
Journal of Applied Mathematics

Applied Mathematics in Biomedical
Sciences and Engineering 2013

Lead Guest Editor: Chang-Hwan Im
Guest Editors: Kiwoon Kwon, Hang Joon Jo, and Pedro Serranho

 



Applied Mathematics in Biomedical Sciences
and Engineering 2013



Journal of Applied Mathematics

Applied Mathematics in Biomedical
Sciences and Engineering 2013

Lead Guest Editor: Chang-Hwan Im
Guest Editors: Kiwoon Kwon, Hang Joon Jo, and
Pedro Serranho



Copyright © 2013 Hindawi Limited. All rights reserved.

is is a special issue published in “Journal of Applied Mathematics.” All articles are open access articles distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.



Chief Editor
eodore E. Simos  , Russia

Academic Editors
Saeid Abbasbandy  , Iran
Waleed Adel  , Egypt
Ali R. Ashrafi  , Iran
Tudor Barbu  , Romania
Ali Bassam  , Mexico
Aliaa Burqan  , Jordan
Bruno Carpentieri  , e Netherlands
Han H. Choi  , Republic of Korea
Carlos Conca  , Chile
Meng Fan  , China
Elisa Francomano  , Italy
Bernard J. Geurts, e Netherlands
Keshlan S. Govinder  , South Africa
Ferenc Hartung  , Hungary
Ying Hu  , France
Dan Huang  , China
Lucas Jodar  , Spain
Waqar A. Khan  , Pakistan
Jong Hae Kim, Republic of Korea
Kannan Krithivasan, India
Kamal Kumar  , India
Miroslaw Lachowicz, Poland
Peter G. L. Leach, Cyprus
Chong Lin  , China
Chongxin Liu  , China
Yansheng Liu  , China
Oluwole D. Makinde  , South Africa
Panayotis Takis Mathiopouloss, Greece
Michael McAleer, Taiwan
Alain Miranville  , France
Arvind Kumar Misra  , India
Ram N. Mohapatra  , USA
Donal O'Regan, Ireland
Turgut Öziş  , Turkey
KIRAN PALLE, India
Juan Manuel Peña  , Spain
Hector Pomares  , Spain
Hui-Shen Shen  , China
Fernando Simoes  , Portugal
Abdel-Maksoud A. Soliman  , Egypt
Qiankun Song  , China
Nasser-Eddine Tatar  , Saudi Arabia
Mariano Torrisi  , Italy

Mehmet Ünver  , Turkey
Qing-Wen Wang  , China
Frank Werner  , Germany
Man Leung Wong, Hong Kong
Zhihua Zhang  , China
Yun-Bo Zhao  , China
Jian G. Zhou  , United Kingdom

https://orcid.org/0000-0002-9220-6924
https://orcid.org/0000-0003-3385-4152
https://orcid.org/0000-0002-0557-8536
https://orcid.org/0000-0002-2858-0663
https://orcid.org/0000-0001-9684-8417
https://orcid.org/0000-0001-7526-6952
https://orcid.org/0000-0002-1649-1073
https://orcid.org/0000-0002-0516-0033
https://orcid.org/0000-0003-0940-9876
https://orcid.org/0000-0003-3891-0846
https://orcid.org/0000-0002-4596-7093
https://orcid.org/0000-0003-0438-5115
https://orcid.org/0000-0001-8926-0009
https://orcid.org/0000-0001-7953-3480
https://orcid.org/0000-0002-1080-2600
https://orcid.org/0000-0002-5252-5832
https://orcid.org/0000-0002-9672-6249
https://orcid.org/0000-0002-8328-850X
https://orcid.org/0000-0001-7903-4614
https://orcid.org/0000-0002-7888-303X
https://orcid.org/0000-0003-2133-4467
https://orcid.org/0000-0002-4911-9016
https://orcid.org/0000-0003-4550-9591
https://orcid.org/0000-0002-6030-5928
https://orcid.org/0000-0002-2885-9955
https://orcid.org/0000-0002-5502-3934
https://orcid.org/0000-0001-6718-1668
https://orcid.org/0000-0002-1340-0666
https://orcid.org/0000-0002-8528-828X
https://orcid.org/0000-0002-5240-9284
https://orcid.org/0000-0002-5563-7514
https://orcid.org/0000-0001-6226-1327
https://orcid.org/0000-0002-7228-9371
https://orcid.org/0000-0003-3467-230X
https://orcid.org/0000-0003-0386-6216
https://orcid.org/0000-0002-0857-1006
https://orcid.org/0000-0002-0494-4928
https://orcid.org/0000-0002-0709-3591
https://orcid.org/0000-0001-5246-4518
https://orcid.org/0000-0002-3684-5297
https://orcid.org/0000-0002-4262-1898


Contents

Regularised Model Identification Improves Accuracy of Multisensor Systems for Noninvasive
Continuous Glucose Monitoring in Diabetes Management
Mattia Zanon  , Giovanni Sparacino  , Andrea Facchinetti  , Mark S. Talary, Andreas Caduff  , and
Claudio Cobelli 

Research Article (10 pages), Article ID 793869, Volume 2013 (2013)

Analysis of a Model for the Morphological Structure of Renal Arterial Tree: Fractal Structure
Aurora Espinoza-Valdez, Francisco C. Ordaz-Salazar, Edgardo Ugalde, and Ricardo Femat
Research Article (6 pages), Article ID 396486, Volume 2013 (2013)

Hemodynamic Features in Stenosed Coronary Arteries: CFD Analysis Based on Histological Images
Mahsa Dabagh  , Wakako Takabe, Payman Jalali  , Stephen White, and Hanjoong Jo
Research Article (11 pages), Article ID 715407, Volume 2013 (2013)

Noise Suppression in ECG Signals through Efficient One-Step Wavelet Processing Techniques
E. Castillo, D. P. Morales, A. García, F. Martínez-Martí, L. Parrilla, and A. J. Palma
Research Article (13 pages), Article ID 763903, Volume 2013 (2013)

Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in
Resting State FMRI
Hang Joon Jo, Stephen J. Gotts, Richard C. Reynolds, Peter A. Bandettini, Alex Martin, Robert W. Cox, and
Ziad S. Saad
Research Article (9 pages), Article ID 935154, Volume 2013 (2013)

Improving CT Image Analysis of Augmented Bone with Raman Spectroscopy
J. Charwat-Pessler, M. Musso, K. Entacher, B. Plank, P. Schuller-Götzburg, S. Tangl, and A. Petutschnigg
Research Article (10 pages), Article ID 271459, Volume 2013 (2013)

A Novel Adaptive Probabilistic Nonlinear Denoising Approach for Enhancing PET Data Sinogram
Musa Alrefaya   and Hichem Sahli
Research Article (14 pages), Article ID 732178, Volume 2013 (2013)

Uniqueness, Born Approximation, and Numerical Methods for Diffuse Optical Tomography
Kiwoon Kwon
Review Article (5 pages), Article ID 824501, Volume 2013 (2013)

Corticomuscular Activity Modeling by Combining Partial Least Squares and Canonical Correlation
Analysis
Xun Chen  , Aiping Liu, Z. Jane Wang, and Hu Peng
Research Article (11 pages), Article ID 401976, Volume 2013 (2013)

Stress Analysis of Osteoporotic Lumbar Vertebra Using Finite Element Model with Microscaled
Beam-Shell Trabecular-Cortical Structure
Yoon Hyuk Kim, Mengying Wu, and Kyungsoo Kim
Research Article (6 pages), Article ID 285165, Volume 2013 (2013)

http://orcid.org/0000-0002-3831-1563
http://orcid.org/0000-0002-3248-1393
http://orcid.org/0000-0001-8041-2280
http://orcid.org/0000-0003-3575-7911
http://orcid.org/0000-0002-0169-6682
0000-0002-6833-5443
0000-0001-8012-852X
0000-0002-6612-3586
0000-0002-4922-8116


Quantification of Stretching in the Ventricular Wall and Corpus Callosum and Corticospinal Tracts in
Hydrocephalus before and a4er Ventriculoperitoneal Shunt Operation
Hans von Holst and Xiaogai Li
Research Article (10 pages), Article ID 350359, Volume 2013 (2013)

Mathematical Modelling of Biomechanical Interactions between Backpack and Bearer during Load
Carriage
Lei Ren  , David Howard  , and Richard K. Jones 

Research Article (12 pages), Article ID 349638, Volume 2013 (2013)

Forming Mechanism and Correction of CT Image Artifacts Caused by the Errors of 6ree System
Parameters
Ming Chen and Gang Li
Research Article (7 pages), Article ID 545147, Volume 2013 (2013)

0000-0003-3222-2102
0000-0003-1738-0698
0000-0001-5242-185X


Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 793869, 10 pages
http://dx.doi.org/10.1155/2013/793869

Research Article
Regularised Model Identification Improves Accuracy of
Multisensor Systems for Noninvasive Continuous Glucose
Monitoring in Diabetes Management

Mattia Zanon,1 Giovanni Sparacino,1 Andrea Facchinetti,1 Mark S. Talary,2

Andreas Caduff,2 and Claudio Cobelli1

1 Department of Information Engineering, University of Padova, Via Gradenigo 6B, 35131 Padova, Italy
2 Biovotion AG, Technoparkstrasse 1, 8005 Zurich, Switzerland

Correspondence should be addressed to Claudio Cobelli; cobelli@dei.unipd.it

Received 14 March 2013; Accepted 21 June 2013

Academic Editor: Kiwoon Kwon

Copyright © 2013 Mattia Zanon et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Continuous glucose monitoring (CGM) by suitable portable sensors plays a central role in the treatment of diabetes, a disease
currently affecting more than 350 million people worldwide. Noninvasive CGM (NI-CGM), in particular, is appealing for reasons
related to patient comfort (no needles are used) but challenging. NI-CGM prototypes exploiting multisensor approaches have been
recently proposed to deal with physiological and environmental disturbances. In these prototypes, signals measured noninvasively
(e.g., skin impedance, temperature, optical skin properties, etc.) are combined through a static multivariate linear model for
estimating glucose levels. In this work, by exploiting a dataset of 45 experimental sessions acquired in diabetic subjects, we show
that regularisation-based techniques for the identification of the model, such as the least absolute shrinkage and selection operator
(better known as LASSO), Ridge regression, and Elastic-Net regression, improve the accuracy of glucose estimates with respect to
techniques, such as partial least squares regression, previously used in the literature. More specifically, the Elastic-Net model (i.e.,
the model identified using a combination of 𝑙

1
and 𝑙
2
norms) has the best results, according to the metrics widely accepted in the

diabetes community.This model represents an important incremental step toward the development of NI-CGM devices effectively
usable by patients.

1. Introduction

Diabetes consists of a malfunction of the glucose-insulin
regulatory system leading to the onset of long and short term
complications, like retinopathy, neuropathy, and cardiovas-
cular and hearth diseases, due to sustained blood glycaemic
levels exceeding the normal range of 70–180mg/dL [1].
According to the International Diabetes Federation, diabetes
is estimated to currently affect more than 350 million people
worldwide, and this number is rapidly growing [2]. Not
surprisingly, in the last few decades, diabetes has received an
increasing attention both for its social and economic impli-
cations [3].

Standard therapy of type 1 diabetes is based on a com-
bination of diet, physical activity, and exogenous insulin
injections, modulated on the basis of individual patient levels

of glucose concentration in the blood. Accurate and frequent
monitoring of glucose concentrations by portable sensor
devices plays a crucial role in the diabetes therapy [4].
Self-monitoring blood glucose (SMBG) sensors require the
collection of a blood sample by pricking the skin with a lancet
device. An external pocket device is then used to analyze the
blood and determine glucose concentration for instance by
the glucose oxidase principle [5]. These sensors are uncom-
fortable for the patient and are typically used no more than
3-4 times per day. Such sparseness of sampling does not allow
the observation of glucose dynamics and glucose excursions
outside the safety range, and dangerous nocturnal hypogly-
caemic swings are often not detected. To overcome these
problems, portable continuous glucose monitoring (CGM)
sensors, measuring blood glucose values every 1 to 5 minutes
for up to 7 consecutive days, have been proposed in the
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early 2000s and are now of great interest for the tuning and
optimization of diabetes therapy [6, 7]. In particular, online
applications of CGM sensors include prevention of hyper-
/hypoglycaemic events; see for example [8, 9], and closed-
loop glucose control aimed at determining optimal automatic
insulin infusion in the so-called artificial pancreas systems;
see [10–14]. Notably, dealing with these online applications
requires facing nontrivial signal processing issues connected
to denoising [15], calibration [16], and prediction [17–21] (see
[22, 23] for reviews) calling for the development of the so-
called “smart” CGM sensor architecture [24].

Most of the CGM sensors requiring the placement of a
small needle in the subcutaneous tissue use an enzyme-based
glucose-oxidase electrode and thus are invasive, albeit mini-
mally. To limit patients’ discomfort, in the last decade, several
noninvasive continuous glucose monitoring (NI-CGM) sen-
sors have been prototyped.Many different physical principles
have been considered to pursue NI-CGM, but none of them
has clearly outperformed the others so far; see for example
[25–27]. One major difficulty with NI-CGM is the fact that
environmental (e.g., temperature) and physiological (e.g.,
sweat, blood oxygenation, etc.) processes act as perturbing
factors and often allow blood glucose changes to be tracked
only in highly controlled conditions (e.g., during in-hospital
studies) [28–30]. To tackle this issue, an approach gaining
increasing attention in the last years is the multisensor ap-
proach to NI-CGM; that is, instead of focusing on a single
physical principle, these devices resort to a combination of
technologies. For instance, the GlucoTrack [31] exploits amix
of thermal, acoustic, and electromagnetic technologies and
compares the three measurements, assuming they all reflect a
glucose-related measurement. A different, yet recent, multi-
sensor prototype [32] employs a combination of dielectric
spectroscopy (DS) and mid-infrared-based sensors. A fur-
ther example of multi-sensor device, proposed by Solianis
Monitoring AG (Zürich, Switzerland, technology taken over
by Biovotion AG, Zurich, Switzerland), embeds sensors of
different nature for the biophysical characterisation of skin
and underlying tissue in order to track glucose-related and
perturbing factors separately [30, 33].

Multisensor approaches to NI-CGM require a model to
connect the physical quantities measured by the sensors
with blood glucose concentrations. For instance, in the
Solianis Monitoring AG prototype (from now on named
Solianis for the sake of readability) considered in this work,
a multivariate linear regression model is used to combine
∼150 signals recorded noninvasively for estimating a glucose
concentration profile (see Section 3.1 for more details). As
described in [33, 34], the linear regression model is identified
on a dataset collected in a population of subjects and
comprising multi-sensor channels measurements and refer-
ence blood glucose (RBG) values collected in parallel by a
gold standard technique. Previous work [35] has shown that a
regularised identification method, based on 𝑙

1
norm (least

absolute shrinkage and selection operator—LASSO), pro-
vided a glucose profile more accurate than that of other mod-
els identified with approaches controlling complexity such
as subset selection method or partial least squares (PLS).
In the present work, by using the same dataset of 45

experimental sessions used in [35], we demonstrate that the
accuracy of glucose estimates can be further improved by
considering 𝑙

2
norm regularization (Ridge regression) and a

combination of 𝑙
1
and 𝑙
2
norms (Elastic-Net—EN regression),

providing a further incremental step toward the development
of an NI-CGM effectively usable by diabetic patients.

2. Database

The database consists of 45 experimental sessions recorded
from 6 type 1 diabetic subjects, during which plasma glucose
was induced to vary according to different predetermined
profiles to cause different hypo- and hyperglycaemic excur-
sions. During each session, multi-sensor data and RBG were
acquired in parallel, with a time sampling of 20 seconds and
10–15 minutes, respectively. The RBG samples were acquired
by means of a SMBG device. The study was performed at
the University Hospital Zurich according to the requirements
of good clinical practice and was approved by the local
ethical commission. More clinically related information can
be found in [33].

For the analysis, the database was split into two data
subsets of 22 and 23 experimental sessions, respectively. If
the first data subset is used for identifying the models with
the different techniques, the second is used to test the models
over “unseen”multi-sensor data (1–>2) and vice versa (2–>1).
For the sake of space, we will not discuss results of the
application of the model on the same dataset used for their
identification, and only model test results will be considered.

Multi-sensor data in the identification data subset under-
goes a preprocessing step described in detail in [35]. Briefly,
each multi-sensor channel is normalized to have zero mean
and unitary standard deviation. These values are then used
to standardize the same channels in the test data subset to
permit simulation of real-time glucose monitoring. More-
over, the first RBG value available at the beginning of each
recording session is used to calibrate the estimated glucose
profiles by the model setting a baseline adjustment, to allow
for a real-time consideration/implementation.

3. Methods

3.1. Glucose Determination by a Multisensor System. In stat-
ing the problem,we deliberatelymake only a brief description
of the framework we are working on and we refer the reader
to the quoted bibliography for details.

Rather than focusing on a single physical principle, the
Solianis multi-sensor device resorts to a combination of
technologies, embedded into the substrate in contact with
the skin for the biophysical characterisation of the skin and
underlying tissue in order to account for confounding factors,
which can significantly deteriorate the accuracy of glucose
measurements [30, 36–38]. In particular, glucose-related sig-
nals are obtained fromDS fringing field capacitive electrodes,
with different geometrical properties, providing a spectrum
of the frequency-dependent complex dielectric properties
of skin and underlying tissue including blood, which can
be easily parameterised by its magnitude and phase [39].
Environmental and physiological processes that can interfere
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Figure 1: A model (center) is needed to properly combine the 150 multisensor channels (left, depicted with lines of different colours) for
estimating blood glucose concentration profile (right, magenta stars).

with the measurements of the main glucose-related signals
aremeasuredwith temperature, optical, humidity, accelerom-
eter, and additional DS sensors incorporated into the same
device substrate [30]. About 150 channels are thus provided
by the multi-sensor device (Figure 1, left), which have to be
properly combined through a mathematical model (Figure 1,
middle) for estimating glucose concentrations in the blood
(Figure 1, right). Since a mechanistic description comprising
the physical principles, linking measured channels with
physical/physiological processes, in particular, related to
glucose changes, has not yet been fully developed, a “black-
box” multivariate linear regression model is used.

Formally, if𝑁 is the number of data points available and
𝑝 is the number of measured channels, the model to identify
from the identification dataset is described as

y = Χ𝛽 + ^, (1)

where y represents the (𝑁 × 1) target vector containing RBG
values, X is the (𝑁 × 𝑝) matrix collecting the multi-sensor
channels, 𝛽 is the (𝑝× 1) vector containing the coefficients of
the linear model, and ^ is the (𝑁 × 1) term representing the
error.

The vector 𝛽 in (1) can be identified by minimizing the
cost function𝐹(𝛽) given by the residual sumof squares (RSS):

𝐹 (𝛽) = RSS (𝛽) = 󵄩󵄩󵄩󵄩y − X𝛽
󵄩󵄩󵄩󵄩
2

2
=

𝑁

∑

𝑖=1

(y
𝑖
− X
𝑖
𝛽)
2
, (2)

measuring the distance between data and model predictions.
Since this cost function has a quadratic form, a closed-
form solution, the so-called ordinary least squares (OLS)
estimate, can be obtained. In the case under consideration,
OLS suffers from overfitting due to the high dimensionality
of the measurement space and to the correlation between
subsets of input channels (well visible in the channels showed
in Figure 1, left). Recent work [34] showed that further
improved results can be obtained by exploiting subset selec-
tion techniques. Then, further work [35] investigated the use

of other methods controlling “model complexity,” including
PLS (widely used in chemometrics and related fields deal-
ing with spectroscopy data) and the LASSO regularization
technique. It has been shown that regularization techniques,
in particular, the LASSO, outperform PLS since it sets many
coefficients to zero being less sensitive to occasional noise in
the multi-sensor channels.

Formally speaking, regularizedmodel identification tech-
niques add a term 𝐿(𝛽) to the cost function of (2), leading to

𝐹 (𝛽) = RSS (𝛽) + 𝐿 (𝛽) , (3)

where 𝐿(𝛽) is a function of 𝛽 reflecting complexity. Depend-
ing on the form and on the parameters of 𝐿(𝛽) in (2), the
resulting model will present different well-known features, as
will be briefly reviewed in the following section.

Thus, the 𝛽 minimizing (3) is identified establishing a
trade off between adherence to the data and model complex-
ity, usually by a cross-validation procedure as better discussed
next.

3.2. Model Identification by Regularisation Techniques

3.2.1. 𝑙
1
Norm: LASSO. In the 𝐿(𝛽) term of (3), the 𝑙

1
norm

can be used. In the literature, this 𝑙
1
norm has been proposed

in signal processing (under the name of basis pursuit) [40]
and in statistics [41] for its main feature of inducing sparse
solutions. Formally, in (3), the 𝑙

1
norm leads to define 𝐿(𝛽) as

the sum of the absolute values of the coefficients of the model

𝐿 (𝛽) = 𝜆
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1 = 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
(4)

multiplied by the scalar nonnegative parameter, hereafter
referred to as regularization parameter for the sake of reason-
ing. Thus, the solution is found by minimizing

𝛽̂
LASSO

= argmin
𝛽

{

{

{

𝑁

∑

𝑖=1

(y
𝑖
− X
𝑖
𝛽)
2
+ 𝜆

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

(5)
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and is known as the least absolute shrinkage and selection
operator (LASSO), for its properties of shrinking many
coefficients to zero selecting only few input variables. In
particular, in our application documented in [35], the LASSO
was shown to outperform PLS since it sets many coefficients
to zero being less sensitive to occasional noise inmulti-sensor
channels. Equation (5) does not have a closed-form solution
because the cost function is not differentiable when some
coefficients 𝛽

𝑗
are zero, and a plethora of methods have been

developed to calculate approximate solutions numerically;
see [42, 43] for reviews. In particular, an efficient technique
for computing the LASSO solution is obtained by modifying
the least angle regression algorithm [44].With this technique,
the parameter that has to be fixed represents the number of
input variables allowed to enter the model, indicated with 𝑗
in Section 3.

Remark 1. The regularization parameter weighting the 𝐿(𝛽)
term in (5) is obtained by means of a standard procedure
known as 𝐾-fold cross-validation [45]. Briefly, the identi-
fication dataset is split into 𝐾 approximately equal parts.
Then, the model is identified on 𝐾 − 1 parts and tested over
the portion of data not considered for deriving the model,
calculating the mean squared error (MSE):

MSE = 1
𝑁

𝑁𝐾−1

∑

𝑖=1

(y
𝑖
− ŷ
𝚤
)
2
, (6)

where y and ŷ represent the true and estimated output,
respectively, and 𝑁

𝐾−1
represents the number of data points

in the 𝐾 − 1 portion of data. This procedure is repeated 𝐾
times and for a range of values of the parameter that has to
be determined. Then, the cross-validation curve is plotted,
presenting theMSE as a function of the regularization param-
eter. Empirical evidence suggests choosing its value in corre-
spondence with a clear drop of the cross-validation curve.

3.2.2. 𝑙
2
Norm: Ridge Regression. The 𝑙

2
norm involves the

penalization of the sum of squares of the coefficients of the
model multiplied by a scalar nonnegative parameter:

𝐿 (𝛽) = 𝜆
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

2
= 𝜆

𝑝

∑

𝑗=1

𝛽
2

𝑗
. (7)

The so-called Ridge regression solution, from now on ridge,
is thus given by

𝛽̂
ridge

= argmin
𝛽

{

{

{

𝑁

∑

𝑖=1

(y
𝑖
− X
𝑖
𝛽)
2
+ 𝜆

𝑝

∑

𝑗=1

𝛽
2

𝑗

}

}

}

. (8)

The quadratic nature of the cost function in (7) entails a
closed-form solution for 𝛽 dependent on the parameter 𝜆:

𝛽̂
ridge

= (X𝑇X + 𝜆Ipxp)
−1

X𝑇y. (9)

Also, in this case, the regularization parameter 𝜆 can be
fixed by means of cross-validation. According to [45], as an

indication of the model complexity, the degrees of freedom
(df) can be used:

df (𝜆) = tr [X(X𝑇X + 𝜆I)
−1

X𝑇] =
𝑝

∑

𝑗=1

𝑑
2

𝑗

𝑑2
𝑗
+ 𝜆
, (10)

where the 𝑑
𝑗
𝑠 are the singular values ofX.Thus, to determine

the regularization parameter by cross-validation, the MSE is
plotted against df in (10).

3.2.3. 𝑙
1
+ 𝑙
2
Norms: Elastic Net-Regression. The so-called

Elastic-Net regression, fromnowonEN, resorts to aweighted
sum of the two previously described norms, defining 𝐿(𝛽) as

𝐿 (𝛽) = 𝜆 (𝛼
󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩1 + (1 − 𝛼)

󵄩󵄩󵄩󵄩𝛽
󵄩󵄩󵄩󵄩
2

2
)

= 𝜆(𝛼

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
+ (1 − 𝛼)

𝑝

∑

𝑗=1

𝛽
2

𝑗
) ,

(11)

where 𝛼 weighs the contribution of the two norms while 𝜆
sets the amount of regularization [46]. Hence, the EN model
parameters are obtained solving the following:

𝛽̂
EN

= argmin
𝛽

{

{

{

𝑁

∑

𝑖=1

(y
𝑖
−X
𝑖
𝛽)
2

+𝜆(𝛼

𝑝

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗

󵄨󵄨󵄨󵄨󵄨
+(1−𝛼)

𝑝

∑

𝑗=1

𝛽
2

𝑗
)
}

}

}

.

(12)

Problem (12) does not have a closed-form solution, and sev-
eral numerical algorithms have been proposed to compute an
approximate solution (someof themare simple adaptations of
those developed for the LASSO [46]). The algorithm that has
been used in this work is the one based on cyclical coordinate
descent originally developed for the LASSO [47] and adapted
to problem (12) following [48–50]. The parameters 𝜆 and 𝛼
are determined by cross-validation, following a procedure
similar to that of Remark 1.

3.3. Criteria forModel Assessment. The accuracy of estimated
glucose profiles in themodel test is measured through a set of
indexes widely used in the diabetes research community. In
particular, we consider the root mean squared error (RMSE)

RMSE = √ 1
𝑁

𝑁

∑

𝑖=1

((y
𝑖
− ŷ
𝑖
)
2

), (13)

the mean absolute difference (MAD), indicating how much
estimated glucose values are lower or higher than the refer-
ence,

MAD = 1
𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨y𝑖 − ŷ𝑖
󵄨󵄨󵄨󵄨 , (14)
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Figure 2: 10-fold cross-validation curves for the choice of the “optimal” complexity parameters for LASSO (a), Ridge (b), and EN for 𝛼 = 0.4
(c). TheMSE (mean value and one standard deviation) is represented as a function of the model complexity parameter for each method.The
red crosses represent the values of the complexity parameter chosen according to the drop in the error curve. The vertical red dashed line is
for a better visual identification of the complexity parameters.

and the mean absolute relative difference (MARD), which
characterizes the relative errors (in %) of the estimated
glucose:

MARD = 1
𝑁

𝑁

∑

𝑖=1

󵄨󵄨󵄨󵄨y𝑖 − ŷ𝑖
󵄨󵄨󵄨󵄨

y
𝑖

, (15)

where y
𝑖
and ŷ

𝑖
, for 𝑖 = 1, . . . , 𝑁, are, respectively, the 𝑁

reference RBG samples and the glucose estimates provided by
the models (all the experimental sessions are simultaneously
considered). Finally, a popular method used in the diabetes
community to judge on the point accuracy of glucose sensors
is the error grid analysis (EGA) proposed by Clarke and
coworkers [51]. The area where estimated glucose by the
model and RBG values are displayed as a scatterplot is
broken down into five regions (labeled from A to E). Zone A
represents those glucose values within 20% of the RBG values
and so on. The most dangerous situations are those where
estimated glucose values fall into zones C/D/E because, from
a clinical point of view, they will lead to unnecessary or even
wrong and potentially dangerous treatments. An evolution
of EGA developed for CGM sensors is the continuous EGA
(CEGA) that alsomeasures the accuracy of estimated glucose
trends by creating a grid which is broken down into regions
labeled from AR to ER; see [52] for details.

To give an idea of the values of these indexes for the
current state-of the-art, minimally invasive (needle-based)
commercial CGM sensors, a recent study [11] reported mean
MARD levels ranging from 11.8 to 20.2% and a percentage of
data points in theA+B region ranging from98.9 to 96.9 under
controlled conditions, comparing CGM measurements to
gold standard blood glucose sampling.

4. Results

4.1. Regularization Parameter Determination by Cross-Valida-
tion. The first step in the analysis is setting the values for 𝜆
in (5), (8), and (12) and for 𝛼 in (12). These were determined
by finding where the cross-validation curve presents a clear

drop in slope, as explained in Remark 1. Figure 2 shows the
values obtained when identification data subset “part 1” is
considered, and the red cross, together with a vertical red
dashed line for visualization purpose, highlights the selected
“optimal” value (cross-validation plots for identification data
subset “part 2” are not showed for the sake of space). Specifi-
cally, a𝐾-fold cross-validation strategy has been applied, with
𝐾 = 10, for having a good compromise between bias and vari-
ance of the estimated error [45]. The left subplot shows the
error curve as a function of the number of latent variables for
the LASSO model, indicating a drop of the cross-validation
curve around 15. The choice of the regularization param-
eter for ridge followed a similar approach, with the cross-
validation curve (middle panel) presenting a drop when the
degree of freedom, defined in (10), approximately equals 50,
corresponding to 𝜆 = 5. Similarly for EN, the ending part
of the drop in the error curve can be noticed for log(𝜆) ≅
−4.5 (Figure 2(c)), corresponding to 𝜆 = 0.01. For EN,
different cross-validation curves for different values of 𝛼were
examined. The most reasonable choice seemed to be that
obtained with 𝛼 = 0.4. Indeed, this combination of para-
meters is the one providing a good trade off between the 𝑙

1

and 𝑙
2
norms allowing a reasonable compromise for the EN

model to be achieved. A value of 𝛼 = 0.4 can suggest that,
although it is important to shrink channel weights to zero in
order to lower the probability of occasional jumps or spikes
entering themodel, allowing a grouping effect over correlated
predictors is also important for a more robust estimation of
glucose profiles.

4.2. Model Test. Figure 3 shows examples of estimated blood
glucose concentration profiles (continuous line) versus ref-
erence RBG samples (open bullets) for two representative
experimental sessions. Visual inspection suggests that the
profiles provided by the EN model (bottom panels) out-
perform, in terms of accuracy, those provided by LASSO
(top) and Ridge (middle). The same observation applies
for the examples depicted in Figure 4, which represents a
more challenging situation because of the presence of wider
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Figure 3: Representative recording sessions of Subjects AA02 (a) and AA04 (b). LASSO, Ridge, and EN models test over independent test
data subset (continuous lines) versus RBG levels (open bullets). MARD values for the experimental session on the right are of 16.7% (LASSO),
16.9% (Ridge), and 16.5% (EN), while for the experimental session on the left of 12.7% (LASSO), 11.2% (Ridge), and 9.1% (EN).

disturbances, as witnessed by the spikes and jumps affecting
the representative multi-sensor raw channels displayed in an
additional fourth row of panels. This qualitative observation
is supported from the analysis of the MARD values obtained
for the representative sessions in Figure 3, that is, 16.7%,
16.9%, and 16.5% (experimental session depicted in the left
panels) and 12.7%, 11.2%, and 9.1% for the LASSO, Ridge, and
EN models, respectively. When occasional noise is affecting
some of the multi-sensor channels, theMARD values slightly
worsen, as can be seen for the experiment depicted in
Figure 4(a) presenting MARD of 53% for the LASSO, 24.5%
for Ridge, and 20.6 for EN. However, the EN model still
provides blood glucose estimation profiles more accurately
than Ridge and LASSO. This is confirmed, in general, by
Table 1, which shows the aggregate results over the test data
subset.

By analysing the results in more detail, the LASSO
model seems to have a slight advantage in estimating glucose
trends (last column of Table 1). The reason is twofold: first,

the regularization performed by the 𝑙
1
norm prevents the

model coefficients fromassuming large values thus predicting
glucose profiles that are more flat than the other models,
as it happens for example in Figures 3(b) and 4(b); second,
channels more sensitive to noise that contain also glucose-
related information are considered by Ridge and EN exploit-
ing the effect of the 𝑙

2
normbut are less probable to be selected

by LASSO, thus yielding smoother estimates. This fact can
clearly be seen fromFigure 4, where artifacts are present (e.g.,
in channel no.2) for the session of left data and in channel no.3
for the session of the right data.

Interestingly, the LASSO model seems more robust than
the other models to these jumps in the data, preserving
the glucose profile with elevated smoothness and reasonably
accurate trend. Indeed the 𝑙

1
norm shrinks many coefficients

to zero allowing an easier interpretation of the results with
a reduced number of original variables, representing the
strongest effects, considered important for estimating glucose
profiles. This is a typical feature of the LASSO to act as
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Figure 4: Representative recording sessions of Subjects AA03 (a) and AA05 (b). LASSO, Ridge, and EN models test over independent test
data subset (continuous lines) versus RBG levels (open bullets). Bottom panels display two representative channels (no.2 and no.3 for subject
on the left and on the right, resp.) entering the models, where occasional spikes and jumps are evident. MARD values for the experimental
session on the right are of 53% (LASSO), 24.5% (Ridge), and 20.6% (EN), while for the experimental session on the left of 55.7% (LASSO),
34.8% (Ridge), and 34.7% (EN).

a variable selection method. If, from one side, smoother
estimates of glucose profiles are obtained with the shrinking
properties of the LASSO, sometimes this can lead to biased
estimates (see Figure 4(a)).

The Ridge model is identified minimizing the RSS cost
function subject to a bound on the 𝑙

2
norm of the coefficients.

This norm does not have the ability of inducing sparseness on
the coefficients of the multivariate linear regression model;
thus a parsimonious model is not identified and all the
predictors are kept in the model. This might cause the

estimated glucose profiles by the Ridge model to be sensitive
to occasional spikes or jumps in the multi-sensor channels,
as can be seen in Figure 4(b), where the Ridge model is
the one more sensitive among the three. However, estimated
glucose profiles by the Ridge model show accuracy indicators
slightly better than those of LASSO. This might indicate that
(a) channels discharged by the 𝑙

1
norm because sensitive to

occasional spikes or jumps actually contain useful glucose-
related information and (b) that retaining information from
all the input channels may help in compensating noisy
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Table 1: Model test performance when “part 1” of the data set
is used for model identification and “part 2” for model test. In
brackets is the complexity model parameter chosen by means of
cross-validation. Mean and standard deviation (in brackets) over
the experimental sessions for root mean squared error (RMSE),
mean absolute difference (MAD), mean absolute relative difference
(MARD), error grid analysis (EGA (Clarke)) (A + B (A) C/D/E
regions whose sum accounts for 100% of data points), continuous
error grid analysis (CEGA) (AR + BR (AR) CR/DR/ER regions whose
sum accounts for 100% of data points).

RMSE
(mg/dL)

MAD
(mg/dL)

MARD
(%)

EGA
A + B (A)
C/D/E

CEGA
AR+ BR (AR)
CR/DR/ER

LASSO 57.9 48.6 37.8 89.4 (42.2) 89.2 (62.1)
(𝑗 = 15) (27.1) (23.7) (20) 0.9/9.6/0.1 6.3/2.5/2
Ridge 52.3 44.1 35 91 (58.7) 88 (63)
(𝜆 = 5) (22.8) (19.2) (17.7) 0.1/8.9/0 4.9/4.8/2.3
EN 51.8 43.9 34.1 92.3 (59.9) 88.6 (65)
(𝜆 = 0.01;
𝛼 = 0.4) (24.3) (20.5) (17.2) 0.1/7.6/0 4.9/4.4/2.1

channels thanks to the grouping effect induced by the 𝑙
2

norm. Thus, it is reasonable to expect that a combination
of the 𝑙

1
and 𝑙
2
norms could identify a model sharing both

properties of sparseness and grouping effect.
Indeed, as mentioned before, the EN model results

outperform those of Ridge and LASSO allowing a reasonably
accurate estimation of the glucose profile concentrations
also when occasional noise is affecting some multi-sensor
channels (see Figure 4), presenting lower MARD values than
LASSO and Ridge. Thus, EN is the model presenting the best
indicators and is only slightly worse than LASSO in accuracy
for glucose trends (see CEGA results). Moreover, its clinical
accuracy in terms of Clarke error grid, with a percentage of
points within the A + B of 92.3 (see Table 1), is substantially
close to that of minimally invasive devices, spanning from
98.9 to 96.9 [53].

The good results obtained by the ENmodel are likely due
to the combination of the 𝑙

1
and 𝑙
2
norms, giving to thismodel

both the advantages of LASSO andRidge. Indeed, a limitation
of the LASSO is that, if there is a group of correlated variables,
then it tends to select only one variable from the group and
does not care which one is selected, thus lacking the ability of
revealing grouping information. On the opposite, the 𝑙

2
norm

allows all coefficients to enter the model, resulting in more
sensitive to noisy channels.Thus, the 𝑙

1
norm shrinks channel

weights to zero (eliminatingmulti-sensor channels not useful
for predicting glucose), while the 𝑙

2
norm encourages a

grouping effect (automatically including whole groups into
the model once one channel among them is selected). This
combination results in indicators outperforming those of the
other models and in estimated glucose profiles with a good
trade off between sparseness of the model coefficients and
robustness due to the grouping effect (see, e.g., Figure 4(a)).

Model test results when data subset “part 2” is used for
model identification and data subset “part 1” for model test

are comparable with those in Table 1 (not shown here for the
sake of space).

5. Conclusions

In diabetes management, tight monitoring of glycaemic
levels by CGM sensors is important for avoiding both long
and short term complications related to hyper-and hypo-
glycaemic excursions. NI-CGM devices are potentially more
appealing than the minimally invasive sensors based on
needle electrodes, but their development is challenging for
several technological and methodological reasons. In the
last years, the idea of embedding sensors of different nature
within the same device in order to obtain a better biophysical
characterisation of the skin and underlying tissues has gained
particular attention to develop NI-CGM. In these multi-
sensor approaches, a model linking the measured multi-
sensor channels to glucose is needed, together with a set of
techniques that can be used to identify its parameters. In this
work, we investigated the use of regularisation-based meth-
ods to identify the linear regression model employed in
the multi-sensor device for NI-CGM proposed in [30].
Results on 45 experimental sessions indicate that the EN
model generally outperforms the other models: thanks to the
combination of the 𝑙

1
and 𝑙
2
norms, it allows to take the

advantage of the LASSO—shrinking many model weights
to zero being more robust to possible occasional jumps or
spikes occurring on the multi-sensor data—and of the Ridge
model—averaging the contribution of correlated channels
allowing a more robust estimation of glucose profiles. With
respect to the previous sensor literature, where PLS represents
the current state of the art (see [34, 54, 55] to mention just
a few), we showed that EN can become very useful with
multi-sensor data. While retaining information from a group
of variables (as PLS does), EN also automatically selects
those channels representing the strongest effects, givingmore
insight into the specific problem at hand.

To conclude, in this work, we showed that further
increased point accuracy can be obtained through suitable
techniques for the identification of the multivariate model,
representing an important incremental step towards the
development ofNI-CGMdevices.Whilemost of the accuracy
indices of Table 1 have not yet reached a fully comparable
level with those of current enzyme-based needle sensors [53],
glucose trends estimated by the considered NI-CGM device
exhibit an acceptable accuracy (last column of Table 1). This
result could be potentially important in the treatment of
diabetes since the glucose trend can be valid adjunctive
information to complement standard SMBG devices that
measure glucose by fingerstick, for example, helping the
diabetic patient in preventing the occurrence of critical
events, such as hypoglycaemia, by exploiting the dynamic risk
concept recently developed in [56].
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2 Universidad Politécnica de San Luis Potośı, Urbano Villalón 500, CP 78363, La Ladrillera, SLP, Mexico
3 Instituto de Fı́sica UASLP, Universidad Autónoma de San Luis Potośı, Avenida Manuel Nava No. 6., Zona Universitaria,
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One of the fields of applied mathematics is related to model analysis. Biomedical systems are suitable candidates for this field
because of their importance in life sciences including therapeutics. Here we deal with the analysis of a model recently proposed
by Espinoza-Valdez et al. (2010) for the kidney vasculature developed via angiogenesis. The graph theory allows one to model
quantitatively a vascular arterial tree of the kidney in sense that (1) the vertex represents a vessels bifurcation, whereas (2) each edge
stands for a vessel including physiological parameters.The analytical model is based on the two processes of sprouting and splitting
angiogeneses, the concentration of the vascular endothelial growth factor (VEGF), and the experimental data measurements of the
rat kidneys.The fractal dimension depends on the probability of sprouting angiogenesis in the development of the arterial vascular
tree of the kidney, that is, of the distribution of blood vessels in the morphology generated by the analytical model. The fractal
dimension might determine whether a suitable renal vascular structure is capable of performing physiological functions under
appropriate conditions. The analysis can describe the complex structures of the development vasculature in kidney.

1. Introduction

The arterial structure of organs has been the subject of many
studies [1–5]. However, not all systems have similar func-
tions; for the organs the purpose of arterial structure is to
provide the blood required in themetabolic process and other
specific functions.The arterial structure is highly nonuniform
because it is determined by reasons of anatomy and local
flow requirements [4]. The kidney is one of the most com-
plicated organs in terms of structure and physiology because
it is highly vascularized and constitutes the main organ for
maintaining chemical balance in blood [6]. The kidney
consists of three trees: arterial, venous, and ureter.The arterial

vascular tree of the kidney is structured by the renal artery
branches into interlobar arteries, arcuate arteries, and inter-
lobular arteries, which are formed by bifurcation [6]. The
development of the arterial vascular tree of the kidney can be
formed mainly by angiogenesis [1]. The process of angiogen-
esis is the formation of new blood vessels from preexisting
vessels and consists of two different processes: sprouting
and splitting. Sprouting refers to the case in which the new
branch literally sprouts to some existing branch. In splitting
a branch is divided into two new branches [7]. The factors
involved at the vascular development are VEGF, renin-
expression, ephrins A and B, platelet-derived growth factor-B
(PDGF-B), Ets family (as Ets-1 and TEL), and angiopoietins
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1-2. The VEGF is an essential regulatory factor for both
processes of angiogenesis in the development of renal arterial
vascularization [1].Then,we only considerVEGF, because the
other factors increase the complexity of the analytical model.

Zamir and Phipps in [8] studied the morphological
characteristics of the rat kidney and found that the branching
rules of these vessels are determined by considerations of
the angiological function. Subsequently, Zamir generated a
model based on L-systems (Lindenmayer System) and incor-
porated some physiological laws, that is, random parameters
[4]. Zamir’s results suggest that the arterial structure of the
tree is determined mainly by the growth rules of arterial tree
branching [4]. The structural morphologic reconstruction of
renal vasculature from microcomputed tomography (micro-
CT) images was presented by Nordsletten et. al. The arterial
and venous trees of the rat kidneywere generated numerically
using micro-TC [3]. These morphological data provide a
statistical basis from which renal vascular topology can be
generated [5]. Graph theory generates branching tree struc-
tures incorporating the physiological laws of the renal artery
branching through the process of angiogenesis [5]. Many
pathological conditions, such as cancers, arteriovenous mal-
formations, and diabetes, induce changes to vessel’s mor-
phology or spatial organization.The fractal analysis has been
applied to a large variety of healthy or pathological vascular
networks [9–14]. Sabo et al. concluded in [15] that the micro-
vessel fractal dimension as a marker of tumor microvascular
complexity might provide important pronostic information
as well as shed light on the complex interactions between
tumor angiogenesis and growth. Moreover, Cross et al.
analyzed the fractal dimension of renal angiograms: a normal
kidney, a congenitally dysplastic kidney, a kidney with renal
artery stenosis, and a kidney with recurrent thromboem-
bolism lesions (see Figure 3 in [16]). The analysis of fractal
dimension may allow for characterization of the vascular
morphology.

In this paper we extend the results of [5] by analysing
mathematically the structure of the arterial vascular tree of
the kidney and by incorporating physiological parameters
generated from a computational model. In the implementa-
tion of the proposed model the branches are represented by
the edges of the graph and the ramification point is repre-
sented by the nodes [5]. We expect that this representation
implemented in computer methodology will help to under-
stand the mechanism involved in biological systems, specif-
ically the development of the renal arterial bifurcation. The
analysis provides themean of the length in each level, and the
average width of the arterial vascular tree of the rat kidney is
in the range of what is observed in previous experimental and
computationalmodels.The fractal dimension depends on the
sprouting angiogenesis that appears in the development of the
arterial vascular tree of the kidney. The complex structures
of the renal arterial tree are consistent with previous fractal
analysis of vascular structures [9, 11–14]. These study opens
the possibility of a new taxonomy for normal kidneys and for
the pathological injuries related to the vascular morphology
of the kidneys.

2. Theoretical Basis

The representation of the renal arterial vascularization in the
computational model is as follows: (1) the arterial vascular
tree of the kidney is defined by labeled and oriented graphs;
we can identify two objects: the branches (edges) and the
branching point (nodes). That is, the edge represents a blood
vessel and the vertex is where the angiological stimulus
appears. (2)The length and diameter of the new branches are
smaller than their parent branches [5, 6].

The arterial vascular tree of the kidney down to the inter-
lobular arteries can be structured as follows: renal artery, level
0: interlobar arteries, levels 1-2: arcuate arteries, levels 3-4:
interlobular arteries, and levels 5–9. We based in the exper-
iments of Tomanek [3] for the morphological structure of
the renal arterial tree. In the model, we develop the arterial
vascular tree of the rat kidney.Therefore, the model based on
the graph theory for the arterial tree is a binary tree of ten
levels and has a total of vessels equal to 1023.Thephysiological
parameters, and rules are based on parent vessel branch level,
the parameters, and the morphological structure of their
child branches, and this process deploys the structure of the
model. The parameters included in the edges of the binary
tree model are 𝑠, 𝐶𝑔𝑓, 𝑙, 𝑑, and 𝜃 as follows (for details see
[5]).

(i) The Type of Angiogenesis: Sprouting or Splitting (𝑠).
Angiogenesis is identified by the variable 𝑠 which can
take the values in the set {𝑎𝑏, 𝑎𝑝}, where 𝑎𝑏 denotes
sprouting angiogenesis and 𝑎𝑝 denotes splitting
angiogenesis. Both sprouting and splitting angioge-
neeis generate branching tree structures, which can be
represented using graph theory. It is conjectured that
the sprouting and splitting processes occur with dif-
ferent probability in the renal arterial tree for themor-
phology of the kidney. In the proposed computational
model this assumption is controlled probabilistically.
Sprouting angiogenesis is more probably than split-
ting angiogenesis because it requires only reorganiza-
tion of existing endothelial cells (not migration), that
is, having less energy requirements [1].

(ii) Concentration of the VEGF in the Vessel (𝐶𝑔𝑓). Both
processes, sprouting and splitting angiogeneses, de-
pend on the regulation of 𝐶𝑔𝑓 in the pre-existing
vessel [1].While in sprouting angiogenesis it is known
that endothelial cells promotes the differentiation,
migration, proliferation, and assembly, the effect on
splitting angiogenesis is still in research. In the model
𝐶𝑔𝑓 is generated randomly in a uniform way within
the range [0, 35] ng/mL reported in [5, 17].

(iii) Length of the Vessel (𝑙). Here, we focus on determining
the value of the lengths in the arterial bifurca-
tions depending of the concentration of the VEGF.
Although the effect of𝐶𝑔𝑓 over length for the splitting
angiogenesis is unknown, in the sprouting angiogen-
esis we consider that the length of the new vessels
depends of the 𝐶𝑔𝑓. We obtain the value of the
dimensionless length 𝑙𝑒 : [𝐶𝑔𝑓, 𝐶𝑔𝑓] → [𝑙𝑒, 𝑙𝑒] from
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experimental data; the function which can be approx-
imated for VEGF121 is [5] 𝑙𝑒 = 0.00878𝐶3

𝑔𝑓
−

0.51326𝐶2
𝑔𝑓
+8.52128𝐶𝑔𝑓+81.12064.The 𝑙𝑒 is applied

in this model; the length of the vessel 𝑙 depends on 𝑙𝑒
and is compared with the length ranges reported in
the literature according to the level [3, 5].The 𝑙 formed
by splitting is defined by a contraction factor. In the
case that 𝑙 is out of these ranges, the process is repeated
finite number of times. If 𝑙 is still out of range, then it
is adjusted to the length of its parent branch.

(iv) Diameter of the Vessel (𝑑). In this work, we do not
discuss the value of the diameters in the blood vessels.
This is due to the fact that we do not have sufficient
information of 𝐶𝑔𝑓 in 𝑑 for sprouting and splitting
angiogeneses. Then, in sprouting angiogenesis, the
diameter of the sprout is adjusted to a factor of the
diameter of its parent branch. In splitting angiogene-
sis the diameter of every new vessel is adjusted to one-
half of the diameter of its parent branch.

(v) Angle of Bifurcation (𝜃). In sprouting angiogenesis
the angle of bifurcation is adjusted within the range
±[60
∘, 80∘] with respect to its parent branch [1, 18].

In splitting angiogenesis, one branch is adjusted to
+32.5

∘ and the other branch to −32.5∘ [18].

The physiological parameters are included in the label
of the edge and have the form (𝑠, 𝐶𝑔𝑓, 𝑙, 𝑑, 𝜃). The arterial
vascular tree of the kidney has vertices with oriented edges
in such a way that from each vertex one edge arrives and
two edges leave (the orientation symbolizes the circulation of
blood flow in arteries of the kidney). The renal arterial vas-
cular tree of the kidney has 10 levels, because we based in the
experiments of Tomanek.Therefore, the arterial vascular tree
of the kidney has 210 nodes.The set of integers to name every
node is [0, . . . , 210 − 1].

An algorithm generates step by step the physiological
characteristics of every branch and saves it as labeled edges
with the format {𝑠, 𝐶𝑔𝑓, 𝑙, 𝑑, 𝜃}. Just as the tree is generated, the
other structure is constructed in which we save the position
of every node in R2. The algorithm calculates the position
of every node in function of the physiological characteristics
of the branches and the position of nodes of its parent
branch. The physiological parameters of the root (the initial
condition) are determined: 𝑠 = 𝑎𝑏 with probability 𝑃𝑎𝑏 =
{0.1, 0.2, 0.3, 0.4, 0.5} and 𝑠 = 𝑎𝑝, where 𝑃𝑎𝑝 = 1 − 𝑃𝑎𝑏,
𝐶𝑔𝑓 ∈ [0, 35] ng/mL, 𝑙 = 5, 𝑑 = 1, 𝜃 = 0, and they continue
in numerical order with the other branches using the infor-
mation of parent branches. Some characteristics such as 𝑠
and 𝐶𝑔𝑓 are generated probabilistically in every step, and the
others depend on these parameters, their parent branch, and
the rules that were enumerated in the previous section.

3. Main Results

3.1. Length and Width. The length of each level into the
kidney depends on 𝑎𝑏 and 𝑎𝑝; that is, the length for each level

𝑗 denoted by 𝑙𝑗 in the arterial vascular tree of the kidney is
analytically determined as follows:

𝑙𝑗 = 𝑙00(𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

, (1)

where the parameters are defined as in the previous section.
Then, the mean length for each segment 𝑗 is

𝑙0 = 5mm, 𝑙1 = 3.095mm,

𝑙2 = 1.919mm, 𝑙3 = 1.191mm,

𝑙4 = 0.741mm, 𝑙5 = 0.462mm,

𝑙6 = 0.287mm, 𝑙7 = 0.179mm,

𝑙8 = 0.112mm, 𝑙9 = 0.070mm.

(2)

These data are within the range of rat trees reported in [3];
we compare the results with Nordsletten from depth 𝑗 = 0 to
𝑗 = 9.

Moreover, the analytical average width denoted by𝐴𝐺𝑅 is
the root length (renal artery, 𝑗 = 0) to the leaves of the tree
(interlobular arteries, 𝑗 = 9), and then

𝐴𝐺𝑅 = 𝑙00

9

∑
𝑗=0

(𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

, (3)

where 0 ≤ 𝑗 ≤ 9; 𝑙00 = 5mm is the length of the renal artery
[5]; 𝑃𝑎𝑏 is defined in the set {0.1, 0.2, 0.3, 0.4, 0.5} and 𝑃𝑎𝑝 =
1 − 𝑃𝑎𝑏; 𝜆𝑏 = 0.5 is the average of the contraction factor for
𝑎𝑏; and 𝜆𝑝 = 0.67 is the contraction factor for 𝑎𝑝. Then,

𝑃𝑎𝑏 = 0.1, 𝑃𝑎𝑝 = 0.9, 𝐴𝐺𝑅 = 14.20mm,

𝑃𝑎𝑏 = 0.2, 𝑃𝑎𝑝 = 0.8, 𝐴𝐺𝑅 = 13.59mm,

𝑃𝑎𝑏 = 0.3, 𝑃𝑎𝑝 = 0.7, 𝐴𝐺𝑅 = 13.01mm,

𝑃𝑎𝑏 = 0.4, 𝑃𝑎𝑝 = 0.6, 𝐴𝐺𝑅 = 12.48mm,

𝑃𝑎𝑏 = 0.5, 𝑃𝑎𝑝 = 0.5, 𝐴𝐺𝑅 = 11.99mm.

(4)

These data are within the range of rat trees reported in
[3]; while we consider 10 levels [1, 5], Nordsletten considers 11
levels.

However, if 𝜆𝑏 ∈ [0.3, 0.7], the average with respect to 𝜆𝑏
is as follows:

𝐸𝑏 ((𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

)

=
5

2𝑃𝑎𝑏
∫
.7

.3

(𝑃𝑎𝑏𝜆𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗

𝑃𝑎𝑏𝑑𝜆𝑏

=
5

2𝑃𝑎𝑏 (𝑗 + 1)
[(.7𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)

𝑗+1

− (.3𝑃𝑎𝑏+𝑃𝑎𝑝𝜆𝑝)
𝑗+1

] .

(5)
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Let 𝑎 = (.7𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)
𝑗+1 and 𝑏 = (.3𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)

𝑗+1,
and then

𝐴𝐺𝑅 =
5𝑙00

2𝑃𝑎𝑏

9

∑
𝑗=0

(
𝑎𝑗+1

𝑗 + 1
−
𝑏
𝑗+1

𝑗 + 1
)

≃
5𝑙00

2𝑃𝑎𝑏

∞

∑
𝑗=0

(
𝑎𝑗+1

𝑗 + 1
−
𝑏
𝑗+1

𝑗 + 1
) ,

(6)

where
∞

∑
𝑗=0

𝑎𝑗+1

𝑗 + 1
=

∞

∑
𝑗=0

(∫
𝑎

0

𝑥
𝑗
𝑑𝑥)

= ∫
𝑎

0

(

∞

∑
𝑗=0

𝑥
𝑗
)𝑑𝑥 (by uniform convergence)

= ∫
𝑎

0

𝑑𝑥

1 − 𝑥
= − ln (1 − 𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎

0

= ln( 1

1 − 𝑎
) .

(7)

Similarly, ∑∞
𝑗=0
(𝑏𝑗+1/𝑗 + 1) = ln(1/1 − 𝑏), and then

𝐴𝐺𝑅 =
5𝑙00

2𝑃𝑎𝑏
ln(1 − 𝑏

1 − 𝑎
)

=
5𝑙00

2𝑃𝑎𝑏
ln(

1 − (.3𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)

1 − (.7𝑃𝑎𝑏 + 𝑃𝑎𝑝𝜆𝑝)
) ± .7

11
,

(8)

where ± .711mm is the error.
Substituting the values 𝑙00, 𝑃𝑎𝑏, 𝑃𝑎𝑝, and 𝜆𝑝 = 0.67,

𝑃𝑎𝑏 = 0.1, 𝑃𝑎𝑝 = 0.9, 𝐴𝐺𝑅 = 14.42 ± .7
11mm,

𝑃𝑎𝑏 = 0.2, 𝑃𝑎𝑝 = 0.8, 𝐴𝐺𝑅 = 13.79 ± .7
11mm,

𝑃𝑎𝑏 = 0.3, 𝑃𝑎𝑝 = 0.7, 𝐴𝐺𝑅 = 13.23 ± .7
11mm,

𝑃𝑎𝑏 = 0.4, 𝑃𝑎𝑝 = 0.6, 𝐴𝐺𝑅 = 12.73 ± .7
11mm,

𝑃𝑎𝑏 = 0.5, 𝑃𝑎𝑝 = 0.5, 𝐴𝐺𝑅 = 12.28 ± .7
11mm.

(9)

We generate 5000 trees of renal arterial vasculature for
different probabilities in 𝑎𝑏 and 𝑎𝑝. In Figure 1 the mean ± SD
(standard deviation) width of the kidney has an intersection
with these data and previous result where the mean width is
17.454 ± 6.165mm [3].

Therefore, the 𝐴𝐺𝑅 depends on the process of angiogene-
sis; that is, 𝐴𝐺𝑅 is inversely proportional to the probability of
the 𝑎𝑏.

3.2. Fractal Dimension of Kidney Vascular Tree. The fractal
dimension (𝐷) quantifies through dimension the ability of
an object to occupy a space. Different methods exist and are
based on the different definitions of fractal dimension [9, 11–
14, 19].

The analytical fractal dimension can be derived using the
following result [19]. Let {R𝑚; 𝑤1, 𝑤2, . . . , 𝑤𝑁} be a hyperbolic
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iterative function system (IFS), and let 𝐴 denote its attractor.
Suppose that 𝑤𝑛 is a similitude of scaling factor 𝑠𝑛 for each
𝑛 ∈ {1, 2, 3, . . . , 𝑁}. If the IFS is totally disconnected or just
touching, the attractor has fractal dimension 𝐷(𝐴), which is
given by the unique solution of

𝑁

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑠𝑛
󵄨󵄨󵄨󵄨
𝐷(𝐴)

= 1, 𝐷 (𝐴) ∈ [0,𝑚] . (10)

If the IFS is overlapping, then 𝐷 ≥ 𝐷(𝐴), where 𝐷 is the
solution of

𝑁

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑠𝑛
󵄨󵄨󵄨󵄨
𝐷
= 1, 𝐷 ∈ [0,∞) . (11)

The morphology of arterial vascular tree of the kidney,
produced by an IFS, is composed of 𝑛 applications of contrac-
tion with a factor 𝑠𝑛. Thus, from the subsection of length and
width, the contraction factor for the splitting angiogenesis
is 𝜆𝑝 = 0.67 while for sprouting angiogenesis the average
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contraction factor is 𝜆𝑏 = 0.5. Since we have 𝑃𝑎𝑏𝜆
𝐷

𝑏
+𝑃𝑎𝑝𝜆

𝐷

𝑝
=

1, the analytical fractal dimension of the renal arterial tree is

𝐷 =
ln (𝑃𝑎𝑝) − ln ((1/2) − 𝑃𝑎𝑏𝜆

𝐷

𝑏
)

− ln (𝜆𝑝)
, (12)

where 𝜆𝑏 is generated randomly within the range defined by
𝜆𝑏 ∈ [0.3, 0.7]. In other words, the fractal dimension depends
on the number of vessels, the spatial relationships between the
vascular components, and the surrounding environment.

3.2.1. Box Counting 𝐷 of the Arterial Vascular Tree of the
Kidney. Additionally, the box counting theorem by Barnsley
[19] states that, denoting with𝑁𝑛(𝐺𝑅) as the number of boxes
of side 1/2𝑛,

𝐷 = lim
𝑛→∞

ln (𝑁𝑛 (𝐺𝑅))
ln (2𝑛)

, (13)

where the arterial vascular tree of the kidney has fractal
dimension𝐷. The box counting results allow one to compute
the rate of change in complexity with scale as well as a meas-
ure of hetreogeneity.

Here, we used the box counting theorem for determining
the fractal dimension. Figure 2 shows the average of the
fractal dimension in each probability for the arterial vascular
tree of the kidney. The fractal dimension decreases with the
increase in the probability of sprouting in the development
of the arterial vascular tree of the kidney, whereas the mean
width of the kidney decreases. Then, the fractal dimension
of the arterial vascular tree of the kidney depends on the
probability of 𝑎𝑏 and 𝑎𝑝, that is, the distribution of blood
vessels in the morphology generated by graph theory model.

The results suggest that the fractal dimension is inversely
proportional to 𝑃𝑎𝑏. This behavior is congruent in the sense
that, by symmetry structure, the arterial vascular tree is
bigger for small values of𝑃𝑎𝑏; that is, the renal space is covered
more efficiently. The complex structures of the vasculature in
kidney are consistent with previous studies of vascular struc-
tures about their fractal nature [9–16].

Examples derived fromgraphmodel using different prob-
abilities in 𝑎𝑏 and 𝑎𝑝, mean width and fractal dimension, are
shown in Figure 3. The analysis of these responses may
allow for characterization of the vascular morphology on the
arterial vascular tree of the kidney.
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4. Conclusions

Thearterial vascular tree of kidney developmentwas analyzed
through angiogenesis. The renal arterial vascular tree of
the kidney goes down into the interlobular arteries. We
generate 5000 trees of renal arterial vasculature for different
probabilities on 𝑎𝑏 and 𝑎𝑝.The analytical mean length in each
level and the average width of the arterial vascular tree of the
kidney have an intersection with previous studies. Then,
the graph theory allows the vascular tree to model the
vascular growth; that is, it generates the ramification of struc-
tures arborescent incorporating physiological laws of arterial
branching.

In conclusion, the analytical expression of the fractal
dimension depends on the number of vessels, the spatial
relationships between the vascular components, and the sur-
rounding environment. The arterial vascular arterial tree of
the kidney has a fractal dimension which is inversely propor-
tional to the probability of the occurring sprouting angiogen-
esis. The fractal dimensions determined for the development
of the arterial vascular tree of the kidney by box countingmay
allow for characterization of the vascular morphology. As a
conjecture, the fractal dimension might determine whether
a suitable renal vascular structure is capable of performing
physiological functions under appropriate conditions (hemo-
dynamics).These studies could be expanded to include those
pathologies originating from arterial alterations.
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Histological images from the longitudinal section of four diseased coronary arteries were used, for the first time, to study the
pulsatile blood flow distribution within the lumen of the arteries bymeans of computational fluid dynamics (CFD). Results indicate
a strong dependence of the hemodynamics on themorphology of atherosclerotic lesion. Distinctive flow patterns appear in different
stenosed regions corresponding to the specific geometry of any artery. Results show that the stenosis affects the wall shear stress
(WSS) locally along the diseased arterial wall as well as other adjacent walls. The maximum magnitude of WSS is observed in
the throat of stenosis. Moreover, high oscillatory shear index (OSI) is observed along the stenosed wall and the high curvature
regions.The present study is capable of providing information on the shear environment in the longitudinal section of the diseased
coronary arteries, based on the models created from histological images. The computational method may be used as an effective
way to predict plaque forming regions in healthy arterial walls.

1. Introduction

Atherosclerosis in the coronary arteries tends to be localized
in regions with curvature and branching associated with
complex, unsteady, and turbulent pattern of the flow [1]. In
these regions, the fluid shear stress deviates from its normal
spatial and temporal distribution patterns in straight vessels.
The role of WSS in the localization of the atherosclerosis has
been widely accepted [1–6]. Shahcheraghi et al. [3] explained
clinically the fact that a low shear stress region is generally
found in the downstream of developing stenotic plaques,
leading to an increased density of leaky junctions associated
with an increased level of low-density-lipoprotein (LDL) flux
into the arterial wall. Moreover, the OSI is known as the
predictor of formation of atherosclerosis and vulnerability for
plaque in coronary arteries [7–9]. High OSI has been widely
used as indicators of atherosclerosis because the regions with

high OSI are likely to experience stagnation or backflow [7–
11]. This is strongly related to the progression of atheroscle-
rosis because it affects the arrangement of endothelial cells
in adjacent tissues. It has been shown that the areas with
high values of OSI are usually located in the regions where
wall shear stress is low [7]. Taking all together, the creation
and development of atherosclerosis depend not only on the
biological features but also on the biomechanical factors,
including WSS and the cyclic force caused by the pulsatile
blood pressure. Therefore, a full description of the flow
pattern through the diseased coronaries, with the emphasis
on the patient-specific data, is essential for quantifying the
wall shear stress that may occur in a stenosed artery during
the cardiac cycle. The knowledge will also lead to find the
most vulnerable sites for the plaque rupture.

Previous studies have shown the flow pattern through the
idealized geometry [6–8] or the reconstructed geometry of
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Figure 1: (a)–(d) LS images of four diseased coronary arteries, (e) the computational meshes at the stenosis location, and (f) velocity pulse
at the inlet.

arteries from a series of slices obtained using computerized
tomography (CT) scan images [9, 10], magnetic resonance
images (MRI) [11], the spiral CT scan [12], the phase-contrast
MRI method [13], or intravascular ultrasound (IVUS) [4].
However, simplifications were applied in these studies; for
example, the cross-section of the artery was approximated as
circles which fit the centerline to a cubic spline curve [7, 13],
or a constant diameter was applied throughout the model
[13, 14].

In the present study, the histological images from longi-
tudinal section of four diseased coronary arteries were used,
for the first time, to investigate the local hemodynamic more
precisely through the stenosed artery models. The geometry
is reconstructed directly by graphical reading of points on the
luminal surface of the arteries. Any simplifications have been
avoided in the construction of the model.The pulsatile blood
flow pattern was applied through the reconstructed stenosed
coronary arteries, and the blood flow characteristics along the
arterial wall was analyzed by means of computational fluid
dynamics (CFD).

2. Methods

2.1. Reconstruction of 2D Geometry of Coronary Artery from
Histological Image. Two-dimensional (2D) geometries of the
human coronaries are reconstructed from the histological
images which were acquired from coronary arteries of four
donor hearts (Faculty of Medicine and Density, University
of Bristol, Bristol, UK). The samples contained regions with
mild to severe atherosclerosis.The diseased coronary arteries
were cut in longitudinal section, stained with H&E, and
imaged on a nanozoomer, namely, NanoZoomer 2.0HT
(Hamamatsu photonics, Hamamatsu, Japan) with 40x mag-
nification at the pathology core lab in the Winship Cancer
Institute, Emory University.

To construct the coronary artery geometries, all the
images were processed individually. The images were con-
verted first to the boundary plots within MATLAB v. 7.11.0
(R2010b). The lumen area was identified via image segmen-
tation. Points representing the surface of the endothelium
were obtained as the final output of this step. The vertices
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Figure 2: (a) Boundary plots of the coronary arterial walls 1, 2, and 3 shown in red, green, and blue, respectively. (b)–(d) WSS distribution
along coronary walls at time 𝑇

1
, 𝑇
2
, and 𝑇

3
, respectively.

acquired from the processing of the images were connected
to generate a 2D surface representing the lumen of coronary.
The 2Dmodel was trimmed with the CFD preprocessing and
meshing code Gambit V2.4.6 to generate the flat inlet and
outlet boundaries. The computational mesh grid consisted of
about 50,000 grid elements. Thin boundary layers were used
for the precise calculations near the walls. Several steady-
state simulations were performed with different grid sizes to
ensure the mesh independence of the results. The boundary
layer mesh used in these simulations consists of 6 layers
with the first layer attached to the luminal surface with the

thickness of 0.01mm. The thickness of consecutive layers
grows with the factor of 1.2. Figures 1(a)–1(d) demonstrate
the original histological image of each coronary artery.
Figure 1(e) shows the grids generated for the models.

2.2. Governing Equations and Boundary Conditions. The
blood flow is assumed to beincompressible with uniform
properties including the viscosity of 3.5 × 10−3 Pa ⋅ s (New-
tonian fluid) and the density of 1067 kgm−3. The assumption
of Newtonian fluid for the blood is valid wherever the shear
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Figure 3: (a) Boundary plots of the coronary arterial walls 1 and 2 shown in green and blue, respectively. (b)–(d) WSS distribution along
coronary walls at time 𝑇

1
, 𝑇
2
, and 𝑇

3
, respectively.

rate is greater than 100 S−1 [9, 10, 12, 13]. This assumption
is feasible for coronary artery. The time-dependent Navier-
Stokes equations govern the bloodflow in the coronary artery,
as

∇ ⋅ 𝑈⃗ = 0,

𝜌
𝜕𝑈⃗

𝜕𝑡
+ 𝜌 (𝑈⃗ ⋅ ∇) 𝑈⃗ = −∇𝑝 + 𝜇∇

2
𝑈⃗,

(1)

where 𝑈⃗ is the velocity vector, while 𝑝, 𝜌, and 𝜇 denote
pressure, density, and viscosity, respectively. The maximum
Reynolds number, Re = 𝜌𝑈𝐷/𝜇 (where 𝐷 is the inlet
diameter of coronary and𝑈 is themaximum pulsating inflow

velocity), is calculated as 232. The inlet diameter of the distal
left anterior descending coronary artery is 1.9 ± 0.4mm, and
the maximum pulsating inflow velocity is taken as 0.4m/s
[14]. Figure 1(e) demonstrates the pulse for inlet velocity.
The critical Reynolds number for an unsteady flow ranges
from 5000 to 20,000 [15–17]. Therefore, the laminar flow
assumption is reasonable in the present simulation.

The pulse of the inlet velocity (Figure 1(f)) applied in
the proximal site of the right coronary artery (RCA) is
decomposed into a Fourier series of trigonometric basis
functions with 3 harmonics. The input velocity shown in
Figure 1(f) is based on the velocity waveforms measured with
a commercial ultrasound Doppler probe FloWire (Volcano
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Figure 4: (a) Boundary plots of the coronary arterial walls 1, 2, 3, and 4 shown in red, green, blue, and brown, respectively. (b)–(d) WSS
distribution along coronary walls at time 𝑇

1
, 𝑇
2
, and 𝑇

3
, respectively.

TM Corporation) with 1 kHz sampling rate at the proximal
site of RCA, provided by Torii et al. [18]. The inlet velocity
was kept constant across the inlet surface at each time
instant of the cardiac cycle. The points indicated by 𝑇

1
,

𝑇
2
, and 𝑇

3
in Figure 1(f) correspond to the diastole, the

peak systole, and accelerating phase within the cardiac cycle,
respectively. The outflow boundary conditions were imposed
at the outlets. The coronary arterial walls are assumed to be
rigidwith no-slip boundary condition on the luminal surface.
The governing equations along with the given boundary

conditions are solved with the finite-volume (FV) solver
package, Fluent V12.1.4. The SIMPLE algorithm is used for
the coupling of the pressure-velocity terms. The simulations
are carried out for four inlet cycles to ensure that the spatial
and temporal flow dynamics are periodic. The total time of
1 s with the time step size of 1ms is taken for each cycle.
The simulations are performed for four cardiac cycles, of
which only the results of the forth cycle are demonstrated in
the following section at different times to ensure that all the
phenomena associated with the initial conditions are damped
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Figure 5: (a) Boundary plots of coronary arterial walls 1, 2, 3, and 4 shown in red, green, blue, and brown, respectively. (b)–(d) WSS
distribution along coronary walls at time 𝑇

1
, 𝑇
2
, and 𝑇

3
, respectively.

out during the first three cycles. The oscillatory shear index
for the pulsatile flow simulation is calculated as [4]

OSI = 0.5[

[

1 −

󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑇

0
⃗𝜏
𝑤
𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑇

0

󵄨󵄨󵄨󵄨 ⃗𝜏𝑤
󵄨󵄨󵄨󵄨 𝑑𝑡

]

]

. (2)

3. Results and Discussion

3.1. Wall Shear Stress. The wall shear stress is among the
first mechanisms proposed to relate the blood flow to the
localization of atherosclerosis [18] and the plaque rupture [19,
20]. Figures 2–5 demonstrate theWSS distributions along the

coronary walls versus the curve length (𝑆), at three different
time instants, for four different diseased coronary arteries. In
the present study, the WSS is defined as the magnitude of all
three components at any location on the wall.

Figure 2(a) demonstrates the boundary plots for the
images of the first stenosed coronary artery (Figure 1(a)).
TheWSS distributions along the coronary walls versus curve
length at diastole, the peak systole, and accelerating phase
are shown in Figures 2(b)–2(d), respectively. The areas with
maximum WSS can be observed along the distal side and
on the throat of the stenosis at diastole time point. Note
that a minimum value of WSS appears at the top of the
atherosclerotic plaque at the peak systole and accelerating
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Figure 6: (a) Boundary plots of the coronary arterial walls 1, 2 and 3 shown in red, green, and blue, respectively. (b)–(d) OSI distribution
along coronary walls 1, 2, and 3, respectively.

time points. It is worth mentioning that the surfaces of the
coronary walls, in the present study, are generated based on
the original images of patients. Surfaces are not smoothed
after being read in MATLAB. The reason is associated with
the aim of the current study at the investigation of the con-
nection of atherosclerotic plaque to the local characteristics
of the luminal surface. As Figure 2(a) shows, the wall on the
top of the plaque is not smooth which is according to the
original histological image (Figure 1(a)). This is the region
with a minimummagnitude of WSS.

Figures 3(a)–3(d) show the WSS versus curve length
along the walls of the second stenosed coronary artery
(Figure 1(b)).Themaximummagnitude ofWSS occurs at the
top of the plaque. Another stenosed region shows the second
peak of WSS values at systole and accelerating time points.

Figures 4(a)–4(d) demonstrate theWSS along the walls of
the third diseased coronary artery (Figure 1(c)), while Figures
5(a)–5(d) demonstrate the WSS along the walls of the forth

diseased coronary artery (Figure 1(d)). Maximum of theWSS
magnitude occurs at the throat of the stenoses in bothmodels,
at diastole time point. As seen in Figures 4(c) and 4(d),
another maximum value of WSS is observed at systole and
accelerating time points in the region with high curvature. In
Figures 5(c) and 5(d), the proximal side of the plaque shows
relatively high magnitude of WSS at systole and accelerating
time points. In this artery the stenosis has been created at the
bifurcation.

3.2. Oscillatory Shear Index (OSI). OSI is a known predictor
of formation of atherosclerosis and vulnerability for plaque
in coronary arteries. Figures 6(b)–6(d) demonstrates OSI for
the first stenosed coronary artery. Figure 6(b) shows that OSI
has high values at the high curvature region. Therefore, this
location may be predicted to experience lesion in the future.
As shown in Figure 6(c), OSI is high along the stenosed
wall of coronary artery (shown in green in Figure 6(a)). OSI
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Figure 7: (a) Boundary plots of the coronary arterial walls 1 and 2 shown in green and blue, respectively. (b)-(c) OSI distribution along
coronary walls 1 and 2.

distribution reveals that the whole length of the green wall
is vulnerable to atherosclerosis. Figure 6(d) demonstrates a
relatively high OSI values at the curvature region along the
wall.

Figures 7, 8, and 9 show OSI for the next stenosed
coronary arteries. Maximum values of OSI occur in stenosed
regions, in all arteries. The next area with maximum of OSI
is the region with high curvature. Note that this behavior is
observed even in healthy curves.

4. Conclusions

In this study, pulsatile blood flow is studied in four recon-
structed models of the diseased coronary arteries from
histological images. Surface smoothing and approximation
of the vessels with regular shapes such as straight or curved
cylinders are avoided unlike most of earlier studies. The real

geometric model and the conditions of pulsatile flow allow to
spot vulnerable areas to the development of atherosclerotic
lesions. The results indicate a strong dependence of the
hemodynamics on the morphology of atherosclerotic lesion.
Distinctive flow patterns appear in different stenosed regions
corresponding to the specific geometry of the arteries. The
OSI is a well-known predictor of formation of atherosclerosis
and vulnerability for plaque in coronary arteries. High OSI
has been widely used as indicators of atherosclerosis because
the region with high OSI is likely to experience stagnation
or backflow. This is strongly related to the progression of
atherosclerosis because it affects the arrangement of endothe-
lial cells in adjacent tissues. It has been shown that the areas
with high values of OSI are usually located in the regions
where wall shear stress is low. In the present study, OSI
is high in diseased region as well as healthy regions with
low values of WSS which can be predicted to experience
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Figure 8: (a) Boundary plots of coronary arterial walls 1, 2, 3, and 4 shown in red, green, blue, and brown, respectively. (b)–(e)OSI distribution
along coronary walls 1, 2, 3, and 4.
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Figure 9: (a) Boundary plots of coronary arterial walls 1, 2, 3, and 4 shown in red, green, blue, and brown, respectively. (b)–(e)OSI distribution
along coronary walls 1, 2, 3, and 4.
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lesion in the future. The findings support the low shear stress
and oscillatory shear stress theory which relates abnormal
biological effects inside arteries to high OSI. Moreover,
the present study demonstrates the shear environment in
longitudinal section of the diseased coronary. The stenosis
affects theWSS locally along the diseased arterial wall as well
as adjacent walls. The maximum value of WSS is observed
in the throat of stenosis which highlights the risk of plaque
rupture. The arterial plaque can break apart as a result of
high stresses acting on or within the arterial wall.The severity
and the peripheral distribution of stenosis are the crucial
geometric factors influencing the risk of breakage.

It is hoped that computational studies of this type will
enable scientists to directly relate the hemodynamics to the
formation and progression of atherosclerosis in the coronary
arteries. More than 60% of myocardial infarction is caused
by the rupture of vulnerable plaques [17]. A significant con-
tribution of the present study is the demonstration of robust
and highly efficient computational methods for studying
the pulsatile blood flow field in different stenosed coronary
arteries. The current study is the first detailed numerical
investigation of the flow field within the diseased coronary
arteries which are reconstructed from histological images.
The spatial and temporal variation of wall shear stress from
the present study can be fed into other models to investigate
the effect of wall shear stress on stresses and strains that
individual endothelial cells may tolerate locally.
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This paper illustrates the application of the discrete wavelet transform (DWT) for wandering and noise suppression in
electrocardiographic (ECG) signals. A novel one-step implementation is presented, which allows improving the overall denoising
process. In addition an exhaustive study is carried out, defining threshold limits and thresholding rules for optimal wavelet
denoising using this presented technique.The systemhas been tested using synthetic ECG signals, which allow accuratelymeasuring
the effect of the proposed processing. Moreover, results from real abdominal ECG signals acquired from pregnant women are
presented in order to validate the presented approach.

1. Introduction

Electrocardiogram (ECG) is a valuable technique that has
been in use for over a century, not only for clinic applications
[1]. ECG acquisition from the human skin involves the use
of high gain instrumentation amplifiers. This fact makes the
ECG signal to be contaminated by different sources of noise
[2]. This circumstance is highlighted when the target is the
measurement of fetal ECG signals acquired over the mother’s
abdomen [3]. For processing ECG signals, it is necessary to
remove contaminants from these signals that make visual
inspection and ECG feature extraction difficult. In general,
ECG contaminants can be classified into different categories,
including power line interference, electrode pop or contact
noise, patient-electrode motion artifacts, electromyographic
(EMG) noise, and baseline wandering. Among these noises,
the power line interference and the baseline wandering
(BW) are the most significant and can strongly affect ECG
signal analysis. Except for these two noises, other noises
may be wideband and usually involve a complex stochastic
process, which also distorts the ECG signal. The power
line interference is narrow-band noise centered at 50Hz or
60Hz with a bandwidth of less than 1Hz. Usually the ECG
signal acquisition analog hardware can remove the power
line interference. However, the baseline wandering and other

wideband noises are not easy to be suppressed by analog
circuits. Instead, the software scheme is more powerful and
feasible for portable ECG signal processing. Thus, denoising
this type of signals is decisive for further parameter extraction
in clinic applications.

Wavelet transform (WT) [4] is a useful tool for a variety of
signal processing [5, 6] and compression applications [7, 8];
its primary, and most advantageous, application areas are
those that have to generate or process wideband signals. This
transform produces a time-frequency decomposition of the
signal under analysis, which separates individual signal com-
ponentsmore effectively than the traditional Fourier analysis.
This fact makes WT one of the most used tools for biosignal
processing, with ECG being an obvious candidate for this
type of analysis. Discrete wavelet transform (DWT) provides
amultiresolution, analysis, which allows representing a signal
by a finite sum of components at different resolutions so that
each component can be processed adaptively based on the
objectives of the application.

This paper proposes an arrangement of discrete wavelet
transform structures for ECG signal processing on portable,
embedded computing real-time implementations [9], focus-
ing on the suppression of different types of noise including
DC levels andwandering.This suppression is carried out with
a one-stepwavelet processing, which reduces computing cost.



2 Journal of Applied Mathematics

Appropriate software models and parameter selection are
presented based on mathematical analysis for the mentioned
ECG digital processing.Moreover, these softwaremodels will
also enable very quick tests of the required signal processing.
In order to select an appropriate method for the development
of the software modeling, noise suppression and feature
extraction procedures on ECG signals are studied in the
following.

2. Materials and Methods

2.1. DWT Fundamentals. Wavelet transform (WT) is one of
the most used tools in multiresolution signal analysis due to
its ability to decompose a signal at various resolutions, which
allow observing high-frequency events of short duration in
nonstationary signals [10]. The continuous WT of a signal
𝑓(𝑡) ∈ 𝐿2(𝑅) is defined as [11]

𝑊(𝑎, 𝑏) = ∫
+∞

−∞

𝑓 (𝑡) 𝜓
𝑎,𝑏

(𝑡) 𝑑𝑡, (1)

𝜓
𝑎,𝑏

(𝑡) =
1

√𝑎
𝜓∗ (

𝑡 − 𝑏

𝑎
) . (2)

In (2), ∗ denotes complex conjugate, and 𝑎 is a scale factor
and 𝑏 a translation factor. The normalization factor 𝑎−1/2 is
included so that ‖𝜓

𝑎,𝑏
‖ = ‖𝜓‖. Thus, 𝜓

𝑎,𝑏
(𝑡) represents a

shifted and scaled version of the so-called mother wavelet
𝜓, which is a window function that defines the basis for the
wavelet transformation. A mother wavelet 𝜓 of order 𝑚 is
a function 𝜓 : 𝑅 → 𝑅 which satisfies the following four
properties.

(1) If𝑚 > 1, then 𝜓 is (𝑚 − 1) times differentiable.
(2) 𝜓 ∈ 𝐿∞(𝑅). If 𝑚 > 1, for each 𝑗 ∈ {1, . . . , 𝑚 − 1},

𝜓(𝑗) ∈ 𝐿∞(𝑅).
(3) 𝜓 and all its derivatives up to order (𝑚 − 1) decay

rapidly: for each 𝑟 > 0 there is a 𝛾 > 0 such that

󵄨󵄨󵄨󵄨󵄨𝜓
(𝑗)

(𝑡)
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1

𝑡
, 𝑗 ∈ {1, . . . , 𝑚 − 1} for each |𝑡| > 𝛾. (3)

(4) For each 𝑗 ∈ {0, 1, . . . , 𝑚}, ∫ 𝑡𝑗𝜓(𝑡)𝑑𝑡 = 0.

Practical applications rely on the discrete wavelet transform
(DWT), since it provides enough informationwhile requiring
reasonable computation time and resources. The DWT of a
discrete function 𝑓(𝑛) is defined as

𝑊(𝑎, 𝑏) = 𝐶 (𝑗, 𝑘) = ∑
𝑛

𝑓 (𝑛) 𝜓
𝑗,𝑘

(𝑛) , (4)

where

𝜓
𝑗,𝑘

(𝑛) = 2−𝑗/2𝜓 (2−𝑗𝑛 − 𝑘) (5)

and 𝑎 = 2𝑗 and 𝑏 = 𝑘2𝑗, with 𝑗, 𝑘 ∈ Z. Thus, DWT is
computed in practice through a set of two FIR-like filters,
lowpass and highpass, at each decomposition level 𝑖, followed
by a downsampling by 2, which implies a reduction in

the sampling frequency. The result of the low-pass filter is
usually known as the approximation and is used as input
to the following decomposition level, while the result of the
high-pass filter is called the detail. Thus, the usual DWT
corresponds to the scheme in Figure 1(a), with

𝑎(𝑖)
𝑛

=
𝑁−1

∑
𝑘=0

𝑔
𝑘
𝑎(𝑖−1)
2𝑛−𝑘

𝑖 = 1, 2, . . . , 𝐽,

𝑑(𝑖)
𝑛

=
𝑁−1

∑
𝑘=0

ℎ
𝑘
𝑎(𝑖−1)
2𝑛−𝑘

𝑎(0)
𝑛

≡ 𝑥
𝑛

(6)

for an 𝑁-sample input sequence. The coefficients of the
low-pass and high-pass filters are defined by the family of
wavelet functions used as basis for the transformation: Haar,
Daubechies, Quadratic Spline, and so forth [11].

Since every detail is the result of high-pass filtering of the
previous approximation and approximations are the result
of low-pass filtering, these details and approximations at
every decomposition level contain information at different
frequencies and time scales; this reflects the multiresolution
analysis of theWT. Moreover, it is possible to reconstruct the
original signal from the set of details and approximations,
through the inverse DWT, so

𝑎(𝑖−1)
𝑚

=

{{{{{{{{{{
{{{{{{{{{{
{

(𝑁/2)−1

∑
𝑘=0

𝑔
2𝑘
𝑎(𝑖)
(𝑚/2)−𝑘

+
(𝑁/2)−1

∑
𝑘=0

ℎ
2𝑘
𝑑(𝑖)
(𝑚/2)−𝑘

𝑚 even
(𝑁/2)−1

∑
𝑘=0

𝑔
2𝑘+1

𝑎(𝑖)
((𝑚−1)/2)−𝑘

+
(𝑁/2)−1

∑
𝑘=0

ℎ
2𝑘+1

𝑑(𝑖)
((𝑚−1)/2)−𝑘

𝑚 odd,
(7)

where, once more, the corresponding details are high-pass
filtered and the approximations are low-pass filtered, this
time through the appropriate reconstruction filters.Thus, the
reconstructed approximation at level 𝑖 − 1 is obtained by
addition of the output of the reconstruction filters and an
upsampling by 2, as shown in Figure 1(b).

2.2. DWT-Based ECG Processing. The special characteristics
of ECG signals and their frequency spectrummake the use of
traditional Fourier analysis for the detection of ECG features
difficult [12]. Wavelet transform can be applied in many
fields, but its primary, and most advantageous, application
areas are those that have, generate, or process wideband
signals.This is due to themultiresolution analysis that wavelet
provides, which allows representing a signal by a finite sum of
components at different resolutions, so that each component
can be processed adaptively based on the objectives of the
application. In this way, this technique represents signals
compactly and in several levels of resolution, which is ideal
for decomposition and reconstruction purposes. Thus, the
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Figure 1: Block diagramof themultiresolution decomposition using
the wavelet transform, (a) analysis filter bank and (b) reconstruction
filter bank.

discrete wavelet transform is an effective way to digitally
remove noises within specific subbands for ECG signals.

Several wavelet families have been proposed for ECG
processing [12]. Selecting the right wavelet for this application
is a task requiring at least a brief discussion. The wavelet
type to use for the discrete wavelet analysis is an important
decision for this processing. Singh and Tiwari [13] studied
different wavelet families and analyzed the associated prop-
erties. We can distinguish between two types: the orthogonal
wavelets as Haar, Daubechies (dbxx), Coiflets (coifx), Symlets
(symx), and biorthogonal (biorx x), where 𝑥 indicates the
order of the wavelet and the higher the order, the smoother
the wavelet. The orthogonal wavelets are not redundant and
are suitable for signal or image denoising and compression.
A biorthogonal wavelet is a wavelet where the associated
wavelet transform is invertible but not necessarily orthogo-
nal. Designing biorthogonal wavelets allows more degrees of
freedom than orthogonal wavelets. One of these additional
degrees of freedom is the possibility to construct symmetric
wavelet functions.The biorthogonal wavelets usually have the
linear phase property and are suitable for signal or image
feature extraction.

2.2.1. Wavelet-Based Wandering Suppression. Baseline wan-
dering (BW) usually comes from respiration at frequencies
varying between 0.15 and 0.3Hz. Different methods for
wandering suppression exist, will the common objective of
them to make the resulting ECG signals contain as little
baseline wandering information as possible, while retaining
themain characteristics of the original ECG signal. One of the
proposed methods consists in high-pass digital filtering; for
example, a Kaiser Window FIR high-pass filter [14] could be
designed, where appropriate specifications of the high-pass
filter should be selected to remove the baseline wandering.

In addition to digital filters, the wavelet transform can
also be used to remove the low frequency trend of a signal.
This wavelet-based approach is better because it introduces
no latency and less distortion than the digital filter-based
approach. The required steps for the application of this
wavelet-based processing for baseline wander correction are
the following.

(1) Decomposition: apply wavelet transform to the signal
up to a certain level 𝐿 in order to produce the
wavelet approximation coefficients 𝑎(𝐿)

𝑛
that captures

the baseline wander.
(2) Zeroing approximation coefficients: replace the

approximation vector 𝑎(𝐿)
𝑛

for an all-zero vector to
subtract this part from the raw ECG signal and
remove the wandering.

(3) Reconstruction: compute wavelet reconstruction,
based on these zeroing approximation coefficients of
level 𝐿 and the detail coefficients of levels from 1 to 𝐿,
in order to obtain the BW corrected signal.

The main idea is to remove the low frequency components,
which better estimate the baseline wander. This processing is
easy to carry out using wavelet decomposition, for which it is
necessary to select the proper wavelet function and resolution
level.

2.2.2. Wavelet-Based Denoising. The goal in ECG denoising
is to try to recover the clean ECG from the undesired
artifacts with minimum distortion. The recovered signal is
called denoised signal, and it allows further ECG processing,
such as in the case of separation of fetal ECG [3], QRS
complex detection, and parameter estimation (such as the
cardiac rhythm). The underlying model for the noisy signal
is basically of the following form:

𝑠 (𝑛) = 𝑓 (𝑛) + 𝜎𝑒 (𝑛) , (8)

where 𝑠(𝑛) represents the noisy signal, 𝑓(𝑛) is an unknown,
deterministic signal, time 𝑛 is equally spaced, and 𝜎 is a noise
level. In the simplestmodel we suppose that 𝑒(𝑛) is a Gaussian
white noise 𝑁(𝜇, 𝜎2) = 𝑁(0, 1). The denoising objective
is to suppress the noise part of the noisy ECG signal and
to recover the clean ECG. From a statistical viewpoint, the
model is a regression model over time, and the method can
be viewed as a nonparametric estimation of the function 𝑓
using orthogonal basis.

Wavelet denoising has emerged as an effective method
requiring no complex treatment of the noisy signal [15]. It
is due to the sparsity, localitym and multiresolution nature
of the wavelet transform.The wavelet transform localizes the
most important spatial and frequential features of a regular
signal in a limited number of wavelet coefficients. Moreover,
the orthogonal transform of stationary white noise results
in stationary white noise. Thus, in the wavelet domain the
random noise is spread fairly uniformly among all detail
coefficients. On the other hand, the signal is represented
by a small number of nonzero coefficients with relatively
larger values. This sparsity property assures that wavelet
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shrinkage can reduce noise effectively while preserving the
sharp features (peaks of QRS complex). The general wavelet
denoising procedure basically proceeds in three steps [11].

(1) Decomposition: apply wavelet transform to the noisy
signal 𝑠(𝑛) to produce the noisy wavelet coefficients to
the level𝑁, by which we can properly distinguish the
presence of partial discharges.

(2) Threshold detail coefficients: for each level from 1 to
𝑁, select appropriate threshold limit and apply soft
or hard thresholding to the detail coefficients at some
particular levels to best remove the noise.

(3) Reconstruction: compute wavelet reconstruction,
based on the original approximation coefficients of
level 𝑁 and the modified detail coefficients of levels
from 1 to 𝑁, in order to obtain estimated/smoothed
signal 𝑓(𝑛).

Although the application of this denoising method is not
conceptually complex, some issues are carefully studied and
addressed in the following for getting satisfactory results.

3. One-Step DWT-Based Baseline Wandering
(BW) and Noise Suppression Proposal

Due to the similar wavelet structure for the application of BW
and noise suppression, we propose here to apply in only one
step both wavelet-based techniques. It will save important
resources and/or time, which would facilitate any future
portable hardware implementation [16, 17]. The required
steps for the application of this approach are as follows.

(1) Decomposition: the wavelet decomposition is applied
down to a certain level 𝐿 in order to produce the
approximation coefficients 𝑎(𝐿)

𝑛
that capture the BW.

(2) Zeroing approximations: the approximation 𝑎(𝐿)
𝑛

is
replaced by all-zero vector.

(3) Threshold details: the level 𝑀 (with 𝑀 < 𝐿) allow-
ing to properly distinguish the presence of partial
discharges in the noisy details must be selected.
Additionally, for each level from 𝑖 = 1 to 𝑀, the
appropriate threshold limit and rule (soft or hard)
are applied to the detail coefficients 𝑑(𝑖)

𝑛
for better

removing the noise.

(4) Reconstruction: the wavelet reconstruction, based on
the zeroing approximations of level 𝐿, the modified
details of levels 1 to 𝑀, and original details of levels
from 𝑀 + 1 to 𝐿, is computed to obtain the BW
corrected and denoised signal.

Thus, simultaneous BWandnoise suppressions are easy to get
using this wavelet-based technique, for which it is necessary
to select the proper parameters. One of the aims of this work
is to develop a mathematical processing model oriented to
portable hardware implementation. Thus, a deep analysis of
the involved parameters is detailed in the following.

3.1. Analysis of Parameters

3.1.1. Wavelet Family. The selection of the wavelet family
has to be based on the similarities between the ECG basic
structure and thewavelet functions and the type of processing
to apply. For ECGwandering suppression, the selection of the
wavelet family is based on the study of the wavelet that best
resembles the most significant and characteristic waveform
QRS of the ECG signal.Thus, the detail sequences at different
levels of decomposition from 1 to 𝐿 can capture and keep the
detail features that are of interest for properly reconstructing
the ECG without baseline wander. This is achieved through
the elimination of the approximation sequence at level 𝐿. The
selection of the wavelet family for ECG denoising is made
in a similar way to that for wandering removing; it is also
based on the different types of wavelets and their correlation
to different signals. The order-6 Daubechies wavelet is a
functionwell suited because of its similarity to an actual ECG.
Other features include order-10 Symlets.

3.1.2. Resolution Level for Wandering. Another important
parameter for wavelet-based wandering suppression is the
decomposition level 𝐿, so that 𝑎(𝐿)

𝑛
can capture the baseline

wander without oversmoothing. To select this resolution
level, it is important to take into account the maximum
number of decomposition levels, 𝑁, which is determined by
the length of the sampled ECG signal. Decomposition level
must be a positive integer not greater than log

2
(𝐿
𝑠
), where

𝐿
𝑠
is the length of the signal, two different methods can be

employed for selecting the resolution level.

(i) Visual inspection: it consists of plotting the approxi-
mation sequences for different decomposition levels
and to select the resolution level whose approxima-
tion better captures the baseline wandering. ECG
signal from lead 4 of the DaISy dataset [18] is chosen
to illustrate this method.This dataset contains 8 leads
of skin potential recordings of a pregnant woman.The
lead recordings, three thoracic and five abdominal,
were sampled at 250 sps rate and are 10-second long.
Figure 2 plots the ECG signal and approximation
sequences 𝑎(𝑖)

𝑛
for 𝑖 = 5 to 9. This figure shows that

𝑎(6)
𝑛

and 𝑎(7)
𝑛

are the approximation sequences better
capturing the baseline wander. However, this method
is not effective for real-time processing.

(ii) Analytical calculation: this method is based on the
calculation of the resolution level for wander suppres-
sion as follows.Wavelet decomposition uses half band
low-pass and high-pass filters. As it was commented
in Section 2, multiresolution decomposition allows
representing a signal by a finite sum of components
at different resolutions. Each decomposition level
contains information at different frequency bands
and time scales. The approximation sequence at level
𝑖, 𝑎(𝑖)
𝑛
, is decomposed to obtain approximation and

detail at level 𝑖 + 1, 𝑎(𝑖+1)
𝑛

, and 𝑑(𝑖+1)
𝑛

. Specifically,
approximation 𝑎(𝑖+1)

𝑛
is the result of low-filtering

approximation 𝑎(𝑖)
𝑛

and a downsampling by 2, so that
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Figure 2: ECG data with BW (lead 4 DaIsy dataset) and approxima-
tion sequences at decomposition levels from 5 to 9.

frequencies in 𝑎(𝑖)
𝑛

that are above half of the highest
frequency component are removed. This means that
at every decomposition level the frequency band of
the approximation is reduced to the half. Figure 3
shows a study of the frequency subbands of wavelet
decomposition of DaISy dataset lead 4. This figure
displays approximation FFTs for resolution levels
for 𝑖 = 1 to 7. Let us consider that the most
important frequency bands in baseline wander are
below a certain frequency 𝑓

𝑐
. For example, 𝑓

𝑐
=

1Hz for wandering coming from respiration (0.15–
0.3Hz) [19]. Other wandering components such as
motion of the patients and instruments have higher
frequencies components. To remove wandering, it
should be necessary to select the resolution level such
as the approximation captures the ECG components
for frequencies lower than this𝑓

𝑐
.The decomposition

level for wandering suppression can be calculated as
follows:

𝐿BW = int [log
2
(
𝐹max
𝑓
𝑐

)] , (9)
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Figure 3: FFT of ECG DaIsy dataset lead 4 ECG1 and FFTs of
approximation sequences, at decomposition levels from 1 to 7 and
zoom to FFTs approximation and detail level 7.

where 𝐹max is the highest frequency component. For
example, the sampling frequency for DaISy dataset is
250Hz, so 𝐹max=125Hz (Nyquist Theorem) and for
𝑓
𝑐
= 1Hz from (9) we can obtain 𝐿BW = 7. After

applying seven low-pass filters and downsampling
processes, 𝑎(7)

𝑛
captures frequencies from 0Hz to

0.977Hz and is a good estimation of baseline wander.
The visual inspection method also determined that
𝑎(7)
𝑛

captures the baseline wander. The BW corrected
signal can be obtained using wavelet reconstruction
based on the detail coefficients of levels from 1 to 7 and
zeroing 𝑎(7)

𝑛
. Figure 4 illustrates the proposed method

for wavelet-based wandering suppression. This figure
shows the original ECG signal (DaISy dataset lead 4),
the estimated baseline wander with 𝑎(7)

𝑛
, and the ECG

signal obtained after zeroing 𝑎(7)
𝑛
.

3.1.3. Level of Decomposition for Denoising. The maximum
level for detail thresholding, 𝑀, depends on several factors
such as the SNR in the original signal or the sample rate.
The level of decomposition specifies the number of levels
in the discrete wavelet analysis to take into account for
detail thresholding. Unlike conventional techniques, wavelet
decomposition produces a family of hierarchically organized
decompositions. The selection of a suitable level for the
hierarchy will depend on the signal and experience. Most
often, the level is chosen based on a desired low-pass cut-off
frequency. Measured signal having lower SNR usually needs
more levels of wavelet transform to remove most of its noise.
On the other hand, a factor that also influences the optimal
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level decomposition for denoising is the sampling rate of ECG
signal. Sharma et al. [15] use a study of the spectrum of the
detail coefficient at each level for estimating the optimum
level decomposition for denoising.They concluded that noise
content is significant in high frequency detail subbands, while
most of the spectral energy lies in low frequency subbands.
For an ECG signal sampled at 𝐹

𝑠
= 500Hz, noise content

is significant in detail subbands 𝑑(1)
𝑛
, 𝑑(2)
𝑛
, and 𝑑(3)

𝑛
. Thus,

in order to avoid losing clinically important components of
the signal, such as PQRST morphologies, only detail 𝑑(1)

𝑛
,

𝑑(2)
𝑛
, and 𝑑(3)

𝑛
should be treated for denoising. Manikandan

andDandapat [20] present a wavelet energy-based diagnostic
distortion measure to assess the reconstructed signal quality
for ECG compression algorithms.Theirwork includes a study
showing, for a given sampling frequency, the information of
the ECG signal and its energy contribution at each frequency
subband.This helps to understand how the noise perturbs the
detail coefficients and the effect over the energy spectrum.
The authors also show several examples that clarify the
effect of applying “zeroing” of detail coefficients at different
decomposition levels. As an example to clarify the correct
selection of this parameter, Figure 5 shows 4th level wavelet
decomposition for ECG signal DaISy dataset lead 4. It can
be observed that small subbands reflect the high frequency
components of the signal, and large subbands reflect the
low frequency components of the signal. The effect of high
frequency artifacts can be seen in detail subbands 𝑑(1)

𝑛
and

𝑑(2)
𝑛
. These bands are weighted with small values because the

energy contribution to the spectrum is low. For this example,
it should be advisable to treat only detail subbands 𝑑(1)

𝑛
and

𝑑(2)
𝑛

for wavelet denoising in order to maintain the main
features of the ECG signal. It is due, as the figure shows, to
the fact that detail subbands higher than level 2 contain most
of the significant information for diagnostic. A more detailed
study for the determination of the optimum level for wavelet-
based denoising is shown in Section 4.
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Figure 5: fourth level wavelet decomposition for DaISy dataset lead
4.

3.1.4. Threshold Limits. Most algorithms are based on the
previous threshold definition established in Donogo’s uni-
versal theory [21]. Since this work, modified versions of the
universal threshold and new thresholds have been proposed.
Matlab functions for denoising (wden.m, thselect.m) [22]
and Labview blocks (Wavelet Denoise Express VI) [23]
establish some of these thresholds as predefined options:
rigsure, sqtwlog, heursure, and minimax. Taking this into
account, the aim of this work is to develop processing
models for portable computing implementations, so a study
of the proposed threshold based on the following criteria
was made: computational complexity, delays, latency, and
clock frequency. The evaluation of these criteria derives the
following threshold classification.

PrefixedThresholds. For a given signal length,𝑁, and a level of
decomposition for wavelet denoising, 𝐽, it will be possible to
know the coefficient length for each level 𝑗, denoted by 𝑛

𝑗
, and

thus, some thresholds proposed in the literature [13] could be
calculated using software tools and stored inmemory for later
usage. Some of them are the following:

(i) universal threshold:

Thuni = √2 log 𝑁, (10)

(ii) universal threshold level dependent:

Thuni,𝑗 = √2 log 𝑛
𝑗
, (11)

(iii) universal modified threshold level dependent:

Thuni, mod ,𝑗 =
√2 log 𝑛

𝑗

√𝑛
𝑗

, (12)
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(iv) exponential threshold:

Thexp = 2((𝑗−𝐽)/2)√2 log 𝑁, (13)

(v) exponential threshold level dependent:

Thexp,𝑗 = 2((𝑗−𝐽)/2)√2 log 𝑛
𝑗
, (14)

(vi) minimax threshold (RefMatlab):

Thminimax = 0.3936 + 0.1829 ∗ (
log (𝑛

𝑗
)

log (2)
) . (15)

Minimax threshold uses the minimax principle to
estimate the threshold [24].

Nonprefixed Thresholds. There are more threshold proposals
that have been positively evaluated [15, 22] and, in some cases,
get better results than the prefixed thresholds. However, a
previous software calculation would not be possible since
samples and/or coefficient data which are initially unknown
are needed.On the other hand, the estimation of these thresh-
olds could imply complex operations, and thus an important
increment of latency. The following are two examples of this
type of thresholds:

(i) maxcoef threshold [22]:

Thmaxcoef = 2𝑛−𝐽,

𝑛 = round [log
2
(max {󵄨󵄨󵄨󵄨󵄨𝑐𝑗

󵄨󵄨󵄨󵄨󵄨})] ,
(16)

(ii) Kurtosis and ECE-based thresholds [15]:

ThDF,𝑗 =
1

𝜖
𝑗

×
max (𝑐

𝑗
)

𝐹jSN
,

ThD̂F𝑗 =
1

𝜖
𝐽

×
max (𝑐

𝑗
)

𝐹jSN
,

(17)

where 𝜖
𝑗
is the energy contribution efficiency of

𝑗th detail subband, 𝜖
𝐽
is detail energy contribution

efficiency of 𝑗th wavelet subband, and 𝐹jSN is the ratio
between the Kurtosis value of the signal at subband 𝑗
to the Kurtosis value of Gaussian noise:

𝜖
𝑗
=

𝐸
𝑗

𝐸
𝑡

× 100,

𝜖
𝐽
=

𝐸
𝑗

𝐸
𝑡

× 100,

𝐾󸀠 =
𝑚
4

𝑚2
2

=
(1/𝑁)∑

𝑁

𝑖=1
(𝑥
𝑖
−media (𝑥))

2

((1/𝑁)∑
𝑁

𝑖=1
(𝑥
𝑖
−media (𝑥))2)

2
.

(18)

Analyzing this type of thresholds, their data and coef-
ficients dependence makes them different from prefixed
thresholds. On the hand, the implementation of the involved
operations of these nonprefixed thresholds requires a high
number of operations, division between them. Thus increas-
ing implementation complexity of these thresholds. On the
other hand, it will consume a big number of clock cycles
and at least two accesses to each stored sample. It could
have devastating effects over the total latency and real-time
processing.

3.1.5. Threshold Rescaling. For signal denoising, once the
threshold to be applied is selected, this threshold is rescaled
using noise variance:

th
𝑗,rescaled = 𝜎

𝑗
⋅ th
𝑗
. (19)

The noise variance is used to rescale the threshold at each
level, so other important setting is related to the method for
estimating the noise variance at each level. If the noise is
white, the standard deviation from the wavelet coefficients at
the first level can be used, and the thresholds can be updated
using this value. If the noise is not white, best results for
denoising are obtained when estimating the noise standard
deviation at each level independently and using each one to
rescale the associated wavelet coefficients.

The 𝜎 is calculated based on median absolute deviation
(MAD) [15, 25, 26]:

𝜎 = 𝐶 ⋅MAD (𝑐
𝑗
) , (20)

where 𝐶 is a constant scale factor, which depends on distri-
bution of noise. For normally distributed data 𝐶 = 1.4826
is the 75th percentile of the normal distribution with unity
variance. On the other hand, for a univariate dataset of
wavelet details at 𝑗th level 𝑐

𝑗1
, 𝑐
𝑗2
, . . . , 𝑐

𝑗𝑛
, the MAD is defined

as [27]

MAD = median (
󵄨󵄨󵄨󵄨󵄨𝑐𝑗 −median (𝑐

𝑗
)
󵄨󵄨󵄨󵄨󵄨) . (21)

Thus, estimated noise variance can be written as

𝜎 = 1.4826 ⋅median (
󵄨󵄨󵄨󵄨󵄨𝑐𝑗 −median (𝑐

𝑗
)
󵄨󵄨󵄨󵄨󵄨) . (22)

Some predefined applications or functions, such as the
wnoisest.mMatlab function, use a simpler expression for 𝜎:

𝜎 = 1.4826 ⋅median (
󵄨󵄨󵄨󵄨󵄨𝑐𝑗

󵄨󵄨󵄨󵄨󵄨) . (23)

It must be noted that the rescale factor 𝜎 is not a prefixed
value since, as (21) and (22) show, it depends on the wavelet
coefficient values. However, memory access is reduced if
expression (22) is used (expression (21) implies threememory
accesses, while (22) requires only one). Depending on the
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Table 1: BW suppression analysis.

𝐹
𝑠
(Hz) 𝑁 𝐹

𝑤
(Hz) SNR for estimated BW

𝐴
4

𝐴
5

𝐴
6

𝐴
7

𝐴
8

𝐴
9

𝐴
10

𝐴
11

𝐴
12

250 5400

0.15 1.866 6.563 12.579 25.986 25.484 7.826 −7.957 −8.948 −9.199

0.19 1.866 6.563 12.570 25.636 22.445 −0.216 −8.630 −9.072 −9.193

0.23 1.866 6.563 12.555 24.591 16.422 2.536 −8.981 −9.003 −9.035

0.27 1.866 6.563 12.548 23.882 10.589 −7.621 −8.874 −8.943 −8.977

0.31 1.866 6.563 12.561 24.063 6.442 −8.311 −8.886 −9.212 −9.339

500 10800

0.15 0.612 4.491 10.172 16.583 30.755 24.674 5.845 −9.762 −10.373

0.19 0.612 4.491 10.170 16.541 29.129 21.425 −2.123 −10.440 −10.866

0.23 0.612 4.491 10.168 16.485 26.036 14.864 0.825 −10.778 −10.796

0.27 0.612 4.491 10.168 16.469 25.625 8.869 −9.412 −10.669 −10.750

0.31 0.612 4.491 10.170 16.521 25.237 4.688 −10.16 −10.726 −10.064

1000 21600

0.15 0.104 1.040 5.684 11.679 18.344 33.993 23.436 4.831 −10.805

0.19 0.104 1.040 5.684 11.678 18.319 31.447 20.792 −3.154 −11.545

0.23 0.104 1.040 5.684 11.677 18.271 26.531 13.913 −0.238 −11.897

0.27 0.104 1.040 5.684 11.677 18.255 24.680 7.822 −10.512 −11.771

0.31 0.104 1.040 5.684 11.679 18.300 25.393 3.629 −11.258 −11.807

Table 2: Denoising evaluation using synthetic ECG signals.

M Threshold Wavelet SNR SNRIMP M Threshold Wavelet SNR SNRIMP
Soft thresholding 15 dB Hard thresholding 15 dB

3 Thexp coif3 21.2631 6.4015 4 Thminimax sym7 20.8648 5.9319
3 Thexp db7 21.4798 6.3944 4 Thminimax sym7 21.0110 5.9256
3 Thexp coif3 21.4773 6.3919 4 Thminimax sym7 20.7633 5.9017
3 Thexp db7 21.2360 6.3743 5 Thminimax sym7 20.8288 5.8958
3 Thexp sym7 21.4286 6.3432 5 Thminimax sym7 20.7219 5.8603
3 Thexp db5 21.4274 6.3420 5 Thminimax sym7 20.9024 5.8170
3 Thexp db5 21.2008 6.3391 3 Thminimax sym7 20.8818 5.7964

Soft thresholding 25 dB Hard thresholding 25 dB
3 Thexp bior3.9 29.5524 4.4960 3 Thminimax bior6.8 29.5025 4.5809
3 Thexp bior3.9 29.2865 4.3649 3 Thminimax bior6.8 29.6610 4.5534
3 Thexp sym7 29.2657 4.3440 4 Thminimax bior6.8 29.5801 4.4725
3 Thexp sym7 29.3678 4.3114 4 Thminimax bior6.8 29.3823 4.4607
3 Thexp bior3.9 29.3712 4.2784 3 Thminimax bior6.8 29.5049 4.4485
3 Thexp bior6.8 29.2479 4.1915 3 Thminimax sym6 29.5035 4.4471
3 Thminimax bior3.9 29.0937 4.1720 5 Thminimax bior6.8 29.5436 4.4360

system architecture and data processing, a higher number of
memory accesses could increase the system latency and thus
jeopardize real-time processing.

3.1.6. Thresholding Rules. Thresholding can be done using
soft or hard thresholding. Hard thresholding is the simplest
method. It can be described as the usual process of setting
to zero the elements whose absolute values are lower than
the threshold. Soft thresholding is an extension of hard
thresholding, first setting to zero the elements whose absolute
values are lower than the threshold and then shrinking the
nonzero coefficients towards 0. The hard procedure creates
discontinuities, while the soft procedure does not. The soft

and hard thresholding is shown in (24) and (25), respectively:

𝑑(𝑗)
𝑛

= {
sign (𝑑(𝑗)

𝑛
) (

󵄨󵄨󵄨󵄨󵄨𝑑
(𝑗)

𝑛

󵄨󵄨󵄨󵄨󵄨 − th
𝑗
) if 󵄨󵄨󵄨󵄨󵄨𝑑

(𝑖)

𝑛

󵄨󵄨󵄨󵄨󵄨 ≥ th
𝑗

0 if 󵄨󵄨󵄨󵄨󵄨𝑑
(𝑖)

𝑛

󵄨󵄨󵄨󵄨󵄨 < th
𝑗
,

(24)

𝑑(𝑗)
𝑛

=
{
{
{

𝑑(𝑗)
𝑛

if 󵄨󵄨󵄨󵄨󵄨𝑑
(𝑖)

𝑛

󵄨󵄨󵄨󵄨󵄨 ≥ th
𝑗

0 if 󵄨󵄨󵄨󵄨󵄨𝑑
(𝑖)

𝑛

󵄨󵄨󵄨󵄨󵄨 < th
𝑗
,

(25)

where 𝑑(𝑗)
𝑛

and 𝑑(𝑗)
𝑛

represent the modified values of 𝑗th level
detail coefficient based on the selected threshold and th

𝑗
and

are an approximation of the detail coefficients of the de-
noised transform.Thenewdetail coefficients,𝑑(𝑗)

𝑛
or𝑑(𝑗)
𝑛
, have
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Figure 6: DaIsy database signals: (a) lead 1 and noise and BW corrected signal; (b) lead 2 and noise and BW corrected signals.
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Figure 7: ecgca 746 abdomen lead 1 Noninvasive Fetal ECG Database (Physionet Dataset): (a) signal; (b) BW and noise corrected signal; (c)
signals detail.
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Figure 8: Noninvasive Fetal ECGDatabase (Physionet Dataset): (a) ecgca 906 lead 1 signal, BW and noise corrected signal; (b) ecgca 473 lead
1 signal, BW and noise corrected signal; (c) ecgca 840 lead 1 signal, BW and noise corrected signal.

to be calculated for the wavelet transform levels considered
for denoising, as it was pointed previously.

4. Results

This section is devoted to analyze the one-step proposed
method through quantitative parameters. When working
with real noisy ECG signals, it is not trivial to calculate a
parameter that provides a quantitativemeasure of the benefits
of the applied technique. In order to better analyze our
proposed one-step model, a separate study of BW and noise
suppression has been carried out using synthetic ECG signals.
For a quantitative evaluation of the BW suppression, we
have employed three types of synthetic ECG signals. These
synthetic signals were elaborated from the ecg.m Matlab
function [28] and are 21.6 second long and contain 5400,

10800, and 21600 samples thus the resulting sample rates
are 250, 500, and 1000 sps, respectively. Signals affected by
BW are obtained adding a sine wave plus a DC level, using
frequencies from 0.15 to 0.31Hz that fit to the frequency band
in real BW. Our study has estimated the BW of the signals as
the approximations from level 1 to 12 and has reconstructed
the signal removing the estimated BW. Table 1 resumes the
main results, showing the SNRs between the synthetic and
the BW corrected signal. According to the expression of 𝐿,
for signals sampled at 250, 500, and 1000 sps, the adequate
decomposition level for BW suppression will be 7, 8, and 9,
respectively, which is corroborated by Table 1.This study also
reflects that better BW suppression (higher SNR) is achieved
if the signal is sampled at higher rate.

Synthetic ECG signals were also used to evaluate the
performance of the noise suppression. These signals were
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Figure 9: r1 abdomen 1 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals using different levels for denoising.
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Figure 10: r4 abdomen 1 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals usingmultiple and simple rescaling.

contaminated adding Gaussian white noise. Thus, the noisy
signal is processed by the proposed method to obtain the
denoised signal. This scenario is used by several authors
[29] and allows visual inspection and quantitative evaluation.
There are several parameters to measure the quality of the
denoised signal [15, 29], as the SNR Improvement Measure
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Figure 11: r7 abdomen 2 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals using the two types of thresholding rules.
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Figure 12: r10 abdomen 2 Abdominal and Direct Fetal Electrocar-
diogram Database (Physionet Dataset) signal and BW and noise
corrected signals using two types of thresholds.

SNRIMP [29]. A study using 3, 4, and 5 as maximum levels
for wavelet denoising𝑀, universal, exponential, andminimax
as threshold limits, and simple rescaling and soft and hard
thresholding was carried out. A total of 12 wavelet functions
were used for this evaluation. The study also considers two
noise levels, approximately 15 dB and 25 dB and a maximum
of three attempts for each case (for each attempt, all the
parameters are the same, including noise level, but the noisy
signal is different due to the randomdistribution of it over the
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original signal). Table 2 shows the best results for denoising.
Observing these summarized results and all the generated
data, we can conclude that there are no large differences
for the SNRIMP values of the different wavelet functions.
Comparing soft and hard thresholding, soft gets for both
noise levels higher SNRIMP using a less number of levels.
Regarding thresholds, Thexp achieves best denoising if it is
used along with soft thresholding, as it is the case with the
combinationThminimax and hard thresholding.

To study BW suppression and denoising for our one-step
denoising and BW suppression proposal, visual inspection
of the obtained signals is also important, and in some
cases it is even more conclusive than quantitative measures.
DaISy dataset and Physionet Dataset [30] are targeted for
evaluating the proposed one-step BW and noise suppression.
The recordings from Noninvasive Fetal ECG Database [30]
have two thoracic and four abdominal channels sampled at
1 ksps, all 60 seconds long. The signal bandwidth is 0.01Hz–
100Hz. In addition, recordings from the Abdominal and
Direct Fetal ElectrocardiogramDatabase [31] have been used.
Each recording comprises four differential signals acquired
frommaternal abdomen and the reference direct fetal electro-
cardiogram registered from the fetus’s head.The fetal 𝑅-wave
locations were automatically determined in the direct FECG
signal bymeans of online analysis applied in theKOMPOREL
system [31]. The recordings, sampled at 1 ksps, are 5-minute
long, and the signal bandwidth is 1Hz–150Hz.

For these signals the selected parameters were wavelet
function db6, 𝑀 = 3, universal threshold, soft thresholding,
simple rescaling for DaIsy dataset, and multiple rescaling
for Noninvasive Fetal ECG Database. Figure 6 includes the
obtained result for lead 1 and lead 2 from DaIsy dataset, with
BW and noise corrected signals being shown. Figure 7 shows
an example of results for ecgca 746 signal of Noninvasive
Fetal ECG Database, including the detail of one of the fetal
QRS complexes before and after processing. These figures
show that the abdominal ECG signals are BW corrected and
denoised while retaining their main characteristics, as the
fetal QRS complexes, which are very important for future
parameter extraction [7]. Figure 8 shows more examples of
results for signals of Noninvasive Fetal ECG Database.

Figures 9, 10, 11, and 12 show processing examples for
signals of Abdominal and Direct Fetal Electrocardiogram
Database displayed. Figure 9 uses signal r1 abdomen 1 to
make a study of the BW and noise corrected signals using
three different levels for signal denoising, 𝑀 = 3, 𝑀 =
4, and 𝑀 = 5; as this level increases, the denoised signal
loses its main characteristics (i.e., fetal QRS complexes).
Figure 10 shows the denoising of r4 signals using multiple
rescaling and simple rescaling. It can be observed that the best
denoising is obtained using multiple rescaling. On the other
hand, Figure 11 shows the results for r7 abdomen 2 signal
using soft and hard thresholding; soft thresholding gets better
denoised signal since hard thresholding introduces some
discontinuities into the denoised signal. Finally, universal and
minimax thresholds are used for denoising r10 abdomen 2
signal, as Figure 12 shows. Similar results are obtained for
these two thresholds, but observing signal details, minimax
threshold provides better results.

5. Conclusion

This paper presents the mathematical bases for electro-
cardiogram signal denoising by means of discrete wavelet
processing. A novel one-step wavelet-based method has been
introduced performing both BW and noise suppression,
which makes computationally feasible real-time implemen-
tations. The presented approach is performed by only one
wavelet decomposition and reconstruction step, which is
required for eliminating both types of perturbations. This
approach has been linked to an exhaustive study of the
related parameters, such as number of decomposition levels,
threshold edges, rescaling, and rules that allow an optimal
signal denoising and meeting specific ECG signal character-
istics including signal shape, sample rate, and noise levels.
The presented results for synthetic ECG signals validate
this method, while applications on real AECG signal from
three different databases have led to improved signals that
are valid for further analysis and extraction of parameters
such as heart rate variability. The defined algorithm will also
allow its compact implementation, thus fitting portable ECG
applications.
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Artifactual sources of resting-state (RS) FMRI can originate from headmotion, physiology, and hardware. Of these sources, motion
has received considerable attention andwas found to induce corrupting effects by differentially biasing correlations between regions
depending on their distance. Numerous corrective approaches have relied on the identification and censoring of high-motion time
points and the use of the brain-wide average time series as a nuisance regressor to which the data are orthogonalized (Global Signal
Regression, GSReg). We replicate the previously reported head-motion bias on correlation coefficients and then show that while
motion can be the source of artifact in correlations, the distance-dependent bias is exacerbated byGSReg. Put differently, correlation
estimates obtained after GSReg are more susceptible to the presence of motion and by extension to the levels of censoring. More
generally, the effect of motion on correlation estimates depends on the preprocessing steps leading to the correlation estimate,
with certain approaches performing markedly worse than others. For this purpose, we consider various models for RS FMRI
preprocessing and show that the local white matter regressor (WMeLOCAL), a subset of ANATICOR, results in minimal sensitivity
to motion and reduces by extension the dependence of correlation results on censoring.

1. Introduction

Resting-State Functional Magnetic Resonance Imaging (RS
FMRI) has become a popularmethodology for studying brain
function with FMRI and holds promise for understanding
brain functions without a task or stimulus [1]. A commonly
used approach employs the cross correlation between time
series to estimate the strength of connection between a pair
of voxels or regions of interest after possible artifacts are
removed by linear regression (nuisance-removal regression)
from the original echo planar imaging (EPI) time series data.
Part of the appeal of RS FMRI is the relative ease with which
the data can be acquired.

However, drawing valid inferences can be fraught with
pitfalls, as illustrated in recent publications that have caused

a considerable stir in the functional neuroimaging field. For
example, Power et al. [2] showed that head movement differ-
ences between subjects might explain perceived differences
in the spatial patterns of brain connectivity and suggested
that these motion differences differentially bias short-range
versus long-range correlations. This inference was reached
by considering the change in interregional correlations after
high-motion points were eliminated from the estimation
of correlation. Removing high-motion samples differentially
affected correlations depending on interregional distance,
thus implicating motion as the source of this distance-
dependent bias. As a result, the authors conclude that
censoring is the recommended approach for reducing the
effects of motion. While we agree with the notion that
data censoring can be important, we find that the reported
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distance-dependent bias is not primarily induced by motion.
It is strongly exacerbated by the inclusion of the global signal
averaged overwhole brain (GS) and related regressors derived
by time series averaging over regions containing signals of
interest.

In this work, we replicate the bias reported in [2] using
the data the authors have very generously made public;
we demonstrate how the exclusion of particular tissue-
based regressors reduces the distance-dependent bias effect
considerably and how the use of a variant on ANATICOR
[3] almost entirely eliminates the effect, establishing that our
recommended approach is less sensitive to motion induced
artifacts. This result is yet another demonstration of why the
GS and comparable time series averaged over large brain
areas, a practice still widely used, should not be projected
out of the data in RS-FMRI [3–5]. Finally, we provide an
annotated flowchart that presents our recommended data
preprocessing pipeline.

2. Materials and Methods

2.1. MRI Data. Image data used in [2] are open to the public
at the FCON 1000 project website (http://fcon 1000.projects
.nitrc.org/). We used children group data (cohort 1; 𝑁 =

22) that exhibited larger motion effects than the other
two groups (adolescent and adult cohorts in the full data
set). The details of the cohort are described in [2] and
the website (http://fcon 1000.projects.nitrc.org/indi/retro/
Power2012.html).

2.2. Preprocessing Pipeline. Overview of the preprocessing
pipeline for this work is described in Figure 1. The rec-
ommended preprocessing steps for RS FMRI analysis are
described towards the end of this work (see Figure 7). We
deviate fromour recommended pipeline to accommodate the
particulars of the data at hand, as detailed in the text below
and in the flowchart in Figure 1.

2.2.1. Segmentation of T1-Weighted Images. T1-weighted
images of individual subjects were aligned to the first frame
of FMRI echo planar imaging (EPI) data of resting scans and
segmented into gray, white, and cerebrospinal fluid tissue
classes using AFNI’s “3dSeg” program [6].

2.2.2. Despiking, Slice-Timing, and Head-Motion Correction.
Despiking was done with AFNI’s “3dDespike” program for
Figures 2 and 4(e), as the first step of the preprocessing
pipeline. Each voxel’s time series 𝑓(𝑡) is 𝐿1 fit to a Fourier
series of order 𝐿, defaulting to 1/30 of the number of time
points:

𝑓 (𝑡) = 𝑎 + 𝑏𝑡 + 𝑐𝑡
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Figure 1: Overall preprocessing pipeline for this work (see text for
detail of each step).

where 𝑇 is the duration of time series, the parameters 𝑎, 𝑏, 𝑐,
𝑑, and 𝑒 are chosen to minimize the sum over 𝑡 of |V(𝑡)−𝑓(𝑡)|
(𝐿1 regression), and V(𝑡) is the EPI time series of each voxel.
The value of 𝐿 used herein is 𝑁/30, where 𝑁 is the number
of time points. The median absolute deviation (MAD) of the
residuals is used to obtain a standard deviation estimate𝜎 that
is robust to outliers:

𝜎 = √
𝜋

2
(MAD) . (2)

For each voxel value, define 𝑠 as follows:

𝑠 (𝑡) =
V (𝑡) − 𝑓 (𝑡)

𝜎
, (3)

and values with 𝑠 greater than the threshold value of 𝑠 for a
spike (𝑐

1
) are replaced with a value that yields a modified 𝑠󸀠:
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where 𝑐
2
is the upper range of the allowed deviation from𝑓(𝑡).
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2
). By default parameters

𝑐
1
and 𝑐
2
are set to 2.5 and 4, respectively, although program

“3dDespike” allows users to modify them. With the default
parameters, despiking consists of transforming spike values
from the range of [2.5 𝜎, ∞) to [2.5 𝜎, 4 𝜎). The purpose of
this transformation is to make the output data be continuous
in the input data: small changes in the input (e.g., a value
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going from slightly under a threshold to slightly over) will not
produce large changes in the despiked output. Slice-timing
correction was performed, and motion correction was done
by rigid body registration of EPI images to a base image [7].
Alignment of EPI data to the T1 was accomplished via an
affine transformation, as was the spatial normalization of
the T1 to the MNI avg152 T1 template, in MNI stereotaxic
coordinates. All 3 transformations were applied at once to the
EPI data to prevent multiple resampling steps.

Despiking was skipped in [2]. In practice, however,
we find that despiking appears to improve the results of
volume registration over time as illustrated in Figure 2
(also see supplementary video S1 available on line at
http://dx.doi.org/10.1155/2013/935154). With despiking, mo-
tion parameters are less variable and the alignment quality
is superior when visually examined.

2.2.3. Nuisance-Removal Regression. Five types of nuisance
regressionmodels were compared in this study. All regressors
were extracted frommotion-corrected EPI data before spatial
smoothing with an isotropic Gaussian smoothing kernel
(full-width-at-half-maximum; FWHM = 6mm). Extraction
of tissue-based regressors prior to any spatial smoothing is
essential, to avoid mixing data from different tissue types;
this point, while obvious, is often not made in Methods
sections of papers. Regressors in the first model, GS +
MO, included the 6 motion estimates, the tissue-based
averages (global signal, GS; white matter signal, WM; large
ventricle signal, LV), and the first time difference of each
of the aforementioned regressors. In addition, nth-order
Legendre polynomials were used to model slow baseline
fluctuations. n is automatically determined by the number of
EPI time points in the AFNI program afni proc.py and was
set to 4 for the time series analyzed here (http://afni.nimh
.nih.gov/pub/dist/doc/program help/afni proc.py.html)

𝑌
𝑖
= 𝑋GS𝐵

𝑖

GS + 𝑋WM𝐵
𝑖

WM + 𝑋LV𝐵
𝑖

LV + 𝑋MO𝐵
𝑖

MO + 𝑋DT𝐵
𝑖

DT

+ residual (model GS +MO) ,
(5)

where 𝑌𝑖 is the EPI time series at a voxel 𝑖, 𝑋GS is a global
signal (GS) calculated by averaging the time-series over all
brain mask voxels, 𝑋WM is the average signal of all white
matter voxels, 𝑋LV are the averaged time series of lateral
ventricles (LV) masks, 𝑋MO is the group of six regressors for
motion correction parameters (three translation and three
rotation), and𝑋DT is the group of 𝑛 detrending polynomials.
The residual is the “cleaned” time series after subtracting the
𝐿
2 best-fit regressionmodel of the nuisance variables from the

original voxel time series. The second model, GS, excluded
the 6 motion estimate regressors and their first difference
terms as follows:

𝑌
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𝑖
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(6)

The third model, MO, included motion estimates with their
first difference terms but omitted any tissue-derived regres-
sors and their first difference terms as follows:

𝑌
𝑖
= 𝑋MO𝐵

𝑖

MO + 𝑋DT𝐵
𝑖

DT + residual (model MO) .
(7)

The fourth model was based on the model MO but included
a localized and erodedWM regressor to form a local estimate
of nuisance parameters while avoiding gray matter signals in
the regions of interest as follows:

𝑌
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= 𝑋MO𝐵

𝑖

MO + 𝑋
𝑖

WMeLOCAL
𝐵
𝑖
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𝑖

DT + residual

(model MO +WMeLOCAL) ,

(8)

where 𝑋𝑖WMeLOCAL
is a regressor of local WM signal for each

voxel i, which can be calculated by averaging signals in
eroded WM with a local sphere mask (𝑟 = 45mm) by the
AFNI program 3dLocalStat. The fifth model Depike + MO +
WMeLOCAL is based on themodelMO+ WMeLOCAL, but EPI
data Y 𝑖 was despiked at the first stage of processing. These
final two models are reduced variants of ANATICOR [3],
lacking regressors of independently acquired physiological
signals (not available in [2]) and the eroded large ventricles
(LVe) regressors, as well as the despiking step for the fourth
model (MO +WMeLOCAL).

2.2.4. Censoring and Bandpass Filtering. We based the crite-
rion for censoring on the Euclidian norm of the first time
differences of motion estimates ‖d‖

2
. This criterion has been

part of the AFNI processing stream (afni proc.py) and while
not identical to the frame-wise displacement (FD) in [2], it
serves the same function of eliminating data at time points
when significant rapidmotion is detected. At a ‖d‖

2
threshold

of 0.25mm, we censored on average 17.6% of the time series
(1.8% and 45.0% at minimum and maximum, resp.).

Though contrary to our recommendation in the Discus-
sion section, we filtered the data with a bandpass filtering ker-
nel (0.009 < 𝑓 < 0.08Hz) after nuisance regression to avoid
the degrees-of-freedom (DOFs) limitation for high movers
because the EPI data had less samples than regression model
parameters. This filtering was done via linear regression of
sine/cosine basis functions, to avoid artifacts that would
otherwise arise from the censoring process (e.g., assuming
constant time steps or including censored data points).

2.2.5. Spatial Smoothing, and Orders of Preprocessing Steps.
Figure 3 illustrates the effects of different processing steps
on the spectral content of the time series. The preprocessing
pipeline used in [2], shown to the left of Figure 3 as pipeline 1,
included spatial smoothing (FWHM = 6mm) and bandpass
filtering (0.009–0.08Hz) before regression. The first row
shows the periodogram of slice-timing and head-motion
corrected FMRI data, which were used as the common inputs
to both pipelines 1 and 2. The other rows of each column
are the periodograms of FMRI data as they are sequentially
processed by subcomponents of the pipelines from top to
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Figure 2: Improved motion correction by adding despiking step. The 6 motion estimates are from time frames in the corresponding video
file (Supplementary Material S1). The upper and lower rows show the rotation and translation estimates, respectively, and the left and right
columns show the motion estimates from the volume registration of FMRI data processed by pipelines starting without and with despiking,
respectively. Registration without despiking resulted in visible residual motion between the 60th and 65th time frames.This suggests that the
more elevated motion estimates obtained without despiking are less accurate than those with despiking.The subject used is sub0015004, who
had the largest head movements in the children group.

bottom. Gray, black, blue, and red lines are spectral densities
of GS, gray matter (GM), cerebrospinal fluid (CSF), and
WM masks, respectively, which were averaged across the
subjects. Not surprisingly, spatial smoothing can be done at
any of these stages, as long as the tissue-based regressors are
derived before spatial smoothing. The regression of nuisance
parameters can also be carried out either before or after the
bandpass filtering stage as long as the nuisance regressors are
subject to the same bandpass filter. Otherwise, the regression
step would reintroduce frequency components outside of the
bandpass range as shown in the bottom row of column 1 [8].

2.3. Correlation Analysis for Seed Pairs. For each individual
subject, the time series of 264 seed locations in standard
brain space (MNI 152) were obtained from censored and
uncensored data to produce two sets of 34,716 (264 ×

263/2) Pearson correlation coefficients [2]. The uncensored
correlation coefficients were subtracted from the motion-
censored correlation coefficients. The correlation differences
are plotted as a function of the Euclidean distance between

the pairs of seed locations in Figure 4, and the nonlinear
dependence on distance is referred to as the distance-
dependent correlation bias. Note that for all models, we
censored the same fraction of time points. We also examined
the benefits of replacing Pearson correlation with Spearman’s
rank correlation, which is more robust to the presence of
outliers in the time series that may be induced by motion.

2.4. Fits of Nuisance Regressors. We examined the spatial
distribution of variance captured by the nuisance regressors
[4] and correlations between them. To this end, we computed
(i) the marginal explained variance (𝑅2 value) maps of the
global signal (GS) and six head-motion estimates (MO) at
each voxel in the brain (see Figure 5), and (ii) the cross-
correlation matrix of the regressors to identify shared vari-
ance (see Figure 6). For these types of tests, the regressors
were obtained from the time series that were despiked, slice-
timing corrected, and volume registered.
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Figure 3: Group averaged power spectrum densities (PSD) of resting-state FMRI time series within brain tissues for each step in two different
preprocessing orders.The improper processing order (pipeline 1) can reintroduce noise frequency components (signals of no interest) in lower
frequency bands (𝑓 < 0.009Hz, the green-tinted area) and higher frequency bands (see the text for more details).

3. Results

3.1. Distance-Dependent Correlation Bias after Different Pre-
processing Steps. The distance-dependent correlation biases
present after different preprocessing steps are shown in
Figure 4, with results for the more standard Pearson cor-
relation coefficient shown in the upper row. The distance-
dependent bias with the GS + MO model (Figure 4(a))
mimic those obtained in [2]. The distance-dependent bias
is captured by the curvilinear blue trace showing the aver-
age change in correlation after censoring. What this result
indicates is that the correlation estimate can change con-
siderably in the presence of motion and in a manner that
depends on the interregional distance. In other words, GS +
MO is sensitive to motion and by extension the censoring
threshold, since eliminating points of high motion change
the correlation values considerably. The desired trend for an
estimate in these figures would be a flat line, preferably with
zero mean and zero variance as a function of distance. With
model GS, where motion estimates with their first difference
terms were excluded, the bending of the mean curve was
more pronounced than in Figure 4(a) (see Figure 4(b)). With
model MO, which included motion estimates and their first
differences but excluded tissue-based regressors, the bias was
negative throughout and was more constant across interre-
gional distances (Figure 4(c)). Figures 4(b) and 4(c) indicate
that while the addition of GS makes the correlation estimate

more sensitive to motion, the use of MO alone is not enough
to yield a robust estimate of correlations. Most notably,
however, whenWMeLOCAL was added as a nuisance regressor
tomodelMO (Figure 4(d)), the change in correlation became
considerably less variable with distance and closer to zero.
The addition of despiking further reduced the bias fluctuation
as shown in Figure 4(e) where the nonlinear dependence
of bias on distance was mostly eliminated; the mean bias
was near zero and the variance of correlation change with
censoring was the smallest of all five models tested. Thus of
all models tested, Despike +MO+WMeLOCAL resulted in the
correlation estimates withminimal sensitivity to the presence
of motion.

The lower row of Figure 4 shows results when Spearman’s
rank was used to compute the correlations. The trends are
largely similar to those in Figure 4, with a small reduction
in the scatter of correlation change for (a), (b), (c), and (d)
panels where no despiking was performed. Not surprisingly,
the use of Spearman’s rank had little effect when despiking
was included in the processing stages (e).

3.2. GS + MO Regressor Fits

3.2.1. Explained Variances of Nuisance Regressors. The
marginal explained variances (𝑅2 values) of each regressor
are presented in Figure 5. For the regressionmodel GS +MO,
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Figure 4:The column (a) shows that censoring high-motion frames from RS-FMRI data decreases short-distance correlations and augments
long-distance correlations. The Pearson and Spearman correlation differences are plotted as a function of the Euclidean 3D distance between
brain locations in the upper and lower rows, respectively. The results for each seed pair averaged over 22 subjects are plotted as red dots. Blue
circles are the grand mean of averaged correlation differences for equal numbers of brain location pairs in twelve segments (2,882 pairs per
circle), to highlight the trend. In the preprocessing steps, 6motion estimates with their first difference terms (MO) and tissue-based regressors
with their first difference terms (GS; global, eroded whitematter, and lateral ventricle signals) were regressed out. Columns (b) and (c) present
the distance-dependent correlation biases of nuisance regressionmodels GS andMO, respectively. Column (d) shows results when a localized
and eroded WM signal is added in the regression model of (c). Column (e) shows the model of Column (d) with the addition of despiking.
The censored time points of FMRI images were determined at ‖d‖

2
> 0.25mm in (a), and the same time points were used in the censoring

process of all models.

the regressors (GS and MO) fit most brain regions and
locations at the outer edge of the brain with high 𝑅2 values
(𝑅2 > 0.3) (see the column GS + MO in Figure 5). When we
measured 𝑅2 values for each regressor, a different pattern in
the spatial locations fit by each regressor could be identified:

(i) GS tended to fit GM, the sinuses, and mid-sagittal
locations (yellow to red color overlays in the column GS in
Figure 5; 𝑅2 > 0.7), and (ii) MO captured variance more
uniformly than GS throughout the brain, and the highest 𝑅2
values were observed along the boundary between cortex and
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Figure 5: Marginal explained variances (𝑅2 values) of the regressors in nuisance removal regression models GS + MO. The labels GS and
MO correspond to global signal and motion regressors, respectively.

nonbrain areas (see the column MO in Figure 5). The areas
with the high 𝑅2 values of GS and MO seldom overlapped
each other.

3.2.2. Cross-Correlation Matrix between Regressors. The
cross-correlation matrix between regressors is shown in
Figure 6. GS and its first-difference term (GS󸀠) only have
high correlations with one partial component (dP; the
displacement along the anterior-to-posterior direction) of
MO and its first difference term (MO󸀠), respectively.

4. Discussion

4.1. Correlation Bias Observed by Motion Censoring. It was
reported in [2] that the presence of motion introduces a
distance-dependent distortion of correlations, whereby cor-
relations between neighboring voxels were biased differently
than correlation between voxels that are more distant. The
authors also proposed a version (dubbed “scrubbing”) of
motion censoring as a method to mitigate the bias of motion
on correlation estimates. The evidence that the distance-
dependent bias was introduced by subject motion was
summarized in graphs that show the change in correlation
magnitude between a set of brain location pairs (regions-of-
interest; ROIs) as time points affected by excessive motion
were excluded from the correlation estimation.The censoring
process reduced the distance-dependent bias.While we agree
that censoring is a valid approach, we highlight the fact that
the distance-dependent bias does not appear to be driven by
themere presence ofmotion, and that the particular choice of
preprocessing stream considerably exacerbates this distance-
dependent bias. To illustrate this effect, we began by repro-
ducing the effects of data censoring on short- versus long-
distance correlations. For Figure 4(a), preprocessing included
regression of head motion parameters, tissue-based time
series including the GS, and their first-order time differences.
In a reproduction of the results in [2], we found that censoring
differentially affects correlations between ROIs that are close
together compared to those that are further apart. This bend
in the distribution was considered in [2] as evidence that
motion was behind this bias, since lessening the effects
of motion through censoring in turn differentially affected
correlation values between ROIs depending on their distance.
However, this is not entirely the case. In Figure 4(b), we
recomputed the correlation differences but without including

the 6 motion estimates and their first differences, thereby
amplifying the effect of censoring on the correlations. The
scatter plot of the correlation difference increased in variance
but the distance-dependent bias remained. The nonlinear
trends in these scatter plots can be considered as a measure
of the sensitivity of particular correlation estimates tomotion.
The ideal trend for a correlation estimate would be a flattened
cloud with small constant variance and a constant bias of
0. In Figure 4(c), we brought back the motion estimates
with their first differences but omitted any tissue-derived
regressors and their first differences, most notable of which
is the GS. With this model, the effect of censoring on
the correlations became considerably less dependent on the
inter-ROI distance. The correlation changes were also more
uniformly negative, implying that sharp head motion tends
to increase correlations prior to censoring (see also Gotts et
al. [9]). Taking together the results of Figures 4(a)–4(c), we
can conclude that the addition of GS to themodel exacerbates
the distance-dependence of the correlation estimates on
motion, with results that are more dependent on the level of
motion censoring. For Figure 4(d), we repeated the analysis
in Figure 4(c) with the additional inclusion of a local eroded
white matter signal, a regressor that intends to measure local
manifestations of artifacts (e.g., hardware artifacts resulting
from faulty head coil channels, [3]) while avoiding regions
with the (gray matter) signals of interest. Not only was the
dependence on the inter-ROI distance much reduced, but
also the mean and range of the correlation bias were closer
to zero. Addition of a despiking step at the very beginning
of the preprocessing pipeline (Figure 4(e); see also Satterth-
waite et al. [10]) further improved these trends, resulting in
correlation estimates that varied little with the censoring of
high-movement data points.Thedespiking procedure is often
used to dampen the effects of extreme signal deviations on
motion correction and variance estimates, and it is essentially
a mild form of censoring. While it is expected that despiked
data will always result in smaller changes in correlation after
censoring, the two operations are not interchangeable as
despiking is performed independently for each voxel. In other
terms, not all reduced spikes get flagged as high-motion
points. In conclusion, with a preprocessing model including
despiking as an initial processing step and WMeLOCAL, the
correlation estimate was least sensitive to motion artifacts
and, by extension, to censoring threshold levels. We empha-
size that the fraction of time points censored was the same
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Figure 6: Cross-correlation matrix between the regressors. The
correlation coefficients were averaged over all subjects (𝑁 = 22).
MO represents the six regressors containing rigid-body motion
parameter estimates (three translations and three rotations). GS is
the average RS-FMRI time series over all voxels in the brain mask.
WMe and LVe refer to the RS-FMRI time series averaged within
eroded white matter and eroded lateral ventricles, respectively.
Prime marks (󸀠) indicate the first differences of the regressors. The
regressors were obtained from the time series that were despiked,
slice-timing corrected, and then volume registered, and spatial
smoothing was not applied to avoid mixing signal across different
brain-tissue masks.

for all the models tested. Even when despiking was adopted
in panel (e), we censored the same fraction of time points as
in panel (a), (b), and (c). Therefore the fact that censoring
had minimal effect on the correlation estimates suggests that
the Despike +WMeLOCAL approach is more robust to motion
contamination than all the other models and is consequently
least sensitive to censoring threshold levels. These results
suggest that ANATICOR, the physiological noise augmented
form of Despike +WMeLOCAL, is not only useful for reducing
local hardware artifacts, but also local manifestation of
motion. While the basis of the benefit of WMeLOCAL in
reducing themotion bias is not entirely clear, one possibility is
that it provides some adaptation to small local changes in the
𝐵
𝑧
magnetic field resulting frommovement, which will affect

the EPI time series. Lastly, we found that using Spearman
rank instead of Pearson correlation was of little advantage
for despiked time series but was of mild advantage for other
conditions.

4.2. Suggested Preprocessing Pipeline. Figure 7 shows the
pipeline we recommend for RS-FMRI analysis. Despiking
FMRI data at the subject level is recommended to reduce the
contribution of sudden spike signals to correlation estimates.
Anecdotally, we also found it to improve the accuracy at the
volume registration step (see the video in the Supplementary
Material and Figure 2). Physiological denoising is carried

Despiking

Physiological noise
correction

Slice-timing correction

Nuisance regression

Motion censoring

Alignment with anatomy

Bandpass filtering

Motion correction

Correlation map

Spatial normalization

Spatial smoothing

Extracting tissue-based 
regressors

If nuisance regressors are 
obtained before bandpassing 
and are to be projected out of 
the data after it is bandpassed, 

they must be bandpassed by the 
same filter before the protection.

With too much censoring, one may 
end up with more regressors than 

data samples, and the preferred GLM 
approach fails. Bandpass filtering 
censored or catenated time series 

without taking into account temporal 
discontinuities is not recommended 

Spikes are identified based on
intensity deviation from a smooth
L
1 fit to a voxel’s time series relative

to the time series variance.

Figure 7: Annotated processing flowchart for RS-FMRI analyses.
If nuisance regressors are obtained before bandpassing and are to
be projected out of the data after it is bandpassed, they must be
bandpassed by the same filter before the projection. With too much
censoring, one may end up with more regressors than data samples,
and the preferred regression approach fails. Bandpass filtering cen-
sored or concatenated time series without taking into account tem-
poral discontinuities is not recommended.TheWMeLOCAL regressor
is recommended, particularly for subject cohorts expected to exhibit
high levels of head motion; it has the additional benefit of removing
hardware artifacts that are hard to detect visually in the time courses
of imaged volumes [3]. Slice-based physiological noise models [11]
are projected from the data immediately after the despiking step
because they are a function of slice acquisition time. A sample
pipeline generating command is shown in example 5C at http://
.nimh.nih.gov/pub/dist/doc/program help/afni proc.py.html.

out early in the processing pipeline because RETROICOR
[11] nuisance models depend on the acquisition time of
each slice relative to the cardiac and respiratory cycles.
These nuisance regressors are projected from the time series
immediately after the despiking step. Bandpass filtering
should be applied to both data and regressors of no interest.
Otherwise, frequency components in cut-off bands will
be introduced back through the regressors of no interest.
It is best to perform censoring, nuisance regression, and
bandpass filtering simultaneously in one regressionmodel. By
simultaneously doing these three subprocesses in one general
linear model, there is no conflict between bandpassing and
censoring.Thoughnot carried out in this work for lack of data
(physiological measures were not taken in [2]), physiological
denoising is highly recommended [11, 12], as physiological
noise differences amongst the subjects can certainly lead to
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false inferences. In our recommended pipeline in Figure 7, we
advocate bandpass filtering in the same model for nuisance
regression. This manner of censoring can be handled readily,
unlike in the pipelines 1 and 2 of Figure 3.

The regression model used here contains 6 motion
estimates, their first difference terms, and WMeLOCAL only,
since “global” tissue-based regressors (e.g., GS, average gray
matter, GM, noneroded LV, and WM) can also cause group
differences either by spreading hardware artifacts that are
undetectable by visual inspection in FMRI data [3] or by
corrupting the correlation matrix, as can be seen when using
GSReg [5]. As long as care is taken to prevent the inclusion of
gray matter signals of interest, tissue-based regressors such
as eroded LV (LVe) and WMeLOCAL can be beneficial at
reducing physiological and hardware artifacts and are part
of our recommended ANATICOR [3] approach. The results
presented here further demonstrate the utility of WMeLOCAL
in helping to reduce head motion artifacts. In these data,
we were not able to include time series from the LVe mask
as a nuisance component because the erosion operation
eliminated too many LV voxels in most subjects due to a
combination of small brain size and relatively coarse EPI
resolution.

4.3. Summary. In this work, we have demonstrated that
the distance-dependent bias in correlations between ROIs
reported by Power and colleagues [2] is not driven only
by motion. It is considerably exacerbated by the regression
of nonspecific, tissue-averaged time series such as the GS.
Specifically, the use of GS as a nuisance regressor can increase
the sensitivity of correlation estimates to motion and motion
censoring levels. This constitutes another example of why
GS and equivalent regressors should not be projected out
of the data in RS-FMRI [5]. We also find that Despike +
WMeLOCAL, a reduced version of our denoising approach
dubbed ANATICOR [3], resulted in correlation estimates
with minimal sensitivity to motion. While many in the
field are rightfully concerned about the impact of motion
on functional connectivity measures, these concerns can be
effectively mitigated by the choice of appropriate preprocess-
ing methods.
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In recent years, bone graft substitutes have been increasingly used in the medical field, for example, in order to promote new bone
formation. Microcomputed tomography (𝜇-CT) is an image-guided technique used in medicine as well as in materials science,
enabling the characterization of biomaterials with high spatial resolution. X-ray-based methods provide density information;
however, the question how far conclusions on chemical structures can be inferred from any kind of CT information has not been
intensively investigated yet. In the present study, a bone sample consisting of autogenous bone derived cells (ABCs) and bovine
bonemineral (BBM) was investigated by 𝜇-CT and Raman spectroscopic imaging, that is, by two nondestructive imagingmethods.
Thereby, the image data were compared by means of regression analysis and digital image processing methods. It could be found
that 51.8% of the variance of gray level intensities, as a result of 𝜇-CT, can be described by different Raman spectra of particular
interest for bone composition studies by means of a multiple linear regression. With the better description of 𝜇-CT images by the
linear model, a better distinction of different bone components is possible.Therefore, the method shown can be applied to improve
CT-image-based bone modeling in the future.

1. Introduction

Bone graft substitutes are widely used in the medical field
and their usage covers a broad range of applications as for
instance in dentistry or orthopedics. Bone grafting can be
required in order to repair skeletal defects either to replace
missing bone, filling voids, or to promote newbone formation
so as to be able to place for instance an implant. In recent
years an increase in demand for such bone graft substitutes
could be observed [1–5] and due to the demographic situation
especially in the United States and Europe a reversal of this
trend is not forecast today.These bone substitutes encompass
a variety of tissues andmaterials sources which canmainly be

distinguished by their source and properties, respectively. In
terms of their composition, bone graft substitutes can broadly
be divided in autograft, allograft, and xenograft materials.
Autograft materials are designated to a graft made of the
body’s own bone which is usually taken from the hip or
ribs, while allograft materials are made of human tissues.
Xenograft materials are derived from animals as cows or
pigs and are in fact established as well; however, autograft
materials are still considered as the gold standard inmedicine
for reasons of compatibility. Biomaterials can also be differen-
tiated due to their properties as osteogenesis, osteoinduction,
and osteoconduction. Osteogenesis describes the formation
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of new bone within the graft, osteoinduction refers to a
stimulation of cells to convert into cells that are able to form
bone, and osteoconduction means that the graft material acts
as a scaffold that is ideally resorbed later on [6, 7]. Due to
the fact that autogenous bone is not always available in the
required quantity, different materials have to be considered.
The question how materials with respect to allograft and
xenograft materials, respectively, behave after bone grafting
in terms of bone regenerationmechanisms (i.e., osteogenesis,
osteoinduction, and osteoconduction) and involved risks
for the patient, is subject of current research in medicine
[8–10]. The mechanical behavior after transplantation is a
different question which is of central interest in the medical
and engineering field and consequently subject of intense
research efforts. Bone tissue and the associatedmechanism of
bonemodeling as well as bone remodeling are not completely
understood yet due to the complex hierarchical structure of
that material [11, 12]. Numerous different imaging techniques
are used in order to address this problem.One of the probably
most frequently used technologies in terms of clinical as
well as material science is computed tomography (CT) and
X-ray microcomputed tomography (𝜇-CT) whereby 𝜇-CT
was developed based on computed tomography (CT) [13].
The benefit of 𝜇-CT is the higher spatial resolution and
is considered as a powerful tool in medicine and bone
research, respectively, [14, 15]. In matters of micromechanical
investigations, X-ray based technologies form the basis for
3D models that are used later for calculations based on
finite elements [16–18]. Admittedly the information content
of 𝜇-CT is strictly speaking limited to information of X-
ray absorption which does not necessarily allow conclusions
on tissues, especially if two different materials show either
a similar or nearly the same absorption coefficient. These
established methods (i.e., CT, 𝜇-CT) are still part of science,
but different techniques as Raman spectroscopy make an
important contribution to the investigation of such previ-
ously mentioned questions [19–21], specifically as soon as
Raman spectroscopy is used as imaging tool which is referred
to as Raman spectroscopic imaging. Raman spectroscopic
imaging can provide valuable clues in terms of the chemical
structure, the molecular vibrations, and thus the chemical
composition of cells and tissues, clues which are missing
when regarding any kind of X-ray based method. Because
that Raman spectroscopic imaging is bound by natural
limitations on surfaces the implementation of the chemical
information in generated 3D models requires as a prior
condition the knowledge of how the relationship of these two
different image data could be described in a mathematical
way. Therefore the present study elaborates the question how
far Raman spectra enable a description of a 𝜇-CT image by
means of a multiple linear regression.

2. Materials and Methods

In the present study a bone sample consisting of autogenous
bone derived cells (ABC) and bovine bone mineral (BBM)
was investigated with two different imaging techniques
whereas ABC as well as Bio-Oss were compounds of the

appropriate sample [22]. Bio-Oss, produced by Geistlich
Pharma AG, is a medical device based on bovine bone that
is commonly used in bone regeneration due to its osteo-
conductive properties with respect to dental implants and
periodontal defects, respectively.The sample originated from
minipigs (i.e., a crossbred of Minnesota pigs and Vietnamese
potbellied pigs) which were previously sinus grafted [22]. It
was investigated by Raman spectroscopic imaging on the one
hand and𝜇-CT on the other hand. Because the comparison of
the information from the two imaging methods is of central
interest, the bone sample in the present study was cut with a
saw so as to have a valuable point of reference whenmatching
the images.

The 𝜇-CT data were collected by using a GE phoenix | X-
ray nanotom 180NF with a minimal possible isotropic voxel
size (spatial resolution) of 0.5𝜇m. For the investigated bone
samples, a voxel size of 9.79 𝜇m was chosen. The tomograms
were generated with 80 kV voltage at the nano focus tube, the
measurement current was 300 𝜇A, and the integration time
at the detector was 500ms. Altogether 1.500 projections were
recorded, which led to a total measurement time of about 90
minutes. For image reconstruction a filtered back-projection
algorithm was applied by using the Nanotom reconstruction
software datos | X. The bone sample dried up to a moderate
rate during the recording and was immediately put in an
alcoholic solution again afterwards. This fact may have led to
a certain degree of imprecision.

The confocal Raman based investigations were carried
out with a Thermo Scientific DXR Raman microscope and a
laser excitation at 780 nm. The spatial resolution comprised
an area of approximately 3 by 4mm with an increment of
50𝜇m.The scanned area comprised an area of approximately
3 by 4mm with a step size of 50𝜇m. In each measurement
point the Raman spectrum was collected by accumulating
50 times with a period of 0.5 seconds for each single
accumulation. Some of the recorded Raman spectra had
a bad signal to noise ratio (SNR) because of fluorescence
from impurities on the surface but were not removed from
the data set due to data acquisition program limitations. As
the acquisition time by confocal Raman spectroscopy lasted
almost 50 hours, the bone sample, which was preserved in
an alcoholic solution before themeasurement procedure, was
completely dried up after the Raman measurement, causing
shrinkage of the sample.

Raman spectroscopic imaging results in a chemical map
comprising a multitude of spectra and thus showing the
intensities of the appropriate selected Raman shift. Raman
bands of particular interest for compositional studies regard-
ing bone are listed inTable 1 [21]. Each peak can be considered
as an indicator for either bone, collagen, or other tissues. The
two CH related vibrational modes are present in collagen
as well as noncollagenous organic moieties. Bone apatite, in
which phosphate is substituted among other with carbonate
ions (i.e., type B carbonate substitution), changes various
physical properties of hydroxyl(l)apatite (OHAp) and is used
in bone graft substitutes due to its chemical similarity to
bone mineral [23]. Carbonated hydroxy(l)apatite promotes
the osseointegration of hydroxyl(l)apatite [24], but there are
important chemical and structural differences between the
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Table 1: Selected Raman bands of bone and the manually defined maximum intensities.

Raman peak Peak position (cm−1) Intensity (cps) Presence of
]
1

PO
4

961 400 Bone
]
2

PO
4

438 200 Bone
]
4

PO
4

589 200 Bone
Amide I 1677 150 Collagen
Amide III 1256 150 Collagen
C-H bending 1458 150 Organic moiety
C-H stretching 2937 500 Organic moiety
Type B carbonate substitution 1075 200 Bone mineral

mineral in bone and carbonated apatite [23]. This should be
taken into account regarding the indicated presence of type
B carbonate substitution in Table 1. It could be found that the
intensities of B type carbonate substitution concur extremely
well with the Bio-Oss correlation map. Considering the fact
that Bio-Oss is reported to contain carbonate apatite [25] the
vibrationalmode at 1075 cm−1might explainmost notably the
presence of Bio-Oss as well.

In addition to these characteristic vibrational modes,
reference measurements of known compounds were done in
order to be able to compare the spectra of the bone sample
with the spectra from a known compound. Correlation maps
can help to identify different compounds in the augmented
bone sample more easily which is part of the sample.

These materials mentioned previously were Bio-Oss, Bio-
Gide (a naturally resorbable bilayer membrane consisting of
porcine collagen and produced by Geistlich Pharma AG),
tricalcium phosphate powder (Carl Roth GmbH & Co. KG)
with a purity grade of 99.9%, and bone as well as fat of pork,
both provided by the local butcher.

The Raman spectra obtained with laser excitation at
780 nm showed a fluorescent background, which influences
the quality of the data evaluation. All the spectra had
therefore to be corrected applying an automatic baseline
correction using the software solution of Thermo Scientific
Inc. (OMNIC 8) for Raman applications.

There are a variety of ways to achieve a baseline correction
using OMNIC 8. The basic idea is to fit a function through
selected background points and subtract the resulting back-
ground from the trace.This can be achieved either by a linear
equation or by polynomials of 1st up to 6th order. In order
to find the coefficients of the function a matrix inversion
technique is used. In case of logarithmic or exponential func-
tions the equation is linearized prior to this by a natural log
transformation. The underlying algorithm for an automatic
baseline correction is commonly employed in industry in
terms of spectral processing and fits the baseline through an
iterative process [26].

On the basis of the chemical information contained in
the Raman bands 13 different images could be generated,
each showing the intensities related to the appropriate Raman
band and reference (i.e., known compounds) spectrum,
respectively. The key task of the present study was to deter-
mine how the different Raman spectra can describe the 𝜇-CT

image on the basis of a linear relationship; therefore amultiple
linear regression according to (1) was chosen for modeling:

𝑌̂ = 𝑏
0

+ 𝑏
1

𝑋
1

+ 𝑏
2

𝑋
2

+ ⋅ ⋅ ⋅ + 𝑏
𝑖−1

𝑋
𝑗−1

+ 𝑏
𝑖

𝑋
𝑗

. (1)

With such a model it is not only possible to describe pure
materials but also material compositions by means of Raman
intensity spectra (term on the right side). These chemical
data are used to describe the 𝜇-CT information (term on the
left side). The regression parameters 𝑏

𝑗

of the linear estima-
tion function (1) are assumed by minimizing the residuals
following the least square method in which each variable
𝑋
𝑗

represents a Raman spectrum. For this purpose the 𝜇-
CT image was considered as the dependent variable and the
Raman spectra consequently as the independent variables.
The constant 𝑏

0

can be interpreted as a gray level value
from where all alterations work. In order to avoid redundant
information in the model, variables (Raman spectra) that
could be described by other variables within the data set were
removed as soon as the coefficient of correlation exceeded a
value of ±0.9. The coefficients of correlation were calculated
following Pearson’s ratio which is defined as the covariance
of two variables divided by the product of their standard
deviation (2):

󰜚 (𝑋, 𝑌) =
COV (𝑋, 𝑌)
𝜎 (𝑋) 𝜎 (𝑌)

. (2)

After the data set was screened with the help of a correlation
matrix all those spectra which enabled a description of the 𝜇-
CT image were determined.The odd data set (i.e., the data set
without those spectra according to Table 2) formed the basis
for a multiple linear regression. Additionally it can generally
be specified that an unreasonable or unnecessary increase
of explaining variables possibly leads to an artificially raised
coefficient of determination of themodel and thereby distorts
the result. This fact emphasizes the need for data sets to be
screened before performing a multiple linear regression.

The goodness of fit of the model can be verified on the
one hand by means of the coefficient of determination and
on the other hand by means of an 𝐹-test. If there is a true
causal relationship between the dependent variables 𝑋

𝑗

and
the independent variable 𝑌̂, respectively, the coefficients 𝑏

𝑖

are
not equal to null. The null hypothesis suggests (3) that there
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Table 2: Correlations matrix of the Raman bands and the reference spectra following the order: (1) Bio-Oss, (2) tricalcium phosphate, (3)
Bio-Gide, (4) pork bone, (5) pork fat, (6) Amide I, (7) Amide III, (8) CH bending, (9) CH stretching, (10) phosphate bending (]2PO4), (11)
phosphate bending (]4PO4), (12) phosphate stretching (]1PO4), and (13) type B carbonate substitution.

𝑖 1 2 3 4 5 6 7 8 9 10 11 12 13
(1) 1 0.059 −0.507 −0.488 −0.486 0.152 0.166 0.339 −0.404 −0.054 −0.087 0.283 0.149
(2) 0.059 1 0.562 0.680 0.335 0.251 0.140 0.055 0.396 0.620 0.556 0.804 0.482
(3) −0.507 0.562 1 0.972 0.828 0.211 0.089 0.046 0.689 0.315 0.280 0.341 0.142
(4) −0.488 0.680 0.972 1 0.841 0.246 0.120 0.067 0.740 0.440 0.398 0.468 0.261
(5) −0.486 0.335 0.828 0.841 1 0.196 0.091 0.249 0.783 0.202 0.172 0.207 0.105
(6) 0.152 0.251 0.211 0.246 0.196 1 0.957 0.850 0.555 0.737 0.746 0.579 0.838
(7) 0.166 0.140 0.089 0.120 0.091 0.957 1 0.827 0.441 0.695 0.717 0.480 0.834
(8) 0.339 0.055 0.046 0.067 0.249 0.850 0.827 1 0.497 0.464 0.470 0.411 0.636
(9) −0.404 0.396 0.689 0.740 0.783 0.555 0.441 0.497 1 0.588 0.566 0.495 0.507
(10) −0.054 0.620 0.315 0.440 0.202 0.737 0.695 0.464 0.588 1 0.985 0.793 0.923
(11) −0.087 0.556 0.280 0.398 0.172 0.746 0.717 0.470 0.566 0.985 1 0.729 0.918
(12) 0.283 0.804 0.341 0.468 0.207 0.579 0.480 0.411 0.495 0.793 0.729 1 0.783
(13) 0.149 0.482 0.142 0.261 0.105 0.838 0.834 0.636 0.507 0.923 0.918 0.783 1

is no difference between the regression coefficients 𝑏
𝑖

of the
function and can thus be rejected on the basis of an 𝐹-test:

𝐻
𝑜

: 𝑏
1

= 𝑏
2

= ⋅ ⋅ ⋅ = 𝑏
𝑖

= 0. (3)

In this study two multiple linear regressions are presented.
The first one, which refers later on to model 1, incorporates
all spectra whereas in the second one, which refers to
model 2, variables not significant according to the 𝐹-test
were excluded using the so-called backwards method. This
technique operates progressively as it starts with a linear
model including at first all variables and excludes variables
afterwards step by step.This is done by evaluating the highest
empirical 𝐹-value and has the benefit of reducing the amount
of variables once more.

The coefficients 𝑏
𝑖

of the hyperplane 𝑌̂ (1) are not directly
comparable according to their influence on the estimated
variables as these explanatory variables (i.e., the independent
variables) can be scaled differently. In order to be able to
compare the explanatory variables with each other Backhaus
et al. [27] suggests to standardize the coefficients following (4)
where the so-called Beta values 𝛽

𝑖

are the standardized coef-
ficients, 𝑏

𝑖

the unstandardized coefficients, 𝑠
𝑥𝑖
the standard

deviation of the appropriate variable, and finally 𝑠
𝑦

, which
is the standard deviation of the dependent variable 𝑌̂. The
higher the influence of a variable, the higher the absolute
value of the standardized coefficient:

𝛽
𝑖

= 𝑏
𝑖

𝑠
𝑥𝑖

𝑠
𝑦

. (4)

Initially the linear equation was calculated factoring all the
remaining Raman spectra regardless whether the coefficients
were significant with reference to a 𝑡-test or not. In a second
stage the regression parameters 𝑏

𝑗

were tested by means of a
two tailed 𝑡-test at which the null hypothesis (5) was rejected

Figure 1: The appropriate region of interest related to the 𝜇-CT
image.

in favor of the alternative hypothesis (6) at a confidence level
of 0.95:

𝐻
𝑜

: 𝑏
𝑖

= 0, (5)

𝐻
1

: 𝑏
𝑖

̸= 0. (6)

It must be added that all calculations were carried out on
the basis of gray level images although the Raman intensities
in this paper are displayed in color. This does not have any
impact on the results but solely on the perception of the
information. Differences can be determined visually much
more easily by the reader using color images instead of gray
level images. All the charts and the associated statistical
calculations were carried out in SPSS 19 whereas all the
images were processed using MATLAB 2011a. In terms of a
base line correction the spectra resulting from the Raman
measurement were processed in OMNIC 8 as the algorithm
for automatic base line correction was applied directly.

3. Results

The region of interest (ROI) is denoted by the red rectangle
(Figure 1) in which the two kerfs serving as an orientation
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mark are located. Due to the fact that Raman spectroscopic
imaging is limited to surfaces by natural conditions and 𝜇-
CT provides images of the internal structure the very best 𝜇-
CT image was selected manually being as close as possible to
the surface and preserving an appropriate image quality at the
same time.

The microscopic image in Figure 2(a) has been assem-
bled from several individual images, which were stitched
together to produce an overview image with high reso-
lution. The squares are a result of this stitching process
because the borders of the individual images remain visible.
The accuracy of the microscopic evaluation is not affected
by this phenomenon. In Figure 2 the microscopic image
(Figure 2(a)) is compared with the corresponding Raman
image (Figure 2(b)) showing the intensity distribution of the
Amide III band, where red indicates a high and blue very low
intensity.

The colors in between follow the order of the rainbow
colors. In addition the Raman image was overlapped with
the 𝜇-CT image (Figure 2(c)) in order to gain a first visual
impression of the relationship between these two image
data. In entirely practical terms it can be observed that
the shrinkage as a consequence of dehydration of the bone
sample due to the long term measurement is narrowed to
a moderate rate. The generated Raman images (Figure 2(b))
turned out to vary in intensity to such an extent that some of
the spectra were enhanced by reducing the maximum value
of the range of intensity. This means that values which were
at a low level before (f.i. green) are displayed subsequently at
a higher level as orange or yellow for instance. Figure 3 shows
in an exemplary manner the impact of such a processing. On
the left side a chemical map focusing on a Raman peak at
1500 cm−1 is given. The intensity maximum of the range is
indicated by OMNIC 8 with 420. The maximum value was
reduced in a second step to a value of 210. Lower intensities,
which were poorly visible before (Figure 3(a)) can now be
determined in a better way (Figure 3(b)). At the same time
the intensities at the green spot in the upper region are raised
accordingly following the order of the rainbow colors. The
maximum values, as they were set in the present study, are
listed in Table 1.

In an exemplary manner the effect of the performed
baseline correction is displayed in Figure 4 by means of the
reference spectrum of pork bone. It can be seen how the
background is obscured due to fluorescence and how the
background is flattened bymeans of the baseline correction in
virtue of the Thermo Scientific software solution for Raman
applications.

In a further step all those spectra showing a coefficient
of correlation greater than ±0.9 were removed from the data
set and all further analyses were carried out with the reduced
data set. In the event that highly correlated data within the
data set could not be cleaned up the outcome will inevitably
lead to a falsification of the explanatory linear model as
explained in the previous chapter. In Table 2 the correlation
matrix is given on which basis the data set was filtered.

Table 3 provides an overview of the spectra pairs exceed-
ing the previously defined Pearson’s correlation and those

which were retained and removed respectively. It could be
found that four data pairs fulfilled the determined criteria,
accordingly four data set were removed and the statistical
calculations were continued without Bio Gide, the Amide III
band and without the two phosphate bending modes.

Table 4 sums up the results with model 1 referring to the
forced multiple linear regression and model 2 referring to
the regression eliminating all those coefficients having no
significant contribution to the linear model according to the
𝑡-test. Furthermore the Raman peak at 438 cm−1 (]

2

PO
4

)
highly correlates with the Raman peak at 589 cm−1 (]

4

PO
4

).
Both were removed given that each of these Raman peaks
highly correlates with the Raman peak at 1075 cm−1 and
exceeded the previously determined criterion (i.e., ±0.9).

The global statistical evaluation shows by means of the
coefficient of determination and the adjusted coefficient of
determination, respectively, the goodness of fit of the total
linear model. In conclusion at least 51.8% of the variation
can be explained by the linear model. The goodness of fit
remains unchanged after exclusion of the variable tricalcium
phosphate and thus clearly indicates the very low explanatory
amount of the same. All further observations are based on the
multiple linear regression in which tricalcium phosphate was
removed (model 2).

In Figure 5 the normal probability plot of the standard-
ized residuals is given. In case of a perfect match all the
data points would be on the linear equation. The residuals
are arranged close to the straight line which emphasizes
the normal distribution of the residuals. The assumption of
normal distributed standardized residuals is relevant with
reference to the coefficients (i.e., 𝑏

0

, 𝑏
𝑖

) because these estima-
tors are assumed to be normal distributed when choosing a
multiple linear model and performing an 𝐹-test and 𝑡-test,
respectively. In case of not normal distributed residuals the
test statistics used would not be valid.

Table 5 gives an overview of the unstandardized coef-
ficients as well as of the standardized coefficients and the
appropriate 𝑡-test results for each linear model. The confi-
dence interval is stated for the unstandardized coefficients.

The compound eliminated due to the 𝑡-test was the corre-
lation map of tricalcium phosphate showing a significance of
0.593 and thereby exceeding the defined limit of 0.05. Some
of the values are low to such an extent that the decimal place
cannot be seen in Table 5, but that does not mean that the
significance has the value zero. As mentioned previously, the
coefficients can be compared to each other directly as soon
as they are standardized. The underlying intention thereby
is to get rid of the different measurement dimensions which
allow a comparison and thus a reasonable interpretation of
these values with respect to their importance. In other words,
the higher the value, the greater the importance of a variable
𝑋
𝑖

. A coefficient with a negative algebraic sign means that
the constant (i.e., average gray level value) is decreased by
the amount indicated by the appropriate coefficient 𝑏

𝑖

and
𝛽
𝑖

, respectively. A positive coefficient means vice versa that
the constant is increased by the correspondent coefficient
𝑏
𝑖

within that linear model. However, the coefficients can
only be interpreted that way if the 95% confidence interval
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Table 3: Spectra showing a correlation greater than ±0.9.

Retained spectra Removed spectra
Raman peak Peak position (cm−1) Raman peak Peak position (cm−1)
Pork bone Correlation map Bio-Gide Correlation map
Amide I 1677 Amide III 1256
Carbonate subst. 1075 ]2PO4 438
Carbonate subst. 1075 ]4PO4 589

(a) (b) (c)

Figure 2: (a)Microscopic image, (b) Raman image showing the intensity distribution of the Amide III band, and (c) Raman image overlapped
with the 𝜇-CT image.

(a) (b)

Figure 3: (a) Raman map with its original intensity range [0–420]. (b) Raman map with its reduced intensity range [0–210].
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Figure 4: (a) Raman spectrum of pork bone showing fluorescence. (b) Corrected Baseline of the same spectrum.



Journal of Applied Mathematics 7

Observed cum prob
10.80.60.40.20

1

0.8

0.6

0.4

0.2

0

Ex
pe

ct
ed

 cu
m

 p
ro

b

Figure 5: Normal probability plot.

Table 4: Model summary.

Model 𝑅 𝑅 square Adjusted 𝑅 square
1 0.720 0.519 0.518
2 0.720 0.519 0.518

does not include the value zero. As soon as zero is part
of the interval this statement is not true. Furthermore the
confidence intervals provide information with respect to the
unstandardized coefficients.

Table 5 offers an overview of the standardized values of
both linear models. It can be observed that the CH bending
mode together with the pork fat correlation map is the
strongest positive standardized estimators in model 1 and
the only ones regarding model 2. The confidence interval
of these modes is positive as well and does not include the
value zero for the unstandardized coefficients.This allows the
conclusion that an increasing amount of CH bending mode
and pork fat will lead to a higher 𝜇-CT value.

The most important negative estimators are given with
the carbonate substitution mode and the correlation map of
pork bone.The corresponding intervals are also negative and
do not include the value zero. A higher amount of that mode
and pork bone, respectively, will lead to a lower 𝜇-CT value.
Such a breakdown (Table 5) shows which vibrational mode
and component, respectively, influence the estimators (i.e.,
coefficient) the most.

In order to discuss the error of the presented linear
regression model the residual plots are given in the form
of scatterplots (Figure 6) in which the residuals of the
regression model are plotted against each variable 𝑋

𝑗

. By
means of these figures it can be determined whether the
residuals are randomly scattered or not. If it happens that the
residuals appear to be not randomly scattered, different addi-
tional parameters might be overlooked. Although tricalcium
phosphate was excluded in model 2 the appropriate residual
plot is nevertheless presented.

It can be observed that the scattering of the residuals
appears differently in each case. Although the data seem
to be well (i.e., randomly) spread around the red zero
line, two main different data structures become visible
and conspicuous, respectively, and are marked with two
different colors (i.e., green and blue). In Figure 6(i) the
intensity values for the type B carbonate substitution are
displayed on the horizontal axis and the residuals are layed
on the vertical axis. Those values which are framed with the
green ellipse are distinctive and were accordingly assigned
in the other figures (Figures 6(b), 6(c), 6(d), 6(f), and
6(g)). These data points show an unreasonable SNR which
might be caused by impurities on the surface of the bone
sample [28].

In Figure 6(h) the intensity values for phosphate (Raman
peak at 961 cm−1) and the residuals are displayed in exactly
the same manner regarding the axes as previously described.
The values which are marked with the blue ellipse in
Figure 6(h) show an unreasonable SNR too. In large parts
the values marked with the blue ellipse in Figures 6(e)
and 6(f) are also affected by a bad SNR. A reason for
this might be impurities on the surface of the sample
again causing a general degradation of the Raman signal.
This hypotheses, however, was not verified for which rea-
son these data could not be excluded. These impurities
might have changed their chemical composition due to the
energy input of the laser which leads to the conclusion
that any testing of that hypotheses is hardly feasible. There-
fore a clear statement regarding these data would be too
complicated.

Thus the error of the regression model can be traced back
to two parameters. Firstly impurities on the surface of the
sample are able to cause measurement errors which cannot
be explained by the model and thus effect a major scattering.
Secondly the model is not up to the task of explaining
the overall variance. Different investigation methods could
possibly lead to a clearer explanation regarding the material
composition.
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Table 5: Results of the multiple linear regression.

Model Raman spectra Unstand.
coefficient

Stand.
coefficient

Significance
(𝑡-test) Confidence interval (at a level of 0.95)

Constant 182.438 — — 165.405 199.471
Bio-Oss −0.050 −0.049 0.022 −0.092 −0.007
Tricalcium phosphate 0.009 0.013 0.593 −0.023 0.041
Pork bone −0.109 −0.391 0.000 −0.132 −0.085

1 Pork fat 0.153 0.172 0.000 0.095 0.210
Amide I −0.087 −0.064 0.058 −0.176 0.003
CH bending 0.547 0.550 0.000 0.483 0.612
CH stretching −0.384 −0.179 0.000 −0.482 −0.287
Phosphate stretching −0.099 −0.201 0.000 −0.126 −0.071
Carbonate substitution −0.709 −0.356 0.000 −0.809 −0.609
Constant 183.728 — — 167.366 200.090
Bio-Oss −0.048 −0.047 0.026 −0.090 −0.006
Pork bone −0.104 −0.375 0.000 −0.122 −0.087
Pork fat 0.147 0.165 0.000 0.094 0.199

2 Amide I −0.097 −0.072 0.018 −0.178 −0.016
CH bending 0.551 0.554 0.000 0.488 0.614
CH stretching −0.389 −0.181 0.000 −0.485 −0.293
Phosphate stretching −0.096 −0.196 0.000 −0.122 −0.070
Carbonate substitution −0.701 −0.352 0.000 −0.797 −0.605

For this study a coefficient of correlation of 0.72 is
sufficient in order to evaluate the presentedmethod for which
reason further methods do not appear necessary.

4. Discussion and Conclusion

Due to the fact that the sample was drying (moving) over
time, for the applied 𝜇-CT scans a compromise of contrast,
image quality andmeasurement time had to be found. Results
according to this approach show that hardly any conclusion
on the chemical composition of the sample can be made by
means of a 𝜇-CT image solely. Alternatively to 𝜇-CT it may
be possible to use synchrotron radiation for CT. Indeed, syn-
chrotron radiation offers significant advantages in terms of
coherence, brilliance, and divergence of the beam [29] which
results in fewer artifacts, improved contrast, and resolution,
as well as much lower measurement times. These aspects
will be taken into account in further investigations since
synchrotron radiation together with Raman spectroscopy
might possibly make another important contribution to the
characterization of biomaterials.

Raman spectroscopic imaging is a tool that is up to
the task of providing valuable additional information and
has been successfully used in the present study in order to
characterize biomaterials such as bone samples consisting of
bone graft substitutes.

The development and generation of the present mathe-
matical model, comprising correlation calculations, multiple
regression analysis, and digital image processing methods,
showed that 51.8% of the variance of the gray level pixels can

be successfully explained that way. Considering the fact that
interpretations on the composition of bone graft substitutes
and bone, respectively, are still carried out to a great extent
on the basis of CT information, this study emphasizes the
lack of deeper knowledge and understanding regarding the
characterization of such materials on the one hand and
highlights once more the importance of implementation
of further imaging techniques on the other hand. Raman
spectroscopy and other spectroscopic based examination
methods should be embedded in further research efforts
intensively since CT data do not provide reliable information
on the chemical structure of biomaterials.

In view of the present results it can be stated moreover
that this model needs to be improved by further data
acquisition. The composition of the material in this study is
very complex; thus further research efforts will be carried out
on the basis ofmaterials showing a lower degree of complexity
with respect to their composition. The development of
mathematical descriptions can thus be improved more easily
in future.

This method is appropriate in order to improve the
accuracy of 3D models which are exclusively based on CT
image data and is thereby able to increase the quality of
predictions on, for instance, micromechanical properties of
bone and bone graft substitutes, respectively. An improved
course of action in this regard is probably also of benefit to
medical routines since the question how well such substitute
materials are able to merge with body’s own bone is still of
importance in the medical field in terms of evaluation and
characterization of such materials.
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Figure 6: Residual plots and marked faulty measurements: (a) Bio Oss, (b) tricalcium phosphate, (c) pork bone, (d) pork fat, (e) Amide I, (f)
CH bending, (g) CH stretching, (h) phosphate stretching at 961 cm−1, and (i) carbonate substitution.

The question as to how far chemical maps by means of
Raman spectroscopic imaging are allowed or even should be
processed in terms of digital image processing techniques
remains open and should be generally discussed in a scientific
context since every image enhancement possibly affects the
result.
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We propose filtering the PET sinograms with a constraint curvature motion diffusion. The edge-stopping function is computed in
terms of edge probability under the assumption of contamination by Poisson noise. We show that the Chi-square is the appropriate
prior for finding the edge probability in the sinogram noise-free gradient. Since the sinogram noise is uncorrelated and follows
a Poisson distribution, we then propose an adaptive probabilistic diffusivity function where the edge probability is computed at
each pixel.The filter is applied on the 2D sinogram prereconstruction.The PET images are reconstructed using the Ordered Subset
Expectation Maximization (OSEM). We demonstrate through simulations with images contaminated by Poisson noise that the
performance of the proposed method substantially surpasses that of recently published methods, both visually and in terms of
statistical measures.

1. Introduction

Positron Emission Tomography (PET) is an in vivo nuclear
medicine imaging method that provides functional informa-
tion of the body tissues. The PET image results from recon-
structing very noisy, low resolution raw data, that is, the
sinogram, in which important features are shaped as curved
structures. Enhancing the PET image spurred a wide range of
denoisingmodels and algorithms. Somemethodologies focus
on enhancing the reconstructed PET image directly, where
others prefer enhancing the sinogram prior to reconstruc-
tion.

Although developing an appropriate denoising method
for filtering the PET images has been widely studied in
the last two decades, this problem is still receiving high
attention from researchers trying to improve the diagnosis
accuracy of this image. Existing methods may suffer draw-
backs such as the careful selection of a high number of
parameters, smoothing of the important features boundaries,
or prohibitive computation. Recently, nonlinear diffusion

techniques have been investigated for PET images. Many
researchers did explore the application of the well-known
Perona and Malik anisotropic diffusion [1] in combination
with diverse diffusivity functions on PET images [2–6], as
well as on sinograms [7–9].

In [5], authors introduced a postreconstruction adap-
tive nonlinear diffusion (Perona and Malik) filter based on
varying the diffusion level according to a local estimation of
the image noise. Applying the nonlinear anisotropic filtering
method on the whole body, PET image and the sinogram
were presented in [4, 8, 10], respectively. Results showed that
the anisotropic diffusion filtering algorithm helps improve
the quantitative aspect of PET images.

In the study of [9], combining the anisotropic diffusion
method with the coherence enhancing diffusion method for
filtering the sinogram as a preprocessing step was proposed.
However, the considered cascading approach is time consum-
ing, and the results are highly dependent on the parameters
selection criteria. Zhu et al. [11] built the diffusivity function
using fuzzy rules that were expressed in a linguistic form.
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The mean curvature and the Gauss curvature diffusion
algorithms for filtering the PET images during reconstruction
were investigated in [12]. An anatomically driven anisotropic
diffusion filter (ADADF) as a penalized maximum like-
lihood expectation maximization optimization framework
was proposed in [2]. This filter enhances a single-photon
emission computed tomography images using anatomical
information from magnetic resonance imaging as a priori
knowledge about the activity distribution. Authors in [3]
proposed a reconstruction algorithm for PET with thin
plate prior combined with a forward-and-backward diffusion
algorithm.Themain drawback of the above filter, with respect
to sinogram images is that the diffusion produces important
oscillations in the gradient. This leads to a poorly smoothed
image [11, 12]. Moreover, the adopted diffusivity functions do
not consider the special properties of the sinogram, which are
high level of Poisson noise and curved-shape features.

Happonen and Koskinen [13] proposed filtering the sin-
ogram in a new domain, that is, stackgramdomain, where the
signal along the sinusoidal trajectories can be filtered sep-
arately. They applied this method using the Gaussian and
nonlinear filters. Radon transform is applied for inversemap-
ping of the filtered data from the stackgram domain to the
sinogram domain. The above described method is impracti-
cal for noise reduction of the medical images such as PET,
since the corresponding 3D stackgram requires an enormous
space of computer memory. Furthermore, it is a complex
method not suitable for clinical applications where timely
reconstructien of the PET image is a very important issue.

Most of the above studies considered a global image noise
level. Local or varying noise level has been used in [14], where
a nonlinear diffusion method for filtering MR images with
varying noise levels was presented. The authors assumed
that the MR image can be modeled as a piecewise constant
(slowly varying) function and corrupted by additive zero-
mean Gaussian noise. Pizurica et al. [15] proposed a wavelet
domain denoisingmethod for subband-adaptive and spatially
adaptive image denoising approach. The latter approach is
based on the estimation of the probability that a given co-
efficient contains a significant noise-free component called
“signal of interest.”The authors of [15] found that the spatially
adaptive version of their proposed method yielded better
results than the existing spatially adaptive ones.

In this work, based on the following PET sinogram
characteristics:

(i) the important features in the sinogram are curved
structures with high contrast values and these repre-
sent the regions of interest in the reconstructed PET
image, for example, tumor,

(ii) the weak edges in the sinogram are the edges that
contain low contrast values,

(iii) the noise in the sinogram is a priori identified as a
Poisson noise,

we propose filtering the sinogram by means of a curvature
constrained filter. The amount of diffusion is modulated
according to a probabilistic diffusivity function that suits
images contaminated with Poisson noise, being the known

noise distribution of PET sinograms. Further, considering
the singoram characteristics, we propose a probabilistic edge-
stopping function based on Chi-square prior for the ideal
sinogram gradient with a spatially adaptive algorithm for
calculating the prior odd at each pixel. We show that this
method is improving and denoising sinogram data which
leads to enhanced reconstructed PET image.

The remainder of the paper is organized as follows,
Section 2 briefly reviews the notions of curvature motion,
edge affected diffusion filtering, and self-snakes. The pro-
posed adaptive filtering scheme is introduced in Section 3.
Finally, Section 4 discusses the experimental results, while
the conclusions and future work are given in Section 5.

2. Geometry Driven Scale-Space Filtering

This section reviews the formulations for Mean Curvature
Motion (MCM), Edge Affected Variable Conductance Dif-
fusion (EA-VCD) and self-snakes. Also we recall the Gauge
Coordinates notions. Extensive discussion can be find in [16].
Let 𝑓 be a scalar image defined on the spatial image domain
Ω, then the family of diffused versions of 𝑓 is given by

𝑈(𝑓) : 𝑓 (⋅) 󳨀→ 𝑢 (⋅, 𝑡) with 𝑢 (⋅, 0) = 𝑓 (⋅) , (1)

where𝑈 is referred to as the scale-space filter, 𝑢 is denoted by
the scale-space image, and the scale 𝑡 ∈ R+ [6]. The denoised
or enhanced version of 𝑓 is a given 𝑢(⋅, 𝑡) that is the closest
to the unknown noise-free version of 𝑓. In the following we
denote 𝑢(:; 𝑡) by 𝑢

𝑡
.

2.1. Curvature Motion. Mean Curvature Motion (MCM) is
considered as the standard curvature evolution. MCM allows
diffusion solely along the level lines. In Gauge coordinates
(see Section 2.4) the corresponding PDE formulation is (𝑘 is
Euclidian curvature) as follows:

𝑢
𝑡
(⋅, 𝑡) = 𝑢VV = 𝑘 |∇𝑢| = div [ ∇𝑢

|∇𝑢|
] |∇𝑢| . (2)

Hence diffusion solely occurs along the V-axis.

2.2. Edge Affected Variable Conductance Diffusion. Variable
Conductance Filtering (VCD) is based on the diffusion
with a variable conduction coefficient that controls the rate
of diffusion [16]. In the case of Edge Affected-VCD (EA-
VCD), the conductance coefficient is inversely proportional
to the edgeness. Consequently it is commonly referred to
as the edge-stopping function (𝑔), in which the edgeness is
typically measured by the gradient magnitude. The EA-VCD
is governed by

𝑢
𝑡
= div [𝑔 (|∇𝑢|) ∇𝑢] . (3)

The above PDE system together with the initial condition
given in (1) is completed with homogenous von Neumann
boundary condition on the boundary of the image domain.
Note that the Perona and Malik’s antitropic diffusion [1] is an
EA-VCD.
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2.3. Self-Snakes. Self-snakes are a variant of the MCM where
an edge-stopping function is introduced [17].Themain goal is
preventing further shrinking of the level-lines once they have
reached the important image edges. For scalar images, self-
snakes are governed by

𝑢
𝑡
= |∇𝑢| div [𝑔 (|∇𝑢|) ∇𝑢

|∇𝑢|
] . (4)

This equation adopts the same boundary condition as (3).
Furthermore, it can be decomposed into two parts [16, 17]:

𝑢
𝑡
= 𝑔 |∇𝑢| div [ ∇𝑢

|∇𝑢|
] + (∇𝑔) ⋅ ∇𝑢

= 𝑔𝑘 |∇𝑢| + (∇𝑔) ⋅ ∇𝑢.

(5)

The first part describes a degenerate forward diffusion along
the level lines that is orthogonal to the local gradient; it allows
preserving the edges. Additionally, the diffusion is limited
in areas with high gradient magnitude and encouraged
in smooth areas. Actually the first term is the constraint
curvature motion.The second term can be viewed as a shock
filter since it pushes the level-lines towards valleys of high
gradient, acting as Osher’s shock filter.

2.4. Gauge Coordinates. An image can be thought of as a
collection of curves with equal value, the isophotes. At ex-
trema an isophote reduces to a point, at saddle points the iso-
phote is self-intersecting. At the noncritical points; a Gauge
coordinate system [18] is defined by two orthogonal axes V
and𝑤, which correspond to the directions of the tangent and
normal at the isophote. The second order Gauge derivatives
of the image in the VV and 𝑤𝑤 directions have the following
second-order structures:

𝑢VV =
𝑢
𝑥𝑥
𝑢2
𝑦
− 2𝑢
𝑥
𝑢
𝑦
𝑢
𝑥𝑦

+ 𝑢
𝑦𝑦
𝑢2
𝑥

(𝑢2
𝑥
+ 𝑢2
𝑦
)

,

𝑢
𝑤𝑤

=
𝑢
𝑥𝑥
𝑢2
𝑦
+ 2𝑢
𝑥
𝑢
𝑦
𝑢
𝑥𝑦

+ 𝑢
𝑦𝑦
𝑢2
𝑥

(𝑢2
𝑥
+ 𝑢2
𝑦
)

.

(6)

These gauge derivatives can be expressed as a product of
gradients and a 2 × 2matrix with second-order derivatives
[18]:

𝑢
𝑤𝑤

𝑢2
𝑤
= (𝑢
𝑥
, 𝑢
𝑦
) (

𝑢
𝑥𝑥

𝑢
𝑥𝑦

𝑢
𝑥𝑦

𝑢
𝑦𝑦

)(
𝑢
𝑥

𝑢
𝑦

) ,

𝑢VV𝑢
2

𝑤
= (𝑢
𝑥
, 𝑢
𝑦
) (

𝑢
𝑦𝑦

−𝑢
𝑥𝑦

−𝑢
𝑥𝑦

𝑢
𝑥𝑥

)(
𝑢
𝑥

𝑢
𝑦

) .

(7)

For 𝑢
𝑤𝑤

the matrix equals the Hessian𝐻. For 𝑢VV it is det
𝐻 ⋅ 𝐻−1. Note that the expressions are invariant with respect
to the spatial coordinates. The above expression can also be
obtained as follows [16]:

𝑢VV = 𝑢
𝑥𝑥

sin 𝜃2 + 𝑢
𝑦𝑦

cos 𝜃2 − 2𝑢
𝑥𝑦
sin 𝜃 cos 𝜃,

𝑢
𝑤𝑤

= 𝑢
𝑥𝑥

cos 𝜃2 + 𝑢
𝑦𝑦

sin 𝜃2 + 2𝑢
𝑥𝑦
sin 𝜃 cos 𝜃,

(8)

where 𝜃 is given as 𝜃 = arctan(𝑢
𝑦
/𝑢
𝑥
) and 𝑢V = −𝑢

𝑥
̇sin𝜃 +

𝑢
𝑦

̇cos𝜃 = 0.

The two expressions of (6) can be combined linearly in a
PDE setting. In this way, an image 𝑢

0
is evolved according to

a weighted combination of these two invariants:

𝑢
𝑡
= 𝑔
1
(|∇𝑢|) 𝑢VV + 𝑔

2
(|∇𝑢|) 𝑢

𝑤𝑤
(9)

with 𝑢(𝑡 = 0) = 𝑢
0
.

Equation (9) comprises a diffusionmodulated by𝑔
1
along

the image edges VV (a smoothing term) and a diffusion ad-
justable by𝑔

2
across the image edges𝑤𝑤 (a sharpening term).

Careful modeling of these terms allows efficiently denoising
the PET sinograms, whilst keeping their interesting features.

3. The Probabilistic Curvature Motion Filter

The proposed probabilistic curvature motion filters are based
on the idea of the probabilistic diffusivity function [19], where
the diffusivity function is expressed as the probability that the
observed gradient presents no edge of interest under a suit-
able marginal prior distribution for the noise-free gradient.
In [19], the probabilistic diffusivity function has been defined
as

𝑔pr (𝑥) = 𝐴 (1 − 𝑃 (𝐻
1
| 𝑥)) , (10)

where the normalizing constant 𝐴 is set to 𝐴 = 1/(1 − 𝑃(𝐻
1
|

0)) to ensure that 𝑔pr(0) = 1, the hypothesis𝐻
1
describes the

notion whether an edge element of interest is present given
the considered noise and 𝐻

0
an edge element of interest is

absent. For a noisy gradient model 𝑥 = 𝑦 + 𝑛, we set

𝐻
0
: 𝑦 ≤ 𝜎

𝑛
, 𝐻

1
: 𝑦 > 𝜎

𝑛
(11)

with 𝑦 being the ideal, noise-free, gradientmagnitude, and 𝜎
𝑛

being the standard deviation of the noise 𝑛. In [19] it has been
demonstrated that

𝑔pr (𝑥) = (1 + 𝜇𝜂 (0))
1

1 + 𝜇𝜂 (𝑥)
(12)

with the prior odds defined as

𝜇 =
𝑃 (𝐻
1
)

𝑃 (𝐻
0
)

(13)

and the likelihood ratio

𝜂 (𝑥) =
𝑃 (𝑥 | 𝐻

1
)

𝑃 (𝑥 | 𝐻
0
)
. (14)

Considering a Laplacian prior 𝑝(𝑦) = (𝜆/2)𝑒−𝜆|𝑦|, we have
[19]:

𝜇 = (𝑒𝜆𝜎𝑛 − 1)
−1

, (15)

and the parameter 𝜆 can be estimated as

𝜆 = [0.5 (𝜎2 − 𝜎2
𝑛
)]
−1/2 (16)

with 𝜎2 denoting the variance of the noisy image and 𝜎
𝑛
as

defined above. Due to limited space, the reader is referred to
[19] for the detailed expression of 𝜂(𝑥) in (14).
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It has to be noted that the diffusivity function (12) fits in
the cluster of backward-forward diffusivities, and it has no
free parameters to be set. Moreover, for the considered PET
sinograms, the noise standard deviation, 𝜎

𝑛
, in (16) is esti-

mated as 𝜎2
𝑛

= Var(𝑓Ln), where the image noise, 𝑓Ln, is
reconstructed via wavelet decomposition of 𝑓, from the two
finest resolution levels coefficients, using Daubechies (4)
wavelet.

3.1. Probabilistic Self-Snakes (PSS). It can be demonstrated
that the diffusion of scalar images via EA-VCD can be
decomposed into (5), which can be rewritten as follows [16]:

𝑢
𝑡
= 𝑔 (|∇𝑢|) 𝑢VV + [𝑔 (|∇𝑢|) + 𝑔󸀠 (|∇𝑢|) |∇𝑢|] 𝑢

𝑤𝑤
(17)

consolidating the properties of both the self-snakes and the
EA-VCD into a single diffusion schema.

Considering (9) and the probabilistic diffusivity func-
tion, if we set 𝑔

1
(𝑥) =̇ 𝑔pr(𝑥), and the sharpening term,

𝑔
2
(𝑥) =̇ 𝑔pr(𝑥) + 𝑥𝑔󸀠pr(𝑥), we obtain the probabilistic self-

snakes (PSS) [7]. By its nature, the PSS enhances the weak
edges and/or features in the sinogram. The second term in
(32) allows the sharpening. In this way, weak but important
edges are enhanced whilst the noise is removed efficiently.

PSS proved to be very effective and flexible for the sino-
gram image where the high contrast regions, which represent
a tumor in the reconstructed PET, should be smoothedwisely
without blurring the poor edges [7]. Like EA-VCD, the main
advantage of this filter is that the average gray value of the
image is not altered during the diffusion process which is a
significant issue in the sinogram.

3.2. Adaptive Probabilistic Diffusivity Function Based on a
Chi-Square Prior for a Sinogram. Theprobabilistic diffusivity
function (12) does not take into account the spatially varying
noise levels such as the case for the sinograms. It has a global
threshold parameter, which is related to the image noise
standard deviation 𝑇 = 𝜎

𝑛
. Hence, in such formulation, if

two pixels/voxels have equal gradient magnitude, they will
have the same 𝑔pr(𝑥) values, nomatter the noise level at these
pixels. In this work, the probabilistic diffusivity function is
improved by considering the local statistical noise at each
element. We adopt the ideas of [15] and adapt the estimator
to the local spatial context in the image.

3.2.1. Spatially Adaptive Probabilistic Diffusivity Function.
Themost appropriate way to achieve a spatial adaptation is to
estimate the prior probability of signal presence𝑃(𝐻

1
) adapt-

ively for each pixel instead of fixing it globally. This can be
achieved by conditioning the hypothesis𝐻

1
on a local spatial

activity indicator such as the locally averaged magnitude or
the local variance of the observed gradient.

To estimate the probability that “signal of interest” is
present at the position 𝑖, we consider a local spatial activity
indicator, 𝑧

𝑖
, at each position. 𝑧

𝑖
is defined as the locally aver-

aged gradient magnitude within a relatively small window,
𝑤(𝑖), with a fixed size,𝑁, around the position 𝑖 in the gradient
image.

Starting from the prior odd, (13), we replace the ratio of
“global” probabilities by a locally adaptive prior, 𝑃(𝐻

1
|

𝑧
𝑖
)/𝑃(𝐻

0
| 𝑧
𝑖
); that is, 𝑃(𝐻

1
) and 𝑃(𝐻

0
) are conditioned on

the local spatial indicator

𝑃 (𝐻
1
| 𝑧
𝑖
)

𝑃 (𝐻
0
| 𝑧
𝑖
)
=
𝑃 (𝑧
𝑖
| 𝐻
1
)

𝑃 (𝑧
𝑖
| 𝐻
0
)
⋅
𝑃 (𝐻
1
)

𝑃 (𝐻
0
)
= 𝜉
𝑖
(𝑧
𝑖
) ⋅ 𝜇, (18)

where (𝜉) is the local likelihood ratio:

𝜉
𝑖
(𝑧
𝑖
) =

𝑃 (𝑧
𝑖
| 𝐻
1
)

𝑃 (𝑧
𝑖
| 𝐻
0
)

𝜇 =
𝑃 (𝐻
1
)

𝑃 (𝐻
0
)
. (19)

Considering Bayes’ rule, the probability that an “edge of
interest” is present at position 𝑖, 𝑃(𝐻

1
| 𝑥
𝑖
), is given as

𝑃 (𝐻
1
| 𝑥
𝑖
) =

𝜇𝜂
𝑖
(𝑥
𝑖
) 𝜉
𝑖
(𝑧
𝑖
)

1 + 𝜇𝜂
𝑖
(𝑥
𝑖
) 𝜉
𝑖
(𝑧
𝑖
)
. (20)

The spatially adaptive probabilistic diffusivity function can
then be formulated as

𝑔apr (𝑥𝑖, 𝑧𝑖) = 𝐴 (1 − 𝑃 (𝐻
1
| 𝑥
𝑖
, 𝑧
𝑖
)) ,

𝑔apr (𝑥𝑖, 𝑧𝑖) = (1 + 𝜇𝜂 (0)) (
1

1 + 𝜇𝜂
𝑖
(𝑥
𝑖
) 𝜉
𝑖
(𝑧
𝑖
)
)

(21)

with

𝜂
𝑖
(𝑥
𝑖
) =

𝑃 (𝑥
𝑖
| 𝐻
1
)

𝑃 (𝑥
𝑖
| 𝐻
0
)
. (22)

We ensure that 𝑔(0) = 1, because the minimum of 𝑃(𝐻
1
| 𝑥)

is at 𝑥 = 0 and thus (1 − 𝑃(𝐻
1
| 𝑥)) peaks at 𝑥 = 0.

Intuitively, the proposed method considers an “observed
gradient” at a given location as how probable this location
presents useful information compared to its neighborhood,
based on

(1) the likelihood ratio via 𝜂
𝑖
(𝑥
𝑖
),

(2) a measurement from the local surrounding via 𝜉
𝑖
(𝑧
𝑖
),

(3) the global prior odd via 𝜇.

The local spatial activity indicator 𝑧
𝑖
is defined as

𝑧
𝑖
=

1

𝑁
∑
𝑙∈𝑤(𝑖)

𝑥
𝑙
, (23)

where 𝑥
𝑙
is the gradient magnitude at location 𝑙 ∈ 𝑤(𝑖).

Assume that all the elements within the small window
are equally distributed and conditionally independent. With
these simplifications, the conditional probability of 𝑧

𝑖
given

𝐻
1
in a window 𝑤(𝑖) of size 𝑁, which is denoted as 𝑃

𝑁
(𝑧
𝑖
|

𝐻
1
), is given by 𝑁 convolutions of 𝑃(𝑥

𝑖
| 𝐻
1
) with itself as

follows:

𝑃
𝑁
(𝑧
𝑖
| 𝐻
1
) = 𝑃 (𝑥

𝑖
| 𝐻
1
)Conv

𝑁
𝑃 (𝑥
𝑖
| 𝐻
1
) , (24)

while the conditional probability 𝑃
𝑁
(𝑧
𝑖
| 𝐻
0
) of 𝑧
𝑖
given 𝐻

0

is given by𝑁 convolutions of 𝑃(𝑥
𝑖
| 𝐻
0
) with itself:

𝑃
𝑁
(𝑧
𝑖
| 𝐻
0
) = 𝑃 (𝑥

𝑖
| 𝐻
0
)Conv

𝑁
𝑃 (𝑥
𝑖
| 𝐻
0
) . (25)



Journal of Applied Mathematics 5

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Original diffusivity function 𝑔(𝑥)
Adaptive diffusivity function 𝑔(𝑥)

−100 −80 −60 −40 −20 0 20 40 60 80 100
Gradient 𝑥

(a) probabilistic Diffusion along the Edge

1

0.5

0

−0.5

−1

−1.5
−100 −80 −60 −40 −20 0 20 40 60 80 100

Gradient 𝑥

Original diffusivity function [𝑥𝑔(𝑥)]󳰀

Adaptive modified diffusivity function [𝑥𝑔(𝑥)]󳰀

(b) Diffusion accross the edge

Figure 1: The Adaptive probabilistic diffusivity function 𝑔apr( ) versus the original probabilistic diffusivity function 𝑔pr( ). (a) Diffusivity
functions along the edge (𝑔(𝑥)). (b) Diffusivity functions across the edge ([𝑥𝑔(𝑥)]󸀠).

Due to limited space, the reader is referred to [19] for the
detailed expression of 𝑃(𝑥

𝑖
| 𝐻
0
), 𝑃(𝑥

𝑖
| 𝐻
1
), and 𝜂(𝑥

𝑖
).

Figure 1 illustrates the original probabilistic diffusivity
function and adaptive probabilistic diffusivity function. The
adaptive function has lower values, as shown in Figure 1(a),
which allows better preservation of important edges than
the original function. The negative peaks of the proposed
function occur usually at larger gradient magnitude than
the original one, which indicates stronger edge enhancement
capability. This property indicates a quick smoothing of the
nearly uniform areas while maintaining and enhancing the
strong edges.

3.2.2. A Chi-Square Prior for Noise-Free Sinogram Gradient.
The noise in the sinogram is a priori identified as a Poisson
noise [12, 20]. The magnitude of Poisson noise varies across
the image, as it depends on the image intensity. This makes
removing such noise very difficult. In the original probabilis-
tic diffusivity function (Section 3), the Laplacian prior was
imposed for the ideal image gradient that is contaminated
with Gaussian noise. In order to take into account the
sinogram’s noise distribution in the filtering scheme, in
this section we aim at redefining the diffusivity function
for handling Poisson noise. This can be accomplished by
finding an appropriate prior for the ideal noise-free sinogram
gradient.

In the following, we argue that we can represent Poisson
distribution by a Gaussian distribution as Gauss(0, √2𝑚).
Afterwards, we demonstrate that the gradient magnitude of
the noise-free sinogram follows a Chi-square distribution,
and finally we reformulate the probabilistic diffusivity func-
tion based on a Chi-square prior for the noise-free sinogram
gradient.

In the literature, several studies demonstrated that the
Poisson distribution (of probability mass 𝑃(𝑆) = 𝑚𝑆𝑒−𝑚/𝑆!,
with 𝑆 being the number of occurrences of an event and 𝑚
being the expected number of occurrences during a given

interval) approaches a Gaussian density function in the case
of high number of counts [21, 22]. Moreover, Miller et al. [21]
showed that the Gaussian approximation is surprisingly ac-
curate, even for a fairly small number of counts. To illustrate
this, we use the logarithmic function to simplify the proof:

ln𝑃 (𝑆) = ln(𝑚𝑆𝑒−𝑚

𝑆!
) . (26)

Using Stirling’s formula (for large 𝑆 as we are assuming here)
𝑆! ≈ 𝑆𝑆 ⋅ 𝑒−𝑆√2𝜋𝑆, we have

𝑃 (𝑆) ≈
𝑒−(𝑆−𝑚)

2

/2𝑚

√2𝜋𝑚
. (27)

Assuming that the sinogram gradient is approximated
by absolute difference of neighboring pixel values on a 2-
connected grid, we demonstrate that the gradient of Poisson
random variables follows a Skellam distribution. Then, we
show that the Skellam distribution can be approximated as
a Gaussian distribution.

Let 𝑠1 and 𝑠2 be two statistically independent adjacent
pixels in the observed sinogram be with a Gaussian dis-
tribution 𝑠1 ∼ Gauss(𝑚

1
, 𝜎
𝑠1
) and 𝑠2 ∼ Gauss(𝑚

2
, 𝜎
𝑠2
),

respectively. The distribution of the difference, 𝑎 = 𝑠1 − 𝑠2,
of two statistically independent random variables 𝑠1 and 𝑠2,
each having Poisson distributions with different expected
values𝑚

1
and𝑚

2
, is denoted as the Skellam distribution [23]

and can be given as

PD (𝑎;𝑚
1
, 𝑚
2
) = 𝑒−(𝑚1+𝑚2)(

𝑚
1

𝑚
2

)
𝑎/2

𝐼
|𝑎|
(2√𝑚

1
𝑚
2
) , (28)

where 𝐼
𝑘
(𝑍) is the modified Bessel function of the first kind.

The difference between two Poisson variables has the
following properties: (i) 𝜎2

𝑠1𝑠2
= 𝜎2
𝑠1

+ 𝜎2
𝑠2

= 2𝜎2 and (ii)
𝑚 = 𝑚

𝑠1𝑠2
= 𝑚
𝑠1

− 𝑚
𝑠2

= 0. Considering these prop-
erties, the cross-correlation, and the delta function, the
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(c) Chi-square and Laplacian prior for the noise free histogram

Figure 2: Chi-square prior versus Laplacian prior. (a) Histogram of the noise-free gradient. (b) Histogram of the noisy gradient magnitude.
(c) Laplacian and Chi-square priors for the noisy-free gradient, estimated from the noisy data.

approximated distribution of the sinogram gradient can be
given as Gauss(0, √2𝑚).

Based on the assumption that the sinogram gradient
follows the Gauss(0, √2𝑚) distribution, we can show that the
distribution of this gradient leads a Chi-square distribution
as follows:

∇𝑆
(𝑖,𝑗)

∼ Gauss (0, √2𝑚) ,

󵄨󵄨󵄨󵄨󵄨∇𝑆(𝑖,𝑗)
󵄨󵄨󵄨󵄨󵄨

√2𝑚
∼ Gauss (0, 1) ,

󵄨󵄨󵄨󵄨󵄨∇𝑆(𝑖,𝑗)
󵄨󵄨󵄨󵄨󵄨
2

2𝑚
∼ 𝜒2.

(29)

The Chi-square distribution is defined by the following
probability density function:

𝑃 (𝑦) =
𝑦𝜁/2−1 ⋅ 𝑒−𝑦/2

2𝜁/2𝛾 (𝜁/2)
, (30)

where 𝛾(𝜁/2) denotes the Gamma function and 𝜁 is a positive
integer that specifies the number of degrees of freedom. For
the noise gradient model 𝑥 = 𝑦 + 𝑛, the Chi-square with 2

degrees of freedom (2 degrees because we are dealing with
2D images) is given as

𝑃 (𝑦) =
1

2
⋅ 𝑒−(1/2)|𝑦|. (31)

Based on the above, the prior odd, (15), can be reformu-
lated considering Chi-square prior instead of Laplacian prior
and the noise 𝑛 ∼ Gauss(0, 2𝜎2

𝑛
). Note that the Chi-square

with 2 degrees of freedom is almost a special case of Laplacian
prior with a rate parameter (scale parameter) 𝜆 = 1/2. This
parameter determines the “scale” or statistical dispersion of
the probability distribution. It indicates that the distribution
of the ideal gradient is independent of a rate parameter since
the Poisson noise is a pixel dependent (i.e., depends on the
number of counts). Therefore, it is more natural to use Chi-
square prior for estimating the ideal gradient of Poisson data
rather than Laplacian prior with a parameter, 𝜆, which is
based on the variances of the image and noise gradients as
indicated by (16).

In Figure 2, we illustrate the estimation of the Laplacian
andChi-square priors for the noise-free gradient. Figures 2(a)
and 2(b) show the histograms of the gradient magnitudes
for the noise-free and noisy images, respectively. The noise-
free gradient histogram is typically sharply peaked at zero
since the noise-free images typically contain large portions
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of relatively uniform regions that produce negligible gradient
values. Sharp edges and textured regions produce some
relatively large gradients, building in this way long tails of the
gradient histogram. From the noisy histogram of Figure 2(b),
we estimate the parameter of the prior for the noise-free
sinogram gradient. The results are illustrated in Figure 2(c),
which shows the estimated Laplacian (dotted curve) andChi-
square (continues curve) priors in comparison to the ideal,
noise-free histogram.

3.2.3. Algorithm:The Adaptive Probabilistic Curvature Motion
Filter Based on Chi-Square Prior. In summary the general
equation of the proposed Adaptive Modified Probabilistic
Curvature Motion (AMPCM) filter is given by

𝑢
𝑡
= 𝑔apr (|∇𝑢|) 𝑢VV + [𝑔apr (|∇𝑢|) + 𝑔󸀠apr (|∇𝑢|) |∇𝑢|] 𝑢𝑤𝑤.

(32)

Let 𝑔
1
(𝑥
𝑖
, 𝑧
𝑖
) =̇ 𝑔apr(𝑥𝑖, 𝑧𝑖), as given by (21), and the sharpen-

ing term 𝑔
2
(𝑥) =̇ 𝑔

1
(𝑥
𝑖
, 𝑧
𝑖
) + 𝑥𝑔󸀠

1
(𝑥
𝑖
, 𝑧
𝑖
); the overall algorithm

is given as shown in Algorithm 1.

Algorithm 1. Adaptive Modified Probabilistic Curvature Mo-
tion Filter Algorithm

(i) Build the Probabilistic Diffusivity Function:

(a) compute the prior odd based on the Chi-Square
prior:

𝑃 (𝑦) =
1

2
⋅ 𝑒−(1/2)|𝑦|,

𝜇 = (𝑒(1/2)𝜎𝑛 − 1)
−1

.

(33)

(ii) Build the spatially adaptive diffusivity function
𝑔apr(𝑥𝑖, 𝑧𝑖), for each pixel 𝑖 = 1, . . . , size

𝑓
:

(a) compute the local spatial activity indicator

𝑧
𝑖
=

1

𝑁
∑
𝑙∈𝑤(𝑖)

𝑀
𝑙
, (34)

(b) compute the likelihood ratio for each window:

𝑃
𝑁
(𝑧
𝑖
| 𝐻
1
) = 𝑃 (𝑀

𝑖
| 𝐻
1
)Conv

𝑁
𝑃 (𝑀
𝑖
| 𝐻
1
) ,

𝑃
𝑁
(𝑧
𝑖
| 𝐻
0
) = 𝑃 (𝑀

𝑖
| 𝐻
0
)Conv

𝑁
𝑃 (𝑀
𝑖
| 𝐻
0
) ,

(35)

(c) compute the normalizing constant 𝐴:

𝐴 = 1 + 𝜇𝜂 (0) (36)

(d) compute 𝑃(𝐻
1
| 𝑥
𝑖
) as defined by (20)

(iii) compute the diffusivity function 𝑔(𝑥
𝑖
, 𝑧
𝑖
) :

𝑔
1
(𝑥
𝑖
, 𝑧
𝑖
) = 𝐴 (1 − 𝑃 (𝐻

1
| 𝑥
𝑖
, 𝑧
𝑖
)) ,

𝑔
2
(𝑥
𝑖
, 𝑧
𝑖
) = 𝑔
1
(𝑥
𝑖
, 𝑧
𝑖
) + 𝑥𝑔󸀠

1
(𝑥
𝑖
, 𝑧
𝑖
) .

(37)

(iv) Filter the sinogram, 𝑢
0
= 𝑓, based on (8)

recursion, for 𝑡 = 0, . . ., (number of iterations 1):

𝑢 (𝑥, 𝑦, 𝑡 + Δ𝑡)

= 𝑢 (𝑥, 𝑦, 𝑡)

+
1

Δ𝑡
[𝑔
1
⋅ sin2𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦, 𝑡)

+ 𝑔
2
⋅ cos2𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦, 𝑡)

+ 𝑔
1
⋅ sin2𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦, 𝑡)

+ 𝑔
2
⋅ cos2𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦, 𝑡)

+ 𝑔
1
⋅ cos2𝜃 ⋅ 𝑢 (𝑥, 𝑦 + 1, 𝑡)

+ 𝑔
2
⋅ sin2𝜃 ⋅ 𝑢 (𝑥, 𝑦 + 1, 𝑡)

+ 𝑔
1
⋅ cos2𝜃 ⋅ 𝑢 (𝑥, 𝑦 − 1, 𝑡)

+ 𝑔
2
⋅ sin2𝜃 ⋅ 𝑢 (𝑥, 𝑦 − 1, 𝑡)

− 2 ⋅ 𝑔
1
⋅ 𝑢 (𝑥, 𝑦, 𝑡) − 2 ⋅ 𝑔

2
⋅ 𝑢 (𝑥, 𝑦, 𝑡)

+
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 + 1, 𝑡)

−
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 + 1, 𝑡)

+
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 − 1, 𝑡)

−
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 − 1, 𝑡)

−
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 − 1, 𝑡)

+
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 + 1, 𝑦 − 1, 𝑡)

−
𝑔
2

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 + 1, 𝑡)

+
𝑔
1

2
⋅ sin 𝜃 cos 𝜃 ⋅ 𝑢 (𝑥 − 1, 𝑦 + 1, 𝑡)] .

(38)

4. Experiments and Discussion

For the analysis of the proposed denoising approaches, we
use a simulated thorax PET phantom, containing three hot
regions of interest (tumors) of activities 1.18, 1.8, and 1.57. 100
realizations (noisy sinograms) with added noise of 1 × 106

coincident events have been generated. Each sinogram has a
size of 256×256pixels and its spacing is 2×2 (mm/pixel), with
128 detectors and 128 projection angles. Figure 3(a) illustrates
the noise-free sinogram, and Figure 3(b) illustrates a noisy
realization.

For reconstructing the PET images, we adopt theOrdered
Subset Expectation Maximization (OSEM) reconstruction



8 Journal of Applied Mathematics

(a) (b)

(c) (d)

Figure 3: Experimental dataset. (a) Noise-free simulated sinogram. (b) Noisy sinogram. ((c)-(d)) Corresponding reconstructions.

algorithm [24]. One way to represent the imaging system is
with the following linear relationship:

𝑓 = 𝐻𝑓PET + 𝑛, (39)

where𝑓 is the set of observations (sinogram),𝐻 is the known
system model (projection matrix), 𝑓PET is the unknown
image, and 𝑛 is the noise. The goal of reconstruction is to
use the data values 𝑓 (projections through the unknown
object) to find the image𝑓PET.Under the Poisson assumption,
counts of all the detectors around the object are considered
as independent Poisson variables. OSEM groups projection
data into an ordered sequence of subsets and progressively
processes every subset of projections in each iteration process
[24]. The OSEM method results are highly affected by the
number of iterations and subsets used. The iterations should
be ended before the noise becomes too dominant and not
too early to avoid losing important information. In our
experiments, the parameters of the OSEM algorithm are set
as follows: we use 16 subsets and run them for 4 iterations.
Such PET reconstructions are illustrated in Figures 3(c) and
3(d) for the noise-free and noisy sinograms, respectively.

For the experimental assessment of the proposed diffu-
sion filtering, we use two sets of evaluation measures. The
first set stems from measuring the quality of the filtering
techniques on the sinogram, whilst the second set originates
from validating the quality of the PET reconstruction, after
filtering the sinogram observations. As ground-truth infor-
mation, the former uses the noise-free sinogram, while the
latter needs prior identification of the important areas by a
medical professional.

A fundamental issue with scale-spaces induced by dif-
fusion processes, as the ones proposed in this paper, is
the automatic selection of the most salient scale. For PET
sinogram denoising application, we use an earlier proposed
optimal scale selection approach [25], where the maximum
correlation method has been adopted:

𝑡opt = argmax [Ĉmp (𝑡)]

= argmax[𝜎 [𝑢
𝑡
] +

𝜎 [𝑛
𝑜
(𝑡
0
)]

𝜎 [𝑢
𝑡
0

]
𝜎 [𝑛
𝑜
(𝑡)]]

(40)



Journal of Applied Mathematics 9

(a) AMPCM (b) PSS

(c) P-M (d) NAF

Figure 4: Optimal enhanced scale (𝑢
𝑡opt

) of the noisy sinogram of Figure 3(b).

with 𝑛
𝑜
being the so-called outlier noise estimated using

wavelet-based noise estimation. 𝑡
0
is the zeroth scale; thus

𝑢
𝑡
0

= 𝑓 and 𝑛(𝑡
0
) represents the initial amount of noise.

4.1. Sinogram Denoising Evaluation. In this work, we are in-
terested in comparing the proposedAMPCMfilterwith filter-
ing approaches from the literature: the Probabilistic self-
snakes (PSS) [7], Perona and Malik filter (P-M) [1], and the
Noise-Adaptive Nonlinear Diffusion Filtering (NAF) [14].

The Lorentzian diffusivity function 𝑔(𝑋) = 1/(1+𝑋2/𝑘2)
is used for applying the P-Mfilter.This functionwas proposed
by Perona andMalik [1] and widely used in the literature.The
contrast parameter 𝑘 is calculated based on the value given
by a percentage of the cumulative histogram of the gradient
magnitude [16]. The same diffusivity constant is used for all
filters (𝑑

𝑡
= 0.2).

Figure 4 illustrates the optimal enhanced scale of the
sinograms for all the considered filtering methods. The fil-
tered sinogram by AMPCM and PSS shows better enhanced
results especially the curvy shape features.

For the qualitative assessment of the denoised sinogram,
𝑢
𝑡opt

, with respect to the noise-free image 𝐼, we adopt the
following measures [25]:

DQ1 The Peak Signal to Noise Ratio (PSNR) is a statistical
measure of error, used to determine the quality of the
filtered images. It represents the ratio of a signal power
to the noise power corrupting. Obviously, one sees
that the higher the PSNR, the better the quality:

PSNR (𝑡opt) = 10 log
10

Card (Ω)

∑
𝑝∈Ω

󵄨󵄨󵄨󵄨󵄨󵄨
𝐼 (𝑝) − 𝑢

𝑡opt
(𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨

. (41)

DQ2 The correlation (C
𝑚𝜌
) between the noise-free and the

filtered image.Thehigher this correlation is, the better
the quality is:

C
𝑚𝜌

(𝑡opt) = 𝜌 [𝐼, 𝑢
𝑡opt

] . (42)
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(a) AMPCM (b) AD-AMPCM

(c) PSS (d) AD-PSS

(e) P-M (f) AD-PM

Figure 5: Mean of the filtered sinograms (left column). Absolute difference between the mean of the filtered sinograms and the noise-free
image (right column).
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Table 1: Denoising quality measures.

Method 𝑓 AMPCM PSS P-M NAF
PSNR (𝑡opt) 15.1 30.8 29.73 22.8 29.1
NV (𝑡opt) 0.11 0.02 0.0223 0.225 0.0261
C
𝑚𝜌

(𝑡opt) 0.92 0.9955 0.9950 0.9956 0.9911

DQ3 The calculated variance of the noise (NV) describes
the remaining noise level. Therefore, it should be as
small as possible:

NV (𝑡opt) = Var (
󵄨󵄨󵄨󵄨󵄨󵄨
𝐼 − 𝑢
𝑡opt

󵄨󵄨󵄨󵄨󵄨󵄨
) . (43)

We are interested in comparing the maximum of each meas-
ure for different filtering approaches.

Table 1 lists the abovemeasures for each of the considered
filtering approaches.The best performance (maximum of the
measure) is displayed in bold. As it can be seen the best
performing filtering is achievedwhen using the AMPCMand
PSS. Furthermore, we notice that for all measures, AMPCM
and PSS outperform the NAF and (P-M) filters. The perfor-
mance of the smoothing algorithms proposed in this paper
is remarkable in discriminating a true edge from image noise
(see Figure 4). We also notice the improved performance of
the probabilistic curvaturemotion algorithms as compared to
the standard diffusion algorithms. Table 2 gives the number
of iterations to reach the optimal scale 𝑡opt as defined in (40).

The absolute difference between the mean of the filtered
sinograms and the noise-free one is another indication of
the behavior and stability of the filtering methods. The mean
results of the filtered realizations by the PSS and AMPCM
filters are close to the ideal image, as shown in Figure 5.
Comparing the mean results between the AMPCM and PSS
with the other methods clearly demonstrates the effect of the
sharpening/enhancing term which yields a better enhanced
edges. On the other hand, P-M keeps edges unsmoothed,
which is appearing as sharper edges in Figure 5. Figure 5
shows more noise remained, represented as larger values in
the absolute difference images of P-M andNAF. Furthermore,
using AMPCM and PSS, the absolute difference approaches
zero (black image), indicating that the noise has been effec-
tively and adaptively reduced from the noisy sinograms.

The heavy noise is clearly eliminated without destroying
the texture (curves) by the probabilistic curvature motion
filter. From the above and other various examples, we have
observed that the proposed algorithm has ability to eliminate
the Poisson noise. No stair-casing has been observed, nor
severe blurring is introduced. Figure 4(c) shows that P-M
filter performs well for relatively low levels of noise, while
it results in poor quality of images for high noise levels.
However, Perona’s operator does not work well when applied
to very noisy images because the noise introduces important
oscillations of the gradient.

4.2. PET Reconstruction Evaluation. In this section, we use
the smoothed sinograms, 𝑢

𝑡
, for PET reconstruction via the

OSEM algorithm.The reconstructed PET image is denoted as

Table 2: Optimal number of Iterations.

AMPCM PSS P-M NAF
16 16 22 21

1.5 2 2.5 3 3.5 4 4.5 5 5.5
0.9

1

1.1

1.2

1.3

1.4

1.5

Variance

C
on

tr
as

t g
ai

n

OSEM-contrast recovery curve

AMPCM
PSS

Perona and Malik
CCM-Sapiro

×10−3

Figure 6: The contrast recovery curves for reconstructed PET by
OSEM.

𝑓PET(𝑡). For evaluating the effect of sinogram predenoising
on the PET reconstruction, we use the contrast recovery
method which aims to measure the quality of 𝑓PET(𝑡) by
measuring the contrast recovery of the interesting objects
(ROIs) in the image.The contrast recovery is computed based
on the contrast gain. The latter measures how much the
ROIs (i.e., tumor) in the PET image are discriminated from
the background by sharp edges and on the variance of the
contrast gain for different realizations. Further, the contrast
gain evaluates the stability of the applied algorithm. The
contrast recovery curve is estimated using the set of regions
of interest that were identified by a medical professional.This
curve is widely used in the literature for evaluating the quality
of the reconstructed PET images [26].

In Figure 3(c), there are 3 white spots that represent
tumors. We calculate the contrast gain CG

𝑖
for each real-

ization 𝑓𝑖PET, 𝑖 ∈ [1,𝑁] (𝑁 = 100 denotes the number
of realizations), and its overall variance 𝜎2CG. Let 𝑅 =
{𝑟
1
, 𝑟
2
, . . . , 𝑟no} (no = 3 in our case) be the set of identified

ROIs, and let 𝐵 be a representative background tissue area
then

CG
𝑖
(𝑡) =

1

no
∑
𝑟∈𝑅

[
1

Card (𝑟)
∑
𝑝∈𝑟

𝑓(𝑖)PET (𝑝, 𝑡) − 𝐶bkg] ,

𝜎2CG (𝑡) =
1

𝑁

𝑁

∑
𝑖=1

(CG
𝑖
(𝑡) − CG) ,

(44)

where 𝑝 denotes a pixel, 𝑡 the scale number, and CG the
contrast mean, CG = (1/𝑁)∑

𝑁

𝑗=1
CG
𝑗
(𝑡)2. 𝐶bkg represent



12 Journal of Applied Mathematics

(Var-image (noisy PET))

(a) Reconstructed after AMPCM (b) Variance image of (a).

(c) Mean results of the filtered reconstruction (d) Difference between (c) and noise-free image

Figure 7: Evaluation of the PET reconstruction using enhanced sinograms.

the mean intensities inside background, defined as 𝐶bkg =

(1/Card(𝐵))∑
𝑝∈𝐵

𝑓(𝑖)PET(𝑝, 𝑡).
Plotting the contrast gain in function of the variance given

the smoothness parameter, which is in this work, the scale
parameter 𝑡 yields the contrast recovery curve [26].

In order to perform, under the same conditions, the
comparison of the contrast curves of the different diffusion
scheme, one should identify the scales, 𝑡, emanating from
different diffusion schemes, having similar information con-
tent. For this, we use the scale synchronization proposed by
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Niessen et al. [27], being a Shannon-Wiener entropy used to
compare nonlinear scale-space filters:

R [𝑓PET (𝑡)] ≜
𝜎2 (𝑓PET (0)) − 𝜎2 (𝑓PET (𝑡))

𝜎2 (𝑓PET (0)) − 𝜎2 (M (𝑓PET))
, (45)

where M represents the averaging operator that maps an
image 𝑓PET onto a constant image, where each pixel equals
the average feature vector.

The contrast gain and the variance were computed for 6
scales, for each filtering methods, with similar information
content, selected based on Niessen et al. [27] approach.
Figure 6 shows the contrast recovery curves for the con-
sidered dif-fusion schemes AMPCM, PSS, P-M, and CCM-
Sapiro [17]. The best quality PET reconstruction is situated
in the upper, that is, high contrast gain, left, that is, high
stability, area of the plot. The figure shows that AMPCM has
better contrast recovery of the interesting objects (ROIs) in
the reconstructed PET images.

Figure 7 illustrates the reconstructed PET starting from
the enhanced sinogram, by the AMPCM, along with the
variance images of the reconstructed PET, the mean of
the reconstructed PET images, and the absolute difference
between the mean of the filtered PET and the noise-free
image. We immediately notice that the background seems
much flatter when adopting the OSEM reconstruction.

Experiments results show that combining the probabilis-
tic diffusivity function with the curvature motion diffusion
produces a powerful nonlinear filtering method that is
appropriate for the unique characteristics of the PET images.
The AMPCM filter preserves the boundaries of the curvy
shape features and wisely smooths the regions of interest as
well as the other regions. Figure 7 demonstrates that the edge
enhancement around image data is significantly improved.
The effect of edge strengthening is evenmore pronounced for
weaker edges in PET images or in image areas affected by a
high level of noise.

5. Conclusions

Adaptive probabilistic curvature motion filter (AMPCM)
for enhancing PET images is developed and discussed in
this work. The filter is applied on the 2D sinogram pre-
reconstruction. For considering the special characteristics of
the sinogram data, a Chi-square is used as a marginal prior
for noise-free sinogram gradient in the diffusivity function.

The qualitative evaluation results results show that,
among other diffusivity functions, the probabilistic adap-
tive function seems more effective in smoothing all the
homogenous regions that contain high level of noise. Further,
AMPCM retain in an accurate way the location of the edges
that defines the shape of the represented structures in the
sinogram. It preserves the boundaries of the curvy shape
features and wisely smooths the regions of interest as well as
the other regions. The application of the proposed diffusion
scheme results in well-smoothed images and preserves the
edges. It gains the advantages of the curvature motion
diffusion and the shock filter. Further, it deals better with the

problem of poor and discontinuous edges which are common
in PET sinograms.

Applied as a preprocessing step before PET reconstruc-
tion, we demonstrated via qualitative measures (the contrast
curve, the variance, and the mean images) that the adaptive
probabilistic diffusion function has a great capability and
stability to detect and enhance the important features in the
reconstructed PET image, whichmake it a reliable and practi-
cal approach as it has no free parameters to be optimized. All
parameters are image based and are automatically estimated
and proved to give the best results.
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Diffuse optical tomogrpahy (DOT) is to find optical coefficients of tissue using near infrared light. DOT as an inverse problem is
described and the studies about unique determination of optical coefficients are summarized. If a priori information of the optical
coefficient is known, DOT is reformulated to find a perturbation of the optical coefficients inverting the Born expansion which is an
infinite series expansion with respect to the perturbation and the a priori information. Numerical methods for DOT are explained
as methods inverting first- or second-order Born approximation or the Born expansion itself.

1. Introduction

DOT is to findoptical coefficients of tissue using near infrared
light. DOT is known to be of low cost, portable, nonionized,
and nonmagnetized. And DOT has higher temporal reso-
lution and more functional information than conventional
structural medical imaging modalities such as magnetic
resonance imaging (MRI) and computerized tomography
(CT). For the comparison to other functional imaging
modalities such as functional MRI (fMRI), photon emission
tomography (PET), and electroencephalogram (EEG), see [1].
DOT is used in the area of breast imaging [2–4], functional
neuroimaging [5, 6], brain computer interface (BCI) [7, 8],
and the study about seizure [9, 10], newborn infants [11, 12],
osteoarthritis [13], and rat brain [14, 15].

In this paper, DOT is explained as an inverse problem
with respect to a forward problem formulated as an elliptic
partial differential equation. Propagation of light in biolog-
ical tissues is usually described by diffusion approximation
equation in the frequency domain, the simplest but nontrivial
approximation of the Boltzmann equation, as follows:

−∇ ⋅ (𝜅∇Φ) + (𝜇

𝑎
+

𝑖𝜔

𝑐

)Φ = 𝑞 in Ω,
(1a)

Φ + 2𝑎] ⋅ (𝜅∇Φ) = 0 on 𝜕Ω, (1b)

where ] is an outer unit normal vector,Φ is a photon density
distribution, 𝜅 = 1/3(𝜇

𝑎
+ 𝜇

󸀠

𝑠
) is an diffusion coefficient,

𝜇

𝑎
is an absorption coefficient, 𝜇󸀠

𝑠
is a reduced scattering

coefficient, and 𝑎 is a reflection coefficient.
If 𝜕𝜅/𝜕] = 0 on 𝜕Ω, by setting Ψ = √𝜅Φ and 𝑘 =

√

Δ√𝜅/√𝜅 + 𝜇

𝑎
/𝜅 + 𝑖(𝜔/𝑐𝜅) with 𝐼𝑚(𝑘) ≥ 0, we have

−ΔΨ + 𝑘

2
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𝑞

√𝜅

in Ω, (2a)

Ψ + 2𝑎] ⋅ (𝜅∇Ψ) = 0 on 𝜕Ω. (2b)

If 𝑘 is constant and 𝑞(⋅)/√𝜅 = 𝛿(⋅, 𝑟
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Ψ (𝑟) = 𝑅 (𝑟, 𝑟

𝑠
) =

𝑒

𝑖𝑘|𝑟−𝑟
𝑠
|

4𝜋

󵄨

󵄨

󵄨

󵄨

𝑟 − 𝑟

𝑠

󵄨

󵄨

󵄨

󵄨

.
(3)

DOT is to find the optical coefficients 𝜇
𝑎
and/or 𝜇󸀠

𝑠
from

the measurement information Φ

𝑖,𝑗
which is the value of the

solution of (1a) and (1b) at 𝑟
𝑖
∈ 𝜕Ω when 𝑞(𝑟) = 𝛿(𝑟, 𝑟

𝑗
), 𝑟

𝑗
∈

𝜕Ω.The 𝑟
𝑖
and 𝑟
𝑗
are usually called source and detector point,

respectively.
In Section 2, the unique determination of the optical

coefficients is discussed and many known results are sum-
marized for the uniqueness questions. In Section 3, DOT is
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reformulated as to find perturbation of the optical coefficient
inverting the Born expansion.The errors of the Born approx-
imation in the Lebesgue and Sobolev norms are given. In
Section 4, numerical methods of DOT are mainly described
as themethods inverting the first-, second-, and higher-order
Born approximation and Born expansion itself.

2. Uniqueness

The research about unique determination of the optical coef-
ficients in DOT is rare except [16], but it is a very important
issue for DOT as an inverse problem. The determinaiton of
optical coefficients (𝜇

𝑎
, 𝜇

𝑠
) in (1a) and (1b) is equivalent to the

determination of 𝑘 in (2a) and (2b) when 𝜔 ̸= 0.
When 𝜇

𝑎
, 𝜅, ∇𝜅 have upper and lower bound and 𝑞 is

contained in 𝐻

−1

(Ω) or a Dirac delta function, (1a) and (1b)
have a unique solution Φ ∈ 𝐻

1

(Ω) and (2a) and (2b) have a
unique solution Ψ ∈ 𝐻

1

(Ω) [17, 18].
Boundary value problem (1a) and (1b) with 𝑞(𝑟) = 𝛿(𝑟, 𝑟

𝑠
)

is equivalent to boundary value problem with (1a) for 𝑞 = 0

and nonzero Robin boundary condition replacing (1b). This
argument can be proved using the function𝐻 in [19]. There-
fore, DOT is redescribed as to find the optical coefficients
from the Robin-to-Dirichlet map defined as a map from
𝐻

−1/2

(𝜕Ω) to𝐻1/2(𝜕Ω). Using unique solvability of (1a) with
theDirichlet orNeumann boundary condition replacing (1b),
the Robin-to-Dirichletmap is equivalent to theNeumann-to-
Dirichlet map and to the Dirichlet-to-Neumann map. Since
𝐼𝑚(𝑘) > 0 for 𝜔 ̸= 0, 𝑘 is not a Dirichlet eigenvalue of
(2a). Therefore, knowing the Dirichlet-to-Neumann map is
also equivalent to knowing farfield map in inverse scattering
problem [20, 21].

Using above results and many known results for inverse
scattering problem, we summarized the uniqueness and
nonuniqueness results as follows.

Case 1 (𝜅 = 1, 𝜇

𝑎
= 1 + (𝑚 − 1)𝜒

𝐷
, 𝑚 ̸= 1). The cases for

positive constant𝑚 can be understood as special cases of Case
2. The limiting cases 𝑚 = ∞ and 𝑚 = 0 could be considered
as (1a) inΩ\𝐷with the Robin boundary condition (1b) on 𝜕Ω
and the boundary condition on 𝜕𝐷 asΦ = 0 (sound-soft case)
and 𝜕Φ/𝜕] = 0 (sound-hard case) on 𝜕𝐷. The uniqueness
for sound-soft and sound-hard obstacle 𝐷 is considered in
[20, 22].

Case 2 (𝜅 = 1, 𝜇

𝑎
= 1 + (𝑚(𝑥) − 1)𝜒

𝐷
, where 𝑚(𝑥) ̸= 1 on

𝜕𝐷). This case is called “inverse transmission problem” and
the uniqueness is solved in [20].

Case 3 (𝜅 = 1, 𝜇

𝑎
= 𝜇

𝑎
(𝑥)). In [16], nonuniqueness of 𝜇

𝑎
(𝑥)

is shown by assuming that refractive index is not determined
or we use only continuous wave light source. However, if
refractive index is known and 𝜔 ̸= 0, unique determination
of the optical coefficient is possible. This nonuniqueness is
proved by using [23].

Case 4 (𝜅 = 𝐼

𝑛
+ (𝐾(𝑥) − 𝐼

𝑛
)𝜒

𝐷
, 𝜇

𝑎
= 1 + (𝑚(𝑥) − 1)𝜒

𝐷
).

Here, 𝐾(𝑥) is a unknown positive-definite matrix function
such that 𝐾(𝑥) ̸= 𝐼

𝑛
on 𝜕𝐷 and 𝑚(𝑥) is a positive function

such that 𝑚(𝑥) ̸= 1 on 𝜕𝐷. The uniqueness of 𝐷 is solved in
[21, 24–28] and the nonuniqueness of𝐾(𝑥) is reported in [24,
29, 30]. Therefore, although the domain of nonhomogenity
𝐷 can be uniquely determined by infinite measurements,
the nonhomogeneous anisotropic diffusion coefficient 𝐾(𝑥)
cannot be determined uniquely. Similar results are known for
the nonuniqueness and illusion for anisotropic nonhomoge-
neous electric conductivity [24, 31].

3. Born Approximation

Suppose that we know a priori information 𝑥

0

= (𝜅

0

, 𝜇

0

𝑎
)

about the optical coefficients 𝑥 = (𝜅, 𝜇

𝑎
) to find. Then, DOT

is redescribed as to find the perturbation 𝛿𝑥 = 𝑥 − 𝑥

0

=
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𝑎
).
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0 be the solutions of (1a) and (1b) for 𝑥 and
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0, respectively.When 𝑞(𝑟) = 𝛿(𝑟, 𝑟

𝑠
),Φ andΦ0 are the Robin
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0, respectively.𝑅(⋅, 𝑟
𝑠
) is expanded as the Born expansion, an

infinite series, with respect to 𝑅0(⋅, 𝑟
𝑠
) and 𝛿𝑥 as follows:
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where
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It is proved that the 𝑛th order term in the above Born
expansion (4) is the 𝑛th order Frechet derivative divided by
𝑛! [18]. The bounds for the operatorsR

1
andR

2
are given in

the Sobolev, Lebesque, and weighted Sobolev spaces norms
[18].The estimate for the Lebesque space norms forR

1
is also

given in [32]. Therefore, there exist positive constants 𝐶
1
and
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2
such that
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for 𝑝 ≥ 1. The detailed estimate for the coefficients 𝐶
1
, 𝐶

2
in

special cases is given in [18, 32].
If
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holds, then the error of the 𝑚th order Born approximation
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using the estimates (6a) and (6b).
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4. Numerical Methods

Numerical methods for DOT are explained in terms of solv-
ing the Born approximation given in Section 3. Other numer-
ical methods not categorized as inverting Born approxima-
tion are commented in the final section.

4.1. Linearized Methods. Linearized DOT to find 𝛿𝑥 by
solving the first-order Born approximation is studied by
many researchers in the initial stage of DOT. Although this
method lacks exact recovery in most cases, it is used still
frequently when faster real-time computing is needed and
very good a priori information is given. In this method,
the discretized problem is an algebraic equation and it
is essential to use efficient matrix solver. In the Jacobian
matrix, the number of rows is the number of measurements
and the number of columns is the number of elements
to be determined. In most cases, the number of elements
is larger than the number of measurements in order to
obtain higher resolution image.Therefore, the algebraic equa-
tion is usually an underdetermined system. Efficient matrix
solvers including arithmetic reconstruction technique (ART),
simultaneous arithmetic reconstruction technique (SART),
simultaneous iterative reconstruction technique (SIRT), and
the Krylov space methods are studied [33, 34]. Since the
linearized problems also have ill-posed property of DOT,
there are many researches about regularization methods
including the Tikhonov regularization. The dependence on
the discretization error due to ill posedness of the linearized
method is reported in [35].

4.2. Nonlinear Methods. Nonlinear method is to find 𝛿𝑥

by solving the Born expansion [36]. This method is usu-
ally formulated as optimization problem and is solved by
the Newton-type method including Levenberg-Marquardt
method [37, 38]. A few softwares based on nonlinear method
with finite element forward solver with corresponding refer-
ences are as follows:

(i) TOAST (Time-Resolved Optical Absorption and
Scattering Tomography) [39],

(ii) NIRFAST (Near InfraRed Florescence and Spectral
Tomography) [40, 41],

(iii) PMI (Photon Migration Imaging) Toolbox [42].

Nonlinear method needs heavy computation due to large
iteration numbers. To reduce the heavy computation, there
are studies about efficient numerical techniques such as
multigrid, domain decomposition [43], and adaptive [44]
method.

4.3. Inverse Born Approximation of Order Higher Than Two.
Thismethod is to find 𝛿𝑥 by solving second- and higher-order
Born approximation. In fact, solving the Born approximation
of order higher than two is implicit but can be approximated
by explicit inverse Born approximation. Formal inverse of the
Born approximation is called inverse Born approximation.
The first-order inverse Born approximation corresponds to

linearized DOT and inverse Born expansion itself corre-
sponds to (nonlinear) DOT. Higher-order methods improve
the order of convergence for lower-order methods. The error
of the inverse Born approximation is given and analyzed in
terms of the Lebesgue space norms when 𝛿𝜅 = 0 [45] and in
terms of the Sobolev space norms for the second order [46].

4.4. Other Methods. The solution of (1a) and (1b) is usually
solved by finite element method [36]. Another approach
for the forward problem is to compute directly the Robin
function using the Fourier-Laplace transform [47–50]. The
disadvantage of this method is that it depends on the special
geometry of the region of interest and the inverse Fourier-
Laplace transfrom is known to be severely ill posed.

Equations (1a) and (1b) could be replaced by probabilistic
approach in the Monte Carlo method [51]. The method takes
much more time than finite element method and highly
depends on random number generator. The comparison of
finite element method and the Monte Carlo method is done
by many papers including [52].

The diffusion approximation (1a) and (1b) is the first-
order approximation of radiative transfer equation. There
are studies about DOT based on radiative transfer equation
[53, 54] and its 𝑛th order approximation [55].

5. Conclusion

Unique determination of DOT is surveyed. The study about
nonuniqueness for anisotropic diffusion coefficients and for
unknown refractive index is also surveyed. The perturbation
of photon density with respect to the perturbed optical
coefficient is expanded using the Born expansion and the
error analysis removing higher-order terms is given. The
numerical methods for DOT are described by inverting first-,
second-, and higher-order Born approximation, and the Born
expansion itself is reviewed.
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Corticomuscular activity modeling based on multiple data sets such as electroencephalography (EEG) and electromyography
(EMG) signals provides a useful tool for understanding human motor control systems. In this paper, we propose modeling
corticomuscular activity by combining partial least squares (PLS) and canonical correlation analysis (CCA).The proposed method
takes advantage of both PLS and CCA to ensure that the extracted components are maximally correlated across two data sets
and meanwhile can well explain the information within each data set. This complementary combination generalizes the statistical
assumptions beyond both PLS and CCA methods. Simulations were performed to illustrate the performance of the proposed
method.We also applied the proposedmethod to concurrent EEG and EMG data collected in a Parkinson’s disease (PD) study.The
results reveal several highly correlated temporal patterns between EEG and EMG signals and indicate meaningful corresponding
spatial activation patterns. In PD subjects, enhanced connections between occipital region and other regions are noted, which is
consistent with previous medical knowledge. The proposed framework is a promising technique for performing multisubject and
bimodal data analysis.

1. Introduction

Corticomuscular activity modeling is important for assessing
functional interactions in the motor control system, that is,
studying simultaneous cortical and muscular activities dur-
ing a sustained isometric muscle contraction. Traditionally,
the most commonmethod to assess the interactions between
motor-related brain areas and the muscles is magnitude-
squared coherence (MSC), which is a normalized measure
of correlation between two waveforms or signals in the
frequency domain. For instance, in monkeys, coherent oscil-
lations in the 20–30Hz band could be detected between
cortical local field potentials and the rectified electromyo-
graphy (EMG) from contralateral hand muscles that were
modulated during different phases of a precision grip task [1].
In humans, similar findings were discovered in the beta-band
corticomuscular coherence between magnetoencephalogra-
phy (MEG) [2] and electroencephalography (EEG) [3] from
the primary motor cortex during isometric contractions.

Although MSC has been popular in studying cortico-
muscular coupling, it suffers from several limitations. First,
addressing the intersubject variability challenge to make a
robust group inference is not straightforward with MSC
because the exact frequency of maximum coupling may be
inconsistent across subjects. Second, MSC emphasizes the
role of individual locus in the brain in driving the motor
system, while motor activity is known to be more distributed
[4]. In fact, recent work has suggested that interactions
between brain regions correspond more closely to ongoing
EMG than activity at discrete sites [5–7]. Moreover, when the
brain activity is measured by EEG, applying MSC directly
to raw EEG and EMG signals normally yields a very low
coherence value, because only a small fraction of ongoing
EEG activity is related to the motor control [8]. This implies
that extensive statistical testing is required to determine
whether the EEG/EMG coherence is statistically significant.

Recently, several data-driven multivariate methods have
been developed for analyzing biological data, and they seem
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to be appropriate for modeling corticomuscular activity
because these methods explore dependency relationships
between data sets. These methods include multiple linear
regression, principal component regression, partial least
squares (PLS), and canonical correlation analysis (CCA)
[9]. Among these methods, the latent-variable- (LV-) based
approaches, such as PLS and CCA, play a dominating role,
probably due to the fact that the extracted LVs could help the
biological interpretations of the results.

PLS, first developed for process monitoring in chemical
industry, exploits the covariation between predictor variables
and response variables and finds a new set of latent compo-
nents that maximally relate to them [10]. An advantage of
PLS is that PLS can handle high-dimensional and collinear
data, which is often the case in real-world biological appli-
cations. PLS and its variants have been investigated in many
medical applications, such as assessing the spatial patterns
of brain activity in functional magnetic resonance imaging
(fMRI) data associated with behavioural measures [11] and
the common temporal components between EEG and fMRI
signals [12]. In addition to the ability of handling high-
dimensional and collinear data, PLS is sufficiently flexible that
it can be extended to perform group level analysis and to
accommodate multiway data [5].

CCA is commonly used to seek a pair of linear trans-
formations between two sets of variables, such that the data
are maximally correlated in the transformed space. Generally
CCA is not as popular as PLS in practical applications [13].
This is probably because real-world data are usually high
dimensional and collinear, and thus applying CCA directly
to the raw data can be ill-conditioned. However, with some
appropriate preprocessing strategies, CCA has been shown to
be quite useful in many medical applications. For instance,
in [14], Clercq et al. successfully removed muscle artifacts
from a real ictal EEG recording without altering the recorded
underlying ictal activity. In [15], Gumus et al. found that there
were significant correlations at expected places, indicating a
palindromic behavior surrounding the viral integration site.
CCA can be extended to accommodate multiple data sets
simultaneously [16].

Although PLS and CCA have been investigated in many
medical applications, to the best of our knowledge no report
has profoundly explored their underlying differences, com-
pared their characteristic performances, and combined their
advantages to overcome their drawbacks. For corticomuscu-
lar activity modeling, as we will elaborate more in Section 2,
both PLS and CCA have their advantages and disadvantages,
but perhaps more importantly, these two methods can be
considered complementary. In this paper, we propose com-
bining PLS and CCA to improve the performance of the
joint LV extraction, and the proposed method is denoted
as PLS + CCA. More specifically, the proposed PLS + CCA
has a two-step modeling strategy: we first adopt PLS to
obtain LVs across two data sets and then perform CCA on
the extracted LVs. In the first step, PLS is performed for
preliminary LV preparation. The aim of this step is to extract
LVs which can most explain its own data set and meanwhile
are well correlated with the LVs in the other data set. Besides,
this step can also prevent the ill-conditioned problem when

applying CCA directly to the raw data. In the second step,
CCA is applied to the extracted LVs by PLS to construct the
LVs by maximizing the correlation coefficients. With these
two steps, it is ensured that the extracted components are
maximally correlated across two data sets andmeanwhile can
well explain the information within individual data sets.

Wewill evaluate the performance of the proposedmethod
on both synthetic data and real-world data. We first illustrate
its performance using simulations, and we then apply the
method to concurrent EEG and EMG data collected from
patients with Parkinson’s disease (PD) and age-matched
normal subjects when they perform a dynamic, visually
guided tracking task. We note highly correlated temporal
patterns between EEG and EMG signals and meaningful
spatial activation patterns. While the proposed method is
intentionally proposed for corticomuscular coupling analysis,
it can also be applied to analyze other types of concurrent
signals, including, but not limited to, fMRI, photoplethys-
mograph (PPG), electrocardiography (ECG), and kinematic
data.

2. Materials and Methods

2.1. Methods. In this section, we first analyze the properties
of PLS and CCA and demonstrate their complementarity.
Based on this observation, we then propose combining the
two approaches to have the PLS + CCA method. The two
zero-mean data sets are stored in two matrices, the predictor
matrixX(𝑁×𝑝) and the response matrix Y(𝑁×𝑞), where𝑁
means the number of observations and 𝑝 and 𝑞 indicate the
numbers of variables in corresponding matrices.

2.1.1. Partial Least Squares. PLS exploits the covariation
between predictor variables and response variables and tries
to find a new set of LVs that maximally relate to them [13]. In
otherwords, the covariance between the extracted LVs should
be maximized as

max
w
1
,w
2

(w𝑇
1

X𝑇Yw
2

)
2

,

s.t. w𝑇
𝑖

w
𝑖

= 1, 𝑖 = 1, 2,

(1)

where w
𝑖

’s (𝑖 = 1, 2) are the weight vectors. A typical PLS
can be implemented by the classical NIPALS algorithm [10].
Also, an alternative calculation way is to perform eigenvalue-
eigenvector decomposition [17]. Therefore, the maximum of
(1) is achieved by havingw

1

andw
2

as the largest eigenvectors
of the matrices X𝑇YY𝑇X and Y𝑇XX𝑇Y, respectively. To
obtain subsequent weights, the algorithm is repeated with
deflatedX andYmatrices.The detailed calculation procedure
can be found in the appendix.

The number of components to be extracted is a very
important parameter of a PLS model. Although it is possible
to extract as many PLS components as the rank of the data
matrixX, not all of them are generally used.Themain reasons
for this are the following: the measured data are never noise-
free and some small components only describe noise, and
it is common to ignore small components because of the
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problems of collinearity. Therefore, appropriate measures are
needed to determine when to stop. Typically, the number
of components needed to describe the data matrices is
determined based on the amount of variation remained in the
residual data [10].

2.1.2. Canonical Correlation Analysis. Different from PLS,
CCA is to find linear combinations of both X and Y variables
which havemaximum correlation coefficient with each other.
This leads to the same objective function but different
constraints compared with (1):

max
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𝑇
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X𝑇Yk
2

)
2

s.t. k
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2
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where k
𝑖

’s (𝑖 = 1, 2) are the weight vectors.
The solutions to this problem are the largest eigenvec-

tors of the matrices (X𝑇X)
−1X𝑇Y(Y𝑇Y)

−1Y𝑇X and
(Y𝑇Y)

−1Y𝑇X(X𝑇X)
−1X𝑇Y, respectively. The subsequent

weights are the eigenvectors of the same matrix in the order
of decreasing eigenvalues. The predictor LVs UX can be
calculated directly from the original X matrix as UX = XV

1

,
the columns of which are uncorrelated with each other. The
detailed derivation is shown in the appendix. However, the
solution depends heavily on whether or not the covariance
matrix X𝑇X is invertible. In practice, it is possible to have
rank (X𝑇X) < 𝑝 so that the invertibility cannot be satisfied,
and directly applying eigenvalue decomposition in the
raw data space may lead to the ill-conditioned problem.
Therefore, some appropriate preprocessing strategies are
needed in practice before applying CCA.

2.1.3. The Combined PLS + CCA Method. Based on the
discussion above, we can see that the fundamental difference
between PLS and CCA is that PLS maximizes the covariance
while CCA maximizes the correlation. The objective of PLS
is to construct LVs which could most explain their own data
set andmeanwhile are well correlated with the corresponding
LVs in the other set. In other words, the first priority of PLS
is to find the LVs which can explain significant proportion
of variance in each data set, and the second priority is
to find the LVs with relatively high correlation coefficients
between the two data sets. In contrast, the only objective
of CCA in the construction of LVs is to maximize their
correlation coefficients with the LVs in another data set.
From this point of view, the LVs extracted by PLS are
able to represent major information for individual data sets
while the ones extracted by CCA may be trivial (e.g., noises
with similar patterns) even if their correlation coefficient is
maximum. This is an advantage of PLS over CCA. Besides,
PLS can handle high-dimensional and collinear data, which
is often the case in real-world biological applications, while
applying CCAdirectly to the raw datamay be ill-conditioned.
However, we should note that our goal is to find the
relationships between two data sets, not just to explore the
information within individual data sets. It is possible that a
higher covariance merely results from the larger variance of

LVs, which may not necessarily imply strong correlations.
To overcome this, CCA is a powerful tool to ensure that
the extracted LVs have similar patterns across the data
sets.

For corticomuscular activity modeling, the coupling
relationships between EEG and EMG signals are what to
be explored. In practice, EEG and EMG signals can be
contaminated by other types of signals and are never noise-
free. In addition, the signals from adjacent channels generally
are similar, which leads to collinear data. By employing
PLS, we can deal with the collinear EEG/EMG data sets
and extract significant LVs, but it cannot guarantee that the
corresponding LVs are highly correlated with each other.
With using CCA, we can extract highly correlated LVs
from EEG and EMG signals, but it cannot ensure that
such LVs are nontrivial and we may face the ill-conditioned
problem.

For corticomuscular coupling analysis, both PLS and
CCA have their advantages and disadvantages, but perhaps
most importantly, these two methods can be considered
complementary. It is natural for us to think of combining PLS
and CCA to form a two-step modeling strategy. In the first
step, PLS is performed for preliminary LV preparation. The
aim of this step is to extract LVs which can most explain its
own data set and meanwhile are well correlated to the LVs
in another data set. In this case, the trivial and irrelevant
information across data sets could be removed. Besides,
this step can also prevent the ill-conditioned problem when
applying CCA directly to the raw data. In the second step,
CCA is applied to the prepared LVs by PLS to construct the
LVs by maximizing the correlation coefficients. After these
two steps, it is ensured that the extracted components are
maximally correlated across data sets and meanwhile can
well explain the information within each individual data set.
The details of the proposed PLS + CCA method are given in
the appendix, and the specific implementation procedure is
shown in Algorithm 1.

2.2. Synthetic Data. In this simulation, we applied the pro-
posed method to synthetic data and also reported the results
of the PLS and CCA approaches for comparison. As an
illustrative example, without loss of generality, four sources
were generated and analyzed for each data set.

The following four source signals were considered for the
data set X:

s
11

= 1.5 sin (0.025 (𝑡 + 63)) sin (0.2𝑡) ,

s
12

= 1.5 sin (0.025𝑡) ,

s
13

= sign (sin (0.3𝑡) + 3 cos (0.1𝑡)) ,
s
14

= uniformly distributed noise in the range [−1.5, 1.5] ,

(3)

where 𝑡 denotes the time index vector, valued from 1 to 1000,
and s
1𝑖

’s (𝑖 = 1, 2, 3, 4) represent four simulated sources, as
shown in Figure 1(a). Note that here s

1𝑖

’s are column vectors.
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Input: two data sets X (with size𝑁 × 𝑝) and Y (with size𝑁 × 𝑞)
Output: corresponding LVs matrices UX, and UY

The First Step:
(1) Solve the eigen decomposition problems:

(X𝑇YY𝑇X)w
1

= 𝜆
1

w
1

and (Y𝑇XX𝑇Y)w
2

= 𝜆
2

w
2

.
(2) Determine 𝑅

1

and 𝑅
2

, the numbers of LVs extracted, corresponding to
the above two problems by the ratio of explained variance.

(3) Determine the final number of LVs: 𝑅 = min(𝑅
1

, 𝑅
2

).
(4) Set 𝑐𝑜𝑢𝑛𝑡 = 𝑅.
(5) Initialize both LVs matrices to be empty, that is, TX = [] and TY = [].
(6) while 𝑐𝑜𝑢𝑛𝑡 > 0 do
(7) Set w

1

and w
2

to be the largest eigenvectors of the matrices
X𝑇YY𝑇X and Y𝑇XX𝑇Y, respectively.

(8) Calculate the LVs as tX = Xw
1

and tY = Yw
2

.
(9) Set TX = [TX tX] and TY = [TY tY].
(10) Deflate X by subtracting the effects of the LV tX from the data space:

X = X − tX(t𝑇XtX)
−1t𝑇XX.

(11) Deflate Y by subtracting the effects of the LV tY from the data space:
Y = Y − tY(t𝑇YtY)

−1t𝑇YY.
(12) Let 𝑐𝑜𝑢𝑛𝑡 = 𝑐𝑜𝑢𝑛𝑡 − 1.
(13) end while
The Second Step:
(14) Solve the following eigen decomposition problems:

[(T𝑇XTX)
−1T𝑇XTY(T𝑇YTY)

−1T𝑇YTX] k1 = 𝜂
1

k
1

and

[(T𝑇YTY)
−1T𝑇YTX(T𝑇XTX)

−1T𝑇XTY] k2 = 𝜂
2

k
2

.
(15) Set V

1

and V
2

to be the 𝑅 associated eigenvectors, respectively.
(16)The recovered LVs UX and UX can be calculated by

UX = TXV1 and UY = TYV2.

Algorithm 1: The combined PLS + CCA method.

Table 1: The correlation coefficients between the corresponding
source pairs of X and Y.

s11 and s21 s12 and s22 s13 and s23 s14 and s24
CC∗ 0.3655 0.8787 0.5520 1.00
∗Here CC stands for correlation coefficient between two source signals.

Also, four source signals were considered for the data set
Y:

s
21

= 1.5 sin (0.025 (𝑡 + 69)) sin (0.2 (𝑡 + 6)) ,

s
22

= 1.5 sin (0.025 (𝑡 + 20)) ,

s
23

= sign (sin (0.3 (𝑡 + 7)) + 3 cos (0.1 (𝑡 + 7))) ,

s
24

= uniformly distributed noise (the same as s
14

) ,

(4)

where the notations are similarly defined.The four simulated
sources are shown in Figure 1(b).

Two mixed data sets X and Y were generated as follows
with each row denoting one observation in their respective
data space:

X = S
1

⋅ A, Y = S
2

⋅ B, (5)

where S
1

= [s
11

s
12

s
13

s
14

] and S
2

= [s
21

s
22

s
23

s
24

] with

A =
[
[
[

[

0.76 −0.65 0.77 0.83 0.82

0.49 0.25 0.12 0.22 −0.17

0.28 −0.21 0.11 0.19 −0.11

0.07 0.06 −0.08 0.07 −0.04

]
]
]

]

,

B =
[
[
[

[

0.73 −0.82 0.91 −0.79 0.88

0.42 −0.27 0.17 −0.20 −0.30

0.27 0.26 −0.18 0.17 −0.24

0.08 −0.01 0.01 0.09 −0.01

]
]
]

]

.

(6)

The patterns of the corresponding sources are similar
across the two data sets, representing common information.
However, from (3) and (4), we can see that there are some
time-shifts between corresponding source pairs, and their
correlation coefficients are given in Table 1. The first pair
sources have the lowest CC, but in the mixed data sets
we intentionally assign the highest weights to this pair of
sources, as shown in the mixing matrices A and B. This pair
can represent the major information within individual data
sets but cannot reflect too much the coupling relationships
between the two sets. The second and third pairs have
relatively high CCs and moderate weights in the mixed data
sets. These two pairs generally not only contain the major
information within individual data sets, but also represent
the coupling relationships across data sets. The fourth pair
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Figure 1: The four simulated source signals: (a) for X; (b) for Y.
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Figure 2: The squeezing task: the subject was instructed to follow
the target bar (yellow) as closely as possible, and the green bar shows
the force exerted by the subject.

sources have the highest CC, but we assign the smallest
weights. Although this pair sources have the highest CC,
they do not represent significant information due to the
small weights. Generally, they could be regarded as trivial
information. Moreover, different white Gaussian noise with
10% power was added to each source in each data space.

2.3. Real Data. In many medical applications, the results
of analyzing one subject’s data cannot be generalized to
the population level because of the intersubject variability
concern.Therefore, it is necessary to recruit a proper number
of subjects to perform a group analysis in many medical
applications. For modeling the corticomuscular activity, we
apply the proposed method to concurrent EEG and EMG
signals collected from normal subjects and patients with PD
during a motor task.

2.3.1. Data Collection. Thestudywas approved by theUniver-
sity of British Columbia Ethics Board, and all subjects gave
written, informed consent prior to participating. Nine PD
patients (mean age: 66 yrs) were recruited from the Pacific

Parkinson’s Research Centre at the University of British
Columbia (Vancouver, Canada). They all displayed mild to
moderate levels of PD severity (stages 1-2 on the Hoehn and
Yahr scale) and were being treated with L-dopa medication
(mean daily dose of 720mg). All PD subjects were assessed
after a minimum of 12-hour withdrawal of L-dopa medi-
cation, and their motor symptoms were assessed using the
Unified Parkinson’s Disease Rating Scale (UPDRS), resulting
in a mean score of 23. In addition, eight age-matched healthy
subjects were recruited as controls. During the experiment,
subjects seated 2m away from a large computer screen. The
visual target was displayed on the screen as a vertical yellow
bar oscillating in height at 0.4Hz. Subjects were asked to
squeeze a pressure-responsive bulb with their right hand.
The visual feedback representing the force output of the
subject was displayed as a vertical green bar superimposed
on the target bar as shown in Figure 2. Applying greater
pressure to the bulb increased the height of the green bar,
and releasing pressure from the bulb decreased the height of
the green bar. Subjects were instructed to make the height
of the green bar match the height of target bar as closely as
possible. Each squeezing period lasted for 15 seconds and was
followed by a 15-second rest period. The squeezing task was
performed twice. The force required was up to 10% of each
subject’s maximum voluntary contraction (MVC), which was
measured at the beginning of each recording session.

The EEG data were collected using an EEG cap (Quick-
Cap, Compumedics, TX, USA) with 19 electrodes based
on the International 10–20 system. The EEG data were
sampled at 1000Hz using SynAmps2 amplifiers (NeuroScan,
Compumedics, TX, USA). A surface electrode on the tip of
the nose was used as ground. Ocularmovement artifacts were
measured using surface electrodes placed above and below
the eyes (Xltek, ON, Canada). Data were later processed
by a band-pass filter (1 to 70Hz) offline and downsampled
to 250Hz. Artifacts associated with eye blinks and muscu-
lar activities were removed using the Automated Artifact
Removal in the EEGLAB Matlab Toolbox [18]. The raw time
sequences of the electrodes were then normalized to have
zero-mean and unit variance. For subsequent analysis, data
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collected during the squeezing periods were concatenated in
time into a single matrix for each individual subject. Data
from the rest periods were excluded from the analysis.

The EMG signals were recorded using self-adhesive,
silver, silver-chloride pellet surface electrodes with 7mm
diameter. A bipolar montage was used with a fixed inter-
electrode distance of 30mm. The surface EMG signals were
simultaneously collected together with the EEG signals and
were amplified and sampled at 1000Hz. To be consistent with
the EEG preprocessing, the EMG signals were downsampled
offline to 250Hz, and only the squeezing periods were used
for subsequent analysis.

2.3.2. Feature Extraction. In most existing studies, the anal-
ysis for corticomuscular coupling is performed directly on
the raw EEG and EMG data. This typically yields quite small
correlation values. Nonetheless, with appropriate preprocess-
ing steps, highly correlated EEG and EMG feature(s) can be
extracted from the raw signals. In this work, we examine the
coupling relationships between time-varying EEG features
and amplitudes of the EMG signals, constituting X

𝑏

and Y
𝑏

,
respectively, for each subject 𝑏 (for 𝑏 = 1, 2, . . . , 𝐵). We have a
total of 𝐵 subjects (𝐵 = 17 in this study). To achieve a group
analysis, all subjects’ data sets are concatenated together as

X = [X
1

,X
2

, . . . ,X
𝐵

] , ∀𝑏 = 1, 2, . . . , 𝐵,

Y = [Y
1

,Y
2

, . . . ,Y
𝐵

] , ∀𝑏 = 1, 2, . . . , 𝐵

(7)

with the assumption that all subjects share common group
patterns in the temporal dimension [19].

EEG Features. Pairwise Pearson’s correlations [20] are consid-
ered in this study. Pearson’s correlation measures the depen-
dency between a pair of EEG signals e∗ = (𝑒

∗

1

, 𝑒
∗

2

, . . . , 𝑒
∗

𝑛

) and
e∘ = (𝑒

∘

1

, 𝑒
∘

2

, . . . , 𝑒
∘

𝑛

) in the time domain as follows:

𝛾
𝑒

∗
𝑒

∘ =
∑
𝑛

𝑖 =1

(𝑒
∗

𝑖

− 𝑒
∗

) (𝑒
∘

𝑖

− 𝑒
∘

)

√∑
𝑛

𝑖 =1

(𝑒
∗

𝑖

− 𝑒
∗

)
2

∑
𝑛

𝑖 =1

(𝑒
∘

𝑖

− 𝑒
∘

)
2

, (8)

where 𝑒
∗ and 𝑒

∘ are the sample means of e∗ and e∘. In this
work, we calculate the time-varying pairwise correlations
between EEG channels, using a Hamming window with
length 300 and with a 95% overlap. Therefore, the raw EEG
information can be represented by a two-dimensional matrix
with size 𝑁 × 𝑀, where the rows correspond to the samples
at different time points and the columns correspond to
the features, that is, pairwise correlations between the EEG
channels.

EMG Features. An individual EMG channel signal can be
considered as a zero-mean, band-limited and wide-sense sta-
tionary stochastic process modulated by the EMG amplitude,
which represents the overall muscle activity of individual
underlying muscle fibers [21]. While different techniques
have been proposed for accurate amplitude estimation, in this
study, we employ the root-mean-square (RMS) approach to

calculate the EMG amplitude of short-duration EMG signals
e = (𝑒

1

, 𝑒
2

, . . . , 𝑒
𝑛

):

𝑒rms = √
1

𝑛
(𝑒
2

1

+ 𝑒
2

2

+ ⋅ ⋅ ⋅ + 𝑒2
𝑛

). (9)

A moving window with length 𝑛 = 300 and a 95% overlap
is applied here, the same as in the EEG feature calculation,
to ensure that the obtained EEG and EMG features are
temporally aligned and matched.

In the above setting, for each subject 𝑏 (for 𝑏 =

1, 2, . . . , 𝐵), X
𝑏

and Y
𝑏

represent the time-varying feature
matrices of EEG and EMG, respectively. The length of
the time sequences here is 480 associated with the 300-
length moving window and a 95% overlap. For the EEG
correlation feature, since we have 19 EEG channels based
on the International 10–20 system, thus there are a total of
𝐶
19

2

= 171 correlation connections. Therefore, X
𝑏

is of size
480 × 171. For the EMG amplitude feature, since there are
three surface EMG channels, Y

𝑏

is of size 480 × 3.

2.3.3. Significance Assessment. To determine the statisti-
cal significance levels of the extracted LVs, we employ a
nonparametric permutation test [22] in which the temporal
order of EEG features X

𝑏

is uniformly permuted for all sub-
jects while keeping the EMG featuresY

𝑏

intact. Two hundred
random permutations are generated. The proposed PLS +
CCA method described in Section 2.1.3 is applied to each
of these permutations. The correlation coefficients among
the extracted temporal patterns from permuted EEG features
and unchanged EMG features are then calculated to form
an empirical null distribution. The 𝑝 value of the original
EEG/EMG correlation coefficient is then computed from the
null distribution as the proportion of sampled permutations
whose correlation coefficients are greater than or equal to
the original correlation coefficient. The components with 𝑝

value being less than 0.05 are considered to be statistically
significant, denoted as LVEEG and LVEMG, bothwith size (𝑁×

𝐾), where𝐾means the number of significant components.

2.3.4. Spatial Pattern Extraction. Our goal is to investigate
the differences in spatial patterns of EEG channels between
the normal and PD patient groups when the subjects perform
a motor task. After the identification of significant temporal
patterns, we can regress the EEG-related components LVEEG
back onto the EEG features X

𝑏

(for 𝑏 = 1, 2, . . . , 𝐵) for each
subject as follows:

p
𝑏𝑘

= √
1

lk𝑇
𝑘

X
𝑏

X𝑇
𝑏

lk
𝑘

X𝑇
𝑏

lk
𝑘

, 𝑘 = 1, 2, . . . , 𝐾, (10)

where lk
𝑘

is the 𝑘th column of LVEEG and p
𝑏𝑘

is the spatial
pattern of the 𝑘th component for subject 𝑏. In addition, we
also want to determine which EEG features in the spatial
patterns have significant contributions to the corresponding
temporal patterns. This is done by identifying EEG features
that have weights statistically different from zero. To deter-
mine the group-level spatial pattern, for each significant
component, we apply a two-tailed 𝑡-test to each element of
the spatial patterns of all subjects with each group.
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Figure 3: (a) The LVs estimated in X using PLS. (b) The LVs estimated in Y using PLS.
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Figure 4: (a) The LVs estimated in X using CCA. (b) The LVs estimated in Y using CCA.

2

1

0

5

−5

0 200 400 600 800 1000

0

−2

LV
1

0 200 400 600 800 1000

0 200 400 600 800 1000

0

−1

LV
2

LV
3

(a)

2

1

0

5

−5

0 200 400 600 800 1000

0

−2

LV
1

0 200 400 600 800 1000

0 200 400 600 800 1000

0

−1

LV
2

LV
3

(b)

Figure 5: (a) The LVs estimated in X using the proposed PLS + CCA. (b) The LVs estimated in Y using the proposed PLS + CCA.
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Figure 6: The two components from the proposed PLS + CCA method when using the EEG correlation features and the EMG amplitude
features as data sets. Top panel: temporal patterns of the EEG (blue, solid) and the EMG (red, dashed). The oscillation of the target bar is
also shown (black, solid). Bottom panel: EEG spatial patterns of normal subjects (left) and PD subjects (right). The connections reflect the
respective spatial patterns in the two groups. CC means correlation coefficient.

3. Results and Discussion

3.1. The Synthetic Data Case. The extracted components
using PLS, CCA, and the proposed PLS + CCA methods
are shown in Figures 3, 4, and 5, respectively. The LVs
extracted by PLS are automatically ordered in terms of their
significance. To some extent, the LVs successfully reflect
the corresponding relationships of the underlying sources
between X and Y. However, compared with the original
sources, the extracted LVs are distorted, suggesting that a
higher covariance may merely result from the larger variance
of LVs, which may not necessarily imply strong correlations.
We can see that CCA can recover the original sources
accurately in both data spaces, and the LVs are ordered strictly
according to their correlation coefficients, but it completely
ignores the influence of the variance and thus the extracted
LVs may only reflect trivial information of the data sets (e.g.,
the 1st LV). For instance, although the first pair of LVs has
the highest correlation coefficient, they do not contain major
information of the data spaces. In practice, such LVs generally
represent the noises with similar patterns simultaneously
coupled into the two data modalities. When jointly modeling
the data sets, they should be removed. We also note that PLS
only extracts three LVs since they are sufficient to describe the
data sets. These LVs do not include the first pair recovered by
CCA due to their triviality. The above observations motivate
us to employ the proposed PLS + CCA method.

When the proposed method is employed, the dominant
sources which make significant contributions to both data
spaces are first identified and ordered in terms of covariance.
At the same time, trivial information is removed. Then,

within the extracted major information, sources that are
highly correlated are accurately recovered with the focus on
correlation. In this case, it is ensured that the extracted LVs
are maximally correlated across two data sets and meanwhile
can well explain the information within each individual data
set.

3.2. The Real Data Case. In this case study, we applied the
proposed method for corticomuscular activity modeling to
the EEG and EMG features generated using the procedure
described in Section 2.3.2 from 8 normal and 9 PD subjects
simultaneously. The joint modeling of normal and PD data
allows the identification of common temporal patterns across
the groups. Meanwhile, the spatial patterns may be different
across subjects, fromwhichwe could identify specific correla-
tion connections that are differently recruited by PD subjects
during the motor task.

Using the permutation test, two components were
deemed significant (𝑃 ≤ 0.05) (Figure 6). Note that in the
figure only connections whose weights are statistically differ-
ent from zero are shown. The results based on real data from
PDandnormal subjects performing a dynamicmotor task are
promising. In the past, most EEG/EMGcoupling studies have
compared EEG activity at a specific locus (e.g., sensorimotor
cortex contralateral to the hand performing the task) with the
EMG during sustained contractions. However, we found that
in normal subjects, correlations between the contralateral
sensorimotor cortex and other regions are closely associated
with ongoing EMG features during dynamic motor tasks
(Figure 6). It is likely that the dynamic nature of the task
might require the recruitment of additional regions such as



Journal of Applied Mathematics 9

frontal regions for motor selection [23], contralateral (i.e.,
ipsilateral to hand movement) sensorimotor cortex for fine
modulatory control [24], and occipital regions for posterror
adaptations [25].

From Figure 6, we note similar connections between
the PD and control groups, especially when comparing
connections associated with each component, but we also
note significant differences when comparing the PD and
control groups. It is noted that PD subjects have increased
connectivity between the frontal regions and central and
sensorimotor cortices, compared with control subjects. This
may reflect the enhanced effort required by PD subjects for
motor task switching [26], a problem common in this PD
population [27]. In addition, PD subjects have a significant
connection between the left sensorimotor and occipital
regions, that is, not present in the control group. We note
that the connections with occipital regions are prominent in
PD subjects. Compared to normal subjects, the PD subjects
heavily rely on visual cues for the initiation [28] and ongoing
control ofmovement [29].Moreover, the increased intra- and
interhemispheric connections observed in the PD subjects
are consistent with the findings in previousMEG studies [30].

4. Conclusions

In this paper, we combine the advantages of PLS andCCAand
propose a PLS + CCA method to improve the performance
of the joint LV extraction. We illustrate the performances of
the proposed approach using both synthetic data and real-life
data. For corticomuscular activity modeling, we note highly
correlated temporal patterns between EEG and EMG signals
and meaningful spatial activation patterns. The proposed
method is a promising analysis technique for multisubject
and bimodal data sets, including, but not limited to, fMRI,
PPG, ECG, and kinematic data.

Appendix

A. The Derivation of the Algorithm

In this appendix, we show how to mathematically derive the
solution of the proposed PLS + CCA method.

A.1.The First Step: PLS. The cost function of PLS is as follows
(the same as (1) in Section 2.1.1):

max
w
1
,w
2

(w𝑇
1

X𝑇Yw
2

)
2

s.t. w𝑇
𝑖

w
𝑖

= 1, 𝑖 = 1, 2,

(A.1)

where w
𝑖

’s (𝑖 = 1, 2) are the weight vectors.
By employing the method of Lagrange multipliers, we

rewrite the initial cost function as

L (w
𝑖

, 𝜆
𝑖

) = (w𝑇
1

X𝑇Yw
2

)
2

−

2

∑

𝑖 =1

𝜆
𝑖

(w𝑇
𝑖

w
𝑖

− 1) , (A.2)

where 𝜆
𝑖

’s are Lagrange multipliers.

Now we only present the detailed derivations regarding
w
1

since w
2

can be similarly derived. Taking the derivatives
of L(w

𝑖

, 𝜆
𝑖

) with respect to w
1

and 𝜆
1

and setting them to be
zero, we have

∇Lw
1

= 2
󵄨󵄨󵄨󵄨󵄨
w𝑇
1

X𝑇Yw
2

󵄨󵄨󵄨󵄨󵄨
X𝑇Yw

2

− 2𝜆
1

w
1

= 0, (A.3)

∇L
𝜆
1

= w𝑇
1

w
1

− 1 = 0. (A.4)

Left multiplying both sides of (A.3) by w𝑇
1

, we have

2 (w𝑇
1

X𝑇Yw
2

)
2

− 2𝜆
1

w𝑇
1

w
1

= 0. (A.5)

According to (A.4), 𝜆
1

can be calculated as

𝜆
1

= (w𝑇
1

X𝑇Yw
2

)
2

. (A.6)

Through the similar procedure, ∇Lw
2

and 𝜆
2

can be easily
derived as

∇Lw
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𝜆
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= (w𝑇
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X𝑇Yw
2

)
2

. (A.8)

Substituting (A.8) into (A.3) and (A.7), respectively, we have
the following two expressions:

√𝜆
2

X𝑇Yw
2

= 𝜆
1

w
1

, (A.9)

1

√𝜆
2

Y𝑇Xw
1

= w
2

. (A.10)

By substituting (A.10) into (A.9), we can formulate an
eigenvalue-eigenvector decomposition problem:

(X𝑇YY𝑇X)w
1

= 𝜆
1

w
1

. (A.11)

Similarly, we can have the formulation for w
2

as

(Y𝑇XX𝑇Y)w
2

= 𝜆
2

w
2

. (A.12)

The above solutions are straightforward. A practical issue
is to determine the number of LVs. In our study, we determine
the number 𝑅 by setting a threshold that corresponds to
the ratio of explained variance (e.g., 95%). Therefore, the
corresponding LVs in X and Y can be calculated by

TX = XW
1

, TY = YW
2

, (A.13)

where W
1

is composed of the first 𝑅 eigenvectors associated
with (A.11) and the columns of TX represent the 𝑅 compo-
nents extracted from X.W

2

and TY are similarly defined.
However, the collinearity problem may exist in the LVs

calculated through the above procedure since each data set is
used repetitively for each LV’s calculation. The extracted LVs
are not necessarily uncorrelated to each other. To effectively
implement the second step and avoid the ill-conditioned
problem, we need to address this uncorrelatedness concern
and thus we design a deflation procedure: before extracting
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the second common LV in each data space, X and Y are
deflated by their corresponding first LVs as follows:

X = X − tX(t
𝑇

XtX)
−1

t𝑇XX,

Y = Y − tY(t
𝑇

YtY)
−1

t𝑇YY.

(A.14)

Then the above procedure will be repeated for the further
extraction of commonLVs. In this way, the following newLVs
are uncorrelated to the previous ones.

The purpose of this step is to extract LVs which can
most explain the individual data sets and meanwhile are well
correlated to the LVs in another data set. With this step,
trivial and irrelevant information across data sets could be
removed. However, a higher covariance may merely result
from the larger variance of LVs, which may not necessarily
imply strong correlations. To address this concern, the 2nd
step will help further refine the results.

A.2.The Second Step: CCA. Based on the extracted LVs in the
first step, the objective function of CCA can be constructed as
follows:

max
k
1
,k
2

(k
𝑇

1

T𝑇XTYk2)
2

s.t. k
𝑇

1

T𝑇XTXk1 = 1, k
𝑇

2

T𝑇YTYk2 = 1,

(A.15)

where k
𝑖

’s (𝑖 = 1, 2) are the weight vectors.
By employing the method of Lagrange multipliers, we

rewrite the initial objective function as

L (k
𝑖

, 𝜂
𝑖

) = (k
𝑇

1

T𝑇XTYk2)
2

− 𝜂
1

(k
𝑇

1

T𝑇XTXk1 − 1)

− 𝜂
2

(k
𝑇

2

T𝑇YTYk2 − 1) ,

(A.16)

where 𝜂
𝑖

’s are Lagrange multipliers. Similar to the derivation
in the first step, we can obtain the following eigenvalue-
eigenvector decomposition problem:

[(T𝑇XTX)
−1

T𝑇XTY(T
𝑇

YTY)
−1

T𝑇YTX] k1 = 𝜂
1

k
1

. (A.17)

Similarly, for k
2

, we have

[(T𝑇YTY)
−1

T𝑇YTX(T
𝑇

XTX)
−1

T𝑇XTY] k2 = 𝜂
2

k
2

. (A.18)

The solutions to this problem are the𝑅 largest eigenvectors of
the corresponding matrices. The recovered LVs UX and UX
can be calculated directly from the matrices TX and TY by

UX = TXV1, UY = TYV2, (A.19)

where V
1

is composed of the 𝑅 eigenvectors associated with
(A.17) and the columns of UX represent the 𝑅 components
extracted from TX. V2 and UY are similarly defined.

After these two steps, it is ensured that the extracted
componentsUX andUY are maximally correlated across data
sets and meanwhile can well explain the information within
each individual data set.
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Osteoporosis is a disease inwhich low bonemass andmicroarchitectural deterioration of bone tissue lead to enhanced bone fragility
and susceptibility to fracture. Due to the complex anatomy of the vertebral body, the difficulties associated with obtaining bones for
in vitro experiments, and the limitations on the control of the experimental parameters, finite element models have been developed
to analyze the biomechanical properties of the vertebral body. We developed finite element models of the L2 vertebra, which
consisted of the endplates, the trabecular lattice, and the cortical shell, for three age-related grades (young, middle, and old) of
osteoporosis. The compressive strength and stiffness results revealed that we had developed a valid model that was consistent with
the results of previous experimental and computational studies. The von-Mises stress, which was assumed to predict the risk of a
burst fracture, was also determined for the three age groups. The results showed that the von-Mises stress was substantially higher
under relatively high levels of compressive loading, which suggests that patients with osteoporosis should be cautious of fracture
risk even during daily activities.

1. Introduction

Osteoporosis is a disease in which low bone mass and
microarchitectural deterioration of bone tissue lead to
enhanced bone fragility and susceptibility to fracture [1].
Osteoporosis is one of the most common health problems
affecting both men and women [2], and it is becoming
increasingly prevalent in our aging society [3]. The degree
of osteoporosis is categorized with the T-score, which is the
number of standard deviations above or below that of an aver-
age young adult: normal, above −1.0; osteopenia, above −2.5
and below−1.0; osteoporosis, below−2.5; severe osteoporosis,
the presence of one or more fragility facture [4, 5]. About 1.5
million fractures due to osteoporosis are reported annually in
the United States, including over 700,000 vertebral fractures
[6]. Spine fractures in particular result in a high mortality
rate: survival is 72% in the first year and only 28% after five
years [7].

The human spine is composed of 24 spinal bones, called
vertebrae, which are stacked on top of one another to create
the spinal column. The spinal column is the body’s main
upright support and the vertebral bone is the primary com-
pressive load-bearing structure in the spine [8].The vertebral
bone is composed of a porous internal trabecular bone core
surrounded by a thin shell of cortex. In osteoporosis, bone
mineral density is reduced even in the outer layer, so the
cortex is thinner than in normal bones. The structure of
osteoporotic trabecular bone is similar to a lattice, while
normal bone is plate like.

Due to the complex anatomy of the vertebral body, the
difficulties associated with obtaining bones for in vitro exper-
iments, and the limitations on the control of the experimental
parameters, finite element models have been developed to
analyze the biomechanical properties of the vertebral body
[9, 10]. Large-scale voxel-based models have been used to
investigate the mechanics of bone, where the trabecular
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Figure 1: Lattice models with a trabecular structure before and after perturbation for three age groups—young (<50 years); middle (50
through 75 years); and old (>75 years).

structure is modeled as a solid body with material proper-
ties obtained from previous experiments [11–13]. While the
trabecular structure from three-dimensionalmicrocomputed
tomography (𝜇CT) was directly implemented into a finite
element using the cubic voxel meshes, an additional surface
smoothing process was necessary [14]. Lattice models have
been proposed to simulate osteoporotic and normal bone
through variation in trabecular thickness, spacing, or random
material removal [15–19]. Since these studies only addressed
the trabecular structure within a small region, a more recent
study combined the lattice beam element model of the
trabecular core with a thin layer of shell elements for the
cortical part to make a whole vertebra model, and analyzed
compressive strength, compressive stiffness, and tissue-level
strain [20]. In this paper, finite element models of normal
and various grades of osteoporotic lumbar vertebrae that
incorporate the microscaled trabecular structure of lattice
models and the cortical area of shell elementswere developed.
The models were validated using the results of previous
experimental and computational studies. The von-Mises
stress was analyzed to predict the risk of the burst fracture
in osteoporotic bones of various grades.

2. Materials and Methods

Trabecular bone was modeled as a lattice composed of many
struts, including both vertical (longitudinal) and horizontal
(transverse) struts. A single strut model was developed with
two quadratic beam elements. By combining single strut
models, we were able to develop a cylindrical core lattice
model for different age groups: young (<50 years), middle
(50 through 75 years), and old (>75 years) (Figure 1(a)).
The geometries, which were the horizontal and vertical
thicknesses (𝑑ℎ and 𝑑V) and the horizontal and vertical
lengths (𝑙ℎ and 𝑙V) of each strut, are provided for each age
group in Table 1 based on [20, 21].The elastic-perfectly plastic
material properties of the struts were based on those of a
previous study [20], in which Young’s modulus was 8.0GPa,
the Poisson ratio was 0.3, and the yield stress was 64MPa.
In order to mimic the irregular structure of the trabecular

Table 1: Geometries for trabecular lattice models for the young,
middle, and old groups.

Thickness of a single
strut (mm)

Length of a single strut
(mm)

Horizontal
(𝑑ℎ)

Vertical
(𝑑V)

Horizontal
(𝑙ℎ)

Vertical
(𝑙V)

Young 0.150 0.208 0.674 0.633

Middle 0.116 0.187 0.861 1.100

Old 0.107 0.201 1.145 1.668

struts, the latticemodels were perturbed by randomlymoving
vertex nodes with MATLAB (MathWorks Inc., MA, USA)
(Figure 1(b)) [20, 22]. The distance that each vertex node was
moved ranged between 0% and 30% of trabecular spacing
(horizontal length 𝑙ℎ and vertical length 𝑙V) according to a
Gaussian distribution.The Gaussian distribution N(𝜇, 𝜎)was
given based on the assumption that the mean 𝜇 = 0 and the
random values are between −3𝜎 and 3𝜎 with the probability
of 99.7%. Since the movement was constrained up to 30% of
trabecular spacing, the standard deviation 𝜎was supposed as
𝜎 = (1/3) × 0.3 × ((𝑙ℎ + 𝑙V)/2) = (𝑙ℎ + 𝑙V)/20. The direction was
also randomly generated to prevent the model from having a
bias in one direction.

The trabecular bone lattice models were validated by
comparing the results for compressive strength 𝐹𝑐, which
is the capacity of a material or structure to withstand axial
forces, with those in the experimental study [21]. The geome-
try of the specimen (cylindrical shape, height of 10mm, and
radius of 3.5mm), the boundary conditions, and the loading
conditions were selected based on the experimental study
[21]. The bottom nodes of the lattice model were fixed, and
the total reaction force on all fixed bottom nodes in the axial
directionwas calculated until the top nodes were displaced by
2mm downward in the axial direction, which was regarded
as being compressed, using the ABAQUS/Standard (Dassault
Systèmes, RI, USA). The maximum value of reaction force
during the compression was considered as the compressive
strength 𝐹𝑐.
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Figure 2: Vertebral body models in the three age groups—young
(<50 years); middle (50 through 75 years); and old (>75 years).

Computed tomography (CT) images of a 1mm slice were
obtained from L2 of a male subject with a height of 175 cm.
Based on these CT images, two endplates and the cortical part
of the vertebra were developed (Figure 2).The elements of the
S4 type and the C3D8 type composed the cortical shell and
the solid endplates.The thickness of the endplateswas 0.5mm
for all age groups, while the thickness of the cortical shell
was 0.5mm for the young andmiddle groups and 0.2mm for
the old group based on the results of a previous study [20].
Thematerial properties of the endplates and the cortical shell
were also based on the results of a previous study [20], in
which Young’s modulus was 8.0GPa, the Poisson ratio was
0.3, and the yield stress was 64MPa.The trabecular latticewas
tied with the cortical shell and endplates by fixing the ends
of trabecular beam elements on the interfaces of the cortical
shell and endplate for all translational and rotational degrees
of freedom. In this case, the posterior element of the vertebra
was not considered because the whole vertebral body has too
many elements, and the posterior element plays only a minor
role during compressive loading [23].

The nodes on the bottom side of the bottom endplate
were fixed, and the nodes of the top side of the upper
endplate were controlled by a reference point. The reference
point was displaced 6mm downward in the axial direction.
The compressive strength 𝐹𝑐 which was the maximum total
reaction force on the bottom endplate in the axial direction
during the compression up to 6mm was calculated using
the ABAQUS/Standard (Dassault Systèmes, RI, USA). In
addition, the compressive stiffness 𝑘𝑐 was estimated as 𝑘𝑐 =
𝐹𝑐/𝛿𝑐, where 𝛿𝑐 was the corresponding axial downward
displacement of the reference point at the maximum com-
pressive strength.The compressive strength𝐹𝑐 and stiffness 𝑘𝑐
were compared with those from previous experimental and
computational studies [20, 24–27] for the validation of the
model.

The von-Mises stress in the trabecular lattice was then
analyzed for the three age groups (young, middle, and old)
under compressive loading. Since the intradiscal pressure
in upright standing is around 0.5MPa and the intradiscal
pressure is 1.5 times the average pressure over the end-
plate, the pressure on the endplate was considered to be
0.3MPa in upright standing [28–30]. Thus, the compres-
sive loading on the entire upper endplate was assumed to
be 0.15MPa, 0.3MPa, 0.45MPa, 0.6MPa, and 0.75MPa.
The ABAQUS/Explicit (Dassault Systèmes, RI, USA) was
used for the analysis.

3. Results and Discussion

In order to mimic a realistic trabecular structure, we devel-
oped a model in which perturbation of the vertex nodes
occurred within 30% of the trabecular spacing according to
a Gaussian distribution N(𝜇, 𝜎), where the mean 𝜇was 0mm
in all age groups and the standard deviation 𝜎 was 0.065mm
in the young group, 0.098mm in the middle group, and
0.141mm in the old group. We used a perturbation factor of
30% because Silva and Gibson showed that cross-sectional
images of amodel with 30% perturbation were comparable to
those of specimens [21]. The mechanical anisotropy was also
included in the model due to the discrepancy in horizontal
and vertical geometries of trabecular lattice models. There-
fore, we developed a model with an anisotropic irregular
trabecular structure, and this model can be regarded as
clinically relevant.

The compressive strength 𝐹𝑐 of the trabecular bone lattice
model was 1.74MPa for the middle group, while it was
1.35 ± 0.64MPa in [22]. For the whole-body model, the
compressive strength 𝐹𝑐 was 7.35 kN for the young group,
3.80 kN for the middle group, and 1.36 kN for the old group.
In a previous computational study with the same age classes,
the compressive strength was 5.74 kN for the young group,
4.06 kN for the middle group, and 1.25 kN for the old group
[20]. In experimental studies using normal vertebrae, the
compressive strengths have ranged from 0.9 to 15.9 kN (0.9 to
5.0 kN in [24], 1.5 to 4.5 kN in [25], 2.0 to 8.0 kN in [26], and
2.0 to 15.9 kN in [27]). In addition, the compressive stiffness
𝑘𝑐 was 5.6 kN/mm for the young group, 15.8 kN/mm for the
middle group, and 29.4 kN/mm for the old group, respec-
tively. In a previous computational study, the compressive
stiffness was 8.0 kN/mm for the young group, 18.7 kN/mm
for the middle group, and 29.4 kN/mm for the old group
[20]. These results indicate that the presented model could
be considered as being validated for the compression.

The highest von-Mises stresses occurred in the middle of
the trabecular region (Figure 3). The maximum stress was
strongly related to age: maximum values were about 50%
higher for the middle group than the young group and about
120% higher for the old group than the young age group (Fig-
ures 4 and 5). In addition, the maximum stress was greater
than 50% of the yield stress (64MPa) when compressive
loading exceeded 0.45MPa for middle group and 0.3MPa
for the old group; in contrast, the maximum stress did not
reach 50% of the yield stress even under 0.75MPa for the
young group. The 0.45MPa of compressive loading on the
endplate equates to about 0.7MPa of intradiscal pressure,
which is similar to that produced during daily activities, such
as standing while bent forward (1.10MPa), standing up from
a chair (1.10MPa), and lifting or holding a weight of 20 kg
(1.10–2.30MPa) [30]. These results suggest that osteoporosis
can affect the stress acting on the vertebra even during routine
daily activities.

The vertebra model that incorporates a realistic tra-
becular structure is advantageous because it permits the
simulation of in vivo specimens for the study of osteoporosis.
Themicroscale trabecular structure represented by tiny struts
would provide the mechanism that the strut deformation or
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Figure 3: Cross-sectional view in the middle sagittal plane of the von-Mises stress distribution for the three age groups under 0.15MPa,
0.3MPa, 0.45MPa, 0.6MPa, and 0.75MPa of compressive loading.
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Figure 4: Maximum stress for the three age groups under 0.15MPa,
0.3MPa, 0.45MPa, 0.6MPa, and 0.75MPa of compressive loading.

buckling leads to the fracture in a whole vertebra. In addition,
various grades of osteoporosis can be incorporated into the
model by changing the spacing between the struts.

This study has some limitations. The validity of models
was indirectly confirmed by comparing the compressive
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Figure 5: Ratios of the maximum stress for the middle and
old groups relative to the young group under 0.15MPa, 0.3MPa,
0.45MPa, 0.6MPa, and 0.75MPa of compressive loading.

strength and compressive stiffness of the developed models
to those in the previous experimental and computational
studies.The full validation of themodel through experiments
with the same specimen fromwhich themodel was generated
can enhanced the confidence of this study. In addition, the
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generic lattice model was randomly perturbed, and the thick-
nesses of the endplates and the cortical shell were assumed
to be uniform for all age groups. Patient-specific information
on the microstructure and geometry of the bone using data
from CT scans would improve the accuracy and relevance
of the stress analysis. Finally, the quantitative relationship
between the von-Mises stress and the fracture risk was not
investigated. Mechanical tests that measure the stress and
failure strength of bone, as well as clinical observations that
accurately identify the region of the fracture site, would
improve the prediction of vertebral fracture in osteoporotic
patients.

4. Conclusions

Osteoporosis is a major contributor to the increased risk of
fracture with age due to low bonemass and structural change.
We developed finite elementmodels of the L2 vertebra, which
consisted of the endplates, the trabecular lattice, and the
cortical shell, for three age-related grades of osteoporosis.
The compressive strength and stiffness results revealed that
we had developed a valid model that was consistent with the
results of previous experimental and computational studies.
The von-Mises stress, which was assumed to predict the risk
of a burst fracture, was also determined for the three age
groups. The results showed that the von-Mises stress was
substantially higher under relatively high levels of compres-
sive loading, which suggests that patients with osteoporosis
should be cautious of fracture risk even during daily activities.
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In this study, we establish a quantitativemodel to define the stretching of brain tissue, especially in ventricularwalls, corpus callosum
(CC) and corticospinal (CS) fiber tracts, and to investigate the correlation between stretching and regional cerebral blood flow
(rCBF) before and after ventriculoperitoneal shunt operations. A nonlinear image registration method was used to calculate the
degree of displacement and stretching of axonal fiber tracts based on the medical images of six hydrocephalus patients. Also, the
rCBF data from the literature was analyzed and correlated with the strain level quantified in the present study. The results showed
substantial increased displacement and strain levels in the ventricular walls as well as in the CC and CS fiber tracts on admission.
Following shunt operations the displacement as well as the strain levels reduced substantially. A linear correlation was found to
exist between strain level and the rCBF. The reduction in postoperative strain levels correlated with the improvement of rCBF.
All patients improved clinically except for one patient due to existing dementia. These new quantitative data provide us with new
insight into the mechanical cascade of events due to tissue stretching, thereby provide us with more knowledge into understanding
of the role of brain tissue and axonal stretching in some of the hydrocephalus clinical symptoms.

1. Introduction

Hydrocephalus is the consequence of various causes such as
congenital malformations, subarachnoid hemorrhage, trau-
matic brain injury, and benign and malignant brain tumors.
Regardless of etiology the common denominator among
the patients is obstruction of cerebrospinal fluid interfering
with the brain tissue function. The symptoms and signs are
somewhat different depending on whether the patient is an
infant, is child, or receives the hydrocephalus in mature age.

The expansion of the ventricular system influences the
surrounding areas in the brain tissue in various intensities.
The clinical condition is usually defined as the Hakim triad
of symptoms including gait apraxia, cognitive disturbance,
and incontinence. Initially the white matter suffers more
than the grey matter with reversible changes following
shunt operation which reduces the expanding ventricles.

Depending on the age at which hydrocephalus develops
together with the magnitude of ventricular expansion, the
neuropathological pattern is different in severity.When long-
standing the mechanical distortion results in more advanced
neuropathological signs such as damage to the axons and
myelin. Also, when the cerebral arteries and capillaries are
substantially distorted, there is a potential of reduced regional
cerebral blood flow which may further interfere with the
clinical condition [1, 2].

Stretching/compression of the ventricular wall [3], the
corpus callosum (CC) [4, 5] and corticospinal (CS) [6,
7] fiber tracts in hydrocephalus patients has been widely
recognized in many previous research investigations. Also
an early hypothesis suggested that the compression and/or
deformation of the CS tracts due to enlargement of the
ventricles in hydrocephalus patient may contribute to the gait
disturbance [8]. However, there is a lack of study providing
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quantitative data of the axonal stretching level, and how the
mechanical stretching may influence the axonal functions
remains unclear until now. A quantitative data should also
provide us more insight to understand the involvement of
axonal fiber stretching in clinical symptoms.

Thus, the aim of the present study was

(i) to analyze the displacement and strain levels in
patients with hydrocephalus by using a numerical
simulation method focusing on the ventricular walls,
CC and CS fiber tracts before and after shunt opera-
tions and

(ii) to estimate the regional cerebral blood flow after
treatment and the correlation to the strain level after
the neurosurgical procedure.

2. Material and Methods

2.1. Medical Images. Medical images from computed tomog-
raphy (CT) and magnetic resonance (MR) imaging of the six
patients with hydrocephaluswere investigated retrospectively
before (Figure 2) and after (Figure 3) a ventriculoperitoneal
shunt operation. In this study, only the geometry of the brain
is of concern to the strain level quantification. Therefore,
both CT and Resonance MR Images are acceptable. This
study was approved by the local research ethical committee
of Karolinska University Hospital, Stockholm County.

2.2. Image Registration to Obtain Displacement Field. Image
registration aims at finding a displacement field between a
fixed image andmoving image to align both images as accurate
as possible [9]. A nonlinear registration method, the Diffeo-
morphic Demons (DD) algorithm [9] implemented in the
open-source software Slicer 3D, was used in this study which
has been used to quantify the displacement field occurred
during decompressive craniotomy in previous studies [10,
11]. The core components of the DD registration algorithm
including similarity measures and the regularization model
which will be presented.

Given a fixed image 𝐹(⋅) and a moving image 𝑀(⋅),
intensity-based image registration is posed as an optimization
problem that aims at finding a spatial mapping that will align
the moving image to the fixed image. The transformation
𝑠(⋅) : R𝐷 → R𝐷, 𝑝 󳨃→ 𝑠(𝑝) models the spatial mapping
of a particular point 𝑝 from the fixed image space to the
moving image space [12].The similarity criterion 𝐸sim(𝐹,𝑀∘
𝑠) measures the quality or the goodness of the matching of a
given transformation. In this study, binary images are used,
and the sum of the square difference (SSD) suffices for our
application as defined as

𝐸sim (𝐹,𝑀 ∘ 𝑠) =
1

2
‖𝐹 −𝑀 ∘ 𝑠‖

2

=
1

2Ω
𝑝

∑

𝑝∈Ω𝑝

󵄨󵄨󵄨󵄨𝐹 (𝑝) −𝑀(𝑠 (𝑝))
󵄨󵄨󵄨󵄨

2
,

(1)

where 𝑀 ∘ 𝑠 represents the morphed moving image, Ω
𝑝
is

the region of overlap between 𝐹 and𝑀∘ 𝑠. The problem now

becomes an optimization problem to find a transformation
𝑠 over a given space that minimizes the similarity energy
function 𝐸sim.

In order to end up with a global minimization of a
well-posed criterion, the similarity energy function in (1)
was modified by introducing an auxiliary variable (i.e.,
correspondence c) in the registration process [13]. The intro-
duction of this auxiliary variable 𝑐 decouples the complex
minimization into simple and efficient steps by alternating
optimization over 𝑐 and 𝑠. Considering a Gaussian noise on
the displacement field, the global energy then becomes [12]

𝐸 (𝑐, 𝑠) =
1

𝜎
2

𝑖

𝐸sim (𝐹,𝑀 ∘ 𝑠) +
1

𝜎2
𝑥

dist (𝑠, 𝑐)2

+
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𝜎
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𝑇

𝐸reg (𝑠) ,

(2)

where 𝜎
𝑖
accounts for the noise on the image intensity, 𝜎

𝑥

accounts for a spatial uncertainty of the correspondences,
and 𝜎

𝑇
controls the amount of regularization that is needed:

dist(𝑠, 𝑐) = ‖𝑐 − 𝑠‖ and 𝐸reg(𝑠) = ‖∇𝑠‖.
Themodel assumes that so-called “demons” at every voxel

from the fixed image are applying forces that push the voxels
of the moving image to match up with the fixed image.
The transformation 𝑠 is driven by a “demons force” derived
from the assumption of image intensity conservation [14].
The original demons algorithm has beenmodified and allows
retrieving small and large dense displacement field defined as
[15]

U (𝑝) =
𝐹 (𝑝) −𝑀(𝑠 (𝑝))

󵄩󵄩󵄩󵄩∇𝐹 (𝑝)
󵄩󵄩󵄩󵄩

2
+ 𝛼2(𝐹 (𝑝) −𝑀(𝑠 (𝑝)))

2
∇𝐹 (𝑝) , (3)

where U(𝑝) is the displacement at point 𝑝 defined in the
fixed image, 𝛼 is a positive homogenization factor. The
updated unconstrained dense displacement field is computed
based on an optical flow computation at each voxel at every
iteration. The resulting updated field is added to the global
deformation field, and the displacement field is regularized
by applying a Gaussian smoothing filter.

In order to solve the displacement field U, the global
energy defined in (2) needs to be minimized. This energy
function allows the whole optimization procedure to be
decoupled into two simple steps. The first step solves for the
correspondence 𝑐 by optimizing (1/𝜎2

𝑖
)𝐸sim + (1/𝜎

2

𝑥
)‖𝑠 − 𝑐‖

2

with respect to 𝑐 and with s given. The second step
solves for the regularization by optimizing (1/𝜎2

𝑥
)‖𝑠 − 𝑐‖

2
+

(1/𝜎
2

𝑇
)𝐸reg(𝑠) with respect to s and 𝑐 given [9].

The transformation 𝑠 in the original Demonsmethod [14]
is not constrained and does not provide diffeomorphic trans-
formations. A diffeomorphic extension to the demons frame-
work was proposed by adapting the optimization procedure
to a space of diffeomorphic transformations. It is performed
by using an intrinsic update step which computes the vector
field exponentials of the Lie group of diffeomorphims (see
[9, 12] for details).

2.3. Strain Level Quantification. From the diffeomorphic
Demons registration, the transformation s, corresponding
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to a displacement field U(X), is obtained from (3). The
displacement field is defined on every voxel in the fixed
image and morphs the fixed image to the moving image. The
strain tensor could then be calculated based on the theory
of continuum mechanics [16]. A Lagrangian reference frame
was assumed at the fixed image space:

𝑠 : x =X+U (X) . (4)

The displacement field U(X) = [𝑈
𝑋
, 𝑈
𝑌
, 𝑈
𝑍
] for each voxel,

obtained from the image registration, gives a reasonable
alignment to bring the fixed image at point𝑝with coordinates
X(𝑋, 𝑌, 𝑍) to its corresponding point in the moving image
at coordinates x(𝑥, 𝑦, 𝑧) [9]. The displacement gradient is
defined as [16]
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The deformation gradient is defined as

F = 𝑑x
𝑑X
=
𝑑 (X + U (X))
𝑑X

= I + 𝑑U
𝑑X
= I + grad (U) . (6)

The Lagrangian finite strain tensor E is defined as

E=1
2
(FTF−I) . (7)

The Lagrangian finite strain tensor, E, is a 3 × 3 symmetric
tensor representing the deformation of a point. Different
scalar indices that can be derived from the tensors, especially
the principal strainswhich represent themaximumandmini-
mumnormal strains experienced at a point, are characterized
by the tensor eigenvalues.

Strain level represents the deformation of brain tissue due
to the occurrence of a disease. In order to quantify the brain
tissue deformation, a dense displacement field representing
the brain tissue motion from healthy stage to hydrocephalus
stage is needed. For this, the main premise is the images
acquired at two distinct states: at healthy state and at diseased
state. Since the brain images of the patient under healthy state
were not available, we proposed a strategy to recover a healthy
brain for a specific patient by combing the information from
the diseased brain geometry together with the brain atlas by
a nonlinear image registration method [10].

The lateral ventricles and brain tissue were firstly manu-
ally segmented from the recovered healthy brain and hydro-
cephalic brain images. A rigid registration step was first used
to centre the images about the same point which were the
input volumes to nonlinear registration process. In principle,
the segmented healthy brain should be chosen as the fixed
image so as to capture the motion of brain tissue from
the healthy to hydrocephalic state. In this study, since the
registration performs better from healthy brain to the hydro-
cephalic brain image, we chose the hydrocephalic brain image

as the fixed image, and the obtained displacement field was
then inverted by an itkIterativeInverseDisplacementFieldIm-
ageFilter algorithm implemented in ITK (see the description
for the approach on ITK’s website http://www.itk.org). The
final obtained displacement for further processing is the
inverted displacement field defined on the recovered healthy
brain space which represents the structural brain change that
occurred from the healthy to hydrocephalus state.

From the obtained displacement field, a quantitative
description of the nerve tissue deformation that occurred
during hydrocephalus development can be derived in the
form of the finite Lagrange strain tensor [16, 17]. Different
scalar indices can be derived from the strain tensor, especially,
the 1st principal strain, defined as the maximum eigenvalue
of Lagrange strain tensor E, representing the maximum
stretching was used to describe the stretching of brain tissue.

2.4. Axonal Fiber Tract Extraction and Healthy Brain Shape
fromAtlas. Froma series of diffusionweighted (DW) images,
the effective diffusion tensor, D, can be estimated using the
relationship between the measured signal intensity at each
voxel and the applied magnetic field gradient sequence [18,
19]. The diffusion tensor is symmetric (i.e., 𝐷

𝑖𝑗
= 𝐷
𝑗𝑖
), and

thus it contains only six unique values. Given this, at least
six noncollinear diffusion gradient directions are required to
determine the diffusion tensor [20, 21].

Once the diffusion tensor D is determined, different
indices can be derived to provide information for each voxel
in the image.Thediffusion tensor is a real, symmetric second-
order tensor. Mathematically, this entails a linear rotation
of the diffusion tensor to diagonalize it thereby setting off-
diagonal elements to zero [22]:

D = [
[
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]

[e
1
e
1
e
3
]
𝑇
,

(8)

where 𝜆
1
, 𝜆
2
, and 𝜆

3
are eigenvalues (𝜆

1
> 𝜆
2
> 𝜆
3
), and

the corresponding eigenvectors are e
1
, e
2
, e
3
.The eigenvalues

of the diffusion tensor provide diffusion coefficients along
the orientations defined by its respective eigenvectors [22].
𝜆
1
represents the greatest diffusion value along a fiber axis,

denoted by the direction vector e
1
. 𝜆
2
, 𝜆
3
represent the

diffusion value along two axes perpendicular to e
1
. Because

D is symmetric and positive definite, its three eigenvectors
(principal coordinate directions) e

1
, e
2
, and e

3
are orthogonal

[23].
The Fractional Anisotropy (FA) is the most commonly

used anisotropy measure and is a normalized expression of
the tensor eigenvalues [24] according to

FA = √
3 ((𝜆
1
− 𝜆)
2

+ (𝜆
2
− 𝜆)
2

+ (𝜆
3
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2

)
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2
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2
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)

,
(9)

where 𝜆 is the mean of the eigenvalues of the diffusion tensor.
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Table 1: Summary of six hydrocephalic patients including age, clinical symptoms before treatment with a ventriculoperitoneal shunt
postoperative image performance and outcome evaluated in days after the operation.

Patient/age Clinical symptoms
Gait disturbance Cognitive deficit Incontinence Improved outcome/days after treatment

KP/45 Yes Yes No Yes/63
KA/47 Yes Yes No Yes/96
KB/72 Yes Yes Yes Yes/30
KF/70 No Yes Yes Yes/27
PN/57 No Yes No Yes/19
SB/71 Yes Yes No No/21

Once the fractional anisotropy (FA) and the preferred
diffusion direction have been created, it is possible to perform
fiber tracking or diffusion tensor tractography. Streamline
tractography is one of the methods for fiber tract estimation
[25, 26]. Streamline tractography uses the maximum orien-
tation described by the eigenvector e

1
associated with the

largest eigenvalue 𝜆
1
, as an estimate of local tract orientation.

It assumes that 𝜆
1
associated with the maximum eigenvector

is the main fiber direction.
In this study, whitematter fiber tracts were extracted from

ICBMDTI-81 atlas provided by the international consortium
for brainmapping (ICBM) [27].TheT2-weighted image from
the same dataset which represents an average adult brain
was used for recovery of a healthy brain as described in a
previous section. The atlas is based on probabilistic tensor
maps obtained from 81 normal adults ranging from 18 to
59 years of age. From the diffusion tensor imaging, the
Fractional Anisotropy (FA) could be calculated which is a
scalar value representing the anisotropic property.The color-
coded FA value calculated from the DTI tensor is displayed
in (Figure 1, left) where the color reflects the white matter
orientation (red (right-left), green (anterior-posterior), and
blue (superior-inferior)). The fiber tracts which pass through
the predefined region of interests (ROI) are CC and CS fiber
tracts. The corresponding sagittal and coronal sections of
the T2-weighted images from the same dataset are shown in
Figure 1 upper row on the right.

Streamline method [26, 28] was used to extract white
matter fiber tracts. The final extracted white matter tracts in
the whole brain contain the polylines with a corresponding
diffusion tensor at each fiber point (Figure 1, lower row: left
and middle), from which the CC and CS fiber tracts were
isolated (Figure 1, lower row: right). The obtained fiber tracts
from the atlas were then adapted to the patient brain by
applying the obtained displacement field which represent the
cranial structural shape difference between the patient and
atlas.This gave the fiber tracts for the recovered healthy brain
for a specific patient.

3. Results

3.1. Patient Information. The average age of the six patients
with hydrocephalus was calculated to 60 years. Clinical
symptoms among the six patients showed gait disturbances in
four cases and cognitive deficits in all patients while only two

had urinary incontinence (Table 1). Five patients improved
in their clinical symptoms, individually evaluated between 19
and 96 days after the shunt operation, while the sixth patient
did not probably due to the presence of dementia.

3.2. Strain Level at Ventricular Wall, CC and CS Fiber Tracts.
The increased strain levels in the six patients are presented for
preoperative (Figure 2) and postoperative stages (Figure 3).
Before and after the operation all patients had a substantial
dilatation of the lateral ventricles in various degrees although
in less degree after the treatment. The ventricular dilatation
caused increased strain levels not only in the ventricular
walls ranging from 99% to 333%, but also in the brain
tissue surrounding the ventricles in different degrees. As a
consequence, the increased strain levels found in the CC fiber
tracts ranged from58% to 139%and in theCSfiber tracts from
29% to 74% among the patients (Figure 7).

After the ventriculoperitoneal shunt had been installed,
the lateral ventricles decreased although not to an extent
as could be expected after such an operation. Thus, the
postoperative strain levels of the ventricular walls decreased
in all six patients ranging from 9% to 60% based on the
preoperative values (Figure 7).

In a similar way, although decreased after the shunt
operation, the strain levels in the CC and CS fiber tracts were
still on a surprisingly high level ranging from 9% to 56% for
CC fiber tracts and from 5% to 20% in the CS fiber tracts
(Figure 7). The strain level data showed normal distribution,
and therefore, a paired sample t-test was used to compare
the CC and CS fiber strain levels. The results were evaluated
by a 1-tailed t-test at 95% confidence level. It was found that
the strain levels in CC fiber tracts are significantly higher
than those of CS fiber tracts for both pre- (𝑃 < 0.05) and
postcraniotomy period (𝑃 < 0.05). This indicates a more
stretched scenario for the CC fiber tracts.

The trend was that those patients with the highest ven-
tricular dilatation and increased strain levels also showed the
highest strain levels in the CC and CS fiber tracts both before
and after treatment. A similar trend was found between CC
and CS fiber tracts. Also, since the CC fiber tracts are closer
to the expanded ventricles, it seems logical that the increased
strain levels are higher in these fibers compared to those
found in the CS fiber tracts which are anatomically located
further away from the ventricles.
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Figure 1: Upper row: color-coded FAmap calculated from the ICBMDTI-81 atlas (left). Sagittal and coronal sections of T2-weighted images
of the atlas (right). Lower row: extracted fiber tracts from the ICBM DTI-81 atlas in the whole brain. Rear view (left) and top view of the
extracted fiber tracts in the whole brain (middle). Note the isolated CC and CS tracts (right).
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Figure 2: Overview of the 6 patients at their preoperative stages. Each row from top to bottom represents the medical images used for
nonlinear image registration from which the strain level was quantified in the entire brain, and the calculated strain levels are illustrated at
coronal sections and the ventricular walls. At bottom the strain level at CS and CC fiber tracts is presented.

The individual follow-up time ranged from 19 to 96 days.
The increased strain levels should be expected to decrease
more in those patients with longer follow-up times compared
to those with a short follow-up time. However, there was no
such pattern found among the patients in this study.

The result is exemplified with one of the six patients
(patient PK) which is presented in more detail (Figure 4).
As defined previously, the dilatation of the lateral ventricles

causes distortion of most of the surrounding axonal fiber
tracts and where the CC and CS fiber tracts are addressed
here. Thus, during the hydrocephalus development the CS
fiber tracts were displaced outwards by the arrows represent-
ing the displacement vector obtained from image registration
(Figure 4, upper row).Themaximumdisplacement evaluated
was 10.7mm (Figure 4, upper row: left). The closer to the
lateral ventricles, the larger the displacement found in the CS
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Figure 3: Overview of the 6 patients at their postoperative stages. Each row from top to bottom represents the medical images used for
nonlinear image registration from which the strain level was quantified in the entire brain, and the calculated strain levels are illustrated at
coronal sections and the ventricular walls. At bottom the strain level at CS and CC fiber tracts is presented.

Figure 4: Upperrow: displacement of the CC and CS fiber
tracts during hydrocephalus development overplayed with the pre-
operative brain image at coronal cross-section (left) and sagittal
cross-section (right). The axonal tracts with white color represent
the tracts at the healthy stage, the purple arrow shows the displace-
ment occurred during hydrocephalus development with the arrow
length in proportion to the displacementmagnitude, and the colored
fiber tracts represent the distorted tracts at postoperative stage with
color scale legend indicating magnitude of displacement. Lower
row: the 1st principal strain levels at the CS and the CC fiber tracts.
Note that the color scale for the CS and CC fiber tracts is different
in order to have a better illustration.

fiber tracts. This resulted into compression of the CS fiber
tracts close to the lateral ventricles. For axonal CCfiber tracts,
the displacement field showed a more dispersed pattern with
a maximum value up to 15.4mm located at the anterior horn
of lateral ventricle (Figure 4, upper row: right).

The strain levels for both CS andCCfiber tracts (Figure 4,
lower row) showed that the CS fiber tracts presented a lower
value compared to that found in the CC fiber tracts.Thus, the
maximum strain level increase in the CS fiber tracts was 0.5,
or 50%, while that in the CC fiber tracts was as high as 1.2 or
120%.

When comparing the average strain levels found in the
ventricles, the CC and CS fibers, the trend seemed clear that
the longer distance from the ventricles the less the strain levels
both before and after the neurosurgical procedure (Figure 7).
Hence, the difference was the least in fiber tracts in the
periphery of the brain tissue for both pre-and postoperative
stages.

To evaluate the strain level at brain tissue with further
distance from the lateral ventricles, the original ventricular
walls were scaled outwards until it reached the cranial
boundary and which was taken as the maximum distance
for evaluation. Between the original normal ventricles and
the maximum dilated ventricles, ten different-sized lateral
ventricles were created by equally interpolating the two
extreme cases. The obtained different-sized ventricles are
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Figure 5: Relationship between the distance from the lateral ventricles and the mean strain level of brain tissue. The picture on the left
illustrates the interpolated different-sized ventricles which were used for average strain level calculation at different distances. A decreased
strain level was found after the neurosurgical procedure in all of the 6 patients in various degrees.

illustrated in Figure 5, left with only three ventricles shown
aiming at a better illustration. The obtained, interpolated
ventricles were then used to resample the strain levels in the
entire brain and based on which the average strain levels at
different distances to the ventricles were calculated. As the
brain sizes are different across the patients in the present
study, the distance from the ventricles was normalized for
each patient by dividing the brain size to the largest distance
in that particular patient.This yielded distances range from 0,
that is, brain tissue adjacent to the ventricles, to 1, that is, the
outermost brain tissue, which were binned in an increment of
0.1. A profile of the strain levels in brain tissue as a function
distance from the ventricles could then be plotted. Thus,
the relationship between the distance from the ventricles
and the average strain levels showed a logarithmic profile
in all patients both at the pre- and postoperative periods
(Figure 5). The evaluation showed decreasing strain levels
with increasing distances from the ventricles for each patient
although in different degrees.

An earlier study has shown a logarithmic correlation
between the regional cerebral blood flow (rCBF) and the
distance from the lateral ventricles in hydrocephalic patients
[1]. Thus, the displacement and increased strain levels pre-
sented in this study may have a substantial impact on the
rCBF among these patients. By combining the rCBF values
from that earlier study at a distance from the lateral ventricles

together with the increased strain levels found in this study at
the same distance, the relationship between CBF and strain
levels was plotted (Figure 6) showing a linear correlation
between the increased strain level in this study and the rCBF
(𝑟 = 0.9905, 𝑃 < 0.0001) from the earlier study [1]. Thus, as
illustrated at one point in the figure, by reducing the increased
strain level from preoperative 176% to postoperative 130%
shown on the horizontal axis, the rCBF increased from about
6.5 to 11.4 mL/100mg/min (ΔrCBF in Figure 6).

4. Discussions

All six patients had increased displacement as well as
profound increased strain levels in the surrounding brain
tissue both before and, although less pronounced, after the
neurosurgical procedure. Also, all patients were defined with
cognitive disturbances. Incontinence was defined in four of
the patients and without any correlation to displacement or
strain level. However, the neurosurgical procedure resulted in
a definite reduction of both displacement and strain level. In
those two cases with the lowest increase of displacement and
strain level there was no gait ataxia. This study, to the best
of our knowledge, is the first to provide a quantitative view
regarding the stretching of ventricular wall, CC and CS tracts
in hydrocephalic patients. Further, a close correlation was
found to exist between the increased strain level and the rCBF.
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was illustrated to show improved rCBF due to shunt operation (light
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The presented results provide direct evidence that Hakim
triad could to some extent be explained by the increased
strain levels.

Those patients with the largest expansion of the ventricles
showed the most profound strain level increase in the fiber
tracts of CC and CS, while those with smaller ventricular
increase presented a more modest strain level increase. This
may indicate that patients with larger ventricles should be
expected to present a worse outcome. However, this was not
the case in this study. Instead, it is suggested that larger
displacement of the ventricles will influence the surrounding
brain tissuemore distant compared to those patients with less
expanded ventricles. Also, the larger the ventricle expansion
the more severe the strain level in CC fibers tracts, and
this could tentatively interfere negatively with connections
between the two hemispheres thereby prolonging the clinical
improvement for such patients. Since the CS fiber tracts are
anatomically located further away from the ventricles, they
had a less pronounced strain level increase which was to be
expected.

Experimental studies of axonal stretching have shown
a clear correlation between the strain level and axonal
function. An increased strain level of 5% was found to
alter neuronal function, while 10% may cause cell death
in rapid axonal stretching models [29]. Bain and Meaney
(2000) demonstrated in an animal model that a strain level
of approximately 21% will elicit electrophysiological changes,
while a strain of approximately 34%will causemorphological
signs of damage to the white matter [30]. Under slow loading
rates, however, axons could tolerate much higher strain levels
and with stretch of up to twice of their original length

(a strain of 100%) with no evidence of damage [31]. Using
a model of sciatic nerve stretch, Fowler et al. reported that
even minimal tension, if maintained for a significant amount
of time, may result in loss of neuronal function [32]. Based
on these, it should be expected that an increased strain level
in both CC and CS fiber tracts in hydrocephalus patients
found in the present study very well interferes with the
normal conductivity in the axons, hence also interferes with
the patients’ rehabilitation. When the strain level increase
reaches a critical point or threshold, it may very well initiate
a biochemical response which may further alter the CC and
CS fiber tracts. From a clinical aspect, the sustained increased
displacement and increased strain levels of axons may also
result in gait disturbances due to the potential interference
with the long corticospinal fiber tracts connecting motor
and sensory areas with the spinal cord as well as those
in the corpus callosum connecting the electrophysiological
functions of both hemispheres with each other [33].

The displacement and strain level in hydrocephalus
patients belong to a static or semistatic increase thereby
allowing the fiber tracts to accept the changes during a longer
period.Thismay favor the rehabilitation even if the increased
strain level is substantial due to the very low deformation
rate [31]. However, of special interest are elderly people
who already have an atrophied brain tissue and which may
suffer more than those in employment age. Many of the
hydrocephalus patients improve after ventriculoperitoneal
shunt treatment. However, there is no treatment for those,
who do not improve due to a lack of explanation of the causes.
It was suggested that the increased strain levels may cause
a disturbance in the electrophysiological function in these
fiber tracts, and consequently, a tailoredmatrix of conductive,
organic bioelectrodes could potentially be implanted in the
area of corpus callosum fiber tracts thereby counterbalancing
the electrophysiological dysfunction as proposed in a previ-
ous study [33].

In the present study all patients had indeed a reduction in
the strain level postoperatively. However, the reduced strain
level was still on a surprisingly high level and could therefore
have a negative influence on the anatomy and histology of
the nervous tissue together with a sustained alteration in the
conductivity of the axons in thewhitematter. It seems that the
reduction of rCBF clearly correlated with that of increased
strain levels. Even a small reduction in rCBF may influence
the rehabilitation especially among the vulnerable elderly
patients and which should be taken into consideration.

5. Conclusions

A numerical method based on nonlinear image registration
was used to quantify the stretching of ventricular wall, corpus
callosum, and corticospinal axonal fiber tracts in six patients
with hydrocephalus both before and after shunt operation.
These data provide new insight into the mechanical cascade
of events due to tissue stretching, thereby to provide us with
more knowledge into understanding of the role of brain
tissue and axonal stretching in some of the hydrocephalus
clinical symptoms. Moreover, a linear correlation was found
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Figure 7: Diagram of average strain levels at the lateral ventricle (a) CC fiber (b) and CS fiber (c) for all the 6 patients. The horizontal axis is
the patient’s identification (id), and the vertical axis shows the strain levels for the corresponding patient at precraniotomy stage (Strain Pre
with darker gray color) and postcraniotomy stage (Strain Post, with lighter gray color).The exact strain level values are presented in the lower
table.

to exist between strain level and the rCBF. The combination
of increased displacement of the ventricular walls, sustained
increased strain levels, and derangement in electrophysiology
activity in the white matter together with a reduced rCBF
may, under certain circumstances, has a profound impact on
the outcome following hydrocephalus.
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This paper proposes a three-dimensional mathematical model of the biomechanical interactions between backpack and bearer
during load carriage. The model considers both the coupled pack motions, which follow the torso, and also the longitudinal
compliance and damping in the backpack suspension. The pack interaction forces and moments, acting on the bearer, are
determined from kinematic relationships, equations of motion, and a dynamic pack suspension model.The parameters of the pack
suspensionmodel were identified from test data obtained using a load carriage test rig. Output from the load carriagemathematical
model has been compared with measurement data during human gait and conclusions drawn with regard to the validity of the
proposed approach.

1. Introduction

Backpacks are common devices for increasing human load
carriage performance but when heavily loaded may lead
to excessive joint loadings, muscle fatigue, or even injury
[1–5]. Most studies of personal load carriage systems have
focused on physiological and biomechanical aspects [6–10].
Biomechanical studies have concentrated on experimental
gait analysis, including the effects of load carriage on elec-
tromyographic activity [3, 8, 11], gait and posture [6, 7, 10],
and ground reactions [6, 8, 9]. Almost all of these studies
consider the backpack to be part of the trunk segment, with
no relative motion between the two. Little is known about the
pack interaction forces and moments acting on the bearer’s
trunk.

During load carriage, the pack interaction forces exerted
on the torso relate directly to perceived discomfort, fatigue,
and the risk of injury, for example, rucksack palsy and
back problems [12, 13]. A better understanding of these
interaction forces would help to improve the design of
future load carriage systems. Unfortunately, in contrast to the
contact pressure distribution [14–16], the interaction forces
and moments between pack and torso cannot be measured

directly; however mathematical modelling and simulation
offer an alternative approach.

Very little has been published on the modelling of load
carriage biomechanics. While examining the effects of pack
load on back muscle EMG, Bobet and Norman [3] consid-
ered the pack to be part of the trunk segment for inverse
dynamics purposes. Recently, Pelot et al. [17] developed a
two-dimensional backpack model to investigate the forces at
the shoulder and hip belts. However, their model assumes no
relative movement between pack and torso and can only be
used to evaluate static forces. To properly model backpack
dynamics, it is necessary to include the relative motions
between pack and torso, which is capable of representing the
dynamic impacts on the bearer rather than static interactions
only.

This paper proposes a mathematical load carriage model,
which represents the three-dimensional biomechanical inter-
actions between pack and torso. All packmotions are directly
coupled to those of the bearer’s trunk, with the exception
of longitudinal motion up and down the bearer’s back,
which depends on a pack suspension model, the parameters
of which were identified from test data obtained using a
load carriage test rig [18]. The validity of the proposed
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approach is investigated and conclusions drawn with regard
to future developments in the modelling of load carriage
biomechanics.

2. Methods

2.1. Pack-Trunk Kinematics. Throughout this study, the typi-
cal backpack systemwith two shoulder straps and a waist belt
is addressed. If deformations of the backpack are neglected,
the pack can be considered to be a rigid body (Figure 1). Due
to the actions of the shoulder straps and hip belt, holding the
pack against the bearer’s back, pack rotations relative to the
trunk in the sagittal and transverse planes, and translation
perpendicular to the back are all constrained. For simplicity,
relative pack rotation in the frontal plane and lateral pack
translation are also considered to be negligible. In other
words, pack motion relative to the trunk only occurs in a
direction which coincides with the trunk’s longitudinal axis.
So, the backpack is modelled as a rigid body that slides up
and down the bearer’s back while all other degrees of freedom
follow the motions of the trunk.

A global coordinate system 𝑂𝑋𝑌𝑍, a trunk system
𝑜
𝑡
𝑥
𝑡
𝑦
𝑡
𝑧
𝑡
, and a backpack system 𝑜

𝑝
𝑥
𝑝
𝑦
𝑝
𝑧
𝑝

are defined
(Figure 1). The global system’s 𝑥-axis lies in the sagittal plane
and points in the direction of forward progress, the 𝑦-axis
also lies in the sagittal plane and points upwards, and the 𝑧-
axis lies in the frontal plane and points to the right.The trunk
coordinate system 𝑜

𝑡
𝑥
𝑡
𝑦
𝑡
𝑧
𝑡
is attached to the bearer’s trunk

with its origin located at the trunk centre of mass (CoM).
The𝑦
𝑡
-axis is parallel to the trunk longitudinal axis (midpoint

between C7 and T8 spinous process to the midpoint between
xiphoid process and jugular notch) and points upwards. The
𝑥
𝑡
-axis is perpendicular to the bearer’s back and points in

the anterior direction. The 𝑧
𝑡
-axis is perpendicular to both

𝑥
𝑡
-axis and 𝑦

𝑡
-axis and points to the right. The local pack

coordinate system 𝑜
𝑝
𝑥
𝑝
𝑦
𝑝
𝑧
𝑝
is attached to the backpack

with its origin at the pack CoM, and its axes are parallel to
those of the trunk coordinate system. In the analysis below,
we have followed the common practice of not expressing
vector equations in any particular coordinate frame. Where
vector equations have been expanded, to derive the individual
components, the resulting scalar equations are expressed in a
particular coordinate frame, which is stated.

Based on the rigid body pack model proposed above, the
pack’s kinematic relationship with the trunk can be described
by

󳨀⇀
𝑎
𝑝
=
󳨀⇀
𝑎
𝑡
+
󳨀⇀
𝑎
𝑛

𝑝𝑡
+
󳨀⇀
𝑎
𝜏

𝑝𝑡
+
󳨀⇀
𝑎
𝑟
+
󳨀⇀
𝑎
𝑐

𝑟
, (1a)

󳨀⇀
𝜔
𝑝
=
󳨀⇀
𝜔
𝑡
, (1b)

󳨀⇀
𝛼
𝑝
=
󳨀⇀
𝛼
𝑡
, (1c)

where 󳨀⇀𝑎
𝑝
is the absolute acceleration of the pack CoM; 󳨀⇀𝑎

𝑡
is

the absolute acceleration of the trunk CoM; 󳨀⇀𝑎
𝑛

𝑝𝑡
and 󳨀⇀

𝑎
𝜏

𝑝𝑡
are

the centripetal and tangential acceleration vectors, relative to
the trunk CoM, of a point fixed in the trunk coordinate frame
and instantaneously coincident with the pack CoM; 󳨀⇀𝑎

𝑟
is the

relative pack acceleration vector along the back; and󳨀⇀
𝑎
𝑐

𝑟
is the

Coriolis acceleration vector.
The various acceleration terms in (1a) are given by

󳨀⇀
𝑎
𝜏

𝑝𝑡
=
󳨀⇀
𝛼
𝑝
×
󳨀⇀
𝑟
𝑝𝑡
, (2a)

󳨀⇀
𝑎
𝑛

𝑝𝑡
=
󳨀⇀
𝜔
𝑡
× (

󳨀⇀
𝜔
𝑡
×
󳨀⇀
𝑟
𝑝𝑡
) , (2b)

󳨀⇀
𝑎
𝑟
=
󳨀̈⇀
𝑢 , (2c)

󳨀⇀
𝑎
𝑐

𝑟
= 2

󳨀⇀
𝜔
𝑝
×
󳨀̇⇀
𝑢 , (2d)

where 󳨀⇀𝑟
𝑝𝑡

= (
󳨀⇀
𝑑 +

󳨀⇀
𝑢) is the position vector of the pack CoM

relative to the trunk CoM, 󳨀⇀𝑢 is the pack translation relative
to the trunk, and

󳨀⇀
𝑑 is the position of the pack CoM, relative

to the trunk CoM, in the unloaded condition.
Substituting (2a), (2b), (2c), and (2d) into (1a) and

considering each component in the backpack coordinate
system, the absolute translational accelerations of the pack
CoM in all three directions can be derived as

𝑎
𝑝𝑥

= 𝑎
𝑡𝑥
+ 𝛼
𝑡𝑦
𝑑
𝑧
− 𝛼
𝑡𝑧
(𝑑
𝑦
+ 𝑢) + 𝜔

𝑡𝑥
𝜔
𝑡𝑦
(𝑑
𝑦
+ 𝑢)

− (𝜔
2

𝑡𝑦
+ 𝜔
2

𝑡𝑧
) 𝑑
𝑥
+ 𝜔
𝑡𝑥
𝜔
𝑡𝑧
𝑑
𝑧
− 2𝜔
𝑡𝑧
𝑢̇,

(3a)

𝑎
𝑝𝑦

= 𝑎
𝑡𝑦
+ 𝛼
𝑡𝑧
𝑑
𝑥
− 𝛼
𝑡𝑥
𝑑
𝑧
+ 𝜔
𝑡𝑦
𝜔
𝑡𝑧
𝑑
𝑧

− (𝜔
2

𝑡𝑥
+ 𝜔
2

𝑡𝑧
) (𝑑
𝑦
+ 𝑢) + 𝜔

𝑡𝑥
𝜔
𝑡𝑦
𝑑
𝑥
+ 𝑢̈,

(3b)

𝑎
𝑝𝑧

= 𝑎
𝑡𝑧
+ 𝛼
𝑡𝑥
(𝑑
𝑦
+ 𝑢) − 𝛼

𝑡𝑦
𝑑
𝑥
+ 𝜔
𝑡𝑥
𝜔
𝑡𝑧
𝑑
𝑥

− (𝜔
2

𝑡𝑥
+ 𝜔
2

𝑡𝑦
) 𝑑
𝑧
+ 𝜔
𝑡𝑦
𝜔
𝑡𝑧
(𝑑
𝑦
+ 𝑢) + 2𝜔

𝑡𝑥
𝑢̇.

(3c)
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𝑥𝑝

𝑦𝑝

𝑧𝑝

𝑜𝑝

𝑥𝑡

𝑦𝑡

𝑧𝑡

𝑜𝑡

⇀

𝑀𝑝

⇀

𝑀pack

𝐹𝑝𝑥

𝐹𝑝𝑦

𝐹𝑝𝑧

⇀

𝐹pack

Figure 2: The human-pack interaction force 󳨀⇀𝐹
𝑝
(𝐹
𝑝𝑥
, 𝐹
𝑝𝑦
, 𝐹
𝑝𝑧
) and

moment 󳨀⇀
𝑀
𝑝
acting at the pack mass centre, and the associated

reactions 󳨀⇀𝐹pack and
󳨀⇀
𝑀pack acting at the trunk mass centre.

From (3a), (3b), and (3c), it can be seen that the backpack’s
absolute accelerations are not only influenced by trunk
translation but also strongly coupled with trunk rotation and
relative pack motion.

2.2. Backpack’s Equation of Motion. If the backpack is
regarded as a separate object and isolated from the torso
(Figure 2), the pack interaction forces and moments can be
assessed. In this case, the interaction between the pack and
the body is described by the resultant force and moment (󳨀⇀𝐹

𝑝

and 󳨀⇀
𝑀
𝑝
) acting on the pack and at its CoM. This equivalent

force system represents the net effects of the various forces at
the pack-human interface as they act on the pack.

Applying the Newton-Euler equations leads to

𝑚
𝑝

󳨀⇀
𝑎
𝑝
=
󳨀⇀
𝐹
𝑝
+ 𝑚
𝑝

󳨀⇀
𝑔, (4a)

𝐽
𝑝

󳨀⇀
𝛼
𝑝
+
󳨀⇀
𝜔
𝑝
× (𝐽
𝑝

󳨀⇀
𝜔
𝑝
) =

󳨀⇀
𝑀
𝑝
. (4b)

Equation (4a) can be expressed in the backpack coordi-
nate system as

𝐹
𝑝𝑥

= 𝑚
𝑝
𝑎
𝑝𝑥

+ 𝑚
𝑝
𝑔 (sin𝜓 cos𝜙 + cos𝜓 cos 𝜃 sin𝜙) ,

(5a)

𝐹
𝑝𝑦

= 𝑚
𝑝
𝑎
𝑝𝑦

+ 𝑚
𝑝
𝑔 (sin𝜓 sin𝜙 + cos𝜓 cos 𝜃 cos𝜙) ,

(5b)

𝐹
𝑝𝑧

= 𝑚
𝑝
𝑎
𝑝𝑧

− 𝑚
𝑝
𝑔 cos𝜓 sin 𝜃, (5c)

where the orientation of the backpack with respect to the
global coordinate system 𝑂𝑋𝑌𝑍 is defined by Euler angles
(𝜓, 𝜃, 𝜙) in 𝑍𝑋𝑍 sequence.

Backpack

Mannequin

Accelerometer

Accelerometer

Tilting device

Load cell

Hydraulic
jack

Figure 3: The dynamic load carriage test rig. The hydraulic ram
drives the mannequin up and down at different frequencies and
amplitudes. Accelerometers measure the motion of the backpack
and the mannequin, and a load cell measures the dynamic force
propelling the mannequin.

2.3. Backpack SuspensionModel. In this study, a general non-
linear pack suspension model is employed, which relates the
pack interaction force along the trunk longitudinal axis to the
relative pack motion. The relationship can be written as

𝐹
𝑝𝑦

= 𝐹
𝑝𝑒

+ 𝐹
𝑝𝑑

+ 𝐹
𝑝𝑖
, (6)

where 𝐹
𝑝𝑒

is the elastic component of the interaction force,
𝐹
𝑝𝑑

is the damping component, and𝐹
𝑝𝑖
is an inertial coupling

term. Cubic polynomials are used to describe these non-
linear properties [19] as follows:

𝐹
𝑝𝑒

= 𝑎
3
𝑢
3
+ sign (𝑢) 𝑎

2
𝑢
2
+ 𝑎
1
𝑢,

𝐹
𝑝𝑑

= 𝑏
3
𝑢̇
3
+ sign (𝑢̇) 𝑏

2
𝑢̇
2
+ 𝑏
1
𝑢̇,

𝐹
𝑝𝑖

= 𝑐
3
𝑢̈
3
+ sign (𝑢̈) 𝑐

2
𝑢̈
2
+ 𝑐
1
𝑢̈,

(7)

where 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑏
1
, 𝑏
2
, 𝑏
3
, 𝑐
1
, 𝑐
2
, 𝑐
3
are model parameters,

which are constant for a given type of pack and specified
working conditions (i.e., pack load, load distribution, strap
and belt tensions, etc.).

For a particular backpack, the parameters of the suspen-
sionmodel can be identified fromdynamic test data, obtained
using the hydraulically driven load carriage test rig shown in
Figure 3 [19]. The mannequin was covered in a neoprene-
like material to mimic the soft tissues. The hydraulic ram
drives the mannequin up and down with different frequency
and amplitude inputs, which allows non-linear frequency
response testing over a range of frequencies and amplitudes.
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Figure 4: The schematic diagram for the pack-bearer interaction force calculation based on pack-trunk kinematics, backpack’s equation of
motion, and backpack suspension model.

𝑋

𝑌

𝑍

Figure 5: The 3D gait measurement setup for capturing the trunk
and pack motions during load carriage. A specially designed plastic
plate carrying four markers, firmly attached to the thorax, was used
to capture the position and orientation of the trunk. Eight markers
were attached to the corners of the pack to capture its position and
orientation.

Theharmonic analysismethodwas used to identify themodel
parameters [18].

2.4. Pack-Bearer Interaction Forces during Walking. Using
(1a), (1b), and (1c) to (7) and measured trunk motion data,
the pack interaction forces and moments can be derived
as follows. Substituting the expression for acceleration 𝑎

𝑝𝑦

(3b) into the pack’s equation of motion (5b), and using the
backpack suspension model (6) and (7) to substitute for 𝐹

𝑝𝑦
,

leads to the following non-linear second-order differential

equation, which describes the dynamic pack behaviour along
the bearer’s back:

𝑐
3
𝑢̈
3
+ 𝑐
2
sign (𝑢̈) 𝑢̈

2
+ (𝑐
1
+ 𝑚
𝑝
) 𝑢̈ + 𝑏

3
𝑢̇
3
+ 𝑏
2
sign (𝑢̇) 𝑢̇

2

+ 𝑏
1
𝑢̇ + 𝑎
3
𝑢
3
+ 𝑎
2
sign (𝑢) 𝑢

2
+ (𝑎
1
− 𝑚
𝑝
(𝜔
2

𝑥
+ 𝜔
2

𝑧
)) 𝑢

+𝑚
𝑝
(𝑎
𝑡𝑦
+ 𝛼
𝑧
𝑑
𝑥
− 𝛼
𝑥
𝑑
𝑧
+ 𝜔
𝑦
𝜔
𝑧
𝑑
𝑧

− (𝜔
2

𝑥
+ 𝜔
2

𝑧
) 𝑑
𝑦
+ 𝜔
𝑥
𝜔
𝑦
𝑑
𝑥

+𝑔 (sin𝜓 sin𝜙 + cos𝜓 cos 𝜃 cos𝜙) ) = 0.

(8)

As this differential equation is of a highly non-linear
form and some of the terms are time varying, a numerical
solution is required (4th-order Runge-Kutta). Because the
numerical integration time step is normally smaller than
the gait measurement interval, cubic interpolation is used to
provide trunk motion data at the necessary frequency. The
initial values of the relative pack displacement and velocity
were set to zero, and the numerical integration algorithm
executed until a steady-state cyclic packmotionwas achieved.
Steady state was defined as the initial and final values of
the state variables for one gait cycle being equal within an
acceptable tolerance (1.0𝑒 − 6 was used in this study).

Thus, given the trunk motion data (𝑎
𝑡𝑦
, 𝜓, 𝜃, 𝜙, 𝜔

𝑥
, 𝜔
𝑦
,

𝜔
𝑧
, 𝛼
𝑥
, 𝛼
𝑧
), the relative pack motion can be derived (𝑢, 𝑢̇,

and 𝑢̈). Then the pack force along the bearer’s back 𝐹
𝑝𝑦

can
be obtained by substituting the calculated relative motion (𝑢,
𝑢̇, and 𝑢̈) into (6) and (7).

The expressions for the normal pack force 𝐹
𝑝𝑥

and lateral
pack force 𝐹

𝑝𝑧
are obtained by substituting the expressions
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Figure 6: The simulated relative pack displacement along the back (mean (solid red line) ± one standard deviation (dashed red lines), (a)),
compared with measured data (mean (solid blue line) ± one standard deviation (dashed blue lines), (a)), for six repeated trials for one subject
(age: 28 yrs, weight: 71.8 kg, height: 178 cm), andmeasured vertical trunk CoM displacement (mean (solid blue line) ± one standard deviation
(dashed blue lines), (b)). The average walking speed was 1.63 ± 0.03m/s, and the pack load was 11.5 kg. The stance phase for the left limb is
from 0 to 60%, and the swing phase is from 60% to 100%. The double support phase is from 0 to 10% and from 50 to 60%.

for accelerations 𝑎
𝑝𝑥

and 𝑎
𝑝𝑧

((3a) and (3c)) into the pack’s
equations of motion ((5a) and (5c)), which leads to

𝐹
𝑝𝑥

= 𝑚
𝑝
(𝑎
𝑡𝑥
+ 𝛼
𝑦
𝑑
𝑧
− 𝛼
𝑧
(𝑑
𝑦
+ 𝑢) + 𝜔

𝑥
𝜔
𝑦
(𝑑
𝑦
+ 𝑢)

− (𝜔
2

𝑦
+ 𝜔
2

𝑧
) 𝑑
𝑥
+ 𝜔
𝑥
𝜔
𝑧
𝑑
𝑧
− 2𝜔
𝑧
𝑢̇

+𝑔 (sin𝜓 cos𝜙 + cos𝜓 cos 𝜃 sin𝜙) ) ,

𝐹
𝑝𝑧

= 𝑚
𝑝
(𝑎
𝑡𝑧
+ 𝛼
𝑥
(𝑑
𝑦
+ 𝑢) − 𝛼

𝑦
𝑑
𝑥
+ 𝜔
𝑥
𝜔
𝑧
𝑑
𝑥

− (𝜔
2

𝑥
+ 𝜔
2

𝑦
) 𝑑
𝑧
+ 𝜔
𝑦
𝜔
𝑧
(𝑑
𝑦
+ 𝑢)

+2𝜔
𝑥
𝑢̇ − 𝑔 cos𝜓 sin 𝜃) .

(9)

Thus, using (6), (7), and (9), the three components of
the pack force, acting on the pack CoM, can be determined
from the trunk motion data and the calculated relative pack
motion. The resultant pack moment, acting about the pack

CoM, can be calculated directly from the trunk rotations,
given that the pack rotates with the trunk (see (1b), (1c), and
(4b)).

The pack interaction force and moment can also be
represented by an equivalent force system (󳨀⇀𝐹pack,

󳨀⇀
𝑀pack)

acting on the trunk CoM (Figure 2). According to Newton’s
third law, the interaction force and moment acting at the
trunk CoM can be expressed as

󳨀⇀
𝑀pack =

󳨀⇀
𝐹
𝑝
×
󳨀⇀
𝑟
𝑡𝑝
−
󳨀⇀
𝑀
𝑝
,

󳨀⇀
𝐹pack = −

󳨀⇀
𝐹
𝑝
.

(10)

The pack force and moment can be used to assess the
mechanical loads imposed on the human body during load
carriage. Moreover, when input into a three-dimensional
human gait model, joint loads andmechanical energy expen-
diture can also be evaluated.

The proposed dynamic load carriage model has been
implemented in the MATLAB programming environment
(see Figure 4 for a schematic diagram). Measured 3D trunk
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Figure 7: The simulated pack interaction forces in the pack coordinate system mean ((solid red line)) ± one standard deviation (dashed red
lines): (a) longitudinal pack force, (b) normal pack force (c) and lateral pack force, compared with measured data (mean (solid blue line) ±
one standard deviation (dashed blue lines)), for six repeated trials for one subject (age: 28 yrs, weight: 71.8 kg, height: 178 cm). The average
walking speed was 1.63 ± 0.03m/s, and the pack load was 11.5 kg. The stance phase for the left limb is from 0 to 60%, and the swing phase is
from 60% to 100%. The double support phase is from 0 to 10% and from 50 to 60%.

rotations and translations over a complete gait cycle, with a
loaded backpack, were used as input data.

2.5. Experimental Model Assessment. To assess the validity
of the proposed modelling approach, three-dimensional gait
measurement was conducted to capture trunk and pack
motions whilst carrying a backpack. Two healthy male sub-
jects (age: 30 ± 2 yrs, weight: 75 ± 3.2 kg) were selected from
a population of postgraduate students. Prior to participation,
the subjects provided informed consent in accordance with
the policies of Salford University’s Ethical Advisory Commit-
tee. The subjects walked in trainers along a walkway, inside
a gait laboratory, while motion data was collected at 100Hz
using a 6-camera Qualisys motion analysis system (Qualisys
AB, Savedalen, Sweden).The subjects walked at two different
speeds, normal and fast, with two backpack loads, 11.5 kg

and 23.0 kg (see Figure 5). Each experimental condition was
measured six times to ensure that a repeatable data set for a
complete walking cycle was obtained.

To capture trunk motions, a specially designed plastic
plate, carrying four reflective markers, was firmly attached
to the thorax [20]. Four anatomical landmarks (C7 and
T8 spinous processes, xiphoid process, and jugular notch)
were used to define the trunk coordinate system. Before
the walking trials, a static calibration procedure was used
to locate these anatomical landmarks based on the CAST
methodology (calibrated anatomical system technique) [21].
The position of the trunk CoM was estimated from the
anatomical landmarks using anthropometric data from the
literature [22].

To minimize the deformation of the backpack, the test
pack contained a specially designed plastic foam block with
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Figure 8: The simulated relative pack displacement along the back (mean (solid red line) ± one standard deviation (dashed red lines), (a)),
compared with measured data (mean (solid blue line) ± one standard deviation (dashed blue lines), (a)), for six repeated trials for one subject
(age: 28 yrs, weight: 71.8 kg, height: 178 cm), andmeasured vertical trunk CoM displacement (mean (solid blue line) ± one standard deviation
(dashed blue lines), (b)). The average walking speed was 1.93 ± 0.03m/s, and the pack load was 11.5 kg. The stance phase for the left limb is
from 0 to 59%, and the swing phase is from 59% to 100%. The double support phase is from 0 to 9% and from 50 to 59%.

cylindrical cavities to allow metal bars to be firmly inserted.
By putting different metal bars in different cavities, different
pack loads and load distributions were possible. During
walking trials, eight reflective markers were attached to the
corners of the backpack, and the geometric centre of the pack
was assumed to be equidistant from thesemarkers.The pack’s
CoM position and inertia matrix were then calculated based
on this geometric centre and the load distribution within the
pack.

The raw 3D marker data were processed using a custom-
written software package, SMAS (Salford Motion Analysis
Software), which has been developed for 3D kinematic and
kinetic analysis of general biomechanical multibody systems
[20, 23]. The data were filtered using a low pass 4th-order
Butterworth digital filter with a cut-off frequency of 15Hz.
The orientations of the backpack and trunk segments were
derived using an optimal estimation algorithm [24].The pack
and trunk angular velocities, angular accelerations, and CoM
linear accelerations were calculated using a finite difference
method.

Based on these measurement data, the interaction force
and moment acting at the pack CoM were estimated as
follows:

󳨀⇀
𝐹
𝑝𝑚

= 𝑚
𝑝
(
󳨀⇀
𝑎
𝑝𝑚

−
󳨀⇀
𝑔) ,

󳨀⇀
𝑀
𝑝𝑚

= 𝐽
𝑝

󳨀⇀
𝛼
𝑝𝑚

+
󳨀⇀
𝜔
𝑝𝑚

× (𝐽
𝑝

󳨀⇀
𝜔
𝑝𝑚

) .

(11)

These data for the whole gait cycle were then used to
validate the 3D load carriage model.

3. Results

Experimental and simulated data for one subject walking
at two different speeds, normal (1.6m/s) and fast (1.9m/s),
with two backpack loads, 11.5 kg and 23.0 kg, are presented in
Figures 6 to 11. Results are shown for repeated experimental
trials and the corresponding simulations.

Figures 6 and 7 show the vertical trunk CoM motion,
the simulated relative pack displacement, and the pack
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Figure 9: The simulated pack interaction forces in the pack coordinate system (mean (solid red line) ± one standard deviation (dashed red
lines)): (a) longitudinal pack force, (b) normal pack force (c), and lateral pack force, compared with measured data (mean (solid blue line)
± one standard deviation (dashed blue lines)), for six repeated trials for one subject (age: 28 yrs, weight: 71.8 kg, height: 178 cm). The average
walking speed was 1.93 ± 0.03m/s, and the pack load was 11.5 kg. The stance phase for the left limb is from 0 to 59%, and the swing phase is
from 59% to 100%. The double support phase is from 0 to 9% and from 50 to 59%.

interaction forces, over a complete gait cycle, for normal
walking with an 11.5 kg load. Figures 8 and 9 show the same
data for fast walking and an 11.5 kg load. Figures 10 and 11
show the same data for normal walking with a 23 kg load.

4. Discussion

A 3D load carriage model has been proposed, which sim-
ulates the dynamic interactions between pack and bearer.
This considers pack motions that are directly coupled to
the bearer’s trunk movement and also the longitudinal com-
pliance and damping in the backpack suspension. The 3D
pack interaction forces and moments are determined from
kinematic relationships, equations of motion, and a dynamic
backpack suspension model. The parameters of the pack
suspension model were identified from test data collected
using a load carriage test rig [18, 19]. Output from the load

carriage simulation model was compared with measurement
data obtained from a motion analysis system at two different
pack loads, and during both normal and fast walking.

Referring to Figures 6(a), 8(a), and 10(a), the simulated
relative pack displacements (longitudinally along the bearer’s
back) show reasonably good agreement with the measured
data at both pack loads, and at both walking speeds. They
reproduce a sinusoidal fluctuation about 20mm with a very
similar pattern to vertical displacement of trunk CoM (Fig-
ures 6(b), 8(b), and 10(b)), which is consistent with previous
load carriagemeasurements [10]. However, the results appear
to contain an additional higher-frequency harmonic that is
not present in the measurement data, especially noticeable at
the normal walking speed.

Referring to Figures 7(b), 9(b), and 11(b), the simu-
lated longitudinal pack interaction forces also show reason-
ably good agreement with the measured data in terms of
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Figure 10: The simulated relative pack displacement along the back (mean (solid red line) ± one standard deviation (dashed red lines), (a)),
compared with measured data (mean (solid blue line) ± one standard deviation (dashed blue lines), (a)), for six repeated trials for one subject
(age: 28 yrs, weight: 71.8 kg, height: 178 cm), andmeasured vertical trunk CoM displacement (mean (solid blue line) ± one standard deviation
(dashed blue lines), (b)). The average walking speed was 1.62 ± 0.04m/s, and the pack load was 23.0 kg. The stance phase for the left limb is
from 0 to 60.3%, and the swing phase is from 60.3% to 100%. The double support phase is from 0 to 10.3% and from 50 to 60.3%.

amplitudes and general trends. The largest pack forces occur
during double stance because of the high accelerations at
heel strike and push-off. As one would expect, the pack
forces reach their minima in midstance when the vertical
accelerations are negative. Both peak and mean values of the
longitudinal pack forces increase significantly with increased
pack load, which is consistent with the results of previous
experimental load carriage studies [10]. However, the sim-
ulated longitudinal pack force also exhibits an additional
harmonic which is not present in the measured data.

It is likely that the additional harmonic seen in the longi-
tudinal results is due to the limitations of the load carriage
test-rig [18, 19]. Despite the fact that the mannequin was
covered in a neoprene-like material to mimic the soft tissues,
it is unlikely that there was sufficient compliance; result-
ing in a suspension model with a high natural frequency.
Furthermore, neither the mannequin nor the simulation
model can alter torso posture in response to changes in
pack interaction forces. In practise, the bearer may dynam-
ically adjust their posture to damp the pack motion and
thereby decrease high-frequency fluctuations in pack force.

Furthermore, the test rig only generates vertical displacement
of the mannequin, rather than the true 3D trunk motion
seen during walking. Hence, the pack suspension model is
limited to one degree of freedom and the suspension model
parameters do not properly account for coupling with other
motions.

Although the pack model neglects all relative pack
motions except for longitudinal translation up and down
the back, the simulated normal pack forces (Figures 7(a),
9(a), and 11(a)) were in reasonable agreement with the
experimental data with the exception of unexplained discrep-
ancies around 40% to 60% of the gait cycle. In percentage
terms, there are major discrepancies between the model
predictions and the measurement data in the lateral pack
forces (Figures 7(c), 9(c), and 11(c)). However, these forces
are of small amplitude and the experimental data exhibit
significant variability.

In conclusion, whilst promising results have been
achieved, the proposed methodology still needs some
improvements especially the technique to identify pack
suspension parameters [18, 19]. Although the load carriage
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Figure 11: The simulated pack interaction forces in the pack coordinate system (mean (solid red line) ± one standard deviation (dashed red
lines)): (a) longitudinal pack force, (b) normal pack force (c), and lateral pack force, compared with measured data (mean (solid blue line)
± one standard deviation (dashed blue lines)), for six repeated trials for one subject (age: 28 yrs, weight: 71.8 kg, height: 178 cm). The average
walking speed was 1.62 ± 0.04m/s, and the pack load was 23.0 kg. The stance phase for the left limb is from 0 to 60.3%, and the swing phase
is from 60.3% to 100%. The double support phase is from 0 to 10.3% and from 50 to 60.3%.

test-rig has the advantage that full non-linear frequency
response testing can be conducted, it does not adequately
represent the effective compliance of the torso. Therefore,
we suggest that future work should focus on techniques
for identifying backpack suspension models by combining
both load carriage test-rig data and in vivo data captured in
the gait laboratory. This would have the advantage that the
small but significant rotations (in the plane of the back) and
lateral translations of the pack, relative to the torso, could
be taken into account. Including these relative motions, in
addition to the longitudinal translation, may further improve
the accuracy of the predicted pack forces.

Nomenclature
󳨀⇀
𝑎
𝑝
: Linear acceleration vector of the pack CoM
with respect to the global frame

󳨀⇀
𝑎
𝑡
: Linear acceleration vector of the trunk CoM

w.r.t. the global frame
󳨀⇀
𝑎
𝑛

𝑝𝑡
: Centripetal acceleration vector of the pack
CoM w.r.t. the trunk CoM

󳨀⇀
𝑎
𝜏

𝑝𝑡
: Tangential acceleration vector of the pack
CoM w.r.t. the trunk CoM

󳨀⇀
𝑎
𝑟
: Relative pack acceleration vector along the
back

󳨀⇀
𝑎
𝑐

𝑟
: Coriolis acceleration vector induced by
relative pack motion

󳨀⇀
𝜔
𝑝
: Angular velocity of the backpack

󳨀⇀
𝛼
𝑝
: Angular acceleration of the backpack

󳨀⇀
𝜔
𝑡
: Angular velocity of the trunk

󳨀⇀
𝛼
𝑡
: Angular acceleration of the trunk

󳨀⇀
𝑢 : Relative pack translation w.r.t. the trunk
󳨀⇀
𝑑 : Position vector of the pack CoM w.r.t.

trunk CoM in unloaded condition
󳨀⇀
𝑟
𝑝𝑡
: Position vector of the pack CoM relative
to the trunk COM with load

̇󳨀⇀
𝑢 : Relative velocity vector of the pack w.r.t.

the trunk
̈󳨀⇀

𝑢 : Relative acceleration vector of pack w.r.t.
the trunk
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𝑎
𝑝𝑥
, 𝑎
𝑝𝑦
, 𝑎
𝑝𝑧
: Linear accelerations of pack CoM in pack

coordinate system
𝛼
𝑝𝑥
, 𝛼
𝑝𝑦
, 𝛼
𝑝𝑧
: Angular accelerations of pack in pack
coordinate system

𝑎
𝑡𝑥
, 𝑎
𝑡𝑦
, 𝑎
𝑡𝑧
: Linear accelerations of trunk CoM in pack

coordinate system
𝜔
𝑡𝑥
, 𝜔
𝑡𝑦
, 𝜔
𝑡𝑧

Angular velocities of trunk in pack
coordinate system

𝛼
𝑡𝑥
, 𝛼
𝑡𝑦
, 𝛼
𝑡𝑧
: Angular accelerations of trunk in pack

coordinate system
𝑑
𝑥
, 𝑑
𝑦
, 𝑑
𝑧
: relative positions of pack CoM w.r.t. trunk

CoM in pack coordinate system
󳨀⇀
𝐹
𝑝
: Resultant pack force vector acting at the

pack CoM
𝐹
𝑝𝑥
, 𝐹
𝑝𝑦
, 𝐹
𝑝𝑧
: Pack force components in pack coordinate
system

󳨀⇀
𝑀
𝑝
: Resultant pack moment vector acting at the

pack CoM
𝑚
𝑝
: Mass of the backpack

󳨀⇀
𝑔 : Gravitational acceleration vector
𝐽
𝑝
: Inertial matrix of the backpack about the

pack CoM
𝜓, 𝜃, 𝜙: Backpack Euler angles w.r.t. the global

coordinate system in 𝑍𝑋𝑍 sequence
𝐹
𝑝𝑒
: Elastic component of the longitudinal pack

force
𝐹
𝑝𝑑
: Damping component of the longitudinal

pack force
𝐹
𝑝𝑖
: Inertial coupling component of the

longitudinal pack force
𝑎
1
, 𝑎
2
, 𝑎
3
: Elastic parameters of the pack suspension

model
𝑏
1
, 𝑏
2
, 𝑏
3
: Damping parameters of the pack suspension

model
𝑐
1
, 𝑐
2
, 𝑐
3
: Inertial parameters of the pack suspension

model
󳨀⇀
𝐹pack: Resultant pack force vector acting at the

trunk CoM
󳨀⇀
𝑀pack: Resultant pack moment vector acting about

the trunk CoM
󳨀⇀
𝐹
𝑝𝑚

: Estimated pack force from the measurement
data

󳨀⇀
𝑀
𝑝𝑚

: Estimated pack moment from the
measurement data

󳨀⇀
𝑎
𝑝𝑚

: Estimated linear acceleration of the pack
CoM from the measurement data

󳨀⇀
𝜔
𝑝𝑚

: Estimated angular velocity of the pack from
the measurement data

󳨀⇀
𝛼
𝑝𝑚

: Estimated angular acceleration of the pack
from the measurement data.
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We know that three system parameters, a center of X-ray source, an isocenter, and a center of linear detectors, are very difficult
to be calibrated in industrial CT system. So there are often the offset of an isocenter and the deflection of linear detectors. When
still using the FBP (filtered backprojection) algorithm under this condition, CT image artifacts will happen and then can seriously
affect test results. In this paper, we give the appearances and forming mechanism of these artifacts and propose the reconstruction
algorithm including a deflection angle of linear detectors. The numerical experiments with simulated data have validated that our
propose algorithm can correct CT images artifacts without data rebinning.

1. Introduction

We usually adopt the FBP (filtered backprojection) algorithm
in industrial CT. This algorithm requires two necessary
conditions [1, 2]: (i) the isoray (an imaginary ray that connects
a center of X-ray source with an isocenter) is perpendicular
to linear detectors; (ii) an insection point where the isoray
and linear detectors cross is the center of linear detectors.
However, a center of X-ray source, an isocenter, and a center
of linear detectors are difficult to be calibrated in industrial
CT. When still using the FBP algorithm under the errors
of three system parameters, the image artifacts will happen
and then can seriously affect test results, especially for these
reconstructed points away from the center of CT images.

When there happens the offset of an isocenter, people
usually take the projection point of the isocenter on linear
detectors as the center of linear detectors and then translate
the projections. For parallel beam, this translation can recali-
brate the isocenter [3]. However for fan beam, this translation
is impossible unless fan beam projections are rebinned as
parallel beam projections [4]. For measuring and correcting
theCT systemparameters, there are somemethods proposed.
Gullberg et al. [5] proposed the method to correct the
isocenter for fan beam; however, the involved parameters are

difficult to obtain. Sun et al. [6] assumed that the plane of four
small balls is perpendicular to the turn table and then mea-
sured cone-beam CT system parameters by use of projection
data under one angle. For micro-CT, Patel et al. [7] proposed
the autocalibrationmethodwithoutmodel measurement and
measured and corrected some system parameters. For cone-
beam CT, Chen et al. [8] estimated some parameters by
obtaining the barycenter under the condition that the plane
detector is parallel to the axis of rotation.

The remainder of this paper is organized as follows. In
Section 2, we introduce the FBP algorithm for fan beam and
point out its necessary conditions. In Section 3, we give the
appearances of three image artifacts caused by the offset of an
isocenter and the deflection of linear detectors. In Section 4,
we analyze the forming mechanism of three artifacts. In
Section 5, we propose the FBP algorithm including a deflec-
tion angle of linear detectors. Finally, numerical experiments
and conclusions are presented in Section 6.

2. The FBP Algorithm for Fan Beam

For convenience of the formula derivation in Section 5, we
introduce the FBP algorithm for equal-spaced fan beam in
this section.



2 Journal of Applied Mathematics

𝑆
𝑥2

𝑥1𝑂

𝑂𝐷

x

Figure 1: A simple geometric relationship of an equal-spaced fan
beam.

A simple geometric relationship with no errors of CT
system parameters is shown in Figure 1. We define a right-
handed coordinate system 𝑂𝑥

1
𝑥
2
, where the origin 𝑂 is

an isocenter, 𝑥
1
axis is parallel to linear detectors (the bold

line in Figure 1), and 𝑥
2
axis is parallel to the isoray. Let

𝑅
1
denote the distance from X-ray source to 𝑥

1
axis (if the

isoray is perpendicular to linear detectors, 𝑅
1
is also the

distance between X-ray source 𝑆 and the isocenter 𝑂), and
let 𝑅
2
denote the distance between 𝑆 and the center 𝑂

𝐷
of

linear detectors. Let𝑝(𝛽, 𝑠) denote the equal-spaced fan beam
projection data, where𝛽 is the angle of the isoray formedwith
the 𝑥
2
axis and 𝑠 is a sample on the imaginary detectors which

are through the isocenter 𝑂 and parallel to the actual linear
detectors. Making use of the FBP reconstruction algorithm,
the image function, 𝑓(x) = 𝑓(𝑥

1
, 𝑥
2
), can be shown

to be

𝑓 (x) = ∫

2𝜋

0

𝑅
1

2

(𝑅
1
− x ⋅ 𝛽⊥)

2

×

{{

{{

{

𝑅
1

√𝑅
1

2
+ 𝑠2

𝑝 (𝛽, 𝑠) ∗ ℎ (𝑠)

}}

}}

}

󵄨󵄨󵄨󵄨󵄨𝑠=𝑠0
𝑑𝛽,

(1)

where 𝑠
0
is the projection address of a reconstructed point

x on the imaginary detectors, 𝛽 = (cos𝛽, sin𝛽), 𝛽
⊥

=

(− sin𝛽, cos𝛽), 𝑠
0

= (𝑅
1
x ⋅ 𝛽)/(𝑅

1
− x ⋅ 𝛽

⊥
), and ℎ(𝑠) =

∫
+∞

−∞
|𝜔|𝑒
𝑖2𝜋𝜔𝑠

𝑑𝜔 is a filter function.
According to a geometric relationship in Figure 1, the FBP

algorithm requires two necessary conditions: (i) the isoray
is perpendicular to linear detectors; (ii) an insection point
where the isoray and linear detectors cross is the center of
linear detectors.

Figure 2: Phantom.

3. Appearances of Three Image Artifacts

We give a test phantom, which is comprised of eleven circles,
and ten circles are distributed evenly among the center of the
phantom, as shown in Figure 2.

The offset of an isocenter may cause CT image artifacts
[9–12]. This offset is divided into two cases: along linear
detectors or along the direction which is perpendicular to
linear detectors. The latter is equivalent to error of 𝑅

1
. When

𝑅
1
is much larger than the field of view (FOV), we can still

reconstruct a satisfying CT image, even if 𝑅
1
remains some

errors [13]. For this reason, we only consider the offset of an
isocenter along linear detectors.

We give a simple geometric relationship of CT scanning
system with the offset of an isocenter in Figure 3, where 𝑂

1

is the isocenter. Let 𝑥
2
axis denote the direction which is

through the center 𝑂
𝐷
of linear detectors and perpendicular

to linear detectors. Let 𝑥
1
axis denote the direction which is

through 𝑂
1
and perpendicular to 𝑥

2
axis. Let 𝑂 denote the

insection point where the 𝑥
1
axis and the 𝑥

2
axis cross. Let 𝛾

denote the angle contained by the line 𝑂𝑆 and the line 𝑂
1
𝑆.

We perform numerical experiments with the simulated
data to show the appearance of image artifacts caused by
the offset of an isocenter. CT scanning system parameters
are as follows: the distance from X-ray source 𝑆 to 𝑥

1
axis

𝑅
1
= 550.000mm, the distance from X-ray source 𝑆 to linear

detectors 𝑅
2

= 905.000mm, linear detectors are composed
of 1024 cells, with the size of each cell 0.4mm. We assume
that there is the offset of an isocenter |𝑂𝑂

1
| = 5.0mm. Each

detector takes 720 projections in 2𝜋. The image matrix is
1024 × 1024. For the phantom in Figure 2, we reconstruct CT
images using the FBP formula (1), as shown in Figure 4, where
the artifacts nonuniformly spread to all directions. And the
reconstructed points away from the center of CT images are
comparatively worse.

For this offset of an isocenter, we may obtain the pro-
jection point of the isocenter on linear detectors by many
experiments and then translate the projection data. The
reconstructed images from the translated projection data are
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𝑆
𝑥2
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𝑂𝐷

𝑂1
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𝛾

𝛾

𝑙

x

Figure 3: A simple geometric relationship of CT scanning system
with the offset of an isocenter.

Figure 4: CT image artifacts caused by the offset of an isocenter.

shown in Figure 5, where the artifacts obviously reduce. In
fact, an isoray is not perpendicular to linear detectors when
the offset of an isocenter happens. So there still exist some
image artifacts caused by the deflection of linear detectors
in Figure 5. That is, linear detectors deflect to the dotted line
from 𝑥

1
axis in Figure 3.

We also give a simple geometric relationship of CT scan-
ning systemwith the deflection of linear detectors in Figure 6,
where linear detectors deflect to the heavy continuous line
from 𝑥

1
axis. Let 𝛾 denote the clockwise deflection angle.

Making use of the same previous parameters, we can calculate
𝛾 = 0.52

∘. We can reconstruct CT images using the FBP
formula (1) from the projection data with the deflection of
linear detectors, as shown in Figure 5, which is exactly same
with the reconstructed image from the translated projections
data with the offset of isocenter.

Similarly, when the offset of an isocenter and the deflec-
tion of linear detectors simultaneously happen, we also obtain
CT image artifacts, as shown in Figure 7, where the isocenter
offset is 2.0mm and 𝛾 = 0.52

∘, and the other parameters are
same as above mentioned.

Figure 5: Reconstruction images from the translated projection
data, or CT image artifact caused by the deflection of linear
detectors.

𝑆
𝑥2

𝑥1𝑂

𝑂𝐷

𝐹

𝐸

Detector

𝛾

x

Figure 6: A simple geometric relationship of CT scanning system
with the deflection of linear detectors.

4. Forming Mechanism of Three
Image Artifacts

We give the forming mechanism of three image artifacts in
this section. For a reconstructed point x, we analyze a recon-
struction process of x and give a minimum bias expression
under every projection angle.

For ease of the following analysis, let a polar coordinate
(𝑟, 𝜃) denote x, and let 𝑠

0
denote its projection address on

linear detectors. If there is no error in CT system, we can
calculate 𝑠

0
= 𝑅
2
× 𝑟 cos(𝛽 − 𝜃)/(𝑅

1
+ 𝑟 sin(𝛽 − 𝜃)). From

Figure 3, the projection point of x is a point 𝐸 on linear
detectors, and a projection address is 𝑠 = 𝑂

1𝐷
𝐸, where

𝑂
1𝐷

is the projection point of the isocenter 𝑂
1
on linear

detectors. However, we still take 𝑂 as an isocenter in image
reconstruction when using the FBP formula (1). So the other
point 𝐹 is regarded as the projection point of x where 𝑂

𝐷
𝐹 =

𝑂
1𝐷

𝐸. Under this condition, x will be reconstructed on the
line 𝑆𝐹. Now, we draw a vertical line which is through x
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Figure 7: CT image artifacts caused by the offset of an isocenter and
the deflection of linear detectors.

and perpendicular to the line 𝑆𝐹, and let 𝑀(𝛽) denote the
insection point. The trajectory of 𝑀(𝛽) can approximately
describe the reconstruction result of x when 𝛽 ranges from
0 to 2𝜋. Now, firstly we calculate the distance 𝑅(𝛽) between x
and𝑀(𝛽) as follows:

𝑅 (𝛽) =
󵄨󵄨󵄨󵄨󵄨
|𝑂𝑆|
2
× 𝑟 cos (𝛽 − 𝜃) − 𝑠 ×

󵄨󵄨󵄨󵄨𝑂𝐷𝑆
󵄨󵄨󵄨󵄨 × |𝑂𝑆|

−𝑠 ×
󵄨󵄨󵄨󵄨𝑂𝐷𝑆

󵄨󵄨󵄨󵄨 × 𝑟 sin (𝛽 − 𝜃)
󵄨󵄨󵄨󵄨󵄨

× (√𝑠2 ×
󵄨󵄨󵄨󵄨𝑂𝐷𝑆

󵄨󵄨󵄨󵄨

2

+ |𝑂𝑆|
4
)

−1

,

(2)

where 𝑠 = 𝑠
0
− (|𝑂
𝐷
𝑆| × |𝑂𝑂

1
|/|𝑂𝑆|).

So, we can obtain a coordinate of𝑀(𝛽) as follows:

𝑀(𝛽) = (𝑟 cos 𝜃 − 𝑅 (𝛽) × cos(𝛽 + tan−1
𝑠 ×

󵄨󵄨󵄨󵄨𝑂𝐷𝑆
󵄨󵄨󵄨󵄨

|𝑂𝑆|
2

) ,

𝑟 sin 𝜃 − 𝑅 (𝛽) × sin(𝛽 + tan−1
𝑠 ×

󵄨󵄨󵄨󵄨𝑂𝐷𝑆
󵄨󵄨󵄨󵄨

|𝑂𝑆|
2

)) .

(3)

We choose a reconstructed point x
0

= (90, 𝜋/4) and
assume that the offset |𝑂𝑂

1
| of an isocenter is 0.744mm, that

is, 2.15 pixel. According to formula (3), we may draw the
trajectory of 𝑀(𝛽) by Mathematica, where 𝛽 ranges from 0
to 2𝜋, as shown in Figure 8(a). The reconstruction image of
x
0
using the FBP formula (1) is shown in Figure 8(b), which

explain the artifacts in Figure 4.
Similarly, for the linear detectors deflection, we may

calculate the same previous expressions (2) and (3) of 𝑅(𝛽)
and𝑀(𝛽), where 𝑠 = 𝑠

0
sin𝛼/ sin(𝛾 + 𝛼), 𝛼 = tan−1(𝑠

0
/|𝑂𝑆|).

We choose 𝛾 = 0.52
∘. The trajectory of 𝑀(𝛽) and the

reconstruction image of x
0
are as shown in Figure 9, which

explain the artifacts in Figure 5.
Similarly, for the offset of an isocenter and the deflection

of linear detectors, we also calculate the previous expressions
(2) and (3) of 𝑅(𝛽) and𝑀(𝛽), where 𝑠 = (𝑠

0
× |𝑂𝑆| − |𝑂

𝐷
𝑆| ×

|𝑂𝑂
1
|) × sin𝛼/|𝑂𝑆| × sin(𝛾 + 𝛼), 𝛼 = tan−1(𝑠

0
/|𝑂𝑆|). We

choose the offset of an isocenter |𝑂𝑂
1
| = 0.5mm and 𝛾 =

0.6
∘. The trajectory of 𝑀(𝛽) and the reconstruction image of

x
0
are as shown in Figure 10, which explain the artifacts in

Figure 7.

5. Derivation of FBP Formula Including
a Deflection Angle of Linear Detectors

In this section, we describe a new coordinate system and
derive the FBP formula including a deflection angle of linear
detectors, where the offset of an isocenter is attributed to the
deflection of linear detector.

Referring to Figure 11, we establish the coordinate system
𝑂𝑥
1
𝑥
2
, where the origin 𝑂 is the isocenter, 𝑥

2
axis is parallel

to the isoray and points to X-ray source 𝑆, and 𝑥
1
axis and 𝑥

2

axis form right-handed coordinate system. Let 𝜑 denote the
angle contained by the𝑥

1
axis and linear detectors.Obviously,

𝑥
2
axis is not perpendicular to linear detectors, and there is a

deflection of linear detectors and no offset of an isocenter in
this system.

For convenience of derivation, let the polar coordinate
𝑓(𝑟, 𝜃) denote the image function. Let 𝑂󸀠 denote the projec-
tion point of the isocenter 𝑂 on linear detectors, 𝑅

1
= |𝑂𝑆|

and 𝑅
2
= |𝑂
󸀠
𝑆|. We use the imaginary detectors in formula

derivation. Let 𝑑, 𝑞, and 𝑠 denote three projection points of
the reconstructed point x = (𝑟, 𝜃) on linear detectors, the
imaginary detectors, and 𝑥

1
axis, respectively. Let 𝑝(𝑑, 𝛽),

𝑝
1
(𝑞, 𝛽), and 𝑝

2
(𝑠, 𝛽) denote the corresponding projection

data. For a reconstructed point x
0
= (𝑟
0
, 𝜃
0
), and let 𝑑

0
, 𝑞
0
,

and 𝑠
0
denote three projection points corresponding to x

0
,

respectively.
From Figure 11, we can obtain the relationship between 𝑠

0

and 𝑞
0
, 𝑠, and 𝑞 as follows:

𝑠
0
=

𝑅
1
𝑞
0
cos𝜑

𝑅
1
− 𝑞
0
sin𝜑

, (4)

𝑠 =
𝑅
1
𝑞 cos𝜑

𝑅
1
− 𝑞 sin𝜑

. (5)

Now, we rewrite the FBP formula (1) as follows:

𝑓 (𝑟
0
, 𝜃
0
) =

1

2
∫

2𝜋

0

𝑅
1

2

(𝑅
1
− 𝑟
0
sin(𝜃
0
− 𝛽))
2

× ∫

∞

−∞

𝑅
1

√𝑅
1

2
+ 𝑠2

𝑝
2
(𝑠, 𝛽) ℎ (𝑠

0
− 𝑠) 𝑑𝑠 𝑑𝛽,

(6)

where ℎ(𝑠) = ∫
∞

−∞
|𝜔|𝑒
𝑖2𝜋𝜔𝑠

𝑑𝜔, 𝑠
0

= 𝑅
1
𝑟
0
cos(𝜃
0
− 𝛽)/(𝑅

1
−

𝑟
0
sin(𝜃
0
− 𝛽)).

From formula (4), (5), and (6), we may obtain

𝑞
0
=

𝑅
1
𝑟
0
cos (𝜃

0
− 𝛽)

𝑅
1
cos𝜑 − 𝑟

0
sin (𝜃
0
− 𝛽 − 𝜑)

. (7)

From formula (5) and ℎ(𝑠), we can obtain

𝑑𝑠

𝑑𝑞
=

𝑅
1

2 cos𝜑
(𝑅
1
− 𝑞 sin𝜑)

2
,

ℎ (𝑠
0
− 𝑠) =

1

𝐶2
ℎ (𝑞
0
− 𝑞) ,

(8)

where 𝐶 = 𝑅
1

2 cos𝜑/(𝑅
1
− 𝑞
0
sin𝜑)(𝑅

1
− 𝑞 sin𝜑).
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Figure 8: Analysis of artifacts caused by the offset of an isocenter: (a) the trajectory of𝑀(𝛽); (b) the reconstruction image.
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Figure 9: Analysis of artifacts caused by the deflection of linear detectors: (a) the trajectory of𝑀(𝛽); (b) the reconstruction image.

Finally, we substitute formulae (5) and (8) into (6) and
obtain after simplifying

𝑓 (𝑟
0
, 𝜃
0
) =

1

2
∫

2𝜋

0

(𝑅
1
− 𝑞
0
sin𝜑)

2

(𝑅
1
− 𝑟
0
sin(𝜃
0
− 𝛽))
2 cos𝜑

× ∫

∞

−∞

𝑅
1
− 𝑞 sin𝜑

√𝑅
1

2
+ 𝑞2 − 2𝑅

1
𝑞 sin𝜑

× 𝑝
1
(𝑞, 𝛽) ℎ (𝑞

0
− 𝑞) 𝑑𝑞 𝑑𝛽,

(9)

where 𝑝
1
(𝑞, 𝛽) = 𝑝(𝑅

2
𝑞/𝑅
1
, 𝛽).

The proposed previous formula can directly reconstruct
CT image without data rebinning.The formula includes three
parameters𝑅

1
,𝑅
2
, and 𝜑, which are unknown, independence

from the inspected objects, and identified by CT system. For
obtaining three parameters, we have designed themodel with
a dense matter such as iron or steel, by a row of mutual
parallel width and of the slit spacing formed. By super precise
scanning for the model in 2𝜋, we could make use of the
geometric relationship of these slit spacing projection and
estimate three parameters. But, this method is very sensitive
to a deflection angle of linear detectors 𝜑. We can improve
measurement precision by averaging the testing values of
repeated measurements.
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Figure 10: Analysis of artifacts caused by the offset of an isocenter and the deflection of linear detectors: (a) the trajectory of 𝑀(𝛽); (b) the
reconstruction image.
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Detector

𝑞0
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Figure 11: A geometric relationship of FBP formula derivation in-
cluding a deflection angle of linear detectors.

6. Numerical Simulation Experiment
and Conclusion

In this section we perform numerical experiments with sim-
ulated data to demonstrate our formula (9). We choose the
phantom in Figure 2 and the system parameters in Figure 4.
We can estimate 𝑅

1
= 550.023mm, 𝑅

2
= 905.014mm, and

𝜑 = 0.52
∘ in the formula (9). The reconstruction results

are shown in Figure 12 using the formula (9). Obviously, the
results validate our formula, which can correct the image

Figure 12: Reconstruction images using the FBP formula (9) includ-
ing a deflection angle of linear detectors.

artifacts caused by the offset of an isocenter and the deflection
of linear detectors.

We have given the appearances of three image artifacts
caused by the offset of an isocenter and the deflection
of linear detectors and analyzed the forming mechanism,
which can provide reference for three artifacts identification.
The correction method of the image artifacts is also pro-
posed. Our FBP algorithm including a deflection angle of
linear detectors can effectively correct three artifacts in CT
images.
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