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Diego Córdoba, Spain
J. Carlos Cortés López, Spain
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Volume 2013, Article ID 380484, 9 pages

Pattern Dynamics in a Spatial Predator-Prey System with Allee Effect, Gui-Quan Sun, Li Li, Zhen Jin,
Zi-Ke Zhang, and Tao Zhou
Volume 2013, Article ID 921879, 12 pages

TheAnalytical Solution of Some Fractional Ordinary Differential Equations by the Sumudu Transform
Method, Hasan Bulut, Haci Mehmet Baskonus, and Fethi Bin Muhammad Belgacem
Volume 2013, Article ID 203875, 6 pages

Improved (𝐺/𝐺)-Expansion Method for the Space and Time Fractional Foam Drainage and KdV
Equations, Ali Akgül, Adem Kılıçman, and Mustafa Inc
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Mathematical modelling of real-life problems usually results
in functional equations, like ordinary or partial differential
equations, integral and integrodifferential equations, and
stochastic equations. Many mathematical formulations of
physical phenomena contain integrodifferential equations;
these equations arise in many fields like fluid dynamics,
biological models, and chemical kinetics. Partial differential
equations (PDEs) have become a useful tool for describing
the natural phenomena of science and engineeringmodels. In
addition, most physical phenomena of fluid dynamics, quan-
tum mechanics, electricity, ecological systems, and many
other models are controlled within their domain of validity
by PDEs. Therefore, it becomes increasingly important to be
familiar with all traditional and recently developed methods
for solving PDEs and the implementations of these methods.
Leaving aside quantummechanics, which remains to date an
inherently linear theory, most real-world physical systems,
including gas dynamics, fluid mechanics, elasticity, relativity,
ecology, neurology, and thermodynamics, are modelled by
nonlinear partial differential equations.

The aim of this special issue is to bring together the lead-
ing researchers of dynamics, quantum mechanics, ecology,
and neurology area including applied mathematicians and
allow them to share their original research work. Analytical
and numerical methods with advanced mathematical and
real physical modelling, recent developments of PDEs, and

integral equations in physical systems are included in the
main focus of the issue.

Accordingly, various papers on partial differential equa-
tions and integral equations have been included in this special
issue after completing a heedful, rigorous, and peer-review
process. In particular, the nonlinear hydroelastic waves prop-
agating beneath an infinite ice sheet floating on an inviscid
fluid of finite depth are investigated analytically in one of the
papers. In this paper, the approximate series solutions for the
velocity potential and the wave surface elevation are derived,
respectively, by an analytic approximation technique named
homotopy analysis method (HAM) and are presented for the
second-order components.

In another paper, a domain decomposition method is
proposed for the coupled stationary Navier-Stokes andDarcy
equations with the Beavers-Joseph-Saffman interface condi-
tion in order to improve the efficiency of the finite element
method. The physical interface conditions are directly uti-
lized to construct the boundary conditions on the interface
and then decouple the Navier-Stokes and Darcy equations.
Newton iteration is used to deal with the nonlinear systems.

Another paper proposes a pressure-stabilized Lagrange-
Galerkin method in a parallel domain decomposition system
in which the new stabilization strategy is proved to be
effective for large Reynolds number and Rayleigh number
simulations. The symmetry of the stiffness matrix enables
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the interface problems of the linear system to be solved by
the preconditioned conjugate method, and an incomplete
balanced domain preconditioner is applied to the flow-
thermal coupled problems.

One of the papers is of use of Sumudu transform on
fractional derivatives for solving some interesting nonho-
mogeneous fractional ordinary differential equations. Then
spectral and spectral element methods have been discussed
with Legendre-Gauss-Lobatto nodal basis for general 2nd-
order elliptic eigenvalue problems. A priori and a posteriori
error estimates for spectral and spectral element methods
have been proposed. In the another paper, a generalized
double sinh-Gordon equation has many more applications
in various fields such as fluid dynamics, integrable quantum
field theory, and kink dynamics has been solved by Exp-
function method to obtain new exact solutions for this
generalized double sinh-Gordon equation. A semianalytical
method called the optimal homotopy asymptotic method has
been also applied for solving the linear Fredholm integral
equations of the first kind in another paper. In one of
the papers, two strategies for inverting the open boundary
conditionswith adjointmethod are compared by carrying out
semi-idealized numerical experiments. In the first strategy,
the open boundary curves are assumed to be partly space
varying and are generated by linearly interpolating the values
at feature points and, in the second strategy, the open
boundary conditions are assumed to be fully space varying
and the values at every open boundary points are taken
as control variables. Another paper contains the use of a
relatively new analytical method like homotopy decompo-
sition method to solve the 2D and 3D Poisson equations
and biharmonic equations. The method does not require
the linearization or assumptions of weak nonlinearity, the
solutions are generated in the form of general solution, and
it is more realistic compared to the method of simplifying the
physical problems.

One of the papers has shown that a strong solution of the
Degasperis-Procesi equation possesses persistence property
in the sense that the solution with algebraically decaying
initial data and its spatial derivativemust retain this property.
In another paper, the fractional complex transformation
has been used to transform nonlinear partial differential
equations to nonlinear ordinary differential equations. The
improved (𝐺/𝐺)-expansion method has suggested solving
the space and time fractional foam drainage and KdV equa-
tions. Integral equation has been one of the essential tools
for various areas of applied mathematics. For solving non-
linear Fredholm integrodifferential equations, the method
based on hybrid functions approximate has been proposed
in one of the papers. The properties of hybrid of block
pulse functions and orthonormal Bernstein polynomials have
been presented and utilized to reduce the problem to the
solution of nonlinear algebraic equations. Another paper
contains many numerical methods, namely, B-Spline wavelet
method, Wavelet Galerkin method, and quadrature method,
for solving Fredholm integral equations of second kind. A
peer-review of different numerical methods for solving both
linear and nonlinear Fredholm integral equations of second
kind has been presented.This paper has more emphasized on

the importance of interdisciplinary effort for advancing the
study on numerical methods for solving integral equations.
Also one of the papers has used a numericalmethod like func-
tion approximation to determine the numerical solution of
system of linear Volterra integrodifferential equations using
Bezier curves. Two-dimensional Volterra integral equations
have also been solved usingmore recent semianalyticmethod
like the reduced differential transform method and also
compared with the differential transform method. One of
the papers has presented a numerical method to achieve the
approximate solutions in a generalized expansion form of
two-dimensional fractional-order Legendre functions (2D-
FLFs). The operational matrices of integration and derivative
for 2D-FLFs have been derived.

Then a mixed finite element method has been introduced
for an elliptic equation modelling of Darcy flow in porous
media. In present mixed finite element, the approximate
velocity is continuous and the conservation law holds locally.
In order to assess the rotational potential vorticity-conserved
equation with topography effect and dissipation effect, the
multiple-scale method has been studied to describe the
Rossby solitary waves in deep rotational fluids. A one step
optimal homotopy analysis method has been applied numer-
ically to harmonic wave propagation in a nonlinear ther-
moelasticity under influence of rotation, thermal relaxation
times, and magnetic field. The problem has been solved in
one-dimensional elastic half-space model subjected initially
to a prescribed harmonic displacement and the temperature
of the medium. In one of the papers, the analytical and
multishaped solitary wave solutions have been presented
for extended reduced Ostrovsky equation. The exact soli-
tary (traveling) wave solutions are also expressed by three
types of functions which are hyperbolic function solution,
trigonometric function solution, and rational solution. In
order to classify the exact solutions, including solitons and
elliptic solutions, of the generalized 𝐾(𝑚, 𝑛) equation by
the complete discrimination system a polynomial method
has been obtained. To examine the possible approximate
solutions of both integer and noninteger systems of nonlinear
differential equations which describe tuberculosis disease
population dynamics, the relatively new analytical technique
like homotopy decompositionmethod has been proposed. In
one of the papers, a relatively new operator called the triple
Laplace transform has been introduced and to make use of
the operator some kind of third-order differential equation
called Mboctara equations has been solved.

Another paper investigates the effect of boundary slip
on the transient pulsatile fluid flow through a vessel with
body acceleration. To describe the non-Newtonian behavior,
the modified second-grade fluid model has been analyzed
in which the viscosity and the normal stresses have been
represented in terms of the shear rate. One of the papers
proves the existence of global solutions for nonlinear wave
equations with damping and source terms by constructing
a stable set and also obtaining the asymptotic stability of
global solutions through the use of a difference inequality. In
order to assess the spatial dynamical behavior of a predator-
prey system with Allee effect, the bifurcation analyses have
been used in which the exact Turing domain has been found
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in the parameters space. According to the operator theory,
the temperature dependence of the solution to the BCS gap
equation has been connected with superconductivity. When
the potential is a positive constant, the BCS gap equation
reduces to the simple gap equation. The solution to the BCS
gap equation has been indeed continuouswith respect to both
the temperature and the energy under a certain condition
when the potential is not a constant. This study represents
that there is a unique nonnegative solution to the simple gap
equation, which is continuous and strictly decreasing and is
of class 𝐶2 with respect to the temperature.

At present, the use of partial differential equation and
integral equation in real physical systems is commonly
encountered in the fields of science and engineering. Analysis
and numerical approximate of such physical models are
required for efficient computational tools. The present issue
has addressed recent trends and developments regarding
the analytical and numerical methods that may be used in
the dynamical system. Eventually, it may be expected that
the present special issue would certainly helpful to explore
the researchers with their new arising problems and elevate
the efficiency and accuracy of the solution methods in use
nowadays.

Santanu Saha Ray
Om P. Agrawal

R. K. Bera
Shantanu Das
T. Raja Sekhar
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Integral equation has been one of the essential tools for various areas of applied mathematics. In this paper, we review different
numerical methods for solving both linear and nonlinear Fredholm integral equations of second kind.The goal is to categorize the
selectedmethods and assess their accuracy and efficiency.We discuss challenges faced by researchers in this field, andwe emphasize
the importance of interdisciplinary effort for advancing the study on numerical methods for solving integral equations.

1. Introduction

Integral equations occur naturally in many fields of science
and engineering [1]. A computational approach to solve
integral equation is an essential work in scientific research.

Integral equation is encountered in a variety of appli-
cations in many fields including continuum mechanics,
potential theory, geophysics, electricity and magnetism,
kinetic theory of gases, hereditary phenomena in physics
and biology, renewal theory, quantum mechanics, radiation,
optimization, optimal control systems, communication the-
ory, mathematical economics, population genetics, queuing
theory, medicine, mathematical problems of radiative equi-
librium, the particle transport problems of astrophysics and
reactor theory, acoustics, fluid mechanics, steady state heat
conduction, fracture mechanics, and radiative heat transfer
problems. Fredholm integral equation is one of the most
important integral equations.

Integral equations can be viewed as equations which are
results of transformation of points in a given vector spaces
of integrable functions by the use of certain specific integral
operators to points in the same space. If, in particular, one
is concerned with function spaces spanned by polynomials
for which the kernel of the corresponding transforming
integral operator is separable being comprised of polynomial

functions only, then several approximatemethods of solution
of integral equations can be developed.

A computational approach to solving integral equation
is an essential work in scientific research. Some methods
for solving second kind Fredholm integral equation are
available in the open literature.The B-spline wavelet method,
the method of moments based on B-spline wavelets by
Maleknejad and Sahlan [2], and variational iteration method
(VIM) by He [3–5] have been applied to solve second kind
Fredholm linear integral equations. The learned researchers
Maleknejad et al. proposed some numerical methods for
solving linear Fredholm integral equations system of second
kind using Rationalized Haar functions method, Block-Pulse
functions, and Taylor series expansion method [6–8]. Haar
wavelet method with operational matrices of integration [9]
has been applied to solve system of linear Fredholm integral
equations of second kind. Quadrature method [10], B-spline
wavelet method [11], wavelet Galerkin method [12], and
also VIM [13] can be applied to solve nonlinear Fredholm
integral equation of second kind. Some iterative methods
like Homotopy perturbation method (HPM) [14–16] and
Adomian decomposition method (ADM) [16–18] have been
applied to solve nonlinear Fredholm integral equation of
second kind.
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2. Fredholm Integral Equation

The general form of linear Fredholm integral equation is
defined as follows:

𝑔 (𝑥) 𝑦 (𝑥) = 𝑓 (𝑥) + 𝜆∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡, (1)

where 𝑎 and 𝑏 are both constants. 𝑓(𝑥), 𝑔(𝑥), and 𝐾(𝑥, 𝑡)
are known functions while 𝑦(𝑥) is unknown function. 𝜆
(nonzero parameter) is called eigenvalue of the integral
equation. The function 𝐾(𝑥, 𝑡) is known as kernel of the
integral equation.

2.1. Fredholm Integral Equation of First Kind. The linear
integral equation is of form (by setting 𝑔(𝑥) = 0 in (1))

𝑓 (𝑥) + 𝜆∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡 = 0. (2)

Equation (2) is known as Fredholm integral equation of first
kind.

2.2. Fredholm Integral Equation of Second Kind. The linear
integral equation is of form (by setting 𝑔(𝑥) = 1 in (1))

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡. (3)

Equation (3) is known as Fredholm integral equation of
second kind.

2.3. System of Linear Fredholm Integral Equations. The gen-
eral form of system of linear Fredholm integral equations of
second kind is defined as follows:

𝑛

∑

𝑗=1

𝑔
𝑖,𝑗
𝑦
𝑗
(𝑥) = 𝑓

𝑖
(𝑥) +

𝑛

∑

𝑗=1

∫

𝑏

𝑎

𝐾
𝑖,𝑗
(𝑥, 𝑡) 𝑦

𝑗
(𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(4)

where 𝑓
𝑖
(𝑥) and 𝐾

𝑖,𝑗
(𝑥, 𝑡) are known functions and 𝑦

𝑗
(𝑥) are

the unknown functions for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

2.4. Nonlinear Fredholm-Hammerstein Integral Equation of
Second Kind. Nonlinear Fredholm-Hammerstein integral
equation of second kind is defined as follows:

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝐹 (𝑦 (𝑡)) 𝑑𝑡, (5)

where 𝐾(𝑥, 𝑡) is the kernel of the integral equation, 𝑓(𝑥)
and 𝐾(𝑥, 𝑡) are known functions, and 𝑦(𝑥) is the unknown
function that is to be determined.

2.5. System of Nonlinear Fredholm Integral Equations. System
of nonlinear Fredholm integral equations of second kind is
defined as follows:
𝑛

∑

𝑗=1

𝑔
𝑖,𝑗
𝑦
𝑗
(𝑥) = 𝑓

𝑖
(𝑥) +

𝑛

∑

𝑗=1

∫

𝑏

𝑎

𝐾
𝑖,𝑗
(𝑥, 𝑡) 𝐹

𝑖,𝑗
(𝑡, 𝑦
𝑗
(𝑡)) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(6)

where 𝑓
𝑖
(𝑥) and 𝐾

𝑖,𝑗
(𝑥, 𝑡) are known functions and 𝑦

𝑗
(𝑥) are

the unknown functions for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

3. Numerical Methods for Linear Fredholm
Integral Equation of Second Kind

Consider the following Fredholm integral equation of second
kind defined in (3)

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏, (7)

where 𝐾(𝑥, 𝑡) and 𝑔(𝑥) are known functions and 𝑦(𝑥) is
unknown function to be determined.

3.1. B-Spline Wavelet Method

3.1.1. B-Spline Scaling and Wavelet Functions on the Interval
[0, 1]. Semiorthogonal wavelets using B-spline are specially
constructed for the bounded interval and this wavelet can
be represented in a closed form. This provides a compact
support. Semiorthogonal wavelets form the basis in the space
𝐿
2
(𝑅).
Using this basis, an arbitrary function in 𝐿2(𝑅) can be

expressed as the wavelet series. For the finite interval [0, 1],
the wavelet series cannot be completely presented by using
this basis.This is because supports of some basis are truncated
at the left or right end points of the interval. Hence, a special
basis has to be introduced into the wavelet expansion on the
finite interval.These functions are referred to as the boundary
scaling functions and boundary wavelet functions.

Let𝑚 and 𝑛 be two positive integers and let

𝑎 = 𝑥
−𝑚+1

= ⋅ ⋅ ⋅ = 𝑥
0
< 𝑥
1

< ⋅ ⋅ ⋅ < 𝑥
𝑛
= 𝑥
𝑛+1

= ⋅ ⋅ ⋅ = 𝑥
𝑛+𝑚−1

= 𝑏

(8)

be an equally spaced knots sequence. The functions

𝐵
𝑚,𝑗,𝑋

(𝑥) =
𝑥 − 𝑥
𝑗

𝑥
𝑗+𝑚−1

− 𝑥
𝑗

𝐵
𝑚−1,𝑗,𝑋

(𝑥)

+
𝑥
𝑗+𝑚

− 𝑥

𝑥
𝑗+𝑚

− 𝑥
𝑗+1

𝐵
𝑚−1,𝑗+1,𝑋

(𝑥) ,

𝑗 = −𝑚 + 1, . . . , 𝑛 − 1,

𝐵
1,𝑗,𝑋

(𝑥) = {
1, 𝑥 ∈ [𝑥

𝑗
, 𝑥
𝑗+1
) ,

0, otherwise,

(9)
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are called cardinal B-spline functions of order 𝑚 ≥ 2 for
the knot sequence 𝑋 = {𝑥

𝑖
}
𝑛+𝑚−1

𝑖=−𝑚+1
and Supp𝐵

𝑚,𝑗,𝑋
(𝑥) =

[𝑥
𝑗
, 𝑥
𝑗+𝑚
] ∩ [𝑎, 𝑏].

By considering the interval [𝑎, 𝑏] = [0, 1], at any level 𝑗 ∈
Ζ
+, the discretization step is 2−𝑗, and this generates 𝑛 = 2𝑗

number of segments in [0, 1] with knot sequence

𝑋
(𝑗)
=

{{{

{{{

{

𝑥
(𝑗)

−𝑚+1
= ⋅ ⋅ ⋅ = 𝑥

(𝑗)

0
= 0,

𝑥
(𝑗)

𝑘
=
𝑘

2𝑗
, 𝑘 = 1, . . . , 𝑛 − 1,

𝑥
(𝑗)

𝑛
= ⋅ ⋅ ⋅ = 𝑥

(𝑗)

𝑛+𝑚−1
= 1.

(10)

Let 𝑗
0
be the level forwhich 2𝑗0 ≥ 2𝑚−1; for each level, 𝑗 ≥ 𝑗

0
,

the scaling functions of order 𝑚 can be defined as follows in
[2]:
𝜑
𝑚,𝑗,𝑖

(𝑥)

=

{{

{{

{

𝐵
𝑚,𝑗0,𝑖

(2
𝑗−𝑗0𝑥) 𝑖 = −𝑚 + 1, . . . , −1,

𝐵
𝑚,𝑗0,2

𝑗
−𝑚−𝑖

(1 − 2
𝑗−𝑗0𝑥) 𝑖 = 2

𝑗
− 𝑚 + 1, . . . , 2

𝑗
− 1,

𝐵
𝑚,𝑗0,0

(2
𝑗−𝑗0𝑥 − 2

−𝑗0 𝑖) 𝑖 = 0, . . . , 2
𝑗
− 𝑚.

(11)

And the two scale relations for the 𝑚-order semiorthogonal
compactly supported B-wavelet functions are defined as
follows:

𝜓
𝑚,𝑗,𝑖−𝑚

=

2𝑖+2𝑚−2

∑

𝑘=𝑖

𝑞
𝑖,𝑘
𝐵
𝑚,𝑗,𝑘−𝑚

, 𝑖 = 1, . . . , 𝑚 − 1,

𝜓
𝑚,𝑗,𝑖−𝑚

=

2𝑖+2𝑚−2

∑

𝑘=2𝑖−𝑚

𝑞
𝑖,𝑘
𝐵
𝑚,𝑗,𝑘−𝑚

, 𝑖 = 𝑚, . . . , 𝑛 − 𝑚 + 1,

𝜓
𝑚,𝑗,𝑖−𝑚

=

𝑛+𝑖+𝑚−1

∑

𝑘=2𝑖−𝑚

𝑞
𝑖,𝑘
𝐵
𝑚,𝑗,𝑘−𝑚

, 𝑖 = 𝑛 − 𝑚 + 2, . . . , 𝑛,

(12)

where 𝑞
𝑖,𝑘
= 𝑞
𝑘−2𝑖

.
Hence, there are 2(𝑚 − 1) boundary wavelets and (𝑛 −

2𝑚+ 2) inner wavelets in the bounded interval [𝑎, 𝑏]. Finally,
by considering the level 𝑗with 𝑗 ≥ 𝑗

0
, the B-wavelet functions

in [0, 1] can be expressed as follows:

𝜓
𝑚,𝑗,𝑖

(𝑥)

=

{{

{{

{

𝜓
𝑚,𝑗0,𝑖

(2
𝑗−𝑗0𝑥) 𝑖 = −𝑚 + 1, . . . , −1,

𝜓
𝑚,2
𝑗
−2𝑚+1−𝑖,𝑖

(1 − 2
𝑗−𝑗0𝑥) 𝑖 = 2

𝑗
−2𝑚+2, . . . , 2

𝑗
−𝑚,

𝜓
𝑚,𝑗0,0

(2
𝑗−𝑗0𝑥 − 2

−𝑗0 𝑖) 𝑖 = 0, . . . , 2
𝑗
− 2𝑚 + 1.

(13)

The scaling functions 𝜑
𝑚,𝑗,𝑖
(𝑥) occupy 𝑚 segments and the

wavelet functions 𝜓
𝑚,𝑗,𝑖
(𝑥) occupy 2𝑚 − 1 segments.

When the semiorthogonal wavelets are constructed from
B-spline of order 𝑚, the lowest octave level 𝑗 = 𝑗

0
is

determined in [19, 20] by

2
𝑗0 ≥ 2𝑚 − 1, (14)

so as to have a minimum of one complete wavelet on the
interval [0, 1].

3.1.2. Function Approximation. A function 𝑓(𝑥) defined over
[0, 1]may be approximated by B-spline wavelets as [21, 22]

𝑓 (𝑥) =

2
𝑗0−1

∑

𝑘=1−𝑚

𝑐
𝑗0 ,𝑘
𝜑
𝑗0 ,𝑘
(𝑥)

+

∞

∑

𝑗=𝑗0

2
𝑗
−𝑚

∑

𝑘=1−𝑚

𝑑
𝑗,𝑘
𝜓
𝑗,𝑘
(𝑥) .

(15)

If the infinite series in (15) is truncated at𝑀, then (15) can be
written as [2]

𝑓 (𝑥) ≅

2
𝑗0−1

∑

𝑘=1−𝑚

𝑐
𝑗0 ,𝑘
𝜑
𝑗0 ,𝑘
(𝑥)

+

𝑀

∑

𝑗=𝑗0

2
𝑗
−𝑚

∑

𝑘=1−𝑚

𝑑
𝑗,𝑘
𝜓
𝑗,𝑘
(𝑥) ,

(16)

where 𝜑
2,𝑘

and 𝜓
𝑗,𝑘

are scaling and wavelets functions,
respectively, and𝐶 andΨ are (2𝑀+1 +𝑚−1)×1 vectors given
by

𝐶 = [𝑐
𝑗0,1−𝑚

, . . . , 𝑐
𝑗0 ,2
𝑗0−1
, 𝑑
𝑗0 ,1−𝑚

, . . . ,

𝑑
𝑗0 ,2
𝑗0−𝑚

, . . . , 𝑑
𝑀,1−𝑚

, . . . , 𝑑
𝑀,2
𝑀
−𝑚
]
𝑇

,

(17)

Ψ = [𝜑
𝑗0 ,1−𝑚

, . . . , 𝜑
𝑗0 ,2
𝑗0−1
, 𝜓
𝑗0,1−𝑚

, . . . ,

𝜓
𝑗0,2
𝑗0−𝑚

, . . . , 𝜓
𝑀,1−𝑚

, . . . , 𝜓
𝑀,2
𝑀
−𝑚
]
𝑇

,

(18)

with

𝑐
𝑗0 ,𝑘
= ∫

1

0

𝑓 (𝑥) 𝜑
𝑗0 ,𝑘
(𝑥) 𝑑𝑥, 𝑘 = 1 − 𝑚, . . . , 2

𝑗0 − 1,

𝑑
𝑗,𝑘
= ∫

1

0

𝑓 (𝑥) �̃�
𝑗,𝑘
(𝑥) 𝑑𝑥,

𝑗 = 𝑗
0
, . . . ,𝑀, 𝑘 = 1 − 𝑚, . . . , 2

𝑀
− 𝑚,

(19)

where 𝜑
𝑗0 ,𝑘
(𝑥) and �̃�

𝑗,𝑘
(𝑥) are dual functions of 𝜑

𝑗0 ,𝑘
and 𝜓

𝑗,𝑘
,

respectively.These can be obtained by linear combinations of
𝜑
𝑗0 ,𝑘

, 𝑘 = 1 − 𝑚, . . . , 2𝑗0 − 1, and 𝜓
𝑗,𝑘
, 𝑗 = 𝑗

0
, . . . ,𝑀, 𝑘 =

1 − 𝑚, . . . , 2
𝑀
− 𝑚, as follows. Let

Φ = [𝜑
𝑗0 ,1−𝑚

, . . . , 𝜑
𝑗0 ,2
𝑗0−1
]
𝑇

, (20)

Ψ = [𝜓
𝑗0 ,1−𝑚

, . . . , 𝜓
𝑗0 ,2
𝑗0−𝑚

, . . . , 𝜓
𝑀,1−𝑚

, . . . , 𝜓
𝑀,2
𝑀
−𝑚
]
𝑇

.

(21)

Using (11), (20), (12)-(13), and (21), we get

∫

1

0

ΦΦ
𝑇
𝑑𝑥 = 𝑃

1
,

∫

1

0

ΨΨ
𝑇

𝑑𝑥 = 𝑃
2
.

(22)
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Suppose that Φ̃ and ̃Ψ are the dual functions of Φ and Ψ,
respectively; then

∫

1

0

Φ̃Φ
𝑇
𝑑𝑥 = 𝐼

1
,

∫

1

0

̃
ΨΨ
𝑇

𝑑𝑥 = 𝐼
2
,

(23)

Φ̃ = 𝑃
1

−1
Φ,

̃
Ψ = 𝑃

2

−1
Ψ.

(24)

3.1.3. Application of B-SplineWavelet Method. In this section,
linear Fredholm integral equation of the second kind of form
(7) has been solved by using B-spline wavelets. For this, we
use (16) to approximate 𝑦(𝑥) as

𝑦 (𝑥) = 𝐶
𝑇
Ψ (𝑥) , (25)

where Ψ(𝑥) is defined in (18) and 𝐶 is (2𝑀+1 + 𝑚 − 1) × 1
unknown vector defined similarly as in (17). We also expand
𝑓(𝑥) and 𝐾(𝑥, 𝑡) by B-spline dual wavelets Ψ̃ defined in (24)
as

𝑓 (𝑥) = 𝐶
1

𝑇
Ψ̃ (𝑥) ,

𝐾 (𝑥, 𝑡) = Ψ̃
𝑇

(𝑡) ΘΨ̃ (𝑥) ,

(26)

where

Θ
𝑖,𝑗
= ∫

1

0

[∫

1

0

𝐾 (𝑥, 𝑡) Ψ
𝑖
(𝑡) 𝑑𝑡]Ψ

𝑗
(𝑥) 𝑑𝑥. (27)

From (26) and (25), we get

∫

1

0

𝐾 (𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡 = ∫

1

0

𝐶
𝑇
Ψ (𝑡) Ψ̃

𝑇

(𝑡) ΘΨ̃ (𝑥) 𝑑𝑡

= 𝐶
𝑇
ΘΨ̃ (𝑥)

(28)

since

∫

1

0

Ψ (𝑡) Ψ̃
𝑇

(𝑡) 𝑑𝑡 = 𝐼. (29)

By applying (25)–(28) in (7) we have

𝐶
𝑇
Ψ (𝑥) − 𝐶

𝑇
ΘΨ̃ (𝑥) = 𝐶

𝑇

1
Ψ̃ (𝑥) . (30)

By multiplying both sides of (30) with Ψ𝑇(𝑥) from the right
and integrating both sides with respect to 𝑥 from 0 to 1, we
get

𝐶
𝑇
𝑃 − 𝐶

𝑇
Θ = 𝐶

𝑇

1
, (31)

since

∫

1

0

Ψ̃ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝑥 = 𝐼, (32)

and 𝑃 is a (2𝑀+1 +𝑚−1)×(2𝑀+1 +𝑚−1) square matrix given
by

𝑃 = ∫

1

0

Ψ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝑥 = (
𝑃
1
0

0 𝑃
2

) . (33)

Consequently, from (31), we get 𝐶𝑇 = 𝐶𝑇
1
(𝑃 − Θ)

−1. Hence,
we can calculate the solution for 𝑦(𝑥) = 𝐶𝑇Ψ(𝑥).

3.2. Method of Moments

3.2.1. Multiresolution Analysis (MRA) andWavelets [2]. A set
of subspaces {𝑉

𝑗
}
𝑗∈𝑍

is said to beMRA of 𝐿2(𝑅) if it possesses
the following properties:

𝑉
𝑗
⊂ 𝑉
𝑗+1
, ∀𝑗 ∈ Ζ, (34)

⋃

𝑗∈Ζ

𝑉
𝑗
is dense in 𝐿2 (𝑅) , (35)

⋂

𝑗∈Ζ

𝑉
𝑗
= 𝜙, (36)

𝑓 (𝑥) ∈ 𝑉
𝑗
⇐⇒ 𝑓(2𝑥) ∈ 𝑉

𝑗+1
, ∀𝑗 ∈ Ζ, (37)

where𝑍 denotes the set of integers. Properties (34)–(36) state
that {𝑉

𝑗
}
𝑗∈𝑍

is a nested sequence of subspaces that effectively
covers 𝐿2(𝑅). That is, every square integrable function can be
approximated as closely as desired by a function that belongs
to at least one of the subspaces 𝑉

𝑗
. A function 𝜑 ∈ 𝐿2(𝑅) is

called a scaling function if it generates the nested sequence of
subspaces 𝑉

𝑗
and satisfies the dilation equation; namely,

𝜑 (𝑥) = ∑

𝑘

𝑝
𝑘
𝜑 (𝑎𝑥 − 𝑘) , (38)

with 𝑝
𝑘
∈ 𝑙
2 and 𝑎 being any rational number.

For each scale 𝑗, since 𝑉
𝑗
⊂ 𝑉
𝑗+1

, there exists a unique
orthogonal complementary subspace 𝑊

𝑗
of 𝑉
𝑗
in 𝑉
𝑗+1

. This
subspace 𝑊

𝑗
is called wavelet subspace and is generated by

𝜓
𝑗,𝑘
= 𝜓(2

𝑗
𝑥 − 𝑘), where 𝜓 ∈ 𝐿2 is called the wavelet. From

the above discussion, these results follow easily:

𝑉
𝑗1
∩ 𝑉
𝑗2
= 𝑉
𝑗2
, 𝑗
1
> 𝑗
2
,

𝑊
𝑗1
∩𝑊
𝑗2
= 0, 𝑗

1
̸= 𝑗
2
,

𝑉
𝑗1
∩𝑊
𝑗2
= 0, 𝑗

1
≤ 𝑗
2
.

(39)

Some of the important properties relevant to the present
analysis are given below [2, 19].

(1) Vanishing Moment. A wavelet is said to have a vanishing
moment of order𝑚 if

∫

∞

−∞

𝑥
𝑝
𝜓 (𝑥) 𝑑𝑥 = 0; 𝑝 = 0, . . . , 𝑚 − 1. (40)
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All wavelets must satisfy the previously mentioned condition
for 𝑝 = 0.

(2) Semiorthogonality.Thewavelets 𝜓
𝑗,𝑘

form a semiorthogo-
nal basis if

⟨𝜓
𝑗,𝑘
, 𝜓
𝑠,𝑖
⟩ = 0; 𝑗 ̸= 𝑠; ∀𝑗, 𝑘, 𝑠, 𝑖 ∈ Ζ. (41)

3.2.2. Method ofMoments for the Solution of Fredholm Integral
Equation. In this section, we solve the integral equation of
form (7) in interval [0, 1] by using linear B-spline wavelets
[2]. The unknown function in (7) can be expanded in terms
of the scaling and wavelet functions as follows:

𝑦 (𝑥) ≈

2
𝑗0−1

∑

𝑘=−1

𝑐
𝑘
𝜑
𝑗0 ,𝑘
(𝑥)

+

𝑀

∑

𝑗=𝑗0

2
𝑗
−2

∑

𝑘=−1

𝑑
𝑗,𝑘
𝜓
𝑗,𝑘
(𝑥)

= 𝐶
𝑇
Ψ (𝑥) .

(42)

By substituting this expression into (7) and employing the
Galerkin method, the following set of linear system of order
(2
𝑀
+ 1) is generated. The scaling and wavelet functions are

used as testing and weighting functions:

(
⟨𝜑, 𝜑⟩ − ⟨𝐾𝜑, 𝜑⟩ ⟨𝜓, 𝜑⟩ − ⟨𝐾𝜓, 𝜑⟩

⟨𝜑, 𝜓⟩ − ⟨𝐾𝜑, 𝜓⟩ ⟨𝜓, 𝜓⟩ − ⟨𝐾𝜓, 𝜓⟩
)(
𝐶

𝐷
) = (

𝐹
1

𝐹
2

) ,

(43)
where

𝐶 = [𝑐
−1
, 𝑐
0
, . . . , 𝑐

3
]
𝑇

,

𝐷 = [𝑑
2,−1
, . . . , 𝑑

2,2
, 𝑑
3,−1
, . . . , 𝑑

3,6
, . . . ,

𝑑
𝑀,−1

, . . . , 𝑑
𝑀,2
𝑀
−2
]
𝑇

,

⟨𝜑, 𝜑⟩ − ⟨𝐾𝜑, 𝜑⟩

= (∫

1

0

𝜑
𝑗0 ,𝑟
(𝑥) 𝜑
𝑗0 ,𝑖
(𝑥) 𝑑𝑥

−∫

1

0

𝜑
𝑗0 ,𝑟
(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜑
𝑗0 ,𝑖
(𝑡)𝑑𝑡 𝑑𝑥)

𝑖,𝑟

,

⟨𝜓, 𝜑⟩ − ⟨𝐾𝜓, 𝜑⟩

= (∫

1

0

𝜑
𝑗0 ,𝑟
(𝑥) 𝜓
𝑘,𝑗
(𝑥) 𝑑𝑥

−∫

1

0

𝜑
𝑗0 ,𝑟
(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜓
𝑘,𝑗
(𝑡)𝑑𝑡 𝑑𝑥)

𝑟,𝑘,𝑗

,

⟨𝜑, 𝜓⟩ − ⟨𝐾𝜑, 𝜓⟩

= (∫

1

0

𝜓
𝑠,𝑙
(𝑥) 𝜑
𝑗0 ,𝑖
(𝑥) 𝑑𝑥

−∫

1

0

𝜓
𝑠,𝑙
(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜑
𝑗0 ,𝑖
(𝑡)𝑑𝑡 𝑑𝑥)

𝑖,𝑙,𝑠

,

⟨𝜓, 𝜓⟩ − ⟨𝐾𝜓, 𝜓⟩

= (∫

1

0

𝜓
𝑠,𝑙
(𝑥) 𝜓
𝑘,𝑗
(𝑥) 𝑑𝑥

− ∫

1

0

𝜓
𝑠,𝑙
(𝑥) ∫

1

0

𝐾(𝑥, 𝑡)𝜓
𝑘,𝑗
(𝑡)𝑑𝑡 𝑑𝑥)

𝑙,𝑠,𝑘,𝑗

,

𝐹
1
= ∫

1

0

𝑓 (𝑥) 𝜑
𝑗0 ,𝑟
(𝑥) 𝑑𝑥,

𝐹
2
= ∫

1

0

𝑓 (𝑥) 𝜓
𝑠,𝑙
(𝑥) 𝑑𝑥,

(44)

and the subscripts 𝑖, 𝑟, 𝑘, 𝑗, 𝑙, and 𝑠 assume values as given
below:

𝑖, 𝑟 = −1, . . . , 2
𝑗0 − 1,

𝑙, 𝑘 = 𝑗
0
, . . . ,𝑀,

𝑠, 𝑗 = −1, . . . , 2
𝑀
− 2.

(45)

In fact, the entries with significant magnitude are in the
⟨𝐾𝜑, 𝜑⟩− ⟨𝜑, 𝜑⟩ and ⟨𝐾𝜓, 𝜓⟩− ⟨𝜓, 𝜓⟩ submatrices which are
of order (2𝑗0 + 1) and (2𝑀+1 + 1), respectively.

3.3. Variational Iteration Method [3–5]. In this section, Fred-
holm integral equation of second kind given in (7) has been
considered for solving (7) by variational iteration method.
First, we have to take the partial derivative of (7) with respect
to 𝑥 yielding

𝑌


(𝑥) = 𝑓


(𝑥) + ∫

1

0

𝐾


(𝑥, 𝑡) 𝑦 (𝑡) 𝑑𝑡. (46)

We apply variation iteration method for (46). According to
this method, correction functional can be defined as

𝑦
𝑛+1
(𝑥)

= 𝑦
𝑛
(𝑥)

+ ∫

𝑥

0

𝜆 (𝜉) (𝑦


𝑛
(𝜉) − 𝑓



(𝜉) − ∫

𝑏

𝑎

𝐾


(𝜉, 𝑡) 𝑦
𝑛
(𝑡) 𝑑𝑡) 𝑑𝜉,

(47)

where 𝜆(𝜉) is a general Lagrange multiplier which can be
identified optimally by the variational theory, the subscript
𝑛 denotes the 𝑛th order approximation, and 𝑦

𝑛
is considered

as a restricted variation; that is, 𝛿𝑦
𝑛
= 0. The successive

approximations 𝑦
𝑛
(𝑥), 𝑛 ≥ 1 for the solution 𝑦(𝑥) can be

readily obtained after determining the Lagrange multiplier
and selecting an appropriate initial function 𝑦

0
(𝑥). Conse-

quently the approximate solution may be obtained by using

𝑦 (𝑥) = lim
𝑛→∞

𝑦
𝑛
(𝑥) . (48)
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To make the above correction functional stationary, we have

𝛿𝑦
𝑛+1
(𝑥) = 𝛿𝑦

𝑛
(𝑥)

+ 𝛿∫

𝑥

0

𝜆 (𝜉) (𝑦


𝑛
(𝜉) − 𝑓



(𝜉)

−∫

𝑏

𝑎

𝐾


(𝜉, 𝑡) 𝑦
𝑛
(𝑡) 𝑑𝑡) 𝑑𝜉

= 𝛿𝑦
𝑛
(𝑥) + ∫

𝑥

0

𝜆 (𝜉) 𝛿 (𝑦


𝑛
(𝜉)) 𝑑𝜉

= 𝛿𝑦
𝑛
(𝑥) + 𝜆𝛿𝑦

𝑛

𝜉=𝑥 − ∫

𝑥

0

𝜆


(𝜉) 𝛿𝑦
𝑛
(𝜉) 𝑑𝜉.

(49)

Under stationary condition,

𝛿𝑦
𝑛+1
= 0 (50)

implies the following Euler Lagrange equation:

𝜆


(𝜉) = 0, (51)

with the following natural boundary condition:

1 + 𝜆(𝜉)
𝜉=𝑥 = 0. (52)

Solving (51), along with boundary condition (52), we get the
general Lagrange multiplier

𝜆 = −1. (53)

Substituting the identified Lagrange multiplier into (47)
results in the following iterative scheme:

𝑦
𝑛+1
(𝑥) = 𝑦

𝑛
(𝑥)

− ∫

𝑥

0

(𝑦


𝑛
(𝜉) − 𝑓



(𝜉) − ∫

𝑏

𝑎

𝐾


(𝜉, 𝑡) 𝑦
𝑛
(𝑡) 𝑑𝑡) 𝑑𝜉,

𝑛 ≥ 0.

(54)

By starting with initial approximate function 𝑦
0
(𝑥) = 𝑓(𝑥)

(say), we can determine the approximate solution 𝑦(𝑥) of (7).

4. Numerical Methods for System of
Linear Fredholm Integral Equations of
Second Kind

Consider the system of linear Fredholm integral equations of
second kind of the following form:

𝑛

∑

𝑗=1

𝑦
𝑗
(𝑥) = 𝑓

𝑖
(𝑥) +

𝑛

∑

𝑗=1

∫

1

0

𝐾
𝑖,𝑗
(𝑥, 𝑡) 𝑦

𝑗
(𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(55)

where 𝑓
𝑖
(𝑥) and 𝐾

𝑖,𝑗
(𝑥, 𝑡) are known functions and 𝑦

𝑗
(𝑥) are

the unknown functions for 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

4.1. Application of Haar Wavelet Method [9]. In this section,
an efficient algorithm for solving Fredholm integral equations
with Haar wavelets is analyzed. The present algorithm takes
the following essential strategy. The Haar wavelet is first
used to decompose integral equations into algebraic systems
of linear equations, which are then solved by collocation
methods.

4.1.1. Haar Wavelets. The compact set of scale functions is
chosen as

ℎ
0
= {
1, 0 ≤ 𝑥 < 1,

0, others.
(56)

The mother wavelet function is defined as

ℎ
1
(𝑥) =

{{{{

{{{{

{

1, 0 ≤ 𝑥 <
1

2
,

−1,
1

2
≤ 𝑥 < 1,

0, others.

(57)

The family of wavelet functions generated by translation and
dilation of ℎ

1
(𝑥) are given by

ℎ
𝑛
(𝑥) = ℎ

1
(2
𝑗
𝑥 − 𝑘) , (58)

where 𝑛 = 2𝑗 + 𝑘, 𝑗 ≥ 0, 0 ≤ 𝑘 < 2𝑗.
Mutual orthogonalities of all Haar wavelets can be

expressed as

∫

1

0

ℎ
𝑚
(𝑥) ℎ
𝑛
(𝑥) 𝑑𝑥 = 2

−𝑗
𝛿
𝑚𝑛
= {
2
−𝑗
, 𝑚 = 𝑛 = 2

𝑗
+ 𝑘,

0, 𝑚 ̸= 𝑛.

(59)

4.1.2. Function Approximation. An arbitrary function 𝑦(𝑥) ∈
𝐿
2
[0, 1) can be expanded into the following Haar series:

𝑦 (𝑥) =

+∞

∑

𝑛=0

𝑐
𝑛
ℎ
𝑛
(𝑥) , (60)

where the coefficients 𝑐
𝑛
are given by

𝑐
𝑛
= 2
𝑗
∫

1

0

𝑦 (𝑥) ℎ
𝑛
(𝑥) 𝑑𝑥,

𝑛 = 2
𝑗
+ 𝑘, 𝑗 ≥ 0, 0 ≤ 𝑘 < 2

𝑗
.

(61)

In particular, 𝑐
0
= ∫
1

0
𝑦(𝑥)𝑑𝑥.

The previously mentioned expression in (60) can be
approximately represented with finite terms as follows:

𝑦 (𝑥) ≈

𝑚−1

∑

𝑛=0

𝑐
𝑛
ℎ
𝑛
(𝑥) = 𝐶

𝑇

(𝑚)
ℎ
(𝑚)
(𝑥) , (62)

where the coefficient vector𝐶𝑇
(𝑚)

and theHaar function vector
ℎ
(𝑚)
(𝑥) are, respectively, defined as

𝐶
𝑇

(𝑚)
= [𝑐
0
, 𝑐
1
, . . . , 𝑐

𝑚−1
] , 𝑚 = 2

𝑗
,

ℎ
(𝑚)
(𝑥) = [ℎ

0
(𝑥) , ℎ

1
(𝑥) , . . . , ℎ

𝑚−1
(𝑥)]
𝑇

, 𝑚 = 2
𝑗
.

(63)
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TheHaar expansion for function𝐾(𝑥, 𝑡) of order𝑚 is defined
as follows:

𝐾 (𝑥, 𝑡) ≈

𝑚−1

∑

𝑢=0

𝑚−1

∑

V=0

𝑎
𝑢VℎV (𝑥) ℎ𝑢 (𝑡) , (64)

where 𝑎
𝑢V = 2

𝑖+𝑞
∬
1

0
𝐾(𝑥, 𝑡)ℎV(𝑥)ℎ𝑢(𝑡)𝑑𝑥 𝑑𝑡, 𝑢 = 2

𝑖
+ 𝑗, V =

2
𝑞
+ 𝑟, 𝑖, 𝑞 ≥ 0.
From (62) and (64), we obtain

𝐾 (𝑥, 𝑡) ≈ ℎ
𝑇

(𝑚)
(𝑡) 𝐾ℎ

(𝑚)
(𝑥) , (65)

where

𝐾 = (𝑎
𝑢V)
𝑇

𝑚×𝑚
. (66)

4.1.3. Operational Matrices of Integration. We define

𝐻
(𝑚)
= [ℎ
(𝑚)
(
1

2𝑚
) , ℎ
(𝑚)
(
3

2𝑚
) , . . . , ℎ

(𝑚)
(
2𝑚 − 1

2𝑚
)] ,

(67)

where𝐻
(1)
= [1],𝐻

(2)
= [ 1 1
1 −1

].
Then, for 𝑚 = 4, the corresponding matrix can be

represented as

𝐻
(4)
= [ℎ
(4)
(
1

8
) , ℎ
(4)
(
3

8
) , . . . , ℎ

(4)
(
7

8
)]

=
[
[
[

[

1 1 1 1

1 1 −1 −1

1 −1 0 0

0 0 1 −1

]
]
]

]

.

(68)

The integration of the Haar function vector ℎ
(𝑚)
(𝑡) is

∫

𝑥

0

ℎ
(𝑚)
(𝑡) 𝑑𝑡 = 𝑃

(𝑚)
ℎ
(𝑚)
(𝑥) ,

𝑥 ∈ [0, 1) ,

(69)

where 𝑃
(𝑚)

is the operational matrix of order𝑚, and

𝑃
(1)
= [
1

2
] ,

𝑃
(𝑚)
=
1

2𝑚
[

2𝑚𝑃
(𝑚/2)

−𝐻
(𝑚/2)

𝐻
−1

(𝑚/2)
0

] .

(70)

By recursion of the above formula, we obtain

𝑃
(2)
=
1

4
[
2 −1

1 0
] ,

𝑃
(4)
=
1

16

[
[
[

[

8 −4 −2 −2

4 0 −2 2

1 1 0 0

1 −1 0 0

]
]
]

]

,

𝑃
(8)
=
1

64

[
[
[
[
[
[
[
[
[
[

[

32 −16 −8 −8 −4 −4 −4 −4

16 0 −8 8 −4 −4 4 4

4 4 0 0 −4 4 0 0

4 4 0 0 0 0 −4 4

1 1 2 0 0 0 0 0

1 1 −2 0 0 0 0 0

1 −1 0 2 0 0 0 0

1 −1 0 −2 0 0 0 0

]
]
]
]
]
]
]
]
]
]

]

.

(71)

Therefore, we get

𝐻
−1

(𝑚)
= (

1

𝑚
)𝐻
𝑇

(𝑚)

× diag(1, 1, 2, 2, 22, . . . , 22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
2

, . . . , 2
𝛼−1
, . . . , 2

𝛼−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
𝛼−1

) ,

(72)

where𝑚 = 2𝛼 and 𝛼 is a positive integer.
The inner product of two Haar functions can be repre-

sented as

∫

1

0

ℎ
(𝑚)
(𝑡) ℎ
𝑇

(𝑚)
(𝑡) 𝑑𝑡 = 𝐷, (73)

where

𝐷 = diag(1, 1, 1/2, 1/2, 1/22, . . . , 1/22⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
2

, . . . ,

1/2
𝛼−1
, . . . , 1/2

𝛼−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
𝛼−1

) .

(74)

4.1.4. Haar Wavelet Solution for Fredholm Integral Equations
System [9]. Consider the following Fredholm integral equa-
tions system defined in (55):

𝑚

∑

𝑗=1

𝑦
𝑗
(𝑥) = 𝑓

𝑖
(𝑥) +

𝑚

∑

𝑗=1

∫

1

0

𝐾
𝑖,𝑗
(𝑥, 𝑡) 𝑦

𝑗
(𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚.

(75)

The Haar series of 𝑦
𝑗
(𝑥) and𝐾

𝑖,𝑗
(𝑥, 𝑡), 𝑖 = 1, 2, . . . , 𝑚; 𝑗 =

1, 2, . . . , 𝑚 are, respectively, expanded as

𝑦
𝑗
(𝑥) ≈ 𝑌

𝑇

𝑗
ℎ
(𝑚)
(𝑥) , 𝑗 = 1, 2, . . . , 𝑚,

𝐾
𝑖,𝑗
(𝑥, 𝑡) ≈ ℎ

𝑇

(𝑚)
(𝑡) 𝐾
𝑖,𝑗
ℎ
(𝑚)
(𝑥) ,

𝑖, 𝑗 = 1, 2, . . . , 𝑚.

(76)
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Substituting (76) into (75), we get

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ
(𝑚)
(𝑥)

= 𝑓
𝑖
(𝑥) +

𝑚

∑

𝑗=1

∫

1

0

𝑌
𝑇

𝑗
ℎ
(𝑚)
(𝑡) ℎ
𝑇

(𝑚)
(𝑡) 𝐾
𝑖,𝑗
ℎ
(𝑚)
(𝑥) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑚.

(77)

From (77) and (73), we get

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ
(𝑚)
(𝑥) = 𝑓

𝑖
(𝑥) +

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
𝐷𝐾
𝑖,𝑗
ℎ
(𝑚)
(𝑥) ,

𝑖 = 1, 2, . . . , 𝑚.

(78)

Interpolating 𝑚 collocation points, that is, {𝑥
𝑖
}
𝑚

𝑖=1
, in the

interval [0, 1] leads to the following algebraic system of
equations:

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ
(𝑚)
(𝑥
𝑖
) = 𝑓
𝑖
(𝑥
𝑖
) +

𝑚

∑

𝑗=1

𝑌
𝑇

𝑗
𝐷𝐾
𝑖,𝑗
ℎ
(𝑚)
(𝑥
𝑖
) ,

𝑖 = 1, 2, . . . , 𝑚.

(79)

Hence, 𝑌
𝑗
, 𝑗 = 1, 2, . . . , 𝑚 can be computed by solving the

above algebraic system of equations and consequently the
solutions 𝑦

𝑗
(𝑥) ≈ 𝑌

𝑇

𝑗
ℎ
(𝑚)
(𝑥), 𝑗 = 1, 2, . . . , 𝑚.

4.2. Taylor Series Expansion Method. In this section, we
present Taylor series expansionmethod for solving Fredholm
integral equations system of second kind [7]. This method
reduces the system of integral equations to a linear system
of ordinary differential equation. After including boundary
conditions, this system reduces to a system of equations that
can be solved easily by any usual methods.

Consider the second kind Fredholm integral equations
system defined in (55) as follows:

𝑦
𝑖
(𝑥) = 𝑓

𝑖
(𝑥) +

𝑛

∑

𝑗=1

∫

1

0

𝐾
𝑖,𝑗
(𝑥, 𝑡) 𝑦

𝑗
(𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛, 0 ≤ 𝑥 ≤ 1.

(80)

A Taylor series expansion can be made for the solution of
𝑦
𝑗
(𝑡) in the integral equation (80):

𝑦
𝑗
(𝑡) = 𝑦

𝑗
(𝑥) + 𝑦



𝑗
(𝑥) (𝑡 − 𝑥) + ⋅ ⋅ ⋅

+
1

𝑚!
𝑦
(𝑚)

𝑗
(𝑥) (𝑡 − 𝑥)

𝑚
+ 𝐸 (𝑡) ,

(81)

where 𝐸(𝑡) denotes the error between 𝑦
𝑗
(𝑡) and its Taylor

series expansion in (81).
If we use the first 𝑚 term of Taylor series

expansion and neglect the term containing 𝐸(𝑡), that is,

∫
1

0
∑
𝑛

𝑗=1
𝐾
𝑖,𝑗
(𝑥, 𝑡)𝐸(𝑡)𝑑𝑡, then, substituting (81) for 𝑦

𝑗
(𝑡) into

the integral in (80), we have

𝑦
𝑖
(𝑥) ≈ 𝑓

𝑖
(𝑥)

+

𝑛

∑

𝑗=1

∫

1

0

𝐾
𝑖,𝑗
(𝑥, 𝑡)

𝑚

∑

𝑟=0

1

𝑟!
(𝑡 − 𝑥)

𝑟
𝑦
(𝑟)

𝑗
(𝑥) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

𝑦
𝑖
(𝑥) ≈ 𝑓

𝑖
(𝑥)

+

𝑛

∑

𝑗=1

𝑚

∑

𝑟=0

1

𝑟!
𝑦
(𝑟)

𝑗
(𝑥) ∫

1

0

𝐾
𝑖,𝑗
(𝑥, 𝑡) (𝑡 − 𝑥)

𝑟
𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(82)

𝑦
𝑖
(𝑥) −

𝑛

∑

𝑗=1

𝑚

∑

𝑟=0

1

𝑟!
𝑦
(𝑟)

𝑗
(𝑥) [∫

1

0

𝐾
𝑖,𝑗
(𝑥, 𝑡) (𝑡 − 𝑥)

𝑟
𝑑𝑡]

≈ 𝑓
𝑖
(𝑥) , 𝑖 = 1, 2, . . . , 𝑛.

(83)

Equation (83) becomes a linear systemof ordinary differential
equations that we have to solve. For solving the linear
system of ordinary differential equations (83), we require an
appropriate number of boundary conditions.

In order to construct boundary conditions, we first
differentiate 𝑠 times both sides of (80) with respect to 𝑥; that
is,

𝑦
(𝑠)

𝑖
(𝑥) = 𝑓

(𝑠)

𝑖
(𝑥) +

𝑛

∑

𝑗=1

∫

1

0

𝐾
(𝑠)

𝑖,𝑗
(𝑥, 𝑡) 𝑦

𝑗
(𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛, 𝑠 = 1, 2, . . . , 𝑚,

(84)

where𝐾(𝑠)
𝑖,𝑗
(𝑥, 𝑡) = 𝜕

(𝑠)
𝐾
𝑖,𝑗
(𝑥, 𝑡)/𝜕𝑥

(𝑠), 𝑠 = 1, 2, . . . , 𝑚.
Applying the mean value theorem for integral in (84), we

have

𝑦
(𝑠)

𝑖
(𝑥) − [

[

𝑛

∑

𝑗=1

∫

1

0

𝐾
(𝑠)

𝑖,𝑗
(𝑥, 𝑡) 𝑑𝑡]

]

𝑦
𝑗
(𝑥) ≈ 𝑓

(𝑠)

𝑖
(𝑥) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑠 = 1, 2, . . . , 𝑚.

(85)

Now (83) combined with (85) becomes a linear system
of algebraic equations that can be solved analytically or
numerically.

4.3. Block-Pulse Functions for the Solution of Fredholm Integral
Equation. In this section, Block-Pulse functions (BPF) have
been utilized for the solution of system of Fredholm integral
equations [6].

An𝑚-set of BPF is defined as follows:

Φ
𝑖
(𝑡) =

{

{

{

1, (𝑖 − 1)
𝑇

𝑚
≤ 𝑡 < 𝑖

𝑇

𝑚
,

0, otherwise
(86)

with 𝑡 ∈ [0, 𝑇), 𝑇/𝑚 = ℎ and 𝑖 = 1, 2, . . . , 𝑚.
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4.3.1. Properties of BPF

(1) Disjointness. One has

Φ
𝑖
(𝑡) Φ
𝑗
(𝑡) = {

Φ
𝑖
(𝑡) , 𝑖 = 𝑗;

0, 𝑖 ̸= 𝑗,
(87)

, 𝑖, 𝑗 = 1, 2, . . . , 𝑚. This property is obtained from definition
of BPF.

(2) Orthogonality. One has

∫

𝑇

0

Φ
𝑖
(𝑡) Φ
𝑗
(𝑡) 𝑑𝑡 = {

ℎ, 𝑖 = 𝑗;

0, 𝑖 ̸= 𝑗,
(88)

𝑡 ∈ [0, 𝑇), 𝑖, 𝑗 = 1, 2, . . . , 𝑚. This property is obtained from
the disjointness property.

(3) Completeness. For every𝑓 ∈ 𝐿2, {Φ} is complete; if ∫Φ𝑓 =
0 then 𝑓 = 0 almost everywhere. Because of completeness of
{Φ}, we have

∫

𝑇

0

𝑓
2

(𝑡) 𝑑𝑡 =

∞

∑

𝑖=1

𝑓
2

𝑖

Φ𝑖(𝑡)


2 (89)

for every real bounded function 𝑓(𝑡) which is square inte-
grable in the interval 𝑡 ∈ [0, 𝑇) and 𝑓

𝑖
= (1/ℎ)𝑓(𝑡)Φ

𝑖
(𝑡)𝑑𝑡.

4.3.2. Function Approximation. The orthogonality property
of BPF is the basis of expanding functions into their Block-
Pulse series. For every 𝑓(𝑡) ∈ 𝐿2(𝑅),

𝑓 (𝑡) =

𝑚

∑

𝑖=1

𝑓
𝑖
Φ
𝑖
(𝑡) , (90)

where 𝑓
𝑖
is the coefficient of Block-Pulse function, with

respect to 𝑖th Block-Pulse functionΦ
𝑖
(𝑡).

The criterion of this approximation is that mean square
error between 𝑓(𝑡) and its expansion is minimum

𝜀 =
1

𝑇
∫

𝑇

0

(𝑓(𝑡) −

𝑚

∑

𝑗=1

𝑓
𝑗
Φ
𝑗
(𝑡))

2

𝑑𝑡 (91)

so that we can evaluate Block-Pulse coefficients.

Now 𝜕𝜀

𝜕𝑓
𝑖

= −
2

𝑇
∫

𝑇

0

(𝑓 (𝑡) −

𝑚

∑

𝑗=1

𝑓
𝑗
Φ
𝑗
(𝑡))Φ

𝑖
(𝑡) 𝑑𝑡 = 0,

⇒ 𝑓
𝑖
=
1

ℎ
∫

𝑇

0

𝑓 (𝑡)Φ
𝑖
(𝑡) 𝑑𝑡 (using orthogonal property) .

(92)

In the matrix form, we obtain the following from (90) as
follow:

𝑓 (𝑡) =

𝑚

∑

𝑖=1

𝑓
𝑖
Φ
𝑖
(𝑡) = 𝐹

𝑇
Φ (𝑡) = Φ

𝑇
𝐹

where 𝐹 = [𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
]
𝑇

,

Φ (𝑡) = [Φ
1
(𝑡) , Φ

2
(𝑡) , . . . , Φ

𝑚
(𝑡)]
𝑇

.

(93)

Now let𝐾(𝑡, 𝑠) be two-variable function defined on 𝑡 ∈ [0, 𝑇)
and 𝑠 ∈ [0, 1); then 𝐾(𝑡, 𝑠) can be expanded to BPF as

𝐾 (𝑡, 𝑠) = Φ
𝑇

(𝑡) 𝐾Ψ (𝑠) , (94)

whereΦ(𝑡) andΨ(𝑠) are𝑚
1
and𝑚

2
dimensional Block-Pulse

function vectors and 𝑘 is a 𝑚
1
× 𝑚
2
Block-Pulse coefficient

matrix.
There are two different cases of multiplication of two BPF.

The first case is

Φ (𝑡)Φ
𝑇

(𝑡) = (

Φ
1
(𝑡) 0 ⋅ ⋅ ⋅ 0

0 Φ
2
(𝑡) ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ Φ

𝑚
(𝑡)

) . (95)

It is obtained from disjointness property of BPF. It is a
diagonal matrix with𝑚 Block-Pulse functions.

The second case is

Φ
𝑇

(𝑡) Φ (𝑡) = 1 (96)

because ∑𝑚
𝑖=1
(Φ
𝑖
(𝑡))
2
= ∑
𝑚

𝑖=1
Φ
𝑖
(𝑡) = 1.

Operational Matrix of Integration. BPF integration property
can be expressed by an operational equation as

∫

𝑇

0

Φ (𝑡) 𝑑𝑡 = 𝑃Φ (𝑡) , (97)

where

Φ (𝑡) = [Φ
1
(𝑡) , Φ

2
(𝑡) , . . . , Φ

𝑚
(𝑡)]
𝑇

. (98)

A general formula for 𝑃
𝑚×𝑚

can be written as

𝑃 =
1

2
(

1 2 2 ⋅ ⋅ ⋅ 2

0 1 2 ⋅ ⋅ ⋅ 2

0 0 1 ⋅ ⋅ ⋅ 2

...
...

... d
...

0 0 0 ⋅ ⋅ ⋅ 1

). (99)

By using this matrix, we can express the integral of a function
𝑓(𝑡) into its Block-Pulse series

∫

𝑡

0

𝑓 (𝑡) 𝑑𝑡 = ∫

𝑡

0

𝐹
𝑇
Φ (𝑡) 𝑑𝑡 = 𝐹

𝑇
𝑃Φ (𝑡) . (100)

4.3.3. Solution for Linear Integral Equations System. Consider
the integral equations system from (55) as follows:

𝑛

∑

𝑗=1

𝑦
𝑗
(𝑥) = 𝑓

𝑖
(𝑥) +

𝑛

∑

𝑗=1

∫

𝛽

𝛼

𝐾
𝑖,𝑗
(𝑥, 𝑡) 𝑦

𝑗
(𝑡) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛.

(101)

Block-Pulse coefficients of𝑦
𝑗
(𝑥), 𝑗 = 1, 2, . . . , 𝑛 in the interval

𝑥 ∈ [𝛼, 𝛽) can be determined from the known functions
𝑓
𝑖
(𝑥), 𝑖 = 1, 2, . . . , 𝑛 and the kernels 𝐾

𝑖,𝑗
(𝑥, 𝑡), 𝑖, 𝑗 = 1, 2, . . . 𝑛.

Usually, we consider 𝛼 = 0 to facilitie the use of Block-Pulse
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functions. In case 𝛼 ̸= 0, we set𝑋 = ((𝑥−𝛼)/(𝛽−𝛼))𝑇, where
𝑇 = 𝑚ℎ.

We approximate 𝑓
𝑖
(𝑥), 𝑦

𝑗
(𝑥), 𝐾

𝑖,𝑗
(𝑥, 𝑡) by its BPF as

follows:

𝑓
𝑖
(𝑥) ≈ 𝐹

𝑇

𝑖
Φ (𝑥) ,

𝑦
𝑗
(𝑥) ≈ 𝑌

𝑇

𝑗
Φ (𝑥) ,

𝐾
𝑖,𝑗
(𝑥, 𝑡) ≈ Φ

𝑇

(𝑡) 𝐾
𝑖,𝑗
Φ (𝑥) ,

(102)

where 𝐹
𝑖
, 𝑌
𝑗
, and 𝐾

𝑖,𝑗
are defined in Section 4.3.2, and

substituting (102) into (101), we have

𝑛

∑

𝑗=1

𝑌
𝑇

𝑗
Φ (𝑥) = 𝐹

𝑇

𝑖
Φ (𝑥)

+

𝑛

∑

𝑗=1

∫

𝑚ℎ

0

𝑌
𝑇

𝑗
Φ (𝑡)Φ

𝑇

(𝑡) 𝐾
𝑖,𝑗
Φ (𝑥) 𝑑𝑡,

𝑖 = 1, 2, . . . , 𝑛,

(103)

𝑛

∑

𝑗=1

𝑌
𝑇

𝑗
Φ (𝑥) = 𝐹

𝑇

𝑖
Φ (𝑥) +

𝑛

∑

𝑗=1

𝑌
𝑇

𝑗
ℎ𝐼𝐾
𝑖,𝑗
Φ (𝑥) ,

𝑖 = 1, 2, . . . , 𝑛,

(104)

since

∫

𝑚ℎ

0

Φ (𝑡)Φ
𝑇

(𝑡) 𝑑𝑡 = ℎ𝐼. (105)

From (104), we get

𝑛

∑

𝑗=1

(𝐼 − ℎ𝐾
𝑇

𝑖,𝑗
) 𝑌
𝑗
= 𝐹
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (106)

Set 𝐴
𝑖,𝑗
= 𝐼 − ℎ𝐾

𝑇

𝑖,𝑗
; then we have from (106)

𝑛

∑

𝑗=1

𝐴
𝑖,𝑗
𝑌
𝑗
= 𝐹
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 (107)

which is a linear system

(

(

𝐴
11
𝐴
12
. . . 𝐴

1𝑛

𝐴
21
𝐴
22
. . . 𝐴

2𝑛

. . . .

. . . .

. . . .

𝐴
𝑛1
𝐴
𝑛2
. . . 𝐴

𝑛𝑛

)

)

(

(

𝑌
1

𝑌
2

.

.

.

𝑌
𝑛

)

)

=(

(

𝐹
1

𝐹
2

.

.

.

𝐹
𝑛

)

)

.

(108)

After solving the above system we can find 𝑌
𝑗
, 𝑗 = 1, 2, . . . , 𝑛

and hence obtain the solutions 𝑦
𝑗
= Φ
𝑇
𝑌
𝑗
, 𝑗 = 1, 2, . . . , 𝑛.

5. Numerical Methods for Nonlinear
Fredholm-Hammerstein Integral Equation

We consider the second kind nonlinear Fredholm integral
equation of the following form:

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡,

0 ≤ 𝑥 ≤ 1,

(109)

where 𝐾(𝑥, 𝑡) is the kernel of the integral equation, 𝑓(𝑥)
and 𝐾(𝑥, 𝑡) are known functions, and 𝑢(𝑥) is the unknown
function that is to be determined.

5.1. B-Spline Wavelet Method. In this section, nonlinear
Fredholm integral equation of second kind of the form given
in (109) has been solved by using B-spline wavelets [11].

B-spline scaling and wavelet functions in the interval
[0, 1] and function approximation have been defined in
Sections 3.1.1 and 3.1.2, respectively.

First, we assume that

𝑦 (𝑥) = 𝐹 (𝑥, 𝑢 (𝑥)) ,

0 ≤ 𝑥 ≤ 1.

(110)

Now, from (16), we can approximate the functions 𝑢(𝑥) and
𝑦(𝑥) as

𝑢 (𝑥) = 𝐴
𝑇
Ψ (𝑥) ,

𝑦 (𝑥) = 𝐵
𝑇
Ψ (𝑥) ,

(111)

where 𝐴 and 𝐵 are (2𝑀+1 +𝑚− 1) × 1 column vectors similar
to 𝐶 defined in (17).

Again, by using dual of the wavelet functions, we can
approximate the functions 𝑓(𝑥) and𝐾(𝑥, 𝑡) as follows:

𝐹 (𝑥) = 𝐷
𝑇
Ψ̃ (𝑥) ,

𝐾 (𝑥, 𝑡) = Ψ̃
𝑇

(𝑡) ΘΨ̃ (𝑥) ,

(112)

where

Θ
(𝑖,𝑗)
= ∫

1

0

[∫

1

0

𝐾 (𝑥, 𝑡) Ψ
𝑖
(𝑡) 𝑑𝑡]Ψ

𝑗
(𝑥) 𝑑𝑥. (113)

From (110)–(112), we get

∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

= ∫

1

0

𝐵
𝑇
Ψ (𝑡) Ψ̃

𝑇

(𝑡) ΘΨ̃ (𝑥) 𝑑𝑡

= 𝐵
𝑇
[∫

1

0

Ψ (𝑡) Ψ̃
𝑇

(𝑡) 𝑑𝑡]ΘΨ̃ (𝑥)

= 𝐵
𝑇
ΘΨ̃ (𝑥) , since ∫

1

0

Ψ (𝑡) Ψ̃
𝑇

(𝑡) 𝑑𝑡 = 𝐼.

(114)
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Applying (110)–(114) in (109), we get

𝐴
𝑇
Ψ (𝑥) = 𝐷

𝑇
Ψ̃ (𝑥) + 𝐵

𝑇
ΘΨ̃ (𝑥) . (115)

Multiplying (115) by Ψ𝑇(𝑥) both sides from the right and
integrating both sides with respect to 𝑥 from 0 to 1, we have

𝐴
𝑇
𝑃 = 𝐷

𝑇
+ 𝐵
𝑇
Θ,

𝐴
𝑇
𝑃 − 𝐷

𝑇
− 𝐵
𝑇
Θ = 0,

(116)

where 𝑃 is a (2𝑀+1 + 𝑚 − 1) × (2𝑀+1 + 𝑚 − 1) square matrix
given by

𝑃 = ∫

1

0

Ψ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝑥 = [
𝑃
1

𝑃
2

] ,

∫

1

0

Ψ̃ (𝑥)Ψ
𝑇

(𝑥) 𝑑𝑥 = 𝐼.

(117)

Equation (116) gives a system of (2𝑀+1 + 𝑚 − 1) algebraic
equations with 2(2𝑀+1+𝑚−1) unknowns for𝐴 and 𝐵 vectors
given in (111).

To find the solution 𝑢(𝑥) in (111), we first utilize the
following equation:

𝐹 (𝑥, 𝐴
𝑇
Ψ (𝑥)) = 𝐵

𝑇
Ψ (𝑥) , (118)

with the collocation points 𝑥
𝑖
= (𝑖 − 1)/(2

𝑀+1
+𝑚−2), where

𝑖 = 1, 2, . . . , 2
𝑀+1

+ 𝑚 − 1.
Equation (118) gives a system of (2𝑀+1 + 𝑚 − 1) algebraic

equations with 2(2𝑀+1+𝑚−1) unknowns, for𝐴 and𝐵 vectors
given in (111).

Combining (116) and (118), we have a total of 2(2𝑀+1 +
𝑚 − 1) system of algebraic equations with 2(2𝑀+1 + 𝑚 −

1) unknowns for 𝐴 and 𝐵. Solving those equations for the
unknown coefficients in the vectors 𝐴 and 𝐵, we can obtain
the solution 𝑢(𝑥) = 𝐴𝑇Ψ(𝑥).

5.2. Quadrature Method Applied to Fredholm Integral Equa-
tion. In this section, Quadrature method has been applied
to solve nonlinear Fredholm-Hammerstein integral equation
[10].

The quadrature methods like Simpson rule and modified
trapezoidmethod are applied for solving a definite integral as
follows.

5.2.1. Simpson’s Rule. One has

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =

𝑛−1

∑

𝑖=1

∫

𝑥𝑖+1

𝑥𝑖−1

𝑓 (𝑥) 𝑑𝑥

=
ℎ

3
𝑓 (𝑎) +

4ℎ

3

𝑛/2

∑

𝑖=1

𝑓 (𝑥
2𝑖−1
)

+
2ℎ

3

(𝑛−1)/2

∑

𝑖=1

𝑓 (𝑥
2𝑖
)

+
ℎ

3
𝑓 (𝑏)

−
(𝑏 − 𝑎)

180
ℎ
4
𝑓
(4)
(𝜂) .

(119)

5.2.2. Modified Trapezoid Rule. One has

∫

𝑏

𝑎

𝑓 (𝑥) 𝑑𝑥 =

𝑛

∑

𝑖=1

∫

𝑥𝑖

𝑥𝑖−1

𝑓 (𝑥) 𝑑𝑥

=
ℎ

2
𝑓 (𝑎) + ℎ

𝑛−1

∑

𝑖=1

𝑓 (𝑥
𝑖
)

+
ℎ

2
𝑓 (𝑏)

+
ℎ
2

12
[𝑓


(𝑎) − 𝑓


(𝑏)] .

(120)

Consider the nonlinear Fredholm integral equation of second
kind defined in (109) as follows:

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡,

𝑎 ≤ 𝑥 ≤ 𝑏.

(121)

For solving (121), we approximate the right-hand integral of
(121) with Simpson’s rule and modified trapezoid rule; then
we get the following.

5.2.3. Simpson’s Rule. One has
𝑢 (𝑥) = 𝑓 (𝑥)

+
ℎ

3

[

[

𝐾 (𝑥, 𝑡
0
) 𝐹 (𝑢

0
)

+ 4

𝑛/2

∑

𝑗=1

𝐾(𝑥, 𝑡
2𝑗−1
) 𝐹 (𝑢

2𝑗−1
)

+ 2

(𝑛/2)−1

∑

𝑗=1

𝐾(𝑥, 𝑡
2𝑗
) 𝐹 (𝑢

2𝑗
)

+ 𝐾 (𝑥, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
) ]

]

.

(122)

Hence, for 𝑥 = 𝑥
0
, 𝑥
1
, . . . , 𝑥

𝑛
and 𝑡 = 𝑡

0
, 𝑡
1
, . . . , 𝑡

𝑛
in (122), we

have
𝑢 (𝑥
𝑖
) = 𝑓 (𝑥

𝑖
)

+
ℎ

3

[

[

𝐾 (𝑥
𝑖
, 𝑡
0
) 𝐹 (𝑢

0
)

+ 4

𝑛/2

∑

𝑗=1

𝐾(𝑥
𝑖
, 𝑡
2𝑗−1
) 𝐹 (𝑢

2𝑗−1
)
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+ 2

(𝑛/2)−1

∑

𝑗=1

𝐾(𝑥
𝑖
, 𝑡
2𝑗
) 𝐹 (𝑢

2𝑗
)

+𝐾 (𝑥
𝑖
, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
) ]

]

.

(123)

Equation (123) is a nonlinear system of equations and, by
solving (123), we obtain the unknowns𝑢(𝑥

𝑖
) for 𝑖 = 0, 1, . . . , 𝑛.

5.2.4. Modified Trapezoid Rule. One has

𝑢 (𝑥) = 𝑓 (𝑥)

+
ℎ

2
𝐾 (𝑥, 𝑡

0
) 𝐹 (𝑢

0
)

+ ℎ

𝑛−1

∑

𝑗=1

𝐾(𝑥, 𝑡
𝑗
) 𝐹 (𝑢

𝑗
)

+
ℎ

2
𝐾 (𝑥, 𝑡

𝑛
) 𝐹 (𝑢

𝑛
)

+
ℎ
2

12
[𝐽 (𝑥, 𝑡

0
) 𝐹 (𝑢

0
)

+ 𝐾 (𝑥, 𝑡
0
) 𝑢


0
𝐹

(𝑢
0
)

− 𝐽 (𝑥, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
)

−𝐾 (𝑥, 𝑡
𝑛
) 𝑢


𝑛
𝐹

(𝑢
𝑛
)] ,

(124)

where 𝐽(𝑥, 𝑡) = 𝜕𝐾(𝑥, 𝑡)/𝜕𝑡.
For 𝑥 = 𝑥

0
, 𝑥
1
, . . . , 𝑥

𝑛
and 𝑡 = 𝑡

0
, 𝑡
1
, . . . , 𝑡

𝑛
in (124), we

have

𝑢 (𝑥
𝑖
) = 𝑓 (𝑥

𝑖
)

+
ℎ

2
𝐾 (𝑥
𝑖
, 𝑡
0
) 𝐹 (𝑢

0
)

+ ℎ

𝑛−1

∑

𝑗=1

𝐾(𝑥
𝑖
, 𝑡
𝑗
) 𝐹 (𝑢

𝑗
)

+
ℎ

2
𝐾 (𝑥
𝑖
, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
)

+
ℎ
2

12
[𝐽 (𝑥
𝑖
, 𝑡
0
) 𝐹 (𝑢

0
)

+ 𝐾 (𝑥
𝑖
, 𝑡
0
) 𝑢


0
𝐹

(𝑢
0
)

− 𝐽 (𝑥
𝑖
, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
)

−𝐾 (𝑥
𝑖
, 𝑡
𝑛
) 𝑢


𝑛
𝐹

(𝑢
𝑛
)] ,

(125)

for 𝑖 = 0, 1, . . . , 𝑛.

This is a system of (𝑛+1) equations and (𝑛+3) unknowns.
By taking derivative from (121) and setting 𝐻(𝑥, 𝑡) =

𝜕𝐾(𝑥, 𝑡)/𝜕𝑥, we obtain

𝑢


(𝑥) = 𝑓


(𝑥) + ∫

𝑏

𝑎

𝐻(𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡,

𝑎 ≤ 𝑥 ≤ 𝑏.

(126)

If 𝑢 is a solution of (121), then it is also solution of (126). By
using trapezoid rule for (126) and replacing 𝑥 = 𝑥

𝑖
, we get

𝑢

(𝑥
𝑖
) = 𝑓

(𝑥
𝑖
)

+
ℎ

2
𝐻 (𝑥
𝑖
, 𝑡
0
) 𝐹 (𝑢

0
)

+ ℎ

𝑛−1

∑

𝑗=1

𝐻(𝑥
𝑖
, 𝑡
𝑗
) 𝐹 (𝑢

𝑗
)

+
ℎ

2
𝐻 (𝑥
𝑖
, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
) ,

(127)

for 𝑖 = 0, 1, . . . , 𝑛. In case of 𝑖 = 0, 𝑛 from system (127), we
obtain two equations.

Now (127) combined with (125) generates the nonlinear
system of equations as follows:

𝑢 (𝑥
𝑖
) = (

ℎ

2
𝐾 (𝑥
𝑖
, 𝑡
0
) +

ℎ
2

12
𝐽 (𝑥
𝑖
, 𝑡
0
))𝐹 (𝑢

0
)

+ ℎ

𝑛−1

∑

𝑗=1

𝐾(𝑥
𝑖
, 𝑡
𝑗
) 𝐹 (𝑢

𝑗
)

+ (
ℎ

2
𝐾 (𝑥
𝑖
, 𝑡
𝑛
) −

ℎ
2

12
𝐽 (𝑥
𝑖
, 𝑡
𝑛
))𝐹 (𝑢

𝑛
)

+
ℎ
2

12
(𝐾 (𝑥

𝑖
, 𝑡
0
) 𝑢


0
𝐹

(𝑢
0
)

−𝐾 (𝑥
𝑖
, 𝑡
𝑛
) 𝑢


𝑛
𝐹

(𝑢
𝑛
)) ,

𝑢

(𝑥
0
) = 𝑓

(𝑥
0
)

+
ℎ

2
𝐻 (𝑥
0
, 𝑡
0
) 𝐹 (𝑢

0
)

+ ℎ

𝑛−1

∑

𝑗=1

𝐻(𝑥
0
, 𝑡
𝑗
) 𝐹 (𝑢

𝑗
)

+
ℎ

2
𝐻 (𝑥
0
, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
) ,
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𝑢

(𝑥
𝑛
) = 𝑓

(𝑥
𝑛
)

+
ℎ

2
𝐻 (𝑥
𝑛
, 𝑡
0
) 𝐹 (𝑢

0
)

+ ℎ

𝑛−1

∑

𝑗=1

𝐻(𝑥
𝑛
, 𝑡
𝑗
) 𝐹 (𝑢

𝑗
)

+
ℎ

2
𝐻 (𝑥
𝑛
, 𝑡
𝑛
) 𝐹 (𝑢

𝑛
) .

(128)

By solving this system with (𝑛 + 3) nonlinear equations and
(𝑛 + 3) unknowns, we can obtain the solution of (109).

5.3.Wavelet GalerkinMethod. In this section, the continuous
Legendre wavelets [12], constructed on the interval [0, 1], are
applied to solve the nonlinear Fredholm integral equation of
the second kind.The nonlinear part of the integral equation is
approximated by Legendre wavelets, and the nonlinear inte-
gral equation is reduced to a system of nonlinear equations.

We have the following family of continuous wavelets with
dilation parameter 𝑎 and the translation parameter 𝑏

𝜓
𝑎,𝑏
(𝑡) = |𝑎|

−1/2
𝜓(

𝑡 − 𝑏

𝑎
) ,

𝑎, 𝑏 ∈ 𝑅, 𝑎 ̸= 0.

(129)

Legendre wavelets 𝜓
𝑚,𝑛
(𝑡) = 𝜓(𝑘, 𝑛,𝑚, 𝑡) have four argu-

ments; 𝑘 = 2, 3, . . ., 𝑛 = 2𝑛 − 1, 𝑛 = 1, 2, . . . , 2𝑘−1, 𝑚 is the
order for Legendre polynomials and 𝑡 is the normalized time.

Legendre wavelets are defined on [0, 1) by

𝜓
𝑚,𝑛
(𝑡)

=
{

{

{

(𝑚 +
1

2
)

1/2

2
𝑘/2
𝐿
𝑚
(2
𝑘
𝑡 − 𝑛) ,

𝑛 − 1

2𝑘
≤ 𝑡 <

𝑛 + 1

2𝑘
,

0, otherwise,
(130)

where 𝐿
𝑚
(𝑡) are the well-known Legendre polynomials of

order m, which are orthogonal with respect to the weight
function𝑤(𝑡) = 1 and satisfy the following recursive formula:

𝐿
0
(𝑡) = 1,

𝐿
1
(𝑡) = 𝑡,

𝐿
𝑚+1

(𝑡) =
2𝑚 + 1

𝑚 + 1
𝑡𝐿
𝑚
(𝑡)

−
𝑚

𝑚 + 1
𝐿
𝑚−1

(𝑡) , 𝑚 = 1, 2, 3, . . . .

(131)

The set of Legendre wavelets are an orthonormal set.

5.3.1. Function Approximation. A function 𝑓(𝑥) ∈ 𝐿2[0, 1]
can be expanded as

𝑓 (𝑥) =

∞

∑

𝑛=1

∞

∑

𝑚=0

𝑐
𝑛,𝑚
𝜓
𝑛,𝑚
(𝑥) , (132)

where

𝑐
𝑛,𝑚
= ⟨𝑓 (𝑥) , 𝜓

𝑛,𝑚
(𝑥)⟩ . (133)

If the infinite series in (132) is truncated, then (132) can be
written as

𝑓 (𝑥) ≈

2
𝑘−1

∑

𝑛=1

𝑀−1

∑

𝑚=0

𝑐
𝑛,𝑚
𝜓
𝑛,𝑚
(𝑥) = 𝐶

𝑇
Ψ (𝑥) , (134)

where 𝐶 and Ψ(𝑥) are 2𝑘−1𝑀× 1matrices given by

𝐶 = [𝑐
1,0
, 𝑐
1,1
, . . . , 𝑐

1,𝑀−1
, 𝑐
2,0
, . . . ,

𝑐
2,𝑀−1

, . . . , 𝑐
2
𝑘−1
,0
, . . . , 𝑐

2
𝑘−1
,𝑀−1

]
𝑇

,

(135)

Ψ (𝑥) = [𝜓
1,0
(𝑥) , . . . , 𝜓

1,𝑀−1
(𝑥) ,

𝜓
2,0
(𝑥) , . . . , 𝜓

2,𝑀−1
(𝑥) , . . . ,

𝜓
2
𝑘−1
,0
(𝑥) , . . . , 𝜓

2
𝑘−1
,𝑀−1

(𝑥)]
𝑇

.

(136)

Similarly, a function 𝑘(𝑥, 𝑡) ∈ 𝐿
2
([0, 1] × [0, 1]) can be

approximated as

𝑘 (𝑥, 𝑡) ≈ Ψ
𝑇

(𝑡) 𝐾Ψ (𝑥) , (137)

where𝐾 is (2𝑘−1𝑀× 2
𝑘−1
𝑀)matrix, with

𝐾
𝑖,𝑗
= ⟨𝜓
𝑖
(𝑡) , ⟨𝑘 (𝑥, 𝑡) , 𝜓

𝑗
(𝑥)⟩⟩ . (138)

Also, the integer power of a function can be approximated as

[𝑦 (𝑥)]
𝑝

= [𝑌
𝑇
Ψ (𝑥)]

𝑝

= 𝑌
∗

𝑝

𝑇

Ψ (𝑥) , (139)

where 𝑌∗
𝑝
is a column vector, whose elements are nonlinear

combinations of the elements of the vector 𝑌. 𝑌∗
𝑝
is called the

operational vector of the 𝑝th power of the function 𝑦(𝑥).

5.3.2.The Operational Matrices. The integration of the vector
Ψ(𝑥) defined in (136) can be obtained as

∫

𝑡

0

Ψ(𝑡

) 𝑑𝑡

= 𝑃Ψ (𝑡) , (140)

where 𝑃 is the (2𝑘−1𝑀 × 2
𝑘−1
𝑀) operational matrix for

integration and is given in [23] as

𝑃 =

[
[
[
[
[
[

[

𝐿 𝐻 ⋅ ⋅ ⋅ 𝐻 𝐻

0 𝐿 ⋅ ⋅ ⋅ 𝐻 𝐻

...
... d

...
...

0 0 ⋅ ⋅ ⋅ 𝐿 𝐻

0 0 ⋅ ⋅ ⋅ 0 𝐿

]
]
]
]
]
]

]

. (141)

In (141),𝐻 and 𝐿 are (𝑀 ×𝑀)matrices given in [23] as
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𝐻 =
1

2𝑘

[
[
[
[

[

2 0 ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]

]

,

𝐿 =
1

2𝑘

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1
1

√3
0 0 ⋅ ⋅ ⋅ 0 0

−
√3

3
0

√3

3√5
0 ⋅ ⋅ ⋅ 0 0

0 −
√5

5√3
0

√5

5√7
⋅ ⋅ ⋅ 0 0

0 0 −
√7

7√5
0 ⋅ ⋅ ⋅ 0 0

...
...

...
... d

...

0 0 0 0 ⋅ ⋅ ⋅ 0
√2𝑀 − 3

(2𝑀 − 3)√2𝑀 − 1

0 0 0 0 ⋅ ⋅ ⋅
−√2𝑀 − 1

(2𝑀 − 1)√2𝑀 − 3
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(142)

The integration of the product of two Legendre wavelets
vector functions is obtained as

∫

1

0

Ψ (𝑡)Ψ
𝑇

(𝑡) 𝑑𝑡 = 𝐼, (143)

where 𝐼 is an identity matrix.
The product of two Legendre wavelet vector functions is

defined as

Ψ (𝑡) Ψ
𝑇

(𝑡) 𝐶 = 𝐶
𝑇
Ψ (𝑡) , (144)

where 𝐶 is a vector given in (135) and 𝐶 is (2𝑘−1𝑀 × 2
𝑘−1
𝑀)

matrix, which is called the product operation of Legendre
wavelet vector functions [23, 24].

5.3.3. Solution of Fredholm Integral Equation of Second Kind.
Consider the nonlinear Fredholm-Hammerstein integral
equation of second kind of the form

𝑦 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝑘 (𝑥, 𝑡) [𝑦 (𝑡)]
𝑝

𝑑𝑡, (145)

where 𝑓 ∈ 𝐿2[0, 1], 𝑘 ∈ 𝐿2([0, 1] × [0, 1]), 𝑦 is an unknown
function, and 𝑝 is a positive integer.

We can approximate the following functions as

𝑓 (𝑥) ≈ 𝐹
𝑇
Ψ (𝑥) ,

𝑦 (𝑥) ≈ 𝑌
𝑇
Ψ (𝑥) ,

𝑘 (𝑥, 𝑡) ≈ Ψ
𝑇

(𝑡) 𝐾Ψ (𝑥) ,

[𝑦 (𝑥)]
𝑝

≈ 𝑌
∗𝑇

Ψ (𝑥) .

(146)

Substituting (146) into (145), we have

𝑌
𝑇
Ψ (𝑥) = 𝐹

𝑇
Ψ (𝑥)

+ ∫

1

0

𝑌
∗𝑇

Ψ (𝑡) Ψ
𝑇

(𝑡) 𝐾Ψ (𝑥) 𝑑𝑡

= 𝐹
𝑇
Ψ (𝑥)

+ 𝑌
∗𝑇

(∫

1

0

Ψ (𝑡) Ψ
𝑇

(𝑡) 𝑑𝑡)𝐾Ψ (𝑥)

= 𝐹
𝑇
Ψ (𝑥) + 𝑌

∗𝑇

𝐾Ψ (𝑥)

= (𝐹
𝑇
+ 𝑌
∗𝑇

𝐾)Ψ (𝑥)

⇒ 𝑌
𝑇
− 𝑌
∗𝑇

𝐾 − 𝐹
𝑇
= 0.

(147)

Equation (147) is a system of algebraic equations. Solving
(147), we can obtain the solution 𝑦(𝑥) ≈ 𝑌𝑇Ψ(𝑥).

5.4. Homotopy Perturbation Method. Consider the following
nonlinear Fredholm integral equation of second kind of the
form

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡,

0 ≤ 𝑥 ≤ 1.

(148)

For solving (148) by Homotopy perturbation method (HPM)
[14–16], we consider (148) as

𝐿 (𝑢) = 𝑢 (𝑥) − 𝑓 (𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡) 𝐹 (𝑢 (𝑡)) 𝑑𝑡 = 0. (149)
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As a possible remedy, we can define𝐻(𝑢, 𝑝) by

𝐻(𝑢, 0) = 𝑁 (𝑢) ,

𝐻 (𝑢, 1) = 𝐿 (𝑢) ,

(150)

where𝑁(𝑢) is an integral operator with known solution 𝑢
0
.

We may choose a convex homotopy by

𝐻(𝑢, 𝑝) = (1 − 𝑝)𝑁 (𝑢) + 𝑝𝐿 (𝑢) = 0 (151)

and continuously trace an implicitly defined curve from a
starting point 𝐻(𝑢

0
, 0) to a solution function 𝐻(𝑈, 1). The

embedding parameter 𝑝 monotonically increases from zero
to unit as the trivial problem 𝐿(𝑢) = 0. The embedding
parameter 𝑝 ∈ (0, 1] can be considered as an expanding
parameter. The HPM uses the homotopy parameter 𝑝 as an
expanding parameter; that is,

𝑢 = 𝑢
0
+ 𝑝𝑢
1
+ 𝑝
2
𝑢
2
+ ⋅ ⋅ ⋅ . (152a)

When 𝑝 → 1, (152a) corresponding to (151) become the
approximate solution of (149) as follows:

𝑈 = lim
𝑝→1

𝑢 = 𝑢
0
+ 𝑢
1
+ 𝑢
2
+ ⋅ ⋅ ⋅ . (152b)

The series in (152b) converges in most cases, and the rate of
convergence depends on 𝐿(𝑢) [14].

Consider

𝑁(𝑢) = 𝑢 (𝑥) − 𝑓 (𝑥) . (153)

The nonlinear term 𝐹(𝑢) can be expressed in He polynomials
[25] as

𝐹 (𝑢) =

∞

∑

𝑚=0

𝑝
𝑚
𝐻
𝑚
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
)

= 𝐻
0
(𝑢
0
) + 𝑝𝐻

1
(𝑢
0
, 𝑢
1
)

+ ⋅ ⋅ ⋅ + 𝑝
𝑚
𝐻
𝑚
(𝑢
0
, 𝑢
1
, . . . 𝑢
𝑚
) + ⋅ ⋅ ⋅ ,

(154)

where
𝐻
𝑚
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
)

=
1

𝑚!

𝜕
𝑚

𝜕𝑝𝑚
(𝐹(

𝑚

∑

𝑘=0

𝑝
𝑘
𝑢
𝑘
))

𝑝=0

, 𝑚 ≥ 0.

(155)

Substituting (152a), (153), and (154) into (151), we have

(1 − 𝑝) ((𝑢
0
+ 𝑝𝑢
1
+ ⋅ ⋅ ⋅ ) − 𝑓 (𝑥))

+ 𝑝( (𝑢
0
+ 𝑝𝑢
1
+ ⋅ ⋅ ⋅ ) − 𝑓 (𝑥)

−∫

1

0

𝐾 (𝑥, 𝑡)

∞

∑

𝑚=0

𝑝
𝑚
𝐻
𝑚
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
) 𝑑𝑡) = 0

⇒ (𝑢
0
+ 𝑝𝑢
1
+ ⋅ ⋅ ⋅ ) − 𝑓 (𝑥)

− 𝑝∫

1

0

𝐾 (𝑥, 𝑡)

∞

∑

𝑚=0

𝑝
𝑚
𝐻
𝑚
(𝑢
0
, 𝑢
1
, . . . , 𝑢

𝑚
) 𝑑𝑡 = 0.

(156)

Equating the termswith identical power of𝑝 in (156), we have

𝑝
0
: 𝑢
0
(𝑥) − 𝑓 (𝑥) = 0 ⇒ 𝑢

0
(𝑥) = 𝑓 (𝑥)

𝑝
1
: 𝑢
1
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡)𝐻
0
𝑑𝑡 = 0 ⇒ 𝑢

1
(𝑥)

= ∫

1

0

𝐾 (𝑥, 𝑡)𝐻
0
𝑑𝑡

𝑝
2
: 𝑢
2
(𝑥) − ∫

1

0

𝐾 (𝑥, 𝑡)𝐻
1
𝑑𝑡 = 0 ⇒ 𝑢

2
(𝑥)

= ∫

1

0

𝐾 (𝑥, 𝑡)𝐻
1
𝑑𝑡

...

(157)

and in general form we have

𝑢
0
(𝑥) = 𝑓 (𝑥) ,

𝑢
𝑛+1
(𝑥) = ∫

1

0

𝐾 (𝑥, 𝑡)𝐻
𝑛
𝑑𝑡, 𝑛 = 0, 1, 2, . . . .

(158)

Hence, we can obtain the approximate solution of aforesaid
equation (148) from (152b).

5.5. Adomian Decomposition Method. Adomian decomposi-
tion method (ADM) [16–18] has been applied to a wide class
of functional equations. This method gives the solution as
an infinite series usually converging to an accurate solution.
Let us consider the nonlinear Fredholm integral equation of
second kind as follows:

𝑢 (𝑥) = 𝑓 (𝑥) + ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) (𝐿𝑢 (𝑡) + 𝑁𝑢 (𝑡)) 𝑑𝑡,

𝑎 ≤ 𝑥 ≤ 𝑏,

(159)

where 𝐿(𝑢(𝑡)) and𝑁(𝑢(𝑡)) are the linear and nonlinear terms,
respectively.

The Adomian decomposition method (ADM) consists of
representing 𝑢(𝑥) as a series

𝑢 (𝑥) =

∞

∑

𝑚=0

𝑢
𝑚
(𝑥) . (160)

In the view of ADM, the nonlinear term 𝑁𝑢 can be repre-
sented as

𝑁𝑢 =

∞

∑

𝑛=0

𝐴
𝑛
, (161)

where 𝐴
𝑛
=
1

𝑛!
(
𝜕
𝑛

𝜕𝜆𝑛
𝑁(

∞

∑

𝑘=0

𝜆
𝑘
𝑢
𝑘
))

𝜆=0

. (162)
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Now substituting (160) and (161) into (159), we have

∞

∑

𝑚=0

𝑢
𝑚
(𝑥) = 𝑓 (𝑥)

+ ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) (𝐿(

∞

∑

𝑚=0

𝑢
𝑚
(𝑡)) +

∞

∑

𝑚=0

𝐴
𝑚
)𝑑𝑡,

(163)

and, then, ADM uses the recursive relations

𝑢
0
(𝑥) = 𝑓 (𝑥) ,

𝑢
𝑚
(𝑥) = ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) (𝐿 (𝑢
𝑚−1

(𝑡)) + 𝐴
𝑚−1

(𝑡)) 𝑑𝑡,

𝑚 ≥ 1,

(164)

where 𝐴
𝑚
is so-called Adomian polynomial.

Therefore, we obtain the 𝑛-terms approximate solution as

𝜑
𝑛
= 𝑢
0
+ 𝑢
1
+ ⋅ ⋅ ⋅ + 𝑢

𝑛
(165)

with

𝑢 (𝑥) = lim
𝑛→∞

𝜑
𝑛
. (166)

6. Conclusion and Discussion

In this work, we have examined many numerical methods
to solve Fredholm integral equations. Using these methods
except variational iteration method, the Fredholm integral
equations have been reduced to a system of algebraic equa-
tions and this system can be easily solved by any usual
methods. In this work, we have applied compactly supported
semiorthogonal B-spline wavelets along with their dual
wavelets for solving both linear and nonlinear Fredholm inte-
gral equations of second kind.The problem has been reduced
to solve a system of algebraic equations. In order to increase
the accuracy of the approximate solution, it is necessary to
apply higher-order B-spline wavelet method. The method of
moments based on compactly supported semiorthogonal B-
spline wavelets via Galerkin method has been used to solve
Fredholm integral equation of second kind. This method
determines a strong reduction in the computation time and
memory requirement in inverting the matrix. Variational
iteration method has been successfully applied to find the
approximate solution of Fredholm integral equation of both
linear and nonlinear types. Taylor series expansion method
reduces the system of integral equations to a linear system of
ordinary differential equation. After including the required
boundary conditions, this system reduces to a system of
algebraic equations that can be solved easily. Block-Pulse
functions and Haar wavelet method can be applied to the
system of Fredholm integral equations by reducing into a
system of algebraic equations. These methods give more
accuracy if we increase their order. Quadrature method can
be applied to solve the nonlinear Fredholm-Hammerstein
integral equation of second kind by reducing it to a system of
algebraic equations. Homotopy perturbationmethod (HPM)

and Adomian decomposition method (ADM) can be also
applied to approximate the solution of nonlinear Fredholm
integral equation of second kind. The solutions obtained by
HPM and ADM are applicable for not only weakly nonlinear
equations, but also strong ones.The approximate solutions by
these aforesaid methods highly agree with exact solutions.
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The classification of exact solutions, including solitons and elliptic solutions, to the generalized 𝐾(𝑚, 𝑛) equation by the complete
discrimination system for polynomial method has been obtained. From here, we find some interesting results for nonlinear partial
differential equations with generalized evolution.

1. Introduction

In science and engineering applications, it is often very
difficult to obtain analytical solutions of partial differential
equations. Recently, many exact solutions of partial differ-
ential equations have been examined by the use of trial
equation method. Also there are a lot of important methods
that have been defined such as Hirota method, tanh-coth
method, sine-cosine method, the trial equation method, and
the extended trial equation method [1–15] to find exact
solutions to nonlinear partial differential equations. There
are a lot of nonlinear evolution equations that are solved by
the use of various mathematical methods. Soliton solutions,
singular solitons, and other solutions have been found by
using these approaches. These obtained solutions have been
encountered in various areas of applied mathematics and are
very important.

In Section 2, we introduce an extended trial equation
method for nonlinear evolution equations with higher order
nonlinearity. In Section 3, as applications, we procure some
exact solutions to nonlinear partial differential equations
such as the generalized form of 𝐾(𝑚, 𝑛) equation [16–18]:

(𝑞
𝑙
)
𝑡
+ 𝑎𝑞
𝑚
𝑞
𝑥
+ 𝑏(𝑞
𝑛
)
𝑥𝑥𝑥

= 0, (1)

where 𝑎, 𝑏 ∈ 𝑅 are constants since 𝑙, 𝑚, and 𝑛 ∈ 𝑍+. Here,
the first term is the generalized evolution term, while the
second term represents the nonlinear term and the third term
is the dispersion term. This equation is the generalized form

of the KdV equation, where, in particular, the case 𝑙 = 𝑚 =

𝑛 = 1 leads to the KdV equation. The Korteweg de Vries
equation is one of the most important equations in applied
mathematics and physics. There have been several kinds of
solutions, such as compactons, that are studied in the context
of 𝐾(𝑚, 𝑛) equation, for various situations. We now offer a
more general trial equation method for discussion as follows.

2. The Extended Trial Equation Method

Step 1. For a given nonlinear partial differential equation

𝑃 (𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑥𝑥
, . . .) = 0, (2)

take the general wave transformation

𝑢 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
, 𝑡) = 𝑢 (𝜂) , 𝜂 = 𝜆(

𝑁

∑

𝑗=1

𝑥
𝑗
− 𝑐𝑡) , (3)

where 𝜆 ̸= 0 and 𝑐 ̸= 0. Substituting (3) into (2) yields a
nonlinear ordinary differential equation:

𝑁(𝑢, 𝑢

, 𝑢

, . . .) = 0. (4)

Step 2. Take the finite series and trial equation as follows:

𝑢 =

𝛿

∑

𝑖=0

𝜏
𝑖
Γ
𝑖
, (5)
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where

(Γ

)
2

= Λ (Γ) =
Φ (Γ)

Ψ (Γ)
=
𝜉
𝜃
Γ
𝜃
+ ⋅ ⋅ ⋅ + 𝜉

1
Γ + 𝜉
0

𝜁
𝜖
Γ𝜖 + ⋅ ⋅ ⋅ + 𝜁

1
Γ + 𝜁
0

. (6)

Using (5) and (6), we can write

(𝑢

)
2

=
Φ (Γ)

Ψ (Γ)
(

𝛿

∑

𝑖=0

𝑖𝜏
𝑖
Γ
𝑖−1
)

2

,

𝑢

=
Φ

(Γ) Ψ (Γ) − Φ (Γ)Ψ


(Γ)

2Ψ2 (Γ)
(

𝛿

∑

𝑖=0

𝑖𝜏
𝑖
Γ
𝑖−1
)

+
Φ (Γ)

Ψ (Γ)
(

𝛿

∑

𝑖=0

𝑖 (𝑖 − 1) 𝜏
𝑖
Γ
𝑖−2
) ,

(7)

where Φ(Γ) and Ψ(Γ) are polynomials. Substituting these
relations into (4) yields an equation of polynomial Ω(Γ) of
Γ:

Ω (Γ) = 
𝑠
Γ
𝑠
+ ⋅ ⋅ ⋅ + 

1
Γ + 
0
= 0. (8)

According to the balance principle, we can find a relation of
𝜃, 𝜖, and 𝛿. We can calculate some values of 𝜃, 𝜖, and 𝛿.

Step 3. Letting the coefficients of Ω(Γ) all be zero will yield
an algebraic equations system:


𝑖
= 0, 𝑖 = 0, . . . , 𝑠. (9)

Solving this system, we will determine the values of
𝜉
0
, . . . , 𝜉

𝜃
; 𝜁
0
, . . . , 𝜁

𝜖
; and 𝜏

0
, . . . , 𝜏

𝛿
.

Step 4. Reduce (6) to the elementary integral form

± (𝜂 − 𝜂
0
) = ∫

𝑑Γ

√Λ (Γ)
= ∫√

Ψ (Γ)

Φ (Γ)
𝑑Γ. (10)

Using a complete discrimination system for polynomial to
classify the roots of Φ(Γ), we solve (10) and obtain the exact
solutions to (4). Furthermore, we canwrite the exact traveling
wave solutions to (2), respectively.

3. Application to the Generalized Form of
𝐾(𝑚,𝑛) Equation

In order to look for travelling wave solutions of (1), we make
the transformation 𝑞(𝑥, 𝑡) = 𝑢(𝜂), 𝜂 = 𝑥 − 𝑐𝑡, where 𝑐 is the
wave speed. Therefore it can be converted to the ODE

−𝑐(𝑢
𝑙
(𝜂))


+
𝑎

𝑚 + 1
(𝑢
𝑚+1

(𝜂))


+ 𝑏(𝑢
𝑛
(𝜂))


= 0, (11)

where prime denotes the derivative with respect to 𝜂. Then,
integrating this equation with respect to 𝜂 one time and
setting the integration constant to zero, we obtain

−𝑐𝑢
𝑙
(𝜂) +

𝑎

𝑚 + 1
𝑢
𝑚+1

(𝜂) + 𝑏(𝑢
𝑛
(𝜂))


= 0. (12)

Let 𝑙 = 𝑛, applying balance and using the following transfor-
mation:

𝑢 = V
1/(𝑚−𝑛+1)

. (13)

Equation (12) turns into the following equation:

− 𝑐 (𝑚 + 1) (𝑚 + 1 − 𝑛)
2
V
2
+ 𝑎(𝑚 + 1 − 𝑛)

2
V
3

+ 𝑏𝑛 (𝑚 + 1) (2𝑛 − 𝑚 − 1) (V

)
2

+ 𝑏𝑛 (𝑚 + 1) (𝑚 + 1 − 𝑛) VV

= 0.

(14)

Substituting (7) into (14) and using balance principle yield

𝜃 = 𝜖 + 𝛿 + 2. (15)

After this solution procedure, we obtain the results as follows.

Case 1. If we take 𝜖 = 0, 𝛿 = 1, and 𝜃 = 3, then

(V

)
2

=

(𝜏
1
)
2

(𝜉
3
Γ
3
+ 𝜉
2
Γ
2
+ 𝜉
1
Γ + 𝜉
0
)

𝜁
0

,

V

=

𝜏
1
(3𝜉
3
Γ
2
+ 2𝜉
2
Γ + 𝜉
1
)

2𝜁
0

,

(16)

where 𝜉
3
̸= 0 and 𝜁

0
̸= 0. Respectively, solving the algebraic

equation system (9) yields

𝜉
0
= −

𝜉
2

1
(3 + 3𝑚 − 5𝑛) (1 + 𝑚 + 𝑛)

16𝜉
2
(1 + 𝑚 − 2𝑛)

2
,

𝜉
1
= 𝜉
1
, 𝜉

2
= 𝜉
2
,

𝜉
3
= −

8𝜉
2

2
(1 + 𝑚 − 2𝑛) (1 + 𝑚 − 𝑛)

𝜉
1
(1 + 𝑚 + 𝑛)

2
,

𝜏
0
= 𝜏
0
, 𝜏

1
= −

4 (1 + 𝑚 − 2𝑛) 𝜉
2
𝜏
0

(1 + 𝑚 + 𝑛) 𝜉
1

,

𝜁
0
= −

𝑏𝑛𝜉
2
(1 + 𝑚)

𝑎 (1 + 𝑚 − 𝑛) 𝜏
0

,

𝑐 =
𝑎𝑛 (5 + 5𝑚 − 7𝑛) 𝜏

0

(1 + 𝑚) (1 + 𝑚 − 𝑛) (1 + 𝑚 + 𝑛)
.

(17)

Substituting these results into (6) and (10), we have
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± (𝜂 − 𝜂
0
) =

𝐴

2
∫

𝑑Γ

√Γ3 −
𝜉
1
(1 + 𝑚 + 𝑛)

2

8𝜉
2
(1 + 𝑚 − 2𝑛) (1 + 𝑚 − 𝑛)

Γ2 −
𝜉
2

1
(1 + 𝑚 + 𝑛)

2

8𝜉
2

2
(1 + 𝑚 − 2𝑛) (1 + 𝑚 − 𝑛)

Γ +
𝜉
3

1
(3 + 3𝑚 − 5𝑛) (1 + 𝑚 + 𝑛)

3

128𝜉
2

2
(1 + 𝑚 − 2𝑛)

3
(1 + 𝑚 − 𝑛)

,

(18)

where

𝐴 = √
𝑏𝑛𝜉
1
(1 + 𝑚) (1 + 𝑚 + 𝑛)

2

2𝑎𝜉
2
𝜏
0
(1 + 𝑚 − 𝑛)

2
(1 + 𝑚 − 2𝑛)

. (19)

Integrating (18), we obtain the solutions to (1) as follows:

± (𝜂 − 𝜂
0
) = −

𝐴

√Γ − 𝛼
1

,

± (𝜂 − 𝜂
0
) =

𝐴

√𝛼2 − 𝛼1

arctan√ Γ − 𝛼
2

𝛼
2
− 𝛼
1

, 𝛼
2
> 𝛼
1
,

± (𝜂 − 𝜂
0
) =

𝐴

√𝛼1 − 𝛼2

ln


√Γ − 𝛼
2
− √𝛼1 − 𝛼2

√Γ − 𝛼
2
+ √𝛼1 − 𝛼2



, 𝛼
1
> 𝛼
2
,

± (𝜂 − 𝜂
0
) = −

𝐴

√𝛼1 − 𝛼3

𝐹 (𝜑, 𝑙) , 𝛼
1
> 𝛼
2
> 𝛼
3
,

(20)

where

𝐹 (𝜑, 𝑙) = ∫

𝜑

0

𝑑𝜓

√1 − 𝑙2sin2𝜓
, 𝜑 = arcsin√

Γ − 𝛼
3

𝛼
2
− 𝛼
3

,

𝑙
2
=
𝛼
2
− 𝛼
3

𝛼
1
− 𝛼
3

.

(21)

Also 𝛼
1
, 𝛼
2
, and 𝛼

3
are the roots of the polynomial equation

Γ
3
+
𝜉
2

𝜉
3

Γ
2
+
𝜉
1

𝜉
3

Γ +
𝜉
0

𝜉
3

= 0. (22)

Substituting solutions (20) into (5) and (13), we have

𝑢 (𝑥, 𝑡)

= [𝜏
0
+ 𝜏
1
𝛼
1

+ (𝐴
2
𝜏
1
((𝑥 − (𝑎𝑛 (5 + 5𝑚 − 7𝑛) 𝜏

0
)

× ((1 + 𝑚) (1 + 𝑚 − 𝑛) (1 + 𝑚 + 𝑛))
−1

× 𝑡 − 𝜂
0
)

2

)

−1

)]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡) = [𝜏
0
+ 𝜏
1
𝛼
1
+ 𝜏
1
(𝛼
2
− 𝛼
1
)

× sech2 (√
𝛼
2
− 𝛼
1

𝐴
(𝑥 − (𝑎𝑛 (5 + 5𝑚 − 7𝑛) 𝜏

0
)

× ((1 + 𝑚) (1 + 𝑚 − 𝑛)

× (1 + 𝑚 + 𝑛))
−1

× 𝑡 − 𝜂
0
))]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

= [𝜏
0
+ 𝜏
1
𝛼
1
+ 𝜏
1
(𝛼
1
− 𝛼
2
)

× cosech2 (√
𝛼
1
− 𝛼
2

2𝐴
(𝑥 − (𝑎𝑛 (5 + 5𝑚 − 7𝑛) 𝜏

0
)

× ((1 + 𝑚) (1 + 𝑚 − 𝑛)

× (1 + 𝑚 + 𝑛))
−1

× 𝑡 − 𝜂
0
))]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

= [𝜏
0
+ 𝜏
1
𝛼
1
+ (𝜏
1
(𝛼
2
− 𝛼
1
))

× (𝑠𝑛
2
(±
√𝛼2 − 𝛼1

𝐴

× (𝑥 −
𝑎𝑛 (5 + 5𝑚 − 7𝑛) 𝜏

0

(1 + 𝑚) (1 + 𝑚 − 𝑛) (1 + 𝑚 + 𝑛)

× 𝑡 − 𝜂
0
) ,

𝛼
1
− 𝛼
3

𝛼
1
− 𝛼
2

))

−1

]

1/(𝑚−𝑛+1)

.

(23)

If we take 𝜏
0
= −𝜏
1
𝛼
1
and 𝜂

0
= 0, then solutions (23) can

reduce to rational function solution

𝑢 (𝑥, 𝑡) = (
𝐴

𝑥 − 𝑐𝑡
)

2/(𝑚−𝑛+1)

, (24)
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1-soliton wave solution

𝑢 (𝑥, 𝑡) =
𝐵

cosh2/(𝑚−𝑛+1) (𝐵 (𝑥 − 𝑐𝑡))
, (25)

singular soliton solution

𝑢 (𝑥, 𝑡) =
𝐶

sinh2/(𝑚−𝑛+1) (𝐶 (𝑥 − 𝑐𝑡))
, (26)

and elliptic soliton solution

𝑢 (𝑥, 𝑡) =
𝐵

𝑠𝑛2/(𝑚−𝑛+1) (𝜑, 𝑙)
, (27)

where 𝐴 = 𝐴√𝜏1, 𝐵 = (𝜏
1
(𝛼
2
− 𝛼
1
))
1/(𝑚−𝑛+1), 𝐵 =

√𝛼2 − 𝛼1/𝐴, 𝐶 = (𝜏
1
(𝛼
1
− 𝛼
2
))
1/(𝑚−𝑛+1), 𝐶 = √𝛼1 − 𝛼2/2𝐴,

𝜑 = ±(√𝛼2 − 𝛼1/𝐴)(𝑥 − 𝑐𝑡), 𝑙
2
= (𝛼
1
− 𝛼
3
)/(𝛼
1
− 𝛼
2
), and

𝑐 = 𝑎𝑛(5 + 5𝑚− 7𝑛)𝜏
1
𝛼
1
/(1 +𝑚)(1 +𝑚− 𝑛)(1 +𝑚+ 𝑛). Here,

𝐵 and 𝐶 are the amplitudes of the solitons, while 𝐵 and 𝐶 are
the inverse widths of the solitons and 𝑐 is the velocity. Thus,
we can say that the solitons exist for 𝜏

1
> 0.

Remark 1. If we choose the corresponding values for some
parameters, solution (25) is in full agreement with solution
(21) mentioned in [17].

Case 2. If we take 𝜖 = 0, 𝛿 = 2, and 𝜃 = 4, then

(V

)
2

=

(𝜏
1
+ 2𝜏
2
Γ)
2

(𝜉
4
Γ
4
+ 𝜉
3
Γ
3
+ 𝜉
2
Γ
2
+ 𝜉
1
Γ + 𝜉
0
)

𝜁
0

, (28)

where 𝜉
4
̸= 0 and 𝜁

0
̸= 0. Respectively, solving the algebraic

equation system (9) yields

𝜉
0
= 𝜉
0
, 𝜉

1
= 𝜉
1
, 𝜉

2
=
𝜉
2

1

3𝜉
0

, 𝜉
3
=

𝜉
3

1

24𝜉
2

0

,

𝜉
4
=

𝜉
4

1

576𝜉
3

0

, 𝜁
0
= −

𝑏𝑛 (𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
3

1

24𝑎(𝑚 − 𝑛 + 1)
2
𝜉
2

0
𝜏
1

,

𝜏
0
=
2𝜉
0
𝜏
1

𝜉
1

, 𝜏
1
= 𝜏
1
, 𝜏

2
=
𝜉
1
𝜏
1

12𝜉
0

,

𝑐 = −
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
1

.

(29)

Substituting these resultss into (6) and (10), we get

± (𝜂 − 𝜂
0
)

= 2𝐴
1
∫( (𝑑Γ)

× (Γ
4
+ (

24𝜉
0

𝜉
1

)Γ
3
+ (

192𝜉
2

0

𝜉
2

1

)Γ
2

+ (
576𝜉
3

0

𝜉
3

1

)Γ + (
576𝜉
4

0

𝜉
4

1

))

−1/2

) ,

(30)

where 𝐴
1
= √−6𝑏𝑛𝜉

0
(1+𝑚)(1+𝑚+𝑛)/𝑎𝜉

1
𝜏
1
(1+𝑚−𝑛)

2. Inte-
grating (30), we obtain the solutions to (1) as follows:

± (𝜂 − 𝜂
0
) = −

2𝐴
1

Γ − 𝛼
1

,

± (𝜂 − 𝜂
0
) =

4𝐴
1

𝛼
1
− 𝛼
2

√
Γ − 𝛼
2

Γ − 𝛼
1

, 𝛼
1
> 𝛼
2
,

± (𝜂 − 𝜂
0
) =

2𝐴
1

𝛼
1
− 𝛼
2

ln


Γ − 𝛼
1

Γ − 𝛼
2



,

± (𝜂 − 𝜂
0
)

=
4𝐴
1

√(𝛼
1
− 𝛼
2
) (𝛼
1
− 𝛼
3
)

× ln



√(Γ − 𝛼
2
) (𝛼
1
− 𝛼
3
) − √(Γ − 𝛼

3
) (𝛼
1
− 𝛼
2
)

√(Γ − 𝛼
2
) (𝛼
1
− 𝛼
3
) + √(Γ − 𝛼

3
) (𝛼
1
− 𝛼
2
)



,

𝛼
1
> 𝛼
2
> 𝛼
3
,

± (𝜂 − 𝜂
0
) =

4𝐴
1

√(𝛼
1
− 𝛼
4
) (𝛼
2
− 𝛼
3
)

𝐹 (𝜑, 𝑙) ,

𝛼
1
> 𝛼
2
> 𝛼
3
> 𝛼
4
,

(31)

where

𝜑
1
= arcsin√

(Γ − 𝛼
2
) (𝛼
1
− 𝛼
4
)

(Γ − 𝛼
1
) (𝛼
2
− 𝛼
4
)
,

𝑙
2

1
=
(𝛼
1
− 𝛼
3
) (𝛼
2
− 𝛼
4
)

(𝛼
2
− 𝛼
3
) (𝛼
1
− 𝛼
4
)
.

(32)

Also 𝛼
1
, 𝛼
2
, 𝛼
3
, and 𝛼

4
are the roots of the polynomial

equation

Γ
4
+
𝜉
3

𝜉
4

Γ
3
+
𝜉
2

𝜉
4

Γ
2
+
𝜉
1

𝜉
4

Γ +
𝜉
0

𝜉
4

= 0. (33)

Substituting solutions (31) into (5) and (13), we have

𝑢 (𝑥, 𝑡)

= [𝜏
0
+ 𝜏
1
𝛼
1
± (2𝜏
1
𝐴
1
)

× (𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚+1) (𝑚+𝑛+1) 𝜉
1

𝑡−𝜂
0
)

−1
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+ 𝜏
2
(𝛼
1
± (2𝐴

1
)

× (𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
1

× 𝑡 − 𝜂
0
)

−1

)

2

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

= [

[

𝜏
0
+ 𝜏
1
𝛼
1

+ (16𝐴
2

1
(𝛼
2
− 𝛼
1
) 𝜏
1
)

× (16𝐴
2

1
− [ (𝛼

1
− 𝛼
2
)

× (𝑥+
2𝑎𝑛𝜉
0
𝜏
1

(𝑚+1)(𝑚+𝑛+1) 𝜉
1

𝑡−𝜂
0
)]

2

)

−1

+ 𝜏
2
(𝛼
1
+ (16𝐴

2

1
(𝛼
2
−𝛼
1
))

× (16𝐴
2

1
− [ (𝛼

1
− 𝛼
2
)

× (𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
1

× 𝑡−𝜂
0
)]

2

)

−1

)

2

]

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

= [

[

𝜏
0
+ 𝜏
1
𝛼
2
+ ((𝛼
2
− 𝛼
1
) 𝜏
1
)

× (exp [𝛼1 − 𝛼2
2𝐴
1

×(𝑥+
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1)(𝑚 + 𝑛 + 1) 𝜉
1

𝑡 − 𝜂
0
)]− 1)

−1

+ 𝜏
2
(𝛼
2
+ (𝛼
2
− 𝛼
1
)

× (exp [𝛼1 − 𝛼2
2𝐴
1

× (𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚+1) (𝑚+𝑛+1) 𝜉
1

× 𝑡−𝜂
0
)]−1)

−1

)

2

]

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

= [

[

𝜏
0
+ 𝜏
1
𝛼
1
+ ((𝛼
1
− 𝛼
2
) 𝜏
1
)

× ( exp [𝛼1 − 𝛼2
2𝐴
1

× (𝑥+(2𝑎𝑛𝜉
0
𝜏
1
)

× ((𝑚+1) (𝑚+𝑛+1)𝜉
1
)
−1

× 𝑡 − 𝜂
0
) ] − 1)

−1

+ 𝜏
2
(𝛼
1
+ (𝛼
1
− 𝛼
2
)

× ( exp [𝛼1 − 𝛼2
2𝐴
1

× (𝑥 + (2𝑎𝑛𝜉
0
𝜏
1
)

× ((𝑚+1) (𝑚+𝑛+1) 𝜉
1
)
−1

× 𝑡 − 𝜂
0
) ] − 1)

−1

)

2

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

=
[
[

[

𝜏
0
+ 𝜏
1
𝛼
1
− (2 (𝛼

1
− 𝛼
2
) (𝛼
1
− 𝛼
3
) 𝜏
1
)

× (2𝛼
1
− 𝛼
2
− 𝛼
3
+ (𝛼
3
− 𝛼
2
)

× cosh[[

[

√(𝛼
1
− 𝛼
2
) (𝛼
1
− 𝛼
3
)

2𝐴
1

× (𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
1

× 𝑡 − 𝜂
0
)
]
]

]

)

−1

+ 𝜏
2
(𝛼
1
− (2 (𝛼

1
− 𝛼
2
) (𝛼
1
− 𝛼
3
))

×(2𝛼
1
− 𝛼
2
− 𝛼
3
+ (𝛼
3
− 𝛼
2
)
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× cosh[[

[

√(𝛼
1
− 𝛼
2
) (𝛼
1
− 𝛼
3
)

2𝐴
1

×(𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
1

× 𝑡 − 𝜂
0
)
]
]
]

]

)

−1

)

2

]
]
]
]

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

=
[
[
[

[

𝜏
0
+ 𝜏
1
𝛼
2
+ ((𝛼
1
− 𝛼
2
) (𝛼
4
− 𝛼
2
) 𝜏
1
)

× ( (𝛼
1
− 𝛼
4
)

× 𝑠𝑛
2
(

√(𝛼
1
− 𝛼
3
) (𝛼
2
− 𝛼
4
)

4𝐴
1

× (𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
1

× 𝑡 − 𝜂
0
) ,

(𝛼
2
− 𝛼
3
) (𝛼
1
− 𝛼
4
)

(𝛼
1
− 𝛼
3
) (𝛼
2
− 𝛼
4
)
)

+ 𝛼
4
− 𝛼
2
)

−1

+ 𝜏
2
(𝛼
2
+ ((𝛼
1
− 𝛼
2
) (𝛼
4
− 𝛼
2
) 𝜏
1
)

× ( (𝛼
1
− 𝛼
4
)

× 𝑠𝑛
2
(

√(𝛼
1
− 𝛼
3
) (𝛼
2
− 𝛼
4
)

4𝐴
1

×(𝑥 +
2𝑎𝑛𝜉
0
𝜏
1

(𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
1

× 𝑡 − 𝜂
0
),

(𝛼
2
− 𝛼
3
) (𝛼
1
− 𝛼
4
)

(𝛼
1
− 𝛼
3
) (𝛼
2
− 𝛼
4
)
)

+𝛼
4
− 𝛼
2
)

−1

)

2

]
]
]

]

1/(𝑚−𝑛+1)

.

(34)

For simplicity, if we take 𝜂
0
= 0, then we can write

solutions (34) as follows:

𝑢 (𝑥, 𝑡) = [

2

∑

𝑖=0

𝜏
𝑖
(𝛼
1
±
2𝐴
1

𝑥 − 𝑐𝑡
)

𝑖

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡)

= [

2

∑

𝑖=0

𝜏
𝑖
(𝛼
1
+ (16𝐴

2

1
(𝛼
1
− 𝛼
2
))

×(16𝐴
2

1
−[(𝛼
1
− 𝛼
2
) (𝑥 − 𝑐𝑡)]

2

)
−1

)

𝑖

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡) = [

2

∑

𝑖=0

𝜏
𝑖
(𝛼
2
+

𝛼
2
− 𝛼
1

exp [𝐵
1
(𝑥 − 𝑐𝑡)] − 1

)

𝑖

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡) = [

2

∑

𝑖=0

𝜏
𝑖
(𝛼
1
+

𝛼
1
− 𝛼
2

exp [𝐵
1
(𝑥 − 𝑐𝑡)] − 1

)

𝑖

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡) = [

2

∑

𝑖=0

𝜏
𝑖
(𝛼
1
− (2 (𝛼

1
− 𝛼
2
) (𝛼
1
− 𝛼
3
))

× (2𝛼
1
− 𝛼
2
− 𝛼
3
+ (𝛼
3
− 𝛼
2
)

×cosh [𝐶
1
(𝑥−𝑐𝑡)])

−1

)
𝑖

]

1/(𝑚−𝑛+1)

,

𝑢 (𝑥, 𝑡) = [

2

∑

𝑖=0

𝜏
𝑖
(𝛼
2
+ ((𝛼
1
− 𝛼
2
) (𝛼
4
− 𝛼
2
))

× ((𝛼
1
− 𝛼
4
) 𝑠𝑛
2
(𝜑, 𝑙)

+ 𝛼
4
− 𝛼
2
)
−1

)

𝑖

]

1/(𝑚−𝑛+1)

,

(35)

where 𝐵
1
= (𝛼
1
− 𝛼
2
)/2𝐴
1
, 𝐶
1
= √(𝛼

1
− 𝛼
2
)(𝛼
1
− 𝛼
3
)/2𝐴
1
,

𝜑
1
= (√(𝛼

1
− 𝛼
3
)(𝛼
2
− 𝛼
4
)/4𝐴
1
)(𝑥 − 𝑐𝑡), 𝑙2

1
= (𝛼
2
− 𝛼
3
)(𝛼
1
−

𝛼
4
)/(𝛼
1
−𝛼
3
)(𝛼
2
−𝛼
4
), and 𝑐 = −2𝑎𝑛𝜉

0
𝜏
1
/(𝑚+1)(𝑚+𝑛+1)𝜉

1
.

Here,𝐴
1
is the amplitude of the soliton, while 𝑐 is the velocity
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and 𝐵
1
and𝐶

1
are the inverse widths of the solitons.Thus, we

can say that the solitons exist for 𝜏
1
> 0.

Case 3. If we take 𝜖 = 0, 𝛿 = 3, and 𝜃 = 5, then

(V

)
2

= (𝜏
1
+ 2𝜏
2
Γ + 3𝜏

3
Γ
2
)
2

× (𝜉
5
Γ
5
+ 𝜉
4
Γ
4
+ 𝜉
3
Γ
3
+ 𝜉
2
Γ
2
+ 𝜉
1
Γ + 𝜉
0
)

× (𝜁
0
)
−1

,

(36)

where 𝜉
5
̸= 0 and 𝜁

0
̸= 0. Respectively, solving the algebraic

equation system (9) yields

𝜉
0
=

𝜉
5
(𝜏
2

2
− 4𝜏
1
𝜏
3
) (2𝜏
3

2
− 9𝜏
1
𝜏
2
𝜏
3
+ 2√(𝜏

2

2
− 3𝜏
1
𝜏
3
)
3

)

81𝜏
5

3

,

𝜉
1
=−

𝜉
5
(4𝜏
4

2
+ 9𝜏
1
𝜏
2

2
𝜏
3
−108𝜏

2

1
𝜏
2

3
+4𝜏
2
√(𝜏
2

2
− 3𝜏
1
𝜏
3
)
3

)

81𝜏
4

3

,

𝜉
2
=

𝜉
5
(−11𝜏

3

2
+ 63𝜏
1
𝜏
2
𝜏
3
− 2√(𝜏

2

2
− 3𝜏
1
𝜏
3
)
3

)

27𝜏
3

3

,

𝜉
3
=

𝜉
5
(𝜏
2

2
+ 7𝜏
1
𝜏
3
)

3𝜏
2

3

, 𝜉
4
=
5𝜉
5
𝜏
2

3𝜏
3

,

𝜁
0
= −

9𝑏𝑛 (𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜉
5

2𝑎𝜏
3
(𝑚 − 𝑛 + 1)

2
,

𝜏
0
= −

2𝜏
3

2
− 9𝜏
1
𝜏
2
𝜏
3
+ 2√(𝜏

2

2
− 3𝜏
1
𝜏
3
)
3

27𝜏
2

3

,

𝜏
1
= 𝜏
1
, 𝜏

2
= 𝜏
2
,

𝜏
3
= 𝜏
3
, 𝜉

5
= 𝜉
5
,

𝑐 = −

8𝑎𝑛√(𝜏
2

2
− 3𝜏
1
𝜏
3
)
3

27 (𝑚 + 1) (𝑚 + 𝑛 + 1) 𝜏
2

3

.

(37)

Substituting these results into (6) and (10), we get

± (𝜂 − 𝜂
0
)

= 3𝐴
2
∫( (𝑑Γ)

× (Γ
5
+
𝜉
4

𝜉
5

Γ
4
+
𝜉
3

𝜉
5

Γ
3

+
𝜉
2

𝜉
5

Γ
2
+
𝜉
1

𝜉
5

Γ +
𝜉
0

𝜉
5

)

−1/2

) ,

(38)

where 𝐴
2
= √−𝑏𝑛(1+𝑚)(1+𝑚+𝑛)/2𝑎𝜏

3
(1+𝑚−𝑛)

2. Integrat-
ing (38), we obtain the solutions to (1) as follows:

± (𝜂 − 𝜂
0
) = −

2𝐴
2

√(Γ − 𝛼
1
)
3

,

± (𝜂 − 𝜂
0
) =

3𝐴
2
arctanh [√(Γ − 𝛼

2
) / (𝛼
1
− 𝛼
2
)]

(𝛼
1
− 𝛼
2
)
3/2

−
3𝐴
2
√Γ − 𝛼

2

(𝛼
1
− 𝛼
2
) (Γ − 𝛼

1
)
, 𝛼
1
> 𝛼
2
,

± (𝜂 − 𝜂
0
) = −

6𝐴
2
arctan [√(Γ − 𝛼

1
) / (𝛼
1
− 𝛼
2
)]

(𝛼
1
− 𝛼
2
)
3/2

−
6𝐴
2

√Γ − 𝛼
1
(𝛼
1
− 𝛼
2
)
,

± (𝜂 − 𝜂
0
) =

6𝐴
2
arctanh [√(Γ − 𝛼

3
) / (𝛼
2
− 𝛼
3
)]

𝛼
1
− 𝛼
2

× (
1

√𝛼2 − 𝛼3

−
1

√𝛼1 − 𝛼3

) ,

𝛼
1
> 𝛼
2
> 𝛼
3
,

± (𝜂 − 𝜂
0
)

=
−6𝐴
2

√Γ − 𝛼
1
(𝛼
1
− 𝛼
2
) (𝛼
1
− 𝛼
3
)

× [√(Γ − 𝛼
2
) (Γ − 𝛼

3
) + 𝑖 (𝐸 (𝜑, 𝑙) − 𝐹 (𝜑, 𝑙))] ,

(39)
where

𝐸 (𝜑, 𝑙) = ∫

𝜑

0

√1 − 𝑙2sin2𝜓𝑑𝜓,

𝜑
2
= − arcsin√ Γ − 𝛼

1

𝛼
2
− 𝛼
1

,

𝑙
2

2
=
𝛼
1
− 𝛼
2

𝛼
1
− 𝛼
3

,

± (𝜂 − 𝜂
0
)

=
−6𝑖𝐴
2

√𝛼2 − 𝛼3 (𝛼1 − 𝛼2)
(𝐹 (𝜑, 𝑙) − 𝜋 (𝜑, 𝑛, 𝑙)) ,

𝛼
1
> 𝛼
2
> 𝛼
3
> 𝛼
4
,

(40)

where

𝜑
3
= − arcsin√

𝛼
3
− 𝛼
2

Γ − 𝛼
2

, 𝑙
2

3
=
𝛼
2
− 𝛼
4

𝛼
2
− 𝛼
3

,

𝑛 =
𝛼
2
− 𝛼
1

𝛼
2
− 𝛼
3

.

(41)
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Also 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛼
4
, and 𝛼

5
are the roots of the polynomial

equation

Γ
5
+
𝜉
4

𝜉
5

Γ
4
+
𝜉
3

𝜉
5

Γ
3
+
𝜉
2

𝜉
5

Γ
2
+
𝜉
1

𝜉
5

Γ +
𝜉
0

𝜉
5

= 0. (42)

Case 4. If we take 𝜖 = 1, 𝛿 = 1, and 𝜃 = 4, then

(V

)
2

=

𝜏
2

1
(𝜉
4
Γ
4
+ 𝜉
3
Γ
3
+ 𝜉
2
Γ
2
+ 𝜉
1
Γ + 𝜉
0
)

𝜁
0
+ 𝜁
1
Γ

, (43)

where 𝜉
4
̸= 0 and 𝜁

1
̸= 0. Respectively, solving the algebraic

equation system (9) yields

𝜉
0
=

𝜁
0
𝜏
2

0
(𝑀 + 2𝑎(1 + 𝑚 − 𝑛)

2
(2𝜁
1
𝜏
0
+ 𝜁
0
𝜏
1
))

𝑏𝑛 (1 + 𝑚) (1 + 𝑚 + 𝑛) 𝜁
1
𝜏
2

1

,

𝜉
3
= 𝜉
3
,

𝜉
4
= −

2𝑎(1 + 𝑚 − 𝑛)
2
𝜁
1
𝜏
1

𝑏𝑛 (1 + 𝑚) (1 + 𝑚 + 𝑛)
,

𝜉
1
= (𝜏
0
(4𝑎(1 + 𝑚 − 𝑛)

2
𝜁
2

1
𝜏
2

0

+ 2𝜁
0
𝜏
1
(𝑀 + 2𝑎(1 + 𝑚 − 𝑛)

2
𝜁
0
𝜏
1
)

+𝜁
1
𝜏
0
(𝑀 + 8𝑎(1 + 𝑚 − 𝑛)

2
𝜁
0
𝜏
1
)))

× (𝑏𝑛 (1 + 𝑚) (1 + 𝑚 + 𝑛) 𝜁
1
𝜏
2

1
)
−1

,

𝜉
2
= (6𝑎(1 + 𝑚 − 𝑛)

2
𝜁
2

1
𝜏
2

0

+ 2𝜁
1
𝜏
0
(𝑀 + 2𝑎(1 + 𝑚 − 𝑛)

2
𝜁
0
𝜏
1
)

+𝜁
0
𝜏
1
(𝑀 + 2𝑎(1 + 𝑚 − 𝑛)

2
𝜁
0
𝜏
1
))

× (𝑏𝑛 (1 + 𝑚) (1 + 𝑚 + 𝑛) 𝜁
1
𝜏
2

1
)
−1

,

𝜁
0
= 𝜁
0
, 𝜁

1
= 𝜁
1
,

𝜏
0
= 𝜏
0
, 𝜏

1
= 𝜏
1
,

𝑐 =

𝑛 (𝑀 + 2𝑎(1 + 𝑚 − 𝑛)
2
(3𝜁
1
𝜏
0
+ 𝜁
0
𝜏
1
))

(1 + 𝑚) (1 + 𝑚 + 𝑛) (1 + 𝑚 − 𝑛)
2
𝜁
1

,

(44)

where𝑀 = 𝑏𝑛(1 +𝑚)(1 +𝑚+ 𝑛)𝜉
3
. Substituting these results

into (6) and (10), we get

± (𝜂 − 𝜂
0
)

= 𝐴
3
∫((Γ +

𝜁
0

𝜁
1

)

× (Γ
4
+ (

𝜉
3

𝜉
4

)Γ
3
+ (

𝜉
2

𝜉
4

)Γ
2

+ (
𝜉
1

𝜉
4

)Γ + (
𝜉
0

𝜉
4

))

−1

)

1/2

𝑑Γ,

(45)

where 𝐴
3
= √𝑏𝑛(1 + 𝑚)(1 + 𝑚 + 𝑛)/2𝑎𝜏

1
(1 + 𝑚 − 𝑛)

2. Inte-
grating (45), we obtain the solution to (1) as follows:

± (𝜂 − 𝜂
0
) = −𝐴

3
√

𝜁
1

𝜁
0
+ 𝜁
1
𝛼
1

× arctanh[√
𝜁
0
+ 𝜁
1
Γ

𝜁
0
+ 𝜁
1
𝛼
1

]

−
𝐴
3

Γ − 𝛼
1

√
𝜁
0
+ 𝜁
1
Γ

𝜁
1

,

± (𝜂 − 𝜂
0
) =

2𝐴
3

𝛼
1
− 𝛼
2

× (−√
𝜁
0
+ 𝜁
1
𝛼
1

𝜁
1

× arctanh[√
𝜁
0
+ 𝜁
1
Γ

𝜁
0
+ 𝜁
1
𝛼
1

]

+ √𝜁
0
+ 𝜁
1
𝛼
2

× arctanh[√
𝜁
0
+ 𝜁
1
Γ

𝜁
0
+ 𝜁
1
𝛼
2

]) ,

± (𝜂 − 𝜂
0
) = 2𝐴

3

× (√
(Γ − 𝛼

1
) (𝜁
0
+ 𝜁
1
Γ)

𝜁
1
(Γ − 𝛼

2
)
2

+𝑖√𝛼
1
−𝛼
2
(𝐸 (𝜑, 𝑙)−𝐹 (𝜑, 𝑙))) ,

(46)

where

𝜑
4
= − arcsin√

𝜁
1
(𝛼
1
− Γ)

𝜁
0
+ 𝜁
1
𝛼
1

,

𝑙
2

4
=

𝜁
0
+ 𝜁
1
𝛼
1

𝜁
1
(𝛼
1
− 𝛼
2
)
,

± (𝜂 − 𝜂
0
) =

−2𝐴
3

√𝛼2 − 𝛼1

𝐸 (𝜑, 𝑙) ,

(47)

where

𝜑
5
= arcsin[√

𝛼
2
− 𝛼
1

Γ − 𝛼
1

] ,

𝑙
2

5
=

𝜁
0
+ 𝜁
1
𝛼
1

𝜁
1
(𝛼
1
− 𝛼
2
)
,

± (𝜂 − 𝜂
0
) =

−2𝑖𝐴
3

(𝛼
1
− 𝛼
2
)√𝜁
1
(𝜁
0
+ 𝜁
1
𝛼
2
)
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× (𝜁
0
(𝐹 (𝜑, 𝑙) − 𝜋 (𝜑, 𝑛, 𝑙))

+𝜁
1
(𝛼
2
𝐹 (𝜑, 𝑙) − 𝛼

2
𝜋 (𝜑, 𝑛, 𝑙))) ,

(48)

where

𝜑
6
= − arcsin√

𝜁
0
+ 𝜁
1
𝛼
2

𝜁
1
(𝛼
2
− Γ)

,

𝑙
2

6
=
𝜁
1
(𝛼
2
− 𝛼
3
)

𝜁
0
+ 𝜁
1
𝛼
2

, 𝑛
1
=
𝜁
1
(𝛼
2
− 𝛼
1
)

𝜁
0
+ 𝜁
1
𝛼
2

.

(49)

Case 5. If we take 𝜖 = 1, 𝛿 = 2, and 𝜃 = 5, then

(V

)
2

=

(𝜏
1
+ 2𝜏
2
Γ)
2

(𝜉
5
Γ
5
+ 𝜉
4
Γ
4
+ 𝜉
3
Γ
3
+ 𝜉
2
Γ
2
+ 𝜉
1
Γ + 𝜉
0
)

𝜁
0
+ 𝜁
1
Γ

,

(50)

where 𝜉
5
̸= 0 and 𝜁

1
̸= 0. Respectively, solving the algebraic

equation system (9) yields

𝜉
0
=
𝜏
2

0
(−2𝜉
5
𝜏
1
+ 𝜉
4
𝜏
2
)

𝜏
3

2

,

𝜉
1
=

𝜏
0
(2𝜉
4
𝜏
1
𝜏
2
+ 𝜉
5
(−4𝜏
2

1
+ 𝜏
0
𝜏
2
))

𝜏
3

2

,

𝜉
2
=

𝜉
4
𝜏
2
(𝜏
2

1
+ 2𝜏
0
𝜏
2
) − 2𝜉

5
(𝜏
3

1
+ 𝜏
0
𝜏
1
𝜏
2
)

𝜏
3

2

,

𝜉
3
=
−3𝜉
5
𝜏
2

1
+ 2𝜏
2
(𝜉
5
𝜏
0
+ 𝜉
4
𝜏
1
)

𝜏
2

2

,

𝜁
0
=
−2𝑏𝑛 (1 + 𝑚) (1 + 𝑚 + 𝑛) (𝜉

4
𝜏
2
− 2𝜉
5
𝜏
1
)

𝑎(1 + 𝑚 − 𝑛)
2
𝜏
2

2

,

𝜁
1
=
−2𝑏𝑛 (1 + 𝑚) (1 + 𝑚 + 𝑛) 𝜉

5

𝑎(1 + 𝑚 − 𝑛)
2
𝜏
2

2

,

𝜉
4
= 𝜉
4
, 𝜉

5
= 𝜉
5
,

𝜏
0
= 𝜏
0
, 𝜏

1
= 𝜏
1
, 𝜏

2
= 𝜏
2
,

𝑐 = −

𝑎𝑛 (𝜏
2

1
− 4𝜏
0
𝜏
2
)

2 (1 + 𝑚) (1 + 𝑚 + 𝑛) 𝜏
2

.

(51)

Substituting these results into (6) and (10), we get

± (𝜂 − 𝜂
0
) = 𝐴

4

× ∫((Γ +
𝜁
0

𝜁
1

)

× (Γ
5
+
𝜉
4

𝜉
5

Γ
4
+
𝜉
3

𝜉
5

Γ
3

+
𝜉
2

𝜉
5

Γ
2
+
𝜉
1

𝜉
5

Γ +
𝜉
0

𝜉
5

)

−1

)

1/2

𝑑Γ,

(52)

where 𝐴
4
= √−2𝑏𝑛(1 + 𝑚)(1 + 𝑚 + 𝑛)/𝑎𝜏

2

2
(1 + 𝑚 − 𝑛)

2.
Integrating (52), we obtain the solution to (1) as follows:

± (𝜂 − 𝜂
0
) =

−2𝐴
4

3√𝜁
1
(𝜁
0
+ 𝜁
1
𝛼
1
)
(
𝜁
0
+ 𝜁
1
Γ

Γ − 𝛼
1

)

3/2

,

± (𝜂 − 𝜂
0
)

=
−𝐴
4
(𝜁
0
+ 𝜁
1
𝛼
2
)

2(𝛼
1
− 𝛼
2
)
3/2

√𝜁
1
(𝜁
0
+ 𝜁
1
𝛼
1
)

× ln  (Γ − 𝛼1)

× (𝜁
0
(Γ + 𝛼

1
− 2𝛼
2
)

+2√(𝜁
0
+𝜁
1
Γ) (𝜁
0
+𝜁
1
𝛼
1
) (Γ−𝛼

2
) (𝛼
1
−𝛼
2
)

+𝜁
1
(2Γ𝛼
1
− 𝛼
2
(Γ + 𝛼

1
)))
−1

−
𝐴
4

(𝛼
1
−𝛼
2
) (Γ−𝛼

1
)

√
(𝜁
0
+𝜁
1
Γ) (Γ−𝛼

2
)

𝜁
1

, 𝛼
1
>𝛼
2
,

± (𝜂 − 𝜂
0
)

=
−2𝐴
4

(𝛼
1
− 𝛼
2
)
√

𝜁
0
+ 𝜁
1
Γ

𝜁
1
(Γ − 𝛼

1
)

−
2𝐴
4

(𝛼
1
− 𝛼
2
)
3/2

√
𝜁
0
+ 𝜁
1
𝛼
2

𝜁
1

× arctan[√
(Γ − 𝛼

1
) (𝜁
0
+ 𝜁
1
𝛼
2
)

(𝛼
1
− 𝛼
2
) (𝜁
0
+ 𝜁
1
Γ)
] ,

± (𝜂 − 𝜂
0
)

=
−𝐴
4

𝛼
1
− 𝛼
3

√
𝜁
0
+ 𝜁
1
𝛼
2

𝜁
1
(𝛼
2
− 𝛼
3
)

× ln  (𝛼2 − Γ)

× (𝜁
0
(Γ + 𝛼

2
− 2𝛼
3
)

+2√(𝜁
0
+𝜁
1
Γ) (𝜁
0
+𝜁
1
𝛼
2
) (Γ−𝛼

3
) (𝛼
2
−𝛼
3
)

+𝜁
1
(2Γ𝛼
2
− 𝛼
3
(Γ + 𝛼

2
)))
−1

−
𝐴
4

𝛼
1
− 𝛼
3

× √
𝜁
0
+ 𝜁
1
𝛼
1

𝜁
1
(𝛼
1
− 𝛼
3
)

× ln  (𝜁0 (Γ + 𝛼1 − 2𝛼3)

+ 2√(𝜁
0
+ 𝜁
1
Γ) (𝜁
0
+ 𝜁
1
𝛼
1
) (Γ − 𝛼

3
) (𝛼
1
− 𝛼
3
)
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+ 𝜁
1
(2Γ𝛼
1
− 𝛼
3
(Γ + 𝛼

1
)))

× (Γ − 𝛼
2
)
−1
, 𝛼
1
> 𝛼
2
> 𝛼
3
,

± (𝜂 − 𝜂
0
) =

−2𝐴
4

𝛼
1
− 𝛼
3

× √
𝜁
0
+ 𝜁
1
𝛼
3

𝜁
1
(𝛼
1
− 𝛼
2
)
𝐸 (𝜑, 𝑙) ,

𝛼
1
> 𝛼
2
> 𝛼
3
,

(53)

where

𝜑
7
= arcsin√

(Γ − 𝛼
3
) (𝛼
2
− 𝛼
1
)

(Γ − 𝛼
1
) (𝛼
2
− 𝛼
3
)
,

𝑙
2

7
=
(𝛼
3
− 𝛼
2
) (𝜁
0
+ 𝜁
1
𝛼
1
)

(𝛼
1
− 𝛼
2
) (𝜁
0
+ 𝜁
1
𝛼
3
)
,

± (𝜂 − 𝜂
0
)

=
2𝐴
4
(𝛼
2
− 𝛼
4
)

(𝛼
1
− 𝛼
2
) (𝛼
3
− 𝛼
4
)√𝜁
1
(𝛼
2
− 𝛼
3
) (𝜁
0
+ 𝜁
1
𝛼
4
)

× (
(𝜁
0
+ 𝜁
1
Γ) (𝛼
3
− 𝛼
4
)

𝛼
1
− 𝛼
2

𝜋 (𝜑, 𝑛, 𝑙)

+
(𝜁
0
+ 𝜁
1
𝛼
2
) (𝛼
4
− 𝛼
3
)

𝛼
2
− 𝛼
4

𝐹 (𝜑, 𝑙)) ,

(54)

where

𝜑
8
= arcsin√

(Γ − 𝛼
3
) (𝛼
2
− 𝛼
1
)

(Γ − 𝛼
1
) (𝛼
2
− 𝛼
3
)
,

𝑙
2

8
=
(𝛼
3
− 𝛼
2
) (𝜁
0
+ 𝜁
1
𝛼
1
)

(𝛼
1
− 𝛼
2
) (𝜁
0
+ 𝜁
1
𝛼
3
)
,

𝑛
2
= −

(𝛼
1
− 𝛼
2
) (𝛼
3
− 𝛼
4
)

(𝛼
2
− 𝛼
3
) (𝛼
1
− 𝛼
4
)
,

𝛼
1
> 𝛼
2
> 𝛼
3
> 𝛼
4
.

(55)

4. Discussion

Thus we introduce a more general extended trial equation
method for nonlinear partial differential equations as follows.

Step 1. Extended trial equation (6) can be reduced to the
following more general form:

𝑢 =
𝐴 (Γ)

𝐵 (Γ)
=
∑
𝛿

𝑖=0
𝜏
𝑖
Γ
𝑖

∑
𝜇

𝑗=0
𝜔
𝑗
Γ𝑗
, (56)

where

(Γ

)
2

= Λ (Γ) =
Φ (Γ)

Ψ (Γ)
=
𝜉
𝜃
Γ
𝜃
+ ⋅ ⋅ ⋅ + 𝜉

1
Γ + 𝜉
0

𝜁
𝜖
Γ𝜖 + ⋅ ⋅ ⋅ + 𝜁

1
Γ + 𝜁
0

. (57)

Here, 𝜏
𝑖
(𝑖 = 0, . . . , 𝛿), 𝜔

𝑗
(𝑗 = 0, . . . , 𝜇), 𝜉

𝜍
(𝜍 = 0, . . . , 𝜃), and

𝜁
𝜎
(𝜎 = 0, . . . , 𝜖) are the constants to be specified.

Step 2. Taking trial equations (56) and (57), we derive the
following equations:

(𝑢

)
2

=
Φ (Γ)

Ψ (Γ)

(𝐴

(Γ) 𝐵 (Γ) − 𝐴 (Γ) 𝐵


(Γ))
2

𝐵4 (Γ)
, (58)

𝑢

= (𝐴


(Γ) 𝐵 (Γ) − 𝐴 (Γ) 𝐵


(Γ))

× {(Φ


(Γ) Ψ (Γ) − Φ (Γ)Ψ


(Γ)) 𝐵 (Γ)

−4Φ (Γ)Ψ (Γ) 𝐵


(Γ)}

+ 2Φ (Γ)Ψ (Γ) 𝐵 (Γ) (𝐴


(Γ) 𝐵 (Γ) − 𝐴 (Γ) 𝐵


(Γ))

× (2𝐵
3

(Γ) Ψ
2

(Γ))
−1

(59)

and other derivation terms such as 𝑢.

Step 3. Substituting 𝑢, 𝑢, and other derivation terms into
(5) yields the following equation:

Ω (Γ) = 
𝑠
Γ
𝑠
+ ⋅ ⋅ ⋅ + 

1
Γ + 
0
= 0. (60)

According to the balance principle we can determine a
relation of 𝜃, 𝜖, 𝛿, and 𝜇.

Step 4. Letting the coefficients of Ω(Γ) all be zero will yield
an algebraic equations system 

𝑖
= 0 (𝑖 = 0, . . . , 𝑠). Solving

this equations system, we will determine the values 𝜏
0
, . . . 𝜏
𝛿
;

𝜔
0
, . . . , 𝜔

𝜇
; 𝜉
0
, . . . , 𝜉

𝜃
; and 𝜁

0
, . . . , 𝜁

𝜖
.

Step 5. Substituting the results obtained in Step 4 into (57)
and integrating (57), we can find the exact solutions of (3).

5. Conclusions and Remarks

In this study, we proposed an extended trial equationmethod
and used it to obtain some soliton and elliptic function
solutions to the generalized 𝐾(𝑚, 𝑛) equation. Otherwise,
we discussed a more general trial equation method. The
proposed method can also be applied to other nonlinear
differential equations with nonlinear evolution.
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A numerical method is presented to obtain the approximate solutions of the fractional partial differential equations (FPDEs). The
basic idea of this method is to achieve the approximate solutions in a generalized expansion form of two-dimensional fractional-
order Legendre functions (2D-FLFs). The operational matrices of integration and derivative for 2D-FLFs are first derived. Then,
by these matrices, a system of algebraic equations is obtained from FPDEs. Hence, by solving this system, the unknown 2D-FLFs
coefficients can be computed. Three examples are discussed to demonstrate the validity and applicability of the proposed method.

1. Introduction

Fractional partial differential equations play a significant role
in modeling physical and engineering processes. Therefore,
there is an urgent need to develop efficient and fast con-
vergent methods for FPDEs. Recently, several different tech-
niques, including Adomian’s decomposition method (ADM)
[1, 2], homotopy perturbation method (HPM) [3–5], varia-
tional iteration method (VIM) [6–8], spectral methods [9–
13], orthogonal polynomials method [14–17], and wavelets
method [18–21] have been presented and applied to solve
FPDEs.

The method based on the orthogonal functions is a won-
derful and powerful tool for solving the FDEs andhas enjoyed
many successes in this realm.The operational matrix of frac-
tional integration has been determined for some types of
orthogonal polynomials, such as Chebyshev polynomials
[16], Legendre polynomials [22], Laguerre polynomials [23–
25], and Jacobi polynomials [26]. Moreover, the operational
matrix of fractional derivative for Chebyshev polynomials
[9] and Legendre polynomials [9, 14] also has been derived.
However, since these polynomials using integer power series
to approximate fractional ones, it cannot accurately represent

properties of fractional calculus. Recently, Rida and Yousef
[27] presented a fractional extension of the classical Legendre
polynomials by replacing the integer order derivative in Rod-
rigues formula with fractional order derivatives.The defect is
that the complexity of these functions made them unsuitable
for solving FDEs. Subsequently, Kazem et al. [28] presented
the orthogonal fractional order Legendre functions based on
shifted Legendre polynomials to find the numerical solution
of FDEs and drew a conclusion that their method is accurate,
effective, and easy to implement.

Benefiting from their “exponential-convergence” prop-
erty when smooth solutions are involved, spectral methods
have been widely and effectively used for the numerical solu-
tion of partial differential equations.The basic idea of spectral
methods is to expand a function into sets of smooth global
functions, called the trial functions. Because of their special
properties, the orthogonal polynomials are usually chosen to
be trial functions. Spectral methods can obtain very accurate
approximations for a smooth solution while only need a few
degrees of freedom.Recently, Chebyshev spectralmethod [9],
Legendre spectral method [10], and adaptive pseudospectral
method [11] were proposed for solving fractional boundary
value problems. Moreover, generalized Laguerre spectral
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algorithms and Legendre spectral Galerkin method were
developed by Baleanu et al. [12] and Bhrawy and Alghamdi
[13] for fractional initial value problems, respectively.

Motivated and inspired by the ongoing research in or-
thogonal polynomials methods and spectral methods, we
construct two-dimensional fractional-order Legendre func-
tions and derive the operational matrices of integration and
derivative for the solution of FPDEs. To the best of the
authors’ knowledge, such approach has not been employed
for solving FPDEs.

The rest of the paper is organized as follows. In Section 2,
we introduce some mathematical preliminaries of the frac-
tional calculus theory and fractional-order Legendre func-
tions. In Section 3, a basis of 2D-FLFs is defined and some
properties are given. Section 4 is devoted to the operational
matrices of fractional derivative and integration for 2D-FLFs.
Some numerical examples are presented in Section 5. Finally,
we conclude the paper with some remarks.

2. Preliminaries and Notations

2.1. Fractional Calculus Theory. Some necessary definitions
and Lemmaof the fractional calculus theory [29, 30] are listed
here for our subsequent development.

Definition 1. A real function ℎ(𝑡), 𝑡 > 0, is said to be in the
space 𝐶

𝜇
, 𝜇 ∈ 𝑅, if there exists a real number 𝑝 > 𝜇, such that

ℎ(𝑡) = 𝑡
𝑝
ℎ
1
(𝑡), where ℎ

1
(𝑡) ∈ 𝐶(0,∞), and it is said to be in

the space 𝐶𝑛
𝜇
if and only if ℎ(𝑛) ∈ 𝐶

𝜇
, 𝑛 ∈ 𝑁.

Definition 2. Riemann-Liouville fractional integral operator
(𝐽𝛼) of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1 is defined as

𝐽
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1
𝑓 (𝜏) 𝑑𝜏, 𝑡 > 0,

𝐽
0
𝑓 (𝑡) = 𝑓 (𝑡) ,

(1)

where Γ(𝛼) is the well-known Gamma function. Some prop-
erties of the operator 𝐽𝛼 can be found, for example, in [29, 30].

Definition 3. The fractional derivative of 𝑓(𝑥) in the Caputo
sense is defined as

(𝐷
𝛼
𝑓) (𝑥)

=

{{{{{{{{{

{{{{{{{{{

{

1

Γ (𝑚 − 𝛼)

×∫

𝑥

0

𝑓
(𝑚)
(𝜉)

(𝑥 − 𝜉)
𝛼−𝑚+1

𝑑𝜉, (𝛼 > 0, 𝑚 − 1 < 𝛼 < 𝑚) ,

𝑑
𝑚
𝑓 (𝑥)

𝑑𝑥𝑚
, 𝛼 = 𝑚,

(2)

where 𝑓 : 𝑅 → 𝑅, 𝑥 → 𝑓(𝑥) denotes a continuous (but not
necessarily differentiable) function.

Lemma 4. Let 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ 𝑁, 𝑡 > 0, ℎ ∈ 𝐶𝑛
𝜇
, 𝜇 ≥ −1.

Then

(𝐽
𝛼
𝐷
𝛼
) ℎ (𝑡) = ℎ (𝑡) −

𝑛−1

∑

𝑘=0

ℎ
(𝑘)
(0
+
)
𝑡
𝑘

𝑘!
. (3)

2.2. Fractional-Order Legendre Functions. In this section,
we introduce the fractional-order Legendre functions which
were first proposed by Kazem et al. [28]. The normalized
eigenfunctions problem for FLFs is

((𝑥 − 𝑥
1+𝛼
) 𝐿
𝛼

𝑖
(𝑥))


+ 𝛼
2
𝑖 (𝑖 + 1) 𝑥

𝛼−1
𝐿
𝛼

𝑖
(𝑥) = 0,

𝑥 ∈ (0, 1) ,

(4)

which is a singular Sturm-Liouville problem. The fractional-
order Legendre polynomials, denoted by FL𝛼

𝑖
(𝑥), are defined

on the interval [0, 1] and can be determined with the aid of
following recurrence formulae:

FL𝛼
0
(𝑥) = 1, FL𝛼

1
(𝑥) = 2𝑥

𝛼
− 1,

FL𝛼
𝑖+1
(𝑥) =

(2𝑖 + 1) (2𝑥
𝛼
− 1)

𝑖 + 1
FL𝛼
𝑖
(𝑥)

−
𝑖

𝑖 + 1
FL𝛼
𝑖−1
(𝑥) , 𝑖 = 1, 2, . . . ,

(5)

and the analytic form of FL𝛼
𝑖
(𝑥) of degree 𝑖 is given by

FL𝛼
𝑖
(𝑥) =

𝑖

∑

𝑠=0

𝑏
𝑠,𝑖
𝑥
𝑠𝛼
, 𝑏

𝑠,𝑖
=
(−1)
𝑖+𝑠
(𝑖 + 𝑠)!

(𝑖 − 𝑠)!(𝑠!)
2
, (6)

where FL𝛼
𝑖
(0) = (−1)

𝑖 and FL𝛼
𝑖
(1) = 1. The orthogonality

condition is

∫

1

0

FL𝛼
𝑛
(𝑥) FL𝛼

𝑚
(𝑥) 𝜔 (𝑥) 𝑑𝑥 =

1

(2𝑛 + 1) 𝛼
𝛿
𝑛𝑚
, (7)

where 𝜔(𝑥) = 𝑥𝛼−1 is the weight function and 𝛿 is the
Kronecker delta. For more details, please see [28].

3. 2D-FLFs

In this section, the definitions and theorems of 2D-FLFs are
given by Liu’s method described in [31].

3.1. Definitions and Properties of the 2D-FLFs

Definition 5. Let {FL𝛼
𝑛
(𝑥)}
∞

𝑛=0
be the fractional Legendre poly-

nomials on [0, 1]; we call {FL𝛼
𝑖
(𝑥)FL𝛽

𝑗
(𝑦)}
∞

𝑖,𝑗=0

the two-dimen-
sional fractional Legendre polynomials on [0, 1] × [0, 1].

Theorem 6. The basis {𝐹𝐿𝛼
𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦)}
∞

𝑖,𝑗=0

is orthogonal on
[0, 1] × [0, 1] with the weight function 𝜔(𝑥, 𝑦) = 𝜔(𝑥)𝜔(𝑦) =
𝑥
𝛼−1
𝑦
𝛽−1.
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Proof. Let 𝑖 ̸=𝑚 or 𝑗 ̸= 𝑛

∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) FL𝛼

𝑚
(𝑥) FL𝛽

𝑛
(𝑦) 𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑥) FL𝛼
𝑖
(𝑥) FL𝛼

𝑚
(𝑥) 𝑑𝑥

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦) FL𝛽

𝑛
(𝑦) 𝑑𝑦 = 0.

(8)

Theorem 7. Consider

∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) [𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛽

𝑗
(𝑦)]
2

𝑑𝑥 𝑑𝑦

=
1

(2𝑖 + 1) 𝛼

1

(2𝑗 + 1) 𝛽
,

∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) [𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛽

𝑗
(𝑦)]
2

𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑥) [𝐹𝐿
𝛼

𝑖
(𝑥)]
2

𝑑𝑥∫

1

0

𝜔 (𝑦) [𝐹𝐿
𝛽

𝑗
(𝑦)]
2

𝑑𝑦

=
1

(2𝑖 + 1) 𝛼

1

(2𝑗 + 1) 𝛽
.

(9)

3.2. 2D-FLFs Expansion

Definition 8. A function of two independent variables𝑓(𝑥, 𝑦)
which is integrable in square [0, 1] × [0, 1] can be expanded
as

𝑓 (𝑥, 𝑦) =

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎
𝑖𝑗
FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) , (10)

where

𝑎
𝑖𝑗
= (2𝑖 + 1) (2𝑗 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) 𝑑𝑥 𝑑𝑦.

(11)

Theorem 9. If the series∑∞
𝑖=0
∑
∞

𝑗=0
𝑎
𝑖𝑗
𝐹𝐿
𝛼

𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦) converges

uniformly to 𝑓(𝑥, 𝑦) on the square [0, 1] × [0, 1], then we have

𝑎
𝑖𝑗
= (2𝑖 + 1) (2𝑗 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) 𝐹𝐿
𝛼

𝑖
(𝑥) 𝐹𝐿

𝛽

𝑗
(𝑦) 𝑑𝑥 𝑑𝑦.

(12)

Proof. By multiplying 𝜔(𝑥, 𝑦)FL𝛼
𝑛
(𝑥)FL𝛽

𝑚
(𝑦) on both sides of

(10), where 𝑛 and 𝑚 are fixed and integrating termwise with
regard to 𝑥 and 𝑦 on [0, 1] × [0, 1], then

∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑛
(𝑥) FL𝛽

𝑚
(𝑦) 𝑑𝑥 𝑑𝑦

=

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎
𝑖𝑗
∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦)

× FL𝛼
𝑛
(𝑥) FL𝛽

𝑚
(𝑦) 𝑑𝑥 𝑑𝑦

=

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎
𝑖𝑗
∫

1

0

𝜔 (𝑥) FL𝛼
𝑖
(𝑥) FL𝛼

𝑛
(𝑥) 𝑑𝑥

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦) FL𝛽

𝑚
(𝑦) 𝑑𝑦

= 𝑎
𝑛𝑚
∫

1

0

𝜔 (𝑥) [FL𝛼
𝑛
(𝑥)]
2

𝑑𝑥∫

1

0

𝜔 (𝑦) [FL𝛽
𝑚
(𝑦)]
2

𝑑𝑦

= 𝑎
𝑛𝑚

1

(2𝑛 + 1) 𝛼

1

(2𝑚 + 1) 𝛽
.

(13)

Finally one can get (11).

If the infinite series in (10) is truncated, then it can be
written as

𝑓 (𝑥, 𝑦) ≈

𝑚

∑

𝑖=0

𝑚


∑

𝑗=0

𝑎
𝑖𝑗
FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) = 𝐶

𝑇
Ψ (𝑥
𝛼
, 𝑦
𝛼
) , (14)

where 𝐶 and Ψ(𝑥𝛼, 𝑦𝛽) are given by

𝐶 = [𝑐
0,0
, 𝑐
0,1
, . . . , 𝑐

0,𝑚

−1
, 𝑐
1,0
, 𝑐
1,1
, . . . ,

𝑐
1,𝑚

−1
, . . . , 𝑐

𝑚−1,0
, 𝑐
𝑚−1,1
, . . . , 𝑐

𝑚−1,𝑚

−1
]
𝑇

,

(15)

Ψ(𝑥
𝛼
, 𝑦
𝛽
) = [𝜓

0,0
, 𝜓
0,1
, . . . , 𝜓

0,𝑚

−1
, 𝜓
1,0
, 𝜓
1,1
, . . . ,

𝜓
1,𝑚

−1
, . . . , 𝜓

𝑚−1,0
, 𝜓
𝑚−1,1
, . . . , 𝜓

𝑚−1,𝑚

−1
]
𝑇

,

(16)

where 𝜓
𝑖𝑗
= FL𝛼

𝑖
(𝑥)FL𝛽

𝑗
(𝑦), 𝑖 = 0, 1, . . . , 𝑚, and 𝑗 =

0, 1, . . . , 𝑚
.

According to the definition of FLFs, one can find that
fractional Legendre polynomials are identical to Legendre
polynomials shifted to [0, 1]when using the transform 𝑥𝛼 →
𝑥, 𝑦𝛽 → 𝑦. Therefore, in a similar method described in [31],
we can easily get the convergence and stability theorems of
proposed method.

Lemma 10. If the function 𝑓(𝑥, 𝑦) is a continuous function on
[0, 1] × [0, 1] and the series ∑∞

𝑖=0
∑
∞

𝑗=0
𝑎
𝑖𝑗
𝐹𝐿
𝛼

𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦) con-

verges uniformly to 𝑓(𝑥, 𝑦), then ∑∞
𝑖=0
∑
∞

𝑗=0
𝑎
𝑖𝑗
𝐹𝐿
𝛼

𝑖
(𝑥)𝐹𝐿

𝛽

𝑗
(𝑦)

is the 2D-FLFs expansion of 𝑓(𝑥, 𝑦).
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Proof (by contradiction). Let

𝑓 (𝑥, 𝑦) =

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑏
𝑖𝑗
FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) ,

𝑓 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎
𝑖𝑗
FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) .

(17)

Then there is at least one coefficient such that 𝑎
𝑛𝑚
̸= 𝑏
𝑛𝑚
.

However,

𝑏
𝑛𝑚
= (2𝑛 + 1) (2𝑚 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑛
(𝑥) FL𝛽

𝑚
(𝑦) 𝑑𝑥 𝑑𝑦

= 𝑎
𝑛𝑚
.

(18)

Lemma 11. If two continuous functions defined on [0, 1] ×
[0, 1] have the identical 2D-FLFs expansions, then these two
functions are identical.

Proof. Suppose that 𝑓(𝑥, 𝑦) and 𝑔(𝑥, 𝑦) can be expanded by
2D-FLFs as follows:

𝑓 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎
𝑖𝑗
FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) ,

𝑔 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎
𝑖𝑗
FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) .

(19)

By subtracting the above two equations with each other, one
has

𝑓 (𝑥, 𝑦) − 𝑔 (𝑥, 𝑦) ∼

∞

∑

𝑖=0

∞

∑

𝑗=0

(𝑎
𝑖𝑗
− 𝑎
𝑖𝑗
) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦)

= 0 =

∞

∑

𝑖=0

∞

∑

𝑗=0

0 × FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) .

(20)

Then Lemma 11 can be proved.

Theorem 12. If the 2D-FLFs expansion of a continuous func-
tion 𝑓(𝑥, 𝑦) converges uniformly, then the 2D-FLFs expansion
converges to the function 𝑓(𝑥, 𝑦).

Proof. Theorem 12 can be proved byTheorems 7 and 9.

Theorem 13. If the sum of the absolute values of the 2D-FLFs
coefficients of a continuous function𝑓(𝑥, 𝑦) forms a convergent
series, then the 2D-FLFs expansion is absolutely uniformly
convergent, and converges to the function 𝑓(𝑥, 𝑦).

Proof. Consider


∞

∑

𝑖=0

∞

∑

𝑗=0

𝑎
𝑖𝑗
FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦)



≤

∞

∑

𝑖=0

∞

∑

𝑗=0


𝑎
𝑖𝑗



FL
𝛼

𝑖
(𝑥)



FL𝛽
𝑗
(𝑦)


≤

∞

∑

𝑖=0

∞

∑

𝑗=0


𝑎
𝑖𝑗


.

(21)

Then ∑∞
𝑖=0
∑
∞

𝑗=0
𝑎
𝑖𝑗
FL𝛼
𝑖
(𝑥)FL𝛽

𝑗
(𝑦) converges uniformly to the

function 𝑓(𝑥, 𝑦).

Theorem 14. If a continuous function 𝑓(𝑥, 𝑦), defined on [0,
1] × [0, 1], has bounded mixed partial derivative 𝐷2𝛼

𝑥
𝐷
2𝛽

𝑦
𝑓(𝑥,

𝑦), then the 2D-FLFs expansion of the function converges
uniformly to the function.

Proof. Let 𝑓(𝑥, 𝑦) be a function defined on [0, 1]× [0, 1] such
that


𝐷
2𝛼

𝑥
𝐷
2𝛽

𝑦
𝑓 (𝑥, 𝑦)


≤ 𝑀, (22)

where𝑀 is a positive constant and
𝑎
𝑖𝑗
= (2𝑖 + 1) (2𝑗 + 1) 𝛼𝛽

× ∫

1

0

∫

1

0

𝑓 (𝑥, 𝑦) 𝜔 (𝑥, 𝑦) FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦) 𝑑𝑥 𝑑𝑦.

(23)

By employing the transform 𝑋 = 2𝑥𝛼 − 1 and 𝑌 = 2𝑦𝛽 − 1,
one can obtain

𝑎
𝑖𝑗
=
2𝑖 + 1

2

2𝑗 + 1

2
∫

1

−1

∫

1

−1

𝑓 (𝑋, 𝑌) 𝑝
𝑖
(𝑋) 𝑝
𝑗
(𝑌) 𝑑𝑋𝑑𝑌.

(24)
Consequently, in a similar method described in [31],
Theorem 14 can be proved.

4. Operational Matrices of 2D-FLFs

4.1. Integration Operational Matrices of 2D-FLFs

Lemma 15. The Riemann-Liouville fractional integration of
order 𝛾 > 0 of the 2D-FLFs 𝜓

𝑖𝑗
can be obtained in the form

of

𝐽
𝛾

𝑥
{𝜓
𝑖𝑗
(𝑥
𝛼
, 𝑦
𝛽
)} = 𝐹𝐿

𝛽

𝑗
(𝑦)

𝑖

∑

𝑠=0

𝑏
𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾
. (25)

Proof. Consider

𝐽
𝛾

𝑥
{𝜓
𝑖𝑗
(𝑥
𝛼
, 𝑦
𝛽
)} = 𝐽

𝛾

𝑥
{FL𝛼
𝑖
(𝑥) FL𝛽

𝑗
(𝑦)}

= 𝐽
𝛾

𝑥
{FL𝛼
𝑖
(𝑥)} FL𝛽

𝑗
(𝑦)

= 𝐽
𝛾

𝑥
{

𝑖

∑

𝑠=0

𝑏
𝑠𝑖
𝑥
𝑠𝛼
} FL𝛽
𝑗
(𝑦)

= FL𝛽
𝑗
(𝑦)

𝑖

∑

𝑠=0

𝑏
𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾
.

(26)
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Lemma 16. Let 𝛾 > 0; then one has

∫

1

0

∫

1

0

𝐽
𝛾

𝑥
{𝜓
𝑖𝑗
} 𝜓
𝑖

𝑗
𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=

{{{{{{{{

{{{{{{{{

{

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖


(𝑠 + 𝑠 + 1) 𝛼 + 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗



0, 𝑗 ̸= 𝑗

.

(27)

Proof. Using previous Lemma 15 and (6), one can have

∫

1

0

∫

1

0

𝐽
𝛾

𝑥
{𝜓
𝑖𝑗
(𝑥
𝛼
, 𝑦
𝛽
)} 𝜓
𝑖

𝑗
 (𝑥
𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖
 (𝑥
𝛼
) FL𝛽
𝑗

(𝑦
𝛽
) FL𝛽
𝑗
(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑏
𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
𝑥
𝑠𝛼+𝛾
𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗

(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖


Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

× 𝑥
(𝑠+𝑠

+1)𝛼+𝛾−1

𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗

(𝑦
𝛽
)

× (∫

1

0

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖


Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

× 𝑥
(𝑠+𝑠

+1)𝛼+𝛾−1

𝑑𝑥)𝑑𝑦

=

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖


(𝑠 + 𝑠 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗

(𝑦
𝛽
) 𝑑𝑦

=

{{{{{{{

{{{{{{{

{

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖


(𝑠 + 𝑠 + 1) 𝛼 + 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗



0, 𝑗 ̸= 𝑗

.

(28)

Theorem 17. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); then one has

𝐽
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ P𝛾
𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (29)

where P𝛾
𝑥
is the 𝑚𝑚 × 𝑚𝑚 operational matrix of Riemann-

Liouville fractional integration of order 𝛾 > 0, and has the form
as follows:

P𝛾
𝑥
=

[
[
[
[

[

𝐸
0,0

𝐸
0,1
⋅ ⋅ ⋅ 𝐸

0,𝑚−1

𝐸
1,0

𝐸
1,1
⋅ ⋅ ⋅ 𝐸

1,𝑚−1

...
... d

...
𝐸
𝑚−1,0

𝐸
𝑚−1,1

⋅ ⋅ ⋅ 𝐸
𝑚−1,𝑚−1

]
]
]
]

]

, (30)

in which 𝐸
𝑖,𝑖
 is𝑚 ×𝑚 matrix and the elements are defined as

follows:

𝐸
𝑖,𝑖
 = 𝐼

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖
 (2𝑖

+ 1) 𝛼

(𝑠 + 𝑠 + 1) 𝛼 + 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)
,

𝑖, 𝑖

= 0, 1, . . . , 𝑚 − 1,

(31)

and 𝐼 is𝑚 × 𝑚 identity matrix.

Proof. Using (29) and orthogonality property of FLFs, one
can get

P𝛾
𝑥
= ⟨𝐽
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩𝐻
−1
, (32)

where ⟨𝐽𝛾
𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
), Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩ and 𝐻−1 are two 𝑚 × 𝑚

matrices defined as

⟨𝐽
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩

= {∫

1

0

∫

1

0

𝐽
𝛾

𝑥
{Ψ
𝑘
(𝑥
𝛼
, 𝑦
𝛽
)}

× Ψ
𝑘
 (𝑥
𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦}

𝑚𝑚


𝑘,𝑘


=
{

{

{

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖


Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 + 𝛾)

×
1

(𝑠 + 𝑠 + 1) 𝛼 + 𝛾

1

(2𝑗 + 1) 𝛽

}

}

}

𝑚;𝑚


𝑖,𝑖

;𝑗=𝑗


,

𝐻
−1
= {(2𝑖


+ 1) (2𝑗 + 1) 𝛼𝛽}

𝑚;𝑚


𝑖,𝑖

;𝑗=𝑗

.

(33)

Now by substituting above equations in (32), Theorem 12
can be proved.

In a similar way as previous, one can obtain the oper-
ational matrix of Riemann-Liouville fractional integration
with respect to variable 𝑦.

Theorem 18. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); one has

𝐽
𝛾

𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ P𝛾
𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (34)
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where P𝛾
𝑦
is the 𝑚𝑚 × 𝑚𝑚 operational matrix of Riemann-

Liouville fractional integration of order 𝛾 > 0, and has the form
as follows:

P𝛾
𝑦
=

[
[
[
[

[

𝐸 𝑂 ⋅ ⋅ ⋅ 𝑂

𝑂 𝐸 ⋅ ⋅ ⋅ 𝑂

...
... d

...
𝑂 𝑂 ⋅ ⋅ ⋅ 𝐸

]
]
]
]

]

, (35)

in which 𝐸 is 𝑚 × 𝑚 matrix and the elements are defined as
follows:

𝐸
𝑗,𝑗
 =

𝑗

∑

𝑟=0

𝑗


∑

𝑟

=0

𝑏
𝑟𝑗
𝑏
𝑟

𝑗
 (2𝑗

+ 1) 𝛽

(𝑟 + 𝑟 + 1) 𝛽 + 𝛾

Γ (1 + 𝑟𝛽)

Γ (1 + 𝑟𝛽 + 𝛾)
,

𝑗, 𝑗

= 0, 1, . . . , 𝑚


− 1.

(36)

4.2. Derivative Operational Matrices of 2D-FLFs

Lemma 19. The FLFs Caputo fractional derivative of 𝛾 > 0
can be obtained in the form of

𝐷
𝛾

𝑥
{𝜓
𝑖𝑗
(𝑥
𝛼
, 𝑦
𝛽
)} = 𝐹𝐿

𝛽

𝑗
(𝑦
𝛽
)

𝑖

∑

𝑠=0

𝑏


𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
𝑥
𝑠𝛼−𝛾
,

(37)

where 𝑏
𝑠,𝑖
= 0when 𝑠𝛼 ∈ 𝑁

0
and 𝑠𝛼 < 𝛾 in other case 𝑏

𝑠,𝑖
= 𝑏
𝑠,𝑖
.

Proof. Consider

𝐷
𝛾

𝑥
{𝜓
𝑖𝑗
(𝑥
𝛼
, 𝑦
𝛽
)} = 𝐷

𝛾

𝑥
{FL𝛼
𝑖
(𝑥
𝛼
) FL𝛽
𝑗
(𝑦
𝛽
)}

= FL𝛽
𝑗
(𝑦
𝛽
)𝐷
𝛾

𝑥
{FL𝛼
𝑖
(𝑥
𝛼
)}

= 𝐷
𝛾

𝑥
{

𝑖

∑

𝑠=0

𝑏
𝑠𝑖
𝑥
𝑠𝛼
} FL𝛽
𝑗
(𝑦
𝛽
)

= FL𝛽
𝑗
(𝑦
𝛽
)

𝑖

∑

𝑠=0

𝑏


𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
𝑥
𝑠𝛼−𝛾
.

(38)

Lemma 20. Let 𝛾 > 0, 𝛼 ∉ 𝑁; then one has

∫

1

0

∫

1

0

𝐷
𝛾

𝑥
{𝜓
𝑖𝑗
} 𝜓
𝑖

𝑗
𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

=

{{{{{{{{{

{{{{{{{{{

{

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏
𝑠𝑖
𝑏
𝑠

𝑖


(𝑠 + 𝑠 + 1) 𝛼 − 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗



0, 𝑗 ̸= 𝑗

.

(39)

Proof. Using previous Lemma 19 and (6), one can have

∫

1

0

∫

1

0

𝐷
𝛾

𝑥
{𝜓
𝑖𝑗
(𝑥
𝛼
, 𝑦
𝛽
)} 𝜓
𝑖

𝑗
 (𝑥
𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑥, 𝑦) FL𝛼
𝑖
 (𝑥
𝛼
) FL𝛽
𝑗

(𝑦
𝛽
) FL𝛽
𝑗
(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑏


𝑠𝑖

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
𝑥
𝑠𝛼−𝛾
𝑑𝑥 𝑑𝑦

= ∫

1

0

∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗

(𝑦
𝛽
)

×

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏


𝑠𝑖
𝑏
𝑠

𝑖


Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

× 𝑥
(𝑠+𝑠

+1)𝛼−𝛾−1

𝑑𝑥 𝑑𝑦

= ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗

(𝑦
𝛽
)

× (∫

1

0

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏


𝑠𝑖
𝑏
𝑠

𝑖


Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

× 𝑥
(𝑠+𝑠

+1)𝛼−𝛾−1

𝑑𝑥)𝑑𝑦

=

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏


𝑠𝑖
𝑏
𝑠

𝑖


(𝑠 + 𝑠 + 1) 𝛼 − 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

× ∫

1

0

𝜔 (𝑦) FL𝛽
𝑗
(𝑦
𝛽
) FL𝛽
𝑗

(𝑦
𝛽
) 𝑑𝑦

=

{{{{{{{

{{{{{{{

{

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏


𝑠𝑖
𝑏
𝑠

𝑖


(𝑠 + 𝑠 + 1) 𝛼 − 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

1

(2𝑗 + 1) 𝛽
, 𝑗 = 𝑗



0, 𝑗 ̸= 𝑗

.

(40)

Theorem 21. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); one has

𝐷
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ D𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (41)

where D𝛾
𝑥
is the 𝑚𝑚 × 𝑚𝑚 operational matrix of Caputo

fractional derivative of order 𝛾 > 0, and has the form as follows:

D𝛾
𝑥
=

[
[
[
[

[

𝑂 𝑂 ⋅ ⋅ ⋅ 𝑂

𝐹
1,0

𝑂 ⋅ ⋅ ⋅ 𝑂

...
... d

...
𝐹
𝑚−1,0

𝐹
𝑚−1,1

⋅ ⋅ ⋅ 𝑂

]
]
]
]

]

(42)
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in which 𝐹
𝑖,𝑖
 is𝑚 ×𝑚 matrix and the elements are defined as

follows:

𝐹
𝑖,𝑖
 = 𝐼

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏


𝑠𝑖
𝑏
𝑠

𝑖
 (2𝑖

+ 1) 𝛼

(𝑠 + 𝑠 + 1) 𝛼 − 𝛾

Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)
,

𝑖, 𝑖

= 0, 1, . . . , 𝑚 − 1,

(43)

and 𝐼 is a𝑚 × 𝑚 identity matrix.

Proof. Using (41) and the orthogonality property of FLFs, one
can have

D𝛾
𝑥
= ⟨𝐷
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩𝐻
−1
, (44)

where ⟨𝐷𝛾
𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
), Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩ and 𝐻−1 are two 𝑚𝑚 ×

𝑚𝑚
 matrices defined as

⟨𝐷
𝛾

𝑥
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , Ψ
𝑇
(𝑥
𝛼
, 𝑦
𝛽
)⟩

= {∫

1

0

∫

1

0

𝐷
𝛾

𝑥
{Ψ
𝑘
(𝑥
𝛼
, 𝑦
𝛽
)}

× Ψ
𝑘
 (𝑥
𝛼
, 𝑦
𝛽
) 𝜔 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦}

𝑚𝑚


𝑘,𝑘


=
{

{

{

𝑖

∑

𝑠=0

𝑖


∑

𝑠

=0

𝑏


𝑠𝑖
𝑏
𝑠

𝑖


(𝑠 + 𝑠 + 1) 𝛼 − 𝛾

×
Γ (1 + 𝑠𝛼)

Γ (1 + 𝑠𝛼 − 𝛾)

1

(2𝑗 + 1) 𝛽

}

}

}

𝑚;𝑚


𝑖,𝑖

;𝑗=𝑗


𝐻
−1
= {(2𝑖


+ 1) (2𝑗 + 1) 𝛼𝛽}

𝑚;𝑚


𝑖,𝑖

;𝑗=𝑗

.

(45)

Now by substituting above equations in (44), Theorem 21
can be proved.

In a similar way as above, one can get Caputo fractional
derivative of order 𝛾 > 0 with respect to variable 𝑦.

Theorem 22. Let Ψ(𝑥𝛼, 𝑦𝛽) be the 2D-FLFs vector defined in
(16); one can have

𝐷
𝛾

𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) ≃ D𝛾

𝑦
Ψ(𝑥
𝛼
, 𝑦
𝛽
) , (46)

where D𝛾
𝑦
is the 𝑚𝑚 × 𝑚𝑚 operational matrix of Caputo

fractional derivative of order 𝛾 > 0, and has the form as follows:

D𝛾
𝑦
=

[
[
[
[

[

𝐹 𝑂 ⋅ ⋅ ⋅ 𝑂

𝑂 𝐹 ⋅ ⋅ ⋅ 𝑂

...
... d

...
𝑂 𝑂 ⋅ ⋅ ⋅ 𝐹

]
]
]
]

]

, (47)

in which 𝐹 is 𝑚 × 𝑚 matrix and the elements are defined as
follows:

𝐹
𝑗,𝑗
 =

𝑗

∑

𝑟=0

𝑗


∑

𝑟

=0

𝑏


𝑟𝑗
𝑏
𝑟

𝑗
 (2𝑗

+ 1) 𝛽

(𝑟 + 𝑟 + 1) 𝛽 + 𝛾

Γ (1 + 𝑟𝛽)

Γ (1 + 𝑟𝛽 + 𝛾)
,

𝑗, 𝑗

= 0, 1, . . . , 𝑚


− 1.

(48)

5. Applications and Results

Consider the following FPDEs:

𝐷
𝛼

𝑥
𝑢 (𝑥, 𝑡) + 𝐷

𝛽

𝑡
𝑢 (𝑥, 𝑡)

+ 𝑁 [𝑢 (𝑥, 𝑡)] + 𝐿 [𝑢 (𝑥, 𝑡)] = 𝑔 (𝑥, 𝑡) , 𝛼, 𝛽 ∈ (0, 1] ,

(49)

where 𝐿 and 𝑁 are linear operator and nonlinear operator;
respectively.𝐷𝛼 and𝐷𝛽 are the Caputo fractional derivatives
of order 𝛼 and 𝛽, respectively; 𝑔 is a known analytic function.

By employing operator 𝐽𝛽
𝑡
on both sides of (49) and then

using the Lemma 4, one can have

𝑢 (𝑥, 𝑡) + 𝐽
𝛽

𝑡
{𝐷
𝛼

𝑥
𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) + 𝐿𝑢 (𝑥, 𝑡)}

−

𝑚−1

∑

𝑘=0

𝑢
(𝑘)

(𝑥, 0)
𝑥
𝑘

𝑘!
− 𝐽
𝛽

𝑡
𝑔 (𝑥, 𝑡) = 0.

(50)

We first express unknown function 𝑢(𝑥, 𝑡) and derivative
term𝐷𝛼

𝑥
𝑢(𝑥, 𝑡) as

𝑢 (𝑥, 𝑡) = 𝐶
𝑇
Ψ(𝑥
𝛼
, 𝑡
𝛽
) , 𝐷

𝛼

𝑥
𝑢 (𝑥, 𝑡) = 𝐶

𝑇D𝛼
𝑥
Ψ(𝑥
𝛼
, 𝑡
𝛽
) .

(51)

Now for the nonlinear part, by employing the nonlinear
term approximation method described in [32] and then by
using transform 𝑥 → 𝑥𝛼, 𝑡 → 𝑡𝛽, one can get the 2D-FLFs
expansion of nonlinear term as

𝑁𝑢 (𝑥, 𝑡) = 𝑁
𝑇
Ψ(𝑥
𝛼
, 𝑡
𝛽
) , (52)

where𝑁𝑇 is coefficient matrix of nonlinear term which must
be computed and its order is𝑚𝑚 × 𝑚𝑚.

For the linear part, we have

𝐿𝑢 (𝑥, 𝑡) = 𝐿
𝑇
Ψ(𝑥
𝛼
, 𝑡
𝛽
) , (53)

where 𝐿 is a matrix of order𝑚𝑚 × 𝑚𝑚.
After substituting (51)–(53) into (50), one can obtain

𝐶
𝑇
+ (𝐶
𝑇D𝛼
𝑥
+ 𝑁
𝑇
+ 𝐿
𝑇
)P𝛽
𝑦
− 𝐶
𝑇

guess = 0. (54)

According to the Wu’s [33] technology for determining the
initial iteration value, the initial iteration value is chosen as
𝑢guess =∑

𝑚−1

𝑘=0
𝑢
(𝑘)
(𝑥, 0)(𝑥

𝑘
/𝑘!) + 𝐽

𝛽

𝑡
{𝑔(𝑥, 𝑡)} = 𝐶𝑇guessΨ(𝑥

𝛼
, 𝑡
𝛽
).

The coefficient matrix 𝐶𝑇 can be computed by using the
MATLAB function fsolve( ) or the method described in [34].
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Figure 1: Numerical results for Example 23 when 𝛽 = 0.25, 0.50.

Now, the presentmethod is applied to solve the linear and
nonlinear FPDEs, and their results are compared with the
solution of other methods. The accuracy of our approach is
estimated by the following error functions:

𝑒
𝑗
= (𝑢exact)𝑗 − (𝑢approx)𝑗

, 𝑒 = 𝑢exact − 𝑢approx,

‖𝑒‖
𝐿∞
= max
1≤𝑗≤𝑁


𝑒
𝑗


, ‖𝑒‖

𝐿2
= √

𝑁

∑

𝑗=1


(𝑒
𝑗
)
2
,

‖𝑒‖RMS = √
1

𝑁

𝑁

∑

𝑗=1


(𝑒
𝑗
)
2
.

(55)

Example 23. Consider the one-dimensional linear inhomo-
geneous fractional Burger’s equation [35]:

𝜕
𝛽
𝑢 (𝑥, 𝑡)

𝜕𝑡𝛽
+
𝜕𝑢 (𝑥, 𝑡)

𝜕𝑥
−
𝜕
2
𝑢 (𝑥, 𝑡)

𝜕𝑥2

=
2𝑡
2−𝛽

Γ (3 − 𝛽)
+ 2𝑥 − 2, 0 < 𝛽 ≤ 1,

(56)

with the initial condition 𝑢(𝑥, 0) = 𝑥2 and the exact solution
being 𝑢(𝑥, 𝑡) = 𝑥2 + 𝑡2.

By employing 2D-FLFs method, one can get

𝐶
𝑇
[𝐼 + (D𝛼

𝑥
− (D𝛼
𝑥
)
2

)P𝛽
𝑡
] = 𝐶
𝑇

guess, (57)

where 𝛼 = 1. Then we can get 𝐶𝑇 = 𝐶𝑇guessinv(𝐼 + (D
𝛼

𝑥
−

(D𝛼
𝑥
)
2

)P𝛽
𝑡
).

Figures 1(a) and 1(b) show the numerical results for 𝛽 =
0.25 with 𝑚 = 3, 𝑚 = 9 and 𝛽 = 0.5 with 𝑚 = 3, 𝑚 = 5,
respectively. It should be found that the accuracy of 2D-FLFs
method is very high while only a small number of 2D-FLFs
are needed.

Example 24. Consider nonlinear fractional Klein-Gordon
equation [36, 37]:

𝐷
𝛽

𝑡
𝑢 (𝑥, 𝑡) − 𝐷

𝛼

𝑥
𝑢 (𝑥) + 𝑢

3

(𝑥) = 𝑔 (𝑥, 𝑡) ,

𝑥 ≥ 0, 𝑡 > 0, 𝛼, 𝛽 ∈ (1, 2] ,

(58)

subject to the initial conditions

𝑢 (𝑥, 0) = 0, 𝑢
𝑡
(𝑥, 0) = 0, (59)

and 𝑔(𝑥, 𝑡) = Γ(𝛽 + 1)𝑥𝛼 − Γ(𝛼 + 1)𝑡𝛽 + 𝑥3𝛼𝑡3𝛽. The exact
solution of (58) is 𝑢(𝑥, 𝑡) = 𝑥𝛼𝑡𝛽.
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Figure 2: Numerical results of Example 24 for different values of 𝛼 and 𝛽.

By employing 2D-FLFs method with 𝑚 = 3 and 𝑚 = 3,
one can have

𝐶
𝑇
+ (−𝐶

𝑇D𝛼
𝑥
+ 𝑁
𝑇
)P𝛽
𝑡
− 𝐶
𝑇

guess = 0. (60)

The numerical results of Example 24 for different values
of 𝛼 and 𝛽 are shown in Figure 2. In addition, 𝐿

2
and

𝐿
∞

errors are presented in Table 1. From Table 1, one can
conclude that the solutions of 2D-FLFs method are in good
agreement with the exact results. Compared with homotopy
analysis method (HAM) [36] and homotopy perturbation
method (HPM) [37], 2D-FLFs method can get high accuracy
solution while only need a few terms of 2D-FLFs.

Example 25. Consider the nonlinear time-fractional advec-
tion partial differential equation [37–39]

𝐷
𝛽

𝑡
𝑢 (𝑥, 𝑡) + 𝑢 (𝑥, 𝑡) 𝑢

𝑥
(𝑥, 𝑡) = 𝑥 + 𝑥𝑡

2
,

𝑡 > 0, 𝑥 ∈ 𝑅, 0 < 𝛽 ≤ 1,

(61)

subject to the initial condition

𝑢 (𝑥, 0) = 0. (62)

Figure 3 gives the approximation solutions of (61) for
𝛽 = 0.50 with 𝑚 = 4, 𝑚 = 5 and 𝛽 = 0.75 with 𝑚 = 4,

𝑚

= 9. Moreover, Table 2 shows the approximate solutions

for (61) obtained for different values of 𝛽 using the frac-
tional variational iterationmethod (FVIM) [39] and 2D-FLFs
method. The values of 𝛽 = 1 are the only case for which we
know the exact solution 𝑢(𝑥, 𝑡) = 𝑥𝑡. It should be noted that
only the fourth-order term of the FVIM was used in eval-
uating the approximate solutions for Table 2. From Table 2,
it clearly appears that 2D-FLFs method is more accurate than
FVIM and the obtained results are in good agreement with
exact solution.

Example 26. We finally consider the linear time-fractional
wave equation:

𝜕
2𝛽
𝑢

𝜕𝑡2𝛽
=
1

2
𝑥
2 𝜕
2
𝑢

𝜕𝑥2
, 𝑡 > 0, 𝑥 ∈ 𝑅, 0.5 < 𝛽 ≤ 1, (63)

subject to the initial conditions

𝑢 (𝑥, 0) = 𝑥,
𝜕𝑢 (𝑥, 0)

𝜕𝑡
= 𝑥
2
. (64)

Table 3 gives a comparison of the approximate solutions
at different values of 𝛽 using the FVIM [39] and 2D-FLFs
method. Figure 4 shows the numerical solutions of 2D-FLFs
method for (63) at different values of 𝛽 with 𝑚 = 3, 𝑚 = 9.
The values of 𝛽 = 1 are the only case for which we know
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Figure 3: Numerical results of Example 25 for different value of 𝛽.
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Figure 4: Numerical results of Example 26 for different value of 𝛽.

Table 1: Errors of Example 24 for different values of 𝛼 and 𝛽 with𝑀 = 𝑀 = 4.

Error 𝛼 = 𝛽 = 1.25 𝛼 = 𝛽 = 1.50 𝛼 = 𝛽 = 1.75 𝛼 = 𝛽 = 2.00

𝐿
2

5.6437𝑒 − 015 1.2075𝑒 − 015 3.4584𝑒 − 015 8.9917𝑒 − 016

𝐿
∞

4.4409𝑒 − 016 1.1102𝑒 − 016 3.3307𝑒 − 016 1.1102𝑒 − 016
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Table 2: Numerical values when 𝛽 = 0.50, 0.75, and 1.0 for (61).

𝑡 𝑥
𝛽 = 0.50 𝛽 = 0.75 𝛽 = 1.00

FVIM 2D-FLFs FVIM 2D-FLFs FVIM 2D-FLFs Exact

0.25

0.25 0.12422501 0.12225461 0.09230374 0.09224583 0.06250058 0.062500 0.062500
0.50 0.24845002 0.24450922 0.18460748 0.18449165 0.12500117 0.125000 0.125000
0.75 0.37267504 0.36676383 0.27691122 0.27673748 0.18750175 0.187500 0.187500
1.00 0.49690005 0.48901844 0.36921496 0.36898331 0.25000234 0.250000 0.250000

0.50

0.25 0.18377520 0.16584130 0.15148283 0.14985508 0.12507592 0.125000 0.125000
0.50 0.36755040 0.33168259 0.30296566 0.29971016 0.25015184 0.250000 0.250000
0.75 0.55132559 0.49752389 0.45444848 0.44956524 0.37522776 0.375000 0.375000
1.00 0.73510079 0.66336518 0.60593131 0.59942032 0.50030368 0.500000 0.500000

0.75

0.25 0.27227270 0.20678964 0.21407798 0.20119503 0.18881843 0.187500 0.187500
0.50 0.54454540 0.41357929 0.42815596 0.40239005 0.37763687 0.375000 0.375000
0.75 0.81681810 0.62036893 0.64223394 0.60358508 0.56645530 0.562500 0.562500
1.00 1.08909080 0.82715857 0.85631192 0.80478011 0.75527373 0.750000 0.750000

Table 3: Numerical values when 𝛽 = 0.750, 0.875, and 1.000 for (63).

𝑡 𝑥
𝛽 = 0.750 𝛽 = 0.875 𝛽 = 1.000

FVIM 2D-FLFs FVIM 2D-FLFs FVIM Exact

0.25

0.25 0.26622298 0.26622021 0.26593959 0.26594005 0.26578827 0.26578827
0.50 0.56489190 0.56488083 0.56375836 0.56376020 0.56315308 0.56315308
0.75 0.89600678 0.89598187 0.89345630 0.89346046 0.89209443 0.89209443
1.00 1.25956762 1.25952332 1.25503343 1.25504082 1.25261232 1.25261232

0.50

0.25 0.28474208 0.28474415 0.28340402 0.28340659 0.28256846 0.28256846
0.50 0.63896831 0.63897662 0.63361610 0.63362636 0.63027383 0.63027383
0.75 1.06267869 1.06269739 1.05063622 1.05065931 1.04311611 1.04311611
1.00 1.55587323 1.55590647 1.53446439 1.53450544 1.52109530 1.52109531

0.75

0.25 0.30690489 0.30690747 0.30361709 0.30361656 0.30139478 0.30139480
0.50 0.72761955 0.72762986 0.71446834 0.71446625 0.70557913 0.70557918
0.75 1.26214400 1.26216719 1.23255378 1.23254905 1.21255304 1.21255316
1.00 1.91047821 1.91051944 1.85787338 1.85786498 1.82231652 1.82231673

the exact solution 𝑢(𝑥, 𝑡) = 𝑥 + 𝑥2 sinh(𝑡). As previous, only
the fourth-order term of the FVIMwas used in evaluating the
numerical solutions for Table 3. In the case of 𝛽 = 1, it can
be found that absolute error of 2D-FLFs is not bigger than
1.0𝑒 − 10 which is very small compared with that obtained by
FVIM.

6. Conclusion

We define a basis of 2D-FLFs and derived its operational
matrices of fractional derivative and integration, which are
used to approximate the numerical solution of FPDEs. Com-
pared with other numerical methods, 2D-FLFs method can
accurately represent properties of fractional calculus. More-
over, only a small number of 2D-FLFs are needed to obtain
a satisfactory result. The obtained results demonstrate the
validity and applicability of proposed method for solving the
FPFEs.
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It is shown that a strong solution of the Degasperis-Procesi equation possesses persistence property in the sense that the solution
with algebraically decaying initial data and its spatial derivative must retain this property. Moreover, we give estimates of measure
for the momentum support.

1. Introduction

Recently, Degasperis and Procesi [1] consider the following
family of third order dispersive conservation laws:

𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+ 𝛾𝑢
𝑥𝑥𝑥

− 𝛼
2
𝑢
𝑥𝑥𝑡

= (𝑐
1
𝑢
2
+ 𝑐
2
𝑢
2

𝑥
+ 𝑐
3
𝑢𝑢
𝑥𝑥
)
𝑥
, (1)

where 𝛼, 𝛾, 𝑐
0
, 𝑐
1
, 𝑐
2
, and 𝑐

3
are real constants. Within this

family, only three equations that satisfy asymptotic integra-
bility condition up to third order are singled out, namely, the
KdV equation

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0, (2)

the Camassa-Holm equation

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 3𝑢𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

, (3)

and a new equation (the Degasperis-Procesi equation, the DP
equation, for simplicity) which can be written as (after rescal-
ing) the dispersionless form [1]

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 4𝑢𝑢
𝑥
= 3𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

. (4)

It is worth noting that in [2] both the Camassa-Holm and
DP equations are derived as members of a one-parameter
family of asymptotic shallow water approximations to the
Euler equations: this is important because it shows that (after

the addition of linear dispersion terms) both the Camassa-
Holm andDP equations are physically relevant; otherwise the
DP equation would be of purely theoretical interest.

When 𝑐
1
= −3𝑐

3
/2𝛼
2 and 𝑐

2
= 𝑐
3
/2 in (1), we recover the

Camassa-Holm equation derived physically by Camassa and
Holm in [3] by approximating directly the Hamiltonian for
Euler’s equations in the shallow water regime, where 𝑢(𝑥, 𝑡)
represents the free surface above a flat bottom. There is also
a geometric approach which is used to prove the least action
principle holding for the Camassa-Holm equation, compared
with [4]. It is worth pointing out that a fundamental aspect of
the Camassa-Holm equation, the fact that it is a completely
integrable system, was shown in [5, 6]. Some satisfactory
results have been obtained for this shallow water equation
recently, we refer the readers to see [7–19].

Although, the DP equation (4) has a similar form to the
Camassa-Holm equation and admits exact peakon solutions
analogous to the Camassa-Holm peakons [20], these two
equations are pretty different. The isospectral problem for
equation (4) is

Ψ
𝑥
− Ψ
𝑥𝑥𝑥

− 𝜆𝑦Ψ = 0, (5)

while for Camassa-Holm equation it is

Ψ
𝑥𝑥

−
1

4
Ψ − 𝜆𝑦Ψ = 0, (6)
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where 𝑦 = 𝑢 − 𝑢
𝑥𝑥

for both cases. This implies that the inside
structures of the DP equation (4) and the Camassa-Holm
equation are truly different. However, we not only have some
similar results [21–23], but also have considerable differences
in the scattering/inverse scattering approach, compared with
the discussion in [5, 6] and in the paper [24].

Analogous to the Camassa-Holm equation, (4) can be
written in Hamiltonian form and has infinitely many con-
servation laws. Here we list some of the simplest conserved
quantities [20]:

𝐻
−1

= ∫
R

𝑢
3
𝑑𝑥, 𝐻

0
= ∫

R

𝑦𝑑𝑥, 𝐻
1
= ∫

R

𝑦V 𝑑𝑥,

𝐻
5
= ∫

R

𝑦
1/3
𝑑𝑥, 𝐻

7
= ∫

R

(𝑦
2

𝑥
𝑦
−7/3

+ 9𝑦
−1/3

) 𝑑𝑥,

(7)

where V = (4−𝜕
2

𝑥
)
−1
𝑢. So they are different from the invariants

of the Camassa-Holm equation

𝐸 (𝑢) = ∫
R

(𝑢
2
+ 𝑢
2

𝑥
) 𝑑𝑥, 𝐹 (𝑢) = ∫

R

(𝑢
3
+ 𝑢𝑢
2

𝑥
) 𝑑𝑥. (8)

Set 𝑄 = (1 − 𝜕
2

𝑥
); then the operator 𝑄−1 in R can be

expressed by

𝑄
−1
𝑓 = 𝐺 ∗ 𝑓 =

1

2
∫
R

𝑒
−|𝑥−𝑦|

𝑓 (𝑦) 𝑑𝑦. (9)

Equation (4) can be written as

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝜕
𝑥
𝐺 ∗ (

3

2
𝑢
2
) = 0, (10)

while the Camassa-Holm equation can be written as

𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝜕
𝑥
𝐺 ∗ (𝑢

2
+
1

2
𝑢
2

𝑥
) = 0. (11)

On the other hand, the DP equation can also be expressed in
the following momentum form:

𝑦
𝑡
+ 𝑦
𝑥
𝑢 = −3𝑦𝑢

𝑥

𝑦 = (1 − 𝜕
2

𝑥
) 𝑢.

(12)

This formulation is important to motivate us to consider
the measure of momentum support which is the second
object of this paper, since we found that (12) is similar to the
vorticity equation of the three-dimensional Euler equation
for incompressible perfect fluids (𝑈 is the speed, and 𝜔 is its
vorticity)

𝜔
𝑡
+ (𝑈 ⋅ ∇) 𝜔 = (𝜔 ⋅ ∇)𝑈,

div𝑈 = 0,

curl𝑈 = 𝜔.

(13)

The stretching term (𝜔 ⋅ ∇)𝑈 in (13) is similar to the term
−3𝑦𝑢
𝑥
in (12).

One can follow the argument for the Camassa-Holm
equation [8] to establish the following well posedness theo-
rem for the Degasperis-Procesi equation.

Theorem 1 (see [23]). Given 𝑢(𝑥, 𝑡 = 0) = 𝑢
0
∈ 𝐻
𝑠
(R), 𝑠 >

3/2, then there exist a 𝑇 and a unique solution 𝑢 to (4) (also
(10)) such that

𝑢 (𝑥, 𝑡) ∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠

(R)) ∩ 𝐶
1
([0, 𝑇) ;𝐻

𝑠−1

(R)) . (14)

It should be mentioned that due to the form of (10) (no
derivative appears in the convolution term), Coclite and
Karlsen [25] established global existence and uniqueness
result for entropy weak solutions belonging to the class
𝐿
1
(R) ∩ 𝐵𝑉(R).

2. Unique Continuation

Thepurpose of this section is to show that the solution to (10)
and its first-order spatial derivative retain algebraic decay at
infinity as their initial values do. Precisely, we prove.

Theorem 2. Assume that for some 𝑇 > 0 and 𝑠 > 3/2, 𝑢 ∈

𝐶([0, 𝑇];𝐻
𝑠
(R)) is a strong solution of the initial value problem

associated with (10), and that 𝑢
0
(𝑥) = 𝑢(𝑥, 0) satisfies that for

some 𝜃 > 1

𝑢0 (𝑥)
 ,

𝜕𝑥𝑢0 (𝑥)
 = 𝑂 (𝑥

−𝜃
) as 𝑥 ↑ ∞. (15)

Then

|𝑢 (𝑥, 𝑡)| ,
𝜕𝑥𝑢 (𝑥, 𝑡)

 = 𝑂 (𝑥
−𝜃
) as 𝑥 ↑ ∞, (16)

uniformly in the time interval [0, 𝑇].

Notation. We will say that

𝑓 (𝑥)
 = 𝑂 (𝑥

−𝜃
) as 𝑥 ↑ ∞ if lim

𝑥→∞

𝑓 (𝑥)


𝑥−𝜃
= 𝐿, (17)

where 𝐿 is a nonnegative constant.

Proof. We introduce the following notations:

𝐹 (𝑢) =
3

2
𝑢
2
, (18)

𝑀 = sup
𝑡∈[0,𝑇]

‖𝑢 (𝑡)‖
𝐻
𝑠 . (19)

Multiplying (10) by 𝑢2𝑝−1 with 𝑝 ∈ 𝑍
+ and integrating the

result in the 𝑥-variable, one gets

∫

∞

−∞

𝑢
2𝑝−1

(𝑢
𝑡
+ 𝑢𝑢
𝑥
+ 𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢)) 𝑑𝑥 = 0. (20)

The first term in (20) is

∫

∞

−∞

𝑢
2𝑝−1

𝑢
𝑡
𝑑𝑥 = ∫

∞

−∞

1

2𝑝

𝑑𝑢
2𝑝

𝑑𝑡
𝑑𝑥

=
1

2𝑝

𝑑

𝑑𝑡
∫

∞

−∞

𝑢
2𝑝
𝑑𝑥 = ‖𝑢 (𝑡)‖

2𝑝−1

2𝑝

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖

2𝑝
,

(21)
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and for the rest, we have


∫

∞

−∞

𝑢
2𝑝−1

𝑢𝑢
𝑥
𝑑𝑥



=



∫

∞

−∞

𝑢
2𝑝
𝑢
𝑥
𝑑𝑥



≤
𝑢𝑥 (𝑡)

∞‖𝑢 (𝑡)‖
2𝑝

2𝑝
,



∫

∞

−∞

𝑢
2𝑝−1

𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) 𝑑𝑥



≤ ‖𝑢 (𝑡)‖
2𝑝−1

2𝑝

𝜕𝑥𝐺 ∗ 𝐹 (𝑢) (𝑡)
2𝑝.

(22)

From the above inequalities, we get

𝑑

𝑑𝑡
‖𝑢 (𝑡)‖

2𝑝
≤
𝑢𝑥 (𝑡)

∞‖𝑢 (𝑡)‖2𝑝 +
𝜕𝑥𝐺 ∗ 𝐹 (𝑢)

2𝑝,
(23)

and therefore, by Sobolev embedding theoremandGronwall’s
inequality, there exists a constant𝑀 such that

‖𝑢 (𝑡)‖
2𝑝

≤ (‖𝑢 (0)‖
2𝑝
+ ∫

𝑡

0

𝜕𝑥𝐺 ∗ 𝐹 (𝑢)
2𝑝𝑑𝜏) 𝑒

𝑀𝑡
. (24)

Since 𝑓 ∈ 𝐿
1
(R) ∩ 𝐿

∞
(R) implies

lim
𝑞→∞

𝑓
𝑞 =

𝑓
∞, (25)

taking the limits in (24) (note that 𝜕
𝑥
𝐺 ∈ 𝐿

1 and 𝐹(𝑢) ∈ 𝐿
1
∩

𝐿
∞) from (25) we get

‖𝑢 (𝑡)‖
∞
≤ (‖𝑢 (0)‖

∞
+ ∫

𝑡

0

𝜕𝑥𝐺 ∗ 𝐹 (𝑢)
∞𝑑𝜏) 𝑒

𝑀𝑡
. (26)

We will now repeat the above arguments using the barrier
function

𝜑
𝑁
(𝑥) =

{{

{{

{

1, 𝑥 ≤ 1,

𝑥
𝜃
, 𝑥 ∈ (1,𝑁) ,

𝑁
𝜃
, 𝑥 ≥ 𝑁,

(27)

where𝑁 ∈ Z+. Observe that for all𝑁 we have

0 ≤ 𝜑


𝑁
(𝑥) ≤ 𝜃𝜑

𝑁
(𝑥) a.e. 𝑥 ∈ R. (28)

Using notation in (18), from (10) we obtain

(𝑢𝜑
𝑁
)
𝑡
+ (𝑢𝜑

𝑁
) 𝑢
𝑥
+ 𝜑
𝑁
𝜕
𝑥
𝐺 ∗ 𝐹 (𝑢) = 0. (29)

Hence, as in the weightless case (26), we get

𝑢 (𝑡) 𝜑𝑁
∞ ≤ 𝑒

𝑀𝑡𝑢 (0) 𝜑𝑁
∞

+ 𝑒
𝑀𝑡

∫

𝑡

0

𝜑𝑁𝜕𝑥𝐺 ∗ 𝐹 (𝑢)
∞𝑑𝜏.

(30)

A simple calculation shows that there exists 𝐶
0
> 0 depend-

ing only on 𝜃 such that, for any𝑁 ∈ Z+,

1

2
𝜑
𝑁
(𝑥) ∫

∞

−∞

𝑒
−|𝑥−𝑦| 1

𝜑
𝑁
(𝑦)

𝑑𝑦 ≤ 𝐶
0
. (31)

Thus, for any appropriate function 𝑓 one finds that


𝜑
𝑁
𝜕
𝑥
𝐺 ∗ 𝑓

2

(𝑥)


=



1

2
𝜑
𝑁
(𝑥) ∫

∞

−∞

sgn (𝑥 − 𝑦) 𝑒
−|𝑥−𝑦|

𝑓
2
(𝑦) 𝑑𝑦



≤
𝜑
𝑁
(𝑥)

2
∫

∞

−∞

𝑒
−|𝑥−𝑦| 1

𝜑
𝑁
(𝑦)

𝜑
𝑁
(𝑦) 𝑓 (𝑦) 𝑓 (𝑦) 𝑑𝑦

≤ (
𝜑
𝑁
(𝑥)

2
∫

∞

−∞

𝑒
−|𝑥−𝑦|

𝜑
𝑁
(𝑦)

𝑑𝑦)
𝜑𝑁𝑓

∞
𝑓
∞

≤ 𝐶
0

𝜑𝑁𝑓
∞

𝑓
∞.

(32)

Combining with (30), we get

𝑢 (𝑡) 𝜑𝑁
∞ ≤ 𝐶

1
(
𝑢0𝜑𝑁

∞ + ∫

𝑡

0

𝜑𝑁𝑢
∞𝑑𝜏) ,

(33)

where 𝐶
1
= 𝐶
1
(𝑀; 𝑇, ) > 0. By Gronwall’s inequality, there

exists a constant 𝐶 for any 𝑡 ∈ [0, 𝑇] such that

𝜑𝑁𝑢
∞ ≤ 𝐶

𝑢0𝜑𝑁
∞ ≤ 𝐶


𝑢
0
⋅max (1, 𝑥𝜃)∞. (34)

Finally, taking the limit as 𝑁 goes to infinity in (34) we find
that for any 𝑡 ∈ [0, 𝑇]


𝑢 (𝑥, 𝑡) 𝑥

𝜃
≤ 𝐶


𝑢
0
⋅max (1, 𝑥𝜃)∞. (35)

From (15), we get |𝑢(𝑥, 𝑡)| = 𝑂(𝑥
−𝜃
) as 𝑥 ↑ ∞.

Next, differentiating (10) in the 𝑥-variable produces the
equation

𝑢
𝑥𝑡
+ 𝑢𝑢
𝑥𝑥

+ 𝑢
2

𝑥
+ 𝜕
2

𝑥
𝐺 ∗ (

3

2
𝑢
2
) = 0. (36)

Again, multiplying (36) by 𝑢2𝑝−1
𝑥

, (𝑝 ∈ Z+), integrating the
result in the 𝑥-variable, and using integration by parts

∫

∞

−∞

𝑢𝑢
𝑥𝑥
(𝑢
𝑥
)
2𝑝−1

𝑑𝑥 = ∫

∞

−∞

𝑢
(𝑢
𝑥
)
2𝑝

2𝑝
𝑑𝑥

= −
1

2𝑝
∫

∞

−∞

𝑢
𝑥
(𝑢
𝑥
)
2𝑝

𝑑𝑥,

(37)

one gets the inequality

𝑑

𝑑𝑡

𝑢𝑥 (𝑡)
2𝑝 ≤ 2

𝑢𝑥 (𝑡)
∞

𝑢𝑥 (𝑡)
2𝑝 +


𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

2𝑝
,

(38)

and therefore as before

𝑢𝑥 (𝑡)
2𝑝 ≤ (

𝑢𝑥 (0)
2p + ∫

𝑡

0


𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

2𝑝
𝑑𝜏) 𝑒
2𝑀𝑡

.

(39)
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Since 𝜕2
𝑥
𝐺 = 𝐺 − 𝛿, we can use (25) and pass to the limit in

(39) to obtain

𝑢𝑥 (𝑡)
∞ ≤ (

𝑢𝑥 (0)
∞ + ∫

𝑡

0


𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢)

∞
𝑑𝜏) 𝑒
2𝑀𝑡

;

(40)

from (36) we get

𝜕
𝑡
(𝑢
𝑥
𝜑
𝑁
) + 𝑢𝑢

𝑥𝑥
𝜑
𝑁
+ (𝑢
𝑥
𝜑
𝑁
) 𝑢
𝑥
+ 𝜑
𝑁
𝜕
2

𝑥
𝐺 ∗ 𝐹 (𝑢) = 0.

(41)

We need to eliminate the second derivatives in the second
term in (41). Thus, combining integration by parts and (28),
we find


∫

∞

−∞

𝑢𝑢
𝑥𝑥
𝜑
𝑁
(𝑢
𝑥
𝜑
𝑁
)
2𝑝−1

𝑑𝑥



=



∫

∞

−∞

𝑢(𝑢
𝑥
𝜑
𝑁
)
2𝑝−1

(𝜕
𝑥
(𝑢
𝑥
𝜑
𝑁
) − 𝑢
𝑥
𝜑


𝑁
) 𝑑𝑥



=



∫

∞

−∞

𝑢(𝜕
𝑥
(
(𝑢
𝑥
𝜑
𝑁
)
2𝑝

2𝑝
) − 𝑢

𝑥
𝜑


𝑁
(𝑢
𝑥
𝜑
𝑁
)
2𝑝−1

)𝑑𝑥



≤ 𝜅 ⋅ (‖𝑢 (𝑡)‖
∞
+
𝜕𝑥𝑢 (𝑡)

∞)
𝜕𝑥𝑢𝜑𝑁



2𝑝

2𝑝
.

(42)

Since 𝜕2
𝑥
𝐺 = 𝐺 − 𝛿, the argument in (32) also shows that


𝜑
𝑁
𝜕
2

𝑥
𝐺 ∗ 𝑓

2

(𝑥)

≤ 𝐶
0

𝜑𝑁𝑓
∞

𝑓
∞. (43)

Similarly, we get
𝑢𝑥 (𝑡) 𝜑𝑁

∞

≤ 𝐶
2
(
𝑢𝑥 (0) 𝜑𝑁

∞ + ∫

𝑡

0

𝑢 (𝜏) 𝜑𝑁
∞𝑑𝜏) ,

(44)

where 𝐶
2
= 𝐶
2
(𝑀; 𝑇).

Then, taking the limit as 𝑁 goes to infinity, we find that
for any 𝑡 ∈ [0, 𝑇]


𝑢
𝑥
(𝑡) 𝑥
𝜃
≤ 𝐶
2
(

𝑢
𝑥
(0) 𝑥
𝜃∞

+ ∫

𝑡

0


𝑢 (𝜏) 𝑥

𝜃∞
𝑑𝜏) . (45)

Since |𝑢(𝑥, 𝑡)| = 𝑂(𝑥
−𝜃
) as 𝑥 ↑ ∞ and (15), we get

𝜕𝑥𝑢 (𝑥, 𝑡)
 = 𝑂 (𝑥

−𝜃
) , as 𝑥 ↑ ∞. (46)

This completes the proof.

3. Measure of Momentum Support

It is known that, for the Degasperis-Procesi equation, the
momentum density 𝑦(𝑥, 𝑡) with compactly supported initial
data 𝑦

0
(𝑥) will retain this property; that is, 𝑦(𝑥, 𝑡) is also

compactly supported [21]. However, the same argument for
𝑢(𝑥, 𝑡) is false [21]. Note that a detailed description of solution
𝑢(𝑥, 𝑡) outside of the support of 𝑦(𝑥, 𝑡) is given in [26, 27].

Moreover, the exponential behavior of 𝑢 in 𝑥 outside this
support is obvious. The comparison of the DP equation and
the incompressible Euler equation above implies that the
momentum 𝑦(𝑥, 𝑡) in (12) plays a similar role as the vorticity
does in (13). This motivates us to estimate the size of supp
𝑦(𝑡, ⋅) for strong solutions. The approach is inspired by the
work of Kim [28] and the recent work [29].

We first introduce the particle trajectory method. Let 𝑢 ∈

𝐶([0, 𝑇],𝐻
3
(R)) ∩ 𝐶

1
([0, 𝑇],𝐻

2
(R)) be a strong solution of

(4) guaranteed by the well posedness Theorem 1. Let 𝑠 ∈

[0, 𝑇], 𝑞(𝑡; 𝛼, 𝑠) be the solution of the following initial value
problem:

𝑑𝑞 (𝑡; 𝛼, 𝑠)

𝑑𝑡
= 𝑢 (𝑠 + 𝑡, 𝑞 (𝑡; 𝛼, 𝑠)) , 𝑠, 𝑠 + 𝑡 ∈ [0, 𝑇] , 𝛼 ∈ R,

𝑞 (0; 𝛼, 𝑠) = 𝛼, 𝛼 ∈ R.

(47)

Then, 𝑞(𝑡; ⋅, 𝑠) : R → R is an increasing diffeomorphism. It
is shown [21, 23] that

𝑦 (𝑞 (𝑡; 𝑥, 0) , 𝑡) 𝑞
3

𝑥
(𝑡; 𝑥, 0) = 𝑦 (𝑥, 0) ; (48)

this implies that the support of 𝑦 propagates along the flow.
Set𝐷(𝑡) to be the support of 𝑦(⋅, 𝑡). Let 𝜓 ∈ 𝐿

2
(𝐷(𝑠)), and let

𝜓
𝑡
∈ 𝐿
2
(𝐷(𝑠 + 𝑡)) be given by the following:

𝜓
𝑡
(𝑞 (𝑡; 𝛼, 𝑠)) = 𝜓 (𝛼) . (49)

Moreover, we also want to mention the standard argument
on the first Dirichlet eigenvalue problem. Let Ω be an open
interval in R, and, 𝜆

1
(Ω) be the first Dirichlet eigenvalue of

the Laplacian onΩ. Then we have

𝜆
1
(Ω) = inf {𝜙



2

𝐿
2
(Ω)

| 𝜙 ∈ 𝐻
1

0
(Ω) with 𝜙

𝐿2(Ω) = 1} .

(50)

It is just (𝜋/|Ω|)2 and the normalized eigenfunctions are the
suitable translations of

±(
2

|Ω|
)

1/2

sin( 𝜋𝑥

|Ω|
) . (51)

Theorem 3. Let 𝑦 ∈ 𝐶([0, 𝑇];𝐻
1
(R)) ∩ 𝐶

1
([0, 𝑇]; 𝐿

2
(R)) be

a strong solution of (12). Let 𝐷(𝑡) be the support of 𝑦(⋅, 𝑡) for
𝑡 ∈ [0, 𝑇] with its initial𝐷(0) being connected.

(I) Suppose there exists a positive constant 𝐾 such that
𝑢
𝑥
(𝑥, 𝑘) > −𝐾 for (𝑥, 𝑡) ∈ R × [0, 𝑇]. Then

|𝐷 (0)| 𝑒
−(exp(5𝐾𝑇/2)‖𝑦0‖𝐿2(R))𝑡

≤ |𝐷 (𝑡)| ≤ |𝐷 (0)| 𝑒
(exp(5𝐾𝑇/2)‖𝑦0‖𝐿2(R))𝑡.

(52)

(II) 𝑦
0
does not change sign or

𝑦
0
(𝑥) ≤ 0, 𝑥 ∈ (−∞, 𝑥

0
) ,

𝑦
0
(𝑥) ≥ 0, 𝑥 ∈ (𝑥

0
,∞) ,

(53)
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and 𝑦
0
∈ 𝐻
1
(R) ∩ 𝐿

1
(R); then, for all 𝑡 ≥ 0

|𝐷 (0)| 𝑒
−‖𝑦0‖𝐿1(R)𝑡 ≤ |𝐷 (𝑡)|

≤ |𝐷 (0)| 𝑒
‖𝑦0‖𝐿1(R)𝑡 .

(54)

Proof. (I) The relation of momenta 𝑦 and 𝑢 gives

𝑢 (𝑥, 𝑡) =
1

2
∫
R

𝑒
−|𝑥−𝜉|

𝑦 (𝜉, 𝑡) 𝑑𝜉, (55)

𝑢
𝑥
(𝑥, 𝑡) =

1

2
∫
R

sgn (𝜉 − 𝑥) 𝑒
−|𝑥−𝜉|

𝑦 (𝜉, 𝑡) 𝑑𝜉. (56)

Then, we have by (12) and the lower bound of 𝑢
𝑥

𝑑

𝑑𝑡
∫
R

𝑦
2

(𝑥, 𝑡) 𝑑𝑥

= −5∫
R

𝑢
𝑥
(𝑥, 𝑡) 𝑦

2

(𝑥, 𝑡) 𝑑𝑥 ≤ 5𝐾∫
R

𝑦
2

(𝑥, 𝑡) 𝑑𝑥.

(57)

Thus

𝑑

𝑑𝑡

𝑦 (𝑥, 𝑡)


2

𝐿
2 ≤ 5𝐾

𝑦 (𝑥, 𝑡)


2

𝐿
2 . (58)

Therefore, (56), (58), and Gronwall inequality imply that

𝑢𝑥 (𝑥, 𝑡)
 ≤

1

2

𝑦 (𝑥, 𝑡)
𝐿2 ≤

1

2
𝑒
5𝐾𝑇/2𝑦0

𝐿2 .
(59)

On the other hand, due to Propositions A.2 and A.3, 𝜆
1
(𝐷(𝑠))

is Lipschitz and differentiable almost everywhere. Moreover,
we have

−4𝑀
1
𝜆
1
(𝐷 (𝑠)) ≤

𝑑

𝑑𝑠
𝜆
1
(𝐷 (𝑠)) ≤ 4𝑀

1
𝜆
1
(𝐷 (𝑠)) . (60)

Then, it follows that

𝑒
−4𝑀1𝑠𝜆

1
(𝐷 (0)) ≤ 𝜆

1
(𝐷 (𝑠)) ≤ 𝑒

4𝑀1𝑠𝜆
1
(𝐷 (0)) (61)

with 𝜆
1
(𝐷(𝑠)) = 𝜋

2
/|𝐷(𝑠)|

2. So (52) follows from (61) and
(59).

(II) If 𝑦
0
∈ 𝐻
1
(R) ∩ 𝐿

1
(R) does not change sign, we

conclude that solutions of (10) exist globally in time. Equality
(56) and the conservation of ∫

R
𝑦(𝑥, 𝑡)𝑑𝑥 yield

𝑢𝑥 (𝑥, 𝑡)
 ≤

1

2

𝑦 (𝑥, 𝑡)
𝐿1(R) =

1

2

𝑦0 (𝑥)
𝐿1(R).

(62)

By similar arguments of (I), constant 𝑀
1
in (61) can be

replaced by ‖𝑦
0
(𝑥)‖
𝐿
1
(R)/2; then (54) follows. If (53) is satis-

fied, we know that the solution of (10) exists globally in time
[21, 30]. From (53) and (48), it is easy to get

𝑦 (𝑥, 𝑡) ≤ 0, 𝑥 ∈ (−∞, 𝑞 (𝑥
0
, 𝑡)) ,

𝑦 (𝑥, 𝑡) ≥ 0, 𝑥 ∈ (𝑞 (𝑥
0
, 𝑡) ,∞) ,

(63)

where we denote 𝑞(𝑡; 𝑥, 𝑠)with 𝑠 = 0 by 𝑞(𝑥, 𝑡). By direct com-
putation, we have

∫
R

𝑦 (𝑥, 𝑡)
 𝑑𝑥 = ∫

∞

𝑞(𝑥0,𝑡)

𝑦 (𝑥, 𝑡) 𝑑𝑥 − ∫

𝑞(𝑥0 ,𝑡)

−∞

𝑦 (𝑥, 𝑡) 𝑑𝑥.

(64)

Next, we prove that ‖𝑦(𝑥, 𝑡)‖
𝐿
1
(R) is decreasing with respect to

time. To this end, one gets, by differentiating (64)with respect
to 𝑡 and integrating by parts,
𝑑

𝑑𝑡
∫
R

𝑦 (𝑥, 𝑡)
 𝑑𝑥 = ∫

∞

𝑞(𝑥0 ,𝑡)

𝑦
𝑡
(𝑥, 𝑡) 𝑑𝑥

− ∫

𝑞(𝑥0 ,𝑡)

−∞

𝑦
𝑡
(𝑥, 𝑡) 𝑑𝑥

− 2 (𝑦𝑢) (𝑞 (𝑥
0
, 𝑡) , 𝑡)

= −∫

∞

𝑞(𝑥0 ,𝑡)

(𝑦
𝑥
𝑢 + 3𝑦𝑢

𝑥
) 𝑑𝑥

+ ∫

𝑞(𝑥0 ,𝑡)

−∞

(𝑦
𝑥
𝑢 + 3𝑦𝑢

𝑥
) 𝑑𝑥

− 2 (𝑦𝑢) (𝑞 (𝑥
0
, 𝑡) , 𝑡)

= −2∫

∞

𝑞(𝑥0 ,𝑡)

𝑦𝑢
𝑥
𝑑𝑥 + 2∫

𝑞(𝑥0 ,𝑡)

−∞

𝑦𝑢
𝑥
𝑑𝑥

= 𝑢
2
(𝑞 (𝑥
0
, 𝑡) , 𝑡) − 𝑢

2

𝑥
(𝑞 (𝑥
0
, 𝑡) , 𝑡)

= ∫

∞

𝑞(𝑥0 ,𝑡)

𝑒
−𝜉
𝑦 (𝜉, 𝑡) 𝑑𝑥∫

𝑞(𝑥0 ,𝑡)

−∞

𝑒
𝜉
𝑦 (𝜉, 𝑡) 𝑑𝑥

≤ 0.

(65)

This implies that

𝑢𝑥 (𝑥, 𝑡)
 ≤

1

2

𝑦 (𝑥, 𝑡)
𝐿1(R) ≤

1

2

𝑦0 (𝑥)
𝐿1(R).

(66)

Therefore, (54) follows by replacing 𝑀
1
with ‖𝑦

0
(𝑥)‖
𝐿
1
(R)/2

in (61).

Appendix

The following propositions with standard proofs are known
in [29]; we list them here only for convenience of readers.

Proposition A.1. Let 𝑠, 𝑠 + 𝑡 ∈ [0, 𝑇], 𝛼 ∈ 𝐷(𝑠), and 𝜓 ∈

𝐻
1

0
(𝐷(𝑠)); 𝑢

𝑥
can be bounded by a constant𝑀

1
; then

(a)

𝑒
−𝑀1|𝑡| ≤ 𝑞

𝛼
(𝑡; 𝛼, 𝑠) ≤ 𝑒

𝑀1|𝑡|, (A.1)

(b)

𝜓


(𝛼)

𝑒
−𝑀1|𝑡| ≤


(𝜓
𝑡
)


(𝑞 (𝑡; 𝛼, 𝑠))


≤

𝜓


(𝛼)

𝑒
𝑀1|𝑡|,

(A.2)
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(c)
𝜓

𝐿2(𝐷(𝑠))𝑒
−𝑀1|𝑡|/2 ≤


𝜓
𝑡𝐿2(𝐷(𝑠+𝑡))

≤
𝜓

𝐿2(𝐷(𝑠))𝑒
𝑀1|𝑡|/2.

(A.3)

Proof. (a) Differentiating (47) with respect to 𝛼, we obtain

𝑑𝑞
𝑡

𝑑𝛼
= 𝑢
𝑞
𝑞
𝛼
. (A.4)

Since 𝑞(𝑡; ⋅, 𝑠) : R → R is an increasing diffeomorphism,
then 𝑞

𝛼
> 0. Combining the bound of 𝑢

𝑥
, there holds

−𝑀
1
𝑞
𝛼
≤ 𝑞
𝛼𝑡
≤ 𝑀
1
𝑞
𝛼
. (A.5)

This can be solved as (a).
(b) Differentiating (49) with respect to 𝛼 to get

𝜓
𝑡

𝑞
𝑞
𝛼
= 𝜓


(𝛼) , (A.6)

then (A.2) is a direct consequence of (A.1).
(c) Equation (49) and the definition of Sobolev norm give

that

𝜓
𝑡

2

𝐿
2
(𝐷(𝑠+𝑡))

= ∫
𝐷(𝑠+𝑡)

𝜓
𝑡

(𝑥)
2
𝑑𝑥 = ∫

𝐷(𝑠)

𝜓
2

(𝛼) 𝑞
𝛼
𝑑𝛼, (A.7)

where we have used the change of variable 𝑥 = 𝑞(𝑡; 𝛼, 𝑠). So
(A.3) follows from (A.1).

PropositionA.2. Under the hypothesis ofTheorem 3, for 𝑠, 𝑠+
𝑡 ∈ [0, 𝑇],

lim
𝑡→0
+

sup 𝜆
1
(𝐷 (𝑠 + 𝑡)) − 𝜆

1
(𝐷 (𝑠))

𝑡
≤ 4𝑀

1
𝜆
1
(𝐷 (𝑠)) ,

lim
𝑡→0
−

inf 𝜆1 (𝐷 (𝑠 + 𝑡)) − 𝜆
1
(𝐷 (𝑠))

𝑡
≥ −4𝑀

1
𝜆
1
(𝐷 (𝑠)) .

(A.8)

Proof. Let 𝑡 > 0, 𝜙
1
∈ 𝐻
1

0
(𝐷(𝑠)) with ‖𝜙

1
‖
𝐿
2
(𝐷(𝑠))

= 1 be a first
normalized eigenfunction on𝐷(𝑠).Then, for𝜑 ∈ 𝐻

1

0
(𝐷(𝑠+𝑡))

with ‖𝜑‖
𝐿
2
(𝐷(𝑠+𝑡))

= 1, we have

𝜆
1
(𝐷 (𝑠 + 𝑡)) − 𝜆

1
(𝐷 (𝑠)) = inf 𝜑



2

𝐿
2
(𝐷(𝑠+𝑡))

−

𝜙


1



2

𝐿
2
(𝐷(𝑠))

≤

𝜙
𝑡

1



−2

𝐿
2
(𝐷(𝑠+𝑡))


(𝜙
𝑡

1
)


2

𝐿
2
(𝐷(𝑠+𝑡))

−

𝜙


1



2

𝐿
2
(𝐷(𝑠))

.

(A.9)

Furthermore

𝜙
𝑡

1



−2

𝐿
2
(𝐷(𝑠+𝑡))


(𝜙
𝑡

1
)


2

𝐿
2
(𝐷(𝑠+𝑡))

=

𝜙
𝑡

1



−2

𝐿
2
(𝐷(𝑠+𝑡))

∫
𝐷(𝑠)

[(𝜙
𝑡

1
)


]

2

𝑞
𝛼
𝑑𝛼

≤

𝜙
𝑡

1



−2

𝐿
2
(𝐷(𝑠+𝑡))

𝑒
3𝑀1𝑡


𝜙


1



2

𝐿
2
(𝐷(𝑠))

≤ 𝑒
4𝑀1𝑡


𝜙


1



2

𝐿
2
(𝐷(𝑠))

.

(A.10)

Combing (A.9) and (A.10) together yields

lim
𝑡→0
+

sup 𝜆
1
(𝐷 (𝑠 + 𝑡)) − 𝜆

1
(𝐷 (𝑠))

𝑡

≤ lim
𝑡→0
+

sup
𝑒
4𝑀1𝑡


𝜙


1



2

𝐿
2
(𝐷(𝑠))

−

𝜙


1



2

𝐿
2
(𝐷(𝑠))

𝑡

= 4𝑀
1
𝜆
1
(𝐷 (𝑠)) .

(A.11)

The second one follows by similar arguments for 𝑡 < 0.

PropositionA.3. Under the hypothesis ofTheorem 3, for 𝑠, 𝑠+
𝑡 ∈ [0, 𝑇],

lim
𝑡→0
−

sup 𝜆
1
(𝐷 (𝑠 + 𝑡)) − 𝜆

1
(𝐷 (𝑠))

𝑡
≤ 4𝑀

1
𝜆
1
(𝐷 (𝑠)) ,

lim
𝑡→0
+

inf 𝜆1 (𝐷 (𝑠 + 𝑡)) − 𝜆
1
(𝐷 (𝑠))

𝑡
≥ −4𝑀

1
𝜆
1
(𝐷 (𝑠)) .

(A.12)

Proof. Let 𝜙
1
∈ 𝐻
1

0
(𝐷(𝑠)) with ‖𝜙

1
‖
𝐿
2
(𝐷(𝑠))

= 1 be a first
normalized eigenfunction on 𝐷(𝑠), and let 𝜙

2
∈ 𝐿
2
(𝐷(𝑠)) be

such that its 𝑡-transport is a normalized first eigenfunction on
𝐷(𝑠+ 𝑡). For 𝑡 > 0, using the left halves of (A.1) and (A.2) and
then the right half of (A.3) we get

(𝜙
𝑡

2
)


2

𝐿
2
(𝐷(𝑠+𝑡))

= ∫
𝐷(𝑠+𝑡)

[(𝜙
𝑡

2
(𝑥))


]

2

𝑑𝑥

= ∫
𝐷(𝑠)

[(𝜙
𝑡

2
)


]

2

𝑞
𝛼
𝑑𝛼

≥ 𝑒
−3𝑀1𝑡 ∫

𝐷(𝑠)

[𝜙


2
(𝛼)]
2

𝑑𝛼

= 𝑒
−3𝑀1𝑡𝜙2



2

𝐿
2
(𝐷(𝑠))



(
𝜙
2

𝜙2


2

𝐿
2
(𝐷(𝑠))

)



2

𝐿
2
(𝐷(𝑠))

≥ 𝑒
−4𝑀1𝑡


𝜙
𝑡

2



2

𝐿
2
(𝐷(𝑠+𝑡))

𝜆
1
(𝐷 (𝑠))

= 𝑒
−4𝑀1𝑡𝜆

1
(𝐷 (𝑠)) .

(A.13)

Hence

lim
𝑡→0
+

inf 𝜆1 (𝐷 (𝑠 + 𝑡)) − 𝜆
1
(𝐷 (𝑠))

𝑡

≥ lim
𝑡→0
+

inf 𝑒
−4𝑀1𝑡 − 1

𝑡
𝜆
1
(𝐷 (𝑠))

= −4𝑀
1
𝜆
1
(𝐷 (𝑠)) .

(A.14)

The other part is similar.
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The initial-boundary value problem for a class of nonlinear wave equations system in bounded domain is studied. The existence
of global solutions for this problem is proved by constructing a stable set and obtain the asymptotic stability of global solutions
through the use of a difference inequality.

1. Introduction

In this paper, we are concernedwith the global solvability and
decay stabilization for the following nonlinear wave equa-
tions system:

𝑢
𝑡𝑡

− div (|∇𝑢|
𝑝−2

∇𝑢) +
𝑢𝑡



𝑞−2

𝑢
𝑡
− Δ𝑢
𝑡

= |V|
𝑟+2

|𝑢|
𝑟
𝑢, (𝑥, 𝑡) ∈ Ω × 𝑅

+
,

(1)

V
𝑡𝑡

− div (|∇V|
𝑝−2

∇V) +
V𝑡



𝑞−2

V
𝑡
− ΔV
𝑡

= |𝑢|
𝑟+2

|V|
𝑟
V, (𝑥, 𝑡) ∈ Ω × 𝑅

+

(2)

with the initial-boundary value conditions

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) ∈ 𝑊

1,𝑝

0
(Ω) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) ∈ 𝐿

2

(Ω)

𝑥 ∈ Ω,

(3)

V (𝑥, 0) = V
0
(𝑥) ∈ 𝑊

1,𝑝

0
(Ω) , V

𝑡
(𝑥, 0) = V

1
(𝑥) ∈ 𝐿

2

(Ω)

𝑥 ∈ Ω,

(4)

𝑢(𝑥, 𝑡)= 0, V (𝑥, 𝑡)=0, (𝑥, 𝑡)∈𝜕Ω × 𝑅
+
, (5)

where Ω is a bounded open domain in 𝑅
𝑛 with a smooth

boundary 𝜕Ω,𝑝, 𝑞 ≥ 2, 𝑟 > 0 and𝑝 < 2(𝑟+2) ≤ 𝑛𝑝/(𝑛−𝑝) for
𝑛 ≥ 𝑝 and 𝑝 < 2(𝑟 + 2) < +∞ for 𝑛 < 𝑝.

When 𝑝 = 2, Medeiros and Miranda [1] proved the exis-
tence and uniqueness of global weak solutions. Cavalcanti
et al. in [2–4] considered the asymptotic behavior for wave
equation and an analogous hyperbolic-parabolic system with
boundary damping and boundary source term. In paper [5,
6], the authors dealt with the existence, uniform decay rates,
and blowup for solutions of systems of nonlinear wave equa-
tions with damping and source terms.

Rammaha and Wilstein [7] and Yang [8] are concerned
with the initial boundary value problem for a class of quasilin-
ear evolution equations with nonlinear damping and source
terms. Under appropriate conditions, by a Galerkin approx-
imation scheme combined with the potential well method,
they proved the existence and asymptotic behavior of global
weak solutions when 𝑚 < 𝑝, where 𝑚 ≥ 0 and 𝑝 are, respec-
tively, the growth orders of the nonlinear strain terms and the
source term.

Ono [9] considers the following initial-boundary value
problem for nonlinear wave equations with nonlinear dissi-
pative terms:

𝑢
𝑡𝑡

− Δ𝑢 + 𝛿
1
𝑢
𝑡
+ 𝛿
2

𝑢𝑡


𝛽

𝑢
𝑡
− 𝛿
3
Δ𝑢
𝑡
= |𝑢|
𝛼
𝑢,

(𝑥, 𝑡) ∈ Ω × 𝑅
+
,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑢

𝑡
(𝑥, 0) = 𝑢

1
(𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 ≥ 0,

(6)
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where 𝛿
𝑖

≥ 0, 𝑖 = 1, 2, 3, and 𝛼, 𝛽 > 0 are constants. The
author mainly investigates on the blowup phenomenon to
problem (6). On the other hand, in the case of 𝛿

1
+𝛿
2
+𝛿
3
> 0,

he shows that the problem (6) admits a unique global solu-
tion, and its energy has some decay properties under some
assumptions on 𝑢

0
and initial energy𝐸(0) ≡ 𝐸(𝑢

0
, 𝑢
1
). In par-

ticular, when 𝛿
2
> 0 and 𝛿

1
+ 𝛿
3
> 0 in (6), the energy 𝐸(𝑡) ≡

𝐸(𝑢(𝑡), 𝑢
𝑡
(𝑡)) has some polynomial and exponential decay

rates, respectively.
For the following strongly damped nonlinear wave equa-

tion

𝑢
𝑡𝑡

− Δ𝑢
𝑡
− Δ𝑢 + 𝑓 (𝑢

𝑡
) + 𝑔 (𝑢) = ℎ, (7)

Dell’Oro and Pata [10] obtain the long-time behavior of the
related solution semigroup, which is shown to possess the
global attractor in the natural weak energy space. In addition,
the existence of global and local solutions, decay estimates,
and blowup for solutions of nonlinear wave equation with
source and damping terms and exponential nonlinearities are
studied in [11–14].

In this paper, we prove the global existence for the prob-
lem (1)–(5) by applying the potential well theory introduced
by Sattinger [15] and Payne and Sattinger [16]. Meanwhile,
we obtain the asymptotic stabilization of global solutions by
using a difference inequality [17].

For simplicity of notations, hereafter we denote by ‖ ⋅ ‖
𝑝

the norm of 𝐿𝑝(Ω); ‖ ⋅ ‖ denotes 𝐿
2
(Ω) norm, and we write

equivalent norm ‖ ⋅ ∇‖
𝑝
instead of 𝑊1,𝑝

0
(Ω) norm ‖ ⋅ ‖

𝑊
1,𝑝

0
(Ω)

.
Moreover,𝐶 denotes various positive constants depending on
the known constants andmay be different at each appearance.

2. Local Existence

In this section, we investigate the local existence and unique-
ness of the solutions of the problem (1)–(5). For this purpose,
we list up two useful lemmas which will be used later and give
the definition of weak solutions.

Lemma 1. Let 𝑢 ∈ 𝑊
1,𝑝

0
(Ω), then 𝑢 ∈ 𝐿

𝑠
(Ω); and the inequal-

ity ‖𝑢‖
𝑠

≤ 𝐶‖𝑢‖
𝑊
1,𝑝

0
(Ω)

holds with a constant 𝐶 > 0 depending
on Ω, 𝑝, and 𝑠, provided that 2 ≤ 𝑠 < +∞, 2 ≤ 𝑛 ≤ 𝑝 and
2 ≤ 𝑠 ≤ 𝑛𝑝/(𝑛 − 𝑝), 2 < 𝑝 < 𝑛.

Lemma 2 (Young inequality). Let 𝑎, 𝑏 ≥ 0 and 1/𝑝 + 1/𝑞 = 1

for 1 < 𝑝, 𝑞 < +∞; then one has the inequality

𝑎𝑏 ≤ 𝛿𝑎
𝑝
+ 𝐶 (𝛿) 𝑏

𝑞
, (8)

where 𝛿 > 0 is an arbitrary constant, and𝐶(𝛿) is a positive con-
stant depending on 𝛿.

Definition 3. A pair of functions (𝑢, V) is said to be a weak
solution of (1)–(5) on [0, 𝑇] if 𝑢, V ∈ 𝐶([0, 𝑇],𝑊

1,𝑝

0
(Ω)),

𝑢
𝑡
, V
𝑡
∈ 𝐶([0, 𝑇], 𝐿

2
(Ω)), [𝑢(0), V(0)] = [𝑢

0
, V
0
] ∈ 𝑊

1,𝑝

0
(Ω) ×

𝑊
1,𝑝

0
(Ω), [𝑢

𝑡
(0), V
𝑡
(0)] = [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω) × 𝐿

2
(Ω), and [𝑢, V]

satisfies
⟨𝑢
𝑡
(𝑡) , 𝜙⟩

𝐿
2
(Ω)

− ⟨𝑢
1
, 𝜙⟩
𝐿
2
(Ω)

+ ∫

𝑡

0

⟨(|∇𝑢|
𝑝−2

∇𝑢) , ∇𝜙⟩
𝐿
2
(Ω)

𝑑𝜏

+ ∫

𝑡

0

⟨
𝑢𝑡



𝑞−2

𝑢
𝑡
, 𝜙⟩
𝐿
2
(Ω)

𝑑𝜏 + ∫

𝑡

0

⟨∇𝑢
𝑡
, ∇𝜙⟩
𝐿
2
(Ω)

= ∫

𝑡

0

⟨|V|
𝑟+2

|𝑢|
𝑟
𝑢, 𝜙⟩
𝐿
2
(Ω)

𝑑𝜏,

⟨V
𝑡
(𝑡) , 𝜓⟩

𝐿
2
(Ω)

− ⟨V
1
, 𝜓⟩
𝐿
2
(Ω)

+ ∫

𝑡

0

⟨(|∇V|
𝑝−2

∇V) , ∇𝜓⟩
𝐿
2
(Ω)

𝑑𝜏

+ ∫

𝑡

0

⟨
V𝑡



𝑞−2

V
𝑡
, 𝜓⟩
𝐿
2
(Ω)

𝑑𝜏 + ∫

𝑡

0

⟨∇V
𝑡
, ∇𝜓⟩
𝐿
2
(Ω)

= ∫

𝑡

0

⟨|𝑢|
𝑟+2

|V|
𝑟
V, 𝜓⟩
𝐿
2
(Ω)

𝑑𝜏,

(9)

for all test functions 𝜙, 𝜓 ∈ 𝑊
1,𝑝

0
(Ω) and for almost all 𝑡 ∈

[0, 𝑇].

The local existence and uniqueness of solutions for prob-
lem (1)–(5) can be proved through the use of Galerkin
method. The result reads as follows.

Theorem 4 (local solution). Supposed that [𝑢
0
, V
0
] ∈

𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω), [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω) × 𝐿

2
(Ω), and 𝑝 < 2(𝑟 +

2) ≤ 𝑛𝑝/(𝑛−𝑝) if 𝑛 ≥ 𝑝 and 𝑝 < 2(𝑟+2) < +∞ for 𝑛 < 𝑝, then
there exists 𝑇 > 0 such that the problem (1)–(5) has a unique
local solution [𝑢(𝑡), V(𝑡)] satisfying

[𝑢, V] ∈ 𝐿
∞

([0, 𝑇) ; 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω)) ;

[𝑢
𝑡
, V
𝑡
] ∈ 𝐿
∞

([0, 𝑇) ; 𝐿
2

(Ω) × 𝐿
2

(Ω)) ,

(10)

𝐸 (𝑡) + ∫

𝑡

0

(
∇𝑢
𝜏
(𝜏)



2

+
∇V𝜏 (𝜏)



2

+‖𝑢 (𝜏)‖
𝑞

𝑞
+ ‖V (𝜏)‖

𝑞

𝑞
) 𝑑𝜏 = 𝐸 (0) ,

(11)

where

𝐸 (𝑡) =
1

2
(
𝑢𝑡



2

+
V𝑡



2

) +
1

𝑝
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
)

−
1

𝑟 + 2
‖𝑢V‖
𝑟+2

𝑟+2
.

(12)

Proof. Let {𝜔
𝑖
}
∞

𝑖=1
be a basis for 𝑊

1,𝑝

0
(Ω). Supposed that 𝑉

𝑘
is

the subspace of𝑊1,𝑝
0

(Ω) generated by {𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑘
}, 𝑘 ∈ 𝑁.

We are going to look for the approximate solution

𝑢
𝑘
(𝑡) =

𝑘

∑

𝑖=1

𝑔
𝑖𝑘
(𝑡) 𝜔
𝑖
, V

𝑘
(𝑡) =

𝑘

∑

𝑖=1

ℎ
𝑖𝑘
(𝑡) 𝜔
𝑖

(13)



Abstract and Applied Analysis 3

which satisfies the following Cauchy problem:

∫
Ω

(𝑢


𝑘
− div (

∇𝑢
𝑘



𝑝−2

∇𝑢
𝑘
) +


𝑢


𝑘



𝑞−2

𝑢


𝑘
− Δ𝑢


𝑘
)𝜔
𝑖
𝑑𝑥

= ∫
Ω

V𝑘


𝑟+2𝑢𝑘


𝑟

𝑢
𝑘
𝜔
𝑖
𝑑𝑥,

(14)

∫
Ω

(V


𝑘
− div (

∇V𝑘


𝑝−2

∇V
𝑘
) +


V


𝑘



𝑞−2

V


𝑘
− ΔV


𝑘
)𝜔
𝑖
𝑑𝑥

= ∫
Ω

𝑢𝑘


𝑟+2V𝑘


𝑟

V
𝑘
𝜔
𝑖
𝑑𝑥,

(15)

𝑢
𝑘
(0) = 𝑢

0𝑘
=

𝑘

∑

𝑖=1

(𝑢
0
, 𝜔
𝑖
) 𝜔
𝑖
→ 𝑢
0
, in 𝑊

1,𝑝

0
(Ω) ,

𝑘 → ∞,

(16)

V
𝑘
(0) = V

0𝑘
=

𝑘

∑

𝑖=1

(V
0
, 𝜔
𝑖
) 𝜔
𝑖
→ V
0

in 𝑊
1,𝑝

0
(Ω) ,

𝑘 → ∞,

(17)

𝑢


𝑘
(0) = 𝑢

1𝑘
=

𝑘

∑

𝑖=1

(𝑢
1
, 𝜔
𝑖
) 𝜔
𝑖
→ 𝑢
1

in 𝐿
2

(Ω) ,

𝑘 → ∞,

(18)

V


𝑘
(0) = V

1𝑘
=

𝑘

∑

𝑖=1

(V
1
, 𝜔
𝑖
) 𝜔
𝑖
→ V
1

in 𝐿
2

(Ω) ,

𝑘 → ∞.

(19)

Note that, we can solve the problem (14)–(19) by a Picard’s
iteration method in ordinary differential equations. Hence,
there exists a solution in [0, 𝑇

𝑘
) for some 𝑇

𝑘
> 0, and we can

extend this solution to the whole interval [0, 𝑇] for any given
𝑇 > 0 by making use of the a priori estimates below.

Multiplying (14) by 𝑔


𝑖𝑘
(𝑡) and (15) by ℎ



𝑖𝑘
(𝑡) and summing

over 𝑖 from 1 to 𝑘, we obtain
1

2

𝑑

𝑑𝑡
(

𝑢


𝑘
(𝑡)



2

+
∇𝑢
𝑘



𝑝

𝑝
) +


𝑢


𝑘
(𝑡)



𝑞

𝑞
+


∇𝑢


𝑘
(𝑡)



2

= ∫
Ω

V𝑘


𝑟+2𝑢𝑘


𝑟

𝑢
𝑘
𝑢


𝑘
𝑑𝑥,

(20)

1

2

𝑑

𝑑𝑡
(

V


𝑘
(𝑡)



2

+
∇V𝑘



𝑝

𝑝
) +


V


𝑘
(𝑡)



𝑞

𝑞
+


∇V


𝑘
(𝑡)



2

= ∫
Ω

𝑢𝑘


𝑟+2V𝑘


𝑟

V
𝑘
V


𝑘
𝑑𝑥.

(21)

By summing (20) and (21) and integrating the resulting iden-
tity over [0, 𝑡], we have

1

2
(

𝑢


𝑘
(𝑡)



2

+

V


𝑘
(𝑡)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝
)

+ ∫

𝑡

0

(

∇𝑢


𝑘
(𝑡)



2

+

∇V


𝑘
(𝑡)



2

+

𝑢


𝑘
(𝜏)



𝑞

𝑞
+


V


𝑘
(𝜏)



𝑞

𝑞
) 𝑑𝜏

≤ 𝐶
0
+ ∫

𝑡

0

∫
Ω

(
V𝑘



𝑟+2𝑢𝑘


𝑟

𝑢
𝑘
𝑢


𝑘

+
𝑢𝑘



𝑟+2V𝑘


𝑟

V
𝑘
V


𝑘
) 𝑑𝑥 𝑑𝜏.

(22)

We estimate the right-hand terms of (22) as follows: we get
from Hölder inequality and Lemmas 1 and 2 that



∫

𝑡

0

∫
Ω

(
V𝑘



𝑟+2𝑢𝑘


𝑟

𝑢
𝑘
𝑢


𝑘
+

𝑢𝑘


𝑟+2V𝑘


𝑟

V
𝑘
V


𝑘
) 𝑑𝑥 𝑑𝜏



≤ ∫

𝑡

0

(

𝑢


𝑘
(𝜏)



2

+

V


𝑘
(𝜏)



2

) 𝑑𝜏

+ ∫

𝑡

0

∫
Ω

𝑢𝑘V𝑘


2(𝑟+1)

(
𝑢𝑘



2

+
V𝑘



2

) 𝑑𝑥 𝑑𝜏

≤ ∫

𝑡

0

(

𝑢


𝑘
(𝜏)



2

+

V


𝑘
(𝜏)



2

) 𝑑𝜏

+ 𝐶∫

𝑡

0

(
𝑢𝑘



2(𝑟+2)

2(𝑟+2)
+

V𝑘


2(𝑟+2)

2(𝑟+2)
) 𝑑𝜏

≤ 𝐶∫

𝑡

0

(

𝑢


𝑘
(𝜏)



2

+

V


𝑘
(𝜏)



2

+
∇𝑢
𝑘



2(𝑟+2)

𝑝
+

∇V𝑘


2(𝑟+2)

𝑝
) 𝑑𝜏

≤ 𝐶∫

𝑡

0

(

𝑢


𝑘
(𝜏)



2

+

V


𝑘
(𝜏)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝
)

2(𝑟+2)/𝑝

𝑑𝜏.

(23)

It follows from (22) and (23) that


𝑢


𝑘
(𝑡)



2

+

V


𝑘
(𝑡)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝

+ 2∫

𝑡

0

(

𝑢


𝑘
(𝜏)



𝑞

𝑞
‖ +


V


𝑘
(𝜏)



𝑞

𝑞

+

∇𝑢


𝑘
(𝑡)



2

+

∇V


𝑘
(𝑡)



2

) 𝑑𝜏

≤ 2𝐶
0
+ 𝐶∫

𝑡

0

(

𝑢


𝑘
(𝜏)



2

+

V


𝑘
(𝜏)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝
)

2(𝑟+2)/𝑝

𝑑𝜏,

(24)

which implies that


𝑢


𝑘
(𝑡)



2

+

V


𝑘
(𝑡)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝

≤ 2𝐶
0
+ 𝐶∫

𝑡

0

(

𝑢


𝑘
(𝜏)



2

+

V


𝑘
(𝜏)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝
)

2(𝑟+2)/𝑝

𝑑𝜏.

(25)

We get from (25) and Gronwall type inequality that


𝑢


𝑘
(𝑡)



2

+

V


𝑘
(𝑡)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝

≤ [2𝐶
0
−

2 (𝑟 + 2) − 𝑝

𝑝
𝐶𝑡]

−𝑝/(2(𝑟+2)−𝑝)

.

(26)



4 Abstract and Applied Analysis

Thus, we deduce from (26) that there exists a time 𝑇 > 0 such
that

𝑢


𝑘
(𝑡)



2

+

V


𝑘
(𝑡)



2

+
∇𝑢
𝑘



𝑝

𝑝
+

∇V𝑘


𝑝

𝑝
≤ 𝐶
1
, ∀𝑡 ∈ [0, 𝑇] ,

(27)

where 𝐶
1
is a positive constant independent of 𝑘.

We have from (24) and (26) that

2∫

𝑡

0

(

𝑢


𝑘
(𝜏)



𝑞

𝑞
+


V


𝑘
(𝜏)



𝑞

𝑞

+

∇𝑢


𝑘
(𝜏)



2

+

∇V


𝑘
(𝜏)



2

) 𝑑𝜏 ≤ 𝐶
2
, ∀𝑡 ∈ [0, 𝑇] .

(28)

It follows from (27) and (28) that

𝑢


𝑘
(𝑡)



2

≤ 𝐶
1
,


V


𝑘
(𝑡)



2

≤ 𝐶
1
,

∇𝑢
𝑘



𝑝

𝑝
≤ 𝐶
1
,

∇V𝑘


𝑝

𝑝
≤ 𝐶
1
.

𝑢


𝑘
(𝑡) and V



𝑘
(𝑡) are bounded in 𝐿

2
([0, 𝑇] ; 𝐿

𝑞

(Ω))

and 𝐿
2
([0, 𝑇] ; 𝐻

1

0
(Ω)) .

(29)

Using the same process as the proof of Theorem 2.1 in paper
[18], we derive that [𝑢(𝑡), V(𝑡)] is a local solution of the pro-
blem (1)–(5). By (20) and (21), we conclude that (11) is valid.

3. Global Existence

In order to state our main results, we first introduce the fol-
lowing functionals:

𝐽 ([𝑢, V]) =
1

𝑝
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) −

1

𝑟 + 2
‖𝑢V‖
𝑟+2

𝑟+2
, (30)

𝐾 ([𝑢, V]) = (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) − 2‖𝑢V‖

𝑟+2

𝑟+2
(31)

for [𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω).

We put that

𝑑 = inf {sup
𝜆≥0

𝐽 (𝜆 [𝑢, V]) : [𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω)

×𝑊
1,𝑝

0
(Ω) / {[0, 0]} } .

(32)

Then, we are able to define the stable set as follows for prob-
lem (1)–(5):

𝑊 = {[𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω) | 𝐾 ([𝑢, V]) > 0,

𝐽 ([𝑢, V]) < 𝑑} ∪ {[0, 0]} .

(33)

We denote the total energy related to (1) and (2) by (12), and

𝐸 (0) =
1

2
(
𝑢1



2

+
V1



2

) +
1

𝑝
(
∇𝑢
0



𝑝

𝑝
+

∇V0


𝑝

𝑝
)

−
1

𝑟 + 2

𝑢0V0


𝑟+2

𝑟+2

(34)

is the total energy of the initial data.

Lemma 5. Let [𝑢, V] be a solution to problem (1)–(5); then,
𝐸(𝑡) is a nonincreasing function for 𝑡 > 0 and

𝑑

𝑑𝑡
𝐸 (𝑡) = − (

𝑢𝑡


𝑞

𝑞
+

V𝑡


𝑞

𝑞
+

∇𝑢
𝑡



2

2
+

∇V𝑡


2

2
) . (35)

We have from (11) that 𝐸(𝑡) is the primitive of an inte-
grable function.Therefore, 𝐸(𝑡) is absolutely continuous, and
equality (35) is satisfied.

Lemma 6. Supposed that [𝑢, V] ∈ 𝑊
1,𝑝

0
(Ω) × 𝑊

1,𝑝

0
(Ω), and

𝑝 < 2(𝑟 + 2) ≤ 𝑛𝑝/(𝑛 − 𝑝) if 𝑛 ≥ 𝑝; 𝑝 < 2(𝑟 + 2) < +∞ if
𝑛 < 𝑝, then 𝑑 > 0.

Proof. Since

𝐽 (𝜆 [𝑢, V]) =
𝜆
𝑝

𝑝
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) −

𝜆
2(𝑟+2)

𝑟 + 2
‖𝑢V‖
𝑟+2

𝑟+2
, (36)

so we get

𝑑

𝑑𝜆
𝐽 (𝜆 [𝑢, V]) = 𝜆

𝑝−1
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) − 2𝜆

2𝑟+3

‖𝑢V‖
𝑟+2

𝑟+2
.

(37)

In case 𝑢V ̸= 0, let (𝑑/𝑑𝜆)𝐽(𝜆[𝑢, V]) = 0, which implies that

𝜆
1
= (

‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝

2‖𝑢V‖𝑟+2
𝑟+2

)

1/(2𝑟−𝑝+4)

. (38)

As 𝜆 = 𝜆
1
, an elementary calculation shows that

(𝑑
2
/𝑑𝜆
2
)𝐽(𝜆[𝑢, V])|

𝜆=𝜆1
< 0. Therefore, we have that

sup
𝜆≥0

𝐽 (𝜆 [𝑢, V])

= 𝐽 (𝜆
1
[𝑢, V])

=
2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)
(

‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝

2𝑝/(2𝑟+4)‖𝑢V‖
𝑝/2

𝑟+2

)

(2𝑟+4)/(2𝑟−𝑝+4)

.

(39)

It follows from Hölder inequality and Lemma 1 that

‖𝑢V‖
𝑝/2

𝑟+2
≤ ‖𝑢‖
𝑝/2

2(𝑟+2)
‖V‖
𝑝/2

2(𝑟+2)

≤
1

2
(‖𝑢‖
𝑝

2(𝑟+2)
+ ‖V‖
𝑝

2(𝑟+2)
)

≤ 𝐶 (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) .

(40)

We get from (39) and (40) that

sup
𝜆≥0

𝐽 (𝜆 [𝑢, V]) ≥
2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)
(2
𝑝/(2𝑟+4)

𝐶)
−(2𝑟+4)/(2𝑟−𝑝+4)

> 0.

(41)

In case 𝑢V = 0 and 𝑢 = 0 or V = 0, then

𝐽 (𝜆 [𝑢, V]) =
𝜆
𝑝

𝑝
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) . (42)
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Therefore, we have

𝐽 (𝜆 [𝑢, V]) = +∞. (43)

We conclude from (41) and (43) that

𝑑 ≥
2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)
(2
𝑝/(2𝑟+4)

𝐶)
−(2𝑟+4)/(2𝑟−𝑝+4)

> 0. (44)

Thus, we complete the proof of Lemma 6.

Lemma 7. Supposed that 𝑝 < 2(𝑟 + 2) ≤ 𝑛𝑝/(𝑛 − 𝑝) for 𝑛 ≥ 𝑝

and 𝑝 < 2(𝑟 + 2) < +∞ for 𝑛 < 𝑝, if [𝑢
0
, V
0
] ∈ 𝑊, [𝑢

1
, V
1
] ∈

𝐿
2
(Ω) × 𝐿

2
(Ω) and 𝐸(0) < 𝑑, then [𝑢, V] ∈ 𝑊 for ∀𝑡 ∈ [0, 𝑇).

Proof. Assume that there exists a number 𝑡∗ ∈ (0, 𝑇) such that
[𝑢(𝑡), V(𝑡)] ∈ 𝑊 on [0, 𝑡

∗
) and 𝑢(𝑡

∗
) ∉ 𝑊. Then, in virtue of

the continuity of 𝑢(𝑡), we see 𝑢(𝑡
∗
) ∈ 𝜕𝑊, where 𝜕𝑊 denotes

the boundary of domain𝑊. From the definition of𝑊 and the
continuity of 𝐽([𝑢(𝑡), V(𝑡)]) and 𝐾([𝑢(𝑡), V(𝑡)]) in 𝑡, we have
either

𝐽 ([𝑢 (𝑡
∗
) , V (𝑡

∗
)]) = 𝑑 (45)

or

𝐾([𝑢 (𝑡
∗
) , V (𝑡

∗
)]) = 0. (46)

It follows from (12) and (30) that

𝐽 ([𝑢 (𝑡
∗
) , V (𝑡

∗
)]) ≤ 𝐸 (𝑡

∗
) ≤ 𝐸 (0) < 𝑑. (47)

So, case (45) is impossible.
Assume that (46) holds; then, we get that

𝑑

𝑑𝜆
𝐽 (𝜆 [𝑢 (𝑡

∗
) , V (𝑡

∗
)])

= 𝜆
𝑝−1

(1 − 𝜆
2𝑟−𝑝+4

) (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) .

(48)

We obtain from (𝑑/𝑑𝜆)𝐽(𝜆[𝑢(𝑡
∗
), V(𝑡∗)]) = 0 that𝜆 = 1. Since

𝑑
2

𝑑𝜆2
𝐽 (𝜆 [𝑢 (𝑡

∗
) , V (𝑡

∗
)])

𝜆=1

= − [(2 (𝑟 + 2) − 𝑝) + (2𝑟 + 3)] < 0.

(49)

Consequently, we get from (47) that

sup
𝜆≥0

𝐽 (𝜆 [𝑢 (𝑡
∗
) , V (𝑡

∗
)]) = 𝐽 ([𝑢 (𝑡

∗
) , V (𝑡

∗
)]) < 𝑑, (50)

which contradicts the definition of 𝑑. Hence, case (46) is
impossible as well. Thus we conclude that [𝑢(𝑡), V(𝑡)] ∈ 𝑊

on [0, 𝑇).

Theorem 8 (global solution). Supposed that 𝑝 < 2(𝑟 + 2) ≤

𝑛𝑝/(𝑛 − 𝑝) as 𝑛 ≥ 𝑝 and 𝑝 < 2(𝑟 + 2) < +∞ as 𝑛 < 𝑝,
and [𝑢(𝑡), V(𝑡)] is a local solution of problem (1)–(5) on [0, 𝑇).
If [𝑢
0
, V
0
] ∈ 𝑊, [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω) × 𝐿

2
(Ω) and 𝐸(0) < 𝑑, then

[𝑢(𝑡), V(𝑡)] is a global solution of problem (1)–(5).

Proof. It suffices to show that ‖𝑢
𝑡
‖
2
+ ‖V
𝑡
‖
2
+ ‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖𝑝

𝑝
is

bounded uniformlywith respect to 𝑡. Under the hypotheses in
Theorem 8,we get fromLemma 7 that [𝑢, V] ∈ 𝑊 on [0, 𝑇). So
the following formula holds on [0, 𝑇):

𝐽 ([𝑢, V]) =
1

𝑝
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) −

1

𝑟 + 2
‖𝑢V‖
𝑟+2

𝑟+2

≥
2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) .

(51)

We have from (51) that

1

2
(
𝑢𝑡



2

+
V𝑡



2

) +
2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
)

≤
1

2
(
𝑢𝑡



2

+
V𝑡



2

) + 𝐽 ([𝑢 (𝑡) , V (𝑡)])

= 𝐸 (𝑡) ≤ 𝐸 (0) < 𝑑.

(52)

Hence, we get

(
𝑢𝑡



2

+
V𝑡



2

) + (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
)

≤ max(2,
2𝑝 (𝑟 + 2)

2 (𝑟 + 2) − 𝑝
)𝑑 < +∞.

(53)

The above inequality and the continuation principle lead to
the global existence of the solution [𝑢, V] for problem (1)–(5).

4. Asymptotic Behavior of Global Solutions

The following lemma plays an important role in studying the
decay estimate of global solutions for the problem (1)–(5).

Lemma 9 (see [9]). Suppose that 𝜑(𝑡) is a nonincreasing non-
negative function on [0, +∞) and satisfies

𝜑(𝑡)
𝑟+1

≤ 𝑘 (𝜑 (𝑡) − 𝜑 (𝑡 + 1)) , ∀𝑡 ≥ 0. (54)

Then, 𝜑(𝑡) has the decay property

𝜑 (𝑡) ≤ [
𝑟

𝑘
(𝑡 − 1) + 𝑀

−𝑟
]

−1/𝑟

, ∀𝑡 ≥ 1, (55)

where 𝑘, 𝑟 > 0 are constants and 𝑀 = max
𝑡∈[0,1]

𝜑(𝑡).

Lemma 10. Under the assumptions of Theorem 8, if initial
value [𝑢

0
, V
0
] ∈ 𝑊 and [𝑢

1
, V
1
] ∈ 𝐿
2
(Ω)×𝐿

2
(Ω) are sufficiently

small such that

𝐶
2(𝑟+2)

(
2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝
𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

< 1, (56)

then

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) ≤

1

𝜃
𝐾 ([𝑢, V]) , (57)

where 𝜃 = 1 − 𝐶
2(𝑟+2)

((2𝑝(𝑟 + 2)/(2𝑝(𝑟 + 2) −

𝑝))𝐸(0))
(2(𝑟+2)−𝑝)/𝑝

> 0 is a positive constant and 𝐶 is the
optimal Sobolev’s constant from 𝑊

1,𝑝

0
(Ω) to 𝐿

2(𝑟+2)
(Ω).
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Proof. We have from Lemma 1 and (52) that

2‖𝑢V‖
𝑟+2

𝑟+2
≤ 2‖𝑢‖

𝑟+2

2(𝑟+2)
‖V‖
𝑟+2

2(𝑟+2)

≤ ‖𝑢‖
2(𝑟+2)

2(𝑟+2)
+ ‖V‖
2(𝑟+2)

2(𝑟+2)

≤ 𝐶
2(𝑟+2)

(‖∇𝑢‖
2(𝑟+2)

𝑝
+ ‖∇V‖

2(𝑟+2)

𝑝
)

≤ 𝐶
2(𝑟+2)

(‖∇𝑢‖
2(𝑟+2)−𝑝

𝑝
‖∇𝑢‖
𝑝

𝑝

+‖∇V‖
2(𝑟+2)−𝑝

𝑝
‖∇V‖
𝑝

𝑝
)

≤ 𝐶
2(𝑟+2)

(
2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝
𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

× (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) .

(58)

Therefore, we get from (58) and (31) that

[1 − 𝐶
2(𝑟+2)

(
2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝
𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

]

× (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) ≤ 𝐾 ([𝑢, V]) .

(59)

Let

𝜃 = 1 − 𝐶
2(𝑟+2)

(
2𝑝 (𝑟 + 2)

2𝑝 (𝑟 + 2) − 𝑝
𝐸 (0))

(2(𝑟+2)−𝑝)/𝑝

> 0; (60)

then, we have from (59) that

‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
≤

1

𝜃
𝐾 ([𝑢, V]) . (61)

Theorem 11. Under the assumptions of Theorem 8, if 𝑝 < 𝑞 <

𝑟 + 2 and (56) hold, then the global solution [𝑢, V] in 𝑊 of the
problem (1)–(5) has the following decay property:

𝐸 (𝑡) ≤ [
𝑝 − 2

𝑝𝐶
(𝑡 − 1) + 𝑀

(𝑝+𝑞−𝑝𝑞)/𝑝
]

𝑝/(𝑝+𝑞−𝑝𝑞)

, ∀𝑡 > 1,

(62)

where𝑀 = max
𝑡∈[0,1]

𝐸(𝑡) > 0 is some constant depending only
on [𝑢
0
, V
0
] and [𝑢

1
, V
1
].

Proof. Multiplying (1) by 𝑢
𝑡
and (2) by V

𝑡
and integrating over

Ω × [𝑡, 𝑡 + 1], and summing up together, we get

∫

𝑡+1

𝑡

(
𝑢𝑡(𝑠)



𝑞

𝑞
+

V𝑡(𝑠)


𝑞

𝑞
+

∇𝑢
𝑡
(𝑠)



2

2

+
∇V𝑡(𝑠)



2

2
) 𝑑𝑠 = 𝐸 (𝑡) − 𝐸 (𝑡 + 1) .

(63)

Thus, there exists 𝑡
1
∈ [𝑡, 𝑡+1/4], 𝑡

2
∈ [𝑡+3/4, 𝑡+1] such that

4 (
𝑢𝑡 (𝑡𝑖)



𝑞

𝑞
+

V𝑡 (𝑡𝑖)


𝑞

𝑞
+

∇𝑢
𝑡
(𝑡
𝑖
)


2

2
+

∇V𝑡 (𝑡𝑖)


2

2
)

= 𝐸 (𝑡) − 𝐸 (𝑡 + 1) , 𝑖 = 1, 2.

(64)

On the other hand, we multiply (1) by 𝑢 and (2) by V and
integrate over Ω × [𝑡

1
, 𝑡
2
]. Adding them together, we obtain

∫

𝑡2

𝑡1

𝐾 ([𝑢, V]) 𝑑𝑠 = ∫

𝑡2

𝑡1

𝑢𝑡


2

𝑑𝑠 + ∫

𝑡2

𝑡1

V𝑡


2

𝑑𝑠

+ (𝑢
𝑡
(𝑡
1
) , 𝑢 (𝑡

1
)) − (𝑢

𝑡
(𝑡
2
) , 𝑢 (𝑡

2
))

+ (V
𝑡
(𝑡
1
) , V (𝑡

2
)) − (V

𝑡
(𝑡
2
) V (𝑡
2
))

− (∫

𝑡2

𝑡1

∫
Ω

𝑢𝑡


𝑞−2

𝑢
𝑡
𝑢 𝑑𝑥 𝑑𝑠

+∫

𝑡2

𝑡1

∫
Ω

V𝑡


𝑞−2

V
𝑡
V 𝑑𝑥 𝑑𝑠)

−∫

𝑡2

𝑡1

∫
Ω

∇𝑢
𝑡
∇𝑢𝑑𝑥 𝑑𝑠−∫

𝑡2

𝑡1

∫
Ω

∇V
𝑡
∇V 𝑑𝑥 𝑑𝑠.

(65)

From (63), Sobolev inequality, andHölder inequality, we have

∫

𝑡2

𝑡1

𝑢𝑡


2

𝑑𝑠 ≤ 𝐶∫

𝑡2

𝑡1

∇𝑢
𝑡



2

𝑑𝑠 ≤ 𝐶 (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) ,

∫

𝑡2

𝑡1

V𝑡


2

𝑑𝑠 ≤ 𝐶∫

𝑡2

𝑡1

∇V𝑡


2

𝑑𝑠 ≤ 𝐶 (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) .

(66)

We get from (52), (64), and Lemmas 1 and 2 that

𝑢𝑡 (𝑡𝑖) , 𝑢 (𝑡
𝑖
)
≤

𝑢𝑡 (𝑡𝑖)
 ⋅

𝑢 (𝑡
𝑖
)
≤𝐶

∇𝑢
𝑡
(𝑡
𝑖
)
 ⋅

∇𝑢(𝑡
𝑖
)
𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2 sup
𝑡≤𝑠≤𝑡+1

𝐸(𝑠)
1/𝑝

≤ 𝐶 (𝜀) (𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) , 𝑖 = 1, 2,

(V𝑡 (𝑡𝑖) , V (𝑡
𝑖
))

≤
V𝑡 (𝑡𝑖)

 ⋅
V (𝑡
𝑖
)
≤𝐶

∇V𝑡 (𝑡𝑖)
 ⋅

∇V(𝑡𝑖)
𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2 sup
𝑡≤𝑠≤𝑡+1

𝐸(𝑠)
1/𝑝

≤ 𝐶 (𝜀) (𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) , 𝑖 = 1, 2.

(67)

From Hölder inequality and Lemma 2,we get



∫

𝑡2

𝑡1

∫
Ω

𝑢𝑡


𝑞−2

𝑢
𝑡
𝑢 𝑑𝑥 𝑑𝑠



≤ ∫

𝑡2

𝑡1

𝑢𝑡


𝑞−1

𝑞
‖𝑢‖
𝑞
𝑑𝑠

≤(∫

𝑡2

𝑡1

𝑢𝑡


𝑞

𝑞
𝑑𝑠)

(𝑞−1)/𝑞

(∫

𝑡2

𝑡1

‖𝑢‖
𝑞

𝑞
𝑑𝑠)

1/𝑞

≤ 𝐶 (𝜀) ∫

𝑡2

𝑡1

𝑢𝑡


𝑞

𝑞
𝑑𝑠 + 𝜀∫

𝑡2

𝑡1

‖𝑢‖
𝑞

𝑞
𝑑𝑠,

(68)
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∫

𝑡2

𝑡1

∫
Ω

V𝑡


𝑞−2

V
𝑡
V 𝑑𝑥 𝑑𝑠



≤ ∫

𝑡2

𝑡1

V𝑡


𝑞−1

𝑞
‖V‖
𝑞
𝑑𝑠

≤(∫

𝑡2

𝑡1

V𝑡


𝑞

𝑞
𝑑𝑠)

(𝑞−1)/𝑞

(∫

𝑡2

𝑡1

‖V‖
𝑞

𝑞
𝑑𝑠)

1/𝑞

≤ 𝐶 (𝜀) ∫

𝑡2

𝑡1

V𝑡


𝑞

𝑞
𝑑𝑠 + 𝜀∫

𝑡2

𝑡1

‖V‖
𝑞

𝑞
𝑑𝑠.

(69)

Since 𝑝 < 𝑞 < 𝑟 + 2 and the property of the function
𝑓(𝑥) = 𝛼

𝑥
/𝑥, 𝛼 ≥ 0, 𝑥 > 0, we obtain

‖𝑢‖
𝑞

𝑞

𝑞
≤ 𝐶

‖𝑢‖
𝑝

𝑝

𝑝
+ 𝐶

‖𝑢‖
𝑟+2

𝑟+2

𝑟 + 2
,

‖V‖𝑞
𝑞

𝑞
≤ 𝐶

‖V‖
𝑝

𝑝

𝑝
+ 𝐶

‖V‖𝑟+2
𝑟+2

𝑟 + 2
.

(70)

We conclude from (69), (70), [𝑢, V] ∈ 𝑊, and Lemma 1
that

‖𝑢‖
𝑞

𝑞
+ ‖V‖
𝑞

𝑞
≤ 𝐶 (‖𝑢‖

𝑝

𝑝
+ ‖𝑢‖
𝑟+2

𝑟+2
+ ‖V‖
𝑝

𝑝
+ ‖V‖
𝑟+2

𝑟+2
)

≤ 𝐶 (‖𝑢‖
𝑝

𝑝
+ ‖∇𝑢‖

𝑝

𝑝
+ ‖V‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
)

≤ 𝐶 (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) ≤ 𝐶𝐸 (𝑡) .

(71)

It follows from (63), (68), (69), and (71) that


− (∫

𝑡2

𝑡1

∫
Ω

𝑢𝑡


𝑞−2

𝑢
𝑡
𝑢 𝑑𝑥 𝑑𝑠+∫

𝑡2

𝑡1

∫
Ω

V𝑡


𝑞−2

V
𝑡
V 𝑑𝑥 𝑑𝑠)



≤ 𝐶 (𝜀) (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) + 𝜀𝐶∫

𝑡2

𝑡1

𝐸 (𝑠) 𝑑𝑠,

(72)

and we obtain from (63), Sobolev inequality, Hölder inequal-
ity, and Lemma 2 that


− ∫

𝑡2

𝑡1

∫
Ω

∇𝑢
𝑡
∇𝑢𝑑𝑠



≤ ∫

𝑡2

𝑡1

∇𝑢
𝑡

 ⋅ ‖∇𝑢‖ 𝑑𝑠

≤ (∫

𝑡2

𝑡1

∇𝑢
𝑡



2

𝑑𝑠)

1/2

(∫

𝑡2

𝑡1

‖∇𝑢‖
2
𝑑𝑠)

1/2

≤𝐶(𝐸 (𝑡)−𝐸 (𝑡 + 1))
1/2

(∫

𝑡2

𝑡1

‖∇𝑢‖
2

𝑝
𝑑𝑠)

1/2

≤𝐶(𝐸 (𝑡)−𝐸 (𝑡 + 1))
1/2

(∫

𝑡2

𝑡1

‖∇𝑢‖
𝑝

𝑝
𝑑𝑠)

1/𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀∫

𝑡2

𝑡1

‖∇𝑢‖
𝑝

𝑝
𝑑𝑠.

(73)

Similarly, we have the following formula:


− ∫

𝑡2

𝑡1

∫
Ω

∇V
𝑡
∇V𝑑𝑠



≤ ∫

𝑡2

𝑡1

∇V𝑡
 ⋅ ‖∇V‖ 𝑑𝑠

≤ (∫

𝑡2

𝑡1

∇V𝑡


2

𝑑𝑠)

1/2

(∫

𝑡2

𝑡1

‖∇V‖
2
𝑑𝑠)

1/2

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2

(∫

𝑡2

𝑡1

‖∇V‖
2

𝑝
𝑑𝑠)

1/2

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
1/2

(∫

𝑡2

𝑡1

‖∇V‖
𝑝

𝑝
𝑑𝑠)

1/𝑝

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀∫

𝑡2

𝑡1

‖∇V‖
𝑝

𝑝
𝑑𝑠.

(74)

We get from (57), (73), and (74) that



∫

𝑡2

𝑡1

∫
Ω

(∇𝑢
𝑡
∇𝑢 + ∇V

𝑡
∇V) 𝑑𝑠



≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+ 𝜀∫

𝑡2

𝑡1

(‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) 𝑑𝑠

≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

+
𝜀

𝜃
∫

𝑡2

𝑡1

𝐾 ([𝑢, V]) 𝑑𝑠.

(75)

Choosing small enough 𝜀, we have from (65), (66), (67),
(72), and (75) that

∫

𝑡2

𝑡1

𝐾 ([𝑢, V]) 𝑑𝑠 ≤ 𝐶 [ (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

+(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

]

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) + 𝜀∫

𝑡2

𝑡1

𝐸 (𝑠) 𝑑𝑠.

(76)

It follows from (30) and (31) that

𝐽 ([𝑢, V]) =
2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)
(‖∇𝑢‖

𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
)

+
1

2 (𝑟 + 2)
𝐾 ([𝑢, V]) .

(77)

On the other hand, from (12) and using (57) and (77), we
deduce that

𝐸 (𝑡) =
1

2
(
𝑢𝑡



2

+
V𝑡



2

) + 𝐽 ([𝑢, V])

=
1

2
(
𝑢𝑡



2

+
V𝑡



2

) +
2 (𝑟 + 2) − 𝑝

2𝑝 (𝑟 + 2)

× (‖∇𝑢‖
𝑝

𝑝
+ ‖∇V‖

𝑝

𝑝
) +

1

2 (𝑟 + 2)
𝐾 ([𝑢, V])

≤
1

2
(
𝑢𝑡



2

+
V𝑡



2

) + (
2 (𝑟 + 2) − 𝑝

2𝜃𝑝 (𝑟 + 2)
+

1

2 (𝑟 + 2)
)

× 𝐾 ([𝑢, V]) .

(78)
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By integrating (78) over [𝑡
1
, 𝑡
2
], we obtain

∫

𝑡2

𝑡1

𝐸 (𝑠) 𝑑𝑠 ≤
1

2
∫

𝑡2

𝑡1

(
𝑢𝑡



2

+
V𝑡



2

) 𝑑𝑠

+ (
2 (𝑟 + 2) − 𝑝

2𝜃𝑝 (𝑟 + 2)
+

1

2 (𝑟 + 2)
)∫

𝑡2

𝑡1

𝐾 ([𝑢, V]) 𝑑𝑠.

(79)

For small enough 𝜀, we have from (76) and (79) that

∫

𝑡2

𝑡1

𝐸 (𝑠) 𝑑𝑠

≤ 𝐶 [(𝐸 (𝑡) − 𝐸 (𝑡 + 1)) + (𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/(2(𝑝−1))

]

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) .

(80)

Thus, there exists 𝑡∗ ∈ [𝑡
1
, 𝑡
2
], such that

𝐸 (𝑡
∗
) ≤ 𝐶 [(𝐸 (𝑡) − 𝐸 (𝑡 + 1)) + (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

𝑝/2(𝑝−1)
]

+ 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) .

(81)

Multiplying (1) by 𝑢
𝑡
and (2) by V

𝑡
and integrating over Ω ×

[𝑡
∗
, 𝑡
2
], and summing up, we get

𝐸 (𝑡
2
) = 𝐸 (𝑡

∗
) − ∫

𝑡2

𝑡
∗

(
𝑢𝑡



𝑞

𝑞
+

V𝑡


𝑞

𝑞
+

∇𝑢
𝑡



2

+
∇V𝑡



2

) 𝑑𝑠.

(82)

Therefore, we obtain from (63), (81), and (82) that

sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) ≤ 𝐶 [ (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

+(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

] + 𝜀 sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) .

(83)

Choosing small enough 𝜀, we have from (83) that

sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) ≤ 𝐶 [ (𝐸 (𝑡) − 𝐸 (𝑡 + 1))

+(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

] .

(84)

Since 𝑝 > 2 and 𝐸(𝑡) < 𝐸(0), we get

sup
𝑡≤𝑠≤𝑡+1

𝐸 (𝑠) ≤ 𝐶(𝐸 (𝑡) − 𝐸 (𝑡 + 1))
𝑝/2(𝑝−1)

. (85)

Consequently,

sup
𝑡≤𝑠≤𝑡+1

𝐸(𝑠)
(2(𝑝−1))/𝑝

≤ 𝐶 (𝐸 (𝑡) − 𝐸 (𝑡 + 1)) . (86)

Thus, applying Lemma 9 to (86), we get

𝐸 (𝑡) ≤ [
𝑝 − 2

𝑝𝐶
(𝑡 − 1) + 𝑀

(𝑝−2)/𝑝
]

𝑝/(2−𝑝)

, ∀𝑡 > 1, (87)

where 𝑀 = max
𝑡∈[0,1]

𝐸(𝑡) > 0 is some constant depending
only on [𝑢

0
, V
0
] and [𝑢

1
, V
1
].
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This paper discusses spectral and spectral elementmethods with Legendre-Gauss-Lobatto nodal basis for general 2nd-order elliptic
eigenvalue problems. The special work of this paper is as follows. (1) We prove a priori and a posteriori error estimates for spectral
and spectral element methods. (2) We compare between spectral methods, spectral element methods, finite element methods and
their derived p-version, h-version, and ℎ𝑝-version methods from accuracy, degree of freedom, and stability and verify that spectral
methods and spectral element methods are highly efficient computational methods.

1. Introduction

As we know, finite element methods are local numerical
methods for partial differential equations and particularly
well suitable for problems in complex geometries, whereas
spectral methods can provide a superior accuracy, at the
expense of domain flexibility. Spectral element methods
combine the advantages of the above methods (see [1]). So
far, spectral and spectral element methods are widely applied
to boundary value problems (see [1, 2]), as well as applied
to symmetric eigenvalue problems (see [3]). However, it is
still a new subject to apply them to nonsymmetric elliptic
eigenvalue problems.

A posteriorii error estimates and highly efficient compu-
tational methods for finite elements of eigenvalue problems
are the subjects focused on by the academia these years;
see [3–16], and among them, for nonsymmetric 2nd-order
elliptic eigenvalue problems, [5, 15] provide a posteriori
error estimates and adaptive algorithms, [9] the function
value recovery techniques and [8, 10] two-level discretization
schemes.

Based on the work mentioned above, this paper shall
further apply spectral and spectral element methods to

nonsymmetric elliptic eigenvalue problems. This paper will
mainly perform the following work.

(1) We prove a priori and a posteriori error esti-
mates of spectral and spectral element methods with
Legendre-Gauss-Lobatto nodal basis, respectively, for
the general 2nd-order elliptic eigenvalue problems.

(2) We compare between spectral methods, spectral ele-
ment methods with Legendre-Gauss-Lobatto nodal
basis, finite element methods, and their derived 𝑝-
version, ℎ-version, and ℎ𝑝-version methods from
accuracy, degree of freedom, and stability and verify
that spectral methods and spectral element methods
are highly efficient computational methods for non-
symmetric 2nd-order elliptic eigenvalue problems.

This paper is organized as follows. Section 2 introduces
basic knowledge of second elliptic eigenvalue problems.
Sections 3 and 4 are devoted to a priori and a posteriori
error estimates of spectral and spectral element methods,
respectively. In Section 5, some numerical experiments are
performed by the methods mentioned above.
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2. Preliminaries

Consider the 2nd-order elliptic boundary value problem

𝐿𝑤 = −∇ ⋅ (𝐷∇𝑤) + b ⋅ ∇𝑤 + 𝑐𝑤 = 𝑓, in Ω,

𝑤 = 0, on 𝜕Ω,
(1)

where Ω ⊂ 𝑅
𝑑
(𝑑 = 2, 3) is a bounded domain, b and 𝑐

are a real-valued vector function and a real-valued function,
respectively, and 𝐷 is a positive scalar function with 𝐷(𝑥) ≥
𝐷
0
> 0 (∀𝑥 ∈ Ω).
We denote the complex Sobolev spaces with norm ‖ ⋅ ‖

𝑚

by 𝐻𝑚
(Ω), 𝐻1

0
(Ω) = {V ∈ 𝐻1

(Ω), V|
𝜕Ω
= 0}. Let (⋅, ⋅) and

‖ ⋅ ‖
0,Ω

be a inner product and a norm in the complex space
𝐿
2
(Ω), respectively.
In this paper, 𝐶 denotes a generic positive constant

independent of the polynomial degrees and mesh scales,
which may not be the same at different occurrences.

Define the bilinear form 𝑎(⋅, ⋅) as follows:

𝑎 (𝑤, V) = ∫
Ω

𝐷∇𝑤∇V + (b ⋅ ∇𝑤) V

+ 𝑐𝑤V, ∀𝑤, V ∈ 𝐻
1

0
(Ω) .

(2)

We assume that𝑓 ∈ 𝐿2(Ω),𝐷, b, and 𝑐 are bounded func-
tions on Ω, namely 𝐷, 𝑐 ∈ 𝐿∞(Ω), b ∈ (𝐿∞(Ω))𝑑. Further
more, we assume that ∇ ⋅ b exists and satisfies

−
1

2
∇ ⋅ b + 𝑐 ≥ 0, in Ω. (3)

Under these assumptions, the bilinear form 𝑎(⋅, ⋅) is
continuous in 𝐻1

0
(Ω) and 𝐻1

0
(Ω)-elliptic; that is, there exist

two constants 𝐴, 𝐵 > 0 independent of 𝑤, V such that

|𝑎 (𝑤, V)| ≤ 𝐴‖𝑤‖
1,Ω
‖V‖

1,Ω
, ∀𝑤, V ∈ 𝐻

1

0
(Ω) ,

Re 𝑎 (V, V) ≥ 𝐵‖V‖2
1,Ω
, ∀V ∈ 𝐻

1

0
(Ω) .

(4)

The corresponding variational formulation of (1) is given
as follows: find 𝑤 ∈ 𝐻1

0
(Ω), such that

𝑎 (𝑤, V) = (𝑓, V) , ∀V ∈ 𝐻
1

0
(Ω) . (5)

The adjoint problem of (5) is as follows: find𝑤∗ ∈ 𝐻1

0
(Ω),

such that

𝑎 (V, 𝑤
∗
) = (V, 𝑓) , ∀V ∈ 𝐻

1

0
(Ω) . (6)

As the general 2nd-order elliptic boundary value prob-
lems, we assume that the regularity estimates for problem (5)
and its adjoint problem (6) hold, respectively. Namely

‖𝑤‖
𝑟1+1,Ω

≤ 𝐶
𝑓
0,Ω, 0 < 𝑟

1
≤ 1, (7)

𝑤
∗𝑟2+1,Ω

≤ 𝐶
𝑓
0,Ω, 0 < 𝑟

2
≤ 1. (8)

We assume that 𝐾
ℎ
= {𝜅} is a regular rectangle (resp.

cuboid) or simplex partition of the domain Ω and satisfies

Ω = ⋃𝜅. We associate with the partition a polynomial degree
vectorN = {𝑁

𝜅
}, where𝑁

𝜅
is the polynomial degree in 𝜅. Let

ℎ
𝜅
be the diameter of the element 𝜅, and let ℎ = max

𝜅∈𝐾ℎ
ℎ
𝜅
.

We define spectral and spectral element spaces as follows:

𝑆
𝑁
(Ω) = {V ∈ 𝑃

𝑁
(Ω) , V|

𝜕Ω
= 0} ,

𝑆
𝑁,ℎ
(Ω) = {V ∈ 𝐶 (Ω) : V|

𝜅
∈ 𝑃

𝑁𝜅
(𝜅) , ∀𝜅 ∈ 𝐾

ℎ
, V|

𝜕Ω
= 0} ,

(9)

where 𝑃
𝑁
(Ω) and 𝑃

𝑁𝜅
(𝜅) are polynomial spaces of degree 𝑁

(resp. degree𝑁 in every direction) inΩ and degree𝑁
𝜅
(resp.

degree𝑁
𝜅
in every direction) in the element 𝜅, respectively.

The spectral approximation of (5) is as follows: find𝑤
𝑁
∈

𝑆
𝑁
(Ω), such that

𝑎 (𝑤
𝑁
, V) = (𝑓, V) , ∀V ∈ 𝑆

𝑁
(Ω) . (10)

The spectral element approximation of (5) is as follows:
find 𝑤

𝑁,ℎ
∈ 𝑆

𝑁,ℎ
(Ω), such that

𝑎 (𝑤
𝑁,ℎ
, V) = (𝑓, V) , ∀V ∈ 𝑆

𝑁,ℎ
(Ω) . (11)

We assume that 𝑓 ∈ 𝐿2(Ω) and derive from Lax-Milgram
theorem that the variational formations (5), (6), (10), and (11)
have a unique solution, respectively.

Define the interpolation operators

𝐼
𝑁𝜅,ℎ𝜅

: 𝐶 (𝜅) → 𝑃
𝑁𝜅
(𝜅) ,

𝐼
𝑁
: 𝐶 (Ω) → 𝑆

𝑁
(Ω) ,

(12)

as the interpolations in the element 𝜅 and the domain
Ω, respectively, with the tensorial Legendre-Gauss-Lobatto
(LGL) interpolation nodes.

Define the interpolation operator

𝐼
𝑁,ℎ
: 𝐶 (Ω) → 𝑆

𝑁,ℎ
(Ω) , satisfying 𝐼

𝑁,ℎ
|
𝜅
= 𝐼

𝑁𝜅 ,ℎ𝜅
. (13)

We quote from [2] (see (5.8.27) therein) the interpolation
estimates for spectral and spectral elementmethodswith LGL
Nodal-basis as follows.

For all V ∈ 𝐻𝑠𝜅(𝜅), 𝑠
𝜅
≥ (𝑑 + 1)/2,


V − 𝐼

𝑁𝜅 ,ℎ𝜅
V
1,𝜅

≤ 𝐶 (𝑠
𝜅
) ℎ

min(𝑁𝜅+1,𝑠𝜅)−1
𝜅

𝑁
−𝑠𝜅+1

𝜅
‖V‖

𝑠𝜅 ,𝜅
, (14)


V − 𝐼

𝑁𝜅,ℎ𝜅
V
0,𝜅

≤ 𝐶 (𝑠
𝜅
) ℎ

min(𝑁𝜅+1,𝑠𝜅)
𝜅

𝑁
−𝑠𝜅

𝜅
‖V‖

𝑠𝜅 ,𝜅
. (15)

For all V ∈ 𝐻𝑠
(Ω), 𝑠 ≥ (𝑑 + 1)/2,

V − 𝐼𝑁V
1,Ω ≤ 𝐶 (𝑠)𝑁

−𝑠+1

‖V‖
𝑠,Ω
, (16)

V − 𝐼𝑁V
0,Ω ≤ 𝐶 (𝑠)𝑁

−𝑠

‖V‖
𝑠,Ω
. (17)

We assume that the solution of boundary value problem
(5) 𝑤 ∈ 𝐻1

0
(Ω) ∩ 𝐻

𝑚
(Ω) (𝑚 > 1), that 𝑤

𝑁
and 𝑤

𝑁,ℎ
are the
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solutions of (10) and (11), respectively; then we derive from
Céa lemma and the interpolation estimates that

𝑤𝑁 − 𝑤
1,Ω ≤ 𝐶 (𝑚)𝑁

−𝑚+1

‖𝑤‖
𝑚,Ω
, (18)

𝑤𝑁,ℎ − 𝑤
1,Ω

≤ {∑

𝜅

𝐶 (𝑠
𝜅
) ℎ

2{min(𝑁𝜅+1,𝑠𝜅)−1}
𝜅

× 𝑁
2(−𝑠𝜅+1)

𝜅
‖𝑤‖

2

𝑠𝜅 ,𝜅
}

1/2

,

(19)

where 𝑠
𝜅
≥ (𝑑 + 1)/2, ∀𝜅 ∈ 𝐾

ℎ
.

Particularly, if𝑁
𝜅
= 𝑁, ∀𝜅 ∈ 𝐾

ℎ
, then we have

𝑤𝑁,ℎ − 𝑤
1,Ω

≤ 𝐶 (𝑚) ℎ
min(𝑁+1,𝑚)−1

× 𝑁
1−𝑚

‖𝑤‖
𝑚,Ω
.

(20)

Note that (18) is also suited to spectral methods with
modal basis (see [1, 2]).

Using Aubin-Nitsche technique, we deduce from the
regularity estimate (8) and the estimates (18)–(20) the priori
estimates of boundary value problem (5) for spectral and
spectral element methods; that is,

𝑤𝑁 − 𝑤
0,Ω ≤ 𝐶𝑁

−𝑚−𝑟2+1‖𝑤‖
𝑚,Ω
, (21)

𝑤𝑁,ℎ − 𝑤
0,Ω

≤ 𝐶𝑁
−𝑚−𝑟2+1ℎ

𝑟2+min(𝑁+1,𝑚)−1
‖𝑤‖

𝑚,Ω
. (22)

3. Spectral and Spectral-Element
Approximations and Error Estimates for
Eigenvalue Problems

3.1. Spectral and Spectral-Element Approximations for Eigen-
value Problems. Consider the following eigenvalue problem
corresponding to the boundary value problem (1):

𝐿𝑢 = 𝜆𝑢, in Ω,

𝑢 = 0, on 𝜕Ω.
(23)

The variational formation of (23) is given by the follow-
ing: find 𝜆 ∈ C, 0 ̸= 𝑢 ∈ 𝐻

1

0
(Ω), such that

𝑎 (𝑢, V) = 𝜆 (𝑢, V) , ∀V ∈ 𝐻
1

0
(Ω) . (24)

The spectral approximation scheme of (24) is given by the
following: find 𝜆

𝑁
∈ C, 0 ̸= 𝑢

𝑁
∈ 𝑆

𝑁
(Ω), such that

𝑎 (𝑢
𝑁
, V
𝑁
) = 𝜆

𝑁
(𝑢

𝑁
, V
𝑁
) , ∀V

𝑁
∈ 𝑆

𝑁
(Ω) . (25)

The spectral element approximation scheme of (24) is
given by the following: find 𝜆

𝑁,ℎ
∈ C, 0 ̸= 𝑢

𝑁,ℎ
∈ 𝑆

𝑁,ℎ
(Ω),

such that

𝑎 (𝑢
𝑁,ℎ
, V
𝑁,ℎ
) = 𝜆

𝑁,ℎ
(𝑢

𝑁,ℎ
, V
𝑁,ℎ
) , ∀V

𝑁,ℎ
∈ 𝑆

𝑁,ℎ
(Ω) ,

(26)

Define the solution operators 𝑇 : 𝐿2(Ω) → 𝐻
1

0
(Ω), 𝑇

𝑁
:

𝐿
2
(Ω) → 𝑆

𝑁
(Ω), and 𝑇

𝑁,ℎ
: 𝐿

2
(Ω) → 𝑆

𝑁,ℎ
(Ω) by

𝑎 (𝑇𝑓, V) = (𝑓, V) , ∀𝑓 ∈ 𝐿
2

(Ω) , ∀V ∈ 𝐻
1

0
(Ω) ,

𝑎 (𝑇
𝑁
𝑓, V

𝑁
) = (𝑓, V

𝑁
) , ∀𝑓 ∈ 𝐿

2

(Ω) ,

∀V
𝑁
∈ 𝑆

𝑁
(Ω) ,

𝑎 (𝑇
𝑁,ℎ
𝑓, V

𝑁,ℎ
) = (𝑓, V

𝑁,ℎ
) , ∀𝑓 ∈ 𝐿

2

(Ω) ,

∀V
𝑁,ℎ
∈ 𝑆

𝑁,ℎ
(Ω) .

(27)

Obviously (see [17]), the equivalent operator forms for (24)
and (26) are the following.

Find 𝜆 ∈ C, 0 ̸= 𝑢 ∈ 𝐻
1

0
(Ω), such that

𝑇𝑢 = 𝜆
−1
𝑢. (28)

Find 𝜆
𝑁,ℎ
∈ C, 0 ̸= 𝑢

𝑁,ℎ
∈ 𝑆

𝑁,ℎ
(Ω), such that

𝑇
𝑁,ℎ
𝑢
𝑁,ℎ
= 𝜆

−1

𝑁,ℎ
𝑢
𝑁,ℎ
. (29)

The adjoint problem of the eigenvalue problem (23) is

𝐿
∗
𝑢
∗
= 𝜆

∗
𝑢
∗
, in Ω,

𝑢
∗
= 0, on 𝜕Ω,

(30)

where 𝐿∗𝑢∗ = −∇ ⋅ (𝐷∇𝑢∗) − b ⋅ ∇𝑢∗ + (𝑐 − ∇ ⋅ b)𝑢∗.
The variational formation of (30) is given by the follow-

ing: find 𝜆∗ ∈ C, 0 ̸= 𝑢
∗
∈ 𝐻

1

0
(Ω), such that

𝑎
∗
(𝑢

∗
, V) := 𝑎 (V, 𝑢∗) = 𝜆

∗
(𝑢

∗
, V) , ∀V ∈ 𝐻

1

0
(Ω) . (31)

The spectral element approximation scheme of (31) is
given by the following: find 𝜆∗

𝑁,ℎ
∈ C, 0 ̸= 𝑢

∗

𝑁,ℎ
∈ 𝑆

𝑁,ℎ
(Ω),

such that

𝑎
∗
(𝑢

∗

𝑁,ℎ
, V
𝑁,ℎ
) = 𝜆

∗

𝑁,ℎ
(𝑢

∗

𝑁,ℎ
, V
𝑁,ℎ
) , ∀V

𝑁,ℎ
∈ 𝑆

𝑁,ℎ
(Ω) .

(32)

We can likewise define the equivalent operator forms for
the eigenvalue problems (31) and (32) as

𝑇
∗
𝑢
∗
= 𝜆

∗−1
𝑢
∗
,

𝑇
∗

𝑁,ℎ
𝑢
∗

𝑁,ℎ
= 𝜆

∗−1

𝑁,ℎ
𝑢
∗

𝑁,ℎ
.

(33)

Let 𝜆 be an eigenvalue of (23). There exists a smallest
integer 𝜇, called the ascent of 𝜆, such that ker((𝜆−1 − 𝑇)𝜇) =
ker((𝜆−1 − 𝑇)𝜇+1). 𝑞 = dim ker((𝜆−1 − 𝑇)𝜇) is called the
algebraic multiplicity of 𝜆. The functions in ker((𝜆−1 − 𝑇)𝜇)
are called generalized eigenfunctions of 𝑇 corresponding to
𝜆. Likewise the ascent, algebraic multiplicity and generalized
eigenfunctions of 𝜆

𝑁,ℎ
, 𝜆∗ and 𝜆∗

𝑁,ℎ
can be defined.

Let𝜆 be an eigenvalue of (23)with the algebraicmultiplic-
ity 𝑞 and the ascent 𝜇. Assume ‖𝑇

𝑁,ℎ
− 𝑇‖

1,Ω
→ 0 (𝑁 → ∞,

ℎ → 0); then there are eigenvalues 𝜆
𝑗,𝑁,ℎ

(𝑗 = 1, 2, . . . , 𝑞)
of (26) which converge to 𝜆. Let𝑀(𝜆) be the space spanned
by all generalized eigenfunctions corresponding to 𝜆 of 𝑇,
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and let 𝑀
𝑁,ℎ
(𝜆) be the space spanned by all generalized

eigenfunctions corresponding to all eigenvalues of 𝑇
𝑁,ℎ

that
converge to 𝜆.

In view of adjoint problems (31) and (32), the definitions
of𝑀∗

(𝜆
∗
) and𝑀∗

𝑁,ℎ
(𝜆
∗
) are analogous to𝑀(𝜆) and𝑀

𝑁,ℎ
(𝜆).

Let �̂�(𝜆) = {V ∈ 𝑀(𝜆) : ‖V‖
1,Ω
= 1}, and let𝑀∗(𝜆

∗
) = {V ∈

𝑀
∗
(𝜆
∗
) : ‖V‖

1,Ω
= 1}.

Note that when b = 0, both (24) and (26) are symmetric.
Thus, the ascent 𝜇 = 1 of 𝜆, and the ascent 𝑙 = 1 of 𝜆

𝑁,ℎ
.

3.2. A Priori Error Estimates. We will analyze a prior error
estimates for spectral element methods which are suitable for
spectral methods with mesh fineness ℎ not considered.

Assume that 𝑅 and 𝑈 are two closed subspace in𝐻1

0
(Ω).

Denote
𝛿 (𝑅, 𝑈) = sup

V∈𝑅
‖V‖1,Ω=1

dist (V, 𝑈) ,

𝜃 (𝑅, 𝑈) = max (𝛿 (𝑅, 𝑈) , 𝛿 (𝑈, 𝑅)) .

(34)

We say that 𝜃(𝑅, 𝑈) is the gap between 𝑅 and 𝑈.
Denote

𝜀
𝑁,ℎ
= 𝜀

𝑁,ℎ
(𝜆) = sup

𝑢∈�̂�(𝜆)

inf
V∈𝑆𝑁,ℎ(Ω)

‖𝑢 − V‖
1,Ω
,

𝜀
∗

𝑁,ℎ
= 𝜀

∗

𝑁,ℎ
(𝜆

∗
) = sup

𝑢∈𝑀
∗
(𝜆
∗
)

inf
V∈𝑆𝑁,ℎ(Ω)

‖𝑢 − V‖
1,Ω
.

(35)

We give the following four lemmas fromTheorem 8.1–8.4
in [17], which are applications to spectral element methods.

Lemma 1. Assume ‖𝑇
𝑁,ℎ
− 𝑇‖

1,Ω
→ 0 (𝑁 → ∞, ℎ → 0).

For small enough ℎ and big enough𝑁, there holds

𝜃 (𝑀 (𝜆) ,M
𝑁,ℎ
(𝜆)) ≤ 𝐶𝜀

𝑁,ℎ
. (36)

Lemma 2. Assume ‖𝑇
𝑁,ℎ
− 𝑇‖

1,Ω
→ 0 (𝑁 → ∞, ℎ → 0);

then


𝜆
−1
−
1

𝑞

𝑞

∑

𝑗=1

𝜆
−1

𝑗,𝑁,ℎ



≤ 𝐶𝜀
𝑁,ℎ
𝜀
∗

𝑁,ℎ
. (37)

Lemma 3. Assume that ‖𝑇
𝑁,ℎ
− 𝑇‖

1,Ω
→ 0 (𝑁 → ∞, ℎ →

0); then there holds

𝜆 − 𝜆

𝑗,𝑁,ℎ


≤ 𝐶(𝜀

𝑁,ℎ
𝜀
∗

𝑁,ℎ
)
1/𝜇

(𝑗 = 1, 2, . . . , 𝑞) . (38)

Since ker((𝜆−1 −𝑇)𝑙) (𝑙 ≥ 1) is a finite dimensional space, there
exists a direct-sum decomposition𝐻1

0
(Ω) = ker((𝜆−1 − 𝑇)𝑙) ⊕

𝑀
𝑙
. We define the operator 𝐸

𝑙
as a projection along 𝑀

𝑙
from

𝐻
1

0
(Ω) to ker((𝜆−1 − 𝑇)𝑙).

Lemma 4. Assume ‖𝑇
𝑁,ℎ
− 𝑇‖

1,Ω
→ 0 (𝑁 → ∞, ℎ → 0).

Let 𝜆
𝑁,ℎ

be an eigenvalue of 𝑇
𝑁,ℎ

and lim
𝑁→∞,ℎ→0

𝜆
𝑁,ℎ
= 𝜆.

𝑢
𝑁,ℎ

satisfies (𝜆−1
𝑁,ℎ
− 𝑇

𝑁,ℎ
)
𝑘
𝑢
𝑁,ℎ
= 0 and ‖𝑢

𝑁,ℎ
‖
1,Ω
= 1, where

𝑘 ≤ 𝜇 is a positive integer. Then, for every integer 𝑙 ∈ [𝑘, 𝜇],
there holds

𝑢𝑁,ℎ − 𝐸𝑙𝑢𝑁,ℎ
1,Ω

≤ 𝐶𝜀
(𝑙−𝑘+1)/𝜇

𝑁,ℎ
. (39)

We assume that in this section, for the sake of simplicity,
𝑁
𝜅
= 𝑁, ∀𝜅 ∈ 𝐾

ℎ
.

Theorem 5. If𝑀(𝜆) ⊂ 𝐻𝑡1(Ω) and𝑀∗
(𝜆
∗
) ⊂ 𝐻

𝑡2(Ω), then
there holds the following error estimates:



1

𝑞

𝑞

∑

𝑗=1

𝜆
𝑗,𝑁,ℎ

− 𝜆



≤ 𝐶(
ℎ
𝜏1+𝜏2−2

𝑁𝑡1+𝑡2−2
) sup
𝑢∈�̂�(𝜆)

‖𝑢‖
𝑡1,Ω

sup
V∈𝑀∗(𝜆∗)

‖V‖
𝑡2 ,Ω
,

(40)


𝜆
𝑗,𝑁,ℎ

− 𝜆


≤ 𝐶((
ℎ
𝜏1+𝜏2−2

𝑁𝑡1+𝑡2−2
) sup
𝑢∈�̂�(𝜆)

‖𝑢‖
𝑡1 ,Ω

sup
V∈𝑀∗(𝜆∗)

‖V‖
𝑡2 ,Ω
)

1/𝜇

(𝑗 = 1, 2, . . . , 𝑞) ,

(41)

𝜃 (𝑀 (𝜆) ,𝑀
𝑁,ℎ
(𝜆)) ≤ 𝐶

ℎ
𝜏1−1

𝑁𝑡1−1
sup

𝑢∈�̂�(𝜆)

‖𝑢‖
𝑡1 ,Ω
. (42)

Let ‖𝑢
𝑁,ℎ
‖
1,Ω

= 1, and let (𝜆−1
𝑁,ℎ
− 𝑇

𝑁,ℎ
)
𝑙1𝑢

𝑁,ℎ
= 0, for some

𝑙
1
≤ 𝜇. Then, for every integer 𝑙

2
(𝑙
1
≤ 𝑙

2
≤ 𝜇), there exists a

function 𝑢, such that (𝜆−1 − 𝑇)𝑙2𝑢 = 0 and


𝑢
𝑁,ℎ
− 𝑢

1,Ω
≤ 𝐶((

ℎ
𝜏1−1

𝑁𝑡1−1
) sup
𝑢∈�̂�(𝜆)

‖𝑢‖
𝑡1 ,Ω
)

(𝑙2−𝑙1+1)/𝜇

,

(43)

where 𝜏
1
= min(𝑁 + 1, 𝑡

1
), 𝜏

2
= min(𝑁 + 1, 𝑡

2
).

Proof. We derive from the error estimate (20) that

𝑇𝑁,ℎ − 𝑇
1,Ω

= sup
𝑓∈𝐻
1

0
(Ω)

(𝑇 − 𝑇𝑁,ℎ) 𝑓
1,Ω

𝑓
1,Ω

≤ 𝐶 (1 + 𝑟
1
) ℎ

𝑟1𝑁
−𝑟1 → 0 (𝑁 → ∞, ℎ → 0) .

(44)

By (14),

𝜀
𝑁,ℎ
= 𝜀

𝑁,ℎ
(𝜆) = sup

𝑢∈�̂�(𝜆)

inf
V∈𝑆𝑁,ℎ(Ω)

‖𝑢 − V‖
1,Ω

≤ 𝐶(
ℎ
𝜏1−1

𝑁𝑡1−1
) sup
𝑢∈�̂�(𝜆)

‖𝑢‖
𝑡1 ,Ω
.

(45)

Analogically,

𝜀
∗

𝑁,ℎ
≤ 𝐶(

ℎ
𝜏2−1

𝑁𝑡2−1
) sup
𝑢∈𝑀
∗
(𝜆
∗
)

‖𝑢‖
𝑡2 ,Ω
. (46)
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Plugging the two inequalities above into (36), (38), and (39)
yields (42), (41), and (43), respectively.We find from (37) that


1

𝑞

𝑞

∑

𝑗=1

𝜆
𝑗,𝑁,ℎ

− 𝜆



=



1

𝑞

𝑞

∑

𝑗=1

𝜆
−1

𝑗,𝑁,ℎ
− 𝜆

−1

𝜆−1𝜆
−1

𝑗,𝑁,ℎ



≤ 𝐶



1

𝑞

𝑞

∑

𝑗=1

𝜆
−1

𝑗,𝑁,ℎ
− 𝜆

−1



≤ 𝐶𝜀
𝑁,ℎ
𝜀
∗

𝑁,ℎ
,

(47)

combining with (45) and (46) yields (40).

Supposing that ‖𝑇
𝑁,ℎ
− 𝑇‖

0,Ω
→ 0 (𝑁 → ∞, ℎ → 0),

𝜌(𝑇) is a regular set of 𝑇, and Γ ⊂ 𝜌(𝑇) is a closed Jordan
curve enclosing 𝜆−1.

Denote

𝑅 (𝑧) = (𝑇 − 𝑧)
−1
,

𝑅 (𝑇
𝑁,ℎ
, 𝑧) = (𝑇

𝑁,ℎ
− 𝑧)

−1

.

(48)

Define the spectral projection operators

𝐸 =
−1

2𝑖𝜋
∫
Γ

𝑅 (𝑇, 𝑧) dz : 𝐻1

0
(Ω) → 𝑀(𝜆) ,

𝐸
𝑁,ℎ
=
−1

2𝑖𝜋
∫
Γ

𝑅 (𝑇
𝑁,ℎ
, 𝑧) dz : 𝐻1

0
(Ω) → 𝑀

𝑁,ℎ
(𝜆) .

(49)

We give the following lemma by referring to [18, 19] (see
proposition 5.3 in [18] and theorem 1.3.2 in [19]).

Lemma 6. If ‖𝑇
𝑁,ℎ
− 𝑇‖

0,Ω
→ 0 (𝑁 → ∞, ℎ → 0), then

there holds that 𝐸
𝑁,ℎ

→ 𝐸(𝑝), 𝑅(𝑇
𝑁,ℎ
, 𝑧) is uniformly bound-

ed with𝑁 and ℎ, and
(𝐸𝑁,ℎ − 𝐸) V

0,Ω
≤ 𝐶max

𝑧∈Γ

(𝑇 − 𝑇𝑁,ℎ) 𝑅 (𝑧) V
0,Ω
,

∀V ∈ 𝐻
1

0
(Ω) ,

(𝐸𝑁,ℎ − 𝐸) V
0,Ω

≤ 𝐶max
𝑧∈Γ

(𝑇 − 𝑇𝑁,ℎ) 𝑅 (𝑇𝑁,ℎ, 𝑧) V
0,Ω
,

∀V ∈ 𝐻
1

0
(Ω) .

(50)

Theorem 7. Under the assumptions of Theorem 5, further
assume that the ascent of 𝜆 is 𝜇 = 1. Let (𝜆

𝑁,ℎ
, 𝑢

𝑁,ℎ
) be an

eigenpair of (26) with ‖𝑢
𝑁,ℎ
‖
0,Ω

= 1; then there exists an
eigenpair (𝜆, 𝑢) of (24), such that

𝑢𝑁,ℎ − 𝑢
1,Ω

≤
𝐶ℎ

𝜏1−1‖𝑢‖
𝑡1 ,Ω

𝑁𝑡1−1
, (51)

𝑢𝑁,ℎ − 𝑢
0,Ω

≤
𝐶ℎ

𝑟2+𝜏1−1‖𝑢‖
𝑡1,Ω

𝑁𝑟2+𝑡1−1
, (52)

𝜆𝑁,ℎ − 𝜆


≤ 𝐶((
ℎ
𝜏1+𝜏2−2

𝑁𝑡1+𝑡2−2
) sup
𝑢∈�̂�(𝜆)

‖𝑢‖
𝑡1,Ω

sup
V∈𝑀∗(𝜆∗)

‖V‖
𝑡2 ,Ω
) ,

(53)

where 𝜏
1
= min(𝑁 + 1, 𝑡

1
) and 𝜏

2
= min(𝑁 + 1, 𝑡

2
).

Let (𝜆, 𝑢) be an eigenpair of (24). If 𝜆
𝑁,ℎ

is an eigenvalue of
(26) convergence to 𝜆, then there exists 𝑢

𝑁,ℎ
∈ ker(𝜆−1

𝑁,ℎ
−𝑇

𝑁,ℎ
),

such that (51)–(53) hold.

Proof. We deduce (53) immediately from (41). We derive
from (22) and (7) that

𝑇𝑓 − 𝑇𝑁,ℎ𝑓
0,Ω

≤ 𝐶𝑁
−𝑟1−𝑟2ℎ

𝑟1+𝑟2𝑓
0,Ω; (54)

thus,‖𝑇 − 𝑇
𝑁,ℎ
‖
0,Ω

→ 0 (𝑁 → ∞, ℎ → 0). Taking 𝑢 =
𝐸𝑢

𝑁,ℎ
and by virtue of 𝑅(𝑇

𝑁,ℎ
, 𝑧)𝑢

𝑁,ℎ
= (𝜆

−1

𝑁,ℎ
− 𝑧)

−1
𝑢
𝑁,ℎ

,
Lemma 6 and (22), we have

𝑢 − 𝑢𝑁,ℎ
0,Ω

=
𝐸𝑢𝑁,ℎ − 𝐸𝑁,ℎ𝑢𝑁,ℎ

0,Ω

≤ 𝐶
(𝑇 − 𝑇𝑁,ℎ) 𝑢𝑁,ℎ

0,Ω

≤ 𝐶 (
(𝑇 − 𝑇𝑁,ℎ) 𝑢

0,Ω

+
(𝑇 − 𝑇𝑁,ℎ) (𝑢𝑁,ℎ − 𝑢)

0,Ω
) ,

(55)

from which follows
𝑢 − 𝑢𝑁,ℎ

0,Ω
≤ 𝐶

(𝑇 − 𝑇𝑁,ℎ) 𝑢
0,Ω

≤
𝐶ℎ

𝑟2+𝜏1−1‖𝑢‖
𝑡1 ,Ω

𝑁𝑟2+𝑡1−1
,

(56)

which is (52). By direct calculation, we have
𝑢 − 𝑢𝑁,ℎ

1,Ω

=
𝜆𝑇𝑢 − 𝜆ℎ𝑇𝑁,ℎ𝑢𝑁,ℎ

1,Ω

≤
𝜆𝑇𝑢 − 𝜆𝑇𝑁,ℎ𝑢

1,Ω
+
𝜆𝑇𝑁,ℎ𝑢 − 𝜆ℎ𝑇𝑁,ℎ𝑢𝑁,ℎ

1,Ω

≤
(𝑇 − 𝑇𝑁,ℎ) (𝜆𝑢)

1,Ω
+ 𝐶
𝜆𝑢 − 𝜆𝑁,ℎ𝑢𝑁,ℎ

0,Ω
.

(57)

Plugging (20), (52), and (53) into (57) yields (51).
If (𝜆, 𝑢) is an eigenpair of (24), let 𝑢

𝑁,ℎ
= 𝐸

𝑁,ℎ
𝑢; by the

same argument we can prove (51) and (52).

4. A Posteriori Error Estimates

Based on [20], we will discuss a posteriori error estimates.
We further assume that Ω ⊂ 𝑅

2, the partition 𝐾
ℎ
is 𝛾-shape

regular, and the polynomial degree of neighboring elements
are comparable; that is, there exists 𝛾 > 0, such that for all
𝜅, 𝜅


∈ 𝐾

ℎ
, 𝜅 ∩ 𝜅 ̸=0,

𝛾
−1
ℎ
𝜅
≤ ℎ

𝜅
 ≤ 𝛾ℎ

𝜅
,

𝛾
−1
(𝑁

𝜅
+ 1) ≤ 𝑁

𝜅
 + 1 ≤ 𝛾 (𝑁

𝜅
+ 1) .

(58)

We refer to the ℎ𝑝-clément interpolation estimates given
by [20, 21] (see theorems 2.2 and 2.3, respectively), which gen-
eralize the well-known clément type interpolation operators
studied in [22] and [23] to the hp context.

Lemma 8. Assume that the partition 𝐾
ℎ
is 𝛾-shape regular

and the polynomial distribution N is comparable. Then there
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exists a positive constant 𝐶 = 𝐶(𝛾) and the clément operator
𝐼 : 𝐻

1

0
(Ω) → 𝑆

𝑁,ℎ
(Ω), such that

‖V − 𝐼V‖
0,𝜅
≤ 𝐶

ℎ
𝜅

𝑁
𝜅

‖∇V‖
0,𝜔𝜅
, (59)

‖V − 𝐼V‖
0,𝑒
≤ 𝐶√

ℎ
𝑒

𝑁
𝑒

‖∇V‖
0,𝜔𝑒
, (60)

where ℎ
𝑒
is the length of the edge 𝑒 and 𝑁

𝑒
= max(𝑁

𝜅1
, 𝑁

𝜅2
),

where 𝜅
1
, 𝜅
2
are elements sharing the edge 𝑒 and 𝜔

𝜅
, 𝜔

𝑒
are

patches covering 𝜅 and 𝑒 with a few layers, respectively.
Define interval 𝐼 = (0, 1) and weight function Φ

𝐼
(𝑥) :=

𝑥(1 − 𝑥). Denote the reference square and triangle element by
𝜅 = (0, 1)

2 and 𝜅 = {(𝑥, 𝑦)|0 < 𝑥 < 1, 0 < 𝑦 < √3(1/2−|1/2−
𝑥|)}, respectively. Define weight function Φ

𝜅
(𝑥) := dist(𝑥, 𝜕𝜅).

The following three lemmas are given by [20]. Lemmas
9–10 provide the polynomial inverse estimates in standard
interval and element, while Lemma 11 provides a result for the
extension from an edge to the element.

Lemma 9. Let −1 < 𝛼 < 𝛽, 𝜎 ∈ [0, 1]. Then there exists 𝐶 =
𝐶(𝛼, 𝛽), such that for all𝑁 ∈ N and all univariate polynomials
𝜋
𝑁
of degree𝑁,

∫
𝐼

Φ
𝛼

𝐼
(𝑥)
𝜋𝑁 (𝑥)



2dx

≤ 𝐶𝑁
2(𝛽−𝛼)

∫
𝐼

Φ
𝛽

𝐼

𝜋𝑁 (𝑥)


2dx.
(61)

Lemma 10. Let −1 < 𝛼 < 𝛽, 𝜎 ∈ [0, 1]. Then there exist
𝐶
1
= 𝐶(𝛼, 𝛽), 𝐶

2
= 𝐶

𝜎
> 0, such that for all 𝑁 ∈ N and

all polynomials 𝜋
𝑁
of degree bi-𝑁,

∫
𝜅

Φ
𝛼

𝜅

𝜋𝑁


2dxdy

≤ 𝐶
1
𝑁
2(𝛽−𝛼)

∫
𝜅

Φ
𝛽

𝜅

𝜋𝑁


2dxdy,
(62)

∫
𝜅

Φ
2𝜎

𝜅

∇𝜋𝑁


2dxdy

≤ 𝐶
2
𝑁
2(2−𝜎)

∫
𝜅

Φ
𝜎

𝜅

𝜋𝑁


2dxdy.
(63)

Lemma 11. Let 𝛼 ∈ (1/2, 1]. 𝑒 := (0, 1) × {0}, Φ
𝑒
:= 𝑥(1 − 𝑥);

then there exists 𝐶
𝛼
> 0 such that for all 𝑁 ∈ N, 𝜀 ∈ (0, 1],

and all univariate polynomials 𝜋 of degree 𝑁, there exists an
extension V

𝑒
∈ 𝐻

1
(𝜅) and holds

V
𝑒
|
𝑒
= 𝜋 ⋅ Φ

𝛼

𝑒
, V

𝑒
|
𝜕𝜅\𝑒

= 0, (64)

V𝑒


2

0,𝜅
≤ 𝐶

𝛼
𝜀

𝜋Φ

𝛼/2

𝑒



2

0,𝑒
, (65)

∇V𝑒


2

0,𝜅
≤ 𝐶

𝛼
(𝜀𝑁

2(2−𝛼)
+ 𝜀

−1
)

𝜋Φ

𝛼/2

𝑒



2

0,𝑒
. (66)

It is easy to know that the three lemmas above hold for
complex-valued polynomials.

Let 𝐷
𝜅
, b

𝜅
, and 𝑐

𝜅
be the interpolations of 𝐷, b, and 𝑐 in

𝜅 with the polynomial degree 𝑁
𝜅
(resp. degree 𝑁

𝜅
in every

direction), respectively, or the 𝐿2(𝜅)-projection on the space
of polynomials with degree 𝑁

𝜅
. For convenient argument,

here and hereafter we assume that (𝜆, 𝑢) and (𝜆∗ = 𝜆, 𝑢∗)
are the eigenpairs of the eigenvalue problem (24) and its
adjoint problem (31), respectively. (𝜆

𝑁,ℎ
, 𝑢

𝑁,ℎ
) and (𝜆∗

𝑁,ℎ
=

𝜆
𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
) are the solutions of the corresponding spectral

element approximations (26) and (32), respectively.
Denote
𝐿
𝜅
𝑢
𝑁,ℎ
: = −∇ ⋅ (𝐷

𝜅
∇𝑢

𝑁,ℎ
)

+ b
𝜅
⋅ ∇𝑢

𝑁,ℎ
+ 𝑐

𝜅
𝑢
𝑁,ℎ
,

𝐿
∗

𝜅
𝑢
∗

𝑁,ℎ
: = −∇ ⋅ (𝐷

𝜅
∇𝑢

∗

𝑁,ℎ
)

− b
𝜅
⋅ ∇𝑢

∗

𝑁,ℎ
+ (𝑐

𝜅
− ∇ ⋅ b

𝜅
) 𝑢

∗

𝑁,ℎ
.

(67)

Define the local error indicators
𝜂
2

𝛼;𝜅
:= 𝜂

2

𝛼;𝐵𝜅
+ 𝜂

2

𝛼;𝐸𝜅
,

𝜂
∗2

𝛼;𝜅
:= 𝜂

∗2

𝛼;𝐵𝜅
+ 𝜂

∗2

𝛼;𝐸𝜅
.

(68)

Their first terms 𝜂2
𝛼;𝐵𝜅
, 𝜂
∗2

𝛼;𝐵𝜅
are the weighted element internal

residuals given by

𝜂
2

𝛼;𝐵𝜅
:=
ℎ
2

𝜅

𝑁2

𝜅


(−𝐿

𝜅
𝑢
𝑁,ℎ
+ 𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
)Φ

𝛼/2

𝜅



2

0,𝜅
,

𝜂
∗2

𝛼;𝐵𝜅
:=
ℎ
2

𝜅

𝑁2

𝜅


(−𝐿

∗

𝜅
𝑢
∗

𝑁,ℎ
+ 𝜆

∗

𝑁,ℎ
𝑢
∗

𝑁,ℎ
)Φ

𝛼/2

𝜅



2

0,𝜅
.

(69)

Their second terms 𝜂2
𝛼;𝐸𝜅
, 𝜂
∗2

𝛼;𝐸𝜅
are the weighted element

boundary residuals given by

𝜂
2

𝛼;𝐸𝜅
:= ∑

𝑒⊂𝜕𝜅∩Ω

ℎ
𝑒

2𝑁
𝑒



𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒



2

0,𝑒

,

𝜂
∗2

𝛼;𝐸𝜅
:= ∑

𝑒⊂𝜕𝜅∩Ω

ℎ
𝑒

2𝑁
𝑒



𝐷
𝜅
[
𝜕𝑢

∗

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒



2

0,𝑒

,

(70)

where we denote the jump of the normal derivatives of 𝑢
𝑁,ℎ

and 𝑢∗
𝑁,ℎ

across the edges by [𝜕𝑢
𝑁,ℎ
/𝜕𝑛] and [𝜕𝑢∗

𝑁,ℎ
/𝜕𝑛],

respectively. ℎ
𝑒
is the length of edge 𝑒. The weight functions

Φ
𝜅
andΦ

𝑒
are scaled transformations of the weight functions

Φ
𝜅
andΦ

𝑒
; that is, if 𝐹

𝜅
is the element map for element 𝜅 and

𝑒 is the image of the edge 𝑒 under 𝐹
𝜅
, then

Φ
𝜅
= 𝐶

𝜅
Φ
𝜅
∘ 𝐹

−1

𝜅
, Φ

𝑒
= 𝐶

𝑒
Φ
𝑒
∘ 𝐹

−1

𝜅
, (71)

where we choose 𝐶
𝜅
, 𝐶

𝑒
> 0, such that

∫
𝜅

Φ
𝜅
dxdy = ∫

𝜅

dxdy, ∫
𝑒

Φ
𝑒
ds = ∫

𝑒

ds. (72)

We define the global error indicators as follows:

𝜂
2

𝛼
:= ∑

𝜅∈𝐾ℎ

𝜂
2

𝛼;𝜅
,

𝜂
∗2

𝛼
:= ∑

𝜅∈𝐾ℎ

𝜂
∗2

𝛼;𝜅
.

(73)
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Theorem 12. Let 𝛼 ∈ [0, 1]. Then there exists a constant𝐶 > 0
independent of ℎ,N, and 𝜅, such that

𝑢 − 𝑢𝑁,ℎ


2

1,Ω
≤ 𝐶 ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
2

𝛼;𝜅

+ 𝐶 ∑

𝜅∈𝐾ℎ

{
ℎ
2

𝜅

𝑁2

𝜅

𝐿𝜅𝑢𝑁,ℎ − 𝐿𝑢𝑁,ℎ


2

0,𝜅

+ ∑

𝑒⊂𝜕𝜅∩Ω

ℎ
𝑒

𝑁
𝑒

𝐷 − 𝐷𝜅



2

0,𝑒

×



𝜕𝑢
𝑁,ℎ

𝜕𝑛



2

0,∞,𝑒

}

+ 𝐶
𝜆𝑢 − 𝜆𝑁,ℎ𝑢𝑁,ℎ



2

0,Ω
.

(74)

Proof. We denote 𝑤 := 𝑢 − 𝑢
𝑁,ℎ
− 𝐼(𝑢 − 𝑢

𝑁,ℎ
), where 𝐼 is ℎ𝑝-

clément operator given by Lemma 8. We derive from𝐻1

0
(Ω)-

elliptic of 𝑎(⋅, ⋅) that

𝐶
𝑢 − 𝑢𝑁,ℎ



2

1,Ω
≤ 𝑎 (𝑢 − 𝑢

𝑁,ℎ
, 𝑤)

+ 𝑎 (𝑢 − 𝑢
𝑁,ℎ
, 𝐼 (𝑢 − 𝑢

𝑁,ℎ
))

= 𝜆∫
Ω

𝑢𝑤 − 𝑎 (𝑢
𝑁,ℎ
, 𝑤)

+ ∫
Ω

(𝜆𝑢 − 𝜆
𝑁,ℎ
𝑢
𝑁,ℎ
)

× 𝐼 (𝑢 − 𝑢
𝑁,ℎ
)

= ∫
Ω

(𝜆
𝑁,ℎ
𝑢
𝑁,ℎ
) 𝑤

+ ∫
Ω

(𝜆𝑢 − 𝜆
𝑁,ℎ
𝑢
𝑁,ℎ
) 𝑢 − 𝑢

𝑁,ℎ

− 𝑎 (𝑢
𝑁,ℎ
, 𝑤) ,

𝑎 (𝑢
𝑁,ℎ
, 𝑤) = ∑

𝜅∈𝜅ℎ

∫
𝜅

𝐿𝑢
𝑁,ℎ
𝑤

− ∑

𝜅∈𝜅ℎ

∫
𝜕𝜅

𝐷
𝜕𝑢

𝑁,ℎ

𝜕𝑛
𝑤

= ∑

𝜅∈𝜅ℎ

∫
𝜅

𝐿𝑢
𝑁,ℎ
𝑤

−
1

2
∑

𝜅∈𝜅ℎ

∑

𝑒⊂𝜕𝜅∩Ω

∫
𝑒

𝐷[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]𝑤.

(75)

Therefore,

𝐶
𝑢 − 𝑢𝑁,ℎ



2

1,Ω

≤ ∑

𝜅∈𝐾ℎ

∫
𝜅

(−𝐿𝑢
𝑁,ℎ
+ 𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
) 𝑤

+
1

2
∑

𝜅∈𝐾ℎ

∑

𝑒⊂𝜕𝜅∩Ω

∫
𝑒

𝐷[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]𝑤

+ ∫
Ω

(𝜆𝑢 − 𝜆
𝑁,ℎ
𝑢
𝑁,ℎ
) (𝑢 − 𝑢

𝑁,ℎ
), (76)

which together with

∫
𝑒

𝐷[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]𝑤 = ∫

𝑒

(𝐷 − 𝐷
𝜅
) [
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]𝑤

+ ∫
𝑒

𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]𝑤,

∫
𝜅

(−𝐿𝑢
𝑁,ℎ
+ 𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
) 𝑤 = ∫

𝜅

(−𝐿
𝜅
𝑢
𝑁,ℎ
+ 𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
) 𝑤

+ ∫
𝜅

(𝐿
𝜅
𝑢
𝑁,ℎ
− 𝐿𝑢

𝑁,ℎ
) 𝑤

(77)

and using Cauchy-Schwartz inequality, the ℎ𝑝-clément inter-
polation estimates in Lemma 8 then yield

𝑢 − 𝑢𝑁,ℎ


2

1,Ω

≤ 𝐶{ ∑

𝜅∈𝐾ℎ

[𝜂
2

0;𝐵𝜅
+ 𝜂

2

0;𝐸𝜅
+
ℎ
2

𝜅

𝑁2

𝜅

𝐿𝜅𝑢𝑁,ℎ − 𝐿𝑢𝑁,ℎ


2

0,𝜅

+ ∑

𝑒⊂𝜕𝜅∩Ω

ℎ
𝑒

𝑁
𝑒



(𝐷 − 𝐷
𝜅
) [
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]



2

0,𝑒

]}

1/2

×
𝑢 − 𝑢𝑁,ℎ

1,Ω
+𝐶
𝜆𝑢 − 𝜆𝑁,ℎ𝑢𝑁,ℎ

0,Ω

𝑢 − 𝑢𝑁,ℎ
0,Ω
.

(78)

Using scaled transformation and setting 𝛼 = 0, 𝛽 = 𝛼 in
(61) and (62), we get 𝜂

0;𝐸𝜅
≤ 𝐶𝑁

𝛼

𝜅
𝜂
𝛼;𝐸𝜅

and 𝜂
0;𝐵𝜅

≤ 𝐶𝑁
𝛼

𝜅
𝜂
𝛼;𝐵𝜅

;
then this proof concludes.

For the adjoint eigenvalue problem, we still have the
following.

Theorem 13. Let 𝛼 ∈ [0, 1]. Then there exists a constant𝐶 > 0
independent of ℎ,N, and 𝜅, such that


𝑢
∗
− 𝑢

∗

𝑁,ℎ



2

1,Ω

≤ 𝐶 ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
∗2

𝛼;𝜅

+ 𝐶 ∑

𝜅∈𝐾ℎ

{
ℎ
2

𝜅

𝑁2

𝜅


𝐿
∗

𝜅
𝑢
∗

𝑁,ℎ
− 𝐿

∗
𝑢
∗

𝑁,ℎ



2

+ ∑

𝑒⊂𝜕𝜅∩Ω

ℎ
𝑒

𝑁
𝑒

𝐷 − 𝐷𝜅



2

0,𝑒



𝜕𝑢
∗

𝑁,ℎ

𝜕𝑛



2

0,∞,𝑒

}

+ 𝐶

𝜆
∗
𝑢
∗
− 𝜆

∗

𝑁,ℎ
𝑢
∗

𝑁,ℎ



2

0,Ω
.

(79)



8 Abstract and Applied Analysis

Lemma 14. Let 𝛼 ∈ [0, 1], 𝜀 > 0. Then there exists a constant
𝐶(𝜀) > 0 independent of ℎ,N, and 𝜅, such that

𝜂
2

𝛼;𝐵𝜅
≤ 𝐶 (𝜀) {𝑁

2(1−𝛼)

𝜅

𝑢 − 𝑢𝑁,ℎ


2

1,𝜅

+ 𝑁
max{1+2𝜀−2𝛼,0}
𝜅

ℎ
2

𝜅

𝑁2

𝜅

× (
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢 + 𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ



2

0,𝑘
)} .

(80)

Proof. We denote V
𝜅
:= (−𝐿

𝜅
𝑢
𝑁,ℎ
+ 𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
)Φ

𝛼

𝜅
∈ 𝐻

1

0
(𝜅)

with 𝛼 ∈ (0, 1] and extend V
𝜅
to Ω by V

𝜅
= 0 onΩ \ 𝜅; then


V
𝜅
Φ
−𝛼/2

𝜅



2

0,𝜅
= ∫

𝜅

(−𝐿
𝜅
𝑢
𝑁,ℎ
+ 𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
) V

𝜅

= −∫
𝜅

(𝐿
𝜅
𝑢
𝑁,ℎ
) V

𝜅
+ 𝑎 (𝑢, V

𝜅
)

+ ∫
𝜅

(𝜆
𝑁,ℎ
𝑢
𝑁,ℎ
− 𝜆𝑢) V

𝜅

= 𝑎 (𝑢 − 𝑢
𝑁,ℎ
, V
𝜅
)

+ ∫
𝜅

(𝜆
𝑁,ℎ
𝑢
𝑁,ℎ
− 𝜆𝑢 + 𝐿𝑢

𝑁,ℎ
− 𝐿

𝜅
𝑢
𝑁,ℎ
) V

𝜅

≤ 𝐶
𝑢 − 𝑢𝑁,ℎ

1,𝜅

V𝜅
1,𝜅

+

(𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
− 𝜆𝑢

+𝐿𝑢
𝑁,ℎ
− 𝐿

𝜅
𝑢
𝑁,ℎ
)Φ

𝛼/2

𝜅

0,𝜅

×

V
𝜅
Φ
−𝛼/2

𝜅

0,𝜅
.

(81)

We consider the𝐻1 semi norm for V
𝜅
. Using the polynomial

inverse estimates (62)-(63) in Lemma 10, by transformation
between the reference element 𝜅 and 𝜅, we find for 𝛼 > 1/2
that

V𝜅


2

1,𝜅
≤ 2∫

𝜅

Φ
2𝛼

𝜅

∇ (𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ)


2

+ 2∫
𝜅

∇Φ
𝛼

𝜅



2𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ


2

≤ 𝐶
𝑁
2(2−𝛼)

𝜅

ℎ2
𝜅

∫
𝜅

Φ
𝛼

𝜅

𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ


2

+ 𝐶
1

ℎ2
𝜅

∫
𝜅

Φ
2(𝛼−1)

𝜅

𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ


2

≤ 𝐶
𝑁
2(2−𝛼)

𝜅

ℎ2
𝜅

∫
𝜅

Φ
𝛼

𝜅

𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ


2

= 𝐶𝑁
2(1−𝛼)

𝜅

𝑁
2

𝜅

ℎ2
𝜅

‖ V
𝜅
Φ
−𝛼/2

𝜅
‖
2

0,𝜅
.

(82)

Note that (62) is applicable since 𝛼 > 1/2 implies 2(𝛼 − 1) >
−1; thus, we set 𝛽 = 𝛼, 𝛼 = 2(𝛼 − 1) in (62); then the third
inequality above holds.

Since 𝜂
𝛼;𝐵𝜅

= ℎ
𝜅
/𝑁

𝜅
‖V
𝜅
Φ
−𝛼/2

𝜅
‖
0,𝜅
, we obtain

𝜂
𝛼;𝐵𝜅

≤ 𝐶 (𝑁
1−𝛼

𝜅

𝑢 − 𝑢𝑁,ℎ
1,𝜅

+
ℎ
𝜅

𝑁
𝜅

𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ

+𝜆
𝑁,ℎ
𝑢
𝑁,ℎ
− 𝜆𝑢

0,𝜅
) .

(83)

To obtain an upper bound in the case of 0 ≤ 𝛼 ≤ 1/2, we use
the polynomial inverse estimate (62) in Lemma 10; for 𝛽 >
1/2, we derive from (62) that

𝑁
𝜅

ℎ
𝜅

𝜂
𝛼;𝐵𝜅

= Φ
𝛼/2

𝜅

(𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ)
0,𝜅

≤ 𝐶𝑁
𝛽−𝛼

𝜅


(𝜆

𝑁,ℎ
𝑢
𝑁,ℎ
− 𝐿

𝜅
𝑢
𝑁,ℎ
)Φ

𝛽/2

𝜅

0,𝜅

= 𝐶𝑁
𝛽−𝛼

𝜅

𝑁
𝜅

ℎ
𝜅

𝜂
𝛽;𝐵𝜅

≤ 𝐶𝑁
𝛽−𝛼

𝜅
(𝑁

1−𝛽

𝜅

𝑁
𝜅

ℎ
𝜅

𝑢 − 𝑢𝑁,ℎ
1,𝜅

+
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢+𝐿𝑢𝑁,ℎ−𝐿𝜅𝑢𝑁,ℎ

0,𝜅
) .

(84)

Setting 𝛽 = 1/2 + 𝜀, 𝜀 > 0,

𝜂
𝛼;𝐵𝜅

≤ 𝐶 (𝜀) {𝑁
1−𝛼

𝜅

𝑢 − 𝑢𝑁,ℎ
1,𝜅

+ 𝑁
1/2+𝜀−𝛼

𝜅

ℎ
𝜅

𝑁
𝜅

×
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢 + 𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ

0,𝜅
} .

(85)

We obtain the desired result immediately from (83) and (85).

In order to obtain a local upper bound for the error
indicator 𝜂

𝛼;𝜅
, we consider the edge residual term 𝜂

𝛼;𝐸𝜅
. we

introduce the set

𝜔
𝜅
:= ∪ {𝜅

 
𝜅
 and 𝜅 share at least one edge} . (86)

Lemma 15. Let 𝛼 ∈ [0, 1], 𝜀 > 0. Then there exists a constant
𝐶(𝜀) > 0 independent of ℎ,N, and 𝜅, such that

𝜂
2

𝛼;𝐸𝜅
≤ 𝐶 (𝜀)𝑁

max(1−2𝛼+2𝜀,0)
𝜅

× {𝑁
𝜅

𝑢 − 𝑢𝑁,ℎ


2

1,𝜔𝜅

+ 𝑁
2𝜀

𝜅

ℎ
2

𝜅

𝑁2

𝜅

×
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢 + 𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ



2

0,𝜔𝜅

} .

(87)
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Proof. We will use weight functions on edge and a suitable
extension operator. For a given element 𝜅 with edge 𝑒, we
choose the element 𝜅

1
so that 𝜕𝜅

1
∩ 𝜕𝜅 = 𝑒. Denote 𝜅

𝑒
:=

𝜅
1
∪ 𝜅; we construct a function 𝑤

𝑒
∈ 𝐻

1

0
(𝜅
𝑒
) with 𝑤

𝑒
|
𝑒
=

𝐷
𝜅
[𝜕𝑢

𝑁,ℎ
/𝜕𝑛]Φ

𝛼

𝑒
as follows.

Let V
𝑒
= 𝐶

𝑒
𝐷
𝜅
[𝜕𝑢

𝑁,ℎ
/𝜕𝑛]Φ

𝛼

𝑒
(𝐶

𝑒
is defined by (71)).

Using Lemma 11, we extend V
𝑒
to 𝜅, where the polynomial 𝜋

corresponds to 𝐶
𝑒
𝐷
𝜅
[𝜕𝑢

𝑁,ℎ
/𝜕𝑛]. Define𝑤

𝑒
|
𝜅
and𝑤

𝑒
|
𝜅1
as the

affine transformation of V
𝑒
in 𝜅; Thus, 𝑤

𝑒
is a piecewise 𝐻1-

function. From (64), we know𝑤
𝑒
vanishes on 𝜕𝜅

𝑒
; Therefore,

𝑤
𝑒
∈ 𝐻

1

0
(𝜅
𝑒
). It is trivial to extend 𝑤

𝑒
to Ω, such that 𝑤

𝑒
= 0

inΩ \ 𝜅
𝑒
. We find



𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒



2

0,𝑒

= ∫
𝑒

𝐷[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]𝑤

𝑒
+ ∫

𝑒

(𝐷
𝜅
− 𝐷) [

𝜕𝑢
𝑁,ℎ

𝜕𝑛
]𝑤

𝑒

= ∫
𝜅𝑒

𝐿𝑢
𝑁,ℎ
𝑤
𝑒
− 𝑎 (𝑢

𝑁,ℎ
, 𝑤

𝑒
)

+ ∫
𝑒

(𝐷
𝜅
− 𝐷) [

𝜕𝑢
𝑁,ℎ

𝜕𝑛
]𝑤

𝑒

= ∫
𝜅𝑒

(𝐿𝑢
𝑁,ℎ
− 𝜆𝑢)𝑤

𝑒
+ 𝑎 (𝑢 − 𝑢

𝑁,ℎ
, 𝑤

𝑒
)

+ ∫
𝑒

(𝐷
𝜅
− 𝐷) [

𝜕𝑢
𝑁,ℎ

𝜕𝑛
]𝑤

𝑒

≤
𝐿𝑢𝑁,ℎ − 𝜆𝑢

0,𝜅𝑒

𝑤𝑒
0,𝜅𝑒

+ 𝐶
𝑢 − 𝑢𝑁,ℎ

1,𝜅𝑒

𝑤𝑒
1,𝜅𝑒

+



(𝐷
𝜅
− 𝐷)

𝐷
𝜅

0,∞,𝑒



𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒



2

0,𝑒

.

(88)

Therefore,



𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒



2

0,𝑒

≤ 𝐶
𝐿𝑢𝑁,ℎ − 𝜆𝑢

0,𝜅𝑒

𝑤𝑒
0,𝜅𝑒

+ 𝐶
𝑢 − 𝑢𝑁,ℎ

1,𝜅𝑒

𝑤𝑒
1,𝜅𝑒
.

(89)

We consider the case of 𝛼 ∈ (1/2, 1] first. Using the affine
equivalence and (65)-(66) in Lemma 11, we obtain the upper
bounds for ‖𝑤

𝑒
‖
0,𝜅𝑒

and |𝑤
𝑒
|
1,𝜅𝑒

as follows:

𝑤𝑒


2

1,𝜅𝑒

≤ 𝐶
1

ℎ
𝜅

(𝜀𝑁
2(2−𝛼)

𝜅
+ 𝜀

−1
)

×



𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒



2

0,𝑒

,

𝑤𝑒
0,𝜅𝑒

≤ 𝐶ℎ
𝜅
𝜀



𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒



2

0,𝑒

.

(90)

It follows from (89)-(90) that


𝐷
𝜅
[
𝜕𝑢

𝑁,ℎ

𝜕𝑛
]Φ

𝛼/2

𝑒

0,𝑒

≤ 𝐶{(
1

ℎ
𝜅

(𝜀𝑁
2(2−𝛼)

𝜅
+ 𝜀

−1
))

1/2

×
𝑢 − 𝑢𝑁,ℎ

1,𝜅𝑒
+ (ℎ

𝜅
𝜀)
1/2

‖
𝐿𝑢𝑁,ℎ − 𝜆𝑢

0,𝜅𝑒
} .

(91)

By the definition of 𝜂2
𝛼;𝐸𝜅

and setting 𝛼 = 0 in Lemma 14, we
get
𝐿𝜅𝑢𝑁,ℎ − 𝜆𝑁,ℎ𝑢𝑁,ℎ



2

0,𝑘

≤ 𝐶 (𝜀) {
𝑁
4

𝜅

ℎ2
𝜅

𝑢 − 𝑢𝑁,ℎ


2

1,𝑘
+ 𝑁

1+2𝜀

𝜅

×
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢 + 𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ



2

0,𝑘
} ,

(92)

by the triangle inequality
𝐿𝑢𝑁,ℎ − 𝜆𝑢

0,𝜅𝑒

≤
𝐿𝜅𝑢𝑁,ℎ − 𝜆𝑁,ℎ𝑢𝑁,ℎ

0,𝜅𝑒

+
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢 + 𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ

0,𝜅𝑒
.

(93)

Combining the three inequalities above and summing, we
have

𝜂
2

𝛼;𝐸𝜅
≤ 𝐶{

1

𝑁 𝜅

(𝜀𝑁
2(2−𝛼)

𝜅
+ 𝜀

−1
) + 𝑁

3

𝜅
𝜀}

×
𝑢 − 𝑢𝑁,ℎ



2

1,𝜔𝜅

+ 𝐶𝜀𝑁
2(1+𝜀)

𝜅

ℎ
2

𝜅

𝑁2

𝜅

×
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢 + 𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ



2

0,𝜔𝜅

.

(94)

Setting 𝜀 = 1/𝑁
2

𝜅
in the above inequality yields the

assertion for 𝛼 > 1/2. For the case of 𝛼 ∈ [0, 1/2], we set
𝛽 = 1/2 + 𝜀, use (62) in Lemma 10 to get 𝜂

𝛼;𝐸𝜅
≤ 𝑁

𝛽−𝛼

𝜅
𝜂
𝛽;𝐸𝜅

,
and find the desired result.

Combining Lemmas 14 and 15, we obtain the following
theorem.

Theorem 16. Let 𝛼 ∈ [0, 1], 𝜀 > 0. Then there exists a constant
𝐶 > 0 independent of ℎ,N, and 𝜅, such that

𝜂
2

𝛼;𝜅
≤ 𝐶 (𝜀)𝑁

max(1−2𝛼+2𝜀,0)
𝜅

× {𝑁
𝜅

𝑢 − 𝑢𝑁,ℎ


2

1,𝜔𝜅

+ 𝑁
2𝜀

𝜅

ℎ
2

𝜅

𝑁2

𝜅

×
𝜆𝑁,ℎ𝑢𝑁,ℎ − 𝜆𝑢 + 𝐿𝑢𝑁,ℎ − 𝐿𝜅𝑢𝑁,ℎ



2

0,𝜔𝜅

} .

(95)

Similarly, we have Theorem 17.
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Theorem 17. Let 𝛼 ∈ [0, 1], 𝜀 > 0. Then there exists a constant
𝐶 > 0 independent of ℎ,N, and 𝜅, such that

𝜂
∗2

𝛼;𝜅
≤ 𝐶 (𝜀)𝑁

max(1−2𝛼+2𝜀,0)
𝜅

× {𝑁
𝜅


𝑢
∗
− 𝑢

∗

𝑁,ℎ



2

1,𝜔𝜅

+ 𝑁
2𝜀

𝜅

ℎ
2

𝜅

𝑁2

𝜅

×

𝜆
∗

𝑁,ℎ
𝑢
∗

𝑁,ℎ
− 𝜆

∗
𝑢
∗
+ 𝐿

∗
𝑢
∗

𝑁,ℎ
− 𝐿

∗

𝜅
𝑢
∗

𝑁,ℎ



2

0,𝜔𝜅

} .

(96)

In order to estimate bounds of |𝜆 − 𝜆
𝑁,ℎ
|, we also need

Lemma 18 (see [8, 10]).

Lemma 18. Let (𝜆, 𝑢) be an eigenpair of (24), and let (𝜆∗ =
𝜆, 𝑢

∗
) be the associated eigenpair of the adjoint problem (31).

Then for all 𝑤,𝑤∗ ∈ 𝐻1

0
(Ω), (𝑤, 𝑤∗) ̸= 0,

𝑎 (𝑤, 𝑤
∗
)

(𝑤, 𝑤∗)
− 𝜆

=
𝑎 (𝑤 − 𝑢, 𝑤

∗
− 𝑢

∗
)

(𝑤, 𝑤∗)
− 𝜆
(𝑤 − 𝑢,𝑤

∗
− 𝑢

∗
)

(𝑤, 𝑤∗)
.

(97)

Theorem 19. Under the assumptions ofTheorem 7, we assume
that 𝐷, b, and 𝑐 are smooth enough, and let 𝛼 ∈ [0, 1]. Then
there exists an eigenpair (𝜆, 𝑢) of (24), such that

𝑢 − 𝑢𝑁,ℎ
1,Ω

≤ 𝐶( ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
2

𝛼;𝜅
)

1/2

, (98)

𝜂
2

𝛼;𝜅
≤ 𝐶 (𝜀)𝑁

max(2−2𝛼+2𝜀,1)
𝜅

𝑢 − 𝑢𝑁,ℎ


2

1,𝜔𝜅

. (99)

Further let the ascent of 𝜆
𝑁,ℎ

be 𝑙 = 1, and let (𝜆∗
𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
) be

the corresponding adjoint eigenpair of (32), then there exists an
adjoint eigenpair (𝜆∗, 𝑢∗) of (31), such that

𝜆𝑁,ℎ − 𝜆
 ≤ 𝐶( ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
2

𝛼;𝜅
)

1/2

( ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
∗2

𝛼;𝜅
)

1/2

. (100)

Particularly, if the eigenvalue problem (23) is symmetric (i.e.,
b = 0), then

𝐶𝐶(𝜀)
−1
∑

𝜅∈𝐾ℎ

𝑁
min(2𝛼−2−2𝜀,−1)
𝜅

𝜂
2

𝛼;𝜅
≤
𝜆𝑁,ℎ − 𝜆

 . (101)

Proof. We know from the assumption 𝐷, 𝑐 ∈ 𝐻
𝑡1(𝜅), b ∈

(𝐻
𝑡1(𝜅))

2. By the interpolation error estimates (14) and (15),
we have

𝐿𝜅𝑢𝑁,ℎ − 𝐿𝑢𝑁,ℎ
0,𝜅

≤ 𝐶ℎ
min(𝑁𝜅+1,𝑡1)−1
𝜅

𝑁
−𝑡1+1

𝜅
. (102)

From 𝐷 ∈ 𝐻
𝑡1(𝜅), we know that 𝐷 ∈ 𝐻

𝑡1−1/2(𝑒). By the
interpolation error estimate on edge of element (see formula
(5.4.42) in [2]), we get

𝐷 − 𝐷𝜅

0,𝑒 ≤ 𝐶ℎ
min(𝑁𝜅+1,𝑡1−1/2)
𝑒

𝑁
−𝑡1+1/2

𝜅
. (103)

Note that the formula (51) gives the optimal orders of
convergence; thus, we deduce that the second and third terms
on the right side of (74) are higher order infinitesimals. We
derive from (52) and (53), and𝑁 = 𝑁

𝜅
, that

𝜆𝑢 − 𝜆𝑁,ℎ𝑢𝑁,ℎ
0,Ω

≤
𝜆 − 𝜆𝑁,ℎ

 ‖𝑢‖0,Ω

+
𝜆𝑁,ℎ


𝑢 − 𝑢𝑁,ℎ

0,Ω

≤
𝐶ℎ

𝜏1+𝜏2−2

𝑁𝑡1+𝑡2−2
+
𝐶ℎ

𝑟2+𝜏1−1

𝑁𝑟2+𝑡1−1
≤
𝐶ℎ

𝑟2+𝜏1−1

𝑁𝑟2+𝑡1−1
.

(104)

Therefore, the fourth term on the right side of (74) is also a
higher order infinitesimal. Up to higher order terms, we get
(98). We ignore higher order infinitesimals in (95) and get
(99). From Lemma 4 in [10], we know that (𝑢

𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
) = 1

and 𝑢∗
𝑁,ℎ

is uniformly bounded with ℎ and 𝑁. By the same
argument of (98), we can deduce that


𝑢
∗
− 𝑢

∗

𝑁,ℎ



2

1,Ω
≤ 𝐶 ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
∗2

𝛼;𝜅
. (105)

From (97), we have

𝑎 (𝑢
𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
)

(𝑢
𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
)

− 𝜆

=

𝑎 (𝑢
𝑁,ℎ
− 𝑢, 𝑢

∗

𝑁,ℎ
− 𝑢

∗
)

(𝑢
𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
)

− 𝜆

(𝑢
𝑁,ℎ
− 𝑢, 𝑢

∗

𝑁,ℎ
− 𝑢

∗
)

(𝑢
𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
)

;

(106)

that is,

𝜆
𝑁,ℎ
− 𝜆 = 𝑎 (𝑢

𝑁,ℎ
− 𝑢, 𝑢

∗

𝑁,ℎ
− 𝑢

∗
)

− 𝜆 (𝑢
𝑁,ℎ
− 𝑢, 𝑢

∗

𝑁,ℎ
− 𝑢

∗
) .

(107)

Substituting (98) and (105) into the above equality, we obtain
(100).

If the eigenvalue problem (23) is symmetric (i.e., b = 0),
then

𝜆
𝑁,ℎ
− 𝜆 = 𝑎 (𝑢

𝑁,ℎ
− 𝑢, 𝑢

𝑁,ℎ
− 𝑢)

− 𝜆 (𝑢
𝑁,ℎ
− 𝑢, 𝑢

𝑁,ℎ
− 𝑢) .

(108)

Up to higher order term 𝜆(𝑢
𝑁,ℎ
− 𝑢, 𝑢

𝑁,ℎ
− 𝑢), by (99) we get

(101).

Remark 20. Babu ̌ska andOsborn [17] have discussed hpfinite
element approximation with simplex partition for eigenvalue
problems. Obviously, the Interpolation estimates (14) and (15)
hold for hp finite element with simplex partition (see [24]).
Therefore, our theoretical results of spectral methods and
spectral methods for eigenvalue problems, which have been
discussed in Sections 3 and 4, hold for hp finite element with
simplex partition.
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Table 1: Errors of LGL-SM, modal, and Eq-SM for 1st eigenvalue.

𝑁 DOF LGL-SM Modal-SM Eq-SM
𝜆
1

𝜆
1

𝜆
1

4 9 5.19𝐸 + 00 5.19𝐸 + 00 5.19𝐸 + 00

5 16 4.51𝐸 − 01 4.51𝐸 − 01 4.51𝐸 − 01

6 25 7.68𝐸 − 03 7.68𝐸 − 03 7.68𝐸 − 03

7 36 1.07𝐸 − 05 1.07𝐸 − 05 1.07𝐸 − 05

8 49 1.21𝐸 − 05 1.21𝐸 − 05 1.21𝐸 − 05

9 64 9.16𝐸 − 07 9.16𝐸 − 07 9.16𝐸 − 07

10 81 2.46𝐸 − 08 2.46𝐸 − 08 2.48𝐸 − 08

11 100 2.91𝐸 − 10 2.91𝐸 − 10 4.35𝐸 − 09

12 121 9.31𝐸 − 13 1.06𝐸 − 12 2.79𝐸 − 08

13 144 5.68𝐸 − 14 1.28𝐸 − 13 1.41𝐸 − 07

14 169 2.84𝐸 − 14 1.28𝐸 − 13 2.28𝐸 − 06

15 196 7.82𝐸 − 14 2.13𝐸 − 14 3.60𝐸 − 05

5. Numerical Experiments

In this section, we simply denote spectral methods, spectral
element methods, and finite element methods with SM,
SEM, and FEM, respectively. And spectral methods with
equidistant nodal basis, modal basis, and LGL nodal basis are
replaced by Eq-SM, Modal-SM, and LGL-SM, respectively.
Note that all these methods employ the tensorial basis.

In our experiment, we compute 1/|(𝑢
𝑁,ℎ
, 𝑢

∗

𝑁,ℎ
)| as condi-

tion number for simple eigenvalue (see Remark 2.1 in [25]),
where𝑢

𝑁,ℎ
and𝑢∗

𝑁,ℎ
are eigenfunctions of eigenvalue problem

(25) and its adjoint problem (32) normalized with ‖ ⋅ ‖
0,Ω

,
respectively.

5.1. Example 1. Consider the nonsymmetric eigenvalue prob-
lem

−Δ𝑢 + 10𝑢
𝑥
+ 𝑢

𝑦
= 𝜆𝑢, inΩ = (0, 1)2,

𝑢 = 0, on 𝜕Ω.
(109)

The first eigenvalue of (109) 𝜆
1
= 101/4 + 2𝜋

2 is a
simple eigenvalue. And the corresponding eigenfunctions are
sufficiently smooth.

5.1.1. Comparisons between LGL-SM, Modal, and Eq-SM.
Figure 1 shows that the condition numbers of the first eigen-
value for LGL-SM,Modal-SM, and Eq-SMcoincidewith each
other at the beginning but perform abnormally with𝑁 > 19

for Eq-SM. Table 1 tells us that when𝑁 > 11, the accuracy of
first eigenvalue obtained by Eq-SM is not as good as obtained
that by LGL-SM and Modal-SM. When𝑁 = 15, the error of
the first eigenvalues obtained by Eq-SM is greater than 1E-5;
however, the order of the magnitude of errors for LGL-SM
and Modal-SM still keeps below 1E-13. The best result of first
eigenvalue error for Eq-SM is merely 1E-9 or so.

5.1.2. LGL-SM and Modal-SM versus hp-SEM. Tables 1 and
2 indicate that increasing the polynomial degree 𝑁 or
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Figure 1: Condition number of first eigenvalue for SM.

decreasing the mesh fineness h can decrease the errors of the
first eigenvalue. But it is expensive to increase polynomial
degree and decrease mesh fineness h at the same time.
For ℎ = 1/4 and ℎ = 1/16, we obtain from Table 2
the first eigenvalue errors 2.8𝐸 − 14 and 1.3𝐸 − 13 and
the corresponding degree of freedom 1225 and 6241 for
hp-SEM, respectively, Whereas from Table 1, to reach this
accuracy, LGL-SMandModal-SM shouldmerely perform the
interpolation approximations with polynomial degree bi-14
and bi-13 or so, and the corresponding degrees of freedom
are merely 169 and 144, respectively. Therefore, we conclude
that LGL-SM andModal-SM are highly accurate and efficient
for this kind of nonsymmetric eigenvalue problems.

In Figure 2 from [9], when the degree of freedom is up to
1000, the error of linear FEM is about 1E-2; the function value
recovery techniques in [9] obviously improves the accuracy
up to 1E-5. Comparing Tables 1 and 2 in this paper with Figure
2 in [9], we can also find the advantages of LGL-SM, Modal-
SM, and hp-SEMover the function value recovery techniques
for FEM given by [9] from accuracy and degree of freedom.

5.1.3. hp-SEM versus hp-FEM. From Table 4, we find that
the condition number of the first eigenvalue for hp-version
methods (hp-SEM and hp-FEM) stays at 4.27. It is indicated
from Tables 2 and 3 that, when𝑁 is greater than 7, compared
with hp-SEM, the errors of hp-FEM tend to become large,
whereas the errors of hp-SEM still keep stable or even stay
a decreasing tendency; however, this phenomenon is not
apparent for ℎ = 1/2.

Remark 21. Condition numbers of 1st eigenvalue for hp-FEM
(not listed in Table 4) are almost the same to those for hp-
SEM.
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Table 2: Errors and DOF of hp-SEM for the first eigenvalue.

𝑁
ℎ = 1/2 ℎ = 1/4 ℎ = 1/8 ℎ = 1/16

Error DOF Error DOF Error DOF Error DOF
2 5.18𝐸 + 00 9 2.54𝐸 − 01 49 1.50𝐸 − 02 225 9.00𝐸 − 04 961
3 7.00𝐸 − 03 25 6.10𝐸 − 04 121 1.20𝐸 − 05 529 1.90𝐸 − 07 2209
4 8.40𝐸 − 03 49 2.60𝐸 − 05 225 9.70𝐸 − 08 961 3.70𝐸 − 10 3969
5 1.64𝐸 − 04 81 1.60𝐸 − 07 361 1.50𝐸 − 10 1521 1.30𝐸 − 13 6241
6 4.10𝐸 − 07 121 2.30𝐸 − 11 529 9.90𝐸 − 13 2209 3.60𝐸 − 12 9025
7 3.10𝐸 − 08 169 1.70𝐸 − 12 729 3.10𝐸 − 13 3025 1.60𝐸 − 12 12321
8 1.90𝐸 − 10 225 1.90𝐸 − 13 961 2.10𝐸 − 12 3969 4.80𝐸 − 12 16129
9 5.50𝐸 − 13 289 2.80𝐸 − 14 1225 6.00𝐸 − 13 5041 1.10𝐸 − 12 20449
10 3.80𝐸 − 13 361 1.10𝐸 − 12 1521 4.40𝐸 − 12 6241 1.50𝐸 − 11 25281

Table 3: Errors of hp-FEM for the first eigenvalue.

𝑁 ℎ = 1/2 ℎ = 1/4 ℎ = 1/8 ℎ = 1/16

3 7.00𝐸 − 03 6.10𝐸 − 04 1.20𝐸 − 05 1.90𝐸 − 07

4 8.40𝐸 − 03 2.60𝐸 − 05 9.70𝐸 − 08 3.70𝐸 − 10

5 1.60𝐸 − 04 1.60𝐸 − 07 1.50𝐸 − 10 1.30𝐸 − 12

6 4.10𝐸 − 07 2.40𝐸 − 11 3.60𝐸 − 13 8.60𝐸 − 12

7 3.10𝐸 − 08 6.10𝐸 − 12 1.30𝐸 − 11 3.00𝐸 − 11

8 1.80𝐸 − 10 3.10𝐸 − 11 2.30𝐸 − 10 2.10𝐸 − 10

9 7.50𝐸 − 11 3.40𝐸 − 11 6.80𝐸 − 10 7.40𝐸 − 10

10 2.50𝐸 − 11 9.90𝐸 − 10 8.70𝐸 − 09 6.60𝐸 − 09

11 2.00𝐸 − 09 9.60𝐸 − 09 8.90𝐸 − 09 5.40𝐸 − 07

Table 4: Condition number of first eigenvalue for hp-SEM.

𝑁 ℎ = 1/2 ℎ = 1/4 ℎ = 1/8 ℎ = 1/16

3 4.284381324 4.270132842 4.269625046 4.269615821
4 4.267343095 4.269607452 4.269615638 4.26961567
5 4.269636446 4.269615725 4.26961567 4.26961567
6 4.269619135 4.26961567 4.26961567 4.26961567
7 4.269615617 4.26961567 4.26961567 4.26961567
8 4.26961567 4.26961567 4.26961567 4.26961567
9 4.26961567 4.26961567 4.26961567 4.26961567

5.1.4. Validity of the Error Indicator. Denote

𝜓
𝛼
= ( ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
2

𝛼;𝜅
)

1/2

( ∑

𝜅∈𝐾ℎ

𝑁
2𝛼

𝜅
𝜂
∗2

𝛼;𝜅
)

1/2

. (110)

From Theorem 19, we know that 𝜓
𝛼
is a reliable error

indicator for 𝜆
𝑁,ℎ

. We choose 𝜓
0
(setting 𝛼 = 0 in (110)) as

a posteriorii error indicator.
In Figures 2 and 3, we denote the true error and est. error

with |𝜆
𝑁,ℎ
− 𝜆| and 𝜓

0
, respectively.

As is depicted in Figure 2, when the polynomial degree
𝑁 ≤ 12, the error indicator 𝜓

0
can properly estimate the

true errors of LGL-SM for the first eigenvalue, however, also
slightly underestimate the true errors. It is easy to see that 𝜓

0

shows almost the same algebraic decay as the true error with
the polynomial degree 𝑁 (≤12) increasing. Nevertheless, the
error indicator 𝜓

0
cannot approximate the true errors if 𝑁

Table 5: The Approximate eigenvalues and indicator 𝜓
0
of P-SEM.

𝑁 𝜆
𝑁,ℎ

𝜓
0

3 28.56900 2.72𝐸 + 01

4 31.99175 3.49𝐸 + 00

5 34.82082 2.25𝐸 − 01

6 34.65087 1.31𝐸 − 02

7 34.65057 3.32𝐸 − 03

8 34.64765 1.92𝐸 − 03

9 34.64567 1.22𝐸 − 03

10 34.64432 8.11𝐸 − 04

11 34.64335 5.62𝐸 − 04

12 34.64265 4.02𝐸 − 04

13 34.64212 2.95𝐸 − 04

14 34.64171 2.22𝐸 − 04

15 34.64139 1.71𝐸 − 04

16 34.64114 1.33𝐸 − 04

17 34.64094 1.06𝐸 − 04

18 34.64078 8.49𝐸 − 05

is large enough, which is caused by round-off errors derived
from the bad condition number of eigenvalue. In Figure 3, we
give the comparison between the error indicator 𝜓

0
and the

true errors for hp-SEM.

5.2. Example 2. Consider the nonsymmetric eigenvalue
problem

−Δ𝑢 + 10𝑢
𝑥
= 𝜆𝑢, in Ω = (−1, 1)

2

(0, 1)
2
,

𝑢 = 0, on 𝜕Ω.

(111)

A reference value for the first eigenvalue (simple eigen-
value) of (111) is 34.6397 given by [5]. And the corresponding
eigenfunctions have the singularity at the origin. Next, we
shall compare the relevant numerical results between P-SEM
and the other methods adopted in this paper. Note that
here and hereafter P-version methods are for the fixed mesh
fineness ℎ = 1. Table 5 lists part data of the approximate
eigenvalues computed by P-SEMand the corresponding error
indicator 𝜓

0
for reference.
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Figure 2: The Error indicator 𝜓0 of LGL-SM.
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Figure 3: The Error indicator 𝜓0 of hp-SEM (ℎ = 1/2).

5.2.1. Stability of P-Version Methods. Figure 4 indicates that
the eigenvalues computed byP-FEMwill not seriously deviate
from the results computed by P-SEM until the interpolation
polynomial degree𝑁 is up to 19.This phenomenon coincides
with the abnormity of condition number of first eigenvalue
for P-FEM (see Figure 5). The reason is that the singularities
of the eigenfunctions limit the accuracy of both kinds of
methods; this is slightly different from the case of the eigen-
value problem with the sufficiently smooth eigenfunctions.

5.2.2. P-SEM versus Other Methods. By calculations, we find
that, in the case of the linear FEM, for fixed mesh fineness
ℎ = 1/256, the approximate eigenvalue is 34.6403 with degree
of freedom up to 195585. But P-SEM with the polynomial
degree bi-22 can reach this accuracy, and the corresponding
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Figure 4: The Approximate 1st eigenvalue of P-SEM and P-FEM.

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100
C

on
di

tio
n 

nu
m

be
r o

f fi
rs

t e
ig

en
va

lu
e

P-FEM
P-SEM

Degree of polynomial space

Figure 5: Condition number of first eigenvalue for P-SEM and P-
FEM.

degree of freedom is merely 1365. Compared with the linear
FEM, hp-SEM can obtain a higher accuracy with less degrees
of freedom as follows: for fixed ℎ = 1/16 and 𝑁 = 10, the
approximate eigenvalue is 34.63984 with degree of freedom
76161 but P-SEM with polynomial degree bi-44 can reach
this accuracy. Therefore, P-SEM is more efficient for the
eigenvalue problems with the singular solutions than the
other methods.
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ℎ𝑝 finite element adaptive scheme to solve the laplace model for
fluid-solid vibrations,” Computer Methods in Applied Mechanics
and Engineering, vol. 200, no. 1–4, pp. 178–188, 2011.

[4] H. Bi and Y. Yang, “Multiscale discretization scheme based
on the Rayleigh quotient iterative method for the Steklov
eigenvalue problem,” Mathematical Problems in Engineering,
vol. 2012, Article ID 487207, 18 pages, 2012.

[5] C. Carstensen, J. Gedicke, V. Mehrmann, and A. Miedlar, “An
adaptive homotopy approach for non-selfadjoint eigenvalue
problems,” Numerische Mathematik, vol. 119, no. 3, pp. 557–583,
2011.

[6] X. Dai and A. Zhou, “Three-scale finite element discretizations
for quantum eigenvalue problems,” SIAM Journal on Numerical
Analysis, vol. 46, no. 1, pp. 295–324, 2007.

[7] S. Giani and I. G. Graham, “A convergent adaptive method
for elliptic eigenvalue problems,” SIAM Journal on Numerical
Analysis, vol. 47, no. 2, pp. 1067–1091, 2009.

[8] K. Kolman, “A two-level method for nonsymmetric eigenvalue
problems,” Acta Mathematicae Applicatae Sinica, vol. 21, no. 1,
pp. 1–12, 2005.

[9] A. Naga and Z. Zhang, “Function value recovery and its appli-
cation in eigenvalue problems,” SIAM Journal on Numerical
Analysis, vol. 50, no. 1, pp. 272–286, 2012.

[10] Y. Yang and X. Fan, “Generalized rayleigh quotient and finite
element two-grid discretization schemes,” Science in China A,
vol. 52, no. 9, pp. 1955–1972, 2009.

[11] Y. Yang and H. Bi, “Two-grid finite element discretization
schemes based on shifted-inverse power method for elliptic
eigenvalue problems,” SIAM Journal on Numerical Analysis, vol.
49, no. 4, pp. 1602–1624, 2011.

[12] Y. Yang, Y. Zhang, and H. Bi, “Multigrid discretization and
iterative algorithm for mixed variational formulation of the
eigenvalue problem of electric field,” Abstract and Applied
Analysis, vol. 2012, Article ID 190768, 25 pages, 2012.

[13] Y. Yang, W. Jiang, Y. Zhang, W. Wang, and H. Bi, “A two-
scale discretization scheme formixed variational formulation of
eigenvalue problems,” Abstract and Applied Analysis, vol. 2012,
Article ID 812914, 29 pages, 2012.

[14] Y. Zhang, Y. Yang, and J. Liu, “Highly efficient calculation
schemes of finite-element filter approach for the eigenvalue
problem of electric field,” Mathematical Problems in Engineer-
ing, vol. 2012, Article ID 529498, 21 pages, 2012.

[15] V. Heuveline and R. Rannacher, “A posteriori error control for
finite element approximations of elliptic eigenvalue problems,”
Advances in Computational Mathematics, vol. 15, no. 1–4, pp.
107–138, 2001.

[16] Y. Yang and W. Jiang, “Upper spectral bounds and a posteriori
error analysis of several mixed finite element approximations

for the Stokes eigenvalue problem,” Science China Mathematics,
vol. 56, no. 6, pp. 1313–1330, 2013.
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The nonlinear hydroelastic waves propagating beneath an infinite ice sheet floating on an inviscid fluid of finite depth are
investigated analytically. The approximate series solutions for the velocity potential and the wave surface elevation are derived,
respectively, by an analytic approximation technique named homotopy analysis method (HAM) and are presented for the second-
order components. Also, homotopy squared residual technique is employed to guarantee the convergence of the series solutions.The
present formulas, different from the perturbation solutions, are highly accurate and uniformly valid without assuming that these
nonlinear partial differential equations (PDEs) have small parameters necessarily. It is noted that the effects of water depth, the ice
sheet thickness, and Young’s modulus are analytically expressed in detail. We find that, in different water depths, the hydroelastic
waves traveling beneath the thickest ice sheet always contain the largest wave energy. While with an increasing thickness of the
sheet, the wave elevation tends to be smoothened at the crest and be sharpened at the trough. The larger Young’s modulus of the
sheet also causes analogous effects. The results obtained show that the thickness and Young’s modulus of the floating ice sheet all
greatly affect the wave energy and wave profile in different water depths.

1. Introduction

In recent decades, the ice cover in the polar region has
attracted more and more attention in the field of ocean
engineering and polar engineering in view of their practical
importance and theoretical investigations. The motivations
for the research work are to study damage to offshore con-
structions by floating ice sheets, the transportation systems in
the cold regionwhere the ice cover can be considered as roads
and aircraft runways and air-cushioned vehicles are used to
break the ice, for example. One of the important problems
in this field would appear to be the accurate measurement of
the characteristics of waves traveling beneath a floating ice
sheet. And such wave may have been generated in the ice
cover itself by the wind, or it may have originated by amoving
load on the ice sheets. Considerable work has been done since
the first theoretical model of wave propagation in sea ice was

proposed byGreenhill [1] in 1887. A comprehensive summary
on mathematical method and modeling for the problem can
be found in some review articles such as Squire et al. [2, 3].
In addition to ice sheets, this work can apply to very large
floating structures (VLFSs) such as floating airports, mobile
offshore bases, offshore port facilities, offshore storage and
waste disposal provisions, energy islands including some
wave power configurations, and ultralarge ships, where there
is an extensive complementary literature [4–6].

Most theoretical works on the problem are still in the
scope of linear theory based on the assumption that the
wave amplitudes generated are very small in comparison
with the wave lengths. So such models are not appropriate
to describe waves of arbitrary amplitude considered here.
According to hydrodynamics and elasticity, we can construct
the nonlinear partial differential equations (PDEs) (1)–(5) to
describe nonlinear hydroelastic waves of arbitrary amplitude
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traveling through water covered by an ice sheet in finite water
depth. Unfortunately, it is very difficult to solve analytically
the coupled nonlinear PDEs mathematically. Further, most
of the most works literature on the nonlinear theory of sea
waves ice sheet interaction are necessarily in the context of
weakly nonlinear analysis due to the limitation of present
mathematical tools. Now the main analytical study on such
complex nonlinear PDEs still follows the well-known pertur-
bation technique. For example, Forbes [7] derived nonlinear
PDEs to describe two-dimensional periodicwaves beneath an
elastic sheet floating on the surface of an infinitely deep fluid.
The periodic solutions are sought using the Fourier series and
perturbation expansions for the Fourier coefficients. And it
is found that the solutions have certain features in common
with capillary-gravity waves. Following the framework in
[7], Forbes continued his study of finite-amplitude surface
waves beneath a floating elastic sheet in infinitely deep water
[8], and optimized their previous perturbation technology
directly by developing the Fourier coefficients as expansions
in the wave height. Waves of extremely large amplitude are
found to exist, and results are presented for waves belonging
to several different nonlinear solution branches. Recently,
Vanden-Broeck and Părău [9] further extended the results of
Forbes for periodic waves to the arbitrary-amplitude waves.
It is noted that perturbation and asymptotic approximations
of nonlinear PDEs often break down as nonlinearity becomes
strong. So the weakly nonlinear solutions of small-amplitude
waves are derived by the perturbation approach, while fully
nonlinear solutions of large-amplitude waves have to be
calculated numerically by means of the numerical series
truncation method in Vanden-Broeck’s study.

Furthermore, perturbation and asymptotic techniques
depend extremely on the small/large parameters in general,
while our nonlinear PDEs have no any small/large parame-
ters. Thus the perturbation techniques are not applicable to
the nonlinear problem under consideration. In this paper,
we apply a new analytic approximation method known as
the homotopy analysis method (HAM) to effectively solve
the nonlinear PDEs presented here. Based on the concept
of homotopy in algebraic topology, the HAM was proposed
by Liao [10] in 1992. Unlike the perturbation method, the
HAM is entirely independent of any small/large parameters.
Moreover, it provides us with extremely large freedom to
choose base functions and initial approximations (16) and
(17) of solutions and auxiliary linear operators (21)–(23)
only under some basic rules [11, 12]. More importantly, in
contrast to all other previous analytic techniques, the HAM
provides us a convenient way to control and adjust the
convergence of the approximate series solutions by means of
introducing an auxiliary parameter 𝑐

0
. The method has been

systematically described by Liao [11, 12]. Recently the HAM
has been successfully applied to the study of a number of
classical nonlinear differential equations including nonlinear
equations arising in fluid mechanics [13–18], heat transfer
[19, 20], solitons and integrable models [21–24], and finance
[25, 26]. These aforementioned studies show the validity
and generality of the HAM for some highly nonlinear PDEs
with multiple solutions, singularity, and unknown boundary
conditions.

The objective of the present work is to analytically study
the nonlinear hydroelastic waves under an ice sheet lying
over an incompressible inviscid fluid of finite uniform depth
by means of the HAM. According to the potential theory in
hydrodynamics and elasticity, the nonlinear partial differen-
tial equations (PDEs) (1)–(5) are composed of the Laplace
equation taken as the governing equation for inviscid flows,
the kinematic and dynamic boundary conditions on the
unknown ice sheet-water interface with a zero draft, a simple
linear model for the thin sheet that includes the effects of
flexural rigidity and vertical inertia, and a bottom boundary
condition. The convergent homotopy-series solutions for the
velocity potential and the wave surface elevation are formally
derived by applying the HAM with the consideration of the
minimum of the squared residual, respectively. It should
be mentioned that we study the effects of the water depth
and two important physical parameters including Young’s
modulus and the thickness of the ice sheet on thewave energy
and its elevation in detail. Discussion and conclusions are
made in Sections 4 and 5, respectively. All of results obtained
will help enrich our understanding of nonlinear hydroelastic
waves propagating under a floating ice sheet on a fluid of finite
depth.

2. Mathematical Description

The problem under consideration is a train of nonlinear
hydroelastic waves propagating beneath a two-dimensional
infinite elastic plate floating on a fluid of finite depth ℎ

and a zero draft. A Cartesian coordinate 𝑜𝑥𝑧 is used in
which the 𝑧-axis points vertically upward, while 𝑧 = 0

represents the undisturbed surface. We follow Greenhill in
[1] assuming that this problem is capable of modeling ocean
waves in the presence of sea ice when the fluid is inviscid and
incompressible and the flow is irrotational, and the ice sheet
is mathematically idealized as a thin elastic plate. Then the
governing equations for a velocity potential 𝜙(𝑥, 𝑧, 𝑡) can be
written as

𝜕
2
𝜙

𝜕𝑥2
+
𝜕
2
𝜙

𝜕𝑧2
= 0, (−ℎ ≤ 𝑧 ≤ 𝜁 (𝑥, 𝑡)) , (1)

where 𝜁(𝑥, 𝑡) is the wave surface elevation. The bottom
boundary condition reads

𝜕𝜙

𝜕𝑧
= 0, (𝑧 = −ℎ) . (2)

The motion of the fluid and the plate is coupled through
the dynamic free-surface condition. We also assume that
any particle which is once between the elastic plate and the
water surface remains on it. So the kinematic and dynamic
boundary conditions on the unknown surface 𝑧 = 𝜁(𝑥, 𝑡) are,
respectively, modeled as

𝜕𝜁

𝜕𝑡
+
𝜕𝜙

𝜕𝑥

𝜕𝜁

𝜕𝑥
−
𝜕𝜙

𝜕𝑧
= 0, (3)

𝜕𝜙

𝜕𝑡
+
1

2

∇𝜙


2

+
𝑝
𝑒

𝜌
+ 𝑔𝜁 = 0, (4)
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where 𝑝
𝑒
is the water-plate interface pressure, 𝜌 is the fluid

density, and 𝑔 is the gravitational acceleration, for a thin
homogeneous elastic plate with uniform mass density 𝜌

𝑒
and

constant thickness 𝑑.
Since we are considering long waves here, the linear

Kirchhoff (Euler-Bernoulli) beam theory is applied to the
floating elastic plate as follows:

𝑝
𝑒
= 𝐷

𝜕
4
𝜁

𝜕𝑥4
+ 𝑚
𝑒
(
𝜕
2
𝜁

𝜕𝑡2
+ 𝑔) , (5)

where𝑚
𝑒
= 𝜌
𝑒
𝑑,𝐷 = 𝐸𝑑

3
/[12(1 − ]2)] is the flexural rigidity

of the plate, 𝐸 is the effective Young’s modulus of the plate,
and ] Poisson’s ratio.We substitute (5) into (4) to derive a new
form of the dynamic boundary condition as follows:

𝜕𝜙

𝜕𝑡
+
1

2

∇𝜙


2

+ 𝑔𝜁 +
1

𝜌
[𝐷

𝜕
4
𝜁

𝜕𝑥4
+ 𝑚
𝑒
(
𝜕
2
𝜁

𝜕𝑡2
+ 𝑔)] = 0. (6)

Here, we consider a train of nonlinear waves traveling
beneath an elastic plate with constant wave number 𝑘 and
constant angular frequency 𝜔 of the incident wave. For a
general case it should be emphasized that, by means of the
traveling-wave method directly, the progressive waves are
transferred from the temporal differentiation into the spatial
one, which is very different from the mathematical model
obtained by simply eliminating the time-dependent terms
from the kinematic and dynamic boundary conditions on
the unknown free surface [7–9]. Namely, we introduce an
independent variable transformation

𝑋 = 𝑘𝑥 − 𝜔𝑡, (7)

where the angular frequency 𝜔 and the wave number 𝑘 are
given.Thus, we can express the potential function 𝜙(𝑥, 𝑧, 𝑡) =
𝜙(𝑋, 𝑧) and the traveling wave profile 𝜁(𝑥, 𝑡) = 𝜁(𝑋).

Then the governing equation and the bottom boundary
condition for the velocity potential are transformed, respec-
tively, by

𝑘
2
𝜕
2
𝜙

𝜕𝑋2
+
𝜕
2
𝜙

𝜕𝑧2
= 0, (−ℎ ≤ 𝑧 ≤ 𝜁 (𝑋)) , (8)

𝜕𝜙

𝜕𝑧
= 0, (𝑧 = −ℎ) . (9)

With the transformation (7), (3), and (6) on 𝑧 = 𝜁(𝑋) are
given by

−𝜔
d𝜁
d𝑋

+ 𝑘
2
𝜕𝜙

𝜕𝑋

d𝜁
d𝑋

−
𝜕𝜙

𝜕𝑧
= 0, (10)

−𝜔
𝜕𝜙

𝜕𝑋
+ 𝑓 + 𝑔𝜁 +

1

𝜌
[𝐷𝑘
4 d4𝜁
d𝑋4

+ 𝑚
𝑒
(𝜔
2 d2𝜁
d𝑋2

+ 𝑔)] = 0,

(11)

respectively, where

𝑓 =
1

2
[𝑘
2
(
𝜕𝜙

𝜕𝑋
)

2

+ (
𝜕𝜙

𝜕𝑧
)

2

] . (12)

We combine partially (10) and (11) to gain the boundary
conditions on 𝑧 = 𝜁(𝑋) as follows:

𝜔
2
𝜕
2
𝜙

𝜕𝑋2
+ 𝑔

𝜕𝜙

𝜕𝑧
− 𝜔

𝜕𝑓

𝜕𝑋
−
𝜔

𝜌
(𝐷𝑘
4 d5𝜁
d𝑋5

+ 𝑚
𝑒
𝜔
2 d3𝜁
d𝑋3

)

− 𝑘
2
𝑔
𝜕𝜙

𝜕𝑋

d𝜁
d𝑋

= 0.

(13)

Now the corresponding unknown potential function 𝜙(𝑋, 𝑧)
and the wave surface elevation 𝜁(𝑋) are governed by (8), (9),
(11), and (13).

3. Analytic Approach Based on
the Homotopy Analysis Method

3.1. Solution Expression and Initial Approximation. Using
the homotopy analysis method, we should first of all start
from a set of base functions and solution expression which
are very important to approximate the unknown solutions
of the nonlinear boundary problem under consideration.
Mathematically, it seems impossible to guess the expression
forms of the unknown potential function and the wave
vertical displacement. Fortunately, considering the physical
background of our problem, we may gain proper solution
expressions of it. From viewpoints of the physical considera-
tions here, our problem is composed of a train of progressive
waves cause by a load moving on the ice sheet, an infinite
elastic plate acting as an ice sheet floating on an fluid of finite
depth. As is well known, in case of the pure water waves, the
progressive wave elevation can be expressed as

𝜁 (𝑋) =

+∞

∑

𝑛=0

𝛽
𝑛
cos (𝑛𝑋) (14)

by a set of base functions {cos(𝑛𝑋), 𝑛 ≥ 0}, where 𝛽
𝑛
are

unknown coefficients. In the case of plate-covered surface,
since we assume that there is no gap between the bottom
surface of the thin elastic plate and the top surface of the fluid
layer and a zero draft, the vertical displacement of the thin
plate is still periodic in the𝑋 direction. Therefore, we clearly
know that 𝜁(𝑋) can be expressed in the above form (14) too.

Besides, according to the linear wave theory, we can find
the solutions of the Laplace equation (8) by the separation
of variables method. To acquire those solutions, we have to
use kinematic and dynamic boundary conditions of the free
surface and the boundary condition in finite water depth,
and we consider the solution derived here as the solution
expression of potential function

𝜙 (𝑋, 𝑧) =

+∞

∑

𝑛=1

𝛼
𝑛

cosh [𝑛𝑘 (𝑧 + ℎ)]
cosh (𝑛𝑘ℎ)

sin (𝑛𝑋) (15)

by a set of base functions {cosh[𝑛𝑘(𝑧+ℎ)]/cosh(𝑛𝑘ℎ) sin(𝑛𝑋),
𝑛 ≥ 0}, where 𝛼

𝑛
are unknown coefficients. Note that the

potential function 𝜙(𝑋, 𝑧) defined by (15) automatically
satisfies the governing equation (8) and the bottom boundary
condition (9). The above expressions (14) and (15) are called
the solution expressions of 𝜙(𝑋, 𝑧) and 𝜁(𝑋), respectively,
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which play important roles in the method of homotopy
analysis.

According to the solution expression (15) and the bound-
ary condition (9), we construct the initial approximation of
the potential function:

𝜙
0
(𝑋, 𝑧) = 𝛼

0,1

cosh [𝑘 (𝑧 + ℎ)]
cosh (𝑘ℎ)

sin (𝑋) , (16)

where 𝛼
0,1

is an unknown coefficient. We choose

𝜁
0
(𝑋) = 0. (17)

as the initial approximation of wave profile 𝜁(𝑋) to simplify
the subsequent solution procedure [18, 20]. It should be
emphasized that higher order terms can hold the corrections
of the analytic series solutions due to the nonlinearity
inherent in (11) and (13) although the initial guess 𝜁

0
(𝑋) is

zero.

3.2. Continuous Variation. The HAM is based on a kind
of continuous mapping of an initial approximation to the
exact solution through a series of deformation equations. For
simplicity, based on the nonlinear boundary condition (13)
and (11), we define the two following nonlinear operatorsN

1

andN
2
as follows

N
1
[Φ (𝑋, 𝑧; 𝑞) , 𝜂 (𝑋; 𝑞)]

= 𝜔
2
𝜕
2
Φ(𝑋, 𝑧; 𝑞)

𝜕𝑋2
+ 𝑔

𝜕Φ (𝑋, 𝑧; 𝑞)

𝜕𝑧
− 𝜔

𝜕𝐹

𝜕𝑋

−
𝜔

𝜌
(𝐷𝑘
4
𝜕
5
𝜂 (𝑋; 𝑞)

𝜕𝑋5
+ 𝜔
2
𝑚
𝑒

𝜕
3
𝜂 (𝑋; 𝑞)

𝜕𝑋3
)

− 𝑘
2
𝑔
𝜕Φ (𝑋, 𝑧; 𝑞)

𝜕𝑋

𝜕𝜂 (𝑋; 𝑞)

𝜕𝑋
,

(18)

N
2
[𝜂 (𝑋; 𝑞) , Φ (𝑋, 𝑧; 𝑞)]

= −𝜔
𝜕Φ (𝑋, 𝑧; 𝑞)

𝜕𝑋
+ 𝐹 + 𝑔𝜂 (𝑋; 𝑞)

+
1

𝜌
[𝐷𝑘
4
𝜕
4
𝜂 (𝑋; 𝑞)

𝜕𝑋4
+ 𝑚
𝑒
(𝜔
2
𝜕
2
𝜂 (𝑋; 𝑞)

𝜕𝑋2
+ 𝑔)] ,

(19)

where

𝐹 =
1

2
[𝑘
2
(
𝜕Φ

𝜕𝑋
)

2

+ (
𝜕Φ

𝜕𝑧
)

2

] (20)

and 𝑞 ∈ [0, 1] is the embedding parameter of the HAM.
Here, it should be emphasized that, as mentioned by Liao

and Cheung and Tao et al. [14, 15], the HAM provides us
with extremely large freedom to choose the auxiliary linear
operators and the initial guess. Note that both linear terms
of Φ(𝑋, 𝑧; 𝑞) and linear terms of 𝜂(𝑋; 𝑞) are all contained in
(18). If we choose all linear terms, the subsequent iterative
procedure will become very complex. Fortunately, based on

the HAM, we can completely forget the linear terms in (13)
and choose proper auxiliary linear operator of Φ(𝑋, 𝑧; 𝑞) by
means of the solution expression (15) which is obtained under
the physical considerations as

L
1
[Φ (𝑋, 𝑧; 𝑞)] = 𝜔

2
𝜕
2
Φ(𝑋, 𝑧; 𝑞)

𝜕𝑋2
+ 𝑔

𝜕Φ (𝑋, 𝑧; 𝑞)

𝜕𝑧
. (21)

In particular, if the angular frequency 𝜔 is given, we
can choose such an approximation based on the linear wave
theory to simplify the subsequent resolution of the nonlinear
PDEs as follows:

𝜔 ≈ √𝑔𝑘 tanh (𝑘ℎ). (22)

So we simplify the auxiliary linear operator in (21) as follows:

L
1
[Φ (𝑋, 𝑧; 𝑞)] = 𝑔𝑘 tanh (𝑘ℎ)

𝜕
2
Φ(𝑋, 𝑧; 𝑞)

𝜕𝑋2

+ 𝑔
𝜕Φ (𝑋, 𝑧; 𝑞)

𝜕𝑧
,

(23)

where L
1
[0] = 0. Note that, due to the weakly nonlinear

effects, the actual frequency 𝜔 is often slightly different
from the linear dispersion relation 𝜔

0
= √𝑔𝑘 tanh(𝑘ℎ). In

Section 4, 𝜔/𝜔
0
= 1.01 is chosen so that the perturbation

theory is valid and corresponding results are highly accurate,
and then we can compare our results with those obtained by
the perturbation method.

Based on the linear operator of the wave profile function
𝜂(𝑋; 𝑞) in the nonlinear operator N

2
, for simplicity, we may

choose another auxiliary linear operator:

L
2
[𝜂 (𝑋; 𝑞)] =

𝜕
4
𝜂 (𝑋; 𝑞)

𝜕𝑋4
+
𝜕
2
𝜂 (𝑋; 𝑞)

𝜕𝑋2
+ 𝜂 (𝑋; 𝑞) , (24)

whereL
2
[0] = 0.

We let 𝑐
0
be an nonzero convergence-control parameter.

It is noted that both 𝑐
0
and 𝑞 in the HAM are auxiliary

parameters without any physical meaning. Instead of the
nonlinear PDEs (8), (9), (11), and (13), we reconstruct the so-
called zeroth-order deformation equations as follows:

𝑘
2
𝜕
2
Φ(𝑋, 𝑧; 𝑞)

𝜕𝑋2
+
𝜕
2
Φ(𝑋, 𝑧; 𝑞)

𝜕𝑧2
= 0, (−ℎ ≤ 𝑧 ≤ 𝜂 (𝑋; 𝑞)) ,

(25)

𝜕Φ (𝑋, 𝑧; 𝑞)

𝜕𝑧
= 0, (𝑧 = −ℎ) , (26)

(1 − 𝑞)L
1
[Φ (𝑋, 𝑧; 𝑞) − 𝜙

0
(𝑋, 𝑧)]

= 𝑞𝑐
0
N
1
[Φ (𝑋, 𝑧; 𝑞) , 𝜂 (𝑋; 𝑞)] , (𝑧 = 𝜂 (𝑋; 𝑞)) ,

(27)

(1 − 𝑞)L
2
[𝜂 (𝑋; 𝑞) − 𝜁

0
(𝑋)]

= 𝑞𝑐
0
N
2
[𝜂 (𝑋; 𝑞) , Φ (𝑋, 𝑧; 𝑞)] , (𝑧 = 𝜂 (𝑋; 𝑞)) .

(28)



Abstract and Applied Analysis 5

Then, from (27) and (28), two mapping functions Φ(𝑋, 𝑧; 𝑞)
and 𝜂(𝑋; 𝑞) vary respectively continuously from their initial
approximation 𝜙

0
(𝑋, 𝑧) and 𝜁

0
(𝑋) to the exact solutions

𝜙(𝑋, 𝑧) and 𝜁(𝑋) of the original problem. The Taylor series
ofΦ(𝑋, 𝑧; 𝑞) and 𝜂(𝑋; 𝑞) at 𝑞 = 0 are

Φ(𝑋, 𝑧; 𝑞) = 𝜙
0
(𝑋, 𝑧) +

+∞

∑

𝑚=1

𝜙
𝑚
(𝑋, 𝑧) 𝑞

𝑚
, (29)

𝜂 (𝑋; 𝑞) = 𝜁
0
(𝑋) +

+∞

∑

𝑚=1

𝜁
𝑚
(𝑋) 𝑞
𝑚
, (30)

where

{𝜙
𝑚
(𝑋, 𝑧) , 𝜁

𝑚
(𝑋)} =

1

𝑚!

𝜕
𝑚

𝜕𝑞𝑚
{Φ (𝑋, 𝑧; 𝑞) , 𝜂 (𝑋; 𝑞)}

𝑞=0.

(31)

Assume that 𝑐
0
is so properly chosen that the series in

(29) and (30) converge at 𝑞 = 1; then we have the so-called
homotopy-series solutions as follows:

𝜙 (𝑋, 𝑧) = Φ (𝑋, 𝑧; 1) = 𝜙
0
(𝑋, 𝑧) +

+∞

∑

𝑚=1

𝜙
𝑚
(𝑋, 𝑧) ,

𝜁 (𝑋) = 𝜂 (𝑋; 1) = 𝜁
0
(𝑋) +

+∞

∑

𝑚=1

𝜁
𝑚
(𝑋) .

(32)

At the 𝑛th-order of approximations, we have

𝜙 (𝑋, 𝑧) ≈ 𝜙
0
(𝑋, 𝑧) +

+𝑛

∑

𝑚=1

𝜙
𝑚
(𝑋, 𝑧) ,

𝜁 (𝑋) ≈ 𝜁
0
(𝑋) +

+𝑛

∑

𝑚=1

𝜁
𝑚
(𝑋) .

(33)

As shown later in the following section, the unknown
terms 𝜙

𝑚
(𝑋, 𝑧) and 𝜁

𝑚
(𝑋) are governed by the linear PDEs

(34)–(36).

3.3. High-Order Deformation Equations. High-order defor-
mation equations for the unknown 𝜙

𝑚
(𝑋, 𝑧), 𝜁

𝑚
(𝑋) can be

derived directly from the zeroth-order deformation equa-
tions. Firstly, substituting the homotopy-Maclaurin series
(29) and (30) into the governing equation (25) and the
boundary condition in finite water depth (26) and then
equating the like-power of the embedding parameter 𝑞, we
have

𝑘
2
𝜕
2
𝜙
𝑚
(𝑋, 𝑧)

𝜕X2
+
𝜕
2
𝜙
𝑚
(𝑋, 𝑧)

𝜕𝑧2
= 0, (−ℎ ≤ 𝑧 ≤ 0) ,

𝜕𝜙
𝑚
(𝑋, 𝑧)

𝜕𝑧
= 0, (𝑧 = −ℎ) ,

(34)

where𝑚 ≥ 1.
Note that, Φ(𝑋, 𝑧; 𝑞) at the unknown surface 𝑧 = 𝜂(𝑋; 𝑞)

may be expressed in terms of the Taylor expansion at 𝑧 =

0 instead of 𝑧 = 𝜂(𝑋; 𝑞). The detailed derivation of the

expansion of Φ(𝑋, 𝑧; 𝑞) at the unknown surface is given in
Appendices (A.1)–(A.5). Upon the substitution of appropriate
series (A.5) and (30) into the boundary conditions (27) and
(28), we have two linear boundary conditions on 𝑧 = 0 as
follows:

L
1
(𝜙
𝑚
)
𝑧=0 = 𝑐0Δ

𝜙

𝑚−1
+ 𝜒
𝑚
𝑆
𝑚−1

− 𝑆
𝑚
, (35)

L
2
(𝜁
𝑚
) = 𝑐
0
Δ
𝜁

𝑚−1
+ 𝜒
𝑚
(
d4𝜁
𝑚−1

d𝑋4
+
d2𝜁
𝑚−1

d𝑋2
+ 𝜁
𝑚−1

) ,

(36)

where

𝜒
𝑚
= {

0, 𝑚 ⩽ 1

1, 𝑚 > 1.
(37)

The detailed derivation of the above equations and the
expression for 𝜙

𝑚
and 𝜁
𝑚
are given in Appendix A. It should

be noted that (27) and (28) holds on the unknown boundary
𝑧 = 𝜂(𝑋; 𝑞), while (35) and (36) hold on 𝑧 = 0. Furthermore,
the original nonlinear DPEs (1)–(5) are transferred into an
infinite number of linear decoupled high-order deformation
equations (34)–(36). Namely, given 𝜙

𝑚−1
and 𝜁

𝑚−1
, 𝜙
𝑚
and

𝜁
𝑚
can be obtained easily by means of the inverse operators

of the right-hand sides of (35) and (36), respectively, and a
computer algebra system such as Mathematica. The resulting
expressions for 𝜙

𝑚
and 𝜁
𝑚
are presented to the second order

in the coming subsection.

3.4. First-Order and Second-Order Approximations. Substi-
tuting initial approximations (16) and (17) into (36), we can
get 𝜁
1
(𝑋) using the inverse linear operator L

2
in (36) as

follows:

𝜁
1
(𝑋) =

1

4
[4𝑑𝑔𝑐

0
+ 𝑐
0
𝑎
2

0,1
+ 𝑘
2
𝑐
0
𝑎
2

0,1
tanh2 (ℎ𝑘)]

− 𝜔𝑐
0
𝛼
0,1

cos (𝑋)

+
1

52
[𝑐
0
𝑎
2

0,1
− 𝑘
2
𝑐
0
𝑎
2

0,1
tanh2 (ℎ𝑘)] cos (2𝑋) .

(38)

But now the coefficient 𝛼
0,1

in the initial approximation
of 𝜙
0
(𝑋, z) in (16) is still unknown. So we introduce an

additional equation to relate the solutions with the wave
height:

𝜁
1
(𝑚𝜋) − 𝜁

1
(𝑛𝜋) = 𝐻, (39)

in which 𝑚 is an even integer, 𝑛 is an odd integer, and 𝐻 is
the wave height to the first order based on the HAM. The
relation (39) for the wave height and its vertical displacement
can determine the solution of 𝛼

0,1
.

Further, in the analogous manner as for the first-order
approximation, by using the inverse linear operator L

1
in

(35), it is easy to get the solution of 𝜙
1
(𝑋, 𝑧), especially
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by means of the symbolic computation software such as
Mathematica:

𝛼
0,1

= −
𝐻

2𝜔𝑐
0

,

𝜙
1
(𝑋, 𝑧) = 𝛼

1,1

cosh [𝑘 (ℎ + 𝑧)]
cosh (𝑘ℎ)

sin (𝑋)

+
−𝐻
2
+ 𝐻
2
𝑘
2tanh2 (ℎ𝑘)

16𝑔𝑘𝜔𝑐
0
[2 tanh (ℎ𝑘) − tanh (2ℎ𝑘)]

×
cosh [2𝑘 (ℎ + 𝑧)]

cosh (2𝑘ℎ)
sin (2𝑋) .

(40)

We find the common solution 𝜙
1
(𝑋, 𝑧) has one unknown

coefficient 𝛼
1,1

which can be determined by avoiding the
“secular” term sin(𝑋) in 𝜙

2
(𝑋, 𝑧).We note that all subsequent

functions occur recursively. Utilizing the linear equations
(35) and (36) to continue with the first-order approximations
we have

𝜁
2
(𝑋) = 𝛽

2,0
+ 𝛽
2,1

cos (𝑋) + 𝛽
2,2

cos (2𝑋)

+ 𝛽
2,3

cos (3𝑋) + 𝛽
2,4

cos (4𝑋) ,

𝜙
2
(𝑋, 𝑧) = 𝛼

2,1

cosh [𝑘 (ℎ + 𝑧)]
cosh (𝑘ℎ)

sin (𝑋)

+ 𝛼
2,2

cosh [2𝑘 (ℎ + 𝑧)]
cosh (2𝑘ℎ)

sin (2𝑋)

+ 𝛼
2,3

cosh [3𝑘 (ℎ + 𝑧)]
cosh (3𝑘ℎ)

sin (3𝑋)

+ 𝛼
2,4

cosh [4𝑘 (ℎ + 𝑧)]
cosh (4𝑘ℎ)

sin (4𝑋)

+ 𝛼
2,5

cosh [5𝑘 (ℎ + 𝑧)]
cosh (5𝑘ℎ)

sin (5𝑋) ,

(41)

where 𝛼
𝑖,𝑗

is the 𝑗th unknown coefficient of 𝜙
𝑖
(𝑋, 𝑧) and

𝛽
𝑖,𝑗

is the 𝑗th unknown coefficient of 𝜁
𝑖
(𝑋). The detailed

expressions of these coefficients for 𝜙
2
and 𝜁

2
are given in

Appendix B.
In order to obtain higher-order functions 𝜙

𝑚
(𝑋, 𝑧) and

𝜁
𝑚
(𝑋), we need only to continue this approach. In principle,

we can acquire infinite-order solutions for our physical
model. It is also worthwhile to mention that these solutions
will retain model parameters and the convergence control
parameter 𝑐

0
.

3.5. Optimal Convergence-Control Parameter. If we fix all
model parameters in our approximate series solutions, there
is still an unknown convergence control parameter 𝑐

0
in

them, which is used to guarantee the convergence of our
approximation solutions. According to Liao [12], it is the
convergence control parameter 𝑐

0
that essentially differs the

HAM from all other analytic methods. And the optimal value
of 𝑐
0
is determined by the minimum of the total squared-

residual 𝜀𝑇
𝑚
of our nonlinear problem, defined by

𝜀
𝑇

𝑚
= 𝜀
𝜙

𝑚
+ 𝜀
𝜁

𝑚
, (42)
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Figure 1: Residual squares of log
10
𝜀
𝑇

𝑚
versus 𝑐

0
. Solid line: first-

order approximation; dashed line: third-order approximation;
dash-dotted line: fifth-order approximation; dash-dot-dotted line:
seventh-order approximation.
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Figure 2: Comparison of our present 3rd-order surface elevation
𝜁 with those obtained by the perturbation method. Solid line:
perturbation-series solution; dashed line: homotopy-series solution.

where

𝜀
𝜙

𝑚
=

1

1 +𝑀

𝑀

∑

𝑖=0

(N
1
[𝜙 (𝑋, 𝑧) , 𝜁 (𝑋)]

𝑋=𝑖Δ𝑋)
2

,

𝜀
𝜁

𝑚
=

1

1 +𝑀

𝑀

∑

𝑖=0

(N
2
[𝜙 (𝑋, 𝑧) , 𝜁 (𝑋)]

𝑋=𝑖Δ𝑋)
2

,

(43)

where 𝜀𝜙
𝑚
and 𝜀𝜁
𝑚
are two residual square errors of boundary

conditions (27) and (28), respectively.𝑀 is the number of the
discrete points, andΔ𝑋 = 𝜋/𝑀. In this paper, we choose𝑀 =

10.
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Figure 3: P.E. for (44) versus the water depth ℎ for different plate
thicknesses 𝑑. Solid line: 𝑑 = 0.001; dashed line: 𝑑 = 0.005; dash-
dot-dotted line: 𝑑 = 0.01.
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Figure 4: P.E. for (44) versus the water depth ℎ for different Young’s
moduli of the plate 𝐸. Solid line: 𝐸 = 10

8; dashed line: 𝐸 = 10
9;

dash-dot-dotted line: 𝐸 = 10
10.

Theorem 2.1 given by Liao in [12] can guarantee the
rationality of (42). So we obtain the optimal convergence
control parameter 𝑐

0
by theminimumof the squared-residual

𝜀
𝑇

𝑚
, generally corresponding to 𝑑𝜀𝑇

𝑚
/𝑑𝑐
0
= 0.

4. Results and Analysis

In order to show the convergence of the analytical series solu-
tion to our problems by means of the HAM, we consider the
cases of 𝑘 = 𝜋/5m−1, 𝑑 = 0.01m, 𝜌

𝑒
= 900 kgm−3, ] = 0.33,

𝐸 = 10
10Nm−2, ℎ = 5m, 𝐻 = 0.1m, and 𝜔/𝜔

0
= 1.01 and

Table 1: The total residual square error 𝜀𝑇
𝑚
for different approxima-

tion order𝑚 with 𝑐
0
= −0.18.

𝑚 𝜀
𝑇

𝑚

1 3.497 × 10
−3

3 3.404 × 10
−4

5 3.700 × 10
−5

7 7.910 × 10
−6

10 4.803 × 10
−8

15 5.382 × 10
−11

take these data hereinafter for computation unless otherwise
stated. The total residual square error 𝜀𝑇

𝑚
at several orders

of approximation versus the convergence-control parameter
𝑐
0
is shown in Figure 1. It is found that 𝜀𝑇

𝑚
at every order

has the smallest values which corresponds to the optimal 𝑐
0
.

For example, as 𝑚 = 7, the optimal 𝑐
0
= −0.18, and the

smallest value of 𝜀𝑇
7
= 7.910 × 10

−6. So, let the optimal
convergence-control parameter 𝑐

0
= −0.18, the total residual

square error 𝜀𝑇
𝑚
decreases quickly as the order𝑚 increases, as

shown in Table 1. It is also found that 𝜀𝑇
15
is down to 5.382 ×

10
−11 at the 15th-order of approximation, which indicates the

convergence of our series solutions. In this way, we ensure
that all our solutions are highly accurate.

Also, we compare our HAM solutions of waves propagat-
ing beneath an elastic plate floating on a fluid of finite depth
with those results obtained by perturbation techniques, as
shown in Figure 2. It should be noted that the perturbation-
series solution is derived by substituting the series expansions
(4.5) and (4.6) in [9] into the nonlinear PDEs (8)–(12), and
equating power of small parameter 𝜖 leads to a succession
of linear PDEs, and then the linear PDEs can be solved by
the separation of variables. In Figure 2. It is seen that our
homotopy-series approximation of the surface elevation 𝜁

agrees well with the perturbation-series approximation, and
only slight derivations occur at the trough of the wave profile
as in Figure 2, which further indicates the validity of our
present theory about nonlinear hydroelastic waves beneath
a floating ice sheet.

We define quantities which measure how much energy
there is in the wave propagating beneath an infinite elastic
plate. Let P.E. be the mean potential density per unit length
in the 𝑋-axis [27]. In terms of the wave surface elevation
function, the energy density can be written as

P.E. = 1

4𝜋2
∫

2𝜋

0

𝜁
2

(𝑋) d𝑋. (44)

Different from all research objectives in [7–9], we firstly
consider in this paper the effect of water depth on nonlinear
hydroelastic waves beneath a floating elastic plate in detail.
The energy of hydroelastic waves for different Young’s moduli
of the plate𝐸 anddifferent plate thicknesses ℎ in variouswater
depths are as shown in Figures 3 and 4 and Tables 2 and 3,
respectively. We find that, when water depth ℎ is about more
than 2, the hydroelastic waves traveling beneath the thickest
plate always contain the largest wave energy in different water
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Figure 5: Variation of the plate deflection 𝜁(𝑋) near the crest versus
𝑋 for different Young’s moduli of the plate 𝐸. Solid line: 𝐸 = 10

8;
dashed line: 𝐸 = 10

9; dash-dot-dotted line: 𝐸 = 10
10.
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Figure 6: Variation of the plate deflection 𝜁(𝑋) near the trough
versus 𝑋 for different Young’s moduli of the plate 𝐸. Solid line:
𝐸 = 10

8; dashed line: 𝐸 = 10
9; dash-dot-dotted line: 𝐸 = 10

10.

depths. And with an increasing Young’s modulus of the plate,
the wave energy becomes large too.

The effect of Young’s modulus 𝐸 of the plate on the wave
elevation 𝜁(𝑋) under a floating elastic plate is studied. Figures
5 and 6 show the differences in 𝜁(𝑋) for 𝐸 = 10

8, 109,
and 1010. According to Figures 5 and 6, respectively, we can
see that the nonlinear hydroelastic response of the waves
becomes flatter at the crest and steeper at the trough due to
the larger value of Young’s modulus 𝐸. Finally, we consider
the impact the plate thickness 𝑑 by increasing 𝑑 from 0.001

to 0.01. In Figures 7 and 8, we show several displacements
𝜁(𝑋) with 𝑑 = 0.001, 𝑑 = 0.005, and 𝑑 = 0.01, respectively. It

X
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0.01

0.02

0.03

0.04

Figure 7: Variation of the plate deflection 𝜁(𝑋) near the crest versus
𝑋 for different plate thicknesses 𝑑. Solid line: 𝑑 = 0.001; dashed line:
𝑑 = 0.005; dash-dot-dotted line: 𝑑 = 0.01.
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Figure 8: Variation of the plate deflection 𝜁(𝑋) near the trough
versus 𝑋 for different plate thicknesses 𝑑. Solid line: 𝑑 = 0.001;
dashed line: 𝑑 = 0.005; dash-dot-dotted line: 𝑑 = 0.01.

indicates that the results are very similar to the effects due to
different Young’s moduli 𝐸 of the plate.

5. Conclusions

In this paper, the nonlinear hydroelastic waves propagating
beneath a two-dimensional infinite elastic plate floating on
a fluid of finite depth are investigated analytically by the
HAM. Mathematically, for a train of nonlinear hydroelastic
waves traveling at a constant velocity in a fluid of finite or
infinite depth, the PDEs in [7–9] were obtained by simply
eliminating the time-dependent terms from the kinematic
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Table 2: P.E. for (44) with different plate thicknesses and various
water depths ℎ.

ℎ
P.E. P.E. P.E.

(𝑑 = 0.001) (𝑑 = 0.005) (𝑑 = 0.01)

1 0.00067245 0.00100093 0.00040836

3 0.00031356 0.00055509 0.00069567

5 0.00030650 0.00053375 0.00074396

10 0.00030590 0.00053158 0.00074694

15 0.00030592 0.00053159 0.00074694

20 0.00030595 0.00053159 0.00074696

30 0.00030600 0.00053159 0.00074696

∞ 0.00030600 0.00053159 0.00074696

Table 3: P.E. for (44) with different values of Young’s modulus of the
plate 𝐸 and various water depths ℎ.

ℎ
P.E. P.E. P.E.

(𝐸 = 10
8) (𝐸 = 10

9) (𝐸 = 10
10)

1 0.00076484 0.0009946 0.00040836

3 0.00038884 0.00054698 0.00069567

5 0.00030138 0.00047932 0.00074396

10 0.00028886 0.00046970 0.00074694

15 0.00028884 0.00046969 0.00074694

20 0.00028884 0.00046969 0.00074696

30 0.00028884 0.00046969 0.00074696

∞ 0.00028884 0.00046969 0.00074696

and dynamic boundary conditions on the unknown free
surface in the frame of reference moving with the wave.
Here, for a general case it should be noted that we construct
the PDEs by directly applying the traveling-wave method to
transfer the temporal differentiation into the spatial one in a
fixed Cartesian coordinate 𝑜𝑥𝑧. Furthermore, the convergent
homotopy-series solutions for the PDES are derived by the
HAM with the optimal convergence control parameter.

Physically, we study the effect of the water depth on the
nonlinear hydroelastic waves under an elastic plate in detail.
It is found that, in different water depths, the wave energy
density (P.E.) tends to become larger with an increasing
thickness of the sheet. The same conclusions are obtained in
various water depths by means of different values of Young’s
modulus of the plate. Additionally, the influences of Young’s
modulus and the thickness of the plate on the wave elevation
𝜁(𝑋) are investigated, respectively. As Young’s modulus of
the plate increases, the wave elevation becomes lower. And
the increasing thickness of the plate flattens the crest and
sharpens the trough of the wave profile. The results obtained
here demonstrate that Young’s modulus and the thickness of
the sheet have important effects on the energy and the profile
of nonlinear hydroelastic waves under an ice sheet floating on
a fluid of finite depth.

Appendices

A. The Detailed Derivation of (35) and (36)
and the Expressions for 𝜙

𝑚
and 𝜁

𝑚

Let

𝜂
𝑛
= (

+∞

∑

𝑖=1

𝜁
𝑖
𝑞
𝑖
)

𝑛

=

+∞

∑

𝑖=𝑛

𝜇
𝑛,𝑖
𝑞
𝑖
. (A.1)

For any 𝑧, we have a Maclaurin series as follows:

𝜙
𝑚
(𝑋, 𝑧) =

+∞

∑

𝑛=0

1

𝑛!

𝜕
𝑛
𝜙
𝑚

𝜕𝑧𝑛

𝑧=0

𝑧
𝑛
. (A.2)

For 𝑧 = 𝜂(𝑋; 𝑞), it follows from (A.1) and (A.2) that

𝜙
𝑚
(𝑋, 𝜂) =

+∞

∑

𝑛=0

(
1

𝑛!

𝜕
𝑛
𝜙
𝑚

𝜕𝑧𝑛

𝑧=0

)(

+∞

∑

𝑖=𝑛

𝜇
𝑛,𝑖
𝑞
𝑖
)

=

+∞

∑

𝑖=0

𝜓
𝑚,𝑖
𝑞
𝑖
,

(A.3)

where

𝜓
𝑚,𝑖

=

𝑖

∑

𝑛=0

(
1

𝑛!

𝜕
𝑛
𝜙
𝑚

𝜕𝑧𝑛

𝑧=0

)𝜇
𝑛,𝑖
. (A.4)

Thus we have, for 𝑧 = 𝜂(𝑋; 𝑞),

Φ(𝑋, 𝜂; 𝑞) =

+∞

∑

𝑚=0

𝜙
𝑚
(𝑋, 𝜂) 𝑞

𝑚
=

+∞

∑

𝑚=0

(

+∞

∑

𝑛=0

𝜓
𝑚,𝑖
𝑞
𝑖
)𝑞
𝑚

=

+∞

∑

𝑚=0

𝜑
𝑚
𝑞
𝑚
,

(A.5)

where

𝜑
𝑚
=

𝑚

∑

𝑖=0

𝜓
𝑚−𝑖,𝑖

. (A.6)

Substituting the series expansions (A.1) and (A.5) into
the boundary conditions (27) and (28) and then equating
the like-power of the embedding parameter 𝑞, we have two
linear boundary conditions (35) and (36), respectively. And
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the explicit expressions forΔ𝜙
𝑚−1

, 𝑆
𝑚−1

, 𝑆
𝑚
, andΔ𝜁

𝑚−1
in these

two conditions are given by

Δ
𝜙

𝑚−1
= 𝜔
2
d2𝜑
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d𝑋2
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where
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𝑚−𝑖,𝑖

,
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B. Expressions of the Coefficients

𝛽
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1
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0

[𝐻
2
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𝑐
0
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(B.1)
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8𝑔𝑘 tanh (ℎ𝑘) − 4𝑔𝑘 tanh (2ℎ𝑘)

−

𝐻
2 tanh (2ℎ𝑘) (1 + 𝑘2 tanh2 (ℎ𝑘))
16𝜔 tanh (ℎ𝑘) − 8𝜔 tanh (2ℎ𝑘)

+

d𝑔𝐻2𝑘 (1 − 𝑘2tanh2 (ℎ𝑘))
8𝜔 tanh (ℎ𝑘) − 4𝜔 tanh (2ℎ𝑘)

+ (d𝑔𝐻2𝑘 tanh (ℎ𝑘) tanh (2ℎ𝑘)

× (−1 + 𝑘
2tanh2 (ℎ𝑘)))

× (4𝜔 tanh (ℎ𝑘) − 2𝜔 tanh (2ℎ𝑘))−1

+

−𝐻
2 tanh (2ℎ𝑘) (−1 + 𝑘2tanh2 (ℎ𝑘))

16𝜔𝑐
0
tanh (ℎ𝑘) − 8𝜔𝑐

0
tanh (2ℎ𝑘)

+

𝐻
2 tanh (ℎ𝑘) (1 − 𝑘2tanh2 (ℎ𝑘) tanh (2ℎ𝑘))

8𝜔𝑐
0
tanh (ℎ𝑘) − 4𝜔𝑐

0
tanh (2ℎ𝑘)

+

𝐻
4
𝑘 (1 − 𝑘

4tanh4 (ℎ𝑘))
128𝜔3𝑐

2

0
tanh (ℎ𝑘) − 64𝜔3𝑐2

0
tanh (2ℎ𝑘)

+

𝐻
4
𝑘 tanh (ℎ𝑘) tanh (2ℎ𝑘) (−1 + 𝑘4tanh4 (ℎ𝑘))
64𝜔3𝑐

2

0
tanh (ℎ𝑘) − 32𝜔3𝑐2

0
tanh (2ℎ𝑘)

] ,

𝛼
2,3

=
1

−9𝑔𝑘 tanh (ℎ𝑘) + 3𝑔𝑘 tanh (3ℎ𝑘)

× [(𝑔𝐻
2
𝑘
4
𝛼
1,1
tanh2 (ℎ𝑘)

−9𝑔𝐻
2
𝑘
4
𝛼
1,1
tanh4 (ℎ𝑘)) × (416𝜔2𝑐

0
)
−1

+ (−𝑔𝐻
3
𝑘
2
− 𝑔𝐻
2
𝑘
2
𝛼
1,1
+ 𝑔𝐻
3
𝑘
4tanh2 (ℎ𝑘)

+9𝑔𝐻
2
𝑘
2
𝛼
1,1
tanh2 (ℎ𝑘))

× (416𝜔
2
𝑐
0
)
−1

+

5𝐻
3
𝑘 tanh (ℎ𝑘)tanh (2ℎ𝑘)(1 − 𝑘2tanh2 (ℎ𝑘))

2 (32𝜔𝑐
0
tanh (ℎ𝑘) − 16𝜔𝑐

0
tanh (2ℎ𝑘))

+

𝐻
3
𝑘 (1 − 𝑘

2tanh2 (ℎ𝑘))
2 (16𝜔𝑐

0
tanh (ℎ𝑘) − 8𝜔𝑐

0
tanh (2ℎ𝑘))

+ (𝐻
3
𝑘 tanh (ℎ𝑘)(− tanh (ℎ𝑘) − tanh (2ℎ𝑘)

+𝑘
2tanh2 (ℎ𝑘)tanh (2ℎ𝑘)))

× (2 (32𝑔𝜔𝑐
0
tanh (ℎ𝑘)−16𝑔𝜔𝑐

0
tanh (2ℎ𝑘)))−1
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+ (𝐻
3
𝑘 tanh (ℎ𝑘) (− tanh (ℎ𝑘) − tanh (2ℎ𝑘)

+ 𝑘
2tanh2 (ℎ𝑘)tanh (2ℎ𝑘) ))

× (2 (16𝑔𝜔𝑐
0
tanh (ℎ𝑘)−8𝑔𝜔𝑐

0
tanh (2ℎ𝑘)))−1

+ (3𝐻
3
) (4 (16𝑔𝑘𝜔𝑐

0
tanh (ℎ𝑘)

−8𝑔𝑘𝜔𝑐
0
tanh (2ℎ𝑘)))−1] ,

𝛼
2,4

=
1

−16𝑔𝑘 tanh (ℎ𝑘) + 4𝑔𝑘 tanh (4ℎ𝑘)

× [

𝐻
4
𝑘 (1 + 𝑘

4tanh4 (ℎ𝑘) − 2𝑘2tanh2 (ℎ𝑘))
4 (832𝜔3𝑐

2

0
tanh (ℎ𝑘) − 416𝜔3𝑐2

0
tanh (2ℎ𝑘))

+

𝐻
3
𝑘 tanh (ℎ𝑘)tanh (2ℎ𝑘)(−1+𝑘2tanh2 (ℎ𝑘))
2 (8𝜔𝑐

0
tanh (ℎ𝑘) − 4𝜔𝑐

0
tanh (2ℎ𝑘))

× (𝐻
4
𝑘 tanh (ℎ𝑘) tanh (2ℎ𝑘)

× (−1 − 𝑘
4tanh4 (ℎ𝑘) + 2𝑘2tanh2 (ℎ𝑘)))

× (4 (104𝜔
3
𝑐
2

0
tanh (ℎ𝑘)

−52𝜔
3
𝑐
2

0
tanh (2ℎ𝑘)))

−1

] ,

𝛼
2,5

= 0.

(B.2)
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A numerical method for solving nonlinear Fredholm integrodifferential equations is proposed. The method is based on hybrid
functions approximate. The properties of hybrid of block pulse functions and orthonormal Bernstein polynomials are presented
and utilized to reduce the problem to the solution of nonlinear algebraic equations. Numerical examples are introduced to illustrate
the effectiveness and simplicity of the present method.

1. Introduction

Integrodifferential equations are often involved inmathemat-
ical formulation of physical phenomena. Fredholm integrod-
ifferential equations play an important role in many fields
such as economics, biomechanics, control, elasticity, fluid
dynamics, heat and mass transfer, oscillation theory, and
airfoil theory; for examples see [1–3] and references cited
therein. Finding numerical solutions for Fredholm integrod-
ifferential equations is one of the oldest problems in applied
mathematics. Numerous works have been focusing on the
development of more advanced and efficient methods for
solving integrodifferential equations such as waveletsmethod
[4, 5], Walsh functions method [6], sinc-collocation method
[7], homotopy analysis method [8], differential transform
method [9], the hybrid Legendre polynomials and block-
pulse functions [10], Chebyshev polynomials method [11],
and Bernoulli matrix method [12].

Block-pulse functions have been studied and applied
extensively as a basic set of functions for signals and functions
approximations. All these studies and applications show that
block-pulse functions have definite advantages for solving
problems involving integrals and derivatives due to their
clearness in expressions and their simplicity in formulations;
see [13]. Also, Bernstein polynomials play a prominent role in
various areas of mathematics. Many authors have used these

polynomials in the solution of integral equations, differential
equations, and approximation theory; see for instance [14–
17].

The purpose of this work is to utilize the hybrid functions
consisting of combination of block-pulse functions with
normalized Bernstein polynomials for obtaining numerical
solution of nonlinear Fredholm integrodifferential equation:

𝑠

∑

𝑖=0

𝑝
𝑖
(𝑥) 𝑦
(𝑖)

(𝑥) = 𝑔 (𝑥) + 𝜆∫

1

0

𝑘 (𝑥, 𝑡) [𝑦 (𝑡)]
𝑞

𝑑𝑡,

0 ≤ 𝑥, 𝑡 < 1,

(1)

with the conditions

𝑦
(𝑖)

(0) = 𝛼
𝑖
, 0 ≤ 𝑖 ≤ 𝑠 − 1, (2)

where 𝑦(𝑖)(𝑥) is the 𝑖th derivative of the unknown function
that will be determined, 𝑘(𝑥, 𝑡) is the kernel of the integral,
𝑔(𝑥) and 𝑝

𝑖
(𝑥) are known analytic functions, 𝑞 is a positive

integer, and 𝜆 and 𝛼
𝑖
are suitable constants. The proposed

approach for solving this problem uses few numbers of basis
and benefits of the orthogonality of block-pulse functions and
the advantages of orthonormal Bernstein polynomials prop-
erties to reduce the nonlinear integrodifferential equation to
easily solvable nonlinear algebraic equations.
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This paper is organized as follows. In the next section,
we present Bernstein polynomials and hybrid of block-pulse
functions. Also, their useful properties such as functions
approximation, convergence analysis, operational matrix of
product, and operational matrix of differentiation are given.
In Section 3, the numerical scheme for the solution of (1) and
(2) is described. In Section 4, the proposedmethod is applied
to some nonlinear Fredholm integrodifferential equations,
and comparisons are mad with the existing analytic or
numerical solutions that were reported in other published
works in the literature. Finally conclusions are given in
Section 5.

2. Properties of Hybrid Functions

2.1. Hybrid of Block-Pulse Functions and Orthonormal Bern-
stein Polynomials. The Bernstein polynomials of 𝑛th degree
are defined on the interval [0, 1] as [16]

𝐵
𝑖,𝑛
(𝑥) = (

𝑛

𝑖
) 𝑥
𝑖

(1 − 𝑥)
𝑛−𝑖
, for 𝑖 = 0, 1, 2, . . . , 𝑛, (3)

where

(
𝑛

𝑖
) =

𝑛!

𝑖! (𝑛 − 𝑖)!
. (4)

There are (𝑛 + 1) 𝑛th degree Bernstein polynomials. Using
Gram-Schmidt orthonormalization process on 𝐵

𝑖,𝑛
(𝑥), we

obtain a class of orthonormal polynomials from the Bernstein
polynomials.We call themorthonormal Bernstein polynomi-
als of degree 𝑛 anddenote themby 𝑏

𝑖,𝑛
(𝑥), 0 ≤ 𝑖 ≤ 𝑛. For 𝑛 = 3,

the four orthonormal Bernstein polynomials are given by

𝑏
0,3
(𝑥) = −√7 [𝑥

3
− 3𝑥
2
+ 3𝑥 − 1] ,

𝑏
1,3
(𝑥) = √5 [7𝑥

3
− 15𝑥

2
+ 9𝑥 − 1] ,

𝑏
2,3
(𝑥) = −√3 [21𝑥

3
− 33𝑥

2
+ 13𝑥 − 1] ,

𝑏
3,3
(𝑥) = 35𝑥

3
− 45𝑥

2
+ 15𝑥 − 1.

(5)

Hybrid functions ℎ
𝑗𝑖
(𝑥), 𝑗 = 1, 2, . . . , 𝑚 and 𝑖 = 0, 1, . . . , 𝑛

are defined on the interval [0, 1) as

ℎ
𝑗𝑖
(𝑥) =

{

{

{

√𝑚 𝑏
𝑖,𝑛
(𝑚𝑥 − 𝑗 + 1) ,

𝑗 − 1

𝑚
≤ 𝑥 <

𝑗

𝑚
,

0, otherwise,
(6)

where 𝑗 and 𝑛 are the order of block-pulse functions and
degree of orthonormal Bernstein polynomials, respectively.

It is clear that these sets of hybrid functions in (6) are
orthonormal and disjoint.

2.2. Functions Approximation. A function 𝑦(𝑥) ∈ 𝐿2[0, 1)
may be approximated as

𝑦 (𝑥) ≈

𝑚

∑

𝑗=1

𝑛

∑

𝑖=0

𝑐
𝑗𝑖
ℎ
𝑗𝑖
(𝑥) = C𝑇H (𝑥) , (7)

where

C = [C𝑇
1
,C𝑇
2
, . . . ,C𝑇

𝑗
, . . . ,C𝑇

𝑚
]
𝑇

,

C
𝑗
= [𝑐
𝑗0
, 𝑐
𝑗1
, 𝑐
𝑗2
, . . . , 𝑐

𝑗𝑛
]
𝑇

, 𝑗 = 1, 2, . . . , 𝑚,

(8)

H (𝑥) = [H𝑇
1
(𝑥) ,H𝑇

2
(𝑥) , . . . ,H𝑇

𝑗
(𝑥) , . . . ,H𝑇

𝑚
(𝑥)]
𝑇

, (9)

andH
𝑗
(𝑥) = [ℎ

𝑗0
(𝑥), ℎ
𝑗1
(𝑥), . . . , ℎ

𝑗𝑛
(𝑥)]
𝑇, 𝑗 = 1, 2, . . . , 𝑚.The

constant coefficients 𝑐
𝑗𝑖
are (𝑦(𝑥), ℎ

𝑗𝑖
(𝑥)), 𝑖 = 0, 1, 2, . . . , 𝑛,

𝑗 = 1, 2, . . . , 𝑚, and (⋅, ⋅) is the standard inner product on
𝐿
2
[0, 1).
We can also approximate the function 𝑘(𝑥, 𝑡) ∈ 𝐿2([0, 1)×

[0, 1)) by

𝑘 (𝑥, 𝑡) ≈

𝑚

∑

𝑖=1

𝑚

∑

𝑗=1

𝑛

∑

𝑙=0

𝑛

∑

𝑟=0

𝑘
𝑖𝑗

𝑙𝑟
ℎ
𝑖𝑙
(𝑥) ℎ
𝑗𝑟
(𝑡) = H𝑇 (𝑥)KH (𝑡) ,

(10)

where K = [K𝑖𝑗] is an 𝑚(𝑛 + 1) × 𝑚(𝑛 + 1) matrix, such that
the elements of the sub matrix k𝑖𝑗 are

𝑘
𝑖𝑗

𝑙𝑟
= ∫

𝑖/𝑚

𝑖−1/𝑚

∫

𝑗/𝑚

𝑗−1/𝑚

𝑘 (𝑥, 𝑡) ℎ
𝑖(𝑙−1)

(𝑥) ℎ
𝑗(𝑟−1)

(𝑡) 𝑑𝑥𝑑𝑡,

𝑙, 𝑟 = 1, 2, . . . , 𝑛 + 1, 𝑖, 𝑗 = 1, 2, . . . , 𝑚,

(11)

utilizing properties of block-pulse function and orthonormal
Bernstein polynomials.

2.3. Convergence Analysis. In this section, the error bound
and convergence is established by the following lemma.

Lemma 1. Suppose that 𝑓 ∈ 𝐶
(𝑛+1)

[0, 1) is 𝑛 + 1 times
continuously differentiable function such that𝑓 = ∑𝑚

𝑗=1
𝑓
𝑗
, and

let 𝑌
𝑗
= Span{ℎ

𝑗0
(𝑥), ℎ
𝑗1
(𝑥), . . . , ℎ

𝑗𝑛
(𝑥)}, 𝑗 = 1, 2, . . . , 𝑚. If

C𝑇
𝑗
H
𝑗
(𝑥) is the best approximation to𝑓

𝑗
from𝑌

𝑗
, thenC𝑇H(𝑥)

approximates 𝑓 with the following error bound:

𝑓 − C𝑇H (𝑥)2 ≤

𝛾

𝑚𝑛+1 (𝑛 + 1)!√2𝑛 + 3
,

𝛾 = max
𝑥∈[0.1)


𝑓
(𝑛+1)

(𝑥)

.

(12)

Proof. The Taylor expansion for the function 𝑓
𝑗
(𝑥) is

𝑓
𝑗
(𝑥) = 𝑓

𝑗
(
𝑗 − 1

𝑚
) + 𝑓


𝑗
(
𝑗 − 1

𝑚
)(𝑥 −

𝑗 − 1

𝑚
)

+ ⋅ ⋅ ⋅ + 𝑓
(𝑛)

𝑗
(
𝑗 − 1

𝑚
)
(𝑥 − (𝑗 − 1/𝑚))

𝑛

𝑛!
,

𝑗 − 1

𝑚
≤ 𝑥 <

𝑗

𝑚
,

(13)

for which it is known that


𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑥)

≤

𝑓
(𝑛+1)

(𝜂)


(𝑥 − (𝑗 − 1/𝑚))
𝑛+1

(𝑛 + 1)!
,

𝜂 ∈ [
𝑗 − 1

𝑚
,
𝑗

𝑚
) , 𝑗 = 1, 2, . . . , 𝑚.

(14)
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Since C𝑇
𝑗
H
𝑗
(𝑥) is the best approximation to 𝑓

𝑗
form 𝑌

𝑗
and

𝑓
𝑗
∈ 𝑌
𝑗
, using (14) we have


𝑓
𝑗
− C𝑇
𝑗
H
𝑗
(𝑥)


2

2

≤

𝑓
𝑗
− 𝑓
𝑗



2

= ∫

𝑗/𝑚

𝑗−1/𝑚


𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑥)


2

𝑑𝑥

≤ ∫

𝑗/𝑚

𝑗−1/𝑚

[
𝑓
(𝑛+1)

(𝜂) (𝑥− (𝑗−1/𝑚))
𝑛+1

(𝑛+1)!
]

2

𝑑𝑥

≤ [
𝛾

(𝑛 + 1)!
]

2

∫

𝑗/𝑚

𝑗−1/𝑚

(𝑥 −
𝑗 − 1

𝑚
)

2𝑛+2

𝑑𝑥

= [
𝛾

(𝑛 + 1)!
]

2
1

𝑚2𝑛+3 (2𝑛 + 3)
.

(15)
Now,


𝑓 − C𝑇H (𝑥)

2

2
≤

𝑚

∑

𝑗=1


𝑓
𝑗
− C𝑇
𝑗
H
𝑗
(𝑥)


2

2

≤
𝛾
2

𝑚2𝑛+2[(𝑛 + 1)!]
2
(2𝑛 + 3)

.

(16)

By taking the square roots we have the above bound.

2.4. The Operational Matrix of Product. In this section, we
present a general formula for finding the𝑚(𝑛 + 1) ×𝑚(𝑛 + 1)
operational matrix of product C̃ whenever

C𝑇H (𝑥)H𝑇 (𝑥) ≈ H𝑇 (𝑥) C̃, (17)
where

C̃ = diag [C̃
1
, C̃
2
, . . . , C̃

𝑗
, . . . , C̃

𝑚
] . (18)

In (18), C̃
𝑗
= [𝑐
𝑗

𝑙𝑟
] are (𝑛 + 1) × (𝑛 + 1) symmetric matrices

depending on 𝑛, where

𝑐
𝑗

𝑙𝑟
= ∫

𝑗/𝑚

𝑗−1/𝑚

(ℎ
𝑗(𝑙−1)

(𝑥) ℎ
𝑗(𝑟−1)

(𝑥)

𝑛

∑

𝑖=0

𝑐
𝑗𝑖
ℎ
𝑗𝑖
(𝑥))𝑑𝑥,

𝑙, 𝑟 = 1, 2, . . . , 𝑛 + 1.

(19)

Furthermore, the integration of cross-product of two
hybrid functions vectors is

∫

1

0

H (𝑥)H𝑇 (𝑥) 𝑑𝑥 = I, (20)

where I is the𝑚(𝑛 + 1) identity matrix.

2.5. The Operational Matrix of Differentiation. The opera-
tionalmatrix of derivative of the hybrid functions vectorH(𝑥)
is defined by

𝑑

𝑑𝑥
H (𝑥) = DH (𝑥) , (21)

where D is the 𝑚(𝑛 + 1) × 𝑚(𝑛 + 1) operational matrix of
derivative given as

H (𝑥) = [H𝑇
1
(𝑥) ,H𝑇

2
(𝑥) , . . . ,H𝑇

𝑗
(𝑥) , . . . ,H𝑇

𝑚
(𝑥)]
𝑇

= ÃT̃ (𝑥) ,
(22)

where Ã = diag[A
1
,A
2
, . . . ,A

𝑗
, . . . ,A

𝑚
] is the 𝑚(𝑛 + 1) ×

𝑚(𝑛 + 1) coefficient matrix of the (𝑛 + 1) × (𝑛 + 1) coefficient
submatrixA

𝑗
, and T̃(𝑥) = [t

1
(𝑥), t
2
(𝑥), . . . , t

𝑗
(𝑥), . . . , t

𝑚
(𝑥)]
𝑇

is the 𝑚(𝑛 + 1) vector with t
𝑗
(𝑥) = [1, 𝑥, 𝑥

2
, . . . , 𝑥

𝑛
]
𝑇, such

thatH
𝑗
(𝑥) = A

𝑗
t
𝑗
(𝑥). Now

𝑑

𝑑𝑥
H (𝑥) = ÃQ̃T̃ (𝑥) = ÃQ̃Ã−1H (𝑥) , (23)

where Q̃ = diag[Q, . . . ,Q] is the𝑚(𝑛 + 1) × 𝑚(𝑛 + 1)matrix
of the (𝑛 + 1) × (𝑛 + 1) sub-matrixQ, such that

Q =
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0 0

1 0 0 ⋅ ⋅ ⋅ 0 0

0 2 0 ⋅ ⋅ ⋅ 0 0

...
...

... ⋅ ⋅ ⋅
...

...
0 0 0 ⋅ ⋅ ⋅ 𝑛 0

]
]
]
]
]
]

]

. (24)

Hence,

D = ÃQ̃Ã−1. (25)

In general, we can have

𝑑
𝑘

𝑑𝑥𝑘
H (𝑥) = D𝑘H (𝑥) , 𝑘 = 1, 2, 3, . . . . (26)

3. Outline of the Solution Method

This section presents the derivation of themethod for solving
𝑠th-order nonlinear Fredholm integrodifferential equation
(1) with the initial conditions (2).

Step 1. The functions 𝑦(𝑖)(𝑥), 𝑖 = 0, 1, 2, . . . , 𝑠 are being
approximated by

𝑦
(𝑖)

(𝑥) = C𝑇(H (𝑥))(𝑖) = C𝑇D𝑖H (𝑥) , 𝑖 = 0, 1, 2, . . . , 𝑠,

(27)

whereD is given by (25).

Step 2. The function 𝑘(𝑥, 𝑡) is being approximated by (10).

Step 3. In this step, we present a general formula for approxi-
mate 𝑦𝑞(𝑥). By using (7) and (17), we can have

𝑦
2

(𝑥) = [C𝑇H (𝑥)]
2

= C𝑇H (𝑥)H𝑇 (𝑥)C = H𝑇 (𝑥) C̃C,
(28)

𝑦
3

(𝑥) = C𝑇H (𝑥) [C𝑇H (𝑥)]
2

= C𝑇H (𝑥)H𝑇 (𝑥) C̃C

= H𝑇 (𝑥) C̃C̃C = H𝑇 (𝑥) (C̃)
2

C,
(29)

and so by use of induction, 𝑦𝑞(𝑥) will be approximated as

𝑦
𝑞

(𝑥) = H𝑇 (𝑥) (C̃)
𝑞−1

C. (30)
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Table 1: Numerical comparison of absolute difference errors for
Example 3.

𝑥
Method of [17] The proposed method

𝑛 = 7 𝑛 = 2, 𝑚 = 30 𝑛 = 3, 𝑚 = 30

0.0 3.2038𝐸 − 009 3.1309𝐸 − 007 4.0173𝐸 − 010

0.2 7.1841𝐸 − 010 3.8241𝐸 − 007 4.9068𝐸 − 010

0.4 1.4151𝐸 − 010 4.6707𝐸 − 007 5.9932𝐸 − 010

0.6 4.0671𝐸 − 011 5.7048𝐸 − 007 7.3201𝐸 − 010

0.8 9.1044𝐸 − 010 6.9679𝐸 − 007 8.9407𝐸 − 010

1.0 3.7002𝐸 − 009 8.2709𝐸 − 007 1.4907𝐸 − 010

Step 4. Approximate the functions 𝑔(𝑥) and 𝑝
𝑖
(𝑥) by

𝑔 (𝑥) ≈ G𝑇H (𝑥) , (31)

𝑝
𝑖
(𝑥) ≈ P𝑇

𝑖
𝐻(𝑥) , 𝑖 = 0, 1, 2, . . . , 𝑠, (32)

where G and P
𝑖
are constant coefficient vectors which are

defined similarly to (7).
Now, using (27)–(32) and (10) to substitute into (1), we can

obtain
𝑠

∑

𝑖=0

P𝑇
𝑖
H (𝑥)H𝑇 (𝑥) (D𝑖)

𝑇

C

= H𝑇 (𝑥)G + 𝜆∫
1

0

H𝑇 (𝑥)KH (𝑡)H𝑇 (𝑡) (C̃)
𝑞−1

C𝑑𝑡.
(33)

Utilizing (17) and (20), we may have

𝑠

∑

𝑖=0

H𝑇 (𝑥) P̃
𝑖
(D𝑖)
𝑇

C = H𝑇 (𝑥)G + 𝜆H𝑇 (𝑥)K(C̃)
𝑞−1

C,

(34)

and hence we get

𝑠

∑

𝑖=0

P̃
𝑖
(D𝑖)
𝑇

C − 𝜆K(C̃)
𝑞−1

C = G. (35)

Thematrix (35) gives a system of𝑚(𝑛+1) nonlinear algebraic
equations which can be solved utilizing the initial condition
for the elements of C. Once C is known, 𝑦(𝑥) can be
constructed by using (7).

4. Applications and Numerical Results

In this section, numerical results of some examples are
presented to validate accuracy, applicability, and convergence
of the proposed method. Absolute difference errors of this
method is compared with the existing methods reported in
the literature [5, 6, 17, 18]. The computations associated with
these examples were performed using MATLAB 9.0.

Example 1. Consider the first-order nonlinear Fredholm
integrodifferential equation [17, 18] as follows:

𝑦


(𝑥) = 1 −
1

3
𝑥 + ∫

1

0

𝑥 𝑦
2

(𝑡) 𝑑𝑡, 0 ≤ 𝑥 < 1, (36)

with the initial condition

𝑦 (0) = 0. (37)

In this example, we have 𝑝
0
= 0, 𝑝

1
= 1, 𝑔(𝑥) = 1 − (1/3)𝑥,

𝜆 = 1, 𝑘(𝑥, 𝑡) = 𝑥, and 𝑞 = 2.
The matrix (35) for this example is

P̃
1
D𝑇C − K (C̃)C = G, (38)

where for 𝑛 = 1 and𝑚 = 2 we have

P̃
1
= I, D𝑇 =

[
[
[

[

−3 3√3 0 0

−√3 3 0 0

0 0 −3 3√3

0 0 −√3 3

]
]
]

]

, C =
[
[
[

[

𝑐
10

𝑐
11

𝑐
20

𝑐
21

]
]
]

]

,

K =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

16

√3

48

1

16

√3

48

√3

16

1

16

√3

16

1

16

1

4

√3

12

1

4

√3

12

√3

8

1

8

√3

8

1

8

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

C̃ = 1
4

[
[
[

[

3√6𝑐
10
− √2𝑐

11
−√2𝑐
10
+ √6𝑐

11
0 0

−√2𝑐
10
+ √6𝑐

11
√6𝑐
10
+ 5√2𝑐

11
0 0

0 0 3√6𝑐
20
− √2𝑐

21
−√2𝑐
20
+ √6𝑐

21

0 0 −√2𝑐
20
+ √6𝑐

21
√6𝑐
20
+ 5√2𝑐

21

]
]
]

]

,
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G =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

17√6

72

5√2

24

7√6

36

√2

6

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(39)

Equation (38) gives a system of nonlinear algebraic equations
that can be solved utilizing the initial condition (37); that is,
√6𝑐
10
− √2𝑐

11
= 0, we obtain

𝑐
10
=
√6

24
, 𝑐
11
=
√2

8
,

𝑐
20
=
√6

6
, 𝑐
21
=
√2

4
.

(40)

Substituting these values into (7), the result will be 𝑦(𝑥) = 𝑥,
that is, the exact solution. It is noted that the result gives the
exact solution as in [17], while in [18] using the sinc method
the maximum absolute error is 1.52165 × 10−3.

Example 2. Consider the first-order nonlinear Fredholm
integrodifferential equation [6, 17] as follows:

𝑥𝑦


(𝑥) − 𝑦 (𝑥) = −
1

6
+
4

5
𝑥
2
+ ∫

1

0

(𝑥
2
+ 𝑡) 𝑦

2

(𝑡) 𝑑𝑡,

0 ≤ 𝑥 < 1.

(41)

with the initial condition

𝑦 (0) = 0. (42)

In this example, we have 𝑝
0
= −1, 𝑝

1
= 𝑥, 𝑔(𝑥) = −(1/6) +

(4/5)𝑥
2, 𝜆 = 1, 𝑘(𝑥, 𝑡) = 𝑥2 + 𝑡, and 𝑞 = 2.

The matrix (35) for this example is

(P̃
0
+ P̃
1
D𝑇)C − K (C̃)C = G, (43)

where for 𝑛 = 2 and𝑚 = 2 we have

P̃
0
= −I, P̃

1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

12

√15

60

−√5

120
0 0 0

√15

60

1

4

√3

24
0 0 0

−√5

120

√3

24

5

12
0 0 0

0 0 0
7

12

√15

60

−√5

120

0 0 0
√15

60

3

4

√3

24

0 0 0
−√5

120

√3

24

11

12

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

D𝑇 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−5
7√15

3
−2√5 0 0 0

−√15

3
−3

14√3

3
0 0 0

0
−8√3

3
8 0 0 0

0 0 0 −5
7√15

3
−2√5

0 0 0
−√15

3
−3

14√3

3

0 0 0 0
−8√3

3
8

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, C =

[
[
[
[
[
[
[

[

𝑐
10

𝑐
11

𝑐
12

𝑐
20

𝑐
21

𝑐
22

]
]
]
]
]
]
]

]

, G =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−
11√10

450

−√6

90

√2

180

23√10

900

13√6

180

19√2

180

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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K =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

24

√15

45

7√5

240

13

72

√15

20

41√5

720

√15

72

1

12

5√3

144

√15

24

1

16

√3

16

√5

48

5√3

144

1

24

7√5

144

√3

16

5

72

7

48

31√15

720

√15

20

41

144

17√15

240

7√5

90

7√15

144

3

16

5√3

72

11√15

144

13

48

7√3

72

√5

16

11√3

144

1

12

13√5

144

5√3

48

1

9

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, C̃ = [c̃1 0
0 c̃
2

] ,

c̃
𝑗
=

[
[
[
[
[
[
[
[
[

[

5√10

7
𝑐
𝑗0
−
5√6

21
𝑐
𝑗1
+
√2

7
𝑐
𝑗2

−
5√6

21
𝑐
𝑗0
+
11√10

35
𝑐
𝑗1
−
8√30

105
𝑐
𝑗2

√2

7
𝑐
𝑗0
−
8√30

105
𝑐
𝑗1
+
3√10

35
𝑐
𝑗2

−
5√6

21
𝑐
𝑗0
+
11√10

35
𝑐
𝑗1
−
8√30

105
𝑐
𝑗2

11√10

35
𝑐
𝑗0
+
3√6

7
𝑐
𝑗1
+
√2

7
𝑐
𝑗2

−
8√30

105
𝑐
𝑗0
+
√2

7
𝑐
𝑗1
+
5√6

21
𝑐
𝑗2

√2

7
𝑐
𝑗0
−
8√30

105
𝑐
𝑗1
+
3√10

35
𝑐
𝑗2

−
8√30

105
𝑐
𝑗0
+
√2

7
𝑐
𝑗1
+
5√6

21
𝑐
𝑗2

3√10

35
𝑐
𝑗0
+
5√6

21
𝑐
𝑗1
+
13√2

7
𝑐
𝑗2

]
]
]
]
]
]
]
]
]

]

,

𝑗 = 1, 2.

(44)

Equation (43) gives a system of nonlinear algebraic
equations that can be solved utilizing the initial condition
(42); that is,√10𝑐

10
− √6𝑐

11
+ √2𝑐

12
= 0, we obtain

𝑐
10
=
√10

240
, 𝑐
11
=
√6

48
,

𝑐
12
=
√2

24
, 𝑐
20
=
√10

15
,

𝑐
21
=
√6

8
, 𝑐
22
=
√2

6
.

(45)

Substituting these values into (7), the result will be 𝑦(𝑥) = 𝑥2,
that is, the exact solution. It is noted that the result gives the
exact solution as in [17], while in [6] approximate solution is
obtained with maximum absolute error 1.0000 × 10−5.

Example 3. Consider the second-order nonlinear Fredholm
integrodifferential equation [17] as follows:

𝑦


(𝑥) + 𝑥𝑦


(𝑥) − 𝑥𝑦 (𝑥) = 𝑒
𝑥 sin𝑥 + ∫

1

0

sin𝑥⋅𝑒−2𝑡𝑦2 (𝑡) 𝑑𝑡,

0 ≤ 𝑥 < 1,

(46)

with the initial conditions

𝑦 (0) = 𝑦


(0) = 1. (47)

The exact solution is 𝑦(𝑥) = 𝑒𝑥. We solve this example by
using the proposed method with 𝑛 = 2, 𝑚 = 30 and 𝑛 = 3,

𝑚 = 30. Comparison among the proposed method and
methods in [17] is shown in Table 1. It is clear from this table
that the results obtained by the proposed method, using few
numbers of basis, are very promising and superior to that of
[17].

Example 4. Consider the following nonlinear Fredholm inte-
grodifferential equation [5, 17]:

𝑦


(𝑥) + 𝑦 (𝑥) =
1

2
(𝑒
−2
− 1) + ∫

1

0

𝑦
2

(𝑡) 𝑑𝑡, 0 ≤ 𝑥 < 1,

(48)

with the initial conditions

𝑦 (0) = 1. (49)

The exact solution of this problem is𝑦(𝑥) = 𝑒−𝑥. In Table 2 we
have compared the absolute difference errors of the proposed
method with the collocation method based on Haar wavelets
in [5] and method in [17].

Maximumabsolute errors of Example 4 for somedifferent
values of 𝑛 and 𝑚 are shown in Table 3. As it is seen from
Table 3, for a certain value of 𝑛 as 𝑚 increases the accuracy
increases, and for a certain value of 𝑚 as 𝑛 increases the
accuracy increases as well. In case of 𝑚 = 1, the numerical
solution obtained is based on orthonormal Bernstein poly-
nomials only, while in case of 𝑛 = 0, the numerical solution
obtained is based on block-pulse functions only.
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Table 2: Numerical comparison of absolute difference errors for Example 4.

𝑥

Method of [5] Method of [17] The proposed method
Number of collocation points

𝑁 = 128
𝑛 = 7 𝑛 = 3, 𝑚 = 35 𝑛 = 4, 𝑚 = 15

0.125 3.7591𝐸 − 007 2.4509𝐸 − 010 5.5200𝐸 − 011 1.6710𝐸 − 011

0.250 6.6413𝐸 − 007 1.0202𝐸 − 010 8.9982𝐸 − 011 3.9705𝐸 − 012

0.375 8.6917𝐸 − 007 1.6139𝐸 − 010 9.4606𝐸 − 011 1.2126𝐸 − 011

0.500 1.0020𝐸 − 006 3.2362𝐸 − 010 9.2457𝐸 − 011 1.8312𝐸 − 012

0.625 1.0757𝐸 − 006 1.9197𝐸 − 010 7.4991𝐸 − 011 8.1299𝐸 − 012

0.750 1.1029𝐸 − 006 6.6120𝐸 − 011 4.9442𝐸 − 011 7.7237𝐸 − 012

0.875 1.0944𝐸 − 006 2.2417𝐸 − 010 2.6083𝐸 − 011 2.5547𝐸 − 012

Table 3: Maximum absolute errors for different values of 𝑛 and𝑚 for Example 4.

𝑛
𝑚

1 5 10 15 20 25 30 35
0 5.7735𝐸 − 01 1.1547𝐸 − 01 5.7735𝐸 − 02 3.8490𝐸 − 02 2.8868𝐸 − 02 2.3094𝐸 − 02 1.9245𝐸 − 02 1.6496𝐸 − 02

1 2.2361𝐸 − 01 8.9443𝐸 − 03 2.2361𝐸 − 03 9.9381𝐸 − 04 5.5902𝐸 − 04 3.5777𝐸 − 04 2.4845𝐸 − 04 1.8254𝐸 − 04

2 6.2994𝐸 − 02 5.0395𝐸 − 04 6.2994𝐸 − 05 1.8665𝐸 − 05 7.8743𝐸 − 06 4.0316𝐸 − 06 2.3331𝐸 − 06 1.4693𝐸 − 06

3 1.3889𝐸 − 02 2.2222𝐸 − 05 1.3889𝐸 − 06 2.7435𝐸 − 07 8.6806𝐸 − 08 3.5556𝐸 − 08 1.7147𝐸 − 08 9.2554𝐸 − 09

4 2.5126𝐸 − 03 8.0403𝐸 − 07 2.5126𝐸 − 08 3.3088𝐸 − 09 7.8519𝐸 − 10 2.5729𝐸 − 10 1.0340𝐸 − 10 4.7839𝐸 − 11

5 3.8521𝐸 − 04 2.4653𝐸 − 08 3.8521𝐸 − 10 3.3818𝐸 − 11 6.0189𝐸 − 12 1.5778𝐸 − 12 5.2841𝐸 − 13 2.0955𝐸 − 13

6 5.1230𝐸 − 05 6.5574𝐸 − 10 5.1230𝐸 − 12 2.9984𝐸 − 13 4.0023𝐸 − 14 8.3935𝐸 − 15 2.3425𝐸 − 15 7.9625𝐸 − 16

5. Conclusion

In this work, we present a numerical method for solving
nonlinear Fredholm integrodifferential equations based on
hybrid of block-pulse functions and normalized Bernstein
polynomials. One of the most important properties of this
method is obtaining the analytical solutions if the equation
has an exact solution, that is, a polynomial function. Another
considerable advantage is this method has high relative
accuracy for small numbers of basis 𝑛. The matrices K,
C̃, and D in (10), (17), and (25), respectively, have large
numbers of zero elements, and they are sparse; hence, the
present method is very attractive and reduces the CPU
time and computer memory. Moreover, satisfactory results of
illustrative examples with respect to several other methods
(e.g., Haar wavelets method, Walsh functions method, Bern-
stein polynomials method, and sinc collocation method) are
included to demonstrate the validity and applicability of the
proposed method.
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Two strategies for estimating open boundary conditions (OBCs) with adjoint method are compared by carrying out semi-idealized
numerical experiments. In the first strategy, the OBC is assumed to be partly space varying and generated by linearly interpolating
the values at selected feature points. The advantage is that the values at feature points are taken as control variables so that the
variations of the curves can be reproduced by theminimumnumber of points. In the second strategy, theOBC is assumed to be fully
space varying and the values at every open boundary points are taken as control variables. A series of semi-idealized experiments
are carried out to compare the effectiveness of two inversion strategies.The results demonstrate that the inversion effect is in inverse
proportion to the number of feature points which characterize the spatial complexity of open boundary forcing. The effect of ill-
posedness of inverse problem will be amplified if the observations contain noises. The parameter estimation problems with more
control variables will be much more sensitive to data noises, and the negative effects of noises can be restricted by reducing the
number of control variables. This work provides a concrete evidence that ill-posedness of inverse problem can generate wrong
parameter inversion results and produce an unreal “good data fitting.”

1. Introduction

The tides and tidal currents are the basic motion forms of
ocean water and play an important role in the research on
other processes, such as the storm surge, the circulation
and the estuarine dynamics [1, 2]. For tidal models, open
boundary conditions (OBCs) are one of the most important
parameters, which are determined by the physics of tides
and tidal currents. Therefore, how to obtain reasonable and
accurate OBCs for regional tidal models has been a subject
of ongoing research. Data assimilation methods have been
commonly used to optimize the open boundary conditions
[3–7].

Data assimilation methods, especially the complex ones
like four-dimensional variational (4DVAR), are developed
on the base of rigorous mathematical theories, such as
inverse problem theory and optimal control theory. The

ultimate purpose of applying data assimilation method is to
reduce the data misfit between model results and various
observations, by either improving the models or dynamically
interpolating the observations. Among all the data assim-
ilation methods, the 4DVAR is one of the most effective
and powerful approaches. It is based on the optimal control
methods and perturbation theory [8, 9]. This technique
allows us to retrieve an optimal data for a given model from
heterogeneous observation fields [9]. It is an advanced data
assimilation method which involves the adjoint method and
has the advantage of directly assimilating various observa-
tions distributed in time and space into numerical models
while maintaining dynamical and physical consistency with
the model. The adjoint method is a powerful tool for
parameter estimation. Navon [10] presented an important
overview on the state of the art of parameter estimation
in meteorology and oceanography in view of application of
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4DVAR data assimilation techniques to inverse parameter
estimation problems. Zhang and Lu [7] studied the parameter
estimation problems with a three-dimensional tidal model
with 4DVAR and also summarized relative works. More
recently, Kazantsev [9] briefly revealed the history of data
assimilation starting from Lorenz’s pioneering work and then
deeply studied the sensitivity of a shallow-water model to
parameters by applying adjoint based technique.

For parameter estimation problems, it is of great impor-
tance to reasonably reduce the number of spatially varying
control variables because of the ill-posedness of inverse
problem. As noted by Yeh in the work of ground water
flow parameter estimation, the inverse or parameter esti-
mation problem is often ill-posed and beset by instability
and nonuniqueness, particularly if one seeks parameters dis-
tributed in space and time domain [11]. The same viewpoint
has been put forward by references [12–16]. Consequently,
how to reduce the number of parameters to be estimated
became an important aspect needing to draw attention to
[13–17]. In this work two strategies for inverting the open
boundary conditions with adjoint method are compared by
carrying out semi-idealized numerical experiments. In the
first strategy, the OBC is assumed to be partly space varying
and generated by linearly interpolating the values at selected
feature points. The feature points are selected by calculating
the second-order derivatives of discrete curves and the values
at selected feature points are taken as control variables to be
estimated. The advantage is that most of the variations of the
curves can be reproduced by theminimumnumber of points.
In the second strategy, the OBC is assumed to be fully space
varying and the values at every open boundary points are
taken as control variables.

This paper is organized as follows. The 2D tidal model
with adjoint is briefly described in Section 2. The two inver-
sion strategies are developed in Section 3. A series of semi-
idealized numerical experiments are carried out and the
results are analyzed and discussed in Section 4. Conclusions
in Section 5 complete the paper.

2. The Adjoint Tidal Model

2.1. The 2D Tidal Model. The governing equations for the
tides used in the present study are the vertically integrated
equations of continuity and momentum:

𝜕𝜁
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+
1
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(1)

where 𝑡 is time; 𝜆 and 𝜙 are the east longitude and north
latitude, respectively; 𝜁 is the sea surface elevation above
the undisturbed sea level; 𝑢 and V are the east and north
components of fluid velocity, respectively, 𝜁 is the adjusted

height of equilibrium tides; 𝑅 is the radius of the earth,
𝑎 = 𝑅 cos𝜙; 𝑓 = 2Ω sin𝜙, where Ω represents the angular
speed of earth rotation; 𝑔 is the acceleration due to gravity,
ℎ is the undisturbed water depth and 𝐻 = ℎ + 𝜁 denotes
the total water depth; 𝐴 is the coefficient of horizontal
eddy viscosity; Δ is the Laplace operator and Δ(𝑢, V) =

𝑎
−1
[𝑎
−1
𝜕
𝜆
(𝜕
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(𝑢, V))]; 𝐹

𝜆
and 𝐹
𝜙
are east

and north components of bottom friction terms, respectively,
and their expressions are given in quadratic form:
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2.2. The Adjoint. The general idea of the adjoint method
is described as follows. First, a model is defined by an
algorithm and its independent variables such as initial con-
ditions, boundary conditions, and empirical parameters. The
cost function which measures the data misfit between the
modeling results andobservations is thenminimized through
optimizing the control variables. In detail, the cost function
decreases along the opposite direction of the gradients with
respect to the control variables, and this gradient is calculated
by what has become known as the adjoint model. In order to
construct the adjoint equations, the cost function is defined
as
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(4)

where 𝜁 is the observations of surface elevation; Ω
𝑇,𝑆

stands
for the whole integration area of time and space; 𝜇, ], and 𝜏
are the adjoint variables (namely, Lagrangian multipliers) of
𝑢, V, and 𝜁, respectively. Based on the theory of Lagrangian
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Figure 1: Example of discrete curves and their feature points. GP stands for general points and FP indicates feature points.

multipliermethod, we have the following first-order derivates
of Lagrangian functionwith respect to all themodel variables:
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Equations (5b) give the original governing (1) and the adjoint
equations can be developed from (5a). In (5c), 𝑎 and 𝑏 are the
Fourier coefficients along the open boundary and𝐶

𝑄
denotes

the bottom friction coefficients. From (5c) we can obtain the
optimization formulae of model parameters.

Based on (5a) the adjoint equations can be obtained as
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where Ψ(𝑖, 𝑗) (1 ≤ 𝑖 ≤ 3, 1 ≤ 𝑗 ≤ 2) is a matrix whose
components denote the adjoint terms of bottom friction.The
components of Ψ for the quadratic parameterizations are
given as

Ψ =

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

−𝜇
𝐶
𝑄
𝑢√𝑢2 + V2

(ℎ + 𝜁)
2

−]
𝐶
𝑄
V√𝑢2 + V2

(ℎ + 𝜁)
2

𝜇

𝐶
𝑄
(2𝑢
2
+ V2)

(ℎ + 𝜁)√𝑢2 + V2
]

𝐶
𝑄
𝑢V

(ℎ + 𝜁)√𝑢2 + V2

𝜇
𝐶
𝑄
𝑢V

(ℎ + 𝜁)√𝑢2 + V2
]
𝐶
𝑄
(𝑢
2
+ 2V2)

(ℎ + 𝜁)√𝑢2 + V2

}}}}}}}}}}}}}

}}}}}}}}}}}}}

}

, (7)

Thenumerical schemes for the forwardmodel and the adjoint
model in this section are both based on Lu andZhang [17] and
Zhang et al. [18].

3. Methodology

3.1. Feature Points of a Curve. If the values of OBCs are
plotted versus the location or index of grid points along open
boundaries, they will form a discretized curve. Without loss
of generality, the curve can be presented by Figure 1. Assume
there are 𝑁 general (or, computational) points along open
boundaries with index of GP(𝑘), 𝑘 = 1, 2, . . . , 𝑁. This type
of curve can be approximately linearly expressed by a certain
series of points which are defined as feature points in this
paper. For the curve shown in Figure 1, one can easily obtain
the feature points as indicated by symbol “+.” Assume the
number of feature points is 𝑀 with index of FP(𝑗), 𝑗 =

1, 2, . . . ,𝑀. Further assuming the feature point with index
of 𝑗 is coincident with the general point with index of II(𝑗),
we can obtain the following relation: II(1) = 1, II(𝑀) = 𝑁,
II(𝑗) = 𝑘, 2 < 𝑘 < 𝑁 − 1.
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It is easy to conclude that any general point can be linearly
expressed by two adjacent feature points. For example, as
shown in Figure 1, an arbitrary general point GP(𝑘) locates
between two adjacent feature points FP(𝑗 − 1) and FP(𝑗),
where II(𝑗 − 1) ≤ 𝑘 ≤ II(𝑗). Through linear interpolation,
we can obtain the value of GP(𝑘) as

GP (𝑘)

=
II (𝑗) − 𝑘

II (𝑗) − II (𝑗 − 1)
FP (𝑗 − 1) +

𝑘 − II (𝑗 − 1)
II (𝑗) − II (𝑗 − 1)

FP (𝑗) .

(8)

For the whole curve (or the whole boundary), the relation
between general points and feature points can be similarly
expressed in matrix form as

VGP =WFG × VFP, (9)

whereVGP andVFP are both column vectors with dimensions
of𝑁 and𝑀, respectively, andWFG is the weighting matrix of
linear interpolation with dimensions of𝑁 ×𝑀. The detailed
forms of three matrixes are given as

VGP = [GP (1) ,GP (2) , . . . ,GP (𝑁)]
𝑇
, (10)

VFP = [FP (1) , FP (2) , . . . , FP (𝑀)]
𝑇
, (11)

WFG =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑤
1,1

0 0 0 0 0 0 0

𝑤
2,1

𝑤
22

0 0 0 0 0 0

...
... 0 0 0 0 0 0

𝑤II(2)−1,1 𝑤II(2)−1,2 0 0 0 0 0 0

0 𝑤II(2),2 0 0 0 0 0 0

0 0 d 0 0 0 0 0

0 0 0 𝑤II(𝑗−1),𝑗−1 0 0 0 0

0 0 0 𝑤II(𝑗−1)+1,𝑗−1 𝑤II(𝑗−1)+1,𝑗 0 0 0

0 0 0
...

... 0 0 0

0 0 0 𝑤II(𝑗)−1,𝑗−1 𝑤II(𝑗)−1,𝑗 0 0 0

0 0 0 0 𝑤II(𝑗),𝑗 0 0 0

0 0 0 0 0 d 0 0

0 0 0 0 0 0 𝑤II(𝑀−1),𝑀−1 0

0 0 0 0 0 0 𝑤II(𝑀−1)+1,𝑀−1 𝑤II(𝑀−1)+1,𝑀

0 0 0 0 0 0
...

...
0 0 0 0 0 0 𝑤II(𝑀)−1,𝑀−1 𝑤II(𝑀)−1,𝑀
0 0 0 0 0 0 𝑤II(𝑀),𝑀

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑀 columns, 𝑁 rows

, (12)

where the nonzero components are the linear interpolation
coefficients. Specifically, without loss of generality,

𝑤II(𝑗),𝑗 = 1.0, 𝑗 = 1, 2, . . . ,𝑀, (13a)

𝑤II(𝑗−1)+𝑚,𝑗−1 =
II (𝑗) − II (𝑗 − 1) − 𝑚
II (𝑗) − II (𝑗 − 1)

,

1 ≤ 𝑚 < II (𝑗) − II (𝑗 − 1) ,

(13b)

𝑤II(𝑗−1)+𝑚,𝑗 =
𝑚

II (𝑗) − II (𝑗 − 1)
,

1 ≤ 𝑚 < II (𝑗) − II (𝑗 − 1) .
(13c)

Using (9), any general points along open boundaries can
be highly approximated through the linear interpolation of

selected feature points. It indicates that the OBC identifica-
tion problem can be transformed to seek the values of a few
selected feature points, which reduces the number of control
variables.

3.2. Selection of Feature Points for Periodic Tidal Open Bound-
ary. Along a certain open boundary, we also assume that
there are 𝑁 general grid points. The height of water level 𝜁
at the 𝑛th time step is given by

𝜁
𝑛

GP(𝑘) = 𝑎0 + [𝑎GP(𝑘) cos (𝜔𝑛Δ𝑡) + 𝑏GP(𝑘) sin (𝜔𝑛Δ𝑡)] , (14)

whereGP(𝑘) stands for the general points of open boundaries
and 1 ⩽ 𝑘 ⩽ 𝑁, 𝜔 is the frequency of𝑀

2
constituent, 𝑎GP(𝑘)

and 𝑏GP(𝑘) are the Fourier coefficients at GP(𝑘), Δ𝑡 is the time
step of computation.
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For regional tidal models the values of 𝑎GP(𝑘) and 𝑏GP(𝑘)
can be obtained from large scale numerical models. It should
be noted 𝑎GP(𝑘) and 𝑏GP(𝑘) are space dependent, and therefore
the variations of their values versus the grids along the open
boundary will constitute two curves (curve 𝑎 and curve 𝑏)
similar to the one shown in Figure 1. The feature points for
this type of curve can be selected by computing the second-
order differential of each general point.The detailed selection
procedures are given as follows.

(1) Suppose the absolute values of second-order differen-
tials of general points GP(𝑘) are SD 𝑎(𝑘) for curve 𝑎
and SD 𝑏(𝑘) for curve 𝑏, respectively. For the general
points locating in the middle of curve a and curve b,
that is, 2 ⩽ 𝑘 ⩽ 𝑁 − 1, SD 𝑎(𝑘) and SD 𝑏(𝑘) can be
computed as

SD 𝑎 (𝑘) =



𝑎GP(𝑘+1) − 2𝑎GP(𝑘) + 𝑎GP(𝑘−1)

2Δ𝑑



,

SD 𝑏 (𝑘) =



𝑏GP(𝑘+1) − 2𝑏GP(𝑘) + 𝑏GP(𝑘−1)

2Δ𝑑



,

(15)

where Δ𝑑 is the size of computation grids and equals
Δ𝑥 or Δ𝑦 according to the direction of open bound-
aries (Δ𝑥 for west-east direction and Δ𝑦 for north-
south direction).

(2) Further define that the “maximum second-order dif-
ferential” for point GP(𝑘) is SD(𝑘).The value of SD(𝑘)
is calculated as

SD (𝑘) = max [SD 𝑎 (𝑘) , SD 𝑏 (𝑘)] . (16)

(3) Define a threshold value of SD(𝑘), 2 ⩽ 𝑘 ⩽ 𝑁 − 1,
to be 𝑇SD. The points with larger values of SD(𝑘)
than 𝑇SD are selected as feature points. The value of
𝑇SD is problem dependent and should be determined
according to the specific requirement on the number
of control variables.

(4) It is easy to understand that the first and the last
general points GP(1) and GP(𝑁) are automatically
selected as feature points indexed as FP(1) and
FP(𝑀).

3.3. Inversion Strategies and Gradients. In this work two
strategies for inverting the open boundary conditions with
adjoint method are compared by carrying out semi-idealized
numerical experiments. In the first strategy the open bound-
ary curves are assumed to be partly space varying and
are generated by linearly interpolating the values at feature
points. The feature points are selected by calculating the
second-order derivatives of discrete curves and the values at
selected feature points are taken as control variables to be
estimated. The advantage is that most of the variations of
the curves can be reproduced by the minimum number of
points. In the second strategy, the OBC is assumed to be fully
space varying and the values at every open boundary point
are taken as control variables.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) meth-
od, which is a quasi-Newton conjugate-gradient algorithm,
has been widely used in the unconstrained inverse prob-
lems and is famous for its efficiency [19, 20]. The limited-
memory BFGS (L-BFGS) algorithm is an adaptation of the
BFGS method to large problem. Zou et al. [20] concluded
that among the tested quasi-Newton methods, the L-BFGS
method had the best performance. In this work L-BFGS
method is employed to optimize the control variables,
namely, the OBCs. In order to perform inversion with L-
BFGS, the gradients of cost function with respect to the
control variables in two strategies have to be calculated.

3.3.1. Gradients for Partly Space Varying Inversion Strategy.
In the first inversion strategy (partly space varying OBC),
feature points for open boundary curves are selected and
the OBCs at general points can be linearly interpolated from
feature points. Consequently, the gradients of cost function
with respect to the Fourier coefficients at feature points
𝑎𝑎FP(𝑗) and 𝑏𝑏FP(𝑗) (𝑎𝑎𝑗 and 𝑏𝑏𝑗 for simplicity, 1 ⩽ 𝑗 ⩽ 𝑀)
have to be computed in order to optimize the OBCs with L-
BFGS. The gradients are deduced from

𝜕𝐿

𝜕𝑎𝑎
𝑗

= 0,
𝜕𝐿

𝜕𝑏𝑏
𝑗

= 0, 1 ≤ 𝑗 ≤ 𝑀, (17)

which yields

𝜕𝐽
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Figure 2:The bathymetric map of the Bohai, Yellow, and East China Seas (contour) and the position of 𝑇/𝑃 satellite tracks (dot), tidal gauge
stations (plus), and open boundaries (open circle). The numbers are the water depth in meter.

where

𝑇
𝑛

𝑘
= −

𝑔𝜇
𝑛

𝑘

Δ𝑥

(for GP (𝑘) on the right of the area calculated) ,

𝑇
𝑛

𝑘
=

𝑔𝜇
𝑗

𝑘𝑙

Δ𝑥

(for GP (𝑘) on the left of the area calculated) ,

𝑇
𝑛

𝑘
= −

𝑔]𝑛
𝑘

Δ𝑦

(for GP (𝑘) under the area calculated) ,

𝑇
𝑛

𝑘
=
𝑔]𝑛
𝑘

Δ𝑦

(for GP (𝑘) above the area calculated) ,
(19)

where 𝜇 and ] are the adjoint variables of west-east velocity
component 𝑢 and north-south velocity component V, respec-
tively. The values of 𝜇 and ] are computed by running the
adjoint model.

3.3.2. Gradients for Fully Space Varying Inversion Strategy. In
the second strategy, the OBC is assumed to be fully space
varying and the values at every open boundary points (i.e.,
general points) are taken as control variables. Consequently,
the gradients of cost function with respect to the Fourier
coefficients at general points 𝑎𝑎GP(𝑘) and 𝑏𝑏GP(𝑘) (𝑎𝑎𝑘 and 𝑏𝑏𝑘

for simplicity, 1 ⩽ 𝑘 ⩽ 𝑁) have to be computed.The gradients
are deduced from

𝜕𝐿

𝜕𝑎𝑎
𝑘

= 0,
𝜕𝐿

𝜕𝑏𝑏
𝑘

= 0, 1 ≤ 𝑘 ≤ 𝑁, (20)

which yields

𝜕𝐽

𝜕𝑎𝑎
𝑘

+ ∑

𝑛∈Ω𝑇

𝑇
𝑛

𝑘
cos (𝜔𝑛Δ𝑡) = 0, 1 ≤ 𝑘 ≤ 𝑁,

𝜕𝐽

𝜕𝑏𝑏
𝑘

+ ∑

𝑛∈Ω𝑇

𝑇
𝑛

𝑘
cos (𝜔𝑛Δ𝑡) = 0, 1 ≤ 𝑘 ≤ 𝑁,

(21)

where 𝑇𝑛
𝑘
can also be computed by using (19).

4. Numerical Experiments and Results
Analysis

4.1. Model Settings. The computing area in the present study
is the Bohai Sea, the Yellow Sea, and the East China Sea
(BYECS), typical marginal shelf seas. The spatial resolution
for the model is 1/12∘ × 1/12

∘. 𝑇/𝑃 altimeter data and
tidal gauge data are assimilated into the tidal model. The
bathymetry map of the BYECS, the position of 𝑇/𝑃 satellite
tracks, tidal gauge stations, and the open boundaries are
shown in Figure 2. Since the purpose of this paper is to dis-
cuss the inversion of OBCs, the bottom friction coefficients
are fixed in all the experiments.

The numerical experiments in this work are semi-
idealized. Specifically, the coastline, the number, and location
of the observations are real. On the contrary, the values of
open boundary conditions and observations are artificial.The
prescribed open boundary curves are generated by different
number of feature points. Apparently, the complexity of open
boundary curves is in direct proportion to the number of



Abstract and Applied Analysis 7

feature points. For the semi-idealized experiments, only the
location of real observations (satellite altimetry and tidal
gauge stations) is used and the values of “observations”
are obtained by running the dynamic forward model with
prescribed open boundary conditions. The advantage of this
kind of experiments is that we can obtain a thorough under-
standing of the “observations.” The “observations” generated
by the model can be accurate and we can control the quality
of the “observations” by adding artificial error. In addition,
because the other factors are real, the conclusions based
on these semi-idealized experiments can be more useful for
referring.

The semi-idealized numerical experiments are run as
follows. First a distribution of artificial Fourier coefficients
is prescribed and taken as “true values” of open boundary
conditions. Then the forward tidal model is run using the
“true values” and the simulation results recorded at grid
points of𝑇/𝑃 satellite tracks and tidal gauge stations are taken
as the “observations.” Having obtained the “observations”, an
initial value (taken as zero in this work) of Fourier coefficients
is assigned to run the forwardmodel.Thedifferences between
simulated values and “observations” will function as the
external force to drive the adjoint model. The optimized
Fourier coefficients can be obtained through the backward
integration of the adjoint equations. The inverse integral
time of the adjoint equations is equal to a period of 𝑀

2

tide. With the procedures repeated above, the parameters
will be optimized continuously and the difference between
simulated values and “observations” will be diminished.
Meanwhile, the difference between the prescribed and the
inverted parameters will also be decreased.

The iteration of optimization will terminate once the
following criterion is achieved [21]:

‖𝐺‖ < eps ×max (1, ‖𝑋‖) , (22)
where ‖𝐺‖ is the 𝐿

2
norm of the gradients of cost func-

tion with respect to the control variables (i.e., the Fourier
coefficients at feature points), eps is a positive variable that
determines the accuracy with which the solution is to be
found, and ‖𝑋‖ is the 𝐿

2
norm of control variables. Both the

values of ‖𝐺‖ and ‖𝑋‖ vary along the iterations. For a correct
adjoint model and a reasonable method, ‖𝐺‖ will gradually
decrease versus the iteration steps and the inverted values
of control variables must gradually approach the prescribed
“true values”.When using L-BFGS, the number of corrections
used in the BFGS update is taken as 5 (usually between 3 and
7, see Alekseev et al. [19]). In the minimization algorithm, the
control variables should be scaled to similar magnitudes on
the order of unity because within the optimization algorithm
convergence, tolerances, and other criteria are based on an
implicit definition of small and large [22]. Zou et al. [20]
also proved that the efficiency could be greatly improved by
a simple scaling. In twin experiments we use 10 to scale the
Fourier coefficients [4].

4.2. Modeling Results

4.2.1. Effects of Complexity of Open Boundary Curves. In
this section, the semi-idealized experiments (SE) are carried

out to calibrate the inversion ability of adjoint model and
compare the effectiveness of two strategies developed in
Section 3. The prescribed distributions of artificial Fourier
coefficients at 173 grid points along the eastern open bound-
ary are inverted. The prescribed distributions (PDs) are
designed to be characterized by different numbers of feature
points. PDs 1–7 are characterized by 2, 6, 10, 14, 18, 22,
and 26 feature points, respectively. The twin experiments are
correspondingly indexed with SEa 1–7 for inversion strategy
1 and SEb 1–7 for inversion strategy 2.

The prescribed and inverted distributions of open bound-
ary curves in SEa 1–4 and SEb 1–4 are shown in Figure 3.
The prescribed and inverted distributions of open boundary
curves in SEa 5-6 and SEb 5-6 are shown in Figure 4. The
feature points for prescribed distributions have also been
indicated in Figures 3 and 4. Table 1 gives the error statistics
for the experiments in this section. The 𝐿

2
norm of the

gradients of cost functionwith respect to the control variables
versus the iteration steps for the experiments using inversion
strategies 1 and 2 are presented in Figures 4(c) and 4(d),
respectively. The decrease in data misfit (i.e., cost function)
calculated from (3) versus the iteration steps is shown in
Figure 5. Note that the values of data misfit and 𝐿

2
norm of

gradients have been normalized by their values at the first
iteration step.

For strategy 1, the values of data misfit can sharply
decrease by about 4 orders for all the experiments in about
30 iteration steps. For strategy 2, the values of data misfit
can sharply decrease by about 5 orders for SEb 1–5 and by 4
orders for SEb 6-7 in about 60 iteration steps. The decrease
in data misfit provides another proof for the inversion
ability of the adjoint model and strategies in this work.
Correspondingly, the 𝐿

2
norms of gradients also decrease by

at least 2 orders for inversion strategy 1 and by 3 orders for
inversion strategy 2, which demonstrates that the gradients
calculated in Section 3.3 can work well with L-BFGSmethod.

From the decrease in data misfit and gradient it seems
as if the effect of inversion strategy 2 is better than that
of strategy 1. However, the differences between prescribed
and inverted distributions shown in Table 1 indicate that the
inversion results of strategy 1 are much better than those of
strategy 2.This inconsistency will be explained in Section 4.3.
One can find that the adjoint model combined with inversion
strategy 1 can reproduce the prescribed distributions of
Fourier coefficients perfectly for SEa 1-2 or almost perfectly
for SEa 3-4. For SEa 5-6 the inversion is acceptable but
largely deviates from perfection. The major trend of the
inversion is quite obvious that the effect of inversion is in
inverse proportion to the number of feature points which
characterizes the complexity of open boundary curves. The
inverted open boundary curves shown in Figures 3 and 4 also
prove that the inversion using strategy 1 is better than that
using strategy 2.

4.2.2. Effects of Data Noises. As we know, the real obser-
vations either from satellite altimetry or from tidal gauge
stations contain errors (or noises). In this section the effects
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Figure 3: The prescribed and inverted distributions of open boundary curves in SEa 1–4 and SEb 1–4. The feature points are indicated by
open circles.

of the noises are studied. To do this, we replace each “obser-
vation” 𝜁𝑛

𝑖,𝑗
by (1 + 𝑝𝑟𝑛

𝑖,𝑗
)𝜁
𝑛

𝑖,𝑗
, where 𝑟𝑛

𝑖,𝑗
are uniform random

numbers lying in [−1, 1] and 𝑝 is a factor determining the
maximumpercentage error.Themaximumpercentage errors
for each prescribed distribution (PDs 1–7) are assigned to 5%,
10%, 15%, and 20%.The corresponding inversion experiments
are then indexed with SE

𝑥
i.1, SE

𝑥
i.2, SE

𝑥
i.3, and SE

𝑥
i.4,

respectively, where 1 ⩽ 𝑖 ⩽ 7 and 𝑥 = 𝑎 or 𝑏. The error
statistics for the experiments with 𝑃 values of 5%, 10%, 15%,
and 20% are exhibited in Tables 2, 3, 4, and 5, respectively.
The figures are omitted because they are similar to those in
Section 4.2.1.

One can find the noises in artificial observations will
significantly and negatively influence the inversion of open
boundary conditions. It is clear that the inversion using
strategy 2 is much more sensitive to the noise than that using
strategy 1. For example, when the simplest distribution PD 1
is inverted, the difference between prescribed and inverted
values will sharply increase from 0.0101 (Table 1) to 0.0238
(Table 2) for strategy 2 even with a small value of error 5%.

When 𝑃 was increased to 20%, the value of this difference
is also increased to 0.0562 (Table 5). However, for strategy
1 the values of this difference are just 0.0011, 0.0011, 0.0032
and 0.0043 under 𝑃 value of 5%, 10%, 15%, and 20%. Similar
results can be found from the inversion results of other
distributions. This phenomenon indicates that the effect of
ill-posedness of inverse problem will be amplified in the
conditions that observations contain noises. In addition, the
parameter estimation problems with more control variables
will be much more sensitive to data noise and the negative
effect of noises can be restricted by reducing the number of
control variables.

4.3. Discussions

4.3.1. Rationality of the Adjoint Method (Suggested by an
Anonymous Reviewer). The motivation of the present work
is to take the open boundary condition as an example to
investigate the performance of the adjoint method when
applied to ocean modeling and the ill-posedness of relevant
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Table 1: Error statistics for SEa 1–7 and SEb 1–7.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1 2 0.00 4979.7808 0.0000 0.3500 0.0000
SEa 2 6 0.00 4229.2929 0.0000 0.3332 0.0000
SEa 3 10 0.00 4549.4140 0.1565 0.3055 0.0059
SEa 4 14 0.00 3966.8884 0.1393 0.3121 0.0091
SEa 5 18 0.00 3546.1967 1.0772 0.3014 0.0334
SEa 6 22 0.00 3319.5297 0.7163 0.3066 0.0451
SEa 7 26 0.00 3776.7236 1.2877 0.3124 0.0737

Inversion strategy 2
SEb 1 2 0.00 4979.7808 0.0057 0.3500 0.0101
SEb 2 6 0.00 4229.2929 0.0054 0.3332 0.0125
SEb 3 10 0.00 4549.4140 0.0132 0.3055 0.0152
SEb 4 14 0.00 3966.8884 0.0111 0.3121 0.0194
SEb 5 18 0.00 3546.1967 0.0225 0.3014 0.0472
SEb 6 22 0.00 3319.5297 0.4051 0.3066 0.0662
SEb 7 26 0.00 3776.7236 1.0224 0.3124 0.0783
a
𝐾
1
is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾

2
is the value of maximum percentage error. 𝐾

3
is the data misfit

before and after assimilation.𝐾
4
is the mean absolute difference between prescribed and inverted Fourier coefficients.

Table 2: Error statistics for SEa 1.1–7.1 and SEb 1.1–7.1.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.1 2 0.05 5060.1284 4.3569 0.3500 0.0011
SEa 2.1 6 0.05 4306.6660 3.5968 0.3332 0.0007
SEa 3.1 10 0.05 4600.6445 3.9834 0.3055 0.0082
SEa 4.1 14 0.05 4019.1911 3.2996 0.3121 0.0093
SEa 5.1 18 0.05 3614.2876 4.0757 0.3014 0.0443
SEa 6.1 22 0.05 3370.5825 3.4881 0.3066 0.0491
SEa 7.1 26 0.05 3838.0024 4.3227 0.3124 0.0740

Inversion strategy 2
SEb 1.1 2 0.05 5060.1284 4.2224 0.3500 0.0238
SEb 2.1 6 0.05 4306.6660 3.4525 0.3332 0.0250
SEb 3.1 10 0.05 4600.6445 3.6353 0.3055 0.0332
SEb 4.1 14 0.05 4019.1911 3.0429 0.3121 0.0337
SEb 5.1 18 0.05 3614.2876 3.0501 0.3014 0.0482
SEb 6.1 22 0.05 3370.5825 2.7539 0.3066 0.0736
SEb 7.1 26 0.05 3838.0024 3.2047 0.3124 0.0833
a
𝐾
1
is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾

2
is the value of maximum percentage error. 𝐾

3
is the data misfit

before and after assimilation.𝐾
4
is the mean absolute difference between prescribed and inverted Fourier coefficients.

inverse problem. The inverse problems in ocean models are
often quite complex. The ocean modeling is not just to solve
the partial differential equations which might also be solved
by some simple methods like the method of characteristics.
A reasonable ocean model should also be related to the
field observations (satellite altimetry and tidal gauges in this
work). In order to realize a more accurate simulation of
ocean dynamics, how to organically combine the numerical
ocean model with available observations has already become

a problem urgent to be solved. Data assimilation methods
have been used widely to solve this problem. Among all
data assimilation methods, the adjoint data assimilation
method is one of the most effective and powerful approaches
developed over the past three decades. It is an advanced
data assimilation method and has the advantage of directly
assimilating various observations distributed in time and
space into the numerical model whilemaintaining dynamical
and physical consistency with themodel.The adjoint method
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Table 3: Error statistics for SEa 1.2–7.2 and SEb 1.2–7.2.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.2 2 0.10 5096.1191 17.4292 0.3500 0.0011
SEa 2.2 6 0.10 4329.9121 14.4080 0.3332 0.0013
SEa 3.2 10 0.10 4621.0439 15.3755 0.3055 0.0115
SEa 4.2 14 0.10 4041.4563 12.8185 0.3121 0.0132
SEa 5.2 18 0.10 3633.7822 13.0238 0.3014 0.0438
SEa 6.2 22 0.10 3388.0535 11.9751 0.3066 0.0540
SEa 7.2 26 0.10 3861.5273 13.5251 0.3124 0.0753

Inversion strategy 2
SEb 1.2 2 0.10 5096.1191 16.7203 0.3500 0.0343
SEb 2.2 6 0.10 4329.9121 13.8206 0.3332 0.0340
SEb 3.2 10 0.10 4621.0439 14.4797 0.3055 0.0456
SEb 4.2 14 0.10 4041.4563 12.1758 0.3121 0.0485
SEb 5.2 18 0.10 3633.7822 11.9745 0.3014 0.0645
SEb 6.2 22 0.10 3388.0535 11.4183 0.3066 0.0846
SEb 7.2 26 0.10 3861.5273 12.1905 0.3124 0.0902
a
𝐾
1
is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾

2
is the value of maximum percentage error. 𝐾

3
is the data misfit

before and after assimilation.𝐾
4
is the mean absolute difference between prescribed and inverted Fourier coefficients.

Table 4: Error statistics for SEa 1.3–7.3 and SEb 1.3–7.3.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.3 2 0.15 5140.9389 39.2166 0.3500 0.0032
SEa 2.3 6 0.15 4360.3886 32.3847 0.3332 0.0018
SEa 3.3 10 0.15 4649.1435 34.2411 0.3055 0.0135
SEa 4.3 14 0.15 4070.1625 28.6868 0.3121 0.0168
SEa 5.3 18 0.15 3659.3095 27.8828 0.3014 0.0446
SEa 6.3 22 0.15 3411.1008 26.0982 0.3066 0.0665
SEa 7.3 26 0.15 3891.3386 28.8848 0.3124 0.0771

Inversion strategy 2
SEb 1.3 2 0.15 5140.9389 37.8465 0.3500 0.0449
SEb 2.3 6 0.15 4360.3886 31.0404 0.3332 0.0430
SEb 3.3 10 0.15 4649.1435 32.1405 0.3055 0.0552
SEb 4.3 14 0.15 4070.1625 27.2928 0.3121 0.0569
SEb 5.3 18 0.15 3659.3095 26.6717 0.3014 0.0700
SEb 6.3 22 0.15 3411.1008 25.1515 0.3066 0.0913
SEb 7.3 26 0.15 3891.3386 27.4780 0.3124 0.0963
a
𝐾
1
is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾

2
is the value of maximum percentage error. 𝐾

3
is the data misfit

before and after assimilation.𝐾
4
is the mean absolute difference between prescribed and inverted Fourier coefficients.

might be complicated and expensive for some simple prob-
lems. However, the inverse problems in ocean modeling are
often quite complex in contrast with those simple problems.
As is known, one advantage of the numerical method over
theoretical analysis lies in the disposal of nonlinear terms.
The ocean numerical models are usually strongly nonlinear,
increasing the complexity of the relevant inverse problem.
Therefore, the increased complexity of the inverse problem
makes the adjoint method effective. The adjoint method has
been proved to be effective and powerful in ocean and atmo-
sphere problems by many works (see the references listed

in Section 1). It has been widely applied to meteorological
and oceanographic data assimilation, sensitivity studies, and
parameter estimation.

4.3.2. Analysis on Ill-Posedness. From the statistics shown in
Tables 1–5, we can find an interesting phenomenon. Define
the data misfits after assimilation to be 𝑉1dm for inversion
strategy 1 and 𝑉2dm for inversion strategy 2. Further define
the differences between prescribed and inverted control
variables to be 𝑉1cv for inversion strategy 1 and 𝑉2cv for
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Table 5: Error statistics for SEa 1.4–7.4 and SEb 1.4–7.4.

Exp. 𝐾
a
1

𝐾
a
2

𝐾
a
3

𝐾
a
4
(m)

Before After Before After
Inversion strategy 1

SEa 1.4 2 0.20 5194.4404 69.7209 0.3500 0.0043
SEa 2.4 6 0.20 4398.0703 57.5559 0.3332 0.0025
SEa 3.4 10 0.20 4684.9663 61.7102 0.3055 0.0169
SEa 4.4 14 0.20 4105.4169 50.8808 0.3121 0.0207
SEa 5.4 18 0.20 3690.9194 48.2412 0.3014 0.0458
SEa 6.4 22 0.20 3439.8129 45.3626 0.3066 0.0711
SEa 7.4 26 0.20 3927.5261 50.4111 0.3124 0.0792

Inversion strategy 2
SEb 1.4 2 0.20 5194.4404 67.1112 0.3500 0.0562
SEb 2.4 6 0.20 4398.0703 55.1859 0.3332 0.0493
SEb 3.4 10 0.20 4684.9663 57.6774 0.3055 0.0637
SEb 4.4 14 0.20 4105.4169 48.3631 0.3121 0.0644
SEb 5.4 18 0.20 3690.9194 47.1181 0.3014 0.0755
SEb 6.4 22 0.20 3439.8129 43.9302 0.3066 0.0978
SEb 7.4 26 0.20 3927.5261 48.6330 0.3124 0.1011
a
𝐾
1
is the number of feature points for PDs 1–7 prescribed in semi-idealized experiments. 𝐾

2
is the value of maximum percentage error. 𝐾

3
is the data misfit

before and after assimilation.𝐾
4
is the mean absolute difference between prescribed and inverted Fourier coefficients.

inversion strategy 2.The values of𝑉𝑖cv (𝑖 = 1, 2) and𝑉𝑖dm(𝑖 =
1, 2) for all the experiments are plotted in Figure 6. We can
find 𝑉1dm are larger than or comparable with 𝑉2dm while
𝑉1cv are greatly smaller than 𝑉2cv. Consequently, for all the
experiments except SEa 1 and SEa 2, without loss of generality,
we can obtain

𝑉1cv < 𝑉2cv, 𝑉1dm > 𝑉2dm. (23)

It is easy to understand that small values of 𝑉𝑖cv (𝑖 = 1, 2)

indicate more accurate control variables, and small values of
𝑉𝑖dm (𝑖 = 1, 2)mean small differences between simulated and
observed results. In this work, the open boundary conditions
are the only parameters for estimation and other parameters
are fixed all the time. Instead of formula (23), we should have
expected

𝑉1cv < 𝑉2cv, so 𝑉1dm < 𝑉2dm, (24)

which means a better parameter estimation drives a more
accurate simulation. In other words, what we want are small
values of 𝑉dm and what we need are small values of 𝑉cv.
Formulas (23) and (24) exactly indicate an inconsistency
between the effects of parameter estimation and observation
restricted data reproduction.

For PDs 1–7 the numbers of feature points are 2, 6, 10,
14, 18, 22, and 26, respectively. It should be noted that at
each feature point the Fourier coefficients include 𝑎 and 𝑏.
Therefore the numbers of control variables for inversion are
doubled, that is, 4, 12, 20, 28, 36, 44, and 52, respectively.
There are a total of 35 semi-idealized experiments in this
work. Among these experiments, only SEa 1 and SEa 2 can
realize a perfect inversion of control variables. Here we define
perfect inversion as follows: the data misfit between observed
and simulated values can decrease to zero and the difference

between prescribed and inverted control variables can also
reach a value of zero. With more control variables and larger
data noises, the inversion results will not be exactly equal to
the prescribed distributions. In the work of Smedstad and
O’Brien [12] where the spatially distributed phase speed in
an equatorial Pacific Ocean model was estimated, they could
not produce the exact values either, even in the condition
that perfect observations were available at every grid of the
model. Zhang and Lu [4] put forward the similar viewpoint
and it also occurs in the parameter estimation of internal
tidal model [23–25]. With identical twin experiments, the
“observations” are perfect in the sense that they are produced
by the model and thus are consistent with the model physics.
From the results of this paper and previous works, we
can conclude that ill-posedness has happened in other 33
experiments and the effects of ill-posedness will be amplified
by increasing the number of control variables and data noises.
Formula (23) obtained in this work provides a concrete
evidence that ill-posedness of inverse problem can generate
poor parameter inversion results while producing an unreal
“good data fitting”. For a specific problem, it is necessary and
helpful to perform identical semi-idealized experiments in
order to find the optimal choices for the number of control
variables and inversion strategy.

5. Conclusions

In this work, two strategies for inverting the open boundary
conditionswith adjointmethod are compared by carrying out
semi-idealized numerical experiments. In the first strategy,
the open boundary curves are assumed to be partly space
varying and are generated by linearly interpolating the values
at feature points.The feature points are selected by calculating
the second-order derivatives of discrete curves and the values
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Figure 6: (a) The values of 𝑉𝑖dm (𝑖 = 1, 2) versus the index of experiments. (b) The values of 𝑉𝑖cv (𝑖 = 1, 2) versus the index of experiments.

at selected feature points are taken as control variables to be
estimated. The advantage is that most of the variations of the
curves can be reproduced by theminimumnumber of points.
In the second strategy, the OBC is assumed to be fully space
varying and the values at every open boundary points are
taken as control variables.

A series of semi-idealized experiments are carried out to
calibrate the inversion ability of adjoint model and compare
the effectiveness of two inversion strategies. The results
demonstrate that the effect of inversion is in inverse pro-
portion to the number of feature points which characterize
the complexity of open boundary curves. The effect of
ill-posedness of inverse problem will be amplified in the
conditions that observations contain noises. The parameter
estimation problems with more control variables will be
much more sensitive to data noises and the negative effects
of noises can be restricted by reducing the number of control
variables. This work provides a concrete evidence that ill-
posedness of inverse problem can generate wrong parameter
inversion results while producing an unreal “good data
fitting”. For a specific problem, it is necessary and helpful to
perform identical semi-idealized experiments in order to find
the optimal choices for the number of control variables and
inversion strategy.
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This paper proposes a domain decomposition method for the coupled stationary Navier-Stokes and Darcy equations with the
Beavers-Joseph-Saffman interface condition in order to improve the efficiency of the finite element method. The physical interface
conditions are directly utilized to construct the boundary conditions on the interface and then decouple the Navier-Stokes and
Darcy equations. Newton iteration will be used to deal with the nonlinear systems. Numerical results are presented to illustrate the
features of the proposed method.

1. Introduction

The Stokes-Darcy model has been extensively studied in the
recent years due to its wide range of applications in many
natural world problems and industrial settings, such as the
subsurface flow in karst aquifers, oil flow in vuggy porous
media, industrial filtrations, and the interaction between
surface and subsurface flows [1–8]. Since the problemdomain
naturally consists of two different physical subdomains,
several different numerical methods have been developed to
decouple the Stokes and Darcy equations [6, 9–26]. For other
works on the numerical methods and analysis of the Stokes-
Darcy model, we refer the readers to [27–45].

Recently the more physically valid Navier-Stokes-Darcy
model has attracted scientists’ attention, and several coupled
finite element methods have been studied for it [46–51]. On
the other hand, the advantages of the domain decomposi-
tion methods (DDMs) in parallel computation and natural
preconditioning have motivated the development of different
DDMs for solving the Stoke-Darcymodel [6, 10–18, 21, 22]. In
this paper, we will develop a domain decomposition method
for theNavier-Stokes-Darcymodel based onRobin boundary
conditions constructed from the interface conditions. This
physics-based DDM is different from the traditional ones in
the sense that they focus on decomposing different physical

domains by directly utilizing the given physical interface
conditions.

The rest of paper is organized as follows. In Section 2, we
introduce the Navier-Stokes-Darcy model with the Beavers-
Joseph-Saffman interface condition. In Section 3, we recall
the coupledweak formulation and the corresponding coupled
finite element method for the Navier-Stokes-Darcy model.
In Section 4, a parallel domain decomposition method and
its finite element discretization are proposed to decouple
the Navier-Stokes-Darcy system by using the Robin-type
boundary conditions constructed from the physical interface
conditions. Finally, in Section 5, we present a numerical
example to illustrate the features of the proposed method.

2. Stationary Navier-Stokes-Darcy Model

In this section we introduce the following coupled Navier-
Stokes-Darcy model on a bounded domain Ω = Ω

𝑚
∪ Ω
𝑐
⊂

R𝑑, (𝑑 = 2, 3); see Figure 1. In the porous media region Ω
𝑚
,

the flow is governed by the Darcy system

⃗𝑢
𝑚
= −K∇𝜙

𝑚
,

∇ ⋅ ⃗𝑢
𝑚
= 𝑓
𝑚
.

(1)
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Ωm

Ωc

Γ

Figure 1: A sketch of the porous median domain Ω
𝑚
, fluid domain

Ω
𝑐
, and the interface Γ.

Here, ⃗𝑢
𝑚
is the fluid discharge rate in the porous media, K is

the hydraulic conductivity tensor, 𝑓
𝑚
is a sink/source term,

and 𝜙
𝑚
is the hydraulic head defined as 𝑧 + (𝑝

𝑚
/𝜌𝑔), where

𝑝
𝑚
denotes the dynamic pressure, 𝑧 the height, 𝜌 the density,

and 𝑔 the gravitational acceleration. We will consider the
following second-order formulation, which eliminates ⃗𝑢

𝑚
in

the Darcy system:

−∇ ⋅ (K∇𝜙
𝑚
) = 𝑓
𝑚
. (2)

In the fluid region Ω
𝑐
, the fluid flow is assumed to be

governed by the Navier-Stokes equations:

⃗𝑢
𝑐
⋅ ∇ ⃗𝑢
𝑐
− ∇ ⋅ T ( ⃗𝑢

𝑐
, 𝑝
𝑐
) = ⃗𝑓
𝑐
, (3)

∇ ⋅ ⃗𝑢
𝑐
= 0, (4)

where ⃗𝑢
𝑐
is the fluid velocity, 𝑝

𝑐
is the kinematic pressure,

⃗𝑓
𝑐
is the external body force, ] is the kinematic viscosity of

the fluid, T( ⃗𝑢
𝑐
, 𝑝
𝑐
) = 2]D( ⃗𝑢

𝑐
) − 𝑝
𝑐
I is the stress tensor, and

D( ⃗𝑢
𝑐
) = (∇ ⃗𝑢

𝑐
+ ∇
𝑇
⃗𝑢
𝑐
)/2 is the deformation tensor.

Let Γ = Ω
𝑚
∩ Ω
𝑐
denote the interface between the fluid

and porous media regions. On the interface Γ, we impose the
following three interface conditions:

⃗𝑢
𝑐
⋅ ⃗𝑢
𝑐
= − ⃗𝑢
𝑚
⋅ ⃗𝑛
𝑚
, (5)

− ⃗𝑢
𝑐
⋅ (T ( ⃗𝑢

𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) = 𝑔 (𝜙

𝑚
− 𝑧) , (6)

− 𝜏
𝑗
⋅ (T ( ⃗𝑢

𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) =

𝛼]√d
√trace (∏)

𝜏
𝑗
⋅ ⃗𝑢
𝑐
, (7)

where ⃗𝑛
𝑐
and ⃗𝑛

𝑚
denote the unit outer normal to the fluid

and the porous media regions at the interface Γ, respectively,
𝜏
𝑗
(𝑗 = 1, . . . , 𝑑 − 1) denote mutually orthogonal unit

tangential vectors to the interface Γ, and∏ = K]/𝑔.The third
condition (7) is referred to as the Beavers-Joseph-Saffman
(BJS) interface condition [52–55].

In this paper, for simplification, we assume that the
hydraulic head 𝜙

𝑚
and the fluid velocity ⃗𝑢

𝑐
satisfy the

homogeneousDirichlet boundary condition except on Γ, that
is, 𝜙
𝑚
= 0 on the boundary 𝜕Ω

𝑚
/Γ and ⃗𝑢

𝑐
= 0 on the

boundary 𝜕Ω
𝑐
/Γ.

3. Coupled Weak Formulation and
Finite Element Method

In this section we will recall the coupled weak formulation
and the corresponding coupled finite element method for the
Navier-Stokes-Darcy model with Beavers-Joseph-Saffman
condition. Let (⋅, ⋅)

𝐷
denote the 𝐿2 inner product on the

domain 𝐷 (𝐷 = Ω
𝑐
or Ω
𝑚
) and let ⟨⋅, ⋅⟩ denote the 𝐿2 inner

product on the interface Γ or the duality pairing between
(𝐻
1/2

00
(Γ))
 and𝐻1/2

00
(Γ) [5]. Define the spaces

𝑋
𝑐
= { ⃗V ∈ [𝐻

1
(Ω
𝑐
)]
𝑑

| ⃗V = 0 on
𝜕Ω
𝑐

Γ
} ,

𝑄
𝑐
= 𝐿
2
(Ω
𝑐
) ,

𝑋
𝑚
= {𝜓 ∈ 𝐻

1
(Ω
𝑚
) | 𝜓 = 0 on

𝜕Ω
𝑚

Γ
} ,

(8)

the bilinear forms

𝑎
𝑚
(𝜙
𝑚
, 𝜓) = (K∇𝜙

𝑚
, ∇𝜓)
Ω𝑚

,

𝑎
𝑐
( ⃗𝑢
𝑐
, ⃗V) = 2](D ( ⃗𝑢

𝑐
) ,D ( ⃗V))

Ω𝑐

,

𝑏
𝑐
( ⃗V, 𝑞) = −(∇ ⋅ ⃗V, 𝑞)

Ω𝑐

,

(9)

and the projection onto the tangent space on Γ:

𝑃
𝜏
⃗𝑢 =

𝑑−1

∑

𝑗=1

( ⃗𝑢 ⋅ 𝜏
𝑗
) 𝜏
𝑗
. (10)

With these notations, the weak formulation of the cou-
pledNavier-Stokes-Darcymodel with BJS interface condition
is given as follows [46–51]: find ( ⃗𝑢

𝑐
, 𝑝
𝑐
, 𝜙
𝑚
) ∈ 𝑋

𝑐
× 𝑄
𝑐
× 𝑋
𝑚

such that

( ⃗𝑢
𝑐
⋅ ∇ ⃗𝑢
𝑐
, ⃗V)
Ω𝑐

+ 𝑎
𝑐
( ⃗𝑢
𝑐
, ⃗V) + 𝑏

𝑐
( ⃗V, 𝑝
𝑐
)

− 𝑏
𝑐
( ⃗𝑢
𝑐
, 𝑞) + 𝑎

𝑚
(𝜙
𝑚
, 𝜓)

+ ⟨𝑔𝜙
𝑚
, ⃗V ⋅ ⃗𝑛
𝑐
⟩ − ⟨ ⃗𝑢

𝑐
⋅ ⃗𝑛
𝑐
, 𝜓⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
⃗𝑢
𝑐
, 𝑃
𝜏
⃗V⟩

= (𝑓
𝑚
, 𝜓)
Ω𝑚

+ ( ⃗𝑓
𝑐
, ⃗V)
Ω𝑐

+ ⟨𝑔𝑧, ⃗V ⋅ ⃗𝑛
𝑐
⟩ , ∀ ( ⃗V, 𝑞, 𝜓) ∈ 𝑋

𝑐
× 𝑄
𝑐
× 𝑋
𝑚
.

(11)

Assume that we have in hand regular subdivisions of Ω
𝑚

and Ω
𝑐
into finite elements with mesh size ℎ. Then one can

define finite element spaces 𝑋
𝑚ℎ

⊂ 𝑋
𝑚
, 𝑋
𝑐ℎ
⊂ 𝑋
𝑐
and
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𝑄
𝑐ℎ
⊂ 𝑄
𝑐
. We assume that 𝑋

𝑐ℎ
and 𝑄

𝑐ℎ
satisfy the inf-sup

condition [56, 57]

inf
0 ̸= 𝑞ℎ∈𝑄𝑐ℎ

sup
0 ̸= ⃗Vℎ∈𝑋𝑐ℎ

𝑏
𝑐
( ⃗V
ℎ
, 𝑞
ℎ
)

 ⃗Vℎ
1
𝑞ℎ
0

> 𝛾, (12)

where 𝛾 > 0 is a constant independent of ℎ. This condition
is needed in order to ensure that the spatial discretizations of
the Navier-Stokes equations used here are stable. See [56, 57]
for more details of finite element spaces 𝑋

𝑚ℎ
, 𝑋
𝑐ℎ
, and 𝑄

𝑐ℎ

that satisfy (12).One example is theTaylor-Hood element pair
that we use in the numerical experiments; for that pair, 𝑋

𝑐ℎ

consists of continuous piecewise quadratic polynomials and
𝑄
𝑐ℎ
consists of continuous piecewise linear polynomials.
Then a coupled finite element method with Newton

iteration for the coupled Navier-Stokes-Darcy model is given
as follows [46]: find ( ⃗𝑢

𝑐,ℎ
, 𝑝
𝑐,ℎ
, 𝜙
𝑚,ℎ
) ∈ 𝑋
𝑐ℎ
×𝑄
𝑐ℎ
×𝑋
𝑚ℎ

in the
following procedure.

(1) The initial value ⃗𝑢
0

𝑐,ℎ
is chosen.

(2) For𝑚 = 0, 1, 2, . . . ,𝑀, solve

( ⃗𝑢
𝑚+1

𝑐,ℎ
⋅ ∇ ⃗𝑢
𝑚

𝑐,ℎ
, ⃗V
ℎ
)
Ω𝑐

+ ( ⃗𝑢
𝑚

𝑐,ℎ
⋅ ∇ ⃗𝑢
𝑚+1

𝑐,ℎ
, ⃗V
ℎ
)
Ω𝑐

+ 𝑎
𝑐
( ⃗𝑢
𝑚+1

𝑐,ℎ
, ⃗V
ℎ
) + 𝑏
𝑐
( ⃗V
ℎ
, 𝑝
𝑚+1

𝑐,ℎ
)

− 𝑏
𝑐
( ⃗𝑢
𝑚+1

𝑐,ℎ
, 𝑞
ℎ
) + 𝑎
𝑚
(𝜙
𝑚+1

𝑚,ℎ
, 𝜓
ℎ
)

+ ⟨𝑔𝜙
𝑚+1

𝑚,ℎ
, ⃗V
ℎ
⋅ ⃗𝑛
𝑐
⟩ − ⟨ ⃗𝑢

𝑚+1

𝑐,ℎ
⋅ ⃗𝑛
𝑐
, 𝜓
ℎ
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
⃗𝑢
𝑚+1

𝑐,ℎ
, 𝑃
𝜏
⃗V
ℎ
⟩

= ( ⃗𝑢
𝑚

𝑐,ℎ
⋅ ∇ ⃗𝑢
𝑚

𝑐,ℎ
, ⃗V
ℎ
)
Ω𝑐

+ (𝑓
𝑚
, 𝜓
ℎ
)
Ω𝑚

+ ( ⃗𝑓
𝑐
, ⃗V
ℎ
)
Ω𝑐

+ ⟨𝑔𝑧, ⃗V
ℎ
⋅ ⃗𝑛
𝑐
⟩ ,

∀ ( ⃗V
ℎ
, 𝑞
ℎ
, 𝜓
ℎ
) ∈ 𝑋
𝑐ℎ
× 𝑄
𝑐ℎ
× 𝑋
𝑚ℎ
.

(13)

(3) Set ⃗𝑢
𝑐,ℎ
= ⃗𝑢
𝑚+1

𝑐,ℎ
, 𝑝
𝑐,ℎ
= ⃗𝑝
𝑚+1

𝑐,ℎ
, and 𝜙

𝑚,ℎ
= 𝜙
𝑀+1

𝑚,ℎ
.

4. Physics-Based Domain
Decomposition Method

The coupled finite element method may end up with a
huge algebraic system, which combines all parts from the
Navier-Stokes equations, Darcy equation, and interface con-
ditions together into one sparse matrix. Hence it is often
impractical to directly apply this method to large-scale real
world applications. In order to develop a more efficient
numerical method in this section, we will directly utilize the
three physical interface conditions to construct a physics-
based parallel domain decomposition method to decouple
the Navier-Stokes and Darcy equations.

Let us first consider the following Robin condition for
the Darcy system: for a given constant 𝛾

𝑝
> 0 and a given

function 𝜂
𝑝
defined on Γ,

𝛾
𝑝
K∇𝜙
𝑚
⋅ ⃗𝑛
𝑚
+ 𝑔𝜙
𝑚
= 𝜂
𝑝
, on Γ. (14)

Then, the corresponding weak formulation for the Darcy part
is given by the following: for 𝜂

𝑝
∈ 𝐿
2
(Γ), find 𝜙

𝑚
∈ 𝑋
𝑚
such

that

𝑎
𝑚
(𝜙
𝑚
, 𝜓) + ⟨

𝑔𝜙
𝑚

𝛾
𝑝

, 𝜓⟩

= (𝑓
𝑚
, 𝜓)
Ω𝑚

+ ⟨
𝜂
𝑝

𝛾
𝑝

, 𝜓⟩ , ∀𝜓 ∈ 𝑋
𝑚
.

(15)

Second, we can propose the following two Robin-type
conditions for the Navier-Stokes equations: for a given
constant 𝛾

𝑓
> 0 and given functions 𝜂

𝑓
and ⃗𝜂

𝑓𝜏
defined on

Γ,

⃗𝑛
𝑐
⋅ (T (̂⃗𝑢

𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) + 𝛾
𝑓

̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
= 𝜂
𝑓
, on Γ,

−𝑃
𝜏
(T (̂⃗𝑢
𝑐
, 𝑝
𝑐
) ⋅ ⃗𝑛
𝑐
) =

𝛼]√d
√trace (∏)

𝑃
𝜏

̂⃗𝑢
𝑐
, on Γ.

(16)

Then, the corresponding weak formulation for the
Navier-Stokes equation is given by the following: for 𝜂

𝑓
∈

𝐿
2
(Γ), find (̂⃗𝑢

𝑐
, 𝑝
𝑐
) ∈ 𝑋
𝑐
× 𝑄
𝑐
such that

(̂⃗𝑢
𝑐
⋅ ∇̂⃗𝑢
𝑐
, ⃗V)
Ω𝑐

+ 𝑎
𝑐
(̂⃗𝑢
𝑐
, ⃗V) + 𝑏

𝑐
( ⃗V, 𝑝
𝑐
)

− 𝑏
𝑐
(̂⃗𝑢
𝑐
, 𝑞) + 𝛾

𝑓
⟨̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
, ⃗V ⋅ ⃗𝑢
𝑐
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏

̂⃗𝑢
𝑐
, 𝑃
𝜏
⃗V⟩

= ( ⃗𝑓
𝑐
, ⃗V)
Ω𝑐

+ ⟨𝜂
𝑓
, ⃗V ⋅ ⃗𝑛
𝑐
⟩ , ∀ ( ⃗V, 𝑞) ∈ 𝑋

𝑐
× 𝑄
𝑐
.

(17)

Our next step is to show that, for appropriate choices of
𝛾
𝑓
, 𝛾p, 𝜂𝑓, and 𝜂𝑝, the solutions of the coupled system (11) are

equivalent to the solutions of the decoupled equations (15)
and (17), and hence we may solve the latter system instead
of the former.

Lemma 1. Let (𝜙
𝑚
, ⃗𝑢
𝑐
, 𝑝
𝑐
) be the solution of the coupled

Navier-Stokes-Darcy system (11) and let (𝜙
𝑚
, ̂⃗𝑢
𝑐
, 𝑝
𝑐
) be the

solution of the decoupled Navier-Stokes and Darcy equations
(15) and (17) with Robin boundary conditions at the interface.
Then, (𝜙

𝑚
, ̂⃗𝑢
𝑐
, 𝑝
𝑐
) = (𝜙

𝑚
, ⃗𝑢
𝑐
, 𝑝
𝑐
) if and only if 𝛾

𝑓
, 𝛾
𝑝
, 𝜂
𝑓
, ⃗𝜂
𝑓𝜏
,

and 𝜂
𝑝
satisfy the following compatibility conditions:

𝜂
𝑝
= 𝛾
𝑝

̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
+ 𝑔𝜙
𝑚
, (18)

𝜂
𝑓
= 𝛾
𝑓

̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
− 𝑔𝜙
𝑚
+ 𝑔𝑧. (19)
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Figure 2: Convergence for the velocity of the free flow (a) and the hydraulic head of the porous medium flow (b) versus the iteration counter
𝑚 for the parallel DDM with BJS interface condition.

Table 1: Errors of the finite element method for the steady Navier-Stokes-Darcy model with BJS interface condition.

ℎ ‖ ⃗𝑢
ℎ
− ⃗𝑢‖
0

‖ ⃗𝑢
ℎ
− ⃗𝑢‖
1

‖𝑝
ℎ
− 𝑝‖
0

‖𝜙
ℎ
− 𝜙‖
0

|𝜙
ℎ
− 𝜙|
1

1/8 1.367 × 10
−3

6.147 × 10
−2

8.002 × 10
−3

6.940 × 10
−4

2.452 × 10
−2

1/16 1.687 × 10
−4

1.577 × 10
−2

8.559 × 10
−4

8.687 × 10
−5

6.187 × 10
−3

1/32 2.086 × 10
−5

3.978 × 10
−3

9.506 × 10
−5

1.089 × 10
−5

1.553 × 10
−3

1/64 2.594 × 10
−6

9.974 × 10
−4

1.121 × 10
−5

1.363 × 10
−6

3.890 × 10
−4

1/128 3.235 × 10
−7

2.496 × 10
−4

1.363 × 10
−6

1.705 × 10
−7

9.733 × 10
−5

Proof. Adding (15) and (17) together, we obtain the following:
given 𝜂

𝑝
, 𝜂
𝑓
∈ 𝐿
2
(Γ), find (𝜙

𝑚
, �̂�
𝑓
, 𝑝
𝑐
) ∈ 𝑋m × 𝑋𝑐 × 𝑄𝑐 such

that

(̂⃗𝑢
𝑐
⋅ ∇̂⃗𝑢
𝑐
, ⃗V)
Ω𝑐

+ 𝑎
𝑐
(̂⃗𝑢
𝑐
, ⃗V) + 𝑏

𝑐
( ⃗V, 𝑝
𝑐
)

− 𝑏
𝑐
(̂⃗𝑢
𝑐
, 𝑞) + 𝑎

𝑚
(𝜙
𝑚
, 𝜓) + 𝛾

𝑓
⟨̂⃗𝑢
𝑐
⋅ ⃗𝑛
𝑐
, ⃗V ⋅ ⃗𝑛
𝑐
⟩

+ ⟨
𝑔𝜙
𝑚

𝛾
𝑝

, 𝜓⟩ +
𝛼]√d

√trace (∏)
⟨𝑃
𝜏

̂⃗𝑢
𝑐
, 𝑃
𝜏
⃗V⟩

= (𝑓
𝑚
, 𝜓)
Ω𝑚

+ ( ⃗𝑓
𝑐
, ⃗V)
Ω𝑐

+ ⟨𝜂
𝑓
, ⃗V ⋅ ⃗𝑛
𝑐
⟩

+ ⟨
𝜂
𝑝

𝛾
𝑝

, 𝜓⟩ , ∀ ( ⃗V, 𝑞, 𝜓) ∈ 𝑋
𝑚
× 𝑋
𝑐
× 𝑄
𝑐
.

(20)

For the necessity of the lemma, we pick 𝜓 = 0 and ⃗V such
that 𝑃

𝜏
⃗V = 0 in (11) and (20); then by subtracting (20) from

(11), we get

⟨𝜂
𝑓
− 𝛾
𝑓
⃗V
𝑓
⋅ ⃗𝑛
𝑐
+ 𝑔𝜙
𝑚
− 𝑔𝑧, ⃗V ⋅ ⃗𝑛

𝑐
⟩ = 0,

∀ ⃗V ∈ 𝑋
𝑐

with 𝑃
𝜏
⃗V = 0,

(21)

which implies (19). The necessity of (18) can be derived in a
similar fashion.

As for the sufficiency of the lemma, by substituting
the compatibility conditions (18)-(19), we easily see that
(𝜙
𝑚
, ̂⃗𝑢
𝑐
, 𝑝
𝑐
) solves the coupled Navier-Stokes-Darcy system

(11), which completes the proof.

Nowwe use the decoupled weak formulation constructed
above to propose a physics-based parallel domain decompo-
sition method with Newton iteration as follows.
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Figure 3: Convergence for the pressure of the free flow (a) and 𝜂
𝑓
(b) versus the iteration counter𝑚 for the parallel DDM with BJS interface

condition.

(1) Initial values 𝜂0
𝑝
and 𝜂0

𝑓
are guessed. They may be

taken to be zero.

(2) For 𝑘 = 0, 1, 2, . . ., independently solve the Darcy
andNavier-Stokes equations constructed above.More
precisely, 𝜙𝑘

𝑚
∈ 𝑋
𝑚
is computed from

𝑎
𝑚
(𝜙
𝑘

𝑚
, 𝜓) + ⟨

𝑔𝜙
𝑘

𝑚

𝛾
𝑝

, 𝜓⟩ = ⟨

𝜂
𝑘

𝑝

𝛾
𝑝

, 𝜓⟩ + (𝑓
𝑚
, 𝜓)
Ω𝑚

,

∀𝜓 ∈ 𝑋
𝑚
,

(22)

and ⃗𝑢
𝑘

𝑐
∈ 𝑋
𝑐
and 𝑝𝑘

𝑐
∈ 𝑄
𝑐
are computed from the

following Newton iteration.

(i) Initial value ⃗𝑢
𝑘,0

𝑐
is chosen for the Newton

iteration. For instance, it may be taken to be
⃗𝑢
0,0

𝑐
= 0 and ⃗𝑢

𝑘,0

𝑐
= ⃗𝑢
𝑘−1

𝑐
for 𝑘 = 1, 2, . . ..

(ii) For𝑚 = 0, 1, 2, . . . ,𝑀, solve

( ⃗𝑢
𝑘,𝑚+1

𝑐
⋅ ∇ ⃗𝑢
𝑘,𝑚

𝑐
, ⃗V)
Ω𝑐

+ ( ⃗𝑢
𝑘,𝑚

𝑐
⋅ ∇ ⃗𝑢
𝑘,𝑚+1

𝑐
, ⃗V)
Ω𝑐

+ 𝑎
𝑐
( ⃗𝑢
𝑘,𝑚+1

𝑐
, ⃗V) + 𝑏

𝑐
( ⃗V, 𝑝
𝑘,𝑚+1

𝑐
)

− 𝑏
𝑐
( ⃗𝑢
𝑘,𝑚+1

𝑐
, 𝑞) + 𝛾

𝑓
⟨ ⃗𝑢
𝑘,𝑚+1

𝑐
⋅ ⃗𝑛
𝑐
, ⃗V ⋅ ⃗𝑛
𝑐
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
⃗𝑢
𝑘,𝑚+1

𝑐
, 𝑃
𝜏
⃗V⟩

= ( ⃗𝑢
𝑘,𝑚

𝑐
⋅ ∇ ⃗𝑢
𝑘,𝑚

𝑐
, ⃗V)
Ω𝑐

+ ⟨𝜂
𝑘

𝑓
, ⃗V ⋅ ⃗𝑛
𝑐
⟩ + ( ⃗𝑓

𝑐
, ⃗V)
Ω𝑐

,

∀ ( ⃗V, 𝑞, 𝜓) ∈ 𝑋
𝑐
× 𝑄
𝑐
× 𝑋
𝑚
.

(23)

(iii) Set ⃗𝑢𝑘
𝑐
= ⃗𝑢
𝑘,𝑀+1

𝑐
and 𝑝𝑘

𝑐
= 𝑝
𝑘,𝑀+1

𝑐
.

(3) 𝜂𝑘+1
𝑝

and 𝜂𝑘+1
𝑓

are updated in the following manner:

𝜂
𝑘+1

𝑓
=
𝛾
𝑓

𝛾
𝑝

𝜂
𝑘

𝑝
− (1 +

𝛾
𝑓

𝛾
𝑝

)𝑔𝜙
𝑘

𝑚
+ 𝑔𝑧,

𝜂
𝑘+1

𝑝
= −𝜂
𝑘

𝑓
+ (𝛾
𝑓
+ 𝛾
𝑝
) ⃗𝑢
𝑘

𝑐
⋅ ⃗𝑛
𝑐
+ 𝑔𝑧.

(24)

Then the corresponding domain decomposition finite ele-
ment method is proposed as follows.

(1) Initial values 𝜂0
𝑝,ℎ

and 𝜂0
𝑓,ℎ

are guessed. They may be
taken to be zero.

(2) For 𝑘 = 0, 1, 2, . . ., independently solve the Darcy and
Navier-Stokes equations with the Robin boundary
conditions on the interface, which are constructed
previously. More precisely, 𝜙𝑘

𝑚,ℎ
∈ 𝑋
𝑚ℎ

is computed
from

𝑎
𝑚
(𝜙
𝑘

𝑚,ℎ
, 𝜓
ℎ
) +⟨

𝑔𝜙
𝑘

𝑚,ℎ

𝛾
𝑝

, 𝜓
ℎ
⟩

= ⟨

𝜂
𝑘

𝑝,ℎ

𝛾
𝑝

, 𝜓
ℎ
⟩+ (𝑓

𝑚
, 𝜓
ℎ
)
Ω𝑚

, ∀𝜓
ℎ
∈ 𝑋
𝑚ℎ
,

(25)
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Figure 4: Geometric convergence rate of the velocity of the free flow (a) and the hydraulic head of the porousmedium flow (b) for the parallel
DDM with BJS interface condition.

and ⃗𝑢
𝑘

𝑐,ℎ
∈ 𝑋
𝑐ℎ
and 𝑝𝑘

𝑐,ℎ
∈ 𝑄
𝑐ℎ
are computed from the

following Newton iteration.

(i) Initial value ⃗𝑢
𝑘,0

𝑐,ℎ
is chosen for the Newton

iteration. For instance, it may be taken to be
⃗𝑢
0,0

𝑐,ℎ
= 0 and ⃗𝑢

𝑘,0

𝑐,ℎ
= ⃗𝑢
𝑘−1

𝑐,ℎ
for 𝑘 = 1, 2, . . ..

(ii) For𝑚 = 0, 1, 2, . . . ,𝑀, solve

( ⃗𝑢
𝑘,𝑚+1

𝑐,ℎ
⋅ ∇ ⃗𝑢
𝑘,𝑚

𝑐,ℎ
, ⃗V
ℎ
)
Ω𝑐

+ ( ⃗𝑢
𝑘,𝑚

𝑐,ℎ
⋅ ∇ ⃗𝑢
𝑘,𝑚+1

𝑐,ℎ
, ⃗V
ℎ
)
Ω𝑐

+ 𝑎
𝑐
( ⃗𝑢
𝑘,𝑚+1

𝑐,ℎ
, ⃗V
ℎ
) + 𝑏
𝑐
( ⃗V
ℎ
, 𝑝
𝑘,𝑚+1

𝑐
) − 𝑏
𝑐
( ⃗𝑢
𝑘,𝑚+1

𝑐,ℎ
, 𝑞
ℎ
)

+ 𝛾
𝑓
⟨ ⃗𝑢
𝑘,𝑚+1

𝑐,ℎ
⋅ ⃗𝑛
𝑐
, ⃗V
ℎ
⋅ ⃗𝑛
𝑐
⟩

+
𝛼]√d

√trace (∏)
⟨𝑃
𝜏
⃗𝑢
𝑘,𝑚+1

𝑐,ℎ
, 𝑃
𝜏
⃗V
ℎ
⟩

= ( ⃗𝑢
𝑘,𝑚

𝑐,ℎ
⋅ ∇ ⃗𝑢
𝑘,𝑚

𝑐,ℎ
, ⃗V
ℎ
)
Ω𝑐

+ ⟨𝜂
𝑘

𝑓,ℎ
, ⃗V
ℎ
⋅ ⃗𝑛
𝑐
⟩ + ( ⃗𝑓

𝑐
, ⃗V
ℎ
)
Ω𝑐

,

∀ ( ⃗V
ℎ
, 𝑞
ℎ
, 𝜓
ℎ
) ∈ 𝑋
𝑐ℎ
× 𝑄
𝑐ℎ
× 𝑋
𝑚ℎ
.

(26)

(iii) Set ⃗𝑢𝑘
𝑐,ℎ
= ⃗𝑢
𝑘,𝑚+1

𝑐,ℎ
and 𝑝𝑘

𝑐,ℎ
= 𝑝
𝑘,𝑀+1

𝑐,ℎ
.

(3) 𝜂𝑘+1
𝑝,ℎ

and 𝜂𝑘+1
𝑓,ℎ

are updated in the following manner:

𝜂
𝑘+1

𝑓,ℎ
=
𝛾
𝑓

𝛾
𝑝

𝜂
𝑘

𝑝,ℎ
− (1 +

𝛾
𝑓

𝛾
𝑝

)𝑔𝜙
𝑘

𝑚,ℎ
+ 𝑔𝑧,

𝜂
𝑘+1

𝑝,ℎ
= −𝜂
𝑘

𝑓,ℎ
+ (𝛾
𝑓
+ 𝛾
𝑝
) ⃗𝑢
𝑘

𝑐,ℎ
⋅ ⃗𝑛
𝑐
+ 𝑔𝑧.

(27)

5. Numerical Example

Example 1. Consider the model problem (2)–(6) with the
BJS interface condition (7) on Ω = [0, 𝜋] × [−1, 1] with
Ω
𝑚
= [0, 𝜋] × [0, 1] and Ω

𝑐
= [0, 𝜋] × [−1, 0]. Choose

(𝛼]√d/√trace(∏)) = 1, ] = 1, 𝑔 = 1, 𝑧 = 0, and K = 𝐾I,
where I is the identity matrix and 𝐾 = 1. The boundary
condition data functions and the source terms are chosen
such that the exact solution is given by

𝜙
𝑚
= (𝑒
𝑦
− 𝑒
−𝑦
) sin (𝑥) 𝑒𝑡,

⃗𝑢
𝑐
= [

𝐾

𝜋
sin (2𝜋𝑦) cos (𝑥) 𝑒𝑡,

(−2𝐾 +
𝐾

𝜋2
sin2 (𝜋𝑦)) sin (𝑥) 𝑒𝑡]

𝑇

,

𝑝
𝑐
= 0.

(28)

We divide Ω
𝑚
and Ω

𝑐
into rectangles of height ℎ = 1/𝑁 and

width 𝜋ℎ, where 𝑁 is a positive integer, and then subdivide
each rectangle into two triangles by drawing a diagonal.
The Taylor-Hood element pair is used for the Navier-Stokes
equations, and the quadratic finite element is used for the
second-order formulation of the Darcy equation.

For the coupled finite element method of the steady
Navier-Stokes-Darcy model with BJS interface condition,
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Figure 5: Geometric convergence rate of the pressure of the free flow (a) and 𝜂
𝑓
(b) versus the iteration counter𝑚 for the parallel DDMwith

BJS interface condition.

Table 2: 𝐿2 errors in velocity and hydraulic head for the parallel DDM with BJS interface condition.

𝐿
2 velocity errors 𝑒(𝑖)/𝑒(𝑖 − 4) 𝐿

2 hydraulic head errors 𝑒(𝑖)/𝑒(𝑖 − 4)

𝑒(0) 2.342 × 10
−2

6.338 × 10
−1

𝑒(4) (𝑖 = 4) 1.225 × 10
−3 0.0523 3.337 × 10

−2 0.0527
𝑒(8) (𝑖 = 8) 6.450 × 10

−5 0.0527 1.756 × 10
−3 0.0526

𝑒(12) (𝑖 = 12) 3.395 × 10
−6 0.0526 9.246 × 10

−5 0.0527
𝑒(16) (𝑖 = 16) 1.787 × 10

−7 0.0526 4.868 × 10
−6 0.0527

𝑒(20) (𝑖 = 20) 9.409 × 10
−9 0.0527 2.562 × 10

−7 0.0526

Table 1 provides errors for different choices of ℎ. Using linear
regression, the errors in Table 1 satisfy
 ⃗𝑢𝑐,ℎ − ⃗𝑢

𝑐

0
≈ 0.714ℎ

3.011
,

 ⃗𝑢𝑐,ℎ − ⃗𝑢
𝑐

1
≈ 3.867ℎ

1.987
,

𝑝𝑐,ℎ − 𝑝𝑐
0
≈ 5.123ℎ

3.129
,

𝜙𝑚,ℎ − 𝜙𝑚
0
≈ 0.354ℎ

2.998
,

𝜙𝑚,ℎ − 𝜙𝑚
1
≈ 1.556ℎ

1.995
.

(29)

These rates of convergence are consistent with the approxi-
mation capability of the Taylor-Hood element and quadratic
element, which is third order with respect to 𝐿2 norm of ⃗𝑢

𝑐

and 𝜙
𝑚
, second order with respect to 𝐻1 norm of ⃗𝑢

𝑐
and

𝜙
𝑚
, and second order with respect to 𝐿2 norms of 𝑝

𝑐
. In

particular, the third-order convergence rate of 𝑝
𝑐
observed

above, which is better than the approximation capability
of the linear element, is mainly due to the special analytic
solution 𝑝 = 0.

For the parallel DDM with ] = 1, 𝐾 = 1, 𝛾
𝑓
= 0.3, and

ℎ = 1/32, Figures 2 and 3 show the 𝐿2 errors of hydraulic
head, velocity, pressure, and 𝜂

𝑓
. We can see that the parallel

domain decomposition method is convergent for 𝛾
𝑓
≤ 𝛾
𝑝
.

Moreover, Figures 4 and 5 show that a smaller 𝛾
𝑓
/𝛾
𝑝
leads to

faster convergence.
Then Tables 2 and 3 list some 𝐿2 errors in velocity,

hydraulic head, pressure, and 𝜂
𝑓
for the parallel domain

decomposition method with 𝛾
𝑓
= 0.3 and 𝛾

𝑝
= 1.2. The data

in these two tables indicate the geometric convergence rate
√𝛾𝑓/𝛾𝑝 since all the error ratios are less than (√𝛾𝑓/𝛾𝑝)

4
=

(√1/4)
4
= 0.0625.

Finally, for the preconditioning feature of the domain
decomposition method, Table 4 shows the number of itera-
tions𝑀 is independent of the grid size ℎ. Here, we set 𝛾

𝑆
=

0.3, 𝛾
𝐷
= 1.2, ] = 1, and 𝐾 = 1. Let 𝜙𝑘

ℎ
, ⃗𝑢𝑘
ℎ
, and 𝑝𝑘

ℎ
denote

the finite element solutions of 𝜙𝑘
𝐷
, ⃗𝑢𝑘
𝑆
, and 𝑝𝑘

𝑆
at the 𝑘th step
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Table 3: 𝐿2 errors in pressure and 𝜂
𝑓
for the parallel DDM with BJS interface condition.

𝐿
2 velocity errors 𝑒(𝑖)/𝑒(𝑖 − 4) 𝐿

2 hydraulic head errors 𝑒(𝑖)/𝑒(𝑖 − 4)

𝑒(0) 7.268 × 10
−1

5.668 × 10
−2

𝑒(4) (𝑖 = 4) 3.826 × 10
−2 0.0526 2.752 × 10

−3 0.0486
𝑒(8) (𝑖 = 8) 2.014 × 10

−3 0.0526 1.399 × 10
−4 0.0508

𝑒(12) (𝑖 = 12) 1.060 × 10
−4 0.0526 7.233 × 10

−6 0.0517
𝑒(16) (𝑖 = 16) 5.579 × 10

−6 0.0526 3.767 × 10
−7 0.0521

𝑒(20) (𝑖 = 20) 2.937 × 10
−7 0.0526 1.969 × 10

−8 0.0523

Table 4: The iteration counter 𝑀 versus the grid size ℎ for both
the parallel Robin-Robin domain decomposition method with BJS
interface condition.

ℎ 1/8 1/16 1/32 1/64

𝑀 19 19 19 19

of the domain decomposition algorithm. The criterion used
to stop the iteration, that is, to determine the value 𝑀, is
‖ ⃗𝑢
𝑘

ℎ
− ⃗𝑢
𝑘−1

ℎ
‖
0
+ ‖𝜙
𝑘

ℎ
− 𝜙
𝑘−1

ℎ
‖
0
+ ‖𝑝
𝑘

ℎ
− 𝑝
𝑘−1

ℎ
‖
0
< 𝜀, where the

tolerance 𝜀 = 10−5.

6. Conclusions

In this paper, a parallel physics-based domain decomposition
method is proposed for the stationary Navier-Stokes-Darcy
model with the BJS interface condition.This method is based
on the Robin boundary conditions constructed from the
three physical interface conditions.Moreover, it is convergent
with geometric convergence rates if the relaxation parameter
is selected properly. The number of iteration steps is inde-
pendent of the grid size due to the natural preconditioning
advantage of the domain decomposition methods.
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[9] I. Babuška andG. N. Gatica, “A residual-based a posteriori error
estimator for the Stokes-Darcy coupled problem,” SIAM Journal
on Numerical Analysis, vol. 48, no. 2, pp. 498–523, 2010.

[10] Y. Cao, M. Gunzburger, X. He, and X. Wang, “Robin-Robin
domain decomposition methods for the steady-state Stokes-
Darcy system with the Beavers-Joseph interface condition,”
Numerische Mathematik, vol. 117, no. 4, pp. 601–629, 2011.

[11] Y. Cao, M. Gunzburger, X.-M. He, and X. Wang, “Parallel,
non-iterative, multi-physics domain decomposition methods
for time-dependent Stokes-Darcy systems,” Mathematics of
Computation. In press.

[12] W. Chen, M. Gunzburger, F. Hua, and X. Wang, “A parallel
Robin-Robin domain decomposition method for the Stokes-
Darcy system,” SIAM Journal on Numerical Analysis, vol. 49, no.
3, pp. 1064–1084, 2011.

[13] M. Discacciati, “Iterative methods for Stokes/Darcy coupling,”
in Domain Decomposition Methods in Science and Engineering,
vol. 40 of Lecture Notes in Computational Science and Engineer-
ing, pp. 563–570, Springer, Berlin, Germany, 2005.

[14] M. Discacciati, E. Miglio, and A. Quarteroni, “Mathematical
and numerical models for coupling surface and groundwater
flows,” Applied Numerical Mathematics, vol. 43, no. 1-2, pp.
57–74, 2002, 19th Dundee Biennial Conference on Numerical
Analysis (2001).

[15] M. Discacciati and A. Quarteroni, “Analysis of a domain
decomposition method for the coupling of Stokes and Darcy
equations,” in Numerical Mathematics and Advanced Applica-
tions, pp. 3–20, Springer, Milan, Italy, 2003.

[16] M. Discacciati and A. Quarteroni, “Convergence analysis of a
subdomain iterative method for the finite element approxima-
tion of the coupling of Stokes and Darcy equations,” Computing
and Visualization in Science, vol. 6, no. 2-3, pp. 93–103, 2004.



Abstract and Applied Analysis 9

[17] M. Discacciati, A. Quarteroni, and A. Valli, “Robin-Robin
domain decomposition methods for the Stokes-Darcy cou-
pling,” SIAM Journal on Numerical Analysis, vol. 45, no. 3, pp.
1246–1268, 2007.

[18] W. Feng, X. He, Z. Wang, and X. Zhang, “Non-iterative
domain decomposition methods for a non-stationary Stokes-
Darcy model with Beavers-Joseph interface condition,” Applied
Mathematics and Computation, vol. 219, no. 2, pp. 453–463,
2012.

[19] G.N.Gatica, S.Meddahi, andR.Oyarzúa, “A conformingmixed
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[35] G. N. Gatica, R. Oyarzúa, and F.-J. Sayas, “Convergence of a
family of Galerkin discretizations for the Stokes-Darcy coupled
problem,” Numerical Methods for Partial Differential Equations.
An International Journal, vol. 27, no. 3, pp. 721–748, 2011.

[36] G. Kanschat and B. Rivière, “A strongly conservative finite
element method for the coupling of Stokes and Darcy flow,”
Journal of Computational Physics, vol. 229, no. 17, pp. 5933–5943,
2010.

[37] T. Karper, K.-A.Mardal, and R.Winther, “Unified finite element
discretizations of coupled Darcy-Stokes flow,” Numerical Meth-
ods for Partial Differential Equations, vol. 25, no. 2, pp. 311–326,
2009.

[38] S. Khabthani, L. Elasmi, and F. Feuillebois, “Perturbation
solution of the coupled Stokes-Darcy problem,” Discrete and
Continuous Dynamical Systems B, vol. 15, no. 4, pp. 971–990,
2011.

[39] M. Mu and J. Xu, “A two-grid method of a mixed Stokes-Darcy
model for coupling fluid flow with porous media flow,” SIAM
Journal on Numerical Analysis, vol. 45, no. 5, pp. 1801–1813, 2007.

[40] S.Münzenmaier andG. Starke, “First-order system least squares
for coupled Stokes-Darcy flow,” SIAM Journal on Numerical
Analysis, vol. 49, no. 1, pp. 387–404, 2011.

[41] B. Rivière, “Analysis of a discontinuous finite element method
for the coupled Stokes andDarcy problems,” Journal of Scientific
Computing, vol. 22-23, pp. 479–500, 2005.

[42] B. Rivière and I. Yotov, “Locally conservative coupling of Stokes
and Darcy flows,” SIAM Journal on Numerical Analysis, vol. 42,
no. 5, pp. 1959–1977, 2005.

[43] H. Rui and R. Zhang, “A unified stabilized mixed finite element
method for coupling Stokes and Darcy flows,” Computer Meth-
ods in Applied Mechanics and Engineering, vol. 198, no. 33–36,
pp. 2692–2699, 2009.

[44] S. Tlupova and R. Cortez, “Boundary integral solutions of
coupled Stokes and Darcy flows,” Journal of Computational
Physics, vol. 228, no. 1, pp. 158–179, 2009.

[45] J.M.Urquiza, D. N’Dri, A. Garon, andM.C.Delfour, “Coupling
Stokes and Darcy equations,” Applied Numerical Mathematics,
vol. 58, no. 5, pp. 525–538, 2008.

[46] L. Badea, M. Discacciati, and A. Quarteroni, “Numerical anal-
ysis of the Navier-Stokes/Darcy coupling,” Numerische Mathe-
matik, vol. 115, no. 2, pp. 195–227, 2010.

[47] M. Cai, M. Mu, and J. Xu, “Numerical solution to a mixed
Navier-Stokes/Darcy model by the two-grid approach,” SIAM
Journal on Numerical Analysis, vol. 47, no. 5, pp. 3325–3338,
2009.
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[49] A. Çeşmelioğlu and B. Rivière, “Primal discontinuous Galerkin
methods for time-dependent coupled surface and subsurface
flow,” Journal of Scientific Computing, vol. 40, no. 1–3, pp. 115–
140, 2009.



10 Abstract and Applied Analysis

[50] P. Chidyagwai and B. Rivière, “On the solution of the coupled
Navier-Stokes and Darcy equations,” Computer Methods in
Applied Mechanics and Engineering, vol. 198, no. 47-48, pp.
3806–3820, 2009.

[51] V. Girault and B. Rivière, “DG approximation of coupled
Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman
interface condition,” SIAM Journal on Numerical Analysis, vol.
47, no. 3, pp. 2052–2089, 2009.

[52] G. Beavers and D. Joseph, “Boundary conditions at a naturally
permeable wall,” Journal of FluidMechanics, vol. 30, pp. 197–207,
1967.
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From rotational potential vorticity-conserved equation with topography effect and dissipation effect, with the help of the multiple-
scale method, a new integro-differential equation is constructed to describe the Rossby solitary waves in deep rotational fluids.
By analyzing the equation, some conservation laws associated with Rossby solitary waves are derived. Finally, by seeking the
numerical solutions of the equation with the pseudospectral method, by virtue of waterfall plots, the effect of detuning parameter
and dissipation on Rossby solitary waves generated by topography are discussed, and the equation is compared with KdV equation
and BO equation. The results show that the detuning parameter 𝛼 plays an important role for the evolution features of solitary
waves generated by topography, especially in the resonant case; a large amplitude nonstationary disturbance is generated in the
forcing region. This condition may explain the blocking phenomenon which exists in the atmosphere and ocean and generated by
topographic forcing.

1. Introduction

Among the many wave motions that occur in the ocean and
atmosphere, Rossby waves play one of the most important
roles.They are largely responsible for determining the ocean’s
response to atmospheric and other climate changes [1]. In
the past decades, the research on nonlinear Rossby solitary
waves had been givenmuch attention in themathematics and
physics, and some models had been constructed to describe
this phenomenon. Based upon the pioneering work of Long
[2] and Benney [3] on barotropic Rossby waves, there had
been remarkably exciting developments [4–11] and formed
classical solitary waves theory and algebraic solitary waves
theory.The so-called classical solitary waves indicate that the
evolution of solitary waves is governed by the Korteweg-de
Vries (KdV) type model, while the behavior of solitary waves
is governed by the Benjamin-Ono (BO) model, it is called
algebraic solitary waves. After the KdVmodel and BOmodel,
a more general evolution model for solitary waves in a finite-
depth fluid was given by Kubota, and the model was called

intermediate long-wave (ILW) model [12, 13]. Many math-
ematicians solved the above models by all kinds of method
and got a series of results [14–19]. We note that most of the
previous researches about solitary waves were carried out in
the zonal area and could not be applied directly to the spheri-
cal earth, and little attention had been focused on the solitary
waves in the rotational fluids [20]. Furthermore, as everyone
knows the real oceanic and atmospheric motion is a forced
and dissipative system. Topography effect as a forcing factor
has been studied by many researchers [21–25]; on the other
hand, dissipation effect must be considered in the oceanic
and atmospheric motion; otherwise, the motion would grow
explosively because of the constant injecting of the external
forcing energy. Our aim is to construct a new model to
describe the Rossby solitary waves in rotational fluid with
topography effect and dissipation effect. It has great difference
from the previous researches.

In this paper, from rotational potential vorticity-con-
served equationwith topography effect and dissipation effect,
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with the help of the multiple-scale method, we will first con-
struct a new model to describe Rossby solitary waves in deep
rotational fluids. Then we will analyse the conservation rela-
tions of themodel and derive the conservation laws of Rossby
solitarywaves. Finally, themodel is solved by the pseudospec-
tral method [26]. Based on the waterfall plots, the effect of
detuning parameter and dissipation on Rossby solitary waves
generated by topography are discussed, the model is com-
pared with KdVmodel and BOmodel, and some conclusions
are obtained.

2. Mathematics Model

According to [27], taking plane polar coordinates (𝑟, 𝜃), 𝑟
pointing to lower latitude is positive and the positive rotation
is counter-clockwise, and then the rotational potential vortic-
ity-conserved equation including topography effect and tur-
bulent dissipation is, in the nondimensional form, given by

[
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where Ψ is the dimensionless stream function; 𝛽 =

(𝜔
0
/𝑅
0
) cos𝜙

0
(𝐿
2
/𝑈), in which 𝑅

0
is the Earth’s radius, 𝜔

0

is the angular frequency of the Earth’s rotation, 𝜙
0
is the

latitude, 𝐿 and 𝑈 are the characteristic horizontal length
and velocity scales, ℎ(𝑟, 𝜃) expresses the topography effect,
𝜆
0
[(1/𝑟)(𝜕/𝜕𝑟)(𝑟(𝜕Ψ/𝜕𝑟))+(1/𝑟

2
)(𝜕
2
Ψ/𝜕𝜃
2
)]denotes the vor-

ticity dissipation which is caused by the Ekman boundary
layer and 𝜆

0
is a dissipative coefficient, 𝑄 is the external

source, and the form of 𝑄 will be given in the latter.
In order to consider weakly nonlinear perturbation on a

rotational flow, we assume

Ψ = ∫

𝑟

(Ω (𝑟) − 𝑐 + 𝜀𝛼) 𝑟𝑑𝑟 + 𝜀𝜓 (𝑟, 𝜃, 𝑡) , (2)

where 𝛼 is a small disturbance in the basic flow and reflects
the proximity of the system to a resonate state; 𝑐 is a constant,
which is regarded as a Rossby waves phase speed; 𝜓 denotes
disturbance stream function; Ω(𝑟) expresses the rotational
angular velocity. In order to consider the role of nonlinearity,
we assume the following type of rotational angular velocity:

Ω (𝑟) = {
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where𝜔
1
is constant and𝜔(𝑟) is a function of 𝑟. For simplicity,

𝜔(𝑟) is assumed to be smooth across 𝑟 = 𝑟
2
.

In the domain [𝑟
1
, 𝑟
2
], in order to achieve a balance among

topography effect, turbulent dissipation, and nonlinearity
and to eliminate the derivative term of dissipation, we assume

ℎ (𝑟, 𝜃) = 𝜀
2
𝐻(𝑟, 𝜃) , 𝜆

0
= 𝜀
3/2

𝜆,

𝑄 = 𝜀
3/2

𝜆
1

𝑟

𝜕

𝜕𝑟
[𝑟
2
(𝜔 − 𝑐

0
+ 𝜀𝛼)] .

(4)

Substituting (2), (3), and (4) into (1) leads to the following
equation for the perturbation stream function 𝜓:
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In the domain [𝑟
2
,∞], the parameter 𝛽 is smaller than that

in the domain [𝑟
1
, 𝑟
2
], and we assume 𝛽 = 0 for [𝑟

2
,∞]. Fur-

thermore, the turbulent dissipation and topography effect are
absent in the domain and only consider the features of distur-
bances generated. Substituting (2) and (3) into (1), we have the
following governing equations:

[
𝜕

𝜕𝑡
+ (𝜔
1
− 𝑐 + 𝜀𝛼)

𝜕

𝜕𝜃
+ 𝜀 (

1

𝑟

𝜕𝜓

𝜕𝑟

𝜕

𝜕𝜃
−

1

𝑟

𝜕𝜓

𝜕𝜃

𝜕

𝜕𝑟
)]

× [
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜓

𝜕𝑟
) +

1

𝑟2

𝜕
2
𝜓

𝜕𝜃2
] = 0.

(6)

For (5), we introduce the following stretching transforma-
tions:

Θ = 𝜀
1/2

𝜃, 𝑟 = 𝑟, 𝑇 = 𝜀
3/2

𝑡, (7)

and the perturbation expansion of 𝜓 is in the following form:
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Substituting (7) and (8) into (5), comparing the samepower of
𝜀 term, we can obtain the 𝜀

1/2 equation:
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Assume the perturbation at boundary 𝑟 = 𝑟
1
does not exist,

that is,

𝜓
1
= 𝜓
2
= ⋅ ⋅ ⋅ = 0, (11)

and the perturbation at boundary 𝑟 = 𝑟
2
is determined by (6).

For the linear solution to be separable, assuming the solution
of (9) in the form:

𝜓
1
= 𝐴 (Θ, 𝑇) 𝜙 (𝑟) , (12)

thus 𝜙(𝑟) should satisfy the following equation:
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On the other hand, we proceed to the 𝜀
3/2 equation:
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In (15), if the boundary conditions on 𝜙 and 𝜓
2
are known,

the equation governing the amplitude 𝐴 will be determined.
Assuming the solution of (5)matches smoothlywith the solu-
tion of (6) at 𝑟 = 𝑟

2
, we can solve (6) to seek the solution at

𝑟 = 𝑟
2
.

For (6), we adopt the transformations in the forms:
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𝑡, (16)

and the perturbation function is shown �̃�; then by substitut-
ing (16) into (6), we can get the 𝜀

0 equation:
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𝜕𝜌
[
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕�̃�

𝜕𝑟
) +

1

𝑟2

𝜕
2
�̃�

𝜕𝜌2
] = 0. (17)

It is easy to find that (17) can reduce to

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕�̃�

𝜕𝑟
) +

1

𝑟2

𝜕
2
�̃�

𝜕𝜌2
= 0, 𝑟 ≥ 𝑟

2
,

�̃� → 0, 𝑟 → ∞.

(18)

Obviously, the solution of (18) is

�̃� (𝜌, 𝑟, 𝑇, 𝜀) =
1

2𝜋
∫

2𝜋

0

(𝑟
2
− 𝑟
2

2
) �̃� (𝜌


, 𝑟
2
, 𝑇, 𝜀)

𝑟
2

2
− 2𝑟
2
𝑟 cos (𝜌 − 𝜌) + 𝑟2

𝑑𝜌

. (19)

Taking the derivative with respect to 𝑟 for both sides of (19)
leads to

𝜕�̃�

𝜕𝑟

=
𝑟
2

𝜋
∫

2𝜋

0

�̃� (𝜌

, 𝑟
2
, 𝑇, 𝜀)

[2𝑟
2
𝑟 − (𝑟

2
+ 𝑟
2

2
) cos (𝜌 − 𝜌


)]

[𝑟
2

2
− 2𝑟
2
𝑟 cos (𝜌 − 𝜌) + 𝑟2]

2
𝑑𝜌

.

(20)

Because the solution of (5) matches smoothly with the solu-
tion of (6) at 𝑟 = 𝑟

2
, we obtain

𝜓
1
(Θ, 𝑟
2
, 𝑇) + 𝜀𝜓

2
(Θ, 𝑟
2
, 𝑇) = �̃� (𝜌, 𝑟

2
, 𝑇, 𝜀) + 𝑂 (𝜀

2
) , (21)

𝜕𝜓
1

𝜕𝑟
(Θ, 𝑟
2
, 𝑇) + 𝜀

𝜕𝜓
2

𝜕𝑟
(Θ, 𝑟
2
, 𝑇) =

𝜕�̃�

𝜕𝑟
(𝜌, 𝑟
2
, 𝑇, 𝜀) + 𝑂 (𝜀

2
) .

(22)

From (21), we have

𝐴 (Θ, 𝑇) 𝜙 (𝑟
2
) = �̃� (𝜌, 𝑟

2
, 𝑇, 𝜀) , 𝜓

2
(Θ, 𝑟
2
, 𝑇) = 0. (23)

Substituting (23) into (20) leads to

𝜕�̃�

𝜕𝑟
(𝜌, 𝑟
2
, 𝑇, 𝜀) = 𝜀𝜙 (𝑟

2
)
𝜕
2J (𝐴 (Θ, 𝑇))

𝜕Θ2
, (24)

where J(𝐴(Θ, 𝑇)) = (𝑟
2
/2𝜋) ∫

2𝜋

0
𝐴(Θ

, 𝑇) ln | sin((Θ −

Θ

)/2)|𝑑Θ

. Then, based on (22) and (24), we get

𝜙

(𝑟
2
) = 0,

𝜕𝜓
2

𝜕𝑟
(Θ, 𝑟
2
, 𝑇) = 𝜙 (𝑟

2
)
𝜕
2J (𝐴 (Θ, 𝑇))

𝜕Θ2
.

(25)

Substituting the boundary conditions (23) and (25) into (15)
yields

𝜕𝐴

𝜕𝑇
+ 𝛼

𝜕𝐴

𝜕Θ
+ 𝑎
1
𝐴

𝜕𝐴

𝜕Θ
+ 𝑎
2

𝜕
3
𝐴

𝜕Θ3

+ 𝑎
3

𝜕
3

𝜕Θ3
J (𝐴 (Θ, 𝑇)) + 𝜆𝐴 =

𝜕𝐺

𝜕Θ
.

(26)

Equation (26) can be rewritten as follows:

𝜕𝐴

𝜕𝑇
+ 𝛼

𝜕𝐴

𝜕Θ
+ 𝑎
1
𝐴

𝜕𝐴

𝜕Θ
+ 𝑎
2

𝜕
3
𝐴

𝜕Θ3

+ 𝑎
3

𝜕
2

𝜕Θ2
H (𝐴 (Θ, 𝑇)) + 𝜆𝐴 =

𝜕𝐺

𝜕Θ
,

(27)

whereH(𝐴(Θ, 𝑇)) = (𝑟
2
/4𝜋) ∫

2𝜋

0
𝐴(Θ

, 𝑇)cot((Θ−Θ


)/2)𝑑Θ



and 𝑎 = ∫
𝑟2

𝑟1

(𝜙/(𝜔 − 𝑐))(𝑑/𝑑𝑟)(𝑟(𝑑𝜙/𝑑𝑟))𝑑𝑟, 𝑎
1
= ∫
𝑟2

𝑟1

(𝜙
3
/(𝜔 −

𝑐))(𝑑/𝑑𝑟)[𝛽 − (𝑑/𝑑𝑟)((1/𝑟)(𝑑𝑟
2
𝜔/𝑑𝑟))/𝜙(𝜔 − 𝑐)]𝑑𝑟/𝑎, 𝑎

2
=

∫
𝑟2

𝑟1

(𝜙
2
/𝑟)𝑑𝑟/𝑎, 𝑎

3
= 𝑟
2
𝜙
2
(𝑟
2
)/𝑎, 𝐺 = ∫

𝑟2

𝑟1

𝑟𝜙𝐻𝑑𝑟/𝑎. Equation
(27) is an integro-differential equation and 𝜆𝐴 expresses
dissipation effect and has the same physical meaning with the
term 𝜕

2
𝐴/𝜕Θ

2 in Burgers equation. When 𝑎
3
= 𝜆 = 𝐻 = 0,
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the equation degenerates to the KdV equation. When 𝑎
2

=

𝜆 = 𝐻 = 0, the equation degenerates to the so-called rota-
tional BO equation. Here we call (27) forced rotational KdV-
BO-Burgers equation.Aswe know, the forced rotationalKdV-
BO-Burgers equation as a governing model for Rossby soli-
tary waves is first derived in the paper.

3. Conservation Laws

In this section, the conservation laws are used to explore some
features of Rossby solitary waves. In [7], Ono presented four
conservation laws of BO equation, and we extend Ono’s work
to investigate the following questions: Has the rotational
KdV-BO-Burgers equation also conservation laws without
dissipation effect? Has it four conservation laws or more?
How to change of these conservation quantities in the pres-
ence of dissipation effect?

In this section, topography effect is ignored; that is, 𝐻 is
taken zero in (27). Based on periodicity condition, we assume
that the values of 𝐴, 𝐴

Θ
, 𝐴
ΘΘ

, 𝐴
ΘΘΘ

at Θ = 0 equal that at
Θ = 2𝜋. Then integrating (27) with respect to Θ over (0, 2𝜋),
we are easy to obtain the following conservation relation:

𝑄
1
= ∫

2𝜋

0

𝐴𝑑Θ = exp (−𝜆𝑇)∫

2𝜋

0

𝐴 (Θ, 0) 𝑑Θ. (28)

From (28), it is obvious that 𝑄
1
decreases exponentially with

the evolution of time 𝑇 and the dissipation coefficient 𝜆. By
analogy with the KdV equation, 𝑄

1
is regarded as the mass

of the solitary waves. This shows that the dissipation effect
causes the mass of solitary waves decrease exponentially.
When dissipation effect is absent, the mass of the solitary
waves is conserved.

In what follows, (27) has another simple conservation
law, which becomes clear if we multiply (27) by 𝐴(Θ, 𝑇) and
carry the integration; by using the property of the operator
H : ∫

2𝜋

0
𝑓(Θ)H(𝑓(Θ))𝑑Θ = 0, then we get

𝑄
2
= ∫

2𝜋

0

𝐴
2
𝑑Θ = exp (−2𝜆𝑇)∫

2𝜋

0

𝐴
2

(Θ, 0) 𝑑Θ. (29)

Similar to the mass 𝑄
1
, 𝑄
2
is regarded as the momentum of

the solitary waves and is conserved without dissipation. The
momentumof the solitary waves also decreases exponentially
with the evolution of time 𝑇 and the increasing of dissipative
coefficient 𝜆 in the presence of dissipation effect. Further-
more, the rate of decline of momentum is faster than the rate
of mass.

Next, wemultiply (27) by (𝐴2−(𝑎
3
/𝑎
1
)H(𝐴

Θ
)) and obtain

(
1

3
𝐴
3
)
𝑇

−
𝑎
3

𝑎
1

H (𝐴
Θ
) 𝐴
𝑇

+ (𝛼 + 𝑎
1
𝐴)𝐴
Θ
(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
))

+ 𝑎
2
𝐴
ΘΘΘ

(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
))

+ 𝑎
3
(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
)) (H (𝐴))

ΘΘ

+ 𝜆(𝐴
2
−

𝑎
3

𝑎
1

H (𝐴
Θ
))𝐴 = 0.

(30)

Then taking the derivative of (27) with respect toΘ andmul-
tiplying (−(2𝑎

2
/𝑎
1
)𝐴
Θ
+ (𝑎
3
/𝑎
1
)H(𝐴)) lead to

(−
2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))𝐴
Θ𝑇

+ [𝛼𝐴
ΘΘ

+ 𝑎
1
(𝐴𝐴
Θ
)
Θ
] (−

2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))

+ 𝑎
2
𝐴
ΘΘΘΘ

(−
2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))

+ 𝑎
3
(−

2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴))H(𝐴)
ΘΘΘ

+ 𝜆𝐴(−
2𝑎
2

𝑎
1

𝐴
Θ
+

𝑎
3

𝑎
1

H (𝐴)) = 0.

(31)

Adding (30) to (31), by virtue of the property of operatorH:

H(𝐴)
ΘΘ

= H (𝐴
ΘΘ

) , ∫

2𝜋

0

𝑢HV𝑑Θ = −∫

2𝜋

0

VH𝑢𝑑Θ,

(32)

we have

(
1

3
𝐴
3
−

𝑎
2

𝑎
1

𝐴
2

Θ
+

𝑎
3

𝑎
1

𝐴
Θ
H (𝐴))

𝑇

+ 𝛼[
1

3
𝐴
3
−

𝑎
2

𝑎
1

𝐴
2

Θ
+

𝑎
3

𝑎
1

H (𝐴)𝐴
Θ
]

Θ

+ (
𝑎
1

4
𝐴
4
)
Θ

+
𝑎
2

3

2𝑎
1

[𝐻 (𝐴)𝐻(𝐴)
ΘΘ

]
Θ

+
𝑎
2
𝑎
3

𝑎
1

(𝐴
ΘΘΘ

𝐻(𝐴) − 2𝐴
Θ
𝐻(𝐴)
ΘΘ

)
Θ

−
2𝑎
2

𝑎
1

(𝐴
Θ
𝐴
ΘΘΘ

−
1

2
𝐴
2

ΘΘ
)
Θ

+ 𝑎
2
(𝐴
2
𝐴
ΘΘ

− 2𝐴𝐴
2

Θ
)
Θ

+ 𝑎
3
[𝐴(𝐴H (𝐴))

Θ
]
Θ
+ 𝜆(𝐴

3
−

𝑎
2

𝑎
1

𝐴
2

Θ
+

𝑎
3

𝑎
1

𝐴
Θ
𝐻(𝐴))

= 0.

(33)

Taking𝑄
3
= ∫
2𝜋

0
((1/3)𝐴

3
−(𝑎
2
/𝑎
1
)𝐴
2

Θ
+(𝑎
3
/𝑎
1
)𝐴
Θ
H(𝐴))𝑑Θ,

we are easy to see that when the dissipation effect is absent,
that is, 𝜆 = 0, 𝑄

3
is a conserved quantity and regarded as

the energy of the solitary waves. So we can conclude that the
energy of solitary waves is conserved without dissipation. By
analysing (33), we can find the decreasing trend of energy of
solitary waves.
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Finally, let us consider a quantity related to the phase of
solitary waves:

𝑄
4
=

𝑑

𝑑𝑇
∫

2𝜋

0

Θ𝐴𝑑Θ, (34)

and we can get 𝑑𝑄
4
/𝑑𝑇 = 0 without dissipation. According

[7], we present the velocity of the center of gravity for
the ensemble of such waves 𝑄

4
= 𝑄
4
/𝑄
1
; by employing

𝑑𝑄
1
/𝑑𝑇 = 0 and 𝑑𝑄

4
/𝑑𝑇 = 0, we have 𝑑𝑄

4
/𝑑𝑇 = 0, which

shows that the velocity of the center of gravity is conserved
without dissipation.

After the four conservation relations are given, we can
proceed to seek the fifth conservation quantity. In fact, after
tedious calculation, we can also verify that

𝑄
5
=∫

2𝜋

0

(
1

4
𝐴
4
−

3𝑎
2

𝑎
1

𝐴𝐴
2

Θ
+

9𝑎
2

𝑎
2

1

𝐴
2

ΘΘ
+

𝑎
3

4𝑎
1

𝐴
2
H (𝐴)) 𝑑Θ

(35)

is also conservation quantity. According the idea, we can
obtain the sixth conservation quantity 𝑄

6
and the seventh

conservation quantity 𝑄
7
. . ., so we can guess that, similar to

the KdV equation, the rotational KdV-BO-Burgers equation
without dissipation also owns infinite conservation laws, but
it needs to be verified in the future.

4. Numerical Simulation and Discussion

In this section, we will take into account the generation and
evolution feature of Rossby solitarywaves under the influence
of topography and dissipation, so we need to seek the solu-
tions of forced rotational KdV-BO-Burgers equation. But we
know that there is no analytic solution for (27), and here we
consider the numerical solutions of (27) by employing the
pseudospectral method.

The pseudo-spectral method uses a Fourier transform
treatment of the space dependence together with a leap-forg
scheme in time. For ease of presentation the spatial period is
normalized to [0, 2𝜋]. This interval is divided into 2𝑁 points,
and then Δ𝑇 = 𝜋/𝑁. The function 𝐴(𝑋, 𝑇) can be trans-
formed to the Fourier space by

𝐴 (V, 𝑇) = 𝐹𝐴 =
1

√2𝑁

2𝑁−1

∑

𝑗=0

𝐴 (𝑗Δ𝑋, 𝑇) 𝑒
−𝜋𝑖𝑗V/𝑁

,

V = 0, ±1, . . . , ±𝑁.

(36)

The inversion formula is

𝐴 (𝑗Δ𝑋, 𝑇) = 𝐹
−1
𝐴 =

1

√2𝑁
∑

V

𝐴 (V, 𝑇) 𝑒
𝜋𝑖𝑗V/𝑁

. (37)

These transformations can use Fast Fourier Transform algo-
rithm to efficiently perform.With this scheme, 𝜕𝐴/𝜕𝑋 can be
evaluated as 𝐹−1{𝑖V𝐹𝐴}, 𝜕3𝐴/𝜕𝑋

3 as −𝑖𝐹−1{V3𝐹𝐴}, 𝜕𝐻/𝜕𝑋 as

𝐹
−1
{𝑖V𝐹𝐻}, and so on. Combined with a leap-frog time step,

(27) would be approximated by

𝐴 (𝑋, 𝑇 + Δ𝑇) − 𝐴 (𝑋, 𝑇 − Δ𝑇) + 𝑖𝛼𝐹
−1

{V𝐹𝐴}Δ𝑇

+ 𝑖𝑎
1
𝐴𝐹
−1

{V𝐹𝐴}Δ𝑇 − 𝑎
2
𝑖𝐹
−1

{V
3
𝐹𝐴}Δ𝑇

− 𝑎
3
𝐹
−1

{V
2
𝐹H (𝐴)} Δ𝑇 + 𝜆𝐴 = 𝑖𝐹

−1

{V𝐹𝐺}Δ𝑇.

(38)

The computational cost for (38) is six fast Fourier transforms
per time step.

Once the zonal flow Ω(𝑟) and the topography function
𝐻(𝑟, Θ) as well as dissipative coefficient 𝜆 are given, it is easy
to get the coefficients of (27) by employing (13). In order to
simplify the calculation and to focus attention on the time
evolution of the solitary waves with topography effect and
dissipation effect and to show the difference among the KdV
model, BO model, and rotational KdV-BO model, we take
𝑎
1
= 1, 𝑎

2
= −1, and 𝑎

3
= −1. As an initial condition, we take

𝐴(𝑋, 0) = 0. In the present numerical computation, the
topography forcing is taken as 𝐺 = 𝑒

−[30(Θ−𝜋)]
2
/4.

4.1. Effect of Detuning Parameter 𝛼 and Dissipation. In
Figure 1, we consider the effect of detuning parameter 𝛼 on
solitary waves. The evolution features of solitary waves gen-
erated by topography are shown in the absence of dissipation
with different detuning parameter 𝛼. It is easy to find from
these waterfall plots that the detuning parameter 𝛼 plays an
important role for the evolution features of solitary waves
generated by topography.

When 𝛼 > 0 (Figure 1(a)), a positive stationary solitary
wave is generated in the topographic forcing region, and
a modulated cnoidal wave-train occupies the downstream
region. There is no wave in the upstream region. A flat buffer
region exists between the solitary wave in the forcing region
and modulated cnoidal wave-train in the downstream. With
the detuning parameter 𝛼 decreasing, the amplitudes of both
solitary wave in the forcing region and modulated cnoidal
wave-train in the downstream region increase and themodu-
lated cnoidal wave-train closes to the forcing region gradually
and the flat buffer region disappears slowly.

Up to 𝛼 = 0 (Figure 1(b)), the resonant case forms. In
this case, a large amplitude nonstationary disturbance is gen-
erated in the forcing region. To some degree, this condition
may explain the blocking phenomenon which exists in the
atmosphere and ocean and generated by topographic forcing.

As 𝛼 < 0, from Figure 1(c) we can easy to find that a
negative stationary solitary wave is generated in the forcing
region, and this is great difference with the former two condi-
tions. Meanwhile, there are both wave-trains in the upstream
and downstream region. The amplitude and wavelength of
wave-train in the upstream region are larger than those in
the downstream regions. Similar to Figure 1(b) and unlike
Figure 1(a), the wave-trains in the upstream and downstream
regions connect to the forcing region and the flat buffer region
disappears.

Figure 2 shows the solitary waves generated by topogra-
phy in the presence of dissipation with dissipative coefficient
𝜆 = 0.3 and detuning parameter 𝛼 = 2.5. The conditions of
𝛼 = 0 and𝛼 < 0 are omitted. Compared to Figure 1(a), wewill
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(a) 𝛼 = 2.5
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(b) 𝛼 = 0
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(c) 𝛼 = −2.5

Figure 1: Solitary waves generated by topography in the absence of dissipation.
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Figure 2: Solitary waves generated by topography in the presence of
dissipation (𝜆 = 0.3, 𝛼 = 2.5).

find that there is also a solitary wave generated in the forcing
region, but because of dissipation effect the amplitude of soli-
tary wave in the forcing region decreases as the dissipative
coefficient 𝜆 increases (Figures omitted) and time evolution.
Meanwhile, the modulated cnoidal wave-train in the down-
stream region is dissipated. When 𝜆 is big enough, the mod-
ulated cnoidal wave-train in the downstream region disap-
pears.

4.2. Comparison of KdV Model, BO Model, and KdV-BO
Model. We know that the rotation KdV-BO equation reduces
to the KdV equation as 𝑎

3
= 0 and to the BO equation as

𝑎
2
= 0, so, in this subsection by comparing Figure 1(a) with

Figure 3, we will look for the difference of solitary waves
which is described by KdV-BO model, KdV model, and BO
model. The role of detuning parameter 𝛼 and dissipation
effect has been studied in the former subsection, so here we
only consider the condition of 𝜆 = 0, 𝛼 = 2.5.

At first, we can find that a positive solitary wave is all gen-
erated in the forcing region in Figures 1(a), 3(a) and 3(b), but
it is stationary in Figures 1(a) and 3(a), and is nonstationary in
Figure 3(b). By surveying carefully we find that the amplitude
of stationary wave in the forcing region in Figure 1(a) is larger
than that in Figure 3(a). Additionally, a modulated cnoidal
wave-train is excited in the downstream region in Figures 1(a)
and 3(a), and in both downstream and upstream region in
Figure 3(b). The amplitude of modulated cnoidal wave-train
in downstream region in Figure 3(b) is the largest and in
Figure 1(a) is the smallest among the three models. Further-
more, in Figure 3(a) the wave number of modulated cnoidal
wave-train is more than that in Figures 1(a) and 3(b). In
a word, by the above analysis and comparison, it is easy
to find that Figure 1(a) is similar to Figure 3(a) and has
great difference with Figure 3(b). This indicates that the
term 𝑎

2
(𝜕
3
𝐴/𝜕Θ

3
) plays more important role than the term

𝑎
3
(𝜕
2
/𝜕Θ
2
)H(𝐴) in rotational KdV-BO equation.
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Figure 3: Comparison of KdV model, Bo model, and KdV-BO model.

5. Conclusions

In this paper, we presented a newmodel: rotational KdV-BO-
Burgers model to describe the Rossby solitary waves gener-
ated by topography with the effect of dissipation in deep rota-
tional fluids. By analysis and computation, five conservation
quantities of KdV-BO-Burgers model were derived and cor-
responding four conservation laws of Rossby solitary waves
were obtained; that is, mass, momentum, energy, and velocity
of the center of gravity of Rossby solitary waves are conserved
without dissipation effect. Further, we presented that the
rotational KdV-BO-Burgers equation owns infinite conserva-
tion quantities in the absence of dissipation effect. Detailed
numerical results obtained using pseudospectral method are
presented to demonstrate the effect of detuning parame-
ter 𝛼 and dissipation. By comparing the KdV model, BO
model, and KdV-BO model, we drew the conclusion that
the term 𝑎

2
(𝜕
3
𝐴/𝜕Θ

3
) plays more important role than the

term 𝑎
3
(𝜕
2
/𝜕Θ
2
)H(𝐴) in rotational KdV-BO equation. More

problems onKdV-BO-Burgers equation such as the analytical
solutions, integrability, and infinite conservation quantities
are not studied in the paper due to limited space. In fact, there
are many methods carried out to solve some equations with
special nonhomogenous terms [28] as well asmultiwave solu-
tions and other form solution [29, 30] of homogenous equa-
tion. These researches have important value for understand-
ing and realizing the physical phenomenon described by the
equation and deserve to carry out in the future.
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The aim of this paper is to apply OHAM to solve numerically the problem of harmonic wave propagation in a nonlinear
thermoelasticity under influence of rotation, thermal relaxation times, andmagnetic field.Theproblem is solved in one-dimensional
elastic half-space model subjected initially to a prescribed harmonic displacement and the temperature of the medium. The HAM
contains a certain auxiliary parameter which provides us with a simple way to adjust and control the convergence region and rate
of convergence of the series solution. This optimal approach has a general meaning and can be used to get fast convergent series
solutions of the different type of nonlinear fractional differential equation.The displacement and temperature are calculated for the
models with the variations of the magnetic field, relaxation times, and rotation. The results obtained are displayed graphically to
show the influences of the new parameters.

1. Introduction

In the past recent years, much attention has been devoted
to simulate some real-life problems which can be described
by nonlinear coupled differential equations using reliable
and more efficient methods. Nonlinear partial differential
equations are useful in describing various phenomena in
disciplines. The nonlinear coupled systems of partial differ-
ential equations often appear in the study of circled fuel
reactor, high-temperature hydrodynamics, and thermoelas-
ticity problems, see [1–4]. From the analytical point of
view, a lot of work has been done for such systems. With
the rapid development of nanotechnology, there appears an
ever increasing interest of scientists and researchers in this
field of science. Nanomaterials, because of their exceptional
mechanical, physical, and chemical properties, have been

the main topic of research in many scientific publications.
Wave generation in nonlinear thermoelasticity problems has
gained a considerable interest for its utilitarian aspects in
understanding the nature of interaction between the elastic
and thermal fields as well as the system of PDEs for its appli-
cations. A lot of applications were paid on existence, unique-
ness, and stability of the solution of the problem, see [5–7].

Recently, much attention has been devoted to numerical
methods, which do not require discretization of space-time
variables or linearization of the nonlinear equations, among
the homotopy analysis methods. Since most of the nonlinear
FDEs cannot be solved exactly, approximate and numerical
methods must be used. Some of the recent analytical meth-
ods for solving nonlinear problems include the homotopy
analysis method HAM [8–14]. The HAM, first proposed in
1992 by Liao [8], has been successfully applied to solve many
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problems in physics and science. This method is applied to
solve linear and nonlinear systems.

The homotopy perturbation method HPM has the merits
of simplicity and easy execution.The homotopy perturbation
method was first proposed by He [15]. Unlike the traditional
numerical methods, the HPM does not need discretization
and linearization. Most perturbation methods assume that
a small parameter exists, but most nonlinear problems have
no small parameter at all. Many new methods have been
proposed to eliminate the small parameter. Recently, the
applications of homotopy theory among scientists appeared,
and the homotopy theory became a powerful mathematical
tool, when it is successfully coupled with perturbation theory.

Recently, Gepreel et al. [16] investigated the homotopy
perturbation method and variational iteration method for
harmonic waves propagation in nonlinear magnetothermoe-
lasticity with rotation. Abd-Alla and Abo-Dahab [17] inves-
tigated the effect of rotation and initial stress on an infinite
generalized magnetothermoelastic diffusion body with a
spherical cavity. Abo-Dahab and Mohamed [18] studied the
influence of magnetic field and hydrostatic initial stress on
reflection phenomena of P (Primary) and SV (Shear Vertical)
waves from a generalized thermoelastic solid half space.
Abd-Alla and Mahmoud [19] investigated the magnetother-
moelastic problem in rotating non-homogeneous orthotropic
hollow cylinder under the hyperbolic heat conductionmodel.
Abd-Alla et al. [20] studied the thermal stresses effect in a
non-homogeneous orthotropic elastic multilayered cylinder.
Abd-Alla et al. [21] studied the generalized magnetother-
moelastic Rayleigh waves in a granular medium under the
influence of a gravity field and initial stress. Abd-Alla and
Abo-Dahab [22] investigated the time-harmonic sources in a
generalized magnetothermoviscoelastic continuum with and
without energy dissipation.

In the present paper, investigation is devoted for solving
numerically the problem of harmonic wave propagation in
a nonlinear thermoelasticity under influence of magnetic
field, thermal relaxation times, and rotation. The problem is
solved in one-dimensional elastic half-space model subjected
initially to a prescribed harmonic displacement and the
temperature of the medium.

The HAM contains a certain auxiliary parameter which
provides us with a simple way to adjust and control the
convergence region and rate of convergence of the series solu-
tion. The ℎ-curve of the third-order approximate solutions
is displayed graphically to show the interval that the exact
and approximate solutions take the same values.Thedisplace-
ment and temperature are calculated for the methods with
the variations of the magnetic field and rotation. The results
obtained are displayed graphically to show the influences of
the new parameters.

2. A One-Step Optimal Homotopy Analysis
Method for PDEs

To describe the basic ideas of the HAM, we consider the
following general nonlinear differential equation:

𝑁[𝑢 (𝑥, 𝑡)] = 0, (1)

where 𝑁 is a nonlinear operator for this problem, 𝑥 and
𝑡 denote independent variables, and 𝑢(𝑥, 𝑡) is an unknown
function.

By means of the HAM, one first constructs the following
zero-order deformation equation:

(1 − 𝑞)L (𝜙 (𝑥, 𝑡; 𝑞) − 𝑢
0
(𝑥, 𝑡)) = 𝑞ℎ𝐻 (𝑡)𝑁 [𝜙 (𝑥, 𝑡; 𝑞)] ,

(2)

where 𝑞 ∈ [0, 1] is the embedding parameter, ℎ ̸= 0 is an
auxiliary parameter, 𝐻(𝑡) ̸= 0 is an auxiliary function, L is
an auxiliary linear operator, and 𝑢

0
(𝑥, 𝑡) is an initial guess.

Obviously, when 𝑞 = 0 and 𝑞 = 1, it holds

𝜙 (𝑥, 𝑡; 0) = 𝑢
0
(𝑥, 𝑡) , 𝜙 (𝑥, 𝑡; 1) = 𝑢 (𝑥, 𝑡) . (3)

Liao [8, 9] expanded 𝜙(𝑥, 𝑡; 𝑞) in Taylor series with
respect to the embedding parameter 𝑞, as follows:

𝜙 (𝑥, 𝑡; 𝑞) = 𝑢
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) 𝑞

𝑚
, (4)

where

𝑢
𝑚
(𝑥, 𝑡) =

1

𝑚!

𝜕
𝑚
𝜙 (𝑥, 𝑡; 𝑞)

𝜕𝑞𝑚

𝑞=0

. (5)

Assume that the auxiliary linear operator, the initial guess,
the auxiliary parameter ℎ, and the auxiliary function𝐻(𝑡) are
selected such that the series (4) is convergent at 𝑞 = 1; then
we have from (4)

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) . (6)

Let us define the vector

⃗𝑢
𝑛
(𝑥, 𝑡) = {𝑢

0
(𝑥, 𝑡) , 𝑢

1
(𝑥, 𝑡) , 𝑢

2
(𝑥, 𝑡) , . . . , 𝑢

𝑛
(𝑥, 𝑡)} . (7)

Differentiating (2)𝑚 times with respect to 𝑞, then setting
𝑞 = 0 and dividing then by 𝑚!, we have the following 𝑚th-
order deformation equation:

L (𝑢
𝑚
(𝑥, 𝑡) − 𝜘

𝑚
𝑢
𝑚−1

(𝑥, 𝑡)) = ℎ𝐻 (𝑡)R
𝑚
( ⃗𝑢
𝑚−1

) , (8)

where

R
𝑚
( ⃗𝑢
𝑚−1

) =
1

(𝑚 − 1)!

𝜕
𝑚−1N [𝜙 (𝑥, 𝑡; 𝑞)]

𝜕𝑞𝑚−1

𝑞=0

,

𝜘
𝑚

= {
0, 𝑚 ≤ 1,

1, 𝑚 > 1.

(9)

Applying the integral operator on both sides of (8), we
have

𝑢
𝑚
(𝑥, 𝑡) = 𝜘

𝑚
𝑢
𝑚−1

(𝑥, 𝑡) + ℎ∫

𝑡

0

𝐻(𝑡)R
𝑚
( ⃗𝑢
𝑚−1

) 𝑑𝑡, (10)

where the 𝑚th-order deformation equation (8) can be easily
solved, especially bymeans of symbolic computation software
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such as Mathematica, Maple, and MathLab.The convergence
of the homotopy analysis method for solving these equations
is discussed in [23].

Abbasbandy and Jalili [24] and Turkyilmazoglu [25–29]
applied the homotopy analysis method to nonlinear ODEs
and suggested the so-called optimization method to find out
the optimal convergence control parameters by minimum
of the square residual error integrated in the whole region
having physical meaning. Their approach is based on the
square residual error.

LetΔ(ℎ) denote the square residual error of the governing
equation (1) and express it as

Δ (ℎ) = ∫
Ω

(𝑁 [�̃�
𝑛
(𝑡)])
2

𝑑Ω, (11)

where

�̃�
𝑚
(𝑡) = 𝑢

0
(𝑡) +

𝑚

∑

𝑘=1

𝑢
𝑘
(𝑡) ; (12)

the optimal value of ℎ is given by a nonlinear algebraic
equation:

𝑑Δ (ℎ)

𝑑ℎ
= 0. (13)

3. Application of HAM on
the Nonlinear Magnetothermoelastic
with Rotation Equations

In this section, we use the homotopy analysis method to cal-
culate the approximate solutions of the following nonlinear
magnetothermoplastic model with rotation equations

(1 + 𝜎
1
) 𝑢
𝑡𝑡
+ Ω𝑢
𝑡
− 𝑢
𝑥𝑥

(1 − 𝜎
2
+ 2𝛾𝑢

𝑥
+ 3𝛿𝑢

2

𝑥
)

− 𝛽
1
(1 − 𝑖𝜔𝜏

2
) 𝜃
𝑥
− 𝛽
2
(𝜃𝑢
𝑥
)
𝑥
= 0,

(𝜃 (1 − 𝑖𝜔𝜏
1
) − 𝑎𝑢

𝑥
(1 − 𝑖𝜔𝛿𝜏

1
) −

1

2
𝑏𝑢
2

𝑥
)
𝑡

− [(1 + 𝛼𝑢
𝑥
) 𝜃
𝑥
]
𝑥
= 0,

(14)

where 𝜎
1
, 𝜎
2
, Ω, 𝛾, 𝛽

1
, 𝛽
2
, 𝑎, 𝑏, and 𝛼 are arbitrary constants

with the initial conditions

𝑢 (𝑥, 0) = 𝜃 (𝑥, 0) = 𝐴 (1 − cos (𝑥)) ,

𝑢
𝑡
(𝑥, 0) = 𝜃

𝑡
(𝑥, 0) = 0,

(15)

where𝐴 is an arbitrary constant and the boundary conditions

𝑢 (0, 𝑡) = 𝜃 (0, 𝑡) = 0,

𝑢
𝑡
(0, 𝑡) = 𝜃

𝑡
(0, 𝑡) = 0.

(16)

To demonstrate the effectiveness of the method, we consider
the system of nonlinear initial-value problem (14) with the

initial conditions (15) and the boundary conditions (16) by
choosing the linear operators

L
1
[𝜙
1
(𝑥, 𝑡; 𝑞)] =

𝜕
2
𝜙
1
(𝑥, 𝑡; 𝑞)

𝜕𝑡2
,

L
2
[𝜙
2
(𝑥, 𝑡; 𝑞)] =

𝜕𝜙
2
(𝑥, 𝑡; 𝑞)

𝜕𝑡
,

(17)

with the property L
1
[𝑐
1
+ 𝑐
2
𝑡] = 0, L

2
[𝑐
3
], where 𝑐

𝑖
, (𝑖 =

1, 2, 3) are the integral constants and the nonlinear operators
are defined as

𝑁
1
[𝜙
1
, 𝜙
2
] = (1 + 𝜎

1
)
𝜕
2
𝜙
1

𝜕𝑡2
+ Ω

𝜕𝜙
1

𝜕𝑡
−

𝜕
2
𝜙
1

𝜕𝑥2

× (1 − 𝜎
2
+ 2𝛾

𝜕𝜙
1

𝜕𝑥
+ 3𝛿(

𝜕𝜙
1

𝜕𝑥
)

2

) − 𝛽
1

𝜕𝜙
2

𝜕𝑥

+ 𝑖𝜔𝜏
2
𝛽
1

𝜕𝜙
2

𝜕𝑥
− 𝛽
2

𝜕

𝜕𝑥
(𝜙
2

𝜕𝜙
1

𝜕𝑥
) ,

𝑁
2
[𝜙
1
, 𝜙
2
] =

𝜕

𝜕𝑡
((1 − 𝑖𝜔𝜏

1
) 𝜙
2
− 𝑎 (1 − 𝑖𝜔𝜏

1
𝛿)

𝜕𝜙
1

𝜕𝑥

−
1

2
𝑏(

𝜕𝜙
1

𝜕𝑥
)

2

−
𝜕

𝜕𝑥
(1 + 𝛼

𝜕𝜙
1

𝜕𝑥
)

𝜕𝜙
2

𝜕𝑥
) .

(18)

Choosing𝐻
𝑖
(𝑡) = 1 for 𝑖 = 1, 2, the zeroth-order deformation

equations are

(1 − 𝑞)L
1
[𝜙
1
(𝑥, 𝑡; 𝑞) − 𝑢

0
(𝑥, 𝑡)]

= 𝑞ℎ
1
𝑁
1
[𝜙
1
(𝑥, 𝑡; 𝑞) , 𝜙

2
(𝑥, 𝑡; 𝑞)] ,

(1 − 𝑞)L
2
[𝜙
2
(𝑥, 𝑡; 𝑞) − V

0
(𝑥, 𝑡)]

= 𝑞ℎ
2
𝑁
2
[𝜙
1
(𝑥, 𝑡; 𝑞) , 𝜙

2
(𝑥, 𝑡; 𝑞)] ,

(19)

where

𝜙
1
(𝑥, 𝑡; 0) = 𝑢

0
(𝑥, 𝑡) , 𝜙

1
(𝑥, 𝑡; 1) = 𝑢 (𝑥, 𝑡) ,

𝜙
2
(𝑥, 𝑡; 0) = V

0
(𝑥, 𝑡) , 𝜙

2
(𝑥, 𝑡; 1) = 𝜃 (𝑥, 𝑡) .

(20)

Then, the𝑚th-order deformation equations become

L
1
[𝑢
𝑚
(𝑥, 𝑡) − 𝜘

𝑚
𝑢
𝑚−1

(𝑥, 𝑡)] = ℎ
1
R
1𝑚

( ⃗𝑢
𝑚−1

, ⃗𝜃
𝑚−1

) ,

L
2
[𝜃
𝑚
(𝑥, 𝑡) − 𝜘

𝑚
𝜃
𝑚−1

(𝑥, 𝑡)] = ℎ
2
R
2𝑚

( ⃗𝑢
𝑚−1

, ⃗𝜃
𝑚−1

) ,

(21)



4 Abstract and Applied Analysis

where

R
1𝑚

( ⃗𝑢
𝑚−1

, ⃗𝜃
𝑚−1

)

=
𝜕
2
𝑢
𝑚−1

𝜕𝑡2

+
1

1 + 𝜎
1

(Ω(𝑢
𝑚−1

)
𝑡
− (𝑢
𝑚−1

)
𝑥𝑥

+ 𝜎
2
(𝑢
𝑚−1

)
𝑥𝑥

− 2𝛾

𝑚−1

∑

𝑗=0

(𝑢
𝑗
)
𝑥𝑥
(𝑢
𝑚−1−𝑗

)
𝑥

− 3𝛿

𝑚−1

∑

𝑖=0

𝑖

∑

𝑗=0

(𝑢
𝑗
)
𝑥
(𝑢
𝑖−𝑗

)
𝑥
(𝑢
𝑚−1−𝑖

)
𝑥𝑥

− 𝛽
2

𝑚−1

∑

𝑗=0

(𝜃
𝑗
)
𝑥
(𝑢
𝑚−1−𝑗

)
𝑥
− 𝛽
1
(𝜃
𝑚−1

)
𝑥

−𝛽
2

𝑚−1

∑

𝑗=0

(𝜃
𝑗
) (𝑢
𝑚−1−𝑗

)
𝑥𝑥

+ 𝑖𝜔𝜏
2
𝛽
1
𝜃
𝑚−1

) ,

R
2𝑚

( ⃗𝑢
𝑚−1

, ⃗𝜃
𝑚−1

)

=
𝜕𝜃
𝑚−1

𝜕𝑡
+

1

1 − 𝑖𝜔𝜏
1

( − 𝑎(𝑢
𝑚−1

)
𝑥𝑡

−
1

2
𝑏

𝑚−1

∑

𝑗=0

(𝑢
𝑗
)
𝑥𝑡
(𝑢
𝑚−1−𝑗

)
𝑥𝑡

− (𝜃
𝑚−1

)
𝑥𝑥

− 𝛼

𝑚−1

∑

𝑗=0

(𝜃
𝑚−1−𝑗

)
𝑥
(𝑢
𝑗
)
𝑥𝑥

− 𝛼

𝑚−1

∑

𝑗=0

(𝜃
𝑚−1−𝑗

)
𝑥𝑥
(𝑢
𝑗
)
𝑥

− (𝜃
𝑚−1

)
𝑥𝑥

+ 𝑎𝑖𝜔𝜏
1
𝛿(𝑢
𝑚−1

)
𝑥𝑡
) .

(22)

For simplicity, we suppose ℎ
1
= ℎ
2
; the system (21) has the

following general solutions:

𝑢
𝑚
(𝑥, 𝑡) = 𝜘

𝑚
𝑢
𝑚−1

(𝑥, 𝑡) + ℎ∬

𝑡

0

R
1𝑚

( ⃗𝑢
𝑚−1

, ⃗𝜃
𝑚−1

) 𝑑𝑡 𝑑𝑡,

𝜃
𝑚
(𝑥, 𝑡) = 𝜘

𝑚
𝜃
𝑚−1

(𝑥, 𝑡) + ℎ∫

𝑡

0

R
2𝑚

( ⃗𝑢
𝑚−1

, ⃗𝜃
𝑚−1

) 𝑑𝑡.

(23)

In this case, where 𝑢
0
and 𝜃

0
are constants, the general

solution of (23) is taking the following form:

𝑢 (𝑥, 𝑡) = 𝑢
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝑢
𝑚
(𝑥, 𝑡) ,

𝜃 (𝑥, 𝑡) = 𝜃
0
(𝑥, 𝑡) +

∞

∑

𝑚=1

𝜃
𝑚
(𝑥, 𝑡) .

(24)

The problems above can be readily solved by symbolic
computation packages such as Mathematica. Thereupon,
successive solving of these problems yields

𝑢
0
(𝑥, 0) = 𝐴 (1 − cos (𝑥)) ,

𝜃
0
(𝑥, 0) = 𝐴 (1 − cos (𝑥)) ,

𝑢
1
(𝑥, 𝑡) =

𝐴ℎ𝑡
2

4 (1 + 𝜎
1
)
(2𝐴𝛽
2
(− cos (𝑥) + cos (2𝑥))

+ cos (𝑥) (−2 − 3𝐴
2
𝛿

+ 3𝐴
2
𝛿 cos (2𝑥)

−4𝐴𝛾 sin (𝑥) + 2𝜎
2
)

+2𝑖 sin (𝑥) 𝛽
1
(𝑖 + 𝜔𝜏

2
)) ,

𝜃
1
(𝑥, 𝑡) =

𝐴ℎ𝑡 cos (𝑥) (1 + 2𝐴𝛼 sin (𝑥))

−1 + 𝑖𝜔𝜏
1

,

𝑢
2
(𝑥, 𝑡)

=
𝐴ℎ𝑡
2

4 (1 + 𝜎
1
)

× (2𝐴𝛽
2
(− cos (𝑥) + cos (2𝑥)) + cos (𝑥)

× (−2 − 3𝐴
2
𝛿 + 3𝐴

2
𝛿 cos (2𝑥)

−4𝐴𝛾 sin (𝑥) + 2𝜎
2
)

+2𝑖 sin (𝑥) 𝛽
1
(𝑖 + 𝜔𝜏

2
))

+
1

384(1 + 𝜎
1
)
2

× (𝐴ℎ
2
𝑡
4
(−135𝐴

4
𝛿
2 cos (5𝑥)

+ 240𝐴
3
𝛿𝛾 sin (4𝑥) − 16𝐴

2

× (2 cos(𝑥) − 5cos 2 (𝑥) + 3 cos (3𝑥))

× 𝛽
2

2
− 96𝐴𝛾 sin (2𝑥)

× (1 + 2𝐴
2
𝛿 − 𝜎
2
) + 3𝐴

2 cos (3𝑥)

× (48𝛿 + 63𝐴
2
𝛿
2
+ 32𝛾

2
− 48𝛿𝜎

2
)
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+ 8𝐴𝛽
2
(− 2 (2 + 3𝐴

2
𝛿) cos (𝑥)

+ 10 cos (2𝑥)

+ 𝐴 (3𝐴𝛿 (3 cos (2𝑥)

+ 6 cos (3𝑥)

−7 cos (4𝑥))

− 2𝛾 (sin (𝑥)

+ 6 sin (2𝑥)

−9 sin (3𝑥)))

+ 2 (2 cos (𝑥)

−5 cos (2𝑥)) 𝜎
2
)

− 2 cos (𝑥) (8 + 𝐴
2

× (3𝛿 (8 + 9𝐴
2
𝛿)

+16𝛾
2
)

+8𝜎
2
(−2 − 3𝐴

2
𝛿 + 𝜎
2
))

+ 4𝑖𝛽
1
(4 sin (𝑥)

+ 𝐴 (−8𝛾 cos (2𝑥)

+ 3𝐴𝛿 (sin (𝑥)

− 3 sin (3𝑥)))

− 4 sin (𝑥) (𝐴 (−1 +2 cos (𝑥))

×𝛽
2
+ 𝜎
2
))

× (𝑖 + 𝜔𝜏
0
)))

−
1

24 (1 + 𝜎
1
)
2

(𝑖 + 𝜔𝜏
1
)

× (𝐴ℎ
2
𝑡
3
(−2 − 3𝐴

2
𝛿 + 3𝐴

2
𝛿 cos (2𝑥)

−4𝐴𝛾 sin (𝑥) + 2𝜎
2
)

× (𝑖 + 𝜔𝜏
1
) + 2𝐴𝛽

2

× (𝑖𝐴𝛼 sin (𝑥) (1 + 𝜎
1
) − 3𝐴𝑖𝛼 sin (3𝑥)

× (1 + 𝜎
1
) + 2Ω cos (𝑥) (𝑖 + 𝜔𝜏

1
)

− 2𝑖 cos (2𝑥) (1 + Ω + 𝜎
1
− 𝑖Ω𝜔𝜏

1
))

+ 4𝛽
1
(𝑖 + 𝜔𝜏

2
)

× (−2𝐴𝛼 cos (2𝑥) (1 + 𝜎
1
)

+ sin (𝑥) (1 + Ω + 𝜎
1
− 𝑖𝜔Ω𝜏

1
))) ,

𝜃
2
(𝑥, 𝑡) =

𝐴ℎ (1 + ℎ) 𝑡 cos (𝑥) (1 + 2𝐴𝛼 sin (𝑥))

−1 + 𝑖𝜔𝜏
1

+
𝐴
2
ℎ
2
𝑡
3
𝛼

6 (1 + 𝜎
1
) (𝑖 + 𝜔𝜏

1
)

× (−
1

2
𝑖 (2𝐴𝛾 cos (𝑥) − 6𝐴𝛾 cos (3𝑥)

− 9𝐴
2
𝛿 sin (4𝑥)

+ 2𝐴 (sin (𝑥) + sin (2𝑥)

−3 sin (3𝑥)) 𝛽
2

+ 2 sin (2𝑥) (1 + 3𝐴
2
𝛿 − 𝜎
2
))

+ cos (2𝑥) 𝛽
1
(𝑖 + 𝜔𝜏

2
)

+
1

8 (𝑖 + 𝜔𝜏
1
)

× (𝑖𝐴ℎ
2
𝑡
2

× (
𝑎

1 + 𝜎
1

× ( − 4 sin (𝑥)

+ 𝐴 (8] cos (2𝑥)

− 3𝐴𝛿 (sin (𝑥)

−3 sin (3𝑥)))

+ 4 sin (𝑥) (𝐴 (−1 + 4 cos (𝑥))

×𝛽
2
+ 𝜎
2
)

+4 cos (𝑥) 𝛽
1
(1 − 𝑖𝜔𝜏

2
))

+
𝑖𝑎𝜔𝛿
1

1 + 𝜎
1

(4 sin (3𝑥)

+ 𝐴 (−8] cos (𝑥)

+ 3𝐴𝛿 (sin (𝑥)

−3 sin (3𝑥)))

− 4 sin (𝑥) (𝐴 (−1

+4 cos (𝑥))

×𝛽
2
+ 𝜎
2
)

+ 4𝑖 cos (𝑥) 𝛽
1
(𝑖 + 𝜔𝜏

2
))

× 𝜏
1
−

1

𝑖 + 𝜔𝜏
1

× 4𝑖 ((1 + 𝐴
2

+ 𝛼
2 cos (𝑥) + 𝐴𝛼
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Table 1: The optimal values of ℎ at third-order approximate
solutions of (14) when 𝑥 = 1.0, 𝑡 = 1.0, for 𝛿 = 1, 𝜎

1
= 0.2, 𝜎

2
=

0.1, Ω = 0.1, and 𝜔 = 0.02.

𝜏
1

𝜏
2

Optimal value of ℎ Minimum value
𝑢(1, 1)

1 0 −0.95623 1.37312 × 10
−3

0 1 −0.97543 7.9675 × 10
−7

𝜃(1, 1)

1 0 −0.95623 1.3242 × 10
−2

0 1 −0.97543 2.1432 × 10
−5

× (−3𝐴 × 𝛼 cos (3𝑥)

+5 sin (2𝑥))))) .

(25)

Now we make calculations for the results obtained by
the HAM using the Mathematica software package with the
following arbitrary constants:

𝑎 = 0.5, 𝐴 = 0.001, 𝑏 = 0.5, 𝛼 = 1,

𝛽
1
= 0.5, 𝛽

2
= 0.05, 𝛾 = 1, 𝛿 = 0.8,

Ω = 1, 𝜎
1
= 0.2, 𝜎

2
= 0.1.

(26)

To investigate the influence of ℎ on the convergence of the
solution series given by the HAM, we first plot the so-called
ℎ-curves of 𝑢(1, 1) and 𝜃(1, 1). According to the ℎ-curves, it
is easy to discover the valid region of ℎ. We used 3 terms in
evaluating the approximate solution 𝑢(𝑥, 𝑡) ≅ ∑

2

𝑖=0
𝑢
𝑖
(𝑥, 𝑡)

and 𝜃(𝑥, 𝑡) ≅ ∑
2

𝑖=0
𝜃
𝑖
(𝑥, 𝑡). Note that the solution series

contains the auxiliary parameter ℎ which provides us with
a simple way to adjust and control the convergence of the
solution series. In general, by means of the so-called ℎ-curve
that is, a curve of a versus ℎ. As pointed by Liao [8] and
Turkyilmazoglu [25], the valid region of ℎ is a horizontal
line segment. Therefore, it is straightforward to choose an
appropriate range for ℎ which ensures the convergence of
the solution series (Tables 1 and 2). We sketch the ℎ-curve of
𝑢(1, 1) and 𝜃(1, 1) in Figure 1, which shows that the solution
series is convergent when −1.45 < ℎ < −0.5.

4. Discussion

In order to gain physical insight, the temperature𝑇 and radial
displacement 𝑢 have been discussed by assigning numerical
values to the parameter encountered in the problem in
which the numerical results are displayed with the graphical
illustrations in 2D and 3D formats. The variations are shown
in Figures 1–15, with the view of illustrating the theoretical
results obtained in the preceding sections; a numerical result
is calculated for the homotopy analysis method.

Figures 1 and 2 display the ℎ-curve of the third-order
approximate solutions (14) when 𝑥 = 1.0, 𝑡 = 1.0; it

Table 2:The optimal values of ℎ at 5th-order approximate solutions
of (14) when 𝑥 = 1.0, 𝑡 = 1.0, for 𝛿 = 1, 𝜎

1
= 0.2, 𝜎

2
= 0.1, Ω =

0.1, and 𝜔 = 0.02.

𝜏
1

𝜏
2

Optimal value of ℎ Minimum value
𝑢(1, 1)

1 0 −0.990321 1.37312 × 10
−7

0 1 −0.995339 7.9675 × 10
−9

𝜃(1, 1)

1 0 −0.990321 1.3242 × 10
−4

0 1 −0.995339 2.1432 × 10
−6

is concluded that the displacement 𝑢(1, 1) and temperature
𝜃(1, 1) increase with increasing the values of ℎ to their
maxima and then decrease with the high values of ℎ; also, it
is shown that 𝑢(1, 1) is convergent when −0.9 < ℎ < −0.6 and
𝜃(1, 1) is convergent when −0.6 < ℎ < −0.4.

Figures 2–7 show the variations of the radial displacement
and temperature with respect to axial 𝑥, respectively, for
different values of the time 𝑡, rotation Ω, and sensitive parts
of the magnetic fields 𝜎

1
and 𝜎

2
. In both figures, it is clear

that the radial displacement and temperature have a zero
value only in a bounded region of space. It is observed from
Figure 3 that the displacement 𝑢 and the temperature 𝜃 start
from their maximum values, decrease, and increase periodi-
cally with an increase of the coordinate 𝑥; also, it is obvious
that their values take the minimum values and increases with
the increasing values of the time 𝑡. From Figure 4, one can
see that 𝑢 and 𝜃 decrease with an increase of the rotation Ω.
It is shown that the components of the displacement 𝑢 and
the temperature 𝜃 start from the minimum values near zero,
increase, and then decrease periodically with the coordinate
𝑥; it is clear also that there is a slight increase with an increase
of the sensitive parts of the magnetic field (see, Figures 5 and
6). It is shown that the increasing of the coordinate 𝑥 sensitive
an increasing and decreasing on them periodically due to
appearance of the pairs (cos, sin) in the initial condition and
the approximate solutions; it is also clear that the components
begin from their minimum values and increase absolutely
with the variation of the time 𝑡. The variations of the rotation
andmagnetic field tend to slightly affect the displacement and
the temperature.

From Figures 7 and 8 (GL model), it is clear that the
displacement component and temperature if the rotation
and magnetic field are vanish, take larger values than the
corresponding values with the rotation and magnetic field
effects.

Figures 9, 10, and 11 show the variations of the displace-
ment and temperature with respect to the time 𝑡 with LS and
GL models; it is shown that the radial displacement and the
temperature increase with an increase of 𝑡 that takes a slight
change with the rotation Ω if 𝜎

1
= 𝜎
2
= 0, 𝜎

1
if Ω = 𝜎

2
= 0,

and 𝜎
2
ifΩ = 𝜎

1
= 0.

Figures 12 and 13 show clearly the variations of the
displacement and temperature in the presence and absence of
the rotation and sensitive magnetic field; it is observed that
𝑢 and 𝜃 in presence of the parameters are smaller than the
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Figure 1: The ℎ-curve of the third-order approximate solutions of (14) when 𝑥 = 1.0, 𝑡 = 1.0; for LS model when 𝜏
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Figure 3: Variations of the displacement 𝑢 and the temperature 𝜃 for various values of the 𝑥-axis and time 𝑡 when 𝜏
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Figure 5: Variations of the displacement 𝑢 and the temperature 𝜃 for various values of the 𝑥-axis and magnetic field 𝜎
1
when 𝑡 = 0.1, 𝜏

2
= 0,

𝜏
1
= 0.1, 𝛿 = 1, 𝜎

2
= 0.1, Ω = 0.1, and 𝜔 = 0.02.

corresponding values in the absence of𝜎
1
,𝜎
2
, andΩ, but there

is a slight change for LS and GL models.
Finally, Figures 14 and 15 show the variations of the dis-

placement and the temperature with respect to the time 𝑡 for
different values of 𝛽 = 0.5, 0.005 and with and without rota-
tion and magnetic field effects, respectively. It is obvious that
the radial displacement and the temperature increase with an
increase of 𝑡; the displacement increases with an increase of
𝛽 parameter, but the temperature is not affected by 𝛽. Is also
seen that the radial displacement and the temperature take
large values with the rotation andmagnetic field effects. Also,

it is concluded that takes large values for LS comparing with
those in GL model, vice versa for the temperature.

It is obvious that if the rotation and the sensitive part of
the magnetic field are neglected, the approximate solutions
obtained by HAM agree with the results obtained by Sweilam
and Khader [1], taking into consideration VIM. Finally,
it is obvious that the displacement takes large values if
there are no rotation, thermal relaxation times, and sensitive
part of the magnetic field parameters compared with the
corresponding value with the rotation and magnetic fields
parameters.
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Figure 6: Variations of the displacement 𝑢 and temperature 𝜃 for various values of the 𝑥-axis and magnetic field 𝜎
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Figure 7: Variations of the displacement 𝑢 and the temperature 𝜃 for various values of the 𝑥-axis and time 𝑡 whenΩ = 𝜎
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The results indicate that the effect of the rotation and the
magnetic field on the radial displacement and the tempera-
ture is very pronounced.

5. Conclusion

Due to the complicated nature of the governing equations of
the magnetothermoelastic , the finished works in this field
are unfortunately limited. The method used in this study

provides a quite successful in dealing with such problems.
This method gives numerical solutions in the elastic medium
without any restrictions on the actual physical quantities that
appear in the governing equations of the considered problem.
Important phenomena are observed in these computations.

(i) The homotopy analysis method has been successfully
applied to obtain the numerical solutions of the non-
linear equation with initial conditions. The reliability
of this method and reduction in computations give
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Figure 8: Variations of the displacement 𝑢 and the temperature 𝜃 for various values of the 𝑥-axis and time 𝑡 whenΩ = 𝜎
1
= 𝜎
2
= 0, 𝜏

2
= 0.2,

𝜏
1
= 0.1, 𝛿 = 0, and 𝜔 = 0.02.

0.002
0.0015

0.001
0.0005

0

u

0

5

10

15

x

50

40

30

20

10

0

Ω

(a)

0.0015
0.001

0.0005
0

0

5

10

15

x

50

40

30

20

10

0

Ω

𝜃

(b)

Figure 9: Variations of the displacement 𝑢 and the temperature 𝜃 for various values of the 𝑥-axis and rotation Ω when 𝜎
1
= 𝜎
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= 0, 𝑡 = 0.1,

𝜏
2
= 0.2, 𝜏

1
= 0.1, 𝛿 = 0, and 𝜔 = 0.02.

this method a wider applicability. HAM contains a
certain auxiliary parameter ℎ which provides us with
a simple way to adjust and control the convergence
region and rate of convergence of the series solution.
It was also demonstrated that the Adomian decom-
position method, homotopy perturbation method,
and variational iteration method are specialcases
of. HAM is clearly a very efficient and powerful
technique for finding the numerical solutions of
the proposed equation. It therefore provides more
realistic series solutions that generally converge very
rapidly in real physical problems. HAM provides us
with a convenient way of controlling the convergence
of approximation series, which is a fundamental
qualitative difference in analysis between HAM and

other methods. The illustrative examples suggest that
HAM is a powerfulmethod for nonlinear problems in
science and engineering. Mathematica has been used
for computations in this paper.

(ii) It was found that for large values of time the large
and the generalization give numerical results. The
case is quite different when we consider small values
of rotation and magnetic field. The coupled theory
predicts infinite speeds of wave propagation. The
solutions obtained in the context of generalized ther-
moelasticity theory, however, exhibit the behavior of
finite speeds of wave propagation.

(iii) By comparing Figures 1–15 for thermoelastic medium
with presence and absence of the rotation and
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Figure 10: Variations of the displacement 𝑢 and the temperature 𝜃 for various values of the 𝑥-axis and magnetic field 𝜎
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Figure 11: Variations of the displacement 𝑢 and the temperature 𝜃 for various values of the 𝑥-axis and magnetic field 𝜎
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magnetic field, it was found that they have the
same behavior in both media. The effect of rotation
and sensitive parts of the magnetic field is strongly
effective in the displacement and temperature of the
propagation of the harmonic waves propagation in
nonlinear thermoelasticity.

(iv) The results presented in this paper will be very help-
ful for researchers concerned with material science,
designers of new materials, and low-temperature
physicists, aswell as for thoseworking on the develop-
ment of a theory of hyperbolic propagation of hyper-
bolic thermoelastic. The study of the phenomenon of
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Figure 12:The displacement as a function of time and the temperature without and with rotation andmagnetic field (LS) at 𝑥 = 100, 𝑎 = 0.5,
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Figure 13:The displacement as a function of time and the temperature without and with rotation andmagnetic field (GL) at 𝑥 = 100, 𝑎 = 0.5,
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rotation andmagnetic field is also used to improve the
conditions of oil extractions.
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We investigate the effect of boundary slip on the transient pulsatile fluid flow through a vessel with body acceleration.The Fahraeus-
Lindqvist effect, expressing the fluid behavior near the wall by the Newtonian fluid while in the core by a non-Newtonian fluid,
is also taken into account. To describe the non-Newtonian behavior, we use the modified second-grade fluid model in which the
viscosity and the normal stresses are represented in terms of the shear rate. The complete set of equations are then established and
formulated in a dimensionless form. For a special case of the material parameter, we derive an analytical solution for the problem,
while for the general case, we solve the problem numerically. Our subsequent analytical and numerical results show that the slip
parameter has a very significant influence on the velocity profile and also on the convergence rate of the numerical solutions.

1. Introduction

In this paper, we study a fluid-structure interaction problem,
namely, the effect of boundary slip on the flow of a non-
Newtonian fluid through microchannels. This problem has
many applications, and in this paper we particularly focus on
blood flow in the cardiovascular system.

For the study of blood flow in arteries, two major types of
constitutive models have been used. The first type of models
is based on themicrocontinuumor the structured continuum
theories [1–6] inwhich the balance laws are used to determine
the characteristics of blood motion. In the other type of
models, blood is considered as a suspension, and its flow is
modeled by the non-Newtonian fluid mechanics. Due to the
red blood cells (RBC) migration as shown experimentally,
blood has been modeled as a two-stage fluid by many
researchers [7–9]. The first stage is a peripheral layer which
is modeled as a Newtonian viscous fluid, while the other one
is a centre core which is modeled as a non-Newtonian fluid.
The effect of body acceleration and pulsatile conditions were

taken into account under the same problem by Majhi et al.
[7, 10]. Later, Massoudi and Phuoc [11] used the (generalized)
second-grade fluid constitutive model to describe the shear
thinning and normal stress effect, and the behavior of blood
flow near the wall is modeled by the Newtonian fluid model,
while the behavior of the blood flow at the core is described
by the second-grade fluid model.

In all of the above mentioned models, the so-called no-
slip boundary condition is used; namely, the velocity of
flow relative to the solid is zero on the fluid-solid interface
[12]. Although the no-slip condition is supported by many
experimental results, the existence of slip of a fluid on the
solid surface was also observed by many other researches
[13–20]. The Navier slip condition has been used by various
researchers to describe boundary slip and is a more general
boundary condition, in which the fluid velocity component
tangential to the solid surface, relative to the solid surface, is
proportional to the shear stress on the fluid-solid interface
and the slip length. The surface characteristics constant, slip
length, describes the “slipperiness” of the surface. Recently,
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Figure 1: The velocity profile in the small artery with radius 0.15 cm under two different slip parameter values: (a) 𝑙
𝑏

= 0; (b) 𝑙
𝑏

= 2. In the
figure, the 3D graphs show the variation of velocity as a function of time and location, while the 2D graphs show the variation of velocity with
time at three radial locations including the artery centre (𝑟 = 0), the interface of inner-outer layer (𝑟 = 0.6), and the arterial wall (𝑟 = 1).

we andmany other researchers have investigated various flow
problems of Newtonian fluids with the traditional no-slip
and the Navier slip boundary conditions [12, 20–30], and it
is found that the boundary slip and the slip parameter have
significant influence on the flow of Newtonian fluids through
microchannels and tubes.

Motivated by the above mentioned work, we extend
previous work on slip flows of Newtonian fluids [21, 22] to
the case involving both Newtonian and non-Newtonian fluid
flow in the flow region. The new feature and contribution of

this work include establishment of the underlying boundary
value problem for the problem, the derivation of an exact
solution for a special case, and demonstration of the influence
of the slip parameter on the flow profile and flow behavior.
The rest of the paper is organized as follows. In Section 2,
we present the underlying boundary value problem for
the problem in dimensionless form. Then in Section 3, we
derive an exact solution for a special case. In Section 4, we
investigate numerically the effect of the slip parameter for the
general case. Finally, a conclusion is given in Section 5.
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Figure 2: The velocity profile in the large artery with radius 0.50 cm under two different slip parameter values: (a) 𝑙
𝑏

= 0; (b) 𝑙
𝑏

= 2. In the
figure, the 3D graphs show the variation of velocity as a function of time and location, while the 2D graphs show the variation of velocity with
time at three radial locations including the artery centre (𝑟 = 0), the interface of inner-outer layer (𝑟 = 0.6), and the arterial wall (𝑟 = 1).

2. Mathematical Formulation

The flow of a fluid with no thermochemical and electromag-
netic effects can be described by the conservation equations
of mass and linear momentum; namely,

𝜕𝜌

𝜕𝑡
+ div (𝜌k) = 0,

𝜌 (
𝜕k

𝜕𝑡
+ k ⋅ ∇k) = divT + 𝜌b,

(1)

where 𝜌 is the density of the fluid, 𝜕/𝜕𝑡 is the partial derivative
with respect to time, k is the velocity vector, b is the body
force vector, and T is the stress tensor.

The stress tensor is related to the velocity gradient by the
constitutive equations. For a modified (generalized) second-
grade fluid [11, 31, 32], the constitutive equations can be
expressed by

T = −𝑝I + Π
𝑚/2

(𝜇A1 + 𝛼
1
A2 + 𝛼

2
A2

1, ) , (2)

where 𝑚 is a material parameter, Π = (1/2) trA2
1 is the

second invariant of A1, 𝑝 is the fluid pressure, 𝜇 is the
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Figure 3: Diagrams showing the velocity profile on the arterial wall with five different slip parameters 𝑙
𝑏
for two different artery radii (a)

𝑟 = 0.15 cm; (b) 𝑟 = 0.5 cm.

coefficient of viscosity, 𝛼
𝑖
are material moduli (the normal

stress coefficients), and Ai are the kinematical tensors given
by

A1 = L + L𝑇,

A2 =
𝜕A1
𝜕𝑡

+ [grad (A1)] k + A1L + (L)
𝑇A1,

(3)

in which 𝐿 is grad k and the superscript 𝑇 refers to matrix
transposition.

For the axially symmetrical blood flow through a circular
tube of radius 𝑏, we can assume that k = V(𝑟, 𝑡)ez, where 𝑧

is the axial direction and 𝑟 is the radial direction. Under the
periodic body acceleration and a unsteady pulsatile pressure
gradient [7, 10], the momentum equation in the 𝑧-direction
in the cylindrical polar coordinate (𝑟, 𝜃, 𝑧) is

𝜌
𝜕V

𝜕𝑡
= −

𝜕𝑝

𝜕𝑧
+ 𝜌𝐺 +

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑇
𝑟𝑧

) . (4)

The shear stress 𝑇
𝑟𝑧
for a generalized second-grade fluid

can be expressed by

𝑇
𝑟𝑧

=

{{{

{{{

{

𝜇
1



𝜕V
1

𝜕𝑟



𝑚
𝜕V
1

𝜕𝑟
0 ≤ 𝑟 ≤ 𝑎,

𝜇
2

𝜕V
2

𝜕𝑟
𝑎 ≤ 𝑟 ≤ 𝑏.

(5)

The approximate periodic form of the pressure gradient
generated by the heart can be described by

−
𝜕𝑝

𝜕𝑧
= 𝐴
0

+ 𝐴
1
cos𝜔
𝑝
𝑡, (6)

where𝐴
0
, 𝐴
1
, 𝜔
𝑝

= 2𝜋𝑓
𝑝
, and𝑓

𝑝
are the constant component

of the pressure gradient, the amplitude of the pressure
fluctuation (establishing the systolic and diastolic pressures),
the circular frequency, and the frequency of pulse rate,
respectively.

The body acceleration 𝐺 can be approximated by

𝐺 = 𝐴
𝑔
cos (𝜔

𝑏
𝑡 + 𝜙) , (7)

where 𝐴
𝑔
is the amplitude, 𝑓

𝑏
= 𝜔
𝑏
/2𝜋 is the frequency, and

𝜙 is the lead angle of 𝐺 with respect to the action of the heart.
Substituting (5)–(7) into (4), the blood flow equation for

a modified second-grade fluid in the 𝑧-direction, in the inner
and outer core, becomes

𝜌
1

𝜕V
1

𝜕𝑡
= 𝐴
0

+ 𝐴
1
cos𝜔
𝑝
𝑡 + 𝜌𝐴

𝑔
cos (𝜔

𝑏
𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜇
1



𝜕V
1

𝜕𝑟



𝑚
𝜕V
1

𝜕𝑟
) , for 0 ≤ 𝑟 ≤ 𝑎,

𝜌
2

𝜕V
2

𝜕𝑡
= 𝐴
0

+ 𝐴
1
cos𝜔
𝑝
𝑡 + 𝜌𝐴

𝑔
cos (𝜔

𝑏
𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜇
2

𝜕V
2

𝜕𝑟
) , for 𝑎 ≤ 𝑟 ≤ 𝑏.

(8)

In order to completely define the problem, boundary
and initial conditions are required. In this work, the Navier
slip condition is applied. That is, on the solid-fluid interface
𝑟 = 𝑏, the axial fluid velocity, relative to the solid surface, is
proportional to the shear stress on the interface. As the fluid
layer near the wall is modeled as a Newtonian fluid in our
model, the shear stress on the boundary is related to the shear
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Figure 4: Velocity profiles in arteries with different radii 𝑟: (a) 𝑟 = 0.15 cm; (b) 𝑟 = 0.5 cm. In the figure, the graphs on the left column
correspond to 𝑙

𝑏
= 0, while the graphs on the right column correspond to 𝑙

𝑏
= 2.
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Figure 5: Diagrams showing the convergence of numerical solutions for different slip parameters and artery radii: (a) 𝑟 = 0.15 cm; (b)
𝑟 = 0.50 cm.
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Figure 6: Velocity profiles in arteries with different slip parameters 𝑙
𝑏
and radii 𝑟: (a) 𝑟 = 0.15 cm; (b) 𝑟 = 0.50 cm. In the Figure, the graphs

on the left column correspond to 𝑙
𝑏

= 0, while the graphs on the right column correspond to 𝑙
𝑏

= 2.

strain rate by 𝜎
𝑟𝑧

= 𝜇
2
(𝜕V/𝜕𝑧).Thus, the Navier slip condition

can be written as

V
2

(𝑏, 𝑡) + 𝑙
𝜕V
2

𝜕𝑡
(𝑏, 𝑡) = 0, (9)

where 𝑙 is the slip parameter. Moreover, we assume that the
slip parameter does not change along the axial direction.

On 𝑟 = 0, the symmetry condition is introduced:

𝜕V
1

𝜕𝑟
(0, 𝑡) = 0. (10)

On the interface between two different fluids, for contin-
uous and smooth behavior of the velocity and shear stresses,
we require

V
1

(𝑎, 𝑡) = V
2

(𝑎, 𝑡) ,

[𝜇
1



𝜕V
1

𝜕𝑟



𝑚
𝜕V
1

𝜕𝑟
] (𝑎, 𝑡) = [𝜇

2

𝜕V
2

𝜕𝑟
] (𝑎, 𝑡) .

(11)

The initial conditions are set to

V
1

(𝑟, 0) = 0 = V
2

(𝑟, 0) , (12)
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Figure 7: Velocity profiles at three arterial locations (𝑟
1
, 𝑟
2
, 𝑟
3
): for 𝑚 = −1/4 and under different slip parameters 𝑙

𝑏
and artery radii (a)

𝑟 = 0.15 cm; (b) 𝑟 = 0.50 cm. In the Figure, the graphs on the left column correspond to 𝑙
𝑏

= 0, while the graphs on the right column
correspond to 𝑙

𝑏
= 2.

which is essential for the numerical scheme adopted to esti-
mate the time at which the pulsatile steady state is achieved.

To simplify the equations, we introduce the following
nondimensional variables and parameters:

𝑟 =
𝑟

𝑏
, V =

V

V
0

, 𝑡 =
𝜔
𝑝

2𝜋
𝑡, 𝑢

0
=

𝐴
0
𝑏
2

𝜇
2

,

𝑒 =
𝐴
1

𝐴
0

, 𝜔
𝑟

=
𝜔
𝑏

𝜔
𝑝

, 𝑟
0

=
𝑎

𝑏
, 𝑚𝑢 = 𝜇(

𝑢
0

𝑏
)

𝑚

,

𝜌
∗

=
𝜌
1

𝜌
2

, 𝜇
∗

=
𝜇
2

𝜇
,

𝐶
1

=
𝐴
0
𝑏
2

𝜇𝑢
0

, 𝐶
2

= 𝜌
1
𝐴
𝑔

𝑏
2

𝜇𝑢
0

=
𝜌
1
𝐴
𝑔

𝐴
0

𝐵
1
,

𝛼 =
𝜌
1
𝜔
𝑝
𝑏
2

2𝜋𝜇
, 𝛾 =

𝜌
2
𝜔
𝑝
𝑏
2

2𝜋𝜇𝜇∗
=

𝜌
2
𝜔
𝑝
𝑏
2
𝜌
1

2𝜋𝜇𝜇∗𝜌
1

= 𝛼
𝜌
∗

𝜇∗
,

𝐶
1

=
𝐴
0
𝑏
2

𝜇𝑢
0
𝜇∗

=
𝐶
1

𝜇∗
, 𝐶

2
=

𝜌
2
𝐴
𝑔
𝑏
2
𝜌
1

𝜇𝑢
0
𝜇∗𝜌
1

= 𝐶
2

𝜌
∗

𝜇∗
.

(13)
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Figure 8: Diagrams showing the convergence of numerical results of the fluid velocity on the wall to the steady state pulsatile velocity field
under various slip parameters 𝑙

𝑏
for two different artery radii: (a) 𝑟 = 0.15 cm; (b) 𝑟 = 0.50 cm.

In terms of the nondimensional variables and parameters,
(8)–(12) can be written in the form of

𝛼
𝜕V
1

𝜕𝑡
= 𝐶
1

(1 + 𝑒 cos 2𝜋𝑡) + 𝐶
2
cos (2𝜋𝜔

𝑟
𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
[𝑟



𝜕V
1

𝜕𝑟



𝑚
𝜕V
1

𝜕𝑟
] , for 0 ≤ 𝑟 ≤ 𝑟

0
,

𝛾
𝜕V
2

𝜕𝑡
= 𝐶
1

(1 + 𝑒 cos 2𝜋𝑡) + 𝐶
2
cos (2𝜋𝜔

𝑟
𝑡 + 𝜙)

+
1

𝑟

𝜕

𝜕𝑟
[𝑟

𝜕V
2

𝜕𝑟
] , for 𝑟

0
≤ 𝑟 ≤ 1.

(14)

The boundary conditions and initial conditions, in dime-
nsionless form, can be expressed by

𝜕V
1

𝜕𝑟
(0, 𝑡) = 0, (15)

𝑏V
2

(1, 𝑡) + 𝑙
𝜕V
2

𝜕𝑟
(1, 𝑡) = 0, (16)

V
1

(𝑟
0
, 𝑡) = V

2
(𝑟
0
, 𝑡) , (17)

[



𝜕V
1

𝜕𝑟



𝑚
𝜕V
1

𝜕𝑟
] (𝑟
0
, 𝑡) = [𝜇

∗ 𝜕V2
𝜕𝑟

] (𝑟
0
, 𝑡) , (18)

V
1

(𝑟, 0) = 0 = V
2

(𝑟, 0) . (19)

3. Analytical Solution

For 𝑚 = 0, the model reduces to the linear model with
different viscosity in the peripheral layer and the centre core.
In this case, (14) have the same form:

𝐿 (V) = 𝛽
𝜕V

𝜕𝑡
−

1

𝑟

𝜕V

𝜕𝑟
−

𝜕
2V

𝜕𝑟2

= 𝐵
1

(1 + 𝑒 cos (2𝜋𝑡)) + 𝐵
2
cos (2𝜋𝜔

𝑟
𝑡 + 𝜙) .

(20)

By the superposition principle, if V
0
, V
1
, and V

2
are

the solution of 𝐿(V) = 𝑓(𝑡), respectively, for 𝑓(𝑡) =

𝐵
1
𝑒
0𝑡𝑖, 𝐵
1
𝑎𝑒
2𝜋𝑡𝑖, and 𝐵

2
𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖, then the complete solution

of (20) is V = ∑
2

𝑛=0
Re(V
𝑛
).

To determine V
𝑛
, we solve

𝛽
𝜕V
𝑛

𝜕𝑡
= 𝐷
𝑛
𝑒
𝑔𝑛(𝑡)𝑖 +

1

𝑟

𝜕V
𝑛

𝜕𝑟
+

𝜕
2V
𝑛

𝜕𝑟2
, (21)

where 𝑔
0
(𝑡) = 0, 𝑔

1
(𝑡) = 2𝜋𝑡, 𝑔

2
(𝑡) = 2𝜋𝜔

𝑟
𝑡 + 𝜙, 𝐷

0
= 𝐵
1
,

𝐷
1

= 𝑎𝐵
1
, and 𝐷

2
= 𝐵
2
. As (21) admits solutions of the

form V
𝑛

= 𝑓
𝑛
(𝑟)𝑒
𝑔𝑛(𝑡)𝑖, we have from (21) that

𝛽𝑔


𝑛
(𝑡) 𝑓
𝑛

(𝑟) 𝑒
𝑔𝑛(𝑡)𝑖𝑖

= 𝐷
𝑛
𝑒
𝑔𝑛(𝑡)𝑖 +

1

𝑟
𝑓


𝑛
(𝑟) 𝑒
𝑔𝑛(𝑡)𝑖 + 𝑓



𝑛
(𝑟) 𝑒
𝑔𝑛(𝑡)𝑖.

(22)

Dividing by 𝑒
𝑔𝑛(𝑡)𝑖 on both sides of (22), we obtain

𝛽𝑔


𝑛
(𝑡) 𝑓
𝑛

(𝑟) 𝑖 = 𝐷
𝑛

+
1

𝑟
𝑓


𝑛
(𝑟) + 𝑓



𝑛
(𝑟) . (23)
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For 𝑛 = 0, we get

𝑓


0
(𝑟) +

1

𝑟
𝑓


0
(𝑟) = −𝐵

1
, (24)

which has the general solution:𝑓
0
(𝑟) = (𝑐

1
+𝑐
2
ln 𝑟)−(𝐵

1
/4)𝑟
2.

For 𝑛 = 1, we have

𝑓


1
(𝑟) +

1

𝑟
𝑓


1
(𝑟) − 2𝜋𝛽𝑖𝑓

1
(𝑟) = −𝑒𝐵

1
. (25)

Let 𝛽
2

1
= −2𝜋𝛽𝑖; then,

1

𝛽
2

1

𝑓


1
(𝑟) +

1

𝛽
2

1
𝑟

𝑓


1
(𝑟) + 𝑓

1
(𝑟) = −

𝑒𝐵
1

𝛽
2

1

. (26)

Let 𝑟 = 𝛽
1
𝑟; we have

𝑟
2
𝑓


1
(𝑟) + 𝑟𝑓



1
(𝑟) + 𝑟

2
𝑓
1

(𝑟) = −
𝑒𝐵
1

𝛽
2

1

𝑟
2
. (27)

The general solution of (27) is

𝑓
1

(𝑟) = 𝑑
1
𝐽
0

(𝛽
1
𝑟) + 𝑒

1
𝑌
0

(𝛽
1
𝑟) −

𝑒𝐵
1

2𝜋𝛽
𝑖, (28)

where 𝑑
1
and 𝑒

1
are integration constants and 𝐽

0
and 𝑌

0

denote the zero-order Bessel functions of the first kind and
the second kind, respectively.

Similarly, for 𝑛 = 2, we have

𝑓


2
(𝑟) +

1

𝑟
𝑓


2
(𝑟) − 2𝛽𝜋𝜔

𝑟
𝑓
2

(𝑟) 𝑖 = −𝐵
2
, (29)

and the general solution is

𝑓
2

= 𝑑
2
𝐽
0

(𝛽
2
𝑟) + 𝑒

2
𝑌
0

(𝛽
2
𝑟) −

𝐵
2

2𝛽𝜔
𝑟
𝜋

𝑖, (30)

where 𝛽
2

2
= −2𝜋𝛽𝜔

𝑟
𝑖.

Because the boundness of V
1
, V
2
, 𝑐
2
, 𝑒
1
, and 𝑒

2
are set to

zero, hence, from (14) and the solutions for (20), we have

V
1

= Re {𝑐
1

−
𝐶
1

4
𝑟
2

+ [𝑑
1
𝐽
0

(𝛽
1
𝑟) −

𝑒𝐶
1

2𝜋𝛼
𝑖] 𝑒
2𝜋𝑡𝑖

+ [𝑑
2
𝐽
0

(𝛽
2
𝑟) −

𝐶
2

2𝜋𝜔
𝑟
𝛼

𝑖] 𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖} ,

V
2

= Re{𝑐
1

+ 𝑐
2
ln 𝑟 −

𝐶
1

4
𝑟
2

+ [𝑑
1
𝐽
0

(𝛽
1
𝑟) + 𝑒

1
𝑌
0

(𝛽
1
𝑟) −

𝑒𝐶
1

2𝜋𝛾
𝑖] 𝑒
2𝜋𝑡𝑖

+ [𝑑
2
𝐽
0

(𝛽
2
𝑟) + 𝑒

2
𝑌
0

(𝛽
2
𝑟) −

𝑐
2
𝑖

2𝜋𝜔
𝑟
𝛾

]

× 𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖} ,

(31)

where 𝛽
2

1
= −2𝜋𝛾𝑖, 𝛽

2

2
= −2𝜋𝜔

𝑟
𝛾𝑖, 𝛽
2

1
= −2𝜋𝛼𝑖, and 𝛽

2

2
=

−2𝜋𝜔
𝑟
𝛼𝑖.

As 𝑑𝐽
0
(𝑥)/𝑑𝑥 = −𝐽

1
(𝑥) and 𝑑𝑌

0
(𝑥)/𝑑𝑥 = −𝑌

0
(𝑥), we have

𝜕V
1

𝜕𝑟
= Re(−

𝐶
1

2
𝑟 − 𝑑
1
𝛽
1
𝐽
1

(𝛽
1
𝑟) 𝑒
2𝜋𝑡𝑖

−𝑑
2
𝛽
2
𝐽
1

(𝛽
2
𝑟) 𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖) ,

𝜕V
2

𝜕𝑟
= Re(𝑐

2

1

𝑟
−

𝐶
1

2
𝑟

+ [−𝑑
1
𝛽
1
𝐽
1

(𝛽
1
𝑟) − 𝑒

1
𝛽
1
𝑌
1

(𝛽
1
𝑟)] 𝑒
2𝜋𝑡𝑖

+ [−𝑑
2
𝛽
2
𝐽
1

(𝛽
2
𝑟) − 𝑒

2
𝛽
2
𝑌
1

(𝛽
2
𝑟)] 𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖) .

(32)

Obviously, V
1
satisfies the boundary condition (15) automati-

cally. We now consider the boundary condition (16); namely,

Re[(𝑏𝑐
1

+ 𝑙𝑐
2

− (𝑙 +
𝑏

2
)

𝐶
1

2
)

+ ( (𝑏𝐽
0

(𝛽
1
) − 𝑙𝛽

1
𝐽
1

(𝛽
1
)) 𝑑
1

+ (𝑏𝑌
0

(𝛽
1
) − 𝑙𝛽

1
𝑌
1

(𝛽
1
)) 𝑒
1

−
𝑒𝑏𝐶
1
𝑖

2𝜋𝛾
) 𝑒
2𝜋𝑡𝑖

+ (𝑑
2

(𝑏𝐽
0

(𝛽
2
) − 𝑙𝛽

2
𝐽
1

(𝛽
2
))

+ 𝑒
2

(𝑏𝑌
0

(𝛽
2
) − 𝑙𝛽

2
𝑌
1

(𝛽
2
))

−
𝑏𝐶
2

2𝜋𝜔
𝑟
𝛾

𝑖) 𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖] = 0.

(33)

Further, from boundary conditions (17) and (18), we have

Re[(𝑐
1

− 𝑐
1

− 𝑐
2
ln 𝑟
0

− (𝐶
1

− 𝐶
1
)

𝑟
2

0

4
)

+ (𝑑
1
𝐽
0

(𝛽
1
𝑟
0
) − 𝑑
1
𝐽
0

(𝛽
1
𝑟
0
) − 𝑒
1
𝑌
0

(𝛽
1
𝑟
0
)

− (𝛾𝐶
1

− 𝛼𝐶
1
)

𝑒𝑖

2𝜋𝛼𝛾
) 𝑒
2𝜋𝑡𝑖

+ (𝑑
2
𝐽
0

(𝛽
2
𝑟
0
) − 𝑑
2
𝐽
0

(𝛽
2
𝑟
0
)

−𝑒
2
𝑌
0

(𝛽
2
𝑟
0
) − (𝛾𝐶

2
− 𝛼𝐶
2
)

𝑖

2𝜋𝜔
𝑟
𝛾𝛼

)

× 𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖] = 0,
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Re [((𝜇
∗
𝐶
1

− 𝐶
1
)

𝑟
0

2
− 𝜇
∗ 𝑐
2

𝑟
0

)

+ ( − 𝑑
1
𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) + 𝑑
1
𝜇
∗
𝛽
1
𝐽
1

(𝛽
1
𝑟
0
)

+𝑒
1
𝜇
∗
𝛽
1
𝑌
1

(𝛽
1
𝑟
0
)) 𝑒
2𝜋𝑡𝑖

+ (−𝑑
2
𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) + 𝑑
2
𝜇
∗
𝛽
2
𝐽
1

(𝛽
2
𝑟
0
)

+𝑒
2
𝜇
∗
𝛽
2
𝑌
1

(𝛽
2
𝑟
0
))

× 𝑒
(2𝜋𝜔𝑟𝑡+𝜙)𝑖] = 0.

(34)

As (33)-(34) must be satisfied for any instant of time 𝑡,
we require that the constant terms and the coefficients of the
exponential terms all vanish; namely,

𝑏𝑐
1

+ 𝑙𝑐
2

− (𝑙 +
𝑏

2
)

𝐶
1

2
= 0,

𝑐
1

− 𝑐
1

− 𝑐
2
ln 𝑟
0

− (𝐶
1

− 𝐶
1
)

𝑟
2

0

4
= 0,

(𝜇
∗
𝐶
1

− 𝐶
1
)

𝑟
0

2
− 𝜇
∗ 𝑐
2

𝑟
0

= 0,

𝑑
1

(𝑏𝐽
0

(𝛽
1
) − 𝑙𝛽

1
𝐽
1

(𝛽
1
)) + 𝑒

1
(𝑏𝑌
0

(𝛽
1
) − 𝑙𝛽

1
𝑌
1

(𝛽
1
))

−
𝑒𝑏𝐶
1

2𝜋𝛾
𝑖 = 0,

𝑑
1
𝐽
0

(𝛽
1
𝑟
0
) − 𝑑
1
𝐽
0

(𝛽
1
𝑟
0
) − 𝑒
1
𝑌
0

(𝛽
1
𝑟
0
) −

𝑒𝐶
1

2𝜋𝛼
𝑖

+
𝑒𝐶
1

2𝜋𝛾
𝑖 = 0,

− 𝑑
1
𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) + 𝑑
1
𝜇
∗
𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) + 𝑒
1
𝜇
∗
𝛽
1
𝑌
1

(𝛽
1
𝑟
0
)

= 0,

𝑑
2

(𝑏𝐽
0

(𝛽
2
) − 𝑙𝛽

2
𝐽
1

(𝛽
2
)) + 𝑒

2
(𝑏𝑌
0

(𝛽
2
) − 𝑙𝛽

2
𝑌
1

(𝛽
2
))

−
𝑏𝐶
2

2𝜋𝜔
𝑟
𝛾

𝑖 = 0,

𝑑
2
𝐽
0

(𝛽
2
𝑟
0
) − 𝑑
2
𝐽
0

(𝛽
2
𝑟
0
) − 𝑒
2
𝑌
0

(𝛽
2
𝑟
0
) −

𝐶
1

2𝜋𝜔
𝑟
𝛼

𝑖

+
𝐶
2

2𝜋𝜔
𝑟
𝛾

𝑖 = 0,

− 𝑑
2
𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) + 𝑑
2
𝜇
∗
𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) + 𝑒
2
𝜇
∗
𝛽
2
𝑌
1

(𝛽
2
𝑟
0
)

= 0.

(35)

Solving the above system of equations yields

𝑐
1

= (ln 𝑟
0

−
𝑙

𝑏
) ((𝜇

∗
𝐶
1

− 𝐶
1
)

𝑟
2

0

2𝜇∗
)

+ (
𝑙

𝑏
+

1 − 𝑟
2

0

2
)

𝐶
1

2
+ 𝐶
1

𝑟
2

0

4
,

𝑐
1

= −
𝑙

𝑏
((𝜇
∗
𝐶
1

− 𝐶
1
)

𝑟
2

0

2𝜇∗
) + (

𝑙

𝑏
+

1

2
)

𝐶
1

2
,

𝑐
2

= (𝜇
∗
𝐶
1

− 𝐶
1
)

𝑟
2

0

2𝜇∗
,

𝑑
1

= 𝜇
∗

[ (𝐽
1

(𝛽
1
𝑟
0
) 𝑌
0

(𝛽
1
𝑟
0
) − 𝐽
0

(𝛽
1
𝑟
0
) 𝑌
1

(𝛽
1
𝑟
0
))

×
𝑒𝑏𝛽
1
𝐶
1
𝑖

2𝜋𝛾
+ (𝛾𝐶

1
− 𝛼𝐶
1
)

× [𝐽
1

(𝛽
1
𝑟
0
) (𝑏𝑌
0

(𝛽
1
) − 𝑙𝛽

1
𝑌
1

(𝛽
1
))

−𝑌
1

(𝛽
1
𝑟
0
) (𝑏𝐽
0

(𝛽
1
) − 𝑙𝛽

1
𝐽
1

(𝛽
1
))]

×
𝛽
1
𝑒𝑖

2𝜋𝛾𝛼
] / (𝑏𝐽

0
(𝛽
1
) − 𝑙𝛽

1
𝐽
1

(𝛽
1
))

× (𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) 𝑌
0

(𝛽
1
𝑟
0
) − 𝜇
∗
𝛽
1
𝑌
1

(𝛽
1
𝑟
0
) 𝐽
0

(𝛽
1
𝑟
0
))

+ (𝑏𝑌
0

(𝛽
1
) − 𝑙𝛽

1
𝑌
1

(𝛽
1
))

× (𝜇
∗
𝛽
1
𝐽
0

(𝛽
1
𝑟
0
) 𝐽
1

(𝛽
1
𝑟
0
) − 𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) 𝐽
0

(𝛽
1
𝑟
0
)) ,

𝑑
1

= [(𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) 𝑌
0

(𝛽
1
𝑟
0
)

−𝜇
∗
𝛽
1
𝑌
1

(𝛽
1
𝑟
0
) 𝐽
0

(𝛽
1
𝑟
0
))

×
𝑒𝑏𝐶
1

2𝜋𝛾
𝑖 +

(𝛾𝐶
1

− 𝛼𝐶
1
)

2𝜋𝛾𝛼

× (𝑏𝑌
0

(𝛽
1
) − 𝑙𝛽

1
𝑌
1

(𝛽
1
))

× 𝑒𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) 𝑖] / (𝑏𝐽

0
(𝛽
1
) − 𝑙𝛽

1
𝐽
1

(𝛽
1
))

× (𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) 𝑌
0

(𝛽
1
𝑟
0
)

−𝜇
∗
𝛽
1
𝑌
1

(𝛽
1
𝑟
0
) 𝐽
0

(𝛽
1
𝑟
0
))

+ (𝑏𝑌
0

(𝛽
1
) − 𝑙𝛽

1
𝑌
1

(𝛽
1
))

× (𝜇
∗
𝛽
1
𝐽
0

(𝛽
1
𝑟
0
) 𝐽
1

(𝛽
1
𝑟
0
)

−𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) 𝐽
0

(𝛽
1
𝑟
0
)) ,

𝑒
1

= [ (𝜇
∗
𝛽
1
𝐽
0

(𝛽
1
𝑟
0
) 𝐽
1

(𝛽
1
𝑟
0
)

−𝛽
1
𝐽
0

(𝛽
1
𝑟
0
) 𝐽
1

(𝛽
1
𝑟
0
))
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×
𝑒𝑏𝐶
1
𝑖

2𝜋𝛾
− (𝑏𝐽
0

(𝛽
1
) − 𝑙𝛽

1
𝐽
1

(𝛽
1
))

× (𝛾𝐶
1

− 𝛼𝐶
1
)

× 𝐽
1

(𝛽
1
𝑟
0
)

𝛽
1
𝑒𝑖

2𝜋𝛼𝛾
] / (𝑏𝐽

0
(𝛽
1
) − 𝑙𝛽

1
𝐽
1

(𝛽
1
))

× (𝛽
1
𝐽
1

(𝛽
1
𝑟
0
) 𝑌
0

(𝛽
1
𝑟
0
)

−𝜇
∗
𝛽
1
𝑌
1

(𝛽
1
𝑟
0
) 𝐽
0

(𝛽
1
𝑟
0
))

+ (𝑏𝑌
0

(𝛽
1
) − 𝑙𝛽

1
𝑌
1

(𝛽
1
))

× (𝜇
∗
𝛽
1
𝐽
0

(𝛽
1
𝑟
0
) 𝐽
1

(𝛽
1
𝑟
0
) − 𝛽

1
𝐽
1

(𝛽
1
𝑟
0
) 𝐽
0

(𝛽
1
𝑟
0
)) ,

𝑑
2

= 𝜇
∗

[ (𝐽
1

(𝛽
2
𝑟
0
) 𝑌
0

(𝛽
2
𝑟
0
) − 𝐽
0

(𝛽
2
𝑟
0
) 𝑌
1

(𝛽
2
𝑟
0
))

×
𝑏𝛽
2
𝐶
1
𝑖

2𝜋𝜔
𝑟
𝛾

+ (𝛾𝐶
2

− 𝛼𝐶
2
)

× [𝐽
1

(𝛽
2
𝑟
0
) (𝑏𝑌
0

(𝛽
2
) − 𝑙𝛽

2
𝑌
1

(𝛽
2
))

−𝑌
1

(𝛽
2
𝑟
0
) (𝑏𝐽
0

(𝛽
2
) − 𝑙𝛽

2
𝐽
1

(𝛽
2
))]

×
𝛽
2
𝑖

2𝜋𝜔
𝑟
𝛾𝛼

] / (𝑏𝐽
0

(𝛽
2
) − 𝑙𝛽

2
𝐽
1

(𝛽
2
))

× (𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝑌
0

(𝛽
2
𝑟
0
)

−𝜇
∗
𝛽
2
𝑌
1

(𝛽
2
𝑟
0
) 𝐽
0

(𝛽
2
𝑟
0
))

+ (𝑏𝑌
0

(𝛽
2
) − 𝑙𝛽

2
𝑌
1

(𝛽
2
))

× (𝜇
∗
𝛽
2
𝐽
0

(𝛽
2
𝑟
0
) 𝐽
1

(𝛽
2
𝑟
0
)

−𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝐽
0

(𝛽
2
𝑟
0
)) ,

𝑑
2

= [(𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝑌
0

(𝛽
2
𝑟
0
)

−𝜇
∗
𝛽
2
𝑌
1

(𝛽
2
𝑟
0
) 𝐽
0

(𝛽
2
𝑟
0
))

×
𝑏𝐶
1

2𝜋𝜔
𝑟
𝛾

𝑖 +

(𝛾𝐶
1

− 𝛼𝐶
1
)

2𝜋𝛾𝛼𝜔
𝑟

× (𝑏𝑌
0

(𝛽
2
) − 𝑙𝛽

2
𝑌
1

(𝛽
2
))

×𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝑖] / (𝑏𝐽

0
(𝛽
2
) − 𝑙𝛽

2
𝐽
1

(𝛽
2
))

× (𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝑌
0

(𝛽
2
𝑟
0
)

−𝜇
∗
𝛽
2
𝑌
1

(𝛽
2
𝑟
0
) 𝐽
0

(𝛽
2
𝑟
0
))

+ (𝑏𝑌
0

(𝛽
2
) − 𝑙𝛽

2
𝑌
1

(𝛽
2
))

× (𝜇
∗
𝛽
2
𝐽
0

(𝛽
2
𝑟
0
) 𝐽
1

(𝛽
2
𝑟
0
)

−𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝐽
0

(𝛽
2
𝑟
0
)) ,

𝑒
2

= [(𝜇
∗
𝛽
2
𝐽
0

(𝛽
2
𝑟
0
) 𝐽
1

(𝛽
2
𝑟
0
)

−𝛽
2
𝐽
0

(𝛽
2
𝑟
0
) 𝐽
1

(𝛽
2
𝑟
0
))

×
𝑏𝐶
1
𝑖

2𝜋𝜔
𝑟
𝛾

− (𝑏𝐽
0

(𝛽
2
) − 𝑙𝛽

2
𝐽
1

(𝛽
2
))

× (𝛾𝐶
1

− 𝛼𝐶
1
) 𝐽
1

(𝛽
2
𝑟
0
)

×
𝛽
2
𝑖

2𝜋𝜔
𝑟
𝛼𝛾

] / (𝑏𝐽
0

(𝛽
2
) − 𝑙𝛽

2
𝐽
1

(𝛽
2
))

× (𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝑌
0

(𝛽
2
𝑟
0
)

−𝜇
∗
𝛽
2
𝑌
1

(𝛽
2
𝑟
0
) 𝐽
0

(𝛽
2
𝑟
0
))

+ (𝑏𝑌
0

(𝛽
2
) − 𝑙𝛽

2
𝑌
1

(𝛽
2
))

× (𝜇
∗
𝛽
2
𝐽
0

(𝛽
2
𝑟
0
) 𝐽
1

(𝛽
2
𝑟
0
)

−𝛽
2
𝐽
1

(𝛽
2
𝑟
0
) 𝐽
0

(𝛽
2
𝑟
0
)) .

(36)

To show the flow behavior and the effect of the slip
parameter, we investigate the velocity profiles in the arteries
with different values of the slip parameter under various
different conditions. In the first example of investigation, the
radius of the artery is taken as 𝑟 = 𝑏 = 0.15 cm, and the other
parameters are set to 𝐴

0
= 698.65 dyne/cm3, 𝐴

𝑔
= 0.5𝑔,

𝑓
𝑏

= 𝑓
𝑝

= 1.2, 𝜙 = 0, 𝐶
1

= 6.6, 𝐶
2

= 4.64, 𝐴
1

= 1.2𝐴
0
, and

𝜌
1
/𝜌
2

= 1. Figure 1 shows the 3-dimensional velocity profile
as a function of time and location and the 2-dimensional
velocity profile as a function of time at three different radial
locations for two different slip parameters 𝑙 = 0 (no-slip)
and 𝑙 = 2. The results show that boundary slip has a very
dramatical effect on the fluid flow in the artery. It affects
not only the magnitude of the flow velocity significantly, but
also the flow pattern and velocity profile on the cross-section
of the artery. For the no-slip flow (𝑙

𝑏
= 0), the pulsatile

flow nature gradually disappears toward the arterial wall,
while with boundary slip, the flow near the arterial wall also
displays a pulsatile nature.

We then investigatewhether the above observed flowphe-
nomena associated with boundary slip are affected or not by
the radius of the artery, and for this purpose, we consider the
fluid flow through an artery with a larger radius 𝑟 = 0.5 cm.
The constant pressure gradient is set to 𝐴

0
= 32 dyne/cm3 in

order to achieve a mean velocity magnitude approximately
equal to that in the smaller artery, while all other parameters
are set to the same values as those used for the smaller
radius. Figure 2 shows the velocity profile in the artery for
two different slip parameter values including 𝑙

𝑏
= 0 (no-slip)

and 𝑙
𝑏

= 2. The 3-dimensional graph shows the variation
of the flow velocity with time and radial position, while the
2-dimensional graphs demonstrate the variation of the flow
velocity with time at three different radial locations including
𝑟 = 0 (centre), 𝑟 = 0.6 (inner-outer layers interface),
and 𝑟 = 1 (arterial wall). From Figures 1 and 2, it is clear
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that the boundary slip related flow phenomena and behavior
observed for the smaller artery also appear in the artery with
a larger radius, and further, amore significant pulsatile nature
of fluid flow is observed for the larger artery.

To further investigate the effect of the slip parameter on
the velocity profile near the artery wall, we show in Figure 3
the velocity of fluid on the artery wall for four different
values of the slip parameter including 𝑙

𝑏
= 0, 2, 4, 6, and 8.

The results clearly demonstrate that the slip parameter has a
very significant effect on the near-wall velocity and that the
magnitude of the average wall velocity is proportional to the
slip parameter.

4. Numerical Investigation

A numerical scheme, based on the finite different method, is
established to solve the underlying boundary value problem
for the general case 𝑚 ̸= 0, consisting of (14) and boundary
condition (15)–(19). To validate the numerical technique, we
apply the numerical scheme to generate a series of numerical
solutions for the case 𝑚 = 0 and then compare the numerical
results with the exact solution derived in Section 3.

Figure 4 presents the velocity profile in the small and large
arteries for two different slip parameters 𝑙

𝑏
= 0 (no-slip) and

𝑙
𝑏

= 2 obtained by the numerical technique. The numerical
errors between the exact solution and the numerical solution,
𝐸
𝑟

= 𝑉 − 𝑈, are presented in Figure 5 in which 𝑉 is the
exact solution and 𝑈 is the numerical solution. The results
clearly indicate that the numerical solution converges to the
exact solution.This shows that a larger slip length has a lower
convergence rate.

We then investigate the flow phenomena for the general
case 𝑚 ̸= 0, and here we consider 𝑚 = −1/4 in the investiga-
tion. Figure 6 gives the 3D graph showing the convergence of
the transient velocity field to a steady state pulsatile velocity
field and also demonstrating the substantial influence of
boundary slip on the steady state velocity profile in both
magnitude and flow pattern. Figure 7 shows the variations
of velocities with time at three arterial locations for different
slip parameters and artery radii and also clearly demonstrates
the significant effect of boundary slip on the flow through the
artery. Figure 8 shows the variation of fluid velocity along the
artery wall under different slip parameters and artery radii.
The results show that as the slip parameter increases, the time
required for achieving convergence results increases, and the
magnitude of the average steady state velocity also increases.

5. Conclusion

In this paper, amathematicalmodel for the transient pulsatile
flow of fluids through vessels, taking into account boundary
slip and the Fahraeus-Lindqvist effect, is established. For a
special case of the underlying boundary value problem, an
exact solution for the velocity field has been derived in explicit
form, which provides one with an exact analytical method
for investigating the flow phenomena under the special case
and also a mean for validating the subsequently developed
numerical scheme for generating numerical results for the

general case. Our analytical and numerical studies show that
for the flow of fluids with the Fahraeus-Lindqvist effect,
boundary slip has a very significant influence on the magni-
tude of the mean flow velocity and on the flow pattern and
velocity profile on the cross-section. With boundary slip, the
boundary layer near thewall also displays significant pulsatile
flow nature. The results also show that as the boundary slip
length increases, the convergence rate of numerical results to
the exact solutions decreases and the time required to achieve
the steady state pulsatile flow increases.
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The homotopy decomposition method, a relatively new analytical method, is used to solve the 2D and 3D Poisson equations and
biharmonic equations.Themethod is chosen because it does not require the linearization or assumptions of weak nonlinearity, the
solutions are generated in the form of general solution, and it is more realistic compared to the method of simplifying the physical
problems.Themethod does not require any corrected function or any Lagrangemultiplier and it avoids repeated terms in the series
solutions compared to the existing decompositionmethod including the variational iterationmethod, the Adomian decomposition
method, and Homotopy perturbation method. The approximated solutions obtained converge to the exact solution as N tends to
infinity.

1. Introduction

The numerical solution of Poisson equations and biharmonic
equations is an important problem in numerical analysis.
A vast arrangement of investigating effort has been pub-
lished on the development of numerical solution of Poisson
equations and biharmonic equations. The finite difference
schemes of second and fourth order for the solution of
Poisson’s equation in polar coordinates have been derived by
Mittal andGahlaut [1]. A numericalmethod to interpolate the
source terms of Poisson’s equation by using B-spline approx-
imation has been devised by Perrey-Debain and ter Morsche
[2]. Sutmann and Steffen [3] proposed compact approxima-
tion schemes for the Laplace operator of fourth and sixth
order; the schemes are based on a Padé approximation of the
Taylor expansion for the discretized Laplace operator. Ge [4]
used fourth-order compact difference discretization scheme
with unequal mesh sizes in different coordinate directions to
solve a 3DPoisson equation on a cubic domain. Gumerov and
Duraiswami [5] developed a complete translation theory for

the biharmonic equation in three dimensions. Khattar et al.
[6] derived a fourth-order finite difference approximation
based on arithmetic average discretization for the solution
of three-dimensional nonlinear biharmonic partial differen-
tial equations on a 19-point compact stencil using coupled
approach. Altas et al. [7] used multigrid and precondi-
tioned Krylov iterative methods to solve three-dimensional
nonlinear biharmonic partial differential equations. Jeon
[8] derived scalar boundary integral equation formulas for
both interior and exterior biharmonic equations with the
Dirichlet boundary data. A spectral collocation method for
numerically solving two-dimensional biharmonic boundary-
value problems has been reported in [9]. An indirect radial-
basis-function collocation method for numerically solving
biharmonic boundary-value problems has been reported in
[10]. A high-order boundary integral equationmethod for the
solution of biharmonic equations has been presented in [11].
A Galerkin boundary node method for solving biharmonic
problems was developed in [12]. An integral collocation
approach based on Chebyshev polynomials for numerically
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solving biharmonic equations for the case of irregularly
shaped domains has been developed by Mai-Duy et al.
[13]. A numerical method, based on neural-network-based
functions, for solving partial differential equations has been
in [14]. Mai-Duy and Tanner [15] presented a collocation
method based on a Cartesian grid and a 1D integrated radial
basis function scheme for numerically solving partial differ-
ential equations in rectangular domains and Haar wavelet
presented in [16]. The aim of this paper is to solve these
problems via the homotopy decomposition method.

2. Method

In this study we follow the method of [17–20]. In order to
illustrate the basic idea of this method we consider a gen-
eral nonlinear nonhomogeneous partial differential equation
with initial conditions of the following form

𝜕
𝑚
𝑈 (𝑥, 𝑡)

𝜕𝑡𝑚
= 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) ,

𝑚 = 1, 2, 3, . . . ,

(1)

subject to the initial conditions

𝜕
𝑖
𝑈 (𝑥, 0)

𝜕𝑡𝑖
= 𝑓
𝑚
(𝑥) ,

𝜕
𝑚−1

𝑈 (𝑥, 0)

𝜕𝑡𝑚−1
= 0,

𝑖 = 0, 1, 2, . . . , 𝑚 − 2,

(2)

where 𝑓 is a known function,𝑁 is the general nonlinear dif-
ferential operator, and 𝐿 represents a linear differential oper-
ator. The method’s first step here is to apply the inverse
operator 𝜕𝑚/𝜕𝑡𝑚 of on both sides (1) to obtain

𝑈 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!

𝑑
𝑘
𝑢 (𝑥, 0)

𝑑𝑡𝑘

+ ∫

𝑡

0

∫

𝑡1

0

⋅ ⋅ ⋅ ∫

𝑡𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡.

(3)

The multi-integrals in (3) can be transformed to

∫

𝑡

0

∫

𝑡1

0

⋅ ⋅ ⋅ ∫

𝑡𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡
1

=
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(4)
So that (3) can be reformulated as
𝑈 (𝑥, 𝑡)

=

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
{
𝑑
𝑘
𝑢 (𝑥, 0)

𝑑𝑡𝑘
}

+
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏)) + 𝑁 (𝑈 (𝑥, 𝜏))

+ 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(5)

Using the homotopy scheme the solution of the previous
integral equation is given in a series form as

𝑈(𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡) ,

𝑈 (𝑥, 𝑡) = lim
𝑝→1

𝑈 (𝑥, 𝑡, 𝑝)

(6)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑟, 𝑡) =

∞

∑

𝑛=1

𝑝
𝑛
H
𝑛
(𝑈) , (7)

where 𝑝 ∈ (0, 1] is an embedding parameter. H
𝑛
(𝑈) is He’s

polynomials [21] that can be generated by

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
) =

1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

𝑛

∑

𝑗=0

𝑝
𝑗
𝑈
𝑗
(𝑥, 𝑡))]

]

,

𝑛 = 0, 1, 2 . . . .

(8)

The homotopy decomposition method is obtained by the
graceful coupling of decomposition method with He’s poly-
nomials and is given by
∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡)

= 𝑇 (𝑥, 𝑡)

+ 𝑝
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

× [𝑓 (𝑥, 𝜏) + 𝐿(

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝜏))

+

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛
(𝑈)] 𝑑𝜏

(9)
with

𝑇 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
{
𝑑
𝑘
𝑢 (𝑥, 𝑡)

𝑑𝑡𝑘
| 𝑡 = 0} . (10)

Comparing the terms of the same power of 𝑝 gives the solu-
tions of various orders.The initial guess of the approximation
is 𝑇(𝑥, 𝑡). Some further related results can be seen in [22–25].

Lemma 1 (see [17]). The complexity of the homotopy decom-
position method is of order 𝑂(𝑛).

Proof. Thenumber of computations including product, addi-
tion, subtraction, and division are as follows.

In step 2
𝑈
0
: 0 because it is obtained directly from the initial

conditions
𝑈
1
: 3

...
𝑈
𝑛
: 3.

Now in step 4 the total number of computations is equal to
∑
𝑛

𝑗=0
𝑈
𝑗
(𝑥, 𝑡) = 3𝑛 = 𝑂(𝑛).



Abstract and Applied Analysis 3

3. Solutions of the Main Problems

Problem 1. Consider the following equation

𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
= sin (𝜋𝑥) sin (𝜋𝑦) ;

𝑢 (𝑥, 𝑦) = 0 along the boundaries, 0 ≤ 𝑥, 𝑦 ≤ 1;

𝑢
𝑥
(0, 𝑦) = −

sin (𝑦𝜋)
2𝜋

.

(11)

The exact solution of the previous equation is given as

𝑢 (𝑥, 𝑦) =
sin (𝑥𝜋) sin (𝜋𝑦)

−2𝜋2
. (12)

In the view of the homotopy decomposition method, (11) can
be first transformed to

𝑢 (𝑥, 𝑦) = 𝑢 (0, 𝑦) −
sin (𝜋𝑦)
2𝜋

𝑥

+ ∫

𝑥

0

(𝑥 − 𝜏) [sin (𝜋𝜏) sin (𝜋𝑦) − 𝑢
𝑦𝑦
(𝜏, 𝑦)] ,

𝑢 (𝑥, 𝑦, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑦) .

(13)

Following the decomposition techniques, we obtain the fol-
lowing equation

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑦)

= 𝑇 (𝑥, 𝑦)

+ 𝑝∫

𝑥

0

(𝑥 − 𝜏) [ sin (𝜋𝜏) sin (𝜋𝑦)

−
𝜕
2

𝜕𝑦2
[

∞

∑

𝑛=0

𝑝
𝑛
𝑢
𝑛
(𝑥, 𝑦)]] .

(14)

Comparing the terms of the same power of 𝑝 leads to

𝑝
0
: 𝑢
0
(𝑥, 𝑦) = −

sin (𝜋𝑦)
2𝜋

𝑥,

𝑝
1
: 𝑢
1
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [sin (𝜋𝜏) sin (𝜋𝑦) − 𝜕
2

𝜕𝑦2
[𝑢
0
]] 𝑑𝜏,

𝑢
1
(𝑥, 𝑦)=0 along the boundaries,

𝑝
2
: 𝑢
2
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2

𝜕𝑦2
[𝑢
1
]] 𝑑𝜏,

𝑝
3
: 𝑢
3
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2

𝜕𝑦2
[𝑢
2
]] 𝑑𝜏,

𝑝
𝑛
: 𝑢
𝑛
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2
𝑢
𝑛−1

𝜕𝑦2
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries.

(15)

The following solutions are obtained:

𝑢
0
(𝑥, 𝑦) = −

sin (𝜋𝑦)
2𝜋

𝑥,

𝑢
1
(𝑥, 𝑦) = [

𝑥

𝜋
−

𝜋𝑥
3

2 × 3!
] sin (𝜋𝑦) −

sin (𝜋𝜏) sin (𝜋𝑦)
𝜋2

,

𝑢
2
(𝑥, 𝑦) = [−

𝑥

𝜋
+
𝜋𝑥
3

6
−
𝜋
3
𝑥
5

240
]sin (𝜋𝑦)+

sin (𝜋𝜏) sin (𝜋𝑦)
𝜋2

,

𝑢
3
(𝑥, 𝑦) = [

𝑥

𝜋
−
𝜋𝑥
3

6
+
𝜋
3
𝑥
5

120
−
𝜋
5
𝑥
7

10080
] sin (𝜋𝑦)

−
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
4
(𝑥, 𝑦)

= [−
𝑥

𝜋
+
𝜋𝑥
3

6
−
𝜋
3
𝑥
5

120
+
𝜋
5
𝑥
7

5040
−

𝜋
7
𝑥
9

725760
] sin (𝜋𝑦)

+
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
5
(𝑥, 𝑦)

=[
𝑥

𝜋
−
𝜋𝑥
3

6
+
𝜋
3
𝑥
5

120
−
𝜋
5
𝑥
7

5040
+
𝜋
7
𝑥
9

362880
−

𝜋
9
𝑥
11

79833600
] sin (𝜋𝑦)

−
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
6
(𝑥, 𝑦)

= [−
𝑥

𝜋
+
𝜋𝑥
3

6
−
𝜋
3
𝑥
5

120
+
𝜋
5
𝑥
7

5040
−

𝜋
7
𝑥
9

362880

+
𝜋
9
𝑥
11

39916800
−

𝜋
11
𝑥
13

12454041600
] sin (𝜋𝑦)

+
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
,

𝑢
7
(𝑥, 𝑦)

= [
𝑥

𝜋
−
𝜋𝑥
3

6
+
𝜋
3
𝑥
5

120
−
𝜋
5
𝑥
7

5040
+

𝜋
7
𝑥
9

362880
−

𝜋
9
𝑥
11

39916800

+
𝜋
11
𝑥
13

6227020800
−

𝜋
13
𝑥
15

2615348736000
] sin (𝜋𝑦)

−
sin (𝜋𝜏) sin (𝜋𝑦)

𝜋2
.

(16)
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Table 1: Evaluation of numerical errors for𝑁 = 4.

𝑥 𝑌 𝑢(𝑥, 𝑦) exact 𝑢(𝑥, 𝑦) 𝑁 = 4 Error

0.25

0.25 −0.0253303 −0.0253303 6.27007 ⋅ 10
−11

0.5 −0.0358224 −0.0358224 8.86722 ⋅ 10
−11

0.75 −0.0253303 −0.0253303 6.27007 ⋅ 10
−11

0.95 −0.00560387 −0.00560387 1.38714 ⋅ 10
−11

0.5

0.25 −0.0358224 −0.0358224 1.26904 ⋅ 10
−11

0.5 −0.0506606 −0.0506604 1.79469 ⋅ 10
−7

0.75 −0.0358224 −0.0358223 1.26904 ⋅ 10
−11

0.95 −0.00792506 −0.00792506 2.80752 ⋅ 10
−8

0.75

0.25 −0.0253303 −0.0253195 1.07646 ⋅ 10
−5

0.5 −0.0358224 −0.0358072 1.52235 ⋅ 10
−5

0.75 −0.0253303 −0.0253195 1.07646 ⋅ 10
−5

0.95 −0.00560387 −0.00560148 2.38148 ⋅ 10
−6

0.95

0.25 −0.00560387 −0.00546191 0.000141956
0.5 −0.00792506 −0.00772431 000200756
0.75 −0.00560387 −0.00546191 0.000141956
0.95 −0.00123975 −0.00120835 3.14051 ⋅ 10

−5

In the same manner one can obtain the rest of the compo-
nents. But for eight terms were computed and the asymptotic
solution is given by

𝑢
𝑁=8

(𝑥, 𝑦)

= [
𝑥

2𝜋
−

𝜋𝑥
3

2 × 3!
+
𝜋
3
𝑥
5

2 × 5!
−
𝜋
5
𝑥
7

2 × 7!
+
𝜋
7
𝑥
9

2 × 9!

−
𝜋
9
𝑥
11

2 × 11!
+
𝜋
11
𝑥
13

2 × 13!
−
𝜋
13
𝑥
15

2 × 15!
] sin (𝜋𝑦)

−
1

𝜋2
sin (𝑥𝜋) sin (𝑦𝜋) .

(17)

Therefore in general for any𝑁 > 8 we have

𝑢
𝑁=𝑛

(𝑥, 𝑦) = [
1

2𝜋2

𝑁

∑

𝑛=0

(−1)
𝑛
(𝑥𝜋)
2𝑛+1

(2𝑛 + 1)!
] sin (𝜋𝑦)

−
1

𝜋2
sin (𝑥𝜋) sin (𝑦𝜋) ,

lim
𝑁→∞

𝑢
𝑁
(𝑥, 𝑦) =

1

2𝜋2
sin (𝜋𝑥) sin (𝜋𝑦)

−
1

𝜋2
sin (𝑥𝜋) sin (𝑦𝜋)

= −
1

2𝜋2
sin (𝑥𝜋) sin (𝑦𝜋) .

(18)

This is the exact solution of the problem. Figures 1 and 2 show
the comparison of the exact solution and the approximated
one for 𝑁 = 4. The approximate solution and the exact
solution are compared in Figures 1 and 2, respectively.

The numerical errors for𝑁 = 4 are evaluated in Table 1.
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Figure 1: Exact solution.
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Figure 2: Approximated solution for the 4 first terms.

Problem 2. Consider 3D Poisson equation:

𝜕
2
𝑢

𝜕𝑥2
+
𝜕
2
𝑢

𝜕𝑦2
+
𝜕
2
𝑢

𝜕𝑧2
= sin (𝜋𝑥) sin (𝜋𝑦) sin (𝜋𝑧) ,

𝑢 (𝑥, 𝑦, 𝑧) = 0 along the boundaries, 0 ≤ 𝑥, 𝑦 ≤ 1.

(19)

Following the discussion presented earlier we obtain the fol-
lowing set of integral equations:

𝑝
0
: 𝑢
0
(𝑥, 𝑦) = −

sin (𝜋𝑦) sin (𝜋𝑧)
3𝜋

𝑥,

𝑝
1
: 𝑢
1
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏) [sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧) −
𝜕
2
𝑢
0

𝜕𝑦2
]𝑑𝜏,

𝑝
𝑛
: 𝑢
𝑛
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2
𝑢
𝑛−1

𝜕𝑦2
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries, 𝑛 ≥ 2.

(20)
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The following solutions are obtained:

𝑢
0
(𝑥, 𝑦, 𝑧) = −

sin (𝜋𝑦) sin (𝜋𝑧)
3𝜋

𝑥,

𝑢
1
(𝑥, 𝑦, 𝑧) = [

1

𝜋
𝑥 −

𝜋𝑥
3

9
] sin (𝜋𝑦) sin (𝜋𝑧)

−
sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
2
(𝑥, 𝑦, 𝑧) = [−

2

𝜋
𝑥 +

𝜋𝑥
3

9
−
𝜋
3
𝑥
5

90
] sin (𝜋𝑦) sin (𝜋𝑧)

+
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
3
(𝑥, 𝑦, 𝑧)

= [
4

𝜋
𝑥 −

2𝜋𝑥
3

3
+
𝜋
3
𝑥
5

30
−
𝜋
5
𝑥
7

1890
] sin (𝜋𝑦) sin (𝜋𝑧)

−
4 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
4
(𝑥, 𝑦, 𝑧)

= [−
8

𝜋
𝑥 +

4𝜋𝑥
3

3
−
𝜋
3
𝑥
5

15
+
𝜋
5
𝑥
7

630
] sin (𝜋𝑦) sin (𝜋𝑧)

+
8 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢
5
(𝑥, 𝑦, 𝑧) = [

16

𝜋
𝑥 −

8𝜋𝑥
3

3
+
2𝜋
3
𝑥
5

15
−
𝜋
5
𝑥
7

315

+
𝜋
7
𝑥
9

22680
−

𝜋
7
𝑥
11

3742200
] sin (𝜋𝑦) sin (𝜋𝑧)

−
16 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
.

(21)

In the same manner one can obtain the rest of the compo-
nents. But for six terms were computed and the asymptotic
solution is given by

𝑢(𝑥, 𝑦, 𝑧)
𝑁=6

= [
𝑥

3𝜋
−
𝜋𝑥
3

18
+
𝜋
3
𝑥
5

360
−
𝜋
5
𝑥
7

15120
+

𝜋
7
𝑥
9

1088640

−
𝜋
9
𝑥
11

119750400
] sin (𝜋𝑦) sin (𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

𝜋2
,

𝑢(𝑥, 𝑦, 𝑧)
𝑁=6

=
1

3𝜋2
[
𝑥

3𝜋
−
𝜋𝑥
3

18
+
𝜋
3
𝑥
5

360
−
𝜋
5
𝑥
7

15120
+

𝜋
7
𝑥
9

1088640

−
𝜋
9
𝑥
11

119750400
]sin (𝜋𝑦) sin (𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
,

𝑢(𝑥, 𝑦, 𝑧)
𝑁=6

=
1

3𝜋2
[𝜋𝑥 −

(𝜋𝑥)
3

3!
+
(𝜋𝑥)
5

5!
−
(𝜋𝑥)
7

7!

+
(𝜋𝑥)
9

9!
−
(𝜋𝑥)
3

11!
]sin(𝜋𝑦) sin(𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
.

(22)

Therefore, for any 𝑛 ≥ 6, the partial sum is given as

𝑢
𝑁=𝑛

(𝑥, 𝑦, 𝑧) =
1

3𝜋2
[

𝑁

∑

𝑘=1

(−1)
𝑘
(𝜋𝑥)
2𝑘+1

(2𝑘 + 1)!
] sin (𝜋𝑦) sin (𝜋𝑧)

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
.

(23)

Thus

𝑢 (𝑥, 𝑦, 𝑧) = lim
𝑁→∞

𝑢
𝑁=𝑛

(𝑥, 𝑦, 𝑧)

=
sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2

−
2 sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2

= −
sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

3𝜋2
.

(24)

And this is the exact solution to the problem. One can
evaluate error committed by choosing the 𝑁 first terms in
the series solutions, in the same manner as in Table 1. The
accuracy of the results is estimated by error function

𝑅
𝑁
(𝑥, 𝑦, 𝑧) =

𝑢𝑁 (𝑥, 𝑦, 𝑧) − 𝑢 (𝑥, 𝑦, 𝑧)
 . (25)

Problem 3. Let us consider the following biharmonic equa-
tion

𝑑
4
𝑢 (𝑥)

𝑑𝑥4
+ 4𝑢 (𝑥) = 0, (26)

for which the exact solution is

𝑢 (𝑥) =
Exp [1 − 𝑥] cos [𝑥]

cos [1]
. (27)

The aim of this part is to compare the numerical results
obtained via HDM and the method used in [26].
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Table 2: Comparison of the HDM and [1] results with the exaction
solution for𝑁 = 6.

𝑥 HDM Exact ADM Err for HDM Err for ADM
−1.0 7.38906 7.38906 7.38906 6.78𝐸 − 16 8.88𝐸 − 16

−0.6 7.56598 7.56598 7.56598 4.76𝐸 − 12 7.96𝐸 − 12

−0.2 6.02244 6.02244 6.02244 0.015𝐸 − 11 1.46𝐸 − 11

0.2 4.03696 4.03696 4.03696 0.017𝐸 − 11 1.80𝐸 − 11

0.6 2.27883 2.27883 2.27883 0.015𝐸 − 11 1.46𝐸 − 11

1.0 1.0 1.0 1.0 1.24𝐸 − 15 2.22𝐸 − 15

Applying the steps involved in the HDM, we arrive at the
following:

𝑢
0
(𝑥) = 𝑒 Sec (1) (1 − 𝑥 + 𝑥

3

3
) ,

𝑢
1
(𝑥) = −𝑒 Sec (1) [𝑥

4

4
−
𝑥
5

20
+
𝑥
7

420
] ,

𝑢
2
(𝑥) = −𝑒 Sec (1) [− 𝑥

8

1120
+

𝑥
9

10080
−

𝑥
11

554400
] ,

𝑢
3
(𝑥) = −𝑒 Sec (1) [ 𝑥

12

2217600
−

𝑥
13

64864800
+

𝑥
15

1135134000
] ,

𝑢
4
(𝑥)

= −𝑒 Sec (1) [− 𝑥
16

16144128000
+

𝑥
17

274450176000

−
𝑥
19

46930980096000
] ,

𝑢
5
(𝑥)

= −𝑒 Sec (1) [ 𝑥
20

312873200640000
−

𝑥
21

6570337213440000

+
𝑥
23

1662295315000320000
] .

(28)

In the same manner, one can obtain the remaining term by
using the following recursive formula:

𝑢
𝑛+1

(𝑥) = −∫

𝑥

0

(𝑥 − 𝑡)
3
𝑢
𝑛
(𝑡) 𝑑𝑡. (29)

In this paper we consider only the first six terms of the series
solution as follows:

𝑢
𝑁=6

=

5

∑

𝑛=0

𝑢
𝑛
(𝑥) . (30)

To access the accuracy of the method used in paper, we com-
pare in Table 2 the numerical results of the above equation,
the solution obtained in [26] with the exact solution.

Problem 4. We consider the 2D biharmonic equation

𝜕
4
𝑢

𝜕𝑥4
+ 2

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+
𝜕
4
𝑢

𝜕𝑥4
= sin (3𝜋𝑥) sin (3𝜋𝑦) , 0≤𝑥, 𝑦≤1,

(31)

subject to the initial conditions:

𝜕𝑢 (𝑥, 𝑦)

𝜕𝑥
| (𝑥 = 0) =

sin (3𝜋𝑦)
108𝜋3

, 𝜕
𝑥,𝑥
𝑢 (0, 𝑦) = 0,

𝜕
𝑥,𝑥,𝑥

𝑢 (0, 𝑦) = −
sin (3𝜋𝑦)
12𝜋

.

(32)

In the view of the homotopy decomposition method, the fol-
lowing integral equations are obtained:

𝑝
0
: 𝑢
0
(𝑥, 𝑦) =

sin (3𝜋𝑦)
108𝜋3

𝑥 −
sin (3𝜋𝑦)
12𝜋

𝑥

3!

3

,

𝑝
1
: 𝑢
1
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏)[sin (𝜋𝜏) sin (𝜋𝑦) −
𝜕
2
𝑢
0

𝜕𝑦2
− 2

𝜕
4
𝑢
0

𝜕𝑥2𝜕𝑦2
]𝑑𝜏,

𝑝
𝑛
: 𝑢
𝑛
(𝑥, 𝑦) = ∫

𝑥

0

(𝑥 − 𝜏) [−
𝜕
2
𝑢
𝑛−1

𝜕𝑦2
− 2

𝜕
4
𝑢
0

𝜕𝑥2𝜕𝑦2
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries, 𝑛 ≥ 2.

(33)

It is worth noting that if the zeroth component 𝑢
0
(𝑥, 𝑦) is

defined, then the remaining components 𝑛 ≥ 1 can be com-
pletely determined such that each term is determined by
using the previous terms, and the series solutions are thus
entirely determined. Finally, the solution 𝑢(𝑥, 𝑦) is approxi-
mated for 𝑛 = 4:

𝑢 (𝑥, 𝑦)

= sin (3𝜋𝑦) [ 𝑥

108𝜋3
−
𝑥
3

72𝜋
+
𝜋𝑥
5

160
−
3𝜋
3
𝑥
7

2240
+
3𝜋
5
𝑥
9

17920

−
27𝜋
7
𝑥
11

1971200
+

81𝜋
9
𝑥
13

102502400
−

81𝜋
11
𝑥
15

7175168000
] ,

(34)

𝑢 (𝑥, 𝑦)

=
sin (3𝜋𝑦)
324𝜋4

[3𝜋𝑥 −
(3𝜋𝑥)

3

3!
+
(3𝜋𝑥)

5

5!
−
(3𝜋𝑥)

7

7!
+
(3𝜋𝑥)

9

9!

−
(3𝜋𝑥)

11

11!
+
(3𝜋𝑥)

13

13!
−
(3𝜋𝑥)

15

15!
] .

(35)

Therefore for any𝑁 ≥ 4 we have the following:

𝑢
𝑁
(𝑥, 𝑦) =

sin (3𝜋𝑦)
324𝜋4

𝑁

∑

𝑛=0

(3𝜋𝑥)
2𝑛+1

(2𝑛 + 1)!
. (36)
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Figure 3: Analytical solution.

0.00003
0.00002
0.00001

0

0.0

Ap
pr

ox
im

at
e

0.0

0.5

0.5

1.0

1.0

x

y

Figure 4: Absolute value of the solution.

Thus

lim
𝑁→∞

𝑢
𝑁
(𝑥, 𝑦) =

sin (3𝜋𝑦) sin (3𝜋𝑥)
324𝜋4

. (37)

The exact solution of (31) is given by

sin (3𝜋𝑦) sin (3𝜋𝑥)
324𝜋4

= 𝑢 (𝑥, 𝑦) . (38)

Figures 3 and 4 are the graphical representation of the previ-
ous solution. We have plotted the solution for (31) in Figure 3
and showed absolute value of the solution in Figure 4.

Theorem 2. Let 𝑚 be a nonzero natural number and let
(x, y) ∈ [0, 1] × [0, 1]; then two dimensional biharmonic equa-
tion of form

𝜕
4
𝑢

𝜕𝑥4
+ 2

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+
𝜕
4
𝑢

𝜕𝑦4
= sin (𝑚𝜋𝑥) sin (𝑚𝜋𝑦) (39)

with 𝑢(𝑥, 𝑦) = 0 along the boundaries has an exact solution as
follows

𝑢 (𝑥, 𝑦) =
sin (𝑚𝜋𝑥) sin (𝑚𝜋𝑦)

4𝑚
4
𝜋4

. (40)

Proof. Use the step of the homotopy decomposition method.

Problem 5. We consider the 3D biharmonic equation:

𝜕
4
𝑢

𝜕𝑥4
+ 2

𝜕
4
𝑢

𝜕𝑥2𝜕𝑦2
+ 2

𝜕
4
𝑢

𝜕𝑥2𝜕𝑧2
+ 2

𝜕
4
𝑢

𝜕𝑧2𝜕𝑦2
+
𝜕
4
𝑢

𝜕𝑦4
+
𝜕
4
𝑢

𝜕𝑧4

= sin (𝜋𝑥) sin (𝜋𝑦) sin (𝜋𝑧) ,

0 ≤ 𝑥, 𝑦, 𝑧 ≤ 1,

𝑢 = 0, 𝑢
𝑥,𝑥

= 𝑢
𝑦,𝑦
= 𝑢
𝑧,𝑧
= 0.

(41)

In the view of the homotopy decomposition method, the fol-
lowing integral equations are obtained:

𝑝
0
: 𝑢
0
(𝑥, 𝑦) =

sin (3𝜋𝑦)
108𝜋3

𝑥 −
sin (3𝜋𝑦)
12𝜋

𝑥

3!

3

,

𝑝
1
: 𝑢
1
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏) [ sin (𝜋𝜏) sin (𝜋𝑦) sin (𝜋𝑧)

− 2
𝜕
4
𝑢
0

𝜕𝑥2𝜕𝑦2
− 2

𝜕
4
𝑢
0

𝜕𝑥2𝜕𝑧2

−2
𝜕
4
𝑢
0

𝜕𝑧2𝜕𝑦2
−
𝜕
4
𝑢
0

𝜕𝑦4
−
𝜕
4
𝑢
0

𝜕𝑧4
]𝑑𝜏,

𝑝
𝑛
: 𝑢
𝑛
(𝑥, 𝑦)

= ∫

𝑥

0

(𝑥 − 𝜏) [−2
𝜕
4
𝑢
𝑛−1

𝜕𝑥2𝜕𝑦2
− 2

𝜕
4
𝑢
𝑛−1

𝜕𝑥2𝜕𝑧2

−2
𝜕
4
𝑢
𝑛−1

𝜕𝑧2𝜕𝑦2
−
𝜕
4
𝑢
𝑛−1

𝜕𝑦4
−
𝜕
4
𝑢
𝑛−1

𝜕𝑧4
]𝑑𝜏,

𝑢
𝑛
(𝑥, 𝑦) = 0 along the boundaries, 𝑛 ≥ 2.

(42)

Solving the previous integral equations, the series solutions
for the first𝑁 terms are given as

𝑢
𝑁
(𝑥, 𝑦, 𝑧) =

sin (𝑧𝜋) sin (𝜋𝑦)
9𝜋4

𝑁

∑

𝑛=0

(𝜋𝑥)
2𝑛+1

(2𝑛 + 1)!
. (43)

Therefore taking the limit at𝑁 tending to infinitywe obtained

𝑢 (𝑥, 𝑦, 𝑧) = lim
𝑁→∞

𝑢
𝑁
(𝑥, 𝑦, 𝑧) =

sin (𝑥𝜋) sin (𝑧𝜋) sin (𝜋𝑦)
9𝜋4

.

(44)

4. Conclusion

In this paper the recent homotopy decomposition [18–21] is
used to solve the 2D and 3D Poisson equations and bihar-
monic equations. The method is chosen because it does not
require the linearization or assumptions of weak nonlinearity,
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the solutions are generated in the form of general solution,
and it ismore realistic compared to themethod of simplifying
the physical problems. The method does not require any
corrected function any Lagrange multiplier and it avoids
repeated terms in the series solutions compared to the
existing decomposition method including the variational
iteration method and the Adomian decomposition method.
The approximated solutions obtained converge to the exact
solution as 𝑁 tends to infinity. The numerical values are
presented in Table 1 shows that the method is very efficient
and accurate.
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We investigate the spatial dynamics of a predator-prey system with Allee effect. By using bifurcation analysis, the exact Turing
domain is found in the parameters space. Furthermore, we obtain the amplitude equations and determine the stability of different
patterns. In Turing space, it is found that predator-prey systems with Allee effect have rich dynamics. Our results indicate that
predator mortality plays an important role in the pattern formation of populations. More specifically, as predator mortality rate
increases, coexistence of spotted and stripe patterns, stripe patterns, spotted patterns, and spiral wave emerge successively. The
results enrich the finding in the spatial predator-prey systems well.

1. Introduction

The Allee effect, named after the ecologist Warder Clyde
Allee, has been recognized as an important phenomenon of
positive density dependence in low-density population [1–5].
Allee effect can occur whenever fitness of an individual in a
small or sparse population decreases as the population size or
density also declines [6, 7]. Since the outstanding work of
Allee [1], the Allee effect has been regarded as one of the cen-
tral and highly important issues in the population and com-
munity ecology. And its critical importance has widely been
realized in the conservation biology that Allee effect is most
likely to increase the extinction risk of low-density popula-
tions. As a result, studies on Allee effect have received more
andmore attention frombothmathematicians and ecologists.

Long time series of the density of both prey and predator
is needed, so it is difficult to analyse their dynamics. As a
result, it may provide useful information by constructing
mathematical models to investigate the dynamical behaviors
of predator-prey systems. There have been a large group of
papers on predator-prey systems with Allee effect [8–13].

However, these previous works did not take into account the
effect of space.

There are also some works done on spatial predator-
prey systems with Allee effect [14–16]. Petrovskii et al. found
that the deterministic system with Allee effect can induce
patch invasion [14]. Morozov et al. found that the temporal
population oscillations can exhibit chaotic dynamics even
when the distribution of the species in the space was regular
[15]. Moreover, they found that the chaos accompanied with
patch invasion even though the environments were het-
erogeneous [16]. However, their results were obtained by
choosing particular initial conditions. Then, it is natural to
ask what kind of patterns can be obtained in predator-prey
systems with Allee effect by using other initial conditions. To
understand that mechanism well, we will investigate a
predator-prey system with Allee effect.

Because of the insightful work of many scientists over
recent years, we can make research on pattern selection by
using the standard multiple scale analysis [17, 18], in which
the control parameters and the derivatives are expanded in
terms of a small enough parameter. In the neighborhood of



2 Abstract and Applied Analysis

the bifurcation points (Hopf and Turing bifurcation points),
the critical amplitudes follow the normal forms, and thus
their general forms can be obtained from the methods of
symmetry-breaking bifurcations.

The paper is organized as follows. In Section 2, we present
a predator-prey system with Allee effect and give Turing
region in parameters space. In Section 3, by using multiple
scale analysis, we obtain amplitude equations. In Section 4,
we show the spatial patterns by a series of numerical simu-
lations. Finally, conclusions and discussions are presented in
Section 5.

2. A Predator-Prey System with Allee Effect

We consider the following model of two-dimensional spa-
tiotemporal system [14–16, 19]:

𝜕𝐻

𝜕𝑇
= 𝐹 (𝐻) − 𝑓 (𝐻, 𝑃) + 𝐷

1
Δ𝐻, (1a)

𝜕𝑃

𝜕𝑇
= 𝜅𝑓 (𝐻, 𝑃) − 𝐷 (𝑃) + 𝐷

2
Δ𝑃, (1b)

where 𝐻 = 𝐻(𝑋, 𝑌, 𝑇) and 𝑃 = 𝑃(𝑋, 𝑌, 𝑇) are densities of
prey and predator, respectively, at time𝑇 and position (𝑋, 𝑌).
The function 𝐹(𝐻) represents the intrinsic prey growth,
𝑓(𝐻, 𝑃) = 𝑓(𝐻)𝑃 represents predation term, 𝜅 is the food
utilization coefficient, 𝐷

1
and 𝐷

2
are diffusion coefficients,

and𝐷(𝑃) describes predator mortality.
It is assumed that the predation term is a bilinear form

of prey and predator density and predator mortality is a
nonlinear function of predator density. As a result, we choose
𝑓(𝐻, 𝑃) = 𝐻𝑃 and𝐷(𝑃) = 𝑀𝑃2 [20].

When the prey population obeys Allee dynamics, its
growth rate can be parameterized as follows [14, 15, 21]:

𝐹 (𝐻) =
4𝜔

(𝐾 − 𝐻
0
)
2
𝐻(𝐻 −𝐻

0
) (𝐾 − 𝐻) , (2)

where 𝐾 is the prey-carrying capacity, 𝜔 is the maximum
per capita growth rate, and 𝐻

0
quantifies the intensity of the

Allee effect. If 0 < 𝐻
0
< 𝐾, 𝐹(𝐻) is a strong Allee effect; if

−𝐾 < 𝐻
0
< 0, 𝐹(𝐻) is a weak Allee effect; if 𝐻

0
≤ −𝐾, the

Allee effect is absent.
In order to minimize the number of parameters involved

in the model system, it is extremely useful to write the
system in a nondimensionalized form. Although there is no
unique method of doing this, it is often a good idea to relate
the variables to some key relevant parameters. Introducing
dimensionless variables

𝑢 =
𝐻

𝐾
, V =

𝑃

𝜅𝐾
, 𝑡 = 𝑎𝑇,

𝑋 = 𝑋√
𝑎

𝐷
1

, 𝑌 = 𝑌√
𝑎

𝐷
1

,

(3)

we obtain the following equations:

𝜕𝑢

𝜕𝑡
= 𝛾𝑢 (𝑢 − 𝛽) (1 − 𝑢) − 𝑢V + Δ𝑢, (4a)

𝜕V

𝜕𝑡
= 𝑢V − 𝛿V

2
+ 𝜀ΔV, (4b)

where

𝛽 =
𝐻

0

𝐾
, 𝛾 =

4𝜔𝐾

𝐴𝜅(𝐾 − 𝐻
0
)
2
,

𝛿 =
𝑀

𝑎
, 𝜀 =

𝐷
2

𝐷
1

.

(5)

First of all, we need to investigate the dynamics of nonspatial
model of systems (4a) and (4b)

𝑑𝑢

𝑑𝑡
= 𝛾𝑢 (𝑢 − 𝛽) (1 − 𝑢) − 𝑢V, (6a)

𝑑V

𝑑𝑡
= 𝑢V − 𝛿V

2
. (6b)

Systems (6a) and (6b) have three boundary equilibrium
named 𝐸

0
= (0, 0), 𝐸

1
= (1, 0), and 𝐸

2
= (𝛽, 0) and two

interior equilibriums named 𝐸
3
and 𝐸

4
, where

𝐸
3
= (

𝛾𝛿 + 𝛾𝛽𝛿 − 1 + √𝑄

2𝛾𝛿
,
𝛾𝛿 + 𝛾𝛽𝛿 − 1 + √𝑄

2𝛾𝛿2
) , (7a)

𝐸
4
= (

𝛾𝛿 + 𝛾𝛽𝛿 − 1 − √𝑄

2𝛾𝛿
,
𝛾𝛿 + 𝛾𝛽𝛿 − 1 − √𝑄

2𝛾𝛿2
) , (7b)

where 𝑄 = (𝛾𝛿)2 − 2(𝛾𝛿)2𝛽 − 2𝛾𝛽𝛿 + 1.
Froma biological point of view,we are concernedwith the

dynamics of 𝐸
3
and 𝐸

4
. The Jacobian matrix corresponding

to the equilibrium point is that

𝐽 = (
𝑎
11
𝑎
12

𝑎
21
𝑎
22

) , (8)

where

𝑎
11
= 2𝛾𝑢

∗
− 𝛾𝛽 − 3𝛾(𝑢

∗
)
2

+ 2𝛾𝛽𝑢
∗
,

𝑎
12
= −𝑢

∗
,

𝑎
21
= V

∗
− 𝛿,

𝑎
22
= 𝑢

∗
.

(9)

Diffusion-driven instability requires the stable, homoge-
neous steady state is driven unstable by the interaction of the
dynamics and diffusion of the species; and therefore

𝑎
11
+ 𝑎

22
< 0,

𝑎
11
𝑎
22
− 𝑎

12
𝑎
21
> 0.

(10)
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It is found from direct calculations that 𝐸
3
is unstable and

𝐸
4
is stable. Denote 𝐸

4
= (𝑢

∗
, V∗).

Following the standard linear analysis of the reaction-
diffusion equation [22], we consider a perturbation near the
steady state:

𝑢 ( ⃗𝑟, 𝑡) = 𝑢
∗
+ 𝑢 (𝑟, 𝑡) ,

V ( ⃗𝑟, 𝑡) = V
∗
+ V (𝑟, 𝑡) ,

(11)

where 𝑢(𝑟, 𝑡) ≪ 𝑢
∗, V(𝑟, 𝑡) ≪ V∗, and 𝑟 = (𝑋, 𝑌). Assume

that

(
𝑢 (𝑟, 𝑡)

V (𝑟, 𝑡)
) = (

𝛼
1

𝛼
2

) 𝑒
𝜆𝑡
𝑒
𝑖(𝜅𝑋𝑋+𝜅𝑌𝑌), (12)

where 𝜆 is the growth rate of perturbation in time 𝑡, 𝛼
1
and

𝛼
2
represent the amplitudes, and 𝜅

𝑋
and 𝜅

𝑌
are the wave

number of the solutions.
The characteristic equation of the systems (4a) and (4b)

is

(𝐴 − 𝜆𝐼) (
𝑢

V
) = 0, (13)

where

𝐴 = (

𝑎
11
− (𝜅

2

𝑋
+ 𝜅

2

𝑌
) 𝑎

12

𝑎
21

𝑎
22
− 𝜀 (𝜅

2

𝑋
+ 𝜅

2

𝑌
)

) . (14)

As a result, we have characteristic polynomial:

𝜆
2
− 𝑡𝑟

𝜅
𝜆 + Δ

𝜅
= 0, (15)

𝑡𝑟
𝜅
= 𝑎

11
+ 𝑎

22
− 𝜅

2

(1 + 𝜀)
Δ

= 𝑡𝑟
𝐽
− 𝜅

2

(1 + 𝜀) ,

Δ
𝜅
= 𝑎

11
𝑎
22
− 𝑎

12
𝑎
21
− 𝜅

2
(𝑎

11
𝜀 + 𝑎

22
) + 𝜅

4
𝜀

Δ

= Δ
𝐽
− 𝜅

2
(𝑎

11
𝜀 + 𝑎

22
) + 𝜅

4
𝜀,

(16)

where 𝜅2 = 𝜅2
𝑋
+ 𝜅

2

𝑌
.

The roots of (15) can be obtained by the following form:

𝜆
𝜅
=
1

2
(𝑡𝑟

𝜅
± √𝑡𝑟2

𝜅
− 4Δ

𝜅
) . (17)

When Im(𝜆
𝜅
) ̸= 0 and Re(𝜆

𝜅
) = 0, Hopf bifurcation

will emerge. Then, we have that the critical value of Hopf
bifurcation parameter-𝛿 equals

𝛿
𝐻
=

𝛾 (𝛾 + 𝛽 − 1)

𝛾2𝛽2 + 𝛾2 − 2𝛾2𝛽 − 1
. (18)

When 𝜅2 = (𝜅
𝑇
)
2
= √Δ

𝐽
/𝜀 and Im(𝜆

𝜅
) = 0, Re(𝜆

𝜅
) = 0,

Turing bifurcation will occur. Denote 𝛿
𝑇
as the critical value

of 𝛿 as Turing instability occurs. Since the expression is
complicated, we omit it here.

In Figure 1, we show the two critical lines in the parameter
space spanned by 𝛽 and 𝛿. The equilibria that can be found
in the region, marked by 𝑇 (Turing space), are stable with

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
𝛽

Turing line
Hopf line

𝛿

T

Figure 1: Bifurcation diagram for the systems (4a) and (4b). The
green one is theHopf bifurcation critical line and the red one, Turing
bifurcation critical line. The figure shows the Turing space which is
marked by 𝑇. Parameters values: 𝛾 = 1.5 and 𝜀 = 0.15.

respect to the homogeneous perturbations, but they lose
their stability with respect to the perturbations of specific
wave numbers 𝜅. In this region, stationary patterns can be
observed. To see the effect of parameter 𝛿 well, we plot
in Figure 2 the dispersion relation corresponding to several
values of 𝛿 while keeping the other parameters fixed. We see
that the available Turing modes shift to higher wave numbers
when 𝛽 decreases.

3. Spatial Dynamics of Systems (4a) and (4b)
In the following, we use multiple scale analysis to determine
the amplitude equations when |𝜅| = 𝜅

𝑇
. Denote 𝛿 as the

controlled parameters. When the controlled parameter is
larger than the critical value of Turing point, the solutions of
systems (4a) and (4b) can be expanded as

𝑐 = 𝑐
0
+

𝑁

∑

𝑖=1

(𝐴
𝑖
exp (𝑖𝜅

𝑖
⃗𝑟) + (𝐴

𝑖
exp (−𝑖𝜅

𝑖
⃗𝑟)) , (19)

with |𝜅| = 𝜅
𝑇
. 𝐴

𝑗
and the conjugate 𝐴

𝑗
are the amplitudes

associated with the modes 𝜅
𝑗
and −𝜅

𝑗
.

Close to onset 𝛽 = 𝛽
𝑇
, one has that

𝜕𝐴
𝑖

𝜕𝑡
= 𝑠

𝑖
𝐴

𝑖
+ 𝐹

𝑖
(𝐴

𝑖
, 𝐴

𝑗
, . . .) . (20)

Based on the center manifold near the Turing bifurcation
point, it can be concluded that amplitude 𝐴

𝑗
satisfies

𝜕𝐴
𝑖

𝜕𝑡
= 𝐹

𝑖
(𝐴

𝑖
, 𝐴

𝑖
, 𝐴

𝑗
, 𝐴

𝑗
, . . .) . (21)
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Figure 2: Dispersion relation for different 𝛿. Parameters values: 𝛽 =
0.02, 𝛾 = 1.5, and 𝜀 = 0.15. (a) 𝛿 = 1.08; (b) 𝛿 = 1.04; (c) 𝛿 = 1; (d)
𝛿 = 0.96; and (e) 𝛿 = 0.92.

In order to obtain the amplitude equations, we first need
to investigate the linearized form of systems (4a) and (4b) at
the equilibrium point𝐸

4
. By setting 𝑢 = 𝑢∗+𝑥 and V = V∗+𝑦,

we have the following equations:

𝜕𝑥

𝜕𝑡
= [2𝛾𝑢

∗
− 3𝛾(𝑢

∗
)
2

+ 2𝛾(𝑢
∗
)
2

𝛽 − 𝛾𝛽 − V
∗
] 𝑥

+ (𝛽𝛾 − 3𝛾𝑢
∗
+ 𝛾) 𝑥

2
− 𝛾𝑥

3
− 𝑥𝑦 + Δ𝑥,

(22a)

𝜕𝑦

𝜕𝑡
= V

∗
𝑥 + 𝑢

∗
𝑦 + 𝑥𝑦 − 2𝛿V

∗
𝑦 − 𝛿𝑦

2
+ 𝜀Δ𝑦. (22b)

Close to onset 𝛿 = 𝛿
𝑇
, the solutions of systems (4a) and

(4b) can be expanded as series form:

𝑈 = 𝑈
𝑠
+

3

∑

𝑗=1

𝑈
0
[𝐴

𝑗
exp (𝑖𝜅

𝑗
⃗𝑟) + 𝐴

𝑗
exp (−𝑖𝜅

𝑗
⃗𝑟)] . (23)

System (19) can be expanded as

𝑈
∗
=

3

∑

𝑗=1

𝑈
0
[𝐴

𝑗
exp (𝑖𝜅

𝑗
⃗𝑟) + 𝐴

𝑗
exp (−𝑖𝜅

𝑗
⃗𝑟)] , (24)

where 𝑈
0
= ((𝑎

∗

11
𝜀 + 𝑎

∗

11
)/(2𝑎

∗

21
), 1)

𝑇 is the eigenvector of the
linearized operator.

From the standard multiple scale analysis, up to the third
order in the perturbations, the spatiotemporal evolution of
the amplitudes can be described as

𝜏
𝜕𝐴

𝑘

𝜕𝑡
= 𝜇𝐴

𝑘
+∑

𝑙𝑚

ℎ
𝑙𝑚
𝐴

𝑙
𝐴

𝑚
+ ∑

𝑙𝑚𝑛

𝑔
𝑙𝑚𝑛
𝐴

𝑙
𝐴

𝑚
𝐴

𝑛
. (25)

Due to spatial translational symmetry, we have the follow-
ing equation:

𝜏
𝜕𝐴

𝑘

𝜕𝑡
exp (𝑖𝜅

𝑘
𝑟
0
)

= 𝜇𝐴
𝑘
exp (𝑖𝜅

𝑘
𝑟
0
) +∑

𝑙𝑚

ℎ
𝑙𝑚
𝐴

𝑙
𝐴

𝑚
exp [𝑖 (𝜅

𝑙
+ 𝜅

𝑚
) 𝑟

0
]

+ ∑

𝑙𝑚𝑛

𝑔
𝑙𝑚𝑛
𝐴

𝑙
𝐴

𝑚
𝐴

𝑛
exp [𝑖 (𝜅

𝑙
+ 𝜅

𝑚
+ 𝜅

𝑛
) 𝑟

0
] .

(26)

Comparing (25) with (26), one can find that the two
equations hold only if 𝜅

𝑘
= 𝜅

𝑙
+ ⋅ ⋅ ⋅ + 𝜅

𝑚
. From the center

manifold theory, we know that amplitude equations do not
include the amplitude with unstable mode. As a result, we
have the following equations:

𝜏
0

𝜕𝐴
1

𝑑𝑡
= 𝜇𝐴

1
+ ℎ𝐴

2
𝐴

3

− (𝑔
1

𝐴1



2

+ 𝑔
2
(
𝐴2



2

+
𝐴3



2

))𝐴
1
,

𝜏
0

𝜕𝐴
2

𝑑𝑡
= 𝜇𝐴

2
+ ℎ𝐴

1
𝐴

3

− (𝑔
1

𝐴2



2

+ 𝑔
2
(
𝐴1



2

+
𝐴3



2

))𝐴
2
,

𝜏
0

𝜕𝐴
3

𝑑𝑡
= 𝜇𝐴

3
+ ℎ𝐴

1
𝐴

2

− (𝑔
1

𝐴3



2

+ 𝑔
2
(
𝐴1



2

+
𝐴2



2

)) 𝐴
3
,

(27)

where 𝜇 = (𝛿
𝑇
− 𝛿)/𝛿

𝑇
and 𝜏

0
is a typical relaxation time.

In the following part, we will give the expressions of 𝜏
0
, ℎ,

𝑔
1
, and 𝑔

2
. Let

𝑋 = (
𝑥

𝑦
) ,

𝑁 = (
𝑁

1

𝑁
2

) .

(28)

Then systems (4a) and (4b) can be written as:

𝜕𝑋

𝜕𝑡
= 𝐿𝑋 + 𝑁, (29)

where

𝐿 = (

2𝛾𝑢
∗
− 3𝛾(𝑢

∗
)
2

+ 2𝛾𝛽(𝑢
∗
)
2

− 𝛾𝛽 − V∗ + Δ 0

V∗ 𝑢
∗
− 2𝛿V∗ + 𝜀Δ

) ,

𝑁 = (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 𝛾𝑥

3
− 𝑥𝑦

𝑥𝑦 − 𝛿𝑦
2 ) .

(30)

We need to investigate the dynamical behavior when 𝛿 is
close to 𝛿

𝑇
, and thus we expand 𝛿 as:

𝛿
𝑇
− 𝛿 = 𝜖𝛿

1
+ 𝜖

2
𝛿
2
+ 𝜖

3
𝛿
3
+ 𝑂 (𝜖

4
) , (31)
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where 𝜖 is a small enough parameter. We expand𝑋 and𝑁 as
the series form of 𝜖:

𝑋 = (
𝑥

𝑦
) = 𝜖(

𝑥
1

𝑦
1

) + 𝜖
2
(
𝑥
2

𝑦
2

) + 𝜖
3
(
𝑥
3

𝑦
3

) + ⋅ ⋅ ⋅ ,

𝑁 = (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) (𝑥

2

1
𝜖
2
+ 2𝑥1𝑥2𝜖

3
) − 𝛾𝑥
3

1
𝜖
3
− 𝑥1𝑦1𝜖

2
− (𝑥2𝑦1 + 𝑥1𝑦2) 𝜖

3
+ 𝑜 (𝜖
4
)

𝑥1𝑦1𝜖
2
+ (𝑥2𝑦1 + 𝑥1𝑦2) 𝜖

3
+ 𝑜 (𝜖
4
)

) .

(32)

Linear operator 𝐿 can be expanded as

𝐿 = 𝐿
𝑇
+ (𝛿

𝑇
− 𝛿)𝑀, (33)

where

𝐿
𝑇
= (

𝑎
∗

11
+ Δ 𝑎

∗

12

𝑎
∗

21
𝑎
∗

22
+ 𝜀Δ

) , 𝑀 = (
𝑏
11
𝑏
12

𝑏
21
𝑏
22

) . (34)

Let

𝑇
0
= 𝑡, 𝑇

1
= 𝜖𝑡, 𝑇

2
= 𝜖

2
𝑡, (35)

and 𝑇
𝑖
is a dependent variable. For the derivation of time, we

have that
𝜕

𝜕𝑡
=

𝜕

𝜕𝑇
0

+ 𝜖
𝜕

𝜕𝑇
1

+ 𝜖
2 𝜕

𝜕𝑇
2

+ 𝑜 (𝜖
3
) . (36)

The solutions of systems (4a) and (4b) have the following
form:

𝑋 = (
𝑥

𝑦
) =

3

∑

𝑖=1

(

𝐴
𝑥

𝑖

𝐴
𝑦

𝑖

) exp (𝑖𝜅
𝑖
⃗𝑟) + ⋅ ⋅ ⋅ . (37)

This expression implies that the bases of the solutions have
nothing to do with time and the amplitude𝐴 is a variable that
changes slowly. As a result, one has the following equation:

𝜕𝐴

𝜕𝑡
= 𝜖

𝜕𝐴

𝜕𝑇
1

+ 𝜖
2 𝜕𝐴

𝜕𝑇
2

+ 𝑜 (𝜖
3
) . (38)

Substituting the above equations into (29) and expanding
(29) according to different orders of 𝜖, we can obtain three
equations as follows:

𝜖 : 𝐿
𝑇
(
𝑥
1

𝑦
1

) = 0;

𝜖
2
: 𝐿

𝑇
(
𝑥
2

𝑦
2

) =
𝜕

𝜕𝑇
1

(
𝑥
1

𝑦
1

) − 𝛿
1
𝑀(

𝑥
1

𝑦
1

)

− (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) 𝑥

2

1
− 𝑥

1
𝑦
1

𝑥
1
𝑦
1

) ;

𝜖
3
: 𝐿

𝑇
(
𝑥
3

𝑦
3

) =
𝜕

𝜕𝑇
1

(
𝑥
2

𝑦
2

) +
𝜕

𝜕𝑇
2

(
𝑥
1

𝑦
1

) − 𝛿
1
𝑀(

𝑥
2

𝑦
2

)

− 𝛿
2
𝑀(

𝑥
1

𝑦
1

) − 𝐸,

(39)

where

𝐸 = (
2𝑥

1
𝑥
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 𝛾𝑥

3

1
− (𝑥

2
𝑦
1
+ 𝑥

1
𝑦
2
)

𝑥
2
𝑦
1
+ 𝑥

1
𝑦
2

) .

(40)

We first consider the case of the first order of 𝜀. Since 𝐿
𝑇
is

the linear operator of the system close to the onset, (𝑥
1
, 𝑦

1
)
𝑇

is the linear combination of the eigenvectors that corresponds
to the eigenvalue zero. Since that

(
𝑥

𝑦
) =

3

∑

𝑖=1

(

𝐴
𝑥

𝑖

𝐴
𝑦

𝑖

) exp (𝑖𝜅
𝑖
⃗𝑟) + c.c., (41)

we have that

(𝑎
∗

11
+ Δ) 𝑥

1
+ 𝑎

∗

12
𝑦
1
= 0, (42a)

𝑎
∗

21
𝑥
1
+ (𝑎

∗

22
+ 𝜀Δ) 𝑦

1
= 0. (42b)

As 𝜀𝑎∗
12
= ((𝑎

∗

22
− 𝜀𝑎

∗

11
)/2𝑎

∗

21
)
2, we can obtain that 𝑥

1
= (𝑎

∗

22
−

𝜀𝑎
∗

11
)/(2𝑎

∗

21
) by assuming 𝑦

1
= 1.

Let 𝑅 = (𝑎∗
11
𝜀 − 𝑎

∗

22
)/2𝑎

∗

21
then

(
𝑥
1

𝑦
1

) = (
𝑅

1
) (𝑊

1
exp (𝑖𝜅

1
⃗𝑟) +𝑊

2
exp (𝑖𝜅

2
⃗𝑟)

+𝑊
3
exp (𝑖𝜅

3
⃗𝑟)) + c.c.,

(43)

where |𝜅
𝑗
| = 𝜅

∗

𝑇
and 𝑊

𝑗
is the amplitude of the mode

exp(𝑖𝜅
𝑗
𝑟).

Now, we consider the case of the second order of 𝜀. Note
that

𝐿
𝑇
(
𝑥
2

𝑦
2

) =
𝜕

𝜕𝑇
1

(
𝑥
1

𝑦
1

) − 𝛿
𝑇
(
𝑏
11
𝑥
1
+ 𝑏

12
𝑦
1

𝑏
21
𝑥
1
+ 𝑏

22
𝑦
1

)

− (
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) 𝑥

2

1
− 𝑥

1
𝑦
1

𝑥
1
𝑦
1

)

= (
𝐹
𝑥

𝐹
𝑦

) .

(44)

According to the Fredholm solubility condition, the
vector function of the right hand of the above equation must
be orthogonal with the zero eigenvectors of operator L+

𝑐
. And

the zero eigenvectors of operator L+

𝑐
are

(

1

−
1

𝜀
𝑅

) exp (𝑖𝜅
𝑗
⃗𝑟) + c.c (𝑗 = 1, 2, 3) . (45)

It can be found from the orthogonality condition that

(

1

−
1

𝜀
𝑅

)(

𝐹
𝑖

𝑥

𝐹
𝑖

𝑦

) = 0, (46)

where 𝐹𝑖

𝑥
and 𝐹𝑖

𝑦
represent the coefficients corresponding to

exp(𝑖𝜅
𝑗
𝑟) in 𝐹

𝑥
and 𝐹

𝑦
.



6 Abstract and Applied Analysis

By investigating exp(𝑖𝜅
1
⃗𝑟), one has

(

𝐹
1

𝑥

𝐹
1

𝑦

) = (

𝑅
𝜕𝑊

1

𝜕𝑇
1

𝜕𝑊
1

𝜕𝑇
1

)− 𝛿
1
(

𝑏
11
𝑅𝑊

1
+ 𝑏

12
𝑊

1

𝑏
21
𝑅𝑊

1
+ 𝑏

22
𝑊

1

)

−(

2𝑅
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾)𝑊

2
𝑊

3
+ 2𝑅𝑊

2
𝑊

3

2𝑅𝑊
2
𝑊

3

) .

(47)

It can be obtained from the orthogonality condition that

𝜀 − 1

𝜀
𝑅
𝜕𝑊

1

𝜕𝑇
1

= 𝛿 (𝑅𝑏
11
+ 𝑏

22
−
𝑅

𝜀
(𝑅𝑏

21
+ 𝑏

22
)𝑊

1
)

+ 2𝑅
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾 +

1

𝑅
−
1

𝜀
)𝑊

2
𝑊

3
.

(48)

By using the same methods, one has

(
𝑥
2

𝑦
2

) = (
𝑋

0

𝑌
0

) +

3

∑

𝑗=1

(
𝑋

𝑗

𝑌
𝑗

) exp (𝑖𝜅
𝑗
⃗𝑟)

+

3

∑

𝑗=1

(
𝑋

𝑗𝑗

𝑌
𝑗𝑗

) exp (2𝑖𝜅
𝑗
⃗𝑟) + 𝑄 + c.c.,

(49)

where

𝑄 = (
𝑋

12

𝑌
12

) exp (𝑖 (𝜅
1
− 𝜅

2
) ⃗𝑟) + (

𝑋
23

𝑌
23

) exp (𝑖 (𝜅
2
− 𝜅

3
) ⃗𝑟)

+ (
𝑋

31

𝑌
31

) exp (𝑖 (𝜅
3
− 𝜅

1
) ⃗𝑟) .

(50)

By solving the sets of the linear equations about exp(0),
exp(𝑖𝜅

𝑗
⃗𝑟), exp(2𝑖𝜅

𝑗
⃗𝑟), and exp(𝑖(𝜅

𝑗
− 𝜅

𝑘
) ⃗𝑟), we obtain that

(
𝑋

0

𝑌
0

)

=(

𝑎
∗

22
[−2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 2𝑅] + 2𝑅𝑎

∗

12

𝑎
∗

11
𝑎
∗

22
− 𝑎

∗

12
𝑎
∗

21

𝑎
∗

21
[2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 2𝑅] + 2𝑅𝑎

∗

11

𝑎
∗

11
𝑎
∗

22
− 𝑎

∗

12
𝑎
∗

21

)

× (
𝑊1



2

+
𝑊2



2

+
𝑊3



2

) ,

(
𝑋

𝑗𝑗

𝑌
𝑗𝑗

)

=(

(𝑎
∗

22
− 4𝜀𝜅

2

𝑇
) [−𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 𝑅] + 𝑅𝑎

∗

12

(𝑎
∗

11
− 4𝜅

2

𝑇
) (𝑎

∗

22
− 4𝜀𝜅

2

𝑇
) − 𝑎

∗

12
𝑎
∗

21

𝑎
∗

21
[𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+𝛾) − 2𝑅] − 𝑅 (𝑎

∗

11
− 4𝜀𝜅

2

𝑇
)

(𝑎
∗

11
− 4𝜅

2

𝑇
) (𝑎

∗

22
− 4𝜀𝜅

2

𝑇
) − 𝑎

∗

12
𝑎
∗

21

)

×𝑊
2

𝑗
,

(
𝑋

𝑗𝑘

𝑌
𝑗𝑘

)

=(

(𝑎
∗

22
− 3𝜀𝜅

2

𝑇
) [−2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 2𝑅] + 2𝑅𝑎

∗

12

(𝑎
∗

11
− 3𝜅

2

𝑇
) (𝑎

∗

22
− 3𝜀𝜅

2

𝑇
) − 𝑎

∗

12
𝑎
∗

21

𝑎
∗

21
[2𝑅

2
(𝛽𝛾 − 3𝛾𝑢

∗
+𝛾) − 2𝑅] − 2𝑅(𝑎

∗

11
− 3𝜅

2

𝑇
)

(𝑎
∗

11
− 3𝜅

2

𝑇
) (𝑎

∗

22
− 3𝜀𝜅

2

𝑇
) − 𝑎

∗

12
𝑎
∗

21

)

×𝑊
𝑗
𝑊

𝑘
,

(51)

where 𝜅2
𝑇
= √(𝑎

∗

11
𝑎
∗

22
− 𝑎

∗

12
𝑎
∗

21
)/𝜀.

For the third order of 𝜀, we have that

𝐿
𝑇
(
𝑥
3

𝑦
3

) =
𝜕

𝜕𝑇
1

(
𝑥
2

𝑦
2

) +
𝜕

𝜕𝑇
2

(
𝑥
1

𝑦
1

)

− 𝛿
1
𝑀(

𝑥
2

𝑦
2

) − 𝛿
2
𝑀(

𝑥
1

𝑦
1

) − 𝑆,

(52)

where

𝑆 = (
2𝑥

1
𝑥
2
(𝛽𝛾 − 3𝛾𝑢

∗
) − 𝛾𝑥

3

1
− (𝑥

2
𝑦
1
+ 𝑥

1
𝑦
2
)

𝑥
2
𝑦
1
+ 𝑥

1
𝑦
2

) . (53)

Using the Fredholm solubility condition, we can obtain

𝜀 − 1

𝜀
𝑅
𝜕𝑊

1

𝜕𝑇
2

+
𝜀 − 1

𝜀
𝑅
𝜕𝑌

1

𝜕𝑇
1

= 𝛿
2
[𝑅𝑏

11
+ 𝑏

12
−
1

𝜀
𝑅 (𝑅𝑏

21
+ 𝑏

22
)]𝑊

1

+ 𝛿
1
[𝑅𝑏

11
+ 𝑏

12
−
1

𝜀
(𝑅𝑏

21
+ 𝑏

22
)] 𝑌

1
+ 𝑍,

(54)

where

𝑍 = [2𝑅
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 2𝑅 − 2

1

𝜀
]

× [𝑊
1
𝑌
0
+𝑊 − 2𝑌

12
+𝑊

3
𝑌
13
+𝑊

1
𝑌
11

+ 𝑊
2
𝑌
3
+𝑊

3
𝑌
2
]

− (𝐺
1

𝑊1



2

+ 𝐺
2

𝑊2



2

+ 𝐺
3

𝑊3



2

)𝑊
1
,
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Table 1: Coefficients for different parameter sets.

𝛽 𝛿 ℎ 𝑔
1

𝑔
2

𝜇
1

𝜇
2

𝜇
3

𝜇
4

0.02 0.92 −19.08604 7599.215 6906.578 0.0042531 0 5.770186 0.046076
0.02 0.96 2.1329690 −740.11 −1429.72 −0.000315 0 −0.00708 −0.00611
0.02 1 8.4304106 −207.521 −474.186 −0.015371 0 −0.20741 −0.01250
0.02 1.12 11.304093 −99.3194 −193.856 −0.0655924 0 −1.42005 −0.04391

(a) (b) (c)

(d) (e) (f)

Figure 3: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 0.92. (a) 𝑡 = 0; (b) 𝑡 = 100; (c)
𝑡 = 200; (d) 𝑡 = 500; (e) 𝑡 = 1000; and (f) 𝑡 = 2000.

𝐺
1
= (

1

𝜀
𝑅 − 1) [𝑅 (𝑦

11
+ 𝑦

0
) + 𝑥

11
+ 𝑥

0
]

− 2𝑅 (𝑥
11
+ 𝑥

0
) (𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 3𝛾𝑅

3
,

𝐺
2
= (

1

𝜀
𝑅 − 1) [𝑅 (𝑦

12
+ 𝑦

0
) + 𝑥

12
+ 𝑥

0
]

− 2𝑅 (𝑥
12
+ 𝑥

0
) (𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 6𝛾𝑅

3
.

(55)

By using the same methods, we can obtain the other two
equations. The amplitude 𝐴

𝑖
can be expanded as

𝐴
𝑖
= 𝜖𝑊

𝑖
+ 𝜖

2
𝑉
𝑖
+ 𝑜 (𝜖

3
) . (56)

As a result, we have

𝜏
0

𝜕𝐴
1

𝜕𝑡
= 𝜇𝐴

1
+ ℎ𝐴

2
𝐴

3
− (𝑔

1

𝐴1



2

+ 𝑔
2

𝐴2



2

+
𝐴3



2

)𝐴
1
.

(57)

The other two equations can be obtained through the
transformation of the subscript of 𝐴. By calculations, we
obtain the expressions of the coefficients of 𝜏

0
, ℎ, 𝑔

1
, and

𝑔
2
as follows:

𝜏
0
= 𝑅

𝜀 − 1

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]
,

ℎ =

[2𝑅
2
(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) − 2𝑅 − 2 (𝑅

2
/𝜀)]

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]

,

𝑔
1
=

𝐺
1

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]
,

𝑔
2
=

𝐺
2

𝛿
𝑇
[𝑅𝑏

11
+ 𝑏

12
− (𝑅/𝜀) (𝑅𝑏

21
+ 𝑏

22
)]
,

(58)
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(a) (b) (c)

(d) (e) (f)

Figure 4: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 0.96. (a) 𝑡 = 0; (b) 𝑡 = 50; (c) 𝑡 = 100;
(d) 𝑡 = 200; (e) 𝑡 = 500; and (f) 𝑡 = 1000.

where 𝐺
1
= ((𝑅/𝜀) − 1)[𝑅(𝑦

0
+ 𝑦

11
) + 𝑥

0
+ 𝑥

11
] − 2𝑅(𝑥

0
+

𝑥
11
)(𝛽𝛾−3𝛾𝑢

∗
+𝛾)+3𝛾𝑅

3 and𝐺
2
= ((𝑅/𝜀)−1)[𝑅(𝑦

0
+𝑦

12
)+

𝑥
0
+ 𝑥

12
] − 2𝑅(𝑥

0
+ 𝑥

12
)(𝛽𝛾 − 3𝛾𝑢

∗
+ 𝛾) + 6𝛾𝑅

3.
By using substitutions, we have

𝜏
0

𝜕𝜑

𝑑𝑡
= −ℎ

𝜌
2

1
𝜌
2

2
+ 𝜌

2

1
𝜌
2

3
+ 𝜌

2

2
𝜌
2

3

𝜌
1
𝜌
2
𝜌
3

sin𝜑,

𝜏
0

𝜕𝜌
1

𝑑𝑡
= 𝜇𝜌

1
+ ℎ𝜌

2
𝜌
3
cos𝜑 − 𝑔

1
𝜌
3

1
− 𝑔

2
(𝜌

2

2
𝜌
2

3
) 𝜌

1
,

𝜏
0

𝜕𝜌
2

𝑑𝑡
= 𝜇𝜌

2
+ ℎ𝜌

1
𝜌
3
cos𝜑 − 𝑔

1
𝜌
3

2
− 𝑔

2
(𝜌

2

1
𝜌
2

3
) 𝜌

2
,

𝜏
0

𝜕𝜌
3

𝑑𝑡
= 𝜇𝜌

3
+ ℎ𝜌

1
𝜌
2
cos𝜑 − 𝑔

1
𝜌
3

3
− 𝑔

2
(𝜌

2

1
𝜌
2

2
) 𝜌

3
,

(59)

where 𝜑 = 𝜑
1
+ 𝜑

2
+ 𝜑

3
. In order to see the relationships

between different parameters, we give the values of coeffi-
cients for different parameter sets in Table 1.

The dynamical systems (4a) and (4b) possess five kinds of
solutions [23] as follows.

(1) The stationary state (𝑂), given by

𝜌
1
= 𝜌

2
= 𝜌

3
= 0, (60)

is stable for 𝜇 < 𝜇
2
= 0 and unstable for 𝜇 > 𝜇

2
.

(2) Stripe patterns (𝑆), given by

𝜌
1
= √

𝜇

𝑔
1

̸= 0, 𝜌
2
= 𝜌

3
= 0, (61)

are stable for 𝜇 > 𝜇
3
= ℎ

2
𝑔
1
/(𝑔

2
− 𝑔

1
)
2, and unstable

for 𝜇 < 𝜇
3
.

(3) Hexagon patterns (𝐻
0
, 𝐻

𝜋
) are given by

𝜌
1
= 𝜌

2
= 𝜌

3
=

|ℎ| ± √ℎ2 + 4 (𝑔
1
+ 2𝑔

2
𝜇)

2 (𝑔
1
+ 2𝑔

2
)

, (62)

with 𝜑 = 0 or 𝜋, and exist when

𝜇 > 𝜇
1
=

−ℎ
2

4 (𝑔
1
+ 2𝑔

2
)
. (63)

The solution 𝜌+ = |ℎ| + √ℎ2 + 4(𝑔
1
+ 2𝑔

2
𝜇)/2(𝑔

1
+

2𝑔
2
) is stable only for

𝜇 < 𝜇
4
=
2𝑔

1
+ 𝑔

2

(𝑔
2
− 𝑔

1
)
2
ℎ
2
, (64)
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(a) (b) (c)

(d) (e) (f)

Figure 5: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 1. (a) 𝑡 = 0; (b) 𝑡 = 150; (c) 𝑡 = 300;
(d) 𝑡 = 500; (e) 𝑡 = 600; and (f) 𝑡 = 1000.

and 𝜌− = (|ℎ| − √ℎ2 + 4(𝑔
1
+ 2𝑔

2
𝜇))/2(𝑔

1
+ 2𝑔

2
) is

always unstable.
(4) The mixed states are given by

𝜌
1
=

|ℎ|

𝑔
2
− 𝑔

1

, 𝜌
2
= 𝜌

3
= √

𝜇 − 𝑔
1
𝜌
2

1

𝑔
1
+ 𝑔

2

, (65)

with 𝑔
2
> 𝑔

1
. They exist when 𝜇 > 𝜇

3
and are always

unstable.

4. Spatial Pattern of Systems (4a) and (4b)
In this section, we perform extensive numerical simulations
of the spatially extended systems (4a) and (4b) in two-
dimensional spaces. All our numerical simulations employ
the zero-flux boundary conditions with a system size of 200 ×
200. The space step is Δ𝐻 = 1, and the time step is Δ𝑡 =
0.00001.

In Figure 3, we show the spatial pattern of prey population
at different time. In the parameter set, 𝛾 = 1.5, 𝜀 = 0.15,
and 𝛿 = 0.92, we find that 𝜇 ∈ (𝜇

3
, 𝜇

4
), which means that

there is coexistence of spotted and stripe patterns. As shown
in this figure, our theoretical results are consistent with the
numerical results.

By setting 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 0.96, one can obtain
that 𝜇 > 𝜇

4
. In Figure 4, we show the spatial pattern of prey

population when 𝑡 equals 0, 50, 100, 200, 500, and 1000. At
the initial time, the prey population shows patched invasion.
As time increases, stripe pattern appears and the structure
does not change a lot. While keeping other parameters fixed
and increasing 𝛿, we find that stripe pattern will occupy the
whole space. However, some stripe patterns connect with
each other and cause the emergence of spotted patternswhich
are shown in Figure 5.

Figure 6 shows the evolution of the spatial pattern of prey
population at 𝑡 = 0, 100, 300, 500, 1000, and 2000 iterations,
with small random perturbation of the stationary solution
of the spatially homogeneous systems (4a) and (4b). The
corresponding parameters values are 𝛾 = 1.5, 𝜀 = 0.15,
and 𝛿 = 1.04. By the amplitude equations, we can conclude
that there are spotted patterns of prey population for this
parameter set. In this case, one can see that for the systems
(4a) and (4b), the random initial distribution leads to the
formation of an irregular transient pattern in the domain.
After these forms, it grows slightly and spotted patterns
emerge. When the time is large enough, the spotted patterns
prevail over the two-dimensional space. As time further
increases, the pattern structures of the prey population do not
undergo any further changes.
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(a) (b) (c)

(d) (e) (f)

Figure 6: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 1.04. (a) 𝑡 = 0; (b) 𝑡 = 100; (c)
𝑡 = 300; (d) 𝑡 = 500; (e) 𝑡 = 1000; and (f) 𝑡 = 2000.

5. Conclusion and Discussion

Allee effect has been paid much attention due to its strong
potential impact on population dynamics [24]. In this paper,
we investigated the pattern dynamics of a spatial predator-
prey systems with Allee effect. Based on the bifurcation
analysis, exact Turing pattern region is obtained. By using
amplitude equations, the Turing pattern selection of the
predator-prey system is well presented. It is found that the
predator-prey systems with Allee effect have rich spatial
dynamics by performing a series of numerical simulations.

It should be noted that our results were obtained under
the assumption that predation is modeled by the bilinear
function of the prey and predator densities. However, this
function has limitations to describe many realistic phenom-
ena in the biology. By numerical simulations, we find that
the system exhibits similar behaviour when the functional
response is of other types, such as Holling-II and Holling-III
forms.

To compare the spatial dynamics for different parame-
ters, we give the spatial patterns of population 𝑢 when the
parameter values are out of the domain of Turing space.
For this parameter set, systems (4a) and (4b) have Hopf

bifurcation, and spiral waves occupy the whole domain
instead of stationary patterns, which is shown in Figure 7.The
stability of spiral wave can be done by using the spectrum
theory analysis [25, 26]. In the further study, we will use the
spectrum theory to show the stability of spiral wave.

In [15], they found that a spatial predator-preymodel with
Allee effect and linear death rate could increase the system’s
complexity and enhance chaos in population dynamics.
However, in this paper, we showed that a spatial population
model with Allee effect and nonlinear death rate can induce
stationary patterns, which is different from the previous
results.

From a biological point of view, our results show that
predator mortality plays an important role in the spatial
invasions of populations. More specifically, low predator
mortality will induce stationary patterns (cf. Figures 3–
6), and high predator mortality corresponds to travelling
patterns (cf. Figure 7). When the populations exhibit wave
distribution in space, the dynamics of populations may
be accompanied with chaotic properties [27, 28]. If the
chaotic behavior occurs, it may lead to the extinction of the
population, or the population may be out of control [29, 30].
In that case, we need to find out the best way to control the
chaos or change the chaotic behavior.
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(a) (b) (c)

(d) (e) (f)

Figure 7: Spatial pattern of prey population at different time. Parameters set: 𝛾 = 1.5, 𝜀 = 0.15, and 𝛿 = 1.2. (a) 𝑡 = 0; (b) 𝑡 = 100; (c) 𝑡 = 200;
(d) 𝑡 = 300; (e) 𝑡 = 400; and (f) 𝑡 = 500.
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We introduce the rudiments of fractional calculus and the consequent applications of the Sumudu transform on fractional
derivatives. Once this connection is firmly established in the general setting, we turn to the application of the Sumudu transform
method (STM) to some interesting nonhomogeneous fractional ordinary differential equations (FODEs). Finally, we use the
solutions to form two-dimensional (2D) graphs, by using the symbolic algebra package Mathematica Program 7.

1. Introduction

The Sumudu transform was first defined in its current
shape by Watugala as early as 1993, which he used to solve
engineering control problems. Although he might have had
ideas for it sooner than that (1989) as some conference
proceedings showed, he used it to control engineering prob-
lems [1, 2]. Later, Watugala extended in 2002 the Sumudu
transform to two variables [3]. The first applications to
differential equations and inversion formulae were done by
Weerakoon in two papers in 1994 and 1998 [4, 5]. The
Sumudu transform was also first defended by Weerakoon
against Deakin’s definition who claimed that there is no
difference between the Sumudu and the Laplace and who
remindedWeerakoon that the Sumudu transform is really the
Carson or the S-multiplied transform disguised [6, 7]. The
applications followed in three consecutive papers by Asiru
dealing with the convolution-type integral equations and the
discrete dynamic systems [8, 9]. At this point, Belgacem et
al. using previous references and connections to the Laplace
transform extended the theory and the applications of the
Sumudu transform in [10–17] to various applications. In
the meantime, subsequent to exchanges between Belgacem
and other scholars, the following papers sprang up in the
last decade [18–22]. Moreover, the Sumudu transform was

also used to solve many ordinary differential equations with
integer order [23–29]. The application of STM turns out to
be pragmatic in getting analytical solution of the fractional
ordinary differential equations fast. Notably, implementa-
tions of difference methods such as in the differential trans-
form method (DTM), the Adomian decomposition method
(ADM) [30–33], the variational iteration method (VIM)
[34–40] empowered us to achieve approximate solutions of
various ordinary differential equations. STM [41–44] which
is newly submitted to the literature is a suitable technique for
solving various kinds of ordinary differential equations with
fractional order (FODEs). In this sense, it is estimated that
this novel approach that is used to solve homogeneous and
nonhomogeneous problems will be particularly valuable as a
tool for scientists and applied mathematicians.

2. Fundamental Properties of Fractional
Calculus and STM

2.1. Fundamental Facts of the Fractional Calculus. Firstly, we
mention some of the fundamental properties of the fractional
calculus. Fractional derivatives (and integrals as well) defi-
nitions may differ, but the most widely used definitions are
those of Abel-Riemann (A-R). Following the nomenclature
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in [45], a derivative of fractional order in the A-R sense is
defined by

𝐷
𝛼

[𝑓 (𝑡)]

=

{{{

{{{

{

1

Γ [𝑚 − 𝛼]

𝑑

𝑑𝑡𝑚
∫

𝑡

0

𝑓 (𝜏)

(𝑡 − 𝜏)
𝛼−𝑚+1

𝑑𝜏, 𝑚 − 1 < 𝛼 ≤ 𝑚,

𝑑
𝑚

𝑑𝑡𝑚
𝑓 (𝑡) , 𝛼 = 𝑚,

(1)

where 𝑚 ∈ Z+ and 𝛼 ∈ 𝑅
+
. 𝐷
𝛼 is a derivative operator here,

and

𝐷
−𝛼

[𝑓 (𝑡)] =
1

Γ [𝛼]
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 0 < 𝛼 ≤ 1. (2)

On the other hand, according to A-R, an integral of
fractional order is defined by implementing the integration
operator 𝐽

𝛼 in the following manner:

𝐽
𝛼

[𝑓 (𝑡)] =
1

Γ [𝛼]
∫

𝑡

0

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏, 𝑡 > 0, 𝛼 > 0. (3)

When it comes to some of the fundamental properties
of fractional integration and fractional differentiation, these
have been introduced to the literature by Podlubny [46].
Among these, we mention

𝐽
𝛼

[𝑡
𝑛
] =

Γ [1 + 𝑛]

Γ [1 + 𝑛 + 𝛼]
𝑡
𝑛+𝛼

,

𝐷
𝛼

[𝑡
𝑛
] =

Γ [1 + 𝑛]

Γ [1 + 𝑛 − 𝛼]
𝑡
𝑛−𝛼

.

(4)

Anothermain definition of the fractional derivative is that
of Caputo [46, 47] who defined it by
𝐶
𝐷
𝛼

[𝑓 (𝑡)]

=

{{{{

{{{{

{

1

Γ [𝑚 − 𝛼]
∫

𝑡

0

𝑓
(𝑚)

(𝜏)

(𝑡 − 𝜏)
𝛼−𝑚+1

𝑑𝜏, 𝑚 − 1 < 𝛼 < 𝑚,

𝑑
𝑚

𝑑𝑡𝑚
𝑓 (𝑡) , 𝛼 = 𝑚.

(5)

A fundamental feature of the Caputo fractional derivative
is that [17]

𝐽
𝛼

[
𝐶
𝐷
𝛼
𝑓 (𝑡)] = 𝑓 (𝑡) −

∞

∑

𝑘=0

𝑓
(𝑘)

(0
+
)

𝑡
𝑘

𝑘!
. (6)

2.2. Fundamental Facts of the Sumudu Transform Method.
The Sumudu transform is defined in [1, 2] as follows. Over
the set of functions

𝐴 = {𝑓 (𝑡) | ∃𝑀, 𝜏
1
, 𝜏
2

> 0,

𝑓 (𝑡)
 < 𝑀𝑒

|𝑡|/𝜏𝑖 , if 𝑡 ∈ (−1)
𝑗

× [0, ∞)} ,

(7)

the Sumudu transform of 𝑓(𝑡) is defined as

𝐹 (𝑢) = 𝑆 [𝑓 (𝑡)] = ∫

∞

0

𝑓 (𝑢𝑡) 𝑒
−𝑡

𝑑𝑡, 𝑢 ∈ (−𝜏
1
, 𝜏
2
) . (8)

Theorem1. If𝐹(𝑢)is the Sumudu transformof𝑓(𝑡), one knows
that the Sumudu transform of the derivatives with integer order
is given as follows [46–49]:

𝑆 [
𝑑𝑓 (𝑡)

𝑑𝑡
] =

1

𝑢
[𝐹 (𝑢) − 𝑓 (0)] . (9)

Proof. Let us take the Sumudu transform [46–49] of 𝑓

(𝑡) =

𝑑𝑓(𝑡)/𝑑𝑡 as follows:

𝑆 [
𝑑𝑓 (𝑡)

𝑑𝑡
] = ∫

∞

0

𝑑𝑓 (𝑢𝑡)

𝑑𝑡
𝑒
−𝑡

𝑑𝑡 = lim
𝑝→∞

∫

𝑝

0

𝑑𝑓 (𝑢𝑡)

𝑑𝑡
𝑒
−𝑡

𝑑𝑡

= lim
𝑝→∞

[
1

𝑢
𝑒
−(𝑡/𝑢)

𝑓 (𝑡)



𝑝

0

+
1

𝑢2
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𝑝

0

𝑒
−(𝑡/𝑢)

𝑓 (𝑡) 𝑑𝑡]

= lim
𝑝→∞

[
1

𝑢
𝑒
−(𝑡/𝑢)

𝑓 (𝑡)



𝑝

0

+
1

𝑢
(

1

𝑢
∫

𝑝

0

𝑒
−(𝑡/𝑢)

𝑓 (𝑡) 𝑑𝑡)]

= lim
𝑝→∞

[−
1

𝑢
𝑓 (0) +

1

𝑢
(

1

𝑢
∫

𝑝

0

𝑒
−(𝑡/𝑢)

𝑓 (𝑡) 𝑑𝑡)]

= −
1

𝑢
𝑓 (0) +

1

𝑢
𝐹 (𝑢) .

(10)

Equation (10) gives us the proof of Theorem 1. When we
continue in the same manner, we get the Sumudu transform
of the second-order derivative as follows [46–49]:

𝑆 [
𝑑
2
𝑓 (𝑡)

𝑑𝑡2
] =

1

𝑢2
[𝐹 (𝑢) − 𝑓 (0) − 𝑢

𝑑𝑓 (𝑡)

𝑑𝑡

𝑡=0

] . (11)

If we go on the same way, we get the Sumudu transform
of the 𝑛-order derivative as follows:

𝑆 [
𝑑
𝑛
𝑓 (𝑡)

𝑑𝑡𝑛
] = 𝑢
−𝑛

[𝐹 (𝑢) −

𝑛−1

∑

𝑘=0

𝑢
𝑘

𝑑
𝑛
𝑓 (𝑡)

𝑑𝑡𝑛

𝑡=0

] . (12)

Theorem 2. If 𝐹(𝑢) is the Sumudu transform of 𝑓(𝑡), one can
take into consideration the Sumudu transform of the Riemann-
Liouville fractional derivative as follows [17]:

𝑆 [𝐷
𝛼
𝑓 (𝑡)] = 𝑢

−𝛼
[𝐹 (𝑢) −

𝑛

∑

𝑘=1

𝑢
𝛼−𝑘

[𝐷
𝛼−𝑘

(𝑓 (𝑡))]
𝑡=0

] ,

− 1 < 𝑛 − 1 ≤ 𝛼 < 𝑛.

(13)

Proof. Let us take the Laplace transform of 𝑓

(𝑡) = 𝑑𝑓(𝑡)/𝑑𝑡

as follows:

𝐿 [𝐷
𝛼
𝑓 (𝑡)] = 𝑠

𝛼
𝐹 (𝑠) −

𝑛−1

∑

𝑘=0

𝑠
𝑘
[𝐷
𝛼−𝑘−1

(𝑓 (𝑡))]
𝑡=0

= 𝑠
𝛼
𝐹 (𝑠) −

𝑛

∑

𝑘=0

𝑠
𝑘−1

[𝐷
𝛼−𝑘

(𝑓 (𝑡))]
𝑡=0

.

(14)
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Therefore, when we substitute 1/𝑢 for 𝑠, we get the
Sumudu transform of fractional order of 𝑓(𝑡) as follows:

𝑆 [𝐷
𝛼
𝑓 (𝑡)] = 𝑢

−𝛼
[𝐹 (𝑢) −

𝑛

∑

𝑘=1

𝑢
𝛼−𝑘

[𝐷
𝛼−𝑘

(𝑓 (𝑡))]
𝑡=0

] . (15)

Now, we will introduce the improvement form of STM
for solving FODEs. We take into consideration a general
linear ordinary differential equation with fractional order as
follows:

𝜕
𝛼
𝑈 (𝑡)

𝜕𝑡𝛼
=

𝜕
2
𝑈 (𝑡)

𝜕𝑡2
+

𝜕𝑈 (𝑡)

𝜕𝑡
+ 𝑈 (𝑡) + 𝑐, (16)

being subject to the initial condition
𝑈 (0) = 𝑓 (0) . (17)

Then, we will obtain the analytical solutions of some of
the fractional ordinary differential equations by using STM.
When we take the Sumudu transform of (16) under the terms
of (12) and (15), we obtain the Sumudu transform of (16) as
follows:

𝑆 [
𝜕
𝛼
𝑈 (𝑡)

𝜕𝑡𝛼
] = 𝑆 [

𝜕
2
𝑈 (𝑡)

𝜕𝑡2
] + 𝑆 [

𝜕𝑈 (𝑡)

𝜕𝑡
] + 𝑆 [𝑈 (𝑡)] + 𝑆 [𝑐] ,

𝑢
−𝛼

[𝐹 (𝑢) −

𝑛

∑

𝑘=1

𝑢
𝛼−𝑘

[𝐷
𝛼−𝑘

(𝑈 (𝑡))]
𝑡=0

]

=
1

𝑢2
[𝐹 (𝑢) − 𝑓 (0) − 𝑢

𝜕𝑓 (𝑡)

𝜕𝑡

𝑡=0

]

+
1

𝑢
[𝐹 (𝑢) − 𝑓 (0)] + 𝐹 (𝑢) + 𝑐,

𝐹 (𝑢) −

𝑛

∑

𝑘=1

𝑢
𝛼−𝑘

[𝐷
𝛼−𝑘
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𝑡=0

= 𝑢
𝛼−2

[𝐹 (𝑢) − 𝑓 (0) − 𝑢
𝜕𝑈 (𝑡)

𝜕𝑡

𝑡=0

]

+ 𝑢
𝛼−1

[𝐹 (𝑢) − 𝑓 (0)]

+ 𝑢
𝛼
𝐹 (𝑢) + 𝑐𝑢

𝛼
,

𝐹 (𝑢) = 𝑢
𝛼−2

𝐹 (𝑢) − 𝑢
𝛼−2

𝑈 (0)

+

𝑛

∑

𝑘=1

𝑢
𝛼−𝑘

[𝐷
𝛼−𝑘

(𝑈 (𝑡))]
𝑡=0

− 𝑢
𝛼−1 𝜕𝑈 (𝑡)

𝜕𝑡

𝑡=0

+ 𝑢
𝛼−1

𝐹 (𝑢) − 𝑢
𝛼−1
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+ 𝑢
𝛼
𝐹 (𝑢) + 𝑐𝑢

𝛼
,
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𝛼−2

𝐹 (𝑢) − 𝑢
𝛼−1

𝐹 (𝑢) − 𝑢
𝛼
𝐹 (𝑢)

= −𝑢
𝛼−2

𝑓 (0)

+

𝑛

∑

𝑘=1

𝑢
𝛼−𝑘

[𝐷
𝛼−𝑘

(𝑈 (𝑡))]
𝑡=0

− 𝑢
𝛼−1 𝜕𝑈 (𝑡)

𝜕𝑡

𝑡=0

− 𝑢
𝛼−1

𝑈 (0) + 𝑐𝑢
𝛼
,

𝐹 (𝑢) =
1

1 − 𝑢𝛼−2 − 𝑢𝛼−1 − 𝑢𝛼

× [𝑔 (𝑢) − 𝑢
𝛼−1

𝑈 (0) − 𝑢
𝛼−2

𝑈 (0) + 𝑐𝑢
𝛼
] ,

(18)

where 𝑔(𝑢) is defined by ∑
𝑛

𝑘=1
𝑢
𝛼−𝑘

[𝐷
𝛼−𝑘

(𝑈(𝑡))]
𝑡=0

−

𝑢
𝛼−1

(𝜕𝑈(𝑡)/𝜕𝑡)|
𝑡=0

. When we take the inverse Sumudu
transform of (18) by using the inverse transform table in
[11, 17], we get the solution of (16) by using STM as follows:

𝑈 (𝑡) = 𝑆
−1

[
1

1 − 𝑢𝛼−2 − 𝑢𝛼−1 − 𝑢𝛼

× [𝑔 (𝑢) − 𝑢
𝛼−1

𝑈 (0) − 𝑢
𝛼−2

𝑈 (0) + 𝑐𝑢
𝛼
] ] .

(19)

3. Applications of STM to Nonhomogeneous
Fractional Ordinary Differential Equations

In this section, we have applied STM to the nonhomogeneous
fractional ordinary differential equations as follows.

Example 3. Firstly, we consider the nonhomogeneous frac-
tional ordinary differential equation as follows [50]:

𝐷
𝛼

[𝑈 (𝑡)] = −𝑈 (𝑡) +
2

Γ [3 − 𝛼]
𝑡
2−𝛼

−
1

Γ [2 − 𝛼]
𝑡
1−𝛼

+ 𝑡
2

− 𝑡, 𝑡 > 0, 0 < 𝛼 ≤ 1,

(20)

With the initial condition being
𝑈 (0) = 0. (21)

In order to solve (20) by using STM, when we take the
Sumudu transform of both sides of (20), we get the Sumudu
transform of (20) as follows:

𝑆 [𝐷
𝛼
𝑈 (𝑡)] + 𝑆 [𝑈 (𝑡)]

= 𝑆 [
2

Γ [3 − 𝛼]
𝑡
2−𝛼

−
1

Γ [2 − 𝛼]
𝑡
1−𝛼

+ 𝑡
2

− 𝑡] ,

𝑆 [𝐷
𝛼
𝑈 (𝑡)] + 𝐹 (𝑢) = 𝑆 [

2

Γ [3 − 𝛼]
𝑡
2−𝛼

]

− 𝑆 [
1

Γ [2 − 𝛼]
𝑡
1−𝛼

] + 𝑆 [𝑡
2
] − 𝑆 [𝑡] ,

𝐹 (𝑢)

𝑢𝛼
−

𝐷
𝛼−1

[𝑈 (𝑡)]

𝑢

𝑡=0

+ 𝐹 (𝑢) =
2

Γ [3 − 𝛼]
𝑆 [𝑡
2−𝛼

]

−
1

Γ [2 − 𝛼]
𝑆 [𝑡
1−𝛼

]

+ 𝑆 [𝑡
2
] − 𝑆 [𝑡] ,

𝐹 (𝑢)

𝑢𝛼
+ 𝐹 (𝑢) =

2

Γ [3 − 𝛼]
𝑢
2−𝛼

Γ [3 − 𝛼]

−
1

Γ [2 − 𝛼]
𝑢
1−𝛼

Γ [2 − 𝛼] + 2𝑢
2

− 𝑢,

(1 +
1

𝑢𝛼
) 𝐹 (𝑢) = 2𝑢

2−𝛼
− 𝑢
1−𝛼

+ 2𝑢
2

− 𝑢,

(1 + 𝑢
𝛼
) 𝐹 (𝑢) = 2𝑢

2
− 𝑢 + 2𝑢

2+𝛼
− 𝑢
1+𝛼

,

(1 + 𝑢
𝛼
) 𝐹 (𝑢) = 𝑢 (2𝑢 − 1) + 𝑢

𝛼
𝑢 (2𝑢 − 1) ,

𝐹 (𝑢) = (2𝑢 − 1) 𝑢,

𝐹 (𝑢) = 2𝑢
2

− 𝑢.

(22)
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When we take the inverse Sumudu transform of (22) by
using the inverse transform table in [11], we get the analytical
solution of (20) by STM as follows:

𝑈 (𝑡) = 𝑡
2

− 𝑡. (23)

Remark 4. If we take the corresponding values for some
parameters into consideration, then the solution of (20) is in
full agreement with the solution of (30) mentioned in [50].
To our knowledge, the analytical solution of FODEs that we
find in this paper has been newly submitted to the literature.

Example 5. Secondly, we consider the nonhomogeneous
fractional ordinary differential equation as follows [51]:

𝐷
0.5

𝑈 (𝑡) + 𝑈 (𝑡) = 𝑡
2

+
Γ [3]

Γ [2.5]
𝑡
1.5

, 𝑡 > 0, (24)

With the initial condition being

𝑈 (0) = 0. (25)

In order to solve (24) by using STM, when we take the
Sumudu transform of both sides of (24), we get the Sumudu
transform of (24) as follows:

𝑆 [𝐷
0.5

𝑈 (𝑡)] + 𝑆 [𝑈 (𝑡)] = 𝑆 [𝑡
2
] +

Γ [3]

Γ [2.5]
𝑆 [𝑡
1.5

] ,

𝑆 [𝐷
0.5

𝑈 (𝑡)] + 𝑆 [𝑈 (𝑡)] = 𝑆 [𝑡
2
] + 1.50451𝑆 [𝑡

1.5
] ,

𝐹 (𝑢)

𝑢0.5
−

𝐷
𝛼−1

[𝑈 (𝑡)]

𝑢

𝑡=0

+ 𝐹 (𝑢)

= 2𝑢
2

+ 2𝑢
1.5

⇒
𝐹 (𝑢)

𝑢0.5
+ 𝐹 (𝑢) = 2𝑢

2
+ 2𝑢
1.5

,

(
1 + 𝑢
0.5

𝑢0.5
) 𝐹 (𝑢) = 2𝑢

2
+ 2𝑢
1.5

⇒ (1 + 𝑢
0.5

) 𝐹 (𝑢) = 2𝑢
2

+ 2𝑢
1.5

,

𝐹 (𝑢) =
2𝑢
2.5

1 + 𝑢0.5
+

2𝑢
2

1 + 𝑢0.5
=

2𝑢
2

(1 + 𝑢
0.5

)

1 + 𝑢0.5
= 2𝑢
2
.

(26)

When we take the inverse Sumudu transform of (26) by
using the inverse transform table in [48], we get the analytical
solution of (24) by using STM as follows:

𝑈 (𝑡) = 𝑡
2
. (27)

Remark 6. The solution (27) obtained by using the Sumudu
transform method for (24) has been checked by the Mathe-
matica Program 7. To our knowledge, the analytical solution
that we find in this paper has been newly submitted to the
literature.

4. Conclusion and Future Work

Prior to this study, various approaches have been performed
to obtain approximate solutions of some fractional differ-
ential equations [50, 51]. In this paper, nonhomogeneous

0.5 1.0 1.5 2.0 2.5 3.0

1

2
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4
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6

Analytical solution by STM

t

u

Figure 1:The 2D surfaces of the obtained solution bymeans of STM
for (23) when 0 < 𝑡 < 3.
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Analytical solution by STM
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u

Figure 2:The 2D surfaces of the obtained solution bymeans of STM
for (27) when 0 < 𝑡 < 3.

fractional ordinary differential equations have been solved
by using the Sumudu transform after giving the related
formulae for the fractional integrals, the derivatives, and the
Sumudu transform of FODEs.The Sumudu technique can be
used to solve many types such as initial-value problems and
boundary-value problems in applied sciences, engineering
fields, aerospace sciences, and mathematical physics. The
Sumudu transform method has been used for The discrete
fractional calculus in [43]. This technique has been inves-
tigated in terms of the double Sumudu transform in [44].
Consequently, this new approach has been implemented
with success on interesting fractional ordinary differential
equations. As such and pragmatically so, it enriches the
library of integral transform approaches. Without a doubt,
and based on our findings such as Figures 1 and 2, the STM
technique remains direct, robust and valuable tool for solving
same fractional differential equations.

References

[1] G. K. Watugala, “Sumudu transform: a new integral trans-
form to solve differential equations and control engineering



Abstract and Applied Analysis 5

problems,” International Journal of Mathematical Education in
Science and Technology, vol. 24, no. 1, pp. 35–43, 1993.

[2] G. K.Watugala, “Sumudu transform—a new integral transform
to solve differential equations and control engineering prob-
lems,” Mathematical Engineering in Industry, vol. 6, no. 4, pp.
319–329, 1998.

[3] G. K. Watugala, “The Sumudu transform for functions of two
variables,” Mathematical Engineering in Industry, vol. 8, no. 4,
pp. 293–302, 2002.

[4] S.Weerakoon, “Application of Sumudu transform to partial dif-
ferential equations,” International Journal of Mathematical Edu-
cation in Science and Technology, vol. 25, no. 2, pp. 277–283,
1994.

[5] S. Weerakoon, “Complex inversion formula for Sumudu trans-
form,” International Journal of Mathematical Education in Sci-
ence and Technology, vol. 29, no. 4, pp. 618–621, 1998.

[6] M. A. B. Deakin, “The “Sumudu transform” and the Laplace
transform,” International Journal of Mathematical Education in
Science and Technology, vol. 28, p. 159, 1997.

[7] S.Weerakoon, “The “Sumudu transform” and the Laplace trans-
form—reply,” International Journal of Mathematical Education
in Science and Technology, vol. 28, no. 1, p. 160, 1997.

[8] M. A. Asiru, “Sumudu transform and the solution of integral
equations of convolution type,” International Journal of Mathe-
matical Education in Science and Technology, vol. 32, no. 6, pp.
906–910, 2001.
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The fractional complex transformation is used to transform nonlinear partial differential equations to nonlinear ordinary
differential equations. The improved (𝐺/𝐺)-expansion method is suggested to solve the space and time fractional foam drainage
andKdVequations.Theobtained results show that the presentedmethod is effective and appropriate for solving nonlinear fractional
differential equations.

1. Introduction

The soliton solutions of nonlinear evolution equations have
made a major impact in the flesh. These solitons appear in
various areas of physical and biological sciences. They show
up in nonlinear optics, plasma physics, fluid dynamics, bio-
chemistry, and mathematical chemistry. Fractional partial
differential equations (FPDEs) have received considerable
interest in recent years and have been extensively investi-
gated. These equations were applied for many real problems
which are modeled in various areas, for example, in mathe-
matical physics [1], fluid and continuummechanics [2], visco-
plastic and viscoelastic flow [3], biology, chemistry, acoustics,
and psychology [4, 5]. Some FPDEs do not have exact solu-
tions, so approximation and numerical techniques must be
used. There are several approximation and numerical meth-
ods.Themost commonly used ones are the homotopy pertur-
bation method [6, 7], the Adomian decomposition method
[8, 9], the variational iterationmethod [10–12], the homotopy
analysis method [13, 14], the generalized differential trans-
form method [15], the finite difference method [16], and the
finite elementmethod [17]. In recent years, some authors have
got exact solutions of FPDEs by using analytical methods. S.
Zhang and H.-Q. Zhang [18] proposed to solve the nonlinear
time fractional biological population model and (4 + 1)-
dimensional space-time fractional Fokas equation by using

the fractional subequation method. Guo et al. [19] presented
the improved subequation method to solve the space-time
fractional Whitham-Broer-Kaup and the generalized Hirota-
Satsuma coupled KdV equations. Tang et al. [20] used the
generalized fractional subequation method to obtain exact
solutions of the space-time fractional Gardner equation with
variable coefficients. Lu [21] investigated the exact solutions
of the nonlinear fractional Klein-Gordon equation, the gen-
eralized time fractionalHirota-Satsuma coupledKdV system,
and the nonlinear fractional Sharma-Tasso-Olver equation.
Bin [22] solved the time-space fractional generalized Hirota-
Satsuma coupled KdV equations and the time fractional fifth-
order Sawada-Kotera equation by using the (𝐺


/𝐺)-expan-

sion method. Omran and Gepreel [23] used the improved
(𝐺

/𝐺)-expansion method to calculate the exact solutions to

the time-space fractional foam drainage and KdV equations.
In this paper, we will apply the improved (𝐺


/𝐺)-expansion

method to obtain the exact solutions for the time-space frac-
tional foam drainage and KdV equations with the modified
Riemann-Liouville derivative defined by Jumarie [24–27]:

𝜕
𝛼
𝑢

𝜕𝑡𝛼
=
1

2
𝑢
𝜕
2𝛽
𝑢

𝜕𝑥2𝛽
+ 2𝑢
2 𝜕
𝛽
𝑢

𝜕𝑥𝛽
+ (

𝜕
𝛽
𝑢

𝜕𝑥𝛽
)

2

,

𝑡 > 0, 𝛼 > 0, 𝛽 ≤ 1,

(1)
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𝜕
𝛼
𝑢

𝜕𝑡𝛼
+ 𝛼𝑢

𝜕
𝛽
𝑢

𝜕𝑥𝛽
+
𝜕
3𝛽
𝑢

𝜕𝑥3𝛽
= 0,

𝑡 > 0, 𝛼 > 0, 𝛽 ≤ 1,

(2)

where 𝛼 is arbitrary constant. This paper is organized
as follows. In Section 2, we introduce some basic defini-
tions of Jumarie’s modified Riemann-Liouville derivative. In
Section 3, the main steps of the improved (𝐺


/𝐺)-expansion

method are given. In Section 4, we construct the exact
solutions of (1) and (2) by the proposed method. Some
conclusions are given in Section 5.

2. Preliminaries

There are several definitions for fractional differential equa-
tions. These definitions include Riemann-Liouville, Weyl,
Grünwald-Letnikov, Riesz, and Jumarie fractional deriva-
tives. The Riemann-Liouville fractional derivative of a con-
stant is not zero. So the fractional derivative is only defined for
differentiable function. In order to deal with nondifferen-
tiable functions, Jumarie [24–27] presented a modification of
the Riemann-Liouville definition which appears to provide a
framework for a fractional calculus. This modification was
successfully applied in the probability calculus, fractional
Laplace problem, exact solutions of the nonlinear fractional
differential equations, and many other types of linear and
nonlinear fractional differential equations [28–30].

Definition 1. The Riemann-Liouville fractional integral is
defined [31] as

0
𝐼
𝛼

𝑥
𝑓 (𝑥) = 𝐼

𝛼
𝑓 (𝑥)

=
1

Γ (𝛼)
∫

𝑥

0

𝑓 (𝜉) (𝑥 − 𝜉)
𝛼−1

𝑑𝜉, 𝛼 > 0,

𝐼
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(3)

Definition 2. Jumarie [24–27] defined the fractional deriva-
tive in the limit form by

𝑓
(𝛼)

(𝑥) = lim
ℎ→0

Δ
𝛼
[𝑓 (𝑥) − 𝑓 (0)]

ℎ𝛼
, (4)

where 𝑓(𝑥) should be a continuous (but not necessarily dif-
ferentiable) function and ℎ > 0 denotes a constant discreti-
zation span. So, the modified form of the Riemann-Liouville
derivative is defined as

0
𝐷
𝛼

𝑥
𝑓 (𝑥) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑥𝑛
∫

𝑥

0

(𝑥 − 𝜉)
(𝑛−𝛼)

[𝑓 (𝜉) − 𝑓 (0)] ,

(5)

where 𝑥 ∈ [0, 1], 𝑛 − 1 ≤ 𝛼 < 𝑛 and 𝑛 ≥ 1.

Lemma3. The integral with respect to (𝑑𝑥)𝛼 is defined by Jum-
arie [24, 25] as follows:

∫

𝑥

0

𝑓 (𝜉) (𝑑𝜉)
𝛼

= 𝛼∫

𝑥

0

(𝑥 − 𝜉) 𝑓 (𝜉) 𝑑𝜉, 0 < 𝛼 ≤ 1,

𝑑
𝛼

𝑑𝑥𝛼
∫

𝑢(𝑥)

0

𝑓 (𝜉) (𝑑𝜉)
𝛼

= Γ (𝛼 + 1) 𝑓 [𝑢 (𝜉)] [𝑢


(𝜉)]
𝛼

,

0 < 𝛼 ≤ 1.

(6)

Theorem 4. Assume that the continuous function 𝑓(𝑥) has a
fractional derivative of order 𝛼; then

𝑑
𝛼

𝑑𝑥𝛼
𝐼
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐼
𝛼 𝑑
𝛼

𝑑𝑥𝛼
𝑓 (𝑥) = 𝑓 (𝑥) − 𝑓 (0) , 0 < 𝛼 ≤ 1,

(7)

hold.

3. Description of the Improved (𝐺

/𝐺)-

Expansion Method

In this section, we give the description of the improved
(𝐺

/𝐺)-expansion method for solving the nonlinear FPDEs

as
𝐹 (𝑢,𝐷

𝛼

𝑡
𝑢,𝐷
𝛽

𝑥
𝑢,𝐷
𝛾

𝑦
𝑢,𝐷
𝛿

𝑧
𝑢,𝐷
𝛼

𝑡
𝐷
𝛼

𝑡
𝑢,

𝐷
𝛼

𝑡
𝐷
𝛽

𝑥
𝑢,𝐷
𝛽

𝑥
𝐷
𝛽

𝑥
𝑢, . . .) = 0,

0 < 𝛼, 𝛽, 𝛾, 𝛿 ≤ 1,

(8)

where 𝑢 is an unknown function and 𝐹 is a polynomial of 𝑢
and its partial fractional derivatives, in which the highest
order derivatives and nonlinear terms are involved. We offer
an improved (𝐺


/𝐺)-expansion method [32]. The essential

steps of this method are described as follows.

Step 1. Li and He [33] and He and Li [34] presented a frac-
tional complex transform to transform fractional differential
equations into ordinary differential equations. So, all ana-
lytical methods devoted to advanced calculus can be easily
dedicated to fractional calculus. The traveling wave variable
is given as

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 (𝜉) ,

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)
+

𝑁𝑦
𝛾

Γ (𝛾 + 1)
+

𝐿𝑡
𝛼

Γ (𝛼 + 1)
,

(9)

where 𝐾,𝑁, and 𝐿 are nonzero arbitrary constants. So, (9) is
reduced to (10):

𝑝 (𝑢, 𝑢

, 𝑢

, 𝑢

, . . .) = 0, (10)

where 𝑢 = 𝑢(𝜉).

Step 2. Suppose that (10) has the solution (11):

𝑢 (𝜉) =

𝑛

∑

𝑖=0

𝑎
𝑖
𝐹
𝑖

(𝜉) , (11)

where 𝑎
𝑖
(𝑖 = 0, 1, . . . , 𝑛) are real constants to be determined,

the balancing number 𝑛 is a positive integer which can be
determined by balancing the highest derivative terms with
the highest power nonlinear terms in (10). More precisely, we
define the degree of 𝑢(𝜉) as 𝐷[𝑢(𝜉)] = 𝑚, which gives rise to
the degrees of other expressions, as follows:

𝐷[
𝑑
𝑞
𝑢

𝑑𝜉𝑞
] = 𝑚 + 𝑞,

𝐷 [𝑢
𝑝
(
𝑑
𝑞
𝑢

𝑑𝜉𝑞
)

𝑠

] = 𝑚𝑝 + 𝑠 (𝑞 + 𝑚) .

(12)

Therefore, we can obtain the value of𝑚 in (11).
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Step 3. 𝐹(𝜉) is

𝐹 (𝜉) =
𝐺

(𝜉)

𝐺 (𝜉)
, (13)

where 𝐺(𝜉) expresses the solution of the following auxiliary
ordinary differential equation

𝐺 (𝜉) 𝐺


(𝜉) = 𝐴𝐺
2

(𝜉) + 𝐵𝐺 (𝜉) 𝐺


(𝜉) + 𝐶[𝐺 (𝜉)]
2

, (14)

where the prime denotes derivative with respect to 𝜉. 𝐴, 𝐵,
and 𝐶 are real parameters.

Step 4. Substituting (13) into (10), using (14), collecting all
terms with the same order of (𝐺(𝜉)/𝐺(𝜉)) together, and then
equating each coefficient of the resulting polynomial to zero,
we obtain a set of algebraic equations for 𝑎

𝑖
(𝑖 = 0, 1, . . . , 𝑛),

𝐴, 𝐵, 𝐶, 𝐾,𝑁, and 𝐿.

Step 5. Using the general solutions of (14), with the aid of
Mathematica, we have the following four solutions of (13).

Case 1. If 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 ≥ 0, then

𝐹 (𝜉) =
𝐵

2 (1 − 𝐶)
+

𝐵√Δ

2 (1 − 𝐶)

×

𝑐
1
exp ((√Δ/2) 𝜉) + 𝑐

2
exp ((−√Δ/2) 𝜉)

𝑐
1
exp ((√Δ/2) 𝜉) − 𝑐

2
exp ((−√Δ/2) 𝜉)

.

(15)

Case 2. If 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 < 0, then

𝐹 (𝜉) =
𝐵

2 (1 − 𝐶)
+

𝐵√−Δ

2 (1 − 𝐶)

×

𝑖𝑐
1
cos ((√−Δ/2) 𝜉) − 𝑐

2
sin ((√−Δ/2) 𝜉)

𝑖𝑐
1
sin ((√−Δ/2) 𝜉) + 𝑐

2
cos ((√−Δ/2) 𝜉)

.

(16)

Case 3. If 𝐵 = 0 and Δ = 𝐴(𝐶 − 1) ≥ 0, then

𝐹 (𝜉) =
√Δ

(1 − 𝐶)

𝑐
1
cos (√Δ𝜉) + 𝑐

2
sin (√Δ𝜉)

𝑐
1
sin (√Δ𝜉) − 𝑐

2
cos (√Δ𝜉)

. (17)

Case 4. If 𝐵 = 0 and Δ = 𝐴(𝐶 − 1) < 0, then

𝐹 (𝜉) =
√−Δ

(1 − 𝐶)

𝑖𝑐
1
cosh (√−Δ𝜉) − 𝑐

2
sinh (√−Δ𝜉)

𝑖𝑐
1
sinh (√−Δ𝜉) − 𝑐

2
cosh (√−Δ𝜉)

, (18)

where

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)
+

𝑁𝑦
𝛾

Γ (𝛾 + 1)
+

𝐿𝑡
𝛼

Γ (𝛼 + 1)
(19)

and 𝐴, 𝐵, 𝐶, 𝑐
1
, and 𝑐

2
are real parameters.

4. Applications

We use the improved (𝐺/𝐺)-expansionmethod on the time-
space fractional nonlinear foam drainage equation and the
time-space fractional nonlinear KdV equation in this section.

4.1. The Time and Space-Fractional Nonlinear Foam Drainage
Equation. We apply the improved (𝐺/𝐺)-expansionmethod
to construct the exact solutions for the time-space fractional
nonlinear foam drainage equation in this subsection. Foams
are of great importance in many technological processes and
applications. Their properties are subject of intensive studies
frompractical and scientific points of view [27, 35–37]. Liquid
foam is an example of soft matter with a very well-defined
structure, described by Joseph Plateau in the 19th century.
Foams are common in foods and personal care products
such as lotions and creams.They have important applications
in food and chemical industries, mineral processing, fire
fighting, and structural material sciences [27, 35–37]. This
equation is numerically and analytically taken into account by
different authors [38–40]. The space-time fractional nonlin-
ear foam drainage equation is solved analytically only by
Omran and Gepreel [23]. We can see the fractional complex
transform as

𝑢 (𝑥, 𝑡) = 𝑢 (𝜉) ,

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)
+

𝐿𝑡
𝛼

Γ (𝛼 + 1)
,

(20)

where𝐾 and 𝐿 are constants. So, (20) reduces to (21):

−𝐿𝑢

+
1

2
𝐾
2
𝑢𝑢

+ 2𝐾𝑢

2
𝑢

+ 𝐾
2
(𝑢

)
2

= 0. (21)

Balancing the highest order nonlinear term and the high-
est order linear term, we get 𝑛 = 1. Thus, we obtain

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝐹 (𝜉) , 𝐹 (𝜉) =

𝐺

(𝜉)

𝐺 (𝜉)
, (22)

where 𝑎
0
and 𝑎

1
will be determined constants. Substituting

(22) into (21), using (14), collecting all the terms of powers of
(𝐺

/𝐺), and setting each coefficient to zero, we have the fol-

lowing system of algebraic equations:

(
𝐺


𝐺
)

0

:2𝐴𝑎
2

0
𝑎
1
𝐾 + 𝐴

2
𝑎
2

1
𝐾
2
+
1

2
𝐴𝑎
0
𝑎
1
𝐵𝐾
2
− 𝐴𝑎
1
𝐿 = 0,

(
𝐺


𝐺
)

1

:2𝑎
2

0
𝑎
1
𝐵𝐾 − 𝐴𝑎

0
𝑎
1
𝐾
2
+
5

2
𝐴𝑎
2

1
𝐵𝐾
2

+
1

2
𝑎
0
𝑎
1
𝐵
2
𝐾
2
+ 𝐴𝑎
0
𝑎
1
𝐶𝐾
2
− 𝑎
1
𝐵𝐿 = 0,

(
𝐺


𝐺
)

2

: − 2𝑎
2

0
𝑎
1
𝐾 + 2𝐴𝑎

3

1
𝐾 + 4𝑎

0
𝑎
2

1
𝐵𝐾

+ 2𝑎
2

0
𝑎
1
𝐶𝐾 − 3𝐴𝑎

2

1
𝐾
2
+
3

2
𝑎
0
𝑎
1
𝐵𝐾
2

+
3

2
𝑎
2

1
𝐵
2
𝐾
2
+ 3𝐴𝑎

2

1
𝐶𝐾
2
+
3

2
𝑎
0
𝑎
1
𝐵𝐶𝐾
2

+
3

2
𝑎
2

1
𝐵
2
𝐾
2
+ 3𝐴𝑎

2

1
𝐶𝐾
2
+
3

2
𝑎
0
𝑎
1
𝐵𝐶𝐾
2

+ 𝑎
1
𝐿 − 𝑎
1
𝐶𝐿 = 0,
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(
𝐺


𝐺
)

3

: − 4𝑎
0
𝑎
2

1
𝐾 + 2𝑎

3

1
𝐵𝐾 + 4𝑎

0
𝑎
2

1
𝐶𝐾

+ 𝑎
0
𝑎
1
𝐾
2
−
7

2
𝑎
2

1
𝐵𝐾
2
+ 2𝑎
0
𝑎
1
𝐶𝐾
2

+
7

2
𝑎
2

1
𝐵𝐶𝐾
2
+ 𝑎
0
𝑎
1
𝐶
2
𝐾
2
= 0,

(
𝐺


𝐺
)

4

: − 2𝑎
3

1
𝐾 + 2𝑎

3

1
𝐶𝐾 + 2𝑎

2

1
𝐾
2

− 4𝑎
2

1
𝐶𝐾
2
+ 2𝑎
2

1
𝐶
2
𝐾
2
= 0.

(23)

Solving the set of the above algebraic equations, we get the fol-
lowing result:

𝑎
0
=

8𝐴𝐵𝐾 (𝐶 − 1)

𝐵2 + 6𝐴 − 6𝐴𝐶
, 𝑎

1
= 𝐾 (𝐶 − 1) ,

𝐿 =
1

2
(4𝑎
2

0
𝐾 + 𝑎

0
𝐵𝐾
2
+ 2𝐴𝐾

3
− 2𝐴𝐶𝐾

3
) ,

𝐾𝐵 (𝐶 − 1) ̸= 0.

(24)

Substituting this value in (22) and by Cases 1–4, we obtain
the following exponential, hyperbolic and triangular function
solutions of (1).

(1) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 ≥ 0, then

the exponential function solutions can be found as

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)
−
𝐾𝐵√Δ

2

×

𝑐
1
exp ((√Δ/2) 𝜉) + 𝑐

2
exp ((−√Δ/2) 𝜉)

𝑐
1
exp ((√Δ/2) 𝜉) − 𝑐

2
exp ((−√Δ/2) 𝜉)

,

(25)

where

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)
+
1

2
(4𝑎
2

0
𝐾 + 𝑎

0
𝐵𝐾
2
+ 2𝐴𝐾

3
− 2𝐴𝐶𝐾

3
)

×
𝑡
𝛼

Γ (𝛼 + 1)
.

(26)

(2) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 < 0, then

the triangular function solution will be

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)
−
𝐾𝐵√−Δ

2

×

𝑖𝑐
1
cos ((√−Δ/2) 𝜉) − 𝑐

2
sin ((√−Δ/2) 𝜉)

𝑖𝑐
1
sin ((√−Δ/2) 𝜉) + 𝑐

2
cos ((√−Δ/2) 𝜉)

,

(27)

where

𝜉 =
𝐾𝑥
𝛽

Γ (𝛽 + 1)
+
1

2
(4𝑎
2

0
𝐾 + 𝑎

0
𝐵𝐾
2
+ 2𝐴𝐾

3
− 2𝐴𝐶𝐾

3
)

×
𝑡
𝛼

Γ (𝛼 + 1)
.

(28)

(3) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) ≥ 0, then we

get another triangular function solution

𝑢 (𝑥, 𝑡) = −𝐾√Δ
1

𝑐
1
cos (√Δ

1
𝜉) + 𝑐
2
sin (√Δ

1
𝜉)

𝑐
1
sin (√Δ

1
𝜉) − 𝑐
2
cos (√Δ

1
𝜉)
, (29)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − Δ

1
(𝐾
3
𝑡
𝛼
/Γ(𝛼 + 1)).

(4) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) < 0, then we

obtain the hyperbolic function solution

𝑢 (𝑥, 𝑡) = −𝐾√Δ
1

𝑖𝑐
1
cosh (√−Δ

1
𝜉) − 𝑐
2
sinh (√−Δ

1
𝜉)

𝑖𝑐
1
sinh (√−Δ

1
𝜉) − 𝑐
2
cosh (√−Δ

1
𝜉)
,

(30)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − Δ

1
(𝐾
3
𝑡
𝛼
/Γ(𝛼 + 1)).

If we take 𝑐
1
= −𝑐
2
and 𝑐
1
= 𝑐
2
in (25), respectively, then

we get

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)

−
𝐾𝐵√Δ

2
tanh(

√Δ

2
𝜉) ,

𝑢 (𝑥, 𝑡) =
16𝐴𝐵𝐾 (𝐶 − 1) − 𝐾𝐵 [Δ + 2𝐴 (𝐶 − 1)]

2Δ + 2𝐴 (𝐶 − 1)

−
𝐾𝐵√Δ

2
coth(

√Δ

2
𝜉) .

(31)

4.2. The Nonlinear Space-Time Fractional KdV Equation. The
KdV equation is the most popular soliton equation, and it
has been largely investigated. In addition, the space and time
fractional KdV equations with initial conditions were widely
worked by [27, 38, 39]. Integrating (2) with respect to 𝑢 and
ignoring the integral constants leads to

1

2
𝐿𝑢
2
+
1

6
𝑎𝐾𝑢
3
+
1

2
𝐾
3
(𝑢

)
2

= 0. (32)

Considering the homogeneous balance between the high-
est order derivatives and the nonlinear term in (32), we get
𝑛 = 2. So, we can suppose that (32) has the following ansatz:

𝑢 (𝜉) = 𝑎
0
+ 𝑎
1
𝐹 (𝜉) + 𝑎

2
𝐹
2

(𝜉) , (33)

where 𝑎
0
, 𝑎
1
, 𝑎
2
, 𝐿, and 𝐾 are arbitrary constants to be

determined later. Substituting (33) and (14), along with (13),
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into (32) and usingMathematica yields a system of Equations
of (𝐺/𝐺):

(
𝐺


𝐺
)

0

:
1

3
𝑎𝑎
3

0
𝐾 + 𝐴

2
𝑎
2

1
𝐾
3
+ 𝑎
2

0
𝐿 = 0,

(
𝐺


𝐺
)

1

:
1

2
𝑎𝑎
2

0
𝑎
1
𝐾 + 2𝐴

2
𝑎
1
𝑎
2
𝐾
3

+ 𝐴𝑎
2

1
𝐵𝐾
3
+ 𝑎
0
𝑎
1
𝐿 = 0,

(
𝐺


𝐺
)

2

:
1

2
𝑎𝑎
0
𝑎
2

1
𝐾 +

1

2
𝑎𝑎
2

0
𝑎
2
𝐾 − 𝐴𝑎

2

1
𝐾
3

+ 2𝐴
2
𝑎
2

2
𝐾
3
+ 4𝐴𝑎

1
𝑎
2
𝐵𝐾
3
+

1

2𝑎
2

1
𝐵2𝐾3

+ 𝐴𝑎
2

1
𝐶𝐾
3
+
1

2
𝑎
2

1
𝐿 + 𝑎
0
𝑎
2
𝐿 = 0,

(
𝐺


𝐺
)

3

:
1

6
𝑎𝑎
3

1
𝐾 + 𝑎𝑎

0
𝑎
1
𝑎
2
𝐾 − 4𝐴𝑎

1
𝑎
2
𝐾
3

− 𝑎
2

1
𝐵𝐾
3
+ 4𝐴𝑎

2

2
𝐵𝐾
3
+ 2𝑎
1
𝑎
2
𝐵
2
𝐾
3

+ 4𝐴𝑎
1
𝑎
2
𝐶𝐾
3
+ 𝑎
2

1
𝐵𝐶𝐾
3
+ 𝑎
1
𝑎
2
𝐿 = 0,

(
𝐺


𝐺
)

4

:
1

2
𝑎
2

1
𝑎
2
𝐾 +

1

2
𝑎𝑎
0
𝑎
2

2
𝐾 +

1

2
𝑎
2

1
𝐾
3

− 4𝐴𝑎
2

2
𝐾
3
− 4𝑎
1
𝑎
2
𝐵𝐾
3
+ 2𝑎
2

2
𝐵
2
𝐾
3

− 𝑎
2

1
𝐶𝐾
3
+ 4𝑎
1
𝑎
2
𝐵𝐶𝐾
3
+
1

2
𝑎
2

1
𝐶
2
𝐾
3

+
1

2
𝑎
2

2
𝐿 = 0,

(
𝐺


𝐺
)

5

:
1

2
𝑎𝑎
1
𝑎
2

2
𝐾 + 2𝑎

1
𝑎
2
𝐾
3
− 4𝑎
2

2
𝐵𝐾
3

− 4𝑎
1
𝑎
2
𝐶𝐾
3
+ 4𝑎
2

2
𝐵𝐶𝐾
3
+ 2𝑎
1
𝑎
2
𝐶
2
𝐾
3
= 0,

(
𝐺


𝐺
)

6

:
1

6
𝑎
1
𝑎
2

2
𝐾 + 2𝑎

2

2
𝐾
3
− 4𝑎
2

2
𝐶𝐾
3

+ 2𝑎
2

2
𝐶
2
𝐾
3
= 0.

(34)

Solving the set of the above algebraic equations by use of
Mathematica, we get the following results:

𝑎 ̸= 0, 𝑎
0
= −

12𝐴𝐾
2

𝑎
(𝐶 − 1) ,

𝑎
1
=
12𝐵𝐾

2

𝑎
(𝐶 − 1) ,

𝑎
2
= −

12𝐾
2

𝑎
(𝐶 − 1) ,

𝐿 = −𝐾
3
(𝐵
2
− 4𝐴𝐶 + 4𝐴) .

(35)

Substituting (35) into (33) and according to (15)–(18), we
obtain the following exponential function solutions, hyper-
bolic function solutions, and triangular function solutions of
(2), respectively.

(1) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 ≥ 0, then

the exponential function solution can be found as

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)
−
6𝐶𝐾
2√Δ

𝑎 (𝐶 − 1)

×

𝑐
1
exp (√Δ𝜉/2) + 𝑐

2
exp ((−√Δ/2) 𝜉)

𝑐
1
exp ((√Δ/2) 𝜉) − 𝑐

2
exp ((−√Δ/2) 𝜉)

−
6𝐶𝐾
2
Δ

𝑎 (𝐶 − 1)

× [

𝑐
1
exp ((√Δ/2) 𝜉) + 𝑐

2
exp (− (√Δ/2) 𝜉)

𝑐
1
exp ((√Δ/2) 𝜉) − 𝑐

2
exp (− (√Δ/2) 𝜉)

]

2

,

(36)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − 𝐾

3
Δ(𝑡
𝛼
/Γ(𝛼 + 1)).

(2) If we choose 𝐵 ̸= 0 and Δ = 𝐵
2
+ 4𝐴 − 4𝐴𝐶 < 0, then

the triangular function solution will be

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)
+
6𝐶𝐾
2√Δ

𝑎 (𝐶 − 1)

×

𝑖𝑐
1
cos (√−Δ𝜉/2) − 𝑐

2
sin ((√−Δ/2) 𝜉)

𝑖𝑐
1
sin ((√−Δ/2) 𝜉) + 𝑐

2
cos ((√−Δ/2) 𝜉)

+
6𝐶𝐾
2
Δ

𝑎 (𝐶 − 1)

× [

𝑖𝑐
1
cos ((√−Δ/2) 𝜉) − 𝑐

2
sin ((√−Δ/2) 𝜉)

𝑖𝑐
1
sin ((√−Δ/2) 𝜉) + 𝑐

2
cos ((√−Δ/2) 𝜉)

]

2

,

(37)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − 𝐾

3
Δ(𝑡
𝛼
/Γ(𝛼 + 1)).

(3) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) ≥ 0, then the

triangular function solution is given as

𝑢 (𝑥, 𝑡) = −
12𝐾
2
Δ
1

𝑎
−

12𝐾
2
Δ
1

𝑎 (𝐶 − 1)

× [
𝑐
1
cos (√Δ

1
𝜉) + 𝑐
2
sin (√Δ

1
𝜉)

𝑐
1
sin (√Δ

1
𝜉) − 𝑐
2
cos (√Δ

1
𝜉)
]

2

,

(38)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) + 4𝐾

3
Δ
1
(𝑡
𝛼
/Γ(𝛼 + 1)).
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(4) If we choose 𝐵 = 0 and Δ
1
= 𝐴(𝐶 − 1) < 0, then the

hyperbolic function solution is given as

𝑢 (𝑥, 𝑡) = −
12𝐾
2
Δ
1

𝑎
+

12𝐾
2
Δ
1

𝑎 (𝐶 − 1)

× [
𝑖𝑐
1
cosh (√−Δ

1
𝜉) − 𝑐
2
sinh (√−Δ

1
𝜉)

𝑖𝑐
1
sinh (√−Δ

1
𝜉) − 𝑐
2
cosh (√−Δ

1
𝜉)
]

2

,

(39)

where 𝜉 = 𝐾𝑥
𝛽
/Γ(𝛽 + 1) − 4𝐾

3
Δ
1
(𝑡
𝛼
/Γ(𝛼 + 1)).

Equation (36) can be rewritten at 𝑐
1
= −𝑐
2
; so we get

the other hyperbolic function solution of (2):

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)
−
6𝐶𝐾
2√Δ

𝑎 (𝐶 − 1)

× tanh[
√Δ

2
(

𝐾𝑥
𝛽

Γ (𝛽 + 1)
− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)
)]

+
6𝐶𝐾
2√Δ

𝑎 (𝐶 − 1)

× tanh2 [
√Δ

2
(

𝐾𝑥
𝛽

Γ (𝛽 + 1)
− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)
)] .

(40)

Equation (36) becomes

𝑢 (𝑥, 𝑡) =
3𝐾
2
(Δ − 2𝐶)

𝑎 (𝐶 − 1)
−
6𝐶𝐾
2√Δ

𝑎 (𝐶 − 1)

× coth[
√Δ

2
(

𝐾𝑥
𝛽

Γ (𝛽 + 1)
− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)
)]

+
6𝐶𝐾
2√Δ

𝑎 (𝐶 − 1)

× coth2 [
√Δ

2
(

𝐾𝑥
𝛽

Γ (𝛽 + 1)
− 𝐾
3
Δ

𝑡
𝛼

Γ (𝛼 + 1)
)]

(41)

at 𝑐
1
= 𝑐
2
.

Remark 5. Kudryashov et al. [41–44] have showed that every
solution, which was obtained when soliton solutions have
been found by some analytic methods, is not a new solu-
tion. They also showed that these methods are very similar.
Furthermore, they mentioned that authors who used these
methods should check the obtained results very carefully.The
reason for using improved (𝐺


/𝐺)-expansion method in this

work is to use nonlinear equation (14) instead of linear equa-
tion

𝐺

− 𝜆𝐺

− 𝜇𝐺 = 0, (42)

which was used in standard (𝐺/𝐺)method and to obtain lots
of different solutions.

5. Conclusion

In this paper, we introduced an improved (𝐺

/𝐺)-expansion

method and carried it out to obtain new travelling wave solu-
tions of the space-time fractional foamdrainage equation and
the space-time fractional KdV equation. This method gives
new exact solutions for nonlinear FPDEs. These solutions
include the hyperbolic function solution, the exponential
function solution, the triangular function solution, and the
trigonometric function solution.These solutions are useful to
understand the mechanisms of the complicated nonlinear
physical phenomena.
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From the viewpoint of operator theory, we deal with the temperature dependence of the solution to the BCS gap equation for
superconductivity. When the potential is a positive constant, the BCS gap equation reduces to the simple gap equation. We first
show that there is a unique nonnegative solution to the simple gap equation, that it is continuous and strictly decreasing, and that it
is of class 𝐶2 with respect to the temperature. We next deal with the case where the potential is not a constant but a function. When
the potential is not a constant, we give another proof of the existence and uniqueness of the solution to the BCS gap equation, and
show how the solution varies with the temperature. We finally show that the solution to the BCS gap equation is indeed continuous
with respect to both the temperature and the energy under a certain condition when the potential is not a constant.

1. Introduction

We use the unit 𝑘
𝐵

= 1, where 𝑘
𝐵
stands for the Boltzmann

constant. Let 𝜔
𝐷

> 0 and 𝑘 ∈ R3 stand for the Debye fre-
quency and the wave vector of an electron, respectively. Let
ℎ > 0 be Planck’s constant, and set ℎ = ℎ/(2𝜋). Let𝑚 > 0 and
𝜇 > 0 stand for the electron mass and the chemical potential,
respectively. We denote by 𝑇(≥ 0) the absolute temperature,
and by 𝑥 the kinetic energy of an electronminus the chemical
potential; that is,𝑥 = ℎ

2
|𝑘|
2
/(2𝑚)−𝜇. Note that 0 < ℎ𝜔

𝐷
≪ 𝜇.

In the BCSmodel [1, 2] of superconductivity, the solution
to the BCS gap equation (1) is called the gap function. The
gap function corresponds to the energy gap between the
superconducting ground state and the superconducting first
excited state. Accordingly, the value of the gap function (the
solution) is nonnegative. We regard the gap function as a
function of both 𝑇 and 𝑥 and denote it by 𝑢; that is, 𝑢 :

(𝑇, 𝑥) → 𝑢(𝑇, 𝑥) (≥ 0).The BCS gap equation is the following
nonlinear integral equation (0 < 𝜀 ≤ 𝑥 ≤ ℎ𝜔

𝐷
):

𝑢 (𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢 (𝑇, 𝜉)

√𝜉2 + 𝑢(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢(𝑇, 𝜉)

2

2𝑇
𝑑𝜉,

(1)

where 𝑈(⋅, ⋅) > 0 is the potential multiplied by the density of
states per unit energy at the Fermi surface and is a function
of 𝑥 and 𝜉. In (1) we introduce 𝜀 > 0, which is small enough
and fixed (0 < 𝜀 ≪ ℎ𝜔

𝐷
). In the original BCS model, the

integration interval is [0, ℎ𝜔
𝐷
]; it is not [𝜀, ℎ𝜔

𝐷
]. However,

we introduce very small 𝜀 > 0 for the following mathematical
reasons. In order to show the continuity of the solution to
the BCS gap equation with respect to the temperature and in
order to show that the transition to a superconducting state
is a second-order phase transition, we make the form of the
BCS gap equation somewhat easier to handle. So we choose
the closed interval [𝜀, ℎ𝜔

𝐷
] as the integration interval in (1).

The integral with respect to 𝜉 in (1) is sometimes replaced
by the integral over R3 with respect to the wave vector 𝑘.
Odeh [3] and Billard and Fano [4] established the existence
and uniqueness of the positive solution to the BCS gap equa-
tion in the case𝑇 = 0. For𝑇 ≥ 0, Vansevenant [5] determined
the transition temperature (the critical temperature) and
showed that there is a unique positive solution to the BCS gap
equation. Recently, Frank et al. [6] gave a rigorous analysis
of the asymptotic behavior of the transition temperature at
weak coupling. Hainzl et al. [7] proved that the existence of a
positive solution to the BCS gap equation is equivalent to the
existence of a negative eigenvalue of a certain linear operator
to show the existence of a transition temperature. Moreover,
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Hainzl and Seiringer [8] derived upper and lower bounds on
the transition temperature and the energy gap for the BCS gap
equation.

Since the existence and uniqueness of the solution were
established for each fixed𝑇 in the previous literature, the tem-
perature dependence of the solution is not covered. It is well
known that studying the temperature dependence of the solu-
tion to the BCS gap equation is very important in condensed
matter physics. This is because, by dealing with the ther-
modynamical potential, this study leads to a mathematical
proof of the statement that the transition to a superconduct-
ing state is a second-order phase transition. So, in condensed
matter physics, it is highly desirable to study the temperature
dependence of the solution to the BCS gap equation.

When the potential𝑈(⋅, ⋅) in (1) is a positive constant, the
BCS gap equation reduces to the simple gap equation (3). In
this case, one assumes in the BCSmodel that there is a unique
nonnegative solution to the simple gap equation (3) and that
the solution is of class 𝐶

2 with respect to the temperature
𝑇 (see e.g., [1] and [9, (11.45), page 392]). In this paper,
applying the implicit function theorem,we first show that this
assumption of the BCSmodel indeed holds true; we show that
there is a unique nonnegative solution to the simple gap equa-
tion (3) and that the solution is of class 𝐶2 with respect to the
temperature𝑇.We next deal with the case where the potential
is not a constant but a function. In order to show how the
solution varies with the temperature, we then give another
proof of the existence and uniqueness of the solution to the
BCS gap equation (1) when the potential is not a constant.
More precisely, we show that the solution belongs to the
subset 𝑉

𝑇
(see (12)). Note that the subset 𝑉

𝑇
depends on 𝑇.

We finally show that the solution to the BCS gap equation (1)
is indeed continuous with respect to both 𝑇 and 𝑥 when 𝑇

satisfies (20) when the potential is not a constant.
Let

𝑈 (𝑥, 𝜉) = 𝑈
1

at all (𝑥, 𝜉) ∈ [𝜀, ℎ𝜔
𝐷
]
2

, (2)

where 𝑈
1
> 0 is a constant. Then the gap function depends

on the temperature 𝑇 only. So we denote the gap function by
Δ
1
in this case; that is, Δ

1
: 𝑇 → Δ

1
(𝑇). Then (1) leads to the

simple gap equation

1 = 𝑈
1
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + Δ
1
(𝑇)
2

tanh
√𝜉2 + Δ

1
(𝑇)
2

2𝑇
𝑑𝜉. (3)

The following is the definition of the temperature 𝜏
1
> 0.

Definition 1 (see [1]). Consider

1 = 𝑈
1
∫

ℎ𝜔𝐷

𝜀

1

𝜉
tanh 𝜉

2𝜏
1

𝑑𝜉. (4)

2. The Simple Gap Equation

Set

Δ =

√(ℎ𝜔
𝐷
− 𝜀𝑒1/𝑈1) (ℎ𝜔

𝐷
− 𝜀𝑒−1/𝑈1)

sinh (1/𝑈
1
)

. (5)

Proposition 2 (see [10, Proposition 2.2]). Let Δ be as in (5).
Then there is a unique nonnegative solution Δ

1
: [0, 𝜏

1
] →

[0,∞) to the simple gap equation (3) such that the solution
Δ
1
is continuous and strictly decreasing on the closed interval

[0, 𝜏
1
]:

Δ
1
(0) = Δ > Δ

1
(𝑇
1
) > Δ

1
(𝑇
2
)

> Δ
1
(𝜏
1
) = 0, 0 < 𝑇

1
< 𝑇
2
< 𝜏
1
.

(6)

Moreover, the solution Δ
1
is of class 𝐶2 on the interval [0, 𝜏

1
)

and satisfies

Δ


1
(0) = Δ



1
(0) = 0, lim

𝑇↑𝜏1

Δ


1
(𝑇) = −∞. (7)

Proof. Setting 𝑌 = Δ
1
(𝑇)
2 turns (3) into

1 = 𝑈
1
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + 𝑌

tanh
√𝜉2 + 𝑌

2𝑇
𝑑𝜉. (8)

Note that the right side is a function of the two variables𝑇 and
𝑌.We see that there is a unique function𝑇 → 𝑌defined by (8)
implicitly, that the function 𝑇 → 𝑌 is continuous and strictly
decreasing on [0, 𝜏

1
], and that 𝑌 = 0 at 𝑇 = 𝜏

1
. We moreover

see that the function 𝑇 → 𝑌 is of class 𝐶
2 on the closed

interval [0, 𝜏
1
].

Remark 3. We set Δ
1
(𝑇) = 0 for 𝑇 > 𝜏

1
.

Remark 4. In Proposition 2, Δ
1
(𝑇) is nothing but √𝑓(𝑇) in

[10, Proposition 2.2].

We introduce another positive constant 𝑈
2
> 0. Let 0 <

𝑈
1
< 𝑈
2
. We assume the following condition on 𝑈(⋅, ⋅):

𝑈
1
≤ 𝑈 (𝑥, 𝜉)

≤ 𝑈
2

at all (𝑥, 𝜉) ∈ [𝜀, ℎ𝜔
𝐷
]
2

, 𝑈 (⋅, ⋅) ∈ 𝐶 ([𝜀, ℎ𝜔
𝐷
]
2

) .

(9)

When 𝑈(𝑥, 𝜉) = 𝑈
2
at all (𝑥, 𝜉) ∈ [𝜀, ℎ𝜔

𝐷
]
2, an argument

similar to that in Proposition 2 gives that there is a unique
nonnegative solutionΔ

2
: [0, 𝜏
2
] → [0,∞) to the simple gap

equation

1 = 𝑈
2
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + Δ
2
(𝑇)
2

× tanh
√𝜉2 + Δ

2
(𝑇)
2

2𝑇
𝑑𝜉, 0 ≤ 𝑇 ≤ 𝜏

2
.

(10)

Here, 𝜏
2
> 0 is defined by

1 = 𝑈
2
∫

ℎ𝜔𝐷

𝜀

1

𝜉
tanh 𝜉

2𝜏
2

𝑑𝜉. (11)

We again set Δ
2
(𝑇) = 0 for 𝑇 > 𝜏

2
. A straightforward calcu-

lation gives the following.
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x fixed

0 𝜏1 𝜏2

Temperature

Δ2(0)

Δ1(0)

Δ1(T)

Δ 2(T)

Figure 1: The graphs of the functions Δ
1
and Δ

2
.

Lemma 5 ([11, Lemma 1.5]). (a) The inequality 𝜏
1
< 𝜏
2
holds.

(b) If 0 ≤ 𝑇 < 𝜏
2
, then Δ

1
(𝑇) < Δ

2
(𝑇). If 𝑇 ≥ 𝜏

2
, then

Δ
1
(𝑇) = Δ

2
(𝑇) = 0.

Note that Proposition 2 and Lemma 5 point out how Δ
1

and Δ
2
depend on the temperature and how Δ

1
and Δ

2
vary

with the temperature; see Figure 1.

Remark 6. On the basis of Proposition 2, the present author
[10, Theorem 2.3] proved that the transition to a supercon-
ducting state is a second-order phase transition under the
restriction (2).

3. The BCS Gap Equation

Let 0 ≤ 𝑇 ≤ 𝜏
2
and fix 𝑇, where 𝜏

2
is that in (11). We consider

the Banach space 𝐶[𝜀, ℎ𝜔
𝐷
] consisting of continuous func-

tions of 𝑥 only and deal with the following subset 𝑉
𝑇
:

𝑉
𝑇
= {𝑢 (𝑇, ⋅) ∈ 𝐶 [𝜀, ℎ𝜔

𝐷
] : Δ
1
(𝑇)

≤ 𝑢 (𝑇, 𝑥) ≤ Δ
2
(𝑇) at 𝑥 ∈ [𝜀, ℎ𝜔

𝐷
]} .

(12)

Remark 7. The subset 𝑉
𝑇
depends on 𝑇. So we denote each

element of 𝑉
𝑇
by 𝑢(𝑇, ⋅); see Figure 1.

As it is mentioned in the introduction, the existence and
uniqueness of the solution to the BCS gap equation were
established for each fixed 𝑇 in the previous literature, and the
temperature dependence of the solution is not covered. We
therefore give another proof of the existence and uniqueness
of the solution to the BCS gap equation (1) so as to show how
the solution varies with the temperature. More precisely, we
show that the solution belongs to 𝑉

𝑇
.

Theorem 8 (see [11, Theorem 2.2]). Assume condition (9)
on 𝑈(⋅, ⋅). Let 𝑇 ∈ [0, 𝜏

2
] be fixed. Then there is a unique

x fixed

0 𝜏1 𝜏2

Temperature

Δ2(0)

Δ1(0)

Δ1(T)

Δ 2(T)

Figure 2: For each 𝑇, the solution 𝑢
0
(𝑇, 𝑥) lies between Δ

1
(𝑇) and

Δ
2
(𝑇).

nonnegative solution 𝑢
0
(𝑇, ⋅) ∈ 𝑉

𝑇
to the BCS gap equation

(1) (𝑥 ∈ [𝜀, ℎ𝜔
𝐷
]):

𝑢
0
(𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢
0
(𝑇, 𝜉)

√𝜉2 + 𝑢
0
(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢

0
(𝑇, 𝜉)
2

2𝑇
𝑑𝜉.

(13)

Consequently, the solution is continuous with respect to 𝑥 and
varies with the temperature as follows:

Δ
1
(𝑇) ≤ 𝑢

0
(𝑇, 𝑥)

≤ Δ
2
(𝑇) at (𝑇, 𝑥) ∈ [0, 𝜏

2
] × [𝜀, ℎ𝜔

𝐷
] .

(14)

Proof. We define a nonlinear integral operator 𝐴 on 𝑉
𝑇
by

𝐴𝑢 (𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢 (𝑇, 𝜉)

√𝜉2 + 𝑢(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢(𝑇, 𝜉)

2

2𝑇
𝑑𝜉,

(15)

where 𝑢(𝑇, ⋅) ∈ 𝑉
𝑇
. Clearly,𝑉

𝑇
is a bounded, closed, and con-

vex subset of the Banach space 𝐶[𝜀, ℎ𝜔
𝐷
]. A straightforward

calculation gives that the operator 𝐴 : 𝑉
𝑇

→ 𝑉
𝑇
is compact.

Therefore, the Schauder fixed point theorem applies, and
hence the operator 𝐴 : 𝑉

𝑇
→ 𝑉
𝑇
has at least one fixed point

𝑢
0
(𝑇, ⋅) ∈ 𝑉

𝑇
. Moreover, we can show the uniqueness of the

fixed point; see Figure 2.

The existence of the transition temperature 𝑇
𝑐
is pointed

out in the previous papers [5–8]. In our case, it is defined as
follows.

Definition 9. Let 𝑢
0
(𝑇, ⋅) ∈ 𝑉

𝑇
be as in Theorem 8. The tran-

sition temperature 𝑇
𝑐
stemming from the BCS gap equation

(1) is defined by

𝑇
𝑐
= inf {𝑇 > 0 : 𝑢

0
(𝑇, 𝑥) = 0 at all 𝑥 ∈ [𝜀, ℎ𝜔

𝐷
]} . (16)
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Remark 10. Combining Definition 9 withTheorem 8 implies
that 𝜏

1
≤ 𝑇
𝑐

≤ 𝜏
2
. For 𝑇 > 𝑇

𝑐
, we set 𝑢

0
(𝑇, 𝑥) = 0 at all

𝑥 ∈ [𝜀, ℎ𝜔
𝐷
].

4. Continuity of the Solution with respect to
the Temperature

Let 𝑈
0

> 0 be a constant satisfying 𝑈
0

< 𝑈
1

< 𝑈
2
. An

argument similar to that in Proposition 2 gives that there is
a unique nonnegative solution Δ

0
: [0, 𝜏
0
] → [0,∞) to the

simple gap equation

1 = 𝑈
0
∫

ℎ𝜔𝐷

𝜀

1

√𝜉2 + Δ
0
(𝑇)
2

× tanh
√𝜉2 + Δ

0
(𝑇)
2

2𝑇
𝑑𝜉, 0 ≤ 𝑇 ≤ 𝜏

0
.

(17)

Here, 𝜏
0
> 0 is defined by

1 = 𝑈
0
∫

ℎ𝜔𝐷

𝜀

1

𝜉
tanh 𝜉

2𝜏
0

𝑑𝜉. (18)

We set Δ
0
(𝑇) = 0 for 𝑇 > 𝜏

0
. A straightforward calculation

gives the following.

Lemma 11. (a) 𝜏
0
< 𝜏
1
< 𝜏
2
.

(b) If 0 ≤ 𝑇 < 𝜏
0
, then 0 < Δ

0
(𝑇) < Δ

1
(𝑇) < Δ

2
(𝑇).

(c) If 𝜏
0
≤ 𝑇 < 𝜏

1
, then 0 = Δ

0
(𝑇) < Δ

1
(𝑇) < Δ

2
(𝑇).

(d) If 𝜏
1
≤ 𝑇 < 𝜏

2
, then 0 = Δ

0
(𝑇) = Δ

1
(𝑇) < Δ

2
(𝑇).

(e) If 𝜏
2
≤ 𝑇, then 0 = Δ

0
(𝑇) = Δ

1
(𝑇) = Δ

2
(𝑇).

Remark 12. Let the functionsΔ
𝑘
(𝑘 = 0, 1, 2) be as above. For

eachΔ
𝑘
, there is the inverseΔ−1

𝑘
: [0, Δ

𝑘
(0)] → [0, 𝜏

𝑘
]. Here,

Δ
𝑘
(0) =

√(ℎ𝜔
𝐷
− 𝜀𝑒1/𝑈𝑘) (ℎ𝜔

𝐷
− 𝜀𝑒−1/𝑈𝑘)

sinh (1/𝑈
𝑘
)

, (19)

and Δ
0
(0) < Δ

1
(0) < Δ

2
(0).

We introduce another temperature. Let 𝑇
1
satisfy 0 <

𝑇
1
< Δ
−1

0
(Δ
0
(0)/2) and

Δ
0
(0)

4Δ
−1

2
(Δ
0
(𝑇
1
))

tanh
Δ
0
(0)

4Δ
−1

2
(Δ
0
(𝑇
1
))

>
1

2
(1 +

4ℎ
2
𝜔
2

𝐷

Δ
0
(0)
2
) .

(20)

Remark 13. Numerically, the temperature 𝑇
1
is very small.

Consider the following subset 𝑉 of the Banach space
𝐶([0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
]) consisting of continuous functions of

both the temperature 𝑇 and the energy 𝑥:

𝑉 = {𝑢 ∈ 𝐶 ([0, 𝑇
1
] × [𝜀, ℎ𝜔

𝐷
]) : Δ

1
(𝑇) ≤ 𝑢 (𝑇, 𝑥)

≤ Δ
2
(𝑇) at (𝑇, 𝑥) ∈ [0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
]} .

(21)

x fixed

0 𝜏1 𝜏2

Temperature

Δ2(0)

Δ1(0)

Δ1(T)

Δ 2(T)

T1

Figure 3: The solution 𝑢
0
is continuous on [0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
].

Theorem 14 (see [12, Theorem 1.2]). Assume (9). Let 𝑢
0
be as

inTheorem 8 and𝑉 as in (21). Then 𝑢
0
∈ 𝑉. Consequently, the

gap function 𝑢
0
is continuous on [0, 𝑇

1
] × [𝜀, ℎ𝜔

𝐷
].

Proof. We define a nonlinear integral operator 𝐵 on 𝑉 by

𝐵𝑢 (𝑇, 𝑥) = ∫

ℎ𝜔𝐷

𝜀

𝑈 (𝑥, 𝜉) 𝑢 (𝑇, 𝜉)

√𝜉2 + 𝑢(𝑇, 𝜉)
2

× tanh
√𝜉2 + 𝑢(𝑇, 𝜉)

2

2𝑇
𝑑𝜉,

(22)

where 𝑢 ∈ 𝑉.
Clearly, 𝑉 is a closed subset of the Banach space

𝐶([0, 𝑇
1
] × [𝜀, ℎ𝜔

𝐷
]). A straightforward calculation gives that

the operator 𝐵 : 𝑉 → 𝑉 is contractive as long as (20) holds
true. Therefore, the Banach fixed-point theorem applies, and
hence the operator 𝐵 : 𝑉 → 𝑉 has a unique fixed point
𝑢
0
∈ 𝑉. The solution 𝑢

0
∈ 𝑉 to the BCS gap equation is thus

continuous both with respect to the temperature and with
respect to the energy 𝑥; see Figure 3.
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Amethod is proposed to determine the numerical solution of system of linear Volterra integrodifferential equations (IDEs) by using
Bezier curves. The Bezier curves are chosen as piecewise polynomials of degree n, and Bezier curves are determined on [𝑡

0
, 𝑡
𝑓
] by

𝑛 + 1 control points. The efficiency and applicability of the presented method are illustrated by some numerical examples.

1. Introduction

Integrodifferential equations (IDEs) have been found to
describe various kinds of phenomena, such as glass forming
process, dropwise condensation, nanohydrodynamics, and
wind ripple in the desert (see [1, 2]).

There are several numerical and analytical methods for
solving IDEs. Some different methods are presented to
solve integral and IDEs in [3, 4]. Maleknejad et al. [5]
used rationalized Haar functions method to solve the linear
IDEs system. Linear IDEs system has been solved by using
Galerkin methods with the hybrid Legendre and block-
Pulse functions on interval [0, 1) (see [6]). Yusufoğlu [7]
presented an application of He’s homotopy perturbation
(HPM) method to solve the IDEs system. He’s variational
iteration method has been used for solving two systems of
Volterra integrodifferential equations (see [8]). Arikoglu and
Ozkol [9] presented differential transformmethod (DTM) for
integrodifferential and integral equation systems. He’s homo-
topy perturbation (HPM)methodwas proposed for systemof
integrodifferential equations (see [10]). A numerical method
based on interpolation of unknown functions at distinct
interpolation points has been introduced for solving linear
IDEs system with initial values (see [11]). Recently, Biazar
introduced a new modification of homotopy perturbation
method (NHPM) to obtain the solution of linear IDEs system
(see [12]). Taylor expansionmethod has been used for solving

IDEs (see [13, 14]). Rashidinia and Tahmasebi developed and
modified Taylor series method (TSM) introduced in [15] to
solve the system of linear Volterra IDEs.

In the present work, we suggest a technique similar to the
one which was used in [16] for solving the system of linear
Volterra IDEs in the following form:

𝑛

∑

𝑖=1

𝛼𝑚𝑖

∑

𝑗=0

𝑝
𝑚𝑖𝑗

(𝑡) 𝑦
(𝑗)

𝑖
(𝑡) +

𝑛

∑

𝑖=1

∫

𝑡

𝑡0

(𝑘
𝑚𝑖

(𝑡, 𝑥)

𝛼𝑚𝑖

∑

𝑗=0

𝑦
(𝑗)

𝑖
(𝑥))𝑑𝑥

= 𝑓
𝑚
(𝑡) , 𝑚 = 1, 2, . . . , 𝑛, 𝑡

0
≤ 𝑡 ≤ 𝑡

𝑓
,

(1)

with the initial conditions

𝑦
(0)

𝑖
(𝑡
0
) = 𝑐
𝑖0
, 𝑦

(1)

𝑖
(𝑡
0
) = 𝑐
𝑖1
, . . . , 𝑦

(𝛼𝑚𝑖−1)

𝑖
(𝑡
0
) = 𝑐
𝑖(𝛼𝑚𝑖−1)

,

(2)

where 𝑦
(𝑗)

𝑖
(𝑡) stands for 𝑗th-order derivative of 𝑦

𝑖
(𝑡). 𝑓
𝑚
(𝑡),

𝑘
𝑚𝑖
(𝑡, 𝑥), and 𝑝

𝑚𝑖𝑗
(𝑡) are known functions (𝑚, 𝑖 = 1, 2, . . .,

𝑛; 𝑗 = 0, 1, . . . , 𝛼
𝑚𝑖
), and 𝑡

0
, 𝑡
𝑓
, and 𝑐

𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑛; 𝑗 =

0, 1, . . . , 𝛼
𝑚𝑖

− 1) are appropriate constants.
The current paper is organized as follows. In Section 2,

function approximationwill be introduced.Numerical exam-
ples will be stated in Section 3. Finally, Section 4 will give a
conclusion briefly.
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Figure 1: The graph of approximated 𝑦
1
(𝑡) for Example 1.

2. Function Approximation

Our strategy is to use Bezier curves to approximate the
solutions 𝑦

𝑖
(𝑡), for 1 ≤ 𝑖 ≤ 𝑛, which are given below.

Define the Bezier polynomials of degree𝑁 that approximate,
respectively, the actions of 𝑦

𝑖
(𝑡) over the interval [𝑡

0
, 𝑡
𝑓
] as

follows:

𝑦
𝑖
(𝑡) =

𝑁

∑

𝑟=0

𝑎
𝑖

𝑟
𝐵
𝑟,𝑁

(
𝑡 − 𝑡
0

ℎ
) , (3)

where ℎ = 𝑡
𝑓
− 𝑡
0
and 𝑎
𝑟
is the control point of Bezier curve,

and

𝐵
𝑟,𝑁

(
𝑡 − 𝑡
0

ℎ
) = (

𝑁

𝑟
)

1

ℎ𝑁
(𝑡
𝑓
− 𝑡)
𝑁−𝑟

(𝑡 − 𝑡
0
)
𝑟 (4)

is the Bernstein polynomial of degree 𝑁 over the interval
[𝑡
0
, 𝑡
𝑓
] (see [17]). By substituting (3) in (2), 𝑅

𝑚
(𝑡) can be

defined for 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] as

𝑅
𝑚
(𝑡) =

𝑛

∑

𝑖=1

𝛼𝑚𝑖

∑

𝑗=0

𝑝
𝑚𝑖𝑗

(𝑡) 𝑦
(𝑗)

𝑖
(𝑡)

+

𝑛

∑

𝑖=1

∫

𝑡

0

(𝑘
𝑚𝑖

(𝑡, 𝑥)

𝛼𝑚𝑖

∑

𝑗=0

𝑦
(𝑗)

𝑖
(𝑥))𝑑𝑥 − 𝑓

𝑚
(𝑡) ,

𝑚 = 1, 2, . . . , 𝑛,

(5)

where (2) is satisfied. The convergence was proved in the
approximation with Bezier curves when the degree of the
approximate solution,𝑁, tends to infinity (see [18]).

Now, the residual function is defined over the interval
[𝑡
0
, 𝑡
𝑓
] as follows:

𝑅 (𝑡) = ∫

𝑡𝑓

𝑡0

𝑛

∑

𝑚=1

𝑅𝑚 (𝑡)


2

𝑑𝑡, (6)
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Figure 2: The graph of approximated 𝑦
2
(𝑡) for Example 1.

where ‖ ⋅ ‖ is the Euclidean norm. Our aim is to solve the
following problem over the interval [𝑡

0
, 𝑡
𝑓
]:

min 𝑅 (𝑡)

s.t. 𝑦
(0)

𝑖
(𝑡
0
) = 𝑐
𝑖0
,

𝑦
(1)

𝑖
(𝑡
0
) = 𝑐
𝑖1
, . . . , 𝑦

(𝛼𝑚𝑖−1)

𝑖
(𝑡
0
) = 𝑐
𝑖(𝛼𝑚𝑖
−1)

.

(7)

The mathematical programming problem (7) can be
solved by many subroutine algorithms, and we used Maple
12 to solve this optimization problem.

Remark 1. In Chapter 1 of [19], it was proved that𝑁 satisfies

𝑁 >
𝑆

𝛿2𝜖
, (8)

where 𝑆 = ‖𝑦
𝑖
(𝑡)‖, and because of this reason that 𝑦

𝑖
(𝑡) is

uniformly continuous on [𝑡
0
, 𝑡
𝑓
], we have 𝑠, 𝑡 ∈ [𝑡

0
, 𝑡
𝑓
] that

|𝑡 − 𝑠| < 𝛿 and −(𝜖/2) < 𝑦
𝑖
(𝑡) − 𝑦

𝑖
(𝑠) < 𝜖/2, for more details

see [19].

3. Applications and Numerical Results

Consider the following examples which can be solved by
using the presented method.

Example 1. Consider a system of third-order linear Volterra
IDEs on the interval [0, 1] (see [4]):

𝑦


1
(𝑡) + 𝑡

2
𝑦
1
(𝑡) − 𝑦



2
(𝑡)

+ ∫

𝑡

0

((𝑡 − 𝑥) 𝑦
1
(𝑥) + 𝑦

2
(𝑥)) 𝑑𝑥 = 𝑔

1
(𝑡) ,

4𝑡
3
𝑦


1
(𝑡) + 6𝑡

2
𝑦
1
(𝑡) + 𝑦



2
(𝑡)

+ ∫

𝑡

0

(𝑦
1
(𝑥) + (𝑡 + 𝑥) 𝑦

2
(𝑥)) 𝑑𝑥 = 𝑔

2
(𝑡) ,

(9)
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Table 1: Computed errors for Example 1.

𝑡 Absolute error for 𝑦
1
(𝑡) Absolute error for 𝑦

2
(𝑡)

0.0 0.000000 0.0000000000
0.2 1.4801 × 10

−10
2.2475 × 10

−11

0.4 0.162735585 × 10
−5

3.12780502 × 10
−7

0.6 0.251133963 × 10
−5

0.1536077787 × 10
−5

0.8 1.8337 × 10
−10

0.8864238659 × 10
−5

1.0 4.5905 × 10
−10

7.897 × 10
−12

Table 2: Computed errors for Example 2.

t Absolute error for 𝑦
1
(𝑡) Absolute error for 𝑦

2
(𝑡)

0.0 0.000000 0.0000000000
0.2 3.840 × 10

−11
1.5360 × 10

−11

0.4 0.5791064832 × 10
−3

0.156041748480 × 10
−3

0.6 0.17373195072 × 10
−2

0.156041748480 × 10
−3

0.8 0.69492781056 × 10
−2

1.5360 × 10
−11

1.0 0.000 0.000

with the initial conditions𝑦
1
(0) = 𝑦



1
(0) = 1, 𝑦

2
(0) = 𝑦



2
(0) =

0, and 𝑦


2
(0) = 1, where

𝑔
1
(𝑡) = (2 + 𝑡

2
) 𝑒
𝑡
− 𝑡 − cos (𝑡) + sin (𝑡) ,

𝑔
2
(𝑡) = 7 sin (𝑡) − (1 + 2𝑡) cos (𝑡) + 𝑒

𝑡
(1 + 4𝑡

2
+ 4𝑡
3
) + 𝑡 − 1.

(10)

The exact solution of this system is 𝑦
1
(𝑡) = 𝑒

𝑡, 𝑦
2
(𝑡) =

sin(𝑡).
With 𝑁 = 5, the approximated solutions for 𝑦

1
(𝑡) and

𝑦
2
(𝑡) are shown, respectively, in Figures 1 and 2, and the

computed errors are shown in Table 1 which show the high
accuracy of the proposed method.

Example 2. Consider the following system of linear Volterra
IDEs equations as follows (see [4]):

− 𝑦


1
−

1

2
𝑡𝑦
1
+

3

2
𝑦
2

=
5

2
− 𝑡 −

27

2
𝑡
2
+ 𝑡
4
+

3

2
(−1 + 2𝑡

2
) −

1

2
(−3𝑡 + 4𝑡

3
)

+ ∫

t

−1

(𝑦
1
− 3𝑡𝑦
2
) 𝑑𝑥,

𝑡
2
𝑦
1
+ 𝑦


2
− 𝑡𝑦
2

=
2

5
+ 3𝑡 + 3𝑡

3
−

8

5
𝑡
5
+ 𝑡
2
(−3𝑡 + 4𝑡

3
)

+ ∫

𝑡

−1

((2𝑡 + 𝑥) 𝑦
1
+ 3𝑥
2
𝑦
2
) 𝑑𝑥,

(11)

under the conditions𝑦
1
(0) = 0 and𝑦

2
(0) = −1, with the exact

solution 𝑦
1
(𝑡) = 4𝑡

3
− 3𝑡, 𝑦

2
(𝑡) = 2𝑡

2
− 1.

With 𝑁 = 5, the computed errors are shown in Table 2
which show the high accuracy of the proposed method.

4. Conclusions

In this paper, Bernstein’s approximation is used to approx-
imate the solution of linear Volterra IDEs. In this method,
we approximate our unknown function with Bernstein’s
approximation. The present results show that Bernstein’s
approximation method for solving linear Volterra IDEs is
very effective and simple, and the answers are trusty, and
their accuracy is high, and we can execute this method in a
computer simply.The numerical examples support this claim.
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[7] E. Yusufoğlu, “An efficient algorithm for solving integro-differ-
ential equations system,” Applied Mathematics and Computa-
tion, vol. 192, no. 1, pp. 51–55, 2007.

[8] J. Saberi-Nadjafi and M. Tamamgar, “The variational iteration
method: a highly promising method for solving the system of
integro-differential equations,” Computers & Mathematics with
Applications, vol. 56, no. 2, pp. 346–351, 2008.

[9] A. Arikoglu and I. Ozkol, “Solutions of integral and integro-
differential equation systems by using differential transform
method,” Computers & Mathematics with Applications, vol. 56,
no. 9, pp. 2411–2417, 2008.

[10] J. Biazar,H.Ghazvini, andM. Eslami, “He’s homotopy perturba-
tion method for systems of integro-differential equations,”
Chaos, Solitons & Fractals, vol. 39, no. 3, pp. 1253–1258, 2009.
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We present the analytical and multishaped solitary wave solutions for extended reduced Ostrovsky equation (EX-ROE). The exact
solitary (traveling) wave solutions are expressed by three types of functions which are hyperbolic function solution, trigonometric
function solution, and rational solution. These results generalized the previous results. Multishape solitary wave solutions such as
loop-shaped, cusp-shaped, and hump-shaped can be obtained as well when the special values of the parameters are taken. The
(𝐺

/𝐺)-expansion method presents a wide applicability for handling nonlinear partial differential equations.

1. Introduction

The well-known Ostrovsky equation [1]
(𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
+ 𝛽𝑢
𝑥𝑥𝑥

)
𝑥
= 𝛾𝑢, (1)

where 𝑐
0
is the velocity of dispersiveness linear waves, 𝛼 is the

nonlinear coefficient, and 𝛽 and 𝛾 are dispersion coefficients,
is a model for weakly nonlinear surface and internal waves in
a rotating ocean.

For long waves, for which high-frequency dispersion is
negligible, 𝛽 = 0, and (1) becomes the so-called reduced
Ostrovsky equation (ROE) [2]

(𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+ 𝛼𝑢𝑢

𝑥
)
𝑥
= 𝛾𝑢. (2)

Parkes [3] has studied (2) and found its periodic and
solitary traveling wave solutions.

In fact, by applying the following transformation [4]:

𝑢 →
𝑢

𝛼
, 𝑡 →

𝑡

√
𝛾


, 𝑥 →
(𝑥 + 𝑐

0
𝑡)

√
𝛾


(3)

to (2), we obtain the ROE in the neat form
𝜕

𝜕𝑥
D𝑢 + 𝛿𝑢 = 0,

where D :=
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
, 𝛿 =

𝛾

𝛾


= ±1.

(4)

Just as itmentioned in [5] and the reference therein, when 𝛿 =
−1, (4) is referred to the Ostrovsky-Hunter equation (OHE).
When 𝛿 = 1, (4) is referred to the Vakhnenko equation
(VE), which is in order to model the propagation of waves
in a relaxing medium [6, 7]. Parkes [3] pointed out that (4) is
invariant under the transformation

𝑢 → −𝑢, 𝑡 → −𝑡, 𝛿 → −𝛿, (5)

so that the solutions of theOHEandVE are related in a simple
way.

Thepurpose of this paper is to study the extended reduced
Ostrovsky equation (EX-ROE):

𝜕

𝜕𝑥
(D
2
𝑢 +

1

2
𝑝𝑢
2
+ 𝛽𝑢) + 𝑞D𝑢 = 0, (6)

whereD is defined previous,𝑝, 𝑞, and𝛽 are arbitrary nonzero
constants. It is originally derived by Morrison and Parkes
[8] which dubbed it as modified generalized Vakhnenko
equation (mGVE) when 𝑝 = 2𝑞. They found that not only
does it have loop soliton solutions, hump-like and cusp-like
soliton solutions, but it also has𝑁-soliton solutions.
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In order to investigatemGVE’s𝑁-soliton solution,Morri-
son and Parkes [8] considered aHirota-Satsuma-type shallow
water wave equation [9] of the form

𝑈
𝑋𝑋𝑇

+ 𝑝𝑈𝑈
𝑇
− 𝑞𝑈
𝑋
∫

∞

𝑋

𝑈
𝑇
(𝑋

, 𝑇) d𝑋 + 𝛽𝑈

𝑇
+ 𝑞𝑈
𝑋
= 0,

(7)

where 𝑝 ̸= 0, 𝑞 ̸= 0, and 𝛽 is arbitrary constant. By using the
transformation

𝑥 = 𝑇 + ∫

𝑋

−∞

𝑈
𝑇
(𝑋

, 𝑇) d𝑋 + 𝑥

0
,

𝑡 = 𝑋, 𝑢 (𝑥, 𝑡) = 𝑈 (𝑋, 𝑇) ,

(8)

where 𝑥
0
is a constant, (7) yields (6). So (6) and (7) are equiv-

alent to each other under the transformation (8). Specifically,
in (7), when 𝑝 = 2𝑞 and 𝛽 = −1, it was discussed by Ablowitz
et al. [10] and was shown to be integrable by inverse scatting
method. When 𝑝 = 𝑞 and 𝛽 = −1, it was discussed by
Hirota and Satsuma [11] andwas shown to be integrable using
Hirota’s bilinear technique. In [12], the authors referred to (6)
with 𝑝 = 𝑞 = 1 and 𝛽 an arbitrary nonzero constant as the
generalized Vakhnenko equation (GVE). In fact, when 𝑝 = 𝑞
and 𝛽 = 0, (6) can be written as

(
𝜕𝑢

𝜕𝑥
+D)(

𝜕

𝜕𝑥
D𝑢 + 𝑝𝑢) = 0. (9)

Clearly, solutions of the ROE are also solutions of (9) with
𝑝 = ±1. So for arbitrary 𝑝, 𝑞, and 𝛽, if we obtain the solutions
of EX-ROE, thenwe can also obtain the solutions ofVE,GVE,
mGVE, ROE, and OHE by taking the special values of 𝑝, 𝑞,
and 𝛽.

The EX-ROE has been studied by several researchers. For
example, Liu et al. [13] used Jacobi elliptic function method
to obtain exact double periodic wave solutions and solitary
wave solutions. Parkes [4] constructed periodic and solitary
wave solutions of EX-ROE and gave the categorization of
the solutions. Xie and Cai [14] used the bifurcation method
of dynamic systems and simulation method of differential
equations to get exact compacton and generalized kink wave
solutions of EX-ROE. Stepanyants [15] applied the qualitative
theory of differential equations to give a full classification of
its solutions.

Recently, there are many methods being proposed to
study the traveling wave solutions of nonlinear partial differ-
ential equations which are derived from physics, for example,
[16–27]. As well as these methods, there are still many other
methods; we cannot list all of them.Herewewill usemodified
(𝐺

/𝐺)-expansionmethod to investigate EX-ROE.As a result,

three types of traveling wave solutions are were obtained.
When the special values of the parameters are taken, they are
reduced to some previous results which obtained by an other
method.

The rest of the paper is organized as follows. In Section 2,
we present a methodology of the modified (𝐺/𝐺)-expansion
method. In Section 3, we apply the method to the extended
reduced Ostrovsky equation. In Section 4, some conclusions
are given.

2. Description of the Modified
(𝐺

/𝐺)-Expansion Method

The (𝐺/𝐺)-expansion method is first proposed by Wang
et al. [28]. The useful (𝐺/𝐺)-expansion method is then
widely used by many authors [29–32]. Then it is modified in
[33–35]. The main steps are as follows.

Suppose that a nonlinear equation is given by

𝑃
1
(𝑢, 𝑢
𝑡
, 𝑢
𝑥
, 𝑢
𝑡𝑡
, 𝑢
𝑥𝑡
, 𝑢
𝑥𝑥
, . . .) = 0, (10)

where 𝑢 = 𝑢(𝑥, 𝑡) is an unknown function and 𝑃 is a poly-
nomial in 𝑢 = 𝑢(𝑥, 𝑡) and its partial derivatives, in which the
highest-order derivatives and nonlinear terms are involved.
In the following we give the main steps of the (𝐺


/𝐺)-

expansion method.

Step 1. The traveling wave variable 𝑢(𝑥, 𝑡) = 𝑢(𝜉), 𝜉 = 𝑥 − 𝑐𝑡,
where 𝑐 is a constant, permits us to reduce (10) to an ODE for
𝑢 = 𝑢(𝜉) in the form

𝑃
2
(𝑢, −𝑐𝑢


, 𝑢

, 𝑐
2
𝑢

, −𝑐𝑢

, 𝑢

, . . .) = 0. (11)

Step 2. Suppose that the solution of (10) can be expressed by
a polynomial in (𝐺/𝐺) as follows:

𝑢 (𝜉) = 𝛼
−𝑚
(
𝐺


𝐺
)

−𝑚

+ 𝛼
−(𝑚−1)

(
𝐺


𝐺
)

−(𝑚−1)

+ ⋅ ⋅ ⋅

+ 𝛼
𝑚−1

(
𝐺


𝐺
)

𝑚−1

+ 𝛼
𝑚
(
𝐺


𝐺
)

𝑚

,

(12)

where 𝐺 = 𝐺(𝜉) satisfies the second-order linear ordinary
differential equation (LODE) in the form

𝐺

+ 𝜆𝐺

+ 𝜇𝐺 = 0, (13)

where 𝛼
−𝑚
, . . . , 𝛼

𝑚
, 𝜆, and 𝜇 are constants to be determined

later.Theunwritten part in (12) is also a polynomial in (𝐺/𝐺),
but the degree of which is generally equal to or less than𝑚−1.
The positive integer𝑚 can be determined by considering the
homogeneous balance between the highest-order derivatives
and nonlinear terms appearing in (11).

Step 3. Substituting (12) into (11) and using (13), collecting
all terms with the same order of (𝐺/𝐺) together, and then
equating each coefficient of the resulting polynomial to zero
yields a set of algebraic equations for 𝛼

𝑚
, 𝛼
𝑚−1

, . . . , 𝛼
−𝑚

, 𝑐, 𝜆,
and 𝜇.

Step 4. Since the general solutions of (13) have been well
known for us, then substituting 𝛼

𝑚
, 𝛼
𝑚−1

, . . . , 𝛼
−𝑚

and 𝑐 and
the general solutions of (13) into (12) we have more traveling
wave solutions of the nonlinear differential equation (10).

The main idea of (𝐺/𝐺)-expansion method is to use
an integrable ODE to expand a solution to a nonlinear
partial differential equation (PDE) as a polynomial or rational
function of the solution of the ODE. However, such an idea
was also presented in [36–38].Themethod used in this paper
can be also thought of as the application of transformed
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rational function method used in [37] in some sense. Maybe
the similar results can be obtained by using these very closely
related methods. We plan to further study the EX-ROE in
near future by using the methods proposed in [36–38]. We
hope we can find much more interesting properties and new
phenomenon of this equation.

3. Exact Traveling Wave Solutions of
the Extended Reduced Ostrovsky Equation

In this section, we will use the (𝐺/𝐺)-expansion method
to the extended reduced Ostrovsky equation to get exact
traveling wave solutions.

First, in order to get traveling wave solutions, we need
some transformation. Recall that in Section 1 we have stated
that EX-ROE is equivalent to a Hirota-Satsuma-type shallow
water wave equation (7) under the transformation of (8). So
here we introduce a new variable𝑊 defined by

𝑈 = 𝑊
𝑋
. (14)

Substituting (14) into (7) yields

𝑊
𝑋𝑋𝑋𝑇

+ 𝑝𝑊
𝑋
𝑊
𝑋𝑇

+ 𝑞𝑊
𝑋𝑋
𝑊
𝑇
+ 𝛽𝑊
𝑋𝑇

+ 𝑞𝑊
𝑋𝑋

= 0.

(15)

Now giving the traveling wave transformation 𝑊(𝑋, 𝑇) =

𝑊(𝜉), 𝜉 = 𝑋 − 𝑐𝑇, where 𝑐 is wave speed. Substituting them
into (15) and integrating once, we have

𝑐
1
+ 𝑐𝑊
3𝜉
+
1

2
𝑐 (𝑝 + 𝑞)𝑊

2

𝜉
+ (𝑐𝛽 − 𝑞)𝑊

𝜉
= 0, (16)

where 𝑐
1
is integral constant that is to be determined later.

Considering the homogeneous balance between𝑊
3𝜉
and

𝑊
2

𝜉
, we have

𝑚 + 3 = 2𝑚 + 2 ⇒ 𝑚 = 1. (17)

We suppose that

𝑊(𝜉) = 𝛼
−1
(
𝐺


𝐺
)

−1

+ 𝛼
0
+ 𝛼
1
(
𝐺


𝐺
) , (18)

where the 𝐺 = 𝐺(𝜉) satisfies the second-order LODE,

𝐺

+ 𝜆𝐺

+ 𝜇𝐺 = 0, (19)

and 𝛼
−1
, 𝛼
0
, 𝛼
1
, 𝜆, and 𝜇 are constants to be determined later.

By using (18) and (19), it is derived that

𝑊
𝜉
= 𝜇𝛼
−1
(
𝐺


𝐺
)

−2

+ 𝜆𝛼
−1
(
𝐺


𝐺
)

−1

+ 𝛼
−1

− 𝛼
1
𝜇 − 𝜆𝛼

1
(
𝐺


𝐺
) − 𝛼

1
(
𝐺


𝐺
)

2

,

(20)

𝑊
2

𝜉
= 𝜇
2
𝛼
2

−1
(
𝐺


𝐺
)

−4

+ 2𝜆𝛼
2

−1
𝜇(

𝐺


𝐺
)

−3

+ (2𝛼
2

−1
𝜇 + 𝜆
2
𝛼
2

−1
− 2𝜇𝛼

−1
𝛼
−
1)(

𝐺


𝐺
)

−2

+ (2𝜆𝛼
2

−1
− 4𝜇𝜆𝛼

−1
𝛼
1
)(

𝐺


𝐺
)

−1

+ 𝛼
2

−1
− 4𝜇𝛼

−1
𝛼
1

− 2𝜆
2
𝛼
−1
𝛼
1
+ 𝛼
2

1
𝜇
2
+ 2𝜆𝛼

2

1
𝜇(

𝐺


𝐺
)

+ (2𝛼
2

1
𝜇 + 𝜆
2
𝛼
2

1
)(

𝐺


𝐺
)

2

+ 2𝜆𝛼
2

1
(
𝐺


𝐺
)

3

+ 𝛼
2

1
(
𝐺


𝐺
)

4

,

(21)

𝑊
3𝜉
= 6𝛼
−1
𝜇
3
(
𝐺


𝐺
)

−4

+ 12𝛼
−1
𝜆𝜇
2
(
𝐺


𝐺
)

−3

− (8𝜇
2
𝛼
−1
+ 7𝛼
−1
𝜆
2
𝜇)(

𝐺


𝐺
)

−2

− (8𝛼
−1
𝜆𝜇 + 𝛼

−1
𝜆
3
)(

𝐺


𝐺
)

−1

− (2𝛼
−1
𝜇 + 𝜆
2
𝛼
−1
) − (2𝛼

1
𝜇
2
+ 𝜆
2
𝛼
1
𝜇)

− (8𝛼
1
𝜆𝜇 + 𝛼

1
𝜆
3
)(

𝐺


𝐺
) − (8𝜇𝛼

1
+ 7𝛼
1
𝜆
2
)(

𝐺


𝐺
)

2

− 12𝛼
1
𝜆(

𝐺


𝐺
)

3

− 6𝛼
1
(
𝐺


𝐺
)

4

.

(22)

By substituting (20)–(22) into (16) and collecting all terms
with the same power of (𝐺/𝐺) together, the left-hand sides of
(16) are converted into the polynomials in (𝐺/𝐺). Equating
the coefficients of the polynomials to zero yields a set of
simultaneous algebraic equations for 𝛼

−1
, 𝛼
0
, 𝛼
1
, 𝜆, 𝑐, 𝑐

1
, and

𝜇 as follows (denote 𝐴 for (𝐺/𝐺)):

𝐴
−4: 6𝑐𝛼

−1
𝜇
3
+
𝑐 (𝑝 + 𝑞) 𝜇

2
𝛼
2

−1

2
= 0,

𝐴
−3: 12𝑐𝜆𝜇2𝛼

−1
+ 𝑐 (𝑝 + 𝑞) 𝜆𝜇𝛼

2

−1
= 0,
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𝐴
−2: (𝑞 − 𝑐𝛽) 𝜇𝛼

−1

−

𝑐 (𝑝 + 𝑞) (𝜆
2
𝛼
2

−1
+ 2𝜇𝜆

2

−1
− 2𝜇
2
𝛼
1
𝛼
−1
)

2

− 𝑐 (7𝜆
2
𝜇𝛼
−1
+ 8𝜇
2
𝛼
−1
) = 0,

𝐴
−1: (𝑐𝛽 − 𝑞) 𝜆𝛼

−1
𝜆 + 𝑐 (𝑝 + 𝑞) (𝜆𝛼

2

−1
− 2𝜆𝜇𝛼𝛼

−1
)

+ 𝑐 (𝜆
3
𝛼
−1
+ 8𝜆𝜇𝛼

−1
) = 0,

𝐴
0: 𝑐
1
+ 𝑐 (𝜆

2
𝛼
−1
+ 2𝜇𝛼

−1
)

−

𝑐 (2𝛼
1
𝜇
2
+ 𝜆
2
𝛼
1
𝜇) + 𝑐 (𝑝 + 𝑞) 𝛼

2

−1

2

− 2𝑐𝜇𝛼𝛼
−1
(𝑝 + 𝑞) +

𝑐𝛼
2

1
𝜇
2
(𝑝 + 𝑞)

2
− (𝑐𝛽 − 𝑞) 𝜇𝛼

1

− 𝑐𝜆
2
𝛼
1
𝛼
−1
(𝑝 + 𝑞) + 𝛼

−1
(𝑐𝛽 − 𝑞) = 0,

𝐴
1: (𝑞 − 𝑐𝛽) 𝛼

1
𝜆 + 𝑐 (𝑝 + 𝑞) (𝜆𝜇𝛼

2

1
− 2𝜆𝛼

1
𝛼
−1
)

− 𝑐 (𝜆
3
𝛼
1
+ 8𝜆𝜇𝛼

1
) = 0,

𝐴
2: (𝑞 − 𝑐𝛽) 𝛼

1
+ 𝑐 (𝑝 + 𝑞)

× (𝜆
2
𝛼
2

1
+ 2𝑎𝛼

2

1
𝜇 − 2𝛼

1
𝛼
−1
− 𝑐 (7𝜆

2
𝛼
1
+ 8𝜇𝛼

1
))

= 0,

𝐴
3: − 12𝑐𝜆𝛼

1
+ 𝑐 (𝑝 + 𝑞) 𝜆𝛼

2

1
= 0,

𝐴
4: − 6𝑐𝛼

1
+
𝑐 (𝑝 + 𝑞) 𝛼

2

1

2
= 0.

(23)

Solving the algebraic equations above yields

𝛼
1
=

12

(𝑝 + 𝑞)
,

𝑐 =
𝑞

(𝛽 + 𝜆2 − 4𝜇)
,

𝑐
1
= 0, 𝛼

−1
= 0,

(24)

or

𝛼
−1
= −

12𝜇

(𝑝 + 𝑞)
,

𝑐 =
𝑞

(𝛽 + 𝜆2 − 4𝜇)
,

𝑐
1
= 0, 𝛼

1
= 0.

(25)

Substituting system (24) and (25) into (18), we have the
formula of the solutions of (15) as follows:

𝑊(𝑋, 𝑇) = 𝑊 (𝜉) =
12

(𝑝 + 𝑞)
(
𝐺


𝐺
) + 𝛼

0
, (26)

or

𝑊(𝑋, 𝑇) = 𝑊 (𝜉) = −
12𝜇

(𝑝 + 𝑞)
(
𝐺


𝐺
)

−1

+ 𝛼
0
, (27)

where 𝐺 satisfies (19), 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆
2
− 4𝜇), and 𝛼

0
is an

arbitrary constant.
Since the general solutions 𝐺 = 𝐺(𝜉) (hence 𝐺 =

d𝐺/d𝜉) of ODE (19) have been known for us, substituting
the solutions of (19) into (24) and (25), we have the general
traveling wave solutions of (15) as follows.

Case 1. When 𝜆2 − 4𝜇 > 0, then we have the following exact
traveling wave solution of (15):

𝑊
1
(𝑋, 𝑇)

= 𝑊
1
(𝜉) =

6√𝜆2 − 4𝜇

𝑝 + 𝑞

× ((𝐴
1
cosh (1

2
√𝜆2 − 4𝜇𝜉))

+𝐴
2
sinh(1

2
√𝜆2 − 4𝜇𝜉))

× (𝐴
1
sinh(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
cosh (1

2
√𝜆2 − 4𝜇𝜉))

−1

)

−
6𝜆

(𝑝 + 𝑞) + 𝛼
0

(28)

or

𝑊
2
(𝑋, 𝑇)

= 𝑊
2
(𝜉)

= −24𝜇 × ( (𝑝 + 𝑞)

× (√𝜆2 − 4𝜇

× ((𝐴
1
cosh (1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
sinh(1

2
√𝜆2 − 4𝜇𝜉))

× (𝐴
1
sinh(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
cosh (1

2
√𝜆2 − 4𝜇𝜉))

−1

)

−𝜆))

−1

+ 𝛼
0
,

(29)
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where 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆
2
− 4𝜇) and 𝛼

0
, 𝐴
1
, 𝐴
2
are arbitrary

constants.

Case 2. When 𝜆2 − 4𝜇 < 0, then we have the following exact
traveling wave solution of (15):

𝑊
3
(𝑋, 𝑇)

= 𝑊
3
(𝜉) =

6√4𝜇 − 𝜆2

𝑝 + 𝑞

× ((−𝐴
1
sin(1

2
√4𝜇 − 𝜆2𝜉) + 𝐴

2
cos(1

2
√4𝜇 − 𝜆2𝜉))

× (𝐴
1
cos(1

2
√4𝜇 − 𝜆2𝜉)

+𝐴
2
sin(1

2
√4𝜇 − 𝜆2𝜉))

−1

)

−
6𝜆

(𝑝 + 𝑞) + 𝛼
0

(30)

or

𝑊
4
(𝑋, 𝑇)

= 𝑊
4
(𝜉)

= −24𝜇

× ((𝑝 + 𝑞) (√𝜆2 − 4𝜇

× ((−𝐴
1
sin(1

2
√4𝜇 − 𝜆2𝜉)

+𝐴
2
cos(1

2
√4𝜇 − 𝜆2𝜉))

× (𝐴
1
cos(1

2
√4𝜇 − 𝜆2𝜉)

+𝐴
2
sin(1

2
√4𝜇 − 𝜆2𝜉))

−1

)

− 𝜆))

−1

+ 𝛼
0
,

(31)

where 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆
2
− 4𝜇) and 𝛼

0
, 𝐴
1
, 𝐴
2
are arbitrary

constants.

Case 3. When 𝜆2 − 4𝜇 = 0, then we have the following exact
rational solution of (15):

𝑊
5
(𝑋, 𝑇) = 𝑊

5
(𝜉) =

12

𝑝 + 𝑞
(

𝐴
2

𝐴
1
+ 𝐴
2
𝜉
) −

6𝜆

(𝑝 + 𝑞)
+ 𝛼
0

(32)

or

𝑊
6
(𝑋, 𝑇) = 𝑊

6
(𝜉) = −

24𝜇 (𝐴
1
+ 𝐴
2
𝜉)

(𝑝 + 𝑞) [2𝐴
2
− 𝜆 (𝐴

1
+ 𝐴
2
𝜉)]

+ 𝛼
0
,

(33)

where 𝜉 = 𝑋 − 𝑞𝑇/(𝛽 + 𝜆
2
− 4𝜇) and 𝛼

0
, 𝐴
1
, 𝐴
2
are arbitrary

constants.
Now we will show how to get exact traveling wave

solutions of (6). From (8) and (14), the solution of EX-ROE
(6) is given in parametric form, with 𝑇 as the parameter, by

𝑢 (𝑥, 𝑡) = 𝑈 (𝑡, 𝑇) , 𝑥 = 𝜃 (𝑡, 𝑇) , (34)

where

𝜃 (𝑋, 𝑇) = 𝑇 +𝑊(𝑋, 𝑇) + 𝑥
0
. (35)

So by using (8), (14), (34), (35), (28), and (29), we obtain
a parameterized hyperbolic-function-type traveling wave
solution of (6) as follows:

𝑢
1
(𝑥, 𝑡)

= 3 (𝐴
2

2
− 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ( (𝑝 + 𝑞)

× (𝐴
1
sinh(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
cosh (1

2
√𝜆2 − 4𝜇𝜉))

2

)

−1

,

𝑥 = 𝑇 +𝑊
1
(𝑡, 𝑇) + 𝑥

0
,

(36)

or

𝑢
2
(𝑥, 𝑡)

= −12𝜇 (𝐴
2

2
− 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ( (𝑝 + 𝑞)

× [(𝐴
1
√𝜆2 − 4𝜇 − 𝐴

2
𝜆) cosh (1

2
√𝜆2 − 4𝜇𝜉)

+ (𝐴
2
√𝜆2 − 4𝜇 − 𝐴

1
𝜆)

× sinh(1
2
√𝜆2 − 4𝜇𝜉)]

2

)

−1

,

𝑥 = 𝑇 +𝑊
2
(𝑡, 𝑇) + 𝑥

0
,

(37)

where 𝜉 = 𝑡−𝑞𝑇/(𝛽+𝜆2−4𝜇) and 𝑥
0
is an arbitrary constant.
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By using (8), (14), (34), (35), (30), and (31), we obtain
a parameterized trigonometric-function-type traveling wave
solution of (6) as follows:

𝑢
3
(𝑥, 𝑡)

= −3 (𝐴
2

2
+ 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ((𝑝 + 𝑞)

× (𝐴
1
cos(1

2
√𝜆2 − 4𝜇𝜉)

+𝐴
2
sin(1

2
√𝜆2 − 4𝜇𝜉))

2

)

−1

,

𝑥 = 𝑇 +𝑊
3
(𝑡, 𝑇) + 𝑥

0
,

(38)

or

𝑢
4
(𝑥, 𝑡)

= −12𝜇 (𝐴
2

2
− 𝐴
2

1
) (𝜆
2
− 4𝜇)

× ( (𝑝 + 𝑞)

× [ (−𝐴
2
√𝜆2 − 4𝜇 + 𝐴

1
𝜆) cos(1

2
√𝜆2 − 4𝜇𝜉)

+ (𝐴
1
√𝜆2 − 4𝜇 + 𝐴

2
𝜆)

× sin(1
2
√𝜆2 − 4𝜇𝜉)]

2

)

−1

,

𝑥 = 𝑇 +𝑊
4
(𝑡, 𝑇) + 𝑥

0
,

(39)

where 𝜉 = 𝑡−𝑞𝑇/(𝛽+𝜆2−4𝜇) and 𝑥
0
is an arbitrary constant.

By using (8), (14), (34), (35), (32), and (33), we obtain a
parameterized rational-type traveling wave solution of (6) as
follows:

𝑢
5
(𝑥, 𝑡) = −

12𝐴
2

2

(𝑝 + 𝑞) (𝐴
1
+ 𝐴
2
𝜉)
2
,

𝑥 = 𝑇 +𝑊
5
(𝑡, 𝑇) + 𝑥

0
,

(40)

or

𝑢
6
(𝑥, 𝑡) = −

48𝜇𝐴
2

2

(𝑝 + 𝑞) (𝜆𝐴
1
+ (−2 + 𝜆𝜉)𝐴

2
)
2
,

𝑥 = 𝑇 +𝑊
6
(𝑡, 𝑇) + 𝑥

0
,

(41)

where 𝜉 = 𝑡−𝑞𝑇/(𝛽+𝜆2−4𝜇) and 𝑥
0
is an arbitrary constant.

To our knowledge, these solutions are presented for the first
time; they are new exact solutions of EX-ROE.

If we take 𝐴
1
= 0, 𝜇 = 0, 𝐴

2
̸= 0 and 𝜆 > 0, then (36)

yields the following solitary wave solution of (6):

𝑢 (𝑥, 𝑡) =
3𝜆
2

𝑝 + 𝑞
sech2 [1

2
𝜆(𝑡 −

𝑞

𝛽 + 𝜆2
𝑇)] ,

𝑥 = 𝑇 +
6𝜆

(𝑝 + 𝑞)
tanh [1

2
𝜆(𝑡 −

𝑞

𝛽 + 𝜆2
𝑇)] + 𝑥

0
.

(42)

Now we will give some discussion of the solitary wave
solution (42). Let 𝜆 = 2𝑘, 𝑥

0
= 0; the solution (42) is reduced

to the solution of (3.26) in [13] after correcting some minor
errors [4]. Now from (35), we introduce a new variable:

𝜒 = 𝑥 − V𝑡 = −V (𝑋 − 𝑐𝑇) +
6𝜆

𝑝 + 𝑞
tanh [1

2
𝜆 (𝑋 − 𝑐𝑇)] + 𝑥

0
,

(43)

where V = 1/𝑐 = (𝜆
2
+ 𝛽)/𝑞. In [8], the authors considered

EX-ROE with 𝑝 = 2𝑞, 𝛽 ̸= 0 as mGVE and obtained 1-soliton
solution. In fact, if we take 𝑝 = 2𝑞, 𝜆 = 2𝑘, the solitary wave
solution (42) with (43) is reduced to the soliton solution (4.4)
and (4.5) in [8]. From the above we can see that the solitary
wave solution (3.26) in [4] and the 1-soliton solution ofmGVE
are just a special case of the solution (42) in this paper.

4. Multishaped Solitary Wave Solutions

In [8, 13], the authors showed that the solutions of (4.4) and
(4.5), (3.26) and (3.28) may be of different types, namely,
loops, cusps, or humps for different values of parameters 𝛽,
𝑘, 𝑝. Here we also show that by choosing different values of
the parameters 𝛽, 𝜆, 𝑝, 𝑞, different shape wave solutions can
be obtained. As it is stated in Section 1, (9) reduces to VE
when 𝑝 = 𝑞 = 1, 𝛽 = 0. Taking solution (42) with (43), for
example, let 𝑝 = 𝑞 = 1, 𝛽 = 0, 𝜆 = 2𝑘; then it is reduced to
one-loop soliton solution (3.4) and (3.5) in [39]. On the other
hand, because the solutions of OHE and VE are connected in
a particularly simple way, if we take𝑝 = 𝑞 = −1,𝛽 = 0, 𝜆 = 2𝑘
in (42), we can obtain one-loop soliton solution of OHE.

From above analysis, one can clearly see that the solutions
obtained in this paper are generalized for the previous results
because here we only take the special case 𝐴

1
= 0, 𝜇 = 0,

𝐴
2
̸= 0, 𝜆 > 0 and give special discussion of solution (42).

We conclude that if we take different values of the parameters
𝐴
1
, 𝐴
2
, 𝜆, 𝜇, 𝑝, 𝑞, abundancy of types of exact solutions can

be obtained from solutions (36), (38), and (40). Here we omit
the detailed discussion.

Instead, we give some discussion about solution (37). Sci-
ence from this solution, multishaped solitary wave solutions
can be obtained. Suppose 𝐴

1
̸= 0, 𝜇 < 0, 𝐴

2
= 0, 𝜆 = 0; we

reduce solution (37) to

𝑢 (𝑥, 𝑡) =
12𝜇

𝑝 + 𝑞
sech2 [√−𝜇(𝑡 −

𝑞

𝛽 − 4𝜇
𝑇)] ,

𝑥 = 𝑇 +
24√−𝜇

(𝑝 + 𝑞)
tanh [√−𝜇(𝑡 −

𝑞

𝛽 − 4𝜇
𝑇)] + 𝑥

0
.

(44)

We show that for different values of 𝛽, 𝜇, and 𝑝, the solution
(44) may be of different types. It also owns the property of
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Figure 1: The profile of solution (44) with 𝑝 = 3, 𝑞 = 1.5, 𝑡 = 0, and 𝑥
0
= 0. For (a) loop-shaped 𝛽 = 0.005, 𝜇 = −0.5, (b) cusp-shaped

𝛽 = 0.05, 𝜇 = −1, and (c) hump-shaped 𝛽 = 0.5, 𝜇 = −1.

being loop-shaped, cusp-shaped and hump-shaped, as shown
in Figure 1.

5. Conclusion

In this paper, we use (𝐺/𝐺)-expansion method to study
extended reduced Ostrovsky equation. Several pairs of gen-
eralized traveling wave solutions are given directly. These
solutions extend the previous results tomore general cases. At
the same time, multishaped wave solutions can be obtained if
the different parameters values are chosen.These explicit soli-
tary wave solutions own the property of being loop-shaped,
cusp-shaped, and hump-shaped. These exact traveling wave
solutions are also helpful to further study this nonlinear
equation which has their physical meaning.Themethod used
in this paper has more advantages. It is direct and con-
cise. Much tedious algebraic calculations can be finished by
computer program such as MATHEMATICA and MAPLE.
Many well-known nonlinear wave equations can be handled
by this method.
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We study a generalized double sinh-Gordon equation, which has applications in various fields, such as fluid dynamics, integrable
quantum field theory, and kink dynamics. We employ the Exp-function method to obtain new exact solutions for this generalized
double sinh-Gordon equation. This method is important as it gives us new solutions of the generalized double sinh-Gordon
equation.

1. Introduction

It is well known that finding exact travelling wave solutions of
nonlinear partial differential equations (NLPDEs) is useful in
many scientific applications such as fluid mechanics, plasma
physics, and quantum field theory. Due to these applications
many researchers are investigating exact solutions ofNLPDEs
since they play a vital role in the study of nonlinear phys-
ical phenomena. Finding exact solutions of such NLPDEs
provides us with a better understanding of the physical
phenomena that these NLPDEs describe. Several techniques
have been presented in the literature to find exact solutions
of the NLPDEs. These include the homogeneous balance
method, the Weierstrass elliptic function expansion method,
the 𝐹-expansion method, the (𝐺/𝐺)-expansion method,
the Exp-function method, the tanh function method, the
extended tanh function method, and the Lie group method
[1–10].

In this work, we study one such NLPDE, namely, the
generalized double sinh-Gordon equation:

𝑢
𝑡𝑡
− 𝑘𝑢
𝑥𝑥
+ 2𝛼 sinh (𝑛𝑢) + 𝛽 sinh (2𝑛𝑢) = 0, 𝑛 ≥ 1,

(1)

which appears in many scientific applications [11–13]. It
should be noted that when 𝑘 = 𝑎, 𝛼 = (1/2)𝑏, and 𝛽 = 0,

(1) becomes the generalized sinh-Gordon equation [14, 15].
Furthermore, if 𝑛 = 𝑎 = 1 and 𝑏 = 2, (1) reduces to the sinh-
Gordon equation [16].

Many authors have studied the generalized double sinh-
Gordon equation (1). Travelling waves solutions of (1) were
obtained in [11] by using the tanh function method and the
variable separable method. In [12] the method of bifurcation
theory of dynamical system was used to prove the existence
of periodic wave, solitary wave, kink and antikink wave, and
unbounded wave solutions of (1). It should be noted that
solutions obtained in [12] were different the ones obtained
in [11]. Recently, solitary and periodic waves solutions of
(1) were found in [13] by employing (𝐺


/𝐺)-expansion

method. It is further shown in [13] that solutions obtained by
using the (𝐺/𝐺)-expansion method are more general than
those given in [11], which were obtained by tanh function
method.

In this paper, we employ an entirely different method,
known as the Exp-function method, to obtain new exact
solutions of the generalized sinh-Gordon equation (1). The
paper is structured as follows. In Section 2, we obtain exact
solutions of the generalized double sinh-Gordon equation (1)
with the help of the Exp-function method. In Section 3 we
present concluding remarks.
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2. Exact Solutions of (1) Using
Exp-Function Method

In this section we employ the Exp-function method to
solve the generalized double sinh-Gordon equation (1). This
methodwas introduced byHe andWu [17].TheExp-function
method results in the travelling wave solution based on
the assumption that the solution can be expressed in the
following form:

𝐻(𝑧) =
∑
𝑑

𝑛=−𝑐
𝑎
𝑛
exp (𝑛𝑧)

∑
𝑞

𝑚=−𝑝
𝑏
𝑚
exp (𝑚𝑧)

, (2)

where 𝑐, 𝑑, 𝑝, and 𝑞 are positive integers that can be
determined and 𝑎

𝑛
and 𝑏
𝑚
are unknown constants. According

to Exp-function method, we introduce the travelling wave
substitution 𝑢(𝑥, 𝑡) = 𝑊(𝑧), where 𝑧 = 𝑥 − 𝑐𝑡. Then (1)
transforms to the nonlinear ordinary differential equation:

(𝑐
2
− 𝑘)𝑊



(𝑧) + 2𝛼 sinh (𝑛𝑊 (𝑧)) + 𝛽 sinh (2𝑛𝑊 (𝑧)) = 0.

(3)

Further, using the transformation𝑊(𝑧) = (1/𝑛) ln(𝐻(𝑧)) on
(3), we obtain

2 (𝑐
2
− 𝑘)𝐻 (𝑧)𝐻



(𝑧) − 2 (𝑐
2
− 𝑘)𝐻



(𝑧)
2
+ 2𝛼𝑛𝐻(𝑧)

3

− 2𝛼𝑛𝐻 (𝑧) + 𝛽𝑛𝐻(𝑧)
4
− 𝛽𝑛 = 0.

(4)

We assume that the solution of (4) can be expressed as

𝐻(𝑧) =
𝑎
𝑐
exp (𝑐𝑧) + ⋅ ⋅ ⋅ + 𝑎

−𝑑
exp (−𝑑𝑧)

𝑏
𝑝
exp (𝑝𝑧) + ⋅ ⋅ ⋅ + 𝑏

−𝑞
exp (−𝑞𝑧)

. (5)

The values of 𝑐 and 𝑑,𝑝 and 𝑞 can be determined by balancing
the linear term of the highest order with the highest order
of nonlinear term in (4), that is, 𝐻𝐻 and 𝐻4. By straight
forward calculation, we have

𝐻𝐻

=
𝑐
1
exp [(2𝑐 + 3𝑝) 𝑧] + ⋅ ⋅ ⋅
𝑐
2
exp [5𝑝𝑧] + ⋅ ⋅ ⋅

,

𝐻
4
=
𝑐
3
exp [4𝑐𝑧] + ⋅ ⋅ ⋅

𝑐
4
exp [4𝑝𝑧] + ⋅ ⋅ ⋅

=
𝑐
3
exp [(4𝑐 + 𝑝) 𝑧] + ⋅ ⋅ ⋅
𝑐
4
exp [5𝑝𝑧] + ⋅ ⋅ ⋅

,

(6)

where 𝑐
𝑖
are coefficients only for simplicity. Balancing the

highest order of Exp-function in (6), we have 2𝑐+3𝑝 = 4𝑐+𝑝,
which yields 𝑐 = 𝑝. Similarly, we balance the lowest order in
(4) to determine values of 𝑑 and 𝑞. We have

𝐻𝐻

=
⋅ ⋅ ⋅ + 𝑠

1
exp [− (2𝑑 + 3𝑞) 𝑧]

⋅ ⋅ ⋅ + 𝑠
2
exp [−5𝑞𝑧]

,

𝐻
4
=
⋅ ⋅ ⋅ + 𝑠

3
exp [4𝑑𝑧]

⋅ ⋅ ⋅ + 𝑠
4
exp [−4𝑞𝑧]

=
⋅ ⋅ ⋅ + 𝑠

3
exp [− (4𝑑 + 𝑞) 𝑧]

⋅ ⋅ ⋅ + 𝑠
4
exp [−5𝑞𝑧]

,

(7)

where 𝑠
𝑖
are coefficients only for simplicity. Balancing the

lowest order of Exp-function in (7), we have 2𝑑+3𝑞 = 4𝑑+𝑞,
which yields 𝑑 = 𝑞. For simplicity, we first set 𝑐 = 𝑝 = 1 and
𝑑 = 𝑞 = 1. then (5) reduces to

𝐻(𝑧) =
𝑎
1
exp (𝑧) + 𝑎

0
+ 𝑎
−1
exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧)

. (8)

Inserting (8) into (4) and using Maple, we obtain

1

𝐵
[𝐶
4
exp (4𝑧) + 𝐶

3
exp (3𝑧) + 𝐶

2
exp (2𝑧)

+ 𝐶
1
exp (𝑧) + 𝐶

0
+ 𝐶
−1
exp (−𝑧)

+𝐶
−2
exp (−2𝑧) + 𝐶

−3
exp (−3𝑧) + 𝐶

−4
exp (−4𝑧)] = 0,

(9)

where

𝐵 = (𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧))4,

𝐶
4
= 2𝛼𝑎

3

1
𝑏
1
𝑛 − 𝛽𝑏

4

1
𝑛 + 𝛽𝑎

4

1
𝑛 − 2𝛼𝑎

1
𝑏
3

1
𝑛,

𝐶
3
= −2𝑎

2

1
𝑏
0
𝑏
1
𝑐
2
+ 2𝑎
1
𝑎
0
𝑏
2

1
𝑐
2
+ 6𝛼𝑎

0
𝑎
2

1
𝑏
1
𝑛

− 6𝛼𝑎
1
𝑏
0
𝑏
2

1
𝑛 + 2𝑎

2

1
𝑏
0
𝑏
1
𝑘 − 2𝑎

0
𝑎
1
𝑏
2

1
𝑘

+ 2𝛼𝑎
3

1
𝑏
0
𝑛 − 2𝑎

0
𝑎
1
𝑏
2

1
𝑘 + 2𝛼𝑎

3

1
𝑏
0
𝑛

+ 4𝛽𝑎
0
𝑎
3

1
𝑛 − 2𝛼𝑎

0
𝑏
3

1
𝑛 − 4𝛽𝑏

0
𝑏
3

1
𝑛,

𝐶
2
= 4𝛽𝑎

−1
𝑎
3

1
𝑛 − 8𝑎

2

1
𝑏
−1
𝑏
1
𝑐
2
+ 8𝑎
−1
𝑎
1
𝑏
2

1
𝑐
2

+ 8𝑎
2

1
𝑏
−1
𝑏
1
𝑘 − 8𝑎

−1
𝑎
1
𝑏
2

1
𝑘 + 2𝛼𝑎

3

1
𝑏
−1
𝑛

− 2𝛼𝑎
−1
𝑏
3

1
𝑛 − 4𝛽𝑏

−1
𝑏
3

1
𝑛 + 6𝛼𝑎

0
𝑎
2

1
𝑏
0
𝑛

+ 6𝛼𝑎
2

0
𝑎
1
𝑏
1
𝑛 − 6𝛼𝑎

1
𝑏
2

0
𝑏
1
𝑛 − 6𝛽𝑏

2

0
𝑏
2

1
𝑛

+ 6𝛼𝑎
−1
𝑎
2

1
𝑏
1
𝑛 − 6𝛼𝑎

1
𝑏
2

1
𝑏
−1
𝑛 + 6𝛽𝑎

2

0
𝑎
2

1
𝑛

− 6𝛼𝑎
0
𝑏
0
𝑏
2

1
𝑛,

𝐶
1
= −2𝑎

2

0
𝑏
0
𝑏
1
𝑐
2
+ 2𝑎
0
𝑎
1
𝑏
2

0
𝑐
2
+ 2𝑎
2

0
𝑏
0
𝑏
1
𝑘

− 2𝑎
0
𝑎
1
𝑏
2

0
𝑘 − 2𝑎

2

1
𝑏
0
𝑏
−1
𝑐
2
+ 2𝑎
−1
𝑎
0
𝑏
2

1
𝑐
2

− 2𝑎
0
𝑎
−1
𝑏
2

1
𝑘 + 2𝛼𝑎

3

0
𝑏
1
𝑛 + 4𝛽𝑎

3

0
𝑎
1
𝑛 − 2𝛼𝑎

1
𝑏
3

0
𝑛

− 4𝛽𝑏
3

0
𝑏
1
𝑛 + 12𝑎

−1
𝑎
1
𝑏
0
𝑏
1
𝑐
2
− 12𝑎
−1
𝑎
1
𝑏
0
𝑏
1
𝑘

+ 12𝑎
0
𝑎
1
𝑏
−1
𝑏
1
𝑘 + 6𝛼𝑎

2

0
𝑎
1
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
2

0
𝑏
1
𝑛

+ 12𝛼𝑎
−1
𝑎
0
𝑎
1
𝑏
1
𝑛 − 12𝛼𝑎

1
𝑏
−1
𝑏
0
𝑏
1
𝑛

+ 6𝛼𝑎
−1
𝑎
2

1
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
−1
𝑏
2

1
𝑛 − 6𝛼𝑎

−1
𝑏
0
𝑏
2

1
𝑛

+ 6𝛼𝑎
0
𝑎
2

1
𝑏
−1
𝑛 + 12𝛽𝑎

−1
𝑎
0
𝑎
2

1
𝑛 − 12𝛽𝑏

−1
𝑏
0
𝑏
2

1
𝑛

+ 2𝑎
2

1
𝑏
0
𝑏
−1
𝑘 − 12𝑎

0
𝑎
1
𝑏
−1
𝑏
1
𝑐
2
,
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𝐶
0
= 2𝛼𝑎

3

0
𝑏
0
𝑛 − 2𝛼𝑎

0
𝑏
3

0
𝑛 + 𝛽𝑎

4

0
𝑛

+ 6𝛼𝑎
−1
𝑎
2

1
𝑏
−1
𝑛 + 6𝛼𝑎

2

0
𝑎
1
𝑏
−1
𝑛 + 6𝛼𝑎

2

−1
𝑎
1
𝑏
1
𝑛

+ 6𝛼𝑎
−1
𝑎
2

0
𝑏
1
𝑛 + 12𝛽𝑎

−1
𝑎
2

0
𝑎
1
𝑛 − 6𝛼𝑎

1
𝑏
2

−1
𝑏
1
𝑛

− 6𝛼𝑎
1
𝑏
−1
𝑏
2

0
𝑛 − 6𝛼𝑎

−1
𝑏
−1
𝑏
2

1
𝑛 − 𝛽𝑏

4

0
𝑛

− 6𝛼𝑎
−1
𝑏
2

0
𝑏
1
𝑛 − 12𝛽𝑏

−1
𝑏
2

0
𝑏
1
𝑛 + 8𝑎

−1
𝑎
1
𝑏
2

0
𝑐
2

− 8𝑎
2

0
𝑏
−1
𝑏
1
𝑐
2
− 8𝑎
−1
𝑎
1
𝑏
2

0
𝑘 + 8𝑎

2

0
𝑏
−1
𝑏
1
𝑘

+ 6𝛽𝑎
2

−1
𝑎
2

1
𝑛 − 6𝛽𝑏

2

−1
𝑏
2

1
𝑛 + 12𝛼𝑎

−1
𝑎
0
𝑎
1
𝑏
0
𝑛

− 12𝛼𝑎
0
𝑏
−1
𝑏
0
𝑏
1
𝑛,

𝐶
−1
= 12𝛼𝑎

−1
𝑎
0
𝑎
1
𝑏
−1
𝑛 − 12𝛼𝑎

−1
𝑏
−1
𝑏
0
𝑏
1
𝑛

+ 2𝑎
−1
𝑎
0
𝑏
2

0
𝑐
2
− 2𝑎
2

0
𝑏
−1
𝑏
0
𝑐
2
+ 2𝑎
2

0
𝑏
−1
𝑏
0
𝑘

− 2𝑎
−1
𝑎
0
𝑏
2

0
𝑘 + 2𝑎

0
𝑎
1
𝑏
2

−1
𝑐
2
− 2𝑎
2

−1
𝑏
0
𝑏
1
𝑐
2

− 2𝑎
0
𝑎
1
𝑏
2

−1
𝑘 + 2𝑎

2

−1
𝑏
0
𝑏
1
𝑘 + 2𝛼𝑎

3

0
𝑏
−1
𝑛

+ 4𝛽𝑎
−1
𝑎
3

0
𝑛 − 2𝛼𝑎

−1
𝑏
3

0
𝑛 − 4𝛽𝑏

−1
𝑏
3

0
𝑛

+ 12𝑎
−1
𝑎
1
𝑏
−1
𝑏
0
𝑐
2
− 12𝑎
−1
𝑎
0
𝑏
−1
𝑏
1
𝑐
2

− 12𝑎
−1
𝑎
1
𝑏
−1
𝑏
0
𝑘 + 12𝑎

−1
𝑎
0
𝑏
−1
𝑏
1
𝑘

+ 6𝛼𝑎
−1
𝑎
2

0
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
−1
𝑏
2

0
𝑛 + 6𝛼𝑎

2

−1
𝑎
1
𝑏
0
𝑛

+ 6𝛼𝑎
2

−1
𝑎
0
𝑏
1
𝑛 + 12𝛽𝑎

2

−1
𝑎
0
𝑎
1
𝑛 − 6𝛼𝑎

1
𝑏
2

−1
𝑏
0
𝑛

− 6𝛼𝑎
0
𝑏
2

−1
𝑏
1
𝑛 − 12𝛽𝑏

2

−1
𝑏
0
𝑏
1
𝑛,

𝐶
−2
= 2𝛼𝑎

3

−1
𝑏
1
𝑛 + 8𝑎

−1
𝑎
1
𝑏
2

−1
𝑐
2
+ 8𝑎
2

−1
𝑏
−1
𝑏
1
𝑘

− 8𝑎
−1
𝑎
1
𝑏
2

−1
𝑘 + 4𝛽𝑎

3

−1
𝑎
1
𝑛 − 4𝛽𝑏

3

−1
𝑏
1
𝑛

− 2𝛼𝑎
1
𝑏
3

−1
𝑛 − 8𝑎

2

−1
𝑏
−1
𝑏
1
𝑐
2
+ 6𝛼𝑎

−1
𝑎
2

0
𝑏
−1
𝑛

+ 6𝛼𝑎
2

−1
𝑎
0
𝑏
0
𝑛 − 6𝛼𝑎

0
𝑏
2

−1
𝑏
0
𝑛 + 6𝛼𝑎

2

−1
𝑎
1
𝑏
−1
𝑛

− 6𝛼𝑎
−1
𝑏
2

−1
𝑏
1
𝑛 + 6𝛽𝑎

2

−1
𝑎
2

0
𝑛 − 6𝛽𝑏

2

−1
𝑏
2

0
𝑛

− 6𝛼𝑎
−1
𝑏
−1
𝑏
2

0
𝑛,

𝐶
−3
= 6𝛼𝑎

0
𝑎
2

−1
𝑏
−1
𝑛 − 6𝛼𝑎

−1
𝑏
2

−1
𝑏
0
𝑛

− 2𝑎
2

−1
𝑏
−1
𝑏
0
𝑐
2
+ 2𝑎
−1
𝑎
0
𝑏
2

−1
𝑐
2

+ 2𝑎
2

−1
𝑏
0
𝑏
−1
𝑘 − 2𝑎

−1
𝑎
0
𝑏
2

−1
𝑘

+ 2𝛼𝑎
3

−1
𝑏
0
𝑛 + 4𝛽𝑎

0
𝑎
3

−1
𝑛

− 2𝛼𝑎
0
𝑏
3

−1
𝑛 − 4𝛽𝑏

0
𝑏
3

−1
𝑛,

𝐶
−4
= 𝛽𝑎
4

−1
𝑛 − 𝛽𝑏

4

−1
𝑛 + 2𝛼𝑎

3

−1
𝑏
−1
𝑛 − 2𝛼𝑎

−1
𝑏
3

−1
𝑛.

(10)

Equating the coefficients of exp(𝑧) in (9) to zero, we obtain a
set of algebraic equations:

𝐶
4
= 0, 𝐶

3
= 0, 𝐶

2
= 0, 𝐶

1
= 0, 𝐶

0
= 0,

𝐶
−1
= 0, 𝐶

−2
= 0, 𝐶

−3
= 0, 𝐶

−4
= 0.

(11)

Solving the system (11) with the help of Maple, we obtain the
following three cases.

Case 1. We have the following:

𝑎
−1
=𝑏
−1
, 𝑎

0
=−𝑏
0
, 𝑎

1
=𝑏
1
, 𝛽=

𝛼𝑏
2

0
− 4𝛼𝑏

1
𝑏
−1

4𝑏
1
𝑏
−1

,

𝑘 =
𝛼𝑏
2

0
𝑛 + 2𝑏

−1
𝑏
1
𝑐
2

2𝑏
−1
𝑏
1

.

(12)

Case 2. We have the following:

𝑎
−1
=
𝑏
−1
𝑏
1

𝑎
1

, 𝑎
0
= 0, 𝑏

0
= 0, 𝛼 =

−𝛽 (𝑎
2

1
+ 𝑏
2

1
)

2𝑎
1
𝑏
1

,

𝑘 =
−2𝛽𝑎
2

1
𝑏
2

1
𝑛 + 𝛽𝑎

4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 8𝑎

2

1
𝑏
2

1
𝑐
2

8𝑎
2

1
𝑏
2

1

.

(13)

Case 3. We have the following:

𝑎
−1
= −𝜙𝑏

1
, 𝑏

−1
= −𝜙𝑎

1
, 𝛼 =

−𝛽 (𝑎
2

1
+ 𝑏
2

1
)

2𝑎
1
𝑏
1

,

𝑘 =
−2𝛽𝑎
2

1
𝑏
2

1
𝑛 + 𝛽𝑎

4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 2𝑎

2

1
𝑏
2

1
𝑐
2

2𝑎
2

1
𝑏
2

1

,

(14)

where 𝜙 = (−𝑎
0
𝑎
2

1
𝑏
0
+𝑎
2

0
𝑎
1
𝑏
1
+𝑎
1
𝑏
2

0
𝑏
1
−𝑎
0
𝑏
0
𝑏
2

1
)/(𝑎
1
−𝑏
1
)
2
(𝑎
1
+

𝑏
1
)
2.

Substituting values from (12) into (8), we obtain

𝐻(𝑧) =
𝑏
1
exp (𝑧) − 𝑏

0
+ 𝑏
−1
exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧)

. (15)

As a result one of the solutions of (1) is given by

𝑢
1
(𝑥, 𝑡) =

1

𝑛
ln(

𝑏
1
exp (𝑧) − 𝑏

0
+ 𝑏
−1
exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
+ 𝑏
−1
exp (−𝑧)

) , (16)

where 𝑧 = 𝑥−𝑐𝑡, 𝛽 = (𝛼𝑏2
0
−4𝛼𝑏
1
𝑏
−1
)/4𝑏
1
𝑏
−1
, and 𝑘 = (𝛼𝑏2

0
𝑛+

2𝑏
−1
𝑏
1
𝑐
2
)/2𝑏
−1
𝑏
1
.

As a special case, if we choose 𝑏
0
= 2 and 𝑏

−1
= 𝑏
1
= 1 in

(16), then we get 𝛽 = 0, 𝑘 = 2𝛼𝑛 + 𝑐2 and obtain the solution
of the generalized sinh-Gordon equation as

𝑢
1
(𝑥, 𝑡) =

1

𝑛
ln(tanh2 [(1

2
) (𝑥 − 𝑐𝑡)]) , (17)

which is the solution obtained in [14, 15].
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Now substituting the values from (13) (Case 2) into (8)
results in the second solution of (1) as

𝑢
2
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
1
exp (𝑧) + (𝑏

−1
𝑏
1
/𝑎
1
) exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

−1
exp (−𝑧)

) , (18)

with 𝑧 = 𝑥 − 𝑐𝑡, 𝛼 = −𝛽(𝑎2
1
+ 𝑏
2

1
)/2𝑎
1
𝑏
1
, and 𝑘 = (−2𝛽𝑎2

1
𝑏
2

1
𝑛 +

𝛽𝑎
4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 8𝑎

2

1
𝑏
2

1
𝑐
2
)/8𝑎
2

1
𝑏
2

1
.

The third solution of (1) is obtained by using the values
from (14) (Case 3) and substituting them into (8). Conse-
quently, it is given by

𝑢
3
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
1
exp (𝑧) + 𝑎

0
− 𝑏
1
𝜙 exp (−𝑧)

𝑏
1
exp (𝑧) + 𝑏

0
− 𝑎
−1
𝜙 exp (−𝑧)

) , (19)

where 𝑧 = 𝑥−𝑐𝑡,𝜙 = (−𝑎
0
𝑎
2

1
𝑏
0
+𝑎
2

0
𝑎
1
𝑏
1
+𝑎
1
𝑏
2

0
𝑏
1
−𝑎
0
𝑏
0
𝑏
2

1
)/(𝑎
1
−

𝑏
1
)
2
(𝑎
1
+ 𝑏
1
)
2, 𝛼 = −𝛽(𝑎2

1
+ 𝑏
2

1
)/2𝑎
1
𝑏
1
, and 𝑘 = (−2𝛽𝑎2

1
𝑏
2

1
𝑛 +

𝛽𝑎
4

1
𝑛 + 𝛽𝑏

4

1
𝑛 + 2𝑎

2

1
𝑏
2

1
𝑐
2
)/2𝑎
2

1
𝑏
2

1
.

To construct more solutions of (1), we now set 𝑐 = 𝑝 = 2
and 𝑑 = 𝑞 = 2. Then (5) reduces to

𝐻(𝑧) = (𝑎
2
exp (2𝑧) + 𝑎

1
exp (𝑧) + 𝑎

0
+ 𝑎
−1
exp (−𝑧)

+ 𝑎
−2
exp (−2𝑧))

× (𝑏
2
exp (𝑧) + 𝑏

1
exp (𝑧) + 𝑏

0

+ 𝑏
−1
exp (−𝑧) + 𝑏

−2
exp (−2𝑧))−1.

(20)

Proceeding as above, we obtain the following three solutions
of (1):

𝑢
4
(𝑥, 𝑡) =

1

𝑛
ln(𝑎
2
exp (2𝑧) + (

𝑎
−1
𝑏
1

𝑏
−1

) exp (𝑧)

+ (
𝑎
−1
𝑏
0

𝑏
−1

) + 𝑎
−1
exp (−𝑧))

× (
𝑎
2
𝑏
−1

𝑎
−1

exp (𝑧) + 𝑏
1
exp (𝑧)

+ 𝑏
0
+ 𝑏
−1
exp (−𝑧))

−1

,

(21)

where 𝑧 = 𝑥 − 𝑐𝑡, 𝛼 = −𝛽(𝑎2
−1
+ 𝑏
2

−1
)/2𝑎
−1
𝑏
−1
,

𝑢
5
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
2
exp (2𝑧) + 𝑎

1
exp (𝑧) + 𝑏

0

−𝑎
2
exp (𝑧) + 𝑏

1
exp (𝑧) + 𝑏

0

) , (22)

with 𝑧 = 𝑥 − 𝑐𝑡, 𝛽 = 𝛼(𝑏2
1
+ 4𝑎
2
𝑏
0
)/4𝑎
2
𝑏
0
, and 𝑘 = (𝛼𝑛𝑏2

1
+

2𝑎
2
𝑏
0
𝑐
2
)/2𝑎
2
𝑏
0
, and

𝑢
6
(𝑥, 𝑡) =

1

𝑛
ln(

𝑎
2
exp (2𝑧) − 𝑏

0
+ 𝑏
−2
exp (−2𝑧)

𝑎
2
exp (2𝑧) + 𝑏

0
+ 𝑏
−2
exp (−2𝑧)

) , (23)

where 𝑧 = 𝑥 − 𝑐𝑡, 𝛼 = −(8𝑎
2
𝑏
−2
(𝑐
2
− 𝑘)/𝑏

2

0
𝑛), and 𝛽 =

2(4𝑎
2
𝑏
−2
𝑐
2
− 4𝑎
2
𝑏
−2
𝑘 − 𝑏
2

0
𝑐
2
+ 𝑏
2

0
𝑘)/𝑏
2

0
𝑛.

0
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Figure 1: Profile of solution (16).
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Figure 2: Profile of solution (23).

By taking 𝑛 = 2, 𝑏
−1
= −1, 𝑏

0
= 2, 𝑐 = 1, and 𝑏

1
= −1 in

the solution (16), we have its profile given in Figure 1.
By taking 𝑛 = 3, 𝑏

−2
= 1, 𝑏

0
= 2, 𝑐 = 1, and 𝑎

1
= 1 in the

solution (23), we have its profile given in Figure 2.

3. Concluding Remarks

In this paper we obtained new exact solutions of the gen-
eralized double sinh-Gordon equation (1) using the Exp-
function method. We presented six different solutions of (1).
Earlier, the tanh function, the bifurcation, and the (𝐺/𝐺)-
expansion methods [11–13] were employed to obtain exact
solutions of (1). The solutions obtained in this paper were
new and were different from the ones obtained in [11–13]. By
taking special values of the constants, we also retrieved the
solution of the generalized sinh-Gordon equation, which was
obtained in [14, 15]. The Exp-function method is very simple
and straightforward method for solving nonlinear partial
differential equations. Indeed this has some pronounced
merit as compared to the other methods. The correctness of
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the solutions obtained here has been verified by substituting
them back into (1).
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The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM)
for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method
to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

1. Introduction

Integral equations of the first kind arise in several applica-
tions. These include applications in biology, chemistry, phys-
ics, and engineering. In recent years, much work has been
carried out by researchers in mathematics and engineering in
applying and analyzing novel numerical and semi analytical
methods for obtaining solutions of integral equations of the
first kind. Among these are the homotopy analysis method
[1], operational Tau method [2], homotopy perturbation
method [3], Adomian decomposition [3], quadrature rule [4],
and automatic augmented Galerkin algorithms [5].

In this study, we develop the optimal homotopy asymp-
toticmethod (OHAM), which was proposed byMarinca et al.
[6, 7], for solving the linear Fredholm integral equations of
the first kind. This method is characterized by it is conver-
gence criteria which are more flexible than other methods.

The general form of the linear Fredholm integral equa-
tions of the first kind is

𝑓 (𝑠) = ∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔 (𝑡) 𝑑𝑡, (1)

where 𝑎 and 𝑏 are constant and the functions 𝑘(𝑠, 𝑡) and 𝑓(𝑠)

are known.
It should be noted that OHAM has been applied to the

nonlinear Fredholm integral equations of the second kind by
[8].

2. Application of OHAM to
the Linear Fredholm Integral Equations of
the First Kind

In this section, we formulate the optimal homotopy asymp-
totic method (OHAM) for solving the linear Fredholm inte-
gral equations of the first kind following the procedure as
outlined in [6, 7] and other papers. Let us consider a form
of the linear Fredholm integral equation of the first kind:

𝑓 (𝑠) − ∫

𝑏

𝑎

𝐾 (𝑥, 𝑡) 𝑔 (𝑡) 𝑑𝑡 = 0. (2)

Using OHAM, we can obtain a family of equations as fol-
lows:

(1 − 𝑝) [𝐿 (𝑔 (𝑠, 𝑝)) + 𝑓 (𝑠)]

= 𝐻 (𝑝) [𝐿 (𝑔 (𝑠, 𝑝)) + 𝑓 (𝑠) + 𝑁 (𝑔 (𝑠, 𝑝))] ,

(3)

where 𝑝 ∈ [0, 1] is an embedding parameter, 𝑔(𝑠, 𝑝) is un-
known function, and𝐻(𝑝) is an (nonzero) auxiliary function
for 𝑝 ̸= 0 and𝐻(0) = 0 and given as 𝐻(𝑝) = ∑

𝑚

𝑗=1
𝑐
𝑗
𝑝
𝑗 where

𝑐
𝑗
, 𝑗 = 1, 2, . . ., are auxiliary constants, and when 𝑝 = 0 and

𝑝 = 1 it holds that

𝑔 (𝑠, 0) = 𝑔
0
(𝑠) , 𝑔 (𝑠, 1) = 𝑔 (𝑠) , (4)
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respectively. For obtaining the approximate solution, we use
Taylor’s series expansion about 𝑝 as follows:

𝑔 (𝑠, 𝑝, 𝑐
𝑗
) = 𝑔
0
(𝑠) +

∞

∑

𝑚=1

𝑔
𝑚
(𝑠, 𝑐
𝑗
) 𝑝
𝑚
, 𝑗 = 1, 2, . . . .

(5)

If the series (5) convergence occurs when 𝑝 = 1, one has

𝑔 (𝑠, 1, 𝑐
𝑗
) = 𝑔
0
(𝑠) +

∞

∑

𝑚=1

𝑔
𝑚
(𝑠, 𝑐
𝑗
) , 𝑗 = 1, 2, . . . . (6)

Substituting (5) in (3) and equating the coefficients of like
powers of 𝑝, we get as follows:

𝑂(𝑝
0
) : 𝑔
0
(𝑠) = −𝑓 (𝑠) ,

𝑂 (𝑝
1
) : 𝑔
1
(𝑠) = −𝑐

1
∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔
0
(𝑡) 𝑑𝑡,

𝑂 (𝑝
2
) : 𝑔
2
(𝑠) = (1 + 𝑐

1
) 𝑔
1
(𝑠) − 𝑐

1
∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔
1
(𝑡) 𝑑𝑡

− 𝑐
2
∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔
0
(𝑡) 𝑑𝑡,

𝑂 (𝑝
𝑖
) : 𝑔
𝑖
(𝑠) = (1 + 𝑐

1
) 𝑔
𝑖−1

(𝑠) +

𝑖−1

∑

𝑗=2

𝑐
𝑗
𝑔
𝑖−𝑗

(𝑠)

−

𝑖

∑

𝑘=1

𝑐
𝑘
∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔
𝑖−𝑘

(𝑡) 𝑑𝑡.

(7)

For finding the constants 𝑐
1
, 𝑐
2
, 𝑐
3
, . . ., we can get the result of

the𝑚th-order approximations as follows:

𝑔
𝑚
(𝑠, 𝑐
𝑗
) = 𝑔
0
(𝑠) +

𝑚

∑

𝑘=1

𝑔
𝑘
(𝑠, 𝑐
𝑗
) , 𝑗 = 1, 2, . . . , 𝑚. (8)

If we substitute (8) into (1) we obtain the residual equation

𝑅 (𝑠, 𝑐
𝑗
) = 𝐿 (𝑔

𝑚
(𝑠, 𝑐
𝑗
)) + 𝑓 (𝑠) − ∫

𝑏

𝑎

𝐾 (𝑠, 𝑡) 𝑔
𝑚
(𝑡, 𝑐
𝑗
) 𝑑𝑡.

(9)

If 𝑅(𝑠, 𝑐
𝑗
) = 0, then 𝑔

𝑚
(𝑠, 𝑐
𝑗
) will be the exact solution. The

least squares method can be used to determine 𝑐
1
, 𝑐
2
, 𝑐
3
, . . . .

At first we consider the functional

𝐽 (𝑐
𝑗
) = ∫

𝑏

𝑎

𝑅
2
(𝑠, 𝑐
𝑗
) 𝑑𝑠. (10)

By using Galerkin’s method we get the following system:

𝜕𝐽

𝜕𝑐
𝑗

= 2∫

𝑏

𝑎

𝑅 (𝑠, 𝑐
𝑗
)
𝜕𝑅

𝜕𝑐
𝑗

𝑑𝑠, (11)

and thenminimizing it to obtain the values of 𝑐
1
, 𝑐
2
, . . . , 𝑚, we

have
𝜕𝐽

𝜕𝑐
1

=
𝜕𝐽

𝜕𝑐
2

= ⋅ ⋅ ⋅ =
𝜕𝐽

𝜕𝑐
𝑚

= 0. (12)

With these constants, the approximate solution is deter-
mined.

3. Numerical Examples and Discussion

In this section, three examples of the linear Fredholm integral
equations of the first kind were solved to show the efficiency
of the present method. Maple software with long format and
double accuracy was used to carry out the computations.

Example 1. We consider the following equation [9]:

1

2
sin (𝑠) = ∫

𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔 (𝑡) 𝑑𝑡, (13)

for which the exact solution is𝑔(𝑠) = sin(𝑠). ApplyingOHAM
to the linear Fredholm integral equation of first kind yields

𝐿 (𝑔 (𝑠, 𝑝)) = 𝑔 (𝑠) ,

𝑁 (𝑔 (𝑠, 𝑝)) = −∫

𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔 (𝑡) 𝑑𝑡,

𝑓 (𝑠) =
1

2
sin (𝑠)

(14)

which satisfies

(1 − 𝑝) [(𝑔
0
(𝑠) + 𝑝𝑔

1
(𝑠) + 𝑝

2
𝑔
2
(𝑠) + ⋅ ⋅ ⋅ ) +

1

2
sin (𝑠)]

= (𝑝𝑐
1
+ 𝑝
2
𝑐
2
+ 𝑝
3
𝑐
3
+ ⋅ ⋅ ⋅ )

× [ (𝑔
0
(𝑠) + 𝑝𝑔

1
(𝑠) + 𝑝

2
𝑔
2
(𝑠) + ⋅ ⋅ ⋅ ) +

1

2
sin (𝑠)

− ∫

𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) (𝑔

0
(𝑡) + 𝑝𝑔

1
(𝑡)

+𝑝
2
𝑔
2
(𝑡) + ⋅ ⋅ ⋅ ) 𝑑𝑡] .

(15)

Now we use (7) to obtain a series of problems:

𝑂(𝑝
0
) : 𝑔
0
(𝑠) = −

1

2
sin (𝑠) ,

𝑂 (𝑝
1
) : 𝑔
1
(𝑠) = −𝑐

1
∫

𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔

0
(𝑡) 𝑑𝑡,

𝑂 (𝑝
2
) : 𝑔
2
(𝑠) = (1 + 𝑐

1
) 𝑔
1
(𝑠)

− 𝑐
1
∫

𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔

1
(𝑡) 𝑑𝑡

− 𝑐
2
∫

𝜋/2

0

2

𝜋
sin (𝑠) sin (𝑡) 𝑔

0
(𝑡) 𝑑𝑡.

(16)

Hence the solutions are

𝑂(𝑝
0
) : 𝑔
0
(𝑠) = −

1

2
sin (𝑠) ,

𝑂 (𝑝
1
) : 𝑔
1
(𝑠) =

1

4
𝑐
1
sin (𝑠) ,

𝑂 (𝑝
2
) : 𝑔
2
(𝑠) =

1

4
(1 + 𝑐
1
) 𝑐
1
sin (𝑠)

−
1

8
𝑐
2

1
sin (𝑠) +

1

4
𝑐
2
sin (𝑠) .

(17)
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By substituting 𝑔
0
(𝑠), 𝑔
1
(𝑠), and 𝑔

3
(𝑠) solutions in (6), we

obtain

𝑔 (𝑠) = −
1

2
sin (𝑠) +

1

4
𝑐
1
sin (𝑠)

+
1

4
(1 + 𝑐
1
) 𝑐
1
sin (𝑠)

−
1

8
𝑐
2

1
sin (𝑠) +

1

4
𝑐
2
sin (𝑠) .

(18)

For the calculations of the constants 𝑐
1
and 𝑐
2
, the use of the

technique mentioned in (8)–(12) yields

𝑐
1
= 6.000000004, 𝑐

2
= −24.00000002. (19)

Substituting values in (18), the final solution becomes

𝑔 (𝑠) = sin (𝑠) . (20)

This is the exact solution.

Table 1 shows some numerical results of these solutions
calculated according to the present method.

The exact solution, OHAM solution and absolute error of
this example are shown in Figure 1.

Example 2. We consider the following equation [10]:

1

4
𝑠
2
= ∫

1

0

5

2
𝑠
2
𝑡
2
𝑔 (𝑡) 𝑑𝑡, (21)

for which the exact solution is 𝑔(𝑠) = (1/2)𝑠
2. Applying

OHAM to the linear Fredholm integral equation of first kind
yields

𝐿 (𝑔 (𝑠, 𝑝)) = 𝑔 (𝑠) ,

𝑁 (𝑔 (𝑠, 𝑝)) = −∫

1

0

5

2
𝑠
2
𝑡
2
𝑔 (𝑡) 𝑑𝑡,

𝑓 (𝑠) =
1

4
𝑠
2

(22)

which satisfies

(1 − 𝑝) [(𝑔
0
(𝑠) + 𝑝𝑔

1
(𝑠) + 𝑝

2
𝑔
2
(𝑠) + ⋅ ⋅ ⋅ ) +

1

4
𝑠
2
]

= (𝑝𝑐
1
+ 𝑝
2
𝑐
2
+ 𝑝
3
𝑐
3
+ ⋅ ⋅ ⋅ )

× [ (𝑔
0
(𝑠) + 𝑝𝑔

1
(𝑠) + 𝑝

2
𝑔
2
(𝑠) + ⋅ ⋅ ⋅ ) +

1

4
𝑠
2

− ∫

1

0

5

2
𝑠
2
𝑡
2
(𝑔
0
(𝑡) + 𝑝𝑔

1
(𝑡) + 𝑝

2
𝑔
2
(𝑡) + ⋅ ⋅ ⋅ ) 𝑑𝑡] .

(23)

Table 1: Numerical results of Example 1.

𝑠 𝑔exact 𝑔OHAM |𝑔exact − 𝑔OHAM|

0 0 0 0
0.1 0.09983341665 0.09983341665 0
0.2 0.1986693308 0.1986693308 0
0.3 0.2955202067 0.2955202067 0
0.4 0.3894183423 0.3894183423 0
0.5 0.4794255386 0.4794255386 0
0.6 0.5646424734 0.5646424734 0
0.7 0.6442176872 0.6442176872 0
0.8 0.7173560909 0.7173560909 0
0.9 0.7833269096 0.7833269096 0
1.0 0.8414709848 0.8414709848 0

Now we use (7) to obtain a series of problems:

𝑂(𝑝
0
) : 𝑔
0
(𝑠) = −

1

4
𝑠
2
,

𝑂 (𝑝
1
) : 𝑔
1
(𝑠) = −𝑐

1
∫

1

0

5

2
𝑠
2
𝑡
2
𝑔
0
(𝑡) 𝑑𝑡,

𝑂 (𝑝
2
) : 𝑔
2
(𝑠) = (1 + 𝑐

1
) 𝑔
1
(𝑠)

−𝑐
1
∫

1

0

5

2
𝑠
2
𝑡
2
𝑔
1
(𝑡) 𝑑𝑡−𝑐

2
∫

1

0

5

2
𝑠
2
𝑡
2
𝑔
0
(𝑡) 𝑑𝑡.

(24)

Hence the solutions are

𝑂(𝑝
0
) : 𝑔
0
(𝑠) = −

1

4
𝑠
2
,

𝑂 (𝑝
1
) : 𝑔
1
(𝑠) =

1

8
𝑐
1
𝑠
2
,

𝑂 (𝑝
2
) : 𝑔
2
(𝑠) =

1

8
(1 + 𝑐
1
) 𝑐
1
𝑠
2
−

1

16
𝑐
2

1
𝑠
2
+

1

8
𝑐
2
𝑠
2
.

(25)

By substituting 𝑔
0
(𝑠), 𝑔
1
(𝑠), and 𝑔

3
(𝑠) solutions in (6), we

obtain

𝑔 (𝑠) = −
1

4
𝑠
2
+

1

8
𝑐
1
𝑠
2
+

1

8
(1 + 𝑐
1
) 𝑐
1
𝑠
2
−

1

16
𝑐
2

1
𝑠
2
+

1

8
𝑐
2
𝑠
2
.

(26)

For the calculations of the constants 𝑐
1
and 𝑐
2
, the use of the

technique mentioned in (8)–(12) yields

𝑐
1
= 6, 𝑐

2
= −24. (27)

Substituting values in (26), the final solution becomes

𝑔 (𝑠) =
1

2
𝑠
2
. (28)

This is the exact solution.

Table 2 shows some numerical results of these solutions
calculated according to the present method.

The exact solution, OHAM solution and absolute error of
this example are shown in Figure 2.
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Table 2: Numerical results of Example 2.

𝑠 𝑔exact 𝑔OHAM |𝑔exact − 𝑔OHAM|

0 0 0 0
0.1 0.005 0.005 0
0.2 0.02 0.02 0
0.3 0.045 0.045 0
0.4 0.08 0.08 0
0.5 0.125 0.125 0
0.6 0.18 0.18 0
0.7 0.245 0.245 0
0.8 0.32 0.32 0
0.9 0.405 0.405 0
1.0 0.5 0.5 0

Example 3. We consider the following equation [9]:

1

2
𝑠
2
= ∫

1

0

2𝑠
2
𝑡 𝑔 (𝑡) 𝑑𝑡, (29)

for which the exact solution is 𝑔(𝑠) = (1/2)𝑠
2. Applying

OHAM to the linear Fredholm integral equation of first kind
yields

𝐿 (𝑔 (𝑠, 𝑝)) = 𝑔 (𝑠) ,

𝑁 (𝑔 (𝑠, 𝑝)) = −∫

1

0

2𝑠
2
𝑡 𝑔 (𝑡) 𝑑𝑡,

𝑓 (𝑠) =
1

2
𝑠
2

(30)

which satisfies

(1 − 𝑝) [(𝑔
0
(𝑠) + 𝑝𝑔

1
(𝑠) + 𝑝

2
𝑔
2
(𝑠) + ⋅ ⋅ ⋅ ) +

1

2
𝑠
2
]

= (𝑝𝑐
1
+ 𝑝
2
𝑐
2
+ 𝑝
3
𝑐
3
+ ⋅ ⋅ ⋅ )

× [ (𝑔
0
(𝑠) + 𝑝𝑔

1
(𝑠) + 𝑝

2
𝑔
2
(𝑠) + ⋅ ⋅ ⋅ ) +

1

2
𝑠
2

− ∫

1

0

2𝑠
2
𝑡 (𝑔
0
(𝑡) + 𝑝𝑔

1
(𝑡) + 𝑝

2
𝑔
2
(𝑡) + ⋅ ⋅ ⋅ ) 𝑑𝑡] .

(31)
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Now we use (7) to obtain a series of problems:

𝑂(𝑝
0
) : 𝑔
0
(𝑠) = −

1

2
𝑠
2
,

𝑂 (𝑝
1
) : 𝑔
1
(𝑠) = −𝑐

1
∫

1

0

2𝑠
2
𝑡𝑔
0
(𝑡) 𝑑𝑡,

𝑂 (𝑝
2
) : 𝑔
2
(𝑠)

= (1 + 𝑐
1
) 𝑔
1
(𝑠) − 𝑐

1
∫

1

0

2𝑠
2
𝑡𝑔
1
(𝑡) 𝑑𝑡

− 𝑐
2
∫

1

0

2𝑠
2
𝑡𝑔
0
(𝑡) 𝑑𝑡.

(32)

Hence the solutions are

𝑂(𝑝
0
) : 𝑔
0
(𝑠) = −

1

2
𝑠
2
,

𝑂 (𝑝
1
) : 𝑔
1
(𝑠) =

1

4
𝑐
1
𝑠
2
,

𝑂 (𝑝
2
) : 𝑔
2
(𝑠) =

1

4
(1 + 𝑐
1
) 𝑐
1
𝑠
2
−

1

8
𝑐
2

1
𝑠
2
+

1

4
𝑐
2
𝑠
2
.

(33)

By substituting 𝑔
0
(𝑠), 𝑔
1
(𝑠), and 𝑔

3
(𝑠) solutions in (6), we

obtain

𝑔 (𝑠) = −
1

2
𝑠
2
+

1

4
𝑐
1
𝑠
2
+

1

4
(1 + 𝑐
1
) 𝑐
1
𝑠
2

−
1

8
𝑐
2

1
𝑠
2
+

1

4
𝑐
2
𝑠
2
.

(34)

For the calculations of the constants 𝑐
1
and 𝑐
2
, the use of the

technique mentioned in (8)–(12) yields

𝑐
1
= 6, 𝑐

2
= −24. (35)

Substituting values in (34), the final solution becomes

𝑔 (𝑠) = 𝑠
2
. (36)

This is the exact solution.

Table 3: Numerical results of Example 3.

𝑠 𝑔exact 𝑔OHAM |𝑔exact − 𝑔OHAM|

0 0 0 0
0.1 0.01 0.01 0
0.2 0.04 0.04 0
0.3 0.09 0.09 0
0.4 0.16 0.16 0
0.5 0.25 0.25 0
0.6 0.36 0.36 0
0.7 0.49 0.49 0
0.8 0.64 0.64 0
0.9 0.81 0.81 0
1.0 1.0 1.0 0

Table 3 shows some numerical results of these solutions
calculated according to the present method.

The exact solution, OHAM solution and absolute error of
this example are shown in Figure 3.

4. Conclusions

In this paper, we presented the application of the OHAM
in solving the linear Fredholm integral equations of the first
kind. This method was tested on three different examples.
This method proved to be an accurate and efficient technique
for finding approximate solutions for the linear Fredholm
integral equations of the first kind.
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Copyright © 2013 R. Abazari and A. Kılıçman. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The two-dimensional Volterra integral equations are solved using more recent semianalytic method, the reduced differential
transform method (the so-called RDTM), and compared with the differential transform method (DTM). The concepts of DTM
and RDTM are briefly explained, and their application to the two-dimensional Volterra integral equations is studied. The results
obtained byDTMandRDTMtogether are comparedwith exact solution.As an important result, it is depicted that theRDTMresults
aremore accurate in comparisonwith those obtained byDTMapplied to the sameVolterra integral equations.Thenumerical results
reveal that the RDTM is very effective, convenient, and quite accurate compared to the other kind of nonlinear integral equations.
It is predicted that the RDTM can be found widely applicable in engineering sciences.

1. Introduction

Mathematical modeling of many problems in science, engi-
neering, physics, and other disciplines leads to linear and
nonlinear integrodifferential equations (IDE). The great use
of mathematical models including integrodifferential equa-
tions is one of themain reasons obtaining the solutions of this
kind of problems (see, e.g., [1–3] and the references therein).
So, it is very important to get some information about the
analytical solutions of these problems because these solutions
give significant information about the character of the mod-
eled event. But, in some cases, it is more difficult to obtain
analytical solutions of thesemodels.These are usually difficult
to solve analytically, and in many cases the solution must
be approximated. To approximate the solutions of these
models, in recent years several numerical approaches have
been proposed.

In this paper, we consider the following Volterra type of
integral equation [4, 5]:

𝑢 (𝑥, 𝑡) − ∫

𝑡

0

∫

𝑥

0

𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑢 (𝑦, 𝑧)) 𝑑𝑦 𝑑𝑧 = 𝑓 (𝑥, 𝑡) , (1)

where 𝐾 and 𝑓 are continuous functions and 𝐾 has the fol-
lowing form:

𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑢 (𝑦, 𝑧)) =

𝑚

∑

𝑖=0

𝑝
𝑖
(𝑥, 𝑡) 𝑞

𝑖
(𝑦, 𝑧, 𝑢 (𝑦, 𝑧)) . (2)

The one-dimensional Volterra type of integral equation has
been solved by many numerical methods, such as collocation
methods [1], Taylor-series expansion methods [2], Gauss-
type quadratures method [3], spectral methods [6], Cheby-
shev polynomial method [7], Tau method [8], sine-cosine
wavelets method [9], Monte Carlo method [10], and Haar
functions method [11].

But in two-dimensional cases, a small amount of work
has been done (see, e.g., [12–14]). Very recently, Tari et al.
in [4] employed the classic differential transform method for
solving two-dimensional Volterra type of integral equations
(1), and Jang in [5] improved the proofs of the presented theo-
rems byTari et al. in [4].Theyderived fundamental properties
of the differential transforms of some kernel functions 𝐾 in
Volterra integral equations.
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However, the classic differential transformmethod, intro-
duced by Zhou [15], is based on the definition of the differ-
ential transform, which is a Taylor series. Thus, it requires
a cumbersome calculation to obtain the basic properties of
the differential transforms. Some of DTM applications are
mentioned in [16–21].

Recently, Keskin and Oturanç introduced a reduced form
of DTM as reduced DTM (RDTM) and applied it to approxi-
mate some PDE [22] and factional PDEs [23]. More recently,
Abazari and Ganji [24] extended RDTM to study the par-
tial differential equation with proportional delay in 𝑡 and
shrinking in 𝑥 and showed that, as a special advantage of
RDTM rather than DTM, the reduced differential transform
recursive equations produce exactly all the Poisson series
coefficients of solutions based on the initial condition as
weighted function, whereas the differential transform recur-
sive equations produce exactly all the Taylor series coeffi-
cients of solutions.

Here, we suggest the RDTM, for the approximating of the
solutions of the two-dimensional Volterra integral equations
(1) with the same kernel functions in [4, 5]. In order to
demonstrate the effectiveness of the RDTM, the illustrative
examples for the same kernel function of references [5] are
presented. These examples show that the RDTM produces
exactly all the Poisson series coefficients (see Remark 5)
of the exact solutions, whereas, the classic DTM produces
exactly all the Taylor series coefficients of the exact solu-
tions. As an important result, notwithstanding the simplicity
and robustness of RDTM, it is depicted that theRDTMresults
are more accurate in comparison with those obtained by
classic DTM.

2. Basic Definitions

With reference to the articles [16–21], the basic definitions of
two-dimensional differential transform method (DTM) and
their reduced form (RDTM) are introduced in the following
two subsections, respectively.

2.1. Two-Dimensional DTM. Consider a function of two
variables 𝑤(𝑥, 𝑡), and suppose that it can be represented as
a product of two single-variable functions, that is, 𝑤(𝑥, 𝑡) =
𝑓(𝑥)𝑔(𝑡). On the basis of the properties of the one-dimen-
sional differential transform, the function 𝑤(𝑥, 𝑡) can be
represented as

𝑤 (𝑥, 𝑡) =

∞

∑

𝑖=0

𝐹 (𝑖) 𝑥
𝑖

∞

∑

𝑗=0

𝐺 (𝑗) 𝑡
𝑗
=

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑊(𝑖, 𝑗) 𝑥
𝑖
𝑡
𝑗
, (3)

where𝑊(𝑖, 𝑗) = 𝐹(𝑖)𝐺(𝑗) is called the spectrum of 𝑤(𝑥, 𝑡).
The basic definitions and operations for two-dimensional

differential transform are introduced as follows.

Definition 1. If 𝑤(𝑥, 𝑡) is analytic and continuously differen-
tiable with respect to time 𝑡 in the domain of interest, then

𝑊(𝑚, 𝑛) =
1

𝑚!𝑛!
[
𝜕
𝑚+𝑛

𝜕𝑥𝑚𝜕𝑡𝑛
𝑤 (𝑥, 𝑡)]

𝑥=𝑥0

𝑡=𝑡0

, (4)

where the spectrum function 𝑊(𝑚, 𝑛) is the transformed
function, which is also called 𝑇-function in brief.

The differential inverse transform of 𝑊(𝑘, ℎ) is defined as

𝑤 (𝑥, 𝑡) =

∞

∑

𝑚=0

∞

∑

𝑛=0

𝑊(𝑚, 𝑛) (𝑥 − 𝑥
0
)
𝑚

(𝑡 − 𝑡
0
)
𝑛

. (5)

Combining (4) and (5), it can be obtained that

𝑤 (𝑥, 𝑡) =

∞

∑

𝑚=0

∞

∑

𝑛=0

1

𝑚!𝑛!
[
𝜕
𝑚+𝑛

𝜕𝑥𝑚𝜕𝑡𝑛
𝑤 (𝑥, 𝑡)]

𝑥=𝑥0

𝑡=𝑡0

× (𝑥 − 𝑥
0
)
𝑚

(𝑡 − 𝑡
0
)
𝑛

.

(6)

When (𝑥
0
, 𝑡
0
) are taken as (0, 0), then (5) can be expressed as

𝑤 (𝑥, 𝑡) =

∞

∑

𝑚=0

∞

∑

𝑛=0

𝑊(𝑚, 𝑛) 𝑥
𝑚
𝑡
𝑛
. (7)

In real applications, the function 𝑤(𝑥, 𝑡) is represented by a
finite series of (7) that can be written as

𝑤
𝑀,𝑁

(𝑥, 𝑡) =

𝑀

∑

𝑚=0

𝑁

∑

𝑛=0

𝑊(𝑚, 𝑛) 𝑥
𝑚
𝑡
𝑛
+ 𝑅
𝑀,𝑁

(𝑥, 𝑡) , (8)

and (7) implies that 𝑅
𝑀,𝑁

(𝑥, 𝑡) = ∑
∞

𝑚=𝑀+1
∑
∞

𝑛=𝑁+1
𝑊(𝑚,

𝑛)𝑥
𝑚
𝑡
𝑛 is negligibly small. Usually, the values of𝑀 and𝑁 are

decided by convergency of the series coefficients.
From the above definitions, it can be found that the con-

cept of the two-dimensional differential transform is derived
from the two-dimensional Taylor series expansion. With
(4) and (5), the fundamental mathematical operations per-
formed using the two-dimensional differential transform
may be readily obtained, and these are listed in Table 1. (See
[4, 5, 15, 16].)

Recently, Jang [5] extended the two-dimensionalDTMon
(1) as follows.

Theorem 2. Assume that 𝑈(𝑚, 𝑛), 𝑉(𝑚, 𝑛), 𝐻(𝑚, 𝑛), and
𝐺(𝑚, 𝑛) are the differential transforms of the functions 𝑢(𝑥, 𝑡),
V(𝑥, 𝑡), ℎ(𝑥, 𝑡), and 𝑔(𝑥, 𝑡), respectively; then we have the
following:

(a) if 𝑔(𝑥, 𝑡) = ∫𝑡
0
∫
𝑥

0
𝑢(𝑦, 𝑧)𝑑𝑦 𝑑𝑧, then

𝐺 (𝑚, 0) = 𝐺 (0, 𝑛) = 0, 𝑚, 𝑛 = 0, 1, . . . ,

𝐺 (𝑚, 𝑛) =
1

𝑚𝑛
𝑈 (𝑚 − 1, 𝑛 − 1) , 𝑚, 𝑛 = 1, 2, . . . ,

(9)
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Table 1: The fundamental operations of two-dimensional differential transform method.

Original function Transformed function
𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) ± V(𝑥, 𝑡) 𝑊(𝑚, 𝑛) = 𝑈(𝑚, 𝑛) ± 𝑉(𝑚, 𝑛)

𝑤(𝑥, 𝑡) = 𝑐 𝑢(𝑥, 𝑡) 𝑊(𝑚, 𝑛) = 𝑐 𝑈(𝑚, 𝑛)

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) 𝑊(𝑚, 𝑛) = (𝑚 + 1)𝑈(𝑚 + 1, 𝑛)

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) 𝑊(𝑚, 𝑛) = (𝑚 + 1)𝑈(𝑚, 𝑛 + 1)

𝑤(𝑥, 𝑡) =
𝜕
𝑟+𝑠

𝜕𝑥𝑟𝜕𝑡𝑠
𝑢(𝑥, 𝑡) 𝑊(𝑚, 𝑛) =

(𝑚 + 𝑟)!(𝑛 + 𝑠)!

𝑚!𝑛!
𝑈(𝑚 + 𝑟, 𝑛 + 𝑠)

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)V(𝑥, 𝑡) 𝑊(𝑚, 𝑛) =

𝑚

∑
𝑟=0

𝑛

∑
𝑠=0

𝑈(𝑟, 𝑛 − 𝑠)𝑉(𝑚 − 𝑟, 𝑠)

𝑤(𝑥, 𝑡) = 𝑥
𝛼
𝑡
𝛽

𝑊(𝑚, 𝑛) = 𝛿(𝑚 − 𝛼, 𝑛 − 𝛽) =
{

{

{

1 𝑚 = 𝛼, 𝑛 = 𝛽

0 otherwise

(b) if 𝑔(𝑥, 𝑡) = ∫𝑡
0
∫
𝑥

0
𝑢(𝑦, 𝑧)V(𝑦, 𝑧)𝑑𝑦 𝑑𝑧, then

𝐺 (𝑚, 0) = 𝐺 (0, 𝑛) = 0, 𝑚, 𝑛 = 0, 1, . . . ,

𝐺 (𝑚, 𝑛) =
1

𝑚𝑛

𝑛−1

∑

ℓ=0

𝑚−1

∑

𝑘=0

𝑈 (𝑘, ℓ) 𝑉 (𝑚 − 𝑘 − 1, 𝑛 − ℓ − 1) ,

𝑚, 𝑛 = 1, 2, . . . ,

(10)

(c) if 𝑔(𝑥, 𝑡) = ℎ(𝑥, 𝑡) ∫𝑡
0
∫
𝑥

0
𝑢(𝑦, 𝑧)𝑑𝑦 𝑑𝑧, then

𝐺 (𝑚, 0) = 𝐺 (0, 𝑛) = 0, 𝑚, 𝑛 = 0, 1, . . . ,

𝐺 (𝑚, 𝑛) =
1

𝑚𝑛

𝑛−1

∑

ℓ=0

𝑚−1

∑

𝑘=0

𝐻(𝑘, ℓ)
𝑉 (𝑚 − 𝑘 − 1, 𝑛 − ℓ − 1)

(𝑚 − 𝑘) (𝑛 − ℓ)
,

𝑚, 𝑛 = 1, 2, . . . .

(11)

Proof. See [5].

Theorem 3. Assume that 𝑈(𝑚, 𝑛), 𝑉(𝑚, 𝑛), and G(𝑚, 𝑛) are
the differential transforms of the functions 𝑢(𝑥, 𝑡), V(𝑥, 𝑡), and
𝑔(𝑥, 𝑡), respectively; then we have the following:

(a) if 𝑔(𝑥, 𝑡) = ∫𝑡
0
∫
𝑥

0
(𝑢(𝑦, 𝑧)/V(𝑦, 𝑧))𝑑𝑦 𝑑𝑧, then

𝐺 (𝑚, 0) = 𝐺 (0, 𝑛) = 0, 𝑚, 𝑛 = 0, 1, . . . ,

𝑛−1

∑

ℓ=0

𝑚−1

∑

𝑘=0

(𝑚 − 𝑘 + 1) (𝑛 − ℓ + 1)𝑉 (𝑘, ℓ) 𝐺 (𝑚−𝑘+1, 𝑛−ℓ+1)

= 𝑈 (𝑚, 𝑛) ,

(12)

(b) if 𝑔(𝑥, 𝑡) = (1/V(𝑥, 𝑡)) ∫𝑡
0
∫
𝑥

0
𝑢(𝑦, 𝑧)𝑑𝑦 𝑑𝑧, then

𝐺 (𝑚, 0) = 𝐺 (0, 𝑛) = 0, 𝑚, 𝑛 = 0, 1, . . . ,

𝑛−1

∑

ℓ=0

𝑚−1

∑

𝑘=0

𝑉 (𝑘, ℓ) 𝐺 (𝑚 − 𝑘 + 1, 𝑛 − ℓ + 1)

=
1

(𝑚 + 1) (𝑛 + 1)
𝑈 (𝑚, 𝑛) .

(13)

Proof. See [5].

2.2. Two-Dimensional Reduced DTM (RDTM). Consider a
function of two variables 𝑤(𝑥, 𝑡), and suppose that it can
be represented as a product of two single-variable functions,
that is, 𝑤(𝑥, 𝑡) = 𝑓(𝑥)𝑔(𝑡). Based on the properties of one-
dimensional differential transform, the function 𝑤(𝑥, 𝑡) can
be represented as

𝑤 (𝑥, 𝑡) =

∞

∑

𝑖=0

𝐹 (𝑖) 𝑥
𝑖

∞

∑

𝑗=0

𝐺 (𝑗) 𝑡
𝑗
=

∞

∑

𝑖=0

∞

∑

𝑗=0

𝑊(𝑖, 𝑗) 𝑥
𝑖
𝑡
𝑗
, (14)

where𝑊(𝑖, 𝑗) = 𝐹(𝑖)𝐺(𝑗) is called the spectrum of 𝑤(𝑥, 𝑡).

Remark 4. The poisson function series generates a multi-
variate Taylor series expansion of the input expression 𝑤,
with respect to the variables 𝑋, to order 𝑛, using the variable
weights𝑊.

Remark 5. The relationship introduced in (14) is the poisson
series form of the input expression 𝑤(𝑥, 𝑡), with respect to
the variables 𝑥 and 𝑡, to order 𝑁, using the variable weights
𝑊
𝑘
(𝑥).

Similarly on previous section, the basic definitions of two-
differential reduced differential transformation are intro-
duced as follows.
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Definition 6. If𝑤(𝑥, 𝑡) is analytical function in the domain of
interest, then the spectrum function

𝑊
𝑘
(𝑥) =

1

𝑘!
[
𝜕
𝑘

𝜕𝑡𝑘
𝑤 (𝑥, 𝑡)]

𝑡=𝑡0

(15)

is the reduced transformed function of 𝑤(𝑥, 𝑡).

Similarly on previous sections, the lowercase 𝑤(𝑥, 𝑡)
respects the original function while the uppercase 𝑊

𝑘
(𝑥)

stands for the reduced transformed function.The differential
inverse transform of𝑊

𝑘
(𝑥) is defined as

𝑤 (𝑥, 𝑡) =

∞

∑

𝑘=0

𝑊
𝑘
(𝑥) (𝑡 − 𝑡

0
)
𝑘

. (16)

Combining (15) and (16), it can be obtained that

𝑤 (𝑥, 𝑡) =

∞

∑

𝑘=0

1

𝑘!
[
𝜕
𝑘

𝜕𝑡𝑘
𝑤 (𝑥, 𝑡)]

𝑡=𝑡0

(𝑡 − 𝑡
0
)
𝑘

. (17)

In real applications, the function 𝑤(𝑥, 𝑡) is represented by a
finite series of (16), around 𝑡

0
= 0, and can be written as

𝑤
𝑛
(𝑥, 𝑡) =

𝑛

∑

𝑘=0

𝑊
𝑘
(𝑥) 𝑡
𝑘
+ 𝑅
𝑛
(𝑥, 𝑡) , (18)

and (18) implies that 𝑅
𝑛
(𝑥, 𝑡) = ∑

∞

𝑘=𝑛+1
𝑊
𝑘
(𝑥)𝑡
𝑘 is negligibly

small. Usually, the values of 𝑛 and 𝑚 are decided by conver-
gency of the series coefficients. From the above proposition, it
can be found that the concept of the reduced two-dimension-
al differential transform is derived from the two-dimensional
differential transformmethod. With (15) and (16), the funda-
mental mathematical operations performed by reduced two-
dimensional differential transform can readily be obtained
and listed in Table 2.

Similarly on previous subsection, we can extend the
RDTM on Volterra integral equations (1) as follow.

Theorem 7. Assume that 𝑈
𝑘
(𝑥), 𝑉

𝑘
(𝑥), 𝐻

𝑘
(𝑥), and 𝑊

𝑘
(𝑥)

are the reduced differential transforms of the functions 𝑢(𝑥, 𝑡),
V(𝑥, 𝑡), ℎ(𝑥, 𝑡), and 𝑤(𝑥, 𝑡), respectively; then we have the
following:

(a) if 𝑤(x, 𝑡) = ∫𝑡
𝑡0

∫
𝑥

𝑥0

𝑢(𝑦, 𝑧)V(𝑦, 𝑧)𝑑𝑦 𝑑𝑧, then

𝑊
𝑘
(𝑥) =

1

𝑘
∫

𝑥

𝑥0

(

𝑘−1

∑

𝑟=0

𝑈
𝑟
(𝑦)𝑉
𝑘−𝑟−1

(𝑦))𝑑𝑦, 𝑘 = 1, 2, . . . ,

(19)

(b) if 𝑤(𝑥, 𝑡) = ℎ(𝑥, 𝑡) ∫𝑡
𝑡0

∫
𝑥

𝑥0

𝑢(𝑦, 𝑧)𝑑𝑦 𝑑𝑧, then

𝑊
𝑘
(𝑥) =

𝑘

∑

𝑟=0

1

𝑘 − 𝑟
𝐻
𝑟
(𝑥) ∫

𝑥

𝑥0

𝑈
𝑘−𝑟−1

(𝑦) 𝑑𝑦, 𝑘 = 1, 2, . . . .

(20)

Proof. (a) According to the fundamental operations of two-
dimensional RDTM listed in Table 2 and from Leibnitz for-
mula, we get

𝜕
𝑘

𝜕𝑡𝑘
𝑤 (𝑥, 𝑡) =

𝜕
𝑘

𝜕𝑡𝑘
(∫

𝑡

𝑡0

∫

𝑥

𝑥0

𝑢 (𝑦, 𝑧) V (𝑦, 𝑧) 𝑑𝑦 𝑑𝑧)

= ∫

𝑥

𝑥0

𝜕
𝑘−1

𝜕𝑡𝑘−1
{𝑢 (𝑦, 𝑡) V (𝑦, 𝑡)} 𝑑𝑦

= ∫

𝑥

𝑥0

{

𝑘−1

∑

𝑟=0

(
𝑘 − 1

𝑟
)
𝜕
𝑟

𝜕𝑡𝑟
𝑢 (𝑦, 𝑡)

×
𝜕
𝑘−𝑟−1

𝜕𝑡𝑘−𝑟−1
V (𝑦, 𝑡) } 𝑑𝑦,

(21)

therefore

[
𝜕
𝑘

𝜕𝑡𝑘
𝑤 (𝑥, 𝑡)]

𝑡=𝑡0

= ∫

𝑥

𝑥0

{

𝑘−1

∑

𝑟=0

(
𝑘 − 1

𝑟
) 𝑟! (𝑘 − 𝑟 − 1)!

×𝑈
𝑟
(𝑦)𝑉
𝑘−𝑟−1

(𝑦)}𝑑𝑦

= (𝑘 − 1)! ∫

𝑥

𝑥0

{

𝑘−1

∑

𝑟=0

𝑈
𝑟
(𝑦)𝑉
𝑘−𝑟−1

(𝑦)}𝑑𝑦,

(22)

and then, from using (15), for 𝑘 = 1, 2, . . ., we get

𝑊
𝑘
(𝑥) =

1

𝑘
∫

𝑥

𝑥0

{

𝑘−1

∑

𝑟=0

𝑈
𝑟
(𝑦)𝑉
𝑘−𝑟−1

(𝑦)}𝑑𝑦. (23)

(b) Analogous to part (a), we get

𝜕
𝑘

𝜕𝑡𝑘
𝑤 (𝑥, 𝑡) =

𝜕
𝑘

𝜕𝑡𝑘
(ℎ (𝑥, 𝑡) ∫

𝑡

𝑡0

∫

𝑥

𝑥0

𝑢 (𝑦, 𝑧) 𝑑𝑦 𝑑𝑧)

=

𝑘

∑

𝑟=0

(
𝑘

𝑟
)
𝜕
𝑟

𝜕𝑡𝑟
ℎ (𝑥, 𝑡) ∫

𝑥

𝑥0

𝜕
𝑘−𝑟−1

𝜕𝑡𝑘−𝑟−1
𝑢 (𝑦, 𝑡) 𝑑𝑦,

(24)
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Table 2: The fundamental operations of two-dimensional RDTM.

Original function Reduced transformed function
𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) ± V(𝑥, 𝑡) 𝑊

𝑘
(𝑥) = 𝑈

𝑘
(𝑥) ± 𝑉

𝑘
(𝑥)

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑥
𝑢(𝑥, 𝑡) 𝑊

𝑘
(𝑥) =

𝜕

𝜕𝑥
𝑈
𝑘
(𝑥)

𝑤(𝑥, 𝑡) =
𝜕

𝜕𝑡
𝑢(𝑥, 𝑡) 𝑊

𝑘
(𝑥) = (𝑘 + 1)𝑈

𝑘+1
(𝑥)

𝑤(𝑥, 𝑡) =
𝜕
𝑟+𝑠

𝜕𝑥𝑟𝜕𝑡𝑠
𝑢(𝑥, 𝑡) 𝑊

𝑘
(𝑥) =

(𝑘 + 𝑠)!

𝑘!

𝜕
𝑟

𝜕𝑥𝑟
𝑈
𝑘+𝑠
(𝑥)

𝑤(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)V(𝑥, 𝑡) 𝑊
𝑘
(𝑥) =

𝑘

∑
𝑟=0

𝑈
𝑟
(𝑥)𝑉
𝑘−𝑟
(𝑥)

𝑤(𝑥, 𝑡) = 𝑥
𝑚
𝑡
𝑛

𝑊
𝑘
(𝑥) = 𝑥

𝑚
𝛿(𝑘 − 𝑛) =

{

{

{

𝑥
𝑚

𝑘 = 𝑛

0 otherwise

therefore

[
𝜕
𝑘

𝜕𝑡𝑘
𝑤 (𝑥, 𝑡)]

𝑡=𝑡0

=

𝑘

∑

𝑟=0

(
𝑘

𝑟
) 𝑟! (𝑘 − 𝑟 − 1)!𝐻

𝑟
(𝑥)

× ∫

𝑥

𝑥0

𝑈
𝑘−𝑟−1

(𝑦) 𝑑𝑦,

=

𝑘

∑

𝑟=0

𝑘!

𝑘 − 𝑟
𝐻
𝑟
(𝑥) ∫

𝑥

𝑥0

𝑈
𝑘−𝑟−1

(𝑦) 𝑑𝑦,

(25)

and then from using (15), for 𝑘 = 1, 2, . . ., we get

𝑊
𝑘
(𝑥) =

𝑘

∑

𝑟=0

1

𝑘 − 𝑟
𝐻
𝑟
(𝑥) ∫

𝑥

𝑥0

𝑈
𝑘−𝑟−1

(𝑦) 𝑑𝑦. (26)

Theorem 8. Assume that 𝑈
𝑘
(𝑥), 𝑉

𝑘
(𝑥), and 𝑊

𝑘
(𝑥) are the

reduced differential transforms of the functions 𝑢(𝑥, 𝑡), V(𝑥, 𝑡),
and 𝑤(𝑥, 𝑡), respectively; then we have the following:

(a) if 𝑤(𝑥, 𝑡) = ∫𝑡
𝑡0

∫
𝑥

𝑥0

(𝑢(𝑦, 𝑧)/V(𝑦, 𝑧))𝑑𝑦 𝑑𝑧, then

𝑈
𝑘
(𝑥) =

𝑘

∑

𝑟=0

(𝑟 + 1)
𝜕𝑊
𝑟+1
(𝑥)

𝜕𝑥
𝑉
𝑘−𝑟
(𝑦) , 𝑘 = 0, 1, 2, . . . ,

(27)

(b) if 𝑤(𝑥, 𝑡) = (1/V(𝑥, 𝑡)) ∫𝑡
𝑡0

∫
𝑥

𝑥0

𝑢(𝑦, 𝑧)𝑑𝑦 𝑑𝑧, then

𝑘

𝑘

∑

𝑟=0

𝑊
𝑟
(𝑥) 𝑉
𝑘−𝑟
(𝑥) = ∫

𝑥

𝑥0

𝑈
𝑘−1
(𝑦) 𝑑𝑦, 𝑘 = 1, 2, . . . . (28)

Proof. (a) By following the samemanner as in theTheorem 7,
we get

𝑢 (𝑥, 𝑡) =
𝜕
2
𝑤 (𝑥, 𝑡)

𝜕𝑥 𝜕𝑡
V (𝑥, 𝑡) , (29)

then

𝜕
𝑘

𝜕𝑡𝑘
𝑢 (𝑥, 𝑡) =

𝜕
𝑘

𝜕𝑡𝑘
(
𝜕
2
𝑤 (𝑥, 𝑡)

𝜕𝑥 𝜕𝑡
V (𝑥, 𝑡))

=

𝑘

∑

𝑟=0

(
𝑘

𝑟
)

𝜕
𝑟+2

𝜕𝑥 𝜕𝑡𝑟+1
𝑤 (𝑥, 𝑡)

𝜕
𝑘−𝑟

𝜕𝑡𝑘−𝑟
V (𝑦, 𝑡) ,

(30)

therefore

𝑘!𝑈
𝑘
(𝑥) =

𝑘

∑

𝑟=0

(
𝑘

𝑟
) (𝑟 + 1)! (𝑘 − 𝑟)!

𝜕𝑊
𝑟+1

𝜕𝑥
(𝑥)𝑉
𝑘−𝑟
(𝑥) , (31)

and then from using (15), for 𝑘 = 0, 1, 2, . . ., we get

𝑈
𝑘
(𝑥) =

𝑘

∑

𝑟=0

(𝑟 + 1)
𝜕𝑊
𝑟+1

𝜕𝑥
(𝑥)𝑉
𝑘−𝑟
(𝑥) . (32)

(b) Analogous to part (a), we get

𝑤 (𝑥, 𝑡) V (𝑥, 𝑡) = ∫
𝑡

𝑡0

∫

𝑥

𝑥0

𝑢 (𝑦, 𝑧) 𝑑𝑦 𝑑𝑧, (33)

then

𝜕
𝑘

𝜕𝑡𝑘
{𝑤 (𝑥, 𝑡) V (𝑥, 𝑡)} = ∫

𝑥

𝑥0

𝜕
𝑘−1

𝜕𝑡𝑘−1
𝑢 (𝑦, 𝑡) 𝑑𝑦, (34)

therefore
𝑘

∑

𝑟=0

(
𝑘

𝑟
)
𝜕
𝑟

𝜕𝑡𝑟
𝑤 (𝑥, 𝑡)

𝜕
𝑘−𝑟

𝜕𝑡𝑘−𝑟
V (𝑥, 𝑡) = ∫

𝑥

𝑥0

𝜕
𝑘−1

𝜕𝑡𝑘−1
𝑢 (𝑦, 𝑡) 𝑑𝑦,

(35)
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and then from using (15), for 𝑘 = 1, 2, . . ., we get

𝑘!

𝑘

∑

𝑟=0

𝑊
𝑟
(𝑥)𝑉
𝑘−𝑟
(𝑥) = (𝑘 − 1)! ∫

𝑥

𝑥0

𝑈
𝑘−1
(𝑦) 𝑑𝑦, (36)

and therefore

𝑘

𝑘

∑

𝑟=0

𝑊
𝑟
(𝑥) 𝑉
𝑘−𝑟
(𝑥) = ∫

𝑥

𝑥0

𝑈
𝑘−1
(𝑦) 𝑑𝑦. (37)

3. Numerical Results of DTM and RDTM

In this section, the reduced differential transform technique
is described to solve a class of Volterra integral equations
(1) with kernel functions of (2). In order to demonstrate the
effectiveness of the RDTM, the illustrative examples for the
same kernel function of [5] are presented. In each example,
the numerical results of DTM, RDTM, and their comparisons
with exact solution are given in separate tables. The results
of the test examples show that the RDTM results are more
powerful than DTM results.

Example 9. In the first example, consider the following two-
dimensional Volterra integral equation [5]:

𝑢 (𝑥, 𝑡) − ∫

𝑡

0

∫

𝑥

0

𝑢 (𝑦, 𝑧)

2 + sin (𝑦 + 𝑧)
𝑑𝑦 𝑑𝑧

= (𝑥 − 𝑡) (4 + 2 sin (𝑥 + 𝑡) − 𝑥𝑡) .

(38)

(a) DTM: Jang [5] solved this equation by usingDTMand
obtained the following five-term DTM solution:

𝑢
5,5
(𝑥, 𝑡) = (4𝑥 + 2𝑥

2
−
𝑥
4

3
) + (− 4 −

2𝑥
3

3
+
𝑥
5

15
) 𝑡

+ (− 2 +
𝑥
4

12
) 𝑡
2
+ (

2𝑥

3
−
𝑥
5

180
) 𝑡
3

+ (
1

3
−
𝑥
2

12
) 𝑡
4
+ (−

𝑥

15
+
𝑥
3

180
) 𝑡
5
.

(39)

(b) RDTM: fromVolterra integral equation (38), it is easy
to see that the 𝑢(𝑥, 0) = 𝑥(4 + 2 sin(𝑥)), and therefore
RDTM version is

𝑈
0
(𝑥) = 𝑥 (4 + 2 sin (𝑥)) . (40)

By applying the RDTM properties listed in Theorem 8, on
Volterra integral equation (38), for 𝑘 = 0, 1, 2, . . ., we get

𝑈
𝑘
(𝑥)

=

𝑘

∑

𝑟=0

(𝑟 + 1)
𝑑

𝑑𝑥

× {𝑈
𝑟+1
(𝑥)

−

𝑟+1

∑

ℓ=0

(𝑥𝛿
ℓ,0
− 𝛿
ℓ,1
)

×[4𝛿
𝑟+1−ℓ,0

+
2 sin (𝑥 + ((𝑟+1−ℓ) 𝜋/2))

(𝑟+1−ℓ)!

−𝑥𝛿
𝑟+1−ℓ,1

]}

× {2𝛿
𝑘−𝑟,0

+ sin(𝑥 + (𝑘 − 𝑟) 𝜋
2

)} ,

(41)

where 𝑈
𝑖
(𝑥) is the reduced differential transform of 𝑢(𝑥, 𝑡).

After expanding the RDTM recurrence equations (41), with
initial value of (40), for 𝑘 = 0, 1, 2, 3, 4, the first five terms
of 𝑈
𝑘
(𝑥) are obtained as follows:

𝑈
1
(𝑥) = 2𝑥 cos (𝑥) − 4 − 2 sin (𝑥) ,

𝑈
2
(𝑥) = − 𝑥 sin (𝑥) − 2 cos (𝑥) ,

𝑈
3
(𝑥) = sin (𝑥) − 1

3
𝑥 cos (𝑥) ,

𝑈
4
(𝑥) =

1

3
cos (𝑥) + 1

12
𝑥 sin (𝑥) ,

𝑈
5
(𝑥) =

1

60
𝑥 cos (𝑥) − 1

12
sin (𝑥) .

(42)

In the same manner, the rest of the components can be
obtained by using the recursive equations (41). Substituting
the quantities (41) in (18), the approximation solution of
Volterra integral equation (38) in the Poisson series form is

𝑈
5
(𝑥, 𝑡) = 2𝑥 (2 + sin (𝑥)) + (2𝑥 cos (𝑥) − 4 − 2 sin (𝑥)) 𝑡

+(−𝑥 sin (𝑥)−2 cos (𝑥)) 𝑡2+(sin (𝑥)− 𝑥 cos (𝑥)
3

) 𝑡
3

+ (
cos (𝑥)
3

+
𝑥 sin (𝑥)
12

) 𝑡
4

+ (
𝑥 cos (𝑥)
60

−
sin (𝑥)
12

) 𝑡
5
,

(43)

which is the same as the first five terms of the Poisson series
of the exact solution 𝑢(𝑥, 𝑡) = 2(𝑥 − 𝑡)(2 + sin(𝑥 + 𝑡)).
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Table 3: Comparisons of the exact solution 𝑢(𝑥, 𝑡) = 2(𝑥− 𝑡)(2+ sin(𝑥+ 𝑡)), with𝑈
5,5
(𝑥, 𝑡) obtained by classic DTM [5] and𝑈

5
(𝑥, 𝑡) obtained

by RDTM at some test points (𝑥, 𝑡) in Example 9.

𝑥 𝑡 𝑢(𝑥, 𝑡)
Classic DTM [5] Reduced DTM

𝑈
5,5
(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑈

5,5
(𝑥, 𝑡)| 𝑈

5
(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑈

5
(𝑥, 𝑡)|

0.2

0.1 +0.4591040413 +0.4591115320 7.4906677321𝑒 − 06 +0.4591040577 1.6393507773𝑒 − 08

0.4 −1.0258569894 −1.0257575253 9.9464024681𝑒 − 05 −1.0257906614 6.6327927673𝑒 − 05

0.7 −2.7833269096 −2.7813944067 1.9325029608𝑒 − 03 −2.7814532650 1.8736446239𝑒 − 03

1 −4.6912625375 −4.6755840000 1.5678537548𝑒 − 02 −4.6756686352 1.5593902330𝑒 − 02

0.5

0.1 +2.0517139787 +2.0516661667 4.7812049361𝑒 − 05 +2.0517139939 1.5172903822𝑒 − 08

0.4 +0.5566653819 +0.5573213333 6.5595140784𝑒 − 04 +0.5567258924 6.0510490391𝑒 − 05

0.7 −1.1728156344 −1.1698785000 2.9371343869𝑒 − 03 −1.1711316158 1.6840186272𝑒 − 03

1 −2.9974949866 −2.9817708333 1.5724153271𝑒 − 02 −2.9836944470 1.3800539634𝑒 − 02

0.8

0.1 +3.8966576735 +3.8929643413 3.6933321451𝑒 − 03 +3.8966576865 1.3025739598𝑒 − 08

0.4 +2.3456312688 +2.3439851520 1.6461167738𝑒 − 03 +2.3456822669 5.0998086549𝑒 − 05

0.7 +0.5994989973 +0.6014245867 1.9255893459𝑒 − 03 +0.6008906123 1.3916149372𝑒 − 03

1 −1.1895390524 −1.1754026667 1.4136385685𝑒 − 02 −1.1783733000 1.1165752332𝑒 − 02

1

0.1 +5.2041732481 +5.1881855000 1.5987748111𝑒 − 02 +5.2041732592 1.1127633925𝑒 − 08

0.4 +3.5825396760 +3.5680853333 1.4454342653𝑒 − 02 +3.5825824990 4.2822997450𝑒 − 05

0.7 +1.7949988863 +1.7840151667 1.0983719605𝑒 − 02 +1.7961453619 1.1464756153𝑒 − 03

1 +0.0000000000 −0.0000000000 −0.0000000000 +0.0090050384 9.0050384311𝑒 − 03

The numerical results obtained with RDTM are presented in
Table 3, in comparison with the classic DTM solution of [5]
and the exact solution 𝑢(𝑥, 𝑡) = 2(𝑥 − 𝑡)(2 + sin(𝑥 + 𝑡)), for
some points of the intervals 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑡 ≤ 1.

Example 10. In the second example, consider the following
two-dimensional Volterra integral equation [5]:

𝑢 (𝑥, 𝑡) − 2∫

𝑡

0

∫

𝑥

0

𝑒
𝑦−𝑧
𝑢 (𝑦, 𝑧) 𝑑𝑦 𝑑𝑧

= sin (𝑥 + 𝑡) (𝑒𝑥−𝑡 + 1) − 𝑒−𝑡 sin (𝑡) − 𝑒𝑥 sin (𝑥) .
(44)

(a) DTM: the approximation solution of this equation is
also obtained by DTM in [5] as follows:

𝑢
5,5
(𝑥, 𝑡) = (𝑥 −

𝑥
3

6
+
𝑥
5

120
) + (1 −

𝑥
2

2
+
𝑥
4

24
) 𝑡

+ (−
𝑥

2
+
𝑥
3

24
−
𝑥
5

240
) 𝑡
2
+ (−

1

6
+
𝑥
2

12
−
𝑥
4

144
) 𝑡
3

+ (
𝑥

24
−
𝑥
3

144
+
𝑥
5

2880
) 𝑡
4

+ (
1

120
−
𝑥
2

240
+
𝑥
4

2880
) 𝑡
5
.

(45)

(b) RDTM: it is easy to see that the 𝑢(𝑥, 0) = sin(𝑥), and
therefore RDTM version is

𝑈
0
(𝑥) = sin (𝑥) . (46)

By applying the RDTM on nonlinear Volterra integral equa-
tion (44), for 𝑘 = 1, 2, . . ., we get

𝑈
𝑘
(𝑥) − {

𝑘

∑

𝑟=0

sin (𝑥 + 𝑟𝜋/2)
𝑟!

(
(−1)
𝑘−𝑟
𝑒
𝑥

(𝑘 − 𝑟)!
+ 𝛿
𝑘−𝑟,0

)

−

𝑘

∑

𝑟=0

(−1)
𝑟 sin ((𝑘 − 𝑟) 𝜋/2)
𝑟! (𝑘 − 𝑟)!

− 𝛿
𝑘,0
𝑒
𝑥 sin (𝑥) }

=
2

𝑘
∫

𝑥

0

{

𝑘−1

∑

𝑟=0

𝑒
𝑦 (−1)

𝑟

𝑟!
𝑈
𝑘−𝑟−1

(𝑦)}𝑑𝑦,

(47)

where 𝑈
𝑖
(𝑥) is the reduced differential transform of 𝑢(𝑥, 𝑡).

After expanding the RDTM recurrence equations (47), with
initial value of (46), for 𝑘 = 1, 2, 3, 4, 5, the first five terms of
𝑈
𝑘
(𝑥) are obtained as follows:

𝑈
1
(𝑥) = cos (𝑥) ,

𝑈
2
(𝑥) = −

1

2
sin (𝑥) ,
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Table 4: Comparisons of the exact solution 𝑢(𝑥, 𝑡) = sin(𝑥 + 𝑡), with𝑈
5,5
(𝑥, 𝑡) obtained by classic DTM [5] and𝑈

5
(𝑥, 𝑡) obtained by reduced

DTM at some test points (𝑥, 𝑡) in Example 10.

𝑥 𝑡 𝑢(𝑥, 𝑡)
Classic DTM [5] Reduced DTM

𝑈
5,5
(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑈

5,5
(𝑥, 𝑡)| 𝑈

5
(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑈

5
(𝑥, 𝑡)|

0.2

0.1 0.2955202067 0.2955202184 1.1688660428𝑒 − 08 0.2955202070 2.9532337686𝑒 − 10

0.4 0.5646424734 0.5646439552 1.4818049646𝑒 − 06 0.5646439183 1.4448767682𝑒 − 06

0.7 0.7833269096 0.7833750550 4.8145422517𝑒 − 05 0.7833749959 4.8086256376𝑒 − 05

1 0.9320390860 0.9325020000 4.6291403277𝑒 − 04 0.9325019239 4.6283789648𝑒 − 04

0.5

0.1 0.5646424734 0.5646461680 3.6945737146𝑒 − 06 0.5646424741 6.8315986201𝑒 − 10

0.4 0.7833269096 0.7833397500 1.2840372517𝑒 − 05 0.7833299139 3.0042708277𝑒 − 06

0.7 0.9320390860 0.9321460859 1.0699997027𝑒 − 04 0.9321309857 9.1899716402𝑒 − 05

1 0.9974949866 0.9983398437 8.4485714595𝑒 − 04 0.9983208230 8.2583639762𝑒 − 04

0.8

0.1 0.7833269096 0.7834038828 7.6973172517𝑒 − 05 0.7833269106 1.0099717729𝑒 − 09

0.4 0.9320390860 0.9322215424 1.8245643277𝑒 − 04 0.9320433813 4.2953023213𝑒 − 06

0.7 0.9974949866 0.9978859380 3.9095139595𝑒 − 04 0.9976224907 1.2750404846𝑒 − 04

1 0.9738476309 0.9752880000 1.4403691218𝑒 − 03 0.9749626963 1.1150653929𝑒 − 03

1

0.1 0.8912073601 0.8915382743 3.3091424412𝑒 − 04 0.8912073612 1.1792198329𝑒 − 09

0.4 0.9854497300 0.9861662222 7.1649223376𝑒 − 04 0.9854546786 4.9486333631𝑒 − 06

0.7 0.9916648105 0.9928385451 1.1737346864𝑒 − 03 0.9918098802 1.4506974814𝑒 − 04

1 0.9092974268 0.9118055556 2.5081287299𝑒 − 03 0.9105512242 1.2537973843𝑒 − 03

𝑈
3
(𝑥) = −

1

6
cos (𝑥) ,

𝑈
4
(𝑥) =

1

24
sin (𝑥) ,

𝑈
5
(𝑥) = −

1

120
cos (𝑥) .

(48)

In the samemanner, the rest of the componentswere obtained
by using the recursive equations (47). Substituting the quan-
tities (48) in (18), the approximation solution of Volterra
integral equation (44) in the Poisson series form is

𝑈
5
(𝑥, 𝑡) = sin (𝑥) + cos (𝑥) 𝑡 − sin (𝑥)

2
𝑡
2

−
cos (𝑥)
6

𝑡
3
+
sin (𝑥)
24

𝑡
4
−
cos (𝑥)
120

𝑡
5
,

(49)

which is the same as the first five terms of the Poisson series
of the exact solution 𝑢(𝑥, 𝑡) = sin(𝑥 + 𝑡). The numerical
results obtained with reduced DTM are presented in Table 4,
in comparison with the classic DTM solution of [5] and the
exact solution 𝑢(𝑥, 𝑡) = sin(𝑥 + 𝑡), for some points of the
intervals 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑡 ≤ 1.

Example 11. In the third example, consider the following two-
dimensional Volterra integral equation [5]:

𝑢 (𝑥, 𝑡) − 𝑒
𝑡−𝑥
∫

𝑡

0

∫

𝑥

0

𝑢 (𝑦, 𝑧) 𝑑𝑦 𝑑𝑧

= sinh (𝑥 + 𝑡) (𝑒𝑡−𝑥 + 1) − 𝑒𝑡−𝑥 (sinh (𝑥) − sinh (𝑡)) .
(50)

(a) DTM: the approximation solution of this equation is
also obtained by DTM in [5] as follows

𝑢
5,5
(𝑥, 𝑡) = (−𝑥 −

𝑥
3

6
−
𝑥
5

120
) + (1 +

𝑥
2

2
+
𝑥
4

24
) 𝑡

+ (−
𝑥

2
−
𝑥
3

12
−
𝑥
5

240
) 𝑡
2
+ (

1

6
+
𝑥
2

12
+
𝑥
4

144
) 𝑡
3

+ (−
𝑥

24
−
𝑥
3

144
−
𝑥
5

2880
) 𝑡
4

+ (
1

120
+
𝑥
2

240
+
𝑥
4

2880
) 𝑡
5
.

(51)

(b) RDTM: it is easy to see that the 𝑢(𝑥, 0) = − sinh(𝑥),
and therefore RDTM version is

𝑈
0
(𝑥) = − sinh (𝑥) . (52)
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Table 5: Comparisons of the exact solution 𝑢(𝑥, 𝑡) = sinh(𝑡−𝑥), with𝑈
5,5
(𝑥, 𝑡) obtained by classic DTM [5] and𝑈

5
(𝑥, 𝑡) obtained by reduced

DTM at some test points (𝑥, 𝑡) in Example 11.

𝑥 𝑡 𝑢(𝑥, 𝑡)
Classic DTM [5] Reduced DTM

𝑈
5,5
(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑈

5,5
(𝑥, 𝑡)| 𝑈

5
(𝑥, 𝑡) |𝑢(𝑥, 𝑡) − 𝑈

5
(𝑥, 𝑡)|

0.2

0.1 −0.1001667500 −0.1001667561 6.0968226301𝑒 − 09 −0.1001667498 2.5944103810𝑒 − 10

0.4 +0.2013360025 +0.2013367851 7.8252557270𝑒 − 07 +0.2013368189 8.1631586063𝑒 − 07

0.7 +0.5210953055 +0.5211116472 1.6341756253𝑒 − 05 +0.5211117115 1.6406043554𝑒 − 05

1 +0.8881059822 +0.8881853333 7.9351145710𝑒 − 05 +0.8881854339 7.9451747271𝑒 − 05

0.5

0.1 −0.4107523258 −0.4107529453 6.1950968455𝑒 − 07 −0.4107523251 7.0149602793𝑒 − 10

0.4 −0.1001667500 −0.1001714167 4.6666468226𝑒 − 06 −0.1001641445 2.6055545215𝑒 − 06

0.7 +0.2013360025 +0.2013887643 5.2761781823𝑒 − 05 +0.2014033478 1.7345289013𝑒 − 05

1 +0.5210953055 +0.5215820313 4.8672575625𝑒 − 04 +0.5216052465 5.0994098756𝑒 − 04

0.8

0.1 −0.7585837018 −0.7585783977 5.3041062001𝑒 − 06 −0.7585837006 1.2071608158𝑒 − 09

0.4 −0.4107523258 −0.4108535808 1.0125499718𝑒 − 04 −0.4107476947 4.6310571234𝑒 − 06

0.7 −0.1001667500 −0.1002690359 1.4228584682𝑒 − 04 −0.1000423588 1.2439120515𝑒 − 04

1 +0.2013360025 +0.2019546667 6.1866412557𝑒 − 04 +0.2023226727 9.8667016118𝑒 − 04

1

0.1 −1.0265167257 −1.0264561563 6.0569458175𝑒 − 05 −1.0265167241 1.6018943949𝑒 − 09

0.4 −0.6366535821 −0.6370106667 3.5708451843𝑒 − 04 −0.6366473802 6.2019846800𝑒 − 06

0.7 −0.3045202934 −0.3051720521 6.5175863619𝑒 − 04 −0.3043519610 1.6833243259𝑒 − 04

1 +0.0000000000 −0.0000000000 −0.0000000000 +0.0013512390 1.3512390404𝑒 − 03

By applying the RDTM on nonlinear Volterra integral equa-
tion (50), for 𝑘 = 1, 2, . . ., we get

𝑘

∑

𝑟=0

{𝑈
𝑟
(𝑥) +

𝛿
𝑟,0
(1 + 𝑒

−𝑥
)

2

+
1

2𝑟!
(1+(−1)

𝑟
𝑒
𝑥
− (1+2

𝑟
) (𝑒
−𝑥
+𝑒
−2𝑥
))}{

(−1)
𝑘−𝑟

(𝑘 − 𝑟)!
𝑒
𝑥
}

=
1

𝑘
∫

𝑥

0

𝑈
𝑘−𝑟
(𝑦) 𝑑𝑦,

(53)

where 𝑈
𝑖
(𝑥) is the reduced differential transform of 𝑢(𝑥, 𝑡).

After expanding the RDTM recurrence equations (53), with
initial value of (52), for 𝑘 = 1, 2, 3, 4, 5, the first five terms of
𝑈
𝑘
(𝑥) are obtain as follows:

𝑈
1
(𝑥) = cosh (𝑥) ,

𝑈
2
(𝑥) = −

1

2
sinh (𝑥) ,

𝑈
3
(𝑥) =

1

6
cosh (𝑥) ,

𝑈
4
(𝑥) =

1

24
sinh (𝑥) ,

𝑈
5
(𝑥) =

1

120
cosh (𝑥) .

(54)

In the samemanner, the rest of the componentswere obtained
by using the recursive equations (47). Substituting the quan-
tities (48) in (18), the approximation solution of Volterra
integral equation (44) in the Poisson series form is

𝑈
5
(𝑥, 𝑡) = − sinh (𝑥) + cosh (𝑥) 𝑡 − sinh (𝑥)

2
𝑡
2

+
cosh (𝑥)
6

𝑡
3
−
sinh (𝑥)
24

𝑡
4
+
cosh (𝑥)
120

𝑡
5
,

(55)

which is same as the first five terms of the Poisson series
of the exact solution 𝑢(𝑥, 𝑡) = sinh(𝑡 − 𝑥). The numerical
results obtained with reduced DTM are presented in Table 5,
in comparison with the classic DTM solution of [5] and the
exact solution 𝑢(𝑥, 𝑡) = sinh(𝑡 − 𝑥), for some points of the
intervals 0 ≤ 𝑥 ≤ 1 and 0 ≤ 𝑡 ≤ 1.

4. Conclusions

In this study, we presented the definition and operation of
both two-dimensional differential transformation method
(DTM) and their reduced form, the so-called reduced-DTM
(RDTM) for finding the solutions of a class of Volterra inte-
gral equations. For illustration purposes, we consider three
different examples. It is worth pointing out that both DTM
and RDTM have convergence for the solutions; actually, the
accuracy of the series solution increases when the number of
terms in the series solution is increased. From the computa-
tional process of DTM and RDTM, we find that the RDTM
is easier to apply. In other words, it is obvious that DTM has
very complicated computational process rather than RDTM.
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The RDTM reduces the computational difficulties of the
DTM and all the calculations can be made with simple
manipulations MATLAB. Actually, as a special advantage of
RDTM rather than DTM, the reduced differential transform
recursive equations produce exactly all the Poisson series
coefficients of solutions, whereas the differential transform
recursive equations produce exactly all the Taylor series
coefficients of solutions. The reliability of the RDTM and
the reduction in the size of computational domain give this
method a wider applicability. For small value of 𝑥, 𝑡, in Tables
3, 4, and 5, we find that the RDTM has a smaller error than
DTM. Also, for large values of 𝑥, 𝑡, we may increase the
accuracy of the series solution by computing more terms,
which is quite easy using MATLAB.
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A pressure-stabilized Lagrange-Galerkin method is implemented in a parallel domain decomposition system in this work, and the
new stabilization strategy is proved to be effective for large Reynolds number and Rayleigh number simulations. The symmetry of
the stiffness matrix enables the interface problems of the linear system to be solved by the preconditioned conjugate method, and
an incomplete balanced domain preconditioner is applied to the flow-thermal coupled problems. The methodology shows good
parallel efficiency and high numerical scalability, and the new solver is validated by comparing with exact solutions and available
benchmark results. It occupies less memory than classical product-type solvers; furthermore, it is capable of solving problems of
over 30 million degrees of freedom within one day on a PC cluster of 80 cores.

1. Introduction

The Lagrange-Galerkin method raises wide concern about
the finite-element simulation of fluid dynamics. Based on the
approximation of the material derivative along the trajectory
of fluid particle, the method is natural in the simulation to
physical phenomena, and it is demonstrated to be uncondi-
tionally stable for a wide class of problems [1–5]. A number of
researches about the Lagrange-Galerkinmethodwere done in
the case of single processor element (PE) (cf. [6–8]); the sym-
metry of the matrices and good stability of the scheme were
reported; using a numerical integration based on a division of
each element, Rui and Tabata [9] developed a second scheme
for convection-diffusion problem; Massarotti et al. [10] used
a second-order characteristic curve method, and a special
iteration was used to keep the symmetry of the stiffness
matrix.The Lagrange-Galerkin method uses an implicit time
discretization, and therefore an element searching algorithm
is necessary to implement it. The element searching may
become very expensive when the geometry is complicated or
the mesh size is very small. Due to its doubtable efficiency
and feasibility for complex simulations in the case of single
PE, rare research has been done to implement it in parallel, by
which the enormous computation power enables us to solve
more challenging simulation problems.

The present study is concentrated on improving the
solvability of the Lagrange-Galerkin method on large scale
and complex problems by domain decompositions. Piecewise
linear interpolations are thus employed for velocity, pressure,
and temperature; therefore, the so-called inf-sup condition
[11] should be satisfied, which is the first difficulty to be
overcome in this work. Stabilization methods for incom-
pressible flow problems were reported by many researchers
(cf. [12–15]). Park and Sung proposed a stabilization for
Rayleigh-Bénard convection by using feedback control [16];
for consistently stabilized finite element methods, Barth et al.
classified the stabilization techniques and studied influence of
the stabilization parameter in convergence [17]; Bochev et al.
stated the requirements on choice of stabilization parameter
if time step and mesh are allowed to vary independently
[18]. As far as we know, it may not be enough to investigate
what stabilization techniques are efficient for nonsteady
and nonlinear flow problems approximated by Lagrange-
Galerkin methods in a domain decomposition system, where
the interface problem can be solved by preconditioned
conjugate gradient (PCG) method. In this paper, a pressure-
stabilization method, which keeps the symmetry of the
linear system and is effective for high Reynolds number and
Rayleigh number simulations, is introduced to implement
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the Lagrange-Galerkin method in a domain decomposition
system.

The element searching algorithm in a domain decompo-
sition system using unstructured grids is the second difficulty
to implement the Lagrange-Galerkin method in a domain
decomposition system (cf. [5, 19]). Minev et al. reported an
optimized binary searching algorithm for single PE by storing
the necessary data structures in away similar to theCSR com-
pact storage format; however, the element information data
is stored distributedly in the domain decomposition system
by the skyline format, and a different way needs to be found
to overcome the extra difficulty caused by the parallel com-
puting algorithm. This step is critical, in the sense that it can
be very computationally expensive and can thus make the
entire algorithm impractical.

The remainder of this paper is organized as fol-
lows: in Section 2, the formula of the governing equation
and the pressure-stabilization Lagrange-Galerkin method is
described; Section 3 focuses on the parallel implementation
of this scheme. Numerical results and comparisons with
classical asymmetric product typemethods in [20] are shown
in Section 4. Conclusions are drawn in Section 5.

2. Formulation

2.1. The Governing Equations. Let Ω be a three-dimensional
polyhedral domain with the boundary 𝜕Ω. The conservation
equations of mass and momentum are governed by

𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝑢 − 2]∇ ⋅ 𝐷 (𝑢) + ∇𝑝 = 𝑓

buoyancy

in Ω × (0, 𝑡) ,

∇ ⋅ 𝑢 = 0 in Ω × (0, 𝑡) ,

𝑢 = �̂� on Γ
1
× (0, 𝑡) ,

3

∑

𝑗=0

𝜎
𝑖𝑗
𝑛
𝑗
= 0 on 𝜕Ω

Γ
1
× (0, 𝑡)

,

𝑢 = 𝑢
0

in Ω, at 𝑡 = 0,

(1)

where Γ
1
⊂ 𝜕Ω and

𝑓
buoyancy

= 𝛽 (𝑇
𝑟
− 𝑇) 𝑔 (2)

is the gravity force per unit mass derived on the basis of
Boussinesq approximation. 𝑔 is the gravity [m/s2], 𝛽, 𝑇,
and 𝑇

𝑟
are the thermal expansion coefficient [1/𝐾], the

temperature [𝐾], and the reference temperature [𝐾], and
𝑢, 𝑡, ], and 𝑝 are velocity vector [m/s], time [s], kinematic
viscosity coefficient [m2/s], and kinematic pressure [m2/s2],
respectively. 𝜎

𝑖𝑗
is the stress tensor [N/m2] defined by

𝜎
𝑖𝑗
(𝑢, 𝑝) ≡ −𝑝𝛿

𝑖𝑗
+ 2]𝐷

𝑖𝑗
(𝑢) ,

𝐷
𝑖𝑗
(𝑢) ≡

1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) , 𝑖, 𝑗 = 1, 2, 3,

(3)

with the Kronecker delta 𝛿
𝑖𝑗
.

The fluid is assumed to be incompressible according to
Boussinesq approximation, and the density is assumed to be
constant except in the gravity force term where it depends on
temperature according to the indicated linear law; see (2).The
energy equation is

𝜕𝑇

𝜕𝑡
+ 𝑢 ⋅ ∇𝑇 − 𝑎Δ𝑇 = 𝑆 in Ω × (0, 𝑡) ,

𝑇 = �̂� on Γ
2
× (0, 𝑡) ,

𝑎
𝜕𝑇

𝜕𝑛
= 0 on 𝜕Ω

Γ
2
× (0, 𝑡)

,

𝑇 = 𝑇
0

in Ω, at 𝑡 = 0,

(4)

where Γ
2
⊂ 𝜕Ω, 𝑎 is the thermal diffusion coefficient [m2/s],

and 𝑆 is the source term with the unit of [𝐾/s].

2.2. The Lagrange-Galerkin Finite-Element Method. Some
preliminaries are arranged for the derivation of a finite
element scheme of (1) and (4). Let the subscript ℎ denote
the representative length of the triangulation, and let I

ℎ
≡

{𝐾} denote a triangulation of Ω consisting of tetrahedral
elements. Given that 𝑔 is a vector valued function on Γ

1
, the

finite element spaces are as follows:

𝑋
ℎ
≡ {V
ℎ
∈ 𝐶
0
(Ω)
3

; V
ℎ

𝐾 ∈ 𝑃
1
(𝐾)
3
, ∀𝐾 ∈ I

ℎ
} ,

𝑀
ℎ
≡ {𝑞
ℎ
∈ 𝐶
0
(Ω) ; 𝑞

ℎ

𝐾 ∈ 𝑃
1
(𝐾) , ∀𝐾 ∈ I

ℎ
} ,

𝑉
ℎ
(𝑔) ≡ {V

ℎ
∈ 𝑋
ℎ
; V
ℎ
(𝑃) = 𝑔 (𝑃) , ∀𝑃 ∈ Γ

1
} ,

Θ
ℎ
(𝑏) ≡ {𝜃

ℎ
∈ 𝑀
ℎ
; 𝜃
ℎ
(𝑃) = 𝑏 (𝑃) , ∀𝑃 ∈ Γ

2
} ,

𝑉
ℎ
≡ 𝑉
ℎ
(0) , Θ

ℎ
≡ Θ
ℎ
(0) , 𝑄

ℎ
= 𝑀
ℎ
.

(5)

Let (⋅, ⋅) defines the 𝐿
2
inner product; the continuous

bilinear forms 𝑎 and 𝑏 are introduced by

𝑎 (𝑢, V) ≡ 2] (𝐷 (𝑢) , 𝐷 (V)) ,

𝑏 (𝑢, V) ≡ − (∇ ⋅ 𝑢, 𝑞) ,

(6)

respectively.
Let Δ𝑡 be the time increment, and let 𝑁

𝑡
≡ [𝑡/Δ𝑡] be the

total step number. Let the superscript 𝑛 denote the time step;
a finite element approximation of (1) is described as follows:
find {(𝑢𝑛

ℎ
, 𝑝
𝑛

ℎ
)}
𝑁
𝑡

𝑛=1
∈ 𝑉
ℎ
(𝑔)×𝑄

ℎ
, such that for (V

ℎ
, 𝑞
ℎ
) ∈ 𝑉
ℎ
×𝑄
ℎ
,

(

𝑢
𝑛

ℎ
− 𝑢
𝑛−1

ℎ
∘ 𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡)

Δ𝑡
, V
ℎ
) + 𝑎 (𝑢

𝑛

ℎ
, V
ℎ
)

+ 𝑏 (V
ℎ
, 𝑝
𝑛

ℎ
) = (𝑓

𝑛
, V
ℎ
) ,

𝑏 (𝑢
𝑛

ℎ
, 𝑞
ℎ
) = 0,

(7)

where 𝑋
1
(⋅, ⋅) denotes a first-order approximation of a parti-

cle’s position [5], and the notation ∘ denotes the composition
of functions.



Abstract and Applied Analysis 3

For the purpose of large scale computation, a piecewise
equal-order interpolation for velocity and pressure is used,
as can be seen from (5). Pressure stabilization is thus
needed to keep the necessary link between 𝑉

ℎ
and 𝑄

ℎ
. A

penaltyGalerkin least-squares (GLS) stabilizationmethod for
pressure is proved in [12] to hold the same asymptotic error
estimates as the method of Hughes et al. [21] and it is com-
putationally cheap. For P1/P1 elements, the stabilization is
reduced to

∑

𝐾∈Iℎ

𝛿
𝐾
ℎ
2

𝐾
(∇𝑝
𝑛

ℎ
, −∇𝑞
ℎ
)
𝐾
, (8)

which does no modification to the momentum equation
because of vanishing of the second-order derivate term.Here,
ℎ
𝐾
denotes the maximum diameter of an element 𝐾. Unlike

[6, 12], where a constant 𝛿 (>0) is used as the stabilization
parameter, an element-wise stabilization parameter

𝛿
𝐾
=

{{{{{

{{{{{

{

𝛼,

for log
10
[Max {∇𝑝

𝑛−1

ℎ

2
}
4

𝑖=1

] ≤ 1,

𝛼 × log
10
[Max {∇𝑝

𝑛−1

ℎ

2
}
4

𝑖=1

] ,

otherwise

(9)

is used in this work, where ∇𝑝
𝑛−1

ℎ
is gradient of the FEM

approximated pressure at 𝑡𝑛−1 and 𝑖 is the number of the nodal
point in a tetrahedral element. Since 𝛼 is very important to
balance the accuracy and convergence of the scheme, it is
discussed in Section 4.1.The localized stabilization parameter
is designed to be adaptive to the pressure gradient, and thus
it has a better control on the pressure field.

By adding (8) to (7), a pressure-stabilized FEMscheme for
Navier-Stokes problems is achieved. The nonsteady iteration
loops for solving (1) and (4) and then reads the following.

Step 1. Compute the particle’s coordinates by

𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡) ≡ 𝑥 − 𝑢

𝑛−1

ℎ
Δ𝑡, (10)

and search the element holding the particle at 𝑡𝑛−1.

Step 2. Find 𝑇
𝑛

ℎ
by

(

𝑇
𝑛

ℎ
− 𝑇
𝑛−1

ℎ
∘ 𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡)

Δ𝑡
, 𝜃
ℎ
) + (𝑎∇𝑇

𝑛

ℎ
, ∇𝜃
ℎ
) = (𝑆

𝑛
, 𝜃
ℎ
) .

(11)

Step 3. Find (𝑢
𝑛

ℎ
, 𝑝
𝑛

ℎ
) by

(

𝑢
𝑛

ℎ
− 𝑢
𝑛−1

ℎ
∘ 𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡)

Δ𝑡
, V
ℎ
) + 𝑎
0
(𝑢
𝑛

ℎ
, V
ℎ
)

+ 𝑏 (V
ℎ
, 𝑝
𝑛

ℎ
) + 𝑏 (𝑢

𝑛

ℎ
, 𝑞
ℎ
)

+ ∑

𝐾∈Iℎ

𝛿
𝐾
ℎ
2

𝐾
(∇𝑝
𝑛

ℎ
, −∇𝑞
ℎ
)
𝐾

= (𝑓
𝑛
, V
ℎ
) + (𝛽 (𝑇

𝑟
− 𝑇
𝑛

ℎ
) 𝑔, V
ℎ
) .

(12)

Step 4. Compute the relative error by a 𝐻1 × 𝐿
2
× 𝐻
1 norm

defined by

(𝑢, 𝑝, 𝑇)
𝐻1×𝐿2×𝐻1 ≡

1

√Re
‖𝑢‖
𝐻
1
(Ω)
3

+
𝑝

𝐿2 + ‖𝑇‖
𝐻
1
(Ω)

,

(13)

where Re denotes the Reynolds number, and set

diff =


(𝑢
𝑛
, 𝑝
𝑛
, 𝑇
𝑛
) − (𝑢

𝑛−1
, 𝑝
𝑛−1

, 𝑇
𝑛−1

)
𝐻1×𝐿2×𝐻1

(𝑢
𝑛−1, 𝑝𝑛−1, 𝑇𝑛−1)

𝐻1×𝐿2×𝐻1

≤ ErrNS

(14)

as the steady-state criterion; if (14) is satisfied or the number
of loops reaches the maximum, then stop the iteration;
otherwise, repeat Steps 1–3.

As can be seen from Steps 2 and 3, both (1) and (4)
are approximated by the Lagrange-Galerkin method, and the
searching algorithm only needs to be performed once in a
nonsteady loop. It can also be seen that the solver is also
flexible, and it can solve pure Navier-Stokes problems by
setting the body force in (2) to external force and omitting
Step 2.

3. Implementation

3.1. A Parallel Domain Decomposition System. To begin with
the parallel domain decomposition method, the domain
decomposition is introduced briefly as follows. The whole
domain is decomposed into a number of subdomainswithout
overlapping, and the solution of each subdomain is super-
imposed on the equation of the inner boundary of the
subdomains. By static condensation, the linear system

𝐾𝑢 = 𝑓 (15)

is written as

[
[
[
[
[
[
[
[
[

[

𝐾
(1)

𝐼𝐼
0 ⋅ ⋅ ⋅ 0 𝐾

(1)

𝐼𝐵
𝑅
(1)

𝐵

0 d
...

...
... d

...
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐾
(𝑁)

𝐼𝐼
𝐾
(𝑁)

𝐼𝐵
𝑅
(𝑁)

𝐵

𝑅
(1)𝑇

𝐵
𝐾
(1)𝑇

𝐼𝐵
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑅

(𝑁)𝑇

𝐵
𝐾
(𝑁)𝑇

𝐼𝐵
𝐾
𝐵𝐵

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[

[

𝑢
(1)

𝐼

...

...
𝑢
(𝑁)

𝐼

𝑢
𝐵

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

𝑓
(1)

𝐼

...

...
𝑓
(𝑁)

𝐼

𝑓
𝐵

]
]
]
]
]
]
]
]
]

]

,

(16)

where 𝐾 is the stiffness matrix, 𝑢 denotes the unknowns (𝑢
and 𝑝), and 𝑓 is the force vector. 𝑅 is the restriction operator
consists of 0-1 matrix. The superscripts (𝑁) means the
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𝑁th subdomain, and subscript 𝐼 and 𝐵 relate to the element
of the inner boundary, and interface boundary respectively.

From (16), it can be observed that the interface problems

𝑁

∑

𝑖=1

𝑅
(𝑖)
𝑇

𝐵
(𝐾
(𝑖)

𝐵𝐵
− 𝐾
(𝑖)
𝑇

𝐼𝐵
𝐾
(𝑖)
−1

𝐼𝐼
𝐾
(𝑖)

𝐼𝐵
)𝑅
(𝑖)

𝐵
𝑢
𝐵

=

𝑁

∑

𝑖=1

𝑅
(𝑖)
𝑇

𝐵
(𝑓
(𝑖)

𝐵
− 𝐾
(𝑖)
𝑇

𝐼𝐵
𝐾
(𝑖)
−1

𝐼𝐼
𝑓
(𝑖)

𝐼
)

(17)

and the inner problems

𝑢
(𝑖)

𝐼
= 𝐾
(𝑖)
−1

𝐼𝐼
(𝑓
(𝑖)

𝐼
− 𝐾
(𝑖)
𝑇

𝐼𝐵
𝑅
(𝑖)

𝐵
𝑢
𝐵
) , 𝑖 = 1, . . . , 𝑁 (18)

can be solved separately [22]. In this work, the interface
problems are solved first iteratively, and the inner problems
are then solved by substituting 𝑢

𝐵
in to (18).

The Lagrange-Galerkin method keeps the symmetry of
the stiffness matrix, and the GLS pressure-stabilization term
in (8) also produces a symmetric matrix; therefore,𝐾 is sym-
metric in (15), and a PCG method is employed to get the 𝑢

𝐼

in (18), and to avoid drawback of the classical domain decom-
positionmethod, such as Neumann-Neumann and diagonal-
scaling, a balanced domain decomposition preconditioner is
used to prevent the growing of condition number with the
number of subdomains. An identity matrix is chosen as the
coarse matrix, and the coarse problem is solved incompletely
by omitting the fill-ins in some sensitive places during
the Cholesky factorization. By using this inexact balanced
domain decomposition preconditioning, the coarse matrix is
sparser and thus easier to be solved; therefore, the new solver
is expected to have better solvability on large scale computa-
tion models.

3.2. The Lagrange-Galerkin Method in Parallel. The element
searching algorithm requires a global-wise element informa-
tion to determine the position of one particle in the previous
time step. However, in the parallel domain decomposition
system, the whole domain is split into several parts one
processor element (PE) works only on the current part, and
it does not contain any element information of other parts.
Each part is further divided into many subdomains, and the
domain decomposition is performed by the PE in charge of
the part.This parallelity causes a computational difficulty: for
each time step, the particle is not limited within one part;
therefore, exchanging the data between different PEs is
necessary, which demands the PEs to communicate in the
subdomain-wise computation.

In order to know the position of a particle at 𝑡
𝑛−1, a

neighbour elements list is created at the beginning of the
analysis. Based on the information of neighbour elements and
the coordinates calculated by (10), it is possible to find the
element holding this particle at 𝑡𝑛−1. A 2-dimensional search-
ing algorithm is present as follows (𝜆

𝑖
is the barycentric coor-

dinates, and 𝑛𝑒(𝜆
𝑖
) is the neighbour element; see Figure 1):

Part interface

ei

ecurrent

R2

ne (𝜆1)

ne (𝜆2)

ne (𝜆3)

Figure 1: A searching algorithm.

(1) initialize: 𝑒
0
= 𝑒current;

(2) iterate 𝑖 = 0, 1, . . . ,Maxloops;
If 𝜆
1
, 𝜆
2
, 𝜆
3
> 0, return 𝑒

𝑖
;

else if 𝑛𝑒(Min{𝜆
1
, 𝜆
2
, 𝜆
3
}) ̸= boundary

𝑒
𝑖+1

= 𝑛𝑒(Min{𝜆
1
, 𝜆
2
, 𝜆
3
});

else break;
(3) return 𝑒

𝑖
.

The request of the old solutions, which is the 𝑢𝑛−1
ℎ

in (10),
is relatively trivial when using single PEs or simply solving the
problem parallel using symmetric multiprocessing; however,
in the domain decomposition system, the particle is not
limited within one part; it may pass the interface of different
parts, as can be seen from Figure 1. Because one PE only has
the elements information that belongs to the current part,
communications between PEs are necessary. However, the
number of total elements in one subdomainmay be different,
which means that some point to point communication
techniques, such as MPI Send/MPI Recv or MPI Sendrecv
in MPICH, cannot be used in element wise computation. In
the previous research [23], a global variable to store all the
old solutions is constructed. This method maintains a high
computation speed but costs a hugememory usage. To reduce
the memory consumption, a request-response system is used
in this work. In the computation, the searching algorithm is
performed first, and the element that contains the current
particle in the previous time step is thus known; therefore,
the PE to get 𝑢

𝑛−1

ℎ
from is also known. However, as the

sender does not know which PE requires message from itself,
the receiver has to send its request to the sender first; after
the request is detected, the sender sends the message to the
receiver. The procedure is as follows:

(1) by scanning all the particles in the current subdomain,
an array including all the data that is needed by the
current PE is sent to all the other PEs.

(2) All PEs check if there is any request to itself. If it exists,
PEs will prepare an array of the needed data and send
it.

(3) The current PE receives the data sent by other PEs.

Data transferred byMPI communication should be pack-
aged properly to avoid the overflow of MPI buffer in case
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Figure 2: Convergence of (a) different constant 𝛿 at Re = 10
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Figure 3: Numerical scalability.

of large-scale computation. Nonblocking communication is
employed, and as the 3 steps are performed subsequently,
thus the computation time and communication time will be
overlapped.

4. Numerical Results and Discussion

The parallel efficiency of new solver is firstly evaluated in
this section, and to validate the scheme, exact solutions and
available benchmark results classical computational models
are compared. The CG convergence is judged by Euclidian
norm with a tolerance of 10−6, and for nonsteady iteration,
ErrNS = 10

−4 is set as the criterion, using the 𝐻1 × 𝐿
2
× 𝐻
1

norm defined in (13). For pure Navier-Stokes problems, a
similar 𝐻

1
× 𝐿
2 norm, which is related to velocity and

pressure, is employed to judge the steady state.

4.1. Efficiency Test. The BDD serious preconditioners were
employed in this work; they are very efficient, and their
iteration numbers are about 1âĄĎ10 of the normal domain
decomposition preconditioners (cf. [23]). The inexact pre-
conditioner mentioned in Section 3 also shows good conver-
gence and is more suitable for large scale computations [24].

It was set as the default preconditioner for all the following
computations of this research.

The penalty methods are not consistent since the sub-
stitution of an exact solution into the discrete equations
(12) leaves a residual that is proportional to the penalty
parameter (cf. [17]); therefore, 𝛿

𝐾
should be determined

carefully. Numerical experiments of a lid-driven cavity flow
were tested, and the mesh size was 62 × 62 × 62. The total
degrees of freedom (DOF) are 1,000,188, and the results
are given by Figure 2. For the purpose of higher accuracy,
𝛿
𝐾
is expected to be small; however, the convergence turns

worse when 𝛿
𝐾
goes small, as can be seen from Figure 2(a).

In Figure 2(b), a constant 𝛿 = 0.005 is used for different
Reynolds numbers, and no convergence is achieved within
10000 PCG loops for Re = 10

6; and the comparison shows
that the 𝛿

𝐾
performs much better than a constant 𝛿 = 0.005

when 𝛼 is set to 0.005.
The parallel efficiency is assessed firstly by freezing the

mesh size of test problem and refining the domain decom-
position by decreasing the subdomain size and therefore
increasing the number of subdomains; the comparison of the
numerical scalability of the current scheme with and without
the preconditioner is assessed by Figure 3. It can be seen that
with the preconditioning technique, the iterative procedure
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of current scheme converges rapidly, and the convergence is
independent of the number of subdomains.

Based on the paralyzed Lagrange-Galerkin method, the
new solver makes a symmetric stiffness matrix, therefore
only the lower/upper triangular matrix needs to be saved.
Moreover, nonblocking MPI communication is used instead
of constructing global arrays to keep the old solutions,
and the current solver is expected to reduce the memory
consumption without sacrificing the computation speed.The
usage of time and memory of solving the thermal driven
cavity problem by different solvers is compared, and the
results are given by Figure 4.

The test problem was solved by the new solver and
the ADV sFlow 0.5 [25], which contains some nonsym-
metric product-type solvers like GPBiCG, BiCGSTAB, and
BiCGSTAB2 [20]. The ADV sFlow 0.5 employed a domain
decomposition system similar to the work; however, no
precondition technique is used because of the non-symmetry
of the stiffness matrix in (15). The comparisons of elapsed
time and memory occupation of the new solver and that of
product-type solvers in ADV sFlow 0.5 are show in Figures
4(a) and 4(b). As can be seen, the current scheme reduces
the demand of computation time and memory consumption
remarkably, and it is more suitable for large scale problems
than product-type solvers.

The parallel scalability of the searching algorithm is
also a concern for us, as it characterizes the ability of an
algorithm to deliver larger speed-up using a larger number
of PEs. To know this, the number of subdomains in one part
is fixed, and computations on the test problem of various
mesh sizes are performed by the new scheme. The speed-
up is shown in Figure 5. Three models were tested by the
searching algorithm. With an increase in the mesh size
of the computation model, the parallel scalability of the
searching algorithm tends to be better. An explanation to this
is that when the DOF increase, the number of elements in
one subdomain is also increasing; therefore, the searching
algorithm is accelerated more efficiently. However, too many
elements in one subdomain will occupy more memory, and a
trade-off strategy is necessary for parameterization.

4.2. Validation Tests. In this section, a variety of test problems
have been presented in order to prove the capability of the
parallel Lagrange-Galerkin algorithm. Benchmarks test of
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Navier-Stokes problems are in Sections 4.2.1, 4.2.2, and 4.2.3,
and flow-thermal coupled problems are in Sections 4.2.4 and
4.2.5.

4.2.1. A Plane Couette Flow. The solver for Navier-Stokes
equations in (1) was first tested with a 3D plane Couette
flow. Under ideal conditions, the model is of infinite length;
therefore, 4 times of the height is used as the length of the
model see Figure 6. A constant velocity (�̂�, 0, 0) is applied
on the upper horizontal face, and no-slip conditions are set
on the lower horizontal face. A pressure gradient is imposed
along 𝑥

1
for all the faces as essential boundary conditions.

An unstructured 3D mesh was generated by ADVEN-
TURE TetMesh [25], and the local density around the plane
of 𝑥
1
= 2, where the data was picked from, was enriched.

The total DOF is around 1,024,000. The so-called Brinkman
number [26] is believed to be the dominating parameter of
the flow, and a serious of numerical experiments is done at
various Brinkman number. To simulate the infinity length
better, the exact solution is enforced on both the left face
(𝑥
1

= 0) and the right face (𝑥
1

= 4) as Dirichlet bound-
ary conditions. The comparisons between the computation
results and exact solutions are given by Figure 7. Dotted

0 1

1

1

x1

x2

x3

Figure 8: A lid-driven cavity model.

lines are used to present the results, and they are named as
“Num Res 1(𝐵),” where 𝐵 stands for the Brinkman number.
Crossed lines in Figure 7 present the computation results with
no exact solutions setting on the left and right faces, and they
are named as “Num Res 0(𝐵).”

It can be seen form Figure 7 that both of these two sets
of computation results show good agreement with the exact
solution, and dotted lines are closer to the exact solution,
representing a better simulation to the ideal condition (cf.
[27, 28]).

4.2.2. A Lid-Driven Cavity. The Navier-Stokes problems
solver was then verified by a lid-driven cavity flow. The
ideal gas flows over the upper face of the cube, and no-slip
conditions are applied to all other faces, as in Figure 8.

All the faces of the cube were set with Dirichlet boundary
conditions, and a zero reference pressure was at the centre of
the cube to keep the simulation stable.The pressure profiles of
the scheme using localized stabilization parameter in (9) and
the scheme using constant (𝛿 = 1) parameter are compared,
and the results are show in Figure 9.

Figure 9(a) shows the pressure counters of the scheme
with the localized stabilization parameter in (9) and the
Figure 9(b), shows scheme with a constant parameter. The
model was run at Re = 10

4, and oscillations are viewed
in Figure 9(b); however, the isolines in Figure 9(a) is quite
smooth, showing that the pressure-stabilization term has a
better control on the pressure field at high Reynolds number.

The model was run at different Reynolds numbers with a
128×128×128mesh to test the solvability of the new scheme.
As shown in Figure 10, when the Reynolds number increases,
the eddy at right bottom of plane 𝑥

1
𝑥
3
vanishes, while the

eddy at the left bottom appears due to the increasing in the
speed, and the flow goes more likely around the wall. The
primary eddy goes lower and lower when Reynolds number
becomes higher, and the particle is no longer limited to a
single side of the cavity; it can pass from one side to the other,
and back again violating themirror symmetry, as is seen from
other planes of Figure 10. Similar 3D results for highReynolds
number were reported by [29], and the solvability of the new
solver for high Reynolds number was confirmed.
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Figure 10: Velocity and pressure profiles for different Reynolds number: Re = 1,000 (top), Re = 3,200 (middle), and Re = 12,000 (bottom)
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4.2.3. Backward Facing Step. The solver for Navier-Stokes
equations was then tested with backward facing step, the
fluid considered was air. The problem definition is shown in
Figure 11, and the height of the step ℎ is the characteristic
length. An unstructured 3Dmesh was generated with 419,415

nodal points and 2,417,575 tetrahedral elements, and the local
density of mesh was increased around the step.

A laminar flow is considered to enter the domain at
inlet section, the inlet velocity profile is parabolic, and the
Reynolds number is based on the average velocity at the inlet.
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Figure 13: Primary reattachment lengths.

The total length of the domain is 30 times the step height, so
that the zero pressure is set at the outlet. A full 3D simulation
of the step geometry for 100 ≤ Re ≤ 800 is present in this
paper, and the primary reattachment lengths are predicted.

To determine the reattachment length, the position of
the zero-mean-velocity line was measured. The points of
detachment and reattachment were taken as the extrapolated
zero-velocity line down the wall. The pressure contour in
Figure 12(a) confirms the success of the pressure-stabilization
method; velocity vectors and the primary attachment are
demonstrated in Figure 12(b); similar results have been doc-
umented by many, like in [10, 30].
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Figure 14: The model of infinite plates.

The comparison of primary reattachment length between
current results and other available benchmark results are
show in Figure 13. It is seen that the agreement is excellent
at different Rayleigh numbers (cf. [31, 32]).

4.2.4. Natural Convection of Flat Plates. In order to test
the coupled solver of Navier-Stokes equations and the
convection-diffusion equation, the third application model
was the natural convection between two infinite flat plates.
The geometry is given in 3-dimensional by Figure 14. No-
slip boundary conditions applied on the left and right vertical
walls.The temperature on the left wall is assumed to be lower
and set at 5[𝐾]; the right wall is set at 6[𝐾]. An unstructured
3D mesh about 1 million tetrahedral elements was generated,
and the local grid density around themid-planewas enriched.

The model was run at the size of 20 × 20 × 80 to get
the numerical solutions, and it was compared with the exact
solutions in Figure 15. To simulate the infinity length of the
plate better, the exact solution is enforced on both the upper
face (𝑥

3
= 4) and the lower face (𝑥

3
= 0) as what is

done in Section 4.2.1, and the results are present by a dotted
line (“Num Res 1”) in Figure 12. And the model without
exact solution set as boundary is named as “Num Res 0” in
Figure 15.
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Figure 16: A thermal-driven cavity.

With the parameter setting of ] = 0.5, 𝑇
𝑟
= 5.5, 𝛽 = 1.0,

and 𝑎 = 1, the numerical experiment was performed. Results
of the profile on 𝑢

3
(⋅, 0, 2), which are believed by many to be

very sensitive, are shown in Figure 15. Both “Num Res 0” and
“Num Res 1” are in great agreement with the exact solutions,
and “Num Res 1” is closer to the exact solution, producing a
better simulation to the ideal condition. Similar results have
been documented in [33].

4.2.5. Thermal-Driven Cavity. The new solver is also applied
to a 3-dimensional nonlinear thermal driven cavity flow
problem, which is cavity full of ideal gas; see Figure 16.

No-slip boundary conditions are assumed to prevail on all
the walls of the cavity. Both the horizontal walls are assumed
to be thermally insulated, and the left and right sides are kept
at different temperatures.The cube is divided into 120×120×
120 small cubes, and each small cube contains six tetrahedral
elements. The time step is set to 0.01 s, with Pr = 0.71 and
Ra = 10

4; the steady state is achieved after 0.39 s, as in
Figure 17.

Figures 17(a) and 17(b) show the contour of vorticity and
the velocity vectors at the steady stage, respectively, from the
front view.The temperature contour is shown in Figure 17(c),
and pressure profiles are show in Figure 17(d). The previous
results convince us of the success in solving flow-thermal

coupled problems described by (1) and (4). Similar three-
dimensional results can also be found in [33, 34].Thepressure
profile in Figure 17(d) is smooth and symmetric, implying
that the stabilization item in (8) works well.

In order to further validate the new solver, a comparison
of temperature and velocity profiles of the current solver and
other benchmark results was made. The centreline velocity
results 𝑤(⋅, 0.5, 0.5) and the temperature results 𝑇(⋅, 0.5, 0.5),
which are believed to be very sensitive in this simulation,
are present in diagrams (a) and (b) of Figure 18, respectively.
The velocity results share close resemblance to that of the
ADV sFlow0.5, and they both show themore end-wall effects
compared with the results of 2D case. The three temperature
results show good agreement with each other, and the line
representing the current results is the smoothest, as the
mesh is the finest among the three. Similar results have been
reported by other researchers (cf. [10, 33, 34]).

Thermal convection problems are believed to be domi-
nated by two dimensionless numbers by many researchers,
the Prandtl number and the Rayleigh number. To acquaint
ourselves with the solvability of the new solver and to
challenge applications of higher difficulty, a wide range of
Rayleigh numbers from 10

3 to 10
7 is studied with Pr = 0.71,

and the results for the steady-state solution are presented in
Figure 19. Dimensionless length is used and the variation of
Rayleigh number is determined by changing the characteris-
tic length of the model.

The local Nusselt number (Nu = 𝜕𝑇/𝜕𝑥
1
) is a concern

of many researchers, as they are sensitive to the mesh size.
In Figure 19, the diagram (a) and the diagram (b) represent
the local Nusselt number at the hot wall and the cold
wall, respectively. Similar results can also be found in [10,
30, 35, 36]. The capability of the solver based on domain
decomposed Lagrange-Galerkin scheme for high Rayleigh
number is also confirmed by this figure.

The new solver enables the simulation of large scale
problems, thus models of Rayleigh number up to 10

7 can be
run on small PC cluster. In this simulation, an unstructured
mesh of 30,099,775 DOF is generated, the time step, is 0.01 s
and it takes about 24 hours to finish, using the a small Linux
cluster of 64 PEs (64 cores@2.66GHz).

5. Conclusions

A pressure-stabilized Lagrange-Galerkin method is imple-
mented in a domain decomposition system in this research.
By using localized stabilization parameter, the new scheme
shows better control in the pressure field than constant sta-
bilization parameter; therefore it has good solvability at high
Reynolds number and high Rayleigh number. The reliability
and accuracy of the present numerical results are validated by
comparingwith the exact solutions and recognizednumerical
results. Based on a domain decomposition method, the ele-
ment searching algorithm shows good numerical scalability
and parallel efficiency. The new solver reduces the memory
consumption and is faster than classical product-type solvers.
It is able to solve large scale problems of over 30 million
degrees of freedom within one day by a small PC cluster.
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Figure 17: Steady state of the thermal-driven cavity (Ra = 10
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We introduced a relatively new operator called the triple Laplace transform.We presented some properties and theorems about the
relatively new operator. We examine the triple Laplace transform of some function of three variables. We make use of the operator
to solve some kind of third-order differential equation called “Mboctara equations.”

1. Introduction

The topic of partial differential equations is one of the most
important subjects in mathematics and other sciences. The
behaviour of the solution very much depends essentially
on the classification of PDEs therefore the problem of
classification for partial differential equations is very natural
and well known since the classification governs the sufficient
number and the type of the conditions in order to determine
whether the problem is well posed and has a unique solution.
The Laplace transform has been intensively used to solve
nonlinear and linear equations [1–7]. The Laplace transform
is used frequently in engineering and physics; the output of a
linear time invariant system can be calculated by convolving
its unit impulse response with the input signal. Performing
this calculation in Laplace space turns the convolution into
a multiplication; the latter is easier to solve because of its
algebraic form. The Laplace transform can also be used
to solve differential equations and is used extensively in
electrical engineering [1–7]. The Laplace transform reduces
a linear differential equation to an algebraic equation, which
can then be solved by the formal rules of algebra.The original
differential equation can then be solved by applying the
inverse Laplace transform. The English electrical engineer
Oliver Heaviside first proposed a similar scheme, although
without using the Laplace transform, and the resulting oper-
ational calculus is credited as theHeaviside calculus. Recently
Kılıçman et al. [8–11] extended the Laplace transform to

the concept of double Laplace transform. This new operator
has been intensively used to solve some kind of differential
equation [11] and fractional differential equations. The aim
of this work is to extend the Laplace transform to the triple
Laplace transform. We will start with the definition of the
triple Laplace transform.

2. Definitions and Theorems

Definition 1. Let 𝑓 be a continuous function of three vari-
ables; then, the triple Laplace transformof𝑓(𝑥, 𝑦, 𝑡) is defined
by

𝐿
𝑥,𝑦,𝑡

[𝑓 (𝑥, 𝑦, 𝑡)]

= 𝐹 (𝑝, 𝑠, 𝑘) ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

(1)

where, 𝑥, 𝑦, 𝑡 > 0 and 𝑝, 𝑠, 𝑘 are Laplace variables, and

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

× [
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑦
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× [
1

2𝜋𝑖
∫

𝜇+𝑖∞

𝜇−𝑖∞

𝑒
𝑘𝑡

× 𝐹(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝

(2)

is the inverse triple Laplace transform.

Property 2. Assuming that the continuous function 𝑓(𝑥, 𝑦, 𝑡)

is triple Laplace transformable, then,

𝐿
𝑡,𝑦,𝑥

[
𝜕
3
𝑓 (𝑥, 𝑦, 𝑡)

𝜕𝑥𝜕𝑦𝜕𝑡
]

= 𝑝𝑠𝑘𝐹 (𝑝, 𝑠, 𝑘) − 𝑝𝑠𝐹 (𝑝, 𝑠, 0) − 𝑝𝑠𝐹 (𝑝, 0, 𝑘)

+ 𝑝𝐹 (𝑝, 0, 0) − 𝑠𝑘𝐹 (0, 𝑠, 𝑘) + 𝑠𝐹 (0, 𝑠, 0)

+ 𝑘𝐹 (0, 0, 𝑘) − 𝐹 (0, 0, 0) ,

𝐿
𝑥,𝑥,𝑡

[
𝜕
3
𝑓 (𝑥, 𝑦, 𝑡)

𝜕𝑡𝜕𝑥2
]

= 𝑘𝑝
2
𝐹 (𝑝, 𝑦, 𝑘) − 𝑝𝑘𝐹 (0, 𝑦, 𝑘) −

𝜕𝐹 (0, 𝑦, 𝑘)

𝜕𝑥

− 𝑝
2
𝐹 (𝑝, 𝑦, 0) + 𝑝𝐹 (0, 𝑦, 0) +

𝜕𝐹 (0, 𝑦, 0)

𝜕𝑥
,

𝐿
𝑥𝑥𝑥

[
𝜕
3
𝑓 (𝑥, 𝑦, 𝑡)

𝜕𝑥3
]

= 𝑝
3
𝐹 (𝑝, 𝑦, 𝑡) − 𝑝

2
𝐹 (0, 𝑦, 𝑡)

− 𝑝
𝜕𝐹 (0, 𝑦, 𝑡)

𝜕𝑥
−

𝜕
2
𝐹 (0, 𝑦, 𝑡)

𝜕𝑥2
.

(3)

3. Uniqueness and Existence of the Triple
Laplace Transform

In this section, we will study the uniqueness and existence
of triple Laplace transform. First of all, let 𝑓(𝑥, 𝑦, 𝑡) be
a continuous function on the interval [0,∞) which is of
exponential order, that is, for some 𝑎, 𝑏, 𝑐 ∈ 𝑅. Consider

sup
𝑥,𝑦,𝑡>0



𝑓 (𝑥, 𝑦, 𝑡)

exp [𝑎𝑥 + 𝑏𝑦 + 𝑐𝑡]



< 0. (4)

Under the previous condition, the triple Laplace transform,

𝐹 (𝑝, 𝑠, 𝑘) = ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

(5)

exists for all 𝑝 > 𝑎, 𝑠 > 𝑏, and 𝑘 > 𝑐 and is in actuality
infinitely differentiable with respect to 𝑝 > 𝑎, 𝑠 > 𝑏 and 𝑘 > 𝑐.
All functions in this study are assumed to be of exponential
order. The following theorem shows that 𝑓(𝑥, 𝑦, 𝑡) can be
uniquely obtained from 𝐹(𝑝, 𝑠, 𝑡).

Theorem 3. Let 𝑓(𝑥, 𝑦, 𝑡) and 𝑔(𝑥, 𝑦, 𝑡) be continuous func-
tions defined for 𝑥, 𝑦, 𝑡 ≥ 0 and having Laplace transforms,
𝐹(𝑝, 𝑠, 𝑘) and 𝐺(𝑝, 𝑠, 𝑘), respectively. If 𝐹(𝑝, 𝑠, 𝑘) = 𝐺(𝑝, 𝑠, 𝑘),
then 𝑓(𝑥, 𝑦, 𝑡) = 𝑔(𝑥, 𝑦, 𝑡).

Proof. From the definition of the inverse Laplace transform, if
𝛼, 𝛽, and 𝜇 are sufficiently large, then the integral expression,
by

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

× [
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑦

× [
1

2𝜋𝑖
∫

𝜇+𝑖∞

𝜇−𝑖∞

𝑒
𝑘𝑡

× 𝐹(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝,

(6)

for the triple inverse Laplace transform, can be used to obtain

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

× [
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑦

× [
1

2𝜋𝑖
∫

𝜇+𝑖∞

𝜇−𝑖∞

𝑒
𝑘𝑡

× 𝐹(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝.

(7)

By hypothesis, we have that 𝐹(𝑝, 𝑠, 𝑘) = 𝐺(𝑝, 𝑠, 𝑘). then
replacing this in the previous expression, we have the follow-
ing:

𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

× [
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑦

× [
1

2𝜋𝑖
∫

𝜇+𝑖∞

𝜇−𝑖∞

𝑒
𝑘𝑡

× 𝐺(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝,

(8)



Abstract and Applied Analysis 3

which boil down to
𝑓 (𝑥, 𝑦, 𝑡)

=
1

2𝜋𝑖
∫

𝛼+𝑖∞

𝛼−𝑖∞

𝑒
𝑝𝑥

× [
1

2𝜋𝑖
∫

𝛽+𝑖∞

𝛽−𝑖∞

𝑒
𝑠𝑦

× [
1

2𝜋𝑖
∫

𝜇+𝑖∞

𝜇−𝑖∞

𝑒
𝑘𝑡

× 𝐺(𝑝, 𝑠, 𝑘) 𝑑𝑘] 𝑑𝑠] 𝑑𝑝,

= 𝑔 (𝑥, 𝑦, 𝑡) ,

(9)

and this proves the uniqueness of the triple Laplace trans-
form.

Theorem 4. If, at the point (𝑝, 𝑠, 𝑘), the integrals

𝐹
1

(𝑝, 𝑠, 𝑘) = ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓
1

(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

𝐹
2

(𝑝, 𝑠, 𝑘) = ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓
2

(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

(10)

are convergent and in addition if

𝐹
3

(𝑝, 𝑠, 𝑘) = ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓
3

(𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

(11)

is absolutely convergent, then, the following expression:

𝐹 (𝑝, 𝑠, 𝑘) = 𝐹
1

(𝑝, 𝑠, 𝑘) 𝐹
2

(𝑝, 𝑠, 𝑘) 𝐹
3

(𝑝, 𝑠, 𝑘) (12)

is the Laplace transform of the function

𝑓 (𝑥, 𝑦, 𝑡)

= ∫

𝑡

0

∫

𝑦

0

∫

𝑥

0

𝑓
3

(𝑥 − (𝑥
1

+ 𝜌) , 𝑦 − (𝑦
1

+ 𝜎) ,

𝑡 − (𝑡
1

+ 𝜏)) 𝑓
2

(𝑥
1

− 𝜌, 𝑦
1

− 𝜎, 𝑡
1

− 𝜏)

× 𝑓
1

(𝜌, 𝜎, 𝜏) 𝑑𝜌 𝑑𝜎 𝑑𝜏,

(13)

and the integral

𝐹 (𝑝, 𝑠, 𝑘) = ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

(14)

is convergent at the point (𝑝, 𝑠, 𝑘); for the readers who are
interested, they can see the proof in [11, 12].

Theorem 5. A function 𝑓(𝑥, 𝑦, 𝑡) which is continuous on
[0, ∞) and satisfies the growth condition (4) can be recovered
from only 𝐹(𝑝, 𝑠, 𝑘) as

𝑓 (𝑥, 𝑦, 𝑡) = lim
𝑛1→∞

𝑛2→∞

𝑛3→∞

(−1)
𝑛1+𝑛2+𝑛3

𝑛
1
!𝑛
2
!𝑛
3
!

(
𝑛
1

𝑥
)

𝑛1+1

(
𝑛
2

𝑦
)

𝑛2+1

× (
𝑛
3

𝑡
)

𝑛3+1

Χ
𝑛1+𝑛2+𝑛3 [

𝑛
1

𝑥
,
𝑛
2

𝑦
,
𝑛
3

𝑡
] .

(15)

Evidently, the main difficulty in using Theorem 5 for com-
puting the inverse Laplace transform is the repeated symbolic
differentiation of 𝐹(𝑝, 𝑠, 𝑘).

Let us see how Theorem 5 can be applicable. Let us
consider the following functions:

𝑓 (𝑥, 𝑦, 𝑡) = exp [−𝑎𝑥 − 𝑏𝑦 − 𝑐𝑡] . (16)

Naturally the triple Laplace transform of the previous func-
tion is given later as

𝐹 (𝑝, 𝑠, 𝑘) =
1

(𝑝 − 𝑎) (𝑠 − 𝑏) (𝑘 − 𝑐)
. (17)

Nowapplying the high-ordermixedderivative to the previous
expression, we obtain the following:

𝜕
𝑛1+𝑛2+𝑛3 [𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛1𝜕𝑠𝑛2𝜕𝑘𝑛3
= 𝑛
1
!𝑛
2
!𝑛
3
!(−1)
𝑛1+𝑛2+𝑛3

× (𝑎+𝑃)
−1−𝑛1(𝑠+𝑏)

−1−𝑛2(𝑐+𝑘)
−1−𝑛3 .

(18)

ApplyingTheorem 5 in the previous expression, we obtain the
following result:

𝑓 (𝑥, 𝑦, 𝑡) = lim
𝑛1→∞

𝑛2→∞

𝑛3→∞

𝑛
1

1+𝑛1𝑛
2

1+𝑛2𝑛
3

1+𝑛3

𝑥𝑛1+1𝑦𝑛2+1𝑡𝑛3+1
(𝑎 +

𝑛
1

𝑥
)

−𝑛1−1

× (𝑏 +
𝑛
2

𝑦
)

−𝑛2−1

(𝑐 +
𝑛
3

𝑡
)

−𝑛3−1

.

(19)

Making a change of variable in the previous expression, we
obtain the following simplified result:

𝑓 (𝑥, 𝑦, 𝑡) = lim
𝑛1→∞

𝑛2→∞

𝑛3→∞

(1 +
𝑎𝑛
1

𝑥
)

−𝑛1−1

(1 +
𝑏𝑛
2

𝑦
)

−𝑛2−1

× (1 +
𝑐𝑛
3

𝑡
)

−𝑛3−1

.

(20)

Using together, the application of logarithm and the
L’Hôpital’s rule on the previous expression, we arrive at the
following result:

ln (𝑓 (𝑥, 𝑦, 𝑡)) = −𝑎𝑥 − 𝑏𝑦 − 𝑐𝑡 ⇒ 𝑓 (𝑥, 𝑦, 𝑡)

= exp [−𝑎𝑥 − 𝑏𝑦 − 𝑐𝑡] .

(21)
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4. Some Properties of Triple
Laplace Transform

In this section, we present some properties of the triple
Laplace transform. Note that these properties follow from
those of the double Laplace transform introduced by
Kılıçman and Eltayeb [8].The properties of the triple Laplace
transform will enable us to find further transform pairs
{𝑓(𝑥, 𝑦, 𝑡), 𝐹(𝑝, 𝑠, 𝑘)}:

(i) 𝐹 (𝑝 + 𝑎, 𝑠 + 𝑏, 𝑘 + 𝑑)

= 𝐿
𝑥,𝑦,𝑡

[𝑒
−𝑎𝑥−𝑦𝑏−𝑐𝑡

𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘) .

(22)

We will present the proof

𝐿
𝑥,𝑦,𝑡

[𝑒
−𝑎𝑥−𝑦𝑏−𝑐𝑡

𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘)

= ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦] exp [−𝑘𝑡] exp [−𝑎𝑥]

× exp [−𝑏𝑦] exp [−𝑐𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

∫

∞

0

exp [−𝑝𝑥] exp [−𝑎𝑥]

× (∬

∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] exp [−𝑏𝑦]

× exp [−𝑐𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑡 𝑑𝑦) 𝑑𝑡.

(23)

Note that the integral inside the bracket satisfies the proper-
ties of the double Laplace transform and is given as [11]

(∬

∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] exp [−𝑏𝑦] exp [−𝑐𝑡]

× 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑡 𝑑𝑦) = 𝐹 (𝑥, 𝑠 + 𝑏, 𝑘 + 𝑑) .

(24)

Thus

∫

∞

0

exp [−𝑝𝑥] exp [−𝑎𝑥] 𝐹 (𝑥, 𝑠 + 𝑏, 𝑘 + 𝑑) 𝑑𝑡

= 𝐹 (𝑝 + 𝑎, 𝑠 + 𝑏, 𝑘 + 𝑑) ,

(25)

and this completes the proof.
(ii) The following can also be observed:

1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) = 𝐿

𝑥,𝑦,𝑡
[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘) . (26)

We will present the proof

𝐿
𝑥,𝑦,𝑡

[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘)

= ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡,

∫

∞

0

exp [−𝑝𝑥] (∬

∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡) 𝑑𝑦 𝑑𝑡) 𝑑𝑥.

(27)

Note that the double integral inside the bracket satisfies the
property of the double Laplace transform as [11]

(∬

∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] 𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡) 𝑑𝑦 𝑑𝑡)

=
1

𝛽𝛾
𝐹 (𝛼𝑥,

𝑠

𝛽
,
𝑘

𝛾
) .

(28)

Thus

𝐿
𝑥,𝑦,𝑡

[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘)

= ∫

∞

0

exp [−𝑝𝑥]
1

𝛽𝛾
𝐹 (𝛼𝑥,

𝑠

𝛽
,
𝑘

𝛾
) 𝑑𝑥

=
1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) ,

(29)

and this completes the proof.
(iii) The following property can also be observed:

𝜕
𝑛+𝑚+V

[𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= 𝐿
𝑥,𝑦,𝑡

[(−1)
𝑛+𝑚+V

𝑥
𝑛
𝑦
𝑚

𝑡
V
𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘) .

(30)

We will present the proof

𝐹 (𝑝, 𝑠, 𝑘) = ∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡.

(31)

Then,

𝜕
𝑛+𝑚+V

[𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕
𝑛+𝑚+V

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
(∭

∞

0

exp [−𝑝𝑥] exp [−𝑠𝑦]

× exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡) .

(32)

Now making use of the convergence properties of the
improper integral involved, we can interchange the opera-
tion of differentiation and integration and differentiate with
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respect to 𝑝, 𝑠, and 𝑘 under the integral sign. Thus, we arrive
at the following expression:

𝜕
𝑛+𝑚+V

[𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕
𝑛

𝜕𝑝𝑛
∫

∞

0

exp [−𝑝𝑥]

× (
𝜕
𝑚+V

𝜕𝑠𝑛𝜕𝑘V
∬

∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡]

× 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡) 𝑑𝑥.

(33)

Note that the expression in the bracket satisfies the property
of the double Laplace transform as [11]

𝜕
𝑚+V

𝜕𝑠𝑛𝜕𝑘V
∬

∞

0

exp [−𝑠𝑦] exp [−𝑘𝑡] 𝑓 (𝑥, 𝑦, 𝑡) 𝑑𝑦 𝑑𝑡

= 𝐿
𝑦,𝑡

[(−1)
𝑚+V

𝑦
𝑚

𝑡
V
𝑓 (𝑥, 𝑦, 𝑡)] (𝑠, 𝑘) .

(34)

Thus

𝜕
𝑛+𝑚+V

[𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕
𝑛

𝜕𝑝𝑛
∫

∞

0

exp [−𝑝𝑥]

× (𝐿
𝑦,𝑡

[(−1)
𝑚+V

𝑦
𝑚

𝑡
V
𝑓 (𝑥, 𝑦, 𝑡)] (𝑠, 𝑘)) 𝑑𝑥.

(35)

And finally, we obtain

𝜕
𝑛+𝑚+V

[𝐹 (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= 𝐿
𝑥,𝑦,𝑡

[(−1)
𝑛+𝑚+V

𝑥
𝑛
𝑦
𝑚

𝑡
V
𝑓 (𝑥, 𝑦, 𝑡)] (𝑝, 𝑠, 𝑘) ,

(36)

and this completes the proof.
Now using the previous three properties, we will show the

proof of Theorem 5.

Proof of Theorem 5. Let us define the set of functions depend-
ing on parameters 𝑚, 𝑛, and V as

ℎ
𝑚,𝑛,V (𝑥, 𝑦, 𝑡) =

𝑚
𝑚+1

𝑛
𝑛+1VV+1

𝑚!𝑛!V!
𝑥
𝑚

𝑦
𝑛
𝑡
V
𝑒
−𝑚𝑥−𝑛𝑦−V𝑡

. (37)

It worth noting that the previous function is a kind of three-
dimensional density of probability, and it therefore follows
that

∭

∞

0

ℎ
𝑚,𝑛,V (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡 = 1. (38)

In addition of this, we will have that

lim
𝑚→∞

𝑛→∞

V→∞

∭

∞

0

ℎ
𝑚,𝑛,V (𝑥, 𝑦, 𝑡) 𝜓 (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡 = 𝜓 (1, 1, 1) ,

(39)

where 𝜓(𝑥, 𝑦, 𝑡) is any continuous function. Let Ψ(𝑝, 𝑠, 𝑘)

denote the triple Laplace transform of the continuous
function 𝜓(𝑥, 𝑦, 𝑡). However, if one defines the function
𝑀(𝑥, 𝑦, 𝑡) = 𝑓(𝑥𝛼, 𝑦𝛽, 𝑡𝛾), making use of the second pro-
perty established in (29), we arrive at the following:

1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) = 𝐿

𝑥,𝑦,𝑡
[𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡)] (𝑝, 𝑠, 𝑘) . (40)

Here if one applies the third property, in particular by rep-
lacing 𝑝 = 𝑚/𝑥, 𝑠 = 𝑛/𝑦, 𝑘 = V/𝑡 as follows:

𝐿
𝑥𝑦𝑡

(𝑀 (𝑥, 𝑦, 𝑡)) =
1

𝛼𝛽𝛾
𝐹 (

𝑝

𝛼
,

𝑠

𝛽
,
𝑘

𝛾
) , (41)

𝜕
𝑛+𝑚+V

[𝐿
𝑥𝑦𝑡

(𝑀 (𝑥, 𝑦, 𝑡))]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
𝜕
𝑛+𝑚+V

[(1/𝛼𝛽𝛾) 𝐹 (𝑝/𝛼, 𝑠/𝛽, 𝑘/𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

=
1

𝛼𝑚+1𝛽𝑛+1𝛾V+1

×
𝜕
𝑛+𝑚+V

[𝐹 (𝑝/𝛼, 𝑠/𝛽, 𝑘/𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
.

(42)

Now let us put 𝜓(𝑥, 𝑦, 𝑡) = 𝑒
−𝑝𝑥−𝑠𝑦−𝑘𝑡

𝑀(𝑥, 𝑦, 𝑡). Now if we
make use of (38), we obtain the following

𝜓 (1, 1, 1) = 𝑒
−𝑝−𝑠−𝑘

𝑀 (1, 1, 1) = 𝑒
−𝑝−𝑠−𝑘

𝑓 (𝛼, 𝛽, 𝛾)

= lim
𝑚→∞

𝑛→∞

V→∞

𝑚
𝑚+1

𝑛
𝑛+1VV+1

𝑚!𝑛!V!
∭

∞

0

𝑥
𝑚

𝑦
𝑛
𝑡
V
𝑒
−𝑝𝑥−𝑠𝑦−𝑘𝑡

× 𝑒
−𝑚𝑥−𝑛𝑦−V𝑡

Ψ (𝑥, 𝑦, 𝑡) 𝑑𝑥 𝑑𝑦 𝑑𝑡

= lim
𝑚→∞

𝑛→∞

V→∞

𝑚
𝑚+1

𝑛
𝑛+1VV+1

𝑚!𝑛!V!
𝐿
𝑥𝑦𝑡

[𝑥
𝑚

𝑦
𝑛
𝑡
V
𝑒
−𝑚𝑥−𝑛𝑦−V𝑡

Ψ (𝑥, 𝑦, 𝑡)] .

(43)

Now taking into account properties (i) and (ii), (42) together
with the function 𝑀(𝑥, 𝑦, 𝑡), we arrive at the following:

𝐿
𝑥𝑦𝑡

[𝑥
𝑚

𝑦
𝑛
𝑡
V
𝑒
−𝑚𝑥−𝑛𝑦−V𝑡

Ψ (𝑥, 𝑦, 𝑡)]

= (−1)
𝑚+𝑛+V

𝜕
𝑛+𝑚+V

[𝐿
𝑥𝑦𝑡

(𝑒
−𝑚𝑥−𝑛𝑦−𝑘𝑡

Ψ (𝑥, 𝑦, 𝑡)) (𝑝, 𝑠, 𝑘)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= (−1)
𝑚+𝑛+V 1

𝛼𝑚𝛽𝑛𝛾V

×

𝜕
𝑛+𝑚+V

[𝐿
𝑥𝑦𝑡

(Ψ (𝑥, 𝑦, 𝑡)) (𝑝 + 𝑚, 𝑠 + 𝑛, 𝑘 + V)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V

= (−1)
𝑚+𝑛+V 1

𝛼𝑚𝛽𝑛𝛾V

×((𝜕
𝑛+𝑚+V

[𝐿
𝑥𝑦𝑡

(𝑓 (𝛼𝑥, 𝛽𝑦, 𝛾𝑡))

×(
𝑝+𝑚

𝛼
,
𝑠+𝑛

𝛽
,
𝑘+V

𝛾
)]) (𝜕𝑝

𝑛
𝜕𝑠
𝑛
𝜕𝑘

V
)
−1

)
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= (−1)
𝑚+𝑛+V

×
1

𝛼𝑚𝛽𝑛𝛾V

𝜕
𝑛+𝑚+V

[𝐹 ((𝑝+𝑚) /𝛼, (𝑠+𝑛) /𝛽, (𝑘+V) /𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
.

(44)

Now observe that from (44) with the fact that 𝑓(𝛼, 𝛽, 𝑡) =

𝜓(1, 1, 1)𝑒
𝑝+𝑠+𝑘, we arrive at the following:

𝑓 (𝛼, 𝛽, 𝑡)

= 𝑒
𝑝+𝑠+𝑘 lim
𝑚→∞

𝑛→∞

V→∞

𝑚
𝑚+1

𝑛
𝑛+1VV+1

𝑚!𝑛!V!

× (
𝑚

𝛼
)

𝑚+1

(
𝑛

𝛽
)

𝑛+1

(
V

𝛾
)

V+1

×
𝜕
𝑛+𝑚+V

[𝐹 ((𝑝 + 𝑚) /𝛼, (𝑠 + 𝑛) /𝛽, (𝑘 + V) /𝛾)]

𝜕𝑝𝑛𝜕𝑠𝑛𝜕𝑘V
.

(45)

The previously mentioned is true for any 𝑝, 𝑠, 𝑘 in the
complete space, in particular, for 𝑝 = 0, 𝑠 = 0, 𝑘 = 0, and
in this case Theorem 5 is covered.

5. Application to Third-Order Partial
Differential Equation

In this section, we present the application of this operator
for solving some kind of third-order partial differential
equations.

Example 1. consider the following third-order partial differ-
ential equation:

𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) + 𝑢 (𝑥, 𝑦, 𝑡) = 0. (46)

The previous equation is called the Mboctara equation and is
subjected to the following boundaries and initial conditions:

𝑢 (𝑥, 𝑦, 0) = 𝑒
𝑥+𝑦

, 𝑢 (𝑥, 0, 𝑡) = 𝑒
𝑥−𝑡

,

𝑢 (0, 𝑦, 𝑡) = 𝑒
𝑦−𝑡

, 𝑢 (𝑥, 𝑦, 1) = 𝑒
𝑥+𝑦−1

.

(47)

Now applying the triple Laplace transform on both sides of
(46), we obtain the following:

𝑝𝑠𝑘𝑈 (𝑝, 𝑠, 𝑘) + 𝑈 (𝑝, 𝑠, 𝑘) = 𝐺 (𝑝, 𝑠, 𝑘) . (48)

Here
𝐺 (𝑝, 𝑠, 𝑘) = 𝑝𝑠𝑈 (𝑝, 𝑠, 0) + 𝑝𝑠𝑈 (𝑝, 0, 𝑘) − 𝑝𝑈 (𝑝, 0, 0)

+ 𝑠𝑘𝑈 (0, 𝑠, 𝑘) − 𝑠𝑈 (0, 𝑠, 0) − 𝑘𝑈 (0, 0, 𝑘)

+ 𝑈 (0, 0, 0) .

(49)

Factorising the right side of equation (49), we obtain the
following:

𝑈 (𝑝, 𝑠, 𝑘) =
𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
. (50)

Now applying the inverse triple Laplace transform on the
previous equation we obtain the following solution:

𝑢 (𝑥, 𝑦, 𝑡) = 𝐿
−1

𝑥𝑦𝑡
[

𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
] = 𝑒
𝑥+𝑦−𝑡

. (51)

This is the exact solution for Mboctara equation.

Example 2. Let us consider the following nonhomogeneous
Mboctara equation

𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) + 𝑢 (𝑥, 𝑦, 𝑡) = −𝑒
𝑥−2𝑦+𝑡 (52)

subjected to the following initial and boundaries conditions:

𝑢 (𝑥, 0, 0) = 𝑒
𝑥
, 𝜕
𝑡
𝑢 (𝑥, 0, 𝑡) = 𝑒

𝑥+𝑡
, 𝜕
𝑥
𝑢 (𝑥, 0, 𝑡) = 𝑒

𝑥+𝑡
,

𝑢 (0, 0, 0) = 1, 𝑢 (𝑥, 0.5, 𝑡) = 𝑒
𝑥+𝑡−1

.

(53)

Now applying the triple Laplace transform on both sides
of (52), we obtain the following:

𝑝𝑠𝑘𝑈 (𝑝, 𝑠, 𝑘) + 𝑈 (𝑝, 𝑠, 𝑘)

= 𝐺 (𝑝, 𝑠, 𝑘) −
1

(1 + 𝑝) (2 + 𝑠) (1 + 𝑘)
.

(54)

Factorising the right side of (54), we obtain the following:

𝑈 (𝑝, 𝑠, 𝑘) =
𝐺 (𝑝, 𝑠, 𝑘) − 1/ (1 + 𝑝) (2 + 𝑠) (1 + 𝑘)

1 + 𝑝𝑠𝑘
.

(55)

Now applying the inverse triple Laplace transform on the
previous equation, we obtain the following solution

𝑢 (𝑥, 𝑦, 𝑡) = 𝐿
−1

𝑥𝑦𝑡
[

𝐺 (𝑝, 𝑠, 𝑘) − 1/ (1 + 𝑝) (2 + 𝑠) (1 + 𝑘)

1 + 𝑝𝑠𝑘
]

= 𝑒
𝑥−2𝑦+𝑡

.

(56)

This is the exact solution for nonhomogeneous Mboctara
equation.

Example 3. Let us consider the following nonhomogeneous
Mboctara equation

𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) + 𝑢 (𝑥, 𝑦, 𝑡) = cos (𝑥) cos (𝑦) cos (−𝑡)

− sin (𝑥) sin (𝑦) sin (−𝑡) ,

(57)

subjected to the following initial and boundaries conditions:

𝑢 (𝑥, 𝑦, 0) = cos (𝑥) cos (𝑦) ,

𝜕
𝑡
𝑢 (𝑥, 𝑦, 0) = 𝜕

𝑥
𝑢 (0, 𝑦, 𝑡) = 𝜕

𝑦
𝑢 (𝑥, 0, 𝑡) = 0,

𝑢 (𝑥,
𝜋

2
, 𝑡) = 𝑢 (𝑥, 𝑦,

𝜋

2
) = 𝑢 (

𝜋

2
, 𝑦, 𝑡) = 0.

(58)
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Table 1: Table of triple Laplace transform for some function of three variables.

Functions𝑓(𝑥, 𝑦, 𝑡) Triple laplace transform 𝐹(𝑝, 𝑠, 𝑘)

𝑎𝑏𝑐
𝑎𝑏𝑐

𝑝𝑠𝑘

𝑥𝑦𝑡

1

𝑝2𝑠2𝑘2

𝑥
𝑛
𝑦
𝑚

𝑡
V
, 𝑛, 𝑚, V are natural numbers 𝑘

−1−V
𝑠
−1−𝑚

𝑝
−𝑛−1

Γ (1 + 𝑛) Γ (1 + 𝑚) Γ (1 + V)

𝑥
𝑛
𝑦
𝑚

𝑡
V
𝑒
−𝑎𝑥−𝑏𝑦−𝑐𝑡

(𝑘 + 𝑐)
−1−V

(𝑠 + 𝑏)
−1−𝑚

(𝑝 + 𝑎)
−𝑛−1

Γ (1 + 𝑛) Γ (1 + 𝑚) Γ (1 + V)

𝑒
−𝑎𝑥−𝑏𝑦−𝑐𝑡

1

(𝑎 + 𝑝) (𝑏 + 𝑠) (𝑐 + 𝑘)

cos(𝑥) cos(𝑦) cos(𝑡)
𝑘𝑠𝑝

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

sin(𝑥) sin(𝑦) sin(𝑡)

1

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

sin (𝑥 + 𝑦 + 𝑡)
−1 + 𝑝𝑠 + 𝑘 (𝑝 + 𝑠)

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

cos(𝑥 + 𝑦 + 𝑡) −
𝑘 + 𝑝 + 𝑠 − 𝑘𝑝𝑠

(1 + 𝑝2) (1 + 𝑠2) (1 + 𝑘2)

√𝑥𝑦𝑡
𝜋√𝜋

83√𝑘𝑠𝑝

𝑒
𝑎𝑥+𝑦𝑏+𝑐𝑡 sinh(𝑎𝑥)sinh(𝑏𝑦) sinh(𝑐𝑡)

(𝑏) (𝑐) (𝑎)

(−2𝑎𝑝 + 𝑝2) (−2𝑏𝑠 + 𝑠2) (−2𝑐𝑘 + 𝑘2)

𝑒
𝑎𝑥+𝑦𝑏+𝑐𝑡 cosh(𝑎𝑥) cosh(𝑏𝑦) cosh(𝑐𝑡)

(𝑏 − 𝑠) (𝑐 − 𝑘) (𝑎 − 𝑝)

(−2𝑎𝑝 + 𝑝2) (−2𝑏𝑠 + 𝑠2) (−2𝑐𝑘 + 𝑘2)

Erf [
𝑎

2√𝑥
]Erf[

𝑏

2√𝑦
]Erf [

𝑐

2√𝑡
]

𝑒
−√𝑐
2
𝑘−√𝑏
2
𝑠

𝑘𝑝𝑠
(−1 + 𝑒

−√𝑐
2
𝑘
) (1 − 𝑒

−√𝑎
2
𝑝
) (−1 + 𝑒

−√𝑏
2
𝑠
)

sin(𝑎𝑥)

𝑥

sin(𝑏𝑦)

𝑦

sin(𝑐𝑡)

𝑡
arctan(

√𝑎2

𝑝
) arctan(

√𝑏2

𝑠
) arctan(

√𝑐2

𝑘
)

cos(𝑎𝑥)

𝑥𝑛

cos(𝑏𝑦)

𝑦𝑚

cos(𝑐𝑡)

𝑡V

𝑘
−1+V

(1 +
𝑏
2

𝑠2
)

1/2(−1+𝑚)

𝑠
−1+𝑚 cos [𝑐𝑡] cos((−1 + 𝑚) arctan[

√𝑏2

𝑠
]) Γ (1 − 𝑚) Γ (1 − V)

× (1 +
𝑎
2

𝑝2
)

1/2(−1+𝑛)

𝑝
−1+𝑛 cos((𝑛 − 1) arctan(

|𝑎|

𝑝
)) Γ (1 − 𝑛)

sin(𝑎𝑥)

𝑥𝑛

sin(𝑏𝑦)

𝑦𝑚

sin(𝑐𝑡)

𝑡V

𝑘
−1+V

(1 +
𝑏
2

𝑠2
)

1/2(−1+𝑚)

𝑠
−1+𝑚

Γ (1 − 𝑚) Γ (1 − V) (1 +
𝑎
2

𝑝2
)

1/2(−1+𝑛)

× 𝑝
−1+𝑛

Γ (1 − 𝑛) sign (𝑎) sin ((𝑛 − 1) arctan(
|𝑎|

𝑝
)) Γ (1 − 𝑛)

𝐽
𝑛

(𝑥) 𝐽
𝑛

(𝑦) 𝐽
𝑛
(𝑡)

8
−𝑛

(𝑘𝑠𝑝)
−1−𝑛Hypergeometric2𝐹1 (

1 + 𝑛

2
,

2 + 𝑛

2
, −

1

𝑘2
)

Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, −

1

𝑠2
)

[Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, −

1

𝑝2
)

𝐼
𝑛

(𝑥) 𝐼
𝑛

(𝑦) 𝐼
𝑛
(𝑡)

8
−𝑛

(𝑘𝑠𝑝)
−1−𝑛Hypergeometric2𝐹1 (

1 + 𝑛

2
,

2 + 𝑛

2
, 1 + 𝑛,

1

𝑘2
)

Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, 1 + 𝑛,

1

𝑠2
)

Hypergeometric2𝐹1 (
1 + 𝑛

2
,

2 + 𝑛

2
, 1 + 𝑛,

1

𝑝2
)
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Figure 1: Numerical simulation of the exact solutions of the Homogeneous and non-homogeneous Mboctara equations.

Now applying the triple Laplace transform on both sides of
(57), we obtain the following:

𝑝𝑠𝑘𝑈 (𝑝, 𝑠, 𝑘) + 𝑈 (𝑝, 𝑠, 𝑘)

= 𝐺 (𝑝, 𝑠, 𝑘) +
𝑘𝑠𝑝

(1 + 𝑝2) (1 + 𝑠2) (−1 + 𝑘2)

−
1

(1 + 𝑝2) (1 + 𝑠2) (−1 + 𝑘2)
.

(59)

Factorising the right side of (59), we obtain the following:

𝑈 (𝑝, 𝑠, 𝑘) =
𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
+

𝑘𝑠𝑝/ (1 + 𝑝
2
) (1 + 𝑠

2
) (−1 + 𝑘

2
)

1 + 𝑝𝑠𝑘

−

1/ (1 + 𝑝
2

) (1 + 𝑠
2

) (−1 + 𝑘
2
)

1 + 𝑝𝑠𝑘
.

(60)
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Now applying the inverse triple Laplace transform on the
previous equation, we obtain the following solution:

𝑢 (𝑥, 𝑦, 𝑡)

= 𝐿
−1

𝑥𝑦𝑡
[

𝐺 (𝑝, 𝑠, 𝑘)

1 + 𝑝𝑠𝑘
+

𝑘𝑠𝑝/ (1 + 𝑝
2
) (1 + 𝑠

2
) (−1 + 𝑘

2
)

1 + 𝑝𝑠𝑘

−

1/ (1 + 𝑝
2

) (1 + 𝑠
2
) (−1 + 𝑘

2
)

1 + 𝑝𝑠𝑘
]

= cos (𝑥) cos (𝑦) cos (−𝑡) .

(61)

This is the exact solution for nonhomogeneous Mboctara
equation.

Example 4. consider the following nonlinear nonhomoge-
neous with variable coefficient Mboctara equation:

𝑒
𝑥+𝑦+𝑡

𝜕
𝑥𝑦𝑡

𝑢 (𝑥, 𝑦, 𝑡) − 3𝑢
2

(𝑥, 𝑦, 𝑡) + 𝑒
𝑥+𝑦+𝑡

𝑢 (𝑥, 𝑦, 𝑡)

= 𝑒
2𝑥+2𝑦+2𝑡

,

𝑢
𝑥

(𝑥, 𝑦, 0) = 𝑒
𝑥+𝑦

, 𝑢 (0, 0, 0) = 1,

𝑢 (1, 0, 0) = 𝑒, 𝜕
𝑥𝑦𝑡

𝑢 (0, 0, 0) = 1.

(62)

Now applying the triple Laplace transform on both sides
of (62) and then using the properties of the triple Laplace
transform and after factorising as in the previous examples
and taking the inverse triple Laplace transform, we obtain
the following as an exact solution of this type of Mboctara
equation:

𝑢 (𝑥, 𝑦, 𝑡) = 𝑒
𝑥+𝑦+𝑡

. (63)

Thenumerical simulations of the exact solutions of theMboc-
tara equation are depicted in Figure 1(a) (4.1), Figure 1(b)
(4.6), Figure 1(c) (4.6) and Figure 1(d) (4.11), respectively.

6. Triple Laplace Transform of Some
Functions of Three Variables

In this section, we examine the triple Laplace transform of
some functions in Table 1:

𝐿
𝑥𝑦𝑡

(𝑌
𝑛

(𝑥) 𝑌
𝑛

(𝑦) 𝑌
𝑛

(𝑡))

= 8
−𝑛

(𝑘𝑠𝑝)
−1−𝑛

𝐶𝑠𝑐
3

[𝑛𝜋]

× ( − (4𝑘
2
)
𝑛

Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 − 𝑛, −

1

𝑘2
)

+ cos (𝑛𝜋)Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 + 𝑛, −

1

𝑘2
))

× ( − (4𝑠
2
)
𝑛

Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 − 𝑛, −

1

𝑠2
)

+ cos (𝑛𝜋)Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 + 𝑛, −

1

𝑠2
))

× ( − (4𝑝
2
)
𝑛

Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 − 𝑛, −

1

𝑝2
)

+ cos (𝑛𝜋)Hypergeometric2𝐹1

× (
1 + 𝑛

2
,
2 + 𝑛

2
, 1 + 𝑛, −

1

𝑝2
)) .

(64)

7. Conclusion

This work presents the definition of the triple Laplace trans-
form. Some triple Laplace transform is presented in Table 1.
Some theorems and properties of this new relatively new
operator are presented. Applications of the new operator, for
solving some kind of third-order partial differential equations
calledMboctara equation, are presented.Numerical solutions
of the Mboctara equation are given.
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We examine possible approximate solutions of both integer and noninteger systems of nonlinear differential equations describing
tuberculosis disease population dynamics. The approximate solutions are obtained via the relatively new analytical technique, the
homotopy decomposition method (HDM). The technique is described and illustrated with numerical example. The numerical
simulations show that the approximate solutions are continuous functions of the noninteger-order derivative. The technique used
for solving these problems is friendly, very easy, and less time consuming.

1. Introduction

Tuberculosis, MTB, or TB (short for tubercle bacillus) is a
common and in many cases lethal, infectious disease caused
by various strains of Mycobacterium, usually Mycobacterium
Tuberculosis [1]. Tuberculosis typically attacks the lungs, but
can also affect other parts of the body. It is spread through
the air when people who have an active TB infection cough,
sneeze, or otherwise transmit their saliva through the air
[2]. Most infections are asymptomatic and latent, but about
one in ten latent infections eventually progresses to active
disease which, if left untreated, kills more than 50% of those
so infected. Interested reader can find more about this model
in [3–7].

Based on the standard SIRS model, the model population
was compartmentalised into the susceptible (𝑆) and the
infected (𝐼) which is further broken down into latently
infected (𝐼

𝐿
) and actively infected (𝐼

𝐴
) while the recovered

subpopulation is ploughed back into the susceptible group
due to the possibility of reinfection after successful treatment
of the earlier infection. The model monitors the temporary
dynamics in the population of susceptible people (𝑡), TB
latently infected people 𝐼

𝐿
(𝑡), and TB actively infected people

𝐼
𝐴
(𝑡) as captured in the model system of ordinary differential

equations that follows.

𝑑𝑆 (𝑡)

𝑑𝑡
= V𝑓𝑁 − 𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛿𝑆 (𝑡) + 𝑇

𝐴
𝐼
𝐴
(𝑡) + 𝑇

𝐿
𝐼
𝐿
(𝑡) ,

𝑑𝐼
𝐿
(𝑡)

𝑑𝑡
= (1 − 𝑃) 𝛼𝐼

𝐴
𝑆 (𝑡) − 𝛽

𝐴
𝐼
𝐿
(𝑡) − 𝑇

𝐿
𝐼
𝐿
(𝑡) − 𝛿𝐼

𝐿
(𝑡) ,

𝑑𝐼
𝐴
(𝑡)

𝑑𝑡
= 𝑃𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛽

𝐴
𝐼
𝐿
(𝑡) − 𝑇

𝐴
𝐼
𝐴
(𝑡) − 𝛿𝐼

𝐴
(𝑡) − 𝜀𝐼

𝐴
(𝑡)

(1)

subject to the initial conditions

𝑆 (0) = 𝑁, 𝐼
𝐿
(0) ≥ 0, 𝐼

𝐴
(0) ≥ 0, (2)

where𝑁 is the total number of new people in the location of
interest; 𝑆 is the number of susceptible people in the location;
𝐼
𝐿
is the number of TB latently infected people; 𝐼

𝐴
is the

number of TB actively infected people; V is the probability
that a susceptible person is not vaccinated; 𝑓 is the efficient
rate of vaccines; 𝑇

𝐿
is the success rate of latent 𝑇

𝐵
therapy; 𝑇

𝐴

is the active TB treatment cure rate; 𝛼 is the TB instantaneous
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incidence rate per susceptible; 𝛿 is humans natural death rate;
𝑃 is the proportion of infection instantaneously degenerating
into active TB; 𝜀 is the TB-induced death rate; and 𝛽

𝐴
is the

breakdown rate from latent to active TB. The equilibrium
analysis of themodel was studied in [8]. Equation (1) together
with (2) does not have an exact solution and is usually solved
numerically.

The purpose of this paper is to derive approximate analyt-
ical solutions for the standard form as well as the fractional
version of (1) together with (2) using the relatively new
analytical technique, the homotopy decomposition method
(HDM).

Thepaper is structured as follows. In Section 2,we present
the basic ideal of the homotopy decomposition method for
solving partial differential equations. We present the applica-
tion of the HDM for system Tuberculosis disease population
dynamics model in Section 3. In Section 4, we present the
application of the HDM for system of fractional Tuberculosis
disease population dynamicsmodel.The conclusions are then
given finally in Section 5.

2. Fundamental Information about Homotopy
Decomposition Method

To demonstrate the elementary notion of this technique,
we consider a universal nonlinear nonhomogeneous partial
differential equation with initial conditions of the following
form [9–13].

𝜕
𝑚
𝑈 (𝑥, 𝑡)

𝜕𝑡𝑚
= 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) ,

𝑚 = 1, 2, 3 . . . ,

(3)

focused on the primary condition

𝜕
𝑖
𝑈 (𝑥, 0)

𝜕𝑡𝑖
= 𝑦
𝑖
(𝑥) ,

𝜕
𝑚−1

𝑈 (𝑥, 0)

𝜕𝑡𝑚−1
= 0,

𝑖 = 0, 1, 2, . . . , 𝑚 − 2,

(4)

where𝑚 is the order of the derivative, where𝑓 is an identified
function,𝑁 is the common nonlinear differential operator, 𝐿
denotes a linear differential operator, and 𝑚 is the order of
the derivative. The procedures first stage here is to apply the
inverse operator 𝜕𝑚/𝜕𝑡𝑚 on both sides of (3) to obtain

𝑈 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!

𝑑
𝑘
𝑢 (𝑥, 0)

𝑑𝑡𝑘

+ ∫

𝑡

0

∫

𝑡1

0

⋅ ⋅ ⋅ ∫

𝑡𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡.

(5)

The multi-integral in (3) can be transformed to

∫

𝑡

0

∫

𝑡1

0

⋅ ⋅ ⋅ ∫

𝑡𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡

=
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏

(6)

so that (3) can be reformulated as

𝑈 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑖
(𝑥)

+
1

(𝑚 − 1)!
∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(7)
Using the homotopy scheme, the solution of the aforemen-
tioned integral equation is given in series form as

𝑈(𝑥, 𝑡, 𝑝) =

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡) ,

𝑈 (𝑥, 𝑡) = lim
𝑝→1

𝑈 (𝑥, 𝑡, 𝑝) ,

(8)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑟, 𝑡) =

∞

∑

𝑛=1

𝑝
𝑛
H
𝑛
(𝑈) , (9)

where 𝑝 ∈ (0, 1] is an implanting parameter. H
𝑛
(𝑈) is the

polynomials that can be engendered by

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
) =

1

𝑛!

𝜕
𝑛

𝜕𝑝𝑛
[

[

𝑁(

𝑛

∑

𝑗=0

𝑝
𝑗
𝑈
𝑗
(𝑥, 𝑡))]

]

,

𝑛 = 0, 1, 2 . . . .

(10)

The homotopy decomposition method is obtained by the
combination of decomposition method with Abel integral
and is given by
∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝑡)

= 𝑇 (𝑥, 𝑡) + 𝑝
1

(𝑚 − 1)!

× ∫

𝑡

0

(𝑡 − 𝜏)
𝑚−1

[𝑓 (𝑥, 𝜏) + 𝐿(

∞

∑

𝑛=0

𝑝
𝑛
𝑈
𝑛
(𝑥, 𝜏))

+

∞

∑

𝑛=0

𝑝
𝑛
H
𝑛
(𝑈)] 𝑑𝜏

(11)

with

𝑇 (𝑥, 𝑡) =

𝑚−1

∑

𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑖
(𝑥) . (12)
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Relating the terms of same powers of 𝑝, this gives solutions
of various orders. The initial guess of the approximation is
𝑇(𝑥, 𝑡) that is actually the Taylor series of the exact solution
of order𝑚. Note that this initial guess insures the uniqueness
of the series decompositions [9].

3. Application of the HDM to the Model with
Integer-Order Derivative

In this section, we employ this method for deriving the set
of the mathematical equations describing the tuberculosis
disease population dynamics model.

Resulting from the steps involved in the HDM method,
we reach at the following integral equations that are very
simple to solve:

𝑝
0
: 𝑆
0
(𝑡) = 𝑆 (0) ,

𝑝
0
: 𝐼
𝐿0
(𝑡) = 𝐼

𝐿
(0) ,

𝑝
0
: 𝐼
𝐴0
(𝑡) = 𝐼

𝐴
(0) ,

𝑝
1
: 𝑆
1
(𝑡)

= ∫

𝑡

0

(V𝑓𝑁 − 𝛼𝐼
𝐴0
𝑆
0
(𝜏) + 𝛿𝑆

0
(𝜏)

+𝑇
𝐴
𝐼
𝐴0
(𝜏) + 𝑇

𝐿
𝐼
𝐿0
(𝜏)) 𝑑𝜏, 𝑆

1
(0) = 0,

𝑝
1
: 𝐼
𝐿1
(𝑡)

= ∫

𝑡

0

((1 − 𝑃) 𝛼𝐼
𝐴0
𝑆
0
(𝜏) − 𝛽

𝐴
𝐼
𝐿0
(𝜏)

−𝑇
𝐿
𝐼
𝐿
0 (𝜏) − 𝛿𝐼

𝐿0
(𝜏)) 𝑑𝜏, 𝐼

𝐿1
(0) = 0,

𝑝
1
: 𝐼
𝐴1
(𝑡)

= ∫

𝑡

0

(𝑃𝛼𝐼
𝐴0
𝑆
0
(𝜏) + 𝛽

𝐴
𝐼
𝐿0
(𝜏)

−𝑇
𝐴
𝐼
𝐴0
(𝜏) − 𝛿𝐼

𝐴0
(𝜏) − 𝜀𝐼

𝐴0
(𝜏)) 𝑑𝜏, 𝐼

𝐴1
(0) = 0,

...

𝑝
𝑛
: 𝑆
𝑛
(𝑡)

= ∫

𝑡

0

(V𝑓𝑁 − 𝛼

𝑛−1

∑

𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1

(𝜏) + 𝛿𝑆
𝑛−1

(𝜏)

+𝑇
𝐴
𝐼
𝐴(𝑛−1)

(𝜏) + 𝑇
𝐿
𝐼
𝐿(𝑛−1)

(𝜏))𝑑𝜏,

𝑆
𝑛−1

(0) = 0,

𝑝
𝑛
: 𝐼
𝐿𝑛
(𝑡)

= ∫

𝑡

0

((1 − 𝑃) 𝛼

𝑛−1

∑

𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1

(𝜏) − 𝛽
𝐴
𝐼
𝐿(𝑛−1)

(𝜏)

−𝑇
𝐿
𝐼
𝐿(𝑛−1)

(𝜏) − 𝛿𝐼
𝐿(𝑛−1)

(𝜏))𝑑𝜏,

𝐼
𝐿𝑛
(0) = 0

𝑝
𝑛
: 𝐼
𝐴𝑛

(𝑡)

= ∫

𝑡

0

(𝑃𝛼

𝑛−1

∑

𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1

(𝜏) + 𝛽
𝐴
𝐼
𝐿(𝑛−1)

(𝜏) − 𝑇
𝐴
𝐼
𝐴(𝑛−1)

(𝜏)

−𝛿𝐼
𝐴(𝑛−1)

(𝜏) − 𝜀𝐼
𝐴(𝑛−1)

(𝜏))𝑑𝜏, 𝐼
𝐴𝑛

(0) = 0.

(13)

Integrating the previous, we obtain the following compo-
nents:

𝑆
0
(𝑡) = 𝑆 (0) ; 𝐼

𝐿0
(𝑡) = 𝐼

𝐿
(0) ;

𝐼
𝐴0
(𝑡) = 𝐼

𝐴
(0) ,

𝑆
1
(𝑡) = (V𝑓𝑁 − 𝛼𝐼

𝐴0
𝑆
0
+ 𝛿𝑆
0
+ 𝑇
𝐴
𝐼
𝐴0

+ 𝑇
𝐿
𝐼
𝐿0
) 𝑡,

𝐼
𝐿1
(𝑡) = ((1 − 𝑃) 𝛼𝐼

𝐴0
𝑆
0
− 𝛽
𝐴
𝐼
𝐿0
− 𝑇
𝐿
𝐼
𝐿
0 − 𝛿𝐼

𝐿0
) 𝑡,

𝐼
𝐴1
(𝑡) = (𝑃𝛼𝐼

𝐴0
𝑆
0
+ 𝛽
𝐴
𝐼
𝐿0
− 𝑇
𝐴
𝐼
𝐴0

− 𝛿𝐼
𝐴0

− 𝜀𝐼
𝐴0
) 𝑡.

(14)

For simplicity, let us put

𝑎 = (V𝑓𝑁 − 𝛼𝐼
𝐴0
𝑆
0
+ 𝛿𝑆
0
+ 𝑇
𝐴
𝐼
𝐴0

+ 𝑇
𝐿
𝐼
𝐿0
) ,

𝑏 = ((1 − 𝑃) 𝛼𝐼
𝐴0
𝑆
0
− 𝛽
𝐴
𝐼
𝐿0
− 𝑇
𝐿
𝐼
𝐿
0 − 𝛿𝐼

𝐿0
) ,

𝑐 = (𝑃𝛼𝐼
𝐴0
𝑆
0
+ 𝛽
𝐴
𝐼
𝐿0
− 𝑇
𝐴
𝐼
𝐴0

− 𝛿𝐼
𝐴0

− 𝜀𝐼
𝐴0
) ,

𝑆
2
(𝑡) =

1

2
𝑡
2
(𝑏𝑇
𝐴
+ 𝑐𝑇
𝐿
− 𝑎𝐼
𝐴0
𝛼 − 𝑏𝑆

0
𝛼 + 𝑎𝛿)

=
𝑡
2

2
𝑎
1
,

𝐼
𝐿2
(𝑡) =

1

2
𝑡
2
(−𝑐𝑇
𝐿
+ 𝑎𝐼
𝐴0
𝛼 − 𝑎𝐼

𝐴0
𝑃𝛼

+𝑏𝑆
0
𝛼 − 𝑐𝛽

𝐴
− 𝑐𝛿) =

𝑡
2

2
𝑏
1
,

𝐼
𝐴2
(𝑡) =

1

2
𝑡
2
(𝑎𝐼
𝐴0
𝑃𝛼 + 𝑏𝑃𝛼𝑆

0
− 𝑏𝑇
𝐴

+𝑐𝛽
𝐴
− 𝑏𝛿 − 𝑏𝜀) = 𝑐

1

𝑡
2

2
.

(15)

In general, we obtain the following recursive formulas:

𝑆
𝑛
(𝑡) =

𝑡
𝑛

𝑛!
𝑎
𝑛
,

𝐼
𝐿𝑛
(𝑡) =

𝑡
𝑛

𝑛!
𝑏
𝑛
,

𝐼
𝐴𝑛

(𝑡) = 𝑐
𝑛

𝑡
𝑛

𝑛!
,

(16)
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where 𝑎
𝑛
, 𝑏
𝑛
, and 𝑐

𝑛
depend on the fixed set of empirical

parameters. It therefore follows that the approximate solution
of the system (1) is given as

𝑆
𝑁
(𝑡) =

𝑁

∑

𝑛=0

𝑡
𝑛

𝑛!
𝑎
𝑛
,

𝐼
𝐿𝑁

(𝑡) =

𝑁

∑

𝑛=0

𝑡
𝑛

𝑛!
𝑏
𝑛
,

𝐼
𝐴𝑁

(𝑡) =

𝑁

∑

𝑛=0

𝑡
𝑛

𝑛!
𝑐
𝑛
.

(17)

If for instance one supposes that the total number of new
people in the location of interest is 𝑁 = 100; the initial
number of susceptible people in the location is 𝑆(0) = 96;
the initial number of TB latently infected people is 𝐼

𝐿
(0) = 3;

the initial number of TB actively infected people is 𝐼
𝐴
(0) = 1;

the probability that a susceptible person is not vaccinated is
V = 0.5; the efficient rate of vaccines is 𝑓 = 0.5; the success
rate of latent TB therapy is 𝑇

𝐿
= 0.8; the active TB treatment

cure rate is 𝑇
𝐴
= 0.74; the TB instantaneous incidence rate

per susceptible is 𝛼 = 0.41; humans natural death rate is
𝛿 = 1/(366× 70); the proportion of infection instantaneously
degenerating into active TB is 𝑃 = 0.0197; the TB-induced
death rate is 𝜀 = 0.0735; and the breakdown rate from latent
to active TB is 𝛽

𝐴
= 0.01, then the following approximate

solution is obtained as a result of the first 8 terms of the series
decomposition:

𝑆 (𝑡) = 96 − 11.2162𝑡 + 62.1069𝑡
2
− 29.5924𝑡

3
− 149.2𝑡

4

+ 48.3455𝑡
5
− 20.6378𝑡

6
+ 15.5857𝑡

7
+ ⋅ ⋅ ⋅

𝐼
𝐿
(𝑡) = 3 + 36.8527𝑡 − 62.9161𝑡

2
− 797.302𝑡

3
+ 151.174𝑡

4

− 48.8926𝑡
5
+ 20.7629𝑡

6
− 15.6036𝑡

7
+ ⋅ ⋅ ⋅

𝐼
𝐴
(𝑡) = 1 − 0.706394𝑡 + 0.252053𝑡

2
− 0.252832𝑡

3

− 1.96203𝑡
4
+ 0.573666𝑡

5
− 0.131459𝑡

6

+ 0.0190148𝑡
7
+ ⋅ ⋅ ⋅ .

(18)

If in addition we assume that no new person migrates or
is born in this area, we obtain the following figures. The
approximate solutions of the main problem are depicted in
Figures 1, 2, and 3, respectively.

Figure 1 shows that, if there is migration or newborn in
the location of interest, the number of susceptible people will
vanish as time goes, because of the natural death rate and due
toTB.Note that any person that is latently infected is removed
from the set of susceptible. Figure 2 indicates that the number
of people that are latently infected will increase up to a
certain time and then vanish as time goes. The number of
susceptible people, will become latently infected since some
are not vaccinated against the TB and finally will vanish due
to. Figure 3 indicates that the number of TB actively infected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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80

90

100

Time

Susceptible people

Figure 1: Approximate solution for the number of susceptible
people in the location.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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7

8
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Time

Latent people

Figure 2: Approximate solution for the number of TB latently
infected people.

people will also vanish because of the natural death rate and
the death due to TB.

4. Application of the HDM to the Model with
Noninteger-Order Derivative

Fractional calculus has been used to model physical and
engineering processes, which are found to be best described
by fractional differential equations. It is worth noting that the
standard mathematical models of integer-order derivatives,
including nonlinear models, do not work adequately in
many cases. In the recent years, fractional calculus has
played a very important role in various fields such as
mechanics, electricity, chemistry, biology, economics, notably
control theory, and signal and image processing.Major topics
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Figure 3: Approximate solution for the number of TB actively
infected people.

include anomalous diffusion; vibration and control; continu-
ous time random walk; Levy statistics, fractional Brownian
motion; fractional neutron point kinetic model; power law;
Riesz potential; fractional derivative and fractals; computa-
tional fractional derivative equations; nonlocal phenomena;
history-dependent process; porous media; fractional filters;
biomedical engineering; fractional phase-locked loops, and
groundwater problem (see [14–21]).

4.1. Properties and Definitions

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇, such that

𝑓(𝑥) = 𝑥
𝑝
ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0,∞), and it is said to be in

space 𝐶𝑚
𝜇
if 𝑓(𝑚) ∈ 𝐶

𝜇
,𝑚 ∈ N.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as

𝐽
𝛼
𝑓 (𝑥) =

1

Γ (𝛼)
∫

𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0

𝐽
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(19)

Properties of the operator can be found in [14–16]. We
mention only the following: for 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0,

and 𝛾 > −1,

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛼+𝛽
𝑓 (𝑥) ,

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛽
𝐽
𝛼
𝑓 (𝑥) 𝐽

𝛼
𝑥
𝛾

=
Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.

(20)

Lemma 3. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, and 𝑓 ∈ 𝐶
𝑚

𝜇
, 𝜇 ≥ −1,

then
𝐷
𝛼
𝐽
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼
𝐷
𝛼

0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑

𝑘=0

𝑓
(𝑘)

(0
+
)
𝑥
𝑘

𝑘!
, 𝑥 > 0.

(21)

Definition 4 (partial derivatives of fractional order). Assume
now that 𝑓(x) is a function of 𝑛 variables 𝑥

𝑖
𝑖 = 1, . . . , 𝑛 also

of class 𝐶 on 𝐷 ∈ R
𝑛
. We define partial derivative of order 𝛼

for 𝑓 respect to 𝑥
𝑖
the function

𝑎𝜕
𝛼

x𝑓 =
1

Γ (𝑚 − 𝛼)
∫

𝑥𝑖

𝑎

(𝑥
𝑖
− 𝑡)
𝑚−𝛼−1

𝜕
𝑚

𝑥𝑖
𝑓(𝑥
𝑗
)
𝑥𝑗=𝑡

𝑑𝑡. (22)

where 𝜕𝑚
𝑥𝑖
is the usual partial derivative of integer-order𝑚.

4.2. Approximate Solution of Fractional Version. The system
of equations under investigation here is given as

𝑑
𝜇
𝑆 (𝑡)

𝑑𝑡𝜇
= V𝑓𝑁 − 𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛿𝑆 (𝑡)

+ 𝑇
𝐴
𝐼
𝐴
(𝑡) + 𝑇

𝐿
𝐼
𝐿
(𝑡) , 0 < 𝜇 ≤ 1,

𝑑
𝜂
𝐼
𝐿
(𝑡)

𝑑𝑡𝜂
= (1 − 𝑃) 𝛼𝐼

𝐴
𝑆 (𝑡) − 𝛽

𝐴
𝐼
𝐿
(𝑡)

− 𝑇
𝐿
𝐼
𝐿
(𝑡) − 𝛿𝐼

𝐿
(𝑡) , 0 < 𝜂 ≤ 1,

𝑑
𝜐
𝐼
𝐴
(𝑡)

𝑑𝑡𝜐
= 𝑃𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛽

𝐴
𝐼
𝐿
(𝑡) − 𝑇

𝐴
𝐼
𝐴
(𝑡)

− 𝛿𝐼
𝐴
(𝑡) − 𝜀𝐼

𝐴
(𝑡) , 0 < 𝜐 ≤ 1.

(23)

Following the discussion presented earlier, we arrive at the
following equations:

𝑝
0
: 𝑆
0
(𝑡) = 𝑆 (0) ,

𝑝
0
: 𝐼
𝐿0
(𝑡) = 𝐼

𝐿
(0) ,

𝑝
0
: 𝐼
𝐴0
(𝑡) = 𝐼

𝐴
(0) ,

𝑝
1
: 𝑆
1
(𝑡)

=
1

Γ (𝜇)
∫

𝑡

0

(𝑡 − 𝜏)
𝜇−1

× (V𝑓𝑁 − 𝛼𝐼
𝐴0
𝑆
0
(𝜏) + 𝛿𝑆

0
(𝜏)

+𝑇
𝐴
𝐼
𝐴0
(𝜏) + 𝑇

𝐿
𝐼
𝐿0
(𝜏)) 𝑑𝜏,

𝑆
1
(0) = 0,

𝑝
1
: 𝐼
𝐿1
(𝑡)

=
1

Γ (𝜂)
∫

𝑡

0

(𝑡 − 𝜏)
𝜂−1

× ((1 − 𝑃) 𝛼𝐼
𝐴0
𝑆
0
(𝜏) − 𝛽

𝐴
𝐼
𝐿0
(𝜏)

−𝑇
𝐿
𝐼
𝐿
0 (𝜏) − 𝛿𝐼

𝐿0
(𝜏)) 𝑑𝜏,

𝐼
𝐿1
(0) = 0,

𝑝
1
: 𝐼
𝐴1
(𝑡)

=
1

Γ (𝜐)
∫

𝑡

0

(𝑡 − 𝜏)
𝜐−1

× (𝑃𝛼𝐼
𝐴0
𝑆
0
(𝜏) + 𝛽

𝐴
𝐼
𝐿0
(𝜏)

−𝑇
𝐴
𝐼
𝐴0
(𝜏) − 𝛿𝐼

𝐴0
(𝜏) − 𝜀𝐼

𝐴0
(𝜏)) 𝑑𝜏,

𝐼
𝐴1
(0) = 0,
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𝑝
𝑛
: 𝑆
𝑛
(𝑡)

=
1

Γ (𝜇)
∫

𝑡

0

(𝑡 − 𝜏)
𝜇−1

× (V𝑓𝑁 − 𝛼

𝑛−1

∑

𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1

(𝜏) + 𝛿𝑆
𝑛−1

(𝜏)

+𝑇
𝐴
𝐼
𝐴(𝑛−1)

(𝜏) + 𝑇
𝐿
𝐼
𝐿(𝑛−1)

(𝜏))𝑑𝜏,

𝑆
𝑛−1

(0) = 0,

𝑝
𝑛
: 𝐼
𝐿𝑛
(𝑡)

=
1

Γ (𝜂)
∫

𝑡

0

(𝑡 − 𝜏)
𝜂−1

× ((1 − 𝑃) 𝛼

𝑛−1

∑

𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1

(𝜏) − 𝛽
𝐴
𝐼
𝐿(𝑛−1)

(𝜏)

−𝑇
𝐿
𝐼
𝐿(𝑛−1)

(𝜏) − 𝛿𝐼
𝐿(𝑛−1)

(𝜏))𝑑𝜏,

𝐼
𝐿𝑛
(0) = 0,

𝑝
𝑛
: 𝐼
𝐴𝑛

(𝑡)

=
1

Γ (𝜐)
∫

𝑡

0

(𝑡 − 𝜏)
𝜐−1

× (𝑃𝛼

𝑛−1

∑

𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1

(𝜏) + 𝛽
𝐴
𝐼
𝐿(𝑛−1)

(𝜏)

− 𝑇
𝐴
𝐼
𝐴(𝑛−1)

(𝜏) − 𝛿𝐼
𝐴(𝑛−1)

(𝜏)

−𝜀𝐼
𝐴(𝑛−1)

(𝜏))𝑑𝜏,

𝐼
𝐴𝑛

(0) = 0.

(24)

Integrating the previous, we obtain the following compo-
nents:

𝑆
0
(𝑡) = 𝑆 (0) ; 𝐼

𝐿0
(𝑡) = 𝐼

𝐿
(0) ;

𝐼
𝐴0

(𝑡) = 𝐼
𝐴
(0) ,

𝑆
1
(𝑡) = −

11.2162𝑡
𝜇

Γ (1 + 𝜇)
;

𝐼
𝐿1
(𝑡) =

36.8527𝑡
𝜂

Γ (1 + 𝜂)
,

𝐼
𝐴1
(𝑡) = −

0.706394𝑡
𝜐

Γ (1 + 𝜐)
,

𝑆
2
(𝑡) = 𝑡

𝜇
(

29.4822𝑡
𝜂

Γ (1 + 𝜂 + 𝜇)
+
4.59822𝑡

𝜇

Γ (1 + 2𝜇)

+
27.2809𝑡

𝜐

Γ (1 + 𝜐 + 𝜇)
) ,

𝐼
𝐿2
(𝑡) = − 𝑡

𝜂
(
29.8522𝑡

𝜂

Γ (1 + 2𝜂)
+

4.58965𝑡
𝜇

Γ (1 + 𝜂 + 𝜇)

+
27.7492𝑡

𝜐

Γ (1 + 𝜐 + 𝜇)
) ,

𝐼
𝐴2
(𝑡) = 𝑡

𝜐
(

0.368527𝑡
𝜂

Γ (1 + 𝜂 + 𝜐)
−
0.00901337𝑡

𝜇

Γ (1 + 𝜐 + 𝜇)

+
0.520184𝑡

𝜐

Γ (1 + 2𝜐)
) ,

𝑆
3
(𝑡) = 𝑡

𝜇
(−

3.24846𝑡
𝜇+𝜐

Γ (1 + 𝜇 + 𝜐)

Γ (1 + 𝜇) Γ (1 + 𝜐) Γ (1 + 2𝜇 + 𝜐)

−
0.298522𝑡

2𝜂

Γ (1 + 2𝜂 + 𝜐)
−

15.7583𝑡
𝜂+𝜇

Γ (1 + 𝜂 + 2𝜇)

−
1.88509𝑡

2𝜇

Γ (1 + 3𝜇)
−

36.4319𝑡
𝜂+𝜐

Γ (1 + 𝜇 + 𝜐 + 𝜂)

−
10.836𝑡

𝜇+𝜐

Γ (1 + 2𝜇 + 𝜐)
−

20.0895𝑡
2𝜐

Γ (1 + 𝜇 + 2𝜐)
) ,

𝐼
𝐿3
(𝑡) = 𝑡

𝜂
(−

1148.5𝑡
2𝜂

Γ (1 + 3𝜂)
−

164.513𝑡
𝜂+𝜇

Γ (1 + 2𝜂 + 𝜇)
+

1.88158𝑡
2𝜇

Γ (1 + 𝜂 + 2𝜇)

−
1067.59𝑡

𝜂

Γ (1 + 2𝜂 + 𝜐)
+

11.1633𝑡
𝜇+𝜐

Γ (1 + 𝜂 + 𝜇 + 𝜐)

+
3.2421𝑡

𝜇+𝜐
Γ (1 + 𝜇 + 𝜐)

Γ (1 + 𝜇) Γ (1 + 𝜐) Γ (1 + 𝜂 + 𝜇 + 𝜐)
) ,

𝐼
𝐴3
(𝑡) = 𝑡

𝜐
(

0.00636699𝑡
𝜇+𝜐

Γ (1 + 𝜇 + 𝜐)

Γ (1 + 𝜇) Γ (1 + 𝜐) Γ (1 + 2𝜐 + 𝜇)

−
0.298522𝑡

2𝜂

Γ (1 + 2𝜂 + 𝜐)
−
0.0222046𝑡

𝜂+𝜇

Γ (1 + 𝜂 + 2𝜇)

+
0.00369513𝑡

2𝜇

Γ (1 + 3𝜇)
−

0.548873𝑡
𝜂+𝜐

Γ (1 + 𝜇 + 2𝜐)

+
0.0285603𝑡

𝜇+𝜐

Γ (1 + 𝜇 + 2𝜐)
−
0.38306𝑡

2𝜐

Γ (1 + 3𝜐)
) .

(25)

The remaining terms can be obtained in the samemanner.
But here only few terms of the series solutions are considered,
and the asymptotic solution is given as

𝑆 (𝑡) = 𝑆
0
(𝑡) + 𝑆

1
(𝑡) + 𝑆

2
(𝑡) + 𝑆

3
(𝑡) + ⋅ ⋅ ⋅ ,

𝐼
𝐿
(𝑡) = 𝐼

𝐿0
(𝑡) + 𝐼

𝐿1
(𝑥, 𝑡) + 𝐼

𝐿2
(𝑥, 𝑡) + 𝐼

𝐿3
(𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

𝐼
𝐴
(𝑡) = 𝐼

𝐴0
(𝑡) + 𝐼

𝐴1
(𝑥, 𝑡) + 𝐼

𝐴2
(𝑥, 𝑡) + 𝐼

𝐴3
(𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(26)

The following figures show the simulated solutions for differ-
ent values of the fractional order derivatives.The approximate
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Figure 4: Approximate for 𝜇 = 0.45, 𝜂 = 0.7, and 𝜐 = 0.85.
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Figure 5: Approximate for 𝜇 = 0.45, 𝜂 = 0.7, and 𝜐 = 0.85.
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Figure 6: Approximate for 𝜇 = 0.45, 𝜂 = 0.7, and 𝜐 = 0.85.
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Figure 7: Approximate for 𝜇 = 0.045, 𝜂 = 0.5, and 𝜐 = 0.085.
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Figure 8: Approximate for 𝜇 = 0.045, 𝜂 = 0.5, and 𝜐 = 0.085.

solutions of the main problem are depicted in Figures 4, 5, 6,
7, 8, and 9, respectively.

The numerical simulations show that the approximate
solutions are continuous functions of the noninteger-order
derivative. It is worth noting that the standard mathemati-
cal models of integer-order derivatives, including nonlinear
models, do not work adequately in many cases. It is therefore
advisable to use the fractional model for describing this
problem.

5. Conclusion

The tuberculosis model was examined for the case of integer-
and noninteger-order derivatives. Both systems of nonlinear
equations were solved with an iterative analytical model
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Figure 9: Approximate for 𝜇 = 0.045, 𝜂 = 0.5, and 𝜐 = 0.085.

called the homotopy decomposition model method. The
basic characters of the relatively new technique are presented
in detail. The approximate solutions of the noninteger case
are increasing continuous functions of the fractional order
derivative. The technique used for solving these problems is
friendly, very easy, and less time consuming. The numerical
solutions in both cases display the biological behaviour of the
real world situation.
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We introduce amixed finite elementmethod for an elliptic equationmodellingDarcy flow in porousmedia.Weuse a staggeredmesh
where the two components of the velocity and the pressure are defined on three different sets of grid nodes. In the present mixed
finite element, the approximate velocity is continuous and the conservation law still holds locally. The LBB consistent condition is
established, while the L2 error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to
confirm the theoretical analysis.

1. Introduction

We consider the discretization technique for the elliptic
problem modelling the flow in saturated porous media, or
the classical Darcy flow problem, including a system of mass
conservation law and Darcy’s law [1, 2]. The most popular
numerical methods for this elliptic equation focus on mixed
finite element methods, since by this kind of methods the
original scalar variable, called pressure, and its vector flux,
named Darcy velocity, can be approximated simultaneously
and maintain the local conservation. The classical theory for
the mixed finite element, which includes the LBB consistent
condition, the existence and uniqueness of the approximate
solution, and the error estimate, has been established. Some
mixed finite element methods such as RT mixed finite ele-
ment and BDMmixed finite element are introduced (as in [3–
6]), which satisfy the consistent condition and have optimal
order error estimate [7, 8]. Give some stabilized mixed finite
methods by adding to the classical mixed formulation some
least squares residual forms of the governing equations.

By using the abovementionedmixed finite elementmeth-
ods, the approximate velocity is continuous in the normal
direction and discontinuous in the tangential direction on
the edges of the element. This is reasonable for the case of
heterogenous permeability, yet it is desirable that the flux
be continuous in some applications [9]. In particular, when

we track the characteristic segment using the approximate
velocity, the discontinuities of the velocity may introduce
some difficulties when the characteristic line cross the edges
of element. While applying mass-conservative characteristic
finite element method to the coupled system of compressible
miscible displacement in porous media, the continuous flux
is crucial [10]. A brief description of this point will be found
at the last part of this paper.

To overcome this disadvantage, Arbogast and Wheeler
[11] introduced a mixed finite element method with an
approximate velocity continuous in both the normal direc-
tion and the tangential direction, which was got by adding
some freedom to the RT mixed finite element. In this
paper, we introduced a mixed finite element method with an
approximate velocity continuous in all directions. It is based
on rectangular mesh and uses continuous piecewise bilinear
functions to approximate the velocity components and uses
piecewise constant functions to approximate the pressure.We
obtain the element by improving a kind of element for Stokes
equation and Navier-Stokes equation given by Han [12], Han
andWu [13], andHan and Yan [14]. By using this mixed finite
element, we can get continuous velocity vector and maintain
the local conservation. Comparing to the mixed finite ele-
ment method in [11], we need less degrees of freedom for the
same convergence rate. The LBB consistent condition and 𝐿2
error estimates of velocity and pressure are also established.
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Theoutline of the rest of this paper is organized as follows.
In Sections 2 and 3, we recall the model problem and weak
formulation for the mixed finite element method and then
establish the discrete inf-sup consistent condition and 𝐿2

error estimates for the velocity and the pressure in Section 4.
In Section 5, we present some numerical examples which
verify the efficiency of the proposed mixed finite element
method. A valuable application of this method to mass-con-
servative characteristic (MCC) scheme for the coupled com-
pressible miscible displacement in porous media closes the
paper in Section 6.

2. The Mixed Finite Formulation
for Darcy Equation

The mathematical model for viscous flow in porous media
includes Darcy’s law and conservation law of mass, written as
follows:

𝑢 = −
𝜅

𝜇
∇𝑝 on Ω (Darcy’s law)

div 𝑢 = 𝜙 on Ω (mass conservation)

𝑢 ⋅ 𝑛 = 0 on Γ,

(1)

where 𝜅 > 0 is the permeability, 𝜇 > 0 is the viscosity, and 𝜙 is
the volumetric flow rate source or sink. Γ is the boundary of
Ω, and 𝑛 is the unit outward normal vector to Γ. The variable
𝑢 = (𝑢

1
, 𝑢
2
) is the Darcy velocity vector, and p is the pressure.

The source 𝜙must satisfy the consistency constraint

∫
Ω

𝜙𝑑Ω = 0. (2)

Let 𝐿2(Ω) be the space of square integrable function inΩ
with inner product (⋅, ⋅) and norm ‖ ⋅ ‖. We use the notation
of the Hilbert space

𝐻(div , Ω) = {𝑢 ∈ [𝐿
2

(Ω)]
2

; div 𝑢 ∈ 𝐿2 (Ω)} , (3)

with norm

‖𝑢‖
𝐻(div ,Ω) = {‖𝑢‖

2
+ ‖ div 𝑢‖ 2}

1/2

. (4)

Define the following subspaces of𝐻(div , Ω) and 𝐿2(Ω):

𝑉 = 𝐻
0
(div , Ω) = {𝑢 ∈ 𝐻 (div , Ω) : 𝑢 ⋅ 𝑛 = 0 on Γ} ,

𝑆 = {𝑞 | 𝑞 ∈ 𝐿
2

(Ω) : ∫
Ω

𝑞𝑑Ω = 0} .

(5)

The classical weak variational formulation of Problem (1) is
as follows: find (𝑢, 𝑝) ∈ 𝑉 × 𝑆, such that

𝑎 (𝑢, V) − 𝑏 (V, 𝑝) = 0 ∀V ∈ 𝑉,

𝑏 (𝑢, 𝑞) = (𝜙, 𝑞) ∀𝑞 ∈ 𝑆.

(6)

Here,

𝑎 (𝑢, V) = ∫
Ω

𝜇

𝜅
𝑢 ⋅ V𝑑𝑥 𝑏 (V, 𝑞) = ∫

Ω

𝑞 div V𝑑𝑥. (7)

The following discussion and discrete analysis are related
to the weak form (6). Let 𝑉

0
be a closed subspace of 𝑉 via

𝑉
0
= {V ∈ 𝑉 : 𝑏 (V, 𝑞) = 0, ∀𝑞 ∈ 𝑆} . (8)

For the bilinear forms 𝑎(𝑢, V) and 𝑏(V, 𝑞), we have the standard
result.

Lemma 1. The bilinear form 𝑎(𝑢, V) is bounded on 𝑉 × 𝑉 and
coercive on𝑉

0
, and the bilinear form 𝑏(V, 𝑞) is bound on𝑉× 𝑆.

Namely,

(1) there exist two constants 𝐶
1
> 0 and 𝛼 > 0 such that

|𝑎 (𝑢, V)| ≤ 𝐶
1
‖𝑢‖
𝐻(div ,Ω)‖V‖𝐻(div ,Ω) ∀𝑢, V ∈ 𝑉,

𝑎 (𝑢, 𝑢) ≥ 𝛼‖𝑢‖
2

𝐻(div ,Ω) ∀𝑢 ∈ 𝑉
0
,

(9)

(2) there is a constant 𝐶
2
> 0 such that

𝑏 (V, 𝑞)
 ≤ 𝐶
2

𝑞
 0,Ω‖V‖𝐻(div ,Ω) ∀𝑞 ∈ 𝑆, V ∈ 𝑉. (10)

For the space V and S, the Ladyzhenskaya-Babu ̆ska-
Brezzi(L-B-B) condition holds; see [15, 16], for example.

Lemma 2. There is a constant 𝛽 > 0 such that

sup
V∈𝑉

𝑏 (V, 𝑞)

‖V‖
𝐻(div ,Ω)

≥ 𝛽
𝑞
 0,Ω, ∀𝑞 ∈ 𝑆. (11)

It is clear that there exists a unique solution (𝑢, 𝑝) ∈ 𝑉×𝑆 to
the Problem (6).

3. Finite Element Discretization

In this section, we present the mixed finite element based on
rectangular mesh for the Darcy flow problem.

In [13], Han andWu introduced amixed finite element for
Stokes problem and then extended to solve the Navier-Stokes
problem [14]. Based on this element, we introduced the new
mixed finite element with a continuous flux approximation
for Darcy flow problem.

For simplicity, we suppose that the domain Ω is a unit
square, and the mixed finite element discussed here can be
easily generalized to the case when the domainΩ is a rectan-
gular.

Let 𝑁 be a given integer and ℎ = 1/𝑁. We construct the
finite-dimensional subspaces of 𝑆 and𝑉 by introducing three
different quadrangulations 𝜏

ℎ
, 𝜏1
ℎ
, 𝜏2
ℎ
ofΩ.

First, we divide Ω into uniform squares

𝑇
𝑖,𝑗
= {(𝑥, 𝑦) : 𝑥

𝑖−1
≤ 𝑥 ≤ 𝑥

𝑖
, 𝑦
𝑗−1

≤ 𝑦 ≤ 𝑦
𝑗
} ,

𝑖, 𝑗 = 1, . . . , 𝑁,

(12)

where 𝑥
𝑖
= 𝑖ℎ and 𝑦

𝑗
= 𝑗ℎ. The corresponding quadrangula-

tion is denoted by 𝜏
ℎ
. See Figure 1(a).

𝜏
𝑖,𝑗
= {𝑇
𝑖,𝑗
: 𝑖, 𝑗 = 1, . . . , 𝑁} . (13)
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Γ1

Γ2Γ4

Γ3

(a) (b)

(c)

Figure 1: Quadrangulations: (a)𝜏
ℎ
, (b)𝜏1
ℎ
, and (c) 𝜏2

ℎ
.

Then, for all 𝑇
𝑖,𝑗
∈ 𝜏
ℎ
, we connect all the neighbor mid-

points of the vertical sides of 𝑇
𝑖,𝑗
by straight segments if the

neighbor midpoints have the same vertical coordinate. Then,
Ω is divided into squares and rectangles. The corresponding
quadrangulation is denoted by 𝜏1

ℎ
(see Figure 1(b)). Similarly,

for all 𝑇
𝑖,𝑗
∈ 𝜏
ℎ
, we connect all the neighbor midpoints of the

horizontal sides of 𝑇
𝑖,𝑗
by straight line segments if the neigh-

bormidpoints have the same horizontal coordinate.Then, we
obtained the third quadrangulation ofΩ, which is denoted by
𝜏
2

ℎ
(see Figure 1(c)).
Based on the quadrangulation 𝜏

ℎ
, we define the piecewise

constant functional space used to approximate the pressure

𝑆
ℎ
:= {𝑞
ℎ
: 𝑞
ℎ
|
𝑇
= constant, ∀𝑇 ∈ 𝜏

ℎ
; ∫
Ω

𝑞
ℎ
𝑑𝑥 = 0} .

(14)
𝑆
ℎ
is a subspace of 𝑆.
Furthermore, using the quadrangulations 𝜏1

ℎ
and 𝜏

2

ℎ
, we

construct a subspace of 𝑉. Denote by Γ
1
, Γ
2
, Γ
3
, and Γ

4
the

south, right, north, and left sides on the boundary ofΩ. Set

𝑉
1

ℎ
= {V
ℎ
∈ 𝐶
(0)
(Ω) : V

ℎ
|
𝑇
1 ∈ 𝑄
1,1
(𝑇
1
) ∀𝑇
1
∈ 𝜏
1

ℎ
,

V
ℎ
= 0 on Γ

2
∪ Γ
4
} ,

𝑉
2

ℎ
= {V
ℎ
∈ 𝐶
(0)
(Ω) : V

ℎ
|
𝑇
2 ∈ 𝑄
1,1
(𝑇
2
) ∀𝑇
2
∈ 𝜏
2

ℎ
,

V
ℎ
= 0 on Γ

1
∪ Γ
3
} ,

(15)

where 𝑄
1,1

denotes the piecewise bilinear polynomial space
with respect to the variables 𝑥 and 𝑦. Let

𝑉
ℎ
= 𝑉
1

ℎ
× 𝑉
2

ℎ
. (16)

Obviously, 𝑉
ℎ
is a subspace of 𝑉.

Using the subspaces 𝑉
ℎ
and 𝑆
ℎ
instead of 𝑉 and 𝑆 in the

variational Problem (6), we obtain the discrete problem: find
(𝑢
ℎ
, 𝑝
ℎ
) ∈ 𝑉
ℎ
× 𝑆
ℎ
, such that

𝑎 (𝑢
ℎ
, V
ℎ
) − 𝑏 (V

ℎ
, 𝑝
ℎ
) = 0 ∀V

ℎ
∈ 𝑉
ℎ
,

𝑏 (𝑢
ℎ
, 𝑞
ℎ
) = (𝜙, 𝑞

ℎ
) ∀𝑞

ℎ
∈ 𝑆
ℎ
.

(17)

4. Convergence Analysis and Error Estimate

In this section, we give the corresponding convergence anal-
ysis and error estimate. Firstly, we define an interpolating for
the following analysis.

For the quadrangulation 𝜏
ℎ
, we divided the edges of all

squares into two sets. The first one denoted by 𝐿
𝑉
contains

all vertical edges, and the second one denoted by 𝐿
𝐻
contains

all horizontal edges. We define the interpolation operator
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Π : 𝑉 → 𝑉
ℎ
by Π𝑢 = (Π

1

ℎ
𝑢
1
, Π
2

ℎ
𝑢
2
) ∈ 𝑉
1

ℎ
× 𝑉
2

ℎ
, which satisfy

the following:

∫
𝑙

Π
1

ℎ
𝑢
1
𝑑𝑠 = ∫

𝑙

𝑢
1
𝑑𝑠 ∀𝑙 ∈ 𝐿

𝑉
 ,

∫
𝑙

Π
2

ℎ
𝑢
2
𝑑𝑠 = ∫

𝑙

𝑢
2
𝑑𝑠 ∀𝑙 ∈ 𝐿

𝐻
 ,

(18)

where 𝐿
𝑉
 is a set of edges of elements got by bisecting the

most bottom element edges and the most top element edges
of 𝐿
𝑉
and 𝐿

𝐻
 are got by bisecting themost left element edges

and the most right element edges of 𝐿
𝐻
. See Figures 2 and 3.

Lemma3. For any𝑢 ∈ 𝑉, the interpolatingΠ𝑢 ∈ 𝑉
ℎ
is unique-

ly determined by (18).

Proof. It is easy to see that (18) is equivalent to an equation of
𝐴𝑋 = 𝐵, where A is a matrix and X, B are vectors. Direct
calculation shows that

𝐴 = ℎ ∗ diag {𝐴
1
, 𝐴
1
, . . . } , (19)

and the form of submatrix 𝐴
1
is as follows

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1

4

1

4
0 0 0 ⋅ ⋅ ⋅ 0 0 0 0

0
3

8

1

8
0 0 ⋅ ⋅ ⋅ 0 0 0 0

0
1

8

3

4

1

8
0 ⋅ ⋅ ⋅ 0 0 0 0

0 0
1

8

3

4

1

8
⋅ ⋅ ⋅ 0 0 0 0

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0 0 0 0 0 ⋅ ⋅ ⋅
1

8

3

4

1

8
0

0 0 0 0 0 ⋅ ⋅ ⋅ 0
1

8

3

8
0

0 0 0 0 0 ⋅ ⋅ ⋅ 0 0
1

4

1

4

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

. (20)

We can see that the matrix is invertible and the equation is
solvable, and therefore X can be uniquely determined.

Assume that the solution (𝑢, 𝑝) of Problem (6) has the
following smoothness properties:

𝑢 ∈ 𝑉

:= 𝑉⋂𝐻

2

((Ω))
2
, 𝑝 ∈ 𝑆⋂𝐻

1

(Ω) . (21)

Then, we should give the following lemma about the proper-
ties of the interpolations defined in (18).

Lemma 4. (i) There exist two constants 𝐶
3
and 𝐶

4
indepen-

dent of h, such that

|𝑢 − Π𝑢|
𝑖,2,Ω

≤ 𝐶
3
ℎ
𝑗−𝑖

|𝑢|
𝑗,2,Ω

, 𝑖 = 0, 1, 𝑖 ≤ 𝑗 ≤ 2, (22)

inf
𝑞ℎ∈𝑆ℎ

𝑝 − 𝑞ℎ
 ≤ 𝐶

4
ℎ|𝑝|
1,Ω
. (23)

(ii) There exists a constant 𝐶
5
independent of h such that

‖Π𝑢‖
𝐻(div ,Ω) ≤ 𝐶

5
‖𝑢‖
1,Ω

∀𝑢 ∈ 𝑉. (24)

Some edges on L
V

(a)

Corresponding edges on L
V


(b)

Figure 2: Some edges on 𝐿
𝑉
and corresponding edges on 𝐿

𝑉
 .

(iii) For any 𝑢 ∈ 𝑉, we have that

∫
Ω

𝑞
ℎ
div (𝑢 − Π𝑢) 𝑑𝑥 = 0, ∀𝑞

ℎ
∈ 𝑆
ℎ
. (25)

Proof. The estimates (22), (23), and (24) follow from Defini-
tion (18) and the approximation theory; see [1], for example.

For (25), based on Green formulation, we know that

∫
Ω

𝑞
ℎ
div (𝑢 − Π𝑢) 𝑑𝑥 = ∑

𝑇∈𝜏ℎ

∫
𝑇

𝑞
ℎ
div (𝑢 − Π𝑢) 𝑑𝑥

= ∑

𝑇∈𝜏ℎ

∫
𝜕𝑇

𝑞
ℎ
(𝑢 − Π𝑢) ⋅ ⃗𝑛𝑑𝑠

− ∑

𝑇∈𝜏ℎ

∫
𝑇

∇𝑞
ℎ
⋅ (𝑢 − Π𝑢) 𝑑𝑥

= ∑

𝑙∈𝐿𝑉

∫
𝑙

𝑞
ℎ
(𝑢
1
− Π
1

ℎ
𝑢
1
) 𝑛
1
𝑑𝑠

+ ∑

𝑙∈𝐿𝐻

∫
𝑙

𝑞
ℎ
(𝑢
2
− Π
2

ℎ
𝑢
2
) 𝑛
2
𝑑𝑠

= ∑

𝑙∈𝐿
𝑉


∫
𝑙

𝑞
ℎ
(𝑢
1
− Π
1

ℎ
𝑢
1
) 𝑛
1
𝑑𝑠

+ ∑

𝑙∈𝐿
𝐻


∫
𝑙

𝑞
ℎ
(𝑢
2
− Π
2

ℎ
𝑢
2
) 𝑛
2
𝑑𝑠

= 0.

(26)

Here, ⃗𝑛 = (𝑛
1
, 𝑛
2
), and we use (18) for the last step. The proof

is completed.
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Some edges on L
H

(a)

Corresponding edges on L
H


(b)

Figure 3: Some edges on 𝐿
𝐻
and corresponding edges on 𝐿

𝐻
 .

Theorem 5. The discrete Inf-sup condition is valid; namely,
there is a constant 𝛽 ≥ 0, such that

sup
Vℎ∈𝑉ℎ

𝑏 (V
ℎ
, 𝑞
ℎ
)

Vℎ
𝐻(div ,Ω)

≥ 𝛽
𝑞ℎ

 , ∀𝑞
ℎ
∈ 𝑆
ℎ
. (27)

Proof. From the process above, we obtain that 𝑏(V, 𝑞
ℎ
) =

𝑏(ΠV, 𝑞
ℎ
), any V ∈ 𝑉, 𝑞

ℎ
∈ 𝑆
ℎ
. For any 𝑝

ℎ
∈ 𝑆
ℎ
, there exists

V ∈ (𝐻1
0
(Ω))
2, such that

∇ ⋅ V = 𝑞
ℎ
, ‖V‖

1,Ω
≤ 𝐶
6

𝑞ℎ
 , (28)

where 𝐶
6
is a constant independent of 𝑞

ℎ
; then we obtain

sup
Vℎ∈𝑉ℎ

𝑏 (V
ℎ
, 𝑞
ℎ
)

Vℎ
𝐻(div ,Ω)

≥
𝑏 (ΠV, 𝑞

ℎ
)

‖ΠV‖
𝐻(div ,Ω)

=
𝑏 (V, 𝑞

ℎ
)

‖ΠV‖
𝐻(div ,Ω)

=

𝑞ℎ


2

0

‖ΠV‖
𝐻(div ,Ω)

.

(29)

Using Lemma 4, we have that

sup
Vℎ∈𝑉ℎ

𝑏 (V
ℎ
, 𝑞
ℎ
)

Vℎ
𝐻(div ,Ω)

≥
1

𝐶
5

𝑞ℎ


2

0

‖V‖
1,Ω

≥
1

𝐶
5
𝐶
6

𝑞ℎ
 .

(30)

Taking 𝛽 = 1/𝐶
5
𝐶
6
, we complete the proof of (27).

With the analysis technique presented by Arbogast and
Wheeler [11], we consider the numerical analysis of themixed
finite element presented in this paper. Recall the 𝑅𝑇

0
mixed

element spaces 𝑉
ℎ
× 𝑆


ℎ
[3, 5, 6] based on the partition 𝜏

ℎ

𝑉


ℎ
= 𝑄
1,0
(𝜏
ℎ
) × 𝑄
0,1
(𝜏
ℎ
) , 𝑆



ℎ
= 𝑆
ℎ
. (31)

Define the interpolation operator Π : 𝑉 → 𝑉


ℎ
by the

following equations:

∫
𝑙

Π

𝑢
1
𝑑𝑠 = ∫

𝑙

𝑢
1
𝑑𝑠 ∀𝑙 ∈ 𝐿

𝑉
,

∫
𝑙

Π

𝑢
2
𝑑𝑠 = ∫

𝑙

𝑢
2
𝑑𝑠 ∀𝑙 ∈ 𝐿

𝐻
.

(32)

Denote by 𝑃
𝑆
: 𝑆 → 𝑆

ℎ
the 𝐿2 projection operator and by

𝑃
𝑉
 : 𝑉 → 𝑉



ℎ
the (𝐿2(Ω))2 vector projection operator. The

following properties of the projections hold:
𝑝 − 𝑃𝑆𝑝

 0 ≤ 𝐶ℎ|𝑝|
1

𝑢 − 𝑃𝑉𝑢
 0 ≤ 𝐶ℎ‖𝑢‖

1
.

(33)

Then, we have an important property about the operator Π.

Lemma 6. For any 𝑢 ∈ 𝑄
1,1
(𝜏
1

ℎ
) × 𝑄

1,1
(𝜏
2

ℎ
), there holds the

equivalence Π𝑢 = 𝑃
𝑉
𝑢; namely,

(𝑢 − Π

𝑢, V) = 0, ∀V ∈ 𝑉



ℎ
. (34)

Proof. As the definition of 𝑉
ℎ
is based on each element 𝑇, we

focus our discussion on arbitrary element 𝑒 ⊂ 𝜏
ℎ
, 𝑒 = [𝑥

0
, 𝑥
0
+

ℎ] × [𝑦
0
, 𝑦
0
+ ℎ]. Firstly, we consider the x-component (see

Figure 4). The analysis for y-component is similar.
For a function 𝑈

1
∈ 𝑉
1

ℎ
, on an element 𝑒, it is uniquely

given by its node values 𝑢
𝑖
, 𝑖 = 1, . . . , 6. As𝑈

1
is a continuous

bilinear function on each of the two parts as shown in
Figure 4. Then, from (32), we know that Π𝑢

1
= 𝑎 + 𝑏𝑥 is

given by

∫
𝑙1

(𝑎 + 𝑏𝑥) 𝑑𝑠 = (𝑎 + 𝑏𝑥
0
) ∗ ℎ = (𝑢

1
+ 2𝑢
3
+ 𝑢
5
) ∗

ℎ

4

∫
𝑙2

(𝑎 + 𝑏𝑥) 𝑑𝑠 = (𝑎 + 𝑏 (𝑥
0
+ ℎ)) ∗ ℎ = (𝑢

2
+ 2𝑢
4
+ 𝑢
6
) ∗

ℎ

4
.

(35)

We deduce that

𝑎 =
𝑢
1
+ 2𝑢
3
+ 𝑢
5
− 4𝑏𝑥

0

4
,

𝑏 = ((𝑢
2
− 𝑢
1
) + 2 (𝑢

4
− 𝑢
3
) + (𝑢

6
− 𝑢
5
)) ∗

1

4ℎ
.

(36)

It is clear that we just need to verify (34) for both V = 1 and
V = 𝑥.

We first consider V = 1. Denote by 𝜑
𝑖
the node basis

function at the point 𝑖, which implies that 𝜑
𝑖
(𝑥
𝑗
) = 𝛿
𝑖,𝑗
, which

has the value 1 if and only if 𝑖 = 𝑗; otherwise, it is zero. By
direct calculation, we can get the basis, for example,

𝜑
1
=
1

4
(2 −

2

ℎ
𝑥 +

2

ℎ
𝑥
0
)(2 −

4

ℎ
𝑦 +

4

ℎ
𝑦
0
) , (37)

so

∫
𝑒

𝑈
1
𝑑𝑥 𝑑𝑦

= ∫

𝑥0+ℎ

𝑥0

∫

𝑦0+

ℎ

2

𝑦0

(𝑢
1
𝜑
1
+ 𝑢
2
𝜑
2
+ 𝑢
3
𝜑
3
+ 𝑢
4
𝜑
4
) 𝑑𝑥 𝑑𝑦

+ ∫

𝑥0+ℎ

𝑥0

∫

𝑦0+ℎ

𝑦0+ℎ/2

(𝑢
3
𝜑
3
+ 𝑢
4
𝜑
4
+ 𝑢
5
𝜑
5
+ 𝑢
6
𝜑
6
) 𝑑𝑥 𝑑𝑦

=
ℎ
2

8
(𝑢
1
+ 𝑢
2
+ 𝑢
3
+ 𝑢
4
) +

ℎ
2

8
(𝑢
3
+ 𝑢
4
+ 𝑢
5
+ 𝑢
6
)

=
ℎ
2

8
(𝑢
1
+ 𝑢
2
+ 2𝑢
3
+ 2𝑢
4
+ 𝑢
5
+ 𝑢
6
) .

(38)
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Q1,0

l1 l2

One element on 𝜏h

(a)

Q1,1

Q1,1

u1 u2

u3 u4

u5 u6

Its corresponding portion on 𝜏
1

h

(b)

Figure 4: An element on 𝜏
ℎ
and its corresponding portion on 𝜏1

ℎ
.

By direct computation, we can easily see that
∫
𝑒
Π

𝑈
1
𝑑𝑥 𝑑𝑦 has the same value, so

∫
𝑒

Π

𝑈
1
𝑑𝑥 𝑑𝑦 = ∫

𝑒

𝑈
1
𝑑𝑥 𝑑𝑦. (39)

When V = 𝑥, we have that

∫
𝑒

Π

𝑈
1
∗ 𝑥𝑑𝑥𝑑𝑦 = ∫

𝑥0+ℎ

𝑥0

∫

𝑦0+ℎ

𝑦0

𝑎𝑥 + 𝑏𝑥
2
𝑑𝑥 𝑑𝑦

= 𝑎(𝑥
0
ℎ
2
+
ℎ
3

2
)

+ 𝑏 (𝑥
2

0
ℎ
2
+ 𝑥
0
ℎ
3
+
1

3
ℎ
4
) ,

(40)

where 𝑎, 𝑏 are defined in (36). Next, we compare the coeffi-
cients of 𝑢

𝑖
in (40) with the coefficients in ∫

𝑒
𝑈
1
∗ 𝑥𝑑𝑥𝑑𝑦,

∫
𝑒

𝜑
1
∗ 𝑥𝑑𝑥𝑑𝑦 = ∫

𝑦0+ℎ/2

𝑦0

∫

𝑥0+ℎ

𝑥0

𝜑 ∗ 𝑥𝑑𝑥𝑑𝑦

=
ℎ

2
∫

𝑥0+ℎ

𝑥0

1

4
(2𝑥 −

2

ℎ
𝑥
2
+
2

ℎ
𝑥
0
𝑥)

=
1

24
ℎ
3
+
1

8
𝑥
0
ℎ
2
= 𝑘
1
,

(41)

which determine 𝑘
1
as the coefficient of 𝑢

1
.With similar com-

putation, we obtain that

𝑘
5
= 𝑘
1
, 𝑘

2
= 𝑘
6
=
𝑥
0
ℎ
2

8
+
ℎ
3

12
,

𝑘
3
=
𝑥
0
ℎ
2

4
+
ℎ
3

12
, 𝑘

4
=
𝑥
0
ℎ
2

4
+
ℎ
3

6
.

(42)

Comparing with (40), we can find that (34) is true with V = 𝑥.
So, we certify the lemma.

Theorem 7. If (𝑢, 𝑝) satisfy (6) and (𝑢
ℎ
, 𝑝
ℎ
) satisfy (17), then

there exists a positive constant𝐶 independent of ℎ such that the
following error estimates hold:

𝑢 − 𝑢ℎ
 0 ≤ 𝐶ℎ‖𝑢‖

1
,

𝑝 − 𝑝ℎ
 0 ≤ 𝐶ℎ (‖𝑢‖

1
+
𝑝
 1) .

(43)

Proof. First, we focus on the error 𝑢−𝑢
ℎ
. From (6), (17), (18),

and (32), we derive that

𝑏 (𝑢, 𝑞
ℎ
) = 𝑏 (𝑢

ℎ
, 𝑞
ℎ
) = 𝑏 (Π𝑢, 𝑞

ℎ
) = 𝑏 (Π


𝑢, 𝑞
ℎ
) , ∀𝑞

ℎ
∈ 𝑆
ℎ
.

(44)

Let V = Π
V
ℎ
in (6); then

𝑎 (𝑢, Π

V
ℎ
) − 𝑏 (Π


V
ℎ
, 𝑝) = 0. (45)

Namely,

𝑎 (𝑃V𝑢, Vℎ) − (𝑃𝑠∇ ⋅ V
ℎ
, 𝑝) = 𝑎 (𝑃V𝑢, Vℎ) − 𝑏 (Vℎ, 𝑃𝑠𝑝) = 0.

(46)

Here, we used the property∇⋅ΠV = 𝑃
𝑠
∇⋅V. Subtracting from

(17), we get that

𝑎 (𝑃V𝑢 − 𝑢ℎ, Vℎ) − 𝑏 (Vℎ, 𝑃𝑠𝑝 − 𝑝ℎ) = 0. (47)

Take

V
ℎ
= Π𝑢 − 𝑢

ℎ
, 𝑞

ℎ
= 𝑃
𝑠
𝑝 − 𝑝
ℎ
. (48)

Then

𝑎 (𝑃V𝑢 − 𝑢ℎ, Π𝑢 − 𝑢ℎ) − 𝑏 (Π𝑢 − 𝑢ℎ, 𝑃𝑠𝑝 − 𝑝ℎ) = 0. (49)

Due to (44), we find that

𝑏 (Π𝑢 − 𝑢
ℎ
, 𝑃
𝑠
𝑝 − 𝑝
ℎ
) = 0. (50)
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Now, we analyze the error 𝑢 − 𝑢
ℎ
based on the equations

above

𝑎 (𝑢 − 𝑢
ℎ
, 𝑢 − 𝑢

ℎ
)

= 𝑎 (𝑢 − 𝑢
ℎ
, 𝑢 − Π𝑢) + 𝑎 (𝑢 − 𝑢

ℎ
, Π𝑢 − 𝑢

ℎ
)

= 𝑎 (𝑢 − 𝑢
ℎ
, 𝑢 − Π𝑢) + 𝑎 (𝑢 − 𝑃V𝑢,Π𝑢 − 𝑢ℎ)

+ 𝑎 (𝑃V𝑢 − 𝑢ℎ, Π𝑢 − 𝑢ℎ)

≤ 𝜖
1

𝑢 − 𝑢ℎ


2

0
+
1

𝜖
1

‖𝑢 − Π𝑢‖
2

0

+ 𝜖
2
‖Π𝑢 − 𝑢‖

2

0
+
1

𝜖
2

𝑢 − 𝑃V𝑢


2

0

+ 𝜖
3

𝑢 − 𝑢ℎ


2

0
+
1

𝜖
3

𝑢 − 𝑃V𝑢


2

0
,

(51)

where 𝜖
𝑖
> 0, 𝑖 = 1, 2, 3 are positive constants. Take the value

of 𝜖
1
= 𝜖
3
= 𝜇/4𝜅, 𝜖

2
= 1, and combining with (22) and (33),

we conclude that

𝑢 − 𝑢ℎ
 0 ≤ 𝐶ℎ‖𝑢‖

1
. (52)

We also can obtain a higher order error estimate for
‖𝑃
𝑠
𝑝 − 𝑝
ℎ
‖. Consider the classical duality argument. Let 𝜙 be

the solution of the following elliptical problem:

Δ𝜙 = 𝑃
𝑠
𝑝 − 𝑝
ℎ
,

𝜕𝜙

𝜕𝑛
= 0. (53)

By the elliptic regularity, the estimate holds: |𝜙|
𝐻
2 ≤

𝐶‖𝑃
𝑠
𝑝 − 𝑝
ℎ
‖
0
. So

𝑃𝑠𝑝 − 𝑝ℎ


2

0

= (𝑃
𝑠
𝑝 − 𝑝
ℎ
, ∇ ⋅ ∇𝜙)

= (𝑃
𝑠
𝑝 − 𝑝
ℎ
, ∇ ⋅ Π∇𝜙)

= 𝑎 (𝑃V𝑢 − 𝑢ℎ, Π∇𝜙)

= 𝑎 (𝑃V𝑢 − 𝑢ℎ, Π∇𝜙 − 𝑃V∇𝜙) + 𝑎 (𝑃V𝑢 − 𝑢ℎ, 𝑃V∇𝜙)

= 𝑎 (𝑃V𝑢 − 𝑢ℎ, Π∇𝜙 − 𝑃V∇𝜙) + 𝑎 (𝑃V𝑢 − 𝑢, 𝑃V∇𝜙)

+ 𝑎 (𝑢 − 𝑢
ℎ
, 𝑃V∇𝜙)

= 𝑎 (𝑃V𝑢 − 𝑢ℎ, Π∇𝜙 − 𝑃V∇𝜙) + 𝑎 (𝑢 − 𝑢ℎ, 𝑃V∇𝜙 − ∇𝜙)

+ 𝑎 (𝑢 − 𝑢
ℎ
, ∇𝜙) .

(54)

Now, we estimate the right hand terms of the above ine-
quality. From (33), (22), and (52), we have

𝑎 (𝑃V𝑢 − 𝑢ℎ, Π∇𝜙 − 𝑃V∇𝜙) = 𝑎 (𝑃V𝑢 − 𝑢,Π∇𝜙 − ∇𝜙)

+ 𝑎 (𝑢 − 𝑢
ℎ
, Π∇𝜙 − ∇𝜙)

+ 𝑎 (𝑃V𝑢 − 𝑢, ∇𝜙 − 𝑃V∇𝜙)

+ 𝑎 (𝑢 − 𝑢
ℎ
, ∇𝜙 − 𝑃V∇𝜙)

≤ 𝐶ℎ
2

‖𝑢‖
1
| 𝜙|
𝐻
2

≤ 𝐶ℎ
2

‖𝑢‖
1
|
𝑃𝑠𝑝 − 𝑝ℎ

 0.

(55)

It is easy to see that

𝑎 (𝑢 − 𝑢
ℎ
, 𝑃V∇𝜙 − ∇𝜙) ≤ 𝐶ℎ

2

‖𝑢‖
1
|𝜙|
𝐻
2

≤ 𝐶ℎ
2

‖𝑢‖
1

𝑃𝑠𝑝 − 𝑝ℎ
 0,

𝑎 (𝑢 − 𝑢
ℎ
, ∇𝜙)

= 𝑎 (𝑢 − Π𝑢, ∇𝜙) + 𝑎 (Π𝑢 − 𝑢
ℎ
, ∇𝜙 − 𝑃V∇𝜙)

+ 𝑎 (Π𝑢 − 𝑢
ℎ
, 𝑃V∇𝜙)

≤ 𝐶 (ℎ
2

|𝑢|
2

𝜙
 2 + ℎ

2

|𝑢|
1

𝜙
 2)

≤ 𝐶ℎ
2

‖𝑢‖
2

𝑃𝑠𝑝 − 𝑝ℎ
 0.

(56)

Here, we used the fact that 𝑎(Π𝑢−𝑢
ℎ
, 𝑃V∇𝜙) = 0which is got

from the Green formulation and (44).
Combining the above inequalities, we conclude that

𝑝 − 𝑝ℎ
 0 ≤

𝑝 − 𝑃𝑠𝑝
 0 +

𝑃𝑠𝑝 − 𝑝ℎ
 0

≤ 𝐶ℎ (‖𝑢‖
1
+
𝑝
 0) .

(57)

We complete the proof.

It is worth mentioning that we analyze this mixed finite
element method in a direct way as it is not straightforward to
apply the classical inf-sup theory. We just have the coercivity
property for 𝑎(𝑢

ℎ
, V
ℎ
) on the normal 𝐿

2
space, not in the

subspace of V
0ℎ

= {V
ℎ
∈ 𝑉
ℎ
: 𝑏(V
ℎ
, 𝑞
ℎ
) = 0, ∀𝑞

ℎ
∈ 𝑆
ℎ
}, and

the same issue also occurs in [11]. The problem is that testing
(∇ ⋅ V, 𝑤) by 𝑤 ∈ 𝑊

ℎ
does not control the full divergence

of 𝑉, and it does not occur when this method is applied to
Stokes or Navier-Stokes equations (as in [13, 14]). As a result,
we just obtain a convergence rate of ‖𝑢 − 𝑢

ℎ
‖
0
. Failing to

obtain convergence rate of ‖𝑢 − 𝑢
𝑢
‖
𝐻(div ,Ω) is a weak point

of this proposed mixed formulation compared to the clas-
sical Raviart-Thomas mixed method. But the significance of
continuous flux applied tomass conservation can be found in
Section 6.

5. Numerical Examples

In this section, we present some numerical results for the
model Problem (1). For simplicity, we assume that the domain
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Table 1: Three numerical test cases.

Case Coefficient 𝜇/𝜅 True solution 𝑢 True solution 𝑝

1 1 (
𝑥
2
𝑦 − 𝑥

4
𝑦

𝑥𝑦
4
− 𝑥𝑦
2
) (𝑥 − 1/2)(𝑦 − 1/2)

2 (

𝑒
2𝑥𝑦
2

0

0
1

𝑥 + 𝑦

) (
𝑥
2
𝑦 − 𝑥

4
𝑦

𝑥𝑦
4
− 𝑥𝑦
2
) (𝑥 − 1/2)(𝑦 − 1/2)

3 (

𝑒
2𝑥𝑦
2

0

0
1

𝑥 + 𝑦

) (
𝑒
−𝑥𝑦

𝑥
2 cos𝑦

) 𝑦𝑒
𝑥

is a unit squareΩ = [0, 1] × [0, 1] and the test cases are sum-
marized in Table 1. We can choose the boundary conditions
and the right hand terms according to the analytical solutions.

We compare our method to the formulation constructed
by Arbogast and Wheeler [11]. Its corresponding discrete
finite element spaces are

𝑉
ℎ
= {V
ℎ
∈ (𝐶
(0)
(Ω))
2

: V
ℎ
|
𝑇
∈ 𝑄
1,2
(𝑇)

× 𝑄
2,1
(𝑇) , ∀ 𝑇 ∈ 𝜏

ℎ
} ,

𝑆
ℎ
= {𝑞
ℎ
: 𝑞
ℎ
|
𝑇
= constant,

∀𝑇 ∈ 𝜏
ℎ
; ∫
Ω

𝑞
ℎ
𝑑𝑥 = 0} .

(58)

The results of the error estimate with various norms are listed
in Table 2, while the corresponding convergence rates of the
presented method are shown in Table 3.

Close results of numerical errors for both formulations
are shown in Table 2. From Table 3, we can see that 𝑝 con-
verges to𝑝

ℎ
as𝑂(ℎ) and𝑃

𝑠
𝑝−𝑝
ℎ
as𝑂(ℎ2) for our formulation,

which both agree with the theorem. From the examples,
we can observe that 𝑢

ℎ
converges to 𝑢 somewhat better

than expected, and it appears that on the uniform grid we
attain 𝑂(ℎ

3/2
) superconvergence in the 𝐿

2 norm which is
similar to the tests of Arbogast’s formulation [11]. Yet, the
degrees of freedom of our method are less than Arbogast’s
scheme. As in the case of 64 ∗ 64, the degrees of freedom of
Arbogast’s scheme are 20866 and 12676 for our formulation.
The convergence rate of ‖𝑢 − 𝑢

ℎ
‖
𝐻(div ,Ω) is first order, but here

we cannot give the corresponding analysis.

6. A Valuable Application

In this section, we briefly show an application of the proposed
mixed finite element method to the miscible displacement
of one incompressible fluid by another in porous media. The
model is as follows:

𝜇 (𝐶)𝐾
−1
𝑢 + ∇𝑝 = 𝛾 (𝐶) ∇𝑑, (𝑥, 𝑡) ∈ Ω × 𝐽,

𝜙
𝜕𝐶

𝜕𝑡
+ ∇ ⋅ (𝑢𝐶) − ∇ ⋅ (𝐷 (𝑢) ∇𝐶) = 𝐶𝑞, (𝑥, 𝑡) ∈ Ω × 𝐽,

∇ ⋅ 𝑢 = 𝑔, (𝑥, 𝑡) ∈ Ω × 𝐽,

𝑢 ⋅ 𝑛 = 𝑔
1
, (𝑥, 𝑡) ∈ 𝜕Ω × 𝐽,

𝐶 (𝑥, 0) = 𝐶
0
(𝑥) , 𝑥 ∈ Ω,

(59)

where 𝛾(𝐶) and 𝑑 are the gravity coefficient and vertical
coordinate, 𝜙(𝑥) is the porosity of the rock, and 𝐶𝑞 rep-
resents a known source. 𝐷(𝑥, 𝑢) is the molecular diffusion
and mechanical dispersion coefficient. For convenience, we
denote that𝑓 = 𝐶𝑞 and 𝑎(𝐶) = 𝜇(𝐶)𝐾

−1. Let𝜒 : (0, 𝑇] → 𝑅
2

be the solution of the ordinary differential equation

𝑑𝜒

𝑑𝜏
=
u (𝜒 (𝑥, 𝑡; 𝜏) , 𝜏)

𝜙 (𝑥)
,

𝜒 (𝑥, 𝑡; 𝑡) = 𝑥.

(60)

Let 𝑉 = 𝐻(div , Ω), 𝑆 = 𝐿
2

0
(Ω),𝑀 = 𝐻

1
(Ω); then, we derive

the entire weak formulation for the model: find (u, 𝑝, 𝐶) ∈

𝑉 × 𝑆 ×𝑀, such that
(𝑎 (𝐶) 𝑢, V) − (𝑝, ∇ ⋅ V) = (𝛾 (𝐶) ∇𝑑, k) , ∀k ∈ 𝑉,

(𝜙 (𝑥)
𝑑𝐶 (𝜒, 𝜏)

𝑑𝜏
+ 𝑔𝐶,𝑤) + (𝐷∇𝐶, ∇𝑤) = (𝑓, 𝑤) ,

∀𝑤 ∈ 𝑀,

(∇ ⋅ 𝑢, 𝜑) = (𝑔, 𝜑) , ∀𝜑 ∈ 𝑆.

(61)

Let Δ𝑡 be the time step for both concentration and pressure;
define

𝑀
ℎ
= {V
ℎ
∈ 𝐶
(0)
(Ω) : V

ℎ
|
𝑇
∈ 𝑄
1,1
(𝑇) , ∀𝑇 ∈ 𝜏

ℎ
} . (62)

Combing with the new characteristic finite element method
which preserves themass balance proposed byRui andTabata
[10], the approximate characteristic line of 𝜒 is defined as

𝜒
𝑛

(𝑥) = 𝑥 −
𝑢
𝑛

ℎ

𝜙 (𝑥)
Δ𝑡. (63)

We obtain the corresponding full-discrete mass-conservative
characteristic (MCC) scheme: find (𝑢

ℎ
, 𝑝
ℎ
, 𝐶
ℎ
) ∈ 𝑉
ℎ
×𝑆
ℎ
×𝑀
ℎ
,

such that
(𝑎 (𝐶
𝑛

ℎ
) 𝑢
𝑛

ℎ
, V
ℎ
) − (𝑝

ℎ
, ∇ ⋅ V
ℎ
)

= (𝛾 (𝐶
𝑛

ℎ
) ∇𝑑, V

ℎ
) , ∀V

ℎ
∈ 𝑉
ℎ

(

𝜙𝐶
𝑛

ℎ
− (𝜙𝐶

𝑛−1

ℎ
) ∘ 𝜒
𝑛
𝛾
𝑛

Δ𝑡
, 𝜑
ℎ
) + (𝐷 (𝑢

𝑛

ℎ
) ∇𝐶
𝑛

ℎ
, ∇𝜑
ℎ
)

= (𝑓, 𝜑
ℎ
) , ∀𝜑

ℎ
∈ 𝑀
ℎ

(∇ ⋅ 𝑢
𝑛

ℎ
, 𝑞
ℎ
) = (𝑔, 𝑞

ℎ
) , ∀𝑞

ℎ
∈ 𝑆
ℎ

𝐶
0

ℎ
= 𝐶
0
,

(64)
where

𝛾
𝑛
= det (

𝜕𝜒
𝑛

𝜕𝑥
)

= 1 −
∇ ⋅ 𝑢
𝑛

ℎ

𝜙
Δ𝑡 + 𝑢

𝑛

ℎ

∇𝜙

𝜙
2
Δ𝑡

+ ∇(
𝑢
𝑛

ℎ,1

𝜙
) ⋅ curl (

𝑢
𝑛

ℎ,2

𝜙
)Δ𝑡
2
.

(65)
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Table 2: The numerical error for fm. 1 (our formulation) and fm. 2 (Arbogast’s formulation).

Case Mesh ‖𝑢 − 𝑢
ℎ
‖ ‖∇ ⋅ (𝑢 − 𝑢

ℎ
)‖ ‖𝑝 − 𝑝

ℎ
‖ ‖𝑃

𝑠
𝑝 − 𝑝

ℎ
‖

fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2

1

4 4.90𝑒 − 2 5.67𝑒 − 2 3.06𝑒 − 1 3.24𝑒 − 1 2.93𝑒 − 2 2.93𝑒 − 2 4.53𝑒 − 3 4.17𝑒 − 3

8 1.78𝑒 − 2 2.05𝑒 − 2 1.53𝑒 − 1 1.62𝑒 − 1 1.47𝑒 − 2 1.47𝑒 − 2 1.24𝑒 − 3 1.20𝑒 − 3

16 6.45𝑒 − 3 7.37𝑒 − 3 7.67𝑒 − 2 8.13𝑒 − 2 7.37𝑒 − 3 7.37𝑒 − 3 3.18𝑒 − 4 3.15𝑒 − 4

32 2.31𝑒 − 3 2.64𝑒 − 3 3.84𝑒 − 2 4.07𝑒 − 2 3.68𝑒 − 3 3.68𝑒 − 3 8.01𝑒 − 5 7.98𝑒 − 5

64 8.25𝑒 − 4 9.38𝑒 − 4 1.92𝑒 − 2 2.03𝑒 − 2 1.84𝑒 − 3 1.84𝑒 − 3 2.01𝑒 − 5 2.01𝑒 − 5

2

4 4.70𝑒 − 2 5.47𝑒 − 2 2.99𝑒 − 1 3.22𝑒 − 1 2.95𝑒 − 2 2.94𝑒 − 2 5.42𝑒 − 3 4.97𝑒 − 3

8 1.72𝑒 − 2 1.99𝑒 − 2 1.53𝑒 − 1 1.63𝑒 − 1 1.47𝑒 − 2 1.47𝑒 − 2 1.54𝑒 − 3 1.48𝑒 − 3

16 6.25𝑒 − 3 7.19𝑒 − 3 7.75𝑒 − 2 8.27𝑒 − 2 7.37𝑒 − 3 7.37𝑒 − 3 4.04𝑒 − 4 3.98𝑒 − 4

32 2.25𝑒 − 3 2.58𝑒 − 3 3.89𝑒 − 2 4.15𝑒 − 2 3.68𝑒 − 3 3.68𝑒 − 3 1.03𝑒 − 4 1.02𝑒 − 4

64 8.08𝑒 − 4 9.21𝑒 − 4 1.95𝑒 − 2 2.08𝑒 − 2 1.84𝑒 − 3 1.84𝑒 − 3 2.59𝑒 − 5 2.58𝑒 − 5

3

4 9.65𝑒 − 2 1.09𝑒 − 1 4.14𝑒 − 1 4.67𝑒 − 1 1.49𝑒 − 1 1.49𝑒 − 1 7.39𝑒 − 3 6.21𝑒 − 3

8 3.79𝑒 − 2 4.31𝑒 − 2 2.16𝑒 − 1 2.46𝑒 − 1 7.44𝑒 − 2 7.44𝑒 − 2 2.14𝑒 − 3 1.89𝑒 − 3

16 1.42𝑒 − 2 1.62𝑒 − 2 1.11𝑒 − 1 1.28𝑒 − 1 3.72𝑒 − 2 3.72𝑒 − 2 5.72𝑒 − 4 5.19𝑒 − 4

32 5.19𝑒 − 3 5.91𝑒 − 3 5.63𝑒 − 2 6.51𝑒 − 2 1.86𝑒 − 2 1.86𝑒 − 2 1.47𝑒 − 4 1.35𝑒 − 4

64 1.87𝑒 − 3 2.13𝑒 − 3 2.84𝑒 − 2 3.28𝑒 − 2 9.31𝑒 − 3 9.31𝑒 − 3 3.72𝑒 − 5 3.44𝑒 − 5

Table 3: The corresponding convergence rates of fm. 1 and fm. 2.

Case Mesh ‖𝑢 − 𝑢
ℎ
‖ ‖∇ ⋅ (𝑢 − 𝑢

ℎ
)‖ ‖𝑝 − 𝑝

ℎ
‖ ‖𝑃

𝑠
𝑝 − 𝑝

ℎ
‖

fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2

1

8 1.459 1.468 0.997 1.001 0.995 0.993 1.875 1.795
16 1.468 1.476 0.998 0.995 0.999 0.999 1.961 1.934
32 1.479 1.484 1.000 0.998 1.000 1.000 1.987 1.978
64 1.486 1.489 1.000 1.000 1.000 1.000 1.996 1.993

2

8 1.449 1.457 0.968 0.978 0.999 0.996 1.817 1.742
16 1.462 1.471 0.983 0.984 1.001 1.001 1.930 1.901
32 1.471 1.479 0.993 0.993 1.001 1.000 1.976 1.960
64 1.480 1.485 0.997 0.997 1.000 1.000 1.989 1.984

3

8 1.347 1.340 0.942 0.924 0.998 0.997 1.787 1.708
16 1.416 1.414 0.957 0.945 0.999 0.999 1.906 1.870
32 1.452 1.452 0.979 0.973 1.000 1.000 1.959 1.942
64 1.472 1.473 0.990 0.986 1.000 1.000 1.983 1.975

We can see that the continuous flux is indispensable for 𝛾𝑛.
Let 𝜑
ℎ
= 1 in (64), and summing it up from 𝑛 = 1 to 𝑁, we

get the mass balance

∫
Ω

𝜙𝐶
𝑁

ℎ
𝑑𝑥 = ∫

Ω

𝜙𝐶
0

ℎ
𝑑𝑥 + Δ𝑡

𝑁

∑

𝑛=1

∫
Ω

𝑓
𝑛
𝑑𝑥. (66)

Here, we just give numerical example to show the feasibility
of this application, and the theoretical analysis of stability,
mass balance, and convergence of this discrete schemewill be
discussed in the future. Firstly, we define compute mass error
and relative mass error as follows:

compute mass error : ∫
Ω

𝜙𝐶
𝑁

ℎ
𝑑𝑥

− (∫
Ω

𝜙𝐶
0

ℎ
𝑑𝑥 + Δ𝑡

𝑁

∑

𝑛=1

∫
Ω

𝑓
𝑛
𝑑𝑥) ,

relative mass error :
∫
Ω
𝜙𝐶
𝑁

ℎ
𝑑𝑥 − ∫

Ω
𝜙𝐶
𝑁
𝑑𝑥

∫
Ω
𝜙𝐶𝑁𝑑𝑥

.

(67)

Now, we select 𝜇(𝐶) = 𝐶, and the following analytical solu-
tion of the problem is

𝑢 (𝑥, 𝑦, 𝑡) = (𝑒
𝑥
+ 𝑡, 𝑒
𝑦
+ 𝑡) ,

𝑝 (𝑥, 𝑦, 𝑡) = 𝑒
−𝑡
(𝑥
2
+ 𝑦
2
) ,

𝐶 (𝑥, 𝑦, 𝑡) = 𝑒
−𝑡
((𝑥 −

1

2
)

2

+ (𝑦 −
1

2
)

2

) .

(68)

The error results with different norms of this numerical simu-
lation can be listed in Tables 4 and 5, and at last we give amass
error to check the mass conservation in Table 6.

As can be seen from Tables 4 and 5, we conjecture that
almost all the convergence rates are true in general. From
Table 6 we find that mass balance is right as computational
mass error resulting from computer is inevitable and nearly
invariable for different meshes, while the relative mass error
decreases as was expected. The corresponding theoretical
analysis about this system will be considered in the future
work.
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Table 4: Numerical error and convergence rate (Δ𝑡 = 𝐶ℎ).

Mesh 5 × 5 10 × 10 20 × 20 40 × 40

Norm type Error Rate Error Rate Error Rate Error Rate
‖𝑢‖
𝑙
2
(𝐿
2
)

1.83𝑒 − 4 — 7.10𝑒 − 5 1.36 3.38𝑒 − 5 1.07 1.65𝑒 − 5 1.03
‖𝑢‖
𝑙
∞
(𝐿
2
)

1.29𝑒 − 2 — 5.19𝑒 − 3 1.31 2.64𝑒 − 3 0.97 1.37𝑒 − 3 0.95
𝑝
 𝑙2(𝐿2) 1.33𝑒 − 3 — 6.67𝑒 − 4 1.00 3.33𝑒 − 4 1.00 1.67𝑒 − 4 1.00

𝑝
 𝑙∞(𝐿2) 9.43𝑒 − 2 — 4.71𝑒 − 2 1.00 2.35𝑒 − 2 1.00 1.18𝑒 − 2 1.00

‖𝐶‖
𝑙
2
(𝐻
1
)

2.32𝑒 − 3 — 1.16𝑒 − 3 1.01 5.78𝑒 − 4 1.00 2.88𝑒 − 4 1.00
‖𝐶‖
𝑙
∞
(𝐻
1
)

1.63𝑒 − 1 — 8.18𝑒 − 2 1.00 4.11𝑒 − 2 0.99 2.05𝑒 − 2 0.99

Table 5: Numerical error and convergence rate (Δ𝑡 = 𝐶ℎ
2
).

Mesh 5 × 5 10 × 10 20 × 20 40 × 40

Norm type Error Rate Error Rate Error Rate Error Rate
‖𝐶‖
𝑙
2
(𝐿
2
)

8.48𝑒 − 5 — 2.13𝑒 − 5 1.995 5.37𝑒 − 6 1.986 1.36𝑒 − 6 1.971
‖𝐶‖
𝑙
∞
(𝐿
2
)

1.34𝑒 − 2 — 3.37𝑒 − 3 1.989 8.56𝑒 − 4 1.978 2.21𝑒 − 4 1.952

Table 6: Mass error for concentration 𝐶 (Δ𝑡 = 𝐶ℎ).

Mesh 5 × 5 10 × 10 20 × 20 40 × 40

Compute mass error 1.209𝑒 − 3 1.243𝑒 − 3 1.269𝑒 − 3 1.284𝑒 − 3

Relative mass error 2.068𝑒 − 2 5.427𝑒 − 3 1.487𝑒 − 3 4.371𝑒 − 4
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