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Lefteri Tsoukalas, USA
Marc Van Hulle, Belgium
Pablo Varona, Spain
Meel Velliste, USA
F. B. Vialatte, France
Ricardo Vigario, Finland
Thomas Villmann, Germany
Michal Zochowski, USA
Rodolfo Zunino, Italy



Contents

Fusion of Computational Intelligence Techniques andTheir Practical Applications, Rahib H. Abiyev,
Rafik Aliyev, Okyay Kaynak, I. Burhan Turksen, and Karl Walter Bonfig
Volume 2015, Article ID 463147, 3 pages

Prognostics of Lithium-Ion Batteries Based onWavelet Denoising and DE-RVM, Chaolong Zhang,
Yigang He, Lifeng Yuan, Sheng Xiang, and Jinping Wang
Volume 2015, Article ID 918305, 8 pages

An Enhanced Differential Evolution with Elite Chaotic Local Search, Zhaolu Guo, Haixia Huang,
Changshou Deng, Xuezhi Yue, and Zhijian Wu
Volume 2015, Article ID 583759, 11 pages

Fusing Swarm Intelligence and Self-Assembly for Optimizing Echo State Networks, Charles E. Martin
and James A. Reggia
Volume 2015, Article ID 642429, 15 pages

Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving
Disturbance for Function Optimization, Jie-sheng Wang, Shu-xia Li, and Jiang-di Song
Volume 2015, Article ID 374873, 12 pages

Expected Utility Based Decision Making under ?? -Information and Its Application, Rashad R. Aliev,
Derar Atallah Talal Mraiziq, and Oleg H. Huseynov
Volume 2015, Article ID 364512, 11 pages

AMethod for Estimating View Transformations from Image Correspondences Based on the Harmony
Search Algorithm, Erik Cuevas and Margarita Dı́az
Volume 2015, Article ID 434263, 15 pages

Application of Boosting Regression Trees to Preliminary Cost Estimation in Building Construction
Projects, Yoonseok Shin
Volume 2015, Article ID 149702, 9 pages

A Simple Fitness Function for Minimum Attribute Reduction, Yuebin Su, Jin Guo, and Zejun Li
Volume 2015, Article ID 921487, 6 pages

An Intelligent Model for Pairs Trading Using Genetic Algorithms, Chien-Feng Huang, Chi-Jen Hsu,
Chi-Chung Chen, Bao Rong Chang, and Chen-An Li
Volume 2015, Article ID 939606, 10 pages

Symmetry Based Automatic Evolution of Clusters: A New Approach to Data Clustering, Singh Vijendra
and Sahoo Laxman
Volume 2015, Article ID 796276, 21 pages

Optimization of High-Dimensional Functions through Hypercube Evaluation, Rahib H. Abiyev and
Mustafa Tunay
Volume 2015, Article ID 967320, 11 pages



Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm,
Wei-Der Chang
Volume 2015, Article ID 638068, 7 pages

AMultiuser Manufacturing Resource Service Composition Method Based on the Bees Algorithm,
Yongquan Xie, Zude Zhou, Duc Truong Pham, Wenjun Xu, and Chunqian Ji
Volume 2015, Article ID 780352, 13 pages

Incremental Discriminant Analysis in Tensor Space, Liu Chang, Zhao Weidong, Yan Tao, Pu Qiang,
and Du Xiaodan
Volume 2015, Article ID 587923, 10 pages

Application of𝑍-Number Based Modeling in Psychological Research, Rafik Aliev and Konul
Memmedova
Volume 2015, Article ID 760403, 7 pages

Predictive Modeling in Race Walking, Krzysztof Wiktorowicz, Krzysztof Przednowek, Lesław Lassota,
and Tomasz Krzeszowski
Volume 2015, Article ID 735060, 9 pages



Editorial
Fusion of Computational Intelligence Techniques
and Their Practical Applications

Rahib H. Abiyev,1 Rafik Aliev,2 Okyay Kaynak,3

I. Burhan Turksen,4 and Karl Walter Bonfig5

1Faculty of Engineering, Applied Artificial Intelligence Research Centre Near East University, Lefkoşa, North Cyprus,Mersın 10, Turkey
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Computational intelligence techniques inspired by evolution,
by nature, and by the brain are playing an important role in
the solution of complex real-world problems. Fusion of com-
putational intelligence techniques integrates neural networks,
fuzzy systems, and evolutionary computing into a system
design that enables handling of complexity and managing
of uncertainty and imprecision. Each respective technique
enhances the capability of the other and the fusion of these
paradigms in system design offsets the demerits of one
paradigm by the merits of another. Recently, computational
intelligence techniques have been widely applied to a wide
variety of complex problems, including engineering, science,
and business. However, due to complexity and uncertainty in
these problems, it becomes difficult to find out the optimal
solution of the problems. Hereby it is necessary to consider
the latest trends and developments in the field of fusion of
computational intelligence techniques and to develop effi-
cient computational models for solving practical problems.
Fusion of computational intelligence techniques covers the
spectrum of applications, comprehensively demonstrating
the advantages of fusion techniques in industrial applications
that deal with various kinds of inaccuracies and uncertainties.

The aim of this special issue was the presentation of
research articles as well as review articles incorporating the
contributions in theories, the structures, algorithms, and
advances in the design of system based on fusion of neural
networks, fuzzy systems, and evolutionary algorithms and
their practical applications.

The following is a brief summary for each of the accepted
articles.

The paper “A Method for Estimating View Transforma-
tions from Image Correspondences Based on the Harmony
Search Algorithm” by E. Cuevas and M. Dı́az presents a
new improved algorithm that combines the random sampling
consensus (RANSAC)method and theHarmony Search (HS)
algorithm for estimation of the model parameters from a
data set. The proposed algorithm adopts a different sampling
strategy than RANSAC to generate putative solutions and
can substantially reduce the number of learning iterations.
At each iteration, new candidate solutions are generated
iteratively by taking into consideration the quality of models
produced by previous candidate solutions. The rules for
the generation of candidate solutions are motivated by the
improvisation process that occurs when a musician searches
for a better state of harmony. The method is used for the
estimation of homographies, considering synthetic and real
images, and it is also employed for position estimation in a
humanoid robot.

The paper “Application of 𝑍-Number Based Modeling in
Psychological Research” by R. Aliev andK.Memmedova uses
𝑍-number based fuzzy approach for modelling the effect of
Pilates exercises onmotivation, attention, anxiety, and educa-
tional achievement of students.The grade point average of the
studentswas used as themeasure of educational achievement.
The inference techniques for approximate reasoning based on
𝑍-interpolation method suggested by Zadeh are used in the
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2 Computational Intelligence and Neuroscience

decision making process. The basic steps of 𝑍-number based
modelling with numerical solutions are presented.

The paper “Fusing Swarm Intelligence and Self-Assembly
forOptimizing Echo StateNetworks” byC. E.Martin and J. A.
Reggia considers the optimizing of a neural network’s weights
and topology using integration of self-assembly (SA) and
particle swarm optimization (PSO). The authors developed
a model that integrates network self-assembly and particle
swarm optimization for the purpose of growing neural
networks with weights and topologies that are optimized for
specified computational tasks. The presented model is used
for optimizing echo state network weights and topologies
on a number of challenging benchmark problems from the
domains of time-series forecasting and control.

The paper “Cuckoo Search Algorithm Based on Repeat-
Cycle Asymptotic Self-Learning and Self-Evolving Distur-
bance for Function Optimization” by J. Wang et al. devel-
oped a new improved cuckoo search algorithm based on
the repeat-cycle asymptotic self-learning and self-evolving
disturbance (RC-SSCS). A disturbance operation is added to
the algorithm in order tomake amore careful search near the
bird’s nests location. The repeat-cycle asymptotic mode is to
narrow the disturbance scope based on the last disturbance
results and then go on the next disturbance. The proposed
algorithm improves convergence velocity and optimization
accuracy of the cuckoo search (CS) algorithm for solving the
function optimization problems. This improved algorithm
overcomes the CS algorithm’s defects which result from its
high degree of random and strong leap and also makes full
use of the information near the bird’s nest location that had
been found. The comparative results with the benchmarking
functions show that the improved cuckoo search algorithm
has better convergence velocity and optimization accuracy.

The paper “Symmetry Based Automatic Evolution of
Clusters: A NewApproach to Data Clustering” by S. Vijendra
and S. Laxman presents a multiobjective genetic clustering
approach, in which data points are assigned to clusters based
on new line symmetry distance. The proposed multiob-
jective line symmetry based genetic clustering (MOLGC)
algorithm evolves near-optimal clustering solutions using
multiple clustering criteria, without a priori knowledge of
the actual number of clusters. The multiple randomized
dimensional trees based nearest neighbour search is used
to reduce the complexity of finding the closest symmetric
points. Experimental results show that proposed algorithm
can obtain optimal clustering solutions in terms of different
cluster quality measures.

The paper “Optimization of High-Dimensional Func-
tions through Hypercube Evaluation” by R. H. Abiyev and
M. Tunay proposes a novel evolutionary learning algorithm
based on evaluation and optimization of a hypercube for solv-
ing global numerical optimization problems.The algorithm is
inspired from the behaviour of doves discovering new areas
for food in natural life. The HO algorithm comprises the
initialization and evaluation process, displacement-shrink
process, and searching space process. The initialization and
evaluation process initializes initial solution and evaluates
the solutions in given hypercube. The displacement-shrink
process determines displacement and evaluates objective

functions using new points; the search area process deter-
mines next hypercube using certain rules and evaluates the
new solutions.The HO algorithm is tested on a set of specific
benchmarking functions and has shown better performance
for global optimization of both low- and high-dimensional
problems with large numbers of local optimal.

The paper “A Simple Fitness Function for Minimum
Attribute Reduction” by Y. Su et al. considers the problem
of finding the minimal subset of the condition attribute set
such that minimal set has the same classification quality
as the condition attribute set. For this purpose, the design
of fitness function that satisfies the equivalence between
the optimal solution and the minimal attribute reduction
is considered. The optimality and adequacy of the fitness
function were tested experimentally. Experimental results
show that the proposed fitness function is better than existing
fitness functions for each algorithm used in the test.

The paper “Expected Utility Based Decision Making
under 𝑍-Information and Its Application” by R. R. Aliev
et al. presents decision making under 𝑍-information based
on direct computation over 𝑍-numbers. 𝑍-numbers based
formalization of information represents a natural language-
(NL-) based value of a variable of interest in line with the
related NL-based reliability. The approach utilizes expected
utility paradigm and is applied to a benchmark decision
problem in economics.

The paper “An Intelligent Model for Pairs Trading Using
Genetic Algorithms” by C.-F. Huang et al. presents the
solution of pairs trading problem using genetic algorithms
(GA). In this problem, the pairs of stocks are bought and sold
in pair combinations for arbitrage opportunities. The results
showed that the GA-based models are generating robust
models to tackle the dynamic characteristics in the financial
application and provide an effective solution to pairs trading
for investment in practice.

Thepaper “AnEnhancedDifferential Evolutionwith Elite
Chaotic Local Search” by Z. Guo et al. presents an enhanced
differential evolution with elite chaotic local search (DEECL)
to solve complex optimization problems. The algorithm
utilizes a chaotic search strategy based on the heuristic infor-
mation from the elite individuals to promote the exploitation
power. The experimental results using classical test functions
show that DEECL is very competitive on the majority of the
test functions.

The paper “AMultiuser Manufacturing Resource Service
Composition Method Based on the Bees Algorithm” by Y.
Xie et al. presents multiuser resource service composition
(RSC) formodelling of an optimal resource service allocation
in current open and service-oriented manufacturing model.
The model takes into account both subjective and objective
quality of service properties as representatives to evaluate
a solution. The basic Bees Algorithm is tailored for finding
a near-optimal solution to the model. Particular rules are
designed for handling the constraints and finding Pareto
optimality. In addition, the established model introduces a
trusted service set to each user so that the algorithm could
start by searching in the neighbour of more reliable service
chains (known as seeds) than those randomly generated.
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The paper “Phase Response Design of Recursive All-Pass
Digital Filters Using a Modified PSO Algorithm” by W.-D.
Chang presents a design scheme for the phase response of an
all-pass recursive digital filter using a modified PSO (MPSO)
algorithm. In the MPSO algorithm, a new adjusting factor
is introduced in the velocity updating formula in order to
improve the searching ability. The algorithm is applied to
design the coefficients of the filter. Two different kinds of
linear phase response design examples are illustrated. The
obtained results show that the MPSO is superior to the
general PSO for the phase response design of the digital
recursive all-pass filter.

The paper “Application of Boosting Regression Trees
to Preliminary Cost Estimation in Building Construction
Projects” by Y. Shin uses a boosting regression tree (BRT)
algorithm for estimating the cost at the early stage of a
construction project. The boosting approach has attracted
attention because of its effective learning algorithm and
strong boundaries in terms of its generalization performance.
The used BRTmodel provides additional information such as
the importance plot and structure model, which can support
estimators in comprehending the decision making process.
Consequently, the boosting approach has shown a high
performance in cost estimations in a building construction
project.

The paper “Predictive Modeling in Race Walking” by K.
Wiktorowicz et al. presents the use of linear and nonlinear
multivariable models for prediction sports results of athletes
practicing race walking. These models are calculated using
data collected from race walkers’ training events and they are
used to predict the result over a 3 km race based on training
loads. The paper proposes the nonlinear modifications for
linear models and artificial neural networks in order to
achieve smaller prediction error. It was shown that the best
model is a modified LASSO regression with quadratic terms
in the nonlinear part. This model has the smallest prediction
error and simplified structure by eliminating some of the
predictors.

The paper “Prognostics of Lithium-Ion Batteries Based
on Wavelet Denoising and DE-RVM” by C. Zhang et al.
presents a novel battery capacity prognostics approach in
order to estimate the remaining useful life (RUL) of lithium-
ion batteries. Wavelet denoising is performed twice with
different thresholds in order to weaken the strong noise and
remove the weak noise. Relevance vector machine (RVM)
improved by differential evolution (DE) algorithm is utilized
to estimate the battery RUL based on the denoised data.
An experiment involving battery 5 capacity prognostics case
and battery 18 capacity prognostics case is conducted and
validated that the proposed approach can predict the trend
of battery capacity trajectory closely and estimate the RUL
precisely.

The paper “Incremental Discriminant Analysis in Tensor
Space” by L. Chang et al. presents a machine learning
algorithm in tensor space. The algorithm employs tensor
representation to carry on discriminant analysis and combine
incremental learning to alleviate the computational cost. The
experiments on facial image detection have shown that the
algorithm improves the performance of the system compared

with other algorithms and reduces the computational issues
apparently.

Although the above papers do not completely cover all the
aspects of fusion of computational intelligence techniques,
they provide important issues and the benefits of practical
applications of computational intelligence techniques in engi-
neering and science.
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Lithium-ion batteries are widely used inmany electronic systems.Therefore, it is significantly important to estimate the lithium-ion
battery’s remaining useful life (RUL), yet very difficult. One important reason is that the measured battery capacity data are often
subject to the different levels of noise pollution. In this paper, a novel battery capacity prognostics approach is presented to estimate
the RUL of lithium-ion batteries. Wavelet denoising is performed with different thresholds in order to weaken the strong noise and
remove the weak noise. Relevance vector machine (RVM) improved by differential evolution (DE) algorithm is utilized to estimate
the battery RUL based on the denoised data. An experiment including battery 5 capacity prognostics case and battery 18 capacity
prognostics case is conducted and validated that the proposed approach can predict the trend of battery capacity trajectory closely
and estimate the battery RUL accurately.

1. Introduction

Lithium-ion batteries have been widely used as crucial com-
ponents and important backup elements for many sys-
tems including electric vehicles, consumer electronics, and
aerospace electronics. Comparedwith other kind of batteries,
the lithium-ion battery has advantages of high power density,
high galvanic potential, light weight, and long cycle life.
However, irreversible chemical and physical changes take
place in the lithium-ion battery with usage and aging. As
a result, the battery health degrades gradually until it is
no longer usable eventually. The consequence of the battery
failure would lead to the capacity degradation, operation loss,
downtime, and even catastrophic failure. Hence, prognostics
and health management (PHM) of the lithium-ion battery
has been an active field which has attracted an increasing
attention today [1–12].

PHM is an enabling discipline composed of technologies
and approaches to estimate the reliability of an application
system in its actual life cycle conditions to provide ample
forewarning before a failure occurs andmitigates system risk.

PHMof the lithium-ion battery includes evaluating its state of
health (SOH) and predicting its remaining useful life (RUL).
Meanwhile, the gradual decreased capacity of the battery is
a universally used SOH indicator that can track its health
degradation.

Model-based and data-driven approaches are two main
kinds of approaches to the battery capacity prognostics.
Model-based approaches employ mathematical representa-
tions to character the understanding of the battery failure
and underlying the battery capacity’s degradation model.
Extended Kalman filtering (EKF) [1, 2], nonlinear model
[3, 4], and particle filtering (PF) [5, 6] are commonly used
model-based methods for the battery capacity estimation.
However, an accurately analytical and universally accepted
model to track the battery capacity degradation and evaluate
the battery RUL is usually difficult to be derived because
of the complex electronic system, noise, data availability,
uncertain environments, and application constraints. Data-
driven approaches utilize statistical and machine learning
techniques to evaluate the battery capacity and predict the
battery RUL. The approaches avoid constructing complex
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physical models and have been applied in many relative
works [7–12]. Artificial neural network is a widely used
data-driven approach to the battery capacity prognostics
[7, 8]. However, it has disadvantages of poor generalization,
difficult structure confirmation, and low convergence rate.
Support vector machine (SVM) is a machine learning tool
[13] characterized by the usage of kernel functions and it has
been utilized to estimate the battery RUL [9, 10]. Relevance
vector machine (RVM) is a Bayesian sparse kernel technique
[14] with usage of much fewer kernel functions and higher
performance compared to the SVM. Meanwhile, RVM has
been applied to the research field [11, 12].

The measured battery capacity data are often subject to
the different levels of noise pollution because of the impact
of disturbances, measurement errors, stochastic load, and
other unknown behaviors in batteries. Capacity prognostics
based on the noisy data cannot produce accurate predict
results. Therefore, it is significantly important to preprocess
the measured capacity data for the purpose of extracting
the original data and removing the noise. To address the
problem and estimate the battery RUL accurately, a novel
battery capacity prognostics approach is presented in the
paper. A wavelet denoising method performed with different
thresholds is employed to process the measured data to
reduce the uncertainty and extract the useful information.
RVM optimized by differential evolution (DE) algorithm
is utilized to estimate the battery RUL. An experiment
including battery 5 capacity prognostics case and battery
18 capacity prognostics case is conducted, which validates
that the proposed approach can predict the trend of battery
capacity trajectory closely and estimate the RUL accurately.

The material in the paper is organized in the following
order: Section 2 describes the strategy of wavelet denois-
ing method. Section 3 introduces RVM algorithm and its
parameter optimization by using DE algorithm. Section 4
illustrates the experiment procedure, presents the experiment
results, and gives discussions. Finally, conclusions are drawn
in Section 5.

2. Wavelet Denoising

Themeasured capacity data of batteries often suffer from the
different levels of noise pollution. Experiment with noisy data
cannot yield the accurate RUL.As a result, it is very important
to preprocess the capacity data for the purpose of extracting
the original data. Wavelet denoising method is adopted to
address the concern.

Assume that the measured capacity data capacity(𝑐) is
comprised by

capacity (𝑐) = 𝑥 (𝑐) + 𝜎 (𝑐) , (1)

where 𝑥(𝑐) is the original data; 𝜎(𝑐) is the additive noise; and
𝑐 refers to the cycle which is a time index.

Assume that 𝑍 is an integers set, {𝑉
𝑡
}
𝑡∈𝑍

is an orthogonal
multiresolution analysis, and {𝑊

𝑡
}
𝑡∈𝑍

is the associatedwavelet
space. The capacity(𝑐) projection on 𝑉

𝑡
is

𝑃
𝑉
𝑡

= 𝑃
𝑉
𝑡+1
+𝑃
𝑊
𝑡+1

= ∑

𝑖∈𝑍

𝑐
𝑖

𝑡+1𝜙𝑡+1,𝑖 +∑
𝑖∈𝑍

𝑑
𝑖

𝑡+1𝜓𝑡+1,𝑖, (2)

where 𝑃
𝑉
𝑡+1

and 𝑃
𝑊
𝑡+1

denote the capacity(𝑐) projections on
𝑉
𝑡+1 and 𝑊

𝑡+1 at 2𝑡+1 resolution, respectively; 𝑐𝑖
𝑡+1 and 𝑑

𝑖

𝑡+1
refer to the scaling coefficient and wavelet coefficient of
capacity(𝑐) at 2𝑡+1 resolution, respectively; 𝜙

𝑡+1 and 𝜓
𝑡+1

represent the scaling function and wavelet function of
capacity(𝑐) at 2𝑡+1 resolution, respectively. Therefore, 𝑐

𝑡+1
and 𝑑

𝑡+1 characterize the approximations and details of
capacity(𝑐) at 2𝑡+1 resolution, respectively. Correspondingly,
{𝑉
𝑡
}
𝑡∈𝑍

can be decomposed as

𝑉
𝑡
= 𝑊
𝑡+1 ⊕𝑉𝑡+1 = 𝑊

𝑡+1 ⊕ (𝑊𝑡+2 ⊕𝑉𝑡+2)

= 𝑊
𝑡+1 ⊕𝑊𝑡+2 ⊕ (𝑊𝑡+3 ⊕𝑉𝑡+3)

= 𝑊
𝑡+1 ⊕𝑊𝑡+2 ⊕𝑊𝑡+3 ⊕ ⋅ ⋅ ⋅ .

(3)

By using the multilevel wavelet decomposition, discrete
approximation coefficients and detail coefficients are pro-
duced. The detail coefficients with small absolute values are
considered to be noise. Generally, the traditional wavelet
denoising method is setting the detail coefficients below
a threshold to zero and reconstructing the denoised data
by using the rest coefficients. Sqtwolog threshold, rigorous
threshold, heursure threshold, and minimax threshold are
commonly used rules to yield the threshold. In the work,
the wavelet denoising is performed twice with sqtwolog
threshold rule and minimax threshold rule, respectively.

The sqtwolog threshold rule produces the threshold
which can yield good performance multiplied by a small
factor proportional to log(length(capacity)):

Thresholdsqtwolog = √2 log 𝑛, (4)

where 𝑛 is the length of the capacity set.
The minimax threshold rule brings about the minimum

of the maximum mean square error generated for the worst
function with a given set by using theminimax principle.The
threshold is defined as

Thresholdminimax = 𝑎+ 𝑏 ∗
log (𝑛)
log (2)

, (5)

where 𝑎 and 𝑏 are factors which are generally set to 0.3936
and 0.1829, respectively.

The minimax threshold is obviously lower than the sqt-
wolog threshold in magnitude with a signal. Wavelet denois-
ing with the sqtwolog threshold can weaken the strong noise
obviously. Meanwhile, wavelet denoising with the minimax
threshold can remove the weak noise effectively. The wavelet
denoising strategy in the work is implementing wavelet
denoising with the sqtwolog threshold firstly and then per-
forming wavelet denoising with the minimax threshold.

3. DE-RVM

3.1. RVM. RVM is firstly presented in [14] and has generated
demonstrative effect in prognostics [15–17]. The algorithm is
a Bayesian treatment which provides probabilistic interpre-
tation of the output. The relevance vectors and weights are
obtained by maximizing a marginal likelihood.
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Assume that {x
𝑖
, 𝑡
𝑖
}
𝑁

𝑖=1 is the input data. The target 𝑡
𝑖
is

obtained by

𝑡
𝑖
= 𝑦 (x

𝑖
;w) + 𝜀

𝑖
, (6)

where w = (𝑤0, 𝑤1, . . . , 𝑤𝑁)
𝑇 and 𝜀

𝑖
is the noise with mean

zero and variance 𝜎2.
Assume that 𝑡

𝑖
is independent and the likelihood of com-

plete dataset can be defined as

𝑝 (t | w, 𝜎2) = (2𝜋𝜎2)
−𝑁/2

exp {− 1
2𝜎2

󵄩󵄩󵄩󵄩t−𝜑w
󵄩󵄩󵄩󵄩

2
} , (7)

where t = (𝑡1, 𝑡2, . . . , 𝑡𝑁)
𝑇 and 𝜑 is a 𝑁 × (𝑁 + 1) design

matrix with 𝜑 = [𝜑(x1), 𝜑(x2), . . . , 𝜑(x𝑁)]
𝑇 and 𝜑(x

𝑖
) =

[1, 𝐾(x
𝑖
, x1), 𝐾(x𝑖, x2), . . . , 𝐾(x𝑖, x𝑁)]

𝑇.
Maximum likelihood estimations ofw and 𝜎2 in (7) often

result in overfitting. Hence, an explicit zero-mean Gaussian
prior probability distribution is defined in order to constrain
the parameters as

𝑝 (w | 𝛼) =

𝑁

∏

𝑖=0
𝑁(𝑤
𝑖
| 0, 𝛼−1
𝑖
) , (8)

where 𝛼 is a𝑁 + 1 hyperparameters vector.
Using Bayes’ rule, the posterior probability about all of the

unknown parameters can be obtained by

𝑝 (w,𝛼, 𝜎2 | t)

=

𝑝 (t | w,𝛼, 𝜎2) 𝑝 (w, 𝛼, 𝜎2)
∫ 𝑝 (t | w,𝛼, 𝜎2) 𝑝 (w,𝛼, 𝜎2) 𝑑w 𝑑𝛼 𝑑𝜎2

.

(9)

However, the normalizing integral ∫𝑝(t | w,𝛼, 𝜎2)𝑝(w,
𝛼, 𝜎

2
)𝑑w 𝑑𝛼 𝑑𝜎

2 cannot be easily executed.Therefore,𝑝(w,𝛼,
𝜎
2
| t) can be instead decomposed as

𝑝 (w,𝛼, 𝜎2 | t) = 𝑝 (w | t,𝛼, 𝜎2) 𝑝 (𝛼, 𝜎2 | t) . (10)

Based on the Bayes’ rule, the posterior distribution of
weights is obtained through

𝑝 (w | t,𝛼, 𝜎2) =
𝑝 (t | w, 𝜎2) 𝑝 (w | 𝛼)

𝑝 (t | 𝛼, 𝜎2)
,

𝑝 (w | t,𝛼, 𝜎2) = (2𝜋)−(𝑁+1)/2 |Σ|−1/2

⋅ exp {−1
2
(w −𝜇)

𝑇

Σ
−1
(w −𝜇)} ,

(11)

where the posterior mean and covariance are

𝜇 = 𝜎
−2
Σ𝜑
𝑇t,

Σ = (𝜎
−2
𝜑
𝑇
𝜑+𝐴)

−1
,

(12)

where 𝐴 = diag(𝛼0, 𝛼1, . . . , 𝛼𝑁).

Because of the uniform hyperpriors, 𝑝(t | 𝛼, 𝜎
2
) is de-

scribed by

𝑝 (t | 𝛼, 𝜎2) = ∫𝑝 (t | w, 𝜎2) 𝑝 (w | 𝛼) 𝑑w

= (2𝜋)−𝑁/2 󵄨󵄨󵄨󵄨󵄨𝜎
2I+𝜑𝐴−1𝜑𝑇󵄨󵄨󵄨󵄨󵄨

−1/2

⋅ exp {−1
2
t𝑇 (𝜎2I+𝜑𝐴−1𝜑𝑇)

−1
t} .

(13)

The maximum posterior (MP) estimate of the weights is
described by the posterior mean, which depends on the value
of 𝛼 and 𝜎

2. The estimates of 𝛼MP and 𝜎
2
MP are acquired by

maximizing the marginal likelihood. Tipping [14] presents
the iterative formulas for 𝛼MP and 𝜎

2
MP as

𝛼
new
𝑖

=
1 − 𝛼
𝑖
Σ
𝑖𝑖

𝜇
2
𝑖

,

(𝜎
2
)
new

=

󵄩󵄩󵄩󵄩𝑡 − 𝜑𝜇
󵄩󵄩󵄩󵄩

2

𝑁 − ∑
𝑖
(1 − 𝛼

𝑖
Σ
𝑖𝑖
)
,

(14)

where Σ
𝑖𝑖
is the 𝑖th diagonal element of the posterior weight

covariance.
Assume that x

∗
is a new input and the probability distri-

bution of the output 𝑡
∗
is obtained by

𝑝 (𝑡
∗
| t,𝛼MP, 𝜎

2
MP)

= ∫𝑝 (𝑡
∗
| w, 𝜎2MP) 𝑝 (w | t,𝛼MP, 𝜎

2
MP) 𝑑w.

(15)

It can be easily obtained for both integrated terms are
Gaussian, and the result is also a Gaussian form

𝑝 (𝑡
∗
| t,𝛼MP, 𝜎

2
MP) = 𝑁(𝑡

∗
| 𝑦
∗
, 𝜎

2
∗
) . (16)

The mean and the variance are

𝑦
∗
= 𝜇
𝑇
𝜑 (x
∗
) ,

𝜎
2
∗
= 𝜎

2
MP +𝜑 (x∗)

𝑇

Σ𝜑 (x
∗
) .

(17)

Gaussian radial basis function is selected as the kernel
function for its powerful nonlinear processing capability, and
the function is defined as

𝐾(x, x
𝑖
) = exp[−

(x − x
𝑖
)
2

2𝛾2
] , (18)

where 𝛾 is the width factor which needs to be predetermined
for it is crucially important to the predict performance.

3.2. DE Algorithm. DE algorithm is a population-based and
stochastic search approach [18] and has shown superior
performance on nonlinear, nonconvex, and nondifferentiable
optimization problems [19–21]. DE algorithm starts with an
initial population vector, which is randomly generated in a
solution space. Assume that 𝑁 is the population size and
𝑋
𝑟𝑖,𝐺

(𝑖 = 1, 2, . . . , 𝑁) is a solution vector of the generation𝐺.
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For the classical DE algorithm, mutation and crossover are
utilized to generate trial vectors, and selection is used to select
the better vectors.

Mutation. For each vector 𝑋
𝑟𝑖,𝐺

, a mutant vector 𝑉
𝑖,𝐺

is gen-
erated by

𝑉
𝑖,𝐺

= 𝑋
𝑟1,𝐺 +𝐹 (𝑋𝑟2,𝐺 −𝑋𝑟3,𝐺) 𝑟1 ̸= 𝑟2 ̸= 𝑟3 ̸= 𝑖, (19)

where 𝑟1, 𝑟2, and 𝑟3 are random integer indexes selected
from {1, 2, . . . , 𝑁}; 𝐹 is the scale fact which determines the
amplification of the difference vector (𝑋

𝑟2,𝐺 − 𝑋
𝑟3,𝐺), and

𝐹 ∈ [0, 2].

Crossover. The crossover operation refers to yielding the trial
vector by using the mutant vector 𝑉

𝑖,𝐺
and target vector𝑋

𝑖,𝐺
:

𝑈
𝑗𝑖,𝐺

=
{

{

{

𝑉
𝑗𝑖,𝐺

, rand
𝑗
≤ 𝐶
𝑟
or 𝑗 = 𝑘

𝑋
𝑗𝑖,𝐺

, otherwise,
(20)

where 𝑗 = 1, 2, . . . , 𝐷, and 𝐷 is the problem dimension;
𝐶
𝑟
∈ [0, 1] is the predefined crossover constant; rand

𝑗
is the

𝑗th evaluation which is randomly generated between 0 and 1;
𝑘 ∈ {1, 2, . . . , 𝐷} and it is a random index.

Selection. Assume that 𝑓(𝑥) is a minimization problem. The
greedy selection scheme is defined as

𝑋
𝑖,𝐺+1

=
{

{

{

𝑈
𝑖,𝐺
, if 𝑓 (𝑈

𝑖,𝐺
) < 𝑓 (𝑋

𝑖,𝐺
)

𝑋
𝑖,𝐺
, otherwise.

(21)

The above three steps are repeated until reaching the
terminal condition. Then the best vector with minimum
fitness value is exported as the result.

3.3. Steps of Optimization. DE-RVM refers to the RVM with
width factor optimized by DE algorithm. Mean square error
(MSE) is used as the fitness function:

MSE =
∑
𝐻

𝛿=1 [𝑧
∗
(𝛿) − 𝑧 (𝛿)]

2

𝐻
, (22)

whereMSE represents the deviate degree of the predicted data
and the original data; 𝛿 = 1, 2, . . . , 𝐻, and 𝐻 is the length
of the original data; 𝑧(𝛿) and 𝑧∗(𝛿) are the original data and
predicted data, respectively.

Theoptimization target is tominimize theMSEvalue, and
the optimizing steps are described as follows:

(1) Initialize theDE algorithmparameters, which include
the population size, scale factor, crossover rate, and
maximum generation.

(2) Produce the mutant vector and trial vector according
to (19) and (20).

(3) Determine the next generation vector according to
(21).

(4) Repeat steps (2) and (3) until the terminated criterion
is met.

(5) Output the optimized value to the RVM and exit the
program.
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Figure 1: Measured capacity data of batteries.

4. Prognostics Experiment

4.1. Experiment Data. An experiment is conducted to dem-
onstrate the proposed capacity prognostics approach, and
the data were obtained from data repository of NASA
Ames Prognostics Center of Excellence [22]. In the data
collected procedure, lithium-ion batteries were working
under three different operational profiles: charge, discharge,
and impedance with a temperature of 25∘C. Charging was
performed at a 1.5 A constant current until the battery voltage
reached 4.2 V and then maintaining the 4.2 V constant volt-
age until the current dropped to 20mA.Dischargingwas run-
ning at a 2A constant current until the battery voltage felled
to 2.7 and 2.5 V, which were corresponding to batteries 5 and
18, respectively. Impedance measurement was implemented
with an electrochemical impedance spectroscopy frequency
sweep ranging from 0.1Hz to 5 kHz. Repeated charge and
discharge cycles led to the accelerated aging of batteries
while impedance measurements discovered the changes of
the internal battery parameters with aging progresses. The
experiments were terminated when the capacity of batteries
reached its end-of-life (EOL) threshold, whichwas about 70%
rated capacity. In the experiments, each nominal capacity of
lithium-ion battery is 2 Ah and the EOL threshold is set to
1.38 Ah. The lithium-ion batteries 5 and 18 capacity data are
shown in Figure 1. It can be observed that the capacity gener-
ally degrades with usage for the reason of irreversible physical
and chemical changes and at some cycle increases rapidly
and shortly due to the impact of disturbances, measurement
errors, stochastic load, or other unknown behaviors in the
batteries. The length of batteries 5 and 18 capacity data are
166 cycles and 132 cycles, respectively.Meanwhile, their actual
cycle lives are 129 and 114, respectively.

4.2. Experiment Procedure. The experiment includes a bat-
tery 5 capacity prognostics case and a battery 18 capacity
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Perform wavelet denoising and yield the denoised data.

Divide the denoised data into training data and testing data.

Obtain the width factor by using DE algorithm based on 
the training data.

Establish the predict model and estimate the predicted
 testing data.

Generate the estimated RUL.

Figure 2: Flowchart of predict steps.

prognostics case. The detailed predict steps of each case are
shown in Figure 2 and described as follows:

(1) Perform wavelet denoising based on the measured
data and obtain the denoised data.

(2) Separate the denoised data into training data and
testing data. The lengths of the training data in the
two battery cases are set to 80 and 70, respectively.
Therefore, the lengths of the testing data in two cases
are 88 and 62, respectively.

(3) By using DE algorithm, a width factor is generated
based on the training data.

(4) A predict model is constructed by RVM with adopt-
ing the optimized width factor, and the predicted
testing data are estimated.

(5) Generate the estimated RUL.

4.3. Experiment Results and Analysis. Wavelet denoising
implemented twice with different thresholds is employed to
process the measured capacity data. Figure 3 displays the
capacity data wavelet denoised with the sqtwolog threshold,
and strong peak pulses are weakened obviously compared
to Figure 1. Then the denoised capacity data are processed
by using wavelet denoising with the minimax threshold
to remove the weak noise. The denoised capacity data are
shown in Figure 4 and the trajectory of the denoised data is
continuous and smooth.

The DE algorithm population size and maximum gener-
ation are set to 30 and 100, respectively; 𝐹 is equal to 0.6;
𝐶
𝑟
is linearly reduced from 0.9 to 0.3. Figure 5 shows the

width factor optimization procedures by using DE algorithm
based on batteries 5 and 18 training data, respectively. The
corresponding optimized wider factors are 0.5009 and 0.2778
in the two battery cases, respectively.
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Battery 5
Battery 18

Figure 3: The batteries’ capacity data wavelet denoised with the
sqtwolog threshold.
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Figure 4: The batteries’ capacity data wavelet denoised with the
minimax threshold further.

Adopting the optimized width factor, RVM is used to
perform battery capacity prognostics. In order to quantify
the prognostic performance, absolute error (AE), and MSE
between the original testing data and the predicted testing
data, relative accuracy (RA) and 𝛼 − 𝜆 accuracy [23] are
employed as the measure metrics. The 𝛼 − 𝜆 accuracy is
applied to verify whether the estimated RUL is within the
confidence interval defined by 𝛼. The metrics are defined as

AE = RULes −RUL,

RA = 1−
󵄨󵄨󵄨󵄨RULes − RUL󵄨󵄨󵄨󵄨

RUL
,

𝛼 − 𝜆 accuracy =
{

{

{

Yes if RULes ∈ [𝐶1, 𝐶2]

No if others,

(23)
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Table 1: Actual RULs, estimated RULs, AEs, RAs, and MSEs of two cases.

Case Estimated RUL Actual RUL AE RA MSE 𝛼 − 𝜆 accuracy
Battery 5 45 49 −4 91.8% 1.4178𝑒 − 04 Yes
Battery 18 40 44 −4 90.9% 3.9249𝑒 − 05 Yes
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Figure 5: The width factor optimization procedures.
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Figure 6: Prediction results.

where RULes refers to the estimated RUL and RUL denotes
the actual RUL; 𝐶

1
and 𝐶

2
are confidence intervals which

equal RUL ∗ (1 − 𝛼) and RUL ∗ (1 + 𝛼), respectively; 𝛼 is
a bound which is set to 0.1 in the experiment.

Actual RULs in the two battery cases are 49 and 44,
respectively. The predictions are displayed in Figure 6. Esti-
mated RULs, actual RULs, AEs, RAs, MSEs, and 𝛼 −

𝜆 accuracy of two cases are shown in Table 1. As can be seen
from Figure 6, the DE-RVM predicts the trend of capacity
degradation trajectories of the two cases successfully. Mean-
while this can also be verified by the MSEs in Table 1, which
are pretty low in the two cases and this denotes that the
predicted testing data are close to the original testing data.

RAs are all beyond 90% in two cases which implies high
prediction accuracies produced by the DE-RVM.Meanwhile,
the estimated RULs in the two cases are both within the
confidence interval as the last row shows.

For the purpose of validating the predict performance of
the presented prognostics approach, the DE-RVM approach
is compared with ANN optimized by DE algorithm (DE-
ANN) [24] approach and SVM improved by DE algorithm
(DE-SVM) [25] approach. The denoised data of batteries 5
and 18 are used as experiment data. The assessment index
adopts RA and MSE. In order to avoid accidental accident
in the experiment, each approach is run 10 times and mean
results are shown in Table 2. As can be seen from the table,
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Table 2: RAs and MSEs of the referenced approaches.

Case DE-ANN DE-SVM
RA MSE RA MSE

Battery 5 85.7% 2.7684𝑒 − 04 87.8% 2.1507𝑒 − 04

Battery 18 81.8% 7.3153𝑒 − 05 86.4% 5.8236𝑒 − 05

the DE-RVM provides smaller MSE than the DE-ANN and
DE-SVM which implies that the data predicted by the DE-
RVM are more close to the original data. Meanwhile, the
DE-RVM yields higher RA than the DE-ANN and the DE-
SVMwhich characterizes that the DE-RVM can output more
accurate prediction than the other two approaches. It can be
concluded that the DE-RVM approach significantly outper-
forms the DE-ANN approach and the DE-SVM approach on
the problem of the battery capacity prognostics.

5. Conclusions

The gradual decreased capacity of lithium-ion batteries has
been used as the SOH indicator in the work. For the reason
of themeasured battery capacity data often suffering from the
different levels of noise pollution, awavelet denoisingmethod
with different thresholds has been presented to generate the
denoised data.

The RVM with its width factor optimized by DE algo-
rithm has been used for battery capacity prognostics. Two
battery case results have validated that the approach can pre-
dict the trend of capacity degradation trajectory closely and
estimate the battery RUL accurately. Meanwhile an extend
experiment has demonstrated that the proposed DE-RVM
approach has higher predict accuracy than the referenced
approaches in the battery capacity prognostics.
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Differential evolution (DE) is a simple yet efficient evolutionary algorithm for real-world engineering problems. However, its search
ability should be further enhanced to obtain better solutionswhenDE is applied to solve complex optimization problems.This paper
presents an enhanced differential evolution with elite chaotic local search (DEECL). In DEECL, it utilizes a chaotic search strategy
based on the heuristic information from the elite individuals to promote the exploitation power. Moreover, DEECL employs a
simple and effective parameter adaptation mechanism to enhance the robustness. Experiments are conducted on a set of classical
test functions. The experimental results show that DEECL is very competitive on the majority of the test functions.

1. Introduction

Numerous problems in science and engineering can be
converted into optimization problems. Therefore, it is of
significance both in theory and in engineering applications
to develop effective and efficient optimization algorithms
for solving complex problems of science and engineering.
Differential evolution (DE), proposed by Storn and Price
in 1997 [1], is a simple yet effective global optimization
algorithm. According to frequently reported theoretical and
experimental studies, DE has exhibited competitive perfor-
mance than many other evolutionary algorithms in terms of
both convergence speed and solution precision over several
benchmark functions and real-life problems [2–4]. Due to
its simplicity, easy implementation, and efficiency, DE has
stimulated many researchers’ interests since its development.
Therefore, it has become a hot research topic in evolutionary
computation over the past decades [5–7].

However, its search ability should be further enhanced
to obtain better solutions when DE is used to solve various
real-life optimization problems [2, 8, 9]. Particularly, DEmay
suffer from premature convergence and/or slow convergence

when solving complex multimodal optimization problems.
In order to improve the performance of the conventional
DE, a number of DE variants have been proposed in recent
decades [2, 6, 10]. Recognizing that the performance of DE
depends on the control parameters, Brest et al. [11] presented
a self-adaptive DE (jDE), in which both 𝐹 and CR are created
independently for each individual by an adaptivemechanism.
Specifically, the new 𝐹 is created by a random value from
0.1 to 0.9 with a probability 0.1 during the search process.
Meanwhile, the new CR obtains a random value from 0.0
to 1.0 with a probability 0.1. Unlike jDE, JADE, proposed
by Zhang and Sanderson [12], utilizes a distinct parameter
adaptation mechanism, in which the new 𝐹 and CR are
created for each individual by a normal distribution and a
Cauchy distribution, respectively. In addition, JADE learns
knowledge from the recent successful 𝐹 and CR and applies
the learned knowledge for creating new𝐹 andCR. Identifying
that both the mutation strategies and their associated control
parameters can directly influence the performance of DE,
Qin et al. [7] proposed a novel self-adaptive DE, SaDE,
which adaptively tunes the trial vector generation strategies
and their associated control parameter values by extracting
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knowledge from the previous search process in generating
promising solutions. Mallipeddi et al. [13] introduced an
improved DE with ensemble of parameters and mutation
strategies (EPSDE), which employs a pool of diverse trial
vector generation strategies and a pool of values for the con-
trol parameters 𝐹 and CR. By incorporating an opposition-
based learning strategy into the traditional DE for population
initialization and generating new solutions, Rahnamayan
et al. [14] proposed an opposition-based DE (ODE). The
experimental results confirmed that the opposition-based
learning strategy can improve the convergence speed and the
solution accuracy of DE. Further, Wang et al. [15] improved
the opposition-based learning strategy, proposed a general-
ized opposition-based learning strategy, and presented an
enhanced DE with generalized opposition-based learning
strategy (GODE). Jia et al. [16] presented an effectivememetic
DE algorithm, DECLS, which utilizes a chaotic local search
with a shrinking strategy to improve the search ability.
Experimental results indicated that the performance of the
canonical DE is significantly improved by the chaotic local
search. Recently, Wang et al. [17] proposed a composite DE,
called CoDE, the main idea of which is to randomly combine
several well studied trial vector generation strategies with a
number of control parameter settings highly recommended
by other researchers at each generation to create new trial
vectors. Experimental results on all the CEC2005 contest test
instances show that CoDE is very competitive.

Although there already existmanyDE variants for solving
complex optimization problems, according to the no free
lunch (NFL) theory [18], the performance of DE for some
benchmark functions and real-life problems should be fur-
ther enhanced to obtain better solutions. Moreover, many
studies have revealed that embedding local search strategy
can greatly enhance the search ability of DE [14, 16, 19].
Motivated by these considerations, in order to promote the
performance of DE on complex optimization problems, this
study proposes an enhanced differential evolution with elite
chaotic local search, called DEECL. In DEECL, we utilize a
chaotic search strategy based on the heuristic information
from the elite individuals to promote the exploitation power.
Further, we also design a simple and effective parameter
adaptation mechanism to enhance the robustness.

The rest of the paper is organized as follows. The con-
ventional DE is introduced in Section 2. Section 3 presents
the enhanced DE. Numerical experiments are presented in
Section 4 for the comparison and analysis. Finally, the paper
is concluded in Section 5.

2. Differential Evolution

Without loss of generality, only minimization problems are
considered in this study. We suppose that the objective func-
tion to beminimized isMin𝑓(𝑋),𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝐷], and
the search space is

Ω =

𝐷

∏

𝑗=1
[LB
𝑗
,UB
𝑗
] , (1)

where 𝐷 is the number of dimensions of the problem, LB
𝑗

andUB
𝑗
denote the lower and upper boundaries of the search

space, respectively.
Similar to other evolutionary algorithms, DE also has

a simple structure, only including three simple operators,
namely, mutation, crossover, and selection operators [2]. In
the initial phase, DE creates an initial population 𝑃(𝑡) =

{𝑋
𝑡

𝑖
}, which is randomly generated from the search space,

where 𝑋𝑡
𝑖
= [𝑋
𝑡

𝑖,1, 𝑋
𝑡

𝑖,2, . . . , 𝑋
𝑡

𝑖,𝐷
], 𝑖 = 1, 2, . . . , 𝑁𝑃; 𝑁𝑃 is the

population size and 𝑡 is the generation. After initialization,
themutation and crossover operators are performed to create
the trial vectors, and then the selection operator is utilized to
select the better one between the offspring individual and the
parent individual for the next generation. DE performs these
steps repeatedly to converge toward the global optima until
the terminating criterion is reached [20]. In the following
subsections, the evolutionary operators of DE will be intro-
duced in detail.

2.1. Mutation Operator. In the mutation operator, a mutant
vector 𝑉𝑡

𝑖
is created by using a predetermined mutation

strategy for each individual 𝑋𝑡
𝑖
, namely, target vector, in the

current population [17]. DE has many mutation strategies
used in its implementations, such as DE/rand/1, DE/best/1,
DE/rand-to-best/1, DE/best/2 and DE/rand/2 [2]. Among
these mutation strategies, DE/rand/1 is the most frequently
used mutation strategy, which is expressed as follows [1]:

𝑉
𝑡

𝑖
= 𝑋
𝑡

𝑟1 +𝐹× (𝑋
𝑡

𝑟2 −𝑋
𝑡

𝑟3) , (2)

where 𝑟1, 𝑟2, and 𝑟3 are randomly selected from the set
{1, 2, . . . , 𝑁𝑃} \ {𝑖}, and they are mutually different from each
other. 𝐹 is called as scaling factor, amplifying the difference
vector𝑋𝑡

𝑟2 − 𝑋
𝑡

𝑟3.

2.2. Crossover Operator. Followingmutation, a trial vector𝑈𝑡
𝑖

is generated by executing the crossover operator for each pair
of target vector 𝑋𝑡

𝑖
and its corresponding mutant vector 𝑉𝑡

𝑖

[2]. Binomial crossover is themost commonly used crossover
operators in current popular DE. The binomial crossover is
described as follows [1]:

𝑈
𝑡

𝑖,𝑗
=
{

{

{

𝑉
𝑡

𝑖,𝑗
, if rand (0, 1) < CR or 𝑗 == 𝑗rand

𝑋
𝑡

𝑖,𝑗
, otherwise,

(3)

where rand(0, 1) is generated for each 𝑗 and takes a value
from 0.0 to 1.0 in a uniformly random manner, and CR ∈

[0, 1] is the crossover probability, which limits the number of
parameters inherited from the mutant vector 𝑉𝑡

𝑖
. The integer

𝑗rand is randomly chosen from the range [1, 𝐷], which
guarantees that at least one parameter of the trial vector 𝑈𝑡

𝑖

is inherited from the mutant vector 𝑉𝑡
𝑖
[7].

2.3. Selection Operator. Like the genetic algorithm, the selec-
tion process of DE is also based on the Darwinian law of
survival of the fittest. The selection process is performed
in order to choose the more excellent individuals for the
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𝑡 = 0;
FES = 0;
/
∗ Initialize the population ∗/
for 𝑖 = 1 to𝑁𝑃 do

for 𝑗 = 1 to𝐷 do
𝑋
𝑡

𝑖,𝑗
= LB
𝑗
+ rand(0, 1) × (UB

𝑗
− LB
𝑗
);

end for
Evaluate individual𝑋𝑡

𝑖
;

FES = FES + 1;
end for
while FES <MAX FES do

for 𝑖 = 1 to𝑁𝑃 do
Choose three mutually different integers 𝑟1, 𝑟2, 𝑟3 from
the set {1, 2, . . . , 𝑁𝑃} \ {𝑖} in a random manner;
𝑗rand = randint(1,𝐷);
for 𝑗 = 1 to𝐷 do
if rand(0, 1) < CR or 𝑗 == 𝑗rand then
𝑈
𝑡

𝑖,𝑗
=𝑋𝑡
𝑟1,𝑗 + 𝐹 × (𝑋

𝑡

𝑟2,𝑗 − 𝑋
𝑡

𝑟3,𝑗);
else
𝑈
𝑡

𝑖,𝑗
=𝑋𝑡
𝑖,𝑗
;

end if
end for
/
∗ Selection step ∗/
if 𝑓(𝑈𝑡

𝑖
) ≤ 𝑓(𝑋

𝑡

𝑖
) then

𝑋
𝑡+1
𝑖

= 𝑈
𝑡

𝑖
;

if 𝑓(𝑈𝑡
𝑖
) < 𝑓(𝑋

𝑡

Best) then
𝑋
𝑡

Best = 𝑈
𝑡

𝑖
;

end if
else
𝑋
𝑡+1
𝑖

= 𝑋
𝑡

𝑖
;

end if
FES = FES + 1;

end for
𝑡 = 𝑡 + 1;

end while

Algorithm 1: DE algorithm.

next generation. For minimization problems, the selection
operator can be defined in the following form [1]:

𝑋
𝑡+1
𝑖

=
{

{

{

𝑈
𝑡

𝑖
, if 𝑓 (𝑈𝑡

𝑖
) ≤ 𝑓 (𝑋

𝑡

𝑖
)

𝑋
𝑡

𝑖
, otherwise,

(4)

where𝑓(𝑋𝑡
𝑖
) and𝑓(𝑈𝑡

𝑖
) indicate the fitness values of the target

vector𝑋𝑡
𝑖
and its corresponding trial vector 𝑈𝑡

𝑖
, respectively.

2.4. Algorithmic Framework of DE. Based on the above
elaborate introduction of the DE’s operators, we present the
framework ofDEwithDE/rand/1/bin strategy inAlgorithm 1,
where FES is the number of fitness evaluations, Max FES
is the maximum number of evaluations, rand(0,1) indicates
a random real number in the range [0, 1], randint(1, 𝐷)
represents a random integer in the range [1, 𝐷], and 𝑋𝑡Best is
the global best individual found so far.

3. Proposed Approach

3.1. Motivations. DE has been demonstrated to yield superior
performance for solving various real-world optimization
problems [21–23]. However, it tends to suffer from premature
convergence and/or slow convergence when solving complex
optimization problems [6, 24]. To enhance the performance
of DE, many researchers have proposed various improved
DE algorithms during the past decade [25–27]. Among the
DE variations, memetic method is a promising approach to
improve the performance of the traditionalDE, which utilizes
various local search strategies, such as chaotic search strategy
[16], simplex crossover search strategy [19], and orthogonal
search strategy [28], to strengthen the exploitation ability of
the traditional DE and consequently accelerate the conver-
gence speed. Among the local search strategies commonly
used in memetic DE, chaotic search strategy is inspired by
the chaos phenomenon in nature. Chaos is a classic nonlinear
dynamical system, which is widely known as a system with
the properties of ergodicity, randomicity, and sensitivity to
its initial conditions [16, 29, 30]. Due to its ergodicity and
randomicity, a chaotic system can randomly generate a long-
time sequence which is able to traverse through every state
of the system and every state is generated only once if
given a long enough time period [16, 31]. Taking advantage
of the well-known characteristics of the chaotic systems,
researchers have proposed many chaotic search strategies for
optimizing various problems [16, 32–34].However, to the best
of our knowledge, amongmany chaotic search strategies, they
paymore attention to the characteristics of the ergodicity and
randomicity of the chaotic system.Therefore, the exploration
capacity can be indeed improved. However, in order to
maintain a balance between exploration and exploitation,
the exploitation ability of the chaotic search strategy should
be further enhanced. Thus, when designing a relatively
comprehensive chaotic search strategy, we should further
integrate more heuristic information into the chaotic search
strategy to promote its exploitation power. Generally, the elite
individuals in the current population known as a promising
search direction toward the optimum are the favorable source
that can be employed to enhance the exploitation ability.
Based on these considerations, we present an elite chaotic
search strategy, which not only utilizes the characteristics of
the ergodicity and randomicity of the chaotic system, but also
merges the superior information of the current population
into the chaotic search process.

3.2. Elite Chaotic Search. In many chaotic search strategies,
the Logistic chaotic function is utilized to generate a chaotic
sequence, which is formulated as follows [16]:

𝐾
0
= rand (0, 1) , 𝐾

0
̸= 0.25, 0.5, 0.75,

𝐾
𝑛
= 4.0 ⋅ 𝐾𝑛−1 ⋅ (1−𝐾𝑛−1) , 𝑛 = 1, 2, . . . , 𝑁,

(5)

where 𝐾0 is the initial value of the chaotic system, which
is randomly generated from the range [0, 1], but cannot be
equal to 0.25, 0.5, or 0.75. 𝐾𝑛 is the 𝑛th state of the chaotic
system. As known, the initial state 𝐾0 of the chaotic system
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𝑛 = 0;
𝑁 = 𝐷/5;
Randomly choose an individual𝑋𝑡

𝐼
from the current population;

𝐾
0
= rand(0, 1), 𝐾0

̸= 0.25, 0.5, 0.75;
𝑝 = rand(2.0/𝑁𝑃, 0.1);
while 𝑛 < 𝑁 do
Randomly choose an individual𝑋𝑡

𝑝Best from the top 100𝑝%
individuals in the current population;
for 𝑗 = 1 to𝐷 do
𝐸
𝑛

𝐼,𝑗
= 𝑋
𝑡

𝐼,𝑗
+ 𝐾
𝑛
× (𝑋
𝑡

𝑝Best,𝑗 − 𝑋
𝑡

𝐼,𝑗
);

if 𝐸𝑛
𝐼,𝑗
> UB

𝑗
or 𝐸𝑛
𝐼,𝑗
< LB
𝑗
then

𝐸
𝑛

𝐼,𝑗
= rand(LB

𝑗
,UB
𝑗
);

end if
end for
if 𝑓(𝐸𝑛

𝐼
) < 𝑓(𝑋

𝑡

𝐼
) then

𝑋
𝑡

𝐼
= 𝐸
𝑛

𝐼
;

break;
end if
𝑛 = 𝑛 + 1;
𝐾
𝑛
= 4.0 ⋅ 𝐾𝑛−1 ⋅ (1 − 𝐾𝑛−1);

FES = FES + 1;
end while

Algorithm 2: Elite chaotic search operator.

is randomly produced. Due to its ergodicity and sensitivity to
the initial state𝐾0,𝐾𝑛 is a random long-time sequence, which
can traverse through every state of the system and every state
is generated only once if𝑁 is large enough.

In order to enhance the exploitation ability of the tra-
ditional chaotic search strategy, we integrate the heuristic
information learned from the elite individuals into the
chaotic search strategy to promote the exploitation power.
The proposed elite chaotic search strategy is defined by

𝐸
𝑛

𝐼
= 𝑋
𝑡

𝐼
+𝐾
𝑛
× (𝑋
𝑡

𝑝Best −𝑋
𝑡

𝐼
) , (6)

where 𝑋𝑡
𝐼
is an individual to be performed the elite chaotic

search, which is randomly chosen from the current popu-
lation. 𝐾𝑛 is the chaotic sequence, where 𝑛 = 1, 2, . . . , 𝑁,
𝑁 = 𝐷/5, and 𝑋

𝑡

𝑝Best is an elite individual, which is
randomly chosen from the top 100𝑝% individuals in the
current population with 𝑝 = rand(2.0/𝑁𝑃, 0.1).

In the proposed elite chaotic search operator, an individ-
ual 𝑋𝑡

𝐼
is randomly selected from the current population to

undergo the elite chaotic search strategy. After that, the initial
value of the chaotic system takes a value from range [0, 1.0]
in a uniformly randommanner. Then, an elite chaotic search
procedure for individual 𝑋𝑡

𝐼
is repeatedly performed until

finding a better solution than individual𝑋𝑡
𝐼
or the number of

iterations 𝑛 is equal to𝑁. The framework of the elite chaotic
search operator is described in Algorithm 2.

3.3. Parameter Adaptation. Since the setting of control
parameters can significantly influence the performance of
DE, parameter adaptation mechanism is essential for an
efficient DE [7, 11, 12]. To this end, we design a simple and

effective parameter adaptation mechanism inspired by [11]
into DEECL. In DEECL, each individual is independently
associated with its own mutation factor 𝐹𝑡

𝑖
and crossover

probability CR𝑡
𝑖
. For individual 𝑖, its control parameters 𝐹𝑡

𝑖

and CR𝑡
𝑖
are initialized to 0.5 and 0.9, respectively. Generally,

a normal distribution with mean value 0.5 and standard
deviation 0.3 is a promising adaptive approach for the muta-
tion factor of DE [7], whereas Cauchy distribution is more
favorable to diversify the mutation factors and thus avoid
premature convergence [12]. Based on these considerations,
at each generation, the new mutation factor NF𝑡

𝑖
associated

with individual 𝑖 is generated by a Cauchy distribution
random real number with location parameter 0.5 and scale
parameter 0.3 with probability 0.1. Additionally, following
the suggestions in [11], the new crossover probability NCR𝑡

𝑖

associated with individual 𝑖 acquires a random value from 0.0
to 1.0 with probability 0.1. Mathematically, the new control
parameters NF𝑡

𝑖
and NCR𝑡

𝑖
associated with individual 𝑖 for

generating its corresponding trial vector 𝑈𝑡
𝑖
are obtained by

NF𝑡
𝑖
=
{

{

{

randc (0.5, 0.3) , if rand (0, 1) < 0.1

𝐹
𝑡

𝑖
, otherwise,

NCR𝑡
𝑖
=
{

{

{

rand (0, 1) , if rand (0, 1) < 0.1

CR𝑡
𝑖
, otherwise,

(7)

where randc(0.5, 0.3) is a Cauchy distribution random real
number with location parameter 0.5 and scale parameter
0.3 and rand(0, 1) is a uniformly random number within
the range [0, 1]. After obtaining the new control parameters
NF𝑡
𝑖
and NCR𝑡

𝑖
, the corresponding trial vector 𝑈𝑡

𝑖
are created
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Table 1: The 13 classical test functions.

Function Name Initial range 𝑓min

𝑓1 Sphere Problem [−100, 100]𝐷 0
𝑓2 Schwefel’s Problem 2.22 [−10, 10]𝐷 0
𝑓3 Schwefel’s Problem 1.2 [−100, 100]𝐷 0
𝑓4 Schwefel’s Problem 2.21 [−100, 100]𝐷 0
𝑓5 Rosenbrock’s Function [−30, 30]𝐷 0
𝑓6 Step Function [−100, 100]𝐷 0
𝑓7 Quartic Function with Noise [−1.28, 1.28]𝐷 0
𝑓8 Schwefel’s Problem 2.26 [−500, 500]𝐷 0
𝑓9 Rastrigin’s Function [−5.12, 5.12]𝐷 0
𝑓10 Ackley’s Function [−32, 32]𝐷 0
𝑓11 Griewank Function [−600, 600]𝐷 0
𝑓12 Penalized Function 1 [−50, 50]𝐷 0
𝑓13 Penalized Function 2 [−50, 50]𝐷 0

by using the new control parameters NF𝑡
𝑖
and NCR𝑡

𝑖
. It is

widely acknowledged that better control parameter values
tend to produce better individuals that have a greater chance
to survive and thus these values should be propagated to the
next generations [12]. Therefore, in the selection step, the
control parameters 𝐹𝑡+1

𝑖
and CR𝑡+1

𝑖
associated with individual

𝑖 for the next generation are updated by

𝐹
𝑡+1
𝑖

=
{

{

{

NF𝑡
𝑖
, if 𝑓 (𝑈𝑡

𝑖
) < 𝑓 (𝑋

𝑡

𝑖
)

𝐹
𝑡

𝑖
, otherwise,

CR𝑡+1
𝑖

=
{

{

{

NCR𝑡
𝑖
, if 𝑓 (𝑈𝑡

𝑖
) < 𝑓 (𝑋

𝑡

𝑖
)

CR𝑡
𝑖
, otherwise.

(8)

From the above designed parameter adaptation mechanism,
we can infer that the better control parameters of DEECL can
be propagated to the next generations. Therefore, the control
parameters of DEECL can be adaptively tuned according to
the feedback from the search process.

4. Numerical Experiments

4.1. Experimental Setup. In order to assess the performance
of the proposed DEECL, we use 13 classical test functions
(𝑓1–𝑓13) that are widely used in the evolutionary compu-
tation community [8, 12, 35] to verify the effectiveness of the
proposedDEECL.We describe these test functions in Table 1.
Among these test functions [35], 𝑓1–𝑓4 are continuous
unimodal functions. 𝑓5 is the Rosenbrock function which is
unimodal for 𝐷 = 2 and 3; however, it may have multiple
minima in high dimension cases [36]. 𝑓6 is a discontinuous
step function, and 𝑓7 is a noisy function. 𝑓8–𝑓13 are
multimodal functions and they exist many local minima [35].

In all experiments, we set the number of dimensions𝐷 to
30 for all these test functions. We carry out 30 independent
runs for each algorithm and each test function with 150,000
function evaluations (FES) as the termination criterion.
Moreover, we record the average and standard deviation of
the function error value (𝑓(𝑥) − 𝑓(𝑥

∗
)) for estimating the

performance of the algorithms, as recommended by [17],
where 𝑥 is the best solution gained by the algorithm in a run
and 𝑥∗ is the global optimum of the test function.

4.2. Benefit of the Two Components. There are two important
components in the proposed DEECL: the proposed elite
chaotic search strategy and the designed parameter adapta-
tion mechanism. Accordingly, it is interesting to recognize
the benefit of the two components of the proposed DEECL.
For this purpose, we conduct experiments to compare the
proposed DEECL with the traditional DE with DE/rand/1
strategy and two variants of DEECL, namely, DE with the
proposed elite chaotic search strategy (DEwEC) and DE with
the designed parameter adaptation mechanism (DEwPA).
In the experiments, we set the population size of all the
algorithms to 100. For the other parameters of DE and
DEwEC, we set 𝐹 = 0.5 and CR = 0.9, following the
suggestions in [11].

We present the experimental results of the above men-
tioned algorithms in Table 2. The best results among the
four algorithms are highlighted in boldface. “Mean Error”
and “Std Dev” indicate the mean and standard deviation of
the function error values achieved in 30 independent runs,
respectively. From the results of comparison between DE
and DEwEC, DEwEC performs better than DE on all test
functions with the exception of 𝑓6. On test function 𝑓6,
both DE and DEwEC exhibit similar performance. In total,
DEwEC is better thanDE on twelve test functions.The results
of comparison between DE and DEwEC indicate that our
introduced elite chaotic search strategy is effective to enhance
the performance of the traditional DE.

From the comparison of DE with DEwPA, DEwPA
surpasses DE on all test functions except for 𝑓5 and 𝑓6.
On test function 𝑓6, both DE and DEwPA demonstrate
similar performance, whereas DE is better than DEwPA on
test function 𝑓5. In summary, DEwPA outperforms DE on
eleven test functions. The comparison of DE with DEwPA
reveals that our designed parameter adaptation mechanism
is capable of improving the efficiency of the traditional DE.

By incorporation of both the proposed elite chaotic search
strategy and the designed parameter adaptation mechanism,
DEECL achieves promising performance, which is better
than other three DE algorithms on the majority of the test
functions. To be specific, DEECL is better than DE, DEwEC,
and DEwPA on eleven, nine, and ten test functions, respec-
tively. DE, DEwEC, andDEwPA can outperformDEECL only
on one test function. Comparison results suggest that both
the introduced elite chaotic search strategy and the designed
parameter adaptationmechanism demonstrate positive effect
on the performance of DEECL. In addition, the comparison
results confirm that the introduced elite chaotic search
strategy and the designed parameter adaptation mechanism
can help DE with both outperform DE with either or neither
one on the majority of the test functions. Moreover, the
introduced elite chaotic search strategy and the designed
parameter adaptation mechanism work together to improve
the performance of the traditional DE rather than contradict
each other. The evolution of the average function error
values derived fromDE,DEwEC,DEwPA, andDEECL versus
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Table 2: Experimental results of DE, DEwEC, DEwPA, and DEECL over 30 independent runs for the 13 test functions.

Function DE DEwEC DEwPA DEECL
Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev

𝑓1 2.23𝐸 − 16 ± 2.50𝐸 − 16 4.38𝐸 − 24 ± 3.95𝐸 − 24 4.14𝐸 − 33 ± 4.76𝐸 − 33 6.89E − 38 ± 6.06E − 38
𝑓2 2.86𝐸 − 08 ± 1.26𝐸 − 08 1.63𝐸 − 12 ± 6.75𝐸 − 13 3.58𝐸 − 20 ± 2.80𝐸 − 20 1.74E − 22 ± 1.21E − 22
𝑓3 1.88𝐸 − 01 ± 6.12𝐸 − 02 9.12𝐸 − 02 ± 1.03𝐸 − 02 5.25𝐸 − 02 ± 5.94𝐸 − 02 2.42E − 02 ± 3.44E − 02
𝑓4 1.70𝐸 − 01 ± 2.13𝐸 − 01 1.51𝐸 − 02 ± 2.10𝐸 − 02 3.23𝐸 − 04 ± 1.55𝐸 − 04 4.06E − 05 ± 3.05E − 05
𝑓5 1.39𝐸 + 01 ± 8.74𝐸 − 01 1.27E + 01 ± 5.12E + 01 2.46𝐸 + 01 ± 1.58𝐸 + 01 2.95𝐸 + 01 ± 2.21𝐸 + 01

𝑓6 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
𝑓7 8.82𝐸 − 03 ± 2.61𝐸 − 03 2.15𝐸 − 03 ± 8.72𝐸 − 04 6.52𝐸 − 03 ± 1.59𝐸 − 03 1.17E − 03 ± 6.52E − 04
𝑓8 7.31𝐸 + 03 ± 3.75𝐸 + 02 5.04𝐸 + 03 ± 3.25𝐸 + 02 1.53𝐸 − 02 ± 1.82𝐸 − 12 1.34E − 02 ± 1.19E − 12
𝑓9 1.77𝐸 + 02 ± 1.10𝐸 + 01 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
𝑓10 5.93𝐸 − 09 ± 3.10𝐸 − 09 5.22𝐸 − 13 ± 1.76𝐸 − 13 4.35𝐸 − 15 ± 1.07𝐸 − 15 4.00E − 15 ± 0.00E + 00
𝑓11 6.33𝐸 − 16 ± 1.16𝐸 − 15 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00 0.00E + 00 ± 0.00E + 00
𝑓12 2.20𝐸 − 17 ± 1.81𝐸 − 17 2.21𝐸 − 25 ± 1.38𝐸 − 25 1.61𝐸 − 30 ± 7.69𝐸 − 48 1.57E − 32 ± 2.74E − 48
𝑓13 8.26𝐸 − 17 ± 3.59𝐸 − 17 4.23𝐸 − 24 ± 6.14𝐸 − 24 1.46𝐸 − 32 ± 2.02𝐸 − 33 1.36E − 32 ± 3.70E − 34

the number of FES is plotted in Figure 1 for some typical test
functions. As can be seen from Figure 1, DEECL converges
faster than DE, DEwEC, and DEwPA.

4.3. Comparison with Other DE Variants. In order to verify
the effectiveness of the proposed DEECL algorithm, we
compare DEECL with the traditional DE and three other DE
variants, namely, jDE [11], ODE [14], and DECLS [16]. In
addition, jDE is a self-adaptive DE, in which both parameters
𝐹 and CR are generated independently for each individual
by an adaptive mechanism [11]. ODE is proposed by Rahna-
mayan et al. [14], which incorporates the opposition-based
learning strategy into the traditional DE for population ini-
tialization and creating new solutions. DECLS is an effective
memetic DE algorithm [16], which utilizes the chaotic local
search strategy and an adaptive parameter control approaches
similar to jDE [11] to improve the search ability. In the
experiments, in order to have a fair comparison, we set
the population size of all the algorithms to 100. The other
parameter settings of these three DE variants are the same as
in their original papers.

The mean and standard deviation of the function error
values achieved by each algorithm for the 13 classical test
functions are presented in Table 3. For convenience of
analysis, the best results among the four DE algorithms
are highlighted in boldface. In order to gain statistically
significant conclusions, we conduct two-tailed 𝑡-tests at the
significance level of 0.05 [28, 35] on the experimental results.
The summary comparison results are described in the last
three rows of Table 3. “+,” “−,” and “≈” suggest that DEECL
is better than, worse than, and similar to the corresponding
algorithm in terms of the two-tailed 𝑡-tests at the significance
level of 0.05, respectively.

From Table 3, we can infer that DEECL achieves the
better results than all the other four algorithms on the
majority of the 13 classical test functions. Specifically, DEECL
is significantly better than DE, jDE, ODE, and DECLS on
eleven, seven, nine, and six test functions according to the

two-tailed 𝑡-test, respectively. In addition, DEECL is similar
to DE, jDE, ODE, and DECLS on one, five, two, and five test
functions, respectively. DE and jDE surpasses DEECL only
on one test function. Additionally, ODE and DECLS perform
better than DEECL only on two test functions.

Overall, DEECL performs better than the traditional
DE, jDE, ODE, and DECLS on the majority of the test
functions. This can be because the proposed elite chaotic
search strategy learning the heuristic information from the
elite individuals can promote the exploitation power, and the
designed parameter adaptation mechanism can enhance the
robustness.The evolution of the average function error values
derived from DE, jDE, ODE, DECLS, and DEECL versus
the number of FES is plotted in Figure 2 for some typical
test functions. It can be known from Figure 2 that DEECL
converges faster than DE, jDE, ODE, and DECLS.

In order to compare the total performance of the five DE
algorithms on the all 13 classical test functions, we carry out
the average ranking of Friedman test on the experimental
results following the suggestions in [37–39]. Table 4 presents
the average ranking of the five DE algorithms on the all 13
classical test functions. We can sort these five DE algorithms
by the average ranking into the following order: DEECL,
DECLS, jDE, ODE, and DE. Therefore, DEECL obtains the
best average ranking, and its total performance is better than
that of the other four algorithms on the all 13 test instances.

5. Conclusions

DE is a popular evolutionary algorithm for the continuous
global optimization problems, which has a simple structure
yet exhibits efficient performance on various real-world
engineering problems. However, according to the no free
lunch (NFL) theory, the performance of DE should be
further enhanced to obtain better solutions in some cases.
In this paper, we propose an enhanced differential evolution
with elite chaotic local search, called DEECL, which uses a
chaotic search strategy based on the heuristic information
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Figure 1: Evolution of the average function error values derived from DE, DEwEC, DEwPA, and DEECL versus the number of FES.
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Figure 2: Evolution of the average function error values derived from DE, jDE, ODE, DECLS, and DEECL versus the number of FES.
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Table 4: Average rankings of the five algorithms for the 13 test
functions achieved by Friedman test.

Algorithm Ranking
DEECL 2.04
DECLS 2.27
jDE 2.65
ODE 3.50
DE 4.54

from the elite individuals to promote the exploitation power
and employs a simple and effective parameter adaptation
mechanism to enhance the robustness. In the experiments,
we use 13 classical test functions that are widely used in
the evolutionary computation community to evaluate the
performance of DEECL. The experimental results show that
DEECL can outperform the conventional DE, jDE, ODE, and
DECLS on the majority of the test functions.

In the future, we will apply DEECL to handle more com-
plex optimization problems, such as high-dimensional opti-
mization problems and multiobjective optimization prob-
lems.
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Optimizing a neural network’s topology is a difficult problem for at least two reasons: the topology space is discrete, and the quality
of any given topology must be assessed by assigning many different sets of weights to its connections. These two characteristics
tend to cause very “rough.” objective functions. Here we demonstrate how self-assembly (SA) and particle swarm optimization
(PSO) can be integrated to provide a novel and effective means of concurrently optimizing a neural network’s weights and topology.
Combining SA and PSO addresses two key challenges. First, it creates a more integrated representation of neural network weights
and topology so thatwe have just a single, continuous search domain that permits “smoother” objective functions. Second, it extends
the traditional focus of self-assembly, from the growth of predefined target structures, to functional self-assembly, in which growth
is driven by optimality criteria defined in terms of the performance of emerging structures on predefined computational problems.
Our model incorporates a new way of viewing PSO that involves a population of growing, interacting networks, as opposed to
particles. The effectiveness of our method for optimizing echo state network weights and topologies is demonstrated through its
performance on a number of challenging benchmark problems.

1. Introduction

In this paper we demonstrate how two very different nature-
inspired methodologies, self-assembly (SA) [1] and particle
swarm optimization (PSO) [2], can be integrated to provide
a novel and effective means of concurrently optimizing a
neural network’s weights and topology. Such an approach
addresses two important challenges. The first challenge is
finding a more integrated representation of neural network
weights and topology, so that rather than having to search in
both a continuousweight space and a discrete topology space,
there is just a single, continuous search domain that permits
“smoother” objective functions. The second challenge is
extending the traditional focus of self-assembly research from
the growth of predefined target structures to functional self-
assembly, in which growth is driven by optimality criteria
defined in terms of the quality or performance of the
emerging structures on predefined computational problems.

Swarm intelligence systems, which consist of autonomous
agents interacting in a simple and local manner, exhibit

complex global behavior that emerges as a consequence of
local interactions among the agents [3–10]. Researchers have
created a wide range of new problem-solving algorithms
inspired by nature and based on the governing principles of
swarm intelligence [11–17]. Of particular importance to the
research presented in this paper is the powerful and broadly
applicable swarm intelligence based optimization method
known as particle swarm optimization (PSO) [18–23].

Particle swarm optimization has been applied exten-
sively to train neural network weights. A wide variety of
different adaptations and hybridizations of PSO have been
developed for this purpose [24–30]. Despite the success in
using PSO to optimize network weights, there has been
only limited success in applying it to topology optimiza-
tion, and such applications have largely been restricted to
feedforward networks. The methods that do exist implement
fairly complicated adaptations of the basic PSO algorithm
or enforce stringent restrictions on the domain of feasible
network topologies [31–33]. While the method presented
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Figure 1: Schematic of an echo state network (ESN). The solid
arrows represent connections with fixed weights, and the dashed
arrows represent connections with trainable weights. Connections
from the input layer to the output layer and from the output layer
to the reservoir are optional. As usual, input to the network enters
through the input layer and the network’s output is generated in the
output layer.The bias node and its connections with fixed weights to
the reservoir are not shown.

in this paper does not adapt the number of nodes in the
network, as some other algorithms do, it optimizes over
general, recurrent neural network topologies using one of the
most basic forms of PSO, which is a unique feature of our
approach. Furthermore, the form of the underlying model
of network growth that we present here does not place any
constraints on the type of PSO used to drive the optimization,
and therefore the user may readily swap in whatever version
of PSO is deemed most suitable for the learning task at
hand. Our method’s incorporation of basic PSO would be
particularly advantageous in cases where the topology of a
physical network was being optimized.

The work presented here involves the optimization of
a relatively recently developed class of recurrent neural
network models known as echo state networks (ESNs) [34].
Echo state networks have already been successfully applied to
a wide range of different problems [35–45].They consist of an
input layer, a hidden layer or “reservoir,” and an output layer
(shown in Figure 1). Typically, each neuron in the input layer
connects to every neuron in the reservoir; there is randomly
generated sparse connectivity among reservoir neurons; each
neuron in the reservoir connects to each neuron in the output
layer; a bias neuron may connect to the neurons in the
reservoir, and sometimes connections from the input layer to
the output layer and from the output layer to the reservoir
are present. The central innovation of the echo state network
approach is that only the weights on the connections from the
reservoir to the output neurons (output weights) are trained,
and the activation functions of the output neurons are linear
so all that is needed to train them is linear regression. The
remaining weights are typically assigned random values. For
an echo state network with 𝑁

𝑟
reservoir neurons and 𝑁

𝑜

output neurons, the output weights are trained as follows. A
sequence of training data of length 𝐿 + 𝑀 is chosen, where
𝑀 > 𝑁

𝑟
.The first 𝐿 values of the sequence are passed through

the network in order to remove the effects of the initial state
of the reservoir. Then, the remaining𝑀 values are input into
the network, and the resulting reservoir states ⃗𝑒

𝑖
∈ R𝑁𝑟 ,

for 𝑖 = 1, . . . ,𝑀, are assigned to the rows of the matrix
S ∈ R𝑀×𝑁𝑟 . For each network input, and resulting reservoir
state ⃗𝑒

𝑖
, there is a target network output ⃗𝑑

𝑖
.The target network

outputs are assigned to the rows of the matrix D ∈ R𝑀×𝑁𝑜

such that the 𝑖th rows of S and D are the corresponding
reservoir state and target output pair. LetW ∈ R𝑁𝑟×𝑁𝑜 be the
output weight matrix, where the 𝑗th column ofW represents
the weights on the connections from the reservoir to the
𝑗th output neuron. Training the output weights amounts to
finding an approximate solution W

𝑎
to the overdetermined

system

SW = D. (1)

The output weights W
𝑎
are determined by solving (1) in a

“least squares” sense.
Self-assembly involves the self-organization of discrete

components into a physical structure, for example, the growth
of connections between nodes in a physical network. Work
in this area has traditionally focused on what we will refer to
as the classic self-assembly problem, which entails the design
of local control mechanisms that enable a set of components
to self-organize into a given target structure, without indi-
vidually preassigned component positions or central control
mechanisms. Issues surrounding self-assembly have been a
very active research area in swarm intelligence over the last
several years, with recent work spanning computer simula-
tions [46–51], physical robotics [52–57], and the modeling of
natural systems [1, 12]. However, to the best of our knowledge,
there has been no work on using swarm intelligence methods
to extend the classic self-assembly problem to functional self-
assembly, in which components self-organize into a comput-
ing structure that is optimized for a predefined computational
problem.

The research presented in this paper is concerned with
the self-assembly of neural network architectures. Unlike
most past work on self-assembly, a major aspect of the
work presented here involves the growth of connections
between discrete, spatially separated nodes/components [58].
We recently demonstrated how swarm intelligence in the
form of collective movements can increase the robustness of
network self-assembly and enhance the ability to grow large,
topologically complex neural networks [50]. However, this
earlier work focused on the classic self-assembly problem
where a target network was prespecified, which is in contrast
to the more difficult problem of functional self-assembly that
we consider here.

Other related past works in computer science and
engineering, where research on artificial neural networks
is concerned with application-related performance, have
largely ignored the issues of neural network growth, devel-
opment, and self-assembly, with two exceptions. First, a
number of computational techniques have been created to
optimize neural network architectures by adding/deleting
nodes/connections dynamically during learning [59–63].
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Unlike the approach taken here, these past network construc-
tion methods do not involve growth or self-assembly in a
physical space and so are not considered further. Second, a
technique known as developmental encoding has been used
by researchers evolving neural network architectures with
genetic algorithms/programming [64–70]. Unlike the work
presented here, in these past techniques different individ-
uals within a population do not directly interact with one
another during the development process. Such interaction
occurs only indirectly through the processes of selection and
crossover.

Both weights and topology affect a neural network’s per-
formance. To date, substantially more focus has been placed
on techniques for optimizing a neural network’s weights as
opposed to its topology (the number and connectedness of
its nodes). One of the primary reasons for this discrepancy
is that the space searched by an optimization method for a
good set of weights (the “weight space”) is continuous.Thus a
good set of weights can be found using one of awide variety of
powerful and well-studied optimization techniques based on
local gradient information [71]. Additionally global optimiza-
tion techniques such as particle swarm optimization (PSO),
evolutionary computation (EC), and simulated annealing
have proven to be very effective at weight optimization.

When optimizing in continuous domains, specifically
multidimensional Euclidean space R𝑛, optimization algo-
rithms tend to operate under the basic heuristic (referred
to here as the continuity-heuristic) that, given two points in
a search space, each of which represents a good solution,
it is likely that a better solution exists somewhere between
or around these points. This heuristic has been found to be
generally useful in optimizing objective functions defined
on R𝑛. The “topology space,” however, is a discrete space.
The discrete nature of this search domain coupled with the
intrinsic interdependence between neural network weights
(parameters) and topology (structure) results in a variety
of additional challenges not encountered when optimizing
the weights of a network with a fixed architecture. First,
it is common for many of the nodes in a neural network
to be identical from a computational perspective, such as
the nodes in the hidden layer, which means that many
pairs of points in the topology space that are far apart will
represent identical or very similar topologies. Second, certain
connections may influence performance much more than
others. This effect depends on factors such as a network’s
topology, the learning algorithmused, and the computational
problem a network is tasked with solving. This means
that in typical representations of the topology space, where
a network that has an input-to-output connection would
have a nearly identical representation to one that does not
have such a connection (all other connections being the
same), many points (topologies) that are near each other
will represent network architectures that are associated with
vastly different fitness values.Third, the quality of a particular
topology is dependent on the set of weights associated
with it and vice versa. This interdependence means that,
rather than having a fixed fitness value, a point (topology)
in the topology space has a distribution of fitness values
generated by associating different sets of weights with its

connections.This fact increases the “roughness” of the fitness
landscape defined over the topology space. The first of the
above characteristics implies that the distance between two
points in the topology space often does not accurately reflect
the similarity/dissimilarity of the topologies represented by
the points. The second and third characteristics, coupled
with the discrete nature of the topology space, imply that
nearby points often represent topologies with very different
fitness values, which produces very rough fitness/objective
functions.Therefore, the properties thatmake the continuity-
heuristic useful in theweight space are largely absent from the
topology space.

If we could find a more integrated means of represent-
ing neural network weights and topology, such that the
search domain consisted of a single, continuous “weight-
topology space,” then this representation might preserve the
continuity-heuristic and permit smoother objective func-
tions. This is precisely what we have done. The integra-
tion involves representing weights and topology using self-
assembling neural networks that grow through a single, con-
tinuous three-dimensional space. Our approach makes use
of the fact that given two neural networks with different
topologies, if the connections that these networks do not
have in common have weights that are small enough in
magnitude, then the networks will have roughly the same
effective topologies in the sense that signals transmitted via
these connections will be highly attenuated and thus tend to
have very little influence on network dynamics. Therefore,
from the perspective of network performance, it is as if
the connections are not actually there. The idea of a neural
network having an effective topology is a key concept in
the work presented here. It explains why our approach can
simultaneously optimize both weights and topology while
operating over a continuous space. Specifically, as long as
the weight threshold that triggers the removal (addition) of
a connection is small enough, then traversing this threshold
in the direction that results in the removal (addition) of
a connection will yield a network with a new topology
but which has nearly identical dynamics compared to its
counterpart network. This is the case because the removed
(added) connection would have a weight with magnitude
near 0. Thus, if the objective function depends only on
network dynamics, then this newnetwork and its counterpart
will evaluate to nearly identical values under the objective
function.

The primary contributions of the work presented here
arise from addressing the challenges inherent in the simulta-
neous optimization of neural network weights and topology.
The first contribution is the development of a means of
using network self-assembly as a representation of the search
domain encountered in this optimization problem, thereby
simplifying the domain to a single, continuous space. Second,
our work puts forward a new way of viewing PSO that
involves a population of growing, interacting networks, as
opposed to particles. This adaptation is used to turn the
self-assembly process into an optimization process and, to
the best of our knowledge, is the first demonstration of
such a complimentary relationship between self-assembly
and particle swarm optimization. Third, the version of PSO
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that our work incorporates, which is a particularly elegant
form of the algorithm, has not been previously used to simul-
taneously optimize neural network weights and topology.
Lastly, we demonstrate the effectiveness of a software-based
implementation of the integration of self-assembly and PSO
by using it to grow high-quality neural network solutions
to a variety of challenging benchmark problems from the
domains of time-series forecasting and control.

2. Methods

In this section we introduce our model that represents an
extension of the traditional self-assembly problem in that the
growth of network structures is based on optimality criteria
and not on target structures that are specified a priori.

2.1. Integrating Self-Assembly and Particle Swarm Optimiza-
tion. We now present the details of our model for simultane-
ously optimizing neural network weights and topology. We
call this model SINOSA, which stands for Swarm Intelligent
Network Optimization through self-assembly. In this model
groups of growth cones that belong to different networks
simultaneously grow through the same three-dimensional
space. During the growth process the growth cones from dif-
ferent networks interact with one another through a mecha-
nism inspired by particle swarm optimization. Concurrently,
the networks receive input derived from a computational
problem that they must learn to solve. The combination of
this interaction, and the activity run through the networks
during the development process, leads to the self-assembly
of neural networks with weights and topologies that are
optimized for solving the problem at hand. An animation
that exemplifies the growth process can be viewed at sup-
plied URL (see Supplementary Material available online at
http://dx.doi.org/10.1155/2015/642429).

2.1.1. Objects and Relations. Throughout this section the
concrete example of the model illustrated in Figure 2 is
referenced for clarification. The SINOSA model consists of a
set of cellsCwith fixed positions in 3D space that are assigned
a priori. The cells represent neuron cell bodies. Each cell
𝑐
𝑖
∈ C has a set N

𝑐
𝑖

⊆ C, which may be empty, of “neighbor”
cells that it can connect to, where 𝑖 = 1, 2, . . . , |C|. In Figure 2
the three large grey spheres represent cells C, and each cell
is allowed to connect to any other cell, including itself. Thus,
N
𝑐
𝑖

= C, for 𝑖 = 1, 2, 3.
Each growing network consists of the same set of cells C

and a unique set of growth cones that guide the network’s
axons through the three-dimensional space. Given 𝑛 simul-
taneously growing networks, each cell 𝑐

𝑖
has 𝑛 sets of growth

cones G
𝑖𝑗
, where 𝑗 = 1, 2, . . . , 𝑛. Any given cell 𝑐

𝑖
contributes

the same number of growth cones to each growing network.
That is, for all 𝑗 and ℓ, |G

𝑖𝑗
| = |G

𝑖ℓ
|, ensuring that all of

the growth cone neighborhoods (explained below) among
the growth cones in G

𝑖
= ⋃
𝑗
G
𝑖𝑗
are of the same size.

If N
𝑐
𝑖

is empty, then so is G
𝑖𝑗
, for all 𝑗. The 𝑗th growing

network gnet
𝑗
consists of the set of cells C and the set

of growth cones G
𝑗
= ⋃
𝑖
G
𝑖𝑗
that produce the network’s

growth. That is, gnet
𝑗
is defined by the ordered pair ⟨C,G

𝑗
⟩.

Because each growing network consists of the same set of cells
C, they all have exactly the same number of growth cones
(|G
𝑗
| = |G

ℓ
|, where 𝑗, ℓ = 1, 2, . . . , 𝑛). In Figure 2 the small

circles represent growth cones, and the lines that connect
the cells and growth cones are axons. In this case there are
𝑛 = 3 growing networks, each having six growing axons.
The growing axons of any particular network are shown in
a unique line-style (solid, dotted, or dash-dot). To clarify
this, Figure 2(b) shows only the solid-line growing network.
Figure 2(c) shows the static network that is derived from
the solid-line growing network, which is described in the
next section. Figure 2(a) illustrates how all three networks
simultaneously grow through the same space and share the
same three cells.

Let 𝑐
𝑘
∈ N
𝑐
𝑖

be the 𝑘th neighbor cell of 𝑐
𝑖
. Then for

each 𝑐
𝑘
, the cell 𝑐

𝑖
contributes exactly two growth cones (𝑔𝑠

𝑖𝑗𝑘

for 𝑠 ∈ {“ + ”, “ − ”}) to each of the growing networks
𝑗 = 1, 2, . . . , 𝑛. When 𝑠 = “+” the growth cone represents
positively weighted connections, and when 𝑠 = “−” the
growth cone represents negatively weighted connections.The
positive-negative growth cone pair 𝑔+

𝑖𝑗𝑘
and 𝑔−
𝑖𝑗𝑘

may establish
connections to exactly one target cell, namely, 𝑐

𝑘
. Based on

these relations and since N
𝑐
𝑖

= C for 𝑖 = 1, 2, 3 in Figure 2,
each of the cells contributes three positive-negative growth
cone pairs to each of the three growing networks. However,
for the sake of clarity only 6 of the 18 growing axons per
network are shown.

2.1.2. Interpreting Network Growth as Self-Assembly. The
SINOSA model grows neural networks that, in their com-
pleted form, have fixed connections. Thus, it is necessary to
interpret the positions of a growing network’s growth cones
relative to their target cells so as to map a growing network
gnet
𝑗
, to a static network snet

𝑗
. In particular, if the positive-

negative growth cone pair 𝑔+
𝑖𝑗𝑘

and 𝑔−
𝑖𝑗𝑘

from cell 𝑐
𝑖
and

growing network gnet
𝑗
are both positioned so as to be able

to establish a connection to cell 𝑐
𝑘
, then the weight on the

connection from 𝑐
𝑖
to 𝑐
𝑘
in the static network snet

𝑗
is the

sum of the individual weights contributed by the growth cone
pair.

In the SINOSA model the function from the space of
growing networks to the space of static networks is designed
around the need to create a neural network representation
that more closely integrates the concepts of topology and
connection weight so that the canonical PSO algorithm can
be used to optimize these network characteristics effectively.
This function is implemented as follows. Each growth cone
is considered to be at the center of its own spherically
symmetric “weight field” that is finite in extent, and its
corresponding weight has a magnitude that decreases to zero
as the distance from the growth cone increases. A growth
cone establishes a connection with a target cell if the cell
is within the boundary of its weight field; otherwise no
connection is created. The spacing between cells is such that
no more than one cell can be within a growth cone’s weight
field at any given time. The weight on the connection is
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Figure 2: Three growing neural networks and their interpretations as static neural networks based on the SINOSA model. The three large
spheres represent cells, the smaller circles represent growth cones, and the lines between cells and growth cones denote connections (axons).
The growth cones that are drawn with a “+” symbol have a positive weight field, and those that are drawn with a “−” symbol have a negative
weight field. (a)The growth cones and axons that belong to a particular growing network are all shown with the same line-style (solid, dotted,
or dash-dot). The straight dashed lines between growth cones indicate two of the six growth cone neighborhoods. Growth cones within a
neighborhood interact with one another according to the canonical PSO algorithm. All three growing networks share the same three cells.
(b) The solid-line growing network is shown without the other two. (c) The corresponding static network to which the solid-line growing
network is mapped based on the proximity of its growth cones to their target cells. The numbers represent connection weights.

the value of the field at the target cell’s center. Formally, a
weight field is a function from R to R with the form

𝑤 (𝑟) =
{

{

{

𝑎𝑟
𝛼
+ 𝑏, if 𝑟 < 𝑟

0

0, if 𝑟 ≥ 𝑟
0
,

(2)

where 𝑎, 𝑏 ∈ R, 𝑟 ≥ 0 is the distance of the target cell from the
center of the growth cone, 𝑟0 > 0 is the extent of the weight
field, and 𝛼 > 0. In the SINOSA model it is assumed that
𝑤(𝑟) → 0 as 𝑟 → 𝑟0. Thus 𝑤(𝑟0) = 𝑎𝑟

𝛼

0 + 𝑏 = 0, which
implies that 𝑎 = −𝑏/𝑟𝛼0 = −𝑤(0)/𝑟

𝛼

0 . Figures 2(b) and 2(c)

illustrate how one of the three interacting, growing networks,
shown together in Figure 2(a), is mapped to a static network
based on the weight field interpretation of the growth cones’
positions relative to their target cells. The growth cones that
are drawn with a “+” symbol have a positive weight field
represented by the function

𝑤
+
(𝑟) =

{

{

{

−
1
2
𝑟 + 1, if 𝑟 < 2

0, if 𝑟 ≥ 2,
(3)
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where 𝑟 is the distance between a growth cone and one of
its target cells. The growth cones that are drawn with a “−”
symbol have a negative weight field expressed by the function

𝑤
−
(𝑟) =

{

{

{

1
2
𝑟 − 1, if 𝑟 < 2

0, if 𝑟 ≥ 2.
(4)

Thus, in this scenario the weights are restricted to the interval
[−1, 1]. Figure 2(b) shows the solid-line network’s growing
axons, along with the distance between each growth cone and
its nearest target cell. Figure 2(c) shows the static network
derived from the solid-line growing network. The numbers
here are the connection weights. This mapping occurs as
follows. The cell shown in the lower left hand corner of
Figures 2(b) and 2(c) establishes a connection with weight
𝑤
−
(1.5) = −0.25 to the upper cell but does not establish

a connection with the cell in the lower right hand corner
because 𝑤

+
(2.2) = 0. The upper cell makes a connection

to the lower left hand cell with weight 𝑤
+
(0.5) + 𝑤

−
(1.3) =

0.4. The lower right hand cell makes a connection to the
lower left hand cell with weight 𝑤

+
(1.3) = 0.35, and it

makes a connection to the upper cell with weight 𝑤
−
(0.7) =

−0.65. The other two growing networks are mapped to their
corresponding static network representations in an analogous
manner.

The function that maps growing networks to static net-
works is formulated so that a small change in the position
of a growth cone produces a small change in the weight
on a connection, or if the change in position results in the
addition or removal of a connection, then the added or
removed connection has a weight that is small in magnitude.
In other words, a small change in the physical configuration
of a growing network will produce a small change in the
weights and topology of the static network to which it
is mapped. This characteristic, coupled with the fact that
network optimization via the SINOSA model occurs in a
single, continuous weight-topology space, results in much
smoother objective functions.

2.1.3. Incorporating PSO. Using network self-assembly as our
representation scheme yields a single, continuous weight-
topology space that needs to be searched during the opti-
mization process. In other words, we need to extend the
classic self-assembly problem to functional self-assembly.
Given that we have a single, continuous search domain, a
wide variety of different optimization algorithms could be
used for this purpose. However, we chose to use the PSO
algorithm because it is intuitive and effective, and our model
incorporates a version of the algorithm for which application
to the concurrent optimization of neural networkweights and
topology has not previously been explored. Specifically, we
utilize one of the most basic formulations of PSO, which will
be referred to as canonical PSO. Canonical PSO specifies that
the particles velocities are governed by

⃗V
𝑖
(𝑡 + 1) ←󳨀 𝜒 ( ⃗V

𝑖
(𝑡) + 𝑎

𝑝
⃗𝑢1 ⊗ ( ⃗𝑝𝑏𝑒𝑠𝑡,𝑖 − ⃗𝑟𝑖) + 𝑎𝑛 ⃗𝑢2

⊗ ( ⃗𝑛
𝑏𝑒𝑠𝑡,𝑖
− ⃗𝑟
𝑖
)) ,

(5)

where ⃗𝑟
𝑖
(𝑡) is the position of the 𝑖th particle at time 𝑡, ⃗V

𝑖
(𝑡)

is its velocity, ⃗𝑝
𝑏𝑒𝑠𝑡,𝑖

is the current best position of the 𝑖th
particle, ⃗𝑛

𝑏𝑒𝑠𝑡,𝑖
is the best position among any of its neighbor

particles, 𝜒 is a scaling factor known as the constriction
coefficient, 𝑎

𝑝
and 𝑎

𝑛
are positive constants, ⃗𝑢1 and ⃗𝑢2 are

vectors whose components are drawn from the uniform
probability distribution over the unit interval, and the ⊗
symbol represents the component-wise vector product (i.e.,
[𝑎1 𝑎2] ⊗ [𝑏1 𝑏2] = [𝑎1𝑏1 𝑎2b2]). It is standard practice to
update the positions of the particles using a Forward Euler
step with a step-size of 1.0; that is, ⃗𝑟

𝑖
(𝑡 + 1) ← ⃗𝑟

𝑖
(𝑡) + ⃗V

𝑖
(𝑡 + 1).

The appeal of this version of PSO lies in its simplicity and
in its proven effectiveness on a wide range of optimization
problems.

In order to integrate particle swarm optimization and
self-assembly the particles in PSO are viewed as being part
of a larger structure. Almost all implementations of PSO
consider the particle to be the fundamental type of object
capable ofmovement and interaction during the optimization
process. In the research presented here, the growing network
plays the role of the fundamental type of object involved
in the optimization process. That is, instead of a population
of moving particles, there is a population of growing net-
works. The transition from particles to networks is achieved
by having growth cones play the role that particles do in
traditional PSO. Growth cones occur at the leading tips of
growing axons (connections) and guide their movements
through the physical space. The growth cones’ movements
are dictated by the canonical PSO equation (5), and because
growth cones occur at the leading tips of growing axons, their
movements generate network growth. Unlike in traditional
PSO, the position of a growth cone (particle), however it is
interpreted, is only meaningful when the axon/neuron that it
is a part of is taken into account.

Since the growth cones from different growing networks
interact with one another according to the canonical PSO
algorithm, during the self-assembly process each growth cone
must be assigned a quality (fitness) value that indicates the
usefulness of the best solution component (connection) the
growth cone has found, and it must remember its personal
best position, which represents the best connection found by
the growth cone up to the current point in the growth process.
Specifically, at each discrete time-step 𝑡 ∈ N the performance
of each static network snet

𝑗
(𝑡) on some set of training data is

determined, where 𝑗 = 1, 2, .., 𝑛. For each growing network
gnet
𝑗
(𝑡), if the performance of snet

𝑗
(𝑡) is better than the

performance of snet
𝑗
(𝑡 − 𝜏) for all 𝜏 ∈ N such that 0 <

𝜏 ≤ 𝑡, then the fitness value of gnet
𝑗
(𝑡), or more specifically

its growth cones 𝑔𝑠
𝑖𝑗𝑘
∈ G
𝑗
, is set to the performance value

of snet
𝑗
(𝑡), and the personal best position of each growth

cone 𝑔𝑠
𝑖𝑗𝑘

is set to its current position. In theory, it is possible
to determine the fitness of each growth cone in a network
individually, rather than collectively at the network level. To
do this one would need to determine a fitness value propor-
tional to E[Network Performance | Growth Cone Weight],
the expected value of the network’s performance as a function
of the growth cone’s weight. We chose the former approach
for two reasons. First, computing such an expectation value
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requires averaging network performance over a very large
number of possible growth cone positions that constitute
instantiations of different networks. Second, each individual
connection has only minimal influence on network perfor-
mance, and thus optimizing them individually tends to lead
to convergence on suboptimal solutions.

Any growth cone 𝑔𝑠
𝑖𝑗𝑘

must have a set of neighbor growth
cones N

𝑔
𝑠

𝑖𝑗𝑘

that influence its movements. As in most imple-
mentations of PSO, the research presented here adheres to the
condition that the neighbor relation is symmetric. That is, if
𝑔
𝑠

𝑖ℓ𝑘
is a neighbor of𝑔𝑠

𝑖𝑗𝑘
, then𝑔𝑠

𝑖𝑗𝑘
is a neighbor of𝑔𝑠

𝑖ℓ𝑘
.There is

a wide variety of different ways that a growth cone’s neighbors
could be selected. However, certain characteristics of the self-
assembly/optimization process limit the number of useful
choices. It is an underlying assumption of the PSO algorithm
that the closer two neighbor particles get to one another, the
more similar the solutions or solution components that their
positions represent are. It is essential for the effectiveness
of the PSO algorithm that if two growth cones 𝑔𝑠

𝑖𝑗𝑘
and

𝑔
𝑠

𝑖ℓ𝑘
are neighbors, and they occupy the same position, then

they represent exactly the same weighted connection in their
respective static networks snet

𝑗
and snet

ℓ
.

In the SINOSA model, if two growth cones occupy the
same position but are guiding axons from different cells, then
they represent two completely different connections (solution
components). Likewise, if two growth cones occupy the same
position but do not have exactly the same set of target cells,
then they may represent different connections. These two
scenarios, and the need for growth cones that are neighbors
to avoid circumstances where they occupy the same position
and yet represent different weighted connections, lead to
three necessary growth cone neighborhood properties. First,
if a pair of growth cones are neighbors, then they must
be guiding axons from the same cell. Second, if a pair of
growth cones are neighbors, then they must have exactly
the same set of target cells. Third, if a pair of growth cones
are neighbors, then their weight fields must be expressed by
the same function. The following is a simple and effective
way of choosing a growth cone’s neighbors such that these
properties are satisfied. For any cell 𝑐

𝑖
and growing network

gnet
𝑗
, the neighbor growth cones of the growth cone 𝑔𝑠

𝑖𝑗𝑘
∈

G
𝑖𝑗
with target cell 𝑐

𝑘
and sign 𝑠 are members of the set

N
𝑔
𝑠

𝑖𝑗𝑘

⊂ {𝑔
𝑠

𝑖ℓ𝑘
∈ G
𝑖ℓ
| ℓ = 1, 2, . . . , 𝑛}. In Figure 2(a) the

dashed lines between growth cones explicitly show two of
the 18 growth cone neighborhoods (only 6 of the 18 growing
axons per network are shown). Because each growth cone
neighborhood consists of three growth cones connected in
a ring topology, N

𝑔
𝑠

𝑖𝑗𝑘

= {𝑔
𝑠

𝑖ℓ𝑘
∈ G
𝑖ℓ
| ℓ = 1, 2, 3 ∧ ℓ ̸= 𝑗}.

When the SINOSA model is used to grow a network
that is optimized for a computational problem, on every
time-step of the growth process, the performance of each
static network is evaluated and used to update the fitness
values of the growth cones. The positions of the growth
cones are then updated according to the canonical PSO
algorithm. Then, on the next time-step, the new physical
configurations of the three growing networks are mapped
to their corresponding static networks, and the evaluation

Mackey-Glass time-series
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Figure 3: An example of the time-series generated by (6) with
parameters 𝛼 = 0.2, 𝛽 = 10.0, 𝛾 = 0.1, and 𝜏 = 17.

process repeats. The growth process terminates, and the best
performing static network found during the growth process
is returned, after a predefined number of time-steps, or once
one of the static networks satisfies a prespecified performance
criterion.

2.2. Experimental Methods. Here, we cover the implemen-
tation details of the SINOSA model when it is used to
optimize neural networks for the Mackey-Glass time-series
forecasting problem and the double pole balancing problem.
These problems were selected because they are challenging
and widely used benchmark tasks in the domains of time-
series forecasting and control, and a wide variety of different
neural network training/optimization algorithms have been
used in solving them.

2.2.1. Computational Test Problems. The first problem is
forecasting the chaotic Mackey-Glass time-series [39, 72, 73].
The time-series is generated by the delay differential equation

𝑑𝑦

𝑑𝑡
=
𝛼𝑦 (𝑡 − 𝜏)

1 + 𝑦 (𝑡 − 𝜏)𝛽
− 𝛾𝑦 (𝑡) , (6)

where 𝛼, 𝛽, 𝛾, and 𝜏 ∈ R+. When 𝜏 > 16.8 the time-series is
chaotic. Figure 3 shows a sample of the time-series.

The second problem is the double pole balancing prob-
lem (see Figure 4), which is a classic benchmark control
problem, particularly for neural network controllers (neural
controllers) [74–76]. The double pole balancing problem
consists of using a controller to balance two poles with
different lengths that are hinged to the top of a cart thatmoves
along a track of finite length. The controller attempts to keep
the poles up-right by applying a force 𝐹

𝑐
to either side of the

cart in a direction parallel to the track. To be successful, the
controller must keep the cart within a specified distance 𝑥limit
from the center of the track, and itmust keep each pole within
a specified angular limit 𝜃limit from the vertical.The equations
governing the dynamics of a cart with𝑁 poles can be found
in [76].

2.2.2. Implementation Details. The SINOSA model is imple-
mented as a simulation environment written in Java. The
computational experiments presented in Section 3 each ran
on a computer with two quad-core 2.33GHz Intel Xeon
processors, 8 GB of shared RAM, and 12MB of L2 cache
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Figure 4: The cart-pole system used in the double pole balancing
problem. The state of the system is defined by the position 𝑥 of the
cart relative to the center of the track and the angular positions 𝜃1
and 𝜃2 of the large and small poles relative to the vertical.The control
force 𝐹

𝑐
is applied to the side of the cart, in a direction parallel to the

track.

per processor. The computational requirements listed here
are for the growth of echo state networks using collective
movements, unless stated otherwise. The environment in
which networks grow was unbounded and no particular
units were assigned to time and distance. The components of
growing networks (cells, axons, and growth cones) were not
able to collide with one another.The cells’ positions remained
fixed throughout the growth process. Unless stated otherwise,
in every experiment the positions of the cells were fixed on a
centered rectangular lattice with 8.0 distance-units between
adjacent lattice points; there were 16 growing networks, and
the growth cone neighborhoods adhered to a von Neumann
topology (square lattice with periodic boundary conditions).

The dynamics of the growth cones are governed by the
canonical PSO equation (5), where 𝑎

𝑝
= 𝑎
𝑛
= 2.0,𝜒 = 0.65 for

the Mackey-Glass experiments, and 𝜒 = 0.725 for the double
pole balancing experiments. For all of the experiments, each
growth cone’s weight field was linear (𝛼 = 1) and had a radius
𝑟0 = 2.0. By convention, one time-step in the SINOSAmodel
is equivalent to 1.0 unit of time.

Many of the experimental results presented in Section 3
are compared to control cases that incorporated random
growth conemovements, as opposed to collectivemovements
driven by the canonical PSO equation, generated as follows.
At every time-step of the growth process each growth cone
is placed at a unique, randomly selected position that is less
than a distance 𝑟0 from the center of its target cell, where 𝑟0
is the extent of the growth cone’s weight field. This way, the
weights on the connections are randomly generated.

For each of the computational problems discussed in
Section 2.2.1, the SINOSA model was used to grow echo
state networks as solutions. The computational experiments
described in the Results were designed to test the optimiza-
tion capabilities of the SINOSA model.

3. Results

3.1. Mackey-Glass Time-Series. In all of the experiments that
involve the Mackey-Glass time-series the parameters of (6)
were set to the following commonly used values: 𝛼 = 0.2,
𝛽 = 10, 𝛾 = 0.1, and 𝜏 = 17. These values yield a
“mildly” chaotic time-series. The time-series was generated
by solving (6) using the Matlab delay differential equation
solver dde23 with a maximum step-size of 1.0, a relative
error tolerance of 10−4, and an absolute error tolerance of
10−16. For every time-series generated from (6), an initial
sequence of data points was randomly generated from the
uniform probability distribution over the interval [0, 1], and
(6) was integrated for 1000 time-steps before collection of
the time-series data began. This initial run-off period was
necessary to remove the effects of the randomly generated
initial condition. Consecutive data points in the sequences
generated by the Mackey-Glass system were separated by
1.0 units of time. Data from the Mackey-Glass system was
made more appropriate for processing by neural networks
by mapping it into the interval [−1, 1] using the hyperbolic-
tangent function tanh(𝑥) = (𝑒2𝑥−1)/(𝑒2𝑥+1). Network output
was mapped back to the original range using the inverse of
tanh(𝑥) for testing, validation, and analysis. Each reservoir
neuron used 𝑓(𝑥) = tanh(𝑥) as its transfer function and had
an internal state governed by the leaky integrator differential
equation [34]. The output neuron used the linear transfer
function, 𝑓(𝑥) = 𝑥, and did not have an internal state.

The ESNs grown for the Mackey-Glass time-series con-
sisted of a single input neuron, a bias neuron, a single
output neuron, and 50 neurons in the reservoir. The growth
cones were permitted to establish connections from the input
neuron to the reservoir neurons, from the bias neuron to the
reservoir, and from the reservoir back to the reservoir. Addi-
tionally, each reservoir neuron had a permanent connection
to the output neuron because the weights on the reservoir-to-
output connections were derived using linear regression.The
“Echo State Property,” which is a necessary condition on the
reservoir dynamics for achieving good performance and in
past work has typically been attained by manually scaling the
spectral radius of the reservoir weight matrix to be less than
one [34], was derived entirely through the network growth
process.

The input neuron’s set of neighbor neurons was the entire
reservoir, as was the case for the bias neuron. Each reservoir
neuron’s set of neighbor neurons consisted of 5 randomly
selected neurons in the reservoir. The output neuron did
not have any neighbor neurons, because it did not have any
growing axons. For each one of the 16 simultaneously growing
networks, each neuron contributed one positively weighted
growth cone (𝑏 = 1 in (2)) and one negatively weighted
growth cone (𝑏 = −1), per neighbor neuron. Each of these
positive-negative growth cone pairs had the same, single
target neuron.

On every time-step each growing networkwasmapped to
the static network represented by its current physical config-
uration. Before applying input to a network, the internal state
and/or output of each neuron was set to zero. For each static
network, the weights on the connections from the reservoir
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neurons to the output neuron were trained using teacher-
forcing [39] with a sequence generated from the Mackey-
Glass system that had 2100 data points. The first 100 data
points of this sequence were fed into a network prior to any
training with the purpose of removing the effects of the initial
state of the reservoir. The next 2000 data points were then
fed into the network, and linear regression in the form of the
least squares method was performed between the resulting
reservoir states (activities of the reservoir neurons) and the
desired network outputs. The topology and weights of the
connections from the input neuron to the reservoir, from the
bias neuron to the reservoir, and from the reservoir neurons
back to the reservoir were determined by the growth process.

The performance of an ESN on the data used to train
the output weights is typically not a good measure of the
network’s ability to generalize to new data [77]. Thus, during
the growth process the generalization performance of each
static network was computed on every time-step and used
to update the fitness values of the growing networks. The
generalization performance measure was the normalized
root mean square error computed over a set of 84-step
predictions (NRMSE84) [34]. Specifically, on every time-
step, after training the output weights, the NRMSE84 was
computed for each static network on a group of 20 randomly
selected sequences from the Mackey-Glass system. Each of
these sequences consisted of 184 data points. In order to
prevent overgeneralization, every 10 time-steps a new set
of 20 sequences was randomly pulled from a pool of 200
different sequences. At the end of the growth process, which
lasted for 3600 time-units, the best positions of the growth
cones in each growing network represent the best performing
networks found over the course of the entire growth process.
There is one best performing network per growing network
and it is instantiated by translating the best positions of
the network’s growth cones into the corresponding static
network. The performances of the best static networks were
validated by computing the NRMSE84 of each network using
100 new sequences, each of a length of 2084. The best
performing network on this validation data was taken as the
solution. Towards the end of a growth process the growing
networks tend to converge on a particular configuration and
this final validation step ensures that the solution network has
the best generalization performance.

For the SINOSA model, 37 trials were run with collec-
tive movements generated by canonical PSO, and 38 trials
were run with random movements. In the Mackey-Glass
experiments, on average, one epoch of growth (explained
in Section 3.1) of an ESN with 50 neurons in its reservoir
requires 2 hours of CPU time. One epoch of growth of an
ESNwith 100 neurons in its reservoir requires 5 hours of CPU
time. One epoch of growth of an ESN with 400 neurons in its
reservoir requires 3 days of CPU time. The networks grown
using collective movements have a mean NRMSE84 that is
68% smaller than those grown with randommovements with
95% confidence.

Once the growth process had finished (after 3600 time-
units) the grown networks were further optimized by refining
the search process and running it for an additional 3600
time-units. This refinement was implemented by continuing

Table 1: Mean NRMSE84 values on the Mackey-Glass time-series
for networks grown with the SINOSA model.

Epoch Collective movements Random movements
1 5.89 ⋅ 10−3 ± 3.3 ⋅ 10−4 1.84 ⋅ 10−2 ± 8 ⋅ 10−4

2 4.98 ⋅ 10−3 ± 3.2 ⋅ 10−4 1.48 ⋅ 10−2 ± 7 ⋅ 10−4

the growth (search) process with new growth cones that
had weight fields that were smaller in maximum magnitude.
Specifically, for each connection in the best performing static
network found during the first epoch, except the connections
from the reservoir to the output neuron, a fixed connection
with the same weight was created between the corresponding
cells in the setC.When a static networkwas instantiated from
a growing network during the second epoch, the weights on
the connections in the static network were the sum of the
weight values contributed by the growth cones and the fixed
connections.

The network growth process generated by the SINOSA
model was extended by one epoch, for a total of two
epochs of growth. Table 1 compares the results obtained using
collective movements, with those obtained using random
movements, when the growth process was extended. Each
numeric value represents the mean NRMSE84 and the 95%
confidence interval for the corresponding epoch of growth
and class ofmovements. It can be seen that, for both collective
and random movements, there is a small but statistically
significant reduction in the mean NRMSE84 with each epoch
of growth. Furthermore, for each epoch, the mean NRMSE84
of the networks grown using collective movements is smaller
than that of the networks grown using randomly generated
movements.

Further evidence of the effectiveness of the SINOSA
approach can be gained through comparison with the studies
presented in [34, 39], which represent state-of-the-art perfor-
mance forMackey-Glass time-series prediction. In [34], echo
state networks with 400 neuron reservoirs were optimized to
forecast the Mackey-Glass time-series (𝜏 = 17.0). The best
performing of these networks, which was hand-designed by
an expert, had an NRMSE84 of 2.8 ⋅ 10

−4. In [39], using the
same parameter values for the Mackey-Glass time-series as
used here, an echo state networkwith a 1000-neuron reservoir
was hand-designed by an expert that had an NRMSE84 of
6.3 ⋅ 10−5. The SINOSA model was used to grow echo state
networks with 400 neurons in their reservoirs to forecast the
Mackey-Glass time-series. The grown networks produced an
averageNRMSE84 of 3.86⋅10

−5, and the best of these networks
had an NRMSE84 of 2.73 ⋅ 10−5. On average, the grown
networks with 400 neurons outperformed the best hand-
designed 400-neuron ESN by about an order of magnitude,
and they also performed better than the 1000-neuron ESN.
These results provide strong evidence of the effectiveness
of using the SINOSA model to grow echo state networks,
as opposed to the standard approach of optimizing them
through trial and error.

3.2. Double Pole Balancing Problem. In all of the experi-
ments that dealt with the double pole balancing problem,
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the parameters were set to the most commonly used values
[75] as follows: mass of the cart 𝑚

𝑐
= 1 kg, mass of the

1st pole 𝑚1 = 0.1 kg, mass of the 2nd pole 𝑚2 = 0.01 kg,
coefficient of friction between the cart and the track 𝜇

𝑐
=

5 ⋅ 10−4 Ns/m, coefficients of friction between the poles and
their hinges 𝜇1 = 𝜇2 = 2 ⋅ 10−6 Nms, length of the 1st pole
𝑙1 = 0.5m, and length of the 2nd pole 𝑙2 = 0.05m. The
control force was restricted to the interval𝐹

𝑐
∈ [−10N, 10N].

The parameters defining the domain of successful control
were set to 𝑥limit = 2.4m and 𝜃limit = 36∘. As is the case
in most past work, the equations governing the dynamics
of the system were solved numerically using a fourth-order
Runge-Kutta method with a step-size of 0.01 s. During a
simulation, a portion of the state of the cart-pole system
was given to a neural controller every 0.02 s, at which point
the control force was updated. In the experiments presented
here, a neural controller was not given velocity information
as input; rather, it only received the current positions of the
cart and two poles (𝑥, 𝜃1, and 𝜃2). This was done in order
to make the task of controlling the cart more difficult. These
values were scaled to be in the interval [−1, 1] prior to being
input into a neural controller.This was done so that the values
were in a range that was more appropriate for processing
by neurons with hyperbolic-tangent transfer functions. The
network output (control signal), which was in the interval
[−1, 1], was multiplied by 10.0N in order to produce the
control force. Reservoir neurons and the output neuron used
the hyperbolic-tangent function as their transfer function.
None of the neurons had an internal state.

The SINOSAmodel was used to grow echo state networks
as controllers for the double pole balancing problem. These
networks had three input neurons, one for each type of infor-
mation; the network was given regarding the state of the cart-
pole system (cart position, position of pole #1, and position of
pole #2). The reservoir always consisted of 20 neurons. One
output neuron was present, which produced the control sig-
nal. No bias neuronwas used due to the symmetry of the cart-
pole system. The growth cones were permitted to establish
connections from the input neurons to the reservoir and from
the reservoir neurons back to the reservoir. Additionally, each
reservoir neuron had a permanent connection to the output
neuron. The weights on the reservoir-to-output connections
were fixed and drawn randomly with uniform probability
from the interval [−30, 30]. The network architecture was
otherwise identical to that of the Mackey-Glass network (see
third paragraph of Section 3.1) except that in this case each
reservoir neuron had only 4 neighbor neurons.

During the growth process the performance of each static
networkwas computed on every time-step.The function𝑓pole
was evaluated to determine the performance of the echo state
networks grown as controllers for the double pole balancing
problem and is given by

𝑓pole = 10−4𝑛
𝐼
+ 0.9𝑓stable + 10

−5
𝑛
𝐼𝐼
+ 30

𝑛
𝑆

625
. (7)

Equation (7) was introduced in [75] and is based on per-
formance (fitness) functions presented in past works on the
double pole balancing problem. To compute the first term
in (7) the cart-pole system is set to the initial state (𝜃1(0) =

4.5∘, ̇𝜃1(0) = 𝜃2(0) = ̇𝜃2(0) = 𝑥(0) = ̇𝑥(0) = 0). The network
is then allowed to control the system for up to 1,000 time-
steps. The number of time-steps 𝑛

𝐼
that the controller keeps

the cart and poles in the success domain (𝑥 ∈ [−2.4m, 2.4m]
and 𝜃1, 𝜃2 ∈ [−36

∘
, 36∘]) is counted. If the system leaves the

success domain at any time prior to time-step 1,000, then the
simulation stops.The second term is ameasure of the stability
of the system during the last 100 time-steps while under
neural network control and is expressed by the function

𝑓stable =
{{

{{

{

0, 𝑛
𝐼
< 100

0.75
∑
𝑛
𝐼

𝑖=𝑛
𝐼
−100 𝜌𝑖

, 𝑛
𝐼
≥ 100,

(8)

where

𝜌
𝑖
= (|𝑥 (𝑖)| + | ̇𝑥 (𝑖)| +

󵄨󵄨󵄨󵄨𝜃1 (𝑖)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
̇𝜃1 (𝑖)
󵄨󵄨󵄨󵄨󵄨
) . (9)

The third and fourth terms are measures of a neural con-
troller’s ability to generalize. If 𝑛

𝐼
= 1000 after computing the

first term, then the neural controller is allowed to control the
system for up to additional 100,000 time-steps. The number
of additional time-steps 𝑛

𝐼𝐼
that the controller keeps the

cart and poles in the success domain is counted, and the
simulation stops if the system leaves the success domain or
𝑛
𝐼𝐼
= 100, 000. The fourth term is computed by putting

the cart-pole system in 625 different initial conditions and
allowing the network to control it for up to 1,000 time-steps
from each starting configuration. The variable 𝑛

𝑆
represents

the number of different initial conditions from which the
neural controller was able to keep the system in the success
domain for 1,000 consecutive time-steps. The 625 unique
initial conditions are defined in [74].

On every time-step of the growth process each growing
network was mapped to the static network represented by its
current physical configuration so that its performance could
be computed by evaluating (7). Before applying input to a
network the output of each neuron was always set to zero.
Before a network was permitted to control the cart and poles
the dynamics of the cart-pole system were evolved for 0.2 s,
and the resulting sequences of 10 system states were input
into the network. The neural network growth process lasted
for 600 time-units, after which the static network with the
best performance (largest value of 𝑓pole) was taken as the
solution.

A total of 51 trials were run starting from different,
randomly generated initial conditions. In the double pole
balancing experiments 200 time-steps of growth require
approximately 0.3 hours of CPU time, 400 time-steps require
1.4 hours, and 600 time-steps require 3.3 hours. Table 2
compares the performance of networks grown using col-
lective movements to the performance of networks grown
using random movements. The comparison of performance
is made every 200 time-steps during the growth process.
Each of the numeric values in the tables is shown with
its 95% confidence interval. The values in Table 2 were
computed as follows. For each trial, and at each of the three
predefined time-steps (200, 400, and 600), two measures of
the best performing network at that point in the growth
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Table 2: Performance values on the double pole balancing problem
for networks grown with the SINOSA model.

Time-step Collective, MeasureII Random, MeasureII
200 0.667 [0.530, 0.780] 0.026 [0.005, 0.135]
400 0.961 [0.868, 0.989] 0.053 [0.015, 0.173]
600 1.0 [0.930, 1.0] 0.053 [0.015, 0.173]
Time-step Collective, Measure

𝑆
Random, Measure

𝑆

200 372 ± 29 10 ± 5
400 462 ± 10 28 ± 15
600 478 ± 7 41 ± 17

process were recorded. The first measure was whether or
not the network succeeded in achieving 𝑛

𝐼𝐼
= 100, 000

when computing (7). The second measure was the value of
𝑛
𝑆
. In Table 2 the term Measure

𝐼𝐼
refers to the fraction of

best performing networks that achieved 𝑛
𝐼𝐼
= 100, 000. The

term Measure
𝑆
refers to the average value of 𝑛

𝑆
taken over

all of the best performing networks. From these results it
is clear that the networks grown with collective movements
vastly outperform those grown with randomly generated
movements on both performances measures.

A study that lends itself to comparison is presented
in [75], which represents state-of-the-art performance on
the double pole balancing problem. In this case echo state
networks were optimized as controllers for the double pole
balancing problem via a state-of-the-art form of evolutionary
strategies that uses covariance matrix adaptation (CMA-ES).
In this study CMA-ES was used to optimize the output
weights and the spectral radius of the reservoir weightmatrix.
The experiments discussed in this section, in which the
SINOSA model was used to grow ESNs as controllers for
the double pole balancing problem, adhered to the same
experimental setup and methods used in [75], except that
in our study the grown neural controllers received only 10
inputs from the cart-pole system prior to beginning control
instead of 20. Because evaluating the fitness/performance
of the networks during the optimization process is the
computational bottleneck, the number of such evaluations
during an optimization run is a good measure of the overall
computational cost of the process. On average it required
19,796 evaluations for the CMA-ES approach to find a neural
controller capable of successfully controlling the cart for at
least 200 out of the 625 initial configurations (the average was
224), and of these networks 91.4% were able to successfully
control the cart for the additional 100,000 time-steps when
it was started in the standard initial configuration. These
results are very good with respect to past work on the double
pole balancing problem. The SINOSA model was able to
growmuch better performing neural controllers and at much
less computational expense. After only 9600 evaluations,
on average, the best performing grown networks were able
to successfully control the cart for 478 of the 625 initial
configurations, and of these networks 100% of them were
able to successfully control the cart for the additional 100,000
time-steps.

4. Discussion

The SINOSA model incorporates an integrated representa-
tion of a network’s weights and topology. The objects in
this representation are cells (neurons), axons, and growth
cones. The cells have fixed positions, but the growth cones
are able to guide the cells’ axons through a continuous,
three-dimensional space, producing a mature network with
fixed connections and weights. As a result of the integrated
representation, it is possible to incorporate the simplest,
canonical form of PSO into the model for the purpose of
simultaneously optimizing network weights and topologies.
In effect, the SINOSAmodel treats the network self-assembly
process as an optimization or search process, in which the
simultaneous growth ofmultiple neural networks is driven by
their interactions with one another and with problem related
network input.

The ability of the SINOSA model to optimize neural
networks for computational tasks was tested using two differ-
ent very challenging and widely used benchmark problems
from the domains of time-series forecasting and control. For
each of the computational problems the echo state networks
grown using collectivemovements generated via PSOoutper-
formed those grown using randomly generated movements,
and in most circumstances the performance gap was very
large. Specifically, compared to the networks grown with
random movements, those grown using the SINOSA model
with collective movements performed 3 times better on the
Mackey-Glass time-series forecasting problem and 19 times
better and 12 times better on two generalization measures of
the double pole balancing problem. Furthermore, the large
improvements in network performance gained over random
search come at very little additional computational cost
because evaluation of network performance is the bottleneck.

Comparison with control cases that involve random
search provides a base level of support for the optimization
capabilities of the SINOSA model and demonstrates the
feasibility of functional self-assembly as a means of network
optimization. Further evidence of the effectiveness of the
model at optimizing networks can be found by comparing
the results presented here with studies that involve different
methods of optimizing networks for the Mackey-Glass time-
series forecasting problem and the double pole balancing
problem. For example, the 400-neuron echo state networks
grown using the SINOSA model perform nearly an order
of magnitude better than the best performing 400-neuron
ESN presented in [34] with the Mackey-Glass time-series.
Furthermore, they even outperform the 1000-neuron ESN
presented in [39] by an average factor of 1.6. As a point of
further comparison, the networks grown via the SINOSA
approach outperform those in [75] by an average factor of 2.1.
Moreover, our ESNs were optimized with an average of 52%
less computational expense. These results are also interesting
in that they represent one of the comparatively small number
of studies where echo state networks have been successfully
trained as neural controllers using reinforcement learning.

It is worth pointing out that the SINOSA model can be
cast in a more abstract representation by foregoing the self-
assembly component. Imagine we are optimizing a network



12 Computational Intelligence and Neuroscience

with 𝑀 possible weighted connections. Then, according to
(2) there are two distinct one-dimensional Euclidean spaces
associated with each possible connection. Furthermore, there
is a unimodal function 𝑤

+
(𝑟) that is nonnegative and sym-

metric defined over the first space and a function 𝑤
−
(𝑟) =

−𝑤
+
(𝑟) that is defined over the second space. Each one

of these spaces would contain a set of particles (growth
cones) that was restricted to move within it. Only those
particles within a given space would interact according to
the PSO algorithm. A network would be created based on
the positions of the particles in exactly the same manner
described in Section 2.1.2.We chose to integrate self-assembly
into our model from a desire to illuminate the processes by
which physical networks might optimize their own weights
and topology via self-assembly.

5. Conclusions and Future Directions

The concurrent optimization of neural network weights and
topology is a challenging task due in large part to the
roughness of the objective functions encountered when the
search domain consists of both a continuousweight space and
a discrete topology space. Through the SINOSA model we
have demonstrated how network self-assembly can provide
a useful means of representing this search domain in that the
representation simplifies the domain to a single, continuous
search space over which smoother objective functions can
be defined. Furthermore, by using swarm intelligence in the
form of collective movements to drive the network growth
process, we were able to turn the self-assembly process into
an optimization process.

The four primary contributions of our research are as
follows:

(i) The SINOSA model constitutes a new and effective
means of simultaneously optimizing the weights and
topologies of neural networks. The model was used
to grow echo state networks that performed substan-
tially better on benchmark problems than networks
optimized via random search. More importantly, the
grown networks also outperformed the echo state
networks presented in two different past studies, one
in which the networks were hand-designed by an
expert and the other in which they were optimized
using a state-of-the-art form of evolutionary strate-
gies (CMA-ES).

(ii) There has been little past work on using PSO for the
concurrent optimization of neural network weights
and topology. The examples that do exist tend to
involve fairly complicated adaptations of the method,
significant constraints on permissible topologies, or
hybridizations with other classes of methods such
as evolutionary algorithms. In contrast, the SINOSA
model uses the elegant canonical form of PSO to
govern the growth/optimization process.

(iii) In the vast majority of past work on PSO, the par-
ticles are embedded in a high dimensional abstract
space, such as the domain of a function, they are
the fundamental class of “objects” in the space, and

the position of a particle represents a solution or
solution component to the problem being solved. In
contrast, the SINOSAmodel incorporates a novel way
of viewing PSO in which growth cones (particles) are
embedded in a continuous, three-dimensional space
that is intended to model physical space, and growing
networks are the fundamental class of objects in the
space.

(iv) Most past work on self-assembly has focused on
the classic self-assembly problem, which entails the
design of local controlmechanisms that enable a set of
components to self-organize into a given target struc-
ture. The SINOSA model represents an extension of
the classic self-assembly problem to functional self-
assembly, which includes the self-assembly of network
structures with growth driven by optimality criteria
defined in terms of the quality or performance of the
emerging structures, as opposed to growth directed
towards assembling a prespecified target structure.

There are a variety of potential future research directions
for the SINOSA model. Here we mention three possibilities.
First, it would be useful to extend this work to allow the
number of neurons in the physical space to be able to
increase or decrease during network assembly depending
on the computational requirements of the problem being
solved. Inspiration could likely be drawn from the fairly large
number of past studies that involve dynamically modifying
the number of nodes in a neural network. Second, further
studies are needed to determine towhat extent the parameters
of the SINOSA model are problem dependent, and what
values work well on a wide variety of different problems.
Lastly, since its inception, the canonical form of particle
swarm optimization has undergone a vast array of adapta-
tions and hybridizations. Many of these enhancements could
be incorporated into the SINOSA model without having to
alter its fundamental constructs.
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In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function
optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-
evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance
factor to make a more careful and thorough search near the bird’s nests location. In order to select a reasonable repeat-cycled
disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted
to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms
particle swarmoptimization (PSO) algorithm and artificial bee colony (ABC) algorithm.The results show that the improved cuckoo
search algorithm has better convergence velocity and optimization accuracy.

1. Introduction

Cuckoo search (CS) algorithm, a new biological heuristic
algorithm, is put forward by Yang and Deb in 2009. It
simulates the cuckoo’s seeking nest and spawning behavior
and introduces Levy flight mechanism into it, which is
able to quickly and efficiently find the optimal solution [1,
2]. Studies have proved that CS algorithm is better than
other swarm intelligence algorithms in convergence rate
and optimization accuracy, such as genetic algorithm (GA),
particle swarm optimization (PSO) algorithm, and artificial
bee colony (ABC) algorithm [3]. Because this algorithm has
the characteristics of fewer parameters and being simple and
easy to implement, now it has been successfully applied in
a variety of engineering optimization problems. So the CS
algorithm has a very high potential research value [4, 5].

CS algorithm is a new type of bionic algorithm. Many
scholars carry out many researches in CS algorithm and
put forward the corresponding improvement strategies. In
literature [6], it gains insight into search mechanisms of

CS algorithm and analyzes why it is efficient; meanwhile,
it discusses the essence of algorithms and its link to self-
organizing systems [6]. In literature [7], in order to increase
CS efficiency, it exploits several parameters of the CS algo-
rithm involving the Levy distribution factor beta (𝛽) and
the probability factor (𝑃) and by seeking optimum values
of these parameters efficiency of CS algorithm are improved
[7]. In literature [8], it studied the algorithmic structure
and behavior of CS and Levy distribution in detail, and
then by comparing with widely used optimization algorithms
(i.e., DE and GA) statistical results verified that CS has a
more superior problem-solving ability [8]. For the purpose
of enhancing the search ability of the cuckoo search (CS)
algorithm, an improved robust approach, called harmony
search (HS), is put forward, in which method a mutation
operator is added to the process of the cuckoos updating
to speed up convergence [9]. In literature [10], in order
to solve combinatorial problems, it extends and improves
CS by reconstructing its population and introducing a new
category of cuckoos [10]. A cuckoo optimal algorithm based
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on the exchange operator and the chaotic disturbance is
proposed, which introduces the exchange operator theory
of the particle swarm optimization algorithm to improve
convergence rate and optimization accuracy [11]. A cooper-
ative coevolutionary cuckoo search algorithm is put forward
by applying the framework of cooperative coevolutionary,
which divides the solution vectors of population into several
subvectors and constructs the corresponding subswarms [12].
A novel cuckoo search optimization algorithm based on
Gauss distribution is proposed by adding aGauss distribution
to CS algorithm to improve convergence rate [13]. A new self-
adaptive cuckoo search algorithm is proposed by using a self-
adaptive parameter control strategy to adjust the step size of
CS to enhance its search ability [14]. Because theCS algorithm
is highly random search according to Levy flight mechanism
and shows a strong leaping, it is easy to jump from one region
to another region, which makes the search that around each
bird’s nest locationnot careful and thorough and cannotmake
full use of information nearby the bird’s nest locations. So
the CS algorithm has characteristics of weak local searching
ability, slow convergence rate, and low optimization accuracy.

In order to make up the defect of the algorithm on this
aspect, a kind of improved cuckoo search algorithm based
on the repeat-cycle asymptotic self-learning and self-evolving
disturbance (RC-SSCS) is proposed. In order to obtain better
disturbance effect, the learning and updating strategy of the
worst frog in the shuffled frog leaping algorithm (SFLA) and
part of differential evolution (DE) thought are introduced
into the constructing of disturbance factor, thus, whichmakes
every disturbance with the effect of nest’s self-learning and
self-evolving. Finally, the six typical test functions are chosen
for simulation experiment and the simulation results proved
that the improved cuckoo search algorithmhas better conver-
gence rate and optimization accuracy.The paper is organized
as follows. In Section 2, the cuckoo search algorithm is
introduced.The improved cuckoo search algorithm based on
the repeat-cycle asymptotic self-learning and self-evolving
disturbance is presented in Section 3. In Section 4, the sim-
ulation experiments and results analysis are introduced in
details. Finally, the conclusion illustrates the last part.

2. Cuckoo Search Algorithm

Cuckoo search algorithm (CS) is developed by Xin-she Yang
by observing the magical nature phenomenon and then
giving an artificial processing, which is a new type of heuristic
search algorithm [15, 16]. This algorithm is mainly based on
two aspects: the cuckoo’s parasitic reproduction mechanism
and Levy flights search principle. In nature, cuckoos use a
randommanner or a quasirandommanner to seek bird’s nest
location [10]. Most of cuckoos lay their eggs in other bird
nests and let the host raise their cubs instead of them. If a host
found that the eggs are not its owns, it will either throw these
alien eggs away from the nest or abandon its nest and build
a new nest in other places. However, there are some cuckoos
choosing nest that the color and shape of the host’s egg are
similar with their own towin the host’s love, which can reduce

No

Yes

Add repeat-cycle asymptotic
self-learning and self-evolving

disturbance to each nest

Initialize parameters, randomly
generate n bird nests

Using a levy flight to obtain new 
locations of bird nests

Retain optimal bird nest location of
previous generation and update

locations of all bird nests 

Compare with the previous
generation bird nests location and
obtain a set of more superior bird
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Retain or change the birds nest
locations through detection
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Update the birds nest locations and
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Satisfy the termination 
conditions?

Output optimum 
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Figure 1: Flow chart of RC-SSCS algorithm.
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the possibility of their eggs being abandoned and increase the
reproduction rate of the cuckoos.

In general, each cuckoo can only lay one egg and each egg
on behalf of one solution (cuckoo). The purpose is to make
the new and potentially better solutions replace the not-so-
good solutions (cuckoos). In order to study the cuckoo search
algorithm better, the simplest method is adopted, that is to
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say, only one egg is in each nest. In this case, an egg, a bird’s
nest, or a cuckoo is no different, which is to say, each nest
corresponding to a cuckoo’s egg. For simplicity in describing
the cuckoo search algorithm, Yang and Deb use the following
three idealized rules to construct the cuckoo algorithm [17].

(1) Each cuckoo only lays one egg at a time and randomly
chooses bird’s nest to hatch the egg.

(2) The best nest will carry over to the next generation.
(3) The number of available host nests is fixed, and the

probability of a host discovering an alien egg is 𝑃
𝑎

=

[0, 1]. In this case, the host bird may either throw the
alien egg away or abandon its nest so as to build a new
nest in a new location.

Under the above conditions, the specific steps of CS
algorithm are described as follows.

(1) Initialization Setting. Randomly generate 𝑁 bird’s nest
location 𝑋0 = (𝑥

0
1, 𝑥

0
2, . . . , 𝑥

0
𝑁
), and then take the 𝑁 bird’s

nest positions into test functions for choosing experiments.
Through testing, the best bird’s nest location is chosen and
carried over to the next generation.
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(2) Searching of Bird’s Nest Location. Equation (1) is used to
realize the location update and search the bird’s nest location
of the next generation in order to gain a new set of bird’s
nest locations, which are taken into the test function again for
testing experiments. After comparingwith the last generation
nest locations, the best bird’s nest location is chosen and
entered into the next step. Consider

𝑥
(𝑡+1)
𝑖

= 𝑥
𝑡

𝑖
+ 𝛼 ⊕ Levy (𝜆) , 𝑖 = 1, 2, . . . , 𝑛. (1)

(3) Selection of Bird’s Nest Locations. The probability of a host
discovering an alien egg 𝑃

𝑎
= 0.25 is compared with the

random number that obeys uniform distribution 𝑟 ∈ [0, 1].
If 𝑟, the value of 𝑥𝑡+1

𝑖
is randomly changed. Otherwise it does

not need to be changed.
Then the changed bird’s nest locations are calculated with

the test functions, which are compared with the optimal
position of previous generation and best bird’s nest locations
𝑋
𝑡

= (𝑥
𝑡

1, 𝑥
𝑡

2, . . . , 𝑥
𝑡

𝑁
) is recorded. Finally, the optimal nest

position 𝑝𝑏
∗

𝑡
is chosen.
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(4) Accuracy or Iterations Judgment. Calculate and judge
whether𝑓(𝑝𝑏

∗

𝑡
) achieves the object accuracy or the terminat-

ing conditions. If it meets the requirements, 𝑝𝑏
∗

𝑡
is the global

optimal solution 𝑔𝑏; if it is not be met, 𝑝𝑏
∗

𝑡
is kept to the

next generation and return to step (2) and start the next loop
iteration and update again.

According to these four steps described above of cuckoo
search algorithm, the cuckoo algorithm not only uses the
Levy flight (global search) searchmethod, but also introduces
the elite reserved strategy (local search), which makes the
algorithm have both global search ability and local search
ability.The purpose of step (3) in this algorithm is to increase
the diversity of solution so that the algorithm is prevented
from being caught into local optimum and achieving the
global optimum.
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The search path of CS algorithm is different with other
swarm algorithms. The CS algorithm uses Levy flight, which
has character of strong randomness. Broadly speaking, Levy
flight is a random walk, whose step size obeys Levy dis-
tribution, and the direction of travel is subject to uniform
distribution. The step size vector of CS algorithm is deter-
mined by Mantegna rule of Levy distribution characteristics.
In Mantegna rules, the step size 𝑠 is designed as follows:

𝑠 =
𝑢

|V|1/𝛽
, (2)



Computational Intelligence and Neuroscience 5

0

20

40

60

80

100

120

140

Fu
nc

tio
n 

va
lu

e

0 100 200 300 400 500
Generations

ABC
PSO
CS

GCS
SSCS
RC-SSCS

Figure 11: Convergence curves of Function 𝑓
4
.

0

2000

4000

6000

8000

10000

12000

Fu
nc

tio
n 

va
lu

e

0 100 200 300 400 500
Generations

ABC
PSO
CS

GCS
SSCS
RC-SSCS

Figure 12: Convergence curves of Function 𝑓
5
.

where 𝑢 and V obey the normal distribution, that is to say

𝑢 ∼ 𝑁(0, 𝜎2
𝑢
) , V ∼ 𝑁(0, 𝜎2

V) , (3)

where

𝜎V = {
Γ (1 + 𝛽) sin (𝜋𝛽/2)

Γ [(1 + 𝛽) /2] 𝛽2(𝛽−1)/2
}

1/𝛽

,

𝜎
𝑢

= 1.

(4)

But here the chosen method of the direction obeys
uniform distribution. The searching pattern of CS algorithm
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.

is Levy flight, for instance, the 𝑖th cuckoo of the 𝑡th generation
generates the next generation solution 𝑥

𝑡+1
𝑖

:

𝑥
𝑡+1
𝑖

= 𝑥
𝑡

𝑖
+ 𝛼 ⊕ Levy (𝜆) , (5)

where ⊕ is a point to point multiplication and the step size of
Levy(𝜆) obeys the Levy distribution, which can be expressed
as follows:

Levy ∼ 𝑢 = 𝑡
−𝜆

, (1 < 𝜆 ≤ 3) . (6)

Here, the Mantegna rules are used to calculate the step
size. In (5), 𝛼 is the step controlled quantity mainly used to
control the direction and step size. In that its distribution is a
power function, Levy distribution has infinite variance and its
increment obeys heavy-tailed distribution [18, 19]. Levy flight
is seemingly Brownian motion under the status of a long-
distance flight, or it may be described that Levy flight consists
of frequent short-jump and occasional long-jump. The long-
jump can help the CS algorithm jump out of local optimum.
Consider

𝛼 = 𝑂(
𝐿

10
) , (7)

where 𝐿 is the search space size of optimization problems.
Thus, the generation of some new solutions is gradually

through the Levy flight and rand walk around the optimal
solution to obtain the optimal solution, which can speed up
the local searching. On the contrary, a part of new solutions is
far away from the current optimal solution, because they are
randomly generated by deviating from remote locations. The
main purpose of these solutions is to ensure that the system
does not fall into the local optimal solution.

A large number of simulation experiments prove that
when the bird’s nest groups values 𝑛= 15∼40 and the detection
probability 𝑃

𝑎
= 0.25, it can solve many optimization
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problems [16]. Once the population size 𝑛 is fixed, the
discovery probability𝑃

𝑎
is an important parameter to balance

the global search and the local search and control the elite
selection. Therefore, the CS algorithm has characteristic of
less parameters, excellent searching path and strong global
optimization ability, and so forth [20].

3. The Improved Cuckoo Search Algorithm

For each time, the length and direction of cuckoos’ searching
path are highly randomly changed based on Levy flight
mechanism, so they are easy to jump from one region to
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another, which is beneficial to the global search in the early
stage of optimization andmake the CS algorithm have strong
global search ability [16, 21]. It is just because theCS algorithm
shows a strong jumping in the search process that makes the
local search around each bird’s nest location no careful and no
thorough.Therefore, the local optimization information near
bird’s nest location has not been fully utilized, which leads
to that the local search ability is not strong, the optimization
accuracy of the later period is not high, and the convergence
speed is slow. In order to improve the convergence velocity
and the optimization accuracy of the CS algorithm, a self-
learning and self-evolving disturbance operation is added to
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Table 1: Typical test functions.

Function name Expression Scope

Sphere 𝑓1 (x) =

𝑑

∑

𝑖=1
𝑥
2

𝑖
[−100, 100]

Rosenbrock 𝑓2(x) =

𝑑−1
∑

𝑖=1
(100 (x

𝑖+1 − 𝑥
2

𝑖
) + (x

𝑖
− 1)2) [−2.08, 2.08]

Griewank 𝑓3(x) =
1

4000
(

𝑑

∑

𝑖=1
(𝑥
2

𝑖
)) − (

𝑑

∏

𝑖=1
cos(

𝑥
𝑖

√𝑖
)) + 1 [−300, 300]

Rastrigrin 𝑓4(x) =

𝑑

∑

𝑖=1
(𝑥
2

𝑖
− 10 cos (2𝜋x

𝑖
) + 10) [−1.25, 1.25]

Sumsquares 𝑓5(𝑥) =

𝑑

∑

𝑖=1
𝑖𝑥
2

𝑖
[−10, 10]

Michalewicz 𝑓6(𝑥) = −

𝑑

∑

𝑖=1
𝑠𝑖𝑛(𝑥
𝑖
) [𝑠𝑖𝑛 (

𝑖𝑥
2

𝑖

𝜋
)]

2𝑚

, (𝑚 = 10) [0, 𝜋]
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disturbance number.

the algorithm, and a further study for the improvement of
disturbance is also discussed.

3.1. Cuckoo Search Algorithm Based on Self-Learning and
Self-Evolving Disturbance. In order to make the algorithm
carry on more careful and thorough searches near bird’s
nest locations, after each iteration of CS algorithm a set of
obtained preponderant bird’s nest locations 𝑋

𝑖
(𝑡) instead of

letting 𝑋
𝑖
(𝑡) directly into the next iteration, a disturbance

operation is applied to it for making a further search on the
neighborhood of 𝑋

𝑖
(𝑡).

Due to the general disturbance, such as Gauss perturba-
tion and random perturbation, all having the great random-
ness and blindness, in order to obtain a better disturbance
effect, the learning and updating strategy of the worst frog
in the shuffled frog leaping algorithm (SFLA) and a part of
differential evolution (DE) thought are introduced into the

5 times
10 times

20 times

0 50 100 150 200 250 300
Generations

−4

−6

−8

−10

−12

−14

−16

Fu
nc

tio
n 

va
lu

e

Figure 19: Convergence curves of Function 𝑓
6
under different

disturbance number.

constructing of the disturbance factor. The introduction of
learning and updating strategy of the worst frog can increase
bird’s self-learning ability of each bird’s nest learning from the
optimal nest [22]. That is to say it can increase the speed of
other solutions approaching to the best solution and improve
the algorithm’s convergence rate. The introduction of the
differential evolution thought can increase the diversity of
bird’s nest location, which makes every bird’s nest have the
evolution ability. The good learning and evolving ability are
bound to cause high search ability.

Based on the above analysis, the disturbance factor is
constituted of two parts: one part is the learning factor from
SFLA learning and updating strategy of the worst frog; the
other part is the evolution factor based on a part of differential
evolution (DE) thoughts. Thus, the whole disturbance factor
makes every disturbance with the effect of bird’s self-learning
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Table 2: Comparison of numerical testing results.

Function Algorithm Best Worst Mean

𝑓
1

ABC 3.1519e− 004 0.0704 9.0266e− 004
PSO 0.0048 7.0889 0.6284
CS 0.0382 0.7001 0.2170
GCS 5.8627e− 004 0.0047 0.0016
SSCS 4.8773e− 007 9.1317e− 005 1.6997e− 005

RC-SSCS 3.6450e− 012 3.0061e− 005 1.7847e− 008

𝑓
2

ABC 11.3082 18.1271 13.7651
PSO 10.4223 34.5360 17.4946
CS 11.1806 17.3151 15.2039
GCS 8.5219 16.8620 14.2017
SSCS 6.2653 14.5681 13.3126

RC-SSCS 3.3432 14.2079 10.8277

𝑓
3

ABC 4.6297e− 005 0.6980 0.1859
PSO 5.8949e− 005 1.8793 0.3322
CS 0.0189 0.3452 0.2010
GCS 2.7105e− 004 0.0077 0.1057
SSCS 2.2377e− 009 0.3909 0.0814

RC-SSCS 1.0616e− 011 0.1954 0.0454

𝑓
4

ABC 5.2919 24.7673 10.3917
PSO 6.0188 29.7667 18.5742
CS 5.0454 11.4347 9.4766
GCS 4.5346 9.4692 8.7840
SSCS 1.2841 9.3480 6.0351

RC-SSCS 0.6950 10.3400 5.8859

𝑓
5

ABC 2.5878e− 005 8.4891e− 004 3.3576e− 004
PSO 5.6717e− 004 4.2837 0.2335
CS 8.7353e− 004 0.0068 0.0030
GCS 1.5714e− 004 9.2999e− 004 4.2927e− 004
SSCS 9.3420e− 007 9.5495e− 004 9.8643e− 005

RC-SSCS 2.4677e− 009 8.4555e− 004 5.6853e− 006

𝑓
6

ABC − 14.7812 − 8.1498 − 11.0840
PSO − 15.1576 − 7.8576 − 10.8402
CS − 12.7182 − 10.1137 − 11.3479
GCS − 13.9297 − 10.4565 − 11.6951
SSCS − 15.1779 − 11.4004 − 13.6241

RC-SSCS − 18.0889 − 13.1681 − 16.7740

and self-evolving ability. Disturbance factor is structured as
follows:

𝜀 = 𝑐1𝑢1 (𝑥
𝑖
− 𝑥best) + 𝑐

2
𝑢
2
(𝑥
𝑟
1

− 𝑥
𝑟
2

) , (8)

where 𝑥
𝑖
is the 𝑖th disturbed bird’s nest location, 𝑥best is the

current best location, 𝑟
1
and 𝑟

2
are random number from

(1, 𝑛), 𝑟
1

̸= 𝑟
2
, 𝑛 is the number of bird’s nest population, 𝑥

𝑟
1

and𝑥
𝑟
2

are the bird’s nest locations corresponded to a random
number 𝑟

1
and 𝑟
2
, 𝑢
1
, and 𝑢

2
obey the Gaussian distribution,

𝑐
1
is the learning scale, and 𝑐

2
is evolution scale.

For better controlling of the disturbance range, a con-
trolled quantity of disturbance scope 𝛾 is introduced to

control the search scope size around a bird’s nest. After being
disturbed, the bird’s nest location is express as

𝑥
󸀠

𝑖
= 𝑥
𝑖
+ 𝛾 ⊕ 𝜀, (9)

where 𝑥
󸀠

𝑖
is the bird’s nest location after being disturbed, 𝛾 is

the controlled quantity of the disturbance range, and ⊕ is the
point to point multiplication.

According to (8) and (9), after searching and selection
operation obtain a bird’s nest location 𝑥

𝑖
, do not let this

nest go into the next generation directly. Instead, add to it a
disturbance that take 𝑥

𝑖
as the foundation and 𝜀 disturbance

factor, within the distribute scope that is controlled by 𝛾.
Finally after disturbance get a new bird’s nest location 𝑥

󸀠

𝑖
, and

let 𝑥󸀠
𝑖
go into the next generation.
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Table 3: Comparison of numerical testing results under different cycled disturbance number.

Function Cycle number Best Worst Mean

𝑓
1

5 1.0950e− 006 4.5927e− 004 8.4772e− 005
10 8.0914e− 008 3.9593e− 005 3.3471e− 006
20 8.1817e− 007 1.1113e− 004 2.4506e− 005

𝑓
2

5 15.5346 19.4028 18.2092
10 14.5140 19.4748 16.6741
20 14.9356 19.4993 16.6707

𝑓
3

5 2.0991e− 007 1.2703 0.1498
10 1.0955e− 008 0.3909 0.0847
20 3.1836e− 008 1.3680 0.0847

𝑓
4

5 5.9698 16.9143 12.4617
10 1.9899 14.9247 11.2695
20 1.9900 17.9210 11.7947

𝑓
5

5 1.5066e− 007 1.3715e− 004 5.1063e− 005
10 5.5967e− 008 0.0052 3.6228e− 005
20 3.2597e− 007 0.0022 2.9710e− 004

𝑓
6

5 − 17.3839 − 11.9059 − 15.1020
10 − 18.2436 − 12.5260 − 15.5739
20 − 18.0307 − 13.0349 − 15.5256

In different stages, the bird nest’s learning ability, the
evolving ability, and the disturbance scope can be controlled
by adjusting the values of 𝑐

1
, 𝑐
2
, and 𝛾. For example, when 𝛾 is

a given value, if 𝑐
1
= 0 and 𝑐

2
is a certain constant, then within

this scope of search, the bird’s nest only has evolution ability,
without learning ability; by the same token, if 𝑐

2
= 0 and 𝑐

1

is a certain constant, within the search scope, the algorithm
only has learning ability and no evolving ability.

The disturbance range controller 𝛾 not only controls
the search scope size, but also affects a bird nest’s learning
ability and evolution ability. When 𝛾 is given a big value, the
coefficient before learning factor 𝑥

𝑖
−𝑥best and evolving factor

𝑥
𝑟
1

− 𝑥
𝑟
2

can be driven larger, so the learning and evolution
ability become stronger. Under this condition, the search
scope of the algorithm is larger, the search ability is stronger
but the search fineness is lower. By the same token, when 𝛾

is given a small value, the learning and evolution ability are
relativelyweaker, the search scope is smaller, the search ability
becomes weaker, but the search fineness is much higher.

3.2. Cuckoo Search Algorithm Based on Repeat-Cycle Asymp-
totic Self-Learning and Self-Evolving Disturbance. The ideal
disturbance effect should be that in the early stage of dis-
turbances, it has higher searching ability and in the later
stage of disturbances has higher search accuracy. In this
way, it can obtain a better bird’s nest location fast and then
carry on a more careful and thorough search around the
better nest location. Based on the above analysis, a repeat-
cycle asymptotic disturbance method is proposed. Adopting
a dynamic adjustment 𝛾 makes the search scope gradually
change from big to small after disturbance. In other words,
based on the results of last disturbance, narrowing the
disturbance scope, go on the next disturbance. The repeat-
cycle asymptotic disturbance search is carried out in turn.

In order to obtain a better bird’s nest position at a faster
speed, at the beginning of disturbance 𝛾 is given a larger value.
With the disturbance continuing, the bird’s nests gradually
get better and the adjustment of bird’s nest locations is
more and more subtle. Particularly in the condition that the
response of fitness value is sensitive to parameter changing,
it needs to use a very small amount of control 𝛾 to make
the position have a fine-tuning near optimal value. The 𝛾 is
adjusted according to the following:

𝛾 = 𝛾min + (𝛾max − 𝛾min) ×
𝑁 − 𝑛

𝑁
, (10)

where 𝛾min is the minimum value of control amount of
disturbance scope, 𝛾max is the maximum value, 𝑁 is the
total number of repeat-cycle disturbances, and 𝑛 is the 𝑛th
disturbance.

In the circulation disturbance, the controlled quantity of
the disturbance range 𝛾 is controlled by disturbance number
𝑛. Make 𝛾 changes between 𝛾max and 𝛾min. When 𝑛 = 1,
𝛾 is maximum 𝛾 = 𝛾max. With the disturbance number 𝑛

increasing gradually 𝛾 decrease little by little. Finally when
𝑛 = 𝑁, 𝛾 reaches minimum value 𝛾 = 𝛾min.

In the early stage of the repeat-cycle disturbances, the
bird’s nest self-learning and self-evolving function plays a
leading role, which can make it surely find a better bird’s nest
faster. With disturbance number increasing, the search scope
gradually turns smaller and the fineness degree of search
is gradually enhanced. In the later stage of the repeat-cycle
disturbances, the fineness search plays a leading role.

3.3. Algorithm Procedure. The algorithm procedure of the
improved cuckoo search algorithm (RC-SSCS) is shown
in Figure 1. The specific steps of RC-SSCS algorithm are
described as follows.
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Step 1 (initialization). Randomly generate 𝑁 bird’s nest loca-
tion𝑋

0
= (𝑥
0

1
, 𝑥
0

2
, . . . , 𝑥

0

𝑁
), select the best bird’s nest location,

and carry it over to the next generation.

Step 2 (searching operation). Use the location update (1) to
search for the next generation bird’s nest position, obtain
a new set of bird’s nests, and test them. Then compare
the testing results with the bird’s nest position of previous
generation and obtain a set of better positions.

Step 3 (selection operation). Generate the random number
𝑟 ∈ [0, 1], which obeys the uniform distribution. Contrast
it with the detection probability 𝑃

𝑎
= 0.25, if 𝑟 > 𝑃

𝑎
, 𝑥(𝑡+1)
𝑖

is changed randomly, otherwise 𝑥
(𝑡+1)

𝑖
is unchanged. Test the

changed nest positions, compare them with locations of the
last step, and choose the better nest locations.

Step 4 (repeat-cycle disturbance operation). Add a self-
learning and self-evolving disturbance to each bird’s nest
location, test new bird’s nest locations that have been dis-
turbed, and then compare the test results with locations of
the last disturbance results and choose the better bird’s nest
locations. After many times disturbance, obtain a set of the
best bird’s nest locations, and then choose a best location 𝑝𝑏

from the set.

Step 5 (judgment operation). Calculate the fitness value of
𝑓(𝑝𝑏) and judge whether it achieves the termination condi-
tion. If it is satisfied, 𝑝𝑏 is the optimal solution, otherwise
return to Step 2 and start the next iteration.

4. Simulation Results and Analysis

In order to verify the performances of the improved CS
algorithm, six typical continuous test functions are chosen
for carrying out the simulation research, meanwhile, which
is compare simulation results with ABC, PSO, CS and GCS.
These six test functions are shown in Table 1.Their 3D surface
figures are shown in Figures 2–7.

Sphere function is a simple unimodal function. Rosen-
brock function is an inseparable single mode function,
and its global extreme value is in steep valleys. For the
most search algorithms, it is difficult to acquire the right
search direction within the canyon. Griewank function is a
multimodal function with multiple local optimal points, and
due to the correlation between variables, it will be very hard
to obtain the global optimal solution. Rastrigrin function is a
typical inseparable multimodal function, and in its searching
domain, there are a large number of local minimum values,
which leads to the fact that it is difficult to obtain the global
optimum. Michalewicz function has 𝑑! local extreme values.

The experimental parameters are set as follows. For
particle swarm optimization (PSO) algorithm the particle
number is 𝑛 = 30; learning factors 𝑐

1
= 2, 𝑐
2

= 2; the inertia
weight 𝑤 = 0.9. For artificial bee colony (ABC) algorithm
total number of colonies is 𝑛 = 20, the number of following
bees and leading bees is the same 𝑛/2 = 10. For cuckoo
search (CS) algorithm and its 3 improved CS algorithm the

total bird’s nest population 𝑛 = 25, the detection probability
𝑃
𝑎

= 0.25, the step length controlled parameter 𝛼 = 0.01.The
cuckoo search algorithm based on Gauss disturbance (GCS)
and the cuckoo search algorithm based on self-learning and
self-evolving disturbance (SSCS) adopt the same disturbance
scope control quantity 𝛾 = 0.75. For the cuckoo search
algorithm based on repeat-cycle asymptotic self-learning and
self-evolving disturbance (RC-SSCS), the scope of 𝛾 is [0.25,
1.5], the scale of learning and evolution is set 𝑐

1
= 𝑐
2

= 0.75.
The number of the circulation disturbance 𝑁 = 10. For all
algorithms, the dimension of these six test functions is all
set 𝐷 = 20. The number of iterations iter = 500. For each
algorithm, its program run 30 times independently.

Evaluate the performances of algorithms through statis-
tics of the best value, average value and worst value among 30
times running, and the convergence curves of each function.
The convergence curves of six functions 𝑓

1
–𝑓
6
are shown in

Figures 8–13.The numerical test results of each algorithm are
shown in Table 2.

After 500 iterations and 30 times independently running,
it can be seen from the convergence curves and numerical
statistics results of six functions that the convergence rate
and the optimization accuracy of RC-SSCS algorithm is the
best. And the convergence rate and optimization accuracy
of the two algorithms SSCS and RC-SSCS proposed in this
paper are obviously better than the original CS algorithm,
GCS algorithm, ABC algorithm, and PSO algorithm.

Seen from six convergence curves, the convergence rate of
the six functions is all obviously improved. The convergence
curves of function 𝑓

2
show that the optimization accuracy

achieved by RC-SSCS algorithm after 20 times iteration is
equal to that achieved by GCS algorithm and CS algorithm
after 200 iterations.The function𝑓

3
convergence curve shows

that the optimization accuracy by RC-SSCS algorithm after
100 iterations reached is equal to the accuracy by original CS
algorithm after 400 iterations reached. From the convergence
curve of function 𝑓

4
, It can be seen that the optimization

accuracy achieved by RC-SSCS algorithm after 25 iterations is
equal to that by SSCS algorithm after 175 iterations achieved
and by CS algorithm after 300 iterations achieved. The
convergence rate of function 𝑓

5
and 𝑓

6
is also changed

obviously. The results show that the improved algorithm
makes the convergence rate be greatly improved.

Seen from the numerical results of Table 2, the improved
algorithm makes the optimization accuracy of six typical
functions be improved. The SSCS algorithm and RC-SSCS
algorithm relative to CS algorithm, respectively, make the
best value of single-mode function 𝑓

1
increased by 5 and

10 orders of magnitude, and the average value, respectively,
increased by 4 and 7 orders of magnitude. For multimode
function 𝑓

3
with multiple local optimal points, compared

with the original CS algorithm, SSCS, and RC-SSCS algo-
rithm, respectively, make its best value and average value
improved by 5 and 9 orders of magnitude. Optimization
accuracy of other functions has been improved. It shows that
the improved algorithm can make the optimization accuracy
be improved.

Based on the above analysis of the improved algorithm,
it is known that, within a certain range of disturbance, the
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number of the repeat-cycle disturbance affects the balance
between the search capability and the optimization accuracy
in disturbance process. An appropriate disturbance time can
make a good balance between search ability and search
accuracy and play a best optimization effect. In process of
disturbance search, if the algorithm only has strong search
ability but no high search precision, it will not get an ideal
search effect, Similarly, if the precision is very high, but search
ability is weak, it will be also no ideal search effect. In order
to select a reasonable disturbance time, in this paper we
carry out the further studies on the relationship between
the repeat-cycle disturbance times and the convergence rate
and optimization precision. The same parameter settings are
chosen as described above, except the number of iterations set
iter = 300.The cycle disturbances to each function are carried
out 5 times, 10 times, and 20 times, respectively. The results
of the six functions under different disturbance are shown in
Figures 14–19 and Table 3.

It can be seen from the convergence curves in Figures
14–19 that with the increase of cycle’s times, the convergence
rate of six functions will be gradually improved. But by
looking carefully at each function convergence curve, it can
be discovered that the changing of convergence rate when
number of loops increases from 5 to 10 is bigger than that
when loops number increases from 10 to 20. That is to say,
the changing of convergence produced by increasing 5 times
loops in front of repeat-cycle disturbance is bigger than that
by increasing 10 times in later of it. It also can be seen
from the numerical results in Table 3 that the optimization
accuracy is the highestwhen cycle disturbance times is 10.The
optimization accuracy of six functions is all improved when
the disturbance times are increased from 5 to 10. However,
when the disturbance times are increased from 10 to 20, the
optimization accuracy all decreases instead of increasing.

In conclusion, the more disturbance times may not
obtain the better results. Within the same disturbance scope,
when the disturbance times reach a certain number, if the
disturbance number increases again, the convergence speed
of the algorithm does not have an obvious improvement.
However, the optimization accuracy will be reduced. Inte-
grally considering the convergence rate, the optimization
accuracy and the optimizing time, it is better to choose the
cycled disturbance times about 10.

5. Conclusion

In order to improve the convergence rate and optimization
accuracy of the cuckoo search (CS) algorithm for solving
function optimization problems, a kind of cuckoo search
algorithm based on the repeat-cycle asymptotic self-learning
and self-evolving disturbance (RC-SSCS) is proposed. Six
typical test functions are chosen for simulation experiments.
Simulation results show the effectiveness of the proposed
improved cuckoo search algorithm in convergence rate and
optimization accuracy.
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Real-world decision relevant information is often partially reliable. The reasons are partial reliability of the source of information,
misperceptions, psychological biases, incompetence, and so forth.𝑍-numbers based formalization of information (𝑍-information)
represents a natural language (NL) based value of a variable of interest in linewith the relatedNL based reliability.What is important
is that 𝑍-information not only is the most general representation of real-world imperfect information but also has the highest
descriptive power from human perception point of view as compared to fuzzy number. In this study, we present an approach
to decision making under 𝑍-information based on direct computation over 𝑍-numbers. This approach utilizes expected utility
paradigm and is applied to a benchmark decision problem in the field of economics.

1. Introduction

Decision making is one of the attractive research areas in the
last decades. The complexity and uncertainty are persistent
phenomenon in the real world, and the fuzzy set [1–3] is
widely used in decision making process [3, 4]. Much of
decision based information is uncertain. Human has a high
capability of making logical decisions based on uncertain,
incomplete, and/or inaccurate information [5].
𝑍-number is a sufficient formalization of real-world

information that should roughly be considered in light of its
reliability. The critical issue is that the reliability of informa-
tion is not considered properly. Zadeh has proposed a new
notion 𝑍-number which is more appropriate to describe the
uncertainty. 𝑍-number takes both restraint and reliability. In
comparison with the classical fuzzy number, 𝑍-number has
more ability to describe the real information of human [6].
𝑍-numbers were firstly presented by Zadeh in 2011 [5],

and afterwards the researchers started to discuss 𝑍-numbers
in decision making under uncertainty and in many other
fields. One of themain goals of𝑍-number is to produce fuzzy
numbers with degree of self-confidence in order to know the
real information. By using the 𝑍-number the knowledge of
human can be represented in a better way [7].

The computations with 𝑍-numbers can be viewed as
a generalization of computations with numbers, intervals,
fuzzy numbers, and random numbers. As specified, the levels
of generality can be separated as follows: computation with
numbers (ground level zero); computation with intervals
(level one); computation with fuzzy numbers (level two) [2];
computation with random numbers (level two); and com-
putation with 𝑍-numbers (level three). The capability of
building realisticmodels of real-world systems is increased by
the increase of the generality level, especially in the realms of
economics, risk assessment, decision analysis, planning, and
analysis of causality [5].

In [4] the authors suggest an approach to use 𝑍-numbers
for solving multicriteria decision making problem. For com-
putation over𝑍-numbers some operations are suggested that
are based on Zadeh’s extension principle [5]. 𝑍-numbers are
also used for the purpose of reasoning [8]. In [6] proposed
approach is intended to use 𝑍-numbers for the expected
utility application to solve decision making problems. An
approach to use 𝑍-numbers for answering questions and
decisions making is considered in [9]. 𝑍-numbers converted
into classical fuzzy numbers are suggested in [4, 9]. In [7],
𝑍-numbers are converted into classical fuzzy numbers and
the fuzzy numbers are converted into crisp numbers. In [10]
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the theoretical approach for computing arithmetic operations
over discrete 𝑍-numbers is proposed.

In [11] authors suggest general and computationally
effective theoretic approach to computations with discrete𝑍-
numbers.The authors provide strongmotivation of the use of
discrete𝑍-numbers as an alternative to the continuous coun-
terparts. In particular, themotivation is based on the fact that
NL based information has a discrete framework. The sug-
gested arithmetic of 𝑍-numbers includes basic arithmetic
operations and important algebraic operations over 𝑍-num-
bers.The proposed approach allows dealing with𝑍-informa-
tion directly.

This paper focuses on investigating an approach for
decision making which generalizes the expected utility
approach of 𝑍-information. This approach is based on direct
computation over 𝑍-numbers without converting them to
fuzzy numbers and differed from the existing works used
for decision making problems. The direct computation of 𝑍-
numbers without conversion eliminates the loss of informa-
tion. In this research we recommend an approach based on
expected utility to solve the decision making problems with
𝑍-information. This approach is based on computation over
𝑍-numbers according to operations suggested in [5, 10]. At
the end, we provide a numerical example of the proposed
approach to solve a benchmark problem.

This paper is organized as follows. The preliminaries for
𝑍-numbers are reviewed in Section 2. Section 3 describes the
numerical computations with discrete 𝑍-numbers. Section 4
is devoted to statement and solution of a considered decision
problem with 𝑍-information. Section 5 consists of applica-
tion, and the conclusions are revealed in Section 6.

2. Preliminaries

Definition 1 (a discrete fuzzy number [12–14]). A fuzzy subset
𝐴 of the real line R with membership function 𝜇

𝐴
: R →

[0, 1] is a discrete fuzzy number if its support is finite; that is,
there exist 𝑥

1
, . . . , 𝑥

𝑛
∈ R with 𝑥

1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑛
, such that

supp(𝐴) = {𝑥
1
, . . . , 𝑥

𝑛
} and there exist natural numbers 𝑠, 𝑡

with 1 ≤ 𝑠 ≤ 𝑡 ≤ 𝑛 satisfying the following conditions:

(1) 𝜇
𝐴
(𝑥
𝑖
) = 1 for any natural number 𝑖 with 𝑠 ≤ 𝑖 ≤ 𝑡;

(2) 𝜇
𝐴
(𝑥
𝑖
) ≤ 𝜇
𝐴
(𝑥
𝑗
) for any natural numbers 𝑖, 𝑗 with 1 ≤

𝑖 ≤ 𝑗 ≤ 𝑠;

(3) 𝜇
𝐴
(𝑥
𝑖
) ≥ 𝜇
𝐴
(𝑥
𝑗
) for any natural numbers 𝑖, 𝑗 with 𝑡 ≤

𝑖 ≤ 𝑗 ≤ 𝑛.

Definition 2 (probability measure of a discrete fuzzy number
[15]). Let 𝐴 be a discrete fuzzy number. A probability meas-
ure of 𝐴 denoted by 𝑃(𝐴) is defined as

𝑃 (𝐴) =

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) 𝑝 (𝑥

𝑖
)

= 𝜇
𝐴
(𝑥
𝑗1
) 𝑝
𝑗
(𝑥
𝑗1
) + 𝜇
𝐴
(𝑥
𝑗2
) 𝑝
𝑗
(𝑥
𝑗2
)

+ ⋅ ⋅ ⋅ + 𝜇
𝐴
(𝑥
𝑗𝑛
𝑗

) 𝑝
𝑗
(𝑥
𝑗𝑛
𝑗

) .

(1)

Below we present the definition of addition of discrete fuzzy
numbers suggested in [12–14, 16], where noninteractive fuzzy
numbers are considered.

Definition 3 (addition of discrete fuzzy numbers [12–14, 16]).
The addition of discrete fuzzy numbers 𝐴

12
= 𝐴
1
+ 𝐴
2
is a

discrete fuzzy number whose 𝛼-cut is given as [12–14, 16]

𝐴
𝛼

12
= {𝑥 ∈ {supp (𝐴

1
) + supp (𝐴

2
)} |

min {𝐴𝛼
1
+ 𝐴
𝛼

2
} ≤ 𝑥 ≤ max {𝐴𝛼

1
+ 𝐴
𝛼

2
} } ,

(2)

where

supp (𝐴
1
) + supp (𝐴

2
)

= {𝑥
1
+ 𝑥
2
| 𝑥
𝑗
∈ supp (𝐴

𝑗
) , 𝑗 = 1, 2}

min {𝐴𝛼
1
+ 𝐴
𝛼

2
} = min {𝑥

1
+ 𝑥
2
| 𝑥
𝑗
∈ 𝐴
𝛼

𝑗
, 𝑗 = 1, 2}

max {𝐴𝛼
1
+ 𝐴
𝛼

2
} = max {𝑥

1
+ 𝑥
2
| 𝑥
𝑗
∈ 𝐴
𝛼

𝑗
, 𝑗 = 1, 2}

𝜇
𝐴
1
+𝐴
2

(𝑥) = sup {𝛼 ∈ [0, 1] 𝑥 ∈ 𝐴𝛼
1
+ 𝐴
𝛼

2
} .

(3)

Definition 4 (multiplication of discrete fuzzy numbers [10,
11]). The multiplication of discrete fuzzy numbers 𝐴

12
=

𝐴
1
⋅ 𝐴
2
is a discrete fuzzy number whose 𝛼-cut is given as

[10]

𝐴
𝛼

12
= {𝑥 ∈ {supp (𝐴

1
) ⋅ supp (𝐴

2
)} |

min {𝐴𝛼
1
⋅ 𝐴
𝛼

2
} ≤ 𝑥 ≤ max {𝐴𝛼

1
⋅ 𝐴
𝛼

2
} } ,

(4)

where

supp (𝐴
1
) ⋅ supp (𝐴

2
)

= {𝑥
1
⋅ 𝑥
2
| 𝑥
𝑗
∈ supp (𝐴

𝑗
) , 𝑗 = 1, 2}

min {𝐴𝛼
1
⋅ 𝐴
𝛼

2
} = min {𝑥

1
⋅ 𝑥
2
| 𝑥
𝑗
∈ 𝐴
𝛼

𝑗
, 𝑗 = 1, 2}

max {𝐴𝛼
1
⋅ 𝐴
𝛼

2
} = max {𝑥

1
⋅ 𝑥
2
| 𝑥
𝑗
∈ 𝐴
𝛼

𝑗
, 𝑗 = 1, 2}

𝜇
𝐴
1
⋅𝐴
2

(𝑥) = sup {𝛼 ∈ [0, 1] 𝑥 ∈ 𝐴𝛼
1
⋅ 𝐴
𝛼

2
} .

(5)

Definition 5 (discrete probability distribution). The discrete
probability distribution is defined as a function 𝑝 where if
we suppose a discrete random variable 𝑋 taking 𝐾 different
values with probability that𝑋 = 𝑥

𝑖
defined to be 𝑃(𝑋 = 𝑥

𝑖
) =

𝑝(𝑥
𝑖
), the probability 𝑝(𝑥

𝑖
) must satisfy 0 ≤ 𝑝(𝑥

𝑖
) ≤ 1 for

each 𝑖 and ∑𝑘
𝑖=1
𝑝(𝑥
𝑖
) = 1 [17].

Definition 6 (convolution of discrete probability distribu-
tions). Suppose𝑋

1
and𝑋

2
are two discrete random variables

with distribution functions 𝑝
1
and 𝑝

2
. The distribution

function𝑋
1
∗ 𝑋
2
is given as [17]

𝑝
12
(𝑥) = ∑

𝑥=𝑥
1
∗𝑥
2

𝑝
1
(𝑥
1
) 𝑝
2
(𝑥
2
) . (6)
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Definition 7 (a discrete𝑍-number [11]). A discrete𝑍-number
is defined as an ordered pair 𝑍 = (𝐴, 𝐵), where 𝐴 and 𝐵 are
discrete fuzzy numbers,𝐴 is a fuzzy constraint on values that
a random variable 𝑋 may take, and 𝐵 which has a mem-
bership function 𝜇

𝐴
is a fuzzy constraint on the probability

measure of 𝐴:

𝑃 (𝐴) is 𝐵. (7)

The concept of a restriction has more generality than the
concept of a constraint [18]. A restriction may be observed
as a generalized constraint. A probability distribution is a
restriction but is not a constraint [19].
𝑍
+-number concept is related to discrete 𝑍-number; that

is, 𝑍+-number is a pair of fuzzy number 𝐴 and random
number 𝑅 to be defined as

𝑍
+
= (𝐴, 𝑅) , (8)

where 𝐴 plays the same role as in discrete 𝑍-number 𝑍 =

(𝐴, 𝐵), and 𝑅 plays the role of the probability distribution 𝑃
such that [10]

𝑃 (𝐴) =

𝑛

∑

𝑖=1

𝜇
𝐴
(𝑥
𝑖
) 𝑝 (𝑥

𝑖
)

= 𝜇
𝐴
(𝑥
𝑗1
) 𝑝
𝑗
(𝑥
𝑗1
) + 𝜇
𝐴
(𝑥
𝑗2
) 𝑝
𝑗
(𝑥
𝑗2
)

+ ⋅ ⋅ ⋅ + 𝜇
𝐴
(𝑥
𝑗𝑛
𝑗

) 𝑝
𝑗
(𝑥
𝑗𝑛
𝑗

) .

(9)

3. Computation with Discrete 𝑍-Numbers

3.1. General Review. Zadeh has suggested a general approach
for computations with 𝑍-numbers according to Zadeh’s
extension principle [5].This study is very complex in compar-
isonwith the previous one.The researchers look into using𝑍-
numbers, but the lack of a direct and easy way to compute 𝑍-
numbers forced them to start thinking about a way to convert
them into fuzzy numbers.

In [9] authors suggest an approach to convert𝑍-numbers
into classical fuzzy numbers. They convert the second part to
crisp number, but this leads to loss of original information.

The studies [4, 7, 20] are used according to what has
been put forward in the study [9], but in fact this method
does not give the results of high reliability. Therefore, the
researchers looked for a new and simple way to calculate 𝑍-
numbers directly without conversion, based onwhat has been
suggested in the study [5].

3.2. Addition and Multiplication of Discrete 𝑍-Numbers.
Assume 𝑍

1
= (𝐴

1
, 𝐵
1
) and 𝑍

2
= (𝐴

2
, 𝐵
2
) be discrete 𝑍-

numbers describing values of uncertain real valued variables
𝑋
1
and 𝑋

2
. The addition and multiplication of 𝑍-numbers

𝑍
12
= 𝑍
1
∗ 𝑍
2
, ∗ ∈ {+, ×} are determined as follows [11]. Let

𝑍
+

1
= (𝐴
1
, 𝑅
1
) and 𝑍+

2
= (𝐴
2
, 𝑅
2
) be given. Then

𝑍
+

12
= 𝑍
+

1
∗ 𝑍
+

2
= (𝐴
1
∗ 𝐴
2
, 𝑅
1
∗ 𝑅
2
) , (10)

where 𝑅
1
and 𝑅

2
are represented by discrete probability

distributions (Definition 5):

𝑝
1
= 𝑝
1
(𝑥
11
) \ 𝑥
11
+ 𝑝
1
(𝑥
12
) \ 𝑥
12
+ ⋅ ⋅ ⋅ + 𝑝

1
(𝑥
1𝑛
) \ 𝑥
1𝑛

𝑝
2
= 𝑝
2
(𝑥
21
) \ 𝑥
21
+ 𝑝
2
(𝑥
22
) \ 𝑥
22
+ ⋅ ⋅ ⋅ + 𝑝

2
(𝑥
2𝑛
) \ 𝑥
2𝑛
.

(11)

𝐴
12
= 𝐴
1
∗ 𝐴
2
is a sum (or multiplication) of fuzzy

numbers defined on the basis of Definition 3 (Definition 4)
and𝑅

1
∗𝑅
2
is a convolution of probability distribution defined

on the basis of Definition 6.
Next, we should construct 𝐵

12
by solving the following

problem:

𝜇
𝐵
12

(𝑏
12𝑠
) = sup (𝜇

𝑝
12𝑠

(𝑝
12𝑠
)) (12)

subject to

𝑏
12𝑠
= ∑

𝑖

𝑝
12𝑠
(𝑥
𝑖
) 𝜇
𝐴
12

(𝑥
𝑖
) ,

𝜇
𝑝
12

(𝑝
12
) = max

{𝑝1,𝑝2|𝑝12=𝑝1∘𝑝2}

[𝜇
𝑝
1

(𝑝
1
) ∧ 𝜇
𝑝
2

(𝑝
2
)] ,

𝜇
𝑝
𝑗

(𝑝
𝑗
) = 𝜇
𝐵
𝑗

(

𝑛

∑

𝑘=1

𝜇
𝐴
𝑗

(𝑢
𝑘
) 𝑝
𝑗
(𝑢
𝑘
)) , 𝑗 = 1, 2.

(13)

Thus, 𝑍
12
= 𝑍
1
∗ 𝑍
2
is obtained as 𝑍

12
= (𝐴
12
, 𝐵
12
) [10,

11].

3.3. Ranking of Discrete 𝑍-Numbers [11]. Ranking of discrete
𝑍-numbers is a necessary operation in arithmetic of 𝑍-
numbers and is a challenging practical issue. Zadeh addresses
the problem of ranking𝑍-numbers as a very important prob-
lem [5]. In contrast to real numbers, 𝑍-numbers are ordered
pairs, for ranking of which there can be no unique approach.
We suggest considering comparison of 𝑍-numbers on the
basis of fuzzy optimality (FO) principle. Let𝑍-numbers𝑍

1
=

(𝐴
1
, 𝐵
1
) and 𝑍

2
= (𝐴

2
, 𝐵
2
) be given. First, it is needed to

calculate the functions 𝑛
𝑏
, 𝑛
𝑒
, 𝑛
𝑤
which evaluate how much

one of the𝑍-numbers is better, equivalent, andworse than the
other one with respect to the first and the second components
[11]:

𝑛
𝑏
(𝑍
𝑖
, 𝑍
𝑗
) = 𝑃𝑠

𝑏
(𝛿
𝑖,𝑗

𝐴
) + 𝑃𝑠

𝑏
(𝛿
𝑖,𝑗

𝐵
) ,

𝑛
𝑒
(𝑍
𝑖
, 𝑍
𝑗
) = 𝑃𝑠

𝑒
(𝛿
𝑖,𝑗

𝐴
) + 𝑃𝑠

𝑒
(𝛿
𝑖,𝑗

𝐵
) ,

𝑛
𝑤
(𝑍
𝑖
, 𝑍
𝑗
) = 𝑃𝑠

𝑤
(𝛿
𝑖,𝑗

𝐴
) + 𝑃𝑠

𝑤
(𝛿
𝑖,𝑗

𝐵
) ,

(14)

where 𝛿𝑖,𝑗
𝐴
= 𝐴
𝑖
− 𝐴
𝑗
, 𝛿𝑖,𝑗
𝐵
= 𝐵
𝑖
− 𝐵
𝑗
:

𝑃𝑠
𝑙
(𝛿
𝑖,𝑗

𝐴
) =

𝑃𝑜𝑠𝑠𝛿
𝑖,𝑗

𝐴
| 𝑛
𝑙

∑
𝑡∈{𝑏,𝑒,𝑤}

𝑃𝑜𝑠𝑠𝛿
𝑖,𝑗

𝐴
| 𝑛
𝑡

,

𝑃𝑠
𝑙
(𝛿
𝑖,𝑗

𝐵
) =

𝑃𝑜𝑠𝑠𝛿
𝑖,𝑗

𝐵
| 𝑛
𝑙

∑
𝑡∈{𝑏,𝑒,𝑤}

𝑃𝑜𝑠𝑠𝛿
𝑖,𝑗

𝐵
| 𝑛
𝑡

,

𝑡 ∈ {𝑏, 𝑒, 𝑤} ,

(15)
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Figure 1: The membership functions of 𝑛
𝑏
, 𝑛
𝑒
, 𝑛
𝑤
.

where 𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗. As ∑
𝑡∈{𝑏,𝑒,𝑤}

𝑃𝑠
𝑙
(𝛿
𝑖,𝑗

𝑘
) = 1 always

holds, one always has 𝑛
𝑏
(𝑍
𝑖
, 𝑍
𝑗
)+𝑛
𝑒
(𝑍
𝑖
, 𝑍
𝑗
)+𝑛
𝑤
(𝑍
𝑖
, 𝑍
𝑗
) = 𝑁,

where 𝑁 is the number of components of a 𝑍-number; that
is,𝑁 = 2. The membership functions of 𝑛

𝑏
, 𝑛
𝑒
, 𝑛
𝑤
are shown

in Figure 1 [11].
Next it is needed to determine the greatest 𝑘 such that 𝑍

𝑖

Pareto dominates 𝑍
𝑗
to the degree (1 − 𝑘). For this purpose,

a function 𝑑 is introduced:

𝑑 (𝑍
𝑖
, 𝑍
𝑗
)

=

{{{{{{

{{{{{{

{

0, if 𝑛
𝑏
(𝑍
𝑖
, 𝑍
𝑗
) ≤

2 − 𝑛
𝑒
𝑍
𝑖
, 𝑍
𝑗

2
,

(2 ⋅ 𝑛
𝑏
(𝑍
𝑖
, 𝑍
𝑗
)

+ 𝑛
𝑒
(𝑍
𝑖
, 𝑍
𝑗
) − 2)

× (𝑛
𝑏
(𝑍
𝑖
, 𝑍
𝑗
))
−1

, otherwise.
(16)

Given 𝑑, the desired greatest 𝑘 is found as 𝑘 = 1 −

𝑑(𝑍
𝑖
, 𝑍
𝑗
), and then (1 − 𝑘) = 𝑑(𝑍

𝑖
, 𝑍
𝑗
). 𝑑(𝑍

𝑖
, 𝑍
𝑗
) = 1 implies

Pareto dominance of 𝑍
𝑖
over 𝑍

𝑗
, whereas 𝑑(𝑍

𝑖
, 𝑍
𝑗
) = 0

implies no Pareto dominance of 𝑍
𝑖
over 𝑍

𝑗
. The degree of

optimality do(𝑍
𝑖
) is determined as follows:

do (𝑍
𝑖
) = 1 − 𝑑 (𝑍

𝑗
, 𝑍
𝑖
) . (17)

Thus, in other words, do(𝑍
𝑖
) is the degree to which one

𝑍-number is higher than the other one. Then [11]

𝑍
𝑖
> 𝑍
𝑗

if and only if do (𝑍
𝑖
) > do (𝑍

𝑗
) ,

𝑍
𝑖
< 𝑍
𝑗

if and only if do (𝑍
𝑖
) < do (𝑍

𝑗
) ,

do (𝑍
𝑖
) = do (𝑍

𝑗
) , otherwise.

(18)

Recall that comparison of fuzzy numbers is also a matter
of a degree due to related vagueness. For 𝑍-numbers, which
are more complex constructs characterized by possibilistic-
probabilistic uncertainty, degree-based comparison is even
more desirable.

The suggested approach may be considered as basis of a
human-oriented ranking of 𝑍-numbers. In this viewpoint,
we suggest taking into account the degree of pessimism
𝛽 ∈ [0, 1] as a mental factor which influences a choice of a
preferred𝑍-number.Thedegree of pessimism is submitted by
a human observer who wishes to compare the considered 𝑍-
numbers but does not completely rely on the results obtained
by the above mentioned fuzzy optimality approach. In this

viewpoint, given do(𝑍
𝑗
) ≤ do(𝑍

𝑖
), we define for two 𝑍-

numbers 𝑍
1
and 𝑍

2
[11]

𝑟 (𝑍
𝑖
, 𝑍
𝑗
) = 𝛽do (𝑍

𝑗
) + (1 − 𝛽) do (𝑍

𝑖
) . (19)

Then

𝑍
𝑖
> 𝑍
𝑗

if and only if 𝑟 (𝑍
𝑖
, 𝑍
𝑗
) >

1

2
(do (𝑍

𝑖
) + do (𝑍

𝑗
)) ,

𝑍
𝑖
< 𝑍
𝑗

if and only if 𝑟 (𝑍
𝑖
, 𝑍
𝑗
) =

1

2
(do (𝑍

𝑖
) + do (𝑍

𝑗
))

(20)

and 𝑍
𝑖
= 𝑍
𝑗
otherwise [11].

The degree of pessimism 𝛽 is submitted by a human being
and adjusts ranking of 𝑍-numbers to reflect human attitude
to the computed do.This attitudemay result from the various
importance of 𝐴 and 𝐵 components of 𝑍-numbers for a
human being and other issues [11].

4. A Method of Decision Making under
𝑍-Information Utility Function

Real-world decision relevant information is imprecise, uncer-
tain, and partially reliable.Therefore, results of decision anal-
ysis based on such information are also partially reliable.This
fact should prevent decisionmakers relyingmuch ondecision
analysis results even when a very careful mathematical mod-
eling was used.

A well-known approach to decisionmaking under uncer-
tainty is the use of expected utility function [21]. However,
classical paradigm of expected utility function fails to express
various adequate decisions due to incapability of handling
imperfect decision relevant information. The extension of
this paradigm to the framework of 𝑍-information may help
achieve a more realistic decision analysis technique and, at
the same time, use a simple form of the utility function.

Let S = {𝑆
1
, 𝑆
2
, . . . , 𝑆

𝑛
} be a set of states of nature and let

X = {𝑋
1
, . . . , 𝑋

𝑙
}, 𝑋
𝑘
= (𝐴
𝑘
, 𝐵
𝑘
), 𝑘 = 1, . . . , 𝑙, be a set of 𝑍-

valued outcomes. Denote byFS a 𝜎-algebra of subsets of S.
Then consider A = {𝑓 ∈ A | 𝑓 : S → X}, the set of
𝑍-valued actions, as the set of all FS-measurable 𝑍-valued
functions from S toX35,32.

Linguistic information on likelihood 𝑍
𝑃
𝑙 of the states

of nature is represented by 𝑍-valued probabilities 𝑍
𝑃
𝑖

=

(𝐴
𝑃
𝑖

, 𝐵
𝑃
𝑖

) of the states 𝑆
𝑖
:

𝑍
𝑃
𝑙 =
𝑍
𝑃
1

𝑆
1

+
𝑍
𝑃
2

𝑆
2

+ ⋅ ⋅ ⋅ +
𝑍
𝑃
𝑀

𝑆
𝑀

. (21)

In the suggested framework, we extend a classical neo-
Bayesian nomenclature as follows: elements of X are 𝑍-
valued outcomes; elements ofA are 𝑍-valued acts; elements
of S are states of nature; elements ofFS are events.

A framework of decisionmaking with𝑍-information can
be formalized as a 4-tuple (S, 𝑍

𝑃
𝑙 ,X,A). The problem of

decision making with 𝑍-valued information on the basis of
EU consists in determination of an optimal act 𝑓∗ ∈ A: find
𝑓
∗
∈ A for which 𝑍

𝑈(𝑓
∗
)
≥ 𝑍
𝑈(𝑓)

, ∀𝑓 ∈ A.



Computational Intelligence and Neuroscience 5

Here 𝑍
𝑈(𝑓)

is a 𝑍-valued expected utility defined as

𝑍
𝑈(𝑓)

= 𝑍
𝑋
1

𝑍
𝑃
1

+ ⋅ ⋅ ⋅ + 𝑍
𝑋
𝑖

𝑍
𝑃
𝑖

+ ⋅ ⋅ ⋅ + 𝑍
𝑋
𝑛

𝑍
𝑃
𝑛

, (22)
where multiplication and addition are defined in Section 3.2.
The comparison operation ≥ is as defined in Section 3.3.

The suggested approach is based on direct computations
with 𝑍-numbers, without converting them to fuzzy and/or
crisp numbers.This allows preserving available imprecise and
partially reliable information and using it in the final compar-
ison of alternatives.

5. Practical Applications

In this application section, we intend a problem of decision
making in the field of economics. The analyzed data are
obtained from Techware Incorporated in [22]. Two new
software products were introduced to themarket byTechware
Incorporated; the company has three alternatives related to
these two products: it introduces product 1 only, product 2
only, or both products. The costs for research and devel-
opment for these two products are $180,000 and $150,000,
respectively. The trend of the national economy and the
consumers reaction to these products will affect the success of
these products in the coming year. If the company introduces
product 1, then it will have revenue of $500,000, $260,000,
and $120,000 for strong, fair, and weak national economy,
respectively. Similarly when product 2 is introduced, there
will be revenue of $420,000, $230,000, and 110,000 for strong,
fair, and weak national economy, respectively. Finally, when
introducing both products 1 and 2, the revenues will be
$820,000, $390,000, and $200,000 for strong, fair, and weak
national economy, respectively. The experts of the company
are very sure that the probabilities of strong and fair economy
are about 0.30 and 0.50, respectively. The problem is to
determine the best decision.

Let us proceed to formal description of the considered
decision problem. The partially reliable linguistic decision
relevant information in the considered problem will be
described by 𝑍-numbers. The set of alternatives is

A = {𝑓
1
, 𝑓
2
, 𝑓
3
} , (23)

where𝑓
1
denotes introducing product 1,𝑓

2
denotes introduc-

ing product 2, and 𝑓
3
denotes introducing both products (1

and 2).
The set of states of nature is

S = {𝑆
1
, 𝑆
2
, 𝑆
3
} , (24)

where 𝑆
1
denotes strong national economy, 𝑆

2
denotes fair

national economy, and 𝑆
3
denotes weak national economy.

The probabilities of states of nature are 𝑍
𝑃(𝑆
1
)
= (𝑎𝑏𝑜𝑢𝑡 0.3,

𝑞𝑢𝑖𝑡𝑒 𝑠𝑢𝑟𝑒), 𝑍
𝑃(𝑆
2
)
= (𝑎𝑏𝑜𝑢𝑡 0.5, 𝑞𝑢𝑖𝑡𝑒 𝑠𝑢𝑟𝑒).

The set of outcomes is
X = {(𝑙𝑜𝑤, 𝑙𝑖𝑘𝑒𝑙𝑦) , (𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑙𝑜𝑤, 𝑙𝑖𝑘𝑒𝑙𝑦) ,

(𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑖𝑘𝑒𝑙𝑦) ,

(𝑏𝑒𝑙𝑜𝑤 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑 𝑡𝑜 ℎ𝑖𝑔ℎ, 𝑙𝑖𝑘𝑒𝑙𝑦) ,

(ℎ𝑖𝑔ℎ, 𝑙𝑖𝑘𝑒𝑙𝑦)} .

(25)

Table 1: The values of utilities for different alternatives and proba-
bilities of states of nature.

𝑆
1

𝑆
2

𝑆
3

(about 0.3, quite
sure)

(about 0.5, quite
sure)

(about 0.2, quite
sure)

𝑓
1 (High; likely) (Medium; likely) (Low; likely)

𝑓
2

(Below compared to
high; likely) (Medium; likely) (Low; likely)

𝑓
3 (High; likely) (More than low;

likely) (Low; likely)

Table 2: Decision matrix with 𝑍-number.

𝑆
1

𝑍
41

𝑆
2

𝑍
42

𝑆
3

𝑍
43

𝑓
1 𝑍

11
𝑍
12

𝑍
13

𝑓
2 𝑍

21
𝑍
22

𝑍
23

𝑓
3 𝑍

31
𝑍
32

𝑍
33

The partially reliable linguistic information for the prob-
abilities of states of nature and the utilities of each alternative
taken at different states of nature is shown in Table 1.

The corresponding decisionmatrix with𝑍-number based
representation is shown in Table 2.

The membership functions of the first and the second
components of𝑍-numbers for probabilities and utilities from
Table 2 are shown in Figures 2–13.

Let us proceed to solving the problem. First it is needed
to determine unknown 𝑍-number based probability 𝑍

𝑃(𝑆
3
)
=

𝑍
43
= (𝐴
43
, 𝐵
43
) on the basis of 𝑍

𝑃(𝑆
1
)
= 𝑍
41

and 𝑍
𝑃(𝑆
2
)
=

𝑍
42
. As 𝑍

𝑃(𝑆
3
)
is completely determined by 𝑍

𝑃(𝑆
1
)
and 𝑍

𝑃(𝑆
2
)
,

its reliability 𝐵
43
will be the same as reliabilities 𝐵

41
and 𝐵

42
.

Therefore, to complete determination of 𝑍
43
= (𝐴
43
, 𝐵
43
) it

is needed to compute 𝐴
43

on the basis of 𝐴
41

and 𝐴
42
. For

computation of 𝐴
43
we used the approach suggested in [19].

The determined 𝑍
43
= (𝐴
43
, 𝐵
43
) is shown in Figure 13.

Based on the previous 𝑍-number based data we compute
the expected utility for each of the alternatives 𝑓

1
, 𝑓
2
, 𝑓
3
as

follows:

𝑍
𝑈(𝑓
1
)
= 𝑍
11
× 𝑍
41
+ 𝑍
12
× 𝑍
42
+ 𝑍
13
× 𝑍
43
,

𝑍
𝑈(𝑓
2
)
= 𝑍
21
× 𝑍
41
+ 𝑍
22
× 𝑍
42
+ 𝑍
23
× 𝑍
43
,

𝑍
𝑈(𝑓
3
)
= 𝑍
31
× 𝑍
41
+ 𝑍
32
× 𝑍
42
+ 𝑍
33
× 𝑍
43

(26)

with multiplication and addition of 𝑍-numbers described in
Section 3.2.

The results of computation of expected utilities for all the
alternatives are shown in Figures 14, 15, and 16.

Now determining the best alternative by comparing the
computed 𝑍-number valued utilities is needed. For compar-
ison we will use the approach suggested in Section 3.2. In
accordancewith this principle, at firstwe obtained the degrees
of optimality of the alternatives:

do (𝑓
1
) = 1, do (𝑓

2
) = 0, do (𝑓

3
) = 0.92. (27)
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Figure 2: Representation of the first state (𝑍
41
) as a 𝑍-number.
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Figure 3: Representation of the second state (𝑍
42
) as a 𝑍-number.
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Figure 4: Representation of the first alternative in the first state (𝑍
11
) as a 𝑍-number.
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Figure 5: Representation of the first alternative in the second state (𝑍
12
) as a 𝑍-number.
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Figure 6: Representation of the first alternative in the third state (𝑍
13
) as a 𝑍-number.
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Figure 7: Representation of the second alternative in the first state (𝑍
21
) as a 𝑍-number.
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Figure 8: Representation of the second alternative in the second state (𝑍
22
) as a 𝑍-number.
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Figure 9: Representation of the second alternative in the third state (𝑍
23
) as a 𝑍-number.
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Figure 10: Representation of the third alternative in the first state (𝑍
31
) as a 𝑍-number.
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Figure 11: Representation of the third alternative in the second state (𝑍
32
) as a 𝑍-number.
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Figure 12: Representation of the third alternative in the third state (𝑍
33
) as a 𝑍-number.
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Figure 13: Representation of the first state (𝑍
43
) as a 𝑍-number.
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Figure 14: The expected utility results for the first alternative 𝑍
𝑈(𝑓1)
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Figure 15: The expected utility results for the second alternative 𝑍
𝑈(𝑓2)
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Figure 16: The expected utility results for the third alternative 𝑍
𝑈(𝑓3)

.
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As one can see, the second alternative is not Pareto
optimal. Now it is needed to compare the first and the third
alternatives. Suppose that the pessimism degree in compari-
son of these alternatives is 𝛽 = 0.3.

Then we have

𝑟 (𝑍
𝑈(𝑓
1
)
, 𝑍
𝑈(𝑓
3
)
) = 0.976 >

1

2
(do (𝑍

𝑈(𝑓
1
)
) + do (𝑍

𝑈(𝑓
3
)
))

= 0.96.

(28)

Therefore, the best action is 𝑓
1
.

6. Conclusion

The concept of 𝑍-numbers opens a door for applications in
many areas, especially in decision making theory. The goal
of the present study is to develop an approach for decision
making under𝑍-information described inNL.The suggested
approach utilizes the paradigm expected utility based on
a direct computation of 𝑍-numbers. The advantage of the
approach is its ability to account for imprecision and partial
reliability of information and relative simplicity of computa-
tions. The approach is applied to solve a benchmark decision
problem in the field of economics. The obtained results show
validity of the approach.
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In this paper, a newmethod for robustly estimating multiple view relations from point correspondences is presented.The approach
combines the popular random sampling consensus (RANSAC) algorithm and the evolutionarymethod harmony search (HS).With
this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under
the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated
by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate
solutions (samples) are motivated by the improvisation process that occurs when a musician searches for a better state of harmony.
As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of
RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real
images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application,
it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the
proposed method in terms of accuracy, speed, and robustness.

1. Introduction

The goal of estimating geometric relations in images is to find
an appropriate global transformation to overlay images of the
same scene taken at different viewpoints. It can be applied in
image processing when an object moves in front of a static
camera and when a static scene is captured by a moving
camera or multiple cameras from different viewpoints. This
methodology has been widely adopted in many applications,
for instance, when series of images can be stitched together
to generate a panorama image [1–3]. Also, multiple image
superresolution approaches can be applied in the overlapped
region calculated according to the estimated geometry [4–
6]. The motion of a moving object can also be estimated
using its geometric relations [7] and a distributed camera
network can be calibrated, where each camera’s position,
orientation, and focal length can be calculated based on

their correspondences [8–10]. Another example is the robot
position that can be controlled or estimated through the
estimation of the fundamental matrix/homography [11–13].

In a modelling problem, those data that can be explained
by the hypothetical model are known as inliers of this model.
Other points, for example, those generated by matching
errors, are called outliers. The outliers are caused by external
effects not related to the investigated model. Based on dif-
ferent criteria, several robust techniques have been proposed
to identify points as inliers or outliers, being the random
sampling consensus (RANSAC) algorithm [14] the most well
known [15–17].

RANSAC adopts a simple hypothesize-and-evaluation
process. Under such approach, a minimal subset of elements
(correspondences) is sampled randomly, and a candidate
model is hypothesized using this subset. Then, the candidate
model is evaluated on the entire dataset separating all
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elements from the dataset into inliers and outliers, according
to their degree of matching (error scale) to the candidate
model.These steps are iterated until there is a high probability
that an accurate model could be found during iterations. The
model with the largest number of inliers is considered as the
estimation result.

Although RANSAC algorithm is simple and powerful, it
presents two main problems [18, 19]: the high consumption
of iterations and the inflexible definition of its objective
function. In the RANSAC algorithm, candidate models are
generated by selecting data samples. Since such a strategy is
completely random, a large number of iterations are required
to explore a representative subset of noisy data and to find
a reliable model that could contain the maximum number
of inliers. In general terms, the number of iterations is
strongly affected by the contamination level of the dataset.
The other crucial issue is the objective function to evaluate
the correctness of a candidatemodel from contaminated data.
In the RANSAC methodology, the best estimation result is
the model that maximizes the number of inliers. Therefore,
the objective function involves the count, one by one, of the
number of inliers associated with a candidate model. Such
an objective function is fixed and prone to obtain suboptimal
models under different circumstances [19].

Several variants have been proposed in order to enhance
the performance of the RANSAC method. One example
constitutes the approach MLESAC [20] which searches
the best hypothesis by maximizing the likelihood via the
RANSAC process by assuming that the inlier data would
distribute as a Gaussian function and outliers are distributed
randomly. Alternatively, instead of giving the error scale (i.e.,
the threshold to separate inliers from outliers) a priori, the
SIMFIT method [21] proposes its prediction based on an
iterative procedure. Other representative works, such as the
projection-pursuit method [22] and TSSE (two-step scale
estimator) [23], employ themean shift technique tomodel the
inlier distribution and obtain an inlier scale. Such approaches
enables RANSAC to be data-driven; however, the whole
process becomes quite time consuming.

Although all the proposed variants allow solving one
of the two main RANSAC problems, the other challenge
still remains. Such situation comes from the fact that the
estimation process is approached as an optimization problem
where the search strategy is a random walking algorithm
while the objective function is fixed to the number of inliers
associated with the candidate model. In order to overcome
the typical RANSAC problems, we propose to visualize the
RANSAC operation as a generic optimization procedure.
Under this point of view, a new efficient search strategy can
be added for reducing the number of consumed iterations.
Likewise, it can be defined as a new objective function which
incorporates other elements that allow an accurate evaluation
of the quality of a candidate model.

Two important difficulties in selecting a search strategy
for RANSAC are the high multimodality and the complex
characteristics of the estimation process produced by the
elevated contamination of the dataset. Under such cir-
cumstances, classical methods present a bad performance
[24, 25], making way for recent new approaches that have

been proposed to solve complex and ill-posed engineering
problems. These methods include the application of modern
optimization techniques such as evolutionary algorithms and
metaheuristic techniques [26, 27] which have delivered better
solutions over those obtained by classical methods.

The harmony search algorithm (HS) introduced by Geem
et al. [28] is one example of these approaches. HS is an
optimization algorithm based on the metaphor of the impro-
visation process that occurs when a musician searches for a
better state of harmony. The HS produces a new candidate
solution from all existing solutions. InHS, the solution vector
is analogous to the harmony in music, and its generation
schemes are analogous to musician’s improvisations. With
regard to other metaheuristics in the literature, HS imposes
fewer mathematical prerequisites; therefore, it can be easily
modified for solving several sorts of engineering optimization
challenges [29, 30]. Numerical comparisons have established
that the convergence of HS is faster than GA [29, 31, 32].
Such a fact has attracted the attention of the evolutionary
computation community. It has been effectively applied to
solve a wide range of practical optimization problems such
as structural optimization [33], parameter estimation of the
nonlinear Muskingum model [34], design optimization of
water distribution networks [35], vehicle routing [36], image
segmentation [37], and circle detection in images [38].

Although HS allows identifying promising regions at
the solution space within a reasonable time interval, it
underperforms in local searching, in particular for parameter
identification applications [39–42]. In order to enhance the
fine-tuning (accuracy) properties of HS, the local search
parameter (BW) is dynamically adjusted to improve the
balance between exploration and exploitation during the
search process (see [29]). However, considering that the
adjustment follows an exponential function, longer exploita-
tion periods are allowed, affecting the exploring capacity
of HS particularly when it is applied to complex objective
functions. A better adjustment alternative, which employs the
use of a linear model, has been recently proposed in [43].
It presents better searching capacities than the approaches
based on exponential functions. For this reason, such an
approach is used in our method.

In this paper, a new method is presented for the
robust estimation of multiple view relations from point
correspondences. The approach combines the RANSAC
method with the HS. Upon such combination, the proposed
method adopts a different sampling strategy in comparison
to RANSAC to generate putative solutions. Under the new
mechanism, new candidate solutions are built iteratively by
considering the quality of models generated by previous
candidate solutions, rather than relying over a pure random
selection as it is the case of RANSAC. Likewise, a more
accurate objective function is incorporated to accurately
evaluate the quality of a candidate model. As a result, the
proposed approach can substantially reduce the number of
iterations still preserving the robust capabilities of RANSAC.
The method is generic and its use is illustrated by the estima-
tion of homographies, considering synthetic and real images.
Additionally, in order to demonstrate the performance of the
proposed approach in a real engineering application, it is
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employed to solve the problem of position estimation of a
humanoid robot. Experimental results validate the efficiency
of the proposed method in terms of accuracy, speed, and
robustness.

The paper is organized as follows. Section 2 explains
the problem of image matching considering multiple views.
Section 3 introduces the fundamentals of the RANSAC
method. Section 4 explains the harmony search algorithm
while Section 5 presents the proposed approach. Section 6
exhibits the experimental set and its performance results.
Section 7 exposes a robotic application of the proposed
approach. Finally, Section 8 establishes final conclusions.

2. View Relations from Point Correspondences

The problem of image matching consists in finding a geo-
metric transformation that maps one image of a scene to
another image taken from a different point of view. To
determine the correspondence among points, it is necessary
to find corresponding points on both images. Such point
pairs can be obtained as a result of applying an automatic
algorithm of detection and matching [44, 45]. The detected
points are described by vectors of parameters (descriptors),
and frequently these parameters do not allow discriminating
one point from another with complete certainty. As a result,
an erroneous matching about the correspondence of points
located on different parts of different images may emerge.

In this section the geometric relations of points between
two views are discussed, considering the case of homography.

Assume that there is a collection of pairs of the corre-
sponding points that are found on two images

U = {(x
1
, x󸀠
1
) , (x
2
, x󸀠
2
) , . . . , (x

𝑀
, x󸀠
𝑀
)} , (1)

where x
𝑖
= (𝑥
𝑖
, 𝑦
𝑖
, 1)
𝑇 and x󸀠

𝑖
= (𝑥
󸀠

𝑖
, 𝑦
󸀠

𝑖
, 1)
𝑇 are the positions

of points in the first and second images, respectively.
Two perspective images can geometrically be linked

through a plane 𝑄 of the scene by a homography H ∈
R3×3 (see Figure 1). This projective transformation H relates
corresponding points of the plane projected into two images
by x󸀠
𝑖
= Hx

𝑖
or x
𝑖
= H−1x󸀠

𝑖
. The homography across two

views can be computed by solving a linear system from a
set of four point matches [46]. The quality of the estimated
homography H is evaluated by considering the distance
between the position of the point calculated with the help of
the matrix H and the actually observed position. Therefore,
the mismatch error 𝐸𝐻2

𝑖
produced by the 𝑖-correspondence

(x
𝑖
, x󸀠
𝑖
) is defined as the sum of squared distances from the

points to their estimated positions:
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) and 𝜂󸀠 = 𝑑(x󸀠
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,Hx
𝑖
) correspond to the

errors produced in the first and second images, respectively.
Figure 2 shows the error evaluation process of H for

a particular example which involves five correspondences
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Figure 1: Homography from a plane between two views.

error evaluated as the distances (𝜂, 𝜂󸀠) between the points
(x
3
, x󸀠
3
) and their positions calculated with the use of the

matrixH (Hx
3
,H−1x󸀠

3
).

3. Random Sampling Consensus (RANSAC)
Algorithm

The goal of RANSAC is to estimate the geometric transfor-
mation (the homography H) from image correspondences
over two views. Potentially there are a significant number of
mismatches amongst the correspondences. Correct matches
will obey the homography transformation.Therefore, the aim
is to obtain a set of inliers consistent with the homography
transformation by using a robust technique. In this case
outliers are points inconsistent with the homography trans-
formation. In order to solve such a problem, the RANSAC
algorithm has proven to be the most successful [15–17].

RANSAC solves the problem of model parameters esti-
mation by finding the best hypothesis ℎ𝐵 among the set of
all possible hypotheses𝐻 generated by the source data. Such
source data are typically contaminated by noise. In order
to build the hypothesis ℎ

𝑖
about the unknown parameters,

a sample S
𝑖
of the minimum size (𝑠) required for model

estimation is obtained (e.g., a sample of only two points is
sufficient to calculate a straight line, 𝑠 = 2, and of four to
obtain a homography, 𝑠 = 4). Under this consideration, the
probability of finding an outlier is reduced. Considering that
the number of elements contained in a sample is small, the
amount of possible samples that can be generated from the
complete source data U is enormous. Under such circum-
stances, the exhausting testing of all samples for a reasonable
time is impossible. RANSAC faces such problem because it
only considers 𝐺 samples which are randomly selected and
evaluated. Algorithms of the RANSAC family consist of 𝐺
iterations of the following cycle.

(1) Construct a sample S
𝑖
⊂ U consisting of 𝑠 different

elements.
(2) Build the hypothesis ℎ

𝑖
based on the sample S

𝑖
.

(3) Evaluate the degree of agreement𝐴
𝑖
of the hypothesis

ℎ
𝑖
with the set of all source data U.
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Figure 2: Example of evaluation process for a particular homography H.

After the construction and evaluation of all𝐺 hypotheses,
the hypothesis ℎ𝐵 with the best degree of agreement is chosen
among them. It is considered as a robust estimate of themodel
parameters. Such operation can be described as follows:

ℎ
𝐵
= arg max
𝑖=1,...,𝐺

𝐴
𝑖
(U, ℎ
𝑖
) . (3)

The maximization of the degree of agreement (number of
inliers) is equivalent to the minimization of the penalty
function whose value depends on the number of outliers.
Therefore, the degree of agreement 𝐴

𝑖
(U, ℎ
𝑖
) is computed as

follows:
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𝑖
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(4)

where Th is a permissible error,𝑀 is the number of elements
contained in the source data U, and 𝑒

2

𝑗
(ℎ
𝑖
) is the quadratic

error produced by the 𝑗th data considering the hypothesis ℎ
𝑖
.

In the context of this paper, 𝑒2
𝑗
(ℎ
𝑖
) corresponds to 𝐸𝐻2

𝑖
which

represents the error produced by the 𝑖th correspondence.
The hypothesis with a minimum penalty (i.e., with the

maximum degree of agreement) is chosen as the best match-
ing criterion. In the original scheme of RANSAC, the quality
of a hypothesis is defined as the number of inliers. For a given
value of the permissible errorTh, the point 𝑗 that produces the
error 𝑒2

𝑗
(ℎ
𝑖
) is regarded to be an inlier of ℎ

𝑖
if its value does not

exceed the thresholdTh; otherwise the point is regarded as an
outlier.

In the RANSAC algorithm, the optimal hypothesis ℎ𝐵 is
found and the penalty isminimized by using a search strategy
of randomwalking; therefore many attempts are necessary to
investigate in sufficient detail the space of possible samples
and to find the sample for which the hypothesis has the
greatest degree of agreement on the source data. The number
of iterations and thus the time spent for the search can
be reduced by choosing points according to some directed
rules, rather than randomly. Optimization algorithms can be

considered as a robust scheme in contrast to the random
search [47]. In an optimization algorithm, new candidate
solutions are generated in accordance to the information
obtained from past candidate solutions.

In this paper, we propose a different approach based on
the HS as optimization algorithm. The goal is to demonstrate
that the new method, by combining the idea of testing
minimum-sized samples with the directed search inspired
by the improvisation process that occurs when a musician
searches for a better state of harmony, allows performing
an efficient search among the correspondences to generate
models of higher quality. It is also shown that the number
of inliers found by the new method with the use of a fixed
number of samples is significantly greater than the number
of inliers determined by the family of algorithms based on
RANSAC.

4. Harmony Search Algorithm

In the basic HS, each solution is called a “harmony” and
is represented by an 𝑛-dimension real vector. An initial
population of harmony vectors are randomly generated and
stored within a harmony memory (HM). A new candidate
harmony is thus generated from the elements in the HM by
using a memory consideration operation either by a random
reinitialization or a pitch adjustment operation. Finally, the
HM is updated by comparing the new candidate harmony
and the worst harmony vector in theHM.Theworst harmony
vector is replaced by the new candidate vector in case it is
better than the worst harmony vector in the HM. The above
process is repeated until a certain termination criterion is
met. The basic HS algorithm consists of three basic phases:
HM initialization, improvisation of new harmony vectors,
and updating of the HM. The following discussion addresses
details about each stage.

4.1. Initializing the Problem and Algorithm Parameters. In
general, the global optimization problem can be summarized
as follows: min𝑓(p) : 𝑝(𝑗) ∈ [𝑙(𝑗), 𝑢(𝑗)], 𝑗 = 1, 2, . . ., 𝑛, where
𝑓(p) is the objective function,p = (𝑝(1), 𝑝(2), . . . , 𝑝(𝑛)) is the
set of design variables, 𝑛 is the number of design variables,
and 𝑙(𝑗) and 𝑢(𝑗) are the lower and upper bounds for the
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design variable 𝑝(𝑗), respectively. The parameters for HS are
the harmony memory size, that is, the number of solution
vectors lying on the harmony memory (HM), the harmony-
memory consideration rate (HMCR), the pitch adjusting rate
(PAR), the distance bandwidth (BW), and the number of
improvisations (NI) which represents the total number of
iterations. It is obvious that an adequate selection for HS
parameters would enhance the algorithm’s ability to search
for the global optimum under a high convergence rate.

4.2. HarmonyMemory Initialization. In this stage, initial vec-
tor components at HM, that is, HMS vectors, are configured.
Let p
𝑖
= {𝑝
𝑖
(1), 𝑝
𝑖
(2), . . . , 𝑝

𝑖
(𝑛)} represent the 𝑖th randomly

generated harmony vector: 𝑝
𝑖
(𝑗) = 𝑙(𝑗) + (𝑢(𝑗) − 𝑙(𝑗)) ⋅

rand(0, 1) for 𝑗 = 1, 2, . . . , 𝑛 and 𝑖 = 1, 2, . . . ,HMS, where
rand(0,1) is a uniform randomnumber between 0 and 1.Then,
the HM matrix is filled with the HMS harmony vectors as
follows:

HM =

[
[
[
[

[

p
1

p
2

.

.

.

pHMS

]
]
]
]

]

. (5)

4.3. Improvisation of New Harmony Vectors. In this phase, a
new harmony vector pnew is built by applying the following
three operators: memory consideration, random reinitial-
ization, and pitch adjustment. Generating a new harmony
is known as “improvisation.” In the memory consideration
step, the value of the first decision variable 𝑝new(1) for the
new vector is chosen randomly from any of the values
already existing in the current HM, that is, from the set
{𝑝
1
(1), 𝑝
2
(1), . . . , 𝑝HMS(1)}. For this operation, a uniform

random number 𝑟
1

is generated within the range [0, 1].
If 𝑟
1

is less than HMCR, the decision variable 𝑝new(1)
is generated through memory considerations; otherwise,
𝑝new(1) is obtained from a random reinitialization between
the search bounds [𝑙(1), 𝑢(1)]. Values of the other deci-
sion variables 𝑝new(2), 𝑝new(3), . . . , 𝑝new(𝑛) are also chosen
accordingly. Therefore, both operations, memory considera-
tion and random reinitialization, can be modelled as follows:

𝑝new (𝑗) =

{{{{

{{{{

{

𝑝
𝑖
(𝑗) ∈ {𝑝

1
(𝑗) , 𝑝

2
(𝑗) , . . . , 𝑝HMS (𝑗)}

with probability HMCR
𝑙 (𝑗) + (𝑢 (𝑗) − 𝑙 (𝑗)) ⋅ rand (0, 1)

with probability 1 −HMCR.

(6)

Every component obtained by memory consideration is
further examined to determine whether it should be pitch-
adjusted. For this operation, the pitch adjusting rate (PAR)
is defined as to assign the frequency of the adjustment and
the bandwidth factor (BW) to control the local search around
the selected elements of the HM. Hence, the pitch adjusting
decision is calculated as follows:

𝑝new (𝑗) =
{{

{{

{

𝑝new (𝑗) = 𝑝new (𝑗) ± rand (0, 1) ⋅ BW
with probability PAR

𝑝new (𝑗) with probability (1 − PAR) .
(7)

Pitch adjusting is responsible for generating new potential
harmonies by slightly modifying original variable positions.
Such operation can be considered similar to the mutation
process in evolutionary algorithms. Therefore, the decision
variable is either perturbed by a random number between
−BW and BW or left unaltered. In order to protect the pitch
adjusting operation, it is important to assure that points lying
outside the feasible range [𝑙, 𝑢] must be reassigned, that is,
truncated to themaximumorminimum value of the interval.

4.4. Updating the Harmony Memory. After a new harmony
vector pnew is generated, the harmony memory is updated by
the survival of the fit competition between pnew and the worst
harmony vector p

𝑤
, according to its fitness value, in the HM.

Therefore pnew will replace p
𝑤

and become a new member
of the HM in case the fitness value of pnew is better than the
fitness value of p

𝑤
.

4.5. Computational Procedure. The computational procedure
of the basic HS can be summarized as shown in Procedure 1
[18].

4.6. Dynamical Linear Adjustment of BW. Every metaheuris-
tic algorithm needs to address the issue of exploration-
exploitation of the search space. Exploration is the process
of visiting entirely new points of a search space whilst
exploitation is the process of refining those points within
the neighborhood of previously visited locations in order to
improve their solution quality.

InHS, the BWparameter controls the local search around
HM elements. A large BW value eases the algorithm’s search-
ing at a larger scope, while a small BW value is appropriate
for fine-tuning of best solution vectors.

In the standard HS, the BW value is considered as a
constant number. However, in this work, the BW value
is dynamically adjusted as to favor exploration at early
stages while exploitation is reinforced during final stages of
the searching process. The adjustment uses a linear model
defined as follows:

BW (𝑘)

=

{{{

{{{

{

BWmax − (
BWmax − BWmin

2 ⋅NI
) ⋅ 3𝑘 if 𝑘 < (

2

3
)NI

BWmin if 𝑘 ≥ (
2

3
)NI,

(8)

where 𝑘 is the iteration index,while BWmax andBWmin are the
maximum andminimumBWvalues, respectively. In contrast
to exponential adjustment [26], linearmodels, as the one used
in this paper, allow a better balance between exploration and
exploitation (fine-tuning) of the search process [40].

Since all candidate solutions are generated by using
the HS operators, there is a low probability to be trapped
into local minima [48]. HS can effectively handle challeng-
ing multimodal optimization problems [49, 50]. Such fact
contrasts to well-known genetic algorithms (GA) [51] and
particle swarm optimization (PSO) [52] which usually tends
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Step 1. Set the parameters HMS, HMCR, PAR, BW and NI.
Step 2. Initialize the HM and calculate the objective function value of each harmony vector.
Step 3. Improvise a new harmony pnew as follows:

for (𝑗 = 1 to 𝑛) do
if (𝑟
1
<HMCR) then

Select randomly a number 𝑎 where 𝑎 ∈ (1, 2, . . . ,HMS)
𝑝new(𝑗) = 𝑝

𝑎
(𝑗)

if (𝑟
2
< PAR) then

𝑝new(𝑗) = 𝑝new(𝑗) ± 𝑟
3
⋅ BW where 𝑟

1
, 𝑟
2
, 𝑟
3
∈ rand(0, 1)

end if
if 𝑝new(𝑗) < 𝑙(𝑗)

𝑝new(𝑗) = 𝑙(𝑗)

end if
if 𝑝new(𝑗) > 𝑢(𝑗)

𝑝new(𝑗) = 𝑢(𝑗)

end if
else
𝑝new(𝑗) = 𝑙(𝑗) + 𝑟 ⋅ (𝑢(𝑗) − 𝑙(𝑗)), where 𝑟 ∈ rand(0, 1)

end if
end for

Step 4. Update the HM as p
𝑤
= pnew if 𝑓(pnew) > 𝑓(p

𝑤
)

Step 5. If NI is completed, the best harmony vector p
𝑏
according to its fitness value in the HM is

returned; otherwise go back to Step 3.

Procedure 1

to conduct the whole population towards the best candidate
solution [53] producing premature convergence.

5. Method for Geometric Estimation Using HS

The estimation of model parameters in algorithms of the
RANSAC family is implied to find an optimal sample of
length 𝑠 from a set consisting of𝑀 elements. In the standard
scheme, RANSAC uses a random walking algorithm as a
search strategy. The idea of the proposed method considers
the use of HS to generate samples based on information
about their quality, rather than randomness. The quality of
a sample, that is, the fitness of a harmony 𝑓(p

𝑖
), is defined as

the matching degree of the hypothesis ℎ
𝑖
that is constructed

based on the correspondence numbers coded within p
𝑖
.

Considering that the problem consists in estimating the
parameters ofH through a setU = {(x

1
, x󸀠
1
), (x
2
, x󸀠
2
), . . . , (x

𝑀
,

x󸀠
𝑀
)} of𝑀 different correspondences, the proposed approach

can be described as shown in Algorithm 1.
The proposed approach combines the RANSAC method

with the HS adopting a different sampling strategy in com-
parison to RANSAC to generate putative solutions. Under the
new mechanism, at each iteration, new candidate solutions
are built taking into account the quality of the models that
have been generated by previous candidate solutions, rather
than purely random as it is the case in RANSAC.

Since the approach visualizes the RANSAC operation as a
generic optimization procedure, different objective functions
can be incorporated to accurately evaluate the quality of a
candidatemodel. Although several objective functions can be
tested, this work employs the expression in Equation (A).

In contrast to the traditional RANSAC algorithm, the
objective function considers two different aims: the number
of inliers and the approximation error. The idea is to find the
candidate homography that maximizes the number of inliers
and simultaneously minimizes the approximation error.
Under such circumstances, the obtained estimation repre-
sents the solution that presents the best trade-off between
both objectives. As a result, the proposed approach can
substantially reduce the number of iterations, still preserving
the robust capabilities of RANSAC method.

6. Experimental Results

In this section, a comprehensive set of experiments have been
conducted to test the performance of the proposed approach.
The results are divided into two different categories: (1) effect
of the main HS parameters in the estimation results and (2)
comparison results over synthetic and real homographies.

In the experiments, three performance indexes are con-
sidered: the number of inliers (NofI), the error (𝐸

𝑠
, 𝐸
𝑟
), and

the number of function evaluations (NFE). The first two
indexes assess the accuracy of the solution whereas the last
one measures the computational cost.

The number of inliers (NofI) expresses the amount of
elements contained in the set I of detected inliers. The error
(𝐸
𝑠
, 𝐸
𝑟
) provides a quality measure of the estimated relation.

In case of synthetic data, the error is calculated as

𝐸
𝑠
= (∑

𝑖𝑗

𝑑
2
(x𝑗
𝑖
, x̂𝑗
𝑖
)

NofI
)

1/2

, 𝑖 ∈ I, 𝑗 ∈ {1, 2} , (9)
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(1) Configuration
(a) Set the parameters HMS, HMCR, PAR, BWmin, BWmax and NI.

(2) Initial population.
(a) Build the harmony memory (HM) HM = {p

1
, p
2
, . . . , pHMS} where each individual

p
𝑖
consists 4 random non-repeating indices from 1 to𝑀.

(b) Compute homography H
𝑖
(hypothesis ℎ

𝑖
) by using the indices from p

𝑖
.

(c) Calculate the fitness value 𝑓(p
𝑖
) as the matching quality of the constructed homography

H
𝑖
considering the whole available data U. Such fitness value is calculated by using a

new objective function defined as:

𝐹 (a
𝑖
(𝑘)) =

𝑀

∑

𝑗=1

𝜃 (𝑒
2

𝑗
(ℎ
𝑖
)) − 𝜆 ⋅ 𝑒

2

𝑗
(ℎ
𝑖
) 𝜃 (𝑒

2

𝑗
(ℎ
𝑖
)) =

{

{

{

0 𝑒
2

𝑗
(ℎ
𝑖
) > Th

1 𝑒
2

𝑗
(ℎ
𝑖
) ≤ Th

, (A)

where 𝑒2
𝑗
(ℎ
𝑖
) represents the quadratic error produced by the 𝑗th correspondence

considering the hypothesis ℎ
𝑖
whereas 𝜆 is the penalty associated with the mismatch

magnitude. Such error corresponds to the mismatch 𝐸𝐻
2

𝑗
generated by the evaluation of H

𝑖
.

(3) Iterations 𝑘 = 1, . . . ,NI.
(a) Generate a new harmony pnew (candidate solution) as follows:

BW(𝑘) =

{{

{{

{

BWmax − (
BWmax − BWmin

2 ⋅NI
) ⋅ 3𝑘 if 𝑘 < (

2

3
)NI

BWmin if 𝑘 ≥ (
2

3
)NI

for (𝑗 = 1 to 𝑛) do
if (𝑟
1
<HMCR) then

Select randomly a number 𝑎 where 𝑎 ∈ (1, 2, . . . ,HMS)
𝑝new(𝑗) = 𝑝

𝑎
(𝑗)

if (𝑟
2
< PAR) then

𝑝new(𝑗) = 𝑝new(𝑗) ± 𝑟
3
⋅ BW(𝑘) where 𝑟

1
, 𝑟
2
, 𝑟
3
∈ rand(0, 1)

end if
if 𝑝new(𝑗) < 𝑙(𝑗)

𝑝new(𝑗) = 𝑙(𝑗)

end if
if 𝑝new(𝑗) > 𝑢(𝑗)

𝑝new(𝑗) = 𝑢(𝑗)

end if
else
𝑝new(𝑗) = 𝑙(𝑗) + 𝑟 ⋅ (𝑢(𝑗) − 𝑙(𝑗)), where 𝑟 ∈ rand(0, 1)

end if
end for

(b) Compute homography H
𝑖
by using the indices from pnew.

(d) Calculate the fitness value 𝑓(pnew) as the matching quality of the constructed
homography Hnew considering the whole available data U. Such fitness value is
calculated by using the objective function described in (A).

(e) Update the HM as p
𝑤
= pnew if 𝑓(pnew) > 𝑓(p

𝑤
)

(4) Estimation result
(a) The best estimation HB consists of the parameters computed by using the indices from

the best element pB of HMin terms of its affinity, so that p𝐵 = argmax
𝑖=1,...,HMS𝑓(p𝑖).

Algorithm 1

where x𝑗
𝑖

is the inlier point calculated by the estimated
relation in the 𝑗-view, x̂𝑗

𝑖
is the inlier ground true point,

and 𝑑(⋅) is the Euclidian distance between the points. There-
fore, 𝐸

𝑠
evaluates the fit of the estimated relation, com-

puted from the noisy data, against the known ground truth
points.

In the case of real data the error is assessed from the
standard deviation of the inliers. Thus, 𝐸

𝑟
is computed as

follows:

𝐸
𝑟
= (∑

𝑖

𝑒
2

𝑖

NofI
)

1/2

, 𝑖 ∈ I, (10)
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Table 1: Effect of the HS parameters in the estimation process.

(NofI, 𝐸
𝑠
)

HMCR = 0.5 HMCR = 0.6 HMCR = 0.7 HMCR = 0.8
PAR = 0.1 (21, 4.2147) (26, 3.8124) (29, 3.4721) (27, 4.0112)
PAR = 0.2 (22, 4.1457) (35, 2.0974) (36, 2.1474) (31, 3.3784)
PAR = 0.3 (21, 4.5714) (38, 1.1124) (40, 0.8514) (35, 2.0053)
PAR = 0.3 (23, 4.0781) (34, 2.0078) (37, 2.0012) (31, 3.4079)
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Figure 3: A test example where the HS-RANSAC has been applied to estimate a random transformation H considering only the 75% of
additional outliers. (a) The first view and (b) the second view, with black squares representing the detected inliers.

where 𝑒
2

𝑖
is the quadratic error produced by the 𝑖th inlier.

In the context of this paper, 𝑒2
𝑖
corresponds to 𝐸𝐻

2

𝑖
which

represents the error produced by the 𝑖th inlier.
The number of function evaluations (NFE) specifies the

total number of transformations that have been evaluated by
the algorithm until the best estimation has been reached.

6.1. Effect of the HS Parameters. Several parameters define
the performance of HS. However, from all of them, the
harmony-memory consideration rate (HMCR) and pitch
adjusting rate (PAR) are the most important [55]. To study
the impact of these parameters, over the performance of
HS in the estimation procedure, different values have been
tested on the computation of a synthetic homography. Such
a homography was generated, in its first view, by using a
rectangular pattern of 8 × 6 elements within a 2-dimensional
space of [−300, 300]. Then, such points were transformed
by a random homography H and contaminated by normally
distributed noise for constructing their correspondences in
the second view. A set of outliers was added by selecting
randomly data points within the space limits. In the test,
the fraction of outliers is of 75%. In order to illustrate the
experimental setup, Figures 3(a) and 3(b) exhibit the first and
second views, respectively. Considering the correspondence
points, the HS-RANSAC algorithm generates the estimation
ofH. In Figure 3(a), the black squares indicate the position in
the first view of a point from the second view as a result of the
H transformation. Likewise, the black squares in Figure 3(b)
exhibit the position in the second view of a point from the
first view as a result of the H transformation.

Table 2: HS-RANSAC estimator parameters.

HMS HMCR PAR BWmax BWmin NI 𝜆 Th
50 0.7 0.3 10 1 950 0.001 5

In the experiment, the maximum number of iterations is
set to 950. HMS, BWmax, BWmin, 𝜆, and Th are fixed to 50,
10, 1, 0.001, and 5, respectively. The results report the number
of inliers (NofI) and the produced estimation error (𝐸

𝑠
) of

HS-RANSAC, averaged over 30 runs, for the different values
of HMCR and PAR. In the experiment, the parameter values
are modified considering specific interval. HMCR varies
from 0.5 to 0.8 whereas PAR changes from 0.1 to 0.4. The
results, shown in Table 1, suggest that a proper combination
of different parameter values can improve the performance
of HS-RANSAC and the quality of the estimations. The best
parameter configuration in the experiment is highlighted in
Table 1.

After considering the analysis of Table 1, the parameter
values for the proposed estimator are defined in Table 2.
Once defined, such values have been kept in all experiments
reported in this paper.

6.2. Comparison Results over Synthetic and Real Homogra-
phies. We have applied the proposed method to estimate
homographies on real and synthetic data in order to compare
its performance against other estimation algorithms such as
the standard RANSAC [14], the MLESAC [20], the SIMFIT
method [21], the projection-pursuit algorithm [22], the TSSE
[23], and the PSO algorithm (PSO-RANSAC) [54]. The first
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Figure 4: Experimental results corresponding to the estimation of H considering synthetic data.

five approaches are RANSAC-based estimators whose results
are broadly known. In all cases, the algorithms are tuned
according to the value set which is originally proposed by
their own references. However, the PSO method has been
included as a reference, only to validate the performance of
the HS as an optimization approach.

In order to conduct a fair comparison between the HS
version used in this work and PSO, an enhanced version
of PSO has been also chosen with similar characteristics.
Therefore, it is used in the comparisons, the PSO version
reported in [54]. Such an approach is proposed to mitigate
the premature convergence problem of the original PSO
method. It incorporates two new elements: (1) a weight factor
𝑤 and (2) a constriction factor 𝑉max. Similar to BW in
the HS method, the weight factor 𝑤 is linearly decreased
during the algorithm execution to regulate the attraction
force towards the best particle seen so far. On the other hand,
the constriction factor 𝑉max permits limiting the particle
velocities in order to control their trajectories. Under such
circumstances, the enhancedPSOversion is used in combina-
tion with RANSAC considering the following configuration:
𝑃 = 10, 𝑐

1
= 2, 𝑐

2
= 2, and Th = 5 whereas the weight

factor 𝑤 decreases linearly from 0.9 to 0.2. Additionally,
the constriction factor 𝑉max is fixed to 2. Such a configu-
ration presents the best possible performance according to
[54].

6.2.1. Homography Estimation with Synthetic Data. This
section reports the experimental results corresponding to
the estimation of homography matrix considering synthetic
data. In the experiments, the same synthetic homography
produced in Section 4.1 has been used (see Figure 3). The
only difference is that the fraction of the incorporated outliers
varies from 0 to 100%.

In the experiment, each algorithm’s execution requires
1000 iterations. Since the proposed HS-RANSAC involves
50 initial evaluations (size of the harmony memory), it
requires the execution of only 950 iterations to reach the 1000
evaluations. On the other hand, PSO-RANSAC possesses 10
particles; for this reason 100 generations need to be evolved
in order to fulfill the 1000 iterations.

Figure 4 presents the performance for each algorithm.
The results present the averaged outcomes obtained through-
out 50 different executions. In order to appropriately analyze
these results, it is necessary to define the concept of a
breakdown point [18]. The breakdown point is identified as
the highest outlier ratio from which the algorithm degrades
its capacity to find inliers. It can be seen from Figure 4(a)
that standard RANSAC has a breakdown point at 40%, the
MLESAC at 55%, the SIMFITmethod at 70%, the projection-
pursuit algorithm at 50%, the TSSE at 45%, and the PSO-
RANSAC at 80%. In contrast to such methods, the proposed
approach, HS-RANSAC, does not seem to have a prominent
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Table 3: Inlier detection comparison in terms of the detection rate (DR), the error (𝐸
𝑟
), and the number of function evaluations (NFE) for

standard RANSAC [14], theMLESAC [20], the SIMFITmethod [21], the projection-pursuit algorithm [22], the TSSE [23], the PSO algorithm
(PSO-RANSAC) [54], and the proposed HS-RANSAC approach, considering the four test images shown in Figures 5, 6, 7, and 8.

Image Method Detected inliers (NofI) Missing False alarms DR (%) 𝐸
𝑟

NFE

(A) Total number of
inliers (86)

Standard RANSAC 41 45 21 47.7 4.75 876
MLESAC 55 31 14 63.9 3.11 852
SIMFIT 62 24 11 72.0 2.98 842

Projection-pursuit 58 28 12 67.4 3.53 798
TSSE 48 38 14 55.8 3.42 815

PSO-RANSAC 75 11 8 87.2 1.68 491
HS-RANSAC 82 4 5 95.3 0.88 396

(B) Total number of
inliers (72)

Standard RANSAC 32 40 18 44.4 3.98 765
MLESAC 40 32 14 55.5 3.43 825
SIMFIT 58 14 8 80.5 2.87 891

Projection-pursuit 47 25 12 65.2 3.12 759
TSSE 43 29 16 59.7 3.47 786

PSO-RANSAC 63 9 5 87.5 1.51 374
HS-RANSAC 70 2 3 97.2 0.79 328

(C) Total number of
inliers (56)

Standard RANSAC 24 32 15 42.8 2.96 689
MLESAC 27 29 11 48.2 2.41 628
SIMFIT 42 14 9 75.0 1.98 724

Projection-pursuit 37 19 13 66.0 2.85 754
TSSE 32 24 14 57.1 2.74 776

PSO-RANSAC 48 8 9 85.7 0.94 349
HS-RANSAC 53 3 5 94.6 0.25 272

(D) Total number of
inliers (122)

Standard RANSAC 62 60 22 50.8 4.02 832
MLESAC 77 45 18 63.1 3.41 924
SIMFIT 90 32 13 73.7 2.86 845

Projection-pursuit 75 47 19 61.4 3.52 914
TSSE 76 46 21 62.2 3.73 887

PSO-RANSAC 110 12 10 90.1 1.41 427
HS-RANSAC 115 7 5 94.2 0.51 338

breakdown point, since its capacity to detect inliers smoothly
degrades. It is also observed that the HS-RANSAC algorithm
presents the best performance in terms of the number of
inliers (NofI), as it is able to detect most of them. For the
estimated H, the error 𝐸

𝑠
(Figure 4(b)) is fairly comparable

for all methods until they reach their breakdown points.
Nonetheless, the proposed algorithm performed better, being
the only algorithm that consistently found the minimum
error at all outlier ratios.

In terms of number of function evaluations (NFE),
Figure 4(c) shows that the standard RANSAC, the MLE-
SAC, the projection-pursuit algorithm, and the TSSE invest
approximately the same number of iterations for reaching
their best estimation ofH. Since such methods use a random
walking algorithm as a search strategy, the NFE significantly
grows as the number of outliers increases. On the other
hand, the PSO-RANSAC and the HS-RANSAC (that use an
optimization algorithm as search strategy) maintain a con-
siderably low NFE value with independence of the number
of outliers.

From the experiment, it is evident that the use of an
optimization approach can considerably reduce the NFE
value. However, there is no optimization algorithm suitable
to find a good enough estimation considering the high

multimodality and complex characteristics of the estimation
process which is produced by the elevated contamination
of the dataset. Therefore, although the PSO-RANSAC finds
its best estimated fundamental matrix H investing approxi-
mately the same number of evaluations as the HS-RANSAC,
such estimated matrix represents only a suboptimal solution.
This fact can be observed in Figure 4(b) where it is clear
that the PSO-RANSAC algorithm presents higher 𝐸

𝑠
values

in comparison to the HS-RANSAC approach. The reason
for this problem points to those operators used by PSO for
modifying the individual positions. In PSO, during their
evolution, the position of each agent in the next iteration is
updated yielding an attraction towards the position of the
best particle seen so far. Such behavior shows that the entire
population, as the algorithm evolves, concentrates around the
best particle, favoring the premature convergence (reaching
suboptimal solutions) [53].

6.2.2. Homography Estimation with Real Images. In this
section, the experimental results of the estimation of homo-
graphies H considering real images are reported. To evaluate
the estimation performance of the proposed method, Table 3
tabulates the comparative inlier detection performance of
the standard RANSAC [14], the MLESAC [20], the SIMFIT
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A (a) (b)

(c)

Figure 5: Test image “A”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

B
(a) (b)

(c)

Figure 6: Test image “B”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

method [21], the projection-pursuit algorithm [22], the TSSE
[23], the PSO algorithm (PSO-RANSAC) [54], and the pro-
posed HS-RANSAC approach, in terms of the detection rate
(DR), the error (𝐸

𝑟
), and the number of function evaluations

(NFE). The experimental dataset includes 4 images (images

A, B, C, and D) which are shown in Figures 5, 6, 7, and 8.
Such images contain a determined number of inliers which
have been detected and counted by a human expert (A = 86,
B = 72, C = 56, andD = 122). Such values act as ground truth
for all the experiments. For the comparison, the detection rate
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C (a) (b)

(c)

Figure 7: Test image “C”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

D (a) (b)

(c)

Figure 8: Test image “D”: (a) first view, (b) second view, and (c) correspondence points and inliers produced by HS-RANSAC.

(DR) is defined as the ratio between the number of inliers
correctly detected by the algorithm (NofI value) and the
total number of inliers determined by the expert. The results
consider 50 different executions for each algorithm over the
four images. Experimental results show that the proposed

HS method accomplishes at least a 94.2% of inlier detection
accuracy. A close inspection of Table 3 also reveals that the
proposed approach is able to achieve the smallest error (𝐸

𝑟
),

yet requiring a few number of function evaluations (NFE) for
most cases.
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Figures 5, 6, 7, and 8 also exhibit the results after applying
the HS-RANSAC estimator. Such results present the median
case obtained throughout 50 runs.

7. Engineering Application: Position
Estimation in a Humanoid Robot

Additionally, in order to demonstrate the performance of
the proposed approach in a real engineering application, the
paper also reports the application of the HS-RANSAC to
solve the problemof position estimation of a humanoid robot.

In the last decades, much work has already been accom-
plished in the area of humanoid robotics [56, 57]. Position
determination for humanoid robots is a critical problem,
since it is used to control their balance and locomotion.
Recently, a notable research [58] has been devoted to achiev-
ing better performance in system position for humanoid
robots by using sensor fusionmethods. In general, integrating
information from different sensors increases not only the
versatility of the system, but also its cost and complexity.
Vision is one of the most studied sensory modalities for
position and navigation purposes since it provides rich
information of the environment.

The framework of the approach presented in this section,
as an application, is a vision system consisting of a fixed
camera mounted on a Bioloid© humanoid robot. In the
approach, the position (𝑥, 𝑦) of the robot is computed
considering the homography estimated by the HS-RANSAC.
Therefore, the idea is to calculate the planar motion of
the humanoid robot through the estimated homographies.
Figure 9 illustrates the process of planar motion calculation.

The homography can be related to camera motion and
plane location as follows:

H = R +
1

𝑑
t𝑇n, (11)

where 𝑑 is the distance from the camera to the plane
(the height of the humanoid approximately). R describes a
rotation 𝛾 about the 𝑍 axis and can be expressed as

R = [

[

cos 𝛾 sin 𝛾 0

− sin 𝛾 cos 𝛾 0

0 0 1

]

]

. (12)

And t is a translation vector with the form

t = (𝑡
𝑥
, 𝑡
𝑦
, 0) . (13)

As the unit normal n is (0, 0, 1), considering the point p,
the rotation matrix R, and the vector t (where R and t are
calculated from the homographyH), the new planar position
pnew can be computed as

pnew = Rp + t. (14)

More details about planar motion based on homography can
be found in [59]. The HS-RANSAC algorithm and (11)–(14)
were implemented in a Raspberry Pi. Since the computation
must be verified in real time, the number of iterations is

X
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p

Figure 9: Process of planar motion calculation based on homogra-
phies.
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Figure 10: Position calculated from the homography.

fixed to only 150. Figure 10 shows the calculated positions
from the homographies estimated during the humanoid
locomotion. Such a figure demonstrates that the information
of the estimated position adequately reflects the humanoid
movement in spite of the reduced number of iterations.

8. Conclusions

In this paper, a newmethod for robustly estimating homogra-
phies from point correspondences based on the evolutionary
algorithm has been presented. The approach combines the
RANSAC method and the harmony search (HS) algorithm.
With the combination, the proposed method adopts an
alternative sampling strategy in comparison with RANSAC
to build putative solutions. Under the new mechanism, new
candidate solutions are generated iteratively by taking into
consideration the quality of models produced by previous
candidate solutions, instead of relying over a pure random
selection as it is the case of RANSAC. On the other hand,
a more accurate objective function was incorporated to
adequately asses the quality of a candidate model. As a
result, the proposed approach can substantially reduce the
number of iterations still preserving the robust capabilities of
RANSAC.

The proposed approach has been compared to other
similar techniques proposed in the literature such as standard
RANSAC [14], the MLESAC [17], the SIMFIT method [18],
the projection-pursuit algorithm [19], the TSSE [20], and
the PSO algorithm (PSO-RANSAC) [52]. The efficiency of
the algorithm has been evaluated in terms of the detection
rate (DR, NofI), accuracy (𝐸

𝑠
, 𝐸
𝑟
), and computational cost
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(NFE). Experimental results that consider real and synthetic
data provide evidence on the remarkable performance of
the proposed algorithm in comparison to such methods.
Additionally, in order to demonstrate the performance of the
proposed approach in a real engineering application, it has
been employed to solve the problem of position estimation in
a humanoid robot.

Although the experimental results indicate that the
proposed method can yield better results on estimating
homographies, it should be noticed that the aim of our paper
is not intended to beat all the RANSAC methods which have
been proposed earlier but to show that the use of evolutionary
approaches can effectively serve as an attractive alternative to
solve complex optimization problems, yet demanding fewer
function evaluations.
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Among the recent data mining techniques available, the boosting approach has attracted a great deal of attention because of its
effective learning algorithm and strong boundaries in terms of its generalization performance. However, the boosting approach has
yet to be used in regression problems within the construction domain, including cost estimations, but has been actively utilized in
other domains.Therefore, a boosting regression tree (BRT) is applied to cost estimations at the early stage of a construction project
to examine the applicability of the boosting approach to a regression problem within the construction domain. To evaluate the
performance of the BRT model, its performance was compared with that of a neural network (NN) model, which has been proven
to have a high performance in cost estimation domains. The BRTmodel has shown results similar to those of NNmodel using 234
actual cost datasets of a building construction project. In addition, the BRT model can provide additional information such as the
importance plot and structuremodel, which can support estimators in comprehending the decisionmaking process. Consequently,
the boosting approach has potential applicability in preliminary cost estimations in a building construction project.

1. Introduction

In building construction, budgeting, planning, and monitor-
ing for compliance with the client’s available budget, time,
and work outstanding are important [1]. The accuracy of the
construction cost estimation during the planning stage of
a project is a crucial factor in helping the client and con-
tractor with the adequate decision making and for the
successful completion of the project [2–5]. However, there
is a problem in that it is difficult to quickly and accurately
estimate the construction costs at the early stage because the
drawings and documentation are generally incomplete [6].
Machine learning approaches can be applied to alleviate this
problem. Machine learning has some advantages over the
human-crafted rules for data driven works, that is, accurate,
automated, fast, customizable, and scalable [7].

Cost estimating approaches using a machine learning
technique such as a neural network (NN) or support vector
machine (SVM) have received significant attention since the
early 1990s for accurately predicting the construction costs
under a limited amount of project information. The NN

model [1, 8–11] and the SVM model [12–16] were developed
for predicting and/or estimating the construction costs.
Although applying an NN to construction cost estimations
has been very popular and has shown superior accuracy
over other competing techniques [2, 4, 17–21], it has several
disadvantages, such as a lack of self-learning and a time-
consuming rule acquisition process [14]. A SVM, introduced
by Vapnik [22], has attracted a great deal of attention because
of its capacity for self-learning and high performance in
generalization; moreover, it has shown the potential for
utilization in construction cost estimations [5, 13, 14, 16, 23,
24]. However, the SVM approach requires a great deal of
trial and error to determine a suitable kernel function [14].
Moreover, SVM models have a high level of algorithmic
complexity and require extensive amounts of memory [25].

Among the recent machine learning techniques, the
boosting approach, which was developed by Freund and
Schapire [26], who also introduced the AdaBoost algorithm,
has become an important application in machine learning
and predicting models [27]. The boosting approach provides
an effective learning algorithm and strong boundaries in
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terms of the generalization performance [28–31]. Compared
with competing techniques used for prediction problems, the
performance of the boosting approach is superior to that of
both a NN [32] and a SVM [33]. It is also simple, easy to pro-
gram, and has few parameters to be tuned [31, 34, 35]. Because
of these advantages, the boosting approach has been actively
utilized in various domains. In the construction domain,
some studies have attempted to apply this approach to the
classification problem (for predicting a categorical dependent
variable), such as the prediction of litigation results [27]
and the selection of construction methods [31, 36]. However,
there have been no efforts to do so for regression problems
(for predicting a continuous dependent variable), such as
construction cost estimation.

In this study, the boosting regression tree (BRT) is applied
to the cost estimation at the early stage of a construction
project to examine the applicability of the boosting approach
for a regression problem within the construction domain.
The BRT in this study is based on the module of a stochastic
gradient boosting tree, which was proposed by Friedman
(2002) [37]. It was developed as a novel advance in data
mining that extends and improves the regression tree using
a stochastic gradient boosting approach. Therefore, it has
advantages of not only a boosting approach but also a regres-
sion tree, that is, high interpretability, conceptual simplicity,
computational efficiency, and so on. The boosting approach
can especially adopt the other datamining techniques, that is,
a NN and SVM, as well as decision tree, as base learner. This
feature matches up to the latest trends in the field of fusion
of computational intelligence techniques to develop efficient
computational models for solving practical problems.

In the next section, the construction cost estimation and
its relevant studies are briefly reviewed. In the third section,
the theory of a BRT and a cost estimation model using a BRT
are both described. In the fourth section, the cost estimation
model using a BRT is applied to a dataset from an actual
project of a school building construction inKorea and is com-
paredwith that of anNN and an SVM. Finally, some conclud-
ing remarks and suggestions for further study are presented.

2. Review of Cost Estimation Literature

Raftery [38] categorized the preliminary cost estimation
system used in building construction projects into three
generations. The first generation of the system was a method
from the late 1950s to the late 1960s that utilized the unit-
price. The second generation of the system, which was
developed from the middle of the 1970s, was a statistical
method using a regression analysis according to propagating
personal computers. The third generation of the system is
a knowledge-based artificial intelligence method from the
early 1980s. However, based on the third generation, Kim [39]
also separated a fourth generation based onmachine learning
techniques such as a NN and SVM. The author showed an
outstanding performance in construction cost estimation,
although much remains to be resolved, for example, the
complexity of the parameter settings.

We believe that the boosting approach can be a next-
generation cost estimation system at the early stage of a

Training sample

Weighted sample

Weighted sample

Weighted sample hT(x)

h3(x)

h2(x)

h1(x)

...

∑ 𝛼tht(x)

Figure 1: Schematic of a boosting procedure.

construction project. In the prediction problem domain,
combining the predictors of several models often results in
a model with improved performance.The boosting approach
is one such method that has shown great promise. Empirical
studies have shown that combining models using the boost-
ing approach produces a more accurate regression model
[40]. In addition, the boosting approach can be extensively
applied to prediction problems using an aforementioned
machine learning technique such as a NN and SVM, as well
as decision trees [27]. However, the boosting approach has
never been used in regression problems of the construction
domain, including cost estimations, but has been actively
utilized in other domains, such as remote aboveground
biomass retrieval [41], air pollution prediction [42], software
effort estimation [43], soil bulk density prediction [44], and
Sirex noctilio prediction [45]. In this study, we examine
the applicability of a BRT for estimating the costs in the
construction domain.

3. Boosting Regression Trees

Because of the abundance of exploratory tools, each having its
own pros and cons, a difficult problem arises in selecting the
best tool. Therefore, it would be beneficial to try to combine
their strengths to create an even more powerful tool. To
a certain extent, this idea has been implemented in a new
family of regression algorithms referred to under the general
term of “boosting.” Boosting is an ensemble learningmethod
for improving the predictive performance of a regression
procedure, such as the use of a decision tree [46]. As shown
in Figure 1, the method attempts to boost the accuracy of
any given learning algorithm by fitting a series of models,
each having a low error rate, and then combining them into
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Figure 2: Gradient boosted decision tree ensemble.

an ensemble that may achieve better performance [36, 47].
This simple strategy can result in a dramatic improvement in
performance and can be understood in terms of other well-
known statistical approaches, such as additive models and a
maximum likelihood [48].

Stochastic gradient boosting is a novel advance to the
boosting approach proposed by Friedman [37] at Stanford
University. Of the previous studies [26, 49–51] related to
boosting for regression problems, only Breiman [50] alludes
to involving the optimization of a regression loss function as
part of the boosting algorithm. Friedman [52] proposed using
the connection between boosting and optimization, that is,
the gradient boost algorithm. Friedman [37] then showed
that a simple subsampling trick can greatly improve the pre-
dictive performance of stochastic gradient boost algorithms
while simultaneously reducing their computational time.

The stochastic gradient boost algorithm proposed by
Friedman [37] uses regression trees as the basis functions.
Thus, this boosting regression tree (BRT) involves generating
a sequence of trees, each grown on the residuals of the
previous tree [46]. Prediction is accomplished by weighting
the ensemble outputs of all regression trees, as shown in
Figure 2 [53].Therefore, this BRTmodel inherits almost all of
the advantages of tree-based models, while overcoming their
primary disadvantages, that is, inaccuracies [54].

In these algorithms, the BRT approximates the function
𝐹(𝑥) as an additive expansion of the base learner (i.e., a small
tree) [43]:

𝐹 (𝑥) = 𝐹
0
(𝑥) + 𝛽

1
𝐹
1
(𝑥) + 𝛽

2
𝐹
2
(𝑥) + ⋅ ⋅ ⋅ + 𝛽

𝑚
𝐹
𝑚
(𝑥) . (1)

A single base learner does not make sufficient prediction
using the training data, even when the best training data are
used. It can boost the prediction performance using a series
of base learners with the lowest residuals.

Technically, BRT employs an iterative algorithm, where,
at each iteration 𝑚, a new regression tree ℎ(𝑥; {𝑅

𝑙𝑚
}
𝐿

𝑙
) parti-
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The current approximation 𝐹
𝑚−1

(𝑥) is then separately
updated in each corresponding region [37, 54]:
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The “shrinkage” parameter 𝜐 controls the learning rate of the
procedure.

This leads to the following BRT algorithm for generalized
boosting of regression trees [37].

(1) Initialize 𝐹(𝑥), 𝐹
0
(𝑥) = argmin

Υ
∑
𝑁

𝑖−1
Ψ(𝑦
𝑖
, 𝛾).

(2) For𝑚 = 1 to𝑀 do
(3) Select a subset randomly from the full training

dataset,

{𝜋 (𝑖)}
𝑁

𝑙
= rand perm {𝑖}

𝑁

𝑙
. (6)

(4) Fit the base learner,
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(5) Compute the model update for the current iteration,
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(6) Choose a gradient descent step size as,
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(7) Update the estimate of 𝐹(𝑥) as,
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(8) end For.

There are specific algorithms for several loss criteria
including least squares: 𝜓(𝑦, 𝐹) = (𝑦 − 𝐹)

2, least-absolute
deviation: 𝜓(𝑦, 𝐹) = |𝑦 − 𝐹|, and Huber-𝑀: 𝜓(𝑦, 𝐹) = (𝑦 −

𝐹)
2
| (|𝑦 − 𝐹| ≼ 𝛿) + 2𝛿(|𝑦 − 𝐹| − 𝛿/2) | (|𝑦 − 𝐹| > 𝛿) [37].

The BRT applied in this study adopts the least squares for loss
criteria as shown in Figure 3.

4. Application

4.1. Determining Factors Affecting Construction Cost Estima-
tion. In general, the estimation accuracy in a building project
is correlated with the amount of project information available
regarding the building size, location, number of stories, and
so forth [55]. In this study, the factors used for estimating
the construction costs are determined in two steps. First, a
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Table 1: Factors in construction cost estimation.

Description Min. Max Average Remark
Input

Budget (1) BTL Nominal
(2) National finance

School levels
(1) Elementary

Nominal(2) Middle
(3) High

Land acquisition
(1) Existing

Nominal(2) Building lots
(3) Green belts

Class number 12 48 31 Numerical
Building area (m2) 1,204 3,863 2,694 Numerical
Gross floor area (m2) 4,925 12,710 9,656 Numerical
Storey 3 7 4.7 Numerical
Basement floor (storey) 0 2 0.5 Numerical
Floor Height (m) 3.3 3.6 3.5 Numerical

Output
Total construction cost
(thousand KRW) 4,334,369 14,344,867 8,288,008 Numerical

Summary of boosted trees
Response: construction cost

Optimal number of trees: 183; maximum tree size: 5

Train data
Test data
Optimal number

50 100 150 200 250 300
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Figure 3: Training results of BRT.

list of factors affecting the preliminary cost estimation was
made by reviewing previous studies [2, 3, 8, 12, 14, 20, 23,
55, 56]. Lastly, appropriate factors were selected from this list
by interviewing practitioners who are highly experienced in
construction cost estimation in Korea. Consequently, nine

factors (i.e., input variables) were selected for this study, as
shown in Table 1.

4.2. DataCollection. Datawere collected from234 completed
school building projects executed by general contractors from
2004 to 2007 in Gyeonggi Province, Korea. These cost data
were only the direct costs of different school buildings, such
as elementary, middle, and high schools, without a markup
as shown in Figure 4. According to the construction year,
the total construction costs were converted using the Korean
building cost index (BCI); that is, the collected cost data were
multiplied by the BCI of the base year of 2005 (BCI = 1.00).
The collected cost data of 217 school buildings were randomly
divided into 30 test datasets and 204 training datasets.

4.3. Applying BRT to Construction Cost Estimation. In this
study, the construction cost estimation model using a BRT
was tested through application to real building construction
projects. The construction costs were estimated using the
BRT as follows. (1) The regression function 𝐹(𝑥) was trained
using training data. In the dataset, the budget, school levels,
gross floor area, and so on were allocated to each 𝑥

𝑖
of the

training set. Each result, that is, the actual cost, was allocated
to 𝑦
𝑖
. (2) After the training was completed according to the

parameters such as the learning (shrinkage) rate, the number
of additive trees, and themaximum andminimumnumber of
levels, the series of trees 𝐹(𝑥) which maps 𝑥 to 𝑦 of training
data set (𝑦

𝑖
, 𝑥
𝑖
) withminimized loss functionΨ(𝑦

𝑖
, 𝐹(𝑥
𝑖
))was

found. (3) The expected value of 𝐹(𝑥), that is, the expected
cost, was calculated for a new test dataset (𝑦

𝑗
, 𝑥
𝑗
).

The construction cost estimation model proposed in
this study was constructed using “STATISTICA Release 7.”
STATISTICA employs an implementation method usually
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Figure 4: Fragment of cost dataset.

Figure 5: Parameter setting for BRT.

referred to as a stochastic gradient boosting tree by Friedman
(2002, 2001) [37, 52], also known as TreeNet (Salford Systems,
Inc.) or MART (Jerill, Inc.). In this software, a stochastic
gradient booting tree is used for regression problems to
predict a continuous dependent variable [57]. To operate a
boosting procedure in STATISTICA, the parameter settings,
that is, the learning rate, the number of additive trees, the
proportion of subsampling, and so forth, are required. Firstly,
the learning rate was set as 0.1. It was found that small values,
that is, values under 0.1, lead tomuch better results in terms of
the prediction error [52]. We empirically obtained the other
parameters, which are shown in Figure 5. As a result, the
training result of the BRT showed that the optimal number
of additive trees is 183 and the maximum size of tree is 5, as
shown in Figure 3.

4.4. Performance Evaluation. In general, the cost estimation
performance can be measured based on the relationship
between the estimated and actual costs [56]. In this study, the
performance was measured using the Mean Absolute Error
Rates (MAERs), which were calculated using

MAERs =
(∑

󵄨󵄨󵄨󵄨((𝐶𝑒 − 𝐶𝑎) /𝐶𝑎) × 100
󵄨󵄨󵄨󵄨)

𝑛
, (11)

Importance plot
Dependent variable: construction cost
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Figure 6: Importance plot of dependent variables.

where 𝐶
𝑒
is the estimated construction costs by model

application, 𝐶
𝑎
is the actual construction costs collected, and

𝑛 is the number of test datasets.
To verify the performance of the BRT model, the same

cases were applied to a model based on a NN and the results
compared. We chose the NN model because it showed a
superior performance in terms of cost estimation accuracy in
previous studies [2, 5, 14]. “STATISTICA Release 7” was also
used to construct the NN model in this study. To construct
a model using a NN, the optimal parameters have to be
selected beforehand, that is, the number of hidden neurons,
the momentum, and the learning rate for the NN. Herein, we
determined the values from repeated experiments.

5. Results and Discussion

5.1. Results of Evaluation. The results from the 30 test datasets
using a BRT and a NN are summarized in Tables 2 and 3.The
results from the BRT model had MAERs of 5.80 with 20% of
the estimates within 2.5% of the actual error rate, while 80%
were within 10%. The NN model had MAERs of 6.05 with
10% of the estimates within 2.5% of the actual error rate, while
93.3% were within 10%. In addition, the standard deviations
of the NN and BRT models are 3.192 and 3.980, respectively,
as shown in Table 4.

The MAERs of two results were then compared using a
𝑡-test analysis. The MAERs of the two results are statistically
similar, although there are differences between them. As the
null hypothesis, the MAERs of the two results are all equal
(𝐻
0
: 𝑢
𝐷
= 0). The 𝑡-value is 0.263 and the 𝑃 value is 0.793

(>0.05). Thus, the null hypothesis is accepted. This analysis
shows that the MAERs of the two results are statistically
similar.

The BRT model provided comprehensible information
regarding the new cases to be predicted, which is an advan-
tage inherent to a decision tree. Initially, the importance of
each dependent variable to cost estimation was provided,
as shown in Figure 6. These values indicate the importance
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Tree graph for construction cost
Number of nonterminal nodes: 2, number of terminal nodes: 3

Tree number: 1

Gross floor area

N = 32

Mu = 6848849.971750

Var = 558511189640.014770

N = 16

Mu = 6331853.105250

Var = 505633698345.814450

N = 16

Mu = 7365846.838250

Var = 76817160992.577103

Gross floor area

N = 60

Mu = 9056010.804100

Var = 1787132424298.256600

N = 92

Mu = 8288302.688500

Var = 2464865440566.831100
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ID = 1

>9141.500000

>8118.000000

≤9141.500000

≤8118.000000

Figure 7: An example of structure model.

Table 2: Summary of results by estimation model.

Error rate (%) NN BRT
Fre. (%) Cum. (%) Fre. (%) Cum. (%)

0.0–2.5 3 (10.0) 3 (10.0) 6 (20.0) 6 (20.0)
2.5–5.0 11 (36.7) 14 (46.7) 10 (33.3) 16 (53.3)
5.0–7.5 6 (20.0) 20 (66.7) 6 (20.0) 22 (73.3)
7.5–10.0 8 (26.7) 28 (93.3) 2 (6.7) 24 (80.0)
10.0–12.5 1 (3.3) 29 (96.7) 3 (10.0) 27 (90.0)
12.5–15.0 1 (3.3) 30 (100) 2 (6.7) 29 (96.7)
15.0–17.5 0 (0) 30 (100) 1 (3.3) 30 (100)
MAERs 6.05 — 5.80 —

of each variable for the construction cost estimation in the
model. Finally, the tree structures in themodel were provided
as shown in Figure 7. This shows the estimation rules, such
as the applied variables and their influence on the proposed
model. Thus, an intuitive understanding of the whole struc-
ture of the model is possible.

5.2. Discussion of Results. This study was conducted using
234 school building construction projects. In addition, 30
of these projects were used for testing. In terms of the
estimation accuracy, the BRT model showed slightly better
results than the NN model, with MAERs of 5.80 and 6.05,

respectively. In terms of the construction cost estimation,
it is difficult to conclude that the performance of the BRT
model is superior to that of the NN model because the gap
between the two is not statistically different. However, even
the similar performance of the BRTmodel is notable because
the NN model has proven its superior performance in terms
of cost estimation accuracy in previous studies. Similarly, in
predicting the software project effort, Elish [43] compared
the estimation accuracy of neural network, linear regression,
support vector regression (SVR), and BRT. Consequently,
BRT outperformed the other techniques in terms of the
estimation performance that has been also achieved by SVR.
These resultsmean that the BRT has remarkable performance
in regression problem as well as classification one. Moreover,
the BRT model provided additional information, that is, an
importance plot and structure model, which helps the esti-
mator comprehend the decision making process intuitively.

Consequently, these results reveal that a BRT, which is
a new AI approach in the field of construction, has poten-
tial applicability in preliminary cost estimations. It can
assist estimators in avoiding serious errors in predicting the
construction costs when only limited information is available
during the early stages of a building construction project.
Moreover, a BRT has a large utilization possibility because the
boosting approach can employ existing AI techniques such
as a NN and SVM, along with decision trees, as base learners
during the boosting procedure.
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Table 3: Cost estimation results of each test set.

Number Historical cost
(1,000KRW)

Neural networks Boosting regression tree
Predicted cost
(1,000KRW) Error rate (%) Predicted cost

(1,000KRW) Error rate (%)

1 6,809,450 7,704,034 13.14 7,206,795 5.84
2 9,351,716 10,015,906 7.10 9,805,656 4.85
3 6,656,230 7,251,317 8.94 6,322,112 5.02
4 7,119,470 7,128,513 0.13 7,418,373 4.20
5 7,304,747 7,978,990 9.23 7,349,178 0.61
6 9,729,392 9,516,946 2.18 9,259,162 4.83
7 10,801,826 9,817,999 9.11 9,682,119 10.37
8 7,944,318 7,246,763 8.78 7,136,773 10.17
9 10,879,004 10,136,431 6.83 10,572,777 2.81
10 7,552,814 7,764,300 2.80 7,683,295 1.73
11 8,845,099 8,558,536 3.24 8,370,497 5.37
12 10,690,800 10,001,503 6.45 10,015,284 6.32
13 8,694,721 8,258,452 5.02 8,446,796 2.85
14 6,582,636 6,810,406 3.46 6,954,507 5.65
15 7,583,680 8,312,216 9.61 8,194,292 8.05
16 7,099,220 7,955,966 12.07 8,292,381 16.81
17 8,145,147 8,604,444 5.64 8,522,009 4.63
18 8,652,810 7,853,765 9.23 8,270,169 4.42
19 10,527,278 10,040,039 4.63 9,611,194 8.70
20 6,679,924 6,467,344 3.18 7,397,923 10.75
21 8,383,830 9,203,887 9.78 8,487,286 1.23
22 7,298,932 8,018,225 9.85 8,294,895 13.65
23 7,505,428 7,749,053 3.25 7,967,265 6.15
24 7,710,921 7,622,053 1.15 7,795,563 1.10
25 6,196,652 6,503,022 4.94 5,940,634 4.13
26 8,897,861 8,554,455 3.86 8,714,123 2.06
27 7,840,787 8,535,617 8.86 8,863,975 13.05
28 8,023,067 7,666,898 4.44 6,900,068 14.00
29 7,495,213 7,270,806 2.99 7,695,613 2.67
30 7,653,005 8,003,292 4.58 7,775,139 1.60

MAERs 6.05 5.80

Table 4: Descriptive analysis of error rate estimation.

MAERs Std, deviation Std, error
95% confidence interval

of the MAERs
Lower Upper

NN 6.045 3.192 0.583 2.542 4.291
BRT 5.800 3.980 0.727 3.170 5.351

6. Conclusion

This study applied a BRT to construction cost estimation,
that is, the regression problem, to examine the applicability
of the boosting approach to a regression problem in the con-
struction domain. To evaluate the performance of the BRT

model, its performance was compared with that of an NN
model, which had previously proven its high performance
capability in the cost estimation domains. The BRT model
showed similar results when using 234 actual cost datasets
of a building construction project in Korea. Moreover, the
BRT model can provide additional information regarding
the variables to support estimators in comprehending the
decision making process. These results demonstrated that
the BRT has dual advantages of boosting and decision trees.
The boosting approach has great potential to be a leading
technique in next generation construction cost estimation
systems.

In this study, an examination using a relatively small
dataset andnumber of variableswas carried out on the perfor-
mance of a BRT for construction cost estimation. Although
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both models performed satisfactorily, further detailed exper-
iments and analyses regarding the quality of the collected
data are necessary to utilize the proposed model for an actual
project.
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The goal of minimal attribute reduction is to find the minimal subset 𝑅 of the condition attribute set 𝐶 such that 𝑅 has the same
classification quality as 𝐶. This problem is well known to be NP-hard. When only one minimal attribute reduction is required,
it was transformed into a nonlinearly constrained combinatorial optimization problem over a Boolean space and some heuristic
search approaches were used. In this case, the fitness function is one of the keys of this problem. It required that the fitness function
must satisfy the equivalence between the optimal solution and the minimal attribute reduction. Unfortunately, the existing fitness
functions either do not meet the equivalence, or are too complicated. In this paper, a simple and better fitness function based
on positive domain was given. Theoretical proof shows that the optimal solution is equivalent to minimal attribute reduction.
Experimental results show that the proposed fitness function is better than the existing fitness function for each algorithm in test.

1. Introduction

For a given dataset, attribute reduction is a fundamental prob-
lem in rough set theory as proposed by Pawlak and Sowinski
[1]. Formally, it is a nonlinearly constrained combinatorial
optimization problem whose objective function is the size
of a candidate subset of attributes and whose constraints,
represented in terms of classification quality of attribute
subsets, are the conditions met by an attribute reduction. As
shown by [2], this problem has been proven to be NP-hard.

To overcome this problem, many strategies had to be
considered in the literatures during the past two decades.
In general, there are two kinds of categories for minimum
attribute reduction: greedy (or hill-climbing) categories and
stochastic categories. The greedy categories usually employ
rough set attribute significance as heuristic knowledge. It
starts off with an empty set or attribute core and then adopts
forward selection or backward elimination. Hu and Cercone
give a reduction algorithm using the positive region-based
attribute significance as the guiding heuristic [3]. Wang et al.
develop a conditional information entropy-based reduction
algorithm, using conditional entropy-based attribute signifi-
cance [4]. Hu et al. compute the significance of an attribute
making use of heuristic ideas from discernibility matrices

and propose a heuristic reduction algorithm [5]. Susmaga
considers both indiscernibility and discernibility relations in
attribute reduction [6]. These categories are fast but do not
guarantee to find an optimal or minimal reduction.

Some researchers use stochastic methods for rough set
attribute reduction. These categories are optimization meth-
ods. It has a higher probability of finding a minimum re-
duct than the first category. Wroblewski combines a genetic
algorithm with a greedy algorithm to generate short reducts.
However, it uses highly time-consuming operations and
cannot assure that the resulting subset is really a reduct [7].
Taking Wroblewski’s work as a foundation, Bjorvand and
Komorowski apply genetic algorithms to compute approxi-
mate reducts [8].The algorithmmakes several variations and
practical improvements both in speed and in the quality of
approximation. The reduct generation algorithms based on
genetic algorithms for the rough set attribute reduction are
quite efficient [9].

But rough set can only deal with the discrete attributes. A
method for discretization based on particle swarm optimiza-
tion (PSO) is presented in [10]. Taking this work as a founda-
tion, an algorithm for knowledge reduction in rough sets is
proposed based on particle swarm optimization in [11]. This
algorithm can solve some problems that the existing heuristic
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algorithm cannot solve. In order to improve the efficiency
of the algorithm, many scholars constantly improve and
update these algorithms. Santana-Quintero Luis et al. present
a multiobjective evolutionary algorithm which consists of a
hybrid between a particle swarm optimization approach and
some concepts from rough sets theory [12]. The main idea
of the approach is to combine the high convergence rate of
the particle swarm optimization algorithmwith a local search
approach based on rough sets which is able to spread the
nondominated solutions found. After that, two-step particle
swarm optimization to solve the feature selection problem
was given by Bello et al. in [13]. The improved algorithm is
a method which can improve the search efficiency. Chi et al.
presented a method for continuous attribute discretization
based on quantumPSO algorithm [14]. Hsieh andHorng pre-
sented a method for feature selection based on asynchronous
discrete PSO search algorithm [15]. Also, other stochastic
algorithms were used to attribute reduction, for example, ant
colony algorithm (ACO) [16] and support vector machine
(SVR) [17].

For systems where the optimal or minimal subset is re-
quired, stochastic category may be used. In this case, this
problem is transformed into a problemof finding amaximum
(or minimum) value of a fitness function at first, and then
some stochastic optimization method is applied to solve the
fitness maximization (or minimization) problem. A common
way to transform a constrained optimization problem into
an unconstrained fitness optimization problem is to use
penalty methods [18]. For such methods, designing a better
fitness function is the most important work. To get good
performance, the fitness functions should meet the require-
ments that the fitness evaluation of a candidate solution is
appropriate and the optimality equivalence is guaranteed.
Here, the optimality equivalence means that the optimal
solution of the fitness maximization problem corresponds to
a minimum attribute reduction. Unfortunately, the existing
fitness functions do not well meet the above mentioned
requirements and consequently affect the performance of the
related algorithms [19].

In this paper, an applicable fitness functionwas proposed.
Compared with the existing fitness functions as mentioned
earlier, it not only takes into account less factors but also
overcomes the drawback.The experimental results show that,
for each of the two tested algorithms, the use of the proposed
fitness function has a higher probability to find a minimum
reduction than the use of the function proposed in [19].

The rest of the paper is organized as follows. Section 2
presents some concepts about minimum attribute reduction
and reviewed and analysed a fitness function proposed in
[19]. In Section 3, a new fitness function and properties
are presented. In Section 4, the results of experiments and
comparison analysis are given. Finally, Section 5 concludes
the paper.

2. Basic Notions and Related Works

In this section, we will review some basic notions in the
theory of rough sets which are necessary for the description
of the minimum attribute reduction problem.

A decision table can be represented as 𝑆 = {𝑈, 𝐴, 𝑉, 𝑓},
where𝑈 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} is a nonempty finite set of objects,

𝐴 = 𝐶 ∪ 𝐷, where 𝐶 is a set of condition attributes and𝐷 is a
decision attribute set,𝑉 is the domain of attributes belonging
to 𝐴, and 𝑓 : 𝑈 × 𝐴 → 𝑉 is a function assigning attribute
values to objects in 𝑈.

With any 𝑅 ⊆ 𝐴, there is an associated indiscernibility
relation IND(𝑅):

IND (𝑅) = {(𝑥, 𝑦) 𝑓 (𝑥, 𝑎) = 𝑓 (𝑦, 𝑎) , ∀𝑎 ∈ 𝑅, 𝑥, 𝑦 ∈ 𝑈} .

(1)

Let 𝑋 ⊆ 𝑈; the 𝑅-lower approximation of 𝑋 is defined as
𝑅𝑋 = {𝑥 ∈ 𝑈 | [𝑥]

𝑅
⊆ 𝑋}, where [𝑥]

𝑅
denotes an equivalence

class of IND(𝑅) determined by object 𝑥. The notation
POS
𝑅
(𝐷) refers to the 𝑅-positive region given by POS

𝑅
(𝐷) =

∪
𝑋∈𝑈/IND(𝐷)𝑅𝑋. The 𝑅-approximation quality with respect to

decisions attribute set 𝐷 is defined as 𝛾
𝑅

= |POS
𝑅
(𝐷)|/|𝑈|.

For decision table 𝑆 = {𝑈, 𝐴, 𝑉, 𝑓}, it may have many
attribute reductions; the set of reductions is defined as

Red = {𝑅 ⊆ 𝐶 | POS
𝑅
(𝐷) = POS

𝐶
(𝐷) ,

∀𝐵 ⊂ 𝑅,POS
𝑅
(𝐷) ̸= POS

𝐵
(𝐷)} .

(2)

For attribute reduction, the minimal attribute reduction
with minimal cardinality will be searched. The minimal at-
tribute reduction problem can be formulated as the following
nonlinearly combinational optimization problem:

min
𝑅⊂𝐶

|𝑅|

s.t. {
POS
𝑅
(𝐷) = POS

𝐶
(𝐷) ,

POS
𝑅
(𝐷) ̸= POS

𝐵
(𝐷) , ∀𝐵 ⊂ 𝑅.

(3)

Let Red
𝑚
be a set which was defined as follows:

Red
𝑚

= {𝑅 ∈ Red | ∀𝐵 ∈ Red, |𝐵| ≥ |𝑅|} . (4)

By the definition of Red
𝑚
, the following proposition is

apparent.

Proposition 1. Let 𝑅 ⊂ 𝐶; then 𝑅 is the optimal solution of the
optimization problem (3) if and only if 𝑅 ∈ 𝑅𝑒𝑑

𝑚
.

According to Proposition 1, each element of Red
𝑚
corre-

sponds to aminimal reduction. In order to solve problem (3),
the most commonly used approach is to transform it into the
following unconstrained maximization problem and to solve
it by heuristic algorithms:

max
𝑅⊂𝐶

𝐹 (𝑅) , (5)

where 𝐹(𝑅) is a fitness function about attribute subset 𝑅.
For this optimization problem, the equivalence of opti-

mality between the minimum attribute reduction problem
(3) and the fitness maximization of the function 𝐹(𝑅) must
be guaranteed. Unfortunately, most of the functions do not
satisfy the requirement in the literatures [19].
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For instance, Ye et al. defined a fitness function in [19]. Let

IND (𝐶) = {[𝑥
1
]
𝐶
, [𝑥
2
]
𝐶
, . . . , [𝑥

𝑁
]
𝐶
} , (6)

where the cardinality of the equivalence classes [𝑥
𝑖
]
𝐶
meets

|[𝑥
𝑖
]
𝐶
| ≤ |[𝑥

𝑖+1
]
𝐶
|, where | ⋅ | denotes the cardinality of a set.

The function was defined as

𝐹
1
(𝑅) =

𝑚 − |𝑅|

𝑚
+

𝑛

Δ
𝛾
𝑅
, (7)

where Δ = |[𝑥
1
]
𝐶
| > 0.

Let 𝑅 ⊂ 𝐶, |𝑅| = |𝐶|−1, and |POS
𝑅
(𝐷)| = |POS

𝐶
(𝐷)| − 1;

then 𝐹
1
(𝐶) = |POS

𝐶
(𝐷)|/Δ and 𝐹

1
(𝑅) = 1/𝑚+ (|POS

𝐶
(𝐷)| −

1)/Δ, and thus 𝐹
1
(𝐶) − 𝐹

1
(𝑅) = 1/Δ − 1/𝑚. If 1/Δ = 1/𝑚,

then 𝐹
1
(𝐶) − 𝐹

1
(𝑅) = 0. It suggests that the fitness function

cannot distinguish between the two.That is to say, the two are
equivalent when running the algorithm. This drawback will
reduce the algorithmic performance. Moreover, in practical
applications, since contains classification quality 𝛾

𝑅
, the value

of the function 𝐹
1
(𝑅) is not an integer. In the search process,

the calculation error will reduce the probability of searching a
minimum reduction. At the end, the consistency of decision
table must be determined before calculating the fitness value,
which increases the computational complexity.

3. A New Function and Its Properties

In this section, we present a new fitness function. Firstly, the
relevant definitions were introduced as follows.

Definition 2. Let 𝑅 ⊆ 𝐶. If POS
𝑅
(𝐷) = POS

𝐶
(𝐷) holds, then

𝑅 is said to be a consistent set of 𝐶. Let 𝐶𝑆 be a set which
includes all the consistent sets of 𝐶 [19]:

𝐶𝑆 = {𝑅 | POS
𝑅
(𝐷) = POS

𝐶
(𝐷) , 𝑅 ⊆ 𝐶} . (8)

By the definition of reduction, for any consistent set 𝑅 ∈

𝐶𝑆, 𝑅 either is a reduction itself or contains a reduction. If
𝑅 is minimal, then 𝑅 is a reduction of 𝐶. It is very obvious
that Red ⊆ 𝐶𝑆. A nonlinearly constrained combinatorial
optimization problem correlated with 𝐶𝑆 is defined as

min
𝑅∈𝐶𝑆

|𝑅| . (9)

Let 𝐶𝑆
𝑚
be a set which is defined as follows:

𝐶𝑆
𝑚

= {𝑅 ∈ 𝐶𝑆 : ∀𝐵 ∈ 𝐶𝑆, |𝐵| ≥ |𝑅|} . (10)

By the definition of 𝐶𝑆
𝑚
, we know that 𝐶𝑆

𝑚
is a subset of

𝐶𝑆 and the following proposition is apparent.

Proposition 3. ∀𝑅 ∈ 𝐶𝑆
𝑚
, then 𝑅 is a reduction.

Proposition 4. Let 𝑅 ⊂ 𝐶; then 𝑅 ∈ 𝐶𝑆
𝑚
if and only if 𝑅 is the

optimal solution of the optimization problem (9).

By Proposition 4, 𝐶𝑆
𝑚
is the solution set of the optimiza-

tion problem (9). According to the previous definition, we
present a new fitness function as follows: ∀𝑅 ⊆ 𝐶,

𝐹 (𝑅) = 𝑚 (
󵄨󵄨󵄨󵄨POS𝐶 (𝐷)

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨POS𝑅 (𝐷)

󵄨󵄨󵄨󵄨) + |𝑅| , (11)

where 𝑚 = |𝐶|.

Proposition 5. Let 𝑃 ⊂ 𝐶.
(1) If 𝑃 ∈ 𝐶𝑆, ∀𝑅 ∈ 𝐶𝑆min, then 𝐹(𝑅) ≤ 𝐹(𝑃) ≤ 𝑚.
(2) If 𝑃 ∉ 𝐶𝑆, then 𝐹(𝑃) > 𝑚.
In particular, 𝐹(𝑃) > 𝐹(𝐵), ∀𝐵 ∈ 𝐶𝑆.

Proof. If 𝑃 ∈ 𝐶𝑆, ∀𝑅 ∈ 𝐶𝑆min, then |POS
𝑃
(𝐷)| =

|POS
𝑅
(𝐷)| = |POS

𝐶
(𝐷)| and |𝑃| ≤ |𝑅| ≤ 𝑚. That is

𝐹(𝑅) ≤ 𝐹(𝑃) ≤ 𝑚 according to the definition of the fitness
function 𝐹(𝑅). The (1) is hold. If 𝑃 ∉ 𝐶𝑆, then |POS

𝐶
(𝐷)| >

|POS
𝑃
(𝐷)|, thus 𝐹(𝑃) = 𝑚(|POS

𝐶
(𝐷)| − |POS

𝑃
(𝐷)|) + |𝑃| >

𝑚 + |𝑃| > 𝑚.

According to Proposition 5, the codomain of the function
𝐹(𝑅) can be divided into two disjoint sets [min𝐹(𝑅),𝑚]

and (𝑚,max𝐹(𝑅)), where min𝐹(𝑅) and max𝐹(𝑅) are the
minimum and maximum value of 𝐹(𝑅), respectively. By (2),
the defect of the function proposed in [19] was avoided. A
minimum optimization problem is defined as follows by the
definition of 𝐹(𝑅):

min
𝑅⊂𝐶

𝐹 (𝑅) . (12)

Theorem 6. Let 𝑅 ⊂ 𝐶; then 𝑅 ∈ 𝐶𝑆
𝑚
if and only if 𝑅 is a

minimum attribute reduction; that is, 𝐶𝑆
𝑚

= 𝑅𝑒𝑑
𝑚
.

Proof. 𝑅 ∈ 𝐶𝑆
𝑚
; then𝑅 is a reduction by Proposition 3. If𝑅 is

not a minimum attribute reduction, then there is a minimum
attribute reduction 𝐵 such that |𝐵| < |𝑅|.

On the other hand, since 𝐵 is an attribute reduction, then
𝐵 ∈ 𝐶𝑆. By the definition of 𝐶𝑆

𝑚
and 𝑅 ∈ 𝐶𝑆

𝑚
, |𝐵| ≥ |𝑅|, a

contradiction and vice versa.

By Theorem 6, all the elements of 𝐶𝑆
𝑚

are minimum
attribute reduction; then according to Proposition 4, we can
get that all the solutions of the optimization problem (9) are
the minimum attribute reductions.

Theorem 7. ∀𝑅 ⊂ 𝐶𝑆
𝑚
, then 𝑅 is an optimal solution of the

optimization problem (12). It is equivalent to the case where
all the elements of 𝐶𝑆

𝑚
are the optimal solutions of the opti-

mization problem (12).

Proof. We use proof by contradiction. Assume that there is
a 𝑅 ∈ 𝐶𝑆

𝑚
such that 𝑅 is not an optimal solution of the

optimization problem (12). Then ∃𝐵 ⊆ 𝐶 such that 𝐹(𝐵) <

𝐹(𝑅). So

0 > 𝐹 (𝐵) − 𝐹 (𝑅)

= 𝑚 (
󵄨󵄨󵄨󵄨POS𝑅 (𝐷)

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨POS𝐵 (𝐷)

󵄨󵄨󵄨󵄨) + |𝐵| − |𝑅| .

(13)

Then, there are two cases of 𝐵 that will be discussed in the
following.

(1) If 𝐵 ∈ 𝐶𝑆, then POS
𝐵
(𝐷) = POS

𝑅
(𝐷) = POS

𝐶
(𝐷), so

|POS
𝐵
(𝐷)|−|POS

𝑅
(𝐷)| = 0 and 𝐹(𝐵)−𝐹(𝑅) = |𝑅|−|𝐵|. Since

𝑅 ∈ 𝐶𝑆
𝑚
, thus |𝑅| − |𝐵| ≤ 0. Consequently

0 > 𝐹 (𝐵) − 𝐹 (𝑅) = |𝐵| − |𝑅| ≥ 0, (14)

a contradiction.
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Table 1: Parameter settings for both algorithms.

Algorithms 𝑝-size 𝑉max 𝐼max 𝑐
1

𝑐
2

𝑚
𝑝

𝑐
𝑝

PSO 20 7 100 2.0 2.0 — —
Gen 50 — 100 — — 0.4 0.6

(2) If𝐵 ∉ 𝐶𝑆, then |POS
𝐵
(𝐷)| < |POS

𝑅
(𝐷)| = |POS

𝐶
(𝐷)|;

that is, |POS
𝑅
(𝐷)| − |POS

𝐵
(𝐷)| ≥ 1, and then

0 > 𝐹 (𝐵) − 𝐹 (𝑅) ≥ 𝑚 + |𝐵| − |𝑅| ≥ |𝐵| ≥ 1, (15)

a contradiction.

From the above proof we know that all the elements of
𝐶𝑆
𝑚
are the optimal solution of the optimization problem

(12); that is to say, the minimum attribute reduction is the
optimal solution of the optimization problem (12).

Theorem 8. Let 𝑅 ⊂ 𝐶; if 𝑅 is an optimal solution of the
optimization problem (12), then 𝑅 ∈ 𝐶𝑆

𝑚
.

Proof. (1) 𝑅 ∈ 𝐶𝑆.
If 𝑅 ∉ 𝐶𝑆, then |POS

𝑅
(𝐷)| < |POS

𝐶
(𝐷)|. For all 𝐵 ∈ 𝐶𝑆,

POS
𝐵
(𝐷) = POS

𝐶
(𝐷). Since 𝑅 is an optimal solution of the

optimization problem (12), then 0 ≥ 𝐹(𝑅) − 𝐹(𝐵), so

0 ≥ 𝐹 (𝑅) − 𝐹 (𝐵)

= 𝑚 (
󵄨󵄨󵄨󵄨POS𝐵 (𝐷)

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨POS𝑅 (𝐷)

󵄨󵄨󵄨󵄨) + |𝑅| − |𝐵|

≥ 𝑚 + |𝑅| − |𝐵| ≥ 1,

(16)

a contradiction, so 𝑅 ∈ 𝐶𝑆.
(2) 𝑅 ∈ 𝐶𝑆

𝑚
.

If 𝑅 ∉ 𝐶𝑆
𝑚
, let 𝐵 ∈ 𝐶𝑆

𝑚
. According to (1) we know 𝑅 ∈

𝐶𝑆, so POS
𝐵
(𝐷) = POS

𝑅
(𝐷), and then

0 ≥ 𝐹 (𝑅) − 𝐹 (𝐵) = |𝑅| − |𝐵| > 0, (17)

a contradiction, so 𝑅 ∈ 𝐶𝑆
𝑚
.

According to Theorem 8, the optimal solution of the
optimization problem (12) is a minimum attribute reduction.
Then, by Theorems 7 and 8, we can obtain the following
theorem obviously.

Theorem 9. Let 𝑅 ⊂ 𝐶; then 𝑅 is an optimal solution of the
optimization problem (12) if and only if 𝑅 ∈ 𝐶𝑆

𝑚
.

By Theorem 9, we can get that the optimal solution of
the optimization problem (12) is equivalent to the minimal
attribute reduction. Then, according to Theorem 6, we can
obtain the following theorem.

Theorem 10. Let 𝑅 ⊂ 𝐶; then 𝑅 is a minimum attribute
reduction if and only if 𝑅 is an optimal solution of the
optimization problem (12).

By Theorem 10, the minimum value of the function
proposed in this paper is equivalent to the minimal attribute
reduction. We may get the minimum attribute reduction
by searching the minimum value of function, and then
stochastic category can be used.

4. Performance Comparison

In order to analyze and evaluate the effectiveness of the
fitness function proposed in this paper, in the literature
[19], an experiment was designed in the following way. Two
existing minimum attribute reduction algorithms based
on different types of stochastic optimization technique are
used in the comparison. The first is the particle swarm
optimization-based attribute reduction algorithm proposed
in [20], denoted by PSO, and the other is a genetic algorithm
based attribute reduction algorithm presented in [7, 8, 16],
denoted by GA in short. In experiments, both algorithms
were implemented and tested on a number of datasets using
two different fitness functions: one is proposed in [19] (𝐹

1

in short) and the new fitness function is proposed in this
paper (𝐹 in short). Seven datasets were chosen from the
UCI machine learning repository. Most of these datasets are
commonly used for evaluating attribute reduction algorithms
in the literature [7, 8, 11, 14, 16, 17, 19].

For each of the two fitness functions, both algorithms
were run 50 times on each of the datasets with the same
setting of the parameters involved. For each run, three values
need to be recorded: the first is the length of the output, the
second is the output which corresponds to a reduction or
not, and the last is run time. If an output is a reduction, then
the output is said to be a normal output; otherwise, it is an
unsuccessful output. If the length of the normal output is
minimal, then the output is said to be a successful output.
Let STL denote the length of the successful output, AVL
denote the average length, and AVT denote the average run
time during the 50 runs. The ratios of successful and normal
outputs are denoted, respectively, by 𝑠

1
and 𝑠
2
.

A PC running Windows 7 (32-bit) with 2.1 × 2GHz
CPU and 2GB of main memory was used to run both algo-
rithms. Both algorithms were programed by the MATLAB.
Parameter settings for both algorithmswere shown in Table 1.
In Table 1, 𝑝-size refers to the size of population (in GA)
or particle swarm (in PSO), 𝐼max is the maximum allowed
number of iterations (or generations), 𝑉max is the upper
bound on velocity needed in the PSO algorithm, 𝑚

𝑝
and 𝑐
𝑝

are the probabilities of mutation and crossover in GA, and
𝑐
1
and 𝑐
2
are the learning coefficients in PSO. Tables 2 and 3

present the main performance of PSO and GA using each of
the two fitness functions.

FromTable 2, for the algorithm PSO, on the index of STL,
both fitness functions have the same value. It means that both
fitness functions can output the minimum reduction. On the
index of AVL, the value of 𝐹 is not more than 𝐹

1
’s except for

the last date. It reflects that the output of𝐹 is more focused on
STL.The same conclusion can be arrived at from the index 𝑠

1
.

It means that it has a higher probability to find a minimum
reduction by using the proposed fitness function. For AVT,
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Table 2: Performance of PSO using different fitness functions.

Dataset 𝐹
1

𝐹

STL AVL 𝑠
1
/𝑠
2

AVT STL AVL 𝑠
1
/𝑠
2

AVT
blance 4 4 1/1 35.392 4 4 1/1 26.467
spect 16 16 1/1 7.471 16 16 1/1 6.921
Lung-cancer 3 4.02 0.08/1 2.628 3 3.92 0.22/1 1.096
Sponge 8 8.4 0.61/0.98 5.327 8 8.02 0.79/1 4.217
Vote 8 8.2 0.8/1 7.419 8 8.13 0.87/1 5.522
Zoo 5 5.05 0.96/1 5.092 5 5 1/1 4.275
Soybean-small 2 2.32 0.78/1 2.091 2 2.38 0.72/1 1.162

Table 3: Performance of GA using different fitness functions.

Dataset 𝐹
1

𝐹

STL AVL 𝑠
1
/𝑠
2

AVT STL AVL 𝑠
1
/𝑠
2

AVT
blance 4 4 1/1 38.501 4 4 1/1 30.359
spect 16 16 1/1 8.021 16 16 1/1 7.856
Lung-cancer 3 4.21 0.07/0.98 2.983 3 4.03 0.2/1 1.123
Sponge 8 8.58 0.59/0.96 6.306 8 8.17 0.77/0.98 4.311
Vote 8 8.31 0.78/1 8.762 8 8.22 0.82/1 5.762
Zoo 5 5.11 0.94/1 6.243 5 5 1/1 4.52
Soybean-small 2 2.43 0.76/1 2.227 2 2.51 0.71/1 1.175

all the values of 𝐹 are less than the values of 𝐹
1
. Therefore, the

experimental data show that the efficiency of the proposed
fitness function is better than 𝐹

1
by using the algorithm PSO.

The same conclusion can be obtained from Table 3 by using
the algorithm GA.

The above two experiments show that the proposed
fitness function is more adequate than the other fitness func-
tions on the datasets.

5. Conclusions

In this paper, in order to overcome the drawback of the exist-
ing fitness functions for the problem of minimum attribute
reduction, we discussed the fitness function and a simpler
fitness function was proposed in this paper. Theoretical
analysis and experimental results show that it can ensure the
optimality equivalence and ismore adequate than the existing
fitness function.
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Pairs trading is an important and challenging research area in computational finance, in which pairs of stocks are bought and
sold in pair combinations for arbitrage opportunities. Traditional methods that solve this set of problems mostly rely on statistical
methods such as regression. In contrast to the statistical approaches, recent advances in computational intelligence (CI) are leading
to promising opportunities for solving problems in the financial applications more effectively. In this paper, we present a novel
methodology for pairs trading using genetic algorithms (GA). Our results showed that theGA-basedmodels are able to significantly
outperform the benchmark and our proposed method is capable of generating robust models to tackle the dynamic characteristics
in the financial application studied. Based upon the promising results obtained, we expect this GA-based method to advance the
research in computational intelligence for finance and provide an effective solution to pairs trading for investment in practice.

1. Introduction

In the past decades, due to the inefficacy of traditional
statistical approaches, such as regression-based and factor
analysis methods for solving difficult financial problems,
the methodologies stemming from computational intelli-
gence, including fuzzy theory, artificial neural networks
(ANN), support vector machines (SVM), and evolutionary
algorithms (EA), have been developed as more effective
alternatives to solving the problems in the financial domain
[1, 2].

Among the CI-based techniques studied for finance, the
models may be classified as two major areas of applications:
(1) stock selection, portfolio management, and optimization
[3–6] and (2) prediction of financial time series [7, 8]. For
the first category, earlier research works include the fuzzy
multiple attribute decision analysis for portfolio construction
[9]. Zargham and Sayeh [10] employed a fuzzy rule-based
system to evaluate a set of stocks for the same task. Chapados
and Bengio [11] trained neural networks for estimation and
prediction of asset behavior to facilitate decision-making in
asset allocation.

In EA applications along this line of research, Becker
et al. [12] employed genetic programming (GP) to develop
stock ranking models for the U.S. market. Lai et al. [13]
used a double-stage GA to select stocks from the Shanghai
stock exchange for the time period of years 2001 to 2004.
In Lai et al.’s work, ROCE, EPS, PE, and liquidity ratios are
used to rank stocks, and they used the GA to compute the
optimal percentage of capital assigned to each of the assets.
Lai et al. then concluded that their GA-based optimization
method is more effective for financial applications than fuzzy
or artificial neural networks. Recently, Huang [5] devised a
hybrid machine learning-based model to identify promising
sets of features and optimal model parameters; Huang’s
model was demonstrated to be more effective than the
benchmark and some traditional statistical methods for stock
selection. To improve the performance of the single-objective
GA-based models, more recently, Chen et al. [14] proposed a
multiobjective GA-based method for the goals of increasing
investment return and reducing the risk simultaneously. In
that approach, the authors used the nondominated sorting
to search for nondominated solutions and showed that the
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multiobjective method outperformed the single-objective
version proposed by Huang [5].

Another popular study of computational intelligence
has been particularly concerning the prediction of financial
time series. A certain amount of research employs network
learning techniques, including feed-forward, radial basis
function or recurrent NN [7], and SVM [8]. Other intelligent
methods, such as genetically evolved regression models [15]
and inductive fuzzy inference systems [16], were also available
in the literature.

Pairs trading [17] is an important research area of com-
putational finance that typically relies on time series data of
stock price for investment, in which stocks are bought and
sold in pairs for arbitrage opportunities. It is a well-known
speculative strategy in the financial markets developed in the
1980s and has been employed as one important long/short
equity investment tool by hedge funds and institutional
investors [18]. Although there has been a significant amount
of CI-based studies in financial applications, reported CI-
based research for pairs trading is sparse and lacks serious
analysis. To date, many existing works along this line of
research rely on traditional statistical methods such as the
cointegration approach [19], the Kalman filters [20, 21],
and the principle component analysis [18]. In the CI area,
Thomaidis et al. [17] employed a method of neural networks
for the paired companies of Infosys and Wipro in India and
accomplished reasonable return on investment using the pair
of stocks. Saks andMaringer [22] used genetic programming
for various pairs of stocks in Eurostoxx 50 equities and also
found good pair-trading strategies.

Although there exist these previous CI-based studies for
pairs trading, they lacked serious analysis such as themethod
of temporal validation used in [5, 23] for further evaluation
of the robustness of the trading systems. In addition, in
these previous studies, the trading models were constructed
using only two stocks as a trading pair; here, we propose a
generalized approach that uses more than two stocks as a
trading group for arbitrage in order to further improve the
performance of the models. In this study, we also employ the
GA for the optimization problems in our proposed arbitrage
models. In a past study [23], Huang et al. compared the
traditional linear regression and the GA for the task of stock
selection and showed that the GA-based model is capable of
outperforming the linear regressionmodel. Motivated by this
research work, we thus intend to employ the GA to optimize
our intelligent system for pairs trading, and the experimental
results will show that our proposed GA-based methodology
is promising in outperforming the benchmark. Furthermore,
in contrast to traditional pairs-trading methods that aim at
matching pairs of stocks with similar characteristics, we also
show that our method is able to construct working trading
models for stocks with different characteristics. In this study,
we also investigate the robustness of our proposed method
and the results show that our method is indeed effective in
generating robustmodels for the dynamic environment of the
pairs-trading problem.

This paper is organized into four sections. Section 2
outlines the method proposed in our study. In Section 3, we
describe the research data used in this study and present

the experimental results and discussions. Section 4 concludes
this paper.

2. Materials and Methods

In this section, we provide the relevant background and
descriptions for the design of our pairs-trading systems using
the GA for model optimization.

2.1. Pairs Trading. Pairs trading is widely assumed to be the
“ancestor” of statistical arbitrage, which is a trading strategy
to gain profit from pricing discrepancies in a group of stocks
[17]. Traditional decision-making for investment typically
relies on fundamentals of companies to assess their value
and price their stocks, accordingly. As the true values of
the stocks are rarely known, pairs-trading techniques were
developed in order to resolve this by investing stock pairswith
similar characteristics (e.g., stocks from the same industry).
This mutual mispricing between two stocks is theoretically
formulated by the notion of spread, which is used to identify
the relative positions when an inefficientmarket results in the
mispricing of stocks [18, 21]. As a result, the trading model
is usually market-neutral in the sense that it is uncorrelated
with the market and may produce a low-volatility investment
strategy.

A typical form of pairs trading of stocks operates by
selling the stock with a relatively high price and buying the
other with a relatively low price at the inception of the trading
period, expecting that the higher one will decline while the
lower one will rise in the future. The price gap of the two
stocks, also known as spread, thus acts as a signal to the
open and close positions of the pairs of stocks. During the
trading period, position is opened when the spread widens
by a certain threshold, and thereafter the positions are closed
when spread of the stocks reverts. The objective of this long-
short strategy is to profit from the movement of the spread
that is expected to revert to its long-term mean.

Consider initial capital 𝑋
0
, with an interest rate of 𝑟 per

annum and a frequency of compounding 𝑛 in a year; the
capital 𝑋 after a year may be expressed as

𝑋 = (1 +
𝑟

𝑛
)

𝑛

⋅ 𝑋
0
. (1)

If the frequency of compounding 𝑛 gets arbitrarily large, we
have

lim
𝑛→∞

(1 +
𝑟

𝑛
)

𝑛

= 𝑒
𝑟
. (2)

In the case of continuously compounded return, the process
of capital growth is defined as

𝑋 = 𝑒
𝑟

⋅ 𝑋
0
. (3)

Therefore, the continuously compounded rate 𝑟 is calculated
by taking the natural logarithm as follows:

ln(
𝑋

𝑋
0

) = 𝑟, (4)

where ln(⋅) is the natural log function.
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Now consider the two price time series,𝑃
1
(𝑡) and𝑃

2
(𝑡), of

two stocks 𝑆
1
and 𝑆
2
with similar characteristics, the process

of a pairs-trading model can be described as follows [18]:

ln(
𝑃
1

(𝑡)

𝑃
1

(𝑡
0
)
) = 𝛼 (𝑡 − 𝑡

0
) + 𝛽 ln(

𝑃
2

(𝑡)

𝑃
2

(𝑡
0
)
) + 𝛾 (𝑡) , (5)

where 𝛾(𝑡) is a stationary, mean-reverting process; the drift
𝛼 is small compared to the fluctuations of 𝛾(𝑡) and can be
neglected in many applications.

The rationale behind the mean-reverting process is that
there exists a long-term equilibrium (mean) for the spread.
The investor may bet on the reversion of the current spread
to its historical mean by selling and buying an appropriate
amount of the pair of the stocks. As (5) shows, one expects the
returns of stocks 𝑆

1
and 𝑆
2
to track each other after controlling

for proper 𝛽. This model suggests an investment strategy in
which one goes long 1 dollar of stock 𝑆

1
and short 𝛽 dollars of

stock 𝑆
2
if 𝛾(𝑡) is small. Conversely, if 𝛾(𝑡) is large, one takes

an opposite strategy that goes short 𝑆
1
and long 𝑆

2
. As a result,

the return of the long-short portfolio may oscillate around a
statistical equilibrium.

In real-world practice, the return of the long-short port-
folio above for a period of time may be calculated as follows:

Ret
𝑡

= ln(
𝑃
1

(𝑡)

𝑃
1

(𝑡 − 1)
) − 𝛽 ln(

𝑃
2

(𝑡)

𝑃
2

(𝑡 − 1)
) , (6)

where𝑃
1
(𝑡) and𝑃

1
(𝑡−1) denote the price of stock 𝑆

1
where we

are long at time 𝑡 and 𝑡−1, respectively; and𝑃
2
(𝑡) and𝑃

2
(𝑡−1)

denote the price of stock 𝑆
2
where we are short at time 𝑡 and

𝑡 − 1, respectively.
The pairs-trading method can be generalized to a group

of stocks in which mispricing may be identified through a
proper combination of assets whose time series is mean-
reverting. Consider a set of assets, 𝑆

1
, . . . , 𝑆

𝑚
, and the corre-

sponding time series of stock prices, 𝑃
1
(𝑡), . . . , 𝑃

𝑚
(𝑡); a statis-

tical mispricing may be considered as a linear combination
𝐵 = (𝛽

1
, 𝛽
2
, . . . , 𝛽

𝑚
) such that

ln(
𝑃 (𝑡)

𝑃 (𝑡
0
)
) = 𝛼 (𝑡 − 𝑡

0
) +

𝑚

∑

𝑖=1

𝛽
𝑖
ln(

𝑃
𝑖
(𝑡)

𝑃
𝑖
(𝑡
0
)
) + 𝛾 (𝑡) , (7)

where 𝛾(𝑡) is a mean-reverting process and vector 𝐵 repre-
sents the proportions of one’s capital assigned to each asset
in the portfolio. Mean reversion in the equation above refers
to the assumption that both the high and low prices of the
synthetic asset 𝑃 are temporary and that its price tends to
move toward its average price over time.

2.2. Trading Systems

2.2.1. Market Timing Models. In this work, the long-term
mean of an asset’s price in the mean-reverting process may
be modeled by the celebrated moving average [24], which is
the average price of an asset in a specified period. Let 𝑃(𝑡) be
the price of a stock at time 𝑡.Themoving average at time 𝑡, the

mean of the prices corresponding to the most recent 𝑛 time
periods, is defined as

MA
𝑛

(𝑡) =
1

𝑛

𝑛

∑

𝑖=1

𝑃 (𝑡 − 𝑖 + 1) . (8)

In this study, we employ the Bollinger Bands [24] to
determine if the spread of a pair of stocks departs from
its dynamic average value. Typically, the Bollinger Bands
prescribe two volatility bands placed above and below a
moving average, in which volatility may be defined as a
multiple of the standard deviation of the prices in the past.
Formally the Bollinger Bands can be defined as follows:

MB
𝑛

(𝑡) = MA
𝑛

(𝑡) ;

UB
𝑛

(𝑡) = MB
𝑛

(𝑡) + 𝑘 ∗ 𝜎
𝑛

(𝑡) ;

LB
𝑛

(𝑡) = MB
𝑛

(𝑡) − 𝑘 ∗ 𝜎
𝑛

(𝑡) ,

(9)

where 𝜎
𝑛
(𝑡) is the standard deviation of the prices, at time

𝑡, over the past 𝑛 time periods; 𝑘 ∈ 𝑅 is a parameter used to
control the width of the upper and lower bands to themoving
average.

An important component of a successful trading system
is to construct models for market timing that prescribe
meaningful entry and exit points in the market. In this study,
we will use the moving averages and Bollinger Bands to
develop a trading system, which is described in the next
subsection.

2.2.2. Trading Strategy and Performance Evaluation. We cal-
culate the spread for the synthetic asset generated by𝑚 stocks
as

𝑃 (𝑡) =

𝑚

∑

𝑖=1

𝛽
𝑖
𝑃
𝑖
(𝑡) , (10)

where 𝑃
𝑖
(𝑡), 𝑖 = 1, . . . , 𝑚, is the price of stock 𝑖 at time 𝑡, and

𝛽
𝑖
’s are the model parameters of generalized pairs trading to

be estimated.
In this work, we designate the trading strategy for one to

buy (sell) the spread right after it gets 𝑥 standard deviations
below (above) its mean value and the position is closed right
after the spread gets closer than 𝑦 standard deviations to its
mean, where 𝑥, 𝑦 ∈ 𝑅 and 𝑥 > 𝑦 > 0.

Here we evaluate the performance of a trading system in
terms of its compounded return, which is to be determined
by the relevant parameters of the trading models employed.
We first define the return of a trading system for the 𝑙th trade
as𝑅
𝑙
(𝜃) ∈ 𝑅, where 𝜃 denotes the set of themodel parameters.

Then the performancemetric we use here is through the total
cumulative (compounded) return, 𝑅

𝑐
, where 𝑅

𝑐
is defined by

the product of the returns over 𝑧 consecutive trades as

𝑅
𝑐

=

𝑧

∏

𝑙=1

𝑅
𝑙
. (11)

Therefore, in the process of capital growth, the capital 𝑋
𝑧
at

the end of 𝑧 trades is
𝑋
𝑧

= 𝑅
𝑐
𝑋
0
, (12)

where 𝑋
0
represents the initial capital.
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Figure 1: Chromosome encoding.

2.3. Optimization of Trading Systems. Given the market tim-
ing and pairs-trading models, the performance of a trading
system shall be enhanced by suitable values of the corre-
sponding model parameters. For the market timing models,
the parameters include the period 𝑛 for the moving average
and parameters 𝑥 and 𝑦 for the Bollinger Bands that controls
themultiples of the standard deviations of themoving average
for entry and exit points. For the pairs-trading model, the
parameters consist of the set of the weighting terms (𝛽

𝑖
’s) in

the syntactic asset from (10). In this study, we propose using
genetic algorithms (GA) for the search of optimal parameters
of the trading system. We will describe the basics of GA as
well as our proposed optimization scheme in the following.

Genetic algorithms [25] have been used as computational
simulation models of natural evolutionary systems and as
adaptive algorithms for solving complex optimization prob-
lems in the real world.The core of this class of algorithms lies
in the production of new genetic structures, along the course
of evolution, that provide innovations to solutions for the
problem. Typically, theGAoperate on an evolving population
of artificial agents whose composition can be as simple as
a binary string that encodes a solution to the problem at
hand and a phenotype that represents the solution itself.
In each iteration, a new generation is created by applying
crossover and mutation to candidates selected as the parents.
Evolution occurs by iterated stochastic variation of genotypes
and selection of the fit phenotypes in an environment based
on how well the individual solutions solve a problem.

In our proposed encoding design, the composition of
a chromosome is devised to consist of four portions that
encode the period parameter 𝑛 for the moving average, the
multiples 𝑥 and 𝑦 of standard deviations for the Bollinger
Bands, and the set of the weighting coefficients (𝛽

𝑖
’s) for the

pairs-tradingmodel from (10). Here we use the binary coding
scheme to represent a chromosome in the GA. In Figure 1,
loci 𝑏

1

𝑛
through 𝑏

𝑛
𝑛

𝑛
represent the encoding for the period

𝑛 of moving average. Loci 𝑏
1

𝑥
through 𝑏

𝑛
𝑥

𝑥
and 𝑏

1

𝑦
through

𝑏
𝑛
𝑦

𝑦 represent the encoding of 𝑥 and 𝑦 for the Bollinger
Bands, respectively. Finally, loci 𝑏

1

𝛽
𝑖

through 𝑏
𝑛
𝛽𝑖

𝛽
𝑖

represent the
encoding of the weighting coefficient 𝛽

𝑖
, 𝑖 = 1, . . . , 𝑚.

In our encoding scheme, the chromosome representing
the genotypes of parameters is to be transformed into the
phenotype by (13) below for further fitness computation.
The precision representing each parameter depends on the
number of bits used to encode it in the chromosome, which
is determined as follows:

𝑦 = min
𝑦

+
𝑑

2𝑖 − 1
× (max

𝑦
− min

𝑦
) , (13)

where 𝑦 is the corresponding phenotype for the particular
parameter; min

𝑦
and max

𝑦
are the minimum and maximum

values of the parameter; 𝑑 is the corresponding decimal value

Stock market data

GA for optimization of moving 
average, Bollinger Bands, and
stock weighting coefficients

Investment by the arbitrage 
system

Performance evaluation

End/reiterate

Figure 2: Flow chart of the GA-based arbitrage system.

(𝑑 being truncated to integers if the parameter is of integer
type), and 𝑙 is the length of the block used to encode the
parameter in the chromosome.

With this scheme, we define the fitness function of a
chromosome as the annualized return of the trading system
over ℎ years of investment:

fitness =
ℎ

√𝑅
𝑐
, (14)

where 𝑅
𝑐
is the total cumulative return computed by (11).

Our overall GA-based arbitrage system is a multistage
process, including the simultaneous optimization on the
weighting coefficients for stocks, the period for the moving
average, and the width of the Bollinger Bands. The input
to the system is the time series datasets of stock price. For
any given combinations of model parameters of the moving
average, Bollinger Bands, and the weighting coefficients of
stocks, we employ the pairs-trading arbitrage system for
investment. In this work, the timing for trading is designated
as buying (selling) the spread right after it gets to a certain
distance (measured by standard deviations to the average)
below (above) the average and the position is then closed
right after the spread gets closer to the mean. The stocks
to be long or short are determined by the weighting terms
(𝛽
𝑖
’s) in the syntactic asset from (10). We then compute the

corresponding returns for the performance evaluation of the
system. In this study, the GA is used as the optimization tool
for simultaneous optimization of these model parameters.
The final output is a set of models parameters (optimized by
the GA) that prescribes the pairs-trading and timing models.
Theflowchart of this GA-based trading system is summarized
in Figure 2.
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Table 1: The 10 semiconductor stocks used in this study.

Ticker Name
(Chinese) Name (English)

2325 矽品
Siliconware Precision
Industries Co, Ltd.

2330 臺積電
Taiwan Semiconductor
Manufacturing

2303 聯電
United Microelectronics
Corp.

2311 日月光
Advanced Semiconductor
Engineering, Inc.

2337 旺宏
Macronix International
Company, Ltd.

2301 光寶科 Lite-On Technology Corp.
2308 台達電 Delta Electronics, Inc.
2409 友達 AU Optronics Corporation

2451 創見
Transcend Information,
Inc.

2454 聯發科 MediaTek Inc.

3. Results and Discussion

In this section we examine the performance of our proposed
method for pair-trading systems. We use two sets of stocks
listed in the Taiwan Stock Exchange for illustration: (1) the
set of 10 stocks with similar characteristics from the semicon-
ductor industry, which is themost important industrial sector
in Taiwan over the past two decades, and (2) the set of the 10
stocks with largestmarket capitalization from various sectors,
which denote distinct industrial characteristics in Taiwan.

3.1. 10 Stocks from the Semiconductor Industry. The daily
returns of the 10 semiconductor stocks in Taiwan from years
2003 to 2012 were used to examine the performance of the
GA-optimized trading system. Table 1 shows the 10 stocks
used for this subsection. Figure 3 displays an illustration of
the best-so-far curve for the accumulated return (i.e., the total
cumulative return) attained by the GA over 50 generations.
(In order to study the quality of solutions over time, a
traditional performancemetric for theGA is the “best-so-far”
curve that plots the fitness of the best individual that has been
seen thus far by generation 𝑛, i.e., a point in the search space
that optimizes the objective function thus far. In addition, in
this study, the GA experiments employ a binary tournament
selection [26], one-point crossover, and mutation rates of 0.7
and 0.005, resp. We also use 10 bits to encode each variable in
the chromosome and use 50 individuals for the size of the
population in each generation.) This figure shows how the
GA searches for the solutions over the course of evolution to
gradually improve the performance of the trading system.

Figure 4 displays an illustration of the accumulated return
of the benchmark and that of our GA-based model. (In
this study, the benchmark is defined as the traditional buy-
and-hold method where we allocate one’s capital in equal
proportion to each stock and the accumulated return is
calculated as the product of the average daily returns of
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Figure 3: An illustration for the best-so-far curve by the GA.
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Figure 4: Accumulated return of the benchmark versus the GA-
based model for the 10 semiconductor stocks from years 2003 to
2012.

all the 10 stocks over the 10 years; i.e., an investor invests
all the capital in the stocks initially and sell all of them
only at the end of the course of investment.) This figure
shows that the GA-based model gradually outperforms the
benchmark and the performance discrepancy becomes quite
significant at the end of year 2012. As opposed to the buy-and-
hold method that allocates one’s capital in equal proportions
to each stock, the GA proactively searches for the optimal
proportions for long or short positions for each asset in order
to construct the spread by (10). In addition, the GA also
searches for the optimal timing for buying and shorting the
stocks dynamically using the Bollinger Bands. In our study
here, the weighting coefficients for the proportions of capital
allocated to stocks, the period for themoving average, and the
width of the Bollinger Bands are optimized simultaneously.
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TV/quarter 1 2 38 39 40

1
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38

39

· · ·
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Figure 5: Temporal validation.

As a result, in our proposed methodology, a trading system
optimized by the GA is a composite of optimal arbitrage and
market timing models. Thus, one may expect the GA to be
advantageous to the construction of the arbitrage systems and
Figure 4 indeed shows that the GA-basedmodel outperforms
the benchmark in the long run. Therefore, these results shed
some light on how the optimization by the GA may be
advantageous to the pairs-trading model.

In order to further examine the validity of our proposed
method, statistical validation on the models is conducted in
this study. In reality, the learnedmodel using the training data
has to be tested by unseen data. Here, as shown in Figure 5,
we use the stock data of the first several quarters to train
the model, and the remaining data is used for testing. This
setup is to provide a set of temporal validations to examine
the effectiveness of the models in the dynamic environment
of financial problems, which is different from the regular
cross-validation procedure where the process of data being
split into two independent sets is randomly repeated several
times without taking into account the data’s temporal order.
However, in the financial study here, temporal order is critical
since one would like to use all available data so far to train the
model and to apply the models in the future for profits.

In the training phase of each TV, we conduct 50 runs
for the GA and the best model learned from each run is
examined in the testing phase. In both of the training and
testing phases, the cumulative total return (accumulated
return) of a model over the quarters is calculated and the
corresponding annualized return is computed by (14). The
annualized returns of the best 50 models in each TV are
then averaged and displayed for the training and testing
phases in Table 2. In this table, we also provide the annualized
benchmark return for further comparisonwith theGA-based
models, where the cumulative total return for the benchmark
is calculated from the product of the average quarterly returns
of the 10 semiconductor stocks over the period of time in
training or testing, and the corresponding annualized return
is again computed by (14).

In Table 2, an inspection on the means of annualized
model returns shows that in all the 39 TVs of the training case
the GA-based method outperforms the benchmark. For the
testing phase, in 30 out of 39 cases the GA-basedmethod out-
performs the benchmark. Figure 6 further displays a visual
gist on this performance discrepancy of the two methods
in the testing phase. As can be seen, in most of the TVs,
the annualized return of the GA-based model is larger than
that of the benchmark. These results thus demonstrate our
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Figure 6: Averaged annualized return of the top 50 GA-based
models versus the benchmark (in each TV of the testing phase) for
the 10 semiconductor stocks from years 2003 to 2012.

GA-based method is promising for solving the pairs-trading
problem.

3.2. 10 Stocks with the Largest Market Capitalization. Next we
use the 10 stocks of the largest market capitalization listed in
the Taiwan Stock Exchange to further examine our proposed
method. The daily returns of stocks from years 2003 to 2012
were again used for the optimization task by the GA. Table 3
shows the 10 stocks with the largest market cap used in this
study.

Figure 7 displays an illustration of the accumulated return
of the benchmark (which is again defined as the product
of the average daily returns of the 10 largest market cap
stocks over the 10 years) and that of our GA-based model.
As can be seen, the GA-based model gradually outperforms
the benchmark over the course of investment during years
2003 to 2012, and the performance discrepancy becomes
significant at the end of year 2012. This figure thus illustrates
how the GA-based model may outperform the benchmark in
the long run.

For the temporal validation, by the same procedure used
in the previous subsection, Table 4 shows the annualized
benchmark return and the average of the annualized model
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Table 2: Comparisons of the annualized returns of the GA-based model and the benchmark for the 10 semiconductor stocks from years 2003
to 2012.

TV Training period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

Testing period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

1 2003Q1 −27.23% 157.55% 0.0494 2003Q2–2012Q4 3.60% 0.01% 0.5125

2 2003Q1–2003Q2 36.06% 137.35% 0.1117 2003Q3–2012Q4 0.80% −4.42% 0.5494

3 2003Q1–2003Q3 39.79% 119.60% 0.1119 2003Q4–2012Q4 0.21% 3.49% 0.5392

4 2003Q1–2003Q4 20.67% 85.98% 0.1498 2004Q1–2012Q4 0.59% 2.05% 0.4707

5 2003Q1–2004Q1 24.25% 72.06% 0.1553 2004Q2–2012Q4 −0.19% 2.55% 0.4833

6 2003Q1–2004Q2 5.26% 59.23% 0.1626 2004Q3–2012Q4 2.22% 5.14% 0.7364

7 2003Q1–2004Q3 −2.64% 55.70% 0.3206 2004Q4–2012Q4 3.80% 4.49% 0.6824

8 2003Q1–2004Q4 −1.33% 53.64% 0.3889 2005Q1–2012Q4 3.83% 5.17% 0.8286

9 2003Q1–2005Q1 0.03% 45.19% 0.3904 2005Q2–2012Q4 3.20% 2.58% 0.6446

10 2003Q1–2005Q2 4.49% 42.85% 0.4555 2005Q3–2012Q4 1.88% 3.24% 0.6986

11 2003Q1–2005Q3 5.36% 42.02% 0.4171 2005Q4–2012Q4 1.48% 1.58% 0.4788

12 2003Q1–2005Q4 11.17% 34.85% 0.3509 2006Q1–2012Q4 −0.77% 4.70% 0.5345

13 2003Q1–2006Q1 9.63% 34.61% 0.2917 2006Q2–2012Q4 −0.57% 5.29% 0.5652

14 2003Q1–2006Q2 6.65% 32.14% 0.2780 2006Q3–2012Q4 0.71% 5.92% 0.5332

15 2003Q1–2006Q3 7.54% 31.70% 0.3518 2006Q4–2012Q4 −0.22% 4.58% 0.4451

16 2003Q1–2006Q4 9.38% 30.56% 0.3527 2007Q1–2012Q4 −2.03% 4.16% 0.3340

17 2003Q1–2007Q1 11.74% 30.21% 0.4362 2007Q2–2012Q4 −3.41% 5.25% 0.3628

18 2003Q1–2007Q2 15.86% 27.98% 0.5660 2007Q3–2012Q4 −7.02% 8.11% 0.6571

19 2003Q1–2007Q3 16.65% 31.03% 0.7558 2007Q4–2012Q4 −8.30% 7.48% 0.4423

20 2003Q1–2007Q4 10.80% 32.33% 0.7995 2008Q1–2012Q4 −4.31% 7.86% 0.5680

21 2003Q1–2008Q1 7.98% 31.33% 1.0381 2008Q2–2012Q4 −2.88% 8.24% 0.3712

22 2003Q1–2008Q2 5.50% 35.78% 1.4992 2008Q3–2012Q4 −0.23% 7.87% 0.3083

23 2003Q1–2008Q3 2.35% 34.33% 1.9692 2008Q4–2012Q4 3.05% 6.84% 0.2409

24 2003Q1–2008Q4 −2.29% 34.66% 1.9921 2009Q1–2012Q4 9.29% 8.63% 0.2430

25 2003Q1–2009Q1 1.88% 31.07% 1.7270 2009Q2–2012Q4 3.90% 9.78% 0.2099

26 2003Q1–2009Q2 4.43% 29.88% 1.6957 2009Q3–2012Q4 −0.90% 10.43% 0.2683

27 2003Q1–2009Q3 8.62% 31.06% 2.1604 2009Q4–2012Q4 −8.58% 8.68% 0.2157

28 2003Q1–2009Q4 9.09% 31.06% 2.3144 2010Q1–2012Q4 −11.09% 6.66% 0.1684

29 2003Q1–2010Q1 8.39% 31.53% 2.3984 2010Q2–2012Q4 −11.47% 5.74% 0.2323

30 2003Q1–2010Q2 5.83% 30.06% 2.5543 2010Q3–2012Q4 −5.19% 5.89% 0.1809

31 2003Q1–2010Q3 5.83% 27.71% 2.2193 2010Q4–2012Q4 −7.93% 6.05% 0.1847

32 2003Q1–2010Q4 5.80% 27.26% 2.7974 2011Q1–2012Q4 −8.53% 5.48% 0.1443

33 2003Q1–2011Q1 3.86% 29.38% 2.8889 2011Q2–2012Q4 −3.09% 1.32% 0.1056

34 2003Q1–2011Q2 3.11% 28.69% 3.3213 2011Q3–2012Q4 0.29% 0.20% 0.1043

35 2003Q1–2011Q3 1.82% 27.14% 2.7034 2011Q4–2012Q4 11.66% 5.24% 0.0842

36 2003Q1–2011Q4 1.22% 27.73% 3.7890 2003Q1–2012Q4 18.89% 11.33% 0.0745

37 2003Q1–2012Q1 2.03% 25.98% 3.3508 2003Q1–2012Q4 13.27% 12.24% 0.0604

38 2003Q1–2012Q2 1.58% 25.08% 3.2671 2003Q1–2012Q4 26.57% 11.28% 0.0582

39 2003Q1–2012Q3 2.50% 25.38% 3.6955 2012Q4 10.91% 12.68% 0.0414
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Table 3: The 10 largest market cap stocks used in this study.

Ticker Name (Chinese) Name (English)

2330 臺積電
Taiwan Semiconductor

Manufacturing
2317 鴻海 Hon Hai Precision
2454 聯發科 MediaTek Inc.
1301 臺塑 Formosa Plastics
1303 南亞 Nan Ya Plastics
1326 台化 Formosa Chemicals
2412 中華電 Chunghwa Telecom
2882 國泰金 Cathay Financial Holding
2308 台達電 Delta Electronics, Inc.
2008 高興昌 Kao Hsing Chang Iron
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Figure 7: Accumulated return of the benchmark versus the GA-
based model for the 10 largest market cap stocks from years 2003
to 2012.

returns for the training and testing cases. As can be seen from
the means of the annualized model returns in the training
case, the GA-based method outperforms the benchmark in
all the 39 TVs. For the testing phase, in 29 out of 39 cases
the GA-based method outperforms the benchmark, as well.
Figure 8 then displays the results in Table 4 for each TV in
the testing phase. An inspection of Figure 8 thus shows that,
in 29 out of 39 TVs, the GA-based models outperform the
benchmark in terms of annualized returns.

3.3. Model Robustness. Finally, we examine the robustness of
the models generated by our method using the measure of
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Figure 8: Averaged annualized return of the top 50 GA-based
models versus the benchmark (in each TV of the testing phase) for
the 10 largest market cap stocks from years 2003 to 2012.

precision studied in [5], which is defined as

Precision =
TP

TP + FP
. (15)

In this definition, TP and FP denote the number of true
positives and false positives, respectively. In this study, a true
positive occurs when a model outperforms the benchmark in
training, and it later turns out to outperform the benchmark
in testing, as well; otherwise, the model generates a false
positive. This statistic is an important metric that indicates
whether our proposed method can generate robust models
when the problem is in a dynamic environment, such as the
financial problem studied here.

Typically, if a method generates amodel that outperforms
the benchmark in the training phase, one would like the
model to continue to outperform the benchmark in the
testing phase. Therefore, if our proposed method is able to
generate many true positives that leads to high precision, it
is an indication that our method is effective in generating
robust models. Table 5 displays the results of precision for
the 10 semiconductor and largest market cap stocks. As can
be seen, the results show that the precision of our proposed
method ismore than 0.7 in both cases, thereby indicating that
our proposed method is indeed effective.

4. Conclusions

In this paper, we presented a GA-based methodology for
the application of pairs trading in computational finance. In
order to examine the validity of the proposed methodology,
we conducted a statistical validation on the learnedmodels to
account for the temporal order and dynamic characteristics of
the stock data, which is critical for the real-world investment
as practically one expects the models constructed to gain
profits in the future. Through the optimization of parameters
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Table 4: Comparisons of the annualized returns of the GA-based model and the benchmark for the 10 largest market cap stocks from years
2003 to 2012.

TV Training period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

Testing period
Annualized
benchmark

return

Mean of
annualized
model return

Standard
deviation

1 2003Q1 −9.13% 133.86% 0.3965 2003Q2–2012Q4 33.58% 1.03% 0.0472

2 2003Q1–2003Q2 18.81% 109.67% 0.1066 2003Q3–2012Q4 18.51% −3.06% 0.0348

3 2003Q1–2003Q3 33.87% 86.87% 0.1665 2003Q4–2012Q4 −0.69% 4.74% 0.0571

4 2003Q1–2003Q4 26.40% 54.91% 0.0853 2004Q1–2012Q4 6.10% −2.38% 0.0344

5 2003Q1–2004Q1 31.57% 52.05% 0.0939 2004Q2–2012Q4 −13.55% −2.43% 0.0558

6 2003Q1–2004Q2 16.71% 60.24% 0.1204 2004Q3–2012Q4 1.99% −6.57% 0.0407

7 2003Q1–2004Q3 11.80% 62.13% 0.0971 2004Q4–2012Q4 9.94% −8.50% 0.0273

8 2003Q1–2004Q4 15.29% 55.99% 0.1029 2005Q1–2012Q4 3.50% −8.68% 0.0305

9 2003Q1–2005Q1 12.64% 49.95% 0.0850 2005Q2–2012Q4 4.91% −9.07% 0.0449

10 2003Q1–2005Q2 15.71% 40.65% 0.0636 2005Q3–2012Q4 −7.39% −9.01% 0.0498

11 2003Q1–2005Q3 6.79% 37.80% 0.0596 2005Q4–2012Q4 5.58% 4.94% 0.0401

12 2003Q1–2005Q4 12.54% 35.57% 0.0478 2006Q1–2012Q4 9.46% 5.46% 0.0724

13 2003Q1–2006Q1 29.21% 30.42% 0.0591 2006Q2–2012Q4 −42.67% 3.09% 0.0614

14 2003Q1–2006Q2 32.17% 39.09% 0.0536 2006Q3–2012Q4 −42.45% 0.26% 0.0623

15 2003Q1–2006Q3 23.30% 32.03% 0.0724 2006Q4–2012Q4 −39.08% 3.91% 0.0655

16 2003Q1–2006Q4 9.71% 28.78% 0.0284 2007Q1–2012Q4 −18.77% 7.38% 0.0341

17 2003Q1–2007Q1 10.42% 28.97% 0.0271 2007Q2–2012Q4 −19.82% 7.71% 0.0382

18 2003Q1–2007Q2 15.69% 27.25% 0.0357 2007Q3–2012Q4 −33.97% 6.24% 0.0324

19 2003Q1–2007Q3 16.14% 29.75% 0.0323 2007Q4–2012Q4 −37.09% 3.59% 0.0397

20 2003Q1–2007Q4 11.22% 31.29% 0.0383 2008Q1–2012Q4 −22.89% −0.22% 0.0292

21 2003Q1–2008Q1 9.96% 33.59% 0.0436 2008Q2–2012Q4 −21.45% −1.16% 0.0466

22 2003Q1–2008Q2 13.56% 28.81% 0.0756 2008Q3–2012Q4 −31.51% 0.29% 0.0438

23 2003Q1–2008Q3 8.29% 27.84% 0.0506 2008Q4–2012Q4 −12.44% 0.18% 0.0357

24 2003Q1–2008Q4 1.30% 24.99% 0.0535 2009Q1–2012Q4 26.95% 0.81% 0.0501

25 2003Q1–2009Q1 5.04% 23.92% 0.0516 2009Q2–2012Q4 0.86% 1.23% 0.0725

26 2003Q1–2009Q2 7.37% 25.11% 0.0395 2009Q3–2012Q4 −12.45% −2.67% 0.0802

27 2003Q1–2009Q3 6.73% 24.79% 0.0252 2009Q4–2012Q4 −16.92% 5.16% 0.0357

28 2003Q1–2009Q4 7.63% 25.15% 0.0215 2010Q1–2012Q4 −24.31% 2.24% 0.0326

29 2003Q1–2010Q1 7.14% 25.32% 0.0201 2010Q2–2012Q4 −23.97% 2.14% 0.0378

30 2003Q1–2010Q2 7.28% 23.47% 0.0337 2010Q3–2012Q4 −14.58% 0.59% 0.0753

31 2003Q1–2010Q3 9.81% 21.78% 0.0373 2010Q4–2012Q4 −31.17% 1.08% 0.0947

32 2003Q1–2010Q4 11.29% 20.65% 0.0395 2011Q1–2012Q4 −39.94% −0.85% 0.0970

33 2003Q1–2011Q1 12.29% 21.09% 0.0343 2011Q2–2012Q4 −45.11% 1.84% 0.0532

34 2003Q1–2011Q2 13.44% 20.05% 0.0388 2011Q3–2012Q4 −47.78% 0.58% 0.0600

35 2003Q1–2011Q3 7.56% 21.41% 0.0359 2011Q4–2012Q4 −22.33% 0.75% 0.1054

36 2003Q1–2011Q4 8.08% 18.04% 0.0389 2003Q1–2012Q4 −13.53% 11.13% 0.0909

37 2003Q1–2012Q1 6.51% 19.60% 0.0388 2003Q1–2012Q4 −19.06% 8.32% 0.0801

38 2003Q1–2012Q2 4.77% 19.41% 0.0253 2003Q1–2012Q4 −1.38% 6.64% 0.1144
39 2003Q1–2012Q3 3.43% 19.58% 0.0171 2012Q4 0.91% 10.26% 0.1145
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Table 5: Precision for the 10 semiconductor and largest market cap
stocks.

10 semiconductor stocks 10 largest market cap
stocks

Precision 0.7692 0.7180

of the trading models for a group of stocks, the experimental
results showed that our GA-based method is able to signif-
icantly outperform the benchmark and can generate robust
models for pairs trading. We thus expect this GA-based
method to advance the research in computational intelligence
for financial applications and provide a promising solution to
pairs trading.
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We present a multiobjective genetic clustering approach, in which data points are assigned to clusters based on new line symmetry
distance. The proposed algorithm is called multiobjective line symmetry based genetic clustering (MOLGC). Two objective
functions, first the Davies-Bouldin (DB) index and second the line symmetry distance based objective functions, are used. The
proposed algorithm evolves near-optimal clustering solutions using multiple clustering criteria, without a priori knowledge of the
actual number of clusters. The multiple randomized K dimensional (Kd) trees based nearest neighbor search is used to reduce the
complexity of finding the closest symmetric points. Experimental results based on several artificial and real data sets show that
proposed clustering algorithm can obtain optimal clustering solutions in terms of different cluster quality measures in comparison
to existing SBKM and MOCK clustering algorithms.

1. Introduction

Clustering is one of the most common unsupervised data
mining methods to explore the hidden structures embed-
ded in a data set [1]. Clustering gives rise to a variety of
information granules whose use reveals the structure of
data [2]. Clustering has been effectively applied in a variety
of engineering and scientific disciplines [3]. In order to
mathematically identify clusters in a data set, it is usually
necessary to first define a measure of similarity or proximity
which will establish a rule for assigning patterns to the
domain of a particular cluster center. Symmetry is considered
as a preattentive feature that enhances recognition and
reconstruction of shapes and objects. However, the exact
mathematical definition of symmetry, such as Miller [4],
is inadequate to describe and quantify symmetry found in
the natural world or those found in the visual world. Since
symmetry is so common in the abstract and in the nature, it
is reasonable to assume that some kind of symmetry occur
in the structures of clusters. The immediate problem is how

to find a way to measure symmetry. Zabrodsky et al. [5] have
proposed a kind of symmetry distance to detect symmetry
in a figure extracted from an image. Their basic strategy is to
choose the symmetry that is the closest to the figuremeasured
by an appropriatemeasure, inwhich they adopt theminimum
sum of the squared distances over which the vertices must be
removed to impose the assumed symmetry. It follows that we
need an algorithm for effectively imposing a given symmetry
with a minimum displacement [6]. A new type of nonmetric
distance, based on point symmetry, is proposed which is
used in a 𝐾-means based clustering algorithm, referred to
as symmetry based 𝐾-means (SBKM) algorithm [7]. SBKM
will fail for some data sets where the clusters themselves
are symmetrical with respect to some intermediate point.
This work is extended in Chung and Lin [8] to overcome
some of limitations existing in SBKM. These symmetry
based clustering techniques adopted the concept of𝐾-means
for discovering clusters. The 𝐾-means [9] algorithm is one
of the more widely used clustering algorithms. However,
it is well known that 𝐾-means algorithm is sensitive to
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the initial cluster centers and easy to get stuck at the local
optimal solutions. Second important problem in partitioning
clustering is to find a partition of the given data, with a
specified number of clusters that minimizes the total within
cluster variation. Unfortunately in many real life cases the
number of clusters in a data set is not known a priori.

In order to overcome the limitation of being easy to
get stuck at the local optimal solutions, some attempts
have been made to use genetic algorithms for clustering
data sets [10–12]. To overcome the problem of automatic
cluster determination from the data sets. Recently, many
automatic clustering techniques have been introduced.These
automatic clustering techniques are based on genetic algo-
rithm methods and Differential Evolution (DE) methods. A
fuzzy variable string length based point symmetry genetic
clustering technique is proposed in [13]. It automatically
evolves the appropriate types of clusters, both convex and
nonconvex, which have some symmetrical structures. It fails
if the clusters do not have symmetry property. In [14], a two-
stage genetic clustering algorithm (TGCA) is proposed. It
can automatically determine the proper number of clusters
and the proper partition from a given data set. It is suitable
for clustering the data with compact spherical clusters only.
Single objective genetic clustering methods [15] fail to solve
the issues of clusters shape and size simultaneously. They are
suffering from ineffective genetic search, which in turn get
stuck at suboptimal clustering solutions [16]. To overcome
the limitations of these algorithms some attempts have
been made to use multiobjective genetic algorithms. Handl
and Knowles [17] proposed multiobjective clustering with
automatic 𝐾-determination (MOCK) to detect the optimal
number of clusters from data sets. But due to the heuristic
nature of the algorithm, it provides an approximation to the
real (unknown) Pareto front only. Therefore, generation of
the best clustering solution cannot be guaranteed, and result
shows some variation between individual runs. Saha and
Bandyopadhyay [18] proposed a multiobjective clustering
technique. In this algorithm points are assigned to different
clusters based on the point symmetry based distance. It
is able to detect clusters having point symmetry property.
However it will fail for clusters having nonsymmetrical
shape. Some researchers have applied Differential Evolution
(DE) to the task of automatic clustering from data sets. In
[19] a Differential Evolution (DE) technique on the point
symmetry based cluster validity index is presented. To find
the optimal number of clusters, they proposed a modified
symmetry based index.Themain limitation of this algorithm
is problem-dependent dynamic control factor. Suresh et al.
[20, 21] applied the Differential Evolution (DE) to the
task of automatic fuzzy clustering, where two conflicting
fuzzy validity indices are simultaneously optimized. They
used a real-coded representation of the search variables to
accommodate variable number of cluster centers [20, 21].
It depends on cluster centroid and thus is biased in any
sense towards spherical clusters. Tremendous research effort
has gone in the past few years to evolve the clusters in
complex data sets through evolutionary techniques. Most
clustering algorithms assume the number of clusters to be
known a priori. The desired granularity [22] is generally

determined by external, problem criteria. There seems to be
no definite answer to howmany clusters are in data set a user
defined criterion for the resolution has to be given instead.
Second, most of the existing clustering algorithms adopt 2-
norm distance measures in the clustering. These measures
fail when clusters tend to develop along principal axes. The
symmetry based clustering techniques also seek for clusters
which are symmetric with respect to their centers.Thus, these
techniques will fail if the clusters do not have this property.

The objective of this paper is twofold. First, it aims at the
automatic determination of the optimal number of clusters in
any data set. Second, it attempts to find clusters of arbitrary
shapes and sizes. We show that genetic algorithm with a
new line symmetry based distance can give very promising
results if applied to the automatic clustering problem. The
proposed algorithmevolves near-optimal clustering solutions
using multiple clustering criteria, without a priori knowledge
of the actual number of clusters. The multiple randomized
Kd trees based nearest neighbor search is used to reduce
the complexity of finding the closest symmetrical points.
We refer to this new algorithm as the multiobjective line
symmetry based genetic clustering (MOLGC) algorithm.
We have compared the MOLGC with two other clustering
techniques: SBKM and MOCK. The following performance
metrics have been used in the comparative analysis: (1) the
accuracy of final clustering results; (2) the computation time;
and (3) the statistical significance test.

This paper is organized as follows: The related work on
symmetry is reviewed in Section 2. In Section 3, proposed
line symmetry measure with multiple randomized Kd trees
based nearest neighbor search approach is presented. Multi-
objective line symmetry based genetic clustering technique
is explained in Section 4. Section 5 contains data description
and experimental results. Finally, we conclude in Section 6.

2. Related Work

In this section at first, point symmetry based distance is
described in brief. Then line symmetry based distance is
discussed.

2.1. Point Symmetry Based Distance. Symmetry is considered
as a preattentive feature that enhances recognition and recon-
struction of shapes and objects. Su and Chou [7] presented
an efficient point symmetry distance (PSD) measure to
help partitioning the data set into the clusters, where each
cluster has the point symmetry property.The point symmetry
distance measure between the data point 𝑥

𝑖
, {𝑥
𝑖
| for 1 ≤ 𝑖 ≤

𝑁}, and the data point 𝑥
𝑗
relative to the cluster centroid 𝑐

𝑘
,

{𝑐
𝑘
| for 1 ≤ 𝑘 ≤ 𝐾}, is defined as

𝑑
𝑠
(𝑥
𝑗
, 𝑐
𝑘
) = min
∀𝑖 ̸=𝑗,1≤𝑗≤𝑁

󵄩󵄩󵄩󵄩󵄩
(𝑥
𝑗
− 𝑐
𝑘
) + (𝑥

𝑖
− 𝑐
𝑘
)
󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
(𝑥
𝑗
− 𝑐
𝑘
)
󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩(𝑥𝑖 − 𝑐𝑘)

󵄩󵄩󵄩󵄩

, (1)

for 𝑖 ̸= 𝑗 and 1 ≤ 𝑖 ≤ 𝑁, where ‖ ⋅ ‖ denotes the 2-norm
distance. Note that distance 𝑑

𝑠
(𝑥
𝑗
, 𝑐
𝑘
) is minimized when the

pattern 𝑥
𝑖
= (2 × 𝑐

𝑘
− 𝑥
𝑗
) exists in the data sets. They have

proposed a symmetry based 𝐾-means clustering algorithm
called SBKMwhich assigns the patterns to a particular cluster
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depending on the symmetry based distance 𝑑
𝑠
only when 𝑑

𝑠

is greater than some user specified threshold 𝜃 = 0.18. Other-
wise, assignment is done according to the Euclidean distance.
We can demonstrate how the point symmetry distance (PSD)
measure works well for the case of symmetrical intra-clusters.
Assume positions of two centroids 𝑐

1
and 𝑐
2
are 𝑐
1
= (16, 10)

and 𝑐
2
= (16, 19). The 𝑥

1
, 𝑥
2
, and 𝑥

3
are three data points

and their positions are 𝑥
1
= (14, 16), 𝑥

2
= (18, 4), and

𝑥
3
= (19, 25), respectively. The PSD measure between data

points 𝑥
1
and cluster center 𝑐

1
is

𝑑
𝑠
(𝑥
1
, 𝑐
1
) =

󵄩󵄩󵄩󵄩(𝑥1 − 𝑐1) + (𝑥2 − 𝑐1)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(𝑥1 − 𝑐1)
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝑥2 − 𝑐1)

󵄩󵄩󵄩󵄩

=
0

√40 + √40
= 0,

𝑑
𝑠
(𝑥
1
, 𝑐
2
) =

󵄩󵄩󵄩󵄩(𝑥1 − 𝑐2) + (𝑥3 − 𝑐2)
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩(𝑥1 − 𝑐2)
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(𝑥3 − 𝑐2)

󵄩󵄩󵄩󵄩

=
√10

√13 + √45
= 0.30.

(2)

Because 𝑑
𝑠
(𝑥
1
, 𝑐
1
) < 𝑑

𝑠
(𝑥
1
, 𝑐
2
) and 𝑑

𝑠
(𝑥
1
, 𝑐
1
) is less than

the specified threshold (0.18), the data point 𝑥
2
is said to

be the most symmetrical point of 𝑥
1
relative to 𝑐

1
; thus

we have 𝑥
2
= Arg𝑑

𝑠
(𝑥
1
, 𝑐
1
). Consequently, assigning the

data point 𝑥
1
to the cluster 𝐶

1
is a good decision. But the

problems occurring in the point symmetry distance (PSD)
measure are (1) lacking the distance difference symmetry
property, (2) leading to an unsatisfactory clustering result for
the case of symmetrical inter-clusters. In the first problem,
the PSD measure favors the far data point when we have
more than two symmetrical data points and this may degrade
the symmetrical robustness. We can depict this problem as
shown in Figure 1.

Let 𝑥
𝑖
= (−5, 0), 𝑥

𝑗
= (7, 0), 𝑥

𝑗+1
= (10, 0), and 𝑐

𝑗
= (0, 0);

then find the most symmetry point of 𝑥
𝑖
relative to 𝑥

𝑗
and

𝑥
𝑗+1

,
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) = min { 2

12
,
5

125
} = min {0.16, 0.04} .

(3)

The data point 𝑥
𝑗+1

is selected as the most symmetrical
point of𝑥

𝑖
relative to the centroid 𝑐

𝑗
.This shows that (1) favors

the far data point when we have more than two data points
and this may corrupt the symmetrical robustness.

In the second problem, if two clusters are symmetrical to
each other with respect to the centroid of any third cluster,
then PSD measure gives an unsatisfactory clustering result.
As presented in Figure 2, the cluster 𝐶

1
and the cluster 𝐶

3
are

symmetrical to the cluster center 𝑐
2
.

ri

xi

cj

xj

xj+1

ri − l

ri + l

Figure 1: An example for the distance difference symmetry.

x1

c1

x2

c2

x4
c3

x3

Figure 2: Point symmetry interclusters distance.

Let 𝑥
1
= (−10, −2), 𝑥

2
= (−12, −4), 𝑥

3
= (12, 2), 𝑥

4
=

(13, 4), 𝑐
1
= (−11, −3), 𝑐

2
= (0, 0), and 𝑐

3
= (12, 3); then for

the data point 𝑥
1
, and by (1), we have

𝑑
𝑠
(𝑥
1
, 𝑐
1
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(4)

In the above example point symmetry distance
𝑑
𝑠
(𝑥
1
, 𝑐
2
) < 𝑑

𝑠
(𝑥
1
, 𝑐
3
) < 𝑑

𝑠
(𝑥
1
, 𝑐
1
) is smallest among

all distances, so the data point 𝑥
1
should be assigned to

the cluster 𝐶
2
, but it conflicts our visual assessment. Due

to the above two problems, Chung and Lin [8] proposed
a symmetry based distance measure known as Symmetry
Similarity Level (SSL), which satisfies the distance difference
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Figure 3: An example for distance difference.

symmetry property. Let 𝑐
𝑘
denote the cluster centroid; 𝑥

𝑖
and

𝑥
𝑗
denote two related data points as shown in Figure 3.
Let 𝑑
𝑖
= 𝑥
𝑖
𝑐
𝑘
and 𝑑

𝑗
= 𝑥
𝑗
𝑐
𝑘
; then the Distance Similarity

Level (DSL) operator for measuring the distance difference
symmetry between the distance 𝑥

𝑖
𝑐
𝑘
and the distance 𝑥

𝑗
𝑐
𝑘
is

defined by

DSL (𝑥
𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) =

{{

{{

{

1 −

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖
− 𝑑
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑑
𝑖

, if 0 ≤
𝑑
𝑗

𝑑
𝑖

≤ 2

0 otherwise.
(5)

They replaced the interval 0 ≤ 𝑑
𝑗
/𝑑
𝑖
≤ 2 to the interval

0 ≤ 𝑑
𝑗
/𝑑
𝑖
≤ 𝑘, 𝑘 > 2; in (5), the number of examined

symmetrical points will be increased and the computational
gain might be degraded. They proposed second component
called Orientation Similarity Level (OSL). By applying the
projection concept, the OSL between the two vectors, V

𝑖
=

󳨀󳨀→
𝑥
𝑖
𝑐
𝑘
= (𝑐
𝑘
− 𝑥
𝑖
) and V

𝑗
=
󳨀󳨀→
𝑐
𝑘
𝑥
𝑗
= (𝑥
𝑗
− 𝑐
𝑘
), is defined by

OSL (𝑥
𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) =

V
𝑖
⋅ V
𝑗

2
󵄩󵄩󵄩󵄩V𝑖
󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
V
𝑗

󵄩󵄩󵄩󵄩󵄩

+ 0.5. (6)

By (5) and (6), they combined the effect of DSL(𝑥
𝑖
, 𝑐
𝑘
, 𝑥
𝑗
)

and OSL(𝑥
𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) to define a Symmetry Similarity Level

(SSL) between the vectors 󳨀󳨀→𝑥
𝑖
𝑐
𝑘
and 󳨀󳨀→𝑐
𝑘
𝑥
𝑗
. They defined the

following:

SSL (𝑥
𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) =
√
DSL2 (𝑥

𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) +OSL2 (𝑥

𝑖
, 𝑐
𝑘
, 𝑥
𝑗
)

2
,

(7)

for 1 ≤ 𝑘 ≤ 𝐾 and 1 ≤ 𝑖 ≤ 𝑁. Because of 0 ≤
DSL(𝑥

𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) ≤ 1 and 0 ≤ OSL(𝑥

𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) ≤ 1, it is

easy to verify that 0 ≤ SSL(𝑥
𝑖
, 𝑐
𝑘
, 𝑥
𝑗
) ≤ 1 is held. Based

on SSL operator, Chung and Lin [8] proposed a modified
point symmetry based𝐾-means (MPSK) algorithm.The time
complexity for finding the symmetry point for 𝑛 objects is
𝑂 (𝑘𝑛2). So this approach is not suitable for large and high
dimensional data sets. To overcome limitations of SBKM,
Bandyopadhyay and Saha [23] proposed newpoint symmetry
based clustering algorithm known as variable string length
genetic clustering technique with point symmetry (VGAPS).
The proposed point symmetry distance is defined as follows.

The symmetrical (reflected) point of 𝑥 with respect to a
particular centre 𝑐 is 2 × 𝑐 − 𝑥 that is denoted by 𝑥∗. Let 𝑘
unique nearest neighbors of 𝑥∗ be at Euclidean distances of
𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑘. Then 𝑑ps(𝑥, 𝑐) = 𝑑sym(𝑥, 𝑐) × 𝑑𝑒(𝑥, 𝑐):

𝑑ps (𝑥, 𝑐) = 𝑑sym (𝑥, 𝑐) × 𝑑𝑒 (𝑥, 𝑐) =
∑
𝑘

𝑖=1
𝑑
𝑖

𝑘
× 𝑑
𝑒
(𝑥, 𝑐) ,

(8)

where 𝑑
𝑒
(𝑥, 𝑐) is the Euclidean distance between the point 𝑥

and cluster center 𝑐. It can be seen from (8) that 𝑘 cannot
be chosen equal to 1, since if point 𝑥∗ exists in the data
set then 𝑑ps(𝑥, 𝑐) = 0 and hence there will be no impact
of the Euclidean distance. To overcome this problem, they
have taken average distance between reflected point 𝑥∗ and
its first and the second unique nearest neighbor’s points.
They proposed a rough guideline of the choice of 𝜃, the
threshold value on the point symmetry distance that is equal
to maximum nearest neighbor distance 𝑑max

NN in the data set.
For reducing the complexity of point symmetry distance
computation, Kd tree based data structure is used. VGAPS
detects clusters which are point symmetry with respect to
their centers. Thus VGAPS will fail if the clusters do not have
this property.

2.2. Existing Line Symmetry Based Distance. From the geo-
metrical symmetry view point, point symmetry and line
symmetry are two widely discussed issues. Motivation by
this, Saha and Maulik [24] proposed a new line symmetry
based automatic genetic clustering technique called variable
string length genetic line symmetry distance based clustering
(VGALS-Clustering). To measure amount of line symmetry
of a point 𝑥 with respect to a particular line 𝑖, 𝑑ls(𝑥, 𝑖), the
following steps are followed:

(1) For a particular data point 𝑥, calculate the projected
point 𝑝

𝑖
on the relevant symmetrical line 𝑖.

(2) Find 𝑑sym(𝑥, 𝑝𝑖) as

𝑑sym (𝑥, 𝑝𝑖) =
∑
𝑘

𝑖=1
𝑑
𝑖

𝑘
, (9)

where 𝑘 nearest neighbors of 𝑥∗ = 2 × 𝑝
𝑖
− 𝑥 are

at Euclidean distances of 𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑘. Then the

amount of line symmetry of a particular point 𝑥 with
respect to that particular symmetrical line of cluster 𝑖
is calculated as

𝑑ls (𝑥, 𝑖) = 𝑑sym (𝑥, 𝑝𝑖) × 𝑑𝑒 (𝑥, 𝑐) , (10)

where 𝑐 is the centroids of the particular cluster 𝑖 and
𝑑
𝑒
(𝑥, 𝑐) is the Euclidean distance between the points 𝑥

and 𝑐. The possible problem existing in this given line
symmetry measure is lacking the closure property.
The closure property can be expressed as follows: if
the data point 𝑝

𝑖
is currently assigned to the cluster

centroid 𝑐
𝑘
in the current iteration, the determined

most symmetrical point 𝑝
𝑗
relative to 𝑐

𝑘
must have

been assigned to 𝑐
𝑘
in the previous iteration.
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Figure 4: Violation of closure property.
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Figure 5: An example of proposed line symmetry distance.

3. Proposed Line Symmetry Measure

Both point symmetry and line symmetry distance lack the
closure property and this would result in an unsatisfactory
clustering result. According to the symmetry property, the
data point 𝑥

1
in Figure 4, which is not in the cluster 𝐶

2

originally, if symmetry distance 𝑑sym(𝑥1, 𝑐2) of point 𝑥
1

with cluster center 𝑐
2
is the most symmetrical distance

(𝑑sym(𝑥1, 𝑐2) < 𝑑sym(𝑥1, 𝑐1) < 𝑑sym(𝑥1, 𝑐3)) among other
symmetry distances, it tells us that data point 𝑥

1
should cur-

rently be assigned to the cluster𝐶
2
. But themost symmetrical

point of 𝑥
1
relative to the centroid 𝑐

2
is the data point 𝑥

3
,

which has been assigned to the centroid 𝑐
3
. Since the data

point 𝑥
3
has not been assigned to the centroid 𝑐

2
before,

it violates closure property. It would give an unsatisfactory
clustering result.

By considering above problem in existing symmetry
based distances, we have applied a constraint in new line sym-
metry distance measure to satisfy closure property, in which,
to compute the line symmetry distance of the data point 𝑥

𝑖
,

we have restricted the candidate symmetrical points 𝑥
𝑗
∉

𝐶
𝑘
relative to each symmetrical line 𝑘 of the corresponding

cluster𝐶
𝑘
. For the data point 𝑥

𝑖
relative to symmetrical line of

cluster 𝐶
𝑘
, this restriction can help us to search more suitable

symmetrical point 𝑥
𝑗
, because we ignore the candidate most

symmetrical point 𝑥
𝑗
which is not in the cluster 𝐶

𝑘
. As

depicted in Figure 5, let the point𝑥
1
havemost line symmetry

distance (𝑑ls(𝑥1, 𝐶2) < 𝑑ls(𝑥1, 𝐶1) < 𝑑ls(𝑥1, 𝐶3)) with respect
to particular line of cluster𝐶

2
and the symmetrical point is𝑥

3
,

but due to the above constraint the proposed line symmetry
distance method is assigned the point 𝑥

1
to cluster 𝐶

1
. The

assignment of 𝑥
1
to the cluster 𝐶

1
is a reasonable assignment

from our visual system. We applied the second modification
in which the first and second symmetrical points 𝑥

1

∗ and 𝑥
2

∗

of point 𝑥
𝑖
are found in cluster 𝐶

𝑘
(as shown in Figure 6)

Pi x1
∗

x2
∗

ck

xi

Line k

Cluster Ck

Figure 6: An example of two symmetry points.

relative to the symmetrical line, not in all data points; that
is, each point 𝑥

𝑖
, 1 ≤ 𝑖 ≤ 𝑛, is assigned to cluster 𝐶

𝑘
iff

𝑑ls(𝑥𝑖, 𝐶𝑘) ≤ 𝑑ls(𝑥𝑖, 𝐶𝑗), where 𝑗, 𝑘 = 1, . . . , 𝑘 and 𝑗 ̸= 𝑘,
𝑑ls(𝑥𝑖, 𝐶𝑘)/𝑑𝑒(𝑥𝑖, 𝑐𝑘) ≤ 𝜃, and 𝑥1

∗ and 𝑥
2

∗ belong to cluster
𝐶
𝑘
. The distance 𝑑ls(𝑥𝑖, 𝐶𝑘) is calculated as given in (22)

and 𝜃 = 𝑑max
nn is the symmetrical threshold, where 𝑑max

nn =

max
𝑖=1,...,𝑛

𝑑nn(𝑥𝑖) and the distance 𝑑nn(𝑥𝑖) is the maximum
nearest neighbor distance in the data set.

The value of 𝜃 is kept equal to the maximum nearest
neighbor distance among all the points in the data set. Point
assignment based on proposed line symmetry distance is
given in Algorithm 1.

For computing the proposed line symmetry distance of a
given data set, we find the symmetrical line of each cluster by
using centralmomentmethod [25] that is used tomeasure the
Symmetry Similarity Level between two data points relative
to symmetrical line. Let the data set be denoted by 𝑋 =

{(𝑥
1
, 𝑦
1
), (𝑥
2
, 𝑦
2
), (𝑥
𝑛
, 𝑦
𝑛
)}; then the (𝑝, 𝑞)th order moment is

defined as

𝑚
𝑝𝑞
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

𝑥
𝑝

𝑖
𝑦
𝑞

𝑖
. (11)

The centroid of the given data set for one cluster is defined
as (𝑚
10
/𝑚
00
, 𝑚
01
/𝑚
00
). The central moment is defined as

𝑢
𝑝𝑞
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

(𝑥
𝑖
− 𝑥)
𝑝

(𝑦
𝑖
− 𝑦)
𝑞

, (12)

where 𝑥 = 𝑚
10
/𝑚
00

and 𝑦 = 𝑚
01
/𝑚
00
. According to the

calculated centroid and (12), themajor axis of each cluster can
be determined by the following two items:

(a) The major axis of the cluster must pass through the
centroids.

(b) The angle between the major axis and the 𝑥-axis is
equal to (1/2)tan−1(2𝑢

11
/(𝑢
20
− 𝑢
02
)).

Consequently, for one cluster, its corresponding major
axis is thus expressed by

((
𝑚
10

𝑚
00

,
𝑚
01

𝑚
00

) ,
1

2
tan−1 ( 2𝑢

11

𝑢
20
− 𝑢
02

)) . (13)
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Procedure: Point assignment based on proposed line symmetry distance( )
for 𝑖 = 1 to 𝑛 do
for 𝑘 = 1 to 𝐾 do
Find the first and the second symmetrical points 𝑥

1

∗ and 𝑥
2

∗ of 𝑥
𝑖
relative to a

projected point 𝑝
𝑖
on line 𝑘 of cluster 𝐶

𝑘
/∗ To ensure the closure property ∗/

Calculate the line symmetry-based distance 𝑑ls[𝐶𝑘] = 𝑑ls(𝑥𝑖, 𝐶𝑘), 𝑘 = 1, 2, . . . , 𝐾
end for
Find 𝐶∗

𝑘
= Arg min

𝑘=1,...,𝐾

𝑑ls[𝐶𝑘]

if 𝑑ls(𝑥𝑖, 𝐶
∗

𝑘
) ≤ 𝑑ls(𝑥𝑖, 𝐶𝑙), where 𝑘, 𝑙 = 1, . . ., 𝐾 and 𝑘 ̸= 𝑙, 𝑑ls(𝑥𝑖, 𝐶

∗

𝑘
)/𝑑
𝑒
(𝑥
𝑖
, 𝑐
∗

𝑘
) ≤ 𝜃 then

Assign the point 𝑥
𝑖
to the cluster 𝐶∗

𝑘

Else
Assign the point 𝑥

𝑖
to the cluster 𝐶

𝑘

∗ based on the Euclidean distance measure, 𝐶∗
𝑘
= Arg min

𝑘=1,...,𝐾

𝑑
𝑒
(𝑥
𝑖
, 𝑐
∗

𝑘
)

end if
end for
Compute new cluster centers of the 𝐾 clusters as follows:

𝑐
new
𝑘
=
1

𝑛
𝑘

∑

𝑖∈𝑆𝑘

𝑥
𝑖,

where 𝑛
𝑘
is the number of data points belonging to the cluster 𝐶

𝑘
and 𝑆

𝑘
is set of data

points which have been assigned to the cluster center 𝑐
𝑘
.

Algorithm 1: Point assignment based on proposed line symmetry distance.

Let normalized form of data points be stored into mem-
ory of the computer system. Now we can apply central
moment method for computing the shape of the data points.
A brief mathematical calculation for finding the symmetrical
line of each cluster by using central moment method is given
in Figure 7 and below:

𝑚
00
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

𝑥
0

𝑖
𝑦
0

𝑖
= Area = 11,

𝑚
01
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

𝑥
0

𝑖
𝑦
1

𝑖
= 44,

𝑚
10
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

𝑥
1

𝑖
𝑦
0

𝑖
= 44,

𝑚
11
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

𝑥
1

𝑖
𝑦
1

𝑖
= 178,

𝑚
02
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

𝑥
0

𝑖
𝑦
2

𝑖
= 190,

𝑚
20
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

𝑥
2

𝑖
𝑦
0

𝑖
= 190.

(14)

The centroid of cluster is calculated as

𝑥 =
𝑚
10

𝑚
00

=
44

11
= 4, 𝑦 =

𝑚
01

𝑚
00

=
44

11
= 4. (15)

We can apply centroid (𝑥, 𝑦) = (4, 4) of cluster for
computing the central moments. The physical significance of
the central moments is that they just give the area and the
moment of inertia.The lower order central moments (Zeroth)
give the area of the region 𝑅:

𝑢
00
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

(𝑥
𝑖
− 4)
0

(𝑦
𝑖
− 4)
0

= 11. (16)

1 2 3 4 5 6 7

1 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0

3 0 1 1 0 1 0 0

4 0 0 1 0 1 1 0

5 0 0 1 1 1 0 0

6 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0

x

y

Figure 7: A region 𝑅 in binary image.

The productmoment involves finding the product of (𝑥
𝑖
−

𝑥) and (𝑦
𝑖
− 𝑦) increasing to a power

𝑢
11
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

(𝑥
𝑖
− 4)
1

(𝑦
𝑖
− 4)
1

= 2. (17)

The second order central moment along 𝑥-axis is

𝑢
02
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

(𝑥
𝑖
− 4)
0

(𝑦
𝑖
− 4)
2

= 14. (18)

The second order central moment along 𝑦-axis is

𝑢
20
= ∑

∀(𝑥
𝑖
,𝑦
𝑖
)∈𝑋

(𝑥
𝑖
− 4)
2

(𝑦
𝑖
− 4)
0

= 13. (19)

The angle between the major axis and the 𝑥-axis is

1

2
tan−1 ( 2𝑢

11

𝑢
20
− 𝑢
02

) = 38
𝑜
. (20)



Computational Intelligence and Neuroscience 7

pi

xj
∗

ck

xi

Line k

de

d1

d2

Figure 8: An example for computing line symmetry distance.

The obtainedmajor axis is treated as the symmetric line of
the relevant cluster. This symmetrical line is used to measure
the amount of line symmetry of a particular point in that
cluster. In order to measure the amount of line symmetry of
a point (𝑥

𝑖
) with respect to a particular line 𝑘 of cluster 𝐶

𝑘
,

𝑑ls(𝑥𝑖, 𝐶𝑘), the following steps are followed.

(1) For a particular data point 𝑥
𝑖
, calculate the projected

point 𝑝
𝑖
on the relevant symmetrical line 𝑘 of cluster

𝐶
𝑘
(as shown in Figure 8) and then find out all

possible symmetrical data point 𝑥
𝑗
relative to each

symmetrical line 𝑘 for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛, and
1 ≤ 𝑘 ≤ 𝐾.

(2) Find 𝑑sym(𝑥𝑖, 𝑝𝑖) as

𝑑sym (𝑥𝑖, 𝑝𝑖) =
∑
𝑘near
𝑖=1
𝑑
𝑖

𝑘near
, (21)

where 𝑘 nearest neighbors of 𝑥
𝑗
= 2 × 𝑝

𝑖
− 𝑥
𝑖
are at

Euclidean distances of 𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑘near. In fact,

the role of the parameter 𝑘near is intuitively easy to
understand and it can be set by the user based on spe-
cific knowledge of the application. In general, a fixed
value of 𝑘nearmay havemany drawbacks. For clusters
with too few points, the points likely to be scattered
and the distance between two neighbors may be too
large. For very large cluster fixed number of neighbors
may not be enough because fewneighborswould have
a distance close to zero. Obviously, the parameter
𝑘near is related to the expected minimum cluster
size and should be much smaller than the number of
objects in the data. To gain a clear idea of the distance
of the neighborhood of a point, we have chosen
𝑘near ≤ √𝑛 in our implementation. The randomized
Kd trees based nearest neighbor search is used to
reduce the computation time of the nearest neighbors.
The amount of line symmetry of a particular point 𝑥

𝑖

with respect to particular symmetrical line of cluster
𝐶
𝑘
is calculated as

𝑑ls (𝑥𝑖, 𝐶𝑘) = 𝑑sym (𝑥𝑖, 𝑝𝑖) × 𝑑𝑒 (𝑥𝑖, 𝑐𝑘) , (22)

where 𝑐
𝑘
is the centroid of the cluster𝐶

𝑘
and 𝑑

𝑒
(𝑥
𝑖
, 𝑐
𝑘
)

denotes Euclidean distance between data point 𝑥
𝑖
and

cluster center 𝑐
𝑘
.

3.1. Multiple Randomized Kd Trees Based Nearest Neighbor
Search. The problem of nearest neighbor search is one
of major importance in a variety of applications such as
image recognition, data compression, pattern recognition
and classification, machine learning, document retrieval
systems, statistics, and data analysis. The most widely used
algorithm for nearest neighbor search is the 𝐾 dimensional
tree (Kd tree) [26–30]. This works well for exact nearest
neighbor search in low dimensional data but quickly loses its
effectiveness as dimensionality increases. In high dimensions
to find the nearest neighbor may require searching a very
large number of nodes. However, solving this problem in high
dimensional spaces seems to be a very difficult task and there
is no algorithm that performs significantly better than the
standard brute-force search. To address this problem, Anan
and Hartley [31] have investigated the following strategies:
(1) They create 𝑚 different Kd trees each with a different
structure in such a way that searches in the different trees
will be (largely) independent. (2) With a limit of 𝑛 nodes to
be searched, they break the search into simultaneous searches
among all the𝑚 trees.On average, 𝑛/𝑚nodeswill be searched
in each of the trees. (3) The principal component analysis
is used to rotate the data to align its moment axes with
the coordinate axes. Data will then be split up in the tree
by hyperplanes perpendicular to the principal axes. They
have written that either by using multiple search trees or
by building the Kd tree from data realigned according to
its principal axes, search performance improves and even
improves further when both techniques are used together.

To overcome the above problem, we have used the
approximate nearest neighbor search approach, in which the
randomized trees are built by choosing the split dimension
randomly from the first 𝑑 dimensions on which data has the
greatest variance and each tree is constructed independently
[32]. In proposed MOLGC algorithm, instead of always
splitting on the maximally variant dimension, each tree
selects randomly among the top fivemost variant dimensions
at each level. When searching the trees, a single priority
queue is maintained across all the randomized trees so that
search can be ordered by increasing distance to each bin
boundary. The degree of approximation is determined by
examining a fixed number of leaf nodes, at which point the
search is terminated and the best candidates returned. In
the multiple randomized Kd trees based nearest neighbor
search technique, the data points 𝑋 = 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
are

preprocessed into a metric space 𝑆, so that, given any query
point 𝑞 ∈ 𝑋, the nearest or generally 𝑘 nearest points of 𝑥 to
𝑞 can be reported efficiently. In proposed MOLGC algorithm
to find line symmetric distance of a particular point 𝑥

𝑖
with

respect to the symmetrical line of cluster 𝐶
𝑘
, we have to find

the nearest neighbors of𝑥
𝑗
(where𝑥

𝑗
= 2×𝑝

𝑖
−𝑥
𝑖
for 1 ≤ 𝑖 ≤ 𝑛

and 1 ≤ 𝑗 ≤ 𝑛). Therefore the query point 𝑞 is set equal
to 𝑥
𝑗
. After getting the 𝑘 nearest neighbors of 𝑥

𝑗
, the line

symmetrical distance of 𝑥
𝑖
to the symmetrical line of cluster

𝐶
𝑘
is calculated by using (22).
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Begin
Generate the initial population P/∗ Popsize = |𝑃|∗/
while (the termination criterion is not satisfied)

for 𝑖 = 1 to 𝑃
Assign the points based on line symmetry based technique
Call Procedure: Point assignment based on proposed line symmetry distance() to compute
the fitness of the chromosome
Compute objective functions for current chromosomes
select the chromosomes to apply genetic operators
Apply crossover operation with probability 𝑝

𝑐

Apply mutation operator to the selected chromosome with mutation probability 𝑝
𝑚

Compute objective functions for new offsprings
end for

end while
Select the best solution from population
End

Algorithm 2: Steps of proposed algorithm.

4. Multiobjective Line Symmetry Based
Genetic Clustering Technique

In this section, a multiobjective genetic clustering technique
using the proposed line symmetry based distance is pro-
posed. The algorithm is known as multiobjective line sym-
metry based genetic clustering (MOLGC).The subsections of
this section are organized as follows.

4.1. Chromosome Representation. In proposed algorithm, the
numerical feature values of all cluster centers are encoded into
a real coded chromosome as a clustering solution.The length
of a particular chromosome 𝑐 is 𝑙

𝑐
, given by 𝑙

𝑐
= 𝑑×𝐾, where𝑑

is the dimension of the data set and𝐾 is the number of cluster
centers encoded in that chromosome.

For example a chromosome representation (5.5 3.5
4.2 4.0 2.5 3.5 6.2 7.3 1.5 2.5 3.5 4.5) has three clus-
ter centers in four dimensional feature space. The encoded
three clusters are (5.5 3.5 4.2 4.0), (2.5 3.5 6.2 7.3), and
(1.5 2.5 3.5 4.5). For a variable-length chromosome rep-
resentation, each chromosome has the initial length 𝑙

𝑐
. The

number of clusters, denoted by 𝐾, is randomly generated
in the range [𝐾min, 𝐾max]. Here 𝐾min is chosen as 2, and
𝐾max is chosen to be √𝑛, where 𝑛 is the size of the data set.
Their after 𝐾-means algorithm is executed with the set of
centers encoded in each chromosome. The resultant centers
are used for replacing the centers in the corresponding
chromosomes. The steps of proposed MOLGC algorithm are
given in Algorithm 2.

4.2. Fitness Computation. The fitness of an individual indi-
cates the degree of suitability of the solution it represents. In
general, the fitness of a chromosome is evaluated using the
objective function of the problem. The first objective of the
clustering problem considered in this paper is to maximize
the similarity within each cluster and the dissimilarity among
clusters. The second objective is to detect clusters based
on line symmetry distance. In this paper, two objective

functions, the Davies-Bouldin (DB) index [33] and proposed
line symmetry distance, are used to evaluate the fitness of a
chromosome.The DB index is used to find clusters which are
compact and well separated by minimizing the intracluster
distance while maximizing the intercluster distance. DB
index is the ratio of the sum of within cluster scatter 𝑆

𝑖,𝑞

of cluster 𝐶
𝑖
to between cluster separations. Within cluster

scatter 𝑆
𝑖,𝑞
of cluster 𝐶

𝑖
is defined as

𝑆
𝑖,𝑞
= (

1

𝐶
𝑖

∑

𝑥∈𝐶
𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑐𝑖
󵄩󵄩󵄩󵄩

𝑞/2

)

1/𝑞

, (23)

where 𝑐
𝑖
denotes the cluster center of cluster𝐶

𝑖
. Cluster center

𝑐
𝑖
is computed as

𝑐
𝑖
=
1

𝑛
𝑖

∑

𝑥∈𝐶
𝑖

𝑥, (24)

where 𝑛
𝑖
denotes the number of the objects belonging to

cluster 𝐶
𝑖
. The within cluster scatter 𝑆

𝑖,𝑞
denotes the 𝑞th root

of the 𝑞th moment of the objects belonging to cluster 𝐶
𝑖
with

respect to their mean. The distance between clusters 𝐶
𝑖
and

𝐶
𝑗
is denoted as 𝑑

𝑖𝑗
and is defined as 𝑑

𝑖𝑗
= 𝑑
𝑒
(𝑐
𝑖
, 𝑐
𝑗
), where

𝑑
𝑒
stands for Euclidean distance between the centroids 𝑐

𝑖
and

𝑐
𝑗
of the clusters 𝐶

𝑖
and 𝐶

𝑗
, respectively. Then, DB index is

defined as

DB = 1
𝑘

𝑘

∑

𝑖=1

𝑅
𝑖,𝑞
. (25)

Here,

𝑅
𝑖,𝑞
= max
𝑖,𝑖 ̸=𝑗

{

𝑆
𝑖,𝑞
+ 𝑆
𝑗,𝑞

𝑑
𝑖𝑗

} , (26)

where 𝑘 corresponds to the number of selected clusters. An
individual cluster index is taken as the maximum pairwise
comparison computed as the ratio of the sumofwithin cluster
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Procedure: Fitness( ) //Fitness computation of chromosome
Assign the data points based on the procedure line symmetry
𝑓 = 0
for 𝑘 = 1 to 𝐾 do
for each data point 𝑥

𝑖
, 𝑖 = 1, . . ., 𝑛 and 𝑥

𝑖
∈ 𝐶
𝑘
do

𝑓 = 𝑓 + 𝑑ls(𝑥𝑖, 𝐶𝑘)
end for

end for

Algorithm 3: The procedure of the fitness computation.

dispersions from the two partitions divided by a measure
of the between cluster separation. Smaller values for DB
index correspond to good clusters. We set the fitness 𝐹

𝑖
of

chromosome 𝑖 to be equal to 1/DB
𝑖
, where DB

𝑖
is the DB

index of individual 𝑖. The second objective function is based
on proposed line symmetry distance. The procedure of the
fitness computation is given in Algorithm 3.

The fitness function of the chromosomes fitls is defined as
the inverse of 𝑓; that is,

fitls =
1

𝑓
. (27)

4.3. Genetic Operators. In this subsection, genetic operators
used in proposed clustering algorithm are discussed. These
genetic operators pass genetic information between subse-
quent generations of the population.

4.3.1. Selection. Pareto based selection is used to select fitter
solutions in each step of the evolution. It is a stochastic selec-
tionmethodwhere the selection probability of a chromosome
is proportional to the value of its fitness [34]. The fitness
for a chromosome chrom, denoted by fitness (chrom), is
converted from its Pareto count (or dominance count) of 𝑥
in the whole population. The probability that the individual
chrom is selected from the population is denoted by

𝑝
𝑟
(𝑖) =

fitness (chrom)
∑
𝑃

𝑖=1
chrom

𝑖

, (28)

where 𝑃 is the population size; comparing with the conven-
tional roulette wheel selection method that is directly based
on the fitness of solutions, Pareto-dominance based selection
method can lower the selection pressure and increase the
chances of the subspaces with low fitness to be selected into
next population.

4.3.2. Crossover. Crossover is a probabilistic process that
exchanges information between two parent chromosomes for
generating two child chromosomes [34]. For chromosomes
of length 𝑙

𝑐
, a random integer, called the crossover point, is

generated in the range [1, 𝑙
𝑐
−1]. The portions of the chromo-

somes lying to the right of the crossover point are exchanged
to produce two offspring. Let parent chromosomes𝐶

1
and𝐶

2

encode 𝑘
1
and 𝑘
2
cluster centers, respectively. 𝑙

1
, the crossover

point in 𝐶
1
, is generated as 𝑙

1
= rand() mod 𝑘

1
. Let 𝑙

2
be

the crossover point in𝐶
2
, and itmay vary in between [LB(𝑘

2
),

RB(𝑘
2
)], where LB() and RB() indicate the left and right

bounds of the range of 𝑘
2
, respectively. LB(𝑘

2
) and RB(𝑘

2
) are

given by

LB (𝑘
2
) = min [2,max [0, 2 − (𝑘

1
− 𝑙
1
)]] ,

RB (𝑘
2
) = [𝑘

2
−max [0, 2 − 𝑙

1
]] .

(29)

Therefore 𝑙
2
is given by

𝑙
2
=

{{{{

{{{{

{

LB (𝑙
2
) + rand () mod (RB (𝑙

2
) − LB (𝑙

2
)) ,

if RB (𝑙
2
) ≥ LB (𝑙

2
)

0 otherwise.

(30)

As an example, let two chromosomes 𝐶
1
(10 20 15 25)

and𝐶
2
(15 30 18 32 19 35 25 45 30 50) be with number of

2 and 5 clusters. Now we can apply crossover operation on𝐶
1

and 𝐶
2
as

𝐶
1
= (10 20 15 25) ,

𝐶
2
= (15 30 18 32 19 35 25 45 30 50) .

(31)

The crossover point in 𝐶
1
is generated as

𝑙
1
= 5 mod 2 = 1, (32)

where 5 is random number generated by rand() function.
The crossover point in 𝐶

2
varies in between LB(𝑙

2
) = min[2,

max[0, 2 − (2 − 1)]] = 1 and RB(𝑙
2
) = [5 −max[0, 2 − 1]] = 4.

The crossover point in 𝐶
2
is 𝑙
2
= LB(𝑙

2
) + rand() mod

(RB(𝑙
2
) − LB(𝑙

2
)) = 1 + 5 mod (4 − 1) = 1 + 2 = 3

𝑙
1

𝐶
1
(10 20 | 15 25) 𝑙

2

𝐶
2
(15 30 18 32 19 35 | 25 45 30 50) .

(33)

The offspring 𝐶
3
and 𝐶

4
generated after crossover opera-

tion are

Offspring 𝐶
3
(10 20 25 45 30 50) ,

Offspring 𝐶
4
(15 30 18 32 19 35 15 25) .

(34)

Crossover probability is selected adaptively as in [35]. Let
𝑓max be themaximum fitness value of the current population,
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𝑓 the average fitness value of the population, and𝑓󸀠 the larger
of the fitness values of the solutions to be crossed. Then the
probability of crossover, 𝑝

𝑐
, is calculated as

𝑝
𝑐
= 𝑘
1
×

(𝑓max − 𝑓
󸀠
)

(𝑓max − 𝑓)
, if 𝑓󸀠 > 𝑓,

𝑝
𝑐
= 𝑘
3
, if 𝑓󸀠 ≤ 𝑓.

(35)

Here, the values of 𝑘
1
and 𝑘
3
are equal to 1.0 [35]. Clearly,

when 𝑓max = 𝑓 then 𝑓󸀠 = 𝑓max and 𝑝𝑐 will be equal to 𝑘3.
The value of𝑝

𝑐
increases when the chromosome is quite poor.

In contrast if 𝑝
𝑐
is low it means chromosome is good. It will

prevent the proposed MOLGC algorithm from getting stuck
at local optimum.

4.3.3. Mutation. Each cluster center in a chromosome is
changed with a random variable generated from a Lapla-
cian distribution [18]. This distribution is characterized by
location 𝜇 (any real number) and scale 𝛿 parameters. The
probability density function of Laplace (𝑎, 𝑏) is

𝑝 (𝑥) =
1

2𝑏
𝑒
−|𝑥−𝑎|/𝑏

, (36)

where the scaling parameter 𝑏 sets the magnitude of pertur-
bation that is referred to as the diversity. Here, parameter 𝑎
denotes the location valuewhich is to be perturbed.We set the
scaling parameter 𝑏 equal to 1.0 in our experimental results. In
thismutation operation the old value at themutation position
of a chromosome is replaced with newly generated random
value using Laplace distribution. The mutation operation
is applied for all dimensions of data set independently.
The mutation probability 𝑝

𝑚
is selected adaptively for each

chromosome as in [35]. The expression is given below:

𝑝
𝑚
= 𝑘
2
×
(𝑓max − 𝑓)

(𝑓max − 𝑓)
, if 𝑓 > 𝑓,

𝑝
𝑚
= 𝑘
4
, if 𝑓 ≤ 𝑓,

(37)

where 𝑘
2
and 𝑘

4
are equal to process 0.5. The adaptive

mutation process assists genetic algorithm to come out of
local optimum. When 𝑓max = 𝑓 value decreases then 𝑝

𝑐

and 𝑝
𝑚

both will be increased. As a result GA will come
out of local optimum. It will also happen for the global
optimum and may result in interference of the near optimal
solutions. As a result genetic algorithm never converges to
the global optimum. But the values of adaptive crossover
probability 𝑝

𝑐
and adaptive mutation probability 𝑝

𝑚
will be

higher for low fitness solutions and will get low values for
higher fitness solutions. The high fitness solutions aid in
convergence of the genetic algorithm and the low fitness
solutions prevent the genetic algorithm from getting stuck
at a local optimum. It may be possible for a solution with
highest fitness value; 𝑝

𝑐
and 𝑝

𝑚
are both 0. As a result the

best solution is transferred into the next generation without
crossover and mutation. For selection operator this may lead
to an exponential growth of the solution in the population

and may cause premature convergence. To overcome the
above problem, a default mutation rate (of 0.01) is kept for
every solution in the proposed algorithmMOLGC.

4.4. Termination Criterion. The proposed multiobjective
clustering algorithm has been executed for a fixed number
of generations. The fixed number is supplied by the user for
terminating the algorithm. After termination, the algorithm
gives the best string of the last generation that provides the
solution to the clustering problem.

5. Experimental Evaluation

The experiments reported in this section were performed
on a 2.0GHz Core 2 Duo processors with 2GB of memory.
We have tested proposed MOLGC algorithm on both
real and synthetic data. The qualities of clustering results
are measured by adjusted Rand index. We compared the
performance of SBKM, MOCK, and MOLGC algorithms.
The source code of SBKM is available on Ref. http://mail
.tku.edu.tw/chchou/others/SBKM.rar. The source code for
the MOCK algorithm is obtained from Ref. (http://per-
sonalpages.manchester.ac.uk/mbs/julia.handl/mock.html).
For the purpose of comparison, another multiobjective
clustering technique, MOCK, is also executed on the above
mentioned data sets with default parameter settings. In
order to show the effectiveness of the proposed MOLGC
clustering technique over existing symmetry based clustering
techniques, a symmetry based 𝐾-means (SBKM) algorithm
is executed on both real and synthetic data.

5.1. Parameter Setting. The proper setting of parameters
in genetic algorithm is crucial for its good performance.
Different parameter values might yield very different results.
A good setting for algorithm may give best solution within
a reasonable time period. In contrast, a poor setting might
cause the algorithm to be executed for a very long time
before finding a good solution. Sometimes it may so happen
that it is not able to find a good solution at all. Grefenstette
[36] has used genetic algorithm to investigate the optimal
parameters of genetic algorithms. He has reported the best
parameter values for GA; these are population size = 30,
number of generations = not specified, crossover rate of 0.9,
and mutation rate of 0.01. However, the selection of optimal
parameters in GA is domain dependent and relies on the
specific application areas. Below we justify how the used
parameters are selected in MOLGC.

(1) Population size: Goldberg [37] has theoretically ana-
lyzed that the optimal population size increases
exponentially and is rather large for even moderate
chromosome lengths. It has been shown in [37]
that the number of schemata processed effectively is
proportional to 𝑛3, where 𝑛 is the population size.This
seems to justify the selection of large population size.
However, the larger the population size, the longer the
genetic algorithm takes to compute each generation.
Motivated by above discussion, we set population
size = 50 in our proposed algorithm (MOLGC).
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(2) Number of generations: A GA generally converges
within a few generations. The pure selection con-
vergence times are 𝑂 (log 𝑁) generations, where 𝑁
is the size of the population. Thus GA generally
searches fairly quickly. In [37] it is mentioned that
for a given adequate population size if some linkage
knowledge is incorporated into the chromosomes
then it is expected that mixing of good building
blocks can take place before convergence. Thus it is
important to detect near-uniformity of the population
and terminate the GA, before wasting function evalu-
ations on an inefficient, mutation-based search. So we
set number of generations = 50 (executing MOLGC
further did not improve its performance).

(3) Initialization of population: It is customary to initial-
ize genetic algorithm with a population of random
individuals. But sometimes previously known (good)
solutions can be used to initialize a fraction of the
population and this results in faster convergence
of GA. In the proposed MOLGC, after randomly
generating the cluster centers, some iterations of 𝐾-
means algorithm are executed to separate the cluster
centers as much as possible.

(4) Selection of crossover and mutation probabilities:
These are two basic parameters of GA. The crossover
operation is performed based on crossover probabil-
ity (𝜇
𝑐
). If 𝜇

𝑐
= 0, then child offspring is the same

copy of parents. If 𝜇
𝑐
> 0, then offspring is result

of crossover operation on parents chromosome. If
𝜇
𝑐
= 1, then all offspring are made by crossover.

Crossover operation is performed so that good fitness
value parent chromosomes can be combined in the
offspring to result in potentially improved solutions.
However, it is good to leave some parts of population
to survive for the next generation.Mutation probabil-
ity (𝜇
𝑚
) determines how often parts of a chromosome

are mutated. If there is no mutation, offspring is
taken after crossover (or copy) without any change.
If mutation is performed (i.e., 𝜇

𝑚
> 0), a part of

a chromosome is changed. If mutation probability
is 100%, the whole chromosome is changed; if it is
0%, nothing is changed. Mutation is made to prevent
GA from falling into local optima. But it should
not occur very often; otherwise GA will change to
random search. In MOLGC initially the mutation
probability and crossover probability were kept fixed.
We obtained good results with combination of 𝜇

𝑐
=

0.8 and 𝜇
𝑚
= 0.01.

The parameters used for proposed MOLGC algorithm
in our experimental study are given in Table 1. Apart from
the maximum number of clusters, these parameters are kept
constant over the entire range of data sets in our comparison
study. In this comparison study, the SBKM algorithm is
executed for 50 iterations.The parameter 𝜃 is chosen equal to
0.18 for all data sets. For MOCK algorithm the total number
of generation is kept equal to 50.

Table 1: Parameter setting for proposed MOLGC algorithm.

Parameter Setting
Number of generations 50
Population size 50
Number of clusters 𝐾min to 𝐾max [2 to 20]
Crossover probability (𝑝

𝑐
) 0.8

Mutation probability (𝑝
𝑚
) 0.01

In order to evaluate the performance of the proposed
multiobjective genetic clustering algorithm more objectively,
eight artificial data sets and three real data sets are used.

5.2. Artificial Data Sets. The artificial data set-1, data set-
2, data set-3, and data set-4 are obtained from [7, 17]
and remaining data sets were generated by two data
generators (http://personalpages.manchester.ac.uk/mbs/julia
.handl/generators.html).These generators permit controlling
the size and structure of the generated data sets through
parameters, such as number of points and dimensionality of
the data set.

(1) Data set-1: This data set, used in [7], contains 300
points distributed on two crossed ellipsoidal shells.
This is shown in Figure 9(a).

(2) Data set-2: This data set, used in [7], is combination
of ring shaped, compact, and linear clusters. The total
number of points in it is 300. The dimension of this
data set is two. This is shown in Figure 9(b).

(3) Data set-3: This data set, used in [7], consists of 250
data points distributed over five spherically shaped
clusters. This is shown in Figure 9(c).

(4) Data set-4: This data set, used in [17], consists of 1000
data points distributed over four square clusters. This
is shown in Figure 9(d).

(5) Data set-5: This data set contains 10 dimensional 838
data point’s distributed over Gaussian shaped four
clusters.

(6) Data set-6: This data set consists of 10 dimensional
3050 data points distributed overGaussian shaped ten
clusters.

(7) Data set-7: This data set is a 50 dimensional data
set and it consists of 351 data points distributed over
ellipsoid shaped four clusters.

(8) Data set-8: This data set contains 50 dimensional
2328 data points distributed over ellipsoid shaped ten
clusters.

The real data sets are obtained from UCI repository
(http://archive.ics.uci.edu/ml/). For experimental results four
real data sets are considered.

(1) Iris: Iris data set consists of 150 data points distributed
over three clusters. Each cluster has 50 points. This
data set represents different categories of irises char-
acterized by four feature values. It has three classes,
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Figure 9: (a) The data set containing two crossed ellipsoidal shells. (b) The data set containing ring shaped, compact, and linear clusters. (c)
The data set containing five spherically shaped clusters. (d) The data set containing four linear clusters.

Setosa, Versicolor, and Virginica, among which the
last two classes have a large amount of overlap while
the first class is linearly separable. The sepal area is
obtained by multiplying the sepal length by the sepal
width and the petal area is calculated in an analogous
way.

(2) Cancer: Wisconsin breast cancer data set consists of
683 sample points. Each pattern has nine features
corresponding to clump thickness, cell size unifor-
mity, cell shape uniformity, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, nor-
mal nucleoli, and mitoses.There are two categories in
the data: malignant and benign. The two classes are
known to be linearly separable.

(3) Wine: This is the Wine recognition data consisting
of 178 instances having 13 features resulting from a
chemical analysis of wines grown in the same region

in Italy but derived from three different cultivars.The
analysis determined the quantities of 13 constituents
found in each of the three types of wines.

(4) Diabetes:This is the diabetes data set consisting of 768
instances having 8 attributes.

5.3. Evaluation of Clustering Quality. To compare the perfor-
mance of all three algorithms (SBKM,MOCK, andMOGLC)
adjusted Rand index technique [38] is used. Let 𝑛

𝑙𝑘
be the

number of objects that are in both class 𝑢
𝑙
and cluster V

𝑘
. Let

𝑛
𝑙
and 𝑛

𝑘
be the number of objects in class 𝑢

𝑙
and cluster V

𝑘
,

respectively. Under the generalized hyper geometric model,
it can be shown that

𝐸[∑

𝑙,𝑘

(

𝑛
𝑙𝑘

2
)] =

[∑
𝑙
(
𝑛
𝑙.

2
) ⋅ ∑
𝑘
(
𝑛
𝑘.

2
)]

(
𝑛

2 )
. (38)
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The adjusted Rand index [38] can be simplified to

∑
𝑙,𝑘
(
𝑛
𝑙𝑘

2
) − [∑

𝑙
(
𝑛
𝑙.

2
) ⋅ ∑
𝑘
(
𝑛
𝑘.

2
)] / (
𝑛

2 )

(1/2) [∑
𝑙
(
𝑛
𝑙.

2
) + ∑
𝑘
(
𝑛
𝑘.

2
)] − [∑

𝑙
(
𝑛
𝑙.

2
) ⋅ ∑
𝑘
(
𝑛
𝑘.

2
)] / (
𝑛

2 )
.

(39)

Adjusted Rand index is limited to the interval [0, 1]with a
value of 1 with a perfect clustering.The high value of adjusted
Rand index indicates the good quality of clustering result.
The average and standard deviation of adjusted Rand index
for data sets produced by 20 consecutive runs of SBKM,
MOCK, and MOLGC are depicted in Tables 2(a) and 2(b),
respectively.

5.4. Results on Artificial Data Sets

(1) Data set-1: We use this data set to illustrate that the
proposed algorithm incorporatedwith line symmetry
distance can also be applied to detect ring-shaped
clusters even if they are crossed. Figure 10(a) shows
the clustering result achieved by the SBKMalgorithm.
Figure 10(b) illustrates the final result achieved by the
MOCK algorithm. Figure 10(c) shows the clustering
result of the MOLGC algorithm. We find that the
SBKM algorithm cannot work well for this case. Both
MOLGC and MOCK clustering algorithms provide
𝐾 = 2 as the optimal number of clusters in different
runs. SBKM clustering algorithm discovers 𝐾 = 2
number of clusters but it is unable to perform the
proper partitioning from this data set in different
runs.

(2) Data set-2: This data set is a combination of ring-
shaped, compact, and linear clusters, as shown in
Figure 9(b). Most clustering algorithms based on
objective function minimization fail to detect this
kind of data sets because their performance depends
on the dissimilarity measures used to generate a par-
tition of the data sets. The clustering result achieved
by the SBKM algorithm is shown in Figure 11(a).
The final clustering result of the MOCK algorithm is
illustrated in Figure 11(b). Figure 11(c) shows that the
proposed algorithm works well for a set of clusters
of different geometrical structures. Both SBKM and
MOCK clustering algorithms provide 𝐾 = 3 number
of clusters in different runs but both are unable to
perform the proper partitioning from this data set.
MOLGC clustering algorithm detects𝐾 = 3 the opti-
mal number of clusters and the proper partitioning
from data set-2 in all consecutive runs.

(3) Data set-3: As can be seen from Figure 12(a) to
Figure 12(c), for this data set the SBKM clustering
technique is unable to detect appropriate number of
clusters. The best solution provided by MOCK is not
able to determine the appropriate number of clusters
from this data set. The corresponding partitioning
is shown in Figure 12(b). MOLGC algorithm is able
to detect 𝐾 = 5 the appropriate number of clusters
from this data set in different runs.The corresponding

partitioning is shown in Figure 12(c). MOCK splits
data points of one cluster into two clusters and
provides 𝐾 = 6 as the optimal number of clusters in
different runs. SBKM merges the all data points into
four clusters and provides 𝐾 = 4 as the appropriate
number of clusters.

(4) Data set-4: Both MOCK and MOLGC clustering
algorithms are able to detect 𝐾 = 4 the appropriate
number of clusters from this data set in different
runs. The clustering result obtained by the SBKM
algorithm is shown in Figure 13(a). The partitioning
identified by MOCK clustering algorithm is shown
in Figure 13(b). Figure 13(c) shows that the proposed
algorithm works well for this data set. SBKM again
overlaps the data points in two clusters and discovers
𝐾 = 4 as the optimal number of clusters. It is unable
to perform the proper partitioning from this data set
in different runs.

(5) Data set-5: The proposed MOLGC algorithm and
MOCK algorithms are able to detect 𝐾 = 4 the
appropriate number of clusters from this data set in
different runs. MOCK merges the data points of two
clusters and it is not able to detect proper partitioning
from this data set in all runs. SBKM is not able to
detect 𝐾 = 5 the appropriate number of clusters and
the proper partitioning from this data set in different
runs. It again splits data points of one cluster into two
clusters and provides 𝐾 = 5 clusters. As shown in
the Tables 2(a) and 2(b), the SBKM algorithm cannot
work well.

(6) Data set-6: From Tables 2(a) and 2(b), it is clear that
proposed MOLGC and MOCK algorithms perform
much better on this data set than the other algorithm
SBKM. SBKM detects 𝐾 = 12 clusters from this
data set. It is unable to provide the appropriate
number of clusters and the proper partitioning in
different runs. Both MOCK and MOLGC clustering
algorithms detect 𝐾 = 10 the appropriate number
of clusters from data set-6 in all runs. But MOCK
performs overlapping on some data points into two
clusters from this data set.

(7) Data set-7: As can be seen from Table 2(a), it is
noticeable thatMOLGC performs the best (providing
the highest adjusted Rand index value) for this data
set. The performance of MOCK is also better when
compared to SBKM algorithm. For this data set,
SBKM provides 𝐾 = 6 as the optimal number of
clusters. It splits the maximum dense clusters into
two clusters and overestimates the number of clusters
from this data set. Both MOCK andMOLGC cluster-
ing algorithms produce 𝐾 = 4 the proper number of
clusters and partitioning from this data set in different
runs. But adjusted Rand index value corresponding to
the partitioning obtained by MOLGC is higher than
that of MOCK (as shown in Table 2(a)).

(8) Data set-8: As shown in Table 2(a), the adjusted Rand
index ofMOLGC is the highest for this data set, while
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Table 2: (a) Average of adjusted Rand index for SBKM, MOCK, and MOLGC. (b) Standard deviation of adjusted Rand index for SBKM,
MOCK, and MOLGC.

(a)

Data sets Number of points Number of dimensions Number of clusters Average value of adjusted Rand index
(𝑁) (𝐷) (𝐾) SBKM MOCK MOLGC

Data set-1 200 2 2 0.7585 0.9840 0.9845
Data set-2 350 2 3 0.7491 0.9245 0.9515
Data set-3 250 2 5 0.5158 0.9510 0.9910
Data set-4 1000 2 4 0.8605 0.9815 0.9816
Data set-5 838 10 4 0.7225 0.9862 0.9895
Data set-6 3050 10 10 0.6585 0.9673 0.9795
Data set-7 351 50 4 0.6775 1.0000 1.0000
Data set-8 2328 50 10 0.6325 0.9950 0.9955
Iris 150 4 3 0.7685 0.9350 0.9810
Cancer 683 9 2 0.7877 0.9520 0.9740
Wine 178 13 3 0.6591 0.9575 0.9585
Diabetes 768 8 2 0.7111 0.9840 0.9910

(b)

Data sets Number of points Number of dimensions Number of clusters Standard deviation of adjusted Rand index
(𝑁) (𝐷) (𝐾) SBKM MOCK MOLGC

Data set-1 200 2 2 0.075 0.040 0.035
Data set-2 350 2 3 0.081 0.055 0.045
Data set-3 250 2 5 0.090 0.078 0.050
Data set-4 1000 2 4 0.121 0.095 0.055
Data set-5 838 10 4 0.125 0.085 0.060
Data set-6 3050 10 10 0.150 0.070 0.028
Data set-7 351 50 4 0.175 0.075 0.041
Data set-8 2328 50 10 0.190 0.090 0.035
Iris 150 4 3 0.080 0.036 0.022
Cancer 683 9 2 0.090 0.045 0.037
Wine 178 13 3 0.085 0.051 0.035
Diabetes 768 8 2 0.070 0.050 0.030

the performance of MOCK is second. However, the
performance of SBKM algorithm is found poor. For
this data set, both SBKMandMOCKdetect𝐾 = 11 as
the appropriate number of clusters but both clustering
algorithms are unable to produce the appropriate
partitioning from this data set in all consecutive runs.
The adjusted Rand index values reported in Tables
2(a) and 2(b) also show the poorer performance of
both SBKMandMOCKalgorithms from this data set.
MOLGC discovers 𝐾 = 10 as appropriate number
of clusters and the appropriate partitioning from this
data set in different runs.

5.5. Results on Real Data Sets

(1) Iris: As seen from Table 2(a), the adjusted Rand
index of MOLGC is the best for Iris, while the
performance of MOCK is second. However, it can be

seen from Tables 2(a) and 2(b) that the performance
of SBKM algorithm is found poor. SBKM, MOCK,
and MOLGC provide 𝐾 = 3 as the appropriate
number of clusters form this data set in all consecutive
runs. But SBKM detects overlapping of data points in
two clusters whereas the third cluster is well separated
from these two clusters.

(2) Cancer: As can be seen from Table 2(a), it is manifest
that MOLGC performs the best (providing the high-
est adjusted Rand index value) for this data set. The
performance of MOCK and MOLGC is similar, but
the performance of SBKM algorithm is found poor.
All clustering algorithms are able to provide 𝐾 = 2
the proper number of clusters from this data set in
different consecutive runs.

(3) Wine: From Tables 2(a) and 2(b), it is evident that
MOLGC performs the best for this data set. Both



Computational Intelligence and Neuroscience 15

0

2

4

6

8

−4 −2 0 2 4 6

(a)

0

2

4

6

8

−4 −2 0 2 4 6

(b)

0

2

4

6

8

−4 −2 0 2 4 6

(c)

Figure 10: (a) The clustering result achieved by the SBKM (data set-1). (b) The clustering result achieved by the MOCK (data set-1). (c) The
clustering result achieved by the MOLGC (data set-1).

MOLGC andMOCK clustering algorithms are able to
provide 𝐾 = 3 as the proper number of clusters from
this data set. The adjusted Rand index value obtained
by MOLGC is also the maximum (refer Table 2(a)).
SBKM is not able to perform the proper partitioning
from this data set.

(4) Diabetes: From Tables 2(a) and 2(b), it is again
clear that MOLGC performs much better than the
other two algorithms (providing the highest adjusted
Rand index value). MOLGC and MOCK clustering
algorithms detect 𝐾 = 2 as the optimal number of
clusters from this data set. Both clustering algorithms
are able to provide the proper partitioning from this
data set in different consecutive runs. SBKM is not
able to detect appropriate number of clusters in all
consecutive runs. The corresponding adjusted Rand
index value is reported in Tables 2(a) and 2(b).

It can be seen from the above results that the proposed
MOLGC clustering algorithm is able to detect the appropriate
number of clusters frommost of the data sets used here for the
experiments. The superiority of MOLGC is also established
on four real-life data sets which are of different characteristics
with the number of dimensions varying from 2 to 13. Results
on the eight artificial and four real-life data sets establish
the fact that MOLGC is well-suited to detect the number
of clusters from data sets having clusters of widely varying
characteristics.

The performance results reported in Tables 2(a) and
2(b) clearly demonstrate the clustering accuracy of SBKM,
MOCK, and MOLGC for artificial and real data sets. Table 3
indicates average computing time taken by 20 consecutive
runs of SBKM, MOCK, and MOLGC for clustering of the
above data sets. Results show SBKM and MOCK execution
time is increased linearly with increasing dimensions of data
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Figure 11: (a) The clustering result achieved by the SBKM (data set-2). (b) The clustering result achieved by the MOCK (data set-2). (c) The
clustering result achieved by the MOLGC (data set-2).

Table 3: Comparison of the execution time (in seconds).

Data sets SBKM MOCK MOLGC
Data set-1 10 15 18
Data set-2 12 18 20
Data set-3 25 35 40
Data set-4 40 45 48
Data set-5 70 52 50
Data set-6 1450 378 365
Data set-7 246 156 150
Data set-8 5300 656 640
Iris 10 14 14
Cancer 62 45 42
Wine 55 30 28
Diabetes 60 35 32

sets. The MOLGC shows better results in terms of reduction
in CPU time in comparison to SBKM and MOCK.

The proposed MOLGC clustering algorithm is able to
identify automatically the appropriate number of clusters in
different runs. MOLGC generates the entire set of solutions
with automatic determination of correct number of clusters
in a single run. It consistently generates the proper cluster
number from eight artificial and four real data sets in different
runs.

5.6. Reconstruction Criterion. In this paper a reconstruction
criterion is used to optimize the performance of the SBKM,
MOCK, and MOLGC clustering algorithms. A fuzzy C-
means (FCM) algorithm based clustering platform is consid-
ered in [39]. The objective of this work is to raise awareness
about the essence of the encoding and decoding processes
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Figure 12: (a) The clustering result achieved by the SBKM (data set-3). (b) The clustering result achieved by the MOCK (data set-3). (c) The
clustering result achieved by the MOLGC (data set-3).

completed in the context of fuzzy sets. The main design
aspects deal with the relationships between the number of
clusters and the reconstruction properties and the resulting
reconstruction error. Let 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} be a set of

𝑛 points in a multidimensional experimental data set. Now
three sets of prototypes (V

1
, V
2
, . . . , V

𝑐
) are generated by run-

ning the SBKM, MOCK, and MOLGC clustering algorithms
separately on experimental data. For any data point 𝑥

𝑖
, we

obtain its membership grades to the corresponding clusters.
They are denoted by 𝑢

𝑖𝑗
(𝑖 = 1, 2, . . . , 𝑐 and 𝑗 = 1, 2, . . . , 𝑛)

and are result of the minimization of the following objective
function:

𝑐

∑

𝑖=1

𝑛

∑

𝑗=1

𝑢
𝑚

𝑖𝑗
𝑑
2
(V
𝑖
, V
𝑗
) , (40)

where 𝑚 (𝑚 > 1) is a coefficient. The distance 𝑑 used in the
objective function is viewed as the Point Symmetry Distance

(PSD) in SBKM [7], nearest neighbor consistency (MOLGC),
and line symmetry distance in MOLGC:

𝑐

∑

𝑖=1

𝑛

∑

𝑗=1

𝑢
𝑖𝑗
= 1. (41)

By solving (41) through the use of Lagrange multipliers,
we arrive at the expression of the granular representation of
the numeric value:

𝑢
𝑖𝑗
=

1

∑
𝑐

𝑘=1
(𝑑 (V
𝑖
, 𝑥
𝑗
) /𝑑 (V

𝑘
, 𝑥
𝑗
))
2/(𝑚−1)

. (42)

Figure 14 highlights the essence of reconstruction crite-
rion. Our starting point is the result of clustering expressed
in terms of the prototypes and the partition matrix.
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Figure 13: (a) The clustering result achieved by the SBKM (data set-4). (b) The clustering result achieved by the MOCK (data set-4). (c) The
clustering result achieved by the MOLGC (data set-4).
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Figure 14: Scheme of the reconstruction criterion.

The main objective of this reconstruction process is to
reconstruct the original data using the cluster prototypes and
the partitionmatrix by minimizing the sum of distances [39]:

𝐹 =

𝑐

∑

𝑖=1

𝑛

∑

𝑗=1

𝑢
𝑚

𝑖𝑗
𝑑
2
(V
𝑖
, 𝑥
󸀠

𝑗
) , (43)

where 𝑥󸀠
𝑗
is the reconstructed version of 𝑥

𝑗
.We used the Point

Symmetry Distance (PSD) for SBKM [7], nearest neighbor
consistency for MOCK, and line symmetry distance for

MOLGC in (43) and zeroing the gradient of 𝐹 with respect
to 𝑥
𝑘
, we have

𝑥
󸀠

𝑗
=

∑
𝑐

𝑖=1
𝑢
𝑚

𝑖𝑗
V
𝑖

∑
𝑐

𝑖=1
𝑢
𝑚

𝑖𝑗

. (44)

The performance of reconstruction is expressed as

𝐸 =

𝑛

∑

𝐽=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑗
− 𝑥
󸀠

𝑗

󵄩󵄩󵄩󵄩󵄩

2

. (45)

We investigate the behavior of the clustering results quan-
tified in terms of the criteria of reconstruction for artificial
and real data sets. Table 4 presents the reconstruction error
values reported for clusters by 20 consecutive runs of SBKM,
MOCK, and MOLGC, respectively. In all experiments, the
value of the coefficient𝑚 was set to 2.
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Table 4: Reconstruction error for the artificial and real data sets.

Data set Cluster value SBKM MOCK MOLGC
Data set-1 2 19.50 14.35 11.45
Data set-2 3 17.15 13.72 10.25
Data set-3 5 15.45 10.45 9.14
Data set-4 4 16.15 11.25 9.45
Data set-5 4 17.12 12.25 10.50
Data set-6 10 11.15 8.50 5.25
Data set-7 4 17.10 12.35 8.06
Data set-8 10 12.50 8.55 3.85
Iris 3 15.82 12.47 9.25
Cancer 2 18.45 13.25 10.15
Wine 3 17.35 13.53 8.97
Diabetes 2 19.10 11.72 9.55

5.7. Statistical Significance Test. For a more careful com-
parison among SBKM, MOCK, and MOLGC, a statistical
significance test called Wilcoxon rank sum test [40] for
independent samples has been conducted at the 5% signif-
icance level. It is a nonparametric alternative to the paired
𝑡-test. It assumes commensurability of differences, but only
qualitatively: greater differences still count more, which is
probably desired, but the absolute magnitudes are ignored.
From the statistical point of view, the test is safer since
it does not assume normal distributions. Also, the outliers
have less effect on the Wilcoxon test than on the 𝑡-test. The
Wilcoxon test assumes continuous differences 𝑑

𝑖
; therefore

they should not be rounded to, say, one or two decimals
since this would decrease the power of the test due to a high
number of ties. When the assumptions of the paired 𝑡-test
are met, the Wilcoxon rank test is less powerful than the
paired 𝑡-test. On the other hand, when the assumptions are
violated, the Wilcoxon test can be even more powerful than
the 𝑡-test. Three groups corresponding to three algorithms
SBKM, MOCK, and MOLGC have been created for each
data set. Each group consists of the performance scores
(adjusted Rand index for the artificial data and real life data)
produced by 20 consecutive runs of corresponding algorithm.
The median values of each group for all the data sets are
shown in Table 5. The results obtained with this statistical
test are shown in Table 6. To establish that this goodness is
statistically significant, Table 6 reports the 𝑃 values produced
by Wilcoxon’s rank sum test for comparison of groups
(SBKM,MOCK, andMOLGC) at a time.As a null hypothesis,
it is assumed that there are no significant differences between
the median values of two groups. However, the alternative
hypothesis is that there is significant difference in the median
values of the two groups. All the𝑃 values reported in the table
are less than 0.05 (5% significance level).

The smaller the 𝑃 value, the stronger the evidence against
the null hypothesis provided by the data.The signed rank test
among algorithms MOLGC, SBKM, andMOCK for artificial
data and real life data provides a 𝑃 value, which is very
small. This is strong evidence against the null hypothesis,
indicating that the better median values of the performance
metrics produced by MOLGC are statistically significant and

Table 5:Median values of adjusted Rand index for artificial and real
data sets.

Data sets SBKM MOCK MOLGC
Data set-1 0.7599 0.9880 0.9895
Data set-2 0.7510 0.9297 0.9555
Data set-3 0.5199 0.9560 0.9940
Data set-4 0.8685 0.9875 0.9850
Data set-5 0.7280 0.9885 0.9915
Data set-6 0.6625 0.9690 0.9825
Data set-7 0.6805 1.0000 1.0000
Data set-8 0.6375 0.9915 0.9980
Iris 0.7715 0.9380 0.9875
Cancer 0.7901 0.9565 0.9780
Wine 0.6610 0.9605 0.9615
Diabetes 0.7157 0.9870 0.9925

Table 6: 𝑃 values produced by Wilcoxon Rank test for comparing
MOLGC with SBKM and MOCK.

Data sets 𝑃 values
SBKM MOCK

Data set-1 1.53E − 4 1.65E − 4
Data set-2 1.48E − 4 1.70E − 4
Data set-3 1.70E − 3 1.21E − 4
Data set-4 1.10E − 4 5.14E − 5
Data set-5 2.28E − 3 1.55E − 4
Data set-6 2.45E − 3 6.55E − 5
Data set-7 1.19E − 4 1.85E − 5
Data set-8 1.41E − 4 2.25E − 5
Iris 2.31E − 4 1.32E − 4
Cancer 1.35E − 5 1.65E − 5
Wine 1.20E − 4 5.75E − 5
Diabetes 1.30E − 4 1.25E − 4

have not occurred by chance. Similar results are obtained
for all other data sets and for all other algorithms compared
to MOLGC, establishing the significant superiority of the
MOLGC algorithm.

6. Conclusion

In this paper, a line symmetry based multiobjective MOLGC
algorithm is proposed. In the proposed algorithm, the points
are assigned to different clusters based on line symmetry
based distance. In this multiobjective genetic clustering
algorithm two objective functions, one based on a new line
symmetry based distance and another based on Euclidean
distance DB index, are used for computation of fitness. The
proposed algorithm can be used to group given data set
into a set of clusters of different geometrical structures.
Compared with the SBKM and the MOCK, the proposed
MOLGC algorithm adopts a line symmetry approach to
cluster data; therefore, the later approach is more flexible.
Most importantly, a modified version of the line symme-
try distance is proposed to overcome some limitations of
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the original version of the symmetry distance introduced
by Chung and Lin [8]. In addition, the MOLGC algorithm
outperforms the SBKM algorithm and the MOCK based on
the comparisons of the results presented in this paper. Tables
2(a) and 2(b) indicate the quality of best clustering results in
terms of adjusted Rand index generated by SBKM, MOCK,
and MOLGC for eight artificial data sets and four real data
sets. Table 3 tabulates the comparisons of the computational
time of the MOLGC algorithm and other popular clustering
algorithms. Obviously, the proposed algorithm needs more
computational resources than other algorithms. However,
the proposed algorithm provides a possible solution to
detect clusters with a combination of compact clusters, shell
clusters, and line-shaped clusters. It should be emphasized
that although the presentMOLGCalgorithmdemonstrates to
some extent the potential of detecting clusters with different
geometrical structures, there still remains a lot of research
space for improving the MOLGC algorithm, such as how to
reduce the computational time.

Finally, it is an interesting future research topic to extend
the results of this to face recognition.
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A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm
is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube
optimization (HO) algorithm.TheHO algorithm comprises the initialization and evaluation process, displacement-shrink process,
and searching space process.The initialization and evaluation process initializes initial solution and evaluates the solutions in given
hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and
the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these
processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions.
The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions.
The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for
optimization of both low and high dimensional functions.

1. Introduction

One of the basic problems of numerical optimization tech-
niques is the computing globally optimal solutions of high-
dimensional functions. The aim of optimization is the find-
ing of optimum values of the objective function through
learning the parameters of the function given in the defined
domains. The learning algorithms are basically divided into
two categories. The algorithms based on derivatives of the
cost functions (or objective functions) are called derivative
based learning algorithms, and the algorithms that do not
use the derivatives of the cost functions are called derivative
free learning. Recently various learning techniques have been
applied to obtain the solution of different optimization prob-
lems. However, derivative based learning techniques do not
fare well for finding global optimal solutions of the nonlinear
problems having many local optimal solutions. Derivative
free learning techniques and evolutionary computing are
effective optimization techniques that can be used to solve

“local minima” problem and find global optimum of the
problem.

In the literatures, various learning algorithms have been
applied to find global optimal solution. Monte-Carlo method
[1], Vegas algorithm [2], and Cat algorithm [3] are extensively
used for solution of different optimization problems. Some
of more used algorithms are genetic algorithms (GA) [4,
5], evolution strategies [6], differential evolution (DE) [7],
particle swarm optimization [8], and other nonevolutionary
methods such as simulated annealing [9], tabu search [10],
ant-colony optimization (ACO) [11], and artificial bee colony
algorithm [12].The integration of themethodswith computa-
tional intelligence techniques is widely used to solve different
practical problems of engineering and science [13–18].

Recently number of researches has been done on global
optimization, but there are still not many powerful tech-
niques for optimization of dense high-dimensional problems.
This is because the global optimization of high-dimensional
functions is computationally expensive, cost involved. These
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problems are characterized by many parameters, and many
iterations and arithmetic operations are needed for evalua-
tions of these functions. In practical applications, evaluation
of the function is often very expensive and large number of
function evaluations might not be very feasible [19].

Some learning algorithms have been designed for global
optimization of high-dimensional functions. Reference [20]
uses new variant of differential evolution (DE), named
DECC-I and DECC-II for high-dimensional optimization
(up to 1000 dimensions). The algorithms use several novel
strategies that focus on problem decomposition and sub-
components cooperation. An improved differential evolution
algorithm [21], self-adaptive differential evaluation algorithm
[22], differential ant-stigmergy [23], particle swarm opti-
mization [24, 25], modified multiscale particle swarm opti-
mization [26], surrogate-assisted evolutionary programming
[27], and group search optimizer (GSO) inspired by animal
behavior [28] are designed and applied for global optimiza-
tion of high-dimensional functions. As shown the designed
algorithms are basically modification, improvement, and
adaptation of existing evolutionary algorithms in particularly
DE, PSO, and GA. Using these methods the researchers try
to obtain reasonable results for optimization functions. In
spite of some success, these techniques are still not verymuch
suitable for high-dimensional global optimization problems
[19]. The proposed algorithms are more suitable for low-
dimensional problems.The dimension that was used in above
research papers was maximum 100 and some of them 1000.
In this paper, the novel method that solves high-dimensional
global optimization problems having sizes of 1000, 5000,
and 10000 is proposed. The proposed novel method is called
hypercube optimization (HO) algorithm. The HO algorithm
is based on designing hypercube, selecting the best elements
and applied them to multivariate systems for optimization
of the objective function. This algorithm approaches optimal
points using the best elements determined during learning.

The paper is organized as follows. Section 2 presents the
hypercube optimization algorithm proposed. The processes
used in the algorithm are described. Section 3 describes the
test functions used in simulations. Section 4 includes appli-
cation of the algorithm on test functions. Section 5 presents
comparative results of HO algarithm with some existing
methods. Finally, in Section 6 conclusions are presented.

2. Hypercube Optimization Algorithm

The HO algorithm is an evolutionary algorithm that takes
inspiration from the behaviour of a dove discovering new
areas for food in natural life. In such behaviour a flying dove
searches for new locations of food. The dove flies down in a
unique way and marks the area that may have food.The dove
flies up again and it chooses the previously marked areas and
changes and shrinks the sizes of the search area. In a search
process, the dove is not limited to a single area.The dove picks
new search area according to the density of food (domain for
the objective function). The dove stops flying and keeps in
mind the area which has food. After eating the food, the dove
is looking for a new search area.The dove jumps or flies down

Yes
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Initialization 
and evaluation 

Terminating 
condition?

Searching space 
process 

Display all 
optimal solutions

Start 

End 

B

A

C

Displacement-shrink
process

Figure 1: Flowchart of the hypercube optimization algorithm. Here
A is initialization and evaluation, B is displacement-shrink, and C is
searching space processes.

another area branch to find a new area. The dove does not fly
to another area when it gets to an area that has the most food.

In the paper, the hypercube is used to describe the
search area. Inside the search area, the value of an objective
function is evaluated according to the quantity and density
of food. Next, the functional distances between each of two
solutions are determined.This distance helps the algorithm to
determine the next new search area. This is performed using
the displacement-shrink process.

The hypercube optimization algorithm is a derivative-
free learning method based on evaluation of set of points
randomly distributed in an 𝑚-dimensional hypercube. After
evaluation the point shifts and contracts according to the
average between previous best points in order to determine
new best points inside the hypercube. The contraction is
greater when the movement is smaller to accelerate the
convergence. This operation will be reported as an optimal
solution at the end of the iterations.

TheHO algorithm is an intense stochastic search method
based on hypercube (HC) evaluation. The general structure
regarding the visualization of the flowchart of the hypercube
optimization algorithm is illustrated in Figure 1. As shown
from the figure, the HO algorithm includes three basic
processes.

Step A (initialization and evaluation process).The algorithm
begins with the generation of a hypercube and initializa-
tion of matrices and variables within the hypercube. Here
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the hypercube is represented by the center and size (radii).
The new points with uniform distribution are randomly
generated within the hypercube. It proceeds to the through
main loop, by which convergence to the global minimum is
sought, and it finishes when any of the termination criteria is
fulfilled.

Step B (displacement-shrink process). The displacement-
shrink process is deployed to find the new best point. This
is implemented by computing the average of the current best
point and the previous best one. The average between both
values is taken as a conservative measure to avoid excessive
fluctuations in the search.

Step C (searching space process).The searching space process
controls the movements of 𝑋 solutions according to the
defined interval (commonly [0, 0.1]). The searching space
process initializes a new hypercube and repeats the whole
process.

The initialization and evaluation process, displacement-
shrink process, and searching space process are repeated in
each learning iteration.While specific termination conditions
are satisfied the whole processes are continued to execute.

At each iteration, the newly generated hypercube changes
and shrinks its sizes until the optimum points are located.
Unlike other methods, like particle swarm optimization, the
points in the hypercube optimization algorithm do not move
according to a specific rule nor does themethod record them,
except for the best points. This permits a rapid selection of a
new best zone and an intense search in it.Thus, the hypercube
optimization algorithmdoes not perform any local search but
rather it is always global. This behavior allows the algorithm
to move rapidly to globally best points, as it does not waste
time in local searches.

Following in the next subsections the descriptions of each
step are presented in detail.

2.1. Hypotheses and Representation of Solution. As in all real-
valued single-objective unconstrained optimization algo-
rithms, we try to find theminimum (or equivalently themax-
imum) of a scalar objective function 𝑓

(𝑥)
and represent the

free parameters as a vector or point 𝑋 = (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑚
),

where 𝑚 is the dimension of the problem. Therefore, 𝑓 is a
mappingR𝑚 → R. We assume the following hypotheses.

(i) 𝑓 is available only as a black box; that is, we have
no knowledge or possibility of control of its interior
functions. We access 𝑓 only via input-output.

(ii) 𝑓 has a continuous domain inside the bounds; that is,
every point inside the bounds has a mapping by 𝑓.

(iii) 𝑓 is well-behaved in the domain, at least numeri-
cally; that is, it is continuous and presents certain
smoothness. This constrains overly noisy functions,
where there is no spatial correlation. But implicit is
also the assumption of some noisiness, whereby finite
differences in the neighborhood of a point are not
similar to the derivatives of the noiseless function.

Table 1: Initial points.

Symbol Definition
𝑚 Dimension of hypercube
𝑅 radii of HC
𝑋
𝑐

Center of 1st HC (zone)
𝑋 = 𝑋

0
Take initial point as 1st HC

LB, UB Lower and upper bounds of first HC
(zone)

𝑁 Number of points in each HC
𝑋 𝑁 × 𝑚 points, solutions
𝐹 𝑁 × 1 points, values of functions
𝐹best Best value of objective function
Create matrices:

𝑋(𝑁 ×𝑚)
𝐹(𝑁 × 1)
𝐹best: best value of objective function

(iv) The number of searching points (𝑁) is enough for
correctly sampling𝑓’s domain (related to the previous
point). Therefore, 𝑁 is directly related to the dimen-
sion of the problem (𝑚) and 𝑓’s smoothness.

2.2. Initialization and Evaluation Process. Initialization and
evaluation is the first block of hypercube optimization algo-
rithm. The starting conditions are

(1) initial (and global) boundaries for all points: these
boundaries are the sides of the hypercube;

(2) initialization of solutions inside the hypercube and
an initial random choice of a best point 𝑋

0
(if not

available, the central point of the initial hypercube
will be taken) in the given set.

Initial points of the hypercube optimization algorithm
are presented in Table 1. At the starting stage the data radii
and centre of the HC are generated randomly and these
parameters are used to initialize the first HC.Then uniformly
distributed 𝑁 searching points are generated inside the
hypercube. Using these points, the values of the objective
function are determined. Here the concept is to have an
approximate knowledge about the location of the lowest val-
ues of 𝑓. This initial sampling has to be sufficiently dense so
as to probe all the possible zones of higher and lower values;
otherwise, the algorithm can take the zone sought (global
optimum) as a simply better one (local optimum). As pointed
out above, this density (and hence the number of points 𝑁)
is a function of the dimension 𝑚 and the smoothness of the
function. The problems with higher dimension will require
higher𝑁.

The hypercube optimization algorithm begins with the
initialization of matrices and variables; it proceeds to the
main loop, by which convergence to the global minimum is
sought, and it finishes when any of the termination criteria
is fulfilled. The details regarding the visualization of the
flowchart initialization and evaluation of the HO algorithm
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Figure 2: Flowchart of the initialization and evaluation process.
Here B is displacement-shrink process and C is searching space
process.

are illustrated in Figure 2. After the start block, initial point
𝑋
0
is generated as the centre of the first hypercube (HC).

The initial value of the radii of the first HC is determined
according to the change interval of the test (objective)
functions. Next using the value of centre 𝑋

0
the dimension

of the hypercube is derived according to formula (1). After
creating the hypercube, the 𝑋 matrix is generated within
this hypercube. The size of 𝑋 is defined by (𝑁 × 𝑚). 𝑁 is
a number of generated points. We need to comment that in
future iterations (𝑖 = 2, 3, . . .) the hypercube is created using
the values of𝑋matrix.

We have illustrated this process as follows with initial
points to create them with default values.

(1) Dimension of hypercube is

𝑚 = length (𝑋
0
) . (1)

(2) Row vectors with lower and upper boundaries of HC
are

LB = min (𝑋 bounds) ,

UB = max (𝑋 bounds) .
(2)

(3) Dimensions of𝑚-dimensional HC’s are

𝐷 = UB − LB. (3)

(4) Central values are

𝑋
𝑐
=

(LB + UB)
2

. (4)

(5) Vector with radii of HC is

𝑅
0
=

𝐷

2
,

𝑅 = 𝑅
0
.

(5)

According to 𝑋matrix, the row vector with lower and upper
boundaries of the hypercube (2) is determined. Using these
boundaries, obtained from the first hypercube (zone), the
radii (4) and the centre (5) points of the next hypercube
are determined. 𝑋 matrix, defined as 𝑁 searching points,
is applied to determine the values of the test function, that
is, 𝐹(𝑓(𝑥)) matrix, as pointed out above in Table 1. In the
next step using the HC, the new uniformly random points
are derived. The number of points is defined according to
the dimension of the HC. These points form the new 𝑋new
matrix. This matrix is used to evaluate the test functions. As
a result of evaluation, the best (minimum) value of function
𝐹best and the corresponding 𝑋best points are determined. By
“best” we mean the vector that corresponds to the best fitness
(e.g., the lowest objective function value for a minimization
problem) in the entire population at 𝑖th iteration. The 𝑋best
point is improved (updated) using local search; that is,𝑋new

best =
𝑋best + 𝜌Δ𝐹. Here 0 ≤ 𝜌 ≤ 1, 𝐹 is the objective function.
The improvement is continued until Δ𝐹 becomes acceptably
small value less than a preset value (tol𝐹). The derived best
points are used to determine the centre and the radii of the
next hypercube. This operation is realized by calculating the
mean of the center of the last HC (𝑋last centre) and the previous
best (𝑋best) points; that is, (𝑋last centre + 𝑋best)/2. This process
is called “displacement.” As shown the created second HC is
derived from the previous HC and the sizes of the second
HC will be less than the sizes of the previous one. In future
operations, the last-secondHCwill be used to create the next-
third hypercube.

In summary, we can unify the evaluation and learning
processes as follows. When the new hypercube is initialized,
the function is evaluated at new points, randomly (with
uniform distribution) chosen from inside of the hypercube.
The new minimum is determined and compared with the
last minimum. If the new minimum is worse (greater) than
the previous one, then a new iteration will be started. If
the same value is repeated several consecutive times then
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the algorithm ends, and the best minimum is considered as
the global minimum.

After the above given initialization and evaluation pro-
cesses the implementation of displacement-shrink process
and searching space process is performed.The whole process
is repeated until specific termination conditions are satisfied.

2.3. Displacement and Shrink Process. The center of the next
hypercube will be just the average between the current best
point and the previous one; that is, (𝑋last centre + 𝑋best)/2.
The average between both values is taken as a conservative
measure to avoid excessive fluctuations in the search and
to prevent moving suddenly to a neighboring zone where
a lower value was found, but which perhaps is just a local
minimum. The radii of the new hypercube are determined
as 𝑅new = 𝑅old ∗ 𝑆. Here 𝑆 is a factor of convergence which is
defined in the next section (see (10)).

In addition to moving, the hypercube has to contract
in order to refine the search and to converge to a unique
and certain—assumed global—minimum.This contraction is
controlled by the movement of the average of best values. For
large displacements, there is no contraction, as we interpret
that the global minimum is still very uncertain. For small or
null displacements, the hypercube will shrink, as we interpret
this to mean that we are closer to the global minimum: the
contraction is greater for smaller movements. This derives
the fast convergence of the method, while it prohibits getting
stuck at undesired (local) minima.

The details regarding the visualization of the flowchart
of the displacement-shrink process of the hypercube opti-
mization algorithm is illustrated in Figure 3. At first, the
minimum of value of 𝐹best is compared with the new value
of 𝐹mean corresponding to the point mean = (𝑋last centre +
𝑋best)/2 determined as pointed out in the previous section. If
𝐹mean value is less than 𝐹best value then, in given iteration, 𝑋
displacement (or𝑋movement) is computed and normalized
twice: first each element of𝑋 is divided by the corresponding
initial range (and thus the displacement is transformed into a
unity-sided hypercube) and then that quantity is normalized
again, dividing it by the diagonal of hypercube √𝑚. These
operations are illustrated as follows:

(1) normalized𝑋
𝑛
(previous𝑋 for minimum):

𝑋
𝑛
=

(𝑋 − 𝑋
𝑐
)

𝐷
, (6)

(2) normalized𝑋min (current𝑋 for minimum):

𝑋min 𝑛 =
(𝑋min − 𝑋

𝑐
)

𝐷
, (7)

(3) normalized distance (should be bounded by 0 and
sqrt of𝑚):

𝑑
𝑛
=

sum ((𝑋
𝑛
− 𝑋min 𝑛)

2

)
0.5

𝐷
,

(8)
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Figure 3: Flowchart of the displacement-shrink process. Here A
is initialization and evaluation process and C is searching space
process.

(4) renormalized distance (should be bounded by 0–0.1):

𝑑
𝑛𝑛

=
𝑑
𝑛

√𝑚
. (9)

In the result of these operations, 𝑋
𝑛
points are shrunk

(become smaller) to the centre point 𝑋
𝑐
. These points are

used to evaluate the test functions again. In the next blocks
the hypercube continues moving and shrinking until one of
the following conditions are not met.
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(i) The change in consecutive 𝐹best values is smaller than
a preset value (tol𝐹), for a preset consecutive number
of times. This is also interpreted as convergence in 𝐹

space.

(ii) The same or worse 𝐹 value is found consecutively
a preset number of times. This is interpreted as
nonconvergence in 𝐹 space.

(iii) The change in best 𝑋 value (renormalized distance)
is smaller than a preset value (tol𝑋), for a preset
consecutive number of times. This is interpreted
as convergence in R𝑚 space. The whole process is
repeated until specific termination conditions are
satisfied.

(iv) The maximum number of iterations is reached: of
course, in this case convergence is not guaranteed,
as possibly lower values could be found with more
iteration.

Each condition is tested for thirty consecutive times. If
these conditions are not satisfied then the searching space
process will be initialized.

We need to notice that the movement of 𝑋 will not be
performed if the 𝐹mean value will be larger than 𝐹best value. In
such case, the searching space process will be initialized.

2.4. Searching Space Process. The searching space process
initializes new center and size (radii) in order to create new
hypercube. The objective function is evaluated at new points
which are randomly chosen from the hypercube and having
uniform distribution. The searching space process controls
the movements of 𝑋 according to the interval defined, in
particularly for 𝑋movements < 0.1. The value of 𝑋movement
is determined by 𝑑

𝑛𝑛
. The flowchart of the searching space

process of the HO algorithm is illustrated in Figure 4.
If the movement of𝑋 satisfies the condition then a factor

of convergence 𝑆 is calculated and updated at each iteration:

𝑆 = 1 − 0.2𝑒
−3𝑑
𝑛𝑛 , (10)

where 𝑑
𝑛𝑛

is computed by (9) and describes the normalized
distance moved by the average of last two best values of 𝑋.
Next the update of solutionswill be performed.The size (in all
the dimensions) of the hypercube is reduced by multiplying
by this factor. Thus, the hypercube reduces or maintains
its size for nontrivial movements and shrinks otherwise.
The whole process is repeated until specific termination
conditions are satisfied.

3. Test Functions

The proposed hypercube optimization algorithm is tested on
five continues test functions which are widely used in the lit-
eratures: Ackley path function, Rastrigin function, Rosenbrock
function, Griewank function, and Sphere function [19–23].
The test functions are more applicable for the experimental
evaluations ofmethods used in global optimization problems.
The designed algorithm is implemented in MATLAB.
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Figure 4: Flowchart of the searching space process. Here A is
initialization and evaluation process and B is displacement-shrink
process.

3.1. Ackley Path Function. Ackley path function is continuous,
scalable, and nonseparable and is an extensively multimodal
test function.

This test function is formulated as follows:

𝑓
1
(𝑥) = −20 exp(−0.2√

1

𝐷

𝐷

∑

𝑖=1

𝑥
𝑖

2)

− exp( 1

𝐷

𝐷

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒,

(11)

where𝐷 is a number of dimensions and 𝑥
𝑖
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
)

is𝐷 dimensional row vector.The test area is usually evaluated
in the interval of −32 ≤ 𝑥

𝑖
≤ 32, 𝑖 = (1, . . . , 𝐷). Global

minimum 𝑓(𝑥) = 0 is obtainable for 𝑥
𝑖
= (0, 0).

3.2. Rastrigin Function. Rastrigin function is continuous,
scalable, and separable and is highly multimodal global
optimization function.

This test function is formulated as follows:

𝑓
2
(𝑥) = 10𝐷 +

𝐷

∑

𝑖=1

(𝑥
𝑖

2
− 10 cos (2𝜋𝑥

𝑖
)) , (12)

where𝐷 is a number of dimensions and 𝑥
𝑖
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
)

is𝐷 dimensional row vector.The test area is usually evaluated
in the interval of −5.12 ≤ 𝑥

𝑖
≤ 5.12, 𝑖 = (1, . . . , 𝐷). Global

minimum 𝑓(𝑥) = 0 is obtainable for 𝑥
𝑖
= (0, 0).
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3.3. Rosenbrock Valley Function. Rosenbrock’s valley function
is known as the second function ofDe Jong.This test function is
continuous, scalable, naturally nonseparable, nonconvex, and
unimodal.

This test function is formulated as follows:

𝑓
3
(𝑥) =

𝐷−1

∑

𝑖=1

[100 (𝑥
𝑖+1

− (𝑥
𝑖
)
2

)
2

+ (𝑥
𝑖
− 1)
2

] , (13)

where D ≥ 2 is a number of dimensions and 𝑥
𝑖

=

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
) is 𝐷 dimensional row vector. The test area

is usually evaluated in the interval of −2.048 ≤ 𝑥
𝑖
≤ 2.048,

𝑖 = (1, . . . , 𝐷). Global minimum 𝑓(𝑥) = 0 is obtainable for
𝑥
𝑖
= (1, 1).

3.4. Sphere Function. The simplest benchmark function is
spheremodelwhich is also calledDe Jong’s function 1.This test
model is continuous, unimodal, and appearance of convex.

This test function is formulated as follows:

𝑓
4
(𝑥) =

𝐷

∑

𝑖=1

𝑥
𝑖

2
, (14)

where𝐷 is a number of dimensions and 𝑥
𝑖
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
)

is a dimensional row vector. The test area is usually evaluated
in the interval of −5.12 ≤ 𝑥

𝑖
≤ 5.12, 𝑖 = (1, . . . , 𝐷). Global

minimum 𝑓(𝑥) = 0 is obtainable for 𝑥
𝑖
= (0, 0).

3.5. Griewank Function. Griewank function is continuous,
scalable, nonseparable, and multimodal test function.

This test function is formulated as follows:

𝑓
5
(𝑥) =

1

4000

𝐷

∑

𝑖=1

𝑥
𝑖

2
−

𝐷

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1, (15)

where𝐷 is a number of dimensions and 𝑥
𝑖
= (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
)

is a dimensional row vector. The test area is usually evaluated
in the interval of −600 ≤ 𝑥

𝑖
≤ 600, 𝑖 = (1, . . . , 𝐷). Global

minimum 𝑓(𝑥) = 0 is obtainable for 𝑥
𝑖
= (0, 0).

4. Simulation Studies

The performance of the hypercube optimization algorithm
is tested on the five benchmark functions given above. The
benchmark functions 𝑓

1
÷ 𝑓
5
are evaluated by considering

the cases in which the problem dimensions are set as 1000,
5000, or even 10000 dimensions. At first the dimension is set
as 1000. The population size is also set to 100, 1000, or even
10000. We have summarized the best average fitness (e.g., the
lowest objective function value) and the average number of
the test function evaluations over successful 30 runs. For each
evaluation, the learning of the algorithm is continued 5000
iterations. The hypercube optimization algorithm has global
minimum that was obtained with much well convergence
process for these test functions.

No optimization algorithm guarantees convergence for
any function, but it is a good practice to test theHOalgorithm
for several benchmark functions and tune the parameters.
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Figure 5: The convergence graphic for the Ackley function with
dimension of 5000 and population of 100.

Therefore, we have tested the hypercube optimization
algorithmon a set of benchmark functions, and the algorithm
has yielded improved results, sometimes reaching the better
solution faster than well-established algorithms. The details
regarding the visualization of the test function results are
given below.

In the next step, the test functions are evaluated for the
cases in which the problem dimensions of 𝑓

1
÷ 𝑓
5
are set to

5000 or even 10000 dimensions. The population size is set
to 100. The convergence graphics have also been obtained
and averaged through evaluations over successful 30 runs.
The details of results regarding the visualization of the test
function are given as follows.

4.1. Ackley Path Function. The Ackley path function is an
extensively used multimodal test function. Figure 5 ilustrates
the convergence graphic of HO algorithm for 5000 dimen-
sions. The population size of the HO algorithm is almost
insensitive to the dimension of the problems. The minimum
of Ackley test function was obtained as 2.76𝑒 − 07.

Figure 6 depicts the convergence graphic of the HO algo-
rithm for the Ackley test function having 10000 dimensions.
The minimum value of the function was obtained as 1.16𝑒 −
06.

4.2. Rastrigin Function. The Rastrigin function is a typical
nonlinear multimodal function. This test function is a fairly
difficult problem for evolutinary algorithms due to the high
number of dimensions and large number of local minima.

Figure 7 depicts the convergence graphic of HO algo-
rithm for the Rastrigin test function having 5000 dimensions.
Theminimumwas obtained as 7.13𝑒 − 10. The HO algorithm
can find near-optimal solutions with much well convergence
with high dimension for this test function.
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Figure 6: The convergence graphic for the Ackley function with
dimension of 10000 and population of 100.
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Figure 7: The convergence graphic for the Rastrigin function with
dimension of 5000 and population of 100.

Figure 8. It depicts the convergence graphic for the test
function having 10000 dimensions. The minimum value of
function was obtained as 2.99𝑒 − 09.

4.3. Rosenbrock Function. TheRosenbrock function is a typical
naturally nonseparable, nonconvex, and unimodal. This test
function is also a fairly hard problem for evolutionary
algorithms.

Figure 9 depicts the convergence graphic for the Rosen-
brock test function having 5000 dimensions. The minimum
value of function was obtained as 1.15𝑒 − 08. The HO
algorithm can find optimal or near-optimal solutions with
muchwell convergence.This fact indicates thatHOalgorithm
is almost insensitive to the dimension of the problems.
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Figure 8: The convergence graphic for the Rastrigin function with
dimension of 10000 and population of 100.
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Figure 9: The convergence graphic for the Rosenbrock function
having dimension of 5000 and population of 100.

Figure 10 depicts the convergence graphic for the Rosen-
brock function having 10000 dimensions.Theminimumvalue
of function was obtained as 3.38𝑒 − 08.

4.4. Sphere Function. The Sphere function is a typical uni-
modal test function. Figure 11 depicts convergence graphic
of HO algorithm for the Sphere test function having 5000
dimensions. The minimum value of test function using HO
algorithm was obtained as 4.64𝑒 − 020.

In Figure 12, the convergence graphic of hypercube opti-
mization algorithm for the Sphere test function having 10000
dimensions is given. The minimum value was obtained as
2.40𝑒 − 016 with much well convergence. This test function
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Figure 10: The convergence graphic for the Rosenbrock function
having dimension of 10000 and population of 100.
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Figure 11: The convergence graphic for the Sphere function having
5000 dimensions and 100 populations.

is a fairly easy problem for finding the total optimum and in
the fast convergence.

4.5. Griewank Function. The Griewank function is also a
typical nonlinear multimodal function. This test function
is tested using many multiobjective evolutionary algorithms
[23].

Figure 13 depicts the convergence graphic for the
Griewank test function having 5000 dimensions. The
minimum value of function was obtained as 3.34𝑒 − 013.

In Figure 14, the minimum value of test function using
HO algorithm was obtained as 1.11𝑒 − 016 for 10000 dimen-
sions. The HO algorithm can find optimal or near-optimal
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Figure 12: The convergence graphic for the Sphere function having
10000 dimensions and 100 populations.
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Figure 13: The convergence graphic for the Griewank function
having dimension of 5000 and population of 100.

solutions with much well convergence with high dimension
for this test function.

5. Comparison

The hypercube optimization algorithm has yielded in general
quite better results, sometimes reaching the better solution
faster than well-established algorithms. The usage of mul-
tiobjective evolutionary algorithms allows us to find global
optimal solutions and avoid local optimum problem.

The simulation results of HO algorithm that was obtained
with test functions with different dimensions and averaged
over 30 runs are given in Table 2. Using the table we can see
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Figure 14: The convergence graphic for the Griewank function
having dimension of 10000 and population of 100.

Table 2: Results of the mean best functions values averaged over 30
runs obtained by HO algorithm.

Function Population Dimension The best Iterations

𝑓
1

100 1000𝑑 5.01𝑒 − 012 5000
1000 1000𝑑 2.46𝑒 − 013 5000
10000 1000𝑑 5.12𝑒 − 012 5000

𝑓
2

100 1000𝑑 1.83𝑒 − 010 5000
1000 1000𝑑 4.54𝑒 − 011 5000
10000 1000𝑑 3.63𝑒 − 011 5000

𝑓
3

100 1000𝑑 5.68𝑒 − 017 5000
1000 1000𝑑 8.16𝑒 − 017 5000
10000 1000𝑑 2.06𝑒 − 017 5000

𝑓
4

100 1000𝑑 1.56𝑒 − 059 5000
1000 1000𝑑 5.86𝑒 − 059 5000
10000 1000𝑑 1.12𝑒 − 072 5000

𝑓
5

100 1000𝑑 2.22𝑒 − 015 5000
1000 1000𝑑 6.32𝑒 − 015 5000
10000 1000𝑑 5.44𝑒 − 015 5000

that by increasing learning iterations from 1000 to 5000, the
performance of HOA is increased for functions𝑓

1
, 𝑓
2
, 𝑓
3
, and

𝑓
4
as 2.46𝑒 − 013, 4.54𝑒 − 011, 8.16𝑒 − 017, 6.32𝑒 − 015, and

5.86𝑒 − 059 correspondingly.
This chapter presents comparison of the performances of

the hypercube optimization algorithm, with the two popular
global optimization approaches, namely, genetic algorithm
(GA) and particle swarm optimization (PSO) acting on
above given four benchmark functions, namely, Ackley path
function, Rastrigin function, Rosenbrock function, and Sphere
function. These test functions are evaluated by considering
the cases in which the problem dimensions of 𝑓

1
, 𝑓
2
, 𝑓
3
, and

𝑓
4
are set as 𝐷 = 1000 for the 1000 iterations. The proposed

algorithm is tested by using above given test functions and
the main unknown parameters are determined.The values of

Table 3: Comparison of the results.

Function HO algorithm GA PSO Iterations
𝑓
1

1.07𝑒 − 003 7.87 9.02 1000
𝑓
2

6.07𝑒 − 004 1.07𝑒 + 04 1.40𝑒 + 04 1000
𝑓
3

5.13𝑒 − 002 1.12𝑒 + 03 6.58𝑒 + 06 1000
𝑓
4

1.16𝑒 − 008 3.45𝑒 + 03 5.50𝑒 + 03 1000

main parameters for GA and PSO used in this chapter can be
found in detail in [19, 29].

In Table 3, comparison of all the three algorithms for test
functions of 1000 dimensions is provided.

All the algorithms were tested for 1000 dimensions.
As evident from the results presented in Table 3, the HO
algorithm obtains better results (reflected in the average
fitness) than other techniques.The comparative results of the
algorithms demonstrate that the performance of HO algo-
rithm improves upon other well-known global optimization
techniques: GA and PSO.

6. Conclusion

This paper proposes the hypercube optimization algorithm
to solve multivariate systems for global optimization. The
designed algorithm is based on a hypercube evaluation
driven by convergence. The use of stochastic search method
approach allows it to speed up the learning of the system
and, respectively, to decrease training time of the system
with a faster convergence. The simulations have been carried
out using benchmarking functions, such as Ackley function,
Rastrigin function, Rosenbrock function, Sphere function, and
Griewank function. The computational results have demon-
strated that the performance of the system have considerably
increased in optimization problems for solving a set of global
optimization problems with large numbers of populations.
The population size of the HO algorithm is almost sensitive
to the dimension of the problems for these test functions.
The comparative results of HOA, GA, and PSO algorithms
demonstrate that the performance of HO algorithm is an
improvement upon other two global optimization tech-
niques.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] G. S. Fishman,Monte Carlo: Concepts, Algorithms, and Applica-
tions, Springer, New York, NY, USA, 1995.

[2] G. P. Lepage, “A new algorithm for adaptive multidimensional
integration,” Journal of Computational Physics, vol. 27, no. 2, pp.
192–203, 1978.

[3] D. J. Weiss and G. G. Kingsbury, “Application of computerized
adaptive testing to educational problems,” Journal of Educa-
tional Measurement, vol. 21, pp. 361–375, 1984.



Computational Intelligence and Neuroscience 11

[4] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley Publishing, 1989.

[5] J. H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor, Mich, USA, 1975.

[6] K. Deb, A. Anand, and D. Joshi, “A computationally efficient
evolutionary algorithm for real-parameter optimization,” Evo-
lutionary Computation, vol. 10, no. 4, pp. 371–395, 2002.

[7] R. Storn and K. Price, “Differential evolution—a simple and
efficient heuristic for global optimization over continuous
spaces,” Journal of Global Optimization, vol. 11, no. 4, pp. 341–
359, 1997.

[8] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, vol. 4, pp. 1942–1948, IEEE, Perth, Australia, Decem-
ber 1995.

[9] S. Kirkpatrick, J. Gelatt, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983.

[10] F. Glover and M. Laguna, Tabu Search, Kluwer Academic
Publishers, Boston, Mass, USA, 1997.

[11] M. Dorigo, Optimization, learning and natural algorithms
[Ph.D. thesis], Politecnico di Milano, Milano, Italy, 1992.

[12] D. Karaboga, “Artificial bee colony algorithm,” Scholarpedia,
vol. 5, no. 3, article 6915, 2010.

[13] R. H. Abiyev and M. Menekay, “Fuzzy portfolio selection using
genetic algorithm,” Soft Computing, vol. 11, no. 12, pp. 1157–1163,
2007.

[14] R. H. Abiyev, “Fuzzy wavelet neural network for prediction of
electricity consumption,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing: AIEDAM, vol. 23, no. 2,
pp. 109–118, 2009.

[15] T. Vidal, T. G. Crainic, M. Gendreau, N. Lahrichi, and W. Rei,
“A hybrid genetic algorithm formultidepot and periodic vehicle
routing problems,” Operations Research, vol. 60, no. 3, pp. 611–
624, 2012.

[16] X. Yang, C.-B. Hu, K.-X. Peng, and C.-N. Tong, “Load dis-
tribution of evolutionary algorithm for complex-process opti-
mization based on differential evolutionary strategy in hot
rolling process,” Mathematical Problems in Engineering, vol.
2013, Article ID 675381, 8 pages, 2013.

[17] L. Zhang, M. Zhang, W. Yang, and D. Dong, “Golden ratio
genetic algorithm based approach for modelling and analysis
of the capacity expansion of urban road traffic network,”
Computational Intelligence and Neuroscience, vol. 2015, Article
ID 512715, 9 pages, 2015.

[18] J.-T. Tsai, J.-H. Chou, and W.-H. Ho, “Improved quantum-
inspired evolutionary algorithm for engineering design opti-
mization,” Mathematical Problems in Engineering, vol. 2012,
Article ID 836597, 27 pages, 2012.

[19] C. Grosan and A. Abraham, “A novel global optimization tech-
nique for high dimensional functions,” International Journal of
Intelligent Systems, vol. 24, no. 4, pp. 421–440, 2009.

[20] Z. Yang, K. Tang, and X. Yao, “Differential evolution for high-
dimensional function optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation (CEC ’07), pp. 3523–
3530, IEEE, Singapore, September 2007.

[21] X. You, “Differential evolutionwith a newmutation operator for
solving high dimensional continuous optimization problems,”
Journal of Computational Information Systems, vol. 6, no. 9, pp.
3033–3039, 2010.

[22] J. Brest, A. Zamuda, B. Bošković, M. S. Maučec, and V. Žumer,
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This paper develops a new design scheme for the phase response of an all-pass recursive digital filter. A variant of particle swarm
optimization (PSO) algorithm will be utilized for solving this kind of filter design problem. It is here called the modified PSO
(MPSO) algorithm in which another adjusting factor is more introduced in the velocity updating formula of the algorithm in
order to improve the searching ability. In the proposed method, all of the designed filter coefficients are firstly collected to be
a parameter vector and this vector is regarded as a particle of the algorithm. The MPSO with a modified velocity formula will
force all particles into moving toward the optimal or near optimal solution by minimizing some defined objective function of
the optimization problem. To show the effectiveness of the proposed method, two different kinds of linear phase response design
examples are illustrated and the general PSO algorithm is compared as well. The obtained results show that the MPSO is superior
to the general PSO for the phase response design of digital recursive all-pass filter.

1. Introduction

An all-pass filter means that its magnitude response is
exactly equal to some constant value at all frequencies and
independent of frequencies.The function of the all-pass filter
is mainly to offer a phase modification without changing the
magnitude on a given filter. It is rather useful in the theory
of minimum-phase systems, in transforming frequency-
selective low-pass filters into other frequency-selective forms,
and in obtaining variable-cutoff frequency-selective filters [1].
Due to these advantages, the all-pass filter has been applied
in many signal processing applications, including the group-
delay equalization, complementary filter banks, multirate
filtering, and other fields [2–8]. A large number of methods
for designing all-pass filter have been developed in recent
years. In [2], for example, the author proposed a new design
method for an all-pass filter where it has a least squares or an
equiripple phase-error response. It is based on formulating
a weighted error between the desired and the actual phase
responses in a quadratic form. Filter coefficients can be solved
by using a Toeplitz-plus-Hankel matrix. In [3], an IIR all-
pass filter with equiripple phase response was designed based

on the eigenvalue problem and this design problem can be
formulated as the representation of an eigenvalue problem via
the Remez exchange algorithm. A Hopfield neural network
was combined to the design of IIR all-pass digital filters [5].
In the case, filter coefficients can be evaluated by Hopfield
neural networks in a parallelism manner in accordance with
the error function that is formulated as a Lyapunov energy
function. In addition, the authors developed a digital linear
phase notch filter design scheme based on IIR all-pass filter.
The designed filter can be realized by parallel connection
of two IIR all-pass filters with approximately linear phase.
Design algorithms exhibit fast convergence and easy initial
values determination [7].

Unlike the above-mentioned design schemes, this paper
attempts to utilize a modified particle optimization (MPSO)
algorithm to solve the digital recursive all-pass filter design
problem.This developed algorithm is a variant of the general
PSObut it has a better searching capacity in solving optimized
problems.The detailed description for suchMPSO algorithm
will be addressed later. The remainder of this paper is
summarized as follows. Section 2 gives a brief description for
the recursive all-pass digital filter. In Section 3, a modified
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PSO algorithm is introduced in detail and the MPSO-based
design steps for all-pass digital filter are also given. Section 4
will provide two different kinds of examples to confirm the
applicability of the proposed method and some comparisons
with the general PSO are further made. Finally, a conclusion
about the proposed method is simply described in Section 5.

2. Recursive All-Pass Digital Filter

Let us consider a recursive all-pass digital filterwhose transfer
function is expressed by

𝐻(𝑧) =
𝑎
𝑁

+ 𝑎
𝑁−1

𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑎
0
𝑧
−𝑁

𝑎
0
+ 𝑎
1
𝑧−1 + ⋅ ⋅ ⋅ + 𝑎

𝑁
𝑧−𝑁

=

𝑧
−𝑁

𝐷(𝑧
−1

)

𝐷 (𝑧)
, (1)

where 𝑁 represents the order of the filter, 𝑎
0
is always

set to be 1, 𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑁
are real coefficients, and 𝐷(𝑧) =

∑
𝑁

𝑖=0
𝑎
𝑖
𝑧
−𝑖. Let 𝑧 = 𝑒

𝑗Ω, whereΩ denotes the digital frequency,
substituting it into (1) to derive the frequency response. The
following magnitude response can be easily obtained:

|𝐻 (Ω)| =

󵄨󵄨󵄨󵄨󵄨
𝑧
−𝑁

𝐷(𝑧
−1

)
󵄨󵄨󵄨󵄨󵄨

|𝐷 (𝑧)|
=

󵄨󵄨󵄨󵄨󵄨
𝐷 (𝑧
−1

)
󵄨󵄨󵄨󵄨󵄨

|𝐷 (𝑧)|

=

󵄨󵄨󵄨󵄨󵄨
1 + 𝑎
1
𝑒
𝑗Ω

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝑒
𝑗𝑁Ω󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 + 𝑎
1
𝑒−𝑗Ω + ⋅ ⋅ ⋅ + 𝑎

𝑁
𝑒−𝑗𝑁Ω

󵄨󵄨󵄨󵄨

= 1.

(2)

It is seen from (2) that the magnitude response is equal to
one at all frequencies; that is, it is independent of the filter
coefficients. Furthermore, its phase response is derived by

𝜃 (Ω) = −𝑁Ω + 2 arctan(
∑
𝑁

𝑖=1
𝑎
𝑖
sin (𝑖Ω)

∑
𝑁

𝑖=1
𝑎
𝑖
cos (𝑖Ω)

)

= −𝑁Ω + 2 arctan(
as𝑇 (Ω)

1 + ac𝑇 (Ω)
) ,

(3)

where s(Ω) ≡ [sin(Ω), sin(2Ω), . . . , sin(𝑁Ω)], c(Ω) ≡

[cos(Ω), cos(2Ω), . . . , cos(𝑁Ω)], and
a ≡ [𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑁
] (4)

is a parameter vector consisting of all filter coefficients. This
vector fully dominates the phase response behavior of the
digital filter. In this paper, we want to design the parameter
vector a such that the phase response achieves certain design
specification. Moreover, this vector a is called the particle or
individual of the PSO algorithm andmany such particles then
form a population. Some adjusting mechanisms are utilized
on the full population. Moreover, it can be easily seen from
(3) that a highly complicated nonlinear function arctan(⋅) is
involved and it is difficult to solve.Thus, (3) always needs to be
modified as another form for the phase response design [3–5].
However, the proposed method in this paper can directly use
(3) for the phase response design of recursive all-pass filter.

3. Modified Particle Swarm Optimization
(MPSO) Algorithm

Kennedy and Eberhart initially proposed the PSO algorithm
in 1995 and recently it became one of the popular and efficient

optimization algorithms [9]. Like most swarm intelligence
algorithms, PSO is also a population-based search algorithm.
It simulates the social behavior of organisms, such as fish
schooling and bird flocking. Each fish or bird, viewed as
a particle or an individual, represents a candidate solution
to the optimized problem. By the velocity and position
updating formulas, each particle moves through the search
space toward the global solution. Based on the PSO algo-
rithm, various engineering optimization applications have
been successively developed and explored in recent years,
such as power system stabilizer design [10], PID controller
design [11, 12], FPGA implementations [13, 14], Volterra filter
modeling [15], QRD-based multirelay system design [16],
automatic clustering [17], multifault classification [18], and
aeroengine nonlinear programming model [19]. Besides, the
authors developed a novel PSO algorithm inwhich the inertia
weight is modified to enhance its search capability [20]. The
proposed method has successfully been applied in the high
pass FIR digital filter design. Another design method for the
lowpass FIRdigital filterwith linear phase propertieswas also
developed [21]. A new definition for the velocity vector and
swarm updating of the PSO algorithm was proposed.

At the beginning, PSO algorithm requires an objective
function to judge the performance of the particle and also to
guide the search direction of the algorithm. To solve the phase
response design problem for the recursive all-pass digital
filter, the objective function (OF) is defined by

OF = ∫

Ωmax

Ωmin

󵄨󵄨󵄨󵄨𝜃𝑑 (Ω) − 𝜃 (Ω)
󵄨󵄨󵄨󵄨 𝑑Ω, (5)

where 𝜃
𝑑
is the desired phase response given by the designer,

𝜃 is the actual phase response of the all-pass digital filter as
described by (3), and Ωmin and Ωmax are the integral lower
and upper bounds, respectively. The algorithm is utilized to
minimize this objective function OF to achieve the optimal
phase response design. Each particle is changed according to
the following velocity formula of (6) and position formula of
(7) for original PSO algorithm:

V
𝑖𝑗
(𝑛 + 1) = 𝑤V

𝑖𝑗
(𝑛) + 𝑐

1
𝑟
1
(𝑝
𝑖𝑗
(𝑛) − 𝑎

𝑖𝑗
(𝑛))

+ 𝑐
2
𝑟
2
(𝑔
𝑗
(𝑛) − 𝑎

𝑖𝑗
(𝑛)) ,

(6)

𝑎
𝑖𝑗
(𝑛 + 1) = 𝑎

𝑖𝑗
(𝑛) + V

𝑖𝑗
(𝑛 + 1) , (7)

where 𝑛 denotes the 𝑛th iteration of the algorithm, V
𝑖𝑗
,

𝑎
𝑖𝑗
, and 𝑝

𝑖𝑗
represent the velocity, position, and individual

best position for the 𝑖th particle with respect to the 𝑗th
dimension, respectively, 𝑔

𝑗
represents the global best position

with respect to the 𝑗th dimension among the population,
𝑤 is called the inertia weight, 𝑐

1
and 𝑐

2
are two positive

acceleration coefficients that pull each particle toward the
individual best and the global best positions, respectively,
and 𝑟
1
and 𝑟
2
are two uniform distribution random numbers

chosen from the interval [0, 1].The PSO algorithm uses these
two updating mechanisms to achieve the optimization.

In this study, a modified PSO (MPSO) algorithm is
taken into the phase response design of recursive all-pass
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digital filter [11, 15]. The difference between the original and
modification is to change the velocity formula. In the MPSO,
the population needs to be further divided into some sub-
populations at the beginning; for example, suppose that the
initial population includes 50 particles and it will be divided
into five subpopulations. Thus, the first subpopulation is
composed of particles from number one to number ten,
and the second then contains particles from number eleven
to number twenty, and so forth. The best particle of each
subpopulation needs to be recorded according to its objective
function. Instead of the velocity formula of (6), the MPSO
algorithm uses the following improved version:

V
𝑖𝑗
(𝑛 + 1) = 𝑤V

𝑖𝑗
(𝑛) + 𝑐

1
𝑟
1
(𝑝
𝑖𝑗
(𝑛) − 𝑎

𝑖𝑗
(𝑛))

+ 𝑐
2
𝑟
2
(𝑔
𝑗
(𝑛) − 𝑎

𝑖𝑗
(𝑛)) + 𝑐

3
𝑟
3
(𝑠
𝑗
(𝑛) − 𝑎

𝑖𝑗
(𝑛)) ,

(8)

where 𝑠
𝑗
is a new variable called the local best and represents

the position of the best particle of the subpopulation where
the 𝑖th particle is located, 𝑐

3
is also a positive acceleration

coefficient, and 𝑟
3
is a random number selected from the

range [0, 1] uniformly.
Design steps of MPSO-based for the phase response

design of the recursive all-pass digital filter can be summa-
rized in the following.

Data. Filter order 𝑁 in (1) and (3), desired phase response
𝜃
𝑑
and integral lower and upper bounds Ωmin and Ωmax

in (5), number of particles (population size) Ps, number of
subpopulations 𝑆, number of generations𝐺, inertia weight𝑤,
and positive constants 𝑐

1
, 𝑐
2
, and 𝑐

3
in (8).

Goal. Derive a recursive all-pass digital filter with the phase
response approaching the desired response 𝜃

𝑑
.

(1) Create an initial population consisting of Ps particles
from the interval [−1, 1] randomly.

(2) Divide the population into 𝑆 subpopulations by parti-
cle serial numbers.

(3) If a prescribed number 𝐺 of iterations are achieved,
then the algorithm stops.

(4) Evaluate the objective function of (5) for each particle
and record the related individual best, local best, and
global best positions.

(5) Update each particle’s velocity and position using (8)
and (7).

(6) Go back to Step (3).

4. Simulation Results

In this section, we consider two different examples with
linear phase design to show the applicability of our proposed
method [2, 5]. Some comparisons with the general PSO are
also performed. In the PSO and MPSO, the variables of the
algorithm are given by 𝑤 = 0.8, 𝑐

1
= 𝑐
2

= 0.5, and 𝑤 = 0.8,
𝑐
1

= 𝑐
2

= 𝑐
3

= 0.5, respectively, for all of the following
simulations.
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Figure 1: Magnitude response of Example 1.
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Figure 2: Trajectories of objective function (OF) for Run 1 of
Example 1.

Example 1. In this example, the recursive all-pass filter is
designed to approximate a desiredHilbert transformerwhose
phase response is given by

𝜃
𝑑
(Ω) = −𝑁Ω −

𝜋

2
, Ωmin ≤ Ω ≤ Ωmax, (9)

where the lower bound and upper bound are set to Ωmin =

0.04𝜋 and Ωmax = 0.94𝜋, respectively; 𝑁 means the filter
order and here it is chosen by 𝑁 = 10. The magnitude
response of such a recursive all-pass filter is plotted in
Figure 1. In addition, the population size and number of
generations are given by Ps = 20 and 𝐺 = 1000 for the PSO
and MPSO algorithm, and the number of subpopulations
is simply set to 𝑆 = 4 only for the MPSO. To verify
the algorithm’s robustness and efficiency, 20 independent
runs with different initial conditions are executed for both
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Table 1: Objective function values evaluated for Example 1.

PSO algorithm MPSO algorithm
Run 1 0.20570301 0.13606212

Run 2 0.13627085 0.13620043

Run 3 0.35740401 0.13679522

Run 4 0.13738652 0.13650124

Run 5 0.13672965 0.13680452

Run 6 0.14521057 0.13601797

Run 7 0.13619628 0.13673623

Run 8 0.15390549 0.13606745

Run 9 0.13755478 0.13762322

Run 10 0.14286368 0.13602069

Run 11 0.14405732 0.16636761

Run 12 0.14924150 0.13679615

Run 13 0.13622616 0.13703487

Run 14 0.13707200 0.13680303

Run 15 0.13634390 0.13701766

Run 16 0.21968176 0.22009637

Run 17 0.14488212 0.13649137

Run 18 0.14857613 0.13703097

Run 19 0.14250406 0.13624831

Run 20 0.27376677 0.14515192

Mean 0.16607883 0.14269337

Variance 0.00313722 0.00035958

Table 2: Digital filter coefficients derived by Run 1 of Example 1.

Filter coefficients PSO algorithm MPSO algorithm
𝑎
1

−0.974 −0.9853

𝑎
2

0.4350 0.4685

𝑎
3

−0.3959 −0.4388

𝑎
4

0.2323 0.2959

𝑎
5

−0.1912 −0.2625

𝑎
6

0.1048 0.1830

𝑎
7

−0.0743 −0.1485

𝑎
8

0.0268 0.0975

𝑎
9

−0.0153 −0.0646

𝑎
10

−0.0106 0.0290

algorithms. Final simulation results are listed in Tables 1
and 2 and shown in Figures 2–4, respectively. Table 1 lists
the objective function values of 20 independent runs and
it clearly reveals that the results by the MPSO are better
than those by the PSO for most of independent runs. The
mean and variance are evaluated by 𝑢 = 0.14269337 and
𝜎
2

= 0.00035958 for the MPSO and 𝑢 = 0.16607883 and
𝜎
2
= 0.00313722 for the PSO, respectively. To show the design

outcomes, Figure 2 displays the convergence trajectories of
the objective function for Run 1 of the proposed MPSO and
PSO algorithms. As can be seen from Figure 2, the MPSO
algorithm has a quicker convergence and lower objective
function value than the PSO algorithm. Both phase responses
and errors are further shown in Figures 3 and 4, respectively.
A better simulation result can be obtained by the proposed
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Figure 3: Phase responses for Run 1 of Example 1.
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Figure 4: Phase response errors for Run 1 of Example 1.

method. In addition, all of digital filter coefficients derived by
Run 1 of the PSO and MPSO algorithm are listed in Table 2
for comparisons.

Example 2. This example will design a recursive all-pass dig-
ital filter with a desired sinusoidal phase response expressed
by

𝜃
𝑑
(Ω) = 4𝜋 (cosΩ − 1) − 52Ω, Ωmin ≤ Ω ≤ Ωmax, (10)

where Ωmin = 0 and Ωmax = 𝜋 are given. Its corresponding
magnitude response is shown in Figure 5. In the simulation,
a digital recursive filter with 𝑁 = 60 is adopted and the
population size and iterative number of the algorithms are
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Figure 5: Magnitude response of Example 2.
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Figure 6: Trajectories of objective function (OF) for Run 1 of
Example 2.

set to Ps = 40 and 𝐺 = 2000, respectively, for solving such
a higher-order digital filter. Moreover, as given in Example 1,
the number of subpopulations is chosen by 𝑆 = 4 and 20
independent runs with different sets of initial conditions are
also performed for certifying the robustness of the algorithm.
Table 3 lists a comparison of the objective function values
evaluated by the proposed MPSO and PSO for Run 1 to Run
20, respectively. Some of digital filter coefficients derived are
listed in Table 4 for comparisons. Figures 6–8 then show
the related design outcomes only for Run 1 of the PSO and
proposed algorithm. Again, it can be concluded from these
results that the proposed MPSO is superior to the general
PSO in the phase response design of recursive all-pass digital
filter.
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Figure 7: Phase responses for Run 1 of Example 2.
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Figure 8: Phase response errors for Run 1 of Example 2.

5. Conclusions

This paper has developed a new design method for the phase
response design of recursive all-pass digital filter. A modified
PSO (MPSO) algorithm is suggested to design the filter coef-
ficients such that the obtained phase response can approx-
imate the desired response that is given previously. The
difference between the MPSO and PSO is to modify the
velocity updating formula of the algorithm. To improve the
search capacity, a new factor of local-best particle for each
subpopulation is introduced in themodified velocity formula.
Finally, two different kinds of examples have been illustrated
to verify the efficiency of the proposed method as compared
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Table 3: Objective function values evaluated for Example 2.

PSO algorithm MPSO algorithm
Run 1 1.56939914 0.62645705

Run 2 1.85475888 0.57827778

Run 3 1.55263227 0.67573844

Run 4 1.57989126 0.67840205

Run 5 2.03270089 0.75624957

Run 6 1.63204094 0.67220282

Run 7 1.34828024 0.52125315

Run 8 1.65465543 1.18349923

Run 9 1.39729362 0.86232224

Run 10 1.55541996 0.65710581

Run 11 1.82677089 1.14715629

Run 12 1.68802195 0.62355711

Run 13 1.94169732 0.65469452

Run 14 1.61249872 0.48998564

Run 15 1.78693672 1.17072011

Run 16 1.75210045 1.02655545

Run 17 1.57667970 0.76927394

Run 18 1.64655678 0.80753180

Run 19 1.84461988 1.10135973

Run 20 1.56655437 0.44814752

Mean 1.67097547 0.77252451

Variance 0.02816276 0.05174895

Table 4: Digital filter coefficients derived by Run 1 of Example 2.

Filter coefficients PSO algorithm MPSO algorithm
𝑎
1

0.0464 −0.1479

𝑎
2

0.8023 1.1317

𝑎
3

0.3584 0.0022

𝑎
4

0.8848 0.8390

𝑎
5

0.0292 −0.0636

𝑎
6

0.4525 0.5609

.

.

.
.
.
.

.

.

.

𝑎
58

0.0093 0.0089

𝑎
59

−0.1014 0.1059

𝑎
60

0.1847 0.0181

with the general PSO algorithm. Simulation results have
sufficiently proven that the proposed MPSO has a better
design outcome than the PSO in the phase response design
of recursive all-pass digital filter.
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In order to realize an optimal resource service allocation in current open and service-oriented manufacturing model, multiuser
resource service composition (RSC) is modeled as a combinational and constrained multiobjective problem. The model takes
into account both subjective and objective quality of service (QoS) properties as representatives to evaluate a solution. The QoS
properties aggregation and evaluation techniques are based on existing researches. The basic Bees Algorithm is tailored for finding
a near optimal solution to the model, since the basic version is only proposed to find a desired solution in continuous domain
and thus not suitable for solving the problem modeled in our study. Particular rules are designed for handling the constraints and
finding Pareto optimality. In addition, the establishedmodel introduces a trusted service set to each user so that the algorithm could
start by searching in the neighbor of more reliable service chains (known as seeds) than those randomly generated.The advantages
of these techniques are validated by experiments in terms of success rate, searching speed, ability of avoiding ingenuity, and so forth.
The results demonstrate the effectiveness of the proposed method in handling multiuser RSC problems.

1. Introduction

Advanced manufacturing technologies or models, such as
manufacturing grid (MGrid), global manufacturing (GM),
virtual manufacturing (VM), agile manufacturing (AM), and
cloudmanufacturing (CMfg), have been put forward in order
to respond to the rapidly changing market and enhance
enterprise competitiveness. The more recent manufacturing
models tend to adopt a service-oriented architecture, which
can be implemented by using many interoperable standards.
This architecture places an emphasis on knowledge and ser-
vices and aims at realizing full sharing and circulation, high
utilization, and on-demand use of various manufacturing
resources and capabilities by providing safe, reliable, high
quality, cheap, and on-demand used manufacturing services
for the whole manufacturing lifecycle [1]. However, in the
era of globalization, manufacturing resources are usually

characterized by heterogeneously distributed in diverse sys-
tems and existed in multiple locations all over the world.
Furthermore, these models nowadays incline to accept more
open and transparent structures, where a service demander
in one system may be a service provider in another system.
Therefore the resource service allocation management that
is capable of responding to any manufacturing task request
rapidly, agilely, and accurately is a critical technique for
the current manufacturing models and the next genera-
tion.

The shift from production-oriented manufacturing to
service-oriented manufacturing necessitates a reform in the
methods of resource service composition (RSC). As a key
component of resource service allocation management, it
takes advantage of existing resource services and integrates
them into composite service that can be invoked to fulfill
multiple complex manufacturing tasks beyond the capability
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of any of the services performing singly.The research on RSC
in manufacturing environment has increasingly attracted
scholars. Some traditional methods for RSCmainly deal with
internal manufacturing resources in an enterprise or some in
collaborations, or they are unable to handle large-scale RSC
optimal selection flexibly and intelligently. Other limitations
of traditional RSC methods becoming apparent with the
development of new market demands can be reflected as
follows. (1) The majority of them strive to accomplish only
one task request at a time by providing only one composite
service, while ignoring the possibility that multiuser would
publish their task requests simultaneously. Consequently the
equilibrium allocation of resource services between multiple
task requests has been neglected. For instance, resources of
high quality may be allocated to a user only because he
publishes his task request earlier than others but whose actual
requirement is not stringent. (2)Mostly they fail to take into
account the diverse situations of the request-and-response
manufacturing environment. For example, they may reach a
dead end when there are barely sufficient services available
or only services of inferior quality available during a certain
period but users still launch manufacturing task requests, or
they are not competent enough to tackle very demanding
task requests for special purposes. (3) Existing researches
on RSC have emphasized on trust aggregation and QoS
properties evaluation, respectively, for the improvement of
RSC, but few of them have integrated the two aspects into
one model. In an open manufacturing model a user may
get involved in the whole lifecycle of manufacturing; there-
fore both the subjective properties like trust and objective
properties like time and cost play a very important role
for the user to make judgment and decisions to select ser-
vices.

In consideration of the above insufficiencies, this study is
to further optimally allocate manufacturing resource service,
enhance resource utilization, and promote service composite
efficiency. This paper investigates the RSC in a multiuser
manufacturing environment, which is a constrainedmultiob-
jective combinational optimization problem and has shown
to beNP-hard. Both objective and subjective QoS component
are involved as objective functions or constraints in the
model. The Bees Algorithm as a swarm-based intelligent
algorithm ismade adapted to solve the problem. Experiments
are conducted to look into the performance of the proposed
method based on a few criteria such as success rate, fraud
service handling, and search speed. How the amended algo-
rithm reacts to the diverse task requests and how its colony
size affects the RSC performance are analyzed.

The rest of the paper is organized as follows. The next
section introduces the preliminary knowledge and reviews
related works on QoS properties evaluation, methods of RSC
optimal selection, and the basic Bees Algorithm. Section 3
proposes a multiuser RSC model based on existing trust
aggregation and QoS evaluation methods. This is followed
by a detailed description of the Bees Algorithm suitable for
solving the problemmodeled in Section 4.The representation
scheme of a solution, the probabilistic neighborhood search
and shrinking strategy, the rules for handling multiple objec-
tive functions and constraints, and the time complexity of the

Table 1: The aggregation of QoS properties from composite struc-
tures.

Properties Sequential Parallel Conditional Loop

Additive
𝑛

∑

𝑖=1
𝑞 (𝑠
𝑖
)

𝑛

∑

𝑖=1
𝑞 (𝑠
𝑖
)

𝑛

∑

𝑖=1
𝑞 (𝑠
𝑖
) ⋅ 𝑝
𝑖

𝑛 ⋅ 𝑞 (𝑠
𝑖
)

Multiplicative
𝑛

∏

𝑖=1
𝑞 (𝑠
𝑖
)

𝑛

∏

𝑖=1
𝑞 (𝑠
𝑖
)

𝑛

∑

𝑖=1
𝑞 (𝑠
𝑖
) ⋅ 𝑝
𝑖

𝑞 (𝑠
𝑖
)
𝑛

Max-operator
𝑛

∑

𝑖=1

𝑞 (𝑠
𝑖
) max {𝑞 (𝑠

𝑖
)}

𝑛

∑

𝑖=1

𝑞 (𝑠
𝑖
) ⋅ 𝑝
𝑖

𝑛 ⋅ 𝑞 (𝑠
𝑖
)

algorithm are elaborated. In Section 5, the effectiveness of the
proposed method is demonstrated and analyzed by groups
of experiments. Finally, Section 6 summarizes the paper and
draws directions for further researches.

2. Preliminary Knowledge and Related Works

2.1. QoS and Trust Aware RSC Optimal Selection. As the
number of resource services of similar functionality regis-
tered in the service pool increase, users are more concerned
about their nonfunctional properties.The functionality refers
to what task a service can finish, while the nonfunctional
properties are more aware of the QoS such as price, raw
material cost, maintainability, and response time. A stand-
alone service is often limited in its functionality and a
manufacturing task usually demands multiple services in
combination as a composite service chain. The technique
of evaluating the QoS of a composite service has been
investigated for years [2, 3]. Generally, existing researches
derive the aggregatedQoS from stand-alone services, making
the interconnection between them quite significant. The
most commonly used composite service structures encom-
pass Sequential, Parallel, Conditional and Loop. The QoS
properties are differentiated into three categories: additive,
multiplicative, and max-operator. The aggregations of these
properties in different categories are given in Table 1 [4].
In the table, 𝑞(𝑠

𝑖
) denotes the value of corresponding QoS

property of the component service 𝑠
𝑖
. These values should

be normalized to the same scale according to Formula (1)
in order to avoid inaccuracy and incommensurability due
to the distinctive measurement metrics that different QoS
properties adopt [5]. In Formula (1), the property value to be
maximized is said to be positive, and the one to beminimized
is negative. Complicated composite service structures can
be simplified by mature techniques, such as transforming to
sequential structures [6, 7]. Then the relationship between
local and global constraints can be deduced [4]. Apart from
this bottom-up method for handling QoS properties, a top-
down method is also studied [8], which is claimed to be
efficient to address the global constraints, especially for
dynamic and adaptable composition of services.

As to the QoS-ware RSC optimal selection, methods
and algorithms are constantly being developed. A compo-
sition method supporting cross-platform service invocation
in cloud environment was studied [9]. The authors put
forward a Local Optimization and Enumeration Method
(LOEM) for finding a QoS near-to-optimal composite and a
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decision-making method for supporting cross-platform ser-
vice invocation in cloud environment. Graph-based service
compositionwas also employed for the purpose of decreasing
the complexity of the service composition task [10]. Tao
et al. developed a parallel intelligent algorithm named full
connection based parallel adaptive chaos optimization with
reflex migration (FC-PACO-RM) for RSC optimal selection
in CMfg [11]. Recently an increasing number of heuristic
searching methods and swarm-based intelligent algorithms
are employed to solve the problem, such as the genetic
algorithm (GA) [8]. Wu and Zhu introduced an approach
that combines the transaction-aware service composition, the
QoS-aware service composition, and the ant colony optimiza-
tion (ACO) together to achieve a trade-off between accuracy
and time-efficiency of solving RSC [12].This algorithm is also
exploited for web service composition [13]:

𝑞
󸀠
(𝑠
𝑖
)

=

{{{{

{{{{

{

𝑞 (𝑠
𝑖
) − 𝑞min (𝑠𝑖)

𝑞max (𝑠𝑖) − 𝑞min (𝑠𝑖)
, for positive properties

𝑞max (𝑠𝑖) − 𝑞 (𝑠
𝑖
)

𝑞max (𝑠𝑖) − 𝑞min (𝑠𝑖)
, for negative properties.

(1)

In addition to the aforementionedRSCmethods concern-
ing the objective QoS properties, trust-QoS as a subjective
property has also received extensive attention for the reasons
presented in previous paragraphs. It is a subjective degree
of belief about specific agents [14]. It has been used in
proliferation in conducting electronic commerce or business
of the Internet in service-oriented environments. In service-
oriented architecture, trust is normally divided into four
categories: direct experience, trusted third parties, hybrid,
and trust negotiation, each of them was described in [15]
but the authors did not provide the calculation method. The
evaluation models of trust-QoS in MG were proposed [16],
in which the trust falls into intradomain and interdomain.
The authors also gave a trust-QoS-based MG resource ser-
vice scheduling framework based on this trust aggregation
method. Hammadi et al. [17] used probability theory to
determine the trustworthiness of the composite service in
the sequential and parallel composite structures. However,
probability theory is usually used to determine objective
uncertainties and is therefore inappropriate for measuring
subjective trust degree. Fuzzy logic and fuzzy number were
said to be suitable for modeling the trust in peer-to-peer
(P2P) environment, or the trust between users and each
business services [18, 19]. The above researches provide the
basis of the trust and QoS properties aggregation methods to
our model and will not be reiterated in detail.

2.2. The Basic Bees Algorithm. The basic Bees Algorithm is
a member of the swarm-based algorithm community. It is
inspired by foraging behavior of honeybees in nature [20].
A colony of honeybees can extend itself over a long distance
and in multiple directions to exploit the most profitable food
sources for survival of its colony. During the selection of its
nest sites and food resources, they have shown particular

characteristics such as precisely navigated, wisely decision-
making loop, and well organized.The basic Bees Algorithm is
featured by the combination of local and global search, which
correlate with the process of exploitation and exploration,
respectively. It starts by sending 𝑛 scout bees in the solution
space for sampling. These scouts are sorted according to
their sampled fitness evaluated by objective functions. The
algorithm then selects 𝑚 scouts with better fitness for local
search (or neighborhood search) in the neighbor of the
scouts. The neighborhood size is specified by 𝑛𝑔ℎ. Out of
the 𝑚 selected scouts, the top ranked 𝑒 (less than 𝑚) scouts
recruit 𝑛𝑟𝑒 followers while the rest of the selected scouts
recruit 𝑛𝑟𝑏 (less than 𝑛𝑟𝑒 due to the lower fitness) followers.
During this process, two strategies are employed to enhance
the performance [21]. (1)The neighborhood size shrinks if a
cycle of local search fails to yield better fitness. (2)A stagnated
solution is abandoned to help the algorithm escape from
local optima, and the stagnation limit is specified by stlim.
Meanwhile, the scouts unqualified for neighborhood search
scatter in the solution space randomly again.This step intends
to explore unidentified regions that may potentially contain
prominent solutions and tomaintain the diversity of the scout
population. Additionally, predefined stopping criteria are
needed to decide when the algorithm should terminate. The
Bees Algorithm has been used with great success to calculate
almost optimal solutions to a large number of problems like
function optimizing and various engineering problems, such
as cell formation [22],mechanical design [23], printed-circuit
board assembly optimization [24], control systems tuning
[25], filter design [26], pattern recognition [27], and chemical
engineering [28]. In this paper, the basic Bees Algorithm
will be made suitable for solving RSC optimization prob-
lem in a multiuser manufacturing environment. Detailed
presentation will be provided in the following two sec-
tions.

3. Formation of the Multiuser RSC Model

Amultiuser RSC model is established in this section. Several
assumptions should be observed for the establishment. (1)All
the manufacturing task requests launched by different users
are homogeneous,meaning the requested tasks can be broken
down into the same series of subtasks and each subtask shares
the candidate service pool individually. (2)The consideration
of QoS properties is by no mean exhaustive in this model.
Only three QoS properties are exemplified, namely, time,
cost, and trust, since the principles of evaluating different
aggregated QoS properties have been studied intensively
and are analogous in the same composite architecture. (3)
All encapsulated stand-alone resource services will not be
distinguished from whether they are from the elastic cloud
platform or the internet through the outsourcing process.

3.1. Denotations. Provided the number of task requests
posted at a time is 𝐼, the request from the user 𝑈

𝑖
is

represented by

Task
𝑖
= {st1, st2, . . . , st𝐽} (𝑖 = 1, 2, . . . , 𝐼) , (2)
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where st
𝑗
(𝑗 = 1, 2, . . . , 𝐽) denotes a subtask and 𝐽 the number

of subtasks. The subtask st
𝑗
can be functionally finished by a

service chosen from the service pool:

Pool
𝑗
= {as1, as2, . . . , as𝑀} , (3)

where as
𝑚
(𝑚 = 1, 2, . . . ,𝑀) represents a candidate stand-

alone service (or atom service) in Pool
𝑗
and 𝑀 specifies the

number of stand-alone services that Pool
𝑗
contains.

A task request can be responded functionally by a service
chain consisting of the selected stand-alone services from
each service pool. A service chain can be denoted by

Chain
𝑖
= {as1, as2, . . . , as𝐽} , (4)

where as𝑗 (𝑗 = 1, 2, . . . , 𝐽) symbolizes one of the services
chosen from Pool

𝑗
.

Let 𝑅
𝑖
be the task request by𝑈

𝑖
, and it can be expressed as

a three-tuple:

𝑅
𝑖
= ⟨Task𝑟

𝑖
, time𝑟
𝑖
, cost𝑟
𝑖
⟩ , (5)

where Task𝑟
𝑖
denotes the user’s functional description of the

task, while time𝑟
𝑖
and cost𝑟

𝑖
stand for the user’s QoS require-

ments for the manufacturing time and cost, respectively. In
the model, the users’ QoS requirements are scaled into the
interval (0, 1) and categorized into four degrees that are low:
(0.5, 1.0), mediate: (0.25, 0.75), high: (0.15, 0.65), and very
high: (0, 0.5).

Let 𝑄
𝑖
be the QoS evaluation of a composite service, and

it can be also represented as a three-tuple:

𝑄
𝑖
= ⟨trust

𝑖
, time
𝑖
, cost
𝑖
⟩ , (6)

where trust
𝑖
, time

𝑖
, and cost

𝑖
denote the aggregated trust,

time, and cost evaluations of a composite service, respectively.

3.2. Trust Management. In this model, trust is managed in
two perspectives: (1) direct trust denoted by dTrust(𝑘)

𝑖
(as𝑗),

where 𝑘 counts the number of transactions with the service
as𝑗. It only concerns with those services that the user has
directly collaborated with; (2) indirect trust or recommended
trust denoted by inTrust(𝑘)

𝑖
(as𝑗), which is a continuation of

direct trust and is more concerned with other users’ feedback
of direct experience.Themethod of quantifying the two types
of trust is not detailed as there are toomany related researches
and beyond the scope of this paper. The aggregated trust is
calculated as

Trust𝑘
𝑖
(as𝑗)

=
{

{

{

𝛼 ⋅ dTrust𝑘
𝑖
(as𝑗) + (1 − 𝛼) ⋅ inTrust𝑘

𝑖
(as𝑗) , dTrust𝑘

𝑖
(as𝑗) ̸= 0

inTrust𝑘
𝑖
(as𝑗) , dTrust𝑘

𝑖
(as𝑗) = 0,

(7)

where 𝛼 signifies the user’s inclination to depend more on
self-experience, so 𝛼 satisfies 0.5 < 𝛼 < 1.

A trusted service set (TSS) is introduced to each user,
which is expressed as

TSS
𝑖
= {as
𝑙
| 𝑙 ≤ 𝐿} , (8)

where as
𝑙
symbolizes a trusted services belonging to the user

𝑈
𝑖
and 𝐿 symbolizes the maximum trusted services a user is

allowed to have. A stand-alone service is enrolled into TSS
only if the number of satisfactory transaction with it in a
certain period exceeds a predefined threshold. The next time
when the user publishes a task request, the services in the
TSS take a priority of being chosen. The TSS is made to be
a sequence. It is updated dynamically by the sequence tail
(the earliest enrolled trusted service) being discarded and the
latest qualified one being inserted into the sequence head.
This technique attempts to imitate people’s social behavior
that they are more likely to socialize with those who they are
recently made acquainted and trusted.

3.3. Objectives of the Model. Three service composite modes
are considered in the model, namely, one-to-one mapping
(O2O), many-to-one mapping (M2O), and many-to-many
mapping (M2M). Each service chain fulfills only one and
at least one task in the O2O mode. This mode is applied
to when there are plenty of resource services available. The
mode of M2O fits into the condition that users post tough
time requirements, so several service chains are allowed to
complete one task in cooperation. And the M2M mode is
applicable when the resource services become very scarce and
it is barely possible to allocate at least one service chain to
every task separately. In this mode a resource service can be
shared among different users to tradeoff the resource scarcity.

The objectives of the model are established as follows:

max
𝐼

∑

𝑖=1

Trust(𝑘)
𝑖

(9)

max
𝐼

∑

𝑖=1

𝑥
𝑖

(10)

s.t. time
𝑖
< time𝑟

𝑖
, 𝑖 = 1, 2, . . . , 𝐼

cost
𝑖
< cost𝑟

𝑖
, 𝑖 = 1, 2, . . . , 𝐼.

(11)

The objective (9) realizes the maximization of the aggre-
gated trust that all users hold to the composite service. In
the objective (10), 𝑥

𝑖
is a decision variable. It equals 1 if

the task posted by 𝑈
𝑖
is completed successfully whereas it

equals 0 if unsuccessfully. This objective requires the model
to satisfy as more users as possible. As to the constraints
(11), they point out that the manufacturing time and cost of
should be in accordance with users’ demands individually.
Only when both of them answer to the user’s specifications
the transaction can be regarded as successful. As can be seen,
the establishedmodel considers all the users’ requirements as
a whole to realize a more reasonable resource allocation.

4. The Bees Algorithm for the Problem

This section introduces the modified Bees Algorithm as a
combinational multiobjective constraint-handling optimizer
for the established multiuser RSC model.

4.1. Solution Schema. In the modified Bees Algorithm, each
scout honeybee represents a solution (a composite service)
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that answers the calls of users. In the composition mode of
O2O each scout can be expressed as

𝑆 =

[
[
[
[
[
[
[

[

{as1
1
, as2
1
, . . . , as𝐽

1
}

{as1
2
, as2
2
, . . . , as𝐽

2
}

.

.

.

{as1
𝐼
, as2
𝐼
, . . . , as𝐽

𝐼
}

]
]
]
]
]
]
]

]

(12)

in which the number of service chain is 𝐼 equals the number
of users. The stand-alone services composing the solution
will be referred as component service in the algorithm. The
format of scout in theM2O andM2Mmodes can be deduced
similarly and are not given here.

4.2. Scouts Initialization. The initialization process starts by
examining whether the user’s TSS is empty. If not, a service
will be selected randomly from the TSS for building a service
chain; otherwise a service will be selected on a random basis
from the service pool. In the modes of O2O and M2O, a
stand-alone service is not allowed to be shared by several
different services chains, meaning an invoked service will not
be able to answer the call of other users. However, in theM2M
mode, service chain sharing is permitted to compensate for
the resource scarcity. Therefore the number of times that a
service can be invoked is not restricted. Totally, the number
of scout bees to be initialized is 𝑛.

4.3. Waggle Dance. The 𝑛 scout bees are ranked into Pareto
dominated sets after being evaluated by objective function
and constraints. The purpose is to find Pareto optimality. In
Pareto optimality solutions cannot be improved in any of
the objectives without degrading at least one of the other
objectives. Particular rules are designed as a constraint-
handling strategy to sort out the dominated solution sets. In
the rules, a feasible solution refers to the one that satisfies
all the constraints, whereas an infeasible solution means that
it violates at least one constraint. The rules are presented as
follows.

(1) Any feasible solution shall dominate any infeasible
solution.

(2) Feasible solutions with better objective fitness shall
dominate.

(3) For two feasible solutions that have identical objective
fitness, the one with larger value for positive prop-
erties (or smaller value for negative properties) shall
dominate.

(4) Among two infeasible solutions, the one violates less
constraints shall dominate.

(5) Among two infeasible solutions that have identical
constraint violations, the one with larger value for
positive properties (or smaller value for negative
properties) being violated shall dominate.

(6) In other cases, the solutions are categorized into the
same Pareto set.

After obtaining the Pareto dominated sets, all scout bees
are sorted into a sequence according to their dominance
relationships. Scouts in the same set are sorted on a random
basis. Then, 𝑛𝑟𝑒 foraging bees are recruited by the top 𝑒 scout
bees and 𝑛𝑟𝑏 foraging bees by the next 𝑚 − 𝑒 scout bees for
neighborhood search. The rest of 𝑛 − 𝑚 scout bees are not
qualified for recruiting foraging bees and will thus perform
random global search.

4.4. Neighborhood Search. Probability-based neighborhood
search and neighborhood shrinking strategies are devel-
oped to facilitate the search in discrete domain. The initial
neighborhood size 𝑛𝑔ℎ is set to be a probability 𝑝

0
. Each

component service in a scout bee correlates with a random
number uniformly generated in the interval (0, 1). Each
foraging bee searches around the scout bee in the form that
the component services are replaced by other services in the
pool if their corresponding numbers are smaller than 𝑝

0
,

while the others remain as components as before. Afterwards,
the dominance between the foraging bee and the scout bee
is determined using the rules introduced in Section 4.3. If
a foraging bee can dominate the scout bee, it will replace
the scout bee and become the new scout in the next search
iteration. In the algorithm, this is said improvement has
been produced. Otherwise the scout bee retains and the
neighborhood size shrinks according to 𝑛gℎ = 𝛾 ⋅ 𝑛gℎ,
where 𝛾 is the shrinking coefficient. The failure of producing
improvement after a certain number of iterations will force
the scout bees abandon its position and reallocate a random
one.This step demonstrates the site abandonment strategy in
the Bees Algorithm and used when the scout bee is believed
to have been trapped in local optima.

4.5. Global Search. The remaining 𝑛 − 𝑚 scout bees not
qualified for neighborhood search perform the random
global search in the solution space. These scout bees are
randomized again as they are in the initialization step. This
is intended to maintain the diversity of the scout population
and explore the solution space to discover potential excellent
solutions.

4.6. Flowchart and Time Complexity Analysis. The flowchart
of the Bees Algorithm for finding an optimal solution to the
model is presented by Figure 1.Themodified Bees Algorithm
uses the parameter nomenclatures stated in previous para-
graphs, and the time complexity in one algorithm iteration
can be then analyzed as follows:

(1) scout bees initialization: 𝑇
1
= 𝑂(𝑛 × 𝐼 × 𝐽),

(2) waggle dance: 𝑇
2
= 𝑂(𝑛

2
),

(3) fitness evaluation: 𝑇
3
= 𝑂(𝑛 × 𝐼 × 𝐽),

(4) neighborhood search: 𝑇
4
= 𝑂(𝑒 × 𝑛𝑟𝑒 × 𝐼 × 𝐽 + (𝑚 −

𝑒) × 𝑛𝑟𝑏 × 𝐼 × 𝐽),
(5) global search: 𝑇

5
= 𝑂((𝑛 − 𝑚) × 𝐼 × 𝐽),

of which (2)–(5) are in the main loop. The low power
components can be negligible with the scale of the problem
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Figure 1: Flowchart of the Bees Algorithm.

Table 2: Parameter settings for the RSC model.

Mode Group one Group two Group three
O2O M2O O2O M2O M2M

Subtask number 7 7 10 10 7
Service number 15 15 25 25 4
User number 5 5 5 5 7
Request number 3 3 3 3 5

increases, provided the number of iteration to is 𝐾, and the
time complexity of the modified Bees Algorithm is

𝑇 = 𝑂 ([(𝑒 × 𝑛𝑟𝑒) + (𝑚− 𝑒) × 𝑛𝑟𝑒 + (2𝑛 −𝑚)] × 𝐼 × 𝐽

×𝐾) .

(13)

5. Experiments and Discussions

5.1. Experimental Setups. Experiments are implemented in
three main groups of different complexity under different
RSC modes, as shown in Table 2. Groups one and two
demonstrate how the compositionmodesO2OandM2Odeal
with problems of different complexity. Group three illustrates
the way that the mode M2M deals with the situation of
insufficient services. For all the experiments, the transaction
cycles are set to be 75, and the values of all stand-alone service
QoS properties are generated randomly. Moreover, all the
users’ time and cost requirements fall into their individual
range of “low,” “mediate,” “high,” and “very high” on a
random basis. For simplification, only the sizes of solution
space for O2O in group one and two are calculated, which
are 157 × 147 × 137 ≈ 1.13× 1024 and 257 × 247 × 237 ≈ 9.53×
1028, respectively. The modified Bees Algorithm uses the
parameter settings as given inTable 3 for different experiment
groups unless being specified. Success rate is used as a critical

Table 3: Parameter settings for the Bees Algorithm.

Group one Group two Group three
ns 10 16 10
nb 4 4 4
ne 1 1 1
nrb 5 5 5
nre 10 10 10
stlim 7 7 7
ngh 0.6 0.6 0.6

metric to evaluate the effectiveness of the algorithm. It is
the number of users whose task requests have been satisfied
divided by the total number of users who have published their
task requests.

5.2. Success Rate. The established model introduces the TSS
to every user as described previously. Its effectiveness is
investigated in themodes ofO2OandM2O.Theperformance
of the algorithm using FSS is compared with the algorithm
without FSS, as shown in Figure 2. It can be seen that the
success rate drops as the users’ time and cost requirements
become tough simultaneously; meanwhile, the algorithm
using TSS outperforms the one without it.This pattern is true
for both group one and two. To be specific, the algorithm
performs well in dealing with low and mediate requirements
(both time and cost), as more than 90% users’ requests
being satisfied in the mode O2O of group one. Particularly,
it reaches 100% success rate when the users have merely
low requirements, regardless of the use of USS. However,
the success rate drops to around 60% and 38% when the
users’ requirements become high and very high, respectively.
Nevertheless, the algorithm using TSS is able to promote the
success rate by approximately 4% on average. The average
promotions of success rate are 7.3%, 11.4%, and 11.2% in Fig-
ures 2(b), 2(c), and 2(d), respectively.Therefore the utilization
of TSS for each user is significant for the algorithm to search
for a near optimal composite service at high success rate.

5.3. Avoiding Fraud Services. Themodel is capable of prevent-
ing user from invoking fraud services to a degree by setting
the users’ trust as one of the objective functions. The fraud
service in the experiment is defined as the service that does
not provide genuine QoS information when registering as an
encapsulated member of the service pool. It has lower QoS
values than it claims but is still capable of completing the
task functionally. Both the users’ time and cost requirements
are kept as mediate throughout this test. The proportions
of fraud service in the service pool are set to increase from
20% to 80% with the step of 20%. Details of the result can
be referred to Figure 3. In Figures 3(a) and 3(b), which are
obtained from group one by the modes O2O and M2O,
respectively, the curves imply that an increasing number
of fraud services are invoked with the growth of the fraud
service proportion in the service pool, and the success rate
declines due to this growth. For the algorithm without TSS,
only 1.9%, 7.0% and 1.9%, 3.8% of the fraud services have
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Figure 2: Comparison between the success rates with and without TSS.

been integrated into the composite service by O2O andM2O,
respectively, when there are 20% and 40% fraud services in
the service pool, with 95.1%, 85.8% and 100%, 88.4% tasks
being successfully fulfilled. As the proportion of the fraud
service climbs up to 60% and 80%, 39.6%, 50.0%, and 19.4%,
59.4% fraud services are invoked, respectively, by O2O and
M2O, with the corresponding success rates further down
to 60.4%, 38.2% and 67.6%, 38.2%. Figures 3(c) and 3(d)
display the results from group two, where a similar trend
can be seen. However, two vital points can be summarized
from the figures that underline the advantages of the use of
trust aggregation and TSS: (1) although the invoked fraud
service increases with the growth of fraud service percentage
in the service pool, the ratio of them being invoked in the
composite service is much lower than its actual ratio in
the service pool. For example, in the experiment of group
two under the O2O mode, the composite service found by
the algorithm without TSS contains 0.1%, 2.3%, 19.4%, and
57.8% fraud services when there are actually 20%, 40%, 60%,
and 80% fraud service in the pool. It can be calculated that

approximately 30% fraud services are avoided on average.
(2) The ratio of fraud services included in the composite
service can be further reduced if TSS is considered. Again in
group two under the O2O mode, the ratio of fraud service
being invoked is decreased to 0.1%, 0.9%, 10.8%, and 44.1%,
which is further 5.9% lower on average than the algorithm
without TSS. Consequently the success rate is raised from
98.7%, 93.8%, 78.0%, and 32.0% to 100%, 98.2%, 90.2%, and
60.9%, respectively, with the growth of fraud service in the
pool from 20% to 80%. Hence this experiment indicates that
the evaluation of users’ aggregated trust can help the users
avoid ingenuity to a substantial degree. In fact the use of TSS
plays a significant role to further enhance the ability to avoid
ingenuity and thus promote the composite success rate.

5.4. Composite Speed. The purpose of this experiment is to
investigate the impact of TSS on the speed of searching a
near optimal composite service. Also, both the users’ time
and cost requirements are kept the same in the four degrees.
The results obtained from group one and two in the modes
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Figure 3: Ability of dealing with fraud services.

O2O and M2O are shown in Figure 4. All the four bar
graphs, which represent four varying experimental settings,
are characterized by one feature that the bars on the right
are lower than those on the left. The feature indicates that
the introduction of TSS assists the algorithm in finding an
optimal composite faster.The experimental data tells that the
TSS helps reduce 18.3, 21.5, 20.2, and 25.2 iteration cycles
in dealing with users’ low requirements, and 16.7, 14.9, 10.0,
and 7.14 in dealing with mediate requirements. The low and
mediate requirements are the two situations of which the
algorithm can finish the tasks at high success rate. However, it
can be observed that the algorithm using TSS does not holds
clear advantage over its counterpart when facing the users’
high and very high time and cost requirements. As the users’
requirements become stringent, the unsuccessful service
composition increases. The iteration cycles for an unsuccess-
ful service composition do notmake practical sense for statis-
tical calculation; therefore the bars representing the iteration
cycles for high and very high requirements do not provide
typical characteristic of the speed of successful searches.

5.5. Ability of M2O to Handle Various Time Requirements.
The mode M2O is particularly introduced to deal with
demanding time requirement. It allows several service chains
to work in collaboration for performing one task when it is
not possible for one service chain or very hard to find one
to complete the required task.This experiment is intended to
address the advantage of M2O over O2O in this particular
situation. In the experiment, the cost requirement is kept
constant as mediate while the time requirement grows from
low to very high. Figure 5 gives the comparison between the
performances of the two modes in group one and two. It is
understandable that the performances of the two modes in
handling low and mediate time requirements do not vary
too much, and the use of TSS further reduces this variance.
However, the advantage of the M2Omode becomes apparent
when the time requirement keeps growing. Take the results
presented in Figure 5(b) to demonstrate, if the users only have
low or mediate time requirements, the M2Omode fulfills the
tasks with 0.5% and 0.7% higher success rate than the O2O
mode. However, the M2O mode produces 23.4% and 13.3%
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Figure 4: Comparison between the composite speed with and without TSS.

Table 4: Parameter settings for different colony sizes.

Groups one and three Group two
c1 c2 c3 c4 c5 c6 c1 c2 c3 c4 c5

ns 3 5 10 20 30 40 4 10 16 28 40
nb 1 2 4 8 12 16 1 4 4 7 10
ne 1 1 1 2 3 4 1 1 1 1 2
nrb 5 5 5 5 5 5 5 5 5 5 5
nre 10 10 10 10 10 10 10 10 10 10 10
Colony size 13 20 35 70 105 140 14 35 41 68 100

higher success rate than theO2Omodes in handling high and
very high time requirements, respectively, due to the time-
saving collaborative working mechanism.

5.6. Impact of Colony Size to the Success Rate. Various param-
eter combinations are used with the aim of investigating
how the bee colony size can influence the composite results.
Related parameters are listed in Table 4. Some unmentioned
parameters like stlim remain their previous values. Both the

users’ time and cost requirements are kept unchanged to be
mediate throughout this experiment.

It can be calculated that the colony size grows from the
combination c1 to c6 in group one, and c1 to c5 in group
two. In this experiment, group one and two do not share a
common parameter setting because the RSC problems in the
two groups do not have the same complexity. The impact of
the colony size on the composite success rate is demonstrated
in Figure 6. The curves in the figures imply the tendency of
the success rate as the colony size grows. Generally, it can
be seen in the four graphs that the increase of colony size
enhances the composite success rate. Specifically, noticeable
enhancement of the success rate can be observed if the colony
size grows from a very small size. However, the enhancement
of success rate is not very noticeable if the colony size
continues to grow. It is analyzed that the algorithm is able to
find a near optimal composite service when its colony grow
to certain size as large as c3 or c4 in this experiment. Further
augment of the colony will not bring considerable benefit any
more. In Figure 6(a), for instance, without using the TSS, the
composite success rate climbs up from 84.9% to 87.1%, 92.9%
and 97.8% as the colony size grows from 13 to 20, 35, and
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Figure 5: Performance of M2O in handling different time requirements.

70, respectively. The promoted percentage is 2.2%, 5.8%, and
4.9%. When the colony size continues to increase to 105 and
140, the corresponding success rate promotion is down to
1.3% and 0.9%. This pattern can match that in Figures 6(b),
6(c), and 6(d).

5.7. Investigation on the M2M Mode. The M2M mode is
applicable to where many users post task requests but barely
sufficient resource services are available. Due to the service
insufficiency, the TSS and fraud services are not considered
in this experiment in the hope of exploring the potential of
all services. Only the effectiveness of the algorithm and the
impact of its colony size are investigated.The results are given
in Figure 7. It can be seen that the composite success rate
can still reach 100% when the users have low time and cost
requirements, and this rate remains as high as 89.0%when the
users raise their requirements to mediate. The rate continues
to decrease to 64.8% and 16.5% as the users post high and
very high requirements. A decreasing number of users can
be satisfied as they raise their requirement. But the effec-
tiveness of the M2M mode cannot be overlooked because it

performs well in solving the problem of insufficient resource
service when dealing with low and mediate requirements. In
addition, Figure 7(b) tells that the growth of the colony size
contributes to the promotion of the composite success rate.
However, the enhancement does not endure if the colony size
exceeds a certain scale, which resembles the trend in the O2O
and M2O modes in the preceding experiments.

6. Conclusion

Traditionally, resource service compositionmethods respond
to merely one task request at a time, which could easily lead
to misallocation of resources. These methods always search
for a composition service of the best quality for one user
but ignore a comprehensive QoS trade-off among multiple
users. Amultiuser RSCmethod for solving the above problem
has been presented and tested on the basis of the established
multiuser RSC model. In this model, trust is considered as
one of the objectives and QoS requirements as constraints.
Particularly, theTSS as a new trust-aware technique is utilized
and the experimental results have validated its effectiveness
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Figure 6: Impact of the colony size on the success rate.
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in terms of the enhancement of success rate, the ability
to avoid service, and the speed to find a feasible solution.
Furthermore, the advantage of the M2O mode in handling
tough time requirement and the M2M mode in dealing with
resource service insufficiency is also reflected by the results.

The research has not yet been fully completed.Themodel
in this paper does not consider heterogeneous and dynamic
task requests. The fault tolerance ability of the model is not
investigated either. Furthermore, the investigation on the
M2M mode needs to be extended to a more generic study.
These problems remain as future research topics.
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To study incrementalmachine learning in tensor space, this paper proposes incremental tensor discriminant analysis.The algorithm
employs tensor representation to carry on discriminant analysis and combine incremental learning to alleviate the computational
cost. This paper proves that the algorithm can be unified into the graph framework theoretically and analyzes the time and space
complexity in detail.The experiments on facial image detection have shown that the algorithmnot only achieves sound performance
compared with other algorithms, but also reduces the computational issues apparently.

1. Introduction

Nowadays, increasing amounts of data in the field of indus-
trial, economic, medical, and other application areas, such
as signals, measurements, images, and videos, are becoming
available due to the development of computer technology. In
order to excavate the hidden information in the data implic-
itly describing underlying processes or structures, advanced
intelligent tools are proposed. However, since the stochastic
nature of the processes and their measurement, structure in
this data is mostly collected with noise. Consequently, it is
reasonable to seek robust and adaptive tools that can cope
with this nature.

Computational intelligence techniques have been inves-
tigated to answer this need. These techniques have been
concerned with reproducing the abilities of human brains.
Machine learning techniques exactly imitate the learning
procedure of human, which construct learning model based
on example data and use that to make predictions and
decisions. However, due to the noise in data, it is important
to construct efficient learning model to help sift useful
information from the noise.

In regards to this, machine learning algorithms project
high-dimensional data into low-dimensional feature space
to make their low-features as separable as possible. Gen-
erally, they are classified into two categories: supervised
learning and unsupervised learning. The essential difference

between supervised learning and unsupervised learning is
that whether the class information is considered. Gener-
ally speaking, the recognition performance of supervised
learning is superior to that of unsupervised learning. As
a classical machine learning algorithm, linear discriminate
analysis (LDA) [1, 2] seeks optimal discriminative vectors to
maximize the interclass scatter matrix and to minimize the
intraclass scatter matrix. A large number of research works
have shown the predominant advantage of LDA in various
applications.

It is worth noting that traditional LDA is based on vector
model. It requires all data being vectorized before learning.
Actually, high-dimensional image data is structured data; the
vectorization operationwill break the correlation relationship
of different pixels. Furthermore, the vectorization operation
also is easy to result in the curse of dimensionality problem.
As a result, machine learning algorithms [3–11] based on
tensor algebra are investigated. These algorithms consider
high-dimensional image as a high order tensor and introduce
tensor algebra to analyze tensor data. Tensor representa-
tion not only is helpful to preserve the structure of high-
dimensional image, but also serves as an effectiveway to avoid
the curse of dimensionality problem. To unify all machine
learning algorithms, [12] proposes the graph embedding
framework. Under this graph embedding framework, two
kinds of projective forms are summarized, called vector-to-
vector and tensor-to-tensor forms, respectively.
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However, for all machine learning algorithms, they have
to train all samples again when new samples are added,
which results in heavy computational cost. Consequently,
incremental machine learning algorithms are proposed [13–
17]. Butmost incremental learning algorithms focus on vector
machine learning. Only a limited number of works study
incremental learning in tensor space [18–20]. To investigate
the incremental tensor learning, this paper develops incre-
mental tensor discriminant analysis (ITDA), which employs
supervised learning in tensor space and introduces incre-
mental learning to process online learning. Furthermore,
as a kind of machine learning algorithm, this paper also
exploits the relationship between the proposed methods
and the graph embedding framework and proves that the
algorithm is a special case of tensor-to-tensor form under the
graph embedding framework theoretically. This paper also
analyzes the time and space complexity in detail. At last,
this paper conducts facial image detection experiments to
evaluate the proposedmethod.The experimental results have
demonstrated the advantage of the method.

2. Tensor Discriminant Analysis

For multidimensional image data 𝑋 = {𝑋
1
, . . . , 𝑋

𝐾
}, where

𝑋
𝑖
∈ R𝐼1×⋅⋅⋅×𝐼𝑁 , the corresponding class label is 𝑙(𝑖) ∈ [1, 𝐶],

where 𝐶 is the number of the class. Let the number of the 𝑐th
class be 𝑛

𝑐
; then the following definitions are introduced.

Definition 1. Within-class scatter tensor is defined:

𝑆
𝑤
=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖
− 𝑋
𝑐

󵄩󵄩󵄩󵄩󵄩

2

, (1)

where𝑋
𝑐
represent the mean tensor of the 𝑐th class.

Definition 2. Between-class scatter tensor is defined:

𝑆
𝑏
=

𝐶

∑

𝑐=1

𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑐
− 𝑋

󵄩󵄩󵄩󵄩󵄩

2

, (2)

where𝑋 represent the total mean tensor.

Definition 3. Total scatter tensor is defined:

𝑆
𝑡
=

𝐾

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖
− 𝑋

󵄩󵄩󵄩󵄩󵄩

2

. (3)

It is easy to derive that

𝑆
𝑤
+ 𝑆
𝑏
=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑖
− 𝑋
𝑐

󵄩󵄩󵄩󵄩󵄩

2

+

𝐶

∑

𝑐=1

𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑐
− 𝑋

󵄩󵄩󵄩󵄩󵄩

2

=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
vec (𝑋

𝑖
) − vec (𝑋

𝑐
)
󵄩󵄩󵄩󵄩󵄩

2

+

𝐶

∑

𝑐=1

𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
vec (𝑋

𝑐
) − vec (𝑋)

󵄩󵄩󵄩󵄩󵄩

2

=

𝐾

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
vec (𝑋

𝑖
) − vec (𝑋)

󵄩󵄩󵄩󵄩󵄩

2

= 𝑆
𝑡
.

(4)

Definition 4. Mode-𝑛 within-class scatter matrix is defined:

𝑆
(𝑛)

𝑤
=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

, (5)

where𝑋(𝑛)
𝑖

is the mode-𝑛matrix of the 𝑖th sample and𝑋
(𝑛)

𝑐
is

the mode-𝑛mean matrix of the 𝑐th class.

Definition 5. Mode-𝑛 between-class scatter matrix is defined:

𝑆
(𝑛)

𝑏
=

𝐶

∑

𝑐=1

𝑛
𝑐
(𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

) (𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

)

𝑇

, (6)

where𝑋(𝑛) is the mode-𝑛 total mean matrix.

Definition 6. Mode-𝑛 total scatter matrix is defined:

𝑆
(𝑛)

𝑡
=

𝐾

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

)

𝑇

= 𝑆
(𝑛)

𝑏
+ 𝑆
(𝑛)

𝑤
.

(7)

The basic idea of TDA is to seek 𝑁 projective matrices to
make within-class scatter tensor smaller and between-class
scatter tensor larger. The objective function is

𝐽 (𝑈
(1)
, . . . , 𝑈

(𝑁)
)

= arg max
∑
𝐶

𝑐=1
𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑐
− 𝑌

󵄩󵄩󵄩󵄩󵄩

2

∑
𝐶

𝑐=1
∑
𝑛
𝑐

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑖
− 𝑌
𝑐

󵄩󵄩󵄩󵄩󵄩

2

= arg max
∑
𝐶

𝑐=1
𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑋
𝑐
− 𝑋) ×

𝑛
𝑈
(𝑛)
𝑇 󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

∑
𝐶

𝑐=1
∑
𝑛
𝑐

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑋
𝑖
− 𝑋
𝑐
) ×
𝑛
𝑈
(𝑛)
𝑇 󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
.

(8)

In order to solve the above function, the iterative tech-
nique is adopted. It is assumed that the projective matrices
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{𝑈
(1)
, . . . , 𝑈

(𝑛−1)
, 𝑈
(𝑛+1)

, . . . , 𝑈
(𝑁)

} are known; then 𝑈
(𝑛) is

solved as follows:

𝐽 (𝑈
(𝑛)

)

= arg max((

𝐶

∑

𝑐=1

𝑛
𝑐
𝑈
(𝑛)
𝑇

(𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

)𝑈
(−𝑛)

𝑈
(−𝑛)
𝑇

⋅ (𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

)

𝑇

𝑈
(𝑛)

)

⋅ (

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

𝑈
(𝑛)
𝑇

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)𝑈
(−𝑛)

𝑈
(−𝑛)
𝑇

⋅ (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

𝑈
(𝑛)

)

−1

) ,

(9)

where 𝑈
(−𝑛)

= 𝑈
(𝑁)

⋅ ⋅ ⋅ ⊗ 𝑈
(𝑛+1)

⊗ 𝑈
(𝑛−1)

⋅ ⋅ ⋅ ⊗ 𝑈
(1). Since

𝑈
(−𝑛)

𝑈
(−𝑛)
𝑇

= 𝐼, so the above equation can be rewritten:

𝐽 (𝑈
(𝑛)

)

=arg max
∑
𝐶

𝑐=1
𝑛
𝑐
𝑈
(𝑛)
𝑇

(𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

) (𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

)

𝑇

𝑈
(𝑛)

∑
𝐶

𝑐=1
∑
𝑛
𝑐

𝑖=1
𝑈(𝑛)
𝑇

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

𝑈(𝑛)

= arg max
𝑈
(𝑛)
𝑇

𝑆
(𝑛)

𝑏
𝑈
(𝑛)

𝑈(𝑛)
𝑇

𝑆
(𝑛)

𝑤 𝑈(𝑛)
.

(10)

Based on the basic concept of TDA and related matrix
knowledge, we can get the following theorems.

Theorem 7. In tensor discriminant analysis, the mode-𝑛
intraclass scatter matrix is generally nonsingularity.

Proof. Defining the following matrix

𝐻
(𝑛)

𝑤
= [𝑋
(𝑛)

1
− 𝑋
(𝑛)

𝑙(1)
, . . . , 𝑋

(𝑛)

𝑀
− 𝑋
(𝑛)

𝑙(𝑀)
] , (11)

where 𝑀 is the number of samples, 𝑙(𝑚) expresses the class
label of the 𝑚th sample. Then the mode-𝑛 intraclass scatter
matrix is represented:

𝑆
(𝑛)

𝑤
= 𝐻
(𝑛)

𝑤
𝐻
(𝑛)
𝑇

𝑤
, (12)

where 𝐻
(𝑛)

𝑤
∈ R𝐼𝑛×𝐷, 𝐷 = ∏

𝑁

𝑘=1,𝑘 ̸=𝑛
𝐼
𝑘
. Generally speaking,

𝐼
𝑛
≪ 𝐷; then

rank (𝐻(𝑛)
𝑤

) = min (𝐼
𝑛
, 𝐷) = 𝐼

𝑛
. (13)

Further, we can get

rank (𝑆(𝑛)
𝑤

) = rank (𝐻(𝑛)
𝑤

𝐻
(𝑛)
𝑇

𝑤
) = rank (𝐻(𝑛)

𝑤
) = 𝐼
𝑛
. (14)

So the theorem is proved.

Theorem 8. Equation (8) can be unified into the graph
embedding framework [12].

Proof. Based on the basic concept of tensor algebra, the
numerator of (8) can be rewritten:

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑖
− 𝑌
𝑐

󵄩󵄩󵄩󵄩󵄩

2

=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
vec (𝑌

𝑖
) − vec (𝑌

𝑐
)
󵄩󵄩󵄩󵄩󵄩

2

.

(15)

Letting 𝑦
𝑖
= vec(𝑌

𝑖
) vec(𝑌

𝑐
) = (1/𝑛

𝑐
) ∑
𝑛
𝑐

𝑗=1
𝑦
𝑗
, then the above

equation is written:

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦
𝑖
−

1

𝑛
𝑐

𝑛
𝑐

∑

𝑗=1

𝑦
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

(𝑦
𝑖
−

1

𝑛
𝑐

𝑛
𝑐

∑

𝑗=1

𝑦
𝑗
)(𝑦

𝑖
−

1

𝑛
𝑐

𝑛
𝑐

∑

𝑗=1

𝑦
𝑗
)

𝑇

=

𝐾

∑

𝑖=1

𝑦
𝑖
𝑦
𝑇

𝑖
−

𝐶

∑

𝑐=1

1

𝑛
𝑐

∑

𝑙(𝑖)=𝑙(𝑗)=𝑐

𝑦
𝑖
𝑦
𝑇

𝑗

=

𝐾

∑

𝑖=1

𝐾

∑

𝑗=1

𝑊
(𝑤)

𝑖𝑗
𝑦
𝑖
𝑦
𝑇

𝑖
−

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑤)

𝑖𝑗
𝑦
𝑖
𝑦
𝑇

𝑗

=
1

2

𝐾

∑

𝑖=1

𝐾

∑

𝑗=1

𝑊
(𝑤)

𝑖𝑗
𝑦
𝑖
𝑦
𝑇

𝑖
+

1

2

𝐾

∑

𝑖=1

𝐾

∑

𝑗=1

𝑊
(𝑤)

𝑖𝑗
𝑦
𝑖
𝑦
𝑇

𝑖

−
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑤)

𝑖𝑗
𝑦
𝑖
𝑦
𝑇

𝑗

−
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑤)

𝑖𝑗
𝑦
𝑖
𝑦
𝑇

𝑗

=
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑤)

𝑖𝑗
(𝑦
𝑖
𝑦
𝑇

𝑖
+ 𝑦
𝑗
𝑦
𝑇

𝑗
− 𝑦
𝑖
𝑦
𝑇

𝑗
− 𝑦
𝑗
𝑦
𝑇

𝑖
)

=
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑤)

𝑖𝑗
(𝑦
𝑖
− 𝑦
𝑗
) (𝑦
𝑖
− 𝑦
𝑗
)
𝑇

=
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑤)

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑖
− 𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩

2

,

(16)

where

𝑊
(𝑤)

𝑖𝑗
=
{

{

{

1

𝑛
𝑐

, 𝑙 (𝑖) = 𝑙 (𝑗) = 𝑐,

0, 𝑙 (𝑖) ̸= 𝑙 (𝑗) .

(17)
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Within the low-dimensional feature space, it is desired
to preserve the property as demonstrated in (4), so the
denominator of (8) is formulated as follows:

𝐶

∑

𝑐=1

𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑐
− 𝑌

󵄩󵄩󵄩󵄩󵄩

2

=

𝐶

∑

𝑐=1

𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
vec (𝑌

𝑐
) − vec (𝑌)󵄩󵄩󵄩󵄩󵄩

2

=

𝐾

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
vec (𝑌

𝑖
) − vec (𝑌)󵄩󵄩󵄩󵄩󵄩

2

−

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
vec (𝑌

𝑖
) − vec (𝑌

𝑐
)
󵄩󵄩󵄩󵄩󵄩

2

=

𝐾

∑

𝑖=1

(𝑦
𝑖
− 𝑦) (𝑦

𝑖
− 𝑦)
𝑇

−

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

󵄩󵄩󵄩󵄩󵄩
vec (𝑌

𝑖
) − vec (𝑌

𝑐
)
󵄩󵄩󵄩󵄩󵄩

2

,

(18)

where

𝐾

∑

𝑖=1

(𝑦
𝑖
− 𝑦) (𝑦

𝑖
− 𝑦)
𝑇

=

𝐾

∑

𝑖=1

𝑦
𝑖
𝑦
𝑇

𝑖
−

1

𝐾

𝐾

∑

𝑖,𝑗=1

𝑦
𝑖
𝑦
𝑇

𝑗

=

𝐾

∑

𝑖=1

(

𝐾

∑

𝑗=1

1

𝐾
)𝑦
𝑖
𝑦
𝑇

𝑖
−

1

𝐾

𝐾

∑

𝑖,𝑗=1

𝑦
𝑖
𝑦
𝑇

𝑗

=
1

2
(

1

𝐾

𝐾

∑

𝑖,𝑗=1

𝑦
𝑖
𝑦
𝑇

𝑖
+

1

𝐾

𝐾

∑

𝑖,𝑗=1

𝑦
𝑖
𝑦
𝑇

𝑖
−

1

𝐾

𝐾

∑

𝑖,𝑗=1

𝑦
𝑖
𝑦
𝑇

𝑗
−

1

𝐾

𝐾

∑

𝑖,𝑗=1

𝑦
𝑖
𝑦
𝑇

𝑗
)

=
1

2

𝐾

∑

𝑖,𝑗=1

1

𝐾
(𝑦
𝑖
𝑦
𝑇

𝑖
+ 𝑦
𝑗
𝑦
𝑇

𝑗
− 𝑦
𝑖
𝑦
𝑇

𝑗
− 𝑦
𝑗
𝑦
𝑇

𝑖
) .

(19)

Combining (19) with (16), (18) can be written:

𝐶

∑

𝑐=1

𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑐
− 𝑌

󵄩󵄩󵄩󵄩󵄩

2

=
1

2

𝐾

∑

𝑖,𝑗=1

(
1

𝐾
−𝑊
(𝑤)

𝑖𝑗
) (𝑦
𝑖
𝑦
𝑇

𝑖
+ 𝑦
𝑗
𝑦
𝑇

𝑗
− 𝑦
𝑖
𝑦
𝑇

𝑗
− 𝑦
𝑗
𝑦
𝑇

𝑖
)

=
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑏)

𝑖𝑗
(𝑦
𝑖
𝑦
𝑇

𝑖
+ 𝑦
𝑗
𝑦
𝑇

𝑗
− 𝑦
𝑖
𝑦
𝑇

𝑗
− 𝑦
𝑗
𝑦
𝑇

𝑖
)

=
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑏)

𝑖𝑗
(𝑦
𝑖
− 𝑦
𝑗
) (𝑦
𝑖
− 𝑦
𝑗
)
𝑇

=
1

2

𝐾

∑

𝑖,𝑗=1

𝑊
(𝑏)

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑖
− 𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩

2

,

(20)

where

𝑊
(𝑏)

𝑖𝑗
=

1

𝑛
−𝑊
(𝑤)

𝑖𝑗
=

{{

{{

{

1

𝐾
−

1

𝑛
𝑐

, 𝑙 (𝑖) = 𝑙 (𝑗) = 𝑐,

1

𝐾
, 𝑙 (𝑖) ̸= 𝑙 (𝑗) .

(21)

Consequently, (8) is expressed:

𝐽 (𝑈
(1)
, . . . , 𝑈

(𝑁)
)

= arg max
∑
𝐾

𝑖,𝑗=1
𝑊
(𝑏)

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑖
− 𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩

2

∑
𝐾

𝑖,𝑗=1
𝑊
(𝑤)

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑌
𝑖
− 𝑌
𝑗

󵄩󵄩󵄩󵄩󵄩

2

= arg max
∑
𝐾

𝑖,𝑗=1
𝑊
(𝑏)

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑋
𝑖
− 𝑋
𝑗
) ×
𝑛
𝑈
(𝑛)
𝑇 󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

∑
𝐾

𝑖,𝑗=1
𝑊
(𝑤)

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝑋
𝑖
− 𝑋
𝑗
) ×
𝑛
𝑈
(𝑛)
𝑇 󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

𝑛=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2
.

(22)

The form of (22) is consistent with the tensor-to-tensor
form of the graph embedding framework. Therefore, (8) can
be unified into the graph embedding framework.

3. Incremental Tensor Discriminant Analysis

3.1. Incremental Learning Based on a Single Sample. In order
to distinguish these variables that need to be updated during
incremental learning procedure, the paper employs the sub-
script old to mark the variables before incremental learning.
For example,𝑋old expresses the total mean tensor before new
samples are added.

When a single sample𝑋new is added, its class label is 𝑙new;
then the mode-𝑛 total mean matrix becomes

𝑋
(𝑛)

=
𝐾𝑋
(𝑛)

old + 𝑋
(𝑛)

new
𝐾 + 1

. (23)

If 𝑙new ∉ [1, 𝐶], that is, the new sample belongs to a new class.
In this case, the total class number is𝐶 = 𝐶old+1 andmode-𝑛
interclass scatter matrix is updated:

𝑆
(𝑛)

𝑏
=

𝐶

∑

𝑐=1

𝑛
𝑐
(𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

) (𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

)

𝑇

=

𝐶old

∑

𝑐=1

𝑛old 𝑐 (𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

) (𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

)

𝑇

+ (𝑋
(𝑛)

new − 𝑋
(𝑛)

) (𝑋
(𝑛)

new − 𝑋
(𝑛)

)

𝑇

,

(24)



Computational Intelligence and Neuroscience 5

where 𝑛
𝑐
is the updated sample number of the 𝑐th class.

Mode-𝑛 intraclass scatter matrix is

𝑆
(𝑛)

𝑤
=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

=

𝐶old+1

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

=

𝐶old

∑

𝑐=1

𝑛old 𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐)
𝑇

+ (𝑋
(𝑛)

new − 𝑋
(𝑛)

new) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

new)
𝑇

,

(25)

where 𝑋
(𝑛)

new is the mode-𝑛 mean matrix of the new sample.
Because a single sample is added and it belongs to a new class,
we can get

𝑋
(𝑛)

new = 𝑋
(𝑛)

new. (26)

Then (25) becomes

𝑆
(𝑛)

𝑤
=

𝐶old

∑

𝑐=1

𝑛old 𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐)
𝑇

= 𝑆
(𝑛)

old 𝑤.

(27)

It is demonstrated in (27) that mode-𝑛 intraclass scatter
matrix will not change when a new sample with new class is
added.

When the class label of the new sample 𝑙new = 𝑟 ∈

[1, 𝐶old], that is, the class label is not a new class. In this
case, the total class number 𝐶 = 𝐶old; then mode-𝑛 interclass
scatter matrix is

𝑆
(𝑛)

𝑏
=

𝐶

∑

𝑐=1

𝑛
𝑐
(𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

) (𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

)

𝑇

. (28)

Mode-𝑛 intraclass scatter matrix is

𝑆
(𝑛)

𝑤
=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

=

𝐶old+1

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

=

𝐶old

∑

𝑐=1

𝑐 ̸=𝑟

𝑛old 𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐)
𝑇

+

𝑛old 𝑟+1

∑

𝑘=1

(𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

𝑟
) (𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

𝑟
)

𝑇

.

(29)

Because the new sample belongs to the 𝑟th class, then the class
mean of the 𝑟th class becomes

𝑋
(𝑛)

𝑟
=

𝑛old 𝑟𝑋
(𝑛)

old 𝑟 + 𝑋
(𝑛)

new
𝑛old 𝑟 + 1

. (30)

Based on this, we can get

𝑛old 𝑟+1

∑

𝑘=1

(𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

𝑟
) (𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

𝑟
)

𝑇

=

𝑛old 𝑟

∑

𝑘=1

(𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

𝑟
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑟
)

𝑇

+ (𝑋
(𝑛)

new − 𝑋
(𝑛)

𝑟
) (𝑋
(𝑛)

new − 𝑋
(𝑛)

𝑟
)

𝑇

=

𝑛old 𝑟

∑

𝑘=1

(𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

old 𝑟 + 𝑋
(𝑛)

old 𝑟 − 𝑋
(𝑛)

𝑟
)

⋅ (𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

old 𝑟 + 𝑋
(𝑛)

old 𝑟 − 𝑋
(𝑛)

𝑟
)

𝑇

+ (𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟 −
𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟
𝑛old 𝑟 + 1

)

⋅ (𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟 −
𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟
𝑛old 𝑟 + 1

)

𝑇

=

𝑛old 𝑟

∑

𝑘=1

(𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

old 𝑟) (𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

old 𝑟)
𝑇

+
𝑛old 𝑟

𝑛old 𝑟 + 1
(𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟) (𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟)
𝑇

.

(31)

So (29) is simplified:

𝑆
(𝑛)

𝑤
=

𝐶old

∑

𝑐=1

𝑐 ̸=𝑟

𝑛old 𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐)
𝑇

+

𝑛old 𝑟

∑

𝑘=1

(𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

old 𝑟) (𝑋
(𝑛)

𝑘
− 𝑋
(𝑛)

old 𝑟)
𝑇

+
𝑛old 𝑟

𝑛old 𝑟 + 1
(𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟) (𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟)
𝑇

=

𝐶old

∑

𝑐=1

𝑛old 𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐)
𝑇

+
𝑛old 𝑟

𝑛old 𝑟 + 1
(𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟) (𝑋
(𝑛)

new − 𝑋
(𝑛)

old 𝑟)
𝑇

.

(32)

3.2. Incremental Learning Based on Multisamples. When
several samples are added, new added samples 𝑋new =

{𝑋
𝐾+1

, . . . , 𝑋
𝐾+𝑇

}, 𝑇 ≥ 1, the corresponding class labels are
𝑙new = {𝑙

1
, . . . , 𝑙
𝑇
}.Without loss of generality, it is assumed that
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𝑛new 𝑟 samples belong to the 𝑟th class; then the mean tensor
of the 𝑟th class is updated:

𝑋
𝑟
=

1

𝑛old 𝑟 + 𝑛new 𝑟
(𝑛old 𝑟𝑋old 𝑟 +

𝑛new 𝑟

∑

𝑙(𝑖)=𝑟

𝑖=1

𝑋
𝑖
)

=

(𝑛old 𝑟𝑋old 𝑟 + 𝑛new 𝑟𝑋new 𝑟)

𝑛old 𝑟 + 𝑛new 𝑟
,

(33)

where𝑋new 𝑟 is themean tensor of the new samples belonging
to the 𝑟th class. The corresponding mode-𝑛 mean matrix of
the 𝑟th class is

𝑋
(𝑛)

𝑟
=

(𝑛old 𝑟𝑋
𝑛

old 𝑟 + 𝑛new 𝑟𝑋
𝑛

new 𝑟)

𝑛old 𝑟 + 𝑛new 𝑟
. (34)

Then the number of samples in the 𝑟th is

𝑛
𝑟
= 𝑛old 𝑟 + 𝑛new 𝑟. (35)

The total mean tensor is updated:

𝑋 =
𝐾𝑋old + ∑

𝐾+𝑇

𝑖=𝐾+1
𝑋
𝑖

𝐾 + 𝑇
=

𝐾𝑋old + 𝑇𝑋new
𝐾 + 𝑇

, (36)

where 𝑋new is the mean tensor of all new samples. The
interclass scatter mean tensor is updated:

𝑆
𝑏
=

𝐶

∑

𝑐=1

𝑛
𝑐

󵄩󵄩󵄩󵄩󵄩
𝑋
𝑐
− 𝑋

󵄩󵄩󵄩󵄩󵄩

2

. (37)

The corresponding mode-𝑛 interclass scatter matrix is

𝑆
(𝑛)

𝑏
=

𝐶

∑

𝑐=1

𝑛
𝑐
(𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

) (𝑋
(𝑛)

𝑐
− 𝑋
(𝑛)

)

𝑇

. (38)

The mode-𝑛 intraclass scatter matrix is

𝑆
(𝑛)

𝑤
=

𝐶

∑

𝑐=1

𝑛
𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

𝑐
)

𝑇

=

𝐶

∑

𝑐=1

(

𝑛old 𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

old 𝑐)
𝑇

+ 𝑛old 𝑐 (𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

𝑐
)

𝑇

)

+

𝐶

∑

𝑐=1

(

𝑛new 𝑐

∑

𝑖=1

(𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

new 𝑐) (𝑋
(𝑛)

𝑖
− 𝑋
(𝑛)

new 𝑐)
𝑇

+ 𝑛new 𝑐 (𝑋
(𝑛)

new 𝑐 − 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

new 𝑐 − 𝑋
(𝑛)

𝑐
)

𝑇

) .

(39)

Substituting (34) into the following equation, we can get

𝑛old 𝑐 (𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

𝑐
) (𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

𝑐
)

𝑇

= 𝑛old 𝑐(𝑋
(𝑛)

old 𝑐 −
𝑛old 𝑐𝑋

(𝑛)

old 𝑐 + 𝑛new 𝑐𝑋
(𝑛)

new 𝑐
𝑛old 𝑐 + 𝑛new 𝑐

)

⋅ (𝑋
(𝑛)

old 𝑐 −
𝑛old 𝑐𝑋

(𝑛)

old 𝑐 + 𝑛new 𝑐𝑋
(𝑛)

new 𝑐
𝑛old 𝑐 + 𝑛new 𝑐

)

𝑇

=
𝑛old 𝑐𝑛

2

new 𝑐

(𝑛old 𝑐 + 𝑛new 𝑐)
2
(𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

new 𝑐) (𝑋
(𝑛)

old 𝑐 − 𝑋
(𝑛)

new 𝑐)
𝑇

=
𝑛old 𝑐𝑛

2

new 𝑐
𝑛2
𝑐

(𝑋
(𝑛)
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(40)

Similarly, we can get

𝑛new 𝑐 (𝑋
(𝑛)
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(𝑛)

𝑐
) (𝑋
(𝑛)
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(𝑛)

𝑐
)
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=
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2

old 𝑐
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(𝑋
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(41)

Substituting (40) and (41) into (39), we can obtain
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+

𝑛
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(42)

Without loss of generality, it is supposed that, for 𝑇 new
samples, there are 𝑛

𝐶+1
samples belonging to the new class

label 𝐶 + 1; then updated mode-𝑛 interclass scatter matrix is

𝑆
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(43)

and mode-𝑛 intraclass scatter matrix is
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(44)

It is not difficult to find that incremental learning based
on singular sample only is a special case of incremental
learning based on multisample.

3.3. The Complexity Analysis. For tensor discriminant analy-
sis, the main computational time is spent on the computation
of interclass mean, total mean, inter- and intraclass scatter
tensor, and Eigen decomposition. The computation cost of
inter- and intra-class scatter tensors depends on the number
of training samples. If there are a large number of training
samples, it cannot avoid to increment computational time.

For incremental discriminant analysis, the main compu-
tational time is spent on the computation of updated inter-
and intraclass scatter matrix and the class number.

For Eigen decomposition, both the time complexity of
TDA and ITDA are 𝑂(𝑁𝐼

3
). The main difference of the time

complexity is the computation of inter- and intraclass scatter
matrix. For TDA, the time complexity is 𝑂(𝑀𝑁𝐼

𝑁+1
), so the

time complexity will increase with the number of training
samples. For ITDA, the time complexity is 𝑂(𝑇𝑁𝐼

𝑁+1
+

𝐶𝑁𝐼
𝑁+1

), which is related to the class number and the
number of new samples. It has no relationship with the
number of initial training samples. Consequently, ITDA is
helpful to reduce the time complexity.

Considering the space complexity, ITDA is also superior
to TDA.When new samples are added, TDA needs𝑀∏

𝑁

𝑛=1
𝐼
𝑛

bytes to save all training samples, but ITDA only needs
∏
𝑁

𝑛=1
𝐼
𝑛
bytes to save new added samples,∏𝑁

𝑛=1
𝐼
𝑛
bytes to save

the total mean, 𝐶∏𝑁
𝑛=1

𝐼
𝑛
bytes to save the class mean, and

Figure 1: The samples of CBCL dataset.
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Figure 2: The detection results after the first incremental learning.

𝑁∑
𝑁

𝑛=1
𝐼
2

𝑛
bytes to save mode-𝑛 scatter matrix. Hence ITDA

has the capability to save space.
Compared to incremental learning based on single sam-

ple with incremental learning based on multisamples, incre-
mental learning based on single samples has an advantage to
reduce the space complexity because it only deals with one
sample for each time.

4. Experiments

In this section, a series of experiments are carried out to
validate the performance of incremental tensor discriminant
analysis (ITDA).The CBCL image data set is used to conduct
facial image detection experiments. The dataset contains
two classes of images, including facial images and nonfacial
images as shown in Figure 1.The total number of the datasets
is 2988 images, in which there are 2429 facial images and
559 nonfacial images. For each image, the size is 19 × 19.
This paper divides whole dataset into training dataset with
1215 facial images and 280 nonfacial images and testing
dataset with 1214 facial images and 279 nonfacial images.
Furthermore, training dataset is divided into initial training
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Figure 3: The detection results after the second incremental learn-
ing.

dataset with 1015 facial images and 80 nonfacial images and
four incremental datasets. Each incremental dataset has 50
facial images and 50 nonfacial images.

ITLDA integrates the tensor representation and incre-
mental learning; it is reasonable to believe that it has the
advantage to improve the detection performance and reduce
the time and space complexity. In this respect, ITLDA is com-
pared with LDA [21], ILDA [14], TPCA [22], ITPCA [23], and
TDA [9]. LDA is the classical linear discriminant analysis.
ILDA is the incremental version of LDA. TPCA is also called
MPCA (multilinear principal component analysis), which
carries on principal component analysis with tensor data.
ITPCA is proposed to suit for incremental principal com-
ponent analysis for tensor data. TDA also represents data as
tensor structure and conducts multilinear discriminant anal-
ysis. For each time of incremental learning, the paper adds
one incremental dataset and then extracts low-dimensional
features on testing dataset. The nearest neighbor classifier is
employed to classify these low-dimensional features.

The comparisons of detection performance for different
algorithms with incremental learning are shown in Figures
2, 3, 4, and 5, respectively. It is worth noting that LDA
is the worst and ILDA is better than LDA. However the
detection results of ILDA drop with the increment of the
dimension of low-dimensional features. TPCA and ITPCA
have similar detection results and both of them exceed LDA
and ILDA. The probable reason is that TPCA and ITPCA
represent data as tensor structure, which make full use of
the interior structure information to enhance the detection
performance. TDA is superior to the above four algorithms.
When the dimension of low-dimensional features is low,
TDA and ITDA have comparative detection percent and
ITDA begins to surmount TDA when the dimension of low-
dimensional features increases. Figure 6 and Table 1 have
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Figure 4:The detection results after the third incremental learning.
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Figure 5: The detection results after the fourth incremental learn-
ing.

shown the best detection results of different algorithms. It
can be seen that the detection performances of different
algorithms are improved with the increment of incremental
learning numbers and ITLDA always has the best perfor-
mance. Consequently, it can be derived that the increment
of incremental learning number is helpful to improve the
detection result. More than that, as shown in Figures 7 and
8, incremental learning algorithms ILDA, ITPCA, and ITDA
have the capability to alleviate time and space complexity
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Table 1: The best detection results of different algorithms with incremental learning.

Algorithms The first incremental
learning (%)

The second incremental
learning (%)

The third incremental
learning (%)

The fourth incremental
learning (%)

LDA 82.59 81.51 82.12 82.52
ILDA 90.56 91.49 91.56 91.56
TPCA 90.22 91.36 92.03 92.83
ITPCA 88.55 90.56 91.63 92.1
TLDA 93.67 94.44 95.38 95.78
ITLDA 93.83 95.17 96.05 96.45
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Figure 6: The comparison of the best detection results for different
algorithms with incremental learning.
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apparently comparedwith nonincremental learning. Further-
more, since ITPCA and ITDA adopt tensor representation,
they have lower time and space requirements than LDA.

5. Conclusions

In this paper, incremental tensor discriminant analysis
(ITDA) is investigated. It adopts tensor representation to keep
the structure information for high-dimensional images and
introduces incremental learning to complete online learning.
This paper also proves the relationship between ITDAand the
graph framework theoretically. The facial detection experi-
ments have shown that ITDA has better performance than
TDA and is able to reduce the time and space complexity
apparently.
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Pilates exercises have been shown beneficial impact on physical, physiological, and mental characteristics of human beings.
In this paper, Z-number based fuzzy approach is applied for modeling the effect of Pilates exercises on motivation, attention,
anxiety, and educational achievement. The measuring of psychological parameters is performed using internationally recognized
instruments: Academic Motivation Scale (AMS), Test of Attention (D2 Test), and Spielberger’s Anxiety Test completed by students.
The GPA of students was used as the measure of educational achievement. Application of Z-information modeling allows us to
increase precision and reliability of data processing results in the presence of uncertainty of input data created from completed
questionnaires. The basic steps of Z-number based modeling with numerical solutions are presented.

1. Set of Problem

The investigation of the effect of physical activities on moti-
vation, attention, anxiety, and educational performances of
students is one of the important research areas in psychology.
Hannaford in [1] noticed that “Thinking and learning are
not all in our head. Our movements that not only express
knowledge and facilitate greater cognitive function, they
actually grow the brain as they increase in complexity. Our
entire brain structure is intimately connected to and grown
by the movement mechanism within our body.” Recently
some research works, demonstrating the achievement of
the academic performances through physical activities, have
been published in different sources. In [2] is given a review
showing the effectiveness of aerobic, resistance, and multi-
modal exercise interventions on a wide range of outcome
measures, including cognition, general physical function,
mobility, strength, balance, flexibility, quality of life. It was
shown [3] that the students with the highest fitness level
performed better on standardized tests and students with the
lowest fitness level performed lower in class grades. In [4–6]

it was found that the physical activity improves a cognitive
function, learning, and academic achievement. Salmon in [7]
presented cross-sectional and longitudinal studies analyzing
the effect of physical exercises on anxiety, depression, and
sensitivity to stress. Increased physical activity therefore
reduces premature mortality [8] and the establishment and
maintenance of exercises’ habits has become target for clinical
psychologists [9].

The above research studies consider impact of psycho-
logical activities on performances of students using different
psychological parameters. Considering and modeling the
effect of physical activities on basic psychological parameters
of humans acquire great importance. In this paper, we suggest
the model that takes the parameters—motivation, atten-
tion, and anxiety—into account and improves educational
achievement of students through Pilates exercises.

The structure that we have designed for modeling the
effect of Pilates exercises on motivation, attention, anxiety,
and educational achievement is presented in Figure 1.

There is broad agreement in the literature that the physical
exercises and particularly Pilates exercises are associated
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Figure 1

with the motivation, attention, anxiety, and educational
achievement [10–15]. The classical statistical approach is
used today for finding the relationship between Pilates
and above mentioned psychological parameters. Application
of statistical techniques allows estimating the relationship
between input (effect of Pilates) and output (achievement)
fromprobabilistic point of view.This approach embraces only
statistical uncertainty, but not fuzzy uncertainty inherent in
psychological phenomena. Motivation of the application of
𝑍-number theory to solve the presented problem is as follows.

(1) The concepts in the human brain for perceiving,
recognizing, and categorizing natural phenomena
are vague and imprecise. The boundaries of these
parameters (such as low, moderate, or high levels of
anxiety, motivation, and attention) are not exactly
defined. Therefore, claiming that this emerges from
them also becomes vague.

(2) 𝑍-number theory allows us to estimate the relation-
ship between input and output by using the concept
of fuzzy information and partial reliability.

(3) 𝑍-number based approach enables us to use uncer-
tainty measures to quantify the ambiguity associated
with prediction of psychological variables.

We will start with short introduction of basic terms:
Pilates, motivation, attention, and anxiety.

2. Introduction

2.1. Benefits of Pilates. In developing his method, Pilates
(founder of Pilates exercises) combines both Eastern and the
Western concepts [10] by including mental focus and specific
breathing of yoga with theWestern physical exercise systems.

The mind-body approach is a basic of Pilates principles:
centering, concentration, control, precision, flow, and breath
[10, 11].

Pilates has the following physical, psychological, and
social impacts [11–15].

(1) Pilates exercise improves muscular strength, balance,
posture, flexibility, and bone density and decreases
back pain. The development of musculoskeletal fit-
ness with long term resistance training is associated
with enhanced cardiovascular function and muscu-
loskeletal metabolism.

(2) Pilates increases a cognitive function—Pilates is dif-
ferent than many other forms of exercise because it

requires the mind to pay attention to what you are
doing. Research shows that when required to think
about how you are moving, your brain cells grow at
a faster rate and your nervous system creates better
connections throughout your body.

(3) Pilates increases brain neurotransmitters, brain-
derived neurotrophins that support neuronal dif-
ferentiation and survival in the developing brain.
Neurotrophins assure the survival of neurons in
areas responsible for learning, memory, and higher
thinking and, as an overall result, improve the overall
quality of life.

(4) Pilates increases blood flow and oxygen flow to the
brain and raises levels of serotonin and endorphins—
all of which help to reduce stress, anxiety, and fatigue
and improve mood, motivation, and achievement.

(5) Beyond academic achievement, many researchers
connect Pilates to absenteeism, drop-out rate, and
social communications of students.

2.2. Motivation. Motivation is defined as the process that
initiates, guides, and maintains goal-oriented behaviors. It
involves the biological, emotional, social, and cognitive forces
that activate behavior. Motivation has been shown to pos-
itively influence study strategy and academic performance.
Self-determination theory describes human motivation on a
continuum categorized by amotivation, instincts, and extrin-
sic motivations [16].

Amotivation is the state of lacking the intention to act,
whether resulting from not valuing the activity, not feeling
capable of performing the task, or not expecting it to produce
a desired outcome.

Extrinsic motivations are those that arise from outside
of the individual and often involve rewards such as trophies,
money, social recognition, or praise.

Intrinsic motivations are those that arise from within the
individual, for the inherent satisfaction of the activity itself.

Pilates has effect on instinct motivation through the
following mechanisms: improving total mood, body energy,
self-esteem, psychological well-being, and vitality, reducing
stress and anxiety, releasing certain neurotransmitters that
alleviate physical and mental pain, and satisfying the basic
psychological needs as competence, autonomy, and related-
ness.

2.3. Anxiety. Anxiety is one of the major psychological vari-
ables which is considered as an important part of personality
development. Anxiety is a psychological and physiological
state characterized by somatic, emotional, cognitive, and
behavioural components [17]. Anxiety generally helps in
improving the performance of an individual. However, when
anxiety becomes overwhelming, it may fall under the classi-
fication of anxiety disorder. This means anxiety should not
cross its threshold value; otherwise it will reach up to an
abnormal level.

American and European studies have found a negative
correlation between anxiety and academic achievement.
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Pilates has effect on anxiety through the following mech-
anisms: increasing body energy, sleep quality, attention,
and concentration, releasing negatively thinking, improving
blood and oxygen circulated to the brain, and relaxing
muscles.

2.4. Attention. Attentionwas originally defined as processing
one out of what seem several simultaneously possible objects
or trains of thought. It implies withdrawal from some things
in order to deal effectively with others [18].

Attention can be considered as a filter, in which many
pieces of information come into the brain, but only one of
these pieces of information is processed.

Pilates has effect on attention through the following
mechanisms: concentration and precision are two main
principles of Pilates; controlling a body movement by the
brain; increasing sleep quality; relaxing of body; releasing
negative thinking; decreasing the stress and anxiety.

3. Application of Fuzzy Logic and 𝑍-Number
Theory in Psychology Researches

The applications of fuzzy logic in psychology researches
have been started since mid-1980 [19]. Averkin and Tarasov
in [20] examined application of fuzzy modeling relation
in psychology. Hesketh et al. considered [21] application
of fuzzy graphical rating scale to the psychology. In [22]
fuzzy logic based model of emotion is given. The role of
fuzzy logic in psychological researches was examined in [23].
The researchers studied the relationship between motivation
and anxiety using fuzzy logic and concluded that the fuzzy
logic method has more advantages over statistical analysis to
control uncertainties in data.

In this paper, we put a new approach for modeling of
psychology processes through the 𝑍-valuation concept. 𝑍-
information approach includes value of variable of interest
and its reliability and has a major advantage for modeling
such type of concepts. This approach enables us to use
uncertainty measures to quantify the ambiguity associated
with prediction of psychological parameters.

3.1. Preliminaries. A discrete 𝑍-number [24] is an ordered
pair𝑍 = (𝐴, 𝐵), where𝐴 is a discrete fuzzy number playing a
role of a fuzzy constraint on values that a random variable 𝑋
may take:

𝑋 is 𝐴 (1)

and 𝐵 is a discrete fuzzy number with amembership function
𝜇
𝐵
: {𝑏
1
, . . . , 𝑏

𝑛
} → [0, 1], {𝑏

1
, . . . , 𝑏

𝑛
} ⊂ [0, 1], playing a role

of a fuzzy constraint on the probability measure of 𝐴:

𝑃 (𝐴) is 𝐵. (2)

A concept of a discrete 𝑍+-number is closely related to the
concept of a discrete 𝑍-number. Given a discrete 𝑍-number

Reasoning using Z-interpolation

approach

Calculation of distances between

Z-information and

Z-antecedents of Z-rules

Computation of aggregated

information

Input data

Output

rules
Construction of Z-if. . .then

Figure 2: Flowchart diagram of 𝑍-number modeling.

𝑍 = (𝐴, 𝐵), 𝑍
+-number 𝑍+ is a pair consisting of a fuzzy

number, 𝐴, and a random number 𝑅:

𝑍
+
= (𝐴, 𝑅) , (3)

where𝐴 plays the same role as it does in a discrete𝑍-number
𝑍 = (𝐴, 𝐵) and 𝑅 plays the role of the probability distribution
𝑝, such that 𝑃(𝐴) = ∑𝑛

𝑖=1
𝜇
𝐴
(𝑥
𝑖
)𝑝(𝑥
𝑖
), 𝑃(𝐴) ∈ supp(𝐵).

4. Problem Solving

Flowchart diagram of 𝑍-number based modeling is given in
Figure 2.

Input raw data is created from the questionnaires (tests of
motivation, attention, and anxiety) completed by students.

This data is imprecise and involves uncertainty related
with process of completing (filling) of questionnaires. The
results of measuring are processed as fuzzy variables with the
different fuzzy subsets.

The relationships between educational achievement and
the abovementioned psychological variables are presented as
Z-if. . .then rules (Table 1) by the following linguistic variables:
H—high; L—low; M—medium; G—good; E—excellence;
U—usually; P—plausible; R—rare.

𝑍-rule base concept plays pivotal role in economics, deci-
sion making, forecasting, and other human centric systems
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Table 1: Z-if. . .then rules.

Number of rules If Then
Motivation Attention Anxiety Achievement

1 (L, U) (L, U) (H, U) (L, U)
2 (L, U) (M, U) (M, U) (M, U)
3 (L, U) (M, U) (L, U) (G, U)
4 (L, U) (H, U) (L, U) (G, U)
5 (L, U) (H, U) (L, U) (E, U)
6 (L, U) (L, U) (M, U) (L, U)
7 (L, U) (H, U) (M, U) (G, U)
8 (M, U) (H, U) (L, U) (E, P)
9 (M, U) (M, U) (M, U) (G, U)
10 (M, U) (M, U) (M, U) (M, U)
11 (M, U) (M, U) (H, U) (L, U)
12 (M, U) (H, U) (L, U) (G, U)
13 (M, U) (H, U) (L, U) (E, U)
14 (M, U) (H, U) (H, U) (M, U)
15 (M, U) (H, U) (M, U) (M, U)
16 (M, U) (H, U) (M, U) (G, U)
17 (M, U) (H, U) (M, U) (E, U)
18 (H, U) (H, U) (L, U) (E, R)
19 (H, U) (H, U) (L, U) (G, U)
20 (H, U) (H, U) (M, U) (E, U)
21 (H, U) (H, U) (M, U) (G, U)
22 (H, U) (M, U) (M, U) (G, U)
23 (H, U) (M, U) (L, U) (G, U)
24 (H, U) (M, U) (L, U) (M, U)
25 (H, U) (L, U) (H, U) (L, U)
26 (H, U) (L, U) (M, U) (M, U)
27 (H, U) (L, U) (L, U) (L, U)
28 (H, U) (L, U) (L, U) (M, U)

functioning in 𝑍-information environment. The 𝑍-rule base
is complete when for all the possible observations there exists
at least one rulewhose𝑍-antecedent part overlaps the current
antecedent 𝑍-valuation, at least partially. Otherwise, the 𝑍-
rule base is incomplete. In case that there is incomplete
(sparse) 𝑍-rule base, the classical reasoning methods based
on compositional rule of inference (Zadeh [25], Mamdani
[26], and R. A. Aliev and R. R. Aliev [27]) or Takagi
and Sugeno [28] reasoning approach are not so effective
to adapt generating an output for the observation covered
by none of the rules. Consequently, we will use inference
techniques which in the lack of matching rules can perform
an approximate reasoning, namely, 𝑍-interpolated methods.

A problem of 𝑍-interpolation is an interpolation of of
fuzzy is given below [24, 29].

Given the following 𝑍-rules:

If 𝑋 is (𝐴
𝑋,1
, 𝐵
𝑋,1
) then 𝑌 is (𝐴

𝑌,1
, 𝐵
𝑌,1
) ,

If 𝑋 is (𝐴
𝑋,2
, 𝐵
𝑋,2
) then 𝑌 is (𝐴

𝑌,2
, 𝐵
𝑌,2
) ,

.

.

.

If 𝑋 is (𝐴
𝑋,𝑛
, 𝐵
𝑋,𝑛
) then 𝑌 is (𝐴

𝑌,𝑛
, 𝐵
𝑌,𝑛
)

(4)

and the fact that

𝑋 is (𝐴
𝑋
, 𝐵
𝑋
) , (5)

find the 𝑍-value of 𝑌.
The idea underlying the suggested interpolation approach

is that the ratio of distances between the conclusion and the
consequent parts is identical to ones between the observation
and the antecedent parts. For 𝑍-rules interpolation we have

𝑍
𝑌
=
∑
𝑛

𝑖=1
(1/ dist (𝑍

𝑋
, 𝑍
𝑋,𝑖
)) 𝑍
𝑌,𝑖

∑
𝑛

𝑘=1
(1/ dist (𝑍

𝑋
, 𝑍
𝑋,𝑖
))

, (6)

where dist is the distance between 𝑍-numbers. As dist,
method suggested in [29] can be used.

Let us consider the special case of the considered problem
of 𝑍-rules interpolation.

Given the 𝑍-rules

If 𝑋 is 𝐴
𝑋,1

then 𝑌 is (𝐴
𝑌,1
, 𝐵) ,

If 𝑋 is 𝐴
𝑋,2

then 𝑌 is (𝐴
𝑌,2
, 𝐵) ,

.

.

.

If 𝑋 is 𝐴
𝑋,𝑛

then 𝑌 is (𝐴
𝑌,𝑛
, 𝐵)

(7)

and the fact that𝑋 is (𝐴
𝑋
, 𝐵
𝑋
), find the value of 𝑌.

For this case, formula (6) is reduced to

𝑍
𝑌
=
∑
𝑛

𝑖=1
(1/ dist (𝑍

𝑋
, 𝑍
𝑋,𝑖
)) 𝑍
𝑌,𝑖

∑
𝑛

𝑘=1
(1/ dist (𝑍

𝑋
, 𝑍
𝑋,𝑖
))

=
∑
𝑛

𝑖=1
(1/ dist (𝐴

𝑋
, 𝐴
𝑋,𝑖
)) (𝐴
𝑌,𝑖
, 𝐵)

∑
𝑛

𝑘=1
(1/ dist (𝐴

𝑋
, 𝐴
𝑋,𝑖
))

.

(8)

For example, using supremummetric 𝑑 of fuzzy numbers
will be

𝑍
𝑌
=
∑
𝑛

𝑖=1
(1/ dist (𝐴

𝑋
, 𝐴
𝑋,𝑖
)) (𝐴
𝑌,𝑖
, 𝐵)

∑
𝑛

𝑘=1
(1/ dist (𝐴

𝑋
, 𝐴
𝑋,𝑖
))

=
∑
𝑛

𝑖=1
(1/𝑑 (𝐴

𝑋
, 𝐴
𝑋,𝑖
)) (𝐴
𝑌,𝑖
, 𝐵)

∑
𝑛

𝑘=1
(1/𝑑 (𝐴

𝑋
, 𝐴
𝑋,𝑖
))

.

(9)

Taking into account that 1/𝑑(𝐴
𝑋
, 𝐴
𝑋,𝑖
) is a scalar and

applying the approach to multiplication of a 𝑍-number by a
scalar described in [30] we will have

𝑍
𝑌
= (𝐴
𝑌
, 𝐵) , with 𝐴

𝑌
=
∑
𝑛

𝑖=1
(1/𝑑 (𝐴

𝑋
, 𝐴
𝑋,𝑖
)) 𝐴
𝑌,𝑖

∑
𝑛

𝑘=1
(1/𝑑 (𝐴

𝑋
, 𝐴
𝑋,𝑖
))

.

(10)
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Let the knowledge base of 26 𝑍-rules of the following
form be given:

If 𝑋
1
is 𝑍
𝑖1
= (𝐴
𝑖1
, 𝐵
𝑖1
) ,

𝑋
2
is 𝑍
𝑖2
= (𝐴
𝑖2
, 𝐵
𝑖2
) ,

𝑋
3
is 𝑍
𝑖3
= (𝐴
𝑖3
, 𝐵
𝑖3
)

then 𝑌 is 𝑍
𝑌,𝑖
= (𝐴
𝑌
𝑖

, 𝐵
𝑌
𝑖

) ,

𝑖 = 1, . . . , 26.

(11)

The considered 𝑍-rules were described in terms of lin-
guistic labels of 𝐴

𝑖𝑗
, 𝐵
𝑖𝑗
, given in Table 1.

Consider a problem of reasoningwithin the given𝑍-rules
base by using𝑍-interpolation approach. Let the current input
information be described by the following 𝑍-numbers 𝑍

1
=

(𝑍
𝐴
1

, 𝑍
𝐵
1

), 𝑍
2
= (𝑍
𝐴
2

, 𝑍
𝐵
2

), 𝑍
3
= (𝑍
𝐴
3

, 𝑍
𝐵
3

):

𝑍
𝐴
1

=
0.1

0.3
+
0.5

0.35
+
1

0.4
+
0.5

0.45
+
0.1

0.5
,

𝑍
𝐵
1

=
0.1

0.6
+
0.5

0.65
+
1

0.7
+
0.5

0.75
+
0.1

0.8
,

𝑍
𝐴
2

=
0.1

0.2
+
0.5

0.25
+
1

0.3
+
0.5

0.35
+
0.1

0.4
,

𝑍
𝐵
2

=
0.1

0.6
+
0.5

0.65
+
1

0.7
+
0.5

0.75
+
0.1

0.8
,

𝑍
𝐴
3

=
0.1

0.62
+
0.5

0.67
+
1

0.7
+
0.5

0.73
+
0.1

0.8
,

𝑍
𝐵
3

=
0.1

0.6
+
0.5

0.65
+
1

0.7
+
0.5

0.75
+
0.1

0.8
.

(12)

𝑍-interpolation approach based reasoning consists of two
main stages.

(1) For each rule compute distance 𝐷
𝑖
between the

current input 𝑍-information 𝑍
1

= (𝑍
𝐴
1

, 𝑍
𝐵
1

), 𝑍
2

=

(𝑍
𝐴
2

, 𝑍
𝐵
2

), 𝑍
3
= (𝑍
𝐴
3

, 𝑍
𝐵
3

) and 𝑍-antecedents of 𝑍-rules
base 𝑍

𝑖1
= (𝐴
𝑖1
, 𝐵
𝑖1
), 𝑍
𝑖2
= (𝐴
𝑖2
, 𝐵
𝑖2
), 𝑍
𝑖3
= (𝐴
𝑖3
, 𝐵
𝑖3
) as

follows:

𝐷
𝑖
=

3

∑

𝑗=1

𝐷(𝑍
𝑗
, 𝑍
𝑖𝑗
) , (13)

where𝐷(𝑍
𝑗
, 𝑍
𝑖𝑗
) is the supremummetric:

𝐷(𝑍
𝑗
, 𝑍
𝑖𝑗
) = 𝑑
𝐻
(𝐴
𝑗
, 𝐴
𝑖𝑗
) + 𝑑
𝐻
(𝐵
𝑗
, 𝐵
𝑖𝑗
) , (14)

with

𝑑
𝐻
(𝐴
𝑗
, 𝐴
𝑖𝑗
) = sup {𝑑

𝐻
(𝐴
𝑗

𝛼
, 𝐴
𝑖𝑗

𝛼
) | 0 < 𝛼 ≤ 1} ,

𝑑
𝐻
(𝐵
𝑗
, 𝐵
𝑖𝑗
) = sup {𝑑

𝐻
(𝐵
𝑗

𝛼
, 𝐵
𝑖𝑗

𝛼
) | 0 < 𝛼 ≤ 1} .

(15)

Consider computation of 𝐷
𝑖
for 1st and 15th rules.

𝑍-antecedents of the 1st rule are 𝑍-numbers 𝑍
11

=

(𝑍
𝐴
11

, 𝑍
𝐵
11

), 𝑍
12
= (𝑍
𝐴
12

, 𝑍
𝐵
12

), 𝑍
13
= (𝑍
𝐴
13

, 𝑍
𝐵
13

):

𝑍
𝐴
11

=
1

0.1
+
0.75

0.2
+
0.5

0.3
+
0.25

0.4
+
0.1

0.5
,

𝑍
𝐵
11

=
0.1

0.7
+
0.5

0.75
+
1

0.8
+
0.5

0.85
+
0.1

0.9
,

𝑍
𝐴
12

=
1

0.1
+
0.75

0.2
+
0.5

0.3
+
0.25

0.4
+
0.1

0.5
,

𝑍
𝐵
12

=
0.1

0.7
+
0.5

0.75
+
1

0.8
+
0.5

0.85
+
0.1

0.9
,

𝑍
𝐴
13

=
0.1

0.5
+
0.25

0.57
+
0.5

0.65
+
0.75

0.72
+
1

0.8
,

𝑍
𝐵
13

=
0.1

0.7
+
0.5

0.75
+
1

0.8
+
0.5

0.85
+
0.1

0.9
.

(16)

Thus, we need to compute 𝐷
1

= ∑
3

𝑗=1
𝐷(𝑍
𝑗
, 𝑍
1𝑗
)

according to (13), where𝐷(𝑍
1
, 𝑍
11
), 𝐷(𝑍

2
, 𝑍
12
), 𝐷(𝑍

3
, 𝑍
13
)

are computed on the base of (14). We have obtained the
results:

𝐷(𝑍
1
, 𝑍
11
) = 𝑑
𝐻
(𝐴
1
, 𝐴
11
) + 𝑑
𝐻
(𝐵
1
, 𝐵
11
)

= 0.5 + 0.5 = 1,

𝐷 (𝑍
2
, 𝑍
12
) = 1,

𝐷 (𝑍
3
, 𝑍
13
) = 0.62.

(17)

Thus, the distance for 1st rule is

𝐷
1
= 2.62. (18)

The inputs of the 15th rule 𝑍
15,1

= (𝑍
𝐴
15,1

, 𝑍
𝐵
15,1

), 𝑍
15,2

=

(𝑍
𝐴
15,2

, 𝑍
𝐵
15,2

), 𝑍
15,3

= (𝑍
𝐴
15,3

, 𝑍
𝐵
15,3

) are

𝑍
𝐴
15,1

=
1

0.1
+
0.75

0.2
+
0.5

0.3
+
0.25

0.4
+
0.1

0.5
,

𝑍
𝐵
15,1

=
0.1

0.7
+
0.5

0.75
+
1

0.8
+
0.5

0.85
+
0.1

0.9
,

𝑍
𝐴
15,2

=
1

0.1
+
0.75

0.2
+
0.5

0.3
+
0.25

0.4
+
0.1

0.5
,

𝑍
𝐵
15,2

=
0.1

0.7
+
0.5

0.75
+
1

0.8
+
0.5

0.85
+
0.1

0.9
,

𝑍
𝐴
15,3

=
0.1

0.5
+
0.25

0.57
+
0.5

0.65
+
0.75

0.72
+
1

0.8
,

𝑍
𝐵
15,3

=
0.1

0.7
+
0.5

0.75
+
1

0.8
+
0.5

0.85
+
0.1

0.9
.

(19)

Analogously, we computed the distance for 15th rule as

𝐷(𝑍
1
, 𝑍
15,1
) = 0.8,

𝐷 (𝑍
2
, 𝑍
15,2
) = 1,
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𝐷(𝑍
3
, 𝑍
15,3
) = 1.02,

𝐷
15
= 2.82.

(20)

The distances computed for the rest of the rules are

𝐷
1
= 2.62, 𝐷

7
= 3.02, 𝐷

13
= 2.9, 𝐷

19
= 3,

𝐷
25
= 2.52, 𝐷

2
= 2.92, 𝐷

8
= 2.9, 𝐷

14
= 2.42,

𝐷
20
= 2.92, 𝐷

26
= 2.52, 𝐷

3
= 3, 𝐷

9
= 2.72,

𝐷
15
= 2.82, 𝐷

21
= 2.92, 𝐷

4
= 3.1, 𝐷

10
= 2.72,

𝐷
16
= 2.82, 𝐷

22
= 2.82, 𝐷

5
= 3.1, 𝐷

11
= 2.32,

𝐷
17
= 2.82, 𝐷

23
= 2.9, 𝐷

6
= 3.02, 𝐷

12
= 2.9,

𝐷
18
= 3, 𝐷

24
= 2.9.

(21)

(2) Computation of the aggregated output 𝑍
𝑌
for 𝑍-rules

base by using linear 𝑍-interpolation are as follows:

𝑍
𝑌
=

𝑛

∑

𝑖=1

𝑤
𝑖
𝑍
𝑌,𝑖
, 𝑤
𝑖
=

1

𝐷
𝑖
∑
𝑛

𝑘=1
(1/𝐷
𝑘
)
. (22)

Thus, we need to compute convex combination of outputs
𝑍
𝑌
𝑖

of the rules base. The outputs of the 𝑍-rules base are as
follows:

𝑍
𝐴
𝑌1

=
1

0.1
+
0.75

0.2
+
0.5

0.3
+
0.25

0.4
+
0.1

0.5
,

𝑍
𝐵
𝑌1

=
0.1

0.6
+
0.5

0.65
+
1

0.7
+
0.5

0.75
+
0.1

0.8
,

.

.

.

𝑍
𝐴
𝑌15

=
0.1

0.1
+
0.5

0.3
+
1

0.5
+
0.5

0.62
+
0.1

0.75
,

𝑍
𝐵
𝑌15

=
0.1

0.1
+
0.5

0.15
+
1

0.2
+
0.5

0.25
+
0.1

0.3
,

.

.

.

(23)

Therefore, the aggregated output 𝑍
𝑌
is defined as

𝑍
𝑌
= 0.042𝑍

𝑌
1

+ 0.037𝑍
𝑌
2

+ ⋅ ⋅ ⋅ + 0.038𝑍
𝑌
26

= (𝐴
𝑌
, 𝐵
𝑌
) .

(24)

We have obtained the following result:

𝐴
𝑌
=

0.1

0.395
+
0.5

0.518
+

1

0.627
+
0.5

0.644
+
0.25

0.656
,

𝐵
𝑌
=
0.1

0.7
+
0.5

0.75
+
1

0.8
+
0.5

0.85
+
0.1

0.9
.

(25)

In accordance with codebook we have the following.
Achievement is “medium” with the reliability “usually.”

The analysis shows that there are no significant differ-
ences between the mean of results obtained by conventional
statistical method and 𝑍-number based modeling. The stan-
dard deviations of the outputs estimated by statistical method
and 𝑍-number based modeling show significant differences
of results.The less variance in the𝑍-number based modeling
method is related with the ability of this method to control
uncertainty in data.

5. Conclusion

In this paper we have suggested a new approach for modeling
of the effect of the Pilates exercises on students’ motiva-
tion, attention, anxiety, and educational achievement. The
uncertainty of data related with cognitive measuring of
psychological parameters and their partial reliability have
been promoted for the first time application of “Z-if. . .then
rules” for modeling the considered relationship.

We used an inference techniques for approximate reason-
ing based on 𝑍-interpolation method suggested by Zadeh to
embrace incomplete and lack of matching rules.

Computer simulation proves adequacy of the model.
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This paper presents the use of linear and nonlinear multivariable models as tools to support training process of race walkers. These
models are calculated using data collected from race walkers’ training events and they are used to predict the result over a 3 km race
based on training loads. The material consists of 122 training plans for 21 athletes. In order to choose the best model leave-one-out
cross-validation method is used.Themain contribution of the paper is to propose the nonlinear modifications for linear models in
order to achieve smaller prediction error. It is shown that the best model is a modified LASSO regression with quadratic terms in
the nonlinear part. This model has the smallest prediction error and simplified structure by eliminating some of the predictors.

1. Introduction

The level of today’s high-performance sport is very high and
very even. Both coaches and competitors are forced to search
for and use newer and sometimes innovative solutions in
the process of sports training [1]. A solution supporting this
process may be the application of various types of regression
models.

Prediction in sport concerns many aspects including
the prediction of performance results [2, 3] or predicting
sporting talent [4, 5]. Models predicting results in sport,
taking into account the seasonal statistics of each team, were
also constructed [6]. The application of predictive models
in athletics was described by Maszczyk et al. [2], where the
regressionwas used to predict results in a javelin throw.These
models were applied to support the choice and selection of
prospective javelin throwers.

Prediction of sports results using linear regression was
also presented in the work by Przednowek and Wiktorow-
icz [7]. A linear predictive model, implemented by ridge
regression, was applied to predict the outcomes of a walking
race after the immediate preparation phase. As input for the
model, the basic somatic features (height and weight) and
training loads (training components) for each day of training

were provided, and the output was the result expected over
a distance of 5 km. In addition to linear models, artificial
neural networks, whose parameters were specified in cross-
validation, were also used to implement this task.

In the paper by Drake and James [8], the regressions
estimating the results over distances of 5, 10, 20, and 50 km
and the levels of the selected physiological parameters (e.g.,
VO2max) were presented. The regressions applied were the
classical linear models, and the 𝑅

2 criterion was chosen for
the quality evaluation. This study included 23 women and 45
men. The amount of collected data was different depending
on the task and ranged from 21 to 68 records.

A nonlinear regression equation to predict the maximum
aerobic capacity of footballers was proposed by Chatterjee et
al. [9]. The data came from 35 young players aged from 14
to 16. The experiment was to verify the use of the 20m MST
(Multistage Shuttle Run Test) in evaluating the performance
of VO2max.The talent of young hockey players was identified
by Roczniok et al. [5] using a regression equation. The
research involved 60 boys aged between 15 and 16, who
attended selection camps. The applied regression model
classified candidates for future training, based on selected
parameters of the players. The logistic regression was used in
the model as the classification method.
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The nonlinear predictive models used in sport are also
based on the selected methods of “data mining” [10]. Among
them, an important role is played by fuzzy logic expert
systems. Papić et al. [4] described practical application of such
a system. The proposed system was based on knowledge of
experts in the field of sport, as well as the data obtained as a
result of motor tests. The model suggested the most suitable
sport and it was designed to search for prospective sports
talents.

The application of fuzzy modeling techniques in sports
prediction was also presented by Mężyk and Unold [11]. The
goal of their paper was to find the rules that can express
swimmer’s feelings the day after in-water training. The data
was collected for two months among competitors practicing
swimming.The swimmers were characterized by a good level
of sports attainment (2nd sport class). The material obtained
consisted of 12 attributes, and the total number of models
was 480, out of which 136 were used in the final stage.
The authors proved that their method was characterized
by better predictive ability than the traditional methods of
classification.

Other papers also concern the use of artificial neural
networks in sports prediction [6]. Neural models are used
to analyze the effectiveness of the training of swimmers, to
identify handball players’ tactics, or to predict sporting talent
[12]. Many studies present the application of neural networks
in various aspects of sports training [13–15]. These models
support the planning of training loads, practice control, or
the selection of sports.

An approach developed by the authors is the construction
of models performing the task of predicting the results
achieved by a competitor in the proposed sports training.
This allows for the proper selection of training components
and thus supports the achievement of the desired result. The
aim of this study is to determine the effectiveness of selected
linear and nonlinear models in predicting the outcome in
a 3-kilometer walking race for the proposed training. The
research hypothesis of the paper is stated as follows: the
prediction error of 3 kilometers’ result in race walking for
nonlinear models can be smaller than for linear models.

The paper is organized as follows. In Section 2, the train-
ing data of the race walkers recorded during annual training
cycle is described. Section 3 contains the methods used to
build the linear and nonlinear predictive models, including
ordinary least squares regression, regularized methods, that
is, ridge, LASSO, and elastic net regressions, nonlinear
least squares regression, and artificial neural networks as
multilayer perceptron and radial basis function network. In
Section 3, the criterion used to evaluate the performance of
themodels, calculated usingmean square error in the process
of cross-validation, is also defined. Section 4 describes the
procedures used for building models and their evaluation in
𝑅 language and STATISTICA software. The obtained results
are analyzed and discussed in Section 5. Finally, in Section 6,
the performed work is concluded.

2. Material

The predictive models were built using the training data
of athletes practising race walking. The analysis involved

a group of colts and juniors from Poland. Among the
competitors were the finalists in the Polish Junior Indoor
Championships and the Polish Junior Championships. The
data of race walkers was recorded during the 2011-2012 season
in the form of trainingmeans and training loads.The training
mean is the type of work performed while the training load is
the amount ofwork at a particular intensity done by an athlete
during exercise [1]. In the material, which has been collected,
11 means of training were distinguished. The material was
drawn from the annual training cycle for the following four
phases: transition, general preparation, special preparation,
and starting phase. The training data has the form of sums of
training loads completed in onemonth of the chosen training
phase.Thematerial included 122 training patternsmade by 21
race walkers.

Control of the training process in race walking requires
different tests of physical fitness at every training level.
Because this research concerns the competitors in colt and
junior categories, thus in order to determine a unified
criterion of the level of training, a result for 3000m race
walking was used. The choice of the distance of 3000m is
valid because this is the indoor walking competition.

The description of the variables under consideration and
their basic statistics are presented in Table 1. The variables
are as follows: arithmetic mean of 𝑥, minimum value 𝑥min,
maximum value 𝑥max, standard deviation SD, and coefficient
of variation 𝑉 = SD/𝑥 ⋅ 100%. The qualitative variables
are 𝑋1, 𝑋2, 𝑋3, 𝑋4, which take their values from the set
{0, 1}.Theother variables, that is,𝑋5, . . . , 𝑋18, are quantitative
variables. If the value at inputs 𝑋1, 𝑋2, 𝑋3 is 0, it means
that the transitional period is considered. Setting the value
1 on one of the inputs 𝑋1, 𝑋2, 𝑋3, it means the training
period is selected. The variable 𝑋4 represents the gender of
the competitor, where the value 0 denotes a female, while the
value 1 denotes amale, and the age is represented by𝑋5. Basic
somatic features of race walkers such as weight and height are
presented in the form of BMI (𝑋6) expressed by the formula

BMI = 𝑀

𝐻2 [kg/m2
] , (1)

where 𝑀 is the body weight [kg] and 𝐻 is the body height
[m]. The variable 𝑋7 denotes the current result over 3 km in
seconds. Training loads are characterized by the following
variables: running exercises (𝑋8), walking with different
levels of intensity (𝑋9, 𝑋10, 𝑋11), exercises forming differ-
ent types of endurance (𝑋12, 𝑋13, 𝑋14), exercises forming
techniques (𝑋15), exercises forming muscle strength (𝑋16),
exercises forming general fitness (𝑋17), and warming up
exercises (𝑋18).

An example of data used for building the model has the
form

x5 = [0, 1, 0, 0,

23, 22.09, 800, 32, 400, 112, 20, 16, 32.4, 48, 8,

280, 640, 400] ,

𝑦
5
= 800.

(2)
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Table 1: The variables and their basic statistics.

Variable Description 𝑥 𝑥min 𝑥max SD 𝑉 [%]
𝑌 Result over 3 km [s] 936.9 780 1155 78.4 8.4

𝑋1
General preparation
phase

— — — — —

𝑋2
Special preparation
phase

— — — — —

𝑋3 Starting phase — — — — —
𝑋4 Competitor’s gender — — — — —

𝑋5
Competitor’s age
[years]

18.9 14 24 3.0 15.6

𝑋6
BMI (body mass
index) [kg/m2]

19.3 16.4 22.1 1.7 8.7

𝑋7
Current result over 3
km [s]

962.6 795 1210 87.7 9.1

𝑋8
Overall running
endurance [km]

30.9 0 56 10.6 34.4

𝑋9

Overall walking
endurance in the 1st
intensity range [km]

224.6 57 440 96.1 42.8

𝑋10

Overall walking
endurance in the 2nd
intensity range [km]

53.2 0 120 34.6 65.1

𝑋11

Overall walking
endurance in the 3rd
intensity range [km]

7.9 0 30 9.4 119.7

𝑋12
Short tempo
endurance [km]

8.9 0 24 5 56.0

𝑋13
Medium tempo
endurance [km]

8.3 0 32.4 8.6 103.2

𝑋14
Long tempo
endurance [km]

12.9 0 56 16.1 125.0

𝑋15

Exercises forming
technique (rhythm) of
walking [km]

4.4 0 12 4.2 96.0

𝑋16
Exercises forming
muscle strength [min]

90.2 0 360 104.8 116.3

𝑋17
Exercises forming
general fitness [min]

522.0 120 720 109.9 21.0

𝑋18
Universal exercises
(warm up) [min]

317.3 150 420 72.5 22.8

The vector x5 represents a 23-year-old race walker with
BMI = 22.09 kg/m2, who completes training in the special
preparation phase. The result both before and after the
training was the same and is equal to 800 s.

3. Methods

In this study, two approaches were considered. The first
approach was based on white boxmodels realized bymodern
regularized methods.These models are interpretable because
their structure and parameters are known. The second
approach was based on black boxmodels realized by artificial
neural networks.

X1

.

.

.

Xp

Y
Y = f(X1, . . . , Xp)

Figure 1: A diagram of a system with multiple inputs and one
output.

3.1. Constructing Regression Models. Consider a multivari-
able regression model with the inputs (predictors or regres-
sors) 𝑋

𝑗
, 𝑗 = 1, . . . , 𝑝, and one output (response) 𝑌 shown in

Figure 1. We assume that the model is linear and has the form

𝑌̂ = 𝑤0 +𝑋1𝑤1 + ⋅ ⋅ ⋅ +𝑋
𝑝
𝑤
𝑝

= 𝑤0 +

𝑝

∑

𝑗=1
𝑋
𝑗
𝑤
𝑗
,

(3)

where 𝑌̂ is the estimated response and 𝑤0, 𝑤𝑗 are unknown
weights of the model. The weight 𝑤0 is called constant
term or intercept. Furthermore, we assume that the data is
standardized and centered and the model can be simplified
to the form (see, e.g., [16])

𝑌̂ = 𝑋1𝑤1 + ⋅ ⋅ ⋅ +𝑋
𝑝
𝑤
𝑝

=

𝑝

∑

𝑗=1
𝑋
𝑗
𝑤
𝑗
.

(4)

Observations are written as pairs (x
𝑖
, 𝑦
𝑖
), where x

𝑖
=

[𝑥
𝑖1, . . . , 𝑥𝑖𝑝], 𝑖 = 1, . . . , 𝑛, 𝑥

𝑖𝑗
is the value of the 𝑗th predictor

in the 𝑖th observation, and 𝑦
𝑖
is the value of the response in

the 𝑖th observation. Based on formula (4), the 𝑖th observation
can be expressed as

𝑦
𝑖
= 𝑥
𝑖1𝑤1 + ⋅ ⋅ ⋅ + 𝑥

𝑖𝑝
𝑤
𝑝

=

𝑝

∑

𝑗=1
𝑥
𝑖𝑗
𝑤
𝑗
= x
𝑖
w,

(5)

where w = [𝑤1, . . . , 𝑤𝑝]
𝑇. Introducing matrix X in the form

of

X =

[
[
[
[
[
[
[

[

𝑥11 𝑥12 ⋅ ⋅ ⋅ 𝑥1𝑝

𝑥21 𝑥22 ⋅ ⋅ ⋅ 𝑥2𝑝

.

.

.
.
.
. d

.

.

.

𝑥
𝑛1 𝑥
𝑛2 ⋅ ⋅ ⋅ 𝑥

𝑛𝑝

]
]
]
]
]
]
]

]

(6)

formula (5) can be written as

ŷ = Xw, (7)

where ŷ = [𝑦1, . . . , 𝑦𝑛]
𝑇.
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In order to construct regression models, an error (resid-
ual) is introduced as the difference between the real value 𝑦

𝑖

and the estimated value 𝑦
𝑖
in the form of

𝑒
𝑖
= 𝑦
𝑖
−𝑦
𝑖
= 𝑦
𝑖
−

𝑝

∑

𝑗=1
𝑥
𝑖𝑗
𝑤
𝑗
= 𝑦
𝑖
− x
𝑖
w. (8)

Using matrix (6), the error can be written as

e = y − ŷ = y −Xw, (9)

where e = [𝑒1, . . . , 𝑒𝑛]
𝑇 and y = [𝑦1, . . . , 𝑦𝑛]

𝑇.
Denoting by 𝐽(w, ⋅) the cost function, the problem of find-

ing the optimal estimator can be formulated as to minimize
the function 𝐽(w, ⋅), which means solving the problem

ŵ = argmin
w

(𝐽 (w, ⋅)) , (10)

where ŵ is the vector of solutions.
Depending on the function 𝐽(w, ⋅), different regression

models can be obtained. In this paper, the following models
are considered: ordinary least squares regression (OLS), ridge
regression, LASSO (least absolute shrinkage and selection
operator), elastic net regression (ENET), and nonlinear least
squares regression (NLS).

3.2. Linear Regressions. In OLS regression (see, e.g., [16–18])
the model is calculated by minimizing the sum of squared
errors:

𝐽 (w) = e𝑇e

= (y −Xw)
𝑇

(y −Xw)

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 ,

(11)

where ‖ ⋅‖2 denotes the Euclidean norm (𝐿2). Minimizing the
cost function (11), which is the quadratic function ofw, we get
the following solution:

ŵ = (X𝑇X)
−1
X𝑇y. (12)

It should be noted that solution (12) does not exist if the
matrix X𝑇X is singular (due to correlated predictors or if
𝑝 > 𝑛). In this case, different methods of regularization,
including the previouslymentioned ridge, LASSO, and elastic
net regressions, can be used.

In ridge regression by Hoerl and Kennard [19], the cost
function includes a penalty and has the form

𝐽 (w, 𝜆) = e𝑇e+𝜆w𝑇w

= (y −Xw)
𝑇

(y −Xw) + 𝜆w𝑇w

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 +𝜆 ‖w‖

2
2 .

(13)

The parameter 𝜆 ≥ 0 determines the size of the penalty: for
𝜆 > 0, the model is penalized, for 𝜆 = 0, ridge regression

reduces to OLS regression. Solving problem (10) for ridge
regression, we get

ŵ = (X𝑇X+𝜆I)
−1
X𝑇y, (14)

where I is the identity matrix with the size of 𝑝 × 𝑝. Because
the diagonal of the matrix X𝑇X is increased by a positive
constant, the matrix X𝑇X + 𝜆I is invertible and the problem
becomes nonsingular.

In LASSO regression by Tibshirani [20], similarly to ridge
regression, the penalty is added to the cost function, where
the 𝐿1-norm (the sum of absolute values) is used:

𝐽 (w, 𝜆) = e𝑇e+𝜆z𝑇w

= (y −Xw)
𝑇

(y −Xw) + 𝜆z𝑇w

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 +𝜆 ‖w‖1 ,

(15)

where z = [𝑧1, . . . , 𝑧𝑝]
𝑇, 𝑧
𝑗
= sgn(𝑤

𝑗
), and ‖ ⋅ ‖1 denotes the

Manhattan norm (𝐿1). Because problem (10) is not linear in
relation to y (due to the use of 𝐿1-norm), the solution cannot
be obtained in the compact form as in ridge regression.
The most popular algorithm used in this case is the LARS
algorithm (least angle regression) by Efron et al. [21].

In elastic net regression by Zou and Hastie [22], the
features of ridge and LASSO regressions are combined. The
cost function in the so-called naive elastic net has the form of

𝐽 (w, 𝜆1, 𝜆2) = e𝑇e+𝜆1z
𝑇w +𝜆2w

𝑇w

= (y −Xw)
𝑇

(y −Xw) + 𝜆1z
𝑇w

+𝜆2w
𝑇w

=
󵄩󵄩󵄩󵄩y −Xw󵄩󵄩󵄩󵄩

2
2 +𝜆1 ‖w‖1 +𝜆2 ‖w‖

2
2 .

(16)

To solve the problem, Zou and Hastie [22] proposed the
LARS-EN algorithm, which was based on the LARS algo-
rithm developed for LASSO regression. They used the fact
that elastic net regression reduces to LASSO regression for
the augmented data set (X∗, y∗).

3.3. Nonlinear Regressions. To take into account the non-
linearity in the models, we can apply the transformation of
predictors or use nonlinear regression. In this paper, the latter
solution is applied.

In OLS regression, the model is described by formula (5),
while in more general nonlinear regression the relationship
between the output and the predictors is expressed by a
certain nonlinear function 𝑓(⋅) in the form of

𝑦
𝑖
= 𝑓 (x

𝑖
,w) . (17)

In this case, the cost function 𝐽(w) is formulated as

𝐽 (w) =

𝑛

∑

𝑖=1
𝑒
2
𝑖
=

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑦
𝑖
)
2

=

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑓 (x

𝑖
,w))

2
.

(18)
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Since the minimization of function (18) is associated with
solving nonlinear equations, numerical optimization is used
in this case. The main problem connected with the construc-
tion of nonlinear models is the choice of the appropriate
function 𝑓(⋅).

3.4. Artificial Neural Networks. Artificial neural networks
(ANNs) were also used for building predictive models. Two
types of ANNs were implemented: a multilayer perceptron
(MLP) and networks with radial basis function (RBF) [18].

The MLP network is the most common type of neural
models. The calculation of the output in 3-layer multiple-
input-one-output network is performed in feed-forward
architecture. In the first step, 𝑚 linear combinations, or the
so-called activations, of the input variables are constructed as

𝑎
𝑘
=

𝑝

∑

𝑗=1
𝑥
𝑗
𝑤
(1)
𝑘𝑗

, (19)

where 𝑘 = 1, . . . , 𝑚 and 𝑤
(1)
𝑘𝑗

denotes the weights for the first
layer. From the activations 𝑎

𝑘
, using a nonlinear activation

function ℎ(⋅), hidden variables 𝑧
𝑘
are calculated as

𝑧
𝑘
= ℎ (𝑎

𝑘
) . (20)

The function ℎ(⋅) is usually chosen as logistic or “tanh”
function. The hidden variables are used next to calculate the
output activation

𝑎 =

𝑚

∑

𝑘=1
𝑧
𝑘
𝑤
(2)
𝑘

, (21)

where𝑤(2)
𝑘

are weights for the second layer. Finally, the output
of the network is calculated using an activation function 𝜎(⋅)

in the form of

𝑦 = 𝜎 (𝑎) . (22)

For regression problems, the function 𝜎(⋅) is chosen as
identity function, and so we obtain 𝑦 = 𝑎. The MLP network
utilizes iterative supervised learning known as error back-
propagation for training the weights.This method is based on
gradient descent applied to the sum of squares function. To
avoid the problemwith overtraining the network, the number
𝑚 of hidden neurons, which is a free parameter, should be
determined to give the best predictive performance.

In the RBF network, the concept of radial basis function is
used. Linear regression (5) is extended by linear combinations
of nonlinear functions of the inputs in the form of

𝑦
𝑖
=

𝑝

∑

𝑗=1
𝜙
𝑗
(𝑥
𝑖𝑗
)𝑤
𝑗
= 𝜑 (x

𝑖
)w, (23)

where 𝜑 = [𝜙1, . . . , 𝜙𝑝]
𝑇 is a vector of basis functions. Using

nonlinear basis functions, we get a nonlinear model, which
is, however, a linear function of parameters 𝑤

𝑗
. In the RBF

network, the hidden neurons perform a radial basis function
whose value depends on the distance from selected center 𝑐

𝑗
:

𝜑 (x
𝑖
, c) = 𝜑 (

󵄩󵄩󵄩󵄩x𝑖 − c󵄩󵄩󵄩󵄩) , (24)

where c = [𝑐1, . . . , 𝑐𝑝] and ‖ ⋅ ‖ is usually the Euclidean norm.
There are many possible choices for the basis functions, but
the most popular is Gaussian function. It is known that RBF
network can exactly interpolate any continuous function;
that is, the function passes exactly through every data point.
In this case, the number of hidden neurons is equal to the
number of observations and the values of coefficients 𝑤

𝑗

are found by simple standard inversion technique. Such a
network matches the data exactly, but it has poor predictive
ability because the network is overtrained.

3.5. Choosing the Model. In this paper, the best predic-
tive model is chosen using leave-one-out cross-validation
(LOOCV)method [23], in which the number of tests is equal
to the number of data 𝑛 and one pair (x

𝑖
, 𝑦
𝑖
) creates a testing

set. The quality of the model is evaluated by means of the
square root of the mean square error (RMSECV) defined as

MSECV =
1
𝑛

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑦
−𝑖
)
2
,

RMSECV = √MSECV,

(25)

where 𝑦
−𝑖
denotes the output of themodel built in the 𝑖th step

of validation process using a data set containing no testing
pair (x

𝑖
, 𝑦
𝑖
) and MSECV is the mean square error.

In order to describe the measure to which the model
fits the training data, the root mean square error of training
(RMSET) is considered. This error is defined as

MSET =
1
𝑛

𝑛

∑

𝑖=1
(𝑦
𝑖
−𝑦
𝑖
)
2
,

RMSET = √MSET,

(26)

where 𝑦
𝑖
denotes the output of the model built in the 𝑖th step

using the full data set and MSET is the mean square error of
training.

4. Implementation of the Predictive Models

All the regression models were calculated using 𝑅 language
with additional packages [24].

The lm.ridge function from “MASS” package [25] was
used for calculating OLS regression (where 𝜆 = 0) and ridge
regression (where 𝜆 > 0). With the function enet included
in the package “elastic net” [26], LASSO regression and elastic
net regression were calculated. The parameters of the enet
function are 𝑠 ∈ [0, 1] and 𝜆 ≥ 0, where 𝑠 is a fraction
of the 𝐿1 norm, whereas 𝜆 denotes 𝜆2 in formula (16). The
parameterization of elastic net regression using the pair (𝜆, 𝑠)
instead of (𝜆1, 𝜆2) in formula (16) is possible because elastic
net regression can be treated as LASSO regression for an
augmented data set (X∗, y∗) [22]. Assuming that 𝜆 = 0, we
get LASSO regression with one parameter 𝑠 for the original
data (X, y).

All the nonlinear regressionmodels were calculated using
the nls function coming from the “stats” package [27]. It
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calculates the parameters of the model using the nonlinear
least squares method. One of the parameters of the nls
function is a formula that specifies the function𝑓(⋅) in model
(18). To calculate the weights, Gauss-Newton’s algorithm was
used which was selected by default in the nls function. In all
the calculations, it was assumed that the initial values of the
weights are equal to zero.

For the implementation of artificial neural networks,
StatSoft STATISTICA [28] software was used.The learning of
MLP networks was implemented using the BFGS (Broyden-
Fletcher-Goldfarb-Shanno) algorithm [18].While calculating
the RBF network, the parameters of the basis functions were
automatically set by the learning procedure.

The parameters in all models were selected using leave-
one-out cross-validation. In the case of regularized regres-
sions, the penalty coefficients were calculated, while, in the
case of neural networks, the number of neurons in the hidden
layer was calculated. The primary performance criterion of
the model was RMSECV error. Cross-validation functions in
the STATISTICA program were implemented using Visual
Basic language.

5. Results and Discussion

From a coach’s point of view, the prediction of results is very
important in the process of sport training. A coach using the
model, which was constructed earlier, can predict how the
training loadswill influence the sport outcome.Thepresented
models can be used for predictions based on the proposed
monthly training introduced as the sum of the training loads
of each type implemented in a given month.

The results of the research are presented in Table 2; the
description of the selected regressions will be presented in
the next paragraphs. Linear models such as OLS, ridge, and
LASSO regressions have been calculated by the authors in
work [3]. They will be briefly described here. The nonlinear
models implemented using nonlinear regression and artificial
neural networks will be discussed in greater detail. All the
methods will be compared taking into account the accuracy
of the prediction.

5.1. Linear Regressions. The regression model calculated by
the OLS method generated the prediction error RMSECV =

26.90 s and the training error RMSET = 22.70 s (Table 2).
In the second column of Table 2, the weights 𝑤0 and 𝑤

𝑗
are

presented.
The search for the ridge regression model is based on

finding the parameter 𝜆, for which the model achieves the
smallest prediction error. In this paper, ridge regression
models for 𝜆 changing from 0 to 2 with step of 0.1 were
analyzed. Based on the results, it was found that the best
ridge model is achieved for 𝜆opt = 1. The prediction error
RMSECV = 26.76 s was smaller than in the OLS model, while
the training error RMSET = 22.82 s was greater (Table 2).The
obtained ridge regression improved the predictive ability of
the model. It is seen from Table 2 that as in the case of OLS
regression, all weights are nonzero and all the input variables
are used in computing the output of the model.

Table 2: Coefficients of linear models and linear part of nonlinear
model NLS1 and error results.

Regression OLS RIDGE LASSO, ENET NLS1
𝑤0 237.2 325.7 296.6 2005
𝑤1 45.67 34.67 32.75 41.24
𝑤2 90.61 74.84 71.91 77.12
𝑤3 39.70 27.49 24.45 −3.439
𝑤4 −2.838 2.424 15.45
𝑤5 −0.9755 −1.770 −1.416 −22.44
𝑤6 1.072 0.5391 −24.71
𝑤7 0.7331 0.6805 0.7069 −1.782
𝑤8 −0.2779 −0.3589 −0.3410 −1.500
𝑤9 −0.1428 −0.1420 −0.1364 −0.0966
𝑤10 −0.1579 −0.0948 −0.0200 0.7417
𝑤11 0.7472 0.4352 0.0618 0.6933
𝑤12 0.4845 0.3852 0.1793 −0.6726
𝑤13 0.1216 0.1454 0.1183 −0.0936
𝑤14 −0.1510 −0.0270 2.231
𝑤15 −0.5125 −0.3070 0.7349
𝑤16 −0.0601 −0.0571 −0.0652 −0.2685
𝑤17 −0.0153 −0.0071 0.0358
𝑤18 −0.0115 −0.0403 −0.0220 −0.0662
RMSECV [s] 26.90 26.76 26.20 28.83
RMSET [s] 22.70 22.82 22.89 20.21

The LASSO regression model was calculated using the
LARS-EN algorithm, in which the penalty is associated with
the parameter 𝑠 changing from 0 to 1 with step of 0.01. It
was found that the optimal LASSO regression is calculated
for 𝑠opt = 0.78. The best LASSO model generates the error
RMSECV = 26.20 s, which improves the results of OLS and
ridge models. However, it should be noted that this model is
characterized by the worst data fit with the greatest training
error RMSET = 22.89 s. The LASSO method is also used for
calculating an optimal set of input variables. It can be seen
in the fourth column of Table 2 that the LASSO regression
eliminated the five input variables (𝑋4, 𝑋6, 𝑋14, 𝑋15, and
𝑋17), which made the model simpler than for OLS and ridge
regression.

The use of elastic net regression model has not improved
the value of the prediction error.The bestmodel was obtained
for a pair of parameters 𝑠opt = 0.78 and 𝜆opt = 0. Because
the parameter 𝜆 is zero, the model is identical to the LASSO
regression (fourth column of Table 2).

5.2. Nonlinear Regressions. Nonlinear regression models
were obtained using various functions 𝑓(⋅) in formula (18).
It was assumed that the function 𝑓(⋅) consists of two com-
ponents: the linear part, in which the weights are calculated
as in OLS regression, and the nonlinear part containing
expressions of higher orders in the form of a quadratic
function of selected predictors:

𝑓 (x
𝑖
,w, k) =

𝑝

∑

𝑗=1
𝑥
𝑖𝑗
𝑤
𝑗
+

𝑝

∑

𝑗=1
𝑥
2
𝑖𝑗
V
𝑗
, (27)



Computational Intelligence and Neuroscience 7

Table 3: Coefficients of nonlinear part of nonlinear models and
error results (all coefficients have to be multiplied by 10−2).

Regression NLS1 NLS2 NLS3 NLS4
V5 53.35 −0.3751 −0.3686 −0.6995
V6 59.43 −1.0454 −1.3869
V7 0.1218 0.0003 0.0004 0.0001
V8 1.880 0.0710 0.0372 −0.0172
V9 −0.0016 0.0093 0.0093 0.0085
V10 −0.6646 −0.0577 −0.0701 −0.1326
V11 −3.0394 −0.3608 0.0116 0.8915
V12 4.8741 0.3807 0.4170 1.0628
V13 0.4897 −0.2496 −0.2379 −0.1391
V14 −4.7399 −0.1141 −0.1362
V15 −13.6418 1.3387 0.8183
V16 0.0335 −0.0015 −0.0003 −0.0004
V17 −0.0033 −0.0006 −0.0006
V18 0.0054 0.0012 0.0013 −0.0002
RMSECV [s] 28.83 25.24 25.34 24.60
RMSET [s] 20.21 22.63 22.74 22.79

where w = [𝑤1, . . . , 𝑤𝑝]
𝑇 is the vector of the weights of the

linear part and k = [V1, . . . , V𝑝]
𝑇 is the vector of the weights

of the nonlinear part. The following cases of nonlinear
regression were considered (Table 3), wherein each of the
following models does not take into account the squares of
qualitative variables 𝑋1, 𝑋2, 𝑋3, and 𝑋4 (V1 = V2 = V3 =

V4 = 0):

(i) NLS1: both the weights of the linear part and the
weights V5, . . . , V18 of the nonlinear part are calcu-
lated.

(ii) NLS2: the weights of the linear part are constant,
and their values come from the OLS regression (the
second column of Table 2); the weights V5, . . . , V18 of
the nonlinear part are calculated (the third column of
Table 3).

(iii) NLS3: the weights of the linear part are constant,
and their values come from the ridge regression (the
third column of Table 2); the weights V5, . . . , V18 of the
nonlinear part are calculated (the fourth column of
Table 3).

(iv) NLS4: the weights of the linear part are constant,
and their values come from the LASSO regres-
sion (the fourth column of Table 2); the weights
V5, V7, . . . , V13, V16, V18 of the nonlinear part are calcu-
lated (the fifth column of Table 3).

Based on the results shown in Table 3, the best nonlinear
regression model is the NLS4 model, that is, the modified
LASSO regression. This model is characterized by the small-
est prediction error and the reduced number of predictors.
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Figure 2: Cross-validation error (RMSECV) and training error
(RMSET) for MLP(tanh) neural network; vertical line drawn for
𝑚 = 1 signifies the number of hidden neurons chosen in cross-
validation.
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Figure 3: Cross-validation error (RMSECV) and training error
(RMSET) for MLP(exp) neural network; vertical line drawn for𝑚 =

1 signifies the number of hidden neurons chosen in cross-validation.

5.3. Neural Networks. In order to select the best structure
of a neural network, the number of neurons 𝑚 ∈ [1, 10]
in the hidden layer was analyzed. In Figures 2, 3, and
4, the relationships between cross-validation error and the
number of hidden neurons are presented.The smallest cross-
validation errors for the MLP(tanh) and MLP(exp) networks
were obtained for one hidden neuron (18-1-1 architecture)
and they were, respectively, 29.89 s and 30.02 s (Table 4). For
the RBF network, the best architecture was the one with
four neurons in the hidden layer (18-4-1) and cross-validation
error in this case was 55.71 s. Comparing the results, it is seen
that the best model is the MLP(tanh) network with the 18-1-
1 architecture. However, it is worse than the best regression
model NLS4 (Table 3) by more than 5 seconds.
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Figure 4: Cross-validation error (RMSECV) and training error
(RMSET) for RBF neural network; vertical line drawn for 𝑚 = 4
signifies the number of hidden neurons chosen in cross-validation.

Table 4: The number of hidden neurons and error results for the
best neural nets.

ANN MLP(tanh) MLP(exp) RBF
m 1 1 4
RMSECV [s] 29.89 30.02 55.71
RMSET [s] 25.19 25.17 52.63

6. Conclusions

This paper presents linear and nonlinear models used to
predict sports results for race walkers. Introducing a monthly
training schedule for a selected phase in the annual cycle,
a decline in physical performance may be predicted based
on the generated results. Thanks to that, it is possible to
take into account earlier changes in the scheduled training.
The novelty of this research is the use of nonlinear models,
including modifications of linear regressions and artificial
neural networks, in order to reduce the prediction error
generated by linearmodels.The bestmodel was the nonlinear
modification of LASSO regression for which the error was
24.6 seconds. In addition, the method has simplified the
structure of the model by eliminating 9 out of 32 predictors.
The research hypothesis was confirmed. Comparing with
other results is difficult because there is a lack of publications
concerning predictive models in race walking.

Experts in the fields of sports theory and training were
consulted during the construction of the models in order
to maintain the theoretical and practical principles of sport
training. The importance of the work is that practitioners
(coaches) can use predictive models for planning of training
loads in race walking.
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