤ |𝜉| to estimate

𝜙 (𝜉
+
, 𝑡) − 𝜓 (𝜉

+
, 𝑡)



≤ 𝑒
−]|𝜉+|2𝑡 𝜉

+

𝛼

× {𝑒
]|𝜉+|2𝑡



𝜙 (𝜉
+
, 𝑡) − 𝜓 (𝜉

+
, 𝑡)

𝜉
+
𝛼



}

≤ 𝑒
−]|𝜉+|2𝑡 𝜉

+

𝛼
𝑈𝜌 (𝑡) .

(65)

Likewise, we make use of |𝜉−| ≤ |𝜉| to estimate

𝜙 (𝜉
−
, 𝑡) − 𝜓 (𝜉

−
, 𝑡)

 ≤ 𝑒
−]|𝜉−|2𝑡 𝜉

−

𝛼
𝑈𝜌 (𝑡) (66)

for all |𝜉| ≤ 𝜌. Since |𝜙(𝜉, 𝑡)| ≤ 𝑒
−]|𝜉|2𝑡, |𝜓(𝜉, 𝑡)| ≤ 𝑒

−]|𝜉|2𝑡, we
find

𝜙 (𝜉
+
, 𝑡) 𝜙 (𝜉

−
, 𝑡) − 𝜓 (𝜉

+
, 𝑡) 𝜓 (𝜉

−
, 𝑡)



≤ 𝑒
−]|𝜉|2𝑡

(
𝜉
+

𝛼
+
𝜉
−

𝛼
)𝑈𝜌 (𝑡)

(67)

for all |𝜉| ≤ 𝜌. Henceforth, it is straightforward to deduce

𝑒
]|𝜉|2𝑡



G𝑛 (𝜙) −G𝑛 (𝜓)
𝜉

𝛼



≤ 𝛾𝑛,𝛼𝑈𝜌 (𝑡) (68)

for all |𝜉| ≤ 𝜌. On the other hand, Lemma 4 gives

R𝑛 (𝜙) (𝜉, 𝑡)
 = 16𝜋

𝜙 (𝑡) − 1
𝛼
𝜉

𝛼

× ∫

1/𝑛

0
𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃

2
)𝑑𝜃.

(69)

By considering similar estimate forR𝑛(𝜓), hence, we note

𝑒
]|𝜉|2𝑡



R𝑛 (𝜙) −R𝑛 (𝜓)
𝜉

𝛼



≤ 𝑀𝑛 (70)

for all |𝜉| ≤ 𝜌 and 𝑡 ∈ [0, 𝑇], where we put

𝑀𝑛 = 𝑀(𝜌, 𝑇)∫

1/𝑛

0
𝑏 (cos 𝜃) sin 𝜃sin𝛼 (𝜃

2
)𝑑𝜃,

𝑀 (𝜌, 𝑇) = 16𝜋𝑒
]𝜌2𝑇

× max
𝑡∈[0,𝑇]

(
𝜙 (𝑡) − 1

𝛼 +
𝜓 (𝑡) − 1

𝛼) .

(71)

In view of the growth estimate of Lemma 10,

𝑀(𝜌, 𝑇)

≤ 16𝜋𝑒
(]𝜌2+8𝜇𝛼)𝑇

× [
𝜙0 − 1

𝛼 +
𝜓0 − 1

𝛼 + 2 (]𝑇)
𝛼/2
] < +∞,

(72)

and so an application of Lebesgue’s dominated convergence
theorem shows𝑀𝑛 → 0 as 𝑛 → ∞ under the assumption
𝜇𝛼 < +∞.

Now, estimates (68) and (70) imply


𝜕𝑡 [𝑒
‖𝑏𝑛‖1𝑡𝑈 (𝜉, 𝑡)]


≤ 𝛾𝑛,𝛼𝑒

‖𝑏𝑛‖1𝑡𝑈𝜌 (𝑡) + 𝑀𝑛𝑒
‖𝑏𝑛‖1𝑡 (73)

for all |𝜉| ≤ 𝜌, 𝑡 ∈ [0, 𝑇]. A standard Gronwall-type argument
gives

𝑈𝜌 (𝑡) ≤ 𝑒
(𝛾𝑛,𝛼−‖𝑏𝑛‖1)𝑡𝑈𝜌 (0) +

𝑀𝑛

𝛾𝑛,𝛼 −
𝑏𝑛

1

[𝑒
(𝛾𝑛,𝛼−‖𝑏𝑛‖1)𝑡 − 1] .

(74)
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Since

𝛾𝑛,𝛼 −
𝑏𝑛

1 = 2𝜋∫

𝜋/2

1/𝑛
𝑏 (cos 𝜃) sin 𝜃

× [cos𝛼 (𝜃
2
) + sin𝛼 (𝜃

2
) − 1] 𝑑𝜃,

(75)

we notice 0 < 𝛾𝑛,𝛼 − ‖𝑏𝑛‖1 → 𝜆𝛼 increasingly as 𝑛 → ∞.
Passing to the limit, we conclude 𝑈𝜌(𝑡) ≤ 𝑒

𝜆𝛼𝑡𝑈𝜌(0) for all
𝑡 ∈ [0, 𝑇]. Letting 𝜌 → +∞, we finally obtain

sup
𝜉∈R3

𝑈 (𝜉, 𝑡)
 ≤ 𝑒
𝜆𝛼𝑡 sup
𝜉∈R3

𝑈 (𝜉, 0)
 , (76)

which is equivalent to the desired stability estimate on [0, 𝑇].

5. Concluding Remarks

Having established global existence and uniqueness and
stability of solutions to the Fourier-transformed version of
Fokker-Planck-Boltzmann equation on the spaceK𝛼, we end
our paper with a few additional remarks.

(a) Concerning Theorem 1, while it asserts that there
exists a solution 𝜙 of Cauchy problem (11) satisfying

𝜙 (𝜉, 𝑡)
 ≤ 𝑒
−]|𝜉|2𝑡

∀ (𝜉, 𝑡) ∈ R
3
× [0,∞) , (77)

a natural question is whether this dominating prop-
erty would hold for any solution of (11). The answer
is affirmative in the case when the collision kernel 𝑏
satisfies Grad’s angular cutoff assumption.
Suppose 𝑏 ∈ 𝐿

1
(S2) and 𝜙0 ∈ K. If 𝜙 is a solution to

(11) in the space 𝐶([0,∞);K), then necessarily (77)
holds.
As it can be proved in an elementary way, we leave its
verification to the interested reader. For the singular
case of 𝑏, however, we were not able to draw any
conclusion.

(b) In the cutoff case of 𝑏, it is possible to construct
an explicit solution of Cauchy problem (11) by using
the Wild sum method as developed in [15, 17, 23].
Assuming ‖𝑏‖𝐿1(S2) = 1, if we follow the same known
method, then it is straightforward to derive

𝜙 (𝜉, 𝑡) = 𝑒
−(1+]|𝜉|2)𝑡

∞

∑

𝑛=0

𝑢𝑛 (𝜉) (1 − 𝑒
−𝑡
)
𝑛
, (78)

where 𝑢0 = 𝜙0 is the initial datum and

𝑢𝑛+1 (𝜉) =
1

𝑛 + 1

𝑛

∑

𝑗=0

∫
S2
𝑏(

𝜉 ⋅ 𝜎
𝜉


) 𝑢𝑗 (𝜉
+
) 𝑢𝑛−𝑗 (𝜉

−
) 𝑑𝜎 (79)

for 𝑛 = 0, 1, . . .. It can be shown plainly that if 𝜙0 ∈
K𝛼, then this explicit solution 𝜙 ∈ K𝛼 for 0 <

𝛼 ≤ 2. By uniqueness, this solution coincides with the
solution of Theorem 1.

(c) Concerning the asymptotic behavior of a solution𝜙 to
Cauchy problem (11), an important question common
in kinetic theory is whether there exists a steady-state
equilibrium 𝜙∞ such that 𝜙 → 𝜙∞ as 𝑡 → ∞ in
some sense. For instance, in the inelastic case, it is
shown that there exists such steady-state equilibrium
for a solution of the Cauchy problem for the cor-
responding Fokker-Planck-Boltzmann equation (see
[17] and further references therein). In the elastic
case, however, it is likely that the answer would be
negative in view of the pointwise behavior 𝜙(𝜉, 𝑡) →

0 due to growth estimate (77). A seemingly reasonable
alternative is to investigate if the solution gets close to
the Gaussian 𝑒−]|𝜉|

2𝑡 in an appropriate sense.
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Assume that economic activities are conducted in a bounded continuous domain where workers move toward regions that offer
higher real wages and away from regions that offer below-average real wages. The density of real wages is calculated by solving the
nominal wage equation of the continuous Dixit-Stiglitz-Krugman model in an urban-rural setting. The evolution of the density of
workers is described by an unknown function of the replicator equation whose growth rate is equal to the difference between the
density of real wages and the average real wage. Hence, the evolution of the densities of workers and real wages is described by the
system of the nominal wage equation and the replicator equation. This system of equations is an essentially new kind of system
of nonlinear integropartial differential equations in the theory of functional equations. The purpose of this paper is to obtain a
sufficient condition for the initial value problem for this system to have a unique global solution.

1. Introduction

The new economic geography (NEG) is a new branch of spatial
economics that was initiated by Krugman in the early 1990s.
This new branch has attracted many social scientists and
becomes one of the most important major branches of spatial
economics at present. In 2008 Krugman received the Nobel
Memorial Prize in Economic Sciences (officially Sveriges
Riksbank Prize in Economic Sciences in Memory of Alfred
Nobel) for his great contribution to the NEG (see [1–6]).
A large number of mathematical models have been built in
the NEG. In particular there are many models described by
nonlinear integropartial differential equations that are new
and important in the theory of functional equations (see [1–
3]). Hence theNEG is regarded as a new frontier of the theory
of nonlinear integropartial differential equations.

The Krugman core-periphery model (the CP model) is the
origin of the NEG (see [1, Chapter 5]) since various models

are constructed as its extension. The CP model is a discrete
model. In this model economic activities are conducted at
two points. These two points represent a core region and a
periphery region, respectively. An extension to the case of
a finite set of points has been studied in [1]. This model
is called the Dixit-Stiglitz-Krugman model (DSK model). Its
mathematical foundation is studied in [7–13]. Moreover, in
[14], we consider an extension of the CP model to the case
of a bounded continuous domain where economic activities
are conducted continuously in space. This model is called the
continuous DSK model (cDSK model).

These models are static models with no population
dynamics. It is very important in spatial economics to build
population dynamics into them. Hence Krugman constructs
the dynamic DSK model (dDSK model) by combining the
DSK model with the replicator dynamics that is one of the
most fundamental dynamics in evolutionary game theory
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(see [15] and [16, Chapter 3]). His dynamic model is very
important in spatial economics since it describes economies
of agglomeration in the case where workers move from one
point to another to seek higher real wages within a finite set
of points at which economic activities are conducted (see [1,
p. 62, p. 77]). Hence, by following this line, we consider the
dynamic cDSK model (dcDSK model) in this paper; that is,
we combine the cDSK model with the replicator dynamics.
This dynamic model is regarded as a continuous version of
the dDSK model and explains agglomeration of capital and
concentration of workers when workers move in a bounded
continuous domain where economic activities are conducted
continuously in space.

Let us discuss the dcDSK model from the viewpoint of
the theory of functional equations. The dcDSK model is
described by the system of the nominal wage equation and
the replicator equation. We refer to this system of equations as
the dcDSK system. The nominal wage equation is a nonlinear
integral equation that contains the density of nominal wages
as an unknown function and the density of workers as a
known function (see [14, (2.4)]). Hence, if we solve this
equation under the condition that the density of workers is
a given function, then we can obtain the density of nominal
wages. However, the integral kernel of the nominal wage
equation contains not only these densities but also the price
index. We must note that the price index itself is a nonlinear
integral operator acting on the density of nominal wages and
the density of workers (see [14, (2.7)]). Therefore, we can say
that the nominal wage equation is a double nonlinear integral
equation (see [14, Remark 2.3] for mathematical difficulties
caused by the double nonlinearity).

The replicator equation is a nonlinear integropartial
differential equation whose unknown function denotes the
density of workers. Its coefficient denotes the growth rate
of worker population (see [1, (5.1), (5.2)] and [16, p. 73]).
The coefficient is equal to the difference between the density
of real wages and the average real wage, where the density
of real wages is defined as the density of nominal wages
deflated by a fractional power of the price index, and the
average real wage is defined as the integral of the product of
the density of workers and the density of real wages (see [1,
(5,1), (5.6)]). Hence, the coefficient is regarded as a double
nonlinear integral operator acting on the density of workers
and the density of nominal wages.

Moreover, the coefficient of the replicator equation of
the dcDSK system contains an unknown function implicitly
in the sense that the coefficient is determined by solving
the nominal wage equation under the condition that the
unknown function is given, in contrast to the replicator
equation whose coefficient explicitly contains an unknown
function in evolutionary game theory (see [16, (3.3)]). If we
can define an operator that maps the density of workers
to the density of real wages by solving the nominal wage
equation under the condition that the density of workers is
a given function, then the replicator equation is regarded
as a nonlinear integropartial differential equation whose
coefficient contains the operator that acts on an unknown
function.

For these reasons we deduce that the dcDSK system is
an essentially new kind of system of nonlinear integropartial
differential equations. Therefore, it is important to study this
system not only in spatial economics but also in the theory
of functional equations. In this paper we prove a sufficient
condition for the initial value problem for the dcDSK system
to have a unique global solution and obtain estimates of the
solution. The main result is Theorem 4.

2. The System of Equations

Let us introduce the notations. Let 𝐸 be a domain of a
Euclidean space. By 𝐿

1
(𝐸) we denote the Banach space of

all Lebesgue summable functions of 𝑥 ∈ 𝐸. By 𝐿
∞
(𝐸) we

denote the Banach space of all essentially bounded functions
of𝑥 ∈ 𝐸. By𝐶(𝐸)wedenote the Banach space of all uniformly
bounded continuous functions of 𝑥 ∈ 𝐸.

We assume that economic activities are conducted con-
tinuously in a bounded domain 𝐷 of an 𝑚-dimensional
Euclidean space, where 𝑚 is a positive integer. If 𝑚 ≥ 3, then
the model is unrealistic from the viewpoint of economics,
but we accept such a case for mathematical generality in this
paper. We denote the norms of the Banach spaces 𝐿1(𝐷) and
𝐶(𝐷) by ||| ⋅ ||| and ‖ ⋅ ‖, respectively; that is, we define

|||𝑢 (⋅)||| := ∫
𝑦∈𝐷

𝑢 (𝑦)
 𝑑𝑦, ‖𝑢 (⋅)‖ := sup

𝑦∈𝐷

𝑢 (𝑦)
 . (1)

Let 𝑇 ≥ 0. By 𝐿
∞,1

([0, 𝑇] ×𝐷) we denote the Banach space of
all functions ℎ = ℎ(𝑡, 𝑥) such that

ess sup
0≤𝑡≤𝑇

|||ℎ (𝑡, ⋅)||| < +∞. (2)

By 𝐿
1
+(𝐸), 𝐿∞+(𝐸), 𝐶+(𝐸), and 𝐿

∞,1
+([0, 𝑇] × 𝐷) we denote

the set of all positive-valued functions of 𝐿1(𝐸), 𝐿∞(𝐸),𝐶(𝐸),
and 𝐿

∞,1
([0, 𝑇] × 𝐷), respectively. By 𝐿

1
0+(𝐸), 𝐿

∞
0+(𝐸),

𝐶0+(𝐸), and 𝐿
∞,1
0+([0, 𝑇] × 𝐷) we denote the set of all

nonnegative-valued functions of 𝐿
1
(𝐸), 𝐿

∞
(𝐸), 𝐶(𝐸), and

𝐿
∞,1

([0, 𝑇] × 𝐷), respectively.
Let us introduce the dcDSK system. The nominal wage

equation is a nonlinear integral equation of the following
form (see [1, (5.5)] and [14, (2.4)]):
𝑤 (𝑡, 𝑥)

𝜎

= ∫
𝑦∈𝐷

𝑌𝜇 (𝜆 (𝑡, 𝑦) , 𝑤 (𝑡, 𝑦)) 𝐺𝜎 (𝜆 (𝑡, ⋅) , 𝑤 (𝑡, ⋅) ; 𝑦)
𝜎−1

⋅ 𝑒
−(𝜎−1)𝑐(𝑥,𝑦)

𝑑𝑦,

(3)

where 𝑤 = 𝑤(𝑡, 𝑥) is an unknown function that denotes the
density of nominal wages at time 𝑡 ≥ 0 and at point 𝑥 ∈ 𝐷. By
𝐺𝜎 = 𝐺𝜎(𝜆(𝑡, ⋅), 𝑤(𝑡, ⋅); 𝑥) we denote the price index, which
is a nonlinear integral operator of the following form (see [1,
(5.4)] and [14, (2.7)]):

𝐺𝜎 (𝜆 (𝑡, ⋅) , 𝑤 (𝑡, ⋅) ; 𝑥)
𝜎−1

:=
1

∫
𝑦∈𝐷

𝜆 (𝑡, 𝑦) (1/𝑤 (𝑡, 𝑦))
𝜎−1

𝑒−(𝜎−1)𝑐(𝑥,𝑦)𝑑𝑦

,
(4)



Abstract and Applied Analysis 3

where 𝜆 = 𝜆(𝑡, 𝑦) represents the density of workers at time
𝑡 ≥ 0 and at point 𝑦 ∈ 𝐷. By 𝜎 we denote the elasticity
of substitution among varieties of manufactured goods. We
assume that

𝜎 > 1. (5)

When 𝜎 increases, varieties of manufactured goods are close
to perfect substitutes; as 𝜎 decreases toward 1, the desire to
consume a greater variety of manufactured goods increases
(see [1, p. 46] and [2, p. 308]). We denote the income at time
𝑡 ≥ 0 and at point 𝑦 ∈ 𝐷 by 𝑌𝜇 = 𝑌𝜇(𝜆(𝑡, 𝑦), 𝑤(𝑡, 𝑦)).
The dcDSK model consists of a monopolistically competitive
sector (manufacturing) and a perfectly competitive sector
(agriculture) (see [1, p. 61]). Hence the income consists of
agricultural income andmanufacturing income; that is, it has
the following form (see [1, (5.3)]):

𝑌𝜇 (𝜆 (𝑡, 𝑦) , 𝑤 (𝑡, 𝑦)) = 𝜇𝜆 (𝑡, 𝑦)𝑤 (𝑡, 𝑦) + (1 − 𝜇) 𝜙 (𝑦) ,

(6)

0 < 𝜇 < 1, (7)

where 𝜇 and (1−𝜇) denote the share ofmanufacturing expen-
diture and the share of agricultural expenditure, respectively,
and we denote the density of farmers at point 𝑦 ∈ 𝐷 by
𝜙 = 𝜙(𝑦). We assume that 𝜙 = 𝜙(𝑦) is a given function such
that (see [14, (2.12), (2.14)])

𝜙 (𝑦) ∈ 𝐿
1
0+ (𝐷) ,



𝜙 (⋅)



 = 1.

(8)

Note that this function is independent of the time variable
𝑡 ≥ 0.

The function 𝑐 = 𝑐(𝑥, 𝑦) represents the iceberg form of
transport costs (see [17]). We refer to this function as the
transport cost function. We reasonably accept the following
assumption (see [14, Assumption 2.1]).

Assumption 1. The transport cost function 𝑐 = 𝑐(𝑥, 𝑦) is a
nonnegative-valued continuous function of (𝑥, 𝑦) ∈ 𝐷 × 𝐷

such that

𝑐 (𝑥, 𝑥) = 0 for each 𝑥 ∈ 𝐷,

𝑐 (𝑥, 𝑦) = 𝑐 (𝑦, 𝑥) for each 𝑥, 𝑦 ∈ 𝐷,

𝑐 (𝑥, 𝑦) > 0 if 𝑥 ̸= 𝑦,

C := sup
(𝑥,𝑦)∈𝐷×𝐷

𝑐 (𝑥, 𝑦) < +∞.

(9)

Considering (6), and noting that the right-hand side of
(4) is a nonlinear integral operator acting on the density
of workers 𝜆 = 𝜆(𝑡, 𝑥) and the density of nominal wages
𝑤 = 𝑤(𝑡, 𝑥), we see that the right-hand side of (3) is a double
nonlinear integral operator acting on these densities.

We define the density of real wages 𝜔 = 𝜔(𝑡, 𝑥) at time
𝑡 ≥ 0 and at point 𝑥 ∈ 𝐷 by deflating the density of nominal

wages by a fractional power of the price index as follows (see
[1, (5.6)], (4), and (7)):

𝜔 = 𝜔 (𝑡, 𝑥) :=
𝑤 (𝑡, 𝑥)

𝐺𝜎 (𝜆 (𝑡, ⋅) , 𝑤 (𝑡, ⋅) ; 𝑥)
𝜇 . (10)

The density of real wages can be regarded as a nonlinear
integral operator acting on 𝜆 = 𝜆(𝑡, 𝑥) and 𝑤 = 𝑤(𝑡, 𝑥).

The replicator equation is a nonlinear integropartial
differential equation of the following form (see [1, (5.2)] and
[13, (2.22)]):

(
𝜕

𝜕𝑡
) 𝜆 (𝑡, 𝑥) = 𝑎𝑀 (𝜆 (𝑡, ⋅) , 𝜔 (𝑡, ⋅) ; 𝑥) 𝜆 (𝑡, 𝑥) , (11)

where 𝑎 denotes a positive constant. We define
𝑀(𝜆 (𝑡, ⋅) , 𝜔 (𝑡, ⋅) ; 𝑥) := 𝜔 (𝑡, 𝑥) − 𝑚 (𝜆 (𝑡, ⋅) , 𝜔 (𝑡, ⋅)) , (12)

where 𝑚(𝜆(𝑡, ⋅), 𝜔(𝑡, ⋅)) is the average real wage defined as
follows in the same way as [1, (5.1)] and [13, (2.23)]:

𝑚(𝜆 (𝑡, ⋅) , 𝜔 (𝑡, ⋅)) := ∫
𝑦∈𝐷

𝜆 (𝑡, 𝑦) 𝜔 (𝑡, 𝑦) 𝑑𝑦. (13)

It follows from (11), (12), and (13) that workers move toward
regions that offer higher real wages and away from regions
that offer below-average real wages (see [1, p. 62]). Consider-
ing (4) and (10), we see that (12) is a double nonlinear integral
operator acting on 𝜆 = 𝜆(𝑡, 𝑥) and 𝑤 = 𝑤(𝑡, 𝑥). In this paper
for simplicity we assume that

𝑎 = 1. (14)
Hence (12) is the growth rate. The dcDSK system consists of
(3), (10), and (11). In Section 4wedefine an operator thatmaps
𝜆 = 𝜆(𝑡, 𝑥) to 𝜔 = 𝜔(𝑡, 𝑥) by solving (3) under the condition
that 𝜆 = 𝜆(𝑡, 𝑥) is a given function. Substituting this operator
in (11), we can transform the dcDSK system into the replicator
equation whose coefficient contains the operator that maps
𝜆 = 𝜆(𝑡, 𝑥) to 𝜔 = 𝜔(𝑡, 𝑥).

3. Result and Discussion

We consider the initial value problem by imposing the
following initial condition on the dcDSK system (3), (10), and
(11):

𝜆 (0, 𝑥) = 𝜆
0
(𝑥) for a.e. 𝑥 ∈ 𝐷, (15)

where 𝜆
0

= 𝜆
0
(𝑥) is a given function of 𝑥 ∈ 𝐷. This

function denotes the initial density of workers.The following
assumption is imposed on this function in [1, pp. 61–63] and
[14, (2.11), (2.13)].

Assumption 2. (i) 𝜆0 = 𝜆
0
(𝑥) ∈ 𝐿

1
0+(𝐷).

(ii) |||𝜆0(⋅)||| = 1.

Hence, we accept this assumption in this paper also. Let
𝑇 > 0 be a constant. If a function

(𝜆, 𝜔, 𝑤) = (𝜆 (𝑡, 𝑥) , 𝜔 (𝑡, 𝑥) , 𝑤 (𝑡, 𝑥)) (16)
belongs to

𝐿
∞,1
0+ ([0, 𝑇] × 𝐷) × 𝐿

∞
+ ([0, 𝑇] × 𝐷) × 𝐿

∞
+ ([0, 𝑇] × 𝐷)

(17)
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and satisfies the dcDSK system for a.e. (𝑡, 𝑥) ∈ [0, 𝑇] × 𝐷 and
the initial condition (15), then we say that the function (16) is
a solution to the initial value problem in [0, 𝑇]. If a function
(16) is defined for a.e. (𝑡, 𝑥) ∈ [0, +∞) × 𝐷 and is a solution
to the initial value problem in [0, 𝑇] for each 𝑇 > 0, then we
say that the solution is global. No boundary condition needs
to be imposed on the density of workers, since the evolution
of the density of workers can be determined uniquely in (17)
by the initial condition (15) as done in Section 5.

We define a function 𝑉 = 𝑉(𝜇, 𝜎), (𝜇, 𝜎) ∈ (0, 1) ×

(1, +∞) in order to state a sufficient condition for the initial
value problem to have a unique global solution. Consider the
quadratic equation

𝐼 (𝜇, 𝜎; 𝑢) := (1 −
1

𝜎
) 𝑢
2
+ (

𝜇

𝜎
) 𝑢 − 1 = 0, (18)

where𝑢 denotes an unknownquantity. It follows from (5) that
this equation has a positive solution and a negative solution.
We denote the positive solution by𝑈 = 𝑈(𝜇, 𝜎). We see easily
that

𝑈(𝜇, 𝜎) =

{−𝜇 + (𝜇
2
+ 4𝜎 (𝜎 − 1))

1/2
}

(2 (𝜎 − 1))
.

(19)

By making use of this positive solution, we define the
following quadratic equation:

𝐽 (𝜇, 𝜎; V) := V2 + 𝜇 (𝑈 (𝜇, 𝜎)
1/𝜎

− 1) V − 𝑈 (𝜇, 𝜎)
1/𝜎

= 0,

(20)

where V denotes an unknown quantity. This quadratic equa-
tion has a positive solution and a negative solution, since
𝑈(𝜇, 𝜎)

1/𝜎
> 0. We denote the positive solution by 𝑉 =

𝑉(𝜇, 𝜎). We see easily that

𝑉 = 𝑉 (𝜇, 𝜎)

:= {−𝜇 (𝑈 (𝜇, 𝜎)
1/𝜎

− 1)

+ (𝜇
2
(𝑈 (𝜇, 𝜎)

1/𝜎
− 1)
2

+ 4𝑈 (𝜇, 𝜎)
1/𝜎

)

1/2

} ⋅ 2
−1

.

(21)

The following lemma is proved in [12, Lemma 3.2] (see [12,
(3.3)–(3.8)]).

Lemma 3. (i) 1 < 𝑉(𝜇, 𝜎) < 1/𝜇 for each (𝜇, 𝜎) ∈ (0, 1) ×

(1, +∞).
(ii) 𝑉 = 𝑉(𝜇, 𝜎) is a strictly monotone-decreasing smooth

function of 𝜎 > 1 for each 𝜇 ∈ (0, 1).
(iii) 𝑉 = 𝑉(𝜇, 𝜎) is a strictly monotone-decreasing smooth

function of 𝜇 ∈ (0, 1) for each 𝜎 > 1.
(iv) lim𝜎→1+0𝑉(𝜇, 𝜎) > 1, lim𝜎→+∞𝑉(𝜇, 𝜎) = 1, for each

𝜇 ∈ (0, 1).
(v) lim𝜇→0+0𝑉(𝜇, 𝜎) > 1, lim𝜇→1−0𝑉(𝜇, 𝜎) = 1, for each

𝜎 > 1.

The following theorem is the main result of this paper,
which is proved in Sections 4 and 5 (see Assumption 1).

Theorem 4. If 𝜇, 𝜎, and C satisfy (5), (7), and the following
inequality:

C <
{log (𝑉 (𝜇, 𝜎))}

(𝜎 − 1)
, (22)

then the initial value problem has a unique global solution
(𝜆, 𝜔, 𝑤) = (𝜆(𝑡, 𝑥), 𝜔(𝑡, 𝑥), 𝑤(𝑡, 𝑥)), and this solution satisfies
the following:

|||𝜆 (𝑟, ⋅) − 𝜆 (𝑠, ⋅)||| ≤ a |𝑟 − 𝑠| 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟, 𝑠 ≥ 0, (23)

𝜆 = 𝜆 (𝑡, 𝑥) 𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑎𝑡 𝑡 = 0 + 0

and partially differentiable for 𝑡 > 0 𝑓𝑜𝑟 𝑎.𝑒. 𝑥 ∈ 𝐷,

(24)

𝜔 = 𝜔 (𝑡, 𝑥) , 𝑤 = 𝑤 (𝑡, 𝑥) ∈ 𝐶+ (𝐷) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ≥ 0,

(25)

‖𝑤 (𝑟, ⋅) − 𝑤 (𝑠, ⋅)‖ ≤ 𝛿1 (𝜇, 𝜎,C) |𝑟 − 𝑠| ,

‖𝜔 (𝑟, ⋅) − 𝜔 (𝑠, ⋅)‖ ≤ 𝛿2 (𝜇, 𝜎,C) |𝑟 − 𝑠|

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑟, 𝑠 ≥ 0,

(26)

𝜆
0
(𝑥) exp (−a𝑡) ≤ 𝜆 (𝑡, 𝑥) ≤ 𝜆

0
(𝑥) exp (a𝑡)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ≥ 0 𝑎𝑛𝑑 𝑎.𝑒. 𝑥 ∈ 𝐷,

(27)

|||𝜆 (𝑡, ⋅)||| = 1 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡 ≥ 0, (28)

1

𝛼+

≤ 𝑤 (𝑡, 𝑥) ≤
1

𝛼−

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [0, +∞) × 𝐷, (29)

1

𝛼+

≤ 𝐺𝜎 (𝜆 (𝑡, ⋅) , 𝑤 (𝑡, ⋅) ; 𝑥) ≤ (
1

𝛼−

) exp (C)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [0, +∞) × 𝐷,

(30)

a1 ≤ 𝜔 (𝑡, 𝑥) ≤ a2 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [0, +∞) × 𝐷, (31)

−a ≤ 𝑀(𝜆 (𝑡, ⋅) , 𝜔 (𝑡, ⋅) ; 𝑥) ≤ a

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [0, +∞) × 𝐷,

(32)

where 𝛿𝑖 = 𝛿𝑖(𝜇, 𝜎,C), 𝑖 = 1, 2, are positive-valued functions of
(𝜇, 𝜎,C) ∈ (0, 1) × (1, +∞) × (0, +∞) and

a1 :=
(exp (−𝜇C)) 𝛼−

𝜇

𝛼+

,

a2 :=
𝛼+
𝜇

𝛼−

, a := a2 − a1,
(33)

𝛼± :=
{exp (± (𝜎 − 1)C) − 𝜇}

(1 − 𝜇)
. (34)

Let us discuss this theorem. The inequalities (5), (7), and
(22) are a sufficient condition for the initial value problem



Abstract and Applied Analysis 5

to have a unique global solution. Note that 𝑉 = 𝑉(𝜇, 𝜎) is
independent of C. Making use of Lemma 3, (i), (ii), (iv), we
deduce that

if 𝜎 > 1 and C > 0 are sufficiently small, then (22) holds.
(35)

Hence we can say that (22) holds for a much larger set of
(𝜇, 𝜎,C) ∈ (0, 1) × (1, +∞) × (0, +∞). By Lemma 3, (i), we
see that (5), (7), and (22) imply the following inequality:

C <
(log (1/𝜇))

(𝜎 − 1)
. (36)

Applying this inequality, Assumption 1, (5), and (7) to (33)
and (34), we see that

0 < 𝛼− < 1 < 𝛼+, (37)

0 < a1 < 1 < a2. (38)

Making use of (5), (7), (8), and the above theorem, we see
easily that the right-hand sides of (3), (4), and (12) belong
to 𝐿
∞
([0, 𝑇] × 𝐷) for each 𝑇 > 0 and that the right-hand

side of (11) belongs to 𝐿
∞,1

([0, 𝑇] × 𝐷) for each 𝑇 > 0. The
conservation law of workers follows from (17) and (28). It
follows from (27) that

{𝑥 ∈ 𝐷; 𝜆 (𝑡, 𝑥) = 0} = {𝑥 ∈ 𝐷; 𝜆
0
(𝑥) = 0}

for each 𝑡 ≥ 0.

(39)

Hence, no worker moves toward a point where no worker
lives. Combining (25) and (26), we see that

𝜔 = 𝜔 (𝑡, 𝑥) , 𝑤 = 𝑤 (𝑡, 𝑥) ∈ 𝐶+ ([0, 𝑇] × 𝐷)

for each 𝑇 > 0.

(40)

The functions 𝛿𝑖 = 𝛿𝑖(𝜇, 𝜎,C), 𝑖 = 1, 2, are defined in
Lemma 17.

Remark 5. We impose (7) on the dcDSK model; that is, we
consider the dcDSK model in an urban-rural setting. In this
paper we cannot treat the case

𝜇 = 1; (41)

that is, we cannot consider the dcDSK model in an urban
setting (see [1, p. 331]) because it follows from Lemma 3, (i),
that (41) cannot be substituted in (22). The DSK model with
(41) is studied in [13].The cDSKmodel with (41) is studied in
[14, Theorem 3.2].

4. Solutions of the Nominal Wage Equation

Let us solve the nominal wage equation (3) under the
condition that the density of workers is a given function.
In this section we do not deal with the replicator equation.
Hence, we have no need to consider the time evolution of
the density of workers, the density of nominal wages, and

the density of real wages.Therefore, for simplicity of symbols,
we omit the time variable 𝑡 from these densities, and we
denote them by 𝜆 = 𝜆(𝑥),𝑤 = 𝑤(𝑥), and 𝜔 = 𝜔(𝑥) in (3), (4),
(6), and (10) in this section. We refer to these equations with
the same numbers. No confusion should arise. We assume
that 𝜆 = 𝜆(𝑥) is a given function that satisfies the same
condition as Assumption 2 as follows:

𝜆 (𝑥) ∈ 𝐿
1
0+ (𝐷) , (42)

|||𝜆 (⋅)||| = 1. (43)

Proposition 6. If 𝜇, 𝜎, and C satisfy (5), (7), and (36), then
the following statements (i) and (ii) hold.

(i) The nominal wage equation (3) has a solution 𝑤 =

𝑤(𝑥) in 𝐿
∞
+(𝐷).

(ii) If (3) has a solution 𝑤 = 𝑤(𝑥) in 𝐿
∞
+(𝐷), then the

solution satisfies the following:

𝑤 = 𝑤 (𝑥) , 𝜔 = 𝜔 (𝑥) ∈ 𝐶+ (𝐷) , (44)

1

𝛼+

≤ 𝑤 (𝑥) ≤
1

𝛼−

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐷, (45)

1

𝛼+

≤ 𝐺𝜎 (𝜆 (⋅) , 𝑤 (⋅) ; 𝑥) ≤ (
1

𝛼−

) exp (C)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐷,

(46)

a1 ≤ 𝜔 (𝑥) ≤ a2 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐷, (47)

a1 ≤ 𝑚 (𝜆 (⋅) , 𝜔 (⋅)) ≤ a2, (48)

−a ≤ 𝑀(𝜆 (⋅) , 𝜔 (⋅) ; 𝑥) ≤ a 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐷. (49)

Proof. In [14,Theorem 3.1, (i), (ii)], from (5), (7), and (36), we
prove (i), and we prove that if (3) has a solution in 𝐿

∞
+(𝐷),

then the solution satisfies (44)–(47). Applying (42), (43), and
(47) to (12) and (13), we obtain (48) and (49).

Lemma 7. Let 𝑟 and 𝑠 be positive constants. Let 𝛽 ∈ R be a
constant. If 𝑔𝑖 = 𝑔𝑖(𝑥) ∈ 𝐶(𝐷), 𝑖 = 1, 2, satisfy the following
inequality:

𝑟 ≤ 𝑔𝑖 (𝑥) ≤ 𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑥 ∈ 𝐷, 𝑖 = 1, 2, (50)

then

𝑔1 (⋅)
𝛽
− 𝑔2 (⋅)

𝛽
≤ ℎ (𝛽, 𝑟, 𝑠)

𝑔1 (⋅) − 𝑔2 (⋅)
 , (51)

where

ℎ (𝛽, 𝑟, 𝑠) := 𝛽𝑠
𝛽−1

𝑖𝑓 𝛽 > 1,

ℎ (𝛽, 𝑟, 𝑠) :=
𝛽

 𝑟
𝛽−1

𝑖𝑓 𝛽 ≤ 1.

(52)

Proof. By the mean value theorem we see easily that if 0 <

𝑋1 ≤ 𝑋2, then there exists a constant 𝜉 ∈ [𝑋1, 𝑋2] such that

𝑋1
𝛽
− 𝑋2
𝛽
= 𝛽𝜉
𝛽−1

(𝑋1 − 𝑋2) . (53)
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Substituting (𝑋1, 𝑋2) = (𝑔1(𝑦), 𝑔2(𝑦)) or (𝑔2(𝑦), 𝑔1(𝑦)) in
this equality and making use of (50), we see that


𝑔1 (𝑦)

𝛽
− 𝑔2 (𝑦)

𝛽
≤

𝛽
max
𝑟≤𝜉≤𝑠

𝜉
𝛽−1 𝑔1 (𝑦) − 𝑔2 (𝑦)

 . (54)

Applying (52) to the right-hand side of this inequality, we
obtain the present lemma.

Lemma 8. Assume that 𝜇, 𝜎, and C satisfy (5), (7), and (22).
If 𝜆𝑖 = 𝜆𝑖(𝑥), 𝑖 = 1, 2, satisfy (42) and (43), and 𝑤𝑖 =

𝑤𝑖(𝑥) ∈ 𝐶+(𝐷) is a solution of (3) with 𝜆(𝑥) = 𝜆𝑖(𝑥), 𝑖 = 1, 2,
respectively, then

𝑤1 (⋅) − 𝑤2 (⋅)
 ≤



𝜆1 (⋅) − 𝜆2 (⋅)



 𝛾1 (𝜇, 𝜎,C) , (55)

where 𝛾1 = 𝛾1(𝜇, 𝜎,C) is a positive-valued function of
(𝜇, 𝜎,C) ∈ (0, 1) × (1, +∞) × (0, +∞).

Proof. Let us transform the nominal wage equation (3).
Define the following new unknown function:

𝑊 = 𝑊(𝑥) := 𝑤 (𝑥)
𝜎
. (56)

Defining the following nonlinear integral operator:

𝐻(𝜆 (⋅) ,𝑊 (⋅) ; 𝑥)

:= ∫
𝑦∈𝐷

𝜆 (𝑦)(
1

𝑊(𝑦)
)

1−1/𝜎

𝑒
−(𝜎−1)𝑐(𝑥,𝑦)

𝑑𝑦,

(57)

we rewrite (4) as follows:

𝐺𝜎 (𝜆 (⋅) , 𝑤 (⋅) ; 𝑥)
𝜎−1

=
1

𝐻 (𝜆 (⋅) ,𝑊 (⋅) ; 𝑥)
. (58)

Making use of this equality and defining the following
nonlinear integral operator (see (6)):

𝐹 (𝜆 (⋅) ,𝑊 (⋅) ; 𝑥)

:= ∫
𝑦∈𝐷

{

{

{

𝑌𝜇 (𝜆 (𝑦) ,𝑊 (𝑦)
1/𝜎

)

𝐻 (𝜆 (⋅) ,𝑊 (⋅) ; 𝑦)

}

}

}

𝑒
−(𝜎−1)𝑐(𝑥,𝑦)

𝑑𝑦,

(59)

we rewrite (3) equivalently as follows:

𝑊(𝑥) = 𝐹 (𝜆 (⋅) ,𝑊 (⋅) ; 𝑥) . (60)

Hence, we see that

𝑊𝑖 (𝑥) = 𝐹 (𝜆𝑖 (⋅) ,𝑊𝑖 (⋅) ; 𝑥) , 𝑖 = 1, 2, (61)

where 𝑊𝑖 = 𝑊𝑖(𝑥) is defined by 𝑤𝑖 = 𝑤𝑖(𝑥) in the same way
as (56), 𝑖 = 1, 2. Subtract both sides of (61) with 𝑖 = 2 from

those of (61) with 𝑖 = 1. The right-hand side of the equality
thus obtained is transformed as follows (see (6)):

𝑊1 (𝑥) − 𝑊2 (𝑥)

= ∫
𝑦∈𝐷

𝜇 (𝜆1 (𝑦) − 𝜆2 (𝑦))𝑊1 (𝑦)
1/𝜎

⋅ (
1

𝐻 (𝜆1 (⋅) ,𝑊1 (⋅) ; 𝑦)
) 𝑒
−(𝜎−1)𝑐(𝑥,𝑦)

𝑑𝑦

+ ∫
𝑦∈𝐷

𝜇𝜆2 (𝑦) (𝑊1 (𝑦)
1/𝜎

− 𝑊2 (𝑦)
1/𝜎

)

⋅ (
1

𝐻 (𝜆1 (⋅) ,𝑊1 (⋅) ; 𝑦)
) 𝑒
−(𝜎−1)𝑐(𝑥,𝑦)

𝑑𝑦

+ ∫
𝑦∈𝐷

𝑌𝜇 (𝜆2 (𝑦) ,𝑊2 (𝑦)
1/𝜎

)Δ 1 (𝑦) 𝑒
−(𝜎−1)𝑐(𝑥,𝑦)

𝑑𝑦

+ ∫
𝑦∈𝐷

𝑌𝜇 (𝜆2 (𝑦) ,𝑊2 (𝑦)
1/𝜎

)Δ 2 (𝑦) 𝑒
−(𝜎−1)𝑐(𝑥,𝑦)

𝑑𝑦,

(62)

where

Δ 𝑖 (𝑦) :=
1

𝐻 (𝜆1 (⋅) ,𝑊𝑖 (⋅) ; 𝑦)
−

1

𝐻 (𝜆𝑖 (⋅) ,𝑊2 (⋅) ; 𝑦)
,

𝑖 = 1, 2.

(63)

We denote the 𝑗th term of the right-hand side of this equality
by 𝐼𝑗, 𝑗 = 1, . . . , 4.

Substituting (58) in (46), we see that

H− ≤ 𝐻(𝜆𝑖 (⋅) ,𝑊𝑗 (⋅) ; 𝑦) ≤ H+, 𝑖, 𝑗 = 1, 2, (64)

where

H− := 𝛼−
𝜎−1 exp (− (𝜎 − 1)C) , H+ := 𝛼+

𝜎−1
. (65)

It follows from (5) and Assumption 1 that

exp (− (𝜎 − 1)C) ≤ exp (− (𝜎 − 1) 𝑐 (𝑥, 𝑦)) ≤ 1

for each 𝑥, 𝑦 ∈ 𝐷.

(66)

Applying this inequality, (7), (45), (56), and (64) to 𝐼1, we see
that

𝐼1
 ≤



𝜆1 (⋅) − 𝜆2 (⋅)



 𝜃1 (𝜇, 𝜎,C) , (67)

where

𝜃1 (𝜇, 𝜎,C) := 𝜇(
1

𝛼−

)(
1

H−
) . (68)

Applying (7), (64), and (66) to 𝐼2, we see that
𝐼2

 ≤


𝜆2 (⋅)



 𝜃2.1 (𝜇, 𝜎,C)


𝑊1 (⋅)

1/𝜎
− 𝑊2 (⋅)

1/𝜎
, (69)

where

𝜃2.1 (𝜇, 𝜎,C) := 𝜇(
1

H−
) . (70)
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Making use of (5), (45), (56), and Lemma 7 with 𝛽 = 1/𝜎 and
𝑟 = 1/𝛼+

𝜎, we obtain the following inequality:

𝑊1 (⋅)

1/𝜎
− 𝑊2 (⋅)

1/𝜎
≤

𝑊1 (⋅) − 𝑊2 (⋅)
 𝜃2.2 (𝜇, 𝜎,C) ,

(71)

where

𝜃2.2 (𝜇, 𝜎,C) := (
1

𝜎
)(

1

𝛼+
𝜎
)

1/𝜎−1

. (72)

Applying this inequality and (43) to (69), we see that
𝐼2

 ≤
𝑊1 (⋅) − 𝑊2 (⋅)

 𝜃2 (𝜇, 𝜎,C) , (73)

where

𝜃2 (𝜇, 𝜎,C) := 𝜃2.1 (𝜇, 𝜎,C) 𝜃2.2 (𝜇, 𝜎,C) . (74)

Applying (5), (43), (45), (56), (66), and Lemma 7with𝛽 =

−(1 − 1/𝜎) and 𝑟 = 1/𝛼+
𝜎 to (57) and performing the same

calculations as done in proving (73), we see that
𝐻 (𝜆1 (⋅) ,𝑊1 (⋅) ; ⋅) − 𝐻 (𝜆1 (⋅) ,𝑊2 (⋅) ; ⋅)



≤
𝑊1 (⋅) − 𝑊2 (⋅)

 𝜃3.1 (𝜇, 𝜎,C) ,

(75)

where

𝜃3.1 (𝜇, 𝜎,C) := (1 −
1

𝜎
)(

1

𝛼+
𝜎
)

−(2−1/𝜎)

. (76)

Combining this inequality and (64), we see that
Δ 1 (⋅)

 ≤
𝑊1 (⋅) − 𝑊2 (⋅)

 𝜃3.2 (𝜇, 𝜎,C) , (77)

where

𝜃3.2 (𝜇, 𝜎,C) :=
𝜃3.1 (𝜇, 𝜎,C)

H−2
. (78)

Applying (7), (42), (45), and (56) to (6), we see that

𝜇𝜆𝑖 (𝑦)

𝛼+

+ (1 − 𝜇) 𝜙 (𝑦)

≤ 𝑌𝜇 (𝜆𝑖 (𝑦) ,𝑊𝑗 (𝑦)
1/𝜎

)

≤
𝜇𝜆𝑖 (𝑦)

𝛼−

+ (1 − 𝜇) 𝜙 (𝑦) , 𝑖, 𝑗 = 1, 2.

(79)

Integrating both sides of these inequalities with respect to 𝑦 ∈

𝐷 and making use of (7), (8), (42), and (43), we see that

𝜇

𝛼+

+ (1 − 𝜇) ≤





𝑌𝜇 (𝜆𝑖 (⋅) ,𝑊𝑗 (⋅)

1/𝜎
)





≤

𝜇

𝛼−

+ (1 − 𝜇) ,

𝑖, 𝑗 = 1, 2.

(80)

Applying (7) and (37) to this inequality, we see that





𝑌𝜇 (𝜆𝑖 (⋅) ,𝑊𝑗 (⋅)

1/𝜎
)





≤ 𝜃3.3 (𝜇, 𝜎,C) , 𝑖, 𝑗 = 1, 2, (81)

where

𝜃3.3 (𝜇, 𝜎,C) :=
1

𝛼−

. (82)

Applying (66), (77), and (81) to 𝐼3, we obtain the following
inequality:

𝐼3
 ≤

𝑊1 (⋅) − 𝑊2 (⋅)
 𝜃3 (𝜇, 𝜎,C) , (83)

where

𝜃3 (𝜇, 𝜎,C) := 𝜃3.2 (𝜇, 𝜎,C) 𝜃3.3 (𝜇, 𝜎,C) . (84)

Performing calculations similar to, but easier than, those
done in proving (75), we see that

𝐻 (𝜆1 (⋅) ,𝑊2 (⋅) ; ⋅) − 𝐻 (𝜆2 (⋅) ,𝑊2 (⋅) ; ⋅)


≤


𝜆1 (⋅) − 𝜆2 (⋅)



 𝜃4.1 (𝜇, 𝜎,C) ,

(85)

where

𝜃4.1 (𝜇, 𝜎,C) := (𝛼+
𝜎
)
1−1/𝜎

. (86)

We obtain the following inequality by combining this
inequality and (64) in the same way as (77):

Δ 2 (⋅)
 ≤



𝜆1 (⋅) − 𝜆2 (⋅)



 𝜃4.2 (𝜇, 𝜎,C) , (87)

where

𝜃4.2 (𝜇, 𝜎,C) :=
𝜃4.1 (𝜇, 𝜎,C)

H−2
. (88)

Applying this inequality, (66), and (81) to 𝐼4, we obtain the
following inequality:

𝐼4
 ≤



𝜆1 (⋅) − 𝜆2 (⋅)



 𝜃4 (𝜇, 𝜎,C) , (89)

where

𝜃4 (𝜇, 𝜎,C) := 𝜃3.3 (𝜇, 𝜎,C) 𝜃4.2 (𝜇, 𝜎,C) . (90)

Applying this inequality, (67), (73), and (83) to (62), we
obtain the following inequality:

𝑊1 (⋅) − 𝑊2 (⋅)
 ≤



𝜆1 (⋅) − 𝜆2 (⋅)



 Θ1 (𝜇, 𝜎,C)

+
𝑊1 (⋅) − 𝑊2 (⋅)

Θ2 (𝜇, 𝜎,C) ,

(91)

where

Θ1 = Θ1 (𝜇, 𝜎,C) := 𝜃1 (𝜇, 𝜎,C) + 𝜃4 (𝜇, 𝜎,C) ,

Θ2 = Θ2 (𝜇, 𝜎,C) := 𝜃2 (𝜇, 𝜎,C) + 𝜃3 (𝜇, 𝜎,C) .

(92)
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Substituting (34) in the definitions of 𝜃𝑖 = 𝜃𝑖(𝜇, 𝜎,C), 𝑖 =

1, . . . , 4, we rewrite Θ𝑖 = Θ𝑖(𝜇, 𝜎,C), 𝑖 = 1, 2, as follows in
the same way as [12, (5.8), (5.9), (7.19), (7.21)–(7.25)]:

Θ1 (𝜇, 𝜎,C)

= {
(1 − 𝜇)

(exp (−𝛼) − 𝜇)
}

𝜎

⋅ {𝑄 (exp (𝛼))
𝜎−1 exp (2𝛼) + 𝜇 exp (𝛼)} ,

Θ2 (𝜇, 𝜎,C)

= (
𝜇

𝜎
)𝑄 (exp (𝛼))

𝜎−1 exp (𝛼)

+ (1 −
1

𝜎
)𝑄 (exp (𝛼))

2𝜎−1 exp (2𝛼) ,

(93)

where

𝑄 = 𝑄 (V) :=
(V − 𝜇)

(V−1 − 𝜇)
, 𝛼 := (𝜎 − 1)C. (94)

It is proved in [12, Lemma 7.2, (7.22)] that (5), (7), and (22)
imply the following inequality:

Θ2 (𝜇, 𝜎,C) < 1. (95)

Making use of (5), (7), and (36), we see easily that

Θ1 (𝜇, 𝜎,C) > 1. (96)

Hence, it follows from (91) and (95) that
𝑊1 (⋅) − 𝑊2 (⋅)

 ≤


𝜆1 (⋅) − 𝜆2 (⋅)



 𝜃5 (𝜇, 𝜎,C) , (97)

where

𝜃5 (𝜇, 𝜎,C) :=
Θ1 (𝜇, 𝜎,C)

(1 − Θ2 (𝜇, 𝜎,C))
> 0. (98)

Making use of this inequality, (56), and (71) and defining

𝛾1 (𝜇, 𝜎,C) := 𝜃2.2 (𝜇, 𝜎,C) 𝜃5 (𝜇, 𝜎,C) , (99)

we obtain Lemma 8.

Proposition 9. If 𝜇, 𝜎, and C satisfy (5), (7), and (22), then
the nominal wage equation (3) has a unique solution 𝑤 =

𝑤(𝑥) in 𝐿
∞
+(𝐷).

Proof. Recalling that (36) follows from (5), (7), and (22) and
combining Proposition 6 and Lemma 8 with 𝜆1(𝑥) = 𝜆2(𝑥),
we obtain this proposition.

Remark 10. (i) If𝐷 is not a continuous domain but a finite set
of points, then the nominal wage equation is not a nonlinear
integral equation but a nonlinear equation in an Euclidean
space whose dimension is equal to the number of points of
𝐷 (see [12, (2.5)]). This subject is treated in [12]. In [12] we
prove a result similar to Propositions 6 and 9 by analyzing
this nonlinear equation in the Euclidean space. However, in

this paper, Propositions 6 and 9 are proved in the Banach
spaces in contrast to the finite dimensional proof done in [12].
Propositions 6 and 9 are similar to, but essentially different
from, the results obtained in [12].

(ii) The inequalities (5), (7), and (36) are a sufficient
condition for the nominal wage equation (3) to have a
solution in 𝐿

∞
+(𝐷) (see Proposition 6). The inequalities (5),

(7), and (22) are a sufficient condition for this solution to be
unique. We make use of (22) in order to obtain (95) in the
proof of Lemma 8.

(iii) It is proved in [14, Theorem 3.1, (iii)] that if 𝜎 > 1

and C > 0 are sufficiently small, then (3) has a unique
solution. However, the condition (22) is not accepted in [14].
Recalling (35), we see that the result of [14] can be regarded
as a corollary of Proposition 9.

By Proposition 9 we can define an operator that maps 𝜆 =

𝜆(𝑥) to 𝑤 = 𝑤(𝑥), where 𝜆 = 𝜆(𝑥) satisfies (42) and (43). We
denote this operator by

𝑃1 = 𝑃1 (𝜆 (⋅) ; 𝑥) ; (100)

that is,𝑤(𝑥) := 𝑃1(𝜆(⋅); 𝑥) satisfies (3). Applying this operator
to (10), we can define an operator that maps 𝜆 = 𝜆(𝑥) to 𝜔 =

𝜔(𝑥). We denote this operator by 𝑃2 = 𝑃2(𝜆(⋅); 𝑥); that is, we
define

𝑃2 (𝜆 (⋅) ; 𝑥) :=
𝑃1 (𝜆 (⋅) ; 𝑥)

𝐺𝜎 (𝜆 (⋅) , 𝑃1 (𝜆 (⋅) ; ⋅) ; 𝑥)
𝜇 . (101)

Proposition 11. If 𝜆𝑖 = 𝜆𝑖(𝑥), 𝑖 = 1, 2, satisfy (42) and (43),
then


𝑃𝑗 (𝜆1 (⋅) ; ⋅) − 𝑃𝑗 (𝜆2 (⋅) ; ⋅)



≤


𝜆1 (⋅) − 𝜆2 (⋅)



 𝛾𝑗 (𝜇, 𝜎,C) , 𝑗 = 1, 2,

(102)

where 𝛾2 = 𝛾2(𝜇, 𝜎,C) is a positive-valued function of
(𝜇, 𝜎,C) ∈ (0, 1) × (1, +∞) × (0, +∞) (see (99) for 𝛾1 =

𝛾1(𝜇, 𝜎,C)).

Proof. For 𝑗 = 1 the result follows form Lemma 8. Next, we
prove the case 𝑗 = 2. Let us define

𝑤𝑖 (𝑥) := 𝑃1 (𝜆𝑖 (⋅) ; 𝑥) , 𝑖 = 1, 2, (103)

𝜔𝑖 (𝑥) := 𝑃2 (𝜆𝑖 (⋅) ; 𝑥) , 𝑖 = 1, 2. (104)

We define 𝑊𝑖 = 𝑊𝑖(𝑥), 𝑖 = 1, 2, by (103) in the same way as
(56). Making use of (75), (85), and (97), we see that

𝐻 (𝜆1 (⋅) ,𝑊1 (⋅) ; ⋅) − 𝐻 (𝜆2 (⋅) ,𝑊2 (⋅) ; ⋅)


≤


𝜆1 (⋅) − 𝜆2 (⋅)



 𝜃6 (𝜇, 𝜎,C) ,

(105)

where

𝜃6 (𝜇, 𝜎,C) := 𝜃4.1 (𝜇, 𝜎,C) + 𝜃3.1 (𝜇, 𝜎,C) 𝜃5 (𝜇, 𝜎,C) .

(106)
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Substitute (58) and (𝜆, 𝜔, 𝑤) = (𝜆𝑖, 𝜔𝑖, 𝑤𝑖), 𝑖 = 1, 2, in (10).
Subtracting both sides of the equalities thus obtained from
each other, we obtain

𝜔1 (𝑥) − 𝜔2 (𝑥)

= (𝑤1 (𝑥) − 𝑤2 (𝑥))𝐻 (𝜆1 (⋅) ,𝑊1 (⋅) ; 𝑥)
𝜇/(𝜎−1)

+ 𝑤2 (𝑥) {𝐻 (𝜆1 (⋅) ,𝑊1 (⋅) ; 𝑥)
𝜇/(𝜎−1)

−𝐻 (𝜆2 (⋅) ,𝑊2 (⋅) ; 𝑥)
𝜇/(𝜎−1)

} .

(107)

Apply (5), (7), (42), (43), (45), (64), (105), and Lemmas 8 and
7 with 𝛽 = 𝜇/(𝜎 − 1) and 𝑔𝑖(𝑥) = 𝐻(𝜆𝑖(⋅),𝑊𝑖(⋅); 𝑥), 𝑖 = 1, 2,
to the right-hand side of this equality. Defining

𝛾2 (𝜇, 𝜎,C) := 𝛾1 (𝜇, 𝜎,C)H+
𝜇/(𝜎−1)

+ (
1

𝛼−

)ℎ(
𝜇

(𝜎 − 1)
,H−,H+)𝜃6 (𝜇, 𝜎,C) ,

(108)

we obtain the present lemma when 𝑗 = 2.

Remark 12. (i)We can prove Propositions 6, 9, and 11 with no
boundary condition on 𝜆 = 𝜆(𝑥), 𝑤 = 𝑤(𝑥), and 𝜔 = 𝜔(𝑥).
We make use of (42) and (43) only. See [14, Remark 2.3, (i)].

(ii) For simplicity we omit the time variable 𝑡 in this
section. By replacing 𝜆 = 𝜆(𝑥), 𝑤 = 𝑤(𝑥), and 𝜔 = 𝜔(𝑥)

by 𝜆 = 𝜆(𝑡, 𝑥), 𝑤 = 𝑤(𝑡, 𝑥), and 𝜔 = 𝜔(𝑡, 𝑥) respectively, we
make use of Propositions 6, 9, and 11 in the next section.

5. The Iteration Scheme

The purpose of this section is to prove Theorem 4. Let us
construct an iteration scheme to obtain a solution to the
initial value problem for the dcDSK system (3), (10), and (11).
Let Δ𝑡 be a constant such that (see (33))

0 < Δ𝑡 ≤
1

a
. (109)

Decompose the time interval [0, +∞) into an infinite number
of intervals [𝑡𝑛, 𝑡𝑛+1), 𝑛 ∈ N ∪ {0}, where

𝑡𝑛 := 𝑛Δ𝑡, 𝑛 ∈ N ∪ {0} . (110)

Let us define𝜆Δ𝑡 = 𝜆Δ𝑡(𝑡, 𝑥) by the following iteration scheme
(see (15)):

𝜆Δ𝑡 (0, 𝑥) := 𝜆
0
(𝑥) , (111)

𝜆Δ𝑡 (𝑡, 𝑥) := 𝜆Δ𝑡 (𝑡𝑛, 𝑥) + 𝑀Δ𝑡 (𝑡𝑛, 𝑥) 𝜆Δ𝑡 (𝑡𝑛, 𝑥) (𝑡 − 𝑡𝑛) ,

for 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1) , 𝑛 ∈ N ∪ {0} ,

(112)

𝜆Δ𝑡 (𝑡𝑛+1, 𝑥) = 𝜆Δ𝑡 (𝑡𝑛+1 − 0, 𝑥) ,

for each 𝑛 ∈ N ∪ {0} ,

(113)

where we define (see (12)–(14))

𝑀Δ𝑡 (𝑡, 𝑥) := 𝑀 (𝜆Δ𝑡 (𝑡, ⋅) , 𝜔Δ𝑡 (𝑡, ⋅) ; 𝑥) , 𝑡 ≥ 0, (114)

𝑤Δ𝑡 (𝑡, 𝑥) := 𝑃1 (𝜆Δ𝑡 (𝑡, ⋅) ; 𝑥) ,

𝜔Δ𝑡 (𝑡, 𝑥) := 𝑃2 (𝜆Δ𝑡 (𝑡, ⋅) ; 𝑥) ,

𝑡 ≥ 0.

(115)

Lemma 13. For each 𝑇 > 0, the following (i–viii) statements
hold.

(i) 𝜆Δ𝑡 = 𝜆Δ𝑡(𝑡, 𝑥) ∈ 𝐿
∞,1
0+([0, 𝑇] × 𝐷).

(ii) |||𝜆Δ𝑡(𝑡, ⋅)||| = 1 for each 𝑡 ∈ [0, 𝑇].
(iii) 𝜔Δ𝑡 = 𝜔Δ𝑡(𝑡, 𝑥), 𝑤Δ𝑡 = 𝑤Δ𝑡(𝑡, 𝑥) ∈ 𝐶+(𝐷) for each

𝑡 ∈ [0, 𝑇].
(iv) 1/𝛼+ ≤ 𝑤Δ𝑡(𝑡, 𝑥) ≤ 1/𝛼− for each (𝑡, 𝑥) ∈ [0, 𝑇] × 𝐷.
(v) 1/𝛼+ ≤ 𝐺𝜎(𝜆Δ𝑡(𝑡, ⋅), 𝑤Δ𝑡(𝑡, ⋅); 𝑥) ≤ (1/𝛼−) exp(C) for

each (𝑡, 𝑥) ∈ [0, 𝑇] × 𝐷.
(vi) a1 ≤ 𝜔Δ𝑡(𝑡, 𝑥) ≤ a2 for each (𝑡, 𝑥) ∈ [0, 𝑇] × 𝐷.
(vii) a1 ≤ 𝑚(𝜆Δ𝑡(𝑡, ⋅), 𝜔Δ𝑡(𝑡, ⋅)) ≤ a2 for each 𝑡 ∈ [0, 𝑇].
(viii) −a ≤ 𝑀Δ𝑡(𝑡, 𝑥) ≤ a for each (𝑡, 𝑥) ∈ [0, 𝑇] × 𝐷.

Proof. By (111) and Assumption 2, we can consider that (i)
and (ii) hold when 𝑇 = 0. Hence, making use of (115) and
Propositions 6 and 9, we obtain (iii)–(viii) when 𝑇 = 0.
Applying (i), (ii), and (viii) with𝑇 = 0, (109), and (110) to (112)
and (113) when 𝑛 = 0, we obtain (i) with 𝑇 = 𝑡1. Integrating
both sides of (112) with respect to 𝑥 ∈ 𝐷, recalling (12) and
(13), and making use of (i) with 𝑇 = 𝑡1, we obtain (ii) with
𝑇 = 𝑡1. Making use of (i) and (ii) with 𝑇 = 𝑡1, (115), and
Propositions 6 and 9, we obtain (iii)–(viii) when 𝑇 = 𝑡1.
Assume that (i)–(viii) hold when 𝑇 = 𝑡𝑘, 𝑘 ∈ N. We can prove
(i)–(viii) with 𝑇 = 𝑡𝑘+1 in the same way as in obtaining (i)–
(viii) with 𝑇 = 𝑡1 from (i)–(viii) with 𝑇 = 0. Therefore we
prove this lemma.

Note that Propositions 6 and 9 are proved on the basis of
(42) and (43). Hence, we need Lemma 13, (i), (ii), in order to
make use of Propositions 6 and 9 in the proof of Lemma 13,
(iii)–(viii).

Differentiating both sides of (112) with respect to 𝑡 ∈

(𝑡𝑛, 𝑡𝑛+1), we obtain the following equality:

(
𝜕

𝜕𝑡
) 𝜆Δ𝑡 (𝑡, 𝑥) = 𝑀Δ𝑡 (𝑡, 𝑥) 𝜆Δ𝑡 (𝑡, 𝑥) + 𝑅Δ𝑡 (𝑡, 𝑥) ,

for each 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1) , 𝑛 ∈ N ∪ {0} ,

(116)

where

𝑅Δ𝑡 (𝑡, 𝑥) := −𝑀Δ𝑡 (𝑡, 𝑥) (𝜆Δ𝑡 (𝑡, 𝑥) − 𝜆Δ𝑡 (𝑡𝑛, 𝑥))

− (𝑀Δ𝑡 (𝑡, 𝑥) − 𝑀Δ𝑡 (𝑡𝑛, 𝑥)) 𝜆Δ𝑡 (𝑡𝑛, 𝑥) .

(117)

Lemma 14. |||𝑅Δ𝑡(𝑡, ⋅)||| ≤ bΔ𝑡 for each 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1), 𝑛 ∈

N ∪ {0}, where

b := a2 + ac, c := 2𝛾2 (𝜇, 𝜎,C) + a2. (118)
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Proof. Subtract both sides of (114) with 𝑡 = 𝑡𝑛 from those of
(114). Applying (12) and (13) to the equality thus obtained, we
obtain

𝑀Δ𝑡 (𝑡, 𝑥) − 𝑀Δ𝑡 (𝑡𝑛, 𝑥)

= 𝜔Δ𝑡 (𝑡, 𝑥) − 𝜔Δ𝑡 (𝑡𝑛, 𝑥)

− (∫
𝑦∈𝐷

𝜆Δ𝑡 (𝑡, 𝑦) 𝜔Δ𝑡 (𝑡, 𝑦) 𝑑𝑦

−∫
𝑦∈𝐷

𝜆Δ𝑡 (𝑡𝑛, 𝑦) 𝜔Δ𝑡 (𝑡𝑛, 𝑦) 𝑑𝑦) .

(119)

Applying Lemma 13, (ii), (vi), and Proposition 11 with 𝑗 = 2

and (𝜆1(𝑥), 𝜆2(𝑥)) = (𝜆Δ𝑡(𝑡, 𝑥), 𝜆Δ𝑡(𝑡𝑛, 𝑥)) to the right-hand
side of this equality, we see that
𝑀Δ𝑡 (𝑡, ⋅) − 𝑀Δ𝑡 (𝑡𝑛, ⋅)

 ≤ c 

𝜆Δ𝑡 (𝑡, ⋅) − 𝜆Δ𝑡 (𝑡𝑛, ⋅)





for each 𝑡 ∈ [𝑡𝑛, 𝑡𝑛+1) , 𝑛 ∈ N ∪ {0} .

(120)

Applying Lemma 13, (ii), (viii), and (110) to (112), we see that


𝜆Δ𝑡 (𝑡, ⋅) − 𝜆Δ𝑡 (𝑡𝑛, ⋅)



 ≤ aΔ𝑡. (121)

Applying this inequality, Lemma 13, (ii), (viii), and (120) to
(117), we obtain the present lemma.

Lemma 15. The function

(𝜆Δ𝑡 (𝑡, 𝑥) , 𝜔Δ𝑡 (𝑡, 𝑥) , 𝑤Δ𝑡 (𝑡, 𝑥)) (122)

converges in (17) as Δ𝑡 → 0 + 0 for each 𝑇 > 0.

Proof. Replace Δ𝑡 by Δ𝑠 in (116), where Δ𝑠 is a positive con-
stant that satisfies the same inequality as (109). Subtracting
both sides of the equality thus obtained from those of (116),
we obtain

(
𝜕

𝜕𝑡
)Λ Δ𝑡,Δ𝑠 (𝑡, 𝑥) = 𝑀Δ𝑡 (𝑡, 𝑥) Λ Δ𝑡,Δ𝑠 (𝑡, 𝑥) + RΔ𝑡,Δ𝑠 (𝑡, 𝑥) ,

(123)

where

Λ Δ𝑡,Δ𝑠 (𝑡, 𝑥) := 𝜆Δ𝑡 (𝑡, 𝑥) − 𝜆Δ𝑠 (𝑡, 𝑥) , (124)

RΔ𝑡,Δ𝑠 (𝑡, 𝑥) := 𝑅Δ𝑡 (𝑡, 𝑥) − 𝑅Δ𝑠 (𝑡, 𝑥) + 𝑟Δ𝑡,Δ𝑠 (𝑡, 𝑥) , (125)

𝑟Δ𝑡,Δ𝑠 (𝑡, 𝑥) := (𝑀Δ𝑡 (𝑡, 𝑥) − 𝑀Δ𝑠 (𝑡, 𝑥)) 𝜆Δ𝑠 (𝑡, 𝑥) . (126)

Performing the same calculations as done in proving (120)
and making use of Lemma 13, (ii), we obtain



𝑟Δ𝑡,Δ𝑠 (𝑡, ⋅)



 ≤ ck (𝑡) , (127)

where

k (𝑡) :=


Λ Δ𝑡,Δ𝑠 (𝑡, ⋅)



 . (128)

Applying this inequality and Lemma 14 to (125), we deduce
that



RΔ𝑡,Δ𝑠 (𝑡, ⋅)



 ≤ b (Δ𝑠 + Δ𝑡) + ck (𝑡) . (129)

Let us solve (123) with respect to (124) by considering
(125) as a perturbation term. We perform the same calcula-
tions as done in proving Gronwall’s lemma. Replace 𝑡 by 𝑟 in
(123), multiply both sides by

exp(−∫

𝑟

0
𝑀Δ𝑡 (𝑠, 𝑥) 𝑑𝑠) , (130)

and integrate both sides with respect to 𝑟 ∈ [0, 𝑡]. Applying
Lemma 13, (viii), and (129) to the equality thus obtained and
noting thatΛ Δ𝑡,Δ𝑠(0, 𝑥) = 0 (see (111)), we can easily obtain an
integral inequality for k(𝑡). Consider this integral inequality
as a differential inequality whose unknown function is

K = K (𝑡) := ∫

𝑡

0
k (𝑟) 𝑒

−a𝑟
𝑑𝑟. (131)

Solve this differential inequality with respect to K = K(𝑡).
Applying the inequality thus solved to the integral inequality
for k = k(𝑡), we obtain



𝜆Δ𝑡 (𝑡, ⋅) − 𝜆Δ𝑠 (𝑡, ⋅)



 ≤ r (𝑡) (Δ𝑡 + Δ𝑠) , (132)

where

r (𝑡) := (
b

(a + c)
) {exp ((a + c) 𝑡) − 1} . (133)

Applying this inequality and Proposition 11 with
(𝜆1(𝑥), 𝜆2(𝑥)) = (𝜆Δ𝑡(𝑡, 𝑥), 𝜆Δ𝑠(𝑡, 𝑥)) to (115), we deduce that

𝑤Δ𝑡 (𝑡, ⋅) − 𝑤Δ𝑠 (𝑡, ⋅)
 ≤ 𝛾1 (𝜇, 𝜎,C) r (𝑡) (Δ𝑡 + Δ𝑠) ,

𝜔Δ𝑡 (𝑡, ⋅) − 𝜔Δ𝑠 (𝑡, ⋅)
 ≤ 𝛾2 (𝜇, 𝜎,C) r (𝑡) (Δ𝑡 + Δ𝑠) .

(134)

From (132)–(134), we obtain the present lemma.

Lemma 16. The limit

(𝜆 (𝑡, 𝑥) , 𝜔 (𝑡, 𝑥) , 𝑤 (𝑡, 𝑥))

:= lim
Δ𝑡→0+0

(𝜆Δ𝑡 (𝑡, 𝑥) , 𝜔Δ𝑡 (𝑡, 𝑥) , 𝑤Δ𝑡 (𝑡, 𝑥))
(135)

is a global solution and satisfies (24), (25), and (27)–(32).

Proof. Making use of Lemmas 13 and 15, we deduce that (135)
satisfies (25) and (28)–(32). Recalling (115), we can substitute
(122) in (3) and (10). Let Δ𝑡 → 0 + 0 in the equalities
thus obtained. By Lemma 15, we see easily that (135) satisfies
(3) and (10). Replace 𝑡 by 𝑟 in (116). Multiply both sides by
(130) and integrate both sides with respect to 𝑟 ∈ [0, 𝑡].
We obtain an integral equation whose unknown function is
𝜆Δ𝑡 = 𝜆Δ𝑡(𝑡, 𝑥). Apply (111) and Lemmas 14 and 15 to this
integral equation, recall (12) and (13), and let Δ𝑡 → 0 + 0.
We deduce that (135) satisfies the following equality:

𝜆 (𝑡, 𝑥) = 𝜆
0
(𝑥) exp(∫

𝑡

0
𝑀(𝜆 (𝑠, ⋅) , 𝜔 (𝑠, ⋅) ; 𝑥) 𝑑𝑠) . (136)

Hence, (135) satisfies (11) and (15) (see (14)). Applying (32) to
(136), we see that (135) satisfies (24) and (27).
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The following lemma gives necessary conditions for the
initial value problem to have a solution that belongs to (17).

Lemma 17. If the initial value problem has a solution

(𝜆, 𝜔, 𝑤) = (𝜆 (𝑡, 𝑥) , 𝜔 (𝑡, 𝑥) , 𝑤 (𝑡, 𝑥)) (137)

in (17) for some 𝑇 > 0, then this solution satisfies (23),
(25), (26), and (28)–(32) in [0, 𝑇] × 𝐷, where 𝛿𝑖(𝜇, 𝜎,C) :=

a𝛾𝑖(𝜇, 𝜎,C), 𝑖 = 1, 2 (see Proposition 11).

Proof. Recalling (12), (13), and the definition of (17), we see
easily that

𝜔 (𝑡, 𝑥) ∈ 𝐿
∞

([0, 𝑇] × 𝐷) , 𝑚 (𝑡) ∈ 𝐿
∞

([0, 𝑇]) , (138)

𝜆 (𝑡, 𝑥) ∈ 𝐿
∞,1
0+ ([0, 𝑇] × 𝐷) , (139)

where

𝑚(𝑡) := 𝑚 (𝜆 (𝑡, ⋅) , 𝜔 (𝑡, ⋅)) . (140)

Hence, integrating both sides of (11) with respect to 𝑥 ∈ 𝐷

and recalling (12) and (13), we see easily that

𝑑𝑛 (𝑡)

𝑑𝑡
= 𝑚 (𝑡) (1 − 𝑛 (𝑡)) , (141)

where

𝑛 (𝑡) := |||𝜆 (𝑡, ⋅)||| . (142)

Making use of (138) and (139), we can transform (11) into
(136). Applying (138) and Assumption 2, (ii), to (136), we
obtain

𝑛 (0 + 0) = 1. (143)

Solving (141) with this initial condition, we see that𝜆 = 𝜆(𝑡, 𝑥)

satisfies (28) for each 𝑡 ∈ [0, 𝑇]. Making use of this result and
(139), we can apply Propositions 6, 9, and 11 to (137). Applying
Propositions 6 and 9 to (137), we see that (137) satisfies (25)
and (29)–(32) for each (𝑡, 𝑥) ∈ [0, 𝑇] × 𝐷. Integrate both
sides of (11) with respect to 𝑡 ∈ [𝑟, 𝑠], calculate the absolute
values of both sides, and integrate themwith respect to𝑥 ∈ 𝐷.
Applying (28) and (32) to the right-hand side of the equality
thus obtained, we see that (137) satisfies (23) for each 𝑟, 𝑠 ∈

[0, 𝑇]. Combining this result and Proposition 11, we see that
(137) satisfies (26) for each 𝑟, 𝑠 ∈ [0, 𝑇].

Proof of Theorem 4. Let

(𝜆1, 𝜔1, 𝑤1) = (𝜆1 (𝑡, 𝑥) , 𝜔1 (𝑡, 𝑥) , 𝑤1 (𝑡, 𝑥)) (144)

be a solution that belongs to (17). Substitute this solution
and (135) in (11). Subtracting both sides of the equalities thus
obtained from each other, we obtain the following equation
in the same way as (123):

(
𝜕

𝜕𝑡
)Λ (𝑡, 𝑥) = 𝑀 (𝑡, 𝑥) Λ (𝑡, 𝑥) + r (𝑡, 𝑥) , (145)

where

Λ (𝑡, 𝑥) := 𝜆 (𝑡, 𝑥) − 𝜆1 (𝑡, 𝑥) ,

r (𝑡, 𝑥) := (𝑀 (𝑡, 𝑥) − 𝑀1 (𝑡, 𝑥)) 𝜆1 (𝑡, 𝑥) ,

𝑀 (𝑡, 𝑥) := 𝑀 (𝜆 (𝑡, ⋅) , 𝜔 (𝑡, ⋅) ; 𝑥) ,

𝑀1 (𝑡, 𝑥) := 𝑀 (𝜆1 (𝑡, ⋅) , 𝜔1 (𝑡, ⋅) ; 𝑥) .

(146)

Note that both (135) and (144) satisfy (25) and (28)–(32) (see
Lemmas 16 and 17). Making use of this result, we can perform
the same calculations as done in proving (127). Hence we
obtain

|||r (𝑡, ⋅)||| ≤ c |||Λ (𝑡, ⋅)||| . (147)

Making use of this inequality in place of (129) and performing
the same calculations as done in proving (132)–(134), we
prove that (144) is the same as (135). By Lemmas 16 and 17
we proveTheorem 4.
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This paper deals with the mathematical analysis of a retarded partial integrodifferential equation that belongs to the class of
thermostatted kinetic equations with time delay. Specifically, the paper is devoted to the proof of the existence and uniqueness
of mild solutions of the related Cauchy problem. The main result is obtained by employing integration along the characteristic
curves and successive approximations sequence arguments. Applications and perspective are also discussed within the paper.

1. Introduction

Thederivation and analysis ofmathematical frameworks have
recently gained much attention in the applied sciences and
specifically for the modeling of complex phenomena occur-
ring in biology, chemistry, vehicular traffic, crowd/swarm
dynamics, economics, and social systems. At the origin
of complex dynamics, there are interactions that occur in
nonlinear fashion and randomly among the elements (parti-
cles, cells, and pedestrians) composing the complex system
[1]. Complex systems are also characterized by emergent
properties, which are properties of the system as a whole
which do not exist at the individual element level.

Different ordinary differential equations and partial dif-
ferential equations have been derived with the aim of obtain-
ing an accurate description of complex phenomena. More-
over, thermostatted kinetic frameworks have been developed
for themathematical modeling of complex systems in physics
and life sciences [2–5]. The goal of the thermostatted kinetic
models is the possibility of modeling the interactions among
the particles at the microscopic scale. In particular, these
frameworks allow modeling the ability of the particles to
express strategies.

The present paper deals with further developments of
the thermostatted kinetic theory proposed in [6]. Specifi-
cally, this paper is devoted to the mathematical analysis of
a partial integrodifferential equation with thermostat and
time delay that belongs to the class of the thermostatted
kinetic theory frameworks. The paper focuses on the proof
of the existence and uniqueness of mild solutions of the
related Cauchy problem. The main result is obtained by
employing integration along the characteristic curves and
successive approximations sequence arguments. Applications
and perspective are also discussed within the paper.

The time delay is introduced in order to take into account
the fact that most of the emerging behaviours occurring in
complex systems at a certain time are strictly related to the
interactions among the particles of the system at a previous
time. In the pertinent literature, mathematical models with
time delays have been proposed only in ODE-based models;
see, among others, [7–16]. The introduction of the time delay
has provoked the onset of fluctuations and Hopf bifurcation;
see [17–20].

It is worth stressing that, to the best of our knowledge,
this is the first time that time delay is introduced into a
thermostatted partial integrodifferential equation (kinetic).
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The contents of the present paper are developed through
four more sections, which follow this introduction. In detail,
Section 2 deals with the retarded partial integrodifferential
equation and the related Cauchy problem; Section 3 is con-
cerned with some preliminary results that are needed for the
proof of the main result that is outlined in Section 4. Finally,
Section 5 is devoted to a critical analysis of the proposed
mathematical equation including research perspective and
applications.

2. The Retarded Integrodifferential Equation

This paper is devoted to the result about the existence and
uniqueness of a solution of the following Cauchy problem:

𝜕𝑡𝑓 (𝑡, 𝑢) + 𝐹𝜕𝑢 (𝑓 (𝑡, 𝑢) (1 − 𝑢∫
𝐷𝑢

𝑢𝑓 (𝑡, 𝑢) 𝑑𝑢))

= 𝜂𝐽 [𝑓, 𝑓𝜏] (𝑡, 𝑢) ,

𝑓 (0, 𝑢) = 𝑓0 (𝑢) ,

(1)

where 𝑓 = 𝑓(𝑡, 𝑢) : [0, +∞) × 𝐷𝑢 → R+ is the unknown
function, 𝑓𝜏 = 𝑓(𝑡 − 𝜏, 𝑢) : [−𝜏, +∞) ×𝐷𝑢 → R+, 𝐹, 𝜂 ∈ R+,
and 𝐽[𝑓, 𝑓𝜏] = 𝐽[𝑓, 𝑓𝜏](𝑡, 𝑢) is the following integral operator:

𝐽 [𝑓, 𝑓𝜏] = ∫
𝐷𝑢×𝐷𝑢

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑓 (𝑡, 𝑢∗)

× 𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢∗𝑑𝑢

∗

− 𝑓 (𝑡, 𝑢) ∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢
∗
,

(2)

with A(𝑢∗, 𝑢
∗
, 𝑢) : 𝐷𝑢 × 𝐷𝑢 × 𝐷𝑢 → R+, 𝜏 the time delay,

and 𝑓0 the initial datum.
In the partial integrodifferential equation with time delay

𝜕𝑡𝑓 (𝑡, 𝑢) + 𝐹𝜕𝑢 (𝑓 (𝑡, 𝑢) (1 − 𝑢∫
𝐷𝑢

𝑢𝑓 (𝑡, 𝑢) 𝑑𝑢))

= 𝜂𝐽 [𝑓, 𝑓𝜏] (𝑡, 𝑢) ,

(3)

𝐽[𝑓, 𝑓𝜏](𝑡, 𝑢) = 𝐺[𝑓, 𝑓𝜏](𝑡, 𝑢) − 𝐿[𝑓, 𝑓𝜏](𝑡, 𝑢) is the conser-
vative interaction operator, which is splitted into the gain
(of particles into state 𝑢) operator 𝐺[𝑓, 𝑓𝜏] = 𝐺[𝑓, 𝑓𝜏](𝑡, 𝑢)

and the loss (of particles into state 𝑢) operator 𝐿[𝑓, 𝑓𝜏] =

𝐿[𝑓, 𝑓𝜏](𝑡, 𝑢):

𝐺 [𝑓, 𝑓𝜏]

= ∫
𝐷𝑢×𝐷𝑢

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑓 (𝑡, 𝑢∗) 𝑓 (𝑡 − 𝜏, 𝑢

∗
) 𝑑𝑢∗𝑑𝑢

∗
,

(4)

𝐿 [𝑓, 𝑓𝜏] = 𝑓 (𝑡, 𝑢) ∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢
∗
. (5)

Bearing all of the above in mind, and under suitable inte-
grability assumptions on 𝑓, the 𝑝th-order moment of 𝑓 is
defined as follows:

E𝑝 [𝑓] (𝑡) = ∫
𝐷𝑢

𝑢
𝑝
𝑓 (𝑡, 𝑢) 𝑑𝑢, 𝑝 ∈ N. (6)

In particular, the zero-order, first-order, and second-order
moments represent the density (mass), mean activation
(linear momentum), and activation energy (kinetic energy),
respectively. The term

T𝐹 [𝑓] := 𝐹𝜕𝑢 (𝑓 (𝑡, 𝑢) (1 − 𝑢∫
𝐷𝑢

𝑢𝑓 (𝑡, 𝑢) 𝑑𝑢)) (7)

is a damping operator that allows the control of the activation
energy.This term is based on theGaussian isokinetic thermo-
stat (the interested reader is referred, among others, to [21–
23]).

In what follows, we assume that 𝑓(𝑡, 𝑢) = 0 for (𝑡, 𝑢) ∈

[−𝜏, 0] × 𝐷𝑢 (initial function).

3. Preliminary Results

This section is concerned with some preliminary results that
are at the basis of the main result of the present paper.

Lemma 1. The gain operator (4) satisfies, for all functions 𝑓

and 𝑔, the following identity:

𝐺 [𝑓, 𝑓𝜏] − 𝐺 [𝑔, 𝑔𝜏] = 𝐺 [𝑓 − 𝑔, 𝑓𝜏] + 𝐺 [𝑔, 𝑓𝜏 − 𝑔𝜏] . (8)

Proof. It is obtained by straightforward calculations.

Themain result is based on the following assumptions on
the probability density functionA.
(A1) The probability density function A satisfies, for all

𝑢∗, 𝑢
∗
∈ 𝐷𝑢, the following identity:

∫
𝐷𝑢

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑑𝑢 = 1, (9)

which models the conservation of particles.
(A2) The probability density function A is an even func-

tion with respect to 𝑢; then, in particular,

∫
𝐷𝑢

𝑢A (𝑢∗, 𝑢
∗
, 𝑢) 𝑑𝑢 = 0. (10)

(A3) The probability density function A satisfies, for all
𝑢∗, 𝑢
∗
∈ 𝐷𝑢, the following identity:

∫
𝐷𝑢

𝑢
2
A (𝑢∗, 𝑢

∗
, 𝑢) 𝑑𝑢 = 𝑢

2
∗. (11)

Lemma2. If the functionA satisfies assumptions (9), (10), and
(11), then

∫
𝐷𝑢

𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢) 𝑑𝑢

= (∫
𝐷𝑢

𝑓 (𝑡, 𝑢) 𝑑𝑢)(∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢) 𝑑𝑢) ,

(12)

∫
𝐷𝑢

𝑢
2𝑝+1

𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢) 𝑑𝑢 = 0, 𝑝 ∈ N, (13)

∫
𝐷𝑢

𝑢
2
𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢) 𝑑𝑢

= (∫
𝐷𝑢

𝑢
2
𝑓 (𝑡, 𝑢) 𝑑𝑢)(∫

𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢) 𝑑𝑢) .

(14)
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Proof. Condition (9) implies

∫
𝐷𝑢

𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢) 𝑑𝑢

= ∫
𝐷𝑢

(∫
𝐷𝑢×𝐷𝑢

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑓 (𝑡, 𝑢∗)

×𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢∗𝑑𝑢

∗
)𝑑𝑢

= ∫
𝐷𝑢×𝐷𝑢

(∫
𝐷𝑢

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑑𝑢)

× 𝑓 (𝑡, 𝑢∗) 𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢∗𝑑𝑢

∗

= (∫
𝐷𝑢

𝑓 (𝑡, 𝑢∗) 𝑑𝑢
∗
)(∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢
∗
) .

(15)

Bearing in mind condition (10), we have

∫
𝐷𝑢

𝑢
2𝑝+1

𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢) 𝑑𝑢

= ∫
𝐷𝑢

𝑢
2𝑝+1

(∫
𝐷𝑢×𝐷𝑢

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑓 (𝑡, 𝑢∗)

×𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢∗𝑑𝑢

∗
)𝑑𝑢

= ∫
𝐷𝑢×𝐷𝑢

(∫
𝐷𝑢

𝑢
2𝑝+1

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑑𝑢)

× 𝑓 (𝑡, 𝑢∗) 𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢∗𝑑𝑢

∗
= 0.

(16)

Finally, condition (11) implies

∫
𝐷𝑢

𝑢
2
𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢) 𝑑𝑢

= ∫
𝐷𝑢

𝑢
2
(∫
𝐷𝑢×𝐷𝑢

A (𝑢∗, 𝑢
∗
, 𝑢) 𝑓 (𝑡, 𝑢∗)

×𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢∗𝑑𝑢

∗
)𝑑𝑢

= ∫
𝐷𝑢×𝐷𝑢

(∫
𝐷𝑢

𝑢
2
A (𝑢∗, 𝑢

∗
, 𝑢) 𝑑𝑢)

× 𝑓 (𝑡, 𝑢∗) 𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢∗𝑑𝑢

∗

= ∫
𝐷𝑢×𝐷𝑢

𝑢
2
∗𝑓 (𝑡, 𝑢∗) 𝑓 (𝑡 − 𝜏, 𝑢

∗
) 𝑑𝑢∗𝑑𝑢

∗

= (∫
𝐷𝑢

𝑢
2
∗𝑓 (𝑡, 𝑢∗) 𝑑𝑢∗)(∫

𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢
∗
) .

(17)

Therefore, the proof of the lemma is concluded.

Bearing the previous lemma in mind, the evolution
equation for the 1st-order moment of 𝑓 is stated in the
following results.

Theorem 3. Assume that assumptions (9), (10), and (11)
hold. If there exists a nonnegative solution 𝑓 of the partial
integrodifferential equation (3) such that 𝑓(𝑡, 𝑢) = 0 as 𝑢 ∈

𝜕𝐷𝑢, then the 1st-order moment E1[𝑓](𝑡) is solution of the
following delayed first-order nonlinear ordinary differential
equation:

𝑑

𝑑𝑡
E1 [𝑓] (𝑡) = 𝐹 [E0 [𝑓] (𝑡) − (E1 [𝑓] (𝑡))

2
]

− 𝜂E1 [𝑓] (𝑡)E0 [𝑓] (𝑡 − 𝜏) .

(18)

Proof. The integral operator 𝐽[𝑓, 𝑓𝜏] can bewritten as follows:

𝐽 [𝑓, 𝑓𝜏] (𝑡, 𝑢) = 𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢)

− 𝑓 (𝑡, 𝑢) ∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢
∗
) 𝑑𝑢
∗
.

(19)

Multiplying both sides of 𝐽[𝑓, 𝑓𝜏] by 𝑢, integrating over 𝐷𝑢,
and considering (10), we have

∫
𝐷𝑢

𝑢𝐽 [𝑓, 𝑓𝜏] (𝑡, 𝑢) 𝑑𝑢

= −(∫
𝐷𝑢

𝑢𝑓 (𝑡, 𝑢) 𝑑𝑢)(∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢) 𝑑𝑢)

= −E1 [𝑓] (𝑡)E0 [𝑓] (𝑡 − 𝜏) .

(20)

Since

∫
𝐷𝑢

𝑢𝜕𝑢 (𝑓 (𝑡, 𝑢) (1 − 𝑢∫
𝐷𝑢

𝑢𝑓 (𝑡, 𝑢) 𝑑𝑢))𝑑𝑢

= (E1 [𝑓] (𝑡))
2
− E0 [𝑓] (𝑡) ,

(21)

then we have the proof.

Corollary 4. Assume that assumptions (9), (10), and (11) hold.
If there exists a nonnegative solution 𝑓 of the Cauchy problem
(1) such that

(i) E0[𝑓](𝑡) = E0[𝑓](𝑡 − 𝜏) = 1,
(ii) 𝑓(𝑡, 𝑢) = 0 as 𝑢 ∈ 𝜕𝐷𝑢,

then the 1st-order moment E1[𝑓](𝑡) reads as follows:

𝛽 (𝑡) := E1 [𝑓] (𝑡)

=
E+1 (E

−
1 − E01) − E−1 (E

+
1 − E01) 𝑒

−(√𝜂2+4𝐹2/𝐹)𝑡

(E−1 − E01) − (E+1 − E01) 𝑒
−(√𝜂2+4𝐹2/𝐹)𝑡

,

(22)

where

E
±
1 =

−𝜂 ± √𝜂2 + 4𝐹2

2𝐹
,

E
0
1 = E1 [𝑓] (0) = ∫

𝐷𝑢

𝑢𝑓0𝑑𝑢.

(23)
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Proof. The proof is obtained by coupling the delayed differ-
ential equation (18) with the initial condition E1[𝑓](0) = E01.
If E01 = E+1 or E

0
1 = E−1 , then we have E1[𝑓](𝑡) = E01 for all

𝑡 > 0. Otherwise, the unique solution is function (22).

Theorem 5. Let 𝑝 be an odd number and 𝑡 ≥ 0. Assume
that assumptions (9), (10), and (11) hold. Then, the 𝑝th-
order moment of 𝑓 satisfies the following delayed ordinary
differential equation:

𝑑

𝑑𝑡
E𝑝 [𝑓] (𝑡)

= −E𝑝 [𝑓] (𝑡) [𝑝𝐹E1 [𝑓] (𝑡) + 𝜂E0 [𝑓] (𝑡 − 𝜏)]

+ 𝑝𝐹E𝑝−1 [𝑓] (𝑡) .

(24)

Proof. The proof follows by multiplying both sides of (3) by
𝑢
𝑝, taking into account assumptions (9), (10), and (11), and

performing integration by parts on the thermostat term.

According to Corollary 4, (3) can be rewritten as follows:

𝜕𝑡𝑓 + 𝐹 (1 − 𝑢𝛽 (𝑡)) 𝜕𝑢𝑓 + (𝜂 − 𝐹𝛽 (𝑡)) 𝑓 = 𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑢) ,

(25)

and, after integrating along the characteristics, (25) reads as
follows:

𝑑

𝑑𝑡
𝑓𝑈 + (𝜂 − 𝐹𝛽 (𝑡)) 𝑓𝑈 = 𝐺𝑈 [𝑓, 𝑓𝜏] (𝑡, 𝑢) , (26)

where

𝑓𝑈 (𝑡, 𝑢) := 𝑓 (𝑡, 𝑈 (𝑡, 𝑢)) ,

𝐺𝑈 [𝑓, 𝑓𝜏] (𝑡, 𝑢) := 𝐺 [𝑓, 𝑓𝜏] (𝑡, 𝑈 (𝑡, 𝑢)) ,

(27)

being

𝑈 (𝑡, 𝑢) = 𝜑𝑡 (𝑢) = 𝑢𝑒
−𝜆(𝑡)

+ 𝐹𝑒
−𝜆(𝑡)

∫

𝑡

0
𝑒
𝜆(𝑠)

𝑑𝑠,

𝜆 (𝑡) = 𝐹∫

𝑡

0
𝛽 (𝑠) 𝑑𝑠,

(28)

𝑢 = 𝜑
−1
𝑡 (𝑈) = 𝑈𝑒

𝜆(𝑡)
− 𝐹∫

𝑡

0
𝑒
𝜆(𝑠)

𝑑𝑠. (29)

Bearing all of the above in mind, the integral form of (26) is

𝑓𝑈 (𝑡, 𝑢) = 𝑒
−Λ(𝑡)

𝑓𝑈 (0, 𝑢)

+ 𝑒
−Λ(𝑡)

∫

𝑡

0
𝑒
Λ(𝛼)

𝐺𝑈 [𝑓, 𝑓𝜏] (𝛼, 𝑢) 𝑑𝛼,

∀𝑡 ∈ [0, 𝑇] ,

(30)

where Λ(𝑡) = ∫
𝑡

0
(𝜂 − 𝐹𝛽(𝑠))𝑑𝑠 = 𝜂𝑡 − 𝜆(𝑡).

4. Existence of Mild Solutions

Definition 6. A function 𝑓 is said to be a mild solution
to the Cauchy problem (1) on the time interval [0, 𝑇] if
𝑓(𝑡, ⋅) ∈ 𝐿

1
(𝐷𝑢, 𝑑𝑢) and𝑓 is solution to the following integral

equation:

𝑓 (𝑡, 𝑢) = Φ𝑓0
[𝑓, 𝑓𝜏] (𝑡, 𝑢) , (31)

where

Φ𝑓0
[𝑓, 𝑓𝜏] (𝑡, 𝑢)

= 𝑒
−Λ(𝑡)

𝑓0 (𝜑
−1
𝑡 (𝑢))

+ 𝑒
−Λ(𝑡)

∫

𝑡

0
𝑒
Λ(𝛼)

𝐺 [𝑓, 𝑓𝜏] (𝛼, 𝜑𝛼 ∘ 𝜑
−1
𝑡 (𝑢)) 𝑑𝛼.

(32)

Lemma 7. Let {𝑓(𝑛)(𝑡, 𝑢)}𝑛 be the following successive approx-
imations sequence:

𝑓
(1)

(𝑡, 𝑢) = 0,

𝑓
(𝑛)

(𝑡, 𝑢) = Φ𝑓0
[𝑓
(𝑛−1)

, 𝑓
(𝑛−1)
𝜏 ] (𝑡, 𝑢) , 𝑛 > 1,

(33)

where 𝑓0 is a nonnegative function such that E0[𝑓0](𝑡) = 1.
Then, {𝑓(𝑛)(𝑡, 𝑢)}n admits, as 𝑛 goes to infinity, a nonnegative
limit 𝑓(𝑡, ⋅) ∈ 𝐿

1
(𝐷𝑢, 𝑑𝑢) such that E0[𝑓](𝑡) = 1.

Proof. Since 𝑓0 is a nonnegative function, then 𝑓
(𝑛)

(𝑡, 𝑢) > 0,
∀𝑛 ≥ 1. Moreover,

𝑓
(2)

(𝑡, 𝑢) = 𝑒
−Λ(𝑡)

𝑓0 (𝜑
−1
𝑡 (𝑢)) ≥ 0 = 𝑓

(1)
(𝑡, 𝑢) , (34)

and E0[𝑓
(2)

](𝑡) = 𝑒
−𝜂𝑡

≤ 1.
We now prove by induction that the sequence {𝑓(𝑛)(𝑡, ⋅)}𝑛

is monotone, and specifically

𝑓
(𝑛)

(𝑡, 𝑢) ≥ 𝑓
(𝑛−1)

(𝑡, 𝑢) , ∀𝑢 ∈ 𝐷𝑢, ∀𝑛 ≥ 1, (35)

and E0[𝑓](𝑡) ≤ 1.
Assume as the induction hypothesis that, for some 𝑛 ≥ 3,

we have 𝑓
(𝑛−1)

≥ 𝑓
(𝑛−2) and E0[𝑓

(𝑛−1)
](𝑡) ≤ 1. Then,

𝑓
(𝑛)

− 𝑓
(𝑛−1)

= 𝑒
−Λ(𝑡)

∫

𝑡

0
𝑒
Λ(𝛼)

(𝐺 [𝑓
(𝑛−1)

, 𝑓
(𝑛−1)
𝜏 ] − 𝐺 [𝑓

(𝑛−2)
, 𝑓
(𝑛−2)
𝜏 ])

× (𝛼, 𝜑𝛼 ∘ 𝜑
−1
𝑡 (𝑢)) 𝑑𝛼.

(36)

Taking into account property (8), equation (36) thus reads as
follows:

𝑒
−Λ(𝑡)

∫

𝑡

0
𝑒
Λ(𝛼)

(𝐺 [𝑓
(𝑛−1)

− 𝑓
(𝑛−2)

, 𝑓
(𝑛−1)
𝜏 ]

+𝐺 [𝑓
(𝑛−2)

, 𝑓
(𝑛−1)
𝜏 − 𝑓

(𝑛−2)
𝜏 ]) 𝑑𝛼,

(37)
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and by using the induction hypothesis we conclude that the
sequence {𝑓

(𝑛)
(𝑡, ⋅)}𝑛 is monotone. Moreover,

∫
𝐷𝑢

𝑓
(𝑛)

(𝑡, 𝑢) 𝑑𝑢

= 𝑒
−𝜂𝑡

+ 𝑒
−𝜂𝑡

∫

𝑡

0
𝑒
𝜂𝛼

∫
𝐷𝑢

𝐺 [𝑓
(𝑛−1)

, 𝑓
(𝑛−1)
𝜏 ] (𝛼, 𝑢) 𝑑𝛼 𝑑𝑢.

(38)

Taking into account property (12), we have

E0 [𝑓
(𝑛)

] (𝑡)

= 𝑒
−𝜂𝑡

+ 𝜂𝑒
−𝜂𝑡

∫

𝑡

0
𝑒
𝜂𝛼
E0 [𝑓
(𝑛−1)

] (𝛼)

× E0 [𝑓
(𝑛−1)

] (𝛼 − 𝜏) 𝑑𝛼,

(39)

and by using the induction hypothesis we have

E0 [𝑓
(𝑛)

] (𝑡) ≤ 𝑒
−𝜂𝑡

+ 𝜂𝑒
−𝜂𝑡

∫

𝑡

0
𝑒
𝜂𝛼
𝑑𝛼 = 1. (40)

Bearing all of the above in mind, we conclude that the
sequence {𝑓

(𝑛)
(𝑡, ⋅)}𝑛 has a nonnegative limit 𝑓(𝑡, ⋅) ∈ 𝐿

1
(𝐷𝑢)

such that 𝑓(𝑛) → 𝑓, as 𝑛 → ∞. Then, the Levi theorem
implies that 𝑓 satisfies the following equation:

E0 [𝑓] (𝑡)

= 𝑒
−𝜂𝑡

+ 𝜂𝑒
−𝜂𝑡

∫

𝑡

0
𝑒
𝜂𝛼
E0 [𝑓] (𝛼)E0 [𝑓] (𝛼 − 𝜏) 𝑑𝛼,

(41)

whose unique solution is E0[𝑓](𝑡) = 1. Therefore, the lemma
is completely proved.

The main result of this paper is the following.

Theorem 8. Let 𝑓0 be a given nonnegative function such that
E0[𝑓0] = 1. Then, there exists a unique nonnegative mild
solution

𝑓 ∈ 𝐶 ((0,∞) ; 𝐿
1
(𝐷𝑢, 𝑑𝑢)) (42)

to the Cauchy problem (1).

Proof. Since Lemma 7 states that 𝑓 solves (31), in order to
prove that𝑓 is a mild solution of (1), it is enough to show that
E1[𝑓](𝑡) = 𝛽(𝑡). In order to prove that E1[𝑓](𝑡) = 𝛽(𝑡), we
consider the following successive approximations sequence:

𝑔
(1)

(𝑡, 𝑢) = 𝑓0 (𝑢) ,

𝑔
(𝑛)

(𝑡, 𝑢) = Φ𝑓0
[𝑔
(𝑛−1)

, 𝑔
(𝑛−1)
𝜏 ] (𝑡, 𝑢) , 𝑛 > 1,

(43)

or the following equivalent form of (43):

𝑒
Λ(𝑡)

𝑔
(𝑛)

(𝑡, 𝜑𝑡 (𝑢))

= 𝑓0 (𝑢) + ∫

𝑡

0
𝑒
Λ(𝜏)

𝐺 [𝑔
(𝑛−1)

, 𝑔
(𝑛−1)
𝜏 ] (𝛼, 𝜑𝛼 (𝑢)) 𝑑𝛼.

(44)

The assumption on 𝑓0 implies that the zero-order moment
E0[𝑔
(1)

](𝑡) = 1. Assume now as induction hypothesis that
E0[𝑔
(𝑛−1)

](𝑡) = 1, for some 𝑛 ≥ 2. Integrating both sides of
(44) over𝐷𝑢 with respect to 𝑢, and using (28), we obtain

𝑒
𝜂𝑡

∫
𝐷𝑢

𝑔
(𝑛)

(𝑡, 𝑢) 𝑑𝑢

= ∫
𝐷𝑢

𝑓0 (𝑢) 𝑑𝑢

+ ∫

𝑡

0
𝑒
𝜂𝛼

∫
𝐷𝑢

𝐺 [𝑔
(𝑛−1)

, 𝑔
(𝑛−1)
𝜏 ] (𝛼, 𝑢) 𝑑𝛼 𝑑𝑢.

(45)

Taking into account property (12) and by using the induction
hypothesis, the right-hand side of (45) thus reads as follows:

𝑒
𝜂𝑡

∫
𝐷𝑢

𝑔
(𝑛)

(𝑡, 𝑢) 𝑑𝑢

= ∫
𝐷𝑢

𝑓0 (𝑢) 𝑑𝑢 + 𝜂∫

𝑡

0
𝑒
𝜂𝛼
𝑑𝛼 = 𝑒

𝜂𝑡
.

(46)

Therefore, for all 𝑡 ≥ 0, we have E0[𝑔
(𝑛)

](𝑡) = 1.
Multiplying both sides of (44) by 𝑢, and integrating over

𝐷𝑢 with respect to 𝑢, we have

∫
𝐷𝑢

𝑢𝑔
(𝑛)

(𝑡, 𝑢) 𝑑𝑢

= 𝑒
−Λ(𝑡)

∫
𝐷𝑢

∫

𝑡

0
𝑒
Λ(𝛼)

𝑢𝐺 [𝑔
(𝑛−1)

, 𝑔
(𝑛−1)
𝜏 ]

× (𝛼, 𝜑𝛼 ∘ 𝜑
−1
𝑡 (𝑢)) 𝑑𝛼 𝑑𝑢

+ 𝑒
−Λ(𝑡)

∫
𝐷𝑢

𝑢𝑓0 (𝜑
−1
𝑡 (𝑢)) 𝑑𝑢.

(47)

Taking into account (12), (13) and repeating the computations
developed in [6], it is easy to prove by induction on 𝑛 that

E1 [𝑔
(𝑛)

] (𝑡) = ∫
𝐷𝑢

𝑢𝑔
(𝑛)

(𝑡, 𝑢) 𝑑𝑢 = 𝛽 (𝑡) . (48)

Multiplying both sides of (44) by 𝑢
2 and integrating over 𝐷𝑢

with respect to 𝑢, we have

𝑒
Λ(𝑡)

∫
𝐷𝑢

𝑢
2
𝑔
(𝑛)

(𝑡, 𝜑𝑡 (𝑢)) 𝑑𝑢

= ∫
𝐷𝑢

∫

𝑡

0
𝑒
Λ(𝛼)

𝑢
2
𝐺 [𝑔
(𝑛−1)

, 𝑔
(𝑛−1)
𝜏 ] (𝛼, 𝜑𝛼 (𝑢)) 𝑑𝛼 𝑑𝑢

+ ∫
𝐷𝑢

𝑢
2
𝑓0 (𝑢) 𝑑𝑢,

(49)

and according to [6] it is easy to prove by induction on 𝑛 that

E2 [𝑔
(𝑛)

] (𝑡) = ∫
𝐷𝑢

𝑢
2
𝑔
(𝑛)

(𝑡, 𝑢) 𝑑𝑢 = 1. (50)
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Let ∑ = {𝑢 ∈ 𝐷𝑢 : 𝑓(𝑡, 𝑢) ≥ 𝑔
(𝑛)

(𝑡, 𝑢)}. Then,

∫
𝐷𝑢


𝑓 − 𝑔

(𝑛)
𝑑𝑢

= 2∫
Σ
(𝑓 − 𝑔

(𝑛)
) 𝑑𝑢 − ∫

𝐷𝑢

(𝑓 − 𝑔
(𝑛)

) 𝑑𝑢.

(51)

Since E0[𝑓](𝑡) = E0[𝑔
(𝑛)

](𝑡) = 1 and by construction 𝑓
𝑛

≤

𝑔
𝑛, we have

∫
𝐷𝑢


𝑓 − 𝑔

(𝑛)
𝑑𝑢

= 2∫
Σ
(𝑓 − 𝑔

(𝑛)
) 𝑑𝑢 ≤ 2∫

𝐷𝑢

(𝑓 − 𝑓
(𝑛)

) 𝑑𝑢 → 0,

𝑛 → ∞.

(52)

Therefore, 𝑔(𝑛) → 𝑓 in 𝐿
1
(𝐷𝑢, 𝑑𝑢), and since E2[𝑔

(𝑛)
](𝑡) is

bounded, then E1[𝑓](𝑡) = 𝛽(𝑡).
We now prove the uniqueness of the solution. Let 𝑓(𝑡, 𝑢)

be any solution to (31). The positivity of the operators 𝐺 and
Φ𝑓0

implies that, for all 𝑛, 𝑓
(𝑛)

(𝑡, 𝑢) ≤ 𝑓(𝑡, 𝑢), and then
𝑓(𝑡, 𝑢) ≤ 𝑓(𝑡, 𝑢). Since E0[𝑓](𝑡) = E0[𝑓](𝑡) = 1, we thus
have 𝑓 = 𝑓.

Corollary 9. Let 𝑓0 be a given nonnegative function such that
(i) E0[𝑓0] = 1;
(ii) ∫
𝐷𝑢

|𝑢|
3
𝑓0(𝑢) 𝑑𝑢 < ∞.

Then, the mild solution 𝑓 of the Cauchy problem (1) belongs to
M(𝐷𝑢) where

M (𝐷𝑢) = {𝑓 = 𝑓 (𝑡, 𝑢) : [0,∞) × 𝐷𝑢 → R
+

such that E0 [𝑓] (𝑡) = E2 [𝑓] (𝑡) = 1} .

(53)

Proof. It is sufficient to remember (24) and note that assump-
tion (ii) implies that

∫
𝐷𝑢

|𝑢|
3
𝑔
(𝑛)

(𝑡, 𝑢) 𝑑𝑢 < ∞, (54)

which allows us to conclude that 𝐸2[𝑓](𝑡) = 1.

5. Applications and Research Perspectives

The main goal of the present paper refers to the proof of the
global existence of mild solutions of a thermostatted partial
integrodifferential equation with time delay. As already men-
tioned in Section 2, this equation can be proposed for the
modeling of complex systems in nature and society where
only the interactions at the microscopic scales are affected
by time delay. Specifically, the partial integrodifferential
equation with time delay

𝜕𝑡𝑓 (𝑡, 𝑢) = 𝐹𝜕𝑢 (𝑓 (𝑡, 𝑢) (1 − 𝑢∫
𝐷𝑢

𝑢𝑓 (𝑡, 𝑢) 𝑑𝑢))

= 𝜂𝐽 [𝑓, 𝑓𝑟] (𝑡, 𝑢)

(55)

can be proposed as a general mathematical framework for the
modeling of complex systems composed by a large number
of interacting particles and subjected to the external force
field 𝐹. The overall state of the system is described by the
distribution function 𝑓 (statistical description). Particles are
able to express a specific function; this ability of the particles
is modeled by the variable 𝑢 ∈ 𝐷𝑢 ⊆ R. Moreover, 𝜂 is the
encounter rate between particles with states 𝑢∗ (or 𝑢) and
𝑢
∗. Finally, A is the probability density that a particle with

state 𝑢∗ ends up into the state 𝑢 after the interaction with
the particle with state 𝑢

∗. The action of the external force
field is controlled by the thermostat term that, as shown in
Section 4, maintains constant the first-order and the second-
order moments (number density and activation energy of the
system).

From the applications viewpoint, we consider a simple
model for the evolution of malignancy in tumor cells. Specif-
ically, we assume that the variable 𝑢 models the magnitude
of the malignancy of tumor cells and A is a delta Dirac
function (deterministic output 𝑚(𝑢∗, 𝑢

∗
) of a pair interac-

tion) depending on the microscopic state of the interacting
particles:

A (𝑢∗, 𝑢
∗
, 𝑢) = 𝛿 (𝑢 − 𝑚 (𝑢∗, 𝑢

∗
)) , (56)

and finally we assume that the malignancy of tumor cells
increases when cells interact with each other with rate 𝜂.
Accordingly, we have

𝑚(𝑢∗, 𝑢
∗
) = 𝑢∗ + 𝜖, (57)

where 𝜖 is a positive parameter. Bearing all of the above in
mind, the integral operator 𝐽[𝑓, 𝑓𝜏] reads as follows:

𝐽 [𝑓, 𝑓𝜏] = [𝑓 (𝑡, 𝑢 − 𝜖) − 𝑓 (𝑡, 𝑢)] ∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢) 𝑑𝑢, (58)

and then delayed equation (55) now reads as follows:

𝜕𝑡𝑓 (𝑡, 𝑢) + 𝐹𝜕𝑢 (𝑓 (𝑡, 𝑢) (1 − 𝑢∫
𝐷𝑢

𝑢𝑓 (𝑡, 𝑢) 𝑑𝑢))

= 𝜂 [𝑓 (𝑡, 𝑢 − 𝜖) − 𝑓 (𝑡, 𝑢)] ∫
𝐷𝑢

𝑓 (𝑡 − 𝜏, 𝑢) 𝑑𝑢.

(59)

However, thermostatted equation (55) does not include
the role of the space and velocity variables; then, applications
refer to the modeling of complex phenomena that are homo-
geneous in space and velocity. The mathematical analysis
performed in the present paper has to be thus generalized
for taking also into account the dynamics described by these
variables. Moreover, (55) refers to complex systems where
the mutual interactions do not produce modification in the
number density (conservative interactions).

Research perspectives include the possibility of per-
forming an asymptotic analysis by parabolic (low-field) and
hyperbolic (high-field) scalings (see [24–34]) with the aim
of obtaining the dynamics of the system at the macroscopic
scale. This is a work in progress and results will be presented
in due course.
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Some hybrid fixed point theorems of Krasnosel’skii type, which involve product of two operators, are proved in partially ordered
normed linear spaces. These hybrid fixed point theorems are then applied to fractional integral equations for proving the existence
of solutions under certain monotonicity conditions blending with the existence of the upper or lower solution.

1. Introduction

Recently, Nieto and Rodŕıguez-López [1] proved the follow-
ing hybrid fixed point theorem for the monotone mappings
in partially orderedmetric spaces using themixed arguments
from algebra and geometry.

Theorem 1 (Nieto and Rodŕıguez-López [1]). Let (𝑋, ⪯) be a
partially ordered set and suppose that there is a metric 𝑑 in 𝑋
such that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 → 𝑋

be a monotone non-decreasing mapping such that there exists
a constant 𝑘 ∈ (0, 1) such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≦ 𝑘𝑑 (𝑥, 𝑦) (1)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋. Assume that either 𝑇 is
continuous or𝑋 is such that if {𝑥𝑛} is a non-decreasing sequence
with 𝑥𝑛 → 𝑥 in𝑋, then

𝑥𝑛 ≦ 𝑥 (𝑛 ∈ N := {1, 2, 3, . . .}) . (2)

Further, if there is an element 𝑥0 ∈ 𝑋 satisfying 𝑥0 ⪯ 𝑇𝑥0, then
𝑇 has a fixed point which is unique if “every pair of elements in
𝑋 has a lower and an upper bound.”

Another fixed point theorem in the above direction can
be stated as follows.

Theorem 2 (Nieto and Rodŕıguez-López [1]). Let (𝑋, ⪯) be a
partially ordered set and suppose that there is a metric 𝑑 in 𝑋
such that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 → 𝑋

be a monotone non-decreasing mapping such that there exists
a constant 𝑘 ∈ (0, 1) such that (1) satisfies for all comparable
elements 𝑥, 𝑦 ∈ 𝑋. Assume that either 𝑇 is continuous or 𝑋 is
such that if {𝑥𝑛} is a non-decreasing sequence with 𝑥𝑛 → 𝑥 in
𝑋, then

𝑥𝑛 ≧ 𝑥 (𝑛 ∈ N) . (3)

Further, if there is an element 𝑥0 ∈ 𝑋 satisfying 𝑥0 ⪰ 𝑇𝑥0, then
𝑇 has a fixed point which is unique if “every pair of elements in
𝑋 has a lower and an upper bound.”

Remark 3. If we suppose that 𝑑(𝑎, 𝑐) ≧ 𝑑(𝑏, 𝑐) (𝑎 ≦ 𝑏 ≦ 𝑐)

and {𝑥𝑛} → 𝑥 is a sequence in 𝑋 whose consecutive terms
are comparable, then there exists a subsequence {𝑥𝑛𝑘}𝑘∈N of
{𝑥𝑛}𝑛∈N such that every term comparable to the limit𝑥 implies
the conditions (2) and (3), since (in the monotone case) the
existence of a subsequence whose terms are comparable with
the limit is equivalent to saying that all the terms in the
sequence are also comparable with the limit.

Taking Remark 3 into account, the results discussed by
Nieto and Rodŕıguez-López and the fact that, in conditions

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 710746, 9 pages
http://dx.doi.org/10.1155/2014/710746

http://dx.doi.org/10.1155/2014/710746


2 Abstract and Applied Analysis

{𝑥𝑛} → 𝑥, there is a sequence in 𝑋 whose consecutive
terms are comparable, there exists a subsequence {𝑥𝑛𝑘}𝑘∈N
of {𝑥𝑛}𝑛∈N such that every term comparable to the limit 𝑥
implies the validity of the conditions (2) and (3). Here the key
is that the terms in the sequence (starting at a certain term)
are comparable to the limit. Nieto and Rodŕıguez-López [2]
obtained the following results, which improve Theorems 1
and 2.

Theorem 4 (Nieto and Rodŕıguez-López [2]). Let (𝑋, ⪯) be a
partially ordered set and suppose that there exists a metric 𝑑 in
𝑋 such that (𝑋, 𝑑) is a complete metric space. Let 𝑇 : 𝑋 →

𝑋 be a monotone function (non-decreasing or non-increasing)
such that there exists 𝑘 ∈ [0, 1) with

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≦ 𝑘𝑑 (𝑥, 𝑦) (𝑥 ≧ 𝑦) . (1

)

Suppose that either 𝑇 is continuous or 𝑋 is such that if 𝑥𝑛 →
𝑥 is a sequence in X whose consecutive terms are comparable,
then there exists a subsequence {𝑥𝑛𝑘}𝑘∈N of {𝑥𝑛}𝑛∈N such that
every term comparable to the limit 𝑥. If there exists 𝑥0 ∈ 𝑋

with 𝑥0 ≦ 𝑇(𝑥0) or 𝑥0 ≧ 𝑇(𝑥0), then 𝑇 has a fixed point which
is unique if “every pair of elements in 𝑋 has a lower and an
upper bound.”

After the publication of the above fixed point theorems,
there is a huge upsurge in the development of the metric
fixed point theory in partially ordered metric spaces. A good
number of fixed and commonfixed point theorems have been
proved in the literature for two, three, and four mappings
in metric spaces by suitably modifying the contraction
condition (1) as per the requirement of the results. We claim
that almost all the results proved so far along this line, though
not mentioned here, have their origin in a paper due to
Heikkilä and Lakshmikantham [3]. The main difference is
the convergence criteria of the sequence of iterations of the
monotone mappings under consideration. The convergence
of the sequence in Heikkilä and Lakshmikantham [3] is
straightforward, whereas the convergence of the sequence in
Nieto and Rodŕıguez-López [1, 2] is due mainly to the metric
condition of contraction. The hybrid fixed point theorem
of Heikkilä and Lakshmikantham [3] for the monotone
mappings in ordered metric spaces is as follows.

Theorem 5 (Heikkillä and Lakshmikantham [3]). Let [𝑎, 𝑏]
be an order interval in a subset 𝑌 of the ordered metric space𝑋
and let𝐺 : [𝑎, 𝑏] → [𝑎, 𝑏] be a non-decreasing mapping. If the
sequence {𝐺𝑥𝑛} converges in 𝑌 whenever {𝑥𝑛} is a monotone
sequence in [𝑎, 𝑏], then the well-ordered chain of 𝐺-iterations
of 𝑎 has themaximum 𝑥

∗ which is a fixed point of𝐺. Moreover,

𝑥
∗
= max {𝑦 ∈ [𝑎, 𝑏] | 𝑦 ≦ 𝐺𝑦} . (4)

The above hybrid fixed point theorem is applicable in
the study of discontinuous nonlinear equations and has been
used throughout the research monograph of Heikkillä and
Lakshmikantham [3]. We also claim that the convergence
of the monotone sequence in Theorem 5 is replaced in
Theorem 4 by the Cauchy sequence {𝑥𝑛} and completeness of
𝑋. Further, the Cauchy non-decreasing sequence is replaced

by the equivalent contraction condition for comparable ele-
ments in𝑋.Theorem 4 is the best hybrid fixed point theorem
because it is derived for the mixed arguments from algebra
and geometry. The main advantage of Theorem 4 is that the
uniqueness of the fixed point of the monotone mappings is
obtained under certain additional conditions on the domain
space such as lattice structure of the partially ordered space
under consideration and these fixed point results are useful
in establishing the uniqueness of the solution of nonlinear
differential and integral equations. Again, some hybrid fixed
point theorems ofKrasnosel’skii type formonotonemappings
are proved in Dhage [4, 5] along the lines of Heikkilä and
Lakshmikantham [3].

The main object of this paper is first to establish some
hybrid fixed point theorems of Krasnosel’skii type in partially
ordered normed linear spaces, which involve product of two
operators. We then apply these hybrid fixed point theorems
to fractional integral equations for proving the existence of
solutions under certain monotonicity conditions blending
with the existence of the upper or lower solution.

2. Hybrid Fixed Point Theorems

Let𝑋 be a linear space or vector space.We introduce a partial
order ⪯ in𝑋 as follows. A relation ⪯ in𝑋 is said to be a partial
order if it satisfies the following properties:

(1) reflexivity: 𝑎 ⪯ 𝑎 for all 𝑎 ∈ 𝑋;

(2) antisymmetry: 𝑎 ⪯ 𝑏 and 𝑏 ⪯ 𝑎 implies 𝑎 = 𝑏;

(3) transitivity: 𝑎 ⪯ 𝑏 and 𝑏 ⪯ 𝑐 implies 𝑎 ⪯ 𝑐;

(4) order linearity: 𝑥1 ⪯ 𝑦1 and 𝑥2 ⪯ 𝑦2 ⇒ 𝑥1 + 𝑥2 ⪯

𝑦1 + 𝑦2; and 𝑥 ⪯ 𝑦 ⇒ 𝑡𝑥 ⪯ 𝑡𝑦 for 𝑡 ≧ 0.

The linear space 𝑋 together with a partial order ⪯

becomes a partially ordered linear or vector space. Two
elements 𝑥 and 𝑦 in a partially ordered linear space 𝑋 are
called comparable if the relation either 𝑥 ⪯ 𝑦 or 𝑦 ⪯ 𝑥 holds
true.We introduce a norm ‖⋅‖ in partially ordered linear space
𝑋 so that 𝑋 becomes now a partially ordered normed linear
space. If 𝑋 is complete with respect to the metric 𝑑 defined
through the above norm, then it is called a partially ordered
complete normed linear space.

The following definitions are frequently used in our
present investigation.

Definition 6. A mapping 𝑇 : 𝑋 → 𝑋 is called monotone
non-decreasing if 𝑥 ⪯ 𝑦 implies 𝑇𝑥 ⪯ 𝑇𝑦 for all 𝑥, 𝑦 ∈ 𝑋.

Definition 7. A mapping 𝑇 : 𝑋 → 𝑋 is called monotone
non-increasing if 𝑥 ⪯ 𝑦 implies 𝑇𝑥 ⪰ 𝑇𝑦 for all 𝑥, 𝑦 ∈ 𝑋.

Definition 8. A mapping 𝑇 : 𝑋 → 𝑋 is called monotone
if it is either monotone non-increasing or monotone non-
decreasing.

Definition 9 (see [6, 7]). A mapping 𝜑 : R+ → R+ is called a
monotone dominating function or, in short, an 𝑀-function
if it is an upper or lower semicontinuous and monotonic
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non-decreasing or non-increasing function satisfying the
condition: 𝜑(0) = 0.

Definition 10 (see [6, 7]). Given a partially ordered normed
linear space 𝐸, a mapping 𝑄 : 𝐸 → 𝐸 is called partially𝑀-
Lipschitz or partially nonlinear𝑀-Lipschitz if there is an𝑀-
function 𝜑 : R+ → R+ satisfying

𝑄𝑥 − 𝑄𝑦
 ≦ 𝜑 (

𝑥 − 𝑦
) (5)

for all comparable elements 𝑥, 𝑦 ∈ 𝐸. The function is called
an 𝑀-function of 𝑄 on 𝐸. If 𝜑(𝑟) = 𝑘𝑟 (𝑘 > 0), then 𝑄 is
called partially𝑀-Lipschitz with the Lipschitz constant 𝑘. In
particular, if 𝑘 < 1, then𝑄 is called a partially𝑀-contraction
on𝑋with the contraction constant 𝑘. Further, if 𝜑(𝑟) < 𝑟, for
𝑟 > 0, then 𝑄 is called a partially nonlinear 𝑀-contraction
with an𝑀-function 𝜑 of 𝑄 on𝑋.

There do exist𝑀-functions and the commonly used𝑀-
functions are 𝜑(𝑟) = 𝑘𝑟 and 𝜑(𝑟) = 𝑟/1+𝑟, et cetera.These𝑀-
functions can be used in the theory of nonlinear differential
and integral equations for proving the existence results via
fixed point methods.

Definition 11 (see [8]). An operator 𝑄 on a normed linear
space 𝐸 into itself is called compact if 𝑄(𝐸) is a relatively
compact subset of 𝐸. 𝑄 is called totally bounded if, for any
bounded subset 𝑆 of 𝐸, 𝑄(𝑆) is a relatively compact subset of
𝐸. If 𝑄 is continuous and totally bounded, then it is called
completely continuous on 𝐸.

Definition 12 (see [8]). An operator 𝑄 on a normed linear
space 𝐸 into itself is called partially compact if 𝑄(𝐶) is a
relatively compact subset of 𝐸 for all totally ordered set
or chain 𝐶 in 𝐸. The operator 𝑄 is called partially totally
bounded if, for any totally ordered and bounded subset 𝐶 of
𝐸, 𝑄(𝐶) is a relatively compact subset of 𝐸. If the operator 𝑄
is continuous and partially totally bounded, then it is called
partially completely continuous on 𝐸.

Remark 13. We note that every compact mapping in a
partially metric space is partially compact and every partially
compact mapping is partially totally bounded. However,
the reverse implication does not hold true. Again, every
completely continuous mapping is partially completely con-
tinuous and every partially completely continuous mapping
is continuous and partially totally bounded, but the converse
may not be true.

We now state and prove the basic hybrid fixed point
results of this paper by using the argument fromalgebra, anal-
ysis, and geometry. The slight generalization of Theorem 4
and Dhage [8] using𝑀-contraction is stated as follows.

Theorem 14. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝑇 : 𝑋 → 𝑋 be a monotone function
(non-decreasing or non-increasing) such that there exists an𝑀-
function 𝜑𝑇 such that

𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≦ 𝜑𝑇 (𝑑 (𝑥, 𝑦)) (6)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋 and satisfying 𝜑𝑇(𝑟) <
𝑟 (𝑟 > 0). Suppose that either 𝑇 is continuous or 𝑋 is such
that if 𝑥𝑛 → 𝑥 is a sequence in𝑋 whose consecutive terms are
comparable, then there exists a subsequence {𝑥𝑛𝑘}𝑘∈N of {𝑥𝑛}𝑛∈N
such that every term comparable to the limit 𝑥. If there exists
𝑥0 ∈ 𝑋with𝑥0 ≦ 𝑇(𝑥0) or𝑥0 ≧ 𝑇(𝑥0), then𝑇 has a fixed point
which is unique if “every pair of elements in𝑋 has a lower and
an upper bound.”

Proof. The proof is standard. Nevertheless, for the sake of
completeness, we give the details involved. Define a sequence
{𝑥𝑛} of successive iterations of 𝑇 by

𝑥𝑛+1 = 𝑇𝑥𝑛 (𝑛 ∈ N) . (7)

By the monotonicity property of 𝑇, we obtain

𝑥0 ⪯ 𝑥1 ⪯ ⋅ ⋅ ⋅ ⪯ 𝑥𝑛 ⋅ ⋅ ⋅ (8)

or

𝑥0 ⪰ 𝑥1 ⪰ ⋅ ⋅ ⋅ ⪰ 𝑥𝑛 ⋅ ⋅ ⋅ . (9)

If 𝑥𝑛 = 𝑥𝑛+1, for some 𝑛 ∈ N, then 𝑢 = 𝑥𝑛 is a fixed point of
𝑇. Therefore, we assume that 𝑥𝑛 = 𝑥𝑛+1 for some 𝑛 ∈ N. If
𝑥 = 𝑥𝑛−1 and 𝑦 = 𝑥𝑛, then, by the condition (6), we obtain

𝑑 (𝑥𝑛, 𝑥𝑛+1) ≦ 𝜑 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) (10)

for each 𝑛 ∈ N.
Let us write 𝑟𝑛 = 𝑑(𝑥𝑛, 𝑥𝑛+1). Since 𝜑 is an 𝑀-function,

{𝑟𝑛} is a monotonic sequence of real numbers which is
bounded. Hence {𝑟𝑛} is convergent and there exists a real
number 𝑟 such that

lim
𝑛→∞

𝑟𝑛 = 𝑑 (𝑥𝑛, 𝑥𝑛+1) = 𝑟. (11)

We show that 𝑟 = 0. If 𝑟 ̸= 0, then

𝑟 = lim
𝑛→∞

𝑟𝑛 = lim
𝑛→∞

𝑑 (𝑥𝑛, 𝑥𝑛+1)

≦ lim
𝑛→∞

𝜑 (𝑑 (𝑥𝑛−1, 𝑥𝑛)) ≦ 𝜑 (𝑟) < 𝑟,

(12)

which is a contradiction. Hence 𝑟 = 0.
We now show that {𝑥𝑛} is a Cauchy sequence in𝑋. If not,

then, for 𝜖 > 0, there exists a positive integer 𝑘 such that

𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘)) ≧ 𝜖 (13)

for all positive integers𝑚(𝑘) ≧ 𝑛(𝑘) ≧ 𝑘.
If we write 𝑟𝑘 = 𝑑(𝑥𝑚(𝑘), 𝑥𝑛(𝑘)), then

𝜖 ≦ 𝑟𝑘 = 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))

≦ 𝑑 (𝑥𝑚(𝑘), 𝑥𝑚(𝑘)−1) + 𝑑 (𝑥𝑚(𝑘)−1, 𝑥𝑛(𝑘))

= 𝑟𝑚(𝑘)−1 + 𝜖,

(14)

so that we have

lim
𝑘→∞

𝑟𝑘 = 𝜖. (15)
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Again, we have

𝜖 ≦ 𝑟𝑘 = 𝑑 (𝑥𝑚(𝑘), 𝑥𝑛(𝑘))

≦ 𝑑 (𝑥𝑚(𝑘), 𝑥𝑚(𝑘)+1) + 𝑑 (𝑥𝑚(𝑘)+1, 𝑥𝑛(𝑘)+1)

+ 𝑑 (𝑥𝑛(𝑘)+1, 𝑥𝑛(𝑘)) = 𝑟𝑚(𝑘) + 𝜑 (𝑟𝑘) + 𝑟𝑛(𝑘).

(16)

Taking the limit as 𝑘 → ∞, we obtain

𝜖 ≦ 𝜑 (𝜖) < 𝜖, (17)

which is a contradiction.Therefore, {𝑥𝑛} is a Cauchy sequence
in 𝑋. By the metric space (𝑋, 𝑑) being complete, there is
a point 𝑥∗ ∈ 𝑋 such that lim𝑛→0 𝑥𝑛 = 𝑥

∗. The rest of
the proof is similar to above fixed point Theorem 4 given in
Nieto and Rodŕıguez-López [2]. Hence we omit the details
involved.

Corollary 15. Let (𝑋, ⪯) be a partially ordered set and suppose
that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a complete
metric space. Let 𝑇 : 𝑋 → 𝑋 be a monotone function
(non-decreasing or non-increasing) such that there exists an𝑀-
function 𝜑 and a positive integer 𝑝 such that

𝑑 (𝑇
𝑝
(𝑥) , 𝑇

𝑝
(𝑦)) ≦ 𝜑𝑇 (𝑑 (𝑥, 𝑦)) (18)

for all comparable elements 𝑥, 𝑦 ∈ 𝑋 and satisfying 𝜑𝑇(𝑟) <
𝑟 (𝑟 > 0). Suppose that either 𝑇 is continuous or 𝑋 is such
that if 𝑥𝑛 → 𝑥 is a sequence in𝑋 whose consecutive terms are
comparable, then there exists a subsequence {𝑥𝑛𝑘}𝑘∈N of {𝑥𝑛}𝑛∈N
such that every term comparable to the limit 𝑥. If there exists
𝑥0 ∈ 𝑋 with 𝑥0 ≦ 𝑇(𝑥0) or 𝑥0 ≧ 𝑇(𝑥0), then 𝑇 has a fixed
point which is unique if “every pair of elements in X has a lower
and an upper bound.”

Proof. Let us first set 𝑄 = 𝑇
𝑝. Then 𝑄 : 𝑋 → 𝑋

is a continuous monotonic mapping. Also there exists the
element 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝑄𝑥0. Now, an application
of Theorem 14 yields that 𝑄 has an unique fixed point; that
is, it is a point 𝑢 ∈ 𝑋 such that 𝑄(𝑢) = 𝑇

𝑝
(𝑢) = 𝑢. Now

𝑇(𝑢) = 𝑇(𝑇
𝑝
𝑢) = 𝑄(𝑇𝑢), showing that 𝑇𝑢 is again a fixed

point of 𝑄. By the uniqueness of 𝑢, we get 𝑇𝑢 = 𝑢. The proof
is complete.

Fixed point Theorem 14 and Corollary 15 have some nice
applications to various nonlinear problemsmodelled on non-
linear equations for proving existence as well as uniqueness
of the solutions under generalized Lipschitz condition. The
following fixed point theorem is presumably new in the
literature. The basic principle in formulating this theorem is
the same as that of Dhage [5, 8] and Nieto and Rodŕıguez-
López [2]. Before stating these results, we give an useful
definition.

Definition 16. The order relation ⪯ and the norm ‖ ⋅ ‖ in
a nonempty set 𝑋 are said to be compatible if {𝑥𝑛} is a
monotone sequence in 𝑋 and if a subsequence {𝑥𝑛𝑘

} of
{𝑥𝑛} converges to 𝑥0 impling that the whole sequence {𝑥𝑛}
converges to 𝑥0. Similaraly, given a partially ordered normed
linear space (𝑋, ⪯, ‖ ⋅ ‖), the ordered relation ⪯ and the norm

‖ ⋅ ‖ are said to be compatible if ⪯ and the metric 𝑑 defined
through the norm are compatible.

Clearly, the set R with the usual order relation ≦ and the
norm defined by absolute value function has this property.
Similarly, the space 𝐶(𝐽,R) with usual order relation defined
by 𝑥 ≦ 𝑦 if and only if 𝑥(𝑡) ≦ 𝑦(𝑡) for all 𝑡 ∈ 𝐽 or 𝑥 ≦ 𝑦 if
and only if 𝑥(𝑡) ≧ 𝑦(𝑡) for all 𝑡 ∈ 𝐽 and the usual standard
supremum norm ‖ ⋅ ‖ are compatible.

We now state a more basic hybrid fixed point theorem.
Since the proof is straightforword, we omit the details
involved.

Theorem 17. Let 𝑋 be a partially ordered linear space and
suppose that there is a norm in 𝑋 such that 𝑋 is a normed
linear space. Let 𝑇 : 𝑋 → 𝑋 be a monotonic (non-decreasing
or non-increasing), partially compact and continuousmapping.
Further, if the order relation ⪯ or ⪰ and the norm ‖ ⋅ ‖ in X
are compatible and if there is an element 𝑥0 ∈ 𝑋 satisfying
𝑥0 ≦ 𝑇𝑥0 or 𝑥0 ≧ 𝑇𝑥0, then 𝑇 has a fixed point.

In this paper, we combine Theorems 14 and 17 and
Corollary 15 to derive some Krasnosel’skii type fixed point
theorems in partially ordered complete normed linear spaces
and discuss some of their applications to fractional integral
equations of mixed type. We freely use the conventions and
notations for fractional integrals as in (for example) [9–11].

3. Krasnosel’skii Type Fixed Point Theorems

We first state the following result.

Theorem 18 (see Krasnosel’skii [12]). Let 𝑆 be a closed convex
and bounded subset of a Banach space 𝑋 and let 𝐴 : 𝑋 →

𝑋 and 𝐵 : 𝑆 → 𝑋 be two operators satisfying the following
conditions:

(a) 𝐴 is nonlinear contraction;
(b) 𝐵 is completely continuous;
(c) 𝐴𝑥 + 𝐵𝑦 = 𝑥 for all 𝑦 ∈ 𝑆 implies 𝑥 ∈ 𝑆.

Then the following operator equation

𝐴𝑥 + 𝐵𝑥 = 𝑥 (19)

has a solution.

Theorem 18 is very much useful and applied to linear
perturbations of differential and integral equations by several
authors in the literature for proving the existence of the solu-
tions.The theory of Krasnosel’skii type fixed point theorem is
initiated by Dhage [5]. The following Krasosel’skii type fixed
point theorem is proved in Dhage [5].

Theorem 19 (see Dhage [5]). Let 𝑆 be a nonempty, closed,
convex, and bounded subset of the Banach algebra 𝑋. Also let
𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝑆 → 𝑋 be two operators such that

(a) 𝐴 is 𝐷-Lipschitz with the𝐷-function 𝜓;
(b) 𝐵 is completely continuous;
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(c) 𝑥 = 𝐴𝑥𝐵𝑦 ⇒ 𝑥 ∈ 𝑆 for all 𝑦 ∈ 𝑆;

𝑀𝜓(𝑟) < 𝑟, 𝑟 > 0 where

𝑀 = ‖𝐵 (𝑆)‖ = sup {‖𝐵 (𝑥)‖ : 𝑥 ∈ 𝑆} . (20)

Then the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution in 𝑆.

Remark 20. (𝐼/𝐴)−1𝐵 is monotone (non-decreasing or non-
increasing) if𝐴 and𝐵 aremonotone (non-decreasing or non-
increasing), but the converse may not be true.

We now obtain another version of Krasnosel’skii type
fixed point theorems in partially ordered complete normed
linear spaces under weaker conditions, which improve
Theorem 19, and discuss some of their applications to frac-
tional integral equations of mixed type.

Theorem 21. Let (𝑋, ⪯, ‖ ⋅ ‖) be a partially ordered complete
normed linear space such that the order relation⪯ and the norm
‖ ⋅ ‖ in𝑋 are compatible. Let 𝐴, 𝐵 : 𝑋 → 𝑋 be two monotone
operators (non-decreasing or non-increasing) such that

(a) 𝐴 is continuous and partially nonlinear𝑀-contraction;
(b) 𝐵 is continuous and partially compact;
(c) there exists an element 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝐴𝑥0𝐵𝑦

or 𝑥0 ⪰ 𝐴𝑥0𝐵𝑦 for all 𝑦 ∈ 𝑋;
(d) every pair of elements 𝑥, 𝑦 ∈ 𝑋 has a lower and an

upper bound in𝑋;
(e) 𝐾𝜑(𝑟) < 𝑟, 𝑟 > 0 where

𝐾 = ‖𝐵 (𝑋)‖ = sup {‖𝐵𝑥‖ : 𝑥 ∈ 𝑋} . (21)

Then the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution.

Proof. Define an operator 𝑇 : 𝑋 → 𝑋 by

𝑇 (𝑥) = (
𝐼

𝐴
)

−1

𝐵. (22)

Clearly, the operator 𝑇 is well defined. To see this, let 𝑦 ∈ 𝑋

be fixed and define a mapping 𝐴𝑦 : 𝑋 → 𝑋 by

𝐴𝑦 (𝑥) = 𝐴𝑥𝐵𝑦. (23)

Now, for any two comparable elements 𝑥1, 𝑥2 ∈ 𝑋, we have

𝐴𝑦 (𝑥1) − 𝐴𝑦 (𝑥2)



=
𝐴𝑥1𝐵𝑦 − 𝐴𝑥2𝐵𝑦

 ≦
𝐴𝑥1 − 𝐴𝑥2

 ⋅
𝐵𝑦



≦ 𝐾𝜑𝐴 (
𝑥1 − 𝑥2

) ,

(24)

where𝐴 is an𝑀-function of𝑇 on𝑋. Hence, by an application
of fixed point Theorem 14, 𝐴𝑦 has an unique fixed point; say
𝑥
∗
∈ 𝑋. Therefore, we have an unique element 𝑥∗ ∈ 𝑋 such

that

𝐴𝑦 (𝑥
∗
) = 𝐴𝑥

∗
𝐵𝑦 = 𝑥

∗
, (25)

which implies that

(
𝐼

𝐴
)

−1

𝐵𝑦 = 𝑥
∗ (26)

or, equivalently, that

𝑇𝑦 = 𝑥
∗
. (27)

Thus the mapping 𝑇 : 𝑋 → 𝑋 is well defined.
We now define a sequence {𝑥𝑛} of iterates of 𝑇; that is,

𝑥𝑛+1 = 𝑇𝑥𝑛 for 𝑛 ∈ N0 := {0, 1, 2, . . .}. It follows from the
hypothesis (c) that 𝑥0 ≦ 𝑇(𝑥0) or 𝑥0 ≧ 𝑇(𝑥0). Again, by
Remark 20, we find that the mapping 𝑇 is monotonic (non-
decreasing or non-increasing) on𝑋. So we have

𝑥0 ⪯ 𝑥1 ⪯ 𝑥2 ⪯ ⋅ ⋅ ⋅ 𝑥𝑛 ⪯ ⋅ ⋅ ⋅ (28)

or

𝑥0 ⪰ 𝑥1 ⪰ 𝑥2 ⪰ ⋅ ⋅ ⋅ 𝑥𝑛 ⪰ ⋅ ⋅ ⋅ . (29)

Since 𝐵 is partially compact and (𝐼/𝐴)−1 is continuous, the
composition mapping 𝑇 = (𝐼/𝐴)

−1
𝐵 is partially compact

and continuous on 𝑋 into 𝑋. Therefore, the sequence {𝑥𝑛}
has a convergent subsequence and, from the compatibility of
the order relation and the norm, it follows that the whole
sequence converges to a point in 𝑋. Hence, an application
of Theorem 17 implies that 𝑇 has a fixed point. This further
implies that

(
𝐼

𝐴
)

−1

𝐵𝑥
∗
= 𝑥
∗ or 𝐴𝑥

∗
𝐵𝑥
∗
= 𝑥
∗
, (30)

which evidently completes the proof of Theorem 21.

Theorem 22. Let (𝑋, ⪯, ‖ ⋅ ‖) be a partially ordered complete
normed linear space such that the order relation ⪯ and the
norm ‖ ⋅ ‖ in 𝑋 are compatible. Let 𝐴, 𝐵 : 𝑋 → 𝑋 be
two monotone mappings (non-decreasing or non-increasing)
satisfying the following conditions:

(a) 𝐴 is linear and bounded and 𝐴𝑝 is partially nonlinear
𝑀-contraction for some positive integer 𝑝;

(b) 𝐵 is continuous and partially compact;
(c) there exists an element 𝑥0 ∈ 𝑋 such that 𝑥0 ⪯ 𝐴𝑥0𝐵𝑦

or 𝑥0 ⪰ 𝐴𝑥0𝐵𝑦 for all 𝑦 ∈ 𝑋;
(d) every pair of elements 𝑥, 𝑦 ∈ 𝑋 has a lower and an

upper bound in𝑋;
(e) 𝐾𝜑(𝑟) < 𝑟, 𝑟 > 0 where

𝐾 = ‖𝐵 (𝑋)‖ = sup {‖𝐵𝑥‖ : 𝑥 ∈ 𝑋} . (31)

Then the operator equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution.

Proof. Define an operator 𝑇 on𝑋 by

𝑇 (𝑥) = (
𝐼

𝐴
)

−1

𝐵. (32)
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Now the mapping (𝐼/𝐴)−1 exists in view of the relation

(
𝐼

𝐴
)

−1

= (
𝐼

𝐴𝑝
)

−1𝑝−1

∏

𝑗=1

𝐴
𝑗
, (33)

where ∏𝑝−1𝑗=1𝐴
𝑗 is bounded and (𝐼/𝐴

𝑝
)
−1 exists in view of

Corollary 15. Hence, (𝐼/𝐴)−1 exists and is continuous on 𝑋.
Next, the operator 𝑇 is well defined. To see this, let 𝑦 ∈ 𝑋 be
fixed and define a mapping 𝐴𝑦 : 𝑋 → 𝑋 by

𝐴𝑦 (𝑥) = 𝐴𝑥𝐵𝑦. (34)

Then, for any two comparable elements 𝑥, 𝑦 ∈ 𝑋, we have

𝐴
𝑝
𝑦 (𝑥1) − 𝐴

𝑝
𝑦 (𝑥2)



=
𝐴
𝑝
𝑥1𝐵𝑦 − 𝐴

𝑝
𝑥2𝐵𝑦

 ≦
𝐴
𝑝
𝑥1 − 𝐴

𝑝
𝑥2
 ⋅
𝐵𝑦



≦ 𝐾𝜑𝐴 (
𝑥1 − 𝑥2

) .

(35)

Hence, by Corollary 15 again, there exists an unique element
𝑥
∗ such that

𝐴
𝑝
𝑦 (𝑥
∗
) = 𝐴𝑝 (𝑥

∗
) 𝐵𝑦 = 𝑥

∗
. (36)

This further implies that 𝐴𝑦(𝑥
∗
) = 𝑥

∗ and 𝑥∗ is an unique
fixed point of 𝐴𝑦. Thus we have

𝐴𝑦 (𝑥
∗
) = 𝑥
∗
= 𝐴𝑥
∗
𝐵𝑦 or (

𝐼

𝐴
)

−1

𝐵𝑦 = 𝑥
∗
. (37)

Consequently, 𝑇𝑦 = 𝑥
∗ and so 𝑇 is well defined. The rest of

the proof is similar to that of Theorem 21 and we omit the
details. The proof is complete.

Remark 23. The hypothesis (d) of Theorems 21 and 22 holds
true if the partially ordered set 𝑋 is a lattice. Furthermore,
the space 𝐶(𝐽,R) of continuous real-valued functions on the
closed and bounded interval 𝐽 = [𝑎, 𝑏] is a lattice, where
the order relation ≦ is defined as follows. For any 𝑥, 𝑦 ∈

𝐶(𝐽,R), 𝑥 ≦ 𝑦 if and only if 𝑥(𝑡) ≦ 𝑦(𝑡) for all 𝑡 ∈ 𝐽. The
real-variable operations show that min(𝑥, 𝑦) and max(𝑥, 𝑦)
are, respectively, the lower and upper bounds for the pair of
elements 𝑥 and 𝑦 in𝑋.

4. Fractional Integral Equations of Mixed Type

In this section we apply the hybrid fixed point theorems
proved in the preceding sections to some nonlinear fractional
integral equations of mixed type.

Given a closed and bounded interval 𝐽 = [𝑡0, 𝑡0 + 𝑎] inR,
R being the set of real numbers or some real numbers 𝑡0 ∈ R

and 𝑎 ∈ R with 𝑎 > 0 and given a real number 0 < 𝑞 <

1, consider the following nonlinear hybrid fractional integral
equation (in short HFIE):

𝑥 (𝑡) = [𝑓 (𝑡, 𝑥 (𝑡))] (
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

(38)

where 𝑓 : 𝐽 × R → R is continuous and 𝑔 : 𝐽 × R → R is
locally Hölder continuous.

We seek the solutions of HFIE (38) in the space𝐶(𝐽,R) of
continuous real-valued functions defined on 𝐽. We consider
the following set of hypotheses in what follows.

(H1) 𝑔 is bounded on 𝐽 ×R with bound 𝐶𝑔.
(H2) 𝑔(𝑡, 𝑥) is non-decreasing in 𝑥 for each 𝑡 ∈ 𝐽.
(H3) There exist constants 𝐿 > 0 and𝐾 > 0 such that

0 ≦ (𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)) ≦
𝐿 (𝑥 − 𝑦)

𝐾 + (𝑥 − 𝑦)
(39)

for all 𝑥, 𝑦 ∈ R with 𝑥 ≧ 𝑦. Moreover, 𝐿 ≦ 𝐾.
(H4) There exists an element 𝑢0 ∈ 𝑋 = 𝐶(𝐽,R) such
that

𝑢0 (𝑡) ≦ [𝑓 (𝑡, 𝑢0 (𝑡))]
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 (40)

for all 𝑡 ∈ 𝐽 and 𝑦 ∈ 𝑋 or

𝑢0 (𝑡) ≧ [𝑓 (𝑡, 𝑢0 (𝑡))]
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 (41)

for all 𝑡 ∈ 𝐽 and 𝑦 ∈ 𝑋.

Remark 24. The condition given in the hypothesis (H4) is a
littlemore restrictive than that of a lower solution of theHFIE
(38). It is clear that 𝑢0 is a lower solution of the HFIE (38);
however, the converse is not true.

Theorem 25. Assume that the hypotheses (𝐻1) through (𝐻4)
hold true. Then the HFIE (38) admits a solution.

Proof. Define two operators 𝐴 and 𝐵 on 𝑋 = 𝐶(𝐽,R), the
Banach space of continuous real-valued functions on 𝐽 with
the usual supremum norm ‖ ⋅ ‖ given by

‖𝑥‖ = sup
𝑡∈𝐽

|𝑥 (𝑡)| . (42)

We define an order relation ≦ in 𝑋 with help of a cone K
defined by

K = {𝑥 : 𝑥 ∈ 𝐶 (𝐽,R) , 𝑥 (𝑡) ≧ 0 (∀𝑡 ∈ 𝐽)} . (43)

Clearly, the Banach space 𝑋 together with this order relation
becomes an ordered Banach space. Furthermore, the order
relation ≦ and the norm ‖ ⋅ ‖ in𝑋 are compatible. Define two
operators 𝐴, 𝐵 : 𝐶(𝐽,R) → 𝐶(𝐽,R) by

𝐴𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) (𝑡 ∈ 𝐽) ,

𝐵𝑥 (𝑡) =
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(44)

Then the given Hybrid fractional integral equation (38) is
transformed into an equivalent operator equation as follows:

𝐴𝑥 (𝑡) ⋅ 𝐵𝑥 (𝑡) = 𝑥 (𝑡) (𝑡 ∈ 𝐽) . (45)
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We show that the operators 𝐴 and 𝐵 satisfy all the conditions
of Theorem 21 on 𝐶(𝐽,R). First of all, we show that 𝐴 is a
nonlinear𝑀-contraction on 𝐶(𝐽,R). Let 𝑥, 𝑦 ∈ 𝑋. Then, by
the hypothesis (H3), we obtain

𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)
 =

𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))


≦
𝐿
𝑥 (𝑡) − 𝑦 (𝑡)



𝐾 +
𝑥 (𝑡) − 𝑦 (𝑡)



≦
𝐿
𝑥 − 𝑦



𝐾 +
𝑥 − 𝑦



.

(46)

Taking the supremum over 𝑡, we get

𝐴𝑥 − 𝐴𝑦
 ≦

𝐿
𝑥 − 𝑦



𝐾 +
𝑥 − 𝑦



= 𝜑 (
𝑥 − 𝑦

) , (47)

where

𝜑 (𝑟) =
𝐿𝑟

𝐾 + 𝑟
< 𝑟 (𝑟 > 0) . (48)

Clearly, 𝜑 is an𝑀-function for the operator𝐴 on𝑋 and so𝐴
is a partially nonlinear𝑀-contraction on𝑋.

Next, we show that 𝐵 is a compact continuous operator
on𝑋. To this end, we show that 𝐵(𝑋) is a uniformly bounded
and equicontinuous set in𝑋. Now, for any 𝑥 ∈ 𝑋, we have

|𝐵𝑥 (𝑡)| ≦
1

Γ (𝑞)
∫

𝑡

𝑡0

|𝑡 − 𝑠|
𝑞−1 𝑔 (𝑠, 𝑥 (𝑠))

 𝑑𝑠

≦
𝐶𝑔

Γ (𝑞)
∫

𝑡

𝑡0

|𝑡 − 𝑠|
𝑞−1
𝑑𝑠 ≦

𝑎
𝑞
𝐶𝑔

Γ (𝑞 + 1)
,

(49)

which shows that 𝐵 is a uniformly bounded set in𝑋. We now
let 𝑡1, 𝑡2 ∈ 𝐽. Then

𝐵𝑥 (𝑡1) − 𝐵𝑥 (𝑡2)


≦
𝐶𝑔

Γ (𝑞)
∫

𝑡2

𝑡0


(𝑡1 − 𝑠)

𝑞−1
− (𝑡2 − 𝑠)

𝑞−1
𝑑𝑠+

𝐶𝑔

Γ (𝑞 + 1)

𝑡1 − 𝑡2

𝑞

≦
𝐶𝑔

Γ (𝑞)
∫

𝑡0+𝑎

𝑡0


(𝑡1 − 𝑠)

𝑞−1
− (𝑡2 − 𝑠)

𝑞−1
𝑑𝑠+

𝐶𝑔

Γ (𝑞 + 1)

𝑡1 − 𝑡2

𝑞

→ 0 as 𝑡1 → 𝑡2

(50)

uniformly for all 𝑥 ∈ 𝑋. Hence 𝐵(𝑋) is an equicontinuous set
in 𝑋. Now we apply the Arzela-Ascoli theorem to show that
𝐵(𝑋) is a compact set in 𝑋. The continuity of 𝐵 follows from
the continuity of the function 𝑔 on 𝐽 ×R.

Finally, since 𝑓(𝑡, 𝑥) and 𝑔(𝑡, 𝑥) are non-decreasing in 𝑥
for each 𝑡 ∈ 𝐽, the operators 𝐴 and 𝐵 are non-decreasing on
𝑋. Also the hypothesis (H3) yields 𝑢0 ≦ 𝐴𝑢0 ⋅𝐵𝑢0.Thus, all of
the conditions of Theorem 22 are satisfied and we conclude
that the fractional integral equation (38) admits a solution.
This completes the proof.

We now consider the following fractional integral equa-
tion of mixed type:

𝑥 (𝑡) = [∫

𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠]

× (𝑞 (𝑡) +
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

(51)

for all 𝑡 ∈ 𝐽 and 0 < 𝑞 < 1, where the functions V : 𝐽 × 𝐽 →

R+ and 𝑓, 𝑔 : 𝐽 ×R → R are continuous.
We consider the following set of hypotheses in what

follows.

(H5) The function V : 𝐽 × 𝐽 → R+ is continuous.
Moreover, V = sup𝑡,𝑠∈𝐽|V(𝑡, 𝑠)|.
(H6) 𝑓(𝑡, 𝑥) is linear in 𝑥 for each 𝑡 ∈ 𝐽.
(H7) 𝑓 is bounded on 𝐽 × R and there exists a
constant 𝐿 > 0 such that 𝑓(𝑡, 𝑥) < 𝐿|𝑥| for all 𝑡 ∈ 𝐽

and 𝑥 ∈ R.
(H8)There exists an element 𝑢0 ∈ 𝑋 = 𝐶(𝐽,R) such
that

𝑢0 (𝑡) ≦ [∫

𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑢0 (𝑠)) 𝑑𝑠]

× (𝑞 (𝑡) +
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠)

(52)

or

𝑢0 (𝑡) ≧ [∫

𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑢0 (𝑠)) 𝑑𝑠]

× (𝑞 (𝑡) +
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑦 (𝑠)) 𝑑𝑠)

(53)

for all 𝑡 ∈ 𝐽 and 0 < 𝑞 < 1, where the functions V :
𝐽 × 𝐽 → R+ and 𝑓, 𝑔 : 𝐽 ×R → R are continuous.

Remark 26. The condition given in hypothesis (H7) is a little
more restrictive than that of a lower solution for theHFIE (51)
defined on 𝐽.

Theorem 27. Assume that the hypotheses (𝐻1), (𝐻2), and
(𝐻5) through (𝐻8) hold true. Then the HFIE (51) admits a
solution.

Proof. Set 𝑋 = 𝐶(𝐽,R) and define an order relation ≦ with
the help of the cone K defined by (43). Clearly, 𝐶(𝐽,R) is a
lattice with respect to the above order relation ≦ in it. Define
two operators 𝐴 and 𝐵 on𝑋 by

𝐴𝑥 (𝑡) = ∫

𝑡

𝑡0

V (𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (𝑡 ∈ 𝐽) ,

𝐵𝑥 (𝑡) = 𝑞 (𝑡) +
1

Γ (𝑞)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝑞−1
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (𝑡 ∈ 𝐽) .

(54)
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Clearly, the operator 𝐴 is linear and bounded in view of
the hypotheses (H1), (H6), and (H7). We only show that the
operator𝐴𝑛 is partially𝑀-contraction on𝑋 for every positive
integer 𝑛. Let 𝑥, 𝑦 ∈ 𝑋 be such that 𝑥 ≧ 𝑦. Then, by (H6) and
(H7), we have

𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)


≦ ∫

𝑡

𝑡0

|𝑉| ⋅
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))

 𝑑𝑠

≦ 𝑉∫

𝑡0+𝑎

𝑡0

𝐿
𝑥 (𝑠) − 𝑦 (𝑠)

 𝑑𝑠 ≦ 𝐿𝑉𝑎
𝑥 − 𝑦

 ,

(55)

where |𝑉| is the supremum of V(𝑡, 𝑠) over 𝑡. Thus, by taking
the supremum over 𝑡, we obtain

𝐴𝑥 − 𝐴𝑦
 ≦ 𝐿𝑉𝑎

𝑥 − 𝑦
 . (56)

Similarly, it can be proved that


𝐴
2
𝑥 − 𝐴

2
𝑦

=
𝐴 (𝐴𝑥 (𝑡)) − 𝐴 (𝐴𝑦 (𝑡))



≦ 𝐿𝑉∫

𝑡0+𝑎

𝑡0

(∫

𝑡

𝑡0

𝐴𝑥 (𝑠) − 𝐴𝑦 (𝑠)
 𝑑𝑠) 𝑑𝑠

≦
𝐿
2
𝑉
2
𝑎
2

2!

𝑥 − 𝑦
 .

(57)

In general, proceeding in the same way, for any positive
integer 𝑛, we have

𝐴
𝑛
𝑥 − 𝐴

𝑛
𝑦
 ≦

𝐿
𝑛
𝑉
𝑛
𝑎
𝑛

𝑛!

𝑥 − 𝑦
 .

(58)

Therefore, for large 𝑛, 𝐴𝑛 is partially a nonlinear 𝑀-
contraction mapping on 𝑋. The rest of the proof is similar
to that of Theorem 25. The desired result now follows by an
application of Theorem 22. This completes the proof.

5. An Illustrative Example

Example 1. Consider a distributed-order fractional hybrid
differential equation (DOFHDES) involving the Reimann-
Liouville derivative operator of order 0 < 𝑞 < 1 with respect
to the negative density function 𝑏(𝑞) > 0 as follows:

∫

1

0
𝑏 (𝑞)𝐷

𝑞
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] 𝑑𝑞 = 𝑔 (𝑡, 𝑥 (𝑡)) (𝑡 ∈ 𝐽) ,

∫

1

0
𝑏 (𝑞) 𝑑𝑞 = 1,

𝑥 (0) = 0.

(59)

Moreover, the function 𝑡 → 𝑥/𝑓(𝑡, 𝑥) is continuous for
each 𝑥 ∈ R, where 𝐽 = [0, 𝑇] is bounded inR for some𝑇 ∈ R.
Also 𝑓 ∈ 𝐶(𝐽 × R,R \ {0}) and 𝑔 ∈ 𝐶(𝐽,R). It is well known

that theDOFHDES (59) is equivalent to the following integral
equation:

𝑥 (𝑡)

=
𝑓 (𝑡, 𝑥 (𝑡))

𝜋
∫

𝑡

0
𝐿{𝑆{

1

𝐵 (𝑟𝑒−𝑖𝜋)
} ; 𝑡 − 𝜏}𝑔 (𝜏, 𝑥 (𝜏)) 𝑑𝜏

(60)

such that 0 ≦ 𝜏 ≦ 𝑡 ≦ 𝑇 and

𝐵 (𝑠) = ∫

1

0
𝑏 (𝑞) 𝑠

𝑞
𝑑𝑞. (61)

The integral equation (60) is valid for all 𝑥 ∈ 𝐶(𝐽,R). Hence,
if Theorem 25 holds true then we further have

𝐿𝑀|ℎ|𝐿

𝜋
< 1 (𝑀 > 0) , (62)

then the above-mentioned DOFHDES (59) has a solution.
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[3] S. Heikkilä and V. Lakshmikantham, Monotone Iterative Tech-
niques for Discontinuous Nonlinear Differential Equations, Mar-
cel Dekker Incorporated, New York, NY, USA, 1994.

[4] B. C. Dhage, “On extension of Tarski’s fixed point theorem and
applications,” Pure and Applied Mathematical Science, vol. 25,
pp. 37–42, 1987.

[5] B. C. Dhage, “On existence theorems for nonlinear integral
equation in Banach algebra via fixed point technique,” East
Asian Mathematical Journal, vol. 17, pp. 33–45, 2001.

[6] S. V. Bedre, S. M. Khairnar, and B. S. Desale, “Hybrid fixed
point theorems for M-contraction type maps and applications
to functional differential equation,” in Proceedings of the Inter-
national Conference on Information and Mathematical Sciences
(IMS ’13), pp. 390–397, Elsevier Science and Technology, Octo-
ber 2013.

[7] S. V. Bedre, S. M. Khairnar, and B. S. Desale, “Some fixed point
theorems in partially ordered G-metric spaces and applications
to global existence and attractivity results for nonlinear func-
tional integral equations,” in Proceedings of the International
Conference on Recent Trends in Engineering Sciences (ICRTES
'13), pp. 467–477, Elsevier Science and Technology, November
2013.

[8] B. C. Dhage, “Hybrid fixed point theory in partially ordered
normed linear spaces and applications to fractional integral
equations,” Differential Equations & Applications, vol. 5, no. 2,
pp. 155–184, 2013.



Abstract and Applied Analysis 9

[9] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory
and Applications of Fractional Differential Equations, vol. 204
of North-Holland Mathematics Studies, Elsevier Science B.V.,
Amsterdam, The Netherlands, 2006.

[10] I. Podlubny, Fractional Differential Equations: An Introduction
to Fractional Derivatives, Fractional Differential Equations, to
Methods of Their Solution and Some of Their Applications, vol.
198 ofMathematics in Science and Engineering, Academic Press,
New York, NY, USA, 1999.

[11] H. M. Srivastava and R. G. Buschman,Theory and Applications
of Convolution Integral Equations, vol. 79 of Mathematics and
Its Applications, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1992.

[12] M. A. Krasnosel’skii, Topological Methods in the Theory of
Nonlinear Integral Equations, Pergamon Press, London, UK,
1964.



Research Article
Stabilized Discretization in Spline Element Method for
Solution of Two-Dimensional Navier-Stokes Problems

Neng Wan,1 Ke Du,1 Tao Chen,1 Sentang Zhang,2 and Gongnan Xie1

1 Key Laboratory of Contemporary Design and Integrated Manufacturing Technology, Ministry of Education,
Northwestern Polytechnical University, Xi’an 710072, China

2 AVIC Shenyang Liming Aeroengine Group Corporation Ltd., Shenyang 110043, China

Correspondence should be addressed to Gongnan Xie; gongnan.xie@gmail.com

Received 8 May 2014; Accepted 18 July 2014; Published 27 August 2014

Academic Editor: Xiao-Jun Yang

Copyright © 2014 Neng Wan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In terms of the poor geometric adaptability of spline element method, a geometric precision spline method, which uses the
rational Bezier patches to indicate the solution domain, is proposed for two-dimensional viscous uncompressed Navier-Stokes
equation. Besides fewer pending unknowns, higher accuracy, and computation efficiency, it possesses such advantages as accurate
representation of isogeometric analysis for object boundary and the unity of geometry and analysis modeling. Meanwhile, the
selection of B-spline basis functions and the grid definition is studied and a stable discretization format satisfying inf-sup conditions
is proposed. The degree of spline functions approaching the velocity field is one order higher than that approaching pressure field,
and these functions are defined on one-time refined grid. The Dirichlet boundary conditions are imposed through the Nitsche
variational principle in weak form due to the lack of interpolation properties of the B-splines functions. Finally, the validity of the
proposed method is verified with some examples.

1. Introduction

Comparing with traditional finite element method, spline
element method (on the basis of Galerkin Principle and
Spline Function Theory) involves less calculation, higher
precision, and fewer pending unknowns and it is easier to
construct high-order coordination unit.Thus, it has attracted
much attention, and Chinese scholars have gained much
achievement [1, 2]. However, it mainly focuses on structural
problems [3], such as elastic beam, shell, vibration, and
dynamic response and the research onnonstructural problem
like fluid is far fromenough.Currently, the twomainmethods
of the application of spline function in fluid mechanics are
Collocation Method and Galerkin Method.

Spline Collocation Method is similar to Chebyshev Spec-
trum Method in its less calculation and higher efficiency. So
Botella [4] applied it to calculate the incompressible Navier-
Stokes. Aiming at solving false oscillation by suppressing
the pressure value, Botella [5] proposed a staggered grid
collocation scheme and achieved stable numerical results.
Comparing to the collocation method, Galerkin Method

has higher numerical precision and maturer error analy-
sis theory. However, an element type (e.g., Taylor-Hood
Element) that satisfies inf-sup stability condition [6] needs
to be constructed when Galerkin Method is applied for
Navier-Stokes Equations. In the field of spline element,
Kumar et al. [7] had adopted weighted extended B-splines
(WEB-spline) to compute Stokes. Then, they extended to
Navier-Stokes equations [8] containing nonlinear convection
term and constructed stable grid discrete format. The basic
idea was that the degree of spline function approaching
velocity field was one order higher than that approaching
pressure field while only two kinds of discrete formats,
namely, linear-constant and quadratic-linear, are designed.
Meanwhile, WEB-spline Method is a meshless method. It
avoided cockamamie grid division by replacing unstructured
grid of finite element with regular net, but boundary elements
require special treatment. B-Spline Element Method was
adopted by Kravchenko et al. [9, 10] to analyze turbulent flow
problem to decrease the calculation amounts of large eddy
simulation and direct numericalmethod as well as to increase
resolution ratio of boundary layer by embedding partitioned
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grid. In addition, they adopted divergence-free B-spline to
expand and eliminate pressure term in governing equations
to decrease numerical disturbance of calculating results.

Moreover, two disadvantages of Spline Element Method
have been noticed. One is that it is restricted by “low
geometric versatility” and is only appropriate for the solving
domain of specially simple geometric shape (e.g., rectangular
or those that can be converted into rectangular). The other
is that B-spline function has no interpolation property,
and the function value is in the convex hull. So Dirichlet
boundary condition cannot be imposed directly at the junc-
tion. Mingquan [13] solved the first problem by converting
quadrilateral area into rectangular region through double
linear coordinate transformation. Ronglin et al. [14] calcu-
lated boundary value of the one with arc boundary through
polar mapping. However, these attempts have failed to fully
address this issue. Hughes et al. [15] put forward Isogeometric
Analysis Method to bridge geometric modeling and finite
element analysis. It can be applied in any complex geometric
area, but the primary function needs to be rational function
and it is less efficient than finite element and spline element.

This paper aims at solving incompressible Navier-Stokes
equation and the main idea is as follows. (1) On the basis
of Isogeometric Analysis Method, solution domain can be
precisely represented by making rational Bezier patches as
geometric mapping and the spline element can be ascer-
tained with the geometry that evens the B-spline function
approaching physical field. Appropriate function space can
be more flexibly chosen by separating the expressions of
geometric solving domain and physical field; (2) construct
discrete format of stable spline element that meets inf-sup
conditions; (3) impose essential boundary condition through
Nitsche variational principle for B-spline function’s lack of
interpolation property.

2. Flow of Navier-Stokes

Assume that the boundary 𝜕Ω of a 2D closed connected
regionΩ ∈ 𝑅

2 satisfies Lipschitz succession.The incompress-
ible Navier-Stokes flow equation in dimensionless form is

−𝜇Δu + (u ⋅ ∇) u + ∇𝑝 = f , ∇u = 0,

in Ω,

(1)

u = (𝑢, V) refers to velocity vector of fluid,𝑝 refers to the pres-
sure, and f = (𝑓1, 𝑓2) refers to volume force source term.
𝜇 = 1/Re stands for scale-free viscosity coefficient, in which
Reynolds number Re = 𝜌𝑈𝐿/] is a dimensionless num-
ber of representational fluid property. Nonlinear term of
convection form u⋅∇u = 𝑢𝑗(𝜕𝑢𝑖/𝜕𝑥𝑗) is adopted in this paper,
mainly because of its simple format and numerical stability of
high Reynolds number. Additional boundary condition and
distribution constraint of pressure field should be added to
solve the above equation:

u = g, on 𝜕Ω,

∫
Ω
𝑝 d𝑥 d𝑦 = 0, in Ω,

(2)

where 𝑔 = (𝑔1, 𝑔2) refers to Dirichlet boundary condition of
speed on boundary 𝜕Ω. The second equation means that the
average pressure is zero.

Assume that a function space 𝑊 = {𝑝 ∈ 𝐿
2
(Ω) :

∫
Ω
𝑝 d𝑥 d𝑦 = 0}, and a vector function space 𝑆 = {𝑢 ∈

𝐻
1
(Ω) × 𝐻

1
(Ω), 𝑢 = 𝑔}, 𝑉 = {𝑢 ∈ 𝐻

1
(Ω) × 𝐻

1
(Ω), 𝑢 = 0}

exist; then the weak form solution of constant Navier-Stokes
equation can be expressed as search function (u, 𝑝) ∈ S ×𝑊,
and it satisfies

∫
Ω
𝜇∇w : ∇u dx + ∫

Ω
w (u ⋅ ∇u) dx

− ∫
Ω
(∇ ⋅ w) 𝑝 dx = ∫

Ω
wf dx

−∫
Ω
𝜃∇ ⋅ u dx = 0.

(3)

In the equation, arbitrary function (w, 𝜃) ∈ V ×𝑊, Galerkin
discretization assumes to project physical quantities into a
finite dimensional subspace, and the speed and pressure are
approximately expressed as uℎ = ∑

𝑛𝑢
𝑖=1𝑁
𝑢
𝑖 (x) {

𝑢𝑖
V𝑖 } and 𝑝ℎ =

∑
𝑛𝑝
𝑖=1𝑁
𝑝
𝑖 (x)𝑝𝑖, respectively.𝑁

𝑢
𝑖 and𝑁

𝑝
𝑖 , respectively, stand for

the primary functions of finite element space of speed and
pressure field. 𝑛𝑢 and 𝑛𝑝 are numbers of primary functions.
This study is different from traditional finite element method
in adopting B-spline function as the primary function.

3. Solution of Navier-Stokes Equation

3.1. Nitsche Type VariationalWeak Form. In order to simplify
the derivation of variational weak form, nonlinear term u ⋅

∇u can be ignored, and the equitation is reduced to Stokes
flow equation: −𝜇Δu + ∇𝑝 = f . Its weak form is equivalent to
variational extremum: search u ∈ S and then obtained as

𝐽 (u) = min
w∈S

𝐽 (w) ,

𝐽 (w) = 1

2
∫
Ω
𝜇∇w : ∇w dx − ∫

Ω
wf dx.

(4)

Then the following constraints should be obeyed: (1)
incompressible condition: ∇ ⋅ u = 0; (2) pressure constraint:
∫
Ω
𝑝 d𝑥 d𝑦 = 0. It should be noticed that the above conclusion

is made on the basis of natural variational principle, so
Dirichlet boundary condition u|𝜕Ω = g should be met when
finite element space is constructed. But it can be known from
the above analysis that B-spline has no interpolation property,
so the constraints are hard to be directly imposed as to
traditional polynomial unit (e.g., interpolation of Lagrangian
unit).

This paper obtained unconstrained functional by impos-
ing Dirichlet boundary condition with Nitsche method [16]
and incompressibility and pressure condition with Lagran-
gian multiplier method:

𝐽𝐿 (w) = 𝐽 (w) − ∫
Ω
𝑝 (∇ ⋅ w) dx + 𝛾∫

Ω
𝑝 dx

+ ∫
𝜕Ω
𝜆 (w − g) d𝑠 + 𝛽

2
∫
𝜕Ω

(w − g)2d𝑠.
(5)
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In the equation, 𝑝, 𝛾, 𝜆 = {𝜆1, 𝜆2} stands for Lagrangianmul-
tipliers and constant 𝛽 is the penalty factor that depends on
mesh size ℎ. After taking the stationary value of above uncon-
strained functional and several transformations, Lagrangian
multipliers 𝜆1 = −(𝜕𝑢/𝜕n)+𝑝𝑛1 and 𝜆2 = −(𝜕V/𝜕n)+𝑝𝑛2 can
be identified, whichmeans the normal component of velocity
gradient and pressure. Here 𝑛 = (𝑛1, 𝑛2) refers to normal
vector outside the unit. After substituting it into variational
weak form and adding nonlinear convection term, the follow-
ing equation can be obtained:

∫𝜇∇w : ∇u dx − ∫
𝜕Ω

𝜇
𝜕w
𝜕n

u d𝑠 − ∫
𝜕Ω

𝜇w𝜕u
𝜕n

d𝑠

+ 𝛽∫
𝜕Ω

wu d𝑠 + ∫
Ω
w (u ⋅ ∇u) dx − ∫

Ω
(∇ ⋅ w) 𝑝 d𝑥

+ ∫
𝜕Ω

wn𝑝 d𝑠

= ∫
Ω
wf dx − ∫

𝜕Ω
𝜇
𝜕w
𝜕n

g d𝑠 + 𝛽∫
𝜕Ω

wg d𝑠 − ∫ 𝜃∇ ⋅ u d𝑥

+ ∫
𝜕Ω

𝜃nu d𝑠 + (∫
Ω
𝜃 d𝑥) 𝛾 = ∫

𝜕Ω
𝜃ng d𝑠,

∫
Ω
𝑝 d𝑥 = 0.

(6)

Equation (6) is different from (29) in [17] in that Lagrangian
multiplier 𝜆𝑖 contains pressure part 𝑛𝑖, which makes the first
two equations of above formula contain boundary pressure
term ∫

𝜕Ω
wn𝑝 d𝑠, ∫

𝜕Ω
𝜃nu d𝑠, and ∫

𝜕Ω
𝜃ng d𝑠. It should be

noticed that the modified weak form equation can ensure
optimal order convergence of numerical solution.

Assume that the speed u = (𝑢1, 𝑢2) = (𝑢, V) and pressure
field 𝑝 can be approximately expressed by adopting spline
function:

𝑢 =

𝑛𝑢

∑

𝑖=1

𝑁
𝑢1
𝑖 (𝑥, 𝑦) 𝑢𝑖, V =

𝑛V

∑

𝑖=1

𝑁
𝑢2
𝑖 (𝑥, 𝑦) 𝑝𝑖

𝑝 =

𝑛𝑝

∑

𝑖=1

𝑁
𝑝
𝑖 (𝑥, 𝑦) 𝑝𝑖.

(7)

In above equation, velocity components 𝑢, V and pressure
𝑝 adopt different primary functions, namely, 𝑁𝑢𝑖 , 𝑁

V
𝑖 , and

𝑁
𝑝
𝑖 . Then nonlinear simultaneous equations can be obtained

through settlement after substituting them into the formula

[
[
[

[

A1 + C1 0 −G1 + R1 0

0 A2 + C2 −G2 + R2 0

−GT
1 + RT
1 −GT

2 + RT
2 0 W

0 0 WT
0

]
]
]

]

(

û
k̂
p̂
𝛾

) = (

B1
B2
Q
0

) .

(8)

In the equation, û = {𝑢𝑖}, k̂ = {V𝑖}, and p̂ = {𝑝𝑖} vectors need
to be solved. Partitionedmatrix:A𝑘 = K𝑘 −[H𝑘 +HT

𝑘 ]+𝛽M𝑘,
𝑘 = 1, 2. Element of matrixK𝑘:𝐾𝑘𝑖𝑗 = ∫

Ω
𝜇∇𝑁
𝑢𝑘
𝑖 ⋅ ∇𝑁

𝑢𝑘
𝑗 d𝑥 d𝑦;

element of matrix H𝑘: 𝐻𝑘𝑖𝑗 = ∫
𝜕Ω

𝜇(𝜕𝑁
𝑢𝑘
𝑖 /𝜕n)𝑁

𝑢𝑘
𝑗 d𝑠; element

of matrix M𝑘: 𝑀𝑘𝑖𝑗 = ∫
𝜕Ω

𝑁
𝑢𝑘
𝑖 𝑁
𝑢𝑘
𝑗 d𝑠; element of nonlinearity

matrix C𝑘: 𝐶𝑘𝑖𝑗 = ∫
Ω
𝑁
𝑢𝑘
𝑖 (𝑢(𝜕𝑁

𝑢𝑘
𝑗 /𝜕𝑥) + V(𝜕𝑁𝑢𝑘𝑗 /𝜕𝑦))d𝑥 d𝑦.

Element of matrix G1: 𝐺1𝑖𝑗 = ∫
Ω
(𝜕𝑁
𝑢
𝑖 /𝜕𝑥)𝑁

𝑝
𝑗 d𝑥 d𝑦, element

of matrix G2: 𝐺2𝑖𝑗 = ∫
Ω
(𝜕𝑁

V
𝑖 /𝜕𝑦)𝑁

𝑝
𝑗 d𝑥 d𝑦; element of matrix

Rk: 𝑅
𝑘
𝑖𝑗 = ∫

𝜕Ω
𝑁
𝑢𝑘
𝑖 𝑛𝑘𝑁

𝑝
𝑗 d𝑠. Element of vector W: 𝑊𝑖 =

∫
Ω
𝑁
𝑝
𝑖 (x)d𝑥 d𝑦. Right-hand member of term: B𝑘 = F𝑘 −T𝑘 +

𝛽S𝑘; element of vector F𝑘: 𝐹𝑘𝑖 = ∫
Ω
𝑁
𝑢𝑘
𝑖 𝑓𝑘d𝑥 d𝑦; element of

vector T𝑘: 𝑇𝑘𝑖 = ∫
𝜕Ω

𝜇(𝜕𝑁
𝑢𝑘
𝑖 /𝜕n)𝑔𝑘d𝑠; element of vector S𝑘:

𝑆
𝑘
𝑖 = ∫
𝜕Ω

𝑁
𝑢𝑘
𝑖 𝑔𝑘d𝑠; element of vectorQ:𝑄𝑖 = ∫

𝜕Ω
𝑁
𝑝
𝑖 (g ⋅ n)d𝑠.

3.2. Solving of Nonlinear Equation. This study adopts
Newton-Raphson method to solve the nonlinear equations
(9) because matrix C𝑘 contains nonlinear term of displace-
ment field. First, (9) is expressed as vector form L(a) ≡ 0,
in which L(a) = (L1, L2, L3, 𝐿4) and vector quantity
a = (û, k̂, p̂, 𝛾):

L1 = A1û + C1 (û) û − G1p̂ + R1p̂ − B1,

L2 = A2k̂ + C2 (û) k̂ − G2p̂ + R2p̂ − B2,

L3 = (−GT
1 + 𝑅

T
1 ) û + (−GT

2 + 𝑅
T
2 ) k̂ + 𝛾W,

𝐿4 = WTp.

(9)

Conduct Taylor expansion on vector L(a) and ignore high-
order term and then obtain 0 ≡ L(a(𝑛) + Δa(𝑛)) ≈ L(u(𝑛)) +
(𝜕L/𝜕a)a=a(𝑛)Δa(𝑛), in which Jacobian matrix is

𝐾𝑇 =
𝜕L
𝜕a

=

[
[
[
[
[
[
[
[
[
[
[

[

𝜕L1
𝜕û

𝜕L1
𝜕k̂

𝜕L1
𝜕p̂

𝜕L1
𝜕𝛾

𝜕L2
𝜕û

𝜕L2
𝜕k̂

𝜕L2
𝜕p̂

𝜕L2
𝜕𝛾

𝜕L3
𝜕û

𝜕L3
𝜕k̂

𝜕L3
𝜕p̂

𝜕L3
𝜕𝛾

𝜕𝐿4

𝜕û
𝜕𝐿4

𝜕k̂
𝜕𝐿4

𝜕p̂
𝜕𝐿4

𝜕𝛾

]
]
]
]
]
]
]
]
]
]
]

]

. (10)

In the equations, for matrix 𝜕L1/𝜕û = A1 + C1 + D1,
element of matrix D1: 𝐷1𝑖𝑗 = ∫

Ω
𝑁
𝑢
𝑖 (𝜕𝑢/𝜕𝑥)𝑁

𝑢
𝑗 d𝑥 d𝑦, matrix

𝜕L1/𝜕k̂ = E1, its element: 𝐸1𝑖𝑗 = ∫
Ω
𝑁
𝑢
𝑖 (𝜕𝑢/𝜕𝑦)𝑁

V
𝑗d𝑥 d𝑦,

matrix 𝜕L1/𝜕p̂ = −G1 + R1, vector 𝜕L1/𝜕𝛾 = 0. For matrix
𝜕L2/𝜕û = E2, its element: 𝐸2𝑖𝑗 = ∫

Ω
𝑁

V
𝑖 (𝜕V/𝜕𝑥)𝑁

𝑢
𝑗 d𝑥 d𝑦,

matrix 𝜕L2/𝜕k̂ = A2 + C2 + D2, in which, element of matrix
D2:𝐷2𝑖𝑗 = ∫

Ω
𝑁

V
𝑖 (𝜕V/𝜕𝑦)𝑁

V
𝑗d𝑥 d𝑦, 𝜕L2/𝜕p̂ = −G2 +R2, vector

𝜕L2/𝜕𝛾 = 0. For matrix 𝜕L3/𝜕û = −GT
1 +R

T
1 , matrix 𝜕L3/𝜕k̂ =

−GT
2 + RT

2 , matrix 𝜕L3/𝜕p̂ = 0, vector 𝜕L3/𝜕𝛾 = W. Vector
𝜕𝐿4/𝜕û = 0, vector 𝜕𝐿4/𝜕k̂ = 0, vector 𝜕𝐿4/𝜕p̂ = WT, scalar
𝜕𝐿4/𝜕𝛾 = 0.

The equation can be solved with Newton-Raphson itera-
tion method:

K𝑇Δa
(𝑛)

= −L (a(𝑛)) ,

a(𝑛+1) = a(𝑛) + 𝜔Δa(𝑛).
(11)
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Figure 1: Mesh refinement.
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Figure 2: Grid division.

In the equations, 𝑛 refers to iterative times and 0 < 𝜔 ≤ 1

refers to relaxation factor.

4. Stable Grid Discretization

Approximate function space that satisfies LBB condition [6]
(or called inf-sup condition) should be constructed when
mixed finite elementmethod is applied to solveNavier-Stokes
equation

inf
𝑝∈𝑊

sup
u∈S

(
−∫
Ω
𝑝∇ ⋅ udΩ

|u|1
𝑝

0

) ≥ 𝛼 > 0. (12)

In the equation, 𝛼 refers to the constant that is independent
of grid discretization. It is theoretically difficult to prove that
certain unit format meets above condition. Moreover, perfect
error analysis theory on spline element method has not been
established and there are only a small amount of literatures
for [18]. Therefore, the stability of grid discretization is
verified with a kind of numerical test called “inf-sup test,”
which is similar to the patch test that proves whether the

nonconforming finite element is in convergence. It is an
effective tool to verify unit quality.

Here the method of inf-sup test mentioned in [19] is
briefly introduced.The above LBB condition can be expressed
as a discrete version

𝛼ℎ = inf
ûℎ
sup
p̂ℎ

(
ûTℎGp̂ℎ

√ûT
ℎ
Kûℎ√kT

ℎ
Qkℎ

), (13)

where element of matrix Q: Q𝑖𝑗 = ∫
Ω
𝑁
𝑝
𝑖 𝑁
𝑝
𝑗 d𝑥, matrix K =

[
K1 0
0 K2 ], and matrix G = [

G1
G2 ]. Then generalized eigenvalue

problem can be approached through a series of transforma-
tions:

P𝜑 = 𝜆Q𝜑. (14)

In the equation, matrix P = GTK−1G. If the eigenvalue
sequence of above problem is 0 = 𝜆1 = 𝜆2 ⋅ ⋅ ⋅ = 𝜆𝑘−1 < 𝜆𝑘 ≤

𝜆𝑘+1 ⋅ ⋅ ⋅ 𝜆𝑛, then inf-sup constant is 𝛼ℎ = √𝜆𝑘, namely, the
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Figure 3: Inf-sup constant.

square root of the smallest nonzero eigenvalue. Inf-sup test
requires that the inf-sup constant 𝛼ℎ should be independence
of mesh size ℎ.

The approximation capability of spline function depends
on the function power and grid density, so the approximation
precision could be improved through the promotion of power
and grid density. Assume that parameter region 𝐷 is equally
divided into 𝑛 shares along arbitrary coordinate direction;
then the total number of units is 𝑁2 and the mesh size is
ℎ = 1/𝑁, and initial mesh is denoted by 𝜋0(ℎ). As shown
in Figure 1, take a unit from the grid (Figure 1(a)) and then
equally divide them into four small units (Figure 1(b)). After
the refinement, the total number of units is (2𝑁)

2, the mesh
size is ℎ/2, and the new grid is denoted by 𝜋1(ℎ/2).

This paper adopts such a stable discrete format, namely,
the power of spline function closed to velocity field u is one
order higher than that of spline function closed to pressure
field 𝑝. What is more, velocity field u adopts one grid refine-
ment 𝜋1(ℎ/2) and pressure field 𝑝 adopts original grid 𝜋0(ℎ).
As a contrast, in another unstable discrete format, velocity
field and pressure field share the grids with same density and
same power of primary function. For the convenience of later
reference, we called the former as 4/1 format and the later as
1/1 format. What is more, such a mark 𝑢

𝑎
𝑐𝑝
𝑏
𝑑 is adopted, in

which 𝑢 refers to velocity field and 𝑝 refers to pressure field.
The superscript 𝑎 (or 𝑏) refers to power of spline function and
the subscript 𝑐 (or 𝑑) is 0 or 1, in which value 0 refers to origin
gird and value 1 refers to refined grid.

Now, a test on a group of numbers is conducted using two
kinds of geometry regions shown on Figure 2. Equally divide
them in parameter regions and adopt 𝑛 = 1, 2, . . . , 5 for the
power of spline function closed to pressure field, respectively.
For each group of splines, continuously defined grids 𝑁 ×

𝑁 will be adopted, in which the number of units in each
direction is𝑁 = 5, 10, 20, 40.Thenumerical results are shown
on Figure 3: horizontal ordinate is mesh size ℎ = 1/𝑁 and
vertical coordinate is constant 𝛼ℎ of inf-sup. It is shown in the
figure that the inf-sup constant of 4/1 format is independent of
mesh size ℎ, but the inf-sup constant of 1/1 format is gradually
decreased with continuous refinement of grids.

5. Examples of Numerical Calculation

5.1. Rectangular Area. Taking 2D Navier-Stokes flow that is
defined within unit rectangular area Ω = [0, 1] × [0, 1]

into account, assume the analysis formulas of flow function
𝜓(𝑥, 𝑦) and pressure function 𝑝(𝑥, 𝑦) are

𝜓 (𝑥, 𝑦) =
sin (𝜋𝑥) sin (𝜋y)

𝜋
,

𝑝 (𝑥, 𝑦) =
cos (𝜋𝑥)2 + cos (𝜋y)2

2
+ 2𝜋 cos (𝜋𝑥) cos (𝜋y) .

(15)

So the components of velocity field are 𝑢 = 𝜕𝜓/𝜕𝑦 =

sin(𝜋𝑥) cos(𝜋𝑦) and V = −𝜕𝜓/𝜕𝑥 = − cos(𝜋𝑥) sin(𝜋𝑦), and
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Figure 4: Convergence rate of velocity of Section 5.1.
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Figure 5: Convergence rate of pressure of Section 5.1.

the components of volume force source term are 𝑓1 = 0 and
𝑓2 = −4𝜋

2 cos(𝜋𝑥) sin(𝜋𝑦). Adopt grid division shown on
Figure 3(a) and add Dirichlet velocity boundary conditions
on the assumption of viscosity coefficient being 𝜇 = 1.

After a group of tests, it is found that the unit number
from each direction is 𝑁 = 5, 10, 20, 40 when the degree of
spline function closed to pressure field is 𝑛 = 1, 2, . . . 5, and
𝑡. Figure 4(a) shows the convergence curve of approximate
velocity fielduℎ under L2-norm, inwhich horizontal ordinate

refers to mesh size ℎ and vertical coordinate refers to error of
𝐿2-norm. And the convergence rate value is marked beside
every curve. Similarly, Figure 4(b) and Figure 5(a) show the
convergence curves of approximate velocity field uℎ under
𝐻
1-normand approximate solution of pressure field𝑝ℎ under

L2-norm. It should be noticed that if 4/1 discrete format is
adopted, then solution of Navier-Stokes equation through
spline function can get optimal convergence rate (optimal
convergence rate refers to convergence of 𝑝 + 1 order under
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Figure 6: Lid-driven cavity flow.

𝐿2-norm, convergence of 𝑝 order under 𝐻1-norm.). But for
unstable 1/1 discrete format, false numerical oscillation will
exist on pressure field 𝑝ℎ (especially 𝑢

2
0𝑝
2
0 and 𝑢

3
0𝑝
3
0 , as is

shown as Figure 5(b)).

5.2. Cavity Flow. Lid-driven flowwithin unit square areaΩ =

[0, 1]× [0, 1] is approached in this part. As is shown in Figure
6, side wall and cavity bottom is fix as (𝑢 = 0, V = 0), the lid
is moving with constant velocity (𝑢 = 1, V = 0), and the fluid
in the cavity flows with the driven of surface viscous force.
Under moderate condition of Re number, except primary
vortex (PV) in the center of square cavity, there still exists
secondary vortex (SV) on the corner of cavity bottom.

Now, the postprocessing is presented. Due to the relation-
ship between flow function and velocity field u = (𝑢, V)

−(
𝜕
2
𝜓

𝜕𝑥2
+
𝜕
2
𝜓

𝜕𝑦2
) =

𝜕V
𝜕𝑥

−
𝜕𝑢

𝜕𝑦
𝜓
𝜕Ω = ℎ. (16)

In the equation, ℎ(𝑥) − ℎ(𝑥0) = ∫
(x̂0 ,x)

∇𝜓 ⋅ 𝜏 d𝑠, boundary
tangent vector 𝜏 = (−𝑛2, 𝑛1). After solving such a Dirichlet
poison equation, distribution of the stream-function can be
obtained through postprocessing.

Distribution of the stream-functions of Re = 100 and
Re = 1000 is, respectively, shown in Figure 7, in which power
of spline function closed to pressure field is 𝑛 = 3, unit
number from each direction is 𝑁 = 20. Values of contour
line in Figures 8(a) and 8(b) are −0.10, −0.09, −0.07, −0.05,
−0.03, −0.01, −0.001, −0.0001, 1×10−7, 1×10−6, 1×10−5, 0.001
and −0.115, −0.11, −0.10, −0.09, −0.07, −0.05, −0.03, −0.01,
−0.001, 1 × 10

−6, 0.001, 0.002, 0.005, 0.001, 0.0015, 0.0017,
respectively. After listing minimum stream function value
of primary vortex and vortex center position in Table 1 and
comparing with the date of literature [11, 12], it is found that
the results are basically identical.

Table 1: Comparison on minimum stream function value of
primary vortex and position of vortex center.

Case 𝑥 𝑦 𝜓min

Re = 100/present 0.6160 0.7360 −0.103523
Re = 100/reference [11] 0.6172 0.7344 −0.103423
Re = 1000/present 0.5320 0.5640 −0.118683
Re = 1000/reference [11] 0.5313 0.5625 −0.117929
Re = 1000/reference [12] 0.5300 0.5650 −0.118885

Table 2: Control vertexes and weight factors of Section 5.3.

𝑖 𝑑𝑖,1 𝑑𝑖,2 𝑑𝑖,3 𝑤𝑖,1 𝑤𝑖,2 𝑤𝑖,3

1 (0, 1) (−1, 1) (−1, 0) 1 1 1
2 (1, 1) (0, 0) (−1, 1) √2/2 1 √2/2

3 (1, 0) (1, −1) (0, −1) 1 1 1

At last, in order to visually compare the results, velocity
magnitudes on parallel centerline and vertical centerline are
given. In Figure 8, horizontal ordinate refers to 𝑥-coordinate
and vertical coordinate refers to velocity component V. In Fig-
ure 9, horizontal ordinate refers to velocity component 𝑢 and
vertical coordinate refers to 𝑦-coordinate vertical centerline.
The grid of 20×20 is adopted in the calculation, and power of
spline function closed to pressure field is 𝑛 = 1, 2, . . . , 5. The
data chosen as testing benchmark are from Literature [11, 12],
which coincides with the results in this paper.

5.3. Unit Circular Area. 2D Navier-Stokes flow in unit circu-
lar area (the center is on original point) is defined. Assume
the analysis formulas of flow function 𝜓(𝑥, 𝑦) and pressure
function 𝑝(𝑥, 𝑦) are

𝜓 (𝑥, 𝑦) =
(1 − 𝑥

2
− 𝑦
2
)
2

64
,

𝑝 (𝑥, 𝑦) =
𝑥
2
𝑦
2
(𝑥
2
+ 𝑦
2
− 2)

512
+
𝑥
2
(3 − 3𝑥

2
+ 𝑥
4
)

1536

+
𝑦
2
(3 − 3𝑦

2
+ 𝑦
4
)

1536
+
𝑥𝑦

2
−

1

2048
.

(17)

Velocity components are 𝑢 = (−1/16)𝑦(1 − 𝑥
2
− 𝑦
2
) and V =

(1/16)𝑥(1−𝑥
2
−𝑦
2
); components of volume force source term

are 𝑓1 = 0 and 𝑓2 = 𝑥. Assume Dirichlet boundary condition
and viscosity coefficient 𝜇 = 1 are added. Parameterization
secondary rational Bezier carve surface should be adopted in
unit circular area, and its control vertexes and weight factors
are shown on Table 2.

The set of spline function power and parameter grid is the
same as that of Section 5.1. Figure 10 shows the convergence
curves of approximate velocity field uℎ under 𝐿2-norm and
𝐻
1-norm, both of which reached the optimal convergence

rate. For comparison, Figure 11 shows the convergence curves
of pressure numerical solution 𝑝ℎ under 𝐿2-norm calculated
in 4/1 grid and 1/1 grid, respectively. It is obvious that the
false numerical oscillation of unstable format causes the
degradation of convergence rate (Figure 11(b)).
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Figure 8: Velocity magnitude along parallel centerline.

5.4. Circular Couette Flow. Lastly, the typical problem of
Circular Couette Flow is considered. As is shown in Figure 12,
there are viscous incompressible fluids between two infinite-
length concentric cylinders. The radiuses of outer cylinder
and inner cylinder are 𝑅1 and 𝑅2 and they are rotated with
the constant angular velocity of Ω1 and Ω2. Assume that the
rotating velocity is slower and the fluid is in steady laminar

flow phase; then there is an analytical solution of tangential
velocity:

𝑢𝜃 = 𝐴𝑟 +
𝐵

𝑟
,

𝐴 =
Ω2𝑅
2
2 − Ω1𝑅

2
1

𝑅22 − 𝑅21

, 𝐵 =
(Ω1 − Ω2) 𝑅

2
1𝑅
2
2

𝑅22 − 𝑅21

.

(18)
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Figure 9: Velocity magnitude along vertical centerline.
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Figure 10: Convergence rate of velocity of Section 5.3.

In the equations, 𝑟 = √𝑥2 + 𝑦2 refers to radial coordinate.
This paper assumes that fixation of outer cylinder is Ω2 =

0 and angular velocity of inner cylinder is Ω1 = 1. Due
to its symmetry, 1/4 is taken for analysis and the settings
of geometric definition, grid, and boundary condition are
shown on Figure 13. Please refer to Table 3 for control vertex
and weight factor within defined geometry area.

Figure 14 shows the distribution of tangential velocity 𝑢𝜃.
The power of spline function approaching pressure field is 𝑛 =

3 and the grid is 20 × 20. Figure 15 shows the distribution of

Table 3: Control vertex and weight factor of Section 5.3.

𝑖 𝑑𝑖,1 𝑑𝑖,2 𝑑𝑖,3 𝑤𝑖,1 𝑤𝑖,2 𝑤𝑖,3

1 (1, 0) (1, 1) (0, 1) 1 √2/2 1
2 (2, 0) (2, 2) (0, 2) 1 √2/2 1

tangential velocity 𝑢𝜃 on radial coordinate with angle of 45∘.
It can be noticed that they coincide with the analytical solu-
tion.
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Figure 11: Convergence rate of pressure of Section 5.3.
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6. Conclusion

This paper solved the problem of incompressible Navier-
Stokes flow through geometrical precise spline element
method. (1) This method overcame the poor geometric ver-
satility of spline element method; adoption of rational Bezier
surface patch in mapping function can accurately express
complex geometry areas. (2) It presents a stable discretemesh
format meeting in-sup condition, which expanded the spline
method into fluid.

This paper only discussed 2D fluid problem, but its
conclusion can be directly generalized to 3D conditions.
Problems to be solved are (1) variation of transient problems

Sy
m

m
et

ric

Symmetric

u
𝜃 =

1, u
r =

0

u
𝜃 =

0, u
r =

0

Figure 13: Settings of grid and boundary condition.

with time; (2) multiarea tiling problem, which shall adapt to
more complicated computational area of topology; (3) para-
meterized method of complex solution domain.
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We develop a new algorithm to solve the system of integral equations. In this newmethod no need to use matrix weights. Beacause
of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary
value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.

1. Introduction

The theory and application of integral equations are an
important subject within pure and applied mathematics and
they appear in various types in many fields of science and
engineering.The integral equations can also be represented as
convolution integral equations; see Srivastava and Buschman
[1]. In the applications, the number of computational prob-
lems can be reduced to the solution of a system of integral
equations (system of IEs) of the second kind; see [2–4].
However, solving systems of integrodifferential equations are
very important and such systems might be difficult analyti-
cally, somany researchers have attempted to propose different
numerical methods which are accurate and efficient. For
example, numerical expansion methods for solving a system
of linear IDEs by interpolation and Clenshaw Curtis quadra-
ture rules were presented in [5], where the integral system
was transferred into a matrix equation by the interpolation
points. Pour in [6] studied an extension of the Tau method to
obtain the numerical solution of Fredholm integrodifferential
equations systems ad applied Chebyshev basis to solve IDEs.
Similarly, Arikoglu and Ozkol [7] obtained solutions of
integral and integrodifferential equation systems by using
differential transform method where the approch provides
very good approximation to the exact solution.

Recently, the solution of the system has been estimated
by many different basic functions, such as orthonormal

bases and wavelets; see, for example [8, 9], and the hybrid
Legendre Block-Pulse functions, that is, a combination of the
Block-Pulse functions on [0, 1] and Legendre polynomials
was proposed. In addition, the Bessel matrix method was
introduced in [10] for solving a system of high order linear
Fredholm differential equations with variable coefficients. In
the literature there are several methods to solve the different
type of integral equations; see [11–16]. One of the novel
methods is known as the vector Monte Carlo algorithms
to solve the system of IEs. Among the vector Monte Carlo
algorithms the following are well known:

(i) an algorithm for solving the system of transfer equa-
tions with polarization;

(ii) a vector algorithm for solving multigroup transfer
equations;

(iii) a Monte Carlo technique combined with the finite
sum method and vector Monte Carlo method for
solving metaharmonic equations.

In the use of this method one can easily see that the
variance of the vector estimate largely depends on the form
of transitional density.Thus appropriate choice of the density
leads to the reduction of the complexity calculations, which is
defined as the product of the variance and the computational
time. To determine the density is difficult as to solve the
problem itself, although in some cases it is possible to obtain

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 236065, 12 pages
http://dx.doi.org/10.1155/2014/236065

http://dx.doi.org/10.1155/2014/236065


2 Abstract and Applied Analysis

a minimal criterian of uniform optimality of the method.The
transitional density that corresponds to minimum complex-
ity of algoritm is said to be optimal for a given problem.

In Mikhailov [17], vector Monte Carlo algorithms are
used to solve system of IEs. The distinguished feature of that
vector algorithm is that its “weight” appears in the form of a
matrix weight. This matrix weight is multiplied by the kernel
matrix of the system of IEs dividing by a transition density
function in the Markov chain simulation, so that a number
of computational problems can be reduced to the solution
of a system of IEs of second kind. By introducing a suitable
discrete-continuous measure of the integration, we can write
the system of IEs in the form of a single integral equation,
and this allows us to use standard algorithms of the Monte
Carlo method. However, it is more expedient to make use of
the matrix structure of the system and solve the problem by
the Monte Carlo method with vector weights. The following
vector Monte Carlo algorithms are well known: an algorithm
for solving the system of transfer equations with polarization
taken into account, a vector algorithm for solvingmultigroup
transfer equations, a Monte Carlo technique combined with
the finite sum method, and vector Monte Carlo method for
solving metaharmonic equation.

In this study, a new algorithm is proposed for the
numerical solution of system of IEs but in this algorithm we
do not use matrix weights.The proposed algorithm has usual
advantages of ordinary Monte Carlo method. The new algo-
rithm is considerably reduced to computational complexity.
Using this new algorithm we have solved an initial boundary
value problem for system of parabolic equations.The paper is
organized as follows. In Section 2, we present the description
of the problem and proposed a new Monte Carlo algorithm
for the solution of system of IEs. In Section 3, we discuss
the application of the method to the solution of system of
parabolic equations. In Section 4, we will construct biased
and 𝜀-biased estimators for the solution. In Section 5, the
results of computational experiments are given, followed by
the conclusion in Section 6.

2. Description of the Problem
and a New Approach for the Solution of
System of IEs

Let us consider second kind nonhomogeneous system of IEs
of the form

𝜑𝑖 (𝑥) =

𝑛

∑

𝑗=1

∫
𝑋
𝑘𝑖,𝑗 (𝑥, 𝑦) 𝜑𝑗 (𝑦) 𝑑𝑦 + ℎ𝑖 (𝑥) , 𝑖 = 1, . . . , 𝑛,

(1)

where 𝑥 ∈ 𝑋 ⊆ R𝑚
, 𝑚 ≥ 1 or in vector form

Φ = 𝐾Φ +𝐻, (2)

here operator 𝐾 : 𝐿∞ → 𝐿∞ where 𝐿∞ is the space of
bounded function almost everywhere and

𝐻 = (ℎ1, . . . , ℎ𝑛) ∈ 𝐿∞, 𝐾 = (𝐾𝑖𝑗) ∈ 𝐿∞,

Φ = (𝜑1, 𝜑2, ..., 𝜑𝑛) ∈ 𝐿∞,

(3)

where the norm of𝐻 is

‖𝐻‖𝐿∞
= vrai sup

1≤𝑖≤𝑛, 𝑥∈𝑋

ℎ𝑖 (𝑥)
 . (4)

Suppose the spectral radius 𝜌(𝐾) satisfy the inequalities

𝜌 (𝐾) = lim
𝑛→∞

𝐾
𝑛

1/𝑛
< 1, 𝜌 (𝐾) ≤

𝐾
𝑛

1/2
, (5)

where𝐾𝑛
𝜑 = 𝐾

𝑛−1
𝐾𝜑.

Let Markov chain {𝑥𝑛, 𝑛 = 0, 1, . . . , 𝑁} with transition
density 𝑝(𝑥, 𝑦) be

𝑔 (𝑥) = 1 − ∫
𝑋
𝑝 (𝑥, 𝑦) 𝑑𝑦 ≥ 0, (6)

where 𝑔(𝑥) is the probability of absorption at the point 𝑥𝑁,
where 𝑁 is the random number of the last moment and in
initial moment 𝑥0 = 𝑥.

A standard vector algorithm of Monte Carlo forΦ(𝑥) is

Φ (𝑥) = (𝑀𝜉𝑥, 𝜉𝑥) = 𝐻 (𝑥) +

𝑁

∑

𝑛=1

𝑄𝑛𝐻(𝑥𝑛) ,

𝑄0 = 𝐼, 𝑄𝑛+1 =
𝑄𝑛𝐾(𝑥𝑛, 𝑥𝑛+1)

𝑃 (𝑥𝑛, 𝑥𝑛+1)
, 𝑛 = 0, 1, 2, . . . ,

(7)

where 𝐼 is a unit matrix,𝐾(𝑥, 𝑦) is a kernel matrix {𝑘𝑖𝑗(𝑥, 𝑦)},
and 𝑝(𝑥𝑛, 𝑥𝑛+1) is the transition density function at the points
(𝑥𝑛, 𝑥𝑛+1). The condition for unbiasedness is

𝑝 (𝐾1) < 1 or 𝐾1 = ‖𝐾‖ < 1. (8)

We will assume also that the spectral radius of the operator
𝐾1 obtained from 𝐾 by the substitution 𝑘𝑖,𝑗 → |𝑘𝑖,𝑗| is less
than one. Then, by using standard methods of Monte Carlo
theory we can show that

Φ (𝑥) = 𝐸𝜉𝑥, 𝜉𝑥 =

𝑁

∑

𝑛=0

𝑄𝑛𝐻(𝑥𝑛) ,

𝑄0 = {𝛿𝑖,𝑗}𝑖,𝑗=(1,...,𝑛)
, 𝑄𝑛 = 𝑄𝑛−1

𝐾(𝑥𝑛−1, 𝑥𝑛)

𝑝 (𝑥𝑛−1, 𝑥𝑛)
,

(9)

where 𝑄𝑛 can be considered as matrix weight and

𝐾(𝑥𝑛−1, 𝑥𝑛)

𝑝 (𝑥𝑛−1, 𝑥𝑛)
= {
𝑘𝑖𝑗 (𝑥𝑛−1, 𝑥𝑛)

𝑝 (𝑥𝑛−1, 𝑥𝑛)
} , 𝑖, 𝑗 = {1, 2, . . . , 𝑛} .

(10)

TheMonte Carlo method is used to estimate linear function-
als of the form

(𝐹, Φ) = ∫
𝑋
𝐹

(𝑥)Φ (𝑥) 𝑑𝑥, (11)

where 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . 𝑓𝑛(𝑥)) with

‖𝐹‖𝐿1
=

𝑛

∑

𝑗=1

∫
𝑋


𝑓𝑗 (𝑥)


𝑑𝑥 < ∞. (12)
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Let the point 𝑥0 be distributed with initial probability density
𝜋(𝑥) such that

𝜋 (𝑥) ̸= 0 if 𝐹 (𝑥)Φ (𝑥) ̸= 0. (13)

Then, obviously (see Mikhailov [17]),

(𝐹, Φ) = 𝐸[
𝐹

(𝑥0)

𝜋 (𝑥0)
𝜉𝑥0
] = 𝐸[

𝑁

∑

𝑛=0

𝐹

(𝑥0)

𝜋 (𝑥0)
𝑄𝑛𝐻(𝑥𝑛)]

= 𝐸[

𝑁

∑

𝑛=0

𝐻

(𝑥𝑛) 𝑄


𝑛

𝐹

(𝑥0)

𝜋 (𝑥0)
] .

(14)

The random vector with weight 𝑄(1)
𝑛 = 𝑄


𝑛(𝐹


(𝑥0)/𝜋(𝑥0)) is

computed by the formula

𝑄
(1)
𝑛 =

𝐾

(𝑥𝑛−1, 𝑥𝑛)

𝑝 (𝑥𝑛−1, 𝑥𝑛)
𝑄
(1)
𝑛−1. (15)

Precisely such a vector algorithm, corresponding to the
representation 𝐼 = (Φ∗

, 𝐻), has been formulated in the work
ofMikhailov [17]. Below on the contrary to vector algorithms
we will propose a new algorithm for the solution of system of
integral equations. Our method does not use matrix weights.

Suppose we have to find the solution of the inhomoge-
neous system of IEs (1) of the second kind at the point 𝑥 ∈ 𝑋.
We will define two types of Markov chain {𝑖𝐾} and {𝑥𝐾} by
the following way.

(a) Definition of the First Homogeneous Markov Chain. Now
we simulate the Markov chain 𝑖0, 𝑖1 ⋅ ⋅ ⋅ ∈ 𝑁 with 𝑛 + 1 state.
Initial state 𝑖0 will simulate according to initial distribution
𝜋 = (𝜋1, . . . , 𝜋𝑛, 0) and the next 𝑖1 with the transition matrix

𝐴 = 𝐴 (𝑥) =

𝛼𝑖,𝑗 (𝑥)



𝑛+1

𝑖,𝑗=1
,

𝑛

∑

𝑗=1

𝛼𝑖,𝑗 (𝑥) = 1 − 𝑔𝑖 (𝑥) ,

𝑔𝑖 (𝑥) = 𝛼𝑖,𝑛+1 (𝑥) , 𝑖 = 1, . . . , 𝑛.

(16)

Here 𝛼𝑛+1,𝑛+1(𝑥) = 1 and

𝐴 (𝑥) = (

𝛼11 (𝑥) , . . . , 𝛼1𝑛 (𝑥) , 𝑔1 (𝑥)

𝛼21 (𝑥) , . . . , 𝛼2𝑛 (𝑥) , 𝑔2 (𝑥)

𝛼𝑛1 (𝑥) , . . . , 𝛼𝑛𝑛 (𝑥) , 𝑔𝑛 (𝑥)

0, . . . , 0, 1

) . (17)

Let 𝑁 be a random absorption moment with 𝑁 =

{max 𝑘, 𝑖𝑘 ̸= 𝑛 + 1}, a life time of chain.

(b) A second homogeneous Markov chain {𝑥𝑘} with space
phase𝑋 is defined by the following way.

Firstly, we define the transition density matrix as

𝑃 (𝑥
1
→ 𝑥) =


𝑃𝑖,𝑗 (𝑥

1
→ 𝑥)



𝑛+1

𝑖,𝑗=1
,

𝑃 (𝑥
1
→𝑥)=(

𝑃11 (𝑥
1
→ 𝑥) , . . . , 𝑃1𝑛 (𝑥

1
→ 𝑥) , 0

𝑃21 (𝑥
1
→ 𝑥) , . . . , 𝑃2𝑛 (𝑥

1
→ 𝑥) , 0

𝑃𝑛1 (𝑥
1
→ 𝑥) , . . . , 𝑃𝑛𝑛 (𝑥

1
→ 𝑥) , 0

0, . . . , 0, 1

).

(18)

Let an initial point 𝑥0 = 𝑥; using 𝜋(𝑥) we will simulate initial
moment 𝑖0, then according to the transition matrix 𝐴(𝑥0) we
are able to simulate again the next state of chain 𝑖1. It means
with the probability 𝛼𝑖0 ,𝑖1(𝑥0), 𝑃(𝑖1 = 𝑘) = 𝛼0𝑘(𝑥0).

The next phase coordinates of the chain 𝑥1 simulated
according to𝑝𝑖0 ,𝑖1(𝑥0, 𝑥1).The probability of absorption of the
trajectory is 𝑔𝑖0(𝑥0). Let (𝑖𝑘, 𝑥𝑘) be known then the next value
of 𝑖𝑘+1 will be defined according to the matrix𝐴(𝑥𝑘) and next
random point 𝑥𝑘+1 simulated according to the probability
density function 𝑃𝑖𝑘,𝑖𝑘+1(𝑥

1
𝑘 → 𝑥) and so on.

Let 𝜉𝑥0 = 𝜉𝑁(𝑖0, 𝑖1, . . . 𝑖𝑁; 𝑥0, 𝑥1, . . . 𝑥𝑁) be some random
variable which is defined by the set of trajectory Markov
chains. The mathematical expectations of random variable
will be

𝐸𝜉𝑥0
=

∞

∑

𝑘=0

𝑛

∑

𝑖0 ,..𝑖𝑘=1

∫ ⋅ ⋅ ⋅ ∫
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

𝜋𝑖0
𝛼𝑖0 ,𝑖1

(𝑥0) 𝑝𝑖0 ,𝑖1
(𝑥0𝑥1) ⋅ 𝛼𝑖1,𝑖2

(𝑥1)

𝑝𝑖1 ,𝑖2
(𝑥1, 𝑥2) ⋅ ⋅ ⋅ 𝛼𝑖𝑘−1 ,𝑖𝑘

(𝑥𝑘−1)

× 𝑝𝑖𝑘−1−1,𝑖𝑘
(𝑥𝑘−1, 𝑥𝑘) 𝑔𝑖𝑘

(𝑥𝑘)

𝜉𝑘 (𝑖0, . . . 𝑖𝑘, 𝑥0, . . . 𝑥𝑘) 𝑑𝑥1 ⋅ ⋅ ⋅ 𝑑𝑥𝑘.

(19)

Let us consider calculation of the functional (Φ , 𝐹), where
𝐹
𝑇
= (𝑓1(𝑥), ..., 𝑓𝑛(𝑥)) column vector. Let us compute the

functional (Φ, 𝐹) = ∑
𝑛
𝑖=1 𝜑𝑖(𝑥)𝑓𝑖(𝑥). For doing this task we

introduce twowell-known estimators according to theMonte
Carlo theory. First of them is analog of absorption estimator

𝜉1 (𝑥0) =
𝑓𝑖0
(𝑥0)

𝜋𝑖0
(𝑥0)

𝑘𝑖0𝑖1
(𝑥0, 𝑥1)

𝛼𝑖0 ,𝑖1
(𝑥0) 𝑝𝑖0 ,𝑖1

(𝑥0, 𝑥1)

⋅ ⋅ ⋅
𝑘𝑖𝑛−1,𝑖𝑛

(𝑥𝑛−1, 𝑥𝑛)

𝛼𝑖𝑛−1,𝑖𝑛
(𝑥𝑛−1) 𝑝𝑖𝑛−1 ,𝑖𝑛

(𝑥𝑛−1, 𝑥𝑛)
⋅
ℎ𝑖𝑛
(𝑥𝑛)

𝑔𝑖𝑛
(𝑥𝑛)

(20)

and the second one is analog of collision estimator

𝜉2 (𝑥0) =

𝑁

∑

𝑗=1

𝑓𝑖0
(𝑥0)

𝜋𝑖0
(𝑥0)

𝐾𝑖0𝑖1
(𝑥0, 𝑥1)

𝛼𝑖0 ,𝑖1
(𝑥0) 𝑝𝑖0 ,𝑖1

(𝑥0, 𝑥1)

⋅ ⋅ ⋅

𝐾𝑖𝑗−1 ,𝑖𝑗
(𝑥𝑗−1, 𝑥𝑗)

𝛼𝑖𝑗−1,𝑖𝑗
(𝑥𝑗−1) 𝑝𝑖𝑗−1 ,𝑖𝑗

(𝑥𝑗−1, 𝑥𝑗)
⋅ ℎ𝑖𝑗
(𝑥𝑗) .

(21)
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Theorem 1. If 𝑓𝑖0(𝑥𝑖0) ̸= 0 then 𝜋𝑖0(𝑥𝑖0) ̸= 0 and if
𝑘𝑖𝑖𝑖𝑗
(𝑥𝑖, 𝑥𝑗) ̸= 0 then

𝛼𝑖,𝑗 (𝑥𝑖) 𝑝𝑖𝑖𝑖𝑗
(𝑥𝑖, 𝑥𝑗) ̸= 0, for any 1 ≤ 𝑖, 𝑗 ≤ 𝑛. (22)

In this case 𝐸𝜉1,2 = (Φ, 𝐹).

The proof of the theorem is similar to the theorem
Ermakov [23], and therefore proof is omitted. Now we will
apply the obtained results to the solution system of parabolic
equations.

3. Application to System of
Parabolic Equations

In this section we consider initial boundary problem for
system of parabolic equations. Let 𝐷 be bounded domain in
𝑅
𝑚 with enough smooth boundary 𝜕𝐷 of Ω = 𝐷 × [0, 𝑇]

and Ω is the cylinder in 𝑅𝑚+1 with parallel spin axis 𝑡. The
basement is the domain 𝐷 on the surface 𝑡 = 0 and 𝑇 is the
fixed constant. The functions

𝑦0𝑖 (𝑥) ∈ 𝐶 (𝐷) , 𝑦𝑖 (𝑥, 𝑡) ∈ 𝐶 (𝜕𝐷 × [0, 𝑇]) ,

𝑓𝑖 (𝑥, 𝑡) ∈ 𝐶 (Ω) ,

(23)

where 𝐶(𝐷) stands for a continuous function on the closed
domain𝐷.

Now consider the following initial boundary value prob-
lem (BVP) for system of parabolic equations:
𝜕𝑢1 (𝑥, 𝑡)

𝜕𝑡
− 𝑎1Δ𝑢1 (𝑥, 𝑡) + 𝑐11𝑢1 (𝑥, 𝑡)

− 𝑐12𝑢2 (𝑥, 𝑡) − ⋅ ⋅ ⋅ − 𝑐1𝑛𝑢𝑛 (𝑥, 𝑡) = 𝑓1 (𝑥, 𝑡)

𝜕𝑢2 (𝑥, 𝑡)

𝜕𝑡
− 𝑎2Δ𝑢2 (𝑥, 𝑡) + 𝑐22𝑢2 (𝑥, 𝑡)

− 𝑐21𝑢1 (𝑥, 𝑡) − ⋅ ⋅ ⋅ − 𝑐2𝑛𝑢𝑛 (𝑥, 𝑡) = 𝑓2 (𝑥, 𝑡)

.

.

.

𝜕𝑢𝑛 (𝑥, 𝑡)

𝜕𝑡
− 𝑎𝑛Δ 𝑢𝑛 (𝑥, 𝑡) + 𝑐𝑛𝑛𝑢𝑛 (𝑥, 𝑡) − 𝑐𝑛1𝑢1 (𝑥, 𝑡)

− ⋅ ⋅ ⋅ − 𝑐(𝑛−1)𝑛𝑢𝑛−1 (𝑥, 𝑡) = 𝑓𝑛 (𝑥, 𝑡) ,

(24)

where the coefficients 𝑎𝑖 > 0, 𝑐𝑖𝑗 > 0, (𝑖 = 1, . . . , 𝑛, 𝑗 =

1, . . . , 𝑛), and (𝑥, 𝑡) ∈ Ω with initial and boundary conditions

𝑢𝑖 (𝑥, 𝑡) = 𝑦𝑖 (𝑥, 𝑡) , 𝑥 ∈ 𝜕𝐷, 𝑡 ∈ [0, 𝑇] , 𝑖 = 1, 𝑛

𝑢𝑖 (𝑥, 0) = 𝑦𝑜𝑖 (𝑥) , 𝑥 ∈ 𝐷, 𝑖 = 1, 𝑛.

(25)

Further suppose 𝑓𝑖(𝑥, 𝑡), 𝑦𝑜𝑖(𝑥), 𝑦𝑖(𝑥, 𝑡), and coefficients
𝑎𝑖, 𝑐𝑖𝑗 (𝑖, 𝑗 = 1, 𝑛) are given such that there exists unique
solution Ladyzhenskaya et al. [18] and Lions [19] of the initial
BVR (24)-(25) and

𝑢𝑖 (𝑥, 𝑡) ∈ 𝐶 (𝐷 × [0, 𝑇])

∩ 𝐶
2,1
(𝐷 × [0, 𝑇]) (𝑖 = 1, 𝑛) ,

(26)

where 𝐶2,1 is the set of continuous functions in the given
region with continuous derivatives 𝑢𝑥, 𝑢𝑥𝑥, and 𝑢𝑡.

Now we construct unbiased estimator for the problem
(24)-(25) in the arbitrary point (𝑥, 𝑡) ∈ Ω on the trajectory
some random process. For that we use mean value formula
and construct some special system of integral equations for
𝑢𝑖(𝑥, 𝑡) in special constructed domains (spheroid or balloid
with the center (𝑥, 𝑡)).

According to Section 2 below we will propose a new
nonstationary Markov chain on which trajectory will con-
struct unbiased estimators for the obtained system of integral
equations.

In our algorithm we do not used matrix weight; it means
the computational complexity of new algorithm is much
better. The basis for the constructing of algorithms will be
the formula of parabolic mean for the heat conductivity
equations. As we know the fundamental solution𝑍(𝑥, 𝑡, 𝑦, 𝜏)
for heat equation 𝑢𝑡 − 𝑎Δ𝑢 = 0 is given by

𝑍 (𝑥, 𝑡; 𝑦, 𝜏)

= (4𝜋𝑎 (𝑡 − 𝜏))
−𝑚/2 exp(−

𝑥 − 𝑦

2

4𝑎 (𝑡 − 𝜏)
) .

(27)

Firstly, we define a special domain using a fundamental
solution of the heat equation𝑄𝑟(𝑥, 𝑡)which depends on 𝑟 > 0
and points (𝑥, 𝑡) ∈ 𝑅𝑚+1as

𝑄𝑟 (𝑥, 𝑡) = {(𝑦, 𝜏) : 𝑍 (𝑥, 𝑡; 𝑦, 𝜏) > (4𝜋𝑎𝑟)
−𝑚/2

, 𝜏 < 𝑡} .

(28)

The domain 𝑄𝑟(𝑥, 𝑡), we call balloid and 𝜕𝑄𝑟(𝑥, 𝑡), spheroid
with the center in the point (𝑥, 𝑡). From the definition balloid
𝑄𝑟(𝑥, 𝑡), described by following inequality (Kupcov [20]):

𝑄𝑟 (𝑥, 𝑡) = {(𝑦, 𝜏) :
𝑥 − 𝑦


2
< 2𝑚𝑎 (𝑡 − 𝜏) ln 𝑟

𝑡 − 𝑟
, 𝜏 < 𝑡} .

(29)

Each section with the sectional plain of balloid when 𝜏 =
constant will be 𝑚-dimensional ball 𝐵(𝑥, 𝑅(𝑡 − 𝜏)) with the
center 𝑥 and with the radius

𝑅 (𝑡 − 𝜏) = √2𝑚𝑎 (𝑡 − 𝜏) ln 𝑟

𝑡 − 𝑟
. (30)

Let (𝑥, 𝑡) ∈ Ω and

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑅
2
1 (𝑥) 𝑒

2𝑎𝑚
, 𝑡} , (31)

where 𝑅1(𝑥) is the minimum distance from point 𝑥 until the
boundary; that is,

𝑅1 (𝑥) = inf {𝑥 − 𝑥

, 𝑥 ∈ 𝜕𝐷, 𝑥


∈ 𝐷} . (32)

In this case 𝑄𝑟(𝑥, 𝑡) ⊂ Ω. By further using Greens function
and fundamental solution we will transfer from the system of
differential equations into the system of integral equations.
In the book [21] special balance equation analogies were
constructed as in [22], which connected the value of function
𝑢(𝑥, 𝑡)with its integral from the spheroid and balloid with the
center in the point (𝑥, 𝑡).
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Lemma 2 (Kurbanmuradov [22]). Let the function 𝑢(𝑥, 𝑡)
satisfy the following equation:

𝜕𝑢 (𝑥, 𝑡)

𝜕𝑡
− 𝑎Δ𝑢 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω. (33)

Then the following formula of mean is true (mean value
formula):

𝑢 (𝑥, 𝑡) = 𝑎∬
𝜕𝑄𝑟(𝑥,𝑡)

(1 −
𝑡 − 𝜏

𝑟
)

× (−
𝜕𝑍 (𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛𝑦

)𝑢 (𝑦, 𝜏) 𝑑𝑠 𝑑𝜏

+
1

𝑟
∬

𝑄𝑟(𝑥,𝑡)
𝑍𝑟 (𝑥, 𝑡; 𝑦, 𝜏) 𝑢 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏 + 𝐹𝑟 (𝑥, 𝑡) ,

(34)

where

𝐹𝑟 (𝑥, 𝑡) =
1

𝑟
∬

𝑄𝑟(𝑥,𝑡)
(𝑟 − (𝑡 − 𝜏)) 𝑍𝑟 (𝑥, 𝑡; 𝑦, 𝜏) 𝑓 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏,

𝑍𝑟 (𝑥, 𝑡; 𝑦, 𝜏) = 𝑍 (𝑥, 𝑡; 𝑦, 𝜏) − (4𝜋𝑎𝑟)
−𝑚/2

,

(35)

here ds is the element of small area of sphere 𝜕𝐵(𝑥, 𝑅(𝑡 −
𝜏)). In further using these results we will get special integral
representation.

3.1. Transforming a System and Obtaining Integral Represen-
tation. Let us define the family of domains 𝑄(𝑖)

𝑟 (𝑥, 𝑡), which
depends on positive parameters 𝑟 > 0 and point (𝑥, 𝑡) ∈ 𝑅𝑚+1,
where

𝑄
(𝑖)
𝑟 (𝑥, 𝑡) = {(𝑦, 𝜏) : 𝑍

𝑖
𝑟 (𝑥, 𝑡; 𝑦, 𝜏) > 0, 𝜏 < 𝑡} , (36)

where 𝑍𝑖𝑟(𝑥, 𝑡; 𝑦, 𝜏) defined analogous 𝑍𝑟(𝑥, 𝑡; 𝑦, 𝜏) changing
a for 𝑎𝑖 (see above Lemma 2).The domain𝑄𝑖

𝑟(𝑥, 𝑡)wewill call
a balloid with radius 𝑟 which a center in a point (𝑥, 𝑡) and a
boundary 𝜕𝑄(𝑖)

𝑟 (𝑥, 𝑡) = {(𝑦, 𝜏) : 𝑍
𝑖
𝑟(𝑥, 𝑡; 𝑦, 𝜏) = 0, 𝜏 ≤ 𝑡} is

spheroid. Here

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑅
2
1 (𝑥) 𝑒

2𝑎1𝑚
, . . . ,

𝑅
2
1 (𝑥) 𝑒

2𝑎𝑛𝑚
, 𝑡} . (37)

Let (𝑥, 𝑡) ∈ Ω and 𝐷 : 𝑅1(𝑥) = inf{|𝑥 − 𝑥|, 𝑥 ∈ 𝜕𝐷, 𝑥 ∈
𝐷} where 𝑅1(𝑥) is the distance from the point (𝑥, 𝑡) to the
boundary of domain. In this case 𝑄𝑖

𝑟(𝑥, 𝑡) ⊂ Ω. Appling
the expression (34) to each of the equations we will get the
following system of integral equations (𝑖 = 1, 2, . . . , 𝑛):

𝑢𝑖 (𝑥, 𝑡)

=𝑎𝑖∬
𝜕𝑄𝑖
𝑟
(𝑥,𝑡)
(1−

𝑡 − 𝜏

𝑟
)(−

𝜕𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛𝑦

)𝑢𝑖 (𝑦, 𝜏) 𝑑𝑠 𝑑𝜏

+
1

𝑟
∬

𝜕𝑄𝑖
𝑟
(𝑥,𝑡)
(1 − (𝑟 − (𝑡 − 𝜏) 𝑐𝑖𝑖))

× 𝑍
(𝑖)
𝑟 (𝑥, 𝑡; 𝑦, 𝜏) 𝑢𝑖 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

+
1

𝑟
∬

𝜕𝑄𝑖
𝑟
(𝑥,𝑡)
(𝑟 − (𝑡 − 𝜏)) 𝑍

(𝑖)
𝑟 (𝑥, 𝑡; 𝑦, 𝜏)

× ∑

𝑗=1,𝑛;𝑖 ̸=𝑗

𝑐𝑖𝑗𝑢𝑗 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

+
1

𝑟
∬

𝑄𝑖
𝑟
(𝑥,𝑡)
(𝑟 − (𝑡 − 𝜏)) 𝑍

(𝑖)
𝑟 (𝑥, 𝑡; 𝑦, 𝜏) 𝑓𝑖 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏,

𝑖 = 1, . . . , 𝑛,

(38)

where

𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏) = (4𝜋𝑎𝑖 (𝑡 − 𝜏))

−𝑚/2 exp (−
𝑥 − 𝑦


2

4𝑎𝑖 (𝑡 − 𝜏)
) ,

𝑍
𝑖
𝑟 (𝑥, 𝑡; 𝑦, 𝜏) = 𝑍

(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏) − (4𝜋𝑎𝑖 (𝑡 − 𝜏))

−𝑚/2
.

(39)

The derived system (38) is similar to system IEs which was
considered in Section 2. That is way we can use the method
which was given in Section 2.

3.2. The Probabilistic Representation of the Solution. After
some transformation we will get for separate terms of the
system (38) as follows:

𝐼
(𝑖)
1 (𝑥, 𝑡)

=𝑎𝑖∬
𝜕𝑄𝑖
𝑟
(𝑥,𝑡)
(1 −

𝑡 − 𝜏

𝑟
)(−

𝜕𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛𝑦

)𝑢𝑖 (𝑦, 𝜏) 𝑑𝑠 𝑑𝜏

= (1 − 𝑞𝑚) ∫

∞

0
𝑞1 (𝜌) 𝑑𝜌∫

𝑆1(0)
𝑞2 (𝜔) 𝑢𝑖 (𝑦

(𝑖)
(𝜌, 𝜔) , 𝜏 (𝜌)) 𝑑𝑠

= (1 − 𝑞𝑚) 𝐸𝑢𝑖 (𝑦
(𝑖)
(𝜉, 𝜔) , 𝜏 (𝜉)) ,

(40)

where

𝑞1 (𝜌) = 𝜌
𝑚/2 exp (−𝜌) (1 − exp (−

2𝜌

𝑚
))

× ((1 − 𝑞𝑚) Γ (1 +
𝑚

2
))

−1

,

𝑞2 (𝜔) =
1

𝜎𝑚

= Γ (
𝑚

2
) (2𝜋

𝑚/2
)
−1
,

𝑞𝑚 = (1 +
2

𝑚
)

−(1+𝑚/2)

,



6 Abstract and Applied Analysis

𝑦
(𝑖)
(𝜉, 𝜔) = 𝑥 + √4𝑟𝜉𝑎𝑖 exp(−

2𝜉

𝑚
)𝜔,

𝜏 (𝜉) = 𝑡 − 𝑟 exp(−2𝜉
𝑚
) ,

(41)

𝜉 is a random variable with density functions 𝑞1(𝜌), 𝜔
random point on the surface 𝑆1(0), which has a density
function 𝑞2(𝑤), 𝑆1(0) unit sphere, ds element of surface, 𝜎𝑚
square of the surface unit sphere, and Γ(⋅) Gamma function.

Let us consider the second terms of (38)

𝐼
(𝑖)
2 (𝑥, 𝑡) =

1

𝑟
∬

𝑄𝑖
𝑟
(𝑥,𝑡)
(𝑟 − (𝑡−𝜏)) 𝑍

𝑖
𝑟 (𝑥, 𝑡; 𝑦, 𝜏) 𝑓𝑖 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

= 𝑟𝑞𝑚 ∫

1

0
𝑞3 (]) 𝑑]∫

∞

0
𝑞4 (𝑧) 𝑑𝑧

⋅ ∫
𝑆1(0)

(1 − ]2/𝑚 exp( −2𝑧
𝑚 + 2

))

× 𝑓𝑖 (𝑦
(𝑖)
1 (𝑧, ], 𝑤) , 𝜏1 (𝑧, ])) 𝑑𝑆𝑤

= 𝑟𝑞𝑚𝐸{(1 − V
2/𝑚 exp( −2𝜉1

𝑚 + 2
))

× 𝑓𝑖 (𝑦
(𝑖)
1 (𝜉1,V, 𝜔) , 𝜏1 (𝜉1, V)) } ,

(42)

where 𝑞3(]) = (1 − ])]2/𝑚−1(𝐵(2, 2/𝑚))−1. Then the density
of Beta distribution with parameters (2, 2/𝑚)

𝑞4 (𝑧) = exp (−𝑧) 𝑧𝑚/2−1(Γ (𝑚
2
))

−1

, (43)

and the density of Gamma distribution with parameters𝑚/2,
𝜔—unit random vector,

𝑦
𝑖
1 (𝜉1, V, 𝜔)=𝑥 + [

4𝑚

𝑚+2
𝑟𝑎𝑖𝜉1V

2/𝑚 exp(− 2𝜉1
𝑚+ 2

)]

1/2

𝜔,

𝜏1 (𝜉1, V) = 𝑡 − 𝑟V
2/𝑚 exp(− 2𝜉1

𝑚 + 2
) ,

(44)

where 𝜉1 is the random variable with density function 𝑞4(𝑧)
and V is another random variable with the density function
𝑞3(]).

Let

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑒𝑅

2
1 (𝑥)

2𝑚𝑎1

, . . . ,
𝑒𝑅

2
1 (𝑥)

2𝑚𝑎𝑛

;
1

𝑐11

, . . . ,
1

𝑐𝑛𝑛

; 𝑡} ,

(45)

then 𝑄(𝑖)
𝑟 (𝑥, 𝑡) ∈ Ω and the function

𝑝
(𝑖)
1 (𝑥, 𝑡; 𝑦, 𝜏) =

[1 − (𝑟 − (𝑡 − 𝜏)) 𝑐𝑖] 𝑍
(𝑖)
𝑟 (𝑥, 𝑡; 𝑦, 𝜏)

𝑟𝑞𝑚 (1 − 𝑟𝑞1𝑚𝑐𝑖𝑖)

× 𝐼𝑄(𝑖)𝑟 (𝑥,𝑡)
(𝑦, 𝜏)

(46)

is the transition density in 𝑄𝑖
𝑟(𝑥, 𝑡) with fixed point (𝑥, 𝑡),

where

𝑞1𝑚 = 1 −
1

2
(
𝑚 + 2

𝑚 + 4
)

1+𝑚/2

. (47)

Let (𝑦(𝑖)2 , 𝜏
(𝑖)
2 ) be a random point of balloid𝑄𝑖

𝑟(𝑥, 𝑡) which has
the following density function 𝑝(𝑖)1 (𝑥, 𝑡; 𝑦, 𝜏) (𝑖 = 1, . . . , 𝑛) in
the fixed point (𝑥, 𝑡).

In this case

1

𝑟
∬

𝑄(𝑖)𝑟 (𝑥,𝑡)
(1 − (𝑟 − (𝑡 − 𝜏)) 𝑐𝑖𝑖) 𝑍

(𝑖)
𝑟 (𝑥, 𝑡; 𝑦, 𝜏) 𝑢𝑖 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

= 𝑞𝑚 (1 − 𝑟𝑐𝑖𝑖𝑞1𝑚) 𝐸𝑢𝑖 (𝑦
(𝑖)
2 , 𝜏

(𝑖)
2 ) , 𝑖 = 1, ..., 𝑛.

(48)

The obtained results we will put to (38) and we will get the
probabilistic representation of problem (24)-(25). It follows
there from that we could to following proposition.

Theorem 3. For the solution of initial BVP (24)-(25) the
following probabilistic representation is valid:

𝑢𝑖 (𝑥, 𝑡) = (1 − 𝑞𝑚) 𝐸𝑢𝑖 (𝑦
(𝑖)
(𝜉, 𝜔) , 𝜏 (𝜉))

+ 𝑞𝑚 (1 − 𝑟𝑐𝑖𝑖𝑞1𝑚) 𝐸𝑢𝑖 (𝑦
(𝑖)
2 , 𝜏

(𝑖)
2 )

+ 𝑞𝑚𝑟𝐸
{

{

{

(1 − V2/𝑚 exp(− 2𝜉1
𝑚 + 2

))

×

𝑛

∑

𝑗=1,𝑗 ̸=𝑖

𝑐𝑖𝑗𝑢𝑗 (𝑦
(𝑖)
1 (𝜉1, V, 𝜔, ) , 𝜏1 (𝜉1, V))

}

}

}

+ 𝑞𝑚𝑟𝐸((1 − V
2/𝑚 exp(− 2𝜉1

𝑚 + 2
))

×𝑓𝑖 (𝑦
(𝑖)
1 (𝜉1, V, 𝜔) , 𝜏1 (𝜉1, V))) , (𝑖 = 1, 𝑛) ,

(49)

where (𝑦
(𝑖)
(𝜉, 𝜔), 𝜏(𝜉)) is defined by (40) and

(𝑦
(𝑖)
(𝜉, V, 𝜔), 𝜏(𝜉, V)) is determined by (41).

The proof of Theorem 3 is the consequence of the above
mentioned reasoning.

By further using the presentation (44) we will construct a
randomprocess inΩ and propose theMonte Carlo algorithm
for the solution of system IEs.

3.3. Description Random Process and the Algorithm Simula-
tion. Let

𝑟 = 𝑟 (𝑥, 𝑡) = min{
𝑒𝑅

2
1 (𝑥)

2𝑚𝑎1

, . . . ,
𝑒𝑅

2
1 (𝑥)

2𝑚𝑎𝑛

;
1

𝑐11

, . . . ,
1

𝑐𝑛𝑛

; 𝑡} ,

(50)
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The functions

𝑝
(𝑖)
0 (𝑥, 𝑡; 𝑦, 𝜏) =

1

1 − 𝑞𝑚

(1 −
𝑡 − 𝜏

𝑟
)(−

𝜕𝑍
(𝑖)
(𝑥, 𝑡; 𝑦, 𝜏)

𝜕𝑛𝑦

)

× 𝐼𝜕𝑄(𝑖)𝑟 (𝑥,𝑡)
(𝑦, 𝜏) ,

𝑝
(𝑖)
1 (𝑥, 𝑡; 𝑦, 𝜏) =

(1 − (𝑟 − (𝑡 − 𝜏)) 𝑐𝑖𝑖) 𝑍
(𝑖)
𝑟 (𝑥, 𝑡; 𝑦, 𝜏)

𝑟𝑞𝑚 (1 − 𝑟𝑞1𝑚𝑐𝑖𝑖)

× 𝐼𝜕𝑄(𝑖)𝑟 (𝑥,𝑡)
(𝑦, 𝜏) ,

𝑝
(𝑖)
2 (𝑥, 𝑡; 𝑦, 𝜏) =

𝑍
(𝑖)
𝑟 (𝑥, 𝑡; 𝑦, 𝜏)

𝑟𝑞𝑚

𝐼𝜕𝑄(𝑖)𝑟 (𝑥,𝑡)
(𝑦, 𝜏) ,

(51)

are the transition density functions in𝑄(𝑖)
𝑟 (𝑥, 𝑡) at a fixed point

(𝑥, 𝑡) (𝑖 = 1, 𝑛). We will define in Ω a random process as was
proposed in Section 2.

Let us define a transition matrix as

𝐴 (𝑥, 𝑡) =

[
[
[
[
[

[

𝛼11 𝛼12 . . . 𝛼1(𝑛+1)

𝛼21 𝛼22 . . . 𝛼2(𝑛+1)

. . . . . . . . . . . .

𝛼𝑛1 𝛼𝑛2 . . . 𝛼𝑛(𝑛+1)

0 0 . . . 1

]
]
]
]
]

]

, (52)

where 𝛼𝑖𝑖 = 1 − 𝑞𝑚𝑐𝑖𝑖𝑞1𝑚𝑟(𝑥, 𝑡), and let

𝛽𝑖 =
𝑞𝑚𝑐𝑖𝑖𝑞1𝑚𝑟 (𝑥, 𝑡) (𝑛 − 1)

𝑛
,

𝛼𝑖𝑗 =
𝛽𝑖𝑐𝑖𝑗

𝑀𝑖

, (𝑖, 𝑗 = 1, 𝑛; 𝑖 ̸= 𝑗) ,

𝑀𝑖 = ∑

𝑗=1,𝑛; 𝑗 ̸=𝑖

𝑐𝑖𝑗, (𝑖 = 1, 𝑛) ,

𝛼𝑖(𝑛+1) =
𝑞𝑚𝑞1𝑚𝑟 (𝑥, 𝑡) 𝑐𝑖𝑖

𝑛
, (𝑖 = 1, 𝑛) .

(53)

Now we will define the density function of transition matrix
𝑃(𝑥, 𝑡; 𝑦, 𝜏):

𝑃 (𝑥, 𝑡; 𝑦, 𝜏)

=

[
[
[
[
[
[
[
[

[

𝑝11 (𝑥, 𝑡; 𝑦, 𝜏) 𝑝12 (𝑥, 𝑡; 𝑦, 𝜏) ... 𝑝1(𝑛+1) (𝑥, 𝑡; 𝑦, 𝜏)

𝑝21 (𝑥, 𝑡; 𝑦, 𝜏) 𝑝22 (𝑥, 𝑡; 𝑦, 𝜏) ... 𝑝2(𝑛+1) (𝑥, 𝑡; 𝑦, 𝜏)

... ... ... ...

𝑝𝑛1 (𝑥, 𝑡; 𝑦, 𝜏) 𝑝𝑛2 (𝑥, 𝑡; 𝑦, 𝜏) ... 𝑝𝑛(𝑛+1) (𝑥, 𝑡; 𝑦, 𝜏)

0 0 ... 1

]
]
]
]
]
]
]
]

]

,

(54)

where

𝑝𝑖𝑗 (𝑥, 𝑡; 𝑦, 𝜏) = 𝑝
(𝑖)
2 (𝑥, 𝑡; 𝑦, 𝜏) ,

(𝑖 = 1, 𝑛; 𝑗 = 1, 𝑛 + 1; 𝑖 ̸= 𝑗) ,

𝑝𝑖𝑖 (𝑥, 𝑡; 𝑦, 𝜏)

=
(1 − 𝑞𝑚) 𝑝

(𝑖)
0 (𝑥, 𝑡; 𝑦, 𝜏) + 𝑞𝑚 (1 − 𝑟𝑞1𝑚𝑐𝑖𝑖) 𝑝

(𝑖)
1 (𝑥, 𝑡; 𝑦, 𝜏)

1 − 𝑟 (𝑥, 𝑡) 𝑞1𝑚𝑐𝑖𝑖𝑞𝑚

.

(55)

Then we will fix the initial point (𝑥0, 𝑡0) = (𝑥, 𝑡) and the
number of equations 𝑖0 ∈ {1, . . . , 𝑛}. Let an initial moment
at the point (𝑥0, 𝑡0) = (𝑥, 𝑡); we will have one particle.
For one step a particle 𝑖𝑘 → 𝑖𝑘+1 moves from its position
according to the transition matrix 𝐴(𝑥𝑘, 𝑡𝑘) and moves with
probability 𝛼𝑖𝑘,𝑖𝑘+1(𝑥𝑘, 𝑡𝑘) from the point (𝑥𝑘, 𝑡𝑘) to the point
(𝑥𝑘+1, 𝑡𝑘+1).The next (𝑥𝑘+1, 𝑡𝑘+1) point will be simulated using
the density function 𝑝𝑖𝑘𝑖𝑘+1(𝑥𝑘, 𝑡𝑘; 𝑦, 𝜏).

The probability of breaking of trajectory in the point
(𝑥𝑛, 𝑡𝑛) is

𝑔 (𝑥𝑛, 𝑡𝑛) = {
1, (𝑥𝑛, 𝑡𝑛) ∈ Ω;

𝛼𝑖𝑛 ,𝑛+1
(𝑥𝑛−1, 𝑡𝑛−1) , (𝑥𝑛, 𝑡𝑛) ∈ Ω.

(56)

The next coordinate of the particle will be defined in the
following way.

(1) If the density function of the point (𝑥𝑛+1, 𝑡𝑛+1) equals
𝑝
(𝑖)
0 (𝑥𝑛, 𝑡𝑛; 𝑦, 𝜏) in the fixed point (𝑥𝑛, 𝑡𝑛) then

𝑥𝑛+1 = 𝑥𝑛 + 2(𝑟 (𝑥𝑛, 𝑡𝑛) 𝜉𝑛𝑎𝑖)
1/2 exp(−

𝜉𝑛

𝑚
)𝜔𝑛,

𝑡𝑛+1 = 𝑡𝑛 − 𝑟 (𝑥𝑛, 𝑡𝑛) exp(−
2𝜉𝑛

𝑚
) ,

(57)

where {𝜉𝑛}
∞
𝑛=0, {𝜔𝑛}

∞
𝑛=0 the sequence of independent random

variables with the density function 𝑞1(𝜌) and independent
isotropic vectors. The value 𝑟(𝑥𝑛, 𝑡𝑛) will be defined as (50).

(2) If the density function of the point (𝑥𝑛+1, 𝑡𝑛+1) is equal
to 𝑝(𝑖)1 (𝑥𝑛, 𝑡𝑛; 𝑦, 𝜏) at a fixed (𝑥𝑛, 𝑡𝑛) then

𝑥𝑛+1 = 𝑥𝑛 + 2(
𝑚

𝑚 + 2
𝑟 (𝑥𝑛, 𝑡𝑛)

× 𝜉

𝑛(V


𝑛)

2/𝑚
𝑎𝑖 exp(−

2𝜉

𝑛

𝑚 + 2
))

1/2

𝜔𝑛,

𝑡𝑛+1 = 𝑡𝑛 − 𝑟 (𝑥𝑛, 𝑡𝑛) (V

𝑛)

2/𝑚
exp(−

2𝜉

𝑛

𝑚 + 2
) ,

(58)

where {𝜉𝑛}
∞
𝑛=0, {V


𝑛}
∞
𝑛=0 is a sequence of independent random

variables, which will be obtained from the algorithm below
(Algorithm 4) (Neumann acceptance rejection method).

Algorithm 4. (a) We firstly simulate 𝜉, Gamma distributed
random variable with the parameters (𝑚/2), secondly sim-
ulate 𝛾, uniformly distributed random variable on (0, 1), and
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thirdly simulate ], Beta distributed random variable with the
parameters (2, 2/𝑚).

(b) If 𝛾 > 1− 𝑐𝑖𝑖𝑟(1 − V
2/𝑚 exp(−2𝜉/(𝑚+ 2))) then we will

go to (a) and so on; otherwise V = V, 𝜉 = 𝜉.
(3) If the density function at the point (𝑥𝑛+1, 𝑡𝑛+1) equals

𝑝
(𝑖)
2 (𝑥𝑛, 𝑡𝑛; 𝑦, 𝜏) under fixed point (𝑥𝑛, 𝑡𝑛), then

𝑥𝑛+1 = 𝑥𝑛 + 2(
𝑚

𝑚 + 2
𝑟 (𝑥𝑛, 𝑡𝑛) 𝜉𝑛(V𝑛)

2/𝑚

× 𝑎𝑖 exp(−
2𝜉𝑛

𝑚 + 2
))

1/2

𝜔𝑛,

𝑡𝑛+1 = 𝑡𝑛 − 𝑟 (𝑥𝑛, 𝑡𝑛) (V𝑛)
2/𝑚 exp(−

2𝜉𝑛

𝑚 + 2
) ,

(59)

where {𝜉𝑛}
∞
𝑛=0, {V𝑛}

∞
𝑛=0, {𝜔𝑛}

∞
𝑛=0 is sequence of independent

Gammadistributed randomvariableswith parameters (2/𝑚),
Beta distributed random variables with parameters (2, 2/𝑚),
and independent isotropic vectors, respectively.

If at the moment 𝑛 was held break, then we will put
(𝑥𝑛+𝑘, 𝑡𝑛+𝑘) = (𝑥𝑛, 𝑡𝑛), 𝑘 = 0, 1, 2, ... obviously the sequence
of coordinate of the particle forms Markov chains. The
random process which was described above was considered
in Ermakov et al. [23] for the solution of initial BVP for the
heat equation and adapted in Kurbanmuradov [22] for the
heat equation with variable coefficients.

Now we prove the auxiliary Lemma 5.

Lemma 5. With the probability one Markov chain {𝑥𝑛, 𝑡𝑛}
∞
𝑛=0

converges when 𝑛 → ∞ to the random point of boundary
(𝑥∞, 𝑡∞) ∈ 𝜕Ω, or it is absorbed inside of the domain.

Proof. Since {𝑡𝑛} is decreasing sequence and 𝑡𝑛 ≥ 0, it has a
limit 𝑡∞ = lim𝑛→∞ 𝑡𝑛. Let R𝑛 − 𝜎 be algebra, which was
generated by random variables

{𝜔𝑘}
𝑛−1

𝑘=0, {V𝑘}
𝑛−1

𝑘=0,

{𝜉𝑘}
𝑛−1

𝑘=0, {V𝑘}
𝑛−1

𝑘=0
, {𝜉


𝑘}

𝑛−1

𝑘=0
.

(60)

From the definition R𝑛 and (57)–(59) it follows that 𝑥𝑛
is measurable relatively R𝑛. It is obvious that the coordi-
nates of vector process formed limited martingale relatively
{R𝑚}

∞
𝑚=1:

𝐸(
𝑥𝑛+1

R𝑛

)

= 𝐸{ (1 − 𝑞𝑚)

× [𝑥𝑛 + 2(𝑟 (𝑥𝑛, 𝑡𝑛) 𝜉𝑛𝑎𝑖𝑛
)
1/2

exp(−
𝜉𝑛

𝑚
)𝜔𝑛]

+ 𝑞𝑚 (1 − 𝑞1𝑚𝑟 (𝑥𝑛, 𝑡𝑛) 𝑐𝑖𝑛𝑖𝑛
)

× [𝑥𝑛 + 2(
𝑚

𝑚 + 2
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑎𝑖𝑛

𝜉

𝑛V


𝑛

2/𝑚
)

1/2

× exp(−
𝜉

𝑛

𝑚 + 2
)𝜔𝑛]

+ 𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑞𝑚𝑞1𝑚

𝑛 − 1

𝑛

× [𝑥𝑛 + 2(
𝑚

𝑚 + 2
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑎𝑖𝑛

𝜍𝑛V
2/𝑚
𝑛 )

1/2

× exp(− 𝜍

𝑚 + 2
)𝜔𝑛]

+
𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑞𝑚𝑞1𝑚

𝑛

𝑥𝑛

R𝑛

}

= (1 − 𝑞𝑚) [𝑥𝑛 + 2(𝑟 (𝑥𝑛, 𝑡𝑛) 𝑎𝑖𝑛
)
1/2

× 𝐸(𝜉
1/2
𝑛 exp(−

𝜉𝑛

𝑚
)𝜔𝑛)]

+ 𝑞𝑚 (1 − 𝑞1𝑚𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛))

× [𝑥𝑛 + 2(
𝑚

𝑚 + 2
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑎𝑖𝑛

)

1/2

× 𝐸((𝜉

𝑛V


𝑛

2/𝑚
) exp(−

𝜉𝑛

𝑚 + 2
)𝜔𝑛)]

+ 𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑞𝑚𝑞1𝑚

𝑛 − 1

𝑛

× [𝑥𝑛 + 2(
𝑚

𝑚 + 2
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑎𝑖𝑛

)

1/2

× 𝐸((𝜉

𝑛V


𝑛

2/𝑚
) exp(−

𝜉𝑛

𝑚 + 2
)𝜔𝑛)]

+ 𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑞𝑚𝑞1𝑚

𝑛 − 1

𝑛

× [𝑥𝑛 + 2(
𝑚

𝑚 + 2
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑎𝑖𝑛

)

1/2

× 𝐸((𝜍𝑛V𝑛
2/𝑚
)
1/2

exp(−
𝜍𝑛

𝑚 + 2
)𝜔𝑛) ]

+
𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑞𝑚𝑞1𝑚

𝑛
𝑥𝑛

= (1 − 𝑞𝑚) 𝑥𝑛 + 𝑞𝑚 (1 − 𝑞1𝑚𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛)) 𝑥𝑛

+ 𝑐𝑖𝑛𝑖𝑛
𝑟 (𝑥𝑛, 𝑡𝑛) 𝑞𝑚𝑞1𝑚𝑥𝑛 = 𝑥𝑛,

(61)
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where {𝑥𝑛} are limited martingale; it converges with the
probability one Shiryaev [24].

Let (𝑥∞, 𝑡∞) = lim𝑛→∞(𝑥𝑛, 𝑡𝑛) be the limit vector. We
show that (𝑥∞, 𝑡∞) ∈ 𝜕Ω. If 𝑡∞ = 0 then the process is broken
inside the domain. Let 𝑡∞ > 0. As far as the process converges,
according to the formulas (50)–(58) we have

𝐸(𝑥0 ,𝑡0)
𝑥𝑛+1 − 𝑥𝑛

 → 0,

𝐸(𝑥0 ,𝑡0)
𝑥𝑛+1 − 𝑥𝑛

 = 𝐸(𝑥0 ,𝑡0)
{√𝑟 (𝑥𝑛, 𝑡𝑛)ℎ (𝑟 (𝑥𝑛, 𝑡𝑛))} ,

(62)

where ℎ(𝑟) is strictly positive. Applying Lebesque Theorem
(about the limited convergence) we get

𝐸(𝑥0 ,𝑡0)
(𝑟 (𝑥∞, 𝑡∞))

1/2
= 0. (63)

It means 𝑟(𝑥∞, 𝑡∞) = 0. Then from the definition of 𝑟(𝑥, 𝑡)
and using the formulae (49) we obtain

𝑅1 (𝑥∞) = 0, (𝑥∞, 𝑡∞) ∈ 𝜕Ω. (64)

Lemma is proven.

4. Construction Unbiased and
𝜀-Biased Estimators

Let (𝑥𝑘, 𝑡𝑘)
∞
𝑘=0 be the trajectories of random process which

was described above. We will define on it the sequence of the
random variables {𝜂𝑛(𝑖0)}

∞
𝑛=0. Let

Θ0 = 1, Θ𝑛 = Θ𝑛−1 × 𝑉𝑖𝑛−1𝑖𝑛
(𝑥𝑛−1, 𝑡𝑛−1; 𝑥𝑛, 𝑡𝑛) , (65)

where 𝑉𝑖𝑗(𝑥𝑛−1, 𝑡𝑛−1; 𝑥𝑛, 𝑡𝑛) is defined as follows:

𝑉𝑖𝑗 (𝑥𝑛−1, 𝑡𝑛−1; 𝑥𝑛, 𝑡𝑛)

=
𝑛𝑀𝑖

(𝑛 − 1) 𝑐𝑖𝑖𝑞1𝑚

(1 − V2/𝑚𝑛 exp(−
2𝜍𝑛

𝑚 + 2
)) ,

(𝑖, 𝑗 = 1, 𝑛; 𝑖 ̸= 𝑗) ,

𝑉𝑖𝑖 (𝑥𝑛−1, 𝑡𝑛−1; 𝑥𝑛, 𝑡𝑛) = 1; (𝑖 = 1, 𝑛) ;

𝑉𝑖(𝑛+1) (𝑥𝑛−1, 𝑡𝑛−1; 𝑥𝑛, 𝑡𝑛)

=
𝑛

𝑐𝑖𝑖𝑞1𝑚

(1 − V2/𝑚𝑛 exp(−
2𝜍𝑛

𝑚 + 2
)) ; (𝑖 = 1, 𝑛) .

(66)

Here {𝜍𝑛}
∞
𝑛=0, {V𝑛}

∞
𝑛=0 are the sequences of independent

Gamma function with the parameters (𝑚/2) and Beta func-
tion with parameters (2, 2/𝑚) distributed random variables,
respectively. We will define the sequence

𝜂𝑛 (𝑖0) = Θ𝑛 × 𝐹 (𝑥𝑛, 𝑡𝑛)

= Θ𝑛 {
𝑢𝑗 (𝑥𝑛, 𝑡𝑛) , 𝑖𝑛 = 𝑗, 𝑗 ̸= 𝑛 + 1,

𝑓𝑖𝑛−1
(𝑥𝑛, 𝑡𝑛) , 𝑖𝑛 = 𝑛 + 1.

(67)

If at the moment 𝑛 happen break 𝑛, we will put

𝜂𝑛+𝑘 (𝑖0) = 𝜂𝑛 (𝑖0) ,

(𝑥𝑛+𝑘, 𝑡𝑛+𝑘) = (𝑥𝑛, 𝑡𝑛) ,

𝑘 = 1, 2, . . . ,

(68)

where algebraR𝑛 − 𝜎 generated until the moment 𝑛.

Theorem 6. Let the sequence be form martingale {𝜂𝑛 (𝑖0)}
∞
𝑛=1

withR𝑛, respectively. If

∑

𝑗=1,...,𝑛; 𝑗 ̸=𝑖

𝑐𝑖𝑗 <
(𝑛 − 1) 𝑐𝑖𝑖𝑞1𝑚

𝑛
, (𝑖 = 1, 𝑛) ,

max
(𝑥,𝑡)∈Ω

𝑓𝑖 (𝑥, 𝑡)
 ≤ 𝑐0, (𝑐0 = const, 𝑖 = 1, 𝑛) .

(69)

Then the sequence will be {𝜂𝑛(𝑖0)} uniformly integrable martin-
gale.

Proof. From the definition 𝜂𝑛(𝑖0) theR𝑛 ismeasurable. In this
case

𝐸(𝜂𝑛+1

(𝑖0)

𝑅𝑛

)

= 𝐸(Θ𝑛+1 ×
𝐹 (𝑥𝑛+1, 𝑡𝑛+1)

R𝑛

)

= 𝐸(Θ𝑛 × 𝑉𝑖𝑛𝑖𝑛+1
(𝑥𝑛, 𝑡𝑛; 𝑥𝑛+1, 𝑡𝑛+1) ×

𝐹 (𝑥𝑛+1, 𝑡𝑛+1)

R𝑛

)

= Θ𝑛𝐸 (𝑉𝑖𝑛𝑖𝑛+1
(𝑥𝑛, 𝑡𝑛; 𝑥𝑛+1, 𝑡𝑛+1) × 𝐹 (𝑥𝑛+1, 𝑡𝑛+1))

= Θ𝑛
[

[

∑

𝑗=1,𝑛

𝛼𝑖𝑛𝑗
∬

𝑄
(𝑖𝑛)

𝑟 (𝑥𝑛,𝑡𝑛)

𝑝𝑖𝑛𝑗
(𝑥𝑛, 𝑡𝑛; 𝑦, 𝜏) 𝑢𝑗 (𝑦, 𝜏) 𝑑𝑦 𝑑𝜏

+𝛼𝑖𝑛𝑛+1
∬

𝑄
(𝑖𝑛)

𝑟 (𝑥𝑛 ,𝑡𝑛)

𝑝𝑖𝑛𝑛+1
(𝑥𝑛, 𝑡𝑛; 𝑦, 𝜏) 𝑓𝑖𝑛

(𝑦, 𝜏) 𝑑𝑦 𝑑𝜏]

]

= 𝜂𝑛 (𝑖0) .

(70)

As far as the sequence is martingale {𝜂𝑛 (𝑖0)}. We can show
the uniformly integrability of 𝜂𝑛 (𝑖0). To do that it is enough
to show |𝜂𝑛 (𝑖0)| < ∞.

Since

𝑢𝑖 (𝑥, 𝑡) ∈ 𝐶 (𝐷 × [0, 𝑇]) ∩ 𝐶
2,1
(𝐷 × [0, 𝑇]) , (71)

andΩ is bounded domain |𝑢𝑖(𝑥, 𝑡)| ≤ const, for any (𝑥, 𝑡) ∈
Ω. From the condition of theorem |Θ𝑛| ≤ 1, it is followed
|𝜂𝑛 (𝑖0)| ≤ const. It means {𝜂𝑛 (𝑖0)} is uniformly integrable.

The theorem is proved.

Now we will construct computable (realizable) estimator
𝜂𝑛(𝑖0). We will take 𝜀-neighborhoods of the domain (𝜕Ω)𝜀 =
{𝐷 × [0, 𝜀]} ∪ {(𝜕𝐷)𝜀 × [0, 𝑇]}.
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Let𝑁1 be a breakingmoment of process inside of domain.
𝑁𝜀 is the first passage moment (𝜕Ω)𝜀. 𝑁 = min{𝑁1, 𝑁𝜀},
stopping moment of process {(𝑥𝑛, 𝑡𝑛)}. In this case the
probability of absorbing will be

𝑔 (𝑥𝑛, 𝑡𝑛) = {
1, (𝑥𝑛, 𝑡𝑛) ∈ (𝜕Ω)𝜀

𝛼𝑖𝑛,(𝑛+1)
(𝑥𝑛−1, 𝑡𝑛−1) , (𝑥𝑛, 𝑡𝑛) ∈ Ω \ (𝜕Ω)𝜀.

(72)

From Lemma 5 it follows that𝑁 < ∞. It could be proved that
the mathematical expectation of the stopping time {(𝑥𝑛, 𝑡𝑛)}
of Markov process is finite.

Theorem 7. Let the condition of Theorem 6 be satisfied; then
the estimator 𝜂𝑛(𝑖0) will be unbiased estimator with finite
variance, where 𝑢𝑖0(𝑥, 𝑡) is 𝑖0th component of solution vector
𝑢(𝑥, 𝑡) .

Proof. Since 𝜂𝑛(𝑖0) is uniformly integrable martingale and𝑁
is Markovmoment, according to the theorem in ([24, 25]) for
the martingale {𝜂𝑛(𝑖0)} we obtain

𝐸(𝑥0 ,𝑡0)
𝜂𝑁 (𝑖0) = 𝐸(𝑥0 ,𝑡0)

𝜂1 (𝑖0) . (73)

From the definition 𝜂𝑛(𝑖0)holds𝐸(𝑥0 ,𝑡0)𝜂1(𝑖0) = 𝑢𝑖0(𝑥, 𝑡). From
condition of Theorem 6 𝐸(𝜂𝑁)

2
(𝑖0) < ∞ is valid accordingly

the variance is finite. The theorem is proved.

Further, from 𝜂𝑁(𝑖0) we could construct biased but
computable (realizable) estimator 𝜂∗𝑁(𝑖0). Let, for 𝑥 ∈ 𝜕𝐷,
𝑡 ∈ [0, 𝑇] and 𝜓𝑖(𝑥, 𝑡) = 𝑦𝑖(𝑥, 𝑡) for 𝑥 ∈ 𝐷, 𝜓𝑖(𝑥, 0) =
𝑦0𝑖(𝑥), (𝑥

∗
, 𝑡
∗
) closed to the point (𝑥, 𝑡) of boundary 𝜕Ω. 𝜂∗𝑁

will be obtained with changing

𝑢𝑖 (𝑥𝑁, 𝑡𝑁) in 𝜂𝑁 (𝑖0) to 𝜓𝑖 (𝑥
∗
𝑁, 𝑡

∗
𝑁) . (74)

Let us evaluate bias 𝜂∗𝑁(𝑖0). It is clear that

𝐸(𝑥,𝑡)𝜂𝑁 (𝑖0) − 𝑢𝑖0

(𝑥, 𝑡)

≤ 𝐸(𝑥,𝑡)

𝜂
∗
𝑁 (𝑖0) − 𝜂𝑁 (𝑖0)

 . (75)

If 𝑁 = 𝑁1, in this case the process is broken when do not
reach the boundary (𝜕Ω)𝜀 and 𝜂

∗
𝑁(𝑖0) = 𝜂𝑁(𝑖0). If 𝑁 = 𝑁𝜀

then (𝑥𝑁, 𝑡𝑁) ∈ (𝜕Ω)𝜀.
Let 𝐴 𝑖(𝜀) be a module of continuity function 𝑢𝑖(𝑥, 𝑡). In

this case it is true:
𝜂
∗
𝑁 (𝑖0) − 𝜂𝑁 (𝑖0)

 ≤
Θ𝑁
 𝐴 (𝜀) , (76)

where𝐴(𝜀) = max𝑖 𝐴 𝑖(𝜀), since |Θ𝑁| ≤ 1 then 𝐸(𝑥,𝑡)|𝜂
∗
𝑁(𝑖0) −

𝑢𝑖0
(𝑥, 𝑡)| ≤ 𝐴(𝜀). Finiteness of variance followed from

𝐸𝜂
2
𝑁(𝑖0) < ∞. The proposed algorithm we could generalize

for the case with variable coefficients 𝑐𝑖𝑗 = 𝑐𝑖𝑗(𝑥, 𝑡) and one
could get the same results.

5. Computational Example

Let 𝐷 ∈ 𝑅
3 be bounded domains, Ω = 𝐷 × [0, 𝑇]. We will

consider for some mode linitial boundary value problem
𝜕𝑢𝑖 (𝑥, 𝑡)

𝜕𝑡
− 𝑎𝑖Δ𝑢𝑖 (𝑥, 𝑡) + 𝑐𝑖𝑖𝑢𝑖 (𝑥, 𝑡)

− ∑

𝑗=1,4; 𝑗 ̸=𝑖

𝑐𝑖𝑗𝑢𝑗 (𝑥, 𝑡) = 𝑓𝑖 (𝑥, 𝑡) , (𝑖 = 1, 4)

(77)

for (𝑥, 𝑡) ∈ Ω with the initial boundary conditions

𝑢𝑖 (𝑥, 𝑡) = 𝑦𝑖 (𝑥, 𝑡) , 𝑥 ∈ 𝜕𝐷, 𝑡 ∈ [0, 𝑇] , 𝑖 = 1, 4,

𝑢𝑖 (𝑥, 0) = 𝑦0𝑖 (𝑥) , 𝑥 ∈ 𝐷, 𝑖 = 1, 4.

(78)

As domain is chosen as the simple ball,𝐷 = {(𝑥1, 𝑥2, 𝑥3) :

𝑥
2
1 + 𝑥

2
2 + 𝑥

2
3 ≤ 𝑅

2
}.

The coefficients

(

𝑎1

𝑎2

𝑎3

𝑎4

) = (

0.5

0.7

0.1

1.0

) ,

{𝑐𝑖𝑗}𝑖,𝑗=1,...,4
=
[
[
[

[

2 0.4 0.5 0.2

0.7 3 0.4 0.6

0.3 0.1 1 0.1

0.2 0.3 0.3 1.5

]
]
]

]

(79)

The initial and boundary conditions

𝑦01 (𝑥) = 𝑥
2
1 + 𝑥

2
2 + 𝑥

2
3;

𝑦1 (𝑥, 𝑡) = 𝑅
2 exp (𝑡) ;

𝑦02 (𝑥) = (𝑥1𝑥2𝑥3)
2
;

𝑦2 (𝑥, 𝑡) = exp (𝑡) (𝑥2𝑥3)
2
(𝑅

2
− 𝑥

2
2 − 𝑥

2
3) ;

𝑦03 (𝑥) = exp (𝑥1 + 𝑥2 + 𝑥3) ;

𝑦3 (𝑥, 𝑡) = exp (𝑡 + 𝑥1 + 𝑥2 + 𝑥3) ;

𝑦04 (𝑥) = 1; 𝑦4 (𝑥, 𝑡) = exp (𝑡𝑥1𝑥2𝑥3) .

(80)

Left hand sides

𝑓1 (𝑥, 𝑡) = exp (𝑡) [4 (𝑥21 + 𝑥
2
2 + 𝑥

2
3) − 0.3(𝑥1𝑥2𝑥3)

2
− 3]

− 0.2 (𝑥1 + 𝑥2 + 𝑥3 + 𝑡) − 0.5 exp (𝑥1𝑥2𝑥3𝑡) ;

𝑓2 (𝑥, 𝑡) = exp (𝑡) [3.5(𝑥1𝑥2𝑥3)
2
− 1.4(𝑥1𝑥2)

2

+(𝑥2𝑥3)
2
+ (𝑥1𝑥3)

2
− 0.4 (𝑥

2
1 + 𝑥

2
2 + 𝑥

2
3)]

− 0.3 (𝑥1 + 𝑥2 + 𝑥3 + 𝑡) − 0.2 exp (𝑥1𝑥2𝑥3𝑡) ;
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Table 1: The results of computational experiments.

(𝑥0, 𝑡0) 𝑖0 𝑁𝑡 𝜀 𝑈𝑒 MC 3𝜎 err
(0.1; −0.8; 0.4; 1.2) 1 5000 0.005 2.689294 2.881862 0.2821 0.1925
(0.1; −0.8; 0.4; 1.2) 2 5000 0.005 0.003399 0.018739 0.224699 0.015339
(0.1; −0.8; 0.4; 1.2) 3 5000 0.005 2.459603 2.483835 0.21815 0.02423
(0.1; −0.8; 0.4; 1.2) 4 5000 0.005 0.962327 0.95895 0.03377 0.1598
(−0.5; 0.25; −0.4; 1.3) 1 5000 0.005 1.733942 1.554352 0.32319 0.17939
(−0.5; 0.25; −0.4; 1.3) 2 5000 0.005 0.009173 0.009841 0.215628 0.000668
(−0.5; 0.25; −0.4; 1.3) 3 5000 0.005 1.91554 1.980669 0.18057 0.064528
(−0.5; 0.25; −0.4; 1.3) 4 5000 0.005 1.067159 1.084443 0.162095 0.01728
(𝑥0; 𝑡0) is the point which solved BVP;𝑁𝑡 is the quantity of samples (trajectories); 𝜀 is neighborhood area; 𝑖0 is the number of equation;𝑈𝑒 is exact solution at
the point (𝑥0; 𝑡0). MC is Monte Carlo solutions; 3𝜎 is confidence interval; err is the difference between exact ant MC solutions err = |𝑢𝑖0 (𝑥0; 𝑡0) −MS|.

𝑓3 (𝑥, 𝑡) = 4.7 exp (𝑥1 + 𝑥2 + 𝑥3 + 𝑡)

− exp (𝑡) [0.5 (𝑥21 + 𝑥
2
2 + 𝑥

2
3) + 0.4(𝑥1𝑥2𝑥3)

2
]

− 0.7 exp (𝑥1𝑥2𝑥3𝑡) ;

𝑓4 (𝑥, 𝑡) = exp (𝑥1𝑥2𝑥3𝑡)

× [(𝑥1𝑥2𝑥3) + 3.5 − 𝑡
2
((𝑥1𝑥2)

2

+(𝑥2𝑥3)
2
+ (𝑥1𝑥3)

2
)]

− exp (𝑡) [0.3 (𝑥21 + 𝑥
2
2 + 𝑥

2
3) − 0.4(𝑥1𝑥2𝑥3)

2
]

− 0.6 (𝑥1 + 𝑥2 + 𝑥3 + 𝑡) .

(81)

The exact solutions are known:

𝑢1 (𝑥, 𝑡) = exp (𝑡) (𝑥21 + 𝑥
2
2 + 𝑥

2
3) ,

𝑢2 (𝑥, 𝑡) = exp (𝑡) (𝑥1𝑥2𝑥3)
2
,

𝑢3 (𝑥, 𝑡) = exp (𝑥1 + 𝑥2 + 𝑥3 + 𝑡) ,

𝑢4 (𝑥, 𝑡) = exp (𝑥1𝑥2𝑥3𝑡) .

(82)

6. Conclusions

It is known that the distinguishing feature of the vector algo-
rithm is that its “weight” appears to be a matrix weight. This
matrix weight is multiplied by the kernel matrix of the system
of integral equations divided by a transition density function
after each transition in the Markov chain simulation. In this
case the computational complexity is higher enough than
simple Monte Carlo method. On the contrary to the vector
algorithmswe proposed a newMonte Carlo algorithm for the
solution of system of integral equations. This method has the
simple structure of the computation algorithm and the errors
do not depend on the dimension of domain and smoothness
of boundary. One can solve the problem at one point and
we do not use matrix weights. Proposed algorithm applied
to the solution of system of the parabolic equations. To do
so we derived corresponding system of integral equations
and construct a special probabilistic representation. This

probabilistic representation uses for simulation the random
process and construction the unbiased and 𝜀-biased estimator
for the solution of systems IEs.

Numerical experiments show that the computational
complexity of our algorithm is reduced. In the future the
proposed algorithm might be generalized for the case with
variable coefficients 𝑐𝑖𝑗 = 𝑐𝑖𝑗(𝑥, 𝑡). The results of numerical
experiments are shown with the probability almost one;
the approximate solution tends to the exact solution of the
problem. In the given example the exact solution is known;
therefore we can make sure that all the estimators really are
in the confidence intervals (see Table 1).
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2 Facultad de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
3 Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to J. J. Nieto; juanjose.nieto.roig@usc.es

Received 23 May 2014; Revised 8 July 2014; Accepted 8 July 2014; Published 14 August 2014

Academic Editor: Hari M. Srivastava

Copyright © 2014 I. Area et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We prove that the fractional derivative or the fractional primitive of a 𝑇-periodic function cannot be a �̃�-periodic function, for any
period �̃�, with the exception of the zero function.

1. Introduction

Periodic functions [1, Ch. 3, pp. 58–92] play a central role
in mathematics since the seminal works of Fourier [2, 3].
Nowadays, periodic functions appear in applications ranging
from electromagnetic radiation to blood flow and of course
in control theory in linear time-varying systems driven
by periodic input signals [4]. Linear time-varying systems
driven by periodic input signals are ubiquitous in control
systems, from natural sciences to engineering, economics,
physics, and the life science [4, 5]. Periodic functions also
appear in automotive engine applications [6], optimal peri-
odic scheduling of sensor networks [7, 8], or cyclic gene
regulatory networks [9], to give some applications.

It is an obvious fact that the classical derivative, if it exists,
of a periodic function is also a periodic function of the same
period. Also the primitive of a periodic function may be
periodic (e.g., cos 𝑡 as primitive of sin 𝑡).

The idea of integral or derivatives of noninteger order
goes back to Riemann and Liouville [3, 10]. Probably the first
application of fractional calculus was made by Abel in the
solution of the integral equation that arises in the formu-
lation of the tautochrone problem [11]. Fractional calculus
appears in many different contexts as speech signals, cardiac
tissue electrode interface, theory of viscoelasticity, or fluid
mechanics. The asymptotic stability of positive fractional-
order nonlinear systems has been proved in [12] by using the
Lyapunov function. We do not intend to give a full list of
applications but to show the wide range of them.

In this paper we prove that periodicity is not transferred
by fractional integral or derivative, with the exception of the
zero function. Although this property seems to be known
[10, 13, 14], in Section 3 we give a different proof by using
the Laplace transform. Our approach relies on the classical
concepts of fractional calculus and elementary analysis.
Moreover, by using a similar argument as in [15], in Section 4
we prove that the fractional derivative or primitive of a 𝑇-
periodic function cannot be �̃�-periodic for any period �̃�. A
particular but nontrivial example is explicitly given. Finally,
as a consequence we show in Section 5 that an autonomous
fractional differential equation cannot have periodic solu-
tions with the exception of constant functions.

2. Preliminaries

Let 𝑇 > 0. If 𝑓 : R → R is 𝑇 periodic and 𝑓 ∈ C1(R), then
the derivative𝑓 is also𝑇-periodic. However, the primitive of
𝑓

𝐹 (𝑡) = ∫

𝑡

0
𝑓 (𝑠) 𝑑𝑠 (1)

is not, in general, 𝑇-periodic. Just take 𝑓(𝑡) = 1 so that
𝐹(𝑡) = 𝑡 is not 𝑇-periodic for any 𝑇


> 0. The necessary

and sufficient condition for 𝐹 to be 𝑇-periodic is that

∫

𝑇

0
𝑓 (𝑠) 𝑑𝑠 = 0. (2)
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2 Abstract and Applied Analysis

The purpose of this note is to show that the fractional
derivative or the fractional primitive of a𝑇-periodic function
cannot be 𝑇-periodic function with the exception, of course,
of the zero function. We use the notation

𝐹 = 𝐼
1
𝑓, 𝑓


= 𝐷
1
𝑓 (3)

and note that

𝐷
1
(𝐼
1
𝑓) (𝑡) = 𝐷

1
𝐹 (𝑡) = 𝑓 (𝑡) (4)

but

𝐼
1
(𝐷
1
𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (0) , (5)

and 𝐼1(𝐷1𝑓) does not coincide with 𝑓 unless 𝑓(0) = 0.
We recall some elements of fractional calculus. Let 𝛼 ∈

(0, 1) and 𝑓 : R → R. We point out that 𝑓 is not necessarily
continuous. The fractional integral of 𝑓 of order 𝛼 is defined
by [16]

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0
(𝑡 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠, (6)

provided the right-hand side is defined for a.e. 𝑡 ∈ R. If, for
example, 𝑓 ∈ L1(R), then the fractional integral (6) is well
defined and 𝐼

𝛼
𝑓 ∈ L1(0, 𝑇), for any 𝑇 > 0. Moreover, the

fractional operator

𝐼
𝛼
: L
1
(0, 𝑇) → L

1
(0, 𝑇) (7)

is linear and bounded.
The fractional Riemann-Liouville derivative of order 𝛼 of

𝑓 is defined as [16, 17]

𝐷
𝛼
𝑓 (𝑡) = 𝐷

1
𝐼
1−𝛼

𝑓 (𝑡) =
1

Γ (1 − 𝛼)

𝑑

𝑑𝑡
∫

𝑡

0
(𝑡 − 𝑠)

−𝛼
𝑓 (𝑠) 𝑑𝑠.

(8)

This is well defined if, for example, 𝑓 ∈ L1loc(R).
There are many more fractional derivatives. We are not

giving a complete list but recall the Caputo derivative [16, 17]

𝑐
𝐷
𝛼
𝑓 (𝑡) = 𝐼

1−𝛼
𝐷
1
𝑓 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0
(𝑡 − 𝑠)

−𝛼
𝑓

(𝑠) 𝑑𝑠,

(9)

which is well defined, for example, for absolutely continuous
functions.

As in the integer case we have

𝐷
𝛼
(𝐼
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) ,

𝑐
𝐷
𝛼
(𝐼
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) (10)

but 𝐼𝛼(𝐷𝛼𝑓) or 𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) are not, in general, equal to 𝑓.

Indeed

𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (0) , (11)

and (see [17, (2.113), p. 71])

𝐼
𝛼
(𝐷
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) −

𝐷
𝛼−1

𝑓 (0)

Γ (𝛼)
𝑡
𝛼−1

. (12)

Also [16, (2.4.4), p. 91]
𝑐
𝐷
𝛼
𝑓 (𝑡) = 𝐷

𝛼
(𝑓 (𝑡) − 𝑓 (0)) . (13)

3. The Fractional Derivative or Primitive of a
𝑇-Periodic Function Cannot Be 𝑇-Periodic

We prove the following result in Section 3.1 below.

Theorem 1. Let 𝑓 : R → R be a nonzero 𝑇-periodic function
with 𝑓 ∈ L1loc(R). Then 𝐼𝛼𝑓 cannot be 𝑇-periodic for any 𝛼 ∈

(0, 1).

Corollary 2. Let 𝑓 : R → R be a nonzero 𝑇-periodic
function such that 𝑓 ∈ L1loc(R). Then the Caputo derivative
𝑐
𝐷
𝛼
𝑓 cannot be 𝑇-periodic for any 𝛼 ∈ (0, 1). The same result

holds for the fractional derivative𝐷𝛼𝑓.

Proof. Suppose that 𝑐𝐷𝛼𝑓 is 𝑇-periodic. Then by Theorem 1,
𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) cannot be 𝑇-periodic. However,

𝐼
𝛼
(
𝑐
𝐷
𝛼
𝑓) (𝑡) = 𝑓 (𝑡) − 𝑓 (0) (14)

is 𝑇-periodic. In relation to the fractional Riemann-Liouville
derivative, suppose that 𝐷𝛼𝑓 is 𝑇-periodic and consider the
function 𝑓 = 𝑓 − 𝑓(0) which is also 𝑇-periodic. Then

𝑐
𝐷
𝛼
𝑓 = 𝐷

𝛼
𝑓 (15)

cannot be 𝑇-periodic.

3.1. Proof ofTheorem 1. Let 𝛼 ∈ (0, 1) and𝑇 > 0. By reduction
to the absurd, in this section we suppose that 𝐼𝛼𝑓 is 𝑇-
periodic. Then

𝐼
𝛼
𝑓 (0) = 0 = 𝐼

𝛼
𝑓 (𝑇) ; (16)

that is,

∫

𝑇

0
(𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠 = 0. (17)

Lemma 3. Assume 𝑓 ∈ L1loc(R) is 𝑇-periodic. If 𝐼
𝛼
𝑓 is also

𝑇-periodic, then

∫

𝑇

0
(𝑛𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠 = 0, (𝑛 ∈ N := {1, 2, 3, . . .}) . (18)
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Proof. For 𝑛 = 1 the latter equality reduces to (17). For 𝑛 = 2,

0 = 𝐼
𝛼
𝑓 (2𝑇)

=
1

Γ (𝛼)
∫

2𝑇

0
(2𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0
(2𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

2𝑇

𝑇
(2𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0
(2𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑇

0
(𝑇 − 𝑟)

𝛼−1
𝑓 (𝑟 + 𝑇) 𝑑𝑟

=
1

Γ (𝛼)
∫

𝑇

0
(2𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑇

0
(𝑇 − 𝑟)

𝛼−1
𝑓 (𝑟) 𝑑𝑟

=
1

Γ (𝛼)
∫

𝑇

0
(2𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠.

(19)

The proof follows by induction on 𝑛. Assume that (18) is valid
for some 𝑛 ∈ N. Then

∫

(𝑛+1)𝑇

0
((𝑛 + 1)𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

=

𝑛

∑

𝑗=0

∫

(𝑗+1)𝑇

𝑗𝑇
((𝑛 + 1)𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠,

(20)

and, by periodicity,

∫

(𝑛+1)𝑇

0
((𝑛 + 1)𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠 = 𝐼

𝛼
𝑓 ((𝑛 + 1) 𝑇) = 0.

(21)

Moreover, for 𝑗 = 1, 2, . . . , 𝑛,

𝑛

∑

𝑗=1

∫

(𝑗+1)𝑇

𝑗𝑇
((𝑛 + 1)𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑇

0
((𝑛 + 1 − 𝑗)𝑇 − 𝑟)

𝛼−1
𝑓 (𝑟) 𝑑𝑟 = 0

(22)

by hypothesis of induction since 1 ≤ 𝑛 + 1 − 𝑗 ≤ 𝑛. Hence,

0 =

𝑛

∑

𝑗=0

∫

(𝑗+1)𝑇

𝑗𝑇
((𝑛 + 1)𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0
((𝑛 + 1)𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠.

(23)

Lemma 4. Under the hypothesis of Lemma 3,

∫

𝑇

0
𝑓 (𝑠) 𝑑𝑠 = 0. (24)

Proof. Let 𝑓+ and 𝑓− be the positive and negative parts of 𝑓,

𝑓
+
(𝑥) = max (𝑓 (𝑥) , 0) ,

𝑓
−
(𝑥) = −min (𝑓 (𝑥) , 0) ,

𝑓 = 𝑓
+
− 𝑓
−
.

(25)

Equation (18) implies that

∫

𝑇

0
(𝑛𝑇 − 𝑠)

𝛼−1
𝑓
+
(𝑠) 𝑑𝑠 = ∫

𝑇

0
(𝑛𝑇 − 𝑠)

𝛼−1
𝑓
−
(𝑠) 𝑑𝑠. (26)

If ∫𝑇
0
𝑓
+
(𝑠)𝑑𝑠 = 0 or ∫𝑇

0
𝑓
−
(𝑠)𝑑𝑠 = 0, then from (18) we get

𝑓 = 0. We consider the case

∫

𝑇

0
𝑓
+
(𝑠) 𝑑𝑠 > ∫

𝑇

0
𝑓
−
(𝑠) 𝑑𝑠 > 0. (27)

For 𝑛 large

(
𝑛𝑇

(𝑛 − 1)𝑇
)

𝛼−1

>
∫
𝑇

0
𝑓
−
(𝑠) 𝑑𝑠

∫
𝑇

0
𝑓+ (𝑠) 𝑑𝑠

(28)

or equivalently

(𝑛𝑇)
𝛼−1

∫

𝑇

0
𝑓
+
(𝑠) 𝑑𝑠 > ((𝑛 − 1)𝑇)

𝛼−1
∫

𝑇

0
𝑓
−
(𝑠) 𝑑𝑠. (29)

Hence,

0 = ∫

𝑇

0
(𝑛𝑇 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

≥ (𝑛𝑇)
𝛼−1

∫

𝑇

0
𝑓
+
(𝑠) 𝑑𝑠 − ((𝑛 − 1)𝑇)

𝛼−1
∫

𝑇

0
𝑓
−
(𝑠) 𝑑𝑠 > 0,

(30)

which is a contradiction.
The case

∫

𝑇

0
𝑓
−
(𝑠) 𝑑𝑠 > ∫

𝑇

0
𝑓
+
(𝑠) 𝑑𝑠 > 0 (31)

is analogous.
Therefore,

∫

𝑇

0
𝑓
−
(𝑠) 𝑑𝑠 = ∫

𝑇

0
𝑓
+
(𝑠) 𝑑𝑠 > 0,

∫

𝑇

0
𝑓 (𝑠) 𝑑𝑠 = 0.

(32)
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Lemma 5. Under the hypothesis of Lemma 3,

∫

𝑇

0
(𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠 = 0, ∀𝛿 ∈ [0, 𝑇] . (33)

Proof. If 𝛿 = 0 and 𝛿 = 𝑇, the equation reduces to (17) and
(18), respectively. Let 0 < 𝛿 < 𝑇.

𝐼
𝛼
𝑓 (𝑇 + 𝛿) =

1

Γ (𝛼)
∫

𝑇+𝛿

0
(𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0
(𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝑇+𝛿

𝑇
(𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)
∫

𝑇

0
(𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

𝛿

0
(𝛿 − 𝑟)

𝛼−1
𝑓 (𝑟 + 𝑇) 𝑑𝑟

=
1

Γ (𝛼)
∫

𝑇

0
(𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠 + 𝐼

𝛼
𝑓 (𝛿) .

(34)

By using the periodicity of 𝐼𝛼𝑓 we get (33).

Lemma 6. Under the hypothesis of Lemma 3,

∫

𝑇

0
(𝑇 + 𝑡 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠 = 0, ∀𝑡 ∈ R. (35)

Proof. For 𝑡 ∈ [0, 𝑇] or 𝑡 = 𝑛𝑇, 𝑛 = 1, 2, . . ., relation (35) is
true. Let 𝑡 = 𝑛𝑇 + 𝛿, so that 𝑇 + 𝑡 = (𝑛 + 1)𝑇 + 𝛿. Then

𝐼
𝛼
𝑓 (𝛿) = 𝐼

𝛼
𝑓 (𝑇 + 𝑡)

=
1

Γ (𝛼)
∫

(𝑛+1)𝑇+𝛿

0
((𝑛 + 1)𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠.

(36)

Now, using the additive property of the integral, we have

1

Γ (𝛼)
∫

(𝑛+1)𝑇+𝛿

0
((𝑛 + 1)𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

=
1

Γ (𝛼)

𝑛

∑

𝑗=0

∫

(𝑗+1)𝑇

𝑗𝑇
((𝑛 + 1)𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

+
1

Γ (𝛼)
∫

(𝑛+1)𝑇+𝛿

(𝑛+1)𝑇
((𝑛 + 1)𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠.

(37)

Let us compute separately the integrals in the right-hand side.
In all the integrals depending on 𝑗, we use the (linear) change
of variable 𝑟 = 𝑠 − 𝑗𝑇 and rename 𝑡 = (𝑛 − 𝑗)𝑇 + 𝛿 to obtain

∫

(𝑗+1)𝑇

𝑗𝑇
(𝑛𝑇 + 𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0
(𝑇 + (𝑛 − 𝑗) 𝑇 + 𝛿 − 𝑟)

𝛼−1
𝑓 (𝑟 + 𝑗𝑇) 𝑑𝑟

= ∫

𝑇

0
(𝑇 + 𝑡


− 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(38)

For the last integral we use the (linear) change of variable 𝑟 =
𝑠 − (𝑛 + 1)𝑇 to get

∫

(𝑛+1)𝑇+𝛿

(𝑛+1)𝑇
((𝑛 + 1)𝑇 + 𝛿 − 𝑠)

𝛼−1
𝑓 (𝑠) 𝑑𝑠

= ∫

𝛿

0
(𝛿 − 𝑟)

𝛼−1
𝑓 (𝑟 + (𝑛 + 1) 𝑇) 𝑑𝑟 = 𝐼

𝛼
𝑓 (𝛿) .

(39)

By induction on 𝑛, as in Lemma 3, the proof follows.

Lemma 7. Let𝑓 be a continuous and𝑇-periodic function,𝑇 >

0. Let 0 < 𝛼 < 1 be fixed. Assuming that

∫

𝑇

0
(𝑇 − 𝑠 + 𝑡)

𝛼−1
𝑓 (𝑠) = 0, ∀𝑡 ∈ R,

∫

𝑇

0
𝑓 (𝑠) 𝑑𝑠 = 0,

(40)

then 𝑓 ≡ 0.

Proof. Since ∫𝑇
0
𝑓(𝑠)𝑑𝑠 = 0 then 0 = ∫

𝑇

0
𝑓(𝑠)𝑑𝑠 = ∫

𝑇

0
(𝑓
+
(𝑠) −

𝑓
−
(𝑠))𝑑𝑠 and therefore we can define 𝑐 = ∫

𝑇

0
𝑓
+
(𝑠)𝑑𝑠 =

∫
𝑇

0
𝑓
−𝑠
(𝑠)𝑑𝑠 > 0. If 𝑐 = 0 then 𝑓 = 0.

Let us define

𝜙 (𝑡) = ∫

𝑇

0
(𝑇 − 𝑠 + 𝑡)

𝛼−1
𝑓 (𝑠) 𝑑𝑠. (41)

From the hypothesis, we have that 𝜙(𝑡) = 0 at any 𝑡 ∈ R.
Therefore, its integral is also zero. Let us integratewith respect
to 𝑡 from 𝑎 to 𝑏 for 0 ≤ 𝑎 ≤ 𝑏 ≤ 𝑇

0 = ∫

𝑏

𝑎
𝜙 (𝑡) 𝑑𝑡 = ∫

𝑏

𝑎
(∫

𝑇

0
(𝑇 − 𝑠 + 𝑡)

𝛼−1
𝑓 (𝑠) 𝑑𝑠) 𝑑𝑡

= ∫

𝑇

0
(∫

𝑏

𝑎
(𝑇 − 𝑠 + 𝑡)

𝛼−1
𝑑𝑡)𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0
(
(𝑏 − 𝑠 + 𝑇)

𝛼
− (𝑎 − 𝑠 + 𝑇)

𝛼

𝛼
)𝑓 (𝑠) 𝑑𝑠,

(42)

where we have assumed 0 ≤ 𝑎 < 𝑏, 𝑠 < 𝑇. Thus,

∫

𝑇

0
[(𝑏 − 𝑠 + 𝑇)

𝛼
− (𝑎 − 𝑠 + 𝑇)

𝛼
] 𝑓 (𝑠) 𝑑𝑠 = 0 (43)
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which implies that

𝜓 (𝑡) = ∫

𝑇

0
(𝑇 − 𝑠 + 𝑡)

𝛼
𝑓 (𝑠) 𝑑𝑠 (44)

is a constant function.
Moreover, since

𝑡
𝛼
𝑐 − (𝑇 + 𝑡)

𝛼
𝑐 ≤ ∫

𝑇

0
(𝑇 − 𝑠 + 𝑡)

𝛼
𝑓 (𝑠) 𝑑𝑠

≤ (𝑇 + 𝑡)
𝛼
𝑐 − 𝑡
𝛼
𝑐,

(45)

where

𝑐 = ∫

𝑇

0
𝑓
+
(𝑠) 𝑑𝑠 = ∫

𝑇

0
𝑓
−
(𝑠) 𝑑𝑠 (46)

in view of (24) and

lim
𝑡→+∞

((𝑇 + 𝑡)
𝛼
− 𝑡
𝛼
) = 0, (47)

we have that

∫

𝑇

0
(𝑇 − 𝑠 + 𝑡)

𝛼
𝑓 (𝑠) 𝑑𝑠 = 0, ∀𝑡 ∈ R. (48)

Let

𝑓 = 𝑓 ⋅ 𝜒[0,𝑇], 𝑓 (𝑡) = {
𝑓 (𝑡) , 𝑡 ∈ [0, 𝑇]

0, 𝑡 > 𝑇.
(49)

If we define

𝜑 (𝑡) = (𝑇 + 𝑡)
𝛼 (50)

then the convolution of 𝜑 and 𝑓 is given by

(𝜑 ∗ 𝑓) = ∫

+∞

0
𝜑 (𝑡 − 𝑠) 𝑓 (𝑠) 𝑑𝑠

= ∫

𝑇

0
(𝑇 + 𝑡 − 𝑠)

𝛼
𝑓 (𝑠) 𝑑𝑠 = 0.

(51)

Therefore, if we apply the Laplace transform [18, Chapter 17]
to the above equality it yields

L [𝜑 ∗ 𝑓] = L [𝜑]L [𝑓] = L [0] = 0. (52)

Since

L [𝜑] = 𝑠
−𝛼−1

𝑒
𝑠𝑇
Γ (𝛼 + 1, 𝑠𝑇) , (53)

where Γ(𝑎, 𝑧) denotes the incomplete gamma function [19,
Section 6.5], then L[𝜑] ̸= 0 which implies that L[𝑓] = 0

and therefore 𝑓 = 0, that is, 𝑓 = 0, on [0, 𝑇].

4. The Fractional Derivative or Primitive of a
𝑇-Periodic Function Cannot Be �̃�-Periodic
for any Period �̃�

Let 𝑓 be a 𝑇-periodic function and consider 𝑢 such that

𝑐
𝐷
𝛼
𝑢 = 𝑓 (𝑡) , 0 < 𝛼 < 1. (54)

Then

𝑢 (𝑡) = 𝑢 (0) + 𝐼
𝛼
𝑓 (𝑡) , (55)

and therefore

L [𝑢 (𝑡)] = L𝑢0 +L [𝐼
𝛼
𝑓 (𝑡)] . (56)

Let us assume that 𝑢 is a �̃�-periodic function. Then by using
some basic properties of the Laplace transform it yields

∫
�̃�

0
𝑢 (𝑡) exp (−𝜆𝑡) 𝑑𝑡

1 − exp (−𝜆�̃�)
=
𝑢0

𝜆
+

1

𝜆𝛼

∫
𝑇

0
𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡
1 − exp (−𝜆𝑇)

.

(57)

Therefore,

𝜆 (1 − exp (−𝜆𝑇)) ∫
�̃�

0
𝑢 (𝑡) exp (−𝜆𝑡) 𝑑𝑡

= 𝑢0 (1 − exp (−𝜆𝑇)) (1 − exp (−𝜆�̃�))

+ 𝜆
1−𝛼

(1 − exp (−𝜆�̃�)) ∫
𝑇

0
𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡.

(58)

Let us consider V = 𝑢 − 𝑢0 so that V is also �̃�-periodic and
V(0) = 0. The above equality becomes

𝜆 (1 − exp (−𝜆𝑇)) ∫
�̃�

0
V (𝑡) exp (−𝜆𝑡) 𝑑𝑡

= 𝜆
1−𝛼

(1 − exp (−𝜆�̃�)) ∫
𝑇

0
𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡

(59)

or equivalently

𝜆
𝛼 (1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

∫

�̃�

0
V (𝑡) exp (−𝜆𝑡) 𝑑𝑡

= ∫

𝑇

0
𝑓 (𝑡) exp (−𝜆𝑡) 𝑑𝑡.

(60)

Thus,

(1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

∞

∑

𝑖=0

(−1)
𝑖 𝜆
𝛼+𝑖

𝑖!
∫

�̃�

0
V (𝑡) 𝑡𝑖𝑑𝑡

=

∞

∑

𝑖=0

(−1)
𝑖 𝜆
𝑖

𝑖!
∫

𝑇

0
𝑓 (𝑡) 𝑡

𝑖
𝑑𝑡.

(61)
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Since

lim
𝜆→0+

(1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

=
𝑇

�̃�
, lim

𝜆→0+
𝜆
𝛼+𝑖

= 0, (62)

by using 0 < 𝛼 < 1 and 𝑖 ≥ 0, the limit as 𝜆 → 0
+ of the

left-hand side is zero, which implies

∫

𝑇

0
𝑓 (𝑡) 𝑑𝑡 = 0. (63)

Then

(1 − exp (−𝜆𝑇))
(1 − exp (−𝜆�̃�))

∞

∑

𝑖=0

(−1)
𝑖 𝜆
𝑖

𝑖!
∫

�̃�

0
V (𝑡) 𝑡𝑖𝑑𝑡

= 𝜆
−𝛼
∞

∑

𝑖=1

(−1)
𝑖 𝜆
𝑖

𝑖!
∫

𝑇

0
𝑓 (𝑡) 𝑡

𝑖
𝑑𝑡

= 𝜆
1−𝛼
∞

∑

𝑖=0

(−1)
𝑖+1 𝜆

𝑖

(𝑖 + 1)!
∫

𝑇

0
𝑓 (𝑡) 𝑡

𝑖+1
𝑑𝑡.

(64)

If we consider 𝜆 → 0
+ in the latter expression we get

𝑇

�̃�
∫

�̃�

0
V (𝑡) 𝑑𝑡 = 0, (65)

and therefore

∫

�̃�

0
V (𝑡) 𝑑𝑡 = 0. (66)

By induction, we obtain that

∫

𝑇

0
𝑓 (𝑡) 𝑡

𝑖
𝑑𝑡 = 0, ∫

�̃�

0
V (𝑡) 𝑡𝑖𝑑𝑡 = 0, 𝑖 = 0, 1, 2, . . . . (67)

Therefore, 𝑓 = 𝑢 = 0 and there are no nonzero �̃�-periodic
𝐿
∞-solutions of the problem.

Example 8. Let 𝑓(𝑡) = sin(𝑡) and 0 < 𝛼 < 1. The Caputo-
fractional derivative of 𝑓(𝑡) is given by

𝑐
𝐷
𝛼
𝑓 (𝑡) =

𝑡
1−𝛼

Γ (2 − 𝛼)
1𝐹2 (1;

3 − 𝛼

2
, 1 −

𝛼

2
; −

𝑡
2

4
) , (68)

where the hypergeometric series 1𝐹2(𝑎; 𝑏, 𝑐; 𝑑) is defined as
([20, 21], Chapter 15)

1𝐹2 (𝑎; 𝑏, 𝑐; 𝑑) =

∞

∑

𝑗=0

(𝑎)𝑗

𝑗!(𝑏)𝑗 (𝑐)𝑗

𝑑
𝑗
, (69)

and the Pochhammer symbol (𝐴)𝑗 = 𝐴(𝐴+ 1) ⋅ ⋅ ⋅ (𝐴 + 𝑗 − 1),
with (𝐴)0 = 1.

Since
𝑐
𝐷
𝛼
𝑓 (𝜋)

𝑐𝐷𝛼𝑓 (𝜋 + �̃�)

= 𝜋
1−𝛼

(�̃� + 𝜋)
𝛼−1

1𝐹2 (1; 1 −
𝛼

2
,
3

2
−
𝛼

2
; −

𝜋
2

4
)

× ( 1𝐹2 (1; 1 −
𝛼

2
,
3

2
−
𝛼

2
; −

1

4
(�̃� + 𝜋)

2
))

−1

,

𝑐
𝐷
𝛼
𝑓 (𝜋/2)

𝑐𝐷𝛼𝑓 (𝜋/2 + �̃�)

= (
2𝑇

𝜋
+ 1)

𝛼−1

1𝐹2 (1; 1 −
𝛼

2
,
3

2
−
𝛼

2
; −

𝜋
2

16
)

× ( 1𝐹2 (1; 1 −
𝛼

2
,
3

2
−
𝛼

2
; −

1

16
(2𝑇 + 𝜋)

2
))

−1

,

(70)

we have that 𝑐𝐷𝛼𝑓(𝑡) is not a �̃�-periodic function for any
positive �̃� and 𝛼 ∈ (0, 1). Plotting both functions sin(𝑡) and
𝑐
𝐷
𝛼 sin(𝑡), this last function seems to be periodic but it is not

according to our results. Notice that Kaslik and Sivasundaram
[10] gave the following alternate representation:

𝑐
𝐷
𝛼 sin (𝑡) = 1

2
𝑡
1−𝛼

[𝐸1,2−𝛼 (𝑖𝑡) + 𝐸1,2−𝛼 (−𝑖𝑡)] , (71)

in terms of the two-parameter Mittag-Leffler function ([20,
21], Chapter 10)

𝐸𝛼,𝛽 (𝑧) =

∞

∑

𝑘=0

𝑧
𝑘

Γ (𝛼𝑘 + 𝛽)
. (72)

5. Periodic Solutions of Fractional
Differential Equations

In this section we show how Theorem 1 can be used to
give a nonexistence result of periodic solutions for fractional
differential equations.

Consider the first order ordinary differential equation

𝐷
1
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ R, (73)

where 𝜑 : R → R is continuous. An important question is
the existence of periodic solutions [22–24].

If 𝑢 : R → R is a 𝑇-periodic solution of (73) then
obviously

𝑢 (0) = 𝑢 (𝑇) . (74)

One can find 𝑇-periodic solutions of (73) by solving the
equation only on the interval [0, 𝑇] and then checking the
values 𝑢(0) and 𝑢(𝑇). If (74) holds, then extending by 𝑇-
periodicity the function 𝑢(𝑡), 𝑡 ∈ [0, 𝑇], to R we have a 𝑇-
periodic solution of (73).

However, this is not possible for a fractional differential
equation. Consider, for 𝛼 ∈ (0, 1), the equation

𝑐
𝐷
𝛼
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ R. (75)



Abstract and Applied Analysis 7

If 𝑢 is a solution of (75), let 𝑓(𝑡) = 𝜑(𝑢(𝑡)). Then

𝑢 (𝑡) = 𝑢 (0) + 𝐼
𝛼
𝑓 (𝑡) . (76)

In the case that 𝑢 is a 𝑇-periodic solution of (75) we have
that𝑓 is also𝑇-periodic. According toTheorem 1, 𝐼𝛼𝑓 cannot
be 𝑇-periodic unless it is the zero function and we have the
following relevant result.

Theorem 9. The fractional equation (75) cannot have periodic
solutions with the exception of constant functions 𝑢(𝑡) = 𝑢0,
𝑡 ∈ R, with 𝜑(𝑢0) = 0.

Remark 10. It is possible to consider the periodic boundary
value problem

𝑐
𝐷
𝛼
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢 (0) = 𝑢 (𝑇) ,

(77)

as in, for example, [25], but one cannot extend the solution
of that periodic boundary value problem on [0, 𝑇] to a 𝑇-
periodic solution on R (unless 𝑢 is a constant function, as
indicated inTheorem 9).

Remark 11. The same applies to the Riemann-Liouville frac-
tional differential equation

𝐷
𝛼
𝑢 (𝑡) = 𝜑 (𝑢 (𝑡)) , 𝑡 ∈ R, (78)

taking into account that

lim
𝑡→0+

𝑡
1−𝛼

𝑢 (𝑡) =
𝐷
𝛼−1

𝑢 (0)

Γ (𝛼)
. (79)

Example 12. Considering the fractional equation
𝑐
𝐷
𝛼
𝑢 (𝑡) = 𝜓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ R, (80)

with 𝜓 : R2 → R defined by

𝜓 (𝑡, 𝑢)

= 𝑢 +
𝑡
1−𝛼

Γ (2 − 𝛼)
1𝐹2 (1;

3 − 𝛼

2
, 1 −

𝛼

2
; −

𝑡
2

4
) − sin (𝑡) ,

(81)

we have that 𝑢(𝑡) = sin(𝑡) is a 2𝜋-periodic solution of (80).
This shows that the result of Theorem 9 is not valid for a
nonautonomous fractional differential equation as (80).

6. Conclusion

By using the classical concepts of fractional calculus and
elementary analysis, we have proved that periodicity is not
transferred by fractional integral or derivative, with the
exception of the zero function. We have also proved that the
fractional derivative or primitive of a 𝑇-periodic function
cannot be �̃�-periodic for any period �̃�. As a consequence
we have showed that an autonomous fractional differential
equation cannot have periodic solutions with the exception
of constant functions.
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periodic solution for a nonlinear fractional differential equa-
tion,” Boundary Value Problems, vol. 2009, Article ID 324561,
18 pages, 2009.



Research Article
Local Fractional Functional Method for Solving Diffusion
Equations on Cantor Sets

Yuan Cao,1,2 Wei-Gang Ma,3 and Lian-Chuan Ma1,2

1 National Engineering Research Center of Rail Transportation Operation and Control System, Beijing Jiaotong University,
Beijing 100044, China

2 School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China
3 Faculty of Computer Science and Engineering, Xi’an University of Technology, Xi’An 710048, China

Correspondence should be addressed to Yuan Cao; yuancao112@163.com

Received 11 July 2014; Accepted 18 July 2014; Published 5 August 2014

Academic Editor: Xiao-Jun Yang

Copyright © 2014 Yuan Cao et al.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The analytical solutions for the diffusion equations on Cantor sets with the nondifferentiable terms are discussed by using the local
fractional functional method, which is a coupling method for local fractional Fourier series and Laplace transform.

1. Introduction

The local fractional calculus [1, 2], as a new branch of
fractional calculus, was successfully applied to describe the
fractal problems from science and engineering. For example,
the local fractional Fokker-Planck equation [3], the local frac-
tional diffusion equations defined on Cantor sets [4, 5], the
local fractional wave equation defined on Cantor sets [6, 7],
the local fractional Korteweg-de Vries equation [8], the local
fractional Schrödinger equation [9], local fractional Navier-
Stokes equations on cantor sets [10], the local fractional
Laplace equation [11], the local fractional heat-conduction
equation [12–16], the local fractional differential equations
arising in the fractal forest gap [17], and others [18–21] were
discussed.

In this paper, we consider the local fractional diffusion
equations defined on Cantor sets [5] given by

𝑢
2𝛼
𝑥𝑥 =

1

𝑎2𝛼
𝑢
𝛼
𝑡 , (1)

subject to the initial-boundary conditions

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (0, 𝑡) = 𝑔 (𝑡) , 𝑢 (0, 𝑡) = 𝑓 (𝑡) ,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝑙) = 0,

(2)

where the local fractional partial derivatives denote

𝑢
𝛼
𝑡 =

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
, 𝑢

2𝛼
𝑦𝑥 =

𝜕
2𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑥𝛼𝜕𝑦𝛼
, (3)

and 𝑢(𝑥, 𝑡), 𝑔(𝑡), and 𝑓(𝑡) are the local fractional continuous
functions. In the high-speed railway healthy monitor system,
the problems of diffusion equations with the nondifferen-
tiable terms always exist in fault diagnosing of high-speed
trains and their control systems, so we solve this by the local
fractional diffusion equations defined on Cantor sets. The
local fractional function decomposition method structured
in [11, 22], which is a coupling method of the local fractional
Fourier series [21, 22] and the Yang-Laplace transform [14, 16,
18, 22], was used to solve the inhomogeneous local fractional
wave equations defined on Cantor sets. The main aim of this
paper is to discuss the local fractional diffusion equations
defined on Cantor sets by the local fractional functional
method.

The paper is organized as follows. In Section 2 the basic
theory of the local fractional calculus and the Yang-Laplace
transform were given. In Section 3, the local fractional func-
tionalmethod is analyzed. Section 4 presents the applications
for the local fractional diffusion equations defined on Cantor
sets. Finally, the conclusions are given in Section 5.
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2. Preliminaries

In this section, we present the basic theory of the local
fractional calculus and the local fractional Laplace transform.

Definition 1 (see [1, 5–7]). The local fractional derivative of
𝑓(𝑥) at 𝑥 = 𝑥0 is given as follows:

𝐷
𝛼
𝑥𝑓 (𝑥0) =

𝑑
𝛼

𝑑𝑥𝛼
𝑓 (𝑥)

𝑥=𝑥0

= 𝑓
(𝛼)

(𝑥)

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 ,

(4)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥0)) ≅ Γ(𝛼 + 1)Δ(𝑓(𝑥) − 𝑓(𝑥0)).
The local fractional partial derivative of order 𝛼 is defined

as follows [1]:

𝜕
𝛼

𝜕𝑥𝛼
𝑓 (𝑥, 𝑦)

𝑥=𝑥0

= 𝑓
(𝛼)

(𝑥, 𝑦)

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥, 𝑦) − 𝑓 (𝑥0, 𝑦))

(𝑥 − 𝑥0)
𝛼 ,

(5)

and the local fractional partial derivative of high order [1] is

𝜕
𝑘𝛼

𝑓 (𝑥, 𝑦)

𝑥𝑘𝛼
=

𝑘 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝜕
𝛼

𝜕𝑥𝛼

𝜕
𝛼

𝜕𝑥𝛼
⋅ ⋅ ⋅

𝜕
𝛼

𝜕𝑥𝛼
𝑓 (𝑥, 𝑦) ,

(6)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥0)) ≅ Γ(𝛼 + 1)Δ(𝑓(𝑥) − 𝑓(𝑥0)).

Definition 2 (see [1, 8–12]). Let us consider a partition of the
interval [𝑎, 𝑏], which is denoted as (𝑡𝑗, 𝑡𝑗+1), 𝑗 = 0, . . . , 𝑁 − 1,
𝑡0 = 𝑎 and 𝑡𝑁 = 𝑏 with Δ𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗 and Δ𝑡 =

max{Δ𝑡0, Δ𝑡1, . . .}. Local fractional integral of 𝑓(𝑥) in the
interval [𝑎, 𝑏] is defined as follows:

𝑎𝐼
(𝛼)
𝑏 𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎
𝑓 (𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑁−1

∑

𝑗=0

𝑓 (𝑡𝑗) (Δ𝑡𝑗)
𝛼
.

(7)

Definition 3 (see [1, 5, 11, 16, 21]). TheMittag Leffler, sine and
cosine functions defined on Cantor sets are given as follows:

𝐸𝛼 (𝑥
𝛼
) =

∞

∑

𝑘=0

𝑥
𝛼𝑘

Γ (1 + 𝑘𝛼)
,

sin𝛼𝑥
𝛼
=

∞

∑

𝑘=0

(−1)
𝑘 𝑥

𝛼(2𝑘+1)

Γ [1 + 𝛼 (2𝑘 + 1)]
,

cos𝛼𝑥
𝛼
=

∞

∑

𝑘=0

(−1)
𝑘 𝑥

2𝛼𝑘

Γ (1 + 2𝛼𝑘)
,

(8)

for 𝑥 ∈ 𝑅, 0 < 𝛼 < 1.

Definition 4 (see [11, 20–22]). Let𝑓(𝑥) be 2𝑙-periodic. For 𝑘 ∈

𝑍, local fraction Fourier series of 𝑓(𝑥) is given as

𝑓 (𝑥) =
𝑎0

2
+

∞

∑

𝑘=1

(𝑎𝑛cos𝛼
𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼
+ 𝑏𝑛sin𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼
) , (9)

where the local fraction Fourier coefficients are as follows:

𝑎𝑛 =
2

𝑙𝛼
∫

𝑙

0
𝑓 (𝑥) cos𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼
(𝑑𝑥)
𝛼
,

𝑏𝑛 =
2

𝑙𝛼
∫

𝑙

0
𝑓 (𝑥) sin𝛼

𝜋
𝛼
(𝑘𝑥)
𝛼

𝑙𝛼
(𝑑𝑥)
𝛼
.

(10)

Definition 5 (see [14, 16, 18, 22]). Let (1/Γ(1 +

𝛼)) ∫
∞

0
|𝑓(𝑥)|(𝑑𝑥)

𝛼
< 𝑘 < ∞. The local fractional Laplace

transform of 𝑓(𝑥) is given as

�̃�𝛼 {𝑓 (𝑥)} = 𝑓
�̃�,𝛼
𝑠 (𝑠) =

1

Γ (1 + 𝛼)
∫

∞

0
𝐸𝛼 (−𝑠

𝛼
𝑥
𝛼
) 𝑓 (𝑥) (𝑑𝑥)

𝛼
,

0 < 𝛼 ≤ 1.

(11)

The inverse formula local fractional Laplace transform of
𝑓(𝑥) is given as [14, 16, 18, 22]

𝑓 (𝑥) = �̃�
−1
𝛼 {𝑓
𝐿,𝛼
𝑠 (𝑠)}

=
1

(2𝜋)
𝛼 ∫

𝛽+𝑖∞

𝛽−𝑖∞
𝐸𝛼 (𝑠
𝛼
𝑥
𝛼
) 𝑓
�̃�,𝛼
𝑠 (𝑠) (𝑑𝑠)

𝛼
,

(12)

where𝑓(𝑥) is local fractional continuous, 𝑠𝛼 = 𝛽
𝛼
+𝑖
𝛼
∞
𝛼 and

Re(𝑠) = 𝛽 > 0.

There is the following formula [14, 16, 18, 22]:

�̃�𝛼 {𝑦
(2𝛼)

(𝑥)} = 𝑠
2𝛼
�̃�𝛼 {𝑦 (𝑥)} − 𝑠

𝛼
𝑦 (0) − 𝑓

(𝛼)
(0) . (13)

The basic properties of the local fractional calculus and the
local fractional Laplace transform were listed in [1, 14, 16, 18,
22].

3. Analysis of the Local Fractional
Functional Method

In this section, we introduce the local fractional functional
method for the local fractional diffusion equations defined
on Cantor sets [11, 22].

Let us consider the nondifferentiable decomposition
of the function with the nondifferentiable systems
{sin𝛼𝑛

𝛼
(𝜋𝑡/𝑙)

𝛼
}. There are the following functional

coefficients of (1) and (2), which are given as follows:

𝑢 (𝑥, 𝑡) =

∞

∑

𝑛=1

𝐴𝑛 (𝑥) sin𝛼𝑛
𝛼
(
𝜋𝑡

𝑙
)

𝛼

,

𝑔 (𝑡) =

∞

∑

𝑛=1

𝐶𝑛sin𝛼𝑛
𝛼
(
𝜋𝑡

𝑙
)

𝛼

,

𝑓 (𝑡) =

∞

∑

𝑛=1

𝐷𝑛sin𝛼𝑛
𝛼
(
𝜋𝑡

𝑙
)

𝛼

,

(14)
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where

𝐴𝑛 (𝑥) =
2

𝑙𝛼
∫

1

0
𝑢 (𝑥, 𝑡) sin𝛼𝑛

𝛼
(
𝜋𝑡

𝑙
)

𝛼

(𝑑𝑡)
𝛼
,

𝐶𝑛 =
2

𝑙𝛼
∫

1

0
𝑔 (𝑡) sin𝛼𝑛

𝛼
(
𝜋𝑡

𝑙
)

𝛼

(𝑑𝑡)
𝛼
,

𝐷𝑛 =
2

𝑙𝛼
∫

1

0
𝑓 (𝑡) sin𝛼𝑛

𝛼
(
𝜋𝑡

𝑙
)

𝛼

(𝑑𝑡)
𝛼
.

(15)

If we submit (14) into (1) and (2), then we have

𝑑
2𝛼

𝑑𝑥2𝛼
𝐴𝑛 (𝑥) =

1

𝑎2𝛼
𝐴𝑛 (𝑥) (

𝑛𝜋

𝑙
)

𝛼

,

𝐴
(𝛼)
𝑛 (0) = 𝐶𝑛,

𝐴𝑛 (0) = 𝐷𝑛.

(16)

Taking the local fractional Laplace transform of (16) gives

�̃�𝛼 {
𝑑
2𝛼

𝑑𝑥2𝛼
𝐴𝑛 (𝑥)} = 𝑠

2𝛼
�̃�𝛼 {𝐴𝑛 (𝑥)} − 𝑠

𝛼
𝐴𝑛 (0) − 𝐴

(𝛼)
𝑛 (0) ,

(17)

which leads to

𝑠
2𝛼
�̃�𝛼 {𝐴𝑛 (𝑥)} − 𝑠

𝛼
𝐷𝑛 − 𝐶𝑛 =

1

𝑎2𝛼
(
𝑛𝜋

𝑙
)

𝛼

�̃�𝛼 {𝐴𝑛 (𝑥)} .

(18)

We can rewrite (18) as

𝐴𝑛 (𝑠)

= �̃�𝛼 {𝐴𝑛 (𝑥)}

=
𝑠
𝛼
𝐷𝑛 + 𝐶𝑛

𝑠2𝛼 − (1/𝑎2𝛼) (𝑛𝜋/𝑙)
𝛼

=
𝐷𝑛

𝑠𝛼 − (1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

+
(𝐶𝑛 − (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷𝑛)

𝑠2𝛼 − (1/𝑎2𝛼) (𝑛𝜋/𝑙)
𝛼

=
𝐷𝑛

𝑠𝛼 − (1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

+ 𝑃(
1

𝑠𝛼 − (1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

−
1

𝑠𝛼 + (1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

) ,

(19)

where

𝑃 =
𝐶𝑛 − (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷𝑛

(1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

. (20)

The inverse formula local fractional Laplace transform of (19)
gives

𝐴𝑛 (𝑥)

= �̃�
−1
𝛼 {𝐴𝑛 (𝑠)}

=
1

(2𝜋)
𝛼 ∫

𝛽+𝑖∞

𝛽−𝑖∞
𝐸𝛼 (𝑠
𝛼
𝑥
𝛼
) 𝐴𝑛 (𝑠) (𝑑𝑠)

𝛼

=
1

(2𝜋)
𝛼

× ∫

𝛽+𝑖∞

𝛽−𝑖∞
𝐸𝛼 (𝑠
𝛼
𝑥
𝛼
) {

𝐷𝑛

𝑠𝛼 − (1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

+ 𝑃(
1

𝑠𝛼 − (1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

−
1

𝑠𝛼 +(1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

)} (𝑑𝑠)
𝛼

= 𝐷𝑛𝐸𝛼 (
1

𝑎𝛼
(
𝑛𝜋

𝑙
)

𝛼/2

𝑥
𝛼
) + 𝑃𝐸𝛼 (

1

𝑎𝛼
(
𝑛𝜋

𝑙
)

𝛼/2

𝑥
𝛼
)

− 𝑃𝐸𝛼 (−
1

𝑎𝛼
(
𝑛𝜋

𝑙
)

𝛼/2

𝑥
𝛼
) ,

(21)

where

𝑃 =
𝐶𝑛 − (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷𝑛

(1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

. (22)

Hence, the solution of (1) reads as follows:

𝑢 (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝐴𝑛 (𝑥) sin𝛼𝑛
𝛼
(
𝜋𝑡

𝑙
)

𝛼

=

∞

∑

𝑛=1

𝐷𝑛𝐸𝛼 (
1

𝑎𝛼
(
𝑛𝜋

𝑙
)

𝛼/2

𝑥
𝛼
) sin𝛼𝑛

𝛼
(
𝜋𝑡

𝑙
)

𝛼

+

∞

∑

𝑛=1

𝑃𝐸𝛼 (
1

𝑎𝛼
(
𝑛𝜋

𝑙
)

𝛼/2

𝑥
𝛼
) sin𝛼𝑛

𝛼
(
𝜋𝑡

𝑙
)

𝛼

−

∞

∑

𝑛=1

𝑃𝐸𝛼 (−
1

𝑎𝛼
(
𝑛𝜋

𝑙
)

𝛼/2

𝑥
𝛼
) sin𝛼𝑛

𝛼
(
𝜋𝑡

𝑙
)

𝛼

,

(23)

where

𝑃 =
𝐶𝑛 − (1/𝑎

𝛼
) (𝑛𝜋/𝑙)

𝛼/2
𝐷𝑛

(1/𝑎𝛼) (𝑛𝜋/𝑙)
𝛼/2

. (24)

4. The Exact Solutions for Local Fractional
Diffusion Equations Defined on Cantor Sets

In this section we give two examples for initial boundary
problems for local fractional diffusion equations defined on
Cantor sets.
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Example 6. The initial-boundary values of (1) read as follows:

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (0, 𝑡) = sin (𝑡

𝛼
) , 𝑢 (0, 𝑡) = 0,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝜋) = 0.

(25)

Making use of (14), we obtain the following formulas:

sin (𝑡
𝛼
) =

∞

∑

𝑛=1

𝐶𝑛sin𝛼𝑛
𝛼
𝑡
𝛼
,

0 =

∞

∑

𝑛=1

𝐷𝑛sin𝛼𝑛
𝛼
𝑡
𝛼
,

(26)

which lead to the following parameters:

𝐶𝑛 = 1, 𝑛 = 1,

𝐶𝑛 = 0, 𝑛 > 1,

𝐷𝑛 = 0, 𝑛 ≥ 1.

(27)

Therefore, (23) gives the nondifferentiable solution of (1) with
initial-boundary values (25)

𝑢 (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝐴𝑛 (𝑥) sin𝛼𝑛
𝛼
𝑡
𝛼

=

∞

∑

𝑛=1

𝐷𝑛𝐸𝛼 (
1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑛

𝛼
𝑡
𝛼
+

∞

∑

𝑛=1

𝑃𝐸𝛼 (
1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑛

𝛼
𝑡
𝛼

−

∞

∑

𝑛=1

𝑃𝐸𝛼 (−
1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑛

𝛼
𝑡
𝛼

= 𝑎
𝛼
𝐸𝛼 (

1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑡

𝛼
− 𝑎
𝛼
𝐸𝛼 (−

1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑡

𝛼
.

(28)

When 𝑎 = 1, we get the nondifferentiable solution

𝑢 (𝑥, 𝑡) = 𝐸𝛼 (𝑥
𝛼
) sin𝛼𝑡

𝛼
− 𝐸𝛼 (−𝑥

𝛼
) sin𝛼𝑡

𝛼
, (29)

and its graph is shown in Figure 1.

Example 7. We present the initial-boundary values of (1) as

𝜕
𝛼

𝜕𝑥𝛼
𝑢 (0, 𝑡) = sin (𝑡

𝛼
) , 𝑢 (0, 𝑡) = sin (𝑡

𝛼
) ,

𝑢 (𝑥, 0) = 𝑢 (𝑥, 𝜋) = 0.

(30)

0 0.2
0.4

0.6
0.8

1

0

0.5

1
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−0.5

0

x
t

u
(x
,t
)

Figure 1: The solution of (1) with initial-boundary value (25) when
𝑎 = 1 and 𝛼 = ln 2/ ln 3.

Using the relation (14), we get

0 =

∞

∑

𝑛=1

𝐶𝑛sin𝛼𝑛
𝛼
𝑡
𝛼
,

sin (𝑡
𝛼
) =

∞

∑

𝑛=1

𝐷𝑛sin𝛼𝑛
𝛼
𝑡
𝛼
,

(31)

which reduce to
𝐶𝑛 = 0, 𝑛 ≥ 1,

𝐷𝑛 = 1, 𝑛 = 1,

𝐷𝑛 = 0, 𝑛 > 1.

(32)

Using (23), we hence have the nondifferentiable solution of
(1) with initial-boundary values (30), which is given as

𝑢 (𝑥, 𝑡)

=

∞

∑

𝑛=1

𝐴𝑛 (𝑥) sin𝛼𝑛
𝛼
𝑡
𝛼

=

∞

∑

𝑛=1

𝐷𝑛𝐸𝛼 (
1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑛

𝛼
𝑡
𝛼
+

∞

∑

𝑛=1

𝑃𝐸𝛼 (
1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑛

𝛼
𝑡
𝛼

−

∞

∑

𝑛=1

𝑃𝐸𝛼 (−
1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑛

𝛼
𝑡
𝛼

= 𝐸𝛼 (
1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑡

𝛼
− 𝑎
𝛼
𝐸𝛼 (

1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑡

𝛼

+ 𝑎
𝛼
𝐸𝛼 (−

1

𝑎𝛼
𝑥
𝛼
) sin𝛼𝑡

𝛼
.

(33)

For 𝑎 = 1, the nondifferentiable solution rewrites as follows:

𝑢 (𝑥, 𝑡) = 𝐸𝛼 (−𝑥
𝛼
) sin𝛼𝑡

𝛼
, (34)

and its graph is illustrated in Figure 2.
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Figure 2:The solution of (1) with initial-boundary value (30) when
𝑎 = 1 and 𝛼 = ln 2/ ln 3.

5. Conclusions

Local fractional calculus was applied to describe the phys-
ical problems because of nondifferentiable characteristics.
In this work, the initial-boundary value problems for the
diffusion equation on Cantor sets within the local fractional
derivatives were investigated by using the local fractional
functional method, which is a coupling method for local
fractional Fourier series and Laplace transform based upon
the nondifferentiable decomposition of the function with
the nondifferentiable systems. The two examples are given
to express the efficiency of the presented method and their
graphs are also obtained. The results of this paper could pro-
vide the theory support to the problems diffusion equations
with the nondifferentiable terms in health monitor of high-
speed trains and their control systems.
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We study a nonlinear three-point boundary value problem of sequential fractional differential inclusions of order 𝜉+1with 𝑛−1 <

𝜉 ≤ 𝑛, 𝑛 ≥ 2. Some new existence results for convex as well as nonconvex multivalued maps are obtained by using standard fixed
point theorems. The paper concludes with an example.

1. Introduction

The topic of fractional differential equations has attracted
a great attention in the recent years. It is mainly due to
the intensive development of the theory and applications of
fractional calculus. In fact, the tools of fractional calculus
have considerably improved the modeling of several real
world phenomena in physics, chemistry, bioengineering,
etc. The systematic development of theory, methods, and
applications of fractional differential equations can be found
in [1–6]. For some recent results on fractional differential
equations and inclusions, see [7–23] and the references cited
therein.

In this paper, we study the following boundary value
problem:

𝑐
𝐷
𝜉
(𝐷 + 𝜆) 𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) ,

0 < 𝑡 < 1, 𝑛 − 1 < 𝜉 ≤ 𝑛,

𝑥 (0) = 0, 𝑥

(0) = 0,

𝑥

(0) = 0, . . . , 𝑥

(𝑛−1)
(0) = 0, 𝑥 (1) = 𝛼𝑥 (𝜎) ,

(1)

where 𝑐𝐷 is theCaputo fractional derivative,𝐷 is the ordinary
derivative, 𝐹 : [0, 1] × R → P(R) is a multivalued map,
P(R) is the family of all subsets ofR, 0 < 𝜎 < 1, 𝜆 is a positive
real number, and 𝛼 is a real number.

The present work is motivated by a recent paper of the
authors [14], where the problem (1) was considered for a
single-valued case. The existence of solutions for the given
multivalued problem is discussed for three cases: (a) convex-
valued maps; (b) not necessarily convex-valued maps; (c)
nonconvex-valued maps. To establish the existence results,
we make use of nonlinear alternative for Kakutani maps,
nonlinear alternative of Leray-Schauder type for single-
valued maps, selection theorem due to Bressan and Colombo
for lower semicontinuous multivalued maps with nonempty
closed and decomposable values, and a fixed point theorem
for contractive multivalued maps due to Covitz and Nadler.
The tools employed in this paper are standard; however, their
exposition in the framework of the problem at hand is new.

The paper is organized as follows: in Section 2 we recall
some preliminary facts that we used in the sequel. Section 3
contains the main results and an example. In Section 4, we
summarize the work obtained in this paper and discuss some
special cases.
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2. Preliminaries

Let us recall some basic definitions of fractional calculus [2,
4, 6].

Definition 1. For (𝑛−1)-times absolutely continuous function
𝑔 : [0,∞) → R, the Caputo derivative of fractional order 𝑞
is defined as

𝑐
𝐷
𝑞
𝑔 (𝑡) =

1

Γ (𝑛 − 𝑞)
∫

𝑡

0
(𝑡 − 𝑠)

𝑛−𝑞−1
𝑔
(𝑛)

(𝑠) 𝑑𝑠,

𝑛 − 1 < 𝑞 < 𝑛, 𝑛 = [𝑞] + 1,

(2)

where [𝑞] denotes the integer part of the real number 𝑞.

Definition 2. The Riemann-Liouville fractional integral of
order 𝑞 is defined as

𝐼
𝑞
𝑔 (𝑡) =

1

Γ (𝑞)
∫

𝑡

0

𝑔 (𝑠)

(𝑡 − 𝑠)
1−𝑞

𝑑𝑠, 𝑞 > 0, (3)

provided the integral exists.

Definition 3. A function 𝑥 ∈ 𝐴𝐶
𝑛−1

([0, 1],R) is called a solu-
tion of problem (1) if there exists a function V ∈ 𝐿

1
([0, 1],R)

with V(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)), a.e. [0, 1], such that 𝑐𝐷𝜉(𝐷 + 𝜆)𝑥(𝑡) =

V(𝑡), a.e. [0, 1], and 𝑥(0) = 0, 𝑥

(0) = 0, 𝑥


(0) =

0, . . . , 𝑥
(𝑛−1)

(0) = 0, and 𝑥(1) = 𝛼𝑥(𝜎).

For the forthcoming analysis, we define

𝑃 (𝑡) = 𝑃𝑜 (𝑡)

=
𝑡
𝑛−1

𝜆
−

(𝑛 − 1) 𝑡
𝑛−2

𝜆2
+

(𝑛 − 1) (𝑛 − 2) 𝑡
𝑛−3

𝜆3

− ⋅ ⋅ ⋅ −
(𝑛 − 1)!𝑡

𝜆𝑛−1
+

(𝑛 − 1)!

𝜆𝑛
(1 − 𝑒

−𝜆𝑡
) ,

𝑛 is odd,

(4)

𝑃 (𝑡) = 𝑃𝑒 (𝑡)

=
𝑡
𝑛−1

𝜆
−

(𝑛 − 1) 𝑡
𝑛−2

𝜆2
+

(𝑛 − 1) (𝑛 − 2) 𝑡
𝑛−3

𝜆3

− ⋅ ⋅ ⋅ +
(𝑛 − 1)!𝑡

𝜆𝑛−1
−

(𝑛 − 1)!

𝜆𝑛
(1 − 𝑒

−𝜆𝑡
) ,

𝑛 is even.

(5)

Furthermore, we assume the nonresonance condition, that is,
for 𝑃 = 𝑃𝑜 and 𝑃 = 𝑃𝑒, we choose 𝛼 such that

𝑃 (1) − 𝛼𝑃 (𝜎) ̸= 0, for 0 < 𝜎 < 1. (6)

Lemma 4 (see [14]). Assume that the nonresonance condition
(6) holds. Given 𝑦 ∈ 𝐶([0, 1],R), the unique solution of the
problem

𝑐
𝐷
𝜉
(𝐷 + 𝜆) 𝑥 (𝑡) = 𝑦 (𝑡) , 0 < 𝑡 < 1,

𝑥 (0) = 0, 𝑥

(0) = 0,

𝑥

(0) = 0, . . . , 𝑥

(𝑛−1)
(0) = 0, 𝑥 (1) = 𝛼𝑥 (𝜎)

(7)

is given by

𝑥 (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑦 (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑦 (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑦 (𝑢) 𝑑𝑢)𝑑𝑠] ,

(8)

where 𝑃(𝑡) = 𝑃𝑜(𝑡) and 𝑃(𝑡) = 𝑃𝑒(𝑡) are given by (4) and (5),
respectively.

3. Existence Results

We begin this section with some preliminary material on
multivalued maps [24, 25] that we need in the sequel.

Let 𝐶([0, 1]) denote a Banach space of continuous func-
tions from [0, 1] into R with the norm ‖𝑥‖ = sup𝑡∈[0,1]|𝑥(𝑡)|.
Let 𝐿1([0, 1],R) be the Banach space of measurable functions
𝑥 : [0, 1] → R which are Lebesgue integrable and normed
by ‖𝑥‖𝐿1 = ∫

1

0
|𝑥(𝑡)|𝑑𝑡.

Let (𝑋, ‖ ⋅ ‖) denote a normed space. Then we define

Pcl (𝑋) = {Z ∈ P (𝑋) : Z is closed} ,

P𝑏 (𝑋) = {Z ∈ P (𝑋) : Z is bounded} ,

Pcp (𝑋) = {Z ∈ P (𝑋) : Z is compact} ,

Pcp,𝑐 (𝑋) = {Z ∈ P (𝑋) : Z is compact and convex} .
(9)

Definition 5. A multivalued mapG : 𝑋 → P(𝑋) is convex-
(closed-) valued ifG(𝑥) is convex (closed) for all 𝑥 ∈ 𝑋.

Definition 6. The map G is bounded on bounded sets if
G(B) = ∪𝑥∈BG(𝑥) is bounded in 𝑋 for all B ∈ P𝑏(𝑋) (i.e.,
sup𝑥∈B{sup{|𝑦| : 𝑦 ∈ G(𝑥)}} < ∞).

Definition 7. G is called upper semicontinuous (u.s.c.) on 𝑋

if for each 𝑥0 ∈ 𝑋, the setG(𝑥0) is a nonempty closed subset
of𝑋, and if, for each open set𝑁 of𝑋 containingG(𝑥0), there
exists an open neighborhoodN0 of 𝑥0 such thatG(N0) ⊆ 𝑁.

Definition 8. G is said to be completely continuous ifG(B) is
relatively compact for every B ∈ P𝑏(𝑋).

If the multivalued map G is completely continuous with
nonempty compact values, thenG is u.s.c. if and only ifG has
a closed graph; that is, 𝑥𝑛 → 𝑥∗, 𝑦𝑛 → 𝑦∗, and 𝑦𝑛 ∈ G(𝑥𝑛)

imply that 𝑦∗ ∈ G(𝑥∗). G has a fixed point if there is 𝑥 ∈ 𝑋

such that 𝑥 ∈ G(𝑥). The fixed point set of the multivalued
operatorG will be denoted by FixG.
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Definition 9. AmultivaluedmapG : [0; 1] → Pcl(R) is said
to be measurable if for every 𝑦 ∈ R, the function

𝑡 → 𝑑 (𝑦,G (𝑡)) = inf {𝑦 − 𝑧
 : 𝑧 ∈ G (𝑡)} (10)

is measurable.

3.1. The Carathéodory Case

Definition 10. A multivalued map 𝐹 : [0, 1] × R → P(R) is
said to be Carathéodory if

(i) 𝑡 → 𝐹(𝑡, 𝑥) is measurable for each 𝑥 ∈ R;
(ii) 𝑥 → 𝐹(𝑡, 𝑥) is upper semicontinuous for almost all

𝑡 ∈ [0, 1].

Further a Carathéodory function𝐹 is called𝐿
1-Carathéodory

if

(iii) for each 𝜌 > 0, there exists 𝜑𝜌 ∈ 𝐿
1
([0, 1],R+) such

that

‖𝐹 (𝑡, 𝑥)‖ = sup {|V| : V ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝜑𝜌 (𝑡) (11)

for all ‖𝑥‖ ≤ 𝜌 and for a.e. 𝑡 ∈ [0, 1].

For each 𝑦 ∈ 𝐶([0, 1],R), define the set of selections of 𝐹
by

𝑆𝐹,𝑦 := {V ∈ 𝐿
1
([0, 1] , 𝑅) : V (𝑡) ∈ 𝐹 (𝑡, 𝑦 (𝑡))

for a.e. 𝑡 ∈ [0, 1] } .

(12)

For the forthcoming analysis, we need the following
lemmas.

Lemma11 (nonlinear alternative forKakutanimaps [26]). Let
𝐸 be a Banach space, 𝐶 a closed convex subset of 𝐸, 𝑈 an open
subset of 𝐶, and 0 ∈ 𝑈. Suppose that 𝐹 : 𝑈 → P𝑐𝑝,𝑐(𝐶) is an
upper semicontinuous compact map. Then either

(i) 𝐹 has a fixed point in 𝑈, or
(ii) there is a 𝑢 ∈ 𝜕𝑈 and 𝜆 ∈ (0, 1) with 𝑢 ∈ 𝜆𝐹(𝑢).

Lemma 12 (see [27]). Let𝑋 be a Banach space. Let 𝐹 : [0, 1]×

R → P𝑐𝑝,𝑐(𝑋) be an 𝐿
1-Carathéodory multivalued map and

let Θ be a linear continuous mapping from 𝐿
1
([0, 1], 𝑋) to

𝐶([0, 1], 𝑋). Then the operator

Θ ∘ 𝑆𝐹 : 𝐶 ([0, 1] , 𝑋) → P𝑐𝑝,𝑐 (𝐶 ([0, 1] , 𝑋)) ,

𝑥 → (Θ ∘ 𝑆𝐹) (𝑥) = Θ (𝑆𝐹,𝑥)

(13)

is a closed graph operator in 𝐶([0, 1], 𝑋) × 𝐶([0, 1], 𝑋).

Now we are in a position to prove the existence of the
solutions for the boundary value problem (1) when the right-
hand side is convex-valued.

Theorem 13. Assume that the nonresonance condition (6)
holds. In addition, we suppose that

(H1) 𝐹 : [0, 1] × R → P(R) is Carathéodory and has
nonempty compact and convex values;

(H2) there exist a continuous nondecreasing function 𝜓 :

[0,∞) → (0,∞) and a function 𝑝 ∈ 𝐿
1
([0, 1],R+)

such that

‖𝐹 (𝑡, 𝑥)‖P := sup {
𝑦
 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)}

≤ 𝑝 (𝑡) 𝜓 (‖𝑥‖) 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [0, 1] ×R;

(14)

(H3) there exists a constant𝑀 > 0 such that

𝑀(
𝜓 (𝑀)

Γ (𝜉)
{ (1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠

+ 𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑝 (𝑠) 𝑑𝑠})

−1

> 1,

(15)

where 𝑃1 = max𝑡∈[0,1]|𝑃(𝑡)/(𝑃(1) − 𝛼𝑃(𝜎))|(𝑃(𝑡) is
defined in (4) and (5)).

Then the boundary value problem (1) has at least one solution
on [0, 1].

Proof. Define the operator Ω𝐹 : 𝐶([0, 1],R) →

P(𝐶([0, 1],R)) by

Ω𝐹 (𝑥)

= {ℎ ∈ 𝐶 ([0, 1] ,R) : ℎ (𝑡)

= {∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠]}} ,

(16)

for V ∈ 𝑆𝐹,𝑥. We will show thatΩ𝐹 satisfies the assumptions of
the nonlinear alternative of Leray-Schauder type. The proof
consists of several steps. As a first step, we show that Ω𝐹 is
convex for each 𝑥 ∈ 𝐶([0, 1],R). This step is obvious since
𝑆𝐹,𝑥 is convex (𝐹 has convex values), and therefore we omit
the proof.
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In the second step, we show that Ω𝐹 maps bounded sets
(balls) into bounded sets in𝐶([0, 1],R). For a positive number
𝑟, let 𝐵𝑟 = {𝑥 ∈ 𝐶([0, 1],R) : ‖𝑥‖ ≤ 𝑟} be a bounded ball in
𝐶([0, 1],R). Then, for each ℎ ∈ Ω𝐹(𝑥), 𝑥 ∈ 𝐵𝑟, there exists
V ∈ 𝑆𝐹,𝑥 such that

ℎ (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠] .

(17)

Then for 𝑡 ∈ [0, 1], we have

|ℎ (𝑡)|

≤



∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠]



≤ ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑝 (𝑠) 𝜓 (‖𝑥‖) 𝑑𝑢)𝑑𝑠

+



𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)



× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑝 (𝑠) 𝜓 (‖𝑥‖) 𝑑𝑢)𝑑𝑠

+∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑝 (𝑠) 𝜓 (‖𝑥‖) 𝑑𝑢)𝑑𝑠]

≤
𝜓 (‖𝑥‖)

Γ (𝜉)
{∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠 + 𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑝 (𝑠) 𝑑𝑠

+𝑃1 ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠}

=
𝜓 (‖𝑥‖)

Γ (𝜉)
{(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠

+𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑝 (𝑠) 𝑑𝑠} .

(18)

Consequently,

‖ℎ‖ ≤
𝜓 (𝑟)

Γ (𝜉)
{(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠

+ 𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑝 (𝑠) 𝑑𝑠} .

(19)

Now we show that Ω𝐹 maps bounded sets into equicon-
tinuous sets of 𝐶([0, 1],R). Let 𝑡1, 𝑡2 ∈ [0, 1] and 𝑥 ∈ 𝐵𝑟. For
each ℎ ∈ Ω𝐹(𝑥), we obtain

ℎ (𝑡1) − ℎ (𝑡2)


=



∫

𝑡1

0
𝑒
−𝜆(𝑡1−𝑠) (∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

− ∫

𝑡2

0
𝑒
−𝜆(𝑡2−𝑠) (∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+
[𝑃 (𝑡1) − 𝑃 (𝑡2)]

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠]



≤ ∫

𝑡1

0
𝑒
−𝜆(𝑡1−𝑠) (∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝜓 (𝑟) 𝑝 (𝑢) 𝑑𝑢)𝑑𝑠

− ∫

𝑡2

0
𝑒
−𝜆(𝑡2−𝑠) (∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝜓 (𝑟) 𝑝 (𝑢) 𝑑𝑢)𝑑𝑠

+



𝑃 (𝑡1) − 𝑃 (𝑡2)

𝑃 (1) − 𝛼𝑃 (𝜎)



× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝜓 (𝑟) 𝑝 (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝜓 (𝑟) 𝑝 (𝑢) 𝑑𝑢)𝑑𝑠] .

(20)

Obviously the right-hand side of the above inequality
tends to zero independently of 𝑥 ∈ 𝐵𝑟 as 𝑡2 − 𝑡1 → 0. As
Ω𝐹 satisfies the above three assumptions, therefore it follows
from the Ascoli-Arzelá theorem that Ω𝐹 : 𝐶([0, 1],R) →

P(𝐶([0, 1],R)) is completely continuous.
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In our next step, we show that Ω𝐹 has a closed graph. Let
𝑥𝑛 → 𝑥∗, ℎ𝑛 ∈ Ω𝐹(𝑥𝑛), and ℎ𝑛 → ℎ∗.Thenwe need to show
that ℎ∗ ∈ Ω𝐹(𝑥∗). Associated with ℎ𝑛 ∈ Ω𝐹(𝑥𝑛), there exists
V𝑛 ∈ 𝑆𝐹,𝑥𝑛

such that, for each 𝑡 ∈ [0, 1],

ℎ𝑛 (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V𝑛 (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V𝑛 (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V𝑛 (𝑢) 𝑑𝑢)𝑑𝑠] .

(21)

Thus, it suffices to show that there exists V∗ ∈ 𝑆𝐹,𝑥∗
such that,

for each 𝑡 ∈ [0, 1],

ℎ∗ (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V∗ (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V∗ (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V∗ (𝑢) 𝑑𝑢)𝑑𝑠] .

(22)

Let us consider the linear operator Θ : 𝐿
1
([0, 1],R) →

𝐶([0, 1],R) given by

𝑓 → Θ(V) (𝑡)

= ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠] .

(23)

Observe that
ℎ𝑛 (𝑡) − ℎ∗ (𝑡)



=



∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
(V𝑛 (𝑢) − V∗ (𝑢)) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
(V𝑛 (𝑢) − V∗ (𝑢)) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
(V𝑛 (𝑢) − V∗ (𝑢)) 𝑑𝑢)𝑑𝑠]



→ 0,

(24)

as 𝑛 → ∞.
Thus, it follows from Lemma 12 that Θ ∘ 𝑆𝐹 is a closed

graph operator. Further, we have ℎ𝑛(𝑡) ∈ Θ(𝑆𝐹,𝑥𝑛
). Since

𝑥𝑛 → 𝑥∗, therefore, we have

ℎ∗ (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V∗ (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V∗ (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V∗ (𝑢) 𝑑𝑢)𝑑𝑠] ,

(25)

for some V∗ ∈ 𝑆𝐹,𝑥∗
.

Finally, we show that there exists an open set 𝑈 ⊆

𝐶([0, 1],R) with 𝑥 ∉ Ω𝐹(𝑥) for any 𝜆 ∈ (0, 1) and all
𝑥 ∈ 𝜕𝑈. Let 𝜆 ∈ (0, 1) and 𝑥 ∈ 𝜆Ω𝐹(𝑥). Then there exists
V ∈ 𝐿
1
([0, 1],R)with V ∈ 𝑆𝐹,𝑥 such that, for 𝑡 ∈ [0, 1], we have

𝑥 (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠] .

(26)
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Using the computations of the second step above we have

|𝑥 (𝑡)| ≤
𝜓 (‖𝑥‖)

Γ (𝜉)

× {(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠

+𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑝 (𝑠) 𝑑𝑠} .

(27)

Consequently, we have

‖𝑥‖ (
𝜓 (‖𝑥‖)

Γ (𝜉)
{(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠

+𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑝 (𝑠) 𝑑𝑠})

−1

≤ 1.

(28)

In view of (𝐻3), there exists𝑀 such that ‖𝑥‖ ̸= 𝑀. Let us set

𝑈 = {𝑥 ∈ 𝐶 ([0, 1] ,R) : ‖𝑥‖ < 𝑀} . (29)

Note that the operator Ω𝐹 : 𝑈 → P(𝐶([0, 1],R)) is upper
semicontinuous and completely continuous. From the choice
of 𝑈, there is no 𝑥 ∈ 𝜕𝑈 such that 𝑥 ∈ 𝜆Ω𝐹(𝑥) for some
𝜆 ∈ (0, 1). Consequently, by the nonlinear alternative of
Leray-Schauder type (Lemma 11), we deduce that Ω𝐹 has a
fixed point 𝑥 ∈ 𝑈 which is a solution of the problem (1). This
completes the proof.

Remark 14. The condition (𝐻3) in the statement of
Theorem 13 may be replaced with the following one.

(𝐻3)
There exists a constant𝑀 > 0 such that

𝑀

(𝜓 (𝑀) /Γ (𝜉)) {(1 + (1 + 𝛼) 𝑃1)
𝑝

𝐿1}
> 1, (30)

where 𝑃1 is the same as defined in (𝐻3).

3.2. The Lower Semicontinuous Case. As a next result, we
study the case when 𝐹 is not necessarily convex-valued.
Our strategy to deal with this problem is based on the
nonlinear alternative of Leray-Schauder type together with
the selection theorem of Bressan and Colombo [28] for lower
semicontinuous maps with decomposable values.

Let 𝑋 be a nonempty closed subset of a Banach space 𝐸

and let 𝐺 : 𝑋 → P(𝐸) be a multivalued operator with
nonempty closed values. 𝐺 is lower semicontinuous (l.s.c.)
if the set {𝑦 ∈ 𝑋 : 𝐺(𝑦) ∩ 𝐵 ̸= 0} is open for any open
set 𝐵 in 𝐸. Let 𝐴 be a subset of [0, 1] × R. 𝐴 is L ⊗ B
measurable if𝐴 belongs to the 𝜎-algebra generated by all sets
of the formJ ×D, whereJ is Lebesgue measurable in [0, 1]

andD is Borel measurable inR. A subsetA of 𝐿1([0, 1],R) is
decomposable if, for all 𝑢, V ∈ A andmeasurableJ ⊂ [0, 1] =

𝐽, the function 𝑢𝜒J + V𝜒𝐽−J ∈ A, where 𝜒J stands for the
characteristic function ofJ.

Definition 15. Let 𝑌 be a separable metric space and let 𝑁 :

𝑌 → P(𝐿
1
([0, 1],R)) be a multivalued operator. We say 𝑁

has a property (BC) if𝑁 is lower semicontinuous (l.s.c.) and
has nonempty closed and decomposable values.

Let 𝐹 : [0, 1] × R → P(R) be a multivalued map with
nonempty compact values. Define amultivalued operatorF :

𝐶([0, 1] ×R) → P(𝐿
1
([0, 1],R)) associated with 𝐹 as

F (𝑥) = {𝑤 ∈ 𝐿
1
([0, 1] ,R) : 𝑤 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡))

for a.e. 𝑡 ∈ [0, 1] } ,

(31)

which is called the Nemytskii operator associated with 𝐹.

Definition 16. Let 𝐹 : [0, 1] × R → P(R) be a multivalued
function with nonempty compact values.We say 𝐹 is of lower
semicontinuous type (l.s.c. type) if its associated Nemytskii
operator F is lower semicontinuous and has nonempty
closed and decomposable values.

Lemma 17 (see [29]). Let 𝑌 be a separable metric space
and let 𝑁 : 𝑌 → P(𝐿

1
([0, 1],R)) be a multivalued

operator satisfying the property (BC).Then𝑁 has a continuous
selection; that is, there exists a continuous function (single-
valued) 𝑔 : 𝑌 → 𝐿

1
([0, 1],R) such that 𝑔(𝑥) ∈ 𝑁(𝑥) for

every 𝑥 ∈ 𝑌.

Theorem 18. Assume that (𝐻2), (𝐻3), and the following
condition hold:

(H4) 𝐹 : [0, 1]×R → P(R) is a nonempty compact-valued
multivalued map such that

(a) (𝑡, 𝑥) → 𝐹(𝑡, 𝑥) isL ⊗Bmeasurable,
(b) 𝑥 → 𝐹(𝑡, 𝑥) is lower semicontinuous for each 𝑡 ∈

[0, 1].

Further the nonresonance condition (6) holds.Then the bound-
ary value problem (1) has at least one solution on [0, 1].

Proof. It follows from (𝐻2) and (𝐻4) that 𝐹 is of l.s.c. type.
Then from Lemma 17, there exists a continuous function 𝑓 :

𝐴𝐶
1
([0, 1],R) → 𝐿

1
([0, 1],R) such that 𝑓(𝑥) ∈ F(𝑥) for all

𝑥 ∈ 𝐶([0, 1],R).
Consider the problem

𝑐
𝐷
𝜉
(𝐷 + 𝜆) 𝑥 (𝑡) = 𝑓 (𝑥 (𝑡)) , 0 < 𝑡 < 1,

𝑥 (0) = 0, 𝑥

(0) = 0,

𝑥

(0) = 0, . . . , 𝑥

(𝑛−1)
(0) = 0, 𝑥 (1) = 𝛼𝑥 (𝜎) .

(32)

Observe that if 𝑥 ∈ 𝐴𝐶
1
([0, 1],R) is a solution of (32),

then 𝑥 is a solution to the problem (1). In order to transform
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the problem (32) into a fixed point problem, we define the
operatorΩ𝐹 as

Ω𝐹𝑥 (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑓 (𝑥 (𝑢)) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑓 (𝑥 (𝑢)) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
𝑓 (𝑥 (𝑢)) 𝑑𝑢)𝑑𝑠] .

(33)

It can easily be shown that Ω𝐹 is continuous and completely
continuous.The remaining part of the proof is similar to that
of Theorem 13. So we omit it. This completes the proof.

3.3. The Lipschitz Case. Now we prove the existence of
solutions for the problem (1) with a nonconvex-valued right-
hand side by applying a fixed point theorem for multivalued
map due to Covitz and Nadler [30].

Let (𝑋, 𝑑) be a metric space induced from the normed
space (𝑋, ‖ ⋅ ‖). Consider 𝐻𝑑 : P(𝑋) × P(𝑋) → R ∪ {∞}

given by

𝐻𝑑 (𝐴, 𝐵) = max{sup
𝑎∈𝐴

𝑑 (𝑎, 𝐵) , sup
𝑏∈𝐵

𝑑 (𝐴, 𝑏)} , (34)

where 𝑑(𝐴, 𝑏) = inf𝑎∈𝐴𝑑(𝑎; 𝑏) and 𝑑(𝑎, 𝐵) = inf𝑏∈𝐵𝑑(𝑎; 𝑏).
Then (P𝑏,cl(𝑋),𝐻𝑑) is a metric space and (Pcl(𝑋),𝐻𝑑) is a
generalized metric space (see [31]).

Definition 19. A multivalued operator 𝑁 : 𝑋 → Pcl(𝑋) is
called

(a) 𝛾-Lipschitz if and only if there exists 𝛾 > 0 such that

𝐻𝑑 (𝑁 (𝑥) ,𝑁 (𝑦)) ≤ 𝛾𝑑 (𝑥, 𝑦) for each 𝑥, 𝑦 ∈ 𝑋; (35)

(b) a contraction if and only if it is 𝛾-Lipschitz with 𝛾 < 1.

Lemma 20 (see [30]). Let (𝑋, 𝑑) be a complete metric space.
If𝑁 : 𝑋 → P𝑐𝑙(𝑋) is a contraction, then Fix𝑁 ̸= 0.

Theorem 21. Assume that the nonresonance condition (6)
holds. In addition, suppose that the following conditions hold:

(H5) 𝐹 : [0, 1]×R → P𝑐𝑝(R) is such that𝐹(⋅, 𝑥) : [0, 1] →

P𝑐𝑝(R) is measurable for each 𝑥 ∈ R;

(H6) 𝐻𝑑(𝐹(𝑡, 𝑥), 𝐹(𝑡, 𝑥)) ≤ 𝑚(𝑡)|𝑥 − 𝑥| for almost all 𝑡 ∈

[0, 1] and 𝑥, 𝑥 ∈ R with 𝑚 ∈ 𝐿
1
([0, 1],R+) and

𝑑(0, 𝐹(𝑡, 0)) ≤ 𝑚(𝑡) for almost all 𝑡 ∈ [0, 1].

Then the boundary value problem (1) has at least one solution
on [0, 1] if

1

Γ (𝜉)
{(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑚(𝑠) 𝑑𝑠

+𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑚(𝑠) 𝑑𝑠} < 1.

(36)

Proof. Observe that the set 𝑆𝐹,𝑥 is nonempty for each 𝑥 ∈

𝐶([0, 1],R) by the assumption (𝐻5), so 𝐹 has a measurable
selection (see Theorem III.6 [32]). Now we show that the
operatorΩ𝐹, defined in the beginning of proof ofTheorem 13,
satisfies the assumptions of Lemma 20. To show thatΩ𝐹(𝑥) ∈
Pcl((𝐶[0, 1],R)) for each 𝑥 ∈ 𝐶([0, 1],R), let {𝑢𝑛}𝑛≥0 ∈

Ω𝐹(𝑥) be such that 𝑢𝑛 → 𝑢 (𝑛 → ∞) in 𝐶([0, 1],R). Then
𝑢 ∈ 𝐶([0, 1],R) and there exists V𝑛 ∈ 𝑆𝐹,𝑥𝑛

such that, for each
𝑡 ∈ [0, 1],

𝑢𝑛 (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V𝑛 (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V𝑛 (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V𝑛 (𝑢) 𝑑𝑢)𝑑𝑠] .

(37)

As 𝐹 has compact values, we pass onto a subsequence (if
necessary) to obtain that V𝑛 converges to V in 𝐿

1
([0, 1],R).

Thus, V ∈ 𝑆𝐹,𝑥 and, for each 𝑡 ∈ [0, 1], we have

V𝑛 (𝑡) → V (𝑡)

= ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V (𝑢) 𝑑𝑢)𝑑𝑠] .

(38)

Hence, 𝑢 ∈ Ω(𝑥).
Next we show that there exists 𝛿 < 1 such that

𝐻𝑑 (Ω𝐹 (𝑥) , Ω𝐹 (𝑥))

≤ 𝛿 ‖𝑥 − 𝑥‖ for each 𝑥, 𝑥 ∈ 𝐴𝐶
1
([0, 1] ,R) .

(39)
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Let 𝑥, 𝑥 ∈ 𝐴𝐶
1
([0, 1],R) and ℎ1 ∈ Ω𝐹(𝑥). Then there exists

V1(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)) such that, for each 𝑡 ∈ [0, 1],

ℎ1 (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V1 (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V1 (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V1 (𝑢) 𝑑𝑢)𝑑𝑠] .

(40)

By (𝐻6), we have
𝐻𝑑 (𝐹 (𝑡, 𝑥) , 𝐹 (𝑡, 𝑥)) ≤ 𝑚 (𝑡) |𝑥 (𝑡) − 𝑥 (𝑡)| . (41)

So, there exists 𝑤 ∈ 𝐹(𝑡, 𝑥(𝑡)) such that
V1 (𝑡) − 𝑤

 ≤ 𝑚 (𝑡) |𝑥 (𝑡) − 𝑥 (𝑡)| , 𝑡 ∈ [0, 1] . (42)

Define 𝑈 : [0, 1] → P(R) by
𝑈 (𝑡) = {𝑤 ∈ R :

V1 (𝑡) − 𝑤
 ≤ 𝑚 (𝑡) |𝑥 (𝑡) − 𝑥 (𝑡)|} .

(43)

Since themultivalued operator𝑈(𝑡)∩𝐹(𝑡, 𝑥(𝑡)) is measurable
(Proposition III.4 [32]), there exists a function V2(𝑡)which is a
measurable selection for 𝑈. So V2(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)) and for each
𝑡 ∈ [0, 1], we have |V1(𝑡) − V2(𝑡)| ≤ 𝑚(𝑡)|𝑥(𝑡) − 𝑥(𝑡)|.

For each 𝑡 ∈ [0, 1], let us define

ℎ2 (𝑡) = ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V2 (𝑢) 𝑑𝑢)𝑑𝑠

+
𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)

× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V2 (𝑢) 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)
V2 (𝑢) 𝑑𝑢)𝑑𝑠] .

(44)

Thus,
ℎ1 (𝑡) − ℎ2 (𝑡)



≤ ∫

𝑡

0
𝑒
−𝜆(𝑡−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)

V1 (𝑢) − V2 (𝑢)
 𝑑𝑢)𝑑𝑠

+



𝑃 (𝑡)

𝑃 (1) − 𝛼𝑃 (𝜎)



× [𝛼∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)

V1 (𝑢) − V2 (𝑢)
 𝑑𝑢)𝑑𝑠

−∫

1

0
𝑒
−𝜆(1−𝑠)

(∫

𝑠

0

(𝑠 − 𝑢)
𝜉−1

Γ (𝜉)

V1 (𝑢) − V2 (𝑢)
 𝑑𝑢)𝑑𝑠] .

(45)

Hence,
ℎ1 − ℎ2



≤
1

Γ (𝜉)
{(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑚(𝑠) 𝑑𝑠

+𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑚(𝑠) 𝑑𝑠}

× ‖𝑥 − 𝑥‖ .

(46)

Analogously, interchanging the roles of𝑥 and𝑥, we obtain

𝐻𝑑 (Ω𝐹 (𝑥) , Ω𝐹 (𝑥))

≤ 𝛿 ‖𝑥 − 𝑥‖

≤
1

Γ (𝜉)
{(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑚(𝑠) 𝑑𝑠

+𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑚(𝑠) 𝑑𝑠} ‖𝑥 − 𝑥‖ .

(47)

Since Ω𝐹 is a contraction, it follows from Lemma 20
that Ω𝐹 has a fixed point 𝑥 which is a solution of (1). This
completes the proof.

Remark 22. An alternative to the condition (36) in the
statement of Theorem 21 may be the following one:

1

Γ (𝜉)
{(1 + (1 + 𝛼) 𝑃1) ‖𝑚‖𝐿1} < 1. (48)

Example 23. Consider the problem

𝑐
𝐷
7/2

(𝐷 + 2) 𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 0 ≤ 𝑡 ≤ 1,

𝑥 (0) = 0, 𝑥

(0) = 0,

𝑥

(0) = 0, 𝑥


(0) = 0, 𝑥 (1) = 𝑥 (

1

2
) .

(49)

Here, 𝜉 = 7/2, 𝑛 = 4, 𝜆 = 2, 𝛼 = 1, 𝜎 = 1/2, and 𝐹 :

[0, 1] ×R → P(R) is a multivalued map given by

𝑥 → 𝐹 (𝑡, 𝑥)

= [
|𝑥|
5

|𝑥|
5
+ 3

+ 𝑡
3
+ 𝑡
2
+ 4,

|𝑥|
3

|𝑥|
3
+ 1

+ 𝑡 + 2] .

(50)

For 𝑓 ∈ 𝐹, we have

𝑓
 ≤ max( |𝑥|

5

|𝑥|
5
+ 3

+ 𝑡
3
+ 𝑡
2
+ 4,

|𝑥|
3

|𝑥|
3
+ 1

+ 𝑡 + 2) ≤ 9,

𝑥 ∈ R.

(51)
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Thus,

‖𝐹 (𝑡, 𝑥)‖P := sup {
𝑦
 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)} ≤ 7

= 𝑝 (𝑡) 𝜓 (‖𝑥‖) , 𝑥 ∈ R,

(52)

with 𝑝(𝑡) = 1, 𝜓(‖𝑥‖) = 7. In this case

𝑃 (𝑡) = 𝑃𝑒 (𝑡) =
𝑡
3

2
−

3𝑡 (𝑡 − 1)

4
−

3 (1 − 𝑒
−2𝑡

)

8
,

𝑃1 ≈ 6.214821.

(53)

By the condition (𝐻3), that is,

𝑀(
𝜓 (𝑀)

Γ (𝜉)
{(1 + 𝑃1) ∫

1

0
𝑒
−𝜆(1−𝑠)

𝑝 (𝑠) 𝑑𝑠

+𝛼𝑃1 ∫

𝜎

0
𝑒
−𝜆(𝜎−𝑠)

𝑝 (𝑠) 𝑑𝑠})

−1

> 1,

(54)

we find that 𝑀 > 𝑀1 with 𝑀1 ≈ 10.707326. Therefore, it
follows from Theorem 13 that problem (49) has at least one
solution.

4. Conclusions

In this paper, we have solved a three-point boundary value
problem of Caputo-type sequential fractional differential
inclusions of an arbitrary order 𝜉 ∈ (𝑛 − 1, 𝑛). The
existence of solutions for the given problem with the convex-
valued map is obtained by means of nonlinear alternative for
Kakutani maps, while the existence result for not necessarily
convex-valued map is established by combining nonlinear
alternative of Leray-Schauder type for single-valued maps
with a selection theorem due to Bressan and Colombo for
lower semicontinuous multivalued maps with decomposable
values. The nonconvex-valued case relies on a fixed point
theorem for contractive multivalued maps due to Covitz
and Nadler. Some new existence results follow by fixing the
parameters involved in the given problem. For instance, by
taking 𝛼 = 0, our results correspond to a two-point Caputo-
type multivalued problem of an arbitrary order 𝜉 ∈ (𝑛 − 1, 𝑛),
while the results for sequential differential inclusions of order
(𝑛 + 1) can be obtained by fixing 𝜉 = 𝑛 in the results of this
paper.
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We consider a compound Poisson risk model with dependence and a constant dividend barrier. A dependence structure between
the claim amount and the interclaim time is introduced through a Farlie-Gumbel-Morgenstern copula. An integrodifferential
equation for the Gerber-Shiu discounted penalty function is derived. We also solve the integrodifferential equation and show that
the solution is a linear combination of the Gerber-Shiu function with no barrier and the solution of an associated homogeneous
integrodifferential equation.

1. Introduction

In the classical compound Poisson risk model, the surplus
process has the form

𝑈 (𝑡) = 𝑢 + 𝑐𝑡 −

𝑁(𝑡)

∑

𝑖=1

𝑋𝑖, 𝑡 ≥ 0, (1)

where 𝑢 ≥ 0 is the initial surplus, 𝑐 ≥ 0 is the pre-
mium income rate, and {𝑋𝑖}

∞
𝑖=1 are i.i.d. random variables

representing the individual claim amounts with probability
density function (p.d.f.) 𝑓𝑋, cumulative distribution function
(c.d.f.) 𝐹𝑋, and Laplace transform (LT) 𝑓

∗
𝑋. The counting

process {𝑁(𝑡); 𝑡 ≥ 0} denotes the number of claims up to
time 𝑡 and is defined as 𝑁(𝑡) = max{𝑘 : 𝑊1 + 𝑊2 +

⋅ ⋅ ⋅ + 𝑊𝑘 ≤ 𝑡}, where the interclaim times {𝑊𝑖, 𝑖 = 1, 2, . . .}

form a sequence of independent and strictly positive real-
valued random variables (r.v.s.). The r.v. {𝑊𝑖, 𝑖 = 1, 2, . . .}

have common density function 𝑓𝑊(𝑡) = 𝜆𝑒
−𝜆𝑡

, 𝑡 > 0,
cumulative distribution function 𝐹𝑊, and Laplace transform
𝑓
∗
𝑊. {𝑁(𝑡), 𝑡 ≥ 0} is Poisson process with parameter 𝜆 > 0.
Ruin probability and related problems in the classical risk

model have been studied extensively. Gerber and Shiu [1]
introduced a discounted penalty function with respect to the
time of ruin, the surplus before ruin, and the deficit at ruin.

Many quantities can be analyzed through this function in a
unified manner.

In ruin theory, the classical compoundPoisson riskmodel
is based on the assumption of independence between the
claim amount randomvariable𝑋𝑖 and the interclaim time𝑊𝑗.
However, there exist many real-world situations for which
such an assumption is inappropriate. For instance, in mod-
eling natural catastrophic events, we can expect that, on the
occurrence of a catastrophe, the total claim amount and the
time elapsed since the previous catastrophes are dependent.
See, for example, Boudreault [2] and Nikoloulopoulos and
Karlis [3] for an application of this type of dependence
structure in an earthquake context. And as discussed in
Albrecher and Teugels [4], they allow the interclaim time and
its subsequent claim size to be dependent according to an
arbitrary copula structure, by employing the underlying ran-
domwalk structure of the riskmodel; they derive exponential
estimates for finite- and infinite-time ruin probabilities in the
case of light-tailed claim sizes. In Boudreault et al. [5], a risk
model with time-dependent claim sizes (i.e., the distribution
of the next claim size depends on the last interarrival time)
is analyzed and a defective renewal equation for the Gerber-
Shiu discounted penalty function is derived and solved.
Marceau [6] has considered the discrete-time renewal risk
model with dependence between the claim amount random
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variable and the interclaim time random variable. Recursive
formulas are derived for the probability mass function and
the moments of the total claim amount over a fixed period of
time. Cossette et al. [7] use the Farlie-Gumbel-Morgenstern
(FGM) copula to define the dependence structure between
the claim size and the interclaim time; they derive the
integrodifferential equation and the Laplace transform (LT)
of the Gerber-Shiu discounted penalty function. An explicit
expression for the LT of the discounted value of a gen-
eral function of the deficit at ruin is obtained for claim
amounts having an exponential distribution. Zhang and Yang
[8] construct the bivariate cumulative distribution function
of the claim size and interclaim time by Farlie-Gumbel-
Morgenstern copula in a compound Poisson risk model
perturbed by a Brownian motion. The integrodifferential
equations and the Laplace transforms for the Gerber-Shiu
functions are obtained. They also show that the Gerber-Shiu
functions satisfy some defective renewal equations.

The FGM copula is given by

𝐶
FGM
𝜃 (𝑢1, 𝑢2) = 𝑢1𝑢2 + 𝜃 (1 − 𝑢1) (1 − 𝑢2) ,

0 ≤ 𝑢1, 𝑢2 ≤ 1,

(2)

where −1 ≤ 𝜃 ≤ 1. Note that FGM copula allows both
negative and positive dependence, and it also includes the
independence copula (𝜃 = 0).

In this paper, we assume that {(𝑋𝑖,𝑊𝑗), 𝑖 ∈ 𝑁
+
, 𝑗 ∈

𝑁
+
} form a sequence of i.i.d. random vectors distributed

as the canonical r.v. (𝑋,𝑊). The joint p.d.f. of (𝑋,𝑊) is
denoted by 𝑓𝑋,𝑊(𝑥, 𝑡) with 𝑡 ∈ 𝑅

+ and 𝑥 ∈ 𝑅
+. The joint

distribution of (𝑋,𝑊) is defined with a FGM copula; we
consider the same dependence risk model with the presence
of a constant dividend barrier. We recall that the dividend
strategies for insurance riskmodels were first proposed byDe
Finetti [9]. Barrier strategies for the compound Poisson risk
model have been studied in a number of papers and books,
including Landriault [10], Albrecher et al. [11], Yuen et al.
[12], Dickson and Waters [13], Lin et al. [14], and Segerdahl
[15]. Then, various dividend strategies (threshold dividend
strategy, multilayer dividend strategy, etc.) have been studied
for different risk models; see, for example, Lin et al. (2006),
Chi and Lin [16], D. Liu andZ. Liu [17], Bratiichuk [18], Chad-
jiconstantinidis and Papaioannou [19], andWang [20]. As we
know, this is the first time to consider the classic risk model
with dependence structure based on FGM copula and a
constant dividend barrier.

The present paper is organized as follows. In Section 2,
the risk model with dependence in the presence of a constant
dividend barrier is introduced. And we briefly present some
properties of the FGM copula. In Section 3, we derive an
integrodifferential equation for the Gerber-Shiu discounted
penalty function. Finally, in Section 4, we use a renewal
equation to derive an analytical expressions for𝑚𝑏,𝛿(𝑢).

2. Dependence Structure and Risk Model

A bivariate copula 𝐶 is a joint distribution function on
[0, 1] × [0, 1] with uniform marginal distributions. Assume a

bivariate random vector (𝑈, 𝑉)with above uniformmarginal,
which has a dependence structure defined by a copula
𝐹𝑈,𝑉 = 𝐶(𝑢, V) with (𝑢, V) ∈ [0, 1] × [0, 1]. Important
copulas are the independence copula with 𝐶

⊥
(𝑢, V) = 𝑢V

and the comonotonic copula with 𝐶
+
(𝑢, V) = min(𝑢V); the

countermonotonic copula with 𝐶
−
(𝑢, V) = max(𝑢 + V −

1; 0). It is important to mention that all copulas satisfy the
inequalities 𝐶−(𝑢, V) ≤ 𝐶(𝑢, V) ≤ 𝐶

+
(𝑢, V), for (𝑢, V) ∈ [0, 1] ×

[0, 1].
The joint p.d.f. associated to a copula 𝐶 is defined by

𝑐 (𝑢1, 𝑢2) =
𝜕
2

𝜕𝑢1𝜕𝑢2

𝐶 (𝑢1, 𝑢2) . (3)

Let the bivariate distribution function 𝐹𝑋,𝑊 of (𝑋,𝑊)

with marginals 𝐹𝑋 and 𝐹𝑊 be defined as 𝐹𝑋,𝑊(𝑥, 𝑡) =

𝐶(𝐹𝑋(𝑥), 𝐹𝑊(𝑡)), for (𝑥, 𝑡) ∈ 𝑅
+

× 𝑅
+. The joint p.d.f. of

(𝑋,𝑊) is given by

𝑓𝑋,𝑊 (𝑥, 𝑡) = 𝑐 (𝐹𝑋 (𝑥) , 𝐹𝑊 (𝑡)) 𝑓𝑋 (𝑥) 𝑓𝑊 (𝑡) , (4)

for (𝑥, 𝑡) ∈ 𝑅
+

× 𝑅
+ (for a survey on copulas we refer the

reader to Nelsen [21]).
The FGM copula is given by

𝐶
FGM
𝜃 (𝑢1, 𝑢2) = 𝑢1𝑢2 + 𝜃 (1 − 𝑢1) (1 − 𝑢2) ,

(−1 ≤ 𝜃 ≤ 1) ,

(5)

where 𝐶FGM
0 = 𝐶

⊥. So we have

𝐹𝑋,𝑊 (𝑥, 𝑡) = 𝐹𝑋 (𝑥) 𝐹𝑊 (𝑡) + 𝜃𝐹𝑋 (𝑥) 𝐹𝑊 (𝑡)

× (1 − 𝐹𝑋 (𝑥)) (1 − 𝐹𝑊 (𝑡)) ,

(6)

𝑓𝑋,𝑊 (𝑥, 𝑡) = 𝜆𝑒
−𝜆𝑡

𝑓 (𝑥) + 𝜃 (2𝜆𝑒
−2𝜆𝑡

− 𝜆𝑒
−𝜆𝑡

) ℎ (𝑥) , (7)

where ℎ(𝑥) = (1 − 2𝐹𝑋(𝑥))𝑓(𝑥), with Laplace transform (LT)
ℎ
∗
𝑥 .
In the rest of this paper, we assume that {(𝑋𝑖,𝑊𝑖), 𝑖 ∈

𝑁
+
} form a sequence of i.i.d. random vectors distributed like

(𝑋,𝑊), which have joint c.d.f. and p.d.f. given by (6) and
(7), respectively. In particular, we know from (7) that the
conditional p.d.f. of the claim size is given by

𝑓𝑋|𝑊=𝑡 (𝑥) = 𝑓 (𝑥) + 𝜃 (2𝜆𝑒
−𝜆𝑡

− 1) ℎ (𝑥) . (8)

Also, we assume that 𝜃 ̸= 0; otherwise our model reduces to
the constant dividend barrier in the classical risk model.

The total claim amount process {𝑆(𝑡), 𝑡 ≥ 0} is defined as
𝑆(𝑡) = ∑

𝑁(𝑡)
𝑖=1 𝑋𝑖; let 𝑈𝑏(0) = 𝑢 and

𝑑𝑈𝑏 (𝑡) = 𝑐𝑑𝑡 − 𝑑𝑆 (𝑡) , if 𝑈𝑏 (𝑡) < 𝑏,

𝑑𝑈𝑏 (𝑡) = −𝑑𝑆 (𝑡) , if 𝑈𝑏 (𝑡) = 𝑏

(9)

be the surplus process in the presence of a constant dividend
barrier 𝑏 (0 < 𝑏 < ∞), where 𝑢 ≥ 0 is the initial surplus
level and 𝑐 (𝑐 > 0) is the level premium. In other words, we
assume that the insurer pays the premium rate 𝑐 as a dividend
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whenever the insurer’s surplus remains at the threshold level
𝑏.

Associated with the risk model, we denote the ruin time
by 𝑇, which is the first passage time of𝑈𝑏(𝑡) below zero level;
that is,

𝑇 = inf {𝑡 ≥ 0, 𝑈𝑏 (𝑡) < 0} (10)

with 𝑇 = ∞ if 𝑈𝑏(𝑡) ≥ 0, for all 𝑡 ≥ 0. To guarantee that ruin
is not a certain event, we assume that the following net profit
condition holds:

𝐸 [𝑐𝑊𝑖 − 𝑋𝑖] > 0, 𝑖 = 1, 2, . . . . (11)

At the same time, we introduce the Gerber-Shiu function
defined by

𝑚𝑏,𝛿 (𝑢)

= 𝐸 [𝑒
−𝛿𝑇

𝜔 (𝑈 (𝑇
−
) , |𝑈 (𝑇)|) 𝐼 (𝑇 < ∞) | 𝑈 (0) = 𝑢] ,

(12)

where 𝛿 ≥ 0 is the force of interest, 𝐼(⋅) is the indicator
function, and 𝜔(𝑈(𝑇−), |𝑈(𝑇)|) defined on [0,∞) × (0,∞) is
a nonnegative function of the surplus before ruin 𝑈(𝑇

−
) and

the deficit at ruin |𝑈(𝑇)|.

3. Gerber-Shiu Discounted Penalty Function

Themain purpose of this section is to derive an integrodiffer-
ential equation for the expected discounted penalty function
𝑚𝑏,𝛿(𝑢), This equation will be useful to derive an explicit
solution for𝑚𝑏,𝛿(𝑢). Throughout this paper, we denote I and
D to be the identity and the differential operators, respec-
tively.

Theorem 1. In the compound Poisson risk model with a
dependence structure based on 𝐹𝐺𝑀 copula defined in (2) and
a constant dividend 𝑏, the expected discounted penalty function
𝑚𝑏,𝛿(𝑢) satisfies the following integrodifferential equation:

(
2𝜆 + 𝛿

𝑐
I −D)(

𝜆 + 𝛿

𝑐
I −D)𝑚𝑏,𝛿 (𝑢)

=
𝜆

𝑐
(
2𝜆 + 𝛿

𝑐
I −D)𝜎1 (𝑢) +

𝜃𝜆

𝑐
(
𝛿

𝑐
I −D)𝜎2 (𝑢)

(13)

for 0 ≤ 𝑢 ≤ 𝑏 < ∞ with boundary conditions:

𝑚

𝑏,𝛿 (𝑏) = 0, (14)

𝑚

𝑏,𝛿 (𝑏) = −

𝜆

𝑐
𝜎

1 (𝑏) −

𝜃𝜆

𝑐
𝜎

2 (𝑏) ,

(15)

where

𝜎1 (𝑢) = ∫

𝑢

0
𝑚𝑏,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 + 𝜔1 (𝑢) , (16)

𝜎2 (𝑢) = ∫

𝑢

0
𝑚𝑏,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥 + 𝜔2 (𝑢) , (17)

𝜔1 (𝑢) = ∫

∞

𝑢
𝜔 (𝑢, 𝑥 − 𝑢) 𝑓 (𝑥) 𝑑𝑥, (18)

𝜔2 (𝑢) = ∫

∞

𝑢
𝜔 (𝑢, 𝑥 − 𝑢) ℎ (𝑥) 𝑑𝑥. (19)

Proof. By conditioning on the time and the amount of the first
claim, we have

𝑚𝑏,𝛿 (𝑢) = ∫

(𝑏−𝑢)/𝑐

0
∫

𝑢+𝑐𝑡

0
𝑒
−𝛿𝑡

𝑚𝑏,𝛿 (𝑢+𝑐𝑡 − 𝑥) 𝑓𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

(𝑏−𝑢)/𝑐

0
∫

∞

𝑢+𝑐𝑡
𝑒
−𝛿𝑡

× 𝜔 (𝑢 + 𝑐𝑡, 𝑥 − 𝑢 − 𝑐𝑡)

× 𝑓𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

∞

(𝑏−𝑢)/𝑐
∫

𝑏

0
𝑒
−𝛿𝑡

𝑚𝑏,𝛿 (𝑏 − 𝑥) 𝑓𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡

+ ∫

∞

(𝑏−𝑢)/𝑐
∫

∞

𝑏
𝑒
−𝛿𝑡

𝜔 (𝑏, 𝑥 − 𝑏) 𝑓𝑋,𝑊 (𝑥, 𝑡) 𝑑𝑥 𝑑𝑡.

(20)

Given from (7), (20) becomes

𝑚𝑏,𝛿 (𝑢) = 𝜆∫

(𝑏−𝑢)/𝑐

0
𝑒
−(𝜆+𝛿)𝑡

𝜎1 (𝑢 + 𝑐𝑡) 𝑑𝑡

+ 2𝜃𝜆∫

(𝑏−𝑢)/𝑐

0
𝑒
−(2𝜆+𝛿)𝑡

𝜎2 (𝑢 + 𝑐𝑡) 𝑑𝑡

− 𝜃𝜆 × ∫

(𝑏−𝑢)/𝑐

0
𝑒
−(𝜆+𝛿)𝑡

𝜎2 (𝑢 + 𝑐𝑡) 𝑑𝑡

+ 𝜆∫

∞

(𝑏−𝑢)/𝑐
𝑒
−(𝜆+𝛿)𝑡

𝜎1 (𝑏) 𝑑𝑡

+ 2𝜃𝜆∫

∞

(𝑏−𝑢)/𝑐
𝑒
−(2𝜆+𝛿)𝑡

𝜎2 (𝑏) 𝑑𝑡

− 𝜃𝜆∫

∞

(𝑏−𝑢)/𝑐
𝑒
−(𝜆+𝛿)𝑡

𝜎2 (𝑏) 𝑑𝑡,

(21)

where the functions 𝜎1(𝑢) and 𝜎2(𝑢) are given in (16) and (17),
respectively.

Simple modifications of (21) lead to

𝑚𝑏,𝛿 (𝑢) =
𝜆

𝑐
∫

𝑏

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎1 (𝑡) 𝑑𝑡

+
2𝜃𝜆

𝑐
∫

𝑏

𝑢
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡) 𝑑𝑡

−
𝜃𝜆

𝑐
∫

𝑏

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

× 𝜎2 (𝑡) 𝑑𝑡

+
𝜆

𝑐
∫

∞

𝑏
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎1 (𝑏) 𝑑𝑡

+
2𝜃𝜆

𝑐
∫

∞

𝑏
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑏) 𝑑𝑡

−
𝜃𝜆

𝑐
∫

∞

𝑏
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑏) 𝑑𝑡.

(22)
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We can rewrite (22) as

𝑚𝑏,𝛿 (𝑢) =
𝜆

𝑐
∫

∞

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎1 (𝑡 ∧ 𝑏) 𝑑𝑡

+
2𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜃𝜆

𝑐
× ∫

∞

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡,

(23)

where 𝑡 ∧ 𝑏 = min(𝑡, 𝑏).
Now differentiating (23) with respect to 𝑢, routine calcu-

lations lead to

𝑚

𝑏,𝛿 (𝑢) =

𝜆 + 𝛿

𝑐

𝜆

𝑐
∫

∞

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎1 (𝑡 ∧ 𝑏) 𝑑𝑡 −
𝜆

𝑐
𝜎1 (𝑢)

+
2𝜆 + 𝛿

𝑐

2𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜃𝜆

𝑐
𝜎2 (𝑢) −

𝜆 + 𝛿

𝑐

𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

× 𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡.

(24)
Substituting (23) into (24), we obtain

𝑚

𝑏,𝛿 (𝑢)

=
𝜆 + 𝛿

𝑐
[𝑚𝑏,𝛿 (𝑢) −

2𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡

+
𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡]

+
2𝜆 + 𝛿

𝑐

2𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆 + 𝛿

𝑐

𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆

𝑐
𝜎1 (𝑢) −

𝜃𝜆

𝑐
𝜎2 (𝑢) .

(25)
That is,
𝑚

𝑏,𝛿 (𝑢)

=
𝜆 + 𝛿

𝑐
𝑚𝑏,𝛿 (𝑢) +

𝜆

𝑐

2𝜃𝜆

𝑐
∫

∞

𝑢
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆

𝑐
𝜎1 (𝑢) −

𝜃𝜆

𝑐
𝜎2 (𝑢) .

(26)
Differentiating (26) with respect to u, we find

𝑚

𝑏,𝛿 (𝑢) =

𝜆 + 𝛿

𝑐
𝑚

𝑏,𝛿 (𝑢) +

𝛿 + 2𝜆

𝑐

𝜆

𝑐

2𝜃𝜆

𝑐

× ∫

∞

𝑢
𝑒
−(2𝜆+𝛿)((𝑡−𝑢)/𝑐)

𝜎2 (𝑡 ∧ 𝑏) 𝑑𝑡

−
𝜆

𝑐

2𝜃𝜆

𝑐
𝜎2 (𝑢) −

𝜆

𝑐
𝜎

1 (𝑢) −

𝜃𝜆

𝑐
𝜎

2 (𝑢)

(27)

which can be reexpressed as

𝑚

𝑏,𝛿 (𝑢)

=
𝜆 + 𝛿

𝑐
𝑚

𝑏,𝛿 (𝑢) +

𝛿 + 2𝜆

𝑐

× [𝑚

𝑏,𝛿 (𝑢) −

𝜆 + 𝛿

𝑐
𝑚𝑏,𝛿 (𝑢) +

𝜆

𝑐
𝜎1 (𝑢) +

𝜃𝜆

𝑐
𝜎2 (𝑢)]

−
𝜆

𝑐

2𝜃𝜆

𝑐
𝜎2 (𝑢) −

𝜆

𝑐
𝜎

1 (𝑢) −

𝜃𝜆

𝑐
𝜎

2 (𝑢) .

(28)

That is,

𝑚

𝑏,𝛿 (𝑢) =

3𝜆 + 2𝛿

𝑐
𝑚

𝑏,𝛿 (𝑢) −

𝜆 + 𝛿

𝑐

𝛿 + 2𝜆

𝑐
𝑚𝑏,𝛿 (𝑢)

+
𝜆

𝑐

𝛿 + 2𝜆

𝑐
𝜎1 (𝑢) −

𝜆

𝑐
𝜎

1 (𝑢) +

𝜃𝜆

𝑐

𝛿

𝑐
𝜎2 (𝑢)

−
𝜃𝜆

𝑐
𝜎

2 (𝑢) .

(29)

Using the identical and differential operators, we obtain (13).
Regarding the boundary conditions, (14) is derived from

(24) at 𝑢 = 𝑏. While (15) can be proven via (27) at 𝑢 = 𝑏 and
(14).

Note that (13) in itself does not depend on the barrier
level 𝑏, therefore, one concludes that 𝑚∞,𝛿(𝑢), the Gerber-
Shiu discounted penalty function in the absence of a barrier,
satisfies the second order nonhomogeneous integrodifferen-
tial equation:

(
2𝜆 + 𝛿

𝑐
I −D)(

𝜆 + 𝛿

𝑐
I −D)𝑚∞,𝛿 (𝑢)

=
𝜆

𝑐
(
2𝜆 + 𝛿

𝑐
I −D)𝜎3 (𝑢) +

𝜃𝜆

𝑐
(
𝛿

𝑐
I −D)𝜎4 (𝑢) ;

(30)

where

𝜎3 (𝑢) = ∫

𝑢

0
𝑚∞,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 + 𝜔1 (𝑢) ,

𝜎4 (𝑢) = ∫

𝑢

0
𝑚∞,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥 + 𝜔2 (𝑢) .

(31)

As shown in Cossette et al. [7], it is a solution to a defective
renewal equation.

4. A Representation of
the Discounted Penalty Function

In the present section, we derive the defective renewal
equation for 𝑚𝑏,𝛿(𝑢). For that purpose, we use the Dickson-
Hipp operator 𝑇𝑠 for an integrable real-valued function 𝑓

(introduced by Dickson and Hipp (2001)) defined by

𝑇𝑠𝑓 (𝑥) = ∫

∞

𝑥
𝑒
−𝑠(𝑦−𝑥)

𝑓 (𝑦) 𝑑𝑦, 𝑠 ∈ 𝐶. (32)
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The operator 𝑇𝑠 is commutative; that is, 𝑇𝑟𝑇𝑠 = 𝑇𝑠𝑇𝑟; more-
over,

𝑇𝑠𝑇𝑟𝑓 (𝑥) = 𝑇𝑟𝑇𝑠𝑓 (𝑥) =
𝑇𝑠𝑓 (𝑥) − 𝑇𝑟𝑓 (𝑥)

𝑟 − 𝑠
, 𝑠 ̸= 𝑟. (33)

From Theorem 1, one concludes that 𝑚𝑏,𝛿(𝑢) satisfies a
nonhomogeneous equation of order 2. From the theory
on differential equations, the solution to the second order
nonhomogeneous equation (13) for 𝑚𝑏,𝛿(𝑢) (with boundary
conditions (14) and (15)) can be expressed as a particular
solution 𝑚∞,𝛿(𝑢) and a given combination of two linearly
independent solutions to the associated homogeneous inte-
grodifferential equation:

(
2𝜆 + 𝛿

𝑐
I −D)(

𝜆 + 𝛿

𝑐
I −D)𝑦 (𝑢)

=
𝜆

𝑐
(
2𝜆 + 𝛿

𝑐
I −D)∫

𝑢

0
𝑦 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 +

𝜃𝜆

𝑐

× (
𝛿

𝑐
I −D)∫

𝑢

0
𝑦 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥.

(34)

By letting 𝑦
∗
(𝑠) = ∫

∞

0
𝑒
−𝑠𝑥

𝑦(𝑥)𝑑𝑥, let us take Laplace
transform on the both sides of the homogeneous equation
(34). We can obtain

𝑦
∗
(𝑠)

= ((𝑠 −
3𝜆 + 2𝛿

𝑐
)𝑦 (0) + 𝑦


(0))

×((
2𝜆 + 𝛿

𝑐
− 𝑠)(

𝜆 + 𝛿

𝑐
− 𝑠) −

𝜆

𝑐

× [(
2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)] )

−1

.

(35)

From (35), it is clear that the solution to (34) can be written
as a combination of the two linearly independent solutions
{𝑦1,𝛿(𝑢), 𝑢 ≥ 0} and {𝑦2,𝛿(𝑢), 𝑢 ≥ 0}, where

𝑦
∗
1,𝛿 (𝑠)

= (𝑠 −
3𝜆 + 2𝛿

𝑐
)

×((
2𝜆 + 𝛿

𝑐
− 𝑠)(

𝜆 + 𝛿

𝑐
− 𝑠) −

𝜆

𝑐

× [(
2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)])

−1

,

(36)

with 𝑦1,𝛿(0) = 1 and 𝑦1,𝛿(0) = 0, and

𝑦
∗
2,𝛿 (𝑠) = 1

× ((
2𝜆 + 𝛿

𝑐
− 𝑠)(

𝜆 + 𝛿

𝑐
− 𝑠) −

𝜆

𝑐

× [(
2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)])

−1

,

(37)

with 𝑦2,𝛿(0) = 0 and 𝑦2,𝛿(0) = 1.

Theorem 2. For the Gerber-Shiu discounted penalty function
satisfying (13), a closed-form expression for𝑚𝑏,𝛿(𝑢) is given by

𝑚𝑏,𝛿 (𝑢) = 𝑚∞,𝛿 (𝑢) + 𝜉1𝑦1,𝛿 (𝑢) + 𝜉2𝑦2,𝛿 (𝑢) , 0 ≤ 𝑢 ≤ 𝑏,

(38)

where the constants 𝜉1, 𝜉2 are the solutions to the following
system of linear equations:

𝜉1𝑦

1,𝛿 (𝑏) + 𝜉2𝑦


2,𝛿 (𝑏) = −𝑚


∞,𝛿 (𝑏) , (39)

𝜉1 (𝑦

1,𝛿 (𝑏) +

𝜆

𝑐
D∫

𝑢

0
𝑦1,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥|𝑢=𝑏)

+
𝜃𝜆

𝑐
D∫

𝑢

0
𝑦1,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥|𝑢=𝑏

+ 𝜉2 (𝑦

2,𝛿 (𝑏) +

𝜆

𝑐
D∫

𝑢

0
𝑦2,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥|𝑢=𝑏)

+
𝜃𝜆

𝑐
D∫

𝑢

0
𝑦2,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥|𝑢=𝑏

= −[𝑚

∞,𝛿 (𝑏) +

𝜆

𝑐
D∫

𝑢

0
𝑚∞,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥|𝑢=𝑏

+
𝜃𝜆

𝑐
D∫

𝑢

0
𝑚∞,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥|𝑢=𝑏

+
𝜆

𝑐
𝜔

1 (𝑏) +

𝜃𝜆

𝑐
𝜔

2 (𝑏)] .

(40)

Proof. It is immediate that𝑚𝑏,𝛿(𝑢) is of the form

𝑚𝑏,𝛿 (𝑢) = 𝑚∞,𝛿 (𝑢) + 𝜉1𝑦1,𝛿 (𝑢) + 𝜉2𝑦2,𝛿 (𝑢) . (41)

Thus, by (14) and (15), differentiating (41) with respect to 𝑢 at
𝑢 = 𝑏, we obtain

𝑚

∞,𝛿 (𝑏) + 𝜉1𝑦


1,𝛿 (𝑏) + 𝜉2𝑦


2,𝛿 (𝑏) = 0, (42)

𝑚

∞,𝛿 (𝑏) + 𝜉1𝑦


1,𝛿 (𝑏) + 𝜉2𝑦


2,𝛿 (𝑏) = −

𝜆

𝑐
𝜎

1 (𝑏) −

𝜃𝜆

𝑐
𝜎

2 (𝑏) .

(43)

Equation (42) is equivalent to (39).
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Using the structural form (38) for𝑚𝑏,𝛿(𝑢), differentiation
with respect to 𝑢 of (16) and (17) yields

D (𝜎1 (𝑢)) = 𝜉1D∫

𝑢

0
𝑦1,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥

+ 𝜉2D∫

𝑢

0
𝑦2,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥

+D∫

𝑢

0
𝑚∞,𝛿 (𝑢 − 𝑥) 𝑓 (𝑥) 𝑑𝑥 +D𝜔1 (𝑢) ,

D (𝜎2 (𝑢)) = 𝜉1D∫

𝑢

0
𝑦1,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥

+ 𝜉2D∫

𝑢

0
𝑦2,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥

+D∫

𝑢

0
𝑚∞,𝛿 (𝑢 − 𝑥) ℎ (𝑥) 𝑑𝑥 +D𝜔2 (𝑢) .

(44)

Substituting (44) into the right-hand side of (43) at 𝑢 = 𝑏

leads to (40).
From Propositions 4.1 and 4.2 of Cossette et al. [7], we

know that the denominator on the right-hand side of (36) and
(37) has only two positive, real, and distinct roots, say, 𝑠1 and
𝑠2.

Using (47) of Cossette et al. [7], (36) and (37) can be
expressed as

𝑦
∗
1,𝛿 (𝑠)

= (((𝑠1 −
3𝜆 + 2𝛿

𝑐
)

𝑠 − 𝑠1

𝑠2 − 𝑠1

+ (𝑠2 −
3𝜆 + 2𝛿

𝑐
)

𝑠 − 𝑠2

𝑠1 − 𝑠2

)

×((𝑠 − 𝑠1) (𝑠 − 𝑠2))
−1
) (1 − 𝑇𝑠𝑇𝑠2

𝑇𝑠1
ℎ2,𝛿 (0))

−1
,

(45)

𝑦
∗
2,𝛿 (𝑠) =

1/ (𝑠 − 𝑠1) (𝑠 − 𝑠2)

1 − 𝑇𝑠𝑇𝑠2
𝑇𝑠1

ℎ2,𝛿 (0)
, (46)

where

ℎ
∗
2,𝛿 (𝑠) =

𝜆

𝑐
[(

2𝜆 + 𝛿

𝑐
− 𝑠)𝑓

∗
(𝑠) + 𝜃 (

𝛿

𝑐
− 𝑠) ℎ

∗
(𝑠)] .

(47)

Therefore, the Laplace transform (45) and (46) can now be
used to find an expression for the two linearly independent
solutions {𝑦1,𝛿(𝑢), 𝑢 ≥ 0} and {𝑦2,𝛿(𝑢), 𝑢 ≥ 0}, respectively.
From Proposition 7.2 of Cossette et al. [7], (45) and (46) lead
to

𝑦1,𝛿 (𝑢) = 𝑘𝛿 ∫

𝑢

0
𝑦1,𝛿 (𝑢 − 𝑦) 𝑔𝛿 (𝑦) 𝑑𝑦+

𝑠1 − (3𝜆 + 2𝛿) /𝑐

𝑠2 − 𝑠1

𝑒
𝑠2𝑢

+
𝑠2 − (3𝜆 + 2𝛿) /𝑐

𝑠1 − 𝑠2

𝑒
𝑠1𝑢,

(48)

𝑦2,𝛿 (𝑢) = 𝑘𝛿 ∫

𝑢

0
𝑦2,𝛿 (𝑢 − 𝑦) 𝑔𝛿 (𝑦) 𝑑𝑦 +

𝑒
𝑠2𝑢 − 𝑒

𝑠1𝑢

𝑠2 − 𝑠1

, (49)

where

𝑘𝛿 =
𝜆

𝑐
[(

𝛿 + 2𝜆

𝑐
− 𝑠2)𝑇0𝑇𝑠2

𝑇𝑠1
𝑓 (0) + 𝜃(

𝛿

𝑐
− 𝑠2)

×𝑇0𝑇𝑠2
𝑇𝑠1

ℎ (0) + 𝑇0𝑇𝑠1
𝑓 (0) + 𝜃𝑇0𝑇𝑠1

ℎ (0) ] ,

𝑔𝛿 (𝑦) =
𝑇𝑠2

𝑇𝑠1
ℎ2,𝛿 (𝑢)

𝑘𝛿

.

(50)

The defective renewal equations (48) and (49) may be solved
to give an explicit for 𝑦1,𝛿(𝑢) and 𝑦2,𝛿(𝑢). By a similar way to
the one used in Landriault [10], we choose

𝐿𝛿 (𝑢) = 1 −

∞

∑

𝑛=1

(1 − 𝑘𝛿) (𝑘𝛿)
𝑛
𝐺
∗𝑛

𝛿 (𝑦) , (51)

where 𝐺∗𝑛𝛿 (𝑦) is the survival distribution of the 𝑛-fold con-
volution of the p.d.f. 𝑔𝛿(𝑦).

Theorem 3. Let 𝜆𝑖,𝛿(𝑢) = 𝑒
𝑠𝑖𝑢 − 𝑠𝑖 ∫

𝑢

0
𝑒
𝑠𝑖𝑦𝐿𝛿(𝑢 − 𝑦)𝑑𝑦 for

𝑖 = 1, 2. The solutions to (48) and (49) mat be expressed
respectively as follows:

𝑦1,𝛿 (𝑢) = (𝑠1 (𝜆1,𝛿 (𝑢) − 𝐿𝛿 (𝑢)) − 𝑠2 (𝜆2,𝛿 (𝑢) − 𝐿𝛿 (𝑢))

−
3𝜆 + 2𝛿

𝑐
(𝜆1,𝛿 (𝑢) − 𝜆2,𝛿 (𝑢)))

× ((1 − 𝑘𝛿) (𝑠2 − 𝑠1))
−1
,

(52)

𝑦2,𝛿 (𝑢) =
𝜆1,𝛿 (𝑢) − 𝜆2,𝛿 (𝑢)

(1 − 𝑘𝛿) (𝑠2 − 𝑠1)
. (53)

Proof. Applying Theorem 9.2 of Willmot and Lin [22] to the
defective renewal equation (48) and (49), respectively, we can
obtain (52) and (53) immediately.

All above derivations can derive the closed-form expres-
sion for𝑚𝑏,𝛿(𝑢) by (38).
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We introduce two kinds of generalized 𝑠-convex functions on real linear fractal sets R𝛼 (0 < 𝛼 < 1). And similar to the class
situation, we also study the properties of these two kinds of generalized 𝑠-convex functions and discuss the relationship between
them. Furthermore, some applications are given.

1. Introduction

Let 𝑓 : 𝐼 ⊆ R → R. For any 𝑢, V ∈ 𝐼 and 𝑡 ∈ [0, 1], if the
following inequality,

𝑓 (𝑡𝑢 + (1 − 𝑡) V) ≤ 𝑡𝑓 (𝑢) + (1 − 𝑡) 𝑓 (V) , (1)

holds, then 𝑓 is called a convex function on 𝐼.
The convexity of functions plays a significant role inmany

fields, such as in biological system, economy, and optimiza-
tion [1, 2]. In [3], Hudzik and Maligranda generalized the
definition of convex function and considered, among others,
two kinds of functions which are 𝑠-convex.

Let 0 < 𝑠 ≤ 1 andR+ = [0,∞), and then the two kinds of
𝑠-convex functions are defined, respectively, in the following
way.

Definition 1. A function, 𝑓 : R+ → R, is said to be 𝑠-convex
in the first sense if

𝑓 (𝛼𝑢 + 𝛽V) ≤ 𝛼
𝑠
𝑓 (𝑢) + 𝛽

𝑠
𝑓 (V) , (2)

for all 𝑢, V ∈ R+ and all 𝛼, 𝛽 ≥ 0with 𝛼
𝑠
+𝛽
𝑠
= 1. One denotes

this by 𝑓 ∈ 𝐾
1
𝑠 .

Definition 2. A function, 𝑓 : R+ → R, is said to be 𝑠-convex
in the second sense if

𝑓 (𝛼𝑢 + 𝛽V) ≤ 𝛼
𝑠
𝑓 (𝑢) + 𝛽

𝑠
𝑓 (V) , (3)

for all 𝑢, V ∈ R+ and all 𝛼, 𝛽 ≥ 0 with 𝛼 + 𝛽 = 1. One denotes
this by 𝑓 ∈ 𝐾

2
𝑠 .

It is obvious that the 𝑠-convexity means just the convexity
when 𝑠 = 1, no matter whether it is in the first sense or in the
second sense. In [3], some properties of 𝑠-convex functions
in both senses are considered and various examples and
counterexamples are given. There are many research results
related to the 𝑠-convex functions; see [4–6] and so on.

In recent years, the fractal has received significantly
remarkable attention from scientists and engineers. In the
sense of Mandelbrot, a fractal set is the one whose Hausdorff
dimension strictly exceeds the topological dimension [7–12].

The calculus on fractal set can lead to better compre-
hension for the various real world models from science
and engineering [8]. Researchers have constructed many
kinds of fractional calculus on fractal sets by using different
approaches. Particularly, in [13], Yang stated the analysis
of local fractional functions on fractal space systematically,
which includes local fractional calculus. In [14], the authors
introduced the generalized convex function on fractal sets
and established the generalized Jensen inequality and gener-
alized Hermite-Hadamard inequality related to generalized
convex function. And, in [15], Wei et al. established a local
fractional integral inequality on fractal space analogous to
Anderson’s inequality for generalized convex functions. The
generalized convex function on fractal sets R𝛼 (0 < 𝛼 < 1)

can be stated as follows.
Let 𝑓 : 𝐼 ⊂ R → R𝛼. For any 𝑢, V ∈ 𝐼 and 𝑡 ∈ [0, 1], if the

following inequality,

𝑓 (𝑡𝑢 + (1 − 𝑡) V) ≤ 𝑡
𝛼
𝑓 (𝑢) + (1 − 𝑡)

𝛼
𝑓 (V) , (4)

holds, then 𝑓 is called a generalized convex on 𝐼.
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Inspired by these investigations, we will introduce the
generalized 𝑠-convex function in the first or second sense on
fractal sets and study the properties of generalized 𝑠-convex
functions.

The paper is organized as follows. In Section 2, we state
the operations with real line number fractal sets and give
the definitions of the local fractional calculus. In Section 3,
we introduce the definitions of two kinds of generalized 𝑠-
convex functions and study the properties of these functions.
In Section 4, we give some applications for the two kinds of
generalized 𝑠-convex functions on fractal sets.

2. Preliminaries

Let us recall the operations with real line number on fractal
space and use Gao-Yang-Kang’s idea to describe the defini-
tions of the local fractional derivative and local fractional
integral [13, 16–19].

If 𝑎𝛼, 𝑏𝛼, and 𝑐
𝛼 belong to the set R𝛼 (0 < 𝛼 ≤ 1) of real

line numbers, then one has the following:

(1) 𝑎
𝛼
+ 𝑏
𝛼 and 𝑎

𝛼
𝑏
𝛼 belong to the set R𝛼;

(2) 𝑎
𝛼
+ 𝑏
𝛼
= 𝑏
𝛼
+ 𝑎
𝛼
= (𝑎 + 𝑏)

𝛼
= (𝑏 + 𝑎)

𝛼;

(3) 𝑎
𝛼
+ (𝑏
𝛼
+ 𝑐
𝛼
) = (𝑎

𝛼
+ 𝑏
𝛼
) + 𝑐
𝛼;

(4) 𝑎
𝛼
𝑏
𝛼
= 𝑏
𝛼
𝑎
𝛼
= (𝑎𝑏)

𝛼
= (𝑏𝑎)

𝛼;

(5) 𝑎
𝛼
(𝑏
𝛼
𝑐
𝛼
) = (𝑎

𝛼
𝑏
𝛼
)𝑐
𝛼;

(6) 𝑎
𝛼
(𝑏
𝛼
+ 𝑐
𝛼
) = 𝑎
𝛼
𝑏
𝛼
+ 𝑎
𝛼
𝑐
𝛼;

(7) 𝑎
𝛼
+ 0
𝛼
= 0
𝛼
+ 𝑎
𝛼
= 𝑎
𝛼 and 𝑎

𝛼
⋅ 1
𝛼
= 1
𝛼
⋅ 𝑎
𝛼
= 𝑎
𝛼.

Let us now state some definitions about the local frac-
tional calculus on R𝛼.

Definition 3 (see [13]). A nondifferentiable function𝑓 : R →

R𝛼, 𝑥 → 𝑓(𝑥) is called to be local fractional continuous at
𝑥0, if, for any 𝜀 > 0, there exists 𝛿 > 0, such that

𝑓 (𝑥) − 𝑓 (𝑥0)
 < 𝜀
𝛼 (5)

holds for |𝑥 − 𝑥0| < 𝛿, where 𝜀, 𝛿 ∈ R. If 𝑓 is local fractional
continuous on the interval (𝑎, 𝑏), one denotes 𝑓 ∈ 𝐶𝛼(𝑎, 𝑏).

Definition 4 (see [13]). The local fractional derivative of
function 𝑓 of order 𝛼 at 𝑥 = 𝑥0 is defined by

𝑓
(𝛼)

(𝑥0) =
𝑑
𝛼
𝑓 (𝑥)

𝑑𝑥𝛼

𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 , (6)

where Δ
𝛼
(𝑓(𝑥) − 𝑓(𝑥0)) = Γ(1 + 𝑎)(𝑓(𝑥) − 𝑓(𝑥0)) and the

Gamma function is defined by Γ(𝑡) = ∫
+∞

0
𝑥
𝑡−1

𝑒
−𝑥

𝑑𝑥.

If there exists 𝑓
((𝑘+1)𝛼)

(𝑥) =

𝑘+1 times
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝐷
𝛼
𝑥 ⋅ ⋅ ⋅ 𝐷

𝛼
𝑥 𝑓(𝑥) for any 𝑥 ∈

𝐼 ⊆ R, then one denoted 𝑓 ∈ 𝐷(𝑘+1)𝛼(𝐼), where 𝑘 = 0, 1, 2, . . ..

Definition 5 (see [13]). Let 𝑓 ∈ 𝐶𝛼[𝑎, 𝑏]. Then the local
fractional integral of the function 𝑓 of order 𝛼 is defined by

𝑎
𝐼
(𝛼)
𝑏 𝑓 =

1

Γ (1 + 𝑎)
∫

𝑏

𝑎
𝑓 (𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝑎)
lim
Δ𝑡→0

𝑁

∑

𝑗=0

𝑓 (𝑡𝑗) (Δ𝑡𝑗)
𝛼
,

(7)

with Δ𝑡𝑗 = 𝑡𝑗+1 −𝑡𝑗, Δ𝑡 = max{Δ𝑡1, Δ𝑡2, Δ𝑡𝑗, . . . , Δ𝑡𝑁−1}, and
[𝑡𝑗, 𝑡𝑗 + 1], 𝑗 = 0, . . . , 𝑁 − 1, where 𝑡0 = 𝑎 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑖 <

⋅ ⋅ ⋅ < 𝑡𝑁 = 𝑏 is a partition of the interval [𝑎, 𝑏].

Lemma 6 (see [13]). Suppose that 𝑓, 𝑔 ∈ 𝐶𝛼[𝑎, 𝑏] and 𝑓, 𝑔 ∈

𝐷𝛼(𝑎, 𝑏). If lim𝑥→𝑥0𝑓(𝑥) = 0
𝛼, lim𝑥→𝑥0𝑔(𝑥) = 0

𝛼 and
𝑔
(𝛼)

(𝑥) ̸= 0
𝛼. Suppose that lim𝑥→𝑥0(𝑓

(𝛼)
(𝑥)/𝑔
(𝛼)

(𝑥)) = 𝐴
𝛼,

and then

lim
𝑥→𝑥0

𝑓 (𝑥)

𝑔 (𝑥)
= 𝐴
𝛼
. (8)

Lemma 7 (see [13]). Suppose that 𝑓(𝑥) ∈ 𝐶𝛼[𝑎, 𝑏]; then

𝑑
𝛼
( 𝑎𝐼
(𝛼)
𝑥 𝑓)

𝑑𝑥𝛼
= 𝑓 (𝑥) , 𝑎 < 𝑥 < 𝑏. (9)

3. Generalized 𝑠-Convexity Functions

The convexity of functions plays a significant role in many
fields. In this section, let us introduce twokinds of generalized
𝑠-convex functions on fractal sets. And then, we study the
properties of the two kinds of generalized 𝑠-convex functions.

Definition 8. Let R+ = [0, +∞). A function 𝑓 : R+ → R𝛼 is
said to be generalized 𝑠-convex (0 < 𝑠 < 1) in the first sense,
if

𝑓 (𝜆1𝑢 + 𝜆2V) ≤ 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) , (10)

for all 𝑢, V ∈ R+ and all 𝜆1, 𝜆2 ≥ 0 with 𝜆
𝑠
1 + 𝜆
𝑠
2 = 1. One

denotes this by 𝑓 ∈ 𝐺𝐾
1
𝑠 .

Definition 9. A function 𝑓 : R+ → R𝛼 is said to be gener-
alized 𝑠-convex (0 < 𝑠 < 1) in the second sense, if

𝑓 (𝜆1𝑢 + 𝜆2V) ≤ 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) , (11)

for all 𝑢, V ∈ R+ and all 𝜆1, 𝜆2 ≥ 0 with 𝜆1 + 𝜆2 = 1. One
denotes this by 𝑓 ∈ 𝐺𝐾

2
𝑠 .

Note that, when 𝑠 = 1, the generalized 𝑠-convex functions
in both senses are the generalized convex functions; see [14].

Theorem 10. Let 0 < 𝑠 < 1.

(a) If 𝑓 ∈ 𝐺𝐾
1
𝑠 , then 𝑓 is nondecreasing on (0, +∞) and

𝑓 (0
+
) = lim
𝑢→0+

𝑓 (𝑢) ≤ 𝑓 (0) . (12)

(b) If 𝑓 ∈ 𝐺𝐾
2
𝑠 , then 𝑓 is nonnegative on [0, +∞).
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Proof. (a) Since 𝑓 ∈ 𝐺𝐾
1
𝑠 , we have, for 𝑢 > 0 and 𝜆 ∈ [0, 1],

𝑓 [(𝜆
1/𝑠

+ (1 − 𝜆)
1/𝑠

) 𝑢]

≤ 𝜆
𝛼
𝑓 (𝑢) + (1 − 𝜆)

𝛼
𝑓 (𝑢) = 𝑓 (𝑢) .

(13)

The function

ℎ (𝜆) = 𝜆
1/𝑠

+ (1 − 𝜆)
1/𝑠 (14)

is continuous on [0, 1], decreasing on [0, 1/2], and increasing
on [1/2, 1] and ℎ([0, 1]) = [ℎ(1/2), ℎ(1)] = [2

1−1/𝑠
, 1]. This

yields that

𝑓 (𝑡𝑢) ≤ 𝑓 (𝑢) , (15)

for 𝑢 > 0 and 𝑡 ∈ [2
1−1/𝑠

, 1]. If 𝑡 ∈ [2
2(1−1/𝑠)

, 1], then 𝑡
1/2

∈

[2
1−1/𝑠

, 1]. Therefore, by the fact that (15) holds, we get

𝑓 (𝑡𝑢) = 𝑓 (𝑡
1/2

(𝑡
1/2

𝑢)) ≤ 𝑓 (𝑡
1/2

𝑢) ≤ 𝑓 (𝑢) , (16)

for all 𝑢 > 0. So we can obtain that

𝑓 (𝑡𝑢) ≤ 𝑓 (𝑢) , ∀𝑢 > 0, 𝑡 ∈ (0, 1] . (17)

So, taking 0 < 𝑢 < V, we get

𝑓 (𝑢) = 𝑓((
𝑢

V
) V) ≤ 𝑓 (V) , (18)

which means that 𝑓 is nondecreasing on (0, +∞).
As for the second part, for 𝑢 > 0 and 𝜆1, 𝜆2 ≥ 0 with

𝜆
𝑠
1 + 𝜆
𝑠
2 = 1, we have

𝑓 (𝜆1𝑢) = 𝑓 (𝜆1𝑢 + 𝜆20) ≤ 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (0) . (19)

And taking 𝑢 → 0
+, we get

lim
𝑢→0+

𝑓 (𝑢) = lim
𝑢→0+

𝑓 (𝜆1𝑢) ≤ 𝜆
𝑠𝛼
1 lim
𝑢→0+

𝑓 (𝑢) + 𝜆
𝑠𝛼
2 𝑓 (0) .

(20)

So,

lim
𝑢→0+

𝑓 (𝑢) ≤ 𝑓 (0) . (21)

(b) For 𝑓 ∈ 𝐺𝐾
2
𝑠 , we can get that, for 𝑢 ∈ R+,

𝑓 (𝑢) = 𝑓(
𝑢

2
+

𝑢

2
) ≤

𝑓 (𝑢)

2𝑠𝛼
+

𝑓 (𝑢)

2𝑠𝛼
= 2
(1−𝑠)𝛼

𝑓 (𝑢) . (22)

So, (21−𝑠−1)
𝛼
𝑓(𝑢) ≥ 0

𝛼.This means that𝑓(𝑢) ≥ 0
𝛼, since

0 < 𝑠 < 1.

Remark 11. The above results do not hold, in general, in the
case of generalized convex functions, that is, when 𝑠 = 1,
because a generalized convex function, 𝑓 : R+ → R𝛼, need
not be either nondecreasing or nonnegative.

Remark 12. If 0 < 𝑠 < 1, then the function 𝑓 ∈ 𝐺𝐾
1
𝑠 is

nondecreasing on (0, +∞) but not necessarily on [0, +∞).

Function 𝐹 : R2 → R𝛼 is called to be generalized convex
in each variable, if

𝐹 (𝜆1𝑢 + 𝜆2V, 𝜆1𝑟 + 𝜆2𝑡) ≤ 𝜆
𝛼
1𝐹 (𝑢, 𝑟) + 𝜆

𝛼
2𝐹 (V, 𝑡) . (23)

For all (𝑢, 𝑟), (V, 𝑡) ∈ R2 and 𝜆1, 𝜆2 ∈ [0, 1] with 𝜆1 + 𝜆2 = 1.

Theorem 13. Let 0 < 𝑠 < 1. If 𝑓, 𝑔 : R → R and 𝑓, 𝑔 ∈ 𝐾
1
𝑠

and if𝐹 : R2 → R𝛼 is a generalized convex and nondecreasing
function in each variable, then the function ℎ : R+ → R𝛼

defined by

ℎ (𝑢) = 𝐹 (𝑓 (𝑢) , 𝑔 (𝑢)) (24)

is in 𝐺𝐾
1
𝑠 . In particular, if 𝑓, 𝑔 ∈ 𝐾

1
𝑠 , then 𝑓

𝛼
+ 𝑔
𝛼,

max{𝑓𝛼, 𝑔𝛼} ∈ 𝐺𝐾
1
𝑠 .

Proof. If 𝑢, V ∈ R+, then for all 𝜆1, 𝜆2 ≥ 0 with 𝜆
𝑠
1 + 𝜆
𝑠
2 = 1,

ℎ (𝜆1𝑢 + 𝜆2V)

= 𝐹 (𝑓 (𝜆1𝑢 + 𝜆2V) , 𝑔 (𝜆1𝑢 + 𝜆2V))

≤ 𝐹 (𝜆
𝑠
1𝑓 (𝑢) + 𝜆

𝑠
2𝑓 (V) , 𝜆𝑠1𝑔 (𝑢) + 𝜆

𝑠
2𝑔 (V))

≤ 𝜆
𝑠𝛼
1 𝐹 (𝑓 (𝑢) , 𝑔 (𝑢)) + 𝜆

𝑠𝛼
2 𝐹 (𝑓 (V) , 𝑔 (V))

= 𝜆
𝑠𝛼
1 ℎ (𝑢) + 𝜆

𝑠𝛼
2 ℎ (V) .

(25)

Thus, ℎ ∈ 𝐺𝐾
1
𝑠 .

Moreover, since 𝐹(𝑢, V) = 𝑢
𝛼
+ V𝛼, 𝐹(𝑢, V) = max{𝑢𝛼, V𝛼}

are nondecreasing generalized convex functions on 𝑅
2, so

they yield particular cases of our theorem.

Let us pay attention to the situation when the condition
𝜆
𝑠
1+𝜆
𝑠
2 = 1 (𝜆1+𝜆2 = 1) in the definition of𝐺𝐾

1
𝑠 (𝐺𝐾
2
𝑠 ) can be

equivalently replaced by the condition 𝜆
𝑠
1 +𝜆
𝑠
2 ≤ 1 (𝜆1 +𝜆2 ≤

1).

Theorem 14. (a) Let 𝑓 ∈ 𝐺𝐾
1
𝑠 . Then inequality (10) holds for

all 𝑢, V ∈ 𝑅+ and all 𝜆1, 𝜆2 ≥ 0 with 𝜆
𝑠
1 + 𝜆
𝑠
2 < 1 if and only if

𝑓(0) ≤ 0
𝛼.

(b) Let𝑓 ∈ 𝐺𝐾
2
𝑠 .Then inequality (11) holds for all 𝑢, V ∈ 𝑅+

and all 𝜆1, 𝜆2 ≥ 0 with 𝜆1 + 𝜆2 < 1 if and only if 𝑓(0) = 0
𝛼.

Proof. (a) Necessity is obvious by taking 𝑢 = V = 0 and 𝜆1 =

𝜆2 = 0. Let us show the sufficiency.
Assume that 𝑢, V ∈ R+ and 𝜆1, 𝜆2 ≥ 0 with 0 < 𝜆3 =

𝜆
𝑠
1 + 𝜆
𝑠
2 < 1. Put 𝑎 = 𝜆1𝜆

−1/𝑠
3 and 𝑏 = 𝜆2𝜆

−1/𝑠
3 . Then 𝑎

𝑠
+ 𝑏
𝑠
=

𝜆
𝑠
1/𝜆3 + 𝜆

𝑠
2/𝜆3 = 1 and

𝑓 (𝜆1𝑢 + 𝜆2V)

= 𝑓 (𝑎𝜆
1/𝑠
3 𝑢 + 𝑏𝜆

1/𝑠
3 V)

≤ 𝑎
𝑠𝛼
𝑓 (𝜆
1/𝑠
3 𝑢) + 𝑏

𝑠𝛼
𝑓 (𝜆
1/𝑠
3 V)
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= 𝑎
𝑠𝛼
𝑓 [𝜆
1/𝑠
3 𝑢 + (1 − 𝜆3)

1/𝑠
0]

+ 𝑏
𝑠𝛼
𝑓 [𝜆
1/𝑠
3 V + (1 − 𝜆3)

1/𝑠
0]

≤ 𝑎
𝑠𝛼

[𝜆
𝛼
3𝑓 (𝑢) + (1 − 𝜆3)

𝛼
𝑓 (0)]

+ 𝑏
𝑠𝛼

[𝜆
𝛼
3𝑓 (V) + (1 − 𝜆3)

𝛼
𝑓 (0)]

= 𝑎
𝑠𝛼
𝜆
𝛼
3𝑓 (𝑢) + 𝑏

𝑠𝛼
𝜆
𝛼
3𝑓 (V) + (1 − 𝜆3)

𝛼
𝑓 (0)

≤ 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) .

(26)

(b) Necessity. Taking 𝑢 = V = 𝜆1 = 𝜆2 = 0, we obtain
𝑓(0) ≤ 0

𝛼. And using Theorem 10(b), we get 𝑓(0) ≥ 0
𝛼.

Therefore 𝑓(0) = 0
𝛼.

Sufficiency. Let 𝑢, V ∈ R+ and 𝜆1, 𝜆2 ≥ 0 with 0 < 𝜆3 =

𝜆1+𝜆2 < 1. Put 𝑎 = 𝜆1/𝜆3 and 𝑏 = 𝜆2/𝜆3, and then 𝑎+𝑏 = 1.
So,

𝑓 (𝜆1𝑢 + 𝜆2V)

= 𝑓 (𝑎𝜆3𝑢 + 𝑏𝜆3V)

≤ 𝑎
𝑠𝛼
𝑓 (𝜆3𝑢) + 𝑏

𝑠𝛼
𝑓 (𝜆3V)

= 𝑎
𝑠𝛼
𝑓 [𝜆3𝑢 + (1 − 𝜆3) 0]

+ 𝑏
𝑠𝛼
𝑓 [𝜆3V + (1 − 𝜆3) 0]

≤ 𝑎
𝑠𝛼

[𝜆
𝑠𝛼
3 𝑓 (𝑢) + (1 − 𝜆3)

𝑠𝛼
𝑓 (0)]

+ 𝑏
𝑠𝛼

[𝜆
𝑠𝛼
3 𝑓 (V) + (1 − 𝜆3)

𝑠𝛼
𝑓 (0)]

= 𝑎
𝑠𝛼
𝜆
𝑠𝛼
3 𝑓 (𝑢) + 𝑏

𝑠𝛼
𝜆
𝑠𝛼
3 𝑓 (V)

+ (1 − 𝜆3)
𝑠𝛼
𝑓 (0)

= 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) .

(27)

Theorem 15. (a) Let 0 < 𝑠 ≤ 1. If 𝑓 ∈ 𝐺𝐾
2
𝑠 and 𝑓(0) = 0

𝛼,
then 𝑓 ∈ 𝐺𝐾

1
𝑠 .

(b) Let 0 < 𝑠1 ≤ 𝑠2 ≤ 1. If 𝑓 ∈ 𝐺𝐾
2
𝑠2
and 𝑓(0) = 0

𝛼, then
𝑓 ∈ 𝐺𝐾

2
𝑠1
.

(c) Let 0 < 𝑠1 ≤ 𝑠2 ≤ 1. If 𝑓 ∈ 𝐺𝐾
1
𝑠2
and 𝑓(0) ≤ 0

𝛼, then
𝑓 ∈ 𝐺𝐾

1
𝑠1
.

Proof. (a)Assume that𝑓 ∈ 𝐺𝐾
2
𝑠 and𝑓(0) = 0

𝛼. Let𝜆1, 𝜆2 ≥ 0

with 𝜆
𝑠
1 + 𝜆
𝑠
2 = 1, and we have 𝜆1 + 𝜆2 ≤ 𝜆

𝑠
1 + 𝜆
𝑠
2 = 1. From

Theorem 14(b), we can get

𝑓 (𝜆1𝑢 + 𝜆2V) ≤ 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) , (28)

for 𝑢, V ∈ R+, and then 𝑓 ∈ 𝐺𝐾
1
𝑠 .

(b) Assume that 𝑓 ∈ 𝐺𝐾
2
𝑠2
, 𝑢, V ∈ R+, and 𝜆1, 𝜆2 ≥ 0 with

𝜆1 + 𝜆2 = 1. Then we have

𝑓 (𝜆1𝑢 + 𝜆2V) ≤ 𝜆
𝑠2𝛼
1 𝑓 (𝑢) + 𝜆

𝑠2𝛼
2 𝑓 (V)

≤ 𝜆
𝑠1𝛼
1 𝑓 (𝑢) + 𝜆

𝑠1𝛼
2 𝑓 (V) .

(29)

So 𝑓 ∈ 𝐺𝐾
2
𝑠1
.

(c) Assume that 𝑓 ∈ 𝐺𝐾
1
𝑠2
, 𝑢, V ∈ 𝑅+, and 𝜆1, 𝜆2 ≥ 0 with

𝜆
𝑠1
1 + 𝜆
𝑠1
2 = 1. Then 𝜆

𝑠2
1 + 𝜆
𝑠2
2 ≤ 𝜆

𝑠1
1 + 𝜆
𝑠1
2 = 1. Thus, according

toTheorem 14(a), we have

𝑓 (𝜆1𝑢 + 𝜆2V) ≤ 𝜆
𝑠2𝛼
1 𝑓 (𝑢) + 𝜆

𝑠2𝛼
2 𝑓 (V)

≤ 𝜆
𝑠1𝛼
1 𝑓 (𝑢) + 𝜆

𝑠1𝛼
2 𝑓 (V) .

(30)

So, 𝑓 ∈ 𝐺𝐾
1
𝑠1
.

Theorem 16. Let 0 < 𝑠 < 1 and 𝑝 : R+ → R𝛼+ be a nonde-
creasing function. Then the function 𝑓 defined for 𝑢 ∈ R+ by

𝑓 (𝑢) = 𝑢
(𝑠/(1−𝑠))𝛼

𝑝 (𝑢) (31)

belongs to 𝐺𝐾
1
𝑠 .

Proof. Let V ≥ 𝑢 ≥ 0 and 𝜆1, 𝜆2 ≥ 0 with 𝜆
𝑠
1 + 𝜆
𝑠
2 = 1. We

consider two cases.

Case I. It is easy to see that 𝑓 is a nondecreasing function. Let
𝜆1𝑢 + 𝜆2V ≤ 𝑢, and then

𝑓 (𝜆1𝑢 + 𝜆2V) ≤ 𝑓 (𝑢) = (𝜆
𝑠𝛼
1 + 𝜆

𝑠𝛼
2 ) 𝑓 (𝑢)

≤ 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) .

(32)

Case II. Let 𝜆1𝑢 + 𝜆2V > 𝑢, and then 𝜆2V > (1 − 𝜆1)𝑢. So,
𝜆2 > 0 and 𝜆1 ≤ 𝜆

𝑠
1. Thus,

𝜆1 − 𝜆
𝑠+1
1 ≤ 𝜆

𝑠
1 − 𝜆
𝑠+1
1 ; (33)

that is,

𝜆1

(1 − 𝜆1)
≤

𝜆
𝑠
1

(1 − 𝜆
𝑠
1)

=
(1 − 𝜆

𝑠
2)

𝜆
𝑠
2

,

𝜆1𝜆2

(1 − 𝜆1)
≤ 𝜆
1−𝑠
2 − 𝜆2.

(34)

Thus, we can get that

𝜆1𝑢 + 𝜆2V ≤ (𝜆1 + 𝜆2) V ≤ (𝜆
𝑠
1 + 𝜆
𝑠
2) V = V,

𝜆1𝑢 + 𝜆2V ≤
𝜆1𝜆2V

(1 − 𝜆1)
+ 𝜆2V

≤ (𝜆
1−𝑠
2 − 𝜆2) V + 𝜆2V = 𝜆

1−𝑠
2 V.

(35)

Then,

(𝜆1𝑢 + 𝜆2V)
𝑠/(1−𝑠)

≤ 𝜆
𝑠
2V
𝑠/(1−𝑠)

. (36)
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We obtain

𝑓 (𝜆1𝑢 + 𝜆2V) = (𝜆1𝑢 + 𝜆2V)
(𝑠/(1−𝑠))𝛼

𝑝 (𝜆1𝑢 + 𝜆2V)

≤ 𝜆
𝑠𝛼
2 V
(𝑠/(1−𝑠))𝛼

𝑝 (V)

= 𝜆
𝑠𝛼
2 𝑓 (V) ≤ 𝜆

𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) .

(37)

Theorem 17. (a) Let 𝑓 ∈ 𝐺𝐾
1
𝑠1
and 𝑔 ∈ 𝐾

1
𝑠2
, where 0 < 𝑠1,

𝑠2 ≤ 1. If 𝑓 is a nondecreasing function and 𝑔 is a nonnegative
function such that 𝑓(0) ≤ 0

𝛼 and 𝑔(0) = 0, then the
composition 𝑓 ∘ 𝑔 of 𝑓 with 𝑔 belongs to 𝐺𝐾

1
𝑠 , where 𝑠 = 𝑠1𝑠2.

(b) Let 𝑓 ∈ 𝐺𝐾
1
𝑠1
and 𝑔 ∈ 𝐺𝐾

1
𝑠2
, where 0 < 𝑠1, 𝑠2 ≤ 1.

Assume that 0 < 𝑠1, 𝑠2 < 1. If 𝑓 and 𝑔 are nonnegative
functions such that either 𝑓(0) = 0

𝛼 and 𝑔(0
+
) = 𝑔(0), or

𝑔(0) = 0
𝛼 and 𝑓(0

+
) = 𝑓(0), then the product 𝑓𝑔 of 𝑓 and 𝑔

belongs to 𝐺𝐾
1
𝑠 , where 𝑠 = min{𝑠1, 𝑠2}.

Proof. (a) Let 𝑢, V ∈ R+, 𝜆1, 𝜆2 ≥ 0 with 𝜆
𝑠
1 + 𝜆
𝑠
2 = 1, where

𝑠 = 𝑠1𝑠2. Since 𝜆
𝑠𝑖
1 + 𝜆
𝑠𝑖
2 ≤ 𝜆

𝑠1𝑠2
1 + 𝜆

𝑠1𝑠2
2 = 1 for 𝑖 = 1, 2, then

according to Theorem 3(a) in [3] and Theorem 14(a) in the
paper, we have

𝑓 ∘ 𝑔 (𝜆1𝑢 + 𝜆2V)

= 𝑓 (𝑔 (𝜆1𝑢 + 𝜆2V))

≤ 𝑓 (𝜆
𝑠2
1 𝑔 (𝑢) + 𝜆

𝑠2
2 𝑔 (V))

≤ 𝜆
𝑠1𝑠2𝛼
1 𝑓 (𝑔 (𝑢)) + 𝜆

𝑠1𝑠2𝛼
2 𝑓 (𝑔 (V))

= 𝜆
𝑠𝛼
1 𝑓 ∘ 𝑔 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 ∘ 𝑔 (V)

(38)

which means that 𝑓 ∘ 𝑔 ∈ 𝐺𝐾
1
𝑠 .

(b) According to Theorem 10(a), 𝑓, 𝑔 are nondecreasing
on (0, +∞).

So,

(𝑓 (𝑢) − 𝑓 (V)) (𝑔 (V) − 𝑔 (𝑢)) ≤ 0
𝛼
, (39)

or, equivalently,

𝑓 (𝑢) 𝑔 (V) + 𝑓 (V) 𝑔 (𝑢) ≤ 𝑓 (𝑢) 𝑔 (𝑢) + 𝑓 (V) 𝑔 (V) , (40)

for all V > 𝑢 > 0.
If V > 𝑢 = 0, then the inequality is still true because 𝑓, 𝑔

are nonnegative and either 𝑓(0) = 0
𝛼 and 𝑔(0

+
) = 𝑔(0) or

𝑔(0) = 0
𝛼 and 𝑓(0

+
) = 𝑓(0).

Now let 𝑢, V ∈ R+ and 𝜆1, 𝜆2 ≥ 0 with 𝜆
𝑠
1 + 𝜆
𝑠
2 = 1, where

𝑠 = min{𝑠1, 𝑠2}. Then 𝜆
𝑠𝑖
1 + 𝜆
𝑠𝑖
2 ≤ 𝜆
𝑠
1 + 𝜆
𝑠
2 = 1 for 𝑖 = 1, 2. And

byTheorem 14(a), we have

𝑓 (𝜆1𝑢 + 𝜆2V) 𝑔 (𝜆1𝑢 + 𝜆2V)

≤ (𝜆
𝑠1𝛼
1 𝑓 (𝑢) + 𝜆

𝑠1𝛼
2 𝑓 (V))

× (𝜆
𝑠2𝛼
1 𝑔 (𝑢) + 𝜆

𝑠2𝛼
2 𝑔 (V))

= 𝜆
(𝑠1+𝑠2)𝛼
1 𝑓 (𝑢) 𝑔 (𝑢) + 𝜆

𝑠1𝛼
1 𝜆
𝑠2𝛼
2 𝑓 (𝑢) 𝑔 (V)

+ 𝜆
𝑠2𝛼
1 𝜆
𝑠1𝛼
2 𝑓 (V) 𝑔 (𝑢) + 𝜆

(𝑠1+𝑠2)𝛼
2 𝑓 (V) 𝑔 (V)

≤ 𝜆
2𝑠𝛼
1 𝑓 (𝑢) 𝑔 (𝑢)

+ 𝜆
𝑠𝛼
1 𝜆
𝑠𝛼
2 (𝑓 (𝑢) 𝑔 (V) + 𝑓 (V) 𝑔 (𝑢))

+ 𝜆
2𝑠𝛼
2 𝑓 (V) 𝑔 (V)

≤ 𝜆
2𝑠𝛼
1 𝑓 (𝑢) 𝑔 (𝑢)

+ 𝜆
𝑠𝛼
1 𝜆
𝑠𝛼
2 (𝑓 (𝑢) 𝑔 (𝑢) + 𝑓 (V) 𝑔 (V))

+ 𝜆
2𝑠𝛼
2 𝑓 (V) 𝑔 (V)

= 𝜆
𝑠𝛼
1 𝑓 (𝑢) 𝑔 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) 𝑔 (V) ,

(41)

which means that 𝑓𝑔 ∈ 𝐺𝐾
1
𝑠 .

Remark 18. From the above proof, we can get that if 𝑓 is a
nondecreasing function in𝐺𝐾

2
𝑠 and𝑔 is a nonnegative convex

function on [0, +∞), then the composition 𝑓 ∘ 𝑔 of 𝑓 with 𝑔

belongs to 𝐺𝐾
2
𝑠 .

Remark 19. Generalized convex functions on [0, +∞) need
not be monotonic. However, if 𝑓 and 𝑔 are nonnegative,
generalized convex and either both are nondecreasing or both
are nonincreasing on [0, +∞), then the product 𝑓𝑔 is also a
generalized convex function.

Let 𝑓 : R+ → R+ be a continuous function. Then 𝑓 is
said to be a 𝜑-function if 𝑓(0) = 0 and 𝑓 is nondecreasing
onR+. Similarly, we can define the 𝜑-type function on fractal
sets as follows. A function𝑓 : R+ → R𝛼+ is said to be a𝜑-type
function if 𝑓(0) = 0

𝛼 and 𝑓 ∈ 𝐶𝛼(R+) is nondecreasing.

Corollary 20. IfΦ is a generalized convex𝜑-type function and
𝑔 ∈ 𝐾

1
𝑠 is a 𝜑-function, then the composition Φ ∘ 𝑔 belongs to

𝐺𝐾
1
𝑠 . In particular, the 𝜑-type function ℎ(𝑢) = Φ(𝑢

𝑠
) belongs

to 𝐺𝐾
1
𝑠 .

Corollary 21. If Φ is a convex 𝜑-function and 𝑓 ∈ 𝐺𝐾
2
𝑠 is a

𝜑-type function, then the composition 𝑓 ∘ Φ belongs to 𝐺𝐾
2
𝑠 .

In particular, the 𝜑-type function ℎ(𝑢) = [Φ(𝑢)]
𝑠𝛼 belongs to

𝐺𝐾
2
𝑠 .

Theorem 22. If 0 < 𝑠 < 1 and 𝑓 ∈ 𝐺𝐾
1
𝑠 is a 𝜑-type function,

then there exists a generalized convex 𝜑-type function Φ such
that

𝑓 (2
−1/𝑠

𝑢) ≤ Φ (𝑢
𝑠
) ≤ 𝑓 (𝑢) , (42)

for all 𝑢 ≥ 0.

Proof. By the generalized 𝑠-convexity of the function 𝑓 and
by 𝑓(0) = 0

𝛼, we obtain 𝑓(𝜆1𝑢) ≤ 𝜆
𝑠𝛼
1 𝑓(𝑢) for all 𝑢 ≥ 0 and

all 𝜆1 ∈ [0, 1].
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Assume now that V > 𝑢 > 0. Then

𝑓 (𝑢
1/𝑠

) ≤ 𝑓((
𝑢

V
)

1/𝑠

V1/𝑠) ≤ (
𝑢
𝛼

V𝛼
)𝑓 (V1/𝑠) ; (43)

that is,

𝑓 (𝑢
1/𝑠

)

𝑢𝛼
≤

𝑓 (V1/𝑠)
V𝛼

. (44)

Inequality (44) means that the function 𝑓(𝑢
1/𝑠

)/𝑢
𝛼 is a

nondecreasing function on (0, +∞). And, since 𝑓 is a 𝜑-type
function, thus 𝑓 is local fractional continuous [0, +∞).

Define

Φ (𝑢) =

{{

{{

{

0
𝛼
, 𝑢 = 0,

Γ(1 + 𝛼)0𝐼
(𝛼)
𝑢 (

𝑓(𝑡
1/𝑠

)

𝑡𝛼
) , 𝑢 > 0.

(45)

From Lemmas 6 and 7, it is easy to see that Φ is a
generalized convex 𝜑-type function and

Φ(𝑢
𝑠
) = Γ(1 + 𝛼)0𝐼

(𝛼)
𝑢𝑠 (

𝑓(𝑡
1/𝑠

)

𝑡𝛼
)

≤ (

𝑓((𝑢
𝑠
)
1/𝑠

)

𝑢𝑠𝛼
)𝑢
𝑠𝛼

= 𝑓 (𝑢) .

(46)

Moreover,

Φ(𝑢
𝑠
) ≥ Γ(1 + 𝛼)(𝑢𝑠/2)𝐼

(𝛼)
𝑢𝑠 (

𝑓(𝑡
1/𝑠

)

𝑡𝛼
)

≥

(𝑓((𝑢
𝑠
/2)
1/𝑠

) 2
𝛼
𝑢
−𝑠𝛼

) 𝑢
𝑠𝛼

2𝛼
= 𝑓 (2

−1/𝑠
𝑢) .

(47)

Therefore,

𝑓 (2
−1/𝑠

𝑢) ≤ Φ (𝑢
𝑠
) ≤ 𝑓 (𝑢) , (48)

for all 𝑢 ≥ 0.

4. Applications

Based on the properties of the two kinds of generalized 𝑠-
convex functions in the above section, some applications are
given.

Example 1. Let 0 < 𝑠 < 1, and 𝑎
𝛼
, 𝑏
𝛼
, 𝑐
𝛼

∈ R𝛼. For 𝑢 ∈ R+,
define

𝑓 (𝑢) = {
𝑎
𝛼
, 𝑢 = 0,

𝑏
𝛼
𝑢
𝑠𝛼

+ 𝑐
𝛼
, 𝑢 > 0.

(49)

We have the following conclusions.

(i) If 𝑏𝛼 ≥ 0
𝛼 and 𝑐

𝛼
≤ 𝑎
𝛼, then 𝑓 ∈ 𝐺𝐾

1
𝑠 .

(ii) If 𝑏𝛼 ≥ 0
𝛼 and 𝑐

𝛼
< 𝑎
𝛼, then 𝑓 is nondecreasing on

(0, +∞) but not on [0, +∞).

(iii) If 𝑏𝛼 ≥ 0
𝛼 and 0

𝛼
≤ 𝑐
𝛼
≤ 𝑎
𝛼, then 𝑓 ∈ 𝐺𝐾

2
𝑠 .

(iv) If 𝑏𝛼 > 0
𝛼 and 𝑐

𝛼
< 0
𝛼, then 𝑓 ∉ 𝐺𝐾

2
𝑠 .

Proof. (i) Let 𝜆1, 𝜆2 ≥ 0with 𝜆
𝑠
1 +𝜆
𝑠
2 = 1. Then, there are two

nontrivial cases.

Case I. Let 𝑢, V > 0. Then 𝜆1𝑢 + 𝜆2V > 0.
Thus,

𝑓 (𝜆1𝑢 + 𝜆2V) = 𝑏
𝛼
(𝜆1𝑢 + 𝜆2V)

𝑠𝛼
+ 𝑐
𝛼

≤ 𝑏
𝛼
(𝜆
𝑠𝛼
1 𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼
2 V
𝑠𝛼
) + 𝑐
𝛼

= 𝑏
𝛼
(𝜆
𝑠𝛼
1 𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼
2 V
𝑠𝛼
) + 𝑐
𝛼
(𝜆
𝑠𝛼
1 + 𝜆

𝑠𝛼
2 )

= 𝜆
𝑠𝛼
1 (𝑏
𝛼
𝑢
𝑠𝛼

+ 𝑐
𝛼
) + 𝜆
𝑠𝛼
2 (𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼
)

= 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) .

(50)

Case II. Let V > 𝑢 = 0. We need only to consider 𝜆2 > 0.
Thus, we have

𝑓 (𝜆10 + 𝜆2V) = 𝑓 (𝜆2V)

= 𝑏
𝛼
𝜆
𝑠𝛼
2 V
𝑠𝛼

+ 𝑐
𝛼

= 𝑏
𝛼
𝜆
𝑠𝛼
2 V
𝑠𝛼

+ 𝑐
𝛼
(𝜆
𝑠𝛼
1 + 𝜆

𝑠𝛼
2 )

= 𝜆
𝑠𝛼
1 𝑐
𝛼
+ 𝜆
𝑠𝛼
2 (𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼
)

= 𝜆
𝑠𝛼
1 𝑐
𝛼
+ 𝜆
𝑠𝛼
2 𝑓 (V)

≤ 𝜆
𝑠𝛼
1 𝑎
𝛼
+ 𝜆
𝑠𝛼
2 𝑓 (V)

= 𝜆
𝑠𝛼
1 𝑓 (0) + 𝜆

𝑠𝛼
2 𝑓 (V) .

(51)

So, 𝑓 ∈ 𝐺𝐾
1
𝑠 .

(ii) FromTheorem 10, we can see that property (ii) is true.
(iii) Let𝜆1, 𝜆2 ≥ 0with𝜆1+𝜆2 = 1. Similar to the estimate

of (i), there are also two cases.
Let V, V > 0. Then 𝜆1𝑢 + 𝜆2V > 0,
Thus,

𝑓 (𝜆1𝑢 + 𝜆2V)

= 𝑏
𝛼
(𝜆1𝑢 + 𝜆2V)

𝑠𝛼
+ 𝑐
𝛼

< 𝑏
𝛼
(𝜆
𝑠𝛼
1 𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼
2 V
𝑠𝛼
) + 𝑐
𝛼
(𝜆
𝛼
1 + 𝜆
𝛼
2)

≤ 𝑏
𝛼
(𝜆
𝑠𝛼
1 𝑢
𝑠𝛼

+ 𝜆
𝑠𝛼
2 V
𝑠𝛼
) + 𝑐
𝛼
(𝜆
𝑠𝛼
1 + 𝜆

𝑠𝛼
2 )

= 𝜆
𝑠𝛼
1 (𝑏
𝛼
𝑢
𝑠𝛼

+ 𝑐
𝛼
) + 𝜆
𝑠𝛼
2 (𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼
)

≤ 𝜆
𝑠𝛼
1 𝑓 (𝑢) + 𝜆

𝑠𝛼
2 𝑓 (V) .

(52)

Let V > 𝑢 = 0. We need only to consider 𝜆2 > 0.
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Thus, we have

𝑓 (𝜆10 + 𝜆2V) = 𝑓 (𝜆2V)

= 𝑏
𝛼
𝜆
𝑠𝛼
2 V
𝑠𝛼

+ 𝑐
𝛼
(𝜆
𝛼
1 + 𝜆
𝛼
2)

< 𝑏
𝛼
𝜆
𝑠𝛼
2 V
𝑠𝛼

+ 𝑐
𝛼
(𝜆
𝑠𝛼
1 + 𝜆

𝑠𝛼
2 )

= 𝜆
𝑠𝛼
2 (𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼
) + 𝑐
𝛼
𝜆
𝑠𝛼
1

≤ 𝜆
𝑠𝛼
2 (𝑏
𝛼V𝑠𝛼 + 𝑐

𝛼
) + 𝑎
𝛼
𝜆
𝑠𝛼
1

= 𝜆
𝑠𝛼
2 𝑓 (V) + 𝜆

𝑠𝛼
1 𝑓 (0) .

(53)

So, 𝑓 ∈ 𝐺𝐾
2
𝑠 .

(iv) Assume that 𝑓 ∈ 𝐺𝐾
2
𝑠 , and then 𝑓 is nonnegative

on (0,∞). On the other hand, we can take 𝑢1 > 0, 𝑐1 < 0

such that 𝑓(𝑢1) = 𝑏
𝛼
𝑢
𝑠𝛼
1 + 𝑐

𝛼
1 < 0

𝛼, which contradict the
assumption.

Example 2. Let 0 < 𝑠 < 1 and 𝑘 > 1. For 𝑢 ∈ 𝑅+, define

𝑓 (𝑢) = {
𝑢
(𝑠/(1−𝑠))𝛼

, 0 ≤ 𝑢 ≤ 1,

𝑘
𝛼
𝑢
(𝑠/(1−𝑠))𝛼

, 𝑢 > 1.
(54)

The function 𝑓 is nonnegative, not local fractional continu-
ous at 𝑢 = 1 and belongs to 𝐺𝐾

1
𝑠 but not to 𝐺𝐾

2
𝑠 .

Proof. From Theorem 16, we have that 𝑓 ∈ 𝐺𝐾
1
𝑠 . In the

following, let us show that 𝑓 is not in 𝐺𝐾
2
𝑠 .

Take an arbitrary 𝑎 > 1 and put 𝑢 = 1. Consider all V > 1

such that 𝜆1𝑢 + 𝜆2V = 𝜆1 + 𝜆2V = 𝑎, where 𝜆1, 𝜆2 ≥ 0 and
𝜆1 + 𝜆2 = 1.

If 𝑓 ∈ 𝐺𝐾
2
𝑠 , it must be

𝑘
𝛼
𝑎
(𝑠/(1−𝑠))𝛼

≤ 𝜆
𝑠𝛼
1 + 𝑘
𝛼
(1 − 𝜆1)

𝑠𝛼
[
(𝑎 − 𝜆1)

(1 − 𝜆1)
]

(𝑠/(1−𝑠))𝛼

,

(55)

for all 𝑎 > 1 and all 0 ≤ 𝜆1 ≤ 1.
Define the function

𝑓𝜆1
(𝑎) = 𝜆

𝑠𝛼
1 + 𝑘
𝛼
(1 − 𝜆1)

𝑠𝛼
[
(𝑎 − 𝜆1)

(1 − 𝜆1)
]

(𝑠/(1−𝑠))𝛼

− 𝑘
𝛼
𝑎
(𝑠/(1−𝑠))𝛼

.

(56)

Then the function is local fractional continuous on the
(𝜆1,∞) and

𝑔 (𝜆1) = 𝑓𝜆1
(1) = 𝜆

𝑠𝛼
1 + 𝑘
𝛼
(1 − 𝜆1)

𝑠𝛼
− 𝑘
𝛼
. (57)

It is easy to see that 𝑔 is local fractional continuous on
[0, 1] and 𝑔(1) = 1

𝛼
− 𝑘
𝛼
< 0
𝛼. So there is a number 𝜆10 , 0 <

𝜆10
< 1, such that 𝑔(𝜆10) = 𝑓𝜆10

(1) < 0
𝛼. The local fractional

continuity of 𝑓𝜆10 yields that 𝑓𝜆10 (𝑎) < 0
𝛼 for a certain 𝑎 > 1,

that is, inequality (55) does not hold, which means that 𝑓 ∉

𝐺𝐾
2
𝑠 .

5. Conclusion

In the paper, we introduce the definitions of two kinds of
generalized 𝑠-convex function on fractal sets and study the
properties of these generalized 𝑠-convex functions.When𝛼 =

1, these results are the classical situation.
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The purpose of this paper is to provide a Jacobi-collocation method for solving second kind Volterra integral equations with a
smooth kernel. This method leads to a fully discrete integral operator. First, it is shown that the fully discrete integral operator
is stable in both 𝐿

∞ and weighted 𝐿
2 norms. Then, the proposed approach is proved to arrive at an optimal (the most possible)

convergent order in both norms. One numerical example demonstrates the efficiency and accuracy of the proposed method.

1. Introduction

In this paper, we provide a Jacobi-collocation approach for
solving the second kindVolterra integral equation of the form

𝑢 (𝑥) + ∫

𝑥

−1
𝑘 (𝑥, 𝑡) 𝑢 (𝑡) 𝑑𝑡 = 𝑓 (𝑥) , 𝑥 ∈ 𝐼 := [−1, 1] , (1)

where the kernel function 𝑘 and the input function 𝑓 are
given smooth functions about their variables and 𝑢 is the
unknown function to be determined.

For ease of analysis, we will write (1) into an operator
form. By introducing the integral operatorK by

(KV) (𝑥) := ∫

𝑥

−1
𝑘 (𝑥, 𝑡) V (𝑡) 𝑑𝑡, 𝑥 ∈ 𝐼, (2)

(1) is reformulated as

(I +K) 𝑢 = 𝑓. (3)

It is well known that there are many numerical methods
for solving second kind Volterra integral equations such as
the Runge-Kutta method and the collocation method based
on piecewise polynomials; see, for example, Brunner [1] and
references therein. For more information of the progress
on the study of the problem, we refer the readers to [2–8].
Recently, a few works touched the spectral approximation
to Volterra integral equations. In [9], Elnagar and Kazemi

provided a novel Chebyshev spectral method for solving
nonlinear Volterra-Hammerstein integral equations. Then,
this method was investigated by Fujiwara in [10] for solving
the first kind Fredholm integral equation under multiple-
precision arithmetic. Nevertheless, no theoretical results were
provided to justify the high accuracy. In [11], Tang et al.
developed a novel Legendre-collocation method for solving
(3). Inspired by the work of [11], Chen and Tang in [5, 12]
obtained the spectral Jacobi-collocation method for solving
the second kind Volterra integral equations with general
weakly singular kernels 𝑘(𝑥, 𝑡)(𝑥−𝑡)−𝜇 for−1 < 𝜇 < 0. In [13],
a spectral and pseudospectral Jacobi-Galerkin approach was
presented for solving (3). In [14], Wei and Chen considered a
spectral Jacobi-collocation method for solving Volterra type
integrodifferential equation. In [15], Cai considered a Jacobi-
collocation method for solving Fredholm integral equations
of second kind with weakly singular kernels.

Unfortunately, all these papers [5, 11–14] give the conver-
gence analysis but suffer from the stability analysis. Because
of lack of the stability analysis, the approximate solutiondoes
not attain the most possible convergence order. Moreover, all
of those papers do not answer that the approximate equation
has a unique solution. Hence, in this paper, we will provide
a Jacobi-collocation method for solving (3), which extends
the Legendre spectral method developed in [11].This spectral
method leads to a fully discrete linear system. We are going
to show that the fully discrete integral operator is stabile; that
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is, the approximate equation has a unique solution, and then,
present the optimal (the most possible) convergent order of
the approximate solution based on the stability analysis. We
organize this paper as follows. In Section 2, as demonstrated
in [13], we review a spectral Jacobi-collocation method for
solving (3). In Section 3, a few important results are presented
to analyze the Jacobi-collocation approach. In Sections 4
and 5, we analyze the Jacobi-collocation method, including
the stability of the approximate equation and the convergent
order of the approximate solution, in both 𝐿

∞ and weighted
𝐿
2 norms, respectively. In Section 6, one numerical example

is presented to show the efficiency and accuracy of this
method.

The problem under study deserves more investigations in
future works. Moreover, we believe that the semianalytical
approaches are useful to investigate the problem. For related
terminologies and applications of semianalytical approaches,
please refer to [16–18].

2. A Spectral Jacobi-Collocation Method

In this section, we are going to review the spectral Jacobi-
collocation method for solving (3). To this end, we introduce
several index sets: N := {1, 2, . . . , 𝑛, . . .}, N0 := N ∪ {0} and
Z𝑛 := {0, 1, 2, . . . , 𝑛}. We let 𝑤𝛼,𝛽(𝑥) := (1 − 𝑥)

𝛼
(1 + 𝑥)

𝛽 for
𝛼, 𝛽 > −1 be a weight function and then use the notation
𝐿
2
𝑤𝛼,𝛽

(𝐼) to be the set of all square integrable functions
associated with the weight function 𝑤

𝛼,𝛽, equipped with the
norm

‖V‖𝑤𝛼,𝛽 := (∫
𝐼
𝑤
𝛼,𝛽

(𝑡)V2(𝑡)𝑑𝑡)
1/2

. (4)

For 𝑛 ∈ N, we denote the points by 𝑥𝛼,𝛽𝑖 , 𝑖 ∈ Z𝑛 to be the set of
𝑛 + 1 Jacobi-Gauss points corresponding to the Jacobi weight
function 𝑤

𝛼,𝛽. By introducing

𝜋 (𝑥) := (𝑥 − 𝑥
𝛼,𝛽
0 ) (𝑥 − 𝑥

𝛼,𝛽
1 ) ⋅ ⋅ ⋅ (𝑥 − 𝑥

𝛼,𝛽
𝑛 ) , (5)

we define the Lagrange fundamental interpolation polyno-
mial 𝐿𝛼,𝛽𝑖 , 𝑖 ∈ Z𝑛 by

𝐿
𝛼,𝛽
𝑖 (𝑥) :=

𝜋 (𝑥)

(𝑥 − 𝑥
𝛼,𝛽
𝑖 ) 𝜋 (𝑥

𝛼,𝛽
𝑖 )

, 𝑥 ∈ 𝐼. (6)

Let 𝑃𝑛 be the set of all polynomials of degree not more than
𝑛; clearly,

𝑃𝑛 = span {𝐿
𝛼,𝛽
𝑖 : 𝑖 ∈ Z𝑛} . (7)

We use the notion 𝐶(𝐼) to denote the set of all continuous
functions on 𝐼, equipped with the norm

‖V‖∞ := max
𝑥∈𝐼

|V (𝑥)| . (8)

For 𝑠 ∈ 𝐼, we define a linear functional 𝛿𝑠 on 𝐶(𝐼) such that,
for any V ∈ 𝐶(𝐼),

⟨𝛿𝑠, V⟩ := V (𝑠) . (9)

The collocationmethod for solving (3) is to seek a vector u :=

[𝑎𝑖 : 𝑖 ∈ Z𝑛]
𝑇 such that

𝑢𝑛 (𝑥) := ∑

𝑖∈Z𝑛

𝑎𝑖𝐿
𝛼,𝛽
𝑖 (𝑥) , 𝑥 ∈ 𝐼 (10)

satisfies

⟨𝛿
𝑥
𝛼,𝛽

𝑗

, (I +K) 𝑢𝑛⟩ = ⟨𝛿
𝑥
𝛼,𝛽

𝑗

, 𝑓⟩ , 𝑗 ∈ Z𝑛. (11)

The above equation can be rewritten as

𝑎𝑖 + ∑

𝑗∈Z𝑛

𝑎𝑗 ∫

𝑥
𝛼,𝛽

𝑖

−1
𝑘 (𝑥
𝛼,𝛽
𝑖 , 𝑡) 𝐿

𝛼,𝛽
𝑗 (𝑡) 𝑑𝑡 = 𝑓 (𝑥

𝛼,𝛽
𝑖 ) , 𝑖 ∈ Z𝑛.

(12)

For V ∈ 𝐶(𝐼), we define the interpolating operator L𝛼,𝛽𝑛 :

𝐶(𝐼) → 𝑃𝑛 by

(L
𝛼,𝛽
𝑛 V) (𝑥𝛼,𝛽𝑖 ) = V (𝑥𝛼,𝛽𝑖 ) , 𝑖 ∈ Z𝑛. (13)

It it well known thatL𝛼,𝛽𝑛 V is written as the form

(L
𝛼,𝛽
𝑛 V) (𝑥) = ∑

𝑖∈Z𝑛

V (𝑥𝑖) 𝐿
𝛼,𝛽
𝑖 (𝑥) , 𝑥 ∈ 𝐼. (14)

Using these notations we can reformulate (12) into an opera-
tor form

(I +L
𝛼,𝛽
𝑛 K) 𝑢𝑛 = L

𝛼,𝛽
𝑛 𝑓. (15)

The difficulty in solving the linear system (12) is to compute
the integral term in (12), accurately. In this paper, we adopt
the numerical integration rule proposed in [11] to overcome
this difficulty. For this purpose, we introduce a simple linear
transformation

𝑡 = 𝑔 (𝑥, 𝜏) :=
𝑥 + 1

2
𝜏 +

𝑥 − 1

2
, (16)

which transfers the integral operator K into the following
form:

(KV) (𝑥) =
𝑥 + 1

2
∫
𝐼
𝑘 (𝑥, 𝑔 (𝑥, 𝜏)) V (𝑔 (𝑥, 𝜏)) 𝑑𝜏. (17)

Then, by using 𝑁 + 1-point Legendre-Gauss quadrature
formula relative to the Legendre weight 𝑤𝑖, 𝑖 ∈ Z𝑁, we can
obtain the discrete integral operatorK𝑁 as follows:

(K𝑁V) (𝑥) :=
𝑥 + 1

2
∑

𝑖∈Z𝑁

𝑤𝑖𝑘 (𝑥, 𝑔 (𝑥, 𝑥
0,0
𝑖 )) V (𝑔 (𝑥, 𝑥

0,0
𝑖 )) .

(18)

Thus, using those notations, a fully discrete spectral
Jacobi-collocation method for solving (3) is to seek a vector
ũ := [𝑎𝑖 : 𝑖 ∈ Z𝑛]

𝑇 such that

�̃�𝑛 (𝑥) := ∑

𝑖∈Z𝑛

𝑎𝑖𝐿
𝛼,𝛽
𝑖 (𝑥) , 𝑥 ∈ 𝐼, (19)
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satisfying

(I +L
𝛼,𝛽
𝑛 K𝑁) �̃�𝑛 = L

𝛼,𝛽
𝑛 𝑓. (20)

It is easy to show that the operator equation (20) has the
following form:

𝑎𝑖 +
𝑥
𝛼,𝛽
𝑖 + 1

2

× ∑

𝑗∈Z𝑛

𝑎𝑗 ∑

𝑙∈Z𝑁

𝑤𝑙𝑘 (𝑥
𝛼,𝛽
𝑖 , 𝑔 (𝑥

𝛼,𝛽
𝑖 , 𝑥
0,0
𝑙 )) 𝐿

𝛼,𝛽
𝑗 (𝑔 (𝑥

𝛼,𝛽
𝑖 , 𝑥
0,0
𝑙 ))

= 𝑓 (𝑥
𝛼,𝛽
𝑖 ) , 𝑖 ∈ Z𝑛.

(21)

In [11], for the case 𝑁 = 𝑛, based on the Gronwall’
inequality, Tang et al. analyze the convergence of a spectral
Jacobi-collocation method for solving (3) in both 𝐶(𝐼) and
weighted 𝐿2𝑤0,0(𝐼) spaces. However, the stability analysis of the
spectral method is not given. Moreover, we observe that the
convergence order of the approximate solution in the space
𝐿
2
𝑤0,0(𝐼) is not optimal. Hence, the purpose of this paper is

to illustrate that for sufficiently large 𝑛 and 𝑁, the operator
I +L𝛼,𝛽𝑛 K𝑁 : 𝑃𝑛 → 𝑃𝑛 has a uniformly bounded inversion
in both 𝐶(𝐼) and 𝐿

2
𝑤𝛼,𝛽

(𝐼) spaces, respectively. Moreover, we
also show that the approximate solution �̃�𝑛 attains at themost
possible convergent order.

3. Some Preliminaries and Useful Results

In this section, we will introduce some technical results,
which contribute to analyze the stability and convergence
on the spectral Jacobi-collocation method for solving (3). To
this end, for 𝑖 ∈ N0, we use the notation D𝑖𝑥 to denote the
𝑖th differential operator on the variable 𝑥. For 𝑟 ∈ N, we
introduce the nonuniformly weighted Sobolev space𝐻𝑟

𝑤𝛼,𝛽
(𝐼)

by

𝐻
𝑟
𝑤𝛼,𝛽 (𝐼) := {V : D

𝑖
𝑥V ∈ 𝐿

2
𝑤𝛼+𝑖,𝛽+𝑖 (𝐼) , 𝑖 ∈ Z𝑟} . (22)

It follows from [19] that there exists a positive constant 𝛾1
independent of 𝑛 such that, for V ∈ 𝐻

𝑟
𝑤𝛼,𝛽

(𝐼) and 𝑖 ∈ Z𝑟,

D
𝑖
𝑥 (V −L

𝛼,𝛽
𝑛 V)

𝑤𝛼+𝑖,𝛽+𝑖
≤ 𝛾1

D
𝑟
𝑥V
𝑤𝛼+𝑟,𝛽+𝑟𝑛

𝑖−𝑟
, (23)

which implies that

D
𝑖
𝑥 (L
𝛼,𝛽
𝑛 V)

𝑤𝛼+𝑖,𝛽+𝑖
≤ 𝛾1

D
𝑟
𝑥V
𝑤𝛼+𝑟,𝛽+𝑟 +


D
𝑖
𝑥V
𝑤𝛼+𝑖,𝛽+𝑖

. (24)

Moreover, we have the following.

Lemma 1. Suppose that −1 < 𝛼1, 𝛽1 < 1. If the parameters
𝛼, 𝛽 satisfy the next conditions:

−
1

2
+ 𝛼1 < 𝛼 <

3

2
+ 𝛼1, −

1

2
+ 𝛽1 < 𝛽 <

3

2
+ 𝛽1, (25)

then there exists a positive constant 𝛾2 independent of 𝑛 such
that, for V ∈ 𝐻

𝑟
𝑤𝛼,𝛽

(𝐼) ∩ 𝐶(𝐼),

V −L

𝛼1 ,𝛽1
𝑛 V

𝑤𝛼,𝛽
≤ 𝛾2

D
𝑟
𝑥V
𝑤𝛼+𝑟,𝛽+𝑟𝑛

−𝑟
. (26)

Proof. This is a consequence ofTheorem 3.4 and (3.13)-(3.14)
in [20].

For 𝑟 ∈ N, 𝑖 ∈ Z𝑟, the binomial coefficients are given by

C𝑖𝑟 := 𝑟 (𝑟 − 1) ⋅ ⋅ ⋅ (𝑟 − 𝑖 + 1) . (27)

We use the notation 𝐶
𝑟
(𝐼) to denote the set of all functions

whose 𝑟th derivative is continuous on 𝐼, endowed with the
usual norm

‖V‖𝑟 := ∑

𝑖∈Z𝑟


D
𝑖
𝑥V
∞

. (28)

For 𝑟1, 𝑟2 ∈ N0, the notation 𝐶
𝑟1 ,𝑟2(𝐼
2
) is used to denote

the set of all functions such that, for V ∈ 𝐶
𝑟1 ,𝑟2(𝐼
2
), D𝑟1𝑥D

𝑟2
𝑦 V

is continuous on 𝐼
2. Let


D
𝑟1
𝑥D
𝑟2
𝑦 V

∞
:= max
(𝑥,𝑦)∈𝐼2


D
𝑟1
𝑥D
𝑟2
𝑦 V (𝑥, 𝑦)


. (29)

Next we consider the difference betweenKV andK𝑁V.

Lemma 2. Assume that the kernel function 𝑘 ∈ 𝐶
0,𝑚

(𝐼
2
) for

𝑚 ∈ N. If two parameters 𝛼 and 𝛽 satisfy the conditons

−
1

2
< 𝛼, 𝛽 <

3

2
, 𝛼 + 𝛽 ≤ 1, (30)

then there exists a positive constant 𝛾3 independent of 𝑁 such
that when V ∈ 𝐶

𝑚
(𝐼),

KV −K𝑁V
∞ ≤ 𝛾3( ∑

𝑖∈Z𝑚


D
𝑖
𝑥V
𝑤𝛼+𝑖,𝛽+𝑖

)𝑁
−𝑚

. (31)

Proof. First of all, by setting

𝑏 (𝑥, 𝜏) := 𝑘 (𝑥, 𝑔 (𝑥, 𝜏)) V (𝑔 (𝑥, 𝜏)) ,

(L
0,0
𝑁 𝑏) (𝑥, 𝜏) := ∑

𝑖∈Z𝑁

𝑏 (𝑥, 𝑥
0,0
𝑖 ) 𝐿
0,0
𝑖 (𝜏) , 𝑥, 𝜏 ∈ 𝐼,

(32)

the integral operatorK𝑁 is written as

(K𝑁V) (𝑥) =
𝑥 + 1

2
∫
𝐼
(L
0,0
𝑁 𝑏) (𝑥, 𝜏) 𝑑𝜏, 𝑥 ∈ 𝐼. (33)

In addition, using the hypothesis that 𝑘 ∈ 𝐶
0,𝑚

(𝐼
2
) and V ∈

𝐶
𝑚
(𝐼) implies that 𝑏 ∈ 𝐶

0,𝑚
(𝐼
2
). Thus, we write the difference

betweenKV andK𝑁V as follows:

(KV) (𝑥) − (K𝑁V) (𝑥)

=
𝑥 + 1

2
∫
𝐼
(𝑤
−𝛼/2,−𝛽/2

(𝜏))

× (𝑤
𝛼/2,𝛽/2

(𝜏) (𝑏 (𝑥, 𝜏) − (L
0,0
𝑁 𝑏) (𝑥, 𝜏))) 𝑑𝜏.

(34)

Employing Cauchy-Schwartz inequality to the right hand
side of the above equation and then using the result (26) with
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𝛼1 := 0, 𝛽1 := 0, 𝑛 := 𝑁 and 𝑟 := 𝑚 produce that there exists
a positive constant 𝜉 independent of𝑁,

(KV)(𝑥) − (K𝑁V)(𝑥)

2
≤ 𝜉𝐺 (𝑥) ‖1‖𝑤−𝛼,−𝛽𝑁

−2𝑚
, (35)

where 𝐺(𝑥) is given by

𝐺 (𝑥) := (
1 + 𝑥

2
)

2

∫
𝐼
𝑤
𝛼+𝑚,𝛽+𝑚

(𝜏) ((D
𝑚
𝜏 𝑏) (𝑥, 𝜏))

2
𝑑𝜏,

𝑥 ∈ 𝐼.

(36)

It remains to estimate 𝐺(𝑥). A direct computation leads
to

𝐺 (𝑥)

= (
1 + 𝑥

2
)

2𝑚+2

× ∫
𝐼
𝑤
𝛼+𝑚,𝛽+𝑚

(𝜏)

×( ∑

𝑖∈Z𝑚

C𝑖𝑚(D
𝑖
𝑔V)(𝑔(𝑥, 𝜏))(D

𝑚−𝑖
𝑔 𝑘)(𝑥, 𝑔(𝑥, 𝜏)))

2

𝑑𝜏.

(37)

Making use of a linear transform 𝑡 := 𝑔(𝑥, 𝜏) to the right
hand side of the above equation produces

𝐺 (𝑥)

= (
1 + 𝑥

2
)

1−𝛼−𝛽

× ∫

𝑥

−1
(1 + 𝑡)

𝛼+𝑚
(𝑥 − 𝑡)

𝛽+𝑚

×( ∑

𝑖∈Z𝑚

C𝑖𝑚(D
𝑖
𝑡V)(𝑡)(D

𝑚−𝑖
𝑡 𝑘)(𝑥, 𝑡))

2

𝑑𝑡.

(38)

Using the discrete Cauchy Schwartz inequality into the
right hand side of the above equation obtains

𝐺 (𝑥) ≤ max
𝑖∈Z𝑚


D
𝑖
𝑡𝑘


2

∞
( ∑

𝑖∈Z𝑚

(C𝑖𝑛)
2
)(

1 + 𝑥

2
)

1−𝛼−𝛽

× ( ∑

𝑖∈Z𝑚

∫

𝑥

−1
(1 + 𝑡)

𝛼+𝑚
(𝑥 − 𝑡)

𝛽+𝑚
(D
𝑖
𝑡V)
2
(𝑡) 𝑑𝑡) ,

(39)

where combining the fact that 𝛼 + 𝛽 ≤ 1 leads to

𝐺 (𝑥) ≤ max
𝑖∈Z𝑚


D
𝑖
𝑡𝑘


2

∞
( ∑

𝑖∈Z𝑚

(C𝑖𝑛)
2
)( ∑

𝑖∈Z𝑚


D
𝑖
𝑡V


2

𝑤𝛼+𝑖,𝛽+𝑖
) .

(40)

Substituting the above estimate on 𝐺(𝑥) into the right hand
side of (35) yields the desired conclusion (31) with 𝛾3 being
given by

𝛾3 := max
𝑖∈Z𝑚


D
𝑖
𝑡𝑘
∞

(𝜉‖1‖𝑤−𝛼,−𝛽 ∑

𝑖∈Z𝑚

(C𝑖𝑚)
2
)

1/2

. (41)

Using Lemma 2, we can obtain the following.

Corollary 3. Suppose that the conditions of Lemma 2 hold,
then for V ∈ 𝑃𝑛, the following two estimates hold:

KV −K𝑁V
∞ ≤ 2𝛾3‖V‖𝑤𝛼,𝛽(

𝑛

𝑁
)

𝑚

, (42)

KV −K𝑁V
∞ ≤ 2𝛾3‖1‖𝑤𝛼,𝛽‖V‖∞(

𝑛

𝑁
)

𝑚

. (43)

Proof. We observe that if (42) holds, then by using the fact

‖V‖𝑤𝛼,𝛽 ≤ ‖1‖𝑤𝛼,𝛽‖V‖∞, V ∈ 𝑃𝑛, (44)

we can easily obtain the result (43). Thus, we only require to
estimate (42). In fact, by using the inverse inequality relative
to two norms weighted with different Jacobi weight functions
in Theorem 3.31 in [19], there exists a positive constant 𝜉
independent of 𝑛 such that, for V ∈ 𝑃𝑛 and 𝑖 ∈ Z𝑚,


D
𝑖
𝑡V
𝑤𝛼+𝑖,𝛽+𝑖

≤ 𝜉𝑛

D
𝑖−1
𝑡 V

𝑤𝛼+𝑖−1,𝛽+𝑖−1
. (45)

By the above inequality, we can obtain that

∑

𝑖∈Z𝑚


D
𝑖
𝑡V
𝑤𝛼+𝑖,𝛽+𝑖

≤ ∑

𝑖∈Z𝑚

(𝜉𝑛)
𝑖
‖V‖𝑤𝛼,𝛽 , (46)

where combining (31) yields the desired conclusion (42).

4. The Stability and Convergence Analysis
under the 𝐿

∞ Norm

In this section, we will establish that, for sufficiently large
𝑛 and 𝑁, the operator I + L𝛼,𝛽𝑛 K𝑁 : 𝑃𝑛 → 𝑃𝑛 has
a uniformly bounded inversion in the space 𝐶(𝐼) and then
show that the approximate solution �̃�𝑛 arrives at the most
possible convergent order under the 𝐿

∞ norm. To this end,
we first give some notations. For 𝑟 ∈ N0 and ] ∈ (0, 1],
the notation 𝐻

𝑟,]
(𝐼) is used to denote the space of functions

whose 𝑟th derivative isHölder continuous on 𝐼with exponent
]. The norm of the space is defined by

‖V‖𝑟,] := ‖V‖𝑟 + sup
𝑥,𝑦∈𝐼,𝑥 ̸=𝑦


(D𝑟𝑥V) (𝑥) − (D𝑟𝑦V) (𝑦)


𝑥 − 𝑦


] . (47)

Lemma 4. Suppose that the kernel function 𝑘 ∈ 𝐶
1,0
(𝐼
2
);

then the operator K is a bounded linear operator from 𝐶(𝐼)

to𝐻0,1(𝐼); that is, for V ∈ 𝐶(𝐼),

‖KV‖0,1 ≤ (4‖𝑘‖∞ + 2

D
1
𝑥𝑘

∞
) ‖V‖∞. (48)
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Moreover, for −1 < 𝛼, 𝛽 < 1, the operator K : 𝐿
2
𝑤𝛼,𝛽

(𝐼) →

𝐶(𝐼) is also a linear bounded operator; that is, for V ∈ 𝐿
2
𝑤𝛼,𝛽

(𝐼),

‖KV‖∞ ≤ ‖𝑘‖∞‖1‖
1/2

𝑤−𝛼,−𝛽
‖V‖𝑤𝛼,𝛽 . (49)

Proof. It is easily proved that the operator K is a linear
operator from the space 𝐶(𝐼) to the space 𝐻

0,1
(𝐼) or from

𝐿
2
𝑤𝛼,𝛽

(𝐼) to 𝐶(𝐼).
Next we illustrate that (48) holds. By the definition of the

norm,

‖KV‖∞ ≤ ‖V‖∞max
𝑥∈𝐼

∫

𝑥

−1
|𝑘 (𝑥, 𝑡)| 𝑑𝑡, (50)

which implies that

‖KV‖∞ ≤ 2‖𝑘‖∞‖V‖∞. (51)

On the other hand, for all 𝑥1, 𝑥2 ∈ 𝐼, by introducing

𝐼1 := ∫

𝑥1

−1
(𝑘 (𝑥1, 𝑡) − 𝑘 (𝑥2, 𝑡)) V (𝑡) 𝑑𝑡,

𝐼2 := ∫

𝑥1

𝑥2

𝑘 (𝑥2, 𝑡) V (𝑡) 𝑑𝑡,
(52)

we can obtain that

(KV) (𝑥1) − (KV) (𝑥2) = 𝐼1 + 𝐼2, (53)

where using the triangle inequality yields that
(KV) (𝑥1) − (KV) (𝑥2)

 ≤
𝐼1

 +
𝐼2

 . (54)

The left thing is to give an estimation of 𝐼1 and 𝐼2. First,
employing Lagrange midvalue differential theorem to 𝐼1

yields that

𝐼1
 ≤ 2


D
1
𝑥𝑘

∞
‖V‖∞

𝑥1 − 𝑥2
 . (55)

A direct estimation for 𝐼2 produces that
𝐼2

 ≤ 2‖𝑘‖∞‖V‖∞
𝑥1 − 𝑥2

 . (56)

Thus, substituting the estimates (55)-(56) into the right hand
side of (54) leads that

(KV) (𝑥1) − (KV) (𝑥2)


≤ 2 (‖𝑘‖∞ +

D
1
𝑥𝑘

∞
) ‖V‖∞

𝑥1 − 𝑥2
 ,

(57)

where (51) yields the desired conclusion (48).
In the following we show that the result (49) holds.

Noticing,

‖KV‖∞

= max
𝑥∈𝐼


∫

𝑥

−1
𝑘 (𝑥, 𝑡) V (𝑡) 𝑑𝑡



= max
𝑥∈𝐼


∫

𝑥

−1
(𝑤
−𝛼/2,−𝛽/2

(𝑡) 𝑘 (𝑥, 𝑡)) (𝑤
𝛼/2,𝛽/2

(𝑡) V (𝑡)) 𝑑𝑡

.

(58)

Using Cauchy-Schwartz inequality to the right hand side of
the equation above yields

‖KV‖2∞ ≤ max
𝑥∈𝐼

∫

𝑥

−1
(𝑤
−𝛼,−𝛽

(𝑡) 𝑘
2
(𝑥, 𝑡)) ‖V‖2𝑤𝛼,𝛽 , (59)

which implies that

‖KV‖2∞ ≤ ‖𝑘‖
2
∞‖1‖𝑤−𝛼,−𝛽‖V‖

2
𝑤𝛼,𝛽 .

(60)

This complete the proof of (49).

The next result concerns on the bound of the norm
‖KV −L𝛼,𝛽𝑛 KV‖∞ for V ∈ 𝐶(𝐼). For this purpose, we
introduce the result on the Lebesgue constant corresponding
to the Lagrange interpolation polynomials associated with
the zeros of the Jacobi polynomials, which comes from
Lemma 3.4 in [5]:


L
𝛼,𝛽
𝑛

∞
= max
‖V‖∞=1


L
𝛼,𝛽
𝑛 V

∞

=
{

{

{

O (log 𝑛) , −1 < 𝛼, 𝛽 ≤ −
1

2
,

O (𝑛
(1/2)+max{𝛼,𝛽}

) , otherwise.

(61)

Further, we also require to make use of another result of
Ragozin, coming from [21, 22], which states that, for any
V ∈ 𝐻

𝑟,]
(𝐼), there exist a polynomial 𝑞 ∈ 𝑃𝑛 and a positive

constant 𝜍1 such that
V − 𝑞

∞ ≤ 𝜍1𝑛
−𝑟−]

‖V‖𝑟,]. (62)

A combination of (61) and (62) leads to that there exists a
positive constant 𝜍2 such that


V −L

𝛼,𝛽
𝑛 V

∞

≤ 𝜍2‖V‖𝑟,]
{

{

{

𝑛
−𝑟−] log 𝑛, −1 < 𝛼, 𝛽 ≤ −

1

2
,

𝑛
(1/2)+max{𝛼,𝛽}−𝑟−]

, otherwise.

(63)

Lemma 5. Suppose that the kernel function 𝑘 ∈ 𝐶
1,0
(𝐼
2
).Then

there exists a positive constant 𝜍3 independent of 𝑛 such that
when V ∈ 𝐶(𝐼),


KV −L

𝛼,𝛽
𝑛 KV

∞

≤ 𝜍3‖V‖∞
{

{

{

𝑛
−1 log 𝑛, −1 < 𝛼, 𝛽 ≤ −

1

2
,

𝑛
−(1/2)+max{𝛼,𝛽}

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(64)

Proof. It follows from Lemma 4 that KV ∈ 𝐻
0,1
(𝐼) for V ∈

𝐶(𝐼), where combining (63) obtains that there exists a positive
constant 𝜉 independent of 𝑛:


KV −L

𝛼,𝛽
𝑛 KV

∞

≤ 𝜉‖KV‖0,1
{

{

{

𝑛
−1 log 𝑛, −1 < 𝛼, 𝛽 ≤ −

1

2
,

𝑛
−(1/2)+max{𝛼,𝛽}

, otherwise.

(65)
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Substituting the estimate (48) into the right hand side of the
above equation yields the desired conclusion with 𝜍3 being
given by

𝜍3 := 𝜉 (4‖𝑘‖∞ + 2

D
1
𝑥𝑘

∞
) . (66)

We use the notation [𝑥] to denote the largest integer not
more than 𝑥. Moreover, byTheorem 3.10 in [23], if the kernel
function 𝑘 is a smooth function, the operatorI+K : 𝐶(𝐼) →

𝐶(𝐼) has a bounded inversion; that is, for any V ∈ 𝑃𝑛, there
exists a positive constant 𝜌 such that

‖(I +K) V‖∞ ≥ 𝜌‖V‖∞. (67)

Theorem 6. Suppose that 𝑘 ∈ 𝐶
1,𝑚

(𝐼
2
), −1/2 < 𝛼, 𝛽 < 1/2. If

we choose𝑁 as follows:

𝑁 ≥ 𝑁min := [𝑛
1+(1/2𝑚)+(min{𝛼,𝛽}/𝑚)log1/𝑚𝑛] + 1, (68)

then there exists a positive integer 𝑛0 such that when 𝑛 ≥ 𝑛0

and for V ∈ 𝑃𝑛,

(I +L

𝛼,𝛽
𝑛 K𝑁)V

∞
≥

𝜌

2
‖V‖∞, (69)

where 𝜌 appears in (67).

Proof. It follows from the hypothesis that −1/2 < 𝛼, 𝛽 < 1/2

that 𝑛−(1/2)+max{𝛼,𝛽} tends to zero as 𝑛 tends to∞. Hence, using
(64) there exists a positive integer 𝑛1 such that 𝑛 ≥ 𝑛1,


KV −L

𝛼,𝛽
𝑛 V

∞
≤

𝜌

4
‖V‖∞. (70)

On the other hand, using (61) with the hypothesis that
−1/2 < 𝛼, 𝛽 < 1/2 yields that there exists a positive constant
𝜉1 such that, for V ∈ 𝑃𝑛,

L
𝛼,𝛽
𝑛 KV −L

𝛼,𝛽
𝑛 K𝑁V

∞
≤ 𝜉1

KV −K𝑁V
∞𝑛
(1/2)+max{𝛼,𝛽}

,

(71)

where combining (43) and (68) produces that there exists a
positive constant 𝜉2,


L
𝛼,𝛽
𝑛 KV −L

𝛼,𝛽
𝑛 K𝑁V

∞
≤ 𝜉2‖V‖∞log

−1
𝑛. (72)

Similarly as before, by the fact that log−1𝑛 tends to 0 as 𝑛 tends
to∞, there exists a positive integer 𝑛2 such that, for 𝑛 ≥ 𝑛2,


L
𝛼,𝛽
𝑛 KV −L

𝛼,𝛽
𝑛 K𝑁V

∞
≤

𝜌

4
‖V‖∞. (73)

Hence, when 𝑛 ≥ 𝑛0 := max{𝑛1, 𝑛2}, combining these three
estimates (67), (70), and (73) yields that


(I +L

𝛼,𝛽
𝑛 K𝑁)V

∞

≥ ‖V +KV‖∞ −

KV −L

𝛼,𝛽
𝑛 KV

∞

−

L
𝛼,𝛽
𝑛 KV −L

𝛼,𝛽
𝑛 K𝑁V

∞

≥
𝜌

2
‖V‖∞,

(74)

proving the desired conclusion (69).

Theorem 6 ensures that, for sufficient large 𝑛, the operator
equation (20) has a unique solution �̃�𝑛. The next result
considers the convergent order of the approximate solution
�̃�𝑛 in 𝐿

∞ norm.

Theorem 7. Suppose that the kernel function 𝑘 ∈ 𝐶
𝑚,𝑚

(𝐼
2
),

𝑓 ∈ 𝐶
𝑚
(𝐼), and −1/2 < 𝛼, 𝛽 < 1/2. If we choose𝑁 as in (68),

then there exist a positive constant 𝜂 and a positive integer 𝑛0
such that, for 𝑛 ≥ 𝑛0,

𝑢 − �̃�𝑛
∞ ≤ 𝜂‖𝑢‖𝑚𝑛

(1/2)+max{𝛼,𝛽}−𝑚
. (75)

Proof. We first notice that it follows from the hypothesis that
𝑘 ∈ 𝐶

𝑚,𝑚
(𝐼
2
) and 𝑓 ∈ 𝐶

𝑚
(𝐼) that (3) has a unique solution

𝑢 ∈ 𝐶
𝑚
(𝐼), which implies that 𝑢 ∈ 𝐻

𝑚−1,1
(𝐼). By using the

triangle inequality,
𝑢 − �̃�𝑛

∞ ≤

𝑢 −L

𝛼,𝛽
𝑛 𝑢

∞
+

L
𝛼,𝛽
𝑛 𝑢 − �̃�𝑛

∞
. (76)

Upon the estimation (63) with V := 𝑢, we only require to
estimate the second term in the right hand side of the above
equation. In fact, employing L𝛼,𝛽𝑛 to both sides of (3) yields
that

L
𝛼,𝛽
𝑛 𝑢 +L

𝛼,𝛽
𝑛 K𝑢 = L

𝛼,𝛽
𝑛 𝑓. (77)

Adirect computation of the above equation and (20) confirms
that

(I +L
𝛼,𝛽
𝑛 K𝑁) (�̃�𝑛 −L

𝛼,𝛽
𝑛 𝑢)

= L
𝛼,𝛽
𝑛 K𝑢 −L

𝛼,𝛽
𝑛 K𝑁L

𝛼,𝛽
𝑛 𝑢.

(78)

By Theorem 6, there exists a positive integer 𝑛0 such that
𝑛 ≥ 𝑛0,


�̃�𝑛 −L

𝛼,𝛽
𝑛 𝑢

∞
≤

2

𝜌


L
𝛼,𝛽
𝑛 K𝑢 −L

𝛼,𝛽
𝑛 K𝑁L

𝛼,𝛽
𝑛 𝑢

∞
, (79)

where combining (61) leads that there exists a positive
constant 𝜉1 such that


�̃�𝑛 −L

𝛼,𝛽
𝑛 𝑢

∞
≤ 𝜉1


K𝑢 −K𝑁L

𝛼,𝛽
𝑛 𝑢

∞
𝑛
(1/2)+max{𝛼,𝛽}

.

(80)

To obtain the estimation of the right hand side of equation
(80), we let

𝐼1 :=

K𝑢 −KL

𝛼,𝛽
𝑛 𝑢

∞
,

𝐼2 :=

KL
𝛼,𝛽
𝑛 𝑢 −K𝑁L

𝛼,𝛽
𝑛 𝑢

∞
.

(81)

Clearly,

K𝑢 −K𝑁L

𝛼,𝛽
𝑛 𝑢

∞
≤ 𝐼1 + 𝐼2. (82)

It remains to estimate 𝐼1 and 𝐼2, respectively. First, using the
hypothesis that −1/2 < 𝛼, 𝛽 < 1/2 and the result (49) with
V := 𝑢 −L𝛼,𝛽𝑛 𝑢 produces that there exists a positive constant
𝜉2 independent of 𝑛 such that

𝐼1 ≤ 𝜉2


𝑢 −L

𝛼,𝛽
𝑛 𝑢

𝑤𝛼,𝛽
, (83)
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where combining the result (23) with 𝑖 := 0, 𝑟 := 𝑚, V := 𝑢

yields that there exists a positive constant 𝜉3 independent of
𝑛 such that

𝐼1 ≤ 𝜉3
D
𝑚
𝑥 𝑢

𝑤𝛼+𝑚,𝛽+𝑚𝑛
−𝑚

. (84)

Hence, a combination of (84) and the following inequality

D
𝑙
𝑥𝑢

𝑤𝛼+𝑙,𝛽+𝑙
≤ ‖1‖𝑤𝛼,𝛽


D
𝑙
𝑥𝑢

∞
, 𝑙 ∈ N, (85)

produces that there exists a positive constant 𝜉4 such that

𝐼1 ≤ 𝜉4‖𝑢‖𝑚𝑛
−𝑚

. (86)

On the other hand, using the results (24) and (31) leads that
there exists a positive constant 𝜉5 such that

𝐼2 ≤ 𝜉5( ∑

𝑖∈Z𝑚


D
𝑖
𝑥𝑢

𝑤𝛼+𝑖,𝛽+𝑖
)𝑁
−𝑚

, (87)

where combining (68) and (85) yields that there exists a
positive constant 𝜉6,

𝐼2 ≤ 𝜉6‖𝑢‖𝑚𝑛
−𝑚−(1/2)−max{𝛼,𝛽}log−1𝑛. (88)

A combination of the above estimation and (80), (82), and
(86) yields the desired result.

Theorem 7 illustrates that the approximate solution
obtained by the proposedmethod arrives at themost possible
convergent order.

5. The Stability and Convergence Analysis
under the 𝐿

2
𝑤𝛼,𝛽

Norm

As demonstrated in the previous section, in this section
we are going to prove that, for sufficiently large 𝑛 and 𝑁,
the operator I + L𝛼,𝛽𝑛 K𝑁 : 𝑃𝑛 → 𝑃𝑛 has a uniformly
bounded inversion in the 𝐿2

𝑤𝛼,𝛽
(𝐼) space and then show that

the approximate solution arrives at the optimal convergent
order. To this end, we first give a few results.

Lemma 8. Suppose that −1 < 𝜆1, 𝜆2 < 1 and ℎ ∈ [0, 1]. If
𝑥, 𝑥 + ℎ ∈ 𝐼, then one has that

∫

𝑥+ℎ

𝑥
𝑤
𝜆1 ,𝜆2 (𝑡) 𝑑𝑡 ≤

2max {ℎ, ℎ1+min{𝜆1 ,𝜆2}}

1 +min {𝜆1, 𝜆2}
. (89)

Proof. Wewill prove that the result (89) holds in the following
four cases: (1) 𝜆1 ≥ 0 and 𝜆2 ≥ 0; (2) 𝜆1 ≥ 0 but 𝜆2 <

0; (3) 𝜆1 < 0 while 𝜆2 ≥ 0; (4) 𝜆1 < 0 and 𝜆2 < 0.
Firstly, we notice that, for 𝜆1 ≥ 0, 𝜆2 ≥ 0,

(1 − 𝑡)
𝜆1(1 + 𝑡)

𝜆2 ≤ 2, (90)

which confirms the desired conclusion.
If the conditions 𝜆1 < 0 and 𝜆2 ≥ 0 hold, then using

(1 + 𝑡)
𝜆2 ≤ 2 (91)

produces

∫

𝑥+ℎ

𝑥
𝑤
𝜆1 ,𝜆2 (𝑡) 𝑑𝑡 ≤ 2∫

𝑥+ℎ

𝑥
(1 − 𝑡)

𝜆1𝑑𝑡 ≤
2ℎ
1+𝜆1

1 + 𝜆1

, (92)

which ensures the desired conclusion.
In a similar approach as the above case, clearly, the result

(89) holds for the case that 𝜆1 ≥ 0 while 𝜆2 < 0.
At last, when the conditions𝜆1 < 0 and𝜆2 < 0hold, using

the next equation

(1 − 𝑡)
𝜆1(1 + 𝑡)

𝜆2 =
(1 − 𝑡)

𝜆1 + (1 + 𝑡)
𝜆2

(1 − 𝑡)
−𝜆1 + (1 + 𝑡)

−𝜆2
(93)

can produce

(1 − 𝑡)
𝜆1(1 + 𝑡)

𝜆2 ≤ (1 − 𝑡)
𝜆1 + (1 + 𝑡)

𝜆2 . (94)

Thus, again using the same method as before yields the
desired result.

Next we ensure that the operatorK : 𝐿
2
𝑤𝛼,𝛽

(𝐼) → 𝐻
0,𝜅
(𝐼)

is a bounded linear operator with certain positive constant 𝜅.

Lemma 9. Suppose that −1 < 𝛼, 𝛽 < 1, 𝑘 ∈ 𝐶
1,0
(𝐼
2
); then

K is a bounded linear operator from 𝐿
2
𝑤𝛼,𝛽

(𝐼) into𝐻0,𝜅(𝐼)with
𝜅 := min{1/2, (1/2) +min{−𝛼/2, −𝛽/2}}; that is, there exists a
positive constant 𝜁1 such that, for V ∈ 𝐿

2
𝑤𝛼,𝛽

(𝐼),

‖KV‖0,𝜅 ≤ 𝜁1‖V‖𝑤𝛼,𝛽 . (95)

Proof. By the estimation (49) in Lemma 5, there exists a
positive constant 𝜉1 such that, for V ∈ 𝐿

2
𝑤𝛼,𝛽

(𝐼),

‖KV‖∞ ≤ 𝜉1‖V‖𝑤𝛼,𝛽 . (96)

On the other hand, for 𝑥1, 𝑥2 ∈ 𝐼, without loss of generality,
we assume that 𝑥1 ≤ 𝑥2. By introducing

𝐼1 := ∫

𝑥2

−1
(𝑘 (𝑥1, 𝑡) − 𝑘 (𝑥2, 𝑡)) V (𝑡) 𝑑𝑡,

𝐼2 := ∫

𝑥2

𝑥1

𝑘 (𝑥1, 𝑡) V (𝑡) 𝑑𝑡,
(97)

we have

(KV) (𝑥1) − (KV) (𝑥2) = 𝐼1 + 𝐼2. (98)

Hence, it remains to estimate 𝐼1 and 𝐼2, respectively. For this
purpose, by reformulating 𝐼1 and 𝐼2 as follows

𝐼1 := ∫

𝑥2

−1
(𝑤
−𝛼/2,−𝛽/2

(𝑡) (𝑘 (𝑥1, 𝑡) − 𝑘 (𝑥2, 𝑡)))

× (𝑤
𝛼/2,𝛽/2

(𝑡) V (𝑡)) 𝑑𝑡,

𝐼2 := ∫

𝑥2

𝑥1

(𝑤
−𝛼/2,−𝛽/2

(𝑡) 𝑘 (𝑥1, 𝑡)) (𝑤
𝛼/2,𝛽/2

(𝑡) V (𝑡)) 𝑑𝑡

(99)
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and then employing Cauchy-Schwarz inequality to 𝐼1 and 𝐼2,
respectively, we can obtain that

𝐼
2
1 ≤ (∫

𝑥2

−1
𝑤
−𝛼,−𝛽

(𝑡) (𝑘(𝑥1, 𝑡) − 𝑘(𝑥2, 𝑡))
2
𝑑𝑡)

× (∫

𝑥2

−1
𝑤
𝛼,𝛽

(𝑡) V2 (𝑡) 𝑑𝑡) ,

𝐼
2
2 ≤ (∫

𝑥2

𝑥1

𝑤
−𝛼,−𝛽

(𝑡) 𝑘
2
(𝑥1, 𝑡) 𝑑𝑡)(∫

𝑥2

𝑥1

𝑤
𝛼,𝛽

(𝑡) V2 (𝑡) 𝑑𝑡) .

(100)

Using the hypothesis that 𝑘 ∈ 𝐶
1,0
(𝐼
2
) and the Lagrange

midvalue differential theorem yields that

𝐼
2
1 ≤


D
1
𝑥𝑘



2

∞
‖1‖𝑤−𝛼,−𝛽‖V‖

2
𝑤𝛼,𝛽

𝑥1 − 𝑥2

2
. (101)

A direct estimation for 𝐼2 produces that

𝐼
2
2 ≤ ‖𝑘‖

2
∞‖V‖
2
𝑤𝛼,𝛽 ∫

𝑥2

𝑥1

𝑤
−𝛼,−𝛽

(𝑡) 𝑑𝑡. (102)

If the condition 𝑥2 − 𝑥1 > 1 holds, then we have

𝐼
2
2 ≤ ‖𝑘‖

2
∞‖V‖
2
𝑤𝛼,𝛽‖1‖𝑤−𝛼,−𝛽

𝑥1 − 𝑥2

𝜅
, (103)

otherwise, using (102), where combining (89) with 𝜆1 :=

−𝛼, 𝜆2 := −𝛽, 𝑥 := 𝑥1 and 𝑥 + ℎ := 𝑥2 leads to that there
exists a positive constant 𝜉2 such that

𝐼
2
2 ≤ 𝜉2‖V‖

2
𝑤𝛼,𝛽 max {𝑥1 − 𝑥2

 ,
𝑥1 − 𝑥2


1+min{−𝛼,−𝛽}

} . (104)

A combination of (98)–(104) and the triangle inequality
yields that there exists a positive constant 𝜉3 such that

(KV) (𝑥1) − (KV) (𝑥2)
 ≤ 𝜉3‖V‖𝑤𝛼,𝛽

𝑥1 − 𝑥2

𝜅
, (105)

where (96) draws the desired conclusion.

The next result concerns on difference between KV and
L𝛼,𝛽𝑛 KV for V ∈ 𝐿

2
𝑤𝛼,𝛽

(𝐼). For this purpose, we will make use
of the next result proposed in [5]. For any V ∈ 𝐶(𝐼), there
exists a positive constant 𝜁2 independent of 𝑛:


L
𝛼,𝛽
𝑛 V

𝑤𝛼,𝛽
≤ 𝜁2‖V‖∞. (106)

A combination of (61) and (106) leads to that there exists
a positive constant 𝜁3 such that, for V ∈ 𝐻

𝑟,]
(𝐼),


V −L

𝛼,𝛽
𝑛 V

𝑤𝛼,𝛽
≤ 𝜁3‖V‖𝑟,]𝑛

−𝑟−]
. (107)

Again using Theorem 3.10 in [23], we know that 0

is the unique eigenvalue of Volterra integral operator K;
consequently, the operator I + K : 𝐿

2
𝑤𝛼,𝛽

(𝐼) → 𝐿
2
𝑤𝛼,𝛽

(𝐼)

has a bounded inversion; that is, for any V ∈ 𝑃𝑛, there exists a
positive constant  such that

‖(I +K)V‖𝑤𝛼,𝛽 ≥ ‖V‖𝑤𝛼,𝛽 . (108)

Theorem 10. Suppose that 𝑘 ∈ 𝐶
1,𝑚

(𝐼
2
) and −1/2 < 𝛼, 𝛽 <

1, 𝛼 + 𝛽 ≤ 1. If one chooses𝑁 as follows:

𝑁 ≥ 𝑁min := [n log1/mn] + 1, (109)

then there exists a positive integer 𝑛0 such that 𝑛 ≥ 𝑛0 and for
V ∈ 𝑃𝑛,


(I +L

𝛼,𝛽
𝑛 K𝑁)V

𝑤𝛼,𝛽
≥



2
‖V‖𝑤𝛼,𝛽 , (110)

where  appears in (108).

Proof. This proof is similar to that of Theorem 6. By
Lemma 9, for V ∈ 𝑃𝑛, we have KV ∈ 𝐻

0,𝜅
(𝐼), where

combining (95) and (107) obtains that there exists a positive
constant 𝜉1,


KV −L

𝛼,𝛽
𝑛 KV

𝑤𝛼,𝛽
≤ 𝜉1‖V‖𝑤𝛼,𝛽𝑛

−𝜅
. (111)

Hence, by the fact that lim𝑛→∞𝑛
−𝜅

= 0, there exists a positive
integer 𝑛1 such that, for 𝑛 ≥ 𝑛1,


KV −L

𝛼,𝛽
𝑛 KV

𝑤𝛼,𝛽
≤



4
‖V‖𝑤𝛼,𝛽 . (112)

On the other hand, using (106) obtains that there exists a
positive constant 𝜉2 such that


L
𝛼,𝛽
𝑛 KV −L

𝛼,𝛽
𝑛 K𝑁V

𝑤𝛼,𝛽
≤ 𝜉2

KV −K𝑁V
∞. (113)

By the hypothesis that −1/2 < 𝛼, 𝛽 ≤ 1, and 𝛼 + 𝛽 ≤ 1,
a combination of (42) and (109) yields that there exists a
positive constant 𝜉3 such that

KV −K𝑁V
∞ ≤ 𝜉3‖V‖𝑤𝛼,𝛽 log

−1
𝑛. (114)

Substituting the above estimation into the right hand side of
(113) produces that


L
𝛼,𝛽
𝑛 KV −L

𝛼,𝛽
𝑛 K𝑁V

𝑤𝛼,𝛽
≤ 𝜉2𝜉3‖V‖𝑤𝛼,𝛽 log

−1
𝑛. (115)

Again using the same fact that lim𝑛→∞ log−1𝑛 = 0, there
exists a positive integer 𝑛2 such that for 𝑛 ≥ 𝑛2,


L
𝛼,𝛽
𝑛 KV −L

𝛼,𝛽
𝑛 K𝑁V

𝑤𝛼,𝛽
≤



4
‖V‖𝑤𝛼,𝛽 . (116)

When 𝑛 ≥ 𝑛0 := max{𝑛1, 𝑛2}, these three estimates (108),
(112), and (116) yield that


(I +L

𝛼,𝛽
𝑛 K𝑁)V

𝑤𝛼,𝛽
≥



2
‖𝑤‖𝑤𝛼,𝛽 , (117)

which infers our result.

This above result shows that (20) has a unique solution �̃�𝑛

in the space 𝐿
2
𝑤𝛼,𝛽

(𝐼). Next result considers the approximate
order of the solution �̃�𝑛.

Theorem 11. Suppose that the kernel function 𝑘 ∈ 𝐶
𝑚,𝑚

(𝐼
2
),

𝑓 ∈ 𝐶
𝑚
(𝐼), and −1/2 < 𝛼, 𝛽 < 1, 𝛼 + 𝛽 ≤ 1. If one chooses 𝑁

as in (109), then there exist a positive constant 𝜃 and a positive
integer 𝑛0 such that, for 𝑛 ≥ 𝑛0,

𝑢 − �̃�𝑛
𝑤𝛼,𝛽 ≤ 𝜃( ∑

𝑖∈Z𝑚


D
𝑖
𝑥𝑢

𝑤𝛼+𝑖,𝛽+𝑖
)𝑛
−𝑚

. (118)
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Table 1: The numerical result based on the collocation nodes 𝑥0,0𝑖 , 𝑖 ∈ Z𝑛.

𝑛 4 6 8 10 12 14
𝑢 − �̃�𝑛

∞ 1.40𝑒 − 2 3.16𝑒 − 4 4.28𝑒 − 6 3.83𝑒 − 8 2.60𝑒 − 10 1.20𝑒 − 12
𝑢 − �̃�𝑛

𝑤0,0 1.85𝑒 − 2 4.10𝑒 − 4 5.48𝑒 − 6 4.87𝑒 − 8 3.07𝑒 − 10 1.45𝑒 − 12

Table 2: The numerical result based on the collocation nodes 𝑥1/4,1/3𝑖 , 𝑖 ∈ Z𝑛.

𝑛 4 6 8 10 12 14
𝑢 − �̃�𝑛

∞ 1.16𝑒 − 2 2.61𝑒 − 4 3.54𝑒 − 6 4.16𝑒 − 8 2.14𝑒 − 10 9.92𝑒 − 13
𝑢 − �̃�𝑛

𝑤1/4,1/3 1.52𝑒 − 2 3.38𝑒 − 4 4.52𝑒 − 6 4.01𝑒 − 8 2.53𝑒 − 10 1.19𝑒 − 12

Proof. The proof of Theorem 11 is similar as that of
Theorem 7. It follows from Theorem 7 that 𝑢 ∈ 𝐶

𝑚
(𝐼),

which implies that 𝑢 ∈ 𝐻
𝑚
𝑤𝛼,𝛽

(𝐼). By using the triangle
inequality,

𝑢 − �̃�𝑛
𝑤𝛼,𝛽 ≤


𝑢 −L

𝛼,𝛽
𝑛 𝑢

𝑤𝛼,𝛽
+

L
𝛼,𝛽
𝑛 𝑢 − �̃�𝑛

𝑤𝛼,𝛽
. (119)

Upon the estimation in (23) with 𝑖 := 0, 𝑟 := 𝑚 and V := 𝑢, we
only need to estimate ‖L𝛼,𝛽𝑛 𝑢 − �̃�𝑛‖𝑤𝛼,𝛽 . Employing the result
(78), (106), and Theorem 7, there exist a positive constant 𝜉1
and a positive integer 𝑛0 such that 𝑛 ≥ 𝑛0,


�̃�𝑛 −L

𝛼,𝛽
𝑛 𝑢

𝑤𝛼,𝛽
≤ 𝜉1


K𝑢 −K𝑁L

𝛼,𝛽
𝑛 𝑢

∞
(120)

To obtain the estimation of the right hand side of (120), we let

𝐼1 :=

K𝑢 −KL

𝛼,𝛽
𝑛 𝑢

∞
,

𝐼2 :=

KL
𝛼,𝛽
𝑛 𝑢 −K𝑁L

𝛼,𝛽
𝑛 𝑢

∞
.

(121)

Clearly,

K𝑢 −K𝑁L

𝛼,𝛽
𝑛 𝑢

∞
≤ 𝐼1 + 𝐼2. (122)

Upon the estimation (84), we only require to estimate 𝐼2.
In fact, a combination of (87) and (109) yields that there exists
a positive constant 𝜉2:

𝐼2 ≤ 𝜉2( ∑

𝑖∈Z𝑚


D
𝑖
𝑥𝑢

𝑤𝛼+𝑖,𝛽+𝑖
)𝑛
−𝑚log−1𝑛. (123)

A combination of (84) and (120)–(123) yields the desired
result.

Theorem 11 illustrates that the proposed method pre-
serves the optimal order of convergence.

6. One Numerical Example

In this section, we are going to present one numerical
example to demonstrate the efficiency of the spectral Jacobi-
collocation method for solving (3). In each example, we
use two spectral collocation approaches associated with the
weight function 𝑤

0,0 and 𝑤
1/4,1/3, respectively. Here, we

compute the Gauss-Jacobi quadrature rule nodes and weights
by Theorems 3.4 and 3.6 discussed in [19]. All computer
programs are compiled by Matlab language.

Example. Consider the second kind Volterra integral equa-
tion (1) with

𝑘 (𝑥, 𝑡) = 𝑒
𝑥𝑡
, 𝑓 (𝑥) = 𝑒

2𝑥
+
𝑒
𝑥(𝑥+2)

− 𝑒
−(𝑥+2)

𝑥 + 2
. (124)

The corresponding exact solution is given by 𝑢(𝑥) = 𝑒
2𝑥.

As expected, the errors show an exponential decay, since in
this semilog representation the error variations are essentially
linear versus the degrees of the polynomial.

From the theoretical results we observe that the numer-
ical errors should decay with an exponential rate, and
we also find that the errors show an exponential decay
(Tables 1 and 2).
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The initial-boundary value problems for the local fractional differential equation are investigated in this paper. The local fractional
Fourier series solutions with the nondifferential terms are obtained. Two illustrative examples are given to show efficiency and
accuracy of the presented method to process the local fractional differential equations.

1. Introduction

In various fields of physics, mathematics, and engineering,
because of the different operators, there are classical differen-
tial equations [1], fractional differential equation [2–4], and
local fractional differential equations [5, 6]. There are more
techniques to achieve analytical approximations to the solu-
tions to differential equations in mathematical physics, such
as the decomposition method [7], the variational iteration
method [8], the homotopy perturbationmethod [9], the heat-
balance integral method [10], the Fourier transform [11], the
Laplace transform [11], and the references therein.

Recently, a new Fourier series (local fractional Fourier
series) via local fractional operator was proposed [6] and had
various applications in the applied fields such as fractal wave
problems in fractal string [12, 13] and the heat-conduction
problems arising in fractal heat transfer [14, 15]. For a detailed
description of the local fractional Fourier series method, we
refer the readers to the recent works [14–16]. This is the
main advantage of local fractional differential equations in
comparison with classical integer-order and fractional-order
models.

In the present paper we consider the local fractional
differential equation:

𝜕
𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑦𝛼
−
𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
= 0, (1)

subject to the initial-boundary value conditions:

𝜕
𝛼
𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, 𝑢 (𝑥, 0) = 𝑔 (𝑥) ,

(2)

where the operators are described by the local fractional
differential operators [5, 6, 12–15]. The paper is organized as
follows. In Section 2, the basic theory of the local fractional
calculus and local fractional Fourier series is presented. In
Section 3, we discuss the initial-boundary problems for local
fractional differential equation. Finally, Section 4 is devoted
to the conclusions.

2. Analysis of the Method

In this section, we present the basic theory of the local
fractional calculus and analyze the local fractional Fourier
series method.

Definition 1. Let 𝐹 be a subset of the real line and be a fractal.
The mass function 𝛾𝛼[𝐹, 𝑎, 𝑏] can be written as [5]

𝛾
𝛼
[𝐹, 𝑎, 𝑏] = lim

max
0<𝑖<𝑛−1

(𝑥𝑖+1−𝑥𝑖)→0

𝑛−1

∑

𝑖=0

(𝑥𝑖+1 − 𝑥𝑖)
𝛼

Γ (1 + 𝛼)
. (3)
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The following properties are present as follows [5].

(i) If 𝐹 ∩ (𝑎, 𝑏) = ⌀, then 𝛾𝛼[𝐹, 𝑎, 𝑏] = 0.
(ii) If 𝑎 < 𝑏 < 𝑐 and 𝛾

𝛼
[𝐹, 𝑎, 𝑏] < 0, then 𝛾

𝛼
[𝐹, 𝑎, 𝑏] +

𝛾
𝛼
[𝐹, 𝑏, 𝑐] = 𝛾

𝛼
[𝐹, 𝑎, 𝑐].

If 𝑓 : (𝐹, 𝑑) → (Ω

, 𝑑

) is a bi-Lipschitz mapping, then we

have [5, 12]

𝜌
𝑠
𝐻
𝑠
(𝐹) ≤ 𝐻

𝑠
(𝑓 (𝐹)) ≤ 𝜏

𝑠
𝐻
𝑠
(𝐹) (4)

such that

𝜌
𝛼𝑥1 − 𝑥2


𝛼
≤
𝑓 (𝑥1) − 𝑓 (𝑥2)

 ≤ 𝜏
𝛼𝑥1 − 𝑥2


𝛼
. (5)

In view of (5), we have
𝑓 (𝑥1) − 𝑓 (𝑥2)

 ≤ 𝜏
𝛼𝑥1 − 𝑥2


𝛼 (6)

such that
𝑓 (𝑥1) − 𝑓 (𝑥2)

 < 𝜀
𝛼
, (7)

where 𝛼 is the fractal dimension of 𝐹. This result is directly
deduced from fractal geometry and relates to the fractal
coarse-grained mass function 𝛾𝛼[𝐹, 𝑎, 𝑏], which reads [5, 13]

𝛾
𝛼
[𝐹, 𝑎, 𝑏] =

𝐻
𝛼
(𝐹 ∩ (𝑎, 𝑏))

Γ (1 + 𝛼)
(8)

with

𝐻
𝛼
(𝐹 ∩ (𝑎, 𝑏)) = (𝑏 − 𝑎)

𝛼
, (9)

where𝐻𝛼 is 𝛼 dimensional Hausdorff measure.

Definition 2. If there is [5, 6, 12–15]
𝑓 (𝑥) − 𝑓 (𝑥0)

 < 𝜀
𝛼 (10)

with |𝑥 − 𝑥0| < 𝛿, for 𝜀, 𝛿 > 0 and 𝜀, 𝛿 ∈ 𝑅, then 𝑓(𝑥) is called
local fractional continuous at 𝑥 = 𝑥0.

If𝑓(𝑥) is local fractional continuous on the interval (𝑎, 𝑏),
then we can write it in the form [5, 6, 12]

𝑓 (𝑥) ∈ 𝐶𝛼 (𝑎, 𝑏) . (11)

Definition 3. Local fractional derivative of 𝑓(𝑥) of order 𝛼 at
𝑥 = 𝑥0 is defined as follows [5, 6, 12–15]:

𝑓
(𝛼)

(𝑥0) =
𝑑
𝛼
𝑓 (𝑥)

𝑑𝑥𝛼
| 𝑥=𝑥0

= lim
𝑥→𝑥0

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 , (12)

where Δ𝛼(𝑓(𝑥) − 𝑓(𝑥0)) ≅ Γ(1 + 𝛼)Δ(𝑓(𝑥) − 𝑓(𝑥0)).
From (12) we can rewrite the local fractional derivative as

𝑓
(𝛼)

(𝑥0) = lim
𝑥→𝑥0

𝑓 (𝑥) − 𝑓 (𝑥0)

𝛾𝛼 [𝐹, 𝑥0, 𝑥]
, (13)

where

𝛾
𝛼
[𝐹, 𝑥0, 𝑥] =

𝐻
𝛼
(𝐹 ∩ (𝑎, 𝑏))

Γ (1 + 𝛼)
. (14)

Definition 4. The partition of the interval [𝑎, 𝑏] is (𝑡𝑗, 𝑡𝑗+1),
𝑗 = 0, . . . , 𝑁 − 1, 𝑡0 = 𝑎 and 𝑡𝑁 = 𝑏 with Δ𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗 and
Δ𝑡 = max{Δ𝑡1, Δ𝑡2, Δ𝑡𝑗, . . .}. Local fractional integral of 𝑓(𝑥)
of order 𝛼 in the interval [𝑎, 𝑏] is given by [5, 6, 12–15]

𝑎𝐼
(𝛼)
𝑏 𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎
𝑓 (𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡𝑗) (Δ𝑡𝑗)
𝛼
.

(15)

Following (14), we have

𝑎𝐼
(𝛼)
𝑏 𝑓 (𝑥) =

1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡𝑗) 𝛾
𝛼
[𝐹, 𝑡𝑗, 𝑡𝑗+1] , (16)

where

𝛾
𝛼
[𝐹, 𝑎, 𝑏] = lim

max
0<𝑖<𝑛−1

(𝑥𝑖+1−𝑥𝑖)→0

𝑛−1

∑

𝑖=0

(𝑥𝑖+1 − 𝑥𝑖)
𝛼

Γ (1 + 𝛼)
. (17)

If 𝐹 are Cantor sets, we can get the derivative and integral on
Cantor sets.

Some properties of local fractional integrals are listed as
follows:

0𝐼
(𝛼)
𝑥 𝐸𝛼 (𝑥

𝛼
) = 𝐸𝛼 (𝑥

𝛼
) − 1,

0𝐼
(𝛼)
𝑥

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥
(𝑛+1)𝛼

Γ (1 + (𝑛 + 1) 𝛼)
,

0𝐼
(𝛼)
𝑥 sin𝛼 (𝑎

𝛼
𝑥
𝛼
) =

1

𝑎𝛼
[cos𝛼 (𝑎

𝛼
𝑥
𝛼
) − 1] ,

0𝐼
(𝛼)
𝑥 cos𝛼 (𝑎

𝛼
𝑥
𝛼
) =

1

𝑎𝛼
sin𝛼 (𝑎

𝛼
𝑥
𝛼
) ,

0𝐼
(𝛼)
𝑥

𝑥
𝛼

Γ (1 + 𝛼)
sin𝛼 (𝑎

𝛼
𝑥
𝛼
)

= −
1

𝑎𝛼
[

𝑥
𝛼

Γ (1 + 𝛼)
cos𝛼 (𝑎

𝛼
𝑥
𝛼
) −

1

𝑎𝛼
sin𝛼 (𝑎

𝛼
𝑥
𝛼
)] ,

0𝐼
(𝛼)
𝑥

𝑥
𝛼

Γ (1 + 𝛼)
cos𝛼 (𝑎

𝛼
𝑥
𝛼
)

=
1

𝑎𝛼
{

𝑥
𝛼

Γ (1 + 𝛼)
sin𝛼 (𝑎

𝛼
𝑥
𝛼
) −

1

𝑎𝛼
[cos𝛼 (𝑎

𝛼
𝑥
𝛼
) − 1]} ,

0𝐼
(𝛼)
𝑥 {𝐸𝛼 (𝑥

𝛼
) sin𝛼 (𝑎

𝛼
𝑥
𝛼
)}

=
𝐸𝛼 (𝑥
𝛼
) [sin𝛼 (𝑎

𝛼
𝑥
𝛼
) − 𝑎
𝛼cos𝛼 (𝑎

𝛼
𝑥
𝛼
)] + 𝑎

𝛼

1 + 𝑎2𝛼
,

0𝐼
(𝛼)
𝑥 {𝐸𝛼 (𝑥

𝛼
) cos𝛼 (𝑎

𝛼
𝑥
𝛼
)}

=
𝐸𝛼 (𝑥
𝛼
) [cos𝛼 (𝑎

𝛼
𝑥
𝛼
) + 𝑎
𝛼 sin (𝑎𝛼𝑥𝛼)] − 1

1 + 𝑎2𝛼
.

(18)
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Definition 5. Local fractional trigonometric Fourier series of
𝑓(𝑡) is given by [6, 12–16]

𝑓 (𝑡) = 𝑎0 +

∞

∑

𝑖=1

𝑎𝑘sin𝛼 (𝑘
𝛼
𝜔0
𝛼
𝑡
𝛼
) +

∞

∑

𝑖=1

𝑏𝑘cos𝛼 (𝑘
𝛼
𝜔0
𝛼
𝑡
𝛼
) (19)

for 𝑥 ∈ 𝑅 and 0 < 𝛼 ≤ 1.
The local fractional Fourier coefficients of (19) can be

computed by

𝑎0 =
1

𝑇𝛼
Γ (1 + 𝛼) 0𝐼𝑇𝑓 (𝑡) ,

𝑎𝑘 = (
2

𝑇
)

𝛼

Γ (1 + 𝛼) 0𝐼𝑇 {𝑓 (𝑡) sin𝛼 (𝑘
𝛼
𝜔0
𝛼
𝑡
𝛼
)} ,

𝑏𝑘 = (
2

𝑇
)

𝛼

Γ (1 + 𝛼) 0𝐼𝑇 {𝑓 (𝑡) cos𝛼 (𝑘
𝛼
𝜔0
𝛼
𝑡
𝛼
)} .

(20)

If 𝜔0 = 1, then we get

𝑓 (𝑡) = 𝑎0 +

∞

∑

𝑖=1

𝑎𝑘sin𝛼 (𝑘
𝛼
𝑡
𝛼
) +

∞

∑

𝑖=1

𝑏𝑘cos𝛼 (𝑘
𝛼
𝑡
𝛼
) , (21)

where the local fractional Fourier coefficients can be com-
puted by

𝑎0 =
1

𝑇𝛼
Γ (1 + 𝛼) 0𝐼𝑇𝑓 (𝑡) ,

𝑎𝑘 = (
2

𝑇
)

𝛼

Γ (1 + 𝛼) 0𝐼𝑇 {𝑓 (𝑡) sin𝛼 (𝑘
𝛼
𝑡
𝛼
)} ,

𝑏𝑘 = (
2

𝑇
)

𝛼

Γ (1 + 𝛼) 0𝐼𝑇 {𝑓 (𝑡) cos𝛼 (𝑘
𝛼
𝑡
𝛼
)} .

(22)

3. The Initial-Boundary Problems for the
Local Fractional Differential Equation

In this section, we consider (1) with the various initial-
boundary conditions.

Example 6. The initial-boundary condition (2) becomes

𝜕
𝛼
𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, 𝑢 (𝑥, 0) = 𝐸𝛼 (𝑥

𝛼
) .

(23)

Let 𝑢 = 𝑋𝑌 in (1). Separation of the variables yields

𝑋𝑌
(𝛼)

= 𝑌𝑋
(2𝛼)

. (24)

Setting

𝑌
(𝛼)

𝑌
=
𝑋
(2𝛼)

𝑋
= −𝜆
2𝛼
, (25)

we obtain

𝑋
(2𝛼)

+ 𝜆
2𝛼
𝑋 = 0,

𝑌
(𝛼)

+ 𝜆
2𝛼
𝑌 = 0.

(26)

Hence, we have their solutions, which read

𝑋 = 𝑎 cos𝛼 (𝜆
𝛼
𝑥
𝛼
) + 𝑏 sin𝛼 (𝜆

𝛼
𝑥
𝛼
) ,

𝑌 = 𝑐𝐸𝛼 (−𝜆
2𝛼
𝑦
𝛼
) .

(27)

Therefore, a solution is written in the form

𝑢 (𝑥, 𝑦) = 𝑋𝑌

= 𝐸𝛼 (−𝜆
2𝛼
𝑦
𝛼
) (𝐴 cos𝛼 (𝜆

𝛼
𝑥
𝛼
) + 𝐵 sin𝛼 (𝜆

𝛼
𝑥
𝛼
)) ,

(28)

where 𝐴 = 𝑎𝑐, 𝐵 = 𝑏𝑐.
For the given condition

𝜕
𝛼
𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0, (29)

there is 𝐵 = 0, so that

𝑢 (𝑥, 𝑦) = 𝐴𝐸𝛼 (−𝜆
2𝛼
𝑦
𝛼
) cos𝛼 (𝜆

𝛼
𝑥
𝛼
) . (30)

For the given condition

𝜕
𝛼
𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, (31)

we obtain

sin𝛼 (𝜆
𝛼
𝑥
𝛼
) = 0, (32)

𝜆
𝛼
= (

𝑚𝜋

𝐿
)

𝛼

, 𝑚 ∈ 𝑍
+
∪ 0. (33)

Thus, from (33) we deduce that

𝑢 (𝑥, 𝑦) = 𝐴𝐸𝛼 (−(
𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼
) cos𝛼 ((

𝑚𝜋𝑥

𝐿
)

𝛼

) ,

𝑚 ∈ 𝑍
+
∪ 0.

(34)

To satisfy the condition (23), (34) is written in the form

𝑢 (𝑥, 𝑦)

= 𝐴0 +

∞

∑

𝑚=1

𝐴𝑚𝐸𝛼 (−(
𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼
) cos𝛼 ((

𝑚𝜋𝑥

𝐿
)

𝛼

) .

(35)
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Then, we derive

𝐴0 =
Γ (1 + 𝛼)

𝐿𝛼
(𝐸𝛼 (𝐿

𝛼
) − 1) ,

𝐴𝑚

= (
2

𝐿
)

𝛼

Γ (1 + 𝛼) 𝐸𝛼 (𝑥
𝛼
)

×
[cos𝛼 ((𝑚𝜋/𝐿)

𝛼
𝑥
𝛼
) + (𝑚𝜋/𝐿)

𝛼 sin ((𝑚𝜋/𝐿)𝛼𝑥𝛼)] − 1

1 + (𝑚𝜋/𝐿)
2𝛼

,

𝑢 (𝑥, 𝑦)

=
Γ (1 + 𝛼)

2𝐿𝛼
(𝐸𝛼 (𝐿

𝛼
) − 1)

+

∞

∑

𝑚=1

[cos𝛼 ((𝑚𝜋/𝐿)
𝛼
𝑥
𝛼
) + (𝑚𝜋/𝐿)

𝛼 sin ((𝑚𝜋/𝐿)𝛼𝑥𝛼)] − 1

1 + (𝑚𝜋/𝐿)
2𝛼

× 𝐸𝛼 (−(
𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼
) cos𝛼 ((

𝑚𝜋𝑥

𝐿
)

𝛼

)

× 𝐸𝛼 (𝑥
𝛼
) (

2

𝐿
)

𝛼

Γ (1 + 𝛼) .

(36)

Example 7. Let us consider (1) with the initial-boundary value
condition, which becomes

𝜕
𝛼
𝑢 (0, 𝑡)

𝜕𝑥𝛼
= 0,

𝜕
𝛼
𝑢 (𝐿, 𝑡)

𝜕𝑥𝛼
= 0, 𝑢 (𝑥, 0) =

𝑥
𝛼

Γ (1 + 𝛼)
.

(37)

Following (35), we have

𝑢 (𝑥, 𝑦)

= 𝐴0 +

∞

∑

𝑚=1

𝐴𝑚𝐸𝛼 (−(
𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼
) cos𝛼 ((

𝑚𝜋𝑥

𝐿
)

𝛼

) ,

(38)

where

𝐴0 =
1

𝐿𝛼

Γ (1 + 𝛼)

Γ (1 + 2𝛼)
𝑥
2𝛼
,

𝐴𝑚 =
1

(2𝑚𝜋)
𝛼 {

𝑥
𝛼

Γ (1 + 𝛼)
sin𝛼 ((

𝑚𝜋𝑥

𝐿
)

𝛼

)

−(
𝐿

𝑚𝜋
)

𝛼

[cos𝛼 ((
𝑚𝜋𝑥

𝐿
)

𝛼

) − 1]} .

(39)

Hence, we get

𝑢 (𝑥, 𝑦)

=
1

𝐿𝛼

Γ (1 + 𝛼)

Γ (1 + 2𝛼)
𝑥
2𝛼

+

∞

∑

𝑚=1

1

(2𝑚𝜋)
𝛼 {

𝑥
𝛼

Γ (1 + 𝛼)
sin𝛼 ((

𝑚𝜋𝑥

𝐿
)

𝛼

)

−(
𝐿

𝑚𝜋
)

𝛼

[cos𝛼 ((
𝑚𝜋𝑥

𝐿
)

𝛼

) − 1]}

× 𝐸𝛼 (−(
𝑚𝜋

𝐿
)

2𝛼

𝑦
𝛼
) cos𝛼 ((

𝑚𝜋𝑥

𝐿
)

𝛼

) .

(40)

4. Conclusions

In this work, the initial-boundary value problems for the local
fractional differential equation are discussed by using the
local fractional Fourier series method. Analytical solutions
for the local fractional differential equation with the nondif-
ferentiable conditions are obtained.
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The local fractional decomposition method is applied to obtain the nondifferentiable numerical solutions for the local fractional
Tricomi equation arising in fractal transonic flow with the local fractional derivative boundary value conditions.

1. Introduction

The Tricomi equation [1] is the second-order linear partial
differential equations of mixed type, which had been applied
to describe the theory of plane transonic flow [2–7]. The
Tricomi equation was used to describe the differentiable
problems for the theory of plane transonic flow. However,
for the fractal theory of plane transonic flow with nondif-
ferentiable terms, the Tricomi equation is not applied to
describe them. Recently, the local fractional calculus [8] was
applied to describe the nondifferentiable problems, such as
the fractal heat conduction [8, 9], the damped and dissipative
wave equations in fractal strings [10], the local fractional
Schrödinger equation [11], the wave equation on Cantor sets
[12], the Navier-Stokes equations on Cantor sets [13], and
others [14–19]. Recently, the local fractional Tricomi equation
arising in fractal transonic flowwas suggested in the form [19]

𝑦
𝛼

Γ (1 + 𝛼)

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑥2𝛼
+

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
= 0, (1)

where the quantity 𝑢(𝑥, 𝑦) is the nondifferentiable function,
and the local fractional operator denotes [8]

𝜕
𝛼
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛼
=

Δ
𝛼
(𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡0))

(𝑡 − 𝑡0)
𝛼 , (2)

where

Δ
𝛼
(𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡0)) ≅ Γ (1 + 𝛼) [𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡0)] .

(3)

The local fractional decomposition method [12] was used to
solve the diffusion equation on Cantor time-space. The aim
of this paper is to use the local fractional decomposition
method to solve the local fractional Tricomi equation arising
in fractal transonic flow with the local fractional derivative
boundary value conditions. The structure of this paper is
as follows. In Section 2, the local fractional integrals and
derivatives are introduced. In Section 3, the local fractional
decomposition method is suggested. In Section 4, the non-
differentiable numerical solutions for local fractional Tricomi
equation with the local fractional derivative boundary value
conditions are given. Finally, the conclusions are shown in
Section 5.

2. Local Fractional Integrals and Derivatives

In this section, we introduce the basic theory of the local
fractional integrals and derivatives [8–19], which are applied
in the paper.
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2 Abstract and Applied Analysis

Definition 1 (see [8–19]). For |𝑥 − 𝑥0| < 𝛿, for 𝜀, 𝛿 > 0 and
𝜀 ∈ 𝑅, we give the function 𝑓(𝑥) ∈ 𝐶𝛼(𝑎, 𝑏), when

𝑓 (𝑥) − 𝑓 (𝑥0)
 < 𝜀
𝛼
, 0 < 𝛼 ≤ 1, (4)

is valid.

Definition 2 (see [8–19]). Let (𝑡𝑗, 𝑡𝑗+1), 𝑗 = 0, . . . , 𝑁−1, 𝑡0 = 𝑎,
and 𝑡𝑁 = 𝑏withΔ𝑡𝑗 = 𝑡𝑗+1−𝑡𝑗 andΔ𝑡 = max{Δ𝑡0, Δ𝑡1, . . .}, be
a partition of the interval [𝑎, 𝑏]. The local fractional integral
of 𝑓(𝑥) in the interval [𝑎, 𝑏] is defined as

𝑎 𝐼𝑏
(𝛼)

𝑓 (𝑥) =
1

Γ (1 + 𝛼)
∫

𝑏

𝑎
𝑓 (𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑗=𝑁−1

∑

𝑗=0

𝑓 (𝑡𝑗) (Δ𝑡𝑗)
𝛼
.

(5)

As the inverse operator of (6), local fractional derivative of
𝑓(𝑥) of the order 𝛼 in the interval (𝑎, 𝑏) is presented as [8–19]

𝑑
𝛼
𝑓 (𝑥0)

𝑑𝑥𝛼
= 𝐷𝑥
(𝛼)

𝑓 (𝑥0) =
Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 , (6)

where

Δ
𝛼
(𝑓 (𝑥) − 𝑓 (𝑥0)) ≅ Γ (1 + 𝛼) [𝑓 (𝑥) − 𝑓 (𝑥0)] . (7)

The formulas of local fractional derivative and integral, which
appear in the paper, are valid [8]:

𝑑
𝛼

𝑑𝑥𝛼

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
=

𝑥
(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
, 𝑛 ∈ 𝑁,

𝑑
𝛼

𝑑𝑥𝛼
𝐸𝛼 (𝑥
𝛼
) = 𝐸𝛼 (𝑥

𝛼
) ,

𝑑
𝛼

𝑑𝑥𝛼
sin𝛼 (𝑥

𝛼
) = cos𝛼 (𝑥

𝛼
) ,

𝑑
𝛼

𝑑𝑥𝛼
cos𝛼 (𝑥

𝛼
) = − sin𝛼 (𝑥

𝛼
) ,

0 𝐼𝑥
(𝛼) 𝑥

(𝑛−1)𝛼

Γ (1 + (𝑛 − 1) 𝛼)
=

𝑥
𝑛𝛼

Γ (1 + 𝑛𝛼)
, 𝑛 ∈ 𝑁,

0 𝐼𝑥
(𝛼)cos𝛼 (𝑥

𝛼
) = sin𝛼 (𝑥

𝛼
) .

(8)

3. Analysis of the Method

In this section, we give the local fractional decomposition
method [12]. We consider the following local fractional
operator equation in the form

𝐿
(2)
𝛼 𝑢 + 𝑅𝛼𝑢 = 0, (9)

where 𝐿(2)𝛼 is linear local fractional operators of the order 2𝛼
with respect to𝑥 and𝑅𝛼 is the linear local fractional operators
of order less than 2𝛼. We write (9) as

𝐿
(2𝛼)
𝑥𝑥 𝑢 + 𝑅𝛼𝑢 = 0, (10)

where the 2𝛼-th local fractional differential operator denotes

𝐿
(𝑛)
𝛼 = 𝐿

(2𝛼)
𝑥𝑥 =

𝜕
2𝛼

𝜕𝑥2𝛼
, (11)

and the linear local fractional operators of order less than 2𝛼

denote

𝑅𝛼 =
Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢 (𝑥, 𝑦)

𝜕𝑦2𝛼
. (12)

Define the 2𝛼-fold local fractional integral operator

𝐿
(−2𝛼)
𝛼 𝑚(𝑠) = 0 𝐼𝑥

(𝛼)
0 𝐼𝑥
(𝛼)

𝑚(𝑠) (13)

so that we obtain the local fractional iterative formula as
follows:

𝐿
(−2𝛼)
𝛼 𝐿
(2𝛼)
𝑥𝑥 𝑢 + 𝐿

(−2𝛼)
𝛼 𝐿
(−2𝛼)
𝛼 𝑅𝛼𝑢 = 0, (14)

which leads to

𝑢 (𝑥) = 𝑢0 (𝑥) + 𝐿
(−2𝛼)
𝛼 𝐿
(−2𝛼)
𝛼 𝑅𝛼𝑢. (15)

Therefore, for 𝑛 ≥ 0, we obtain the recurrence formula in the
form

𝑢𝑛+1 (𝑥) = 𝐿
(−2)
𝛼 𝑅𝛼𝑢𝑛 (𝑥) ,

𝑢0 (𝑥) = 𝑟 (𝑥) .

(16)

Finally, the solution of (9) reads

𝑢 (𝑥) = lim
𝑛→∞

𝜙𝑛 (𝑥) = lim
𝑛→∞

∞

∑

𝑛=0

𝑢𝑛 (𝑥) . (17)

4. The Nondifferentiable Numerical Solutions

In this section, we discuss the nondifferentiable numerical
solutions for the local fractional Tricomi equation arising
in fractal transonic flow with the local fractional derivative
boundary value conditions.

Example 1. We consider the initial-boundary value condi-
tions for the local fractional Tricomi equation in the form [19]

𝑢 (0, 𝑦) = 0, (18)

𝑢 (𝑙, 𝑦) = 0, (19)

𝑢 (𝑥, 0) =
𝑥
𝛼

Γ (1 + 𝛼)
, (20)

𝜕
𝛼
𝑢 (𝑥, 0)

𝜕𝑥𝛼
=

𝑥
𝛼

Γ (1 + 𝛼)
. (21)

Using (20)-(21), we structure the recurrence formula in the
form

𝑢𝑛+1 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢𝑛 (𝑥, 𝑦)

𝜕𝑦2𝛼
] ,

𝑢0 (𝑥, 𝑦) =
𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)
.

(22)
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Hence, for 𝑛 = 0, the first term of (22) reads

𝑢1 (𝑥, 𝑦) = 0. (23)

For 𝑛 = 1 the second term of (22) is given as

𝑢2 (𝑥, 𝑦) = 0. (24)

Hence, we obtain

𝑢0 (𝑥, 𝑦) = 𝑢1 (𝑥, 𝑦) = ⋅ ⋅ ⋅ = 𝑢𝑛 (𝑥, 𝑦) = 0. (25)

Finally, the solution of (9) with the local fractional derivative
boundary value conditions (19)–(21) can be written as

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝜙𝑛 (𝑥, 𝑦)

= lim
𝑛→∞

∞

∑

𝑛=0

𝑢𝑛 (𝑥, 𝑦)

=
𝑥
𝛼

Γ (1 + 𝛼)
+

𝑥
𝛼

Γ (1 + 𝛼)

𝑦
𝛼

Γ (1 + 𝛼)

(26)

which is in accordance with the result from the local frac-
tional variational iteration method [19].

Example 2. Let us consider the initial-boundary value condi-
tions for the local fractional Tricomi equation in the form

𝑢 (0, 𝑦) = 0,

𝑢 (𝑙, 𝑦) = 0,

𝑢 (𝑥, 0) = 0,

𝜕
𝛼
𝑢 (𝑥, 0)

𝜕𝑥𝛼
= cos𝛼 (𝑥

𝛼
) .

(27)

In view of (27), we set up the recurrence formula in the form

𝑢𝑛+1 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢𝑛 (𝑥, 𝑦)

𝜕𝑦2𝛼
] ,

𝑢0 (𝑥, 𝑦) = cos𝛼 (𝑥
𝛼
)

𝑦
𝛼

Γ (1 + 𝛼)
.

(28)

Hence, from (28) we get the following equations:

𝑢1 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢0 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(cos𝛼 (𝑥

𝛼
)

𝑦
𝛼

Γ (1 + 𝛼)
)]

= 0,

𝑢2 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢1 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

𝑢3 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢2 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

𝑢4 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢3 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

...

𝑢𝑛 (𝑥, 𝑦) = 0.

(29)

Finally, we obtain the solution of (9) with the local fractional
derivative boundary value conditions (27), namely,

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝜙𝑛 (𝑥, 𝑦)

= lim
𝑛→∞

∞

∑

𝑛=0

𝑢𝑛 (𝑥, 𝑦)

= cos𝛼 (𝑥
𝛼
)

𝑦
𝛼

Γ (1 + 𝛼)
,

(30)

whose graph is shown in Figure 1.

Example 3. Let us consider the initial-boundary value condi-
tions for the local fractional Tricomi equation in the form

𝑢 (0, 𝑦) = 0,

𝑢 (𝑙, 𝑦) = 0,

𝑢 (𝑥, 0) =
𝑥
𝛼

Γ (1 + 𝛼)
,

𝜕
𝛼
𝑢 (𝑥, 0)

𝜕𝑥𝛼
= sin𝛼 (𝑥

𝛼
) .

(31)
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Figure 1: The plot of the solution of (9) with the local fractional
derivative boundary value conditions (27) when 𝛼 = ln 2/ ln 3.

Making use of (31), the recurrence formula can be written as

𝑢𝑛+1 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢𝑛 (𝑥, 𝑦)

𝜕𝑦2𝛼
] ,

𝑢0 (𝑥, 𝑦) =
𝑥
𝛼

Γ (1 + 𝛼)
+ sin𝛼 (𝑥

𝛼
)

𝑦
𝛼

Γ (1 + 𝛼)
.

(32)

Appling (32) gives the following equations:

𝑢1 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢0 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼

×(
𝑥
𝛼

Γ (1 + 𝛼)
+ sin𝛼 (𝑥

𝛼
)

𝑦
𝛼

Γ (1 + 𝛼)
) ]

= 0,

𝑢2 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢1 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

𝑢3 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢2 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,
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Figure 2: The plot of the solution of (9) with the local fractional
derivative boundary value conditions (31) when 𝛼 = ln 2/ ln 3.

𝑢4 (𝑥, 𝑦) = 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼
𝑢3 (𝑥, 𝑦)

𝜕𝑦2𝛼
]

= 𝐿
(−2)
𝛼 [

Γ (1 + 𝛼)

𝑦𝛼

𝜕
2𝛼

𝜕𝑦2𝛼
(0)]

= 0,

...

𝑢𝑛 (𝑥, 𝑦) = 0.

(33)

Finally, the solution of (9) with the local fractional derivative
boundary value conditions (31) reads

𝑢 (𝑥, 𝑦) = lim
𝑛→∞

𝜙𝑛 (𝑥, 𝑦)

= lim
𝑛→∞

∞

∑

𝑛=0

𝑢𝑛 (𝑥, 𝑦)

=
𝑥
𝛼

Γ (1 + 𝛼)
+ sin𝛼 (𝑥

𝛼
)

𝑦
𝛼

Γ (1 + 𝛼)
,

(34)

and its graph is shown in Figure 2.

5. Conclusions

In this work we discussed the nondifferentiable numerical
solutions for the local fractional Tricomi equation arising
in fractal transonic flow with the local fractional derivative
boundary value conditions by using the local fractional
decompositionmethod and their plots were also shown in the
MatLab software.
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We study a class of fractional q-integrodifference equations with nonlocal fractional q-integral boundary conditions which have
different quantumnumbers. By applying the Banach contraction principle, Krasnoselskii’s fixed point theorem, and Leray-Schauder
nonlinear alternative, the existence and uniqueness of solutions are obtained. In addition, some examples to illustrate our results
are given.

1. Introduction

In this paper, we deal with the following nonlocal fractional
𝑞-integral boundary value problem of nonlinear fractional 𝑞-
integrodifference equation:

𝐷
𝛼
𝑞𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝐼

𝛿
𝑧𝑥 (𝑡)) , 𝑡 ∈ (0, 𝑇) ,

𝑥 (0) = 0, 𝜆𝐼
𝛽
𝑝𝑥 (𝜂) = 𝐼

𝛾
𝑟 𝑥 (𝜉) ,

(1)

where 0 < 𝑝, 𝑞, 𝑟, 𝑧 < 1, 1 < 𝛼 ≤ 2, 𝛽, 𝛾, 𝛿 > 0, 𝜆 ∈ R are
given constants,𝐷𝛼

𝑞 is the fractional 𝑞-derivative of Riemann-
Liouville type of order 𝛼, 𝐼𝜓𝜙 is the fractional 𝜙-integral of
order 𝜓with 𝜙 = 𝑝, 𝑟, 𝑧, and 𝜓 = 𝛽, 𝛾, 𝛿, 𝑓 : [0, 𝑇]×R×R →

R is a continuous function.
The early work on 𝑞-difference calculus or quantum

calculus dates back to Jackson’s paper [1]. Basic definitions
and properties of quantum calculus can be found in the book
[2]. The fractional 𝑞-difference calculus had its origin in the
works by Al-Salam [3] and Agarwal [4]. Motivated by recent
interest in the study of fractional-order differential equations,
the topic of 𝑞-fractional equations has attracted the attention
of many researchers. The details of some recent development
of the subject can be found in ([5–17]) and the references cited

therein, whereas the background material on 𝑞-fractional
calculus can be found in a recent book [18].

In this paper, we will study the existence and uniqueness
of solutions of a class of boundary value problems for
fractional 𝑞-integrodifference equations with nonlocal frac-
tional 𝑞-integral conditions which have different quantum
numbers. So, the novelty of this paper lies in the fact that
there are four different quantum numbers. In addition, the
boundary condition of (1) does not contain the value of
unknown function𝑥 at the right side of boundary point 𝑡 = 𝑇.
One may interpret the 𝑞-integral boundary condition in (1)
as the 𝑞-integrals with different quantum numbers are related
through a real number 𝜆.

The paper is organized as follows. In Section 2, for the
convenience of the reader, we cite some definitions and
fundamental results on 𝑞-calculus as well as the fractional
𝑞-calculus. Some auxiliary lemmas, needed in the proofs
of our main results, are presented in Section 3. Section 4
contains the existence and uniqueness results for problem (1)
which are shown by applying Banach’s contraction principle,
Krasnoselskii’s fixed point theorem, and Leray-Schauder’s
nonlinear alternative. Finally, some examples illustrating the
applicability of our results are presented in Section 5.
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2 Abstract and Applied Analysis

2. Preliminaries

To make this paper self-contained, below we recall some
known facts on fractional 𝑞-calculus. The presentation here
can be found in, for example, [6, 18, 19].

For 𝑞 ∈ (0, 1), define

[𝑎]𝑞 =
1 − 𝑞

𝑎

1 − 𝑞
, 𝑎 ∈ R. (2)

The 𝑞-analogue of the power function (1 − 𝑏)
𝑘 with 𝑘 ∈

N0 := {0, 1, 2, . . .} is

(1 − 𝑏)
(0)

= 1, (1 − 𝑏)
(𝑘)

=

𝑘−1

∏

𝑖=0

(1 − 𝑏𝑞
𝑖
) ,

𝑘 ∈ N, 𝑏 ∈ R.

(3)

More generally, if 𝛾 ∈ R, then

(1 − 𝑏)
(𝛾)

=

∞

∏

𝑖=0

1 − 𝑏𝑞
𝑖

1 − 𝑏𝑞𝛾+𝑖
. (4)

We use the notation 0
(𝛾)

= 0 for 𝛾 > 0. The 𝑞-gamma
function is defined by

Γ𝑞 (𝑥) =
(1 − 𝑞)

(𝑥−1)

(1 − 𝑞)
𝑥−1

, 𝑥 ∈ R \ {0, −1, −2, . . .} . (5)

Obviously, Γ𝑞(𝑥 + 1) = [𝑥]𝑞Γ𝑞(𝑥).
The 𝑞-derivative of a function ℎ is defined by

(𝐷𝑞ℎ) (𝑥) =
ℎ (𝑥) − ℎ (𝑞𝑥)

(1 − 𝑞) 𝑥
for 𝑥 ̸= 0,

(𝐷𝑞ℎ) (0) = lim
𝑥→0

(𝐷𝑞ℎ) (𝑥) ,

(6)

and 𝑞-derivatives of higher order are given by

(𝐷
0
𝑞ℎ) (𝑥) = ℎ (𝑥) ,

(𝐷
𝑘
𝑞ℎ) (𝑥) = 𝐷𝑞 (𝐷

𝑘−1
𝑞 ℎ) (𝑥) , 𝑘 ∈ N.

(7)

The 𝑞-integral of a function ℎ defined on the interval [0, 𝑏] is
given by

(𝐼𝑞ℎ) (𝑥) = ∫

𝑥

0
ℎ (𝑠) 𝑑𝑞𝑠 = 𝑥 (1 − 𝑞)

∞

∑

𝑖=0

ℎ (𝑥𝑞
𝑖
) 𝑞

𝑖
,

𝑥 ∈ [0, 𝑏] .

(8)

If 𝑎 ∈ [0, 𝑏] and ℎ is defined in the interval [0, 𝑏], then its
integral from 𝑎 to 𝑏 is defined by

∫

𝑏

𝑎
ℎ (𝑠) 𝑑𝑞𝑠 = ∫

𝑏

0
ℎ (𝑠) 𝑑𝑞𝑠 − ∫

𝑎

0
ℎ (𝑠) 𝑑𝑞𝑠. (9)

Similar to derivatives, an operator 𝐼𝑘𝑞 is given by

(𝐼
0
𝑞ℎ) (𝑥) = ℎ (𝑥) ,

(𝐼
𝑘
𝑞ℎ) (𝑥) = 𝐼𝑞 (𝐼

𝑘−1
𝑞 ℎ) (𝑥) , 𝑘 ∈ N.

(10)

The fundamental theorem of calculus applies to operators𝐷𝑞

and 𝐼𝑞; that is,

(𝐷𝑞𝐼𝑞ℎ) (𝑥) = ℎ (𝑥) , (11)

and if ℎ is continuous at 𝑥 = 0. Then

(𝐼𝑞𝐷𝑞ℎ) (𝑥) = ℎ (𝑥) − ℎ (0) . (12)

Definition 1. Let ] ≥ 0 and ℎ be a function defined on [0, 𝑇].
The fractional 𝑞-integral of Riemann-Liouville type is given
by (𝐼0𝑞ℎ)(𝑥) = ℎ(𝑥) and

(𝐼
]
𝑞ℎ) (𝑥) =

1

Γ𝑞 (])
∫

𝑥

0
(𝑥 − 𝑞𝑠)

(]−1)
ℎ (𝑠) 𝑑𝑞𝑠,

] > 0, 𝑥 ∈ [0, 𝑇] .

(13)

Definition 2. The fractional 𝑞-derivative of Riemann-
Liouville type of order ] ≥ 0 is defined by (𝐷0

𝑞ℎ)(𝑥) = ℎ(𝑥)

and

(𝐷
]
𝑞ℎ) (𝑥) = (𝐷

𝑙
𝑞𝐼
𝑙−]
𝑞 ℎ) (𝑥) , ] > 0, (14)

where 𝑙 is the smallest integer greater than or equal to ].

Definition 3. For any𝑚, 𝑛 > 0,

𝐵𝑞 (𝑚, 𝑛) = ∫

1

0
𝑢
(𝑚−1)

(1 − 𝑞𝑢)
(𝑛−1)

𝑑𝑞𝑢 (15)

is called the 𝑞-beta function.

The expression of 𝑞-beta function in terms of the 𝑞-
gamma function can be written as

𝐵𝑞 (𝑚, 𝑛) =
Γ𝑞 (𝑚) Γ𝑞 (𝑛)

Γ𝑞 (𝑚 + 𝑛)
. (16)

Lemma 4 (see [4]). Let 𝛼, 𝛽 ≥ 0, and 𝑓 be a function defined
in [0, 𝑇]. Then, the following formulas hold:

(1) (𝐼𝛽𝑞 𝐼
𝛼
𝑞𝑓)(𝑥) = (𝐼

𝛼+𝛽
𝑞 𝑓)(𝑥);

(2) (𝐷𝛼
𝑞𝐼

𝛼
𝑞𝑓)(𝑥) = 𝑓(𝑥).

Lemma 5 (see [6]). Let 𝛼 > 0 and ] be a positive integer.Then,
the following equality holds:

(𝐼
𝛼
𝑞𝐷

]
𝑞𝑓) (𝑥)

= (𝐷
]
𝑞𝐼
𝛼
𝑞𝑓) (𝑥) −

]−1

∑

𝑘=0

𝑥
𝛼−]+𝑘

Γ𝑞 (𝛼 + 𝑘 − ] + 1)
(𝐷

𝑘
𝑞𝑓) (0) .

(17)

3. Some Auxiliary Lemmas

Lemma 6. Let 𝛼, 𝛽 > 0, and 0 < 𝑞 < 1. Then one has

∫

𝜂

0
(𝜂 − 𝑞𝑠)

(𝛼−1)
𝑠
𝛽
𝑑𝑞𝑠 = 𝜂

𝛼+𝛽
𝐵𝑞 (𝛼, 𝛽 + 1) . (18)
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Proof. Using the definitions of 𝑞-analogue of power function
and 𝑞-beta function, we have

∫

𝜂

0
(𝜂 − 𝑞𝑠)

(𝛼−1)
𝑠
𝛽
𝑑𝑞𝑠

= (1 − 𝑞) 𝜂

∞

∑

𝑛=0

𝑞
𝑛
(𝜂 − 𝑞𝜂𝑞

𝑛
)
(𝛼−1)

(𝜂𝑞
𝑛
)
𝛽

= (1 − 𝑞) 𝜂

∞

∑

𝑛=0

𝑞
𝑛
𝜂
𝛼−1

(1 − 𝑞𝑞
𝑛
)
(𝛼−1)

𝜂
𝛽
𝑞
𝑛𝛽

= (1 − 𝑞) 𝜂
𝛼+𝛽

∞

∑

𝑛=0

𝑞
𝑛
(1 − 𝑞𝑞

𝑛
)
(𝛼−1)

𝑞
𝑛𝛽

= 𝜂
𝛼+𝛽

∫

1

0
(1 − 𝑞𝑠)

(𝛼−1)
𝑠
(𝛽)
𝑑𝑞𝑠

= 𝜂
𝛼+𝛽

𝐵𝑞 (𝛼, 𝛽 + 1) .

(19)

The proof is complete.

Lemma 7. Let 𝛼, 𝛽, 𝛾 > 0, and 0 < 𝑝, 𝑞, 𝑟 < 1. Then one has

∫

𝜂

0
∫

𝑥

0
∫

𝑦

0
(𝜂 − 𝑝𝑥)

(𝛼−1)
(𝑥 − 𝑞𝑦)

(𝛽−1)
(𝑦 − 𝑟𝑧)

(𝛾−1)
𝑑𝑟𝑧 𝑑𝑞𝑦𝑑𝑝𝑥

=
1

[𝛾]𝑟

𝐵𝑝 (𝛼, 𝛽 + 𝛾 + 1) 𝐵𝑞 (𝛽, 𝛾 + 1) 𝜂
𝛼+𝛽+𝛾

.

(20)

Proof. Taking into account Lemma 6, we have

∫

𝜂

0
∫

𝑥

0
∫

𝑦

0
(𝜂 − 𝑝𝑥)

(𝛼−1)
(𝑥 − 𝑞𝑦)

(𝛽−1)
(𝑦 − 𝑟𝑧)

(𝛾−1)
𝑑𝑟𝑧 𝑑𝑞𝑦𝑑𝑝𝑥

=
1

[𝛾]𝑟

∫

𝜂

0
∫

𝑥

0
(𝜂 − 𝑝𝑥)

(𝛼−1)
(𝑥 − 𝑞𝑦)

(𝛽−1)
𝑦
(𝛾)
𝑑𝑞𝑦𝑑𝑝𝑥

=
1

[𝛾]𝑟

∫

𝜂

0
(𝜂 − 𝑝𝑥)

(𝛼−1)
∫

𝑥

0
(𝑥 − 𝑞𝑦)

(𝛽−1)
𝑦
(𝛾)
𝑑𝑞𝑦𝑑𝑝𝑥

=
1

[𝛾]𝑟

𝐵𝑞 (𝛽, 𝛾 + 1) ∫

𝜂

0
(𝜂 − 𝑝𝑥)

(𝛼−1)
𝑥
(𝛽+𝛾)

𝑑𝑝𝑥

=
1

[𝛾]𝑟

𝐵𝑝 (𝛼, 𝛽 + 𝛾 + 1) 𝐵𝑞 (𝛽, 𝛾 + 1) 𝜂
𝛼+𝛽+𝛾

.

(21)

This completes the proof.

Lemma 8. Let 𝛽, 𝛾 > 0, 𝜆 ∈ R, and 0 < 𝑝, 𝑞, 𝑟 < 1. Then,
for 𝑦 ∈ 𝐶([0, 𝑇],R), the unique solution of boundary value
problem,

𝐷
𝛼
𝑞𝑥 (𝑡) = 𝑦 (𝑡) , 𝑡 ∈ (0, 𝑇) , 1 < 𝛼 ≤ 2, (22)

subject to the nonlocal fractional condition,

𝑥 (0) = 0, 𝜆𝐼
𝛽
𝑝𝑥 (𝜂) = 𝐼

𝛾
𝑟 𝑥 (𝜉) , (23)

is given by

𝑥 (𝑡) =
𝜆𝑡

𝛼−1

ΩΓ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑝𝑠

−
𝑡
𝛼−1

ΩΓ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)
𝑦 (𝑠) 𝑑𝑞𝑠,

(24)

where

Ω =
Γ𝑟 (𝛼)

Γ𝑟 (𝛼 + 𝛾)
𝜉
𝛼+𝛾−1

− 𝜆
Γ𝑝 (𝛼)

Γ𝑝 (𝛼 + 𝛽)
𝜂
𝛼+𝛽−1

̸= 0. (25)

Proof. From 1 < 𝛼 ≤ 2, we let 𝑛 = 2. Using the Definition 2
and Lemma 4, (22) can be expressed as

(𝐼
𝛼
𝑞𝐷

2
𝑞𝐼
2−𝛼
𝑞 𝑥) (𝑡) = (𝐼

𝛼
𝑞𝑦) (𝑡) . (26)

From Lemma 5, we have

𝑥 (𝑡) = 𝑘1𝑡
𝛼−1

+ 𝑘2𝑡
𝛼−2

+ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)
𝑦 (𝑠) 𝑑𝑞𝑠 (27)

for some constants 𝑘1, 𝑘2 ∈ R. It follows from the first
condition of (23) that 𝑘2 = 0. Applying the Riemann-
Liouville fractional 𝑝-integral of order 𝛽 > 0 for (27) with
𝑘2 = 0 and taking into account of Lemma 6, we have

𝐼
𝛽
𝑝𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑝𝑠)
(𝛽−1)

Γ𝑝 (𝛽)

× (𝑘1𝑠
𝛼−1

+ ∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝛼−1)

Γ𝑞 (𝛼)
𝑦 (𝑢) 𝑑𝑞𝑢)𝑑𝑝𝑠

=
𝑘1

Γ𝑝 (𝛽)
∫

𝑡

0
(𝑡 − 𝑝𝑠)

(𝛽−1)
𝑠
𝛼−1

𝑑𝑝𝑠 +
1

Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝑡

0
∫

𝑠

0
(𝑡 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑝𝑠

= 𝑘1

Γ𝑝 (𝛼)

Γ𝑝 (𝛼 + 𝛽)
𝑡
𝛼+𝛽−1

+
1

Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝑡

0
∫

𝑠

0
(𝑡 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑝𝑠.

(28)
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In particular, we have

𝐼
𝛽
𝑝𝑥 (𝜂) = 𝑘1

Γ𝑝 (𝛼)

Γ𝑝 (𝛼 + 𝛽)
𝜂
𝛼+𝛽−1

+
1

Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑝𝑠.

(29)

Using the Riemann-Liouville fractional 𝑟-integral of order
𝛾 > 0 and repeating the above process, we get

𝐼
𝛾
𝑟 𝑥 (𝜉) = 𝑘1

Γ𝑟 (𝛼)

Γ𝑟 (𝛼 + 𝛾)
𝜉
𝛼+𝛾−1

+
1

Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑟𝑠.

(30)

The second nonlocal condition of (23) implies

𝑘1 =
𝜆

ΩΓ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑝𝑠

−
1

ΩΓ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑦 (𝑢) 𝑑𝑞𝑢 𝑑𝑟𝑠.

(31)

Substituting the values of 𝑘1 and 𝑘2 in (27), we get the desired
result in (24).

4. Main Results

In this section, we denote C = 𝐶([0, 𝑇],R) as the Banach
space of all continuous functions from [0, 𝑇] to R endowed
with the norm defined by ‖𝑥‖ = sup𝑡∈[0,𝑇]|𝑥(𝑡)|. In view of
Lemma 8, we define an operator Q : C → C by

(Q𝑥) (𝑡)

=
𝜆𝑡

𝛼−1

ΩΓ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× 𝑓 (𝑢, 𝑥 (𝑢) , 𝐼
𝛿
𝑧𝑥 (𝑢)) 𝑑𝑞𝑢 𝑑𝑝𝑠

−
𝑡
𝛼−1

ΩΓ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× 𝑓 (𝑢, 𝑥 (𝑢) , 𝐼
𝛿
𝑧𝑥 (𝑢)) 𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)
𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠)) 𝑑𝑞𝑠,

(32)

where Ω ̸= 0 is defined by (25). It should be noticed that
problem (1) has solutions if and only if the operator Q has
fixed points.

For the sake of convenience of proving the results, we set

Λ =
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽)

× [
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1) 𝐿1

Γ𝑞 (𝛼 + 1)

+
𝜂
𝛼+𝛽+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑝 (𝛽, 𝛼 + 𝛿 + 1) 𝐿2

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
]

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾)

× [
𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1) 𝐿1

Γ𝑞 (𝛼 + 1)

+
𝜉
𝛼+𝛾+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑟 (𝛾, 𝛼 + 𝛿 + 1) 𝐿2

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
]

+
𝑇
𝛼

Γ𝑞 (𝛼 + 1)
𝐿1 +

𝑇
𝛼+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
𝐿2,

(33)

Ψ =
|𝜆| 𝑇

𝛼−1
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1)

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼 + 1)

+
𝑇
𝛼−1

𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1)

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼 + 1)
+

𝑇
𝛼

Γ𝑞 (𝛼 + 1)
.

(34)

The first result on the existence and uniqueness of solu-
tions is based on the Banach contraction mapping principle.

Theorem 9. Let 𝑓 : [0, 𝑇] × R × R → R be a continuous
function satisfying the assumption:

(𝐻1) there exist constants 𝐿1, 𝐿2 > 0 such that
𝑓 (𝑡, 𝑤1, 𝑤2) − 𝑓 (𝑡, 𝑤1, 𝑤2)



≤ 𝐿1
𝑤1 − 𝑤1

 + 𝐿2
𝑤2 − 𝑤2

 ,

(35)

for each 𝑡 ∈ [0, 𝑇] and 𝑤1, 𝑤2, 𝑤1, 𝑤2 ∈ R.
If

Λ ≤ 𝜃 < 1, (36)

where Λ is given by (33), then the boundary value problem (1)
has a unique solution on [0, 𝑇].
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Proof. We transform problem (1) into a fixed point problem,
𝑥 = Q𝑥, where the operator Q is defined by (32). By applying
the Banach contraction mapping principle, we will show that
Q has a fixed point which is the unique solution of problem
(1).

Setting sup𝑡∈[0,𝑇]|𝑓(𝑡, 0, 0)| = 𝑀 < ∞ and choosing

𝑟 ≥
Ψ𝑀

1 − 𝜀
, (37)

where 𝜃 ≤ 𝜀 < 1, and the constant Ψ defined by (34), we will
show that Q𝐵𝑟 ⊂ 𝐵𝑟, where 𝐵𝑟 = {𝑥 ∈ C : ‖𝑥‖ ≤ 𝑟}. For any
𝑥 ∈ 𝐵𝑟, we have

|Q𝑥 (𝑡)|

≤ sup
𝑡∈[0,𝑇]

{
|𝜆| 𝑡

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑝𝑠

+
𝑡
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)


𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠))


𝑑𝑞𝑠} .

(38)

The assumption (𝐻1) implies that

𝑓 (𝑡, 𝑤1, 𝑤2)
 ≤

𝑓 (𝑡, 𝑤1, 𝑤2) − 𝑓 (𝑡, 0, 0)
 +

𝑓 (𝑡, 0, 0)


≤ 𝐿1
𝑤1

 + 𝐿2
𝑤2

 + 𝑀,

(39)

for all 𝑡 ∈ [0, 𝑇] and 𝑤1, 𝑤2 ∈ R.
Then, by using Lemmas 6 and 7, we have

|Q𝑥 (𝑡)|

≤
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑝𝑠

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑇

0

(𝑇 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)


𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠))


𝑑𝑞𝑠

≤
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝐿1𝑟 + 𝐿2𝑟 ∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V +𝑀)𝑑𝑞𝑢 𝑑𝑝𝑠

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝐿1𝑟 + 𝐿2𝑟 ∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V +𝑀)𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑇

0

(𝑇 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)

× (𝐿1𝑟 + 𝐿2𝑟 ∫

𝑠

0

(𝑠 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V +𝑀)𝑑𝑞𝑠

=
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× (
𝜂
𝛼+𝛽

[𝛼]𝑞

(𝐿1𝑟 +𝑀)𝐵𝑝 (𝛽, 𝛼 + 1)

+
𝐿2𝑟𝜂

𝛼+𝛽+𝛿

Γ𝑧 (𝛿) [𝛿]𝑧

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑝 (𝛽, 𝛼 + 𝛿 + 1))

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× (
𝜉
𝛼+𝛾

[𝛼]𝑞

(𝐿1𝑟 +𝑀)𝐵𝑟 (𝛾, 𝛼 + 1)

+
𝐿2𝑟𝜉

𝛼+𝛾+𝛿

Γ𝑧 (𝛿) [𝛿]𝑧

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑟 (𝛾, 𝛼 + 𝛿 + 1))

+
𝑇
𝛼

Γ𝑞 (𝛼) [𝛼]𝑞

(𝐿1𝑟 +𝑀) +
𝑇
𝛼+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿) [𝛿]𝑧

𝐿2𝑟

= Λ𝑟 + Ψ𝑀 ≤ 𝑟.

(40)

Then, we have ‖Q𝑥‖ ≤ 𝑟 which yields Q𝐵𝑟 ⊂ 𝐵𝑟.
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Next, for any 𝑥, 𝑦 ∈ C and for each 𝑡 ∈ [0, 𝑇], we have

Q𝑥 (𝑡) − Q𝑦 (𝑡)


≤
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))

−𝑓 (𝑢, 𝑦 (𝑢) , 𝐼
𝛿
𝑧𝑦 (𝑢))


) 𝑑𝑞𝑢 𝑑𝑝𝑠

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))

−𝑓 (𝑢, 𝑦 (𝑢) , 𝐼
𝛿
𝑧𝑦 (𝑢))


) 𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑇

0

(𝑇 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)

× (

𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠) , 𝐼

𝛿
𝑧𝑦 (𝑠))


) 𝑑𝑞𝑠

≤
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝐿1
𝑥 − 𝑦



+ 𝐿2
𝑥 − 𝑦

 ∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑢 𝑑𝑝𝑠

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝐿1
𝑥 − 𝑦

 + 𝐿2
𝑥 − 𝑦



×∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑇

0

(𝑇 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)

× (𝐿1
𝑥 − 𝑦

 + 𝐿2
𝑥 − 𝑦



× ∫

𝑠

0

(𝑠 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑠

= Λ
𝑥 − 𝑦

 .

(41)

The above result implies that ‖Q𝑥 − Q𝑦‖ ≤ Λ‖𝑥 − 𝑦‖. As
Λ < 1, Q is a contraction. Hence, by the Banach contraction
mapping principle, we deduce that Q has a fixed point which
is the unique solution of problem (1).

The second existence result is based on Krasnoselskii’s
fixed point theorem.

Lemma 10 (Krasnoselskii’s fixed point theorem [20]). Let M
be a closed, bounded, convex, and nonempty subset of a Banach
space X. Let A, B be the operators such that (a) 𝐴𝑥 + 𝐵𝑦 ∈ 𝑀

whenever 𝑥, 𝑦 ∈ 𝑀; (b) A is compact and continuous; (c) B
is a contraction mapping. Then there exists 𝑧 ∈ 𝑀 such that
𝑧 = 𝐴𝑧 + 𝐵𝑧.

Theorem 11. Assume that 𝑓 : [0, 𝑇] × R × R → R

is a continuous function satisfying the assumption (𝐻1). In
addition one supposes that

(𝐻2) |𝑓(𝑡, 𝑤1, 𝑤2)| ≤ 𝜅(𝑡), for all (𝑡, 𝑤1, 𝑤2) ∈ [0, 𝑇] ×R×

R and 𝜅 ∈ 𝐶([0, 𝑇],R+
).

If

𝑇
𝛼

Γ𝑞 (𝛼 + 1)
𝐿1 +

𝑇
𝛼+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
𝐿2 < 1, (42)

then the boundary value problem (1) has at least one solution
on [0, 𝑇].

Proof. Let us set sup𝑡∈[0,𝑇]|𝜅(𝑡)| = ‖𝜅‖ and choose a suitable
constant 𝜌 as

𝜌 ≥ ‖𝜅‖Ψ, (43)

where Ψ is defined by (34). Now, we define the operators Q1

and Q2 on the set 𝐵𝜌 = {𝑥 ∈ C : ‖𝑥‖ ≤ 𝜌} as

(Q1𝑥) (𝑡)

=
𝜆𝑡

𝛼−1

ΩΓ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× 𝑓 (𝑢, 𝑥 (𝑢) , 𝐼
𝛿
𝑧𝑥 (𝑢)) 𝑑𝑞𝑢 𝑑𝑝𝑠

−
𝑡
𝛼−1

ΩΓ𝑟 (𝛾) Γ𝑞 (𝛼)



Abstract and Applied Analysis 7

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× 𝑓 (𝑢, 𝑥 (𝑢) , 𝐼
𝛿
𝑧𝑥 (𝑢)) 𝑑𝑞𝑢 𝑑𝑟𝑠

(Q2𝑥) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)
𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠)) 𝑑𝑞𝑠.

(44)

Firstly, we will show that the operators Q1 and Q2 satisfy
condition (a) of Lemma 10. For 𝑥, 𝑦 ∈ 𝐵𝜌, we have

Q1𝑥 + Q2𝑦


≤ ‖𝜅‖
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑑𝑞𝑢 𝑑𝑝𝑠

+ ‖𝜅‖
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑑𝑞𝑢 𝑑𝑟𝑠

+ ‖𝜅‖∫

𝑇

0

(𝑇 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)
𝑑𝑞𝑠

= Ψ ‖𝜅‖ ≤ 𝜌.

(45)

Therefore (Q1𝑥) + (Q2𝑦) ∈ 𝐵𝜌. Further, condition (𝐻1)

coupled with (42) implies that Q2 is contraction mapping.
Therefore, condition (c) of Lemma 10 is satisfied.

Finally, we will show that Q1 is compact and continuous.
Using the continuity of 𝑓 and (𝐻2), we deduce that the
operator Q1 is continuous and uniformly bounded on 𝐵𝜌.
We define sup(𝑡,𝑤1 ,𝑤2)∈[0,𝑇]×𝐵2𝜌 |𝑓(𝑡, 𝑤1, 𝑤2)| = 𝑁 < ∞. For
𝑡1, 𝑡2 ∈ [0, 𝑇] with 𝑡1 < 𝑡2 and 𝑥 ∈ 𝐵𝜌, we have

(Q1𝑥) (𝑡2) − (Q1𝑥) (𝑡1)


≤
|𝜆|


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑝𝑠

+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑟𝑠

≤
|𝜆|


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1


𝑁

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑑𝑞𝑢 𝑑𝑝𝑠

+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1


𝑁

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)
𝑑𝑞𝑢 𝑑𝑟𝑠

≤
|𝜆|


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1


𝑁

|Ω| Γ𝑝 (𝛽)
(
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1)

Γ𝑞 (𝛼 + 1)
)

+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1


𝑁

|Ω| Γ𝑟 (𝛾)
(
𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1)

Γ𝑞 (𝛼 + 1)
) .

(46)

Actually, as 𝑡1 − 𝑡2 → 0 the right-hand side of the
above inequality tends to zero independently of 𝑥 ∈ 𝐵𝜌.
Therefore, Q1 is relatively compact on 𝐵𝜌. Applying the
Arzelá-Ascoli theorem, we get that Q1 is compact on 𝐵𝜌.
Thus all assumptions of Lemma 10 are satisfied.Therefore, the
boundary value problem (1) has at least one solution on [0, 𝑇].
The proof is complete.

Using the Leray-Schauder nonlinear alternative, we give
the third result.

Lemma 12 (nonlinear alternative for single-valued maps
[21]). Let 𝐸 be a Banach space, let 𝐶 be a closed, convex subset
of 𝐸, let 𝑈 be an open subset of 𝐶, and let 0 ∈ 𝑈. Suppose that
𝐹 : 𝑈 → 𝐶 is a continuous, compact (i.e., 𝐹(𝑈) is a relatively
compact subset of 𝐶) map. Then either

(i) 𝐹 has a fixed point in 𝑈, or
(ii) there is a 𝑢 ∈ 𝜕𝑈 (the boundary of 𝑈 in 𝐶) and 𝜆 ∈

(0, 1) with 𝑢 = 𝜆𝐹(𝑢).

For the sake of convenience of proving the last result, we
set

Φ1 =
|𝜆| 𝑇

𝛼−1
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1)

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼 + 1)

+
𝑇
𝛼−1

𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1)

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼 + 1)
+

𝑇
𝛼

Γ𝑞 (𝛼 + 1)
,

(47)

Φ2 =
|𝜆| 𝑇

𝛼−1
𝜂
𝛼+𝛽+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑝 (𝛽, 𝛼 + 𝛿 + 1)

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)

+
𝑇
𝛼+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)

+
𝑇
𝛼−1

𝜉
𝛼+𝛾+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑟 (𝛾, 𝛼 + 𝛿 + 1)

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
.

(48)
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Theorem 13. Assume that 𝑓 : [0, 𝑇] × R × R → R is a
continuous function. In addition one supposes that

(𝐻3) there exist a continuous nondecreasing function 𝜓 :

[0,∞) → (0,∞) and a function 𝑝 ∈ 𝐶([0, 𝑇],R+
) such that

𝑓 (𝑡, 𝑤1, 𝑤2)
 ≤ 𝑝 (𝑡) 𝜓 (

𝑤1
) +

𝑤2


for each (𝑡, 𝑤1, 𝑤2) ∈ [0, 𝑇] ×R
2
;

(49)

(𝐻4) there exists a constant 𝐾 > 0 such that

(1 − Φ2)𝐾

𝑝
 𝜓 (𝐾)Φ1

> 1, (50)

whereΦ1 andΦ2 are defined by (47) and (48), respectively, and

Φ2 < 1. (51)

Then the boundary value problem (1) has at least one solution
on [0, 𝑇].

Proof. Firstly, we will show that the operator Q, defined by
(32), maps bounded sets (balls) into bounded sets in C. For a
positive number 𝑅, we set a bounded ball in C as 𝐵𝑅 = {𝑥 ∈

C : ‖𝑥‖ ≤ 𝑅}. Then, for 𝑡 ∈ [0, 𝑇], we have

|Q𝑥 (𝑡)|

≤
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑝𝑠

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑇

0

(𝑇 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)


𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠))


𝑑𝑞𝑠

≤
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝑝 (𝑢) 𝜓 (‖𝑥‖)

+ ‖𝑥‖∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑢 𝑑𝑝𝑠

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝑝 (𝑢) 𝜓 (‖𝑥‖)

+ ‖𝑥‖∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑢 𝑑𝑟𝑠

+ ∫

𝑇

0

(𝑇 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)

× (𝑝 (𝑠) 𝜓 (‖𝑥‖) + ‖𝑥‖∫

𝑠

0

(𝑠 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑠

≤
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽)

× (
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1)
𝑝
 𝜓 (𝑅)

Γ𝑞 (𝛼 + 1)

+
𝑅𝜂

𝛼+𝛽+𝛿
𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑝 (𝛽, 𝛼 + 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
)

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾)

× (
𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1)
𝑝
 𝜓 (𝑅)

Γ𝑞 (𝛼 + 1)

+
𝑅𝜉

𝛼+𝛾+𝛿
𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑟 (𝛾, 𝛼 + 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
)

+

𝑝
 𝜓 (𝑅) 𝑇

𝛼

Γ𝑞 (𝛼 + 1)
+
𝑅𝑇

𝛼+𝛿
𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)

:= 𝐺.

(52)

Therefore, we conclude that ‖Q𝑥‖ ≤ 𝐺.
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Secondly, we will show that Q maps bounded sets into
equicontinuous sets of C. Let 𝑡1, 𝑡2 ∈ [0, 𝑇] with 𝑡1 < 𝑡2 and
𝐵𝑅 be a bounded set of 𝐶([0, 𝑇],R) as in the previous step,
and let 𝑥 ∈ 𝐵𝑅. Then we have

(Q𝑥) (𝑡2) − (Q𝑥) (𝑡1)


≤
|𝜆|


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑝𝑠

+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

×

𝑓 (𝑢, 𝑥 (𝑢) , 𝐼

𝛿
𝑧𝑥 (𝑢))


𝑑𝑞𝑢 𝑑𝑟𝑠

+



∫

𝑡2

0

(𝑡2 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)


𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠))


𝑑𝑞𝑠

−∫

𝑡1

0

(𝑡1 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)


𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠))


𝑑𝑞𝑠



≤
|𝜆|


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝑝 (𝑢) 𝜓 (‖𝑥‖)

+ ‖𝑥‖∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑢 𝑑𝑝𝑠

+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼)

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× (𝑝 (𝑢) 𝜓 (‖𝑥‖)

+ ‖𝑥‖∫

𝑢

0

(𝑢 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑢 𝑑𝑟𝑠

+



∫

𝑡2

0

(𝑡2 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)

× (𝑝 (𝑠) 𝜓 (‖𝑥‖)

+ ‖𝑥‖∫

𝑠

0

(𝑠 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑠

− ∫

𝑡1

0

(𝑡1 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)

×(𝑝 (𝑠) 𝜓 (‖𝑥‖) + ‖𝑥‖∫

𝑠

0

(𝑠 − 𝑧V)(𝛿−1)

Γ𝑧 (𝛿)
𝑑𝑧V)𝑑𝑞𝑠



≤
|𝜆|


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑝 (𝛽)

× (
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1)
𝑝
 𝜓 (𝑅)

Γ𝑞 (𝛼 + 1)

+
𝑅𝜂

𝛼+𝛽+𝛿
𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑝 (𝛽, 𝛼 + 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
)

+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



|Ω| Γ𝑟 (𝛾)

× (
𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1)
𝑝
 𝜓 (𝑅)

Γ𝑞 (𝛼 + 1)

+
𝑅𝜉

𝛼+𝛾+𝛿
𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑟 (𝛾, 𝛼 + 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
)

+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1



𝑝
 𝜓 (𝑅)

Γ𝑞 (𝛼 + 1)
+


𝑡
𝛼−1
2 − 𝑡

𝛼−1
1


𝑅𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
.

(53)

Obviously the right-hand side of the above inequality tends
to zero independently of 𝑥 ∈ 𝐵𝑅 as 𝑡1 → 𝑡2. Therefore, by
applying the Arzelá-Ascoli theorem, we deduce thatQ : C →

C is completely continuous.
The result will follow from the Leray-Schauder nonlinear

alternative once we have proved the boundedness of the set
of all solutions to the equation 𝑥(𝑡) = 𝜔(Q𝑥)(𝑡) for some 0 <

𝜔 < 1. Let 𝑥 be a solution. Then, for 𝑡 ∈ [0, 𝑇], we have

(Q𝑥) (𝑡) =
𝜔𝜆𝑡

𝛼−1

ΩΓ𝑝 (𝛽) Γ𝑞 (𝛼)

× ∫

𝜂

0
∫

𝑠

0
(𝜂 − 𝑝𝑠)

(𝛽−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× 𝑓 (𝑢, 𝑥 (𝑢) , 𝐼
𝛿
𝑧𝑥 (𝑢)) 𝑑𝑞𝑢 𝑑𝑝𝑠

−
𝜔𝑡

𝛼−1

ΩΓ𝑟 (𝛾) Γ𝑞 (𝛼)



10 Abstract and Applied Analysis

× ∫

𝜉

0
∫

𝑠

0
(𝜉 − 𝑟𝑠)

(𝛾−1)
(𝑠 − 𝑞𝑢)

(𝛼−1)

× 𝑓 (𝑢, 𝑥 (𝑢) , 𝐼
𝛿
𝑧𝑥 (𝑢)) 𝑑𝑞𝑢 𝑑𝑟𝑠

+ 𝜔∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ𝑞 (𝛼)
𝑓 (𝑠, 𝑥 (𝑠) , 𝐼

𝛿
𝑧𝑥 (𝑠)) 𝑑𝑞𝑠.

(54)

As before, one can easily find that

‖𝑥‖ = sup
𝑡∈[0,𝑇]

|𝜔 (Q𝑥) (𝑡)| ≤
𝑝
 𝜓 (‖𝑥‖)Φ1 + ‖𝑥‖Φ2, (55)

which can alternatively be written as

(1 − Φ2) ‖𝑥‖

𝑝
 𝜓 (‖𝑥‖)Φ1

≤ 1. (56)

In view of (𝐻4), there exists 𝐾 such that ‖𝑥‖ ̸=𝐾. Let us set

U = {𝑥 ∈ 𝐶 ([0, 𝑇] ,R) : ‖𝑥‖ < 𝐾} . (57)

Note that the operatorQ : U → 𝐶(0, 𝑇,R) is continuous and
completely continuous. From the choice ofU, there is no 𝑥 ∈

𝜕U such that 𝑥 = 𝜔Q𝑥 for some 𝜔 ∈ (0, 1). Consequently, by
the nonlinear alternative of Leray-Schauder type (Lemma 12),
we deduce that Q has a fixed point 𝑥 ∈ U which is a solution
of problem (1). This completes the proof.

5. Examples

In this section, we present some examples to illustrate our
results.

Example 1. Consider the following nonlocal fractional 𝑞-
integral boundary value problem:

𝐷
3/2
1/2𝑥 (𝑡) =

2 sin𝜋𝑡
(𝑒𝑡 + 4)

2
⋅

|𝑥 (𝑡)|

2 + |𝑥 (𝑡)|
+

𝑒
−𝑡2

(6 + 𝑡)
2
𝐼
7/5
3/4𝑥 (𝑡) +

1

2
,

0 < 𝑡 < 3,

𝑥 (0) = 0,
1

5
𝐼
1/2
3/5𝑥(

5

2
) = 𝐼

5/2
2/3𝑥(

3

2
) .

(58)

Here𝛼 = 3/2, 𝑞 = 1/2, 𝛿 = 7/5, 𝑧 = 3/4,𝜆 = 1/5,𝛽 = 1/2,
𝑝 = 3/5, 𝜂 = 5/2, 𝛾 = 5/2, 𝑟 = 2/3, 𝜉 = 3/2, 𝑇 = 3, and
𝑓(𝑡, 𝑥, 𝐼

𝛿
𝑧𝑥) = (2 sin𝜋𝑡/(𝑒𝑡 + 4)

2
)(|𝑥|/(2 + |𝑥|)) + (𝑒

−𝑡2
/((6 +

𝑡)
2
))𝐼

7/5
3/4

𝑥 + 1/2.

Since |𝑓(𝑡, 𝑤1, 𝑤2) − 𝑓(𝑡, 𝑤1, 𝑤2)| ≤ (1/25)|𝑤1 − 𝑤1| +

(1/36)|𝑤2 − 𝑤2|, then (𝐻1) is satisfied with 𝐿1 = 1/25 and
𝐿2 = 1/36. By using the Maple program, we find that

Ω =
Γ𝑟 (𝛼)

Γ𝑟 (𝛼 + 𝛾)
𝜉
𝛼+𝛾−1

− 𝜆
Γ𝑝 (𝛼)

Γ𝑝 (𝛼 + 𝛽)
𝜂
𝛼+𝛽−1

≈ 0.4141558,

Λ =
|𝜆| 𝑇

𝛼−1

|Ω| Γ𝑝 (𝛽)

× [
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1) 𝐿1

Γ𝑞 (𝛼 + 1)

+
𝜂
𝛼+𝛽+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑝 (𝛽, 𝛼 + 𝛿 + 1) 𝐿2

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
]

+
𝑇
𝛼−1

|Ω| Γ𝑟 (𝛾)

× [
𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1) 𝐿1

Γ𝑞 (𝛼 + 1)

+
𝜉
𝛼+𝛾+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑟 (𝛾, 𝛼 + 𝛿 + 1) 𝐿2

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
]

+
𝑇
𝛼

Γ𝑞 (𝛼 + 1)
𝐿1 +

𝑇
𝛼+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)
𝐿2

≈ 0.8514717 < 1.

(59)

Hence, by Theorem 9, the nonlocal boundary value problem
(58) has a unique solution on [0, 3].

Example 2. Consider the following nonlocal fractional 𝑞-
integral boundary value problem:

𝐷
9/5
2/3𝑥 (𝑡) =

1

4𝜋2 + 𝑡2
tan−1 (𝜋𝑥

2
) +

1

30𝜋
(1 + sin (𝜋𝑡))

+ 𝐼
3/5
1/10𝑥 (𝑡) , 0 < 𝑡 < 1,

𝑥 (0) = 0,
1

50
𝐼
1/10
1/5 𝑥(

2

3
) = 𝐼

2/9
1/8𝑥(

1

2
) .

(60)

Here 𝛼 = 9/5, 𝑞 = 2/3, 𝛿 = 3/5, 𝑧 = 1/10, 𝜆 = 1/50,
𝛽 = 1/10, 𝑝 = 1/5, 𝜂 = 2/3, 𝛾 = 2/9, 𝑟 = 1/8, 𝜉 = 1/2, 𝑇 = 1,
and 𝑓(𝑡, 𝑥, 𝐼

𝛿
𝑧𝑥) = (tan−1(𝜋𝑥/2))/(4𝜋2 + 𝑡

2
) + (1 +

sin(𝜋𝑡))/(30𝜋) + 𝐼
3/5
1/10

𝑥.
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By using the Maple program, we find that

Ω =
Γ𝑟 (𝛼)

Γ𝑟 (𝛼 + 𝛾)
𝜉
𝛼+𝛾−1

− 𝜆
Γ𝑝 (𝛼)

Γ𝑝 (𝛼 + 𝛽)
𝜂
𝛼+𝛽−1

≈ 0.4691329,

Φ1 =
|𝜆| 𝑇

𝛼−1
𝜂
𝛼+𝛽

𝐵𝑝 (𝛽, 𝛼 + 1)

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼 + 1)
+
𝑇
𝛼−1

𝜉
𝛼+𝛾

𝐵𝑟 (𝛾, 𝛼 + 1)

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼 + 1)

+
𝑇
𝛼

Γ𝑞 (𝛼 + 1)
≈ 1.0408909,

Φ2 =
|𝜆| 𝑇

𝛼−1
𝜂
𝛼+𝛽+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑝 (𝛽, 𝛼 + 𝛿 + 1)

|Ω| Γ𝑝 (𝛽) Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)

+
𝑇
𝛼+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1)

Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)

+
𝑇
𝛼−1

𝜉
𝛼+𝛾+𝛿

𝐵𝑞 (𝛼, 𝛿 + 1) 𝐵𝑟 (𝛾, 𝛼 + 𝛿 + 1)

|Ω| Γ𝑟 (𝛾) Γ𝑞 (𝛼) Γ𝑧 (𝛿 + 1)

≈ 0.5751429 < 1.

(61)

Clearly,

𝑓 (𝑡, 𝑤1, 𝑤2)


=



1

4𝜋2 + 𝑡2
tan−1 (𝜋𝑤1

2
) +

1

30𝜋
(1 + sin (𝜋𝑡)) + 𝑤2



≤
1

120𝜋
(1 + sin𝜋𝑡) (15 𝑤1

 + 4) +
𝑤2

 .

(62)

Choosing 𝑝(𝑡) = 1 + sin𝜋𝑡 and 𝜓(|𝑤1|) = (1/120𝜋)(15|𝑤1| +

4), we can show that

(1 − Φ2)𝐾

𝑝
 𝜓 (𝐾)Φ1

> 1 (63)

which implies that 𝐾 > 0.0645811. Hence, by Theorem 13,
the nonlocal boundary value problem (60) has at least one
solution on [0, 1].
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We establish some new generalizations and refinements of the local fractional integral Hölder’s inequality and some related results
on fractal space. We also show that many existing inequalities related to the local fractional integral Hölder’s inequality are special
cases of the main inequalities which are presented here.

1. Introduction

Let 𝑝𝑗 (𝑗 = 1, 2, . . .) be constrained by
𝑚

∑

𝑗=1

1

𝑝𝑗

= 1. (1)

Suppose also that 𝑓𝑗(𝑥) > 0 and 𝑓𝑗 (𝑗 = 1, 2, . . . , 𝑚) are
continuous real-valued functions on [𝑎, 𝑏]. Then each of the
following assertions holds true.

(1) For 𝑝𝑗 > 0 (𝑗 = 1, 2, . . . , 𝑚), we have the following
inequality known as the Hölder inequality (see [1]):

∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) 𝑑𝑥 ≦

𝑚

∏

𝑗=1

(∫

𝑏

𝑎
𝑓
𝑝𝑗
𝑗 (𝑥)𝑑𝑥)

1/𝑝𝑗

. (2)

(2) For 0 < 𝑝𝑚 < 1 and 𝑝𝑗 < 0 (𝑗 = 1, 2, . . . , 𝑚 − 1), we
have the following reverseHölder inequality (see [2]):

∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) 𝑑𝑥 ≧

𝑚

∏

𝑗=1

(∫

𝑏

𝑎
𝑓
𝑝𝑗
𝑗 (𝑥)𝑑𝑥)

1/𝑝𝑗

. (3)

In the special case when 𝑚 = 2 and 𝑝1 = 𝑝2, inequality (2)
reduces to the celebratedCauchy inequality (see [3]). Both the

Cauchy inequality and the Hölder inequality play significant
roles in many different branches of modern pure and applied
mathematics. A great number of generalizations, refinements,
variations, and applications of each of these inequalities have
been studied in the literature (see [3–13] and the references
cited therein). Recently, Yang [14] established the following
local fractional integral Hölder’s inequality on fractal space.

Let 𝑓(𝑥), 𝑔(𝑥) ∈ 𝐶𝛼(𝑎, 𝑏), 𝑝 > 1, and 1/𝑝 + 1/𝑞 = 1. Then

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑥) 𝑔 (𝑥)
 (𝑑𝑥)
𝛼

≦ (
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑓 (𝑥)

𝑝
(𝑑𝑥)
𝛼
)

1/𝑝

× (
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑔 (𝑥)

𝑞
(𝑑𝑥)
𝛼
)

1/𝑞

.

(4)

More recently, Chen [15] gave a generalization of inequal-
ity (4) and its corresponding reverse form as follows.

Let 𝑓𝑗(𝑥) ∈ 𝐶𝛼(𝑎, 𝑏), 𝑝𝑗 ∈ 𝑅(𝑗 = 1, 2, . . . , 𝑚), and
𝑚

∑

𝑗=1

1

𝑝𝑗

= 1. (5)
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Then each of the following assertions holds true. (1) For 𝑝𝑗 >
1 (𝑗 = 1, 2, . . . , 𝑚), we have

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1


𝑓𝑗 (𝑥)


(𝑑𝑥)
𝛼

≦

𝑚

∏

𝑗=1

(∫

𝑏

𝑎

1

Γ (1 + 𝛼)


𝑓𝑗 (𝑥)



𝑝𝑗
(𝑑𝑥)
𝛼
)

1/𝑝𝑗

.

(6)

(2) For 0 < 𝑝1 < 1 and 𝑝𝑗 < 0 (𝑗 = 2, . . . , 𝑚), we have

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1


𝑓𝑗 (𝑥)


(𝑑𝑥)
𝛼

≧

𝑚

∏

𝑗=1

(∫

𝑏

𝑎

1

Γ (1 + 𝛼)


𝑓𝑗 (𝑥)



𝑝𝑗
(𝑑𝑥)
𝛼
)

1/𝑝𝑗

.

(7)

The study of local fractional calculus has been an inter-
esting topic (see [14–25]). In fact, local fractional calculus
[14, 16, 17] has turned out to be a very useful tool to deal with
the continuously nondifferentiable functions and fractals.
This formalism has had a great variety of applications in
describing physical phenomena, for example, elasticity [17,
26, 27], continuum mechanics [26], quantum mechanics
[28, 29], wave phenomena and heat-diffusion analysis [30–
34], and other branches of pure and applied mathematics
[15, 35–37] and nonlinear dynamics [38, 39]. For more
details and other applications of local fractional calculus, the
interested reader may refer to the recent works [14–42] (see
also the monograph [43] dealing extensively with fractional
differential equations).

The purpose of this paper is to give some new generaliza-
tions and refinements of inequalities (6) and (7). Some related
inequalities are also considered. This paper is structured as
follows. In Section 2, we introduce some basic facts about
local fractional calculus. In Section 3, we establish some new
generalizations and refinements of the local fractional inte-
gralHölder inequality and their corresponding reverse forms.
Finally, we give our concluding remarks and observations in
Section 4.

2. Preliminaries

In this section, we recall some known results of local frac-
tional calculus (see [14, 16, 17]). Throughout this section we
will always assume that 𝐹 is a subset of the real line and is a
fractal.

Lemma 1 (see [17]). Assume that𝑓 : (𝐹, 𝑑) → (Ω

, 𝑑

) is a bi-

Lipschitz mapping; then there are two positive constants 𝜌, 𝜏,
and 𝐹 ⊂ 𝑅,

𝜌
𝑠
𝐻
𝑠
(𝐹) ≦ 𝐻

𝑠
(𝑓 (𝐹)) ≦ 𝜏

𝑠
𝐻
𝑠
(𝐹) , (8)

such that

𝜌
𝛼𝑥1 − 𝑥2


𝛼
≦

𝑓 (𝑥1) − 𝑓 (𝑥2)
 ≦ 𝜏
𝛼𝑥1 − 𝑥2


𝛼 (9)

holds true for all 𝑥1, 𝑥2 ∈ 𝐹.

Based on Lemma 1, it is easy to show that [14]
𝑓 (𝑥1) − 𝑓 (𝑥2)

 ≦ 𝜏
𝛼𝑥1 − 𝑥2


𝛼
, (10)

such that the following inequality holds true [14]:
𝑓 (𝑥1) − 𝑓 (𝑥2)

 ≦ 𝜀
𝛼
, (11)

where 𝛼 is fractal dimension of 𝐹.

Definition 2 (see [14, 17]). Assume that 𝜀, 𝛿 > 0, |𝑥−𝑥0|
𝛼
≦ 𝛿,

and 𝜀, 𝛿 ∈ 𝑅; if
𝑓 (𝑥) − 𝑓 (𝑥0)

 ≦ 𝜀
𝛼
, (12)

then 𝑓(𝑥) is called local fractional continuous at 𝑥 = 𝑥0,
denoted by lim𝑥→𝑥0𝑓(𝑥) = 𝑓(𝑥0). If 𝑓(𝑥) is local fractional
continuous on the interval (𝑎, 𝑏), then wewrite (see, e.g., [14])

𝑓 (𝑥) ∈ 𝐶𝛼 (𝑎, 𝑏) , (13)

where 𝐶𝛼(𝑎, 𝑏) denotes the space of local fractional continu-
ous functions on (𝑎, 𝑏).

Definition 3 (see [16, 17]). Suppose that 𝑓(𝑥) is a nondiffer-
entiable function of exponent 𝛼 (0 < 𝛼 ≦ 1). If the following
inequality holds true

𝑓 (𝑥) − 𝑓 (𝑦)
 ≦ 𝐶

𝑥 − 𝑦

𝛼
, (14)

then 𝑓(𝑥) is a Hölder function of exponent 𝛼 for 𝑥, 𝑦 ∈ 𝐹.

Definition 4 (see [16, 17]). If 𝑓(𝑥) satisfies the following
inequality

𝑓 (𝑥) − 𝑓 (𝑥0)
 ≦ 𝑜 ((𝑥 − 𝑥0)

𝛼
) , (15)

then 𝑓(𝑥) is continuous of order 𝛼 (0 < 𝛼 ≦ 1) or, briefly,
𝛼-continuous.

Definition 5 (see [14, 16–18]). Suppose that 𝑓(𝑥) is local
fractional continuous on the interval (𝑎, 𝑏); then the local
fractional derivative of 𝑓(𝑥) of order 𝛼 at 𝑥 = 𝑥0 is given by

𝑓
(𝛼)

(𝑥0) =
𝑑
𝛼
𝑓(𝑥)

𝑑𝑥𝛼

𝑥=𝑥0

= lim
𝑥→𝑥0

Γ (1 + 𝛼) Δ (𝑓 (𝑥) − 𝑓 (𝑥0))

(𝑥 − 𝑥0)
𝛼 ,

(16)

provided this limit exists.

From Definition 5, we have the following conclusion (see
[14]):

𝑓
(𝛼)

(𝑥) = 𝐷
(𝛼)
𝑥 𝑓 (𝑥) , (17)

which is denoted by (see [14])

𝑓 (𝑥) ∈ 𝐷
(𝛼)
𝑥 (𝑎, 𝑏) , (18)

where 𝐷
(𝛼)
𝑥 (𝑎, 𝑏) denotes the space of local fractional deriv-

able functions on (𝑎, 𝑏).
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Definition 6 (see [14, 16–18]). Suppose that 𝑓(𝑥) is local
fractional continuous on the interval (𝑎, 𝑏); then the local
fractional integral of the function 𝑓(𝑥) in the interval [𝑎, 𝑏]
is defined by

𝑎𝐼
(𝛼)
𝑏 𝑓 (𝑥) =

1

Γ (1 + 𝛼)
∫

𝑏

𝑎
𝑓 (𝑡) (𝑑𝑡)

𝛼

=
1

Γ (1 + 𝛼)
lim
Δ𝑡→0

𝑁−1

∑

𝑗=0

𝑓 (𝑡𝑗) (Δ𝑡𝑗)
𝛼
,

(19)

where Δ𝑡𝑗 = 𝑡𝑗+1 − 𝑡𝑗, Δ𝑡 = max{Δ𝑡1, Δ𝑡2, . . . , Δ𝑡𝑗, . . .}, and
[𝑡𝑗, 𝑡𝑗+1] (𝑗 = 1, 2, . . . , 𝑁 − 1; 𝑡0 = 𝑎; 𝑡𝑁 = 𝑏) are a partition
of the interval [𝑎, 𝑏].

Let 𝑎𝐼
(𝛼)
𝑥 (𝑎, 𝑏) denote the space of local fractional inte-

grable functions on (𝑎, 𝑏); from Definition 6, we can obtain
the following result (see, for details, [14]):

𝑓 (𝑥) ∈ 𝑎𝐼
(𝛼)
𝑥 (𝑎, 𝑏) , (20)

if there exists (see [14])

𝑎𝐼
(𝛼)
𝑥 𝑓 (𝑥) . (21)

Remark 7 (see [14]). If we suppose that 𝑓(𝑥) ∈ 𝐷
(𝛼)
𝑥 (𝑎, 𝑏) or

𝐶𝛼(𝑎, 𝑏), then we have

𝑓 (𝑥) ∈ 𝛼𝐼
(𝛼)
𝑥 (𝑎, 𝑏) . (22)

3. Main Results

In this section, we state and prove our main results.

Theorem 8. Assume that 𝛼𝑘𝑗 ∈ R (𝑗 = 1, 2, . . . , 𝑚; 𝑘 =

1, 2, . . . , 𝑠),
𝑠

∑

𝑘

1

𝑝𝑘

= 1,

𝑠

∑

𝑘=1

𝛼𝑘𝑗 = 0. (23)

If 𝑓𝑗(𝑥) > 0 and 𝑓𝑗 ∈ 𝐶𝛼(𝑎, 𝑏) (𝑗 = 1, 2, . . . , 𝑚), then each of
the following assertions holds true.

(1) For 𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(24)

(2) For 0 < 𝑝𝑠 < 1 and 𝑝𝑘 < 0 (𝑘 = 1, 2, . . . , 𝑠 − 1), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(25)

Proof. (1) Let

𝑔𝑘 (𝑥) = (

𝑚

∏

𝑗=1

𝑓
1+𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥))

1/𝑝𝑘

. (26)

Applying the assumptions ∑
𝑠
𝑘(1/𝑝𝑘) = 1 and ∑

𝑠
𝑘=1 𝛼𝑘𝑗 = 0, a

direct computation shows that
𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) = 𝑔1𝑔2 ⋅ ⋅ ⋅ 𝑔𝑠

= (

𝑚

∏

𝑗=1

𝑓
1+𝑎1𝛼1𝑗
𝑗 (𝑥))

1/𝑎1

(

𝑚

∏

𝑗=1

𝑓
1+𝑎2𝛼2𝑗
𝑗 (𝑥))

1/𝑎2

⋅ ⋅ ⋅ (

𝑚

∏

𝑗=1

𝑓
1+𝑎𝑠𝛼𝑠𝑗
𝑗 (𝑥))

1/𝑎𝑠

=

𝑚

∏

𝑗=1

𝑓
1/𝑎1+𝛼1𝑗
𝑗 (𝑥)

𝑚

∏

𝑗=1

𝑓
1/𝑎2+𝛼2𝑗
𝑗 (𝑥) ⋅ ⋅ ⋅

𝑚

∏

𝑗=1

𝑓
1/𝑎𝑠+𝛼𝑠𝑗
𝑗 (𝑥)

=

𝑚

∏

𝑗=1

𝑓
1/𝑎1+1/𝑎2+⋅⋅⋅1/𝑎𝑠+𝛼1𝑗+𝛼2𝑗+⋅⋅⋅+𝛼𝑠𝑗
𝑗 (𝑥)

=

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) ;

(27)

that is,
𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) =

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) . (28)

It is easy to see that

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼
=

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼
.

(29)

It follows from the Hölder inequality (6) that

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎
𝑔
𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑝𝑘

.

(30)

Substitution of 𝑔𝑘(𝑥) into (30) leads us immediately to
inequality (24). This proves inequality (24).

(2) The proof of inequality (25) is similar to the proof of
inequality (24). Indeed, by using (26), (29), and (7), we have

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎
𝑔
𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑝𝑘

.

(31)
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Substitution of 𝑔𝑘(𝑥) into (31) leads to inequality (25) imme-
diately.

Remark 9. Upon setting 𝑠 = 𝑚, 𝛼𝑘𝑗 = −1/𝑝𝑘, for 𝑗 ̸=𝑘, and
𝛼𝑘𝑘 = 1 − 1/𝑝𝑘, inequalities (24) and (25) are reduced to
inequalities (6) and (7), respectively.

As we remarked earlier, many existing inequalities related
to the local fractional integral Hölder’s inequality are special
cases of inequalities (24) and (25). For example, we have the
following corollary.

Corollary 10. Under the assumptions of Theorem 8 with 𝑠 =

𝑚, 𝛼𝑘𝑗 = −𝑡/𝑝𝑘, for 𝑗 ̸=𝑘, and 𝛼𝑘𝑘 = 𝑡(1−1/𝑝𝑘) (𝑡 ∈ R), each
of the following assertions holds true.

(1) For 𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦

𝑚

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎
(

𝑚

∏

𝑗=1

𝑓𝑗(𝑥))

1−𝑡

(𝑓
𝑝𝑘
𝑘

)
𝑡
(𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(32)

(2) For 0 < 𝑝𝑚 < 1 and 𝑝𝑘 < 0 (𝑘 = 1, 2, . . . , 𝑚 − 1), one
has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧

𝑚

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎
(

𝑚

∏

𝑗=1

𝑓𝑗(𝑥))

1−𝑡

(𝑓
𝑝𝑘
𝑘

)
𝑡
(𝑥)(𝑑𝑥)

𝛼
)

1/𝑝𝑘

.

(33)

Theorem 11. Assume that 𝑟 ∈ R, 𝛼𝑘𝑗 ∈ R (𝑗 =

1, 2, . . . , 𝑚; 𝑘 = 1, 2, . . . , 𝑠),
𝑠

∑

𝑘

1

𝑝𝑘

= 𝑟,

𝑠

∑

𝑘=1

𝛼𝑘𝑗 = 0. (34)

If 𝑓𝑗(𝑥) > 0 and 𝑓𝑗 ∈ 𝐶𝛼(𝑎, 𝑏) (𝑗 = 1, 2, . . . , 𝑚), then each of
the following assertions holds true.

(1) For 𝑟𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

.

(35)

(2) For 0 < 𝑟𝑝𝑠 < 1 and 𝑟𝑝𝑘 < 0 (𝑘 = 1, 2, . . . , 𝑠 − 1), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

.

(36)

Proof. (1) Since 𝑟𝑝𝑘 > 0 and ∑
𝑠
𝑘(1/𝑝𝑘) = 𝑟, we get

∑
𝑠
𝑘(1/𝑟𝑝𝑘) = 1. Then, by applying (24), we immediately

obtain inequality (35).
(2) Since 0 < 𝑟𝑝𝑠 < 1, 𝑟𝑝𝑘 < 0, and∑

𝑠
𝑘(1/𝑝𝑘) = 𝑟, we have

∑
𝑠
𝑘(1/𝑟𝑝𝑘) = 1. Thus, by applying (25), we immediately have

inequality (36). This completes the proof of Theorem 11.

From Theorem 11, we obtain Corollary 12, which is a
generalization of Theorem 11.

Corollary 12. Under the assumptions of Theorem 11, let 𝑠 =

2, 𝑝1 = 𝑝, 𝑝2 = 𝑞, and 𝛼1𝑗 = −𝛼2𝑗 = 𝛼𝑗. Then each of the
following assertions holds true.

(1) For 𝑟𝑝 > 0, one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝

⋅ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1−𝑟𝑞𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑞

.

(37)

(2) For 0 < 𝑟𝑝 < 1, one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝

⋅ (
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1−𝑟𝑞𝛼𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑞

.

(38)

Next we present a refinement of each of inequalities (35)
and (36).

Theorem 13. Under the assumptions ofTheorem 11, each of the
following assertions holds true.

(1) For 𝑟𝑝𝑘 > 0 (𝑘 = 1, 2, . . . , 𝑠), one has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≦ 𝜑 (𝑐) ≦

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

,

(39)

where

𝜑 (𝑐) ≡
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

+

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑐

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘
(40)

is a nonincreasing function with 𝑎 ≦ 𝑐 ≦ 𝑏.
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(2) For 0 < 𝑟𝑝𝑠 < 1 and 𝑟𝑝𝑘 < 0(𝑘 = 1, 2, . . . , 𝑠 − 1), one
has

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

≧ 𝜙 (𝑐) ≧

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

,

(41)

where

𝜙 (𝑐) ≡
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

+

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑐

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘
(42)

is a nondecreasing function with 𝑎 ≦ 𝑐 ≦ 𝑏.

Proof. (1) Let

𝑔𝑘 (𝑥) = (

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥))

1/𝑟𝑝𝑘

. (43)

By rearrangement, it follows from the assumptions of
Theorem 11 that

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) =

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) . (44)

Then, by Hölder’s inequality (6), we obtain

1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓𝑗 (𝑥) (𝑑𝑥)
𝛼

=
1

Γ (1 + 𝛼)
∫

𝑏

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

=
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼
+

1

Γ (1 + 𝛼)
∫

𝑏

𝑐

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

≦
1

Γ (1 + 𝛼)
∫

𝑐

𝑎

𝑠

∏

𝑘=1

𝑔𝑘 (𝑥) (𝑑𝑥)
𝛼

+

𝑠

∏

𝑘=1

(
1

Γ (1 + 𝛼)
∫

𝑏

𝑐
𝑔
𝑟𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑟𝑝𝑘

≦

𝑠

∏

𝑘=1

(
1

Γ (1 + 𝛼)
∫

𝑐

𝑎
𝑔
𝑟𝑝𝑘
𝑘 (𝑥) (𝑑𝑥)

𝛼

+
1

Γ (1 + 𝛼)
∫

𝑏

𝑐
𝑔
𝑟𝑝𝑘
𝑘 (𝑥) (𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

=

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎
𝑔
𝑟𝑝𝑘
𝑘

(𝑥)(𝑑𝑥)
𝛼
)

1/𝑟𝑝𝑘

=

𝑠

∏

𝑘=1

(
1

Γ(1 + 𝛼)
∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
1+𝑟𝑝𝑘𝛼𝑘𝑗
𝑗 (𝑥)(𝑑𝑥)

𝛼
)

1/𝑟𝑝𝑘

.

(45)

Hence, the desired result is obtained.
(2) The proof of inequality (41) is similar to the proof of

inequality (39), so we omit the details involved.

4. Concluding Remarks and Observations

Integral inequalities play a major role in the development of
local fractional calculus. In this work, we considered some
new generalizations and refinements of the local fractional
integral Hölder’s inequality and some related results on
fractal space. Hölder’s inequality was obtained by Yang [14]
using local fractional integral. Moreover, the reverse local
fractional integral Hölder’s inequality was established by
Chen [15]. In our present investigation, we have offered
further generalizations and refinements of these inequalities
by using the local fractional integral which was introduced
and investigated by Yang [14, 16, 17]. Special cases of the
various results derived in this paper are shown to be related
to a number of known results.

For the relevant details about the mathematical, physical,
and engineering applications and interpretations of the oper-
ators of fractional calculus and local fractional calculus in
dealing with the intermediate processes and the intermediate
phenomena, the interested reader may be referred to the
monographs by Yang [17] and Kilbas et al. [43] (and indeed
also to some of the other recent investigations which are cited
in this paper).
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[6] X. Yang, “Refinement of Hölder inequality and application to
Ostrowski inequality,” Applied Mathematics and Computation,
vol. 138, no. 2-3, pp. 455–461, 2003.
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Hölder’s inequality on time scales,”AppliedMathematics Letters,
vol. 23, no. 10, pp. 1208–1212, 2010.

[12] D. K. Callebaut, “Generalization of the Cauchy-Schwarz
inequality,” Journal of Mathematical Analysis and Applications,
vol. 12, pp. 491–494, 1965.

[13] H. Qiang and Z. Hu, “Generalizations of Hölder’s and some
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We use the fractional derivatives in Caputo’s sense to construct exact solutions to fractional fifth order nonlinear evolution
equations. A generalized fractional complex transform is appropriately used to convert this equation to ordinary differential
equation which subsequently resulted in a number of exact solutions.

1. Introduction

The concept of differentiation and integration to noninteger
order is not new in any case.The notion of fractional calculus
emerged when the ideas of classical calculus were proposed
by Leibniz, who mentioned it in a letter to L’Hospital in 1695.
The foundation of the earliest, more or less, systematic studies
can be traced back to the beginning and middle of the 19th
century by Liouville in 1832, Riemann in 1853, and Holmgren
in 1864, although Euler in 1730, Lagrange in 1772, and others
also made contributions. Recently, it has turned out those
differential equations involving derivatives of noninteger [1,
2]. For example, the nonlinear oscillation of earthquakes
can be modeled with fractional derivatives [3]. There has
been some attempt to solve linear problems with multiple
fractional derivatives [3, 4]. Notmuchwork has been done on
nonlinear problems and only a few numerical schemes have
been proposed for solving nonlinear fractional differential
equations [5, 6]. More recently, applications have included
classes of nonlinear equation with multiorder fractional
derivatives. The generalized fractional complex transform
was applied in [7–13] to convert fractional order differential
equation to ordinary differential equation. Finally, by using
Exp-function method [14–25] we obtain generalized solitary
solutions and periodic solutions. Recently the theory of local

fractional integrals and derivatives [26–28] is one of useful
tools to handle the fractal and continuously nondifferentiable
functions. It is to be tinted that that 𝑐 = 𝑑 and 𝑝 = 𝑞 are the
only relations that can be obtained by applying Exp-function
method [29] to any nonlinear ordinary differential equation.
Most scientific problems and phenomena in different fields
of sciences and engineering occur nonlinearly. Except in a
limited number of these problems are linear, this method has
been effectively and accurately shown to solve a large class of
nonlinear problems. The solution procedure of this method,
with the aid of Maple, is of utter simplicity and this method
can easily extend to other kinds of nonlinear evolution
equations. In engineering and science, scientific phenomena
give a variety of solutions that are characterized by distinct
features. Traveling waves appear in many distinct physical
structures in solitary wave theory [30] such as solitons, kinks,
peakons, cuspons, compactons, and many others. Solitons
are localized traveling waves which are asymptotically zero
at large distances. In other words, solitons are localized
wave packets with exponential wings or tails. Solitons are
generated from robust balance between nonlinearity and
dispersion. Solitons exhibit properties typically associated
with particles. Kink waves [30, 31] are solitons that rise or
descend from one asymptotic state to another and hence
another type of traveling waves as in the case of the Burgers

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 213482, 11 pages
http://dx.doi.org/10.1155/2014/213482

http://dx.doi.org/10.1155/2014/213482


2 Abstract and Applied Analysis

hierarchy. Peakons, that are peaked solitary wave solutions,
are another type of travelling waves as in the case of Camassa-
Holm equation. For peakons, the traveling wave solutions are
smooth except for a peak at a corner of its crest. Peakons are
the points at which spatial derivative changes sign so that
peakons have a finite jump in 1st derivative of the solution.
Cuspons are other forms of solitons where solution exhibits
cusps at their crests. Unlike peakons where the derivatives at
the peak differ only by a sign, the derivatives at the jump of
a cuspon diverge. The compactons are solitons with compact
spatial support such that each compacton is a soliton confined
to a finite core or a soliton without exponential tails or
wings. Other types of travelling waves arise in science such as
negatons, positons, and complexitons. In this research, we use
the Exp-function method along with generalized fractional
complex transform to obtain new Kink waves’ solutions for
[30–32].

2. Preliminaries and Notation [1, 2]

In this section, we give some basic definitions and properties
of the fractional calculus theory [1, 2] which will be used
further in this work. For the finite derivative in [𝑎, 𝑏] we
define the following fractional integral and derivatives.

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space 𝐶𝜇, 𝜇 ∈ 𝑅 if there exists a real number (𝑝 > 𝜇) such
that 𝑓(𝑥) = 𝑥

𝑝
𝑓1(𝑥), where 𝑓1(𝑥) = 𝐶(0,∞), and it is said to

be in the space 𝐶
𝑚
𝜇 𝜇 if 𝑓𝑚 ∈ 𝐶𝜇, 𝑚 ∈ 𝑁.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0 of a function 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1, is defined
as

𝐽
𝛼
(𝑥) =

1

Γ (𝛼)
∫

𝑥

0
(𝑥 − 𝑡)

𝛼−1
𝑓 (𝑡) 𝑑𝑡,

𝛼 > 0, 𝑥 > 0, 𝐽
0
(𝑥) = 𝑓 (𝑥) .

(1)

Properties of the operator 𝐽𝑎 can be found in [1]; we mention
only the following.

For 𝑓 ∈ 𝐶𝜇, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0, and 𝛾 ≥ −1

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛼+𝐵
𝑓 (𝑥) ,

𝐽
𝛼
𝐽
𝐵
𝑓 (𝑥) = 𝐽

𝐵
𝐽
𝛼
𝑓 (𝑥) ,

𝐽
𝛼
𝑥
𝛾
=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.

(2)

The Riemann-Liouville derivative has certain disadvantages
when trying to model real-world phenomena with fractional
differential equations.Therefore, wewill introduce amodified
fractional differential operator proposed by M. Caputo in his
work on the theory of viscoelasticity [2].

Definition 3. For 𝑚 to be the smallest integer that exceeds 𝛼,
the Caputo time fractional derivative operator of order 𝛼 > 0

defined as

𝐶
𝑎𝐷
𝛼

𝑡 𝑓 (𝑡) = 𝐽
𝑚−𝛼

𝐷
𝑚
𝑓 (𝑡)

=
1

Γ (𝑚 − 𝛼)
∫

𝑡

0
(𝑡 − 𝜏)

𝑚−𝛼−1
𝑓
𝑚

(𝑡) 𝑑𝑡,

(3)

for 𝑚 − 1 < 𝛼 ≤ 1𝑚, 𝑚 ∈ 𝑁, 𝑡 > 0, 𝑓 ∈ 𝐶
𝑚
−1.

3. Chain Rule for Fractional Calculus and
Fractional Complex Transform

In [7], the authors used the following chain rule 𝜕
𝛼
𝑢/𝜕𝑡
𝛼

=

(𝜕𝑢/𝜕𝑠)(𝜕
𝛼
𝑠/𝜕𝑡
𝛼
) to convert a fractional differential equation

with Jumarie’s modification of Riemann-Liouville derivative
into its classical differential partner. In [10], the authors
showed that this chain rule is invalid and showed following
relation [8]:

𝐷
𝑎
𝑡 𝑢 = 𝜎


𝑡

𝑑𝑢

𝑑𝜂
𝐷
𝑎
𝑡 𝜂, 𝐷

𝑎
𝑥𝑢 = 𝜎


𝑥

𝑑𝑢

𝑑𝜂
𝐷
𝑎
𝑥𝜂. (4)

To determine 𝜎𝑠, consider a special case as follows:

𝑠 = 𝑡
𝛼
, 𝑢 = 𝑠

𝑚 (5)

and we have

𝜕
𝛼
𝑢

𝜕𝑡𝛼
=

Γ (1 + 𝑚𝛼) 𝑡
𝑚𝛼−𝛼

Γ (1 + 𝑚𝛼 − 𝛼)
= 𝜎 ⋅

𝜕𝑢

𝜕𝑠
= 𝜎𝑚𝑡

𝑚𝛼−𝛼
. (6)

Thus one can calculate 𝜎𝑠 as

𝜎𝑠 =
Γ (1 + 𝑚𝛼)

Γ (1 + 𝑚𝛼 − 𝛼)
. (7)

Other fractional indexes (𝜎

𝑥, 𝜎

𝑦, 𝜎

𝑧) can determine in sim-

ilar way. Li and He [3, 7–9] proposed the following frac-
tional complex transform for converting fractional differen-
tial equations into ordinary differential equations, so that
all analytical methods for advanced calculus can be easily
applied to fractional calculus:

𝑢 (𝑥, 𝑡) = 𝑢 (𝜂) , 𝜂 =
𝑘𝑥
𝛽

Γ (1 + 𝛽)
+

𝜔𝑡
𝛼

Γ (1 + 𝛼)
+

𝑀𝑥
𝛾

Γ (1 + 𝛾)
,

(8)

where 𝑘, 𝜔, and 𝑀 are constants.

4. Exp-Function Method [33–36]
Consider the general nonlinear partial differential equation
of fractional order:

𝑃 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑥𝑥, 𝑢𝑥𝑥𝑥, . . . , 𝐷
𝛼
𝑡 𝑢,𝐷
𝛼
𝑥𝑢,𝐷
𝛼
𝑥𝑥𝑢, . . .) = 0,

0 < 𝛼 ≤ 1,

(9)
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where 𝐷
𝛼
𝑡 𝑢, 𝐷
𝛼
𝑥𝑢, and 𝐷

𝛼
𝑥𝑥𝑢 are the fractional derivative of 𝑢

with respect to 𝑡, 𝑥, 𝑥𝑥, respectively.
Use

𝑢 (𝑥, 𝑡) = 𝑢 (𝜂) , 𝜂 =
𝑘𝑥
𝛽

Γ (1 + 𝛽)
+

𝜔𝑡
𝛼

Γ (1 + 𝛼)
+

𝑀𝑥
𝛾

Γ (1 + 𝛾)
,

(10)

where 𝑘, 𝜔, and 𝑀 are constants.
Then (9) becomes

𝑄(𝑢, 𝑢

, 𝑢

, 𝑢


, 𝑢
𝑖V
) = 0, (11)

where the prime denotes derivative with respect to 𝜂. In
accordance with Exp-function method, we assume that the
wave solution can be expressed in the following form:

𝑢 (𝜂) =
∑
𝑑
𝑛−𝑐 𝑎𝑛 exp [𝑛𝜂]

∑
𝑞
𝑚−𝑝 𝑏𝑚 exp [𝑚𝜂]

, (12)

where 𝑝, 𝑞, 𝑐, and 𝑑 are positive integers which are known to
be further determined and 𝑎𝑛 and 𝑏𝑚 are unknown constants.
Equation (8) can be rewritten as

𝑢 (𝜂) =
𝑎𝑐 exp (𝑐𝜂) + ⋅ ⋅ ⋅ + 𝑎−𝑑 exp (−𝑑𝜂)

𝑏𝑝 exp (𝑝𝜂) + ⋅ ⋅ ⋅ + 𝑏−𝑞 exp (−𝑞𝜂)
. (13)

This equivalent formulation plays an important and funda-
mental for finding the analytic solution of problems. 𝑐 and 𝑝

can be determined by [29].

5. Solution Procedure

Consider the following new fifth order nonlinear (2 + 1)-
dimensional evolution equations of fractional order:

𝐷
3𝛼
𝑡 𝑢 − (𝐷

𝛼
𝑡 𝑢)𝑥𝑥𝑥𝑥 − (𝐷

𝛼
𝑡 𝑢)𝑥𝑥 − 4(𝑢𝑥(𝐷

𝛼
𝑡 𝑢)𝑥)𝑥

= 0. (14)

Using (8) in (14) then it can be converted to an ordinary
differential equation. Consider

−𝜔
3

⃛𝑢 + 𝜔𝑘
4
𝑢
(V)

+ 𝑘
2
𝜔 ⃛𝑢 + 4𝜔𝑘

3
̇𝑢 ⃛𝑢 = 0, (15)

where the prime denotes the derivative with respect to 𝜂. The
solution of (15) can be expressed in form (13). To determine
the value of 𝑐 and 𝑝, by using [26],

𝑝 = 𝑐, 𝑞 = 𝑑. (16)

Case 1. We can freely choose the values of 𝑐 and 𝑑, but we
will illustrate that the final solution does not strongly depend
upon the choice of values of 𝑐 and 𝑑. For simplicity, we set
𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1 (15) reduces to

𝑢 (𝜂) =
𝑎1 exp [𝜂] + 𝑎0 + 𝑎−1 exp [−𝜂]

𝑏1 exp [𝜂] + 𝑎0 + 𝑏−1 exp [−𝜂]
. (17)

Substituting (17) into (15), we have

1

𝐴
[𝑐4𝑎1 exp [4𝜂] = 𝑐3 exp [3𝜂] + 𝑐2 exp [2𝜂] + 𝑐1 exp [𝜂]

+ 𝑐0 + 𝑐−1 exp [−𝜂] + 𝑐−2 exp [−2𝜂]

+𝑐−3 exp [−3𝜂] + 𝑐−4 exp [−4𝜂]] = 0,

(18)

where 𝐴 = (𝑏1 exp(𝜂) + 𝑏0 + 𝑏−1 exp(−𝜂))
4 and 𝑐𝑖 are con-

stants obtained by Maple software 16. Equating the coeffi-
cients of exp(𝑛𝜂) to be zero, we obtain

𝑐−4 = 0, 𝑐−3 = 0, 𝑐−2 = 0, 𝑐−1 = 0,

𝑐0 = 0, 𝑐1 = 0, 𝑐2 = 0, 𝑐3 = 0, 𝑐4 = 0.

(19)

For solution of (19) we have five solution sets satisfying the
given (15).

1st Solution Set. Consider

𝜔 = −√𝑘2 + 1𝑘, 𝑎−1 =
𝑏−1 (3𝑘𝑏0 + 𝑎0)

𝑏0

,

𝑎0 = 𝑎0, 𝑎1 = 0, 𝑏−1 = 𝑏−1, 𝑏0 = 𝑏0, 𝑏1 = 0.

(20)

We, therefore, obtained the following generalized solitary
solution 𝑢(𝑥, 𝑡) of (14) (Figure 1):

𝑢 (𝑥, 𝑡) =
𝑏−1 (3𝑘𝑏0 + 𝑎0) 𝑒

−𝑘𝑥−(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))
/𝑏0 + 𝑎0

𝑏−1𝑒
−𝑘𝑥−(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼)) + 𝑏0

.

(21)

2nd Solution Set. Consider

𝜔 = √4𝑘2 + 1𝑘, 𝑎−1 =
𝑏−1 (6𝑘𝑏1 + 𝑎1)

𝑏1

,

𝑎0 = 𝑎0, 𝑎1 = 𝑎1, 𝑏−1 = 𝑏−1, 𝑏0 = 0, 𝑏1 = 𝑏1.

(22)

We, therefore, obtained the following generalized solitary
solution 𝑢(𝑥, 𝑡) of (14) (Figure 2):

𝑢 (𝑥, 𝑡) = (𝑏−1 (6𝑘𝑏1 + 𝑎1) 𝑒
−𝑘𝑥+(𝜎√4𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

/𝑏1

+𝑎1𝑒
𝑘𝑥−(𝜎√4𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

)

× (𝑏−1𝑒
−𝑘𝑥+(𝜎√4𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

+𝑏1𝑒
𝑘𝑥−(𝜎√4𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

)

−1

.

(23)
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Figure 1: Kink waves’ solutions of (14) for 1st solution set.
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Figure 2: Kink waves’ solutions of (14) for 2nd solution set.
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3rd Solution Set. Consider

𝜔 = √𝑘2 + 1𝑘, 𝑎−1 =
𝑏−1 (3𝑘𝑏0 + 𝑎0)

𝑏0

,

𝑎0 = 𝑎0, 𝑎1 = 0, 𝑏−1 = 𝑏−1, 𝑏0 = 𝑏0, 𝑏1 = 0.

(24)

We, therefore, obtained the following generalized solitary
solution 𝑢(𝑥, 𝑡) of (14) (Figure 3):

𝑢 (𝑥, 𝑡) =
𝑏−1 (3𝑘𝑏0 + 𝑎0) 𝑒

−𝑘𝑥+(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))
/𝑏0 + 𝑎0

𝑏−1𝑒
−𝑘𝑥+(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼)) + 𝑏0

.

(25)

4th Solution Set. Consider

𝜔 = √𝑘2 + 1𝑘,

𝑎−1=
1

9

1

𝑘2𝑏41

(9𝑘
2
𝑎0𝑏0𝑏
3
1 −9𝑘
2
𝑎1𝑏
2
0𝑏
2
1 −3𝑘𝑎

2
0𝑏
3
1 + 9𝑘𝑎0𝑎1𝑏0𝑏

2
1

−6𝑘𝑎
2
1𝑏
2
0𝑏1 − 𝑎

2
0𝑎1𝑏
2
1 + 2𝑎0𝑎

2
1𝑏0𝑏1 − 𝑎

3
1𝑏
2
0 ) ,

𝑏1 = 𝑏1, 𝑏0 = 𝑏0,

𝑎0 = 𝑎0, 𝑎1 = 𝑎1,

𝑏−1 =
1

9

3𝑘𝑎0𝑏0𝑏
2
1 − 3𝑘𝑎1𝑏

2
0𝑏1 − 𝑎

2
0𝑏
2
1 + 2𝑎0𝑎1𝑏0𝑏1 − 𝑎

2
1𝑏
2
0

𝑘2𝑏
3
1

.

(26)

We, therefore, obtained the following generalized solitary
solution 𝑢(𝑥, 𝑡) of (14) (Figure 4):

𝑢 (𝑥, 𝑡) = (
1

9

1

𝑘2𝑏41

( (9𝑘
2
𝑎0𝑏0𝑏
3
1 − 9𝑘

2
𝑎1𝑏
2
0𝑏
2
1

− 3𝑘𝑎
2
0𝑏
3
1 + 9𝑘𝑎0𝑎1𝑏0𝑏

2
1

− 6𝑘𝑎
2
1𝑏
2
0𝑏1 − 𝑎

2
0𝑎1𝑏
2
1

+2𝑎0𝑎
2
1𝑏0𝑏1 − 𝑎

3
1𝑏
2
0 )

×𝑒
−𝑘𝑥+(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

)

+𝑎0 + 𝑎1𝑒
𝑘𝑥−(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

)

× (
1

9
( (3𝑘𝑎0𝑏0𝑏

2
1 − 3𝑘𝑎1𝑏

2
0𝑏1 − 𝑎

2
0𝑏
2
1

+2𝑎0𝑎1𝑏0𝑏1 − 𝑎
2
1𝑏
2
0 )

×𝑒
−𝑘𝑥+(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

) (𝑘
2
𝑏
3
1 )
−1

+𝑏0 + 𝑏1𝑒
𝑘𝑥−(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

)

−1

.

(27)

5th Solution Set. Consider

𝜔 = √𝑘2 + 1𝑘, 𝑎−1 =
𝑏−1 (6𝑘𝑏1 + 𝑎1)

𝑏1

,

𝑎0 = 0, 𝑎1 = 𝑎1, 𝑏−1 = 𝑏−1, 𝑏0 = 0, 𝑏1 = 𝑏1.

(28)

We, therefore, obtained the following generalized solitary
solution 𝑢(𝑥, 𝑡) of (14) (Figure 5):

𝑢 (𝑥, 𝑡)=
𝑏−1𝑒
−𝑘𝑥+(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

+ 𝑎1𝑒
𝑘𝑥−(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))

𝑏−1𝑒
−𝑘𝑥+(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼)) + 𝑏1𝑒

𝑘𝑥−(𝜎√𝑘2+1𝑘𝑡𝛼/Γ(1+𝛼))
.

(29)

Case 2. If 𝑝 = 𝑐 = 2 and 𝑞 = 𝑑 = 1 then trial solution (14)
reduces to

𝑢 (𝜂) =
𝑎2 exp [2𝜂] + 𝑎1 exp [𝜂] + 𝑎0 + 𝑎−1 exp [−𝜂]

𝑏2 exp [2𝜂] + 𝑏1 exp [𝜂] + 𝑏0 + 𝑏−1 exp [−𝜂]
. (30)

Proceeding as before, we obtain the following.

1st Solution. Consider

𝑎−1 = 𝑎−1, 𝑎0 =
𝑎−1𝑏0

𝑏−1

, 𝑎1 =
𝑎−1𝑏1

𝑏−1

, 𝑎2 =
𝑎−1𝑏2

𝑏−1

,

𝑏−1 = 𝑏−1, 𝑏0 = 𝑏0, 𝑏1 = 𝑏1, 𝑏2 = 𝑏2.

(31)

Hence we get the generalized solitary wave solution 𝑢(𝑥, 𝑡) of
(14) (Figure 6):

𝑢 (𝑥, 𝑡) = (𝑎−1𝑒
−𝑘𝑥+(𝜎𝜔𝑘𝑡𝛼/Γ(1+𝛼))

+
𝑎−1𝑏0

𝑏−1

+
𝑎−1𝑏0

𝑏−1

𝑒
𝑘𝑥−(𝜎𝜔𝑘𝑡𝛼/Γ(1+𝛼))

+
𝑎−1𝑏2

𝑏−1

𝑒
2𝑘𝑥−2(𝜎𝜔𝑘𝑡𝛼/Γ(1+𝛼))

)

× (𝑏−1𝑒
−𝑘𝑥+(𝜎𝜔𝑘𝑡𝛼/Γ(1+𝛼))

+ 𝑏0

+ 𝑏1𝑒
𝑘𝑥−(𝜎𝜔𝑘𝑡𝛼/Γ(1+𝛼))

+𝑏2𝑒
2𝑘𝑥−2(𝜎𝜔𝑘𝑡𝛼/Γ(1+𝛼))

)
−1

.

(32)

In both cases, for different choices of 𝑐, 𝑝, 𝑑, and 𝑞 we get
the same soliton solutions which clearly illustrate that final
solution does not strongly depend on these parameters.

6. Conclusions

Exp-function method is applied to construct solitary solu-
tions of the nonlinear new fifth order evolution equations
of fractional orders. The reliability of proposed algorithm is
fully supported by the computational work, the subsequent
results, and graphical representations. It is observed that Exp-
functionmethod is very convenient to apply and is very useful
for finding solutions of a wide class of nonlinear problems of
fractional orders.
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Figure 3: Kink waves’ solutions of (14) for 3rd solution set.
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Figure 4: Kink waves’ solutions of (14) for 4th solution set.
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Figure 5: Kink waves’ solutions of (14) for 5th solution set.
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Figure 6: Kink waves’ solutions of (14) for 1st solution set of Case 2.
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We use the fractional derivatives in modified Riemann-Liouville derivative sense to construct exact solutions of time fractional
simplified modified Camassa-Holm (MCH) equation. A generalized fractional complex transform is properly used to convert this
equation to ordinary differential equation and, as a result, many exact analytical solutions are obtained with more free parameters.
When these free parameters are taken as particular values, the traveling wave solutions are expressed by the hyperbolic functions,
the trigonometric functions, and the rational functions. Moreover, the numerical presentations of some of the solutions have been
demonstrated with the aid of commercial software Maple. The recital of the method is trustworthy and useful and gives more new
general exact solutions.

1. Introduction

The class of fractional calculus is one of the most convenient
classes of fractional differential equations which were viewed
as generalized differential equations [1]. In the sense that
much of the theory and, hence, applications of differential
equations can be extended smoothly to fractional differential
equations with the same flavor and spirit of the realm of
differential equation, the seeds of fractional calculus were
planted over three hundred years ago from a gracious idea
of L’Hopital, who wrote a letter to Leibniz on 1695, asking
about a rigorous description of the derivative of order 𝑛 =

0.5. Fractional calculus is the theory of differentiation and
integration of noninteger order and embodies the generality
of the conventional differential and integral calculus. There-
fore, some of the properties of the fractional integral and
derivatives differ from the conventional ones in order to
allow its implementation in a broader assortment of cases,
which cannot be appropriately illustrated by the conventional
integer-order calculus. Fractional calculus is painstaking to
be a very authoritative tool to help scientists to unearth
the concealed properties of the dynamics of multifaceted
systems in all fields of sciences and engineering. In recent

years, fractional calculus played an imperative role of a pro-
ficient, expedient, and elementary theoretical structure for
more adequate modeling of multifaceted dynamic processes.
Therefore, mounting applications of fractional calculus can
be seen in modeling, signal processing, electromagnetism,
mechanics, physics, biology, medicine, chemistry, bioengi-
neering, biological systems, and in many other areas [2, 3].
Recently, it has turned out that those differential equations
are involving derivatives of noninteger [4]. For example,
the nonlinear oscillation of earthquakes can be modeled
with fractional derivatives [5]. More recently, applications
have included classes of nonlinear equation with multiorder
fractional derivatives. We apply a generalized fractional
complex transform [6–9] to convert fractional order dif-
ferential equation to ordinary differential equation. Many
important phenomena in electromagnetic, viscoelasticity,
electrochemistry, and material science are well described by
differential equations of fractional order [10–14]. A physical
interpretation of the fractional calculus was given in [15–
19].With the development of symbolic computation software,
likeMaple, many numerical and analytical methods to search
for exact solutions of NLEEs have attracted more attention.
As a result, the researchers developed and established many
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methods, for example, the Cole-Hopf transformation [20],
the Tanh-function method [21–24], the inverse scattering
transform method [25], the variational iteration method [26,
27], Exp-function method [28–31], and 𝐹-expansion method
[32, 33] that are used for searching the exact solutions.

Recently, a straightforward and concise method, called
(𝐺

/𝐺)-expansion method, was introduced by Wang et al.

[34] and demonstrated that it is a powerful method for
seeking analytic solutions of NLEEs. (𝐺/𝐺)-expansion is
a reliable technique, which gives various types of the soli-
tary wave solutions including the hyperbolic functions, the
trigonometric functions, and the rational functions. It is also
evident from the literature that such solutions always satisfy
the given nonlinear differential equations. For additional
references, see the articles [35–40]. In order to establish the
efficiency and assiduousness of (𝐺/𝐺)-expansion method
and to extend the range of applicability, further research has
been carried out by several researchers. For instance, Zhang
et al. [41] made a generalization of (𝐺/𝐺)-expansionmethod
for the evolution equations with variable coefficients. Zhang
et al. [42] also presented an improved (𝐺


/𝐺)-expansion

method to seek more general traveling wave solutions. Zayed
[43] presented a new approach of (𝐺/𝐺)-expansion method
where 𝐺(𝜉) satisfies the Jacobi elliptic equation, [𝐺(𝜉)]2 =
𝑒2𝐺
4
(𝜉) + 𝑒1𝐺

2
(𝜉) + 𝑒0, where 𝑒2, 𝑒1, 𝑒0 are arbitrary constants

and obtained new exact solutions. Zayed [44] again presented
an alternative approach of this method in which𝐺(𝜉) satisfies
the Riccati equation 𝐺(𝜉) = 𝐴𝐺(𝜉) + 𝐵𝐺

2
(𝜉), where 𝐴 and 𝐵

are arbitrary constants.
In this paper, we will apply novel (𝐺/𝐺)-expansion

method introduced by Alam et al. [45] to solve the time
fractional simplified modified Camassa-Holm (MCH) equa-
tion in the sense ofmodified Riemann-Liouville derivative by
Jumarie [46] and abundant new families of exact solutions are
found.The JumariemodifiedRiemann-Liouville derivative of
order 𝛼 is defined by the following expression:

𝐷
𝛼
𝑡 𝑓 (𝑡)

=

{{{{{{{{{{

{{{{{{{{{{

{

1

Γ (1 − 𝛼)

×
𝑑

𝑑𝑡
∫

𝑡

0
(𝑡 − 𝜉)

−𝛼
(𝑓 (𝜉) − 𝑓 (0)) 𝑑𝜉, 0 < 𝛼 < 1,

(𝑓
(𝑛)

(𝑡))
(𝛼−𝑛)

, 𝑛 ≤ 𝛼 < 𝑛 + 1,

𝑛 ≥ 1.

(1)

Some important properties of Jumarie’s derivative are

𝐷
𝛼
𝑡 𝑓 (𝑡) =

Γ (1 + 𝜏)

Γ (1 + 𝜏 − 𝛼)
𝑡
𝜏−𝛼

, (2)

𝐷
𝛼
𝑡 (𝑓 (𝑡) 𝑔 (𝑡)) = 𝑔 (𝑡)𝐷

𝛼
𝑡 𝑓 (𝑡) + 𝑓 (𝑡)𝐷

𝛼
𝑡 𝑔 (𝑡) , (3)

𝐷
𝛼
𝑡 𝑓 [𝑔 (𝑡)] = 𝑓


𝑔 [𝑔 (𝑡)]𝐷

𝛼
𝑡 𝑔 (𝑡) = 𝐷

𝛼
𝑔𝑓 [𝑔 (𝑡)] (𝑔


(𝑡))
𝛼
.

(4)

2. Description of the Method

Suppose that a fractional partial differential equation in the
independent variables, say 𝑡, is given by

𝑆 (𝑢, 𝑢𝑥, 𝑢𝑡, 𝐷
𝛼
𝑡 𝑢, . . .) = 0, 0 < 𝛼 ≤ 1, (5)

where 𝐷𝛼𝑡 𝑢 is Jumarie’s modified Riemann-Liouville deriva-
tives of 𝑢, 𝑢(𝑥, 𝑡) is an unknown function, 𝑆 is a polynomial
in 𝑢, and its various partial derivatives including fractional
derivatives in which the highest order derivatives and non-
linear terms are involved.

The main steps of the method are as follows.

Step 1. Li and He [7] proposed a fractional complex trans-
formation to convert fractional partial differential equations
into ordinary differential equations (ODE), so all analytical
methods devoted to the advanced calculus can be easily
applied to the fractional calculus.The traveling wave variable

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) , 𝜉 = 𝐿𝑥 + 𝑉
𝑡
𝛼

Γ (1 + 𝛼)
, (6)

where 𝐿, 𝑉 are arbitrary constants with 𝐿, 𝑉 ̸= 0, permits us
to convert (5) into an ordinary differential equation of integer
order in the form

𝑃 (𝑢, 𝑢

, 𝑢

, 𝑢

, . . .) = 0, (7)

where the superscripts stand for the ordinary derivatives with
respect to 𝜉.

Step 2. Integrating (7) term by term one or more times
if possible yields constant(s) of integration which can be
calculated later on.

Step 3. Assume that the solution of (7) can be represented as

𝑢 (𝜉) =

𝑚

∑

𝑖=−𝑚

𝛼𝑖(𝑘 + Φ(𝜉))
𝑖
, (8)

where

Φ (𝜉) =
𝐺

(𝜉)

𝐺 (𝜉)
, (9)

where both𝛼−𝑚 and𝛼𝑚 cannot be zero simultaneously.𝛼𝑖 (𝑖 =
0, ±1, ±2, . . . , ±𝑚) and 𝑘 are constants to be determined later
and 𝐺 = 𝐺(𝜉) satisfies the second order nonlinear ordinary
differential equation as an auxiliary equation

𝐺𝐺

= 𝐴𝐺𝐺


+ 𝐵𝐺
2
+ 𝐶(𝐺


)
2
, (10)

where 𝐴, 𝐵, and 𝐶 are real constants.
Equation (10) can be reduced to the following Riccati

equation by making use of the Cole-Hopf transformation
Φ(𝜉) = ln (𝐺(𝜉))𝜉 = 𝐺


(𝜉)/𝐺(𝜉) as

Φ

(𝜉) = 𝐵 + 𝐴Φ (𝜉) + (𝐶 − 1)Φ

2
(𝜉) . (11)

Equation (11) has twenty five solutions [47].
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Step 4. The positive integer 𝑚 can be determined by balanc-
ing the highest order linear term with the nonlinear term of
the highest order come out in (7).

Step 5. Substituting (8) together with (9) and (10) into (7), we
obtain polynomials in (𝑘 + (𝐺


/𝐺))
𝑖 and (𝑘 + (𝐺


/𝐺))
−𝑖
(𝑖 =

0, 1, 2, . . . , 𝑚). Collecting each coefficient of the resulted
polynomials to zero yields an overdetermined set of algebraic
equations for 𝛼𝑖 (𝑖 = 0, ±1, ±2, . . . , ±𝑚), 𝑘, 𝐿, and 𝑉.

Step 6. The values of the arbitrary constants can be obtained
by solving the algebraic equations obtained in Step 4. The
obtained values of the arbitrary constants and the solutions
of (10) yield abundant exact traveling wave solutions of the
nonlinear evolution equation (5).

3. Application of the Method to the Time
Fractional Simplified (MCH) Equation

Now, consider the following time fractional simplified modi-
fied Camassa-Holm (MCH) equation:

𝐷
𝛼
𝑡 𝑢 + 2𝛿𝑢𝑥 − 𝑢𝑥𝑥𝑡 + 𝛾𝑢

2
𝑢𝑥 = 0,

where 𝛿 ∈ R, 𝛾 > 0, 0 < 𝛼 ≤ 1,

(12)

which is the variation of the equation

𝑢𝑡 + 2𝛿𝑢𝑥 − 𝑢𝑥𝑥𝑡 + 𝛾𝑢
2
𝑢𝑥 = 0,

where 𝛿 ∈ R, 𝛾 > 0.

(13)

Many researchers investigated the simplified MCH equa-
tion by using different methods to establish exact solutions.
For example, Liu et al. [48] were concerned about the (𝐺/𝐺)-
expansion method to solve the simplified MCH equation,
whereas the second order linear ordinary differential equa-
tion (LODE) is considered as an auxiliary equation. Wazwaz
[49] studied this equation by using the sine-cosine algorithm.
Zaman and Sultana [50] used the (𝐺/𝐺)-expansion method
together with the generalized Riccati equation to MCH
equation to find the exact solutions. Alam and Akbar [51]
applied the generalized (𝐺/𝐺)-expansionmethod to look for
the exact solutions via the simplifiedMCH equation. Further
details of MCH equation can be found in references [52, 53].

By the use of (4), (12) is converted into an ordinary
differential equation of integer order and after integrating
once, we obtain

(𝑉 + 2𝛿𝐿) 𝑢 − 𝑉𝐿
2
𝑢

+ 𝛾𝐿

𝑢
3

3
+ 𝐶1 = 0, (14)

where 𝐶1 is an integral constant which is to be determined
later.

Considering the homogeneous balance between 𝑢
 and

𝑢
3 in (14), we obtain 3𝑚 = 𝑚 + 2; that is, 𝑚 = 2. Therefore,

the trial solution formula (8) becomes

𝑢 (𝜉) = 𝛼−1(𝑘 + Φ (𝜉))
−1
+ 𝛼0 + 𝛼1 (𝑘 + Φ (𝜉)) . (15)

Using (15) into (14), left hand side is converted into
polynomials in (𝑘 + (𝐺


/𝐺))
𝑖 and (𝑘 + (𝐺


/𝐺))
−𝑖
(𝑖 =

0, 1, 2, . . . , 𝑚). Equating the coefficients of same power of the
resulted polynomials to zero, we obtain a system of algebraic
equations for 𝛼0, 𝛼1, 𝛼−1, 𝑘, 𝐶1, 𝐿, and 𝑉 (which are omitted
for the sake of simplicity). Solving the overdetermined set
of algebraic equations by using the symbolic computation
software, such as Maple 13, we obtain the following four
solution sets.

Set 1. Consider

𝛼0 = ±𝑖
√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

,

𝛼1 = ±𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

,

𝑉 = −
4𝛿𝐿

𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2
,

𝐿 = 𝐿, 𝑘 = 𝑘, 𝛼−1 = 0, 𝐶1 = 0,

(16)

where 𝑘, 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.

Set 2. Consider

𝛼0 = ∓𝑖
√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

,

𝛼−1 = ±𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

,

𝑉 = −
4𝛿𝐿

𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2
,

𝐿 = 𝐿, 𝑘 = 𝑘, 𝛼1 = 0, 𝐶1 = 0,

(17)

where 𝑘, 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.

Set 3. Consider

𝛼1 = ±2𝑖
√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

,

𝛼−1 = ±𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

,

𝑉 = −
2𝛿𝐿

2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1
,

𝑘 =
𝐴

2 (𝐶 − 1)
, 𝐿 = 𝐿, 𝛼0 = 0, 𝐶1 = 0,

(18)

where 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.



4 Abstract and Applied Analysis

Set 4. Consider

𝛼−1 = ±𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

,

𝑉 = −
4𝛿𝐿

𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2
,

𝑘 =
𝐴

2 (𝐶 − 1)
, 𝐿 = 𝐿, 𝛼0 = 0, 𝛼1 = 0, 𝐶1 = 0,

(19)

where 𝐿, 𝐴, 𝐵, and 𝐶 are arbitrary constants.

Substituting (16)–(19) into (15), we obtain

𝑢1 (𝜉) = ± 𝑖
√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× (𝑘 + (
𝐺


𝐺
)) ,

(20)

where

𝜉 = 𝐿𝑥 − (
4𝛿𝐿

𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2
)

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢2 (𝜉) = ∓ 𝑖
√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× (𝑘 + (
𝐺


𝐺
))

−1

,

(21)

where

𝜉 = 𝐿𝑥 − (
4𝛿𝐿

𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2
)

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢3 (𝜉) = ± 2𝑖
√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
𝐴

2 (𝐶 − 1)
+ (

𝐺


𝐺
))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
𝐴

2 (𝐶 − 1)
+ (

𝐺


𝐺
))

−1

,

(22)

where

𝜉 = 𝐿𝑥 − (
2𝛿𝐿

2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1
)

𝑡
𝛼

Γ (1 + 𝛼)
,

𝑢4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
𝐴

2 (𝐶 − 1)
+ (

𝐺


𝐺
))

−1

,

(23)

where

𝜉 = 𝐿𝑥 − (
4𝛿𝐿

𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2
)

𝑡
𝛼

Γ (1 + 𝛼)
. (24)

Substituting the solutions 𝐺(𝜉) of (10) into (20) and
simplifying, we obtain the following solutions.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 1),

𝑢
1
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)
(𝐴 + √Δ tanh(

√Δ𝜉

2
))} ,

𝑢
2
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)
(𝐴 + √Δ coth(

√Δ𝜉

2
))} ,

𝑢
3
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √Δ (tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉))) } ,
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Figure 1: (a)–(d) show the kink solution for 𝑢11 for different values of parameters.

𝑢
4
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √Δ (coth (√Δ𝜉) ± csch (√Δ𝜉))) } ,

𝑢
5
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

4 (𝐶 − 1)

× (2𝐴 + √Δ
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× (tanh(
√Δ𝜉

4
) + coth(

√Δ𝜉

4
)))} ,

𝑢
6
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√Δ (𝐹2 + 𝐻2)

−𝐹√Δ cosh (√Δ𝜉) )

× (𝐹 sinh (√Δ𝜉) + 𝐵)
−1
} ] ,

𝑢
7
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√Δ (𝐹2 + 𝐻2)

+𝐹√Δ cosh (√Δ𝜉) )

× (𝐹 sinh (√Δ𝜉) + 𝐵)
−1
} ] ,

(25)

where 𝐹 and𝐻 are real constants (Figure 2). Consider

𝑢
8
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
2𝐵 cosh (√Δ𝜉/2)

√Δ sinh (√Δ𝜉/2) − 𝐴 cosh (√Δ𝜉/2)
} ,

𝑢
9
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
2𝐵 sinh (√Δ𝜉/2)

√Δ cosh (√Δ𝜉/2) − 𝐴 sinh (√Δ𝜉/2)
} ,

𝑢
10
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
2𝐵 cosh (√Δ𝜉)

√Δ sinh (√Δ𝜉) − 𝐴 cosh (√Δ𝜉) ± 𝑖√Δ
} ,

𝑢
11
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
2𝐵 sinh (√Δ𝜉)

√Δ cosh (√Δ𝜉) − 𝐴 sinh (√Δ𝜉) ± √Δ
} .

(26)

WhenΔ = 𝐴
2
−4𝐵𝐶+4𝐵 < 0 and𝐴(𝐶−1) ̸= 0 (or𝐵(𝐶−1) ̸= 0),

𝑢
12
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
1

2 (𝐶 − 1)

×(−𝐴 + √−Δ tan(
√−Δ𝜉

2
))} ,

𝑢
13
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

×(𝐴 + √−Δcot(
√−Δ𝜉

2
))} ,
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𝑢
14
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× ( − 𝐴 + √−Δ

× (tan (√−Δ𝜉) ± sec (√−Δ𝜉))) } ,

𝑢
15
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √−Δ

× (cot (√−Δ𝜉) ± csch (√−Δ𝜉))) } ,

𝑢
16
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√−Δ (𝐹2 − 𝐻2)

− 𝐹√−Δ cos (√−Δ𝜉) )

× (𝐹 sin (√−Δ𝜉) + 𝐵)
−1
} ] ,

𝑢
17
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√−Δ (𝐹2 − 𝐻2)

− 𝐹√−Δ cos (√−Δ𝜉) )

× (𝐹 sin (√−Δ𝜉) + 𝐵)
−1
} ] ,

𝑢
18
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× [𝑘 +
1

2 (𝐶 − 1)

× {−𝐴 + (±√−Δ (𝐹2 − 𝐻2)

+𝐹√−Δ cos (√−Δ𝜉) )

×(𝐹 sin (√−Δ𝜉) + 𝐵)
−1
} ] ,

(27)

where 𝐹 and𝐻 are real constants such that 𝐹2 − 𝐻
2
> 0.

Consider

𝑢
19
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
2𝐵 cos (√−Δ𝜉/2)

√−Δ sin (√−Δ𝜉/2) + 𝐴 cos (√−Δ𝜉/2)
} ,

𝑢
20
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
2𝐵 sin (√−Δ𝜉/2)

√−Δ cos (√−Δ𝜉/2) − 𝐴 sin (√−Δ𝜉/2)
} ,

𝑢
21
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)
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Figure 2: (a)–(d) show the singular solution for 𝑢21 for different values of parameters.

× {𝑘 − (2𝐵 cos (√−Δ𝜉))

× (√−Δ sin (√−Δ𝜉)

+𝐴 cos (√−Δ𝜉) ± √−Δ)
−1
} ,

𝑢
22
1 (𝜉) = ±𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 + (2𝐵 sin(
√−Δ𝜉

2
))

×(√−Δ cos(
√−Δ𝜉

2
)

−𝐴 sin(
√−Δ𝜉

2
) ± √−Δ)

−1

} .

(28)

When 𝐵 = 0 and 𝐴(𝐶 − 1) ̸= 0,

𝑢
23
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)
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± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
𝐴𝑐1

(𝐶 − 1) {𝑐1 + cosh (𝐴𝜉) − sinh (𝐴𝜉)}
} ,

𝑢
24
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
𝐴 (cosh (𝐴𝜉) + sinh (𝐴𝜉))

(𝐶 − 1) {𝑐1 + cosh (𝐴𝜉) + sinh (𝐴𝜉)}
} ,

(29)

where 𝑐1 is an arbitrary constant.
When 𝐴 = 𝐵 = 0 and (𝐶 − 1) ̸= 0, the solution of (12) is

𝑢
25
1 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝐶 − 1)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

(𝐶 − 1) 𝜉 + 𝑐2

} ,

(30)

where 𝑐2 is an arbitrary constant.
Substituting the solutions 𝐺(𝜉) of (10) in (21) and simpli-

fying, we obtain the following solutions.
When Δ = 𝐴

2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0),

𝑢
1
2 (𝜉) = ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)
(𝐴 + √Δ tanh(

√Δ𝜉

2
))}

−1

,

𝑢
2
2 (𝜉) = ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)
(𝐴 + √Δ coth(

√Δ𝜉

2
))}

−1

,

𝑢
3
2 (𝜉) = ∓ 𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

× (𝐴 + √Δ (tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉))) }
−1

.

(31)

The other families of exact solutions of (12) are omitted
for convenience.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 < 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 3),

𝑢
12
2 (𝜉) = ∓𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 +
1

2 (𝐶 − 1)

×(−𝐴 + √−Δ tan(
√−Δ𝜉

2
))}

−1

,

𝑢
13
2 (𝜉) = ∓𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

2 (𝐶 − 1)

×(𝐴 + √−Δcot(
√−Δ𝜉

2
))}

−1

,

𝑢
14
2 (𝜉) = ∓𝑖

√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)
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Figure 3: (a)–(d) show the periodic solution for 𝑢122 for different values of parameters.

× {𝑘 +
1

2 (𝐶 − 1)

× ( − 𝐴 + √−Δ

× (tan (√−Δ𝜉) ± sec (√−Δ𝜉)) )}
−1

.

(32)

When 𝐴 = 𝐵 = 0 and (𝐶 − 1) ̸= 0, the solution of (12) is

𝑢
25
2 (𝜉) = 𝑢2 (𝜉)

= ∓ 𝑖
√6𝛿𝐿 (𝐴 + 2𝑘 − 2𝐶𝑘)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

± 𝑖
2√6𝛿𝐿 (𝑘𝐴 + 𝑘

2
− 𝐶𝑘
2
− 𝐵)

√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2)

× {𝑘 −
1

(𝐶 − 1)𝜉 + 𝑐2

}

−1

,

(33)

where 𝑐2 is an arbitrary constant.
We can write down the other families of exact solutions

of (12) which are omitted for practicality.
Similarly, by substituting the solutions 𝐺(𝜉) of (10) into

(22) and simplifying, we obtain the following solutions.
When Δ = 𝐴

2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0),
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𝑢
1
3 (𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)
(√Δ tanh(

√Δ𝜉

2
)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√Δ tanh(

√Δ𝜉

2
)))

−1

,

𝑢
2
3 (𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)
(√Δ coth(

√Δ𝜉

2
)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√Δ coth(

√Δ𝜉

2
)))

−1

,

𝑢
3
3 (𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

× {√Δ tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉)} )

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√Δ tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉)} )
−1

.

(34)

Others families of exact solutions are omitted for the sake
of simplicity.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 < 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 4),

𝑢
12
3 (𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)
(√−Δ tan(

√−Δ𝜉

2
)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√−Δ tan(

√−Δ𝜉

2
)))

−1

,

𝑢
13
3 (𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)
(√−Δcot(

√−Δ𝜉

2
)))

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√−Δcot(

√−Δ𝜉

2
)))

−1

,

𝑢
14
3 (𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
1

2 (𝐶 − 1)

× {√−Δ tan (√−Δ𝜉) ± sec (√−Δ𝜉)} )

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√−Δ tan (√−Δ𝜉) ± sec (√−Δ𝜉)} )
−1

.

(35)

When (𝐶 − 1) ̸= 0 and 𝐴 = 𝐵 = 0, the solution of (12) is

𝑢
25
3 (𝜉) = ± 2𝑖

√3𝛿𝐿 (𝐶 − 1)

√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1)

× (
𝐴

2 (𝐶 − 1)
−

1

(𝐶 − 1) 𝜉 + 𝑐2

)

± 𝑖

√3𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (2𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 1) (𝐶 − 1)

× (
𝐴

2(𝐶 − 1)
−

1

(𝐶 − 1)𝜉 + 𝑐2

)

−1

,

(36)

where 𝑐2 is an arbitrary constant.
Other exact solutions of (12) are omitted here for conve-

nience.
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Figure 4: (a)–(d) show singular kink solution for 𝑢123 for different values of parameters.

Finally, by substituting the solutions𝐺(𝜉) of (10) into (23)
and simplifying, we obtain the following solutions.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 > 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0) (Figure 5),

𝑢
1
4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√Δ tanh(

√Δ𝜉

2
)))

−1

,

𝑢
2
4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√Δ coth(

√Δ𝜉

2
)))

−1

,

𝑢
3
4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√Δ tanh (√Δ𝜉) ± 𝑖sech (√Δ𝜉)} )
−1

.

(37)

Others families of exact solutions are omitted for the sake
of ease.
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Figure 5: (a)–(d) show traveling wave solution for 𝑢34 for different values of parameters.

When Δ = 𝐴
2
− 4𝐵𝐶 + 4𝐵 < 0 and 𝐴(𝐶 − 1) ̸= 0 (or

𝐵(𝐶 − 1) ̸= 0),

𝑢
12
4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√−Δ tan(

√−Δ𝜉

2
)))

−1

,

𝑢
13
4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)
(√−Δcot(

√−Δ𝜉

2
)))

−1

,

𝑢
14
4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
1

2 (𝐶 − 1)

× {√−Δ tan (√−Δ𝜉) ± sec (√−Δ𝜉)} )
−1

.

(38)

When (𝐶 − 1) ̸= 0 and 𝐴 = 𝐵 = 0, the solution of (12) is

𝑢
25
4 (𝜉) = ± 𝑖

√6𝛿𝐿 (𝐴
2
− 4𝐵𝐶 + 4𝐵)

2√𝛾 (𝐿2 (𝐴2 − 4𝐵𝐶 + 4𝐵) + 2) (𝐶 − 1)

× (
𝐴

2(𝐶 − 1)
−

1

(𝐶 − 1)𝜉 + 𝑐2

)

−1

,

(39)

where 𝑐2 is an arbitrary constant.
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Table 1: Comparison between our solutions and Liu et al. [48] solutions.

Obtained solutions Liu et al. [48] solutions
(i) If 𝐿 = 1, 𝐴 = 2, 𝐵 = 0, 𝐶 = 2, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0, 𝛼 = 1,
and 𝑢11 (𝜉) = 𝑢1,2 (𝑥, 𝑡), then the solution is

𝑢1,2 (𝑥, 𝑡) = ±2 tanh(𝑥 + 2

3
𝑡).

(i) If 𝐶1 = 1, 𝐶2 = 0, 𝜆 = 2, 𝜇 = 0, 𝑎 = 1, and 𝑘 = 1,
then the solution is
𝑢1,2 (𝑥, 𝑡) = ±2 tanh(𝑥 + 2

3
𝑡).

(ii) If 𝐿 = 1, 𝐴 = 2, 𝐵 = 1, 𝐶 = 3, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0, 𝛼 = 1,
and 𝑢121 (𝜉) = 𝑢3,4 (𝑥, 𝑡), then the solution is
𝑢3,4 (𝑥, 𝑡) = ±2√3 tan (𝑥 + 2 𝑡).

(ii) If 𝐶1 = 1, 𝐶2 = 0, 𝜆2 − 4 𝜇 = −4, 𝑎 = 1, and 𝑘 = 1,
then the solution is
𝑢3,4 (𝑥, 𝑡) = ±2√3 tan (𝑥 + 2 𝑡).

(iii) If 𝐿 = 1, 𝐴 = 0, 𝐵 = 0, 𝐶 = 2, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0,
𝛼 = 1, 𝑐2 = 0, and 𝑢251 (𝜉) = 𝑢3,4 (𝑥, 𝑡), then the solution is

𝑢3,4 (𝑥, 𝑡) = ±2√3
1

𝑥 + 2 𝑡
.

(iii) If 𝐶1 = 1, 𝐶2 = 1, 𝜆 = 2, 𝜇 = 1, 𝑎 = 1, and 𝑘 = −1,
then the solution is
𝑢3,4 (𝑥, 𝑡) = ± 2√3

1

𝑥 + 2 𝑡
.

(iv) If 𝐿 = 1, 𝐴 = 2, 𝐵 = 0, 𝐶 = 2, 𝛿 = 1, 𝛾 = 1, 𝑘 = 0 , 𝛼 = 1,
and 𝑢11 (𝜉) = 𝑢1,2 (𝑥, 𝑡), then the solution is

𝑢3,4 (𝑥, 𝑡) = ±2𝑖 tanh(𝑥 − 2

3
𝑡).

(iv) If 𝐶1 = 1, 𝐶2 = 0, 𝜆 = 2, 𝜇 = 0, 𝑎 = 1, and 𝑘 = 1,
then the solution is
𝑢3,4 (𝑥, 𝑡) = ±2𝑖 tanh(𝑥 − 2

3
𝑡).

(v) If 𝐿 = 1, 𝐴 = 1, 𝐵 =
1

2
, 𝐶 = 3, 𝛿 = −1, 𝛾 = 1, 𝑘 = 0, 𝛼 = 1,

and 𝑢121 (𝜉) = 𝑢3,4 (𝑥, 𝑡), then the solution is

𝑢3,4 (𝑥, 𝑡) = ± √6𝑖 tan 1

2
(𝑥 − 4 𝑡).

(v) If 𝐶1 = 1, 𝐶2 = 0, 𝜆 = 0, 𝜇 =
1

4
, 𝑎 = 1, and 𝑘 = 1,

then the solution is
𝑢3,4 (𝑥, 𝑡) = ± √6 𝑖 tan 1

2
(𝑥 − 4 𝑡) .

(vi) If 𝐿 = 1, 𝐴 = 0, 𝐵 = 0, 𝐶 = 2, 𝛿 = 1, 𝛾 = 1, 𝑘 = 0,
𝛼 = 1, 𝑐2 = 0, and 𝑢251 (𝜉) = 𝑢3,4 (𝑥, 𝑡), then the solution is

𝑢3,4 (𝑥, 𝑡) = ±𝑖2√3
1

𝑥 − 2 𝑡
.

(vi) If 𝐶1 = 1, 𝐶2 = 1, 𝜆 = 2, 𝜇 = 1, 𝑎 = 1, and 𝑘 = 1,
then the solution is
𝑢3,4 (𝑥, 𝑡) = ±𝑖2√3

1

𝑥 − 2 𝑡
.

Other exact solutions of (12) are omitted here for expedi-
ency.

4. Conclusions

A novel (𝐺/𝐺)-expansion method is applied to fractional
partial differential equation successfully. As applications,
abundant new exact solutions for the time fractional sim-
plified modified Camassa-Holm (MCH) equation have been
successfully obtained. The nonlinear fractional complex
transformation for 𝜉 is very important, which ensures that
a certain fractional partial differential equation can be con-
verted into another ordinary differential equation of integer
order. The obtained solutions are more general with more
parameters. Also comparison has been made in the form
of table (Table 1), which shows that some of our solutions
are in full agreement with the results obtained previously.
Thus, novel (𝐺/𝐺)-expansion method would be a powerful
mathematical tool for solving nonlinear evolution equations.
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The paper presents results concerning the solvability of a nonlinear integral equation of Volterra-Stieltjes type. We show that under
some assumptions that equation has a continuous and bounded solution defined on the interval [0, ∞) and having a finite limit
at infinity. As a special case of the mentioned integral equation we obtain an integral equation of Volterra-Wiener-Hopf type. That
fact enables us to formulate convenient and handy conditions ensuring the solvability of the equation in question in the class of
functions defined and continuous on the interval [0, ∞) and having finite limits at infinity.

1. Introduction

Integral equations play very important and significant role in
the description of numerous events appearing in real world.
Almost all branches of physics, mathematical physics, engi-
neering, astronomy, economics, biology, and so forth utilize
the theory of integral equations, both linear andnonlinear (cf.
[1–5], e.g.).

Integral equations of Wiener-Hopf type create very
important branch of the theory of integral equations [5].
Integral equations of such a type belong to the part of the
theory of integral equations which are often called as integral
equations depending on the difference of arguments [5]. It
is worthwhile mentioning that integral equations of Wiener-
Hopf type find numerous applications. For example, they are
applied to describe some problems of radiative equilibria [6]
and in the theory of diffraction [7]. Moreover, the reflection
of an electromagnetic planewave by an infinite sets of plates is
also investigatedwith help ofWiener-Hopf integral equations
[8]. Other possible applications of the theory ofWiener-Hopf
integral equations are associated with dynamic elasticity [9],

diffraction of plane waves by circular cone [10], and so forth
(cf. also [5]).

Let us recall that the classical Wiener-Hopf integral
equation has the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑏

𝑎
𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (1)

where 𝑡 ∈ [𝑎, 𝑏] and 𝑘 : R → R is a given function which is
continuous and integrable on the set of real numbers R; that
is, there exists a finite improper integral:

∫

+∞

−∞
𝑘 (𝑢) 𝑑𝑢. (2)

Obviously, instead of (1) we may consider its “unbounded
domain” counterpart having the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

∞

0
𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (3)

or even more general equations [5].
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In this paper we will investigate the Volterra counterpart
of the Wiener-Hopf integral equations (1) and (3), which has
the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0
𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (4)

where 𝑡 ∈ R+ or 𝑡 ∈ [0, 𝑇] with 𝑇 > 0.
Let us pay attention to the fact that Volterra-Wiener-Hopf

integral equation (4) appears quite naturally as a special case
of (1) and (3). In fact, if we require that

𝑘 (𝑢) = 0 for 𝑢 ⩽ 0, (5)

then (3) reduces to (4). This observation justifies the interest
in the study of the Volterra-Wiener-Hopf integral equations.

To make our investigations more general and more con-
venient, we will study the so-called Volterra-Stieltjes integral
equation having the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠𝐾 (𝑡, 𝑠) , (6)

where the involved integral is understood in the Riemann-
Stieltjes sense.

The details explaining such an approach as well as suitable
definitions will be presented in our further considerations.

2. Notation, Definitions, and Auxiliary Facts

In this sectio,n we present notation, definitions, and all
auxiliary facts which will be utilized further on. Similar to
Section 1, we will denote by R the set of real numbers. We
put also R+ = [0,∞).

The investigation of the paper will be conducted in the
Banach function space BC(R+) consisting of all real functions
defined, continuous, and bounded on the interval R+. This
space is endowed by the classical supremum norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ⩾ 0} . (7)

Let us notice that in the space BC(R+) the classical
Ascoli-Arzela criterion for relative compactness fails to work
and we know only a few sufficient conditions guaranteeing
the relative compactness (cf. [11, 12]). Keeping in mind our
further purposes we provide below a sufficient condition of
such a type [12].

Theorem 1. Let 𝑋 be a nonempty and bounded subset of the
space𝐵𝐶(R+). Assume that𝑋 is locally equicontinuous; that is,
for any 𝑇 > 0, the functions from 𝑋 are equicontinuous on the
interval [0, 𝑇]. Moreover assume that the following condition is
satisfied.

For any 𝜀 > 0 there exists a number 𝑇 > 0 such that for
any function 𝑥 ∈ 𝑋 and for all 𝑡, 𝑠 ∈ [𝑇,∞) the inequality
|𝑥(𝑡) − 𝑥(𝑠)| ⩽ 𝜀 is satisfied.

Then the set X is relatively compact in the space 𝐵𝐶(R+).

Remark 2. Let us notice that in the case when a set𝑋 satisfies
conditions imposed in Theorem 1 all functions from 𝑋 tend

to finite limits at infinity uniformly with respect to the set 𝑋
(cf. [11, 12]).

In the sequel we will use the concept of the modulus of
continuity of a function from the space BC(R+). Thus, fix
arbitrarily 𝑇 > 0 and take a function 𝑥 ∈ BC(R+).

Consider the quantity

𝜔
𝑇
(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ⩽ 𝜀} (8)

defined for 𝜀 > 0. This quantity is called the modulus of
continuity of a function 𝑥 on the interval [0, 𝑇]. Obviously
lim𝜀→0𝜔

𝑇
(𝑥, 𝜀) = 0 in view of the uniform continuity of 𝑥 on

the interval [0, 𝑇].
Now, we provide needed facts concerning functions of

bounded variation [13].
At the beginning assume that 𝑥 is a real function defined

on a fixed interval [𝑎, 𝑏].Then the symbol⋁𝑏𝑎𝑥will denote the
variation of the function 𝑥 on the interval [𝑎, 𝑏]. In the case
when ⋁𝑏𝑎𝑥 is finite we say that 𝑥 is of bounded variation on
[𝑎, 𝑏]. If we have a function 𝑢(𝑡, 𝑠) = 𝑢 : [𝑎, 𝑏] × [𝑐, 𝑑] → R,
then we denote by ⋁𝑞𝑡=𝑝𝑢(𝑡, 𝑠) the variation of the function
𝑡 → 𝑢(𝑡, 𝑠) on the interval [𝑝, 𝑞] ⊂ [𝑎, 𝑏], where 𝑠 is a fixed
number in the interval [𝑐, 𝑑]. Similarly we define the quantity
⋁
𝑞
𝑠=𝑝𝑢(𝑡, 𝑠).
For the properties of functions of bounded variation we

refer to [13].
If 𝑥 and 𝜑 are two real functions defined on the interval

[𝑎, 𝑏] then under some additional conditions [13] we can
define the Stieltjes integral (in the Riemann-Stieltjes sense)

∫

𝑏

𝑎
𝑥 (𝑡) 𝑑𝜑 (𝑡) (9)

of the function 𝑥with respect to the function𝜑. In such a case
we say that 𝑥 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to 𝜑.

Let us mention that several conditions are known which
guarantee the Stieltjes integrability [3, 13, 14]. One of themost
frequently used conditions requires that 𝑥 is continuous and
𝜑 is of bounded variation on [𝑎, 𝑏].

In what follows we will utilize a few properties of the
Stieltjes integral contained in the following given lemmas
[13].

Lemma 3. If 𝑥 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to a function 𝜑 of bounded variation, then



∫

𝑏

𝑎
𝑥 (𝑡) 𝑑𝜑 (𝑡)



⩽ ∫

𝑏

𝑎
|𝑥 (𝑡)| 𝑑 (

𝑡

⋁

𝑎

𝜑) . (10)

Lemma4. Let𝑥1 and𝑥2 be Stieltjes integrable functions on the
interval [𝑎, 𝑏] with respect to a nondecreasing function 𝜑 such
that 𝑥1(𝑡) ⩽ 𝑥2(𝑡) for 𝑡 ∈ [𝑎, 𝑏]. Then

∫

𝑏

𝑎
𝑥1 (𝑡) 𝑑𝜑 (𝑡) ⩽ ∫

𝑏

𝑎
𝑥2 (𝑡) 𝑑𝜑 (𝑡) . (11)

Further on, we will also consider Stieltjes integrals having
the form

∫

𝑏

𝑎
𝑥 (𝑠) 𝑑𝑠𝑔 (𝑡, 𝑠) , (12)
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where 𝑔 : [𝑎, 𝑏] × [𝑎, 𝑏] → R and the symbol 𝑑𝑠 indicates
the integration with respect to 𝑠. The details concerning the
integral of this type will be given later. Let us only mention
that integral (12) allows us to represent the Volterra-Wiener-
Hopf integral equation (4) as a particular case of the Volterra-
Stieltjes integral equation (6).

3. Main Results

The investigations of this sectionwill be located in the Banach
function space BC(R+) described previously in Section 2.
Firstly, wewill consider the solvability of theVolterra-Stieltjes
integral equation having form (6). This equation will be
studied under the following formulated assumptions.

(i) The function 𝑎 = 𝑎(𝑡) belongs to the space BC(R+)
and is such that there exists the limit lim𝑡→∞𝑎(𝑡)
(obviously, this limit is finite).

(ii) 𝑓 : R+ × R → R is continuous and there exists
a function 𝜙 : R+ → R+ which is nondecreasing,
𝜙(0) = 0, lim𝑡→0𝜙(𝑡) = 0, and such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ⩽ 𝜙 (

𝑥 − 𝑦
) (13)

for all 𝑡 ∈ R+ and 𝑥, 𝑦 ∈ R.
(iii) The function 𝑡 → 𝑓(𝑡, 0) is a member of BC(R+).
(iv) 𝐾(𝑡, 𝑠) = 𝐾 : Δ → R is a uniformly continuous func-

tion on the triangle

Δ = {(𝑡, 𝑠) : 0 ⩽ 𝑠 ⩽ 𝑡} . (14)

(v) The function 𝑠 → 𝐾(𝑡, 𝑠) is of bounded variation on
the interval [0, 𝑡] for each fixed 𝑡 ∈ R+.

(vi) For any 𝜀 > 0 there exists 𝛿 > 0 such that for all 𝑡1, 𝑡2 ∈
R+ with 𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝛿, the following inequality
holds:

𝑡1

⋁

𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)] ⩽ 𝜀. (15)

(vii) 𝐾(𝑡, 0) = 0 for all 𝑡 ⩾ 0.
(viii) The function 𝑡 → ⋁

𝑡
𝑠=0𝐾(𝑡, 𝑠) is bounded on R+.

Before formulating the last assumption let us denote by
𝐹1 and𝐾 the following constants:

𝐹1 = sup {𝑓 (𝑡, 0)
 : 𝑡 ∈ R+} ,

𝐾 = sup{
𝑡

⋁

𝑠=0

𝐾 (𝑡, 𝑠) : 𝑡 ∈ R+} .
(16)

Obviously 𝐹1 < ∞ in view of assumption (iii), while the
inequality𝐾 < ∞ is a consequence of assumption (viii).

Now, we can formulate our last assumption.

(ix) There exists a positive solution 𝑟0 of the inequality

‖𝑎‖ + (𝜙 (𝑟) + 𝐹1)𝐾 ⩽ 𝑟. (17)

Now, we are prepared to present our first main result.

Theorem 5. Under assumptions (i)–(ix), (6) has at least one
solution 𝑥 = 𝑥(𝑡) in the space 𝐵𝐶(R+) which belongs to the
ball 𝐵𝑟0 = {𝑥 ∈ 𝐵𝐶(R+) : ‖𝑥‖ ⩽ 𝑟0} and has a finite limit at
infinity.

In the proof of the above theorem we will need a few
auxiliary facts contained in the following given lemmas.

Lemma 6. The function

𝑝 →

𝑝

⋁

𝑠=0

𝐾 (𝑡, 𝑠) (18)

is continuous on the interval [0, 𝑡] for any fixed 𝑡 ∈ R+.

This lemma is an easy consequence of assumptions (iv)
and (v) and the properties of the variation of functions (cf.
[13], p. 60).

Lemma 7. Let assumptions (iv)–(vi) be satisfied. Then, for
arbitrarily fixed number 𝑡2 > 0 and for any 𝜀 > 0, there exists
𝛿 > 0 such that if 𝑡1 < 𝑡2 and 𝑡2 − 𝑡1 ⩽ 𝛿 then

𝑡2

⋁

𝑠=𝑡1

𝐾(𝑡2, 𝑠) ⩽ 𝜀. (19)

Proof. Fix 𝑡2 ∈ (0,∞) and 𝜀 > 0. Next, consider the function
𝐻 defined on the interval [0, 𝑡2] by the formula

𝐻(𝑝) =

𝑝

⋁

𝑠=0

𝐾(𝑡2, 𝑠) . (20)

Then, in view of Lemma 6, the function𝐻 is continuous
at the point 𝑡2. Hence we infer that there exists 𝛿 > 0 such that
for 𝑡1 ⩾ 0, 𝑡1 < 𝑡2, and 𝑡2−𝑡1 ⩽ 𝛿wehave that |𝐻(𝑡2)−𝐻(𝑡1)| ⩽
𝜀. On the other hand, we get

𝐻 (𝑡2) − 𝐻 (𝑡1)
 =



𝑡2

⋁

𝑠=0

𝐾(𝑡2, 𝑠) −

𝑡1

⋁

𝑠=0

𝐾(𝑡2, 𝑠)



=



𝑡1

⋁

𝑠=0

𝐾(𝑡2, 𝑠) +

𝑡2

⋁

𝑠=𝑡1

𝐾(𝑡2, 𝑠) −

𝑡1

⋁

𝑠=0

𝐾(𝑡2, 𝑠)



=

𝑡2

⋁

𝑠=𝑡1

𝐾(𝑡2, 𝑠) ⩽ 𝜀.

(21)

The proof is complete.

Proof of Theorem 5. Let us consider the operator𝐹 defined on
the space BC(R+) in the following way:

(𝐹𝑥) (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0
𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠𝐾 (𝑡, 𝑠) , (22)

for 𝑥 ∈ BC(R+) and for arbitrarily fixed 𝑡 ∈ R+. Then,
keeping in mind the imposed assumptions, we deduce that
the function 𝐹𝑥 is well defined.



4 Abstract and Applied Analysis

Further, fix arbitrarily 𝑇 > 0 and take 𝑠, 𝑡 ∈ [0, 𝑇].
Without loss of generality we may assume that 𝑠 < 𝑡. Then,
in view of Lemmas 3 and 4, we obtain

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)|

⩽ |𝑎 (𝑡) − 𝑎 (𝑠)|

+


∫

𝑡

0
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)

−∫

𝑠

0
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑠, 𝜏)



⩽ 𝜔
𝑇
(𝑎, 𝜀) +


∫

𝑡

0
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)

−∫

𝑠

0
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)



+


∫

𝑠

0
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)

−∫

𝑠

0
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑠, 𝜏)



⩽ 𝜔
𝑇
(𝑎, 𝜀) +


∫

𝑡

𝑠
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏𝐾 (𝑡, 𝜏)



+


∫

𝑠

0
𝑓 (𝜏, 𝑥 (𝜏)) 𝑑𝜏 [𝐾 (𝑡, 𝜏)−𝐾 (𝑠, 𝜏)]



⩽ 𝜔
𝑇
(𝑎, 𝜀)

+ ∫

𝑡

𝑠

𝑓 (𝜏, 𝑥 (𝜏))
 𝑑𝜏(

𝜏

⋁

𝑝=0

𝐾(𝑡, 𝑝))

+ ∫

𝑠

0

𝑓 (𝜏, 𝑥 (𝜏))
 𝑑𝜏

× (

𝜏

⋁

𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀)

+ ∫

𝑡

𝑠
[
𝑓 (𝜏, 𝑥 (𝜏)) . − 𝑓 (𝜏, 0)



+
𝑓 (𝜏, 0)

] 𝑑𝜏(

𝜏

⋁

𝑝=0

𝐾(𝑡, 𝑝))

+ ∫

𝑠

0
[
𝑓 (𝜏, 𝑥 (𝜏)) . − 𝑓 (𝜏, 0)



+
𝑓 (𝜏, 0)

] 𝑑𝜏(

𝜏

⋁

𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀) + ∫

𝑡

𝑠
{𝜙 (|𝑥 (𝜏)|) + 𝐹1} 𝑑𝜏

× (

𝜏

⋁

𝑝=0

𝐾(𝑡, 𝑝))

+ ∫

𝑠

0
{𝜙 (|𝑥 (𝜏)|) + 𝐹1} 𝑑𝜏

× (

𝜏

⋁

𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀) + {𝜙 (‖𝑥‖) + 𝐹1}

× ∫

𝑡

𝑠
𝑑𝜏(

𝜏

⋁

𝑝=0

𝐾(𝑡, 𝑝))

+ {𝜙 (‖𝑥‖) + 𝐹1}

× ∫

𝑠

0
𝑑𝜏(

𝜏

⋁

𝑞=0

[𝐾 (𝑡, 𝑞) − 𝐾 (𝑠, 𝑞)])

⩽ 𝜔
𝑇
(𝑎, 𝜀) + {𝜙 (‖𝑥‖) + 𝐹1}

𝑡

⋁

𝑝=𝑠

𝐾(𝑡, 𝑝)

+ {𝜙 (‖𝑥‖)+𝐹1}

𝑠

⋁

𝑞=0

[𝐾 (𝑡, 𝑞)−𝐾 (𝑠, 𝑞)] .

(23)

Hence, in view of assumption (vi) and Lemma 7, we conclude
that the function𝐹𝑥 is continuous on the interval [0, 𝑇]. Since
𝑇 was chosen arbitrarily this allows us to infer that 𝐹𝑥 is
continuous on R+.

Next, we show that the function 𝐹𝑥 is bounded onR+. To
this end, fix arbitrarily 𝑥 ∈ BC(R+) and 𝑡 ⩾ 0. Then, in virtue
of the imposed assumptions and Lemmas 3 and 4, we get

|(𝐹𝑥) (𝑡)| ⩽ ‖𝑎‖ + ∫

𝑡

0

𝑓 (𝑠, 𝑥 (𝑠))
 𝑑𝑠(

𝑠

⋁

𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + ∫

𝑡

0
[
𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 0)

 +
𝑓 (𝑠, 0)

] 𝑑𝑠

× (

𝑠

⋁

𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + ∫

𝑡

0
[𝜙 (|𝑥 (𝑠)|) + 𝐹1] 𝑑𝑠(

𝑠

⋁

𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + {𝜙 (‖𝑥‖) + 𝐹1} ∫

𝑡

0
𝑑𝑠(

𝑠

⋁

𝑝=0

𝐾(𝑡, 𝑝))

⩽ ‖𝑎‖ + {𝐹1 + 𝜙 (‖𝑥‖)}

𝑡

⋁

𝑠=0

𝐾 (𝑡, 𝑠) .

(24)

Now, in view of assumption (viii), we conclude that the
following inequality holds:

‖𝐹𝑥‖ ⩽ ‖𝑎‖ + {𝐹1 + 𝜙 (‖𝑥‖)}𝐾. (25)

The above inequality shows that the function 𝐹𝑥 is bounded
on R+. This fact in connection with the continuity of
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the function 𝐹𝑥 established above shows that 𝐹𝑥 ∈ BC(R+).
In other words, the operator 𝐹 is a self-mapping of the space
BC(R+).

Moreover, on the basis of inequality (25) and assumption
(ix), we conclude that there exists a positive number 𝑟0 such
that the operator 𝐹 transforms the ball 𝐵𝑟0 (see assumption
(ix)) into itself.

Now we show that the operator 𝐹 is continuous on the
ball 𝐵𝑟0 . To this end, fix 𝜀 > 0. Next, fix arbitrarily 𝑥, 𝑦 ∈ 𝐵𝑟0
such that ‖𝑥 − 𝑦‖ ⩽ 𝜀. Then, taking into account the imposed
assumptions, for an arbitrary fixed number 𝑡 ∈ R+, we get
(𝐹𝑥) (𝑡) − (𝐹𝑦) (𝑡)



=


∫

𝑡

0
[𝑓 (𝑠, 𝑥 (𝑠)) − 𝑓 (𝑠, 𝑦 (𝑠))] 𝑑𝑠𝐾 (𝑡, 𝑠)



⩽ ∫

𝑡

0

𝑓 (𝑠, 𝑥 (𝑠)) . − 𝑓 (𝑠, 𝑦 (𝑠))
 𝑑𝑠(

𝑠

⋁

𝑝=0

𝐾(𝑡, 𝑝))

⩽ ∫

𝑡

0
𝜙 (
𝑥 (𝑠) − 𝑦 (𝑠)

) 𝑑𝑠(

𝑠

⋁

𝑝=0

𝐾(𝑡, 𝑝))

⩽ ∫

𝑡

0
𝜙 (𝜀) 𝑑𝑠(

𝑠

⋁

𝑝=0

𝐾(𝑡, 𝑝))

⩽ 𝜙 (𝜀)

𝑡

⋁

𝑠=0

𝐾 (𝑡, 𝑠) ⩽ 𝐾𝜙 (𝜀) .

(26)

The above obtained estimate (26) shows that the operator 𝐹
is continuous even on the whole space BC(R+).

Now we show that the set 𝐹(𝐵𝑟0) is relatively compact
in the space BC(R+). To show this fact we introduce two
auxiliary functions𝑀 = 𝑀(𝜀) and 𝑁 = 𝑁(𝜀) defined in the
following way:

𝑀(𝜀) = sup{
𝑡1

⋁

𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)] : 𝑡1, 𝑡2 ∈ R+,

𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝜀} ,

𝑁 (𝜀) = sup{
𝑡2

⋁

𝑠=𝑡1

𝐾(𝑡2, 𝑠) : 𝑡1, 𝑡2 ∈ R+, 𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝜀} .

(27)

Observe that in view of assumption (iv) and Lemma 7we have
that𝑀(𝜀) → 0 and𝑁(𝜀) → 0 as 𝜀 → 0.

Further, fix arbitrarily 𝜀 > 0 and 𝑇 > 0 and choose a
function 𝑥 ∈ 𝐵𝑟0 . Next, take 𝑡, 𝑠 ∈ [0, 𝑇] such that |𝑡 − 𝑠| ⩽ 𝜀.
Without loss of generality we may assume that 𝑠 < 𝑡. Then, in
view of estimate (23), we get

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)| ⩽ 𝜔
𝑇
(𝑎, 𝜀) + [𝜙 (𝑟0) + 𝐹1]𝑁 (𝜀)

+ [𝜙 (𝑟0) + 𝐹1]𝑀 (𝜀) .

(28)

This estimate shows that functions from the set 𝐹(𝐵𝑟0) are
equicontinuous on the interval [0, 𝑇].

Next, taking arbitrarily 𝑡, 𝑠 ∈ [𝑇,∞) with 𝑠 < 𝑡 and
arguing in the same way as we done in order to obtain
estimate (23), we get

|(𝐹𝑥) (𝑡) − (𝐹𝑥) (𝑠)| ⩽ |𝑎 (𝑡) − 𝑎 (𝑠)|

+ {𝜙 (𝑟0) + 𝐹1} [𝑀 (𝜀) + 𝑁 (𝜀)] .

(29)

Hence, keeping in mind assumption (i), we can choose 𝑇 > 0
so big that the term |𝑎(𝑡) − 𝑎(𝑠)| is suitably small for 𝑠, 𝑡 > 𝑇.
This assertion in conjunction with the fact that𝑀(𝜀) → 0

and𝑁(𝜀) → 0 as 𝜀 → 0, in view of Theorem 1, allows us to
deduce that the set 𝐹(𝐵𝑟0) is relatively compact in the space
BC(R+).

Now, taking into account the continuity of the operator
𝐹 and applying the classical Schauder fixed point principle,
we conclude that there exists at least one fixed point 𝑥 of
the operator 𝐹 which belongs to the ball 𝐵𝑟0 . Obviously, the
function𝑥 = 𝑥(𝑡) is a solution of theVolterra-Stieltjes integral
equation (6). Moreover, let us notice that any fixed point
𝑥 = 𝑥(𝑡) of the operator𝐹 from the ball𝐵𝑟0 must belong to the
set 𝐹(𝐵𝑟0) being relatively compact in the sense ofTheorem 1.
In the light of Remark 2 this fact allows us to infer that the
function 𝑥 = 𝑥(𝑡) being a solution of (6) has a finite limit at
infinity.

The proof is complete.

Now, we pay our attention to assumption (vi) playing a
key role in our investigations. It turns out that we can formu-
late a condition being handy in applications and ensuring that
the function𝐾 = 𝐾(𝑡, 𝑠) satisfies assumption (vi).

To formulate that condition assume, as previously, that
𝐾(𝑡, 𝑠) = 𝐾 : Δ → R, where Δ = {(𝑡, 𝑠) : 0 ⩽ 𝑠 ⩽ 𝑡}. Then,
the announced condition may be formulated as follows.

(vi) For arbitrary 𝑡1, 𝑡2 ∈ R+ such that 𝑡1 < 𝑡2 the
function 𝑠 → 𝐾(𝑡2, 𝑠) − 𝐾(𝑡1, 𝑠) is nonincreasing on
the interval [0, 𝑡1].

Remark 8. The above condition and its consequences were
discussed in [15] (cf. also [16]) under the assumption that𝐾 :

Δ 1 → R, where Δ 1 = {(𝑡, 𝑠) : 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1}. Moreover,
instead of 𝑡1, 𝑡2 ∈ R+ it was assumed that 𝑡1, 𝑡2 ∈ [0, 1].

Further, we prove a few consequences of condition (vi).

Lemma 9. Under assumptions (vi) and (vii), for arbitrarily
fixed 𝑠 ∈ R+, the function 𝑡 → 𝐾(𝑡, 𝑠) is nonincreasing on the
interval [𝑠,∞).

Proof. Fix a number 𝑠 ∈ R+ and take arbitrarily 𝑡1, 𝑡2 ∈ [𝑠,∞)

with 𝑡1 < 𝑡2. Then, in virtue of (vi), we obtain

𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) ⩽ 𝐾 (𝑡2, 0) − 𝐾 (𝑡1, 0) . (30)

Hence, in view of assumption (vii), we have

𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) ⩽ 0 (31)

and the proof is complete.
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The next result indicates the utility of assumption (vi).

Theorem 10. Suppose that the function 𝐾 = 𝐾(𝑡, 𝑠) satisfies
assumptions (iv), (vi), and (vii). Then 𝐾 satisfies assumption
(vi).

Proof. Fix an arbitrary number 𝜀 > 0. In view of assumption
(iv) we deduce that there exists 𝛿 > 0 such that if 𝑡1, 𝑡2 ∈ R+,
𝑡1 < 𝑡2 and 𝑡2 − 𝑡1 < 𝛿 then

𝐾 (𝑡2, 𝑡1) − 𝐾 (𝑡1, 𝑡1)
 ⩽ 𝜀. (32)

In the light of Lemma 9 the above inequality can be written
equivalently in the form

0 ⩽ 𝐾 (𝑡1, 𝑡1) − 𝐾 (𝑡2, 𝑡1) ⩽ 𝜀. (33)

Further, assume that 𝑡1, 𝑡2 are fixed. Take a partition 0 = 𝑠0 <
𝑠1 < ⋅ ⋅ ⋅ < 𝑠𝑛 = 𝑡1 of the interval [0, 𝑡1]. Then, in view of
assumptions (vi) and (vii) and Lemma 9, we obtain

𝑛

∑

𝑖=1

[𝐾 (𝑡2, 𝑠𝑖) − 𝐾 (𝑡1, 𝑠𝑖)] − [𝐾 (𝑡2, 𝑠𝑖−1) − 𝐾 (𝑡1, 𝑠𝑖−1)]


=

𝑛

∑

𝑖=1

{[𝐾 (𝑡2, 𝑠𝑖−1) − 𝐾 (𝑡1, 𝑠𝑖−1)] − [𝐾 (𝑡2, 𝑠𝑖) − 𝐾 (𝑡1, 𝑠𝑖)]}

= 𝐾 (𝑡1, 𝑡1) − 𝐾 (𝑡2, 𝑡1) .

(34)

Hence we deduce that

𝑡1

⋁

𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)] = 𝐾 (𝑡1, 𝑡1) − 𝐾 (𝑡2, 𝑡1) . (35)

Finally, combining the above equality with (33), we complete
the proof.

In what follows we show how the result contained in
Theorem 5 can be applied to the Volterra-Wiener-Hopf
integral equation (4). First of all let us recall that (4) is a
special case of the Volterra-Stieltjes integral equation (6) if
we put

𝐾 (𝑡, 𝑠) = ∫

𝑠

0
𝑘 (𝑡 − 𝑧) 𝑑𝑧 (36)

for (𝑡, 𝑠) ∈ Δ. Obviously such a substitution has a sense under
suitable assumptions concerning the function 𝑘 = 𝑘(𝑢),
which will be formulated later.

To adapt the assumptions of Theorem 5 to our situation
let us observe that assumption (vii) is then automatically
satisfied since𝐾(𝑡, 0) = 0.

Let us observe that in order to ensure the well definiteness
of the function 𝐾 = 𝐾(𝑡, 𝑠) we have to assume that the
function 𝑘 = 𝑘(𝑢) is locally integrable over R+ (in Lebesgue

sense). Moreover, to adapt assumption (vi), let us notice that
taking 𝑡1, 𝑡2 ∈ R+, 𝑡1 < 𝑡2, we have

𝑡1

⋁

𝑠=0

[𝐾 (𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠)]

=

𝑡1

⋁

𝑠=0

[∫

𝑠

0
𝑘 (𝑡2 − 𝑧) 𝑑𝑧 − ∫

𝑠

0
𝑘 (𝑡1 − 𝑧) 𝑑𝑧]

=

𝑡1

⋁

𝑠=0

∫

𝑠

0
[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧

= ∫

𝑡1

0
[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧.

(37)

In view of the above equality we can reformulate assumption
(vi) in the following way.

(vi1) For any 𝜀 > 0 there exists 𝛿 > 0 such that for all 𝑡1, 𝑡2 ∈
R+ with 𝑡1 < 𝑡2, 𝑡2 − 𝑡1 ⩽ 𝛿, the following inequality
holds:

∫

𝑡1

0
[𝑘 (𝑡2 − 𝑠) − 𝑘 (𝑡1 − 𝑠)] 𝑑𝑠 ⩽ 𝜀. (38)

In a similar way, assumption (viii) can be translated to the
following form.

(viii1) The function 𝑡 → ∫
𝑡

0
𝑘(𝑡 − 𝑠)𝑑𝑠 is bounded on R+.

In order to present the last assumption in a more
transparent form, let us substitute 𝑢 = 𝑡 − 𝑠 in the integral
appearing in assumption (viii1). Then we get

∫

𝑡

0
𝑘 (𝑡 − 𝑠) 𝑑𝑠 = ∫

𝑡

0
𝑘 (𝑢) 𝑑𝑢. (39)

Thus, the above condition concerning the local Lebesgue
integrability of the function 𝑘 = 𝑘(𝑢) in conjunction with the
above observation implies that we should put the following
assumption in place of (viii1).

(viii2) The function 𝑘 = 𝑘(𝑢) is Lebesgue integrable overR+.

It is well-known that the Lebesgue integrability of the
function 𝑘 = 𝑘(𝑢) on the intervalR+ implies that the function

𝑡 → ∫

𝑡

0
𝑘 (𝑢) 𝑑𝑢 (40)

(the indefinite integral of 𝑘) is absolutely continuous on R+
(cf. [13, 17, 18]). This immediately implies that the function
defined by (40) is uniformly continuous on R+.

Now, let us observe that the above formulated assump-
tion (vi1) connected with the Volterra-Wiener-Hopf integral
equation (4) has rather inconvenient form and is not easy
to verify in practice. Therefore, in our further investigations,
we will utilize assumption (vi) instead of assumption (vi).
Obviously, assumption (vi) will be adapted to the case of (4).
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To this end choose arbitrarily 𝑡1, 𝑡2 ∈ R+ with 𝑡1 < 𝑡2.
According to assumption (vi) the function

𝑠 → 𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) (41)

should be nonincreasing on the interval [0, 𝑡1]. Taking into
account that

𝐾(𝑡2, 𝑠) − 𝐾 (𝑡1, 𝑠) = ∫

𝑠

0
𝑘 (𝑡2 − 𝑧) 𝑑𝑧 − ∫

𝑠

0
𝑘 (𝑡1 − 𝑧) 𝑑𝑧

= ∫

𝑠

0
[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧,

(42)

we have to impose the condition requiring that the function

𝑠 → ∫

𝑠

0
[𝑘 (𝑡2 − 𝑧) − 𝑘 (𝑡1 − 𝑧)] 𝑑𝑧 (43)

is nonincreasing on the interval [0, 𝑡1].
Since the function (42) is absolutely continuous on the

interval [0, 𝑡1], by thewell-known facts from the theory of real
functions [18], this requirement can be expressed equivalently
in the following form:

𝑘 (𝑡2 − 𝑠) − 𝑘 (𝑡1 − 𝑠) ⩽ 0 (44)

for 𝑠 ∈ [0, 𝑡1]. Obviously this means that the function 𝑘 =
𝑘(𝑢) is nonincreasing on R+.

On the other hand any monotone function is Riemann
integrable.Thus, assuming additionally that 𝑘 : R+ → R+we
conclude that 𝑘 is nonincreasing and bounded on R+. It is
known [13] that in this case the function

𝑡 → ∫

𝑡

0
𝑘 (𝑢) 𝑑𝑢 (45)

is Lipschitz continuous on R+. In other words, in such a
situation, we have that the function

𝑠 → 𝐾 (𝑡, 𝑠) = ∫

𝑠

0
𝑘 (𝑡 − 𝑧) 𝑑𝑧 (46)

is uniformly continuous on the interval [0, 𝑡].
Keeping in mind the above conducted considerations we

can formulate the following result concerning the Volterra-
Wiener-Hopf integral equation (4).

Theorem 11. Assume that there are satisfied assumptions (i),
(ii), and (iii) of Theorem 5. Moreover, we assume that the
following conditions are satisfied.

(x) The function 𝑘(𝑢) = 𝑘 : R+ → R+ is nonincreasing
and integrable on R+.

(xi) There exists a positive solution 𝑟0 of the inequality

‖𝑎‖ + (𝜙 (𝑟) + 𝐹1) 𝑘 ⩽ 𝑟, (47)

where

𝑘 = ∫

∞

0
|𝑘 (𝑢)| 𝑑𝑢. (48)

Then there exists at least one solution 𝑥 = 𝑥(𝑡) of (4)
in the space 𝐵𝐶(R+) which has a limit at infinity.

Finally, let us mention that the result concerning the
nonlinear integral equation (4) obtained in this section
generalizes several ones which can be encountered in the
literature (cf. [5, 19, 20], e.g.).

4. Further Discussions and Examples

At the beginning of this section we intend to discuss some
assumptions imposed on the terms of the integral equation
of Volterra-Wiener-Hopf type (4) considered in the previous
section.

Let us start with the requirement that the function 𝑘 =
𝑘(𝑢) transforms R+ into itself and is nonincreasing on R+.
Observe that in that case we allow the function 𝑘 to take
negative values; that is, if we would assume that 𝑘(𝑢) ⩽

𝑘(𝑢0) < 0 for 𝑢 > 𝑢0, then we infer that 𝑘 is not integrable
on R+ and we obtain a contradiction with assumption (x).

Further on, let us notice that in our considerations
connected with (6), assumption (vi) can be replaced by the
following one.
(vi) For arbitrary 𝑡1, 𝑡2 ∈ R+ such that 𝑡1 < 𝑡2 the function

𝑠 → 𝐾(𝑡2, 𝑠) − 𝐾(𝑡1, 𝑠) is nondecreasing on the
interval [0, 𝑡1].

Indeed, in such a case, arguing similarly to the proof
of Lemma 9 and Theorem 10, we can prove the following
analogous results.

Lemma 12. Under assumptions (vi) and (vii), for arbitrarily
fixed 𝑠 ∈ R+, the function 𝑡 → 𝐾(𝑡, 𝑠) is nondecreasing on the
interval [𝑠,∞).

Theorem 13. Suppose that the function 𝐾 = 𝐾(𝑡, 𝑠) satisfies
assumptions (iv), (vi), and (vii). Then 𝐾 satisfies assumption
(vi).

Further, performing similar reasonings as at the end of
Section 3, we can easily conclude that, in the case of Volterra-
Wiener-Hopf equation (4), assumption (vi) is equivalent to
the requirement that the function 𝑘 = 𝑘(𝑢) is nondecreasing
on R+. This immediately yields that in order to ensure the
integrability of the function 𝑘 over the interval R+ we are
forced to assume that 𝑘 : R+ → R− = (−∞, 0].

Now, we are prepared to formulate other (nondecreasing)
versions of Theorem 11.

Theorem 14. Assume that there are satisfied assumptions (i),
(ii), and (iii) of Theorem 5 and assumption (xi) of Theorem 11.
Moreover, we assume that the following condition is satisfied.

(x) The function 𝑘(𝑢) = 𝑘 : R+ → R− is nondecreasing
and integrable on R+.

Then there exists at least one solution 𝑥 = 𝑥(𝑡) of (4) in the
space 𝐵𝐶(R+) which has a limit at infinity.

Obviously, the proof of Theorem 14 runs in a similar way
as the proof of Theorem 11.
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In what follows let us pay our attention to the case of
Volterra-Wiener-Hopf integral equation (4) considered on
a bounded interval [0, 𝑇]. This means that we consider the
following integral equation of Volterra-Wiener-Hopf type:

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0
𝑘 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 (49)

for 𝑡 ∈ [0, 𝑇], where 𝑇 > 0 is a given number.
Observe that in this case we can replace assumption (i) by

the assumption requiring that 𝑎 ∈ 𝐶[0, 𝑇] and we can delete
assumption (iii). Similarly we can modify and adapt suitable
assumptions (iv) and (vii). Summing up, we can formulate the
following result concerning equation (49) for 𝑡 ∈ [0, 𝑇].

Theorem 15. Assume that the following hypotheses are satis-
fied:

(1) 𝑎 ∈ 𝐶[0, 𝑇];
(2) 𝑓 : [0, 𝑇] × R → R is continuous and there exists a

function 𝜙 : R+ → R+ which is nondecreasing, 𝜙(0) =
0, lim𝑡→0𝜙(𝑡) = 0, and such that

𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
 ⩽ 𝜙 (

𝑥 − 𝑦
) (50)

for all 𝑡 ∈ [0, 𝑇] and 𝑥, 𝑦 ∈ R;
(3) the function 𝑘(𝑢) = 𝑘 : [0, 𝑇] → R is monotone on

[0, 𝑇];
(4) there exists a positive solution 𝑟0 of the inequality

‖𝑎‖𝐶[0,𝑇] + (𝜙 (𝑟) + 𝐹1) 𝑘 ⩽ 𝑟, (51)

where 𝑘 = ∫𝑇
0
|𝑘(𝑢)|𝑑𝑢 and 𝐹1 = max{|𝑓(𝑡, 0)| : 𝑡 ∈

[0, 𝑇]}.
Then there exists at least one solution 𝑥 = 𝑥(𝑡) of (49) in the
space 𝐶[0, 𝑇].

Let us remark that the space 𝐶[0, 𝑇] denotes the classical
Banach space consisting of real functions being continuous
on the interval [0, 𝑇] and endowed by the classical maximum
norm.

In the remainder of this section we provide a few
examples associated with the Volterra-Wiener-Hopf integral
equation (4) considered on the real half-axis R+. At the
beginning we present examples of functions 𝑘 = 𝑘(𝑢)

satisfying requirement of Theorems 11 and 14.

Example 1. Let us take the function 𝑘 having the form

𝑘 (𝑢) =
1

𝑢2 + 1
. (52)

Obviously 𝑘 : R+ → R+ and the function 𝑘 is nonincreasing
on the intervalR+.Moreover, the function 𝑘 is integrable over
R+ and

∫

𝑡

0
𝑘 (𝑢) 𝑑𝑢 = arctan 𝑡. (53)

Thus

𝑘 = ∫

∞

0
𝑘 (𝑢) 𝑑𝑢 =

𝜋

2
. (54)

Example 2. Consider the function 𝑘(𝑢) = 𝑒−𝑢. Observe that
this function satisfies assumption (x) since it is decreasing and
integrable on R+. Moreover, we have that

𝑘 = ∫

∞

0
𝑘 (𝑢) 𝑑𝑢 = ∫

∞

0
𝑒
−𝑢
𝑑𝑢 = 1, (55)

where 𝑘 is the constant defined by (48).

Example 3. Now, consider the function 𝑘 = 𝑘(𝑢) of the form

𝑘 (𝑢) = (𝑢 + 1) 𝑒
−𝑢
. (56)

It is easy to check that 𝑘 is decreasing and integrable on the
interval R+. Moreover, we have that

𝑘 = ∫

∞

0
(𝑢 + 1) 𝑒

−𝑢
𝑑𝑢 = 2. (57)

Example 4. Let us take into account the function 𝑘 defined by
the formula

𝑘 (𝑢) =
−1

1 + 𝑒𝑢
. (58)

Obviously, we can easily verify that 𝑘 : R+ → R− and 𝑘 is
increasing on R+. Moreover, we have

𝑘 = ∫

∞

0

1

1 + 𝑒𝑢
𝑑𝑢 = ln 2. (59)

In what follows we provide an example illustrating
Theorem 11.

Example 5. Let us consider the Volterra-Wiener-Hopf inte-
gral equation having the form

𝑥 (𝑡) =
𝑡
2
+ 1

𝑡2 + 2
+ ∫

𝑡

0

1

(𝑡 − 𝑠)
2
+ 1

3
√𝑥2 (𝑠) + arctan( 𝑠

𝑠2 + 4
)𝑑𝑠.

(60)

Observe that (60) is a special case of (4) if we put

𝑎 (𝑡) =
𝑡
2
+ 1

𝑡2 + 2
, (61)

𝑘 (𝑢) =
1

𝑢2 + 1
, (62)

𝑓 (𝑡, 𝑥) =
3
√𝑥2 + arctan( 𝑡

𝑡2 + 4
). (63)

Let us verify that the terms involved in (60) satisfy the
assumption of Theorem 11.

Indeed, the function 𝑎 = 𝑎(𝑢) satisfies assumption (i) and
we have that ‖𝑎‖ = 1. Obviously, the function 𝑓 = 𝑓(𝑡, 𝑥)

defined by (63) is continuous on the set R+ × R. To prove
the second part of assumption (ii) we will use the following
inequality:



3
√𝑥2 + 𝑎 −

3
√𝑦2 + 𝑎


⩽
3
√(𝑥 − 𝑦)

2
, (64)
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(cf. [21]). Thus, in view of (64), we get
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)



⩽



3
√𝑥2 + arctan( 𝑡

𝑡2 + 4
) −

3
√𝑦2 + arctan( 𝑡

𝑡2 + 4
)



⩽
3
√(𝑥 − 𝑦)

2
.

(65)

Hence we infer that the function 𝑓 = 𝑓(𝑡, 𝑥) satisfies
assumption (ii) with the function 𝜙(𝑟) = 𝑟

2/3. Obviously
𝜙(0) = 0, 𝜙 is nondecreasing, and lim𝑟→0𝜙(𝑟) = 0.

In order to check that the function 𝑓 = 𝑓(𝑡, 𝑥) satisfies
assumption (iii) observe that

𝑓 (𝑡, 0) =
3
√arctan( 𝑡

𝑡2 + 4
). (66)

Applying the standard methods of differential calculus,
we obtain

𝐹1 = sup {𝑓 (𝑡, 0)
 : 𝑡 ⩾ 0} =

3
√arctan(1

4
)

=
3
√0.2449 . . . = 0.62564 . . . .

(67)

Next, in view of Example 1, we derive that the function 𝑘
given by (52) satisfies assumption (x) and 𝑘 = 𝜋/2.

Finally, let us consider inequality (47) which now has the
following form:

1 + (𝑟
2/3
+ 0.62564 . . .)

𝜋

2
⩽ 𝑟. (68)

Using the standard methods of mathematical analysis
we can show that there exists a number 𝑟 belonging to the
interval (8, 9) which satisfies the equation

1 + (𝑟
2/3
+ 0.62564 . . .)

𝜋

2
= 𝑟. (69)

Thus, this allows us to deduce that for any number 𝑟0 ⩾ 𝑟

there is satisfied inequality (68). For example, we can accept
that 𝑟0 = 9.

Now, invoking Theorem 11, we infer that there exists at
least one solution 𝑥 = 𝑥(𝑡) of (60) in the space BC(R+)
which belongs to the ball 𝐵9 and has a finite limit at infinity.
Obviously the limit lim𝑡→∞𝑥(𝑡) belongs to the interval
[−9, 9].
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[13] J. Appell, J. Banaś, and N. Merentes, Bounded Variation and
Around, vol. 17 of De Gruyter Series in Nonlinear Analysis and
Applications, Walter de Gruyter, Berlin, Germany, 2014.

[14] I. P. Natanson,Theory of Functions of Real Variable, Ungar, New
York, NY, USA, 1960.
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This paper elucidates the main advantages of the exp-function method in finding exact solutions of nonlinear wave equations. By
the aid of some mathematical software, the solution process becomes extremely simple and accessible.

1. Introduction

One of the most important aspects in nonlinear science
is how to solve an exact solution of a nonlinear equation.
Recently many different methods have appeared, among
which the homotopy perturbation method [1–4], the tanh-
method [5], the sinh-method [6, 7], and the F-expansion
method [8–11] have caught much attention; however, all
these methods are valid for some special kinds of nonlinear
equations. It is therefore verymuch needed to find a universal
approach to nonlinear equations; this is very challenging
indeed, and the exp-function method [12–15] meets this
requirement. The exp-function method itself is mathemat-
ically beautiful and extremely accessible to nonmathemati-
cians. The use of the method requires no special knowledge
of advanced calculus, and it is especially effective for solitary
solutions.

2. Exp-Function Method

The exp-function method was first proposed by He and Wu
[16], and we consider a general partial differential equation
(PED) in the form

𝑃 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑦, 𝑢𝑥𝑥, 𝑢𝑡𝑡, 𝑢𝑦𝑦) = 0 (1)

to pick out the main solution process and its advantages.

Use a transformation [16]

𝜉 = 𝑘𝑥 + 𝜔𝑡 + 𝑙𝑦, (2)

where 𝑘, 𝜔, and 𝑙 are unknown constants and should be
determined later. By (2), we can convert (1) to the following
nonlinear ordinary differential equation:

𝐺(𝑢, 𝑢

, 𝑢

, 𝑢

, . . .) = 0. (3)

According to the exp-function method, we assume that its
solution can be expressed in the following form [16, 17]:

𝑢 (𝜉) =
∑
𝑑
𝑛=−𝑐 𝑎𝑛 exp (𝑛𝜉)

∑
𝑞
𝑚=−𝑝 𝑏𝑛 exp (𝑚𝜉)

, (4)

where 𝑐, 𝑑, 𝑝, 𝑞 are positive integers that could be freely
chosen. To determine the value of 𝑐 and 𝑝, we balance the
linear term of highest order of (3) with the highest order of
the nonlinear term. Similarly for determining the value of 𝑑
and 𝑞, we balance the lowest orders of linear and nonlinear
terms in (3). By substituting (4) into (3), collecting terms of
the same term of exp(𝑖𝜉), and equating the coefficient of each
power of exp to zero, we can get a set of algebraic equations
for determining unknown constants.
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3. Exact Solution for Nonlinear Wave Equation

In order to illustrate the basic solution process of the exp-
function method, we use the Burgers-Huxley equation as an
example, which can be expressed as [18]

𝑢𝑡 + 𝑢𝑥𝑥 +
3

𝑘
𝑢𝑢𝑥 + 𝑐𝑢 + 𝑢

2
+ 𝑢
3
= 0, (5)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function, 𝑢𝑡, 𝑢𝑥 are the
partial derivatives of 𝑢(𝑥, 𝑡) with respect to 𝑡 and 𝑥, respec-
tively, and 𝑘 and 𝑐 are arbitrary constants.

According to the exp-function method [15–17], we intro-
duce a complex variation 𝜉 defined as

𝜉 = 𝑘𝑥 + 𝜔𝑡. (6)

Equation (5) thus becomes an ordinary differential equation
as

𝑘
2
𝑢

+ (3𝑢 + 𝜔) 𝑢


+ 𝑐𝑢 + 𝑢

2
+ 𝑢
3
= 0. (7)

We suppose that the solution of (7) can be expressed as

𝑢 (𝜉) =
𝑎𝑐 exp (𝑐𝜉) + ⋅ ⋅ ⋅ + 𝑎−𝑑 exp (−𝑑𝜉)
𝑏𝑝 exp (𝑝𝜉) + ⋅ ⋅ ⋅ + 𝑏−𝑞 exp (−𝑞𝜉)

. (8)

Thus we have

𝑢

=
𝛾1 exp ((𝑐 + 3𝑝) 𝜉)
𝛾2 exp (4𝜉)

,

𝑢
3
=
𝑐3 exp (3𝑐𝜉) + ⋅ ⋅ ⋅
𝑐4 exp (3𝑝𝜉) + ⋅ ⋅ ⋅

=
𝑐3 exp ((3𝑐 + 𝑝) 𝜉)
𝑐4 exp (4𝑝𝜉)

.

(9)

Balancing highest order of exp-function in (9), we have 3𝑐 +
𝑝 = 𝑐 + 3𝑝, which leads to the result 𝑝 = 𝑐. Similarly we
balance the lowest orders of linear and nonlinear terms in (5)
to determine values of 𝑑 and 𝑞, and we can get 𝑑 = 𝑞. For
simplicity, we set 𝑝 = 𝑐 = 1 and 𝑞 = 𝑑 = 1; then (8) reduces
to

𝑢 (𝜉) =
𝑎1 exp (𝜉) + 𝑎0 + 𝑎−1 exp (−𝜉)
exp (𝜉) + 𝑏0 + 𝑏−1 exp (−𝜉)

. (10)

Substituting (10) in to (5), we have

1

𝐴
[𝐸3 exp (3𝜉) + 𝐸2 exp (2𝜉) + 𝐸1 exp (𝜉) + 𝐸0

+𝐸−1 exp (−𝜉) + 𝐸−2 exp (−2𝜉) + 𝐸−3 exp (−3𝜉)] = 0,
(11)

where = [𝑏0 + exp(𝜉) + 𝑏−1 exp(−𝜉)]
3,

𝐸3 = 𝑎
3
1 + 𝑎
2
1 + 𝑐𝑎1,

𝐸2 = 𝑐𝑎0 − 𝑎0𝑎1 − 𝜔𝑎0 + 3𝑎0𝑎
2
1 + 4𝑎

2
1𝑏0

+ 𝑘
2
𝑎0 + 2𝑎1𝑏0𝑐 + 𝜔𝑎1𝑏0 − 𝑘

2
𝑎1𝑏0,

𝐸0 = 𝑎
3
0 + 𝑎
2
0𝑏0 − 7𝑎0𝑎−1 + 6𝑎0𝑎1𝑎−1

+ 11𝑎0𝑎1𝑏−1 + 2𝑏0𝑎1𝑎−1 + 2𝑐𝑎0𝑏−1 + 2𝑐𝑏0𝑎−1

− 3𝜔𝑏0𝑎−1 + 𝑐𝑎0𝑏
2
0 − 6𝑘

2
𝑎0𝑏−1 + 3𝑘

2
𝑎−1𝑏0

+ 3𝑘
2
𝑎−1𝑏−1𝑏0 + 2𝑐𝑎1𝑏−1𝑏0 + 3𝜔𝑎1𝑏−1𝑏0,

𝐸1 = 𝑐𝑎−1 − 4𝑎1𝑎−1 − 2𝜔𝑎−1 + 3𝑎1𝑎
2
0 + 3𝑎

2
1𝑎−1

+ 7𝑎
2
1𝑏−1 + 4𝑘

2
𝑎−1 − 2𝑎

2
0 + (𝑘

2
+ 𝑐) 𝑎1𝑏

2
0 + 5𝑎0𝑎1𝑏0

+ 2𝑐𝑎1𝑏−1 − 𝜔𝑎0𝑏0 + 2𝜔𝑎1𝑏−1 + 2𝑐𝑎0𝑏0,

𝐸−1 = 3𝑎
2
0𝑎−1 + 3𝑎1𝑎

2
−1 + 4𝑎

2
0𝑏−1 − 5𝑎

2
−1 + 𝑎−1𝑏

2
0𝑘
2

+ 4𝑎1𝑏
2
−1𝑘
2
− 𝑎0𝑎−1𝑏0 + 8𝑎1𝑎−1𝑏−1 + (2𝑐 − 2𝜔) 𝑎−1𝑏−1

+ 𝑐𝑎−1𝑏
2
0 + 𝑐𝑎1𝑏

2
−1 − 4𝑎−1𝑏

2
−1𝑘
2
− 𝜔𝑎−1𝑏

2
0 + 2𝜔𝑎1𝑏

2
−1

+ (2𝑐 + 𝜔 − 𝑘
2
) 𝑎0𝑏−1𝑏0,

𝐸−2 = 3𝑎0𝑎
2
−1 − 2𝑎

2
−1𝑏0 + 𝑘

2
𝑎0𝑏
2
−1 + 5𝑎0𝑎−1𝑏−1

+ (𝑐 + 𝜔) 𝑎0𝑏
2
−1 + (2𝑐 − 𝑘

2
− 𝜔) 𝑎−1𝑏−1𝑏0,

𝐸−3 = 𝑎
3
−1 + 𝑎

2
−1𝑏−1 + 𝑐𝑎−1𝑏

2
−1.

(12)

Setting the coefficients of exp(𝑖𝜉), (𝑖 = 0, ±1, ±2, ±3) to zero,
we have

𝐸3 = 0, 𝐸2 = 0, 𝐸1 = 0

𝐸0 = 0,

𝐸−3 = 0, 𝐸−2 = 0, 𝐸−1 = 0.

(13)

With the help of some mathematical software, we can solve
the solutions of the algebraic equations.

Case 1. Consider

𝑎1 =
√1 − 4𝑐 − 1

2
,

𝑏0 =
−𝑎0 (3𝑎

2
1 − 𝑎1 + 𝑘

2
+ 𝑐 − 𝜔)

𝑎1 (−𝑘
2 + 4𝑎1 + 2𝑐 + 𝜔)

,

𝜔 =
𝑐𝑎0 − 𝑎0𝑎1 + 3𝑎0𝑎

2
1 + 4𝑎

2
1𝑏0 + 𝑎0𝑘

2
+ 2𝑎1𝑏0𝑐 − 𝑎1𝑏0𝑘

2

𝑎0 − 𝑎1𝑏0

,

𝑎−1 =
𝑏−1 (√1 − 4𝑐 − 1)

2
.

(14)
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This implies the following exact solution:

𝑢 (𝜉) = (
√1 − 4𝑐 − 1

2
exp (𝜉) + 𝑎0

+
𝑏2 (√1 − 4𝑐 − 1)

2
exp (−𝜉))

× (exp (𝜉) −
(3𝑎0𝑎

2
1 − 𝑎0𝑎1 + 𝑎0𝑘

2
+ 𝑐𝑎0 − 𝜔𝑎0)

2𝑐𝑎1 + 𝜔𝑐 − 𝑎1𝑘
2 + 4𝑎21

+ 𝑏2 exp (−𝜉))
−1

,

(15)

where

𝜉 = 𝑘𝑥

+
𝑐𝑎0 − 𝑎0𝑎1 + 3𝑎0𝑎

2
1 + 4𝑎

2
1𝑏0 + 𝑎0𝑘

2
+ 2𝑎1𝑏0𝑐 − 𝑎1𝑏0𝑘

2

𝑎0 − 𝑎1𝑏0

𝑡,

(16)

𝑎0, 𝑏2 are parameters, 𝑏2 ̸= 0, and 𝑘 is a free real number.

Case 2. Consider

𝑎1 =
1

2
, 𝑏0 = 0,

𝑎2 = −
𝑏2

2
, 𝑏2 = 𝑏2,

𝑎0 =
√2

2
+ √−16𝑏2𝑘

2 +
19

2
𝑏2 + 2𝑐𝑏2 + 8𝑏2𝜔,

𝜔 = 𝑘
2
+ 𝑐 +

1

4
.

(17)

This case gives another exact solution as follows:

𝑢 (𝑥, 𝑡) = (
1

2
exp (𝑘𝑥 + (𝑘2 + 𝑐 + 1

4
) 𝑡)

+
√2

2
√10𝑏2𝑐 − 8𝑏2𝑘

2 +
19

2
𝑏2 + 2𝑏2

− 𝑏2 exp(−𝑘𝑥 − (𝑘
2
+ 𝑐 +

1

4
) 𝑡))

× (exp(𝑘𝑥 + (𝑘2 + 𝑐 + 1
4
) 𝑡)

+ 𝑏2 exp(−𝑘𝑥 − (𝑘
2
+ 𝑐 +

1

4
) 𝑡))

−1

,

(18)

where 𝑏2, 𝑘, are nonzero free parameters.

Case 3. Consider

𝑎1 = −
√1 − 4𝑐 + 1

2
, 𝑎0 = 0,

𝑏0 = 0, 𝑏2 = 𝑏2, 𝑎2 = −
(1 + √1 − 4𝑐)

2
𝑏2.

(19)

This results in the following exact solution:

𝑢 (𝜉) = (−
√1 − 4𝑐 + 1

2
exp (𝜉)

−
(1 + √1 − 4𝑐)

2
𝑏2 exp (−𝜉))

× (exp (𝜉) + 𝑏2 exp (−𝜉))
−1
,

(20)

where 𝑏2 is nonzero free parameter.

4. Conclusion

By some mathematical software, the solution process is
extremely simple and abundant solutions are predicted [19–
21].The exp-functionmethod is a universal tool for nonlinear
equations and can be easily extended to fractional calculus
[22–27].
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The classical free Lagrangian admitting a constant of motion, in one- and two-dimensional space, is generalized using the Caputo
derivative of fractional calculus. The corresponding metric is obtained and the fractional Christoffel symbols, Killing vectors, and
Killing-Yano tensors are derived. Some exact solutions of these quantities are reported.

1. Introduction

The tool of the fractional calculus started to be successfully
applied inmanyfields of science and engineering (see, e.g., [1–
12] and the references therein). Fractals and its connection to
local fractional vector calculus represents another interesting
field of application (see, e.g., [13, 14] and the references
therein). Several definitions of the fractional differentiation
and integration exist in the literature. The most commonly
used are the Riemann-Liouville and the Caputo derivatives.
The Riemann-Liouville derivative of a constant is not zero
while Caputo’s derivative of a constant is zero. This property
makes the Caputo definition more suitable in all problems
involving the fractional differential geometry [15, 16]. The
Caputo differential operator of fractional calculus is defined
as [1–8]

𝑎𝐷
𝛼
𝑥𝑓 (𝑥) ≡

{{{{{{{

{{{{{{{

{

1

Γ (𝑛 − 𝛼)

×∫

𝑥

𝑎
(𝑥 − 𝑢)

𝑛−𝛼−1 𝑑
𝑛
𝑓 (𝑢)

𝑑𝑢𝑛
𝑑𝑢, 𝑛 − 1 < 𝛼 < 𝑛

𝑑
𝑛

𝑑𝑥𝑛
𝑓 (𝑥) , 𝛼 = 𝑛,

(1)

where Γ(⋅) is the Gamma function and 𝑥 > 𝑎. In this work, we
consider the case 𝑎 = 0, 𝑛−1 < 𝛼 ≤ 𝑛. For the power function
𝑥
𝑝, 𝑝 ∈ 𝑅, the Caputo fractional derivative satisfies

𝐷
𝛼
𝑥𝑥
𝑝
=

{{

{{

{

Γ (𝑝 + 1)

Γ (𝑝 − 𝛼 + 1)
𝑥
𝑝−𝛼

0, 𝑝 = 0, 1, 2, . . . , 𝑛 − 1.

(2)

The role played by Killing and Killing-Yano tensors for the
geodesic motion of the particle and the superparticle in a
curved backgroundwas a topic subjected to an intense debate
during the last decades [17–26]. In [27] a generalization
of exterior calculus was presented. Besides, the quadratic
Lagrangians are introduced by adding surface terms to a free-
particle Lagrangian in [28].

Motivated by the above mentioned results in differential
geometry, we discuss in this paper the hidden symmetries
corresponding to the fractional Killing vectors and Killing-
Yano tensors on curved spaces deeply related to physical
systems.
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The Caputo partial differential operator of fractional
order 𝛼 is defined as

𝑎𝜕
𝛼
𝑥𝑓 (𝑥, 𝑦)

≡

{{{{{{{

{{{{{{{

{

1

Γ (𝑛 − 𝛼)

×∫

𝑥

𝑎
(𝑥 − 𝑢)

𝑛−𝛼−1 𝜕
𝑛
𝑓 (𝑢, 𝑦)

𝜕𝑢𝑛
𝑑𝑢, 𝑛 − 1 < 𝛼 < 𝑛

𝜕
𝑛

𝜕𝑥𝑛
𝑓 (𝑥, 𝑦) . 𝛼 = 𝑛

(3)

Again in this work we consider the case 𝑎 = 0, 𝑛 − 1 < 𝛼 ≤ 𝑛,
and we drop the term 𝑎 in the notation.

2. The Main Results

In the following, we present the Killing vectors and Killing-
Yano tensors corresponding to some curved spaceswith some
physical significance.

2.1. One-Dimensional Case. Consider the one-dimensional
free Lagrangian, admitting a constant of motion; that is,
momentum [28]

𝐿 =
1

2
̇𝑥
2
+ ̇𝜆2 ̇𝑥. (4)

The Lagrangian can be rewritten as

𝐿 =
1

2
𝑔𝑖𝑗 ̇𝑢
𝑖
̇𝑢
𝑗
, (5)

where 𝑔𝑖𝑗 = [ 1 11 0 ]. The fractional Lagrangian of order 𝑞 is
given by

𝐿 =
1

2
𝑔𝑖𝑗𝐷
𝑞
𝑡 𝑢
𝑖
𝐷
𝑞
𝑡 𝑢
𝑗
, (6)

where we consider the Caputo fractional derivative.
We generalize the Christoffel symbols in the fractional

case, of order 𝑛 − 1 < 𝑞 < 𝑛, as

𝑞
Γ
𝛾

𝛽𝜇
=

1

2
𝑔
𝛼𝛾

(𝜕
𝑞
𝜇𝑔𝛼𝛽 + 𝜕

𝑞

𝛽
𝑔𝛼𝜇 − 𝜕

𝑞
𝛾𝑔𝛽𝜇) , (7)

where the partial derivatives of order 𝑞 are defined in the
fractional case.

We notice that because the metric is constant, all the
Christoffel symbols vanish,

𝑞
Γ
𝛾
𝜇] = 0. (8)

2.1.1. Fractional Killing Vectors and Killing-Yano Tensors.
The Killing vectors can be calculated from the generalized
equations, namely,

𝑉
𝑞

𝛼;𝛽
+ 𝑉
𝑞

𝛽;𝛼
= 0, (9)

where 𝑉𝑞
𝛼;𝛽

is the fractional covariant derivative defined as

𝑉
𝑞

𝛼;𝛽
= 𝜕
𝑞

𝛽
𝑉𝛼 + 𝑔𝛼𝜇

𝑞
Γ
𝜇

𝛿𝛽
𝑔
𝛿𝜆
𝑉𝜆. (10)

Because all the Christoffel symbols vanish, it is easy to show
that

𝑉
𝑞
1;1 = 𝜕

𝑞
1𝑉1 = 0,

𝑉
𝑞
2;2 = 𝜕

𝑞
2𝑉2 = 0,

𝑉
𝑞
1;2 + 𝑉

𝑞
2;1 = 𝑉

𝑞
1,2 + 𝑉

𝑞
2,1 = 𝜕

𝑞
2𝑉1 + 𝜕

𝑞
1𝑉2 = 0,

(11)

For 0 < 𝑞 ≤ 1, a solution of the above equations is 𝑉1 = −𝑐𝑦
𝑞,

𝑉2 = 𝑐𝑥
𝑞, where 𝑐 is a constant. While for 𝑞 > 1, we have the

general solution

𝑉1 = −𝑐𝑦
𝑞
+

𝑛−1

∑

𝑘=0

(𝑎𝑘𝑥
𝑘
+ 𝑏𝑘𝑦
𝑘
) ,

𝑉2 = 𝑐𝑥
𝑞
+

𝑛−1

∑

𝑘=0

(𝑎

𝑘𝑥
𝑘
+ 𝑏

𝑘𝑦
𝑘
) ,

(12)

where 𝑐, 𝑎𝑘, 𝑏𝑘, 𝑎

𝑘, 𝑏

𝑘 are constants.

The fractional Killing-Yano antisymmetric tensor 𝑞𝑓𝜇]
can be calculated using the condition

𝑞
𝑓𝜇];𝜆+

𝑞
𝑓𝜆];𝜇 = 0, (13)

where 𝑞𝑓𝜇];𝜆 is the fractional covariant derivative of the
Killing-Yano tensor 𝑞𝑓𝜇] defined as

𝑞
𝑓𝜇];𝜆 = 𝜕

𝑞

𝜆
𝑓𝜇] − 𝑓𝛼]

𝑞
Γ
𝛼
𝜆𝜇 − 𝑓𝜇𝛼

𝑞
Γ
𝛼
𝜆]. (14)

We find that

𝜕
𝑞

𝜆
𝑓𝜇] = 0 (15)

for all values of 𝜆, ], 𝜇. A solution is 𝑓11 = 𝑓22 = 0 and 𝑓12 =

𝑐 = −𝑓21, where 𝑐 is a constant and for 0 < 𝑞 ≤ 1. While for
𝑞 > 1, that is, 𝑛 ≥ 2, we have the general solution

𝑓12 = −𝑓21 =

𝑛−1

∑

𝑘=0

(𝑎𝑘𝑥
𝑘
+ 𝑏𝑘𝑦
𝑘
) , (16)

where 𝑎𝑘, 𝑏𝑘 are constants.

2.2. Two-Dimensional Case. Below we consider the classical
free Lagrangian, in two dimensions, admitting a constant of
motion; that is, angular momentum [28]

𝐿 =
1

2
( ̇𝑥
2
+ ̇𝑦
2
) + ̇𝜆3 (𝑥 ̇𝑦 − 𝑦 ̇𝑥) . (17)

The fractional Lagrangian is given by

𝐿 =
1

2
𝑔𝑖𝑗𝐷
𝛼
𝑞
𝑖
𝐷
𝛼
𝑞
𝑗
, (18)

where 𝑔𝑖𝑗 is given by

𝑔𝑖𝑗 =
[

[

1 0 −𝑦

0 1 𝑥

−𝑦 𝑥 0

]

]

. (19)
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The inverse matrix of the metric is

𝑔
𝑖𝑗
=

1

𝑥2 + 𝑦2
[

[

𝑥
2

𝑥𝑦 −𝑦

𝑥𝑦 𝑦
2

𝑥

−𝑦 𝑥 −1

]

]

. (20)

We generalize the Christoffel symbols in the fractional
case, of order 𝑛 − 1 < 𝑞 < 𝑛, as

𝑞
Γ
𝛾

𝛽𝜇
=

1

2
𝑔
𝛼𝛾

(𝜕
𝑞
𝜇𝑔𝛼𝛽 + 𝜕

𝑞

𝛽
𝑔𝛼𝜇 − 𝜕

𝑞
𝛾𝑔𝛽𝜇) . (21)

One can show that
𝑞
Γ
𝛾
𝜇𝜇 = 0 (22)

for 𝛾, 𝜇 = 1, 2, 3, while

𝑞
Γ
𝛾
12 =

𝑔
3𝛾

2
(𝜕
𝑞
1𝑔32 + 𝜕

𝑞
2𝑔31) ,

𝑞
Γ
𝛾
13 =

𝑔
2𝛾

2
(𝜕
𝑞
1𝑔32 − 𝜕

𝑞
2𝑔31) ,

𝑞
Γ
𝛾
23 =

𝑔
1𝛾

2
(𝜕
𝑞
2𝑔13 + 𝜕

𝑞
1𝑔23) .

(23)

2.2.1. Fractional Killing Vectors. The Killing vectors can be
calculated from the generalized equations

𝑉
𝑞

𝛼;𝛽
+ 𝑉
𝑞

𝛽;𝛼
= 0, (24)

where 𝑉𝑞
𝛼;𝛽

is the fractional covariant derivative defined as

𝑉
𝑞

𝛼;𝛽
= 𝜕
𝑞

𝛽
𝑉𝛼 + 𝑔𝛼𝜇

𝑞
Γ
𝜇

𝛿𝛽
𝑔
𝛿𝜆
𝑉𝜆. (25)

It is easy to show that

𝑉
𝑞
1;1 = 𝜕

𝑞
1𝑉1 = 0,

𝑉
𝑞
2;2 = 𝜕

𝑞
2𝑉2 = 0,

𝑉
𝑞
3;3 = 𝜕

𝑞
3𝑉3 = 0,

𝑉
𝑞
1;2 + 𝑉

𝑞
2;1 = 𝑉

𝑞
1,2 + 𝑉

𝑞
2,1 = 𝜕

𝑞
2𝑉1 + 𝜕

𝑞
1𝑉2 = 0,

𝑉
𝑞
1;3 + 𝑉

𝑞
3;1 = 𝜕

𝑞
3𝑉1 + 𝜕

𝑞
1𝑉3 + 𝑔

2𝜆
𝑉𝜆𝜕
𝑞
2𝑔13 = 0,

𝑉
𝑞
2;3 + 𝑉

𝑞
3;2 = 𝜕

𝑞
3𝑉2 + 𝜕

𝑞
2𝑉3 + 𝑔

1𝜆
𝑉𝜆𝜕
𝑞
1𝑔23 = 0.

(26)

A solution for 𝑉1 and 𝑉2 can be easily found for any
fractional order 𝑞, that is, 𝑛 − 1 < 𝑞 < 𝑛, namely,

𝑉1 = 𝑐𝑦
𝑞
+

𝑛−1

∑

𝑘=0

(𝑎𝑘𝑥
𝑘
+ 𝑏𝑘𝑦
𝑘
) ,

𝑉2 = −𝑐𝑥
𝑞
+

𝑛−1

∑

𝑘=0

(𝑐𝑘𝑥
𝑘
+ 𝑑𝑘𝑦

𝑘
) ,

(27)

where 𝑐, 𝑎𝑘, 𝑏𝑘, 𝑐𝑘, 𝑑𝑘 are constants. The solution to 𝑉3 is not
easy to find for 0 < 𝑞 ≤ 1. However, for 𝑛 ≥ 2, that is, 1 < 𝑞,
the equations simplify because

𝜕
𝑞
2𝑔13 = 𝜕

𝑞
1𝑔23 = 0. (28)

In this case a general solution is obtained as

𝑉3 =

𝑛−1

∑

𝑘=0

(𝑎

𝑘𝑥
𝑘
+ 𝑏

𝑘𝑦
𝑘
) , (29)

where 𝑎𝑘, 𝑏

𝑘 are constants.

2.2.2. Fractional Killing-Yano Tensors. The fractional anti-
symmetric Killing-Yano tensors can be derived using the
condition that

𝑞
𝑓𝜇];𝜆+

𝑞
𝑓𝜆];𝜇 = 0, (30)

where 𝑞𝑓𝜇];𝜆 is the fractional covariant derivative of the
Killing-Yano tensor 𝑞𝑓𝜇] defined as

𝑞
𝑓𝜇];𝜆 = 𝜕

𝑞

𝜆
𝑓𝜇] − 𝑓𝛼]

𝑞
Γ
𝛼
𝜆𝜇 − 𝑓𝜇𝛼

𝑞
Γ
𝛼
𝜆] . (31)

For the fractional order 0 < 𝑞 < 1, it is difficult to find an
analytic solution.However, for the order 𝑞 > 1, theChristoffel
symbols vanish; we find that

𝜕
𝑞

𝜆
𝑓𝜇] = 0 (32)

for all values of 𝜆, ], 𝜇. A solution is that 𝑓11 = 𝑓22 = 𝑓33 = 0

and 𝑓12, 𝑓13, 𝑓23 are a linear combination of 𝑥𝑘, 𝑦𝑘 where 𝑘 =

0, 1, 2, . . . , 𝑛 − 1, namely,

𝑓12 = −𝑓21 =

𝑛−1

∑

𝑘=0

(𝑎𝑘𝑥
𝑘
+ 𝑏𝑘𝑦
𝑘
) ,

𝑓13 = −𝑓31 =

𝑛−1

∑

𝑘=0

(𝑎

𝑘𝑥
𝑘
+ 𝑏

𝑘𝑦
𝑘
) ,

𝑓23 = −𝑓32 =

𝑛−1

∑

𝑘=0

(𝑐𝑘𝑥
𝑘
+ 𝑑𝑘𝑦

𝑘
) ,

(33)

where 𝑎𝑘, 𝑏𝑘, 𝑎

𝑘, 𝑏

𝑘, 𝑐𝑘, 𝑑𝑘 are constants.

3. Conclusion

In this work, we investigate the existence of fractional Killing
vectors and Killing-Yano tensors for the geometry induced
by fractionalizing the classical free Lagrangian admitting a
constant of motion. We discuss the cases of one-dimensional
and two-dimensional curved space. We use the Caputo defi-
nition of the fractional derivative to calculate the fractional
Christoffel symbols and consequently we provide explicit
solution to the fractional Killing vectors and Killing-Yano
tensors.
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