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The cyber security protection has gone through a rapid de-
velopment in today’s internet connected world. With the wide
application of the booming technologies such as the Internet
of Things (IoT) and the cloud computing, huge amount of
data are generated and collected. While the data can be used
to better serve the corresponding business needs, they also
pose big challenges for the cyber security and privacy pro-
tection. It becomes very difficult if not impossible to discover
the malicious behavior among the big data in real time. Thus,
this gives rise to the cyber security solutions which are driven
by Al-based technologies, such as machine learning, statistical
inference, big data analysis, deep learning, and so on. Al-
driven cyber security analytics has already found its appli-
cations in the next generation firewall which includes the
automatic intrusion detection system, encrypted traffic
classification, malicious software detection, and so on. In the
area of cryptography, Al-driven solution starts to help the
researchers optimize the algorithm design and can largely
reduce the cryptanalysis effort such as searching the differ-
ential trails which is crucial in differential cryptanalysis.
Recently, the idea of generative adversary network was ap-
plied to building the automatic encryption algorithm, which
makes a first move towards making an intelligent protection
solution without the interference of the human effort. On the
contrary, individual’s privacy is under threat given the Al-
based systems. The rise of Al-enabled cyberattacks is expected
to cause an explosion of network penetrations, personal data
thefts, and an epidemic-level spread of intelligent computer
viruses. Thus, another future trend is to defend Al-driven
attacks by using Al-driven techniques, which will possibly
lead to an AI arms race. Al-driven security solution is one of
the fastest growing fields which bring together researchers

from multiple areas such as machine learning, statistics, big
data analytics, and cryptography to fight against the advanced
cyber security threats. The purpose of this special issue is to
present the cutting-edge research progress from both aca-
demia and industry, with a particular emphasis on the new
tools, techniques, concepts, and applications concerning the
Al-driven cyber security analytics and privacy protection. A
brief summary of all the accepted papers is provided as
follows.

In the paper by Y. Zhao et al., a novel feature extraction
method of hybrid gram (H-gram) with cross entropy of
continuous overlapping subsequences was proposed based
on the dynamic feature analysis of malware, which imple-
mented semantic segmentation of a sequence of API calls or
instructions. The experimental results showed that the
H-gram method can distinguish the malicious behaviors and
is more effective than the fixed-length n-gram in all four
performance indexes of the classification algorithms such as
ID3, Random Forest, AdboostM1, and Bagging.

The paper by T. Hu et al. proposed a user authentication
method based on mouse biobehavioral characteristics and
deep learning, which can accurately and efficiently perform
continuous identity authentication on current computer
users to address insider threats. An open source dataset with
ten users was applied to carry out experiments, and the
experimental results demonstrated the effectiveness of the
approach. The proposed approach can complete a user
authentication task approximately every 7 seconds, with a
false acceptance rate of 2.94% and a false rejection rate of
2.28%.

In the paper by G. Huang et al., the algorithm MFS_AN
(mining fault severity of all nodes) was proposed to mine the
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key nodes from the software network. A weighted software
network model was built by using functions as nodes, with
relationships as edges, and times as weight. By exploiting the
recursive method, a fault probability metric FP of a function
is defined according to the fault accumulation characteristic,
and a fault propagation capability metric FPC of a function is
proposed according to the fault propagation characteristic.
Based on the FP and FPC, the fault severity metric FS was put
forward to obtain the function nodes with larger fault se-
verity in the software network. Experimental results on two
real] software networks showed that the algorithm MFS_AN
can discover the key function nodes correctly and effectively.

The paper by H. Park proposed the Secure Information
Sharing System (SISS) model with the main method as a
group key cryptosystem. SISS figured out important prob-
lems of group key systems. (1) The newly developed equa-
tions for encryption and decryption can eliminate the re-
keying and redistribution process for every membership
change of the group, keeping the security requirements. (2)
The new 3D stereoscopic image mobile security technology
with AR (Augmented Reality) solved the problem of con-
spiracy by group members. (3) SISS used the reversed one-
way hash chain to guarantee Forward Secrecy and Backward
Accessibility (security requirements for information sharing
in a group). It showed that the security analysis of SISS
according to the Group Information-sharing Secrecy and
experiment on the performance of SISS. As a result, SISS
made it possible to securely share sensitive information from
collaborative works.

The paper by Y. Zhao et al. addressed the problem of
CCA secure public key encryption against after-the-fact
leakage without NIZK proofs. To obtain security against
chosen ciphertext attack (CCA) for PKE schemes against
after-the-fact leakage attack (AFL), previous works followed
the paradigm of “double encryption” which needs non-
interactive zero knowledge (NIZK) proofs in the encryption
algorithm. This paper presented an alternative way to
achieve AFL-CCA security via lossy trapdoor functions
(LTFs) without NIZK proofs. Formalization of definition of
LTFs secure against AFL (AFLR-LTFs) and all-but-one
variants (ABO) was given. Then, it showed how to realize
this primitive in the split-state model. This primitive can be
used to construct an AFLR-CCA-secure PKE scheme in the
same way as the method of “CCA from LTFs” in traditional
sense.

In the paper by J. Ren et al., a software buffer overflow
vulnerability prediction method by using software metrics
and a decision tree algorithm was proposed. First, the
software metrics were extracted from the software source
code, and data from the dynamic data stream at the func-
tional level were extracted by a data mining method. Second,
a model based on a decision tree algorithm was constructed
to measure multiple types of buffer overflow vulnerabilities
at the functional level. Finally, the experimental results
showed that the method ran in less time than SVM, Bayes,
adaboost, and random forest algorithms and achieved
82.53% and 87.51% accuracy in two different data sets.

In the paper by S. Zhao et al., a three-layer classifier using
machine learning to identify mobile traffic in open-world
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settings was proposed. The proposed method had the ca-
pability of identifying the traffic generated by unconcerned
apps and zero-day apps; thus, it can be applied in the real
world. A self-collected dataset that contains 160 apps was
used to validate the proposed method. The experimental
results showed that the classifier achieved over 98% pre-
cision and produced a much smaller number of false pos-
itives than that of the state-of-the-art.
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In leakage resilient cryptography, there is a seemingly inherent restraint on the ability of the adversary that it cannot get access to
the leakage oracle after the challenge. Recently, a series of works made a breakthrough to consider a postchallenge leakage. They
presented achievable public key encryption (PKE) schemes which are semantically secure against after-the-fact leakage in the
split-state model. This model puts a more acceptable constraint on adversary’s ability that the adversary cannot query the leakage
of secret states as a whole but the functions of several parts separately instead of prechallenge query only. To obtain security against
chosen ciphertext attack (CCA) for PKE schemes against after-the-fact leakage attack (AFL), existing works followed the paradigm
of “double encryption” which needs noninteractive zero knowledge (NIZK) proofs in the encryption algorithm. We present an
alternative way to achieve AFL-CCA security via lossy trapdoor functions (LTFs) without NIZK proofs. First, we formalize the
definition of LTFs secure against AFL (AFLR-LTFs) and all-but-one variants (ABO). Then, we show how to realize this primitive
in the split-state model. This primitive can be used to construct AFLR-CCA secure PKE scheme in the same way as the method of

“CCA from LTFs” in traditional sense.

1. Introduction

In the past two decades, physical attacks which are capable
of getting access to partial information of the secret state
have become a serious threat to the security of crypto-
graphic algorithms in practice. These attacks have moved
far beyond the scope of traditional cryptography with an
inherent assumption that no information of the secret key
is leaked. Up till now, the branch of cryptography to treat
this issue is highly motivated, which is called leakage re-
silient cryptography.

The first step to address leakage resilience systematically
is formalizing the leakage attack in the traditional security
notion. There are already several models in the existing
works which describe leakage in different ways. Akavia et al.
[1] modeled the leakage as the bounded output of an ar-
bitrary function of secret states (bounded/relative leakage).
Naor and Segev [2] presented an alternative description to

allow leakage without length restriction. They measured the
leakage by the induced decrease of the minimum entropy of
the secret (noisy leakage). Under these formulations, some
leakage resilient primitives are successfully designed, in-
cluding signature schemes [3-5] and key agreement protocol
[6, 7].

However, in the area of public key encryption (PKE),
there is an inherent restriction in the security notion.
Semantic security is always defined to be the in-
distinguishability of the challenge ciphertext issued by an
adversary in a game with a challenger answering different
types of queries from the adversary. The full-fledged def-
inition for leakage resilience allows the adversary to query
the leakage oracle after the challenge. This means an ad-
versary could design its leakage function via the in-
formation of challenge ciphertext. For instance, in the
bounded leakage model, an adversary could encode the
challenge and decryption algorithm together to recover the
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whole message via leakage queries if its length is shorter
than the bound. Most existing works, such as [1, 2, 8-10],
beg this technical difficulty with a weaker security defini-
tion, which only admits prechallenge leakage queries. But
in practice, after-the-fact leakage is really feasible because
many cryptographic devices are portable so that the attack
can be launched at any time.

Halevi and Lin [11] made an effort to treat after-the-fact
leakage (AFL) directly. As classic semantic security is im-
possible under postleakage attack, they choose to put an-
other limitation instead of ignoring it. They require that the
adversary can only get access to different parts of the secret
via leakage independently, not as a whole. This “split-state”
leakage was also defined and applied in the setting “com-
putation leaks only” [12]. This restriction is meaningful
because it is feasible to store secret fractions in different
locations. They introduced the notion of “entropy leakage”
to capture after-the-fact leakage. This concept states that the
leakage should not be used to obtain more information than
itself. This is an essential property for a postchallenge
leakage. They showed that constructions from the hash proof
system like that in [2] meet the requirement of security
against entropy leakage. And they gave the first after-the-fact
leakage resilient (AFLR) encryption scheme secure against
chosen plaintext attack (CPA) by combining two instances
of entropy leakage resilient schemes. Then, Li et al. presented
identity-based encryption secure against postchallenge
leakage attack [13]. Yang and Li considered this problem for
the key exchange protocol [14].

Since security against chosen ciphertext attack (CCA) is
a well-accepted standard for encryption schemes, some
subsequent works aimed to achieve this goal against AFL.
Zhang et al. [15] followed the classic Naor-Yung paradigm
[16] to give a construction with simulation sound non-
interactive zero knowledge (NIZK) proof. Chakraborty et al.
[17] presented a more efficient construction with true
simulation extractable NIZK proof. Fujisaki et al. [18]
considered the multichallenge setting as well as the leakage
from randomness. There are indeed more techniques to
obtain traditional CCA security, but few existing works
secure against AFL attacks have been proposed.

Lossy trapdoor functions: besides double encryption
paradigm [16] and hash proof system [19], there is another
approach to achieve CCA security, via a powerful primitive
called lossy trapdoor functions (LTFs). Since its appearance
[20], this primitive has been widely applied in many areas.
The CCA secure encryption schemes based on LTFs get rid
of the burden from NIZK proofs so that it is more efficient
than those which need NIZK proofs. Also, LTFs have
brilliant properties to extract statistical entropy from
computational indistinguishability between two working
modes. So LTFs have its nature to play an important role in
leakage resilient cryptography. Some prior works already
tried this way. Qin et al. [8] designed an invariant called the
lossy filter to replace the universal-2 part in HPS-based
schemes and achieved better leakage rate. More directly,
Qin et al. [21] attempted to construct LR-LTFs, but their
result can only be proven secure in a weaker model in
which the adversary can get access to entire public key after
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leakage queries. Chen et al. proposed an advanced version
of lossy function with its application in leakage resilience
[22].

1.1. Our Contribution. In this work, we demonstrate that
AFLR-LTFs and ABO invariants can be constructed in the
split-state model and then can achieve AFLR-CCA security
without NIZK proofs either. First, we formulate the notion
of AFL secure LTFs. Then, we realize this primitive from
AFL CPA secure PKE schemes. To overcome the technical
difficulty that most randomness extractors and the un-
derlying PKE schemes do not have homomorphic property
which is essential for this use, we refine a AFLR randomness
extractor from the BHHO PKE scheme [21, 23] with this
property. Thus, with an AFLR-LTF and an AFL-ABO-LTF,
we can follow the approach in [20] to achieve CCA security.
Furthermore, our construction is easy to be used to con-
struct chameleon AFL-ABO-LTFs [24] for a more efficient
CCA secure realization.

1.2. Organization. The remaining part of this paper is or-
ganized as follows: the basic definitions and tools we need is
shown in Section 2. In Section 3, we build a step stone before
arriving to the final step: a two-source extractor in the 2 split-
state model. Then, we present AFLR-LTFs in Section 4 and
an AFLR PKE scheme based on them in Section 5, re-
spectively. The final scheme is interpreted in a black box
manner from AFLR-LTFs. The security of the final scheme
can be reduced to the security of AFLR-LTFs.

2. Preliminaries

2.1. ABO Lossy Trapdoor Functions. A collection of LTFs is
a collection of publicly computable functions which are
indexed by a set of public key {s}. Every public key is as-
sociated with a branch which is used to generate the key.
There are two kinds of public keys. Functions indexed by one
kind are injective, while functions indexed by the other have
a smaller size of image than that of domain. We called the
branch according to the former “injective branch” and the
other “lossy branch.” “Lossy” means the image of the
function working on these branches loses part of the in-
formation of the preimage. We use a generalized notion to
incorporate exponential lossy branches. Let {B,} denote
a collection of branch sets and {B}} denote the corre-
sponding collection of lossy branch sets. We recall the
definition of ABO-LTFs [20] below. If {B,} contains two
elements only, it is just the standard LTF.

n

Definition 1. A collection of (1, k) ABO-LTFs is composed
of 3 probabilistic polynomial time (PPT) algorithms:

Gupo: take A € N and b* € By as input and output
(s, td, By), where s is a function index, td is its trapdoor,
and Bj is the set of lossy branches that b* € By.

F,., and F : for any b € B,/B;, F,, (s, b, ) computes
an injective function f, (-) over the domain {0, 1} and
F (s,b,-) computes f;é(-). Foranyb € By, Fy,, (s, b,")

abo
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computes a function f,(-) over the domain {0, 1}"
whose image size is at most 2.

There are two security requirements for ABO-LTFs.
Index indistinguishability: the ensemble s«— G, (A,b;)
and s «— Gy, (A, by) are computationally indistinguishable.
Lossy branch hidden: any PPT adversary o which takes
(s,b) as input, where (s,td,B*) «— G, (A,b*) has only
a negligible probability to find a b’ such that b'#b and
b’ € B*. And even b € B*, and the adversary could not find
one either.

2.2. Randomness Extractor

2.2.1. One Source

Definition 2. A randomized algorithm Extl: % — {0, 1}"
is a (y, ¢) extractor if for all (X, Z) that is distributed on #
and H, (X |Z) >u, (Z,S,Extl (X;9)) = (Z,5,U,), where
U, is a uniform distribution over {0, 1}” and S is called seed
which is the coin of Extl.

The parameters of the concrete extractor used need to
satisfy the condition that v<u —2log(1/¢) — 1. Generally,
pair-wise independent hash functions are used to realize
extractors.

2.2.2. Two Source

Definition 3. A two-source extractor does not rely on

random seeds but extracts randomness from two in-
dependent  sources. A  randomized  algorithm
Ext2: () — {0,1}" is a (u,€) extractor if for all
(K,K,,Z) where K,andK, are distributed on %# and
have minimum entropy u conditioned on Z,
(Z,Ext(K|,K,)) = ,(Z,U,).

2.3. AFLR-CPA Secure PKE

2.3.1. Entropy Leakage Resilient PKE. The definition of
entropy leakage resilience stresses that the leakage after
challenge cannot be amplified. This fact is captured by
a simulator, which interacts with the adversary in an in-
distinguishable manner to the real setting. Formally, we first
set some parameters: k is the minimum entropy that the
message source M has, [, denotes the leakage after chal-
lenge, and § is an overhead parameter which comes from the
statistical distance that the extractor deviates from uniform
distribution.

Definition 4. A PKE scheme IT is entropy leakage resilient if
there exists a simulator Sim such that, for every PPT ad-
versary </, the following two conditions hold:

1) (M, Viewl)) = (M™, Views™

(2) Hy (MS™ | ViewSim) > k — | 0

post

2.3.2. After-the-Fact Leakage Resilience. Semantic security
against AFL is defined by a game between a challenger and
an adversary just the same as normal CPA game, except

that the adversary is allowed to issue leakage query before
and after challenge. The semantic security requires that
the adversary can still not win with nonnegligible ad-
vantage in this setting. The CCA security is define
analogously.

An AFLR-CPA-secured PKE scheme in the 2 split-state
model can be constructed via combination of two instances
of an entropy leakage resilient PKE scheme and a two-source
extractor. Specifically, given two entropy leakage resilient
PKE schemes II;, = (Gen,, Enc;,Dec;) and II, = (Gen,,
Enc,, Dec,), a semantic secure scheme against a posthallenge
leakage can be defined as Gen = (Gen;, Gen,), Enc(m;
r1,1,) = (¢; = Ency (r1), ¢, = Enc, (r,), Ext2(r,,r,) @m) = ¢,
Dec(c) = ¢ ® Ext2 (Dec, (¢,), Dec, (c,)). The security proof
for this construction is in [11].

2.4. Homomorphism. A function is called homomorphism if
the operation between elements in the domain preserves its
structured functionality between elements in the range. For
instance, let “+” denote the operation in the domain, “” denote
the operation in the range, and f: A — B be the function.
The property can be represented as f (x + y) = f(x)- f(y),
which can induce f (ax) = f(x)".

2.5. DDH Assumption. Given a cyclic group G with order ¢
which is a big prime number, f and h are random elements
in G and then (f,h, f,h") and (f,h, f",h") are compu-
tationally indistinguishable for randomly chosen r and r'.
Following a hybrid argument, this result can be extended to
vector situation: (g, f1,..., fi, k..., h) and (g, f7,
.o» fI,h],..., b)) are computationally indistinguishable
for randomly chosen r and r'.

2.6. 2 Split-State Model. 'This model is introduced in [11] to
incorporate postchallenge leakage resilience. This model
puts one more restriction than the ordinary security
model against leakage attack that an adversary cannot
issue leakage queries on the whole secret state but two
separate parts. This means, instead of a leakage function f
on sk, the adversary can only issue queries f; on sk; and
f, on sk,.

2.7. Notations. Throughout this paper, we build our con-
crete construction on quadratic residue subgroup of the
cyclic group with order N2. So we present all the parameter
settings here. Let G denote a group of order N* where N is
a Blum integer, G, the subgroup of G* with order
(p—-1)(g—1)/4, n the security parameter, A the length of
leakage, and set I =2 + (A + 2(log1/¢)/log N — 3) for some
negligible e.

Note that DDH assumption also holds in G,.

Also, we define the multiple computation and expo-
nential computation of a vector as xy = (x,...,x,)
ey = (5 y15 -5 x,,) and X" = (xp,...,x,) =

(x5 ,x)).



3. Homomorphic and Leakage Resilient
Randomness Extraction

In general, the keyed randomness extractor in leakage re-
silient setting is initiated with universal hash functions
which do not incorporate homomorphic property. However,
it is quite vital in our scheme. So we refine an extractor from
a variant of BHHO scheme [21] which meets our re-
quirement and leads to a construction of homomorphic two-
source extractor.

3.1. One-Source Leakage Resilient Extractor. An extractor
can be constructed as follows with abovementioned
parameters:

Gen: choose f|, f,,..., f; € G,. The evaluation key is
set to be pk= (N, f1, fo, -5 f1)-

Ext: for any x = (x;,x,,...,x;) sampled from source
Zy_y4 choose 1 € Zy_,,,, compute public random

seed u; = fl,uy=f5,...,u = f], and f = Hmf;-

Then, the extracted randomness is Ext (x;r) = 1“

Following [21], R is distributed negligibly close to
uniform even subject to A bits leakage and published f.

Homomorphic property: we observe that Ext (x;7)" =
Ext (x; ar). So this extractor has homomorphic random
seed.

3.2. Two Sources in 2 Split-State Model. Given the same
parameters as above, we can present our publicly com-
putable two-source extractor in 2 split-state model.

Gen: choose f, f5,.. ., fhy, hys ..o by € G, The eval-
uation key is set to be pk= (N, f, f2 .- -» Iy hy,
S hy).

Ext2: for any x = (x;,%,,...,%;) and y = (yy, ¥,
..» yy) sampled from source Zy_,,4, chooser € Zy_, 4,
compute public random seed u; = f1,u, = f5,...,

= fio vy = By = Koy = and f = [T, £
and h=T1[. 1hy ". Then, the extracted randomness is
Ext2(x, y) = [[_,uv)".

Theorem 1. The construction above is a (logN —3 —A,¢)
two-source extractor against A bits leakage under DDH
assumption.

Proof. We prove this theorem via hybrid argument through
games between a challenger and an adversary as follows:

Game0: the game proceeds as the real game. The
challenger chooses pk = (N, f1, fo ..o frh, by,
h;) and responds queries from the adversary as the
algorithm.

Gamel: in this game, the only change is that challenger
computes the public random seed with two random-
ness r and r', which is u, = f{,u, = fz,...,ul 11,
vy =h,v, :hg,...,vl:hlr and f =[], f" and
h=TTL =
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Lemma 1. The view of adversary is indistinguishable between
Game0 and Gamel assuming DDH problem is hard.

Given a DDH instance (g,, g,, A = g}, z), the challenger
can simulate the game by letting (f; =g, f> =91

S fi=g7) and (hy =gy, h, = g%, ..., h = g3') where

(X1, ...>Xp Y15 ... ¥) are chosen randomly. In the challenge
query, the challenger computes the public randomness as
u = A u,=A%.. ,u =A% v, =2 v,=2",..,
v; = 221, The challenger can answer leakage queries because it
chooses secret key itself.

If the adversary can tell which game he is playing with
nonnegligible advantage, then we can conclude that z = g,
which breaks the DDH assumption.

Lemma 2. The output is distributed negligibly close to
uniform.

In Gamel, the output can be seen as the multiplication
of two-independent leakage resilient one-source extractors
in the 2 split-state model. For [ =2+ (A +2(log(1/¢))/
log N — 3) where ¢ is negligible, the output is the multi-
plication of two variables which are both distributed ¢ close
to uniform. Thus, it is at least distributed € close to uniform
itself.

Combing lemma 1 and lemma 2, the construction above
is a two-source extractor against A bits leakage under DDH
assumption in the 2 split-state model.

4. AFLR-LTFs in 2 Split-State Model

In this section, we formulate the notion of AFLR-LTFs in the
2 split-state model and give concrete constructions of its
own and ABO variants.

4.1. Definition. In this model, the secret is divided into 2
parts for storage and leakage attack can only get access to
each part independently but not a function of whole state as
before. This restriction provides the possibility to achieve
AFL resilience.

Definition 5. A collection of 2 split-state ABO-LTFs are
composed of specified algorithms as follows:

G,p,: the generated trapdoor td is divided into two parts
(td;,td,), as well as the index s = (s;,s,). The lossy
branch set Bj is the same as before.

¢ the inversion algorithm consists of two sub-
routines inv, and inv, which take two parts of the secret
as input, respectively. And a combing subroutine f_,
takes as input the output of the two subroutines and

outputs the preimage.

The security notion requires that index indistinguishability
and lossy branch hidden hold even subject to leakage attack.
Note that this requirement is just the same as AFLR PKE
because the adversary could issue leakage queries to check the
lossy branch after it sees the index.
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4.2. A Homomorphic AFLR PKE Scheme in 2 Split-State
Model. Homomorphism is essential to the underlying PKE
schemes for LTFs and CCA security [25]. However, the
generic construction in [11] does not incorporate this
property. But [11] indicated that variants of hash proof
system-based schemes are entropy leakage resilient. So we
use the extractors mentioned in Section 3. We start from
a basic scheme in [21] which is a variant of the BHHO
scheme (and thus hash proof system-based scheme) and
then construct the scheme we need via this one.
The basic scheme is as follows:

Gen: choose x|,%,,...,% € Zy_y14 f15f2r--5f1 €
G,. Let f=][_,f;". The public key is set to be
pk= (N, fi,f2--» f1r f), and the secret key is
sk = (x1,%5, ..., %)),

Enc: given the message m € Zy_ (.4, Choose r €
ZrN_(M) andcompu;[ne (cy=(uy=fLuy=fh.,u =
fi)ea=fr(1+N)").

Dec: given ¢ = (c;,¢,). Compute K=H§=1u;€" and
m = log(c,/K).

The construction is as follows:

Given two instances of the basic entropy leakage scheme
(Gen,, Ency, Dec;) and (Gen,, Enc,, Dec,), we define an
AFLR PKE scheme in the 2 split-state model as follows:

GEN: it includes two subroutines of (Gen,, Gen,). The
outputs are a public key pair pk = (pk;,pk,) and
a secret key pair sk = (sk;, sk,).

ENC: given a message m, it chooses randomness
Xy, %,,r as the input of two subroutines (Enc,, Enc,)
(we use the same randomness r in both encryption
algorithm), and the ciphertext is computed as C =
(C1,Cy,Cy) = ((ch,ed), (3,63), Ext2 (x1, x,) (1 + N)™).
DEC: m = log(C;/Ext2 (Dec, (C,), Dec, (C,))).

Note: discrete logarithm in this case can be easily
computed.

Homomorphic property: ENC? (m; 1) = ENC (am; ar).

Theorem 2. The construction above is a CPA secure scheme
against (1 —O(1))|sk| bits prechallenge leakage and A bits
postchallenge leakage under DDH assumption in the 2 split-
state model.

Proof. Let o/ denote the adversary. We prove the theorem
via a sequence of hybrid experiments as follows.

Game0: the challenger and the adversary proceed as the
normal game. The challenger chooses the secret to
generate public key and respond leakage queries.

Gamel: the only difference from Game0 happens in the
challenge phase. The challenger chooses two in-
dependent randomness r,r, for (Enc,, Enc,) instead
of the same one for both.

Game2: in this game, the challenger generates half of public
key by itself and runs the simulator of one-entropy leakage
resilient instance to get the rest. In detail, the challenger

execute lGenxm generate X, X,, ..., X; € Zy_ (14 PK; =
(f =1L fi>f1>f2---»f) and runs a simulator of

another instance of the basic scheme to receive
pk, = h, by, hy, ..., €G,. The public key is
(N, fi>foeoos fohy,hys ooy, £, h). When the adver-

sary issues a leakage query (leak,,leak,), the challenger
forward leak, to the simulator and receives the answer. The
answer can be merged with the output of leak,; which can
be calculated by itself. In the challenge phase, the challenger
chooses x, and sends it to simulator to get ciphertext
(c3,¢c2). Then, it computes the challenge ciphertext by C =
(Cy,Cy, Cy) = (e}, 63), (€3, ¢2), Ext2 (x1, x,) (1 + N)™).
When the adversary issues a postchallenge leakage query,
the challenger handles like the way in the prechallenge
phase.

Game3: the challenger interacts with o/ via two entropy
leakage resilient simulators. In this game, all the leakage
queries are forwarded to simulators. The challenger
computes Ext2 (x;, x,) (1 + N)™ itself but receives the
rest part of ciphertext from simulators. O

Lemma 3. The views of &/ in Game0 and Gamel are in-
distinguishable under DDH assumption.
This lemma is the same as Theorem 1.

Lemma 4. The views of o/ in Gamel and Game2 are in-
distinguishable following Defintion 4.

Lemma 5. The views of o/ in Game2 and Game3 are in-
distinguishable following Defintion 4.

The above two lemmas hold assuming the property of
simulator.

Lemma 6. In Game3, the challenge ciphertext has distri-
bution negligible close to uniform distribution against (1 —
O(1))Isk| bits prechallenge leakage and A bits postchallenge
leakage.

This can be concluded by the property of the two-source
extractor.

4.3. AFLR-LTFS. Following [25], AFLR-ABO-LTEFS can be
constructed as follows given a homomorphic AFLR-CPA
secure encryption scheme (GEN,ENC,DEC) which we
present above.

PP: choose a branch b as the lossy branch and then run
GEN and ENC(b) = C. The public key is (pk,C), and
the secret key is sk (we do not put b here because the
security is not guaranteed with leaked b, and it can
actually be obtained by decrypting C).

Evaluation f: for any input x, choose an evaluation
branch b', f(x)= (C/ENC(b"))* = ENC((b-b")x).
Output (f(x),b").

Inversion f~': decrypt C to get b and then compute
f' =DEC(f (x))/(b-b").

Security analysis: our construction achieves pre- and
postchallenge leakage resilience more than [25]. Due to



the use of AFLR encryption scheme as the building
block, we can handle leakage query before and after
challenge, which makes the proof similar to the one in
[25]. So we omit the details here.

Indistinguishability: adversary cannot tell the compu-
tation is lossy or not with nonnegligible advantage
because the branch is encrypted with the AFLR en-
cryption scheme. If the branch set consists only two
elements 0 and 1, this construction can lead to
a standard AFLR-LTF which will be used to achieve
CCA security later. If the branch set contains many
branches, the lossy one is also hidden from adversary.

Lossiness: the output has entropy at most log N — 2. So
the lossiness is at least log N — (log N — 2) = 2. These
results can be extended if we use N“ as a module for the
basic encryption scheme.

5. Constructions of AFLR-CCA Secure PKE

AFLR-CCA security can be obtained in a classic way with
a standard AFLR-LTF, an AFLR-ABO-LTF, and an
unforgeable one-time signature scheme. But we prefer an-
other approach via chameleon AFLR-ABO-LTFs. Chame-
leon ABO-LTFs are introduced in [24] which can avoid
using one-time signature. In this variant of LTFs, the lossy
set is denoted as a line rather than points to incorporate
exponential lossy branches. So we give the construction of
chameleon AFLR-ABO-LTFs first.

5.1. Chameleon AFLR-ABO-LTFs

PP: choose d,e, j € Zy_,,, and then run GEN and
ENC(d) =D, ENC(e) =E, and ENC(j)=]. The
public key is (pk, D, E, ), and the secret key is skey;.

Evaluation fqy: for any input x, choose an evaluation
branch (x4, x,), fcoy(x) = (D*E*])* = ENC((dx, +
ex, + j)x). Output (f oy (x), (x4 x,)).

Inversion fcy: decrypt D,E,] to get d,e, j and then
compute fgy = DEC(foy (x))/ (dxy + ex, + j).

The lossy branches are all pairs (x,, x,) that satisfy the
condition dx,; + ex, + j = 0.

5.2. AFLR-CCA Secure PKE Scheme. We can build our
AFLR-CCA secure encryption scheme (&, &,9) by com-
bining standard AFLR-LTFs and chameleon AFLR-ABO-
LTFs as [24].

Z: first generate public parameters for LTF and cha-
meleon ABO-LTF with an AFLR-CPA secure PKE
scheme (Gen, Enc,Dec). Let H be a universal hash
function and & a collision-resistant hash function. The
public key is (pk, pkeyy, H, h, A = Enc(1), D = Enc(d),
E = Enc(e),] = Enc(j)) where d,e,j are randomly
chosen and independently encrypted. Thus, the stan-
dard LTF f (x) = A* and chameleon AFLR-ABO-LTF
Fen (x5 (x4,x,)) = (D¥E*])* are well defined. The
secret key is (sk, skeyy).
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&: for a message m, choose a randomness x, evaluation
branch b randomly, and compute C= (¢, =H
(x)@em,c; = f(x),¢c;, = feu (x:b,h(cy,¢p)), ).

D: given a ciphertext C = (cy, ¢, ¢, b), compute x =
f71(c;) and check whether ¢, = fcy (x;b, h(cy,cy)). If
the output is not L, then output m = ¢, ® H (x).

Theorem 3. Given AFLR-LTFs and chameleon AFLR-ABO-
LTFs, the construction above is an AFLR-CCA secure PKE
scheme in the 2 split-state model against A bits after-the-fact
leakage.

Proof sketch: the case without leakage attack are proven
secure in [24]. The proof goes with a sequence of in-
distinguishable games between challenger and adversary.
The first step is to reject all the decryption queries with lossy
computation by chameleon ABO-LTF. Then, change the
working mode of LTF to be lossy and the decryption queries
can be responded by chameleon LTF on injective branches.
Finally, CCA security is achieved statistically with appro-
priate parameter.

As the underlying AFLR primitives we propose in
Sections 4 and 5.1 can handle leakage queries in both pre-
and postchallenge phase, we can preserve AFLR security if
we use these primitives instead of ones in ordinary case
naturally. Readers can check every step and see the proof
strategy above can still work with additional leakage
attack. O

6. Efficiency in Practice

The generic constructions in previous works [15, 17] need
NIZK system to prove the language that two encryptions
contain the same plaintext. In practice, NIZK proofs secure
in standard model concerns the Groth-Sahai system [26]
which suffers from heavy burden of computations via bi-
linear mappings. Specifically, proving a commitment of
exponential which is only a step stone for proving equal
plaintext requires 4 group elements and verified by 9 pairing
operations. The cost of NIZK for same plaintext may be
dozens of group elements and pairing operations. That is
why existing works did not even give concrete construction
for NIZK-based solutions. This situation is just like “two-
key” generic construction in [16] which is convincing but
not practical until [19] appeared. Our construction comes
from a leakage resilient extension of [19] and achieves CCA
security against postleakage without NIZK just like Cramer
and Shoup [19] did in classic environment.

Specifically, the evaluation key in our scheme can be
processed in precomputation and the encryption algorithm
works by 8! exponential computations. If we want to achieve
80 bit security (¢ = 278) with 1024 bit N, I = 2 + ((A + 160)/7)
against A bit leakage. If we want to encrypt longer plaintext,
we can use larger modulus like N%, a > 2.

We implement our scheme to evaluate its efficiency,
which is based on JPBC 2.0.0 library (http://gas.dia.unisa.it/
projects/jpbc/index.html#. VTDrLSOl_Cw) and coding
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language Java. We select type Al pairings are constructed on
the curve y* = x> + x over the field Zy for some Blum
integer N. The following experiments are based on Dell
laptop (Windows 7 operation system with Intel(R) Cor-
e(TM) i5-2450M CPU 2.50 GHz, 4.00 GB RAM, and 500 G
disk storage). The time cost in real-world experiment for one
encryption is 0.042 s with 1024 bit N.

7. Conclusion and Future Direction

Our work removes the use of zero knowledge proofs which is
not efficient in the construction of AFLR-CCA secure PKE
encryption schemes via the approach of lossy trapdoor
functions. We also present instances of AFLR-LTF and its
variants. An interesting open problem is finding more ef-
ficient PKE schemes with both homomorphic property and
leakage resilience.
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Recently, privacy emerged as a hot issue again, as the General Data Protection Regulation (GDPR) of EU has become
enforceable since May 25, 2018. This paper deals with the problem of health information sharing on a website securely and
with preserving privacy. In the context of patient networks (such as ‘PatientsLikeMe’ or ‘CureTogether’), we propose the
model Secure Information Sharing System (SISS) with the main method of group key cryptosystem. SISS addresses important
problems of group key systems. (1) The new developed equations for encryption and decryption can eliminate the rekeying
and redistribution process for every membership-change of the group, keeping the security requirements. (2) The new 3D
Stereoscopic Image Mobile Security Technology with AR (augmented reality) solves the problem of conspiracy by group
members. (3) SISS uses the reversed one-way hash chain to guarantee forward secrecy and backward accessibility (security
requirements for information sharing in a group). We conduct a security analysis of SISS according to group information sharing
secrecy and an experiment on its performance. Consequently, although current IT paradigm is changing to be more and more
‘complicated; ‘overlapped; and ‘virtualized, SISS makes it possible to securely share sensitive information from collaborative

work.

1. Introduction

Patients around the world want to connect to people who are
suffering from the same symptoms and try to find the best
treatments. These days, there are some online patient websites
for health information sharing such as “PatientsLikeMe”[1] or
“CureTogether”[2], where patients talk about their symptoms
and successful (or failed) experiences. Researchers can also
discover new and better solutions based on the patient-
contributed data.

L1 Problem Identification. The problem is that these kinds
of health data may be sensitive and private information.
Therefore, patients want the sensitive health data to be
protected and managed with safety, and the data to be
revealed to only limited persons. That is, the individuals
right to privacy and control over the circulation of their
information [3]. In particular, privacy emerged as a hot
issue again, as the General Data Protection Regulation
(GDPR) of EU has become enforceable since May 25,
2018.

One of the substantial ways to share patients” informa-
tion and to protect privacy is a group key management
system. However, a group key system has some peculiar
characteristics; the group key should be updated whenever
members leave or join the group. This is called rekeying
and redistribution. These processes need a complicated and
high level of security. Another feature that differentiates an
information sharing system from other general group key
management systems is that leaving members cannot access
the group’s information anymore, but joining members can
access all the previous group’s information to get more infor-
mation for better treatment. Moreover, current members may
conspire with leaving members or other people by revealing
their group key [4].

In this paper, the proposed model SISS (Secure Infor-
mation Sharing System) addresses the above problems in
the context of online patient networks such as Patients-
LikeMe or CureTogether. The main methods are group key
management system, including the newly developed encryp-
tion/decryption algorithm and reversed hash key chain,
and 3D Stereoscopic Image Mobile Security Technology
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(augmented reality technique). Namely, that is the secure
version for the websites which can make people with the same
symptoms share their health information safely and securely.

1.2. Main Goals. The SISS’s principle to manage users’ infor-
mation with safety is that general information should be
presented in plaintexts but sensitive information should be
managed in ciphertexts. The solution for sharing ciphertexts
with users is group key management system. The following is
the main goals of SISS’s group key system.

There Should Be No Processes of Rekeying and Redis-
tribution. Whenever membership-changes (users leaving or
joining groups) happen in the general group key system,
the system should generate a new group key and distribute
the new key to all members very quickly. This process
needs more complicated and secure level of techniques, so
‘rekeying and redistribution’ falls under the hard problem
in group key systems. To solve this problem, we develop
new equations of the encryption and decryption with the
group key. Therefore, SISS has no process of rekeying and
redistribution for membership-changes. To the best of my
knowledge, this is the first trial to eliminate the process of
rekeying and redistribution keeping the security of the group
key.

SISS Guarantees Forward Secrecy and Backward Accessi-
bility. The representative security requirements for general
group key systems are forward secrecy and backward secrecy.
However, the security requirements of SISS to share informa-
tion with group members are forward secrecy and backward
accessibility, not backward secrecy. The reversed hash chain
can guarantee the security properties of SISS.

SISS is Collusion-Resistant with New Technology. In every
group member system, one of the important security prob-
lems is the potential for conspiracy between users and illegal
members. As a solution, SISS proposes a new concept of
3D Stereoscopic Image Mobile Security Technology using
VR/AR technique.

1.3. Methods and Contributions. The main methods and
contributions are listed in detail as follows:

(1) The group key system for encryption and decryption:
Only valid users can share the secret information with their
group keys and pseudonyms. Others (invalid users) cannot
know the contents and ownership for the information: ‘what
about” and ‘whose information.

(2) SISS addresses the security problem with reversed
hash chain and 3D Stereoscopic Image Mobile Security Tech-
nology. And, the newly developed encryption and decryption
algorithms are used for efficiency. It is because the informa-
tion sharing has been and will be highly increased in the
networked collaborative computing environments.

(2.1) Equations for Encryption and Decryption: SISS has
no need for rekeying and redistribution for membership-
changes. The principle of group key generation for each
member is that a fixed master group key is assigned to
each group, and random numbers for each user and every
session are newly generated by applying random numbers
to hash function respectfully, reversedly, and repeatedly s
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times. Thereafter, each random number and the master
group key are combined according to the developed equa-
tion algorithm. Then, a total of five subgroup keys are
generated as each member’s group session key for every
session. Hence, every member has completely different
group keys for each session and each member because of
generating different random number each time. However,
one of the most important things is that the results after
calculation of all other group keys for the developed equa-
tion (for encryption and decryption) are the same as the
result of master group key for encryption and decryption,
which makes it possible for SISS not to have rekeying and
redistribution processes whenever there are membership-
changes.

(2.2) 3D Stereoscopic Image Mobile Security Technology:
It is a new concept of a security solution using VR/AR
techniques against conspiracy. The combination of human’s
facial expressions and gestures which are identified at the
registration time of a legitimate group member (LGM) should
be rendered as a 3D image in the login process to authenticate
a legitimate user. Consequently, the rendering of users’
own facial expressions and gestures can prohibit conspiracy
between users and invalid persons.

(2.3) Reversed Hash Chain: SISS should guarantee for-
ward secrecy and backward accessibility, along with group
key secrecy [5], which are security requirements in group
information sharing system. In SISS, every member’s group
key is generated based on reversed one-way hash chain.
Due to one-way properties of reversed hash function[6], a
leaving member cannot know the next group key (forward
secrecy) but a joining member can know all the previous
keys and information (backward accessibility). Therefore,
SISS is suitable for secret collaborative work and sensitive
information sharing among group members.

(2.4) All Different Random Numbers for Each Member
and Each Session: In SISS system, every member’s group
session key looks like private key because their group key has
completely different values with different random numbers
for each member. Nevertheless, the key plays a role of a group
key, with which every group member can share their sensitive
health information with other members in a group.

(3) Stronger authentication for login: The proposed
model uses LGM (legitimate group member) for stronger
authentication. Moreover, the authentication processes are
mutual, so that the proposed model is secure against spoofing
or masquerading attack.

(4) Scalability to other group project systems and mobile
phone applicability: SISS is scalable to other group project
systems on websites. Although application scenario is about
patient networks on the web, SISS is extendable to other
secure group projects. Furthermore, it is applicable to even
LGM of mobile phones, because the next smartphone will
feature a front-facing 3D laser scanner for facial recognition,
which was the expectation of upcoming iPhone 8 in early 2018
[7] (but Apple released it without 3D laser scanner in late
2017).

(5) Privacy preserving system: SISS can meet the privacy
requirements: pseudonymity (partial anonymity), unlinka-
bility, and unobservability.
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(6) Blinding: In every flow, SISS uses newly generated
random numbers. This masking method does not allow an
attacker to know or to guess real contents correctly.

2. Related Works and Application

2.1. Related Works. In this section, we introduce our main
solution’s research area of group key.

Many researchers have worked on group key in various
views such as group key agreement, exchange, revocation,
and multicast/broadcast. However, this paper only focuses
on the group key application for sharing information among
multiple users. In particular, SISS has a little different
property from the general group key in that the security
requirement of SISS is not backward secrecy (a joining
member cannot know all the previous keys and information)
but backward accessibility (a joining member can know
all the previous keys and information). It is caused by the
different application’s goal from other group key systems,
which can enable current group members to share all their
information securely. That is the reason why SISS is related
to the research area of keyword search schemes for multiuser
setting.

At first, we address the researches about ‘multiuser
setting’ In [8], Park et. al firstly proposed privacy preserving
keyword-based retrieval protocols for dynamic groups (mul-
tiuser setting) based on reversed hash key chain. In multiuser
setting environments like companies and municipal offices,
a server contains heterogeneous documents accessible by
different groups or persons. A leaving member from a group
should not have access to any documents of the group
anymore, that is, forward secrecy. Because a newly joining
member should perform the tasks of the group to which
he belongs, all documents accessible to the group must be
still available and he should be able to obtain all the group
keys, that is, backward accessibility. They accomplished both
security properties with reversed hash key chain. Thereafter,
they made the formal definition for ‘backward accessibility’
firstly in [5], where they proposed two practical group search
schemes in the respect of efficiency in cloud datacenter. As for
the researches not based on reversed hash key chain, Wang
et. al. [9] analyzed Park et. al’s scheme[8] on various views
including security and efficiency. They achieved backward
accessibility for multiple users with public key and Pallier’s
cryptosystem instead of reversed hash key chain. The next
year, Wang et. al proposed another scheme of keyword field-
free conjunctive keyword searches on encrypted data in the
dynamic group setting [10]. In [I1], Li et al. suggested a
new effective fuzzy keyword search in a multiuser system
over encrypted cloud data. This system supports differential
searching and privileges based on the techniques attribute-
based encryption and Edit Distance.

In respect of key-updating and redistribution, there
have been also many researches until now, because group
key’s rekeying and redistribution to all group members are
complicated and hard tasks. Generally, this research area
is divided into four categories: a centralized distribution
scheme, a distributed key agreement scheme, a hybrid group

key management scheme, and a self-healing group key distri-
bution scheme (SGKD). The significant point of centralized
key distribution schemes [12-20] is that a centralized key
management center as a trusted party generates, updates, and
distributes the group keys to all members. As to distributed
key agreement schemes [21-28], all group members partici-
pate in generation, rekeying, and redistribution of their group
keys. Hybrid group key management schemes [29-32] are
about the best use of both schemes: a centralized distribution
scheme and a distributed key agreement scheme. Lastly, a
self-healing group key distribution scheme (SGKD) is for
wireless networks including sensor networks [33-50]. In this
paper, we focus on SGKD schemes because SISS’s application
includes both networks of wired and wireless and SISS has
more relations with SGKD schemes than other schemes.

The main point of self-healing schemes is that group
members can recover the missing session keys without
retransmission of the missing messages from the GM (group
manager). A SGKD scheme is largely divided into four cat-
egories again: polynomial based SGKD (P-SGKD) schemes
[33-37], vector space secret sharing based SGKD schemes
[38-41], bilinear pairings based SGKD schemes [42, 43],
and exponential arithmetic based SGKD (E-SGKD) schemes
[44-51]. P-SGKD and vector space secret sharing based
SGKD schemes are generally known as “not efficient”. A
polynomial secret sharing scheme is the most common
technique, where two types of polynomials are constructed:
the revocation polynomial and the access polynomial. In
[44], Rams et al. pointed out that almost all of the poly-
nomial based SGKD schemes can be converted to E-SGKD
schemes. P-SGKD schemes can be divided into two types
based on using Lagrange Interpolation or not. In [33, 45-
47] E-SGKD schemes are constructed from P-SGKD schemes
with Lagrange Interpolation. The other P-SGKD schemes
without Lagrange Interpolation can be classified into two
types again based on using hash chains or not. Scheme 3
in [48] and Scheme 2 in [49] are E-SGKD schemes trans-
formed from revocation polynomial based P-SGKD schemes
without hash chains. In [50], Gou et. al first proposed E-
SGKD scheme with high efficiency and backward secrecy by
combining dual chains: a traditional hash chain and a key
chain.

2.2. Entities and Application Scenario. SISS has three parties:
users, SM (security manager), and SISS server. SM (security
manager) is a kind of a client, which is granted a special
role of a security manager. SM is assumed as a TTP (trusted
third party) and it is located in front of the SISS server.
SM controls group key and key-related information, all
sensitive information, and all other events with powerful
computational and storage abilities. Figure 1 shows the system
configuration of SISS.

The main participants of SISS are group members who
want to get help through information sharing. The informa-
tion scope is health conditions and patient profile. Mostly, the
health information could be shared but some secret personal
data in patient profile should be revealed to the allowed
people only.
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FIGURE 1: The configuration of SISS.
With the mobile devices or PC, Secure Information (1) SysPrm( 1¥):  Parameter ~Generation algorithm

Sharing System (SISS) is constructed for online website
patients with any disease all over the world. The needs are
as follows: Many patients want to get in such kind of patient
networks and to be helped more easily and securely. Each
member uploads his/her conditions or information to his/her
personal ciphertext pages (for sensitive data) or plaintext
pages (for public data).

One more important thing is that the augmented reality
(AR) technique of 3D image rendering is applied to external
devices. The rendered image is selected from the contents-list
consisting of the randomly repeated and rearranged human’s
facial expressions and gestures. As the first process, every user
should register at SM; thereafter they should get through the
authentication processes every session and then they start
some actions. When some sensitive information is shared
with other patients (it means that the ciphertext pages are
generated), we know the page is encrypted by the groups
encryption key. Only the legitimate users (who registered at
SM and kept the information given by SM at their devices for
authentication) can pass authentication processes and know
the sharing information. In the last step of the authentication,
3-dimensional image is rendered. This image can be called a
legitimate group member.

3. Preliminaries

3.1. Notations. The notations for SISS are explained in Table 1.

3.2. Algorithms for SISS Model. A SISS model consists of the
following eight algorithms.

SysPrm takes as an input a security parameter k and
produces a system parameter A.

(2) KeyGen(A): Taking A as input, Key Generation algo-
rithm KeyGen produces group session random num-
bers set RH, group member keys set K, and member
pseudonym keys set P.

(3) InfGenStr(A,RH, K, P): Taking A, RH, K, P as
input, Information Generation and Storage algorithm
InfGenStr produces LGM (legitimate group mem-
ber) and other information for authentication.

(4) Q,(RH,K,P): Given RH, K, P, Query algorithm
produces Query Value Q,.

(5) V,-Q,(Q,). Given Q,, Verification algorithm verifies
Q,, and Query algorithm produces Query Value Q,.

(6) V,(Q,): Given Q,, Verification algorithm verifies Q,.

(7) EncUp(M): This algorithm encrypts and uploads
message M.

(8) DnDec(M): This algorithm downloads and decrypts
message M.

3.3. Security Building Blocks and Model

Definition 1 (one-way hash chain). Itis generated by selecting
the last value at random and applying it to one-way hash
function h repeatedly. The initially chosen value is the last
value of the key chain. Following are two properties of one-
way hash chain.
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Property 2. Anybody can deduce the earlier value k; belong-
ing to the one-way key chain with the later value k; by

checking b/~ (k ) which equals k; with the later value k;.

Property 3. Given the latest released value k; of one-way key
chain, an adversary cannot find a later value k]- such that

Wi (k ;) equals k;. Even when value k;, | is released, the second
preimage collision resistant property prevents an adversary
from finding k;,, different from k;,, such that h(k;,,) equals
k; [6].

Remark. We call property 1 of one-way hash key chain
‘backward accessibility” and property 2 ‘forward security’.

Definition 4 (PRF (pseudorandom function) ). We say that
‘F: Ky x X — Yis (t,q,e)-secure pseudorandom function’
if every oracle algorithm A making at most g oracle queries
and with running time at most ¢ has advantage Adv, <
e. The advantage is defined as Adv, = |Pr[Afe = 1] -
Pr[A® = 1]| where g represents a random function selected
uniformly from the set of all maps from X to Y, and where
the probabilities are taken over the choice of k and g [51].

Definition 5 (PRG G, (pseudorandom generator) ). We say
that ‘Gr : Kg — S is a (t,e)-secure pseudorandom
generator’ if every algorithm A with running time at most ¢
has advantage Adv, < e. The advantage is defined as Adv, =
|Pr[A(Gr(Ux,_)) = 1] = Pr[A(Us) = 1]|, where Uy, Ug are

random variables distributed uniformly on K, S [51].

Definition 6 (DDH (decisional Diffie-Hellman) ). Let G be
a group of prime order g and g a generator of G. The
DDH problem is to distinguish between triplets of the
form (g%, g%, g™) and (g% g, g°), where a, b, ¢ are random
elements of {1,...,q — 1}.

Definition 7 (collusion resistance). The leaving member Ul.l €
G (1<i<mnl<l<l <s)colluding with the members
in the after sessions Ui], e G (1<i < nj > Ui+ i)
i ' L ) )
cannot recover KG{ even knowing {e;, K;;} and {ocf,,KG;,}

[50], where Gisa group G at [-th session.

Definition 8 (security game ICR-IS). (Indistinguishability
of Ciphertexts from Random Bit Strings in Information
Sharing)

Setup. The challenger C creates a ciphertext set B of m
pages € {CP,} € {B,} (1 <i < mn1 <t < T)and gives
this to the adversary A. A chooses a polynomial number
of subsets from B. This collection of subsets is called B*;
C runs algorithm SysPrm, KeyGen, Inf GenStr and encrypts
each subset running algorithm Q,, V,Q,,V,, EncUp. Finally,
C sends A all ciphertexts with their associated subsets.

Queries. A may request the encryption EncUp(B*)) of any
B and any verification V.

Challenge. A chooses a By, and its subsets such that none
of the algorithms (Q,,V,Q,,V,) given in the step Queries
distinguishes B, from B, = rand(B,). The challenger C

TABLE 1: Notations.

SM  Security Manager

Kg the group keys set of group G
G, the t-th group
T the total number of groups in a SISS server

mK,  the master group key of group G

CPZt the j-th ciphertext-page of a member i in a group ¢

n the total number of group G’s members

sn session number

m the total number of ciphertext-page CP

Utj . amember i of the t-th group in the j-th session
a group session key for each member i of t-th group G, in
the j-th session

Kg/

v sK] |, sK,,sK};, sK],, sK/: five subkeys for a group
session key K/ of a member i in group G

random number of member i in the j-th session

pseudonym of member i in the j-th session
h(-) hash function
h(x)

f()  pseudorandom function

the value hashed t-times for x

stereoscopic image information for 3D real model of

s! R ;
i member i in the j-th session

R, arendered image of S;

Encryption function

E
D Decryption function
M

a message

chooses a random bit b and gives EncUp(B,) to A. A
again asks for encrypted pages and their verifications with
the restriction that A may not ask for the algorithm that
distinguishes B, from B;. The total number of ciphertexts and
verifications is in k.

Response. A outputs b, € {0,1}. If by = b, A is successful.
In security game ICR-IS, adversary’s advantage is defined as

Adv(1%) = |Pr[b, = b] - 1/2].

3.4. Legitimate Group Member (LGM) . Every user (member)
registers at SM with the contents-list which is the combina-
tion set for gestures and facial expressions of the user. All
the gestures and facial expressions are randomly repeated
and rearranged in the contents-list. Then, the user keeps the
contents-list in their device for later authentication. S{’i is put
as the stereoscopic image information for the gesture and
facial expression of the member 7 of group t at the j-th session.
Every session, SM selects one of the combinations of gestures
and facial expressions from the contents-list and challenges
the member of the group. Then, the member renders his own

gesture and facial expression for S/ .

4. Construction of SISS Model

In this section, SISS is constructed by using the eight algo-
rithms described before. This SISS model is divided largely



into four processes: system setting, registration, authentica-
tion for login, and action. The whole process is shown in
Table 2 and the details are addressed in Section 4.1.

4.1. System Setting

4.1.1. SysPrm(1%) Construction. The basis of security system
SISS is established.

(i) Input; k: a security parameter.
(ii) Output;A = f(-),h(:),G, g,G,,n, j,i, E,D: system

parameters’ set.

f: (0,1} x {0,1}* — {0, 1}¥is a pseudorandom function
and h : {0,1}* — {0, 1}k is a one-way hash function. G,
is a pseudorandom generator. G is a group of order g which
is a large prime. g is a generator of a group G, n is the total
members of group G, j is the session number, and i is each
member of group G. E and D are encryption and decryption
function.

4.2. Registration. The registration process consists of two
algorithms: KeyGen(A), Inf GenStr(A, RH, K, P).

4.2.1. KeyGen(A) Construction. Key materials are generated.

(i) Input; A.

(ii) Output;RH(group session random numbers set),
K(group members keys set),
P(pseudonym keys set).

(1) Group Session Random Numbers RH: Reversed One-Way
Hash Chain. It is assumed that the total number of sessions is
s. For every member i, each different random number ocf 1<
i < n) is generated for the last session. Here, each «; is applied
to one-way hash function (s — 1) times repeatedly to generate
all sessions’ random numbers and, respectively, for each user
as follows.

«;, (randomly generated)

h(eg) = o

h(a) = o = 1 (af)

)

Therefore, the first session’s random number of member i is
o] and the t-th session’s random number of member i is o :
W) = of = " (e)).
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With these different random numbers, we can make all
different group keys for each member and each session,
respectively.

One-way hash function h(-) plays the important role in
group information sharing. One-Way hash chain is generated
by randomly selecting the last value, which is repeatedly
applied to one-way hash function A(-). The initially selected
value is the last value of the hash chain. One-way hash chain
has two properties as mentioned in Definition 1in Section 3.
Therefore, the two properties make it possible that a leaving
member cannot compute new keys after leaving the group
and any newly joining member can obtain all previous keys
and information through applying the current key to hash
function h(-) repeatedly.

(2) Group Keys Set K. It is assumed that there are ‘#” members
of the group ‘G, and the group session keys for each member
i of group G are {Kg/} (1 < i < m1 < j < s). Here,
j is a session number and s is the last session. The each
member i’s group key K/ consists of totally five subkeys;
sKil, sKl.J,z, sKl.]ﬁ, sKi]A, sKis. SM selects the master group key
mK, of group Ge {G,}, t > 1 and generates a random
number to blind the master key in five subkeys, which is the
way to construct a group member’s session key and, therefore,
the last session group key K;; of user i.

sK;y = h(mK, ) o,

sKiy =h (ng) Tk, (ng) (1-a),

sKiy = g/ ™, 2)

sKis,4 =- (h (ng) + ocf) ,

uss = meg (ng) o

The generation principle of group keys is that every different
random number for each member and each session (1 X s
random numbers) is combined to the master group key mK,.
Table 3 shows the random numbers and group keys for each
member and each session which belong to the group G. The
group G is one of the groups {G,},t > 1.

(3) Group Members’ Pseudonym Keys Set P: Reversed One-
Way Hash Chain. For stronger security and privacy, SISS uses
each member’s pseudonyms, which are generated with the
reversed one-way hash chain in the same way as group session
keys. Thus, each member has also s pseudonyms which are

denoted as pij (for each member i, 1 < j <s).

p;, (randomly generated)
h(p}) =p;"
h(p™) =pi =1 (p)
h(p?)=p =1 (p)
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(3)

4.2.2. InfGenStr(A) Construction. The values to be used for
authentication are generated and saved.

(i) Input; A: system parameters’ set.
(ii) Output; /., h(EKG;(p,»1 I$), {h(EKG;(P,-j))}, pis K
o, h(p)), ply (1< j<s).

At the registration process, every user is given some informa-
tion from SM and stores them in one’s own device such as in
smartphone or PC: S/, ph Kgl {h(EKG{ A)]8 h(Eg; (o |
S)), (1 <i<nl<j<s). SMalso stores some information
for each member i: o], {h(pi]), p{}, mK_, S/ (I<j<ys).

t b
As such, the output of Inf' GenStr(){ ) is ;he values created

by the SM and each user during the registration process,
which means the values are stored in advance for later use
in the authentication process.

Additional Explanation for Encryption (E) and Decryption (D)
with Group Keys. Here, Ey j(M) means ciphertext C with

group members’ group key ‘K = {K/ '} for a message M.
The encryption with the master key mK, is assumed C =

EmK (M) _ h(mK ) f(mK )M

For 51mp11c1ty, we put sKj,,sK;,,sK;;,sK;,, sK;s as
K,,K,,K;,K,, K5, and me (mK ) as f(mK ). Then, the

encryption with each member’s group key {K;/ '}, for example,
in the last session (i.e., j = s, Kg;) is as follows:

C=Eg: (M) =Ky g"M

_ (g f(ng))h(ng)af 1K) FmK)(1-a) 5 0 (4)

_ gh(ng)f(ng)M.

The decryption method with the group master key ‘mK’

D = C. g "m&)fmK) — pr Then, the decryption method
with each member’s group key K in the last session is as
follows:

D=C-Ky'g

=9

_ gh(ng)f(ng)—f(ng)h(ng)—f(ng)ocf+f(ng)ocf ‘M

h(me)f(ng)M . (gf(ng))—(h(ng)wcf) ) gf(ng)af
(5)

=M.

We can check whether the result of encryption/decryption
with the master group key ‘mK,’ is the same as any-

thing of each member’s group key KGZ = {sKi{ " sKlJ 2 sKi{ 3

sK ,SKJS} (I <i<mnl<j<s). Because of the properties
of this developed encryption and decryption algorithms, SISS
has no need for rekeying processes whenever membership-
changes happen.

4.3. Login by Authentication. The login process consists of
four algorithms: QrU1(RH, K, P), VrSM1_QrSM2(QvU1),
VrU24rU3(Qv — SM2), and VrSM3(Ry;).

4.3.1. QrU1(RH,K,P) Construction. A member i makes
login-request to SM with the stored information.

(i) Input; RH, K, P.

(ii) Output; QvU1 (Ist querying value of a user).

(1) Compute: fpil (KGil), h(pil); with the stored value
pi,Kg}, a member i computes Spr (Kg}), h(p}).
(2) A member i queries SM with QvU 1:

QvU1
(6)

=16m,h (). fr (Kei ) 1 (Excgr (p115;))-
Here, h(E Ko ( pi1 I Sil)) is also the stored value at registration

time. Because KG1 is the member 7’s group key in the first
session, E 1 (pl I S ) means

C=E.(p IS} =K K" 1 g (o 18!

m h(mK )oc,-1 m m ol
(gf( Kg)) g gh( K,) f(mK,)(1 ,)(pil I 811) (7)

_ gh(ng)f(ng) (pzl I Szl) )

Here, for simplicity, K|, K}, K; are denoted as the member i’s
subkeys for its group key Kg; in the first session. K, K are
also the subkeys (for decryption) of K.

4.3.2. VrSM1_QrSM2(QvU1) Construction. The SM verifies
the login-request of member i and sends the next session
information, the group key and the pseudorandom number,
to member i.

(i) Input; QvU.

(ii) Output; QvSM2 (2nd querying value of SM).

(1) Find: o, p;.

SM checks 1(sn),h(p;) and finds the corresponding
values &, p} from its storage.

(2) SM decrypts with p; : D(f (Kg!)) = Kg; .

(3) Compute and Verify: i*' (o) = ocill, KG}’ =K



TABLE 2: The whole process of SISS.
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User

SM

1. System Setting
L1. SysPrm

2. Registration
2.1. KeyGen
2.2. InfGenStr

3. Log-in by Authentication

3.1. QrU1

(1) Compute and
Query: f,1 (Kgi)h(p;)

P, f 1 (KeHE 1 (P} 11|}

3.2. ViSM1_QrSM2

(1) Find: 1(sn), h(p!) — o, p!

(2) Decrypt: D(f 1 (Kg))) = Kg;
(3) Compute:r* (o) = Ocil’,

Ko/ = (K}, KL K} K} K3
Verify: Kg!' = K}

(4) Compute & Verify:

h(Exey (p11SD) =2 h(Excy) (p}11S}))
(5) Compute: o, K’

(6) Compute & Query:

2 .2 1 1
fPil (Kgi»pi )’fPiz (P 11S;)
D

3.3. VvrU2_QrU3

(1) Decrypt:

D(fy (K} p)) = Ke} »pl'
(2) Compute & Verify:

h(Eg 2 (p)) =2 h(E 2 29))

TheII]’ !
Ko — Kei»p, — i
(3) Decrypt:

D(f, (p;1IS)) = pi1IS;
(4) Render at a page: R's;

3.4. ViSM3
(1) Verify: R'Sil =Ry
4. Action
4.1. EncUp
[member — i]
g? Engrypz A&;)Upload M: k! gRL2 p =g T KG) oy
i = Exgl
4.2. DnDec

[member — u]
(1) Download from SISS
Server:

(2) Decrypt
C:D=C} K},

1
KuA .

gK,i,s =M
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TaBLE 3: Random number and group key.

Users
U, U, Us...
session 1 random number o o)
group key Kgis Koy
K}, = h(ng)oci Ky, = h(ng)(x;
sKll,2 = h(ng)meg(ng)(l - lel) SK;,2 = h(ng)meg (ng)(l —oci)
KL, = g KL, = g
sKi, = —(h(mK,) + &) sKy 4 = —(h(mK,) + )
5K11,5 = meg(ng)oc} SK;)5 = meg(ng)(X;
session 2 random number zxf ocg
group key Kois K3
sKi1 = h(ng)ocf sKi1 = h(ng)ocg
st2 = h(ng)meg(ng)(l - (xf) sKi2 = h(ng)meg (mK,)(1 —oc%)
SKf,s _ gmeg(ng) stJ _ gmeg("”Kg)
sKi4 = —(h(ng) + ocf) sKi4 = —(h(ng) + ocg)
sKi5 = meg(ng)zxf sKi5 = meg(ng)(x;
session 3...

For the found value «;, SM applies «; to hash function
repeatedly, up to (s — 1) times. If he obtains the result ocilr,
then SM computes KGI.II;

K" =h(mK,)a!,

K = h(mKy) fo, (mK,) (1 _‘x"l,>’

K31’ _ gmengg)’ 8)
Ki' =- (h (ng) + ocill),

K;’ = meg (ng)(XiI,'

Then, SM verifies KG}, = K} or not.

(4) Compute and Verify with Kg;: h(Eg (e} IS} =
h(Ex 1 (pi I S})).

Here, Ex_1( p || S}) is the stored value at the registration
time and the encryption method is the same as the above 1.

(5) Compute: o, Kg;.

SM applies o to hash function (s — 2) times and then
computes KGf;

Ki=h (ng) o,
K = () o, (1K) (1~ 5)
K; — gmeg(MKg), (9)

K2 =~ (h(mK,) + ),

Ké = meg (ng) ociz.

(6) Compute and Query with QvSM?2:
QvSM2 = (ch,piz),fpiz (p! I S}), where p; is also the
stored value.

4.3.3. VrU2_QrU3(QvSM2) Construction. A member i ver-
ifies the received information from SM, then stores it for the
next session, and renders the stereoscopic image on his page.

(i) Input; QvSM2.

(ii) Output; Ry (rendering of s)).

(1) Decrypt: i decrypts D(f, (K, pP)) = Kg?'» p? with
the value p; .

(2) Compute and Verify: h(E 2(p}))' =
hp?) = pi

With the decrypted values KGf’, piz,, the group member
i computes h(EKG,? ( pf))' and verifies if this is the same as

h(Ex 2 (p2),

h(E Ky ( piz)). Then, i hashes the value pizl and verifies h( pi2 I) =

p; . If the verifications are successful, KGfI and pf’ become
Kg? and p;.

(3) Decrypt with p;: D(f,(p; 11 S)) = p; I S;.-

(4) Render and Upload: R;} at a page.

4.3.4. VrSM3(Rg1) Construction. SM verifies what the mem-
ber i has rendered.

(i) Input; Ry.

(ii) Output; 1 or 0.

(1) Verify: Ry = R (3D facial expression and gesture).
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In this process, a legitimate group member authentication
is processed by rendering the decrypted S} with the member’s
external device. If SM’s verification is successful (return
message: 1), the member i can begin to act (login allowed).
The action means uploading, downloading, and reading
(decryption).

4.4. Action. The Action Process consists of two algorithms:
EncUp(M), DnDec(M).

4.4.1. EncUp(M) Construction. A member i encrypts and
uploads the sharing information.

(i) Input; M.
(ii) Output; Cil.
(1) Encrypt and Upload M by a member i.

1
Gl = By (M) = KL g3 = 0o 10

4.4.2. DnDec(M) Construction. Another member u down-
loads and decrypts the sharing information.

(i) Input; C;.

(ii) Output; M.

(1) Download: Cil.

Another member u downloads Ci1 from SISS bulletin
(server).

Kl

(2) Decrypt Ci: D = C} - K5

hmKy) fmKy) pr ( gf(ng))—(h(ng)m,i) gf(mxg)a; _
h(mK ) f(mKy)=f (mK h(mKy)~f (mK e+ f Koo, | pr —

1
. gKu,S =

g
g

[The Second Session]. From the second session, most pro-
cesses are similar to the first session. As the session is changed,
the corresponding pseudonym keys and group session keys
are also changed. As for the stereoscopic image information
S for 3D real model, a member sends the information S kept
from the first session to SM, and then SM challenges the
member with the newly selected information S™*1 at (6) of
the algorithm VrSM1_QrSM2. Lastly, the member renders
3D real model Rg at his page. Action stage is also similar
to the first session.

5. Security Analysis

The security requirements related to group key are as follows:

(1) Group Key Secrecy: It should be computationally
impossible that a passive adversary discovers any secret group
key.

(2) Forward Secrecy: Any passive adversary with a subset
of old group keys cannot discover any subsequent (later)
group key.

(3) Backward Secrecy: Any passive adversary with a subset
of subsequent group keys cannot discover any preceding
(earlier) group key.

(4) Key Independence: Any passive adversary with any
subset of group keys cannot discover any other group key [4].

Security and Communication Networks

In this paper, the term negligible function refers to a
function # : N — R such that for any ¢ € N, there exists
n, € N, such that #(n) < 1/n, for alln > n_ [5].

The model SISS satisfies group information sharing
secrecy as follows: (1) forward secrecy, (2) backward acces-
sibility, (3) group key secrecy, and (4) collusion resistance.

Theorem 1 (forward secrecy). For any group, an adversary A
(including a participant p € G{ ) cannot know valid group key
for (j+1)-th authentication when the adversary A knows group
keyKG{,wherepin” (1<j<s0<l<s—j,1<t<T).

Proof. By Property 3 of Definition 1, if the latest released
group key is KG{ , no one can know a later value KGﬁ such
that h(l_j)(Kci) = KGf . Therefore, the probability that a
participant p € G{ can generate valid group keys for the next
jtl
t

I-th session is negligible, where p ¢ G, (j < I < s). It means

that all leaving group members cannot access any of the next
documents of the group anymore. O

Theorem 2 (backward accessibility). For any group G,, an
adversary A (including a participant p € G!) can generate
valid group key for (j-1)-th authentication when the adversary
A knows group key K], where p ¢ Gf_l (0 < I < j). Namely,
all joining members to a group can access all of the previous
information of the group.

Proof. By Property 2 of Definition 1, if the latest released
group key is KG{ , anyone can deduce earlier values Kci (0<
I < j) by applying the later value KG{ to one-way hash key
chain like this: h(j_l)(KGf ) = KGi.. Therefore, the probability
that a participant p € GZ can generate valid group keys for
the earlier I-th session is 1 — (1), where p ¢ fol (0<I<j).

Namely, all members joining a group can access all of the
previous information of the group. O

Theorem 3 (group key secrecy). For any group G, when
a revelation of group key K] happens, the probability that
an adversary A (including a participant p € GJ) can guess

correctly the encrypted information message M of group G, at
the j — th session is negligible.

Corollary 4. SISS is semantic secure according to the security
game ICR -IS, if DDH is hard and the key material is chosen as
described in the algorithm construction.

The cryptographic elements for authentication and whole
protocol are PRF (pseudorandom function, e.g., 128 bit-
AES), PRG (pseudorandom generator, e.g., middle-square
method, Naor-Reingold pseudorandom function, etc.), and
hash function (HAS-160), generally known as secure cryp-
tographic function. Through the cooperative processes of
these elements, the final encryption is C = EKG!;(M) =

"MK I mK9) N Hence, we have only to show the security
under the condition of ‘DDH is hard’
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Proof (it is proved by contraposition) . A is assumed as an
adversary that wins the security game ICR-IS with advantage
e. We construct an adversary 2, which uses A as a subroutine
and breaks the DDH with nonnegligible advantage.

(i)  Setup. Algorithm Q) creates m message pages €
{Mi]’t} e{M,}(1<i<nl<t<T,1<j<m)and gives this
to the adversary A.

A chooses a polynomial number of subsets {M/,} ¢
{M,} from messages set M. This collection of subsets is
called M*. A sends them to Q again. Q invokes algorithm
SysPrm, KeyGen, InfGenStr. After creating all ciphertext
pages {CP/} € {CP} for M*, Q gives them and their
associated subsets to A.

Here, let g°, g", g” be a Diffie-Hellman triplet; the chal-
lenge is to determine y = &7. Q) guesses a value CP* for
the page CP” that A will choose in the game ICR-IS, by
picking M* uniformly at random in {Mit} 1<t<sD.Q

simulates the algorithm EndUp on {CPi{t} as follows. Q) maps

every ciphertext page {CPi{ .} to a random value {x{; +}. For B=

{Bt}z{CPI{t}, Q chooses random number y, and outputs the
following.

{B}(1<isnmls<t<T1<j<m)={cP/}

={g" " (M)} = {g" (+0)}
{o"™ ()} = {CPL} = {g"™ ()}
{o" (<)} = {o™" (=)}

(11)

={CPlz} = " (M)} = {g" (i)}
19" (xir)}

(ii) Queries. If A queries for the message page {Mi S Q
outputs the ciphertext page {CR{t}Z {(g" (xl{ D}

(iii) Challenge. Finally, A selects a challenge page set
B, € M, at random and generates another page set B; from
M. Next, A gives B, B, to (). Q) chooses b R {0, 1} and chooses
random number y,. () returns to A the following ciphertext:
In the case of b = 0, CP’ = g» (x o)-Ifb = 1, Q returns
random value in reply to DDH challenge If y = &7, this is
an encryption of {CP*}; otherwise it is not. A is again allowed
to ask for pages of the Board set with the restriction that A
must not make a query to distinguish {CPI.{O} from {CPI{ 0=
rand(CPI{O) where {CPI{O} means a DDH triplet and {CPi{ 1} is
not a DDH triplet.

(iv) Response. A outputs a bit b'. If b’ = b, Q guesses
that g°, g%, g constitute a DDH triplet. If b’ # b, Q) guesses
that g°, g%, g" do not constitute a DDH triplet. Since the
encryption will be random for the page {CP*} if and only if
the challenge is not a DDH tuple, Q) solves the DDH challenge

1

with the same advantage that A has in winning security game
ICR-IS.

It is shown that ) can solve the DDH problem (y = 87)
with nonnegligible probability. Accordingly, the advantage of
Q in winning this experiment is as follows.

Advg, = Pr [ExpDDH ] Pr [b' = b]
=Pr[b'=blb=1]-Prb=1]

+Pr[b' =b|b=0]-Pr(b=0]

=pr[W =blb=1]- S+ Pr[t =b1b=0] -5
:Pr[b':l|b=1]-%+Pr[b':0|b:0]-%
:Pr[b':llbzl]-%+(1 12)
~pr[b =11b=0])- 2=

(PT [EprCR IS-1 l]
_PT[EPICRISO_I])__+ AdICRIS %

1
+ —¢€

2

O

Theorem 5 (collusion resistance). For any leaving member
Ull eGl<i<nml<lc<l! <5 including any other
adversaries, SISS is ns-collusion-resistant.

< 1 < I' < s) colluding with the
the illegal member cannot compute

Proof. For anyone Uf (1
legitimate member UJ
KG] =
U knows {oc KG1} and {oc,,KG ,} the illegal member cannot

receive {« ll” , Kclﬂ

> 1. Although the compromlsed (illegal) member

} of the next (I + 1)th session. Hence,
they cannot compute Kg/ (1 < i < nl <1 < [I' <
j < s). One more important thing is that the illegal member
cannot pass the verifiable process to render the real 3D image

from the stereoscopic information S which consists of the
member’s own gesture and facial expression. Therefore, the
illegal member cannot pass the authentication process of
login. O

6. Performance Analysis

The main purpose of this paper is to design a prototype
scheme for secure patient networks. In addition, we try to
apply a new technology like the AR/VR technique of 3D
model to the authentication process. However, the perfor-
mance for whole protocol of SISS largely depends on the
network condition. Hence, we experiment the performance
of SISS with separate eight parts as follows: (1) the generation
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TABLE 4: The specification of a server. TABLE 5: The specification of a client.
Server Client (Nexus 5X)

CPU Intel Core i7-4770K 3.5 GHz CPU Snapdragon 808 1.8 GHz
Hardware Memory 4GB Hardware Memory 2 GB

Disk 200 GB Disk 16 GB
oS Ubuntu 14.04 LTS / Linux 0OS Android 6.0

Kernel 3.19.0 Development Tool eclipse / Android SDK
Development Tool gcc 4.8

time in a server including storage time, (2) the time for a
client including data transfer and storage in DB, (3) QrU1 of
login, (4) VrSM1_QrSM2 of login, (5) VrU2_QrU3 of login,
(6) VrSM3 of login, (7) EncUp, and (8) DnDec

6.1. Implementation and Experimental Environment. The
experimental environments of a server and a client are
addressed in Tables 4 and 5.

6.2. Cryptographic Parameters and Library. Cryptographic
parameters and libraries are described in Table 6.

6.3. The Results of Implementation. Table 7 shows the per-
formance of SISS divided into eight parts. The registration
process which needs only once to join the website totally
takes over 20 seconds. Considering that users should generate
all their information to use it through all their sessions at
this registration process in advance, the estimated time is
understandable and applicable to a real world in general.
Other processes such as login or actions take much less
than 1 second (cf. in the implementation of VrU_QrU3,
the rendering process can be skipped because there is no
commercialized tools for rendering until now; we replace Ry;

with 20-byte 3-dimensional image).

6.4. Comparison with Other Works. The related works’ main
goal was only focused on the methods of group key’s rekeying,
revocation, and redistribution, whereas SISS’s main goal
is to design the information sharing protocol with safety
for application website. Hence, the Storage Overhead and
Communication Overhead analyzed in the related works are
obviously different from SISS because our proposed group
key system is developed to eliminate the processes of rekeying
and redistribution that constitute hard and complicated work
with heavy overheads. To the best of my knowledge, SISS’s
group key is the first scheme without rekeying and redistribu-
tion; nevertheless it can guarantee the security requirements
of group key.

Gou et al’s paper [50] is the latest work to analyze
the performances of current schemes until now; the mini-
mal Storage Overhead is log,p (p: finite field’s order) and
Communication Overhead is (n + 2)jlog, g (n: maximum
revoked users, j: session, q: multiplicative groups order). As
for SISS, Storage and Communication Overheads are O(0).
Thus, based on Gou et al’s work, we only compare and analyze
the security performances of group key because the proposed

TABLE 6: Cryptographic parameters and libraries.

Pseudorandom function f AES 128 bits
Hash function h SHA-1
Group parameter cyclic group
Modulus P 2048 bits
Order ¢q 256 bits
Generator g 2048 bits
Time measurement function in a clock()

Server

Time measurement function in a . 1
v v System.currentTimeMillis()

Client
Crypto Library of a Server MIRACLE

. . Android OpenSSL & Java
Crypto Library of a Client Biglnteger

scheme SISS has no process itself for group key’s rekeying and
redistribution.

Table 8 shows that Staddon et al. and Liu et al’s schemes
can guarantee only forward secrecy, and Rams et al. and Guo
et al’s new scheme can meet all properties of forward secrecy,
backward secrecy, and collusion resistance. The number of
Revocation Limit is the maximum for Guo et al’s new scheme
and the proposed scheme SISS. And, SISS can guarantee all
security properties of forward secrecy, backward accessibility,
and collusion resistance, but not backward secrecy.

7. Discussion

71. The Differences from Other Group Key Structure

(1) The application and aim of our group key are different
from the traditional group key. Rather, they are closer to
‘keyword search schemes for multiuser setting with group
keys, whose security requirements are forward secrecy and
backward accessibility; the leaving members should not know
the group’s documents, and newly joining members should
know the previous documents of the group to perform the
group’s tasks. In the sense of sharing information among
group members, we used the term group key.

(2) The formation structure of the group key is completely
different. General group key systems make every user share
the same group key for the session. However, in SISS, on the
basis of the master key, random numbers and other things
are combined, where the random number has a different
initial value for each user, which is hashed (s — 1) times for
s sessions (total number of sessions is s). Finally, each user
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TABLE 7: The result.

Operation

Process time (ms)

Registration (1000 Session)

The time for a client including data transfer and storage in DB

The generation time in a server including storage time

6138 ms (6.1s)
14499 ms (14.4 s)

QrU1 16 ms (0.016 s)

VrSM1_QrSM2 2 ms (0.002 s)
Login VrU2_.QrU3 56 ms (0.056 s)

DVrSM3 skip

(comparison between simple values)
EncUp 54 ms (0.054 s)
DnDec 32 ms (0.032's)
TaBLE 8: The comparison of group key security performance.

Scheme Revocation Limit Forward Secrecy Backward Secrecy Collusion Resistance
Staddon et al. n Yes No No
Liu et al. n Yes No No
Rams et al. n Yes Yes Yes
Guo et al’s basic scheme n Yes No No
Guo et al’s new scheme ns Yes Yes Yes
SISS ns Yes Backward Accessibility Yes

n: maximum revoked users, s: maximum session.

has different group keys for each session and does not share
any key with any one, except for K; only. The important thing
is that even members themselves do not know their group’s
master key because it is masked with random numbers. At
registration, s hashed values generated through hash chain

are stored in only SM’s server. Each user has only Sf’i, L Kal
{h(EKG{-(pl.J))}, Iq(EKcil(pi1 S),(1<i<nl<j<q) forthe
authentic information required at the start of the session as
mentioned in the algorithm InfGenStr.

(3) The result of encryption/decryption with the group’s
master key and the result of encryption/decryption with the
every member’s group key are the same (refer to [Additional
Explanation for Encryption (E) and Decryption (D) with
Group Keys] in Section 4). This is because the developed
equation (algorithm) is designed according to the principle
that all random numbers attached before the computation
should be removed after the computation. It makes rekeying
and redistributing of the group key unnecessary for SISS. In
SISS, members can upload only on their web pages, while
download can be done on their own web pages and those
of other users (valid users). Therefore, members encrypt the
information that they want to share with the group key and
encrypt the information that they want to be secret with their
private keys.

(4) It can be said that the group key renewals for session
changes are accomplished in the authentication processes of
login for each member. In other words, the group key and
pseudonym key for each user’s next session are given by the
SM at the end of the login process, which serve more as
authenticators to pass the login process. If any member does
not receive the group key and pseudonym key for the next

session from the SM, the value can never be deduced. The
reasons are as follows: (1) Group keys have an effect similar to
a one-time password because they have completely different
values for each member and for each session. (2) The master
key and the random number cannot be inferred because of
the combined characteristics (safety) between master key and
random number such as DDH, DLP, and other cryptographic
functions. (3) Due to the hash chain’s one-wayness, which is
the method of random number generation, we never know
the random number of the next session, so we do not know
the group key value of the next session

(5) The leave and revocation process of SISS is also
different from the general group key because SISS does
not have a rekeying and redistributing process. When SM
receives the leave request from a member, the SM enters the
revocation process, records the member’s id in the leave-
list, and deletes the user’s hash chain and other additional
information. Even if a member who has left a session tries
to log in with the next session information which is received
from the previous session, the member cannot pass the
authentication because all information of the user has been
removed from SM’s server. And the member cannot receive
the next session information any longer. In other words, a
member can no longer log in to the group if the member
leaves the group, so that the member should download all
the previous information before requesting leave. The leaving
members can never know the next subsequent information,
while newly joining members can decrypt all the shareable
information encrypted with the group key.

(6) The meaning of a session of SISS is different from
other general group key systems that consider the session
as the number of membership-changes, as SISS considers
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the session as the number of logins for each member. If a
member has performed a total of s logins, then the member
can reconnect to SM and generate a new hash chain again as
he did at the registration time. The total number of sessions,
s, can be determined by the policies of the website or by the
needs of individual members.

7.2. Legitimate Group Member. In the last step of the login
authentication, 3-dimensional image R is rendered. Ry plays
arole of a LGM (legitimate group member) which is decided
with SM at the registration time. The goal is “improving
authentication and security against conspiracy and compro-
mise”. If 3-dimensional image is inefficient in a real world,
2-dimensional image is recommendable.

In 2016, Google’s project “Tango has been showcased
with indoor mapping and VR/AR platform [52]. ‘Tango’
technology enables a mobile device to measure the physical
world. Tango-enabled devices (smartphones, tablets) are used
to capture the dimensions of physical space to create 3D
representations of the real world. “Tango’ gives the Android
device platform the new ability of spatial perception.

According to JPMorgan analyst Rod Hall [7], Apple
expects that iPhone 8 would feature a front-facing 3D laser
scanner for facial recognition. It can be also said that the
facial recognition will potentially be more secure than Touch
ID, and 3D laser scanner could eventually be used for other
purposes such as augmented reality. Unfortunately, however,
the iPhone 8 released in 2017 did not have the expected
function of front-facing 3D laser scanner. Even though the
released AR technique of iPhone 8 was different from the
3D laser scanner for facial recognition by Rod Hall [7], we
can anticipate the generalized AR technique for the facial
recognition in the near future. Therefore, we can say that
the proposition of SISS is timely good to apply LGM to the
real world keeping abreast of Tango and iPhone’s AR/VR
technique of mobile devices.

7.3. Privacy Preserving SISS. SISS can meet the privacy
requirements as follows:

(1) Anonymity and Pseudonymity: In SISS, each member
uses different pseudonymity for each session. Although
perfect anonymity cannot be provided, pseudonymity can be
provided instead.

(2) Unlinkability: Every session, users log in with different
pseudonyms (P) and use different encryption keys (each
member’s group key). Consequently, SISS can achieve unlink-
ability and similar level of security to ‘One-Time Encryption.

(3) Unobservability: All information is encrypted by
members’ group keys, which have different values by being
masked with the differently generated random numbers for
each user and each session [53].

7.4. Mutual Authentication. An attacker may try to pretend to
be a valid member to log in to the SIS system or masquerade
as an SM server to extract users’ information. This property
is about spoofing attack.

The authentication between a member and the SM
server is accomplished through the query and verification
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algorithms: Qr, Vr_Qr, Vr. Specifically, authentication
processes for login consist of QrUL(RH,K,P),
VrSM1_QrSM2(QvU1), VrU2_QrU3(QvSM?2), and
VrSM3(Ry). In QrUI(RH,K,P), a member queries

the SM with QvU1 which is the computed values using
the stored values at the registration time. Then, in
VrSM1_QrSM2(QvU1), the SM server verifies the value
QvU1 with the stored values, too. After the successful
verification, the SM server queries the member with QvSM2,
which is also computed using the stored values and QvU1.
To the last processes VrSM3(Ry;), the member and the

SM server authenticate each other using the stored values,
respectively.

From a member to the SM server, if the SM server can
obtain the corresponding rightly rendered image in the last
authentication process, it means that the SM server is the real
server to which a member wants to log in and the member is
a valid user to be registered in advance.

8. Conclusion

SISS is the proposal for the patients from all over the world
who want to get some help and share information through
websites such as ’PatientsLikeMe’ or ’CureTogether. The
proposed model SISS can guarantee security and privacy for
the sensitive health and private information. As for the main
method of group key management system, SISS addressed the
hard problems of rekeying and redistribution, conspiracy, and
backward accessibility with new ideas such as equations for
encryption/decryption and LGM. Moreover, SISS is scalable
to general group’s project applications with safety. Therefore,
it is clear that the problem of information sharing and the
approaches between collaborative computing and security
should be managed as Integrated Security Management
(ISM).
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The increasement of software complexity directly results in the augment of software fault and costs a lot in the process of software
development and maintenance. The complex network model is used to study the accumulation and accumulation of faults in
complex software as a whole. Then key nodes with high fault probability and powerful fault propagation capability can be found,
and the faults can be discovered as soon as possible and the severity of the damage to the system can be reduced effectively. In
this paper, the algorithm MFS_AN (mining fault severity of all nodes) is proposed to mine the key nodes from software network. A
weighted software network model is built by using functions as nodes, call relationships as edges, and call times as weight. Exploiting
recursive method, a fault probability metric FP of a function, is defined according to the fault accumulation characteristic, and a
fault propagation capability metric FPC of a function is proposed according to the fault propagation characteristic. Based on the
FP and FPC, the fault severity metric FS is put forward to obtain the function nodes with larger fault severity in software network.
Experimental results on two real software networks show that the algorithm MFS_AN can discover the key function nodes correctly

and effectively.

1. Introduction

With the development of computer technology and the
expansion of software applications [1], the scale and com-
plexity of software systems increase continuously. Software
faults directly lead to the rise of system failure ratio, and
their reliability is becoming more and more difficult to
guarantee. In the test and maintenance process, developers
cannot deal with the software problems with a clear purpose
[2]. Therefore, if some potentially useful information can
be found from software source code or dynamic execution
process to help software workers understand the structural
characteristics of software quickly, it will be of great signifi-
cance for improving software development and maintenance
efficiency [3-5]. Affected by the achievements in the complex
network field, some researchers regard software system as
a software network for scientific research. This provides a
novel research idea and platform for better understanding

and measuring the internal topology structure of complex
software system and receives great attention.

The knowledge of complex network has been introduced
into software engineering by using network model to repre-
sent the structural characteristics of a software system, and
researchers have found many novel features of the structure
from different points of view [6, 7]. Valerde et al. [8] apply
complex network to construct the topology structure of
software and propose a method to model the software as an
undirected network for the first time. In the method, the node
is regarded as the software class and the edge is regarded as
the call relationship among the classes. With experiments,
they find the “scale-free” and “small-world” properties in
software network. Myers et al. [9] use directed network to
represent the collaboration relationship among the classes of
software. They learn that indegree and outdegree distribution
of the network obey the power-law distribution with different
exponents. Pan et al. [10] adopt a binary software network to
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represent class units or package units and their dependence
relationships in a software system, as well as a community
detection method to detect the best module partition of the
software system. The optimal module partition is compared
with the real module partition in the system to guide the
optimization design of the module when a software version is
updated. Thung et al. [11] propose a new method to simplify
the complexity of a software network. Then, they measure
the importance of classes from different properties (between-
ness, closeness, etc.). Furthermore, they condense the class
network which only contains some important classes. By
the method, they are able to depict the overall design for
software and make the design model easy to understand.
Mohammed et al. [12] construct a mapping of research system
to identify software security techniques used in the software
development process, which enables software developers to
understand the existing software security approach better.
Thus, software security problems are urgent to be solved.
Measuring the importance of nodes accurately in soft-
ware network is the premise to improve the security and
reliability of software [13]. In software network, a few key
nodes have an important effect on the overall stability,
reliability, and robustness of the system [14], such as the
impact of cascading failure propagation. If there are faults
in these nodes, it can result in partial or total system
crashes and irreversible results. Identifying these nodes and
providing them with key protection help to prevent system
crash caused by deliberate attacks. Researchers have defined
the importance of nodes in software network from different
aspects. Freeman [15] utilizes the betweenness to measure
the node importance and points out that a node is more
important in software network if its betweenness is bigger.
Callaw et al. [16] consider that a node is more important in
software network if its degree is bigger, because the node with
bigger degree connects with more nodes. However, it does not
consider the overall structure of a software network and has
some limitations. Kitsak [17] makes it clear that the location
of a node in network has a great impact on its importance
and exploits the k-shell decomposition method to measure
the node importance. The metric result is proved to be better
than the betweenness and degree of centrality. Turnu et al.
[18] measure the quality of software by analysing the degree
distribution of nodes in a software network. They define the
structure entropy to describe the degree distribution of nodes
and prove that the statistical information of the structure
entropy in a software network can be related to the number
of software bugs. It further proves that there is a relationship
between the structure characteristics of a software network
and the quality of the software. Wang et al. [19] define the
influential nodes in a network by studying the weighted
software network at the function level. They analyse the
relationship between the statistical characteristics of software
network and the influential nodes through experiments.
Bhattacharya et al. [20] predict software evolution based on
the static graph topology analysis and propose NodeRank
value to measure the importance of a node. The fault of
a function is not only caused by itself but also affected by
other functions. Huang et al. [21] define the importance
of a node based on the dependence relationship and the
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information propagation among functions. Their algorithm
MIN can effectively mine the influential nodes in a software
network, but its assignment to the probability of information
propagation has certain subjectivity.

In complex networks, random walk model judges the
importance of a node by considering its own connectivity
degree and the importance of neighbouring nodes around
it. Typical methods are PageRank, NodeRank [20], and so
on. In software network, the CK metric set proposed by
Chidamber and Kemerer [22] indicates that the number of
classes that are coupled to a given class named CBO can
affect the propensity of the class node to contain defects. If
the CBO of a class is larger, it is more sensitive when other
parts change. So it is harder for software workers to maintain.
Ren et al. [23] believe that the more numbers of modules,
classes, or functions that are directly or indirectly dependent
on the function nodes, the greater the cost of constructing it
and the probability of error. Ren et al. [24] also believe that
when a function node is the role of the calling function, it
may accumulate the defect of the called function node with
a certain probability. When a function node is the role of
the called function, it may propagate its defects to its caller
with a certain probability. Based on the random walk model
and combined with the directed weighted feature of software
network, the following FP and FPC are proposed.

In summary, this paper focuses on the call dependence
relationship among functions and the fault accumulation and
propagation of dynamic execution process. Firstly, according
to the dynamic execution information of software, we build a
weighted software network model. Then, utilizing recursive
method, the fault probability metric FP of a function is
defined in accordance with fault accumulation characteristic,
and the fault propagation capability metric FPC of a function
is proposed on the basis of fault propagation characteristic.
Finally, by combining FP and FPC, the fault severity metric
FS is put forward and the algorithm MFS_AN (mining
fault severity of all nodes) is proposed to calculate the FS
and obtain the function nodes with larger fault severity in
software network.

The rest of this paper is organized as follows. Section 2
describes the process of mining key nodes in a software
network based on the fault accumulation and propagation.
The experiment results are given in Section 3. Conclusion and
future work are mentioned in Section 4.

2. Mining Key Nodes Based on Fault
Accumulation and Propagation

2.1. Weighted Function Execution Network. In software net-
work, the different execution times among functions reflect
the tightness degree of nodes’ interaction. In order to
incorporate this difference, this paper constructs a weighted
software network model.

Definition 1 (WFEN (Weighted Function Execution Net-
work)).

WFEN = (NSet, ESet, Weight) (1)
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FIGURE 1: A portion of a weighted function execution network.

where NSet is the function node set of a software network,
ESet is the edge set which is the function call relationship
during the software execution process, and Weight denotes
the execution times that a function calls another one.

Figure 1 represents a portion of a weighted function
execution network.

As the software system works, a function is a calling
function and also a called function. In the execution process
of a function node u, the nodes called directly by u are the
direct outdegree neighbor node of u, and the set of these
direct out-degree neighbor nodes is called as the Direct Out-
degree Neighbor Set (DONS). Similarly, set of the indegree
neighbor nodes which call node u directly is named as the
Direct In-degree Neighbor Set (DINS).

Definition 2 (DONS (Direct Out-degree Neighbor Set)).
DONS (u) = {v; lu —v;}, u,v; € NSet (2)
Definition 3 (DINS (Direct In-degree Neighbor Set)).
DINS (u) = {v; | v; — u}, u,v; € NSet 3)

2.2. The Fault Probability. Figure 2 shows a more common
topology structure of software network. By analyzing these
three different topologies, we study the fault accumulation
characteristics of functions in software network and obtain
the fault probability of a function.

FIGURE 2: Common topologies in software network.

For nodes Bl and CI, they have the same size of the call
function set; that is, the number of call nodes is equal, but the
call relationship between these nodes is different. For nodes
Bl and D1, they have the same size of execution routes, but
the node D1 has a larger call function set and a more complex
execution process. Therefore, the influences of the node Bl,
C1, and D1 on the node A are different.

With the structure shown in Figure 2, we can learn that
the function fault is caused not only by itself, but also by
its call functions. Moreover, for the objective function, each
node in its DONS has different influence on the objective
function. For this, we define the fault probability quantitative
standard FP of each node which is the accumulation of
infection coming from its call nodes. Based on the call rela-
tionships among the functions in DONS, the computational
formula of the FP is given as follows.



Definition 4 (FP (the fault probability of a node)).

N
FP(u)=a+ Y P, *FP(v), v, € DONS(u) (4)
i=1

—;

p _ Weight (u,v;)
T X Weight (jov)”

jeDINS(v) ()

where « is the fault probability of u caused by itself (0 <
a < 1),v;isanodein DONS(u), N is the size of the DONS(u),
P is the probability infected by the direct neighbors of u,

u—>v;

jisa node in DINS(v;), and n is the size of the DINS(v;).

Example 5. Figure 3 is a simple weighted function execution
network.

In Figure 3, an example shows how to calculate the FP of
a function node. In real world, the size of each function with
various definitions is different, and the fault probability of
each function is also different. But the setting of specific fault
values is more complicated. The main work of this paper is to
show the correlation of faults and not to pay attention to the
fault calculation method of the node itself. To be universal,
we set the fault probability of function node itself to 0.5.
That is to say, suppose the probability of fault occurring and
not occurring is the same. The function node set NSet =
{A,B,C, D, E, F}, and the Direct Out-Degree Neighbor Set of
each node is as follows:

DONS (A) = {B};

DONS (B) = {C, D} ;

DONS (C) = {E, F}; (6)
DONS (D) = {F};

DONS (E) = DONS (F) = ®.

For nodes E and F, which belong to leaf nodes in the
software network, then FP(E) = FP(F) = « = 0.5; according
to the definition of FP, the fault probability of other nodes in
the software network is as follows:

FP(C):oc+(§*FP(E)+ *FP(F))
3 2+4
— 1.1666667;
FP (D) = ( 4 FP(F))—08333334'
=+ 2+4* = 0. 5 (7)

FP (B) =oc+<§ * FP (C) + % *FP(D)) =25

FP(A) = a+ (g . FP(B)) ~ 3.0,

Through the calculation of FP, the fault probability of a
function node is identified. According to the above calcu-
lation results, the fault probability of each function node in
Figure 3 is in the order of: A>B>C>D>E=F.

The fault probability of a node (FP) in Definition 4 is
really not probability. It is just a metric of a node, if the FP of
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FIGURE 3: A simple weighted function execution network.

anode is higher and the node more likely has faults. So it may
take arbitrary large value. Just because FP measures recursive
weighted out degree of node u, it happens to embody the
process of fault accumulation in a software system. Therefore,
in the case of probability cumulative, total more than 1, this is
a possibility, not restricted by 1.

Via the above analysis, based on the fault accumulation
characteristics of a function and the recursive method, we
utilize the formula (4) to calculate the fault probability FP
for each function in software network. Then the algorithm
MFP_AN (Mining fault probability of all nodes) is proposed
to get the FP of all nodes in software network.

In Algorithm 6, we show the process of the method
MFP_AN. In line (1), we first initialize a FPList to store the
information and fault probability FP of all function nodes. In
lines (2-9), alooping procedure calling the procedure MFP to
calculate and store the FP for all function nodes is presented.
In the procedure MFP, we show the process that the FP of
a node is calculated by a recursively process. In line (1), we
first define and initialize some related variables. Lines (2-21)
describe the process to compute the current node affected by
its out-degree neighbor nodes recursively and obtain the FP
of the target node.

Algorithm 6 (mining fault probability of all nodes
(MFP_AN)).

Input: node set NSet, out-degree adjacency table out-
DegreeList, in-degree adjacency table inDegreeList
Output: the measuring result FPList of nodes
Process:

(01) Initialize FPList;

(02) for (each U € NSet)

(03) if (tempList.contains(U))

(04) FPList.add(U,tempList.get(U));
(05) break;
(06) endif

(07)  value = MFP (U,outDegreeList,inDegreeList);
(08)  FPList.add(U,value);

(09) end for

(10) return FPList;
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Procedure (MFP (U: a node; outDegreeList: out-degree adja-
cency table; inDegreeList: in-degree adjacency table))

(01) Imitialize «, Fa=0, P=0, FP=0, tempList;
(02) if (outDegreeList[U.index]!=null)
(03)  for (each V € outDegreeList[U.index])

(04) if (inDegree[V.index]!=null)

(05) Initialize sum=0;

(06) for (each I € inDegree[V.index])
(07) count = Label(I,V);

(08) sum += count;

(09) end for

(10) for (each I € inDegree[V.index])
(11) if (I.index == U.index)

(12) count_UV = Label(U,V);
(13) P = count_UV/sum;

(14) break;

(15) end if

(16) end for

(17) end if

(18) Fa += P « MFP

(VoutDegreeList,inDegreeList);
(19)  end for
(20) end if
(21) FP= « + Fa;
(22) tempList.add(U,FP);
(23) return FP;

2.3. The Fault Propagation Capability. Similarly, this section
defines the fault propagation capability metric FPC of a
function according to the fault propagation characteristics.

Definition 7 (FPC (the fault propagation capability of a
node)).

in N
FPC (u) = Ki;; +Y P, ., xFPC(v),
max i=1 (8)
v; € DINS (u)
Weight (v;, u )
Py ) i pons(r) )

X Weight (v, j)’

where K is the in-degree of a node u, K _ is the
maximum value of in-degree in the network, K"/ Kgax
denotes the fault propagation capability of the objective
function itself, v; is a node in DINS(u), N is the size of the
DINS(u), P, _,, is the probability of u called by functions in
the DINS(u), jisanode in DONS(v;), and n is the size of the
DONS(v;).

Example 8. Based on Figure 3, an example shows how to
calculate the FPC of a function node. The function node set
NSet={A, B, C, D, E, F}, K" =2 and the Direct In-Degree

max

Neighbor Set of each node is as follows:
DINS (A) = O
DINS (B) = {A};
DINS (C) = DINS (D) = {B} ; (10)
DINS (E) = {C};
DINS (F) = {C, D} .

According to the definition of FPC, the fault propagation
capability of all nodes in the software network is as follows:

K
FPC (A) = = 0;

in
Kmax

in

FPC (B) = —2— +

vl »n

* FPC (A)) =0.5;

(9]

FPC(C) = —% +

L ERC (B)) — 0.8125;

+
w

3

s * FPC (B)) = 0.6875;

+
w

3

FPC(E) = —2- + .

(
(
T
(

« FPC (C)) =0.9125;

[\S}

Kin
FPC (F) = —L

in
Kmax

+
2

= 2.0125.

4
# FPC(C) + | + FPC (D)>

(11)

Through the calculation of FPC, the fault propagation
capability of a function node is identified. According to
the above calculation results, the fault propagation capabil-
ity of each function node in Figure 3 is in the order of
F>E>C>D>B>A.

Algorithm 9 (mining fault propagation capability of all nodes
(MFPC_AN)).

Input: node set NSet, out-degree adjacency table out-
DegreeList, in-degree adjacency table inDegreeList,
inDegreeMax

Output: the measuring result FPCList of nodes
Process:

(01) Initialize FPCList;

(02) for (each U € NSet)

(03) if (tempList.contains(U))
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(04) FPClList.add(U,tempList.get(U));
(05) break;
(06) end if

(07)  value = MFPC (U,outDegreeList,
inDegreeList,inDegreeMax);

(08)  FPCList.add(U,value);

(09) end for

(10) return FPCList;

Procedure (MFPC (U: a node; outDegreeList: out-degree
adjacency table; inDegreeList: in-degree adjacency table;
inDegreeMax: maximum value of in-degree))

(01) Inmitialize Fp=0, P=0, inDegree=0, FPC=0, tempList;
(02) if (inDegreeList[U.index]!=null)

(03)  inDegree = inDegree[U.index].size;

(04)  for (each V € inDegreeList[U.index])

(05) if (outDegree[V.index]!=null)
(06) Initialize sum=0;
(07) for (each I € outDegree[V.index])
(08) count = Label(V;]);
(09) sum += count;
(10) end for
(11) for (each I € outDegree[V.index])
(12) if (L.index == U.index)
(13) count_VU = Label(V,U);
(14) P = count_VU/sum;
(15) break;
(16) end if
(17) end for
(18) end if
(19) Fp +=P « MFPC

(VoutDegreeList,inDegreeList,inDegreeMax);
(20)  end for
(21) end if
(22) FPC= inDegree/inDegreeMax + Fp;
(23) tempList.add(U,FPC);
(24) return FPC;

Similarly, via the above analysis, based on the fault
propagation characteristics of a function and the recursive
method, we use the formula (8) to calculate the fault propa-
gation capability FPC for each function in software network.
Then the algorithm MFPC_AN (mining fault propagation
capability of all nodes) is proposed to get the FPC of all nodes
in software network. Algorithm 9 is similar to Algorithm 6.
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2.4. The Fault Severity. Some researchers believe that the type
of fault determines the behaviour of transmission [25, 26].
That is, different faults in the same software have different
laws of propagation behaviour. The research focuses on the
study of fault characteristics. However, other researchers
believe that the system architecture determines the behaviour
of fault propagation [27]. That is, the same fault in different
architectures can be evolved into system failure with different
types or different severity levels. This view is based on the
analysis of the system structure. It focuses on the regularity
of the propagation of faults in the architecture. This paper
mainly studies the latter. Therefore, this article firstly cal-
culates the fault probability FP and the fault propagation
capability FPC of a function node, respectively. Then the
two points are taken into account in this function node.
Supposing it fails, the possible fault severity FS of the
software system is calculated. Under this premise, we study
the function fault characteristics of software system based on
architecture.

In Sections 2.2 and 2.3, the fault probability and the fault
propagation capability of a function node have been studied,
respectively. The former is measured from the Out-Degree
Neighbour of a function node, or to say that is the node
affected by others. The latter is measured from the in-degree
neighbour of a function, or to say that is the effect of the node
on others. However, only a comprehensive consideration of
these two aspects can fully measure the severity of the damage
to a software system.

A node is more likely to have faults if its FP is higher, and
it should be paid more attention. However, if a function only
has faults but it does not spread its own faults, then the node
will not cause very serious consequences to software system,
while if a function is not only prone to fail but also has a strong
capability to spread its faults to others, then it will cause very
serious consequences to software system. Therefore, from the
perspective of the fault severity, the fault probability FP and
the fault propagation capability FPC of a function are directly
proportional. The definition of FS (The fault severity) is given
as follows.

Definition 10 (FS (the fault severity)).

FS(u) = FP (u) + FPC (1), u € NSet (12)

where FP(u) is the fault probability of a function node u
and FPC(u) is the failure propagation capability of u. They
jointly determine the fault severity to a software system when
the function node u fails. And if a node is with a bigger FS, it
will have greater impact on the software system and then it is
more critical.

First, we obtain the fault probability set FPList and
the failure propagation capability set FPCList of software
network through Algorithms 6 and 9, respectively. Then,
we use formula (12) to calculate the fault severity FS, and
the algorithm MFS_AN (mining fault severity of all nodes)
is proposed to discover the top-k key nodes from software
network.

In Algorithm 11, the process of the method MFS_AN is
presented. Line (1) first initializes an empty FSList set that
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stores the FS of all function nodes. Lines (2-7) present a
looping process that calculates the FS. In line (8), the FS in
the FSList are sorted. In Line (11), the first k function nodes in
the FSList are selected as the key nodes of software network.

Algorithm 11 (mining fault severity of all nodes (MFS_AN)).

Input: node set NSet, FPList, FPCList
Output: the top-k key nodes list Knodes
Process:

(01) Initialize FSList;

(02) for (each U € NSet)

(03)  FP(U)=FPList.get(U);

(04) FPC(U)=FPClList.get(U);

(05)  FS(U)=FP(U) * FPC(U);

(06)  FSList.add(U,FS(U));

(07) end for

(08) FSList.sort();

(09) Knodes = FSList.get(K);

(10) return Knodes

3. Experiment and Analysis

In this section, we verify the method MFS_AN by testing two
kinds of classic tool software Tar and Cflow obtained from
the open source community. Tar is a file compression and
decompression tool. Cflow is a C program analysis tool for
tracking the calling process of functions in the C program.
In the Linux environment, we can extract the functions and
the dependence relationships of open-source software with
the help of tool pvtrace. The results are output to files as
text (such as graph.dot). The nodes and the dependence
relationships then can be graphically displayed by means
of the visualization tool Graphviz. As the main function
must be very important to software, so it is excluded in the
following experimental verification. In addition, before the
experiment, we pretreat the experimental data and delete the
loop in the software network, so that recursion can be finished
successfully.

3.1. The Distribution of FS. By tracking the execution process
of Tar and Cflow, the dynamic execution information of
the two types of software is obtained, and the weighted
function execution network WFEN is constructed as the
basis of experimental data. The fault probability FP and
the fault propagation capability FPC of all functions are
obtained by mapping the node set and the call relationships of
software network to Algorithm 6 (MFP_AN) and Algorithm 9
(MFPC_AN). The return values of Algorithms 6 and 9 are
mapped to Algorithm 11 (MFS_AN). The fault severity FS
of all nodes and the key nodes in software network are
obtained. Figures 4 and 5 show the fault severity scores and
the distribution of key nodes in the different versions of Tar
and Cflow.

SF
O = WA 1O\ 00
Ly

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
rank

—s— Tar-1.21
—e— Tar-1.23
—s— Tar-1.25
—=— Tar-1.27
—+— Tar-1.28

FIGURE 4: SF value distribution of Tar.

1 6 11 16 21 26 31 36 41 46 51 56 61 66
rank
—a— Cflow-1.0

—o— Cflow-1.1
—— Cflow-1.2
—— Cflow-1.3
—a— Cflow-14

FIGURE 5: SF value distribution of CFlow.

From the results distribution shown in Figures 4 and
5 (the first 70 nodes are chosen because of the number of
nodes in different versions is different), we can summarize
the following rules:

(1) We can find that every result distribution obeys the
power-law distribution. With the distribution, we verify that
software network shows the scale-free properties of complex
network.

(2) There are a few nodes with big FS and most of nodes
with small FS. But their criticality and impact on the overall
software architecture can be reflected in the higher scores.

(3) Their curves are basically at the same trend in different
versions of the Tar and Cflow. In other words, in different
versions, if the function nodes have the same criticality, the
fault severity to software system is no big difference.

By analysing the node criticality in the two types of
software from Figures 4 and 5, the key nodes in the software
network are defined according to the FS, as the hierarchical
structure of FS distribution is obvious, according to the
turning point of curves in the graph, to select Top-10 as the
key nodes of Tar and Cflow software network, respectively. In
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TABLE 1: The rank of function nodes by SF for Tar versions.
Rank/value
Node Tar-1.21 Tar-1.23 Tar-1.25 Tar-1.27 Tar-1.28
flush_archive 1/11.178 1/10.253 1/9.238 1/9.221 1/9.208
dump_file 2/8.509 2/8.256 2/8.306 2/8.357 2/8.408
dump_file0 3/6.287 3/6.120 3/6.150 3/6.150 3/6.150
find_next_block 4/5.220 4/4.676 5/4.323 5/4.313 5/4.304
update_archive 5/4.460 5/4.412 4/4.556 4/4.729 4/4.830
gnu_flush_write 6/3.849 6/3.567 6/3.112 6/3.107 7/3.103
_gnu_flush_write 7/3.475 7/3.246 8/2.744 8/2.740 9/2.737
create_archive 8/2.873 8/3.004 7/2.944 7/3.104 6/3.170
dump_regular_file 9/2.621 9/2.642 9/2.509 9/2.629 10/2.629
open_archive 10/2.311 10/2.292 10/2.299 10/2.534 8/2.768
TaBLE 2: The rank of function nodes by SF for Cflow versions.
Rank/value
Node Cflow-1.0 Cflow-1.1 Cflow-1.2 Cflow-1.3 Cflow-1.4
nexttoken 1/14.878 1/15.642 1/15.642 1/13.266 1/14.610
yylex 2/7.282 2/7.728 2/7.728 3/6.341 3/7.037
get_token 3/7.255 3/7.670 3/7.670 2/6.382 2/7.063
yyparse 4/2.370 4/2.492 4/2.530 4/2.656 4/2.514
parse_declaration 5/2.175 5/2.308 5/2.355 5/2.547 5/2.349
parse_dcl 6/1.949 7/2.046 6/2.188 6/2.455 6/2.241
expression 7/1.890 6/2.069 7/2.069 7/1.831 7/1.775
yyrestart 8/1.479 9/1.479 9/1.479 10/1.479 8/1.663
func_body 9/1.377 8/1.510 8/1.510 9/1.513 11/1.381
append_to _list 10/1.371 10/1.347 10/1.347 -- --

TaBLE 3: In/Out-degree statistics of ranking top-5 and back-5 nodes
in Cflow-1.4.

Rank Node K, Kout
1 nexttoken 14 2
2 get_token 1 1
3 yylex 1 5
4 yyparse 1 5
5 parse_declaration 1 4
-5 clear_active 1 0
-4 set_active 1 0
-3 compare 1 0
-2 depmap_alloc 1 0
-1 register_output 1 0

Tables 1 and 2, we present the key nodes and their rank for
different versions of the Tar and Cflow.

From the data shown in Tables 1 and 2, the following rules
can be summarized:

(1) For a given function node, the criticality ranking
in different versions is basically stable. Although there is
a change about the ranking of a specific function node in
different software versions, the change is very small. For

example, in Table 1, the ranking range of the function node
find_next_block is [4, 5] and the criticality ranking of the
function node dump_file has been stable at 2 in different
versions.

(2) Due to the ranking stability of the key nodes in
software evolution, we have sufficient reason to predict the
position of a function node in a new software version. For
instance, in Table 2, the function node yylex is always more
critical in each version, and then we can predict that it is likely
to still be more critical in the next up-to-date version.

3.2. Correctness Verification

3.2.1. Degree Distribution of FS. In order to illustrate the
correctness of the key nodes, taking Cflow-1.4 as an example,
we use indegree K, and outdegree K, these two indicators,
respectively, as the criticality characterization of a function in
software network.

According to the data in Table 3, it can be explained that
although the criticality of a function node is not directly
related to degree, they have a certain positive correlation.
The outdegree values of top-5 are bigger; then their fault
probability is greater, and the in-degree values are also bigger;
then their fault propagation capability is greater as well, so the
overall fault severity is greater. While the back-5 are all leaf
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FIGURE 7: Joint distribution of FP and FPC in Cflow-1.4.

nodes with one in-degree, even if they fail, the range of fault
propagation is limited. The different versions of Tar and other
versions of Cflow are similar to Table 3 and they will not be
described in detail here.

3.2.2. Joint Distribution of FP and FPC. Figures 6 and 7 show
the joint distribution of the FP and FPC in Tar-1.28 and
Cflow-1.4 software networks. As shown, most functions are
located at the lower left corner of the graph; it means that the
FP and FPC of these functions are relatively small; a small
number of functions are located in the middle of the graph; it
means that the FP and FPC of them are relatively big; only a
very small number of functions are at the upper right corner
of the graph; it signifies that the FP and FPC of these functions
are big. Such functions are not only prone to fail but also
have a strong fault propagation capability. If they fail, the
fault severity to system disruption will be greater. In order to
ensure the stability of software system, we should pay more
attention to such functions and guarantee their correctness
and robustness.

3.2.3. IC Model. In social network, the Independent Cascade
Model (IC Model) is a propagation model of researching
influence maximization problem. It is a probabilistic model.
When a node u is activated, it tries to activate its inactivated
neighbor node v with probability P,. This attempt is only
done once, and these attempts are independent of each other.
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FIGURE 9: IC Model simulation results for different Cflow versions.

That is to say, the activation of u to v is not affected by other
nodes.

In software network, when a failed node u is called, it
propagates faults to the neighbor node that calls it with a
probability P,. If the node u can affect a number of nodes,
the severity of its failure is significant. This is very similar to
the maximization of influence in social network. Therefore,
we use IC model to verify that the proposed method MFS_AN
does help to measure the fault severity of a node.

According to the mining results of the two kinds of
software Tar and Cflow, the top-10 nodes and back-10 nodes
are selected as source nodes, respectively. Through the IC
model to simulate the number of nodes they can affect after
being called, which in turn shows the severity of their failure.
Due to the randomness of the IC model, we repeated the
simulation 10 times for each version of each kind of software
and then averaged the results, as shown in Figures 8 and 9.

As can be seen from Figures 1 and 2, if the functions
fail, the number of nodes that can be affected by the top-
10 function nodes is about 4 to 5 times that of the back-10
function nodes. This shows that if the top-10 function nodes
fail, the fault severity of the software system will be 4 to 5 times
that of the back-10 function nodes. Therefore, the ranking
of node importance by the MFS_AN method does help to
measure the fault severity of a node.
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TABLE 4: The comparison of node rankings in Cflow-1.4.
Cflow-1.4) Rank/value
Node MFS_AN Degree
nexttoken 1/14.610 1/16
get_token 2/7.063 10/2
yylex 3/7.037 6/6
yyparse 4/2.514 6/6
parse_declaration 5/2.349 7/5
parse_dcl 6/2.241 5/7
expression 7/1.775 4/8
yyrestart 8/1.663 6/6
tree_output 9/1.489 2/14
linked_list_iterate 10/1.383 5/7

TaBLE 5: The comparison of node rankings in Tar-1.28.

Tar-1.28 Rank/value

Node MFS_AN Degree
flush_archive 1/9.208 9/4
dump-_file 2/8.408 8/5
dump_file0 3/6.150 3/13
update_archive 4/4.830 1/14
find_next_block 5/4.304 716
create_archive 6/3.170 4/9
gnu_flush_write 7/3.103 11/2
open_archive 8/2.768 9/4
_gnu_flush_write 9/2.737 11/2
dump_regular_file 10/2.629 4/9

3.3. Comparison with Degree Method. The algorithm
MFS_AN measures the node criticality from two aspects of
the outdegree and indegree in the whole network structure.
In directed graph, the degree centrality algorithm is a classical
algorithm to measure the node criticality from outdegree and
indegree. Thus, this paper compares the algorithm MFS_AN
with degree centrality algorithm (denoted as Degree). Tables
4 and 5 show the comparative results of Cflow-1.4 and
Tar-1.28.

The node ranking lists presented in Tables 4 and 5 are
different, and the Degree method has the phenomenon that
the same metric value of multiple nodes results in the same
ranking. The reason is that the MFS_AN method starts from
the fault accumulation and propagation characteristics of a
function and focuses on out-degree neighbor nodes and In-
Degree Neighbor nodes that have direct or indirect relation-
ship with the current function node. It considers the global
influence of the node. While the Degree method only pays
attention to the direct out-degree and in-degree neighbor
node of the current function node, it ignores the indirect
influence of other nodes. However, in software network,
the nodes are not isolated and they realize the complicated
software function by calling each other. Therefore, compared
with Degree method, MFS_AN method can identify the
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structure of a software more clearly and mine the key nodes
of software network more accurately.

In summary, the algorithm MFS_AN proposed in this
paper is correct and effective for the node criticality evalu-
ation in software network. By using the algorithm MFS_AN
to identify the key nodes in software network, it is helpful to
reduce the software fault severity and improve the robustness
and stability of software.

4. Conclusions and Future Work

In this paper, a novel algorithm MFS_AN is proposed to
evaluate the criticality of nodes in software network by
combining the two characteristics of fault probability and
fault propagation capability together. And function nodes
with larger fault probability and stronger fault propagation
capability are regarded as the key nodes. With experiment, we
analyse the FS distribution of the nodes in different software
versions, realize the evolution law of software, and prove the
algorithm MFS_AN can discover the key function nodes cor-
rectly and effectively in software network. On the other hand,
the criticality of a function node is not directly related to
degree, but it has a certain positive correlation. Furthermore,
we could understand the software structure more easily and
reduce the workload of testing and maintenance process to a
maximum extent. In the future research, we will focus on how
to divide the software module based on the key nodes.
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Buffer overflow vulnerability is the most common and serious type of vulnerability in software today, as network security issues
have become increasingly critical. To alleviate the security threat, many vulnerability mining methods based on static and dynamic
analysis have been developed. However, the current analysis methods have problems regarding high computational time, low test
efficiency, low accuracy, and low versatility. This paper proposed a software buffer overflow vulnerability prediction method by
using software metrics and a decision tree algorithm. First, the software metrics were extracted from the software source code, and
data from the dynamic data stream at the functional level was extracted by a data mining method. Second, a model based on a
decision tree algorithm was constructed to measure multiple types of buffer overflow vulnerabilities at the functional level. Finally,
the experimental results showed that our method ran in less time than SVM, Bayes, adaboost, and random forest algorithms and
achieved 82.53% and 87.51% accuracy in two different data sets. The method presented in this paper achieved the effect of accurately

predicting software buffer overflow vulnerabilities in C/C++ and Java programs.

1. Introduction

With the popularity and rapid development of computer
network technology, software security is facing a growing
number of threats. Since the first buffer overflow attack
occurred in 1988, the buffer overflow vulnerability [1] has
been the most common and serious software vulnerability,
posing a great danger to the security of software systems.
According to the distribution of vulnerability types in the
June 2017 Security Vulnerability Report of the National Infor-
mation Security Vulnerability Database (CNNVD), the buffer
error category has the largest proportion of vulnerabilities,
at approximately 14.08%. Due to the various forms of buffer
overflow vulnerabilities, it is challenging to accurately predict
buffer overflows. Due to the large amount of software source
code and the complex logic level of invocation, these kinds of
vulnerabilities are not easily discovered in a timely manner.
Software vulnerability analysis usually requires source
code analysis and binary analysis. Although the source

code vulnerability analysis can comprehensively consider the
execution path according to the rich and complete semantic
information in the program source code, it cannot fully reflect
the dynamics of the software [2]. Although binary code vul-
nerability analysis has been studied comprehensively through
static or dynamic and manual or automated methods, there
are problems such as low coverage and path explosion.
Recently, machine learning algorithms have been widely used
in software vulnerability prediction. In vulnerability predic-
tion, machine learning techniques such as logistic regression,
naive Bayes methods, C4.5 decision tree algorithms, random
forest classifiers, and SVMs [3, 4] are commonly used for
prediction. Although it is common to use a machine learning
algorithm to predict software vulnerabilities, the research
based on software metrics is still immature. For instance, in
the area of predicting software vulnerability models based
on software metrics, most approaches consist of a static
analyses based on software source code. It does not consider
the characteristics of the dynamic data flow during software
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operation. It is not possible to more accurately reflect the
type of vulnerability, its severity, and the distribution of the
module.

This paper proposes a method based on software met-
rics for buffer overflow vulnerability prediction, called the
software vulnerability location (BOVP) method. Compared
with traditional prediction methods, such as support vector
machines (SVMs), Bayesian methods, adaboost, and random
forest (RF) algorithms, this new research method is applicable
to software on different platforms (C/C++, JAVA) and can
also accurately predict software buffer overflow vulnerabili-
ties. The main contents of this paper are as follows. (1) Soft-
ware metrics were extracted according to the static analysis of
software source code, and a data mining method was used to
extract data from the dynamic data stream at the functional
level. (2) A decision tree algorithm was established to measure
multiple types of buffer overflow vulnerability models based
on the functional level. The algorithm not only affects the
accuracy of the experiment but also reduces the measurement
dimension and reduces the experimental overhead. (3) The
analyses led to the research idea of considering multiple
vulnerability types and different functional classifications for
the software buffer overflow vulnerability analysis.

The remainder of this paper is organized as follows:
Section 2 introduces the related work of the paper. Section 3
introduces the description of buffer overflow vulnerability
overview and source code function classification. Section 4
introduces the overview of the BOVP method. Section 5
presents data sources, cross-validation, experimental proce-
dures and results. Section 6 describes the advantages of the
BOVP approach. Finally, the conclusion and future research
direction are presented in Section 7.

2. Related Work

At present, the academic community proposes dual solutions
to the phenomenon of software buffer overflow vulnerability
based on both detection and protection. For example, to avoid
buffer overflow, people use the polymorphic canary to detect
an overflow of the stack buffer based on computer hardware
research [5, 6]. ] Duraes et al. [7] proposed an automatic
identification method for buffer overflow vulnerability of
executable software without source code. S Rawat et al. [8]
proposed an evolutionary calculation method for searching
for buffer overflow vulnerability; this method combined
genetic algorithms and evolutionary strategies to generate
string-based input. It is a lightweight intelligent fuzzy tool
used to detect buffer overflow vulnerabilities in C code. IA
Dudina et al. [9] used static symbolic execution to detect
buffer overflow vulnerabilities, described a prototype of an in-
process heap buffer overflow detector, and provided an exam-
ple of the vulnerability discovered by the detector. In terms of
protection from bufter overflow vulnerabilities, S Nashimoto
et al. [10] proposed injecting buffer overflow attacks and
verified the countermeasures for multiple fault injections.
The results showed that their attacks could cover the return
address stored in the stack and call any malicious function. |
Rao et al. [11] proposed a protection technology called a BF
Window for performance and resource-sensitive embedded
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systems. It verified each memory write by speculatively
checking the consistency of the data attributes within the
extended buffer window. Through experiments, the proposed
mechanism could effectively prevent sequential memory
writes across the buffer boundary. Although these methods
have effectively detected buffer overflow vulnerabilities to a
certain extent, the traditional research methods of software
buffer overflow vulnerabilities have the problems of large
time overhead, path explosion and lack of dynamic software
analysis. Therefore, research on using machine learning
methods to predict software buffer overflow vulnerabilities
has become increasingly widespread.

At present, research on using machine learning algo-
rithms to predict various types of software vulnerabilities [12]
is becoming widespread, and the machine learning methods
can improve vulnerability coverage and reduce running time
in software vulnerability analysis and discovery processes.
However, there are problems in that they that cannot more
accurately reflect the type of vulnerability, the severity of
the vulnerability or the distribution of the module. For
these problems, a method based on the “software metrics”
to predict various types of software vulnerabilities was pro-
posed [13]. Early software metrics focused on structured
program design. By measuring the complexity of the software
architecture, researchers described some basic performance
metrics of software systems such as functionality, reliability,
portability, and maintainability. Software metrics can be
divided into three typical representative categories based on
information flow, attributes and behaviour. In recent years,
software metrics have been studied extensively and have
become a vibrant research topic in software engineering.

James Walden et al. [14] compared models based on
two different types of features: software metrics and term
frequencies (text mining features). They experimented with
Drupal, PHPMyAdmin, and Moodle software. The exper-
iments evaluated the performance of the model through
hierarchical and cross-validation. The results showed that
both of the models for text mining and software metrics
had high recall rates. Based on this research, in 2017, Jeffrey
Stuckman et al. [15] explored the role of dimension reduction
through a series of cross-validation and project prediction
experiments. In the case of software metrics, the dimension
reduction technique based on a confirmatory factor analysis
produced the best F-measure value when performing project
prediction. Choudhary G R et al. [16] studied the change
metrics in combination with code metrics in software fault
prediction to improve the performance of the fault prediction
model. Different versions of the Eclipse project and extracted
change metrics from GitHub were used for experimental
research. In addition to the existing change metrics, several
new change metrics were defined and collected from the
Eclipse project repository. The experimental results showed
that the variation metrics had a positive impact on the
performance of the fault prediction model. Thus, a high-
performance model could be established through multiple
variation metrics. Sanaz Rahimi et al. [17] proposed a vulner-
ability discovery model (VDMS), which uses the compiler's
code base for static analysis, extracts code characteristics such
as complexity (circle complexity) and uses code attributes
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TaBLE 1: C/C + + language experimental data set specific data.
GOOD BAD Total
Good  GoodSink  Good Source  Good Auxiliary Bad Bad Sink  Bad Source
Stack-based buffer overflow 5810 2748 312 7149 4716 2052 288 23075
Heap-based buffer overflow 7122 3076 968 9064 6733 2448 628 30039
Buffer overflow 2380 1180 208 3192 2472 1024 144 10600
Integer overflow 4608 4284 576 10872 4716 2052 288 27396
Integer underflow 3348 3234 408 8100 3414 1548 204 20256
Total 23268 14522 2472 38377 22051 9124 1552 111366

as its parameters to predict vulnerabilities. By performing
a static analysis on the source code of real software, it was
verified that the code attributes have a high level of influence
on the accuracy of vulnerability discovery.

In recent years, many studies have predicted software
buffer overflow vulnerability by using a machine learning
algorithm. With the maturity of software measurement tech-
nology, most scholars have adopted software attribute mea-
surement based on machine learning algorithms to predict
vulnerabilities. Most of the software metrics for predicting
software vulnerability are based on the static analysis of the
software source code, but there are dynamic behaviours such
as function calls, memory read and write, and memory allo-
cation during the execution process. Therefore, if the software
metrics are to accurately predict software vulnerabilities that
are persistent and concealed, the dynamic behaviour of the
software needs to be considered.

3. Problem Description

Buffer overflow is the most dangerous vulnerability of soft-
ware. If the buffer overflow vulnerability can be effectively
eliminated, the security threat to the software will be reduced.
This paper analysed the data flow based on the source code
function level and combined the machine learning algorithm
to study the software metrics for real software. Metrics need
to be selected in software metrics, such as the number of
lines containing source code, the average base complexity, all
nested functions or methods, and the average number of lines
of source code that contain all nested functions or methods
(as shown in Table 1).

3.1. Buffer Overflow Vulnerability Overview. A buffer is a
contiguous area of memory within a computer that can
hold multiple instances of the same data type. The reason
for the buffer overflow is that the computer exceeds the
capacity of the buffer itself when it fills the buffer with
data. The overflow data are overlaid on the legal data
(data, pointer of the next instruction, return address of the
function, etc.). Buffer overflows can be divided into stack-
based buffer overflows, heap-based buffer overflows, and
integer overflows. Integer overflows are classified into three
categories based on underflow and overflow of unsigned
integers, symbolic problems, and truncation problems. We
use the Intel processor (register EBP) as an example to

introduce stack-based buffer overflows, heap-based bufter
overflows, and integer overflows.

Stack-based buffer overflows: in computer science, a
stack is an abstract data type that serves as a collection of
elements, with two principal operations: push, which adds an
element to the collection, and pop, which removes the most
recently added element that was not yet removed. A stack is a
container for objects that are inserted and removed according
to the LIFO principle. The stack frame is the collection of
all data in the stack associated with one subprogram call.
The stack frame generally includes the return address, the
argument variables passed on the stack, local variables, and
the saved copies of any registers modified by the subprogram
that need to be restored. The EBP is the base pointer for the
current stack frame. The ESP is the current stack pointer. Each
time the function is called, a new stack frame is generated
and stored in a certain space of the stack. The EBP always
points to the top of the stack frame (high address), while
the ESP points to the next available byte in the stack. The
EBP does not change during function execution, and the ESP
varies with function execution. A stack-based buffer overflow
occurs when a program writes data with a data length that
exceeds the space allocated by the stack to the buffer to the
memory address in the stack.

Heap-based buffer overflows: The heap is memory that is
dynamically allocated while the program is running. The user
generally requests memory through malloc, new, etc. and
operates the allocated memory through the returned starting
address pointer. After using it, it should be released by free,
delete, etc. as part of the memory; otherwise it will cause a
memory leak. The heap blocks in the same heap are usually
contiguous in memory. If data is written to an allocated heap
block, the data overflow exceeds the size of the heap block,
causing the data overflow to cover the neighbours behind the
heap block.

Integer overflows: Similar to other types of overflows,
integer overflows cause data to be placed in a storage space
smaller than itself. The underflow of unsigned integers is
caused by the fact that unsigned integers cannot recognize
negative numbers. The symbol problem is caused by the
comparison between signed integers, the operation of signed
integers, and the comparison of unsigned integers and signed
integers. The truncation problem mainly occurs when a high-
order integer (for example, 32 bits) is copied to a low-order
integer (for example 16 bits).



Buffer overflow attacks consist of three parts: code
embedding, overflow attack, and system hijacking. There are
four types of buffer overflow attacks: destroy activity records,
destroy heap data, change function pointers, and overflow
fixed buffers. Buffer overflow is a very common and very dan-
gerous vulnerability that is widespread in various operating
systems and applications. The use of buffer overflow vulner-
abilities can enable hackers to gain control of a machine or
even the highest privileges. The use of buffer overflow attacks
can lead to program failure, system shutdown, restarting, and
so on. The buffer overflows we studied in this article include
stack-based buffer overflows, heap-based buffer overflows,
buffer overflows, integer overflows, and integer underflows.

3.2. Source Code Function Classification. Most software met-
rics that were previously used to predict software vulnerabili-
ties use metrics to predict whether a vulnerability is included.
During the execution of the software, there is a lack of anal-
ysis of the calling relationships between functions. Among
the characteristics of software are functionality, reliability,
usability, efficiency, maintainability and portability. Thus, the
software implementation process is dynamic. In the vulner-
ability prediction of software, the calling relationship of the
intrinsic functions in the software execution process should
be fully considered, especially the data flow changes during
the software call. Therefore, this article describes data flow
analysis to distinguish features that contain vulnerabilities.

In general, software source code data flow analysis is
based on understanding the logic of the code, tracking the
flow of data from the beginning of the analysed code to the
end. There are three difficulties in the analysis process. (1)
The change in data should accumulate with the increase in
the path length. (2) Calculation of the value of the branch
condition based on the latest data analysis results since the
branch condition should accumulate as the path grows, and
each additional branch node on the path must be in the
path. (3) The number of paths usually grows at a geometric
progression as the code size increases. A more efficient
approach is to decompose the global data stream analysis into
partial data stream analysis.

This paper analyses the functions called in the test case
data and uses the partial data flow analysis method to
distinguish the functions into different “source” and “accept”
functions. This research performs a functional level analysis
on the program source code. According to the behaviour of
the data flow of each function in the actual execution of the
program, this paper uses a data mining method to distinguish
the function categories from the data in the data set. First,
there are two types (good and bad) depending on whether
or not there are vulnerabilities as a whole. Second, this paper
analyses the functions using data flow analysis. Functions
that do not contain vulnerabilities are classified into four
categories: Good - the only code in a good function is a
call to each of the secondary good functions. This function
does not contain any nonflawed constructs; Good Sink and
Good Source - cases that contain data flows using “source”
and “sink” functions that are called from each other from
the primary good function. Each source or sink function
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is specific to exactly one secondary good function; Good
Auxiliary - where a Good Source is passing safe data to a
potentially Bad Sink and where a Bad Source is passing unsafe
or potentially unsafe data to a Good Sink. The categories
containing vulnerabilities are divided into three groups: Bad:
this is a function that contains a flawed construct; Bad Sink
and Bad Source: these are cases that contain data flows using
“source” and “sink” functions that are called from each other
or from a primary bad function. Each source or sink function
is specific to either bad function for the test case.

According to whether or not the vulnerability is included
in one of the 8 categories, this paper defines the set of
categories as X = {x;,X,...,Xg}, where X;, X,,..., Xg are
the number of functions that do not contain vulnerabilities
(Good), sinks that do not contain vulnerabilities (Good Sink),
source functions that do not contain vulnerabilities (Good
Source), auxiliary functions that do not contain vulnerabil-
ities (Good Auxiliary), a main function containing a bug
(Bad), a sink that contains the vulnerability’s accept function
(Bad Sink), a source function containing a vulnerability (Bad
Source), and a function that is not yet explicitly defined
(Other). In this study, only the first seven categories were
studied.

4. Method

4.1. BOVP Method. This paper first extracts the source code
of the executable program and then establishes a dynamic
data flow analysis model at the software function level.
Finally, a vulnerability prediction method based on software
metrics is implemented. The process of establishing the
BOVP {M, A, S} model in this method is shown in Figure 1.

(1) For the source code of the target software, this
paper applied the functional level static analysis, and the
software attribute measurement method was used to extract
all software metric data (M).

(2) According to the characteristics of the software buffer
overflow vulnerability, this paper established a metric “A” of
the software level buffer overflow vulnerability based on the
function level, A = {al,a2,...,an}.

(3) For the characteristics of the data flow where the
functions are calling each other, the data mining method was
used to extract the data regarding the function class, and
items in the “Other” function category were removed.

(4) This paper applied the mutual information value for
feature selection and incorporated the metric A to measure
the impurity of the data partition D for the split criterion.
The cost complexity pruning algorithm was applied as the
pruning method to determine the buffer overflow vulnera-
bility classification algorithm S (strategy).

4.2. BOVP Prediction

4.2.1. Model Overview. The CART (classification and regres-
sion tree) model was proposed by Breiman et al. [18] in 1984
and has become a widely used decision tree learning method.
The CART method assumes that the decision tree is a binary
tree. The input feature space is divided into a finite number of
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F1GURE 1: The framework for the BOVP method.

cells, and the predicted values are determined by these cells,
for instance, for predicting the output values to map to a given
condition.

The CART model in this article consists of the following
three steps:

(1) CART generation: generating a decision tree based on
the training data set.

(2) CART pruning: pruning the decision tree according to
certain constraints, such as the maximum depth of the tree,
the minimum number of samples of the leaf nodes, the purity
of the nodes, etc.

(3) Optimization of the decision tree: generating dif-
ferent CARTs for multiple parameter combinations (max-
imum depth of the tree (max_depth), minimum sample

number of the leaf node (min_samples_leaf), node impurity
(min_impurity_split)) and choosing the model with the best
generalization ability.

We first chose to use a supervised learning algorithm.
The next consideration was the data problem, for example,
whether the eigenvalue is a discrete variable or a continuous
variable, whether there is a missing value in the eigenvalue
vector, and whether there is an abnormal value in the
data. Therefore, after analysis, the CART tree classification
algorithm was selected. CART has the following advantages
over other classical classification and regression algorithms:
(1) less data preparation: no need to standardize data; (2) the
ability to process continuous and discrete data; (3) the ability
to handle multiclassification problems; (4) the prediction



process of the CART model which can be easily explained by
Boolean logic and compared to other models such as Naive
Bayes and SVMs.

4.2.2. Training. In the classification prediction part of the
BOVP method, first, the feature selection operation was per-
formed on the attribute set A. Second, a specific classification
algorithm was selected according to the data characteristics.
This research adopts the decision tree algorithm [19] to
establish the classification model based on the characteristics
of the integrated software and the characteristics of the
classification algorithm.

First, the classification decision tree model is a tree struc-
ture that classifies instances based on features. The decision
tree consists of nodes and directed edges. There are two types
of nodes: internal nodes and leaf nodes. The internal nodes
represent n attributes, including the number of lines of source
code, the code path that can be executed, and the circle
complexity in A. The leaf nodes represent the type of X =
{x;., X5, ... X;}. Second, when the decision tree is classified, one
of the features of an instance is tested from the root node, and
the instance is assigned to its child node according to the test
result. Each child node corresponds to a value of the feature,
so it recursively moves down until the leaf node is reached.
Finally, the instance is assigned to the class of the leaf node.
The decision tree can be converted to a set of if-then rules,
or it can be considered a conditional probability distribution
defined in the feature and the class space. Compared with the
naive Bayes classification method, the decision tree has the
advantage that the construction process does not require any
domain specific knowledge or parameter settings. Therefore,
the decision tree is more suitable for exploratory knowledge
discovery in practical applications. The construction of the
decision tree algorithm [19] is divided into three parts: feature
selection, decision tree generation, and decision tree pruning,
as follows:

(1) Feature selection: the features in this model are
a, (n <= 22), an attribute that includes the number of lines
in the source code, the code path that can be executed, and
the circle complexity. The feature selection is applied to select
the feature that has the ability to classify the training data in a
way that can improve the efficiency of decision tree learning.
The feature selection process uses information gain and the
information gain ratio or Gini indexes.

(2) Generation of decision tree: the Gini index is used
as the criterion of feature selection to measure the impurity
of data partition D such that the local optimal feature is
continuously selected and the training set is divided into
subsets that can be feasible.

(3) Decision tree pruning: the cost complexity pruning
algorithm is used to prune the tree; that is, the tree complexity
is regarded as a function of the number of leaf nodes and
the error rate of the tree, specifically from the bottom of the
tree. For each internal node N, the cost complexity of the
subtree of N and the cost complexity of the subtree of N after
the pruning of the subtree are calculated, and the subtree is
clipped; otherwise, the subtree is retained.

Combining the attribute set A = {a;,a,,...,a,,}, we can
set the training data partition to D, and construct the decision
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tree model through three steps of feature selection, generation
decision tree and pruning. The basic strategy of the algorithm
is to call the algorithm with three parameters D, attribute_list
and Attribute_selection_method. D is a data partition which is
a collection of training tuples and corresponding categories
of labels. attribute_list is a list describing the tuple attributes.
Attribute_selection_method specifies the heuristic process that
is used to select the “best” attributes by class in tuple.

In Algorithm 1, Lines (1) to (6) specify the Gini mini-
mization criterion used to obtain the feature attributes and
the partition points of the split selection. When the feature
selection is started, a tree is constructed step by step. Lines
(7) to (8) describe the pruning process of the tree according
to three indicators (y, «, f3). Once the stopping condition is
satisfied, data set D is split into two subtrees, D1 and D2,
which are expressed in Lines (9) to (10). Lines (11) to (12) state
that if the sample number of the nodes is less than 3, the node
will be dropped. Lines (13) to (17) show that if the node does
not satisfy all of the conditions, it will be converted into a leaf
node whose output class is the highest of the classes on the
node. Finally, the process of prediction is conducted by using
the TreeModel in Line (19). This method is highly complex,
especially when searching for the segmentation point, as it is
necessary to traverse all the possible values of all the current
features. If there are F features each having N values, and the
generated decision tree has F or S internal nodes, then the time
complexity of the algorithm is O(F%NxS).

The decision tree in the algorithm uses the Gini coefficient
as the splitting point of the selection feature. That is, the
training data set D is divided into two parts D; and D,
according to whether feature A takes a certain value a. Then,
under the condition of feature A, the Gini index of set D is
defined as

Gini (D, A) = %Gini (D)) + %Gim’ (D,) @

The Gini index Gini(D) represents the uncertainty of set
D and the Gini index Gini(D, A) represents the uncertainty of
set D after A=a partitioning. The larger the Gini index is, the
greater the uncertainty of the sample is. Compared to other
classical classification and regression algorithms, decision
trees have the advantage of generating easy-to-understand
rules, requiring a relatively small number of computations.
Decision trees are capable of processing continuous cate-
gorical fields and have the ability to clearly display more
important fields. Therefore, using the existing data set to train
the decision tree model, the model can be trained to predict
whether the program has any of the 7 buffer vulnerabilities by
using the metrics, such as the number of rows containing the
source code, the number of times called, the code path that
can be executed, and the loop complexity.

The specific method of generating the subtree sequences
T0, T1,..., Tn in pruning is by pruning the branch in Ti that
has the smallest increase in error in the training data set from
TO to obtain Ti+l. For example, when a tree T is pruned
at node t, the increase in error is R(t)-R(Tt), where R(t) is
the error of node t after the subtree of node t is pruned.
R(Tt) is the error of the subtree Tt when the subtree of
node t is not pruned. However, the number of leaves in T is
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represents the predicted attribute set.
output: CART model sets

(1) for x; in X

(2) for T;inx

(3) search min(Gini);

(4) end for

(5) end for

(6) Build Trees TreeModel from Tj and xi;

(8) Divide D to D1 and D2;

9) DecisionTreeClassifier (D1, «t, y, B);
(10) DecisionTreeClassifier (D2, «, y, f8);
(11) elseif [ID| < B

17) end else
(18) return TreeModel
(19) Prediction on TMS.

input: D={(X,, Y,),(X,,¥2)> . (X, Ya)b X = {X, X,, X5, ..., X, } represents a feature property set, Y = {y,, ¥, V35 -+ > Vn}

(7) iftH(D) < y && the current depth < a && |D| >  // |D| sample number of D

(12) drop D

(13) else

(14) D — leaf Node; // convert to leaf node

(15) predictive class = the most number of classes; // average of samples
(16) break;

ALGORITHM 1: BOVP based on Gini indexes.

reduced by L(Tt)—-1 after pruning, so the complexity of T is
reduced. Therefore, considering the complexity factor of the
tree, the error increase rate after the tree branches are pruned
is determined by

_R()-R(T) o

- L(T) -1

where R(t) represents the error of node t after the subtree

of node t is pruned, R(t)=r(t)*p(t), r(t) is the error rate of

node t, and p(t) is the ratio of the number of samples on node

t to the number of samples in the training set. R(Tt) represents

the error of the subtree Tt when the subtree of node t is not

pruned, that is, the sum of the errors of all the leaf nodes on

subtree Tt. Ti+1 is the pruning tree with the smallest alpha
value in Ti.

4.2.3. Prediction. The input part of the prediction section
is the buffer overflow vulnerability data set D={(x1,yl),
(x2, y2)...(xn, yn)}. Vulnerability data include stack buffer
overflow, heap buffer overflow, buffer underwriting (“buffer
overflow”), integer overflow, and integer underflow.

When constructing the decision tree in the prediction
process, the feature-selected metrics A = {a;, a,,...,a,4} were
used as internal nodes to represent an attribute test, and the
Gini index was used to select the partition attribute. Each
branch represents an output of the test, and the leaf nodes
correspond to the function class X = {x;,%,,...,X;}. When
constructing a decision tree, this paper uses attribute selection
metrics to select the attributes that best divide the tuple into
different classes.

The prediction result output is based on the class pre-
dicted by the decision tree algorithm belonging to the X =

{xy,X,,...,X;} category. Further analysis can be performed
on the function containing the vulnerability based on the
prediction results. The prediction part used the accuracy rate,
recall rate and F, evaluation index to measure the effect of
the decision tree algorithm. Accuracy is used to measure the
ratio of the number of correctly classified samples to the
total number of samples in the test data set. It reflects the
ability of the decision tree classifier to examine the entire
sample. The recall rate is used to measure the proportion
of all that should be retrieved correctly, which reflects the
proportion of positive data that is correctly determined by the
decision tree algorithm to the total positive data. The F1 value
is used to measure the accuracy of the recall and the recall
average to measure the ideal degree of decision tree algorithm
classification.

5. Experiment

In this paper, the relationship of function nesting, iteration
and looping in the process of software execution, and the
dynamic behaviour and operations of the functions were
considered comprehensively. The vulnerability classification
and prediction were carried out according to the unified
pattern of software metrics. This paper carried out the
following steps for the program: (1) This article extracted
code that contained only one type of defect based on the
buffer overflow vulnerability code fragment and that did not
contain code of other unrelated defect types. (2) Then, this
paper statically analysed the size, complexity, and coupling
of the source code for each code segment that could be
generated. At the same time, software was used to extract the
metrics from the program, and 58 functional level metrics
were extracted. (3) Due to the diversity of the types of buffer



overflow vulnerabilities involved in the program, there is data
imbalance in the extracted static code indicators. Therefore,
it was necessary to perform data cleaning on the initially
extracted data to reexamine and verify the data and delete
duplicate information. Twenty-two indicators were selected
for research. (4) The method of feature selection based on
mutual information values was used to select the software
metric attribute A. (5) According to the 4:1 ratio between the
training set and test set, the Gini coeflicient was selected as
the splitting point for feature selection, and the CART decision
tree was constructed by the K-times crossover test.

5.1. Data Set Introduction. Using the Juliet data set of the
NIST library (https://samate.nist.gov/SRD/view.php), this
paper selects 163,737 new types of buffer overflow vulner-
abilities in an actual program extraction. The information
contained in the data set is made up of the National Security
Agency (NSA) Reliable Software (CAS). All the programs
selected in this article can be compiled and run on Microsoft
Windows using Microsoft Visual Studio. This article extracts
software metrics based on the source code of the Juliet data
set cross-project test case. A buffer overflow occurs when a
write stream flows through the buffer and the function return
address is modified during program execution. In this study,
source code written in C and Java were used for experiments.

The C/C++ language experimental data set had 111,366
stack-based buffer overflows, heap-based buffer overflows,
buffer overflows, integer overflows, and integer underflows.
A total of 52,371 buffer overflows were collected from the Java
language experimental data set. The summaries of the data
sets are shown in Tables 1 and 2.

5.2. Metrics Indexes. This paper extracted a large number
of real software attributes through analysis, from software
source code. Twenty-two metrics are listed in Table 3. Because
some attributes are irrelevant, feature selection based on
mutual information is used to eliminate irrelevant metrics.
Finally, the accuracy recall and accuracy indicators are used
to measure the predicted results.

Software metric indexes provide a quantitative standard
to evaluate code quality. It not only visually reflects the quality
of software products but also provides a numerical basis
for software performance evaluation, productivity model
building, and cost performance estimation. According to the
development of software from structure, modularization to
object-oriented design, metrics can be divided into tradi-
tional software metrics and object-oriented software metrics.
According to traditional software measurement indexes,
the attribute set of the software is first defined as A =
{a;,a,,...,a,}. First, Understand, a code analysis tool, was
used to extract the software data based on 58 metrics. Second,
because the software source code is written in different
languages and the coding conventions are different, it is
necessary to perform data cleaning on the initially extracted
data to reexamine and verify the data, delete duplicate
information and correct errors. To ensure data consistency,
we need to filter data that does not meet certain requirements.
For example, the index of the extracted data contains a large
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number of zero values and attribute values for the same
numerical metrics. Finally, 22 indicators remained for study,
so n = 22. The specific indicators are shown in Table 3.

Feature selection based on these 22 metrics can not only
improve the efficiency of classifier training and application by
reducing the effective vocabulary space but also remove noise
features and improve classification accuracy. In this paper,
the mutual information method is adopted to select features
based on the correlation of attributes.

Mutual information indicates whether two variables X
and Y have a relationship [20, 21], defined as follows: let
the joint distribution of two random variables (X, Y) be
p(x, y), the marginal distributions are p(x) and p(y), the
mutual information I(X;Y) is the relative entropy of the joint
distribution p(x, y) and the product distribution p(x)p(y), as
shown in Equation (3) .

p(x,y)
1X;Y=§§ ,y) log ——~27
(X;Y) xexyeyp(xy) ng(x)p(y) (3)

The mutual information of feature items and categories
reflects the degree of correlation between feature items
and categories. When taking mutual information as the
evaluation value for feature extraction, the largest number of
features of mutual information will be selected.

5.3. Feature Selection. Due to the limited number of samples,
the design of a classifier with a large number of features
is computationally expensive, and the classification perfor-
mance is poor. Therefore, feature selection was adopted
for the metrics set A [21]; that is, a sample of the high-
dimensional space was converted into a low-dimensional
space by means of mapping or transformation and dimen-
sionality reduction was achieved. Then, redundant and irrel-
evant features were deleted by feature selection to achieve
further dimensionality reduction. In this experiment, the
mutual information value was used to measure the corre-
lation for feature selection. If there was no correlation, the
mutual information value was zero. Conversely, if the mutual
information value is larger, the correlation is greater. When
the feature was selected, the mutual information value was
calculated for both the C/C++ and Java data sets. The results
are shown in Table 4.

The mutual information values of the two data sets are
synthesized to select a,, n<=22, and finally, 16 metrics are
obtained after mutual information calculation. Define the set
ofattributesas A = {a;,a,,...,a;5}. Amongthem,a;,a,,...,a;4
is Countlnput, CountLine, CountLineCode, CountLineCode
Decl, CountLineCode Exe, CountLine Comment, CountOut-
put, CountPath, CountSemicolon, CountStmt, CountStmtDecl,
CountStmtExe, Cyclomatic Modified, Cyclomatic Strict, Ratio
CommentCode.

Although the global results before and after the feature
selection seem similar, we achieve the same effect with
fewer features by applying feature selection. The obtained
data features and the 16 indicators adopted after the feature
selection could achieve high-efficiency cross-project soft-
ware metrics, thereby reducing the number of indicators,
dimensions and amount of overfitting. The process also
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TABLE 2: Java language experimental data set specific data.

GOOD BAD Total
Good Good Sink Good Source Good Auxiliary Bad Bad Sink Bad Source
Buffer overflow 8073 9522 828 21114 7866 4554 414 52371
TABLE 3: Metrics.
Name Description
1 CountInput Number of calls. Calls by the same method are counted only once, and calls by fields are not counted.
2 CountLine The number of lines of code.
3 CountLineCode The number of lines containing the code.
4 CountLineCodeDecl The number of lines of the name class, the method name line is also recorded in this number.
5 CountLineCodeExe ~ The number of lines of pure executing class code.
6 CountLineComment  Annotation class code line number.
7 CountOutput The number of calls to other methods, multiple calls to the same method are counted as one call. Return
statement counts a call.
CountPath Code paths that can be executed are related to cyclomatic complexity.
CountPathLog log 10, truncated to an integer value, of the metric CountPath.
10 CountSemicolon The number of semicolons.
11 CountStmt The number of statements, even if multiple sentences are written on one line, is counted multiple times.
12 CountStmtDecl Defines the number of class statements, including the method declaration line.
13 CountStmtExe The number of class statements executed.
14 Cyclomatic Circle complexity (standard calculation method).
15 CyclomaticModified Circle complexity (the second calculation method).
16 CyclomaticStrict Circle complexity (the third calculation method).
17 Essential Basic complexity (standard calculation method).
18 Knots Measure overlapping jumps.
19 MaxEssentialKnots The maximum node after the structured programming structure has been deleted.
20 MaxNesting Maximum nesting level, relating to cyclomatic complexity.
21 MinEssentialKnots The minimum node after the structured programming structure has been deleted.

22 RatioCommentToCode Code comment rate.

enhanced the understanding of the relationship between the
indicators’ characteristics and the indicator feature values,
thus increasing the ability of the model to generalize

5.4. Experimental Results. In the classification algorithm,
there is often a phenomenon in which the model performs
well for the training data but performs poorly for data outside
of the training data set. In these cases, cross-validation
can be used to evaluate the predictive performance of the
model, especially the performance with new data, which can
reduce overfitting to some extent. There are three general
cross-validation methods: Hold-Out Method, K-fold Cross-
Validation, and Leave-One-Out Cross-Validation. In this
experiment, the K-fold cross-validation method was selected.
K-fold cross-validation randomly divides the training set
into k, k-1 for training, and the remaining data for testing,
repeating the process k-times, and thus obtaining k models
to evaluate the performance of the model. In this experiment,
we validated the model into two parts: 80% of data set D was
used as training data, and 20% was used as test data.

First, we group the data D into a training set to train the
model and a test set to test the predictive performance of the
model. This process is repeated until all data are used. Next,
the K value is chosen to be 10, which is so that the data set is
divided into 10 subsamples, 9 of which are used as training
data and one is used as test data. Finally, the sensitivity of
the model performance to data partitioning is reduced by
averaging the results of 10 groups of results [22].

5.4.1. Results in C/C++ Programs. In this experiment, the
program written in C/C++ language was used to conduct
experiments, and the decision tree algorithm and other
machine learning algorithms were compared with respect to
accuracy and running time. The results are shown in Table 5.

Experiments showed that the decision tree algorithm
achieved the best results regardless of the accuracy or running
time, and the accuracy in the experiments reached 82.55%.
Second, the data feature selection was verified by comparing
the 22 metrics without feature selection and the 16 metrics
after feature selection, as shown in Table 6.
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TABLE 4: Mutual information value calculation results.
Metrics C/C++ dataset Java dataset
Mutual information value Sort Mutual information value Sort
CountInput 0.1892 11 0.6375 3
CountLine 0.5584 1 0.7996 1
CountLineCode 0.4902 2 0.6446 2
CountLineCodeDecl 0.4327 5 0.4373 11
CountLineCodeExe 0.3893 9 0.5
CountLineComment 0.3980 8 0.499
CountOutput 0.1625 12 0.3477 13
CountPath Nan 13 0.3959 12
CountPathLog Nan 13 0.2638 17
CountSemicolon 0.4307 7 0.5484 5
CountStmt 0.4465 0.5879
CountStmtDecl 0.4313 6 0.439 10
CountStmtExe 0.3434 10 0.5123 6
Cyclomatic Nan 13 0.3122 14
CyclomaticModified Nan 13 0.3122 15
CyclomaticStrict Nan 13 0.2968 16
Essential Nan 13 0.0099 20
Knots Nan 13 0.2508 18
MaxEssentialKnots Nan 13 0.0099 21
MaxNesting Nan 13 0.2236 19
MinEssentialKnots Nan 13 0.0099 22
RatioCommentToCode 0.4603 3 0.4959 9
TaBLE 5: C/C++ language dataset machine algorithm results.

SVM Bayes Adaboost Random forest Decision tree
Accuracy (%) 82.06 37.69 35.47 82.54 82.55
Recall rate (%) 67.8 30.23 34.25 68.65 68.68
Precision rate (%) 71.06 31.46 33.75 73.59 73.62
Running time (s) 576.32 19.98 19.02 17.94 17.03

It was proved by experiments that the running time of
the prediction buffer overflow vulnerability algorithm when
using the A = {a;, a,,...,a,¢} metrics after feature selection is
reduced from the previous 17.03 s to 15.94 s, but the accuracy
has hardly changed, so feature selection not only helps to
reduce the running time but also yields higher accuracy and
improves the efficiency of the vulnerability prediction. In the
final experimental results, the functions predicted by Bad,
Bad Sink and Bad Source are the probabilities of a high level
of buffer overflow vulnerability. The three types of data can be
extracted according to the function name for further analysis.

5.4.2. Results in Java Programs. The experimental results of
the data set extracted by the program written in the Java
language are shown in Tables 7 and 8.

In this experiment, we divided the buffer overflow vul-
nerability into eight categories. When there is vulnerability
in real software, it does not necessarily contain all types of
buffer vulnerabilities. There may be only one or several of

them, and when we collect data in real software data, the data
that may be vulnerable is much less than the data without
vulnerability and may even reach a ratio of 1:10000. In the
Java data set, because the experiment is a data set extracted
from real software, the data volume of Good Source and Bad
Sink is very small, which results in extremely unbalanced
data. It also leads to the accuracy and recall rate of both types
of data being 0. The accuracy and recall rate of other basic
balanced vulnerability data have better results. To maintain
the distribution of the original data, we need to improve the
accuracy and recall rate of other basic balanced vulnerability
data. To improve the accuracy of the results, data sampling
is not used to balance the data, which then demonstrates the
validity of the SVL model used to predict most types of buffer
overflow vulnerabilities in real software. At the same time,
the experiment proves that using the A = {al,a2,...,al6}
metrics to predict the buffer overflow vulnerability after
feature selection reduces the running time and ensures high
accuracy.



Security and Communication Networks 11
TABLE 6: Decision tree algorithm-specific operation results.
Before feature selection After feature selection
Precision Recall F1 Precision Recall F1
Good 88.09 83.56 85.76 88.03 83.47 85.69
Good Sink 61.27 52.91 56.78 61.27 52.91 56.78
Good Source 53.13 25.37 34.34 53.13 25.37 34.34
Good Auxiliary 77.16 96.34 85.69 77.16 96.34 85.69
Bad 77.08 49.23 60.09 77.08 49.23 60.09
Bad Sink 67.94 77.47 72.4 67.94 77.47 72.39
Bad Source 90.71 96 93.23 90.66 95.87 93.12
Average 73.63 68.7 69.76 73.61 68.67 71.05
Accuracy 82.55 82.53
Time 17.03 15.94
TABLE 7: Accuracy and time of Java dataset.
SVM Bayes Adaboost Random forest Decision tree
Accuracy (%) 87.16 57.95 49.40 87.41 87.44
Recall rate (%) 59.56 48.25 34.98 59.64 59.64
Precision rate (%) 58.74 44.28 33.11 58.91 58.93
Running time (s) 104.32 9.98 8.99 12.94 11.99
TABLE 8: Decision tree algorithm-specific operation results.
Before feature selection (%) After feature selection (%)
Precision Recall F1 Precision Recall F1
Good 95.85 93.04 94.42 96.11 93.04 94.55
Good Sink 4715 53.1 49.95 4715 53.1 49.95
Good Source 0 0 0 0 0 0
Good Auxiliary 98.56 98.13 98.35 98.56 98.13 98.34
Bad 77.27 73.99 75.6 77.27 73.99 75.6
Bad Sink 0 0 0 0 0 0
Bad Source 95.74 99.51 96.54 93.75 99.6 96.59
Average 59.22 59.69 59.27 58.98 59.69 59.33
Accuracy 87.44 87.51
Time 11.99 7.59

6. Discussion

The software vulnerability analysis method proposed in this
paper has good capability and has been applied and tested
using real code and reliable software. Furthermore, the
experiments verified the effectiveness of the BOVP model and
provided guidance for its effective use. The model minimized
the probability of misclassification while finding more vul-
nerabilities. This method has the following advantages: (1)
Given the relative advantages of static and dynamic analysis
of software vulnerabilities, the static metrics for source code
are extracted by static analysis, and the dynamic metrics
at the functional level are analysed according to the data
flow of the function. The model can ensure the accuracy of
vulnerability prediction and take into account the change in
data flow between functions in running programs. This is
a new vulnerability prediction method based on data flow

analysis in a running program. (2) In this paper, the data
set contained two different languages, namely, C/C++ and
Java, and thus fully validated the validity of the BOVP model
and proved that the model does not depend on a specific
language type. (3) The model can be applied to vulnerabilities
caused by multiple types of buffer overflows. The most
common and most difficult software security vulnerability is
buffer overflow vulnerability. The data set contains multiple
types of buffer overflow vulnerabilities, providing valuable
data for analysing different types of buffer overflows and
offering a basis for future research. (4) To some extent, this
research saves investment costs, time and human resources
for software development. Applying feature selection without
affecting the prediction results reduces the dimension and
the experimental overhead, and it greatly improves the
practicality of the software vulnerability prediction study.
This paper provides a new way for software metrics to study
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data collection in software vulnerability prediction. However,
this method is only suitable for source code, not for nonopen
source software.

7. Conclusion

The BOVP model proposed in this paper preprocesses the
program source code and then employs the method of
dynamic data stream analysis on the software functional level.
By studying the characteristics of practical software code
and different types of buffer overflow vulnerability features,
the decision tree algorithm was developed through feature
selection and the Gini index. Finally, a vulnerability predic-
tion method based on software metrics was constructed. The
capability of the BOVP model is verified by experiments using
program source code written in different languages, and the
prediction results are more accurate than other methods. The
time taken for the data set collected using C/C++ was less,
and the accuracy rate was 82.53%. The accuracy rate of the
data set using Java was also high, reaching 87.51%, which fully
demonstrated that this model is robust in predicting buffer
overflow vulnerability in different types of languages.

The current buffer overflow vulnerability is very com-
plicated and very common. Although it is divided into 8
categories, it does not contain all of the buffer overflow
vulnerabilities. Therefore, the classification of buffer over-
flow vulnerabilities should be more comprehensive in the
future. There are still some shortcomings in the method.
For example, there is no corresponding improvement in
the imbalance between Good Source and Bad Sink in the
Java data set, and the methods of this research are mainly
for open source software. It is believed that there is no
detailed analysis of nonopen source software. In the future,
we plan to solve the problem of unbalanced data, make up
for the shortcomings of this model, and study the binary
buffer overflow prediction model combined with dynamic
symbolic execution technology to find increasingly complex
types of buffer overflow vulnerabilities and also forecast
vulnerabilities for nonopen source software.

Data Availability

The original data (Juliet Test Suite for C/C++ and Juliet
Test Suite for Java) used to support the findings of
this study can be download publicly from the website
(https://samate.nist.gov/SRD/testsuite.php). The thirteenth
page of the articles has footnotes giving the link address.
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In the current intranet environment, information is becoming more readily accessed and replicated across a wide range of
interconnected systems. Anyone using the intranet computer may access content that he does not have permission to access. For an
insider attacker, it is relatively easy to steal a colleague’s password or use an unattended computer to launch an attack. A common
one-time user authentication method may not work in this situation. In this paper, we propose a user authentication method
based on mouse biobehavioral characteristics and deep learning, which can accurately and efficiently perform continuous identity
authentication on current computer users, thus to address insider threats. We used an open-source dataset with ten users to carry
out experiments, and the experimental results demonstrated the effectiveness of the approach. This approach can complete a user
authentication task approximately every 7 seconds, with a false acceptance rate of 2.94% and a false rejection rate of 2.28%.

1. Introduction

Insider threats have always been one of the most severe chal-
lenges for intranets with security requirements [1], because
they can cause system destruction, information exfiltration,
etc. In recent years, with the frequent occurrence of insider
threat events, intranet security has aroused increasing atten-
tion [2, 3].

Internal personnel have access to use internal proprietary
systems, and they know internal security policies and protec-
tion techniques and review regulations from safety facilities
[4], e.g., firewalls and IDS. Hence, internal personnel can
bypass existing security facilities. Even worse, a malicious
insider may also be the one who configures security measures
[5]. Moreover, a cyberattack from insiders is prevalent within
the organization [6]; according to the survey, 27% of all
cybercrime incidents were suspected to be committed by
insiders [2]. There are two reasons for these insider threats; on

the one hand, employees with malicious intentions modify or
steal organization’s confidential information, trade secrets, or
customer data for personal interests [7]. For example, insiders
make use of sensitive information to obtain commercial
interests or sell them to foreign organizations. On the other
hand, internal employees with inadvertent behavior expose
the organizations key assets and sensitive information to
external opponents [8]. Furthermore, in some confidential
organizations, the insider threat attacks may even be spy
activities at the national level [8, 9]. Thus, the effective
detection methods are worth studying.

The organizations in physical isolation high-security net-
works environment, such as confidential research institutes
and military enterprises, are less likely to suffer external
attacks. Thus, the internal attacks are the main reason for
the leakage of sensitive information [10]. Fraudulent use of
privileged users’ terminals is the primary attack method for
such internal threats [11].
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There are two main reasons for this attack:

(1) Due to the negligence of internal employees, they left
the workstation without logging out of the terminal
equipment. As a result, malicious people use their
terminals to unauthorized access and copy sensitive
information;

(2) Others forge a privileged user’s identity, such as
password leakage or USB-key loss, and thus access
privileged user’s terminal for espionage activities.

Traditional authentication methods, such as passwords,
USB keys, and fingerprints, determine the user identity
when logging in. Thus, they cannot effectively discover end
users with identity theft [12]. However, some approaches
conduct continued authentication using human-computer
interaction (HCI) behaviors [13] to solve the problem. HCI
behaviors are unique biometric features from input devices
like keyboards and mouses. For example, some researchers
used interventional scenarios to capture HCI behaviors, like
recording the user’s responses during equipment failures.
However, the interventional scheme has directly affected the
convenience of using the devices, which may be identified by
malicious users.

This paper proposed a continuous identity authentication
method based on mouse dynamic behavior and deep learning
to solve the insider threat attack detection problem. We
verified the effectiveness of our proposed method on an
open-source mouse dynamic dataset which contains the
mouse dynamic data from ten users. The experimental results
showed that our proposed method could identify the user’s
identities in seconds and has a lower false accept rate (FAR)
and false reject rate (FRR). Specifically, the contributions of
the work are as follows:

(i) We propose a novel continuous identity authenti-
cation method using mouse dynamic behavior and
deep learning. It achieves better accuracy and lower
verification time than existing methods.

(ii) Instead of manually extracting features from raw
operations to characterize a user’s unique mouse
behavior characteristics, such as movement speed
curves, we map the mouse dynamic behavior into
pictures. Hence, the whole details of the mouse
behavior can be preserved.

(iil) We construct a 7-layer CNN network to train the
mouse behavior pictures datasets. The network con-
verges with a small amount of data (about 18000
pictures). Moreover, the network can be used to
train other mouse behavior datasets and implement
identity authentication easily.

The remainder of this paper is organized as follows:
Section 2 reviews the background and related work in the area
of insider threat and mouse dynamics. Section 3 describes the
method of preprocessing the dataset and the CNN network
architecture and specific parameters. Section 4 presents our
experimental design and results, and Section 5 concludes.
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2. Background and Related Work

As early as 2006, the American Institute of Computer Security
(CSI) issued a report that the insider threat caused by the
malicious abuse of authority has exceeded the traditional
Trojan attacks and has become the main threat to organi-
zations [14]. The 2012 Annual Global Fraud Survey revealed
that 60% of fraud cases were initiated by insiders [15]. The
Edward Snowden incident in June 2013, known as “PRISM,”
caused widespread concern about insider threats all over the
world. The 2014 US State of Cybercrime Survey released by
CERT showed that 28% of insider attacks resulted in a loss of
46% [16]. In the same year, insider threats caused incredible
damage to many well-known companies: for example, the
Korean Credit Bureau has had 27 million accounts of credit
card information stolen because of abusing access rights by its
computer contractor [17]; the dismissed employee retaliated
against US oil and gas company EnerVest, and all the web
servers are restored to factory settings, thus leading to 30
days of disruption in overall communications and business
operations and recovery costs of hundreds of thousands of
dollars [18]. The 2016 US State Cybercrime Survey found
that insiders caused 27% of e-criminals. The investigation
report also revealed that 30% of the respondents believe that
the insider attacks caused more serious losses than outsider
attacks [19]. According to the 2017 CSO Cybercrime Survey
[20], about 50 percent of organizations experienced at least
one malicious insider incident in the previous year [21]. The
above examples fully proved that insider threats had become
the main cyberspace security threat faced by organizations.

The current research on insider threats is becoming more
systematic and specific. Since 2001, the United States Secret
Service (USSS) and Carnegie Mellon University have jointly
established the CERT Insider Threats Center. The center
collected more than 700 insider threat cases of fraud, theft,
and destruction and thus solved the problem of insufficient
data in insider threat research [22]. In 2011, the United
States DARPA proposed building up a military insider threat
detection system named ADAMS (Anomaly Detection at
Multiple Scales) [23]. In the third year of the ADAMS project
implementation, the SAIC company and four universities
in the United States, including Carnegie Mellon University,
jointly developed a realistic version of the ADAMS called
PRODIGAL system and run tests on the actual enterprise
data achieving good results [24].

The most common attack on insider threat is identity
fraud. Since the user’s identity cannot be continuously veri-
fied during the process of using the terminal, the malicious
user has the opportunity to masquerade as a legitimate user.
At present, research on the use of human-computer inter-
action data for insider threat attack detection has achieved
good results in practical applications. The human-computer
interaction data detection mainly studies the behavior pattern
of the user using the computer input device, in which the
mouse and the keyboard are mainly used as the data source.

In [12], the user’s mouse operation when using IE browser
was collected and based on these operations; the features
such as moving coordinates, moving distance, angle, and
moving time were constructed. The literature [25] focuses on
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the three basic types of mouse movements, clicks, and drags
and uses them to establish characteristics such as coordinates
and speed. The deficiency of the above work is that the
experimental data is too small, and malicious data adopts
simulation data, which cannot truly reflect the actual attack
conditions.

Research using keyboard data includes static text analysis
and dynamic text analysis. For example, in [26], user input
passwords are used to analyze the changes in user input
methods. This study of user input of the same text is a static
text analysis method. Another dynamic analysis is to study
the user’s arbitrary input of text. For example, the paper [27]
analyzes the user’s mail information and mainly records the
keystroke behavior and time stamp. The insufficiency of this
kind of research is that the habit of using the keyboard even
by the same user may constantly be changing. It needs a large
amount of input data to truly reflect a user’s actual behavior
characteristics, which is unrealistic in practical application.

Among different input devices, the mouse is a suitable
choice. In some existing methods based on mouse dynamics,
papers [12, 28, 29] have achieved low false reject rate (FRR)
and false accept rate (FAR). For example, in the paper
[28] FRR and FAR are approximately 2%. However, these
methods have a common limitation. They require an average
of several minutes (even more than 10 minutes) to collect
enough mouse behavior for verification [30]. In the actual
situation, attacks from insiders may only take tens of seconds
or even seconds to complete the attack, such as copying
files with sensitive information, sending emails with viruses,
or just implanting one trojan in the machine. The methods
commonly used in existing research are rough as follows:
they collect data from users’ valid mouse movements, extract
selected features from them, and use these features to train
models for classification. For example, the literature [28] uses
the backpropagation neural network, and the literature [12]
uses the C5.0 decision tree. There are two obvious disadvan-
tages to these methods. One is the behavioral features of the
mouse are artificial selected, which will inevitably lead to the
loss of some details behavior; the other is that these methods
need to collect a large number of valid movements when
verifying the user’s identity, so the verification takes longer.

The paper [13] used an interventional scenario method.
In these scenarios, the user’s mouse was disabled for a short
period and collects the behavioral data generated by the user
due to the loss of the mouse cursor during this period. The
data for this period was used to verify the user’s identity,
achieving 5 seconds of verification and having 2.86% of FRR
and 4% of FAR. However, this method also has obvious
shortcomings. Regularly adopting an interventional scenario
to verify user identity will inevitably seriously affect the
convenience of using the terminal, and the attacker will easily
perceive it. If the interval between two verifications is too
long, the attacker will probably be able to complete the attack
within the interval.

There are also some other approaches to detect insider
threats. Reference [31] presents an ontological framework and
a methodology for improving physical security and insider
threat detection (called PS0). PSO can facilitate forensic
data analysis and proactively mitigate insider threats by
leveraging rule-based anomaly detection. Reference [32] uses

machine learning algorithms and extracts the frequently used
words from the topic modeling technique and then verifies
the analysis results by matching them to the information
security compliance elements, to find the possible malicious
insider from social media. Reference [33] implements a fuzzy
classifier along with genetic algorithm (GA) to enhance the
efficiency of a fuzzy classifier and the functionality of all other
modules, to achieve better results in terms of false alarms.
Reference [34] applies Hidden Markov method on a CERT
dataset and analyses a number of distance vector methods in
order to detect changes of behavior, which are shown to have
success in determining different insider threats.

3. Overview of Our Approach

From previous research on insider threat detection based
on mouse behavior, researchers usually extract some mouse
features based on the basic mouse movements (which we
call raw data, including clicks, moves, and drags), such as
direction, velocity, Angle of Curvature, Curvature Distance,
and Pause-and-Click [35], and then go through these features
to determine human behavior characteristics, to conduct user
authentication [36].

This kind of method has achieved outstanding results,
but all have a common shortcoming. Researchers are all
extracting features based on their own experience and
understanding. This method has certain limitations; during
the process of extracting features, some researchers use
only mouse click actions; some researchers use the moving
distance combined with clicks to generate features, and others
consider other basic mouse actions. But there is still much raw
data that can reflect the individual’s unique being ignored and
therefore affects the accuracy of recognition.

We propose a method that can completely retain all basic
mouse operations and use deep learning for user authentica-
tion. First of all, we map all actions generated by the mouse to
images through a particular method. Then we train the image
datasets through the CNN network to create classification
models. In the process of authentication, the user’s mouse
operation is mapped according to the same method, and
then classified by the trained model, so as to achieve the
purpose of user identification. Our approach makes full use
of the advantages of deep learning. First, in the process of
mapping mouse behaviors into images, we retain all basic
mouse operations. Neither need to manual extract features to
train these image datasets when using the CNN network, nor
need the feature extraction algorithm in traditional machine
learning. The convolutional neural network can automatically
complete feature extraction and abstraction in the training.
Secondly, there are many successful and efficient solutions to
the problem of how to use CNN to classify images. In order to
take this advantage, we map the mouse actions to the behavior
trajectory on the picture, which based on mouse behavior.
This turns the problem of the user authentication based on
mouse behavior into a classic image classification problem.

3.1. Data Preprocessing

3.11. Dataset. Many of the previous studies collect the
raw mouse data by themselves and use for analysis and



experimentation. Most of the datasets have not been dis-
closed. Even if some researchers open source their own
datasets, they are currently unavailable for download. To
prove the effectiveness of our method, we choose to use the
open-source mouse dynamic dataset, which published on
GitHub [37], for our experiments.

The dataset stores the mouse dynamic data from ten users.
The dataset consists of two parts, one part is stored in the
“training_files” folder and contains data session files from
ten users who normally operate the mouse, and store them
separately in their respective named folders. There are 5-7
long session data files in each user folder; the other part
stores them in the “test_files” folder, which also contains
ten folders named after ten users. Each user folder stores
many short session data files. Some of these session files are
actually not generated by current users. The dataset also gives
a “public_labels.csv” file that marks whether the session data
in the folder is legal or not.

Each session is stored in the following format:

[record timestamp, client timestamp, button, state, x,y] (1)

The specific meanings are as follows [37]:

record timestamp: elapsed time (in a sec) since the start
of the session as recorded by the network monitoring device;

client timestamp: elapsed time (in a sec) since the start of
the session as recorded by the RDP client;

button: the current condition of the mouse buttons;

state: additional information about the current state of the
mouse;

x: the x coordinate of the cursor on the screen;

y: the y coordinate of the cursor on the screen;

The data in “training files” is quite complete and large
enough compared to the data in “test_files”. We divided
“training_files” into two parts, one to train our model and
the other to verify whether our model is effective or not. In
addition, we use “test_files” to further verify that our model
is still accurate enough for insider threat detection.

3.1.2. Mouse Dynamic Mapping Method. All the basic oper-
ations that the mouse can produce are move, Click, Drag,
Scroll, and Stay. In previous studies, the researchers usually
extract features from these five basic actions based on their
experience. Such as moving distance, moving speed, click
frequency, etc., which can reflect the behavior of individuals
using the mouse to a certain extent. However, there are
also two obvious shortcomings. First, the use of a single
feature (or a combination of multiple feature vectors) does not
fully or accurately reflect the individual’s unique behavioral
characteristics; the second is that more time is required
in the process of acquiring features, because the feature
vectors (some researchers call them effective operations) are
extracted from the basic operations. Undoubtedly, relatively
more basic actions are needed to generate enough effective
operations.

In order to completely preserve the features generated
by people using the mouse, we map all the basic actions
generated by users to the image. Because the data generated
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FIGURE 1: The position of the mouse is represented by a two-
dimensional coordinate system (x, y), and the distance between two
mouse positions is expressed as a movement feature of the mouse.
The movement features can reflect the personality characteristics
of users such as moving speed, moving angle, moving range, and
average moving distance.

by the mouse is a one-dimensional dataset, we map these one-
dimensional datasets to two-dimensional tensors according
to the following mapping method. The specific mapping
method is as follows:

Require 1. m, the number of mouse basic actions;

Require 2. xMax, the maximum x coordinate in a session;
yMax, the maximum y coordinate in a session;

Step 1. Take m mouse operations according to the data
sequence of the session;

Step 2. Construct a coordinate system D based on xMax and
yMax;

Step 3. Extract all the “Move” operations in this m, record all
the coordinates of “Move” (x, y) € [xMove, yMove], and map
a red color line on D according to the coordinate distance of
two actions operations, as shown in Figure I;

Step 4. Extract all the “Pressed” operations in m, the pressed
operation (x, y) € [xLeft_P, yLeft_P] for the left button, and
(x, y) € [xRight_P, Right_P] for the right button. Similarly, all
“Released” operations’ coordinates of the left and right button
are recorded in [xLeft R, yLeft_R] and [xRight_R, Right_R],
respectively. To distinguish between the left and the right
buttons and the difference between “Pressed” and “Released”
in the image, the left button “Pressed” is represented by a blue
“circle” on D, the left button “Released” is represented by a

«_»

green “x”, the right button “Pressed” is represented by a black

« »

.7, and the right button “Released” is represented by a black
“x”, as shown in Figure 2;

Step 5. Extract all the “Drag” operations and (x, y) € [xDrag,
yDrag] is represented by a thick yellow line on D, as shown in
Figure 3;

Step 6. In the same way, all “Scrolls” are extracted. Scroll’s
“Up” operations are recorded in [scroll_up_x, scroll_up_y]
and “Down” operations are recorded in [scroll_down_x,
scroll_down_y]. The “Scroll Up” is represented by a cyan
upward triangle“A” and the “Scroll Down” is represented by

«__»

v, as shown in Figure 4;

Step 7. In this m, if there are two consecutive actions on the
same coordinate and stay for a while, we believe that this
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FI1GURE 2: The click action is actually made up of two actions: Pressed
and Released. So a “click” action is actually done by a Pressed and
a Released. Two consecutive times on the same coordinate (x, y)
becomes a “double click” action. In addition, the mapping method
also needs to distinguish the left and right buttons of the mouse, that
is, “click” and “double-click” of the left mouse button and “click” and
“double-click” of the right mouse button. It can reflect the features
of the number of clicks, frequencies, and other features.

C X

FIGURE 3: The mouse did not release immediately after pressing
“Pressed” but “drag” a distance and then “Released,” which is a drag
operation. Drag operations are also common in actual mouse use
and are often not noticed as features of the user.

period can also reflect the personal operating habits and call it
a “Stay” operation. (x, y; s) € [stay_x, stay_y, stay_s] represents
all “Stay” operations in m, where x and y are the coordinates
of the “Stay” and s represents the relative time of operation. It
is represented by light red translucent squares on D, and the
square size is linearly related to s, as shown in Figure 5;

Step 8. Save the mapped D as a picture in JPG format, so we
get a track diagram of the mouse’s behavior in units of m basic
operations.

Step 9. Repeat Steps 2-8 until the number of remaining
operations in a session is less than m, and get n pictures of
a user in a session, as shown in Figure 6.

According to the mapping method, all sessions of all users
in “training files” store them in the folders named by each
user, and we get a dataset that can be trained by the CNN
network. Each username is the label of each sub-dataset.
We generated image sets for training CNN models in units
of m=25, 50, 100, 500, and 1000, respectively, as shown in
Figure 7.

3.1.3. Data Augmentation. Although the open-source dataset
was used to generate 10 sets of tagged datasets, as shown
in table x, the amount of generated images is insufficient.
Therefore, we use three methods for data augmentation. One
is to flip the image, including horizontal flip and vertical flip;
The other is to rotate the image by 90 degrees, 180 degrees, and
270 degrees, respectively; The third is to randomly rotate the
image by 25 degrees. Each picture will be judged according
to the probability of 50% on whether to perform the above
operation. As long as the dataset reaches our preset target,
the dataset stops to augment. In this paper, our default
augmentation goal is 18,000, which is to augment each user’s
dataset to 18,000 images.

£

FIGURE 4: Mouse “Scroll” operation is also often ignored by
researchers, but it can also reflect people’s habitual operating
characteristics. The “Scroll” operation is divided into two Up and
Down scroll actions.

FIGURE 5: Usually, researchers think of mouse movements and clicks
as mouse operations. They do not pay attention to the interval
between two mouse operations. In fact, this interval is also an
“operation” of the mouse, and we call it the “Stay” operation. When
there is no other operation on the mouse in one coordinate or the
interval between two operations of the mouse, it can be defined as
the “operation,” which is represented by a semitransparent square on
the two-dimensional image. The size of the square is used to indicate
the length of stay.

s/

FIGURE 6: A picture of a user’s mouse behavior (when m=100).

3.2. Overall Architecture of CNN. We refer to the networks of
Alexnet [38], VGG [39], and GoogleNet [40]. We do not have
such a large training set, so we do not choose to use such deep
networks as VGG and GoogleNet. In fact, an 8-layer network
constructed entirely in accordance with Alexnet parameters
is not very applicable in our experiments. Therefore, we have
constructed a 7-layer CNN network as shown in Figure 8.

The first four layers are convolution layers, and the
remaining three are fully connected layers. A max-pooling
layer follows each convolutional layer. The output of the
first two full-connected layers is processed by Dropout. The
output of the last layer is sent to Softmax and obtained the
probability distribution of the classified labels. Apply the
ReLU nonlinearity to the output of all convolutional and all
fully connected layer except the last one.

Details of Parameters. The first convolutional layer filters the
100%100+3 input image with 32 kernels of size 3%3+3 with a
stride of 1 pixel. The second convolutional layer takes as input
the output of the first convolutional layer and filters it with 64
kernels of size 3#3%32. The third convolutional layer has 128
kernels of size 3#3#64 connected to the outputs of the second
convolutional layer. The fourth convolutional layer has 128
kernels of size 3#%3%128. The first fully connected layers have
1024 neurons and the second have 512, and both have passed
the Dropout layer processing with a probability of 0.5.
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FIGURE 7: Image dataset generated from “training_files” in a unit of m. As the value of m increases, the dataset of user pictures becomes

smaller.

(a) Activation Function. The CNN with Rectified Linear Units
is much faster than the CNN with tanh [41], so we use the
nonlinear activation function ReLU. The function form of
RelU is f(x) = x* = max(0, x). This nonlinear function
means that when x is less than 0, the output is always 0, and
when x is greater than 0, the output is the input value.

(b) LRN Layer. Although the concept of LRN (Local Response
Normalisation) was mentioned for the first time in Alexnet
and it also shows that LRN can reduce the error rate of its
model, in [39] it is mentioned that LRN has little impact on
the network and increased time-consuming. In our actual
training, we also found that adding the LRN layer will
increase the training time, but the improvement of training
results is not very obvious. Therefore, the LRN layer is not
added after convolution.

(c) Pooling Function. We used the max-pooling function [42],
which is a commonly used pooling function in current CNN
networks. The max-pooling can be expressed as taking the
maximum value of this area within a certain rectangular area
(z=z) instead of the output of the network at this location and
performing pooling every S pixels.

(d) Dropout. To prevent overfitting of the model, we added the
Dropout layer to the first two layers fully connected layers. In
machine learning, the output of multiple models is usually
integrated to reduce the generalization error, such as Bagging
[43], but when each model is a large neural network, the
training and evaluation of such networks requires alot of time
and memory, as [40] integrates six neural networks, beyond
which it will become difficult to handle. While Dropout

provides an approximate Bagging integration method [44,
45], Dropout randomly drops some of the nodes’ outputs
with a certain probability, so that the dropped output does
not participate in the propagation. Each round of training
randomly drops some nodes, which is equivalent to a part
of the network forming a subnetwork or submodel. This
can effectively reduce the complex coadaptation between
neurons; because of random inactivation, the neuron cannot
be overly dependent on a previous neuron with an output. In
training our model, we set the Dropout probability to 0.5.

(e) Gradient Optimization Algorithm. We used the Adam
[45] optimization algorithm provided by Tensorflow, which
is an optimization algorithm with learning rate adaptation
and introduces quadratic gradient correction. The specific
implementation algorithm in Tensorflow is as in Algorithm 1.
Where learning_rate is stepsize, which is the learning rate,
Betal and beta2 are the exponential decay rates of first-order
moment estimation and second-order moment estimation,
respectively. Momentum in other optimization algorithms
is directly incorporated into first-order moment estimation
in Adam. The range of moment estimation is [0, 1); Epsilon
is a small constant used for numerical stability. The default
value of this constant is le-08, but it is necessary to test the
best choice based on experiments. The variable is updated
according to the gradient g. In our model training, we set
learning_rate=0.01; betal=0.9; beta2=0.999; epsilon=1e-08.

4. Experiments and Results

In this section, we will conduct three experiments. We
completed the entire model training and experiments in
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layer2
Conv kernel:3,stride: 1,64

ReLU
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Max Pool kernel:2,stride:2
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ReLU

Dropout keep_prob:0.5

layer6
FC512

ReLU

Dropout keep_prob:0.5

layer7
EC2

F1GURE 8: The architecture of our CNN.

the following experimental environment: Python 3.5.2, Ten-
sorflow rl.4, CUDA Version 8.0.61, cudnn-8.0-windowsl0-
x64-v6.0, windowsl0, and NVIDIA GTX 1060 6GB GPU.
Experiment A is to verify the effectiveness of our method.
Through the experiment, we can confirm that the use of the
CNN network is effective for identity authentication based
on mouse features and achieves good FAR and FRR values.
Experiment B is to illustrate that our method requires very
little time for authentication and can perform continuous
user identity authentication after the user logs in to the
terminal. Experiment C is to experiment with the “test-files”
data provided by the dataset. Our experiment is designed to
be a scene that needs to be faced with a real insider threat
attack and takes measures to reduce FAR as much as possible.
Experiments can show that our method can be applied in
practical situations.

4.1. Experiment A: Identity Authentication. We believe that, in
the insider threat detection scenario, the problem to be solved
by the identity authentication should be judging whether the
person currently using the terminal is consistent with the
currently logged-in user. Therefore, we designate one user
as a legal user and nine other users as illegal users (we total

7
1 t<-t+1
2 lIr_t <-learning_rate * sqrt(1 - beta2At) / (1 - betalAt)
3 m.t<-betal * m_{t-1} + (1- betal) * g
4 v_t<-beta2 x v_{t-1} + (1-beta2) x g* g
5 variable <- variable - Ir_t * m_t / (sqrt(v_t) + epsilon)
ALGORITHM 1: Adam optimization algorithm.
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FIGURE 9: Trend chart of average values of FAR and FRR.

have ten users’ mouse dynamic data). This is a typical binary
classification problem. To verify the effect of our method, we
design the experiment as follows.

Step 1. Use the image dataset that was generated in Sec-
tion 3.1.2. Appoint a legal user (such as user 12), and extend
the subdataset D as described in Section 3.1.3. Then, divide
the dataset D into a training set T0 and a test set T according
to the ratio of 85% and 15%;

Step 2. According to the TO and T0', randomly extract the
same amount from the other nine users’ subsets, to construct
an illegal user training set T1 and an illegal test set T1'. And
ensure that there is no intersection between T1and T1'.

Step 3. Take TO and T1 as input, and use the CNN network
constructed in Section 3.2 to train the model. Then, test TO'
and T1' with the generated model and calculate FAR and FRR.

Step 4. Appoint one of the ten users as the legal user, and
the remaining nine are considered as illegal users. Repeat the
above experiment steps and calculate the average FAR and
FRR.

In this experiment, we made TO + T0' = 18000 and T1
+ T1' = 18000. Hence, the size of training set is TO + T1 =
30600(85%), and the size of test set is T0' + T1' = 5400(15%).
The above experiment was conducted for different mouse
operation datasets (m=25, 50, 100, 500, or 1000), and the
experimental results were shown in Table 1. Figure 9 shows
the average values of FAR and FRR vary with m, and they
decrease as m increases (the number of features on each
image increases).
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TABLE 1: The results of experiment A.
User m=25 m=50 m=100 m=500 m=1000
FAR(%)  FRR(%)  FAR(%)  FRR(%)  FAR(%)  FRR(%)  FAR(%)  FRR(%) FAR(%)  FRR(%)
7 16.556 10.333 7.37 6.37 4.889 2.444 4.519 0.185 1.778 0.259
9 9.519 10.815 6.222 3.889 2.704 2.556 2.444 0.037 0.519 0.037
12 18.37 12.259 8.148 9.63 4.222 2.963 1.259 0.444 0.852 0.296
15 9.407 7.037 11.593 7.63 4.963 1 0.519 0.148 0 0.259
16 10.667 9.185 7.556 4.148 5.111 1.852 1.037 0.074 0.444 0
20 6.074 8.185 9.63 1.556 2.444 1.112 0.852 0.37 0.519 0.037
21 7.704 8.704 4.407 4 1 2.519 0.778 0.519 0.222 0.037
23 7.259 9.222 3 5.852 0.63 3.481 1.704 0.37 0.259 0
29 12.481 10.333 6.963 5.593 1.704 2.667 1.037 0.148 0.481 0.185
35 9.26 9.704 3.667 4.889 1.704 2.185 3.778 0.037 0.704 0.074
Avg 10.7297 9.5777 6.8556 5.3557 2.9371 2.2779 17927 0.2332 0.5778 0.1184
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FIGURE 10: Number of mouse actions per second generated by users.

4.2. Experiment B: The Time Cost of Identity Authentication.
In our opinion, the authentication time is composed of
the time needed to collect the mouse features and the
time required for classification. Compared with the time
of collecting mouse features, the time of classifying mouse
features using the trained model is almost negligible. Hence,
our primary concern is the time required to obtain enough
features. It can be seen from the data set analysis that the
number of operations per second generated by the user when
using the mouse normally has individual differences. The
detailed data is shown in Figure 10.

As can be seen from Figure 10, the user (user 9) generated
up to about 182 operation actions in one second. That is to
say, in the fastest case, it only takes less than 1 second to
complete 100 operations collection and authentication (when
m=100). In the slowest case, the user (user 16 and user 29)
only generates about 1.61 operations per second, which takes
about 1 minute to complete the operation collection and

authentication (when m=100). On average, ten users can
generate 14.141 mouse operations per second, and about 7
seconds can complete acquisition and authentication (when
m=100). The mouse operation data we use is the raw data
of the mouse (as we mentioned in Section 3). We analyzed
the average time and the minimum time, respectively, under
different values of m (when m=25, 50,100,500,1000), the
result shown in Table 2.

4.3. Experiment C: Insider Threat Detection. In an insider
threat attack scenario, the insider is familiar with the internal
system; it is possible to copy sensitive information in a very
short time. Therefore, we believe that the authentication
time should be within 10 seconds, and the time intervals
between two authentications should also be controlled within
10 seconds. According to the above experimental results, we
select the third model (m = 100) for the next experiment. The
model was able to complete authentication in about 7 seconds
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TABLE 2: Average time and the minimum time required to acquire
mouse actions.

m Avg Time(s) Min Time(s)
25 1.768 0.315

50 3.536 0.63

100 7.072 1.26

500 35.358 6.296
1000 70.716 12.592

TaBLE 3: The test data set generated according to the mapping
method (when m=100), in which each user folder contains legal
sessions and illegal sessions.

test_files legal illegal total_picutres
user7 36 37 1659
user9 23 43 1585
userl2 56 49 1306
userl5 45 70 1238
userl6 68 38 173
user20 30 20 1089
user21 37 22 605
user23 38 33 765
user29 43 20 684
user35 35 73 1076
Total 411 405 11180

Note. During the generation process, we found that some sessions do not
have label information in “public_labels.cvs”. Because we could not confirm
these sessions are legitimate data or not, we removed this data information.

on average and reached 2.94% FAR and 2.28% FRR. We think
this can basically meet the needs of such insider threat attack
detection.

We will use the test set (“test_files”) provided by the
dataset for the experiment and then determine whether a
session is legal data based on the labels (“public_labels.csv”)
provided by the dataset. The user data in “test_files” is mapped
according to the mapping method in Section 3.1.2 to generate
a test data set. The results are shown in Table 3.

It would be fair to say that an insider threat detection
system with low false reject rates may be tolerated, but an
insider threat detection system with low false accept rates
cannot be allowed. That is because if there is a false reject
event, the results of the false reject event report can be
assisted by various measures, such as on-site inspection,
video surveillance, IDS, firewall, and SOC, and the false reject
event can be verified. But if a malicious behavior of espionage
is not be detected, that means the attacker has successfully
achieved the goal and will incur an incalculable loss to
the organization. That is to say, the system designing is to
minimize FAR but with FRR-tolerant in the actual application
scenario.

Therefore, we design this experiment according to the
purpose of reducing the FAR as much as possible. A session
represents the beginning of a mouse session, in which
mouse actions are generated in chronological order. In the
actual authentication scenario, authentication is performed
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TABLE 4: The results of experiment C.

User FAR(%) FRR(%)
7 0 3.223
9 0 2.365
12 2.5 7.537
15 0 3.704
16 0 12.776
20 0 12.296
21 0 23.958
23 0 22.52
29 0 11.556
35 0 15.73
Average 0.25 11.5665

every time sufficient actions are generated (we generate
pictures according to the setting of m=100). We do not
consider the current user to be a legitimate user until three
consecutive authentications are legal. In other words, each
authentication result is compared with the previous two
authentication results, and a warning is issued as long as one
of the authentication results is illegal. In this way, the actual
authentication requires three pictures (m=100+3), which can
effectively reduce the FAR. The experimental results are
shown in Table 4.

4.4. Comparison with Previous Work. In this section, we
show a comparison of our experimental results against the
results of previous works, which are shown in Table 5. The
verification time is highly dependent on the number of mouse
actions. As described in Section 3.1.2, the type of mouse
actions can be divided into Click, Move, Drag, Scroll, and
Stay. We choose to use all these five raw mouse actions to
construct the authentication model, but the previous works
do not use all the basic actions and try to extract features
from the basic actions. Reference [28] uses move, drag, click,
and stay for authentication, but they need about 2000 mouse
actions and 1033 seconds. Reference [35] needs 20 mouse
clicks, but sometimes they need a very long time to collect
enough clicks (average of 37.73 minutes). If they also use
mouse move actions, the verification time can reduce to
3.03 minutes. Reference [36] chooses to use mouse click and
mouse movement to construct the features.

Generally speaking, as the number of mouse actions
increases, both FAR and FRR show a downward trend, but
the verification time increases accordingly.

5. Conclusion

Many previous studies have shown that mouse biobehavioral
features can authenticate users. In this paper, we focus on
the challenges of using mouse behavioral features for insider
threat detection and propose a method that combines deep
learning with mouse biobehavioral features for insider threat
detection. This method can complete a user authentication
task in a very short time while maintaining high accuracy. In
the previous studies, one or several basic actions were selected
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TaBLE 5: Compare with previous works.
Source FAR FRR Data required Authentication time
28] 2.46% 2.46% 2000 mouse actions 1033 seconds
(click/move/drag/stay)
[35] 1.30% 1.30% 20 mouse clicks 37.73 minutes(click) or 3.03 minutes(click/move)
(click or click/move)
8.74% 7.69% 32 mouse operations 11.80 seconds
(click/move)
(361 4.69% 4.46% 160 mouse operations 59.49 seconds
(click/move)
3.33% 2.12% 320 mouse operations 118.14 seconds
(click/move)
10.73% 9.58% 25 mouse actions 1.768 seconds
(click/move/drag/stay/scroll)
6.86% 5.36% >0 mouse actions 3.536 seconds
(click/move/drag/stay/scroll)
ours 2.94% 2.28% 100 mouse actions 7.072 seconds
(click/move/drag/stay/scroll)
1.79% 0.23% 500 mouse actions 35.358 seconds
(click/move/drag/stay/scroll)
0.58% 0.12% 1000 mouse actions 70.716 seconds

(click/move/drag/stay/scroll)

from mouse five basic actions, and these actions were used
to extract features to describe the unique behavioral char-
acteristics of the user and then classified by using methods
such as SVM, to realize user authentication. We use all five
basic mouse actions to prevent the user’s unique behavior
characteristics from being omitted. Then, we map the user’s
mouse actions into pictures and automatically extract and
model the user behavior pictures through the CNN network
of deep learning. We use an open-source mouse behavior
dataset that contains mouse action data from 10 users.
The experiments have demonstrated the effectiveness of the
proposed approach, with a false acceptance rate of 2.94%, a
false rejection rate of 2.28%, and the authentication time of
7.072 seconds (when m = 100). These results show that this
approach can be applied to detect insider threat attacks in
specific scenarios.

Data Availability

The mouse dynamic data used to support the findings of
this study were supplied by Balabit Mouse Dynamics Challenge
dataset and available at https://github.com/balabit/Mouse-
DynamicsChallenge.
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With explosive growth of malware, Internet users face enormous threats from Cyberspace, known as “fifth dimensional space.”
Meanwhile, the continuous sophisticated metamorphism of malware such as polymorphism and obfuscation makes it more difficult
to detect malicious behavior. In the paper, based on the dynamic feature analysis of malware, a novel feature extraction method
of hybrid gram (H-gram) with cross entropy of continuous overlapping subsequences is proposed, which implements semantic
segmentation of a sequence of API calls or instructions. The experimental results show the H-gram method can distinguish
malicious behaviors and is more effective than the fixed-length n-gram in all four performance indexes of the classification
algorithms such as ID3, Random Forest, AdboostM1, and Bagging.

1. Introduction

With the development of computer and Internet technology,
malware software (malware) such as Trojans, viruses, and
worms also constantly mutates, self-renews, and becomes
one of most serious threats to Cyberspace. Malware is a
program that performs malicious tasks on a computer system,
which implements control by changing or destroying process
execution flow. In recent years, there are endless security
incidents from malware. For example, in May of 2017, Wan-
naCry [1], one of the devastating ransomware which plagued
over 150 countries and traversed all continents, spared no
industry niche owing to the indiscriminate nature of the
attack [2]. At 7:10 PM Eastern Time in October 21, 2016,
hackers manipulated millions of “broilers” to paralyze the
server of the DNS supplier of Dyn through the Mirai malware
in a hijacking attack, which led to the collapse of well-known
American websites, including Twitter, Paypal, Spotify, Netflix,
Airbnb, Github, Reddit, and New York Times, and half of the
United States fell into a disconnected state. From these events,
we can see that malware detection is extremely urgent.

At present, malware detection methods are divided into
static detection and dynamic detection [3-5]. Based on the
static method, features are extracted from the original codes

or files such as PE files, binary code, and disassembled
code. Without running, the static features are represented
as a series of coding that is the only identity representa-
tion and can distinguish from other software. For example,
antivirus software products (e.g., Symantec and Kaspersky)
mainly use the signature-based method of detection [6, 7],
which is unique for known malware so that its samples
can be correctly classified with a small error rate [8].
But the static method is usually vulnerable to obfuscation
technology. For example, hacker makes tiny changes in
malware variants, such as adding null instruction (NOP) in
noncritical areas, changing instruction jump mode, which
will produce new signature-based codes. If the virus library
is not updated and preserves the new codes, the antivirus
software will not be able to detect these variants. Different
from the static method, the dynamic features are extracted
under runtime environment (e.g., sandbox or honeypot),
where malicious acts and operations are not hidden or
discounted. For example, the dynamic representations of
malicious behaviors may be from a sequence of API calls or
instructions in a virtual machine environment. Compared
with static method, the dynamic one does not need reverse
engineering such as decompilation and decryption. Though
it consumes a lot of running time and storage space, the
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dynamic method is more resilient to obfuscation technology
[9,10].

As a subset of AT (artificial intelligence), machine learn-
ing, developed to allow robots and computers to learn
autonomously, is used to better serve the corresponding
business needs and has achieved great success. Through the
approximation of complex function and nonlinear fitting,
machine learning, such as SVM, Naive Bayes, and decision
trees, has been used for model to detect malicious codes
[7, 11]. Ye [12] and others use a sequence of API calls as the
behavioral characteristic of malware and develop the Intel-
ligent Malware Detection System (IMDS) scanning malware
based machine learning. Li et al. [13] propose an approach for
extracting the dynamic features of malicious code semantics.
The method extracts the dynamic features of malicious
codes in virtual environment so as to achieve the purpose
of protecting physical machine. The experimental analysis
adopts the machine learning methods such as decision trees,
KNN, and SVM. Zhou et al. [14], based on the isomorphism
of sensitive API call graph, propose a method which is used
to construct malware family features with graph similarity
metric.

In this paper, we propose a features extraction method of
hybrid gram for malicious behavior with cross entropy based
on machine learning. Inspired from semantic segmentation
of NLP (Natural Language Processing), the API sequences of
malware are essentially kinds of context and are as rigorous
as NLP on semantic and structural features. Therefore, a
sequence of high correlation API can be used to represent
the malware behavior. Moreover, in order to select the
malware features, the feature vector is extracted from the
sequences of API calls by sliding time window of different
gram. Considering that the vectors are very sparse and high
dimensional at this time, nonsignificant features should be
excluded. Furthermore, through calculating cross entropy of
continuous overlapping subsequences in hybrid gram, the
new feature vector is chronologically integrated and selected.
Finally, the machine learning method is applied to classity
and detect malware samples. We adopt the dataset from
VXHeavens website [15] to train the model. The experiment
results show that H-gram method effectively distinguishes
malicious behaviors.

The rest of the paper is organized as follows. In Section 1
the API-related knowledge is introduced, as well as dynamic
track and capture in a virtualized environment. Section 2
elaborates the process of extracting and quantifying n-gram
semantic features and also an adaptive variable-length n-
gram feature selection method. In Section 3, we describe the
process of converting the API sequences processed by n-gram
into information entropy, namely, the feature quantization.
In Section 4, we use the machine learning method to verify
the experimental data analysis. Finally, the full paper is
summarized.

2. Win32 API Call Mechanism and
Feature Selection

In the Windows operating system, user applications rely
on interfaces provided by dynamic link libraries such as
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kernel32.dll, advapi32.dll, user32.dll, and gdi32.dll to access
the hardware and system resources. Windows API call mech-
anism is shown in Figure 1.

This interface is called the Win32 API. For example, when
a user program calls the Win32 API function of reading
file, the process jumps to the NtReadFile function in the
kernel state entry “ntdIldll” firstly. Then the NtReadFile
function calls the service routine in kernel mode, which is
also named NtReadFile. Almost every program need directly
calls the native API (kernel mode). If you want to monitor the
program, the best way is to directly monitor its API calls. API
function itself is not divided into the malicious or the benign.
In other words, the malware uses the normal API function
to achieve its own malicious purpose. The same API can be
called by either the malicious or the benign. Only in terms
of these sequences of API calls with context information can
the diversity, between the malware behaviors and the benign
ones, be discriminated effectively. However, due to the large
number of API functions, it is not possible to describe the
behavioral characteristics of samples in the actual operation
through tracking all the APIs at all time. Therefore, in the
paper we use the APThook technology to dynamically capture
the API call sequence generated by the samples under the
virtualized environment. After analysis and summary, six
kinds of malicious behavior are obtained. The six kinds of
behavior of API call sequences generated by each test sample
are captured in chronological order. The API feature selection
process is shown in Figure 2.

3. Feature Selection Model

The n-gram model has been successfully applied to the field of
text analysis, which has improved the accuracy of similarity
measure between texts. The API sequences of programs are
essentially kinds of text and are more rigorous than the text
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on semantic features and structural features. So n-gram can
also be used for malware features analysis and selection.
Without knowing which subsequences have representative
semantic information, we extract new features from API call
sequences by sliding fixed time windows. API call sequences
are represented as {---,x,_5, X, 1, Xp> X4, 1> X400 -+ - }. The n-
gram model, which satisfies Markov hypothesis as formula
(1), can produce partial overlapped continuous subsequences.

P('xt | xt—l’xt—Z"'"xt—N’xt—N—l""’xt—N—M) W

= P(xt | xt—l’xt—Z""’xt—N)

For the example of 2-gram, the formula can be expressed as
the following.
P (x| X5 X0 n X ) = P (x| %0y) )

For the example of 3-gram, the formula can be expressed as
the following.
P(x, | %y %o %) = P (% | X% ) (3)

For the API call sequence, if the semantic segmentation is per-
formed by 3-gram as an example {x,, x,, x5, - ,x,}, a short

sequence of consecutive partially overlapping sequences is
generated as the following.

{(xp X2 x3) > (xz) X35 x4) e ('xn—Z’ Xp-1> xn)} (4)

From the above the formula (4), a new sequence set is as
follows, where s; = (x1,%,,%3),8, = (X3, X3,%Xy), .-
(xn—Z’ Xp-1> xn)'

Sy =

S3—gra.m = {SI’SZ""’Si""’Sn—Z} (5)

The set element of s; represents a short sequence of
3-gram (x;, Xi.;, Xj;,). Among them, it is relatively easy
to extract n-gram segmentation items, but the semantics
features of n-gram segmentation are not as obvious as those
of the real code. So the amount of the length of the sliding
time window of n-gram is a very important issue. A small
value would ignore the structure and order of the process
context, and an oversize value would reduce the similarity
between the calls. Therefore, we use the same procedure
to experiment with a hybrid n-gram to preserve as much
semantic information as possible.

A model of feature selection of hybrid n-gram is proposed
and shown in Figure 3. First of all, we collect representative
samples of malware and benign software and put each sample



into the analysis environment for a period of time and then
record the dynamic API sequence of each. Secondly, we
extract the semantic features with a variable N value of n-
gram from API call sequence of each sample and generate
feature segments such as 2-, 3-, and 4-gram and so on. The
weight value of each short characteristic sequence can be
represented by information entropy.

As the feature dimension of the API sequence is very
huge, the selection method is used to reduce the dimension
of features and extract the valid features. Due to dimension
reduction, some semantic information is lost, while some
semantic information is retained. By combining the features
selected by hybrid n-gram, the complementarity between
feature types is achieved, and more semantic information is
retained as much as possible. After hybrid n-gram, the num-
ber of features is still large. As some features are redundant,
the feature selection method is used to establish the effective
feature subset and then do it again. After the above process,
we can get the effective features that can distinguish between
the malware and the benign software well. Finally, we use
a variety of classification algorithms to detect the malware
and verify the validity of the method of feature selection.
A model of feature selection of hybrid n-gram is shown in
Figure 3.

4. Feature Selection Method Based on
Joint Entropy

The most obvious behavior difference between malware and
normal software is that the malware needs to accomplish
its own illegal goal, such as the realization of hidden, self-
deleting, unrecognized payload and so on. These behavior
features are not in the normal software. Therefore, different
API sequence features have different information entropy. It
happens that the entropy will change when the malware is
illegally performed on the host computer.

In the paper, a novel feature selection of hybrid n-
gram with cross entropy is proposed. Two variables C; and

s; are set. C; represents the number of the category that this

behavior belongs to. s; represents the j™ short sequence of
n-gram formed from formula (4)~(5). Firstly, the behaviors
of API calls are converted to the sequence of n-gram such
as{s;,s,,...,s j}. In same category the occurrence number of
each short sequence of n-gram is counted, which is expressed

as ai()’;). The sign k stands for the category label. The sign i
stands for the number of samples. The sign j stands for the
serial number of each short feature sequence of n-gram. The
relationship of category and feature sequence of samples is
shown as Table 1.

The purpose of feature selection is to obtain a kind of
characteristics with the ability to classify data, which can
improve the efficiency of classification learning. If there is
no obvious difference between the results of classification
with one feature and the results of random classification, this
feature has no classification ability. Discarding the feature
will not affect the classification accuracy. In the process of
identifying the malware, the cross entropy of API calls is used
to extract important features.
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1 for n=1:N; %the value of n with n-gram

2 calculate H(D);

3 forj=l:M

4 calculate H(D | sj)

5 ga(sj)=calculate 9(D, sj)
6 end

7  for k=1:K

8

s_max(n,k)=max{ga(s,), ga(s,),.. .ga(sp,)}

9 delete s_max(n,k) from{ ga(s,), ga(s,),. . ..ga(s,,)}
10 end

11 end

12 establish feature selection set { s_max(n, k)}

ArLcorITHM 1: The algorithm procedure.

Let D be the train data set. |D| represents sample capacity,
namely, the amount of total samples. There are K kinds of API
behaviors from C, to Cy,andi = 1,2,--- K. |C,| is the amount
of samples that belong to the C; category. So ZIK IC;| = |DI.
The feature set of API sequences of n-gram is represented as
S

n—gram-*

Sp—gram = {sl,sz,...,sj} (6)

Firstly, the empirical entropy of the data set D is calcu-
lated.

v IS, 1G]

H(D) = —ZHIngﬁ

i=1

7)

Secondly, the empirical conditional entropy of the charac-
teristic s; for data set D is expressed as the following formula.

K
H(D | sj) = —Zp (C,-,sj)logzp (C,- | sj) (8)
i=1

In the above formula, p(Cy, s j) is expressed as the follow-
ing.

24l
p(Cos) - 22 ®
ijk %,
Also p(C; | s;) is expressed as the following.

Zlckl a®

i i,j
p(Cils;) = = (10)
ik %,

Thirdly, the cross entropy of the characteristic s; for data
set D can be calculated.

9(D,s;)=H®D)-H(D|s;) (1)

The top (maximal) M of g(D, sj) is selected. Then
the feature set of S, . ..:{s1,85 sy} is extracted,
whose elements match the top M of g(D,s;) one by
one. Finally, the total data set of feature selection such
as {S,_gram> Ss—gram>*** >Sn_gram} 18 established. The key
procedure with the hybrid n-gram algorithm is shown as
Algorithm 1.
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TaBLE 1: The relationship of category and feature sequence of samples.
sample category s S s
Sample-cl-1 a;ll) a;lz) ai,l;
Sample-cl-2 c, ag,ll) ag,lz) ...... a;l;
(1) (1) 1)
Sample-cl-|C, | e Ac 1 A
Sample-c2-1 afl) a? afj)
(2) (2) (2)
Sample-c2- 2 2 a, a, a;
(2) (2) (2)
Sample-c2-|C2| Ac 1 Ac,1 Col,j
Sample-ci-1 al) aﬁ)z aﬁ
Sample-ci-2 c, a) a aé’i
. () 0] 0]
Sample-ci-|Ci| A acin ac
TABLE 2: Malware categories and quantity.
Malware category Backdoor P2P-Warm Warm Trojan Virus Total
Amount 138 56 72 162 158 586

5. Experimental Analysis

5.1 Evaluation Indicators. In order to evaluate the method of
the hybrid n-gram, three main indicators are used to measure
the performance of the classifier through different feature
extracted, including true positive rate, false positive rate, and
the accuracy. The performance of the classifier can also be
evaluated by using a ROC (receiver operating characteristic)
curve, whose vertical axis represents true positive rate and
whose horizontal axis is false positive rate. The area under
the ROC curve (AUC) is a more comprehensive index for
evaluating the classifier. The value of AUC is usually between
0.5 and 1.0. A larger value of AUC generally indicates that the
performance of the classifier is better.

5.2. Experimental Data Acquisition. We collected 932 exper-
imental samples. The benign software samples are collected
from the Windows XP system directory and PE format
EXE files, including different types of software, such as
graphics software, system tools, multimedia software, and
office software, whose amount is a total of 346. All benign
software samples are detected by 360 anti-virus software.
Malware samples were collected from the VXHeavens website
[15], a total of 586, including viruses, worms, Trojans, and
backdoor programs. The distribution of malware is shown in
Table 2.

The Windows XP system is installed in the VMware
virtual machine and then run the samples. API Monitor is
taken as a hook routine to capture the native API sequences
that the samples constantly call during execution. The sample
run time is 120 seconds. For the vast majority of malware
programs, 120 seconds is enough for them to execute all the
processes, including a large number of cycles calling. Each
sample intercepts the top 1000 API sequences as extraction

feature. API sequences are recorded for each sample and not
directly processed with the machine learning algorithm. In
the paper, we select 100 feature sequences with the highest
cross entropy of the fixed-length (N = 2, 3, 4) n-gram short
sequences, respectively.

The Integrated 300 features after the initial selection are
still too much, which is high dimension for the classification.
The feature selection algorithm needs to select the most
relevant subset of the features. In this paper, the features
generated by hybrid n-gram (N=2, 3, 4) model are adopted.
By features reduction of APIs segmentation by hybrid n-
gram, the features of short sequences of different lengths are
obtained. The combined number of features is 154 that is
still more for the classification learning. Further, by adjusting
the threshold value of cross entropy of the feature selection
method again, we get 28 features that will eventually be used
for categorical learning. After the above process, the features
of low dimension with effectively distinguishing between
malware and benign software are obtained.

5.3. Experimental Results Analysis. The final features that are
used as the input of the classification algorithm and model
are obtained. The experiment adopts four kinds of machine
learning classification algorithms including ID3, Random
Forest, AdboostM1, and Bagging. All four algorithms use an
implementation version of the open source machine learning
platform WEKA [16].

In the paper, we use 10-fold cross-check experiment
method and apply the above four classification algorithms.
The comparison results of the novel proposed method and
other methods are shown in Table 3. We also use the above
four classification algorithms to test the selected features of
API call sequence.
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TABLE 3: Malware detection experiments based on feature selection.
Feature . Classification TPR FPR Accuracy

representation Features Quantity algorithm /% /% /% AUC

1D3 85.9 14.3 87.5 0.863

2 Random Forest 86.3 12.8 86.6 0.850
-gram 36

AdboostM1 82.9 16.3 80.2 0.808

Bagging 83.9 15.8 82.3 0.826

1D3 86.3 15.7 85.0 0.841

Random Forest 94.1 13.7 92.0 0.971
3-gram 53

AdboostM1 91.2 14.7 93.0 0.956

Bagging 91.2 12.8 875 0.931

1D3 87.9 14.3 95.8 0.868

4 Random Forest 96.8 6.2 93.1 0.98
-gram 65

AdboostM1 90.9 9.1 87.5 0.974

Bagging 93.9 7.0 92.0 0.957

1D3 96.8 6.3 92.5 0.963

Hybrid n-gram with )8 Random Forest 97.8 5.1 96.8 0.983

cross entropy AdboostM1 978 5.1 96.8 0.983

Bagging 976 5.2 96.8 0.897

Detection Rate (%) Accuracy (%)

100

978 978 976
6.8

95

90

85

80

75

2-gram 3-gram 4-gram Hybrid N-gram

= AdboostM1
= Bagging

= ID3
= RandomForest

F1GURE 4: Comparison of detection rate in four methods.

In order to compare the effectiveness and generalization
of feature selection method of API call sequence such as 2-
gram, 3-gram, 4-garm, and hybrid gram with cross entropy,
the experimental chooses four evaluation indexes, includ-
ing detection rate, accuracy, false positive rate, and AUC
value. Comparison of detection rate is shown in Figure 4.
Comparison of accuracy is shown in Figure 5. Compar-
isons of false positive rate and AUC value are shown in
Figures 6 and 7.

As can be seen from Figure 4, test results of 2-gram are less
than the other three results, which illustrate that the extracted
feature sequence is not obvious enough and leads to a low
degree of discrimination. Of the four classification algorithm
methods, Random Forest detection performs the best. The
experimental results showed that the detection rate of the
proposed method of H-gram is higher than that of the other
three methods.

100

. . . 958 - . . 9.8 968 968
92 9 2.5

502 823

2-gram 3-gram 4-gram Hybrid N-gram

= AdboostM1
= Bagging

= ID3
= RandomForest

F1GURE 5: Comparison of accuracy in four methods.

As can be seen from the comparison of accuracy of
Figure 5, the overall accuracy rate is on the rise along the
direction of the horizontal axis. The overall gap is small. The
accuracy of 4-gram and H-gram is higher than that of 2-gram
and 3-gram feature extraction. The H-gram method is slightly
higher than the 4-gram method.

As can be seen from the comparison of false positive rates
in Figure 6, 2-gram remains the weaker feature, with the
highest false positive rate reaching 16.3%. The 4-gram and
the proposed method of H-gram have achieved a relatively
low false positive rate of 6.2% and 5.1%, respectively, with
Random Forest algorithm. The method of H-gram has
achieved the lowest false positive rate 5.1%. The false positive
rate drop is more obvious with H-gram.

It can be seen from the comparison of AUC values in
Figure 7 that the AUC value of the 2-gram is still lower than
the other three feature selection methods. The difference of
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False Positive Rate%
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= AdboostM1
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FIGURE 6: Comparison of false positive rate in four methods.
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FIGURE 7: Comparison of AUC value in four methods.

the AUC values for other three methods is similar, and the
method of H-gram is slightly better than the other three
selection methods. The AUC value is up to 0.983, which is
close to the optimal AUC value of 1.

6. Conclusion

As cyberspace becomes the fifth dimension of human life,
the network security is getting more and more attention.
Dynamic analysis method of malware behavior has become
the focus of research. The past analysis methods are mainly
by capturing all API functions of malware running, which
describe the malware behavior with semantic segmentation
of fixed parameters. So the previous methods are not only
large amount of information, but also high redundancy. In
the paper a novel feature selection method of hybrid H-gram
with joint cross entropy is proposed. Based on the dynamic
behavior tracking and feature analysis of native API in virtual
environment, the proposed method is of adaptive variable
length n-gram. At the same time the joint cross entropy
is introduced to select the features of API sequence. Com-
pared with the results of the experiments on semantic short
sequence of the fixed-length n-gram, the proposed method
is more effective in all four performance indexes of four

classification algorithms (ID3, Random Forest, AdboostM1,
and Bagging).
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Due to the proliferation of mobile applications, mobile traffic identification plays a crucial role in understanding the network traffic.
However, the pervasive unconcerned apps and the emerging apps pose great challenges to the mobile traffic identification method
based on supervised machine learning, since such method merely identifies and discriminates several apps of interest. In this paper
we propose a three-layer classifier using machine learning to identify mobile traffic in open-world settings. The proposed method
has the capability of identifying traffic generated by unconcerned apps and zero-day apps; thus it can be applied in the real world.
A self-collected dataset that contains 160 apps is used to validate the proposed method. The experimental results show that our
classifier achieves over 98% precision and produces a much smaller number of false positives than that of the state of the art.

1. Introduction

Mobile apps are now the most popular way to access the
Internet. Smart Insights [1] reports that mobile devices
dominate in minutes spent online across countries and more
than 80% of mobile minutes are spent on apps. According to
Statista [2, 3], as of the first quarter of 2018, Android users
were able to choose between 3.8 million apps in Google Play
and an average of 6,140 mobile apps were released through
the Google Play Store every day. BrightEdge [4] reports that
57% of all online traffic was on mobile and tablet in 2017.
Hence the current focus of research is shifting from the
traditional workstation traffic identification to the mobile
traffic identification, which is the task of associating network
traffic with a certain app in this paper.

Mobile traffic identification plays an important role in
network management, marketing research, and user charac-
teristic analysis [5, 6]. For example, based on this technology,
a network administrator can obtain the popular apps in the
network and optimize the resource allocation accordingly
to improve the user experience. A company can monitor
whether employees use unallowed apps during working
hours, such as game and shopping. For advertisers, under-
standing a certain app is popular with users in which area

and time periods can help them create a better advertising
strategy. For market researchers, understanding the use of
apps of concerned users can help them analyze the interests
and needs of users; then further business activities can be
carried out. For example, if a person uses a flight booking app
frequently, then the user may be a potential customer of travel
services.

Although mobile traffic identification task looks similar
to the traditional workstation traffic identification task, the
particularities of mobile traffic pose great challenges for tra-
ditional identification methods. First, mobile traffic is almost
carried over HT'TP/HTTPS, making the port-based approach
identify mobile traffic as Web only. Second, lots of apps
use encryption protocols for data transmission in order to
protect user privacy. Indeed, some encryption protocols may
expose useful information during its negotiation process,
such as the TLS SNI (Server Name Indication), so that part of
the encrypted traffic can be identified by DPI (Deep Packet
Inspection) approach. However, the SNI field sometimes is
blank and not every SSL/TLS connection has a negotiation
phase, which decrease the effectiveness of this method. For
example, we randomly checked 50 HTTPS connections that
come from MOMO, which is a social app in China. There are
9 connections that do not have a negotiation process and 11
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connections have a negotiation process but the SNI field is
blank. Third, mobile apps often access third-party libraries,
resulting in the fact that different apps would generate similar
traffic. It is difficult to discriminate such traffic via DPI
technology or IP address. This problem can be circumvented
in a sense if such traffic is considered as an individual
category. Fourth, CDN (Content Delivery Network) is used
by many apps to improve the user experience. As a result,
a servers IP address can be shared by multiple apps. For
example, we found an IP address 101.226.220.12 serving at
least five apps at the same time. Additionally, there are apps
that do not use DNS to obtain the IP address of the server. For
example, WeChat, a popular instant messaging app in China,
is observed to return a list of hundreds of server IP addresses
to a particular request from the client; thus the client no
longer needs to perform a DNS query. The above scenarios
reduce the traffic volume that can be identified by DNS-based
approach. In view of the above reasons, the traditional traffic
identification methods are insufficient for handling mobile
traffic.

The statistical-based method has recently gained exten-
sive research. It uses raw traffic data or side-channel infor-
mation leaked from network traffic to train classifiers based
on machine learning. Many methods have been proposed
and the results are encouraging. However, it is impossible to
identify all apps traffic due to the large number of mobile
apps; thus a classifier usually merely identifies several apps of
interest. Then the massive unknown traffic that comes from
unconcerned apps and the emerging apps (also called as zero-
day apps in this paper) brings great challenges to the classifier.

In general, there are two ways to enable a classifier
to handle unknown instance in machine learning. One is
constructing a N+1-class classifier, and the other is achieving
multiclass classification by multiple binary classifiers. The
N+l-class classifier treats the unknown instances as one
category. A major drawback of this method is the training
set is always insufficient since it is not possible to collect
all unknown instances. The latter way learns each known
category’s patterns separately by training a binary classifier.
Only when the predictions from all binary classifier are
negative will the instance be classified as unknown. The first
drawback of this method is the same as that of the former
method. Another drawback is that the prediction criterion is
prone to identifying unknown instances incorrectly.

In this paper, we propose a three-layer classifier to identify
mobile traffic under open-world settings. This classifier pos-
sesses the capability of excluding unknown apps traffic even
if the training set is insufficient. The first layer does a coarse-
grained classification to exclude unconcerned apps traffic
whose patterns have been learned. Then the second layer does
a fine-grained classification to discriminate between target
apps traffic. Finally, the third layer learns the patterns of each
target app traffic from different perspectives and sets a strict
prediction criterion to exclude the false positives caused by
unknown traffic. Besides, we only use side-channel traffic
information and raw traffic data as traffic features. To the
best of our knowledge, this is the first time to identify mobile
traffic in open-world settings which contain unknown app
traffic.
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The main contributions of our work are as follows. Firstly,
we propose a novel multilayer classifier that can identify
target app traffic and exclude unknown app traffic. This
approach can be applied to the identification of mobile traffic
in the real world. Secondly, we collect a representative mobile
traffic dataset to validate our method. This dataset contains
network traffic from 160 apps that are installed on 12 mobile
devices. Finally, our method outperforms the state of the art.
The results show that the proposed classifier achieves more
than 98% precision with the lowest number of false positives.

The rest of the paper is organized as follows: Section 2
surveys related work; Section 3 describes the proposed
multilayer classifier architecture; Section 4 evaluates the
proposed method; Section 5 gives a brief discussion; Section 6
concludes the paper.

2. Related Work

For the reasons explained above, there are some deficiencies
in port-based, DPI-based, and DNS-based approaches when
they are applied to mobile traffic identification. Please refer
to work [7] for a detailed survey about using DPI-based
methods to identify mobile traffic. Here we highlight several
DNS-based and machine learning-based traffic identification
methods that have recently been proposed.

2.1. DNS-Based Traffic Identification. Bermudze et al. [8]
presented a notable work that associates network traf-
fic with domain names. They extracted the 3-tuple (i.e.,
(ClientIP, ServerIP, Domain)) by parsing the captured DNS
packets and labelled traffic with domain name according to
(ClientIP, ServerIP). Then offline analysis was performed
based on the label of traffic, including the distribution of
domain names and server IP addresses and the domain
names or service offered by certain CDN vendor. The authors
pointed out that about 73% of server IP addresses have a
unique domain name and 82% of domain names have a single
IP address. Similar mechanisms were proposed in work [9,
10]. In addition, Mori et al. [10] enriched the tuple library by
combining the DNS response information of multiple users
and ignoring the TTL, thus increasing the identifiable traffic
volume. However, the above work only maps the traffic to the
corresponding domain name without further identifying its
related apps.

Trevisan et al. [11] investigated the effectiveness of DNS-
based traffic identification method. They showed that about
65% of server IP addresses have a unique domain name,
but less than 15% of the traffic is owing to these addresses.
By manually mapping domain names to services, up to
55% of the traffic can be identified. The authors further
explored how the associations between domain name and IP
addresses evolve over time. The authors discovered that some
IP addresses would become invalid over time. Therefore,
although the DNS-based traffic identification method is
simple and straightforward, only a small portion of mobile
traffic can be handled.

2.2. Machine Learning-Based Traffic Identification. Wang et
al. [12] proposed a system for identifying mobile apps. They
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collected traffic from 13 target apps by running apps dynam-
ically for 5 minutes and then a Random Forest classifier was
trained. Since the sample size in this work is inadequate,
it is difficult to assess whether the results of this work are
representative.

Alan et al. [13] identified thousands of apps using the
launch-time traffic generated by target apps. The results
showed that the classification accuracy reached 88% when
training and test sets are collected on the same device;
otherwise the accuracy would drop by as much as 26%.

AppScanner [14, 15] proposed a scheme for fingerprinting
and identifying apps. They collected network traffic generated
by different versions of apps installed on two Android
devices. Then Support Vector Classifiers and Random Forest
Classifiers were trained to classify 110 apps. Bursts of data
are considered in this work to extract statistical features.
Additionally, they improved the performance of the classifier
by detecting “ambiguous flows”. Moreover, AppScanner also
used a postvalidation mechanism to reject samples with low
prediction credibility. The experimental results reported 96%
average accuracy in the best case with recall lower than 40%.
This work suffers from the fact that the burst is used to
model traffic; thus AppScanner is only feasible in the simple
network, such as a network which contains a single mobile
device. It cannot be applied to the high-speed backbone
network because it is likely that bursts cannot be extracted.

Some approaches based on CNN (Convolutional Neural
Networks) also give a notable performance. For example,
Chen et al. [16] encoded HTTP plaintext requests and
identified 20 apps using 2D-CNN, but this technique only
works with unencrypted traffic. Wang et al. [17] proposed a
classifier for identifying malicious traffic based on 2D-CNN.
The raw traffic data is converted into 2D-vectors as the input
of the classifier. Their another work [18] held the view that the
traffic is essentially sequential data, so 1ID-CNN model is used
to identify traffic. The accuracy reached 86.6% when network
traffic is identified in fine-grained classification. They showed
that the classifier can achieve better performance when using
raw traffic data from all protocol layers than using payload
only. However, as pointed out by Giuseppe et al. [19], the
data provided in this case is always in the form of PCAP

First Layer Second Layer

classifier

Third Layer

binary classifier pool

Ambiguous
flow

of the three-layer classifier.

files, containing information that could introduce a bias in
the classification results. Deep Packet [20] proposed a similar
mechanism to identify mobile traffic using a 1ID-CNN and a
Stacked AutoEncoder (SAE). Giuseppe et al. compared four
NN-based traffic identification methods and [18] gives the
best performance when identifying the traffic generated by
Android apps.

Although the aforementioned studies have proven to be
effective, the proposed methods do not take into account the
impact of unknown traffic on the classifier, thus impeding
their application in the real-world networks.

3. Methodology

To handle the real-world mobile traffic identification task, a
classifier needs to meet two requirements. One is identifying
the target app traffic correctly and the other is eliminating a
large amount of unknown traffic even if the unknown traffic
training set is insufficient. Based on these two requirements,
we present a three-layer classifier and the architecture is
depicted in Figure 1.

We first introduce the terms defined in this paper. Bidirec-
tional flow, which is a set of packets carrying the same 5-tuple
(i.e., (SrcIP, DstIP, SrcPort, DstPort, Protocol)), is used to
decompose the captured traffic into discrete units. Flow is
used to represent bidirectional flow in the rest of the paper
when it does not cause ambiguity. For a TCP connection,
SYN and RST/FIN indicate the beginning and end of the flow,
respectively. A timeout mechanism (90s) is used to determine
the end of a flow when a termination is not observed. Since
mobile apps use mostly HTTP/HTTPS, only TCP flows are
considered in this paper. But the proposed method can be
ported to work with UDP traffic without any changes. Target
represents the traffic that comes from the apps of interest
(also called target apps in rest of the paper). Appi represents
the i-th target app. The unknown traffic that comes from
the unconcerned apps and zero-day apps is defined as Other
category. Inspired by AppScanner, “ambiguous flows”, that is,
traffic that is common among more than one app, is also used
in our method. A new ambiguity detection method, which
will be described in detail later in this paper, is designed to
extract ambiguous flows.



3.1. Coarse-Grained Classification. The first layer of the
architecture is a coarse-grained binary classifier that iden-
tifies flows as Target or Other. The binary classifier is not
attempting to discriminate the Target from the Other accu-
rately, which is also unrealistic because the classifier cannot
be trained with the universe unknown flows. Although
unknown instances are insufficient, the classifier can still
learn some patterns of unknown traffic from the existing
instances. Thus the primary purpose of this stage is to elim-
inate as much unknown traffic as possible without misiden-
tifying the Target, thus reducing the incorrect classification
of the followed second layer classifier. Hence this binary
classifier is expected to have a high recall but may have a
low precision of the Target class. This can be carried out by
assigning appropriate weights to training instances.

3.2. Fine-Grained Classification. The second layer is respon-
sible for fine-grained classification; i.e., the classifier in this
layer aims to distinguish between target apps traffic. If there
are N target apps, then an N+1-class classifier is trained in this
layer. The N+1 classes consist of N target apps and ambiguous
flows class. The flows classified as Target in the first layer
will be classified by this fine-grained classifier. The possible
classification results of a flow at this stage are as follows:

(1) Classified as ambiguous flow: the classifier cannot
identify the flow to a target app and refuses to give
an explicit label.

(2) Classified as Appi and the flow belongs to Appi: the
classification produces a true positive.

(3) Classified as Appi but the flow belongs to another
target app or unknown app: the classifier produces a
false positive on Appi.

In close-world settings, the primary purpose of a classifier
is to distinguish different target apps traffic effectively, the
traffic generated by other apps is not under consideration.
By contrast, in open-world settings, the unknown traffic is
the main source of false positives of the classifier and it
will decrease the performance of the classifier dramatically.
Therefore, the third layer is designed to verify the classifica-
tion results of the second layer.

3.3. False Positive Exclusion. The third layer aims to elim-
inate the false positives caused in previous layers, i.., to
eliminate the misclassified target traffic in the second layer
and unknown traffic that is not excluded by the first layer.
The involved classification categories in this stage include
N target apps, Other class, and ambiguous flow class. Then
(N+2)%(N+1)/2 binary classifiers are trained using One vs
One.

If aflow is classified as Appi in the second layer, then it will
be classified by N+1 binary classifiers in this layer. The N+1
binary classifiers are Appi vs Appj (j not equal to i), Appi vs
Other, and Appi vs ambiguous flow. The output of this layer is
Appi only when all binary classifiers classify the flow as Appi.
Otherwise, this stage refuses to give a prediction. Multiple
base classifiers and different traffic features can be utilized
to train these binary classifiers so that mobile traffic can be
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portrayed from different perspectives. In short, the classifiers
designed in this stage start with the assumption that if a flow
belongs to Appi, it should be identified as Appi regardless of
the feature or model used.

By this way, the third stage focuses on portraying each
target category from multiple perspectives. Therefore, even if
the patterns of unknown traffic are not learned by classifiers,
the strict prediction criteria of the third layer will enable the
classifier to eliminate nontarget instances effectively. Addi-
tionally, although One vs One is used to train (N+2) % (N+1)/2
classifiers, each flow that arrives at the third layer only needs
to be classified by N+1 classifiers.

In fact, the third stage excludes the unknown traffic at
the expense of the number of flows whose prediction is valid.
However, we hold the same view as [15]: false positives are
usually undesirable for app identification.

3.4. Classifier Implementation

3.4.1. Ambiguous Flows Extraction. An Android app is built
to aid us in collecting and labelling mobile traffic. Further
information on this tool is available in Section 4. However,
there is some “noisy data” in the captured data. First, network
traffic coming from different apps using the same third-party
libraries has different app labels. Second, we do not impose
any restrictions on the user behavior, but some user actions
may cause flows to have wrong labels. For example, if a user
clicks an Appj’s link in Appi and keeps on using Appj in Appi
process, the generated traffic will be labelled as Appi rather
than Appj. In fact, the pattern of such traffic is in accord with
that of Appj. Thus the classifier will be given contradictory
training examples. We adopt the concept of “ambiguous flow”
given in AppScanner to alleviate these problems.

A heuristic rule is exploited to extract ambiguous flows
in this paper in contrast to AppScanner, which trained
a Random Forest classifier for extracting such traffic. For
network traffic coming from the same third-party library, it
may have identical server IP addresses and ports. Similarly,
the server IP address and port of the traffic coming from the
latter case should also have some associations with the traffic
generated by Appj. Based on this assumption, we extract the
ambiguous flows as follows. First, the training set is grouped
according to the (ServerIP, Port) pair. Then for each group,
if the traffic in the group has multiple labels and there is no
dominant category, that is, there is no category accounting for
more than 90% of the total sample size in the group, flows in
this group are relabelled as ambiguous flows.

3.4.2. Traffic Features. We designed 37 traffic features, includ-
ing packet length related features, time interval related
features, packet numbers, and ports. Then the correlation-
based feature selection and best-first search provided in Weka
[21] were used to select an effective feature set. Additionally,
Bela et al. [22] showed that a P2P traffic classifier can reach a
remarkable accuracy over 95% using as limited data the first
16 bytes of the first packet of each flow. Therefore, as listed
in Table 1, our final feature set has 29 features including 12
statistical features, 16 byte values, and destination port. In
order to classify traffic in real time, we extract all features
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TABLE 1: Traffic feature set.

Feature

Description

Number

the first three non-null payload size of the packets transmitted from the client to the

Payload size related

server; the first and third non-null payload size of the packets transmitted from the 5
server to the client

maximum, minimum of the length of the packets transmitted from the client to the

Packet length related server; maximum, minimum, average, variance of the length of the packet 7
transmitted from the server to the client; the minimum packet length of the flow

First 16 bytes of payload a symbol is used to preserve the transmission direction 16

Destination port 1

TABLE 2: The details of each layer classifier.

Model Features Output Classifier Number
Layer 1 Random Forest First 16 bytes of payload binary-class 1
Layer 2 Random Forest First 16 bytes of payload N-+1-class 1
Layer 3 Random Forest Port, 12 statistical features binary-class (N+2)%(N+1)/2
Xgboost [24] (N+2)*(N+1)/2

from the first five packets with non-null payload of each flow
given that Bernaille et al. [23] found that the first five packets
of a TCP connection are effective for traffic classification.

3.4.3. Base Classifier. Previous work [12, 14, 15] has shown
decision tree-based models have an impressive performance
in identifying mobile traffic. Therefore, we use decision tree-
based models as base classifiers to implement our method.
The details of each layer classifier are shown in Table 2.

The training set includes 2 categories in the first layer, i.e.,
Target and Other, and 16 features are used to train a Random
Forest classifier. Next, ambiguous flows are extracted from
the training set. The training set for the Random Forest
classifier in the second layer consists of the instances of the
ambiguous flows class and the remaining instances of N target
apps. In the third stage, in order to describe traffic from
a different perspective, port and 12 statistical features are
used as traffic features and two different decision tree-based
classifiers are trained. The training set in this stage includes
N+2 categories. The N+2 categories include the ambiguous
flows class, N target app classes, and Other class. Other class
contains unknown instances that are misclassified by the first
layer classifier. This is because the third layer classifier has
no need to learn the features of an unknown flow if the flow
is excluded in the first layer. Since we use two models at
this stage, the third layer contains (N+2)*(N+1) classifiers in
total, and a flow entering this stage needs to be classified by
2%(N+1) classifiers.

4. Evaluation

4.1. Dataset Collection. Since mobile traffic involves user
private data, public mobile traffic dataset is not available
currently. Therefore, the existing work uses the self-collected
dataset to validate the proposed method. However, the
commonly used data collection methods have drawbacks

and poor scalability. First, mobile devices generate lots of
background traffic, resulting in the fact that running one
application at a time cannot get the accurate ground truth.
Some measures are still needed to exclude background traffic
[15]. Additionally, although there are tools, such as Network
Log [25], that can be used to collect and label traffic according
to the app process, these tools always require a rooted device,
which results in poor scalability.

To overcome the above deficiencies, we built an Android
app based on the VPNService framework provided in the
Android system. This tool does not require the mobile device
to be rooted. When it runs in the background, it can capture
traffic and label it according to the app process that generates
it. Then the captured traffic will be saved as a pcap file and
the file is sent to a server every 5 minutes. In this way,
our data collection has the following benefits over the data
collection by manually running an application in a limited
environment or using Ul fuzzing technique for automatically
running the apps. First, once the app is launched, the device
will upload its traffic whenever the user uses it. Thus there is
no need for further human intervention. Second, there are
some execution paths in the app that cannot be executed
by UI fuzzing, but this problem does not exist in our
approach. Third, the captured traffic is generated in various
network environments, making our dataset more represen-
tative. Fourth, this method is not affected by background
traffic and has a good scalability. However, since other mobile
operating systems do not provide similar interfaces, this tool
is only available for Android devices. We are developing a
function-like app for the iOS system to obtain traffic coming
from 10§ devices for future work.

Based on the aforementioned tool, we collected the
mobile traffic generated by mobile devices of 12 users in
nearly three months. Although all devices run under Android
system, they come from different vendors such as HuaWei,
XiaoMi, and Samsung. The final captured dataset contains
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TABLE 3: Overview of the two datasets.
Time of data collection TCP flow size Number of apps
Datasetl 2018.05.24 - 2018.08.08 129817 138
Dataset2 2018.08.09 - 2018.08.17 31567 88
TaBLE 4: Composition of the two datasets.
App Name DataSetl (Flow Size) DataSet2 (Flow Size)
WeChat 22497 3526
TencentVideo 11764 0
BILIBILI 8461 0
Apps of Interest Sougou Pinyin 8290 783
TaoBao 7341 0
BaiDu Browser 6839 98
QQ 5915 104
Other Other 58710 27056
Total 129817 31567

network traffic from 160 apps. Besides, the traffic is generated
in various network environments covering 3G, 4G, and WI-
FI. The collected data is divided into two datasets as shown in
Table 3.

Datasetl is used to train and test our three-layer classifier.
Seven apps with more than 5000 flows in Datasetl are chosen
as target apps in our setting; the remaining 131 apps act as
unconcerned apps. Dataset2 is only used to test the classifier.
It is worth mentioning that Dataset2 contains 22 apps that
have not been seen in Datasetl; thus the 22 apps can be
regarded as zero-day apps and they account for 5569 flows.
The details of the two datasets are listed in Table 4.

4.2. Evaluation Metrics and Experimental Setup. Five eval-
uation metrics are used: True Positive (TP), False Positive
(FP), False Negative (FN), precision, and recall. For an app
A, TP refers to the number of samples correctly classified as
A. FP refers to the number of samples incorrectly classified as
A. FN refers to the number of samples incorrectly classified
as non-A. Then the precision and recall of identifying A are
TP/(TP+FP) and TP/(TP+FN), respectively.

Scikit-learn [26] machine learning library is used to
implement our classifiers. We compare it with the state of
the art [18] and a single Random Forest classifier is trained
as the baseline. The baseline is an N+1-class Random Forest
classifier which includes 30 trees with a maximum depth
of 20, and the features used for the training are 29 features
as described in Table 1. To implement the ID-CNN model
proposed in [18], the first 784 bytes of the payload of each
flow are converted into a 1D-Vector and an N+l-class 1D-
CNN classifier is trained by Keras [27] with TensorFlow [28]
as backend. The parameters of the 1ID-CNN classifier are
consistent with those in [18]. The ambiguous flows detection
is not applied to these two classifiers. The parameters of our
classifier are as follows. The Random Forest classifiers of the
first two layers each include 30 trees with a maximum depth
of 20. The Random Forest classifiers of the third layer include

20 trees with a maximum depth of 20, and the XGboost
classifiers include 10 trees with a maximum depth of 5.

4.3. Evaluation on Datasetl. Before evaluating our classifier,
we first verify how much mobile traffic can be identified using
the DNS-based method described by Trevisan [11]. First, we
extract the (ServerIP, Domain) pairs from the DNS traffic
in Datasetl. Then the IP addresses with a single domain are
used to identify traffic. Finally, this method can identify up to
30.66% of the flows, which account for 20.8% of the amount
of bytes. Hence the traffic that can be identified by the DNS-
based method is in the minority.

To evaluate our classifier, Datasetl is randomly split into
a training set (70% of samples) and a testing set (30% of
samples). For each classifier the evaluation process is repeated
10 times (with different splits each time) and the average
results are presented. The average precision, recall, and FP for
target apps of each classifier are listed in Table 5. The detailed
results are illustrated in Figures 2-4.

The results show that our method achieves the highest
precision of nearly 99% and produces a much smaller average
FP number than the other two classifiers. The 1D-CNN
classifier has the highest FP number, resulting in its lowest
precision. Our method produces a 94% reduction in FP
compared to the baseline, which indicates that the third
layer of our classifier has a better capability of excluding
unconcerned traffic. However, our classifier has the lowest
recall. As can be seen in Figure 3, TaoBao, BaiDu, and QQ’s
low recall decrease the average recall.

The recall of the second and third layer of the proposed
classifier is shown in Figure 5. It can be seen that the classifier
already has a low recall on the latter three apps in the second
stage. In the second stage, 57.29%, 47.43%, and 33.97% of the
instances of the latter three apps were classified as ambiguous
flows, respectively, which is the main reason for the classifier’s
low recall. Then we examined the training data carefully. It
is interesting to note that the latter three apps have a lot
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TaBLE 5: The average precision, recall, and FP for target apps of each classifier.

Average Precision

Average Recall Average FP

94.74%
88.68%
98.9%
92.24%

Random Forest

1D-CNN

Three-Layer Classifier
Three-Layer Classifier + Smoteenn

86.74% 119
82.83% 318.14
52.71% 7.07
61.01% 58.65
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FIGURE 2: The precision comparison of classifiers.

of associations with the unconcerned apps in Datasetl. For
example, QQ is an instant messaging app, but it integrates
a lot of functions, such as news, mail management, and
music playing. Moreover, these additional functions have
independent apps which belong to the same company as QQ.
This results in the fact that some traffic of QQ has similar
behavior patterns to that of other apps. And the classifier
would reject the judgment of these flows aggressively in order
to prevent false positives. A similar phenomenon exists in
TaoBao and BaiDu.

Additionally, we also investigate whether the low recall is
related to the sample size, considering that the sample sizes of
the latter three apps are indeed lower than those of the other
four apps. Therefore, we oversampled the training set using
the SMOTEENN [29] before training the second and third
layer classifiers. The results are already shown in Table 4 and
Figures 2-4. It can be seen that the sample size is not the main
reason affecting the recall of the classifier. Oversampling does
increase the recall of apps with smaller sample size but also
increases the FP greatly.

4.4. Evaluation on Dataset2. We retrain the three classifiers
with Datasetl as training set and evaluate them on Dataset2.
The results are listed in Table 6.

The results are similar to the evaluation results for
Datasetl, which show that the three-layer classifier has a
better capability of excluding unknown traffic compared to
the other two classifiers. The proposed classifier produces 152
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FIGURE 3: The recall comparison of classifiers.
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FIGURE 4: The FP comparison of classifiers.

false positives in total, among which 45 flows come from zero-
day apps. By contrast, Random Forest produces 1478 false
positives, among which 403 flows come from zero-day apps.
1ID-CNN produces 3963 false positives, among which 1348
flows come from zero day-apps. Therefore, our classifier can
exclude up to 99.2% zero-day traffic.
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TaBLE 7: Identification results of encrypted and unencrypted traffic.
WeChat Tencent Video BILIBILI Sougou Pinyin TaoBao BaiDu QQ
Encryption ratio 19% 0.3% 74.39% 5.08% 61.38% 92.03% 24.09%
Unencrypted traffic precision 99.66% 99.94% 97.92% 100% 97.01% 100% 96.82%
Unencrypted traffic recall 86.63% 91% 55% 89.94% 23.90% 13.25% 29.62%
Encrypted traffic precision 99.24% \ 99.83% \ 97.13% 97.24% 96.77%
Encrypted traffic recall 30.84% 0 63.2% 0 14.72% 16.73% 6.88%

The recall of different layer of the proposed classifiers
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FIGURE 5: The recall of the proposed classifier.

Additionally, some interesting results are observed by
scrutinizing the remaining false positives produced by our
classifier. For example, 31 flows are misclassified as Tencent
Video, among which 3 flows belong to QQ Music and 28 flows
belong to Tencent News. It is noteworthy that Tencent Video,
QQ Music, and Tencent News are all developed by Tencent,
and Tencent News needs to access a lot of video resources
which are also accessed by Tencent Video. A similar situation
exists in QQ, where 46 false positives are from several other
apps of Tencent, such as Tencent Maps and Tencent Weibo.
Besides, we extracted the server IP address of the flow which
is misclassified as Sougou Pinyin and then filtered the flows in
the Dataset] with the same server IP address. We note that all
labels of those training samples are Sougou Pinyin. Therefore,
the misclassified flow is likely to have an inaccurate ground
truth.

4.5. Encrypted and Unencrypted Traffic Identification. In
order to find how the proposed classifier behaves for the
encrypted and unencrypted traffic, the proposed classifier
is used to identify the encrypted and unencrypted traffic,
respectively. For simplicity, flows over port 443 are considered
to be encrypted traffic in this paper. The rest is considered as
unencrypted traffic, even if the data of one flow is encrypted
before transmission.

In Datasetl, 70% of encrypted flows and unencrypted
flows are used to train the three-layer classifier, and the
remaining are used as the test set. The encrypted traffic
distribution of Datasetl and identification results are shown
in Table 7. The encryption ratio means the ratio between the
size of encryption flows and the whole flow size.

It can be seen from Table 7 that the precision of the
identification of unencrypted traffic is slightly higher than
that of encrypted traffic, but the recall of the identification
of unencrypted traffic is much higher than that of encrypted
traffic. It shows that the identification of encrypted traffic is
indeed more difficult than unencrypted traffic. One of the
possible reasons is that the proposed classifier uses the pay-
load byte values as features, and the byte values of encrypted
traffic do not have distinct distinguishable features due to
encryption. In addition, it can be seen that the encryption
ratio of BILIBILI is relatively high, and its identification recall
is also higher than other apps. Although TaoBao also has
a higher encryption ratio, its recall is lower. In contrast,
QQ has a low encryption ratio and a low identification
recall. Therefore, the identification performance of encrypted
traffic is not directly related to the encryption ratio of an
app. Further comparisons can be made between identifiable
encrypted traffic and unidentifiable encrypted traffic in the
future work.

5. Discussion

Mobile traffic identification in real world requires more than
merely identifying and discriminating apps traffic of interest.
Another requirement is eliminating massive unknown app
traffic. In contrast to other methods proposed in close-world
settings, our method takes into account both the require-
ments. The experimental results obtain better performance
than the state of the art. Throughout this work, there are some
observations deserving further discussion.

First, the results show that ID-CNN has poor capability of
excluding unknown traffic. ID-CNN uses payload as input,
so the extracted features are limited to sequence features in
the payload, which may lead to its poor performance. In
contrast, models based on decision trees and side-channel
data feature show better robustness. Second, the evaluation
results for Dataset2 suggest that it is difficult to completely
discriminate an app from other apps, especially when two
apps have a close relationship. For example, two apps have the
same functionality and are developed by the same company.
In this case, both will access the same resources, thus
generating similar traffic that cannot be discriminated. It is
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worth mentioning that half of the false positives produced
by our classifier are caused by this reason. Therefore, the
impact of various associations between apps on identification
tasks deserves further study. Additionally, the experimental
results show that the identification of encrypted traffic is
more difficult than the identification of unencrypted traffic.
In order to better identify encrypted traffic, different traffic
characteristics can be designed for encrypted traffic, and
encrypted traffic and unencrypted traffic could be identified
separately.

The limitation of our classifier is that it radically excluded
many true positives in the second layer, resulting in a low
recall for some apps. In future work, we will try to design
different ambiguous traffic extraction method to detect
ambiguous flows, thus enhancing the performance of our
classifier.

6. Conclusion

In this paper, we proposed a three-layer classifier to iden-
tify mobile traffic. This classifier can distinguish the traffic
between different target applications and eliminate unknown
traffic effectively. We collected a representative dataset to
validate the classifier. The proposed classifier has a precision
of 98.9%, and the produced false positives are far less than
the state of the art. Additionally, the experiment results
show our classifier has great capability of detecting zero-day
apps traffic, which meets the requirements of mobile traffic
identification in real world networks.
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The mobile network traffic data used to support the find-
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