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Research Article
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Flexible, porous, biocompatible, and biodegradable tubular keratin nanofibers were fabricated as nerve regeneration conduits.
Keratin was extracted from waste chicken feathers and then blended with polyvinyl alcohol and transformed into nanofiber
conduits by electrospinning. The nanofiber conduits had average diameters that ranged from 170 to 234 nm. The nanofibers’
average diameter decreased when the keratin content was increased. In contrast, the range of nanofiber diameter distribution
narrowed, suggesting that as nanofibers became thin, their numbers increased, thus reducing the interfacial spaces between
them. The analysis confirmed the presence of keratin protein in nanofibers, guaranteeing biocompatibility and biodegradation.
TGA showed that keratin improved the thermal stability and hydrophilicity of the nanofibers.

1. Introduction

The peripheral nervous system (PNS) is an integral part of
the nervous system that enables the body to move muscles
and feel normal sensations. Its primary function is to con-
nect the central nervous system (CNS) to tissues and organs
[1]. The role of PNS is made possible by central nervous sys-
tem basic units, called neurons, which are composed of,
among others, the bundles of axons that form electric-
cable-like peripheral nerves. Unlike CNS protected by the
skull and vertebrae, the PNS is exposed to injuries that can
either be neuropraxia, axonotmesis, or neurotmesis, where
neuropraxia is the least severe, while neurotmesis is the most
severe nerve injury [2]. The complicated anatomy of the
nerve bundle makes nerve repair difficult, leading to the
most unsuccessful treatments. Peripheral nerve injuries
remain a challenge for both clinically and basic research
despite the advancements that have been made in this field
[3]. Current repair methods include end-to-end repair,
grafts, and synthetic conduits. While end-to-end suturing,

extending, and reconnecting the distal stump to the proxi-
mal stump are the simplest and preferred nerve repair
method, its success is limited to the gap size and the proxi-
mal nerve’s availability stump. Furthermore, it is also limited
to the amount of tension induced during stump extension
over a nerve gap; if it exceeds the optimal level, the repair
process results in partial nerve recovery. The treatment
may be done by donating the nerve from the other part of
the body, autograft. The autograft is advantageous in elimi-
nating or minimizing immunological rejection and is con-
sidered the reference standard for closing the nerve gap
[4]. However, the balance of functionality between the donor
and recipient tissue or organ must be established. This balance
limits the treatment if there is a substantial loss of nervous tis-
sue that may require multiple small grafts. Another form of
nerve donation treatment is an allograft, whereby the nerve
tissue is harvested from the donor of the same species. Even
though this process increases nerve tissue availability, it also
introduces the chances of disease transmission and immuno-
logical response [1, 5].

Hindawi
Journal of Nanomaterials
Volume 2022, Article ID 7080278, 10 pages
https://doi.org/10.1155/2022/7080278

https://orcid.org/0000-0002-1508-7394
https://orcid.org/0000-0002-6239-7707
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7080278


Therefore, synthetic nerve conduits are favoured for the
nerve regeneration process because of their flexibility in
mimicking the natural nervous tissue. However, the current
commercially available conduits are rigid and inflexible and
may cause cell loss due to their lack of physiological proper-
ties required during nervous tissue movement [6]. The con-
duit must be biocompatible, biodegradable, porous,
bioresorbable, and mechanically strong [7].

Biocompatible synthetic polymers suit most nerve con-
duits’ fundamental requirements because of their adequate
mechanical strength, ductility, and physiochemical compat-
ibility, especially electrospun nanofiber scaffolds [8–10].
Nanofibers have attracted attention for their application as
nerve conduits due to their softness, flexibility, high poros-
ity, high surface area to volume ratio, and nanoscale diame-
ter [11, 12]. Research has shown that nanofiber scaffolds
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Figure 1: SDS-PAGE gels of extracted keratin protein: glycine gel (a) and tricine gel (b).
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support cellular ingrowth due to their ability to mimic the
native tissue or organ [13, 14]. Nanofibers can be electro-
spun into tubular forms that are flexible and soft to allow
easy suturing of the distal and proximal stump during nerve
repair. Furthermore, their porous nanostructure substrate
for cell attachment allows nutrient exchange [5].

While biocompatible polymers have been used to fabri-
cate electrospun nanofiber conduits [15], there is still a need
for biodegradable polymers derived from natural resources
to increase biocompatibility and lower immunological rejec-
tion. Among other synthetic polymers, polyvinyl alcohol
(PVA) has been used in biomedical applications, including
nerve repair treatment, due to its physical and chemical
properties. Polyvinyl alcohol is FDA approved for clinical

use in humans, and it has good electrospinnability to form
nontoxic nanofibers with large pore sizes. However, cell
adhesion for cell growth and biocompatibility need improve-
ment [16, 17]. Consequently, keratin has been used with
PVA to increase scaffold biocompatibility. As a biodegrad-
able fibrous protein, keratin can act as an extracellular
matrix and promote biocompatibility to minimize immuno-
logical rejection. This protein has attracted interest from
both scientific and industrial communities due to its excep-
tional properties and abundance. Interest includes investi-
gating keratin application in the biomedical field. Feng
et al. [18] developed keratin films to treat the corneal epithe-
lial wound. It was then concluded that the keratin films were
promising alternatives to the amniotic membrane for ocular
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Figure 3: SEM images and distributions of nanofiber diameters of the keratin/polyvinyl alcohol system: (a) 0% keratin/100% PVA, (b) 10%
K/90% PVA, (c) 20% K/80% PVA, and (d) 30% K/70% PVA.
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surface reconstruction; the films support proliferation,
migration, adhesion, and differentiation of human corneal
epithelial cells. The protein can also be used to exfoliate
molybdenum disulphide (MoS2) to achieve high-quality dis-
persion of nanolayered MoS2 with a high yield of about 56%.
The produced nanolayered sheet has a long shelf-life and
improved electrical conductivity [19]. In another study, the
effect of transglutaminase on wool keratin films showed a
decrease in elongation at break and an increase in tensile
strength, thus improving film stability while conserving drug
release rate [20]. Further investigation by Ajay Sharma et al.
[21] showed that keratin hydrogels could be used as a scaf-
fold for pulp-dentine regeneration since keratin enhanced
odontoblast cell behaviour. Choi et al. [22] developed
keratin-based nanofibers with high optical transmittance of
88% at 600 nm with improved mechanical properties. Guo
et al. [16] used oxidative hair keratin nanoparticles to coat
PVA nanofibers for nerve repair, whereby large pore size
enhanced neural cell viability and proliferation. Sierpinski
et al. [23] produced a biomedical hair-keratin gel and con-
cluded that it promotes vigorous nerve regeneration
response by activating Schwann cells. Keratin inclusion facil-
itates the treatment result comparable to the gold standard
conduit, the autograft. Similar results were observed with
the application of hydrogel conduit filled with hair keratin

for nerve regeneration, in which results were also compara-
ble to the gold standard for nerve repair [24].

Therefore, the current study is aimed at fabricating and
characterizing the seamless nanofiber conduit of polyvinyl
alcohol and chicken feather keratin to apply in nerve
regeneration.

2. Methodology and Materials

White chicken feathers were collected from the chicken meat
processing plant RCL Foods at Hammarsdale, South Africa.
Analytical grade sodium bisulphite, sodium hydroxide,
sodium dodecyl sulphate, urea, and polyvinyl alcohol were
purchased from Sigma-Aldrich, South Africa. The fabrica-
tion of seamless nanofiber conduits was done using Nano
Spinner NE200 from Inovenso. The main instruments that
were used for analysis were Fourier transform infrared spec-
troscopy (FTIR), Simultaneous Thermographic Analyzer
(STA) 6000, and Carbon, Hydrogen, Nitrogen, Sulphur,
and Oxygen (CHNS/O) Analyzer (Series II 2400) from Per-
kinElmer. Experiments, including keratin extraction, fabri-
cating nanofibers and characterizations such as CHNS,
were carried in triplicate, while the sample size of diameter
measurements of nanofibers was 100.

(a)
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(c)
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Figure 4: SEM images of keratin nanofibers: (a) tubular structure and (b) the outer and inner surfaces of the tube; (c, d) cross-sections of
individual nanofibers, 0% K/100% PVA and 10% K/90% PVA nanofibers, respectively.
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2.1. Pretreatment of Chicken Feathers. Wet chicken feathers
were rinsed with water at 60°C to remove excess blood while
manually removing other meat by-products and then auto-
claved at a temperature of 121°C and pressure 120 kPa for
30 minutes. After that, they were soaked in 0.5%v/vsodium
hypochlorite for 24 hours before rinsing with water and
dried at 25°C.

2.2. Extraction and Analysis of Chicken Feather Keratin.
Cleaned-disinfected chicken feathers were ground in a mill-
ing machine to increase the dissolution rate during the
extraction process. They were then soaked in 99% ethanol
for 24 hours to remove fatty materials and rinsed with water
before drying at 50°C for three days. Fifteen grams of dry
and degreased chicken feathers was deep in a solution of

0.23M sodium bisulphite, 0.07M sodium dodecyl sulphate,
and 1.5M urea. The reaction mixture was shaken on a linear
platform shaker for homogeneous distribution of all mixture
components in a container and then heated in a 90°C oil
bath. After cooking, the mixture was centrifuged at
9000 rpm for 15 minutes and filtered to separate the insolu-
ble materials and supernatants. The filtrate obtained was
dialyzed in distilled water using cellulose membrane dialysis
tubes (MWCO 3.5 kDa) for five days. The keratin solution
was lyophilized to obtain keratin powder, sealed, and stored
in a cold room at 4°C.

2.3. Preparation for Electrospinning Solutions. Solutions of
various ratios of 0/100 to 30/70 of keratin/polyvinyl alcohol
(K/PVA), at a constant concentration of 12wt%, were
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Figure 5: Energy-dispersive X-ray (EDX) results of keratin/PVA nanofiber tubes: (a) EDX spectrum of elements, (b) element mapping, and
(c) atomic concentration of nanofibers.

Table 1: Conductivity of different keratin/PVA solutions and average diameters of relevant nanofibers.

Keratin/PVA Conductivity (mS/cm) Average diameter ± Std:dev (nm) Average pore size ± Std:dev (nm)

0%/100% 272 234 ± 87 0:3 ± 0:081
10%/90% 484 212 ± 63 0:09 ± 0:029
20%/80% 1020 196 ± 37 0:07 ± 0:012
30%/70% 1198 170 ± 50 0:04 ± 0:004
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prepared by initially dissolving chicken feather keratin in
deionized water, stirred at 50°C while adding about two
drops of 1M NaOH, and then cooled to room temperature.
Polyvinyl alcohol was slowly added into the solution while
stirring and further stirred for 30 minutes; the temperature
increased to 80°C for 2 hours before cooling to room tem-
perature. The conductivity of the solutions was measured

using Metrohm 914 pH/conductometer, and the average of
three measurements per solution was recorded. The solu-
tions were then ready for electrospinning.

2.4. Fabrication of Seamless Nanofiber Conduits. Each elec-
trospinning solution was placed in a 10ml polyurethane
(PU) syringe; the syringe was then connected by a tube to
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Figure 6: Graph of the effect of keratin content on average diameters of keratin/PVA nanofibers.
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a nanospinner nozzle of 0.8mm inside diameter. The elec-
trospinning parameters were set to 30 kV, 20 cm nozzle-
collector distance, 3ml/hour feed rate, and a collector rota-
tion speed of 52 cm/s.

2.5. Characterization of Nanofiber Conduits

2.5.1. Fourier Transform Infrared Spectroscopy (FTIR). Func-
tional groups of the keratin, polyvinyl alcohol, and nanofi-
bers were analyzed using Fourier transform infrared
spectroscopy (Frontier Universal model, from PerkinElmer)
in an attenuated total reflection mode (ATR). Each sample
was scanned four times at a wavenumber range of 550–
4000 cm-1 with a resolution of 4 cm-1.

2.5.2. CHNS Analysis for Crude Protein Content in
Nanofibers. Protein content in nanofibers was done using a
CHNS/O analyzer, which determines the content of carbon,
hydrogen, nitrogen, and sulphur in the sample. After that,
the protein content is calculated by multiplying the nitrogen
content by a crude protein conversion factor of 6.25 [25].

2.5.3. Scanning Electron Microscopy (SEM). Scanning elec-
tron microscopy was used to determine morphological
properties of nanofiber conduits such as shape, diameter,

porosity, smoothness, and beads. Samples were set up on a
metal stub using a sticky carbon disc; they were then gold-
coated using a sputter coater before being placed in the
ZEISS LEO 1450 Scanning Electron Microscope for imaging.
Image-Pro Plus software was then used to analyze the diam-
eters of 100 nanofibers.

2.5.4. Thermal Gravimetric Analysis. Thermophysical prop-
erties were investigated using a thermal gravimetric analyzer
at a heating rate of 30°C/min from 30 to 600°C.

3. Results and Discussions

3.1. Extraction and Characterization of Keratin.White chicken
feathers were obtained after pretreatment. The increased
whiteness index of feathers was due to removing brown-
yellow oil and fats. The index further advanced after degreas-
ing with ethanol. After that, a mixture of an aqueous solution
and chicken feather particles was recovered after 4 hours of
cooking. The final purification steps resulted in light brown
supernatant and keratin powder after filtration and freeze-dry-
ing, respectively. Figure 1 contains the extracted keratin
molecular weight’s sodium dodecyl sulphate polyacrylamide
gel electrophoresis (SDS-PAGE) analysis.

It shows that the extracted keratin has molecular weights
that range from about 3 kDa to approximately 60 kDa,
whereas the broad, intense band between 10 and 15 kDa
indicates that multiple monomers have a molecular weight
of 10-15 kDa range [26].

FTIR’s functional groups’ qualitative analysis confirmed
the presence of polypeptide amides, namely, amide A, amide
B, amide I, amide II, and amide III represented by the absor-
bance peaks at 3280.79mc-1, 2919.88mc-1, 1633.74mc-1,
1532.24mc-1, and 1212.05mc-1, respectively [27]. Further-
more, the extracted keratin elemental analysis showed that
this keratin has 5.02% sulphur, 46.64% carbon, 10.82%
nitrogen, 7.72% hydrogen, and 29.74% other elements,

95
5

15
25
35
45
55

M
as

s (
%

) 65
75
85
95

105

195 295 395
Temperature (°C)

495 595 695

100% PVA
Keratin powder
10%K/90%PVA

20%K/80%PVA

35
0,0E+00

1,0E–02

2,0E–02

D
rT

G
A

 (m
g/

se
c) 3,0E–02

4,0E–02

135 235 335
Temperature (°C)

435 535

30%K/70%PVA

Figure 8: Thermogravimetric analysis and TGA derivative of keratin/PVA nanofibers.

Table 2: Quantity of mass loss of keratin/PVA nanofibers at 100°C
and 400°C.

Mass loss (%)

Sample T100°C T400°C

100% PVA 2.59 80.39

10% K/90%P VA 2.49 70.11

20% K/80% PVA 3.27 71.51

30% K/70% PVA 3.77 70.91

Keratin powder 3.98 68.11
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including oxygen. The extract is composed of 67.63% pro-
tein, calculated from the nitrogen percentage in the
hydrolysate.

3.2. Preparation and Characterization of Keratin/PVA
Nanofibers. The prepared electrospinning solutions of vari-
ous ratios of keratin and PVA, from 00/100 to 30/70, were
homogeneous and had a pH of 8 at 24.1°C. The graph in
Figure 2 shows the effect of keratin content in the electro-
spinning solution.

The conductivity of electrospinning solutions increased
with an increase in keratin content. The increase in conduc-
tivity may be due to polar amino acids in keratin. The mor-
phology of keratin/PVA nanofibers with different keratin
contents from 0% to 30% is shown in Figure 3. All nanofi-
bers were cylindrical and became thinner as keratin content
was increased. As keratin content increases, the conductivity
of the spinning solution increases.

The increase in conductivity increases the polymer jet’s
electrical charge, increases the electric field force, and results
in thinner jets and nanofibers and smaller fiber diameters. In
addition to greater electric field strength, increasing conduc-
tivity decreases the solution’s viscosity, resulting in smaller
nanofiber’s average diameters. However, there was no
noticeable change in the individual nanofibers’ cross-
sectional shape from 100%bPVA to 90% PVA nanofibers,
as shown in Figure 4.

Figure 3 also shows histograms of nanofiber diameters to
indicate the diameter distributions that narrow as keratin
content increases. Energy-dispersive X-ray (EDX) results,
shown in Figure 5, indicate that keratin/PVA nanofibers
are mainly composed of carbon, oxygen, nitrogen, and
sulphur.

The element mapping of EDX showed that all the atoms
were evenly distributed throughout the nanofibers’ mate-
rials. The significant amounts of nitrogen and sulphur indi-
cated the presence of keratin proteins. There was a
noticeable increase in nitrogen percentage as keratin content
increased in nanofibers. The conductivity and average diam-
eters of nanofibers are tabulated in Table 1 and shown in
Figure 6.

Furthermore, in Figure 5(b), SEM image analysis shows
atoms evenly distributed throughout the nanofiber tubes.
The average pore sizes decreased from 0.09 to 0.04 pm,
decreasing with increased keratin content. This effect can
also be attributed to the keratin conductivity effect; high
conductivity within the polymer jet causes the jet to split
into thinner jets due to the greater repulsive force, resulting
in a higher number of fibers per unit area, thus reducing the
number of fibers per unit pore size.

The FTIR spectra of PVA nanofibers, keratin powder,
and keratin/PVA nanofibers are shown in Figure 7. Keratin
spectrum was used as a reference spectrum for keratin/
PVA nanofiber spectra. The keratin spectrum exhibited
peaks of different amides of keratin protein. A peak at
3282.56 cm-1 is N-H stretching of amide A and possible
Fermi resonance from the overtone of amide I [28], C-N
bending of amide B (2919.88 cm-1), CO stretching of amide
I (1633.74 cm-1), C-N stretching and N-H bending of amide

II (1532.24 cm-1), amide III’s CO stretching (1200 cm-1), C-
H bending of amide IV (623 cm-1), and S-O stretching of
cysteine-sulphonate (1212.05 cm-1) and disulphide bonds at
550 cm-1 [16, 29]. Some PVA spectrum peaks include -OH
stretching peak at 3100 cm-1, -CHO stretching at 2950 cm-

1, and CO stretching at 2900 cm-1. The addition of keratin
into PVA increased the intensity of amides A and B; this
can be attributed to the interaction of the -NH2 group of
keratin and -OH group of PVA, resulting in hydrogen bond
formation.

The increased amount of keratin corresponds with two
new peaks related to PVA, at 1642.26 cm-1 and 1547.21 cm-

1. These peaks shift to shorter wavelengths as keratin content
increases. The changes in the intensities of peaks, forming
new ones and shifting to shorter wavelengths, confirm kera-
tin in the nanofibers and suggest the chemical interactions
between keratin and PVA. This chemical reaction between
the PVA and keratin functional group minimizes the inter-
action between keratin macromolecules and increases the
keratin’s electrospinnability; the amide-carbonyl interaction
further prevents phase separation of keratin and PVA in
blended spinning solution [30].

TG analysis in Figure 8 shows the mass-loss curves and
their derivatives to indicate polyvinyl alcohol nanofibers’
thermal behaviour, keratin, and keratin-PVA nanofibers.
These graphs show three major mass-loss events for nanofi-
bers and keratin. The first event at just below 100°C was
attributed to water evaporation. The mass loss, shown in
Table 2, resulted in a mass reduction of 2.59% for 100%
PVA nanofibers and 2.49% to 3.98% for 10% to 30% keratin
nanofibers and keratin.

The increasing trend of water mass with the increase in
PVA keratin content indicates keratin nanofibers’ hydrophi-
licity. The second and significant mass loss occurred
between 190°C and 400°C. This was attributed to the degra-
dation of alpha-helix and peptide bonds of amino acid resi-
dues [31].

The onset temperature of PVA nanofibers, 190°C, was
higher than that of keratin and keratin/PVA nanofibers at
160°C. However, increasing keratin content showed no fur-
ther effect on the onset temperature of keratin/PVA nanofi-
bers. Nevertheless, PVA nanofibers and keratin showed a
high degradation rate, with PVA nanofibers having the high-
est rate. Both PVA nanofibers and keratin exhibited a high
degradation rate than their blend nanofibers. The third mass
loss event occurred between 405°C and 490°C; this loss was
due to the degradation of the previous mass loss event’s
by-products. Keratin had a high amount of residuals than
PVA, indicating better stability, while the ash content of ker-
atin/PVA nanofibers fell between keratin and PVA.

4. Conclusion

Keratin/PVA nanofiber tubes were successfully fabricated
without longitudinal seams. The addition of polyvinyl alco-
hol improved keratin’s electrospinnability by interrupting
keratin macromolecules’ interaction and forming hydrogen
bonds. On the other hand, keratin advanced the thermal sta-
bility of PVA nanofibers. Keratin nanofibers have a smaller
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diameter than keratin-free PVA nanofibers, increasing their
surface area. The diameter of the nanofibers decreases when
keratin content increases, suggesting the limit in electro-
spinnability of PVA/keratin blend due to keratin content.
When used as nerve conduits, these permeable tubes will
provide transportation of nutrients and metabolic waste;
they will serve as a barrier that prevents other tissues into
the regeneration area. Small diameters increase cell prolifer-
ation, cell spreading, and differentiation of neural stem cells
while decreasing cell aggregation levels. The keratin-based
nanofiber tubes are potential nerve regeneration frames as
they mimic the extracellular matrix of the natural fibrous
structure of neural tissue. They enhance electrophysiological
recovery and axon density. Future investigations on the ker-
atin/PVA nanofiber tubes will include in vitro and in vivo
experiments.
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Osteoarthritis (OA) is a bone and joint disease with pathological characteristics such as articular cartilage degeneration injury and
synovial and subchondral bone reactive hyperplasia. Once cartilage is damaged, it is difficult to repair it by itself. Current clinical
practice is mainly limited to symptomatic treatment, not changing the degenerative process of osteoarthritis. The important goal
of nanomedicine is targeted delivery. Nanoparticles (NPs) can provide many unique potential functions for the targeted treatment
of arthritis. This review summarizes the research progress of nanomaterials as a drug delivery system in the treatment of
osteoarthritis from three aspects: (1) the etiology of OA and the current research status of applying nanoparticles to treat OA,
(2) the construction of osteoarthritis models, and (3) the classification of nanoparticle-based drug delivery systems.

1. Introduction

With the increase in life expectancy, obesity rates and sports
injuries, the incidence of arthritis is rising steadily [1]. These
reasons have promoted the research of tissue engineering
materials in orthopedics or joint surgery. Osteoarthritis, also
known as degenerative arthritis, senile arthritis, and hyper-
trophic arthritis, is a bone and joint disease with main patho-
logical characteristics such as articular cartilage degeneration
injury, joint edge and subchondral bone reactive hyperplasia,
and synovial hyperplasia [2, 3]. Cartilage lacks nourishing
pathways (such as blood vessels, nerves, and lymph), consist-
ing of only a single type of cell with low proliferative activity
(chondrocytes) [4]. Therefore, once damaged, it is extremely
difficult to repair it by itself. The current traditional methods
for the treatment of cartilage defects mainly include autolo-
gous cartilage transplantation, microfracture (bone marrow
stimulation), and autologous chondrocyte transplantation
[5]. Although these methods have certain curative effects,
they have defects such as large damage to the donor site,
inconsistent characteristics of the repaired area and sur-
rounding cartilage, and poor interface healing. Current clin-
ical practice is mainly limited to symptomatic treatment

(pain relief and artificial joint replacement), not involving
the underlying molecular cause of OA. This treatment does
not change the degenerative process of osteoarthritis.
Figure 1 shows the diagram of normal and cartilage osteoar-
thritis joints.

Nanomaterials refer to materials whose structure is at
the nanometer scale in at least one dimension, or is com-
posed of nanostructured units with special properties. It
has been extensively studied in the field of tissue engineer-
ing, including as a cell growth scaffold to promote bone tis-
sue regeneration and as a transplant material for repairing
peripheral nerves [6, 7]. Nanomaterials can perform biolog-
ical imaging through spectral and fluorescent signals to pro-
mote disease diagnosis [8]. At the same time, nanomaterials
can also be used as biosensors to effectively monitor disease
progression [9]. This review mainly focuses on the targeted
delivery function of nanomaterials in the field of OA. Nano-
materials can provide many unique potential functions for
the targeted treatment of arthritis, and they include the fol-
lowing: (1) maintaining the concentration of the drug in
the target area to maximize the effect of the drug, (2) carry-
ing more drug molecules and increasing the solubility of
some hydrophobic drugs, and (3) loading target molecules
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to nanoparticles through surface modification for targeted
delivery [10, 11].

This article summarizes the research progress of nano-
materials as a drug delivery system in the treatment of oste-
oarthritis from the following aspects: the etiology of OA, the
current research status of applying nanoparticles to treat
OA, the construction of OA models, and the classification
of nanoparticle-based drug delivery systems. In Table 1, we
summarize the latest research progress of applying nanopar-
ticles to treat OA.

2. The Etiology of OA and the Current Research
Status of Applying Nanoparticles to Treat OA

2.1. Injury. Osteoarthritis that develops after joint injury is
considered as posttraumatic osteoarthritis (PTOA) [42].
Both anterior cruciate ligament injury (ACL) and meniscus
injury can lead to a high risk of PTOA [43]. At the same
time, the load change of the injured joint will promote the
development of PTOA. ACL defect or joint reconstruction
will change the biomechanical distribution of the tibiofe-
moral joint contact area, increasing the load on the cartilage
area that was previously unloaded and reducing the load on
the cartilage area that should have received a higher load
during the weight-bearing process, eventually causing the
articular cartilage to rupture [44–46]. Studies have shown
that quadriceps weakness after knee injury is one of the
causes of PTOA [47]. When the quadriceps muscles are
weak, as in the case of anterior cruciate ligament injury
and reconstruction, they cannot fully absorb the impact
energy [48]. This will put more load on the articular carti-
lage, which will eventually lead to joint degeneration.
Intra-articular fractures are also one of the causes of PTOA
[49]. Acute mechanical damage and chronic abnormalities
of joint load after intra-articular fractures may cause articu-
lar cartilage rupture.

Cartilage cells will enhance metabolism through mecha-
noreceptors on the surface of chondrocytes detecting
mechanical load [50]. Through the process of mechanical
transduction, mechanical signals are converted into chemi-
cal signals to regulate the biochemical activity of chondro-
cytes and induce molecular biosynthesis to maintain tissue
integrity [51]. Mechanoreceptors of cell surface include
integrins and mechanosensitive ion channels [52]. Integrin
is a kind of transmembrane protein that activates intracellu-
lar signal transduction by attaching to downstream signal
molecules. The activation of mechanoreceptors triggers a
cascade of signals within the cell, causing the tissue remod-
eling process. Excessive mechanical load leads to the imbal-
ance between synthesis and decomposition, causing the
consumption of matrix components, and the lack of regen-
eration ability, resulting in irreversible damage, making it
the most obvious trigger of OA [53, 54].

In past tissue engineering research, cartilage cells were
loaded on the surface of biomaterials to promote cartilage
repair. However, this method cannot solve the problem that
resident chondrocytes secrete abnormal extracellular matrix,
and it is difficult to maintain the survival rate of transplanted
chondrocytes. To solve these problems, researchers invented
a kind of cell-free HA nanoscaffold that provided two cyto-
kines, namely, stromal cell-derived factor-1α (SDF) to
increase MSC recruitment and infiltration, and transforming
growth factor-β3 (TGF-β3; TGF) to promote the formation
of cartilage tissue [31]. The ethylene glycol chitosan/fucoi-
dan nanogels (GC/Fu @ KAFAK NGs) loaded with KAFAK
(anti-inflammatory peptide) were prepared by electrostatic
interaction and the natural compound genipin. Researchers
found that intra-articular injection of this NP not only
inhibited the expression of IL-6 and TNF-α but also
increased the expression of the chondrogenesis markers type
II collagen, proteoglycan, and Sox9 [30]. Based on the cam-
ouflage of the natural BMSC membrane, the researchers
encapsulated kartogenin (KGN) as a cartilage regeneration
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ADAMTs
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Figure 1: Diagram of normal and cartilage osteoarthritis joints.
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drug into Fe3O4 nanoparticles. As a result, a nanomaterial
with excellent biocompatibility and good biosafety is
obtained, achieving high-quality and fast cartilage regenera-
tion [23]. Researchers synthesized cerium oxide nanoparti-
cles (CeO2) with a particle size of about 120nm and
combined them with hyaluronic acid (HA) to construct

nanodelivery drugs. Through in vitro OA model studies, it
was found that the delivery system can protect chondrocytes
from oxidative stress, and the expression of COL2a1 and
ACAN genes in chondrocytes was significantly increased
[19]. Janus-based nanotubes (AAT) self-assemble from ana-
logs of synthetic DNA bases (guanine-cytosine motif), which

Table 1: Research summary of nanoparticle-based drug delivery systems.

Type of
NPs

Carrier Cargo Outcome Ref

Liposomes
(HA)-liposomal

Diclofenac,
dexamethasone

Effectively relieving the pain of OA and having good
biocompatibility

[12]

SLN system
Integrin β1

overexpression pDNA
Reducing chondrocyte apoptosis and enhancing tissue

repair
[13]

Micelles

PNIPAM-PMPC Diclofenac sodium
PNIPAM-PMPC nanospheres are biocompatible and
upregulate anabolic genes, while downregulating

articular cartilage catabolism genes
[14]

Polyethylene oxide- (PEO-) and
polypropylene oxide- (PPO-)
based polymeric micelles

rAAV sox9
Enhancing the deposition of ECM components and

cell survival levels, inhibiting inflammation
[15]

Acid-activatable polymer Curcumin
Suppression of tumor necrosis factor-alpha (TNF-α)
and interleukin 1β (IL-1β). Potent antioxidant and

anti-inflammatory activities
[16]

Inorganic
NPs

MnO2, gold-based
nanoformulations, CeO2

COL2a1 and ACAN gene expression in chondrocytes
was significantly decreased

[17–19]

MSNs pSBMA, colchicine
Due to the hydration lubrication mechanism, the wear
resistance of the material is enhanced. Reducing nitric

oxide, malondialdehyde, COX2, and TNF-α
[20, 21]

Zeolitic imidazolate framework-8
S-Methylisothiourea
hemisulfate salt

Reducing the content of NO and H2O2, thereby
inhibiting the production of HIF1α and M1

macrophages, alleviating mitochondrial function
[22]

Membrane-disguised Fe3O4 Kartogenin Enabling rapid and high-quality cartilage regeneration [23]

Polymer
NPs

CD-PMPC Silica
Enhancing penetration of dermal tissue and

lubrication, inducing drug release
[24]

PLGA-PEG
4MAL, kartogenin

(KGN)
Prolonging IA drug retention for the treatment of OA.

Increasing sulfated glycosaminoglycans
[25–27]

Electrostatic self-assembly heparin
and ε-poly-l-lysine

Platelet lysate Platelet lysate is evenly distributed [28]

Hollow dextran/PNIPAM KAFAK In cartilage explants to suppress inflammation [29]

Glycol chitosan/fucoidan
nanogels

KAFAK
Inhibiting the expression of TNF-α and IL-6.
Enhancing the expression of type II collagen,

proteoglycan, and Sox9
[30]

Electro spun cell-free fibrous
hyaluronic acid

SDF-1α, TGF-β3
Increasing recruitment and infiltration of MSCs to

enhance cartilage tissue formation
[31]

PLGA
Andrographolide,

p66shc siRNA, diacerein
Inhibiting osteoclast function and inflammation [32–34]

Poly(D,L-lactic acid)-
poly(ethylene glycol)-poly(D,L-

lactic acid)
BMP2

Inducing implant differentiation into cartilage and
bone but also completely degraded without toxicity

[35]

LbL polymer microcapsule MnO2
Eliminating hydrogen peroxide H2O2 and protecting

cells from oxidative stress
[36]

Exosomes

miR-140, miR-9-5p,
miR-100-5p, miR-135b,

miR-1405p, and
lncRNA KLF3-AS1

Reducing inflammation and promoting cartilage
marker production

[37–41]
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can transport small RNA molecules to cells and tissues.
Researchers encapsulated the nanotube AAT-packaged
miR365 antagomir in the yeast cell wall to construct nanoad-
ministrative particles. This nanodrug delivery system inhib-
ited the content of miR365 by oral administration to treat
PTOA (mice) [55].

2.2. Inflammation. OA is also a disease caused by underlying
immune response leading to bone remodeling and cartilage
degradation. Typical symptoms include swelling, pain, and
stiffness [56]. By initiating the inflammatory process and
inducing cartilage decomposition, the early changes in the
cartilage surface are manifested as fibers extending distally,
forming deep cracks, leading to cartilage delamination,
forming calcified cartilage [57]. The thinning of articular
cartilage is closely associated with dilation of basal calcified
cartilage, which in turn leads to increased mechanical stress
and further production of degrading factors [58]. Major sig-
naling molecules involved in OA immune response are usu-
ally divided into the anti-inflammatory and inflammatory
groups. The inflammatory cytokines include TNF-α, IL-1β,
IL-6, IL-8, and IL-17, and the anti-inflammatory cytokines
include IL-13, IL-4, IL-10, and IL-1Ra [42, 49, 59]. Cytokines
can participate in the pathological process of cartilage
degeneration by mediating multiple signaling pathways,
mainly including the mitogen-activated protein kinase
(MAPK) signaling pathway [60], the AMPK signaling path-
way [61], and the Wnt/β-catenin signaling pathways [62].
They can also promote the synthesis of PGE2 and induce
the production of chondrocytes to synthesize metallopro-
teinases (ADAMTS) [63], HIF2α, NOS2, MMPs, and
COX2, thereby promoting the inflammatory process and
inhibiting the proliferation of chondrocytes [64, 65].

Therefore, implanting anti-inflammatory factors or
enzymes into the joint cavity and maintaining the drug con-
centration is another research direction for OA treatment.
Hollow dextran/PNIPAM nanoparticles loaded with
KAFAK effectively deliver therapeutic peptides to inhibit
inflammation. These heat-responsive nanoparticles may be
an effective drug delivery system that can deliver anti-
inflammatory therapeutic peptides in an OA environment
[29]. The researchers encapsulated three hydrophobic anti-
inflammatory drugs (tenoxicam, dexamethasone, and cele-
coxib) into core-shell terpolymer nanoparticles. Experiments
have shown that these loaded nanoparticles have the activity
of acting as inflammatory mediator production regulators
in vitro [66]. MnO2 nanoparticles, with excellent biocompat-
ibility, can be used as artificial nanoenzymes to effectively
eliminate reactive oxygen. Hollow MnO2 (H-MnO2) was
synthesized by the Stober method and modified with NH2-
PEG-NH2, reducing the inflammatory response of OA [17].

2.3. Obesity. Obesity is a state of excessive accumulation of
fat in the body, which is believed to be directly related to
some metabolic diseases such as high blood pressure, dyslip-
idemia, diabetes, and osteoarthritis [67–69]. Obesity plays an
important role in the occurrence and development of
weight-bearing and non-weight-bearing joint osteoarthritis.
Increased joint load and systemic metabolic changes may

be important factors in the occurrence of obesity-related
osteoarthritis. Moderate mechanical load can maintain the
dynamic balance and integrity of articular cartilage. Com-
pared with normal BMI people, tibiofemoral cartilage of
high BMI people withstand more compressive stress during
short-term running tasks [70]. The proteoglycan content in
obese subjects is reduced, indicating that the cartilage is in
a “pre-osteoarthritis” state. Osteoarthritis caused by obesity
is defined as a “metabolic osteoarthritis” phenotype [71].
Metabolic osteoarthritis is associated with increased fat
deposits that release inflammatory cytokines/adipokines,
leading to systemic inflammation, cartilage loss, and osteo-
phyte formation [72].

In order to solve the abrasion caused by mechanical ero-
sion, viscoelastic supplements based on hyaluronic acid
(HA) have been widely used to treat knee joint injuries.
However, current HA formulation cannot provide effective
healing and recovery. Researchers have developed a
nanofiber-HA membrane system to protect arthritic carti-
lage tissue from degeneration. The material has a unique
scaffold structure that can provide a 3D microenvironment
like natural ECM, and deliver biologically active signals that
can activate chondrocyte proliferation and functional colla-
gen I synthesis. Researchers injected the ankle joint to fill
the joint cavity and found that this hybrid nanofiber mem-
brane has a better therapeutic effect than the commercially
available Hyalgan and Synvisc gels at a lower concentration,
providing a simple and feasible alternative to OA treat-
ment [73].

2.4. Age. Age is one of the main factors of osteoarthritis.
There are literatures showing that the prevalence of knee
arthritis increases almost linearly after the age of 40 [74].
The incidence of osteoarthritis increase with age, which
may be due to the accumulation of various risk factors and
the result of biological changes [75]. Osteoarthritis is charac-
terized by the imbalance between catabolic and anabolic
activities in the joints. Aging chondrocytes do not respond
well to growth factor stimulation and cannot maintain the
homeostasis of articular cartilage, leading to the occurrence
of OA [76].

How to improve the response of aging chondrocytes to
growth factors has received extensive attention. Platelet
lysate (PL) is a cost-effective mixture of growth factors. Elec-
trostatic self-assembly heparin (Hep) and ε-poly-l-lysine
(EPL) nanoparticles (NPs) were engineered to enhance the
sustained release ability of PL. This nanodrug delivery mate-
rial retained the initial gelling ability and showed long-term
PL release ability, ameliorating cartilage degeneration in the
late stage of OA [28]. Researchers have prepared a cationic
lipid nanoparticle (SLN) system that can efficiently deliver
plasmid DNA (pDNA) into cells. This study reported that
the overexpression of pDNA carrying integrin β1 was trans-
ported into rat chondrocytes via liposomes, reducing IL-1β-
stimulated chondrocyte apoptosis and enhancing tissue
repair [13]. Researchers developed a thermosensitive bifunc-
tional nanosphere polymer (PNIPAM-PMPC) through
emulsion polymerization. The nanospheres can enhance
lubrication by forming a hydration layer around the base
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of the zwitterion head, and deliver local drug by wrapping
diclofenac sodium (an anti-inflammatory drug) [14, 77].

2.5. Genetic Factors. Epidemiological studies have confirmed
that genetic factors play a major role in the pathogenesis of
osteoarthritis. Studies based on the family history also con-
firmed that OA has hereditary susceptibility [78, 79]. The
main mechanisms leading to OA were chemical modifica-
tion of DNA, such as methylation, posttranslational modifi-
cation of histones, and regulation of noncoding RNA.

(1) DNA methylation is a type of chemical modification
of DNA that can alter the performance of genes
without changing the DNA sequence. It refers to
the covalent attachment of the methyl group to the
5th carbon position of cytosine in the genomic
CpG dinucleotide under the action of DNA methyl-
transferase. Studies have shown that DNA methyla-
tion can cause changes in chromatin structure,
DNA conformation, DNA stability, and the way
DNA interacts with proteins, thereby controlling
the gene expression. The analysis of the whole
genome showed that the methylation of genes
related to OA have changed, including genes encod-
ing transcription factors, such as SOX9; genes encod-
ing ECM protein and matrix degrading protease,
including COL2a1, ACAN, and MMP13; and partic-
ipating genes that signal growth factors and cyto-
kines, such as GDF5 and BMP7 [80]. Some
emerging trends indicate that methylation patterns
may differ between different OA joints and stages
of the disease [81]. For example, different methyla-
tion patterns may occur between knee cartilage and
hip cartilage, and between mild and severe cartilage
from the same joint [82, 83]

(2) Gene expression is a complex process regulated by
multiple factors. Histones are an important part of
the basic structure of chromosomes-nucleosomes,
and their N-terminal amino acid residues can
undergo acetylation, methylation, phosphorylation,
and ubiquitination [84]

(3) Noncoding RNA (ncRNA) refers to RNA that does
not encode protein. These include rRNA, tRNA,
snRNA, snoRNA, microRNA, and other RNAs
[85]. The common feature of these RNAs is that they
can be transcribed from the genome, performing
their biological functions at the RNA level without
being translated into proteins [86]. For example,
miR-140 can inhibit the expression of harmful genes
ADAMTS5, MMP13, and IGFBP5 in OA [87]

Upregulating gene expression in target organs by
delivering specific signaling molecules is a kind of method
to treat OA caused by inheritance. Exosomes contain specific
information about the source cell, with ability to deliver
molecules targeting organs or tissues. The application of
exosomes and their derivatives by intra-articular injection
open up new possibilities for the treatment of OA. Studies

have shown that exosomes derived from primary chondro-
cytes that overexpress miR-95-5p promoted cartilage
development and cartilage matrix expression by directly
targeting histone deacetylase [88]. Exosomal miR-8485
may regulate the expression of GSK-3 to suppress the pro-
duction of glycogen synthase kinase, targeting the binding
antagonist of DACT1 to activate the Wnt/β-catenin pathway
and promote cartilage differentiation [89]. In Figure 2, we
show the common predisposing factors of osteoarthritis.

3. Method of Constructing an OA
Animal Model

Animal models are essential in studying the etiology of the
disease and the effectiveness of various treatment tools.
The ideal model should include the following features: (1)
all joint tissues (as the human body) are affected; (2) early
stages of the disease are included; (3) animal models can
simulate human disease; (4) animal species are easy to han-
dle and raise; (5) the results can be evaluated in different bio-
chemical, genetic, and imaging biomarkers, and should be
transferable to the specificity of human medical therapeutics
and pathology. It is recommended to consider the following
points when selecting the OA model: the stage of OA that
needs to be studied, the expansion of the lesion (focal or sys-
temic), the therapeutic effect, and the target tissue to be stud-
ied (cartilage, membrane, bones, or synovial fluid) [90].

OA models can be divided into induced models (surgery
or injection) and spontaneous models (natural development
and genetic models). Spontaneous models can be used to
study the pathogenesis of OA, with high economic costs
and long time to achieve goals [91, 92]. On the contrary,
the induction model achieves a reproducible and early OA
model, but it prevents researchers from studying the possible
pathogenesis of diseases. Small mammals (mice, rats), rab-
bits, and guinea pigs are the most common models for
studying the pathogenesis and pathophysiology of OA.

3.1. Spontaneous Models (Age, Obesity, and Genetic Factor).
The main feature of spontaneous models is slow evolution,
with a very long research cycle and high economic costs.
However, they have an excellent correlation with natural
processes from a pathophysiological point of view. Sponta-
neous models can be further subdivided into two subgroups:
naturally occurring models or models produced by individ-
ual genetic manipulation.

3.1.1. Age. OA tends to occur in the elderly. The animal
model of spontaneous osteoarthritis is close to the progres-
sion of human OA, as a valuable tool for studying the path-
ogenesis of osteoarthritis. When a Hartly guinea pig about
3 months old weighs 700 g, OA may appear on the medial
tibial plateau of the knee joint. By the age of 18 months,
the guinea pig’s medial tibial plateau had severe OA path-
ological changes and there was no meniscus covering on
the surface [93, 94]. OA is manifested by cartilage degrada-
tion, mainly histological changes in the cartilage in the
weight-bearing area, which is similar to the occurrence
and development of human osteoarthritis. The distribution
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of glycosaminoglycans in cartilage is abnormal. Studies
have found that the production of NO in guinea pig knee
cartilage cells is positively correlated with age and the pro-
gression of OA, suggesting that it may be an important fac-
tor leading to mitochondrial dysfunction and calcification
of OA chondrocytes [63, 95]. It can be observed that 12-
20-week-old STR/ort mice have knee joint OA lesions
[96]. The histological changes are mainly manifested as
severe degeneration of the medial articular cartilage, similar
to human OA, and calcification of the subchondral layer.
This kind of mice also showed a marked increase in the
release of local and systemic inflammatory factors, such as
RAGE, AGE, IL-1, and IL-6 [97].

3.1.2. Obesity. Obesity can cause a variety of musculoskeletal
system diseases, especially OA. The entire joint tissue,
especially the synovial tissue, is affected by a high-fat diet.
Obesity has been confirmed to be associated with the devel-
opment of posttraumatic arthritis through a variety of mech-
anisms [98]. The mouse obesity model is usually induced by
a high-fat diet. Louer et al. fed C57BL/6 mice with normal
food (13% fat) and a high-fat diet (60% fat) from 4 weeks
of age. After 16 weeks of age, the medial meniscus (destabi-
lization of the medial meniscus (DMM)) was removed. The
results showed that the serum levels of systemic inflamma-
tory factors and proinflammatory factors increased in the
high-fat group, including IL-12p70, IL-6, TNF-α, and several
other chemokines [99]. STR/ort mice are more prone to
osteoarthritis and hyperlipidemia. Studies confirmed that
STR/ort mice have same symptoms as human hyperlipid-
emia patients, such as high serum total cholesterol, high
serum triglycerides, hyperinsulinemia, and insulin resis-
tance. It is a good model for studying abnormal lipid metab-
olism and OA.

3.1.3. Genetic Factor. With the rapid development of trans-
genic technology, transgenic animal models provide new
options for osteoarthritis research. Animal studies have
found that in the process of OA, knockouting apoptosis-

related genes will ultimately lead to the occurrence of OA.
However, conventional gene knockout methods can easily
cause embryonic death or severe bone deformation. In order
to overcome this defect, conditionally inducible gene knock-
out technology is widely used, such as Bgn-Fbn double gene
knockout mice [100, 101]. Biglycan and fibromodulin are
two small molecular proteoglycans coexpressed in tissues
such as tendon, cartilage, and bone. The double gene knock-
out mice can present heterotopic ossification and OA lesions
similar to STR/ort mice. The genetically modified mice lack
the expression of bone morphogenetic protein (BMP) recep-
tor protein specifically in joints, resulting in the occurrence
of multijoint OA lesions at an early stage. Genetically mod-
ified mouse OA models usually include mice lacking expres-
sion of type II collagen, mice lacking expression of type IX
collagen, MMP13 transgenic mice, and aggrecan knockout
mice [102–104].

Animal models of spontaneous OA formation have sim-
ilar pathogenic characteristics to human OA: the initial stage
and the progression of the disease are more moderate, which
is better than operation animal models. It is worth noting
that due to the slow development of the disease, the early
diagnosis of OA is difficult, and researchers need to pay
attention to the pathological changes.

3.2. Induced Models (Surgery or Injection)

3.2.1. Surgical Induction Models. The biomechanical changes
of weight-bearing joints caused by instability are an impor-
tant reason for OA, which can lead to the degeneration of
articular cartilage cells, degrading the extracellular matrix.
Surgery or man-made trauma causes the joints to lose stabil-
ity and the stress changes on the joint contact surface, induc-
ing the occurrence of OA. This modeling method usually
shows the formation process of OA after trauma.

(1) Anterior Cruciate Ligament Transection (ALCT). This is
the most commonly used method for establishing OA
models in recent years. After the anterior cruciate ligament

Osteoarthritis

Injure and effortObesity

Age Inflammation

Genetic factor Intra-articular injection

Inflammatory
factors

Ligament cut

Figure 2: The etiology of osteoarthritis and the model construction method.
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is cut, the number of cartilage cells in the superficial zone
decreases, swells, and becomes fibrotic [105, 106]. The deg-
radation products of denatured type II collagen are signifi-
cantly increased in the fibrotic area. It was reported that
after cutting the anterior cruciate ligament of the canine
knee joint, the synovial membrane of the canine joint was
thickened, the cartilage surface was eroded and osteophytes
formed [107]. This phenomenon is the same as the patho-
logical changes of natural joint instability caused by the rup-
ture of the anterior cruciate ligament. This kind of model is
simple to operate with less traumatic. It can fully reflect the
pathological process of cartilage degeneration. However, this
method takes a long time to successfully model—at least 6
weeks. Some researchers fix the contralateral limb after the
rabbit anterior cruciate ligament is removed, so that the sur-
gical limb is overloaded, and the time to make the OA model
is shorter [108].

(2) Meniscal Destabilization. The researchers removed part
of the meniscus of the rabbit knee joint, causing the instabil-
ity of the joint. The meniscus resection alone can reduce the
damage caused by the operation, but the modeling time is
correspondingly prolonged. 12 weeks after removal of the
lateral meniscus of the miniature pig’s knees, the number
of chondrocytes and the proteoglycan content decreased,
the number of cells arranged in clusters increased, the thick-
ness of cartilage became thinner, the surface of cartilage
became fibrotic, and the femoral intercondylar notch osteo-
phytes formed [109, 110].

(3) Hulth Model. Under sterile conditions, a longitudinal cut
is made on the inside of the knee joint, the cruciate ligament
and medial collateral ligament are cut off, and the medial
meniscus is completely resected without damaging the artic-
ular cartilage surface. After the operation, the injured limb
was not fixed and moved freely. After experimental animals
underwent the Hulth method surgery, due to joint instabil-
ity, increased friction on the articular surface, and the lack
of cushioning effect of the meniscus, osteoarthritis can easily
occur [111].

(4) Models for Generating Focal Defects. In the OA model
obtained through intra-articular surgery, joint instability is
a factor that promotes the progress of OA. At the same time,
in this type of OA model, the presence of synovial inflamma-
tion leads to joint degeneration,whichwill affect the therapeu-
tic effect of treatment measures for cartilage protection and
repair. An articular focal defect is a good model for observing
the pathology development. Researchers used sharp tools to
scratch the articular cartilage in the weight-bearing area of
the joint, but they did not damage the subchondral bone.
This method would lead to pathological changes in the bone
and joint. The joint focal defect method is an ideal model for
observing the early manifestations and treatment effects of
OA. It is particularly sensitive in observing the therapeutic
effects of cartilage protection and repair [112, 113].

3.2.2. Intra-Articular Injection. Toxic or inflammatory com-
pounds were injected directly into the joint cavity of the

knee joint to induce disease by destroying the extracellular
matrix or articular cartilage cells. This method is simple to
operate, reproducible, and has a short cycle. It is suitable for
OA pathology and antiosteoarthritis drug research. Com-
monly used injections to induce osteoarthritis include papain,
collagenase, and monosodium iodoacetate. Researchers have
found that collagenase can cause cartilage destruction and
joint tissue inflammation in rabbit knee joints in the early
stage and articular cartilage degradation in the late stage
[114]. The glycolysis inhibitor monosodium iodoacetate
(MIA) was injected into the knee joints ofWistar rats. Within
1 week, chondrocytes became degenerated and necrotic, and
full-thickness changes of cartilage could also appear in the
tibia and femoral condyles. MIA injection-induced osteoar-
thritis is currently the most commonly used pharmaceutical
preparation [115]. Vitamin A, hyaluronidase, cartilage frag-
ments or foreign bodies, adrenal cortex hormones, etc.
injected into the joint cavity of animals can also cause articu-
lar cartilage degeneration and form an OA model [116, 117].

3.2.3. Joint Brake Modeling Method. The composition, struc-
ture, and function of articular cartilage can be maintained
only by ensuring the normal movement and function of
the joints. Fixing limbs to break the joints can induce artic-
ular cartilage atrophy, resulting in cartilage thinning, edema,
and decreased proteoglycan content [118]. Because these
cartilage changes are similar to the pathological changes of
human OA, this model is especially used for the study of car-
tilage degeneration. However, the use of this model has
gradually decreased in the research on the differences in
the basic morphology of cartilage. In the cartilage of OA,
chondrocytes proliferate focally in cell clusters or cell nests,
which are usually active at the later stage of OA. In the
fixed-joint model, chondrocytes have no such changes.
However, cell clusters often become necrotic, especially
when the splint is firmly fixed without any movement. This
change in cartilage may be caused by the lack of nutrients in
cartilage cells. Moreover, if the immobilized limbs are
allowed to move in a small range, the range of cartilage
degeneration will be significantly reduced [119, 120]. In
Table 2, we compare the characteristics of several osteoar-
thritis models.

4. Classification of Nanoparticle-Based Drug
Delivery System

Nanomaterials have a close relationship with biological bod-
ies in terms of size. For example, the ribonucleic acid protein
complex, one of the elements of life, has a linearity between
15 and 20nm. Nanobiomedical materials are the intersection
of nanomaterials and biomedical materials. Nanoparticles
and other materials are combined to make various compos-
ite materials. With the further deepening of research, nano-
materials have begun to penetrate into many disciplines,
showing great potential application value. In recent years,
the exuberant development of nanotechnology in drug deliv-
ery systems has spawned new methods for treating OA. This
section describes the current development and new applica-
tions of NP-based drug delivery for the treatment of OA,
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including liposomes, micelles, polymeric nanoparticles, exo-
somes, and inorganic nanoparticles [121].

4.1. Exosome. Exosomes are membrane vesicles with a diam-
eter from 30 to 150nm, reflecting complex molecular pro-
cesses that occur in parent cells. Exosomes, as endogenous
drugs, have diagnostic, drug delivery, and targeted therapy
capabilities by transporting nucleic acids (DNA, mRNA,
microRNA, and lncRNA), biologically active lipids, and pro-
teins [122]. Exosomes do not require the same harsh storage
conditions as seed cells, but can perform functions similar to
seed cells. Therefore, it is more suitable for treatment and
delivering active substances [123, 124].

Exosomes used to treat OA are principally derived from
MSCs. Recent studies have shown that exosomal miRNA
and lncRNA play a key role in anti-OA. It remains a major
challenge to deliver a drug through the dense cartilage
matrix. Liang et al. use lysosomal-membrane glycoprotein
to fuse chondrocyte active peptide (CAP) on the surface of
chondrocyte-derived exosomes. In vivo studies have shown
that the delivery of miR-140 based on CAP exosomes signif-
icantly reduces the development of OA in a rat model by IA
injection [37]. Several recent studies have shown that
miRNA may participate in the regulation of several signals
such as the SIRT1/p53 pathway, the Wnt/-catenin pathway,
and the NF-κB pathway, thereby regulating the expression of
genes involved in the decomposition and anabolism of OA.
By delivering miRNA, exosomes can inhibit the production
of proteolytic enzymes and proinflammatory cytokines
(e.g., IL-1, IL-6, and TNF-α) to affect the treatment of OA
[125, 126].

Natural exosomes have their own therapeutic agents
and can be used for drug delivery. However, the number
of exosomes released by cells is uncertain due to the lack
of clinical research. Obtaining a sufficient number of exo-
somes for in vivo research is a technical challenge. In order
to increase the production of exosomes, some studies are
exploring the use of three-dimensional spheres or tetrahe-
drons to transport therapeutic substances. With the elucida-
tion of exosomal mechanism and the maturity of exosomal
manufacturing technology, it will create a new field of OA
treatment [127].

4.2. Liposome. The liposome is an artificial membrane.
When the hydrophilic head of the phospholipid molecule
is inserted into the water, the hydrophobic tail of the lipo-
some extends to the air. After agitation, a spherical liposome
with a double layer of lipid molecules is formed, with a
diameter ranging from 25 to 1000 nm [13]. Liposomes can
be used for genetically modified or prepared medicines.
The liposomes can fuse with the cell membrane to deliver
the medicines into the cell. Liposomes are the first nanodrug
carrier approved by the FDA, deemed to be the most ideal
drug delivery vehicle. Liposome formulations have been
extensively tested as drug delivery vehicles in OA, not only
because of their ability to carry hydrophobic and hydrophilic
drugs but also because of their excellent biocompatibility.

Adenosine is a key autocrine cytokine for maintaining
cartilage homeostasis. The A2A receptor is a kind of recep-
tor for adenosine. Researchers encapsulated adenosine and
A2A receptor agonists in liposomes, and then they injected
the liposomes to prevent the OA progression of obesity-

Table 2: Classification and characteristics of osteoarthritis animal models.

Spontaneous models Surgical induction models Intra-articular injection models

Principle of
the
experiment

The cause of OA is related to certain
genetic mutations

OA spontaneously occurs with age
Genetically modified animals

constructed using transgenic or gene
knockout technologies can also

spontaneously form OA

Using surgery to cause disease in the
joint cavity to produce OA

Injecting toxic or inflammatory
compounds directly into the joint cavity
of the joint to induce disease by
destroying extracellular matrix or
articular cartilage cells

Types of
commonly
used models

Male Hartly guinea pig, STR/ort mice,
Bgn-Fbn double gene knockout mice,

Cre-Gdf5/Bmpr1a floxP mice

The Hulth method, anterior cruciate
ligament transection (ACLT), partial or
full meniscus resection, medial
meniscus tear, joint mark method

Types of drugs: chemicals, enzymes, and
hormones
Common injection drugs: MIA,
collagenase, papain, etc.

Advantage
Animal models of spontaneous OA have
similar pathogenic characteristics to

humans

Using aseptic technique to induce, the
results are highly reproducible and the
modeling experiments are shorter

(1) The molding speed is fast
(2) The pathological changes of cartilage
in the end-stage OA can be observed in
a short time
(3) Less traumatic and easy to operate

Disadvantage

Early diagnosis of OA is difficult. The
research time is long. The model may be
restricted by environmental factors,

ethical conditions, and high economic
cost

(1) The trauma is large, and
postoperative infection is prone to
occur
(2) Traumatic arthritis and synovial
inflammation may occur during the
operation, which may affect the
experimental results

It is difficult to have a certain standard
for drug dosage. Different animals have
different doses of drugs injected.
Therefore, a poor grasp of the drug
dosage will cause errors in experiments
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induced mouse and rat posttraumatic OA [128]. Recent
studies have shown that rapamycin encapsulated in lipo-
somes has a notable anti-inflammatory effect in the sponta-
neous OA model [129].

4.3. Micelle. Micelle refers to the orderly aggregates of mole-
cules that begin to form in large quantities after the surfac-
tant concentration in an aqueous solution reaches the
critical micelle concentration (CMC). In micelles, the hydro-
phobic groups of surfactant molecules aggregate to form the
inner core of the micelle, and the hydrophilic polar groups
form the outer layer of the micelle. Micelles can also be taken
up by cells by binding to ligands, antibodies, or peptides.
Because of its low CMC, polymer micelles have a longer
cycle time and are more stable, so they are the most widely
used in drug delivery systems [130, 131].

A study has reported that overexpression of the SOX9
transcription factor by using polymer micelles as a carrier
can readjust the metabolic balance in OA. In the presence
of inflammatory factors IL-1β and TNF-α, micellar-guided
rAAV-sox9 increases the level of extracellular cartilage
matrix (ECM) deposition and chondrocyte survival [15].

4.4. Inorganic Nanoparticles. Inorganic nanoparticles (INPs)
are synthesized from inorganic particles and biodegradable
polycations. Typical inorganic nanoparticles include metal,
metal oxides, and carbon materials (such as fullerenes, nano-
tubes, and fibers) and magnetic nanoparticles composed of
superparamagnetic iron oxide nanoparticles (SPION). The
more commonly used is mesoporous silica nanoparticles
(MSN), which have the characteristics of uniform pores, easy
functionalization, biocompatibility, high specific surface
area, large pore volume, and biodegradability. In order to

improve the gene loading efficiency and cell absorption effi-
ciency of MSN, its surface or inner pore will be coated with a
cationic polymer [132, 133].

The researchers prepared mesoporous silica nanoparti-
cles (MSN) and used them as an encapsulant for colchicine.
The free colchicine or encapsulated drug is then embedded
in the self-healing hydrogel. Treatment studies of this drug
delivery in a rat osteoarthritis model induced by monoio-
doacetic acid (MIA) have shown that nanoparticle/hydrogel
patches have an effective and safe therapeutic potential for
OA [21]. Oxidative stress is caused by the accumulation of
reactive oxygen and nitrogen substances (ROS and RNS) in
the cell microenvironment. These ROS and RNS can destroy
the cell structure, leading to cell apoptosis and senescence.
Researchers use the layer-by-layer (LbL) method to manu-
facture polymer microcapsules that encapsulate manganese
dioxide nanoparticles to exert antioxidant effects [36].

4.5. Polymer Nanoparticles. Cationic polymers have become
another major type of nonviral gene delivery vehicle due to
their ease of synthesis and flexibility. For example, synthetic
or natural siRNA nanopolymers are colloidal solid materials
that are specifically designed to degrade in the body without
producing toxic components. Polymers can be combined
with nucleic acids to form multimeric complexes at physio-
logical pH to facilitate gene delivery. Generally, polymer
nanoparticles have positively charged units to promote elec-
trostatic binding with nucleic acids [134]. However, by using
a degradable linker (such as a disulfide bond or a sulfhydryl-
maleimide bond), the covalent linkage of the nucleic acid
and the polymer can also be achieved. Representatives in this
category are synthetic polymers, such as poly-L-lysine, poly-
L-ornithine, linear and branched polyethyleneimine (PEI),

Liposome

Micelle

Exosome

Polymer NPs Inorganic NPs

Nanodelivery
system

Cartilage homeostasis

Synovial inflammation

Subchondral bone remodeling

Figure 3: Classification and function of a nanoparticle-based drug delivery system.
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diethylaminoethyl-dextran, polyamide-amine dendrimer
(PAMAM), and polydimethylaminoethyl methacrylate
(PDMAEMA). In addition, natural polymers, such as chito-
san (CS), dextran and gelatin, and complex synthetic sub-
stances are currently under study [135, 136].

Studies have reported that polylactic-co-glycolic acid
(PLGA), loaded with p66shc-siRNA, was injected into the
knee joint of rats to inhibit the expression of p66shc and
relief the pain, cartilage damage, and inflammatory cytokine
production induced by sodium iodoacetate (MIA) [33].
Researchers designed the nanocomposite 4-arm-poly(ethyl-
ene glycol)-maleimide (PEG-4 MAL) microgels. This kind
of gel presents the effect of joint tuberculosis peptide and
overcomes the adverse effects caused by the gel after rapid
clearance. The gel can stay in the joint space for at least 3
weeks without causing any joint-degenerative changes [26].
In Figure 3, we show the classification and functions of five
NP-based drug delivery systems.

5. Conclusion and Prospects

Although the NP-based drug delivery system shows signifi-
cant targeting ability in OA treatment, there are still some
shortcomings in clinical application. We have listed the
characteristics of different NP-based drug delivery systems
in Table 3. PNP particles, such as PLGA, have been wildly
used because of the diverse forms. However, due to immune
rejection, it may cause a new inflammatory response in vivo.
Polymer nanoparticles modified by HA, chitosan, or other
materials are a new direction to improve the biocompatibil-
ity of nanomaterials [137]. On the contrary, as an endoge-
nous substance, exosomes have good biocompatibility, but
the purification methods and the extremely low yield hinder
its further development. Significantly improving the yield of
exosomes is an important direction for future exosome
research [123]. Although liposome-based drug delivery sys-
tems have been extensively studied, they are not the best
choice for hydrophilic drugs. For inorganic nanoparticles,
the extremely low targeting and instability limit their further
applications.

Current clinical treatments for OA are only to delay
the symptom of the disease, relieve pain, and improve motor
function [7]. There is still a major challenge in nanoparticle-
based drug delivery systems for OA treatment. In addition to

the common problems of treatment drugs in the body
(immune response, ethical challenges, and biocompatibility
issues), there is a fact that needs to be overcome: “resident
chondrocytes cannot secrete matrix with the same character-
istics as those formed during development [138].” The ulti-
mate goal of NP-based drug delivery systems is the
complete regeneration of the limbs, which requires “forming
multiple types of tissues at the same time and assembling
these into complex organ systems.” As explained in this
review, NP-based drug delivery systems are promising for
the treatment of OA [139].

Although this article outlines the developments of NP-
based drug delivery systems, there are still many challenges
ahead: (1) Various nanomaterials need to be combined to
produce an effective therapeutic delivery system. For exam-
ple, the use of nanoscaffold materials loaded with cytokines
can induce chondrocyte production while restoring cartilage
defects. (2) Nanomaterials can be studied to deliver drugs to
other joint tissues, including fat pads, ligaments, and menis-
cus, all of which contribute to the research of OA treatment.
(3) NP-based drug delivery systems can be engineered by
modifying liposome membranes to improve the targeting
ability. NP-based drug delivery systems are one of the most
promising methods in the field of tissue and organ repair.
By improving new strategies and technologies, regenerative
tissue engineering will eventually be able to deal with more
complex tissue systems, organs, and limbs. The drug delivery
system based on NPs may continue to push us to adopt a
comprehensive treatment strategy and contribute to the
treatment of OA.
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Nanoparticles play a vital role in bone tissue repair engineering, especially iron oxide nanoparticles (IONPs), which have magnetic
properties, semiconductor properties, and nontoxicity at the same time, and their applications in biomedicine have received
widespread attention. This review summarizes the excellent performance of IONPs in enhancing scaffold functions, promoting
stem cell differentiation, and labeling positioning, in order to understand the research progress and future development trends of
IONPs in bone tissue repair engineering, as well as the security issues. Firstly, IONPs can affect the expression of genes and
proteins to accelerate the process of biomineralization under a magnetic field. Then, the composite of IONPs and polymers can
synthesize a scaffold which can promote the attachment, proliferation, and bone differentiation of stem cells. Furthermore, IONPs
can also mark the location of drugs in the body to follow up the process of bone repair. Therefore, extensive research on the
manufacturing and application range of IONPs is of great significance to bone tissue repair engineering.

1. Introduction

As we all know, physical stimulation enhances the bone
rebuilding capacity significantly, including stretching, com-
pression, fluid shear stress, and heat [1, 2]. Additionally, the
magnetic stimulation of static magnetic fields (SMFs) and
electromagnetic fields (EMFs) also improve the bone rebuild-
ing capacity greatly [3, 4]. So, the application of MNPs as an
intermediate medium has received extensive attention in
medical research, such as targeted drug delivery, magnetic
resonance imaging (MRI), local tissue hyperthermia, tumor
treatment, bioseparation, and biosensing [5], and compared
to other materials, MNPs have lower production cost, more
stable physical and chemical properties, and better biocom-
patibility [6].

Magnetic particles are slowly deposited on the surface of
the cell membrane under the action of a magnetic field and
are endocytosed by the cell. After the magnetic particles
enter the cell, it is easier to affect the physiological function
of the cell [7, 8]. If a magnetic field is applied, each magnetic
particle will become a magnetic source, so that the magnetic
scaffold material can play the role of bone tissue repair treat-
ment. Once magnetic particles are exposed to an external
magnetic field, they will be rapidly magnetized. Magnetic
particles and magnetic fields work together to improve the
effectiveness of bone tissue repair [9, 10]. MNPs can be syn-
thesized through different techniques including coprecipita-
tion [11], microemulsion [12], hydrothermal synthesis [13],
sol-gel process [14], polyol synthesis [15], flow injection
[16], sonolysis/sonochemical method [17], microwave
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irradiation [18], electrochemical synthesis [19], solvother-
mal method [20], chemical vapor deposition [21], laser
pyrolysis [22], green synthesis [23], and using biomass or
biological templates.

Scaffolds used to reconstruct an injured bone must have
sufficient mechanical strength to carry the load. Therefore,
other types of scaffold materials, such as ceramics and biode-
gradable polymers, are usually not suitable for bone tissue
engineering. Porous metals and alloy materials may be used
as alternative scaffolds to promote new bone formation.
However, other metal particles may release toxic substances
and cause tissue pollution [24], and the issues can be over-
come by using biodegradable metal materials such as irons
and their alloys. In view of the advantages of IONPs, some
researchers have incorporated Fe3O4 nanoparticles into tis-
sue engineering biomaterials [25–27]. For example, Pan
et al. [28] prepared Fe3O4/polylactide composites with extru-
sion process, and they found that the composites containing
IONPs had no cytotoxic effect on fibroblasts and enhanced
osteogenesis in vitro experiments. Ge et al. [29] prepared a
magnetic scaffold containing Fe3O4/chitosan, which has high
biocompatibility to C2C12 cells. Similarly, De Santis et al.
designed a magnetic scaffold for bone tissue combining PCL
and Fe3O4 with different ratios. The results showed that the
nanoparticles mechanically enhanced the PCL matrix; the
elastic modulus and maximum stress increased by about
10% and 30%, respectively [30]. Thus, IONPs are expected
to provide a strategy for bone repair. IONPs improve the three
key factors of bone regeneration including stem cells, scaffolds,
and growth factors via magnetic fields. Among the factors,
magnetic cells’ strategies contain cell labeling, targeting, and
genetic modification. Magnetic scaffolds can enhance cell dif-
ferentiation through magnetic-mechanical simulation [31].
And IONPs can also be used as delivery media for growth fac-
tors, drugs, and gene [32, 33].

2. Synthesis and Application of IONPs in Bone
Tissue Engineering

2.1. Synthesis Method of IONPs. The preparation method has
developed well due to its application value, and various
element compositions have been used in magnetic nanoma-
terials, including Fe3O4, Fe, Co, Ni, MgFe2O4, and CoFe2O4
[34–37]. The most common component of magnetic nano-
materials is Fe3O4, and the preparation methods of magnetic
Fe3O4 mainly include dry and wet methods [38, 39]. Among
them, the wet method is more commonly used and mainly
includes the following technologies: hydrothermal method,
solution thermal method, chemical coprecipitation method,
ball milling method, sol-gel method, and atomic layer depo-
sition method. The advantages and disadvantages of each
preparation method are summarized (see Table 1).

2.2. Application of IONPs in the Function of Scaffold

2.2.1. Scaffold Material Type. Guiding and controlling the
delivery of bioactive drugs to bone injuries has always been
a hot research area. The design of the delivery platform plays
a vital role in the treatment of bone diseases and the activa-

tion of bone regeneration, because they can provide a suit-
able environment for the cell adhesion and growth and, at
the same time, provide a valuable platform for delivery strat-
egies [64]. The nanostructured materials used in the platform
have the characteristics of biocompatibility, nontoxicity, and
noncarcinogenicity. Several common nanomaterials for the
attachment platform of IONPs are exhibited (see Table 2).
Nanomaterials can be divided into organic materials and
inorganic materials. Organic materials are a combination of
the few lightest elements, especially hydrogen, nitrogen, and
oxygen, as well as carbon-containing compounds located in
organisms. Organic materials include lipids, liposomes, den-
drimers, and polymers, including chitosan, gelatin, and colla-
gen [65]. And inorganic materials refer to materials lacking
carbon, which are widely used in in vivo and in vitro biomed-
ical research [66].

IONPs with superparamagnetic properties have a high
specific surface energy and are prone to agglomeration.
Polymers, which can improve the stability of nanoparticle dis-
persion in water, are often used as wrapping materials on the
surface of particles formatting shell-core structure. In addi-
tion, polymer-encapsulated magnetic nanoparticles have the
characteristics of strong surface modification and easy modifi-
cation or functionalization, which greatly broaden the applica-
tion fields of magnetic materials. Polymers frequently used to
encapsulate magnetic nanoparticles including proteins, den-
drimers, liposomes, chitosan, glucose, starch, polyethylene
glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone,
and polyglyceryl acrylate (PGA). Among them, PEG is used
for drug slow-release system because of its electrical neutrality,
water solubility, low toxicity, and nonimmunogenic proper-
ties. Glycopolymers are often used in medical imaging studies
to improve the diagnosis of diseased tissues such as tumors.
PGA/PGMA is also a good class of polymers that has a stron-
ger ability to bind to IONPs, greatly improving the stability of
the particles. In addition, human-made biodegradable poly-
mers are widely used as tissue engineering scaffold materials
because they can be degraded to small molecules in vivo and
excreted through the body metabolism. And they have good
histocompatibility, mechanical properties, and controllable
degradation rate.

There are many ways to synthesize IONP composite
scaffolds, and the manufacturing process and the shortcom-
ings shown are also different (see Table 3).

Among these methods, electrostatic spinning technology
has become an important process for producing scaffolds
due to its modulable properties and simplicity. The basic
method of high-voltage electrostatic spinning technology is
to apply a voltage of tens of thousands of volts between the
jetting device and the receiving device, forming an electro-
static field. As the spinning fluid drips out of the jet, a jet
is formed at the cone end of the droplet and is stretched in
the electric field. The final result is the formation of long,
irregular fibers on the receiving device, with fiber diameters
typically in the tens to hundreds of the nanometer range.
From the above description of the electrospinning principle,
we find that the shape of the electrospun filament can be reg-
ulated by several parameters. These parameters include the
viscosity and concentration of the spinning solution, the
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conductivity, the charge concentration of the solution, the
electric field strength/voltage surface tension, the distance
between the needle and the collecting screen, the design
and placement of the needle tip, and the composition and
geometry of the collecting screen. Of course, there are other
factors like ambient constant, dipole moment, dielectric
constant, and surface tension that also affect high-voltage
electrostatic spinning.

2.2.2. IONPs Enhance Scaffold Function. Artificial bone
transplantation has been extensively studied for bone repair
due to less immune rejection and low disease transmission
ability [102, 103]. Bone morphogenetic proteins and trans-
formation factors are usually incorporated into artificial
scaffolds to improve cell viability. However, there is still a
phenomenon of slow cell binding. If magnetic field stimula-
tion activates more receptors on the cell surface and further
activates related signal pathway, the cell activity will be
enhanced [104, 105]. Magnetic scaffolds can attract growth
factors and stem cells to migrate in the body through mag-
netic drive and promote bone repair and regeneration
[106]. In addition, magnetic field stimulation can promote
the integration of the scaffold with the host bone and
increase calcium content and new bone density, thereby
accelerating bone healing [107–109]. At present, the role of
magnetic scaffold in promoting cell proliferation and new
bone tissue growth has been confirmed [110]. The magnetic
scaffold has a wide range of components including biological
macromolecules, synthetic polymers, polyethylene glycol,
and inorganic materials [111–115].

Liu et al. [116] fabricated a magnetic coating composed
of Fe3O4 nanoparticles and polyamine on the surface of
the scaffold, thereby enhancing the cell attachment, prolifer-
ation, and bone differentiation of mesenchymal stem cell
(MSC) in vitro, and forming new bones at the defect of the
rabbit femur. It is found that the magnetic Fe3O4/PDA coat-
ing is related to strengthening the regulation signal pathway
by protein analysis. Shuai et al. [117] constructed a magnetic
microenvironment by selectively sintering Fe3O4 magnetic
nanoparticles on the PLLA/PGA scaffold. Each nanoparticle

in the environment provides a nanometer-scale magnetic
field to activate the cell response. The in vitro results show
that the magnetic scaffold not only stimulates cell adhesion
and activity but also improves the rate of growth and alka-
line phosphatase activity (see Figure 1). Yang et al. [118]
used calcium phosphate cement (CPC) and IONPs to pre-
pare a new type of scaffold and explored the effect of the
new composite material on the formation and bone forma-
tion of human dental pulp stem cells (hDPSC). They found
that the addition of IONPs greatly promote the bone
formation of hDPSC, enhanced mechanical strength and cell
activity, and increased the expression of bone marker genes
by 1.5-2 times.

Quite a few studies have shown that IONPs have a
significant effect on the function of the scaffold. In fact, the
3D platform with IONPs shows tighter cell-to-cell connec-
tions, and highly developed filamentous protrusions
(increased number and extension length) enhance the inter-
action between cells and the platform. The distribution of
nanoparticles on the surface of the 3D scaffold increased
the surface area of the scaffold, enhanced the mechanical sig-
nal transduction of cells, and stabilized the cell’s anchoring
to the matrix, thus promoting the cell adhesion process.
Adding IONPs to the 3D scaffold significantly increases
the expression of the osteogenic transcription factor RUNX2
and its two downstream factors. IONPs may promote bone
formation through different mechanisms, but they rely more
on magnetic genetic responses that activate intracellular
magnetic receptors and generate endogenous magnetic fields
to promote bone formation even in the absence of external
magnetic fields [119].

When nanoparticles are absorbed on the surface of the tis-
sue scaffold, they are in direct contact with the cells and may
have unknown effects on the cells through ingestion. Hsin-Yi
Lin et al. discussed how to use a three-dimensional printing
device to make a chitosan hydrogel scaffold and embed nano-
particles in the hydrogel, so that the surrounding cells do not
directly contact the nanoparticles. Some studies have shown
that the coupling force induced by the magnetic chitosan scaf-
fold promotes the growth and mineralization of bone cells.

Table 1: Synthesis method of IONPs.

Method Advantage Disadvantage Reference

Organic based High particle dispersion Unruly IONPs’ appearance [40–42]

Hydrothermal/solvothermal
Simple operation

High reaction efficiency
Suitable for wider temperature range

Hard to replicate metastable phase and
nanomorphology in other ways

[43–47]

Coprecipitation
Simple operation

High-yield
Poor controllability of its particle size

and distribution
[48–51]

Ball milling Granularity reproducibility

IONP aggregation
Expensive
Long cycle

Hard to realize industrial production

[52–55]

Sol-gel
Small particle size
Good dispersion

Expensive
Long duration

Easy to shrink during drying
[56–60]

Atomic layer deposition
Accurate thickness control

Good uniformity
Slow deposition rate [61–63]
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Under the action of inductively coupled magnetic force, the
signal transduction in bone cells is achieved through the
release of intracellular Ca+. This leads to an increase in cyto-
plasmic Ca ions and an increase in cytoskeletal calmodulin.
The increase in cytoplasmic calcium in bone cells will cause
cellular bones to shrink. Calcium-dependent contraction pro-
motes the release of extracellular vesicles. These extracellular
vesicles contain key bone regulatory proteins, including cellu-

lar skeletal calmodulin. Calmodulin is a calcium-sensing pro-
tein that is involved in signal pathways that regulate many key
processes in bone cells, such as growth, cell division, and
movement (see Figure 2).

In addition to its outstanding performance in promoting
cell proliferation and osteogenic differentiation, the excellent
mechanical strength of the magnetic scaffold also deserves
our attention. For example, Ghorbani et al. investigated the

Table 2: Types of materials for the attachment platform of IONPs.

Types of
nanomaterials

Description
Size
(nm)

Applications Reference

Lipid Small hydrophobic or amphiphilic molecules <100
Nanocarriers for anticancer

Drug doxorubicin
Osteoblastic bone formation

Osteoporosis treatment

[67–70]

Liposome
Same bilayer structure as the skin cell membrane structure

and excellent moisturizing effect on the skin
>25

High encapsulation of
hydrophilic
Drug delivery

Growth factor delivery
Therapeutic gene delivery

Used as a template

[71–73]

Dendrimers Organic molecules with dendritic structure <10 Multidrug delivery system
[71, 74,
75]

Chitosan A natural nontoxic linear biopolymer 20-200

Scaffolds
Drug delivery

Support chondrocyte adhesion
Implant coating

Osteogenic differentiation

[76–80]

Collagen
The main structural protein of soft and hard tissues

in living organisms
—

Drug delivery
Scaffolds

[81]

Gelatin Derivatives of collagen <200
Scaffolds

Drug-loaded gelatin
nanoparticles

Promote cell growth

[82, 83]

PLGA A degradable functional polymer organic compound 100-250

Drug delivery
Scaffolds

Nanostructured film
Enhanced cell attachment and

growth
Promote gene expression

[84–87]

Carbon nanotubes
With cylindrical or tapered structure of different

diameters and lengths
20-100

Drug delivery
Biosensing
Scaffolds

[88–91]

Table 3: Synthesis method of IONP composite scaffolds.

Synthesis method Advantages Disadvantages Reference

Traditional method
(physical adsorption)

Simple, cheap, stable performance
Lack of control measures for magnetic

field gradients
[92, 93]

IONPs mixed with other
ingredients

Stable performance, excellent mechanical properties
Difficult to control the surface
characteristics of the bracket

[94–97]

Electrospinning
Easy to operate, easy to control the surface

characteristics of the bracket
Low output and low strength [98–100]

3D printing
Good stability, good three-dimensional structure,

high efficiency
Expensive, material limitations [101]
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effect of IONPs on the scaffold structure. Compared with
scaffolds without IONPs, scaffolds with IONPs reduced the
pore size, thus improving the mechanical strength of the
scaffold, but the absorption capacity and biodegradation
ratio were reduced [121]. Similar to Ghorbani et al.’s study,
Kim et al. also found that the mechanical stiffness of the
PCL scaffold increased significantly with the addition of
IONPs. The initial adhesion of cells to the magnetic scaffold
was substantially increased by 1.4-fold compared to the pure
PCL scaffold [122]. Wang et al. fabricated borosilicate bioac-
tive glass scaffolds loaded with different amounts (5-15wt%)

of Fe3O4 nanoparticles and evaluated their performance
in vitro and in vivo. They found that the Fe3O4 content
was proportional to the compressive strength of the scaffold,
and the compressive strength of the scaffolds increased with
increasing content of IONPs, from 2:6 ± 0:6MPa for the BG
scaffolds to 3:6 ± 0:6MPa for the scaffolds loaded with
15wt% Fe3O4 [123]. In the meantime, that scaffold has the
largest magnetic saturation and highest temperature of
aqueous suspension.

These findings suggest that the scaffold with IONPs has
excellent physicochemical, magnetic, mechanical, and biological

PLLA PGA Fe3O4 

Alcohol dispersing Alcohol dispersing Ultrasonic dispersing Ball milling 

Composite powders Laser sintering 

MNPs

3D scaffold
model 

Bone-scaffold
model 

Cells

Figure 1: Schematic of the magnetic scaffold preparation process. Reproduced with permission from [117].
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Figure 2: (a, b) Cell surface morphology and osteogenic differentiation with and without the inductive coupling magnetic force for 7, 14,
and 21 days. (a) The morphology of osteoblast cells on the chitosan hydrogel scaffolds. (b) Osteoblast cell proliferation and
differentiation. Reproduced with permission from [120].
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properties, supporting the potential application of magnetic
scaffolds for bone repair and regeneration.

2.2.3. IONPs Promote Stem Cell Differentiation. In addition
to scaffolds, stem cells are another vital factor in tissue
regeneration. In recent years, although stem cell therapy
has provided a strategy for large-scale bone repair and has
been successful in the treatment of animal bone defect
models, these traditional stem cell transplants have not
achieved the desired effect [124]. With the development of
materials science and chemical biology, people have been
trying to use IONPs as a tool for research and control of
stem cells for many years [125]. By combining IONPs with
an external magnetic field, it will affect the cell adhesion,
proliferation, movement and distribution, and osteogenic
differentiation of stem cells. In addition, IONPs can be used
to label cells for in vivo tracking and monitoring.

MSCs are a key participant in bone regeneration, and
promoting the differentiation of MSCs is an important basis
for evaluating the performance of nanoparticles. The combi-
nation of different polymers and IONPs greatly promote the
differentiation of MSCs. Jia et al. [126] synthesized medium-
porous silicon-coated magnetic Fe3O4 nanoparticles and
evaluated their potential to accelerate bone regeneration in
a rat osteoporosis model. After X-ray imaging, micro-CT,
mechanical testing, histological examination, and immuno-
chemical analysis, local injection of MNPs significantly
accelerated bone regeneration. Yang et al. [127] transplanted
kartogenin (KGN), which can promote the differentiation of

bone marrow-derived mesenchymal stem cells into chon-
drocytes, onto a modified magnetic oxide surface, and then
integrated into the cellulose nanocrystalline hydrogel.
Release and recruit endogenous host cells and differentiate
BMSCs into chondrocytes, thereby achieving original carti-
lage regeneration. The regenerated cartilage tissue is very
similar to a natural cartilage. This innovative diagnosis and
treatment system improve the convenience and effectiveness
of cartilage regeneration (see Figure 3).

Xu et al. [128] prepared hollow IONPs, HMFN, which is
of spherical shape with a diameter of about 320 nanometers.
It has a negative charge on the surface and has huge super-
negative magnetic properties. The -OH bond in it improves
the affinity of nanoparticles. For water and biocompatibility,
as a result, it was found that electromagnetic fields can use
intracellular supersuspended magnetic nanoparticles to
manipulate the bone differentiation of BMSCs.

In addition, human dental pulp stem cells (hDPSCs) also
provide great potential for research of bone tissue engineer-
ing. Their advantages include easy isolation, nonimmuno-
genicity, strong proliferation, and differentiation ability,
similar to bone marrow stem cells (BMSCs) [129]. The
osteogenic differentiation ability of hDPSCs has been fully
confirmed by previous studies, which is manifested by
increased ALP activity [130] and increased expression of
bone-specific markers [131, 132]. The WNT/β-catenin
signaling pathway plays an important role in osteogenesis.
Previous studies have shown that by activating the SMAD
pathway or interacting with the WNT pathway to upregulate
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osteogenic genes, IONPs can promote stem cells by upregu-
lating BMP2, which plays a key role in bone morphogenesis.
They added hydrophilic IONP solution to CPC powder to
prepare IONP-CPC scaffolds and explored the effect of
new composite materials on the formation of bone matrix
and osteogenic differentiation of hDPSCs. As the ionosphere
content increases, the color of the scaffold turns darker, and
the surface of the scaffold forms agglomerates, which signifi-
cantly enhances the adsorption of proteins. Through the anal-
ysis of the WNT pathway, it was found that CPC+IONPs can
significantly enhance the expression of β-catenin protein,
proving its important role in the osteogenic differentiation of
stem cells (see Figure 4) [118]. In fact, another study also
confirmed that IONPs can activate the BMP/SMAD path-
way [133].

2.2.4. Marking and Positioning of IONPs. Cell migration, dis-
tribution, survival, and differentiation play a crucial role in
therapeutic efficacy [134]. We understand that these param-
eters can optimize cell selection, administration route, and
therapeutic dose and provide cell-based therapy for specific
clinical applications. To solve this problem, researchers have
been looking for tools that allow real-time, quantitative, and
long-term monitoring of cell behavior in the body. This phe-
nomenon is called cell tracking. IONPs are used as an NMR
contrast agent for cell tracking [135].

Because the healing potential of the articular cartilage is
limited, the treatment of osteoporotic defects continues to
pose a major challenge to patients and orthopedic surgeons.
MSCs have a therapeutic potential for the treatment of oste-
oporotic pain and pathology. However, it is necessary to use
appropriate stem cell labels and imaging agents to decipher
its role after transplantation. Silva et al. [136] incubated
MSCs with magnetic nanoparticles and used external mag-
netic fields to guide magnetized MSCs in vitro and enhanced

their retention in the lungs in vivo. The results showed that
MT improved MSC translocation and expression of chemi-
cal hormone receptor. Shelat et al. [137] evaluated the effi-
cacy of bone marrow-derived mesenchymal stem cells
(BMSCs) for the treatment of osteoporosis defects in rats
and used L-lysine functionalized IONPs (lys-IONPs) to treat
stem cells. In vivo monitoring showed that the particles can
be used as long-term stem cell markers and imaging agents.
Yao et al. [138] used amine-modified silicon-coated nano-
particles to label bone marrow-derived mesenchymal stem
cells and then evaluated the stem cell potential. The study
found that after labeling, the viability of BM-MSC remained
good and the migration ability was enhanced and had no
effect on bone production and adipogenesis, which means
that this kind of nanoparticles can not only serve as an ideal
tracking marker but also become an accelerator for stem cell
positioning during tissue repair (see Figure 5). In addition,
scholars have also discovered the advantages of magnetic
IONPs as markers in the treatment of diseases such as ische-
mic heart disease and pulmonary fibrosis [139, 140].

2.2.5. Security Issues of IONPs. IONPs are among the most
versatile and safe nanoparticles for a variety of biomedical
applications. The dramatic increase in the use of nanoparti-
cles in research, industry, and medicine raises many
questions about potential toxicity [141], since the nanoscale
properties can potentially induce cytotoxicity by impairing
the functions of mitochondria, nucleus, and DNA [141–
143]. It is well known that excess reactive oxygen species
(ROS), including superoxide anions, hydroxyl radicals, and
nonradical hydrogen peroxide, can be toxic intracellularly
and in vivo [141, 144, 145]. The ROS can be generated from
the leaching of iron ions from the surface degradation by
enzymatic degradation. Furthermore, ROS can react with
macromolecules and damage cells by peroxidizing lipids,
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Nucleus

Enhanced osteogenic differentiation
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Figure 4: WNT signaling pathway promotes osteoblast differentiation.
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changing proteins, disrupting DNA, interfering with signal-
ing functions, modulating gene transcription, and finally
causing cell death either by apoptosis or necrosis. Another
mechanism by which IONPs can induce toxicity is via iron
overload. Since IONPs require magnetic targeting to specific
tissues [146], high concentrations of free iron ions may lead
to abnormal cellular responses including cytotoxicity, oxida-
tive stress, epigenetic events, inflammation, and DNA dam-
age that may trigger carcinogenesis or have significant effects
on offspring [142, 147–150].

The cytotoxicity of IONPs is highly dependent on a
number of factors related to their physical properties, such
as size, shape, and surface coating. The type of surface coat-
ing materials of IONPs and their decomposition products
are important in determining their toxicity [151]. As men-
tioned previously, there are many polymers that can be used
to coat IONPs; however, some studies have shown that PEG-
coated IONPs produce negligible aggregation in cell culture
media and reduce nonspecific uptake by macrophages
[152], while dextran-coated IONPs can lead to cell death
and reduced proliferation with observable visible membrane
disruption [153, 154]. The oxidation state of iron (Fe2+ or
Fe3+) in IONPs is an additional key factor that determines
the cytotoxicity of IONPs [150]. It has been demonstrated
that maghemite (Fe2O3) with an Fe2+/Fe3+ ratio of 0.118
has a more significant genotoxicity than magnetite (Fe3O4)
with an Fe2+/Fe3+ ratio of 0.435. More efforts are needed to
design and prepare IONPs with good chemical stability.

In vivo, the toxicity of IONPs is dose dependent and is
also related to the type of tissue cells on which they act.
For example, Hanini et al. [155] reported that IONPs
in vivo can induce toxicity in the liver, kidneys, and lungs
while the brain and heart organs remained unaffected. Addi-
tionally, hemocompatibility is also an aspect that should be
taken into account for the in vivo application of IONPs. If
IONPs are incompatible with biological fluids such as blood,
this can trigger coagulation and clot formation through
adsorption of plasma proteins, platelet adhesion, and activa-
tion of the complement cascade. IONPs will exist in different
proportions in different organs of the body; how to remove
the excess particles is also related to the toxic side effects.
Generally, clearance and opsonization of IONPs depend on
their sizes and surface characteristics [156, 157]. For exam-
ple, 55% oleic acid/pluronic-coated IONPs of injected dos-

age were accumulated in the liver of a rat. However, in the
same animal model, 25% of injected dextran-coated IONPs
was eliminated via urine and feces [158]. Therefore, the toxic
effects of IONPs on humans can be effectively reduced by
controlling the physical properties of IONPs and selecting
the appropriate type of surface coating material and the dose
of IONPs. Also, more attention should be paid to the kinetic
and metabolic mechanisms of IONPs with different surface
coatings, which would allow the development of predictive
models of nanotoxicity.

3. Summary and Prospect

We briefly describe the synthesis method of IONPs and the
merit and demerit of each method. And the applications of
the IONPs in the function of scaffold are also elaborated.
Among them, we firstly mentioned the material used to
make the scaffold and statistics on their size. Each material
has unique properties including nanocarriers for anticancer,
drug doxorubicin, osteoblastic bone formation, and osteopo-
rosis treatment. And then, we have mentioned the merit and
demerit of several scaffold synthesis methods. Furthermore,
the mechanism by which IONPs enhance the function of
the scaffold is described. IONPs can impart a magnetic effect
to the scaffold, which can attract growth factors and stem
cells to migrate in the body, and promote bone repair and
regeneration. IONPs can also be used as accelerators to accel-
erate the binding of the scaffold to the host bone and enhance
related signal pathways to promote the attachment, prolifera-
tion, and bone differentiation of mesenchymal stem cells. At
the same time, as a marker and imaging agent, it is an impor-
tant tool for drug delivery and stem cell localization.

Through the above literature research, we have summa-
rized the development status and development direction of
IONPs. (a) How to precisely control the arrangement of
the IONPs to obtain a better magnetocaloric effect has broad
prospects. (b) There are many ways to prepare composite
scaffolds of iron oxide particles, all of which have excellent
performance and significant shortcomings in specific scenar-
ios. How to obtain a scaffold that can control the surface
characteristics of the scaffold and has high yield and low cost
will become the focus of research. (c) How to maintain long-
lasting and effective stem cell characteristics is the key to
successful treatment. Therefore, for cells expanded in vitro,
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maintaining a stable cell phenotype and reducing the necro-
sis and loss of the cells at the defect site after transplantation
in vitro are necessary for bone defect repair. (d) At present,
most researches on IONPs focus on labeling methodologies
and monitoring curative effects, but there are not many
studies on their effects on labeled cells. IONPs have different
effects on different types of cells, even the same type of cell,
in different aspects. Functional activities also react differ-
ently to IONPs. Therefore, it is necessary to extensively
study the short-term and long-term potential cytotoxicities
of IONPs to different labeled cells, which is an important
reference for avoiding the adverse reactions of IONPs when
cell magnetic labeling really enters the clinical trial stage in
the future.

With the in-depth research of human cells and virus par-
ticles, the continuous improvement of the feasibility and
practicability of nanoparticles as drug carriers will inevitably
provide a breakthrough in the research of drug carrier sys-
tems. It is reasonable to believe that the multifunctional
magnetic nanodrug carrier with fluorescence detection,
multiple targeting, efficient drug loading, quantitative time-
released drug, and nontoxic side effects is of great signifi-
cance for the diagnosis and treatment of major diseases such
as cancer.
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Background. The cell regeneration and blood supply of bone defect lesions are restricted under osteoporotic pathological
conditions, which make the healing of bone defect of osteoporosis still a great challenge. The current therapeutic strategies that
mainly inhibit bone resorption are not always satisfactory for osteoporotic bone defects, which make the development of new
therapies an urgent need. Methods. Previously, we prepared chitosan/nanohydroxyapatite (CS/nHA) biomimetic nanocomposite
scaffolds for controlled delivery of bone morphogenetic protein 2-derived peptide (P24). In this study, we determined the effect
of coculturing adipose-derived stromal cells (ADSCs) and human umbilical vein endothelial cells (HUVECs) with the
CS-P24/nHA nanocomposite scaffolds on osteoporotic bone defect healing. In vitro mixed coculture models were employed to
assess the direct effects of coculture. Results. ADSCs cocultured with HUVECs showed significantly greater osteogenic
differentiation and mineralization compared with ADSCs or HUVECs alone. The CS-P24/nHA scaffold cocultured with ADSCs
and HUVECs was more effective in inducing osteoporotic bone repair, as demonstrated by micro-computed tomography and
histology of critical-sized calvariae defects in ovariectomized rats. Calvariae defects treated with the CS-P24/nHA
nanocomposite scaffold plus ADSC/HUVEC coculture had a greater area of repair and better reconstitution of osseous
structures compared with defects treated with the scaffold plus ADSCs or the scaffold plus HUVECs after 4 and 8 weeks.
Conclusion. Taken together, coculture of ADSCs and HUVECs with the CS-P24/nHA nanocomposite scaffold is an effective
combination to repair osteoporotic bone defects.

1. Introduction

Osteoporosis is a metabolic systemic bone disease charac-
terized by decreased bone mass, increased bone fragility,
and weakened bone strength [1]. More than 8 million
fractures are caused by osteoporosis every year worldwide,
and osteoporosis is the leading cause of fracture in older
women [2]. More than one-third of older women experience
osteoporosis-induced fracture [2]. Antibone resorption drugs
are the most widely used in the clinic, including parathyroid
hormone, bisphosphonate, raloxifene, and dinozumab [3, 4].
These drugs exert therapeutic effects by inhibiting osteoclast
activity and bone resorption; however, they do not influence

bone regeneration, so it is difficult to reconstruct bone using
these approaches [5, 6]. For patients with osteoporotic bone
defects, due to the significantly weakened ability of mesen-
chymal stem cell (MSC) regeneration and osteogenic differ-
entiation, antibone resorption therapy alone is insufficient;
thus, bone regeneration therapy is required [7, 8]. Existing
bone defect implants, such as autogenous bone and artificial
bone, are considered to lack sufficient biological activity to
induce differentiation of endogenous MSCs into osteoblasts
in patients with osteoporosis. They also have an insufficient
effect on osteoporotic bone regeneration [9]. Therefore, there
is an urgent need to improve bone defect implants to achieve
osteoporotic bone regeneration.
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Although biological implants have more advantages com-
pared with autogenous bone, they do have shortcomings such
as ischemic necrosis and apoptosis of implanted cells in the
early stage of transplantation, which are caused by an insuf-
ficient blood supply [10]. In bone tissue engineering, neovas-
cularization can facilitate oxygen and nutrient exchange
between implants and cells, which is important for the sur-
vival and differentiation of stem cells in scaffolds [11, 12].
Studies have shown that microvessel formation is a prerequi-
site for bone formation in implants [11]. Whether it is the
exchange of oxygen and nutrients or the calcium and phos-
phorus needed for mineralization, a complete vascular net-
work is essential [13].

Methods to promote microvessel growth include the use
of cytokines, such as vascular endothelial growth factor
(VEGF) and basic fibroblast growth factor (bFGF), as well
as endothelial cell transplantation [11]. Cytokines are expen-
sive, and their release and onset of effects in the body are
difficult to control, so endothelial cells are preferred [14].
Endothelial cells are the cellular source of microangiogenesis
and play an important role in vasculogenesis and angiogene-
sis [15]. Moreover, endothelial cells can be simply extracted
from peripheral blood, which not only causes little damage
to the donor but also reduces the likelihood of rejection after
autologous cell transplantation [15]. Implantation of endo-
thelial cells into the scaffold can provide nutritional support
to the vasculature for osteogenic differentiation of stem cells.
Previous studies have shown that coculturing endothelial
cells and stem cells in the scaffold can induce graft blood ves-
sel formation and achieve vascularization and osteogenesis
simultaneously [12, 13, 15, 16]. Therefore, efforts to establish
a system to coculture endothelial cells and stem cells in bone
tissue engineering have been made. To apply the concept of
endothelial cell and stem cell coculture in the clinic, it is
important to determine whether endothelial cells and stem
cells are beneficial or harmful in osteogenic differentiation
and angiogenesis when used to treat bone defects.

Sulfhydrylated chitosan (CS) is obtained by amino mod-
ification of CS [17]. Compared with ordinary CS, sulfhydry-
lated CS has better adhesion, stability, and protein release
properties [18]. The CS/nanohydroxyapatite (HA) nano-
composite scaffold prepared using sulfhydrylated CS and
nanohydroxyapatite has widespread application potential in
cell colonization and factor release because of its porous
structure, excellent biocompatibility, and moderate degrada-
tion rate [19]. P24 is a peptide derived from bone morphoge-
netic protein (BMP-2). It has a low molecular weight and a
stable structure, as well as similar biological effects to BMP-
2 [19]. P24 can regulate the adhesion and osteogenic differen-
tiation of MSCs, promote deposition of calcium and phos-
phate ions, and accelerate nucleation and mineralization
[20]. Due to the high therapeutic dose of BMP-2 in clinical
application, it is easy to lead to complications such as exces-
sive bone resorption, heterotopic ossification, and tumor
angiogenesis [21]. P24, which has similar biological effects
and is more absorbable, is an excellent alternative to BMP-
2. In a previous study, CS/nHA nanocomposite scaffold was
prepared using chemical grafting modification technology,
and this scaffold was used to control P24 delivery [19]. The

results show that the scaffold has a good effect on repairing
bone defects in rats. To further expand the application of this
CS/nHA nanocomposite scaffold in the treatment of osteo-
porotic bone defects, we intend to use cell coculture to fur-
ther enhance the ability of this scaffold to repair bone defects.

The purpose of this study was to investigate the effect of
adipose-derived stromal cell (ADSC) and human umbilical
endothelial cell (HUVEC) coculture with the CS-P24/nHA
nanocomposite scaffold in repairing osteoporotic bone
defects. We also aimed to explore the application prospects
of this coculture system.

2. Methods

2.1. Materials. Chitosan (CS, viscosity: 50–800mPa·s, degree
of deacetylation: 80%–95%) was purchased from Macklin,
China. Peptide 24 (P24) derived from BMP-2 (N→C:
KIPKA SSVPT ELSAI STLYL SGGC) was synthesized by
Shanghai ZiYu Biotech Co., China. 2-Iminothiolane hydro-
chloride, 2-iminothiolane hydrochloride, and dimethyl sulf-
oxide (DMSO) were purchased from Sigma-Aldrich, USA.
nHA powder was obtained from Institute of Nuclear and
New Energy Technology, Tsinghua University, China.

2.2. Culture of ADSCs and HUVECs. Human ADSCs were
isolated following established methods. The procedure was
approved by the Research Committee of South Medical Uni-
versity. Briefly, adipose tissue samples were collected from
patients undergoing reconstructive surgery. Adipose tissue
was digested in 50-200U/ml collagenase type I (Sigma-
Aldrich, USA) for 2 h. The suspension was oscillated at a
constant temperature of 37°C for 2 hours and then centri-
fuged at 5000g for 10 minutes. The cells obtained after cen-
trifugation were cultured in expansion medium consisting
of Dulbecco’s modified Eagle’s medium/F-12, 10% fetal
bovine serum (FBS; Gibco BRL), and 1% penicillin/strepto-
mycin. HUVECs were obtained from the American Type
Culture Collection (Rockville, MD, USA) and cultured in
RPMI 1640 medium (Gibco, USA) containing 10% FBS and
1% penicillin/streptomycin [1]. Cells at passages 3–4 were
used in this study. Cells were cultured under standard condi-
tions (5% CO2, 37

°C).

2.3. Scaffold Synthesis and ADSC/HUVEC Coculture. Scaf-
folds containing CS with 0% P24 and nHA (CS-0%P24/
nHA) and scaffolds containing CS with 10% P24 and nHA
(CS-10%P24/nHA) were prepared as outlined previously
[19]. Briefly, 40mg of 2-iminothiolane hydrochloride was
added to 200ml of 0.2% (w/v) chitosan solution (in 1% acetic
acid). P24 (0% or 10% of the weight of chitosan in 15ml
DMSO) was then added into the chitosan solution. After
continuous stirring at room temperature for 4 h, the mixture
was dialyzed against deionized water for 5 days and lyophi-
lized at −50°C and 20Pa in order to immobilize the peptide
within the chitosan (chitosan-peptide 24, CS-0%P24, and
CS-10%P24).

200mg of CS-0%P24 and CS-10%P24 were hydrated in
10ml 0.1M HCl, respectively. nHA powder (200mg) was
added with continuous stirring until uniformly distributed.
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Thereafter, the hybrid of CS-P24 and HA was lyophilized
at −50°C and 20Pa using a 96-well plate (Corning, USA)
as a mold to obtain the CS-0%P24/HA and CS-10%P24/HA
scaffold.

With the CS-10%P24/nHA scaffold cultured with ADSCs
and HUVECs, these two cell types were trypsinized sepa-
rately and subcultured in 24-well plates at ratios of 1 : 1,
1 : 3, and 3 : 1 during the same seeding phase. The CS-
10%P24/nHA scaffold cultured with ADSCs or HUVECs
served as a control.

2.4. Cell Proliferation Assay. Cell proliferation was measured
using the Cell Counting Kit-8 (CCK-8; Dojindo). With
the CS-10%P24/nHA scaffold cultured with ADSCs and
HUVECs, cells were trypsinized separately and subcultured
in 96-well plates at ratios of 1 : 1, 1 : 3, and 3 : 1. Each group
has 6 experimental samples. After 1, 3, and 7 days, cells in
each group were incubated in 10% CCK-8 solution in a 5%
CO2 incubator at 37

°C for 4 h. The absorbance of the culture
medium was measured at 450nm.

2.5. Alizarin Red S Staining. Alizarin Red S staining and
quantification were performed as described previously [22].
Cells in different groups were stained 21 days after culture,
and each group has 6 experimental samples. Cells were fixed
in 4% paraformaldehyde (Leagene, China) for 15min. After
being fixed, cells were stained with 1% Alizarin Red S for
30min. Stained samples were air dried, and images were
taken using an optical microscope (Leica, DM2500 LED).

2.6. Real-Time Quantitative PCR. After 10 days of coculture,
total RNA was isolated by lysis in TRIzol (Invitrogen Inc.,
Carlsbad, CA, USA). PCR was performed using the Tran-
scriptor cDNA Synthesis Kit and FastStart Universal SYBR
Green Master (Roche Diagnostics, Indianapolis, IN, USA).
The mRNA expressions of osteogenic-specific genes (OCN,
ALP, and RUNX2) were assessed by real-time quantitative
PCR using SYBR Green Master (Roche Diagnostics). The
sequences of all primers (Invitrogen Inc.) were designed
using Primer 5.0 software (Table 1). β-Actin was amplified
as an internal control. Each real-time quantitative PCR run
was performed using three experimental samples. Error bars
reflect one standard deviation from the mean of technical
replicates.

2.7. In Vivo Calvaria Defect Repair

2.7.1. Osteoporotic Rat Model and Transplantation Procedure.
To generate osteoporotic rat models, 36 female Sprague-
Dawley rats (200-220 g) at 7 weeks of age (n = 6) were
purchased from the Center of Experimental Animals of
Guangdong Province. Rats were ovariectomized bilaterally
with a dorsal approach. After 4 weeks, under general anes-
thesia, the cranium was exposed through a medial incision.
Bilateral full-thickness circular defects of 5 × 5mm were
generated using a dental bur. The defects were implanted
with CS-0%P24/nHA, CS-10%P24/nHA, CS-10%P24/nHA
with ADSCs, CS-10%P24/nHA with HUVECs, or CS-
10%P24/nHA with ADSC/HUVEC coculture. The coculture
ration of ADSCs and HUVECs was 3 : 1. The control groups

were left untreated. In all animals, the wound was irrigated,
and the fascia and skin were closed. Postoperatively, ani-
mals were allowed free cage activity. To establish an osteo-
porosis model, the rats were injected with cyclosporine A
(5mg/kg of body weight) and methylprednisolone hemisuc-
cinate (1mg/kg body weight) daily after surgery. Whole cal-
variae were harvested for evaluation 4 and 8 weeks of
postimplantation.

2.7.2. Micro-Computed Tomography (CT) Analysis of
Calvaria Defect Repair. After harvesting calvariae at 4 and
8 weeks postoperatively, specimens were immediately fixed
in 10% (v/v) neutral-buffered formalin for 24 h. Specimens
were scanned at a resolution of 9μm for undecalcified
samples using an advanced micro-CT instrument (ZKKS-
MC-Sharp-IV; Zhongke Kaisheng Bio, Inc.). Three-
dimensional reconstruction of images was performed, and
histomorphometric parameters, including bone mineral
density (BMD), trabecular number (Tb.N), and bone volu-
me/total tissue volume (BV/TV), were evaluated.

2.7.3. Immunofluorescence, Immunohistochemistry, and
Histomorphometry. Specimens were decalcified in neutral
10% EDTA solution for 2 weeks at room temperature. Slices
were then cut into 6μm sections and further stained with
anti-OCN (1 : 500 dilution; Abcam) and anti-CD31 (1 : 600
dilution; Abcam), respectively, at 4°C overnight, followed
by horseradish peroxidase-conjugated goat anti-rabbit sec-
ondary antibodies (Boster Company of Biotechnology,
China). Images of stained specimens were obtained using a
microscope (BX51; Olympus, Tokyo, Japan). The expression
intensity of each molecule was quantified using ImageJ anal-
ysis software (1.8.0 64-bit, US National Institutes of Health).

For immunofluorescence analysis, slides or chondrocytes
were fixed in 4% buffered formalin and incubated with
fluorescence-conjugated secondary antibody for 90min at
room temperature. Sections were also stained with hematox-
ylin and eosin, Masson’s trichrome, or tartrate-resistant acid
phosphatase (TRAP).

2.7.4. Cell Tracking Using Anti-Human Nuclear Antibody.
Sections from each group at 4 and 8 weeks were used postop-
eratively for cell tracking analysis. Sections were stained with
mouse anti-human nuclei monoclonal antibody (MAB1281;
1 : 500 dilution; Merck Millipore, Germany) for immunoflu-
orescence and immunohistochemistry. MAB1281-labeled
cells were marked.

Table 1: Forward and reverse primer sequences used in real-time
PCR analysis.

Gene Primer (5′–3′)

OCN
Forward primer GCTCTGTGCTCCTGCATCTG

Reverse primer GCTCTGTGCTCCTGCATCTG

ALP
Forward primer ACCATTCCCACGTCTTCACATTT

Reverse primer AGACATTCTCTCGTTCACCGCC

RUNX2
Forward primer GCCTTCAAGGTGGTAGCCC

Reverse primer CGTTACCCGCCATGACAGTA
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2.8. Statistical Analysis. Descriptive statistics were used to
determine group means and standard deviations. Quantita-
tive data were statistically analyzed using Student’s t-test
(SPSS 22.0). A p value of <0.05 was considered statistically
significant.

3. Results

3.1. In Vitro Osteogenesis. To determine the effect of cocul-
ture on cell growth, ADSCs, HUVECs, or ADSCs plus

HUVECs at ratios of 1 : 1, 1 : 3, and 3 : 1 were seeded onto
CS-10%P24/nHA scaffolds. Cell proliferation was measured
using the CCK-8 assay. The CCK-8 analysis showed that cell
number significantly increased in each of the ADSC,
HUVEC, and ADSC/HUVEC coculture groups. No matter
what the ratio of cells was, the proliferation rate in the
ADSC/HUVEC coculture group was significantly higher
than that in the ADSC and HUVEC groups. When the ratio
of ADSCs to HUVECs was 3 : 1, the proliferation rate was the
most significant, and the absorbance on day 7 was about 2.4
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Figure 1: In vitro osteogenesis and angiogenesis. ASC/HUVEC ratios of 1 : 1, 1 : 3, and 3 : 1 were achieved by culturing 1 × 105, 0:3 × 105, and
3:0 × 105 ADSCs, respectively, with 105 HUVECs. (a) The CCK-8 test of cell viability after coculture for 1, 3, and 7 days. (b) Alizarin Red S
staining after 14 days. All values are shown as percentages compared with control. (c) mRNA expression of osteogenic-specific genes (ALP,
OCN, and RUNX2) in each group at 10 days. mRNA expression, quantified using real-time quantitative PCR, was normalized to β-actin as a
reference gene. ∗p < 0:05. Error bars represent the standard deviation (n = 3).
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and 2.7 times of that in the ADSC and HUVEC groups
(Figure 1(a)).

Alizarin Red S staining was used to evaluate calcium
deposition in each group. HUVECs cultured alone appeared
light red in color, ADSCs cultured alone appeared as a deeper
red color, while cocultured ADSCs/HUVECs appeared as a
very deep red color. Although mineralized nodules were
observed in all three groups, more distinct nodules were
observed in the ADSC/HUVEC coculture group on day 21
(Figure 1(b)).

To evaluate the effect of the CS-P24/nHA scaffold cultured
with ADSCs, HUVECs, or ADSCs plus HUVECs on osteo-
genic differentiation, we performed real-time quantitative
PCR to examine osteogenic gene expression. RUNX2, OCN,
and ALP were significantly upregulated in the ADSC/HUVEC
coculture group (Figure 1(c)). When the ratio of ADSCs to
HUVECs was 3 : 1, the expression levels of RUNX2, OCN,
and ALP were the highest among all groups.

These results suggested that when ADSCs and HUVECs
were cocultured at a ratio of 3 : 1, the degree of cell prolifera-

tion and osteogenic differentiation was the most significant.
Therefore, in subsequent experiments, 3 : 1 was used as the
cell ratio of ADSC and HUVEC coculture.

3.2. In Vivo Effects of ADSC/HUVEC Coculture on
Osteoporotic Bone Formation. In vivo osteoporotic bone
formation was evaluated by micro-CT at 4 and 8 weeks of
postimplantation (Figure 2). When CS-10%P24/nHA scaf-
folds were used to treat critical-sized calvariae defects
(control group), most osteoporotic bone defects were not
repaired after 8 weeks (Figure 2(a)). Scaffolds with HUVECs
alone, ADSC/HUVEC coculture, and ADSCs alone signifi-
cantly increased the repaired area (p < 0:05) compared with
the control scaffold (Figure 2(b)). Defects treated with the
scaffold plus ADSC/HUVEC coculture had significantly
greater BMD (442:50 ± 15:00), Tb.N (2:52 ± 0:25), and
BV/TV (33:00 ± 3:28) values compared with the other
groups (p < 0:05).

Histological findings showed that calvariae defects
treated with the scaffold plus ADSC/HUVEC coculture had
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Figure 2: In vivo effects of the scaffold plus ADSC/HUVEC coculture on osteoporotic bone formation in critical-sized calvariae defects. Two
circular defects, each with a diameter of 3mm, were created using a trephine bur in mice calvariae. Defects were filled with a CS-0%P24/nHA
scaffold, a CS-10%P24/nHA scaffold, or a CS-10%P24/nHA scaffold with HUVECs and/or ADSCs. (a) Reconstructed three-dimensional
micro-CT images at 4 and 8 weeks in each group. Micro-CT of whole calvariae in each group, indicating new bone formation at the defect
site. (b) Quantitative analysis of mineralized new bone formation at 4 and 8 weeks (BMD, Tb.N, and BV/TV). ∗p < 0:05.
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a thicker regenerated calvarium and better osseous struc-
ture reconstitution compared with those treated with the
scaffold, HUVECs, or ADSCs alone (Figure 3). HE staining
showed that osteoid cells and microvascular regeneration
began to appear in the coculture group 4 weeks after sur-
gery. At 8 weeks postoperatively, the mineralized tissue
was filled into the scaffold and new microvessels could be
observed (Figure 3(a)). Masson staining showed that fibrotic
tissues developed earlier in the coculture group at week 4 and
were gradually replaced by new bone tissue at week 8
(Figure 3(b)). These results indicated faster bone regenera-
tion and better osseous structure reconstitution in the cocul-
ture group compared to the other groups.

Immunofluorescence and immunohistochemical analy-
ses showed that the area implanted with the scaffold plus
ADSC/HUVEC coculture exhibited high expression of
OCN and CD31 at 4 and 8 weeks of postimplantation
(Figure 4). The mean fluorescence intensity of CD31 and
OCN in the coculture group was 2.5 and 2.2 times higher
than that in the blank group, respectively (Figure 4(a)). In
addition, the number of CD31-positive cells in the coculture
group at 4 and 8 weeks was also significantly higher than that
in the other groups, which was 4 and 3.5 times of that in the
blank group, respectively (Figure 4(b)).

3.3. Immunohistological Assessment of ADSC/HUVEC
Survival In Vivo. The survival of grafted cells was evaluated
by immunohistochemistry using MAB1281. At 4 weeks of
postimplantation, immunofluorescence and immunohisto-
chemistry analyses revealed that MAB1281-labeled cells sur-

vived within the scaffolds in the group that received the
scaffold plus ADSCs and the group that received the scaffold
plus ADSC/HUVEC coculture (Figure 5(a)). However, at 8
weeks of postimplantation, only the group with the scaffold
plus ADSC/HUVEC coculture showed MAB1281-labeled
cells (Figure 5(b)). These results indicate that the scaffold
plus ADSC/HUVEC coculture can improve the survival rate
of grafted cells.

3.4. Effect of the Scaffold plus ADSC/HUVEC Coculture on
Osteoclastogenesis. We investigated the effect of the scaffold
plus ADSC/HUVEC coculture on osteoclast formation in
an osteoporotic environment. TRAP staining revealed that
multiple osteoclasts lined the eroded bone surface in the
blank group and in the group that received the CS-
10%P24/nHA scaffold (Figure 6(a)). The erosion surface
was reduced in the group that received the scaffold plus
ADSCs and the group that received the scaffold plus
HUVECs, and the number of osteoclasts was significantly
lower in the group treated with the scaffold plus ADSC/HU-
VEC coculture (4:60 ± 0:57 cell) (Figure 6(b)). Osteoclast
formation was also inhibited in the group that received the
scaffold plus ADSC/HUVEC coculture.

4. Discussion

It is generally believed that there is a close relationship
between angiogenesis and osteogenesis [11, 23–26]. In the
process of articular cartilage degeneration, hypertrophic
chondrocytes enable microvessels to grow into the growth
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Figure 3: Histology of repaired calvariae 4 and 8 weeks of postimplantation in vivo. (a) Hematoxylin and eosin staining of calvariae defects in
the blank, CS-0%P24/nHA, CS-10%P24/nHA, CS-10%P24/nHA plus ADSC, CS-10%P24/nHA plus HUVEC, and CS-10%P24/nHA plus
ADSC/HUVEC coculture groups. Red arrows show new blood vessel formation in or around the scaffolds. (b) Masson’s trichrome
staining of repaired calvariae in each group. Scale bar = 200μm and 50 μm.
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plate by secreting angiogenic factors, such as VEGF, which
leads to cartilage absorption and bone formation [27, 28].
During bone repair, microvessels provide a prerequisite for
the exchange of oxygen and nutrients for bone regeneration
[23]. Lack of blood vessels will delay bone regeneration and
can even lead to implant ischemic necrosis, delayed healing,
and nonunion [11, 23]. In patients with osteoporosis, it is

more difficult to repair the bone defect because of active bone
resorption and inhibition of osteogenesis [8, 29]. Therefore,
providing adequate vascular support for bone repair is help-
ful to facilitate bone regeneration, which is of great impor-
tance for the treatment of patients with osteoporotic bone
defects. As the initiation and maintenance cells of vascular
regeneration, endothelial cells play an indispensable role in
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Figure 4: Immunofluorescence and immunohistochemistry. (a) Immunofluorescence of each group 4 weeks after surgery. Cells that appear
green represent OCN-positive cells. Areas that appear red represent CD31-positive areas. (b) Immunohistochemistry of 4 and 8 weeks after
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(e) Quantification of CD31-positive cells in each group. Representative magnified images are at ×40 magnification. Scale bar = 50μm.
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bone defect repair. Previous studies have observed an inter-
action between endothelial cells and mesenchymal cells. This
interaction promotes proliferation and osteogenic differenti-

ation of mesenchymal cells in vitro [15, 24]. Studies have
found that endothelial cells promote MSC differentiation
through cell-to-cell contact, which makes cell coculture a
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Figure 5: Survival of ADSCs/HUVECs in the scaffold. (a) Immunofluorescence and immunohistochemistry show MAB1281-labeled cells in
the scaffold at 4 weeks. Areas that appear dark brown represent MAB1281-labeled areas. (b) Red arrows show MAB1281-labeled cells.
Scale bar = 200μm and 50 μm.
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Figure 6: In vivo effects of the scaffold plus ADSC/HUVEC coculture on osteoclast genesis. (a) TRAP staining was performed on three
sections per group. (b) Quantification of TRAP-positive cells in each group. Red arrows show TRAP-positive cells. Representative
magnified images are at ×40 magnification. Scale bar = 50 μm.
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feasible method [30–32]. These findings encourage research
into the effects of endothelial cell and mesenchymal cell
coculture to promote bone regeneration.

This study is aimed at determining the effect of HUVE-
C/ADSC coculture on osteogenic differentiation and angio-
genesis in CS-P24/nHA scaffolds. We also aimed to explore
the optimal proportion of cells needed for coculture and the
effect of coculture on osteoporotic bone defect repair. After
human ADSC extraction, ADSCs were inoculated with
HUVECs on CS-P24/nHA scaffolds to form a coculture
system. Compared with separately cultured ADSCs and
HUVECs, coculture of HUVECs and ADSCs can signifi-
cantly promote cell proliferation, which is consistent with
the results of previous studies [13, 33]. To determine the opti-
mal proportion of cells, we cocultured HUVECs and ADSCs
at different ratios. The results show that when ADSCs and
HUVECs were cocultured at a ratio of 3 : 1, cell proliferation
was significantly promoted. These results indicate that the
proportion of cocultured cells affects cell behavior. In most
studies, a 3 : 1 ratio of MSCs to HUVECs has achieved good
results in promoting cell proliferation and bone regeneration
[10, 33–35]. But in a study by Pennings et al., MSCs and
HUVECs were cocultured at a ratio of 4 : 1 to promote bone
regeneration [36]. Moreover, Carvalho et al. found that the
promoting effects of coculture were best at a ratio of 1 : 1
[37]. However, Shah et al. found that a HUVEC to MSC ratio
of 5 : 1 significantly promoted angiogenesis, while a HUVEC
to MSC ratio of 1 : 5 effectively promoted osteogenesis and
mineralization [38]. Given the above discrepancies, we
cocultured these two cell types at a ratio of 3 : 1 and detected
osteogenic differentiation of ADSCs. PCR showed that
coculture at a ratio of 3 : 1 had the most obvious effect on
osteogenic differentiation and significantly increased the
expression of osteogenesis-related genes, including RUNX2,
OCN, and ALP. In our study, 3 : 1 was the most suitable ratio
for coculture of endothelial cells and stem cells, and this
ratio significantly promoted cell proliferation and osteogenic
differentiation. Despite these observations, there is no uni-
fied standard for the best proportion of cocultured cells.
Thus, this area is worthy of further research.

To verify the effect of coculture on osteoporotic bone
defect repair, ADSCs and HUVECs were inoculated on CS-
P24/nHA scaffolds at a ratio of 3 : 1 and implanted to repair
calvariae defects in osteoporotic rats. Micro-CT showed that
CS-P24/nHA scaffolds containing cocultured cells were more
effective in repairing osteoporotic bone defects. Histological
results also showed that coculture effectively promoted bone
regeneration. Thicker regenerated skulls and better bone
remodeling were observed in the coculture group compared
with the single-cell groups. We also observed that the defect
was only filled with fibrous tissue in the blank and scaffold
groups, which indicated that bone regeneration was signifi-
cantly less evident. This may be due to inhibition of osteo-
blast activity in osteoporotic animals, resulting in a poor
effect of simple scaffold filling on bone defect repair
[29, 39]. Our results proved that the combination of nanos-
caffolds and cell coculture can improve the effect of scaffolds
on bone defect repair. Coculture of HUVECs and ADSCs in
the scaffold can provide seed cells for bone repair and pro-

mote vascular regeneration by endothelial cells, especially
in the context of osteoporotic bone defect repair. However,
the CS-TBA nanocomposite scaffold not only provided an
appropriate external environment for HUVECs and ADSCs
but also promoted the proliferation and differentiation of
cells by releasing P24 and mechanical stress [40, 41]. The
combination of nanomaterial and cell coculture improves
the therapeutic effect, and this combination method is help-
ful to explore more improved methods of nanomaterials.

In addition to promoting bone regeneration, inhibiting
bone resorption is important for osteoporotic bone defect
repair [4, 5]. Therefore, we use TRAP staining to further
explore the effect of coculture scaffolds on the activity of oste-
oclasts in bone defects. The results show that the number of
osteoclasts at the defect site was reduced in the group that
received the scaffold plus ADSC/HUVEC coculture. The
results show that coculture does not only promote bone
regeneration but that it also inhibits bone resorption, which
is essential for osteoporotic bone defect repair. Other studies
have shown that coculture of endothelial cells and mesenchy-
mal cells can inhibit osteoclast activity [26, 42, 43]. However,
some studies suggest that cocultured microvessels promote
osteoclast proliferation and activity [44]. In our study, cell
coculture inhibited osteoclast activity at the defect site, which
may be due to the activity of HUVECs. Alternatively, other
cell-to-cell interactions may have played a role, which should
be clarified in the future.

5. Conclusion

This study demonstrated that coculture of HUVECs and
ADSCs in CS-P24/nHAnanocomposite scaffolds can promote
cell proliferation and osteogenic differentiation. When ADSCs
and HUVECs were cocultured at a ratio of 3 : 1, their effect on
proliferation and osteogenic differentiation was the most obvi-
ous. Using a rodent model of osteoporotic bone defect, we fur-
ther confirmed that coculture of HUVECs and ADSCs with
the CS-P24/nHA nanocomposite scaffold promoted bone
defect repair and inhibited osteoclast activity at the defect site.
Our research shows that the CS-P24/nHA nanocomposite
scaffold plus ADSC/HUVEC coculture can effectively repair
osteoporotic bone defects, which has broad application and
development prospects in the field of orthopedics.
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Autologous transplantation of cryopreserved fragments of an immature testis is an actively developing approach to save fertility in
patients facing a gonadotoxic therapy. The use of bioavailable fullerene C60 as a powerful antioxidant opens up a new potential for
the prevention and correction of ischemic-reperfusion pathological processes in tissues including those associated with freezing-
thawing procedure. In this work, we aimed to study the antioxidant status, apoptotic/necrotic processes, and morphological
characteristics of cryopreserved fragments of the seminiferous tubules of testis (CrFSTT) of immature rats after incubation in
media with different concentrations of fullerene C60 (10, 15, and 20μg/mL). Our results indicated that the addition of C60 in a
concentration of 15 μg/mL decreased ROS production, cytochrom C release, and degree of histological damage of spermatogenic
epithelium as well as increased the activity of the mitochondria, antioxidant defense system, and cell density in histological
sections of CrFSTT compared to the control. Fullerene C60 at investigated concentrations did not impact significantly on
apoptosis in cells of CrFSTT but, after incubation with 15 μg/mL C60, a percentage of living cells was 1.2-fold higher and a
value of necrotic ones in this group was 1.6-fold lower than the control samples (p < 0:05). Relative amount of cells of the
spermatogonia germ layer did not differ between the studied concentrations. The general analysis of obtained data showed that
the C60 addition in the concentration of 15 μg/mL was the most optimal for the rehabilitation of CrFSTT. The results can be
used for the development of an effective rehabilitation medium for the cryopreserved testicular tissue.

1. Introduction

Currently, an autologous transplantation of cryopreserved
fragments of an immature testis is an actively developing
approach to restore fertility of adolescent patients facing
gonadotoxic therapy [1]. The advantage of this method is a
preservation of spermatogenic cell niche, due to the support
of cellular contacts and interactions, which contributes to
the normal development of germ cells. But there are other,
no less difficult tasks: minimization of tissue damage by ice
crystals and avoidance of ischemic-reperfusion pathological
processes associated with cryopreservation.

Some properties of nanoparticles can be useful in solving
these problems. For example, oxidized quasicarbon nitride
quantum dots can inhibit ice growth/recrystallization
through the density of hydrogen bonds formed with ice [2].

And nanoparticle-mediated trehalose delivery technology
helps to overcome the major limitation of ultralow perme-
ability of this disaccharide resulting in favorable postthaw
cell survival rates without the need of any organic solvent [3].

But the capabilities of nanoparticles are not limited to
freeze-thaw processes, because they can also be used for
the rehabilitation of biological objects after cryopreserva-
tion. Since oxidative stress is one of the cryodamage fac-
tors, the use of carbon nanoparticles as components of
rehabilitation media is a promising direction for the cell
and tissue regeneration after cryopreservation. So, the idea
of our study is to increase the efficiency of cryopreserva-
tion of seminiferous tubules using water-soluble fullerene
C60 as an antioxidant agent.

Fullerene C60 has unique structural and functional prop-
erties, including nanosize, low surface energy, high chemical
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stability, spherical shape, weak intermolecular bonding, and
high load-bearing capacity [4]. The C60 molecule is able to
interact with biological membranes, penetrating into the
intracellular space by passive diffusion or endocytosis [5].

Previous biological in vitro and in vivo screening of
unmodified fullerene C60 aqueous colloid solution showed
that it does not have acute toxic effects on normal cells at
low concentrations, is not immunogenic, is nonallergenic,
and is able to neutralize the excess of free radicals [6, 7].
Thus, the use of bioavailable fullerene C60 as a powerful anti-
oxidant opens up a new potential for the prevention and cor-
rection of ischemic-reperfusion pathological processes in
tissues associated with the freezing-thawing procedure.

Here, we present a study on how different concentrations
of fullerene C60 affect the antioxidant status, apoptotic/ne-
crotic processes, and morphological characteristics of cryo-
preserved fragments of the seminiferous tubules of the testis
(CrFSTT) of immature rats.

2. Materials and Methods

2.1. Animals. All the manipulations were carried out in
accordance to the European convention for the protection
of vertebrate animals used for experimental and other scien-
tific purposes (Strasbourg, 18.III.1986). The protocols were
approved by the Bioethics Committee of Institute for Prob-
lems of Cryobiology and Сryomedicine of the NAS of
Ukraine (permit no. 2016-05).

Outbreed white sexually immature male rats (aged 7-8
weeks, n = 50) were used in the study. Humane euthanasia
by CO2 asphyxiation was performed to obtain testes of
experimental animals right before the study. Excised testes
were rinsed in L-15 medium (Leibovitz) (prod. no.
L0300500, BioWest, Nuaille, France). Tunica albuginea
was removed using sterile medical instruments, and the
testes were then rinsed again. Fragments of the seminifer-
ous tubules of the testis weighing 75 ± 5mg were isolated
mechanically and cryopreserved.

2.2. Cryopreservation. Cryoprotective medium based on a
fibrin gel with the addition of glycerol (prod. no. G5516,
Sigma-Aldrich, St. Louis, USA) at the final concentration
of 0.7M was made ex tempore. Fibrin gel was received
from the fresh blood of animals, which was obtained from
a cardiac vein and centrifuged for 12min at a rate of
1000 g. The tissue fragments were transferred into 2mL
TPP® cryotubes (prod. no. Z760951, Sigma-Aldrich, St.
Louis, USA), where they were exposed to the cryoprotec-
tive medium for 30min at 4°C [8]. Then, cryotubes with
samples were cooled in vapors of liquid nitrogen for
40min down to –70°C and transferred to liquid nitrogen
(–196°C) [9]. Cryotubes were stored in a cryobank for a
month and then were warmed up in a water bath at
40°C until a liquid phase appearance. After thawing, cryo-
protectants were removed from the samples by a three-
step change of the solution to the L-15 medium.

2.3. Manipulations with Fullerene C60. Fullerene-C60 (99.9%)
was purchased from Sigma-Aldrich, St. Louis, USA (prod.

no. 572500). It consisted of agglomerates of spherical or
fibrous primary particles. To obtain an aqueous suspen-
sion of fullerene C60, a method based on the transfer of
this carbon nanostructure from toluene to water followed
by sonication was used [10]. The result was a typical col-
loid solution of C60.

The thawed CrFSTT were incubated at 22°C for 30min in
the L-15 medium with the addition of fullerene C60 at final
concentrations of 10, 15, and 20μg/mL. The samples incu-
bated in the L-15 medium without C60 served as a control.

The scheme of experiment is shown in Figure 1.

2.4. Analysis of Total Antioxidant Status (TAS). The samples
of CrFSTT were homogenized, filtered, and centrifugated
(1000 g for 10min). TAS activity was estimated quantitatively
by the method of UV spectrophotometry (ERBA CHEM 7,
Erba Lachema s.r.o., Brno, Czech Republic) using test kits
(prod. no. NX2332, Randox Laboratories Ltd., Crumlin,
UK) according to the manufacturer’s instructions and nor-
malized to 1mg of protein (prod. no. TP8336, Randox Labo-
ratories Ltd., Crumlin, UK).

2.5. Flowcytometry Analysis. The cell suspension was
obtained from CrFSTT by enzymatic disaggregation: the
samples were incubated with 0.25% trypsin (37°C for
30min), filtered, and centrifugated (1000 g for 10min).

Intracellular reactive oxygen species (ROS) was estimated
quantitatively using a fluorometric test kit (prod. no. MAK-
142, Sigma-Aldrich, St. Louis, USA). In brief, the cells of
CrFSTT (0.5mL) at a concentration of 1 × 106 cells/mL were
suspended with 1μL of ROS detection reagent stock solution
and incubated under 5% CO2 at 37

°C for one hour.
The apoptotic/necrotic processes in cells of CrFSTT were

studied using Annexin-V-FITC (Annexin V) (prod. no.
556419 BD Pharmingen™, San Jose, USA) and 7-
aminoactinomycin D (7AAD) (prod. no. 559925, BD Phar-
mingen™, San Jose, USA) dyes. The cells of CrFSTT
(0.5mL) at a concentration of 1 × 106 cells/mL were sus-
pended with 5μL of Annexin V and 5μL of 7AAD. The sam-
ples were incubated at 22°C for 20min.

The functional state of the mitochondria was investigated
using a mitochondrial membrane potential detection kit JC-1
(prod. no. 551302, BD Pharmingen™, San Jose, USA). Incu-
bation of the cells with the JC-1 working solution
(0.5mL/sample) for 15min at 37°C in a CO2 incubator was
performed. Then, cells were washed twice.

The number of cells positively stained for cytochrome C
was determined using the test system Cyt.C (prod. no.
560263, BD Pharmingen™, San Jose, USA). The cells of
CrFSTT (0.5mL) at a concentration of 1 × 106 cells/mL sus-
pended with 5μL of Cyt.C and incubated at 22°C for 20min.

All investigations were performed according to the man-
ufacturer’s instructions. BD FACSCalibur™ (Becton Dickin-
son, San Jose, USA) was used for these tests. Data were
analyzed using WinMDI v.2.8.

2.6. Histomorphology. The samples of CrFSTT for histologi-
cal examination were fixed in 10% formalin solution (prod.
no. HT501128, Sigma-Aldrich, St. Louis, USA). Sections
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were cut from paraffin-embedded blocks (7μm thick),
stained with hematoxylin and eosin, and studied using Zeiss
Axio Observer Z1 inverted microscope (Carl Zeiss Micros-
copy GmbH, Jena, Germany). Obtained images were proc-
essed using ZEISS ZEN 2 (blue edition) (Carl Zeiss
Microscopy GmbH, Jena, Germany). Histomorphology was
carried out maintaining blinding by involving the third per-
son who did not take part in the experiment. The integrity
and the structural changes of spermatogenic epithelium in
the fragments of the semeniferous tubules of the testis sec-
tions were evaluated semiquantitatively. They were scored
as follows: (i) retraction of spermatogenic epithelium cells
scored as 0 if absent, as 1 if slight, and as 2 if more obvious;
(ii) nuclei condensation was scored as 0 if absent or present
in only 1 nucleus, as 1 if 40% of nuclei were condensed,
and as 2 if 40% were pyknotic; (iii) detachment of cells from
the basement membrane was scored as 0 if absent, as 1 if par-
tial, and as 2 if total or observed on 75% of the circumference;
and (iiii) gap formation and shrinkage were scored as 0 if
absent, as 1 if slight, and as 2 if more obvious. Therefore,
the total score for each section of the seminiferous tubules
was between 0 and 8. It was determined in 30 seminiferous
tubules with the calculation of the average value for each
observation. The minimal total score (0-1) corresponded to
the intact structure of the spermatogenic epithelium. A score
more than 1 to 3 points inclusively was accepted as mild
damage of spermatogenic epithelium, more than 3 to 6 points
inclusively as moderately expressed ones, and in the case of
more than 6 points, changes were considered pronounced.
An average cell density of the spermatogenic epithelium (a
number of nuclei per area unit) was also evaluated.

2.7. Immunohistochemical Study. Immunohistochemical
staining of deparaffinized sections of CrFSTT was performed

using polyclonal antibodies to Melanoma Antigen Family В1
(MAGE-B1, prod. no. PA5-51532, 1 : 500, Invitrogen™, New
York, USA) according to the protocol recommended for the
peroxidase detection system Ultra Vision Quantro HRP
DAB (prod. no. TL-060-QHD, Thermo Fisher Scientific, Fre-
mont, USA). We counted MAGE-B1+ cells using ZEISS ZEN
2 (blue edition) (Carl Zeiss Microscopy GmbH, Jena, Ger-
many) and determined their relative amount as the ratio of
the number of stained cells to the total number of cells in
the tubule section, which was taken as 100%. For the negative
control, MAGE-B1 was replaced by a mouse immunoglobu-
lin G isotype control (prod. no. 02-6502; Invitrogen™, New
York, USA).

2.8. Statistical Analysis. Kruskal-Wallis ANOVA test and
multiple comparisons p values were applied to compare the
difference between the groups using Statistica 8 (StatSoft
Inc., Tulsa, USA) software. Histological scores were com-
pared using a Mann–Whitney U-test.

3. Results and Discussion

3.1. Effect of Fullerene C60 on TAS and ROS Generation in the
CrFSTT. The obtained results showed a 1.5- and 1.7-fold
increase (p < 0:05) of TAS activity and decreased content of
ROS+ cells in CrFSTT by 1.2 and 1.3 times (p < 0:05), respec-
tively, after C60 addition at concentrations of 10 and
15μg/mL versus control (Figures 2(a) and 2(b)). The use of
20μg/mL fullerene C60 did not lead to changes in studied
parameters relative to the control and as a result had a signif-
icant difference with the previous two concentrations. Thus,
the addition of C60 (10 and 15μg/mL) to the incubation
medium decreased the ROS generation and increase TAS
activity in the CrFSTT.

Antioxidant
activity

(TAS and ROS) 

Incubation
with fullerene C60 in Leibowitz′s medium for 30 min at 22°C

Fibrin gel+0.7 M glycerol
slow cooling rate 

Fragments
of seminiferous
tubules of testis

(75 ± 5 mg)

Result evaluation
Apoptosis/

necrosis
(AnnexinV/

7AAD) 

Histomorphology (H&E)
&

immunohistochemical
study (MAGE B1) 

C60_20 μg/mL C60_15 μg/mL C60_10μg/mLC60_0 μg/mL (control)

Mitochondrial activity
(JC-1) & cytochrome C

release (Cyt.C) 

Cryopreservation

at 40°C until a liquid phase appearance

Thawing

Figure 1: Experimental scheme.
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It is known that oxidative stress occurs in response to
damage, when the antioxidant activity and absorption capac-
ity of a biological object cannot neutralize free radicals caused
by a harmful effect. ROS are involved in different pathophys-
iological processes in the testis; as a result, oxidative stress
causes a testicular dysfunction due to inhibition of steroido-
genesis and vasomotion [11]. The main antioxidant enzymes
that neutralize the ROS in semen and various parts of the
male reproductive system are superoxide dismutase, glutathi-
one peroxidase, and catalase. But, many others so-called
“indirect” antioxidant enzymes are also associated with the
mechanism of antioxidative protection because they promote
the biosynthesis/recycling of thiols or contribute to excretion
of oxidized metabolites [12]. At the same time, the increase of
TAS activity after the use of C60 at concentrations of 10 and
15μg/mL is apparently associated with the direct antioxidant
action of fullerenes. Due to the presence on the surface of a
system of π-conjugated double bonds between hexa- and
pentagonal structures, fullerenes collect and bind free radi-
cals to each other, while they themselves remain unchanged
[13]. Thus, the addition of 10 and 15μg/mL C60 to the reha-
bilitation medium helps to neutralize oxidative stress in
CrFSTT triggered by cryopreservation without significant
difference between these two concentrations.

3.2. Effect of C60 on Apoptotic and Necrotic Processes in
CrFSTT of Rats. The results obtained by flow cytometry
(Table 1) suggested that C60 at all investigated concentra-
tions did not cause the development of necrosis/apoptosis
in cells. Conversely, C60 addition at the concentration of
15μg/mL led to the 1.2-fold increase (p < 0:05) of percent-
age of live cells (Аnnexin V-/7AAD-) and to the 1.6-fold
decrease (p < 0:05) in the number of necrotic cells
(АnnexinV+/7AAD+ and Аnnexin V-/7AAD+) compared
to the control samples.

The processes for initiating apoptosis are identical for
most of the cells. Wherein changes of plasma membrane
are observed, phosphatidyl serine goes from the cytoplas-
matic part of the bilayer to the outer one, leading to the acti-
vation of caspase cascade, chromatin condensation,

dysfunction of the mitochondria, and ultimately stopping
ATP synthesis. Thus, programmed cell death can be caused
by receptor-mediated physiological stimuli due to genetic
disorders, physical or chemical triggers, and other changes
in cells [14].

The next stage of the study was the quantitative evalua-
tion of the mitochondrial activity and cytochrome C release
in cells of CrFSTT after incubation with C60. The results
obtained by flow cytometry (Figures 3(a) and 3(b)) showed
that C60 addition in concentrations of 10 and 20μg/mL did
not affect investigated indexes. The use of C60 in concentra-
tion of 15μg/mL led to a 1.15-fold increase (p < 0:05) in the
content of JC+ cells (orange fluorescence) and to a 1.3-fold
decrease (p < 0:05) in the number of Cyt.C+ cells compared
to the control samples.

The analysis of the results showed a decrease in the
release of cytochrome C into the cytosol and a high mito-
chondrial activity in the CrFSTT cells, which had the
highest viability index by staining with Аnnexin V and
7AAD (Table 1, C60_15μg/mL). As known, the mitochon-
dria play a major role in cellular partitioning of death-
regulating signals; the loss of mitochondrial membrane
potential is an early event in several types of apoptosis.
The high transmembrane potential of healthy cells loaded
with JC-1 allows for the formation and sequestration of
JC aggregates in the mitochondrion that is detected by a
peak in red/orange fluorescence (585 nm) [15]. The vari-
ous key events in apoptotic processes focus on the mito-
chondria, including the release of caspase activators (such
as cytochrome C), changes in electron transport, loss of
mitochondrial transmembrane potential, and activation of
lipid peroxidation processes in cells. The various signals
that converge in the mitochondria to trigger or inhibit
these events and their subsequent effects determine several
major pathways of physiological cell death [16, 17].

3.3. Effect of Fullerene C60 on Histomorphological Parameters
of CrFSTT of Rats. The histological structure in control sam-
ples of CrFSTT of rats was characterized by moderate dam-
age according to the semiquantitative scale (Figure 4(a)).
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Figure 2: The effect of incubation in the media with C60 addition on TAS activity (a) and content of ROS+ cells (b) in CrFSTT. Notes:
Adifference is significant versus the control (p < 0:05); Bdifference is significant versus C60_15 μg/mL (p < 0:05).
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Basically, there was unexpressed cell retraction and insignif-
icant spherical cavities in the epithelial layer and its partial
desquamation. The basement membrane at the desquama-

tion sites appeared thickened and swollen. In some of the
germinogenic cells, especially in the adluminal compart-
ment, pyknosis of the nuclei was noted. Incubation of

Table 1: Cytofluorimetric analysis of cells from CrFSTT after incubation with С60, staining with Аnnexin V and 7AAD, % of cells.

Sample/region Аnnexin V-/7AAD- (live) Аnnexin V+/7AAD- (apoptosis) АnnexinV+/7AAD++АnnexinV-/7AAD+ (necrosis)

Control 69:31 ± 1:27 6:02 ± 0:77 24:67 ± 1:12
C60_10 μg/mL 74:91 ± 2:35 5:92 ± 0:54 19:17 ± 1:02
C60_15 μg/mL 79:86 ± 1:24a 4:28 ± 1:18 15:86 ± 0:95a

C60_20 μg/mL 65:25 ± 1:01b 6:60 ± 1:12 28:15 ± 1:08b

Notes: adifference is significant versus the control (p < 0:05); bdifference is significant versus C60_15 μg/mL (p < 0:05).
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CrFSTT in the media with the addition of C60 at the con-
centrations of 10 and 15μg/mL had a generally positive
effect on the histostructure compared to the control.

The desquamation of the spermatogenic epithelium and
swelling of the basement membrane were almost absent;
the frequency of pyknosis of cell nuclei decreased with a
more pronounced effect in the case of 15μg/mL C60 addition
(Figure 4(b)). The degree of the spermatogenic epithelium
damage in this group decreased to 2.89 points, which corre-
sponds to mild changes. The samples of CrFSTT incubated
with C60 at a concentration of 20μg/mL had a similar to con-
trol histological structure; only small foci of necrosis were
observed in the central parts of the seminiferous tubules.

Cells positively stained for MAGE-B1 were located in a
dense layer on the inner surface of the spermatogenic epithe-
lium and had a rounded shape with a dense cytoplasm and a
rounded nucleus (Figure 5(a)).

In histological sections of CrFSTT, it was possible to dis-
tinguish a population of typical spermatogenic cells which
were positively stained by MAGE-B1. Stratification and dis-
ruption of the structural architecture of the tubules were
observed; as a result of which the spermatogonia germ layer
(MAGE-B1+) was shifted to the center. Relative amount of
MAGE-B1+ cells in CrFSTT did not change between the
investigated media and ranged within 70-80% (Figure 5(b)).
Thus, incubation with fullerene C60 did not have a selective
effect on the population of MAGE-B1+ cells in the spermato-
genic epithelium (p < 0:05).

According to the results of measuring of the average den-
sity of spermatogenic epithelial cells, it can be concluded that
the addition of fullerene C60 to the rehabilitation medium
for CrFSTT was effective at a concentration of 15μg/mL, sig-

nificantly increasing this parameter relative to the control (by
1.6 times (p < 0:05)) and other investigated concentrations
(10 and 20μg/mL) (Figure 5(c)).

So, the histological examination showed a decrease of
spermatogenic epithelium damage down to the mild degree
and an increase of the average cell density of spermatogenic
epithelium after incubation with 15μg/mL С60. At the same
time, it is important that the relationship between the sper-
matogenic epithelium and basement membrane was pre-
served because the last one in the testis serves as a reservoir
of uniquely important cytokines to regulate junction dynam-
ics that are associated with germ cell cycle progression and
movement [18].

The use of modern cryopreservation technologies allows
obtaining a stock of reproductive cells and tissues with their
subsequent long-term storage at low temperatures, which
allows them to be free transported and defrosted immediately
before therapeutic use [19]. Determining the optimal condi-
tions for cryopreservation of testicular tissue fragments is
crucial for further restoration of fertility. It is known that
freezing-thawing leads to a decrease in antioxidant protec-
tion of biological systems that causes the damage of the cell
membrane integrity and activation of apoptosis and necrosis
[20]. Free radicals initiate the processes of lipid peroxidation
and inhibit mitochondrial enzymes of the respiratory chain,
ATPase activity, etc. [21]. Interaction of highly reactive
hydroxyl radicals with polyunsaturated fatty acids causes sig-
nificant damage to cells and tissues, which in turn leads to
increased permeability of cell membranes [22].

Thus, this research was aimed at comprehensively study-
ing the effect of different concentrations of fullerene C60 on
the antioxidant capacity, apoptotic/necrotic processes, and
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Figure 5: CrFSTT of immature rats after incubation in the media with fullerene С60. (a) Immunohistochemical staining for MAGE-B1, light
microscopy. Notes: Sg: spermatogenic cells positively stained byMAGE-B1 (brown color); (b) relative amount of MAGE-B1+ cells; (c) average
cell density of spermatogenic epithelium. Notes: Adifference is significant versus the control (p < 0:05); Bdifference is significant versus C60_
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morphological characteristics of CrFSTT of immature rats.
One of the important conditions for manifestation of the bio-
logical effect of fullerene C60 is their interaction with cell
membranes. The C60molecule is characterized by the hydro-
phobic properties and affinity to the biological membranes.
Fullerenes can affect cellular membranes both through
adsorption on the surface and through incorporation into
the lipid bilayer [23]. The authors [24] reported that C60 in
the concentration of 10-5M is able to penetrate the bilayer
lipid membrane (phosphatidylcholine-cholesterol (1 : 1))
locally increasing its conductivity. In addition, the authors
[25] showed that molecules of fullerene C60 are connected
predominantly with the mitochondria inside the cell. And
this is very important because the mitochondria are very sus-
ceptible to oxidative damage due to large amounts of patho-
genic mutant mtDNA can accumulate in the testis resulting
mitochondrial respiratory dysfunction in spermatogenic cells
that ultimately induces meiotic arrest and abnormalities in
sperm morphology [26].

4. Conclusions

Our results demonstrated that 10 and 15μg/mL C60 simi-
larly affected TAS activity and ROS generation, but the use
of fullerene C60 at concentration of 15μg/mL led also to an
increase in the activity of mitochondria, to a decrease in cyto-
chrom C release, and to an increase in the cell density in his-
tological section. Furthermore, all studied concentrations of
fullerene C60 did not lead to significant changes in the level
of processes of apoptosis in cells from CrFSTT of rats. At
the same time, it should be noted that the percentage of living
cells after incubation with 15μg/mL C60 was higher and a
value of necrotic ones was lower than in the control samples.
In our study, the fullerene C60 regardless of concentration
had no effect on the relative amount of MAGE-B1+ cells in
CrFSTT of rats but at a concentration of 15μg/mL reduced
the degree of histological damage of spermatogenic epithe-
lium. So, the general analysis of obtained data showed that
the fullerene C60 can be used for rehabilitation of CrFSTT
and it is the most optimal in the concentration of 15μg/mL.
The results can be used for the development of an effective
rehabilitation medium for CrFSTT using C60. These findings
relate to the applied nanotechnology in its extension to
reproductive medicine.
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