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Josef Dibĺık, Czech Republic
Fasma Diele, Italy
Tomas Dominguez, Spain
A. I. Domoshnitsky, Israel
Marco Donatelli, Italy
Ondrej Dosly, Czech Republic
Wei-Shih Du, Taiwan
Luiz Duarte, Brazil
Roman Dwilewicz, USA
Paul W. Eloe, USA
Ahmed El-Sayed, Egypt
Luca Esposito, Italy
Jose A. Ezquerro, Spain
Khalil Ezzinbi, Morocco
Jesus G. Falset, Spain
Angelo Favini, Italy
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Neurodynamical systems have gradually become a popular
research topic owing to their broad applications in such fields
as optimization, linear and nonlinear programming, asso-
ciative memory, pattern recognition, and computer vision.
In view of some inevitable factors, there have been formed
various neurodynamical systems including delayed neural
networks, stochastic neural networks, impulsive neural net-
works, reaction-diffusion neural networks, and fuzzy neural
networks. Over the last few decades, considerable attention
has been devoted to this research area not only for enriching
the theory of differential equations and dynamical systems
but also for deeply understanding the dynamic states of
neural networks for better modelling the brain.

The current special issue puts its emphasis on the study
of neurodynamical system theory and applications. Call for
papers has been carefully prepared by the guest editors
and posted on the journal’s web page, which has received
many attentions followed by some submissions among wide
topics such as delayed neural systems, stochastic neural
systems, impulsive neural systems, reaction-diffusion neural
systems, fuzzy neural systems, evolutionary neural systems,
mathematical modeling of neural systems, computational
neuroscience, neurodynamical optimization and adaptive
dynamic programming, cognitive models, pattern recogni-
tion, and neural network applications.

All manuscripts submitted to this special issue went
through a thorough peer-refereeing process. Based on the
reviewers’ reports, eleven original research articles are finally
accepted. The contents embrace the synchronization of cou-
pled neural networks, the numerical analysis of stochastic

delayed partial differential equations, and the stability anal-
ysis of delayed impulsive reaction-diffusion neural networks
and switched neural networks.

It is certainly impossible to provide in this short editorial a
more comprehensive description for all articles in this special
issue. However, the team of the guest editors believes that
the results included reflect some recent trends in research
and outline new ideas for future studies of neurodynamical
system theory and applications.
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Recently, the stochastic resonance effect has been widely used by the method of discovering and extracting weak periodic signals
from strong noise through the stochastic resonance effect. The detection of the single-frequency weak signals by using stochastic
resonance effect is widely used. However, the detection methods of the multifrequency weak signals need to be researched.
According to the different frequency input signals of a given system, this paper puts forward a detection method of multifrequency
signal by using adaptive stochastic resonance, which analyzed the frequency characteristics and the parallel number of the input
signals, adjusted system parameters automatically to the low frequency signals in the fixed step size, and then measured the
stochastic resonance phenomenon based on the frequency of the periodic signals to select the most appropriate indicators in the
middle or high frequency. Finally, the optimized system parameters are founded and the frequency of the given signals is extracted
in the frequency domain of the stochastic resonance output signals. Compared with the traditional detection methods, the method
in this paper not only improves the work efficiency but also makes it more accurate by using the color noise, the frequency is more
accurate being extracted from the measured signal. The consistency between the simulation results and analysis shows that this
method is effective and feasible.

1. Introduction

Now, we need to find and extract useful signal through
the signal detection in engineering technology and scientific
research.The traditional method to detect signal usually uses
linear filtering, wavelet analysis [1], and so on to reduce and
eliminate noise and finally obtain the useful signal. Although
some weak signals are often overwhelmed by strong noise,
the weak periodic signal is also reduced in the denoise to
a certain extent, which made some weak periodic signal fail
to be detected and extracted. In 1981, Benzi et al. proposed
the concept of stochastic resonance [2] which provides a
new research method for the detection of weak periodic
signal. Compared to the traditional signal detection method,
stochastic resonance is a kind of nonlinear phenomenon,
which adds a certain intensity noise rather than reducs
the noise, then uses the synergy among signal frequency,
noise intensity, and nonlinear system to drive part of the

noise energy into the measuring signal energy, and finally
highlights in the output signal.

With the development of the theory of stochastic reso-
nance, the method of finding and extracting weak periodic
signals from strong noise by stochastic resonance effect has
been widely used in various fields of science such as nerve
physiology, intelligence theory, nonlinear optics, signal pro-
cessing, communication engineering, and sociology [3–11].
Among them, the method of detecting single-frequency
weak signals by using stochastic resonance effect has been
more mature. Its main method is to analyze the relationship
between the characteristics of the measured input signal and
the system parameters through the nonlinear bistable system,
through adjusting the system parameters [12] or increasing
the strength of the noise [13, 14] to realize stochastic res-
onance. In 1990, Gang et al. [15] put forward the famous
idea of adiabatic approximation theory, which proved that
stochastic resonance is used to detect small parameter signal.
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Then the method of stochastic resonance detection to single-
frequency signal is gradually perfect. However, in the actual
research, we found that the signal submerged by strong noise
is unknown weak periodic signal and even unknown high
frequency signal. Then, the research on the detection of
multiple frequency signals received the widespread attention
rapidly.

It is mainly used to realize stochastic resonance through
adjusting system parameters manually or increasing the
strength of noise so that we can find and extract the unknown
multiple frequency signal. Due to the manual, adjusting has
low work efficiency, and cannot achieve continuous search
which will omit part of the signal, and it is difficult to find and
search the optimal system parameters which will certainly
omit part of the signal. This paper combines the theory of
stochastic resonance and adaptive algorithm to put forward
a kind of adaptive stochastic resonance detection method for
multiple-frequency signal, respectively, of the low frequency
and high frequency input signals. Based on the traditional
single-frequency weak signal detection, selected the SNR
to be a measurement index of the generation of stochastic
resonance and reducing the range of parameter values by
the threshold analysis, this method can find the optimal
system parameters effectively and can detect a multiple weak
periodic signals. A large number of simulation results show
that the output signal of stochastic resonance system will
be interfered by some noise which will lead to distortion of
waveform slightly.Therefore, this papermakes processing the
output signal of stochastic resonance by using the autocorre-
lation method which only changes the amplitude and phase,
without changing the frequency. It can reduce the impact of
noise, make the waveform more similar to measured signal,
highlight the frequency of the signal cycle component, and
enhance the SNR.

Themethods to detect the high-frequency signals are sub-
sampled, frequency-shifted and rescaling, wavelet analysis
[16, 17], and so forth. Its main idea is transforming the
high frequency into the low frequency through scale changes
to meet the conditions of stochastic resonance then detect
and extract the low-frequency signal, and finally achieve
recovery. However, the output signal waveform extracted by
these methods often exists with some distortion. In 2008,
Mao et al. [18] proposed a method, which adds one cycle
modulated signal to the stochastic resonance system, and
then adjust the frequency of the modulation signal close to
the frequency of the signal to be measured and generate the
differential frequency which meets the adiabatic approxima-
tion theory. Finally, significant changes of the output signal
spectrogram occurred in the approximation process. This
characteristic can be taken as the basis for signal detection
and extraction. But it used ideal Gaussian white noise during
the experiment rather than the nonzero color noise which is
often encountered in practical engineering applications such
as themechanical fault detection [8], and its frequency is con-
centrated in a frequency band and can easily be confusedwith
the frequency of signal to be measured. It is considered that
the frequency of the multi-frequency signal to be measured
may be odd multiples. This paper contemplated to select
the reciprocal of the power spectrum in the autocorrelation
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Figure 1:When𝐴 = 0,𝐷 = 0, the corresponding potential function
curve 𝑈(𝑥).

function of the output signal as measurement index under
the interference of the color noise, which can distinguish the
color noise with the signal to be measured and extract the
high frequency of multiple parallel input signals effectively.
This paper made a large number of numerical simulations by
MATLAB, and the simulation results show the effectiveness
and feasibility of the method and have a good prospect.

2. Bistable System and Its
Performance Analysis

This paper uses the bistable system model: Langevin equa-
tion. It is actually an overdamped bistable system model
driven by cycle, and its mathematical expression is [19]

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥

3
+ 𝑠 (𝑡) + Γ (𝑡) , (1)

where 𝑎, 𝑏 are the system parameters, 𝑠(𝑡) is the system input
signal to bemeasured, 𝑠(𝑡) = 𝐴 cos(2𝜋𝑓

0
𝑡),𝑓
0
is the frequency

of the input signal to be measured and Γ(𝑡) is the Gaussian
white noise with noise intensity𝐷, and it satisfied: ⟨Γ(𝑡)⟩ = 0,
⟨Γ(𝑡)Γ(𝑡

󸀠
)⟩ = 2𝐷𝛿(𝑡 − 𝑡

󸀠
). When the input signal 𝐴 = 0, the

noise intensity 𝐷 = 0, the potential function corresponding
to the nonlinear bistable system is

𝑈 (𝑥) = −
1

2
𝑎𝑥
3
+
1

4
𝑏𝑥
3
. (2)

As shown in Figure 1, the system has two potential wells
and a potential barrier. Stochastic resonance is actually shown
the phenomenon that the signal has enough energy to trans-
fer between two potential wells under the synergistic effect of
the bistable system. At present, the main method is adjusted
system parameters and increased a certain intensity of noise
to generate stochastic resonance. However, the characteristic
of input signal to be measured with noise is usually unknown
in the measurement of the practical engineering. It is difficult
to meet the actual demand only by adjusting the system
parameters manually. Therefore, this paper integrates the
adaptive iterative algorithm into the stochastic resonance
detection method to study the adaptive stochastic resonance
detection method for multi-frequency signals, seeks the
optimal system parameters to generate stochastic resonance,
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and finally finds and extracts the frequency of unknownweak
cycle signal in the frequency domain.

3. Adaptive Stochastic Resonance Detection for
Low-Frequency Signals

3.1. Measurement Index and Iterative Algorithm. Adaptive
stochastic resonance signal detection involves two important
factors: measurement index and iterative algorithm.

(1) Measurement Index. Selecting the appropriate measure-
ment index to measure the effectiveness of the system output
which means whether to generate stochastic resonance. The
commonly measurement index in the study of stochastic res-
onance contains signal-to-noise ratio (SNR), autocorrelation
function, cross-correlation function, mutual information,
residence time distribution, [20–23] and so on. For the
detection of low-frequency signals, this paper ismainly based
on the SNR to extract effective signal. SNR is an index of
the proportion that the energy of input signal frequency 𝑓

0
is

contained in the system output signal 𝑦(𝑡) = 𝑔(𝑥(𝑡)), which
is defined as

SNR = 10 log 𝑆

𝑁
= 10 log

𝑆 (𝑓
0
)

𝑁 (𝑓
0
)
𝑑𝐵. (3)

This paper uses the fourth-order Runge-Kutta method to
solve the nonlinear systems. Set the sample step ℎ = 1/𝑓

𝑠
,

where 𝑓
𝑠
is the sampling frequency. The output signal is 𝑦(𝑡).

The power spectrum of the input signal 𝑆(𝑓
0
) is the energy of

the output signal power spectrum 𝑌(𝑓) in the input signal
at the frequency 𝑓

0
. The noise power spectrum 𝑁(𝑓

0
) is

a period of average power spectrum estimate near the input
signal frequency 𝑓

0
.

(2) Iterative Algorithm. Choose a suitable iterative algorithm
tomake the system tends to the optimal state, which generates
stochastic resonance. In the measurement of the practical
engineering, by the limit of the algorithm accuracy require-
ments and working conditions, many algorithms cannot be
applied to the actual detection because of its high complexity.
This paper mainly uses adaptive iterative algorithm: fix the
step size and adjust the system parameters linearity.The steps
of adaptive stochastic resonance detection of low-frequency
signal are as follows.

(a) Firstly, to set the system parameters, to input the
signal to be measured with noise, to fix the step size,
and to select the appropriate value range of parameter,
increase the step size during this interval gradually to
adjust the system parameters 𝑎.

(b) Secondly, to use the Runge-Kutta algorithm to take
numerical simulation to the corresponding system of
each parameter, every parameter 𝑎 has a correspond-
ing system output signal.

(c) Then, to calculate the SNR according to (3), find
the optimal parameters 𝑎best corresponding to the
maximum SNR.

(d) Finally, to reset nonlinear bistable system based on
the optimal parameters to drive the signal to be
measured with noise, generate stochastic resonance
in this system. The output signal can show the signal
to be measured to the greatest extent. The frequency
corresponding to the spectrum peak in the spectrum
diagram of the output signal is the frequency of the
signal to be measured.

3.2. Simulation of Single Weak Signal Detection. Let the input
signal to be tested is 𝑆(𝑡) = 𝐴 sin(2𝜋𝑓

0
𝑡), in which 𝐴 = 0.8,

𝑓
0
= 0.03Hz, the noise intensity 𝐷 = 0.6, the sampling

frequency 𝑓
𝑠
= 5Hz. Figure 2(b) shows that the input signal

to be measured has been completely submerged by the noise
at this time, the parameter of bistable system 𝑏 = 1 is fixed.
But it has a problem which is how to set the range of values
about the system parameter 𝑎.

Let the input signal be a constant𝐴 and the noise intensity
𝐷 = 0 (without considering the noise). The barrier of
the bistable system exists with a static threshold condition:
𝐴
𝑐
= √4𝑎3/27𝑏. Thus we can calculate a system parameter

threshold 𝑎 = 1.1 according to the above conditions of the
system. Set the adjustment range of system parameters as
[1.1, 5] and the step size ℎ = 1/𝑓

𝑠
= 0.2. According to

the adaptive iterative algorithm mentioned above, we can
obtain the variation curve of SNR as the system parameter
changes in Figure 3. The maximum SNRmax = 0.0609, and
the corresponding optimal system parameters 𝑎best = 1.2.
Reset system parameters and the system obviously generated
stochastic resonance effect, as shown in Figure 2(c). Although
there is still some noise in the output signal, but the noise
energy is significantly weakened, and it has been fully utilized
and transformed into the energy of the signal to bemeasured.
Figure 2(d) is a spectrum diagram of the output signal, when
𝑓 = 0.03Hz there is a very clear and sharp spectral peak.

However, the frequency of low-frequency signal is promi-
nent by the processing of the stochastic resonance system and
is easy to be extracted. Although, as the Figure 2(c) shows that
the time domain diagram of output signal is still interfered
by part of the noise, there are some glitches. In order to solve
this problem, this paper uses the autocorrelation techniques
on the postprocessing program.

Define the autocorrelation function of the signal 𝑥(𝑡) as
follows:

𝑅
𝑥
(𝜏) = lim

𝑇→∞

1

𝑇
𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡, (4)

where 𝑇 is the observation time of the signal 𝑥(𝑡), and 𝑅
𝑥
(𝜏)

describes the correlation between the signal 𝑥(𝑡) and 𝑥(𝑡+𝜏),
due to the actual observation time 𝑇 is limited. Therefore
define the autocorrelation function is,

�̂�
𝑥
(𝜏) = lim

𝑇→∞

1

𝑇
∫

𝑇−𝜏

0

𝑥 (𝑡) 𝑥 (𝑡 + 𝜏) 𝑑𝑡. (5)

The signals to be measured with noise are as follows:

𝑆
𝑛
(𝑡) = 𝑠 (𝑡) + Γ (𝑡) = 𝐴 cos (2𝜋𝑓

0
𝑡) + Γ (𝑡) . (6)
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Figure 2: (a)The input signal to bemeasured. (b)The input signal to bemeasured contains white Gaussian noise. (c)The stochastic resonance
output signal. (d) The spectrum figure of the stochastic resonance output signal.

For the actual engineering signal, the integration time can be
approximated by 𝑇 instead of 𝑇 − 𝜏, and the signal after the
autocorrelation processing is:

𝑅
𝑌 (𝜏) =

𝐴
2

2
cos (𝜔𝑡) + 𝐴

2

2𝑇
∫

𝑇

0

cos [𝜔 (2𝑡 + 𝜏) + 2𝜙] 𝑑𝑡

+
1

𝑇
∫

𝑇

0

𝑠 (𝑡) 𝑑𝑡 ⋅
1

𝑇
∫

𝑇

0

Γ (𝑡 + 𝜏) 𝑑𝑡

+
1

𝑇
∫

𝑇

0

𝑠 (𝑡 + 𝜏) 𝑑𝑡 ⋅
1

𝑇
∫

𝑇

0

Γ (𝑡) 𝑑𝑡 + 𝑅Γ (𝜏) ,

(7)

in which 𝑅
𝑥
(𝜏) is the autocorrelation function of the noise.

The noise cannot be the ideal Gaussian white noise in the
measurement of the actual engineering. Therefore, 𝑅

𝑥
(𝜏)

is always present and its amplitude is drastically reduced
compared with the original noise amplitude, and can be
regarded as a new noise.

The output signal by autocorrelation processing can be
abbreviated as

𝑦
1
(𝑡) = 𝐴

1
cos (𝑓

1
𝑡 + 𝜙
1
) + Γ
1
(𝑡) . (8)

Compared to the original noise signal to bemeasured, the
amplitude and phase of the two signals have changed, but the
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Figure 3: The variation curve of SNR while adjusting the system
parameter 𝑎.

frequency is not changed. It improves the SNR to a certain
extent. Therefore, this paper takes advantage of this feature
to postprocess the output signal of stochastic resonance
(see Figure 7). It not only reduces the influence of the noise
but also makes the waveform of the output signal more close
to the original signal to be measured in the time domain.
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Figure 4: (a) The time-domain diagram of stochastic resonance output signal after correlation processing and (b) the spectrum diagram of
stochastic resonance output signal after correlation processing.

With the signal cycle components characteristic frequency
is even more pronounced in the spectrogram. We verify the
feasibility of this theory through a numerical example. Make
autocorrelation processing of the output signal of stochastic
resonance as shown in Figure 2(c). As Figure 4 shows that the
waveform of the output signal is obviously undistorted in the
time-domain diagram, and it is almost unanimous with the
waveform of the measured signal.The frequency of the signal
to be measured is more prominent under the background of
noise.

3.3. Simulation of Multifrequency Weak Superposition Signal
Detection. When the input signal to be measured is the
multi-frequency weak signal and parallel input, the multi-
frequency input signal to be tested is

𝑠 (𝑡) =

3

∑

𝑖=1

𝐴
𝑖
cos (2𝜋𝑓

𝑖
𝑡) . (9)

While 𝐴
1
= 0.6, 𝐴

2
= 0.8, 𝐴

3
= 1.0, 𝑓

1
= 0.02Hz,

𝑓
2
= 0.03Hz, and 𝑓

3
= 0.05Hz, Γ(𝑡) is Gaussian white noise

with noise intensity 𝐷 = 0.6. Sampling frequency 𝑓
𝑠
= 5Hz,

and let the bistable system parameter 𝑏 = 1. The study has
shown that only the frequency, noise intensity, and system
parameters of signal must be matched, and the system can
generate stochastic resonance effect, so that we define a set
of system parameters as a signal path for the system [22].
It generates mixing phenomenon when the signal band is
too close, and the spectrum peaks of output signal are not
obvious. Therefore, we can define the frequency number as
not only the channel capacity of the signal path adapts to this
set of parameters to generate a stochastic resonance effect,

but also the mixing frequency phenomenon does not occur.
Similarly, according to the above adaptive iterative algorithm,
we can calculate the optimal parameters 𝑎best = 1.5 while
SNR is maximum (SNRmax), as shown in Figure 6. As shown
in Figure 5(d), the frequency of obviously spectral peak
is 0.02Hz, 0.03Hz, and 0.05Hz. The degree of waveform
distortion is weakened by autocorrelation processing, and
the frequency of the signal to bemeasured is more prominent
which indicates that this algorithm is suitable for the parallel
multi-frequency weak input signal detection. Parameter 𝑎best
matches the frequency of signal to be measured and noise
intensity. The channel capacity is𝑁 = 3 at this time.

4. Adaptive Stochastic Resonance in the High
Frequency Signal Detection

According to (1), the power spectrum of the system output
signal can be calculated as [23]

𝑆 (𝑓) = 𝑆
1
(𝑓) + 𝑆

2
(𝑓)

=

2𝑎
4
𝐴
2 exp ((−𝑎2/2𝐷) /𝜋𝐷2)

(2𝑎2 exp (−𝑎2/2𝐷) /𝜋2)2
× 𝛿 (𝑓

0
− 𝑓)

+ [1 −

2𝑎
4
𝐴
2 exp ((−𝑎2/2𝐷) /𝜋𝐷2)

((2𝑎2 exp (−𝑎2/2𝐷) /𝜋2) + 2𝜋𝑓
0
)
2
]

× [

4√2𝑎
4 exp ((−𝑎2/4𝐷) /𝜋)

((2𝑎2 exp (−𝑎2/2𝐷) /𝜋2) + 2𝜋𝑓
0
)
2
] .

(10)

Stochastic resonance of the output signal spectrum is
caused by the input signal and noise, as 𝑆

1
(𝑓) and 𝑆

2
(𝑓),
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Figure 5: (a)Themulti-frequency input signal to be measured. (b)Themulti-frequency input signal to be measured contains white Gaussian
noise. (c) The stochastic resonance output signal. (d) The spectrum figure of the stochastic resonance output signal.
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Figure 6: The variation curve of SNR while adjusting the system
parameter 𝑎.

respectively. Since the output of the noise power spectrum
𝑆
2
(𝑓) has Lorentz distribution, the subband which can gen-

erate stochastic resonance spectrum peak is generally limited
to the low frequency band. Therefore, the bistable system of
stochastic resonance is generally suitable for small parameters

(𝑓 ≪ 1) of weak signal detection. For the detection of high
frequency signals, the current methods are: secondary sam-
pling, frequency shift by varying scale and modem [24, 25],
and so on.Themain idea is transform the high frequency into
the low frequency through the scale change to meet the low
frequency of the small parameter conditions, so that it is able
to generate stochastic resonance effect. Finally, the frequency
of the output signal recover its actual measurement scale,
which is the frequency of the signal to be measured. These
methods have some inevitably problem of the efficiency and
practicality.

(i) In themeasurement of the actual engineering, such as
mechanical failure diagnosis, most of the signal to be
measured is the high-frequency signal, and the noise
is often colored noise, rather than idealized Gaussian
white noise.

(ii) In the field of classical stochastic resonance, most
theoretical studies only discuss the linear response of
single frequency weak signal, and it can be observed
clearly that the output signal of stochastic resonance
system has some distortion. Compared to the original
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Figure 7: (a) The time-domain diagram of stochastic resonance
output signal after correlation processing. (b)The spectrumdiagram
of stochastic resonance output signal after correlation processing.

sinusoidal signal, the output signal is more similar to
a rectangular wave. Depending on the nature of the
rectangular wave, the Fourier expansion is

𝑥 (𝑡) =
4𝐴

𝜋
(sin𝜔

0
𝑡 +

1

3
sin 3𝜔

0
𝑡 +

1

5
sin 5𝜔

0
𝑡 + ⋅ ⋅ ⋅ ) . (11)

Except for the fact that the 𝜔
0
has peak, its odd multiples of

frequency 3𝜔
0
, 5𝜔
0
. . . have peaks in the spectrum diagram of

the system output signal. Taking into account the influence of
noise, the signal to be measured with noise meet is Lorentz

distribution through the stochastic resonance system, and
the odd multiples of the output signal frequency are not
obvious in the spectrum diagram. However, in the detection
of actual signals, the measured signal may exist with multi-
frequencies, and satisfy the relationship of odd multiple, and
it is difficult to determine the frequency which, correspond-
ing to the peak, is the frequency of the output signal or
some other weak signals by nonlinear response. Therefore,
the method of low-frequency signal detection is not suitable
for it and it needs to make some adjustments. A method
is proposed for the above problems in this paper, which is
approaching constantly the frequency of the signal to be
measured by automatically adjusting the modulation signal
frequency 𝑓

𝑐
of the system externally added, and thereby

detecting the frequency of the signal being measured. The
main idea is as follows.

Let the input signal be measured as

𝑠 (𝑡) =

𝑀

∑

𝑖=1

𝐴
𝑖
cos (2𝜋𝑓

𝑖
𝑡) + Γ (𝑡) , (12)

where 𝑓
𝑖
(𝑖 = 1, 2, . . .𝑀) is the frequency of the signal to

be measured. Γ(𝑡) is color noise distinguished from white
Gaussian noise, and color noise is nonzero. Let its frequency
mainly concentrate in some band of 0.2Hz–0.5Hz in this
paper. Adding one cycle of the modulation signal to the
system, the input signal to be measured is transformed
into:

𝐹 (𝑡) ⋅ 𝑆 (𝑡) =
1

2

𝑀

∑

𝑖=0

𝐴
𝑖
cos [2𝜋 (𝑓

𝑖
− 𝑓
𝑐
)]

+
1

2

𝑀

∑

𝑖=1

𝐴
𝑖
cos [2𝜋 (𝑓

𝑖
− 𝑓
𝑐
)]

+ Γ (𝑡) ⋅ cos (2𝜋𝑓𝑐𝑡) .
(13)

The signal is composed of two parts: the difference frequency
𝑓
𝑖
− 𝑓
𝑐
, and the added frequency 𝑓

𝑖
+ 𝑓
𝑐
.

It constantly approachs the frequency of the signal being
measured 𝑓

𝑖
by adjusting the frequency 𝑓

𝑐
from 𝑓

𝑐
< 𝑓
𝑖
via

𝑓
𝑐
= 𝑓
𝑖
to 𝑓
𝑐
> 𝑓
𝑖
, difference frequency 𝑓

𝑖
− 𝑓
𝑐
≪ 1 which

meets the generated conditions of the stochastic resonance
in a certain frequency band. The system will generate a
random resonance effect at this time, which means that
each 𝑓

𝑐
will exists with a significantly nonzero spectral peak

corresponding to the output signal spectrogram. Particularly,
while 𝑓

𝑐
= 𝑓
𝑖
, the stochastic resonance disappears. The

maximum spectral peak power is close to 0, and its reciprocal
is infinite, which seems like a sharp peak in the diagram.
So that we can use this feature to exacte the frequency of
the input signals to be measured 𝑓

𝑖
. This method avoids the

problem of odd multiples mentioned above. The frequency
of the color noise is often concentrated in some frequency
band. So it is difficult to distinguish the color noise and the
frequency of the signal to be measured from the frequency
domain. It is no longer applicable to use SNR as the index.
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Figure 8: The change curve about the reciprocal of the stochastic
resonance output signal spectrum peak with the adjustment of 𝑓

𝑐
in

the single high frequency.

This paper selects the reciprocal of the maximum power
spectrum peak of the output signal the autocorrelation
function as measurement index.

The steps of adaptive stochastic resonance in the high-
frequency signal detection are as follows.

(a) Set the system parameters, select the appropriate
value interval, and fix the step size ℎ = 1/𝑓

𝑠
. Increase

the step size gradually to adjust 𝑓
𝑐
, approaching the

frequency of the signal to be measured 𝑓
𝑖
.

(b) Make numerical simulation of each 𝑓
𝑐
corresponding

system by the fourth-order Runge-Kutta algorithm,
and get the system output signal corresponding to
each parameter points. Plott the curve of the maxi-
mum power spectral peak in the output signal with
the modulating signal frequency 𝑓

𝑐
changed.

(c) Sharp peaks will appear in the curve which is drawn
above, and each frequency corresponding to the peak
is the frequency of the signal to be measured 𝑓

𝑖
.

The flow chart is shown in Figure 10.

4.1. Simulation of the Single High-Frequency Signal Detector.
Let the system parameters 𝑎 = 1.4, 𝑏 = 1, the signal
to be measured is 𝑠(𝑡) = 𝐴 cos(2𝜋𝑓

0
𝑡), while 𝐴 = 2,

𝑓
0
= 10.05Hz, the color noise is generated by the MATLAB

script. The sampling frequency is 𝑓
𝑠
= 5000. The adjustment

interval of the modulation frequency 𝑓
𝑐
is [9.9 10.1]. Adjust

the frequency𝑓
𝑐
to approach the frequency of the signal being

measured 𝑓
𝑖
. As shown in Figure 8, it occurred a sharp peak

while 𝑓
𝑐
= 10.05Hz, which means that the frequency of the

signal being measured is 10.05Hz.The numerical simulation
results comes together with the theoretical analysis, so this
method is effective and feasible.

4 68 10 12
𝑓𝑐 (Hz)

4

3

2

1

0

×105

1/
𝑆(
𝑤
) m

ax

Figure 9: The change curve about the reciprocal of the stochastic
resonance output signal spectrum peak with the adjustment of 𝑓

𝑐
in

the multiple high frequency.

4.2. Simulation of the Multiple High-Frequency Signal Detec-
tor. Let the input signal be detected with multiple high
frequency as follows:

𝑠 (𝑡) =

3

∑

𝑖=1

𝐴
𝑖
cos (2𝜋𝑓

𝑖
𝑡) , (14)

where the amplitude 𝐴
1
= 2, 𝐴

2
= 1.5, 𝐴

3
= 2.1, the

frequency 𝑓
1
= 3.75Hz, 𝑓

2
= 6.05Hz, 𝑓

3
= 11.30Hz,

the bistable system parameters 𝑎 = 1.3, 𝑏 = 1, and the
noise intensity 𝐷 = 10. Sampling frequency 𝑓

𝑠
= 5000. The

modulation signal frequency range is [2.5, 12.5]. As shown in
Figure 9, the frequencies 𝑓

1
, 𝑓
2
, and 𝑓

3
all appear obvious as

sharp peaks, it detected the frequency of the multiple signals
submerged by strong noise efficiently. The odd multiples
of the frequency 3𝑓

1
are close to the frequency 𝑓

3
. The

simulation results show that the detected signal frequency is
𝑓
3
which is the frequency of the input signal to be measured

rather than the odd multiples. It proves that the method
is feasible, effective, and suitable for the actual engineering
measurement.

5. Conclusions

In order tomeet the needs of practical engineering, this paper
combined the adaptive algorithm with stochastic resonance
theory. According to the frequency characteristics of the
input signal to be tested, it proposed a feasible and effective
adaptive stochastic resonance signal detection. Considering
the actual situation, it improves work efficiency to a certain
extent and has great value and development prospects in the
measurement of the actual engineering. This paper chooses
the SNR and the power spectrum of the autocorrelation
function estimates as the index. The characteristics of the
signal to be measured contain a lot of complexity in practical
applications. In the actual engineering, we can choose a
more precise measurement of indicators to measure the
generation of stochastic resonance effect. Among the system
parameters, noise intensity and the frequency of the signal
being measured, which have a close relationship. We can
analyze the degree of association by genetic algorithm to
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further expand the system of stochastic resonance signal
detection.
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This work is devoted to investigating the stability of impulsive cellular neural networks with time-varying and distributed delays.
We use the new method of fixed point theory to obtain some new and concise sufficient conditions to ensure the existence and
uniqueness of solution and the global exponential stability of trivial equilibrium.The presented algebraic criteria are easily checked
and do not require the differentiability of delays.

1. Introduction

Since cellular neural networks (CNNs) were proposed by
Chua and Yang in 1988 [1, 2], many researchers have put
great effort into this subject due to their numerous successful
applications in various fields such as optimization, linear
and nonlinear programming, associative memory, pattern
recognition, and computer vision.

Owing to the finite switching speed of amplifiers, there
is no doubt that time delays exist in the communication and
response of neurons. Moreover, as neural networks usually
have a spatial extent due to the presences of a multitude of
parallel pathways with a variety of axon sizes and lengths,
there is a distribution of conduction velocities along these
pathways and a distribution of propagation designed with
discrete delays. Therefore, a more appropriate and ideal way
is to incorporate continuously distributed delays with a result
that a more effective model of cellular neural networks with
time-varying and distributed delays proposed.

In fact, beside delay effects, stochastic and impulsive as
well as diffusing effects are also likely to exist in neural
networks. So far, there have been many results [3–11] on
the study of dynamic behaviors of complex CNNs such as
impulsive delayed reaction-diffusion CNNs and stochastic
delayed reaction-diffusion CNNs. Summing up the existing
researches on the stability of complex CNNs, we see that
the primary method is Lyapunov theory. However, there are

also lots of difficulties in the applications of corresponding
theories to specific problems. It is therefore necessary to seek
some new methods to deal with the stability in order to
overcome those difficulties.

Recently, it is inspiring that Burton and other authors
have applied the fixed point theory to investigate the stability
of deterministic systems and obtained some more applicable
conclusions, for example, see the monograph [12] and the
work in [13–24]. In addition, more recently, there have been
a few papers where the fixed point theory is employed to
investigate the stability of stochastic (delayed) differential
equations, for instance, see [25–31]. Precisely, in [26–28],
Luo used the fixed point theory to study the exponential
stability of mild solutions for stochastic partial differential
equations with bounded delays and with infinite delays. In
[29, 30], Sakthivel used the fixed point theory to discuss
the asymptotic stability in pth moment of mild solutions to
nonlinear impulsive stochastic partial differential equations
with bounded delays and with infinite delays. In [31], Luo
used the fixed point theory to study the exponential stability
of stochastic Volterra-Levin equations. We wonder if we can
obtain some new and more applicable stability criteria of
complex CNNs by applying the fixed point theory.

With this motivation, in this paper, we aim to discuss the
global exponential stability of impulsive CNNs with time-
varying and distributed delays. It is worth noting that our
research technique is based on the contraction mapping
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principle rather than the usual method of Lyapunov the-
ory. We deal with, by employing the fixed point theorem,
the existence and uniqueness of solution and the global
exponential stability of trivial equilibrium at the same time,
for which Lyapunov method feels helpless. The obtained
stability criteria are easily checked and do not require the
differentiability of delays.

2. Preliminaries

Let 𝑅𝑛 denote the n-dimensional Euclidean space and ‖ ⋅ ‖

represent the Euclidean norm N ≜ {1, 2, . . . , 𝑛} and 𝑅
+

=

[0,∞). 𝐶[𝑋, 𝑌] corresponds to the space of continuous
mappings from the topological space 𝑋 to the topological
space 𝑌.

In this paper, we consider the following impulsive cellular
neural networks with time-varying and distributed delays:

d𝑥
𝑖 (𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑡)

0

𝜎
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) d𝜃

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

(1)

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
) = 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) ,

𝑘 = 1, 2, . . . ,
(2)

where 𝑖 ∈ N and 𝑛 is the number of neurons in the neural
network. 𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th neuron

at time 𝑡. 𝑓
𝑗
, 𝑔
𝑗
, and 𝜎

𝑗
denote the activation functions,

respectively. The constant 𝑎
𝑖
> 0 represents the rate with

which the 𝑖th neuronwill reset its potential to the resting state
when disconnected from the network and external inputs.
The constants 𝑏

𝑖𝑗
, 𝑐
𝑖𝑗
, and𝑑

𝑖𝑗
represent the connectionweights

of the jth neuron to the 𝑖th neuron, respectively. 𝜏
𝑖𝑗
(𝑡) and 𝜌(𝑡)

correspond to the transmission delays meeting 0 ≤ 𝜏
𝑖𝑗
(𝑡) ≤ 𝜏

(𝜏 = constant) and 0 ≤ 𝜌(𝑡) ≤ 𝜌 (𝜌 = constant). The fixed
impulsive moments 𝑡

𝑘
(𝑘 = 1, 2, . . .) satisfy 0 = 𝑡

0
< 𝑡
1
<

𝑡
2
< ⋅ ⋅ ⋅ and lim

𝑘→∞
𝑡
𝑘
= ∞. 𝑥

𝑖
(𝑡
𝑘
+ 0) and 𝑥

𝑖
(𝑡
𝑘
− 0) stand

for the right-hand and left-hand limits of 𝑥
𝑖
(𝑡) at time 𝑡

𝑘
,

respectively. 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) shows the impulsive perturbation of

the 𝑖th neuron at the impulsive moment 𝑡
𝑘
.

Throughout this paper, we always assume that 𝑓
𝑖
(0) =

𝑔
𝑖
(0) = 𝜎

𝑖
(0) = 𝐼

𝑖𝑘
(0) = 0 for 𝑖 ∈ N and 𝑘 = 1, 2, . . .. Thereby,

problems (1) and (2) admit a trivial equilibrium x = 0.
Denote by x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) =

(𝑥
1
(𝑡; 𝑠, 𝜑

1
), . . . , 𝑥

𝑛
(𝑡; 𝑠, 𝜑

𝑛
))
𝑇

∈ 𝑅
𝑛 the solution to (1)

and (2) with the initial condition

𝑥
𝑖 (𝑠) = 𝜑

𝑖 (𝑠) , −𝑚
∗
≤ 𝑠 ≤ 0, 𝑖 ∈ N, (3)

where 𝑚∗ = max{𝜏, 𝜌}, 𝜑
𝑖
(𝑠) ∈ 𝐶[[−𝑚

∗
, 0], 𝑅] and 𝜑(𝑠) =

(𝜑
1
(𝑠), . . . , 𝜑

𝑛
(𝑠))
𝑇
∈ 𝑅
𝑛.

The solution x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) ∈ 𝑅
𝑛 to (1)–(3) is, for

the time variable 𝑡, a piecewise continuous vector-valued

function with the first-kind discontinuous points 𝑡
𝑘
(𝑘 =

1, 2, . . .), where it is left-continuous; that is, the following
relations are true:

𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
) , 𝑥
𝑖
(𝑡
𝑘
+ 0) = 𝑥

𝑖
(𝑡
𝑘
) + 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) ,

𝑖 ∈ N, 𝑘 = 1, 2, . . . .

(4)

Definition 1. The trivial equilibrium x = 0 is said to be
globally exponentially stable if for any initial condition 𝜑(𝑠) ∈
𝐶[[−𝑚

∗
, 0], 𝑅

𝑛
], there exists a pair of positive constants 𝜆 and

𝑀 such that
󵄩󵄩󵄩󵄩x (𝑡; 𝑠, 𝜑)

󵄩󵄩󵄩󵄩 ≤ 𝑀e−𝜆𝑡, ∀𝑡 ≥ 0. (5)

The consideration of this paper is based on the following
fixed point theorem.

Theorem 2 (see [32]). Let Υ be a contraction operator on a
complete metric spaceΘ, then there exists a unique point 𝜁 ∈ Θ

for which Υ(𝜁) = 𝜁.

3. Main Results

In this section, we will, for (1)–(3), use the contraction
mapping principle to prove the existence and uniqueness of
the solution and the global exponential stability of trivial
equilibrium all at once. Before proceeding, we firstly intro-
duce some assumptions as follows.

(A1) There exist nonnegative constants 𝑙
𝑗
such that for any

𝜂, 𝜐 ∈ 𝑅,
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝜂) − 𝑓

𝑗 (𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑙
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N. (6)

(A2) There exist nonnegative constants 𝑘
𝑗
such that for any

𝜂, 𝜐 ∈ 𝑅,
󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝜂) − 𝑔

𝑗 (𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑘
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N. (7)

(A3) There exist nonnegative constants 𝑝
𝑗𝑘

such that for
any 𝜂, 𝜐 ∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝐼
𝑗𝑘
(𝜂) − 𝐼

𝑗𝑘 (𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑝
𝑗𝑘

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N, 𝑘 = 1, 2, . . . .

(8)

(A4) There exist nonnegative constants𝜔
𝑗
such that for any

𝜂, 𝜐 ∈ 𝑅,
󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(𝜂) − 𝜎

𝑗
(𝜐)

󵄨󵄨󵄨󵄨󵄨
≤ 𝜔
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈ N. (9)

LetH = H
1
× ⋅ ⋅ ⋅ ×H

𝑛
, and letH

𝑖
(𝑖 ∈ N) be the space

embracing functions 𝜙
𝑖
(𝑡) : [−𝑚

∗
, +∞) → 𝑅, wherein 𝜙

𝑖
(𝑡)

satisfies the following:

(1) 𝜙
𝑖
(𝑡) is continuous on 𝑡 ̸= 𝑡

𝑘
(𝑘 = 1, 2, . . .),

(2) lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝜙
𝑖
(𝑡) exist; moreover,

lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) = 𝜙

𝑖
(𝑡
𝑘
) for 𝑘 = 1, 2, . . .,
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(3) 𝜙
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗
, 0],

(4) e𝛼𝑡𝜙
𝑖
(𝑡) → 0 as 𝑡 → ∞, where 𝛼 = const and 0 <

𝛼 < min
𝑖∈N{𝑎
𝑖
},

where 𝑡
𝑘
and 𝜑

𝑖
(𝑠) are defined as shown in Section 2. AlsoH

is a complete metric space when it is equipped with a metric
defined by

𝑑 (q (𝑡) , h (𝑡)) =
𝑛

∑

𝑖=1

sup
𝑡≥−𝑚

∗

󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡) − ℎ
𝑖
(𝑡)

󵄨󵄨󵄨󵄨 , (10)

where q(𝑡) = (𝑞
1
(𝑡), . . . , 𝑞

𝑛
(𝑡)) ∈ H and h(𝑡) =

(ℎ
1
(𝑡), . . . , ℎ

𝑛
(𝑡)) ∈ H.

Theorem 3. Assume that conditions (A1)–(A4) hold provided
that

(i) there exists a constant 𝜇 such that inf
𝑘=1,2,...

{𝑡
𝑘
−𝑡
𝑘−1

} ≥

𝜇,

(ii) there exist constants 𝑝
𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
𝜇 for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,

(iii) ∑𝑛
𝑖=1

{(1/𝑎
𝑖
)max
𝑗∈N|𝑏
𝑖𝑗
𝑙
𝑗
| + (1/𝑎

𝑖
)max
𝑗∈N|𝑐
𝑖𝑗
𝑘
𝑗
| +

(𝜌/𝑎
𝑖
)max
𝑗∈N|𝜔

𝑗
𝑑
𝑖𝑗
|} +max

𝑖∈N{𝑝
𝑖
(𝜇 + (1/𝑎

𝑖
))} ≜ 𝜒 <

1,

and then the trivial equilibrium x = 0 is globally
exponentially stable.

Proof. Multiplying both sides of (1) with e𝑎𝑖𝑡 gives, for 𝑡 > 0

and 𝑡 ̸= 𝑡
𝑘
,

de𝑎𝑖𝑡𝑥
𝑖
(𝑡) = e𝑎𝑖𝑡d𝑥

𝑖
(𝑡) + 𝑎

𝑖
𝑥
𝑖
(𝑡) e𝑎𝑖𝑡d𝑡

= e𝑎𝑖𝑡
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡)) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
(𝑡)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑡)

0

𝜎
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) d𝜃

}

}

}

d𝑡,

(11)

which yields after integrating from 𝑡
𝑘−1

+ 𝜀 (𝜀 > 0) to 𝑡 ∈

(𝑡
𝑘−1

, 𝑡
𝑘
) (𝑘 = 1, 2, . . .) that

𝑥
𝑖 (𝑡) e
𝑎
𝑖

𝑡

= 𝑥
𝑖
(𝑡
𝑘−1

+ 𝜀) e𝑎𝑖(𝑡𝑘−1+𝜀)

+ ∫

𝑡

𝑡
𝑘−1

+𝜀

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(12)

Letting 𝜀 → 0 in (12), we have, for 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
) (𝑘 =

1, 2, . . .),

𝑥
𝑖
(𝑡) e𝑎𝑖𝑡

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗 (𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(13)

Setting 𝑡 = 𝑡
𝑘
− 𝜀 (𝜀 > 0) in (13), we get

𝑥
𝑖
(𝑡
𝑘
− 𝜀) e𝑎𝑖(𝑡𝑘−𝜀)

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡
𝑘

−𝜀

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠,

(14)

which generates by letting 𝜀 → 0

𝑥
𝑖
(𝑡
𝑘
− 0) e𝑎𝑖𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗 (𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(15)

Noting 𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
), (15) can be rearranged as

𝑥
𝑖
(𝑡
𝑘
) e𝑎𝑖𝑡𝑘

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗 (𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(16)

Combining (13) and (16), we derive that

𝑥
𝑖
(𝑡) e𝑎𝑖𝑡

= 𝑥
𝑖
(𝑡
𝑘−1

+ 0) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

(17)
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is true for 𝑡 ∈ (𝑡
𝑘−1

, 𝑡
𝑘
] (𝑘 = 1, 2, . . .). Hence, we get, for 𝑡 ∈

(𝑡
𝑘−1

, 𝑡
𝑘
] (𝑘 = 1, 2, . . .),

𝑥
𝑖
(𝑡) e𝑎𝑖𝑡

= {𝑥
𝑖
(𝑡
𝑘−1

) + 𝐼
𝑖(𝑘−1)

(𝑥
𝑖
(𝑡
𝑘−1

))} e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗 (𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

= 𝑥
𝑖
(𝑡
𝑘−1

) e𝑎𝑖𝑡𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ 𝐼
𝑖(𝑘−1)

(𝑥
𝑖
(𝑡
𝑘−1

)) e𝑎𝑖𝑡𝑘−1 ,
(18)

which results in
𝑥
𝑖
(𝑡
𝑘−1

) e𝑎𝑖𝑡𝑘−1

= 𝑥
𝑖
(𝑡
𝑘−2

) e𝑎𝑖𝑡𝑘−2

+ ∫

𝑡
𝑘−1

𝑡
𝑘−2

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗 (𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ 𝐼
𝑖(𝑘−2)

(𝑥
𝑖
(𝑡
𝑘−2

)) e𝑎𝑖𝑡𝑘−2

...

𝑥
𝑖
(𝑡
2
) e𝑎𝑖𝑡2

= 𝑥
𝑖
(𝑡
1
) e𝑎𝑖𝑡1

+ ∫

𝑡
2

𝑡
1

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗 (𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ 𝐼
𝑖1
(𝑥
𝑖
(𝑡
1
)) e𝑎𝑖𝑡1 ,

𝑥
𝑖
(𝑡
1
) e𝑎𝑖𝑡1

= 𝜑
𝑖 (0)

+ ∫

𝑡
1

0

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠.

(19)

We therefore conclude, for 𝑡 > 0,

𝑥
𝑖 (𝑡)

= 𝜑
𝑖 (0) e
−𝑎
𝑖

𝑡

+ e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑥
𝑗 (𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ e−𝑎𝑖𝑡 ∑
0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘} .

(20)

Note that 𝑥
𝑖
(0) = 𝜑

𝑖
(0) in (20).We then define the follow-

ing operator 𝜋 acting onH, for y(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈ H:

𝜋 (y) (𝑡) = (𝜋 (𝑦
1
) (𝑡) , . . . , 𝜋 (𝑦

𝑛
) (𝑡)) , (21)

where 𝜋(𝑦
𝑖
)(𝑡) : [−𝑚

∗
, +∞) → 𝑅 (𝑖 ∈ N) obeys the rule as

follows:
𝜋 (𝑦
𝑖
) (𝑡)

= 𝜑
𝑖
(0) e−𝑎𝑖𝑡

+ e−𝑎𝑖𝑡∫
𝑡

0

e𝑎𝑖𝑠
{{{{{

{{{{{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))

+

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃)) d𝜃

}}}}}

}}}}}

}

d𝑠

+ e−𝑎𝑖𝑡 ∑
0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘}

(22)

on 𝑡 ≥ 0 and 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗
, 0].

In what follows, we will apply the contraction mapping
principle to prove the existence and uniqueness of solution
and the global exponential stability of trivial equilibrium at
the same time.The subsequent proof can be divided into two
steps.
Step 1. We need to prove that 𝜋(H) ⊂ H. For 𝑦

𝑖
(𝑡) ∈ H

𝑖

(𝑖 ∈ N), it is necessary to show that 𝜋(𝑦
𝑖
)(𝑡) ⊂ H

𝑖
. As defined

above, we see that 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗
, 0]. Owing to

the continuity of 𝜑
𝑖
(𝑠) on 𝑠 ∈ [−𝑚

∗
, 0], we immediately know

that 𝜋(𝑦
𝑖
)(𝑡) is continuous on 𝑡 ∈ [−𝑚

∗
, 0].

Choose a fixed time 𝑡 > 0, and it is then derived from (22)
that
𝜋 (𝑦
𝑖
) (𝑡 + 𝑟) − 𝜋 (𝑦

𝑖
) (𝑡) = 𝑄

1
+ 𝑄
2
+ 𝑄
3
+ 𝑄
4
+ 𝑄
5
, 𝑡 > 0,

(23)

where,

𝑄
1
= 𝜑
𝑖 (0) e
−𝑎
𝑖

(𝑡+𝑟)
− 𝜑
𝑖 (0) e−𝑎𝑖𝑡,

𝑄
2
= e−𝑎𝑖(𝑡+𝑟) ∫

𝑡+𝑟

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠)) d𝑠

− e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠)) d𝑠,
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𝑄
3
= e−𝑎𝑖(𝑡+𝑟) ∫

𝑡+𝑟

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠))) d𝑠

− e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗 (𝑠))) d𝑠,

𝑄
4
= e−𝑎𝑖(𝑡+𝑟) ∫

𝑡+𝑟

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑦
𝑗 (𝑠 − 𝜃)) d𝜃d𝑠

− e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑠)

0

𝜎
𝑗
(𝑦
𝑗 (𝑠 − 𝜃)) d𝜃d𝑠,

𝑄
5
= e−𝑎𝑖(𝑡+𝑟) ∑

0<𝑡
𝑘

<(𝑡+𝑟)

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘}

− e−𝑎𝑖𝑡 ∑
0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘} .

(24)

Since 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we know that 𝑦

𝑖
(𝑡) is continuous on

𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .); moreover, lim

𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝑦
𝑖
(𝑡)

exist, in addition, lim
𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡
𝑘
).

Letting 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .) in (23), it is easy to see that

𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, . . . , 5. Thus, 𝜋(𝑦

𝑖
)(𝑡 + 𝑟) −

𝜋(𝑦
𝑖
)(𝑡) → 0 as 𝑟 → 0 holds on 𝑡 > 0 and 𝑡 ̸= 𝑡

𝑘
(𝑘 =

1, 2, . . .).
Letting 𝑡 = 𝑡

𝑘
(𝑘 = 1, 2, . . .) in (23), it is not difficult to

find that 𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, . . . , 4. Letting 𝑟 < 0 be

small enough, we compute

𝑄
5
= e−𝑎𝑖(𝑡𝑘+𝑟) ∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

− e−𝑎𝑖𝑡𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

= {e−𝑎𝑖(𝑡𝑘+𝑟) − e−𝑎𝑖𝑡𝑘} ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}

(25)

which implies lim
𝑟→0
− 𝑄
5
= 0. Letting 𝑟 > 0 be small enough,

we have

𝑄
5
= e−𝑎𝑖(𝑡𝑘+𝑟) ∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

− e−𝑎𝑖𝑡𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚

= e−𝑎𝑖(𝑡𝑘+𝑟){ ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}+𝐼

𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘}

− e−𝑎𝑖𝑡𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}

= {e−𝑎𝑖(𝑡𝑘+𝑟) − e−𝑎𝑖𝑡𝑘} ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) e𝑎𝑖𝑡𝑚}

+ e−𝑎𝑖(𝑡𝑘+𝑟)𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) e𝑎𝑖𝑡𝑘 ,

(26)

which implies lim
𝑟→0
+ 𝑄
5
= e−𝑎𝑖𝑡𝑘𝐼

𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))e𝑎𝑖𝑡𝑘 .

According to the above discussion, we see that 𝜋(𝑦
𝑖
)(𝑡) :

[−𝑚
∗
, +∞) → 𝑅 is continuous on 𝑡 ̸= 𝑡

𝑘
(𝑘 = 1, 2, . . .),

while for 𝑡 = 𝑡
𝑘

(𝑘 = 1, 2, . . .), lim
𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡)

and lim
𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡) exist; moreover, lim

𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡) =

𝜋(𝑦
𝑖
)(𝑡
𝑘
) ̸= lim

𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡).

Next, we will prove that e𝛼𝑡𝜋(𝑦
𝑖
)(𝑡) → 0 as 𝑡 → ∞ for

𝑖 ∈ N. To begin with, we give the expression of e𝛼𝑡𝜋(𝑦
𝑖
)(𝑡) as

follows:

e𝛼𝑡𝜋 (𝑦
𝑖
) (𝑡) = 𝑊

1
+𝑊
2
+𝑊
3
+𝑊
4
+𝑊
5
, 𝑡 > 0, (27)

where

𝑊
1
= 𝜑
𝑖
(0)e−(𝑎𝑖−𝛼)𝑡,

𝑊
2
= e𝛼𝑡e−𝑎𝑖𝑡 ∫𝑡

0
e𝑎𝑖𝑠∑𝑛
𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))d𝑠,

𝑊
5
= e𝛼𝑡e−𝑎𝑖𝑡∑

0<𝑡
𝑘

<𝑡
{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))e𝑎𝑖𝑡𝑘},

𝑊
3
= e𝛼𝑡e−𝑎𝑖𝑡 ∫𝑡

0
e𝑎𝑖𝑠∑𝑛
𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑖𝑗
(𝑠)))d𝑠, and

𝑊
4
= e𝛼𝑡e−𝑎𝑖𝑡 ∫𝑡

0
e𝑎𝑖𝑠∑𝑛
𝑗=1

𝑑
𝑖𝑗
∫
𝜌(𝑠)

0
𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃))d𝜃d𝑠.

First, it is obvious that lim
𝑡→∞

𝑊
1

= 0 as 𝑎
𝑖
− 𝛼 >

0. Furthermore, for 𝑦
𝑗
(𝑡) ∈ H

𝑗
(𝑗 ∈ N), we see

lim
𝑡→∞

e𝛼𝑡𝑦
𝑗
(𝑡) = 0. Then, for any 𝜀 > 0, there exists a

𝑇
𝑗
> 0 such that 𝑠 ≥ 𝑇

𝑗
implies |e𝛼𝑠 𝑦

𝑗
(𝑠)| < 𝜀. Choose

𝑇
∗
= max

𝑗∈N{𝑇
𝑗
}. It is derived form (A1) that

𝑊
2
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

= e𝛼𝑡e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠e−𝛼𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

= e−(𝑎𝑖−𝛼)𝑡 ∫
𝑇
∗

0

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

+ e−(𝑎𝑖−𝛼)𝑡 ∫
𝑡

𝑇
∗

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤ e−(𝑎𝑖−𝛼)𝑡
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑇

∗

]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
}{∫

𝑇
∗

0

e(𝑎𝑖−𝛼)𝑠d𝑠}

+ 𝜀

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
} e−(𝑎𝑖−𝛼)𝑡 ∫

𝑡

𝑇
∗

e(𝑎𝑖−𝛼)𝑠d𝑠

≤ e−(𝑎𝑖−𝛼)𝑡
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑇

∗

]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
}{∫

𝑇
∗

0

e(𝑎𝑖−𝛼)𝑠d𝑠}

+
𝜀

𝑎
𝑖
− 𝛼

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
} ,

(28)

which leads to𝑊
2
→ 0 as 𝑡 → ∞.
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Similarly, for the given 𝜀 > 0 above, there also exists a
𝑇
󸀠

𝑗
> 0 such that 𝑠 ≥ 𝑇

󸀠

𝑗
− 𝜏 implies |e𝛼𝑠𝑦

𝑗
(𝑠)| < 𝜀. Select

�̂� = max
𝑗∈N{𝑇

󸀠

𝑗
}. It follows from (A2) that

𝑊
3
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗 (𝑠))
󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤ e−(𝑎𝑖−𝛼)𝑡

× ∫

𝑡

0

e𝑎𝑖𝑠e−𝛼{𝑠−𝜏}

×

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼[𝑠−𝜏𝑖𝑗(𝑠)] 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜏

𝑖𝑗 (𝑠))
󵄨󵄨󵄨󵄨󵄨
} d𝑠

= e𝛼𝜏e−(𝑎𝑖−𝛼)𝑡

× ∫

�̂�

0

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼[𝑠−𝜏𝑖𝑗(𝑠)] 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
} d𝑠

+ e𝛼𝜏e−(𝑎𝑖−𝛼)𝑡

× ∫

𝑡

�̂�

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
e𝛼[𝑠−𝜏𝑖𝑗(𝑠)] 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜏

𝑖𝑗
(𝑠))

󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤ e𝛼𝜏
𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[−𝜏,�̂�]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨

}

}

}

× e−(𝑎𝑖−𝛼)𝑡 ∫
�̂�

0

e(𝑎𝑖−𝛼)𝑠d𝑠

+ e𝛼𝜏𝜀
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
} e−(𝑎𝑖−𝛼)𝑡 ∫

𝑡

�̂�

e(𝑎𝑖−𝛼)𝑠d𝑠

≤ e𝛼𝜏
𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[−𝜏,�̂�]

󵄨󵄨󵄨󵄨󵄨
e𝛼𝑠𝑦
𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨

}

}

}

× e−(𝑎𝑖−𝛼)𝑡 ∫
�̂�

0

e(𝑎𝑖−𝛼)𝑠d𝑠 + e𝛼𝜏𝜀
𝑎
𝑖
− 𝛼

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
} ,

(29)

which results in𝑊
3
→ 0 as 𝑡 → ∞. In addition, it is derived

from (A4) that

𝑊
4
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{𝑑
𝑖𝑗
∫

𝜌

0

𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠 − 𝜃)

󵄨󵄨󵄨󵄨󵄨
d𝜃} d𝑠

= e𝛼𝑡e−𝑎𝑖𝑡

× ∫

𝑡

0

e𝑎𝑖𝑠e−𝛼𝑠
𝑛

∑

𝑗=1

{𝑑
𝑖𝑗
∫

𝜌

0

e𝛼𝜃𝜔
𝑗
e𝛼(𝑠−𝜃) 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝑠 − 𝜃)

󵄨󵄨󵄨󵄨󵄨
d𝜃}d𝑠

≤ e𝛼𝑡e−𝑎𝑖𝑡

× ∫

𝑡

0

e𝑎𝑖𝑠e−𝛼𝑠

×

𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗

sup
𝜁∈[𝑠−𝜌,𝑠]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
} ∫

𝜌

0

e𝛼𝜃𝜔
𝑗
d𝜃

}

}

}

d𝑠.

(30)

Since e𝛼𝜁|𝑦
𝑗
(𝜁)| → 0 as 𝜁 → ∞, we know that, for any

𝜀 > 0, there exists a 𝑇󸀠󸀠
𝑗

> 0 such that 𝜁 > 𝑇
󸀠󸀠

𝑗
− 𝜌 implies

e𝛼𝜁|𝑦
𝑗
(𝜁)| < 𝜀. Selecting 𝑇 = max

𝑗∈N{𝑇
󸀠󸀠

𝑗
}, it follows from

(30) that

𝑊
4
≤ e(𝛼−𝑎𝑖)𝑡

× ∫

𝑇

0

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗

sup
𝜁∈[𝑠−𝜌,𝑠]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}

× ∫

𝜌

0

e𝛼𝜃𝜔
𝑗
d𝜃

}

}

}

d𝑠

+ e(𝛼−𝑎𝑖)𝑡

× ∫

𝑡

𝑇

e(𝑎𝑖−𝛼)𝑠
𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗

sup
𝜁∈[𝑠−𝜌,𝑠]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}

× ∫

𝜌

0

e𝛼𝜃𝜔
𝑗
d𝜃

}

}

}

d𝑠

≤
e𝛼𝜌

𝛼

{

{

{

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝜔
𝑗

sup
𝜁∈[−𝜌,𝑇]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}
}

}

}

× e(𝛼−𝑎𝑖)𝑡 ∫
𝑇

0

e(𝑎𝑖−𝛼)𝑠d𝑠

+
e𝛼𝜌

𝛼

𝑛

∑

𝑗=1

{

{

{

𝑑
𝑖𝑗
𝜔
𝑗

sup
𝜁∈[𝑇−𝜌,𝑡]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}
}

}

}

× e(𝛼−𝑎𝑖)𝑡 ∫
𝑡

𝑇

e(𝑎𝑖−𝛼)𝑠d𝑠

≤ e(𝛼−𝑎𝑖)𝑡 𝑒
𝛼𝜌

𝛼

{

{

{

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
𝜔
𝑗

sup
𝜁∈[−𝜌,𝑇]

{e𝛼𝜁 󵄨󵄨󵄨󵄨󵄨𝑦𝑗 (𝜁)
󵄨󵄨󵄨󵄨󵄨
}
}

}

}

× ∫

𝑇

0

e(𝑎𝑖−𝛼)𝑠d𝑠 + 𝜀

𝑛

∑

𝑗=1

{𝑑
𝑖𝑗
𝜔
𝑗
}

e𝛼𝜌

𝛼 (𝑎
𝑖
− 𝛼)

,

(31)

which yields𝑊
4
→ 0 as 𝑡 → ∞.

Furthermore, from (A3), we see that |𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
))| ≤

𝑝
𝑖𝑘
|𝑦
𝑖
(𝑡
𝑘
)|. So,

𝑊
5
≤ e𝛼𝑡e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘} . (32)

As 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we have lim

𝑡→∞
e𝛼𝑡𝑦
𝑖
(𝑡) = 0. Then, for

any 𝜀 > 0, there exists a nonimpulsive point 𝑇
𝑖
> 0 such that
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𝑠 ≥ 𝑇
𝑖
implies |e𝛼𝑠𝑦

𝑖
(𝑠)| < 𝜀. It then follows from conditions

(i) and (ii) that

𝑊
5
≤ e𝛼𝑡e−𝑎𝑖𝑡

{

{

{

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝛼𝑡
𝑘e(𝑎𝑖−𝛼)𝑡𝑘}

}

}

}

≤ e𝛼𝑡e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ e𝛼𝑡e−𝑎𝑖𝑡𝑝
𝑖
𝜀 ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝜇e(𝑎𝑖−𝛼)𝑡𝑘}

≤ e−(𝑎𝑖−𝛼)𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ e−(𝑎𝑖−𝛼)𝑡𝑝
𝑖
𝜀
{

{

{

∑

𝑇
𝑖

<𝑡
𝑟

<𝑡
𝑘

{e(𝑎𝑖−𝛼)𝑡𝑟 (𝑡
𝑟+1

− 𝑡
𝑟
)}

+𝜇e(𝑎𝑖−𝛼)𝑡𝑘
}

}

}

≤ e−(𝑎𝑖−𝛼)𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+ e−(𝑎𝑖−𝛼)𝑡𝑝
𝑖
𝜀 ∫

𝑡

𝑇
𝑖

e(𝑎𝑖−𝛼)𝑠d𝑠

+ e−(𝑎𝑖−𝛼)𝑡𝑝
𝑖
𝜀𝜇e(𝑎𝑖−𝛼)𝑡

≤ e−(𝑎𝑖−𝛼)𝑡 ∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 e
𝑎
𝑖

𝑡
𝑘}

+
𝑝
𝑖
𝜀

𝑎
𝑖
− 𝛼

+ 𝑝
𝑖
𝜀𝜇,

(33)

which means that𝑊
5
→ 0 as 𝑡 → ∞.

Now, we can derive from (27) that e𝛼𝑡𝜋(𝑦
𝑖
)(𝑡) → 0 as

𝑡 → ∞ for 𝑖 ∈ N. It is therefore concluded that 𝜋(𝑦
𝑖
)(𝑡) ⊂

H
𝑖
which results in 𝜋(H) ⊂ H.

Step 2. We need to prove that 𝜋 is contractive. For z =

(𝑧
1
(𝑡), . . . , 𝑧

𝑛
(𝑡)) ∈ H and y = (𝑦

1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈ H, we

estimate

󵄨󵄨󵄨󵄨𝜋 (𝑦
𝑖
) (𝑡) − 𝜋 (𝑧

𝑖
) (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐽
1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
, (34)

where

𝐽
1
= e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑦
𝑗 (𝑠)) − 𝑓

𝑗
(𝑧
𝑗 (𝑠))

󵄨󵄨󵄨󵄨󵄨
] d𝑠,

𝐽
2
= e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

−𝑔
𝑗
(𝑧
𝑗
(𝑠 − 𝜏

𝑖𝑗
(𝑠)))

󵄨󵄨󵄨󵄨󵄨
] d𝑠,

𝐽
3
= e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
∫

𝜌(𝑠)

0

󵄨󵄨󵄨󵄨󵄨
𝜎
𝑗
(𝑦
𝑗
(𝑠 − 𝜃))

−𝜎
𝑗
(𝑧
𝑗
(𝑠 − 𝜃))

󵄨󵄨󵄨󵄨󵄨
d𝜃d𝑠,

𝐽
4
= e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑡

{e𝑎𝑖𝑡𝑘 󵄨󵄨󵄨󵄨𝐼𝑖𝑘 (𝑦𝑖 (𝑡𝑘)) − 𝐼
𝑖𝑘
(𝑧
𝑖
(𝑡
𝑘
))
󵄨󵄨󵄨󵄨} .

(35)

Note that

𝐽
1
≤ e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
] d𝑠

≤ max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠) − 𝑧

𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
}

× e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
} ,

𝐽
2
≤ e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑖𝑗 (𝑠))

−𝑧
𝑗
(𝑠 − 𝜏

𝑖𝑗 (𝑠))
󵄨󵄨󵄨󵄨󵄨
] d𝑠

≤ max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝜉) − 𝑧

𝑗 (𝜉)
󵄨󵄨󵄨󵄨󵄨
}

× e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝜏,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝜉) − 𝑧

𝑗 (𝜉)
󵄨󵄨󵄨󵄨󵄨
} ,

𝐽
3
≤ e−𝑎𝑖𝑡 ∫

𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
∫

𝜌(𝑠)

0

𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜃)

−𝑧
𝑗 (𝑠 − 𝜃)

󵄨󵄨󵄨󵄨󵄨
d𝜃} d𝑠

≤ e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝜉∈[𝑠−𝜌,𝑠]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝜉) − 𝑧

𝑗 (𝜉)
󵄨󵄨󵄨󵄨󵄨

× ∫

𝜌(𝑠)

0

𝜔
𝑗
d𝜃

}

}

}

d𝑠

≤ e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠
𝑛

∑

𝑗=1

{

{

{

𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝜉∈[−𝜌,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉)

−𝑧
𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨
𝜌 (𝑠)

}

}

}

d𝑠
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≤ max
𝑗∈N

{𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

𝑛

∑

𝑗=1

{

{

{

sup
𝜉∈[−𝜌,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝜉) − 𝑧

𝑗 (𝜉)
󵄨󵄨󵄨󵄨󵄨

}

}

}

× e−𝑎𝑖𝑡 ∫
𝑡

0

e𝑎𝑖𝑠𝜌 (𝑠) d𝑠

≤
𝜌

𝑎
𝑖

max
𝑗∈N

{𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

𝑛

∑

𝑗=1

{

{

{

sup
𝜉∈[−𝜌,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨

}

}

}

,

𝐽
4
≤ e−𝑎𝑖𝑡 ∑

0<𝑡
𝑘

<𝑡

{e𝑎𝑖𝑡𝑘𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘) − 𝑧
𝑖
(𝑡
𝑘
)
󵄨󵄨󵄨󵄨}

≤ 𝑝
𝑖
e−𝑎𝑖𝑡 sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨 ∑

0<𝑡
𝑘

<𝑡

{e𝑎𝑖𝑡𝑘𝜇}

≤ 𝑝
𝑖
e−𝑎𝑖𝑡 sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖 (𝑠)

󵄨󵄨󵄨󵄨

× { ∑

0<𝑡
𝑟

<𝑡
𝑘

{e𝑎𝑖𝑡𝑟 (𝑡
𝑟+1

− 𝑡
𝑟
)} + e𝑎𝑖𝑡𝑘𝜇}

≤ 𝑝
𝑖
sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨 e
−𝑎
𝑖

𝑡
{∫

𝑡

0

e𝑎𝑖𝑠d𝑠 + e𝑎𝑖𝑡𝜇}

≤ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖 (𝑠)

󵄨󵄨󵄨󵄨 .

(36)

It is then derived from (36) that

sup
𝑡∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨𝜋 (𝑦
𝑖
) (𝑡) − 𝜋 (𝑧

𝑖
) (𝑡)

󵄨󵄨󵄨󵄨

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠) − 𝑧

𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
}

+
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝜉) − 𝑧

𝑗
(𝜉)

󵄨󵄨󵄨󵄨󵄨
}

+
𝜌

𝑎
𝑖

max
𝑗∈N

{𝜔
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

𝑛

∑

𝑗=1

{ sup
𝜉∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝜉) − 𝑧

𝑗 (𝜉)
󵄨󵄨󵄨󵄨󵄨
}

+ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧
𝑖
(𝑠)

󵄨󵄨󵄨󵄨 ,

(37)

which means that

𝑛

∑

𝑖=1

sup
𝑡∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨𝜋 (𝑦
𝑖
) (𝑡) − 𝜋 (𝑧

𝑖
) (𝑡)

󵄨󵄨󵄨󵄨

≤ 𝜒

𝑛

∑

𝑗=1

{ sup
𝑠∈[−𝑚

∗

,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)

󵄨󵄨󵄨󵄨󵄨
} ,

(38)

where

𝜒 ≜

𝑛

∑

𝑖=1

{
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
+

1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
+

𝜌

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝜔
𝑗
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

+max
𝑖∈N

{𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

)} .

(39)

In view of condition (iii), we know that 𝜋 is a contraction
mapping, and hence, there exists a unique fixed point y(⋅) of
𝜋 in H which means that yT(⋅) is the solution to (1)–(3) and
e𝛼𝑡‖yT(⋅)‖ → 0 as 𝑡 → ∞. This completes the proof.

Lemma 4. Assume conditions (A1)–(A4) hold. Provided that

(i) inf
𝑘=1,2,...

{𝑡
𝑘
− 𝑡
𝑘−1

} ≥ 1,
(ii) there exist constants 𝑝

𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,
(iii) ∑𝑛

𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏
𝑖𝑗
𝑙
𝑗
| + (1/𝑎

𝑖
)max
𝑗∈N|𝑐
𝑖𝑗
𝑘
𝑗
| +

(𝜌/𝑎
𝑖
)max
𝑗∈N|𝜔

𝑗
𝑑
𝑖𝑗
|} +max

𝑖∈N{𝑝
𝑖
(1 + (1/𝑎

𝑖
))} ≜ 𝜒 <

1,

then the trivial equilibrium x = 0 is globally exponentially
stable.

Proof. Lemma 4 is a direct conclusion by letting 𝜇 = 1 in
Theorem 3.

Remark 5. In Theorem 3, we use the fixed point theorem to
prove the existence and uniqueness of solution and the global
exponential stability of trivial equilibrium all at once, while
Lyapunov method fails to do this.

Remark 6. The presented sufficient conditions in Theorem 3
and Lemma 4 do not require even the differentiability of
delays, let alone the monotone decreasing behavior of delays
which is necessary in some relevant works.

4. Example

Consider the following two-dimensional impulsive cellular
neural network with time-varying and distributed delays.

d𝑥
𝑖
(𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖
(𝑡) +

2

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡)))

+

2

∑

𝑗=1

𝑑
𝑖𝑗
∫

𝜌(𝑡)

0

𝜎
𝑗
(𝑥
𝑗
(𝑡 − 𝜃)) d𝜃, 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
) = arctan (0.4𝑥

𝑖
(𝑡
𝑘
)) ,

𝑘 = 1, 2, . . . ,

(40)



Abstract and Applied Analysis 9

with the initial conditions 𝑥
1
(𝑠) = cos(𝑠), 𝑥

2
(𝑠) = sin(𝑠) on

−𝑚
∗
≤ 𝑠 ≤ 0, where 𝜏

𝑖𝑗
(𝑡) = 0.8 + 0.4 cos(𝑡), 𝜌(𝑡) = 0.5 +

0.3 sin(𝑡), 𝑚∗ is defined as shown in (3), 𝑎
1
= 𝑎
2
= 7, 𝑏

𝑖𝑗
=

0, 𝑐
11

= 0, 𝑐
12

= 1/7, 𝑐
21

= −1/7, 𝑐
22

= −1/7, 𝑑
11

= 3/7,
𝑑
12

= 2/7, 𝑑
21

= 0, 𝑑
22

= 1/7, 𝑓
𝑗
(𝑠) = 𝑔

𝑗
(𝑠) = 𝜎

𝑗
(𝑠) =

(|𝑠 + 1| − |𝑠 − 1|)/2, and 𝑡
𝑘
= 𝑡
𝑘−1

+ 0.5𝑘.
It is easily to find that 𝜇 = 0.5, 𝑙

𝑗
= 𝑘
𝑗
= 𝜔
𝑗
= 1, and

𝑝
𝑖𝑘
= 0.4. Let 𝑝

𝑖
= 0.8 and compute

2

∑

𝑖=1

{
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
+

1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
+

𝜌

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝜔
𝑗
𝑑
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
}

+max
𝑖∈N

{𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

)} < 1.

(41)

FromTheorem 3, we conclude that the trivial equilibrium
x = 0 of this two-dimensional impulsive cellular neural
network with time-varying and distributed delays is globally
exponentially stable.

5. Conclusions

This article is a new attempt of applying the fixed point theory
to the stability analysis of impulsive neural networks with
time-varying and distributed delays, which is different from
the existing relevant publications where Lyapunov theory
is the main technique. From what have been discussed
above, we see that the contraction mapping principle is
effective for not only the investigation of the existence and
uniqueness of solution but also for the stability analysis of
trivial equilibrium. In the future, we will continue to explore
the application of other kinds of fixed point theorems to the
stability research of complex neural networks.
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We investigate the convergence rate of Euler-Maruyamamethod for a class of stochastic partial differential delay equations driven by
both Brownian motion and Poisson point processes. We discretize in space by a Galerkin method and in time by using a stochastic
exponential integrator. We generalize some results of Bao et al. (2011) and Jacob et al. (2009) in finite dimensions to a class of
stochastic partial differential delay equations with jumps in infinite dimensions.

1. Introduction

The theory and application of stochastic differential equa-
tions have been widely investigated [1–7]. Liu [2] studied
the stability of infinite dimensional stochastic differential
equations. For the numerical analysis of stochastic partial
differential equations, Gyöngy and Krylov [8] discussed the
numerical approximations for linear stochastic partial differ-
ential equations in whole space. Jentzen et al. [9] studied the
numerical simulations of nonlinear parabolic stochastic par-
tial differential equations with additive noise. Kloeden et al.
[10] gave the error analysis for the pathwise approximation of
a general semilinear stochastic evolution equations.

By contrast, stochastic partial differential equations with
jumps have begun to gain attention [11–15]. Röckner and
Zhang [15] considered the existence, uniqueness, and large
deviation principles of stochastic evolution equation with
jump. In [12], the successive approximation of neutral SPDEs
was studied. There are few papers on the convergence
rate of numerical solutions for stochastic partial differential
equations with jump, although there are some papers on
the convergence rate of numerical solutions for stochastic
differential equations with jump in finite dimensions [16, 17].

Being motivated by the papers [16, 17], we will discuss
the convergence rate of Euler-Maruyama scheme for a class
of stochastic partial delay equations with jump, where the

numerical scheme is based on spatial discretization by
Galerkinmethod and timediscretization by using a stochastic
exponential integrator. In consequence, we generalize some
results of Bao et al. (2011) and Jacob et al. (2009) in finite
dimensions to a class of stochastic partial delay equations
with jump in infinite dimensions. The rest of this paper is
arranged as follows. We give some preliminary results of
Euler-Maruyama scheme in Section 2. The convergence rate
is discussed in Section 3.

2. Preliminary Results

Throughout this paper, let (Ω,F, {F
𝑡
}
𝑡≥0

,P) be a complete
probability space with some filtration {F

𝑡
}
𝑡≥0

satisfying the
usual conditions (i.e., it is right continuous andF

0
contains

allP-null sets). Let (𝐻, ⟨⋅, ⋅⟩
𝐻
, ‖ ⋅ ‖
𝐻
) and (𝐾, ⟨⋅, ⋅⟩

𝐾
, ‖ ⋅ ‖
𝐾
) be

two real separable Hilbert spaces. We denote by (L(𝐾,𝐻),

‖ ⋅ ‖) the family of bounded linear operators. Let 𝜏 > 0 and
𝐷 ([−𝜏, 0],𝐻) denote the family of right-continuous function
and left-hand limits 𝜑 from [−𝜏, 0] to 𝐻 with the norm
‖𝜑‖
𝐷

= sup
−𝜏≤𝜃≤0

‖𝜑(𝜃)‖
𝐻
. 𝐷𝑏F

0

([−𝜏, 0],𝐻) denotes the fam-
ily of almost surely bounded,F

0
-measurable,𝐷 ([−𝜏, 0],𝐻)-

valued random variables. For all 𝑡 ≥ 0, 𝑋
𝑡
= {𝑋(𝑡 + 𝜃) : −𝜏 ≤

𝜃 ≤ 0} is regarded as𝐷([−𝜏, 0],𝐻)-valued stochastic process.
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Let 𝑇 be a positive constant. For given 𝜏 ≥ 0, consider the
following stochastic partial differential delay equations with
jumps:

𝑑𝑋 (𝑡) = [𝐴𝑋 (𝑡) + 𝑓 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏))] 𝑑𝑡

+ 𝑔 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏)) 𝑑𝑊 (𝑡)

+ ∫
Z

ℎ (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏) , 𝑢)𝑁 (𝑑𝑡, 𝑑𝑢)

(1)

on 𝑡 ∈ [0, 𝑇] with initial datum 𝑋(𝑡) = 𝜉(𝑡) ∈

𝐷
𝑏

F
0

([−𝜏, 0],𝐻), −𝜏 ≤ 𝑡 ≤ 0. Here (𝐴,𝐷(𝐴)) is a self-adjoint
operator on 𝐻. {𝑊(𝑡), 𝑡 ≥ 0} is 𝐾-valued {F

𝑡
}
𝑡≥0

-Wiener
process defined on the probability space {Ω,F, {F

𝑡
}
𝑡≥0

,P}

with covariance operator 𝑄. We assume that −𝐴 and the
covariance operator 𝑄 of the Wiener process have the same
eigenbasis {𝑒

𝑚
}
𝑚≥1

of𝐻; that is,

−𝐴𝑒
𝑚

= 𝜆
𝑚
𝑒
𝑚
,

𝑄𝑒
𝑚

= 𝛼
𝑚
𝑒
𝑚
, 𝑚 = 1, 2, 3, . . . ,

(2)

where {𝜆
𝑚
, 𝑚 ∈ N} are the discrete spectrum of −𝐴 and

0 ≤ 𝜆
1

≤ 𝜆
2
⋅ ⋅ ⋅ ≤ lim

𝑚→∞
𝜆
𝑚

= ∞, {𝛼
𝑚
, 𝑚 ∈ N} are the

eigenvalues of 𝑄. Then,𝑊(𝑡) is defined by

𝑊(𝑡) =

∞

∑

𝑛=1

√𝛼
𝑚
𝛽
𝑚
(𝑡) 𝑒
𝑚
, 𝑡 ≥ 0, (3)

where 𝛽
𝑚
(𝑡) (𝑚 = 1, 2, 3, . . .) is a sequence of real-valued

standard Brownian motions mutually independent of the
probability space (Ω,F, {F

𝑡
}
𝑡≥0

,P).
According to Da Prato and Zabczyk [1], we define

stochastic integrals with respect to the 𝑄-Wiener process
𝑊(𝑡). Let 𝐾

0
= 𝑄
1/2

(𝐾) be the subspace of 𝐾 with the
inner product ⟨𝑢, V⟩

𝐾
0

= ⟨𝑄
−1/2

𝑢, 𝑄
−1/2V⟩

𝐾
. Obviously, 𝐾

0

is a Hilbert space. Denote by L0
2

= L(𝐾
0
, 𝐻) the family

of Hilbert-Schmidt operators from 𝐾
0
into 𝐻 with the norm

‖Ψ‖
2

L0
2

= tr((Ψ𝑄
1/2

)(Ψ𝑄
1/2

)
∗

).
Let Φ : (0,∞) → L0

2
be a predictable, F

𝑡
-adapted

process such that

∫

𝑡

0

E‖Φ(𝑠)‖L0
2

𝑑𝑠 ≤ ∞, ∀𝑡 > 0. (4)

Then, the 𝐻-valued stochastic integral ∫
𝑡

0
Φ(𝑠)𝑑𝑊(𝑠) is a

continuous square martingale. Let 𝑁(𝑑𝑡, 𝑑𝑢) be the Poisson
measure which is independent of the𝑄-Wiener process𝑊(𝑡).
Denote the compensated or centered Poisson measure as

�̃� (𝑑𝑡, 𝑑𝑢) = 𝑁 (𝑑𝑡, 𝑑𝑢) − 𝜌𝑑𝑡𝜋 (𝑑𝑢) , (5)

where 0 < 𝜌 < ∞ is known as the jump rate and 𝜋(⋅) is the
jumpdistribution (a probabilitymeasure). LetZ ∈ B(𝐾−{0})

be the measurable set. Denote byP2([0, 𝑇] ×Z, 𝐻) the space
of all predictable mappings ℎ : [0, 𝑇] × Z → 𝐻 for which

∫

𝑇

0

∫
Z

E‖ℎ (𝑡, 𝑢)‖
2

𝐻
𝑑𝑡𝜋 (𝑑𝑢) < ∞. (6)

Then, the𝐻-valued stochastic integral

∫

𝑇

0

∫
Z

ℎ (𝑡, 𝑢) �̃� (𝑑𝑡, 𝑑𝑢) (7)

is a centred square-integrable martingale.
We recall the definition of the mild solution to (1) as

follows.

Definition 1. A stochastic process {𝑋(𝑡) : 𝑡 ∈ [0, 𝑇]} is called
a mild solution of (1) if

(i) 𝑋(𝑡) is adapted to F
𝑡
, 𝑡 ≥ 0, and has càdlàg path on

𝑡 ≥ 0 almost surely,

(ii) for arbitrary 𝑡 ∈ [0, 𝑇], P{𝑤 : ∫
𝑡

0
‖𝑋(𝑠)‖

2

𝐻
𝑑𝑠 < ∞} =

1, and almost surely

𝑋 (𝑡) = 𝑒
𝑡𝐴
𝜉 (0) + ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

(8)

for any𝑋(𝑡) = 𝜉(𝑡) ∈ 𝐷
𝑏

F
0

([−𝜏, 0],𝐻), −𝜏 ≤ 𝑡 ≤ 0.

For the existence and uniqueness of the mild solution to
(1) (see [11]), we always make the following assumptions.

(H1) (𝐴,𝐷(𝐴)) is a self-adjoint operator on 𝐻 such that
−𝐴 has discrete spectrum 0 ≤ 𝜆

1
≤ 𝜆
2

≤ ⋅ ⋅ ⋅ ≤

lim
𝑚→∞

𝜆
𝑚

= ∞ with corresponding eigenbasis
{𝑒
𝑚
}
𝑚≥1

of 𝐻. In this case 𝐴 generates a compact 𝐶
0
-

semigroup 𝑒
𝑡𝐴
, 𝑡 ≥ 0, such that ‖𝑒𝑡𝐴‖ ≤ 𝑒

−𝛼𝑡.
(H2) The mappings 𝑓 : 𝐻 × 𝐻 → 𝐻, 𝑔 : 𝐻 ×

𝐻 → L(𝐾,𝐻), and ℎ : 𝐻 × 𝐻 × Z → 𝐻 are
Borel measurable and satisfy the following Lipschitz
continuity condition for some constant 𝐿

1
> 0 and

arbitrary 𝑥, 𝑦, 𝑥
1
, 𝑦
1
, 𝑥
2
, 𝑦
2
∈ 𝐻 and 𝑢 ∈ Z:

󵄩󵄩󵄩󵄩𝑓 (𝑥
1
, 𝑦
1
) − 𝑓 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩

2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔 (𝑥
1
, 𝑦
1
− 𝑔 (𝑥

2
, 𝑦
2
))
󵄩󵄩󵄩󵄩

2

L2
0

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩

2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩

2

𝐻
) ,

󵄩󵄩󵄩󵄩ℎ (𝑥
1
, 𝑦
1
, 𝑢) − ℎ (𝑥

2
, 𝑦
2
, 𝑢)

󵄩󵄩󵄩󵄩

2

𝐻

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩

2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩

2

𝐻
) .

(9)

This further implies the linear growth condition; that
is,

󵄩󵄩󵄩󵄩𝑓(𝑥, 𝑦)
󵄩󵄩󵄩󵄩

2

𝐻
+
󵄩󵄩󵄩󵄩𝑔(𝑥, 𝑦)

󵄩󵄩󵄩󵄩

2

L0
2

≤ 𝐿
0
(1 + ‖𝑥‖

2

𝐻
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝐻
) , (10)

where

𝐿
0
:= 2 (𝐿

2
∨
󵄩󵄩󵄩󵄩𝑓(0, 0)

󵄩󵄩󵄩󵄩

2

𝐻
∨
󵄩󵄩󵄩󵄩𝑔(0, 0)

󵄩󵄩󵄩󵄩

2

L0
2

) . (11)
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(H3) There exists 𝐿
2
> 0 satisfying

󵄩󵄩󵄩󵄩ℎ(𝑥, 𝑦, 𝑢)
󵄩󵄩󵄩󵄩

2

𝐻
≤ 𝐿
2
(‖𝑥‖
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝐻
) , (12)

for each 𝑥, 𝑦 ∈ 𝐻 and 𝑢 ∈ Z.

(H4) For 𝜉 ∈ 𝐷
𝑏

F
0

([−𝜏, 0],𝐻), there exists a constant𝐿
3
> 0

such that

E (
󵄨󵄨󵄨󵄨𝜉 (𝑠) − 𝜉 (𝑡)

󵄨󵄨󵄨󵄨

2
) ≤ 𝐿
3|𝑡 − 𝑠|

2
, 𝑡, 𝑠 ∈ [−𝜏, 0] . (13)

We now describe our Euler-Maruyama scheme for the
approximation of (1). For any 𝑛 ≥ 1, let 𝜋

𝑛
: 𝐻 →

𝐻
𝑛
= span{𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
} be the orthogonal projection; that is,

𝜋
𝑛
𝑥 = ∑

𝑛

𝑖=1
⟨𝑥, 𝑒
𝑖
⟩
𝐻
𝑒
𝑖
, 𝑥 ∈ 𝐻, 𝐴

𝑛
= 𝜋
𝑛
𝐴, 𝑓
𝑛
= 𝜋
𝑛
𝑓, 𝑔
𝑛
= 𝜋
𝑛
𝑔,

and ℎ
𝑛
= 𝜋
𝑛
ℎ.

Consider the following stochastic differential delay equa-
tions with jumps on𝐻

𝑛
:

𝑑𝑋
𝑛
(𝑡) = [𝐴

𝑛
𝑋
𝑛
(𝑡) + 𝑓

𝑛
(𝑋
𝑛
(𝑡) , 𝑋

𝑛
(𝑡 − 𝜏))] 𝑑𝑡

+ 𝑔
𝑛
(𝑋
𝑛
(𝑡) , 𝑋

𝑛
(𝑡 − 𝜏)) 𝑑𝑊 (𝑡)

+ ∫
Z

ℎ
𝑛
(𝑋
𝑛
(𝑡) , 𝑋

𝑛
(𝑡 − 𝜏) , 𝑢)𝑁 (𝑑𝑡, 𝑑𝑢) ,

𝑋
𝑛
(𝜃) = 𝜋

𝑛
𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] .

(14)

This spatial approximation (14) is called the Galerkin
approximation of (1). Due to the fact that 𝜋

𝑛
𝐴𝑥 =

𝜋
𝑛
𝐴(∑
𝑛

𝑖=1
⟨𝑥, 𝑒
𝑖
⟩
𝐻
𝑒
𝑖
) = −∑

𝑛

𝑖=1
𝜆
𝑖
⟨𝑥, 𝑒
𝑖
⟩
𝐻
𝑒
𝑖
, 𝑥 ∈ 𝐻

𝑛
, it follows

that for 𝑥 ∈ 𝐻
𝑛
, 𝐴
𝑛
𝑥 = 𝐴𝑥, 𝑒𝑡𝐴𝑛𝑥 = 𝑒

𝑡𝐴𝑥.
By (H2) and (H3) and the property of the projection

operator, we have that

󵄩󵄩󵄩󵄩𝐴𝑛𝑥 − 𝐴
𝑛
𝑦
󵄩󵄩󵄩󵄩

2

𝐻
=

󵄩󵄩󵄩󵄩𝐴𝑛 (𝑥 − 𝑦)
󵄩󵄩󵄩󵄩

2

𝐻
≤ 𝜆
2

𝑛

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝐻

,

󵄩󵄩󵄩󵄩𝑓𝑛 (𝑥1, 𝑦1) − 𝑓
𝑛
(𝑥
2
, 𝑦
2
)
󵄩󵄩󵄩󵄩

2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔 (𝑥
1
, 𝑦
1
) − 𝑔 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩

2

L0
2

=
󵄩󵄩󵄩󵄩𝑓 (𝑥
1
, 𝑦
1
) − 𝑓 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩

2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔 (𝑥
1
, 𝑦
1
) − 𝑔 (𝑥

2
, 𝑦
2
)
󵄩󵄩󵄩󵄩

2

L0
2

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩

2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩

2

𝐻
) ,

󵄩󵄩󵄩󵄩ℎ𝑛 (𝑥1, 𝑦1, 𝑢) − ℎ
𝑛
(𝑥
2
, 𝑦
2
, 𝑢)

󵄩󵄩󵄩󵄩

2

𝐻

=
󵄩󵄩󵄩󵄩ℎ (𝑥
1
, 𝑦
1
, 𝑢) − ℎ (𝑥

2
, 𝑦
2
, 𝑢)

󵄩󵄩󵄩󵄩

2

𝐻

≤ 𝐿
1
(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥

2

󵄩󵄩󵄩󵄩

2

𝐻
+
󵄩󵄩󵄩󵄩𝑦1 − 𝑦

2

󵄩󵄩󵄩󵄩

2

𝐻
) ,

󵄩󵄩󵄩󵄩ℎ𝑛(𝑥, 𝑦, 𝑢)
󵄩󵄩󵄩󵄩

2

𝐻
=

󵄩󵄩󵄩󵄩ℎ(𝑥, 𝑦, 𝑢)
󵄩󵄩󵄩󵄩

2

𝐻
≤ 𝐿
2
(‖𝑥‖
2

𝐻
+
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

𝐻
)

(15)

for arbitrary 𝑥, 𝑦, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
∈ 𝐻
𝑛
and 𝑢 ∈ Z. Hence, (14)

admits a unique solution𝑋
𝑛
(𝑡) on𝐻

𝑛
.

We introduce a time discretization scheme for (14) by
using a stochastic exponential integrator. For given𝑇 ≥ 0 and
𝜏 > 0, the time-step size Δ ∈ (0, 1) is defined by Δ := 𝜏/𝑁,

for some sufficiently large integer 𝑁 > 𝜏. For any integer
𝑘 ≥ 0, the time discretization scheme applied to (14) produces
approximations 𝑌 𝑛(𝑘Δ) ≈ 𝑋

𝑛
(𝑘Δ) by forming

𝑌
𝑛

((𝑘 + 1) Δ)

= 𝑒
Δ𝐴
𝑛 {𝑌
𝑛

(𝑘Δ) + 𝑓
𝑛
(𝑌
𝑛

(𝑘Δ) , 𝑌
𝑛

(𝑘Δ − 𝜏)) Δ

+ 𝑔
𝑛
(𝑌
𝑛

(𝑘Δ) , 𝑌
𝑛

(𝑘Δ − 𝜏)) Δ𝑊
𝑘

+∫
Z

ℎ
𝑛
(𝑌
𝑛

(𝑘Δ) , 𝑌
𝑛

(𝑘Δ − 𝜏) , 𝑢) Δ𝑁
𝑘 (𝑢)} ,

𝑌
𝑛

(𝜃) = 𝜋
𝑛
𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(16)

where Δ𝑊
𝑘

= 𝑊((𝑘 + 1)Δ) − 𝑊(𝑘Δ) and Δ𝑁
𝑘
(𝑑𝑢) =

𝑁((0, (𝑘 + 1)Δ], 𝑑𝑢) − 𝑁((0, 𝑘Δ], 𝑑𝑢).
The continuous-time version of this scheme associated

with (14) is defined by

𝑌
𝑛
(𝑡)

= 𝑒
𝑡𝐴
𝑛𝑌
𝑛
(0) + ∫

𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑛𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑛𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

∫
Z

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑛ℎ
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏) , 𝑢)

× 𝑁 (𝑑𝑠, 𝑑𝑢) ,

𝑌
𝑛
(𝜃) = 𝜋

𝑛
𝜉 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(17)

where ⌊𝑡⌋ = [𝑡/Δ]Δ with [𝑡/Δ] denotes the integer of 𝑡/Δ.
From (16) and (17), we have 𝑌

𝑛
(𝑘Δ) = 𝑌

𝑛

(𝑘Δ) for
every 𝑘 ≥ 0. That is, the discrete-time and continuous-time
schemes coincide at the grid points.

3. Convergence Rate

In this section, we shall investigate the convergence rate of the
Euler-Maruyama method. In what follows, 𝐶 > 0 is a generic
constant whose values may change from line to line.

Lemma2. Let (H1)–(H4) hold; then there is a positive constant
𝐶 > 0which depends on𝑇, 𝜉, 𝐿

1
, 𝐿
2
, and 𝐿

3
but is independent

of Δ, such that

sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

∨ sup
0≤𝑡≤𝑇

(E
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ 𝐶. (18)
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Proof. Due to the fact that (E‖ ⋅ ‖
2

𝐻
)
1/2 is a norm, we have

from (8) that

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

≤ (E
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑡𝐴
𝑛𝜉 (0)

󵄩󵄩󵄩󵄩󵄩

2

𝐻
)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

=

4

∑

𝑖=1

𝐼
𝑖
(𝑡) .

(19)

Recall the property of the operator 𝐴 (see [18]):

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛿
1𝑒
𝐴𝑡󵄩󵄩󵄩󵄩󵄩

≤ 𝐶𝑡
−𝛿
1 ,

󵄩󵄩󵄩󵄩󵄩
(−𝐴)
𝛿
2 (1 − 𝑒

𝐴𝑡
)
󵄩󵄩󵄩󵄩󵄩
≤ 𝐶𝑡
𝛿
2 , 𝛿
1
≥ 0, 𝛿

2
∈ [0, 1] ,

(−𝐴)
𝛼+𝛽

𝑥 = (−𝐴)
𝛼
(−𝐴)
𝛽
𝑥, 𝑥 ∈ 𝐷 ((−𝐴)

𝑟
) ,

(20)

for 𝛼, 𝛽 ∈ R, where 𝑟 = max{𝛼, 𝛽, 𝛼 + 𝛽}.
By (H1) and (H2), together with the Minkowski integral

inequality, we derive that

𝐼
2
(𝑡) ≤ ∫

𝑡

0

(E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩󵄩

2

𝐻
)

1/2

𝑑𝑠

≤ 𝐶∫

𝑡

0

{1 + (E‖𝑋 (𝑠)‖
2

𝐻
)
1/2

+(E‖𝑋 (𝑠 − 𝜏)‖
2

𝐻
)
1/2

} 𝑑𝑠

≤ 𝐶 + 𝐶∫

𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
)
1/2

𝑑𝑠.

(21)

By (H1), (H2), and (H3) and using the Itô isometry, we have

𝐼
3
(𝑡) + 𝐼

4
(𝑡)

≤ (∫

𝑡

0

E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))
󵄩󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) �̃� (𝑑𝑠, 𝑑𝑢)

+ 𝜌∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ (∫

𝑡

0

𝐿
0
(1 + E‖𝑋 (𝑠)‖

2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

+ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) �̃� (𝑑𝑠, 𝑑𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ 𝜌(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

.

(22)

Using Hölder inequality and (H3), for the last term of (22),
we have

𝜌(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ 𝐶(E∫

𝑡

0

∫
𝑍

‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

≤ 𝐶√𝐿
2
(∫

𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

≤ 𝐶√𝐿
2
√𝜏E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐻

+ 𝑝𝐶√2𝐿
2
(∫

𝑡

0

E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(23)

Moreover, by using the Itô isometry and (H3), we obtain that

(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) �̃� (𝑑𝑠, 𝑑𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ (∫

𝑡

0

∫
Z

E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

≤ √𝐿
2
(∫

𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

≤ √𝐿
2
√𝜏E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐻

+ √2𝐿
2
(∫

𝑡

0

(E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(24)

Substituting (23) and (24) into (22), it follows that

𝐼
3
(𝑡) + 𝐼

4
(𝑡) ≤ 𝐶 + 𝐶E

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩𝐻

+ 𝐶(∫

𝑡

0

E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(25)

Hence,

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

≤ 𝐶 + 𝐶E
󵄩󵄩󵄩󵄩𝜉

󵄩󵄩󵄩󵄩𝐻
+ 𝐶(∫

𝑡

0

E‖𝑋 (𝑠)‖
2

𝐻
𝑑𝑠)

1/2

.

(26)
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Applying the Gronwall inequality, we have

sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

≤ 𝐶. (27)

Using the similar argument, the second assertion of (18)
follows.

Lemma 3. Let (H1)–(H4) hold; for sufficiently small Δ,

sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)‖
2

𝐻
)
1/2

≤ 𝐶Δ
1/2

, (28)

where 𝐶 > 0 is constant dependent on 𝑇, 𝜉, 𝐿
1
, 𝐿
2
, 𝐿
3
, and 𝐿

4
,

while being independent of Δ.

Proof. For any 𝑡 ∈ [0, 𝑇], we have from (8) that

𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)

= 𝑒
⌊𝑡⌋𝐴

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝜉 (0)

+ ∫

⌊𝑡⌋

0

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑒(⌊𝑡⌋−𝑠)𝐴𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−𝑠)𝐴

𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑠

+ ∫

⌊𝑡⌋

0

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑒(⌊𝑡⌋−𝑠)𝐴𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫

⌊𝑡⌋

0

∫
Z

(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑒(⌊𝑡⌋−𝑠)𝐴

× ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−𝑠)𝐴

𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

⌊𝑡⌋

∫
Z

𝑒
(𝑡−𝑠)𝐴

ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

=

7

∑

𝑖=1

𝐽
𝑖
(𝑡) .

(29)

Since (E‖ ⋅ ‖
2

𝐻
)
1/2 is a norm, it follows that

(E‖𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)‖
2

𝐻
)
1/2

≤

7

∑

𝑖=1

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

. (30)

Recalling the fundamental inequality 1 − 𝑒
−𝑦

≤ 𝑦, 𝑦 > 0, we
get from (H1) that

󵄩󵄩󵄩󵄩󵄩
(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑥󵄩󵄩󵄩󵄩󵄩
2

𝐻

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑

𝑖=1

(𝑒
−𝜆
𝑖

(𝑡−⌊𝑡⌋)
− 1) ⟨𝑥, 𝑒

𝑖
⟩ 𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

≤ (1 − 𝑒
−𝜆
1

(𝑡−⌊𝑡⌋)
)
2

‖𝑥‖
2

𝐻

≤ 𝜆
2

1
Δ
2
‖𝑥‖
2

𝐻
.

(31)

Therefore,

(E
󵄩󵄩󵄩󵄩𝐽1 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

= (E
󵄩󵄩󵄩󵄩󵄩
𝑒
⌊𝑡⌋𝐴

{𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1} 𝜉 (0)󵄩󵄩󵄩󵄩󵄩
2

𝐻
)

1/2

≤ 𝜆
1
(E

󵄩󵄩󵄩󵄩𝜉 (0)
󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

Δ.

(32)

By (H1), (H2), and the Minkowski integral inequality, we
obtain that

3

∑

𝑖=2

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ ∫

⌊𝑡⌋

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1󵄩󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩󵄩
𝑒
(⌊𝑡⌋−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

× (E
󵄩󵄩󵄩󵄩𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

𝑑𝑠

+ ∫

𝑡

⌊𝑡⌋

(E
󵄩󵄩󵄩󵄩𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

𝑑𝑠.

(33)

Together with (31), we arrive at
3

∑

𝑖=2

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ (𝜆
1
Δ∫

⌊𝑡⌋

0

𝑑𝑠 + Δ)𝐶 sup
0≤𝑡≤𝑇

(E
󵄩󵄩󵄩󵄩𝑓 (𝑋 (𝑡) , 𝑋 (𝑡 − 𝜏))

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ 𝐶(1 + sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

)Δ.

(34)

Following the argument of (22), we derive that
7

∑

𝑖=4

(E
󵄩󵄩󵄩󵄩𝐽𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ (∫

⌊𝑡⌋

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1
󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒
(⌊𝑡⌋−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

×E
󵄩󵄩󵄩󵄩𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

+ 𝐶(∫

⌊𝑡⌋

0

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1
󵄩󵄩󵄩󵄩󵄩

2󵄩󵄩󵄩󵄩󵄩
𝑒
(⌊𝑡⌋−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

×E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠−𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

+(∫

𝑡

⌊𝑡⌋

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

E
󵄩󵄩󵄩󵄩𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

+ 𝐶(∫

𝑡

⌊𝑡⌋

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

×E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠−𝜏) , 𝑢)‖
2

𝐻
𝜋 (𝑑𝑢) 𝑑𝑠)

1/2

≤ 𝐶(1 + sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

)Δ
1/2

.

(35)
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Substituting (32), (34), and (35) into (30), we arrive at

(E‖𝑋 (𝑡) − 𝑋 (⌊𝑡⌋)‖
2

𝐻
)
1/2

≤ 𝐶(1 + sup
0≤𝑡≤𝑇

(E‖𝑋 (𝑡)‖
2

𝐻
)
1/2

)Δ
1/2

.

(36)

Therefore, by Lemma 2, the required assertion (28) follows.

Now, we state our main result in this paper as follows.

Theorem 4. Let (H1)–(H4) hold, and

√𝐿
1
(2𝛼
−1

+ (𝜌 + 3) (2𝛼)
−1/2

) < 1. (37)

Then,

sup
0≤t≤𝑇

(E
󵄩󵄩󵄩󵄩𝑋 (𝑡) − 𝑌

𝑛
(𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ 𝐶 {𝜆
−1/2

𝑛
+ Δ
1/2

} , (38)

where 𝐶 > 0 is a constant dependent on 𝑇, 𝜉, 𝐿
1
, 𝐿
2
, 𝐿
3
, and

𝐿
4
, while being independent of 𝑛 and Δ.

Proof. By (8) and (17), we obtain

𝑋 (𝑡) − 𝑌
𝑛
(𝑡)

= 𝑒
𝑡𝐴

(1 − 𝜋
𝑛
) 𝜉 (0)

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑓
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑓
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑓
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑔
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑔
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑓
𝑛 (𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))

−𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑔
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏))

−𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

−𝑔
𝑛 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

) 𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

)

× 𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)) 𝑑𝑊 (𝑠)

+ ∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

{ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)

−ℎ
𝑛
(𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)}𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

{ℎ
𝑛 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)

−ℎ
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋−𝜏) , 𝑢)}𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

{ℎ
𝑛
(𝑋 (⌊𝑠⌋) , 𝑋 (⌊𝑠⌋ − 𝜏) , 𝑢) − ℎ

𝑛

× (𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏) , 𝑢)}𝑁 (𝑑𝑠, 𝑑𝑢)

+ ∫

𝑡

0

∫
𝑍

𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

) ℎ
𝑛

× (𝑌
𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏) , 𝑢)𝑁 (𝑑𝑠, 𝑑𝑢)

=

13

∑

𝑖=1

𝐾
𝑖
(𝑡) .

(39)

Noting that (E‖ ⋅ ‖
2

𝐻
)
1/2 is a norm, we have

(E
󵄩󵄩󵄩󵄩𝑋 (𝑡) − 𝑌

𝑛
(𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤

13

∑

𝑖=1

(E
󵄩󵄩󵄩󵄩𝐾𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

. (40)

By (H1) and the nondecreasing spectrum {𝜆
𝑚
}
𝑚≥1

, it easily
follows that

E
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑡𝐴

(1 − 𝜋
𝑛
) 𝜉 (0)

󵄩󵄩󵄩󵄩󵄩𝐻

= E(
∞

∑

𝑚=𝑛+1

𝑒
−2𝜆
𝑚

𝑡
⟨𝜉 (0) , 𝑒𝑚⟩

2

𝐻
)

1/2

= E(
∞

∑

𝑚=𝑛+1

𝑒
−2𝜆
𝑚

𝑡

𝜆2
𝑚

𝜆
2

𝑚
⟨𝜉 (0) , 𝑒𝑚⟩

2

𝐻
)

1/2

≤
1

𝜆
𝑛

E
󵄩󵄩󵄩󵄩𝐴𝜉 (0)

󵄩󵄩󵄩󵄩𝐻
.

(41)
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By (H2), theMinkowski integral inequality, and Lemma 2, we
have

(E
󵄩󵄩󵄩󵄩𝐾2 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ ∫

𝑡

0

(E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) 𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩󵄩

2

𝐻
)

1/2

𝑑𝑠

= ∫

𝑡

0

(E
∞

∑

𝑚=𝑛+1

𝑒
−2𝜆
𝑚

(𝑡−𝑠)
⟨𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) , 𝑒

𝑚
⟩
2

𝐻
)

1/2

𝑑𝑠

≤ ∫

𝑡

0

𝑒
−𝜆
𝑛

(𝑡−𝑠)
(E
∞

∑

𝑚=𝑛+1

⟨𝑓 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏)) , 𝑒
𝑚
⟩
2

𝐻
)

1/2

𝑑𝑠

≤ 𝐶∫

𝑡

0

𝑒
−𝜆
𝑛

(𝑡−𝑠)

× {1 + (E‖𝑋 (𝑠)‖
2

𝐻
)
1/2

+ (E‖𝑋 (𝑠 − 𝜏)‖
2

𝐻
)
1/2

} 𝑑𝑠

≤ 𝐶𝜆
−1

𝑛
.

(42)

Applying (H1), (H2), and Lemma 3 and combining the
Minkowski integral inequality and the Itô isometry yield
6

∑

𝑖=3

(E
󵄩󵄩󵄩󵄩𝐾𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ √𝐿
1
∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

(E (‖𝑋 (𝑠) − 𝑋 (⌊𝑠⌋)‖
2

𝐻

+‖𝑋(𝑠 − 𝜏) − 𝑋 (⌊𝑠⌋ − 𝜏)‖
2

𝐻
))
1/2

𝑑𝑠

+ √𝐿
1
∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

(E (
󵄩󵄩󵄩󵄩𝑋 (⌊𝑠⌋) − 𝑌

𝑛
(⌊𝑠⌋)

󵄩󵄩󵄩󵄩

2

𝐻

+
󵄩󵄩󵄩󵄩𝑋 (⌊𝑠⌋ − 𝜏) − 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)

󵄩󵄩󵄩󵄩

2

𝐻
))
1/2

𝑑𝑠

+ √𝐿
1
(∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

(E (‖𝑋 (𝑠) − 𝑋 (⌊𝑠⌋)‖
2

𝐻

+
󵄩󵄩󵄩󵄩𝑋 (𝑠−𝜏) − 𝑌

𝑛
(⌊𝑠⌋−𝜏)

󵄩󵄩󵄩󵄩

2

𝐻
)) 𝑑𝑠)

1/2

+ √𝐿
1
(∫

𝑡

0

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴󵄩󵄩󵄩󵄩󵄩

2

(E
󵄩󵄩󵄩󵄩𝑋 (⌊𝑠⌋) − 𝑌

𝑛
(⌊𝑠⌋)

󵄩󵄩󵄩󵄩

2

𝐻

+
󵄩󵄩󵄩󵄩𝑋(⌊𝑠⌋ − 𝜏) − 𝑌

𝑛
(⌊𝑠⌋ − 𝜏)

󵄩󵄩󵄩󵄩

2

𝐻
) 𝑑𝑠)

1/2

≤ 𝐶Δ
1/2

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

× ∫

𝑡

0

𝑒
−𝛼(𝑡−𝑠)

𝑑𝑠

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

(∫

𝑡

0

𝑒
−2𝛼(𝑡−𝑠)

𝑑𝑠)

1/2

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

∫

𝑡−𝜏

−𝜏

𝑒
−𝛼(𝑡−𝑠−𝜏)

𝑑𝑠

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

(∫

𝑡−𝜏

−𝜏

𝑒
−2𝛼(𝑡−𝑠−𝜏)

𝑑𝑠)

1/2

≤ 𝐶Δ
1/2

+ √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

× (2𝛼
−1

+ 2(2𝛼)
−1/2

) .

(43)

By the Itô isometry and a similar argument to that of (42), we
deduce that

(E
󵄩󵄩󵄩󵄩𝐾7 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ (∫

𝑡

0

E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) 𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

≤ 𝐶(∫

𝑡

0

𝑒
−2𝜆
𝑛

(𝑡−𝑠)
E
󵄩󵄩󵄩󵄩𝑔 (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏))

󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

≤ 𝐶𝜆
−1/2

𝑛
.

(44)

Moreover, by (31), (H2), and Lemma 2 and combining the
Minkowski integral inequality and the Itô isometry, we have

9

∑

𝑖=8

(E
󵄩󵄩󵄩󵄩𝐾𝑖 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ ∫

𝑡

0

(E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

)
󵄩󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑓𝑛(𝑌

𝑛
(⌊𝑠⌋), 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩

2

𝐻
)

1/2

𝑑𝑠

+ (∫

𝑡

0

E
󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝑒
(𝑠−⌊𝑠⌋)𝐴

)
󵄩󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌

𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠)

1/2

≤ 𝐶Δ∫

𝑡

0

(E
󵄩󵄩󵄩󵄩𝑓𝑛 (𝑌

𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

𝑑𝑠

+ 𝐶Δ(∫

𝑡

0

E
󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌

𝑛
(⌊𝑠⌋) , 𝑌

𝑛
(⌊𝑠⌋ − 𝜏))

󵄩󵄩󵄩󵄩

2

L0
2

𝑑𝑠)

1/2

≤ 𝐶Δ.

(45)

By (31) and the Itô isometry, we obtain that

(E
󵄩󵄩󵄩󵄩𝐾10 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ (E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) �̃� (𝑑𝑠, 𝑑𝑢)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

+ 𝜌(E
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫

𝑡

0

∫
Z

𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
) ℎ

× (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢) 𝜋 (𝑑𝑢) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

)

1/2

≤ (∫

𝑡

0

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

E

× ‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋(𝑑𝑢)𝑑𝑠)

1/2
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+ 𝜌(∫

𝑡

0

∫
Z

󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑡−𝑠)𝐴

(1 − 𝜋
𝑛
)
󵄩󵄩󵄩󵄩󵄩

2

×E‖ℎ (𝑋 (𝑠) , 𝑋 (𝑠 − 𝜏) , 𝑢)‖
2

𝐻
𝜋(𝑑𝑢)𝑑𝑠)

1/2

≤ 𝐶(∫

𝑡

0

𝑒
−2𝜆
𝑛

(𝑡−𝑠)
(E‖𝑋 (𝑠)‖

2

𝐻
+ E‖𝑋 (𝑠 − 𝜏)‖

2

𝐻
) 𝑑𝑠)

1/2

≤ 𝐶𝜆
−1/2

𝑛
.

(46)

Carrying out the similar arguments to those of (43) and (45),
we derive that

(E
󵄩󵄩󵄩󵄩𝐾11 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

+ (E
󵄩󵄩󵄩󵄩𝐾12 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ 𝐶Δ
1/2

+ (2𝛼)
−1/2

(𝜌 + 1)

× √𝐿
1
sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

,

(E
󵄩󵄩󵄩󵄩𝐾13 (𝑡)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ 𝐶Δ.

(47)

As a result, putting (41)–(47) into (40) gives that

sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

≤ 𝐶𝜆
−1/2

𝑛
+ 𝐶Δ
1/2

+ √𝐿
1
(2𝛼
−1

+ (𝜌 + 3) (2𝛼)
−1/2

)

× sup
0≤𝑠≤𝑡

(E
󵄩󵄩󵄩󵄩𝑋 (𝑠) − 𝑌

𝑛
(𝑠)

󵄩󵄩󵄩󵄩

2

𝐻
)
1/2

,

(48)

and therefore the desired assertion follows.

Remark 5. For finite-dimensional Euler-Maruyama method,
the condition (37) can be deleted by the Gronwall inequality
[16, 17].
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Temporal Boolean network is a generalization of the Boolean network model that takes into account the time series nature of the
data and tries to incorporate into the model the possible existence of delayed regulatory interactions among genes. This paper
investigates the observability problem of temporal Boolean control networks. Using the semi tensor product of matrices, the
temporal Boolean networks can be converted into discrete time linear dynamic systems with time delays. Then, necessary and
sufficient conditions on the observability via two kinds of inputs are obtained. An example is given to illustrate the effectiveness of
the obtained results.

1. Introduction

Booleannetwork (BN) is the simplest logical dynamic system.
It was proposed by Kauffman for modeling complex and
nonlinear biological systems; see [1–3]. Since then, it has been
a powerful tool in describing, analyzing, and simulating the
cell networks. In this model, gene state is quantized to only
two levels: true and false.Then, the state of each gene is deter-
mined by the states of its neighborhood genes, using logical
rules.

The control of BN is a challenging problem. So far, there
are only few results on it because of the shortage of systematic
tools to deal with logical dynamic systems; see [4, 5]. Recently,
a newmatrix product, which was called the semitensor prod-
uct (STP) [4], was provided to convert a logical function into
an algebraic function, and the logical dynamics of BNs could
be converted into standard discrete-time dynamics. Based on
this, a new technique has been developed for analyzing and
synthesizing Boolean (control) networks (BCNs); see [4, 6–
9]. Furthermore, [10] have presented some simple criteria to
judge the controllability with respect to input-state incidence
matrices of BCNs. AMayer-type optimal control problem for
BCNs with multi-input and single input has been studied in
[11, 12].

Systematic analysis of biological systems is an important
topic in systems biology, and the observability is a structural
property of systems.There have beenmany results on the con-
trollability and observability of dynamic systems; see [13–18].
When it comes to the observability problem of BNs, Cheng
and Qi have obtained necessary and sufficient conditions for
the observability of BCNs in [8]. However, simple Boolean
method cannot be used to study the kinetic properties of
networks because it does not have time components, and time
delay behaviors happen frequently in biological and physio-
logical systems. In [19], the observability problem for a class
of Boolean control systems with time delay is investigated.

It is well known that time delay phenomenon is very
common in the real world [20, 21] and very important in ana-
lysis and control for dynamic systems. Since many experi-
ments involve obtaining gene expression data by monitoring
the expression of genes involved in some biological process
(e.g., neural development) over a period of time, the resulting
data is in the form of a time series [22]. It is interesting to
understand how the expression of a gene at some stage in
the process is influenced by the expression levels of other
genes during the stages of the process preceding it. Temporal
Boolean networks (TBNs) are developed to help model the
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temporal dependencies that span several time steps and
model regulatory delays, which may come about due to miss-
ing intermediary genes and spatial or biochemical delays
between transcription and regulation; see [23–25].

It should be noticed that TBCN is similar with higher-
order BCN from Chapter 5 of [26] in which the higher-order
BCN can be rewritten by a BCN by using the first algeb-
raic form of the network. Hence, the observability analysis
for higher-order BCNs can be obtained from [26]. However,
if the first algebraic form is used, the dimension of network
transition matrix depending on the number of logical vari-
ables will be much larger which would make computation
cost much higher [27]. Motivated by the above analysis, the
purpose of this paper is to use STPdeveloped in [4, 6–9, 28] to
analyze the observability problemof TBCNwithout changing
it into BCN, which generalizes the BN model to cope with
dependencies that span over more than one unit of time.

The rest of this paper is organized as follows. Section 2
provides a brief review for the STP ofmatrices and thematrix
expression of logical function. In Section 3, we convert TBCN
into discrete time delay systems. In Section 4, necessary and
sufficient conditions for the observability of the temporal
BCNs are obtained. An example is given to illustrate the effi-
ciency of the proposed results in Section 5. Finally, a brief
conclusion is presented.

2. Preliminaries

For simplicity, we first give some notations as in [4]. Denote
𝑀
𝑚×𝑛

as the set of all 𝑚 × 𝑛 matrices. The delta set Δ
𝑘

:=

{𝛿
𝑖

𝑘
| 𝑖 = 1, 2, . . . , 𝑘}, where 𝛿

𝑖

𝑘
is the 𝑖th column of identity

matrix 𝐼
𝑘
with degree 𝑘. Amatrix𝐴 ∈ 𝑀

𝑚×𝑛
is called a logical

matrix if the columns set of 𝐴, denoted by Col(𝐴), satisfies
Col(𝐴) ⊂ Δ

𝑚
. The set of all𝑚 × 𝑛 logical matrices is denoted

byL
𝑚×𝑛

. Assuming𝐴 = [𝛿
𝑖
1

𝑚
, 𝛿
𝑖
2

𝑚
, . . . , 𝛿

𝑖
𝑛

𝑚
] ∈ L

𝑚×𝑛
, we denote

it as 𝐴 = 𝛿
𝑚
[𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛
].

We recall the concept of STP. Let 𝑋 be a row vector of
dimension 𝑛𝑝 and 𝑌 a column vector of dimension 𝑝. Then,
we split 𝑋 into equal-sized blocks as 𝑋

1
, . . . , 𝑋

𝑝, which are
1 × 𝑝 rows. Define the STP, denoted by ⋉, as

𝑋 ⋉ 𝑌 =

𝑝

∑

𝑖=1

𝑋
𝑖
𝑦
𝑖
∈ 𝑅
𝑛
,

𝑌
𝑇
⋉ 𝑋
𝑇

=

𝑝

∑

𝑖=1

𝑦
𝑖
(𝑋
𝑖
)
𝑇

∈ 𝑅
𝑛
.

(1)

In this paper, “⋉” is omitted, and throughout this paper the
matrix product is assumed to be the semi-tensor product as
in [9].

The swap matrix 𝑊
[𝑚,𝑛]

is an 𝑚𝑛 × 𝑚𝑛 matrix. Label its
columns by (11, 12, . . . , 1𝑛, . . . , 𝑚1,𝑚2, . . . , 𝑚𝑛) and its rows
by (11, 21, . . . , 𝑚1, . . . , 1𝑛, 2𝑛, . . . , 𝑚𝑛). Then, its element in
the position ((𝐼, 𝐽), (𝑖, 𝑗)) is assigned as

𝑤
(𝐼,𝐽),(𝑖,𝑗)

= 𝛿
𝐼,𝐽

𝑖,𝑗
= {

1, 𝐼 = 𝑖, 𝐽 = 𝑗,

0, otherwise.
(2)

When 𝑚 = 𝑛, we briefly denote 𝑊
[𝑛]

= 𝑊
[𝑚,𝑛]

. Furthermore,
for𝑋 ∈ R𝑚 and𝑌 ∈ R𝑛, 𝑊

[𝑚,𝑛]
⋉𝑋⋉𝑌 = 𝑌⋉𝑋 and 𝑊

[𝑛,𝑚]
⋉

𝑌 ⋉ 𝑋 = 𝑋 ⋉ 𝑌.
A logical domain, denoted byD, is defined asD := {𝑇 =

1, 𝐹 = 0}. To use matrix expression, we identify each element
in D with a vector as 𝑇 ∼ 𝛿

1

2
and 𝐹 ∼ 𝛿

2

2
and denote Δ :=

Δ
2
= {𝛿
1

2
, 𝛿
2

2
}. Using STP of matrices, a logical function with

𝑛 arguments 𝐿 : D𝑛 → D can be expressed in the algebraic
form as follows.

Lemma 1 (see [9]). Any logical function 𝐿(𝐴
1
, . . . , 𝐴

𝑛
) with

logical arguments 𝐴
1
, . . . , 𝐴

𝑛
∈ Δ can be expressed in a multi-

linear form as

𝐿 (𝐴
1
, . . . , 𝐴

𝑛
) = 𝑀

𝐿
𝐴
1
⋅ ⋅ ⋅ 𝐴
𝑛
, (3)

where𝑀
𝐿
∈ L
2×2
𝑛 is unique which is called the structure mat-

rix of L.

Lemma 2 (see [9]). Assume that 𝑃
𝑘

= 𝐴
1
⋅ ⋅ ⋅ 𝐴
𝑘
with logical

arguments 𝐴
1
, . . . , 𝐴

𝑘
∈ Δ, then

𝑃
2

𝑘
= Φ
𝑘
𝑃
𝑘
, (4)

where Φ
𝑘
= ∏
𝑘

𝑖=1
𝐼
2
𝑖−1 ⊗ [(𝐼

2
⊗ 𝑊
[2,2
𝑘−𝑖

]
)𝑀
𝑟
], 𝑀
𝑟
= 𝛿
4
[1, 4].

3. Algebraic Form of
Temporal Boolean Networks

We consider the temporal Boolean network [25] of a set of
nodes 𝐴

1
, . . . , 𝐴

𝑛
∈ Δ as follows:

𝐴
𝑖 (𝑡 + 1)

= 𝑓
𝑖
(𝐴
1
(𝑡) , . . . , 𝐴

𝑛
(𝑡) , 𝐴

1
(𝑡 − 1) , . . . , 𝐴

𝑛
(𝑡 − 1) , . . . ,

𝐴
1 (𝑡 − 𝜏) , . . . , 𝐴𝑛 (𝑡 − 𝜏)) , 𝑖 = 1, 2, . . . , 𝑛,

(5)

where 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑛 are logical functions, 𝑡 = 0, 1, 2, . . .,

and 𝜏 is a positive integer delay.
Using Lemma 1, for each logical function 𝑓

𝑖
, 𝑖 =

1, 2, . . . , 𝑛, we can find its structure matrix 𝑀
𝑖
. Let 𝑥(𝑡) =

⋉
𝑛

𝑖=1
𝐴
𝑖
(𝑡). Then, the system (5) can be converted into an

algebraic form as

𝐴
𝑖
(𝑡 + 1) = 𝑀

𝑖
⋉
𝑛

𝑗=1
𝐴
𝑗
(𝑡) ⋅ ⋅ ⋅ ⋉

𝑛

𝑗=1
𝐴
𝑗
(𝑡 − 𝜏)

= 𝑀
𝑖
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) , 𝑖 = 1, . . . , 𝑛.

(6)
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From Lemma 2, multiplying all systems in (6) together yields

𝑥 (𝑡 + 1) = ⋉
𝑛

𝑖=1
𝐴
𝑖
(𝑡 + 1)

= ⋉
𝑛

𝑖=1
[𝑀
𝑖
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)]

= 𝑀
1
[(𝐼
2
𝑛(𝜏+1) ⊗ 𝑀

2
)Φ
𝑛(𝜏+1)

] 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)𝑀3 ⋅ ⋅ ⋅𝑀𝑛𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)

= 𝑀
1
[⋉
3

𝑖=2
𝐼
2
𝑛(𝜏+1) ⊗ 𝑀

𝑖
Φ
𝑛(𝜏+1)

] 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)𝑀4 ⋅ ⋅ ⋅𝑀𝑛𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)

= ⋅ ⋅ ⋅

= 𝑀
1
[⋉
𝑛

𝑖=2
𝐼
2
𝑛(𝜏+1) ⊗ 𝑀

𝑖
Φ
𝑛(𝜏+1)

] 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) .

(7)

Denote 𝐿
0

:= 𝑀
1
[⋉
𝑛

𝑖=2
𝐼
𝑛(𝜏+1)

⊗ 𝑀
𝑖
Φ
𝑛(𝜏+1)

]. Then (7) can be
expressed as

𝑥 (𝑡 + 1) = 𝐿
0
𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) , (8)

and 𝐿
0
is called the network transition matrix of (5).

Next, we consider temporal Boolean control network
with outputs as follows:

𝐴
𝑖
(𝑡 + 1)

= 𝑓
𝑖
(𝑢
1 (𝑡) , . . . 𝑢𝑚 (𝑡) , 𝐴1 (𝑡) , . . . , 𝐴𝑛 (𝑡) , . . . ,

𝐴
1
(𝑡 − 𝜏) , . . . , 𝐴

𝑛
(𝑡 − 𝜏)) , 𝑖 = 1, . . . , 𝑛,

𝑦
𝑗 (𝑡) = ℎ

𝑗
(𝐴
1 (𝑡) , . . . , 𝐴𝑛 (𝑡)) , 𝑗 = 1, . . . , 𝑝,

(9)

where 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are inputs (or controls); 𝑦

𝑗
(𝑡), 𝑗 =

1, . . . , 𝑝 are outputs; 𝑓
𝑖
, 𝑖 = 1, . . . , 𝑛; ℎ

𝑗
, 𝑗 = 1, . . . , 𝑝 are

logical functions.
In this paper, two kinds of inputs (or controls) are con-

sidered for (9).
(A)The controls satisfying certain logical rules are called

input networks such as

𝑢
𝑗 (𝑡 + 1) = 𝑔

𝑗
(𝑢
1 (𝑡) , 𝑢2 (𝑡) ⋅ ⋅ ⋅ 𝑢𝑚 (𝑡)) , 𝑗 = 1, . . . , 𝑚,

(10)

where 𝑔
𝑖
, 𝑖 = 1, 2, . . . , 𝑚 are logical functions, and the initial

states 𝑢
𝑗
(0), 𝑗 = 1, 2, . . . , 𝑚, can be arbitrarily given.

(B)The controls are free Boolean sequences, whichmeans
that the controls do not satisfy any logical rule.

Let 𝑢(𝑡) = ⋉
𝑚

𝑗=1
𝑢
𝑗
(𝑡), 𝑦(𝑡) = ⋉

𝑝

𝑗=1
𝑦
𝑗
(𝑡). From Lemma 1,

for every logical function 𝑓
𝑖
, 𝑔
𝑗
, ℎ
𝑙
, we can find its structure

matrix 𝑀
1𝑖
, 𝑀
2𝑗
, 𝑀
3𝑙
, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚, 𝑙 =

1, . . . , 𝑝, respectively. Then from (9) and (10), we can obtain

𝐴
𝑖
(𝑡 + 1) = 𝑀

1𝑖
𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) , 𝑖 = 1, . . . , 𝑛, (11)

𝑢
𝑗
(𝑡 + 1) = 𝑀

2𝑗
𝑢 (𝑡) , 𝑗 = 1, . . . , 𝑚, (12)

𝑦
𝑙
(𝑡) = 𝑀

3𝑙
𝑥 (𝑡) , 𝑙 = 1, . . . , 𝑝. (13)

Similar with (7), multiplying (11) yields

𝑥 (𝑡 + 1) = ⋉
𝑛

𝑖=1
[𝑀
1𝑖
𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)]

= 𝑀
11

[(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ 𝑀

12
)Φ
𝑚+𝑛(𝜏+1)

] 𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)𝑀13 ⋅ ⋅ ⋅

× 𝑀
1𝑛
𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏)

= ⋅ ⋅ ⋅

= 𝑀
11

[⋉
𝑛

𝑖=2
(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ 𝑀

1𝑖
Φ
𝑚+𝑛(𝜏+1)

)] 𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅

× 𝑥 (𝑡 − 𝜏)

≜ 𝐿𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) .

(14)

And, multiplying (12), it leads to

𝑢 (𝑡 + 1) = 𝑢
1
(𝑡 + 1) 𝑢

2
(𝑡 + 1) ⋅ ⋅ ⋅ 𝑢

𝑚
(𝑡 + 1)

= 𝑀
21
𝑢 (𝑡)𝑀22𝑢 (𝑡) ⋅ ⋅ ⋅𝑀2𝑛𝑢 (𝑡)

= 𝑀
21

(𝐼
2
𝑚 ⊗ 𝑀

22
)Φ
𝑚

(𝐼
2
𝑚 ⊗ 𝑀

23
)Φ
𝑚

⋅ ⋅ ⋅

× (𝐼
2
𝑚 ⊗ 𝑀

2𝑚
)Φ
𝑚
𝑢 (𝑡)

≜ 𝐺𝑢 (𝑡) .

(15)

Multiplying (13) yields 𝑦(𝑡) = 𝐻𝑥(𝑡), where 𝐻 =

𝑀
31
[⋉
𝑝

𝑙=2
(𝐼
2
𝑛 ⊗ 𝑀

3𝑙
Φ
𝑛
)]. From the above conclusion, in an

algebraic form, a BCN (9) and (10) can be expressed as

𝑥 (𝑡 + 1) = 𝐿𝑢 (𝑡) 𝑥 (𝑡) ⋅ ⋅ ⋅ 𝑥 (𝑡 − 𝜏) ,

𝑦 (𝑡) = 𝐻𝑥 (𝑡) ,

(16)

𝑢 (𝑡 + 1) = 𝐺𝑢 (𝑡) , (17)

where 𝐿,𝐻 are the network transition matrices of two kinds
of equations in (9), respectively, and 𝐺 is the network tran-
sition matrix of (10).

Remark 3. It should be noticed that by using the first algebraic
form of the network from Chapter 5 of [26], TBCN can
be rewritten by a BCN with no delay. Hence, it can be a
good idea to study the observability of TBCNs by using the
corresponding BCNs from the results in [10]. However, if
the first algebraic form is used, the dimension of network
transitionmatrix of corresponding BCNswill bemuch bigger
whichwouldmake computation costmuch higher. From (16),
it is easy to calculate that the dimension of 𝐿 is 2𝑛 × 2

𝑛(𝜏+1)+𝑚.
However, if the TBCNs are rewritten by BCNs using the
first algebraic form, then the dimension of the corresponding
network transition matrix of the BCNs would be 2

𝑛(𝜏+1)
×

2
𝑛(𝜏+1)+𝑚, which is much bigger if 𝑛 or 𝜏 is a large number.
Furthermore, considering theTBCNsdirectly, we canfind the
relationship between the network transition matrix (or the
Boolean functions) of the TBCN and the state clearly. How-
ever, if the BCN is used, the relationshipwould not be so clear.
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4. Observability of Temporal Boolean
Control Networks

In this section, we consider the observability problem of
temporal Boolean control network (9), equivalently (16), and
the analysis is given via two kinds of controls (A) and (B),
respectively.

Definition 4 (see [19]). The temporal Boolean network (16)
is observable if for the initial state sequence 𝑥(−𝑖), 𝑖 ∈ {0, 1,

. . . , 𝜏}, there exists a finite time 𝑠 ∈ N, such that the initial state
sequence can be uniquely determined by the input controls
𝑢(0), 𝑢(1), . . . , 𝑢(𝑠) and the outputs 𝑦(0), 𝑦(1), . . . , 𝑦(𝑠).

For simplicity, we denote the vector X(𝑖) = ⋉
𝑖

𝑗=0
𝑥(−𝑗) ∈

Δ
2
𝑛(𝜏+1) , 𝑖 ∈ {0, 1, . . . , 𝜏}.

Definition 5 (see [19]). For temporal Boolean network (16)
and control (17) with fixed 𝐺, the input-state transfer matrix
L𝐺
𝑖

∈ L
2
𝑛

×2
𝑚+𝑛(𝜏+1) , 𝑖 ∈ N+, is defined as follows: for any

𝑢(0) ∈ Δ
2
𝑚 and any 𝑥(−𝑖) ∈ Δ

2
𝑛 , 𝑖 ∈ {0, 1, . . . , 𝜏}, we have

𝑥 (𝑖) = L
𝐺

𝑖
𝑢 (0)X (𝜏) , 𝑖 ∈ N

+
. (18)

Now we need a dummy operator to add some fabricated
variables when these variables do not appear. Define

𝐸
𝑛,𝑚

:= [𝐼
2
𝑛𝐼
2
𝑛 ⋅ ⋅ ⋅ 𝐼
2
𝑛]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
𝑚𝑛

= 𝛿
2
𝑛[1, 2, . . . , 2

𝑛
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟, . . . , 1, 2, . . . , 2

𝑛
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

2
𝑚𝑛

.
(19)

A straightforward computation shows the following.

Lemma 6. Consider the temporal Boolean network (16),

𝑥 (0) = 𝐸
𝑛,𝜏

𝑊
[2
𝑛

,2
𝑛𝜏

]
X (𝜏) . (20)

Proof. Since ⋉
𝜏

𝑖=1
𝑥(−𝑖) ∈ Δ

2
𝑛𝜏 , from the definition of 𝐸

𝑛,𝑚
, we

have

𝐸
𝑛,𝜏

⋉
𝜏

𝑖=1
𝑥 (−𝑖) = 𝐼

2
𝑛 . (21)

Hence,

𝑥 (0) = 𝐼
2
𝑛𝑥 (0) = 𝐸

𝑛,𝜏
⋉
𝜏

𝑖=1
𝑥 (−𝑖) 𝑥 (0)

= 𝐸
𝑛,𝜏

𝑊
[2
𝑛

,2
𝑛𝜏

]
X (𝜏) .

(22)

4.1. Observability of Input Boolean Networks. We first con-
sider the case that controls satisfy certain logical rules as

(17). Define a sequence of matrices L𝐺
𝑠

∈ L
2
𝑛

×2
𝑚+𝑛(𝜏+1) as

(23):

L
𝐺

𝑠

:=

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝐿, 𝑠 = 1,

𝐿𝐺 [(𝐼
2
𝑚 ⊗ L𝐺

1
)Φ
𝑚
] [𝐼
2
𝑚 ⊗ 𝑊

2
𝑛𝜏

,2
𝑛(𝜏+1)Φ

𝑛(𝜏)
] ,

𝑠 = 2,

𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L𝐺

𝑠−1
)Φ
𝑚
] [⋉
1

𝑖=𝑠−2
M𝐺
𝑖
]

⋉ [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛(𝜏−𝑠+2)

,2
𝑛(𝜏+1)

]
Φ
𝑛(𝜏−𝑠+2)

] ,

𝑠 = 3, . . . , 𝜏 + 1,

𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L𝐺

𝑠−1
)Φ
𝑚
] [⋉
𝑠−𝜏−1

𝑖=𝑠−2
M𝐺
𝑖
] ,

𝑠 > 𝜏 + 1,

(23)

where M𝐺
𝑖

= 𝐼
2
𝑚+𝑛(𝜏+1) ⊗ L𝐺

𝑖
Φ
𝑚+𝑛(𝜏+1)

and H𝐺
0

=

𝐻𝐸
𝑛,𝜏

𝑊
[2
𝑛

,2
𝑛𝜏

]
, H𝐺
𝑠

= 𝐻L𝐺
𝑠
, 𝑠 ∈ N+, and the transitionmatri-

ces 𝐿, 𝐺, and 𝐻 are defined in (16) and (17). Furthermore,
we split H𝐺

𝑗
∈ L
2
𝑝

×2
𝑚+𝑛(𝜏+1) , 𝑗 ∈ N+, into 2

𝑚 equal blocks as
H𝐺
𝑗

= [H𝐺
𝑗,1

,H𝐺
𝑗,2

, . . . ,H𝐺
𝑗,2
𝑚

] with each H𝐺
𝑗,𝑖

∈ L
2
𝑝

×2
𝑛(𝜏+1) ,

𝑖 = 1, 2, . . . , 2
𝑚, 𝑗 ∈ N+.

Theorem 7. Consider the temporal Boolean network (16)with
control (17). Assume that 𝑢(0) = 𝛿

𝑖

2
𝑚

, 𝑖 ∈ {1, 2, . . . , 2
𝑚
}. Then,

(16) and (17) are observable if and only if there exists a finite
time 𝑠 such that rank(O

1,𝑖,𝑠
) = 2
𝑛(𝜏+1), where

O
1,𝑖,𝑠

=

[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

H𝐺
1,𝑖

...

H𝐺
𝑠,𝑖

]
]
]
]
]
]
]
]
]
]

]

. (24)

Proof. Firstly, from Lemma 6 and (16),

𝑦 (0) = 𝐻𝑥 (0) = 𝐻𝐸
𝑛,𝜏

𝑊
[2
𝑛

,2
𝑛𝜏

]
X (𝜏) ≜ H

𝐺

0
X (𝜏) . (25)

Since 𝑢(0) = 𝛿
𝑖

2
𝑚

, we have from (18) that

𝑦 (1)

= 𝐻𝑥 (1) = 𝐻𝐿𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

1
𝑢 (0)X (𝜏) = H

𝐺

1,𝑖
X (𝜏) ,

𝑦 (2)

= 𝐻𝐿𝑢 (1) 𝑥 (1)X (𝜏 − 1)

= 𝐻𝐿𝐺𝑢 (0)L
𝐺

1
𝑢 (0)X (𝜏)X (𝜏 − 1)

= 𝐻𝐿𝐺 [(𝐼
2
𝑚 ⊗ L

𝐺

1
)Φ
𝑚
] 𝑢 (0)X (𝜏)X (𝜏 − 1)

= 𝐻𝐿𝐺 [(𝐼
2
𝑚 ⊗ L

𝐺

1
)Φ
𝑚
] 𝑢 (0)𝑊

[2
𝑛𝜏

,2
𝑛(𝜏+1)

]
Φ
𝑛𝜏
X (𝜏)
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= 𝐻𝐿𝐺 [(𝐼
2
𝑚 ⊗ L

𝐺

1
)Φ
𝑚
]

× [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛𝜏

, 2
𝑛(𝜏+1)

]
Φ
𝑛𝜏
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

2
𝑢 (0)X (𝜏) = H

𝐺

2,𝑖
X (𝜏) ,

𝑦 (3)

= 𝐻𝐿𝑢 (2) 𝑥 (2) 𝑥 (1)X (𝜏 − 2)

= 𝐻𝐿𝐺
2
𝑢 (0)L

𝐺

2
𝑢 (0)X (𝜏)L

𝐺

1
𝑢 (0)X (𝜏)X (𝜏 − 2)

= 𝐻𝐿𝐺
2
[(𝐼
2
𝑚 ⊗ L

𝐺

2
)Φ
𝑚
]

× 𝑢 (0)X (𝜏)L
𝐺

1
𝑢 (0)X (𝜏)X (𝜏 − 2)

= 𝐻𝐿𝐺
2
[(𝐼
2
𝑚 ⊗ L

𝐺

2
)Φ
𝑚
]

× [(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ L

𝐺

1
)Φ
𝑚+𝑛(𝜏+1)

]

× 𝑢 (0)X (𝜏)X (𝜏 − 2)

= 𝐻𝐿𝐺
2
[(𝐼
2
𝑚 ⊗ L

𝐺

2
)Φ
𝑚
]

× [(𝐼
2
𝑚+𝑛(𝜏+1) ⊗ L

𝐺

1
)Φ
𝑚+𝑛(𝜏+1)

]

× [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛(𝜏−1)

, 2
𝑛(𝜏+1)

]
Φ
𝑛(𝜏−1)

] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

3
𝑢 (0)X (𝜏) = H

𝐺

3,𝑖
X (𝜏) ,

...

𝑦 (𝜏 + 1)

= 𝐻𝐿𝑢 (𝜏) 𝑥 (𝜏) ⋅ ⋅ ⋅ 𝑥 (1)X (0)

= 𝐻𝐿𝐺
𝜏
𝑢 (0) [⋉

1

𝑖=𝜏
L
𝐺

𝑖
𝑢 (0)X (𝜏)]X (0)

= 𝐻𝐿𝐺
𝜏
[(𝐼
2
𝑚 ⊗ L

𝐺

𝜏
)Φ
𝑚
] [⋉
1

𝑖=𝜏−1
M
𝐺

𝑖
]

× [𝐼
2
𝑚 ⊗ 𝑊

[2
𝑛

, 2
𝑛(𝜏+1)

]
Φ
𝑛
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝜏+1
𝑢 (0)X (𝜏) = H

𝐺

𝜏+1,𝑖
X (𝜏) .

(26)

For 𝑠 > 𝜏 + 1, we can obtain that

𝑦 (𝜏 + 2)

= 𝐻𝐿𝑢 (𝜏 + 1) 𝑥 (𝜏 + 1) ⋅ ⋅ ⋅ 𝑥 (1)

= 𝐻𝐿𝐺
𝜏+1

𝑢 (0) [⋉
1

𝑖=𝜏+1
L
𝐺

𝑖
𝑢 (0)X (𝜏)]

= 𝐻𝐿𝐺
𝜏+1

[(𝐼
2
𝑚 ⊗ L

𝐺

𝜏+1
)Φ
𝑚
]

× [⋉
1

𝑖=𝜏
M
𝐺

𝑖
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝜏+2
𝑢 (0)X (𝜏) = H

𝐺

𝜏+2,𝑖
X (𝜏) ,

𝑦 (𝜏 + 3)

= 𝐻𝐿𝑢 (𝜏 + 2) 𝑥 (𝜏 + 2) ⋅ ⋅ ⋅ 𝑥 (2)

= 𝐻𝐿𝐺
𝜏+2

𝑢 (0) [⋉
2

𝑖=𝜏+2
L
𝐺

𝑖
𝑢 (0)X (𝜏)]

= 𝐻𝐿𝐺
𝜏+2

[(𝐼
2
𝑚 ⊗ L

𝐺

𝜏+2
)Φ
𝑚
]

× [⋉
2

𝑖=𝜏+1
M
𝐺

𝑖
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝜏+3
𝑢 (0)X (𝜏) = H

𝐺

𝜏+3,𝑖
X (𝜏) ,

...

𝑦 (𝑠)

= 𝐻𝐿𝑢 (𝑠 − 1) 𝑥 (𝑠 − 1) ⋅ ⋅ ⋅ 𝑥 (𝑠 − 𝜏 − 1)

= 𝐻𝐿𝐺
𝑠−1

𝑢 (0) [⋉
𝑠−𝜏−1

𝑖=𝑠−2
L
𝐺

𝑖
𝑢 (0)X (𝜏)]

= 𝐻𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L

𝐺

𝑠−1
)Φ
𝑚
]

× [⋉
𝑠−𝜏−1

𝑖=𝑠−2
M
𝐺

𝑖
] 𝑢 (0)X (𝜏)

≜ 𝐻L
𝐺

𝑠
𝑢 (0)X (𝜏) = H

𝐺

𝑠,𝑖
X (𝜏) .

(27)

From the above analysis, and definition of O
1,𝑖,𝑠

in (24), we
can see that

O
1,𝑖,𝑠

X (𝜏) =

[
[
[
[

[

𝑦 (0)

𝑦 (1)

...
𝑦 (𝑠)

]
]
]
]

]

. (28)

Since X(𝜏) ∈ Δ
2
𝑛(𝜏+1) , O

1,𝑖,𝑠
X(𝜏) ∈ Col(O

1,𝑖,𝑠
). It implies that

X(𝜏) is determined uniquely by the outputs 𝑦(0), . . . , 𝑦(𝑠)

if and only if there exist no similar elements in Col(O
1,𝑖,𝑠

),
or equivalently, there are no equal columns in O

1,𝑖,𝑠
, that is,

rank(O
1,𝑖,𝑠

) = 2
𝑛(𝜏+1). The proof is completed.

Corollary 8. Consider the temporal Boolean network (16)
with control (17). Equations (16) and (17) are observable if and
only if there exist a finite time 𝑠 and 𝑖 ∈ {1, 2, . . . , 2

𝑚
} such that

rank(O
1,𝑖,𝑠

) = 2
𝑛(𝜏+1).

Remark 9. When the time delay 𝜏 = 0, then the temporal
Boolean control network (16) and (17) become aBoolean con-
trol network. In this case, it can be induced from (23) that

L
𝐺

𝑠
=

{

{

{

𝐿, 𝑠 = 1,

𝐿𝐺
𝑠−1

[(𝐼
2
𝑚 ⊗ L𝐺

𝑠−1
)Φ
𝑚
] , 𝑠 > 1.

(29)

Then, the observability of the BCN with input Boolean net-
work controls can be deduced fromTheorem 7 and Corollary
8.

4.2. Control via Free Boolean Sequence. In the following,
the case where the controls are free Boolean sequences is
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considered. We split 𝐿 given in (16) into 2
𝑚 equal blocks

as

𝐿 = [𝐿
1
, 𝐿
2
, . . . , 𝐿

2
𝑚] , (30)

with each 𝐿
𝑖

∈ L
2
𝑛

×2
𝑛(𝜏+1) , 𝑖 = 1, 2, . . . , 2

𝑚. Define a seq-
uence of matrices L̃

𝑠,𝑖
𝑠−1

,...,𝑖
0

∈ L
2
𝑛

×2
𝑛(𝜏+1) , 𝑠 ∈ N+, 𝑖

𝑠−1
∈ {1, 2,

. . . , 2
𝑚
} as (31):

L̃
𝑠,𝑖
𝑠−1

,...,𝑖
0

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝐿
𝑖
0

, 𝑠 = 1,

𝐿
𝑖
1

𝐿
𝑖
0

𝑊
[2
𝑛𝜏

, 2
𝑛(𝜏+1)

]
Φ
𝑛𝜏
, 𝑠 = 2,

𝐿
𝑖
𝑠−1

L̃
𝑠−1, 𝑖
𝑠−2

,...,𝑖
0

[⋉
1

𝑗=𝑠−2
M̃
𝑗
]

⋉𝑊
[2
𝑛(𝜏−𝑠+2)

, 2
𝑛(𝜏+1)

]
Φ
𝑛(𝜏−𝑠+2)

,

𝑠 = 3, . . . , 𝜏 + 1,

𝐿
𝑖
𝑠−1

L̃
𝑠−1, 𝑖
𝑠−2

,...,𝑖
0

[⋉
𝑠−𝜏−1

𝑗=𝑠−2
M̃
𝑗
] ,

𝑠 > 𝜏 + 1,

(31)

where M̃
𝑗
= 𝐼
2
𝑛(𝜏+1) ⊗L̃

𝑗,𝑖
𝑗−1

,...,𝑖
0

Φ
𝑛(𝜏+1)

, the transitionmatrices
𝐿, 𝐺, and 𝐻 are defined in (16) and (17).

Theorem 10. Consider the temporal Boolean network (16).
Assume that the controls are free Boolean sequences with 𝑢(𝑙) =

𝛿
𝑖
𝑙

2
𝑚

, 𝑙 ∈ N, 𝑖
𝑙
∈ {1, 2, . . . , 2

𝑚
}. Then, (16) is observable if and

only if there exists a finite time 𝑠 such that rank(O
2,𝑠

) = 2
𝑛(𝜏+1),

where

O
2,𝑠

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

𝐻L̃
1,𝑖
0

𝐻L̃
2,𝑖
1

,𝑖
0

...

𝐻L̃
𝑠,𝑖
𝑠−1

,...,𝑖
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (32)

Proof. Since the controls are free Boolean sequences with
𝑢(𝑙) = 𝛿

𝑖
𝑙

2
𝑚

, 𝑙 ∈ N, 𝑖
𝑙
∈ {1, 2, . . . , 2

𝑚
}, from (16) we have

𝑦 (1)

= 𝐻𝑥 (1) = 𝐻𝐿𝑢 (0)X (𝜏)

= 𝐻𝐿
𝑖
0

X (𝜏) ≜ 𝐻L̃
1,𝑖
0

X (𝜏) ,

𝑦 (2)

= 𝐻𝑥 (2) = 𝐻𝐿𝑢 (1) 𝑥 (1)X (𝜏 − 1)

= 𝐻𝐿𝑢 (1) 𝐿𝑢 (0)X (𝜏)X (𝜏 − 1)

= 𝐻𝐿𝑢 (1) 𝐿𝑢 (0)𝑊
[2
𝑛𝜏

, 2
𝑛(𝜏+1)

]
Φ
𝑛𝜏
X (𝜏)

= 𝐻𝐿
𝑖
1

𝐿
𝑖
0

𝑊
[2
𝑛𝜏

, 2
𝑛(𝜏+1)

]
Φ
𝑛𝜏
X (𝜏)

≜ 𝐻L̃
2, 𝑖
1

, 𝑖
0

X (𝜏) ,

𝑦 (3)

= 𝐻𝑥 (3) = 𝐻𝐿𝑢 (2) 𝑥 (2) 𝑥 (1)X (𝜏 − 2)

= 𝐻𝐿𝑢 (2) L̃
2, 𝑖
1

, 𝑖
0

X (𝜏) L̃
1,𝑖
0

X (𝜏)X (𝜏 − 2)

= 𝐻𝐿
𝑖
2

L̃
2, 𝑖
1

, 𝑖
0

[(𝐼
2
𝑛(𝜏+1) ⊗ L̃

1,𝑖
0

)Φ
𝑛(𝜏+1)

]

× X (𝜏)X (𝜏 − 2)

= 𝐻𝐿
𝑖
2

L̃
2, 𝑖
1

, 𝑖
0

[(𝐼
2
𝑛(𝜏+1) ⊗ L̃

1, 𝑖
0

)Φ
𝑛(𝜏+1)

]

× [𝑊
[2
𝑛(𝜏−1)

, 2
𝑛(𝜏+1)

]
Φ
𝑛(𝜏−1)

]X (𝜏)

≜ 𝐻L̃
3 ,𝑖
2

, 𝑖
1

, 𝑖
0

X (𝜏) ,

...

𝑦 (𝜏 + 1)

= 𝐻𝐿𝑢 (𝜏) 𝑥 (𝜏) ⋅ ⋅ ⋅ 𝑥 (1)X (0)

= 𝐻𝐿𝑢 (𝜏) [⋉
1

𝑗=𝜏
L̃
𝑗,𝑖
𝑗−1

,...,𝑖
0

X (𝜏)]X (0)

= 𝐻𝐿
𝑖
𝜏

L̃
𝜏,𝑖
𝜏−1

,...,𝑖
0

[⋉
1

𝑗=𝜏−1
M̃
𝑗
]

× 𝑊
[2
𝑛

, 2
𝑛(𝜏+1)

]
Φ
𝑛
X (𝜏)

≜ 𝐻L̃
𝜏+1,𝑖
𝜏

,...,𝑖
0

X (𝜏) .

(33)

For 𝑠 > 𝜏 + 1, we can obtain that

𝑦 (𝜏 + 2)

= 𝐻𝐿𝑢 (𝜏 + 1) 𝑥 (𝜏 + 1) ⋅ ⋅ ⋅ 𝑥 (1)

= 𝐻𝐿𝑢 (𝜏 + 1) [⋉
1

𝑗=𝜏+1
L̃
𝑗,𝑖
𝑗−1

,...,𝑖
0

X (𝜏)]

= 𝐻𝐿
𝑖
𝜏+1

L̃
𝜏+1,𝑖
𝜏

,...,𝑖
0

[⋉
1

𝑖=𝜏
M̃
𝑗
]X (𝜏)

≜ 𝐻L̃
𝜏+2,𝑖
𝜏+1

,...,𝑖
0

X (𝜏) ,

(34)

𝑦 (𝜏 + 3)

= 𝐻𝐿𝑢 (𝜏 + 2) 𝑥 (𝜏 + 2) ⋅ ⋅ ⋅ 𝑥 (2)

= 𝐻𝐿𝑢 (𝜏 + 2) [⋉
2

𝑗=𝜏+2
L̃
𝑗,𝑖
𝑗−1

,...,𝑖
0

X (𝜏)]

= 𝐻𝐿
𝑖
𝜏+2

L̃
𝜏+2,𝑖
𝜏+1

,...,𝑖
0

[⋉
2

𝑖=𝜏+1
M̃
𝑗
]X (𝜏)

≜ 𝐻L̃
𝜏+3,𝑖
𝜏+2

,...,𝑖
0

X (𝜏) ,

...

(35)
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𝑦 (𝑠)

= 𝐻𝐿𝑢 (𝑠 − 1) 𝑥 (𝑠 − 1) ⋅ ⋅ ⋅ 𝑥 (𝑠 − 𝜏 − 1)

= 𝐻𝐿𝑢 (𝑠 − 1) [⋉
𝑠−𝜏−1

𝑖=𝑠−2
L̃
𝑗,𝑖
𝑗−1

,...,𝑖
0

X (𝜏)]

= 𝐻𝐿
𝑖
𝑠−1

L̃
𝑠−1,𝑖
𝑠−2

,...,𝑖
0

[⋉
𝑠−𝜏−1

𝑖=𝑠−2
M̃
𝑗
]X (𝜏)

≜ 𝐻L̃
𝑠,𝑖
𝑠−1

,...,𝑖
0

X (𝜏) .

(36)

Thus, from (25) and the definition of O
2,𝑠

in (32), we can see
that

O
2,𝑠
X (𝜏) =

[
[
[
[

[

𝑦 (0)

𝑦 (1)

...
𝑦 (𝑠)

]
]
]
]

]

. (37)

Similar with the proof of Theorem 7, we conclude that X(𝜏)

can be determined uniquely by the outputs 𝑦(0), . . . , 𝑦(𝑠) if
and only if rank(O

2,𝑠
) = 2
𝑛(𝜏+1). The proof is completed.

Corollary 11. Consider the temporal Boolean network (16).
The system (16) is observable if and only if there exists a finite
time 𝑠 and a sequence 𝑖

0
, 𝑖
1
, . . . , 𝑖

𝑠−1
∈ {1, 2, . . . , 2

𝑚
} such that

rank(O
2,𝑠

) = 2
𝑛(𝜏+1).

Remark 12. As a special case, when 𝜏 = 0, then from the proof
of Theorem 10, we haveH𝐺

0
= 𝐻, and

L̃
1,𝑖
0

= 𝐿
𝑖
0

,

L̃
𝑠+1,𝑖
𝑠

,...,𝑖
0

= 𝐿
𝑖
𝑠+1

L̃
𝑠,𝑖
𝑠−1

,...,𝑖
0

, 𝑠 > 0.

(38)

Then, Corollary 11 is equivalent with Theorem 26 in [8] for
the observability of BCNs.

Remark 13. For Theorems 7 and 10, when 𝜏 = 1, the third
explicit expressions of L𝐺

𝑠
in (23) and L̃

𝑠,𝑖
𝑠−1

,...,𝑖
0

in (31) for
𝑠 = 3, . . . , 𝜏 + 1 should be omitted.

5. An Example

Given logical arguments 𝑃,𝑄 ∈ Δ, we have the following
structure matrices for the fundamental logical functions:
¬𝑃 = 𝑀

𝑛
𝑃,𝑃∨𝑄 = 𝑀

𝑑
𝑃𝑄,𝑃∧𝑄 = 𝑀

𝑐
𝑃𝑄,𝑃 → 𝑄 = 𝑀

𝑖
𝑃𝑄,

𝑃 ↔ 𝑄 = 𝑀
𝑒
𝑃𝑄, where 𝑀

𝑛
= 𝛿
2
[2, 1], 𝑀

𝑑
= 𝛿
2
[1, 1, 1, 2],

𝑀
𝑐
= 𝛿
2
[1, 2, 2, 2], 𝑀

𝑖
= 𝛿
2
[1, 2, 1, 1], 𝑀

𝑒
= 𝛿
2
[1, 2, 2, 1].

Example 14. Consider the following temporal Boolean net-
work:

𝐴 (𝑡 + 1) = 𝑢 (𝑡) ∨ 𝐴 (𝑡) 󳨀→ 𝐴 (𝑡 − 1) ←→ 𝐴 (𝑡 − 2) ,

𝑦 (𝑡) = ¬𝐴 (𝑡) .

(39)

Let 𝑥(𝑡) = 𝐴(𝑡), it is easy to get 𝐻 = 𝑀
𝑛
, 𝐿 = 𝑀

𝑒
𝑀
𝑖
𝑀
𝑑
, and

𝜏 = 2.
(A) When the controls satisfy the logical rule

𝑢 (𝑡 + 1) = ¬𝑢 (𝑡) , (40)

then the transition matrix 𝐺 = 𝑀
𝑛
. Now, assume that 𝑢(0) =

𝛿
1

2
, by calculation, we have

H
𝐺

0
= 𝛿
2 [2, 2, 2, 2, 1, 1, 1, 1] ,

H
𝐺

1,1
= 𝛿
2 [2, 1, 1, 2, 2, 1, 1, 2] ,

H
𝐺

2,1
= 𝛿
2 [2, 2, 2, 2, 1, 2, 2, 1] ,

H
𝐺

3,1
= 𝛿
2 [2, 1, 1, 2, 2, 1, 1, 2] ,

H
𝐺

4,1
= 𝛿
2 [2, 1, 1, 2, 1, 1, 1, 1] ,

H
𝐺

5,1
= 𝛿
2 [2, 1, 1, 2, 1, 1, 1, 1] ,

...

O
1,1,𝑠

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

H𝐺
1,1

H𝐺
2,1

H𝐺
3,1

H𝐺
4,1

H𝐺
5,1

...

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[

[

2 2 2 2 1 1 1 1

2 1 1 2 2 1 1 2

2 2 2 2 1 2 2 1

2 1 1 2 2 1 1 2

2 1 1 2 1 1 1 1

2 1 1 2 1 1 1 1

...

]
]
]
]
]
]
]
]
]
]

]

.

(41)

Hence, for any 𝑠 > 0, there are only 4 linearly independent
columns, which means that rank(O

1,1,𝑠
) < 2

𝑛(𝜏+1)
= 8 for

any 𝑠 > 0, and the system is not observable fromTheorem 7.
Similarly, if 𝑢(0) = 𝛿

2

2
, we have the same conclusion.

(B) When controls are free sequences with 𝑢(0) = 𝛿
1

2
,

𝑢(𝑖) = 𝛿
2

2
, 𝑖 = 1, 2, . . .. By calculation, it leads to

H
𝐺

0
= 𝛿
2 [2, 2, 2, 2, 1, 1, 1, 1] ,

𝐻L̃
1,1

= 𝛿
2 [2, 1, 1, 2, 2, 1, 1, 2] ,

𝐻L̃
2,2,1

= 𝛿
2 [2, 2, 1, 1, 1, 2, 1, 2] ,

𝐻L̃
3,2,2,1

= 𝛿
2 [2, 1, 2, 2, 1, 2, 1, 1] ,

𝐻L̃
4,2,2,2,1

= 𝛿
2 [2, 1, 2, 1, 2, 1, 1, 2] ,

...

(42)
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and hence,

O
2,𝑠

=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

H𝐺
0

𝐻L̃
1,1

𝐻L̃
2,2,1

𝐻L̃
3,2,2,1

𝐻L̃
4,2,2,2,1

...

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[

[

2 2 2 2 1 1 1 1

2 1 1 2 2 1 1 2

2 2 1 1 1 2 1 2

2 1 2 2 1 2 1 1

2 1 2 1 2 1 1 2

...

]
]
]
]
]
]
]
]

]

. (43)

When 𝑠 = 2, it is enough to see that there are no equal
columns in O

2,2
. So, the system is observable byTheorem 10.

From cases (A) and (B), it is easy to notice that the
selection of controls is very important for the observability
of the temporal Boolean control network.

6. Conclusion

In this brief paper, necessary and sufficient conditions for
the observability of temporal Boolean control networks have
been derived. By using semi-tensor product of matrices and
the matrix expression of logic, we have converted the tempo-
ral Boolean control networks into discrete systems with time
delays. Moreover, the observability has been investigated via
two different kinds of controls. Finally, an example has been
given to show the efficiency of the proposed results.
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We investigate the stability for a class of impulsive functional differential equations with infinite delays by using Lyapunov functions
and Razumikhin-technique. Some new Razumikhin-type theorems on stability are obtained, which shows that impulses do
contribute to the system’s stability behavior. An example is also given to illustrate the importance of our results.

1. Introduction

Impulsive differential equations have attracted the interest
of many researchers in recent years. It arises naturally from
a wide variety of applications such as orbital transfer of
satellite, ecosystems management, and threshold theory in
biology. There has been a significant development in the
theory of impulsive differential equations in the past several
years ago, and various interesting results have been reported;
see [1–4]. Recently, systems with impulses and time delay
have received significant attention [5–16]. In fact, the system
stability and convergence properties are strongly affected by
time delays, which are often encountered in many industrial
and natural processes due to measurement and computa-
tional delays, transmission, and transport lags. In [5, 6, 8],
the authors considered the stability of impulsive differential
equations with finite delay and got some results. In [7],
by using Lyapunov functions and Razumikhin technique,
some Razumikhin-type theorems on stability are obtained
for a class of impulsive functional differential equations with
infinite-delay. However, not much has been developed in
the direction of the stability theory of impulsive functional
differential systems, especially for infinite delays impulsive
functional differential systems. As we know, there are a
number of difficulties that one must face in developing the
corresponding theory of impulsive functional differential
systems with infinite-delay; for example, the interval (−∞, 𝜎]

is not compact, and the images of a solutionmapof closed and
bounded sets in 𝐶((−∞, 0], 𝑅

𝑛
) space may not be compact.

Therefore, it is an interesting and complicated problem to
study the stability theory for impulsive functional differential
systems with infinite delays.

In the present paper, we will consider the stability
of impulsive infinite-delay differential equations by using
Lyapunov functions and the Razumikhin technique, we get
some new results. The effect of delay and impulses which do
contribute to the equations’s stability properties will be shown
in this paper.

The rest of this paper is organized as follows. In Section 2,
we introduce some notations and definitions. In Section 3,
we get some criteria for uniform stability and uniform
asymptotic stability for impulsive infinite-delay differential
equations, and an example is given to illustrate our results.
Finally, concluding remarks are given in Section 4.

2. Preliminaries

Let𝑅denote the set of real numbers,𝑅
+
the set of nonnegative

real numbers, and 𝑅𝑛 the n-dimensional real space equipped
with the Euclidean norm ‖ ⋅ ‖. For any 𝑡 ≥ 𝑡

0
≥ 0 > 𝛼 ≥ −∞,

let𝑓(𝑡, 𝑥(𝑠))where 𝑠 ∈ [𝑡+𝛼, 𝑡] or𝑓(𝑡, 𝑥(⋅)) be aVolterra-type
functional. In the case when 𝛼 = −∞, the interval [𝑡 + 𝛼, 𝑡] is
understood to be replaced by (−∞, 𝑡].
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We consider the impulsive functional differential equa-
tions

𝑥
󸀠
(𝑡) = 𝑓 (𝑡, 𝑥 (⋅)) , 𝑡 ≥ 𝑡

0
, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥|𝑡=𝑡
𝑘

= 𝑥 (𝑡
𝑘
) − 𝑥 (𝑡

−

𝑘
)

= 𝐼
𝑘
(𝑥 (𝑡

−

𝑘
)) , 𝑘 = 1, 2, . . . ,

(1)

where the impulse times 𝑡
𝑘
satisfy 0 ≤ 𝑡

0
< 𝑡

1
< ⋅ ⋅ ⋅ <

𝑡
𝑘
< ⋅ ⋅ ⋅ , lim

𝑘→+∞
𝑡
𝑘
= +∞ and 𝑥󸀠 denotes the right-hand

derivative of 𝑥. 𝑓 ∈ 𝐶([𝑡
𝑘−1
, 𝑡
𝑘
) × 𝐶, 𝑅

𝑛
), 𝑓(𝑡, 0) = 0. 𝐶 is

an open set in PC([𝛼, 0], 𝑅𝑛), where PC([𝛼, 0], 𝑅𝑛) = {𝜓 :

[𝛼, 0] → 𝑅
𝑛 is continuous everywhere except at finite

number of points 𝑡
𝑘
, at which 𝜓(𝑡+

𝑘
) and 𝜓(𝑡−

𝑘
) exist and

𝜓(𝑡
+

𝑘
) = 𝜓(𝑡

𝑘
)}. For each 𝑘 = 1, 2, . . . , 𝐼(𝑡, 𝑥) ∈ 𝐶([𝑡

0
,∞) ×

𝑅
𝑛
, 𝑅

𝑛
), 𝐼(𝑡

𝑘
, 0) = 0.

For any 𝜌 > 0, there exists a 𝜌
1
> 0 (0 < 𝜌

1
< 𝜌) such that

𝑥 ∈ 𝑆(𝜌
1
) implies that 𝑥 + 𝐼(𝑡

𝑘
, 𝑥) ∈ 𝑆(𝜌), where 𝑆(𝜌) = {𝑥 :

‖𝑥‖ < 𝜌, 𝑥 ∈ 𝑅
𝑛
}.

Define PCB(𝑡) = {𝑥 ∈ 𝐶 : 𝑥 is bounded}. For 𝜓 ∈

PCB(𝑡), the norm of 𝜓 is defined by ‖𝜓‖ = sup
𝛼≤𝜃≤0

|𝜓(𝜃)|.
For any 𝜎 ≥ 0, let PCB

𝛿
(𝜎) = {𝜓 ∈ PCB(𝜎) : ‖𝜓‖ < 𝛿}.

For any given 𝜎 ≥ 𝑡
0
, the initial condition for system (1)

is given by

𝑥
𝜎
= 𝜙, (2)

where 𝜙 ∈ PC([𝛼, 0], 𝑅𝑛).
We assume that the solution for the initial problems, (1)-

(2) does exist and is unique which will be written in the form
𝑥(𝑡, 𝜎, 𝜙); see [4, 10]. Since 𝑓(𝑡, 0) = 0, 𝐼(𝑡

𝑘
, 0) = 0, 𝑘 =

1, 2, . . ., then 𝑥(𝑡) = 0 is a solution of (1)-(2), which is called
the trivial solution. In this paper, we always assume that the
solution 𝑥(𝑡, 𝜎, 𝜙) of (1)-(2) can be continued to∞ from the
right of 𝜎.

For convenience, we also have the following classes in
later sections:

𝐾
1
= {𝑎 ∈ 𝐶(𝑅

+
, 𝑅

+
) | 𝑎(0) = 0 and 𝑎(𝑠) > 0 for

𝑠 > 0};

𝐾
2
= {𝑎 ∈ 𝐶(𝑅

+
, 𝑅

+
) | 𝑎(0) = 0 and 𝑎(𝑠) > 0 for 𝑠 > 0

and 𝑎 is nondecreasing in 𝑠};

Δ𝑉(𝑡
𝑘
, 𝜓(0)) = 𝑉(𝑡

𝑘
, 𝜓(0) + 𝐼

𝑘
(𝑡
𝑘
, 𝜓)) −

𝑉(𝑡
−

𝑘
, 𝜓(0)), 𝑘 = 1, 2, . . .;

Δ𝑡
𝑘
= 𝑡

𝑘
− 𝑡

𝑘−1
, 𝑘 = 1, 2, . . ..

We introduce some definitions as follows.

Definition 1 (see [4]). The function 𝑉 : [𝛼,∞) × 𝐶 → 𝑅
+

belongs to class V
0
if

(𝐴
1
) 𝑉 is continuous on each of the sets [𝑡

𝑘−1
, 𝑡
𝑘
) × 𝐶 and

lim
(𝑡,𝜑)→ (𝑡

−

𝑘

,𝜓)
𝑉(𝑡, 𝜑) = 𝑉(𝑡

−

𝑘
, 𝜓) exists;

(𝐴
2
) 𝑉(𝑡, 𝑥) is locally Lipschitzian in 𝑥 and 𝑉(𝑡, 0) ≡ 0.

Definition 2 (see [4]). Let 𝑉 ∈ V
0
, for any (𝑡, 𝜓) ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) ×

𝐶, the upper right-hand Dini derivative of 𝑉(𝑡, 𝑥) along the
solution of (1)-(2) is defined by

𝐷
+
𝑉 (𝑡, 𝜓 (0))

=
lim sup

ℎ→0
+
{𝑉 (𝑡 + ℎ, 𝜓 (0) + ℎ𝑓 (𝑡, 𝜓)) − 𝑉 (𝑡, 𝜓 (0))}

ℎ
.

(3)

Similarly, we can define 𝐷
−
𝑉(𝑡, 𝜓(0)), 𝐷

−
𝑉(𝑡, 𝜓(0),

𝐷
+
𝑉(𝑡, 𝜓(0)). If 𝑉 ∈ 𝐶

󸀠, then 𝐷𝑉(𝑡, 𝜓(0)) = 𝑉(𝑡, 𝜓(0)),
where𝐷 is any of the four Dini derivatives.

For 𝑉 ∈ V
0
, (𝑡, 𝜓) ∈ [𝑡

𝑘−1
, 𝑡
𝑘
) × 𝐶, the upper right-

hand Dini derivative of 𝑉(𝑡, 𝑥) along the solution of (1)-(2)
is defined by

𝐷
+
𝑉 (𝑡, 𝜓 (0))

=

lim sup
ℎ→0

+
{𝑉 (𝑡 + ℎ, 𝜓 (0) + ℎ𝑓 (𝑡, 𝜓)) − 𝑉 (𝑡, 𝜓 (0))}

ℎ
.

(4)

Similarly, we can define 𝐷−
𝑉(𝑡, 𝜓(0)). If 𝑉 ∈ 𝐶

󸀠󸀠, then these
are simply the second derivative of 𝑉.

Definition 3 (see [4]). Assume 𝑥(𝑡) = 𝑥(𝑡, 𝜎, 𝜙) to be the
solution of (1)-(2) through (𝜎, 𝜙). Then, the zero solution of
(1)-(2) is said to be

(1) uniformly stable, if for any 𝜀 > 0 and 𝜎 ≥ 𝑡
0
, there

exists a 𝛿 = 𝛿(𝜀) > 0 such that 𝜙 ∈ PCB
𝛿
(𝜎) implies

‖𝑥(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎.
(2) uniformly asymptotically stable, if it is uniformly

stable, and there exists a 𝛿 > 0 such that for any 𝜀 >

0, 𝜎 ≥ 𝑡
0
, there is a 𝑇 = 𝑇(𝜀) > 0 such that

𝜙 ∈ PCB
𝛿
(𝜎) implies ‖𝑥(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎 + 𝑇.

3. Main Results

Theorem 4. Assume that there exist functions 𝑤
𝑖
∈ 𝐾

1
, 𝑔 ∈

𝐾
2
, 𝑐

𝑖
, 𝑝, 𝑞 ∈ 𝐶(𝑅

+
, 𝑅

+
), 𝑉(𝑡, 𝑥) ∈ V

0
, 𝑖 = 1, 2, and constants

𝑚 > 1, such that the following conditions hold:
(i) 𝑤

1
(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑤

2
(‖𝑥‖), (𝑡, 𝑥) ∈ [𝛼,∞) × 𝑆(𝜌);

(ii) for any 𝜎 ≥ 𝑡
0
and𝜓 ∈ PC([𝛼, 0], 𝑆(𝜌)), if 𝑉(𝑡, 𝜓(0)) ≥

𝑚
−2
𝑔(𝑉(𝑡 + 𝜃, 𝜓(𝜃))), max{𝛼, −𝑞(𝑉(𝑡))} ≤ 𝜃 ≤

0, 𝑡 ̸= 𝑡
𝑘
, then

𝐷
+
𝑉 (𝑡, 𝜓 (0)) ≤ 𝑝 (𝑡) 𝑐

1
(𝑉 (𝑡, 𝜓 (0))) , (5)

where 𝑠/𝑚 ≤ 𝑔(𝑠) < 𝑠 for any 𝑠 > 0;
(iii) for all (𝑡, 𝜓(0)) ∈ (𝑡

𝑘−1
, 𝑡
𝑘
) × PC([𝛼, 0], 𝑆(𝜌

1
)),

𝐷
−
𝑉 (𝑡, 𝜓 (0)) ≥ 0. (6)

Also, for all (𝑡
𝑘
, 𝜓) ∈ 𝑅

+
× PC([𝛼, 0], 𝑆(𝜌

1
)),

Δ𝑡
𝑘
𝑉 (𝑡

−

𝑘
, 𝜓 (0)) + Δ𝑉 (𝑡𝑘, 𝜓 (0)) ≤ −𝜇𝑘𝑐2 (𝑉 (𝑡𝑘, 𝜓 (0))) ,

(7)

where 𝑐
2
(𝑠) ≤ 𝑠𝑐

󸀠

2
(𝑠), 𝑠 > 0, 𝜇

𝑘
satisfies lim inf

𝑘→∞

𝜇
𝑘
≥ 2 ⋅ sup

𝑠>0
(𝑠/𝑐

2
(𝑚

−1
⋅ 𝑠));
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(iv) there exist constants𝑀
1
,𝑀

2
> 0 such that the follow-

ing inequalities hold:

sup
𝑡≥0

∫

𝑡+𝜏

𝑡

𝑝 (𝑠) 𝑑𝑠 = 𝑀
1
< ∞,

inf
𝑠>0

∫

𝑠

𝑔(𝑠)

𝑑𝑡

𝑐
1
(𝑡)

= 𝑀
2
> 𝑀

1
,

(8)

where 𝜏 = max
𝑘≥1
{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞.

Then, the zero solution of (1)-(2) is uniformly asymptoti-
cally stable.

Proof. Condition (i) implies that 𝑤
1
(𝑠) ≤ 𝑤

2
(𝑠) for 𝑠 ∈ [0, 𝜌].

So let𝑊
1
and𝑊

2
be continuous, strictly increasing functions

satisfying𝑊
1
(𝑠) ≤ 𝑤

1
(𝑠) ≤ 𝑤

2
(𝑠) ≤ 𝑊

2
(𝑠) for all 𝑠 ∈ [0, 𝜌].

Then

𝑊
1
(‖𝑥‖) ≤ 𝑉 (𝑡, 𝑥) ≤ 𝑊2

(‖𝑥‖) , (𝑡, 𝑥) ∈ [𝛼,∞) × 𝑆 (𝜌) .

(9)

We first show uniform stability.
For any 𝜀 > 0(< 𝜌

1
), one may choose a 𝛿 = 𝛿(𝜀) > 0 such

that𝑊
2
(𝛿) ≤ 𝑔(𝑊

1
(𝜀)). Let 𝑥(𝑡) = 𝑥(𝑡, 𝜎, 𝜙) be a solution of

(1)-(2) through (𝜎, 𝜙), 𝜎 ≥ 𝑡
0
. For any 𝜙 ∈ PCB

𝛿
(𝜎), we will

prove that ‖𝑥(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎.
For convenience, let 𝑉(𝑡) = 𝑉(𝑡, 𝑥(𝑡)). Suppose that 𝜎 ∈

[𝑡
𝑙−1
, 𝑡
𝑙
), 𝑙 ∈ 𝑍

+
. First, for 𝜎 + 𝛼 ≤ 𝑡 ≤ 𝜎, we have

𝑊
1
(‖𝑥‖)& ≤ 𝑉 (𝑡) < 𝑊2

(𝛿) ≤ 𝑔 (𝑊
1
(𝜀)) < 𝑊

1
(𝜀) . (10)

So, ‖𝑥(𝑡)‖ < 𝜀 < 𝜌
1
, 𝑡 ∈ [𝜎 + 𝛼, 𝜎].

Next, we claim that

𝑉 (𝑡) < 𝑊
1
(𝜀) , 𝑡 ∈ [𝜎, 𝑡

𝑙
) . (11)

Suppose on the contrary that there exists some 𝑡 ∈ [𝜎, 𝑡
𝑙
) such

that 𝑉(𝑡) ≥ 𝑊
1
(𝜀). Since 𝑉(𝜎) < 𝑊

1
(𝜀), we can define �̂� =

inf{𝑡 ∈ [𝜎, 𝑡
𝑙
) | 𝑉(𝑡) ≥ 𝑊

1
(𝜀)}. Thus, �̂� ∈ (𝜎, 𝑡

𝑙
), 𝑉( �̂� ) =

𝑊
1
(𝜀), and𝑉(𝑡) < 𝑊

1
(𝜀), 𝑡 ∈ [𝜎, �̂�). Also, from (10) we obtain

𝑉 (𝑡) < 𝑊
1
(𝜀) , 𝑡 ∈ [𝜎 + 𝛼, �̂�) . (12)

On the other hand, note that 𝑉(�̂�) = 𝑊
1
(𝜀) > 𝑔(𝑊

1
(𝜀)) and

𝑉(𝜎) < 𝑔(𝑊
1
(𝜀)) in view of (10), we can define 𝑡∗ = sup{𝑡 ∈

[𝜎, �̂�]𝑉(𝑡) ≤ 𝑔(𝑊
1
(𝜀))}; it is obvious that 𝑡∗ ∈ [𝜎, �̂�), 𝑉(𝑡∗) =

𝑔(𝑊
1
(𝜀)) and 𝑉(𝑡) > 𝑔(𝑊

1
(𝜀)) for 𝑡 ∈ (𝑡

∗
, �̂�]. Therefore,

combining (12), we have for 𝑡 ∈ (𝑡∗, �̂�)

𝑉 (𝑡) > 𝑔 (𝑊
1
(𝜀)) > 𝑔 (𝑉 (𝑡 + 𝜃)) , 𝛼 ≤ 𝜃 ≤ 0; (13)

that is,

𝑉 (𝑡, 𝜓 (0)) > 𝑚
−2
𝑔 (𝑉 (𝑡 + 𝜃, 𝜓 (𝜃))) ,

max {𝛼, −𝑞 (𝑉 (𝑡))} ≤ 𝜃 ≤ 0.
(14)

By assumption (ii), (iv), we have

∫

𝑉(�̂�)

𝑉(𝑡
∗

)

𝑑𝑠

𝑐
1
(𝑠)

= ∫

𝑊
1

(𝜀)

𝑔(𝑊
1

(𝜀))

𝑑𝑠

𝑐
1
(𝑠)

≥ 𝑀
2
> 𝑀

1
. (15)

However, we also have

∫

𝑉(�̂�)

𝑉(𝑡
∗

)

𝑑𝑠

𝑐
1 (𝑠)

≤ ∫

�̂�

𝑡
∗

𝑝 (𝑠) 𝑑𝑠 < ∫

𝑡
∗

+𝜏

𝑡
∗

𝑝 (𝑠) 𝑑𝑠 ≤ 𝑀1
, (16)

which is a contradiction. So, (11) holds.
Hence,𝑊

1
(‖𝑥‖) ≤ 𝑉(𝑡) < 𝑊

1
(𝜀), 𝑡 ∈ [𝜎, 𝑡

𝑙
) implies that

‖𝑥(𝑡
−

𝑙
)‖ < 𝜀 < 𝜌

1
. Thus, 𝑥(𝑡

𝑙
) ∈ 𝑆(𝜌).

On the other hand, from condition (iii), we note for 𝑘 =
1, 2, . . .,

𝑉 (𝑡
𝑘
) − 𝑉 (𝑡

𝑘−1
) = 𝑉 (𝑡

𝑘
) − 𝑉 (𝑡

−

𝑘
) + 𝑉 (𝑡

−

𝑘
) − 𝑉 (𝑡

𝑘−1
)

= Δ𝑉 (𝑡
𝑘
) + ∫

𝑡
𝑘

𝑡
𝑘−1

𝑉 (𝑡) 𝑑𝑡

≤ Δ𝑉 (𝑡
𝑘
) + Δ𝑡

𝑘
𝑉 (𝑡

−

𝑘
)

≤ −𝜇
𝑘
𝑐
2
(𝑉 (𝑡

𝑘
)) ≤ 0.

(17)

Hence, we obtain 𝑉(𝑡
𝑘
) ≤ 𝑉(𝑡

𝑘−1
), 𝑘 = 1, 2, . . .. particularly,

𝑉(𝑡
𝑙
) ≤ 𝑉(𝑡

𝑙−1
). In view of (10), we get

𝑉 (𝑡
𝑙
) ≤ 𝑉 (𝑡

𝑙−1
) < 𝑔 (𝑊

1
(𝜀)) < 𝑊

1
(𝜀) . (18)

Next, we claim that

𝑉 (𝑡) < 𝑊
1
(𝜀) , 𝑡 ∈ [𝑡

𝑙
, 𝑡
𝑙+1
) . (19)

Suppose on the contrary that there exists some 𝑡 ∈ [𝑡
𝑙
, 𝑡
𝑙+1
)

such that𝑉(𝑡) ≥ 𝑊
1
(𝜀).Then applying exactly the same argu-

ment as in the proof of (11) yields our desired contradiction.
By induction hypothesis, we may prove, in general, that

for 𝑡 ∈ [𝑡
𝑙+𝑘
, 𝑡
𝑙+𝑘+1

), 𝑘 > 0,

𝑉 (𝑡) < 𝑊
1
(𝜀) . (20)

In view of condition (i), we obtain that ‖𝑥(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎.
Therefore, we have proved that the solutions of (1)-(2) are
uniformly stable.

Next, we claim that they are uniformly asymptotically
stable. Since the zero solution of (1)-(2) is uniformly stable,
for any given constant𝐻 > 0 (< 𝜌

1
), then there exists 𝛿 > 0

such that 𝜙 ∈ PCB
𝛿
(𝜎) implies that 𝑉(𝑡) < 𝑊

1
(𝐻), ‖𝑥(𝑡)‖ <

𝜌
1
, 𝑡 ≥ 𝜎.
For any 𝜀 ∈ (0,𝐻), let

𝑑 < min {𝑑,𝑊
1
(𝜀)} ,

𝑑 = inf{𝑠 − 𝑔 (𝑠) | 𝑚−1
𝑊

1
(𝜀) ≤ 𝑠 ≤ 𝑊

1
(𝐻)} ,

ℎ = sup {𝑞 (𝑠) | 𝑚−1
𝑊

1 (𝜀) ≤ 𝑠 ≤ 𝑊1 (𝐻)} ,

𝑛
0
=

𝑊
1 (𝐻)

2 ⋅ sup
𝑠>0
(𝑠/𝑐

2
(𝑚−1𝑠)) 𝑐

2
(𝑚−1𝑊

1
(𝜀))

+ 1.

(21)

From condition (iii), we get that there exists a 𝑛
1
> 0 such

that for 𝑘 > 𝑛
1
,

𝜇
𝑘
≥ 2 ⋅ sup

𝑠>0

𝑠

𝑐
2
(𝑚−1 ⋅ 𝑠)

. (22)
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Choose a positive integer𝑁 satisfying

𝑊
1
(𝜀) + (𝑁 − 1) 𝑑 < 𝑊

1
(𝐻) ≤ 𝑊

1
(𝜀) + 𝑁𝑑, (23)

and define 𝑇 = 𝑁(ℎ + 𝑛
0
𝜏) + 𝑛

1
, we will prove that 𝜙 ∈

PCB
𝛿
(𝜎) implies ‖𝑥(𝑡)‖ < 𝜀, 𝑡 ≥ 𝜎 + 𝑇.

First, we prove that there exists �̂� ∈ [𝜎+ℎ+𝑛
1
, 𝜎+ℎ+𝑛

1
+

𝑛
0
𝜏] such that

𝑉 (�̂�) < 𝑚
−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑] . (24)

Suppose on the contrary that for all 𝑡 ∈ [𝜎 + ℎ + 𝑛
1
, 𝜎 + ℎ +

𝑛
1
+ 𝑛

0
𝜏],

𝑉 (𝑡) ≥ 𝑚
−1
[𝑊

1 (𝜀) + (𝑁 − 1) 𝑑] ≥ 𝑚
−1
𝑊

1 (𝜀) . (25)

Let 𝑡
𝑘
1

= min{𝑡
𝑘
: 𝑡

𝑘
≥ 𝜎 + ℎ + 𝑛

1
}, from (17), we get

𝑉(𝑡
𝑘
1

) − 𝑉 (𝑡
𝑘
1

−1
) ≤ −𝜇

𝑘
1

𝑐
2
(𝑉 (𝑡

𝑘
1

))

≤ −𝜇
𝑘
1

𝑐
2
(𝑚

−1
𝑊

1
(𝜀)) ,

𝑉 (𝑡
𝑘
1

+1
) − 𝑉 (𝑡

𝑘
1

) ≤ −𝜇
𝑘
1

+1
𝑐
2
(𝑚

−1
𝑊

1
(𝜀)) ,

...

𝑉(𝑡
𝑘
1

+𝑛
0

) − 𝑉 (𝑡
𝑘
1

+𝑛
0

−1
) ≤ −𝜇

𝑘
1

+𝑛
0

𝑐
2
(𝑚

−1
𝑊

1
(𝜀)) ,

(26)

In general, combining (22), we deduce that

𝑉(𝑡
𝑘
1

+𝑛
0

) ≤ 𝑉 (𝑡
𝑘
1

−1
) −

𝑛
0

∑

𝑠=0

𝜇
𝑘
1

+𝑠
𝑐
2
(𝑚

−1
𝑊

1 (𝜀))

≤ 𝑊
1 (𝐻) − 2 (𝑛0 + 1)

⋅ sup
𝑠>0

𝑠

𝑐
2
(𝑚−1𝑠)

𝑐
2
(𝑚

−1
𝑊

1
(𝜀))

= −4 ⋅ sup
𝑠>0

𝑠

𝑐
2
(𝑚−1𝑠)

𝑐
2
(𝑚

−1
𝑊

1
(𝜀)) < 0,

(27)

which is a contradiction. So, (24) holds.
Suppose �̂� ∈ [𝑡

𝑙−1
, 𝑡
𝑙
), 𝑙 > 1. Furthermore, we can prove

that for 𝑡 ∈ [�̂�, 𝑡
𝑙
)

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 1) 𝑑. (28)

Suppose this assertion is false, then there exists some 𝑡 ∈ [�̂�, 𝑡
𝑙
)

such that𝑉(𝑡) ≥ 𝑊
1
(𝜀)+(𝑁−1)𝑑. Since𝑉( �̂� ) < 𝑚−1

[𝑊
1
(𝜀)+

(𝑁 − 1)𝑑] < 𝑊
1
(𝜀) + (𝑁 − 1)𝑑, so define

𝑡
∗
= inf {𝑡 ∈ [�̂�, 𝑡

𝑙
) | 𝑉 (𝑡) ≥ 𝑊

1
(𝜀) + (𝑁 − 1) 𝑑} ; (29)

then 𝑡∗ ∈ (�̂�, 𝑡
𝑙
), 𝑉(𝑡

∗
) = 𝑊

1
(𝜀)+(𝑁−1)𝑑 and𝑉(𝑡) < 𝑊

1
(𝜀)+

(𝑁 − 1)𝑑, 𝑡 ∈ (�̂�, 𝑡
∗
). Note that

𝑉 (𝑡
∗
) = 𝑊

1 (𝜀) + (𝑁 − 1) 𝑑 > 𝑔 (𝑊1 (𝜀) + (𝑁 − 1) 𝑑) ,

𝑉 (�̂�) < 𝑚
−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑] < 𝑔 (𝑊

1
(𝜀) + (𝑁 − 1) 𝑑) ;

(30)

thus, we can define

𝑡 = sup {𝑡 ∈ [�̂�, 𝑡∗] | 𝑉 (𝑡) ≤ 𝑔 (𝑊
1
(𝜀) + (𝑁 − 1) 𝑑)} , (31)

then 𝑡 ∈ [�̂�, 𝑡
∗
), 𝑉(𝑡) = 𝑔(𝑊

1
(𝜀) + (𝑁 − 1)𝑑) and 𝑉(𝑡) >

𝑔(𝑊
1
(𝜀) + (𝑁 − 1)𝑑) for 𝑡 ∈ (𝑡, 𝑡∗].

Hence, we get for 𝑡 ∈ (𝑡, 𝑡∗]

𝑉 (𝑡) > 𝑔 (𝑊1 (𝜀) + (𝑁 − 1) 𝑑)

≥ 𝑚
−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑]

≥ 𝑚
−1
𝑊

1 (𝜀) ,

(32)

which implies that for 𝑡 ∈ (𝑡, 𝑡∗]

𝑉 (𝑡) ≥ 𝑔 (𝑉 (𝑡)) + 𝑑 ≥ 𝑚
−1
𝑉 (𝑡) + 𝑑

>
𝑚𝑉 (𝑡)

𝑚2
+
𝑑

𝑚2
≥
𝑊

1
(𝜀) + 𝑁𝑑

𝑚2

≥
𝑊

1
(𝐻)

𝑚2
≥
𝑉 (𝑠)

𝑚2
>
𝑔 (𝑉 (𝑠))

𝑚2
, 𝑡 + 𝛼 < 𝑠 ≤ 𝑡.

(33)

Thus, 𝑉(𝑡) ≥ (1/𝑚
2
)𝑔(𝑉(𝑡 + 𝜃, 𝜓(𝜃))), max{𝛼, −𝑞(𝑉(𝑡))} ≤

𝜃 ≤ 0.
By assumption, (ii), (iv), we have for 𝑡 ∈ (𝑡, 𝑡∗),

∫

𝑉(𝑡
∗

)

𝑉(𝑡)

𝑑𝑠

𝑐
1
(𝑠)

= ∫

𝑊
1

(𝜀)+(𝑁−1)𝑑

𝑔(𝑊
1

(𝜀)+(𝑁−1)𝑑)

𝑑𝑠

𝑐
1
(𝑠)

≥ 𝑀
2
> 𝑀

1
. (34)

However, we also have

∫

𝑉(𝑡
∗

)

𝑉(𝑡)

𝑑𝑠

𝑐
1 (𝑠)

< ∫

𝑡
∗

𝑡

𝑝 (𝑠) 𝑑𝑠 < ∫

𝑡+𝜏

𝑡

𝑝 (𝑠) 𝑑𝑠 < 𝑀
1
, (35)

which is a contradiction. So, (28) holds.
On the other hand, it is easy to prove that the functions

𝑠/𝑐
2
(𝑚

−1
𝑠) are nonincreasing for 𝑠 ∈ (0, +∞) in view of

condition 𝑐
2
(𝑠) ≤ 𝑠𝑐

󸀠

2
(𝑠) for any 𝑠 > 0.

Hence, the following inequalities hold: for 𝑘 > 𝑛
1
,

𝑊
1
(𝜀) + (𝑁 − 𝑖) 𝑑

𝑐
2
(𝑚−1 (𝑊

1 (𝜀) + (𝑁 − 𝑖 − 1) 𝑑))
≤

𝑊
1
(𝜀) + 𝑑

𝑐
2
(𝑚−1𝑊

1 (𝜀))

<
2𝑊

1
(𝜀)

𝑐
2
(𝑚−1𝑊

1 (𝜀))

≤ 𝜇
𝑘
, 𝑖 = 1, 2, . . . , 𝑁 − 1.

(36)

Next, we claim that

𝑉 (𝑡
𝑙
) < 𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑] . (37)

Or else, then 𝑉(𝑡
𝑙
) ≥ 𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 1)𝑑]; from (17), we

get

𝑉 (𝑡
𝑙
) − 𝑉 (𝑡

𝑙−1
) ≤ −𝜇

𝑙
𝑐
2
(𝑉 (𝑡

𝑙
))

≤ −𝜇
𝑙
𝑐
2
(𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑]) .

(38)
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Considering (36), it holds that

𝑉 (𝑡
𝑙
) ≤ 𝑉 (𝑡

𝑙−1
) − 𝜇

𝑙
𝑐
2
(𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑])

≤ 𝑊
1
(𝐻) − 𝜇

𝑙
𝑐
2
(𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑])

≤ 𝑊
1 (𝜀) + 𝑁𝑑 − 𝜇𝑙𝑐2 (𝑚

−1
[𝑊

1 (𝜀) + (𝑁 − 1) 𝑑])

≤ 𝑐
2
(𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑])

× {
𝑊

1
(𝜀) + 𝑁𝑑

𝑐
2
(𝑚−1 [𝑊

1 (𝜀) + (𝑁 − 1) 𝑑])
− 𝜇

𝑙
}

< 0,

(39)

which is a contradiction and (37) holds.
Next, we can prove that for 𝑡 ∈ [𝑡

𝑙
, 𝑡
𝑙+1
)

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 1) 𝑑. (40)

Suppose that this assertion is false, then there exists some 𝑡 ∈
[�̂�, 𝑡

𝑙
) such that𝑉(𝑡) ≥ 𝑊

1
(𝜀)+(𝑁−1)𝑑.Then applying exactly

the same argument as in the proof of (24) and (28) yields our
desired contradiction. Here, we omit it.

By induction hypothesis, we may prove, for 𝑡 ∈

[𝑡
𝑙+𝑘
, 𝑡
𝑙+𝑘+1

), 𝑘 = 1, 2, . . .,

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 1) 𝑑; (41)

that is,

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 1) 𝑑, 𝑡 ≥ �̂�. (42)

Hence, we obtain

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 1) 𝑑, 𝑡 ≥ 𝜎 + ℎ + 𝑛

1
+ 𝑛

0
𝜏. (43)

Next, we prove that there exists �̂�
2
∈ [𝜎 + 2ℎ + 𝑛

1
+ 𝑛

0
𝜏, 𝜎 +

2ℎ + 𝑛
1
+ 2𝑛

0
𝜏] such that

𝑉 (�̂�
2
) < 𝑚

−1
[𝑊

1 (𝜀) + (𝑁 − 2) 𝑑] . (44)

Suppose that for all 𝑡 ∈ [𝜎+ 2ℎ+𝑛
1
+𝑛

0
𝜏, 𝜎+ 2ℎ+𝑛

1
+2𝑛

0
𝜏],

𝑉 (𝑡) ≥ 𝑚
−1
[𝑊

1
(𝜀) + (𝑁 − 2) 𝑑] ≥ 𝑚

−1
𝑊

1
(𝜀) . (45)

Using the same argument as in the proof of (24), we get

𝑉(𝑡
𝑘
2

+𝑛
0

) ≤ 𝑉 (𝑡
𝑘
2

−1
) −

𝑛
0

∑

𝑠=0

𝜇
𝑘
2

+𝑠
𝑐
2
(𝑚

−1
𝑊

1
(𝜀))

≤ 𝑊
1 (𝐻) − 2 (𝑛0 + 1)

⋅ sup
𝑠>0

𝑠

𝑐
2
(𝑚−1𝑠)

𝑐
2
(𝑚

−1
𝑊

1
(𝜀))

= −4 ⋅ sup
𝑠>0

𝑠

𝑐
2
(𝑚−1𝑠)

𝑐
2
(𝑚

−1
𝑊

1
(𝜀)) < 0,

(46)

where 𝑡
𝑘
2

= min{𝑡
𝑘
: 𝑘 ≥ 𝜎 + 2ℎ + 𝑛

1
+ 𝑛

0
𝜏}.

This is a contradiction. So, (44) holds.

Suppose �̂�
2
∈ [𝑡

𝑘−1
, 𝑡
𝑘
), 𝑘 > 𝑙. Furthermore, we claim that

for 𝑡 ∈ [�̂�
2
, 𝑡
𝑘
)

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 2) 𝑑. (47)

Suppose on the contrary, that there exists some 𝑡 ∈ [�̂�
2
, 𝑡
𝑘
)

such that 𝑉(𝑡) ≥ 𝑊
1
(𝜀) + (𝑁 − 2)𝑑. We define

𝑡
⋆
= inf {𝑡 ∈ [�̂�

2
, 𝑡
𝑘
) | 𝑉 (𝑡) ≥ 𝑊

1
(𝜀) + (𝑁 − 2) 𝑑} , (48)

since 𝑉(�̂�
2
) < 𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 2)𝑑] < 𝑊

1
(𝜀) + (𝑁 − 2)𝑑 in

view of (44). Thus, 𝑡⋆ ∈ (�̂�
2
, 𝑡
𝑘
), 𝑉(𝑡

⋆
) = 𝑊

1
(𝜀) + (𝑁 − 2)𝑑

and 𝑉(𝑡) < 𝑊
1
(𝜀) + (𝑁 − 2)𝑑, 𝑡 ∈ (�̂�

2
, 𝑡
⋆
). Note that

𝑉 (𝑡
⋆
) = 𝑊

1 (𝜀) + (𝑁 − 2) 𝑑 > 𝑔 (𝑊1 (𝜀) + (𝑁 − 2) 𝑑) ,

𝑉 (�̂�
2
) < 𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 2) 𝑑] < 𝑔 (𝑊

1
(𝜀) + (𝑁 − 2) 𝑑) ;

(49)

furthermore, we can define

�̃� = sup {𝑡 ∈ [�̂�
2
, 𝑡
⋆
] | 𝑉 (𝑡) ≤ 𝑔 (𝑊

1
(𝜀) + (𝑁 − 2) 𝑑)} , (50)

then �̃� ∈ [�̂�
2
, 𝑡
⋆
), 𝑉(�̃�) = 𝑔(𝑊

1
(𝜀) + (𝑁 − 2)𝑑) and 𝑉(𝑡) >

𝑔(𝑊
1
(𝜀) + (𝑁 − 2)𝑑) for 𝑡 ∈ (�̃�, 𝑡⋆].

Hence, we get for 𝑡 ∈ (�̃�, 𝑡⋆]

𝑉 (𝑡) > 𝑔 (𝑊
1
(𝜀) + (𝑁 − 2) 𝑑)

≥ 𝑚
−1
[𝑊

1 (𝜀) + (𝑁 − 2) 𝑑]

≥ 𝑚
−1
𝑊

1
(𝜀) ;

(51)

considering the definition of 𝑑 and (43), we get for 𝑡 ∈ (�̃�, 𝑡⋆]

𝑉 (𝑡) ≥ 𝑔 (𝑉 (𝑡)) + 𝑑 ≥ 𝑚
−1
𝑉 (𝑡) + 𝑑

>
𝑚𝑉 (𝑡)

𝑚2
+
𝑑

𝑚2
≥
𝑊

1
(𝜀) + (𝑁 − 1) 𝑑

𝑚2

≥
𝑉 (𝑠)

𝑚2
>
𝑔 (𝑉 (𝑠))

𝑚2
, 𝑡 − ℎ < 𝑠 ≤ 𝑡.

(52)

Thus, 𝑉(𝑡) ≥ (1/𝑚
2
)𝑔(𝑉(𝑡 + 𝜃, 𝜓(𝜃))), max{𝛼, −𝑞(𝑉(𝑡))} ≤

𝜃 ≤ 0.
Using assumptions (ii), (iv), we have

∫

𝑉(𝑡
⋆

)

𝑉(�̃�)

𝑑𝑠

𝑐
1 (𝑠)

= ∫

𝑊
1

(𝜀)+(𝑁−2)𝑑

𝑔(𝑊
1

(𝜀)+(𝑁−2)𝑑)

𝑑𝑠

𝑐
1 (𝑠)

≥ 𝑀
2
> 𝑀

1
. (53)

However,

∫

𝑉(𝑡
⋆

)

𝑉(�̃�)

𝑑𝑠

𝑐
1
(𝑠)

< ∫

𝑡
⋆

�̃�

𝑝 (𝑠) 𝑑𝑠 < ∫

�̃�+𝜏

�̃�

𝑝 (𝑠) 𝑑𝑠 < 𝑀1,
(54)

giving us a contradiction. So, (47) holds.
Next, we claim that

𝑉 (𝑡
𝑙
) < 𝑚

−1
[𝑊

1
(𝜀) + (𝑁 − 1) 𝑑] ,

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 1) 𝑑, 𝑡 ∈ [𝑡

𝑙
, 𝑡
𝑙+1
) ,

(55)
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whose arguments are the same as was employed in the proof
of (36), (37). there we omit it.

Repeating this process, it is easy to check that

𝑉 (𝑡) < 𝑊
1
(𝜀) + (𝑁 − 2) 𝑑, 𝑡 ≥ 𝜎 + 2ℎ + 𝑛

1
+ 2𝑛

0
𝜏. (56)

By induction hypothesis, we have

𝑉 (𝑡) ≤ 𝑊
1
(𝜀) + (𝑁 − 𝑖) 𝑑, 𝑡 ≥ 𝜎 + 𝑖ℎ + 𝑛

1
+ 𝑖𝑛

0
𝜏. (57)

Let 𝑖 = 𝑁, then for 𝑡 ≥ 𝜎 + 𝑁(ℎ + 𝑛
0
𝜏) + 𝑛

1
,

𝑉 (𝑡) < 𝑊
1
(𝜀) . (58)

Therefore, we arrive at ‖𝑥(𝑡)‖ < 𝜀, 𝑡 ≥ 𝑇. The proof of
Theorem 4 is complete.

Corollary 5. Assume that there exist functions 𝑤
𝑖
∈ 𝐾

1
, 𝑔 ∈

𝐾
2
, 𝑐, 𝑝 ∈ 𝐶(𝑅

+
, 𝑅

+
), 𝑉(𝑡, 𝑥) ∈ V

0
, 𝑖 = 1, 2, and constants

𝑚 > 1, such that the following conditions hold:

(i) 𝑤
1
(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑤

2
(‖𝑥‖), (𝑡, 𝑥) ∈ [𝛼,∞) × 𝑆(𝜌);

(ii) for any 𝜎 ≥ 𝑡
0
and𝜓 ∈ PC([𝛼, 0], 𝑆(𝜌)), if 𝑉(𝑡, 𝜓(0)) ≥

𝑔(𝑉(𝑡 + 𝜃, 𝜓(𝜃))), 𝛼 ≤ 𝜃 ≤ 0, 𝑡 ̸= 𝑡
𝑘
, then

𝐷
+
𝑉 (𝑡, 𝜓 (0)) ≤ 𝑝 (𝑡) 𝑐 (𝑉 (𝑡, 𝜓 (0))) , (59)

where (𝑠/𝑚) ≤ 𝑔(𝑠) < 𝑠 for any 𝑠 > 0;
(iii) for all (𝑡, 𝜓(0)) ∈ (𝑡

𝑘−1
, 𝑡
𝑘
) × PC([𝛼, 0], 𝑆(𝜌

1
)),

𝐷
−
𝑉 (𝑡, 𝜓 (0)) ≥ 0. (60)

Also, for all (𝑡
𝑘
, 𝜓) ∈ 𝑅

+
× PC([𝛼, 0], 𝑆(𝜌

1
)),

Δ𝑡
𝑘
𝑉 (𝑡

−

𝑘
, 𝜓 (0)) + Δ𝑉 (𝑡

𝑘
, 𝜓 (0)) ≤ 0; (61)

(iv) there exist constants 𝑀
1
, 𝑀

2
> 0 such that the

following inequalities hold:

sup
𝑡≥0

∫

𝑡+𝜏

𝑡

𝑝 (𝑠) 𝑑𝑠 = 𝑀
1
< ∞,

inf
𝑠>0

∫

𝑠

𝑔(𝑠)

𝑑𝑡

𝑐 (𝑡)
= 𝑀

2
> 𝑀

1
,

(62)

where 𝜏 = max
𝑘≥1
{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞.

Then the zero solution of (1)-(2) is uniformly stable.

Theorem 4 has a dual result when 𝑉 is nonincreasing on
(𝑡
𝑘−1
, 𝑡
𝑘
). Here, we only give the results whose proof is very

similar to the proof of Theorem 4.

Theorem 6. Assume that there exist functions 𝑤
𝑖
∈ 𝐾

1
, 𝑔 ∈

𝐾
2
, 𝑐

𝑖
, 𝑝, 𝑞 ∈ 𝐶(𝑅

+
, 𝑅

+
), 𝑉(𝑡, 𝑥) ∈ V

0
, 𝑖 = 1, 2, and constants

𝑚 > 1, such that the following conditions hold:

(i) 𝑤
1
(‖𝑥‖) ≤ 𝑉(𝑡, 𝑥) ≤ 𝑤

2
(‖𝑥‖), (𝑡, 𝑥) ∈ [𝛼,∞) × 𝑆(𝜌);

(ii) for any 𝜎 ≥ 𝑡
0

and 𝜓 ∈ PC([𝛼, 0], 𝑆(𝜌)),
if 𝑉(𝑡, 𝜓(0)) ≥ 𝑚

−2
𝑔(𝑉(𝑡 + 𝜃, 𝜓(𝜃))), max{𝛼,

−𝑞(𝑉(𝑡))} ≤ 𝜃 ≤ 0, 𝑡 ̸= 𝑡
𝑘
, then

𝐷
+
𝑉 (𝑡, 𝜓 (0)) ≤ 𝑝 (𝑡) 𝑐

1
(𝑉 (𝑡, 𝜓 (0))) , (63)

where (𝑠/𝑚) ≤ 𝑔(𝑠) < 𝑠 for any 𝑠 > 0;

(iii) for all (𝑡, 𝜓(0)) ∈ (𝑡
𝑘−1
, 𝑡
𝑘
) × PC([𝛼, 0], 𝑆(𝜌

1
)),

𝐷
−
𝑉 (𝑡, 𝜓 (0)) ≤ 0. (64)

Also, for all (𝑡
𝑘
, 𝜓) ∈ 𝑅

+
× PC([𝛼, 0], 𝑆(𝜌

1
)),

Δ𝑡
𝑘
𝑉 (𝑡

−

𝑘−1
, 𝜓 (0)) + Δ𝑉 (𝑡

𝑘
, 𝜓 (0)) ≤ −𝜇

𝑘
𝑐
2
(𝑉 (𝑡

𝑘
, 𝜓 (0))) ,

(65)

where 𝑐
2
(𝑠) ≤ 𝑠𝑐

󸀠

2
(𝑠), 𝑠 > 0, 𝜇

𝑘
satisfies lim inf

𝑘→∞

𝜇
𝑘
≥ 2 ⋅ sup

𝑠>0
(𝑠/𝑐

2
(𝑚

−1
⋅ 𝑠));

(iv) there exist constants 𝑀
1
,𝑀

2
> 0 such that the

following inequalities hold:

sup
𝑡≥0

∫

𝑡+𝜏

𝑡

𝑝 (𝑠) 𝑑𝑠 = 𝑀
1
< ∞, (66)

inf
𝑠>0

∫

𝑠

𝑔(𝑠)

𝑑𝑡

𝑐
1
(𝑡)

= 𝑀
2
> 𝑀

1
, (67)

where 𝜏 = max
𝑘≥1
{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞.

Then the zero solution of (1)-(2) is uniformly asymptoti-
cally stable.

Example 7. Consider the impulsive delay differential equa-
tions:

𝑥
󸀠
(𝑡) = 𝑎𝑥 (𝑡) − 𝑏∫

0

−∞

𝑒
𝑠
𝑥 (𝑡 + 𝑠) 𝑑𝑠, 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥|𝑡=𝑡
𝑘

= 𝐼
𝑘
(𝑥) , 𝑘 = 1, 2, . . . ,

𝑥
0
= 𝜙 > 0,

(68)

where 𝑎 ∈ (0, 3], 𝑏 ∈ (0, 2], |𝑥 + 𝐼
𝑘
(𝑥)| ≤ √𝜆 ⋅ |𝑥|, 𝑘 =

1, 2, . . . , 𝜆 ∈ (0, 1). For any given 𝜙 > 0, we always suppose
that (68) has and only has positive solutions, and assume
without loss of generality that 𝑥(𝑡) = 𝑥(𝑡, 0, 𝜙) is a solutions
of (68) through (0, 𝜙). Suppose that there exists 𝑚 > 1 such
that the following inequalities hold:

𝜏 < min{ ln𝑚
2 (𝑎 − 𝑏√𝑚)

,
1 − 𝜆 − 2𝜆𝑚

2𝑎
} , 𝑎 > 2𝑏 − 1,

(69)

where 𝜏 = max
𝑘≥1
{𝑡
𝑘
− 𝑡

𝑘−1
} < ∞. Then, the zero solution of

(68) is uniformly asymptotically stable.

In fact, let 𝑉(𝑡, 𝑥) = 𝑥
2
/2, 𝑔(𝑠) = 𝑚

−1
𝑠(𝑚 >

1), and 𝑐
1
(𝑠) = 𝑠 then 𝑉(𝑡, 𝑥(𝑡)) > 𝑔(𝑉(𝑠, 𝑥(𝑠))), −∞ ≤ 𝑠 ≤ 𝑡

implies that√𝑚 ⋅ |𝑥(𝑡)| > |𝑥(𝑠)|, −∞ ≤ 𝑠 ≤ 𝑡. Thus, for 𝑡 ̸= 𝑡
𝑘

𝐷
+
𝑉 (𝑡, 𝑥 (⋅)) = 𝑥 (𝑡) 𝑥

󸀠
(𝑡)

= 𝑥 (𝑡) {𝑎𝑥 (𝑡) − 𝑏∫

0

−∞

𝑒
𝑠
𝑥 (𝑡 + 𝑠) 𝑑𝑠}

≤ 𝑥
2
(𝑡) {𝑎 − 𝑏√𝑚∫

0

−∞

𝑒
𝑠
𝑑𝑠}

= 𝑥
2
(𝑡) {𝑎 − 𝑏√𝑚}

= 𝑝 (𝑡) 𝑉 (𝑡, 𝑥 (𝑡)) ,

(70)

where 𝑝(𝑡) = 2(𝑎 − 𝑏√𝑚).
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In view of condition (69), we note

sup
𝑡≥0

∫

𝑡+𝜏

𝑡

𝑝 (𝑠) 𝑑𝑠 = 2𝜏 (𝑎 − 𝑏√𝑚) < ln𝑚

= inf
𝑠>0

∫

𝑠

𝑔(𝑠)

𝑑𝑡

𝑐
1 (𝑡)

.

(71)

So, condition (iv) in Corollary 5 holds.
On the other hand, we have for 𝑡 ̸= 𝑡

𝑘

𝐷
−
𝑉 (𝑡, 𝑥 (⋅)) = (𝑥 (𝑡) 𝑥

󸀠
(𝑡))

󸀠

= 𝑥 (𝑡) 𝑥
󸀠󸀠
(𝑡) + (𝑥

󸀠
(𝑡))

2

= (𝑥
󸀠
(𝑡))

2

+ 𝑥 (𝑡) (𝑎𝑥 (𝑡) − 𝑏∫

0

−∞

𝑒
𝑠
𝑥 (𝑡 + 𝑠) 𝑑𝑠)

󸀠

= (𝑥
󸀠
(𝑡))

2

+ 𝑎𝑥 (𝑡) 𝑥
󸀠
(𝑡)

− 𝑏𝑥 (𝑡) ∫

0

−∞

𝑒
𝑠
𝑥 (𝑡 + 𝑠) 𝑑𝑠 − 𝑏𝑥

2
(𝑡)

= (𝑥
󸀠
(𝑡))

2

+ 𝑎𝑥 (𝑡) 𝑥
󸀠
(𝑡) + 𝑎𝑥

2
(𝑡)

− 𝑥 (𝑡) 𝑥
󸀠
(𝑡) − 𝑏𝑥

2
(𝑡)

= (𝑥
󸀠
(𝑡))

2

+ (𝑎 − 1) 𝑥 (𝑡) 𝑥
󸀠
(𝑡)

+ (𝑎 − 𝑏) 𝑥
2
(𝑡)

≥ (𝑥
󸀠
(𝑡))

2

−

(𝑥
󸀠
(𝑡))

2

+ 𝑥
2
(𝑡)

2
(𝑎 − 1)

+ (𝑎 − 𝑏) 𝑥
2
(𝑡)

=
3 − 𝑎

2
(𝑥

󸀠
(𝑡))

2

+ (
𝑎 + 1

2
− 𝑏) 𝑥

2
(𝑡)

≥ 0,

(72)

in view of condition 𝑎 > 2𝑏 − 1. Also, considering 𝑥(𝑡) to be
a positive solution of (68), we get

Δ𝑡
𝑘
𝑉 (𝑡

−

𝑘
, 𝜓 (0)) + Δ𝑉 (𝑡

𝑘
, 𝜓 (0))

≤ 𝑎𝜏𝑥
2
(𝑡
−

𝑘
) + (𝜆 − 1)

𝑥
2
(𝑡
−

𝑘
)

2

= (2𝑎𝜏 + 𝜆 − 1) 𝑥
2
(𝑡
−

𝑘
)
𝑥
2
(𝑡
−

𝑘
)

2

= (2𝑎𝜏 + 𝜆 − 1)𝑉 (𝑡
−

𝑘
)

≤ −
1 − 2𝑎𝜏 − 𝜆

𝜆
𝑉 (𝑡

𝑘
)

= −𝜇
𝑘
𝑐
2
(𝑉 (𝑡

𝑘
, 𝜓 (0))) ,

(73)

where 𝑐
2
= 𝑠, 𝜇

𝑘
= (1 − 2𝑎𝜏 − 𝜆)/𝜆.

Note that

sup
𝑠>0

2𝑠

𝑐
2
(𝑚−1 ⋅ 𝑠)

= 2𝑚 <
1 − 2𝑎𝜏 − 𝜆

𝜆
= 𝜇

𝑘
, (74)

in view of (69). So, the zero solution of (68) is uniformly
stable by Corollary 5.

Furthermore, choose 𝑞(𝑠) = − ln(1 − 1/𝑚) (positive
constants), which implies that ∫0

−𝑞(𝑠)
𝑒
𝑠
𝑑𝑠 = 𝑚

−1. On the
other hand, since 𝑉(𝑡, 𝑥(𝑡)) > 𝑚

−2
𝑔(𝑉(𝑠, 𝑥(𝑠))), max{𝛼, 𝑡 −

𝑞(𝑉(𝑡))} ≤ 𝑠 ≤ 𝑡, implying that𝑚3/2
|𝑥(𝑡)| > |𝑥(𝑠)|, max{𝛼, 𝑡−

𝑞(𝑉(𝑡))} ≤ 𝑠 ≤ 𝑡, then

𝐷
+
𝑉
󵄨󵄨󵄨󵄨(68) (

𝑡, 𝑥 (⋅))

≤ 𝑎𝑥
2
(𝑡) − 𝑏𝑥 (𝑡) ∫

0

−∞

𝑒
𝑠
|𝑥 (𝑡 + 𝑠)| 𝑑𝑠

≤ 𝑎𝑥
2
(𝑡) − 𝑏𝑥 (𝑡) ∫

𝑡

−∞

𝑒
𝑠−𝑡
|𝑥 (𝑠)| 𝑑𝑠

≤ 𝑎𝑥
2
(𝑡) − 𝑏𝑥 (𝑡) ∫

𝑡

𝑡−𝑞(𝑉(𝑡,𝑥(⋅)))

𝑒
𝑠−𝑡
|𝑥 (𝑠)| 𝑑𝑠

− 𝑥 (𝑡) ∫

𝑡−𝑞(𝑉(𝑡,𝑥(⋅)))

−∞

𝑒
𝑠−𝑡
|𝑥 (𝑠)| 𝑑𝑠

≤ 𝑎𝑥
2
(𝑡) − 𝑏𝑥 (𝑡) ∫

𝑡

𝑡−𝑞(𝑉(𝑡,𝑥(⋅)))

𝑒
𝑠−𝑡
|𝑥 (𝑠)| 𝑑𝑠

≤ 𝑥
2
(𝑡) {𝑎 − 𝑏𝑚

3/2
∫

0

−𝑞(𝑉(𝑡,𝑥(⋅)))

𝑒
𝑠
𝑑𝑠}

≤ 𝑥
2
(𝑡) {𝑎 − 𝑏√𝑚}

= 𝑐 (𝑉 (𝑡, 𝑥 (𝑡))) 𝑝 (𝑡) .

(75)

By Theorem 4, we obtain that if (69) holds, then the zero
solution of (68) is uniformly asymptotically stable.

Remark 8. In fact, 𝑥(𝑡) = 𝜙(0)𝑒𝑡 is a positive solution of (68)
through (0, 𝜙) in the absence of impulses. It is obvious that
the solution is unstable. However, the solution is uniformly
asymptotically stable under proper impulses effect, which
shows that impulses do contribute to the system’s stability
behavior.

4. Conclusion

In this work, we have considered the stability of impulsive
infinite-delay differential systems. By using Lyapunov func-
tions and the Razumikhin technique, we have obtained some
new results.We can see that impulses and delay do contribute
to the system’s stability behavior.
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This paper investigates global synchronization in an array of coupled neural networks with time-varying delays and unbounded
distributed delays. In the coupled neural networks, limited transmission efficiency between coupled nodes, whichmakes the model
more practical, is considered. Based on a novel integral inequality and the Lyapunov functional method, sufficient synchronization
criteria are derived. The derived synchronization criteria are formulated by linear matrix inequalities (LMIs) and can be easily
verified by using Matlab LMI Toolbox. It is displayed that, when some of the transmission efficiencies are limited, the dynamics of
the synchronized state are different from those of the isolated node. Furthermore, the transmission efficiency and inner coupling
matrices between nodes play important roles in the final synchronized state. The derivative of the time-varying delay can be
any given value, and the time-varying delay can be unbounded. The outer-coupling matrices can be symmetric or asymmetric.
Numerical simulations are finally given to demonstrate the effectiveness of the theoretical results.

1. Introduction

In the past fewdecades, the problemof chaos synchronization
and network synchronization has been extensively studied
since its potential engineering applications such as commu-
nication, biological systems, and information processing
(see [1–4] and the references therein). It is found out that
neural networks can exhibit chaotic behavior as long as their
parameters and delays are properly chosen [5]. Recently, syn-
chronization of coupled chaotic neural networks has received
much attention due to its wide applications inmany areas [6–
12].

An array of coupled neural networks, as a special class of
complex networks [12–16], has received increasing attention
from researchers of different disciplines. In the literature, syn-
chronization in an array of coupled neural networks has
been extensively studied [8, 17–20]. The authors of [8]
studied the exponential synchronization problem for coupled
neural networks with constant time delay and stochastic

noise perturbations. Some novel𝐻
∞
synchronization results

have been obtained in [21] for a class of discrete time-
varying stochastic networks over a finite horizon. In [18–20,
22], several types of synchronization in dynamical networks
with discrete and bounded distributed delays were studied
based on LMI approach. However, most of the obtained
results concerning synchronization of complex networks
including the above-mentioned implicitly assume that the
connections among nodes can transmit information from the
dispatcher nodes to receiver ones according to the expected
effect. In other words, the transmission efficiencies between
connected nodes are all perfect. In practical situations,
signal transmission efficiency between nodes is limited in
general due to either the limited bandwidth of the channels
or external causes such as uncertain noisy perturbations
and artificial factors. If the transmission efficiency of some
connections in a complex network is limited, then most
of the existing synchronization criteria are not applicable.
Consequently, it is urgent to propose new synchronization
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criteria for complex networks with arbitrary transmission
efficiency.

Time delays usually exist in neural networks. Some
papers concerning synchronization of neural networks have
considered various time delays. In [6], Cao and Lu inves-
tigated the adaptive synchronization of neural networks
with or without time-varying delay. In [23], synchronization
of neural networks with discrete and bounded distributed
time-varying delays was investigated. The authors of [8]
studied the exponential synchronization problem for coupled
neural networks with constant time delay. Synchronization
of coupled neural networks with both discrete and bounded
distributed delays was studied in [11, 18–20, 24]. As pointed
out in [25], bounded distributed delay means that there is
a distribution of propagation delays only over a period of
time. At the same time, unbounded distributed delay implies
that the distant past has less influence compared to the recent
behavior of the state [26]. Note that most existing results on
stability or synchronization of neural networks with bounded
distributed delays obtained by using LMI approach cannot
be directly extended to those with unbounded distributed
delays. Although there were some results on stability or
synchronization of neural networks with unbounded dis-
tributed delays, some of them were obtained by using algebra
approach [27–30]. As is well known, compared with LMI
result, algebraic one is more conservative, and criteria in
terms of LMI can be easily checked by using the powerful
Matlab LMI Toolbox. Therefore, in this paper we investigate
the synchronization in an array of coupled neural networks
with both discrete time-varying delays and unbounded dis-
tributed delays based on LMI approach. Results of the present
paper are also applicable to synchronization of complex
networkswith bounded or unbounded distributed time delay.

Motivated by the above analysis, this paper studies the
synchronization in an array neural network with both time-
varying delays and unbounded distributed delays, under the
condition that the transmission efficiencies among nodes are
limited. By using a new lemma on infinite integral inequality
and the Lyanupov functional method, some synchronization
criteria formulated by LMIs are obtained for the considered
model. In the obtained synchronization criteria, the time-
varying delay studied can be unbounded, and its deriva-
tive can be any given value. Especially, when some of the
transmission efficiencies are limited (i.e., less than 1), the
transmission efficiency and inner coupling matrices between
nodes have serious impact on the synchronized state. Results
of this paper extend some existing ones. Numerical simula-
tions are finally given to demonstrate the effectiveness of the
theoretical results.

The rest of this paper is organized as follows. In Section 2,
coupled neural network model with transmission efficiency
is presented. Some lemmas and necessary assumptions are
also given in this section. Synchronization criteria of the con-
sidered model are obtained in Section 3. Then, in Section 4,
numerical simulations are given to show the effectiveness of
our results. Finally, Section 5 reaches conclusions.

Notations. In the sequel, if not explicitly stated, matrices
are assumed to have compatible dimensions. 𝐼

𝑞
denotes the

identity matrix of 𝑞-dimension. For vector 𝑥 ∈ R𝑛, the norm
is denoted as ‖ 𝑥 ‖= √𝑥𝑇𝑥, where 𝑇 denotes transposition.
𝐴 = (𝑎

𝑖𝑗
)
𝑚×𝑚

denotes a matrix of𝑚×𝑚-dimension.𝐴 > 0 or
𝐴 < 0 denotes that the matrix 𝐴 is a symmetric and positive
or negative definite matrix.

2. Preliminaries

An array of coupled neural networks consisting of𝑁 identical
nodes with delays and transmission efficiencies is described
as follows:

̇𝑥
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) d𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝛼
𝑖𝑗
𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝛽
𝑖𝑗
V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥𝑗 (𝑠) d𝑠,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇
∈ R𝑛 represents the state

vector of the 𝑖th node of the network at time 𝑡; 𝑛 corresponds
to the number of neurons; 𝑓(𝑥

𝑖
(𝑡)) = (𝑓

1
(𝑥
𝑖1
(𝑡)), . . . ,

𝑓
𝑛
(𝑥
𝑖𝑛
(𝑡)))
𝑇 is the neuron activation function; 𝐶 = diag(𝑐

1
,

𝑐
2
, . . . , 𝑐

𝑛
) is a diagonal matrix with 𝑐

𝑖
> 0; 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 =

(𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐷 = (𝑑
𝑖𝑗
)
𝑛×𝑛

are the connection weight matrix,
time-delayed weight matrix, and the distributively time-
delayed weight matrix, respectively; 𝐼(𝑡) = (𝐼

1
(𝑡), 𝐼
2
(𝑡), . . . ,

𝐼
𝑛
(𝑡))
𝑇

∈ R𝑛 is an external input vector; 𝜏(𝑡) denotes the
time-varying delay satisfying ̇𝜏(𝑡) ≤ ℎ, ℎ is a constant; 𝐾(⋅)

is a scalar function describing the delay kernel. The Φ =

(𝜙
𝑖𝑗
)
𝑛×𝑛

, Υ = (𝜀
𝑖𝑗
)
𝑛×𝑛

, and Λ = (𝜆
𝑖𝑗
)
𝑛×𝑛

are inner coupling
matrices of the networks, which describe the individual cou-
pling between two subsystems. Matrices 𝑈 = (𝑢

𝑖𝑗
)
𝑁×𝑁

, 𝑉 =

(V
𝑖𝑗
)
𝑁×𝑁

, and𝑊 = (𝑤
𝑖𝑗
)
𝑁×𝑁

are outer couplings of the whole
networks satisfying the following diffusive conditions:

𝑢
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑢

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

V
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , V

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑢
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁,

𝑤
𝑖𝑗
≥ 0 (𝑖 ̸= 𝑗) , 𝑤

𝑖𝑖
= −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑤
𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

(2)

Matrices 𝛼 = (𝛼
𝑖𝑗
)
𝑁×𝑁

, 𝛽 = (𝛽
𝑖𝑗
)
𝑁×𝑁

, and Γ = (𝛾
𝑖𝑗
)
𝑁×𝑁

are transmission efficiency matrices of the coupled network.
The constants 0 ≤ 𝛼

𝑖𝑗
, 𝛽
𝑖𝑗
, 𝛾
𝑖𝑗

≤ 1 represent, respectively,
signal transmission efficiency from node 𝑗 to node 𝑖 through
connections 𝑢

𝑖𝑗
, V
𝑖𝑗
, and 𝑤

𝑖𝑗
. In this paper, we always assume

that

𝛼
𝑖𝑖
= 𝛽
𝑖𝑖
= 𝛾
𝑖𝑖
= 1, 𝑖 = 1, 2, . . . , 𝑁. (3)

The initial condition of (1) is given by 𝑥
𝑖
(𝑡) = 𝜙

𝑖
(𝑡) ∈

𝐶([−∞, 0],R𝑛), 𝑖 = 1, 2, . . . , 𝑁. In this paper, we assume that
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at least one matrix of 𝑈, 𝑉, and𝑊 is irreducible in the sense
that there is no isolated node in corresponding graph.
Remark 1. Model (1) is general, and some special models can
be derived from it. For instance, if

𝐾 (𝑠) = {
0, 𝑠 > 𝜃 (𝑡) ,

𝐾 (𝑠) , 0 ≤ 𝑠 ≤ 𝜃 (𝑡) ,
(4)

for any scalar 𝜃(𝑡) > 0, 𝑡 ∈ R, then the network (1)
becomes the following coupled neural networkwith bounded
distributed delays and transmission efficiencies:

̇𝑥
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

𝑡−𝜃(𝑡)

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) d𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝛼
𝑖𝑗
𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) +

𝑁

∑

𝑗=1

𝛽
𝑖𝑗
V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑤
𝑖𝑗
Λ∫

𝑡

𝑡−𝜃(𝑡)

𝐾 (𝑡 − 𝑠) 𝑥
𝑗
(𝑠) d𝑠,

𝑖 = 1, 2, . . . , 𝑁,

(5)

which includes the models in [18, 19] as a special case when
𝜏(𝑡) = 𝜏, 𝜃(𝑡) = 𝜃, and 𝛼

𝑖𝑗
= 𝛽
𝑖𝑗
= 𝛾
𝑖𝑗
= 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑁, where

𝜏, 𝜃 are nonnegative constants. Furthermore, if𝐾(𝑠) = 1, 0 ≤

𝑠 ≤ 𝜃, then (1) turns out to the model studied in [20].

Remark 2. We introduce transmission efficiencies between
nodes in model (1). The two extreme situations are if all the
signal channels in the network operate perfectly, then 𝛼

𝑖𝑗
=

𝛽
𝑖𝑗
= 𝛾
𝑖𝑗
= 1, 1 ≤ 𝑖, 𝑗 ≤ 𝑁; if no signal is transmitted through

𝑢
𝑖𝑗
, V
𝑖𝑗
, and 𝑤

𝑖𝑗
or 𝑢
𝑖𝑗
= V
𝑖𝑗
= 𝑤
𝑖𝑗
= 0, 𝑖 ̸= 𝑗, then 𝛼

𝑖𝑗
= 𝛽
𝑖𝑗
=

𝛾
𝑖𝑗

= 0, 𝑖 ̸= 𝑗. Since many practical factors such as limited
bandwidth of the channels or external causes and other
uncertain perturbations surely exist, the model (1) is more
practical than existingmodels of complex networks including
those in [18–20].

Based on (2)-(3), the system (1) can be written as

̇𝑥
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) d𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝑢
𝑖𝑗
Φ𝑥
𝑗
(𝑡) +

𝑁

∑

𝑗=1

V
𝑖𝑗
Υ𝑥
𝑗
(𝑡 − 𝜏 (𝑡))

+

𝑁

∑

𝑗=1

𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥𝑗 (𝑠) d𝑠

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(1 − 𝛼
𝑖𝑗
) 𝑢
𝑖𝑗
Φ𝑥
𝑖
(𝑡)

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(1 − 𝛽
𝑖𝑗
) V
𝑖𝑗
Υ𝑥
𝑖
(𝑡 − 𝜏 (𝑡))

−

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

(1 − 𝛾
𝑖𝑗
)𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥
𝑖
(𝑠) d𝑠,

(6)

where 𝑢
𝑖𝑗
= 𝛼
𝑖𝑗
𝑢
𝑖𝑗
, 𝑢
𝑖𝑖
= −∑

𝑗=1,𝑗 ̸= 𝑖
𝛼
𝑖𝑗
𝑢
𝑖𝑗
, V
𝑖𝑗
= 𝛽
𝑖𝑗
V
𝑖𝑗
, V
𝑖𝑖
=

−∑
𝑗=1,𝑗 ̸= 𝑖

𝛽
𝑖𝑗
V
𝑖𝑗
,𝑤
𝑖𝑗
= 𝛾
𝑖𝑗
𝑤
𝑖𝑗
, and 𝑤

𝑖𝑖
= −∑

𝑗=1,𝑗 ̸= 𝑖
𝛾
𝑖𝑗
𝑤
𝑖𝑗
, 𝑖 ̸= 𝑗.

Obviously, the matrices𝑈 = (𝑢
𝑖𝑗
)
𝑁×𝑁

,𝑉 = (V
𝑖𝑗
)
𝑁×𝑁

and𝑊 =

(𝑤
𝑖𝑗∞

)
𝑁×𝑁

are diffusive.
This paper utilizes the following assumptions.

(H
1
) The delay kernel 𝐾 : [0, +∞) → [0, +∞) is a real-
valued nonnegative continuous function, and there
exists positive number 𝑘 such that ∫+∞

0
𝐾(𝑠)d𝑠 = 𝑘.

(H
2
) There exist constant matrices 𝐸

1
and 𝐸

2
such that

[𝑓 (𝑥) − 𝑓 (𝑦) − 𝐸
1
(𝑥 − 𝑦)]

𝑇

× [𝑓 (𝑥) − 𝑓 (𝑦) − 𝐸
2
(𝑥 − 𝑦)] ≤ 0, ∀𝑥, 𝑦 ∈ R

𝑛
.

(7)

(H
3
) There are constants 𝑎, 𝑏, 𝑐 such that ∑𝑁

𝑗=1,𝑗 ̸= 𝑖
(1 −

𝛼
𝑖𝑗
)𝑢
𝑖𝑗
= 𝑎, ∑𝑁

𝑗=1,𝑗 ̸= 𝑖
(1 − 𝛽

𝑖𝑗
)V
𝑖𝑗
= 𝑏, and ∑

𝑁

𝑗=1,𝑗 ̸= 𝑖
(1 −

𝛾
𝑖𝑗
)𝑤
𝑖𝑗
= 𝑐, 𝑖 = 1, 2, . . . , 𝑁.

Remark 3. The assumption (H
2
) was used in [24, 31]. 𝑓

satisfies the sector condition in the sense that belongs to the
sectors [𝐸

1
, 𝐸
2
]. Such a sector description is quit general and

includes the usual Lipschitz conditions as a special case.

Remark 4. When the transmission efficiencies of all the
channels are considered and some of them are limited, the
final synchronized state is different from that of a single node
without coupling. According to (H

3
), the synchronized state

can be described as the following:

̇𝑧 (𝑡) = − (𝐶 + 𝑎Φ) 𝑧 (𝑡) + 𝐴𝑓 (𝑧 (𝑡)) + 𝐵𝑓 (𝑧 (𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑧 (𝑠)) d𝑠 + 𝐼 (𝑡)

− 𝑏Υ𝑧 (𝑡 − 𝜏 (𝑡)) − 𝑐Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑧 (𝑠) d𝑠.

(8)

In order to derive ourmain results, some basic definitions
and useful lemmas are needed.

Definition 5. The coupled neural network with limited trans-
mission efficiency (1) is said to be globally asymptotically
synchronized if

lim
𝑡→∞

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
(𝑡) − 𝑥

𝑗
(𝑡)

󵄩󵄩󵄩󵄩󵄩
= 0, 𝑖 = 1, 2, . . . , 𝑁, (9)

holds for any initial values.

Lemma 6 (see [32]). Let ⊗ denote the Kronecker product,
𝐴, 𝐵, 𝐶, and𝐷 are matrices with appropriate dimensions. The
following properties are satisfied:

(1) (𝑎𝐴) ⊗ 𝐵 = 𝐴 ⊗ (𝑎𝐵), where 𝑎 is a constant;
(2) (𝐴 + 𝐵) ⊗ 𝐶 = 𝐴 ⊗ 𝐶 + 𝐵 ⊗ 𝐶;
(3) (𝐴 ⊗ 𝐵)(𝐶 ⊗ 𝐷) = (𝐴𝐶) ⊗ 𝐵𝐷.

Let𝑇(𝜖) denote the set ofmatrices of which the sumof the
element in each row is equal to the real number 𝜖. The set𝑀

1
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is defined as follows: if𝑀 = (𝑀
𝑖𝑗
)
(𝑁−1)×𝑁

∈ 𝑀
1
, each row of

𝑀 contains exactly one element 1 and one element −1, and all
other elements are zero. 𝑗

𝑖1
(𝑗
𝑖2
) denotes the column indexes

of the first (second) nonzero element in the 𝑖th row.The set𝐻
is defined by 𝐻 = {{𝑗

11
, 𝑗
12
}, {𝑗
21
, 𝑗
22
}, . . . , {𝑗

𝑝1
, 𝑗
𝑝2
}}. The set

𝑀
2
is defined as follows:𝑀

2
⊂ 𝑀
1
and if𝑀 = (𝑚

𝑖𝑗
)
(𝑁−1)×𝑁

∈

𝑀
2
, for any pair of the column indexes 𝑗

𝑠
and 𝑗
𝑡
, there exist

indexes 𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑙
with 𝑗

1
= 𝑗
𝑠
and 𝑗

𝑙
= 𝑗
𝑡
such that

{𝑗
𝑚
, 𝑗
𝑚+1

} ∈ 𝐻 for𝑚 = 1, 2, . . . , 𝑙 − 1.

Lemma 7 (see [33, 34]). Let𝑀 ∈ 𝑀
2
be a (𝑁−1)×𝑁matrix

and𝐺 ∈ 𝑇(𝜖) be a𝑁×𝑁matrix.Then, there exists a𝑁×(𝑁−1)

matrix 𝐽 such that𝑀𝐺 = 𝐺𝑀, where 𝐺 = 𝑀𝐺𝐽. Moreover, let
Φ be a constant 𝑛× 𝑛matrix andG = 𝐺⊗Φ, thenMG = G̃M,
where G̃ = 𝐺 ⊗ Φ, M = 𝑀 ⊗ 𝐼

𝑛
. Furthermore,𝑀𝐽 = 𝐼

𝑁−1
.

The following lemma can be easily obtained from [18, 33].

Lemma8. Let𝑥(𝑡) = (𝑥
𝑇

1
(𝑡), 𝑥
𝑇

1
(𝑡), . . . , 𝑥

𝑇

𝑁
(𝑡))
𝑇 and𝑀 ∈ 𝑀

2
,

if lim
𝑡→∞

‖ (𝑀⊗𝐼
𝑛
)𝑥(𝑡) ‖= 0, then lim

𝑡→∞
‖ 𝑥
𝑖
(𝑡)−𝑥

𝑗
(𝑡) ‖=

0, for all 𝑖, 𝑗 = 1, 2, . . . , 𝑁.

Lemma 9 (see [35]). Suppose 𝐾(𝑡) is a nonnegative bounded
scalar function defined on [0, +∞) and ∫

+∞

0
𝐾(𝑢)d𝑢 = 𝑘. For

any constant matrix 𝐷 ∈ R𝑛×𝑛, 𝐷 > 0, and vector function
𝑥 : (−∞, 𝑡] → R𝑛 for 𝑡 ≥ 0, one has

𝑘∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥
𝑇
(𝑠)𝐷𝑥 (𝑠) d𝑠

≥ (∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠.

(10)

Provided that the integrals are all well defined.

3. Synchronization with Limited
Transmission Efficiency

In this section, synchronization criteria formulated by LMIs
of the general model (1) are derived. When the distributed
delays in (1) are bounded, corresponding synchronization
criterion is also obtained. In the derived synchronization
criteria, the time-varying delays can be unbounded and their
derivative can be any given value.

For 𝑀 ∈ 𝑀
2
, by Lemma 7, there exists a 𝑁 × (𝑁 − 1)

matrix 𝐽 such that 𝑀𝐽 = 𝐼
𝑁−1

. Let U = 𝑈 ⊗ Φ, Ũ = �̃� ⊗ Φ,
�̃� = 𝑀𝑈𝐽, V = 𝑉 ⊗ Υ, Ṽ = �̃� ⊗ Υ, �̃� = 𝑀𝑉𝐽, W =

𝑊 ⊗ Λ, W̃ = �̃� ⊗ Λ, �̃� = 𝑀𝑊𝐽, 𝐶 = 𝐶 + 𝑎Φ, C = 𝐼
𝑁
⊗ 𝐶,

C
1
= 𝐼
𝑁−1

⊗ 𝐶, A = 𝐼
𝑁
⊗ 𝐴, A

1
= 𝐼
𝑁−1

⊗ 𝐴, B = 𝐼
𝑁
⊗ 𝐵,

B
1
= 𝐼
𝑁−1

⊗ 𝐵, D = 𝐼
𝑁
⊗ 𝐷, D

1
= 𝐼
𝑁−1

⊗ 𝐷, K = 𝐼
𝑁
⊗ 𝐾,

K
1
= 𝐼
𝑁−1

⊗ 𝐾, f(𝑥(𝑡)) = (𝑓(𝑥
1
(𝑡)), 𝑓(𝑥

2
(𝑡)), . . . , 𝑓(𝑥

𝑁
(𝑡)))
𝑇,

I(t) = (𝐼(𝑡), 𝐼(𝑡), . . . , 𝐼(𝑡))
𝑇, Υ = 𝐼

𝑁
⊗𝑏Υ, Υ

1
= 𝐼
𝑁−1

⊗𝑏Υ, Λ =

𝐼
𝑁
⊗ 𝑐Λ, Λ

1
= 𝐼
𝑁−1

⊗ 𝑐Λ, 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡), . . . , 𝑥

𝑖𝑛
(𝑡))
𝑇,

𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑁
(𝑡))
𝑇.Then, the network (1) can be

written in the Kronecker product form as

̇𝑥 (𝑡) = − C𝑥 (𝑡) + Af (𝑥 (𝑡)) + Bf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠 + I (𝑡)

+ U𝑥 (𝑡) + V𝑥 (𝑡 − 𝜏 (𝑡))

+W∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠 − Υ𝑥 (𝑡 − 𝜏 (𝑡))

− Λ∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠.

(11)

To obtain synchronization criterion in the array of cou-
pled neural networks (1), we only need to consider the the
problem for the system (11). Theorem 10 is our main result.

Theorem 10. Under assumptions (H
1
)–(H
3
), if there exist

matrices𝑀 ∈ 𝑀
2
and 𝐽 satisfying𝑀𝐽 = 𝐼

𝑁−1
, positive definite

matrices 𝑃,𝑄, 𝑅, 𝐺, 𝑆 ∈ R(𝑁−1)𝑛×(𝑁−1)𝑛 and two positive diago-
nal matrices 𝑆

1
, 𝑆
2
∈ R(𝑁−1)𝑛×(𝑁−1)𝑛 such that

Ω =

(
(
(
(
(
(

(

Ξ
1

PṼ − PΥ
1

PA
1
+ E
2

PB
1

PW̃ − PΛ
1
PD
1

∗ (− (1 − ℎ) S − E
1
) 0 E

2
0 0

∗ ∗ Ξ
2

0 0 0

∗ ∗ ∗ − (1 − ℎ)G − 𝐼
(𝑁−1)𝑛

0 0

∗ ∗ ∗ ∗ −R 0

∗ ∗ ∗ ∗ ∗ −Q

)
)
)
)
)
)

)

< 0, (12)

whereΞ
1
= −CT
1
P−PC

1
+PŨ+Ũ𝑇P+𝑘2K𝑇(0)RK(0)+S−E

1
𝑆
1
,

Ξ
2
= 𝑘
2K𝑇(0)QK(0) + G − 𝐼

(𝑁−1)𝑛
𝑆
1
, E
1
= 𝐼
𝑁−1

⊗ 𝐸
1
, E
2
=

𝐼
𝑁−1

⊗𝐸
2
,𝐸
1
= (1/2)(𝐸

𝑇

1
𝐸
2
+𝐸
𝑇

2
𝐸
1
), and 𝐸

2
= (1/2)(𝐸

𝑇

1
+𝐸
𝑇

2
),

then the coupled neural networks (11) is globally asymptotically
synchronized.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) =

5

∑

𝑖=1

𝑉
𝑖
(𝑡) , (13)
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where
𝑉
1
(𝑡) = 𝑥

𝑇
(𝑡)M𝑇PM𝑥 (𝑡) ,

𝑉
2
(𝑡) = 𝑘∫

0

−∞

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) f (𝑥 (𝜃)))𝑇

×Q (MK (𝑡 − 𝜃) f (𝑥 (𝜃))) d𝜃d𝑠,

𝑉
3
(𝑡) = 𝑘∫

0

−∞

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) 𝑥 (𝜃))
𝑇

× R (MK (𝑡 − 𝜃) 𝑥 (𝜃)) d𝜃d𝑠,

𝑉
4
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

(Mf (𝑥 (𝑠)))𝑇G (Mf (𝑥 (𝑠))) d𝑠,

𝑉
5
(𝑡) = (M𝑥 (𝑡))

𝑇S (M𝑥 (𝑡))

− (1 − ̇𝜏 (𝑡)) (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇S (M𝑥 (𝑡 − 𝜏 (𝑡))) .

(14)

Differentiating 𝑉
1
(𝑡) along the solution of (11) obtains that

𝑉
1
(𝑡) = − 𝑥

𝑇
(𝑡) (C

𝑇M𝑇PM +M𝑇PMC) 𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡)M𝑇PM [Af (𝑥 (𝑡)) + Bf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠

+ I (𝑡) + U𝑥 (𝑡) + V𝑥 (𝑡 − 𝜏 (𝑡))

+W∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠

− Υ𝑥 (𝑡 − 𝜏 (𝑡))

−Λ∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠] .

(15)

By virtue of Lemma 6, it can be verified that MC = C
1
M,

MA = A
1
M, MB = B

1
M, MD = D

1
M, MK = K

1
M,

MΥ = Υ
1
M, MΛ = Λ

1
M, and MI(𝑡) = 0. On the other hand,

it follows from Lemma 7 that MU = ŨM, MV = ṼM, and
MW = W̃M.Therefore,

𝑉
1
(𝑡) = − 𝑥

𝑇
(𝑡) (M𝑇C

T
1
PM +M𝑇PC

1
M) 𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡)M𝑇P [A

1
Mf (𝑥 (𝑡))

+ B
1
Mf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D
1
M∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠

+ ŨM𝑥 (𝑡) + ṼM𝑥 (𝑡 − 𝜏 (𝑡))

+ W̃M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠

− Υ
1
M𝑥 (𝑡 − 𝜏 (𝑡))

−Λ
1
M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠] .

(16)

Moreover, based on Lemma 9, one gets that

𝑉
2
(𝑡) ≤ 𝑘

2
(MK (0) f (𝑥 (𝑡)))𝑇Q (MK (0) f (𝑥 (𝑡)))

− 𝑘∫

𝑡

−∞

(MK (𝑡 − 𝑠) f (𝑥 (𝑠)))𝑇

×Q (MK (𝑡 − 𝑠) f (𝑥 (𝑠))) d𝑠

≤ 𝑘
2
(Mf (𝑥 (𝑡)))𝑇K𝑇 (0)QK (0) (Mf (𝑥 (𝑡)))

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

×Q(∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠) .

(17)

Similarly,

𝑉
3 (𝑡) ≤ 𝑘

2
(M𝑥 (𝑡))

𝑇K𝑇 (0)RK (0) (M𝑥 (𝑡))

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

× R(∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠) .

(18)

By 0 ≤ ̇𝜏(𝑡) ≤ ℎ, it is easy to derive that

𝑉
4 (𝑡) = (Mf (𝑥 (𝑡)))𝑇G (Mf (𝑥 (𝑡)))

− (1 − ̇𝜏 (𝑡)) (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇

× G (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))

≤ (Mf (𝑥 (𝑡)))𝑇G (Mf (𝑥 (𝑡)))

− (1 − ℎ) (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇

× G (Mf (𝑥 (𝑡 − 𝜏 (𝑡)))) ,

𝑉
5 (𝑡) ≤ (M𝑥 (𝑡))

𝑇S (M𝑥 (𝑡))

− (1 − ℎ) (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇S (M𝑥 (𝑡 − 𝜏 (𝑡))) .

(19)

In view of assumption (H
2
), for any positive diagonal

matrices 𝑆
1
and 𝑆
2
, the following two inequalities hold:

(
M𝑥 (𝑡)

Mf (𝑥 (𝑡)))
𝑇

(
E
1
𝑆
1

−E
2
𝑆
1

−E𝑇
2
𝑆
1
𝐼
(𝑁−1)𝑛

𝑆
1

)(
M𝑥 (𝑡)

Mf (𝑥 (𝑡))) ≤ 0,

(
M𝑥 (𝑡 − 𝜏 (𝑡))

Mf (𝑥 (𝑡 − 𝜏 (𝑡)))
)

𝑇

(
E
1
𝑆
2

−E
2
𝑆
2

−E𝑇
2
𝑆
2
𝐼
(𝑁−1)𝑛

𝑆
2

)

× (
M𝑥 (𝑡 − 𝜏 (𝑡))

Mf (𝑥 (𝑡 − 𝜏 (𝑡)))
) ≤ 0.

(20)
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Combining (13)–(20) gives

𝑉 (𝑡) ≤ 𝑥
𝑇
(𝑡)M𝑇 (−C

T
1
P − PC

1
+ PŨ + Ũ𝑇P

+𝑘
2K𝑇 (0)RK (0) + S − E

1
)M𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡)M𝑇 (PA

1
+ E
2
)Mf (𝑥 (𝑡))

+ 2𝑥
𝑇
(𝑡)M𝑇PB

1
Mf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑥
𝑇
(𝑡)M𝑇PD

1
M∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠

+ 2𝑥
𝑇
(𝑡)M𝑇 (PṼ − PΥ

1
)M𝑥 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇
(𝑡)M𝑇 (PW̃ − PΛ

1
)M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠

+ (Mf (𝑥 (𝑡)))𝑇 (𝑘2K𝑇 (0)QK (0) + G − 𝐼
(𝑁−1)𝑛

)

× (Mf (𝑥 (𝑡)))

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

×Q(∫

𝑡

−∞

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)

− (∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

× R(∫

𝑡

−∞

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)

+ (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇
[− (1 − ℎ)G − 𝐼

(𝑁−1)𝑛
]

× (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))

+ (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇
[− (1 − ℎ) S − E

1
]M𝑥 (𝑡 − 𝜏 (𝑡))

+ (M𝑥 (𝑡 − 𝜏 (𝑡)))
𝑇E
2
M𝑓 (𝑥 (𝑡 − 𝜏 (𝑡)))

= 𝜉
𝑇
Ω𝜉,

(21)
where

𝜉 = ((M𝑥 (𝑡))
𝑇
, (M𝑥 (𝑡 − 𝜏 (𝑡)))

𝑇
,

(Mf (𝑥 (𝑡)))𝑇, (Mf (𝑥 (𝑡 − 𝜏 (𝑡))))
𝑇
,

(M∫

𝑡

−∞

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

,

(M∫

𝑡

−∞

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

)

𝑇

.

(22)

From the given condition (12) and the inequality (21), one
derives that 𝑉(𝑡) ≤ 0 and 𝑉(𝑡) = 0 if and only if 𝜉 = 0.
Hence, lim

𝑡→∞
‖ (𝑀⊗𝐼

𝑛
)𝑥(𝑡) ‖= 0. By virtue of Definition 5

and Lemma 8, the coupled neural network (11) is globally
asymptotically synchronize. This completes the proof.

Corresponding to (5), we now consider the following
network with time-varying delays and bounded distributed
delays:

̇𝑥 (𝑡) = − C𝑥 (𝑡) + Af (𝑥 (𝑡)) + Bf (𝑥 (𝑡 − 𝜏 (𝑡)))

+ D∫

𝑡

𝑡−𝜃(𝑡)

K (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠 + I (𝑡)

+ U𝑥 (𝑡) + V𝑥 (𝑡 − 𝜏 (𝑡))

+W∫

𝑡

𝑡−𝜃(𝑡)

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠 − Υ𝑥 (𝑡 − 𝜏 (𝑡))

− Λ∫

𝑡

𝑡−𝜃(𝑡)

K (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠.

(23)

For the system (23) the following result can be easily
derived by similar proof process of Theorem 10.

Corollary 11. Under assumptions (H
2
) and (H

3
), if there is

positive constant 𝑘 such that ∫𝜃(𝑡)
0

𝐾(𝑢)d𝑢 = 𝑘(𝑡) ≤ 𝑘, matrices
𝑀 ∈ 𝑀

2
and 𝐽 satisfying𝑀𝐽 = 𝐼

𝑁−1
, positive definite matrices

𝑃,𝑄, 𝑅, 𝐺, 𝑆 ∈ R(𝑁−1)𝑛×(𝑁−1)𝑛, and two positive diagonal
matrices 𝑆

1
, 𝑆
2
∈ R(𝑁−1)𝑛×(𝑁−1)𝑛 such that the linear matrix

inequality (12) holds, then the coupled neural network (23) is
globally asymptotically synchronized.

Proof. Consider the following Lyapunov function:

𝑉 (𝑡) =

5

∑

𝑖=1

𝑉
𝑖 (𝑡) , (24)

where 𝑉
1
(𝑡), 𝑉
4
(𝑡), and 𝑉

5
(𝑡) are the same as those defined in

the proof of Theorem 10 and

𝑉
2
(𝑡) = 𝑘∫

0

−𝜃

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) f (𝑥 (𝜃)))𝑇

×Q (MK (𝑡 − 𝜃) f (𝑥 (𝜃))) d𝜃 d𝑠,

𝑉
3
(𝑡) = 𝑘∫

0

−𝜃

∫

𝑡

𝑡+𝑠

(MK (𝑡 − 𝜃) 𝑥 (𝜃))
𝑇

× R (MK (𝑡 − 𝜃) 𝑥 (𝜃)) d𝜃 d𝑠.

(25)

Based on Lemma 9, one can get that

𝑉
2 (𝑡) ≤ 𝑘

2
(MK (0) f (𝑥 (𝑡)))𝑇Q (MK (0) f (𝑥 (𝑡)))

− 𝑘 (𝑡) ∫

𝑡

𝑡−𝜃(𝑡)

(MK (𝑡 − 𝑠) f (𝑥 (𝑠)))𝑇

×Q (MK (𝑡 − 𝑠) f (𝑥 (𝑠))) d𝑠

≤ 𝑘
2
(Mf (𝑥 (𝑡)))𝑇K𝑇 (0)QK (0) (Mf (𝑥 (𝑡)))

− (∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠)
𝑇

×Q(∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) f (𝑥 (𝑠)) d𝑠) ,

(26)

𝑉
3 (𝑡) ≤ 𝑘

2
(M𝑥 (𝑡))

𝑇K𝑇 (0)RK (0) (M𝑥 (𝑡))

− (∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠)
𝑇

× R(∫

𝑡

𝑡−𝜃(𝑡)

MK (𝑡 − 𝑠) 𝑥 (𝑠) d𝑠) .

(27)

The rest part of the proof is similar to that of the proof of
Theorem 10. This completes the proof.
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Remark 12. In this paper, the least restriction is imposed on
the time-varying delay. The derivative of the time-varying
delay can be any given value, and the time-varying delay can
be unbounded. However, most of former results are based on
either that the derivative of the time-varying delay should be
less than 1 [16, 17] or that the time-varying delay should be
bounded [16] or even both of them [10]. In this sense, results
of this paper are less conservative than those of [10, 16, 17].

Remark 13. Synchronization criteria in an array of coupled
neural networks with limited transmission efficiency are
obtained in Theorem 10 and Corollary 11. One may note
that assumption condition (H

3
) is strong. Many real-world

complex dynamical network models do not satisfy (H
3
) and

exhibit more complicated dynamical behaviors. How to con-
trol complex networks with arbitrary limited transmission
efficiencywhilewithout (H

3
) is our next research topic, which

is also a challenging work.

4. Numerical Example

In this section, one example is provided to illustrate the effec-
tiveness of the results obtained above.

Consider a 2-dimensional neural network with both dis-
crete and unbounded distributed delays as follows:

̇𝑥 (𝑡) = − 𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,
(28)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡))
𝑇, 𝑓(𝑥(𝑡)) = (tanh(𝑥

1
(𝑡)),

tanh(𝑥
2
(𝑡)))
𝑇, 𝜏(𝑡) = 1, 𝑘(𝑡) = 𝑒

−0.5𝑡, and

𝐶 = (
1.2 0

0 1
) , 𝐴 = (

3 −0.3

4 5
) ,

𝐵 = (
−1.4 0.1

0.3 −8
) , 𝐷 = (

−1.2 0.1

−2.8 −1
) ,

𝐼 (𝑡) = (
1

1.2
) .

(29)

In the case that the initial condition is chosen as 𝑥(𝑡) =

(0.4, 0.6)
𝑇, ∀𝑡 ∈ [−1, 0], and 𝑥(𝑡) = 0 for 𝑡 < −1, the chaotic-

like trajectory of (28) can be seen in Figure 1.
Now we consider a coupled neural network consisting of

five identical models (28), which is described as

̇𝑥
𝑖
(𝑡) = − 𝐶𝑥

𝑖
(𝑡) + 𝐴𝑓 (𝑥

𝑖
(𝑡)) + 𝐵𝑓 (𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+ 𝐷∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) 𝑓 (𝑥
𝑖
(𝑠)) 𝑑𝑠 + 𝐼 (𝑡)

+

𝑁

∑

𝑗=1

𝛼
𝑖𝑗
𝑢
𝑖𝑗
Φ(𝑥
𝑗
(𝑡) − 𝑥

𝑖
(𝑡))

+

𝑁

∑

𝑗=1

𝛽
𝑖𝑗
V
𝑖𝑗
Υ (𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

0 1 2 3

0

5

10

15

−10

−5

−2 −1.5 −1 −0.5 0.5 1.5 2.5

𝑥
2
(𝑡
)

𝑥1(𝑡)

Figure 1: Chaotic-like trajectory of the system (28).

+

𝑁

∑

𝑗=1

𝛾
𝑖𝑗
𝑤
𝑖𝑗
Λ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) (𝑥
𝑗
(𝑠) − 𝑥

𝑖
(𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 5,

(30)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1
(𝑡), 𝑥
𝑖2
(𝑡))
𝑇 is the state of the 𝑖th neural

network, Φ, Υ, and Λ are identity matrices, 𝑈, 𝑉, and𝑊 are
asymmetric and zero-row sum matrices as the following:

𝑈 = 10(

−7 1 3 2 1

1 −4 1 0 2

1 0 −3 1 1

1 1 1 −4 1

2 0 2 1 −5

),

𝑉 = 𝑊 = (

−3 0 1 1 1

0 −2 1 0 1

0 1 −2 0 1

1 0 0 −1 0

0 1 0 1 −2

),

(31)

the transmission efficiency matrices are

𝛼 = (

1 0.99 1 1 0.99

1 1 1 0 0.99

0.98 0 1 1 1

1 0.99 0.99 1 1

1 0 1 0.98 1

),

𝛽 = Γ = (

1 0 0.9 0.9 0.9

0 1 0.9 0 0.8

0 0.8 1 0 0.9

0.7 0 0 1 0

0 0.9 0 0.8 1

) .

(32)

It is easy to check that the activation function 𝑓 satisfies
assumption (H

2
), and 𝐸

1
= 0, 𝐸

2
= diag(0.5, 0.5). Moreover,
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0 1 2 3 4 5 6 7 8 9 10 11
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−4
−3
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1
(𝑡
)

𝑡

(a)

0 1 2 3 4 5 6 7 8 9 10 11

0

2

4

6

8

10

−10

−8

−6

−4

−2

𝑥
2
(𝑡
)

𝑡

(b)

Figure 2: Time response of 𝑥
𝑖1
(𝑡) (a) and 𝑥

𝑖2
(𝑡) (b), 𝑖 = 1, 2, . . . , 5.

(H
1
) and (H

3
) are satisfied with 𝑘 = 2, 𝑎 = 0.2, and 𝑏 = 𝑐 =

0.3. Obviously, ℎ = 0. Take

𝑀 = (

1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

) ,

𝐽 = (

1 1 1 1

0 1 1 1

0 0 1 1

0 0 0 1

0 0 0 0

).

(33)

According to Theorem 10, by referring to the MATLAB LMI
Toolbox, one can get the feasible solution, see the appendix
at the end of this paper. Hence, the system (30) is globally
asymptotically synchronized.

In the simulations, the Runge-Kutta numerical scheme is
used to simulate by MATLAB. The initial values of (30) are
chosen randomly in the real number interval [−10, 10] for
𝑡 ∈ [−1, 0] and all the states of the coupled neural networks
are zero for 𝑡 < 0. The time step size is 𝛿 = 0.005. Figure 2
shows the time response of the states. Figure 3 describes the
synchronization errors 𝑒(𝑡) = ∑

2

𝑗=1
√∑
5

𝑖=2
[𝑥
1𝑗
− 𝑥
𝑖𝑗
]
2, which

turn to zero quickly as time goes.
Figure 4 presents the synchronized state of (30), which is

different from that of Figure 1. Actually, it can be seen from
(8) that 𝑎, 𝑏, and 𝑐 andΦ, Υ, and Λ have important effects on
the synchronized state. Let

Φ = (
1 0

0.5 1
) , Υ = (

0.5 0

1 1
) , Λ = (

0.5 0

0 0.5
) ,

(34)

in (8). Figure 5 depicts the trajectories of (8) with different 𝑎,
𝑏, and 𝑐, the other parameters are the same as those in (28).

0 1 2 3 4 5 6 7 8 9 10 11

0

1

2

3

4

−1

−0.5

0.5

1.5

2.5

3.5
𝑒(
𝑡)

𝑡

Figure 3: Error distance of the coupled network (30).

0 1 2 3

0

5

10

15

−15

−10

−5

−3 −2 −1

𝑥
2
(𝑡
)

𝑥1(𝑡)

Figure 4: Trajectory of the synchronized state of system (30).
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𝑥
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)
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Figure 5: Trajectories of system (8) with different 𝑎, 𝑏, and 𝑐: (a) 𝑎 = 0.2, 𝑏 = 0.3, and 𝑐 = 0.3; (b) 𝑎 = 0.2, 𝑏 = 0.1, and 𝑐 = 0.3; (c) 𝑎 = 0.2,
𝑏 = 0, and 𝑐 = 0.5; (d) 𝑎 = 0.2, 𝑏 = 0.5, and 𝑐 = 0; (e) 𝑎 = 1, 𝑏 = 1, and 𝑐 = 1; (f) 𝑎 = 0.1, 𝑏 = 0.1, and 𝑐 = 0.1.
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5. Conclusions

In this paper, a general model of coupled neural networks
with time-varying delays and unbounded distributed delays
is proposed. Limited transmission efficiency between coupled
nodes is considered in the dynamical network model. Based
on the integral inequality and the Lyapunov functional
method, sufficient conditions in terms of LMIs are derived
to guarantee the synchronization of the proposed dynamical
network with limited transmission efficiency. The restriction
on time-varying delay is the least. The derivative of the

time-varying delay can be any given value, and the time-
varying delay can be unbounded. Numerical examples are
given to verify the effectiveness of the theoretical results.
Furthermore, numerical simulations show that, when some
of the transmission efficiencies are less than 1, the transmis-
sion efficiency and inner coupling matrices between nodes
play important roles for the final synchronized state. Since
many real-world transmission efficiencies between nodes are
usually less than 1, the results of this paper are new and extend
some of the existing results.

Appendix

𝑃 =

(
(
(
(
(
(
(
(

(

2.3293 −0.0507 −0.4456 0.0497 −0.1796 0.0081 −0.0216 −0.0071

−0.0507 2.0002 0.0479 −0.1233 0.0083 −0.1427 −0.0066 −0.0497

−0.4456 0.0479 4.9740 −0.1330 −0.1868 0.0201 −0.4820 0.0022

0.0497 −0.1233 −0.1330 3.8409 0.0208 −0.0304 0.0009 −0.4124

−0.1796 0.0083 −0.1868 0.0208 3.8034 −0.0981 −0.2548 0.0138

0.0081 −0.1427 0.0201 −0.0304 −0.0981 3.0951 0.0139 −0.1496

−0.0216 −0.0066 −0.4820 0.0009 −0.2548 0.0139 3.1954 −0.0674

−0.0071 −0.0497 0.0022 −0.4124 0.0138 −0.1496 −0.0674 2.7416

)
)
)
)
)
)
)
)

)

,

𝑄 =

(
(
(
(
(
(
(
(

(

14.1261 −0.3969 0.1779 0.0687 −0.0216 0.0133 0.0373 0.0077

−0.3969 12.1352 0.0901 0.7797 0.0090 0.0242 0.0046 0.0984

0.1779 0.0901 13.7184 −0.5675 0.1003 0.0460 0.1842 0.0075

0.0687 0.7797 −0.5675 9.3374 0.0397 0.4060 0.0101 0.4532

−0.0216 0.0090 0.1003 0.0397 14.0715 −0.5518 0.0850 0.0348

0.0133 0.0242 0.0460 0.4060 −0.5518 10.8553 0.0308 0.3573

0.0373 0.0046 0.1842 0.0101 0.0850 0.0308 14.1750 −0.4777

0.0077 0.0984 0.0075 0.4532 0.0348 0.3573 −0.4777 11.7793

)
)
)
)
)
)
)
)

)

,

𝑅 =

(
(
(
(
(
(
(
(

(

51.1311 −2.8226 2.1854 0.6937 −0.6251 0.2521 0.7007 −0.0726

−2.8226 36.5803 0.6786 7.1163 0.2622 0.2684 −0.0770 0.6599

2.1854 0.6786 44.5831 −3.7741 1.5536 0.2002 1.6747 0.0327

0.6937 7.1163 −3.7741 22.4396 0.2177 3.3233 0.0238 1.9847

−0.6251 0.2622 1.5536 0.2177 49.0212 −3.7531 1.3611 0.2250

0.2521 0.2684 0.2002 3.3233 −3.7531 28.4807 0.2336 3.0901

0.7007 −0.0770 1.6747 0.0238 1.3611 0.2336 50.7054 −3.3712

−0.0726 0.6599 0.0327 1.9847 0.2250 3.0901 −3.3712 33.8828

)
)
)
)
)
)
)
)

)

,

𝐺 =

(
(
(
(
(
(
(
(

(

−31.8299 −0.6083 0.0156 0.0565 0.2454 0.0531 −0.0814 0.0392

−0.6083 −26.2338 0.1191 −2.0217 0.0520 0.0315 0.0325 −0.3113

0.0156 0.1191 −33.6328 −1.6051 −0.0230 0.0458 −0.0143 0.1821

0.0565 −2.0217 −1.6051 −18.9430 0.0376 −1.0840 0.1756 −1.5906

0.2454 0.0520 −0.0230 0.0376 −33.4900 −1.2137 0.0722 0.0789

0.0531 0.0315 0.0458 −1.0840 −1.2137 −23.4590 0.0800 −0.9480

−0.0814 0.0325 −0.0143 0.1756 0.0722 0.0800 −33.1772 −0.9452

0.0392 −0.3113 0.1821 −1.5906 0.0789 −0.9480 −0.9452 −26.0874

)
)
)
)
)
)
)
)

)

,
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𝑆 =

(
(
(
(

(

81.6408 −0.4942 0.3979 0.5882 0.2149 −0.0492 0.0804 −0.0541

−0.4942 75.1089 0.5176 5.0908 −0.0392 0.5506 −0.0392 −0.3170

0.3979 0.5176 84.7411 −1.2587 0.4128 0.2505 −0.1328 0.0971

0.5882 5.0908 −1.2587 68.4426 0.2667 2.7250 0.0774 0.7954

0.2149 −0.0392 0.4128 0.2667 83.2899 −0.5940 0.3435 0.1248

−0.0492 0.5506 0.2505 2.7250 −0.5940 72.7484 0.1203 1.8855

0.0804 −0.0392 −0.1328 0.0774 0.3435 0.1203 82.3409 −0.3789

−0.0541 −0.3170 0.0971 0.7954 0.1248 1.8855 −0.3789 74.7768

)
)
)
)

)

,

𝑆
1
= diag (63.3310, 61.7187, 65.1691, 60.1717, 64.2638, 62.0351, 63.7512, 62.1022) ,

𝑆
2
= diag (67.5321, 66.8113, 70.6801, 69.0580, 69.6841, 69.7116, 69.0126, 69.7827) .

(A.1)
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[18] W. Yu, J. Cao, G. Chen, J. Lü, J. Han, and W. Wei, “Local syn-
chronization of a complex network model,” IEEE Transactions
on Systems, Man, and Cybernetics B, vol. 39, no. 1, pp. 230–241,
2009.

[19] J. Cao and L. Li, “Cluster synchronization in an array of hybrid
coupled neural networks with delay,” Neural Networks, vol. 22,
no. 4, pp. 335–342, 2009.

[20] Q. Song, “Synchronization analysis of coupled connected neural
networks with mixed time delays,”Neurocomputing, vol. 72, no.
16-18, pp. 3907–3914, 2009.

[21] B. Shen, Z. Wang, and X. Liu, “Bounded H
∞

synchroniza-
tion and state estimation for discrete time-varying stochastic
complex networks over a finite horizon,” IEEE Transactions on
Neural Networks, vol. 22, no. 1, pp. 145–157, 2011.

[22] H. J. Gao, J. Lam, and G. Chen, “New criteria for synchro-
nization stability of general complex dynamical networks with
coupling delays,” Physics Letters A, vol. 360, no. 2, pp. 263–273,
2006.



12 Abstract and Applied Analysis

[23] Y. Tang, R. Qiu, J. Fang, Q. Miao, andM. Xia, “Adaptive lag syn-
chronization in unknown stochastic chaotic neural networks
with discrete and distributed time-varying delays,” Physics
Letters A, vol. 372, no. 24, pp. 4425–4433, 2008.

[24] Y. Liu, Z. Wang, and X. Liu, “Exponential synchronization of
complex networks with Markovian jump and mixed delays,”
Physics Letters A, vol. 372, no. 22, pp. 3986–3998, 2008.

[25] T. Li, S. M. Fei, and K. J. Zhang, “Synchronization control of
recurrent neural networks with distributed delays,” Physica A,
vol. 387, no. 4, pp. 982–996, 2008.

[26] K. Gopalsamy and X. Z. He, “Stability in asymmetric Hopfield
nets with transmission delays,”PhysicaD, vol. 76, no. 4, pp. 344–
358, 1994.

[27] C. Huang and J. Cao, “Almost sure exponential stability of
stochastic cellular neural networks with unbounded distributed
delays,”Neurocomputing, vol. 72, no. 13–15, pp. 3352–3356, 2009.

[28] L. Sheng andH.Yang, “Exponential synchronization of a class of
neural networks with mixed time-varying delays and impulsive
effects,” Neurocomputing, vol. 71, no. 16–18, pp. 3666–3674,
2008.

[29] X.Nie and J. Cao, “Multistability of competitive neural networks
with time-varying and distributed delays,” Nonlinear Analysis:
Real World Applications, vol. 10, no. 2, pp. 928–942, 2009.

[30] X. Yang, “Existence and global exponential stability of periodic
solution for Cohen-Grossberg shunting inhibitory cellular neu-
ral networks with delays and impulses,” Neurocomputing, vol.
72, no. 10–12, pp. 2219–2226, 2009.

[31] Z.Wang, Y. Liu,M. Li, andX. Liu, “Stability analysis for stochas-
tic Cohen-Grossberg neural networks with mixed time delays,”
IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 814–
820, 2006.

[32] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge
University Press, 1990.

[33] Z. H. Guan, Z. W. Liu, G. Feng, and Y. W. Wang, “Synchroniza-
tion of complex dynamical networks with time-varying delays
via impulsive distributed control,” IEEETransactions on Circuits
and Systems I, vol. 57, no. 8, pp. 2182–2195, 2010.

[34] Y. Wang, L. Xie, and C. E. de Souza, “Robust control of a class
of uncertain nonlinear systems,” Systems & Control Letters, vol.
19, no. 2, pp. 139–149, 1992.

[35] X. Yang, J. Cao, and J. Lu, “Synchronization of coupled neural
networks with random coupling strengths and mixed proba-
bilistic time-varying delays,” International Journal of Robust and
Nonlinear Control, 2012.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 752953, 12 pages
http://dx.doi.org/10.1155/2013/752953

Research Article
Stationary in Distributions of Numerical Solutions for Stochastic
Partial Differential Equations with Markovian Switching

Yi Shen1 and Yan Li1,2

1 Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 College of Science, Huazhong Agriculture University, Wuhan 430079, China

Correspondence should be addressed to Yi Shen; yeeshen0912@gmail.com

Received 30 December 2012; Accepted 24 February 2013

Academic Editor: Qi Luo

Copyright © 2013 Y. Shen and Y. Li. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate a class of stochastic partial differential equations with Markovian switching. By using the Euler-Maruyama scheme
both in time and in space of mild solutions, we derive sufficient conditions for the existence and uniqueness of the stationary
distributions of numerical solutions. Finally, one example is given to illustrate the theory.

1. Introduction

The theory of numerical solutions of stochastic partial
differential equations (SPDEs) has been well developed by
many authors [1–5]. In [2], Debussche considered the error
of the Euler scheme for the nonlinear stochastic partial
differential equations by using Malliavin calculus. Gyöngy
and Millet [3] discussed the convergence rate of space time
approximations for stochastic evolution equations. Shardlow
[5] investigated the numerical methods of the mild solutions
for stochastic parabolic PDEs derived by space-time white
noise by applying finite difference approach.

On the other hand, the parameters of SPDEs may
experience abrupt changes caused by phenomena such as
component failures or repairs, changing subsystem intercon-
nections, and abrupt environmental disturbances [6–9], and
the continuous-timeMarkov chains have been used to model
these parameter jumps. An important equation is a class of
SPDEs with Markovian switching

𝑑𝑋 (𝑡) = [𝐴𝑋 (𝑡) + 𝑓 (𝑋 (𝑡) , 𝑟 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑋 (𝑡) , 𝑟 (𝑡)) 𝑑𝑊 (𝑡) , 𝑡 ≥ 0.

(1)

Here the state vector has two components 𝑋(𝑡) and 𝑟(𝑡), the
first one is normally referred to as the state while the second
one is regarded as the mode. In its operation, the system will
switch from one mode to another one in a random way, and

the switching among the modes is governed by the Markov
chain 𝑟(𝑡).

Since only a few SPDEs with Markovian switching
have explicit formulae, numerical (approximate) schemes of
SPDEs with Markovian switching are becoming more and
more popular. In this paper, we will study the stationary
distribution of numerical solutions of SPDEs withMarkovian
switching. Bao et al. [10] investigated the stability in distribu-
tion of mild solutions to SPDEs. Bao and Yuan [11] discussed
the numerical approximation of stationary distribution for
SPDEs. For the stationary distribution of numerical solu-
tions of stochastic differential equations in finite-dimensional
space, Mao et al. [12] utilized the Euler-Maruyama scheme
with variable step size to obtain the stationary distribution
and they also proved that the probability measures induced
by the numerical solutions converge weakly to the stationary
distribution of the true solution. But since the mild solutions
of SPDEs with Markovian switching do not have stochastic
differential, a significant consequence of this fact is that the
Itô formula cannot be used for mild solutions of SPDEs with
Markovian switching directly. Consequently, we generalize
the stationary distribution of numerical solutions of the finite
dimensional stochastic differential equationswithMarkovian
switching to that of infinite dimensional cases.

Motived by [11–13], we will show in this paper that the
mild solutions of SPDE with Markovian switching (1) have a
unique stationary distribution for sufficiently small step size.



2 Abstract and Applied Analysis

So this paper is organised as follows: in Section 2, we give
necessary notations and define Euler-Maruyama scheme of
mild solutions. In Section 3, we give some lemmas and the
main result in this paper. Finally, we will give an example to
illustrate the theory in Section 4.

2. Statements of Problem

Throughout this paper, unless otherwise specified, we let
(Ω,F, {F

𝑡
}
𝑡≥0
,P) be complete probability space with a

filtration {F
𝑡
}
𝑡≥0

satisfying the usual conditions (i.e., it is
increasing and right continuous while F

0
contains all P-

null sets). Let (𝐻, ⟨⋅, ⋅⟩
𝐻
, ‖ ⋅ ‖

𝐻
) be a real separable Hilbert

space and 𝑊(𝑡) an 𝐻-valued cylindrical Brownian motion
(Wiener process) defined on the probability space. Let 𝐼

𝐺
be

the indicator function of a set 𝐺. Denote by (L(𝐻), ‖ ⋅ ‖)
and (LHS(𝐻), ‖ ⋅ ‖HS) the family of bounded linear operators
and Hilbert-Schmidt operator from 𝐻 into 𝐻, respectively.
Let 𝑟(𝑡), 𝑡 ≥ 0, be a right-continuous Markov chain on the
probability space taking values in a finite state space S =

{1, 2, . . . , 𝑁} with the generator Γ = (𝛾
𝑖𝑗
)
𝑁×𝑁

given by

P {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {
𝛾
𝑖𝑗
𝛿 + 𝑜 (𝛿) if 𝑖 ̸= 𝑗,
1 + 𝛾
𝑖𝑗
𝛿 + 𝑜 (𝛿) if 𝑖 = 𝑗,

(2)

where 𝛿 > 0. Here 𝛾
𝑖𝑗
> 0 is the transition rate from 𝑖 to 𝑗 if

𝑖 ̸= 𝑗 while

𝛾
𝑖𝑖
= −∑

𝑗 ̸= 𝑖

𝛾
𝑖𝑗
. (3)

We assume that the Markov chain 𝑟(⋅) is independent of the
Brownian motion 𝑊(⋅). It is well known that almost every
sample path of 𝑟(⋅) is a right-continuous step function with
finite number of simple jumps in any finite subinterval of
R
+
:= [0, +∞).
Consider SPDEs with Markovian switching on𝐻

𝑑𝑋 (𝑡) = [𝐴𝑋 (𝑡) + 𝑓 (𝑋 (𝑡) , 𝑟 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑋 (𝑡) , 𝑟 (𝑡)) 𝑑𝑊 (𝑡) , 𝑡 ≥ 0,

(4)

with initial value 𝑋(0) = 𝑥 ∈ 𝐻 and 𝑟(0) = 𝑖 ∈ S. Here
𝑓 : 𝐻 × S → 𝐻, 𝑔 : 𝐻 × S → LHS(𝐻). Throughout the
paper, we impose the following assumptions.

(A1) (𝐴,D(𝐴)) is a self-adjoint operator on 𝐻 generating
a 𝐶
0
-semigroup {𝑒𝐴𝑡}

𝑡≥0
, such that ‖ 𝑒𝐴𝑡 ‖≤ 𝑒−𝛼𝑡 for

some𝛼 > 0. In this case,−𝐴 has discrete spectrum 0 <
𝜌
1
≤ 𝜌
2
≤ ⋅ ⋅ ⋅ ≤ lim

𝑖→∞
𝜌
𝑖
= ∞ with corresponding

eigenbasis {𝑒
𝑖
}
𝑖≥1

of𝐻.
(A2) Both 𝑓 and 𝑔 are globally Lipschitz continuous. That

is, there exists a constant 𝐿 > 0 such that

󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑗) − 𝑓 (𝑦, 𝑗)
󵄩󵄩󵄩󵄩

2

𝐻
∨
󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (𝑦, 𝑗)

󵄩󵄩󵄩󵄩

2

HS

≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
, ∀𝑥, 𝑦 ∈ 𝐻, 𝑗 ∈ S;

(5)

(A3) There exist 𝜇 > 0 and 𝜆
𝑗
> 0, (𝑗 = 1, 2, . . . , 𝑁) such

that

2𝜆
𝑗
⟨𝑥 − 𝑦, 𝑓 (𝑥, 𝑗) − 𝑓 (𝑦, 𝑗)⟩

𝐻
+ 𝜆
𝑗

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (𝑦, 𝑗)
󵄩󵄩󵄩󵄩

2

HS

+

𝑁

∑

𝑙=1

𝛾
𝑗𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻
≤ −𝜇
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
, ∀𝑥, 𝑦 ∈ 𝐻, 𝑗 ∈ S.

(6)

It is well known (see [1, 8]) that under (A1)–(A3), (4) has
a unique mild solution 𝑋(𝑡) on 𝑡 ≥ 0. That is, for any 𝑋(0) =
𝑥 ∈ 𝐻 and 𝑟(0) = 𝑖 ∈ S, there exists a unique 𝐻-valued
adapted process𝑋(𝑡) such that

𝑋(𝑡) = 𝑒
𝑡𝐴
𝑥 + ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴
𝑓 (𝑋 (𝑠) , 𝑟 (𝑠)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−𝑠)𝐴
𝑔 (𝑋 (𝑠) , 𝑟 (𝑠)) 𝑑𝑊 (𝑠) .

(7)

Moreover, the pair𝑍(𝑡) = (𝑋(𝑡), 𝑟(𝑡)) is a time-homogeneous
Markov process.

Remark 1. We observe that (A2) implies the following linear
growth conditions:

󵄨󵄨󵄨󵄨𝑓 (𝑥, 𝑗)
󵄨󵄨󵄨󵄨

2

𝐻
∨
󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗)

󵄩󵄩󵄩󵄩

2

HS ≤ 𝐿 (1 + ‖𝑥‖
2

𝐻
) , ∀𝑥 ∈ 𝐻, 𝑗 ∈ S,

(8)

where 𝐿 = 2max
𝑗∈S(𝐿 ∨ |𝑓(0, 𝑗)|

2

𝐻
∨ ‖ 𝑔(0, 𝑗)‖

2

HS).

Remark 2. We also establish another property from (A3):

2𝜆
𝑗
⟨𝑥, 𝑓 (𝑥, 𝑗)⟩

𝐻
+ 𝜆
𝑗

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗)
󵄩󵄩󵄩󵄩

2

HS +
𝑁

∑

𝑙=1

𝛾
𝑗𝑙
𝜆
𝑙‖𝑥‖
2

𝐻

≤ 2𝜆
𝑗
⟨𝑥, 𝑓 (𝑥, 𝑗) − 𝑓 (0, 𝑗)⟩

𝐻

+ 𝜆
𝑗

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (0, 𝑗)
󵄩󵄩󵄩󵄩

2

HS +
𝑁

∑

𝑙=1

𝛾
𝑗𝑙
𝜆
𝑙‖𝑥‖
2

𝐻

+ 2𝜆
𝑗
⟨𝑥, 𝑓 (0, 𝑗)⟩

𝐻

+ 2𝜆
𝑗
⟨𝑔 (𝑥, 𝑗) − 𝑔 (0, 𝑗) , 𝑔 (0, 𝑗)⟩HS + 𝜆𝑗

󵄩󵄩󵄩󵄩𝑔 (0, 𝑗)
󵄩󵄩󵄩󵄩

2

HS

≤ −𝜇‖𝑥‖
2

𝐻
+
𝜇

4
‖𝑥‖
2

𝐻
+

4𝜆
2

𝑗

󵄩󵄩󵄩󵄩𝑓 (0, 𝑗)
󵄩󵄩󵄩󵄩𝐻

𝜇

+
𝜇

4𝐿

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (0, 𝑗)
󵄩󵄩󵄩󵄩

2

HS

+

4𝐿𝜆
2

𝑗

𝜇

󵄩󵄩󵄩󵄩𝑔 (0, 𝑗)
󵄩󵄩󵄩󵄩

2

HS + 𝜆𝑗
󵄩󵄩󵄩󵄩𝑔 (0, 𝑗)

󵄩󵄩󵄩󵄩

2

HS

≤ −𝜇‖𝑥‖
2

𝐻
+
𝜇

4
‖𝑥‖
2

𝐻
+
𝜇

4
‖𝑥‖
2

𝐻
+

4𝜆
2

𝑗

󵄩󵄩󵄩󵄩𝑓 (0, 𝑗)
󵄩󵄩󵄩󵄩𝐻

𝜇
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+

4𝐿𝜆
2

𝑗

𝜇

󵄩󵄩󵄩󵄩𝑔 (0, 𝑗)
󵄩󵄩󵄩󵄩

2

HS + 𝜆𝑗
󵄩󵄩󵄩󵄩𝑔 (0, 𝑗)

󵄩󵄩󵄩󵄩

2

HS

≤ −
𝜇

2
‖𝑥‖
2

𝐻
+ 𝛼
1
, ∀𝑥 ∈ 𝐻, 𝑗 ∈ S,

(9)

where𝛼
1
:= max

𝑗∈S[(4𝜆
2

𝑗
‖ 𝑓(0, 𝑗)‖

2

𝐻
/𝜇) +(4𝐿𝜆

2

𝑗
/𝜇) ‖ 𝑔(0, 𝑗)

‖
2

HS + 𝜆𝑗 ‖ 𝑔(0, 𝑗)‖
2

HS] and ⟨𝑇, 𝑆⟩HS := ∑
∞

𝑖=1
⟨𝑇𝑒
𝑖
, 𝑆𝑒
𝑗
⟩
𝐻
for

𝑆, 𝑇 ∈LHS(𝐻).

Denote by𝑍𝑥,𝑖(𝑡) = (𝑋𝑥,𝑖(𝑡), 𝑟𝑖(𝑡)) themild solution of (4)
starting from (𝑥, 𝑖) ∈ 𝐻 × S. For any subset 𝐴 ∈ B(𝐻), 𝐵 ⊂
S, let P

𝑡
((𝑥, 𝑖), 𝐴 × 𝐵) be the probability measure induced by

𝑍
𝑥,𝑖
(𝑡), 𝑡 ≥ 0. Namely,

P
𝑡 ((𝑥, 𝑖) , 𝐴 × 𝐵) = P (𝑍

𝑥,𝑖
∈ 𝐴 × 𝐵) , (10)

whereB(𝐻) is the family of the Borel subset of𝐻.
Denote byP(𝐻×S) the family by all probabilitymeasures

on 𝐻 × S. For 𝑃
1
, 𝑃
2
∈ P(𝐻 × S), define the metric 𝑑L as

follows:

𝑑L (𝑃1, 𝑃2)

= sup
𝜑∈L

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑁

∑

𝑗=1

∫
𝐻

𝜑 (𝑢, 𝑗) 𝑃
1
(𝑑𝑢, 𝑗) −

𝑁

∑

𝑗=1

∫𝜑 (𝑢, 𝑗) 𝑃
2
(𝑑𝑢, 𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(11)

where L = {𝜑 : 𝐻 × S → R : |𝜑(𝑢, 𝑗) − 𝜑(V, 𝑙)| ≤‖ 𝑢 − V‖
𝐻
+

|𝑗 − 𝑙|, and |𝜑(𝑢, 𝑗)| ≤ 1, for 𝑢, V ∈ 𝐾, 𝑗, 𝑙 ∈ S}.

Remark 3. It is known that the weak convergence of probabil-
ity measures is a metric concept with respect to classes of test
function. In other words, a sequence of probability measures
{𝑃
𝑘
}
𝑘≥1

of P(𝐻 × S) converges weakly to a probability
measure 𝑃

0
∈ P(𝐻×S) if and only if lim

𝑘→∞
𝑑L(𝑃𝑘, 𝑃0) = 0.

Definition 4. The mild solution 𝑍(𝑡) = (𝑋(𝑡), 𝑟(𝑡)) of (4) is
said to have a stationary distribution 𝜋(⋅ × ⋅) ∈ P(𝐻 × S) if
the probability measure P

𝑡
((𝑥, 𝑖), (⋅ × ⋅)) converges weakly to

𝜋(⋅×⋅) as 𝑡 → ∞ for every 𝑖 ∈ S, and every 𝑥 ∈ 𝑈, a bounded
subset of𝐻, that is,

lim
𝑡→∞

𝑑L (P𝑡 (𝑥, 𝑖) , 𝜋 (⋅ × ⋅))

= lim
𝑡→∞

(sup
𝜑∈L

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

E𝜑 (𝑍
𝑥,𝑖
(𝑡))

−

𝑁

∑

𝑗=1

∫
𝐻

𝜑 (𝑢, 𝑗) 𝜋 (𝑑𝑢, 𝑗)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) = 0.

(12)

By Theorem 3.1 in [10] and Theorem 3.1 in [14], we have
the following.

Theorem 5. Under (A1)–(A3), the Markov process 𝑍(𝑡) has a
unique stationary distribution 𝜋(⋅ × ⋅) ∈ P(𝐻 × S).

For any 𝑛 ≥ 1, let 𝜋
𝑛
: 𝐻 → 𝐻

𝑛
:= Span{𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
}

be the orthogonal projection. Consider SPDEs with Marko-
vian switching on𝐻

𝑛
,

𝑑𝑋
𝑛
(𝑡) = [𝐴𝑛𝑋

𝑛
(𝑡) + 𝑓𝑛 (𝑋

𝑛
(𝑡) , 𝑟 (𝑡))] 𝑑𝑡

+ 𝑔
𝑛
(𝑋
𝑛
(𝑡) , 𝑟 (𝑡)) 𝑑𝑊 (𝑡) ,

(13)

with initial data 𝑋𝑛(0) = 𝜋
𝑛
𝑥 = ∑

𝑛

𝑖=1
⟨𝑥, 𝑒
𝑖
⟩
𝐻
𝑒
𝑖
, 𝑥 ∈ 𝐻. Here

𝐴
𝑛
= 𝜋
𝑛
𝐴, 𝑓
𝑛
= 𝜋
𝑛
𝑓, 𝑔
𝑛
= 𝜋
𝑛
𝑔.

Therefore, we can observe that

𝐴
𝑛
𝑥 = 𝐴𝑥, 𝑒

𝑡𝐴
𝑛

𝑥
= 𝑒
𝑡𝐴𝑥
, ⟨𝑥, 𝑓

𝑛
⟩
𝐻
= ⟨𝑥, 𝑓⟩

𝐻
,

⟨𝑥, 𝑔
𝑛
⟩
𝐻
= ⟨𝑥, 𝑔⟩

𝐻
, ∀𝑥 ∈ 𝐻

𝑛
,

(14)

By the property of the projection operator and (A2), we have

󵄩󵄩󵄩󵄩𝐴𝑛 (𝑥 − 𝑦)
󵄩󵄩󵄩󵄩

2

𝐻
∨
󵄩󵄩󵄩󵄩𝑓𝑛 (𝑥, 𝑗) − 𝑓𝑛 (𝑦, 𝑗)

󵄩󵄩󵄩󵄩

2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔𝑛 (𝑥, 𝑗) − 𝑔𝑛 (𝑦, 𝑗)

󵄩󵄩󵄩󵄩

2

HS

≤ 𝜆
2

𝑛

󵄩󵄩󵄩󵄩(𝑥 − 𝑦)
󵄩󵄩󵄩󵄩

2

𝐻
∨
󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑗) − 𝑓 (𝑦, 𝑗)

󵄩󵄩󵄩󵄩

2

𝐻

∨
󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (𝑦, 𝑗)

󵄩󵄩󵄩󵄩

2

HS ≤ (𝜆
2

𝑛
∨ 𝐿)
󵄩󵄩󵄩󵄩(𝑥 − 𝑦)

󵄩󵄩󵄩󵄩

2

𝐻
,

∀𝑥, 𝑦 ∈ 𝐻
𝑛
, 𝑗 ∈ S.

(15)

Hence, (13) admits a unique strong solution {𝑋𝑛(𝑡)}
𝑡≥0

on𝐻
𝑛

(see [8]).
We now introduce an Euler-Maruyama based computa-

tionalmethod.Themethodmakes use of the following lemma
(see [15]).

Lemma 6. Given Δ > 0, then {𝑟(𝑘Δ), 𝑘 = 0, 1, 2, . . .} is a
discrete Markov chain with the one-step transition probability
matrix

𝑃 (Δ) = (𝑃
𝑖,𝑗
(Δ))
𝑁×𝑁
= 𝑒
ΔΓ
. (16)

Given a fixed step size Δ > 0 and the one-step transition
probability matrix 𝑃(Δ) in (16), the discrete Markov chain
{𝑟(𝑘Δ), 𝑘 = 0, 1, 2, . . .} can be simulated as follows: let
𝑟(0) = 𝑖

0
, and compute a pseudorandom number 𝜉

1
from the

uniform (0, 1) distribution.
Define

𝑟 (Δ)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝑖, 𝑖 ∈ S − {𝑁}

such that
𝑖−1

∑

𝑗=1

𝑃
𝑟(0),𝑗 (Δ)

≤ 𝜉
1

<

𝑖

∑

𝑗=1

𝑃
𝑟(0),𝑗 (Δ) ,

𝑁,

𝑁−1

∑

𝑗=1

𝑃
𝑟(0),𝑗
(Δ) ≤ 𝜉

1
,

(17)
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where we set ∑0
𝑗=1
𝑃
𝑟(0),𝑗
(Δ) = 0 as usual. Having computed

𝑟(0), 𝑟(Δ), . . . , 𝑟(𝑘Δ), we can compute 𝑟((𝑘 + 1)Δ) by drawing
a uniform (0, 1) pseudorandom number 𝜉

𝑘+1
and setting

𝑟 ((𝑘 + 1) Δ)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

𝑖, 𝑖 ∈ S − {𝑁}

such that
𝑖−1

∑

𝑗=1

𝑃
𝑟(𝑘Δ),𝑗 (Δ)

≤ 𝜉
𝑘+1
<

𝑖

∑

𝑗=1

𝑃
𝑟(𝑘Δ),𝑗

(Δ) ,

𝑁,

𝑁−1

∑

𝑗=1

𝑃
𝑟(𝑘Δ),𝑗

(Δ) ≤ 𝜉
𝑘+1
.

(18)

The procedure can be carried out repeatedly to obtain more
trajectories.

We now define the Euler-Maruyama approximation for
(13). For a stepsize Δ ∈ (0, 1), the discrete approximation
𝑌
𝑛

(𝑘Δ) ≈ 𝑋
𝑛
(𝑘Δ), is formed by simulating from 𝑌𝑛(0) =

𝜋
𝑛
𝑥, 𝑟(0) = 𝑟

0
, and

𝑌
𝑛

((𝑘 + 1) Δ)

= 𝑒
Δ𝐴
𝑛 {𝑌
𝑛

(𝑘Δ) + 𝑓𝑛 (𝑌
𝑛

(𝑘Δ) , 𝑟 (𝑘Δ)) Δ

+𝑔
𝑛
(𝑌
𝑛

(𝑘Δ) , 𝑟 (𝑘Δ)) Δ𝑊𝑘} ,

(19)

where Δ𝑊
𝑘
= 𝑊((𝑘 + 1)Δ) − 𝑊(𝑘Δ)).

To carry out our analysis conveniently, we give the
continuous Euler-Maruyama approximation solution which
is defined by

𝑌
𝑛
(𝑡) = 𝑒

𝑡𝐴
𝑛𝜋
𝑛
𝑥 + ∫

𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑛𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑛𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑊 (𝑠)

= 𝑒
𝑡𝐴
𝑛𝜋
𝑛
𝑥 + ∫

𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑠

+ ∫

𝑡

0

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑊 (𝑠) ,

(20)

where ⌊𝑡⌋ = [𝑡/Δ]Δ and [𝑡/Δ] denotes the integer part of 𝑡/Δ
and 𝑌𝑛(0) = 𝑌𝑛(0) = 𝜋

𝑛
𝑥, and 𝑌𝑛(𝑘Δ) = 𝑌𝑛(𝑘Δ).

It is obvious that𝑌𝑛(𝑡) coincides with the discrete approx-
imation solution at the gridpoints. For any Borel set 𝐴 ∈
B(𝐻
𝑛
), 𝑥 ∈ 𝐻

𝑛
, 𝑖, 𝑗 ∈ S, let 𝑍

𝑛

(𝑘Δ) = (𝑌
𝑛

(𝑘Δ), 𝑟(𝑘Δ)),

P
𝑛,Δ
((𝑥, 𝑖) , 𝐴 × {𝑗})

:= P (𝑍
𝑛

(Δ) ∈ 𝐴 × {𝑗} | 𝑍
𝑛

(0) = (𝑥, 𝑖)) ,

P
𝑛,Δ

𝑘
((𝑥, 𝑖) , 𝐴 × {𝑗})

:= P (𝑍
𝑛

(𝑘Δ) ∈ 𝐴 × {𝑗} | 𝑍
𝑛

(0) = (𝑥, 𝑖)) .

(21)

Following the argument of Theorem 5 in [13], we have the
following.

Lemma 7. {𝑍 𝑛(𝑘Δ)}
𝑘≥0

is a homogeneous Markov process
with the transition probability kernel P𝑛,Δ((𝑥, 𝑖), 𝐴 × {𝑗}).

To highlight the initial value, we will use notation
{𝑍
𝑛,(𝑥,𝑖)

(𝑘Δ)}.

Definition 8. For a given stepsize Δ > 0, {𝑍
𝑛,(𝑥,𝑖)

(𝑘Δ)}
𝑘≥0

is
said to have a stationary distribution {𝜋𝑛,Δ(⋅ × ⋅)} ∈ P(𝐻

𝑛
×

S) if the 𝑘-step transition probability kernel P𝑛,Δ
𝑘
((𝑥, 𝑖), ⋅ × ⋅)

converges weakly to 𝜋𝑛,Δ(⋅ × ⋅) as 𝑘 → ∞, for every (𝑥, 𝑖) ∈
𝐻
𝑛
× S, that is,

lim
𝑘→∞

𝑑L (𝑃
𝑛,Δ

𝑘
((𝑥, 𝑖) , ⋅ × ⋅) , 𝜋

𝑛,Δ
(⋅ × ⋅)) = 0. (22)

We will establish our result of this paper in Section 3.

Theorem 9. Under (A1)–(A3), for a given stepsize Δ > 0,
and arbitrary 𝑥 ∈ 𝐻

𝑛
, 𝑖 ∈ S, {𝑍

𝑛,(𝑥,𝑖)

(𝑘Δ)}
𝑘≥0

has a unique
stationary distribution 𝜋𝑛,Δ(⋅ × ⋅) ∈ P(𝐻

𝑛
× S).

3. Stationary in Distribution of
Numerical Solutions

In this section, we shall present some useful lemmas and
proveTheorem 9. In what follows,𝐶 > 0 is a generic constant
whose values may change from line to line.

For any initial value (𝑥, 𝑖), let 𝑌𝑛,𝑥,𝑖(𝑡) be the continuous
Euler-Maruyama solution of (20) and starting from (𝑥, 𝑖) ∈
𝐻 × S. Let 𝑋𝑥,𝑖(𝑡) be the mild solution of (4) and starting
from (𝑥, 𝑖) ∈ 𝐻 × S.

Lemma 10. Under (A1)–(A3), then

E
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑛,𝑥,𝑖
(𝑡) − 𝑌

𝑛,𝑥,𝑖
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩󵄩

2

𝐻

≤ 3 (𝜌
2

𝑛
+ 2𝐿)Δ (1 + E

󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
) .

(23)

Proof. Write 𝑌𝑛,𝑥,𝑖(𝑡) = 𝑌𝑛(𝑡), 𝑌𝑛,𝑥,𝑖(⌊𝑡⌋) = 𝑌𝑛(⌊𝑡⌋). From
(20), we have

𝑌
𝑛
(⌊𝑡⌋) = 𝑒

⌊𝑡⌋𝐴
𝜋
𝑛
𝑥 + ∫

⌊𝑡⌋

0

𝑒
(⌊𝑡⌋−⌊𝑠⌋)𝐴

𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑠

+ ∫

⌊𝑡⌋

0

𝑒
(⌊𝑡⌋−⌊𝑠⌋)𝐴

𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑊 (𝑠) .

(24)
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Thus,

𝑌
𝑛
(𝑡) − 𝑌

𝑛
(⌊𝑡⌋)

= 𝑒
(𝑡−⌊𝑡⌋)𝐴

× (𝑒
⌊𝑡⌋𝐴
𝜋
𝑛
𝑥

+ ∫

⌊𝑡⌋

0

𝑒
(⌊𝑡⌋−⌊𝑠⌋)𝐴

× 𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑠

+ ∫

⌊𝑡⌋

0

𝑒
(⌊𝑡⌋−⌊𝑠⌋)𝐴

× 𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑊 (𝑠) )

− 𝑌
𝑛
(⌊𝑡⌋)

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑠

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑊 (𝑠)

= (𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑌𝑛 (⌊𝑡⌋)

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑠

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−⌊𝑠⌋)𝐴

𝑔
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)) 𝑑𝑊 (𝑠) .

(25)

Then, by theHölder inequality and the Itô isometry,we obtain

E
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡) − 𝑌

𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻

≤ 3{E
󵄩󵄩󵄩󵄩󵄩
(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑌𝑛 (⌊𝑡⌋)󵄩󵄩󵄩󵄩󵄩
2

𝐻

+ E∫
𝑡

⌊𝑡⌋

󵄩󵄩󵄩󵄩𝑓𝑛 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+E∫
𝑡

⌊𝑡⌋

󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

HS𝑑𝑠} .

(26)

From (A1), we have

E
󵄩󵄩󵄩󵄩󵄩
(𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) 𝑌𝑛 (⌊𝑡⌋)󵄩󵄩󵄩󵄩󵄩
2

𝐻

= E

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑛

∑

𝑖=1

(𝑒
−𝜌
𝑖

(𝑡−⌊𝑡⌋)
− 1) ⟨𝑌

𝑛
(⌊𝑡⌋) , 𝑒𝑖⟩𝐻

𝑒
𝑖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐻

≤ (1 − 𝑒
−𝜌
𝑛

(𝑡−⌊𝑡⌋)
)
2

E
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻

≤ 𝜌
2

𝑛
Δ
2
E
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
,

(27)

here we use the fundamental inequality 1 − 𝑒−𝑎 ≤ 𝑎, 𝑎 > 0.
And, by (8), it follows that

E∫
𝑡

⌊𝑡⌋

󵄩󵄩󵄩󵄩𝑓𝑛 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ E∫
𝑡

⌊𝑡⌋

󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

HS𝑑𝑠

≤ 2𝐿Δ (1 + E
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
) .

(28)

Substituting (27) and (28) into (26), the desired assertion (23)
follows.

Lemma 11. Under (A1)–(A3), if Δ < min{1, 1/3(𝜌2
𝑛
+ 2𝐿),

((4𝛼𝑝 + 𝜇)/(8𝑞 + 4𝑞𝜌
2

𝑛
𝐿+4𝑞𝐿 + 24𝑞�̂� + 6𝑞𝐿(𝜌

2

𝑛
+2𝐿)))

2

}, then
there is a constant𝐶 > 0 that depends on the initial value 𝑥 but
is independent ofΔ, such that the continuous Euler-Maruyama
solution of (20) has

sup
𝑡≥0

E
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑛,𝑥,𝑖
(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝐶, (29)

where 𝑞 = max
1≤𝑖≤𝑁

𝜆
𝑖
, 𝑝 = min

1≤𝑖≤𝑁
𝜆
𝑖
.

Proof. Write 𝑌𝑛,𝑥,𝑖(𝑡) = 𝑌𝑛(𝑡), 𝑟𝑖(𝑘Δ) = 𝑟(𝑘Δ). From (20), we
have the following differential form:

𝑑𝑌
𝑛
(𝑡)

= {𝐴𝑌
𝑛
(𝑡) + 𝑒

(𝑡−⌊𝑡⌋)𝐴
𝑓
𝑛
(𝑌
𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))} 𝑑𝑡

+ 𝑒
(𝑡−⌊𝑡⌋)𝐴

𝑔
𝑛
(𝑌
𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)) 𝑑𝑊 (𝑡) ,

(30)

with 𝑌𝑛(0) = 𝜋
𝑛
𝑥.

Let𝑉(𝑥, 𝑖) = 𝜆
𝑖
‖ 𝑥‖
2

𝐻
. By the generalised Itô formula, for

any 𝜃 > 0, we derive from (30) that

𝑒
𝜃𝑡
E (𝜆
𝑟(𝑡)

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝜆
𝑖‖𝑥‖
2

𝐻
+ E∫

𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)

× {𝜃
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
+ 2⟨𝑌

𝑛
(𝑠) , 𝐴𝑌

𝑛
(𝑠)⟩
𝐻

+ 2⟨𝑌
𝑛
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

𝑓
𝑛
(𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))⟩

𝐻

+
󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌

𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠

𝑁

∑

𝑙=1

𝛾
𝑟(𝑠)𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠
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≤ 𝑞‖𝑥‖
2

𝐻
+ 𝜃𝑞E∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

− 2𝛼𝑝E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)

× {2⟨𝑌
𝑛
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

𝑓 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))⟩

𝐻

+
󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠

𝑁

∑

𝑙=1

𝛾
𝑟(𝑠)𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(31)

By the fundamental transformation, we obtain that

⟨𝑌
𝑛
(𝑡) , 𝑒
(𝑡−⌊𝑡⌋)𝐴

𝑓 (𝑌
𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))⟩

𝐻

= ⟨𝑌
𝑛
(𝑡) , 𝑓 (𝑌

𝑛
(𝑡) , 𝑟 (𝑡))⟩

𝐻

+ ⟨𝑌
𝑛
(𝑡) , (𝑒

(𝑡−⌊𝑡⌋)𝐴
− 1) 𝑓 (𝑌𝑛 (𝑡) , 𝑟 (𝑡))⟩

𝐻

+ ⟨𝑌
𝑛
(𝑡) , 𝑒
(𝑡−⌊𝑡⌋)𝐴

(𝑓 (𝑌
𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))

−𝑓 (𝑌
𝑛
(𝑡) , 𝑟 (𝑡))) ⟩

𝐻
.

(32)

By Höld inequality, we have

󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

HS

=
󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑛
(𝑡) , 𝑟 (𝑡))

− (𝑔 (𝑌
𝑛
(𝑡) , 𝑟 (𝑡)) − 𝑔 (𝑌

𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)))

󵄩󵄩󵄩󵄩

2

HS

≤ (1 + Δ
1/2
)
󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑛
(𝑡) , 𝑟 (𝑡))

󵄩󵄩󵄩󵄩

2

HS + (1 + Δ
−1/2
)

×
󵄩󵄩󵄩󵄩(𝑔 (𝑌

𝑛
(𝑡) , 𝑟 (𝑡)) − 𝑔 (𝑌

𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)))

󵄩󵄩󵄩󵄩

2

HS.

(33)

Then, from (31), we have

𝑒
𝜃𝑡
E (𝜆
𝑟(𝑡)

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝑞‖𝑥‖
2

𝐻
+ 𝜃𝑞E∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

− 2𝛼𝑝E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{2⟨𝑌
𝑛
(𝑠) , 𝑓 (𝑌

𝑛
(𝑠) , 𝑟 (𝑠))⟩

𝐻

+
󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑛
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠

𝑁

∑

𝑙=1

𝛾
𝑟(𝑠)𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)

× {2⟨𝑌
𝑛
(𝑠) , (𝑒

(𝑠−⌊𝑠⌋)𝐴
− 1) 𝑓 (𝑌𝑛 (𝑠) , 𝑟 (𝑠))⟩

𝐻

+ 2 ⟨𝑌
𝑛
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

× (𝑓 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓 (𝑌
𝑛
(𝑠) , 𝑟 (𝑠))) ⟩

𝐻

+ Δ
1/2󵄩󵄩󵄩󵄩𝑔 (𝑌

𝑛
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

HS + (1 + Δ
−1/2
)

×
󵄩󵄩󵄩󵄩(𝑔 (𝑌

𝑛
(𝑠) , 𝑟 (𝑠))

−𝑔 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

≤ 𝑞‖𝑥‖
2

𝐻
+ 𝜃𝑞E∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

− 2𝛼𝑝E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

−
𝜇

2
E∫
𝑡

0

𝑒
𝜃𝑠
‖𝑌 (𝑠)‖

2

𝐻
𝑑𝑠 + 𝛼

1
∫

𝑡

0

𝑒
𝜃𝑠
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)

× {2⟨𝑌
𝑛
(𝑠) , (𝑒

(𝑠−⌊𝑠⌋)𝐴
− 1) 𝑓 (𝑌𝑛 (𝑠) , 𝑟 (𝑠))⟩

𝐻

+ 2 ⟨𝑌
𝑛
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

(𝑓 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓 (𝑌
𝑛
(𝑠) , 𝑟 (𝑠))) ⟩

𝐻

+ Δ
1/2󵄩󵄩󵄩󵄩𝑔 (𝑌

𝑛
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

HS + (1 + Δ
−1/2
)

×
󵄩󵄩󵄩󵄩(𝑔 (𝑌

𝑛
(𝑠) , 𝑟 (𝑠))

−𝑔 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

:= 𝐽
1 (𝑡) + 𝐽2 (𝑡) + 𝐽3 (𝑡) + 𝐽4 (𝑡) .

(34)

By the elemental inequality: 2𝑎𝑏 ≤ (𝑎2/𝜅)+𝜅𝑏2, 𝑎, 𝑏 ∈ R, 𝜅 >
0, and (8), (27), we obtain that, for Δ < 1,

𝐽
2 (𝑡) ≤ E∫

𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻

+ Δ
−1/2 󵄩󵄩󵄩󵄩󵄩

(𝑒
(𝑠−⌊𝑠⌋)𝐴

− 1)

× 𝑓 (𝑌
𝑛
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

𝐻
} 𝑑𝑠
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≤ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
Δ
−1/2
𝜌
2

𝑛
Δ
2
𝐿 (1 +

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝑑𝑠

≤ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{(Δ
1/2
+ Δ
1/2
𝜌
2

𝑛
𝐿)

×
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
+ Δ
1/2
𝜌
2

𝑛
𝐿} 𝑑𝑠

≤ 𝑞E∫
𝑡

0

𝑒
𝜃𝑠
{Δ
1/2
(1 + 𝜌

2

𝑛
𝐿)
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
+ Δ
1/2
𝜌
2

𝑛
𝐿} 𝑑𝑠.

(35)

By (A2) and (8), we have

󵄩󵄩󵄩󵄩(𝑓 (𝑌
𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)) − 𝑓 (𝑌

𝑛
(𝑡) , 𝑟 (𝑡)))

󵄩󵄩󵄩󵄩

2

𝐻

≤ 2
󵄩󵄩󵄩󵄩(𝑓 (𝑌

𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)) − 𝑓 (𝑌

𝑛
(⌊𝑡⌋) , 𝑟 (𝑡)))

󵄩󵄩󵄩󵄩

2

𝐻

+ 2
󵄩󵄩󵄩󵄩(𝑓 (𝑌

𝑛
(⌊𝑡⌋) , 𝑟 (𝑡)) − 𝑓 (𝑌

𝑛
(𝑡) , 𝑟 (𝑡)))

󵄩󵄩󵄩󵄩

2

𝐻

≤ 8𝐿 (1 +
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝐼
{𝑟(𝑡) ̸= 𝑟(⌊𝑡⌋)}

+ 2𝐿
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡) − 𝑌

𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
.

(36)

Similarly, we have

󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑛
(𝑡) , 𝑟 (𝑡))) − 𝑔 (𝑌

𝑛
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

HS

≤ 8𝐿 (1 +
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝐼
{𝑟(𝑡) ̸= 𝑟(⌊𝑡⌋)}

+ 2𝐿
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡) − 𝑌

𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
.

(37)

Thus, we obtain from (36) that

𝐽
3
(𝑡)

≤ 2E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
⟨𝑌
𝑛
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

× (𝑓 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓 (𝑌
𝑛
(𝑠) , 𝑟 (𝑠))) ⟩

𝐻
𝑑𝑠

≤ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠 + Δ

−1/2󵄩󵄩󵄩󵄩󵄩
𝑒
(𝑠−⌊𝑠⌋)𝐴󵄩󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑓 (𝑌

𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓 (𝑌
𝑛
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

𝐻
} 𝑑𝑠

≤ 𝑞E∫
𝑡

0

𝑒
𝜃𝑠
{Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
+ Δ
−1/2
8𝐿

× (1 +
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝐼
{𝑟(𝑠) ̸= 𝑟(⌊𝑠⌋)}

+2Δ
−1/2
𝐿
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠) − 𝑌

𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
} 𝑑𝑠.

(38)

By Markov property, we compute

E [(1 + ‖𝑌 (⌊𝑡⌋)‖
2

𝐻
) 𝐼
{𝑟(𝑡) ̸= 𝑟(⌊𝑡⌋)}

]

= E (E [(1 + ‖𝑌 (⌊𝑡⌋)‖
2

𝐻
) 𝐼
{𝑟(𝑡) ̸= 𝑟(⌊𝑡⌋)}

| 𝑟 (⌊𝑡⌋)])

= E (E [(1 + ‖𝑌 (⌊𝑡⌋)‖
2

𝐻
) | 𝑟 (⌊𝑡⌋)])

× E [𝐼
{𝑟(𝑡) ̸= 𝑟(⌊𝑡⌋)}

| 𝑟 (⌊𝑡⌋)]

= E (1 + ‖𝑌 (⌊𝑡⌋)‖
2

𝐻
)∑

𝑖∈S

𝐼
{𝑟(⌊𝑡⌋)=𝑖}

P (𝑟 (𝑡) ̸= 𝑖 | 𝑟 (⌊𝑡⌋) = 𝑖)

= E (1 + ‖𝑌 (⌊𝑡⌋)‖
2

𝐻
)∑

𝑖∈S

𝐼
{𝑟(⌊𝑡⌋)=𝑖}

× ∑

𝑗 ̸= 𝑖

(𝛾
𝑖𝑗
(𝑡 − ⌊𝑡⌋) + 𝑜 (𝑡 − ⌊𝑡⌋))

= E (1 + ‖𝑌 (⌊𝑡⌋)‖
2

𝐻
) (max
𝑖∈S
(−𝛾
𝑖𝑖
) Δ + 𝑜 (Δ))∑

𝑖∈S

𝐼
{𝑟(⌊𝑡⌋)=𝑖}

≤ �̂�ΔE (1 + ‖𝑌 (⌊𝑡⌋)‖
2

𝐻
) ,

(39)

where �̂� = 𝑁[1 +max
1≤𝑖≤𝑁

(−𝛾
𝑖𝑖
)]. Substituting (39) into (38)

gives

𝐽
3
(𝑡)

≤ 𝑞E∫
𝑡

0

𝑒
𝜃𝑠
{Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻

+2Δ
−1/2
𝐿
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠) − 𝑌

𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
} 𝑑𝑠

+ 𝑞∫

𝑡

0

8𝑒
𝜃𝑠
Δ
1/2
�̂�𝐿E (1 + ‖𝑌 (⌊𝑠⌋)‖

2

𝐻
) 𝑑𝑠.

(40)

Furthermore, due to (37) and (39), we have

𝐽
4 (𝑡)

= E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)

× {Δ
1/2󵄩󵄩󵄩󵄩𝑔 (𝑌

𝑛
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

HS

+ (1 + Δ
−1/2
)
󵄩󵄩󵄩󵄩𝑔 (𝑌

𝑛
(𝑠) , 𝑟 (𝑠)))

−𝑔 (𝑌
𝑛
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠
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≤ 𝑞E∫
𝑡

0

𝑒
𝜃𝑠
Δ
1/2
𝐿 (1 +

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝑑𝑠 + 𝑞 (1 + Δ

−1/2
)

× ∫

𝑡

0

𝑒
𝜃𝑠
8𝐿 (1 +

󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝐼
{𝑟(𝑠) ̸= 𝑟(⌊𝑠⌋)}

𝑑𝑠

+ 2𝐿𝑞 (1 + Δ
−1/2
)∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠) − 𝑌

𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

≤ 𝑞Δ
1/2
𝐿E∫
𝑡

0

𝑒
𝜃𝑠
(1 +
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝑑𝑠

+ 16𝑞�̂�Δ
1/2
𝐿∫

𝑡

0

𝑒
𝜃𝑠
(1 +
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝑑𝑠

+ 2𝐿𝑞 (1 + Δ
−1/2
)∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠) − 𝑌

𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(41)

On the other hand, by Lemma 10, when 3(𝜌2
𝑛
+ 2𝐿)Δ ≤ 1, we

have

E
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻

≤ 2E
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡) − 𝑌

𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
+ 2E
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻

≤ 6 (𝜌
2

𝑛
+ 2𝐿)Δ (1 + E

󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
)

+ 2E
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻

≤ 4E
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
+ 2.

(42)

Putting (35), (40), and (41) into (34), we have

𝑒
𝜃𝑡
E (𝜆
𝑟(𝑡)

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝑞‖𝑥‖
2

𝐻
+ ∫

𝑡

0

𝑒
𝜃𝑠
[𝛼
1
+ 𝑞𝜌
2

𝑛
Δ
1/2
𝐿

+24𝑞Δ
1/2
�̂� 𝐿 + 𝑞Δ

1/2
𝐿] 𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
[𝑞𝜃 − 2𝛼𝑝 −

𝜇

2
+ 𝑞Δ
1/2
(2 + 𝜌

2

𝑛
𝐿) + 𝑞Δ

1/2
𝐿]

×
󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠 + 24𝑞Δ

1/2
�̂� 𝐿E

× ∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ (4𝑞Δ
−1/2
𝐿 + 2𝑞𝐿)E∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑠) − 𝑌

𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(43)

By Lemma 10 and the inequality (42), we obtain that

𝑒
𝜃𝑡
E (𝜆
𝑟(𝑡)

󵄩󵄩󵄩󵄩𝑌
𝑛
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝑞‖𝑥‖
2

𝐻
+ ∫

𝑡

0

𝑒
𝜃𝑠
[𝛼
1
+ 2𝑞𝜃 − 4𝛼𝑝 − 𝜇

+ 3𝑞𝜌
2

𝑛
Δ
1/2
𝐿 + 24𝑞Δ

1/2
�̂� 𝐿

+3𝑞Δ
1/2
𝐿 + 4𝑞Δ

1/2
] 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝜃𝑠
[4𝑞𝜃 − 8𝛼𝑝 − 2𝜇 + 4𝑞Δ

1/2
(2 + 𝜌

2

𝑛
𝐿)

+4𝑞Δ
1/2
𝐿 + 24𝑞Δ

1/2
�̂� 𝐿]
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ 6𝑞𝐿Δ
1/2
(𝜌
2

𝑛
+ 2𝐿)E∫

𝑡

0

𝑒
𝜃𝑠
(1 +
󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
) 𝑑𝑠

≤ 𝑞‖𝑥‖
2

𝐻
+ ∫

𝑡

0

𝑒
𝜃𝑠
[𝛼
1
+ 2𝑞𝜃 − 4𝛼𝑝 − 𝜇 + 3𝑞𝜌

2

𝑛
Δ
1/2
𝐿

+ 24𝑞Δ
1/2
�̂� 𝐿 + 3𝑞Δ

1/2
𝐿 + 4𝑞Δ

1/2

+6𝑞𝐿Δ
1/2
(𝜌
2

𝑛
+ 2𝐿)] 𝑑𝑠

+ ∫

𝑡

0

𝑒
𝜃𝑠
[4𝑞𝜃 − 8𝛼𝑝 − 2𝜇 + 4𝑞Δ

1/2
(2 + 𝜌

2

𝑛
𝐿)

+ 4𝑞Δ
1/2
𝐿 + 24𝑞Δ

1/2
�̂� 𝐿

+6𝑞𝐿Δ
1/2
(𝜌
2

𝑛
+ 2𝐿)]

󵄩󵄩󵄩󵄩𝑌
𝑛
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(44)

Let 𝜃 = (4𝛼𝑝+𝜇)/4𝑞, for Δ < ((4𝛼𝑝+𝜇)/(8𝑞+4𝑞𝜌2
𝑛
𝐿+4𝑞𝐿+

24𝑞�̂� + 6𝑞𝐿(𝜌
2

𝑛
+ 2𝐿)))

2, then

𝑝𝑒
𝜃𝑡
E (‖𝑌 (𝑡)‖

2

𝐻
) ≤ 𝑞‖𝑥‖

2

𝐻
+ ∫

𝑡

0

𝑒
𝜃𝑠
[𝛼
1
+
4𝛼𝑝 + 𝜇

2
] 𝑑𝑠.

(45)

That is,

sup
𝑡≥0

E (‖𝑌 (𝑡)‖
2

𝐻
) ≤ 𝐶. (46)

Lemma 12. Let (A1)–(A3) hold. If Δ < min{1, 1/18(𝜌2
𝑛
+

2𝐿), ((2𝛼𝑝 + 𝜇)/(4𝑞 + 2𝑞𝐿 + 2𝑞𝜌
2

𝑛
𝐿 + 12𝑞𝐿�̂�))

2
}, then

lim
𝑡→∞

E
󵄩󵄩󵄩󵄩󵄩
𝑌
𝑛,𝑥,𝑖
(𝑡) − 𝑌

𝑛,𝑦,𝑖
(𝑡)
󵄩󵄩󵄩󵄩󵄩

2

𝐻
= 0 𝑢𝑛𝑖𝑓𝑜𝑟𝑚𝑙𝑦 𝑓𝑜𝑟 𝑥, 𝑦 ∈ 𝑈,

(47)

where 𝑈 is a bounded subset of𝐻
𝑛
.
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Proof. Write 𝑌𝑛,𝑥,𝑖(𝑡) = 𝑌𝑥(𝑡), 𝑌𝑛,𝑦,𝑖(𝑡) = 𝑌𝑦(𝑡), 𝑟𝑖(𝑘Δ) =
𝑟(𝑘Δ). From (20), it is easy to show that

(𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡)) − (𝑌

𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

= (𝑌
𝑥
(𝑡) − 𝑌

𝑥
(⌊𝑡⌋)) − (𝑌

𝑦
(𝑡) − 𝑌

𝑦
(⌊𝑡⌋))

= (𝑒
(𝑡−⌊𝑡⌋)𝐴

− 1) (𝑌𝑥 (⌊𝑡⌋) − 𝑌𝑦 (⌊𝑡⌋))

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−⌊𝑠⌋)𝐴

(𝑓
𝑛
(𝑌
𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓
𝑛
(𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))) 𝑑𝑠

+ ∫

𝑡

⌊𝑡⌋

𝑒
(𝑡−⌊𝑠⌋)𝐴

(𝑔
𝑛
(𝑌
𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑔
𝑛
(𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))) 𝑑𝑊 (𝑠) .

(48)

By using the argument of Lemma 10, we derive that, if Δ < 1,

E
󵄩󵄩󵄩󵄩(𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡)) − (𝑌

𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

𝐻

≤ 3 (𝜌
2

𝑛
+ 2𝐿)ΔE

󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻
,

(49)

E
󵄩󵄩󵄩󵄩(𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡))
󵄩󵄩󵄩󵄩

2

𝐻

= E
󵄩󵄩󵄩󵄩(𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡)) − (𝑌

𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

+ (𝑌
𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

𝐻

≤ (1 + 2)E
󵄩󵄩󵄩󵄩(𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡))

− (𝑌
𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

𝐻

+ (1 +
1

2
)E
󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋)
󵄩󵄩󵄩󵄩

2

𝐻

≤ 9 (𝜌
2

𝑛
+ 2𝐿)ΔE

󵄩󵄩󵄩󵄩(𝑌
𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

𝐻

+ 1.5E
󵄩󵄩󵄩󵄩(𝑌
𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

𝐻
.

(50)

If Δ < 1/18(𝜌2
𝑛
+ 2𝐿), then

E
󵄩󵄩󵄩󵄩(𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡))
󵄩󵄩󵄩󵄩

2

𝐻
≤ 2E
󵄩󵄩󵄩󵄩(𝑌
𝑥
(⌊𝑡⌋) − 𝑌

𝑦
(⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

𝐻
. (51)

Using (30) and the generalised Itô formula, for any 𝜃 > 0, we
have

𝑒
𝜃𝑡
E (𝜆
𝑟(𝑡)

󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝜆
𝑖

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{𝜃
󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻

+ 2 ⟨𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠) ,

𝐴𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)⟩
𝐻

+ 2 ⟨𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

× (𝑓
𝑛
(𝑌
𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓
𝑛
(𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)))⟩

𝐻

+
󵄩󵄩󵄩󵄩𝑔𝑛 (𝑌

𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑔
𝑛
(𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠

𝑁

∑

𝑙=1

𝛾
𝑟(𝑠)𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

≤ 𝑞
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
+ 𝑞𝜃E∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

− 2𝛼𝑝E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{2 ⟨𝑌

𝑥
(𝑠) − 𝑌

𝑦
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

× (𝑓 (𝑌
𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓 (𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))) ⟩

𝐻

+
󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑔 (𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠

𝑁

∑

𝑙=1

𝛾
𝑟(𝑠)𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(52)

By the fundamental transformation, we obtain that

⟨𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡) , 𝑒
(𝑡−⌊𝑡⌋)𝐴

× (𝑓 (𝑌
𝑥
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)) − 𝑓 (𝑌

𝑦
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))) ⟩

𝐻

= ⟨𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡) , 𝑓 (𝑌

𝑥
(𝑡) , 𝑟 (𝑡)) − 𝑓 (𝑌

𝑦
(𝑡) , 𝑟 (𝑡))⟩

𝐻

+ ⟨𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡) , (𝑒

(𝑡−⌊𝑡⌋)𝐴
− 1)

× (𝑓 (𝑌
𝑥
(𝑡) , 𝑟 (𝑡)) − 𝑓 (𝑌

𝑦
(𝑡) , 𝑟 (𝑡))) ⟩

𝐻

+ ⟨𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡) , 𝑒
(𝑡−⌊𝑡⌋)𝐴

× (𝑓 (𝑌
𝑥
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)) − 𝑓 (𝑌

𝑦
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)))

− (𝑓 (𝑌
𝑥
(𝑡) , 𝑟 (𝑡)) − 𝑓 (𝑌

𝑦
(𝑡) , 𝑟 (𝑡))) ⟩

𝐻
.

(53)

By the Höld inequality, we have

󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑥
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)) − 𝑔 (𝑌

𝑦
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))

󵄩󵄩󵄩󵄩

2

HS

≤ (1 + Δ
1/2
)
󵄩󵄩󵄩󵄩𝑔 (𝑌
𝑥
(𝑡) , 𝑟 (𝑡)) − 𝑔 (𝑌

𝑦
(𝑡) , 𝑟 (𝑡))

󵄩󵄩󵄩󵄩

2

HS
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+ (1 + Δ
−1/2
)
󵄩󵄩󵄩󵄩(𝑔 (𝑌

𝑥
(𝑡) , 𝑟 (𝑡)) − 𝑔 (𝑌

𝑦
(𝑡) , 𝑟 (𝑡)))

− (𝑔 (𝑌
𝑥
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋))

−𝑔 (𝑌
𝑦
(⌊𝑡⌋) , 𝑟 (⌊𝑡⌋)))

󵄩󵄩󵄩󵄩

2

HS.

(54)

Then, from (52) and (A3), we have

𝑒
𝜃𝑡
E (𝜆
𝑟(𝑡)

󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝑞
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
+ (𝑞𝜃 − 2𝛼𝑝 − 𝜇)E

× ∫

𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ 2E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)

× ⟨𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠) , (𝑒

(𝑠−⌊𝑠⌋)𝐴
− 1)

× (𝑓 (𝑌
𝑥
(𝑠) , 𝑟 (𝑠))

−𝑓 (𝑌
𝑦
(𝑠) , 𝑟 (𝑠))) ⟩

𝐻
𝑑𝑠

+ 2E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)

× ⟨𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠) , 𝑒
(𝑠−⌊𝑠⌋)𝐴

× (𝑓 (𝑌
𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓 (𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋)))

− (𝑓 (𝑌
𝑥
(𝑠) , 𝑟 (𝑠))

−𝑓 (𝑌
𝑦
(𝑠) , 𝑟 (𝑠)))⟩

𝐻
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{Δ
1/2 󵄩󵄩󵄩󵄩𝑔 (𝑌

𝑥
(𝑠) , 𝑟 (𝑠))

−𝑔 (𝑌
𝑦
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

HS

+ (1 + Δ
−1/2
)

×
󵄩󵄩󵄩󵄩(𝑔 (𝑌

𝑥
(𝑠) , 𝑟 (𝑠))

−𝑔 (𝑌
𝑦
(𝑠) , 𝑟 (𝑠)))

− (𝑔 (𝑌
𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

− 𝑔 (𝑌
𝑦
(⌊𝑠⌋) ,

𝑟 (⌊𝑠⌋) ) )
󵄩󵄩󵄩󵄩

2

HS} 𝑑𝑠

:= 𝐺
1
(𝑡) + 𝐺

2
(𝑡) + 𝐺

3
(𝑡) + 𝐺

4
(𝑡) .

(55)

By (A2) and (27), we have, for Δ < 1,

𝐺
2 (𝑡)

≤ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
{Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻

+ Δ
−1/2 󵄩󵄩󵄩󵄩󵄩

(𝑒
(𝑠−⌊𝑠⌋)𝐴

− 1)

× (𝑓 (𝑌
𝑥
(𝑠) , 𝑟 (𝑠))

−𝑌
𝑦
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

𝐻
} 𝑑𝑠

≤ E∫
𝑡

0

𝑒
𝜃𝑠
𝜆
𝑟(𝑠)
(Δ
1/2
+ Δ
3/2
𝜌
2

𝑛
𝐿)
󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

≤ 𝑞E∫
𝑡

0

𝑒
𝜃𝑠
Δ
1/2
(1 + 𝜌

2

𝑛
𝐿)
󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(56)

It is easy to show that

𝐺
3
(𝑡)

≤ 𝑞E∫
𝑡

0

𝑒
𝜃𝑠
{Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻

+ Δ
−1/2󵄩󵄩󵄩󵄩󵄩
(𝑒
(𝑠−⌊𝑠⌋)𝐴

)
󵄩󵄩󵄩󵄩󵄩

2

×
󵄩󵄩󵄩󵄩𝑓 (𝑌

𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

− 𝑓 (𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

− (𝑓 (𝑌
𝑥
(𝑠) , 𝑟 (𝑠))

−𝑌
𝑦
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

𝐻
} 𝑑𝑠

≤ 𝑞E∫
𝑡

0

𝑒
𝜃𝑠
Δ
1/2󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠 + 𝐺

3
(𝑡) .

(57)

By (39), we have

𝐺
3 (𝑡)

≤ 2𝑞Δ
−1/2

E∫
𝑡

0

𝑒
𝜃𝑠
[
󵄩󵄩󵄩󵄩𝑓 (𝑌

𝑥
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

−𝑓 (𝑌
𝑦
(⌊𝑠⌋) , 𝑟 (⌊𝑠⌋))

󵄩󵄩󵄩󵄩

2

𝐻

+
󵄩󵄩󵄩󵄩(𝑓 (𝑌

𝑥
(𝑠) , 𝑟 (𝑠))

−𝑌
𝑦
(𝑠) , 𝑟 (𝑠))

󵄩󵄩󵄩󵄩

2

𝐻
]

× 𝐼
{𝑟(𝑠) ̸= 𝑟(⌊𝑠⌋)}

𝑑𝑠

≤ 4𝑞Δ
−1/2
𝐿E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑠⌋) − 𝑌

𝑦
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻

× 𝐼
{𝑟(𝑠) ̸= 𝑟(⌊𝑠⌋)}

𝑑𝑠

≤ 4𝑞𝐿�̂�Δ
1/2

E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑠⌋) − 𝑌

𝑦
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(58)

Therefore, we obtain that

𝐺
3
(𝑡) ≤ 𝑞Δ

1/2
E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ 4𝑞𝐿�̂�Δ
1/2

E∫
𝑡

0

𝑒
𝜃𝑠󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑠⌋) − 𝑌

𝑦
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(59)
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On the other hand, using the similar argument of (58), we
have

𝐺
4
(𝑡) ≤ 𝑞E∫

𝑡

0

𝑒
𝜃𝑠
{Δ
1/2
𝐿
󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻

+ (1 + Δ
−1/2
) 4𝐿�̂�Δ

×
󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑠⌋) − 𝑌

𝑦
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
} 𝑑𝑠.

(60)

Hence, we have

𝑝𝑒
𝜃𝑡
E (
󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝑞
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻

+ E∫
𝑡

0

𝑒
𝜃𝑠
[𝑞𝜃 − 2𝛼𝑝 − 𝜇 + 𝑞 (1 + 𝜌

2

𝑛
𝐿)Δ
1/2

+𝑞Δ
1/2
+ 𝑞𝐿Δ

1/2
]
󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑠) − 𝑌

𝑦
(𝑠)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠

+ E∫
𝑡

0

𝑒
𝜃𝑠
[4𝑞𝐿�̂�Δ

1/2
+ (Δ
1/2
+ Δ) 4𝑞𝐿�̂�]

×
󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑠⌋) − 𝑌

𝑦
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(61)

By (50), we obtain that

𝑝𝑒
𝜃𝑡
E (
󵄩󵄩󵄩󵄩𝑌
𝑥
(𝑡) − 𝑌

𝑦
(𝑡)
󵄩󵄩󵄩󵄩

2

𝐻
)

≤ 𝑞
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
+ E∫

𝑡

0

𝑒
𝜃𝑠
[2𝑞𝜃 − 4𝛼𝑝 − 2𝜇

+ 4𝑞Δ
1/2
+ 2𝑞𝐿Δ

1/2

+2𝑞𝜌
2

𝑛
𝐿Δ
1/2
+ 12𝑞𝐿�̂�Δ

1/2
]

×
󵄩󵄩󵄩󵄩𝑌
𝑥
(⌊𝑠⌋) − 𝑌

𝑦
(⌊𝑠⌋)
󵄩󵄩󵄩󵄩

2

𝐻
𝑑𝑠.

(62)

Let 𝜃 = (2𝛼𝑝+𝜇)/2𝑞, for Δ < ((2𝛼𝑝+𝜇)/(4𝑞+ 2𝑞𝐿+2𝑞𝜌2
𝑛
𝐿+

12𝑞𝐿�̂�))
2, then the desired assertion (47) follows.

We can now easily prove our main result.

Proof of Theorem 9. Since 𝐻
𝑛

is finite-dimensional, by
Lemma 3.1 in [12], we have

lim
𝑘→∞

𝑑L (P
𝑛,Δ

𝑘
((𝑥, 𝑖) , ⋅ × ⋅) ,P

𝑛,Δ

𝑘
((𝑦, 𝑖) , ⋅ × ⋅)) = 0, (63)

uniformly in 𝑥, 𝑦 ∈ 𝐻
𝑛
, 𝑖, 𝑗 ∈ S.

By Lemma 7, there exists 𝜋𝑛,Δ(⋅ × ⋅) ∈ P(𝐻
𝑛
× S), such

that

lim
𝑘→∞

𝑑L (P
𝑛,Δ

𝑘
((0, 1) , ⋅ × ⋅) , 𝜋

𝑛,Δ
(⋅ × ⋅)) = 0. (64)

By the triangle inequality (63) and (64), we have

lim
𝑘→∞

𝑑L (P
𝑛,Δ

𝑘
((𝑥, 𝑖) , ⋅ × ⋅) , 𝜋

𝑛,Δ
(⋅ × ⋅))

≤ lim
𝑘→∞

𝑑L (P
𝑛,Δ

𝑘
((𝑥, 𝑖) , ⋅ × ⋅) ,P

𝑛,Δ

𝑘
((0, 1) , ⋅ × ⋅))

+ lim
𝑘→∞

𝑑L (P
𝑛,Δ

𝑘
((0, 1) , ⋅ × ⋅) , 𝜋

𝑛,Δ
(⋅ × ⋅)) = 0.

(65)

4. Corollary and Example

In this section, we give a criterion based𝑀-matrices which
can be verified easily in applications.
(A4) For each 𝑗 ∈ S, there exists a pair of constants 𝛽

𝑗
and

𝛿
𝑗
such that, for 𝑥, 𝑦 ∈ 𝐻,

⟨𝑥 − 𝑦, 𝑓 (𝑥, 𝑗) − 𝑓 (𝑦, 𝑗)⟩
𝐻
≤ 𝛽
𝑗

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻
,

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (𝑦, 𝑗)
󵄩󵄩󵄩󵄩

2

HS ≤ 𝛿𝑗
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
.

(66)

Moreover,A := − diag(2𝛽
1
+𝛿
1
, . . . , 2𝛽

𝑁
+𝛿
𝑁
) − Γ is

a nonsingular𝑀-matrix [8].

Corollary 13. Under (A1), (A2), and (A4), for a given stepsize
Δ > 0, and arbitrary 𝑥 ∈ 𝐻

𝑛
, 𝑖 ∈ S, {𝑍

𝑛,(𝑥,𝑖)

(𝑘Δ)}
𝑘≥0

has a
unique stationary distribution 𝜋𝑛,Δ(⋅ × ⋅) ∈ P(𝐻

𝑛
× S).

Proof. In fact, we only need to prove that (A3) holds.
By (A4), there exists (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑁
)
𝑇
> 0, such that

(𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑁
)
𝑇
= A(𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑁
)
𝑇
> 0.

Set 𝜇 = min
1≤𝑗≤𝑁

𝑞
𝑗
, by (66), we have

2𝜆
𝑗
⟨𝑥 − 𝑦, 𝑓 (𝑥, 𝑗) − 𝑓 (𝑦, 𝑗)⟩

𝐻

+ 𝜆
𝑗

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (𝑦, 𝑗)
󵄩󵄩󵄩󵄩

2

𝐻
+

𝑁

∑

𝑙=1

𝛾
𝑗𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻

≤ 2𝜆
𝑗
𝛽
𝑗

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻
+ 𝛿
𝑗
𝜆
𝑗

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻
+

𝑁

∑

𝑙=1

𝛾
𝑗𝑙
𝜆
𝑙

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻

= (2𝜆
𝑗
𝛽
𝑗
+ 𝛿
𝑗
𝜆
𝑗
+

𝑁

∑

𝑙=1

𝛾
𝑗𝑙
𝜆
𝑙
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻

= −𝑞
𝑗

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻
≤ −𝜇
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻

(67)

In the following, we give an example to illustrate the
Corollary 13.

Example 14. Consider

𝑑𝑋 (𝑡, 𝜉) = [
𝜕
2

𝜕𝜉2
𝑋(𝑡, 𝜉) + 𝐵 (𝑟 (𝑡))𝑋 (𝑡, 𝜉)] 𝑑𝑡

+ 𝑔 (𝑋 (𝑡, 𝜉) , 𝑟 (𝑡)) 𝑑𝑊 (𝑡) , 0 < 𝜉 < 𝜋, 𝑡 ≥ 0.

(68)
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We take 𝐻 = 𝐿2(0, 𝜋) and 𝐴 = 𝜕2/𝜕𝜉2 with domain
D(𝐴) = 𝐻2(0, 𝜋) ∩𝐻1

0
(0, 𝜋), then 𝐴 is a self-adjoint negative

operator. For the eigenbasis 𝑒
𝑘
(𝜉) = (2/𝜋)

1/2 sin(𝑘𝜉), 𝜉 ∈
[0, 𝜋], 𝐴𝑒

𝑘
= −𝑘
2
𝑒
𝑘
, 𝑘 ∈ N. It is easy to show that

󵄩󵄩󵄩󵄩󵄩
𝑒
𝑡𝐴
𝑥
󵄩󵄩󵄩󵄩󵄩

2

𝐻
=

∞

∑

𝑖=1

𝑒
−2𝑘
2

𝑡
⟨𝑥, 𝑒
𝑖
⟩
2

𝐻
≤ 𝑒
−2𝑡

∞

∑

𝑖=1

⟨𝑥, 𝑒
𝑖
⟩
2

𝐻
. (69)

This further gives that
󵄩󵄩󵄩󵄩󵄩
𝑒
𝑡𝐴󵄩󵄩󵄩󵄩󵄩
≤ 𝑒
−𝑡
, (70)

where 𝛼 = 1, thus (A1) holds.
Let 𝑊(𝑡) be a scalar Brownian motion, let 𝑟(𝑡) be a

continuous-time Markov chain values in S = 1, 2, with the
generator

Γ = (
−2 2

1 −1
) ,

𝐵 (1) = 𝐵1 = (
−0.3 −0.1

−0.2 −0.2
) ,

𝐵 (2) = 𝐵
2
= (
−0.4 −0.2

−0.3 −0.2
) .

(71)

Then 𝜆max(𝐵
𝑇

1
𝐵
1
) = 0.1706, 𝜆max(𝐵

𝑇

2
𝐵
2
) = 0.3286.

Moreover, 𝑔 satisfies

󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (𝑦, 𝑗)
󵄩󵄩󵄩󵄩

2

HS ≤ 𝛿𝑗
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
, (72)

where 𝛿
1
= 0.1, 𝛿

2
= 0.06.

Defining 𝑓(𝑥, 𝑗) = 𝐵(𝑗)𝑥, then

󵄩󵄩󵄩󵄩𝑓 (𝑥, 𝑗) − 𝑓 (𝑦, 𝑗)
󵄩󵄩󵄩󵄩

2

HS ∨
󵄩󵄩󵄩󵄩𝑔 (𝑥, 𝑗) − 𝑔 (𝑦, 𝑗)

󵄩󵄩󵄩󵄩

2

HS

≤ (𝜆max (𝐵
𝑇

𝑗
𝐵
𝑗
) ∨ 𝛿
𝑗
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
< 0.33

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

2

𝐻
,

⟨𝑥 − 𝑦, 𝑓 (𝑥, 𝑗) − 𝑓 (𝑦, 𝑗)⟩
𝐻

≤
1

2
⟨𝑥 − 𝑦, (𝐵

𝑇

𝑗
+ 𝐵
𝑗
) (𝑥 − 𝑦)⟩

𝐻

≤
1

2
𝜆max (𝐵

𝑇

𝑗
+ 𝐵
𝑗
)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

𝐻
.

(73)

It is easy to compute

𝛽
1
=
1

2
𝜆max (𝐵

𝑇

1
+ 𝐵
1
) = −0.0919,

𝛽
2
=
1

2
𝜆max (𝐵

𝑇

2
+ 𝐵
2
) = −0.03075.

(74)

So the matrixA becomes

A = diag (0.0838, 0.0015) − Γ = (2.0838 −2

−1 1.0015
) . (75)

It is easy to see that A is a nonsingular𝑀-matrix. Thus,
(A4) holds. By Corollary 13, we can conclude that (68) has a
unique stationary distribution 𝜋𝑛,Δ(⋅ × ⋅).
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This paper considers the dynamics of switched cellular neural networks (CNNs) with mixed delays. With the help of the Lyapnnov
function combined with the average dwell time method and linear matrix inequalities (LMIs) technique, some novel sufficient
conditions on the issue of the uniformly ultimate boundedness, the existence of an attractor, and the globally exponential stability
for CNN are given.The provided conditions are expressed in terms of LMI, which can be easily checked by the effective LMI toolbox
in Matlab in practice.

1. Introduction

Cellular neural networks (CNNs) introduced by Chua and
Yang in [1, 2] have attracted increasing interest due to
the potential applications in classification, signal processing,
associative memory, parallel computation, and optimization
problems. In these applications, it is essential to investigate
the dynamical behavior [3–5]. Both in biological and artifi-
cial neural networks, the interactions between neurons are
generally asynchronous. As a result, time delay is inevitably
encountered in neural networks, which may lead to an
oscillation and furthermore to instability of networks. Since
Roska et al. [6, 7] first introduced the delayed cellular neural
networks (DCNNs), DCNNhas been extensively investigated
[8–10].Themodel can be described by the following differen-
tial equation:

̇𝑥
𝑖 (𝑡) = − 𝑑𝑖𝑥𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
)) + 𝐽

𝑖
, 𝑖 = 1, . . . , 𝑛,

(1)

where 𝑡 ≥ 0, 𝑛(≥ 2) corresponds to the number of units
in a neural network; 𝑥

𝑖
(𝑡) denotes the potential (or voltage)

of cell 𝑖 at time 𝑡; 𝑓
𝑗
(⋅) denotes a nonlinear output function;

𝐽
𝑖
denotes the 𝑖th component of an external input source

introduced from outside the network to the cell 𝑖 at time
𝑡; 𝑑
𝑖
(> 0) denotes the rate with which the cell 𝑖 resets its

potential to the resting state when isolated from other cells
and external inputs; 𝑎

𝑖𝑗
denotes the strength of the 𝑗th unit

on the 𝑖th unit at time 𝑡; 𝑏
𝑖𝑗
denotes the strength of the 𝑗th

unit on the 𝑖th unit at time 𝑡 − 𝜏
𝑗
; 𝜏
𝑗
(≥ 0) corresponds to the

time delay required in processing and transmitting a signal
from the 𝑗th cell to the 𝑖th cell at time 𝑡.

Although the use of constant fixed delays in models of
delayed feedback provides of a good approximation in simple
circuits consisting a small number of cells, recently, it has
been well recognized that neural networks usually have a
spatial extent due to the presence of a multitude of parallel
pathways with a variety of axon sizes and lengths. Therefore,
there will be a distribution of conduction velocities along
these pathways and a distribution of propagation delays. As
the fact that delays in artificial neural networks are usually
time varying and sometimes vary violently with time, system
(1) can be generalized as follow:

̇𝑥 (𝑡) = − 𝐷𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡)) + 𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽,
(2)
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where, 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇,𝐷 = diag(𝑑

1
, . . . , 𝑑

𝑛
),𝐹(⋅) =

(𝑓
1
(⋅), . . . , 𝑓

𝑛
(⋅))
𝑇, 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

,
𝜏(𝑡) = (𝜏

1
(𝑡), . . . , 𝜏

𝑛
(𝑡))
𝑇, ℎ(𝑡) = (ℎ

1
(𝑡), . . . , ℎ

𝑛
(𝑡))
𝑇, 𝐽 =

(𝐽
1
, . . . , 𝐽

𝑛
)
𝑇.

On the other hand, neural networks are complex and
large-scale nonlinear dynamics; during hardware implemen-
tation, the connection topology of networks may change
very quickly and link failures or new creation in networks
often bring about switching connection topology [11, 12]. To
obtain a deep and clear understanding of the dynamics of
this complex system, one of the usual ways is to investigate
the switched neural network. As a special class of hybrid
systems, switched neural network systems are composed of
a family of continuous-time or discrete-time subsystems and
a rule that orchestrates the switching between the subsystems
[13]. A switchedDCNN can be characterized by the following
differential equation:

̇𝑥 (𝑡) = − 𝐷𝑥 (𝑡) + 𝐴𝜎(𝑡)𝐹 (𝑥 (𝑡)) + 𝐵𝜎(𝑡)𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶
𝜎(𝑡)
∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠 + 𝐽,
(3)

where 𝜎(𝑡) : [0, +∞) → Σ = {1, 2, . . . , 𝑚} is the switching
signal, which is a piecewise constant function of time.

Corresponding to the switching signal 𝜎(𝑡), we have the
switching sequence {𝑥

𝑡
0

; (𝑖
0
, 𝑡
0
), . . . , (𝑖

𝑘
, 𝑡
𝑘
), . . . , | 𝑖

𝑘
∈ Σ, 𝑘 =

0, 1, . . .}, which means that the 𝑖
𝑘
th subsystem is activated

when 𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘−1
).

Over the past decades, the stability of the unique equilib-
rium point for switched neural networks has been intensively
investigated. There are three basic problems in dealing with
the stability of switched systems: (1) find conditions that
guarantee that the switched system (3) is asymptotically
stable for any switching signal; (2) identify those classes
of switching signals for which the switched system (3) is
asymptotically stable; (3) construct a switching signal that
makes the switched system (3) asymptotically stable [14].
Recently, some novel results on the stability of switched
systems have been reported; see for examples [14–22] and
references therein.

Just as pointed out in [23], when the activation functions
are typically assumed to be continuous, bounded, differen-
tiable, and monotonically increasing, such as the functions
of sigmoid type, the existence of an equilibrium point can
be guaranteed. However, in some special applications, one
is required to use unbounded activation functions. For
example, when neural networks are designed for solving
optimization problems in the presence of constraints (lin-
ear, quadratic, or more general programming problems),
unbounded activations modeled by diode-like exponential-
type functions are needed to impose constraints satisfaction.
Different from the bounded case where the existence of
an equilibrium point is always guaranteed, for unbounded
activations it may happen that there is no equilibrium point.
In this case, it is difficult to deal with the issue of the stability
of the equilibrium point for switched neural networks.

In fact, studies on neural dynamical systems involve
not only the discussion of stability property but also other

dynamics behaviors such as the ultimate boundedness and
attractor [24, 25]. To the best of our knowledge, so far there
are no published results on the ultimate boundedness and
attractor for the switched system (3).

Motivated by the above discussions, in the following,
the objective of this paper is to establish a set of sufficient
criteria on the attractor and ultimate boundedness for the
switched system.The rest of this paper is organized as follows.
Section 2 presents model formulation and some preliminary
works. In Section 3, ultimate boundedness and attractor for
the considered model are studied. In Section 4, a numerical
example is given to show the effectiveness of our results.
Finally, in Section 5, conclusions are given.

2. Problem Formulation

For the sake of convenience, throughout this paper, two of the
standing assumptions are formulated below:

(𝐻
1
) Assume the functions 𝜏(𝑡) and ℎ(𝑡) are bounded:

0 ≤ 𝜏
𝑖 (𝑡) ≤ 𝜏, 0 ≤ ℎ (𝑡) ≤ ℎ, 𝜏

∗
= max
1≤𝑖≤𝑛

{𝜏, ℎ} , (4)

where 𝜏, ℎ are scalars.
(𝐻
2
) Assume there exist constants 𝑙

𝑗
and 𝐿

𝑗
, 𝑖 = 1, 2, . . . , 𝑛,

such that

𝑙
𝑗
≤

𝑓
𝑗 (𝑥) − 𝑓𝑗 (𝑦)

𝑥 − 𝑦
≤ 𝐿
𝑗
, ∀𝑥, 𝑦 ∈ 𝑅, 𝑥 ̸= 𝑦. (5)

Remark 1. We shall point out that the constants 𝑙
𝑗
and 𝐿

𝑗
can

be positive, negative, or zero, and the boundedness on 𝑓
𝑗
(⋅)

is no longer needed in this paper. Therefore, the activation
function𝑓

𝑗
(⋅)may be unbounded, which is also more general

than the form |𝑓
𝑗
(𝑢)| ≤ 𝐾

𝑗
|𝑢|, 𝐾
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑛.

Different from the bounded case where the existence of an
equilibrium point is always guaranteed, under the condition
(𝐻
2
), in the switched system (3) it may happen that there is

no equilibrium point.Thus it is of great interest to investigate
the ultimate boundedness solutions and the existence of an
attractor by replacing the usual stability property for system
(3).

Without loss of generality, let 𝐶([−𝜏∗, 0], 𝑅𝑛) denote
the Banach space of continuous mapping from [−𝜏

∗
, 0]

to 𝑅𝑛 equipped with the supremum norm ‖ 𝜑(𝑡) ‖=

max
1≤𝑖≤𝑛

sup
𝑡−𝜏
∗

<𝑠≤𝑡
|𝜑
𝑖
(𝑠)|. Throughout this paper, we give

some notations: 𝐴𝑇 denotes the transpose of any square
matrix 𝐴, 𝐴 > 0 (< 0) denotes a positive (negative) definite
matrix 𝐴, the symbol “∗” within the matrix represents
the symmetric term of the matrix, 𝜆min(𝐴) represents the
minimumeigenvalue ofmatrix𝐴, and 𝜆max(𝐴) represents the
maximum eigenvalue of matrix 𝐴.

System (3) is supplemented with initial values of the type

𝑥 (𝑡) = 𝜑, 𝜑 ∈ 𝐶 ([−𝜏
∗
, 0] , 𝑅

𝑛
) . (6)

Now, we briefly summarize some needed definitions and
lemmas as below.



Abstract and Applied Analysis 3

Definition 2 (see [24]). System (3) is uniformly ultimately
bounded; if there is 𝐵 > 0, for any constant 󰜚 > 0, there is
𝑡
󸀠
= 𝑡
󸀠
(󰜚) > 0, such that ‖ 𝑥(𝑡, 𝑡

0
, 𝜑) ‖< 𝐵 for all 𝑡 ≥ 𝑡

0
+ 𝑡
󸀠,

𝑡
0
> 0, ‖𝜑‖< 󰜚.

Definition 3. The nonempty closed set A ⊂ 𝑅
𝑛 is called an

attractor for the solution 𝑥(𝑡; 𝜑) of system (3) if the following
formula holds:

lim
𝑡→∞

𝑑 (𝑥 (𝑡; 𝜑) ,A) = 0, (7)

where 𝑑(𝑥,A) = inf
𝑦∈A ‖ 𝑥 − 𝑦 ‖.

Definition 4 (see [26]). For any switching signal 𝜎(𝑡) and any
finite constants 𝑇

1
, 𝑇
2
satisfying 𝑇

2
> 𝑇
1
≥ 0, denote the

number of discontinuity of a switching signal 𝜎(𝑡) over the
time interval (𝑇

1
, 𝑇
2
) by𝑁

𝜎
(𝑇
1
, 𝑇
2
). If𝑁

𝜎
(𝑇
1
, 𝑇
2
) ≤ 𝑁

0
+(𝑇
2
−

𝑇
1
)/𝑇
𝛼
holds for 𝑇

𝛼
> 0, 𝑁

0
> 0, then 𝑇

𝛼
> 0 is called the

average dwell time.

3. Main Results

Theorem 5. Assume there is a constant 𝜇, such that ̇𝜏(𝑡) ≤ 𝜇,
and denote 𝑔(𝜇) as

𝑔 (𝜇) = {
(1 − 𝜇) 𝑒

−𝑎𝜏
, 𝜇 ≤ 1;

1 − 𝜇, 𝜇 ≥ 1.
(8)

For a given constant 𝑎 > 0, if there exist positive-definite
matrixes 𝑃 = diag(𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑛
), 𝑌
𝑖
= diag(𝑦

𝑖1
, 𝑦
𝑖2
, . . . , 𝑦

𝑖𝑛
),

𝑖 = 1, 2, such that the following condition holds:

Δ
1
=

[
[
[
[
[

[

Φ
11

0 Φ
13
Φ
14
Φ
15

∗ Φ
22
0 Φ

24
0

∗ ∗ Φ
33
0 0

∗ ∗ ∗ Φ
44
0

∗ ∗ ∗ ∗ 0

]
]
]
]
]

]

< 0, (9)

where

𝑄 = (
𝑄
11
𝑄
12

∗ 𝑄
22

) ≥ 0, 𝑌
𝑖
≥ 0, 𝑖 = 1, 2,

Φ
11
= 𝑎𝑃 − 2𝐷𝑃 + 𝑄

11
− Ω
1
𝑌
1
+ 𝑃 + 𝑎𝐼,

Φ
13
= 𝑃𝐴 + 𝑄

12
+ Ω
2
𝑌
1
,

Φ
14
= 𝑃𝐵, Φ

15
= 𝑃𝐶,

Φ
22
= −𝑔 (𝜇)𝑄

11
− Ω
1
𝑌
2
+ 𝑎𝐼,

Φ
24
= −𝑔 (𝜇)𝑄

12
+ Ω
2
𝑌
2
, Φ

33
= 𝑄
22
− 2𝑌
1
+ 𝑎𝐼,

Φ
44
= −𝑔 (𝜇)𝑄

22
− 2𝑌
2
+ 𝑎𝐼,

Ω
1
= diag {𝑙

1
𝐿
1
, 𝑙
2
𝐿
2
, . . . , 𝑙
𝑛
𝐿
𝑛
} ,

Ω
2
= diag {𝑙

1
+ 𝐿
1
, 𝑙
2
+ 𝐿
2
, . . . , 𝑙
𝑛
+ 𝐿
𝑛
} ,

𝐿 = max
1≤𝑗≤𝑛

{
󵄨󵄨󵄨󵄨󵄨
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

2

,
󵄨󵄨󵄨󵄨󵄨
𝐿
𝑗

󵄨󵄨󵄨󵄨󵄨

2

} + 1,

(10)

and then system (2) is uniformly ultimately bounded.

Proof. Choose the following Lyapunov functional:

𝑉 (𝑡) = 𝑉
1
(𝑡) + 𝑉

2
(𝑡) , (11)

where

𝑉
1
(𝑡) = 𝑒

𝑎𝑡
𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) ,

𝑉
2
(𝑡) = ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝑎𝑠
𝜉
𝑇
(𝑠) 𝑄𝜉 (𝑠) d𝑠,

𝜉 (𝑡) = [𝑥
𝑇
(𝑡) , 𝐹
𝑇
(𝑥 (𝑡))]

𝑇

.

(12)

Computing the derivative of 𝑉
1
(𝑡) along the trajectory of

system (2), one can get

𝑉
1
(𝑡) ≤ 𝑒

𝑎𝑡
[𝑎𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) − 2𝑥

𝑇
(𝑡) 𝑃𝐷𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡) 𝑃𝐴𝐹 (𝑥 (𝑡))

+ 2𝑥
𝑇
(𝑡) 𝑃𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑥
𝑇
(𝑡) 𝑃𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠

+𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 𝐽

𝑇
𝑃𝐽] .

(13)

Similarly, computing the derivative of 𝑉
2
(𝑡) along the trajec-

tory of system (2), one can get

𝑉
2
(𝑡)

= 𝑒
𝑎𝑡
[𝑥
𝑇
(𝑡) , 𝐹
𝑇
𝑥 (𝑡)] 𝑄[𝑥

𝑇
(𝑡) , 𝐹
𝑇
𝑥 (𝑡)]
𝑇

− (1 − ̇𝜏 (𝑡)) 𝑒
𝑎(𝑡−𝜏(𝑡))

× [𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝐹

𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) ]

× 𝑄[𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝐹

𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) ]

𝑇

≤ 𝑒
𝑎𝑡
[𝑥
𝑇
(𝑡) , 𝐹
𝑇
(𝑥 (𝑡))] 𝑄[𝑥

𝑇
(𝑡) , 𝐹
𝑇
(𝑥 (𝑡)) ]

𝑇

− 𝑔 (𝜇) 𝑒
𝑎𝑡
[𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝐹

𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) ]

×𝑄 [𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) , 𝐹

𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) ]

𝑇

= 𝑒
𝑎𝑡
[𝑥
𝑇
(𝑡) 𝑄11𝑥 (𝑡) + 𝐹

𝑇
(𝑥 (𝑡)) 𝑄

𝑇

12
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
12
𝐹 (𝑥 (𝑡))

+𝐹
𝑇
(𝑥 (𝑡)) 𝑄22𝐹 (𝑥 (𝑡))] − 𝑔 (𝜇) 𝑒

𝑎𝑡

× [𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄

11
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐹
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄

𝑇

12
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄12𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐹
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄22𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))] .

(14)
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From assumption (𝐻
2
), we have

[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐿

𝑖
𝑥
𝑖
(𝑡) − 𝑓

𝑖
(0)]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝑙𝑖𝑥𝑖 (𝑡) − 𝑓𝑖 (0)] ≤ 0,

[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝐿

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑓

𝑖
(0)]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑙𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡)) − 𝑓𝑖 (0)]

≤ 0, 𝑖 = 1, 2, . . . , 𝑛.

(15)

Then we have

0 ≤ 𝑒
𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐿

𝑖
𝑥
𝑖
(𝑡) − 𝑓

𝑖
(0)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

𝑖
𝑥
𝑖
(𝑡) − 𝑓

𝑖
(0)]

− 2

𝑛

∑

𝑖=1

𝑦
2𝑖
[𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡)))

−𝐿
𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑓

𝑖
(0) ]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡)) − 𝑓

𝑖
(0)] }

= 𝑒
𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝐿 𝑖𝑥𝑖 (𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

𝑖
𝑥
𝑖
(𝑡) − 𝑓

𝑖
(0)]

− 2

𝑛

∑

𝑖=1

𝑦
2𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝐿

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑙𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡))]

− 2

𝑛

∑

𝑖=1

𝑦
1𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑦
1𝑖
𝑓
𝑖
(0) [2𝑓

𝑖
(𝑥
𝑖
(𝑡)) − (𝐿

𝑖
+ 𝑙
𝑖
) 𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦
2𝑖
𝑓
2

𝑖
(0)

+ 2

𝑛

∑

𝑖=1

𝑦
2𝑖
𝑓
𝑖
(0) [2𝑓

𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡)))

− (𝐿
𝑖
+ 𝑙
𝑖
) 𝑥
𝑖 (𝑡 − 𝜏 (𝑡)) ] }

≤ 𝑒
𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐿

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝐿

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨4𝑦1𝑖𝑓𝑖 (0) 𝑓𝑖 (𝑥𝑖 (𝑡))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨2𝑦1𝑖𝑓𝑖 (0) (𝐿 𝑖 + 𝑙𝑖) 𝑥𝑖 (𝑡)

󵄨󵄨󵄨󵄨]

+

𝑛

∑

𝑖=1

[
󵄨󵄨󵄨󵄨4𝑦2𝑖𝑓𝑖 (0) 𝑓𝑖 (𝑥𝑖 (𝑡 − 𝜏 (𝑡)))

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨2𝑦1𝑖𝑓𝑖 (0) (𝐿 𝑖 + 𝑙𝑖) 𝑥𝑖 (𝑡 − 𝜏 (𝑡))

󵄨󵄨󵄨󵄨] }

≤ 𝑒
𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐿

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝑙

𝑖
𝑥
𝑖
(𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝐿

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) − 𝑙𝑖𝑥𝑖 (𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[𝑎𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) + 4𝑎

−1
𝑓
2

𝑖
(0) 𝑦
2

1𝑖

+𝑎𝑥
2

𝑖
(𝑡) + 𝑎

−1
𝑓
2

𝑖
(0) 𝑦
2

1𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
]

+

𝑛

∑

𝑖=1

[𝑎𝑓
2

𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) + 4𝑎

−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖

+ 𝑎𝑥
2

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝑎

−1
𝑓
2

𝑖
(0)

×𝑦
2

2𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
]} .

(16)

Denote 𝑀𝑇(𝑡) = (𝑥
𝑇
(𝑡), 𝑥
𝑇
(𝑡 − 𝜏), 𝐹

𝑇
(𝑥(𝑡)), 𝐹

𝑇
(𝑥(𝑡 − 𝜏)),

(∫
𝑡

𝑡−ℎ
𝐹(𝑥(𝑠))d𝑠)𝑇)𝑇; combing with (11)–(16), we have

𝑉 (𝑡)

≤ 𝑒
𝑎𝑡
[𝑎𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) − 2𝑥

𝑇
(𝑡) 𝑃𝐷𝑥 (𝑡)

+ 2𝑥
𝑇
(𝑡) 𝑃𝐴𝐹 (𝑥 (𝑡)) + 2𝑥

𝑇
(𝑡) 𝑃𝐵𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 2𝑥
𝑇
(𝑡) 𝑃𝐶∫

𝑡

𝑡−ℎ(𝑡)

𝐹 (𝑥 (𝑠)) d𝑠

+𝑥
𝑇
(𝑡) 𝑃𝑥 (𝑡) + 𝐽

𝑇
𝑃𝐽]
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+ 𝑒
𝑎𝑡
[𝑥
𝑇
(𝑡) 𝑄
11
𝑥 (𝑡) + 𝐹

𝑇
(𝑥 (𝑡)) 𝑄

𝑇

12
𝑥 (𝑡)

+ 𝑥
𝑇
(𝑡) 𝑄
12
𝐹 (𝑥 (𝑡)) +𝐹

𝑇
(𝑥 (𝑡)) 𝑄

22
𝐹 (𝑥 (𝑡))]

− 𝑔
1
(𝜇) 𝑒
𝑎𝑡
× [𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄

11
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝐹
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄

𝑇

12
𝑥 (𝑡 − 𝜏 (𝑡))

+ 𝑥
𝑇
(𝑡 − 𝜏 (𝑡)) 𝑄12𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))

+𝐹
𝑇
(𝑥 (𝑡 − 𝜏 (𝑡))) 𝑄

22
𝐹 (𝑥 (𝑡 − 𝜏 (𝑡)))]

+ 𝑒
𝑎𝑡
{−2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡)) − 𝐿

𝑖
𝑥
𝑖
(𝑡)]

× [𝑓
𝑖
(𝑥
𝑖 (𝑡)) − 𝑙𝑖𝑥𝑖 (𝑡)]

− 2

𝑛

∑

𝑖=1

𝑦
1𝑖
[𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝐿

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

× [𝑓
𝑖
(𝑥
𝑖
(𝑡 − 𝜏 (𝑡))) − 𝑙

𝑖
𝑥
𝑖
(𝑡 − 𝜏 (𝑡))]

+

𝑛

∑

𝑖=1

[𝑎𝑓
2

𝑖
(𝑥
𝑖
(𝑡)) + 𝑎𝑥

2

𝑖
(𝑡) + 𝑎

−1
𝑓
2

𝑖
(0) 𝑦
2

1𝑖

× (𝐿
𝑖
+ 𝑙
𝑖
)
2
+ 4𝑎
−1
𝑓
2

𝑖
(0) 𝑦
2

1𝑖
]

+

𝑛

∑

𝑖=1

[𝑎𝑓
2

𝑖
(𝑥
𝑖 (𝑡 − 𝜏 (𝑡))) + 4𝑎

−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖

+𝑎𝑥
2

𝑖
(𝑡 − 𝜏 (𝑡)) + 𝑎

−1
𝑓
2

𝑖
(0) 𝑦
2

2𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
]} ,

(17)

and then we have

𝑉 (𝑡) ≤ 𝑒
𝑎𝑡
𝑀
𝑇
(𝑡) Δ
1
𝑀(𝑡) + 𝑒

𝑎𝑡
𝑅
1
, (18)

where 𝑅
1
= ∑
𝑛

𝑖=1
[4𝑎
−1
𝑓
2

𝑖
(0)𝑦
2

2𝑖
+ 𝑎
−1
𝑓
2

𝑖
(0)𝑦
2

1𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
+ 4𝑎
−1

𝑓
2

𝑖
(0)𝑦
2

2𝑖
+ 𝑎
−1
𝑓
2

𝑖
(0)𝑦
2

2𝑖
(𝐿
𝑖
+ 𝑙
𝑖
)
2
] + 𝐽
𝑇
𝑃𝐽.

Therefore, we obtain

𝐾𝑒
𝑎𝑡
‖𝑥 (𝑡)‖

2
≤ 𝑉 (𝑥 (𝑡)) ≤ 𝑉 (𝑥 (𝑡0)) + 𝑎

−1
𝑒
𝑎𝑡
𝑅
1
, (19)

where𝐾 = 𝜆min(𝑃), which implies

‖𝑥 (𝑡)‖
2
≤
𝑒
−𝑎𝑡
𝑉 (𝑥 (0)) + 𝑎

−1
𝑅
1

𝐾
. (20)

If one chooses 𝐵 = √(1 + 𝑎−1𝑅
1
)/𝐾 > 0, then for any

constant 󰜚 > 0 and ‖ 𝜑 ‖< 󰜚, there is 𝑡󸀠 = 𝑡󸀠(󰜚) > 0, such that
𝑒
−𝑎𝑡
𝑉(𝑥(0)) < 1 for all 𝑡 ≥ 𝑡󸀠. According to Definition 2, we

have ‖ 𝑥(𝑡, 0, 𝜑) ‖< 𝐵 for all 𝑡 ≥ 𝑡󸀠. That is to say, system (2) is
uniformly ultimately bounded.This completes the proof.

Theorem 6. If all of the conditions of Theorem 5 hold, then
there exists an attractor A

𝐵
for the solutions of system (2),

where A
𝐵
= {𝑥(𝑡) :‖ 𝑥(𝑡) ‖≤ 𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If one chooses 𝐵 = √(1 + 𝑎−1𝑅
1
)/𝐾 > 0, Theorem 5

shows that for any 𝜙 there is 𝑡󸀠 > 0, such that ‖ 𝑥(𝑡, 0, 𝜙) ‖<
𝐵 for all 𝑡 ≥ 𝑡

󸀠. Let A
𝐵
be denoted by A

𝐵
= {𝑥(𝑡) :‖

𝑥(𝑡) ‖≤ 𝐵, 𝑡 ≥ 𝑡
0
}. Clearly, A

𝐵
is closed, bounded, and

invariant. Furthermore, lim
𝑡→∞

sup inf
𝑦∈A
̃

𝐵

‖𝑥(𝑡; 0, 𝜙) − 𝑦‖=

0.Therefore,A
𝐵
is an attractor for the solutions of system (2).

This completes the proof.

Corollary 7. In addition to all of the conditions of Theorem 5
holding, if 𝐽 = 0 and𝑓

𝑖
(0) = 0 for all 𝑖 = 1, 2, . . . , 𝑛, then system

(2) has a trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of
system (2) is globally exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 for all 𝑖 = 1, 2, . . . , 𝑛, then

𝑅
1
= 0, and it is obvious that system (2) has a trivial solution

𝑥(𝑡) ≡ 0. FromTheorem 5, one has

󵄩󵄩󵄩󵄩𝑥(𝑡; 0, 𝜙)
󵄩󵄩󵄩󵄩

2
≤ 𝐾
∗
𝑒
−𝑎𝑡
, ∀𝜙, (21)

where 𝐾∗ = 𝑉(𝑥(0))/𝐾. Therefore, the trivial solution of
system (2) is globally exponentially stable.This completes the
proof.

By (11) and (19), there is a positive constant 𝐶
0
, such that

‖𝑥 (𝑡)‖
2
≤
𝐶
0

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2
𝑒
−𝑎(𝑡−𝑡

0

)

𝐾
+
Λ

𝐾
, (22)

where Λ = 𝑎−1𝑅
1
.

We now consider the switched cellular neural networks
without uncertainties as system (3). When 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1
], the

𝑖
𝑘
th subsystem is activated; from (22) andTheorem 5, there is

a positive constant 𝐶
𝑖
𝑘

, such that

‖𝑥 (𝑡)‖
2
≤

𝐶
𝑖
𝑘

󵄩󵄩󵄩󵄩𝑥(𝑡𝑘)
󵄩󵄩󵄩󵄩

2
𝑒
−𝑎(𝑡−𝑡

𝑘

)

𝐾
𝑖
𝑘

+
Λ

𝐾
𝑖
𝑘

, (23)

where𝐾
𝑖
𝑘

= 𝜆min(𝑃𝑖).

Theorem 8. For a given constant 𝑎 > 0, if there exist
positive-definite matrixes 𝑃

𝑖
= diag(𝑝

𝑖1
, 𝑝
𝑖2
, . . . , 𝑝

𝑖𝑛
), 𝑌
𝑖
=

diag(𝑦
𝑖1
, 𝑦
𝑖2
, . . . , 𝑦

𝑖𝑛
), 𝑖 = 1, 2, such that the following condi-

tion holds:

Δ
𝑖1
=

[
[
[
[
[

[

Φ
𝑖11
0 Φ

𝑖13
Φ
𝑖14
Φ
𝑖15

∗ Φ
𝑖22
0 Φ

𝑖24
0

∗ ∗ Φ
𝑖33
0 0

∗ ∗ ∗ Φ
𝑖44
0

∗ ∗ ∗ ∗ 0

]
]
]
]
]

]

< 0, (24)
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where

𝑄
𝑖
= (
𝑄
𝑖11
𝑄
𝑖12

∗ 𝑄
𝑖22

) ≥ 0, 𝑌
𝑖
≥ 0, 𝑖 = 1, 2, ̇𝜏 (𝑡) ≤ 𝜇,

Φ
𝑖11
= 𝑎𝑃
𝑖
− 2𝐷𝑃

𝑖
+ 𝑄
𝑖11
− Ω
1
𝑌
1
+ 𝑃
𝑖
+ 𝑎𝐼,

Φ
𝑖13
= 𝑃
𝑖
𝐴
𝑖
+ 𝑄
𝑖12
+ Ω
2
𝑌
1
,

Φ
𝑖14
= 𝑃
𝑖
𝐵
𝑖
, Φ

15
= 𝑃
𝑖
𝐶
𝑖
,

Φ
𝑖22
= −𝑔 (𝜇)𝑄

𝑖11
− Ω
1
𝑌
2
+ 𝑎𝐼,

Φ
𝑖24
= −𝑔 (𝜇)𝑄

𝑖12
+ Ω
2
𝑌
2
, Φ

𝑖33
= 𝑄
𝑖22
− 2𝑌
1
+ 𝑎𝐼,

Φ
𝑖44
= −𝑔 (𝜇)𝑄

𝑖22
− 2𝑌
2
+ 𝑎𝐼.

(25)

Then system (3) is uniformly ultimately bounded for any
switched signal with average dwell time satisfying

𝑇
𝛼
> 𝑇
∗

𝛼
=
ln𝐶max
𝑎

, (26)

where 𝐶max = max
𝑖
𝑘

{𝐶
𝑖
𝑘

}.

Proof . Define the Lyapunov functional candidate

𝑉
𝜎(𝑡)
= 𝑒
𝑎𝑡
𝑥
𝑇
(𝑡) 𝑃
𝜎(𝑡)
𝑥 (𝑡)

+ ∫

𝑡

𝑡−𝜏

𝑒
𝑎𝑠
𝜉
𝑇
(𝑠) 𝑄
𝜎(𝑡)
𝜉 (𝑠) d𝑠.

(27)

Since the system state is continuous, it follows from (23) that

‖𝑥(𝑡)‖
2
≤

𝐶
𝑖
𝑘

󵄩󵄩󵄩󵄩𝑥 (𝑡𝑘)
󵄩󵄩󵄩󵄩

2
𝑒
−𝑎(𝑡−𝑡

𝑘

)

𝐾
𝑖
𝑘

+
Λ

𝐾
𝑖
𝑘

≤ ⋅ ⋅ ⋅

≤
𝑒
∑
𝑘

V=0 ln𝐶𝑖V−𝑎(𝑡−𝑡0)󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

𝐾
𝑘+1

min

+ [𝐶
𝑘

𝑖
1

𝑒
−𝑎(𝑡−𝑡

1

) Λ

𝐾
𝑘+1

𝑖
1

+ 𝐶
𝑘−1

𝑖
2

𝑒
−𝑎(𝑡−𝑡

2

) Λ

𝐾
𝑘

𝑖
2

+ 𝐶
𝑘−2

𝑖
3

𝑒
−𝑎(𝑡−𝑡

3

) Λ

𝐾
𝑘−1

𝑖
3

+ ⋅ ⋅ ⋅ + 𝐶
2

𝑖
𝑘−1

𝑒
−𝑎(𝑡−𝑡

𝑘−1

) Λ

𝐾
3

𝑖
𝑘−1

+𝐶
𝑖
𝑘

𝑒
−𝑎(𝑡−𝑡

𝑘

) Λ

𝐾
2

𝑖
𝑘

+
Λ

𝐾
𝑖
𝑘+1

]

≤
𝑒
(𝑘+1) ln𝐶max−𝑎(𝑡−𝑡0)

𝐾
𝑘+1

min

󵄩󵄩󵄩󵄩𝑥(𝑡0)
󵄩󵄩󵄩󵄩

2

+ [𝐶
𝑘

max
Λ

𝐾
𝑘+1

min
+ 𝐶
𝑘−1

max
Λ

𝐾
𝑘

min

+ 𝐶
𝑘−2

max
Λ

𝐾
𝑘−1

min
+ . . . + 𝐶

2

max
Λ

𝐾
3

min

+𝐶max
Λ

𝐾
2

min
+
Λ

𝐾min
]

≤
𝐶max𝑒

𝑘 ln𝐶max−𝑎(𝑡−𝑡0)

𝐾
𝑘+1

min

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

+
Λ/𝐾min

(𝐶max/𝐾min) − 1
[
𝐶
𝑛+1

max
𝐾
𝑛+1

min
− 1]

≤
𝐶max𝑒

ln𝐶max𝑁𝜎(𝑡0 ,𝑡)−𝑎(𝑡−𝑡0)

𝐾
𝑘+1

min

󵄩󵄩󵄩󵄩𝑥(𝑡0)
󵄩󵄩󵄩󵄩

2

+
Λ

𝐶max − 𝐾min
[(𝐶
𝑛+1

max/𝐾
𝑛+1

min) − 1]

≤
𝐶max𝑒

𝑁
0

ln𝐶max−(𝑎−(ln𝐶max/𝑇𝛼))(𝑡−𝑡0)

𝐾
𝑘+1

min

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2

+

Λ ((𝐶
𝑛+1

max/𝐾
𝑛+1

min) − 1)

𝐶max − 𝐾min
.

(28)

If one chooses 𝐵 =

√1/𝐾min + Λ(𝐶
𝑛+1

max/𝐾
𝑛+1

min − 1)/(𝐶max − 𝐾min) > 0, then
for any constant 󰜚 > 0 and ‖ 𝜑 ‖< 󰜚, there is 𝑡󸀠 = 𝑡󸀠(󰜚) > 0,
such that 𝐶max𝑒

𝑁
0

ln𝐶max−(𝑎−ln𝐶max/𝑇𝛼)(𝑡−𝑡0) ‖ 𝑥(𝑡
0
)‖
2
< 1 for all

𝑡 ≥ 𝑡
󸀠. According to Definition 2, we have ‖ 𝑥(𝑡, 0, 𝜑) ‖< 𝐵

for all 𝑡 ≥ 𝑡󸀠. That is to say, system (3) is uniformly ultimately
bounded, and the proof is completed.

Theorem 9. If all of the conditions of Theorem 8 hold, then
there exists an attractor A󸀠

𝐵
for the solutions of system (3),

where A󸀠
𝐵
= {𝑥(𝑡) :‖ 𝑥(𝑡) ‖≤ 𝐵, 𝑡 ≥ 𝑡

0
}.

Proof. If one chooses 𝐵 =

√1/𝐾min + Λ(𝐶
𝑛+1

max/𝐾
𝑛+1

min − 1)/(𝐶max − 𝐾min) > 0,Theorem 8
shows that for any 𝜙 there is 𝑡󸀠 > 0, such that ‖ 𝑥(𝑡, 0, 𝜙) ‖<
𝐵 for all 𝑡 ≥ 𝑡󸀠. Let A󸀠

𝐵
be denoted by A󸀠

𝐵
= {𝑥(𝑡) :‖ 𝑥(𝑡) ‖≤

𝐵, 𝑡 ≥ 𝑡
0
}. Clearly, A󸀠

𝐵
is closed, bounded, and invariant.

Furthermore, lim
𝑡→∞

sup inf
𝑦∈A󸀠
̃

𝐵

‖ 𝑥(𝑡; 0, 𝜙) − 𝑦 ‖= 0.
Therefore, A󸀠

𝐵
is an attractor for the solutions of system (3).

This completes the proof.
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Corollary 10. In addition to all of the conditions ofTheorem 8
holding, if 𝐽 = 0 and 𝑓

𝑖
(0) = 0 for all 𝑖, then system (2) has a

trivial solution 𝑥(𝑡) ≡ 0, and the trivial solution of system (3)
is globally exponentially stable.

Proof. If 𝐽 = 0 and 𝑓
𝑖
(0) = 0 for all 𝑖, then it is obvious that

system (3) has a trivial solution 𝑥(𝑡) ≡ 0. From Theorem 8,
one has

󵄩󵄩󵄩󵄩𝑥 (𝑡; 0, 𝜙)
󵄩󵄩󵄩󵄩

2
≤ 𝐾
2
𝑒
−𝑎𝑡
, ∀𝜙, (29)

where

𝐾
2
=
𝐶max𝑒

𝑁
0

ln𝐶max+𝑎𝑡0+(ln𝐶max/𝑇𝛼)(𝑡−𝑡0)

𝐾
𝑘+1

min

󵄩󵄩󵄩󵄩𝑥 (𝑡0)
󵄩󵄩󵄩󵄩

2
. (30)

Therefore, the trivial solution of system (3) is globally expo-
nentially stable. This completes the proof.

Remark 11. Up to now, various dynamical results have been
proposed for switched neural networks in the literature.
For example, in [15], synchronization control of switched
linearly coupled delayed neural networks is investigated; in
[16–20], the authors investigated the stability of switched
neural networks; in [21, 22], stability and L2-gain analysis
for switched delay system have been investigated. To the best
of our knowledge, there are few works about the uniformly
ultimate boundedness and the existence of an attractor for
switched neural networks. Therefore, results of this paper are
new.

Remark 12. We notice that Lian and Zhang developed an
LMI approach to study the stability of switched Cohen-
Grossberg neural networks and obtained some novel results
in a very recent paper [20], where the considered model
includes both discrete and bounded distributed delays. In
[20], the following fundamental assumptions are required:
(i) the delay functions 𝜏(𝑡), ℎ(𝑡) are bounded, and ̇𝜏(𝑡) ≤ 𝜏,
ℎ̇(𝑡) ≤ 𝑑 < 1; (ii) 𝑓

𝑖
(0) = 0, 𝑙

𝑗
≤ (𝑓
𝑗
(𝑥) − 𝑓

𝑗
(𝑦))/(𝑥 − 𝑦) ≤ 𝐿

𝑗
,

for all 𝑖 = 1, 2, . . . , 𝑛; (iii) the switched system has only one
equilibrium point. However, as a defect appearing in [20],
just checking the inequality (13) in [20], it is easy to see that
the assumed condition on ̇𝜏(𝑡) ≤ 𝜏 is not correct, which
should be revised as ̇𝜏(𝑡) ≤ 𝜏 ≤ 1. On the other hand, just
as described by Remark 1 in this paper, for a neural network
with unbounded activation functions, the considered system
in [20] may have no equilibrium point or have multiple
equilibrium points. In this case, it is difficult to deal with
the issue of the stability of equilibrium point for switched
neural networks. In order to modify this imperfection, after
relaxing the conditions ̇𝜏(𝑡) ≤ 𝜏 ≤ 1, ℎ̇(𝑡) ≤ 𝑑 < 1, and
𝑓
𝑖
(0) = 0, replacing (i), (ii), and (iii) with assumptions (𝐻

1
)

and (𝐻
2
), we drop out the assumption of the existence of

a unique equilibrium point and investigate the issue of the
ultimate boundedness and attractor; this modification seems
more natural and reasonable.

Remark 13. When investigating the stability, although the
adopted Lyapunov function in this paper is similar to those
used in [20]; just from Corollaries 7 and 10, the conservatism

of the conditions of the delay function in this paper has been
further reduced. Hence, the obtained results on stability in
this paper are complementary to the corresponding results in
[20].

Remark 14. When the uncertainties appear in the system (3),
employing the Lyapunov function as (27) in this paper and
applying a similar method to the one used in [20], we can get
the corresponding dynamical results. Due to the limitation
of space, we choose not to give the straightforward but the
tedious computations here for the formulas that determine
the uniformly ultimate boundedness, the existence of an
attractor, and stability.

4. Illustrative Example

In this section, we present an example to illustrate the
effectiveness of the proposed results. Consider the switched
cellular neural networks with two subsystems.

Example 15. Consider the switched cellular neural networks
system (3) with 𝑑

𝑖
= 1, 𝑓

𝑖
(𝑥
𝑖
(𝑡)) = 0.5 tanh(𝑥

𝑖
(𝑡))(𝑖 = 1, 2),

𝜏(𝑡) = 0.5sin2(𝑡), ℎ(𝑡) = 0.3sin2(𝑡), and the connection
weight matrices where

𝐴
1
= (
3.1 0.4

0.2 0.5
) , 𝐵

1
= (

2.1 −1

−1.4 0.4
) ,

𝐶
1
= (

1.2 −1.1

−0.5 0.1
) , 𝐴

2
= (
2.5 0.3

0.2 0.6
) ,

𝐵
2
= (

1.4 −1.2

−2.4 0.3
) , 𝐶

2
= (
2.4 −0.1

0.7 0.4
) .

(31)

From assumptions (𝐻
1
) and (𝐻

2
), we can obtain 𝑑 = 1,

𝑙
𝑖
= 0, 𝐿

𝑖
= 0.5, 𝑖 = 1, 2, 𝜏 = 0.5, ℎ = 0.3, 𝜇 = 1.

Choosing 𝑎 = 2 and solving LMIs (23), we get

𝑃
1
= (
0.0324 0

0 0.0776
) ,

𝑃
2
= (
0.0168 0

0 0.0295
) ,

𝑄
1
= (

−1.9748 0.3440 −0.3551 0.0168

∗ −1.9458 0.0168 −0.3438

∗ ∗ 2.9120 −0.2371

∗ ∗ ∗ 2.8760

) ,

𝑄
2
= (

−1.9996 0.2120 −0.1452 0.0119

∗ −1.9918 0.0119 −0.1464

∗ ∗ 2.9029 −0.1083

∗ ∗ ∗ 2.8927

) .

(32)

Using (26), we can get the average dwell time 𝑇∗
𝑎
= 0.3590.

5. Conclusions

In this paper, the dynamics of switched cellular neural
networkswithmixed delays (interval time-varying delays and
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distributed-time varying delays) are investigated. Novel mul-
tiple Lyapunov-Krasovkii functional methods are designed
to establish new sufficient conditions guaranteeing the uni-
formly ultimate boundedness, the existence of an attractor,
and the globally exponential stability. The derived conditions
are expressed in terms of LMIs, which are more relaxed
than algebraic formulation and can be easily checked by the
effective LMI toolbox in Matlab in practice.

Acknowledgments

The authors are extremely grateful to Professor Jinde Cao
and the anonymous reviewers for their constructive and
valuable comments, which have contributed much to the
improvement of this paper. This work was jointly supported
by the National Natural Science Foundation of China under
Grants nos. 11101053, 70921001, and 71171024, the Key Project
of ChineseMinistry of Education under Grant no. 211118, and
the Excellent Youth Foundation of Educational Committee of
Hunan Provincial no. 10B002, the Scientific Research Funds
of Hunan Provincial Science and Technology Department of
China.

References

[1] L.O.Chua andL. Yang, “Cellular neural networks: theory,” IEEE
Transactions on Circuits and Systems, vol. 35, no. 10, pp. 1257–
1272, 1988.

[2] L. O. Chua and L. Yang, “Cellular neural networks: applica-
tions,” IEEE Transactions on Circuits and Systems, vol. 35, no.
10, pp. 1273–1290, 1988.

[3] T. Chen, “Global exponential stability of delayed Hopfield
neural networks,” Neural Networks, vol. 14, no. 8, pp. 977–980,
2001.

[4] K. Lu, D. Xu, and Z. Yang, “Global attraction and stability
for Cohen-Grossberg neural networks with delays,” Neural
Networks, vol. 19, no. 10, pp. 1538–1549, 2006.

[5] J. Cao and L. Li, “Cluster synchronization in an array of hybrid
coupled neural networks with delay,” Neural Networks, vol. 22,
no. 4, pp. 335–342, 2009.

[6] T. Roska, T. Boros, P. Thiran, and L. Chua, “Detecting simple
motion using cellular neural networks,” in Proceedings of the
International Workshop Cellular neural networks Application,
pp. 127–138, 1990.

[7] T. Roska and L. O. Chua, “Cellular neural networks with
non-linear and delay-type template elements and non-uniform
grids,” International Journal of Circuit Theory and Applications,
vol. 20, no. 5, pp. 469–481, 1992.

[8] J. Cao, “A set of stability criteria for delayed cellular neural
networks,” IEEE Transactions on Circuits and Systems. I., vol. 48,
no. 4, pp. 494–498, 2001.

[9] J. Cao, G. Feng, and Y.Wang, “Multistability andmultiperiodic-
ity of delayed Cohen-Grossberg neural networks with a general
class of activation functions,” Physica D, vol. 237, no. 13, pp.
1734–1749, 2008.

[10] H. Jiang and Z. Teng, “Global eponential stability of cellular
neural networks with time-varying coefficients and delays,”
Neural Networks, vol. 17, no. 10, pp. 1415–1425, 2004.

[11] J. Zhao, D. J. Hill, and T. Liu, “Synchronization of complex
dynamical networks with switching topology: a switched sys-
tem point of view,” Automatica, vol. 45, no. 11, pp. 2502–2511,
2009.

[12] J. Lu, D. W. C. Ho, and L. Wu, “Exponential stabilization of
switched stochastic dynamical networks,” Nonlinearity, vol. 22,
no. 4, pp. 889–911, 2009.

[13] H. Huang, Y. Qu, and H. X. Li, “Robust stability analysis of
switched Hopfield neural networks with time-varying delay
under uncertainty,” Physics Letters A, vol. 345, no. 4–6, pp. 345–
354, 2005.

[14] D. Liberzon and A. S. Morse, “Basic problems in stability and
design of switched systems,” IEEE Control Systems Magazine,
vol. 19, no. 5, pp. 59–70, 1999.

[15] W. Yu, J. Cao, and W. Lu, “Synchronization control of switched
linearly coupled neural networks with delay,” Neurocomputing,
vol. 73, no. 4–6, pp. 858–866, 2010.

[16] W.-A. Zhang and L. Yu, “Stability analysis for discrete-time
switched time-delay systems,” Automatica, vol. 45, no. 10, pp.
2265–2271, 2009.

[17] H. Huang, Y. Qu, and H. Li, “Robust stability analysis of
switched hop?eld neural networks with time-varying delay
under uncertainty,” Physics Letters A, vol. 345, pp. 345–354,
2005.

[18] P. Li and J. Cao, “Global stability in switched recurrent neural
networks with time-varying delay via nonlinear measure,”
Nonlinear Dynamics, vol. 49, no. 1-2, pp. 295–305, 2007.

[19] X. Lou and B. Cui, “Delay-dependent criteria for global robust
periodicity of uncertain switched recurrent neural networks
with time-varying delay,” IEEE Transactions on Neural Net-
works, vol. 19, no. 4, pp. 549–557, 2008.

[20] J. Lian andK.Zhang, “Exponential stability for switchedCohen-
Grossberg neural networks with average dwell time,” Nonlinear
Dynamics, vol. 63, no. 3, pp. 331–343, 2011.

[21] D. Xie, Q. Wang, and Y. Wu, “Average dwell-time approach to
𝐿
2
gain control synthesis of switched linear systems with time

delay in detection of switching signal,” IET Control Theory &
Applications, vol. 3, no. 6, pp. 763–771, 2009.

[22] X.-M. Sun, J. Zhao, and D. J. Hill, “Stability and 𝐿
2
-gain

analysis for switched delay systems: a delay-dependentmethod,”
Automatica, vol. 42, no. 10, pp. 1769–1774, 2006.

[23] C. Huang and J. Cao, “Convergence dynamics of stochastic
Cohen-Grossberg neural networkswith unbounded distributed
delays,” IEEETransactions onNeural Networks, vol. 22, no. 4, pp.
561–572, 2011.

[24] J. Cao and J. Liang, “Boundedness and stability for Cohen-
Grossberg neural network with time-varying delays,” Journal of
Mathematical Analysis andApplications, vol. 296, no. 2, pp. 665–
685, 2004.

[25] H. Zhang, Z. Yi, and L. Zhang, “Continuous attractors of a class
of recurrent neural networks,” Computers & Mathematics with
Applications, vol. 56, no. 12, pp. 3130–3137, 2008.

[26] J. P. Hespanha and A. S. Morse, “Stability of switched systems
with average dwell-time,” in Proceedings of the 38th IEEE
Conference on Decision and Control (CDC ’99), pp. 2655–2660,
December 1999.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 131836, 10 pages
http://dx.doi.org/10.1155/2013/131836

Research Article
Exponential Stability of Impulsive Delayed Reaction-Diffusion
Cellular Neural Networks via Poincaré Integral Inequality

Xianghong Lai and Tianxiang Yao

School of Economics & Management, Nanjing University of Information Science & Technology, Nanjing 210044, China

Correspondence should be addressed to Xianghong Lai; laixh1979@163.com

Received 15 November 2012; Accepted 8 February 2013

Academic Editor: Qi Luo

Copyright © 2013 X. Lai and T. Yao. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This work is devoted to the stability study of impulsive cellular neural networks with time-varying delays and reaction-diffusion
terms. Bymeans of new Poincaré integral inequality andGronwall-Bellman-type impulsive integral inequality, we summarize some
novel and concise sufficient conditions ensuring the global exponential stability of equilibrium point.The provided stability criteria
are applicable to Dirichlet boundary condition and show that not only the reaction-diffusion coefficients but also the regional
features including the boundary and dimension of spatial variable can influence the stability. Two examples are finally illustrated
to demonstrate the effectiveness of our obtained results.

1. Introduction

Cellular neural networks (CNNs), proposed by Chua and
Yang in 1988 [1, 2], have been the focus of a number of
investigations due to their potential applications in various
fields such as optimization, linear and nonlinear program-
ming, associative memory, pattern recognition, and com-
puter vision [3–7]. As the switching speed of neurons and
amplifiers is finite in the implementation of neural networks,
time delays are inevitable and therefore a type of more
effective models is afterwards introduced, called delayed
cellular neural networks (DCNNs). Actually, DCNNs have
been found to be helpful in solving some dynamic image
processing and pattern recognition problems.

As we all know, all the applications of CNNs and DCNNs
depend heavily on the dynamic behaviors such as stability,
convergence, and oscillatory [8, 9], wherein stability analysis
is a major concern in the designs and applications. Corre-
spondingly, the stability of CNNs and DCNNs is a subject of
current interest and considerable theoretical efforts have been
put into this topic with many good results reported (see, e.g.,
[10–13]).

With reference to neural networks, however, it is note-
worthy that the state of electronic networks is often subject
to instantaneous perturbations which may be caused by a

switching phenomenon, frequency change, or other sudden
noise. On this account, neural networks will experience
abrupt change at certain instants, exhibiting impulse effects
[14, 15]. For instance, according toArbib [16] andHaykin [17],
when a stimulus from the body or the external environment is
received by receptors, the electrical impulses will be conveyed
to the neural net and impulse effects arise naturally in the net.
In view of this discovery,many scientists have shown growing
interests in the influence that the impulsesmay have onCNNs
orDCNNswith a result that a large number of relevant results
have been achieved (see, e.g., [18–24]).

Besides impulsive effects, diffusing effects are also non-
ignorable in reality since the diffusion is unavoidable when
the electrons are moving in asymmetric electromagnetic
fields. Therefore, the model of impulsive delayed reaction-
diffusion neural networks appears as a natural description
of the observed evolution phenomena of several real world
problems. This one acknowledgement poses a new challenge
to the stability research of neural networks.

So far, there have been some theoretical achievements
[25–33] on the stability of impulsive delayed reaction-
diffusion neural networks. Previously, authors of [27–32]
studied the stability of impulsive delayed reaction-diffusion
neural networks and put forward several stability criteria by
impulsive differential inequality and Green formula, wherein
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the reaction-diffusion term is evaluated to be less than zero by
means of Green formula and thereby the presented stability
criteria are shown to be wholly independent of diffusion.
According to this result, we fail to see the influence of
diffusion on stability.

Recently, it is encouraging that, for impulsive delayed
reaction-diffusion neural network, some new stability criteria
involving diffusion are obtained in [25, 26, 33–36]. Mean-
while the estimation of reaction-diffusion term is not merely
less than zero, instead a more accurate one is given; that
is, the reaction-diffusion term is verified to be less than a
negative definite term by using some inequalities together
with Green formula. It is thereby testified that the diffusion
does contribute to the stability of impulsive neural networks.

In [25], the authors quoted the following inequality to
deal with the reaction-diffusion terms:

∫
Ω
∗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜐 (𝑥)

𝜕𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝑥 ≥ 1

𝑙
2

𝑗

∫
Ω
∗

𝜐
2
(𝑥) d𝑥, (1)

where Ω∗ is a cube |𝑥
𝑗
| < 𝑙
𝑗
(𝑗 = 1, 2, . . . , 𝑚) and 𝜐(𝑥) is

a real-valued function belonging to 𝐶
1

0
(Ω
∗
). We can easily

derive from this inequality that

∫
Ω
∗

|∇𝜐|
2d𝑥 ≥ (∫

Ω
∗

𝜐
2
(𝑥) d𝑥)(

𝑚

∑

𝑗=1

1

𝑙
2

𝑗

) . (2)

For better exploring the influence of diffusion on stability,
we wonder if we can get a more accurate estimate of
reaction-diffusion term. Fortunately, we find the following
new Poincaré integral inequality supporting this idea:

∫
S
|∇𝜐 (𝑥)|

2d𝑥 ≥ 4𝑛

𝐵2
∫
S

𝜐
2
(𝑥) d𝑥. (3)

One can refer to Lemma 3 in Section 2 for the details of this
inequality.

On the other hand, it is well known that the theory
of differential and integral inequalities plays an important
role in the qualitative and quantitative study of solution to
differential equations. Up till now, there have been many
applications of impulsive differential inequalities to impul-
sive dynamic systems, followed by lots of stability criteria
provided. However, these stability criteria appear a bit com-
plicated and we wonder if we can deduce relatively concise
stability criteria by using impulsive integral inequalities

Motivated by these, we attempt to, for impulsive delayed
neural networks, employ new Poincaré integral inequality to
further investigate the influence of diffusion on the stabil-
ity and combine Gronwall-Bellman-type impulsive integral
inequality so as to provide some new and concise stability
criteria. The rest of this paper is organized as follows. In
Section 2, the model of impulsive cellular neural networks
with time-varying delays and reaction-diffusion terms as well
as Dirichlet boundary condition is outlined; in addition,
some facts and lemmas are introduced for later reference.
In Section 3, we provide a new estimate on the reaction-
diffusion term by the agency of new Poincaré integral
inequality and then discuss the global exponential stability

of equilibrium point by utilizing Gronwall-Bellman-type
impulsive integral inequality with a result of some novel
and concise stability criteria presented. To conclude, two
illustrative examples are given in Section 4 to verify the
effectiveness of our obtained results.

2. Preliminaries

Let 𝑅
+
= [0,∞) and 𝑡

0
∈ 𝑅
+
. Let 𝑅𝑛 denote the n-dimen-

sional Euclidean space, and let Ω = ∏
𝑚

𝑖=1
[𝑑
𝑖
, 𝑘
𝑖
] be a fixed

rectangular region in𝑅𝑚 and𝑀 := max{𝑘
𝑖
−𝑑
𝑖
: 𝑖 = 1, . . . , 𝑚}.

As usual, denote

𝐶
1

0
(Ω) = {𝜐 | 𝜐 and 𝐷

𝑗
𝜐 =

𝜕𝜐

𝜕𝑥
𝑗

are continuous on Ω,

𝜐|𝜕Ω = 0, 1 ≤ 𝑗 ≤ 𝑚} .

(4)

Consider the following impulsive cellular neural network
with time-varying delays and reaction-diffusion terms:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑠=1

𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

) − 𝑎
𝑖
𝑢
𝑖
(𝑡, 𝑥)

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥)) +

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑥 ∈ Ω,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

(5)

𝑢
𝑖
(𝑡
𝑘
+ 0, 𝑥) = 𝑢

𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) ,

𝑥 ∈ Ω, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

(6)

where 𝑛 corresponds to the numbers of units in a neural
network; 𝑥 = (𝑥

1
, . . . , 𝑥

𝑚
)
T
∈ Ω, 𝑢

𝑖
(𝑡, 𝑥) denotes the state

of the 𝑖th neuron at time 𝑡 and in space 𝑥; 𝐷
𝑖𝑠
= const > 0

represents transmission diffusion of the 𝑖th unit; activation
function 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥)) stands for the output of the jth unit at

time 𝑡 and in space 𝑥; 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, and 𝑎

𝑖
are constants: 𝑏

𝑖𝑗
indicates

the connection strength of the jth unit on the 𝑖th unit at time
𝑡 and in space 𝑥, 𝑐

𝑖𝑗
denotes the connection weight of the jth

unit on the 𝑖th unit at time 𝑡−𝜏
𝑗
(𝑡) and in space 𝑥, where 𝜏

𝑗
(𝑡)

corresponds to the transmission delay along the axon of the
jth unit, satisfying 0 ≤ 𝜏

𝑗
(𝑡) ≤ 𝜏(𝜏 = const) and

⋅

𝜏
𝑗
(𝑡) < (1 −

(1/ℎ)) (ℎ > 0), and 𝑎
𝑖
> 0 represents the rate with which the

𝑖th unit will reset its potential to the resting state in isolation
when disconnected from the network and external inputs at
time 𝑡 and in space 𝑥. The fixed moments 𝑡

𝑘
(𝑘 = 1, 2, . . .) are

called impulsive moments meeting 0 ≤ 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅

and lim
𝑘→∞

𝑡
𝑘
= ∞; 𝑢

𝑖
(𝑡
𝑘
+ 0, 𝑥) and 𝑢

𝑖
(𝑡
𝑘
− 0, 𝑥) represent

the right-hand and left-hand limit of 𝑢
𝑖
(𝑡, 𝑥) at time 𝑡

𝑘
and

in space 𝑥, respectively. 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) stands for the abrupt

change of 𝑢
𝑖
(𝑡, 𝑥) at the impulsive moment 𝑡

𝑘
and in space

𝑥.
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Denote by 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑), 𝑢 ∈ 𝑅

𝑛, the solution of
system (5)-(6), satisfying the initial condition

𝑢 (𝑠, 𝑥; 𝑡
0
, 𝜑) = 𝜑 (𝑠, 𝑥) , 𝑡

0
− 𝜏 ≤ 𝑠 ≤ 𝑡

0
, 𝑥 ∈ Ω, (7)

and Dirichlet boundary condition

𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑) = 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω, (8)

where the vector-valued function 𝜑(𝑠, 𝑥) = (𝜑
1
(𝑠, 𝑥), . . . ,

𝜑
𝑛
(𝑠, 𝑥))

T is such that ∫
Ω
∑
𝑛

𝑖=1
𝜑
2

𝑖
(𝑠, 𝑥)d𝑥 is bounded on [𝑡

0
−

𝜏, 𝑡
0
].
The solution 𝑢(𝑡, 𝑥) =𝑢(𝑡, 𝑥; 𝑡

0
, 𝜑) = (𝑢

1
(𝑡, 𝑥; 𝑡

0
, 𝜑), . . . ,

𝑢
𝑛
(𝑡, 𝑥; 𝑡

0
, 𝜑))

T of problem (5)–(8) is, for the time variable 𝑡, a
piecewise continuous function with the first kind discontinu-
ity at the points 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is continuous from

the left; that is, the following relations are true:

𝑢
𝑖
(𝑡
𝑘
− 0, 𝑥) = 𝑢

𝑖
(𝑡
𝑘
, 𝑥) ,

𝑢
𝑖
(𝑡
𝑘
+ 0, 𝑥) = 𝑢

𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) .

(9)

Throughout this paper, the normof 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑) is defined

by

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)
󵄩󵄩󵄩󵄩

2

Ω
=

𝑛

∑

𝑖=1

∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥; 𝑡

0
, 𝜑) d𝑥. (10)

Before proceeding, we introduce two hypotheses as fol-
lows:

(H1) 𝑓
𝑖
(∙) : 𝑅 → 𝑅 satisfies 𝑓

𝑖
(0) = 0, and there exists a

constant 𝑙
𝑖
> 0 such that |𝑓

𝑖
(𝑦
1
) − 𝑓
𝑖
(𝑦
2
)| ≤ 𝑙
𝑖
|𝑦
1
− 𝑦
2
|

for all 𝑦
1
, 𝑦
2
∈ 𝑅 and 𝑖 = 1, 2, . . . , 𝑛.

(H2) 𝑃
𝑖𝑘
(∙) : 𝑅 → 𝑅 is continuous and 𝑃

𝑖𝑘
(0) = 0, 𝑖 =

1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . ..

According to (H1) and (H2), it is easy to see that problem
(5)–(8) admits an equilibrium point 𝑢 = 0.

Definition 1 (see [25]). The equilibrium point 𝑢 = 0 of
problem (5)–(8) is said to be globally exponentially stable if
there exist constants 𝜅 > 0 and 𝜛 ≥ 1 such that

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)
󵄩󵄩󵄩󵄩Ω

≤ 𝜛
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩Ω
e−𝜅(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (11)

where ‖𝜑‖
2

Ω
= sup

𝑡
0

−𝜏≤𝑠≤𝑡
0

∑
𝑛

𝑖=1
∫
Ω
𝜑
2

𝑖
(𝑠, 𝑥)d𝑥.

Lemma 2 (see [37] Gronwall-Bellman-type Impulsive Inte-
gral Inequality). Assume that

(A1) the sequence {𝑡
𝑘
} satisfies 0 ≤ 𝑡

0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅, with

lim
𝑘→∞

𝑡
𝑘
= ∞,

(A2) 𝑞 ∈ 𝑃𝐶
1
[R
+
,R] and 𝑞(𝑡) is left-continuous at 𝑡

𝑘
, 𝑘 =

1, 2, . . .,
(A3) 𝑝 ∈ 𝐶[R

+
,R
+
] and for 𝑘 = 1, 2, . . .,

𝑞 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑡
0

𝑝 (𝑠) 𝑞 (𝑠) d𝑠 + ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝜂
𝑘
𝑞 (𝑡
𝑘
) , 𝑡 ≥ 𝑡

0
, (12)

where 𝜂
𝑘
≥ 0 and 𝑐 = const. Then,

𝑞 (𝑡) ≤ 𝑐 ∏

𝑡
0

<𝑡
𝑘

<𝑡

(1 + 𝜂
𝑘
) exp(∫

𝑡

𝑡
0

𝑝 (𝑠) d𝑠) , 𝑡 ≥ 𝑡
0
. (13)

Lemma 3 (see [38] Poincaré integral inequality). Let S =

∏
𝑛

𝑖=1
[𝑎
𝑖
, 𝑏
𝑖
] be a fixed rectangular region in R𝑛 and 𝐵 :=

max{𝑏
𝑖
− 𝑎
𝑖
: 𝑖 = 1, . . . , 𝑛}. For any 𝜐(𝑥) ∈ 𝐶1

0
(S),

∫
S

𝜐
2
(𝑥) d𝑥 ≤ 𝐵

2

4𝑛
∫
S
|∇𝜐 (𝑥)|

2 d𝑥. (14)

Remark 4. According to Lemma 2.1 in [25], we know if S is
a cube |𝑥

𝑗
| < 𝑙
𝑗
(𝑗 = 1, 2, . . . , 𝑚) and 𝜐(𝑥) is a real-valued

function belonging to 𝐶1
0
(S), then

∫
S

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝜐 (𝑥)

𝜕𝑥
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

d𝑥 ≥ 1

𝑙
2

𝑗

∫
S

𝜐
2
(𝑥) d𝑥, (15)

which yields

∫
S
|∇𝜐|
2d𝑥 ≥ (∫

S

𝜐
2
(𝑥) d𝑥)(

𝑚

∑

𝑗=1

1

𝑙
2

𝑗

) . (16)

Through the simple example as follows, we can find that in
some cases the estimate ∫

S
|∇𝜐(𝑥)|

2d𝑥 ≥ (4𝑛/𝐵
2
) ∫

S
𝜐
2
(𝑥)d𝑥

shown in Lemma 3 can do better. Let S = [0, 1] × [0, 2], we
derive from Lemma 2.1 in [25] that

∫
S
|∇𝜐|
2d𝑥 ≥ (∫

S

𝜐
2
(𝑥) d𝑥)(

𝑚

∑

𝑗=1

1

𝑙
2

𝑗

) =
5

4
∫
S

𝜐
2
(𝑥) d𝑥,

(17)

whereas the application of Lemma 3 of this paper will give

∫
S
|∇𝜐 (𝑥)|

2d𝑥 ≥ 4𝑛

𝐵2
∫
S

𝜐
2
(𝑥) d𝑥 = 2∫

S

𝜐
2
(𝑥) d𝑥, (18)

which is obviously superior to ∫
S
|∇𝜐|
2d𝑥 ≥ (5/4)

(∫
S
𝜐
2
(𝑥)d𝑥).

3. Main Results

Theorem 5. Provided that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;

(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2;

(3) there exists a constant 𝛾 > 0 satisfying 𝛾+𝜆+ℎ𝜌e𝛾𝜏 > 0
as well as 𝜆 + ℎ𝜌e𝛾𝜏 < 0, where 𝜆 = max

𝑖=1,...,𝑛
(−𝜒 −

2𝑎
𝑖
+ ∑
𝑛

𝑗=1
(𝑏
2

𝑖𝑗
+ 𝑐
2

𝑖𝑗
)) + 𝜌, 𝜌 = 𝑛max

𝑖=1,...,𝑛
(𝑙
2

𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌e𝛾𝜏)/2.
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Proof. Multiplying both sides of (5) by𝑢
𝑖
(𝑡, 𝑥) and integrating

with respect to spatial variable 𝑥 onΩ, we get

d (∫
Ω
𝑢
2

𝑖
(𝑡, 𝑥) d𝑥)
d𝑡

= 2

𝑚

∑

𝑠=1

∫
Ω

𝑢
𝑖
(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

) d𝑥

− 2𝑎
𝑖
∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) d𝑥

+ 2

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥)) d𝑥

+ 2

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓

𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) d𝑥

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, 2, . . . .

(19)

Regarding the right-hand part of (19), the first term
becomes by using Green formula, Dirichlet boundary con-
dition, Lemma 3, and condition (1) of Theorem 5

2

𝑚

∑

𝑠=1

∫
Ω

𝑢
𝑖
(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

) d𝑥

= −2

𝑚

∑

𝑠=1

∫
Ω

𝐷
𝑖𝑠
(
𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

)

2

d𝑥

≤
−8𝑚𝐷

𝑀2
∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) d𝑥 ≜ −𝜒∫

Ω

𝑢
2

𝑖
(𝑡, 𝑥) d𝑥.

(20)

Moreover, From (H1), we have

2

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓

𝑗
(𝑢
𝑗
(𝑡, 𝑥)) d𝑥

≤ 2

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

󵄨󵄨󵄨󵄨󵄨
d𝑥

≤ 2

𝑛

∑

𝑗=1

∫
Ω

𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑡, 𝑥)

󵄨󵄨󵄨󵄨󵄨
d𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡, 𝑥)) d𝑥,

(21)

2

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓

𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) d𝑥

≤ 2

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥))

󵄨󵄨󵄨󵄨󵄨
d𝑥

≤ 2

𝑛

∑

𝑗=1

∫
Ω

𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)

󵄨󵄨󵄨󵄨󵄨
d𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝑐
2

𝑖𝑗
𝑢
𝑖

2
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) d𝑥.

(22)

Consequently, substituting (20)–(22) into (19) produces

d (∫
Ω
𝑢
2

𝑖
(𝑡, 𝑥) d𝑥)
d𝑡

≤ −𝜒∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) d𝑥 − 2𝑎𝑖 ∫

Ω

𝑢
2

𝑖
(𝑡, 𝑥) d𝑥

+

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡, 𝑥)) d𝑥

+

𝑛

∑

𝑗=1

∫
Ω

(𝑐
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) d𝑥

(23)

for 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, . . . , 𝑛, 𝑘 = 1, 2, . . ..

Define a Lyapunov function𝑉
𝑖
(𝑡) as𝑉

𝑖
(𝑡) = ∫

Ω
𝑢
2

𝑖
(𝑡, 𝑥)d𝑥.

It is easy to find that 𝑉
𝑖
(𝑡) is a piecewise continuous function

with the first kind discontinuous points 𝑡
𝑘
(𝑘 = 1, 2, . . .),

where it is continuous from the left, that is, 𝑉
𝑖
(𝑡
𝑘
− 0) =

𝑉
𝑖
(𝑡
𝑘
) (𝑘 = 1, 2, . . .). In addition, we also see

𝑉
𝑖
(𝑡
𝑘
+ 0) ≤ 𝑉

𝑖
(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . , (24)

as𝑉
𝑖
(𝑡
0
+ 0) ≤ 𝑉

𝑖
(𝑡
0
) and the following estimate derived from

condition (2) of Theorem 5:

𝑢
2

𝑖
(𝑡
𝑘
+ 0, 𝑥) = (−𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥) + 𝑢

𝑖
(𝑡
𝑘
, 𝑥))
2

= (1 − 𝜃
𝑖𝑘
)
2
𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝑢

2

𝑖
(𝑡
𝑘
, 𝑥) ,

𝑘 = 1, 2, . . . .

(25)

Put 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. It then results from (23)
that

d𝑉
𝑖 (𝑡)

d𝑡
≤ −𝜒∫

Ω

𝑢
2

𝑖
(𝑡, 𝑥) d𝑥 − 2𝑎𝑖 ∫

Ω

𝑢
2

𝑖
(𝑡, 𝑥) d𝑥

+

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡, 𝑥)) d𝑥

+

𝑛

∑

𝑗=1

∫
Ω

(𝑐
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) d𝑥

≤ (−𝜒 − 2𝑎
𝑖
+

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
)𝑉
𝑖
(𝑡)

+ max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡)

+ max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡))

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, ⋅ ⋅ ⋅ .

(26)
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Choose𝑉(𝑡) of the form𝑉(𝑡) = ∑
𝑛

𝑖=1
𝑉
𝑖
(𝑡). From (26), one

reads

d𝑉 (𝑡)
d𝑡

≤ 𝜆𝑉 (𝑡) + 𝜌

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . ,

(27)

where 𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
+ ∑
𝑛

𝑗=1
(𝑏
2

𝑖𝑗
+ 𝑐
2

𝑖𝑗
)) + 𝜌 and 𝜌 =

𝑛max
𝑖=1,...,𝑛

(𝑙
2

𝑖
).

Now construct 𝑉∗(𝑡) = e𝛾(𝑡−𝑡0)𝑉(𝑡) again, where 𝛾 > 0

satisfies 𝛾 + 𝜆+ ℎ𝜌e𝛾𝜏 > 0 and 𝜆+ ℎ𝜌e𝛾𝜏 < 0. Evidently,𝑉∗(𝑡)
is also a piecewise continuous function with the first kind
discontinuous points 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is continuous

from the left, that is, 𝑉∗(𝑡
𝑘
− 0) = 𝑉

∗
(𝑡
𝑘
) (𝑘 = 1, 2, . . .).

Moreover, at 𝑡 = 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .), we find by use of (24)

𝑉
∗
(𝑡
𝑘
+ 0) ≤ 𝑉

∗
(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . . (28)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. By virtue of (27), one has

d𝑉∗ (𝑡)
d𝑡

= 𝛾e𝛾(𝑡−𝑡0)𝑉 (𝑡) + e𝛾(𝑡−𝑡0) d𝑉 (𝑡)
d𝑡

≤ 𝛾e𝛾(𝑡−𝑡0)𝑉 (𝑡)

+ (𝜆𝑉 (𝑡) + 𝜌

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) e𝛾(𝑡−𝑡0)

= (𝛾 + 𝜆)𝑉
∗
(𝑡) + 𝜌e𝛾(𝑡−𝑡0)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡))

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(29)

Choose small enough 𝜀 > 0. Integrating (29) from 𝑡
𝑘
+ 𝜀

to 𝑡 gives

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
𝑘
+ 𝜀) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

+𝜀

𝑉
∗
(𝑠) d𝑠

+ ∫

𝑡

𝑡
𝑘

+𝜀

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . ,

(30)

which yields, after letting 𝜀 → 0 in (30),

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(31)

Next we will estimate the value of 𝑉∗(𝑡) at 𝑡 = 𝑡
𝑘+1

, 𝑘 =

0, 1, 2, . . .. For small enough 𝜀 > 0, we put 𝑡 = 𝑡
𝑘+1

− 𝜀. An
application of (31) leads to, for 𝑘 = 0, 1, 2, . . .,

𝑉
∗
(𝑡
𝑘+1

− 𝜀) ≤ 𝑉
∗
(𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡
𝑘+1

−𝜀

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ∫

𝑡
𝑘+1

−𝜀

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) d𝑠.

(32)

If we let 𝜀 → 0 in (32), there results

𝑉
∗
(𝑡
𝑘+1

− 0) ≤ 𝑉
∗
(𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡
𝑘+1

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ∫

𝑡
𝑘+1

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) d𝑠,

𝑘 = 0, 1, 2, . . . .

(33)

Note that 𝑉∗(𝑡
𝑘+1

− 0) = 𝑉
∗
(𝑡
𝑘+1

) is applicable for 𝑘 =

0, 1, 2, . . .. Thus,

𝑉
∗
(𝑡
𝑘+1

) ≤ 𝑉
∗
(𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡
𝑘+1

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ∫

𝑡
𝑘+1

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠
(34)

holds for 𝑘 = 0, 1, 2, . . .. By synthesizing (31) and (34), we then
arrive at

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(35)

This, together with (28), results in

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
𝑘
) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠
(36)

for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . ..
Recalling assumptions that 0 ≤ 𝜏

𝑗
(𝑡) ≤ 𝜏 and

∙

𝜏
𝑗
(𝑡) <

(1 − (1/ℎ))(ℎ > 0), we obtain

∫

𝑡

𝑡
𝑘

𝜌e𝛾(𝑠−𝑡0)
𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) d𝑠

=

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝜌e𝛾(𝜃+𝜏𝑗(𝑠)−𝑡0)𝑉
𝑗
(𝜃)

1

1 −
∙

𝜏
𝑗
(𝑠)

d𝜃

≤ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

e𝛾(𝜃−𝑡0)𝑉
𝑗
(𝜃) d𝜃.

(37)



6 Abstract and Applied Analysis

Hence,

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
𝑘
) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

e𝛾(𝑠−𝑡0)𝑉
𝑗
(𝑠) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(38)

By induction argument, we reach

𝑉
∗
(𝑡
𝑘
) ≤ 𝑉
∗
(𝑡
𝑘−1

) + (𝛾 + 𝜆)∫

𝑡
𝑘

𝑡
𝑘−1

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑡
𝑘−1

−𝜏
𝑗

(𝑡
𝑘−1

)

e𝛾(𝑠−𝑡0)𝑉
𝑗 (𝑠) d𝑠,

...

𝑉
∗
(𝑡
2
) ≤ 𝑉
∗
(𝑡
1
) + (𝛾 + 𝜆)∫

𝑡
2

𝑡
1

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
2

−𝜏
𝑗

(𝑡
2

)

𝑡
1

−𝜏
𝑗

(𝑡
1

)

e𝛾(𝑠−𝑡0)𝑉
𝑗 (𝑠) d𝑠,

𝑉
∗
(𝑡
1
) ≤ 𝑉

∗
(𝑡
0
) + (𝛾 + 𝜆)∫

𝑡
1

𝑡
0

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
1

−𝜏
𝑗

(𝑡
1

)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝑠−𝑡0)𝑉
𝑗
(𝑠) d𝑠.

(39)

Therefore,

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
0
) + (𝛾 + 𝜆)∫

𝑡

𝑡
0

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝑠−𝑡0)𝑉
𝑗
(𝑠) d𝑠

≤ 𝑉
∗
(𝑡
0
) + (𝛾 + 𝜆)∫

𝑡

𝑡
0

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝑠−𝑡0)𝑉
𝑗
(𝑠) d𝑠

= 𝑉
∗
(𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫

𝑡

𝑡
0

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝑠−𝑡0)𝑉
𝑗
(𝑠) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(40)

Since

ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝑠−𝑡0)𝑉
𝑗 (𝑠) d𝑠

≤ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏

𝑉
𝑗
(𝑠) d𝑠

= ℎ𝜌e𝛾𝜏 ∫
𝑡
0

𝑡
0

−𝜏

(

𝑛

∑

𝑗=1

∫
Ω

𝜑
2

𝑗
(𝑠, 𝑥) d𝑥) d𝑠

≤ 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω
,

(41)

we claim

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
0
) + 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

Ω

+ (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫
𝑡

𝑡
0

𝑉
∗
(𝑠) d𝑠

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2 . . . .

(42)

According to Lemma 2, we know

𝑉
∗
(𝑡) ≤ (𝑉

∗
(𝑡
0
) + 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

Ω
)

× exp {(𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) (𝑡 − 𝑡
0
)} , 𝑡 ≥ 𝑡

0

(43)

which reduces to
󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)

󵄩󵄩󵄩󵄩Ω

≤ √1 + 𝜏ℎ𝜌e𝛾𝜏 󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩Ω

exp{(
𝜆 + ℎ𝜌e𝛾𝜏

2
) (𝑡 − 𝑡

0
)} ,

𝑡 ≥ 𝑡
0
.

(44)

This completes the proof.

Remark 6. According toTheorem 5, we see that the diffusion
can really influence the stability of equilibrium point 𝑢 = 0

of problem (5)–(8), wherein the factors embrace not only the
reaction-diffusion coefficients but also the regional features
including the dimension and boundary of spatial variable.
Owing to the employ of new Poincaré integral inequality,
in this paper, the estimation of reaction-diffusion terms is
superior to that in [25] in some cases, and this will be helpful
to further know the influence of diffusion on stability. What
is more, from condition (1) ofTheorem 5, we also see that the
dimension of spatial variable has an impact on the stability
while this is not mentioned in [25].

Remark 7. Among the three conditions ofTheorem 5, condi-
tion (3) is critical and therefore we must ensure the existence
of constant 𝛾 > 0. Fortunately, it is not difficult to find that
there must exist a constant 𝛾 > 0 satisfying condition (3) if
𝜆 < −ℎ𝜌 which is easily checked.
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Theorem 8. Providing that one has the following:
(1) let 𝐷 = min{𝐷

𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0;
(3) inf

𝑘=1,2,...
(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇;
(4) there exists a constant 𝛾 > 0 which satisfies 𝛾 + 𝜆 +

ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 + (ln(1 + 𝛼)/𝜇) < 0, where
𝜆 = max

𝑖=1,...,𝑛
(−𝜒 − 2𝑎

𝑖
+ ∑
𝑛

𝑗=1
(𝑏
2

𝑖𝑗
+ 𝑐
2

𝑖𝑗
)) + 𝜌 and 𝜌 =

𝑛max
𝑖=1,...,𝑛

(𝑙
2

𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌e𝛾𝜏 +
(ln(1 + 𝛼)/𝜇)).

Proof. Define Lyapunov function 𝑉 of the form 𝑉(𝑡) =

∑
𝑛

𝑖=1
𝑉
𝑖
(𝑡), where 𝑉

𝑖
(𝑡) = ∫

Ω
𝑢
2

𝑖
(𝑡, 𝑥)d𝑥. Obviously, 𝑉(𝑡) is a

piecewise continuous function with the first kind discontin-
uous points 𝑡

𝑘
, 𝑘 = 1, 2, . . ., where it is continuous from the

left, that is, 𝑉(𝑡
𝑘
− 0) = 𝑉(𝑡

𝑘
) (𝑘 = 1, 2, . . .). Furthermore,

when 𝑡 = 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .), it follows from condition (2) of

Theorem 8 that
𝑢
2

𝑖
(𝑡
𝑘
+ 0, 𝑥) − 𝑢

2

𝑖
(𝑡
𝑘
, 𝑥)

= (1 − 𝜃
𝑖𝑘
)
2
𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) − 𝑢

2

𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝛼𝑢

2

𝑖
(𝑡
𝑘
, 𝑥) .

(45)

Thereby,

𝑉 (𝑡
𝑘
+ 0) ≤ 𝛼𝑉 (𝑡

𝑘
) + 𝑉 (𝑡

𝑘
) , 𝑘 = 0, 1, 2, . . . . (46)

Construct another Lyapunov function 𝑉
∗
(𝑡) = e𝛾(𝑡−𝑡0)

×𝑉(𝑡), where 𝛾 > 0 satisfies 𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 +

ℎ𝜌e𝛾𝜏 + (ln(1 + 𝛼)/𝜇) < 0. Then, 𝑉∗(𝑡) is also a piecewise
continuous function with the first kind discontinuous points
𝑡
𝑘
, 𝑘 = 1, 2, . . ., where it is continuous from the left, and for

𝑡 = 𝑡
𝑘
(𝑘 = 0, 1, 2, . . .), it results from (46) that

𝑉
∗
(𝑡
𝑘
+ 0) ≤ 𝛼𝑉

∗
(𝑡
𝑘
) + 𝑉
∗
(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . . (47)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . .. Following the same
procedure as inTheorem 5, we get

𝑉
∗
(𝑡) ≤ 𝑉

∗
(𝑡
𝑘
+ 0) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

e𝛾(𝜃−𝑡0)𝑉
𝑗
(𝜃) d𝜃

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(48)

The relations (47) and (48) yield

𝑉
∗
(𝑡) − 𝑉

∗
(𝑡
𝑘
)

≤ 𝛼𝑉
∗
(𝑡
𝑘
) + (𝛾 + 𝜆)∫

𝑡

𝑡
𝑘

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

e𝛾(𝜃−𝑡0)𝑉
𝑗
(𝜃) d𝜃

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(49)

By induction argument, we reach

𝑉
∗
(𝑡
𝑘
) − 𝑉
∗
(𝑡
𝑘−1

)

≤ 𝛼𝑉
∗
(𝑡
𝑘−1

) + (𝛾 + 𝜆)∫

𝑡
𝑘

𝑡
𝑘−1

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑡
𝑘−1

−𝜏
𝑗

(𝑡
𝑘−1

)

e𝛾(𝜃−𝑡0)𝑉
𝑗
(𝜃) d𝜃,

...

𝑉
∗
(𝑡
2
) − 𝑉
∗
(𝑡
1
)

≤ 𝛼𝑉
∗
(𝑡
1
) + (𝛾 + 𝜆)∫

𝑡
2

𝑡
1

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
2

−𝜏
𝑗

(𝑡
2

)

𝑡
1

−𝜏
𝑗

(𝑡
1

)

e𝛾(𝜃−𝑡0)𝑉
𝑗 (𝜃) d𝜃,

𝑉
∗
(𝑡
1
) − 𝑉
∗
(𝑡
0
)

≤ 𝛼𝑉
∗
(𝑡
0
) + (𝛾 + 𝜆)∫

𝑡
1

𝑡
0

𝑉
∗
(𝑠) d𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
1

−𝜏
𝑗

(𝑡
1

)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝜃−𝑡0)𝑉
𝑗
(𝜃) d𝜃.

(50)

Hence,

𝑉
∗
(𝑡) − 𝑉

∗
(𝑡
0
)

≤ 𝛼𝑉
∗
(𝑡
0
) + (𝛾 + 𝜆)∫

𝑡

𝑡
0

𝑉
∗
(𝑠) d𝑠 + ℎ𝜌e𝛾𝜏

×

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝜃−𝑡0)𝑉
𝑗 (𝜃) d𝜃 + 𝛼 ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝑉 (𝑡
𝑘
)

≤ 𝛼𝑉
∗
(𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫

𝑡

𝑡
0

𝑉
∗
(𝑠) 𝑑𝑠

+ ℎ𝜌e𝛾𝜏
𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)

e𝛾(𝜃−𝑡0)𝑉
𝑗 (𝜃) d𝜃 + 𝛼 ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝑉 (𝑡
𝑘
)

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(51)

Introducing ℎ𝜌e𝛾𝜏∑𝑛
𝑗=1

∫
𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)
e𝛾(𝜃−𝑡0)𝑉

𝑗
(𝜃)d𝜃 ≤ 𝜏ℎ𝜌e𝛾𝜏

×‖𝜑‖
2

Ω
as shown in the proof of Theorem 5 into (51), (51)

becomes

𝑉
∗
(𝑡) − 𝑉

∗
(𝑡
0
)

≤ 𝛼𝑉
∗
(𝑡
0
) + 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

Ω
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+ (𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) ∫
𝑡

𝑡
0

𝑉
∗
(𝑠) d𝑠 + 𝛼 ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝑉 (𝑡
𝑘
)

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2 . . . .

(52)

It then results from Lemma 2 that, for 𝑡 ≥ 𝑡
0
,

𝑉
∗
(𝑡) ≤ ((𝛼 + 1)𝑉

∗
(𝑡
0
) + 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

Ω
)

× ∏

𝑡
0

<𝑡
𝑘

<𝑡

(1 + 𝛼) exp ((𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) (𝑡 − 𝑡0))

= ((𝛼 + 1)𝑉
∗
(𝑡
0
) + 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

Ω
)

× (1 + 𝛼)
𝑘 exp ((𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏) (𝑡 − 𝑡

0
)) .

(53)

On the other hand, since inf
𝑘=1,2,...

(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇, one has
𝑘 ≤ (𝑡

𝑘
− 𝑡
0
)/𝜇. Thereby,

(1 + 𝛼)
𝑘
≤ exp{ ln (1 + 𝛼)

𝜇
(𝑡
𝑘
− 𝑡
0
)}

≤ exp{ ln (1 + 𝛼)
𝜇

(𝑡 − 𝑡
0
)}

(54)

and (53) can be rewritten as

𝑉
∗
(𝑡) ≤ ((𝛼 + 1)𝑉

∗
(𝑡
0
) + 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

Ω
)

× exp((𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 + ln (1 + 𝛼)
𝜇

) (𝑡 − 𝑡
0
))

(55)

which implies
󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡0, 𝜑)

󵄩󵄩󵄩󵄩Ω

≤ √(𝛼 + 1 + 𝜏ℎ𝜌e𝛾𝜏)󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩Ω

× exp(1
2
(𝜆 + ℎ𝜌e𝛾𝜏 + ln (1 + 𝛼)

𝜇
) (𝑡 − 𝑡

0
)) ,

𝑡 ≥ 𝑡
0
.

(56)

The proof is completed.

As

2

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓 (𝑢𝑗 (𝑡, 𝑥)) d𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝜀
1
𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) +

𝑙
2

𝑗

𝜀
1

𝑢
2

𝑗
(𝑡, 𝑥)) d𝑥,

2

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑓 (𝑢𝑗 (𝑡 − 𝜏𝑗 (𝑡) , 𝑥)) d𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝜀
2
𝑐
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) +

𝑙
2

𝑗

𝜀
2

𝑢
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) d𝑥

(57)

hold for any 𝜀
1
, 𝜀
2
> 0. In the sequel, analogous to the proofs

of Theorems 5 and 8 we arrive at the following.

Theorem 9. Provided that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2;

(3) there exist constants 𝛾 > 0 and 𝜀
1
, 𝜀
2
> 0 such that

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 < 0, where
𝜆 = max

𝑖=1,...,𝑛
(−𝜒 − 2𝑎

𝑖
+ ∑
𝑛

𝑗=1
(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
)) +

(𝑛/𝜀
1
)max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) and 𝜌 = (𝑛/𝜀

2
)max
𝑖=1,...,𝑛

(𝑙
2

𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌e𝛾𝜏)/2.

Remark 10. According to Theorem 5, we know that there
must exist constant 𝛾 > 0 satisfying condition (3) of
Theorem 9 if there are constants 𝜀

1
, 𝜀
2
> 0 such that 𝜆 < −ℎ𝜌.

Theorem 11. Assume that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;

(2) 𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0;
(3) inf

𝑘=1,2,...
(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇;
(4) there exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2
> 0 such that

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 + ln(1 + 𝛼)/𝜇 < 0,
where 𝜆 = max

𝑖=1,⋅⋅⋅,𝑛
(−𝜒 − 2𝑎

𝑖
+∑
𝑛

𝑗=1
( 𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
)) +

(𝑛/𝜀
1
)max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) and 𝜌 = (𝑛/𝜀

2
)max
𝑖=1,...,𝑛

(𝑙
2

𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌e𝛾𝜏 +
(ln(1 + 𝛼)/𝜇)).

Further, on the condition that |𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥))| ≤ 𝜃

𝑖𝑘
|𝑢
𝑖
×

(𝑡
𝑘
, 𝑥)|, where 𝜃2

𝑖𝑘
≤ (𝛼 − 1)/2 and 𝛼 ≥ 1, we obtain, for

𝑡 = 𝑡
𝑘
(𝑘 = 1, 2, . . .),

𝑢
2

𝑖
(𝑡
𝑘
+ 0, 𝑥) − 𝑢

2

𝑖
(𝑡
𝑘
, 𝑥)

= (𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) + 𝑢

𝑖
(𝑡
𝑘
, 𝑥))
2
− 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

≤ 2(𝑢
𝑖
(𝑡
𝑘
, 𝑥))
2
+ 2(𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)))
2
− 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

≤ (2 + 2𝜃
2

𝑖𝑘
) (𝑢
𝑖
(𝑡
𝑘
, 𝑥))
2
− 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

≤ 𝛼𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) .

(58)

Identical with the proof of Theorem 8, we reach the
following.

Theorem 12. Assume that one has the following:

(1) let 𝐷 = min{𝐷
𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 8𝑚𝐷/M2 = 𝜒;
(2) |𝑃
𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥))| ≤ 𝜃

𝑖𝑘
|𝑢
𝑖
(𝑡
𝑘
, 𝑥)|, where 𝜃2

𝑖𝑘
≤ (𝛼 − 1)/2

and 𝛼 ≥ 1;



Abstract and Applied Analysis 9

(3) inf
𝑘=1,2,...

(𝑡
𝑘
− 𝑡
𝑘−1

) ≥ 𝜇;
(4) there exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2
> 0 such that

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 > 0 and 𝜆 + ℎ𝜌e𝛾𝜏 + (ln(1 + 𝛼)/𝜇) < 0,
where 𝜆 = max

𝑖=1,...,𝑛
(−𝜒 − 2𝑎

𝑖
+ ∑
𝑛

𝑗=1
(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
)) +

(𝑛/𝜀
1
)max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) and 𝜌 = (𝑛/𝜀

2
)max
𝑖=1,...,𝑛

(𝑙
2

𝑖
);

then, the equilibrium point 𝑢 = 0 of problem (5)–(8) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌e𝛾𝜏 +
(ln(1 + 𝛼)/𝜇)).

Remark 13. Different fromTheorems 5–11, the impulsive part
in Theorem 12 could be nonlinear and this will be of more
applicability. Actually, Theorems 5–11 can be regarded as the
special cases of Theorem 12.

4. Examples

Example 14. Consider system (5)–(8) equipped with 𝑃
𝑖𝑘
(𝑢
𝑖

(𝑡
𝑘
, 𝑥)) = 1.343𝑢

𝑖
(𝑡
𝑘
, 𝑥). Let 𝑛 = 2,𝑚 = 2,Ω = [0, 1.5]×[0, 2],

𝜏
𝑗
(𝑡) = (3/4) arctan(𝑡), 𝑎

1
= 𝑎
2
= 6.5, (𝐷

𝑖𝑠
)
2 × 2

= (
1.2 2.3

2.2 1.5
),

(𝑏
𝑖𝑗
)
2 × 2

= (
−0.23 1.3

−0.14 3.2
), (𝑐
𝑖𝑗
)
2 × 2

= (
−0.1 −0.2

0.25 −0.13
), and 𝑓

𝑗
(𝑢
𝑗
) =

(√2/4)(|𝑢
𝑗
+ 1| − |𝑢

𝑗
− 1|).

For 𝑀 = 2 and 𝐷 = 1.2, we compute 𝜒 = 4.8. This,
together with 𝑙

𝑖
= √2/2, yields

𝜌 = 𝑛max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) = 1, (59)

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
+

𝑛

∑

𝑗=1

(𝑏
2

𝑖𝑗
+ 𝑐
2

𝑖𝑗
)) + 𝜌 = −6.461. (60)

Let ℎ = 4. Since 𝜆 = −6.461 < −4 = −ℎ𝜌, we conclude
from Theorem 5 that the equilibrium point 𝑢 = 0 of this
system is globally exponentially stable.

Example 15. Consider system (5)–(8) equipped with 𝑃
𝑖𝑘
(𝑢
𝑖

(𝑡
𝑘
, 𝑥)) = arctan(0.5𝑢

𝑖
(𝑡
𝑘
, 𝑥)). Let 𝑛 = 2, 𝑚 = 2, 𝜏

𝑗
(𝑡) =

(1/𝜋) arctan(𝑡), Ω = [0, 1.5] × [0, 2], 𝑎
𝑖
= 6.5, (𝐷

𝑖𝑠
)
2 × 2

=

(
1.2 2.3

2.2 3.5
), (𝑏
𝑖𝑗
)
2 × 2

= (
−0.23 1.3

−0.14 3.2
), (𝑐
𝑖𝑗
)
2 × 2

= (
−0.1 −0.2

0.25 −0.13
),

𝑓
𝑗
(𝑢
𝑗
) = (√2/4)(|𝑢

𝑗
+ 1| − |𝑢

𝑗
− 1|), and 𝑡

𝑘
= 𝑡
𝑘−1

+ 2𝑘.

For 𝑀 = 2 and 𝐷 = 1.2, we compute 𝜒 = 4.8. This,
together with 𝑙

𝑖
= √2/2 and 𝜀

1
= 𝜀
2
= 1, yields

𝜌 =
𝑛

𝜀
2

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) = 1,

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
+

𝑛

∑

𝑗=1

( 𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
))

+
𝑛

𝜀
1

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) = −6.461.

(61)

Letting 𝜏 = 0.5, ℎ = 4, 𝜇 = 2, and 𝛼 = 1.5, we can find
𝛾 = 0.78 satisfying

𝛾 + 𝜆 + ℎ𝜌e𝛾𝜏 = 0.2269 > 0,

𝜆 + ℎ𝜌e𝛾𝜏 + ln (1 + 𝛼)
𝜇

= −0.0949 < 0.

(62)

It is then concluded from Theorem 12 that this system is
globally exponentially stable.
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This work concerns the stability of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion
terms as well as Dirichlet boundary condition. By means of Poincaré inequality and Gronwall-Bellman-type impulsive integral
inequality, we summarize some new and concise sufficient conditions ensuring the global exponential stability of equilibrium point.
The proposed criteria are relevant to the diffusion coefficients and the smallest positive eigenvalue of corresponding Dirichlet Lap-
lacian. In conclusion, two examples are illustrated to demonstrate the effectiveness of our obtained results.

1. Introduction

Cohen-Grossberg neural networks (CGNNs) were intro-
duced by Cohen and Grossberg in 1983 [1] and have been a
hot topic due to their important applications in various fields
such as parallel computation, associative memory, image
processing, and optimization problems.

By reason that time delays are unavoidably encountered
for the finite switching speed of neurons and amplifiers in the
implementation of neural networks, a more powerful model
of delayed Cohen-Grossberg neural networks (DCGNNs)
is afterwards proposed. This kind of mathematical models
is widely applied in dynamic image processing and pattern
recognition problems. It is worth noting that all these appli-
cations depend heavily on the dynamical behaviors such as
stability, convergence, and oscillatory [2–6]. Meanwhile,
stability is an important consideration in the designs and
applications of neural networks. The stability of delayed
neural networks is a subject of current interest, and therefore
considerable theoretical efforts have been put into this topic
followed by a large number of stability criteria reported; for
example, see [7–12] and the references therein.

In real world, however, many evolutionary processes are
characterized by abrupt changes at certain instants which
may be caused by switching phenomena, frequency changes,

or other sudden noises. As such, in the past few years, sci-
entists have become gradually interested in the influence
that impulses may have on the CGNNs and DCGNNs, thus
obtaining some related results; for example, see [13–18] and
the references therein.

Actually, besides impulsive effects, we have to recognize
that diffusion effects are also nonignorable in reality as
diffusion is unavoidable when electrons are moving in asym-
metric electromagnetic fields. On this account, the model
of neural networks with both impulses and diffusion should
be more effective for describing the evolutionary process of
practical systems. Based on this consideration, we wonder
what the influence of diffusion on the stability of CGNNs and
DCGNNs is.

So far there have appeared a few theoretical achievements
[19–29] on the stability of impulsive reaction-diffusion neural
networks with or without delays. Particularly, in [21–26], the
main research technique is the impulsive differential inequa-
lity whereby the authors discussed the stability of equilibrium
point and provided a series of sufficient conditions indepen-
dent of diffusion. From these results, we fail to see the influ-
ence of diffusion on the stability of CGNNs and DCGNNs.

Encouragingly, recently there were reported some new
results on the stability of CGNNs and DCGNNs in [19, 20,
27]; thereinto, the presented stability criteria derived from
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the impulsive differential inequality are related to the diffu-
sion terms, and thereby we know the diffusion do contribute
to the stability of impulsive neural networks.

In this paper, different from [20, 27], we shall consider
the case where the boundary condition is Dirichlet boundary
condition rather than Neumann boundary condition. More-
over, unlike [19], we shall utilize the new method of Poincarè
inequality to deal with the reaction-diffusion terms, and
Gronwall-Bellman-type impulsive integral inequality is also
introduced for stability analysis. The obtained results show
that not only the reaction-diffusion coefficients but also the
first eigenvalue of corresponding Dirichlet Laplacian can
affect the stability.

The rest of this paper is structured as follows. In Section 2,
the model of impulsive delayed Cohen-Grossberg neural
networks with reaction-diffusion terms as well as Dirichlet
boundary condition is outlined and some facts and lemmas
are introduced for later reference. By the new agencies of
Gronwall-Bellman-type impulsive integral inequality and
Poincaré inequality, we discuss the global exponential stabil-
ity of equilibrium point and develop some new and concise
algebraic criteria in Section 3. To conclude, two illustrative
examples are given in Section 4 to verify the effectiveness of
our results.

2. Preliminaries

Let𝑅
𝑛 denote the 𝑛-dimensional Euclidean space, and letΩ ⊂

𝑅
𝑚 be an open bounded domain with smooth boundary 𝜕Ω

and mesΩ > 0. Let 𝑅
+

= [0, ∞) and 𝑡
0

∈ 𝑅
+
.

Consider the following impulsive CGNN with time-
varying delays and reaction-diffusion terms:

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑡
=

𝑚

∑

𝑠=1

𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

)

− 𝑎
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) [

[

𝜔
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))]

]

,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

(1)

𝑢
𝑖
(𝑡
𝑘

+ 0, 𝑥) = 𝑢
𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) ,

𝑥 ∈ Ω, 𝑘 = 1, 2, . . . , 𝑖 = 1, 2, . . . , 𝑛,

(2)

where 𝑛 corresponds to the numbers of units in a neural
network, 𝑥 = (𝑥

1
, . . . , 𝑥

𝑚
)
𝑇

∈ Ω, 𝑢
𝑖
(𝑡, 𝑥) denotes the

state of the 𝑖th neuron at time 𝑡 and in space 𝑥, 𝐷
𝑖𝑠

=

const > 0 represents transmission diffusion of the 𝑖th unit,
𝑎
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) represents the amplification function, 𝜔

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

is the appropriate behavior function, activation function
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥)) stands for the output of the 𝑗th unit at time 𝑖

and in space 𝑥 and 𝑏
𝑖𝑗
and 𝑐
𝑖𝑗
are constants: 𝑏

𝑖𝑗
indicates the

connection strength of the 𝑗th unit on the 𝑖th unit at time

𝑡 and in space 𝑥, while 𝑐
𝑖𝑗
denotes the connection weight of

the 𝑗th unit on the 𝑖th unit at time 𝑡 − 𝜏
𝑗
(𝑡) and in space 𝑥,

where 𝜏
𝑗
(𝑡) corresponds to the transmission delay along the

axon of the jth unit satisfying 0 ≤ 𝜏
𝑗
(𝑡) ≤ 𝜏 (𝜏 = const) and

⋅

𝜏
𝑗
(𝑡) < 1 − (1/ℎ)(ℎ > 0). {𝑡

𝑘
} (𝑘 = 1, 2, . . .) is the sequence

of impulsive moments meeting 0 ≤ 𝑡
0

< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ and
lim
𝑘→∞

𝑡
𝑘

= ∞; 𝑢
𝑖
(𝑡
𝑘

+ 0, 𝑥) and 𝑢
𝑖
(𝑡
𝑘

− 0, 𝑥) represent
the right-hand and left-hand limit of 𝑢

𝑖
(𝑡, 𝑥) at time 𝑡

𝑘
and

in space 𝑥, respectively. 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) stands for the abrupt

change of 𝑢
𝑖
(𝑡, 𝑥) at impulsive moment 𝑡

𝑘
and in space 𝑥.

Denote by 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑), 𝑢 ∈ 𝑅

𝑛, the solution of
systems (1)-(2), satisfying the initial condition

𝑢 (𝑠, 𝑥; 𝑡
0
, 𝜑) = 𝜑 (𝑠, 𝑥) , 𝑡

0
− 𝜏 ≤ 𝑠 ≤ 𝑡

0
, 𝑥 ∈ Ω, (3)

and Dirichlet boundary condition

𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑) = 0, 𝑡 ≥ 𝑡

0
, 𝑥 ∈ 𝜕Ω, (4)

where the vector-valued function 𝜑(𝑠, 𝑥) = (𝜑
1
(𝑠, 𝑥), . . . ,

𝜑
𝑛
(𝑠, 𝑥))

𝑇 is such that ∫
Ω

∑
𝑛

𝑖=1
𝜑
2

𝑖
(𝑠, 𝑥)𝑑𝑥 is bounded on [𝑡

0
−

𝜏, 𝑡
0
].
The solution 𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥; 𝑡

0
, 𝜑) = (𝑢

1
(𝑡, 𝑥; 𝑡

0
, 𝜑), . . . ,

𝑢
𝑛
(𝑡, 𝑥; 𝑡

0
, 𝜑))
𝑇 of problems (1)–(4) is, for the time variable 𝑡, a

piecewise continuous function with the first kind discontinu-
ity at the points 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is left-continuous;

that is, the following relations are valid:

𝑢
𝑖
(𝑡
𝑘

− 0, 𝑥) = 𝑢
𝑖
(𝑡
𝑘
, 𝑥) ,

𝑢
𝑖
(𝑡
𝑘

+ 0, 𝑥) = 𝑢
𝑖
(𝑡
𝑘
, 𝑥) + 𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) .

(5)

Throughout this paper, we define the norm of 𝑢(𝑡, 𝑥; 𝑡
0
, 𝜑)

as

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑)

󵄩󵄩󵄩󵄩Ω
= √

𝑛

∑

𝑖=1

∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥; 𝑡

0
, 𝜑) 𝑑𝑥 (6)

and make the following assumptions for convenience.

(H1) 𝑎
𝑖
(⋅) : 𝑅 → 𝑅

+ is continuous and bounded; that is,
there exist constants 𝑎

𝑖
and 𝑎
𝑖
such that

0 < 𝑎
𝑖
≤ 𝑎
𝑖
(𝜁) ≤ 𝑎

𝑖
< ∞, for 𝑖 = 1, . . . , 𝑛. (7)

(H2) 𝜔
𝑖
(⋅) : 𝑅 → 𝑅 is continuous and𝜔

𝑖
(0) = 0; moreover,

there exists constant 𝑝
𝑖
> 0 such that

𝜔
𝑖
(𝜁
1
) − 𝜔
𝑖
(𝜁
2
)

𝜁
1

− 𝜁
2

≥ 𝑝
𝑖
> 0, for 𝜁

1
̸= 𝜁
2
, 𝑖 = 1, . . . , 𝑛. (8)

(H3) 𝑓
𝑖
(⋅) : 𝑅 → 𝑅 is continuous and 𝑓

𝑖
(0) = 0; further-

more, there exists constant 𝑙
𝑖
> 0 such that

𝑙
𝑖
= sup
𝜁
1

̸= 𝜁
2

𝑓
𝑖
(𝜁
1
) − 𝑓
𝑖
(𝜁
2
)

𝜁
1

− 𝜁
2

for 𝜁
1

̸= 𝜁
2
, 𝑖 = 1, 2, . . . , 𝑛. (9)

(H4) 𝑃
𝑖𝑘

(⋅) : 𝑅 → 𝑅 is continuous and 𝑃
𝑖𝑘

(0) = 0 for 𝑖 =

1, 2, . . . , 𝑛 and 𝑘 = 1, 2, . . ..
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In the light of (H1)–(H4), it is easy to see that problems
(1)-(2) admit an equilibrium point 𝑢 = 0.

Definition 1. The equilibrium point 𝑢 = 0 of problems (1)-
(2) is said to be globally exponentially stable if there exist
constants 𝜅 > 0 and 𝑀 ≥ 1 such that

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑)

󵄩󵄩󵄩󵄩Ω
≤ 𝑀

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩Ω

𝑒
−𝜅(𝑡−𝑡

0

)
, 𝑡 ≥ 𝑡

0
, (10)

where ‖𝜑‖
2

Ω
= sup

𝑡
0

−𝜏≤𝑠≤𝑡
0

∑
𝑛

𝑖=1
∫
Ω

𝜑
𝑖

2
(𝑠, 𝑥)𝑑𝑥 .

Lemma 2 (see [30] (Gronwall-Bellman-type impulsive inte-
gral inequality)). Assume the following.

(A1) The sequence {𝑡
𝑘
} satisfies 0 ≤ 𝑡

0
< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅, with
lim
𝑘→∞

𝑡
𝑘

= ∞.
(A2) 𝑞 ∈ 𝑃𝐶

1
[𝑅
+
, 𝑅] and 𝑞(𝑡) is left-continuous at 𝑡

𝑘
, 𝑘 =

1, 2, . . ..
(A3) 𝑝 ∈ 𝐶[𝑅

+
, 𝑅
+
] and for 𝑘 = 1, 2, . . .,

𝑞 (𝑡) ≤ 𝑐 + ∫

𝑡

𝑡
0

𝑝 (𝑠) 𝑞 (𝑠) 𝑑𝑠 + ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝜂
𝑘
𝑞 (𝑡
𝑘
) , 𝑡 ≥ 𝑡

0
, (11)

where 𝜂
𝑘

≥ 0 and c = const . Then,

𝑞 (𝑡) ≤ 𝑐 ∏

𝑡
0

<𝑡
𝑘

<𝑡

(1 + 𝜂
𝑘
) exp(∫

𝑡

𝑡
0

𝑝 (𝑠) 𝑑𝑠) , 𝑡 ≥ 𝑡
0
. (12)

Lemma3 (see [31] (Poincaré inequality)). LetS be a bounded
region in 𝑅

𝑛
, V(𝑥) ∈ 𝐶

1
(S), and V = 0 on the boundary of S;

then

𝜆
1

∫
S

V
2

(𝑥) 𝑑𝑥 ≤ ∫
S

|∇V (𝑥)|
2
𝑑𝑥, (13)

where 𝜆
1
is the smallest positive eigenvalue of the following

problem:

ΔΨ (𝑥) + 𝜆Ψ (𝑥) = 0, 𝑥 ∈ S, Ψ (𝑥) = 0, 𝑥 ∈ 𝜕S.

(14)

Lemma 4. If 𝑎 > 0 and 𝑏 > 0, then 𝑎𝑏 ≤ (1/𝜀)𝑎
2

+ 𝜀𝑏
2 holds

for any 𝜀 > 0.

3. Main Results

Theorem 5. Assume the following.

(1) 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2.

(3) There exists a constant 𝛾 > 0 satisfying 𝛾 +𝜆 + ℎ𝜌𝑒
𝛾𝜏

>

0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

< 0, where

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
) + 𝜌,

𝜌 = max
𝑖=1,...,𝑛

(𝑙
𝑖

2
)

𝑛

∑

𝑖=1

𝑎
𝑖
.

(15)

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌𝑒

𝛾𝜏
)/2.

Proof. Multiplying both sides of (1) by 𝑢
𝑖
(𝑡, 𝑥), we get

𝜕𝑢
2

𝑖
(𝑡, 𝑥)

𝜕𝑡
= 2

𝑚

∑

𝑠=1

𝑢
𝑖
(𝑡, 𝑥)

𝜕

𝜕𝑥
𝑠

(𝐷
𝑖𝑠

𝜕𝑢
𝑖
(𝑡, 𝑥)

𝜕𝑥
𝑠

)

− 2𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

× [

[

𝜔
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥))]

]

,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡
𝑘
, 𝑥 ∈ Ω, 𝑘 = 1, 2, . . . ,

(16)

which yields, after integrating with respect to spatial variable
𝑥 on Ω,

𝑑 (∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥)

𝑑𝑡
= 𝐽
1

+ 𝐽
2
,

𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . . ,

(17)

where 𝐽
1

= 2 ∫
Ω

∑
𝑚

𝑠=1
(𝑢
𝑖
(𝑡, 𝑥)(𝜕/𝜕𝑥

𝑠
)(𝐷
𝑖𝑠
(𝜕𝑢
𝑖
(𝑡, 𝑥))/𝜕𝑥

𝑠
))𝑑𝑥,

𝐽
2

= −2 ∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

× [

[

𝜔
𝑖
(𝑢
𝑖
(𝑡, 𝑥)) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥))]

]

𝑑𝑥.

(18)

By combining Green formula, Dirichlet boundary condi-
tion, Lemma 3, and condition (1) of Theorem 5, we obtain

𝐽
1

= −2

𝑚

∑

𝑠=1

∫
Ω

𝐷
𝑖𝑠
(

𝜕𝑢
𝑖 (𝑡, 𝑥)

𝜕𝑥
𝑠

)

2

𝑑𝑥

≤ −2𝐷𝜆
1

∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥 ≜ −𝜒 ∫

Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥.

(19)
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Moreover, it follows from assumptions (H1), (H2), and
(H3) that

2 ∫
Ω

𝑢
𝑖 (𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖 (𝑡, 𝑥)) 𝜔

𝑖
(𝑢
𝑖 (𝑡, 𝑥)) 𝑑𝑥

≥ 2𝑎
𝑖
𝑝
𝑖
∫
Ω

󵄨󵄨󵄨󵄨𝑢𝑖 (𝑡, 𝑥)
󵄨󵄨󵄨󵄨

2
𝑑𝑥,

(20)

2 ∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡, 𝑥)) 𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑓

2

𝑗
(𝑢
𝑗
(𝑡, 𝑥))) 𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

2
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗

󵄩󵄩󵄩󵄩𝑢
𝑖 (𝑡, 𝑥)

󵄩󵄩󵄩󵄩 𝑓
𝑗
(𝑢
𝑗 (𝑡, 𝑥))

󵄨󵄨󵄨󵄨󵄨
𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡, 𝑥)) 𝑑𝑥,

(21)

2 ∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑎

𝑖
(𝑢
𝑖
(𝑡, 𝑥))

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑓
𝑗
(𝑢
𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) 𝑑𝑥

≤ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑐
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡 − 𝜏
𝑗
(𝑡) , 𝑥)) 𝑑𝑥.

(22)

Consequently, substituting (19)–(22) into (17) produces

𝑑 (∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥)

𝑑𝑡

≤ −𝜒 ∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥 − 2𝑎

𝑖
𝑝
𝑖
∫
Ω

𝑢
2

𝑖
(𝑡, 𝑥) 𝑑𝑥

+ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑏
2

𝑖𝑗
𝑢
𝑖

2
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡, 𝑥)) 𝑑𝑥

+ 𝑎
𝑖

𝑛

∑

𝑗=1

∫
Ω

(𝑐
2

𝑖𝑗
𝑢
𝑖

2
(𝑡, 𝑥) + 𝑙

2

𝑗
𝑢
2

𝑗
(𝑡 − 𝜏
𝑗 (𝑡) , 𝑥)) 𝑑𝑥

(23)

for 𝑡 ≥ 𝑡
0
, 𝑡 ̸= 𝑡

𝑘
, 𝑘 = 1, 2, . . ..

Now define Lyapunov function 𝑉
𝑖
(𝑡) as 𝑉

𝑖
(𝑡) =

∫
Ω

𝑢
2

𝑗
(𝑡, 𝑥)𝑑𝑥. It is not difficult to see that 𝑉

𝑖
(𝑡) is a piecewise

continuous function with points of discontinuity of the first
kind 𝑡

𝑘
(𝑘 = 1, 2, . . .), where it is continuous from the left;

that is, 𝑉
𝑖
(𝑡
𝑘

− 0) = 𝑉
𝑖
(𝑡
𝑘
) (𝑘 = 1, 2, . . .). In addition, for 𝑡 = 𝑡

𝑘

(𝑘 = 0, 1, 2, . . .), we know

𝑉
𝑖
(𝑡
𝑘

+ 0) ≤ 𝑉
𝑖
(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . , (24)

as 𝑉
𝑖
(𝑡
0

+ 0) ≤ 𝑉
𝑖
(𝑡
0
) and 𝑢

2

𝑖
(𝑡
𝑘

+ 0, 𝑥) = (1 − 𝜃
𝑖𝑘

)
2
𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) ≤

𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) (𝑘 = 1, 2, . . .), supported by condition 2 of Theorem

5.

Put 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. It is derived from (23)
that

𝑑𝑉
𝑖
(𝑡)

𝑑𝑡
≤ (−𝜒 − 2𝑎

𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
) 𝑉
𝑖
(𝑡)

+ 𝑎
𝑖
max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡)

+ 𝑎
𝑖
max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(25)

Define function 𝑉(𝑡) of the form 𝑉(𝑡) = ∑
𝑛

𝑖=1
𝑉
𝑖
(𝑡) again.

From (25), one then reads
𝑑𝑉 (𝑡)

𝑑𝑡
≤ 𝜆𝑉 (𝑡)

+ 𝜌

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)) , 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . ,

(26)

where 𝜌 = max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) ∑
𝑛

𝑖=1
𝑎
𝑖
and 𝜆 = max

𝑖=1,...,𝑛
(−𝜒 −

2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖
∑
𝑛

𝑗=1
𝑏
2

𝑖𝑗
+ 𝑎
𝑖
∑
𝑛

𝑗=1
𝑐
2

𝑖𝑗
) + 𝜌.

Construct 𝑉
∗
(𝑡) = 𝑒

𝛾(𝑡−𝑡
0

)
𝑉(𝑡), where 𝛾 > 0 satisfies

𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

> 0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

< 0. Evidently, 𝑉∗(𝑡) is also a
piecewise continuous function with the first kind discontin-
uous points 𝑡

𝑘
(𝑘 = 1, 2, . . .), in which it is continuous from

the left; that is, 𝑉∗(𝑡
𝑘

− 0) = 𝑉
∗
(𝑡
𝑘
) (𝑘 = 1, 2, . . .). Moreover,

at 𝑡 = 𝑡
𝑘

(𝑘 = 0, 1, 2, . . .), we find by the use of (24)

𝑉
∗

(𝑡
𝑘

+ 0) ≤ 𝑉
∗

(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . . (27)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

), 𝑘 = 0, 1, 2, . . .. By virtue of (26), one has

𝑑𝑉
∗

(𝑡)

𝑑𝑡
= 𝛾𝑒
𝛾(𝑡−𝑡
0

)
𝑉 (𝑡) + 𝑒

𝛾(𝑡−𝑡
0

) 𝑑𝑉 (𝑡)

𝑑𝑡

≤ 𝛾𝑒
𝛾(𝑡−𝑡
0

)
𝑉 (𝑡)

+ (𝜆𝑉 (𝑡) + 𝜌

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) 𝑒

𝛾(𝑡−𝑡
0

)

= (𝛾 + 𝜆) 𝑉
∗

(𝑡) + 𝜌𝑒
𝛾(𝑡−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑡 − 𝜏
𝑗 (𝑡)) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(28)

Choose small enough 𝜀 > 0. Integrating (28) from 𝑡
𝑘

+ 𝜀

to 𝑡 gives

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 𝜀) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

+𝜀

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘

+𝜀

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . .

(29)
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which yields, after letting 𝜀 → 0 in (29),

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

) , 𝑘 = 0, 1, 2, . . . .

(30)

Next, we estimate the value of 𝑉
∗
(𝑡) at 𝑡 = 𝑡

𝑘+1
, 𝑘 = 0, 1,

2, . . .. For small enough 𝜀 > 0, we put 𝑡 = 𝑡
𝑘+1

− 𝜀. Now an
application of (30) leads to, for 𝑘 = 0, 1, 2, . . .,

𝑉
∗

(𝑡
𝑘+1

− 𝜀) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡
𝑘+1

−𝜀

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡
𝑘+1

−𝜀

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) 𝑑𝑠.

(31)

If we let 𝜀 → 0 in (31), there results

𝑉
∗

(𝑡
𝑘+1

− 0)

≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡
𝑘+1

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡
𝑘+1

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠, 𝑘 = 0, 1, 2, . . . .

(32)

Note that𝑉
∗
(𝑡
𝑘+1

−0) = 𝑉
∗
(𝑡
𝑘+1

) is applicable for 𝑘 = 0, 1,

2, . . .. Thus,

𝑉
∗

(𝑡
𝑘+1

) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡
𝑘+1

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡
𝑘+1

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠

(33)

holds for 𝑘 = 0, 1, 2, . . .. By synthesizing (30) and (33), we
then arrive at

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(34)

This, together with (27), results in

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)) 𝑑𝑠

(35)

for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . ..

Recalling the assumptions that 0 ≤ 𝜏
𝑗
(𝑡) ≤ 𝜏 and

∙

𝜏
𝑗
(𝑡) <

1 − (1/ℎ)(ℎ > 0), we therefore obtain

∫

𝑡

𝑡
𝑘

𝜌𝑒
𝛾(𝑠−𝑡
0

)

𝑛

∑

𝑗=1

𝑉
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)) 𝑑𝑠

=

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝜌𝑒
𝛾(𝜃+𝜏

𝑗

(𝑠)−𝑡
0

)
𝑉
𝑗
(𝜃)

1

1 −
∙

𝜏
𝑗 (𝑠)

𝑑𝜃

≤ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗
(𝜃) 𝑑𝜃.

(36)

Hence,

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗
(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(37)

By induction argument, we reach

𝑉
∗

(𝑡
𝑘
) ≤ 𝑉
∗

(𝑡
𝑘−1

) + (𝛾 + 𝜆) ∫

𝑡
𝑘

𝑡
𝑘−1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑡
𝑘−1

−𝜏
𝑗

(𝑡
𝑘−1

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗 (𝑠) 𝑑𝑠,

...

𝑉
∗

(𝑡
2
) ≤ 𝑉
∗

(𝑡
1
) + (𝛾 + 𝜆) ∫

𝑡
2

𝑡
1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
2

−𝜏
𝑗

(𝑡
2

)

𝑡
1

−𝜏
𝑗

(𝑡
1

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗
(𝑠) 𝑑𝑠,

𝑉
∗

(𝑡
1
) ≤ 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡
1

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
1

−𝜏
𝑗

(𝑡
1

)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗
(𝑠) 𝑑𝑠.

(38)
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Thus,

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗
(𝑠) 𝑑𝑠

≤ 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗
(𝑠) 𝑑𝑠

= 𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏
) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗
(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(39)

Since

ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝑠−𝑡
0

)
𝑉
𝑗
(𝑠) 𝑑𝑠

≤ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏

𝑉
𝑗
(𝑠) 𝑑𝑠

= ℎ𝜌𝑒
𝛾𝜏

∫

𝑡
0

𝑡
0

−𝜏

(

𝑛

∑

𝑗=1

∫
Ω

𝜑
𝑗

2
(𝑠, 𝑥) 𝑑𝑥) 𝑑𝑠

≤ 𝜏ℎ𝜌e𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω
,

(40)

we claim

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω

+ (𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2 . . . .

(41)

According to Lemma 2, we assert that

𝑉
∗

(𝑡) ≤ (𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω
)

× exp {(𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) (𝑡 − 𝑡
0
)} , 𝑡 ≥ 𝑡

0
,

(42)

which reduces to
󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡

0
, 𝜑)

󵄩󵄩󵄩󵄩Ω

≤ √1 + 𝜏ℎ𝜌𝑒𝛾𝜏
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩Ω

× exp{(
𝜆 + ℎ𝜌𝑒

𝛾𝜏

2
) (𝑡 − 𝑡

0
)} , 𝑡 ≥ 𝑡

0
.

(43)

This completes the proof.

Remark 6. According to the conditions ofTheorem 5, we see
that the reaction-diffusion terms can influence the stability
of equilibrium point 𝑢 = 0. Specifically, the acting factors
include the reaction-diffusion coefficients and the first eigen-
value of corresponding Dirichlet Laplacian.

Remark 7. It is not difficult to see that there must exist con-
stant 𝛾 > 0 satisfying condition 3 of Theorem 5 if 𝜆 < −ℎ𝜌.

Theorem 8. Assume the following.
(1) 𝐷 = min{𝐷

𝑖𝑠
: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and

denote 2𝐷𝜆
1

= 𝜒.
(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0.
(3) inf

𝑘=1,2...
(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇.
(4) There exists a constant 𝛾 > 0 satisfying 𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏
>

0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+ ln(1 + 𝛼)/𝜇 < 0, where 𝜆 =

max
𝑖=1,...,𝑛

(−𝜒−2𝑎
𝑖
𝑝
𝑖
+𝑎
𝑖
∑
𝑛

𝑗=1
𝑏
2

𝑖𝑗
+𝑎
𝑖
∑
𝑛

𝑗=1
𝑐
2

𝑖𝑗
)+𝜌 and

𝜌 = max
𝑖=1,...,𝑛

(𝑙
2

𝑖
) ∑
𝑛

𝑖=1
𝑎
𝑖
.

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is glob-
ally exponentially stable with convergence rate −(1/2)(𝜆 +

ℎ𝜌e𝛾𝜏 + ln(1 + 𝛼)/𝜇).

Proof. Define Lyapunov function 𝑉 of the form 𝑉(𝑡) =

∑
𝑛

𝑖=1
𝑉
𝑖
(𝑡), where 𝑉

𝑖
(𝑡) = ∫

Ω
𝑢
2

𝑖
(𝑡, 𝑥)𝑑𝑥. Obviously, 𝑉(𝑡) is a

piecewise continuous function with the first kind discontin-
uous points 𝑡

𝑘
, 𝑘 = 1, 2, . . ., where it is continuous from the

left; that is, 𝑉(𝑡
𝑘

− 0) = 𝑉(𝑡
𝑘
) (𝑘 = 1, 2, . . .). Furthermore,

for 𝑡 = 𝑡
𝑘

(𝑘 = 0, 1, 2, . . .), we derive from condition 2 of
Theorem 8 that

𝑢
2

𝑖
(𝑡
𝑘

+ 0, 𝑥) − 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

= (1 − 𝜃
𝑖𝑘

)
2
𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) − 𝑢

2

𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝛼𝑢

2

𝑖
(𝑡
𝑘
, 𝑥) .

(44)

Thereby,

𝑉 (𝑡
𝑘

+ 0) ≤ 𝛼𝑉 (𝑡
𝑘
) + 𝑉 (𝑡

𝑘
) , 𝑘 = 0, 1, 2, . . . . (45)

Construct function 𝑉
∗
(𝑡) = 𝑒

𝛾(𝑡−𝑡
0

)
𝑉(𝑡) again, where 𝛾 >

0 satisfies 𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

> 0 and 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+ ln(1 + 𝛼)/𝜇 <

0. Then, 𝑉
∗
(𝑡) is also a piecewise continuous function with

the first kind discontinuous points 𝑡
𝑘
, 𝑘 = 1, 2, . . ., where it

is continuous from the left; that is, 𝑉
∗
(𝑡
𝑘

− 0) = 𝑉
∗
(𝑡
𝑘
) (𝑘 =

1, 2, . . .). And for 𝑡 = 𝑡
𝑘

(𝑘 = 0, 1, 2, . . .), it follows from (45)
that

𝑉
∗

(𝑡
𝑘

+ 0) ≤ 𝛼𝑉
∗

(𝑡
𝑘
) + 𝑉
∗

(𝑡
𝑘
) , 𝑘 = 0, 1, 2, . . . (46)

Set 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . .. Following the same pro-
cedure as shown in the proof of Theorem 5, we get

𝑉
∗

(𝑡) ≤ 𝑉
∗

(𝑡
𝑘

+ 0) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗 (𝜃) 𝑑𝜃,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(47)
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The relations (46) and (47) yield

𝑉
∗

(𝑡) − 𝑉
∗

(𝑡
𝑘
)

≤ 𝛼𝑉
∗

(𝑡
𝑘
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
𝑘

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗
(𝜃) 𝑑𝜃,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(48)

By induction argument, we obtain

𝑉
∗

(𝑡
𝑘
) − 𝑉
∗

(𝑡
𝑘−1

)

≤ 𝛼𝑉
∗

(𝑡
𝑘−1

) + (𝛾 + 𝜆) ∫

𝑡
𝑘

𝑡
𝑘−1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
𝑘

−𝜏
𝑗

(𝑡
𝑘

)

𝑡
𝑘−1

−𝜏
𝑗

(𝑡
𝑘−1

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗 (𝜃) 𝑑𝜃,

...

𝑉
∗

(𝑡
2
) − 𝑉
∗

(𝑡
1
)

≤ 𝛼𝑉
∗

(𝑡
1
) + (𝛾 + 𝜆) ∫

𝑡
2

𝑡
1

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
2

−𝜏
𝑗

(𝑡
2

)

𝑡
1

−𝜏
𝑗

(𝑡
1

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗
(𝜃) 𝑑𝜃,

𝑉
∗

(𝑡
1
) − 𝑉
∗

(𝑡
0
)

≤ 𝛼𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡
1

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
1

−𝜏
𝑗

(𝑡
1

)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗
(𝜃) 𝑑𝜃.

(49)

Hence,

𝑉
∗

(𝑡) − 𝑉
∗

(𝑡
0
)

≤ 𝛼𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡−𝜏
𝑗

(𝑡)

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗
(𝜃) 𝑑𝜃

+ 𝛼 ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝑉 (𝑡
𝑘
)

≤ 𝛼𝑉
∗

(𝑡
0
) + (𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏
) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠

+ ℎ𝜌𝑒
𝛾𝜏

𝑛

∑

𝑗=1

∫

𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)

𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗
(𝜃) 𝑑𝜃 + 𝛼 ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝑉 (𝑡
𝑘
) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, 2, . . . .

(50)

Introducing ℎ𝜌𝑒
𝛾𝜏

∑
𝑛

𝑗=1
∫
𝑡
0

𝑡
0

−𝜏
𝑗

(𝑡
0

)
𝑒
𝛾(𝜃−𝑡

0

)
𝑉
𝑗
(𝜃)𝑑𝜃 ≤

𝜏ℎ𝜌𝑒
𝛾𝜏

‖𝜑‖
2

Ω
as shown in the proof of Theorem 5 into (50),

(50) becomes, for 𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 0, 1, 2, . . .,

𝑉
∗

(𝑡) − 𝑉
∗

(𝑡
0
)

≤ 𝛼𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω

+ (𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) ∫

𝑡

𝑡
0

𝑉
∗

(𝑠) 𝑑𝑠 + 𝛼 ∑

𝑡
0

<𝑡
𝑘

<𝑡

𝑉 (𝑡
𝑘
) .

(51)

It then results from Lemma 2 that, for 𝑡 ≥ 𝑡
0
,

𝑉
∗

(𝑡) ≤ ((𝛼 + 1) 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω
)

× ∏

𝑡
0

<𝑡
𝑘

<𝑡

(1 + 𝛼) exp ((𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

) (𝑡 − 𝑡
0
))

= ((𝛼 + 1) 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω
)

× (1 + 𝛼)
𝑘 exp ((𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏
) (𝑡 − 𝑡

0
)) .

(52)

On the other hand, since inf
𝑘=1,2,...

(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇, one has
𝑘 ≤ (𝑡

𝑘
− 𝑡
0
)/𝜇. Thereby,

(1 + 𝛼)
𝑘

≤ exp{
ln (1 + 𝛼)

𝜇
(𝑡
𝑘

− 𝑡
0
)}

≤ exp{
ln (1 + 𝛼)

𝜇
(𝑡 − 𝑡
0
)}

(53)

and (52) can be rewritten as

𝑉
∗

(𝑡) ≤ ((𝛼 + 1) 𝑉
∗

(𝑡
0
) + 𝜏ℎ𝜌𝑒

𝛾𝜏󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

Ω
)

× exp((𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

+
ln (1 + 𝛼)

𝜇
) (𝑡 − 𝑡

0
))

(54)

which implies

󵄩󵄩󵄩󵄩𝑢 (𝑡, 𝑥; 𝑡
0
, 𝜑)

󵄩󵄩󵄩󵄩Ω
≤ √(𝛼 + 1 + 𝜏ℎ𝜌𝑒𝛾𝜏)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩Ω

× exp(
1

2
(𝜆 + ℎ𝜌𝑒

𝛾𝜏
+

𝑙𝑛 (1 + 𝛼)

𝜇
) (𝑡 − 𝑡

0
)) , 𝑡 ≥ 𝑡

0
.

(55)

The proof is completed.
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Due to Lemma 4, we know that the following inequalities:

2

𝑛

∑

𝑗=1

𝑏
𝑖𝑗

∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓 (𝑢

𝑗
(𝑡, 𝑥)) 𝑑𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝜀
1
𝑏
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) +

𝑙
2

𝑗

𝜀
1

𝑢
2

𝑗
(𝑡, 𝑥)) 𝑑𝑥,

2

𝑛

∑

𝑗=1

𝑐
𝑖𝑗

∫
Ω

𝑢
𝑖
(𝑡, 𝑥) 𝑓 (𝑢

𝑗
(𝑡 − 𝜏
𝑗
, 𝑥)) 𝑑𝑥

≤

𝑛

∑

𝑗=1

∫
Ω

(𝜀
2
𝑐
2

𝑖𝑗
𝑢
2

𝑖
(𝑡, 𝑥) +

𝑙
2

𝑗

𝜀
2

𝑢
2

𝑖
(𝑡 − 𝜏
𝑗
, 𝑥)) 𝑑𝑥

(56)

hold for any 𝜀
1
, 𝜀
2

> 0. Thus, in a similar way to the proofs of
Theorems 5–8, we can prove the following theorems.

Theorem 9. Assume the following.

(1) 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 0 ≤ 𝜃

𝑖𝑘
≤ 2.

(3) There exist constants 𝛾 > 0 and 𝜀
1
, 𝜀
2

> 0 such that
𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏
> 0 and 𝜆 + ℎ𝜌𝑒

𝛾𝜏
< 0, where 𝜆 =

max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖

+ 𝑎
𝑖
∑
𝑛

𝑗=1
(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
)) +

(max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)/𝜀
1
) ∑
𝑛

𝑖=1
𝑎
𝑖
, and 𝜌 = (max

𝑖=1,...,𝑛
(𝑙
2

𝑗
)/𝜀
2
)

∑
𝑛

𝑖=1
𝑎
𝑖
.

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(𝜆 + ℎ𝜌𝑒

𝛾𝜏
)/2.

Remark 10. There must exist constant 𝛾 > 0 satisfying condi-
tion 3 of Theorem 9 if there are constants 𝜀

1
, 𝜀
2

> 0 such that
𝜆 < −ℎ𝜌.

Theorem 11. Assume the following.

(1) 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) = −𝜃

𝑖𝑘
𝑢
𝑖
(𝑡
𝑘
, 𝑥), 1 − √1 + 𝛼 ≤ 𝜃

𝑖𝑘
≤ 1 +

√1 + 𝛼, 𝛼 ≥ 0.
(3) inf

𝑘=1,2,...
(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇.
(4) There exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2

> 0 satisfying
𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏
> 0 and 𝜆 + ℎ𝜌𝑒

𝛾𝜏
+ ln(1 + 𝛼)/𝜇 < 0,

where

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
))

+

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
1

𝑛

∑

𝑖=1

𝑎
𝑖
,

𝜌 =

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
2

𝑛

∑

𝑖=1

𝑎
𝑖
.

(57)

Then, the equilibrium point 𝑢 = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌𝑒

𝛾𝜏
+

ln(1 + 𝛼)/𝜇).
Further, on the condition that |𝑃

𝑖𝑘
(𝑢
𝑖
(𝑡
𝑘
, 𝑥))|≤𝜃

𝑖𝑘
|𝑢
𝑖
(𝑡
𝑘
, 𝑥)|,

where 𝜃
2

𝑖𝑘
< (𝛼 − 1)/2 and 𝛼 ≥ 1, we obtain

𝑢
2

𝑖
(𝑡
𝑘

+ 0, 𝑥) − 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

≤ 2(𝑢
𝑖
(𝑡
𝑘
, 𝑥))
2

+ 2(𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)))
2

− 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥)

≤ (2 + 2𝜃
2

𝑖𝑘
) (𝑢
𝑖
(𝑡
𝑘
, 𝑥))
2

− 𝑢
2

𝑖
(𝑡
𝑘
, 𝑥) ≤ 𝛼𝑢

2

𝑖
(𝑡
𝑘
, 𝑥)

(58)

for 𝑡 = 𝑡
𝑘

(𝑘 = 1, 2, . . .). In an identical way with the proof of
Theorem 8, we can present the following.

Theorem 12. Assume the following.

(1) Let 𝐷 = min{𝐷
𝑖𝑠

: 𝑖 = 1, . . . , 𝑛; 𝑠 = 1, . . . , 𝑚} > 0 and
denote 2𝐷𝜆

1
= 𝜒.

(2) |𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥))| ≤ 𝜃

𝑖𝑘
|𝑢
𝑖
(𝑡
𝑘
, 𝑥)|, where 𝜃

2

𝑖𝑘
≤ (𝛼 − 1)/2

and 𝛼 ≥ 1.
(3) inf

𝑘=1,2,...
(𝑡
𝑘

− 𝑡
𝑘−1

) ≥ 𝜇.
(4) There exist constants 𝛾 > 0 and 𝜀

1
, 𝜀
2

> 0 such that
𝛾 + 𝜆 + ℎ𝜌𝑒

𝛾𝜏
> 0 and 𝜆 + ℎ𝜌𝑒

𝛾𝜏
+ ln(1 + 𝛼)/𝜇 < 0,

where

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
))

+

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
1

𝑛

∑

𝑖=1

𝑎
𝑖
,

𝜌 =

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
2

𝑛

∑

𝑖=1

𝑎
𝑖
.

(59)

Then, the equilibrium point u = 0 of systems (1)-(2) is globally
exponentially stable with convergence rate −(1/2)(𝜆 + ℎ𝜌𝑒

𝛾𝜏
+

ln(1 + 𝛼)/𝜇).

Remark 13. Different fromTheorems 5–11, the impulsive part
in Theorem 12 could be nonlinear, and this will be of more
applicability. Actually, Theorems 5–11 can be regarded as the
special cases of Theorem 12.

4. Examples

Example 14. Consider problems (1)–(4) with 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) =

1.343𝑢
𝑖
(𝑡
𝑘
, 𝑥); moreover, 𝑛 = 2, 𝑚 = 2, Ω = {(𝑥

1
, 𝑥
2
)
𝑇

|

𝑥
2

1
+ 𝑥
2

2
< 1}, 𝑎

𝑖
(𝑢
1
(𝑡, 𝑥)) = 1, 𝜔

1
(𝑢
1
(𝑡, 𝑥)) = 6.5𝑢

1
(𝑡, 𝑥),

𝜔
2
(𝑢
2
(𝑡, 𝑥)) = 8.5𝑢

2
(𝑡, 𝑥), (𝐷

𝑖𝑠
) = (
1.2 2.3

2.2 1.5
), (𝑏
𝑖𝑗
) = (
−0.23 1.3

−0.14 3.2
),

(𝑐
𝑖𝑗
) = (

−0.1 −0.2

0.25 −0.13
), 𝑓
𝑗
(𝑢
𝑗
) = (√2/4)(|𝑢

𝑗
+ 1| − |𝑢

𝑗
− 1|), and

𝜏
𝑗
(𝑡) = (3/4) arctan(𝑡).
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As 𝜆
1

= 5.783 and 𝐷 = 1.2, we know 𝜒 = 13.8792. Fur-
ther, for 𝑙

𝑖
= √2/2, 𝑎

𝑖
= 𝑎
𝑖

= 1, 𝑝
1

= 6.5, and 𝑝
2

= 8.5, we
compute

𝜌 = max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝑛

∑

𝑖=1

𝑎
𝑖
= 1,

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑏
2

𝑖𝑗
+ 𝑎
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
)

+ 𝜌 = −15.5402.

(60)

Let ℎ = 4. Since 𝜆 = −15.5402 < −4 = −ℎ𝜌, we therefore
conclude fromTheorem 5 that the zero solution of this system
is globally exponential stable.

Example 15. Consider problems (1)–(4) with 𝑃
𝑖𝑘

(𝑢
𝑖
(𝑡
𝑘
, 𝑥)) =

arctan(0.5𝑢
𝑖
(𝑡
𝑘
, 𝑥)); moreover, 𝑛 = 2, 𝑚 = 2, Ω =

{(𝑥
1
, 𝑥
2
)
𝑇
| 𝑥
2

1
+ 𝑥
2

1
< 1}, 𝑎

𝑖
(𝑢
1
(𝑡, 𝑥)) = 1, 𝜔

1
(𝑢
1
(𝑡, 𝑥)) =

6.5𝑢
1
(𝑡, 𝑥), 𝜔

2
(𝑢
2
(𝑡, 𝑥)) = 8.5𝑢

2
(𝑡, 𝑥), (𝐷

𝑖𝑠
) = (
1.2 2.3

2.2 1.5
), (𝑏
𝑖𝑗
) =

(
−0.23 1.3

−0.14 3.2
), (𝑐
𝑖𝑗
) = (
−0.1 −0.2

0.25 −0.13
), 𝑓
𝑗
(𝑢
𝑗
) = (√2/4)(|𝑢

𝑗
+ 1| − |𝑢

𝑗
−

1|), 𝜏
𝑗
(𝑡) = (1/𝜋) arctan(𝑡), and 𝑡

𝑘
= 𝑡
𝑘−1

+ 𝑘.
As 𝜆
1

= 5.783 and 𝐷 = 1.2, we know 𝜒 = 13.8792. Fur-
ther, for 𝑙

𝑖
= √2/2, 𝑎

𝑖
= 𝑎
𝑖

= 1, 𝑝
1

= 6.5, 𝑝
2

= 8.5, and
𝜀
𝑖
= 1, we compute

𝜌 =
max
𝑖=1,...,𝑛

𝜀
2

𝑛

∑

𝑖=1

𝑎
𝑖
= 1,

𝜆 = max
𝑖=1,...,𝑛

(−𝜒 − 2𝑎
𝑖
𝑝
𝑖
+ 𝑎
𝑖

𝑛

∑

𝑗=1

(𝜀
1
𝑏
2

𝑖𝑗
+ 𝜀
2
𝑐
2

𝑖𝑗
))

+

max
𝑖=1,...,𝑛

(𝑙
2

𝑖
)

𝜀
1

𝑛

∑

𝑖=1

𝑎
𝑖
= −15.5402.

(61)

Let 𝜏 = 0.5, ℎ = 4, 𝜇 = 1, 𝜃
𝑖𝑘

= 0.5, and 𝛼 = 1.5; we can
find 𝛾 = 2.4 such that

𝛾 + 𝜆 + ℎ𝜌𝑒
𝛾𝜏

= 0.1403 > 0,

𝜆 + ℎ𝜌𝑒
𝛾𝜏

+
ln (1 + 𝛼)

𝜇
= −1.3434 < 0.

(62)

Therefore it is concluded from Theorem 12 that the zero
solution of this system is globally exponential stable.
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We employ the new method of fixed point theory to study the stability of a class of impulsive cellular neural networks with infinite
delays. Some novel and concise sufficient conditions are presented ensuring the existence and uniqueness of solution and the
asymptotic stability of trivial equilibrium at the same time.These conditions are easily checked and do not require the boundedness
and differentiability of delays.

1. Introduction

Cellular neural networks (CNNs), proposed by Chua and
Yang in 1988 [1, 2], have become a hot topic for their
numerous successful applications in various fields such as
optimization, linear and nonlinear programming, associative
memory, pattern recognition, and computer vision.

Due to the finite switching speed of neurons and ampli-
fiers in the implementation of neural networks, it turns out
that the time delays should not be neglected, and therefore,
themodel of delayed cellular neural networks (DCNNs) is put
forward, which is naturally of better realistic significances.
In fact, besides delay effects, stochastic and impulsive as
well as diffusing effects are also likely to exist in neural
networks. Accordingly many experts are showing a growing
interest in the research on the dynamic behaviors of complex
CNNs such as impulsive delayed reaction-diffusion CNNs
and stochastic delayed reaction-diffusion CNNs, with a result
of many achievements [3–9] obtained.

Synthesizing the reported results about complex CNNs,
we find that the existing research methods for dealing with
stability are mainly based on Lyapunov theory. However,
we also notice that there are still lots of difficulties in the
applications of corresponding results to specific problems;
correspondingly it is necessary to seek some new techniques
to overcome those difficulties.

Encouragingly, in recent few years, Burton and other
authors have applied the fixed point theory to investigate
the stability of deterministic systems and obtained some
more applicable results; for example, see the monograph
[10] and papers [11–22]. In addition, more recently, there
have been a few publications where the fixed point theory
is employed to deal with the stability of stochastic (delayed)
differential equations; see [23–29]. Particularly, in [24–26],
Luo used the fixed point theory to study the exponential
stability of mild solutions to stochastic partial differential
equations with bounded delays and with infinite delays. In
[27, 28], Sakthivel used the fixed point theory to investigate
the asymptotic stability in 𝑝th moment of mild solutions to
nonlinear impulsive stochastic partial differential equations
with bounded delays and with infinite delays. In [29], Luo
used the fixed point theory to study the exponential stability
of stochastic Volterra-Levin equations.

Naturally, for complex CNNs which have high appli-
cation values, we wonder if we can utilize the fixed point
theory to investigate their stability, not just the existence
and uniqueness of solution. With this motivation, in the
present paper, we aim to discuss the stability of impulsive
CNNs with infinite delays via the fixed point theory. It
is worth noting that our research skill is the contraction
mapping theory which is different from the usual method
of Lyapunov theory. We employ the fixed point theorem
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to prove the existence and uniqueness of solution and the
asymptotic stability of trivial equilibrium all at once. Some
new and concise algebraic criteria are provided, and these
conditions are easy to verify and, moreover, do not require
the boundedness and differentiability of delays.

2. Preliminaries

Let 𝑅𝑛 denote the 𝑛-dimensional Euclidean space and let ‖ ⋅ ‖
represent the Euclidean norm.N ≜ {1, 2, . . . , 𝑛}.𝑅

+
= [0,∞).

𝐶[𝑋, 𝑌] corresponds to the space of continuous mappings
from the topological space𝑋 to the topological space 𝑌.

In this paper, we consider the following impulsive cellular
neural network with infinite delays:

d𝑥
𝑖 (𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

(1)

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
)

= 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) , 𝑘 = 1, 2, . . . ,

(2)

where 𝑖 ∈ N and 𝑛 is the number of neurons in the neural
network. 𝑥

𝑖
(𝑡) corresponds to the state of the 𝑖th neuron at

time 𝑡. 𝑓
𝑗
(⋅), 𝑔
𝑗
(⋅) ∈ 𝐶[𝑅, 𝑅] denote the activation functions,

respectively. 𝜏
𝑗
(𝑡) ∈ 𝐶[𝑅

+
, 𝑅
+
] corresponds to the known

transmission delay satisfying 𝜏
𝑗
(𝑡) → ∞ and 𝑡 − 𝜏

𝑗
(𝑡) → ∞

as 𝑡 → ∞. Denote 𝜗 = inf{𝑡 − 𝜏
𝑗
(𝑡), 𝑡 ≥ 0, 𝑗 ∈ N}.

The constant 𝑏
𝑖𝑗
represents the connection weight of the 𝑗th

neuron on the 𝑖th neuron at time 𝑡. The constant 𝑐
𝑖𝑗
denotes

the connection strength of the 𝑗th neuron on the 𝑖th neuron
at time 𝑡 − 𝜏

𝑗
(𝑡). The constant 𝑎

𝑖
> 0 represents the rate with

which the ith neuronwill reset its potential to the resting state
when disconnected from the network and external inputs.
The fixed impulsive moments 𝑡

𝑘
(𝑘 = 1, 2, . . .) satisfy 0 = 𝑡

0
<

𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ and lim

𝑘→∞
𝑡
𝑘
= ∞. 𝑥

𝑖
(𝑡
𝑘
+ 0) and 𝑥

𝑖
(𝑡
𝑘
− 0)

stand for the right-hand and left-hand limits of 𝑥
𝑖
(𝑡) at time

𝑡
𝑘
, respectively. 𝐼

𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) shows the abrupt change of 𝑥

𝑖
(𝑡) at

the impulsive moment 𝑡
𝑘
and 𝐼
𝑖𝑘
(⋅) ∈ 𝐶[𝑅, 𝑅].

Throughout this paper, we always assume that 𝑓
𝑖
(0) =

𝑔
𝑖
(0) = 𝐼

𝑖𝑘
(0) = 0 for 𝑖 ∈ N and 𝑘 = 1, 2, . . .. Thereby,

problem (1) and (2) admits a trivial equilibrium x = 0.
Denote by x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) = (𝑥

1
(𝑡; 𝑠, 𝜑

1
), . . . ,

𝑥
𝑛
(𝑡; 𝑠, 𝜑

𝑛
))
𝑇
∈ 𝑅
𝑛 the solution to (1) and (2) with the initial

condition

𝑥
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) , 𝜗 ≤ 𝑠 ≤ 0, 𝑖 ∈N, (3)

where 𝜑(𝑠) = (𝜑
1
(𝑠), . . . , 𝜑

𝑛
(𝑠))
𝑇
∈ 𝑅
𝑛 and 𝜑

𝑖
(𝑠) ∈ 𝐶[[𝜗, 0],

𝑅]. Denote |𝜑| = sup
𝑠∈[𝜗,0]

‖𝜑(𝑠)‖.
The solution x(𝑡) ≜ x(𝑡; 𝑠, 𝜑) ∈ 𝑅𝑛 of (1)–(3) is, for

the time variable 𝑡, a piecewise continuous vector-valued
function with the first kind discontinuity at the points 𝑡

𝑘

(𝑘 = 1, 2, . . .), where it is left continuous; that is, the following
relations are valid:

𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
) ,

𝑥
𝑖
(𝑡
𝑘
+ 0) = 𝑥

𝑖
(𝑡
𝑘
) + 𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) ,

𝑖 ∈N, 𝑘 = 1, 2, . . . .

(4)

Definition 1. The trivial equilibrium x = 0 is said to be stable,
if, for any 𝜀 > 0, there exists 𝛿 > 0 such that for any initial
condition 𝜑(𝑠) ∈ 𝐶[[𝜗, 0], 𝑅𝑛] satisfying |𝜑| < 𝛿:

󵄩󵄩󵄩󵄩x (𝑡; 𝑠, 𝜑)
󵄩󵄩󵄩󵄩 < 𝜀, 𝑡 ≥ 0. (5)

Definition 2. The trivial equilibrium x = 0 is said to be
asymptotically stable if the trivial equilibrium x = 0 is
stable, and for any initial condition 𝜑(𝑠) ∈ 𝐶[[𝜗, 0], 𝑅𝑛],
lim
𝑡→∞

‖x(𝑡; 𝑠, 𝜑)‖ = 0 holds.

The consideration of this paper is based on the following
fixed point theorem.

Theorem 3 (see [30]). Let Υ be a contraction operator on a
complete metric spaceΘ, then there exists a unique point 𝜁 ∈ Θ
for which Υ(𝜁) = 𝜁.

3. Main Results

In this section, we will consider the existence and uniqueness
of solution and the asymptotic stability of trivial equilibrium
by means of the contraction mapping principle. Before
proceeding, we introduce some assumptions listed as follows.

(A1) There exist nonnegative constants 𝑙
𝑗
such that, for any

𝜂, 𝜐 ∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝜂) − 𝑓

𝑗
(𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑙
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈N. (6)

(A2) There exist nonnegative constants 𝑘
𝑗
such that, for any

𝜂, 𝜐 ∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝜂) − 𝑔

𝑗
(𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑘
𝑗

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈N. (7)

(A3) There exist nonnegative constants 𝑝
𝑗𝑘

such that, for
any 𝜂, 𝜐 ∈ 𝑅,

󵄨󵄨󵄨󵄨󵄨
𝐼
𝑗𝑘
(𝜂) − 𝐼

𝑗𝑘
(𝜐)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑝
𝑗𝑘

󵄨󵄨󵄨󵄨𝜂 − 𝜐
󵄨󵄨󵄨󵄨 , 𝑗 ∈N, 𝑘 = 1, 2, . . . . (8)

Let H = H
1
× ⋅ ⋅ ⋅ × H

𝑛
, and let H

𝑖
(𝑖 ∈ N) be the

space consisting of functions 𝜙
𝑖
(𝑡) : [𝜗,∞) → 𝑅, where 𝜙

𝑖
(𝑡)

satisfies the following:

(1) 𝜙
𝑖
(𝑡) is continuous on 𝑡 ̸= 𝑡

𝑘
(𝑘 = 1, 2, . . .);

(2) lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝜙
𝑖
(𝑡) exist; furthermore,

lim
𝑡→ 𝑡
−

𝑘

𝜙
𝑖
(𝑡) = 𝜙

𝑖
(𝑡
𝑘
) for 𝑘 = 1, 2, . . .;

(3) 𝜙
𝑖
(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [𝜗, 0];

(4) 𝜙
𝑖
(𝑡) → 0 as 𝑡 → ∞;
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here 𝑡
𝑘
(𝑘 = 1, 2, . . .) and 𝜑

𝑖
(𝑠) (𝑠 ∈ [𝜗, 0]) are defined as

shown in Section 2. AlsoH is a complete metric space when
it is equipped with the following metric:

𝑑 (q (𝑡) , h (𝑡)) =
𝑛

∑

𝑖=1

sup
𝑡≥𝜗

󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡) − ℎ𝑖 (𝑡)
󵄨󵄨󵄨󵄨 , (9)

where q(𝑡) = (𝑞
1
(𝑡), . . . , 𝑞

𝑛
(𝑡)) ∈ H and h(𝑡) = (ℎ

1
(𝑡), . . . ,

ℎ
𝑛
(𝑡)) ∈H.
In what follows, we will give the main result of this paper.

Theorem 4. Assume that conditions (A1)–(A3) hold. Provided
that

(i) there exists a constant 𝜇 such that inf
𝑘=1,2,...

{𝑡
𝑘
−𝑡
𝑘−1
} ≥

𝜇,

(ii) there exist constants 𝑝
𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
𝜇 for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,

(iii) 𝜆∗ ≜ ∑𝑛
𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏𝑖𝑗𝑙𝑗|+(1/𝑎𝑖)max

𝑗∈N|𝑐𝑖𝑗𝑘𝑗|}+

max
𝑖∈N{𝑝𝑖(𝜇 + (1/𝑎𝑖))} < 1,

(iv) max
𝑖∈N{𝜆𝑖} < 1/√𝑛, where 𝜆𝑖 = (1/𝑎𝑖) ∑

𝑛

𝑗=1
|𝑏
𝑖𝑗
𝑙
𝑗
| +

(1/𝑎
𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
| + 𝑝
𝑖
(𝜇 + (1/𝑎

𝑖
)),

then the trivial equilibrium x = 0 is asymptotically stable.

Proof. Multiplying both sides of (1) with 𝑒𝑎𝑖𝑡 gives, for 𝑡 > 0
and 𝑡 ̸= 𝑡

𝑘
,

d𝑒𝑎𝑖𝑡𝑥
𝑖 (𝑡) = 𝑒

𝑎
𝑖

𝑡d𝑥
𝑖 (𝑡) + 𝑎𝑖𝑥𝑖 (𝑡) 𝑒

𝑎
𝑖

𝑡d𝑡

= 𝑒
𝑎
𝑖

𝑡
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)))

}

}

}

d𝑡,

(10)

which yields after integrating from 𝑡
𝑘−1
+ 𝜀 (𝜀 > 0) to 𝑡 ∈

(𝑡
𝑘−1
, 𝑡
𝑘
) (𝑘 = 1, 2, . . .)

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡
= 𝑥
𝑖
(𝑡
𝑘−1
+ 𝜀) 𝑒
𝑎
𝑖

(𝑡
𝑘−1

+𝜀)

+ ∫

𝑡

𝑡
𝑘−1

+𝜀

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠.

(11)

Letting 𝜀 → 0 in (11), we have

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡
= 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠

×
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)))
}

}

}

d𝑠,

(12)

for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
) (𝑘 = 1, 2, . . .). Setting 𝑡 = 𝑡

𝑘
− 𝜀 (𝜀 > 0) in

(12), we get

𝑥
𝑖
(𝑡
𝑘
− 𝜀) 𝑒
𝑎
𝑖

(𝑡
𝑘

−𝜀)

= 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡
𝑘

−𝜀

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)))
}

}

}

d𝑠,

(13)

which generates by letting 𝜀 → 0

𝑥
𝑖
(𝑡
𝑘
− 0) 𝑒

𝑎
𝑖

𝑡
𝑘 = 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)))
}

}

}

d𝑠.

(14)

Noting 𝑥
𝑖
(𝑡
𝑘
− 0) = 𝑥

𝑖
(𝑡
𝑘
), (14) can be rearranged as

𝑥
𝑖
(𝑡
𝑘
) 𝑒
𝑎
𝑖

𝑡
𝑘 = 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡
𝑘

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠.

(15)
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Combining (12) and (15), we reach that

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡
= 𝑥
𝑖
(𝑡
𝑘−1
+ 0) 𝑒

𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

(16)

is true for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] (𝑘 = 1, 2, . . .). Further,

𝑥
𝑖
(𝑡) 𝑒
𝑎
𝑖

𝑡
= 𝑥
𝑖
(𝑡
𝑘−1
) 𝑒
𝑎
𝑖

𝑡
𝑘−1

+ ∫

𝑡

𝑡
𝑘−1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗 (𝑠)))
}

}

}

d𝑠

+ 𝐼
𝑖(𝑘−1)

(𝑥
𝑖
(𝑡
𝑘−1
)) 𝑒
𝑎
𝑖

𝑡
𝑘−1

(17)

holds for 𝑡 ∈ (𝑡
𝑘−1
, 𝑡
𝑘
] (𝑘 = 1, 2, ⋅ ⋅ ⋅). Hence,

𝑥
𝑖
(𝑡
𝑘−1
) 𝑒
𝑎
𝑖

𝑡
𝑘−1 = 𝑥

𝑖
(𝑡
𝑘−2
) 𝑒
𝑎
𝑖

𝑡
𝑘−2

+ ∫

𝑡
𝑘−1

𝑡
𝑘−2

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝐼
𝑖(𝑘−2)

(𝑥
𝑖
(𝑡
𝑘−2
)) 𝑒
𝑎
𝑖

𝑡
𝑘−2 ,

...

𝑥
𝑖
(𝑡
2
) 𝑒
𝑎
𝑖

𝑡
2 = 𝑥
𝑖
(𝑡
1
) 𝑒
𝑎
𝑖

𝑡
1

+ ∫

𝑡
2

𝑡
1

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝐼
𝑖1
(𝑥
𝑖
(𝑡
1
)) 𝑒
𝑎
𝑖

𝑡
1 ,

𝑥
𝑖
(𝑡
1
) 𝑒
𝑎
𝑖

𝑡
1 = 𝜑
𝑖
(0)

+ ∫

𝑡
1

0

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠,

(18)

which produces, for 𝑡 > 0,

𝑥
𝑖 (𝑡) = 𝜑𝑖 (0) 𝑒

−𝑎
𝑖

𝑡

+ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘} .

(19)

Note 𝑥
𝑖
(0) = 𝜑

𝑖
(0) in (19). We then define the following

operator 𝜋 acting onH, for y(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈H:

𝜋 (y) (𝑡) = (𝜋 (𝑦
1
) (𝑡) , . . . , 𝜋 (𝑦

𝑛
) (𝑡)) , (20)

where 𝜋(𝑦
𝑖
)(𝑡) : [𝜗,∞) → 𝑅 (𝑖 ∈ N) obeys the rules as

follows:

𝜋 (𝑦
𝑖
) (𝑡) = 𝜑

𝑖
(0) 𝑒
−𝑎
𝑖

𝑡

+ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠
{

{

{

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗 (𝑠))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))

}

}

}

d𝑠

+ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘} ,

(21)

on 𝑡 ≥ 0 and 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [𝜗, 0].

The subsequent part is the application of the contraction
mapping principle, which can be divided into two steps.

Step 1. We need to prove 𝜋(H) ⊂ H. Choosing 𝑦
𝑖
(𝑡) ∈ H

𝑖

(𝑖 ∈N), it is necessary to testify 𝜋(𝑦
𝑖
)(𝑡) ⊂H

𝑖
.

First, since 𝜋(𝑦
𝑖
)(𝑠) = 𝜑

𝑖
(𝑠) on 𝑠 ∈ [𝜗, 0] and 𝜑

𝑖
(𝑠) ∈

𝐶[[𝜗, 0], 𝑅], we know 𝜋(𝑦
𝑖
)(𝑠) is continuous on 𝑠 ∈ [𝜗, 0]. For

a fixed time 𝑡 > 0, it follows from (21) that

𝜋 (𝑦
𝑖
) (𝑡 + 𝑟) − 𝜋 (𝑦

𝑖
) (𝑡) = 𝑄

1
+ 𝑄
2
+ 𝑄
3
+ 𝑄
4
, (22)
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where

𝑄
1
= 𝜑
𝑖
(0) 𝑒
−𝑎
𝑖

(𝑡+𝑟)
− 𝜑
𝑖
(0) 𝑒

−𝑎
𝑖

𝑡
, (23)

𝑄
2
= 𝑒
−𝑎
𝑖

(𝑡+𝑟)
∫

𝑡+𝑟

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗 (𝑠)) d𝑠

− 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠)) d𝑠,

𝑄
3
= 𝑒
−𝑎
𝑖

(𝑡+𝑟)
∫

𝑡+𝑟

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))) d𝑠

− 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏

𝑗 (𝑠))) d𝑠,

𝑄
4
= 𝑒
−𝑎
𝑖

(𝑡+𝑟)
∑

0<𝑡
𝑘

<(𝑡+𝑟)

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘}

− 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑡

{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘} .

(24)

Owing to 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we see that 𝑦

𝑖
(𝑡) is continuous on

𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .); moreover, lim

𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝑦
𝑖
(𝑡)

exist, and lim
𝑡→ 𝑡
−

𝑘

𝑦
𝑖
(𝑡) = 𝑦

𝑖
(𝑡
𝑘
).

Consequently, when 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .) in (22), it is easy

to find that𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, . . . , 4, and so 𝜋(𝑦

𝑖
)(𝑡)

is continuous on the fixed time 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .).

On the other hand, as 𝑡 = 𝑡
𝑘
(𝑘 = 1, 2, . . .) in (22), it is

not difficult to find that 𝑄
𝑖
→ 0 as 𝑟 → 0 for 𝑖 = 1, 2, 3.

Furthermore, if letting 𝑟 < 0 be small enough, we derive

𝑄
4
= 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)
∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

− 𝑒
−𝑎
𝑖

𝑡
𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

= {𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)
− 𝑒
−𝑎
𝑖

𝑡
𝑘}

× ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚} ,

(25)

which implies lim
𝑟→0
−𝑄
4
= 0 as 𝑡 = 𝑡

𝑘
. While letting 𝑟 >

0 tend to zero gives

𝑄
4
= 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)
∑

0<𝑡
𝑚

<(𝑡
𝑘

+𝑟)

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

− 𝑒
−𝑎
𝑖

𝑡
𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚

= 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)
{ ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚}

+𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘}

− 𝑒
−𝑎
𝑖

𝑡
𝑘 ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚}

= {𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)
− 𝑒
−𝑎
𝑖

𝑡
𝑘}

× ∑

0<𝑡
𝑚

<𝑡
𝑘

{𝐼
𝑖𝑚
(𝑦
𝑖
(𝑡
𝑚
)) 𝑒
𝑎
𝑖

𝑡
𝑚}

+ 𝑒
−𝑎
𝑖

(𝑡
𝑘

+𝑟)
𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) 𝑒
𝑎
𝑖

𝑡
𝑘 ,

(26)

which yields lim
𝑟→0
+𝑄
4
= 𝑒
−𝑎
𝑖

𝑡
𝑘𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))𝑒
𝑎
𝑖

𝑡
𝑘 as 𝑡 = 𝑡

𝑘
.

According to the above discussion, we find that 𝜋(𝑦
𝑖
)(𝑡) :

[𝜗,∞) → 𝑅 is continuous on 𝑡 ̸= 𝑡
𝑘
(𝑘 = 1, 2, . . .); more-

over, lim
𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡) and lim

𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡) exist; in addition,

lim
𝑡→ 𝑡
−

𝑘

𝜋(𝑦
𝑖
)(𝑡) = 𝜋(𝑦

𝑖
)(𝑡
𝑘
) ̸= lim

𝑡→ 𝑡
+

𝑘

𝜋(𝑦
𝑖
)(𝑡).

Next, we will prove 𝜋(𝑦
𝑖
)(𝑡) → 0 as 𝑡 → ∞. For

convenience, denote

𝜋 (𝑦
𝑖
) (𝑡) = 𝐽

1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
, 𝑡 > 0, (27)

where 𝐽
1
= 𝜑
𝑖
(0)𝑒
−𝑎
𝑖

𝑡, 𝐽
2
= 𝑒
−𝑎
𝑖

𝑡
∫
𝑡

0
𝑒
𝑎
𝑖

𝑠
∑
𝑛

𝑗=1
𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑠))d𝑠,

𝐽
4
= 𝑒
−𝑎
𝑖

𝑡
∑
0<𝑡
𝑘

<𝑡
{𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))𝑒
𝑎
𝑖

𝑡
𝑘}, and 𝐽

3
= 𝑒
−𝑎
𝑖

𝑡
∫
𝑡

0
𝑒
𝑎
𝑖

𝑠

∑
𝑛

𝑗=1
𝑐
𝑖𝑗
𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑗
(𝑠)))d𝑠.

Due to 𝑦
𝑗
(𝑡) ∈ H

𝑗
(𝑗 ∈ N), we know lim

𝑡→∞
𝑦
𝑗
(𝑡) = 0.

Then for any 𝜀 > 0, there exists a 𝑇
𝑗
> 0 such that 𝑡 ≥ 𝑇

𝑗

implies |𝑦
𝑗
(𝑡) | < 𝜀. Choose 𝑇∗ = max

𝑗∈N{𝑇𝑗}. It is derived
from (A1) that, for 𝑡 ≥ 𝑇∗,

𝐽
2
≤ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
} d𝑠

= 𝑒
−𝑎
𝑖

𝑡
∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
} d𝑠

+ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

𝑇
∗

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤ 𝑒
−𝑎
𝑖

𝑡

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑇

∗

]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
}{∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠d𝑠}

+ 𝜀

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
} 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

𝑇
∗

𝑒
𝑎
𝑖

𝑠d𝑠
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≤ 𝑒
−𝑎
𝑖

𝑡

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑇

∗

]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
}

× {∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠d𝑠} + 𝜀
𝑎
𝑖

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
} .

(28)

Moreover, as lim
𝑡→∞

𝑒
−𝑎
𝑖

𝑡
= 0, we can find a 𝑇 > 0 for the

given 𝜀 such that 𝑡 ≥ 𝑇 implies 𝑒−𝑎𝑖𝑡 < 𝜀, which leads to

𝐽
2
≤ 𝜀
{

{

{

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[0,𝑇

∗

]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
}

×{∫

𝑇
∗

0

𝑒
𝑎
𝑖

𝑠
𝑑𝑠} +

1

𝑎
𝑖

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
}
}

}

}

,

𝑡 ≥ max {𝑇∗, 𝑇} ;

(29)

namely,

𝐽
2
󳨀→ 0 as 𝑡 󳨀→ ∞. (30)

On the other hand, since 𝑡 − 𝜏
𝑗
(𝑡) → ∞ as 𝑡 → ∞, we

get lim
𝑡→∞

𝑦
𝑗
(𝑡 − 𝜏
𝑗
(𝑡)) = 0. Then for any 𝜀 > 0, there also

exists a 𝑇󸀠
𝑗
> 0 such that 𝑠 ≥ 𝑇󸀠

𝑗
implies |𝑦

𝑗
(𝑠 − 𝜏

𝑗
(𝑠))| < 𝜀.

Select 𝑇 = max
𝑗∈N{𝑇

󸀠

𝑗
}. It follows from (A2) that

𝐽
3
≤ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))
󵄨󵄨󵄨󵄨󵄨
} d𝑠

= 𝑒
−𝑎
𝑖

𝑡
∫

𝑇

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))
󵄨󵄨󵄨󵄨󵄨
} d𝑠

+ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

𝑇

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑗 (𝑠))
󵄨󵄨󵄨󵄨󵄨
} d𝑠

≤

𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[𝜗,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

}

}

}

𝑒
−𝑎
𝑖

𝑡
∫

𝑇

0

𝑒
𝑎
𝑖

𝑠d𝑠

+ 𝜀

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
} 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

𝑇

𝑒
𝑎
𝑖

𝑠d𝑠

≤ 𝑒
−𝑎
𝑖

𝑡

𝑛

∑

𝑗=1

{

{

{

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
sup
𝑠∈[𝜗,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨

}

}

}

∫

𝑇

0

𝑒
𝑎
𝑖

𝑠d𝑠

+
𝜀

𝑎
𝑖

𝑛

∑

𝑗=1

{
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
} ,

(31)

which results in

𝐽
3
󳨀→ 0 as 𝑡 󳨀→ ∞. (32)

Furthermore, from (A3), we know that |𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
))| ≤

𝑝
𝑖𝑘
|𝑦
𝑖
(𝑡
𝑘
)|. So

𝐽
4
≤ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘} . (33)

As 𝑦
𝑖
(𝑡) ∈ H

𝑖
, we have lim

𝑡→∞
𝑦
𝑖
(𝑡) = 0. Then for any

𝜀 > 0, there exists a nonimpulsive point 𝑇
𝑖
> 0 such that

𝑠 ≥ 𝑇
𝑖
implies |𝑦

𝑖
(𝑠)| < 𝜀. It then follows from conditions (i)

and (ii) that

𝐽
4
≤ 𝑒
−𝑎
𝑖

𝑡
{

{

{

∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘}

+ ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘}
}

}

}

≤ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘}

+ 𝑒
−𝑎
𝑖

𝑡
𝑝
𝑖
𝜀 ∑

𝑇
𝑖

<𝑡
𝑘

<𝑡

{𝜇𝑒
𝑎
𝑖

𝑡
𝑘}

≤ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘}

+ 𝑒
−𝑎
𝑖

𝑡
𝑝
𝑖
𝜀
{

{

{

∑

𝑇
𝑖

<𝑡
𝑟

<𝑡
𝑘

{𝑒
𝑎
𝑖

𝑡
𝑟 (𝑡
𝑟+1
− 𝑡
𝑟
)}

+𝜇𝑒
𝑎
𝑖

𝑡
𝑘

}

}

}

≤ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘}

+ 𝑒
−𝑎
𝑖

𝑡
𝑝
𝑖
𝜀 (∫

𝑡

𝑇
𝑖

𝑒
𝑎
𝑖

𝑠d𝑠 + 𝜇𝑒𝑎𝑖𝑡)

≤ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑇
𝑖

{𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘}

+
𝜀𝑝
𝑖

𝑎
𝑖

+ 𝑝
𝑖
𝜀𝜇,

(34)

which produces

𝐽
4
󳨀→ 0 as 𝑡 󳨀→ ∞. (35)

From (30), (32), and (35), we deduce 𝜋(𝑦
𝑖
)(𝑡) → 0 as

𝑡 → ∞ for 𝑖 ∈N. We therefore conclude that 𝜋(𝑦
𝑖
)(𝑡) ⊂H

𝑖

(𝑖 ∈N) which means 𝜋(H) ⊂H.

Step 2. We need to prove 𝜋 is contractive. For y =

(𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡)) ∈ H and 𝑧 = (𝑧

1
(𝑡), . . . , 𝑧

𝑛
(𝑡)) ∈ H, we

estimate
󵄨󵄨󵄨󵄨𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝐼1 + 𝐼2 + 𝐼3, (36)
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where 𝐼
1
= 𝑒
−𝑎
𝑖

𝑡
∫
𝑡

0
𝑒
𝑎
𝑖

𝑠
∑
𝑛

𝑗=1
[|𝑏
𝑖𝑗
||𝑓
𝑗
(𝑦
𝑗
(𝑠)) − 𝑓

𝑗
(𝑧
𝑗
(𝑠))|]

d𝑠, 𝐼
3
= 𝑒
−𝑎
𝑖

𝑡
∑
0<𝑡
𝑘

<𝑡
{𝑒
𝑎
𝑖

𝑡
𝑘 |𝐼
𝑖𝑘
(𝑦
𝑖
(𝑡
𝑘
)) − 𝐼
𝑖𝑘
(𝑧
𝑖
(𝑡
𝑘
))|}, and 𝐼

2
=

𝑒
−𝑎
𝑖

𝑡
∫
𝑡

0
𝑒
𝑎
𝑖

𝑠
∑
𝑛

𝑗=1
[|𝑐
𝑖𝑗
| |𝑔
𝑗
(𝑦
𝑗
(𝑠 − 𝜏
𝑗
(𝑠))) − 𝑔

𝑗
(𝑧
𝑗
(𝑠 − 𝜏
𝑗
(𝑠)))|]d𝑠.

Note

𝐼
1
≤ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
] d𝑠

≤ max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
} 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠) − 𝑧𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} ,

𝐼
2
≤ 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠

×

𝑛

∑

𝑗=1

[
󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))

−𝑧
𝑗
(𝑠 − 𝜏

𝑗
(𝑠))
󵄨󵄨󵄨󵄨󵄨
] d𝑠

≤ max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
} 𝑒
−𝑎
𝑖

𝑡
∫

𝑡

0

𝑒
𝑎
𝑖

𝑠d𝑠

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
} ,

𝐼
3
≤ 𝑒
−𝑎
𝑖

𝑡
∑

0<𝑡
𝑘

<𝑡

{𝑒
𝑎
𝑖

𝑡
𝑘𝑝
𝑖𝑘

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑡𝑘) − 𝑧𝑖 (𝑡𝑘)
󵄨󵄨󵄨󵄨}

≤ 𝑝
𝑖
𝑒
−𝑎
𝑖

𝑡 sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
󵄨󵄨󵄨󵄨 ∑

0<𝑡
𝑘

<𝑡

{𝑒
𝑎
𝑖

𝑡
𝑘𝜇}

≤ 𝑝
𝑖
𝑒
−𝑎
𝑖

𝑡 sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
󵄨󵄨󵄨󵄨

× { ∑

0<𝑡
𝑟

<𝑡
𝑘

{𝑒
𝑎
𝑖

𝑡
𝑟 (𝑡
𝑟+1
− 𝑡
𝑟
)} + 𝑒

𝑎
𝑖

𝑡
𝑘𝜇}

≤ 𝑝
𝑖
sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
󵄨󵄨󵄨󵄨 𝑒
−𝑎
𝑖

𝑡

× {∫

𝑡

0

𝑒
𝑎
𝑖

𝑠d𝑠 + 𝑒𝑎𝑖𝑡𝜇}

≤ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
󵄨󵄨󵄨󵄨 .

(37)

It hence follows from (37) that

󵄨󵄨󵄨󵄨𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)
󵄨󵄨󵄨󵄨

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

×

𝑛

∑

𝑗=1

{ sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
}

+
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠) − 𝑧𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
}

+ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[0,𝑡]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
󵄨󵄨󵄨󵄨 ,

(38)

which implies

sup
𝑡∈[𝜗,𝑇]

󵄨󵄨󵄨󵄨𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)
󵄨󵄨󵄨󵄨

≤
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠) − 𝑧𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
}

+
1

𝑎
𝑖

max
𝑗∈N

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗
(𝑠) − 𝑧

𝑗
(𝑠)
󵄨󵄨󵄨󵄨󵄨
}

+ 𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) sup
𝑠∈[𝜗,𝑇]

󵄨󵄨󵄨󵄨𝑦𝑖 (𝑠) − 𝑧𝑖 (𝑠)
󵄨󵄨󵄨󵄨 .

(39)

Therefore,

𝑛

∑

𝑖=1

sup
𝑡∈[−𝜏,𝑇]

󵄨󵄨󵄨󵄨𝜋 (𝑦𝑖) (𝑡) − 𝜋 (𝑧𝑖) (𝑡)
󵄨󵄨󵄨󵄨

≤ 𝜆
∗

𝑛

∑

𝑗=1

{ sup
𝑠∈[𝜗,𝑇]

󵄨󵄨󵄨󵄨󵄨
𝑦
𝑗 (𝑠) − 𝑧𝑗 (𝑠)

󵄨󵄨󵄨󵄨󵄨
} .

(40)

In view of condition (iii), we see 𝜋 is a contraction
mapping, and, thus there exists a unique fixed point y∗(⋅) of
𝜋 inH which means the transposition of y∗(⋅) is the vector-
valued solution to (1)–(3) and its norm tends to zero as 𝑡 →
∞.

To obtain the asymptotic stability, we still need to prove
that the trivial equilibrium x = 0 is stable. For any 𝜀 > 0,
from condition (iv), we can find 𝛿 satisfying 0 < 𝛿 < 𝜀 such
that 𝛿 +max

𝑖∈N{𝜆𝑖}𝜀 ≤ 𝜀/√𝑛. Let |𝜑| < 𝛿. According to what
has been discussed above, we know that there exists a unique
solution x(𝑡; 𝑠, 𝜑) = (𝑥

1
(𝑡; 𝑠, 𝜑

1
), . . . , 𝑥

𝑛
(𝑡; 𝑠, 𝜑

𝑛
))
𝑇 to (1)–(3);

moreover,

𝑥
𝑖
(𝑡) = 𝜋 (𝑥

𝑖
) (𝑡) = 𝐽

1
+ 𝐽
2
+ 𝐽
3
+ 𝐽
4
, 𝑡 ≥ 0; (41)

here 𝐽
1
= 𝜑
𝑖
(0)𝑒
−𝑎
𝑖

𝑡, 𝐽
2
= 𝑒
−𝑎
𝑖

𝑡
∫
𝑡

0
𝑒
𝑎
𝑖

𝑠
∑
𝑛

𝑗=1
𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑠))d𝑠,

𝐽
3
= 𝑒
−𝑎
𝑖

𝑡
∫
𝑡

0
𝑒
𝑎
𝑖

𝑠
∑
𝑛

𝑗=1
𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑠 − 𝜏

𝑗
(𝑠)))d𝑠, and 𝐽

4
= 𝑒
−𝑎
𝑖

𝑡

∑
0<𝑡
𝑘

<𝑡
{𝐼
𝑖𝑘
(𝑥
𝑖
(𝑡
𝑘
))𝑒
𝑎
𝑖

𝑡
𝑘}.

Suppose there exists 𝑡∗ > 0 such that ‖x(𝑡∗; 𝑠, 𝜑)‖ = 𝜀 and
‖x(𝑡; 𝑠, 𝜑)‖ < 𝜀 as 0 ≤ 𝑡 < 𝑡∗. It follows from (41) that

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡
∗
)
󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨𝐽1 (𝑡
∗
)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐽2 (𝑡
∗
)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐽3 (𝑡
∗
)
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐽4 (𝑡

∗
)
󵄨󵄨󵄨󵄨 . (42)
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As

󵄨󵄨󵄨󵄨𝐽1 (𝑡
∗
)
󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨
𝜑
𝑖
(0) 𝑒
−𝑎
𝑖

𝑡
∗ 󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝛿,

󵄨󵄨󵄨󵄨𝐽2 (𝑡
∗
)
󵄨󵄨󵄨󵄨 ≤ 𝑒
−𝑎
𝑖

𝑡
∗

∫

𝑡
∗

0

𝑒
𝑎
𝑖

𝑠

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗
𝑥
𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
d𝑠

<
𝜀

𝑎
𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑖𝑗
𝑙
𝑗

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨𝐽3 (𝑡
∗
)
󵄨󵄨󵄨󵄨 ≤ 𝑒
−𝑎
𝑖

𝑡
∗

∫

𝑡
∗

0

𝑒
𝑎
𝑖

𝑠

×

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗
𝑥
𝑗
(𝑠 − 𝜏

𝑗 (𝑠))
󵄨󵄨󵄨󵄨󵄨
d𝑠

<
𝜀

𝑎
𝑖

𝑛

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨𝐽4 (𝑡
∗
)
󵄨󵄨󵄨󵄨 ≤ 𝑝𝑖𝑒

−𝑎
𝑖

𝑡
∗

∑

0<𝑡
𝑘

<𝑡
∗

{𝜇
󵄨󵄨󵄨󵄨𝑥𝑖 (𝑡𝑘)

󵄨󵄨󵄨󵄨 𝑒
𝑎
𝑖

𝑡
𝑘}

< 𝜀𝑝
𝑖
𝑒
−𝑎
𝑖

𝑡
∗

{∫

𝑡
∗

0

𝑒
𝑎
𝑖

𝑠
𝑑𝑠 + 𝜇𝑒

𝑎
𝑖

𝑡
∗

}

≤ 𝜀𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

) ,

(43)

we obtain |𝑥
𝑖
(𝑡
∗
)| < 𝛿 + 𝜆

𝑖
𝜀.

So ‖x(𝑡∗; 𝑠, 𝜑)‖2 = ∑𝑛
𝑖=1
{|𝑥
𝑖
(𝑡
∗
)|
2
} < ∑

𝑛

𝑖=1
{|𝛿 + 𝜆

𝑖
𝜀|
2
} ≤

𝑛|𝛿 +max
𝑖∈N{𝜆𝑖}𝜀|

2
≤ 𝜀
2. This contradicts the assumption of

‖x(𝑡∗; 𝑠, 𝜑)‖ = 𝜀. Therefore, ‖x(𝑡; 𝑠, 𝜑)‖ < 𝜀 holds for all 𝑡 ≥ 0.
This completes the proof.

Corollary 5. Assume that conditions (A1)–(A3) hold. Pro-
vided that

(i) inf
𝑘=1,2,...

{𝑡
𝑘
− 𝑡
𝑘−1
} ≥ 1,

(ii) there exist constants 𝑝
𝑖
such that 𝑝

𝑖𝑘
≤ 𝑝
𝑖
for 𝑖 ∈ N

and 𝑘 = 1, 2, . . .,
(iii) ∑𝑛

𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏𝑖𝑗𝑙𝑗| + (1/𝑎𝑖)max

𝑗∈N|𝑐𝑖𝑗𝑘𝑗|} +

max
𝑖∈N{𝑝𝑖(1 + (1/𝑎𝑖))} < 1,

(iv) max
𝑖∈N{𝜆
󸀠

𝑖
} < 1/√𝑛, where 𝜆󸀠

𝑖
= (1/𝑎

𝑖
) ∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
𝑙
𝑗
| +

(1/𝑎
𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
| + 𝑝
𝑖
(1 + (1/𝑎

𝑖
)),

then the trivial equilibrium x = 0 is asymptotically stable.

Proof. Corollary 5 is a direct conclusion by letting 𝜇 = 1 in
Theorem 4.

Remark 6. In Theorem 4, we can see it is the fixed point
theory that deals with the existence and uniqueness of
solution and the asymptotic analysis of trivial equilibrium at
the same time, while Lyapunov method fails to do this.

Remark 7. The presented sufficient conditions in Theorems
4 and Corollary 5 do not require even the boundedness and

differentiability of delays, let alone the monotone decreasing
behavior of delays which is necessary in some relevant works.

Provided that 𝐼
𝑖𝑘
(⋅) ≡ 0, (1) and (2) will become the

following cellular neural network with infinite delays and
without impulsive effects:

d𝑥
𝑖 (𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
(𝑡))) ,

𝑖 ∈N, 𝑡 ≥ 0,

(44)

where 𝑎
𝑖
, 𝑏
𝑖𝑗
, 𝑐
𝑖𝑗
, 𝑓
𝑗
(⋅), 𝑔
𝑗
(⋅), 𝜏
𝑗
(𝑡), and 𝑥

𝑖
(𝑡) are the same as

defined in Section 2. Obviously, (44) also admits a trivial
equilibrium x = 0. FromTheorem 4, we reach the following.

Theorem 8. Assume that conditions (A1)-(A2) hold. Provided
that

(i) ∑𝑛
𝑖=1
{(1/𝑎
𝑖
)max
𝑗∈N|𝑏𝑖𝑗𝑙𝑗| + (1/𝑎𝑖)max

𝑗∈N|𝑐𝑖𝑗𝑘𝑗|} < 1,

(ii) max
𝑖∈N{𝜆
󸀠󸀠

𝑖
} < 1/√𝑛, where 𝜆󸀠󸀠

𝑖
= (1/𝑎

𝑖
) ∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
𝑙
𝑗
| +

(1/𝑎
𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
|,

then the trivial equilibrium x = 0 is asymptotically stable.

4. Example

Consider the following two-dimensional impulsive cellular
neural network with infinite delays:

d𝑥
𝑖
(𝑡)

d𝑡
= − 𝑎

𝑖
𝑥
𝑖
(𝑡) +

2

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑐
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗 (𝑡))) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝑥
𝑖
(𝑡
𝑘
+ 0) − 𝑥

𝑖
(𝑡
𝑘
)

= arctan (0.4𝑥
𝑖
(𝑡
𝑘
)) , 𝑘 = 1, 2, . . . ,

(45)

with the initial conditions 𝑥
1
(𝑠) = cos(𝑠), 𝑥

2
(𝑠) = sin(𝑠) on

−1 ≤ 𝑠 ≤ 0, where 𝜏
𝑗
(𝑡) = 0.4𝑡 + 1, 𝑎

1
= 𝑎
2
= 7, 𝑏

𝑖𝑗
= 0,

𝑐
11
= 3/7, 𝑐

12
= 2/7, 𝑐

21
= 0, 𝑐

22
= 1/7, 𝑓

𝑗
(𝑠) = 𝑔

𝑗
(𝑠) =

(|𝑠 + 1| − |𝑠 − 1|)/2, and 𝑡
𝑘
= 𝑡
𝑘−1
+ 0.5𝑘.

It is easy to see that 𝜇 = 0.5, 𝑙
𝑗
= 𝑘
𝑗
= 1, and 𝑝

𝑖𝑘
= 0.4. Let

𝑝
𝑖
= 0.8 and compute

2

∑

𝑖=1

{
1

𝑎
𝑖

max
𝑗=1,2

󵄨󵄨󵄨󵄨󵄨
𝑐
𝑖𝑗
𝑘
𝑗

󵄨󵄨󵄨󵄨󵄨
} +max
𝑖=1,2

{𝑝
𝑖
(𝜇 +

1

𝑎
𝑖

)} < 1,

max
𝑖∈N
{𝜆
𝑖
} <

1

√2
,

(46)
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where𝜆
𝑖
= (1/𝑎

𝑖
) ∑
𝑛

𝑗=1
|𝑐
𝑖𝑗
𝑘
𝑗
|+𝑝
𝑖
(𝜇+(1/𝑎

𝑖
)). FromTheorem 4,

we conclude that the trivial equilibrium x = 0 of this two-
dimensional impulsive cellular neural network with infinite
delays is asymptotically stable.

5. Conclusions

This work is devoted to seeking new methods to investigate
the stability of complex neural networks. From what has
been discussed above, we find that the fixed point theory is
feasible. With regard to a class of impulsive cellular neural
networks with infinite delays, we utilize the contraction
mapping principle to deal with the existence and uniqueness
of solution and the asymptotic analysis of trivial equilibrium
at the same time, for which Lyapunov method feels helpless.
Now that there are different kinds of fixed point theorems and
complex neural networks, our future work is to continue the
study on the application of fixed point theory to the stability
analysis of complex neural networks.
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