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Dynamical aspects of initial/boundary value problems for
ordinary differential equations have become a rapidly grow-
ing area of research in the theory of differential equations and
dynamical systems and have gathered substantial research
interests during the last decades. The attractiveness of this
field not only is derived from theoretical interests but also is
motivated by the insights that such dynamical aspects could
reveal in several phenomena observed in applied sciences.

The current special issue places its emphasis on the study
of the dynamical aspects of initial/boundary value problems
for ordinary differential equations. Call for papers has been
carefully prepared by the guest editors and posted on the
journals web page, which has attracted many researchers to
submit their contribution on wide topics such as oscillation
theory, delay differential equation, impulsive differential
equation, multipoint boundary value problems, stochastic
mutualism system, chaotic system, homoclinic solutions,
Hamiltonian systems, stability and bifurcation, exponential
extinction, singular elliptic problem, nonuniform exponen-
tial contraction and dichotomy.

All manuscripts submitted to this special issue went
through a thorough peer-refereeing process. Based on the
reviewers’ reports, we collect twenty-five original research
articles by more than fifty active international researchers in
differential equations and from different countries such as
Korea, China, Malaysia, Singapore, Czech Republic, Turkey,
Slovenia, India, and USA. Besides, one survey on recent

results for the existence of singular periodic problems is also
contained.

It is certainly impossible to provide in this short editorial
note a more comprehensive description for all articles in this
special issue. However, the team of the guest editors believes
that the results included reflect some recent trends in research
and outline new ideas for future studies of dynamical aspects
of initial/boundary value problems for ordinary differential
equations.

Acknowledgment

We would like to express our gratitude to the authors who
have submitted papers for consideration. Thanks also are
given to the many reviewers whose reports are important
for us to make the decisions. All the participants have made
it possible to have a very stimulating interchange of ideas.
We would also like to thank the editorial board members
of this journal, for their support and help throughout the
preparation of this special issue.

Jifeng Chu
Juntao Sun

Patricia J. Y. Wong
Yonghui Xia



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 382592, 11 pages
http://dx.doi.org/10.1155/2013/382592

Research Article
Poincaré Map and Periodic Solutions of First-Order Impulsive
Differential Equations on Moebius Stripe

Yefeng He and Yepeng Xing

Department of Mathematics, Shanghai Normal University, Shanghai 200234, China

Correspondence should be addressed to Yepeng Xing; ypxing-jason@hotmail.com

Received 12 December 2012; Accepted 1 January 2013

Academic Editor: Yonghui Xia

Copyright © 2013 Y. He and Y. Xing. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper is mainly concerned with the existence, stability, and bifurcations of periodic solutions of a certain scalar impulsive
differential equations on Moebius stripe. Some sufficient conditions are obtained to ensure the existence and stability of one-
side periodic orbit and two-side periodic orbit of impulsive differential equations on Moebius stripe by employing displacement
functions. Furthermore, double-periodic bifurcation is also studied by using Poincaré map.

1. Introduction

Many systems in physics, chemistry, biology, and information
science have impulsive dynamical behavior due to abrupt
jumps at certain instants during the evolving processes. This
complex dynamical behavior can be modeled by impulsive
differential equations. The theory of impulsive differential
systems has been developed by numerous mathematicians
(see [1–9]). As to the stability theory and boundary value
problems to impulsive differential equations,There have been
extensive studies in this area. However, there are very few
works on the qualitative theory of impulsive differential
equations and impulsive semidynamical systems. Recently,
Bonotto and Federson have given a version of the Poincaré-
Bendixson Theorem for impulsive semidynamical systems
in [10, 11]. As it is known, the method of Poincaré map
plays an important role in the research of qualitative theory
and is a natural means to study the existence of periodic
solutions and its asymptotic stability. However, due to the
complexity of the associated impulsive dynamic models, this
approach has only been applied successfully to Raibert’s
one-legged-hopper (see [12–14]) predator-prey models (see
[15–18]), and so forth. The bifurcation theory for ordinary
differential equations or smooth systems appeared during the
last decades (see, e.g., [19]); however, little is known about
the bifurcation theory of impulsive differential equations due
to its complexity (see [20]). In this paper, we mainly study

a certain scalar impulsive differential equations on Moebius
stripe undergoing impulsive effects at fixed time:

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= 𝐼𝑘 (𝑥) , 𝑘 ∈ Z

+
,

(1)

where 0 ≤ 𝜏𝑘 < 𝜏𝑘+1, 𝑘 ∈ Z+ are fixed with 𝜏𝑘 → +∞

as, 𝑘 → +∞, and Δ𝑥|𝑡=𝜏𝑘
= 𝑥(𝜏

+

𝑘
) − 𝑥(𝜏𝑘). Hu and Han

(see [20]) investigated the existence of periodic solutions and
bifurcations of (1) under the assumptions that 𝑓(𝑡, 𝑥) and
𝐼𝑘(𝑥) are periodic; that is, the following assumption holds.

(H∗) There exist a constant 𝑇 > 0, a positive integer 𝑞,
and two mutual coprime positive integers𝑚 and 𝑛 such that

𝑓 (𝑡 + 𝑇, 𝑥) = 𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ R
+
, 𝑥 ∈ R,

𝐼𝑘+𝑞 (𝑥) = 𝐼𝑘 (𝑥) , 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, ∀𝑘 ∈ Z
+
, 𝑥 ∈ R,

𝑚 (𝑡𝑘+𝑞 − 𝑡𝑘) = 𝑛𝑇, 𝑘 ≥ 1.

(2)

In this paper, we assume that the following conditions hold.
(H1) Assume that both𝑓(𝑡, 𝑥) and𝑓𝑥(𝑡, 𝑥) are continuous

scalar functions on R × R, 𝐼𝑘(𝑥) : R → R, 𝑘 ∈ Z are odd,
continuous functions; that is, 𝐼𝑘(−𝑥) = −𝐼𝑘(𝑥), 𝑘 ∈ Z+.
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(H2) There exists a constant 𝑇 > 0, a positive integer 𝑞

such that

𝑓 (𝑡 + 𝑇, −𝑥) = −𝑓 (𝑡, 𝑥) , ∀𝑡 ∈ R, 𝑥 ∈ R,

𝐼𝑘+𝑞 (𝑥) = 𝐼𝑘 (𝑥) , 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, ∀𝑘 ∈ Z
+
, 𝑥 ∈ R.

(3)

From (H2), we have 𝑓(𝑡, 𝑥) is 2𝑇 periodic and 𝜏𝑘+𝑞 −𝜏𝑘 = 2𝑇.
Hence assumption (H∗) holds naturally. However, we show
some new and fruitful results of system (1) with the condition
(H1)-(H2). For example, we obtain the existence and stability
of 2𝑇 periodic solutions to system (1) by double-periodic
bifurcation.
This paper is organized as follows. In Section 2, for the sake
of self-containedness of the paper, we present some basic
definitions of impulsive differential equations. In Section 3,
we describe the scalar impulsive differential equations on
Moebius stripe and define the Poincaré map. Then we prove
several essential lemmas and give sufficient conditions to
ensure the existence and stability of one-side and two-side
orbits of impulsive differential equation on Moebius stripe.
In Section 4, we are mainly concerned with the double-
periodic bifurcation impulsive differential equations onMoe-
bius stripe.

2. Preliminaries

For the sake of self-containedness of the paper, we present
the basic definitions and notations of the theory of impul-
sive differential equations we need (see [1, 2, 8]). We also
include some fundamental results which are necessary for
understanding the theory.

LetR,Z, andZ+ be the sets of real numbers, integers, and
positive integers, respectively. Denote by 𝜃 = {𝜃𝑖} a strictly
increasing sequence of real numbers such that the set A of
indexes 𝑖 is an interval in Z.

Definition 1. A function 𝜙 : R → R𝑛, 𝑛 ∈ R, is from the set
𝑃𝐶(R, 𝜃) if

(i) it is left continuous;
(ii) it is continuous, except, possibly, points of 𝜃, where it

has discontinuities of the first kind.

The last definition means that if 𝜙(𝑡) ∈ 𝑃𝐶(R, 𝜃), then the
right limit 𝜙(𝜃𝑖+) = lim𝑡→𝜃+

𝑖

𝜙(𝑡) exists and 𝜙(𝜃𝑖(−)) = 𝜙(𝜃𝑖),
where 𝜙(𝜃𝑖−) = lim𝑡→𝜃−

𝑖

𝜙(𝑡), for each 𝜃𝑖 ∈ 𝜃.

Definition 2. A function 𝜙 : R → R𝑛 is from the set
𝑃𝐶
1
(R, 𝜃) if 𝜙(𝑡), 𝜙(𝑡) ∈ 𝑃𝐶(R, 𝜃), where the derivative at

points of 𝜃 is assumed to be the left derivative.
In what follows, in this section, 𝐽 ∈ R is an interval in R.

For simplicity of notation, 𝜃 is not necessary a subset of 𝐽.

Definition 3. The solution 𝜙(𝑡) is stable if to any 𝜀 > 0 and
𝑡0 ∈ 𝐽 there corresponds 𝛿(𝑡0, 𝜀) > 0 such that for any other
solution 𝜓(𝑡) of (1) with ‖𝜙(𝑡0) − 𝜓(𝑡0)‖ < 𝛿(𝑡0, 𝜀) we have
‖𝜙(𝑡) − 𝜓(𝑡)‖ < 𝜀 for 𝑡 ≥ 𝑡0; the solution 𝜙(𝑡) is uniformly
stable, if 𝛿(𝑡0, 𝜀) can be chosen independently of 𝑡0.

→𝑛

Figure 1: Moebius stripe.

Definition 4. The solution 𝜙(𝑡) is asymptotically stable if it is
stable in the sense of Definition 3 and there exists a positive
number 𝜅(𝑡0) such that if 𝜓(𝑡) is any other solution of (1)
with ‖𝜙(𝑡0) − 𝜓(𝑡0)‖ < 𝜅(𝑡0), then ‖𝜙(𝑡) − 𝜓(𝑡)‖ → 0 as
𝑡 → ∞; if 𝜅(𝑡0) can be chosen to be independent of 𝑡0
and 𝜙(𝑡) is uniformly stable, then 𝜙(𝑡) is said to be uniformly
asymptotically stable.

Definition 5. The solution 𝜙(𝑡) is unstable if there exist
numbers 𝜀0 > 0 and 𝑡0 ∈ 𝐽 such that for any 𝛿 > 0 there
exists a solution 𝑦𝛿(𝑡), ‖𝜙(𝑡0) − 𝑦𝛿(𝑡0)‖ < 𝛿, of (1) such that
either it is not continuable to ∞ or there exists a moment 𝑡1,
𝑡1 > 𝑡0 such that ‖𝜙(𝑡1) − 𝑦𝛿(𝑡1)‖ ≥ 𝛿.

For any 𝑡0 ∈ R, we assume that there exists a 𝑘 ∈ Z+,
such that 𝜏𝑘−1 < 𝑡0 ≤ 𝜏𝑘; then the initial value problem (IVP)
to first-order impulsive differential equations (1) is given as

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= 𝐼𝑘 (𝑥) , 𝑘 ∈ Z

+,

𝑥 (𝑡
+

0
) = 𝑥0.

(4)

In what followed, we use 𝑥(𝑡, 𝑡0, 𝑥0) to denote the solution of
IVP (4).

In [20], Hu and Han investigated system (1) under the
assumption (H∗) and obtained the following stability results
for the periodic solutions.

Theorem 6 (see [20]). Let 𝑥(𝑡, 𝑡0, 𝑥∗0 ) be a periodic solution
of system (1) with period T. If 0 < |𝑃


(𝑥
∗

0
)| < 1 (>1), then it

is uniformly asymptotically stable (unstable), where 𝑃(𝑥0) =

𝑥(𝑡0 + 𝑛𝑇
+
, 𝑡0, 𝑥0) is the Poincaré map of system (1).

3. Poincaré Map and Periodic Solutions

In this section, we describe the scalar impulsive differential
equations on Moebius stripe and define the Poincaré map.
Then we prove several essential lemmas and give sufficient
conditions to ensure the existence and stability of one-
side and two-side orbits (Figure 2) of impulsive differential
equation on Moebius stripe.
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Lemma 7. Assume that conditions (H1), (H2) hold. Suppose
that 𝑥(𝑡, 𝑡0, 𝑥0) is a solution of (1) satisfying initial value
𝑥(𝑡
+

0
) = 𝑥0. Then −𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0) is also a solution of (1), and

−𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0) = 𝑥 (𝑡, 𝑡0, −𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥0)) , 𝑡 ∈ R.

(5)

Proof. Let 𝜑(𝑡) ≡ −𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0), 𝜓(𝑡) ≡ 𝑥(𝑡, 𝑡0, −𝑥(𝑡0 +

𝑇, 𝑡0, 𝑥0)). Then for 𝑡 ̸= 𝜏𝑘, 𝑘 ∈ Z, we have by (H2) that

𝑑𝜑 (𝑡)

𝑑𝑡
= −

𝑑𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0)

𝑑𝑡

= − 𝑓 (𝑡 + 𝑇, 𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0))

= 𝑓 (𝑡, −𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0)) = 𝑓 (𝑡, 𝜑 (𝑡)) .

(6)

For 𝑡 = 𝜏𝑘, 𝑘 ∈ Z+, it follows from (H1), (H2) that 𝜏𝑘 + 𝑇 =

𝜏𝑘+𝑞, 𝑘 ∈ Z+ and

Δ𝜑|𝑡=𝜏𝑘
= − 𝑥 (𝜏𝑘 + 𝑇

+
, 𝑡0, 𝑥0) + 𝑥 (𝜏𝑘 + 𝑇, 𝑡0, 𝑥0)

= − 𝑥 (𝜏
+

𝑘+𝑞
, 𝑡0, 𝑥0) + 𝑥 (𝜏𝑘+𝑞, 𝑡0, 𝑥0)

= − 𝐼𝑘+𝑞 (𝑥 (𝜏𝑘+𝑞, 𝑡0, 𝑥0))

= − 𝐼𝑘 (𝑥 (𝜏𝑘+𝑞, 𝑡0, 𝑥0)) = −𝐼𝑘 (𝑥 (𝜏𝑘 + 𝑇, 𝑡0, 𝑥0))

= 𝐼𝑘 (−𝑥 (𝜏𝑘 + 𝑇, 𝑡0, 𝑥0)) = 𝐼𝑘 (𝜑 (𝜏𝑘)) .

(7)

Thus, we proved that 𝜑(𝑡) ≡ −𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0) is a solution of
(1). On the other hand, it is obvious that

𝜑 (𝑡) |𝑡=𝑡0
= −𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥0) = 𝜓 (𝑡) |𝑡=𝑡0

. (8)

Hence, by uniqueness theorem we have that 𝜑(𝑡) ≡ 𝜓(𝑡), 𝑡 ∈

R. This completes the proof.

Let𝐷 denotes the stripe area on the plain {(𝑡, 𝑥) | (𝑡, 𝑥) ∈

R ×R} between two lines 𝑡 = 𝑡0 and 𝑡 = 𝑡0 + 𝑇; that is,

𝐷 = {(𝑡, 𝑥) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇, −∞ < 𝑥 < +∞} . (9)

Assume that 𝑥(𝑡, 𝑡0, 𝑥0) exists for all 𝑡 ∈ [𝑡0, +∞). Define
𝐿0 = {(𝑡, 𝑥(𝑡, 𝑡0, 𝑥0)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇}. In general, we denote
𝐿𝑘 (𝑘 ≥ 1) by

𝐿𝑘 = {(𝑡, 𝑥 (𝑡, 𝑡0, −𝑥𝑘)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇} , (10)

where 𝑥𝑘 = 𝑥(𝑡0 + 𝑇
+
, 𝑡0, −𝑥𝑘−1), 𝑡 ≥ 𝑡0.

It follows from Lemma 7 that 𝐿𝑘 has the form

𝐿𝑘 = {(𝑡, (−1)
𝑘
𝑥 (𝑡 + 𝑘𝑇, 𝑡0, 𝑥0)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇} . (11)

We now introduce an equivalence relation ∼ on 𝐷 such
that for (𝑡, 𝑥), (𝑡, 𝑥) ∈ 𝐷

(𝑡, 𝑥) ∼ (𝑡

, 𝑥

) iff 

𝑡 − 𝑡


= 𝑇, 𝑥 = −𝑥

. (12)

Then we denote the corresponding quotient space by 𝑀2.
From geometric point of view,𝑀2 is obtained by considering

𝑂

𝑥

𝑇 2𝑇 𝑡

𝑥0

−𝑥0

Figure 2: Figure of one-side and two-side orbits.

two elements (𝑡0, 𝑥) and (𝑡0 + 𝑇, −𝑥) on 𝐷 as the same point
(or sticking (𝑡0, 𝑥) and (𝑡0 + 𝑇, −𝑥) together). Thus 𝑀2 is a
surface with only one side or the well-knownMoebius stripe.
Obviously, by Lemma 7 the union

⋃

𝑘∈Z+

𝐿𝑘 = ⋃

𝑘∈Z+

{(𝑡, (−1)
𝑘
𝑥 (𝑡 + 𝑘𝑇, 𝑡0, 𝑥0)) | 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇}

(13)

define a flow on 𝑀2. From this point of view, we call (1)
satisfying (H1) and (H2) an impulsive dynamical system on
Moebius stripe (see Figure 1).

Definition 8 (PoincaréMap). Let 𝑥(𝑡, 𝑡0, 𝑥0) be the solution of
(IVP) (4). Assume that there exists an interval 𝐽 such that for
any 𝑥0 ∈ 𝐽, 𝑥(𝑡, 𝑡0, 𝑥0) exists on [𝑡0, 𝑡0+𝑇]. A map 𝑃 : 𝐽 → R

is called a Poincaré map of system (1) if for any 𝑥0 ∈ 𝐽

𝑃 (𝑥0) = −𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0) . (14)

Definition 9. A closed curve 𝛾
+
(𝑥0) is called a one-side

periodic orbit on 𝑀2 if 𝛾
+
(𝑥0) = 𝐿0. And a closed curve

𝛾
+
(𝑥0) is called a two-side periodic orbit on 𝑀2 if 𝛾

+
(𝑥0) =

𝐿0 ∪ 𝐿1 ̸= 𝐿1.

From Definitions 8 and 9, we can easily prove the
following assertion.

Lemma 10. One of following alternatives is valid:

(i) 𝛾
+
(𝑥0) is a one-side periodic orbit;

(ii) 𝑥0 is a fixed point of 𝑃; that is, 𝑃(𝑥0) = 𝑥0;

(iii) 𝑥(𝑡 + 𝑇, 𝑡0, 𝑥0) = −𝑥(𝑡, 𝑡0, 𝑥0), 𝑡 ∈ R.

Proof. We prove it from (i) ⇒ (ii) ⇒ (iii) ⇒ (i). Assume
(i) is true; that is, 𝛾+(𝑥0) is a one-side periodic orbit. Then by
Definition 9 we have that

−𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0) = 𝑥 (𝑡

+

0
, 𝑡0, 𝑥0) = 𝑥0, (15)

that is, 𝑃(𝑥0) = 𝑥0. Hence (ii) is valid.
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Next, we suppose that (ii) is fulfilled; that is, −𝑥(𝑡0 +

𝑇
+
, 𝑡0, 𝑥0) = 𝑥0. Then by Lemma 7 we know

𝑥 (𝑡 + 𝑇, 𝑡0, 𝑥0) = 𝑥 (𝑡, 𝑡0, −𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0))

= −𝑥 (𝑡, 𝑡0, 𝑥0) .

(16)

Thus, (iii) is proved.
Finally, if (iii) is true, then 𝑥(𝑡0 +𝑇

+
, 𝑡0, 𝑥0) = −𝑥0. By the

uniqueness of solution of IVP (4), we know

𝑥 (𝑡, 𝑡0, −𝑥 (𝑡0 + 𝑇
+
, 𝑡0, 𝑥0)) = 𝑥 (𝑡, 𝑡0, 𝑥0) ,

𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] .

(17)

Thus we obtain that 𝛾+(𝑥0) is a one-side periodic orbit.
The proof is completed.

Similarly, as proof of Lemma 10, we have the following
lemma.

Lemma 11. One of following alternatives is valid:

(i) 𝛾
+
(𝑥0) is a two-side periodic orbit;

(ii) 𝑥0 is a 2-periodic point of 𝑃; that is, 𝑃(𝑥0) ̸= 𝑥0,
𝑃
2
(𝑥0) = 𝑥0;

(iii) 𝑥(𝑡 + 2𝑇, 𝑡0, 𝑥0) = 𝑥(𝑡, 𝑡0, 𝑥0), 𝑡 ∈ R. And there exists
a 𝑡0, such that 𝑥(𝑡0 + 𝑇

+
, 𝑡0, 𝑥0) ̸= − 𝑥0.

Remark 12. From Lemmas 10 and 11, we see that a one-side
periodic orbit must be a two-side periodic orbit since

𝑃 (𝑥0) = 𝑥0 implies 𝑃
2
(𝑥0) = 𝑃 (𝑃 (𝑥0)) = 𝑃 (𝑥0) = 𝑥0.

(18)

Nevertheless, the converse is not true.
From Remark 12, we give the definition of stability of the

mentioned orbits.

Definition 13. Let 𝛾
+
(𝑥0) be a periodic orbit of system (1)

(one-side or two-side). Then 𝛾
+
(𝑥0) of system (1) is called

stable (asymptotically stable or unstable) if 𝛾
+
(𝑥0) as a 2𝑇

periodic solution is stable (asymptotically stable or unstable).

Theorem 14. Assume 𝑥(𝑡, 𝑡0𝑥0) is the solution of IVP (4) and
let 𝑧(𝑡) = 𝜕𝑥(𝑡, 𝑡0, 𝑥0)/𝜕𝑥0. Then 𝑧(𝑡) is a solution to the
following IVP of impulsive differential equations:

𝑑𝑧

𝑑𝑡
= 𝑓𝑥 (𝑡, 𝑥) 𝑧, 𝑡 ̸= 𝑡𝑘,

Δ𝑧|𝑡=𝜏𝑘
= 𝐼


𝑘
(𝑥) , 𝑘 ∈ Z

+,

𝑧 (𝑡0) = 1.

(19)

Proof. Let 𝐽 = (𝑡0, +∞) and 𝐽𝑘 = (𝜏𝑘−1, 𝜏𝑘], 𝑘 ∈ Z+. Without
losing generality, we assume that 𝑡0 ∈ 𝐽𝑗 for some 𝑗 ≥ 1. The
solution of IVP

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) ,

𝑥 (𝑡
+

0
) = 𝑥0

(20)

can be expressed as

𝑥 (𝑡, 𝑡0, 𝑥0) = 𝑥0 + ∫

𝑡

𝑡0

𝑓 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠. (21)

Differentiate between both sides of the above equation with
respect to 𝑥0, we have

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥0

= 1 + ∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) ⋅
𝜕𝑥 (𝑠, 𝑡0, 𝑥0)

𝜕𝑥0

𝑑𝑠.

(22)

Let 𝑧(𝑡) = 𝜕𝑥(𝑡, 𝑡0, 𝑥0)/𝜕𝑥0, then for 𝑡 ∈ [𝑡0, 𝜏𝑗), 𝑧(𝑡) is the
solution of IVP to ordinary differential equation

𝑑𝑧

𝑑𝑡
= 𝑓𝑥 (𝑡, 𝑥) 𝑧, 𝑡 ̸= 𝑡𝑘,

𝑧 (𝑡0) = 1.

(23)

Thus

𝑧 (𝑡) = exp∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠. (24)

Since 𝑧(𝑡) is left continuous on [𝑡0,∞), we have

𝑧 (𝜏𝑗) = exp∫

𝜏𝑗

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠. (25)

For 𝑡 ∈ 𝐽𝑗+1, 𝑥(𝑡, 𝑡0, 𝑥0) is a solution of system

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥) ,

𝑥 (𝜏𝑗) = 𝑥1,

(26)

where 𝑥1 = 𝑥(𝜏𝑗+ , 𝑡0, 𝑥0) = 𝑥(𝜏𝑗, 𝑡0, 𝑥0) + 𝐼𝑗(𝑥(𝜏𝑗, 𝑡0, 𝑥0)).
Thus, we have

𝑥 (𝑡, 𝑡0, 𝑥0) ≡ 𝑥 (𝑡, 𝜏𝑗, 𝑥1)

= 𝑥1 + ∫

𝑡

𝜏𝑗

𝑓 (𝑠, 𝑥 (𝑠, 𝜏𝑗, 𝑥1)) 𝑑𝑠, 𝑡 ∈ 𝐽𝑗+1.

(27)

Similarly, we have 𝑡 ∈ (𝜏𝑗, 𝜏𝑗+1),

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥1

=
𝜕𝑥 (𝑡, 𝜏𝑗, 𝑥1)

𝜕𝑥1

= exp∫

𝑡

𝜏𝑗

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝜏𝑗, 𝑥1)) 𝑑𝑠

= exp∫

𝑡

𝜏𝑗

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠.

(28)
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Note

𝜕𝑥1

𝜕𝑥0

=
𝜕 [𝑥 (𝜏𝑗, 𝑡0, 𝑥0) + 𝐼𝑗 (𝑥 (𝜏𝑗, 𝑡0, 𝑥0))]

𝜕𝑥 (𝜏𝑗, 𝑡0, 𝑥0)

⋅
𝜕𝑥 (𝜏𝑗, 𝑡0, 𝑥0)

𝜕𝑥0

= (1 + 𝐼


𝑗
(𝑥 (𝜏𝑗, 𝑡0, 𝑥0)))

𝜕𝑥 (𝜏𝑗, 𝑡0, 𝑥0)

𝜕𝑥0

.

(29)

We obtain for 𝑡 ∈ (𝜏𝑗, 𝜏𝑗+1) that

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥0

=
𝜕𝑥 (𝑡, 𝜏𝑗, 𝑥1)

𝜕𝑥0

= (1 + 𝐼


𝑗
(𝑥 (𝜏𝑗, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠.

(30)

Deducing in a similar way, we get

𝜕𝑥 (𝑡, 𝑡0, 𝑥0)

𝜕𝑥0

= ∏

𝑡0<𝜏𝑘≤𝑡

(1 + 𝐼


𝑘
(𝑥 (𝜏𝑗, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡

𝑡0

𝑓𝑥 (𝑠, 𝑥 (𝑠, 𝑡0, 𝑥0)) 𝑑𝑠,

(31)

where 𝑡 ∈ 𝐽. Then the proof is completed.

By Definitions 9 and (31), we conclude the following
assertion.

Corollary 15. Assume that conditions (H1), (H2) hold. Then

𝑃

(𝑥0) = − ∏

𝑡0<𝜏𝑘≤𝑡0+𝑇

(1 + 𝐼


𝑘
(𝑥 (𝜏𝑘, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡0+𝑇

𝑡0

𝑓𝑥 (𝑡, 𝑥 (𝑡, 𝑡0, 𝑥0)) 𝑑𝑡.

(32)

As usual, one uses the notion 𝑃
2
(𝑥0) = 𝑃(𝑃(𝑥0)). Then one

has

[𝑃
2
(𝑥0)]


= ∏

𝑡0<𝜏𝑘≤𝑡0+2𝑇

(1 + 𝐼


𝑘
(𝑥 (𝜏𝑘, 𝑡0, 𝑥0)))

⋅ exp∫

𝑡0+2𝑇

𝑡0

𝑓𝑥 (𝑡, 𝑥 (𝑡, 𝑡0, 𝑥0)) 𝑑𝑡.

(33)

Definition 16. 𝑥0 is called a hyperbolic fixed point of 𝑃 if
𝑥0 = 𝑃(𝑥0) and 𝑃


(𝑥0) ̸= − 1; the corresponding one-side

periodic orbit 𝛾+(𝑥0) is called hyperbolic one-side periodic
orbit. If 𝛾+(𝑥0) is a two-side periodic orbit with (𝑃

2
)


(𝑥0) ̸= 1,
then we call 𝛾+(𝑥0) a hyperbolic two-side periodic orbit.

Theorem 17. Assume that the conditions (H1), (H2) hold. Let
𝛾
+
(𝑥0) be a periodic orbit of system (1) and 𝐼



𝑘
(𝑥(𝜏𝑘, 𝑡0, 𝑥0)) ̸= −

1. Then (i)∫𝑡0+2𝑇
𝑡0

𝑓𝑥(𝑡, 𝑥(𝑡, 𝑡0, 𝑥0))𝑑𝑡 < −∑
𝑡0<𝜏𝑘≤𝑡0+2𝑇

ln |1 +

𝐼


𝑘
(𝑥(𝜏𝑘, 𝑡0, 𝑥0))| implies 𝛾+(𝑥0) is asymptotically stable,
(ii)∫𝑡0+2𝑇
𝑡0

𝑓𝑥(𝑡, 𝑥(𝑡, 𝑡0, 𝑥0))𝑑𝑡 > −∑
𝑡0<𝜏𝑘≤𝑡0+2𝑇

ln |1 +

𝐼


𝑘
(𝑥(𝜏𝑘, 𝑡0, 𝑥0))| implies 𝛾+(𝑥0) is unstable.

Proof. If 𝛾+(𝑥0) is a two-side periodic orbit; that is, 𝑥(𝑡, 𝑡0, 𝑥0)
is a 2𝑇 periodic solution of (1). Since both (H1) and (H2)
hold, we know that (1) is a periodic impulsive differential
equation. Then by (33) and Theorem 6, the conclusion is
straightforward.

Example 18. Consider the linear periodic impulsive differen-
tial equations on Moebius stripe as follows:

𝑑𝑥

𝑑𝑡
= 𝑎 (𝑡) 𝑥 + 𝑏 (𝑡) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= 𝑐𝑘𝑥 (𝜏𝑘) , 𝑘 ∈ Z

+
,

(34)

where 𝜏𝑘 < 𝜏𝑘+1 (𝑘 ≥ 1), 𝜏𝑘 → +∞, 𝑘 → +∞, 𝑐𝑘 ̸= − 1 and
there exists a constant 𝑇 > 0, a positive integer 𝑞, such that
the following conditions are satisfied:

(H̃1) 𝑎(𝑡 + 𝑇) = 𝑎(𝑡) and 𝑏(𝑡 + 𝑇) = −𝑏(𝑡) for 𝑡 ∈ R;
(H̃2) 𝑎(𝑡) and 𝑏(𝑡) are continuous;
(H̃3) 𝑐𝑘+𝑞 = 𝑐𝑘, for all 𝑘 ∈ Z+;

(H̃4) 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, for all 𝑘 ∈ Z+.

Assume that 𝑥(𝑡, 𝑡0, 𝑥0) is a one-side periodic solution of
system (34), by the method of variation of constants formula
(see [1]), we get

𝑥 (𝑡, 𝑡0, 𝑥0)

= ∏

𝑡0<𝜏𝑘≤𝑡

(1 + 𝑐𝑘)

⋅ exp∫

𝑡

𝑡0

𝑎 (𝑡) 𝑑𝑡

× [𝑥0 + ∫

𝑡

𝑡0

exp(−∫

𝑠

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑠) 𝑑𝑠] ,

(35)

𝑃 (𝑥0)

= − ∏

𝑡0<𝜏𝑘≤𝑡0+𝑇

(1 + 𝑐𝑘)

⋅ exp∫

𝑡0+𝑇

𝑡0

𝑎 (𝑡) 𝑑𝑡

× [𝑥0 + ∫

𝑡0+𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡] ,

(36)
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𝑃
2
(𝑥0)

= ∏

𝑡0<𝜏𝑘≤𝑡0+2𝑇

(1 + 𝑐𝑘)

⋅ exp∫

𝑡0+2𝑇

𝑡0

𝑎 (𝑡) 𝑑𝑡

× [𝑥0 + ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡] .

(37)

Let𝐴 = ∏
𝑡0<𝜏𝑘≤𝑡0+𝑇

(1+𝑐𝑘) ⋅exp∫
𝑡0+𝑇

𝑡0
𝑎(𝑡)𝑑𝑡; therefore, we

have the following theorem.

Theorem 19. Suppose that (H̃1–H̃4) are satisfied, then

(i) there exists a unique one-side periodic orbit for system
(34) if𝐴 ̸= −1, which is asymptotically stable (unstable)
provided 0 < |𝐴| < 1 (|𝐴| > 1),

(ii) if 𝐴2 ̸= 1, (34) has no two-side periodic orbit. If 𝐴 = 1

all the trajectories are two-side periodic orbits expect for
a unique one-side periodic orbit.

Proof. For the sake of convenience, we denote

𝐵1 = ∫

𝑡0+𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡,

𝐵2 = ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡.

(38)

Then

𝑃 (𝑥0) = −𝐴 (𝑥0 + 𝐵1) , 𝑃
2
(𝑥0) = 𝐴

2
(𝑥0 + 𝐵2) . (39)

Obviously, 𝑃(𝑥0) = 𝑥0 has a unique solution for any 𝑥0 ∈ R

if 𝐴 ̸= − 1, and 𝑃
2
(𝑥0) = 𝑥0 has a unique solution for any

𝑥0 ∈ R if 𝐴2 ̸= 1. Observing that any two-side periodic orbit
obtained under the assumption 𝐴

2
̸= 1 must be a one-side

periodic orbit since 𝐴
2

̸= 1 implies 𝐴 ̸= − 1, together with
Remark 12, we have (34) has no two-side periodic orbit.

It follows from (36) that𝑃(𝑥0) = −𝐴.Then byTheorem 6
we have the one-side orbit is asymptotically stable (unstable)
provided 0 < |𝐴| < 1 (|𝐴| > 1).

Next, let 𝐴 = 1. By taking (36) and (37) into account, we
have

𝑃 (𝑥0) = −𝑥0 − ∫

𝑡0+𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡

≡ −𝑥0 − 𝐵1,

𝑃
2
(𝑥0) = 𝑥0 + ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) 𝑑𝑢) 𝑏 (𝑡) 𝑑𝑡

≡ 𝑥0 + 𝐵2.

(40)

Suppose that 𝑃 has a unique fixed point 𝑥∗
0

= −𝐵1/2, from
the above we have −𝐵1/2 + 𝐵2 = −𝐵1/2, then 𝐵2 ≡ 0 and

𝑃
2
(𝑥0) = 𝑥0. So by taking Lemma 11, 𝛾+(𝑥0) is a two-side

periodic orbit if 𝑥0 ̸= 𝑥
∗

0
.

The proof is ended.

Remark 20. If 𝑐𝑘 ≡ 0, 𝑘 ∈ Z+, in (34); that is, (34)
reduces to an ordinary differential equation. We see that
𝐴 = exp∫

𝑡0+𝑇

𝑡0
𝑎(𝑡)𝑑𝑡. Hence𝐴 ̸= −1 holds automatically, and

therefore (34) always has a unique one-side periodic orbit.

Corollary 21. Let (H̃1–H̃4) be fulfilled and 𝐴 = 1. Then

𝐵2 = ∫

𝑡0+2𝑇

𝑡0

exp(−∫

𝑡

𝑡0

𝑎 (𝑢) d𝑢) 𝑏 (𝑡) 𝑑𝑡 = 0. (41)

Now we are in position to consider nonlinear impulsive
system on Meobius stripe. To explore the uniqueness of one-
side periodic orbit, we induce the following condition.

(H3) Operator 𝐵𝑘 : R → R, 𝐵𝑘(𝑥) = 𝑥 + 𝐼𝑘(𝑥) is strictly
increasing, for all 𝑘 ∈ Z+.

Theorem 22. Suppose that conditions (H1)–(H3) hold, then

(i) system (1) has at most one one-side periodic orbit;
(ii) if any solution 𝑥(𝑡, 𝑡0, 𝑥0) of (1) with |𝑥0| ≤ |𝑃(0)| is

well defined on 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], then system (1) must
has a unique one-side periodic orbit.

Proof. We first prove that system (1) cannot have two one-
side periodic orbits. Suppose 𝛾

+

1
(𝑥
∗

0
) : 𝑥 = 𝑥(𝑡, 𝑡0, 𝑥

∗

0
), 𝑡 ∈

[𝑡0, 𝑡0 +𝑇] and 𝛾
+

2
(𝑥0) : 𝑥 = 𝑥(𝑡, 𝑡0, 𝑥0), 𝑡 ∈ [𝑡0, 𝑡0 +𝑇] are two

one-side periodic orbits system (1). Then

𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥
∗

0
) = −𝑥

∗

0
, 𝑥 (𝑡0 + 𝑇, 𝑡0, 𝑥0) = −𝑥0. (42)

Without losing generality, we assume 𝑥0 > 𝑥
∗

0
, then it follows

from uniqueness theorem of ordinary differential equations
that𝑥 = 𝑥(𝑡, 𝑡0, 𝑥0) and 𝑥(𝑡, 𝑡0, 𝑥

∗

0
) cannot intersect when 𝑡 is

not an impulsive time. Therefore we have

𝑥 (𝑡, 𝑡0, 𝑥0) > 𝑥 (𝑡, 𝑡0, 𝑥
∗

0
) , 𝑡0 ≤ 𝑡 ≤ 𝜏1. (43)

Note 𝐵𝑘(𝑥) = 𝑥 + 𝐼𝑘(𝑥) is strictly increasing, we get

𝑥 (𝜏
+

1
, 𝑡0, 𝑥0) > 𝑥 (𝜏

+
, 𝑡0, 𝑥
∗

0
) . (44)

In a similar way, we can prove that 𝑥(𝑡, 𝑡0, 𝑥0) > 𝑥(𝑡, 𝑡0, 𝑥
∗

0
),

𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇. That is, the curve {(𝑡, 𝑥) | 𝑥 = 𝑥(𝑡, 𝑡0, 𝑥0),

𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇} always stays above curve {(𝑡, 𝑥) | 𝑥 =

𝑥(𝑡, 𝑡0, 𝑥
∗

0
), 𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇}. This contradicts (42). We put

it in another way that

𝑥0 > 𝑥
∗

0
⇒ 𝑃 (𝑥0) > 𝑃 (𝑥

∗

0
) . (45)

Thus, (1) has at most a one-side periodic orbit.
Further, let the solution 𝑥(𝑡, 𝑡0, 𝑥0) of system (1) be all

defined on 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇]. If 𝑃(0) = 0, the conclusion is
proved.We assume that𝑃(0) > 0, thenwe know𝑃(𝑥0) < 𝑃(0)

if 0 < 𝑥0 ≤ 𝑃(0). Note

𝑃
2
(0) − 𝑃 (0) = 𝑃 (𝑃 (0)) − 𝑃 (0) < 𝑃 (0) − 𝑃 (0) = 0.

(46)
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𝑂

𝑥

𝑡

𝑥0

−𝑥0

Figure 3: A one-side periodic orbit.

We obtain that 𝑃(𝑥0)−𝑥0 have opposite signs between 𝑥0 = 0

and 𝑥0 = 𝑃(0), and then it follows from the continuity of
𝑃 that there exists 𝑥

∗

0
∈ (0, 𝑃(0)) such that 𝑃(𝑥

∗

0
) = 𝑥

∗

0
.

Similarly, we can prove 𝑃 has a fixed point in the case of
𝑃(0) < 0. The proof is completed.

Theorem 23. Assume that conditions (H1)–(H3) hold. Fur-
thermore, suppose there exists a positive number 𝑁 such that

𝑓 (𝑡,𝑁) ≤ 0, 𝑓 (𝑡, −𝑁) ≥ 0, 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] , (47)

−2𝑁 ≤ 𝐼𝑘 (𝑁) ≤ 0, ∀𝑘 ∈ Z
+
. (48)

Then (1) has a unique one-side periodic orbit.

Proof. From (47) we have that 𝑥(𝑡, 𝑡0, 𝑥0) will stay inside
[−𝑁,𝑁] for 𝑡 ̸= 𝜏𝑘, 𝑘 ∈ Z+. On the other hand, by (H3), we
have that −𝑁 + 𝐼𝑘(−𝑁) ≤ 𝑥(𝜏𝑘) + 𝐼𝑘(𝑥(𝜏𝑘)) ≤ 𝑁 + 𝐼𝑘(𝑁) for
−𝑁 ≤ 𝑥(𝜏𝑘) ≤ 𝑁. Then it follows from (48) that

−𝑁 ≤ 𝑁 + 𝐼𝑘 (𝑁) ≤ 𝑁 ≤ 𝑁,

−𝑁 ≤ −𝑁 + 𝐼𝑘 (−𝑁) = −𝑁 − 𝐼𝑘 (𝑁) ≤ 𝑁

(49)

(see Figure 3).

Thus,

|𝑃 (0)| =
−𝑥 (𝑡0 + 𝑇, 0)

 =
𝑥 (𝑡0 + 𝑇, 0)

 ≤ 𝑁. (50)

This implies that 𝑃(𝑥0) is well defined for |𝑥0| ≤ |𝑃(0)|. By
Theorem 22, we obtain that (1) has a unique one-side periodic
orbit.

4. Double-Period Bifurcation

In this section, we mainly discuss the bifurcation on periodic
orbits. If system (1) has a one-side periodic orbit, without
losing generality, we may assume that 𝑓(𝑡, 0) = 0; that is,
𝑥 = 0 is the one-side periodic orbit. Actually, if 𝑥(𝑡) is a
one-side periodic orbit, then we let 𝑦 = 𝑥 − 𝑥(𝑡); therefore

there exists a transformation of system (1) that

𝑑𝑦

𝑑𝑡
= 𝑓 (𝑡, 𝑦 + 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑥 (𝑡)) ≡ 𝑔 (𝑡, 𝑦) , 𝑡 ̸= 𝜏𝑘,

Δ𝑦|𝑡=𝜏𝑘
= 𝐼𝑘 (𝑦 + 𝑥 (𝜏𝑘)) − 𝐼𝑘 (𝑥 (𝜏𝑘)) ≡ ℎ𝑘 (𝑦) , 𝑘 ∈ Z

+,
(51)

By (H2) and Lemma 10, we know 𝑔(𝑡 + 𝑇, −𝑦) = −𝑔(𝑡, 𝑦),
𝑔(𝑡, 0) = 0, ℎ𝑘+𝑞(𝑦) = ℎ𝑘(𝑦), and 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇, for all 𝑘 ∈ Z+.

Next, we consider the following perturbed system of
system (1):

𝑑𝑥

𝑑𝑡
= 𝐹 (𝑡, 𝑥, 𝜀) , 𝑡 ̸= 𝜏𝑘,

Δ𝑥|𝑡=𝜏𝑘
= �̃�𝑘 (𝑥 (𝜏𝑘) , 𝜀) , 𝑘 ∈ Z

+,
(52)

where 𝐹 : R × R × R → R is 𝐶
3 with respect to 𝑥,

continuously differentiable with respect to 𝜀. �̃�𝑘 : R×R → R

is 𝐶
3
(𝑘 ∈ Z+) with respect to 𝑥. Moreover, we suppose

𝐹(𝑡 + 𝑇, −𝑥, 𝜀) = −𝐹(𝑡, 𝑥, 𝜀), �̃�𝑘(𝑥, 𝜀) = �̃�𝑘+𝑞(𝑥, 𝜀), �̃�𝑘(−𝑥) =

−�̃�𝑘(𝑥), for all 𝑘 ∈ Z+, where 𝜏𝑘+𝑞 − 𝜏𝑘 = 𝑇. For 𝜀 = 0, we
have 𝐹(𝑡, 𝑥, 0) = 𝑓(𝑡, 𝑥), �̃�𝑘(𝑥, 0) = 𝐼𝑘(𝑥). These assumptions
mean (H1) and (H2) hold for 𝐹 and �̃�𝑘, for all 𝑘 ∈ Z+.
Furthermore, assume that 𝑥 + �̃�𝑘(𝑥, 𝜀) is strictly increasing,
then by Theorem 22 we have that system (52) has at most a
one-side periodic orbit.

Suppose that (1) has a one-side periodic orbit and
𝑓(𝑡, 0) = 0. Then by using implicit function theorem in the
Poincaré map of system (52), we know that system (52) has a
one-side periodic orbit when |𝜀| is sufficiently small. Now let
𝑥
∗
(𝑡, 𝜀) be the solution of system (52) and 𝑦(𝑡, 𝜀) = 𝑥(𝑡, 𝜀) −

𝑥
∗
(𝑡, 𝜀). Then we can get a transformation of system (52):

𝑑𝑦

𝑑𝑡
= 𝐹 (𝑡, 𝑦 + 𝑥

∗
, 𝜀) − 𝐹 (𝑡, 𝑥

∗
, 𝜀) = 𝐺 (𝑡, 𝑦, 𝜀) , 𝑡 ̸= 𝜏𝑘,

Δ𝑦|𝑡=𝜏𝑘
= �̃�𝑘 (𝑦 + 𝑥

∗
(𝜏𝑘, 𝜀) , 𝜀)

− �̃�𝑘 (𝑥
∗
(𝜏𝑘, 𝜀) , 𝜀) = 𝐻𝑘 (𝑦, 𝜀) , 𝑘 ∈ Z

+.
(53)

By Taylor’s formula, we have

𝐺 (𝑡, 𝑦, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝑦 + 𝐴2 (𝑡, 𝜀) 𝑦
2

+ 𝐴3 (𝑡, 𝜀) 𝑦
3
+ 𝑜 (𝑦

3
) ,

𝐻𝑘 (𝑦, 𝜀) = 𝐵𝑘1 (𝜀) 𝑦 + 𝐵𝑘3 (𝜀) 𝑦
3
+ 𝑜 (𝑦

3
) ,

(54)

where

𝐴 𝑖 (𝑡, 𝜀) =
1

𝑖!

𝜕
𝑖
𝐹

𝜕𝑥𝑖
(𝑡, 𝑥
∗
, 𝜀) ,

𝐵𝑘𝑗 (𝜀) =
1

𝑗!

𝜕
𝑗
�̃�𝑘

𝜕𝑥𝑗
(𝑥
∗
, 𝜀) ,

𝐴 𝑖 (𝑡 + 𝑇, 𝜀) = (−1)
𝑖−1

𝐴 𝑖 (𝑡, 𝜀) ,

(55)

for 𝑘 ≥ 1, 𝑖 = 1, 2, 3; 𝑗 = 1, 3.
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If 𝜀 = 0, then 𝑥
∗

= 0. So 𝐴 𝑖(𝑡, 0) = (1/𝑖!)(𝜕
𝑖
𝑓/𝜕𝑥
𝑖
)(𝑡, 0)

and 𝐵𝑘𝑗(0) = (1/𝑗!)𝐼
(𝑗)

𝑘
(0), for 𝑘 ≥ 1, 𝑖 = 1, 2, 3, 𝑗 = 1, 3.

Suppose that 𝑦(𝑡, 𝑦0, 𝜀) (𝑡 ≥ 𝑡0) is the solution of system
(53) with the initial value 𝑦(𝑡

+

0
, 𝑦0, 𝜀) = 𝑦0, 𝑃(𝑦0, 𝜀) is the

Poincaré map of system (53). Note

�̃� (𝑦0, 𝜀) = 𝑦 (𝑡0 + 2𝑇
+
, 𝑦0, 𝜀) = 𝑃

2
(𝑦0, 𝜀) . (56)

Without losing generality, let 𝑥∗(𝑡, 𝜀) = 0 is a nonhyperbolic
solution. That is, 𝑃(0, 0) = 0 and (𝜕𝑃/𝜕𝑦0)(0, 0) = −1.

Noting that 𝑃(0, 𝜀) = 0, then by Taylor’s formula, we have

𝑃 (𝑦0, 𝜀) = 𝐴1 (𝜀) 𝑦0 + 𝐴2 (𝜀) 𝑦
2

0
+ 𝐴3 (𝜀) 𝑦

3

0
+ 𝑜 (𝑦

3

0
) , (57)

where 𝐴1(𝜀) = (𝜕𝑃/𝜕𝑦0)(0, 𝜀), 𝐴2(𝜀) = (1/2)(𝜕
2
𝑃/𝜕𝑦
2

0
)(0, 𝜀),

and 𝐴3(𝜀) = (1/6)(𝜕
3
𝑃/𝜕𝑦
3

0
)(0, 𝜀).

Theorem 24. Suppose that 𝑓(𝑡, 0) = 0 and 𝑥 = 0 is a one-
side periodic orbit of system (52)𝜀=0 with 𝑃(0, 0) = 0 and
(𝜕𝑃/𝜕𝑦0)(0, 0) = −1. Let 𝑎∗

3
= (1/6)�̃�



(0, 0). If 𝑎∗
3

̸= 0, then
for |𝜀| sufficiently small and [𝐴1(𝜀) + 1]𝑎

∗

3
> 0 (≤0) implies

that system (52) has a unique (no) two-sides periodic orbit near
𝑥 = 0, except for a one-side periodic orbit 𝑥∗(𝑡, 𝜀).

Proof. As before, we obtain that �̃�(0, 𝜀) = [𝑃

(0, 𝜀)]

2
= 𝐴
2

1
(𝜀):

�̃� (𝑦0, 𝜀) = 𝑃 (𝑃 (𝑦0, 𝜀) , 𝜀)

= 𝐴1 (𝜀) 𝑃 (𝑦0, 𝜀) + 𝐴2 (𝜀) 𝑃
2
(𝑦0, 𝜀)

+ 𝐴3 (𝜀) 𝑃
3
(𝑦0, 𝜀) + 𝑜 (𝑃

3
(𝑦0, 𝜀))

= 𝐴
2

1
(𝜀) 𝑦0 + [𝐴

2

1
(𝜀) + 𝐴1 (𝜀)] 𝐴2 (𝜀) 𝑦

2

0

+ 𝐴1 [𝐴3 (𝜀) + 2𝐴
2

2
(𝜀) + 𝐴

2

1
(𝜀) 𝐴3 (𝜀)] 𝑦

3

0

+ 𝑜 (𝑦
3

0
) .

(58)

By our assumption, we have 𝐴1(𝜀) = −1 + 𝐴


1
(0)𝜀 + 𝑜(𝜀).

Therefore,

�̃� (𝑦0, 𝜀) =
𝑃
2
(𝑦0, 𝜀) − 𝑦0

𝑦0

= 𝑑0 (𝜀) + 𝑑1 (𝜀) 𝑦0 + 𝑑2 (𝜀) 𝑦
2

0
+ 𝑜 (𝑦

2

0
) ,

(59)

where

𝑑0 (𝜀) = 𝐴
2

1
(𝜀) − 1 = −2 [𝐴1 (𝜀) + 1] + 𝑜 ([𝐴1 (𝜀) + 1]) ,

𝑑1 (𝜀) = [𝐴
2

1
(𝜀) + 𝐴1 (𝜀)] 𝐴2 (𝜀)

= 𝑂 (𝐴1 (𝜀) + 1) = −𝐴


1
(0) 𝐴2 (0) 𝜀 + 𝑜 (𝜀) ,

𝑑2 (𝜀) = 𝐴1 (𝜀) [𝐴3 (𝜀) + 2𝐴
2

2
(𝜀) + 𝐴

2

1
(𝜀) 𝐴3 (𝜀)]

= − 2 [𝐴
2

2
(0) + 𝐴3 (0)] + 𝑜 (1) = 𝑎

∗

3
+ 𝑜 (1) .

(60)

By the implicit function theorem, there exists a unique
function 𝑦0 = 𝑦1(𝜀), 𝑦1(0) = 0 such that (𝜕�̃�/𝜕𝑦0)(𝑦1(𝜀), 𝜀) =

0. Therefore, for |𝜀| sufficiently small, there is a unique
extremal point 𝑦0 = 𝑦1(𝜀) near 𝑥 = 0. Moreover, the function
�̃�(𝑦0, 𝜀) takes its minimum (maximum) Δ(𝜀) ≡ �̃�(𝑦1(𝜀), 𝜀)

only if 𝑎∗
3
> 0 (<0):

Δ (𝜀) = 𝑑0 (𝜀) + 𝑜 (𝜀) = 𝐴
2

1
(𝜀) − 1 = −2 [𝐴1 (𝜀) + 1] + 𝑜 (𝜀) .

(61)

Without loss of generality, we can let 𝑎∗
3

= 𝑑2(0) > 0 and
then 𝑦0 = 0 is the minimum point of 𝑑(𝑦0, 0). So there exists
𝜀0 > 0, such that

�̃� (±𝜀0, 0) > 0,
𝜕�̃�

𝜕𝑦0

(𝜀0, 0) > 0,
𝜕�̃�

𝜕𝑦0

(−𝜀0, 0) < 0,

(62)

and for |𝑦0| ≤ 𝜀0, (𝜕
2
�̃�/𝜕𝑦
2

0
) (𝑦0, 0) > 0 exists.Therefore, there

exists a 𝛿0, such that, for |𝜀| ≤ 𝛿0, we have

�̃� (±𝜀0, 𝜀) > 0,
𝜕�̃�

𝜕𝑦0

(𝜀0, 𝜀) > 0,
𝜕�̃�

𝜕𝑦0

(−𝜀0, 𝜀) < 0.

(63)

For |𝜀| ≤ 𝛿0 and |𝑦0| ≤ 𝜀0, we have

𝜕
2
�̃�

𝜕𝑦2
0

(𝑦0, 𝜀) > 0. (64)

From (64), for any |𝜀| ≤ 𝛿0, we have

Δ (𝜀) = min
|𝑦0|≤𝜀0

�̃� (𝑦0, 𝜀) , −𝜀0 < 𝑦1 (𝜀) < 𝜀0. (65)

And for 𝑦0 ∈ (−𝜀0, 𝑦1(𝜀))(∈ (𝑦1(𝜀), 𝜀0)),

𝜕�̃�

𝜕𝑦0

(𝑦0, 𝜀) < 0 (> 0) . (66)

If Δ(𝜀) > 0, then for all |𝜀| ≤ 𝛿0 and |𝑥0| < 𝜀0, we have
0 < Δ(𝜀) ≤ �̃�.

If Δ(𝜀) = 0, then 𝑦0 = 𝑦1(𝜀) is the unique solution of
function �̃�.

If Δ(𝜀) < 0, then there exist a unique 𝑦1(𝜀) and a unique
𝑦2(𝜀), such that

�̃� (𝑦𝑖 (𝜀) , 𝜀) = 0,
𝜕�̃�

𝜕𝑦0

(𝑦𝑖 (𝜀) , 𝜀) ̸= 0, 𝑖 = 1, 2. (67)

Thus system (52) has two (no) two-side periodic orbits if
𝑎
∗

3
Δ(𝜀) < 0 (≥0). The conclusion is completed (see Figures

4, 5, and 6).
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𝑑

−𝜀0 𝜀0 𝑥0

Δ > 0

𝑂

Figure 4

𝑑

−𝜀0 𝜀0 𝑥0

Δ = 0

𝑂

Figure 5

Now we shall calculate 𝐴1(0) and 𝑎
∗

3
in the simplest case,

let 𝑞 = 1. For 𝑞 > 1 we can calculate them in the same way.
In this case, 𝐼𝑘 ≡ 𝐼 and 𝐵𝑘𝑖(𝑦0, 𝜀) = 𝐵𝑖(𝑦0, 𝜀), 𝑖 = 1, 3. Suppose
𝑦(𝑡, 𝑦0, 𝜀) (𝑡 ≤ 𝑡0) is the solution to system (53) with initial
value 𝑦(𝑡0+, 𝑦0, 𝜀) = 𝑦0. For 𝑦(𝑡, 0, 𝜀) = 0, let

𝑦 (𝑡, 𝑦0, 𝜀) = 𝜑1 (𝑡, 𝜀) 𝑦0 + 𝜑2 (𝑡, 𝜀) 𝑦
2

0

+ 𝜑3 (𝑡, 𝜀) 𝑦
3

0
+ 𝑜 (𝑦

3

0
) , 𝑡 ≤ 𝑡0.

(68)

Then for 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], taking 𝑦(𝑡, 𝑦0, 𝜀) into system
(53), we can obtain 𝜑1, 𝜑2, and 𝜑3 satisfying the following
equations:

𝜑


1
(𝑡, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝜑1 (𝑡, 𝜀) ,

𝜑


2
(𝑡, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝜑2 (𝑡, 𝜀) + 𝐴2 (𝑡, 𝜀) 𝜑

2

1
(𝑡, 𝜀) ,

𝜑


3
(𝑡, 𝜀) = 𝐴1 (𝑡, 𝜀) 𝜑3 (𝑡, 𝜀) + 2𝐴2 (𝑡, 𝜀) 𝜑1 (𝑡, 𝜀) 𝜑2 (𝑡, 𝜀)

+ 𝜑3 (𝑡, 𝜀) 𝜑
3

1
(𝑡, 𝜀) .

(69)

For 𝑦(0, 𝑦0, 𝜀) = 𝑦0, we know

𝜑1 (0, 𝜀) = 1, 𝜑2 (0, 𝜀) = 𝜑3 (0, 𝜀) = 0. (70)

𝑑

−𝜀0 𝜀0 𝑥0

Δ < 0

𝑂

Figure 6

From (69) and (70), we have

𝜑1 (𝑡, 𝜀) = exp∫

𝑡

𝑡0

𝐴1 (𝑢, 𝜀) 𝑑𝑢,

𝜑2 (𝑡, 𝜀) = 𝜑1 (𝑡, 𝜀) ∫

𝑡

𝑡0

𝐴2 (𝑠, 𝜀) 𝜑1 (𝑠, 𝜀) 𝑑𝑠,

𝜑3 (𝑡, 𝜀) = 𝜑1 (𝑡, 𝜀)

× ∫

𝑡

𝑡0

[2𝐴2 (𝑠, 𝜀) 𝜑2 (𝑠, 𝜀) + 𝐴3 (𝑠, 𝜀) 𝜑
2

1
(𝑠, 𝜀)] 𝑑𝑠.

(71)

For 𝑡0 < 𝑡 < 𝑡0 + 𝑇, as we know, we get

𝑦 (𝑡0 + 𝑇
+
, 𝑦0, 𝜀) = [1 + 𝐵1 (𝜀)] 𝑦 (𝑡0 + 𝑇, 𝜀)

+ 𝐵2 (𝜀) 𝑦
2
(𝑡0 + 𝑇, 𝜀)

+ 𝐵3 (𝜀) 𝑦
3
(𝑡0 + 𝑇, 𝜀)

+ 𝑜 (𝑦
3
(𝑡0 + 𝑇, 𝜀))

= 𝜑1 (𝑡0 + 𝑇
+
, 𝜀) 𝑦0 + 𝜑2 (𝑡0 + 𝑇

+
, 𝜀) 𝑦
2

0

+ 𝜑3 (𝑡0 + 𝑇
+
, 𝜀) 𝑦
3

0
+ 𝑜 (𝑦

3

0
) ,

(72)

where

𝜑1 (𝑡0 + 𝑇
+
, 𝜀) = [1 + 𝐵1 (𝜀)] 𝜑1 (𝑡0 + 𝑇, 𝜀) ,

𝜑2 (𝑡0 + 𝑇
+
, 𝜀) = [1 + 𝐵1 (𝜀)] 𝜑2 (𝑡0 + 𝑇, 𝜀)

+ 𝐵2 (𝜀) 𝜑
2

1
(𝑡0 + 𝑇, 𝜀) ,

𝜑3 (𝑡0 + 𝑇
+
, 𝜀) = [1 + 𝐵1 (𝜀)] 𝜑3 (𝑡0 + 𝑇, 𝜀)

+ 2𝐵2 (𝜀) 𝜑1 (𝑡0 + 𝑇, 𝜀) 𝜑2 (𝑡0 + 𝑇, 𝜀)

+ 𝐵3 (𝜀) 𝜑
3
(𝑡0 + 𝑇, 𝜀) .

(73)

Clearly, 𝐴1(𝜀) = −𝜑1(𝑡0 + 𝑇
+
, 𝜀), 𝐴2(𝜀) = −𝜑2(𝑡0 + 𝑇

+
, 𝜀), and

𝐴3(𝜀) = −𝜑3(𝑡0 + 𝑇
+
, 𝜀).
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Moreover, we know

∫

𝑡0+𝑇

𝑡0

𝐴2 (𝑠, 𝜀) 𝜑2 (𝑠, 𝜀) 𝑑𝑠

= ∫

𝑡0+𝑇

𝑡0

𝐴2 (𝑠, 𝜀) 𝜑1 (𝑠, 𝜀)

× [∫

𝑠

𝑡0

𝐴2 (𝑢, 𝜀) 𝜑1 (𝑢, 𝜀) 𝑑𝑢] 𝑑𝑠

=
1

2
[∫

𝑡0+𝑇

𝑡0

𝐴2 (𝑢, 𝜀) 𝜑1 (𝑢, 𝜀) 𝑑𝑢]

2

.

(74)

Denote Φ(𝜀) = ∫
𝑡0+𝑇

𝑡0
𝐴2(𝑡, 𝜀)𝜑1(𝑡, 𝜀)𝑑𝑡 and 𝜙1(𝜀) = 𝜑1(𝑡0 +

𝑇, 𝜀). Then,

𝜑2 (𝑡0 + 𝑇, 𝜀) = 𝜙1 (𝜀)Φ (𝜀) ,

𝜑3 (𝑡0 + 𝑇, 𝜀) = 𝜙1 (𝜀)Φ
2
(𝜀) + ∫

𝑡0+𝑇

𝑡0

𝐴3 (𝑠, 𝜀) 𝜑
2

1
(𝑠, 𝜀) 𝑑𝑠.

(75)

Then we can obtain

𝐴1 (𝜀) = − [1 + 𝐵1 (𝜀)] exp(∫

𝑡0+𝑇

𝑡0

𝐴1 (𝑢, 𝜀) 𝑑𝑢) ,

𝐴2 (𝜀) = − [1 + 𝐵1 (𝜀)] 𝜙1 (𝜀)Φ (𝜀) ,

𝐴3 (𝜀) = − [1 + 𝐵1 (𝜀)] 𝜙1 (𝜀)

× [Φ
2
(𝜀) + ∫

𝑡0+𝑇

𝑡0

𝐴3 (𝑠, 𝜀) 𝜑
2

1
(𝑠, 𝜀) 𝑑𝑠]

− 𝐵3 (𝜀) 𝜙
3

1
(𝜀) .

(76)

For 𝐴1(0) = −1, we can have 𝜙1(0) = 1/(1 + 𝐵1(0)). Then

𝐴2 (0) = −Φ (0) , (77)

𝐴3 (0) = −Φ
2
(0) −

𝐵3 (0)

[1 + 𝐵1 (0)]
3
− Δ (0) , (78)

where Δ(𝜀) = ∫
𝑡0+𝑇

𝑡0
𝐴3(𝑠, 𝜀)𝜑

2

1
(𝑠, 𝜀)𝑑𝑠 =

∫
𝑡0+𝑇

𝑡0
𝐴3(𝑠, 𝜀) exp[2 ∫

𝑠

𝑡0
𝐴1(𝑢, 𝜀)𝑑𝑢]𝑑𝑠. Therefore,

𝑎
∗

3
= −2 [𝐴

2

2
(0) + 𝐴3 (0)] = 2Δ (0) +

2𝐵3 (0)

[1 + 𝐵1 (0)]
3
. (79)

By considering (76)–(79), we can easily have the following
theorem when 𝑞 = 1.

Theorem 25. Suppose that 𝑓(𝑡, 0) = 0 and 𝑥 = 0 is a one-
side periodic solution of system (52)𝜀=0 with 𝑃(0, 0) = 0 and
(𝜕𝑃/𝜕𝑦0)(0, 0) = −1. Let

𝐴1 (𝜀) = − (1 + �̃�


(𝑥
∗
, 𝜀)) exp∫

𝑡0+𝑇

𝑡0

𝐹𝑥 (𝑡, 𝑥
∗
, 𝜀) 𝑑𝑡,

𝑎
∗

3
=

1

6
∫

𝑡0+2𝑇

𝑡0

𝑓


𝑥
(𝑠, 0) 𝑒

2 ∫
𝑠

𝑡0
𝑓𝑥(𝑢,0)𝑑𝑢

𝑑𝑠 +
2�̃�


(0)

[1 + �̃�


(0)]
3
.

(80)

If 𝑎∗
3

̸= 0, then for |𝜀| sufficiently small, [𝐴1(𝜀) + 1]𝑎
∗

3
> 0 (≤0)

implies that system (52) has a unique (no) two-side periodic
orbit of near 𝑥 = 0, except for a one-side periodic orbit 𝑥∗(𝑡, 𝜀).

By virtue of Theorem 25, we can have the following
conclusion.

Corollary 26. (i) Let 𝐴1(0) = −1, 𝑎∗
3

> 0 (<0). Then 𝑥 = 0 is
a nonhyperbolic one-side periodic orbit of system (48) (𝜀 = 0),
which is asymptotically stable (unstable). (ii) Let 𝐴1(0) = −1,
[𝐴1(𝜀) + 1]𝑎

∗

3
> 0, 0 < |𝜀| ≪ 1. Then (𝐴1(𝜀) + 1) < 0 (>0),

𝑥
∗
(𝑡, 𝜀) is a hyperbolic one-side periodic orbit of system (48)

(𝜀 = 0), which is asymptotically stable (unstable. Moreover, the
two-side periodic orbit is unstable (asymptotically stable) near
𝑥 = 0.

Finally, we give an example to illustrate it.

Example 27. Consider

𝑑𝑥

𝑑𝑡
= 𝜀
2
𝑥 + |𝜀| (sin 𝑡) 𝑥

2
− (1 − 2 cos 2𝑡) 𝑥3, 𝑡 ̸= 𝑘𝜋,

Δ𝑥|𝑡=𝑘𝜋 = −𝜀𝑥 (𝑘𝜋) + (𝑏3 + 𝜀) 𝑥
3
(𝑘𝜋) , 𝑘 ∈ Z

+
,

(81)

where |𝜀| > 0. It is obvious that for |𝜀| > 0 sufficiently small,
𝑥 − 𝜀𝑥 + (𝑏3 + 𝜀)𝑥

3 is strictly increasing, and then 𝑥
∗
(𝑡, 𝜀) = 0

is the unique 𝜋-periodic solution. By direct computation, we
have𝐴1(𝑡, 𝜀) = 𝜀

2,𝐴2(𝑡, 𝜀) = |𝜀|(sin 𝑡), 𝐴3(𝑡, 𝜀) = 2 cos 2𝑡 − 1,
𝐵1(𝜀) = −𝜀, and 𝐵3(𝜀) = 𝑏3 + 𝜀. Therefore, 𝐴1(𝜀) + 1 = (𝜀 −

1)𝑒
𝜀
2
𝜋
+1 = 𝜀+𝑜(𝜀), 𝑎∗

3
= 2𝑏3 −𝜋. It follows fromTheorem 25

that system (81) has two (no) 2𝜋-periodic solution of near
𝑥 = 0 if |𝜀| is sufficiently small and 𝑎

∗

3
𝜀 > 0 (≤0).
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We investigate the following differential equations: −(𝑦[1](𝑥)) + 𝑞(𝑥)𝑦(𝑥) = 𝜆𝑓(𝑥, 𝑦(𝑥)), with impulsive and integral boundary
conditions −Δ(𝑦[1](𝑥𝑖)) = 𝐼𝑖(𝑦(𝑥𝑖)), 𝑖 = 1, 2, . . . , 𝑚, 𝑦(0) − 𝑎𝑦

[1]
(0) = ∫

𝜔

0
𝑔0(𝑠)𝑦(𝑠)𝑑𝑠, 𝑦(𝜔) − 𝑏𝑦

[1]
(𝜔) = ∫

𝜔

0
𝑔1(𝑠)𝑦(𝑠)𝑑𝑠, where

𝑦
[1]
(𝑥) = 𝑝(𝑥)𝑦


(𝑥). The expression of Green’s function and the existence of positive solution for the system are obtained. Upper

and lower bounds for positive solutions are also given. When 𝑝(𝑡), 𝐼(⋅), 𝑔0(𝑠), and 𝑔1(𝑠) take different values, the system can be
simplified to some forms which has been studied in the works by Guo and LakshmiKantham (1988), Guo et al. (1995), Boucherif
(2009), He et al. (2011), and Atici and Guseinov (2001). Our discussion is based on the fixed point index theory in cones.

1. Introduction

The theory of impulsive differential equations in abstract
spaces has become a new important branch and has devel-
oped rapidly (see [1–4]). As an important aspect, impulsive
differential equations with boundary value problems have
gained more attention. In recent years, experiments in a
variety of different areas (especially in applied mathematics
and physics) show that integral boundary conditions can
represent the model more accurately. And researchers have
obtained many good results in this field.

In this paper, we study the existence of positive solutions
for the following system:

−(𝑦
[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = 𝜆𝑓 (𝑥, 𝑦 (𝑥)) , 𝑥 ̸= 𝑥𝑖, 𝑥 ∈ 𝐽
−
,

−Δ (𝑦
[1]
(𝑥𝑖)) = 𝐼𝑖 (𝑦 (𝑥𝑖)) , 𝑖 = 1, 2, . . . , 𝑚,

𝑦 (0) − 𝑎𝑦
[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

𝑦 (𝜔) − 𝑏𝑦
[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

(1)

where 𝑦[1](𝑥) = 𝑝(𝑥)𝑦(𝑥), 𝐽− = 𝐽 \ {𝑥1, 𝑥2, . . . , 𝑥𝑚}, 𝐽 =
[0, 𝜔], 0 < 𝑥1 < 𝑥2 < ⋅ ⋅ ⋅ < 𝑥𝑚 < 𝜔, 𝑓 ∈ 𝐶(𝐽 × 𝑅

+
, 𝑅
+
). 𝑦(𝑥),

𝑦
[1]
(𝑥) are left continuous at 𝑥 = 𝑥𝑖, Δ(𝑦

[1]
(𝑥𝑖)) = 𝑦

[1]
(𝑥
+

𝑖
) −

𝑦
[1]
(𝑥
−

𝑖
). 𝐼𝑖 ∈ 𝐶(𝑅

+
, 𝑅
+
). And 𝑎 > 0, 𝑏 < 0, 𝑔0, 𝑔1 : [0, 1] →

[0,∞) are continuous and positive functions.
When 𝑝(𝑡), 𝐼(⋅), 𝑔0(𝑠), and 𝑔1(𝑠) take different values,

the system can be simplified to some forms which have
been studied. For example, [5–10] discussed the existence of
positive solution in case 𝑝(𝑡) = 1.

Let 𝑝(𝑡) = 1, 𝑔0, 𝑔1 = 0, [11, 12] investigated the system
with only one impulse. Reference [13] studied the system
when 𝐼(⋅) = 0, 𝑔0, 𝑔1 = 0. Readers can read the papers in
[13] for details.

Throughout the rest of the paper, we assume 𝜔 is a fixed
positive number, and 𝜆 is a parameter. 𝑝(𝑥), 𝑞(𝑥) are real-
valued measurable functions defined on 𝐽, and they satisfy
the following condition:

(H1) 𝑝(𝑥) > 0, 𝑞(𝑥) ≥ 0, 𝑞(𝑥) ̸≡ 0 almost everywhere,
and

∫

𝜔

0

1

𝑝 (𝑥)
𝑑𝑥 < ∞, ∫

𝜔

0

𝑞 (𝑥) 𝑑𝑥 < ∞. (2)

This paper aims to obtain the positive solution for (1).
In Section 2, we introduce some lemmas and notations. In
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particular, the expression and some properties of Green’s
functions are investigated. After the preparatory work, we
draw the main results in Section 3.

2. Preliminaries

Theorem 1 (Krasnoselskii’s fixed point theorem). Let 𝐸 be a
Banach space and 𝐶 ∈ 𝐸. Assume Ω1, Ω2 are open sets in 𝐸
with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and 𝑆 : 𝐶⋂(Ω2 \ Ω1) → 𝐶 be a
completely continuous operator such that either

(i) ‖𝑠(𝑦)‖ ≤ ‖𝑦‖, 𝑦 ∈ 𝐶 ∩ 𝜕Ω1, and ‖𝑠(𝑦)‖ ≥ ‖𝑦‖, 𝑦 ∈
𝐶 ∩ 𝜕Ω2; or

(ii) ‖𝑠(𝑦)‖ ≥ ‖𝑦‖, 𝑦 ∈ 𝐶 ∩ 𝜕Ω1, and ‖𝑠(𝑦)‖ ≤ ‖𝑦‖, 𝑦 ∈
𝐶 ∩ 𝜕Ω2.

Then 𝑆 has a fixed point in 𝐶⋂(Ω2 \ Ω1).

Definition 2. For two differential functions 𝑦 and 𝑧, we
defined their Wronskian by

𝑊𝑥 (𝑦, 𝑧) = 𝑦 (𝑥) 𝑧
[1]
(𝑥) − 𝑦

[1]
(𝑥) 𝑧 (𝑥)

= 𝑝 (𝑥) [𝑦 (𝑥) 𝑧

(𝑥) − 𝑦


(𝑥) 𝑧 (𝑥)] .

(3)

Consider the linear nonhomogeneous problem of the
form

−(𝑦
[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = ℎ (𝑥) , 𝑥 ∈ 𝐽. (4)

Its corresponding homogeneous equation is

−(𝑦
[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = 0, 𝑥 ∈ 𝐽. (5)

Lemma 3. Suppose that 𝑦1 and 𝑦2 form a fundamental set of
solutions for the homogeneous problem (5). Then the general
solution of the nonhomogeneous problem (4) is given by

𝑦 (𝑥) = 𝑐1𝑦1 (𝑥) + 𝑐2𝑦2 (𝑥)

+ ∫

𝑥

0

𝑦1 (𝑥) 𝑦2 (𝑠) − 𝑦1 (𝑠) 𝑦2 (𝑥)

𝑤𝑠 (𝑦1, 𝑦2)
ℎ (𝑠) 𝑑𝑠,

(6)

where 𝑐1 and 𝑐2 are arbitrary constants.

Proof. We just need to show that the function

𝑧 (𝑥) = ∫

𝑥

0

𝑦1 (𝑥) 𝑦2 (𝑠) − 𝑦1 (𝑠) 𝑦2 (𝑥)

𝑤𝑠 (𝑦1, 𝑦2)
ℎ (𝑠) 𝑑𝑠 (7)

is a particular solution of (4). From (7), we have for𝑥 ∈ [0, 𝜔],

𝑧

(𝑥) = ∫

𝑥

0

𝑦


1
(𝑥) 𝑦2 (𝑠) − 𝑦1 (𝑠) 𝑦



2
(𝑥)

𝑤𝑠 (𝑦1, 𝑦2)
ℎ (𝑠) 𝑑𝑠, (8)

[𝑝 (𝑥) 𝑧

(𝑥)]


= −ℎ (𝑥) + 𝑞 (𝑥) 𝑧 (𝑥) . (9)

Besides, from (7) and (8), we have

𝑧 (0) = 0, 𝑧
[1]
(0) = 0. (10)

Thus, 𝑧(𝑥) satisfies (4).

Consider the following boundary value problem with
integral boundary conditions:

−(𝑦
[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = ℎ (𝑥) , 𝑥 ∈ 𝐽,

𝑦 (0) − 𝑎𝑦
[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝜎0 (𝑠) 𝑑𝑠,

𝑦 (𝜔) − 𝑏𝑦
[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝜎1 (𝑠) 𝑑𝑠.

(11)

Denote by 𝑢(𝑥) and 𝑣(𝑥) the solutions of the homogenous
equation (5) satisfying the initial conditions

𝑢 (0) = 𝑎, 𝑢
[1]
(0) = 1,

𝑣 (𝜔) = −𝑏, 𝑣
[1]
(𝜔) = −1.

(12)

(H2) Let 𝑥, 𝑠 ∈ 𝐽, denote a function

𝜙 (𝑥, 𝑠) =
𝑢 (𝑥)

𝑢 (𝜔) − 𝑏𝑢[1] (𝜔)
𝑔1 (𝑠) +

𝑣 (𝑥)

𝑣 (0) − 𝑎𝑣[1] (0)
𝑔0 (𝑠)

(13)

satisfies 0 ≤ 𝜙(𝑥, 𝑠) < 1/𝜔.
For convenience, we denote 𝑚 := min{𝜙(𝑥, 𝑠); 𝑥, 𝑠 ∈ 𝐽},

𝑀 := max{𝜙(𝑥, 𝑠); 𝑥, 𝑠 ∈ 𝐽}.

Lemma 4. Let 𝐾(𝑥, 𝑠) be a nonnegative continuous function
defined for −∞ < 𝑥1 ≤ 𝑥, 𝑠 ≤ 𝑥2 < ∞ and 𝜓(𝑥) a
nonnegative integrable function on [𝑥1, 𝑥2]. Then for arbitrary
nonnegative continuous function 𝜑(𝑥) defined on [𝑥1, 𝑥2], the
Volterra integral equation

𝑦 (𝑥) = 𝜑 (𝑥) + ∫

𝑥

𝑥1

𝐾 (𝑥, 𝑠) 𝜓 (𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑥1 ≤ 𝑥 ≤ 𝑥2

(14)

has a unique solution 𝑦(𝑥). Moreover, this solution is continu-
ous and satisfied the inequality

𝑦 (𝑥) ≥ 𝜑 (𝑥) , 𝑥1 ≤ 𝑥 ≤ 𝑥2. (15)

Proof. We solve (14) by the method of successive approxima-
tions setting

𝑦0 (𝑥) = 𝜑 (𝑥) ,

𝑦𝑛 = ∫

𝑥

𝑥1

𝐾 (𝑥, 𝑠) 𝜓 (𝑠) 𝑦𝑛−1 (𝑠) 𝑑𝑠, 𝑛 = 1, 2, . . . .

(16)

If the series ∑∞
𝑛=0
𝑦𝑛(𝑥) converges uniformly with respect to

𝑥 ∈ [𝑥1, 𝑥2], then its sum will be, obviously, a continuous
solution of (14). To prove the uniform convergence of this
series, we put

max
𝑥1⩽𝑥⩽𝑥2

𝜑 (𝑥) = 𝑐, max
𝑥1⩽𝑥,𝑠⩽𝑥2

𝐾 (𝑥, 𝑠) = 𝑐1. (17)

Then it is easy to get from (16) that

0 ⩽ 𝑦𝑛 (𝑥) ⩽ 𝑐
𝑐
𝑛

1

𝑛!
[∫

𝑥

𝑥1

𝜓 (𝑠) 𝑑𝑠]

𝑛

, 𝑛 = 0, 1, 2, . . . . (18)
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Hence it follows that (14) has a continuous solution

𝑦 (𝑥) =

∞

∑

𝑛=0

𝑦𝑛 (𝑥) (19)

and because 𝑦0 = 𝜑(𝑥), 𝑦𝑛 ≥ 0, 𝑛 = 1, 2, . . ., for this solution
the inequality (15) holds. Uniqueness of the solution of (14)
can be proved in a usual way. The proof is complete.

Remark 5. Evidently, the statement of Lemma 4 is also valid
for the Volterra equation of the form

𝑦 (𝑥) = 𝜑 (𝑥) + ∫

𝑥2

𝑥

𝐾 (𝑥, 𝑠) 𝜓 (𝑠) 𝑦 (𝑠) 𝑑𝑠, 𝑥1 ≤ 𝑥 ≤ 𝑥2.

(20)

Lemma 6. For the solution 𝑦(𝑥) of the BVP (11), the formula

𝑦 (𝑥) = 𝑤 (𝑥) + ∫

𝜔

0

𝐺 (𝑥, 𝑠) ℎ (𝑠) 𝑑𝑠, 𝑥 ∈ 𝐽 (21)

holds, where

𝑤 (𝑥) =
𝑢 (𝑥)

𝑢 (𝜔) − 𝑏𝑢[1] (𝜔)
∫

𝜔

0

𝑔1 (𝑠) 𝜎1 (𝑠) 𝑑𝑠

+
𝑣 (𝑥)

𝑣 (0) − 𝑎𝑣[1] (0)
∫

𝜔

0

𝑔0 (𝑠) 𝜎0 (𝑠) 𝑑𝑠,

𝐺 (𝑥, 𝑠) = −
1

𝑤𝑠 (𝑢, 𝑣)
{
𝑢 (𝑠) 𝑣 (𝑥) , 0 ≤ 𝑠 ≤ 𝑥 ≤ 𝜔,

𝑢 (𝑥) 𝑣 (𝑠) , 0 ≤ 𝑥 ≤ 𝑠 ≤ 𝜔.

(22)

Proof. By Lemma 3, the general solutions of the nonhomoge-
neous problem (4) has the form

𝑦 (𝑥) = 𝑐1𝑢 (𝑥) + 𝑐2𝑣 (𝑥)

+ ∫

𝑥

0

𝑢 (𝑥) 𝑣 (𝑠) − 𝑢 (𝑠) 𝑣 (𝑥)

𝑊𝑠 (𝑢, 𝑣)
ℎ (𝑠) 𝑑𝑠,

(23)

where 𝑐1 and 𝑐2 are arbitrary constants. Now we try to choose
the constants 𝑐1 and 𝑐2 so that the function 𝑦(𝑥) satisfies the
boundary conditions of (11).

From (23), we have

𝑦
[1]
(𝑥) = 𝑐1𝑢

[1]
(𝑥) + 𝑐2𝑣

[1]
(𝑥)

+ ∫

𝑥

0

𝑢
[1]
(𝑥) 𝑣 (𝑠) − 𝑢 (𝑠) 𝑣

[1]
(𝑥)

𝑊𝑠 (𝑢, 𝑣)
ℎ (𝑠) 𝑑𝑠.

(24)

Consequently,

𝑦 (0) = 𝑐1𝑎 + 𝑐2𝑣 (0) ,

𝑦
[1]
(0) = 𝑐1 + 𝑐2𝑣

[1]
(0) .

(25)

Substituting these values of 𝑦(0) and 𝑦[1](0) into the first
boundary condition of (11), we find

𝑐2 =
1

𝑣 (0) − 𝑎𝑣[1] (0)
∫

𝜔

0

𝑔0 (𝑠) 𝜎0 (𝑠) 𝑑𝑠. (26)

Similarly from the second boundary condition of (11), we can
find

𝑐1 =
1

𝑢 (𝜔) − 𝑏𝑢[1] (𝜔)
∫

𝜔

0

𝑔1 (𝑠) 𝜎1 (𝑠) 𝑑𝑠

− ∫

𝜔

0

𝑣 (𝑠)

𝑊𝑠 (𝑢, 𝑣)
ℎ (𝑠) 𝑑𝑠.

(27)

Putting these values of 𝑐1 and 𝑐2 in (23), we get the formula
(21), (22).

Lemma 7. Let condition (H1) hold. Then for the Wronskian
of solution 𝑢(𝑥) and 𝑣(𝑥), the inequality𝑊𝑥(𝑢, 𝑣) < 0, 𝑥 ∈ 𝐽
holds.

Proof. Using the initial conditions (12), we can deduce from
(5) for 𝑢(𝑥) and 𝑣(𝑥) the following equations:

𝑢
[1]
(𝑥) = 1 + ∫

𝑥

0

𝑞 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑢 (𝑥) = 𝑎 + ∫

𝑥

0

1

𝑝 (𝑡)
𝑑𝑡

+ ∫

𝑥

0

[∫

𝑥

𝑠

𝑑𝑡

𝑝 (𝑡)
] 𝑞 (𝑠) 𝑢 (𝑠) 𝑑𝑠,

𝑣
[1]
(𝑥) = −1 − ∫

𝜔

𝑥

𝑞 (𝑠) 𝑣 (𝑠) 𝑑𝑠,

𝑣 (𝑥) = −𝑏 + ∫

𝜔

𝑥

1

𝑝 (𝑡)
𝑑𝑡

+ ∫

𝜔

𝑥

[∫

𝑠

𝑥

𝑑𝑡

𝑝 (𝑡)
] 𝑞 (𝑠) 𝑣 (𝑠) 𝑑𝑠.

(28)

From (28), by condition (H1) and Lemma 4, it follows that

𝑢 (𝑥) ≥ 𝑎 + ∫

𝑥

0

𝑑𝑡

𝑝 (𝑡)
> 0, 𝑢

[1]
(𝑥) ≥ 1 > 0,

𝑣 (𝑥) ≥ −𝑏 + ∫

𝜔

𝑥

𝑑𝑡

𝑝 (𝑡)
> 0, 𝑣

[1]
(𝑥) ≤ −1 < 0.

(29)

Now from (3), we get 𝑊𝑥(𝑢, 𝑣) < 0, 𝑥 ∈ 𝐽. The proof is
complete.

From (21), (22), and Lemma 7, the following lemma
follows.

Lemma 8. Under condition (H1) the Green’s function 𝐺(𝑥, 𝑠)
of the BVP (11) is positive. That is, 𝐺(𝑥, 𝑠) > 0 for 𝑥, 𝑠 ∈ 𝐽.

Let 𝐶(𝐽) denote the Banach of all continuous functions
𝑦 : 𝐼 → R equipped with the form ‖𝑦‖ = max{|𝑦(𝑥)|; 𝑥 ∈ 𝐽},
for any 𝑦 ∈ 𝐶(𝐽). Denote 𝑃 = {𝑦 ∈ 𝐶(𝐽); 𝑦(𝑥) ⩾ 0, 𝑦 ∈ 𝐽},
then 𝑃 is a positive cone in 𝐶(𝐽).

Let us set 𝐴 = max0⩽𝑥,𝑠⩽𝜔𝐺(𝑥, 𝑠), 𝐵 = min0⩽𝑥,𝑠⩽𝜔𝐺(𝑥, 𝑠),
and by Lemma 8, obviously, 𝐴 > 𝐵 > 0, 𝑥, 𝑠 ∈ 𝐽.
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Define a mappingΦ in Banach space 𝐶(𝐽) by

(Φ𝑦) (𝑥) = 𝑤 (𝑥) + 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) , 𝑥 ∈ 𝐽,

(30)

where

𝑤 (𝑥) =
𝑢 (𝑥)

𝑢 (𝜔) − 𝑏𝑢[1] (𝜔)
∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠

+
𝑣 (𝑥)

𝑣 (0) − 𝑎𝑣[1] (0)
∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(31)

Lemma 9. The fixed point of the mapping Φ is a solution of
(1).

Proof. Clearly, Φ𝑦 is continuous in 𝑥 for 𝑥 ∈ 𝐽. For 𝑥 ̸=𝑥𝑘,

(Φ𝑦)

(𝑥) = 𝑤


(𝑥) + 𝜆∫

𝜔

0

𝜕𝐺

𝜕𝑥
𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝜕𝐺 (𝑥, 𝑥𝑖)

𝜕𝑥
𝐼𝑖 (𝑦 (𝑥𝑖)) ,

(32)

where

𝑤

(𝑥) =

𝑢

(𝑥)

𝑢 (𝜔) − 𝑏𝑢[1] (𝜔)
∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠

+
𝑣

(𝑥)

𝑣 (0) − 𝑎𝑣[1] (0)
∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(33)

We have

(Φ𝑦)
[1]
(𝑥) = 𝑤

[1]
(𝑥) + 𝜆∫

𝜔

0

𝑝 (𝑥)
𝜕𝐺

𝜕𝑥
𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝑝 (𝑥)
𝜕𝐺 (𝑥, 𝑥𝑖)

𝜕𝑥
𝐼𝑖 (𝑦 (𝑥𝑖)) ,

(34)

where

𝑤
[1]
(𝑥) =

𝑢
[1]
(𝑥)

𝑢 (𝜔) − 𝑏𝑢[1] (𝜔)
∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠

+
𝑣
[1]
(𝑥)

𝑣 (0) − 𝑎𝑣[1] (0)
∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(35)

We can easy get that

(Φ𝑦) (0) − 𝑎(Φ𝑦)
[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

(Φ𝑦) (𝜔) − 𝑏(Φ𝑦)
[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

Δ(Φ𝑦)
[1]
(𝑥𝑘) = 𝑝 (𝑥

+

𝑘
) (Φ𝑦)


(𝑥
+

𝑘
)

− 𝑝 (𝑥
−

𝑘
) (Φ𝑦)


(𝑥
−

𝑘
)

= 𝑝 (𝑥𝑘) [−
𝑢 (𝑥𝑘) 𝑣


(𝑥𝑘)

𝑊𝑥𝑘
(𝑢, 𝑣)

+
𝑢

(𝑥𝑘) 𝑣 (𝑥𝑘)

𝑊𝑡𝑘
(𝑢, 𝑣)

]

× 𝐼𝑘 (𝑦 (𝑥𝑘))

= −𝐼𝑘 (𝑦 (𝑥𝑘)) ,

(𝑝 (𝑥) (Φ𝑦)

(𝑥))


= [𝑝 (𝑥)𝑤

(𝑥)

+ 𝜆∫

𝜔

0

𝑝 (𝑥)
𝜕𝐺

𝜕𝑥
𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝑝 (𝑥)
𝜕𝐺 (𝑥, 𝑥𝑖)

𝜕𝑥
𝐼𝑖 (𝑦 (𝑥𝑖))]



= 𝑞 (𝑥)𝑤 (𝑥) + 𝜆𝑞 (𝑥)

× ∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

− 𝜆𝑓 (𝑥, 𝑦 (𝑥)) + 𝑞 (𝑥)

×

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝑞 (𝑥) (Φ𝑦) (𝑥) − 𝜆𝑓 (𝑥, 𝑦 (𝑥)) ,

(36)

which implies that the fixed poind of Φ is a solution of (1).
The proof is complete.

Lemma 10. Let 𝑃0 := {𝑦 ∈ 𝑃;min𝑥∈𝐽𝑦(𝑥) ≥ ((1 −𝑀𝜔)𝐵/(1 −
𝑚𝜔)𝐴)‖𝑦‖}, then 𝑃0 is a cone.

Proof. (i) For for all 𝑦1, 𝑦2 ∈ 𝑃0 and for all 𝛼 ≥ 0, 𝛽 ≥ 0, we
have

min (𝛼𝑦1) ⩾ 𝛼 ⋅
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

𝑦1
 ,

min (𝛽𝑦2) ⩾ 𝛽 ⋅
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

𝑦2
 .

(37)

Moreover

min (𝛼𝑦1 + 𝛽𝑦2) ⩾
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴
(𝛼
𝑦1
 + 𝛽

𝑦2
)

⩾
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

𝛼𝑦1 + 𝛽𝑦2
 .

(38)

Thus 𝛼𝑦1 + 𝛽𝑦2 ∈ 𝑃0.
(ii) If 𝑦 ∈ 𝑃0 and −𝑦 ∈ 𝑃0, we have

min
𝑥∈𝐽
(𝑦 (𝑥)) ⩾

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

𝑦
 ,

min
𝑥∈𝐽
(−𝑦 (𝑥)) ⩾

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

𝑦
 .

(39)

It implies that 𝑦 = 0. Hence 𝑃0 is a cone.
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Defined a linear operator 𝐴 : 𝐶(𝐽) → 𝐶(𝐽) by

(𝐴𝑦) (𝑥) = ∫

𝜔

0

𝜙 (𝑥, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (40)

Then we have the following lemma.

Lemma 11. If (H2) is satisfied, then

(i) 𝐴 is a bounded linear operator, 𝐴(𝑃) ⊂ 𝑃;

(ii) (𝐼 − 𝐴) is invertible;

(iii) ‖(𝐼 − 𝐴)−1‖ ≤ 1/(1 −𝑀𝜔).

Proof. (i)

𝐴 (𝛼𝑦1 (𝑥) + 𝛽𝑦2 (𝑥)) = ∫

𝜔

0

𝜙 (𝑥, 𝑠) [𝛼𝑦1 (𝑠) + 𝛽𝑦2 (𝑠)] 𝑑𝑠

= 𝛼 (𝐴𝑦1) (𝑥) + 𝛽 (𝐴𝑦2) (𝑥) ,

(41)

for all 𝛼, 𝛽 ∈ R, 𝑦1, 𝑦2 ∈ 𝐶(𝐽).
Using 𝜙(𝑥, 𝑠) ≤ 𝑀, it is easy to see that |(𝐴𝑦)(𝑡)| ≤

𝑀𝜔‖𝑦‖.
Let 𝑦 ∈ 𝑃. Then 𝑦(𝑠) ≥ 0 for all 𝑠 ∈ 𝐽. Since 𝜙(𝑡, 𝑠) ≥ 𝑚 ≥

0, it follows that (𝐴𝑦)(𝑥) ≥ 0 for each 𝑥 ∈ 𝐽. So 𝐴(𝑃) ⊂ 𝑃.
(ii) We want to show that (𝐼 − 𝐴) is invertible, or

equivalently 1 is not an eigenvalue of 𝐴.
Since 𝑀 < 1/𝜔, it follows from condition (H2) that

‖𝐴𝑦‖ ≤ 𝑀𝜔‖𝑦‖ < ‖𝑦‖.
So

‖𝐴‖ = sup
𝑦 ̸= 0

𝐴𝑦


𝑦


⩽ 𝑀𝜔 < 1. (42)

On the other hand, we suppose 1 is an eigenvalue of 𝐴, then
there exists a 𝑦 ∈ 𝐶(𝐽) such that 𝐴𝑦 = 𝑦. Moreover, we can
obtain that ‖𝐴𝑦‖/‖𝑦‖ = 1. So ‖𝐴‖ ⩾ 1. Thus this assumption
is false.

Conversely, 1 is not an eigenvalue of 𝐴. Equivalently, (𝐼 −
𝐴) is invertible.

(iii) We use the theory of Fredholm integral equations to
find the expression for (𝐼 − 𝐴)−1.

Obviously, for each 𝑥 ∈ 𝐽, 𝑦(𝑥) = (𝐼−𝐴)−1𝑧(𝑥) ⇔ 𝑦(𝑥) =
𝑧(𝑥) + (𝐴𝑦)(𝑥).

By (40), we can get

𝑦 (𝑥) = 𝑧 (𝑥) + ∫

𝜔

0

𝜙 (𝑥, 𝑠) 𝑦 (𝑠) 𝑑𝑠. (43)

The condition𝑀 < 1/𝜔 implies that 1 is not an eigenvalue of
the kernel 𝜙(𝑥, 𝑠). So (43) has a unique continuous solution 𝑦
for every continuous function 𝑧.

By successive substitutions in (43), we obtain

𝑦 (𝑥) = 𝑧 (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) 𝑧 (𝑠) 𝑑𝑠, (44)

where the resolvent kernel 𝑅(𝑥, 𝑠) is given by

𝑅 (𝑥, 𝑠) =

∞

∑

𝑗=1

𝜙𝑗 (𝑥, 𝑠) . (45)

Here 𝜙𝑗(𝑥, 𝑠) = ∫
𝜔

0
𝜙(𝑥, 𝜏)𝜙𝑗−1(𝜏, 𝑠)𝑑𝑠, 𝑗 = 2, . . . and 𝜙1(𝑥,

𝑠) = 𝜙(𝑥, 𝑠).
The series on the right in (45) is convergent because

|𝜙(𝑥, 𝑠)| ⩽ 𝑀 < 1/𝜔.
It can be easily verified that 𝑅(𝑥, 𝑠) ≤ 𝑀/(1 −𝑀𝜔).
So we can get

(𝐼 − 𝐴)
−1
𝑧 (𝑥) = 𝑧 (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) 𝑧 (𝑠) 𝑑𝑠. (46)

Therefore

(𝐼 − 𝐴)
−1
𝑧 (𝑥) ≤ 𝑧 (𝑥) +

𝑀

1 −𝑀𝜔
∫

𝜔

0

𝑧 (𝑠) 𝑑𝑠

≤ ‖𝑧‖ (1 +
𝑀𝜔

1 −𝑀𝜔
) =

1

1 −𝑀𝜔
‖𝑧‖ .

(47)

So

(𝐼 − 𝐴)

−1
𝑧


‖𝑧‖
≤

1

1 −𝑀𝜔
. (48)

Thus ‖(𝐼 − 𝐴)−1‖ ≤ 1/(1 − 𝑀𝜔). This completes the proof of
the lemma.

Remark 12. Since 𝜙(𝑥, 𝑠) ≥ 𝑚 for each (𝑥, 𝑠) ∈ 𝐽, it is easy to
prove that 𝑅(𝑥, 𝑠) ≥ 𝑚/(1 − 𝑚𝜔).

3. Main Results

Consider the following boundary value problem (BVP) with
impulses:

− (𝑦
[1]
(𝑥))


+ 𝑞 (𝑥) 𝑦 (𝑥) = 𝜆𝑓 (𝑥, 𝑦 (𝑥)) ,

𝑥 ̸= 𝑥𝑖, 𝑥 ∈ 𝐽,

−Δ (𝑦
[1]
(𝑥𝑖)) = 𝐼𝑖 (𝑦 (𝑥𝑖)) , 𝑖 = 1, 2, . . . , 𝑚,

𝑦 (0) − 𝑎𝑦
[1]
(0) = ∫

𝜔

0

𝑔0 (𝑠) 𝑦 (𝑠) 𝑑𝑠,

𝑦 (𝜔) − 𝑏𝑦
[1]
(𝜔) = ∫

𝜔

0

𝑔1 (𝑠) 𝑦 (𝑠) 𝑑𝑠.

(49)

Denote a nonlinear operator 𝑇 : 𝑃𝐶(𝐽) → 𝑃𝐶(𝐽) by

(𝑇𝑦) (𝑥) = 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) .

(50)

It is easy to see that solutions of (49) are solutions of the
following equation:

𝑦 (𝑥) = 𝑇𝑦 (𝑥) + 𝐴𝑦 (𝑥) , 𝑥 ∈ 𝐽
−1
. (51)
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According to Lemma 11, 𝑦 is a solution of (51) if and only if it
is a solution of

𝑦 (𝑥) = (𝐼 − 𝐴)
−1
𝑇𝑦 (𝑥) . (52)

It follows from (46) that 𝑦 is a solution of (52) if and only if

𝑦 (𝑥) = (𝑇𝑦) (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) (𝑇𝑦) (𝑠) 𝑑𝑠. (53)

So, the operatorΦ can be written as

(Φ𝑦) (𝑥) = (𝑇𝑦) (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) (𝑇𝑦) (𝑠) 𝑑𝑠. (54)

It satisfies the conditions ofTheorem 1 with 𝐸 = 𝐶(𝐽) and the
cone 𝐶 = 𝑃0.

Let us list some marks and conditions for convenience.
The nonlinearity 𝑓 : 𝐽 × [0,∞) → [0,∞) is continuous

and satisfies the following.
(H3) There exist 𝐿1 > 0 and 𝛼(𝑥) ∈ 𝑃, 𝑟1 ∈ R with 𝑟1 ⩾

∑
𝑚

𝑖=0
𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫

𝜔

0
𝛼(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≤ 𝛼 (𝑥) [𝑦 (1 −𝑀𝜔) − 𝑟1] (55)

for all 𝑦 ∈ (0, 𝐿1], 𝑥 ∈ 𝐽.
(H4) There exist 𝐿2 > 𝐿1 and 𝛽(𝑥) ∈ 𝑃, 𝑝1 ∈ R with

𝑝1 ⩽ ∑
𝑚

𝑖=0
𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫

𝜔

0
𝛽(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≥ 𝛽 (𝑥) [𝑦 (1 − 𝑚𝜔) − 𝑝1] (56)

for all 𝑦 ∈ (𝐿2,∞], 𝑥 ∈ 𝐽.
Then, we can get the following theorem.

Theorem 13. Assume (H1), (H2), (H3), and (H4) are satisfied.
And

(1 − 𝑚𝜔)𝐴
2
∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 ⩽ (1 −𝑀𝜔)𝐵
2
∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠, (57)

then, if 𝜆 satisfies

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵2 ∫
𝜔

0
𝛽 (𝑠) 𝑑𝑠

⩽ 𝜆 ⩽
1

𝐴∫
𝜔

0
𝛼 (𝑠) 𝑑𝑠

. (58)

The problem (49) has at least one positive solution.

Proof. First of all, we show that operatorΦ is defined by (54)
maps 𝑃0 into itself. Let 𝑦 ∈ 𝑃0.

Then (Φ𝑦)(𝑥) ≥ 0 for all that 𝑡 ∈ 𝐽−1, and

(Φ𝑦) (𝑥) ⩽
𝜆𝐴

1 −𝑀𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(59)

Because from the formula (54), we have

(Φ𝑦) (𝑥) = (𝑇𝑦) (𝑥) + ∫

𝜔

0

𝑅 (𝑥, 𝑠) (𝑇𝑦) (𝑠) 𝑑𝑠

= 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+ 𝜆∫

𝜔

0

𝑅 (𝑥, 𝑠) ∫

𝜔

0

𝐺 (𝑥, 𝜏) 𝑓 (𝜏, 𝑦 (𝜏)) 𝑑𝜏 𝑑𝑠

+ ∫

𝜔

0

𝑅 (𝑥, 𝑠)

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) 𝑑𝑠

≤ 𝜆 (1 +
𝑀𝜔

1 −𝑀𝜔
)∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+
𝑀𝜔

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

≤
𝜆𝐴

1 −𝑀𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(60)

Hence, inequality (59) is established.
This implies that

Φ𝑦
 ⩽

𝜆𝐴

1 −𝑀𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) ,

(61)

or equivalently

∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 ⩾
1 −𝑀𝜔

𝜆𝐴

Φ𝑦
 −
1

𝜆

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) . (62)

On the other hand, it follows that

(Φ𝑦) (𝑥) ⩾
𝜆𝐵

1 − 𝑚𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(63)
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In fact, we have

(Φ𝑦) (𝑥) = 𝜆∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+ 𝜆∫

𝜔

0

𝑅 (𝑥, 𝑠) ∫

𝜔

0

𝐺 (𝑥, 𝜏) 𝑓 (𝜏, 𝑦 (𝜏)) 𝑑𝜏 𝑑𝑠

+ ∫

𝜔

0

𝑅 (𝑥, 𝑠)

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖)) 𝑑𝑠

≥ 𝜆 (1 +
𝑚𝜔

1 − 𝑚𝜔
)∫

𝜔

0

𝐺 (𝑥, 𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

+
𝑚𝜔

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐺 (𝑥, 𝑥𝑖) 𝐼𝑖 (𝑦 (𝑥𝑖))

≥
𝜆𝐵

1 − 𝑚𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) .

(64)

It follows from (62) that

(Φ𝑦) (𝑥) ≥
𝜆𝐵

1 − 𝑚𝜔
⋅ [
1 −𝑀𝜔

𝜆𝐴

Φ𝑦
 −
1

𝜆

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))]

+
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

=
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

Φ𝑦
 −

𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

+
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

=
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

Φ𝑦
 .

(65)

So, we get

(Φ𝑦) (𝑥) ⩾
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

Φ𝑦
 . (66)

This show that Φ𝑦 ∈ 𝑃0.
It is easy to see thatΦ is the complete continuity.
We now proceed with the construction of the open sets

Ω1 andΩ2.

First, let 𝑦 ∈ 𝑃0 with ‖𝑦‖ = 𝐿1. Inequality (59) implies

(Φ𝑦) (𝑥) ≤
𝜆𝐴

1 −𝑀𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

≤
𝜆𝐴

1 −𝑀𝜔
∫

𝜔

0

𝛼 (𝑠) [𝑦 (𝑠) (1 −𝑀𝜔) − 𝑟1] 𝑑𝑠

+
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑦 (𝑠) 𝑑𝑠 −
𝜆𝐴

1 −𝑀𝜔
𝑟1

× ∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 +
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑦 (𝑠) 𝑑𝑠 +
𝐴

1 −𝑀𝜔

× [

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟1 ∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠] .

(67)

By condition (H3) and (58), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟1 ∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 ⩽ 0,

𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠 ⩽ 1.

(68)

So

(Φ𝑦) (𝑥) ⩽ 𝜆𝐴∫

𝜔

0

𝛼 (𝑠) 𝑑𝑠
𝑦
 ⩽
𝑦
 . (69)

Consequently, ‖Φ𝑦‖ ⩽ ‖𝑦‖.
Let Ω1 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < 𝐿1}. Then, we have ‖Φ𝑦‖ ⩽

‖𝑦‖ for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω1.
Next, let 𝐿2 = max{2𝐿1, ((1 − 𝑚𝜔)𝐴/(1 −𝑀𝜔)𝐵)𝐿2} and

set Ω2 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < 𝐿2}.
For 𝑦 ∈ 𝑃0 with ‖𝑦‖ = 𝐿2, we have

min
𝑥∈𝐽
𝑦 (𝑥) ≥

(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴

𝑦
 =
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴
𝐿2

≥
(1 −𝑀𝜔)𝐵

(1 − 𝑚𝜔)𝐴
⋅
(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵
𝐿2 = 𝐿2.

(70)

It follows from (63) that

(Φ𝑦) (𝑥) ≥
𝜆𝐵

1 − 𝑚𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

≥
𝜆𝐵

1 − 𝑚𝜔
∫

𝜔

0

𝛽 (𝑠) [𝑦 (𝑠) (1 − 𝑚𝜔) − 𝑝1] 𝑑𝑠

+
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))
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= 𝜆𝐵∫

𝜔

0

𝛽 (𝑠) 𝑦 (𝑠) 𝑑𝑠 +
𝐵

1 − 𝑚𝜔

× (

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝1 ∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠) .

(71)

By condition (H4) and (58), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝1 ∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠 ⩾ 0,

𝜆𝐵 ⩾
(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫
𝜔

0
𝛽 (𝑠) 𝑑𝑠

.

(72)

Since 𝑦 ∈ 𝑃0 we have 𝑦(𝑥) ⩾ ((1 −𝑀𝜔)𝐵/(1 − 𝑚𝜔)𝐴)‖𝑦‖ for
all 𝑥 ∈ 𝐽. It follows from the above inequality that

(Φ𝑦) (𝑥) ⩾
(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫
𝜔

0
𝛽 (𝑠) 𝑑𝑠

∫

𝜔

0

𝛽 (𝑠) 𝑑𝑠

⋅
(1 − 𝑀𝜔) 𝐵

(1 − 𝑚𝜔)𝐴

𝑦
 =
𝑦
 .

(73)

Hence ‖Φ𝑦‖ ⩾ ‖𝑦‖ for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω2.
It follows from (i) of Theorem 1 that Φ has a fixed point

in 𝑃0 ∩ (Ω2 \ Ω1), and this fixed point is a solution of (49).
This completes the proof.

Next, with 𝐿1 and 𝐿2 as above, we assume that 𝑓 satisfied
the following.

(H5) There exist 𝛼∗(𝑥) ∈ 𝑃, 𝑟∗
1
∈ R with 𝑟∗

1
⩽

∑
𝑚

𝑖=0
𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫

𝜔

0
𝛼
∗
(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≥ 𝛼
∗
(𝑥) [𝑦 (1 − 𝑚𝜔) − 𝑟

∗

1
] (74)

for all 𝑦 ∈ (0, 𝐿1], 𝑥 ∈ 𝐽.
(H6) There exist 𝛽∗(𝑥) ∈ 𝑃, 𝑝∗

1
∈ R with 𝑝∗

1
⩾

∑
𝑚

𝑖=0
𝐼𝑖(𝑦(𝑥𝑖))/𝜆 ∫

𝜔

0
𝛽
∗
(𝑠)𝑑𝑠 such that

𝑓 (𝑥, 𝑦) ≤ 𝛽
∗
(𝑥) [𝑦 (1 −𝑀𝜔) − 𝑝

∗

1
] (75)

for all 𝑦 ∈ (𝐿2,∞], 𝑥 ∈ 𝐽.

Theorem 14. Assume (H1), (H2), (H5), and (H6) are satisfied.
And

(1 − 𝑚𝜔)𝐴
2
∫

𝜔

0

𝛽
∗
(𝑠) 𝑑𝑠 ⩽ (1 −𝑀𝜔)𝐵

2
∫

𝜔

0

𝛼
∗
(𝑠) 𝑑𝑠, (76)

then, if 𝜆 satisfies

(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵2 ∫
𝜔

0
𝛼∗ (𝑠) 𝑑𝑠

⩽ 𝜆 ⩽
1

𝐴∫
𝜔

0
𝛽∗ (𝑠) 𝑑𝑠

. (77)

The problem (49) has at least one positive solution.

Proof. LetΦ be a completely continuous operator defined by
(54). ThenΦmaps the cone 𝑃0 into itself.

First, let 𝑦 ∈ 𝑃0 with ‖𝑦‖ = 𝐿1. Inequality (63) implies

(Φ𝑦) (𝑥) ≥
𝜆𝐵

1 − 𝑚𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

≥
𝜆𝐵

1 − 𝑚𝜔
∫

𝜔

0

𝛼
∗
(𝑠) [𝑦 (𝑠) (1 − 𝑚𝜔) − 𝑟

∗

1
] 𝑑𝑠

+
𝐵

1 − 𝑚𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐵∫

𝜔

0

𝛼
∗
(𝑠) 𝑦 (𝑠) 𝑑𝑠 +

𝐵

1 − 𝑚𝜔

× (

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟
∗

1
∫

𝜔

0

𝛼
∗
(𝑠) 𝑑𝑠) .

(78)

By condition (H5) and (77), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑟
∗

1
∫

𝜔

0

𝛼
∗
(𝑠) 𝑑𝑠 ⩾ 0,

𝜆𝐵 ⩾
(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫
𝜔

0
𝛼∗ (𝑠) 𝑑𝑠

.

(79)

Hence

(Φ𝑦) (𝑥) ⩾
(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫
𝜔

0
𝛼∗ (𝑠) 𝑑𝑠

∫

𝜔

0

𝛼
∗
(𝑠) 𝑦 (𝑠) 𝑑𝑠.

(80)

Since 𝑦 ∈ 𝑃0, we have 𝑦(𝑥) ⩾ ((1 −𝑀𝜔)𝐵/(1 −𝑚𝜔)𝐴)‖𝑦‖ for
all 𝑥 ∈ 𝐽. It follows from the above inequality that

(Φ𝑦) (𝑥) ⩾
(1 − 𝑚𝜔)𝐴

(1 −𝑀𝜔)𝐵∫
𝜔

0
𝛼∗ (𝑠) 𝑑𝑠

∫

𝜔

0

𝛼
∗
(𝑠) 𝑑𝑠

⋅
(1 − 𝑀𝜔) 𝐵

(1 − 𝑚𝜔)𝐴

𝑦
 =
𝑦
 .

(81)

Let Ω1 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < 𝐿1}. Then, we have ‖Φ𝑦‖ ⩾ ‖𝑦‖
for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω1.

Next, let 𝐿2 = max{2𝐿1, ((1 − 𝑚𝜔)𝐴/(1 −𝑀𝜔)𝐵)𝐿2} and
set Ω2 := {𝑦 ∈ 𝐶(𝐽); ‖𝑦‖ < 𝐿2}.

Then for 𝑦 ∈ 𝑃0 with ‖𝑦‖ = 𝐿2 for all 𝑥 ∈ 𝐽, we have
min𝑥∈𝐽 𝑦(𝑥) ⩾ 𝐿2. Inequality (59) implies

(Φ𝑦) (𝑥) ≤
𝜆𝐴

1 −𝑀𝜔
∫

𝜔

0

𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))
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≤
𝜆𝐴

1 −𝑀𝜔
∫

𝜔

0

𝛽
∗
(𝑠) [𝑦 (𝑠) (1 −𝑀𝜔) − 𝑝

∗

1
] 𝑑𝑠

+
𝐴

1 −𝑀𝜔

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖))

= 𝜆𝐴∫

𝜔

0

𝛽
∗
(𝑠) 𝑦 (𝑠) 𝑑𝑠

+
𝐴

1 −𝑀𝜔
[

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝
∗

1
∫

𝜔

0

𝛽
∗
(𝑠) 𝑑𝑠] .

(82)

By condition (H6) and (77), we obtain

𝑚

∑

𝑖=0

𝐼𝑖 (𝑦 (𝑥𝑖)) − 𝜆𝑝
∗

1
∫

𝜔

0

𝛽
∗
(𝑠) 𝑑𝑠 ⩽ 0,

𝜆𝐴∫

𝜔

0

𝛽
∗
(𝑠) 𝑑𝑠 ⩽ 1.

(83)

So

(Φ𝑦) (𝑥) ⩽ 𝜆𝐴∫

𝜔

0

𝛽
∗
(𝑠) 𝑑𝑠

𝑦
 ⩽
𝑦
 ⩽ 1. (84)

Therefore ‖Φ𝑦‖ ⩽ ‖𝑦‖ with ‖𝑦‖ = 𝐿2.
Then, we have ‖Φ𝑦‖ ⩽ ‖𝑦‖ for 𝑦 ∈ 𝑃0 ∩ 𝜕Ω2.
We see the case (ii) of Theorem 1 is met. It follows that Φ

has a fixed point in 𝑃0 ∩ (Ω2 \ Ω1), and this fixed point is a
solution of (49).

This completes the proof.
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By using the Riccati transformation technique and constructing a class of Philos-type functions on time scales, we establish
some new interval oscillation criteria for the second-order damped nonlinear dynamic equations with forced term of the form
(𝑟(𝑡)𝑥

Δ
(𝑡))
Δ
+ 𝑝(𝑡)𝑥

Δ𝜎
(𝑡) + 𝑞(𝑡)(𝑥

𝜎
(𝑡))
𝛼
= 𝐹(𝑡, 𝑥

𝜎
(𝑡)) on a time scale T which is unbounded, where 𝛼 is a quotient of odd positive

integer. Our results in this paper extend and improve some known results. Some examples are given here to illustrate our main
results.

1. Introduction

In this paper, we are concerned with the oscillation criteria
for the following forced second-order nonlinear dynamic
equations with damping:

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡) + 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼
= 𝐹 (𝑡, 𝑥

𝜎
(𝑡))

(1)

on a time scale T , where 𝛼 is a quotient of odd positive
integer. Throughout this paper and without further mention,
we assume that the functions 𝑟, 𝑝, 𝑞 ∈ 𝐶rd([𝑡0,∞)T ,R), 𝐹 ∈
𝐶(T ×R,R) with 𝑟(𝑡) > 0, 𝑝(𝑡) ≤ 0, and 𝑝/𝑟𝜎 ∈R+.

The theory of time scales, which has recently received a lot
of attention, was originally introduced by Stefan Hilger in his
Ph.D. thesis in 1988 (see [1]). Since then a rapidly expanding
body of the literature has sought to unify, extend, and
generalize ideas from discrete calculus, quantum calculus,
and continuous calculus to arbitrary time scale calculus,
where a time scale is an arbitrary nonempty closed subset
of the real numbers R, and the cases when this time scale
is equal to the reals or to the integers represent the classical
theories of differential and of difference equations. Many
other interesting time scales exist, and they give rise to many

applications (see [2]). Not only does the new theory of the
so-called dynamic equations unify the theories of differential
equations and difference equations, but also it extends these
classical cases to cases “in between”, for example, to the so-
called 𝑞-difference equations when T = 𝑞N0 = {𝑞𝑡 : 𝑡 ∈

N0, 𝑞 > 1} (which has important applications in quantum
theory) and can be applied on different types of time scales
like T = ℎN, T = N2, and T = T𝑛, the space of the harmonic
numbers. A book on the subject of time scales by Bohner
and Peterson [2] summarizes and organizes much of the time
scale calculus. For advances of dynamic equations on the time
scales we refer the reader to the book [3].

Since we are interested in the oscillatory behavior of
solutions near infinity, we make the assumption throughout
this paper that the given time scale T is unbounded above.
We assume 𝑡0 ∈ T and it is convenient to assume 𝑡0 > 0.
We define the time scale interval of the form [𝑡0,∞)T by
[𝑡0,∞)T = [𝑡0,∞)⋂ T . We assume throughout that T has
the topology that it inherits from the standard topology on
the real numbers R.

By a solution of (1), we mean a nontrivial real-valued
function 𝑥 satisfying (1) on [𝑡𝑥,∞)T . A solution 𝑥 of (1)
is said to be oscillatory on [𝑡𝑥,∞)T in case it is neither
eventually positive nor eventually negative; otherwise, it is
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nonoscillatory. Equation (1) is said to be oscillatory in case
all its solutions are oscillatory. Our attention is restricted to
those solutions of (1) which exist on some half line [𝑡𝑥,∞)T
and satisfy sup{|𝑥(𝑡)| : 𝑡 ≥ 𝑇} > 0 for all 𝑇 ≥ 𝑡𝑥.

In recent years, there has been much research activity
concerning the interval oscillation criteria for various second
order differential equations; see [4–9]. A great deal of effort
has been spent in obtaining criteria for oscillation of dynamic
equations on time scales without forcing terms and it is
usually assumed that the potential function 𝑞 is positive. We
refer the reader to the papers [10–25] and the references cited
therein. On the other hand, there has been an increasing
interest in obtaining sufficient conditions for the oscillation
and nonoscillation of solutions of dynamic equations with
forcing terms on time scales, and we refer the reader to the
papers [26–35].

In 2004, by using two inequalities due to Hölder and
Hardy and Littlewood and Polya as well as averaging func-
tions, Li [4] established several interval oscillation criteria
for the second order damped quasilinear differential equation
with forced term of the following form:

(𝑟 (𝑡)

𝑦

(𝑡)


𝛼−1

𝑦

(𝑡))


+ 𝑝 (𝑡)

𝑦

(𝑡)


𝛼−1

𝑦

(𝑡)

+ 𝑞 (𝑡)
𝑦 (𝑡)


𝛽−1
𝑦 (𝑡) = 𝑒 (𝑡) ,

(2)

where 𝑟 ∈ 𝐶1([𝑡0,∞),R
+
), and 𝛽 > 𝛼 > 0 are constants.

The obtained results were based on the information only on a
sequence of subintervals of [𝑡0,∞), rather than on the whole
half line, made use of the oscillatory properties of the forcing
term, and extended a known result which is obtained by
means of a Picone identity.

Erbe et al. [26] studied the forced second-order nonlinear
dynamic equation

(𝑝 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑞 (𝑡)
𝑥
𝜎
(𝑡)

𝛾 sgn𝑥𝜎 (𝑡) = 𝑓 (𝑡) (3)

on a time scale T , where 𝛾 ≥ 1. By using the Riccati substi-
tution, the authors established some new interval oscillation
criteria, that is, the criteria given by the behavior of 𝑞 and 𝑓
on a sequence of subintervals of [𝑎,∞)T .

In [31], by constructing a class of Philos-type functions
on time scales, Li et al. established some oscillation criteria
for the second order nonlinear dynamic equations with the
forced term

𝑥
ΔΔ
(𝑡) + 𝑎 (𝑡) 𝑓 (𝑥 (𝑞 (𝑡))) = 𝑒 (𝑡) (4)

on a time scale T , where 𝑎, 𝑞, and 𝑒 are real-valued rd-
continuous functions defined on T , with 𝑞 : 𝑇 → 𝑇, 𝑞(𝑡) →
∞ as 𝑡 → ∞, and𝑓 → 𝐶(R,R), 𝑥𝑓(𝑥) > 0whenever 𝑥 ̸= 0.
The obtained results unified the oscillation of the second
order forced differential equation and the second order forced
difference equation. An example was considered to illustrate
the main results in the end.

Erbe et al. [32] were concerned with the oscillatory
behavior of the forced second-order functional dynamic
equation with mixed nonlinearities

(𝑎 (𝑡) 𝑥
Δ
(𝑡))
Δ

+

𝑛

∑

𝑖=0

𝑝𝑖 (𝑡)
𝑥 (𝜏𝑖 (𝑡))


𝛼𝑖 sgn𝑥 (𝜏𝑖 (𝑡)) = 𝑒 (𝑡)

(5)

on an arbitrary time scale T , where 𝛼0 = 1, 𝛼1 > 𝛼2 >
⋅ ⋅ ⋅ > 𝛼𝑚 > 1 > 𝛼𝑚+1 > ⋅ ⋅ ⋅ > 𝛼𝑛, and 𝜏𝑖 : T → T are
nondecreasing rd-continuous functions on R, 𝜏𝑖(𝑡) ≤ 𝜎(𝑡),
and lim𝑡→∞𝜏𝑖(𝑡) = ∞, for 𝑖 = 0, 1, . . . , 𝑛. Their results in
a particular case solved a problem posed by Anderson, and
their results in the special cases when the time scale is the set
of real numbers and the set of integers involved and improved
some oscillation results for second-order differential and
difference equations, respectively.

In this paper, we intend to use the Riccati transformation
technique to obtain some interval oscillation criteria for (1).
Our results do not require that 𝑞 and 𝑓 be of definite sign
and are based on the information only on a sequence of
subintervals of [𝑡0,∞]T rather than the whole half line. To
the best of our knowledge, nothing is known regarding the
oscillation behavior of (1) on time scales until now, and there
are few results regarding the interval oscillation criteria for (1)
on time scales without the damping term when 𝛼 < 1, so our
results expand the known scope of the study.

The paper is organized as follows. In Section 2, we present
some basic definitions and useful results from the theory of
calculus on time scales on which we rely in the later section.
In Section 3, we intend to use the Riccati transformation
technique, integral averaging technique, and inequalities to
obtain some sufficient conditions for oscillation of every
solution of (1). In Section 4, we give two examples to illustrate
Theorems 3 and 7, respectively.

2. Some Preliminaries

On any time scale T , we define the forward and the backward
jump operators by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} ,
(6)

where inf 0 = sup T and sup 0 = inf T . A point 𝑡 ∈ T is said to
be left-dense if 𝜌(𝑡) = 𝑡, right-dense if 𝜎(𝑡) = 𝑡, left-scattered
if 𝜌(𝑡) < 𝑡, and right-scattered if 𝜎(𝑡) > 𝑡. The graininess
function 𝜇 for a time scale T is defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡.

For a function 𝑓 : T → R, the (delta) derivative is
defined by

𝑓
Δ
(𝑡) =

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)

𝜎 (𝑡) − 𝑡
, (7)

if 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered. If 𝑡 is right-
dense, then the derivative is defined by

𝑓
Δ
(𝑡) = lim
𝑠→𝑡+

𝑓 (𝜎 (𝑡)) − 𝑓 (𝑠)

𝜎 (𝑡) − 𝑠
= lim
𝑠→𝑡+

𝑓 (𝑡) − 𝑓 (𝑠)

𝑡 − 𝑠
, (8)
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provided this limit exists. A function 𝑓 : T → R is said
to be rd-continuous provided 𝑓 is continuous at right-dense
points and there exists a finite left limit at all left-dense points
in T .The set of all such rd-continuous functions is denoted by
𝐶rd(T).The derivative𝑓Δ of𝑓 and the forward jump operator
𝜎 are related by the formula

𝑓
𝜎
(𝑡) = 𝑓 (𝜎 (𝑡)) = 𝑓 (𝑡) + 𝜇 (𝑡) 𝑓

Δ
(𝑡) . (9)

Also, we will use 𝑥Δ𝜎 which is shorthand for (𝑥Δ)𝜎 to denote
𝑥
Δ
(𝑡)+𝜇(𝑡)𝑥

ΔΔ
(𝑡). We will make use of the following product

and quotient rules for the derivative of two differentiable
functions 𝑓 and 𝑔:

(𝑓𝑔)
Δ
(𝑡) = 𝑓

Δ
(𝑡) 𝑔 (𝑡) + 𝑓

𝜎
(𝑡) 𝑔
Δ
(𝑡)

= 𝑓 (𝑡) 𝑔
Δ
(𝑡) + 𝑓

Δ
(𝑡) 𝑔
𝜎
(𝑡) ,

(
𝑓

𝑔
)

Δ

(𝑡) =
𝑓
Δ
(𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔

Δ
(𝑡)

𝑔 (𝑡) 𝑔𝜎 (𝑡)
, if 𝑔𝑔𝜎 ̸= 0.

(10)

The integration by parts formula reads

∫

𝑐

𝑏

𝑓
Δ
(𝑡) 𝑔 (𝑡) Δ𝑡 = 𝑓 (𝑐) 𝑔 (𝑐) − 𝑓 (𝑏) 𝑔 (𝑏)

− ∫

𝑐

𝑏

𝑓
𝜎
(𝑡) 𝑔
Δ
(𝑡) Δ𝑡.

(11)

We say that a function 𝑝 : T → R is regressive provided

1 + 𝜇 (𝑡) 𝑝 (𝑡) ̸= 0, ∀𝑡 ∈ T . (12)

The set of all regressive and rd-continuous functions𝑓 : T →
R will be denoted by

R =R (T) =R (T ,R) . (13)

If 𝑝 ∈R, then we can define the exponential function by

𝑒𝑝 (𝑡, 𝑠) = exp(∫
𝑡

𝑠

𝜉𝜇(𝜏) (𝑝 (𝜏)) Δ𝜏) for 𝑠, 𝑡 ∈ T , (14)

where 𝜉ℎ(𝑧) is the cylinder transformation, which is defined
by

𝜉ℎ (𝑧) =
{

{

{

log (1 + ℎ𝑧)
ℎ

, ℎ ̸= 0,

𝑧, ℎ = 0.

(15)

Next, we give the following lemmas which will be used in
the proof of our main results.

Lemma 1 (see [2, Chapter 2]). If 𝑔 ∈R+; that is, 𝑔 : T → R

is rd-continuous and such that 1 + 𝜇(𝑡)𝑔(𝑡) > 0 for all 𝑡 ∈
[𝑡0,∞)T , then the initial value problem 𝑦Δ = 𝑔(𝑡)𝑦, 𝑦(𝑡0) =
𝑦0 ∈ R has a unique and positive solution on [𝑡0,∞)T , denoted
by 𝑒𝑔(𝑡, 𝑡0)𝑦0. This “exponential function” 𝑒𝑔(⋅, 𝑡0) satisfies the
semigroup property 𝑒𝑔(𝑎, 𝑏)𝑒𝑔(𝑏, 𝑐) = 𝑒𝑔(𝑎, 𝑐).

Lemma 2 (see [36]). If 𝜆 > 1 and 𝜌 > 1 are conjugate
numbers (1/𝜆 + 1/𝜌 = 1), then for any 𝑋,𝑌 ∈ R,

|𝑋|
𝜆

𝜆
+
|𝑌|
𝜌

𝜌
≥ |𝑋𝑌| . (16)

3. Main Results

Now, we are in a position to state and prove some new results
which guarantee that every solution of (1) oscillates. In the
sequel, we say that a function 𝑢 belongs to a function class

𝜉 (𝑎, 𝑏) := {𝑢 ∈ 𝐶
1

rd[𝑎, 𝑏]T : 𝑢 (𝑎) = 𝑢 (𝑏) = 0, 𝑢 (𝑡) ̸≡ 0} ,

(17)

denoted by 𝑢 ∈ 𝜉(𝑎, 𝑏).

Theorem 3. Assume that 𝛼 > 1 and for any 𝑇 ∈ [𝑡0,∞)T ,
there exist constants 𝑎𝑘 and 𝑏𝑘 ∈ [𝑇,∞)T , such that 𝑎𝑘 < 𝑏𝑘,
𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎1, 𝑏1]T ∪ [𝑎2, 𝑏2]T , (18)

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎𝑘, 𝑏𝑘]T ,

𝑘 = 1, 2,

(19)

where 𝑓 ∈ 𝐶𝑟𝑑([𝑡0,∞)T ,R). Furthermore, assume that there
exist functions 𝜂 ∈ 𝐶1

𝑟𝑑
([𝑡0,∞)T ,R

+
), 𝜂Δ(𝑡) ≥ 0, and 𝑢 ∈

𝜉(𝑎𝑘, 𝑏𝑘), 𝑘 = 1, 2, such that

∫

𝑏𝑘

𝑎𝑘

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝑃 (𝑡, 𝑎k) (𝑢
𝜎
(𝑡))
2
)Δ𝑡 ≤ 0,

𝑘 = 1, 2,

(20)

where

𝑃 (𝑡, 𝑎𝑘) = 𝛿0 (𝑡) − 𝜂
Δ
(𝑡) 𝛿1 (𝑡, 𝑎𝑘)

+
𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿1 (𝜎 (𝑡) , 𝑎𝑘) ,

𝛿0 (𝑡) = 𝛼
1/𝛼
(
𝛼

𝛼 − 1
)

(𝛼−1)/𝛼

𝜂
𝜎
(𝑡) 𝑞
1/𝛼
(𝑡)
𝑓 (𝑡)


(𝛼−1)/𝛼

,

𝛿1 (𝑡, 𝑎𝑘) =
1

𝑒𝑝/𝑟𝜎 (𝑡, 𝑎𝑘)

× (∫

𝑡

𝑎𝑘

1

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
Δ𝑠)

−1

.

(21)

Then (1) is oscillatory on [𝑡0,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡0,∞)T .Without loss of generality, wemay assume that there
exists a 𝑡1 ∈ [𝑡0,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all
𝑡 ∈ [𝑡1,∞)T . By assumption, we can choose 𝑏1 > 𝑎1 > 𝑡1,
then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎1, 𝑏1]T .
From (1), we have

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡) ≤ 0. (22)

Using Lemma 1 and the above inequality, we get

(𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1))

Δ

≤ 0. (23)
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Hence 𝑟(𝑡)𝑥Δ(𝑡)𝑒𝑝/𝑟𝜎(𝑡, 𝑎1) is nonincreasing on [𝑎1, 𝑏1]T . So
for 𝑡 ∈ [𝑎1, 𝑏1]T ,

𝑥 (𝑡) > 𝑥 (𝑡) − 𝑥 (𝑎1) = ∫

𝑡

𝑎1

𝑟 (𝑠) 𝑥
Δ
(𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠

≥ 𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1) ∫

𝑡

𝑎1

1

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠.

(24)

Therefore,

𝑟 (𝑡) 𝑥
Δ
(𝑡)

𝑥 (𝑡)
<

1

𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1)
(∫

𝑡

𝑎1

1

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠)

−1

= 𝛿1 (𝑡, 𝑎1) .

(25)

Define the function 𝜔 by

𝜔 (𝑡) = 𝜂 (𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)
, 𝑡 ∈ [𝑎1, 𝑏1]T .

(26)

Using the product rule and the quotient rule, we obtain

𝜔
Δ
(𝑡) = 𝜂

𝜎
(𝑡)
(𝑟 (𝑡) 𝑥

Δ
(𝑡))
Δ

𝑥 (𝑡) − 𝑟 (𝑡) (𝑥
Δ
(𝑡))
2

𝑥 (𝑡) 𝑥𝜎 (𝑡)

+ 𝜂
Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)
.

(27)

In view of (1), (26), and (27), we have

𝜔
Δ
(𝑡) = −𝜂

𝜎
(𝑡)
𝑝 (𝑡) 𝑥

Δ𝜎
(𝑡)

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡) 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼−1

+ 𝜂
𝜎
(𝑡)
𝐹 (𝑡, 𝑥

𝜎
(𝑡))

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡)
𝑟 (𝑡) (𝑥

Δ
(𝑡))
2

𝑥 (𝑡) 𝑥𝜎 (𝑡)

+ 𝜂
Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)

= −
𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)

𝑟
𝜎
(𝑡) 𝑥
Δ𝜎
(𝑡)

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡) 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼−1

− 𝜂
𝜎
(𝑡)

𝐹 (𝑡, 𝑥
𝜎
(𝑡))


𝑥𝜎 (𝑡)
−

𝜂
𝜎
(𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡)

+ 𝜂
Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)
.

(28)

From (19), (25), and (28), we get

𝜔
Δ
(𝑡) ≤ −

𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿1 (𝜎 (𝑡) , 𝑎1) − 𝜂

𝜎
(𝑡) 𝑞 (𝑡) (𝑥

𝜎
(𝑡))
𝛼−1

− 𝜂
𝜎
(𝑡)

𝑓 (𝑡)


𝑥𝜎 (𝑡)
−

𝜂
𝜎
(𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡)

+ 𝜂
Δ
(𝑡) 𝛿1 (𝑡, 𝑎1) .

(29)

Set

𝐺 (𝑥) = 𝜂
𝜎
(𝑡) 𝑞 (𝑡) 𝑥

𝛼−1
+ 𝜂
𝜎
(𝑡)

𝑓 (𝑡)


𝑥
,

𝜆 = 𝛼, 𝜌 =
𝛼

𝛼 − 1
.

(30)

From Lemma 2, it is easy to see that

𝐺 (𝑥
𝜎
) ≥ 𝛼
1/𝛼
(
𝛼

𝛼 − 1
)

(𝛼−1)/𝛼

𝜂
𝜎
(𝑡) 𝑞
1/𝛼
(𝑡)
𝑓 (𝑡)


(𝛼−1)/𝛼

= 𝛿0 (𝑡) .

(31)

Since 𝑥(𝑡) > 0, we obtain

0 <
𝑥 (𝑡)

𝑟 (𝑡) 𝑥𝜎 (𝑡)
=

1

𝑟 (𝑡) + 𝜇 (𝑡) (𝑟 (𝑡) 𝑥Δ (𝑡) /𝑥 (𝑡))

=
𝜂 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
.

(32)

Thus, combining (29)–(32) and noticing that 𝜂Δ(𝑡) ≥ 0, we
have

𝜔
Δ
(𝑡) ≤ −𝑃 (𝑡, 𝑎1) −

1

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝜔
2
(𝑡) , (33)

where 𝑃 is defined as in Theorem 3. Multiplying (33) by
(𝑢
𝜎
(𝑡))
2 and integrating from 𝑎1 to 𝑏1, we get

∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
Δ
(𝑡) Δ𝑡 ≤ −∫

𝑏1

𝑎1

𝑃 (𝑡, 𝑎1) (𝑢
𝜎
(𝑡))
2
Δ𝑡

− ∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(34)

Using integration by parts on the first integral, we obtain

𝑢
2
(𝑡) 𝜔 (𝑡)



𝑏1

𝑎1

− ∫

𝑏1

𝑎1

(𝑢 (𝑡) + 𝑢
𝜎
(𝑡)) 𝑢
Δ
(𝑡) 𝜔 (𝑡) Δ𝑡

≤ −∫

𝑏1

𝑎1

𝑃 (𝑡, 𝑎1) (𝑢
𝜎
(𝑡))
2
Δ𝑡 − ∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(35)
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Rearranging and using 𝑢(𝑎1) = 0 = 𝑢(𝑏1), we have

0 ≥ ∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡

− ∫

𝑏1

𝑎1

(𝑢 (𝑡) + 𝑢
𝜎
(𝑡)) 𝑢
Δ
(𝑡) 𝜔 (𝑡) Δ𝑡

+ ∫

𝑏1

𝑎1

𝑃 (𝑡, 𝑎1) (𝑢
𝜎
(𝑡))
2
Δ𝑡

= ∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡

− ∫

𝑏1

𝑎1

(2𝑢
𝜎
(𝑡) 𝑢
Δ
(𝑡) 𝜔 (𝑡)

−𝜇 (𝑡) (𝑢
Δ
(𝑡))
2

𝜔 (𝑡)) Δ𝑡

+ ∫

𝑏1

𝑎1

𝑃 (𝑡, 𝑎1) (𝑢
𝜎
(𝑡))
2
Δ𝑡.

(36)

Adding and subtracting the term ∫𝑏1
𝑎1
𝜂(𝑡)𝑟(𝑡)(𝑢

Δ
(𝑡))
2
Δ𝑡 and

using (20), we get

0 ≥ ∫

𝑏1

𝑎1

[
(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
− 2𝑢
𝜎
(𝑡) 𝑢
Δ
(𝑡) 𝜔 (𝑡)

+ (𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)) (𝑢
Δ
(𝑡))
2

]Δ𝑡

− ∫

𝑏1

𝑎1

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝑃 (𝑡, 𝑎1) (𝑢
𝜎
(𝑡))
2
)Δ𝑡

≥ ∫

𝑏1

𝑎1

[
𝑢
𝜎
(𝑡) 𝜔 (𝑡)

√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)

−√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)𝑢
Δ
(𝑡) ]

2

Δ𝑡.

(37)

It follows that

∫

𝑏1

𝑎1

[
𝑢
𝜎
(𝑡) 𝜔 (𝑡)

√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)

−√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)𝑢
Δ
(𝑡) ]

2

Δ𝑡 = 0.

(38)

This implies that

𝑢
𝜎
(𝑡) 𝜔 (𝑡)

√𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)

− √𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)𝑢
Δ
(𝑡) = 0, 𝑡 ∈ [𝑎1, 𝑏1]T .

(39)

Solving for 𝑢Δ, we get that 𝑢 solves the IVP

𝑢
Δ
(𝑡) =

𝜔 (𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝑢
𝜎
(𝑡) ,

𝑢 (𝑎1) = 0, for 𝑡 ∈ [𝑎1, 𝑏1]T .
(40)

Since −𝜔/(𝜂𝑟 + 𝜇𝜔) ∈ R, we obtain from [2, Theorem 2.7.1]
that 𝑢(𝑡) ≡ 0 on [𝑎1, 𝑏1]T , which is a contradiction. The proof
when 𝑥 is eventually negative follows the same arguments
using the interval [𝑎2, 𝑏2]T instead of [𝑎1, 𝑏1]T , where we use
𝑞(𝑡) ≥ 0,𝐹(𝑡, 𝑥𝜎(𝑡)) ≥ 0 on [𝑎2, 𝑏2]T , and∫

𝑏2

𝑎2
(𝜂(𝑡)𝑟(𝑡)(𝑢

Δ
(𝑡))
2
−

𝑃(𝑡)(𝑢
𝜎
(𝑡))
2
)Δ𝑡 ≤ 0. The proof is complete.

Remark 4. When 𝑝(𝑡) = 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) = 𝑓(𝑡), Theorem 3
contains Theorem 3.2 in [26].

Theorem 5. Assume that 𝛼 = 1 and for any 𝑇 ∈ [𝑡0,∞)T ,
there exist constants 𝑎𝑘 and 𝑏𝑘 ∈ [𝑇,∞)T , such that 𝑎𝑘 < 𝑏𝑘,
𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎1, 𝑏1]T ∪ [𝑎2, 𝑏2]T ,

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ 0, for 𝑡 ∈ [𝑎𝑘, 𝑏𝑘]T , 𝑘 = 1, 2.

(41)

Furthermore, assume that there exist functions
𝜂 ∈ 𝐶

1

𝑟𝑑
([𝑡0,∞)T ,R

+
), 𝜂Δ(𝑡) ≥ 0, and 𝑢 ∈ 𝜉(𝑎𝑘, 𝑏𝑘),

𝑘 = 1, 2, such that

∫

𝑏𝑘

𝑎𝑘

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝐾 (𝑡, 𝑎𝑘) (𝑢
𝜎
(𝑡))
2
)Δ𝑡 ≤ 0,

𝑘 = 1, 2,

(42)

where
K (𝑡, 𝑎𝑘) = 𝜂

𝜎
(𝑡) 𝑞 (𝑡) − 𝜂

Δ
(𝑡) 𝛿1 (𝑡, 𝑎𝑘)

+
𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿1 (𝜎 (𝑡) , 𝑎𝑘) ,

(43)

and 𝛿1 is defined as in Theorem 3. Then (1) is oscillatory on
[𝑡0,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡0,∞)T .Without loss of generality, wemay assume that there
exists a 𝑡1 ∈ [𝑡0,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all
𝑡 ∈ [𝑡1,∞)T . By assumption, we can choose 𝑏1 > 𝑎1 > 𝑡1,
then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎1, 𝑏1]T .
We define 𝜔 as in Theorem 3. Proceeding as in the proof of
Theorem 3 and from (25) and (32), we get

𝜔
Δ
(𝑡) = −

𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)

𝑟
𝜎
(𝑡) 𝑥
Δ𝜎
(𝑡)

𝑥𝜎 (𝑡)
− 𝜂
𝜎
(𝑡) 𝑞 (𝑡)

− 𝜂
𝜎
(𝑡)

𝐹 (𝑡, 𝑥
𝜎
(𝑡))


𝑥𝜎 (𝑡)

−
𝜂
𝜎
(𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡) + 𝜂

Δ
(𝑡)
𝑟 (𝑡) 𝑥

Δ
(𝑡)

𝑥 (𝑡)

≤ −𝐾 (𝑡, 𝑎1) −
1

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝜔
2
(𝑡) ,

(44)
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where 𝐾 is defined as in Theorem 5. Multiplying (44) by
(𝑢
𝜎
(𝑡))
2 and integrating from 𝑎1 to 𝑏1, we get

∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
Δ
(𝑡) Δ𝑡 ≤ −∫

𝑏1

𝑎1

𝐾(𝑡, 𝑎1) (𝑢
𝜎
(𝑡))
2
Δ𝑡

− ∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(45)

The rest of the argument proceeds as in Theorem 3 to get a
contradiction to (42). The proof is complete.

Remark 6. When 𝑝(𝑡) = 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) = 𝑓(𝑡), Theorem 5
contains Theorem 2.1 in [26].

Theorem 7. Assume that 𝛼 < 1 and for any 𝑇 ∈ [𝑡0,∞)T ,
there exist constants 𝑎𝑘 and 𝑏𝑘 ∈ [𝑇,∞)T , such that 𝑎𝑘 < 𝑏𝑘,
𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎1, 𝑏1]T ∪ [𝑎2, 𝑏2]T , (46)

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) (𝑥

𝜎
(𝑡))
𝛼+1
≥ 0

for 𝑡 ∈ [𝑎𝑘, 𝑏𝑘]T , 𝑘 = 1, 2,
(47)

where 𝑓 ∈ 𝐶𝑟𝑑([𝑡0,∞)T ,R). Furthermore, assume that there
exist functions 𝜂 ∈ 𝐶1

𝑟𝑑
([𝑡0,∞)T ,R

+
), 𝜂Δ(𝑡) ≥ 0, and 𝑢 ∈

𝜉(𝑎𝑘, 𝑏𝑘), 𝑘 = 1, 2, such that

∫

𝑏𝑘

𝑎𝑘

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢
Δ
(𝑡))
2

− 𝑃1 (𝑡, 𝑎𝑘) (𝑢
𝜎
(𝑡))
2
)Δ𝑡 ≤ 0,

𝑘 = 1, 2,

(48)

where

𝑃1 (𝑡, 𝑎𝑘) = 𝛿2 (𝑡) − 𝜂
Δ
(𝑡) 𝛿1 (𝑡, 𝑎𝑘)

+
𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿1 (𝜎 (𝑡) , 𝑎𝑘) ,

𝛿2 (𝑡) =
1

𝛼𝛼(1 − 𝛼)
1−𝛼
𝜂
𝜎
(𝑡) 𝑞
𝛼
(𝑡)
𝑓(𝑡)

1−𝛼
,

(49)

and 𝛿1 is defined as in Theorem 3. Then (1) is oscillatory on
[𝑡0,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡0,∞)T .Without loss of generality, wemay assume that there
exists a 𝑡1 ∈ [𝑡0,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all
𝑡 ∈ [𝑡1,∞)T . By assumption, we can choose 𝑏1 > 𝑎1 > 𝑡1,
then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎1, 𝑏1]T .
We define 𝜔 as in Theorem 3. Proceeding as in the proof of
Theorem 3, we have (28). Hence, from (25), (28), and (47),
we get

𝜔
Δ
(𝑡) ≤ −

𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿1 (𝜎 (𝑡) , 𝑎1) −

𝜂
𝜎
(𝑡) 𝑞 (𝑡)

(𝑥𝜎 (𝑡))
1−𝛼

− 𝜂
𝜎
(𝑡)
𝑓 (𝑡)

 (𝑥
𝜎
(𝑡))
𝛼

−
𝜂
𝜎
(𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡) + 𝜂

Δ
(𝑡) 𝛿1 (𝑡, 𝑎1) .

(50)

Set

𝐺 (𝑥) =
𝜂
𝜎
(𝑡) 𝑞 (𝑡)

𝑥1−𝛼
− 𝜂
𝜎
(𝑡)
𝑓 (𝑡)

 𝑥
𝛼
,

𝜆 =
1

𝛼
, 𝜌 =

1

1 − 𝛼
.

(51)

From Lemma 2, it is easy to see that

𝐺 (𝑥
𝜎
) ≥

1

𝛼𝛼(1 − 𝛼)
1−𝛼
𝜂
𝜎
(𝑡) 𝑞
𝛼
(𝑡)
𝑓 (𝑡)


1−𝛼
= 𝛿2 (𝑡) . (52)

Thus, combining (32), (50), and (52) and noticing that 𝜂Δ(𝑡) ≥
0, we have

𝜔
Δ
(𝑡) ≤ −𝑃1 (𝑡, 𝑎1) −

1

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
𝜔
2
(𝑡) , (53)

where 𝑃1 is defined as in Theorem 7. Multiplying (53) by
(𝑢
𝜎
(𝑡))
2 and integrating from 𝑎1 to 𝑏1, we get

∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
Δ
(𝑡) Δ𝑡 ≤ −∫

𝑏1

𝑎1

𝑃1 (𝑡, 𝑎1) (𝑢
𝜎
(𝑡))
2
Δ𝑡

− ∫

𝑏1

𝑎1

(𝑢
𝜎
(𝑡))
2
𝜔
2
(𝑡)

𝜂 (𝑡) 𝑟 (𝑡) + 𝜇 (𝑡) 𝜔 (𝑡)
Δ𝑡.

(54)

The rest of the argument proceeds as in Theorem 3 to get a
contradiction to (47). The proof is complete.

Next, let us introduce the class of functions 𝑌, which will
be extensively used in the sequel.

Let D0 = {(𝑡, 𝑠) ∈ T2 : 𝑡 > 𝑠 ≥ 𝑡0} and D = {(𝑡, 𝑠) ∈ T2 :

𝑡 ≥ 𝑠 ≥ 𝑡0}. We say that the function𝐻 ∈ 𝐶rd(D,R) belongs
to the class 𝑌, if

(i) 𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑡0,𝐻(𝑡, 𝑠) > 0 on D0;

(ii) 𝐻 has continuous Δ-partial derivatives 𝐻Δ 𝑡(𝑡, 𝑠) and
𝐻
Δ 𝑠(𝑡, 𝑠) on D such that

𝐻
Δ 𝑡 (𝑡, 𝜎 (𝑠)) = ℎ1 (𝑡, 𝑠) √𝐻 (𝜎 (𝑡) , 𝜎 (𝑠)),

𝐻
Δ 𝑠 (𝜎 (𝑡) , 𝑠) = −ℎ2 (𝑡, 𝑠) √𝐻 (𝜎 (𝑡) , 𝜎 (𝑠)),

(55)

where ℎ1 and ℎ2 ∈ 𝐶rd(D,R).

Theorem 8. Assume that 𝛼 > 1 and for any 𝑇 ∈ [𝑡0,∞)T ,
there exist constants 𝑎𝑘 and 𝑏𝑘 ∈ [𝑇,∞)T , such that 𝑎𝑘 < 𝑏𝑘,
𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0, for 𝑡 ∈ [𝑎1, 𝑏1]T ∪ [𝑎2, 𝑏2]T ,

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) ≥ 0,

for 𝑡 ∈ [𝑎𝑘, 𝑏𝑘]T , 𝑘 = 1, 2,

(56)
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where 𝑓 ∈ 𝐶𝑟𝑑([𝑡0,∞)T ,R). Furthermore, assume that there
exists a function 𝜂 ∈ 𝐶1

𝑟𝑑
([𝑡0,∞)T ,R

+
) such that for some𝐻 ∈

𝑌 and 𝑐𝑘 ∈ (𝑎𝑘, 𝑏𝑘)T ,

1

𝐻 (𝜎 (𝑐𝑘) , 𝜎 (𝑎𝑘))
∫

𝑐𝑘

𝑎𝑘

[𝐻 (𝜎 (𝑠) , 𝜎 (𝑎𝑘)) 𝑄 (𝑠, 𝑎k)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎𝑘)
𝜙
2

1
(𝑠, 𝑎𝑘)]Δ𝑠

+
1

𝐻 (𝜎 (𝑏𝑘) , 𝜎 (𝑐𝑘))
∫

𝑏𝑘

𝑐𝑘

[𝐻 (𝜎 (𝑏𝑘) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎k)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿(𝑠, 𝑎𝑘)
𝜙
2

2
(𝑏𝑘, 𝑠)]

× Δ𝑠 > 0, 𝑘 = 1, 2,

(57)

where

𝜙1 (𝑠, 𝑎𝑘) = ℎ1 (𝑠, 𝑎𝑘) + √𝐻(𝜎 (𝑠) , 𝜎 (𝑎𝑘))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
,

𝜙2 (𝑏𝑘, 𝑠) = ℎ2 (𝑏𝑘, 𝑠) − √𝐻 (𝜎 (𝑏𝑘) , 𝜎 (𝑠))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
,

𝑄 (𝑡, 𝑎𝑘) = 𝛿0 (𝑡) +
𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿1 (𝜎 (𝑡) , 𝑎𝑘) ,

𝛿 (𝑡, 𝑎𝑘) = ∫

𝑡

𝑎𝑘

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
(∫

𝜎(𝑡)

𝑎𝑘

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
)

−1

,

(58)

and 𝛿0 and 𝛿1 are defined as in Theorem 3. Then (1) is
oscillatory on [𝑡0,∞)T .

Proof. Assume that 𝑥 is a nonoscillatory solution of (1) on
[𝑡0,∞)T .Without loss of generality, wemay assume that there
exists a 𝑡1 ∈ [𝑡0,∞)T , such that 𝑥(𝑡) > 0, 𝑥𝜎(𝑡) > 0 for all
𝑡 ∈ [𝑡1,∞)T . By assumption, we can choose 𝑏1 > 𝑎1 > 𝑡1,
then 𝑞(𝑡) ≥ 0 and 𝐹(𝑡, 𝑥𝜎(𝑡)) ≤ 0 on the interval [𝑎1, 𝑏1]T . We
define the function 𝜔 as in Theorem 3. Proceeding as in the
proof of Theorem 3 and from (25) and (31), we get

𝜔
Δ
(𝑡) ≤ −𝑄 (𝑡, 𝑎1) +

𝜂
Δ
(𝑡)

𝜂 (𝑡)
𝜔 (𝑡) −

𝜂
𝜎
(𝑡) 𝑥 (𝑡)

𝜂2 (𝑡) 𝑟 (𝑡) 𝑥𝜎 (𝑡)
𝜔
2
(𝑡) ,

(59)

where𝑄 is defined as inTheorem 7. Since 𝑟(𝑡)𝑥Δ(𝑡)𝑒𝑝/𝑟𝜎(𝑡, 𝑎1)
is nonincreasing on [𝑎1, 𝑏1]T , we obtain

𝑥
𝜎
(𝑡) − 𝑥 (𝑡) = ∫

𝜎(𝑡)

𝑡

𝑟 (𝑠) 𝑥
Δ
(𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
Δ𝑠

≤ 𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1) ∫

𝜎(𝑡)

𝑡

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
,

(60)

hence

𝑥
𝜎
(𝑡)

𝑥 (𝑡)
≤ 1 +

𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1)

𝑥 (𝑡)
∫

𝜎(𝑡)

𝑡

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
.

(61)

From (25), we have

𝑟 (𝑡) 𝑥
Δ
(𝑡) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎1)

𝑥 (𝑡)
< (∫

𝑡

𝑎1

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
)

−1

. (62)

Therefore, from (61) and (62), we get

𝑥
𝜎
(𝑡)

𝑥 (𝑡)
< ∫

𝜎(𝑡)

𝑎1

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
(∫

𝑡

𝑎1

Δ𝑠

𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎1)
)

−1

=
1

𝛿 (𝑡, 𝑎1)
.

(63)

Combining (59) and (63), we obtain

𝜔
Δ
(𝑡) ≤ −𝑄 (𝑡, 𝑎1) +

𝜂
Δ
(𝑡)

𝜂 (𝑡)
𝜔 (𝑡)

−
𝜂
𝜎
(𝑡) 𝛿 (𝑡, 𝑎1)

𝜂2 (𝑡) 𝑟 (𝑡)
𝜔
2
(𝑡) , 𝑡 ∈ [𝑎1, 𝑏1]T .

(64)

Multiplying both sides of (64) by𝐻(𝜎(𝑠), 𝜎(𝑡)) and integrat-
ing with respect to 𝑠 from 𝑡 to 𝑐1 for 𝑡 ∈ (𝑎1, 𝑐1]T , we have

∫

𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝑄 (𝑠, 𝑎1) Δ𝑠

≤ −∫

𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝜔
Δ
(𝑠) Δ𝑠

+ ∫

𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
𝜔 (𝑠) Δ𝑠

− ∫

𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂
𝜎
(𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠.

(65)

In view of (i) and (ii), we see that

∫

𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝜔
Δ
(𝑠) Δ𝑠

= 𝐻 (𝜎 (𝑐1) , 𝜎 (𝑡)) 𝜔 (𝑐1)

− ∫

𝑐1

𝑡

ℎ1 (𝑠, 𝑡) √𝐻 (𝜎 (𝑠) , 𝜎 (𝑡))𝜔 (𝑠) Δ𝑠.

(66)
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Using (66) in (65) leads to

∫

𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡)) 𝑄 (𝑠, 𝑎1) Δ𝑠

≤ −𝐻 (𝜎 (𝑐1) , 𝜎 (𝑡)) 𝜔 (𝑐1)

− ∫

𝑐1

𝑡

𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂
𝜎
(𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠

+ ∫

𝑐1

𝑡

(ℎ1 (𝑠, 𝑡) √𝐻 (𝜎 (𝑠) , 𝜎 (𝑡))

+𝐻 (𝜎 (𝑠) , 𝜎 (𝑡))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
)𝜔 (𝑠) Δ𝑠

= −𝐻 (𝜎 (𝑐1) , 𝜎 (𝑡)) 𝜔 (𝑐1)

+ ∫

𝑐1

𝑡

𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

1
(𝑠, 𝑡) Δ𝑠

− ∫

𝑐1

𝑡

(√𝐻(𝜎 (𝑠) , 𝜎 (𝑡))
𝜂
𝜎
(𝑠) 𝛿 (𝑠, 𝑎1)

𝑟 (𝑠)

𝜔 (𝑠)

𝜂 (𝑠)

−
𝜂 (𝑠)√𝑟 (𝑠)

2√𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜙1 (𝑠, 𝑡))

2

Δ𝑠

≤ −𝐻 (𝜎 (𝑐1) , 𝜎 (𝑡)) 𝜔 (𝑐1)

+ ∫

𝑐1

𝑡

𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

1
(𝑠, 𝑡) Δ𝑠.

(67)

Letting 𝑡 → 𝑎+
1
in the above inequality, we get

1

𝐻 (𝜎 (𝑐1) , 𝜎 (𝑎1))
∫

𝑐1

𝑎1

[𝐻 (𝜎 (𝑠) , 𝜎 (𝑎1)) 𝑄 (𝑠, 𝑎1)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

1
(𝑠, 𝑎1)]Δ𝑠

≤ −𝜔 (𝑐1) .

(68)

Similarly, multiplying both sides of (64) by𝐻(𝜎(𝑡), 𝜎(𝑠)) and
integrating with respect to 𝑠 from 𝑐1 to 𝑡 for 𝑡 ∈ [𝑐1, 𝑏1)T , we
obtain

∫

𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎1) Δ𝑠

≤ −∫

𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠)) 𝜔
Δ
(𝑠) Δ𝑠

+ ∫

𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
𝜔 (𝑠) Δ𝑠

− ∫

𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂
𝜎
(𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠

≤ 𝐻 (𝜎 (𝑡) , 𝜎 (𝑐1)) 𝜔 (𝑐1)

− ∫

𝑡

𝑐1

𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂
𝜎
(𝑠) 𝛿 (𝑠, 𝑎1)

𝜂2 (𝑠) 𝑟 (𝑠)
𝜔
2
(𝑠) Δ𝑠

− ∫

𝑡

𝑐1

(ℎ2 (𝑡, 𝑠) √𝐻 (𝜎 (𝑡) , 𝜎 (𝑠))

−𝐻 (𝜎 (𝑡) , 𝜎 (𝑠))
𝜂
Δ
(𝑠)

𝜂 (𝑠)
)𝜔 (𝑠) Δ𝑠

= 𝐻 (𝜎 (𝑡) , 𝜎 (𝑐1)) 𝜔 (𝑐1)

+ ∫

𝑡

𝑐1

𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

2
(𝑡, 𝑠) Δ𝑠

− ∫

𝑡

𝑐1

(√𝐻(𝜎 (𝑡) , 𝜎 (𝑠))
𝜂
𝜎
(𝑠) 𝛿 (𝑠, 𝑎1)

𝑟 (𝑠)

𝜔 (𝑠)

𝜂 (𝑠)

+
𝜂 (𝑠)√𝑟 (𝑠)

2√𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)

𝜙2 (𝑡, 𝑠))

2

Δ𝑠

≤ 𝐻 (𝜎 (𝑡) , 𝜎 (𝑐1)) 𝜔 (𝑐1)

+ ∫

𝑡

𝑐1

𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

2
(𝑡, 𝑠) Δ𝑠.

(69)

Letting 𝑡 → 𝑏−
1
in the above inequality, we get

1

𝐻 (𝜎 (𝑏1) , 𝜎 (𝑐1))
∫

𝑏1

𝑐1

[𝐻 (𝜎 (𝑏1) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎1)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎1)
𝜙
2

2
(𝑏1, 𝑠)] Δ𝑠

≤ 𝜔 (𝑐1) .

(70)

Adding (68) and (70), we get a contradiction to (57). This
completes the proof.

Theorem 9. Assume that 𝛼 < 1 and for any 𝑇 ∈ [𝑡0,∞)T ,
there exist constants 𝑎𝑘 and 𝑏𝑘 ∈ [𝑇,∞)T , such that 𝑎𝑘 < 𝑏𝑘,
𝑘 = 1, 2, with

𝑞 (𝑡) ≥ 0 for 𝑡 ∈ [𝑎1, 𝑏1]T ∪ [𝑎2, 𝑏2]T ,

(−1)
𝑘
𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ≥ (−1)

𝑘
𝑓 (𝑡) (𝑥

𝜎
(𝑡))
𝛼+1
≥ 0,

for 𝑡 ∈ [𝑎𝑘, 𝑏𝑘]T , 𝑘 = 1, 2,

(71)
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where 𝑓 ∈ 𝐶𝑟𝑑([𝑡0,∞)T ,R). Furthermore, assume that there
exists a function 𝜂 ∈ 𝐶1

𝑟𝑑
([𝑡0,∞)T ,R

+
) such that for some𝐻 ∈

𝑌 and 𝑐𝑘 ∈ (𝑎𝑘, 𝑏𝑘)T ,

1

𝐻 (𝜎 (𝑐𝑘) , 𝜎 (𝑎𝑘))
∫

𝑐𝑘

𝑎𝑘

[𝐻 (𝜎 (𝑠) , 𝜎 (𝑎𝑘)) 𝑄 (𝑠, 𝑎𝑘)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎𝑘)
𝜙
2

1
(𝑠, 𝑎𝑘)]Δ𝑠

+
1

𝐻 (𝜎 (𝑏𝑘) , 𝜎 (𝑐𝑘))
∫

𝑏𝑘

𝑐𝑘

[𝐻 (𝜎 (𝑏𝑘) , 𝜎 (𝑠)) 𝑄 (𝑠, 𝑎𝑘)

−
𝜂
2
(𝑠) 𝑟 (𝑠)

4𝜂𝜎 (𝑠) 𝛿 (𝑠, 𝑎𝑘)
𝜙
2

2
(𝑏𝑘, 𝑠)]

× Δ𝑠 > 0, 𝑘 = 1, 2,

(72)

where

𝑄 (𝑡, 𝑎𝑘) = 𝛿2 (𝑡) +
𝜂
𝜎
(𝑡) 𝑝 (𝑡)

𝑟𝜎 (𝑡)
𝛿1 (𝜎 (𝑡) , 𝑎𝑘) . (73)

𝛿1 is defined as inTheorem 3, 𝛿2 is defined as inTheorem 7, and
𝜙1, 𝜙2, and 𝛿 are defined as inTheorem 8.Then (1) is oscillatory
on [𝑡0,∞)T .

Theproof ofTheorem 9 is similar to that ofTheorem 8, so
we omit the proof.

Remark 10. The main results in this paper can also be
extended to the following second order damped dynamic
equations with mixed nonlinearities:

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡) + 𝑞0 (𝑡) 𝑥 (𝜏0 (𝑡))

+ 𝑞1 (𝑡)
𝑥 (𝜏1 (𝑡))


𝛽−1
𝑥 (𝜏1 (𝑡))

+ 𝑞2 (𝑡)
𝑥 (𝜏2 (𝑡))


𝛾−1
𝑥 (𝜏2 (𝑡)) = 𝐹 (𝑡, 𝑥

𝜎
(𝑡)) ,

(74)

where 𝛾 > 1 > 𝛽 > 0, 𝜏𝑖(𝑡) ≤ 𝜎(𝑡), 𝑖 = 0, 1, 2, or the more
general equation

(𝑟 (𝑡) 𝑥
Δ
(𝑡))
Δ

+ 𝑝 (𝑡) 𝑥
Δ𝜎
(𝑡)

+

𝑛

∑

𝑖=0

𝑞𝑖 (𝑡)
𝑥 (𝜏𝑖 (𝑡))


𝛼𝑖−1
𝑥 (𝜏𝑖 (𝑡)) = 𝐹 (𝑡, 𝑥

𝜎
(𝑡))

(75)

on any arbitrary time scale T , where 𝛼0 = 1, 𝛼1 > 𝛼2 > ⋅ ⋅ ⋅ >
𝛼𝑚 > 1 > 𝛼𝑚+1 > ⋅ ⋅ ⋅ > 𝛼𝑛 > 0 and 𝜏𝑖 are nondecreasing rd-
continuous functions on R with 𝜏𝑖(𝑡) ≤ 𝜎(𝑡), 𝑖 = 0, 1, . . . , 𝑛.
Due to the limited space, we omit it here and leave it to the
readers who are interested in this problem.

4. Examples

In this section, we will show the applications of our interval
oscillation criteria in two examples. Firstly, we will give an
example to illustrate Theorem 3.

Example 1. Consider the following second order forced
difference equations with damping:

Δ(𝑡 (sin 𝜋𝑡
4
+ 2)Δ𝑥 (𝑡))

−
𝑡
2
− 1

𝑡2
(sin 𝜋 (𝑡 + 1)

4
+ 2)Δ𝑥 (𝑡)

+
𝑐0

(𝑡 + 1)
2
(sin 𝜋𝑡

4
+ 2) 𝑥

2
(𝑡) = − cos 𝜋𝑡

4
,

(76)

for 𝑡 ≥ 2, where 𝑐0 is a positive constant. Here

𝑟 (𝑡) = 𝑡 (sin 𝜋𝑡
4
+ 2) ,

𝑝 (𝑡) = −
𝑡
2
− 1

𝑡2
(sin 𝜋 (𝑡 + 1)

4
+ 2) ,

𝑞 (𝑡) =
𝑐0

(𝑡 + 1)
2
(sin 𝜋𝑡

4
+ 2) ,

𝐹 (𝑡, 𝑥 (𝑡)) = 𝑓 (𝑡) = − cos 𝜋𝑡
4
, 𝛼 = 2.

(77)

Let

𝑎1 = 8ℎ, 𝑏1 = 𝑎2 = 8ℎ + 2,

𝑏2 = 8ℎ + 4, ℎ = 1, 2, . . . ,

(78)

such that

𝑞 (𝑡) ≥ 0, (−1)
𝑘
𝑓 (𝑡) ≥ 0,

𝑡 ∈ [8ℎ, 8ℎ + 2) ∪ [8ℎ + 2, 8ℎ + 4) , 𝑘 = 1, 2.

(79)

For 𝑡 ≥ 2, we obtain

𝛿1 (𝜎 (𝑡) , 𝑎𝑘)

=
1

(1 + 𝜇 (𝑡) (𝑝 (𝑡) /𝑟𝜎 (𝑡))) 𝑒𝑝/𝑟𝜎 (𝑡, 𝑎𝑘)

×(∫

𝜎(𝑡)

𝑎𝑘

1

(1+𝜇 (𝑠) (𝑝 (𝑠) /𝑟𝜎 (𝑠))) 𝑟 (𝑠) 𝑒𝑝/𝑟𝜎 (𝑠, 𝑎𝑘)
Δ𝑠)

−1

≤
𝑡

𝑡 − 1
𝛿1 (𝑡, 𝑎𝑘) .

(80)
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Setting 𝜂(𝑡) = 1/𝑡 and 𝑢(𝑡) = sin(𝜋𝑡/2), we have

𝑃 (𝑡, 𝑎𝑘) ≥ 2 (𝑡 + 1) (
𝑐0

(𝑡 + 1)
2
(sin 𝜋𝑡

4
+ 2))

1/2
− cos 𝜋𝑡

4



1/2

= 2(𝑐0 (sin
𝜋𝑡

4
+ 2)


cos 𝜋𝑡
4


)

1/2

,

𝑏1−1

∑

𝑗=𝑎1

(𝜂 (𝑗) 𝑟 (𝑗) (Δ𝑢 (𝑗))
2
− 𝑃 (𝑗, 𝑎1) 𝑢

2
(𝑗 + 1))

≤

8ℎ+1

∑

𝑗=8ℎ

(
1

𝑗
⋅ 𝑗 (sin

𝜋𝑗

4
+2)(sin

𝜋 (𝑗 + 1)

2
−sin

𝜋𝑗

2
)

2

−2(𝑐0 (sin
𝜋𝑗

4
+ 2) cos

𝜋𝑗

4
)

1/2

sin2
𝜋 (𝑗 + 1)

2
)

=
√2

2
+ 4 − 2(2𝑐0)

1/2
.

(81)

Then byTheorem 3, every solution of (76) is oscillatory if

𝑐0 ≥
1

2
(
√2

4
+ 2)

2

. (82)

Next, we will give an example to illustrate Theorem 7.

Example 2. Consider the following second order forced
differential equations with damping:

(𝑡 (sin 2𝑡 + 2) 𝑥 (𝑡))


− (sin 2𝑡 + 2) 𝑥 (𝑡) +
𝑐0cos
2
2𝑡

𝑡1/𝛼
𝑥
𝛼
(𝑡)

= − sin 2𝑡, 𝑡 ≥ 1,
(83)

where 𝑐0 is a positive constant. Here,

𝑟 (𝑡) = 𝑡 (sin 2𝑡 + 2) , 𝑝 (𝑡) = − sin 2𝑡 − 2,

𝑞 (𝑡) =
𝑐0cos
2
2𝑡

𝑡1/𝛼
, 𝐹 (𝑡, 𝑥 (𝑡)) = 𝑓 (𝑡) = − sin 2𝑡,

𝛼 < 1.

(84)

Let

𝑎1 = 2ℎ𝜋, 𝑏1 = 𝑎2 = 2ℎ𝜋 +
𝜋

2
,

𝑏2 = 2ℎ𝜋 + 𝜋, ℎ = 1, 2, . . . ,

(85)

such that

𝑞 (𝑡) ≥ 0, (−1)
𝑘
𝑓 (𝑡) ≥ 0,

𝑡 ∈ [2ℎ𝜋, 2ℎ𝜋 +
𝜋

2
) ∪ [2ℎ𝜋 +

𝜋

2
, 2ℎ𝜋 + 𝜋) , 𝑘 = 1, 2.

(86)

Setting 𝜂(𝑡) = 1/𝑡 and 𝑢(𝑡) = sin 2𝑡, we obtain

𝑃1 (𝑡, 𝑎𝑘) =
𝑡

𝛼𝛼(1 − 𝛼)
1−𝛼
(
𝑐0cos
2
2𝑡

𝑡1/𝛼
)

𝛼

|− sin 2𝑡|1−𝛼

=
𝑐
𝛼

0

𝛼𝛼(1 − 𝛼)
1−𝛼

cos2𝛼2𝑡|− sin 2𝑡|1−𝛼,

∫

𝑏1

𝑎1

(𝜂 (𝑡) 𝑟 (𝑡) (𝑢

(𝑡))
2

− 𝑃1 (𝑡, 𝑎1) 𝑢
2
(𝑡)) d𝑡

= ∫

𝜋/2

0

(
1

𝑡
⋅ 𝑡 (sin 2𝑡 + 2) (2 cos 2𝑡)2

−
𝑐
𝛼

0

𝛼𝛼(1 − 𝛼)
1−𝛼

cos2𝛼2𝑡 sin3−𝛼2𝑡) d𝑡

=
6

5
√𝜋 + 𝜋 −

𝑐
𝛼

0

4𝛼𝛼(1 − 𝛼)
1−𝛼

×
Γ (2 − 𝛼/2) Γ (𝛼 + 1/2)

Γ ((𝛼 + 5) /2)
,

(87)

where Γ is the gamma function. Then by Theorem 7, every
solution of (83) is oscillatory if

6

5
√𝜋 + 𝜋 ≤

𝑐
𝛼

0

4𝛼𝛼(1 − 𝛼)
1−𝛼

Γ (2 − 𝛼/2) Γ (𝛼 + 1/2)

Γ ((𝛼 + 5) /2)
. (88)
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We present a survey on the existence of periodic solutions of singular differential equations. In particular, we pay our attention to
singular scalar differential equations, singular damped differential equations, singular impulsive differential equations, and singular
differential systems.

1. Introduction

During the last two decades, singular differential equations
have attracted many researchers [1–11] because such equa-
tions describe many problems in the applied sciences, such
as the Brillouin focusing system [12–14], nonlinear elasticity
[15], and gravitational forces [3]. Besides these important
applications, it has been found that a particular case of
singular equations, the Ermakov-Pinney equation, plays an
important role in studying the Lyapunov stability of periodic
solutions of Lagrangian equations [16–18].

In the literature, two different approaches have been used
to establish the existence results for singular equations. The
first one is the variational approach [3, 4, 6, 19, 20] and
the second one is topological methods [1, 10, 21–28]. In
our opinion, the first important result was proved in the
pioneering paper of Lazer and Solimini [29]. They proved
that a necessary and sufficient condition for the existence of
a positive periodic solution for

𝑥

=

1

𝑥𝜆
+ 𝑒 (𝑡) (1)

is that themean value of 𝑒 is negative; that is, 𝑒 < 0, here𝜆 ≥ 1,
which corresponds to a strong force condition, according to
a terminology first introduced by Gordon [30]. Moreover, if
0 < 𝜆 < 1, which corresponds to a weak force condition,
they found examples of functions 𝑒with negativemean values

and yet no periodic solutions exist. Therefore, there is an
essential difference between a strong singularity and a weak
singularity. Since the work of Lazer and Solimini, the strong
force condition became standard in related work, see, for
instance, [8, 15, 18, 27, 28]. Comparedwith the case of a strong
singularity, the study of the existence of periodic solutions
under the presence of a weak singularity is more recent, but
it has also attracted many researchers [31–39]. In [39], for the
first time in this topic, Torres et al. proved an existence result
which is valid for a weak singularity, whereas the validity of
such results under a strong force assumption remains as an
open problem, which was partially solved in [32].

The main aim of this survey is to present some recent
existence results for singular differential equations. In partic-
ular, we will consider the scalar singular equations, singular
damped equations, singular impulsive equations, and singu-
lar differential systems. We will also include some examples
to illustrate the results presented.

The rest of this paper is organized as follows. In Section 2,
we will state some important results for the second-order
scalar singular differential equations. Singular damped equa-
tions will be considered in Section 3. In Section 4, singular
impulsive differential equations will be studied. Finally in
Section 5, we will focus on the singular differential sys-
tems. Sections 2 and 3 are mainly written by the first
author. Section 4 is mainly written by the second author,
and Section 5 is mainly completed by the third author.
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All the results presented in Sections 3–5 shed some lights
on the differences between a strong singularity and a weak
singularity.

Finally in this section, we must note that besides the
results presented in this survey, many interesting and impor-
tant results on singular differential equations have been
obtained by other researchers, see, for example, [9, 40–45]
and the references cited therein.

In this paper, we denote the essential supremum and
infimum of 𝑝 by 𝑝∗ and 𝑝∗, respectively, for a given function
𝑝 ∈ 𝐿

1
[0, 𝑇] essentially bounded.

2. Second-Order Scalar Singular Equations

In this section, we recall some results for second-order
singular differential equations

𝑥

+ 𝑎 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥) + 𝑒 (𝑡) , (2)

here 𝑎(𝑡), 𝑒(𝑡) are continuous, 𝑇-periodic functions. The
nonlinearity 𝑓(𝑡, 𝑥) is continuous in (𝑡, 𝑥) and 𝑇-periodic in
𝑡 and has a singularity at 𝑥 = 0.

First we need to present some preliminary results on the
linear equation

𝑥

+ 𝑎 (𝑡) 𝑥 = 𝑝 (𝑡) (3)

with periodic boundary conditions

𝑥 (0) = 𝑥 (𝑇) , 𝑥

(0) = 𝑥


(𝑇) . (4)

We assume the following:
(A) the Green function 𝐺(𝑡, 𝑠), associated with (3)-(4), is

positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇], or
(B) the Green function 𝐺(𝑡, 𝑠), associated with (3)-(4), is

nonnegative for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].
When 𝑎(𝑡) = 𝑘

2, condition (A) is equivalent to 0 < 𝑘
2
<

𝜆1 = (𝜋/𝑇)
2 and condition (B) is equivalent to 0 < 𝑘

2
≤ 𝜆1.

In this case, we have

𝐺 (𝑡, 𝑠)=

{{{

{{{

{

sin 𝑘 (𝑡 − 𝑠) + sin 𝑘 (𝑇 − 𝑡 + 𝑠)

2𝑘 (1 − cos 𝑘𝑇)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑇,

sin 𝑘 (𝑠 − 𝑡) + sin 𝑘 (𝑇 − 𝑠 + 𝑡)

2𝑘 (1 − cos 𝑘𝑇)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝑇.

(5)

For a nonconstant function 𝑎(𝑡), there is an 𝐿
𝑝-criterion

proved in [46], which is given in Lemma 1 for the sake of
completeness. Let K(𝑞) denote the best Sobolev constant in
the following inequality:

𝐶‖𝑢‖
2

𝑞
≤ ‖𝑢


‖
2

2
, ∀𝑢 ∈ 𝐻

1

0
(0, 𝑇) . (6)

The explicit formula for K(𝑞) is

K (𝑞) =

{{{{{

{{{{{

{

2𝜋

𝑞𝑇1+2/𝑞
(

2

2 + 𝑞
)

1−2/𝑞

(
Γ(1/𝑞)

Γ(1/2 + 1/𝑞)
)

2

if 1 ≤ 𝑞 < ∞,

4

𝑇
if 𝑞 = ∞,

(7)

where Γ is the gamma function, see [47, 48].

Lemma 1 (see [46, Corollary 2.3]). Assume that 𝑎(𝑡) ≻ 0 and
𝑎 ∈ 𝐿

𝑝
[0, 𝑇] for some 1 ≤ 𝑝 ≤ ∞. If

‖𝑎‖𝑝 < K (2𝑝) , (8)

then the condition (A) holds. Moreover, condition (B) holds if

‖𝑎‖𝑝 ≤ K (2𝑝) . (9)

When the hypothesis (A) is satisfied, we denote

𝑚 = min
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝑀 = max
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝜎 =
𝑚

𝑀
. (10)

Obviously,𝑀 > 𝑚 > 0 and 0 < 𝜎 < 1.
The first existence result deals with the case of a strong

singularity and the proof is based on the following nonlinear
alternative of Leray-Schauder, which can be found in [49] or
[50, pages 120–130].

Lemma 2. Assume Ω is an open subset of a convex set K in
a normed linear space 𝑋 and 𝑝 ∈ Ω. Let 𝑇 : Ω → 𝐾 be a
compact and continuous map. Then one of the following two
conclusions holds.

(I) 𝑇 has at least one fixed point inΩ.
(II) There exists 𝑥 ∈ 𝜕Ω and 0 < 𝜆 < 1 such that 𝑥 =

𝜆𝑇𝑥 + (1 − 𝜆)𝑝.

Theorem 3 (see [37,Theorem 4.1]). Suppose that 𝑎(𝑡) satisfies
(A) and 𝑓(𝑡, 𝑥) satisfies the following.

(H1) There exists a nonincreasing positive continuous func-
tion 𝑔0(𝑥) on (0,∞) and a constant 𝑅0 > 0 such that
𝑓(𝑡, 𝑥) ≥ 𝑔0(𝑥) for (𝑡, 𝑥) ∈ [0, 𝑇]×(0, 𝑅0], where 𝑔0(𝑥)

satisfies

lim
𝑥→0+

𝑔0 (𝑥) = +∞, lim
𝑥→0+

∫

𝑅0

𝑥

𝑔0 (𝑢) 𝑑𝑢 = +∞. (11)

(H2) There exist continuous, nonnegative functions𝑔(𝑥) and
ℎ(𝑥) such that

0 ≤ 𝑓 (𝑡, 𝑥) ≤ 𝑔 (𝑥) + ℎ (𝑥) ∀ (𝑡, 𝑥) ∈ [0, 𝑇] × (0,∞) ,

(12)

𝑔(𝑥) > 0 is nonincreasing and ℎ(𝑥)/𝑔(𝑥) is nonde-
creasing in 𝑥 ∈ (0,∞).

(H3) There exists a positive number 𝑟 such that 𝜎𝑟 + 𝛾∗ > 0

and
𝑟

𝑔 (𝜎𝑟 + 𝛾∗) {1 + (ℎ (𝑟 + 𝛾∗) /𝑔 (𝑟 + 𝛾∗))}
> 𝜔

∗
, (13)

here

𝛾 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑒 (𝑠) 𝑑𝑠, 𝜔 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠. (14)

Then for each 𝑒 ∈ C(R/𝑇Z,R), (2) has at least one positive
periodic solution𝑥with𝑥(𝑡) > 𝛾(𝑡) for all 𝑡 and 0 < ‖𝑥−𝛾‖ < 𝑟.
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Note that the study in [37, Theorem 4.1] is slightly
different from the above presentation. However, the proof
of the above theorem follows from that of [37, Theorem
4.1] with some minor necessary changes. Condition (H1)
corresponds to the classical strong force condition, whichwas
first introduced by Gordon in [30]. In fact, condition (H1)
is only used when we try to obtain a prior lower bound. In
Theorem 4, we will show that, for the case 𝛾∗ ≥ 0, we can
remove the strong force condition (H1) and replace it by one
weak force condition.

Theorem 4 (see [33, Theorem 3.1]). Assume that (A) and
(H2)-(H3) are satisfied. Suppose further the following condi-
tion.

(H4) For each constant 𝐿 > 0, there exists a continuous
function 𝜙𝐿 ≻ 0 such that 𝑓(𝑡, 𝑥) ≥ 𝜙𝐿(𝑡) for all
(𝑡, 𝑥) ∈ [0, 𝑇] × (0, 𝐿].

Then for each 𝑒(𝑡) with 𝛾∗ ≥ 0, (2) has at least one positive
periodic solution𝑥with𝑥(𝑡) > 𝛾(𝑡) for all 𝑡 and 0 < ‖𝑥−𝛾‖ < 𝑟.

For the superlinear case, we can establish the multiplicity
result. The proof is based on a well-known fixed point
theorem in cones, which can be found in [51]. Let 𝐾 be a
cone in 𝑋 and 𝐷 is a subset of 𝑋, we write 𝐷𝐾 = 𝐷 ∩ 𝐾 and
𝜕𝐾𝐷 = (𝜕𝐷) ∩ 𝐾.

Theorem 5 (see [51]). Let 𝑋 be a Banach space and 𝐾 a cone
in 𝑋. Assume Ω

1
, Ω

2 are open bounded subsets of X with
Ω

1

𝐾
̸= 0, Ω

1

𝐾
⊂ Ω

2

𝐾
. Let

𝑇 : Ω
2

𝐾
→ 𝐾 (15)

be a completely continuous operator such that

(a) ‖𝑇𝑥‖ ≤ ‖𝑥‖ for 𝑥 ∈ 𝜕𝐾Ω
1,

(b) there exists 𝜐 ∈ 𝐾 \ {0} such that 𝑥 ̸=𝑇𝑥 +

𝜆𝜐 𝑓𝑜𝑟𝑎𝑙𝑙 𝑥 ∈ 𝜕𝐾Ω
2 and all 𝜆 > 0.

Then 𝑇 has a fixed point in Ω
2

𝐾
\ Ω

1

𝐾
.

Theorem6 (see [33,Theorem 3.2]). Suppose that 𝑎(𝑡) satisfies
(A) and 𝑓(𝑡, 𝑥) satisfies (H2)-(H3). Furthermore, assume the
following conditions.

(H5) There exist continuous, nonnegative functions
𝑔1(𝑥), ℎ1(𝑥) such that

𝑓 (𝑡, 𝑥) ≥ 𝑔1 (𝑥) + ℎ1 (𝑥) , ∀ (𝑡, 𝑥) ∈ [0, 𝑇] × (0,∞) , (16)

𝑔1(𝑥) > 0 is nonincreasing and ℎ1(𝑥)/𝑔1(𝑥) is non-
decreasing in 𝑥.

(H6) There exists 𝑅 > 0 with 𝜎𝑅 > 𝑟 such that

𝜎𝑅

𝑔1 (𝑅 + 𝛾∗) {1 + (ℎ1 (𝜎𝑅 + 𝛾∗) /𝑔1 (𝜎𝑅 + 𝛾∗))}
≤ 𝜔∗. (17)

Then (2) has one positive periodic solution 𝑥with 𝑟 < ‖𝑥−𝛾‖ ≤

𝑅.

CombinedTheorems 3 and 4 withTheorem 6, we can get
the following two multiplicity results.

Theorem 7. Suppose that 𝑎(𝑡) satisfies (A) and𝑓(𝑡, 𝑥) satisfies
(H1)–(H3) and (H5)-(H6). Then (2) has two different positive
periodic solutions 𝑥 and 𝑥 with 0 < ‖𝑥−𝛾‖ < 𝑟 < ‖𝑥−𝛾‖ ≤ 𝑅.

Theorem8. Suppose that 𝑎(𝑡) satisfies (A) and𝑓(𝑡, 𝑥) satisfies
(H2)–(H6). Then (2) has two different positive periodic solu-
tions 𝑥 and 𝑥 with 0 < ‖𝑥 − 𝛾‖ < 𝑟 < ‖𝑥 − 𝛾‖ ≤ 𝑅.

To illustrate our results, we have selected the following
singular equation:

𝑥

+ 𝑎 (𝑡) 𝑥 = 𝑥

−𝛼
+ 𝜇𝑥

𝛽
+ 𝑒 (𝑡) , (18)

here 𝑎, 𝑒 ∈ C[0, 𝑇], 𝛼, 𝛽 > 0, and 𝜇 ∈ R is a given parameter.
The corresponding results are also valid for the general case

𝑥

+ 𝑎 (𝑡) 𝑥 =

𝑏 (𝑡)

𝑥𝛼
+ 𝜇𝑐 (𝑡) 𝑥

𝛽
+ 𝑒 (𝑡) , (19)

with 𝑏, 𝑐 ∈ C[0, 𝑇].

Corollary 9. Assume that 𝑎(𝑡) satisfies (A) and 𝛼 > 0, 𝛽 ≥

0, 𝜇 > 0. Then one has the following results.

(i) If 𝛼 ≥ 1, 𝛽 < 1, then for each 𝑒 ∈ C(R/𝑇Z,R), (18)
has at least one positive periodic solution for all 𝜇 > 0.

(ii) If 𝛼 ≥ 1, 𝛽 ≥ 1, then for each 𝑒 ∈ C(R/𝑇Z,R), (18)
has at least one positive periodic solution for each 0 <

𝜇 < 𝜇1; here 𝜇1 is some positive constant.

(iii) If 𝛼 ≥ 1, 𝛽 > 1, then for each 𝑒 ∈ C(R/𝑇Z,R), (18)
has at least two positive periodic solutions for each 0 <

𝜇 < 𝜇1.

(iv) If 𝛼 > 0, 𝛽 < 1, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾∗ ≥ 0, (18) has at least one positive periodic solution
for all 𝜇 > 0.

(v) If 𝛼 > 0, 𝛽 ≥ 1, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾∗ ≥ 0, (18) has at least one positive periodic solution
for each 0 < 𝜇 < 𝜇1.

(vi) If 𝛼 > 0, 𝛽 > 1, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾∗ ≥ 0, (18) has at least two positive periodic solutions
for each 0 < 𝜇 < 𝜇1.

All the above results require that the linear equation
satisfies (A),which cannot cover the critical case.Thenext few
results deal with the case when the condition (B) is satisfied
and the proof is based on Schauder’s fixed point theorem.
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Theorem 10 (see [31, Theorem 3.1]). Assume that conditions
(B) and (H2) and (H4) are satisfied. Furthermore, suppose that

(H7) there exists a positive constant 𝑅 > 0 such that 𝑅 >

Φ∗, Φ∗ + 𝛾∗ > 0 and

𝑅 ≥ 𝑔 (Φ∗ + 𝛾∗) {1 +
ℎ (𝑅 + 𝛾

∗
)

𝑔 (𝑅 + 𝛾∗)
}𝜔

∗
, (20)

here Φ∗ = min𝑡Φ(𝑡), Φ(𝑡) = ∫
𝑇

0
𝐺(𝑡, 𝑠)𝜙𝑅+𝛾∗(𝑠)𝑑𝑠.

Then (2) has at least one positive 𝑇-periodic solution.

As an application of Theorem 10, we consider the case
𝛾∗ = 0. Corollary 11 is a direct result of Theorem 10.

Corollary 11 (see [31, Corollary 3.2]). Assume that conditions
(B) and (H2) and (H4) are satisfied. Furthermore, assume that

(H8) there exists a positive constant 𝑅 > 0 such that 𝑅 > Φ∗

and

𝑅 ≥ 𝑔 (Φ∗) {1 +
ℎ (𝑅 + 𝛾

∗
)

𝑔 (𝑅 + 𝛾∗)
}𝜔

∗
. (21)

If 𝛾∗ = 0, then (2) has at least one positive 𝑇-periodic solution.

Corollary 12 (see [31, Example 3.5]). Suppose that 𝑎 satisfies
(B) and 0 < 𝛼 < 1, 𝛽 ≥ 0, then for each 𝑒(𝑡) ∈ C(R/𝑇Z,R),
with 𝛾∗ = 0, one has the following:

(i) if 𝛼 + 𝛽 < 1 − 𝛼
2, then (18) has at least one positive

periodic solution for each 𝜇 ≥ 0,
(ii) if 𝛼 + 𝛽 ≥ 1 − 𝛼

2, then (18) has at least one positive
𝑇-periodic solution for each 0 ≤ 𝜇 < 𝜇2, where 𝜇2 is
some positive constant.

The next results explore the case when 𝛾∗ > 0.

Theorem13 (see [31,Theorem3.6]). Suppose that 𝑎(𝑡) satisfies
(B) and 𝑓(𝑡, 𝑥) satisfies condition (H2). Furthermore, assume
that

(H9) there exists 𝑅 > 𝛾
∗ such that

𝑔 (𝛾∗) {1 +
ℎ (𝑅 + 𝛾

∗
)

𝑔 (𝑅 + 𝛾∗)
}𝜔

∗
≤ 𝑅. (22)

If 𝛾∗ > 0, then (2) has at least one positive 𝑇-periodic solution.

Corollary 14 (see [31, Example 3.8]). Suppose that 𝑎(𝑡)

satisfies (B) and 𝛼, 𝛽 ≥ 0, then for each 𝑒 ∈ C(R/𝑇Z,R), with
𝛾∗ > 0, one has the following:

(i) if 𝛼 + 𝛽 < 1, then (18) has at least one positive 𝑇-
periodic solution for each 𝜇 ≥ 0,

(ii) if 𝛼 + 𝛽 ≥ 1, then (18) has at least one positive 𝑇-
periodic solution for each 0 ≤ 𝜇 < 𝜇3, where 𝜇3 is some
positive constant.

3. Singular Damped Equations

In this section, we recall some results on second-order
singular damped differential equations

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥, 𝑥


) , (23)

where ℎ, 𝑎 ∈ C(R/𝑇Z,R) and the nonlinearity 𝑓 ∈

C((R/𝑇Z) × (0,∞) × R,R). In particular, the nonlinearity
may have a repulsive singularity at 𝑥 = 0, which means that

lim
𝑥→0+

𝑓 (𝑡, 𝑥, 𝑦) = +∞, uniformly in (𝑡, 𝑦) ∈ R
2
. (24)

First we recall some results on the linear damped equation

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 0, (25)

associated to periodic boundary conditions (4). As in the
last section, we say that (25)-(4) is nonresonant when its
unique𝑇-periodic solution is the trivial one.When (25)-(4) is
nonresonant, as a consequence of Fredholm’s alternative, the
nonhomogeneous equation

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝑙 (𝑡) (26)

admits a unique 𝑇-periodic solution which can be written as

𝑥 (𝑡) = ∫

𝑇

0

𝐺2 (𝑡, 𝑠) 𝑙 (𝑠) 𝑑𝑠, (27)

where 𝐺2(𝑡, 𝑠) is the Green’s function of problem (25)-(4).
We also assume that the following standing hypothesis is
satisfied.

(C) TheGreen’s function𝐺2(𝑡, 𝑠), associatedwith (25)-(4),
is positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

To guarantee that (C) is satisfied, we require the antimaxi-
mumprinciple for (25)-(4) proved byHakl and Torres in [52].
To do this, let us define the functions

𝜎 (ℎ) (𝑡) = exp(∫
𝑡

0

ℎ (𝑠) 𝑑𝑠) ,

𝜎1 (ℎ) (𝑡) = 𝜎 (ℎ) (𝑇) ∫

𝑡

0

𝜎 (ℎ) (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

𝜎 (ℎ) (𝑠) 𝑑𝑠.

(28)

Lemma 15 (see [52, Theorem 2.2]). Assume that 𝑎 ̸≡ 0 and
the following two inequalities are satisfied:

∫

𝑇

0

𝑎 (𝑠) 𝜎 (ℎ) (𝑠) 𝜎1 (−ℎ) (𝑠) 𝑑𝑠 ≥ 0,

sup
0≤𝑡≤𝑇

{∫

𝑡+𝑇

𝑡

𝜎 (−ℎ) (𝑠) 𝑑𝑠 ∫

𝑡+𝑇

𝑡

[𝑎 (𝑠)] + 𝜎 (ℎ) (𝑠) 𝑑𝑠} ≤ 4,

(29)

where [𝑎(𝑠)]+ = max{𝑎(𝑠), 0}. Then (C) holds.

For the special case ∫
𝑇

0
𝑎(𝑡)𝜎(ℎ)(𝑡)𝑑𝑡 > 0 and ℎ ∈

C̃(R/𝑇Z) := {ℎ ∈ C(R/𝑇Z) : ℎ = 0}, one criterion has been
developed by Cabada and Cid in [40].
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Theorem 16 (see [40, Theorem 5.1]). Assume that ℎ ∈

C̃(R/𝑇Z) and ∫
𝑇

0
𝑎(𝑡)𝜎(ℎ)(𝑡)𝑑𝑡 > 0. Suppose further that

there exists 1 ≤ 𝑝 ≤ ∞ such that

(𝐵(𝑇))
1+1/𝑞A+

𝑝,𝑇 < M2
(2𝑞) , (30)

where

𝐵 (𝑇) = ∫

𝑇

0

𝜎 (−ℎ) (𝑡) 𝑑𝑡,

A+ (𝑡) = 𝑎+ (𝑡) (𝜎(ℎ)(𝑡))
2−1/𝑝

.

(31)

Then (𝐶) holds.

Theorem 17 (see [35, Theorem 3.2]). Suppose that (25)
satisfies (C) and

∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑑𝑡 > 0. (32)

Furthermore, assume that there exists a constant 𝑟 > 0 such
that

(G1) there exists a continuous function 𝜙𝑟 ≻ 0 such that
𝑓(𝑡, 𝑥, 𝑦) ≥ 𝜙𝑟(𝑡) for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑟] ×

(−∞,∞),
(G2) there exist continuous, nonnegative functions 𝑔(⋅), ℎ(⋅),

and (⋅) such that

0 ≤ 𝑓 (𝑡, 𝑥, 𝑦) ≤ (𝑔 (𝑥) + ℎ (𝑥))  (
𝑦
) ,

∀ (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑟] ×R,
(33)

where 𝑔(⋅) > 0 is nonincreasing, ℎ(⋅)/𝑔(⋅) is non-
decreasing in (0, 𝑟], and (⋅) is non-decreasing in
(0,∞),

( G3 ) the following inequality holds:

𝑟

𝑔 (𝜄𝑟) {1 + (ℎ (𝑟) /𝑔 (𝑟))}  (𝐿𝑟)
> 𝜔

∗
, (34)

where

𝜔 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑑𝑠, 𝐿 =
2 ∫

𝑇

0
𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑑𝑡

min0≤𝑡≤𝑇 𝜎 (ℎ) (𝑡)
,

𝜄 =
𝑚

𝑀
, 𝑚 = min

0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝑀 = max
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) ,

(35)

then (23) has at least one positive 𝑇-periodic solution 𝑥 with
0 < ‖𝑥‖ ≤ 𝑟.

Corollary 18 (see [35, Corollary 3.3]). Let the nonlinearity in
(23) be

𝑓 (𝑡, 𝑥, 𝑦) = (1 +
𝑦

𝛾
) (𝑥

−𝛼
+ 𝜇𝑥

𝛽
) , (36)

where 𝛼 > 0, 𝛽, 𝛾 ≥ 0, 𝜇 > 0 is a positive parameter.

(i) If 𝛽 + 𝛾 < 1, then (23) has at least one positive periodic
solution for each 𝜇 > 0.

(ii) If 𝛽 + 𝛾 ≥ 1, then (23) has at least one positive periodic
solution for each 0 < 𝜇 < 𝜇

∗

1
, where 𝜇∗

1
is some positive

constant.

Corollary 19 (see [35, Corollary 3.4]). Let the nonlinearity in
(23) be

𝑓 (𝑡, 𝑥, 𝑦) = (1 +
𝑦

𝛾
) (

1

𝑥𝛼
−

𝜇

𝑥𝛽
) , (37)

where 𝛼 > 𝛽 > 0, 𝛾 ≥ 0 with 𝛾 < 𝛼 + 1, 𝜇 > 0 is a positive
parameter. Then there exists a positive constant 𝜇∗

2
such that

(23) has at least one positive 𝑇-periodic solution for each 0 ≤

𝜇 < 𝜇
∗

2
.

Corollary 19 is interesting because the singularity on the
right-hand side combines attractive and repulsive effects.The
analysis of such differential equations with mixed singular-
ities is at this moment very incomplete, and few references
can be cited [22, 44].Therefore, the results in Corollary 19 can
be regarded as one contribution to the literature trying to fill
partially this gap in the study of singularities of mixed type.

As in the last section, if we assume that the linear equation
(25)-(4) has a nonnegative Green’s function, we can also get
some results based on Schauder’s fixed point theorem, and the
results can cover the critical case.

4. Singular Impulsive Differential Equations

In this section, we will study the existence of periodic solu-
tions for some singular differential equations with impulsive
effects by using variational methods.

Firstly, we consider the following second-order nonau-
tonomous singular problem:

𝑢

−
𝑏 (𝑡)

𝑢𝛼
= 𝑒 (𝑡) , a.e. 𝑡 ∈ (0, 𝑇) ,

𝑢 (0) − 𝑢 (𝑇) = 𝑢

(0) − 𝑢


(𝑇) = 0,

(38)

under the impulse conditions

Δ𝑢

(𝑡𝑗) = 𝐼𝑗 (𝑢 (𝑡𝑗)) , 𝑗 = 1, 2, . . . , 𝑝 − 1, (39)

where 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑝−1 are the instants where the impulses
occur and 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑝−1 < 𝑡𝑝 = 𝑇, 𝐼𝑗 : R →

R (𝑗 = 1, 2, . . . , 𝑝 − 1) are continuous.
Our result is presented as follows.

Theorem 20 (see [19, Theorem 1.1]). Assume that 𝛼 > 1 and
the following conditions hold.

(𝑆1) 𝑏 ∈ C1
([0, 𝑇], (0,∞)) is 𝑇-periodic and 𝑏


(𝑡) ≥ 0 for

all 𝑡 ∈ [0, 𝑇].
(𝑆2) 𝑒 ∈ 𝐿

2
([0, 𝑇],R) is 𝑇-periodic and ∫𝑇

0
𝑒(𝑡)𝑑𝑡 < 0.

(𝑆3) There exist two constants𝑚,𝑀 such that for any 𝑡 ∈ R,
𝑚 ≤ 𝐼𝑗 (𝑡) ≤ 𝑀, 𝑗 = 1, 2, . . . , 𝑝 − 1, (40)

where𝑚 < 0 and 0 ≤ 𝑀 < (−1/(𝑝 − 1)) ∫
𝑇

0
𝑒(𝑡)𝑑𝑡.
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(𝑆4) For any 𝑡 ∈ R,

∫

𝑡

0

𝐼𝑗 (𝑠) 𝑑𝑠 ≥ 0, 𝑗 = 1, 2, . . . , 𝑝 − 1. (41)

Then problem (38)-(39) has at least one solution.

Remark 21. In fact, it is not difficult to find some functions 𝐼𝑗
satisfying (𝑆3) and (𝑆4). For example,

𝐼𝑗 (𝑡) = sin 𝑡, 𝑡 ∈ R. (42)

Let

𝐻
1

𝑇
= {𝑢 : [0, 𝑇] → R | 𝑢 is absolutely continuous,

𝑢 (0) = 𝑢 (𝑇) and 𝑢

∈ 𝐿

2
([0, 𝑇] ,R)} ,

(43)

with the inner product

(𝑢, 𝑣) = ∫

𝑇

0

𝑢 (𝑡) 𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑢

(𝑡) 𝑣


(𝑡) 𝑑𝑡, ∀𝑢, 𝑣 ∈ 𝐻

1

𝑇
.

(44)

The corresponding norm is defined by

‖𝑢‖𝐻1T
= (∫

𝑇

0

|𝑢(𝑡)|
2
𝑑𝑡 + ∫

𝑇

0

|𝑢

(𝑡)|

2

𝑑𝑡)

1/2

, ∀𝑢 ∈ 𝐻
1

𝑇
.

(45)

Then𝐻
1

𝑇
is a Banach space (in fact it is a Hilbert space).

If 𝑢 ∈ 𝐻
1

𝑇
, then 𝑢 is absolutely continuous and 𝑢


∈

𝐿
2
([0, 𝑇],R). In this case, Δ𝑢

(𝑡) = 𝑢

(𝑡

+
) − 𝑢


(𝑡

−
) = 0 is not

necessarily valid for every 𝑡 ∈ (0, 𝑇) and the derivative 𝑢 may
exist some discontinuities. It may lead to impulse effects.

Following the ideas of [53], take 𝑣 ∈ 𝐻
1

𝑇
and multiply the

two sides of the equality

−𝑢

+
𝑏 (𝑡)

𝑢𝛼
+ 𝑒 (𝑡) = 0 (46)

by 𝑣 and integrate from 0 to 𝑇, so we have

∫

𝑇

0

[−𝑢

+
𝑏 (𝑡)

𝑢𝛼
+ 𝑒 (𝑡)] 𝑣𝑑𝑡 = 0. (47)

Note that since 𝑢
(0) − 𝑢


(𝑇) = 0, one has

∫

𝑇

0

𝑢

(𝑡) 𝑣 (𝑡) 𝑑𝑡

=

𝑝−1

∑

𝑗=0

∫

𝑡𝑗+1

𝑡𝑗

𝑢

(𝑡) 𝑣 (𝑡) 𝑑𝑡

=

𝑝−1

∑

𝑗=0

(𝑢

(𝑡

−

j+1) 𝑣 (𝑡
−

𝑗+1
) − 𝑢


(𝑡

+

𝑗
) 𝑣 (𝑡

+

𝑗
))

−

𝑝−1

∑

𝑗=0

∫

𝑡𝑗+1

𝑡𝑗

𝑢

(𝑡) 𝑣


(𝑡) 𝑑𝑡

= 𝑢

(𝑇) 𝑣 (𝑇) − 𝑢


(0) 𝑣 (0) −

𝑝−1

∑

𝑗=1

Δ𝑢

(𝑡𝑗) 𝑣 (𝑡𝑗)

− ∫

𝑇

0

𝑢

(𝑡) 𝑣


(𝑡) 𝑑𝑡

= −

𝑝−1

∑

𝑗=1

𝐼𝑗 (𝑢 (𝑡𝑗)) 𝑣 (𝑡𝑗) − ∫

𝑇

0

𝑢

(𝑡) 𝑣


(𝑡) 𝑑𝑡.

(48)

Combining with (47), we get

∫

𝑇

0

𝑢

(𝑡) 𝑣


(𝑡) 𝑑𝑡 +

𝑝−1

∑

𝑗=1

𝐼𝑗 (𝑢 (𝑡𝑗)) 𝑣 (𝑡𝑗)

+ ∫

𝑇

0

𝑏 (𝑡)

𝑢𝛼
𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑣 (𝑡) 𝑑𝑡 = 0.

(49)

As a result, we introduce the following concept of a weak
solution for problem (38)-(39).

Definition 22. One says that a function 𝑢 ∈ 𝐻
1

𝑇
is a weak

solution of problem (38)-(39) if

∫

𝑇

0

𝑢

(𝑡) 𝑣


(𝑡) 𝑑𝑡 +

𝑝−1

∑

𝑗=1

𝐼𝑗 (𝑢 (𝑡𝑗)) 𝑣 (𝑡𝑗)

+ ∫

𝑇

0

𝑏 (𝑡)

𝑢𝛼
𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑣 (𝑡) 𝑑𝑡 = 0

(50)

holds for any 𝑣 ∈ 𝐻
1

𝑇
.

Define the functionalΦ : 𝐻
1

𝑇
→ R by

Φ (𝑢) :=
1

2
∫

𝑇

0


𝑢

(𝑡)



2

𝑑𝑡 +

𝑝−1

∑

𝑗=1

∫

𝑢(𝑡𝑗)

0

𝐼𝑗 (𝑠) 𝑑𝑠

+ ∫

𝑇

0

𝑏 (𝑡) (∫

𝑢(𝑡)

1

1

𝑠𝛼
𝑑𝑠)𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑢 (𝑡) 𝑑𝑡,

(51)

for every 𝑢 ∈ 𝐻
1

𝑇
. Clearly, Φ𝜆 is well defined on 𝐻

1

𝑇
, con-

tinuously Gáteaux differentiable functional whose Gáteaux
derivative is the functionalΦ

𝜆
(𝑢), given by

Φ


𝜆
(𝑢) 𝑣 = ∫

𝑇

0

𝑢

(𝑡) 𝑣


(𝑡) 𝑑𝑡 +

𝑝−1

∑

𝑗=1

𝐼𝑗 (𝑢 (𝑡𝑗)) 𝑣 (𝑡𝑗)

− ∫

𝑇

0

𝑏 (𝑡)

𝑢𝛼
𝑣 (𝑡) 𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑣 (𝑡) 𝑑𝑡,

(52)

for any 𝑣 ∈ 𝐻
1

𝑇
. Moreover, it is easy to verify that Φ𝜆 is

weakly lower semicontinuous. Indeed, if {𝑢𝑛} ⊂ 𝐻
1

𝑇
, 𝑢 ∈ 𝐻

1

𝑇
,

and 𝑢𝑛 ⇀ 𝑢, then {𝑢𝑛} converges uniformly to 𝑢 on [0, 𝑇]
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and 𝑢𝑛 → 𝑢 on 𝐿
2
([0, 𝑇]), and combining the fact that

lim inf𝑛→∞‖𝑢𝑛‖𝐻1
𝑇

≥ ‖𝑢‖𝐻1
𝑇

, one has

lim inf
𝑛→∞

Φ𝜆 (𝑢𝑛)

= lim inf
𝑛→∞

(
1

2

𝑢𝑛

2

𝐻1
𝑇

−
1

2
∫

𝑇

0

𝑢𝑛 (𝑡)

2
𝑑𝑡

+

𝑝−1

∑

𝑗=1

∫

𝑢𝑛(𝑡𝑗)

0

𝐼𝑗 (𝑠) 𝑑𝑠

− ∫

𝑇

0

𝑏 (𝑡) (∫

𝑢𝑛(𝑡)

1

1

𝑠𝛼
𝑑𝑠)𝑑𝑡

+∫

𝑇

0

𝑒 (𝑡) 𝑢𝑛 (𝑡) 𝑑𝑡)

≥
1

2
∫

𝑇

0


𝑢

(𝑡)



2

𝑑𝑡 +

𝑝−1

∑

𝑗=1

∫

𝑢(𝑡𝑗)

0

𝐼𝑗 (𝑠) 𝑑𝑠

− ∫

𝑇

0

𝑏 (𝑡) (∫

𝑢(𝑡)

1

1

𝑠𝛼
𝑑𝑠)𝑑𝑡 + ∫

𝑇

0

𝑒 (𝑡) 𝑢 (𝑡) 𝑑𝑡 = Φ𝜆 (𝑢) .

(53)

By the standard discussion, the critical points of Φ𝜆 are the
weak solutions of problem (38)-(39), see [53, 54].

The following version of the mountain pass theorem will
be used in our argument.

Theorem 23 (see [55, Theorem 4.10]). Let 𝑋 be a Banach
space and let 𝜑 ∈ 𝐶

1
(𝑋,R). Assume that there exist 𝑥0, 𝑥1 ∈ 𝑋

and an open neighborhoodΩ of 𝑥0 such that 𝑥1 ∈ 𝑋 \ Ω and

max {𝜑 (𝑥0) , 𝜑 (𝑥1)} < inf
𝑥∈𝜕Ω

𝜑 (𝑥) . (54)

Let

Γ = {ℎ ∈ 𝐶 ([0, 1] , 𝑋) : ℎ (0) = 𝑥0, ℎ (1) = 𝑥1} ,

𝑐 = inf
ℎ∈Γ

max
𝑠∈[0,1]

𝜑 (ℎ (𝑠)) .
(55)

If 𝜑 satisfies the (PS)-condition, that is, a sequence {𝑢𝑛} in 𝑋

satisfying 𝜑(𝑢𝑛) is bounded and 𝜑

(𝑢𝑛) → 0 as 𝑛 → ∞ has

a convergent subsequence, then 𝑐 is a critical value of 𝜑 and
𝑐 > max{𝜑(𝑥0), 𝜑(𝑥1)}.

Next we consider 𝑇-periodic solution for another impul-
sive singular problem:

𝑢

(𝑡) −

1

𝑢𝛼 (𝑡)
= 𝑒 (𝑡) , (56)

under impulsive conditions

Δ𝑢

(𝑡𝑗) = 𝐼𝑗 (𝑢 (𝑡𝑗)) , 𝑗 = 1, 2, . . . , 𝑝 − 1, (57)

where 𝛼 ≥ 1, 𝑒 ∈ 𝐿
1
([0, 𝑇],R) is 𝑇-periodic, Δ𝑢

(𝑡𝑗) =

𝑢

(𝑡

+

𝑗
)−𝑢


(𝑡

−

𝑗
)with 𝑢

(𝑡
±

𝑗
) = lim𝑡→ 𝑡

±

𝑗

𝑢

(𝑡); 𝑡𝑗, 𝑗 = 1, 2, . . . , 𝑝−1

are the instants where the impulses occur, and 0 = 𝑡0 < 𝑡1 <

𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑝−1 < 𝑡𝑝 = 𝑇, 𝑡𝑗+𝑝 = 𝑡𝑗 + 𝑇; 𝐼𝑗 : R → R(𝑗 =

1, 2, . . . , 𝑝 − 1) are continuous and 𝐼𝑗+𝑝 ≡ 𝐼𝑗.
In 1987, Lazer and Solimini [29] proved a famous result as

follows.

Theorem 24 (see [29]). Assume that 𝑒 ∈ 𝐿
1
([0, 𝑇],R) is 𝑇-

periodic. Then problem (56) has a positive 𝑇-periodic weak
solution if and only if ∫𝑇

0
𝑒(𝑡)𝑑𝑡 < 0.

From Theorem 24, if ∫𝑇

0
𝑒(𝑡)𝑑𝑡 ≥ 0, then problem (52)

does not have a positive 𝑇-periodic weak solution. However,
if the impulses happen, for this singular problem may exist
a positive 𝑇-periodic weak solution. Inspired by the above
facts, our aim is to reveal a new existence result on positive𝑇-
periodic solution for singular problem (56) when impulsive
effects are considered, that is, problem (56)-(57). Indeed, this
periodic solution is generated by impulses. Here, we say a
solution is generated by impulses if this solution is nontrivial
when 𝐼𝑗 ̸≡ 0 for some 1 < 𝑗 < 𝑝 − 1, but it is trivial when
𝐼𝑗 ≡ 0 for all 1 < 𝑗 < 𝑝 − 1. For example, if problem (56)-(57)
does not possess positive periodic solution when 𝐼𝑗 ≡ 0 for all
1 < 𝑗 < 𝑝 − 1, then a positive periodic solution 𝑢 of problem
(56)-(57) with 𝐼𝑗 ̸≡ 0 for some 1 < 𝑗 < 𝑝 − 1 is called a
positive periodic solution generated by impulses.

Our result is presented as follows.

Theorem 25 (see [35, Theorem 1.2]). Assume the following:

(𝑆1) 𝑒 ∈ 𝐿
1
([0, 𝑇],R) is 𝑇-periodic and ∫𝑇

0
𝑒(𝑡)𝑑𝑡 ≥ 0;

(𝑆2) there exist two constants𝑚,𝑀 such that for any 𝑠 ∈ R,

𝑚 ≤ 𝐼𝑗 (𝑠) ≤ 𝑀, 𝑗 = 1, 2, . . . , 𝑝 − 1, (58)

where𝑚 ≤ 𝑀 < (−1/(𝑝 − 1)) ∫
𝑇

0
𝑒(𝑡)𝑑𝑡 ≤ 0.

Then problem (56)-(57) has at least a positive 𝑇-periodic
solution.

5. Singular Differential Systems

In this section, we will consider the system of Hill’s equations

𝑢


𝑖
(𝑡) + 𝑎𝑖 (𝑡) 𝑢𝑖 (𝑡) = 𝐹𝑖 (𝑡, 𝑢1 (𝑡) , 𝑢2 (𝑡) , . . . , 𝑢𝑛 (𝑡)) ,

1 ≤ 𝑖 ≤ 𝑛.

(59)

Here, 𝑎𝑖 and 𝐹𝑖 are 𝑇-periodic in the variable 𝑡, 𝑎𝑖 ∈ 𝐿
1
[0, 𝑇],

and the nonlinearities 𝐹𝑖(𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑛) can be singular at
𝑥𝑗 = 0 where 𝑗 ∈ {1, 2, . . . , 𝑛}.

Throughout, let 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑛). We are interested in
establishing the existence of continuous 𝑇-periodic solutions
𝑢 of the system (59), that is, 𝑢 ∈ (𝐶(R))

𝑛 and 𝑢(𝑡) = 𝑢(𝑡 + 𝑇)

for all 𝑡 ∈ R. Moreover, we are concerned with constant-sign
solutions 𝑢, by which we mean 𝜃𝑖𝑢𝑖(𝑡) ≥ 0 for all 𝑡 ∈ R and
1 ≤ 𝑖 ≤ 𝑛, where 𝜃𝑖 ∈ {1, −1} is fixed. Note that positive
solution, the usual consideration in the literature, is a special
case of constant-sign solution when 𝜃𝑖 = 1 for 1 ≤ 𝑖 ≤ 𝑛.
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We will employ the Schauder’s fixed point theorem to
establish the existence of solutions. Indeed, in Section 5.1 we
will first tackle a particular case of (59) when

𝐹𝑖 (𝑡, 𝑢 (𝑡)) = 𝜕2ℎ𝑖 (𝑡,
1

2
|𝑢(𝑡)|

2
) 𝑢𝑖 (𝑡) + 𝑓𝑖 (𝑡) . (60)

Here, 𝜕2ℎ𝑖 is the partial derivative of ℎ𝑖 with respect to the
second variable, and | ⋅ | is a norm in R𝑛. The particular case
(60) occurs in the problem [36]

̈𝑢(𝑡) + ∇𝑢𝑃 (𝑡, 𝑢 (𝑡)) = 𝑓 (𝑡) , (61)

where the potential

𝑃 (𝑡, 𝑢) =
1

2
𝑎 (𝑡) |𝑢|

2
− ℎ (𝑡,

1

2
|𝑢|

2
) , (62)

and ℎ presents a singularity of the repulsive type, that is,
lim|𝑥|→0ℎ(𝑡, 𝑥) = ∞ uniformly in 𝑡.The general problem (59)
will be investigated in Section 5.2; here the singularities are
not necessarily generated by a potential as in the case of (60).
To illustrate our results, several examples will be presented.

In [45], the authors use a nonlinear alternative of the
Leray-Schauder type and a fixed point theorem in cones to
establish the existence of two positive periodic solutions for
the system

̈𝑢(𝑡) + 𝑎 (𝑡) 𝑢 (𝑡) = 𝐺 (𝑢 (𝑡)) , (63)

where 𝐺 can be expressed as a sum of two positive functions
satisfying certainmonotone conditions.Therefore, the results
in [45] are not applicable to (59) with 𝐹𝑖 as in (60). In [45] it
is also shown that the system

𝑢


1
(𝑡) + 𝑎1 (𝑡) 𝑢1 (𝑡) = (√𝑢2

1
+ 𝑢2

2
)

−𝛽

+ 𝜈(√𝑢2

1
+ 𝑢2

2
)

𝛾

,

𝑢


2
(𝑡) + 𝑎2 (𝑡) 𝑢2 (𝑡) = (√𝑢2

1
+ 𝑢2

2
)

−𝛽

+ 𝜈(√𝑢2

1
+ 𝑢2

2
)

𝛾

(64)

has a solution when 𝛽 > 0, 𝛾 ∈ [0, 1), and 𝜈 > 0. We will
generalize the system (64) in Examples 46–48 to allow 𝜈 to
be zero or negative. The improvement is possible probably
due to the fact that we do not need to make a technical
truncation to get compactness when we employ the Schauder
fixed point theorem as compared towhen the Leray-Schauder
alternative is used. In fact, the set that we work on excludes
the singularities.The results presented in this section not only
generalize the papers [36, 39, 45] to systems and existence of
constant-sign solutions, but also improve and/or complement
the results in these earlier work as well as other research
papers [56–60]. This section is based on the work in [61].

5.1. Existence Results for (60). In this section we will consider
the system of Hill’s equations

𝑢


𝑖
(𝑡) + 𝑎𝑖 (𝑡) 𝑢𝑖 (𝑡) = 𝜕2ℎ𝑖 (𝑡,

1

2
|𝑢(𝑡)|

2
) 𝑢𝑖 (𝑡) + 𝑓𝑖 (𝑡) ,

1 ≤ 𝑖 ≤ 𝑛.

(65)

Here, 𝜕2ℎ𝑖(𝑡, 𝑠) ≡ (𝜕/𝜕𝑠)ℎ𝑖(𝑡, 𝑠) and | ⋅ | is a norm in R𝑛.
Moreover, 𝑎𝑖(𝑡), 𝜕2ℎ𝑖(𝑡, 𝑠), and 𝑓𝑖(𝑡) are 𝑇-periodic in 𝑡, 𝑎𝑖 ∈
𝐿
1
[0, 𝑇], 𝑓𝑖 ∈ 𝐿

1
[0, 𝑇], and 𝜕2ℎ𝑖(𝑡, 𝑠) can be singular at 𝑠 = 0.

To seek a 𝑇-periodic solution 𝑢𝑇
= (𝑢

𝑇

1
, 𝑢

𝑇

2
, . . . , 𝑢

𝑇

𝑛
) of the

system (65), we first obtain a solution 𝑢∗
= (𝑢

∗

1
, 𝑢

∗

2
, . . . , 𝑢

∗

𝑛
) of

the following system of boundary value problems:

𝑢


𝑖
(𝑡) + 𝑎𝑖 (𝑡) 𝑢𝑖 (𝑡)

= 𝜕2ℎ𝑖 (𝑡,
1

2
|𝑢 (𝑡)|

2
) 𝑢𝑖 (𝑡) + 𝑓𝑖 (𝑡) , 𝑡 ∈ [0, 𝑇] ,

𝑢𝑖 (0) = 𝑢𝑖 (𝑇) , 𝑢


𝑖
(0) = 𝑢



𝑖
(𝑇) , 1 ≤ 𝑖 ≤ 𝑛.

(66)

Then, set

𝑢
𝑇
(𝑡) = 𝑢

∗
(𝑡 − 𝑚𝑇) , 𝑡 ∈ [𝑚𝑇, (𝑚 + 1) 𝑇] , 𝑚 ∈ Z. (67)

Ourmain tool is Schauder’s fixed point theorem, which is
stated below for completeness.

Theorem 26 (see [62]). Let Ω be a convex subset of a Banach
space 𝐵 and 𝑆 : Ω → Ω a continuous and compact map.Then
𝑆 has a fixed point.

To begin, let 𝑔𝑖 be Green’s function of the boundary value
problem

𝑥

(𝑡) + 𝑎𝑖 (𝑡) 𝑥 (𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑥 (0) = 𝑥 (𝑇) , 𝑥

(0) = 𝑥


(𝑇) .

(68)

Throughout, we will assume that the functions 𝑎𝑖 ∈ 𝐿
1
[0, 𝑇]

are such that

(C1) the Hill’s equation 𝑥

(𝑡) + 𝑎𝑖(𝑡)𝑥(𝑡) = 0 is nonreso-

nant (i.e., the unique periodic solution is the trivial
solution), and 𝑔𝑖(𝑡, 𝑠) ≥ 0 for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

Note that Torres [46] has a result on 𝑎𝑖(𝑡) that ensures that
condition (C1) is satisfied. In fact, if 𝑎𝑖(𝑡) = 𝑘

2, then (C1) holds
if 𝑘 ∈ (0, 𝜋/𝑇]; if 𝑎𝑖(𝑡) is not a constant, then (C1) is valid if the
𝐿𝑝 norm of 𝑎𝑖(𝑡) is bounded above by some specific constant.

Let 𝜃𝑖 ∈ {1, −1}, 1 ≤ 𝑖 ≤ 𝑛 be fixed. Define

𝜙𝑖 (𝑡) = ∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝜃𝑖𝑓𝑖 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛. (69)

We also let

𝜙
min
𝑖

= min
𝑡∈[0,𝑇]

𝜙𝑖 (𝑡) , 𝜙
max
𝑖

= max
𝑡∈[0,𝑇]

𝜙𝑖 (𝑡) . (70)

We now present our main result which tackles (65) when
the norm | ⋅ | in R𝑛 is the 𝑙𝑝 norm or the 𝑙∞ norm.

Theorem 27. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (𝐶1),

(C2) 𝜙min
𝑖

> 0;
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(C3) let 𝐻𝑖(𝑡, 𝑠) = (𝜕/𝜕𝑠)ℎ𝑖(𝑡, 𝑠); for any numbers 𝑏, 𝑏 with
𝑏

≥ 𝑏 > 0, the function 𝐻𝑖 : [0,T] × [𝑏, 𝑏


] → R is

an 𝐿
1-Carathéodory function, that is,

(i) the map 𝑠 → 𝐻𝑖(𝑡, 𝑠) is continuous for almost all
𝑡 ∈ [0, 𝑇],

(ii) the map 𝑡 → 𝐻𝑖(𝑡, 𝑠) is measurable for all 𝑠 ∈

[𝑏, 𝑏

],

(iii) for any 𝑟 > 0, there exists 𝜇𝑟,𝑖 ∈ 𝐿
1
[0, 𝑇] such that

|𝑠| ≤ 𝑟(𝑠 ∈ [𝑏, 𝑏

]) implies |𝐻𝑖(𝑡, 𝑠)| ≤ 𝜇𝑟,𝑖(𝑡) for

almost all 𝑡 ∈ [0, 𝑇];

(C4) (𝜕/𝜕𝑠)ℎ𝑖(𝑡, 𝑠) ≥ 0 for 𝑡 ∈ [0, 𝑇] and 𝑠 > 0;
(C5) there exist 𝑐𝑖 > 0 and 𝛼𝑖 > 0 such that

𝜕

𝜕𝑠
ℎ𝑖 (𝑡, 𝑠) ≤ 𝑐𝑖𝑠

−𝛼𝑖 , 𝑡 ∈ [0, 𝑇] , 𝑠 > 0; (71)

(C6) the norm | ⋅ | is the 𝑙𝑝 norm where 1 ≤ 𝑝 ≤ ∞ is fixed,
and

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠 < 𝐴
𝑝

𝑖
(𝑐𝑖2

𝛼𝑖)
−1
, 𝑡 ∈ [0, 𝑇] , (72)

where

𝐴
𝑝

𝑖
=

{{{{{

{{{{{

{

[

𝑛

∑

𝑘=1

(𝜙
min
𝑘

)
𝑝

]

2𝛼𝑖/𝑝

, 1 ≤ 𝑝 < ∞,

[max
1≤𝑘≤𝑛

𝜙
min
𝑘

]

2𝛼𝑖

, 𝑝 = ∞.

(73)

Then, (65) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

𝜙
min
𝑖

≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅𝑖, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (74)

where

𝑅𝑖 ≥ 𝜙
min
𝑖

, 𝑅𝑖 ≥ 𝜙
max
𝑖

[1 −
𝑐𝑖2

𝛼𝑖

𝐴
𝑝

𝑖

max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠]

−1

,

1 ≤ 𝑖 ≤ 𝑛.

(75)

Theorem 27 is proved using Theorem 26; in fact we will
seek a constant-sign solution of (66) in (𝐶[0, 𝑇])

𝑛 and then
extend it to a 𝑇-periodic constant-sign solution of (65) as in
(67). Here, let Ω be the closed convex set given by

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝜙

min
𝑖

≤ 𝜃𝑖𝑢𝑖 (𝑡) ≤ 𝑅𝑖,

𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛 | 𝜙
min
𝑖

} ,

(76)

where 𝑅𝑖 (≥ 𝜙
min
𝑖

> 0) is chosen as in (75), and define the
operator 𝑆 : Ω → (𝐶[0, 𝑇])

𝑛 as

𝑆𝑢 (𝑡) = (𝑆1𝑢 (𝑡) , 𝑆2𝑢 (𝑡) , . . . , 𝑆𝑛𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] , (77)

where

𝑆𝑖𝑢 (𝑡) = ∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) [𝜕2ℎ𝑖 (𝑠,
1

2
|𝑢(𝑠)|

2
) 𝑢𝑖 (𝑠) + 𝑓𝑖 (𝑠)] 𝑑𝑠,

𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛.

(78)

Clearly, a fixed point of 𝑆𝑢 = 𝑢 is a solution of (66). We can
show that 𝑆(Ω) ⊆ Ω; that is, 𝑆𝑖(Ω) ⊆ Ω for each 1 ≤ 𝑖 ≤ 𝑛.
Further, we can prove that 𝑆 : Ω → Ω is continuous and
compact; that is, 𝑆𝑖𝑢 is bounded and is equicontinuous for
any 𝑢 ∈ Ω and 1 ≤ 𝑖 ≤ 𝑛. ByTheorem 26, the system (66) has
a constant-sign solution 𝑢∗

∈ Ω. Now, a𝑇-periodic constant-
sign solution 𝑢

𝑇 of (65) can be obtained as in (67).

Remark 28. The constants 𝑐𝑖 that appear in (C5) determine
the upper bounds 𝑅𝑖 of the solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. Noting

(75), we see that a smaller (bigger) 𝑐𝑖 gives a smaller (bigger)
𝑅𝑖, and hence a smaller (bigger) setΩwhere the solution lies.

In the next result, we will relax the condition (C6). The
tradeoff is the upper bounds 𝑅𝑖 of the solution that may
be bigger than those in (75). Also the bounds 𝑅𝑖 do not
depend on 𝑝 (𝑝 as in 𝑙𝑝 norm) and so the information of 𝑝
is not utilized. This result is obtained by following the main
arguments in the derivation of Theorem 27 but modify the
proof of 𝜃𝑖𝑆𝑖𝑢(𝑡) ≤ 𝑅𝑖, 𝑡 ∈ [0, 𝑇].

Theorem 29. Assume that (C1)–(C5) hold for each 1 ≤ 𝑖 ≤ 𝑛.
The norm | ⋅ | is the 𝑙𝑝 norm where 1 ≤ 𝑝 ≤ ∞ is fixed. Then
(65) has a𝑇-periodic constant-sign solution 𝑢𝑇

∈ (𝐶(R))
𝑛 such

that

𝜙
min
𝑖

≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅𝑖, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (79)

where, for 1 ≤ 𝑖 ≤ 𝑛 we have 𝑅𝑖 ≥ 𝜙
min
𝑖

,

𝑅
2𝛼𝑖

𝑖
> 𝑐𝑖2

𝛼𝑖 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠, if 𝛼𝑖 ∈ (0,
1

2
) , (80)

𝑅𝑖 [1 − 𝑐𝑖2
𝛼𝑖𝑅

−2𝛼𝑖

𝑖
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠] ≥ 𝜙
max
𝑖

,

if 𝛼𝑖 ∈ (0,
1

2
) ,

(81)

𝑅𝑖 ≥ 𝑐𝑖2
𝛼𝑖(𝜙

min
𝑖

)
1−2𝛼𝑖 max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠 + 𝜙
max
𝑖

,

if 𝛼𝑖 ≥
1

2
.

(82)

Remark 30. A similar remark as Remark 28 also holds for
Theorem 29.Moreover, we note that the upper bounds𝑅𝑖 that
fulfill (80)–(82) are independent of 𝑝, thus the information of
| ⋅ | being a particular 𝑙𝑝 norm is not used. On the other hand,
in Theorem 27, the upper bounds 𝑅𝑖 that satisfy (75) depend
on 𝑝. The sharpness of the bounds in both theorems cannot
be compared in general; however, we will give an example at
the end of this section to illustrate the results.



10 Abstract and Applied Analysis

In the next result, we will relax the condition (C2). Here,
we allow 𝜙𝑖(𝑡) ≤ 0 for some 𝑖 ∈ {1, 2, . . . , 𝑛} and some 𝑡 ∈

[0, 𝑇].

Theorem 31. Suppose that
(C7) there exists 𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝜙min

𝑗
> 0.

Let 𝐽 = {𝑗 ∈ {1, 2, . . . , 𝑛}|𝜙
min
𝑗

> 0} and let 𝐽 = {1, 2, . . . , 𝑛}\𝐽.
Assume that the following conditions hold for each 1 ≤ 𝑖 ≤ 𝑛 :

(C1), (C3), (C4), and

(C8) there exist 𝑐𝑖 > 0 such that

𝜕

𝜕𝑠
ℎ𝑖 (𝑡, 𝑠) ≤ 𝑐𝑖𝑠

−𝛼𝑖 , 𝑡 ∈ [0, 𝑇] , 𝑠 > 0, (83)

where 𝛼𝑗 > 0 for 𝑗 ∈ 𝐽 and 𝛼𝑘 ∈ (0, 1/2) for 𝑘 ∈ 𝐽
.

Further, let the following hold for each 𝑗 ∈ 𝐽 :

(C9) the norm | ⋅ | is the 𝑙𝑝 norm where 1 ≤ 𝑝 ≤ ∞ is fixed,
and

∫

𝑇

0

𝑔𝑗 (𝑡, 𝑠) 𝑑𝑠 < 𝐴
𝑝

𝑗
(𝑐𝑗2

𝛼𝑗)
−1

, 𝑡 ∈ [0, 𝑇] , (84)

where

𝐴
𝑝

𝑗
=

{{{{{

{{{{{

{

[∑

ℓ∈𝐽

(𝜙
min
ℓ

)
𝑝

]

2𝛼𝑗/𝑝

, 1 ≤ 𝑝 < ∞,

[max
ℓ∈𝐽

𝜙
min
ℓ

]

2𝛼𝑗

, 𝑝 = ∞.

(85)

Then, (65) has a 𝑇-periodic solution 𝑢
𝑇
∈ (𝐶(R))

𝑛 such that

𝜙
min
𝑗

≤ 𝜃𝑗𝑢
𝑇

𝑗
(𝑡) ≤ 𝑅𝑗, 𝑡 ∈ R, 𝑗 ∈ 𝐽,


𝑢
𝑇

𝑘
(𝑡)


≤ 𝑅𝑘, 𝑡 ∈ R, 𝑘 ∈ 𝐽


,

(86)

where

𝑅𝑗 ≥ 𝜙
min
𝑗

,

𝑅𝑗 ≥ 𝜙
max
𝑗

[1 − 𝑐𝑗2
𝛼𝑗(𝐴

𝑝

𝑗
)
−1

max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑗 (𝑡, 𝑠) 𝑑𝑠]

−1

, 𝑗 ∈ 𝐽,

(87)

𝑅
2𝛼𝑘

𝑘
> 𝑐𝑘2

𝛼𝑘 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑑𝑠, 𝑘 ∈ 𝐽

, (88)

𝑅𝑘 [1 − 𝑐𝑘2
𝛼𝑘𝑅

−2𝛼𝑘

𝑘
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑑𝑠] ≥ max
𝑡∈[0,𝑇]

𝜙𝑘 (𝑡)
 ,

𝑘 ∈ 𝐽

.

(89)

To derive Theorem 31, we let the closed convex setΩ∗ be

Ω
∗
= {𝑢 ∈ (𝐶 [0, 𝑇])

𝑛
| 𝜙

min
𝑗

≤ 𝜃𝑗𝑢𝑗 (𝑡) ≤ 𝑅𝑗, 𝑡 ∈ [0, 𝑇] ,

𝑗 ∈ 𝐽;
𝑢𝑘 (𝑡)

 ≤ 𝑅𝑘, 𝑡 ∈ [0, 𝑇] , 𝑘 ∈ 𝐽

} ,

(90)

where 𝑅𝑗 (≥ 𝜙
min
𝑗

> 0) and 𝑅𝑘 are chosen as in (87)–(89).
Next, we define the operator 𝑆 : Ω

∗
→ (𝐶[0, 𝑇])

𝑛 as in (78)
and show that Theorem 26 is applicable.

Remark 32. From the conclusion of Theorem 29, we see that
the solution 𝑢𝑇 is “partially” of constant sign, in the sense that
𝜃𝑗𝑢

𝑇

𝑗
(𝑡) ≥ 0 for 𝑗 ∈ 𝐽, butmay not be so for 𝑗 ∈ 𝐽

. Further, the
constants 𝑐𝑖 that appear in (C8) determine the upper bounds
𝑅𝑖 of the solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. From (87) and (88), we see

that a smaller (bigger) 𝑐𝑖 gives a smaller (bigger)𝑅𝑖, and hence
a smaller (bigger) setΩ∗ where the solution lies.

Using similar arguments as in the derivation ofTheorems
31 and 29 (in getting 𝑆𝑗𝑢 ∈ Ω

∗ for 𝑗 ∈ 𝐽 and 𝑢 ∈ Ω
∗), we

obtain the following result.

Theorem 33. Suppose that (C7) hold. Let 𝐽 = {𝑗 ∈

{1, 2, . . . , 𝑛}|𝜙
min
𝑗

> 0} and let 𝐽 = {1, 2, . . . , 𝑛} \ 𝐽. Assume the
following conditions hold for each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C3), (C4),
and (C8). Then, (65) has a 𝑇-periodic solution 𝑢

𝑇
∈ (𝐶(R))

𝑛

such that

𝜙
min
𝑗

≤ 𝜃𝑗𝑢
𝑇

𝑗
(𝑡) ≤ 𝑅𝑗, 𝑡 ∈ R, 𝑗 ∈ 𝐽,


𝑢
𝑇

𝑘
(𝑡)


≤ 𝑅𝑘, 𝑡 ∈ R, 𝑘 ∈ 𝐽


,

(91)

where

𝑅𝑗 ≥ 𝜙
min
𝑗

, 𝑗 ∈ 𝐽,

𝑅
2𝛼𝑗

𝑗
> 𝑐𝑗2

𝛼𝑗 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑗 (𝑡, 𝑠) 𝑑𝑠, if 𝛼𝑗 ∈ (0,
1

2
) , 𝑗 ∈ 𝐽,

𝑅𝑗 [1 − 𝑐𝑗2
𝛼𝑗𝑅

−2𝛼𝑗

𝑗
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑗 (𝑡, 𝑠) 𝑑𝑠] ≥ 𝜙
max
𝑗

,

if 𝛼𝑗 ∈ (0,
1

2
) , 𝑗 ∈ 𝐽,

𝑅𝑗 ≥ 𝑐𝑗2
𝛼𝑗(𝜙

min
𝑗

)
1−2𝛼𝑗 max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑗 (𝑡, 𝑠) 𝑑𝑠 + 𝜙
max
𝑗

,

if 𝛼𝑗 ≥
1

2
, 𝑗 ∈ 𝐽,

(92)

𝑅
2𝛼𝑘

𝑘
> 𝑐𝑘2

𝛼𝑘 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑑𝑠, 𝑘 ∈ 𝐽

,

𝑅𝑘 [1 − 𝑐𝑘2
𝛼𝑘𝑅

−2𝛼𝑘

𝑘
max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑑𝑠] ≥ max
𝑡∈[0,𝑇]

𝜙𝑘 (𝑡)
 ,

𝑘 ∈ 𝐽

.

(93)

Remark 34. A similar remark as Remark 32 holds for
Theorem 33. Also, we observe once again that the upper
bounds 𝑅𝑗 that fulfill (92) are independent of 𝑝, thus the
information of | ⋅ | being a particular 𝑙𝑝 norm is not used.
On the other hand, in Theorem 31, the upper bounds 𝑅𝑗 that
satisfy (87) depend on 𝑝.
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We will now present an example that illustratesTheorems
27 and 29.

Example 35. Consider (65) when

𝑇 = 2𝜋, 𝑛 = 2, 𝑎1 (𝑡) = 𝑎2 (𝑡) =
1

4
,

𝑓1 (𝑡) = 1, 𝑓2 (𝑡) =
1

2
, ℎ1 (𝑡, 𝑠) =

ln (𝑠 + 1)

|sin 𝑡| + 1
,

ℎ2 (𝑡, 𝑠) =
ln (𝑠 + 1)

3 (|cos 𝑡| + 1)
, |⋅| = 𝑙𝑝 norm (1 ≤ 𝑝 ≤ ∞) .

(94)

Fix 𝜃𝑖 = 1, 1 ≤ 𝑖 ≤ 𝑛, that is, we are seeking positive
solutions.The correspondingGreen’s function has the explicit
expression [36]

𝑔1 (𝑡, 𝑠) = 𝑔2 (𝑡, 𝑠) =

{{{

{{{

{

cos 1
2
(𝑡 − 𝑠 − 𝜋) , 0 ≤ 𝑠 ≤ 𝑡 ≤ 2𝜋,

cos 1
2
(𝑠 − 𝑡 − 𝜋) , 0 ≤ 𝑡 ≤ 𝑠 ≤ 2𝜋.

(95)

Condition (C1) is satisfied. By direct computation, we get
𝜙1(𝑡) = 4 and 𝜙2(𝑡) = 2 for 𝑡 ∈ [0, 2𝜋]. Thus, (C2) is fulfilled
with

𝜙
min
1

= 𝜙
max
1

= 4, 𝜙
min
2

= 𝜙
max
2

= 2. (96)

Moreover, we have

𝜕

𝜕𝑠
ℎ1 (𝑡, 𝑠) =

1

|sin 𝑡| + 1

1

𝑠 + 1
≤

1

𝑠 + 1
≤
1

𝑠
,

𝜕

𝜕𝑠
ℎ2 (𝑡, 𝑠) =

1

3 (|cos 𝑡| + 1)

1

𝑠 + 1
≤

1

3 (𝑠 + 1)
≤

1

3𝑠

(97)

and so it is clear that (C4) and (C5) are satisfied with

𝛼1 = 1, 𝑐1 = 1, 𝛼2 = 1, 𝑐2 =
1

3
. (98)

Finally, we compute

𝐴
𝑝

1
= A𝑝

2
= (4

𝑝
+ 2

𝑝
)
2/𝑝

, 1 ≤ 𝑝 < ∞,

𝐴
∞

1
= 𝐴

∞

2
= 16.

(99)

Since ∫2𝜋

0
𝑔𝑖(𝑡, 𝑠)𝑑𝑠 = 4 for 𝑡 ∈ [0, 2𝜋] and 𝑖 = 1, 2, we check

that (C6) holds for all 1 ≤ 𝑝 ≤ ∞.
All the conditions of Theorem 27 are satisfied, thus we

conclude that the problem (65) with (94) has a positive 2𝜋-
periodic solution 𝑢 = (𝑢1, 𝑢2) such that

𝜙
min
𝑖

≤ 𝑢𝑖 (𝑡) ≤ 𝑅𝑖, 𝑡 ∈ R, 𝑖 = 1, 2, (100)

where (from (75))

𝑅𝑖 ≥ 𝜙
max
𝑖

[1 −
8𝑐𝑖

𝐴
𝑝

𝑖

]

−1

≡ 𝐿
𝑝

𝑖
, 1 ≤ 𝑝 ≤ ∞, 𝑖 = 1, 2. (101)

We can also apply Theorem 29 to conclude that the
problem (65) with (94) has a positive 2𝜋-periodic solution
𝑢 = (𝑢1, 𝑢2) satisfying (100) and (from (82))

𝑅𝑖 ≥ 8𝑐𝑖(𝜙
min
𝑖

)
−1

+ 𝜙
max
𝑖

≡ 𝑀𝑖, 𝑖 = 1, 2. (102)

As mentioned in Remark 30, in general we cannot com-
pare 𝐿𝑝

𝑖
and𝑀𝑖. In fact, a direct calculation gives

𝑝 = 1 :

𝐿
1

1
= 5.14 < 𝑀1 = 6, 𝐿

1

2
= 2.16 < 𝑀2 = 3.33,

𝑝 = 2 :

𝐿
2

1
= 6.67 > 𝑀1 = 6, 𝐿

2

2
= 2.31 < 𝑀2 = 3.33,

𝑝 = ∞ :

𝐿
∞

1
= 8 > 𝑀1 = 6, 𝐿

∞

2
= 2.4 < 𝑀2 = 3.33.

(103)

5.2. Existence Results for (59). In this section we will consider
the general system of Hill’s equations

𝑢


𝑖
(𝑡) + 𝑎𝑖 (𝑡) 𝑢𝑖 (𝑡) = 𝐹𝑖 (𝑡, 𝑢 (𝑡)) , 1 ≤ 𝑖 ≤ 𝑛. (104)

Here, 𝑎𝑖 and 𝐹𝑖 are 𝑇-periodic in the variable 𝑡, 𝑎𝑖 ∈ 𝐿
1
[0, 𝑇],

and the nonlinearities 𝐹𝑖(𝑡, 𝑥1, 𝑥2, . . . , 𝑥𝑛) can be singular at
𝑥𝑗 = 0 where 𝑗 ∈ {1, 2, . . . , 𝑛}.

Once again, to obtain a 𝑇-periodic solution 𝑢
𝑇

=

(𝑢
𝑇

1
, 𝑢

𝑇

2
, . . . , 𝑢

𝑇

𝑛
) of the system (104), we first seek a solution

𝑢
∗

= (𝑢
∗

1
, 𝑢

∗

2
, . . . , 𝑢

∗

𝑛
) of the following system of boundary

value problems:

𝑢


𝑖
(𝑡) + 𝑎𝑖 (𝑡) 𝑢𝑖 (𝑡) = 𝐹𝑖 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] ,

𝑢𝑖 (0) = 𝑢𝑖 (𝑇) , 𝑢


𝑖
(0) = 𝑢



𝑖
(𝑇) , 1 ≤ 𝑖 ≤ 𝑛.

(105)

The periodic solution is then given by

𝑢
𝑇
(𝑡) = 𝑢

∗
(𝑡 − 𝑚𝑇) , 𝑡 ∈ [𝑚𝑇, (𝑚 + 1) 𝑇] , 𝑚 ∈ Z. (106)

With 𝑔𝑖 being the Green’s function of the boundary value
problem (68), throughoutwewill assume that (C1) is satisfied.
Moreover, for fixed 𝜃𝑖 ∈ {−1, 1} and𝑇-periodic functions 𝑞𝑖 ∈
𝐿
1
[0, 𝑇], 1 ≤ 𝑖 ≤ 𝑛, we define

𝜂𝑖 (𝑡) = ∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝜃𝑖𝑞𝑖 (𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛 (107)

and also

𝜂
min
𝑖

= min
𝑡∈[0,𝑇]

𝜂𝑖 (𝑡) , 𝜂
max
𝑖

= max
𝑡∈[0,𝑇]

𝜂𝑖 (𝑡) . (108)

For 𝑏 ≥ 𝑏

≥ 0 and 1 ≤ 𝑖 ≤ 𝑛, we denote the interval

[𝑏, 𝑏

]𝑖 =

{

{

{

[𝑏, 𝑏

] , if 𝜃𝑖 = 1,

[−𝑏

, −𝑏] , if 𝜃𝑖 = −1.

(109)

A similar definition is valid for (𝑏, 𝑏)𝑖.
Using Schauder’s fixed point theorem, we will establish

existence results for the system (104).
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Theorem 36. Assume the following conditions hold for each
1 ≤ 𝑖 ≤ 𝑛 : (C1);
(C10) for any numbers 𝑏𝑗, 𝑏𝑗 , 1 ≤ 𝑗 ≤ 𝑛 with 𝑏



𝑗
≥ 𝑏𝑗 > 0,

the function 𝐹𝑖 : [0, 𝑇] × ∏
𝑛

𝑗=1
[𝑏𝑗, 𝑏



𝑗
]𝑗 → R is a 𝐿

1-
Carathéodory function, that is,

(i) the map 𝑢 → 𝐹𝑖(𝑡, 𝑢) is continuous for almost all
𝑡 ∈ [0, 𝑇],

(ii) the map 𝑡 → 𝐹𝑖(𝑡, 𝑢) is measurable for all 𝑢 ∈

∏
𝑛

𝑗=1
[𝑏𝑗, 𝑏



𝑗
]𝑗,

(iii) for any 𝑟 > 0, there exists 𝜇𝑟,𝑖 ∈ 𝐿
1
[0, 𝑇] such

that |𝑢| ≤ 𝑟(𝑢 ∈ ∏
𝑛

𝑗=1
[𝑏𝑗, 𝑏



𝑗
]𝑗) implies |𝐹𝑖(𝑡, 𝑢)| ≤

𝜇𝑟,𝑖(𝑡) for almost all 𝑡 ∈ [0, 𝑇];

(C11) there exist 𝛽𝑖 > 0, 𝛾𝑖 ∈ [0, 1), and 𝑇-periodic functions
𝑤𝑖, 𝑞𝑖 with 𝑤𝑖 ∈ 𝐿

1
[0, 𝑇], q

𝑖
∈ 𝐿

1
[0, 𝑇] and 𝑤𝑖(𝑡) > 0

for a.e. 𝑡 ∈ [0, 𝑇] such that

𝜃𝑖𝑞𝑖 (𝑡) |𝑢|
𝛾𝑖 ≤ 𝜃𝑖𝐹𝑖 (𝑡, 𝑢) ≤ 𝜃𝑖𝑞𝑖 (𝑡) |𝑢|

𝛾𝑖 + 𝑤𝑖 (𝑡) |𝑢|
−𝛽𝑖 ,

𝑡 ∈ [0, 𝑇] , 𝑢 ∈

𝑛

∏

𝑘=1

(0,∞)𝑘

(110)

(here | ⋅ | is the 𝑙𝑝 norm where 1 ≤ 𝑝 ≤ ∞ is fixed);

(C12) 𝜂min
𝑖

> 0.

Then, (104) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

𝑟𝑖 ≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅𝑖, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (111)

where, for 1 ≤ 𝑖 ≤ 𝑛 one has

0 < 𝑟𝑖 ≤ 𝑅𝑖, 𝑟𝑖 ≤ (𝜂
min
𝑖

)
1/(1−𝛾𝑖)

, (112)

𝑅𝑖 ≥ 𝜂
max
𝑖

|𝑅|
𝛾𝑖
𝑝
+ |𝑟|

−𝛽𝑖
𝑝

max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑤𝑖 (𝑠) 𝑑𝑠, (113)

(here |𝑅|𝑝 is the 𝑙𝑝 norm of (𝑅1, 𝑅2, . . . , 𝑅𝑛), likewise |𝑟|𝑝 is the
𝑙𝑝 norm of (𝑟1, 𝑟2, . . . , 𝑟𝑛)).

In proving Theorem 36, we actually seek a constant-sign
solution of (105) in (𝐶[0, 𝑇])

𝑛 and then extend it to a 𝑇-
periodic constant-sign solution of (104) as in (106). Let Ω be
the closed convex set given by

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟𝑖 ≤ 𝜃𝑖𝑢𝑖 (𝑡) ≤ 𝑅𝑖, 𝑡 ∈ [0, 𝑇] ,

1 ≤ 𝑖 ≤ 𝑛} ,

(114)

where 𝑅𝑖 ≥ 𝑟𝑖 > 0 are chosen as in (112) and (113), and define
the operator 𝑆 : Ω → (𝐶[0, 𝑇])

𝑛 as

𝑆𝑢 (𝑡) = (𝑆1𝑢 (𝑡) , 𝑆2𝑢 (𝑡) , . . . , 𝑆𝑛𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑇] , (115)

where

𝑆𝑖𝑢 (𝑡) = ∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝐹𝑖 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛.

(116)

Clearly, a fixed point of 𝑆𝑢 = 𝑢 is a solution of (105). The
conditions of Theorem 26 are then shown to be satisfied.

Remark 37. As seen from (112) and (113), the functions𝑤𝑖 and
𝑞𝑖 that appear in (C11) determine the lower and upper bounds
of the solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛.

Theorem 38. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C10), (C11), and (C12). Then, (104) has
a 𝑇-periodic constant-sign solution 𝑢𝑇

∈ (𝐶(R))
𝑛 such that

𝑟 ≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (117)

where 0 < 𝑟 ≤ 𝑅, and for all 1 ≤ 𝑖 ≤ 𝑛,

𝑟 ≤

{{

{{

{

(𝜂
min
𝑖

𝑛
𝛾𝑖/𝑝)

1/(1−𝛾𝑖)

, 1 ≤ 𝑝 < ∞,

(𝜂
min
𝑖

)
1/(1−𝛾𝑖)

, 𝑝 = ∞,

(118)

𝑅≥

{{{{{{{{{

{{{{{{{{{

{

𝑅
𝛾𝑖𝜂

max
𝑖

𝑛
𝛾𝑖/𝑝

+𝑟
−𝛽𝑖𝑛

−𝛽𝑖/𝑝 [max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑤𝑖 (𝑠) 𝑑𝑠] ,

1 ≤ 𝑝 < ∞,

𝑅
𝛾𝑖𝜂

max
𝑖

+ 𝑟
−𝛽𝑖 [max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑤𝑖 (𝑠) 𝑑𝑠] ,

𝑝 = ∞.

(119)

Theorem 38 is obtained by similar arguments used in the
derivation of Theorem 36, with a newΩ defined as

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟 ≤ 𝜃𝑖𝑢𝑖 (𝑡) ≤ 𝑅, 𝑡 ∈ [0, 𝑇] ,

1 ≤ 𝑖 ≤ 𝑛} ,

(120)

where 𝑅 ≥ 𝑟 > 0 are chosen as in (118) and (119).

Remark 39. Remark 37 also holds for Theorem 38. Further,
comparing the bounds 𝑟𝑖, 𝑅𝑖, 1 ≤ 𝑖 ≤ 𝑛 in Theorem 36 (see
(112), (113)) with the bounds 𝑟, 𝑅 in Theorem 38 (see (118),
(119)), we note that 𝑟𝑖 and𝑅𝑖 are lower and upper bounds for a
particular 𝜃𝑖𝑢

𝑇

𝑖
, whereas 𝑟 and𝑅 are uniform lower and upper

bounds for all 𝜃𝑖𝑢𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛. However, the computation of

𝑅𝑖 from (113) is more difficult than calculating 𝑅 from (119).

Our next result tackles the case when 𝜂
min
𝑖

= 0.

Theorem 40. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C10),
(C13) there exist 𝛽𝑖 ∈ (0, 1), 𝛾𝑖 ∈ [0, 1), and 𝑇-periodic func-

tions 𝑤𝑖, 𝑣𝑖, 𝑞𝑖 with 𝑤𝑖 ∈ 𝐿
1
[0, 𝑇], 𝑣𝑖 ∈ 𝐿

1
[0, 𝑇], 𝑞𝑖 ∈

𝐿
1
[0, 𝑇], and 𝑤𝑖(𝑡), 𝑣𝑖(𝑡) > 0 for a.e. 𝑡 ∈ [0, 𝑇] such

that

𝜃𝑖𝑞𝑖 (𝑡) |𝑢|
𝛾𝑖 + 𝑣𝑖 (𝑡) |𝑢|

−𝛽𝑖 ≤ 𝜃𝑖𝐹𝑖 (𝑡, 𝑢)

≤ 𝜃𝑖𝑞𝑖 (𝑡) |𝑢|
𝛾𝑖 + 𝑤𝑖 (𝑡) |𝑢|

−𝛽𝑖 ,

𝑡 ∈ [0, 𝑇] , 𝑢 ∈

𝑛

∏

𝑘=1

(0,∞)𝑘

(121)

(here | ⋅ | is the 𝑙𝑝 norm where 1 ≤ 𝑝 ≤ ∞ is fixed);

(C14) 𝜂min
𝑖

= 0.
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Then, (104) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

1

𝑅
≤ 𝜃𝑖𝑢

𝑇

𝑖
(t) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (122)

where 𝑅 ≥ 1, and for all 1 ≤ 𝑖 ≤ 𝑛,

𝑅 ≥

{{{{{{{{

{{{{{{{{

{

𝑛
𝛽𝑖/𝑝(1−𝛽𝑖)[min

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖(𝑡, 𝑠)𝑣𝑖(𝑠)𝑑𝑠]

−1/(1−𝛽𝑖)

,

1 ≤ 𝑝 < ∞,

[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑣𝑖 (𝑠) 𝑑𝑠]

−1/(1−𝛽𝑖)

,

𝑝 = ∞,

𝑅≥

{{{{{{{

{{{{{{{

{

𝑅
𝛾𝑖𝜂

max
𝑖

𝑛
𝛾𝑖/𝑝+𝑅

𝛽𝑖𝑛
−𝛽𝑖/𝑝 [max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑤𝑖 (𝑠) 𝑑𝑠] ,

1 ≤ 𝑝 < ∞,

𝑅
𝛾𝑖𝜂

max
𝑖

+ 𝑅
𝛽𝑖 [max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑤𝑖 (𝑠) 𝑑𝑠] ,

𝑝 = ∞.

(123)

The closed convex set used to get Theorem 40 is given by

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟 ≤ 𝜃𝑖𝑢𝑖 (𝑡) ≤ 𝑅,

𝑡 ∈ [0, 𝑇] , 1 ≤ 𝑖 ≤ 𝑛} ,

(124)

where 𝑟 = 1/𝑅 and 𝑅 ≥ 1 satisfies (123).

Remark 41. As seen from (123), the functions 𝑤𝑖, 𝑣𝑖, and 𝑞𝑖
that appear in (C13) determine the lower and upper bounds
of the solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛.

Finally, the next result tackles the case when 𝜂
max
𝑖

< 0.

Theorem 42. Assume that the following conditions hold for
each 1 ≤ 𝑖 ≤ 𝑛 : (C1), (C10),

(C15) there exist𝛽 ∈ (0, 1) and𝑇-periodic functions𝑤𝑖, 𝑣𝑖, 𝑞𝑖

with 𝑤𝑖 ∈ 𝐿
1
[0, 𝑇], 𝑣𝑖 ∈ 𝐿

1
[0, 𝑇], 𝑞𝑖 ∈ 𝐿

1
[0, 𝑇], and

𝑤𝑖(𝑡), 𝑣𝑖(𝑡) > 0 for a.e. 𝑡 ∈ [0, 𝑇] such that

𝜃𝑖𝑞𝑖 (𝑡) + 𝑣𝑖 (𝑡) |𝑢|
−𝛽

≤ 𝜃𝑖𝐹𝑖 (𝑡, 𝑢) ≤ 𝜃𝑖𝑞𝑖 (𝑡) + 𝑤𝑖 (𝑡) |𝑢|
−𝛽
,

𝑡 ∈ [0, 𝑇] , 𝑢 ∈

𝑛

∏

𝑘=1

(0,∞)𝑘

(125)

(here | ⋅ | is the 𝑙𝑝 norm where 1 ≤ 𝑝 ≤ ∞ is fixed);
(C16) 𝜂max

𝑖
< 0;

(C17) 𝜂min
𝑖

≥ 𝑛
−𝛽/(1+𝛽)𝑝

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)
1/(1−𝛽

2
)

(1 − 1/𝛽
2
)

where

𝑊 = max
1≤𝑘≤𝑛

[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑤𝑘 (𝑠) 𝑑𝑠] ,

𝑉 = min
1≤𝑘≤𝑛

[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑣𝑘 (𝑠) 𝑑𝑠] .

(126)

Then, (104) has a 𝑇-periodic constant-sign solution 𝑢
𝑇

∈

(𝐶(R))
𝑛 such that

𝑟 ≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (127)

where 0 < 𝑟 ≤ 𝑅 are given by

𝑟 =
{

{

{

𝑛
−𝛽/(1+𝛽)𝑝

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)
1/(1−𝛽

2
)

, 1 ≤ 𝑝 < ∞

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)
1/(1−𝛽

2
)

, 𝑝 = ∞,

𝑅 =
{

{

{

𝑛
−𝛽/(1+𝛽)𝑝

𝑊
1/(1−𝛽

2
)
(𝑉𝛽

2
)
−𝛽/(1−𝛽

2
)

, 1 ≤ 𝑝 < ∞

𝑊
1/(1−𝛽

2
)
(𝑉𝛽

2
)
−𝛽/(1−𝛽

2
)

, 𝑝 = ∞.

(128)

Theorem 42 is obtained by considering the closed convex
set

Ω = {𝑢 ∈ (𝐶 [0, 𝑇])
𝑛
| 𝑟 ≤ 𝜃𝑖𝑢𝑖 (𝑡) ≤ 𝑅, 𝑡 ∈ [0, 𝑇] ,

1 ≤ 𝑖 ≤ 𝑛} ,

(129)

where 𝑅 ≥ 𝑟 > 0 are determined later as those given in (128).

Remark 43. As seen from (128), the functions 𝑤𝑖 and 𝑣𝑖 that
appear in (C15) determine the lower and upper bounds of the
solution 𝑢

𝑇

𝑖
, 1 ≤ 𝑖 ≤ 𝑛.

We have so far established the results when (i) 𝜂min
𝑖

> 0,
(ii) 𝜂min

𝑖
= 0, and (iii) 𝜂max

𝑖
< 0 for all 1 ≤ 𝑖 ≤ 𝑛. However, it

could be that we only have 𝜂𝑖(𝑡) ≥ 0 for some 𝑖 and 𝜂𝑗(𝑡) < 0

for some 𝑗, which results in 𝜂
min
𝑖

≥ 0 and 𝜂
max
𝑗

< 0 for some
1 ≤ 𝑖, 𝑗 ≤ 𝑛. We present two results for such a case as follows.
Note that Theorem 44 is obtained by applyingTheorems 38–
42, while Theorem 45 is obtained by applying Theorems 36,
40, and 42.

Theorem 44. Let (C1) and (C10) hold for each 1 ≤ 𝑖 ≤ 𝑛.
Assume the following:

(C18) conditions (C11) and (C12) hold for some 𝑖 ∈ 𝐼 ⊆

{1, 2, . . . , 𝑛};
(C19) conditions (C13) and (C14) hold for some 𝑖 ∈ 𝐽 ⊆

{1, 2, . . . , 𝑛};
(C20) conditions (C15), (C16), and (C17) hold for some 𝑖 ∈

𝐾 ⊆ {1, 2, . . . , 𝑛};

where 𝐼 ∪ 𝐽 ∪ 𝐾 = {1, 2, . . . , 𝑛}. Then, (104) has a 𝑇-periodic
constant-sign solution 𝑢

𝑇
∈ (𝐶(R))

𝑛 such that

𝑟 ≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 1 ≤ 𝑖 ≤ 𝑛, (130)

where 0 < 𝑟 ≤ 𝑅 satisfy

(a) (118) and (119) for 𝑖 ∈ 𝐼;
(b) 𝑟 = 1/𝑅, 𝑅 ≥ 1, (123) for 𝑖 ∈ 𝐽;
(c) (128) for 𝑖 ∈ 𝐾.
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Theorem 45. Let (C1) and (C10) hold for each 1 ≤ 𝑖 ≤ 𝑛.
Assume that (C18)–(C20) hold with 𝐼 ∪ 𝐽 ∪ 𝐾 = {1, 2, . . . , 𝑛}.
Then, (104) has a 𝑇-periodic constant-sign solution 𝑢

𝑇
∈

(𝐶(R))
𝑛 such that

𝑟𝑖 ≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅𝑖, 𝑡 ∈ R, 𝑖 ∈ 𝐼, (131)

where 0 < 𝑟𝑖 ≤ 𝑅𝑖 satisfy (112) and (113) for 𝑖 ∈ 𝐼, and

𝑟 ≤ 𝜃𝑖𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 ∈ 𝐽 ∪ 𝐾, (132)

where 0 < 𝑟 ≤ 𝑅 satisfy conclusions (b) and (c) of Theorem 44.

We will now apply the results obtained to the following
system of Hill’s equations, a particular form of it (see (64))
that has been discussed in [45],

𝑢


1
(𝑡) + 𝑎1 (𝑡) 𝑢1 (𝑡) = (√𝑢2

1
+ 𝑢2

2
)

−𝛽1

+ 𝜈1(√𝑢2

1
+ 𝑢2

2
)

𝛾1

,

𝑢


2
(𝑡) + 𝑎2 (𝑡) 𝑢2 (𝑡) = (√𝑢2

1
+ 𝑢2

2
)

−𝛽2

+ 𝜈2(√𝑢2

1
+ 𝑢2

2
)

𝛾2

.

(133)

Clearly, the system (133) corresponds to (104) where 𝑛 = 2

and

𝐹𝑖 (𝑡, 𝑢) = (√𝑢2

1
+ 𝑢2

2
)

−𝛽𝑖

+ 𝜈𝑖(√𝑢2

1
+ 𝑢2

2
)

𝛾𝑖

, 𝑖 = 1, 2.

(134)

We will assume that 𝑎1, 𝑎2 ∈ 𝐿
1
[0, 𝑇] satisfy (C1). Note that

condition (C10) is clearly satisfied. Further, let 𝜃1 = 𝜃2 = 1,
that is, we are interested in positive periodic solutions of
(133).

Example 46. Consider the system (133) with

𝜈𝑖 > 0, 𝛽𝑖 > 0, 𝛾𝑖 ∈ [0, 1) , 𝑖 = 1, 2. (135)

Clearly, (C11) is satisfied with 𝑝 = 2, 𝑞𝑖 = 𝜈𝑖 and 𝑤𝑖 =

1, 𝑖 = 1, 2. Thus, (C12) also holds since

𝜂
min
𝑖

= min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝜃𝑖𝑞𝑖 (𝑠) 𝑑𝑠

= 𝜈𝑖 min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠 > 0.

(136)

Theorem 38 (or Theorem 36) is applicable and we conclude
that the system (133) with (135) has a 𝑇-periodic positive
solution 𝑢

𝑇
∈ (𝐶(R))

2 such that

𝑟 ≤ 𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 = 1, 2, (137)

where 0 < 𝑟 ≤ 𝑅 are such that

𝑟 ≤ min
𝑖=1,2

{(𝜂
min
𝑖

2
𝛾𝑖/2)

1/(1−𝛾𝑖)

} , (138)

𝑅 ≥ max
𝑖=1,2

{𝑅
𝛾𝑖𝜂

max
𝑖

2
𝛾𝑖/2 + 𝑟

−𝛽𝑖2
−𝛽𝑖/2 [max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠]} .

(139)

To illustrate numerically, suppose

𝑎1 (𝑡) = 𝑎2 (𝑡) =
1

4
, 𝑇 = 2𝜋, 𝜈1 =

1

4
,

𝜈2 = 1, 𝛾1 = 𝛾2 =
1

2
, 𝛽1 = 𝛽2 = 1.

(140)

Green’s function is given in (95) and

𝜂
min
𝑖

= 𝜈𝑖 min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠 = 4𝜈𝑖. (141)

Hence, (138) yields 𝑟 ≤ √2. Let 𝑟 = √2, then (139) reduces to

𝑅 ≥ max
𝑖=1,2

{𝑅
1/2

4𝜈𝑖2
1/4

+ 𝑟
−1
2
−1/2

4𝜈𝑖} = 𝑅
1/2

2
9/4

+ 2, (142)

which is satisfied by𝑅 ≥ 26.48. Let𝑅 = 26.48, then from (137)
we conclude that the system (133)with (140) has a 2𝜋-periodic
positive solution 𝑢 ∈ (𝐶(R))

2 such that

√2 ≤ 𝑢𝑖 (𝑡) ≤ 26.48, 𝑡 ∈ R, 𝑖 = 1, 2. (143)

Example 47. Consider the system (133) with

𝜈𝑖 = 0, 𝛽𝑖 ∈ (0, 1) , 𝛾𝑖 ∈ [0, 1) , 𝑖 = 1, 2. (144)

Here, (C13) is satisfied with 𝑝 = 2, 𝑞𝑖 = 𝜈𝑖 = 0 and 𝑤𝑖 =

𝑣𝑖 = 1, 𝑖 = 1, 2. Subsequently, (C14) also holds since

𝜂
min
𝑖

= min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝜃𝑖𝑞𝑖 (𝑠) 𝑑𝑠

= 𝜈𝑖 min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠 = 0.

(145)

Employing Theorem 40, we conclude that the system (133)
with (144) has a 𝑇-periodic positive solution 𝑢

𝑇
∈ (𝐶(R))

2

such that
1

𝑅
≤ 𝑢

𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 = 1, 2, (146)

where 𝑅 ≥ 1, and from (123), we have for 𝑖 = 1, 2,

𝑅 ≥ 2
𝛽𝑖/2(1−𝛽𝑖)[min

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠]

−1/(1−𝛽𝑖)

,

𝑅 ≥ {2
−𝛽𝑖/2 [max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠]}

1/(1−𝛽𝑖)

.

(147)

Combining the inequalities, we see that 𝑅 should satisfy

𝑅 ≥ max{1,max
𝑖=1,2

2
𝛽𝑖/2(1−𝛽𝑖)

× [min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠]

−1/(1−𝛽𝑖)

,

max
𝑖=1,2

{2
−𝛽𝑖/2 [max

𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖(𝑡, 𝑠)𝑑𝑠]}

1/(1−𝛽𝑖)

} .

(148)
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Example 48. Consider the system (133) with

𝜈𝑖 < 0, 𝛽𝑖 = 𝛽 ∈ (0, 1) , 𝛾𝑖 = 0, 𝑖 = 1, 2, (149)

𝜈𝑖 min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠 ≥ 2
−𝛽/2(1+𝛽)

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)
1/(1−𝛽

2
)

× (1 −
1

𝛽2
) , 𝑖 = 1, 2,

(150)

where

𝑊 = max
𝑘=1,2

[max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑑𝑠] ,

𝑉 = min
𝑘=1,2

[min
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑘 (𝑡, 𝑠) 𝑑𝑠] .

(151)

Obviously, (C15) is satisfied with 𝑝 = 2, 𝑞𝑖 = 𝜈𝑖 < 0 and
𝑤𝑖 = 𝑣𝑖 = 1, 𝑖 = 1, 2. Then, (C16) also holds since

𝜂
max
𝑖

= max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝜃𝑖𝑞𝑖 (𝑠) 𝑑𝑠

= 𝜈𝑖 max
𝑡∈[0,𝑇]

∫

𝑇

0

𝑔𝑖 (𝑡, 𝑠) 𝑑𝑠 < 0.

(152)

Moreover, condition (C17) is simply (150). Hence, we con-
clude from Theorem 42 that the system (133) with (149) and
(150) has a 𝑇-periodic positive solution 𝑢

𝑇
∈ (𝐶(R))

2 such
that

𝑟 ≤ 𝑢
𝑇

𝑖
(𝑡) ≤ 𝑅, 𝑡 ∈ R, 𝑖 = 1, 2, (153)

where 0 < 𝑟 ≤ 𝑅 are given by

𝑟 = 2
−𝛽/2(1+𝛽)

𝑊
−𝛽/(1−𝛽

2
)
(𝑉𝛽

2
)
1/(1−𝛽

2
)

,

𝑅 = 2
−𝛽/2(1+𝛽)

𝑊
1/(1−𝛽

2
)
(𝑉𝛽

2
)
−𝛽/(1−𝛽

2
)

.

(154)

Remark 49. In [45], it is shown that (64) has a solution when
𝛽 > 0, 𝛾 ∈ [0, 1) and 𝜈 > 0. As seen from Examples 46–48,
we have generalized the system (64) to allow 𝜈 to be zero or
negative.
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The dynamics of a coupled optoelectronic feedback loops are investigated. Depending on the coupling parameters and the feedback
strength, the system exhibits synchronized asymptotically stable equilibrium and Hopf bifurcation. Employing the center manifold
theorem and normal form method introduced by Hassard et al. (1981), we give an algorithm for determining the Hopf bifurcation
properties.

1. Introduction

In recent research [1–5], it is found that even if several
individual systems behave chaotically, in the case where the
systems are identical, by proper coupling, the systems can
be made to evolve toward a situation of exact isochronal
synchronism. Synchronization phenomena are common in
coupled semiconductor systems, and they are important
examples of oscillators in general, and many works are con-
cerned with coupled semiconductor systems [6–15].

We consider a feedback loop comprises a semiconductor
laser that serves as the optical source, a Mach-Zehnder elec-
trooptic modulator, a photoreceiver, an electronic filter, and
an amplifier. The dynamics of the feedback loop can be
modeled by the delay differential equations [14, 15]:

d𝑥1 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥1 (𝑡) − 𝛾2𝑦1 (𝑡)

− 𝛽𝛾2cos
2
[𝑥1 (𝑡 − 𝜏) + 𝜑0] ,

d𝑦1 (𝑡)
d𝑡

= 𝛾1𝑥1 (𝑡) .

(1)

Here, 𝑥1(𝑡) is the normalized voltage signal applied to the
electrooptic modulator, 𝜏 is the feedback time delay, 𝛾1 and
𝛾2 are the filter low-pass and high-pass corner frequencies, 𝛽

is the dimensionless feedback strength, they are all positive
constants, and 𝜑0 is the bias point of the modulator.

Depending on the value of the feedback strength 𝛽 and
delay 𝜏, the loop, which is modeled by system (1), is capable
of producing dynamics ranging from periodic oscillations to
high-dimensional chaos [1, 14, 15].

We couple two nominally identical optoelectronic feed-
back loops unidirectionally, that is, the transmitter affects
the dynamics of the receiver but not vice versa. Thus, the
equations of motion describing the coupled system are given
by (1) for the transmitter and

d𝑥2 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥2 (𝑡) − 𝛾2𝑦2 (𝑡)

− 𝛽𝛾2cos
2
[𝑘𝑥1 (𝑡 − 𝜏) + (1 − 𝑘) 𝑥2 (𝑡 − 𝜏) + 𝜑0] ,

d𝑦2 (𝑡)
d𝑡

= 𝛾1𝑥2 (𝑡) ,

(2)

for the receiver. In (2), 𝑘 > 0 denotes the coupling strength.
Wewill find that with the variety of 𝑘, the dynamical behavior
of the coupled system can be different, while the feedback
strength 𝛽 keeps the same value.

The paper is organized as follows. In Section 2, using
the method presented in [16], we study the stability, and
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the local Hopf bifurcation of the equilibrium of the coupled
system (1) and (2) by analyzing the distribution of the roots
of the associated characteristic equation. In Section 3, we
use the normal form method and the center manifold theory
introduced by Hassard et al. [17] to analyze the direction,
stability and the period of the bifurcating periodic solutions at
critical values of 𝛽. In Section 4, some numerical simulations
are carried out to illustrate the results obtained from the
analysis. In Section 5, we come to some conclusion about the
effect caused by the variety of parameters.

2. Stability Analysis

In this section, we consider the linear stability of the nonlin-
ear coupled system

d𝑥1 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥1 (𝑡) − 𝛾2𝑦1 (𝑡)

− 𝛽𝛾2cos
2
[𝑥1 (𝑡 − 𝜏) + 𝜑0] ,

d𝑦1 (𝑡)
d𝑡

= 𝛾1𝑥1 (𝑡) ,

d𝑥2 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥2 (𝑡) − 𝛾2𝑦2 (𝑡)

− 𝛽𝛾2cos
2
[𝑘𝑥1 (𝑡 − 𝜏) + (1 − 𝑘) 𝑥2 (𝑡 − 𝜏) + 𝜑0] ,

d𝑦2 (𝑡)
d𝑡

= 𝛾1𝑥2 (𝑡) .

(3)

It is easy to see that 𝐸(0, −𝛽cos2𝜑0, 0, −𝛽cos
2
𝜑0) is the

only equilibrium of system (3). Linearizing system (3) around
𝐸 and denote 𝛿 = sin 2𝜑0, we get the linearization system

d𝑥1 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥1 (𝑡) − 𝛾2𝑦1 (𝑡) + 𝛽𝛿𝛾2𝑥1 (𝑡 − 𝜏) ,

d𝑦1 (𝑡)
d𝑡

= 𝛾1𝑥1 (𝑡) ,

d𝑥2 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥2 (𝑡) − 𝛾2𝑦2 (𝑡)

+ 𝑘𝛽𝛿𝛾2𝑥1 (𝑡 − 𝜏) + (1 − 𝑘) 𝛽𝛿𝛾2𝑥2 (𝑡 − 𝜏) ,

d𝑦2 (𝑡)
d𝑡

= 𝛾1𝑥2 (𝑡) ,

(4)

and the characteristic equation of system (4)

[𝜆
2
+ (𝛾1 + 𝛾2) 𝜆 + 𝛾1𝛾2 − (1 − 𝑘) 𝛽𝛿𝛾2𝜆𝑒

−𝜆𝜏
]

× [𝜆
2
+ (𝛾1 + 𝛾2) 𝜆 + 𝛾1𝛾2 − 𝛽𝛿𝛾2𝜆𝑒

−𝜆𝜏
] = 0,

(5)
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Figure 1: The points of intersection of 𝑓1 = tan𝜔𝜏 and 𝑓2 = (−𝜔
2
+

𝛾1𝛾2)/𝜔(𝛾1 + 𝛾2), when 𝛾1 = 0.1, 𝛾2 = 2.5, 𝜏 = 1.5.

which is equivalent to

𝜆
2
+ (𝛾1 + 𝛾2) 𝜆 + 𝛾1𝛾2 − 𝛽𝛿𝛾2𝜆𝑒

−𝜆𝜏
= 0, (6)

𝜆
2
+ (𝛾1 + 𝛾2) 𝜆 + 𝛾1𝛾2 − (1 − 𝑘) 𝛽𝛿𝛾2𝜆𝑒

−𝜆𝜏
= 0. (7)

Notice that when 𝛽 = 0, (5) becomes

[𝜆
2
+ (𝛾1 + 𝛾2) 𝜆 + 𝛾1𝛾2]

2

= 0, (8)

whose roots are

𝜆1,2 = −𝛾1, 𝜆3,4 = −𝛾2. (9)

So, we have the following lemma.

Lemma 1. The equilibrium 𝐸0(0, −𝛽cos
2
𝜑0, 0, −𝛽cos

2
𝜑0) is

asymptotically stable when 𝛽 = 0.

Next, we regard 𝛽 as the bifurcation parameter to investi-
gate the distribution of roots of (6) and (7).

Let𝜆 = i𝜔 (𝜔 > 0) be a root of (6) and substituting𝜆 = i𝜔
into (6), separating the real and imaginary parts yields

−𝜔
2
+ 𝛾1𝛾2 = 𝛽𝛿𝛾2𝜔 sin𝜔𝜏,

𝜔 (𝛾1 + 𝛾2) = 𝛽𝛿𝛾2𝜔 cos𝜔𝜏.
(10)

Then, we can get

tan𝜔𝜏 =
−𝜔
2
+ 𝛾1𝛾2

𝜔 (𝛾1 + 𝛾2)
. (11)

Hence, (11) has a sequence of roots {𝜔𝑗}𝑗≥0 (see Figure 1), and

𝜔𝑗 ∈

{{{{

{{{{

{

(
2𝑗𝜋

𝜏
,
2𝑗𝜋 + 𝜋/2

𝜏
) , 𝜔

2

𝑗
< 𝛾1𝛾2,

(
2𝑗𝜋 + 3𝜋/2

𝜏
,
2 (𝑗 + 1) 𝜋

𝜏
) , 𝜔

2

𝑗
> 𝛾1𝛾2,

𝑗 = 0, 1, 2, . . . .

(12)
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Define

𝛽𝑗 =
𝛾1 + 𝛾2

𝛿𝛾2 cos𝜔𝑗𝜏
. (13)

Then, (𝜔𝑗, 𝛽𝑗) is the solution of (10).
From (10), we know that

𝛽
2
=

1

𝛿2𝛾2
2

[(
𝛾1𝛾2

𝜔
− 𝜔)

2

+ (𝛾1 + 𝛾2)
2
] , (14)

which gives that

d𝛽
d𝜔

=
1

𝛽𝛿2𝛾2
2
𝜔3
(𝜔
2
+ 𝛾1𝛾2) (𝜔

2
− 𝛾1𝛾2) . (15)

From Figure 1, we know that 𝜔𝑗 → ∞ when 𝑗 → ∞,
which means that 𝜔2

𝑗
> 𝛾1𝛾2; furthermore, 𝛽 is increasing

with respect to 𝜔, when 𝑗 is sufficiently big.
Reorder the set {𝛽𝑗} such that 𝛽0 = min{𝛽𝑗} and 𝜔𝑗

is correspondent of 𝛽𝑗 (𝑗 = 0, 1, 2, . . .). Then, we have the
following lemma.

Lemma 2. There exists a sequence values of 𝛽 denoted by

0 < 𝛽0 < 𝛽1 < ⋅ ⋅ ⋅ , (16)

such that (6) has a pair of imaginary roots ±𝑖𝜔𝑗 when 𝛽 =

𝛽𝑗 (𝑗 = 0, 1, 2, . . .), where 𝛽𝑗 is defined by (13), and 𝜔𝑗 is the
root of (11).

Let

𝜆 (𝜏) = 𝛼 (𝛽) + 𝑖𝜔 (𝛽) (17)

be the root of (6) satisfying 𝛼(𝛽𝑗) = 0 and 𝜔(𝛽𝑗) = 𝜔𝑗. We
have the following conclusion.

Lemma 3. 𝛼(𝛽𝑗) > 0.

Proof. Substituting 𝜆(𝛽) into (6) and taking the derivative
with respect to 𝛽, it follows that

2𝜆
d𝜆
d𝛽

+ (𝛾1 + 𝛾2)
d𝜆
d𝛽

− 𝛿𝛾2𝜆𝑒
−𝜆𝜏

− 𝛽𝛿𝛾2𝑒
−𝜆𝜏 d𝜆

d𝛽

+ 𝜏𝛽𝛿𝛾2𝜆𝑒
−𝜆𝜏 d𝜆

d𝛽
= 0.

(18)

Therefore, noting that 𝛽𝛿𝛾2𝜆𝑒
−𝜆𝜏

= 𝜆
2
+ (𝛾1 + 𝛾2)𝜆 + 𝛾1𝛾2, we

have

d𝜆
d𝛽

=
1

𝛽

𝜆
3
+ (𝛾1 + 𝛾2) 𝜆

2
+ 𝛾1𝛾2𝜆

𝜆2 − 𝛾1𝛾2 + 𝜏 [𝜆
3 + (𝛾1 + 𝛾2) 𝜆

2 + 𝛾1𝛾2𝜆]
, (19)

and by a straight computation, we get

𝛼

(𝛽𝑗) =

𝜔
2

𝑗

𝛽𝑗Δ
[𝜏𝜔
2

𝑗
(𝛾
2

1
+ 𝛾
2

2
) + (𝜔

2

𝑗
+ 𝛾1𝛾2) (𝛾1 + 𝛾2)

+𝜏𝜔
4

𝑗
+ 𝜏𝛾
2

1
𝛾
2

2
] > 0,

(20)

where

Δ = [(𝜔
2

𝑗
+ 𝛾1𝛾2) + 𝜏𝜔

2

𝑗
(𝛾1 + 𝛾2)]

2

+ [𝜏𝜔𝑗 (𝜔
2

𝑗
− 𝛾1𝛾2)]

2

.

(21)

As to (7), it can be easily found that −𝛾1, −𝛾2 are two
negative roots when 𝑘 = 1, so, next, we only focus on (7) with
𝑘 ̸= 1.

Let𝜆 = 𝑖𝜛(𝜛) > 0 be a root of (7). Using the samemethod
above, we get

−𝜛
2
+ 𝛾1𝛾2 = (1 − 𝑘) 𝛽𝛿𝛾2𝜛 sin𝜛𝜏,

(𝛾1 + 𝛾2) 𝜛 = (1 − 𝑘) 𝛽𝛿𝛾2𝜛 cos𝜛𝜏,
(22)

tan𝜛𝜏 =
−𝜛
2
+ 𝛾1𝛾2

𝜛 (𝛾1 + 𝛾2)
. (23)

Then, when 0 < 𝑘 < 1, (23) has a sequence of roots
{𝜛𝑗}𝑗≥0, which are the same as those of (11).

When 𝑘 > 1, (23) has a sequence of roots {𝜛𝑗}𝑗≥0, and

𝜛𝑗 ∈

{{{{

{{{{

{

(
(2𝑗 + 1) 𝜋

𝜏
,
(2𝑗 + 1) 𝜋 + 𝜋/2

𝜏
) , 𝜛

2

𝑗
< 𝛾1𝛾2,

(
2𝑗𝜋 + 𝜋/2

𝜏
,
(2𝑗 + 1) 𝜋

𝜏
) , 𝜛

2

𝑗
> 𝛾1𝛾2,

𝑗 = 0, 1, 2, . . . .

(24)

Define

𝛽
𝑗
=

𝛾1 + 𝛾2

(1 − 𝑘) 𝛿𝛾2 cos𝜛𝜏
. (25)

Then, (𝜛𝑗, 𝛽𝑗) is the solution of (22).
Repeat the previous process, we have

d𝛽
d𝜛

=
1

(1 − 𝑘)
2
𝛽𝛿2𝛾2
2
𝜛3
(𝜛
2
+ 𝛾1𝛾2) (𝜛

2
− 𝛾1𝛾2) . (26)

Reorder the set {𝛽
𝑗
} such that 𝛽

0
= min{𝛽

𝑗
} and 𝜛𝑗 is

correspondent of 𝛽
𝑗
(𝑗 = 0, 1, 2, . . .).

Lemma 4. There exists a sequence values of 𝛽 denoted by

0 < 𝛽
0
< 𝛽
1
< ⋅ ⋅ ⋅ , (27)

such that (7) has a pair of imaginary roots ±𝑖𝜛𝑗 when 𝛽 =

𝛽
𝑗
(𝑗 = 0, 1, 2, . . .), where 𝛽

𝑗
is defined by (25), and 𝜛𝑗 is the

root of (23).

Let

𝜆 (𝜏) = 𝛼 (𝛽) + i𝜛 (𝛽) (28)

be the root of (7) satisfying 𝛼(𝛽
𝑗
) = 0, 𝜛(𝛽

𝑗
) = 𝜛𝑗. Then,

similar to the proof of Lemma 3, we have the following
conclusion.
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Lemma 5. 𝛼(𝛽
𝑗
) > 0.

Compare 𝛽𝑗, 𝛽𝑗 and reorder the set {𝛽𝑗} and {𝛽𝑗} and
remove the “−” of 𝛽

𝑗
, such that

0 < 𝛽0 < 𝛽1 < ⋅ ⋅ ⋅ , (29)

then from previous lemmas and the Hopf bifurcation the-
orem for functional differential equations [18], we have the
following results on stability and bifurcation to system (3).

Theorem6. For system(3), the equilibrium𝐸 is asymptotically
stable when 𝛽 ∈ [0, 𝛽0) and unstable when 𝛽 ∈ (𝛽0, +∞);
system (3) undergoes a Hopf bifurcation at 𝐸 when 𝛽 = 𝛽𝑗,
𝑗 = 0, 1, 2, . . ., where 𝛽𝑗 are defined by (13) or (25).

3. The Direction and Stability of
the Hopf Bifurcation

In Section 2 we obtained some conditions under which
system (3) undergoes the Hopf bifurcation at some critical
values of 𝛽. In this section, we study the direction, stability,
and the period of the bifurcating periodic solutions. The
method we used is based on the normal form method and
the center manifold theory introduced by Hassard et al. [17].

Move 𝐸(0, −𝛽cos2𝜑0, 0, −𝛽cos
2
𝜑0) to the origin 𝑂(0, 0,

0, 0) and denote 𝛿 = sin 2𝜑0, 𝜌 = cos 2𝜑0, then system (3)
can be written as the form

d𝑥1 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥1 (𝑡) − 𝛾2𝑦1 (𝑡) + 𝛽𝛿𝛾2𝑥1 (𝑡 − 𝜏)

+ 𝛽𝛾2𝜌𝜑0𝑥
2

1
(𝑡 − 𝜏) −

2

3
𝛽𝛿𝛾2𝑥

3

1
(𝑡 − 𝜏) + 𝑂 (4) ,

d𝑦1 (𝑡)
d𝑡

= 𝛾1𝑥1 (𝑡) ,

d𝑥2 (𝑡)
d𝑡

= − (𝛾1 + 𝛾2) 𝑥2 (𝑡) − 𝛾2𝑦2 (𝑡)

+ 𝛽𝛾2 [𝑘𝛿𝑥1 (𝑡 − 𝜏) + (1 − 𝑘) 𝛿𝑥2 (𝑡 − 𝜏)

+ 𝑘
2
𝜌𝑥
2

1
(𝑡 − 𝜏)

+ 2𝑘 (1 − 𝑘) 𝜌𝑥1 (𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏)

+ (1 − 𝑘)
2
𝜌𝑥
2

2
(𝑡 − 𝜏) −

2

3
𝑘
3
𝛿𝑥
3

1
(𝑡 − 𝜏)

− 2𝑘
2
(1 − 𝑘) 𝛿𝑥

2

1
(𝑡 − 𝜏) 𝑥2 (𝑡 − 𝜏)

− 2𝑘(1 − 𝑘)
2
𝛿𝑥1 (𝑡 − 𝜏) 𝑥

2

2
(𝑡 − 𝜏)

−
2

3
(1 − 𝑘)

3
𝛿𝑥
3

2
(𝑡 − 𝜏) ] + 𝑂 (4) ,

d𝑦2 (𝑡)
d𝑡

= 𝛾1𝑥2 (𝑡) .

(30)

Clearly, the phase space is C = C([−𝜏, 0],R4). For
convenience, let

𝛽
∗
∈ {𝛽𝑗} ∪ {𝛽𝑗} , (31)

and 𝛽 = 𝛽
∗
+ 𝜇, 𝜇 ∈ R. From the analysis above we know

that 𝜇 = 0 is the Hopf bifurcation value for system(30).
Let i𝜔∗ be the root of the characteristic equation associate
with the linearization of system (30) when 𝛽 = 𝛽

∗. For
𝜙 = (𝜙1, 𝜙2, 𝜙3, 𝜙4) ∈ C, let

𝐿𝜇 (𝜙) = 𝐵𝜙 (0) + 𝐶𝜙 (−𝜏) , (32)

where

𝐵 = (

− (𝛾1 + 𝛾2) −𝛾2 0 0

𝛾1 0 0 0

0 0 − (𝛾1 + 𝛾2) −𝛾2
0 0 𝛾1 0

) ,

𝐶 = (

𝛽𝛿𝛾2 0 0 0

0 0 0 0

𝑘𝛽𝛿𝛾2 0 (1 − 𝑘) 𝛽𝛿𝛾2 0

0 0 0 0

) .

(33)

By the Rieze representation theorem, there exists a 4 × 4
matrix, 𝜂(𝜃, 𝜇) (−𝜏 ≤ 𝜃 ≤ 0), whose elements are of bounded
variation functions such that

𝐿𝜇 (𝜙) = ∫

0

−𝜏

d𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ C. (34)

In fact, we can choose

𝜂 (𝜃, 𝜇) =

{{

{{

{

𝐵, 𝜃 = 0,

0, 𝜃 ∈ (−𝜏, 0)

−𝐶, 𝜃 = −𝜏.

(35)

Then, (30) is satisfied.
For 𝜙 ∈ C, define the operator 𝐴(𝜇) as

𝐴 (𝜇) 𝜙 (𝜃) =

{{{{

{{{{

{

d𝜙 (𝜃)
d𝜃

, 𝜃 ∈ [−𝜏, 0) ,

∫

0

−𝜏

d𝜂 (𝑡, 𝜇) 𝜙 (𝑡) , 𝜃 = 0,

(36)

and 𝑅(𝜇)𝜙 as

𝑅 (𝜇) 𝜙 (𝜃) = {
0, 𝜃 ∈ [−𝜏, 0) ,

𝑓 (𝜇, 𝜙) , 𝜃 = 0,
(37)

where
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𝑓 (𝜇, 𝜙) = 𝛽
∗
𝛾2

(
(
(
(
(
(
(
(
(
(
(
(

(

𝜌𝜙
2

1
(−𝜏) −

2

3
𝛿𝜙
3

1
(−𝜏) + 𝑂 (4)

0

𝑘
2
𝜌𝜙
2

1
(−𝜏) + 𝑘 (1 − 𝑘) 𝜌𝜙1 (−𝜏) 𝜙3 (−𝜏)

+(1 − 𝑘)
2
𝜌𝜙
2

3
(−𝜏) −

2

3
𝑘
3
𝛿𝜙
3

1
(−𝜏) − 2𝑘

2
(1 − 𝑘) 𝛿𝜙

2

1
(−𝜏) 𝜙3 (𝑡 − 𝜏)

−2𝑘(1 − 𝑘)
2
𝛿𝜙1 (−𝜏) 𝜙

2

3
(−𝜏) −

2

3
(1 − 𝑘)

3
𝛿𝜙
3

3
(−𝜏) + 𝑂 (4)

0

)
)
)
)
)
)
)
)
)
)
)
)

)

. (38)

Then, system (30) is equivalent to the following operator
equation:

̇𝑢𝑡 = 𝐴 (𝜇) 𝑢𝑡 + 𝑅 (𝜇) 𝑢𝑡, (39)

where 𝑢(𝑡) = (𝑥1(𝑡), 𝑦1(𝑡), 𝑥2(𝑡), 𝑦2(𝑡))
𝑇, 𝑢𝑡 = 𝑢(𝑡 + 𝜃), for

𝜃 ∈ [−𝜏, 0].
For 𝜓 ∈ C1([0, 𝜏],R4), define

𝐴
∗
𝜓 (𝑠) =

{{{{

{{{{

{

−
d𝜓 (𝑠)
d𝑠

, 𝑠 ∈ (0, 𝜏] ,

∫

0

−𝜏

𝜓 (−𝜉) d𝜂 (𝜉, 0) , 𝑠 = 0.

(40)

For 𝜙 ∈ C[−𝜏, 0] and 𝜓 ∈ C[0, 𝜏], define the bilinear
form

⟨𝜓 (𝑠) , 𝜙 (𝜃)⟩ = 𝜓 (0) 𝜙 (0)

− ∫

0

−𝜏

∫

𝜃

0

𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜙 (𝜉) d𝜉,
(41)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Then, 𝐴(0) and 𝐴
∗ are adjoint

operators.
Let 𝑞(𝜃) and 𝑞∗(𝑠) be eigenvectors of 𝐴(0) and 𝐴

∗

associated to 𝑖𝜔∗ and −𝑖𝜔∗, respectively. It is not difficult with
verify that

𝑞 (𝜃) = (1,
𝛾1

𝑖𝜔∗
, 1,

𝛾1

𝑖𝜔∗
)

𝑇

𝑒
𝑖𝜔
∗
𝜃
,

𝑞
∗
(𝑠) =

1

𝐷
(1,

𝛾2

𝑖𝜔∗
, 1,

𝛾2

𝑖𝜔∗
) 𝑒
𝑖𝜔
∗
𝑠
,

(42)

where

𝐷 = 2 +
2𝛾1𝛾2

𝜔∗2
+ 2𝛽
∗
𝛿𝛾2𝜏𝑒
−i𝜔∗𝜏

. (43)

Then, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
Let 𝑢𝑡 be the solution of (39) and define

𝑧 (𝑡) = ⟨𝑞
∗
, 𝑢𝑡⟩ , 𝑊 (𝑡, 𝜃) = 𝑢𝑡 (𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(44)

On the center manifoldC0, we have

𝑊(𝑡, 𝜃) = 𝑊 (𝑧 (𝑡) , 𝑧 (𝑡) , 𝜃) , (45)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊20
𝑧
2

2
+𝑊11𝑧𝑧 +𝑊02

𝑧
2

2
+ ⋅ ⋅ ⋅ , (46)

𝑧 and 𝑧 are local coordinates for center manifold C0 in the
direction of 𝑞∗ and 𝑞∗. Note that 𝑊 is real if 𝑢𝑡 is real. We
only consider real solutions.

For solution 𝑢𝑡 inC0, since 𝜇 = 0, we have

̇𝑧 (𝑡) = 𝑖𝜔
∗
𝑧 + ⟨𝑞

∗
(𝜃) , 𝑓 (0,𝑊 + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜔
∗
𝑧 + 𝑞
∗
(0) , 𝑓 (0,𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

= 𝑖𝜔
∗
𝑧 + 𝑞
∗
(0) 𝑓0 (𝑧, 𝑧) .

(47)

We rewrite this equation as

̇𝑧 (𝑡) = 𝑖𝜔
∗
𝑧 + 𝑔 (𝑧, 𝑧) , (48)

where

𝑔 (𝑧, 𝑧) = 𝑔20
𝑧
2

2
+ 𝑔11𝑧𝑧 + 𝑔02

𝑧
2

2
+ 𝑔21

𝑧
2
𝑧

2
⋅ ⋅ ⋅ . (49)

By (39) and (48), we have

𝑊 = ̇𝑢𝑡 − ̇𝑧𝑞 − ̇𝑧𝑞

= {
𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓0𝑞 (𝜃)} , 𝜃 ∈ [−𝜏, 0) ,

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓0𝑞 (0)} + 𝑓0, 𝜃 = 0,

= 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(50)
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Figure 2: 𝛾1 = 0.1, 𝛾2 = 2.5, 𝜏 = 1.5, 𝑘 = 1.9, whichmeans that condition (𝐻1) holds, and𝛽 = 0.7 < 𝛽0.The initial value is (0.1, −0.5, 0.1, −0.5).

where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻20 (𝜃)
𝑧
2

2
+ 𝐻11 (𝜃) 𝑧𝑧 + 𝐻02 (𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ .

(51)

Expanding the above series and comparing the coefficients,
we obtain

(𝐴 − 2𝑖𝜔
∗
𝐼)𝑊20 (𝜃) = −𝐻20 (𝜃) ,

𝐴𝑊11 (𝜃) = −𝐻11 (𝜃) , . . . .

(52)

Notice that

𝑞 (𝜃) = (1,
𝛾1

𝑖𝜔∗
, 1,

𝛾1

𝑖𝜔∗
)

𝑇

𝑒
𝑖𝜔
∗
𝜃
,

𝑢𝑡 (𝜃) = 𝑧𝑞 (𝜃) + 𝑧𝑞 (𝜃) + 𝑊 (𝑧, 𝑧, 𝜃) ,

(53)

where

𝑊
(𝑖)
(𝑧, 𝑧, 𝜃) = 𝑊

(𝑖)

20
(𝜃)

𝑧
2

2
+𝑊
(𝑖)

11
(𝜃) 𝑧𝑧

+𝑊
(𝑖)

02
(𝜃)

𝑧
2

2
+ ⋅ ⋅ ⋅ , 𝑖 = 1, 2, 3, 4.

(54)

Combing (38) and by straightforward computation, we can
obtain the coefficients which will be used in determining the
important quantities:

𝑔20 =
2𝛽
∗
𝛾2𝜌

𝐷
𝑒
−2𝑖𝜔
∗
𝜏
(𝑘
2
− 𝑘 + 2) ,

𝑔11 =
2𝛽
∗
𝛾2𝜌

𝐷
(𝑘
2
− 𝑘 + 2) ,

𝑔02 =
2𝛽
∗
𝛾2𝜌

𝐷
𝑒
2𝑖𝜔
∗
𝜏
(𝑘
2
− 𝑘 + 2) ,

𝑔21 =
2𝛽
∗
𝛾2

𝐷

{{{{{

{{{{{

{

𝜌(𝑒
𝑖𝜔
∗
𝜏
𝑊
(1)

20
(−𝜏) + 2𝑒

−𝑖𝜔
∗
𝜏
𝑊
(1)

11
(−𝜏))

+ 𝑘
2
𝜌 (𝑒
𝑖𝜔
∗
𝜏
𝑊
(1)

20
(−𝜏) + 2𝑒

−𝑖𝜔
∗
𝜏
𝑊
(1)

11
(−𝜏))

+ 𝑘 (1 − 𝑘) 𝜌

× (𝑒
−𝑖𝜔
∗
𝜏
𝑊
(3)

11
(−𝜏) + 𝑒

𝑖𝜔
∗
𝜏
𝑊
(3)

20
(−𝜏)

2

+𝑒
𝑖𝜔
∗
𝜏
𝑊
(1)

20
(−𝜏)

2
+ 𝑒
−𝑖𝜔
∗
𝜏
𝑊
(1)

11
(−𝜏))
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Figure 3: 𝛾1 = 0.1, 𝛾2 = 2.5, 𝜏 = 1.5, 𝑘 = 1.9, whichmeans that condition (𝐻1) holds, and𝛽 = 1.2 > 𝛽0.The initial value is (0.1, −0.5, 0.1, −0.5).

+ (1 − 𝑘)
2
𝜌 (2𝑒
−𝑖𝜔
∗
𝜏
𝑊
(3)

11
(−𝜏)

+𝑒
𝑖𝜔
∗
𝜏
𝑊
(3)

20
(−𝜏) ) − 4𝛿𝑒

−𝑖𝜔
∗
𝜏

}}}}}

}}}}}

}

.

(55)

We still need to compute𝑊20(𝜃) and𝑊11(𝜃), for 𝜃 ∈ [−𝜏, 0).
We have

𝐻(𝑧, 𝑧, 𝜃) = −𝑞
∗
(0) 𝑓0𝑞 (𝜃) − 𝑞

∗
(0) 𝑓
0
𝑞 (𝜃)

= −𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) .

(56)

Comparing the coefficients about𝐻(𝑧, 𝑧, 𝜃) gives that

𝐻20 (𝜃) = −𝑔20𝑞 (𝜃) − 𝑔02𝑞 (𝜃) ,

𝐻11 = −𝑔11𝑞 (𝜃) − 𝑔11𝑞 (𝜃) .

(57)

Then, from (52), we get

𝑊20 (𝜃) = 2𝑖𝜔
∗
𝑊20 (𝜃) + 𝑔20𝑞 (𝜃) + 𝑔02𝑞 (𝜃) ,

𝑊11 (𝜃) = 𝑔11𝑞 (𝜃) + 𝑔11𝑞 (𝜃) ,

(58)

which implies that

𝑊20 (𝜃) =
𝑔20𝑞 (0)

−𝑖𝜔∗
𝑒
𝑖𝜔
∗
𝜃
+
𝑔
02
𝑞 (0)

−3𝑖𝜔∗
𝑒
−𝑖𝜔
∗

𝑗
𝜃
+ 𝐸𝑒
2i𝜔∗
𝑗
𝜃
,

𝑊11 (𝜃) =
𝑔11𝑞 (0)

𝑖𝜔∗
𝑒
𝑖𝜔
∗
𝜃
+
𝑔
11
𝑞 (0)

−𝑖𝜔∗
𝑒
−𝑖𝜔
∗
𝜃
+ 𝐹.

(59)

Here, 𝐸 and 𝐹 are both four-dimensional vectors and can be
determined by setting 𝜃 = 0 in 𝐻(𝑧, 𝑧, 𝜃). In fact, from (38)
and

𝐻(𝑧, 𝑧, 0) = −2Re {𝑞∗ (0) 𝑓0𝑞 (0)} + 𝑓0, (60)

we have
𝐻20 (0) = − 𝑔20𝑞 (0) − 𝑔02𝑞 (0)

+ 2𝛽
∗
𝛾2𝜌𝑒
−2𝑖𝜔
∗
𝜏
(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

,

𝐻11 (0) = − 𝑔11𝑞 (0) − 𝑔11𝑞 (0)

+ 2𝛽
∗
𝛾2𝜌(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

.

(61)

It follows from (52) and the definition of 𝐴 that

𝛽
∗
𝐵𝑊20 (0) + 𝛽

∗
𝐶𝑊20 (−𝜏) = 2𝑖𝜔

∗
𝑊20 (0) − 𝐻20 (0) ,

𝛽
∗
𝐵𝑊11 (0) + 𝛽

∗
𝐶𝑊11 (−𝜏) = −𝐻11 (0) ,

(62)
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Figure 4: 𝛾1 = 0.1, 𝛾2 = 2.5, 𝜏 = 1.5, 𝑘 = 3, which means that condition (𝐻2) holds, and 𝛽 = 0.6 < 𝛽
0
. The initial value is

(0.1, −0.5, 0.1, −0.5).

which implies that

𝐸 = (𝐵 + 𝑒
−2𝑖𝜔
∗
𝜏
𝐶 − 2𝑖𝜔

∗I)
−1

×

[
[
[
[
[

[

𝐵(
𝑔20𝑞 (0)

𝑖𝜔∗
+
𝑔
02
𝑞 (0)

3𝑖𝜔∗
)

+ 𝐶(
𝑔20𝑞 (0)

𝑖𝜔∗
𝑒
−𝑖𝜔
∗
𝜏
+
𝑔
02
𝑞 (0)

3𝑖𝜔∗
𝑒
𝑖𝜔
∗
𝜏
)

+
1

𝛽∗
(𝑔20𝑞 (0) + 𝑔02𝑞 (0))

×2𝛽
∗
𝛾2𝜌𝑒
−2𝑖𝜔
∗
𝜏
(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

]
]
]
]
]

]

,

𝐹 = (𝐵 + 𝐶)
−1
[𝐵(

𝑔11𝑞 (0)

−𝑖𝜔∗
+
𝑔
11
𝑞 (0)

𝑖𝜔∗
)

+ 𝐶(
𝑔11𝑞 (0)

−𝑖𝜔∗
𝑒
−𝑖𝜔
∗
𝜏
+
𝑔
11
𝑞 (0)

𝑖𝜔∗
𝑒
𝑖𝜔
∗
𝜏
)

+
1

𝛽∗
(𝑔11𝑞 (0) + 𝑔11𝑞 (0))

−2𝛽
∗
𝛾2𝜌(1, 0, 𝑘

2
− 𝑘 + 1, 0)

𝑇

] .

(63)

Consequently, the above 𝑔21 can be expressed by the param-
eters and delay in system (30). Thus, we can compute the
following quantities:

𝑐1 (0) =
𝑖

2𝜔∗
(𝑔20𝑔11 − 2

𝑔11

2
−
1

3

𝑔20

2
) +

𝑔21

2
,

𝜇2 = −
Re 𝑐1 (0)
Re 𝜆 (𝛽∗)

,

𝛽2 = 2Re 𝑐1 (0) ,

𝑇2 = −
Im 𝑐1 (0) + 𝜇2 Im 𝜆


(𝛽
∗
)

𝜔∗
,

(64)

which determine the properties of bifurcating periodic solu-
tions at the critical value 𝜏0. The direction and stability of the
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Figure 5: 𝛾1 = 0.1, 𝛾2 = 2.5, 𝜏 = 1.5, 𝑘 = 3, which means that condition (𝐻2) holds, and 𝛽0 < 𝛽 = 0.7 < 𝛽0. The initial value is
(0.1, −0.5, 0.1, −0.5).

Hopf bifurcation in the center manifold can be determined
by 𝜇2 and 𝛽2, respectively. In fact, if 𝜇2 > 0 (𝜇2 < 0), then
the bifurcating periodic solutions are forward (backward);
the bifurcating periodic solutions on the center manifold are
stable (unstable) if 𝛽2 < 0 (𝛽2 > 0); and 𝑇2 determines
the period of the bifurcating periodic solutions: the period
increases (decreases) if 𝑇2 > 0 (𝑇2 < 0).

From the discussion in Section 2, we have known that
Re 𝜆(𝛽𝑗) > 0; therefore; we have the following result.

Theorem 7. The direction of the Hopf bifurcation for system
(3) at the equilibrium 𝐸(0, −𝛽cos2𝜑0, 0, −𝛽cos

2
𝜑0) when 𝛽 =

𝛽
∗ is forward (backward), and the bifurcating periodic solu-

tions on the center manifold are stable (unstable) if Re(𝑐1(0)) <
0 (> 0). Particularly, the stability of the bifurcation periodic
solutions of system (3) and the reduced equations on the center
manifold are coincident at the first bifurcation value 𝛽 = 𝛽0.

4. Numerical Simulations
In this section, we will carry out numerical simulations on
system (3) at special values of 𝛽. We choose a set of data as
follows:

𝛾1 = 0.1, 𝛾2 = 2.5, 𝜑0 =
𝜋

4
, 𝜏 = 1.5, (65)

which are the same as those in [1]. Then, 𝛿 = 1, 𝜌 = 0.

Then, we can obtain

𝜔0
⋅
= 0.2225, 𝜔1

⋅
= 3.5677, . . . ,

𝜛0
⋅
= 1.7294, 𝜛1

⋅
= 5.5531, . . . ,

𝛽0
⋅
= 1.1008, 𝛽1

⋅
= 1.7434, . . . ,

𝛽
0

⋅
= 1.3534, 𝛽

1

⋅
= 2.5235, . . . , 𝑘 = 1.9,

𝛽
0

⋅
= 0.6093, 𝛽

1

⋅
= 1.1356, . . . , 𝑘 = 3.

(66)

From the analysis in Section 2, we know that 𝛽(𝛽) is
increasing with respect to 𝜔(𝜛) when 𝜔(𝜛) > 𝛾1𝛾2, which
means that

𝛽0 = min {𝛽𝑗} , 𝛽
0
= min {𝛽

𝑗
} , 𝑗 = 0, 1, 2, . . . , (67)

that is, 𝛽0(𝛽0) is the first critical value at which system (3)
undergoes a Hopf bifurcation.

When 𝑘 = 1.9, by the previous results, it follows that

𝜆

(𝛽0)
⋅
= 0.2440 − 0.0491i, 𝑐1 (0)

⋅
= −0.5373 + 0.1082i,

𝜇2
⋅
= 2.2020, 𝛽2

⋅
= −1.0746, 𝑇2 = −0.0018.

(68)
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Figure 6: 𝛾1 = 0.1, 𝛾2 = 2.5, 𝜏 = 1.5, 𝑘 = 3, which means that condition (𝐻2) holds, and 𝛽 = 1.2 > 𝛽0 > 𝛽
0
. The initial value is

(0.1, −0.5, 0.1, −0.5).

Hence, we arrive at the following conclusion: the equi-
librium 𝐸 is asymptotically stable when 𝛽 ∈ [0, 1.1008) and
unstable when 𝛽 ∈ (1.1008, +∞), and, at the first critical
value, the bifurcating periodic solutions are asymptotically
stable, and the direction of the bifurcation is forward (see
Figures 2 and 3).

When 𝑘 = 3, we can get

𝜆

(𝛽
0
)
⋅
= 0.9004 + 0.0924i, 𝑐1 (0)

⋅
= −1.9116 + 0.7930i,

𝜇2
⋅
= 2.1231, 𝛽2

⋅
= −3.8232, 𝑇2 = −0.5720.

(69)

Then, we have the following: the equilibrium 𝐸 is asymp-
totically stable when 𝛽 ∈ [0, 0.6093), and unstable when
𝛽 ∈ (0.6093, +∞), and, at the first critical value, the
bifurcating periodic solutions are asymptotically stable, and
the direction of the bifurcation is forward (see Figures 4, 5,
and 6).

5. Conclusion

Ravoori et al. [1] explored an experimental system of two
nominally identical optoelectronic feedback loops coupled
unidirectionally, which are described by system (3). In the
experiment, they found that depending on the value of the

feedback strength 𝛽 and delay 𝜏, system (1) is capable of
producing dynamics ranging from periodic oscillations to
high-dimensional chaos [14, 15].

This paper investigates the stability and the existence
of periodic solutions. We find that with the variety of the
coupling strength 𝑘, even if all other parameters keep the
same, the dynamical behavior can change greatly. In fact,
it is clear that the first two equations, 𝑥1(𝑡) and 𝑦1(𝑡) are
uncoupled with equations 𝑥2(𝑡) and 𝑦2(𝑡), so system (1) are
independent of (2), which means that coupling strength 𝑘
does not appear in (1). The characteristic equation of (1)
has the same form as (6), so the first critical value 𝛽0 is
independent of 𝑘. The analysis of characteristic equation (7)
shows that the value of 𝑘 can affect the first critical value
𝛽
0
definitely. And we draw a conclusion that when 𝑘 is in

an interval, in which 𝛽0 < 𝛽
0
holds, solutions of system (1)

and (2) keep synchronous; when 𝑘 belongs to the interval,
in which 𝛽

0
< 𝛽0 holds, solutions of system (1) and (2) can

also keep synchronous with 𝛽 < 𝛽
0
, while they lose their

synchronization when 𝛽 > 𝛽
0
, no matter whether 𝛽 < 𝛽0

or not.
As a result, the modulation of the coupling strengths 𝑘

together with the feedback strength 𝛽 would be an efficient
and an easily implementable method to control the behavior
of the coupled chaotic oscillators.
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By means of novel analytical techniques, we have established several new oscillation criteria for the generalized Emden-Fowler
dynamic equation on a time scale T , that is, (𝑟(𝑡)|𝑍Δ(𝑡)|𝛼−1𝑍Δ(𝑡))Δ + 𝑓(𝑡, 𝑥(𝛿(𝑡))) = 0, with respect to the case ∫∞

𝑡0
𝑟
−1/𝛼

(𝑠)Δ𝑠 = ∞

and the case ∫
∞

𝑡0
𝑟
−1/𝛼

(𝑠)Δ𝑠 < ∞, where 𝑍(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)), 𝛼 is a constant, |𝑓(𝑡, 𝑢)| ⩾ 𝑞(𝑡)|𝑢
𝛽
|, 𝛽 is a constant satisfying

𝛼 ⩾ 𝛽 > 0, and 𝑟, 𝑝, and 𝑞 are real valued right-dense continuous nonnegative functions defined on T . Noting the parameter value
𝛼 probably unequal to 𝛽, our equation factually includes the existing models as special cases; our results are more general and have
wider adaptive range than others’ work in the literature.

1. Introduction

In the past two decades, the theory of time scales proposed by
Hilger [1] in 1990 has received extensive attention because of
its advantage to unify continuous model and discrete model
into one case under the scholars’ investigation. Numerous
authors have considered many aspects of this new theory.
Many of those results focus on oscillation and nonoscillation
of some equations on time scales. Reader can refer to articles
[2–25] and there references cited therein.

In this paper, we consider the oscillatory behavior of
the solutions of second-order generalized Emden-Fowler
dynamic equation of the form

(𝑟 (𝑡)

𝑍
Δ
(𝑡)



𝛼−1

𝑍
Δ
(𝑡))
Δ

+𝑓 (𝑡, 𝑥 (𝛿 (𝑡))) = 0, 𝑡∈T , 𝑡⩾𝑡0,

(1)

with 𝑍(𝑡) = 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)), parameter constant 𝛼, and
conditions (H1)–(H6):

(H1) T is a time scale which is unbounded above.
[𝑡0,∞)T := [𝑡0,∞) ∩ T , where 𝑡0 ∈ T with 𝑡0 > 0,
𝐶rd(T ,S) denotes the collection of all functions 𝑓 :

T → S which are right-dense continuous on T ;

(H2) 𝑟(𝑡) ∈ 𝐶rd(T , (0,∞)), 𝑅(𝑡) := ∫
𝑡

𝑡0
𝑟
−1/𝛼

(𝑠)Δ𝑠;

(H3) 𝑝(𝑡) ∈ 𝐶rd(T , [0, 1]);
(H4) 𝜏(𝑡) ∈ 𝐶rd(T , T), 𝜏(𝑡) ⩽ 𝑡, for 𝑡 ∈ T , lim𝑡→∞𝜏(𝑡) =

∞, 𝛿(𝑡) ∈ 𝐶rd(T , T), 𝛿(𝑡) ⩽ 𝑡, for 𝑡 ∈ T , lim𝑡→∞𝛿(𝑡) =
∞;

(H5) 𝛿
Δ
(𝑡) > 0 is right-dense continuous on T , and

𝛿(𝜎(𝑡)) = 𝜎(𝛿(𝑡)) for all 𝑡 ∈ T , where 𝜎(𝑡) is the
forward jump operator on T ;

(H6) 𝑓(𝑡, 𝑢) ∈ 𝐶(T × R,R) is a continuous function such
that 𝑢𝑓(𝑡, 𝑢) > 0, for all 𝑢 ̸= 0 and there exists a
positive right-dense continuous function 𝑞(𝑡) defined
on T such that |𝑓(𝑡, 𝑢)| ⩾ 𝑞(𝑡)|𝑢

𝛽
| for all 𝑡 ∈ T and for

all 𝑢 ∈ R, where 𝛽 is a constant satisfying 𝛼 ⩾ 𝛽 > 0.

As a solution of (1), we mean a function 𝑥(𝑡) such
that 𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)) ∈ 𝐶

1

rd(𝑡𝑥,∞)T and 𝑟(𝑡)|[𝑥(𝑡) +

𝑝(𝑡)𝑥(𝜏(𝑡))]
Δ
|
𝛼−1

[𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡))]
Δ
∈ 𝐶
1

rd(𝑡𝑥,∞)T , 𝑡𝑥 ⩾ 𝑡0

and satisfying (1) for all 𝑡 ⩾ 𝑡𝑥, where 𝐶
1

rd(𝑡𝑥,∞)T denotes
the set of right-dense continuouslyΔ-differentiable functions
on (𝑡𝑥,∞)T . In the sequel, we restrict our attention to those
solutions of (1) which exist on the half-line [𝑡𝑥,∞)T and
satisfy sup{|𝑥(𝑡)| : 𝑡 > �̃�} > 0 for any �̃� ⩾ 𝑡𝑥. We say that
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a nontrivial solution of (1) is oscillatory if it has arbitrary large
zeros, otherwise we say that it is nonoscillatory. We say that
(1) is oscillatory if all its solutions are oscillatory.

Among researchers in the oscillation of functional equa-
tions with time scales, Agarwal et al. [2] studied a special case
of (1), which is

(𝑟 (𝑡) ([𝑦 (𝑡) + 𝑝 (𝑡) 𝑦 (𝑡 − 𝜏0)]
Δ
)
𝛾

)
Δ

+ 𝑓 (𝑡, 𝑦 (𝑡 − 𝛿0)) = 0, 𝑡 ∈ T , 𝑡 ⩾ 𝑡0,

(2)

where
𝑓 (𝑡, 𝑢)

 ⩾ 𝑞 (𝑡) |𝑢|
𝛾
,

∫

∞

𝑡0

𝑟
−1/𝛾

(𝑠) Δ𝑠 = ∞,

(3)

𝜏0 and 𝛿0 are positive constants and 𝛾 > 0 is a quotient of odd
positive integers. They got some oscillation criteria of (2) for
the case when 𝛾 > 0 under the condition 𝑟

Δ
(𝑡) ⩾ 0, and the

case when 𝛾 ⩾ 1 under the condition 𝜇(𝑡) > 0. Subsequently,
for the case when 𝛾 ⩾ 1 is an odd positive integer, Saker
[7] did not require the conditions 𝑟

Δ
(𝑡) ⩾ 0 and 𝜇(𝑡) > 0

and obtained some new oscillation results for (2) under the
conditions (3).

Very Recently, in [10–13], Saker et al. have considered the
oscillation of several equations with time scales. For example
in paper [13], the author is concerned with the quasilinear
equation of the form:

(𝑝 (𝑡) ([𝑦 (𝑡) + 𝑟 (𝑡) 𝑦 (𝜏 (𝑡))]
Δ
)
𝛾

)
Δ

+ 𝑓 (𝑡, 𝑦 (𝛿 (𝑡))) = 0,

(4)

where |𝑓(𝑡, 𝑢)| ⩾ 𝑞(𝑡)|𝑢
𝛽
|, 𝛾 > 0, and 𝛽 > 0 are ratios of odd

positive integers.
However the value range of the equation parameters in

our work is wider than those in [2, 7, 10–13] and the equation
itself is also different from those in [2, 7, 10–13]. In fact, our
approach in constructing the criteria is different from those
of Saker and his coauthors’ work.

For (2) with 𝛾 ⩾ 1 being a quotient of odd positive
integers and without the restrictive conditions 𝑟Δ(𝑡) ⩾ 0 and
without 𝜇(𝑡) > 0, Wu et al. [21] obtained several oscillation
criteria for the equation:

(𝑟 (𝑡) ([𝑦 (𝑡) + 𝑝 (𝑡) 𝑦 (𝜏 (𝑡))]
Δ
)
𝛾

)
Δ

+ 𝑓 (𝑡, 𝑦 (𝛿 (𝑡))) = 0,

𝑡 ∈ T , 𝑡 ⩾ 𝑡0,

(5)

under the conditions (3).
Chen [25] investigated the following second-order

Emden-Fowler neutral delay dynamic equation

(𝑟 (𝑡)

𝑥
Δ
(𝑡)



𝛾−1

𝑥
Δ
(𝑡))
Δ

+ 𝑓 (𝑡, 𝑦 (𝛿 (𝑡))) = 0,

𝑡 ∈ T , 𝑡 ⩾ 𝑡0,

(6)

with 𝑥(𝑡) = 𝑦(𝑡) + 𝑝(𝑡)𝑦(𝜏(𝑡)), under the conditions (3). He
obtained some oscillation criteria when 𝛾 > 0 is a constant
and without assuming the conditions 𝑟Δ(𝑡) ⩾ 0 and 𝜇(𝑡) > 0.

All the above results cannot apply to our model (1) since
our model (1) is more general than (2), (6) and those in
[10–13], and the function 𝑓(𝑡, 𝑢) in (1) satisfies (H6) which
makes ourmodel (1) distinguished from all the existing cases.
To the best of our knowledge, nothing is known regarding
the necessary and sufficient conditions for the qualitative
behavior of (1) with 𝛼 ̸= 𝛽 in (H6) on time scales.

In this paper, even if 𝛼 ̸= 𝛽 in (H6) and there is no
assumptions 𝑟

Δ
(𝑡) ⩾ 0 and 𝜇(𝑡) > 0, we have established

several new oscillation criteria of (1) for the both cases

lim
𝑡→∞

∫

𝑡

𝑡0

𝑟
−1/𝛼

(𝑠) Δ𝑠 = ∞, (7)

lim
𝑡→∞

∫

𝑡

𝑡0

𝑟
−1/𝛼

(𝑠) Δ𝑠 < ∞. (8)

Factually, we have employed new analytical techniques to
present and construct our criteria in Section 3 after reciting
two useful lemmas in Section 2. Our results have extended
and unified a number of other existing results and handled
the cases which are not covered by current criteria. Finally,
in Section 4 two examples are demonstrated to illustrate the
efficiency of our work with relevant remark.

2. Some Lemmas

Lemma 1 (see [25]). Suppose that (H5) holds. Let 𝑥 : T → R.
If 𝑥Δ exists for all sufficiently large 𝑡 ∈ T , then (𝑥(𝛿(𝑡)))

Δ
=

𝑥
Δ
(𝛿(𝑡))𝛿

Δ
(𝑡) for all sufficiently large 𝑡 ∈ T .

Lemma2 (Bohner andPeterson [26,Theorem 1.90]). Assume
that 𝑥(𝑡) is Δ-differentiable and eventually positive or eventu-
ally negative, then

(𝑥
𝛼
(𝑡))
Δ
= 𝛼{∫

1

0

[(1 − ℎ) 𝑥 (𝑡) + ℎ𝑥 (𝜎 (𝑡))]
𝛼−1dℎ}𝑥

Δ
(𝑡) .

(9)

Lemma 3 (see [27]). Let Ψ(𝑢) = 𝑎𝑢 − 𝑏𝑢
(𝜆+1)/𝜆, where 𝑎, 𝑏, 𝜆

are constants, 𝑎 ⩾ 0, 𝑏 > 0, 𝜆 > 0, and 𝑢 ∈ [0,∞). Then Ψ(𝑢)

attains its maximum value on [0,∞) at 𝑢 = 𝑢
∗
:= (𝑎𝜆/𝑏(𝜆 +

1))
𝜆, and

max
𝑢∈[0,∞)

Ψ (𝑢) = Ψ (𝑢
∗
) =

𝜆
𝜆

(𝜆 + 1)
𝜆+1

𝑎
𝜆+1

𝑏𝜆
. (10)

3. Main Results

The case

lim
𝑡→∞

∫

𝑡

𝑡0

𝑟
−1/𝛼

(𝑠) Δ𝑠 = ∞. (11)
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Theorem 4. Assume that (H1)–(H6) and (7) hold. If there
exists a function 𝜉(𝑡) ∈ 𝐶

1

rd(T , (0,∞)) such that for any positive
number𝑀,

lim
𝑡→∞

∫

𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) − 𝑄 (𝑠)) Δ𝑠 = ∞, (12)

where

𝑝 (𝑠) = 𝑞 (𝑠) [1 − 𝑝 (𝛿 (𝑠))]
𝛽
,

𝑄 (𝑠) =

𝛼
𝛼
𝑀(𝑅 (𝜎 (𝑠)))

𝛼−𝛽
𝑟 (𝛿 (𝑠)) ((𝜉

Δ
(𝑠))
+
)
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑠) (𝛿Δ (𝑠))
𝛼 ,

(𝜉
Δ
(𝑠))
+
:= max {𝜉Δ (𝑠) , 0} ,

(13)

then (1) is oscillatory.

Proof. Suppose that (1) has a nonoscillatory solution 𝑥(𝑡),
then there exists 𝑇0 ⩾ 𝑡0 such that 𝑥(𝑡) ̸= 0 for all 𝑡 ⩾ 𝑇0.
Without loss of generality, we assume that 𝑥(𝑡) > 0, 𝑥(𝜏(𝑡)) >
0 and 𝑥(𝛿(𝑡)) > 0 for 𝑡 ⩾ 𝑇0, because a similar analysis holds
for 𝑥(𝑡) < 0, 𝑥(𝜏(𝑡)) < 0 and 𝑥(𝛿(𝑡)) < 0. Then the following
are deduced from (1), (H3), and (H6):

𝑍 (𝑡) ⩾ 𝑥 (𝑡) > 0 for 𝑡 ⩾ 𝑇0,

(𝑟 (𝑡)

𝑍
Δ
(𝑡)



𝛼−1

𝑍
Δ
(𝑡))
Δ

⩽ 0, 𝑡 ⩾ 𝑇0.

(14)

Therefore 𝑟(𝑡)|𝑍
Δ
(𝑡)|
𝛼−1

𝑍
Δ
(𝑡) is a nonincreasing function

and 𝑍
Δ
(𝑡) is eventually of one sign.

We claim that

𝑍
Δ
(𝑡) > 0 or 𝑍

Δ
(𝑡) = 0, 𝑡 ⩾ 𝑇0. (15)

Otherwise, if there exists a 𝑡1 ⩾ 𝑇0 such that 𝑍Δ(𝑡) < 0 for
𝑡 ⩾ 𝑡1, then from (14), for some positive constant 𝐾, we have

−𝑟 (𝑡) (−𝑍
Δ
(𝑡))
𝛼

⩽ −𝐾, 𝑡 ⩾ 𝑡1, (16)

that is,

−𝑍
Δ
(𝑡) ⩾ (

𝐾

𝑟 (𝑡)
)

1/𝛼

, 𝑡 ⩾ 𝑡1, (17)

integrating the above inequality from 𝑡1 to 𝑡, we have

𝑍 (𝑡) ⩽ 𝑍 (𝑡1) − 𝐾
1/𝛼

(𝑅 (𝑡) − 𝑅 (𝑡1)) . (18)

Letting 𝑡 → ∞, from (7), we get lim𝑡→∞𝑍(𝑡) = −∞, which
contradicts (14). Thus, we have proved (15).

We choose some 𝑇1 ⩾ 𝑇0 such that 𝛿(𝑡) ⩾ 𝑇0 for 𝑡 ⩾ 𝑇1.
Therefore from (14), (15), and the fact 𝛿(𝑡) ⩽ 𝜎(𝑡), we have
that

𝑟 (𝜎 (𝑡)) (𝑍
Δ
(𝜎 (𝑡)))

𝛼

⩽ 𝑟 (𝛿 (𝑡)) (𝑍
Δ
(𝛿 (𝑡)))

𝛼

, 𝑡 ⩾ 𝑇1,

(19)

which follows that

𝑍
Δ
(𝛿 (𝑡)) ⩾ 𝑍

Δ
(𝜎 (𝑡)) (

𝑟 (𝜎 (𝑡))

𝑟 (𝛿 (𝑡))
)

1/𝛼

, 𝑡 ⩾ 𝑇1. (20)

On the other hand, from (1), (H6), and (15), we have

(𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

)
Δ

+ 𝑞 (𝑡) (𝑍 (𝛿 (𝑡)) − 𝑝 (𝛿 (𝑡)) 𝑥 (𝜏 (𝛿 (𝑡))))
𝛽

⩽ 0, 𝑡 ⩾ 𝑇1.

(21)

Noticing (15) and the fact 𝑍(𝑡) ⩾ 𝑥(𝑡), we get

(𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

)
Δ

+ 𝑝 (𝑡) 𝑍
𝛽
(𝛿 (𝑡)) ⩽ 0, 𝑡 ⩾ 𝑇1,

(22)

where 𝑝(𝑡) = 𝑞(𝑡)[1 − 𝑝(𝛿(𝑡))]
𝛽.

Define

𝑤 (𝑡) = 𝜉 (𝑡)
𝑟 (𝑡) (𝑍

Δ
(𝑡))
𝛼

𝑍𝛽 (𝛿 (𝑡))
, for 𝑡 ⩾ 𝑇1.

(23)

Obviously, 𝑤(𝑡) > 0. By (22), (23) and the product rule and
the quotient rule, we obtain

𝑤
Δ
(𝑡) =

𝜉 (𝑡)

𝑍𝛽 (𝛿 (𝑡))
(𝑟 (𝑡) (𝑍

Δ
(𝑡))
𝛼

)
Δ

+ 𝑟 (𝜎 (𝑡)) (𝑍
Δ
(𝜎 (𝑡)))

𝛼

×
𝜉
Δ
(𝑡) 𝑍
𝛽
(𝛿 (𝑡)) − 𝜉 (𝑡) (𝑍

𝛽
(𝛿 (𝑡)))

Δ

𝑍𝛽 (𝛿 (𝑡)) 𝑍𝛽 (𝛿 (𝜎 (𝑡)))

⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝑟 (𝜎 (𝑡)) (𝑍

Δ
(𝜎 (𝑡)))

𝛼

𝜉 (𝑡) (𝑍
𝛽
(𝛿 (𝑡)))

Δ

𝑍𝛽 (𝛿 (𝑡)) 𝑍𝛽 (𝛿 (𝜎 (𝑡)))
.

(24)

Now we consider the following two cases.

Case 1. Let 𝛽 ⩾ 1. By (15), Lemmas 1 and 2, we have

(𝑍
𝛽
(𝛿 (𝑡)))

Δ

= 𝛽{∫

1

0

[(1 − ℎ)𝑍 (𝛿 (𝑡)) + ℎ𝑍 (𝛿 (𝜎 (𝑡)))]
𝛽−1dℎ}

× (𝑍 (𝛿 (𝑡)))
Δ

⩾ 𝛽(𝑍 (𝛿 (𝑡)))
𝛽−1

𝑍
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡) .

(25)
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From (H5), (20), (23)–(25), and the fact that 𝑍(𝑡) is nonde-
creasing, we obtain

𝑤
Δ
(𝑡)

⩽ −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝑟 (𝜎 (𝑡))(𝑍

Δ
(𝜎(𝑡)))

𝛼

𝜉 (𝑡) 𝛽(𝑍 (𝛿 (𝑡)))
𝛽−1

𝑍
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡)

𝑍𝛽 (𝛿 (𝑡)) 𝑍𝛽 (𝛿 (𝜎 (𝑡)))

⩽ −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝑟 (𝜎 (𝑡)) (𝑍

Δ
(𝜎 (𝑡)))

𝛼

𝜉 (𝑡) 𝛽𝑍
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡)

𝑍𝛽+1 (𝛿 (𝜎 (𝑡)))

⩽ −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝑟 (𝜎 (𝑡)) (𝑍

Δ
(𝜎 (𝑡)))

𝛼+1

𝛿
Δ
(𝑡)

𝑍𝛽+1 (𝛿 (𝜎 (𝑡)))

× (
𝑟 (𝜎 (𝑡))

𝑟 (𝛿 (𝑡))
)

1/𝛼

= −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝛿

Δ
(𝑡)

(𝜉 (𝜎 (𝑡)))
1+1/𝛼

(𝑍 (𝛿 (𝜎 (𝑡))))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
1/𝛼

× 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡))

= −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝛿

Δ
(𝑡)

(𝜉 (𝜎 (𝑡)))
1+1/𝛼

(𝑍 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
1/𝛼

× 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) .

(26)

Case 2. Let 0 < 𝛽 < 1. By (15), Lemmas 1 and 2, we get

(𝑍
𝛽
(𝛿 (𝑡)))

Δ

= 𝛽{∫

1

0

[(1 − ℎ)𝑍 (𝛿 (𝑡)) + ℎ𝑍 (𝛿 (𝜎 (𝑡)))]
𝛽−1dℎ}

× (𝑍 (𝛿 (𝑡)))
Δ

⩾ 𝛽(𝑍 (𝛿 (𝜎 (𝑡))))
𝛽−1

𝑍
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡) .

(27)

From (H4), (H5), (20), (23)–(25), and the fact that 𝑍(𝑡) is
nondecreasing, we have

𝑤
Δ
(𝑡)

⩽ −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝑟 (𝜎(𝑡))(𝑍

Δ
(𝜎(𝑡)))

𝛼

𝜉 (𝑡) 𝛽(𝑍(𝛿(𝜎(𝑡))))
𝛽−1

𝑍
Δ
(𝛿(𝑡))𝛿

Δ
(𝑡)

𝑍𝛽 (𝛿 (𝑡)) 𝑍𝛽 (𝛿 (𝜎 (𝑡)))

= −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝑟 (𝜎 (𝑡)) (𝑍

Δ
(𝜎 (𝑡)))

𝛼

𝜉 (𝑡) 𝛽𝑍
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡)

𝑍𝛽+1 (𝛿 (𝜎 (𝑡)))

⩽ −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝑟 (𝜎 (𝑡)) (𝑍

Δ
(𝜎 (𝑡)))

𝛼+1

𝛿
Δ
(𝑡)

𝑍𝛽+1 (𝛿 (𝜎 (𝑡)))
(
𝑟 (𝜎 (𝑡))

𝑟 (𝛿 (𝑡))
)

1/𝛼

= −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝛿

Δ
(𝑡)

(𝜉 (𝜎 (𝑡)))
1+1/𝛼

(𝑍 (𝛿 (𝜎 (𝑡))))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
1/𝛼

× 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡))

= −𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝛿

Δ
(𝑡)

(𝜉 (𝜎 (𝑡)))
1+1/𝛼

(𝑍 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
1/𝛼

× 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) .

(28)

Therefore, for 𝛽 > 0, from (26) and (28), we get

𝑤
Δ
(𝑡) ⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝛿

Δ
(𝑡)

(𝜉 (𝜎 (𝑡)))
1+1/𝛼

(𝑍 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
1/𝛼

× 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) .

(29)

From (14) and (15), there exists a constant𝑀1 > 0 such that

𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

⩽ 𝑀1, 𝑡 ⩾ 𝑇1, (30)

that is

𝑍
Δ
(𝑡) ⩽ (

𝑀1

𝑟 (𝑡)
)

1/𝛼

, 𝑡 ⩾ 𝑇1, (31)
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integrating the above inequality from 𝑇1 to 𝑡, we have

𝑍 (𝑡) ⩽ 𝑍 (𝑇1) + 𝑀
1/𝛼

1
(𝑅 (𝑡) − 𝑅 (𝑇1)) . (32)

Thus, there exist a constant𝑀2 > 0, and 𝑇2 ⩾ 𝑇1 such that

𝑍 (𝑡) ⩽ 𝑀2𝑅 (𝑡) , 𝑡 ⩾ 𝑇2, (33)

so we have

𝑍
(𝛼−𝛽)/𝛼

(𝜎 (𝑡)) ⩽ 𝑀
(𝛼−𝛽)/𝛼

2
(𝑅 (𝜎 (𝑡)))

(𝛼−𝛽)/𝛼

= 𝑀3(𝑅 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

, 𝑡 ⩾ 𝑇2,

(34)

where𝑀3 = 𝑀
(𝛼−𝛽)/𝛼

2
.

From (29) and (34), we obtain

𝑤
Δ
(𝑡) ⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) 𝛿

Δ
(𝑡)

(𝜉 (𝜎 (𝑡)))
1+1/𝛼

𝑀3(𝑅 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
1/𝛼

× 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) , 𝑡 ⩾ 𝑇2.

(35)

Let

Ψ (𝑡) =
𝛽𝜉 (𝑡) 𝛿

Δ
(𝑡)

(𝜉 (𝜎 (𝑡)))
1+1/𝛼

𝑀3(𝑅 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
1/𝛼

;

(36)

then Ψ(𝑡) > 0. So from (35) and (36) we get

𝑤
Δ
(𝑡) ⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− Ψ (𝑡) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡))

⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

(𝜉
Δ
(𝑡))
+

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− Ψ (𝑡) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) ,

(37)

where (𝜉Δ(𝑡))+ := max{𝜉Δ(𝑡), 0}.

Taking 𝑎 = (𝜉
Δ
(𝑡))+/𝜉(𝜎(𝑡)), 𝑏 = Ψ(𝑡), by Lemma 3 and

(37), we obtain

𝑤
Δ
(𝑡) ⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

𝛼
𝛼

(𝛼 + 1)
𝛼+1

Ψ𝛼 (𝑡)
(
(𝜉
Δ
(𝑡))+

𝜉 (𝜎 (𝑡))
)

𝛼+1

= −
[
[
[

[

𝜉 (𝑡) 𝑝 (𝑡)

−
𝛼
𝛼

(𝛼 + 1)
𝛼+1

Ψ𝛼 (𝑡)
(
(𝜉
Δ
(𝑡))+

𝜉 (𝜎 (𝑡))
)

𝛼+1
]
]
]

]

= −
[
[
[

[

𝜉 (𝑡) 𝑝 (𝑡)

−

𝛼
𝛼
𝑀
𝛼

3
(𝑅 (𝜎 (𝑡)))

𝛼−𝛽
𝑟 (𝛿 (𝑡)) ((𝜉

Δ
(𝑡))
+
)
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑡) (𝛿Δ (𝑡))
𝛼

]
]
]

]

= −
[
[
[

[

𝜉 (𝑡) 𝑝 (𝑡)

−

𝛼
𝛼
𝑀4(𝑅 (𝜎 (𝑡)))

𝛼−𝛽
𝑟 (𝛿 (𝑡)) ((𝜉

Δ
(𝑡))
+
)
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑡) (𝛿Δ (𝑡))
𝛼

]
]
]

]

,

(38)

where𝑀4 = 𝑀
𝛼

3
.

Integrating the above inequality (38) from𝑇2 to 𝑡, we have

𝑤 (𝑡) ⩽ 𝑤 (𝑇2)

− ∫

𝑡

𝑇2

(𝜉 (𝑠) 𝑝 (𝑠) − (𝛼
𝛼
𝑀4(𝑅 (𝜎 (𝑠)))

𝛼−𝛽
𝑟 (𝛿 (𝑠))

× ((𝜉
Δ
(𝑠))
+
)
𝛼+1

)

× ((𝛼 + 1)
𝛼+1

𝛽
𝛼
𝜉
𝛼
(𝑠) (𝛿
Δ
(𝑠))
𝛼

)
−1

)Δ𝑠

⩽ 𝑤 (𝑇2) + ∫

𝑇2

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠
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− ∫

𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) − (𝛼
𝛼
𝑀4(𝑅 (𝜎 (𝑠)))

𝛼−𝛽
𝑟 (𝛿 (𝑠))

× ((𝜉
Δ
(𝑠))
+
)
𝛼+1

)

×((𝛼 + 1)
𝛼+1

𝛽
𝛼
𝜉
𝛼
(𝑠) (𝛿
Δ
(𝑠))
𝛼

)
−1

)Δ𝑠.

(39)

Since 𝑤(𝑡) > 0 for 𝑡 > 𝑇2, we have

∫

𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠)

−

𝛼
𝛼
𝑀4(𝑅 (𝜎 (𝑠)))

𝛼−𝛽
𝑟 (𝛿 (𝑠)) ((𝜉

Δ
(𝑠))
+
)
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑠) (𝛿Δ (𝑠))
𝛼 )Δ𝑠

⩽ 𝑤 (𝑇2) + ∫

𝑇2

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠 − 𝑤 (𝑡)

⩽ 𝑤 (𝑇2) + ∫

𝑇2

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠,

(40)

which contradicts (12). This completes the proof of Theo-
rem 4.

Next, we use the general weighted functions from the
class ϝ which will be extensively used in the sequel.

Letting D ≡ {(𝑡, 𝑠) ∈ T × T : 𝑡 ⩾ 𝑠 ⩾ 𝑡0}, we say that a
continuous function 𝐻(𝑡, 𝑠) ∈ 𝐶rd(D,R) belongs to the class
ϝ if

(i) 𝐻(𝑡, 𝑡) = 0 for 𝑡 ⩾ 𝑡0 and𝐻(𝑡, 𝑠) > 0 for 𝑡 > 𝑠 ⩾ 𝑡0,
(ii) 𝐻(𝑡, 𝑠) has a nonpositive right-dense continuous Δ-

partial derivative𝐻Δ 𝑠(𝑡, 𝑠) with respect to the second
variable.

Theorem5. Assume that (H1)–(H6) and (7) hold. If there exist
a function 𝐻(𝑡, 𝑠) ∈ ϝ and a function 𝜉(𝑡) ∈ 𝐶

1

rd(T , (0,∞))

such that for any positive number𝑀,

lim
𝑡→∞

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

[𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) − �̃� (𝑡, 𝑠)] Δ𝑠 = ∞,

(41)

where

𝑝 (𝑠) = 𝑞 (𝑠) [1 − 𝑝 (𝛿 (𝑠))]
𝛽
, (42)

�̃� (𝑡, 𝑠)

=
𝛼
𝛼
(𝜙+ (𝑡, 𝑠))

𝛼+1
(𝜉 (𝜎 (𝑠)))

𝛼+1
𝑀(𝑅 (𝜎 (𝑠)))

𝛼−𝛽
𝑟 (𝛿 (𝑠))

(𝛼 + 1)
𝛼+1

𝛽𝛼(𝐻 (𝑡, 𝑠))
𝛼
𝜉𝛼 (𝑠) (𝛿Δ (𝑠))

𝛼 ,

(43)

𝜙+ (𝑡, 𝑠) := max
{

{

{

𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) (𝜉
Δ
(𝑠))
+

𝜉 (𝜎 (𝑠))
, 0
}

}

}

, (44)

(𝜉
Δ
(𝑠))
+
:= max {𝜉Δ (𝑠) , 0} , (45)

then (1) is oscillatory.

Proof. We proceed as in the proof ofTheorem 4 to have (37).
From (37) we obtain

𝜉 (𝑡) 𝑝 (𝑡) ⩽ − 𝑤
Δ
(𝑡) +

(𝜉
Δ
(𝑡))
+

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− Ψ (𝑡) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) , 𝑡 ⩾ 𝑇2.

(46)

Multiplying (46) (with 𝑡 replaced by 𝑠) by𝐻(𝑡, 𝑠), integrating
it with respect to 𝑠 from 𝑇2 to 𝑡 for 𝑡 > 𝑇2, using integration
by parts and (i)-(ii), we get

∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

⩽ −∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) 𝑤
Δ
(𝑠) Δ𝑠

+ ∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) (𝜉
Δ
(𝑠))
+

𝜉 (𝜎 (𝑠))
𝑤 (𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) Ψ (𝑠) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑠)) Δ𝑠

= 𝐻 (𝑡, 𝑇2) 𝑤 (𝑇2) + ∫

𝑡

𝑇2

𝐻
Δ 𝑠 (𝑡, 𝑠) 𝑤 (𝜎 (𝑠)) Δ𝑠

+ ∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) (𝜉
Δ
(𝑠))
+

𝜉 (𝜎 (𝑠))
𝑤 (𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) Ψ (𝑠) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑠)) Δ𝑠

= 𝐻 (𝑡, 𝑇2) 𝑤 (𝑇2)

+ ∫

𝑡

𝑇2

(𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) (𝜉
Δ
(𝑠))
+

𝜉 (𝜎 (𝑠))
)𝑤 (𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) Ψ (𝑠) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑠)) Δ𝑠

= 𝐻 (𝑡, 𝑇2) 𝑤 (𝑇2)

+ ∫

𝑡

𝑇2

[

[

(𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) (𝜉
Δ
(𝑠))
+

𝜉 (𝜎 (𝑠))
)𝑤 (𝜎 (𝑠))
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−𝐻 (𝑡, 𝑠) Ψ (𝑠) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑠)) ]

]

Δ𝑠

⩽ 𝐻 (𝑡, 𝑇2) 𝑤 (𝑇2)

+ ∫

𝑡

𝑇2

[
[

[

𝜙+ (𝑡, 𝑠) 𝑤 (𝜎 (𝑠))

−𝐻 (𝑡, 𝑠) Ψ (𝑠) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑠))
]
]

]

Δ𝑠,

(47)

where 𝜙+(𝑡, 𝑠) is defined as in (44).
Taking 𝑎 = 𝜙+(𝑡, 𝑠), 𝑏 = 𝐻(𝑡, 𝑠)Ψ(𝑠), by Lemma 3 and

(47), we obtain

∫

𝑡

𝑇2

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

⩽ 𝐻 (𝑡, 𝑇2) 𝑤 (𝑇2)

+ ∫

𝑡

𝑇2

[(𝛼
𝛼
(𝜙+ (𝑡, 𝑠))

𝛼+1
(𝜉 (𝜎 (𝑠)))

𝛼+1

× 𝑀
𝛼

3
(𝑅 (𝜎 (𝑠)))

𝛼−𝛽
𝑟 (𝛿 (𝑠)) )

× ((𝛼 + 1)
𝛼+1

𝛽
𝛼
(𝐻 (𝑡, 𝑠))

𝛼

×𝜉
𝛼
(𝑠) (𝛿
Δ
(𝑠))
𝛼

)

−1

]Δ𝑠

⩽ 𝐻 (𝑡, 𝑇2) 𝑤 (𝑇2)

+ ∫

𝑡

𝑇2

[(𝛼
𝛼
(𝜙+ (𝑡, 𝑠))

𝛼+1
(𝜉 (𝜎 (𝑠)))

𝛼+1

× 𝑀4(𝑅 (𝜎 (𝑠)))
𝛼−𝛽

𝑟 (𝛿 (𝑠)) )

× ((𝛼 + 1)
𝛼+1

𝛽
𝛼
(𝐻 (𝑡, 𝑠))

𝛼

×𝜉
𝛼
(𝑠) (𝛿
Δ
(𝑠))
𝛼

)

−1

]Δ𝑠

⩽ 𝐻 (𝑡, 𝑡0) 𝑤 (𝑇2) + ∫

𝑡

𝑇2

𝑈 (𝑡, 𝑠) Δ𝑠,

(48)

where𝑀4 = 𝑀
𝛼

3
,

𝑈 (𝑡, 𝑠)

=
𝛼
𝛼
(𝜙+ (𝑡, 𝑠))

𝛼+1
(𝜉 (𝜎 (𝑠)))

𝛼+1
𝑀4(𝑅 (𝜎 (𝑠)))

𝛼−𝛽
𝑟 (𝛿 (𝑠))

(𝛼 + 1)
𝛼+1

𝛽𝛼(𝐻 (𝑡, 𝑠))
𝛼
𝜉𝛼 (𝑠) (𝛿Δ (𝑠))

𝛼 .

(49)

Then it follows that

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑇2

[𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) − 𝑈 (𝑡, 𝑠)] Δ𝑠 ⩽ 𝑤 (𝑇2) .

(50)

Thus we get

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

[𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) − 𝑈 (𝑡, 𝑠)] Δ𝑠

=
1

𝐻 (𝑡, 𝑡0)
(∫

𝑇2

𝑡0

+∫

𝑡

𝑇2

) [𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) − 𝑈 (𝑡, 𝑠)] Δ𝑠

⩽ 𝑤 (𝑇2) +
1

𝐻 (𝑡, 𝑡0)
∫

𝑇2

𝑡0

[𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) − 𝑈 (𝑡, 𝑠)] Δ𝑠

⩽ 𝑤 (𝑇2) + ∫

𝑇2

𝑡0

[
𝐻 (𝑡, 𝑠)

𝐻 (𝑡, 𝑡0)
𝜉 (𝑠) 𝑝 (𝑠) −

𝑈 (𝑡, 𝑠)

𝐻 (𝑡, 𝑡0)
]Δ𝑠

⩽ 𝑤 (𝑇2) + ∫

𝑇2

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠.

(51)

Then

lim
𝑡→∞

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

[𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) − 𝑈 (𝑡, 𝑠)] Δ𝑠 < ∞,

(52)

which contradicts (41). This completes the proof of Theo-
rem 5.

Theorem 6. Assume that (H1)–(H6) and (7) hold and 𝛽 ⩾ 1.
Furthermore, assume that 𝑟Δ(𝑡) ⩾ 0. If there exists a function
𝜉(𝑡) ∈ 𝐶

1

rd(T , (0,∞)) such that for any positive number𝑀,

lim
𝑡→∞

∫

𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) − 𝑄 (𝑠)) Δ𝑠 = ∞, (53)

where

𝑝 (𝑠) = 𝑞 (𝑠) [1 − 𝑝 (𝛿 (𝑠))]
𝛽
,

𝑄 (𝑠) =
(𝜉
Δ
(𝑠))
2

(𝑟 (𝜎 (𝑠)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑠)))
𝛽/𝛼

4𝛽𝜉 (𝑠) (𝛿 (𝑠) /2)
𝛽−1

𝛿Δ (𝑠)𝑀𝛼−𝛽
,

(54)

then (1) is oscillatory.

Proof. We proceed as in the proof ofTheorem 4 to have (24).
On the other hand, from (22) and (H3), we deduce

(𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

)
Δ

⩽ 0, 𝑡 ⩾ 𝑇1,
(55)

and from 𝑟
Δ
(𝑡) ⩾ 0 for 𝑡 ⩾ 𝑡0, we can get 𝑍

Δ
(𝑡) is

nonincreasing. Hence, we have

𝑍 (𝑡) − 𝑍 (𝑇1) = ∫

𝑡

𝑇1

𝑍
Δ
(𝑠) Δ𝑠 ⩾ (𝑡 − 𝑇1) 𝑍

Δ
(𝑡) , (56)
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which implies

𝑍 (𝑡) ⩾
𝑡

2
𝑍
Δ
(𝑡) , for 𝑡 ⩾ 𝑇2 > 2𝑇1. (57)

Choosing 𝑇3 ⩾ 𝑇2 such that 𝛿(𝑡) ⩾ 𝑇2 for 𝑡 ⩾ 𝑇3, we get

𝑍 (𝛿 (𝑡)) ⩾
𝛿 (𝑡)

2
𝑍
Δ
(𝛿 (𝑡)) , for 𝑡 ⩾ 𝑇3. (58)

From (H6), (15), (20), (24), (25), (58), and as 𝑍
Δ
(𝑡) is

nonincreasing, we obtain

𝑤
Δ
(𝑡) ⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− (𝑟 (𝜎 (𝑡)) (𝑍
Δ
(𝜎 (𝑡)))

𝛼

𝜉 (𝑡) 𝛽(𝑍 (𝛿 (𝑡)))
𝛽−1

× 𝑍
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡) ) (𝑍

2𝛽
(𝛿 (𝜎 (𝑡))))

−1

⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− (𝑟 (𝜎 (𝑡)) (𝑍
Δ
(𝜎 (𝑡)))

𝛼

𝜉 (𝑡)

× 𝛽((𝛿 (𝑡) /2) 𝑍
Δ
(𝛿 (𝑡)))

𝛽−1

𝑍
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡) )

× (𝑍
2𝛽

(𝛿 (𝜎 (𝑡))))
−1

⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−(𝛽𝜉 (𝑡) 𝑟 (𝜎 (𝑡))(𝑍
Δ
(𝜎 (𝑡)))

𝛼+𝛽

(𝛿 (𝑡) /2)
𝛽−1

𝛿
Δ
(𝑡))

× (𝑍
2𝛽

(𝛿 (𝜎 (𝑡))))
−1

(
𝑟 (𝜎 (𝑡))

𝑟 (𝛿 (𝑡))
)

𝛽/𝛼

= − 𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− (𝛽𝜉 (𝑡) (𝛿 (𝑡) /2)
𝛽−1

𝛿
Δ
(𝑡))

× (𝜉
2
(𝜎 (𝑡)) (𝑟 (𝜎 (𝑡)))

(𝛼−𝛽)/𝛼
(𝑍
Δ
(𝜎 (𝑡)))

𝛼−𝛽

× (𝑟 (𝛿 (𝑡)))
𝛽/𝛼

)

−1

𝑤
2
(𝜎 (𝑡))

⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +
𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− (𝛽𝜉 (𝑡) (𝛿 (𝑡) /2)
𝛽−1

𝛿
Δ
(𝑡))

× (𝜉
2
(𝜎 (𝑡)) (𝑟 (𝜎 (𝑡)))

(𝛼−𝛽)/𝛼
(𝑍
Δ
(𝑡))
𝛼−𝛽

× (𝑟 (𝛿 (𝑡)))
𝛽/𝛼

)

−1

𝑤
2
(𝜎 (𝑡)) .

(59)

Now, from the fact that𝑍Δ(𝑡) is nonnegative and nonincreas-
ing, there exists a 𝑇4 > 𝑇3 sufficiently large such that

𝑍
Δ
(𝑡) ⩽

1

𝑀
, 𝑡 ⩾ 𝑇4, (60)

holds for some positive constant𝑀 and therefore

(𝑍
Δ
(𝑡))
𝛼−𝛽

⩽ (
1

𝑀
)

𝛼−𝛽

, 𝑡 ⩾ 𝑇4.
(61)

Combining (59) and (61), we obtain that

𝑤
Δ
(𝑡) ⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

−
𝛽𝜉 (𝑡) (𝛿 (𝑡) /2)

𝛽−1
𝛿
Δ
(𝑡)𝑀
𝛼−𝛽

𝜉2 (𝜎 (𝑡)) (𝑟 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
𝛽/𝛼

× 𝑤
2
(𝜎 (𝑡)) , 𝑡 ⩾ 𝑇4.

(62)

Letting

Φ (𝑡) =
𝛽𝜉 (𝑡) (𝛿 (𝑡) /2)

𝛽−1
𝛿
Δ
(𝑡)𝑀
𝛼−𝛽

𝜉2 (𝜎 (𝑡)) (𝑟 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
𝛽/𝛼

, (63)

thenΦ(𝑡) ⩾ 0. So

𝑤
Δ
(𝑡) ⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡)) − Φ (𝑡) 𝑤

2
(𝜎 (𝑡))

= − 𝜉 (𝑡) 𝑝 (𝑡) +
1

4Φ (𝑡)

(𝜉
Δ
(𝑡))
2

𝜉2 (𝜎 (𝑡))

− [√Φ (𝑡)𝑤 (𝜎 (𝑡)) −
1

2√Φ (𝑡)

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
]

2

⩽ − 𝜉 (𝑡) 𝑝 (𝑡) +
1

4Φ (𝑡)

(𝜉
Δ
(𝑡))
2

𝜉2 (𝜎 (𝑡))

= − [

[

𝜉 (𝑡) 𝑝 (𝑡)

−
(𝜉
Δ
(𝑡))
2

(𝑟 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑡)))
𝛽/𝛼

4𝛽𝜉 (𝑡) (𝛿 (𝑡) /2)
𝛽−1

𝛿Δ (𝑡)𝑀𝛼−𝛽
]

]

.

(64)
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Integrating the above inequality from 𝑇4 to 𝑡, we have

𝑤 (𝑡) ⩽ 𝑤 (𝑇4)

− ∫

𝑡

𝑇4

(𝜉 (𝑠) 𝑝 (𝑠)

− ((𝜉
Δ
(𝑠))
2

(𝑟 (𝜎 (𝑠)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑠)))
𝛽/𝛼

)

×(4𝛽𝜉 (𝑠) (𝛿 (𝑠) /2)
𝛽−1

𝛿
Δ
(𝑠)𝑀
𝛼−𝛽

)
−1

)Δ𝑠

⩽ 𝑤 (𝑇4) + ∫

𝑇4

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

− ∫

𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠)

− ((𝜉
Δ
(𝑠))
2

(𝑟 (𝜎 (𝑠)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑠)))
𝛽/𝛼

)

×(4𝛽𝜉 (𝑠) (𝛿 (𝑠) /2)
𝛽−1

𝛿
Δ
(𝑠)𝑀
𝛼−𝛽

)
−1

)Δ𝑠.

(65)

Since 𝑤(𝑡) > 0 for 𝑡 > 𝑇4, we have

∫

𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) −
(𝜉
Δ
(𝑠))
2

(𝑟 (𝜎 (𝑠)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑠)))
𝛽/𝛼

4𝛽𝜉 (𝑠) (𝛿 (𝑠) /2)
𝛽−1

𝛿Δ (𝑠)𝑀𝛼−𝛽
)Δ𝑠

⩽ 𝑤 (𝑇4) + ∫

𝑇4

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠 − 𝑤 (𝑡)

< 𝑤 (𝑇4) + ∫

𝑇4

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠.

(66)

which contradicts (53). This completes the proof of Theo-
rem 6.

Theorem 7. Assume that (H1)–(H6) and (7) hold and 𝛽 ⩾ 1.
Furthermore, assume that 𝑟Δ(𝑡) ⩾ 0. If there exist a function
𝐻(𝑡, 𝑠) ∈ ϝ and a function 𝜉(𝑡) ∈ 𝐶

1

rd(T , (0,∞)) such that

𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
⩽ 0, for 𝑡 ⩾ 𝑠 ⩾ 𝑡0, (67)

lim
𝑡→∞

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠 = ∞, (68)

where

𝑝 (𝑠) = 𝑞 (𝑠) [1 − 𝑝 (𝛿 (𝑠))]
𝛽
, (69)

then (1) is oscillatory.

Proof. We proceed as in the proof ofTheorem 6 to have (64).
From (64) we obtain

𝜉 (𝑡) 𝑝 (𝑡) ⩽ − 𝑤
Δ
(𝑡) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− Φ (𝑡) 𝑤
2
(𝜎 (𝑡)) , 𝑡 ⩾ 𝑇4.

(70)

Multiplying (70) (with 𝑡 replaced by 𝑠) by𝐻(𝑡, 𝑠), integrating
it with respect to 𝑠 from 𝑇4 to 𝑡 for 𝑡 > 𝑇4, using integration
by parts and (i)-(ii), we get

∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

⩽ −∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) 𝑤
Δ
(𝑠) Δ𝑠 + ∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
𝑤 (𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) Φ (𝑠) 𝑤
2
(𝜎 (𝑠)) Δ𝑠

= 𝐻 (𝑡, 𝑇4) 𝑤 (𝑇4) + ∫

𝑡

𝑇4

𝐻
Δ 𝑠 (𝑡, 𝑠) 𝑤 (𝜎 (𝑠)) Δ𝑠

+ ∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
𝑤 (𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) Φ (𝑠) 𝑤
2
(𝜎 (𝑠)) Δ𝑠

= 𝐻 (𝑡, 𝑇4) 𝑤 (𝑇4)

+ ∫

𝑡

𝑇4

(𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
)𝑤 (𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) Φ (𝑠) 𝑤
2
(𝜎 (𝑠)) Δ𝑠.

(71)

Using (67) in the above inequality (71), we get

∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠 ⩽ 𝐻 (𝑡, 𝑡0) 𝑤 (𝑇4) . (72)

Then it follows that

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠 ⩽ 𝑤 (𝑇4) . (73)
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Thus we get

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

=
1

𝐻 (𝑡, 𝑡0)
(∫

𝑇4

𝑡0

+∫

𝑡

𝑇4

)𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

⩽ 𝑤 (𝑇4) +
1

𝐻 (𝑡, 𝑡0)
∫

𝑇4

𝑡0

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

⩽ 𝑤 (𝑇4) + ∫

𝑇4

𝑡0

𝐻(𝑡, 𝑠)

𝐻 (𝑡, 𝑡0)
𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

⩽ 𝑤 (𝑇4) + ∫

𝑇4

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠.

(74)

Then

lim
𝑡→∞

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠 < ∞, (75)

which contradicts (68). This completes the proof of Theo-
rem 7.

Theorem 8. Assume that (H1)–(H6) and (7) hold and 𝛽 ⩾ 1.
Furthermore, assume that 𝑟Δ(𝑡) ⩾ 0. If there exist a function
𝐻(𝑡, 𝑠) ∈ ϝ and a function 𝜉(𝑡) ∈ 𝐶

1

rd(T , (0,∞)) such that for
any positive number𝑀,

lim
𝑡→∞

1

𝐻 (𝑡, 𝑡0)

× ∫

𝑡

𝑡0

[

[

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠)

−
(𝐻
Δ 𝑠 (𝑡, 𝑠)+𝐻 (𝑡, 𝑠) 𝜉

Δ
(𝑠) /𝜉 (𝜎 (𝑠)))

2

4𝐻 (𝑡, 𝑠) Φ (𝑠)

]

]

Δ𝑠=∞,

(76)

where

𝑝 (𝑠) = 𝑞 (𝑠) [1 − 𝑝 (𝛿 (𝑠))]
𝛽
,

Φ (𝑠) =
𝛽𝜉 (𝑠) (𝛿 (𝑠) /2)

𝛽−1
𝛿
Δ
(𝑠)𝑀
𝛼−𝛽

𝜉2 (𝜎 (𝑠)) (𝑟 (𝜎 (𝑠)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑠)))
𝛽/𝛼

,

(77)

then (1) is oscillatory.

Proof. Weproceed as those in the proof ofTheorem 7 to have
(71), that is,

∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

⩽ 𝐻 (𝑡, 𝑇4) 𝑤 (𝑇4)

+ ∫

𝑡

𝑇4

(𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
)𝑤 (𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇4

𝐻(𝑡, 𝑠) Φ (𝑠) 𝑤
2
(𝜎 (𝑠)) Δ𝑠

= 𝐻 (𝑡, 𝑇4) 𝑤 (𝑇4)

+ ∫

𝑡

𝑇4

(𝐻
Δ 𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝜉

Δ
(𝑠) /𝜉 (𝜎 (𝑠)))

2

4𝐻 (𝑡, 𝑠) Φ (𝑠)
Δ𝑠

− ∫

𝑡

𝑇4

[
𝐻
Δ 𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝜉

Δ
(𝑠) /𝜉 (𝜎 (𝑠))

2√𝐻 (𝑡, 𝑠) Φ (𝑠)

−√𝐻 (𝑡, 𝑠) Φ (𝑠)𝑤 (𝜎 (𝑠)) ]

2

Δ𝑠

⩽ 𝐻 (𝑡, 𝑇4) 𝑤 (𝑇4)

+ ∫

𝑡

𝑇4

(𝐻
Δ 𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝜉

Δ
(𝑠) /𝜉 (𝜎 (𝑠)))

2

4𝐻 (𝑡, 𝑠) Φ (𝑠)
Δ𝑠

⩽ 𝐻 (𝑡, 𝑡0) 𝑤 (𝑇4)

+ ∫

𝑡

𝑇4

(𝐻
Δ 𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝜉

Δ
(𝑠) /𝜉 (𝜎 (𝑠)))

2

4𝐻 (𝑡, 𝑠) Φ (𝑠)
Δ𝑠.

(78)

Then it follows that
1

𝐻 (𝑡, 𝑡0)

× ∫

𝑡

𝑇4

[

[

𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠)

−
(𝐻
Δ 𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝜉

Δ
(𝑠) /𝜉 (𝜎 (𝑠)))

2

4𝐻 (𝑡, 𝑠) Φ (𝑠)

]

]

Δ𝑠

⩽ 𝑤 (𝑇4) .

(79)

Thus we get

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

[

[

𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠)

− (𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
)

2
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× (4𝐻 (𝑡, 𝑠) Φ (𝑠))
−1]

]

Δ𝑠

=
1

𝐻 (𝑡, 𝑡0)

× {∫

𝑇4

𝑡0

+∫

𝑡

𝑇4

}[

[

𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠)

− (𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
)

2

× (4𝐻 (𝑡, 𝑠) Φ (𝑠))
−1]

]

Δ𝑠

⩽ 𝑤 (𝑇4) +
1

𝐻 (𝑡, 𝑡0)

× ∫

𝑇4

𝑡0

[

[

𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠)

− (𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
)

2

× (4𝐻 (𝑡, 𝑠) Φ (𝑠))
−1]

]

Δ𝑠

⩽ 𝑤 (𝑇4)

+ ∫

𝑇4

𝑡0

[

[

𝐻 (𝑡, 𝑠)

𝐻 (𝑡, 𝑡0)
𝜉 (𝑠) 𝑝 (𝑠)

− (𝐻
Δ 𝑠 (𝑡, 𝑠) +

𝐻 (𝑡, 𝑠) 𝜉
Δ
(𝑠)

𝜉 (𝜎 (𝑠))
)

2

× (4𝐻 (𝑡, 𝑠)𝐻 (𝑡, 𝑡0)Φ (𝑠))
−1]

]

Δ𝑠

⩽ 𝑤 (𝑇4) + ∫

𝑇4

𝑡0

𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠.

(80)
Then

lim
𝑡→∞

1

𝐻 (𝑡, 𝑡0)

× ∫

𝑡

𝑡0

[

[

𝐻 (𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠)

−
(𝐻
Δ 𝑠 (𝑡, 𝑠) + 𝐻 (𝑡, 𝑠) 𝜉

Δ
(𝑠) /𝜉 (𝜎 (𝑠)))

2

4𝐻 (𝑡, 𝑠) Φ (𝑠)

]

]

Δ𝑠

< ∞,

(81)

which contradicts (76). This completes the proof of Theo-
rem 8.

The case

lim
𝑡→∞

∫

𝑡

𝑡0

𝑟
−1/𝛼

(𝑠) Δ𝑠 < ∞. (82)

Theorem 9. Assume that (H1)–(H6) and (8) hold and there
exists a 𝑇∗ ∈ [𝑡0,∞)T such that 𝑝

Δ
(𝑡) ⩾ 0, 𝜏Δ(𝑡) ⩾ 0

for 𝑡 ⩾ 𝑇∗, and suppose that there exists a function 𝜉(𝑡) ∈

𝐶
1

rd(T , (0,∞)) such that (12) holds for any positive number𝑀,
and there exists a function 𝜓(𝑡) ∈ 𝐶

1

rd(T , (0,∞)) satisfying
𝜓(𝑡) ⩾ 𝑡, 𝜓

Δ
(𝑡) > 0, 𝛿(𝑡) ⩽ 𝜏(𝜓(𝑡)) for 𝑡 ⩾ 𝑇∗ such that

for any positive number𝑀 and for every 𝑇1 ∈ [𝑇∗,∞)T

lim
𝑡→∞

∫

𝑡

𝑇1

[𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) − 𝐺 (𝑠)] Δ𝑠 = ∞, (83)

where

𝑝 (𝑠) = 𝑞 (𝑠) (
1

1 + 𝑝 (𝜓 (𝑠))
)

𝛽

,

𝑉 (𝑠) = ∫

∞

𝜓(𝑠)

𝑟
−1/𝛼

(𝑡) Δ𝑡,

𝐺 (𝑠)

=

{{{{{

{{{{{

{

𝛼
2𝛼+1

𝑟
−1/𝛼

(𝜓 (𝑠)) 𝜓
Δ
(𝑠)

(𝛼+1)
𝛼+1

𝛽𝛼𝑀𝛼−𝛽𝑉 (𝜎 (𝑠))
, if 0<𝛼<1,

𝛼
2𝛼+1

𝑟
−1/𝛼

(𝜓 (𝑠)) 𝑉
𝛼
2
−1

(𝑠) 𝜓
Δ
(𝑠)

(𝛼 + 1)
𝛼+1

𝛽𝛼𝑀𝛼−𝛽𝑉𝛼
2

(𝜎 (𝑠))
, if𝛼 ⩾ 1,

(84)

then (1) is oscillatory.

Proof. Suppose to the contrary that 𝑥(𝑡) is an eventually
positive solution of (1), then there exists a 𝑇1 ⩾ 𝑇∗ ⩾ 𝑡0 such
that 𝑥(𝑡) > 0, 𝑥(𝛿(𝑡)) > 0, 𝑥(𝜎(𝑡)) > 0 for all 𝑡 ⩾ 𝑇1, (the
case of 𝑥(𝑡) is negative and can be considered by the same
method). It follows form (H3) that𝑍(𝑡) ⩾ 𝑥(𝑡) > 0 for 𝑡 ⩾ 𝑇1.
From (14) it is easy to conclude that there exist two possible
cases of the sign of 𝑍Δ(𝑡).

Case 1. Suppose 𝑍Δ(𝑡) ⩾ 0 for sufficiently large 𝑡, then we are
back to the case of Theorem 4. Thus the proof of Theorem 4
goes through, and we may get contradiction by (12).

Case 2. Suppose 𝑍Δ(𝑡) < 0 for 𝑡 ⩾ 𝑇1. Define

𝑤 (𝑡) =
𝑟 (𝑡) (−𝑍

Δ
(𝑡))
𝛼−1

𝑍
Δ
(𝑡)

𝑍𝛽 (𝜓 (𝑡))
, 𝑡 ⩾ 𝑇1.

(85)

Then 𝑤(𝑡) < 0 for 𝑡 ⩾ 𝑇1. From the fact that 𝑍(𝑡) is positive
and nonincreasing, we get that

𝑍 (𝜓 (𝑡)) ⩽
1

𝑀0

, 𝑡 ⩾ 𝑇1, (86)
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holds for some positive constant𝑀0.
Noting that (𝑟(𝑡)(−𝑍Δ(𝑡))𝛼−1𝑍Δ(𝑡))Δ ⩽ 0, 𝜓(𝑡) ⩾ 𝑡, so we

have

𝑍
Δ
(𝜓 (𝑡)) ⩽ (

𝑟 (𝑡)

𝑟 (𝜓 (𝑡))
)

1/𝛼

𝑍
Δ
(𝑡) , (87)

𝑍
Δ
(𝑠) ⩽

𝑟
1/𝛼

(𝑡)

𝑟1/𝛼 (𝑠)
𝑍
Δ
(𝑡) , 𝑠 ⩾ 𝑡. (88)

Integrating the above inequality (88) with respect to 𝑠 from
𝜓(𝑡) to 𝜈, we have

𝑍 (𝜈) ⩽ 𝑍 (𝜓 (𝑡)) + 𝑟
1/𝛼

(𝑡) 𝑍
Δ
(𝑡) ∫

𝜈

𝜓(𝑡)

𝑟
1/𝛼

(𝑠) Δ𝑠. (89)

Letting 𝜈 → ∞ in the above inequality, we obtain

0 ⩽ 𝑍 (𝜓 (𝑡)) + 𝑟
1/𝛼

(𝑡) 𝑍
Δ
(𝑡) 𝑉 (𝑡) . (90)

From (86) and (90), we have

−
1

𝑀
𝛼−𝛽

0

⩽ 𝑤 (𝑡) 𝑉
𝛼
(𝑡) ⩽ 0, 𝑡 ⩾ 𝑇1. (91)

If 0 < 𝛽 < 1. From 𝑍
Δ
(𝑡) < 0, Lemmas 1 and 2, we have

(𝑍
𝛽
(𝜓 (𝑡)))

Δ

= 𝛽{∫

1

0

[(1 − ℎ)𝑍 (𝜓 (𝑡)) + ℎ𝑍 (𝜓 (𝜎 (𝑡)))]
𝛽−1dℎ}

× (𝑍 (𝜓 (𝑡)))
Δ

⩽ 𝛽[∫

1

0

𝑍
𝛽−1

(𝜓 (𝑡)) dℎ]𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡)

= 𝛽𝑍
𝛽−1

(𝜓 (𝑡)) 𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡) .

(92)

From (1), (H6), (85), and (92), we get

𝑤
Δ
(𝑡)

=
1

𝑍𝛽 (𝜓 (𝑡))
(𝑟 (𝑡) (−𝑍

Δ
(𝑡))
𝛼−1

𝑍
Δ
(𝑡))
Δ

− (𝑟 (𝜎 (𝑡)) (−𝑍
Δ
(𝜎 (𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡)) (𝑍

𝛽
(𝜓 (𝑡)))

Δ

)

× (𝑍
𝛽
(𝜓 (𝑡)) 𝑍

𝛽
(𝜓 (𝜎 (𝑡))))

−1

⩽ −𝑞 (𝑡)
𝑥
𝛽
(𝛿 (𝑡))

𝑍𝛽 (𝜓 (𝑡))

− (𝑟 (𝜎 (𝑡)) (−𝑍
Δ
(𝜎 (𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡)) 𝛽𝑍

𝛽−1

× (𝜓 (𝑡)) 𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡) )

× (𝑍
𝛽
(𝜓 (𝑡)) 𝑍

𝛽
(𝜓 (𝜎 (𝑡))))

−1

⩽ −𝑞 (𝑡)
𝑥
𝛽
(𝛿 (𝑡))

𝑍𝛽 (𝜓 (𝑡))

− (𝑟 (𝜎 (𝑡)) (−𝑍
Δ
(𝜎 (𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡))

× 𝛽𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡) ) (𝑍 (𝜓 (𝑡)) 𝑍

𝛽
(𝜓 (𝜎 (𝑡))))

−1

⩽ −𝑞 (𝑡)
𝑥
𝛽
(𝛿 (𝑡))

𝑍𝛽 (𝜓 (𝑡))

− (𝑟 (𝜎 (𝑡)) (−𝑍
Δ
(𝜎 (𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡))

× 𝛽𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡) ) (𝑍

𝛽+1
(𝜓 (𝑡)))

−1

.

(93)

If 𝛽 ⩾ 1. From 𝑍
Δ
(𝑡) < 0, Lemmas 1 and 2, we have

(𝑍
𝛽
(𝜓 (𝑡)))

Δ

= 𝛽{∫

1

0

[(1 − ℎ)𝑍 (𝜓 (𝑡)) + ℎ𝑍 (𝜓 (𝜎 (𝑡)))]
𝛽−1dℎ}

× (𝑍 (𝜓 (𝑡)))
Δ

⩽ 𝛽[∫

1

0

𝑍
𝛽−1

(𝜓 (𝜎 (𝑡))) dℎ]𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡)

= 𝛽𝑍
𝛽−1

(𝜓 (𝜎 (𝑡))) 𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡) .

(94)

From (1), (H6), (85) and (94), we get

𝑤
Δ
(𝑡) =

1

𝑍𝛽 (𝜓 (𝑡))
(𝑟 (𝑡) (−𝑍

Δ
(𝑡))
𝛼−1

𝑍
Δ
(𝑡))
Δ

− (𝑟 (𝜎 (𝑡)) (−𝑍
Δ
(𝜎 (𝑡)))

𝛼−1

× 𝑍
Δ
(𝜎 (𝑡)) (𝑍

𝛽
(𝜓 (𝑡)))

Δ

)
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× (𝑍
𝛽
(𝜓 (𝑡)) 𝑍

𝛽
(𝜓 (𝜎 (𝑡))))

−1

⩽ − 𝑞 (𝑡)
𝑥
𝛽
(𝛿 (𝑡))

𝑍𝛽 (𝜓 (𝑡))

− (𝑟 (𝜎 (𝑡)) (−𝑍
Δ
(𝜎 (𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡))

× 𝛽𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡) )

× (𝑍
𝛽
(𝜓 (𝑡)) 𝑍 (𝜓 (𝜎 (𝑡))))

−1

⩽ − 𝑞 (𝑡)
𝑥
𝛽
(𝛿 (𝑡))

𝑍𝛽 (𝜓 (𝑡))

− (𝑟 (𝜎 (𝑡)) (−𝑍
Δ
(𝜎 (𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡))

× 𝛽𝑍
Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡) ) (𝑍

𝛽+1
(𝜓 (𝑡)))

−1

.

(95)

Therefore, for 𝛽 > 0, from (93) and (95), we get

𝑤
Δ
(𝑡)

⩽ −𝑞 (𝑡)
𝑥
𝛽
(𝛿 (𝑡))

𝑍𝛽 (𝜓 (𝑡))

−
𝑟 (𝜎 (𝑡)) (−𝑍

Δ
(𝜎 (𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡)) 𝛽𝑍

Δ
(𝜓 (𝑡)) 𝜓

Δ
(𝑡)

𝑍𝛽+1 (𝜓 (𝑡))
.

(96)

Noticing that 𝑝Δ(𝑡) ⩾ 0 and 𝜏
Δ
(𝑡) ⩾ 0, from 𝑍

Δ
(𝑡) = 𝑥

Δ
(𝑡) +

𝑝
Δ
(𝑡)𝑥(𝜏(𝑡)) + 𝑝(𝜎(𝑡))𝑥

Δ
(𝜏(𝑡))𝜏

Δ
(𝑡), we see that 𝑥Δ(𝑡) ⩽ 0 for

𝑡 ⩾ 𝑇1, and from 𝛿(𝑡) ⩽ 𝜏(𝜓(𝑡)) ⩽ 𝜓(𝑡) we can get

𝑥
𝛽
(𝛿 (𝑡))

𝑍𝛽 (𝜓 (𝑡))
= ((

𝑥 (𝜓 (𝑡))

𝑥 (𝛿 (𝑡))
+ 𝑝 (𝜓 (𝑡))

𝑥 (𝜏 (𝜓 (𝑡)))

𝑥 (𝛿 (𝑡))
)

−1

)

𝛽

⩾ (
1

1 + 𝑝 (𝜓 (𝑡))
)

𝛽

.

(97)

Thus from (86), (87), (96), (97) and the fact that
(𝑟(𝑡)(−𝑍

Δ
(𝑡))
𝛼−1

𝑍
Δ
(𝑡))
Δ
⩽ 0, we have

𝑤
Δ
(𝑡) ⩽ − 𝑝 (𝑡)

−
𝑟 (𝜎 (𝑡))(−𝑍

Δ
(𝜎(𝑡)))

𝛼−1

𝑍
Δ
(𝜎 (𝑡))𝛽𝑍

Δ
(𝑡) 𝜓
Δ
(𝑡)

𝑍𝛽+1 (𝜓 (𝑡))

× (
𝑟 (𝑡)

𝑟 (𝜓 (𝑡))
)

1/𝛼

= − 𝑝 (𝑡) −
𝑟 (𝑡) (−𝑍

Δ
(𝑡))
𝛼−1

𝑍
Δ
(𝑡) 𝛽𝑍

Δ
(𝑡) 𝜓
Δ
(𝑡)

𝑍𝛽+1 (𝜓 (𝑡))

× (
𝑟 (𝑡)

𝑟 (𝜓 (𝑡))
)

1/𝛼

= − 𝑝 (𝑡) −
𝑟 (𝑡) (−𝑍

Δ
(𝑡))
𝛼−1

𝑍
Δ
(𝑡) 𝛽𝑍

Δ
(𝑡) 𝜓
Δ
(𝑡)

𝑍𝛽+1 (𝜓 (𝑡))

× (
𝑟 (𝑡)

𝑟 (𝜓 (𝑡))
)

1/𝛼

⩽ − 𝑝 (𝑡) −
𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝜓
Δ
(𝑡)

𝑟1/𝛼 (𝜓 (𝑡))
(−𝑤 (𝑡))

(𝛼+1)/𝛼
,

(98)

where 𝑝(𝑡) = 𝑞(𝑡)(1/(1 + 𝑝(𝜓(𝑡))))
𝛽.

That is

𝑤
Δ
(𝑡) + 𝑝 (𝑡) +

𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝜓
Δ
(𝑡)

𝑟1/𝛼 (𝜓 (𝑡))
(−𝑤 (𝑡))

(𝛼+1)/𝛼
⩽ 0,

𝑡 ⩾ 𝑇1.

(99)

Multiplying (99) (with 𝑡 replaced by 𝑠) by 𝑉
𝛼
(𝜎(𝑠)), integrat-

ing it with respect to 𝑠 from 𝑇1 to 𝑡, we have

𝑉
𝛼
(𝑡) 𝑤 (𝑡) − 𝑉

𝛼
(𝑇1) 𝑤 (𝑇1) − ∫

𝑡

𝑇1

(𝑉
𝛼
(𝑠))
Δ
𝑤 (𝑠) Δ𝑠

+ ∫

𝑡

𝑇1

𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) Δ𝑠

+ ∫

𝑡

𝑇1

𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝑉
𝛼
(𝜎 (𝑠)) 𝜓

Δ
(𝑠)

𝑟1/𝛼 (𝜓 (𝑠))
(−𝑤 (𝑠))

(𝛼+1)/𝛼
Δ𝑠 ⩽ 0.

(100)
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Next, we consider the following two cases.

Case (i) (let 0 < 𝛼 < 1). From Lemma 2 and 𝑉
Δ
(𝑡) =

−𝑟
−1/𝛼

(𝜓(𝑡))𝜓
Δ
(𝑡) < 0, we have

(𝑉
𝛼
(𝑡))
Δ
= 𝛼{∫

1

0

[(1 − ℎ)𝑉 (𝑡) + ℎ𝑉 (𝜎 (𝑡))]
𝛼−1dℎ}𝑉

Δ
(𝑡)

⩾ 𝛼 [∫

1

0

𝑉
𝛼−1

(𝜎 (𝑡)) dℎ]𝑉
Δ
(𝑡)

= 𝛼𝑉
𝛼−1

(𝜎 (𝑡)) 𝑉
Δ
(𝑡) .

(101)

From (100) and (101), we get

𝑉
𝛼
(𝑡) 𝑤 (𝑡) − 𝑉

𝛼
(𝑇1) 𝑤 (𝑇1)

− ∫

𝑡

𝑇1

𝛼𝑉
𝛼−1

(𝜎 (𝑠)) 𝑉
Δ
(𝑠) 𝑤 (𝑠) Δ𝑠

+ ∫

𝑡

𝑇1

𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) Δ𝑠

+ ∫

𝑡

𝑇1

𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝑉
𝛼
(𝜎 (𝑠)) 𝜓

Δ
(𝑠)

𝑟1/𝛼 (𝜓 (𝑠))
(−𝑤 (𝑠))

(𝛼+1)/𝛼
Δ𝑠 ⩽ 0.

(102)

That is

𝑉
𝛼
(𝑡) 𝑤 (𝑡) + ∫

𝑡

𝑇1

𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇1

[𝛼𝑉
𝛼−1

(𝜎 (𝑠)) (−𝑉
Δ
(𝑠)) (−𝑤 (𝑠)) Δ𝑠

−
𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝑉
𝛼
(𝜎 (𝑠)) 𝜓

Δ
(𝑠)

𝑟1/𝛼 (𝜓 (𝑠))
(−𝑤 (𝑠))

(𝛼+1)/𝛼
]Δ𝑠

⩽ 𝑉
𝛼
(𝑇1) 𝑤 (𝑇1) .

(103)

Taking 𝑎 = 𝛼𝑉
𝛼−1

(𝜎(𝑠))(−𝑉
Δ
(𝑠)),𝑏 = 𝛽𝑀

(𝛼−𝛽)/𝛼

0
𝑉
𝛼
(𝜎(𝑠))𝜓

Δ
(𝑠)/

𝑟
1/𝛼

(𝜓(𝑠)), by Lemma 3 and (103), we obtain

𝑉
𝛼
(𝑡) 𝑤 (𝑡) + ∫

𝑡

𝑇1

𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇1

𝛼
𝛼
𝑟 (𝜓 (𝑠)) (𝛼𝑉

𝛼−1
(𝜎 (𝑠)) (−𝑉

Δ
(𝑠)))
𝛼+1

(𝛼 + 1)
𝛼+1

(𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝑉𝛼 (𝜎 (𝑠)) 𝜓Δ (𝑠))

𝛼Δ𝑠

⩽ 𝑉
𝛼
(𝑇1) 𝑤 (𝑇1) .

(104)

That is
𝑉
𝛼
(𝑡) 𝑤 (𝑡) ⩽ 𝑉

𝛼
(𝑇1) 𝑤 (𝑇1)

− ∫

𝑡

𝑇1

[𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠))

−
𝛼
2𝛼+1

𝑟
−1/𝛼

(𝜓 (𝑠)) 𝜓
Δ
(𝑠)

(𝛼 + 1)
𝛼+1

𝛽𝛼𝑀
𝛼−𝛽

0
𝑉 (𝜎 (𝑠))

]Δ𝑠.

(105)

By (83), we get a contradiction with (91).

Case (ii) (let 𝛼 ⩾ 1). From Lemma 2 and 𝑉
Δ
(𝑡) < 0, we get

(𝑉
𝛼
(𝑡))
Δ
= 𝛼{∫

1

0

[(1 − ℎ)𝑉 (𝑡) + ℎ𝑉 (𝜎 (𝑡))]
𝛼−1dℎ}𝑉

Δ
(𝑡)

⩾ 𝛼 [∫

1

0

𝑉
𝛼−1

(𝑡) dℎ]𝑉
Δ
(𝑡) = 𝛼𝑉

𝛼−1
(𝑡) 𝑉
Δ
(𝑡) .

(106)

From (100) and (106), we obtain

𝑉
𝛼
(𝑡) 𝑤 (𝑡) − 𝑉

𝛼
(𝑇1) 𝑤 (𝑇1) − ∫

𝑡

𝑇1

𝛼𝑉
𝛼−1

(𝑠) 𝑉
Δ
(𝑠) 𝑤 (𝑠) Δ𝑠

+ ∫

𝑡

𝑇1

𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) Δ𝑠

+ ∫

𝑡

𝑇1

𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝑉
𝛼
(𝜎 (𝑠)) 𝜓

Δ
(𝑠)

𝑟1/𝛼 (𝜓 (𝑠))
(−𝑤 (𝑠))

(𝛼+1)/𝛼
Δ𝑠 ⩽ 0.

(107)

That is

𝑉
𝛼
(𝑡) 𝑤 (𝑡) + ∫

𝑡

𝑇1

𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇1

[𝛼𝑉
𝛼−1

(𝑠) (−𝑉
Δ
(𝑠)) (−𝑤 (𝑠)) Δ𝑠

−
𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝑉
𝛼
(𝜎 (𝑠)) 𝜓

Δ
(𝑠)

𝑟1/𝛼 (𝜓 (𝑠))
(−𝑤 (𝑠))

(𝛼+1)/𝛼
]Δ𝑠

⩽ 𝑉
𝛼
(𝑇1) 𝑤 (𝑇1) .

(108)

Taking 𝑎 = 𝛼𝑉
𝛼−1

(𝑠)(−𝑉
Δ
(𝑠)), 𝑏 = 𝛽𝑀

(𝛼−𝛽)/𝛼

0
𝑉
𝛼
(𝜎(𝑠))𝜓

Δ
(𝑠)/

𝑟
1/𝛼

(𝜓(𝑠)), by Lemma 3 and (108), we obtain

𝑉
𝛼
(𝑡) 𝑤 (𝑡) + ∫

𝑡

𝑇1

𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠)) Δ𝑠

− ∫

𝑡

𝑇1

𝛼
𝛼
𝑟 (𝜓 (𝑠)) (𝛼𝑉

𝛼−1
(𝑠) (−𝑉

Δ
(𝑠)))
𝛼+1

(𝛼 + 1)
𝛼+1

(𝛽𝑀
(𝛼−𝛽)/𝛼

0
𝑉𝛼 (𝜎 (𝑠)) 𝜓Δ (𝑠))

𝛼Δ𝑠

⩽ 𝑉
𝛼
(𝑇1) 𝑤 (𝑇1) .

(109)
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That is
𝑉
𝛼
(𝑡) 𝑤 (𝑡)

⩽ 𝑉
𝛼
(𝑇1) 𝑤 (𝑇1)

− ∫

𝑡

𝑇1

[𝑝 (𝑠) 𝑉
𝛼
(𝜎 (𝑠))

−
𝛼
2𝛼+1

𝑟
−1/𝛼

(𝜓 (𝑠)) 𝑉
𝛼
2
−1

(𝑠) 𝜓
Δ
(𝑠)

(𝛼 + 1)
𝛼+1

𝛽𝛼𝑀
𝛼−𝛽

0
𝑉𝛼
2

(𝜎 (𝑠))

]Δ𝑠.

(110)

By (83), we get a contradiction with (91). This completes the
proof of Theorem 9.

4. Examples

Example 10. Consider the following dynamic equation:

[



(𝑥 (𝑡) +
1

1 + 𝑡2
𝑥 (𝛿 (𝑡)))

Δ

𝛼−1

(𝑥 (𝑡) +
1

1 + 𝑡2
𝑥 (𝛿 (𝑡)))

Δ

]

Δ

+
1

𝑡2
(1 +

1

𝛿2 (𝑡)
)

𝛽

|𝑥 (𝛿 (𝑡))|
𝛽−1

𝑥 (𝛿 (𝑡)) = 0, 𝑡 ∈ T ,

(111)

where 𝛼 > 𝛽 > 1 are constants. In (111), 𝑟(𝑡) = 1, 𝑝(𝑡) =

1/(1 + 𝑡
2
), 𝑞(𝑡) = (1/𝑡

2
)(1 + 1/𝛿

2
(𝑡))
𝛽.

If T = 𝑞Z
0

= {𝑞
𝑛

0
: 𝑛 ∈ Z} ∪ {0}, and 𝛿(𝑡) = 𝑡/𝑞0, where

𝑞0 > 1 and 𝑞0 ∈ R, then 𝛿
Δ
(𝑡) = 1/𝑞0. It is easy to get that

𝑝(𝑡) = 𝑞(𝑡)[1−𝑝(𝛿(𝑡))]
𝛽
= 1/𝑡
2. Choosing 𝜉(𝑡) = 𝑡, therefore,

lim
𝑡→∞

∫

𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠)

−
(𝜉
Δ
(𝑠))
2

(𝑟 (𝜎 (𝑠)))
(𝛼−𝛽)/𝛼

(𝑟 (𝛿 (𝑠)))
𝛽/𝛼

4𝛽𝜉 (𝑠) (𝛿 (𝑠) /2)
𝛽−1

𝛿Δ (𝑠)𝑀𝛼−𝛽
)Δ𝑠

= lim
𝑡→∞

∫

𝑡

𝑡0

(
1

𝑠
−

2
𝛽−1

𝑞
𝛽

0

4𝛽𝑠𝛽𝑀(𝛼−𝛽)/𝛼
)Δ𝑠 = ∞.

(112)

Hence, by Theorem 6, (111) is oscillatory.

Example 11. Consider the following dynamic equation:

[𝑡
𝛼



(𝑥 (𝑡) + (1 −
1

1 + 𝑡2
)𝑥 (𝛿 (𝑡)))

Δ

𝛼−1

× (𝑥 (𝑡) + (1 −
1

1 + 𝑡2
)𝑥 (𝛿 (𝑡)))

Δ

]

Δ

+
1

𝑡
(1 +

1

𝛿2 (𝑡)
)

𝛽

|𝑥 (𝛿 (𝑡))|
𝛽−1

𝑥 (𝛿 (𝑡)) = 0, 𝑡 ∈ T ,

(113)

where 𝛼 > 𝛽 > 1. In (113), 𝑟(𝑡) = 𝑡
𝛼, 𝑝(𝑡) = 1 − 1/(1 + 𝑡

2
),

𝑞(𝑡) = (1/𝑡)(1 + 𝛿
2
(𝑡))
𝛽.

If T = 𝑞Z
0

= {𝑞
𝑛

0
: 𝑛 ∈ Z} ∪ {0}, and 𝛿(𝑡) = 𝑡/𝑞0, where

𝑞0 > 1 and 𝑞0 ∈ R, then 𝛿
Δ
(𝑡) = 1/𝑞0. It is easy to get that

𝑝(𝑡) = 𝑞(𝑡)[1 − 𝑝(𝛿(𝑡))]
𝛽
= 1/𝑡. Choosing 𝜉(𝑡) = 1, 𝐻(𝑡, 𝑠) =

𝑡 − 𝑠, therefore, (𝑡 − 𝑠)
Δ 𝑠 = −1,

lim
𝑡→∞

1

𝐻 (𝑡, 𝑡0)
∫

𝑡

𝑡0

𝐻(𝑡, 𝑠) 𝜉 (𝑠) 𝑝 (𝑠) Δ𝑠

= lim
𝑡→∞

1

𝑡 − 𝑡0

∫

𝑡

𝑡0

(𝑡 − 𝑠)
1

𝑠
Δ𝑠

= lim
𝑡→∞

𝑡

𝑡 − 𝑡0

⋅
1

𝑡
∫

𝑡

𝑡0

𝑡 − 𝑠

𝑠
Δ𝑠

= ∞.

(114)

Hence, by Theorem 7, (111) is oscillatory.
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A chaotic system arising from double-diffusive convection in a fluid layer is investigated in this paper based on the theory of
dynamical systems. Afive-dimensionalmodel of chaotic system is obtained using theGalerkin truncated approximation.The results
showed that the transition from steady convection to chaos via a Hopf bifurcation produced a limit cycle which may be associated
with a homoclinic explosion at a slightly subcritical value of the Rayleigh number.

1. Introduction

The concept of sensitivity on initial conditions where a small
difference on initial conditions may produce large variations
in the long-term behaviour of the system is pivotal in chaos
theory. This behaviour is also known as the “butterfly effect”
related to work done by Lorenz [1] where it is already
described by Henri Poincare in 1890 in the literature in a
particular case of the three-body problem. Chaotic behaviour
has been studied intensively in various dynamical systems;
see, for example, [2–14].

The investigation of free convection in the Rayleigh-
Bénard problem is receiving much attention due to its wide
application in different disciplines such as biotechnology for
the description of the convection with the microorganisms
diffusion, in astrophysics for simulation of the influence of
the helium diffusion on convective motions in the stars, in
oceanography for the investigation of the salinity influence
on the convectivemotions in the seas, and in engineering and
geology. Research in double-diffusive convection begins after
the work done by sea-going oceanographers in order to mea-
sure the fluctuation of temperature and salinity as a function
of depth as stated in the paper of Huppert and Turner [15].
Then, Knobloch et al. [16] and Bhattacharjee [17] studied the

transition to chaos in double-diffusive convectionwith stress-
free boundary conditions where oscillatory solution exists.
They showed that the instability of fluid becomes oscillatory
when thermal Rayleigh number is raised and the truncated
model suggests that the appearance of chaos is associatedwith
heteroclinic bifurcations.

Two-dimensional thermosolutal convection between free
boundaries was studied numerically by Veronis [18]. From
their observation, they found that when the solutal Rayleigh
number is large enough, the oscillations underwent a bifur-
cation to asymmetry as thermal Rayleigh number increased
and, for the larger values of solutal Rayleigh number, the
transition from chaos to steady motion occurs.

Sibgatullin et al. [19] studied some properties of two-
dimensional stochastic regimes of double-diffusive convec-
tion in a plane layer. Using the Bubnov-Galerkin method,
they obtained that, with the growth of Rayleigh numbers
of heat and salinity, the structure of one-dimensional curve
becomes more irregular and sophisticated. Transition to
chaos in double-diffusive Marangoni convection was studied
by Li et al. [20]. It was found that the supercritical solution
branch takes a quasiperiodicity and phase locking route
to chaos while the subcritical branch follows the Ruelle-
Takens-Newhouse scenario. The transitions from regular to
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chaotic dynamics and analysis of the hyper, hyper-hyper,
and spatial-temporal chaos using the Lyapunov exponents
of continuous mechanical systems have been studied in [21–
24]; they found the Sharkovskii windows of periodicity in the
systems investigated.

The objective of the present paper is to study the weak
turbulence and chaos in double-diffusive convection involv-
ing temperature and concentration as the thermal Rayleigh
number increases with rigid, no-slip horizontal boundary
condition. Applying the truncated Galerkin approximation
to the governing equations yields an autonomous system
with five ordinary differential equations which can be used
to understand low-dimensional dynamics before moving to
studying more complex systems.

2. Mathematical Formulation

Consider a two-dimensional layer of fluid of depth𝐻 subject
to gravity and heated from below as shown in Figure 1. A
Cartesian coordinate system is used such that the vertical
axis 𝑧 is collinear with gravity, that is, êg = −êz. The two
long walls are maintained at temperatures 𝑇𝐻 and 𝑇𝐶 and
solute concentrations 𝑆𝐻 and 𝑆𝐶, respectively. A relationship
between density, temperature, and solute concentration is
assumed linear and can be presented by the following form
𝜌 = 𝜌0[1 − 𝛼(𝑇 − 𝑇𝐶) + 𝛼𝑠(𝑆 − 𝑆𝐶)], where 𝛼 and 𝛼𝑠 are
volume expansion coefficients due to variations of thermal
and solute concentrations. The Boussinesq approximation is
applied for the effects of density variations for the gravity
term in momentum equation. Therefore, the set of equations
governing the conservation of mass, momentum, energy, and
concentration for fluid flow is given by the following:

∇ ⋅ V = 0, (1)

𝜌0 [
𝜕V
𝜕𝑡

+ V ⋅ V] = −∇𝑝 + ∇
2V + 𝜌êz, (2)

𝜕𝑇

𝜕𝑡
+ V ⋅ ∇𝑇 = 𝜂∇

2
𝑇, (3)

𝜕𝑆

𝜕𝑡
+ V ⋅ ∇𝑆 = 𝜂𝑠∇

2
𝑆. (4)

We nondimensionalize (1)–(4) using the following transfor-
mations:

V∗ =
𝐻∗

𝜂∗

V, 𝑝∗ =
𝐻
2

∗

𝜌0𝜂
2
∗

𝑝,

𝑇∗ =
(𝑇 − 𝑇𝐶)

Δ𝑇𝑐

, 𝑆∗ =
(𝑆 − 𝑆𝐶)

Δ𝑆𝑐

,

(𝑥∗, 𝑦∗, 𝑧∗) = 𝐻∗ (𝑥, 𝑦, 𝑧) , 𝑡∗ =
𝑡𝐻
2

∗

𝜂∗

,

(5)

where V∗ = (𝑢∗, 𝑣∗, 𝑤∗) is the velocity component, 𝑝∗ is
the pressure, (𝑇 − 𝑇𝐶) and (𝑆 − 𝑆𝐶) are the temperature and
solute concentration variations, 𝜂∗ is the effective thermal
diffusivity, and 𝜈∗ is fluid’s viscosity.

𝐻∗

𝑍

𝑋
Hot: 𝑇 = 1

Cold: 𝑇 = 0

𝑔∗

Figure 1: Physical model.

In thismodel, all the boundaries are rigid and the solution
must follow the impermeability conditions there, that is,
V ⋅ ên = 0 on the boundaries, where ên is a unit vector normal
to the boundary. The temperature and solute concentration
boundary conditions are 𝑇 = 𝑆 = 1 at 𝑧 = 0 and 𝑇 = 𝑆 = 0 at
𝑧 = 1.

For convective rolls having axes parallel to the shorter
dimension (i.e., 𝑦 = 0) 𝑣 = 0, by applying the curl operator
on (2) to eliminate the pressure and introducing the stream
function defined by 𝑢 = 𝜕𝜓/𝜕𝑧 and 𝑤 = −𝜕𝜓/𝜕𝑥, we get

[
1

Pr
(
𝜕

𝜕𝑡
+
𝜕𝜓

𝜕𝑧

𝜕

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕

𝜕𝑧
) − ∇

2
]∇
2
𝜓 = −Ra𝜕𝑇

𝜕𝑥
+ 𝑅𝑠

𝜕𝑆

𝜕𝑥
,

𝜕𝑇

𝜕𝑡
+
𝜕𝜓

𝜕𝑧

𝜕𝑇

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑇

𝜕𝑧
=
𝜕
2
𝑇

𝜕𝑥2
+
𝜕
2
𝑇

𝜕𝑧2
,

𝜕𝑆

𝜕𝑡
+
𝜕𝜓

𝜕𝑧

𝜕𝑆

𝜕𝑥
−
𝜕𝜓

𝜕𝑥

𝜕𝑆

𝜕𝑧
=

1

Le
(
𝜕
2
𝑆

𝜕𝑥2
+
𝜕
2
𝑆

𝜕𝑧2
) ,

(6)

where

Pr = 𝜈∗

𝜂∗

, Ra =
𝛼∗Δ𝑇𝑐𝑔∗𝐻

3

∗

𝜂∗𝜈∗

,

𝑅𝑠 =
𝛼𝑠∗Δ𝑆𝑐𝑔∗𝐻

3

∗

𝜂∗𝜈∗

, Le =
𝜂∗

𝜂𝑠∗

(7)

which are, respectively, the Prandtl number, the Rayleigh
number, the solutal Rayleigh number, and the Lewis number.
The boundary conditions for the stream function are 𝜓 = 0

on the horizontal boundaries. Equation (6) forms a nonlin-
ear coupled system which together with the corresponding
boundary conditions allows for a basic motionless conduc-
tion solution.

3. Diminished Set of Equation

In order to obtain the solution to (6), we represent the
stream function, temperature, and solutal distributions in the
following form:

𝜓 = 𝐴11 sin (𝜅𝑥) sin (𝜋𝑧) ,

𝑇 = 1 − 𝑧 + 𝐵11 cos (𝜅𝑥) sin (𝜋𝑧) + 𝐵02 sin (2𝜋𝑧) ,

𝑆 = 1 − 𝑧 + 𝐶11 cos (𝜅𝑥) sin (𝜋𝑧) + 𝐶02 sin (2𝜋𝑧) .

(8)
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Substituting (8) into (6), multiplying the equations by the
orthogonal eigenfunctions corresponding to (8), and then
integrating them over the spatial domain yield a set of five
ordinary differential equations for the time evolution of the
following amplitudes:

𝑑𝐴11

𝑑𝜏
= Pr [𝐵11 − 𝐴11 + 𝐶11] ,

𝑑𝐵11

𝑑𝜏
= −𝐵11 + 𝑅𝐴11 − 𝐴11𝐵02,

𝑑𝐵02

𝑑𝜏
= 𝐴11𝐵11 − 𝜆𝐵02,

𝑑𝐶11

𝑑𝜏
= −

𝐶11

Le
+ 𝑅𝑠𝐴11 − 𝐴11𝐶02,

𝑑𝐶02

𝑑𝜏
= 𝐴11𝐶11 −

𝜆

Le
𝐶02.

(9)

In (9), the time, the amplitudes, the Rayleigh number, and
the solutal Rayleigh number were rescaled, and the following
notations are introduced as follows:

𝐴11 =
(𝜅/𝜅cr)

[(𝜅/𝜅cr)
2
+ 2]

𝐴11, 𝐵11 = 𝜅cr𝑅𝐵11,

𝐵02 = 𝜋𝑅𝐵02, 𝐶11 = 𝜅cr𝑅𝑠𝐶11,

𝐶02 = 𝜋𝑅𝑠𝐶02, 𝑅 =
Ra
Ra𝑐

, 𝑅𝑠 =
𝑅𝑠

𝑅𝑠𝑐

,

𝜏 = (𝜅
2
+ 𝜋
2
) 𝑡, 𝜆 =

8

[(𝜅/𝜅cr)
2
+ 2]

,

Ra𝑐 = 𝑅𝑠𝑐 =
(𝜅
2
+ 𝜋
2
)
3

𝜅2
, 𝜅cr =

𝜋

√2
.

(10)

Rescaling the equation again in the forms

𝑋 =
𝐴11

√𝜆 (𝑅 − 1)
, 𝑌 =

𝐵11

√𝜆 (𝑅 − 1)
, 𝑍 =

𝐵02

(𝑅 − 1)
,

𝑈 =
𝐶11

√𝜆 (𝑅 − 1)
, 𝑊 =

𝐶02

(𝑅 − 1)
,

(11)

gives the following set of scaled equations which are equiva-
lent to (9):

𝑋 = Pr (𝑌 − 𝑋 − 𝑈) ,

̇𝑌 = 𝑅𝑋 − 𝑌 − (𝑅 − 1)𝑋𝑍,

̇𝑍 = 𝜆 (𝑋𝑌 − 𝑍) ,

𝑈 = 𝑅𝑠𝑋 −
𝑈

Le
− (𝑅 − 1)𝑋𝑊,

�̇� = 𝜆 (𝑋𝑈 −
𝑊

Le
) ,

(12)

where the dots (⋅) denote time derivatives 𝑑()/𝑑𝜏.

4. Linear Stability Analysis

In this paper, we investigate the chaotic behaviour with low
Prandtl number in double-diffusive convection. We obtained
system (12) that provides a set of nonlinear equations with
five parameters. The value of 𝜆 has to be consistent with
the wave number at the convection threshold, a requirement
for the convection cells to fit into the domain and fulfill
the boundary conditions. However, the Lorenz equations
have been extensively analyzed and solved for parameter
values corresponding to convection in pure fluids and, even
there, the parameter values most regularly used correspond
to Pr = 10 and 𝜆 = 8/3. Therefore, it is of interest to
analyze and solve the corresponding equations for parameter
values corresponding to the problem under investigation.
We employ the MATLAB ODE45 routine for obtaining the
numerical solutions.

Before attempting the numerical solution of system (12),
it is useful to examine the local stability of equilibriumpoints.
System (12) has the three basic properties which we will
discuss in the following: dissipation, fixed points, and stability
of fixed points.

4.1. Dissipation. System (12) is dissipative since

∇ ⋅ �̂� =
𝜕𝑋

𝜕𝑋
+
𝜕 ̇𝑌

𝜕𝑌
+
𝜕 ̇𝑍

𝜕𝑍
+
𝜕𝑈

𝜕𝑈
+
𝜕�̇�

𝜕𝑊

= − (1 + Pr + 1 + 𝜆

Le
+ 𝜆)

< 0.

(13)

Therefore, if the set of initial points in the phase space
occupies region �̂�(0) at 𝜏 = 0, then, after some time, 𝜏, the
endpoints of the corresponding trajectories will fill a volume

�̂� (𝜏) = �̂� (0) exp [−(1 + Pr + (1 + 𝜆)

Le
+ 𝜆)] . (14)

The expression indicates that the volume decreasesmonoton-
ically with time.

4.2. Fixed Points. The fixed points for velocity, temperature,
and solute concentration can be obtained by setting the
derivatives of system (12) to zero:

Pr (𝑌 − 𝑋 − 𝑈) = 0,

𝑅𝑋 − 𝑌 − (𝑅 − 1)𝑋𝑍 = 0,

𝜆 (𝑋𝑌 − 𝑍) = 0,

𝑅𝑠𝑋 −
𝑈

Le
− (𝑅 − 1)𝑋𝑊 = 0,

𝜆 (𝑋𝑈 −
𝑊

Le
) = 0.

(15)

There is one trivial solution, that is, the origin in the phase
space

𝑋1 = 𝑌1 = 𝑍1 = 𝑈1 = 𝑊1 = 0, (16)
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which corresponds to the motionless solution. The other
nonzero fixed points are given by the following:

𝑋2,3 = ±
ℎ2

√2
,

𝑌2,3 = ±
(−1 + Le2 (𝑅 + 1) − Le𝑅𝑠 + ℎ1)𝑋2,3

2 (Le2 − 1)
,

𝑍2,3 =
(1 − 2𝑅 + Le2 (𝑅 − 1) + Le𝑅𝑠 − ℎ1)

2 (Le2 − 1) (𝑅 − 1)
,

𝑈2,3 = ±
(1 + Le2 (𝑅 − 1) − Le𝑅𝑠 + ℎ1)𝑋2,3

2 (Le2 − 1)
,

𝑊2,3 = −
(1 + Le2 (𝑅 − 1) + Le𝑅𝑠 − 2Le

3
𝑅𝑠 + ℎ1)

2Le (Le2 − 1) (𝑅 − 1)
,

𝑋4,5 = ±
ℎ3

√2
,

𝑌4,5 = ±
(−1 + Le2 (𝑅 + 1) − Le𝑅𝑠 − ℎ1)𝑋4,5

2 (Le2 − 1)
,

𝑍4,5 =
(1 − 2𝑅 + Le2 (𝑅 − 1) + Le𝑅𝑠 + ℎ1)

2 (Le2 − 1) (𝑅 − 1)
,

𝑈4,5 = ±
(1 + Le2 (𝑅 − 1) − Le𝑅𝑠 − ℎ1)𝑋4,5

2 (Le2 − 1)
,

𝑊4,5 =
(−1 + Le2 (1 − 𝑅) − Le𝑅𝑠 + 2Le

3
𝑅𝑠 + ℎ1)

2Le (Le2 − 1) (𝑅 − 1)
,

(17)

where

ℎ1

= √((1 + Le2 (𝑅 − 1))2 − 2Le𝑅𝑠 (Le2 (𝑅 + 1) − 1) + Le2𝑅2
𝑠
),

ℎ2 =
√−

(1 + Le2 (1 − 𝑅) + Le𝑅𝑠 + ℎ1)
Le2 (𝑅 − 1)

,

ℎ3 =
√
(−1 + Le2 (𝑅 − 1) − Le𝑅𝑠 + ℎ1)

Le2 (𝑅 − 1)
.

(18)

The system has five fixed points. When 𝑅 = 0, the five fixed
points are all real. Thus, when (𝑅 − 1) > 0, ℎ1 is always
real and ℎ2 and ℎ3 are always complex; therefore, the three
fixed points (𝑋𝑖, 𝑌𝑖, 𝑈𝑖) are all complex and the other two
fixed points, (𝑍𝑖,𝑊𝑖), are all real for 𝑖 = 2, . . . , 5. The fixed
point (𝑋1, 𝑌1, 𝑍1, 𝑈1,𝑊1) corresponds tomotionless solution
and (𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 𝑈𝑖,𝑊𝑖), where 𝑖 = 2, . . . , 5 corresponds to the
convective solution.

4.3. Stability of the Fixed Points. The Jacobian matrix of (12)
can be written as follows:

𝐽 =

[
[
[
[
[
[
[
[
[
[

[

−Pr Pr 0 −Pr 0

𝑅 − (𝑅 − 1)𝑍 −1 − (𝑅 − 1)𝑋 0 0

𝜆𝑌 𝜆𝑋 −𝜆 0 0

𝑅𝑠 − (𝑅 − 1)𝑊 0 0 −
1

Le
(𝑅 − 1)𝑋

𝜆𝑈 0 0 𝜆𝑋 −
𝜆

Le

]
]
]
]
]
]
]
]
]
]

]

.

(19)

Since the matrix is 5 × 5, it is hard to obtain the eigenvalues
in a closed form. Hence, the numerical calculation can
be performed to discuss the stability at the fixed point.
The motionless solution loses stability and the convection
solution takes over at the fixed point {𝑋1, 𝑌1, 𝑍1, 𝑈1,𝑊1}
with the critical value, 𝑅𝑐1. Numerical results for the value
of 𝑅𝑐1, which corresponds to the onset of convection, is
obtained for various values of Le and 𝑅𝑠 with the value of
parameters Pr = 10 and 𝜆 = 8/3 as shown in Figure 2.
Increasing the values of Le and 𝑅𝑠 increases the value of
𝑅𝑐1.

The stability of the fixed points (𝑋𝑖, 𝑌𝑖, 𝑍𝑖, 𝑈𝑖,𝑊𝑖)

(𝑖 = 2, . . . , 5) is associated with the convective
solution. The evolution of the complex eigenvalues
of 𝐽 in the case Pr = 10, 𝜆 = 8/3, and Le = 0.1

is plotted as shown in Figure 3(a) for the fixed point
(𝑋4,5, 𝑌4,5, 𝑍4,5, 𝑈4,5,𝑊4,5). These two roots become a
complex conjugate at 𝑅 ≃ 3.32, 3.97, 4.63, and 5.28 for
the case 𝑅𝑠 = 15, 20, 25, and 30, respectively. At these
points exactly, they still have negative real parts; therefore,
the convection fixed points are stable, that is, spiral nodes.
Of all the cases, both the imaginary and real parts of these
two complex conjugate eigenvalues increase as 𝑅 increases
and they cross the imaginary axis on the complex plane, so
as a result their real part becomes nonnegative at a value
of 𝑅𝑐2 ≃ 46.37, 57.34, 69.33, 82.18. At these points, the
convective fixed points lose their stability and another
periodic, quasiperiodic or chaotic solution takes over.
Figure 3(b) shows the evolution of the complex eigenvalues
of 𝐽 for the case Pr = 10, 𝜆 = 8/3 and 𝑅𝑠 for the fixed
point (𝑋4,5, 𝑌4,5, 𝑍4,5, 𝑈4,5,𝑊4,5). These two roots become
a complex conjugate at 𝑅 ≃ 3.33, 5.23, 7.03, 8.73 for the
case of Le = 0.1, 0.2, 0.3, 0.4, respectively. As mentioned
before, the convection fixed points are stable and become
spiral nodes. Their real part becomes nonnegative at a value
of 𝑅𝑐2 ≃ 31.71, 34.96, 40.05, 46.37. Therefore, at these
points, the convective fixed points lose their stability and
another periodic, quasiperiodic, or chaotic solution takes
over.

While for the fixed point (𝑋2,3, 𝑌2,3, 𝑍2,3, 𝑈2,3,𝑊2,3), the
evolution of the complex eigenvalues of 𝐽 with the same
parameter values is always on the positive side of Re(Λ), does
not cross the zero axis for Re(Λ), and is not of interest in this
study.
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Figure 2: The critical Rayleigh number 𝑅𝑐1 as function of (a) Le and (b) 𝑅𝑠.
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Figure 3: The evolution of the complex eigenvalues with increasing Rayleigh number for Pr = 10, 𝜆 = 8/3, (a) Le = 0.1, and (b) 𝑅
𝑠
= 15.

5. Results and Discussion

5.1. Bifurcations and Transition to Chaos. In this study, we
focused on the dynamic behaviour of thermal convection
in double-diffusive fluid layer. The values of Pr and 𝜆 used
in all computations are 10 and 8/3, respectively, which are
consistent with the critical Rayleigh number (𝑅𝑐 ≃ 24.74) and
the critical wave number at marginal stability in fluid layer
convection. All solutions were obtained using the same initial
conditions, which were selected to be in the neighborhood
of the positive convection fixed point. The initial conditions
are at 𝜏 = 0 : 𝑋, 𝑌, 𝑍, 𝑈,𝑊 = 0.9. All computations were
carried out with the value of maximum time, 𝜏max = 210, and
a step size Δ𝜏 = 0.001 using the built-in ODE45 method in
MATLAB R2010a.

The bifurcation diagrams illustrated in Figure 4 show the
peaks and valleys in the posttransient values of𝑍 versus 𝑅. In
Figure 4(a), for 0 < 𝑅 < 46.37 we have one-point attractors,
but the “attracted” value of𝑍 increases as 𝑅 increases, at least
to 𝑅 ≃ 46.37. Bifurcation occurs at 𝑅 ≃ 46.37, 48 until
just beyond 𝑅 = 50, where the system is chaotic. However,

the system is not chaotic for all values of 𝑅 > 50, and we
will discuss it using phase-portrait diagram. When we fix
Le = 0.1 and increase 𝑅𝑠 from 15 to 30, the range of one-
point attractor changes to 0 < 𝑅 < 82.31; this is shown in
Figure 4(b), while in Figure 4(c), one-point attractor dropped
to 0 < 𝑅 < 31.86 in the case of Le = 0.4 and 𝑅𝑠 = 15. Here we
can conclude that increasing the value of the solutal Rayleigh
number (with fixed value of Lewis number) will delay the
convection process. But increasing the value of Lewis number
(with fixed value of solutal Rayleigh number)will enhance the
onset of chaos.

Figure 5 shows the projections of the trajectory’s data
points on the 𝑋-𝑌-𝑍 plane for Le = 0.1 and 𝑅𝑠 = 15.
From Figure 5(a), we obtain a solitary limit cycle signifying
the loss of stability of the steady convective fixed points.
The subcritical value for this transition is 𝑅𝑐2 = 46.37.
Figure 5(b) shows the projections of the trajectory’s data
points for 𝑅 = 48. At this point, the homoclinic explosion
occurs and the chaotic regime with the strange attractor takes
over. The homoclinic explosion behaviour giving birth to a
stable periodic orbit with period-8 at 𝑅 = 250 is presented
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Figure 4: Bifurcation diagrams for (a) Le = 0.1, 𝑅𝑠 = 15, (b) Le = 0.1, 𝑅𝑠 = 30, and (c) Le = 0.4, 𝑅𝑠 = 15.

in Figure 5(c). This corresponds to the first wide periodic
window within the chaotic regime. In Figure 5(d) we can
observe that the data points do align in such a way as to
produce an almost clear projection of unconnected points on
the projected plane. Increasing the value of 𝑅 further shows
the dynamical behaviour’s return to being chaotic again at
𝑅 = 300 as shown in Figure 5(e). At 𝑅 = 360 and 𝑅 = 400,
we have a period-8 and period-4 periodic solutions as shown
in Figures 5(f) and 5(g). Figure 5(h) shows that a period-
2 periodic solution takes over at 𝑅 = 500 and a period-2
periodic type remains when the solutions at higher values of
𝑅 are obtained. We conclude the observation around these
regimes of periodic windowswithin the broadband of chaotic
solutions by pointing out a sequence of period-halving as one
increases the Rayleigh number.

Figure 6 shows the projections of the trajectory’s data
points on the 𝑋-𝑌-𝑍 plane for Le = 0.1 and 𝑅𝑠 = 30. The
subcritical values for limit cycle and homoclinic explosion
occur at 𝑅𝑐2 = 82.18 and 𝑅 = 98 as shown in Figures 6(a)
and 6(b), respectively, while period-8 is observed at 𝑅 = 364

and 370 as presented in Figures 6(c) and 6(d).The dynamical
behaviour returns to being chaotic again as 𝑅 increases; this
happens at 𝑅 = 400 as shown in Figure 6(e). Figures 5(f)
and 5(g) show a period-8 and period-4 periodic solutions at
𝑅 = 490 and 𝑅 = 500. Figure 6(h) shows that a period-2
periodic solution takes over at 𝑅 = 600 and remains the
same behaviour when the solutions at higher values of 𝑅 are
continued.

5.2. Lyapunov Exponents. The convergence plot of the Lya-
punov spectrum for system (12) is shown in Figure 7. The
alogrithm as proposed by [24] was employed for this purpose.
The values of the Lyapunov exponents for system (12) are
tabulated in Table 1. From these results, we can conclude that
for eigenvalue 𝜆1 the system is always unstable and chaotic
with the increasing 𝑅. For 𝜆2, the system alternates between
being stable and dissipative to unstable and chaotic when the
value of 𝑅 is increased. For eigenvalues 𝜆3, 𝜆4, and 𝜆5, the
system is always stable and dissipative with the increasing 𝑅.
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Figure 5: Phase portraits for (a) 𝑅 ≃ 46.37, (b) 𝑅 = 48, (c) 𝑅 = 250, (d) 𝑅 = 260, (e) 𝑅 = 300, (f) 𝑅 = 360, (g) 𝑅 = 400, and (h) 𝑅 = 500 for
the case where Le = 0.1, 𝑅𝑠 = 15.

Table 1: Lyapunov exponents for system (12) computed from 10,000 data points for the case where Le = 0.1 and 𝑅𝑠 = 15.

𝑅 𝜆1 𝜆2 𝜆3 𝜆4 𝜆5

46.37 2.674585 −3.572664 −7.683913 −12.847196 −28.904144

48 2.612254 −3.302684 −7.921422 −12.710783 −29.010697

260 6.350478 0.626358 −4.509057 −13.941471 −38.856433

300 7.469197 −0.458284 −4.653033 −14.610687 −38.076093

360 8.589279 0.219833 −4.754681 −15.043590 −39.338205

400 8.404066 −0.611687 −4.530720 −12.889258 −40.698489

500 4.451812 4.442320 −3.196173 −12.386501 −43.632794
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Figure 6: Phase portraits for (a) 𝑅 = 82, (b) 𝑅 = 98, (c) 𝑅 = 364, (d) 𝑅 = 370, (e) 𝑅 = 400, (f) 𝑅 = 490, (g) 𝑅 = 500, and (h) 𝑅 = 600 for the
case where Le = 0.1, 𝑅𝑠 = 30.
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Figure 7: Dynamics of Lyapunov exponents for (a) 𝑅 = 46.37, (b) 𝑅 = 48, (c) 𝑅 = 250, (d) 𝑅 = 260, (e) 𝑅 = 300, (f) 𝑅 = 360, (g) 𝑅 = 400,
and (h) 𝑅 = 500 for the case where Le = 0.1, 𝑅𝑠 = 15.
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6. Conclusion

In this work, chaotic behaviour in double-diffusive convec-
tion in a fluid layer has been investigated. A five-dimensional
model of chaotic system was obtained using the Galerkin
truncated approximation.The transition from steady convec-
tion to chaos via a Hopf bifurcation produced a limit cycle
which may be associated with a homoclinic explosion at a
slightly subcritical value of the thermal Rayleigh number.
Both the solutal Rayleigh number and Lewis number affect
the stability of the system. Increasing the Rayleigh number
shows that the trajectory of the data points pointing out a
sequence of period-halving and the behaviour remains the
same at a higher Rayleigh number. The different transitions
of the system, can be implied by the different values of the
Lyapunov exponents. Negative eigenvalues lead to a stable
and dissipative system and positive eigenvalues show that
the system is always unstable and chaotic, while alternate
eigenvalues suggest different transitions of the system (i.e.,
stable and dissipative to unstable and chaotic) as the value of
the Rayleigh number is increased.
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This paper is concerned with the higher order nonlinear neutral delay differential equation [𝑎(𝑡)(𝑥(𝑡) + 𝑏(𝑡)𝑥(𝑡 − 𝜏))
(𝑚)

]
(𝑛−𝑚)

+

[ℎ(𝑡, 𝑥(ℎ1(𝑡)), . . . , 𝑥(ℎ𝑙(𝑡)))]
(𝑖)

+ 𝑓(𝑡, 𝑥(𝑓1(𝑡)), . . . , 𝑥(𝑓𝑙(𝑡))) = 𝑔(𝑡), for all 𝑡 ≥ 𝑡0. Using the Banach fixed point theorem, we establish
the existence results of uncountablymany positive solutions for the equation, constructMann iterative sequences for approximating
these positive solutions, and discuss error estimates between the approximate solutions and the positive solutions. Nine examples
are included to dwell upon the importance and advantages of our results.

1. Introduction and Preliminaries

In recent years, the existence problems of nonoscillatory solu-
tions for neutral delay differential equations of first, second,
third, and higher order have been studied intensively by using
fixed point theorems; see, for example, [1–12] and the refer-
ences therein.

Using the Banach, Schauder, and Krasnoselskii fixed
point theorems, Zhang et al. [9] and Liu et al. [7] considered
the existence of nonoscillatory solutions for the following first
order neutral delay differential equations:

[𝑥 (𝑡) + 𝑃 (𝑡) 𝑥 (𝑡 − 𝜏)]

+ 𝑄1 (𝑡) 𝑥 (𝑡 − 𝜏1)

− 𝑄2 (𝑡) 𝑥 (𝑡 − 𝜏2) = 0, ∀𝑡 ≥ 𝑡0,

[𝑥 (𝑡) + 𝑐 (𝑡) 𝑥 (𝑡 − 𝜏)]


+ ℎ (𝑡) 𝑓 (𝑥 (𝑡 − 𝜎1) , 𝑥 (𝑡 − 𝜎2) , . . . , 𝑥 (𝑡 − 𝜎𝑘)) = 𝑔 (𝑡) ,

∀𝑡 ≥ 𝑡0,

(1)

where 𝑃 ∈ 𝐶([𝑡0, +∞),R \ {±1}) and 𝑐 ∈ 𝐶([𝑡0, +∞),R).
Making use of the Banach and Krasnoselskii fixed point
theorems, Kulenović andHadžiomerspahić [2] and Zhou [10]

studied the existence of a nonoscillatory solution for the
following second order neutral differential equations:

[𝑥 (𝑡) + 𝑐𝑥 (𝑡 − 𝜏)]

+ 𝑄1 (𝑡) 𝑥 (𝑡 − 𝜎1)

− 𝑄2 (𝑡) 𝑥 (𝑡 − 𝜎2) = 0, ∀𝑡 ≥ 𝑡0,

[𝑟 (𝑡) (𝑥 (𝑡) + 𝑃 (𝑡) 𝑥 (𝑡 − 𝜏))

]


+

𝑚

∑

𝑖=1

𝑄𝑖 (𝑡) 𝑓𝑖 (𝑥 (𝑡 − 𝜎𝑖)) = 0, ∀𝑡 ≥ 𝑡0,

(2)

where 𝑐 ∈ R \ {±1} and 𝑃 ∈ 𝐶([𝑡0,∞),R). Zhou and
Zhang [11], Zhou et al. [12], and Liu et al. [4], respectively,
investigated the existence of nonoscillatory solutions for the
following higher order neutral delay differential equations:

[𝑥 (𝑡) + 𝑐𝑥 (𝑡 − 𝜏)]
(𝑛)

+ (−1)
𝑛+1

[𝑃 (𝑡) 𝑥 (𝑡 − 𝜎) − 𝑄 (𝑡) 𝑥 (𝑡 − 𝛿)] = 0,

∀𝑡 ≥ 𝑡0,



2 Abstract and Applied Analysis

[𝑥 (𝑡) + 𝑃 (𝑡) 𝑥 (𝑡 − 𝜏)]
(𝑛)

+

𝑚

∑

𝑖=1

𝑄𝑖 (𝑡) 𝑓𝑖 (𝑥 (𝑡 − 𝜎𝑖)) = 𝑔 (𝑡) , ∀𝑡 ≥ 𝑡0,

[𝑥 (𝑡) + 𝑎𝑥 (𝑡 − 𝜏)]
(𝑛)

+ (−1)
𝑛+1

𝑓 (𝑡, 𝑥 (𝑡 − 𝜎1) , 𝑥 (𝑡 − 𝜎2) , . . . , 𝑥 (𝑡 − 𝜎𝑘))

= 𝑔 (𝑡) , ∀𝑡 ≥ 𝑡0,

(3)

where 𝑐 ∈ R \ {±1}, 𝑃 ∈ 𝐶([𝑡0,∞),R) and 𝑎 ∈ R \ {−1}.
Candan [1] proved the existence of a bounded nonoscillatory
solution for the higher order nonlinear neutral differential
equation:

[𝑟 (𝑡) (𝑥 (𝑡) + 𝑃 (𝑡) 𝑥 (𝑡 − 𝜏))
(𝑛−1)

]


+ (−1)
𝑛
[𝑄1 (𝑡) 𝑔1 (𝑥 (𝑡 − 𝜎1))

−𝑄2 (𝑡) 𝑔2 (𝑥 (𝑡 − 𝜎2)) − 𝑓 (𝑡)] = 0, ∀𝑡 ≥ 𝑡0,

(4)

where 𝑃 ∈ 𝐶([𝑡0,∞),R \ {±1}).
Motivated by the results in [1–12], in this paper we

consider the following higher order nonlinear neutral delay
differential equation:

[𝑎 (𝑡) (𝑥 (𝑡) + 𝑏 (𝑡) 𝑥 (𝑡 − 𝜏))
(𝑚)

]
(𝑛−𝑚)

= +[ℎ (𝑡, 𝑥 (ℎ1 (𝑡)) , . . . , 𝑥 (ℎ𝑙 (𝑡)))]
(𝑖)

= +𝑓 (𝑡, 𝑥 (𝑓1 (𝑡)) , . . . , 𝑥 (𝑓𝑙 (𝑡))) = 𝑔 (𝑡) , ∀𝑡 ≥ 𝑡0,

(5)

where 𝑚, 𝑛 ∈ N and 𝑖 ∈ N0 with 𝑖 ≤ 𝑛 − 𝑚 − 1, 𝜏 > 0,
𝑎 ∈ 𝐶([𝑡0, +∞),R \ {0}), 𝑏, 𝑔, 𝑓𝑗, ℎ𝑗 ∈ 𝐶([𝑡0, +∞),R), ℎ ∈

𝐶
𝑖
([𝑡0, +∞) ×R𝑙,R) and 𝑓 ∈ 𝐶([𝑡0, +∞) ×R𝑙,R) with

lim
𝑡→+∞

ℎ𝑗 (𝑡) = lim
𝑡→+∞

𝑓𝑗 (𝑡) = +∞, 𝑗 ∈ {1, 2, . . . , 𝑙} . (6)

It is clear that (5) includes (1)–(4) as special cases. Uti-
lizing the Banach fixed point theorem, we prove several
existence results of uncountably many positive solutions for
(5), construct a few Mann iterative schemes, and discuss
error estimates between the sequences generated by theMann
iterative schemes and the positive solutions. Nine examples
are given to show that the results presented in this paper
extend substantially the existing ones in [1, 2, 4, 5, 8, 9, 11].

Throughout this paper, we assume that R = (−∞, +∞),

R+ = [0, +∞), N denotes the set of all positive integers, N0 =
N ∪ {0},

𝐻𝑗 =
1

(𝑚 − 1)! (𝑛 − 𝑚 − 𝑗 − 1)!
, 𝑗 ∈ {0, 𝑖} ,

𝛾 = min{𝑡0 − 𝜏, inf
𝑡≥𝑡0

ℎ𝑗 (𝑡) , inf
𝑡≥𝑡0

𝑓𝑗 (𝑡) : 𝑗 ∈ {1, 2, . . . , 𝑙}} ,

(7)

CB([𝛾, +∞),R) stands for the Banach space of all contin-
uous and bounded functions in [𝛾, +∞) with norm ‖𝑥‖ =

sup
𝑡≥𝛾

|𝑥(𝑡)|, and for any𝑀 > 𝑁 > 0

Ω1 (𝑁,𝑀) = {𝑥 ∈ CB ([𝛾, +∞) ,R) :

𝑁 ≤ 𝑥 (𝑡) ≤ 𝑀, ∀𝑡 ≥ 𝛾} ,

Ω2 (𝑁,𝑀) = {𝑥 ∈ CB ([𝛾, +∞) ,R) :
𝑁

𝑏 (𝑡 + 𝜏)
≤ 𝑥 (𝑡)

≤
𝑀

𝑏 (𝑡 + 𝜏)
, ∀𝑡 ≥ 𝑇;

𝑁

𝑏 (𝑇 + 𝜏)

≤ 𝑥 (𝑡) ≤
𝑀

𝑏 (𝑇 + 𝜏)
, ∀𝑡 ∈ [𝛾, 𝑇)} ,

Ω3 (𝑁,𝑀) = {𝑥 ∈ CB ([𝛾, +∞) ,R) : −
𝑁

𝑏 (𝑡 + 𝜏)
≤ 𝑥 (𝑡)

≤ −
𝑀

𝑏 (𝑡 + 𝜏)
, ∀𝑡 ≥ 𝑇; −

𝑁

𝑏 (𝑇 + 𝜏)

≤ 𝑥 (𝑡) ≤ −
𝑀

𝑏 (𝑇 + 𝜏)
, ∀𝑡 ∈ [𝛾, 𝑇)} .

(8)

It is easy to check that Ω1(𝑁,𝑀), Ω2(𝑁,𝑀) and Ω3(𝑁,𝑀)

are closed subsets of CB([𝛾, +∞),R).
By a solution of (5), we mean a function 𝑥 ∈ 𝐶([𝛾, +∞),

R) for some𝑇 > 1+|𝑡0|+𝜏+|𝛾|, such that 𝑎(𝑡)(𝑥(𝑡)+𝑏(𝑡)𝑥(𝑡−

𝜏))
(𝑚) are 𝑛 − 𝑚 times continuously differentiable in [𝑇, +∞)

and such that (5) is satisfied for 𝑡 ≥ 𝑇.

Lemma 1. Let 𝜏 > 0, 𝑐 ≥ 0, 𝐹 ∈ 𝐶([𝑐, +∞)
3
,R+) and 𝐺 ∈

𝐶([𝑐, +∞)
2
,R+). Then

(a) ∫+∞
𝑐

∫
+∞

𝑟
∫
+∞

𝑢
𝑟𝐹(𝑠, 𝑢, 𝑟)𝑑𝑠 𝑑𝑢 𝑑𝑟 < +∞ ⇔

∑
∞

𝑗=0
∫
+∞

𝑐+𝑗𝜏
∫
+∞

𝑟
∫
+∞

𝑢
𝐹(𝑠, 𝑢, 𝑟)𝑑𝑠 𝑑𝑢 𝑑𝑟 < +∞;

(b) ∫+∞
𝑐

∫
+∞

𝑢
𝑢𝐺(𝑠, 𝑢)𝑑𝑠 𝑑𝑢 < +∞ ⇔

∑
∞

𝑗=0
∫
+∞

𝑐+𝑗𝜏
∫
+∞

𝑢
𝐺(𝑠, 𝑢)𝑑𝑠 𝑑𝑢 < +∞;

(c) if ∫+∞
𝑐

∫
+∞

𝑟
∫
+∞

𝑢
𝑟𝐹(𝑠, 𝑢, 𝑟)𝑑𝑠 𝑑𝑢 𝑑𝑟 < +∞, then

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤
1

𝜏
∫

+∞

𝑡+𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

< +∞, ∀𝑡 ≥ 𝑐;

(9)
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(d) if ∫+∞
𝑐

∫
+∞

𝑢
𝑢𝐺(𝑠, 𝑢)𝑑𝑠 𝑑𝑢 < +∞, then

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

𝐺 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢

≤
1

𝜏
∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑢𝐺 (𝑠, 𝑢) 𝑑𝑠 𝑑𝑢

< +∞, ∀𝑡 ≥ 𝑐.

(10)

Proof. Let [𝑡] denote the largest integral number not exceed-
ing 𝑡 ∈ R. Note that

lim
𝑟→+∞

[(𝑟 − 𝑐) /𝜏] + 1

𝑟
=

1

𝜏
, (11)

𝑐 + 𝑛𝜏 ≤ 𝑟 < 𝑐 + (𝑛 + 1) 𝜏 ⇐⇒ 𝑛 ≤
𝑟 − 𝑐

𝜏
< 𝑛 + 1, ∀𝑛 ∈ N0.

(12)

Clearly (12) means that
∞

∑

𝑗=0

∫

+∞

𝑐+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

= ∫

+∞

𝑐

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ ∫

+∞

𝑐+𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ ∫

+∞

𝑐+2𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ ∫

+∞

𝑐+3𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟 + ⋅ ⋅ ⋅

= ∫

𝑐+𝜏

𝑐

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ 2∫

𝑐+2𝜏

𝑐+𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ 3∫

𝑐+3𝜏

𝑐+2𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ 4∫

𝑐+4𝜏

𝑐+3𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟 + ⋅ ⋅ ⋅

=

∞

∑

𝑛=0

∫

𝑐+(𝑛+1)𝜏

𝑐+𝑛𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑛 + 1) 𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

=

∞

∑

𝑛=0

∫

𝑐+(𝑛+1)𝜏

𝑐+𝑛𝜏

∫

+∞

𝑟

∫

+∞

𝑢

([
𝑟 − 𝑐

𝜏
] + 1)

× 𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

= ∫

+∞

𝑐

∫

+∞

𝑟

∫

+∞

𝑢

([
𝑟 − 𝑐

𝜏
] + 1)𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟.

(13)

Thus (a) follows from (11) and (13).

Assume that ∫+∞
𝑐

∫
+∞

𝑟
∫
+∞

𝑢
𝑟𝐹(𝑠, 𝑢, 𝑟)𝑑𝑠 𝑑𝑢 𝑑𝑟 < +∞. As

in the proof of (a), we infer that

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

= ∫

+∞

𝑡+𝜏

∫

+∞

𝑟

∫

+∞

𝑢

[
𝑟 − 𝑡

𝜏
] 𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤
1

𝜏
∫

+∞

𝑡+𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤
1

𝜏
∫

+∞

𝑐

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝐹 (𝑠, 𝑢, 𝑟) 𝑑𝑠 𝑑𝑢 𝑑𝑟

< +∞, ∀𝑡 ≥ 𝑐,

(14)

that is, (c) holds.
Similar to the proofs of (a) and (c), we conclude that (b)

and (d) hold. This completes the proof.

2. Existence of Uncountably Many Positive
Solutions and Mann Iterative Schemes

Now we show the existence of uncountably many positive
solutions for (5) and discuss the convergence of the Mann
iterative sequences to these positive solutions.

Theorem2. Assume that there exist three constants𝑀,𝑁, and
𝑏0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈ 𝐶([𝑡0, +∞),R+) satisfying

0 < 𝑁 < 𝑀, 𝑏0 <
𝑀 − 𝑁

2𝑀
, |𝑏 (𝑡)| ≤ 𝑏0 eventually; (15)

𝑓 (𝑡, 𝑢1, . . . , 𝑢𝑙) − 𝑓 (𝑡, 𝑢1, . . . , 𝑢𝑙)


≤ 𝑃 (𝑡)max {𝑢𝑗 − 𝑢𝑗

: 1 ≤ 𝑗 ≤ 𝑙} ,

ℎ (𝑡, 𝑢1, . . . , 𝑢𝑙) − ℎ (𝑡, 𝑢1, . . . , 𝑢𝑙)


≤ 𝑅 (𝑡)max {𝑢𝑗 − 𝑢𝑗

: 1 ≤ 𝑗 ≤ 𝑙} ,

∀ (𝑡, 𝑢1, . . . , 𝑢𝑙, 𝑢1, . . . , 𝑢𝑙) ∈ [𝑡0, +∞) × [𝑁,𝑀]
2𝑙
;

(16)

𝑓 (𝑡, 𝑢1, . . . , 𝑢𝑙)
 ≤ 𝑄 (𝑡) ,

ℎ (𝑡, 𝑢1, . . . , 𝑢𝑙)
 ≤ 𝑊 (𝑡) ,

∀ (𝑡, 𝑢1, . . . , 𝑢𝑙) ∈ [𝑡0, +∞) × [𝑁,𝑀]
𝑙
;

(17)

∫

+∞

𝑡0

∫

+∞

𝑢

|𝑢|
𝑚−1

|𝑎(𝑢)|
[|𝑠|
𝑛−𝑚−1max {𝑃(𝑠),𝑄(𝑠),

𝑔 (𝑠)
}

+|𝑠|
𝑛−𝑚−𝑖−1max {𝑅 (𝑠),𝑊 (𝑠)}] 𝑑𝑠 𝑑𝑢<+∞.

(18)

Then
(a) for any 𝐿 ∈ (𝑏0𝑀+𝑁, (1 − 𝑏0)𝑀), there exist 𝜃 ∈ (0, 1)

and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that for each 𝑥0 ∈ Ω1(𝑁,𝑀),
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theMann iterative sequence {𝑥𝑘}𝑘∈N0 generated by the following
scheme

𝑥𝑘+1 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+𝛼𝑘 {𝐿 − 𝑏 (𝑡) 𝑥𝑘 (𝑡 − 𝜏) + (−1)
𝑛
𝐻0

×∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠)−𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) ,

. . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+(−1)
𝑛−𝑖−1

𝐻𝑖

×∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑥𝑘 (ℎ1 (𝑠)) , . . . ,

𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝑡 ≥ 𝑇, 𝑘 ∈ N0,

(1 − 𝛼𝑘) 𝑥𝑘 (𝑇)

+𝛼𝑘 {𝐿 − 𝑏 (𝑇) 𝑥𝑘 (𝑇 − 𝜏)

+(−1)
𝑛
𝐻0

×∫

+∞

𝑇

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑇)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) ,

. . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+(−1)
𝑛−𝑖−1

𝐻𝑖

×∫

+∞

𝑇

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑇)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . ,

𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝑡0 ≤ 𝑡 < 𝑇, 𝑘 ∈ N0
(19)

converges to a positive solution 𝑥 ∈ Ω1(𝑁,𝑀) of (5) and has
the following error estimate:

𝑥𝑘+1 − 𝑥
 ≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0, (20)

where {𝛼𝑘}𝑘∈N0 is an arbitrary sequence in [0, 1] such that

∞

∑

𝑘=0

𝛼𝑘 = +∞; (21)

(b) Equation (5) has uncountably many positive solutions
in Ω1(𝑁,𝑀).

Proof. Firstly, we prove that (a) holds. Set 𝐿 ∈ (𝑏0𝑀+𝑁, (1 −

𝑏0)𝑀). From (15) and (18), we know that there exist 𝜃 ∈ (0, 1)

and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| satisfying

|𝑏 (𝑡)| ≤ 𝑏0, ∀𝑡 ≥ 𝑇; (22)

𝜃 = 𝑏0 + ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢;

(23)

∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< min {(1 − 𝑏0)𝑀 − 𝐿, 𝐿 − 𝑏0𝑀 − 𝑁} .

(24)

Define a mapping 𝑆𝐿 : Ω1(𝑁,𝑀) → CB([𝛾, +∞),R) by

𝑆𝐿𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{

{

𝐿 − 𝑏 (𝑡) 𝑥 (𝑡 − 𝜏) + (−1)
𝑛
𝐻0

×∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+(−1)
𝑛−𝑖−1

𝐻𝑖

×∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢,

𝑡 ≥ 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) ,

𝑆𝐿𝑥 (𝑇) , 𝛾 ≤ 𝑡 < 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) .

(25)

It is obvious that 𝑆𝐿𝑥 is continuous for each 𝑥 ∈ Ω1(𝑁,𝑀).
By means of (16), (22), (23), and (25), we deduce that for any
𝑥, 𝑦 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤ |𝑏 (𝑡)|
𝑥 (𝑡 − 𝜏) − 𝑦 (𝑡 − 𝜏)



+ 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢
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≤ 𝑏0
𝑥 − 𝑦

 +
𝑥 − 𝑦



× ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

= 𝜃
𝑥 − 𝑦

 ,

(26)

which yields that

𝑆𝐿𝑥 − 𝑆𝐿𝑦
 ≤ 𝜃

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ Ω1 (𝑁,𝑀) . (27)

On the basis of (17), (22), (24), and (25), we acquire that for
any 𝑥 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡)

≤ 𝐿 + |𝑏 (𝑡)| 𝑥 (𝑡 − 𝜏)

+ 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢

≤ 𝐿 + 𝑏0𝑀

+ ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< 𝐿 + 𝑏0𝑀 +min {(1 − 𝑏0)𝑀 − 𝐿, 𝐿 − 𝑏0𝑀 − 𝑁}

≤ 𝑀,

𝑆𝐿𝑥 (𝑡)

≥ 𝐿 − |𝑏 (𝑡)| 𝑥 (𝑡 − 𝜏)

− 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

− 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢

≥ 𝐿 − 𝑏0𝑀 − ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

> 𝐿 − 𝑏0𝑀 −min {(1 − 𝑏0)𝑀 − 𝐿, 𝐿 − 𝑏0𝑀 − 𝑁}

≥ 𝑁,

(28)

which guarantee that 𝑆𝐿(Ω1(𝑁,𝑀)) ⊆ Ω1(𝑁,𝑀). Con-
sequently, (27) gives that 𝑆𝐿 is a contraction mapping in
Ω1(𝑁,𝑀) and it has a unique fixed point 𝑥 ∈ Ω1(𝑁,𝑀). It is
easy to see that 𝑥 ∈ Ω1(𝑁,𝑀) is a positive solution of (5).

It follows from (19), (25), and (27) that
𝑥𝑘+1 (𝑡) − 𝑥 (𝑡)



=



(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+ 𝛼𝑘 {𝐿 − 𝑏 (𝑡) 𝑥𝑘 (𝑡 − 𝜏) + (−1)
𝑛
𝐻0

× ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . ,

𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+ (−1)
𝑛−𝑖−1

𝐻𝑖

× ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} −𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘
𝑆𝐿𝑥𝑘 (𝑡) − 𝑆𝐿𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘𝜃
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



= (1 − (1 − 𝜃) 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



≤ 𝑒
−(1−𝜃)𝛼𝑘 𝑥𝑘 − 𝑥



≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0, 𝑡 ≥ 𝑇,

(29)

which yields that

𝑥𝑘+1 − 𝑥
 ≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0. (30)

That is, (20) holds. Thus (20) and (21) ensure that
lim𝑘→∞𝑥𝑘 = 𝑥.

Secondly, we show that (b) holds. Let 𝐿1, 𝐿2 ∈ (𝑏0𝑀 +

𝑁, (1 − 𝑏0)𝑀) with 𝐿1 ̸=𝐿2. In light of (15) and (18), we know
that for each 𝑝 ∈ {1, 2}, there exist 𝜃𝑝 ∈ (0, 1), 𝑇𝑝 and 𝑇

∗
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with 𝑇𝑝 > 1 + |𝑡0| + 𝜏 + |𝛾| and 𝑇
∗
> max{𝑇1, 𝑇2} satisfying

(22)–(24) and

∫

+∞

𝑇∗
∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

<
𝐿1 − 𝐿2

 ,

(31)

where 𝜃 and 𝑇 are replaced by 𝜃𝑝 and 𝑇𝑝, respectively. Let
the mapping 𝑆𝐿𝑝

be defined by (25) with 𝐿 and 𝑇 replaced
by 𝐿𝑝 and 𝑇𝑝, respectively. As in the proof of (a), we deduce
easily that the mapping 𝑆𝐿𝑝

possesses a unique fixed point
𝑧𝑝 ∈ Ω1(𝑁,𝑀), that is, 𝑧𝑝 is a positive solution of (5) in
Ω1(𝑁,𝑀). In order to prove (b), we need only to show that
𝑧1 ̸=𝑧2. In fact, (25) means that for each 𝑡 ≥ 𝑇

∗ and 𝑝 ∈ {1, 2}

𝑧𝑝 (𝑡) = 𝐿𝑝 − 𝑏 (𝑡) 𝑧𝑝 (𝑡 − 𝜏) + (−1)
𝑛
𝐻0

× ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑧𝑝 (𝑓1 (𝑠)) , . . . , 𝑧𝑝 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+ (−1)
𝑛−𝑖−1

𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

𝑎 (𝑢)

× ℎ (𝑠, 𝑧𝑝 (ℎ1 (𝑠)) , . . . , 𝑧𝑝 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢.

(32)

It follows from (16), (22), (31), and (32) that for each 𝑡 ≥ 𝑇
∗

𝑧1 (𝑡) − 𝑧2 (𝑡)


≥
𝐿1 − 𝐿2

 − |𝑏 (𝑡)|
𝑧1 (𝑡 − 𝜏) − 𝑧2 (𝑡 − 𝜏)



− 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑧1 (𝑓1 (𝑠)) , . . . , 𝑧1 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑧2 (𝑓1 (𝑠)) , . . . , 𝑧2 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

− 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑧1 (ℎ1 (𝑠)) , . . . , 𝑧1 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑧2 (ℎ1 (𝑠)) , . . . , 𝑧2 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≥
𝐿1 − 𝐿2

 − 𝑏0
𝑧1 − 𝑧2



−
𝑧1 − 𝑧2

 ∫

+∞

𝑇∗
∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

≥
𝐿1 − 𝐿2

 − (𝑏0 +
𝐿1 − 𝐿2

)
𝑧1 − 𝑧2

 ,

(33)

which implies that

𝑧1 − 𝑧2
 ≥

𝐿1 − 𝐿2


1 + 𝑏0 +
𝐿1 − 𝐿2



> 0, (34)

that is, 𝑧1 ̸=𝑧2. This completes the proof.

Theorem3. Assume that there exist three constants𝑀,𝑁, and
𝑏0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈ 𝐶([𝑡0, +∞),R+) satisfying
(16)–(18) and

0 < 𝑁 < 𝑀, 𝑏0 <
𝑀 − 𝑁

𝑀
, 0 ≤ 𝑏 (𝑡) ≤ 𝑏0 eventually.

(35)

Then

(a) for any 𝐿 ∈ (𝑏0𝑀 + 𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and
𝑇 > 1+ |𝑡0| + 𝜏+ |𝛾| such that for each 𝑥0 ∈ Ω1(𝑁,𝑀),
the Mann iterative sequence {𝑥𝑘}𝑘∈N0 generated by (19)
converges to a positive solution 𝑥 ∈ Ω1(𝑁,𝑀) of (5)
and has the error estimate (20), where {𝛼𝑘}𝑘∈N0

is an
arbitrary sequence in [0, 1] satisfying (21);

(b) Equation (5) has uncountably many positive solutions
in Ω1(𝑁,𝑀).

Proof. Let 𝐿 ∈ (𝑏0𝑀+𝑁,𝑀). Equations (18) and (36) ensure
that there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| satisfying
(23),

0 ≤ 𝑏 (𝑡) ≤ 𝑏0, ∀𝑡 ≥ 𝑇; (36)

∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< min {𝑀 − 𝐿, 𝐿 − 𝑏0𝑀 − 𝑁} .

(37)

Define a mapping 𝑆𝐿 : Ω1(𝑁,𝑀) → CB([𝛾, +∞),R) by
(25). Obviously, 𝑆𝐿𝑥 is continuous for every 𝑥 ∈ Ω1(𝑁,𝑀).
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Using (16), (23), (25), and (36), we conclude that for any
𝑥, 𝑦 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤ 𝑏 (𝑡)
𝑥 (𝑡 − 𝜏) − 𝑦 (𝑡 − 𝜏)



+ 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≤ 𝑏0
𝑥 − 𝑦

 +
𝑥 − 𝑦



× ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

= 𝜃
𝑥 − 𝑦

 ,

(38)

which implies that (27) holds. In light of (17), (25), (36), and
(37), we know that for any 𝑥 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡)

≤ 𝐿 + 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢

≤ 𝐿 + ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< 𝐿 +min {𝑀 − 𝐿, 𝐿 − 𝑏0𝑀 − 𝑁}

≤ 𝑀,

𝑆𝐿𝑥 (𝑡)

≥ 𝐿 − |𝑏 (𝑡)| 𝑥 (𝑡 − 𝜏)

− 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

− 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢

≥ 𝐿 − 𝑏0𝑀 − ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

> 𝐿 − 𝑏0𝑀 −min {𝑀 − 𝐿, 𝐿 − 𝑏0𝑀 − 𝑁}

≥ 𝑁,

(39)

which mean that 𝑆𝐿(Ω1(𝑁,𝑀)) ⊆ Ω1(𝑁,𝑀). Equation (27)
guarantees that 𝑆𝐿 is a contractionmapping inΩ1(𝑁,𝑀) and
it possesses a unique fixed point 𝑥 ∈ Ω1(𝑁,𝑀). As in the
proof of Theorem 2, we infer that 𝑥 ∈ Ω1(𝑁,𝑀) is a positive
solution of (5). The rest of the proof is similar to that of
Theorem 2 and is omitted. This completes the proof.

Theorem4. Assume that there exist three constants𝑀,𝑁, and
𝑏0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈ 𝐶([𝑡0, +∞),R+) satisfying
(16)–(18) and

0 < 𝑁 < 𝑀, 𝑏0 <
𝑀 − 𝑁

𝑀
, −𝑏0 ≤ 𝑏 (𝑡) ≤ 0 eventually.

(40)

Then

(a) for any 𝐿 ∈ (𝑁, (1 − 𝑏0)𝑀), there exist 𝜃 ∈ (0, 1) and
𝑇 > 1+ |𝑡0| + 𝜏+ |𝛾| such that for each 𝑥0 ∈ Ω1(𝑁,𝑀),
the Mann iterative sequence {𝑥𝑘}𝑘∈N0 generated by (19)
converges to a positive solution 𝑥 ∈ Ω1(𝑁,𝑀) of (5)
and has the error estimate (20), where {𝛼𝑘}𝑘∈N0

is an
arbitrary sequence in [0, 1] satisfying (21);

(b) Equation (5) has uncountably many positive solutions
in Ω1(𝑁,𝑀).

Proof. Set 𝐿 ∈ (𝑁, (1 − 𝑏0)𝑀). It follows from (18) and (40)
that there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| satisfying
(23),

−𝑏0 ≤ 𝑏 (𝑡) ≤ 0, ∀𝑡 ≥ 𝑇; (41)

∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< min {𝐿 − 𝑁, (1 − 𝑏0)𝑀 − 𝐿} .

(42)
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Define a mapping 𝑆𝐿 : Ω1(𝑁,𝑀) → CB([𝛾, +∞),R) by
(25). Distinctly, 𝑆𝐿𝑥 is continuous for each 𝑥 ∈ Ω1(𝑁,𝑀).
In terms of (16), (23), (25), and (41), we reason that for any
𝑥, 𝑦 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤ |𝑏 (𝑡)|
𝑥 (𝑡 − 𝜏) − 𝑦 (𝑡 − 𝜏)



+ 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≤ 𝑏0
𝑥 − 𝑦

 +
𝑥 − 𝑦



× ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

= 𝜃
𝑥 − 𝑦

 ,

(43)

which means that (27) holds. Owing to (17), (25), (41), and
(42), we earn that for any 𝑥 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) ≤ 𝐿 + |𝑏 (𝑡)| 𝑥 (𝑡 − 𝜏)

+ 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . ,

𝑥 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≤ 𝐿 + 𝑏0𝑀 + ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< 𝐿 + 𝑏0𝑀 +min {𝐿 − 𝑁, (1 − 𝑏0)𝑀 − 𝐿}

≤ 𝑀,

𝑆𝐿𝑥 (𝑡) ≥ 𝐿 − 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

− 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . ,

𝑥 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≥ 𝐿 − ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

> 𝐿 −min {𝐿 − 𝑁, (1 − 𝑏0)𝑀 − 𝐿}

≥ 𝑁,

(44)

which yield that 𝑆𝐿(Ω1(𝑁,𝑀)) ⊆ Ω1(𝑁,𝑀). Thus (27)
ensures that 𝑆𝐿 is a contraction mapping in Ω1(𝑁,𝑀) and
it owns a unique fixed point 𝑥 ∈ Ω1(𝑁,𝑀). As in the proof of
Theorem 2, we infer that 𝑥 ∈ Ω1(𝑁,𝑀) is a positive solution
of (5). The rest of the proof is parallel to that of Theorem 2,
and hence is elided. This completes the proof.

Theorem5. Assume that there exist three constants𝑀,𝑁, and
𝑏0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈ 𝐶([𝑡0, +∞),R+) satisfying
(18) and

𝑀 > 𝑁 > 0, 𝑏0 >
𝑀

𝑀 − 𝑁
, 𝑏 (𝑡) ≥ 𝑏0 eventually;

(45)
𝑓 (𝑡, 𝑢1, . . . , 𝑢𝑙) − 𝑓 (𝑡, 𝑢1, . . . , 𝑢𝑙)



≤ 𝑃 (𝑡)max {𝑢𝑗 − 𝑢𝑗

: 1 ≤ 𝑗 ≤ 𝑙} ,

ℎ (𝑡, 𝑢1, . . . , 𝑢𝑙) − ℎ (𝑡, 𝑢1, . . . , 𝑢𝑙)


≤ 𝑅 (𝑡)max {𝑢𝑗 − 𝑢𝑗

: 1 ≤ 𝑗 ≤ 𝑙} ,

∀ (𝑡, 𝑢1, . . . , 𝑢𝑙, 𝑢1, . . . , 𝑢𝑙) ∈ [𝑡0, +∞) × [0,
𝑀

𝑏0

]

2𝑙

;

(46)

𝑓 (𝑡, 𝑢1, . . . , 𝑢𝑙)
 ≤ 𝑄 (𝑡) ,

ℎ (𝑡, 𝑢1, . . . , 𝑢𝑙)
 ≤ 𝑊 (𝑡) ,

∀ (𝑡, 𝑢1, . . . , 𝑢𝑙) ∈ [𝑡0, +∞) × [0,
𝑀

𝑏0

]

𝑙

.

(47)
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Then
(a) for any 𝐿 ∈ (𝑁 + 𝑀/𝑏0,𝑀), there exist 𝜃 ∈ (0, 1) and

𝑇 > 1+|𝑡0|+𝜏+|𝛾| such that for each𝑥0 ∈ Ω2(𝑁,𝑀), theMann
iterative sequence {𝑥𝑘}𝑘∈N0 generated by the following scheme

𝑥𝑘+1 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼𝑘) 𝑥𝑘 (𝑡) +
𝛼𝑘

𝑏 (𝑡 + 𝜏)

×{𝐿 − 𝑥𝑘 (𝑡 + 𝜏) + (−1)
𝑛
𝐻0

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) ,

. . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+(−1)
𝑛−𝑖−1

𝐻𝑖

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . ,

𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝑡 ≥ 𝑇, 𝑘 ∈ N0,

(1 − 𝛼𝑘) 𝑥𝑘 (𝑇) +
𝛼𝑘

𝑏 (𝑡 + 𝜏)

×{𝐿 − 𝑥𝑘 (𝑇 + 𝜏) + (−1)
𝑛
𝐻0

×∫

+∞

𝑇+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑇 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) ,

. . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+(−1)
𝑛−𝑖−1

𝐻𝑖

×∫

+∞

𝑇+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑇 − 𝜏)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . ,

𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝛾 ≤ 𝑡 < 𝑇, 𝑘 ∈ N0
(48)

converges to a positive solution 𝑥 ∈ Ω2(𝑁,𝑀) of (5) and has
the error estimate (20), where {𝛼𝑘}𝑘∈N0 is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in Ω2(𝑁,𝑀).

Proof. First of all, we show that (a) holds. Set 𝐿 ∈ (𝑁 +

𝑀/𝑏0,𝑀). It follows from (18) and (45) that there exist 𝜃 ∈

(0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that

𝑏 (𝑡) ≥ 𝑏0, ∀𝑡 ≥ 𝑇; (49)

𝜃 =
1

𝑏0

+
1

𝑏0

∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢;

(50)

∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< min{𝑀 − 𝐿, 𝐿 −
𝑀

𝑏0

− 𝑁} .

(51)

Define a mapping 𝑆𝐿 : Ω2(𝑁,𝑀) → CB([𝛾, +∞),R) by

𝑆𝐿𝑥 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{

{

𝐿

𝑏 (𝑡 + 𝜏)
−

𝑥 (𝑡 + 𝜏)

𝑏 (𝑡 + 𝜏)
+

(−1)
𝑛
𝐻0

𝑏 (𝑡 + 𝜏)

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

𝐻𝑖

𝑏 (𝑡 + 𝜏)

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢,

𝑡 ≥ 𝑇, 𝑥 ∈ Ω2 (𝑁,𝑀) ,

𝑆𝐿𝑥 (𝑇) , 𝛾 ≤ 𝑡 < 𝑇, 𝑥 ∈ Ω2 (𝑁,𝑀) .

(52)

In light of (46), (49), (50), and (52), we conclude that for
𝑥, 𝑦 ∈ Ω2(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤
1

𝑏 (𝑡 + 𝜏)

𝑥 (𝑡 + 𝜏) − 𝑦 (𝑡 + 𝜏)
 +

𝐻0

𝑏 (𝑡 + 𝜏)

× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

+
𝐻𝑖

𝑏 (𝑡 + 𝜏)

× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

𝑎 (𝑢)

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≤
1

𝑏0

𝑥 − 𝑦
 +

1

𝑏0

𝑥 − 𝑦


× ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

= 𝜃
𝑥 − 𝑦

 ,

(53)
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which yields that

𝑆𝐿𝑥 − 𝑆𝐿𝑦
 ≤ 𝜃

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ Ω2 (𝑁,𝑀) . (54)

In view of (47), (49), (51), and (52), we obtain that for any
𝑥 ∈ Ω2(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) ≤
1

𝑏 (𝑡 + 𝜏)

× {𝐿 − 𝑥 (𝑡 + 𝜏)

+ 𝐻0 ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)



+
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) ,

. . . , 𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . ,

𝑥 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢}

≤
1

𝑏 (𝑡 + 𝜏)

× {𝐿 −
𝑁

𝑏 (𝑡 + 𝜏)

+ ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢}

<
1

𝑏 (𝑡 + 𝜏)

× (𝐿 −
𝑁

𝑏 (𝑡 + 𝜏)
+min{𝑀 − 𝐿, 𝐿 −

𝑀

𝑏0

− 𝑁})

≤
𝑀

𝑏 (𝑡 + 𝜏)
,

𝑆𝐿𝑥 (𝑡) ≥
1

𝑏 (𝑡 + 𝜏)

× {𝐿 − 𝑥 (𝑡 + 𝜏)

− 𝐻0 ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

− 𝐻𝑖 ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . ,

𝑥 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢}

≥
1

𝑏 (𝑡 + 𝜏)

× {𝐿 −
𝑀

𝑏 (𝑡 + 𝜏)

− ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢}

>
1

𝑏 (𝑡 + 𝜏)

× (𝐿 −
𝑀

𝑏 (𝑡 + 𝜏)
−min{𝑀 − 𝐿, 𝐿 −

𝑀

𝑏0

− 𝑁})

≥
𝑁

𝑏 (𝑡 + 𝜏)
,

(55)

which imply that 𝑆𝐿(Ω2(𝑁,𝑀)) ⊆ Ω2(𝑁,𝑀). It follows from
(50) and (54) that 𝑆𝐿 is a contraction mapping in Ω2(𝑁,𝑀)

and it has a unique fixed point 𝑥 ∈ Ω2(𝑁,𝑀). It is clear that
𝑥 ∈ Ω2(𝑁,𝑀) is a positive solution of (5).

Note that (48), (52), and (54) undertake that

𝑥𝑘+1 (𝑡) − 𝑥 (𝑡)


=


(1 − 𝛼𝑘) 𝑥𝑘 (𝑡) +

𝛼𝑘

𝑏 (𝑡 + 𝜏)

× {𝐿 − 𝑥𝑘 (𝑡 + 𝜏) + (−1)
𝑛
𝐻0

× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . ,

𝑠𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+ (−1)
𝑛−𝑖−1

𝐻𝑖
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× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . ,

𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} − 𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘
𝑆𝐿𝑥𝑘 (𝑡) − 𝑆𝐿𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘𝜃
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



= (1 − (1 − 𝜃) 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



≤ 𝑒
−(1−𝜃)𝛼𝑘 𝑥𝑘 − 𝑥



≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0, 𝑡 ≥ 𝑇,

(56)

which indicates that (20) holds.Thus (20) and (21) assure that
lim𝑘→∞𝑥𝑘 = 𝑥.

Next we prove that (b) holds. Let 𝐿1, 𝐿2 ∈ (𝑁+𝑀/𝑏0,𝑀)

with 𝐿1 ̸=𝐿2. As in the proof of (a) we infer that for each
𝑝 ∈ {1, 2} there exist 𝜃𝑝 ∈ (0, 1), 𝑇𝑝 > 1 + |𝑡0| + 𝜏 + |𝛾| and
𝑆𝐿𝑝

satisfying (49)–(52), where 𝐿, 𝜃, 𝑇, and 𝑆𝐿 are replaced by
𝐿𝑝, 𝜃𝑝, 𝑇𝑝, and 𝑆𝐿𝑝

, respectively, and 𝑆𝐿𝑝
has a unique fixed

point 𝑧𝑝 ∈ Ω2(𝑁,𝑀), which is a positive solution of (5) in
Ω2(𝑁,𝑀). It follows that for each 𝑡 ≥ 𝑇𝑝 and 𝑝 ∈ {1, 2}

𝑧𝑝 (𝑡) =
𝐿𝑝

𝑏 (𝑡 + 𝜏)
−

𝑧𝑝 (𝑡 + 𝜏)

𝑏 (𝑡 + 𝜏)
+

(−1)
𝑛
𝐻0

𝑏 (𝑡 + 𝜏)

× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑧𝑝 (𝑓1 (𝑠)) , . . . , 𝑧𝑝 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

𝐻𝑖

𝑏 (𝑡 + 𝜏)

× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× ℎ (𝑠, 𝑧𝑝 (ℎ1 (𝑠)) , . . . , 𝑧𝑝 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢.

(57)

On behalf of proving (b), we need only to show that 𝑧1 ̸=𝑧2.
Notice that (18) guarantees that there exits 𝑇3 > max{𝑇1, 𝑇2}
satisfying

∫

+∞

𝑇3

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

<

𝐿1 − 𝐿2


1 + 2
𝑧1 − 𝑧2



.

(58)

Due to (46), (51), (57), and (58), we conclude that for each
𝑡 ≥ 𝑇3


𝑧1 (𝑡) − 𝑧2 (𝑡) +

𝑧1 (𝑡 + 𝜏)

𝑏 (𝑡 + 𝜏)
−

𝑧2 (𝑡 + 𝜏)

𝑏 (𝑡 + 𝜏)



≥
1

𝑏 (𝑡 + 𝜏)

× (
𝐿1 − 𝐿2



− 𝐻0 ∫

+∞

𝑇3

∫

+∞

𝑢

𝑠
𝑛−𝑚−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
𝑓 ((𝑠, 𝑧1 (𝑓1 (𝑠)) , . . . , 𝑧1 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑧2 (𝑓1 (𝑠)) , . . . , 𝑧2 (𝑓𝑙 (𝑠))))
 𝑑𝑠 𝑑𝑢

− 𝐻𝑖 ∫

+∞

𝑇3

∫

+∞

𝑢

𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑧1 (𝑓1 (𝑠)) , . . . , 𝑧1 (𝑓𝑙 (𝑠)))

−ℎ (𝑠, 𝑧2 (𝑓1 (𝑠)) , . . . , 𝑧2 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢)

≥
1

𝑏 (𝑡 + 𝜏)

× (
𝐿1 − 𝐿2

 −
𝑧1 − 𝑧2



× ∫

+∞

𝑇3

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢)

>
1

𝑏 (𝑡 + 𝜏)
(
𝐿1 − 𝐿2

 −
𝑧1 − 𝑧2



𝐿1 − 𝐿2


1 + 2
𝑧1 − 𝑧2



)

>

𝐿1 − 𝐿2


2𝑏 (𝑡 + 𝜏)

> 0,

(59)

which yields that 𝑧1 ̸=𝑧2. This completes the proof.

Theorem6. Assume that there exist three constants𝑀,𝑁, and
𝑏0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈ 𝐶([𝑡0, +∞),R+) satisfying
(18), (46), (47), and

0 < 𝑁 < 𝑀,
𝑀

𝑀 − 𝑁
< 𝑏0, 𝑏 (𝑡) ≤ −𝑏0 eventually.

(60)

Then
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(a) for any 𝐿 ∈ (𝑁, (1 − 1/𝑏0)𝑀), there exist 𝜃 ∈ (0, 1) and
𝑇 > 1+|𝑡0|+𝜏+|𝛾| such that for each𝑥0 ∈ Ω3(𝑁,𝑀), theMann
iterative sequence {𝑥𝑘}𝑘∈N0 generated by the following scheme

𝑥𝑘+1 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼𝑘) 𝑥𝑘 (𝑡) +
𝛼𝑘

𝑏 (𝑡 + 𝜏)

×{ − 𝐿 − 𝑥𝑘 (𝑡 + 𝜏) + (−1)
𝑛
𝐻0

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . ,

𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+(−1)
𝑛−𝑖−1

𝐻𝑖

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝑡 ≥ 𝑇, 𝑘 ∈ N0,

(1 − 𝛼𝑘) 𝑥𝑘 (𝑇) +
𝛼𝑘

𝑏 (𝑡 + 𝜏)

×{ − 𝐿 − 𝑥𝑘 (𝑇 + 𝜏) + (−1)
𝑛
𝐻0

×∫

+∞

𝑇+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑇 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . ,

𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+(−1)
𝑛−𝑖−1

𝐻𝑖

×∫

+∞

𝑇+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑇 − 𝜏)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝛾 ≤ 𝑡 < 𝑇, 𝑘 ∈ N0

(61)

converges to a positive solution 𝑥 ∈ Ω3(𝑁,𝑀) of (5) and has
the error estimate (20), where {𝛼𝑘}𝑘∈N0 is an arbitrary sequence
in [0, 1] satisfying (21);

(b) Equation (5) has uncountably many positive solutions
in Ω3(𝑁,𝑀).

Proof. Put 𝐿 ∈ (𝑁, (1−1/𝑏0)𝑀). It follows from (18) and (60)
that there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| satisfying
(50) and

𝑏 (𝑡) ≤ −𝑏0, ∀𝑡 ≥ 𝑇;

∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< min{𝑀(1 −
1

𝑏0

) − 𝐿, 𝐿 − 𝑁} .

(62)

Define a mapping 𝑆𝐿 : Ω3(𝑁,𝑀) → CB([𝛾, +∞),R) by

𝑆𝐿𝑥 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

−𝐿

𝑏 (𝑡 + 𝜏)
−

𝑥 (𝑡 + 𝜏)

𝑏 (𝑡 + 𝜏)
+

(−1)
𝑛
𝐻0

𝑏 (𝑡 + 𝜏)

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

𝐻𝑖

𝑏 (𝑡 + 𝜏)

×∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

𝑎 (𝑢)

×ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢,

𝑡 ≥ 𝑇, 𝑥 ∈ Ω3 (𝑁,𝑀) ,

𝑆𝐿𝑥 (𝑇) , 𝛾 ≤ 𝑡 < 𝑇, 𝑥 ∈ Ω3 (𝑁,𝑀) .

(63)

By virtue of (47), (62), and (63), we know that for any 𝑥 ∈

Ω3(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡)

≤
1

𝑏 (𝑡 + 𝜏)

× ( − 𝐿 − 𝑥 (𝑡 + 𝜏) − 𝐻0

× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

− 𝐻𝑖 ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢)

≤
1

𝑏 (𝑡 + 𝜏)

× (−𝐿 +
𝑀

𝑏 (𝑡 + 𝜏)

− ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢)
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<
1

𝑏 (𝑡 + 𝜏)
(−𝐿 +

𝑀

𝑏 (𝑡 + 𝜏)

−min{𝑀(1 −
1

𝑏0

) − 𝐿, 𝐿 − 𝑁})

≤
−𝑀

𝑏 (𝑡 + 𝜏)
,

𝑆𝐿𝑥 (𝑡)

≥
1

𝑏 (𝑡 + 𝜏)

× ( − 𝐿 − 𝑥 (𝑡 + 𝜏) + 𝐻0

× ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡+𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡 − 𝜏)
𝑚−1

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢)

≥
1

𝑏 (𝑡 + 𝜏)

× (−𝐿 +
𝑁

𝑏 (𝑡 + 𝜏)

+ ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢)

>
1

𝑏 (𝑡 + 𝜏)
(−𝐿 +

𝑁

𝑏 (𝑡 + 𝜏)

+min{𝑀(1 −
1

𝑏0

) − 𝐿, 𝐿 − 𝑁})

≥
−𝑁

𝑏 (𝑡 + 𝜏)
,

(64)

which imply that 𝑆𝐿(Ω3(𝑁,𝑀)) ⊆ Ω3(𝑁,𝑀). The rest of the
proof is identical with the proof of Theorem 5 and hence is
omitted. This completes the proof.

Theorem 7. Let 𝑚 ≥ 2. Assume that there exist two constants
𝑀, 𝑁 with 𝑀 > 𝑁 > 0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈

𝐶([𝑡0, +∞),R+) satisfying (16)–(18) and

𝑏 (𝑡) = 1 eventually. (65)

Then
(a) for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and 𝑇 >

1 + |𝑡0| + 𝜏 + |𝛾| such that for each 𝑥0 ∈ Ω1(𝑁,𝑀), the Mann
iterative sequence {𝑥𝑘}𝑘∈N0 generated by the following scheme

𝑥𝑘+1 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼𝑘) 𝑥𝑘 (𝑡) + 𝛼𝑘

×{𝐿 + (−1)
𝑛
(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

)

× (𝑎 (𝑢))
−1
)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . ,

𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+(−1)
𝑛−𝑖−1

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

)

× (𝑎 (𝑢))
−1
)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . ,

𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟} ,

𝑡 ≥ 𝑇, 𝑘 ∈ N0,

(1 − 𝛼𝑘) 𝑥𝑘 (𝑇) + 𝛼𝑘

×{𝐿 + (−1)
𝑛
(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

𝑇+2𝑗𝜏

𝑇+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

)

× (𝑎 (𝑢))
−1
)

× [𝑔(𝑠)−𝑓(𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . ,

𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+(−1)
𝑛−𝑖−1

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

𝑇+2𝑗𝜏

𝑇+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

)

× (𝑎 (𝑢))
−1
)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . ,

𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟} ,

𝛾 ≤ 𝑡 < 𝑇, 𝑘 ∈ N0
(66)

converges to a positive solution 𝑥 ∈ Ω1(𝑁,𝑀) of (5) and has
the error estimate (20), where {𝛼𝑘}𝑘∈N0 is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in Ω1(𝑁,𝑀).
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Proof. Let 𝐿 ∈ (𝑁,𝑀). It follows from (18) and (65) that there
exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| satisfying

𝑏 (𝑡) = 1, ∀𝑡 ≥ 𝑇; (67)

𝜃 = ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢;

(68)

∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< min {𝑀 − 𝐿, 𝐿 − 𝑁} .

(69)

Define a mapping 𝑆𝐿 : Ω1(𝑁,𝑀) → CB([𝛾, +∞),R) by

𝑆𝐿𝑥 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

𝐿 + (−1)
𝑛
(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

)

× (𝑎 (𝑢))
−1
)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+(−1)
𝑛−𝑖−1

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

)

× (𝑎 (𝑢))
−1
)

×ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟,

𝑡 ≥ 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) ,

𝑆𝐿𝑥 (𝑇) , 𝛾 ≤ 𝑡 < 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) .

(70)

With a view to (16), (68), and (70), we derive that for any
𝑥, 𝑦 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤ (𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤ (𝑚 − 1)𝐻0
𝑥 − 𝑦



× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (𝑚 − 1)𝐻𝑖
𝑥 − 𝑦



× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

= 𝐻0
𝑥 − 𝑦



× ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖
𝑥 − 𝑦



× ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢

≤
𝑥 − 𝑦



× ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|
[𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

= 𝜃
𝑥 − 𝑦

 ,

(71)

which gives (27). By virtue of (17), (69), and (70), we deduce
that for any 𝑥 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡)

≤ 𝐿 + (𝑚 − 1)𝐻0

× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (𝑚 − 1)𝐻𝑖

× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤ 𝐿 + (𝑚 − 1)𝐻0

× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 + 𝑄 (𝑠)] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (𝑚 − 1)𝐻𝑖

× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|
𝑊 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟
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= 𝐿 + 𝐻0 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 + 𝑄 (𝑠)] 𝑑𝑠 𝑑𝑢

+ 𝐻𝑖 ∫

+∞

𝑡

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑡)
𝑚−1

|𝑎 (𝑢)|

× 𝑊 (𝑠) 𝑑𝑠 𝑑𝑢

≤ 𝐿 + ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

< 𝐿 +min {𝑀 − 𝐿, 𝐿 − 𝑁}

≤ 𝑀,

𝑆𝐿𝑥 (𝑡)

≥ 𝐿 − (𝑚 − 1)𝐻0

× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . ,

𝑥 (𝑓𝑙 (𝑠)))
] 𝑑𝑠 𝑑𝑢 𝑑𝑟

− (𝑚 − 1)𝐻𝑖

× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢 𝑑𝑟

≥ 𝐿 − ∫

+∞

𝑇

∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠)) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢

> 𝐿 −min {𝑀 − 𝐿, 𝐿 − 𝑁}

≥ 𝑁,

(72)

which mean that 𝑆𝐿(Ω1(𝑁,𝑀)) ⊆ Ω1(𝑁,𝑀). Coupled
with (27) and (68), we get that 𝑆𝐿 is a contraction mapping
in Ω1(𝑁,𝑀) and it possesses a unique fixed point 𝑥 ∈

Ω1(𝑁,𝑀). Clearly, 𝑥 ∈ Ω1(𝑁,𝑀) is a positive solution of
(5).

From (27), (66), and (70), we gain that

𝑥𝑘+1 (𝑡) − 𝑥 (𝑡)


=



(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+ 𝛼𝑘

{

{

{

𝐿 + (−1)
𝑛
(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (−1)
𝑛−𝑖−1

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟
}

}

}

− 𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘
𝑆𝐿𝑥𝑘 (𝑡) − 𝑆𝐿𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘𝜃
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



= (1 − (1 − 𝜃) 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



≤ 𝑒
−(1−𝜃)𝛼𝑘 𝑥𝑘 − 𝑥



≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0, 𝑡 ≥ 𝑇,

(73)

which yields (20). It follows from (20) and (21) that
lim𝑘→∞𝑥𝑘 = 𝑥.

Now we prove that (b) holds. Let 𝐿1, 𝐿2 ∈ (𝑁,𝑀) and
𝐿1 ̸=𝐿2. As in the proof of (a), we conclude that for each
𝑝 ∈ {1, 2}, there exist 𝜃𝑝 ∈ (0, 1), 𝑇𝑝 > 1 + |𝑡0| + 𝜏 + |𝛾| and
𝑆𝐿𝑝

: Ω1(𝑁,𝑀) → Ω1(𝑁,𝑀) satisfying (69)–(77), where 𝐿,
𝜃, 𝑇, and 𝑆𝐿 are replaced by 𝐿𝑝, 𝜃𝑝, 𝑇𝑝, and 𝑆𝐿𝑝

, respectively,
and 𝑆𝐿𝑝

has a unique fixed point 𝑧𝑝 ∈ Ω1(𝑁,𝑀), which is a
positive solution of (5) inΩ1(𝑁,𝑀), that is,

𝑧𝑝 (𝑡) = 𝐿𝑘 + (−1)
𝑛
(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑧𝑝 (𝑓1 (𝑠)) , . . . , 𝑧𝑝 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (−1)
𝑛−𝑖−1

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× ℎ (𝑠, 𝑧𝑝 (ℎ1 (𝑠)) , . . . , 𝑧𝑝 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟,

∀𝑡 ≥ 𝑇𝑝, 𝑝 ∈ {1, 2} .

(74)
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For purpose of proving (b), we just need to show that 𝑧1 ̸=𝑧2.
It follows from (16), (27), (68), and (74) that

𝑧1 (𝑡) − 𝑧2 (𝑡)


≥
𝐿1 − 𝐿2

 − (𝑚 − 1)𝐻0
𝑧1 − 𝑧2



× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

)

×(|𝑎 (𝑢)|)
−1
) 𝑃 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

− (𝑚 − 1)𝐻𝑖
𝑧1 − 𝑧2



× ∫

+∞

𝑡

∫

+∞

𝑟

∫

+∞

𝑢

(((𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

)

×(|𝑎 (𝑢)|)
−1
) 𝑅 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

≥
𝐿1 − 𝐿2

 −
𝑧1 − 𝑧2



× ∫

+∞

max{𝑇1 ,𝑇2}
∫

+∞

𝑢

𝑢
𝑚−1

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠)

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

>
𝐿1 − 𝐿2

 −max {𝜃1, 𝜃2}
𝑧1 − 𝑧2

 ,

∀𝑡 ≥ max {𝑇1, 𝑇2} ,

(75)

which yields that

𝑧1 − 𝑧2
 ≥

𝐿1 − 𝐿2


1 +max {𝜃1, 𝜃2}
> 0, (76)

that is, 𝑧1 ̸=𝑧2. This completes the proof.

Theorem 8. Let 𝑚 = 1. Assume that there exist two constants
𝑀, 𝑁 with 𝑀 > 𝑁 > 0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈

𝐶([𝑡0, +∞),R+) satisfying (16), (17), (65), and

∫

+∞

𝑡0

∫

+∞

𝑢

1

|𝑎 (𝑢)|

× [|𝑠|
𝑛−2max {𝑃 (𝑠) , 𝑄 (𝑠) ,

𝑔 (𝑠)
}

+|𝑠|
𝑛−𝑖−2max {𝑅 (𝑠) ,𝑊 (𝑠)}] 𝑑𝑠 𝑑𝑢

< +∞.

(77)

Then

(a) for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and 𝑇 >

1 + |𝑡0| + 𝜏 + |𝛾| such that for each 𝑥0 ∈ Ω1(𝑁,𝑀), the Mann
iterative sequence {𝑥𝑘}𝑘∈N0 generated by the following scheme

𝑥𝑘+1 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+𝛼𝑘 {𝐿 +
(−1)
𝑛

(𝑛 − 2)!

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

(𝑛 − 𝑖 − 2)!

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

× ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝑡 ≥ 𝑇, 𝑘 ∈ N0,

(1 − 𝛼𝑘) 𝑥𝑘 (𝑇)

+𝛼𝑘 {𝐿 +
(−1)
𝑛

(𝑛 − 2)!

×

∞

∑

𝑗=1

∫

𝑇+2𝑗𝜏

𝑇+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

(𝑛 − 𝑖 − 2)!

×

∞

∑

𝑗=1

∫

𝑇+2𝑗𝜏

𝑇+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

× ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢} ,

𝛾 ≤ 𝑡 < 𝑇, 𝑘 ∈ N0
(78)

converges to a positive solution 𝑥 ∈ Ω1(𝑁,𝑀) of (5) and has
the error estimate (20), where {𝛼𝑘}𝑘∈N0 is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in Ω1(𝑁,𝑀).
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Proof. Let 𝐿 ∈ (𝑁,𝑀). It follows from (65) and (77) that there
exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| satisfying (67),

𝜃 = ∫

+∞

𝑇

∫

+∞

𝑢

1

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
𝑃 (𝑠) +

𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢,

(79)

∫

+∞

𝑇

∫

+∞

𝑢

1

|𝑎 (𝑢)|
[

𝑠
𝑛−2

(𝑛 − 2)!
(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+
𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑊 (𝑠)] 𝑑𝑠 𝑑𝑢

< min {𝑀 − 𝐿, 𝐿 − 𝑁} .

(80)

Define a mapping 𝑆𝐿 : Ω1(𝑁,𝑀) → CB([𝛾, +∞),R) by

𝑆𝐿𝑥 (𝑡)

=

{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{

{

𝐿 +
(−1)
𝑛

(𝑛 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢,

𝑡 ≥ 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) ,

𝑆𝐿𝑥 (𝑇) , 𝛾 ≤ 𝑡 < 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) .

(81)

By virtue of (16), (79), and (81), we derive that for any 𝑥, 𝑦 ∈

Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤
1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

+
1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≤
1

(𝑛 − 2)!

𝑥 − 𝑦
 ∫

+∞

𝑇

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢

+
1

(𝑛 − 𝑖 − 2)!

𝑥 − 𝑦


× ∫

+∞

𝑇

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢

≤
𝑥 − 𝑦

 ∫

+∞

𝑇

∫

+∞

𝑢

1

|𝑎 (𝑢)|
[

𝑠
𝑛−2

(𝑛 − 2)!
𝑃 (𝑠)

+
𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

= 𝜃
𝑥 − 𝑦

 ,

(82)

which gives (27). It follows from (17), (80), and (81) that for
any 𝑥 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡)

≤ 𝐿 +
1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

] 𝑑𝑠 𝑑𝑢

+
1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢

≤ 𝐿 + ∫

+∞

𝑇

∫

+∞

𝑢

1

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
(
𝑔 (𝑠)

 + 𝑄 (𝑠)) +
𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑊 (𝑠)] 𝑑𝑠 𝑑𝑢

< 𝐿 +min {𝑀 − 𝐿, 𝐿 − 𝑁}

≤ 𝑀,

𝑆𝐿𝑥 (𝑡)

≥ 𝐿 −
1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

] 𝑑𝑠 𝑑𝑢

−
1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢

≥ 𝐿 − ∫

+∞

𝑇

∫

+∞

𝑢

1

|𝑎 (𝑢)|
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× [
𝑠
𝑛−2

(𝑛 − 2)!
(
𝑔 (𝑠)

 + 𝑄 (𝑠)) +
𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑊 (𝑠)] 𝑑𝑠 𝑑𝑢

> 𝐿 −min {𝑀 − 𝐿, 𝐿 − 𝑁}

≥ 𝑁,

(83)

which mean that 𝑆𝐿(Ω1(𝑁,𝑀)) ⊆ Ω1(𝑁,𝑀). Combined
with (27) and (79), we know that 𝑆𝐿 is a contraction mapping
in Ω1(𝑁,𝑀) and it possesses a unique fixed point 𝑥 ∈

Ω1(𝑁,𝑀). Obviously, 𝑥 ∈ Ω1(𝑁,𝑀) is a positive solution
of (5).

In light of (27), (78), and (81), we gain that

𝑥𝑘+1 (𝑡) − 𝑥 (𝑡)


=



(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+ 𝛼𝑘

{

{

{

𝐿 +
(−1)
𝑛

(𝑛 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢
}

}

}

− 𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘
𝑆𝐿𝑥𝑘 (𝑡) − 𝑆𝐿𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘𝜃
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



= (1 − (1 − 𝜃) 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



≤ 𝑒
−(1−𝜃)𝛼𝑘 𝑥𝑘 − 𝑥



≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0, 𝑡 ≥ 𝑇,

(84)

which yields (20). It follows from (20) and (21) that
lim𝑘→∞𝑥𝑘 = 𝑥.

Now we prove that (b) holds. Let 𝐿1, 𝐿2 ∈ (𝑁,𝑀) and
𝐿1 ̸=𝐿2. As in the proof of (a), we conclude that for each 𝑝 ∈

{1, 2}, there exist 𝜃𝑝 ∈ (0, 1), 𝑇𝑝 > 1 + |𝑡0| + 𝜏 + |𝛾| and 𝑆𝐿𝑝
:

Ω1(𝑁,𝑀) → Ω1(𝑁,𝑀) satisfying (67) and (79)–(81), where
𝐿, 𝜃,𝑇, and 𝑆𝐿 are replaced by𝐿𝑝, 𝜃𝑝,𝑇𝑝, and 𝑆𝐿𝑝

, respectively,

and 𝑆𝐿𝑝
has a unique fixed point 𝑧𝑝 ∈ Ω1(𝑁,𝑀), which is a

positive solution of (5) inΩ1(𝑁,𝑀), that is,

𝑧𝑝 (𝑡) = 𝐿𝑝 +
(−1)
𝑛

(𝑛 − 2)!

×

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏
∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑧𝑝 (𝑓1 (𝑠)) , . . . , 𝑧𝑝 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖−1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

× ℎ (𝑠, 𝑧𝑝 (ℎ1 (𝑠)) , . . . , 𝑧𝑝 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢,

∀𝑡 ≥ 𝑇𝑝, 𝑝 ∈ {1, 2} .

(85)

In order to prove (b), we just need to show that 𝑧1 ̸=𝑧2. In
view of (16), (27), (79), and (85), we get that

𝑧1 (𝑡) − 𝑧2 (𝑡)


≥
𝐿1 − 𝐿2

 −
1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑧2 (𝑓1 (𝑠)) , . . . , 𝑧2 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑧1 (𝑓1 (𝑠)) , . . . , 𝑧1 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

−
1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

𝑡+2𝑗𝜏

𝑡+(2𝑗−1)𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑧1 (ℎ1 (𝑠)) , . . . , 𝑧1 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑧2 (ℎ1 (𝑠)) , . . . , 𝑧2 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≥
𝐿1 − 𝐿2

 −

𝑧1 − 𝑧2


(𝑛 − 2)!
∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−2

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢

−

𝑧1 − 𝑧2


(𝑛 − 𝑖 − 2)!
∫

+∞

𝑡

∫

+∞

𝑢

𝑠
𝑛−𝑖−2

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢

≥
𝐿1 − 𝐿2

 −
𝑧1 − 𝑧2



× ∫

+∞

max{𝑇1 ,𝑇2}
∫

+∞

𝑢

1

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
𝑃 (𝑠) +

𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

>
𝐿1 − 𝐿2

 −max {𝜃1, 𝜃2}
𝑧1 − 𝑧2

 ,

∀𝑡 ≥ max {𝑇1, 𝑇2} ,
(86)
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which implies that

𝑧1 − 𝑧2
 ≥

𝐿1 − 𝐿2


1 +max {𝜃1, 𝜃2}
> 0, (87)

that is, 𝑧1 ̸=𝑧2. This completes the proof.

Theorem 9. Let 𝑚 ≥ 2. Assume that there exist two constants
𝑀, 𝑁 with 𝑀 > 𝑁 > 0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈

𝐶([𝑡0, +∞),R+) satisfying (16), (17),

∫

+∞

𝑡0

∫

+∞

𝑟

∫

+∞

𝑢

|𝑟| |𝑢|
𝑚

|𝑎 (𝑢)|

× [|𝑠|
𝑛−𝑚−1max {𝑃 (𝑠) , 𝑄 (𝑠) ,

𝑔 (𝑠)
}

+|𝑠|
𝑛−𝑚−𝑖−1max {𝑅 (𝑠) ,𝑊 (𝑠)}] 𝑑𝑠 𝑑𝑢 𝑑𝑟

< +∞,

(88)

𝑏 (𝑡) = −1 eventually. (89)

Then
(a) for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and 𝑇 >

1 + |𝑡0| + 𝜏 + |𝛾| such that for each 𝑥0 ∈ Ω1(𝑁,𝑀), the Mann
iterative sequence {𝑥𝑘}𝑘∈N0 generated by the following scheme

𝑥𝑘+1 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+𝛼𝑘 {𝐿 + (−1)
𝑛−1

(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+(−1)
𝑛−𝑖

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟} ,

𝑡 ≥ 𝑇, 𝑘 ∈ N0,

(1 − 𝛼𝑘) 𝑥𝑘 (𝑇)

+𝛼𝑘 {𝐿 + (−1)
𝑛−1

(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

+∞

𝑇+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+(−1)
𝑛−𝑖

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

+∞

𝑇+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟} ,

𝛾 ≤ 𝑡 < 𝑇, 𝑘 ∈ N0
(90)

converges to a positive solution 𝑥 ∈ Ω1(𝑁,𝑀) of (5) and has
the error estimate (20), where {𝛼𝑘}𝑘∈N0 is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in Ω1(𝑁,𝑀).

Proof. Set 𝐿 ∈ (𝑁,𝑀). In view of (88) and (89), there exist
𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that

𝑏 (𝑡) = −1, ∀𝑡 ≥ 𝑇; (91)

𝜃 =
𝑚 − 1

𝜏
∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑢
𝑚−2

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢 𝑑𝑟;

(92)

𝑚 − 1

𝜏
∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑢
𝑚−2

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠)) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢 𝑑𝑟

< min {𝑀 − 𝐿, 𝐿 − 𝑁} .

(93)

Define a mapping 𝑆𝐿 : Ω1(𝑁,𝑀) → CB([𝛾, +∞),R) by

𝑆𝐿𝑥 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

𝐿 + (−1)
𝑛−1

(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+(−1)
𝑛−𝑖

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟,

𝑡 ≥ 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) ,

𝑆𝐿𝑥 (𝑇) , 𝛾 ≤ 𝑡 < 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) .

(94)

By virtue of (16), (92), (94), and Lemma 1, we acquire that for
any 𝑥, 𝑦 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤ (𝑚 − 1)𝐻0

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢 𝑑𝑟
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+ (𝑚 − 1)𝐻𝑖

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤ (𝑚 − 1)
𝐻0

𝜏

𝑥 − 𝑦


× ∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑟

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (𝑚 − 1)
𝐻𝑖

𝜏

𝑥 − 𝑦


× ∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑟

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤
𝑚 − 1

𝜏
∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑢
𝑚−2

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢 𝑑𝑟

= 𝜃
𝑥 − 𝑦

 ,

(95)

which yields that (27) holds. From (17), (94), (98), and
Lemma 1, we obtain that for any 𝑥 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝐿


≤ (𝑚 − 1)𝐻0

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (𝑚 − 1)𝐻𝑖

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢 𝑑𝑟

≤ (𝑚 − 1)
𝐻0

𝜏
∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑠
𝑛−𝑚−1

𝑢
𝑚−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 + 𝑄 (𝑠)] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (𝑚 − 1)
𝐻𝑖

𝜏
∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−2

|𝑎 (𝑢)|

× 𝑊 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

=
𝑚 − 1

𝜏
∫

+∞

𝑇

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑢
𝑚−2

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

(
𝑔 (𝑠)

 + 𝑄 (𝑠))

+𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑊(𝑠)] 𝑑𝑠 𝑑𝑢 𝑑𝑟

< min {𝑀 − 𝐿, 𝐿 − 𝑁} ,

(96)

which means that 𝑆𝐿(Ω1(𝑁,𝑀)) ⊆ Ω1(𝑁,𝑀). It follows
from (27) and (92) that 𝑆𝐿 is a contraction mapping and
it has a unique fixed point 𝑥 ∈ Ω1(𝑁,𝑀). It is clear that
𝑥 ∈ Ω1(𝑁,𝑀) is a positive solution of (5).

On the basis of (27), (90), and (94), we deduce that

𝑥𝑘+1 (𝑡) − 𝑥 (𝑡)


=



(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+ 𝛼𝑘

{

{

{

𝐿 + (−1)
𝑛−1

(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . ,

𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (−1)
𝑛−𝑖

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟
}

}

}

−𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘
𝑆𝐿𝑥𝑘 (𝑡) − 𝑆𝐿𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘𝜃
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



= (1 − (1 − 𝜃) 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



≤ 𝑒
−(1−𝜃)𝛼𝑘 𝑥𝑘 − 𝑥



≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0, 𝑡 ≥ 𝑇,

(97)

which signifies that (20) holds. It follows from (20) and (21)
and that lim𝑘→∞𝑥𝑘 = 𝑥.

Now we show that (b) holds. Let 𝐿1, 𝐿2 ∈ (𝑁,𝑀) and
𝐿1 ̸=𝐿2. As in the proof of (a), we conclude that for each
𝑝 ∈ {1, 2}, there exist 𝜃𝑝 ∈ (0, 1), 𝑇𝑝 > 1 + |𝑡0| + 𝜏 + |𝛾| and
𝑆𝐿𝑝

: Ω1(𝑁,𝑀) → Ω1(𝑁,𝑀) satisfying (91)–(94), where 𝐿,
𝜃, 𝑇, and 𝑆𝐿 are replaced by 𝐿𝑝, 𝜃𝑝, 𝑇𝑝, and 𝑆𝐿𝑝

, respectively,
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and 𝑆𝐿𝑝
has a unique fixed point 𝑧𝑝 ∈ Ω1(𝑁,𝑀), which is a

positive solution of (5) in Ω1(𝑁,𝑀), that is,

𝑧𝑝 (𝑡)

= 𝐿𝑝 + (−1)
𝑛−1

(𝑚 − 1)𝐻0

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑧𝑝 (𝑓1 (𝑠)) , . . . , 𝑧𝑝 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢 𝑑𝑟

+ (−1)
𝑛−𝑖

(𝑚 − 1)𝐻𝑖

×

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑟

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑚−𝑖−1

(𝑢 − 𝑟)
𝑚−2

𝑎 (𝑢)

× ℎ (𝑠, 𝑧𝑝 (ℎ1 (𝑠)) , . . . , 𝑧𝑝 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢 𝑑𝑟,

∀𝑡 ≥ 𝑇𝑝, 𝑝 ∈ {1, 2} .

(98)

In order to prove (b), it is sufficient to show that 𝑧1 ̸=𝑧2. Note
that (16), (92), (98), and Lemma 1 lead to

𝑧1 (𝑡) − 𝑧2 (𝑡)


≥
𝐿1 − 𝐿2

 − (𝑚 − 1)
𝐻0

𝜏

𝑧1 − 𝑧2


× ∫

+∞

𝑡+𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑠
𝑛−𝑚−1

𝑢
𝑚−2

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

− (𝑚 − 1)
𝐻𝑖

𝜏

𝑧1 − 𝑧2


× ∫

+∞

𝑡+𝜏

∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑠
𝑛−𝑚−𝑖−1

𝑢
𝑚−2

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢 𝑑𝑟

≥
𝐿1 − 𝐿2

 −
(𝑚 − 1)

𝑧1 − 𝑧2


𝜏

× ∫

+∞

max{𝑇1 ,𝑇2}
∫

+∞

𝑟

∫

+∞

𝑢

𝑟𝑢
𝑚−2

|𝑎 (𝑢)|

× [𝐻0𝑠
𝑛−𝑚−1

𝑃 (𝑠) + 𝐻𝑖𝑠
𝑛−𝑚−𝑖−1

𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢 𝑑𝑟

>
𝐿1 − 𝐿2

 −max {𝜃1, 𝜃2}
𝑧1 − 𝑧2

 , ∀𝑡 ≥ max {𝑇1, 𝑇2} ,
(99)

which means that

𝑧1 − 𝑧2
 ≥

𝐿1 − 𝐿2


1 +max {𝜃1, 𝜃2}
> 0, (100)

that is, 𝑧1 ̸=𝑧2. This completes the proof.

Theorem 10. Let𝑚 = 1. Assume that there exist two constants
𝑀, 𝑁 with 𝑀 > 𝑁 > 0 and four functions 𝑃,𝑄, 𝑅,𝑊 ∈

𝐶([𝑡0, +∞),R+) satisfying (16), (17), (89), and

∫

+∞

𝑡0

∫

+∞

𝑢

|𝑢|

|𝑎 (𝑢)|
[|𝑠|
𝑛−2max {𝑃 (𝑠) , 𝑄 (𝑠) ,

𝑔 (𝑠)
}

+|𝑠|
𝑛−𝑖−2max {𝑅 (𝑠) ,𝑊 (𝑠)}] 𝑑𝑠 𝑑𝑢

< +∞.

(101)

Then
(a) for any 𝐿 ∈ (𝑁,𝑀), there exist 𝜃 ∈ (0, 1) and 𝑇 >

1 + |𝑡0| + 𝜏 + |𝛾| such that for each 𝑥0 ∈ Ω1(𝑁,𝑀), the Mann
iterative sequence {𝑥𝑘}𝑘∈N0 generated by the following scheme

𝑥𝑘+1 (𝑡)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+𝛼𝑘

{

{

{

𝐿 +
(−1)
𝑛−1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠)−𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)), . . . ,𝑥𝑘 (𝑓𝑙 (𝑠)))]𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢
}

}

}

,

𝑡 ≥ 𝑇, 𝑘 ∈ N0,

(1 − 𝛼𝑘) 𝑥𝑘 (𝑇)

+𝛼𝑘

{

{

{

𝐿 +
(−1)
𝑛−1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑇+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠)−𝑓(𝑠, 𝑥𝑘 (𝑓1 (𝑠)), . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))]𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑇+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢
}

}

}

,

𝛾 ≤ 𝑡 < 𝑇, 𝑘 ∈ N0,

(102)

converges to a positive solution 𝑥 ∈ Ω1(𝑁,𝑀) of (5) and has
the error estimate (20), where {𝛼𝑘}𝑘∈N0 is an arbitrary sequence
in [0, 1] with (21);

(b) Equation (5) has uncountably many positive solutions
in Ω1(𝑁,𝑀).
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Proof. Set 𝐿 ∈ (𝑁,𝑀). Due to (101), there exist 𝜃 ∈ (0, 1) and
𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| satisfying (91),

𝜃 =
1

𝜏
∫

+∞

𝑇

∫

+∞

𝑢

𝑢

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
𝑃 (𝑠) +

𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢,

(103)

1

𝜏
∫

+∞

𝑇

∫

+∞

𝑢

𝑢

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
(
𝑔 (𝑠)

 + 𝑄 (𝑠)) +
𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑊 (𝑠)] 𝑑𝑠 𝑑𝑢

< min {𝑀 − 𝐿, 𝐿 − 𝑁} .

(104)

Define a mapping 𝑆𝐿 : Ω1(𝑁,𝑀) → CB([𝛾, +∞),R) by

𝑆𝐿𝑥 (𝑡)

=

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

𝐿 +
(−1)
𝑛−1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢,

𝑡 ≥ 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) ,

𝑆𝐿𝑥 (𝑇) , 𝛾 ≤ 𝑡 < 𝑇, 𝑥 ∈ Ω1 (𝑁,𝑀) .

(105)

In view of (16), (103), (105), and Lemma 1, we achieve that for
any 𝑥, 𝑦 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝑆𝐿𝑦 (𝑡)


≤
1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑦 (𝑓1 (𝑠)) , . . . , 𝑦 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

+
1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑦 (ℎ1 (𝑠)) , . . . , 𝑦 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≤

𝑥 − 𝑦


𝜏 (𝑛 − 2)!
∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑢𝑠
𝑛−2

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢

+

𝑥 − 𝑦


𝜏 (𝑛 − 𝑖 − 2)!
∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑢𝑠
𝑛−𝑖−2

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢

≤

𝑥 − 𝑦


𝜏
∫

+∞

𝑇

∫

+∞

𝑢

𝑢

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
𝑃 (𝑠) +

𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

= 𝜃
𝑥 − 𝑦

 ,

(106)

whichmeans that (27) holds. It follows from (17), (104), (105),
and Lemma 1 that for any 𝑥 ∈ Ω1(𝑁,𝑀) and 𝑡 ≥ 𝑇

𝑆𝐿𝑥 (𝑡) − 𝐿


≤
1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|

× [
𝑔 (𝑠)

 +
𝑓 (𝑠, 𝑥 (𝑓1 (𝑠)) , . . . , 𝑥 (𝑓𝑙 (𝑠)))

] 𝑑𝑠 𝑑𝑢

+
1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑥 (ℎ1 (𝑠)) , . . . , 𝑥 (ℎ𝑙 (𝑠)))

 𝑑𝑠 𝑑𝑢

≤
1

𝜏 (𝑛 − 2)!
∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑢𝑠
𝑛−2

|𝑎 (𝑢)|
(
𝑔 (𝑠)

 + 𝑄 (𝑠)) 𝑑𝑠 𝑑𝑢

+
1

𝜏 (𝑛 − 𝑖 − 2)!
∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑢𝑠
𝑛−𝑖−2

|𝑎 (𝑢)|
𝑊 (𝑠) 𝑑𝑠 𝑑𝑢

≤
1

𝜏
∫

+∞

𝑇

∫

+∞

𝑢

𝑢

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
(
𝑔 (𝑠)

 + 𝑄 (𝑠)) +
𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑊 (𝑠)] 𝑑𝑠 𝑑𝑢

< min {𝑀 − 𝐿, 𝐿 − 𝑁} ,

(107)

which means that 𝑆𝐿(Ω1(𝑁,𝑀)) ⊆ Ω1(𝑁,𝑀). Coupled with
(27), we know that 𝑆𝐿 is a contraction mapping and it has
a unique fixed point 𝑥 ∈ Ω1(𝑁,𝑀). It follows that 𝑥 ∈

Ω1(𝑁,𝑀) is a positive solution of (5).
In view of (27), (102), and (105), we deduce that

𝑥𝑘+1 (𝑡) − 𝑥 (𝑡)


=



(1 − 𝛼𝑘) 𝑥𝑘 (𝑡)

+𝛼𝑘

{

{

{

𝐿 +
(−1)
𝑛−1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑥𝑘 (𝑓1 (𝑠)) , . . . , 𝑥𝑘 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢
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+
(−1)
𝑛−𝑖

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

×ℎ (𝑠, 𝑥𝑘 (ℎ1 (𝑠)) , . . . , 𝑥𝑘 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢
}

}

}

− 𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘
𝑆𝐿𝑥𝑘 (𝑡) − 𝑆𝐿𝑥 (𝑡)



≤ (1 − 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)

 + 𝛼𝑘𝜃
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



= (1 − (1 − 𝜃) 𝛼𝑘)
𝑥𝑘 (𝑡) − 𝑥 (𝑡)



≤ 𝑒
−(1−𝜃)𝛼𝑘 𝑥𝑘 − 𝑥



≤ 𝑒
−(1−𝜃)∑

𝑘

𝑝=0
𝛼𝑝 𝑥0 − 𝑥

 , ∀𝑘 ∈ N0, 𝑡 ≥ 𝑇,

(108)

which signifies that (20) holds. It follows from (20) and (21)
that lim𝑘→∞𝑥𝑘 = 𝑥.

Now we show that (b) holds. Let 𝐿1, 𝐿2 ∈ (𝑁,𝑀) and
𝐿1 ̸=𝐿2. As in the proof of (a), we conclude that for each
𝑝 ∈ {1, 2}, there exist 𝜃𝑝 ∈ (0, 1), 𝑇𝑝 > 1 + |𝑡0| + 𝜏 + |𝛾|

and 𝑆𝐿𝑝
: Ω1(𝑁,𝑀) → Ω1(𝑁,𝑀) satisfying (91) and (103)–

(105), where 𝐿, 𝜃,𝑇, and 𝑆𝐿 are replaced by 𝐿𝑝, 𝜃𝑝,𝑇𝑝 and 𝑆𝐿𝑝
,

respectively, and 𝑆𝐿𝑝
has a unique fixed point 𝑧𝑝 ∈ Ω1(𝑁,𝑀),

which is a positive solution of (5) inΩ1(𝑁,𝑀). It follows that
for any 𝑡 ≥ 𝑇𝑝 and 𝑝 ∈ {1, 2}

𝑧𝑝 (𝑡) = 𝐿𝑝 +
(−1)
𝑛−1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

𝑎 (𝑢)

× [𝑔 (𝑠) − 𝑓 (𝑠, 𝑧𝑝 (𝑓1 (𝑠)) , . . . , 𝑧𝑝 (𝑓𝑙 (𝑠)))] 𝑑𝑠 𝑑𝑢

+
(−1)
𝑛−𝑖

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

𝑎 (𝑢)

× ℎ (𝑠, 𝑧𝑝 (ℎ1 (𝑠)) , . . . , 𝑧𝑝 (ℎ𝑙 (𝑠))) 𝑑𝑠 𝑑𝑢.

(109)

In order to prove (b), we just need to show that 𝑧1 ̸=𝑧2. Notice
that (16), (103), (109), and Lemma 1 ensure that

𝑧1 (𝑡) − 𝑧2 (𝑡)


≥
𝐿1 − 𝐿2

 −
1

(𝑛 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−2

|𝑎 (𝑢)|

×
𝑓 (𝑠, 𝑧2 (𝑓1 (𝑠)) , . . . , 𝑧2 (𝑓𝑙 (𝑠)))

−𝑓 (𝑠, 𝑧1 (𝑓1 (𝑠)) , . . . , 𝑧1 (𝑓𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

−
1

(𝑛 − 𝑖 − 2)!

∞

∑

𝑗=1

∫

+∞

𝑡+𝑗𝜏

∫

+∞

𝑢

(𝑠 − 𝑢)
𝑛−𝑖−2

|𝑎 (𝑢)|

×
ℎ (𝑠, 𝑧1 (ℎ1 (𝑠)) , . . . , 𝑧1 (ℎ𝑙 (𝑠)))

−ℎ (𝑠, 𝑧2 (ℎ1 (𝑠)) , . . . , 𝑧2 (ℎ𝑙 (𝑠)))
 𝑑𝑠 𝑑𝑢

≥
𝐿1 − 𝐿2

 −

𝑧1 − 𝑧2


𝜏 (𝑛 − 2)!
∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑢𝑠
𝑛−2

|𝑎 (𝑢)|
𝑃 (𝑠) 𝑑𝑠 𝑑𝑢

−

𝑧1 − 𝑧2


𝜏 (𝑛 − 𝑖 − 2)!
∫

+∞

𝑡+𝜏

∫

+∞

𝑢

𝑢𝑠
𝑛−𝑖−2

|𝑎 (𝑢)|
𝑅 (𝑠) 𝑑𝑠 𝑑𝑢

≥
𝐿1 − 𝐿2

 −

𝑧1 − 𝑧2


𝜏
∫

+∞

max{𝑇1 ,𝑇2}
∫

+∞

𝑢

𝑢

|𝑎 (𝑢)|

× [
𝑠
𝑛−2

(𝑛 − 2)!
𝑃 (𝑠) +

𝑠
𝑛−𝑖−2

(𝑛 − 𝑖 − 2)!
𝑅 (𝑠)] 𝑑𝑠 𝑑𝑢

>
𝐿1 − 𝐿2

 −max {𝜃1, 𝜃2}
𝑧1 − 𝑧2

 ,

(110)

which yields that

𝑧1 − 𝑧2
 ≥

𝐿1 − 𝐿2


1 +max {𝜃1, 𝜃2}
> 0, (111)

that is, 𝑧1 ̸=𝑧2. This completes the proof.

3. Remark and Examples

Remark 11. Theorems 2–10 extend, improve, and unifies
Theorems 1–4 in [1], the theorem in [2], Theorems 2.1–2.4
in [4], Theorems 2.1–2.5 in [5, 8], Theorems 1–3 in [9], and
Theorems 1–4 in [11], respectively. The examples below prove
that Theorems 2–10 extend substantially the corresponding
results in [1, 2, 4, 5, 8, 9, 11]. Note that none of the known
results can be applied to these examples.

Example 12. Consider the higher order nonlinear neutral
delay differential equation

[

[

(𝑡
𝑚+1

+ 1)(𝑥 (𝑡) +
sin (2𝑡

2
) − cos (𝑡5 − 1)

7 + 2 sin (8𝑡3 + 2𝑡 − 1)
𝑥 (𝑡−𝜏))

(𝑚)

]

]

(𝑛−𝑚)

+ (
𝑡
2
𝑥 (𝑡 − 3) 𝑥

2
(𝑡 − 4)

𝑡𝑛−𝑚−𝑖+3 + 𝑡2 + 1
)

(𝑖)

+
𝑡
3
𝑥
3
(𝑡
2
− 𝑡) − 𝑥

4
(𝑡 − 1)

𝑡𝑛−𝑚+4 + 𝑡 + 2

=
𝑡 ln (1 + 𝑡

2
) − cos2 (𝑡2 − 𝑡 + 1)

𝑡2𝑛−𝑚+3 + 1
, ∀𝑡 ≥ 2,

(112)
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where 𝜏 > 0 and 𝑖 ≤ 𝑛 − 𝑚 − 1. Let 𝑙 = 2, 𝑡0 = 2, 𝛾 =

min{2 − 𝜏, −2},𝑀 = 10,𝑁 = 1, 𝑏0 = 2/5 and

ℎ1 (𝑡) = 𝑡 − 3, ℎ2 (𝑡) = 𝑡 − 4,

𝑓1 (𝑡) = 𝑡
2
− 𝑡, 𝑓2 (𝑡) = 𝑡 − 1,

𝑎 (𝑡) = 𝑡
𝑚+1

+ 1, 𝑏 (𝑡) =
sin (2𝑡

2
) − cos (𝑡5 − 1)

7 + 2 sin (8𝑡3 + 2𝑡 − 1)
,

ℎ (𝑡, 𝑢, V) =
𝑡
2
𝑢V
2

𝑡𝑛−𝑚−𝑖+3 + 𝑡2 + 1
,

𝑓 (𝑡, 𝑢, V) =
𝑡
3
𝑢
3
− V
4

𝑡𝑛−𝑚+4 + 𝑡 + 2
,

𝑔 (𝑡) =
𝑡 ln (1 + 𝑡

2
) − cos2 (𝑡2 − 𝑡 + 1)

𝑡2𝑛−𝑚+3 + 1
,

𝑃 (𝑡) =
𝑀
2
(3𝑡
3
+ 4𝑀)

𝑡𝑛−𝑚+4 + 𝑡 + 2
, 𝑄 (𝑡) =

𝑀
3
(𝑡
3
+ 𝑀)

𝑡𝑛−𝑚+4 + 𝑡 + 2
,

𝑅 (𝑡) =
3𝑀
2
𝑡
2

𝑡𝑛−𝑚−𝑖+3 + 𝑡2 + 1
,

𝑊 (𝑡) =
𝑀
3
𝑡
2

𝑡𝑛−𝑚−𝑖+3 + 𝑡2 + 1
,

∀ (𝑡, 𝑢, V) ∈ [𝑡0, +∞) × [𝑁,𝑀]
2
.

(113)

It is easy to verify that the conditions of Theorem 2 are
satisfied. Thus Theorem 2 ensures that (112) has uncountably
many positive solutions in Ω1(1, 10), and for any 𝐿 ∈ (5, 6),
there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that the
Mann iterative sequence {𝑥𝑘}𝑘∈N0

generated by (19) and (21)
converges to a positive solution 𝑥 ∈ Ω1(1, 10) of (112) and has
the error estimate (20).

Example 13. Consider the higher order nonlinear neutral
delay differential equation

[(𝑡
𝑛
+ 1)(𝑥 (𝑡) +

3𝑡
2

4𝑡2 + 3
𝑥 (𝑡 − 𝜏))

(𝑚)

]

(𝑛−𝑚)

+ (
𝑡
2
𝑥 (𝑡 ln 𝑡) − (𝑡 + 1) 𝑥 (𝑡 ln 𝑡) 𝑥 (√2𝑡)

𝑡𝑛+𝑚−𝑖+3
)

(𝑖)

+
(2 − 𝑡

2
) arctan 𝑡 + 𝑡𝑥

3
(𝑡
3
+ 𝑡
2
) 𝑥
2
(𝑡
2
)

𝑡𝑛+𝑚+3 + 𝑥2 (𝑡2)

=

√1 − 8𝑡3 + 13𝑡5 + 5𝑡6 cos (𝑡3 − 1)

𝑡2𝑛+𝑚+4
, ∀𝑡 ≥ 1,

(114)

where 𝜏 > 0 and 𝑖 ≤ 𝑛 − 𝑚 − 1. Let 𝑙 = 2, 𝑡0 = 1, 𝛾 =

min{1 − 𝜏, 0},𝑀 = 6,𝑁 = 1, 𝑏0 = 3/4 and

ℎ1 (𝑡) = 𝑡 ln 𝑡, ℎ2 (𝑡) =
√2𝑡,

𝑓1 (𝑡) = 𝑡
3
+ 𝑡
2
, 𝑓2 (𝑡) = 𝑡

2
,

𝑎 (𝑡) = 𝑡
𝑛
+ 1, 𝑏 (𝑡) =

3𝑡
2

4𝑡2 + 3
,

ℎ (𝑡, 𝑢, V) =
𝑡
2
𝑢 − (𝑡 + 1) 𝑢V

𝑡𝑛+𝑚−𝑖+3
,

𝑓 (𝑡, 𝑢, V) =
(2 − 𝑡

2
) arctan 𝑡 + 𝑡𝑢

3
V
2

𝑡𝑛+𝑚+3 + V2
,

𝑔 (𝑡) =

√1 − 8𝑡3 + 13𝑡5 + 5𝑡6 cos (𝑡3 − 1)

𝑡2𝑛+𝑚+4
,

𝑃 (𝑡) =
5𝑀
4
𝑡
𝑛+𝑚+4

+ 2𝑀(2 + 𝑡
2
) arctan 𝑡 + 5𝑀

6
𝑡

(𝑡𝑛+𝑚+3 + 𝑁2)
2

,

𝑄 (𝑡) =
(2 + 𝑡

2
) arctan 𝑡 + 𝑀

5
𝑡

𝑡𝑛+𝑚+3 + 𝑁2
,

𝑅 (𝑡) =
𝑡
2
+ 2𝑀 (𝑡 + 1)

𝑡𝑛+𝑚−𝑖+3
, 𝑊 (𝑡) =

𝑀𝑡
2
+ 𝑀
2
(𝑡 + 1)

𝑡𝑛+𝑚−𝑖+3
,

∀ (𝑡, 𝑢, V) ∈ [𝑡0, +∞) × [𝑁,𝑀]
2
.

(115)

It is easy to check that the conditions of Theorem 3 are
satisfied. Therefore (114) has uncountably many positive
solutions in Ω1(1, 6), and for any 𝐿 ∈ (11/2, 6), there exist
𝜃 ∈ (0, 1) and𝑇 > 1+|𝑡0|+𝜏+|𝛾| such that theMann iterative
sequence {𝑥𝑘}𝑘∈N0

generated by (19) and (21) converges to
a positive solution 𝑥 ∈ Ω1(1, 6) of (114) and has the error
estimate (20).

Example 14. Consider the higher order nonlinear neutral
delay differential equation

[(𝑡 + 1) (𝑥 (𝑡) −
arctan 𝑡

2
𝑥 (𝑡 − 𝜏))

(𝑚)

]

(𝑛−𝑚)

+ (
𝑡
2
𝑥 (𝑡
3
+ 𝑡) − 𝑥

2
(𝑡
3
− 1)

𝑡2𝑛+𝑚−𝑖+3 + 𝑥2 (𝑡3 + 𝑡)
)

(𝑖)

+
𝑡𝑥 (𝑡 − 1) sin (𝑡𝑥 (𝑡 − sin 𝑡))

𝑡2𝑛+𝑚+3 + 𝑡3 + 2

=
𝑡√𝑡 + 1sin2 (𝑡2 + 2𝑡 + 1)

𝑡2𝑛+𝑚+3 + 1
, ∀𝑡 ≥ 0,

(116)
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where 𝜏 > 0 and 𝑖 ≤ 𝑛 − 𝑚 − 1. Let 𝑙 = 2, 𝑡0 = 0, 𝛾 =

min{−𝜏, −1},𝑀 = 8,𝑁 = 1/2, 𝑏0 = 7/8 and

ℎ1 (𝑡) = 𝑡
3
+ 𝑡, ℎ2 (𝑡) = 𝑡

3
− 1,

𝑓1 (𝑡) = 𝑡 − 1, 𝑓2 (𝑡) = 𝑡 − sin 𝑡,

𝑎 (𝑡) = 𝑡 + 1, 𝑏 (𝑡) = −
1

2
arctan 𝑡,

ℎ (𝑡, 𝑢, V) =
𝑡
2
𝑢 − V
2

𝑡2𝑛+𝑚−𝑖+3 + 𝑢2
,

𝑓 (𝑡, 𝑢, V) =
𝑡𝑢 sin (𝑡V)

𝑡2𝑛+𝑚+3 + 𝑡3 + 2
,

𝑔 (𝑡) =
𝑡√𝑡 + 1sin2 (𝑡2 + 2𝑡 + 1)

𝑡2𝑛+𝑚+3 + 1
,

𝑃 (𝑡) =
𝑀𝑡
2
+ 𝑡

𝑡2𝑛+𝑚+3 + 𝑡3 + 2
, 𝑄 (𝑡) =

𝑀𝑡

𝑡2𝑛+𝑚+3 + 𝑡3 + 2
,

𝑅 (𝑡) =
𝑡
2𝑛+𝑚−𝑖+5

+ 𝑀
2
𝑡
2
+ 2𝑀𝑡

2𝑛+𝑚−𝑖+3
+ 4𝑀

3

(𝑡2𝑛+𝑚−𝑖+3 + 𝑁2)
2

,

𝑊 (𝑡) =
𝑀𝑡
2
+ 𝑀
2

𝑡2𝑛+𝑚−𝑖+3 + 𝑁2
, ∀ (𝑡, 𝑢, V) ∈ [𝑡0, +∞) × [𝑁,𝑀]

2
.

(117)

It is easy to prove that the conditions of Theorem 4 are satis-
fied. Hence (116) has uncountably many positive solutions in
Ω1(1/2, 8), and for any 𝐿 ∈ (1/2, 1), there exist 𝜃 ∈ (0, 1) and
𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that the Mann iterative sequence
{𝑥𝑘}𝑘∈N0

generated by (19) and (21) converges to a positive
solution 𝑥 ∈ Ω1(1/2, 8) of (116) and has the error estimate
(20).

Example 15. Consider the higher order nonlinear neutral
delay differential equation

[(𝑡
2𝑖
+ 1) (𝑥 (𝑡) + 2

𝑡
2
+1
𝑥 (𝑡 − 𝜏))

(𝑚)

]

(𝑛−𝑚)

+ (

√𝑡 + 1𝑥
2
(𝑡 − 1) 𝑥 (𝑡

2
)

𝑡𝑛+𝑖+1 + 𝑡 ln (1 + |𝑥 (𝑡 − 2)|) + 4
)

(𝑖)

+
𝑡
2
𝑥 (𝑡 − 12) 𝑥 (𝑡

2
− 9)

𝑡2𝑛+3 + 𝑡 |𝑥 (𝑡 − 3)| + 3

=
𝑡
2 cos (2𝑡) + arctan 𝑡

3

𝑡𝑛+4 + sin2 (1 − 𝑡3 + 𝑡4) + 1
, ∀𝑡 ≥ 3,

(118)

where 𝜏 > 0 and 𝑖 ≤ 𝑛 − 𝑚 − 1. Let 𝑙 = 3, 𝑡0 = 0, 𝛾 =

min{3 − 𝜏, −9},𝑀 = 12,𝑁 = 5, 𝑏0 = 2 and

ℎ1 (𝑡) = 𝑡 − 1, ℎ2 (𝑡) = 𝑡
2
, ℎ3 (𝑡) = 𝑡 − 2,

𝑓1 (𝑡) = 𝑡 − 12, 𝑓2 (𝑡) = 𝑡
2
− 9, 𝑓3 (𝑡) = 𝑡 − 3,

𝑎 (𝑡) = 𝑡
2𝑖
+ 1, 𝑏 (𝑡) = 2

𝑡
2
+1
,

ℎ (𝑡, 𝑢, V, 𝑤) =
√𝑡 + 1𝑢

2
V

𝑡𝑛+𝑖+1 + 𝑡 ln (1 + |𝑤|) + 4
,

𝑔 (𝑡) =
𝑡
2 cos (2𝑡) + arctan 𝑡

3

𝑡𝑛+4 + sin2 (1 − 𝑡3 + 𝑡4) + 1
,

𝑓 (𝑡, 𝑢, V, 𝑤) =
𝑡
2
𝑢V

𝑡2𝑛+3 + 𝑡 |𝑤| + 3
,

𝑃 (𝑡) =
𝑀𝑡
2
(6𝑏0 + 3𝑀

2
𝑡 + 2𝑏0𝑡

2𝑛+3
)

𝑏2
0
(𝑡2𝑛+3 + 3)

2
,

𝑄 (𝑡) =
𝑀
2
𝑡
2

𝑏2
0
(𝑡2𝑛+3 + 3)

,

𝑅 (𝑡) =
𝑀
2√𝑡 + 1

𝑏2
0
(𝑡𝑛+𝑖+1 + 4)

2

× [3𝑡
𝑛+𝑖+1

+ 12 +
𝑀

𝑏0

𝑡 + 3𝑡 ln(1 +
𝑀

𝑏0

)] ,

𝑊 (𝑡) =
𝑀
3√𝑡 + 1

𝑏3
0
(𝑡𝑛+𝑖+1 + 4)

,

∀ (𝑡, 𝑢, V, 𝑤) ∈ [𝑡0, +∞) × [0,
𝑀

𝑏0

]

3

.

(119)

It is easy to verify that the conditions of Theorem 5 are
satisfied.HenceTheorem 5 ensures that (118) has uncountably
many positive solutions inΩ2(5, 12), and, for any𝐿 ∈ (11, 12),
there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that the
Mann iterative sequence {𝑥𝑘}𝑘∈N0

generated by (48) and (21)
converges to a positive solution 𝑥 ∈ Ω2(5, 12) of (118) and has
the error estimate (20).

Example 16. Consider the higher order nonlinear neutral
delay differential equation

[(𝑡
3𝑛

+ 2𝑡
𝑛+1

+ 1) (𝑥 (𝑡) − (𝑡
2
+ 2𝑡 + 4) 𝑥 (𝑡 − 𝜏))

(𝑚)

]

(𝑛−𝑚)

+ (
𝑡𝑥 (𝑡 − 3) 𝑥

2
(𝑡 − 4)

𝑡𝑛+10 + 𝑥2 (𝑡 − 3)
)

(𝑖)
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+

√𝑡 + 1𝑥
3
(𝑡 ln 𝑡) − 𝑡𝑥

4
(𝑡
2
− 𝑡)

(𝑡 + 1)
𝑛+3

+ 𝑡𝑥2 (𝑡 ln 𝑡)

=
𝑡 ln (1 + 𝑡

2
) − √𝑡 + 3cos3 (𝑡3 + 1)

𝑡𝑛+5 + 4𝑡3 − 1 − 𝑡sin5 (𝑡2 − 3)
, ∀𝑡 ≥ 1,

(120)

where 𝜏 > 0, and 𝑖 ≤ 𝑛−𝑚−1. Let 𝑙 = 2, 𝑡0 = 1, 𝛾 = min{1−𝜏,

−3},𝑀 = 6,𝑁 = 2, 𝑏0 = 3 and

ℎ1 (𝑡) = 𝑡 − 3, ℎ2 (𝑡) = 𝑡 − 4,

𝑓1 (𝑡) = 𝑡 ln 𝑡, 𝑓2 (𝑡) = 𝑡
2
− 𝑡,

𝑎 (𝑡) = 𝑡
3𝑛

+ 2𝑡
𝑛+1

+ 1, 𝑏 (𝑡) = −𝑡
2
− 2𝑡 − 4,

ℎ (𝑡, 𝑢, V) =
𝑡𝑢V
2

𝑡𝑛+10 + 𝑢2
,

𝑓 (𝑡, 𝑢, V) =
√𝑡 + 1𝑢

3
− 𝑡V
4

(𝑡 + 1)
𝑛+3

+ 𝑡𝑢2
,

𝑔 (𝑡) =
𝑡 ln (1 + 𝑡

2
) − √𝑡 + 3cos3 (𝑡3 + 1)

𝑡𝑛+5 + 4𝑡3 − 1 − 𝑡sin5 (𝑡2 − 3)
,

𝑃 (𝑡)

=
𝑀
2

𝑏2
0
(𝑡 + 1)

2𝑛+6

× [3(𝑡 + 1)
𝑛+7/2

+
𝑀
2

𝑏2
0

𝑡√𝑡 + 1 + 4
𝑀

𝑏0

𝑡(𝑡 + 1)
𝑛+3

+ 6
𝑀
3

𝑏3
0

𝑡
2
] ,

𝑄 (𝑡) =
𝑀
3

𝑏3
0
(𝑡 + 1)

𝑛+8
(√𝑡 + 1 +

𝑀

𝑏0

𝑡) ,

𝑅 (𝑡) =
3𝑀
2

𝑏2
0
𝑡2𝑛+19

(𝑡
𝑛+10

+
𝑀
2

𝑏2
0

) ,

𝑊 (𝑡) =
𝑀
3

𝑏3
0
𝑡𝑛+9

,

∀ (𝑡, 𝑢, V) ∈ [𝑡0, +∞) × [0,
𝑀

𝑏0

]

2

.

(121)

It is easy to check that the conditions of Theorem 6 are
satisfied.ThusTheorem 6 ensures that (120) has uncountably
many positive solutions in Ω3(2, 6), and, for any 𝐿 ∈ (2, 4),
there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that the
Mann iterative sequence {𝑥𝑘}𝑘∈N0

generated by (61) and (21)
converges to a positive solution 𝑥 ∈ Ω3(2, 6) of (120) and has
the error estimate (20).

Example 17. Consider the higher order nonlinear neutral
delay differential equation

[(𝑡
2 ln 𝑡) (𝑥 (𝑡) + 𝑥 (𝑡 − 𝜏))

(𝑚)
]
(𝑛−𝑚)

+ (
𝑥 (√𝑡 − 2) + 𝑥 (2𝑡 − 1)

𝑡3𝑛−𝑚−𝑖+2 + 𝑥2 (𝑡 − cos 𝑡)
)

(𝑖)

+
𝑥
2
(𝑡 − 4) + 𝑥 (√𝑡 − 1) 𝑥

2
(𝑡 − sin (𝑡

9
+ 1))

𝑡2𝑛−𝑚+3 + 1

=
sin13 (𝑡5 − √𝑡 + 1)

𝑡𝑛+7/2 + 1
, ∀𝑡 ≥ 4,

(122)

where 𝜏 > 0, 𝑚 ≥ 2 and 𝑖 ≤ 𝑛 − 𝑚 − 1. Let 𝑙 = 3, 𝑡0 = 4,
𝛾 = min{4 − 𝜏, 0},𝑀 = 100,𝑁 = 1 and

ℎ1 (𝑡) =
√𝑡 − 2, ℎ2 (𝑡) = 2𝑡 − 1, ℎ3 (𝑡) = 𝑡 − cos 𝑡,

𝑓1 (𝑡) = 𝑡 − 4, 𝑓2 (𝑡) =
√𝑡 − 1, 𝑓3 (𝑡) = 𝑡 − sin (𝑡

9
+ 1) ,

𝑎 (𝑡) = 𝑡
2 ln 𝑡, 𝑏 (𝑡) = 1,

ℎ (𝑡, 𝑢, V, 𝑤) =
𝑢 + V

𝑡3𝑛−𝑚−𝑖+2 + 𝑤2
,

𝑓 (𝑡, 𝑢, V, 𝑤) =
𝑢
2
+ V𝑤
2

𝑡2𝑛−𝑚+3 + 1
,

𝑔 (𝑡) =
sin13 (𝑡5 − √𝑡 + 1)

𝑡𝑛+7/2 + 1
, 𝑃 (𝑡) =

2𝑀 + 3𝑀
2

𝑡2𝑛−𝑚+3 + 1
,

𝑄 (𝑡) =
𝑀
2
+ 𝑀
3

𝑡2𝑛−𝑚+3 + 1
, 𝑅 (𝑡) =

2𝑡
3𝑛−𝑚−𝑖+2

+ 6𝑀
2

(𝑡3𝑛−𝑚−𝑖+2 + 𝑁2)
2
,

𝑊 (𝑡) =
2𝑀

𝑡3𝑛−𝑚−𝑖+2 + 𝑁2
,

∀ (𝑡, 𝑢, V, 𝑤) ∈ [𝑡0, +∞) × [𝑁,𝑀]
3
.

(123)

It is easy to check that the conditions of Theorem 7 are
satisfied.Thus (122) has uncountably many positive solutions
in Ω1(1, 100), and, for any 𝐿 ∈ (1, 100), there exist 𝜃 ∈ (0, 1)

and𝑇 > 1+|𝑡0|+𝜏+|𝛾| such that theMann iterative sequence
{𝑥𝑘}𝑘∈N0

generated by (66) and (21) converges to a positive
solution 𝑥 ∈ Ω1(1, 100) of (122) and has the error estimate
(20).
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Example 18. Consider the higher order nonlinear neutral
delay differential equation

[
2 + sin (𝑡 + √𝑡)

𝑡2
(𝑥 (𝑡) + 𝑥 (𝑡 − 𝜏))


]

(𝑛−1)

+ (
𝑥
3
(𝑡 − 2) − 𝑡

2
𝑥
4
(√𝑡 + 1 − 1)

𝑡5𝑛+3 + 𝑡 + 1
)

(𝑖)

+
𝑥
3
(𝑡 − 3) − 𝑡

𝑡3𝑛+4 + 𝑥2 (𝑡 − (−1)
𝑛
)

=
sin (𝑡
4
− √𝑡2 + 1)

𝑡𝑛+3 + ln 𝑡
, ∀𝑡 ≥ 3,

(124)

where 𝜏 > 0, 𝑚 = 1 and 𝑖 ≤ 𝑛 − 2. Let 𝑙 = 2, 𝑡0 = 3, 𝛾 =

min{3 − 𝜏, 0},𝑀 = 10,𝑁 = 9 and

ℎ1 (𝑡) = 𝑡 − 2, ℎ2 (𝑡) =
√𝑡 + 1 − 1,

𝑓1 (𝑡) = 𝑡 − 3, 𝑓2 (𝑡) = 𝑡 − (−1)
𝑛
,

𝑎 (𝑡) =
2 + sin (𝑡 + √𝑡)

𝑡2
, 𝑏 (𝑡) = 1,

ℎ (𝑡, 𝑢, V) =
𝑢
3
− 𝑡
2
V
4

𝑡5𝑛+3 + 𝑡 + 1
,

𝑓 (𝑡, 𝑢, V) =
𝑢
3
− 𝑡

𝑡3𝑛+4 + V2
,

𝑔 (𝑡) =
sin (𝑡
4
− √𝑡2 + 1)

𝑡𝑛+3 + ln 𝑡
,

𝑃 (𝑡) =
𝑀(5𝑀

3
+ 2𝑡 + 2𝑀𝑡

3𝑛+4
)

(𝑡3𝑛+4 + 𝑁2)
2

,

𝑄 (𝑡) =
𝑀
3
+ 𝑡

𝑡3𝑛+4 + 𝑁2
,

𝑅 (𝑡) =
𝑀
2
(3 + 4𝑀𝑡

2
)

𝑡5𝑛+3 + 𝑡 + 1
, 𝑊 (𝑡) =

𝑀
3
(1 + 𝑀𝑡

2
)

𝑡5𝑛+3 + 𝑡 + 1
,

∀ (𝑡, 𝑢, V) ∈ [𝑡0, +∞) × [𝑁,𝑀]
2
.

(125)

It is easy to check that the conditions of Theorem 8 are
satisfied. ThusTheorem 8 ensures that (124) has uncountably
many positive solutions inΩ1(9, 10), and, for any 𝐿 ∈ (9, 10),
there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that the
Mann iterative sequence {𝑥𝑘}𝑘∈N0

generated by (78) and (21)
converges to a positive solution 𝑥 ∈ Ω1(9, 10) of (124) and
has the error estimate (20).

Example 19. Consider the higher order nonlinear neutral
delay differential equation

[𝑡
𝑚+1 ln (4 + sin (𝑡

2
− √𝑡)) (𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏))

(𝑚)
]
(𝑛−𝑚)

+ (
𝑡

𝑡𝑛−𝑚+4 + 𝑥4 (𝑡 − √𝑡)
)

(𝑖)

+
sin (𝑡
3
− 2𝑡 + √𝑡3 + 1)

𝑡𝑛+𝑚 + |𝑡 − 𝑥 (𝑡 − 3)|

=
𝑡cos5 (𝑡7 − 𝑡

4
+ 1)

𝑡𝑛 + 2𝑡 − cos3 (𝑡2 − 3)
, ∀𝑡 ≥ 4,

(126)

where 𝜏 > 0, 𝑚 ≥ 2 and 𝑖 ≤ 𝑛 − 𝑚 − 1. Let 𝑙 = 1, 𝑡0 = 4,
𝛾 = min{4 − 𝜏, 1},𝑀 = 7,𝑁 = 5 and

ℎ1 (𝑡) = 𝑡 − √𝑡, 𝑓1 (𝑡) = 𝑡 − 3,

𝑎 (𝑡) = 𝑡
𝑚+1 ln (4 + sin (𝑡

2
− √𝑡)) ,

𝑏 (𝑡) = −1, ℎ (𝑡, 𝑢) =
𝑡

𝑡𝑛−𝑚+4 + 𝑢4
,

𝑓 (𝑡, 𝑢) =
sin 𝑡
3
(−2𝑡 + √𝑡3 + 1)

𝑡𝑛+𝑚 + |𝑡 − 𝑢|
,

𝑔 (𝑡) =
𝑡cos5 (𝑡7 − 𝑡

4
+ 1)

𝑡𝑛 + 2𝑡 − cos3 (𝑡2 − 3)
,

𝑃 (𝑡) =
1

𝑡2𝑛+2𝑚
, 𝑄 (𝑡) =

1

𝑡𝑛+𝑚
,

𝑅 (𝑡) =
4𝑀
3

𝑡2𝑛−2𝑚+7
, 𝑊 (𝑡) =

1

𝑡𝑛−𝑚+3
,

∀ (𝑡, 𝑢) ∈ [𝑡0, +∞) × [𝑁,𝑀]
2
.

(127)

It is easy to check that the conditions of Theorem 9 are
satisfied.ThusTheorem 9 ensures that (126) has uncountably
many positive solutions in Ω1(5, 7), and, for any 𝐿 ∈ (5, 7),
there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that the
Mann iterative sequence {𝑥𝑘}𝑘∈N0

generated by (90) and (21)
converges to a positive solution 𝑥 ∈ Ω1(5, 7) of (126) and has
the error estimate (20).

Example 20. Consider the higher order nonlinear neutral
delay differential equation

[
1

𝑡3
(𝑥 (𝑡) − 𝑥 (𝑡 − 𝜏))


]

(𝑛−1)

+ (
𝑡 − sin (𝑡

8
− 4𝑡
5
− 1)

𝑡𝑛+7 +
𝑥 (𝑡 − 1) − 𝑥3 (𝑡 − 2)



)

(𝑖)
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+
ln (1 + 𝑥

2
(𝑡 − arctan 𝑡))

𝑡2𝑛+6 + 𝑥2 (𝑡 − 4)

=
𝑡 ln (𝑡 + cos (𝑡3 − 1))

𝑡𝑛+8 + 1
, ∀𝑡 ≥ 5,

(128)

where 𝜏 > 0, 𝑚 = 1 and 𝑖 ≤ 𝑛 − 2. Let 𝑙 = 2, 𝑡0 = 5, 𝛾 =

min{5 − 𝜏, 1},𝑀 = 4,𝑁 = 2 and

ℎ1 (𝑡) = 𝑡 − 1, ℎ2 (𝑡) = 𝑡 − 2, 𝑓1 (𝑡) = 𝑡 − arctan 𝑡,

𝑓2 (𝑡) = 𝑡 − 4, 𝑎 (𝑡) =
1

𝑡3
, 𝑏 (𝑡) = −1,

ℎ (𝑡, 𝑢, V) =
𝑡 − sin (𝑡

8
− 4𝑡
5
− 1)

𝑡𝑛+7 +
𝑢 − V3



,

𝑓 (𝑡, 𝑢, V) =
ln (1 + 𝑢

2
)

𝑡2𝑛+6 + V2
, 𝑔 (𝑡) =

𝑡 ln (𝑡 + cos (𝑡3 − 1))

𝑡𝑛+8 + 1
,

𝑃 (𝑡) =
2𝑀(2𝑀

2
+ 𝑡
2𝑛+6

)

𝑡4𝑛+12
, 𝑄 (𝑡) =

𝑀
2

𝑡2𝑛+6
,

𝑅 (𝑡) =
2 + 6𝑀

2

𝑡2𝑛+13
, 𝑊 (𝑡) =

2

𝑡𝑛+6
,

∀ (𝑡, 𝑢, V) ∈ [𝑡0, +∞) × [𝑁,𝑀]
2
.

(129)

It is easy to check that the conditions of Theorem 10 are
satisfied.ThusTheorem 10 ensures that (128) has uncountably
many positive solutions in Ω1(2, 4), and, for any 𝐿 ∈ (2, 4),
there exist 𝜃 ∈ (0, 1) and 𝑇 > 1 + |𝑡0| + 𝜏 + |𝛾| such that the
Mann iterative sequence {𝑥𝑘}𝑘∈N0 generated by (102) and (21)
converges to a positive solution 𝑥 ∈ Ω1(2, 4) of (128) and has
the error estimate (20).
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This paper concerns limit cycle bifurcations by perturbing a piecewise linear Hamiltonian system.We first obtain all phase portraits
of the unperturbed system having at least one family of periodic orbits. By using the first-order Melnikov function of the piecewise
near-Hamiltonian system, we investigate the maximal number of limit cycles that bifurcate from a global center up to first order of
𝜀.

1. Introduction and Main Results

Recently, piecewise smooth dynamical systems have been
well concerned, especially in the scientific problems and
engineering applications. For example, see the works of
Filippov [1], Kunze [2], di Bernardo et al. [3], and the refer-
ences therein. Because of the variety of the nonsmoothness,
there can appear many complicated phenomena in piecewise
smooth dynamical systems such as stability (see [4, 5]), chaos
(see [6]), and limit cycle bifurcation (see [7–10]). Here, we
are more concerned with bifurcation of limit cycles in a
perturbed piecewise linear Hamiltonian system:

̇𝑥 = 𝑦 + 𝜀𝑝 (𝑥, 𝑦, 𝛿) ,

̇𝑦 = −𝑔 (𝑥) + 𝜀𝑞 (𝑥, 𝑦, 𝛿) ,

(1)

where 𝜀 > 0 is a sufficiently small real parameter,

𝑔 (𝑥) = {
𝑎1𝑥 + 𝑎0, 𝑥 ≥ 0,

𝑏1𝑥 + 𝑏0, 𝑥 < 0
(2)

with 𝑎1, 𝑎0, 𝑏1, and 𝑏0 real numbers satisfying 𝑎
2

1
+𝑎

2

0
̸=0, 𝑏

2

1
+

𝑏
2

0
̸=0,

𝑝 (𝑥, 𝑦, 𝛿) =

{{{{{

{{{{{

{

𝑝
+
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑎
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
, 𝑥 ≥ 0,

𝑝
−
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑎
−

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
, 𝑥 < 0,

(3)

𝑞 (𝑥, 𝑦, 𝛿) =

{{{{{

{{{{{

{

𝑞
+
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑏
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
, 𝑥 ≥ 0,

𝑞
−
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑏
−

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
, 𝑥 < 0,

(4)

and 𝛿 = (𝑎
+

𝑖𝑗
, 𝑎
−

𝑖𝑗
, 𝑏
+

𝑖𝑗
, 𝑏
−

𝑖𝑗
) ∈ 𝐷 ⊂ R2(𝑛+1)(𝑛+2) with 𝐷 compact.

Then system (1) has two subsystems

̇𝑥 = 𝑦 + 𝜀𝑝
+
(𝑥, 𝑦, 𝛿) ,

̇𝑦 = −𝑎1𝑥 − 𝑎0 + 𝜀𝑞
+
(𝑥, 𝑦, 𝛿) ,

(5a)

̇𝑥 = 𝑦 + 𝜀𝑝
−
(𝑥, 𝑦, 𝛿) ,

̇𝑦 = −𝑏1𝑥 − 𝑏0 + 𝜀𝑞
−
(𝑥, 𝑦, 𝛿) ,

(5b)
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which are called the right subsystem and the left subsystem,
respectively. For 𝜀 = 0, systems (5a) and (5b) are Hamiltonian
with the Hamiltonian functions, respectively,

𝐻
+
(𝑥, 𝑦) =

1

2
𝑦
2
+

1

2
𝑎1𝑥

2
+ 𝑎0𝑥,

𝐻
−
(𝑥, 𝑦) =

1

2
𝑦
2
+

1

2
𝑏1𝑥

2
+ 𝑏0𝑥.

(6)

Note that the phase portrait of the linear system

̇𝑥 = 𝑦,

̇𝑦 = −𝑎𝑥 − 𝑏,

(7)

with 𝑎
2
+𝑏

2
̸=0 has possibly the following four different phase

portraits on the plane (see Figure 1).
Then, one can find that system (1) |𝜀=0 can have 13 different

phase portraits (see Figure 2) when at least one family of
periodic orbits appears.

We remark that in Figure 2,

GC: global center,
Ho: homoclinic,
He: heteroclinic,
𝐶
+: center in the region {(𝑥, 𝑦) | 𝑥 > 0},

𝐶
−: center in the region {(𝑥, 𝑦) | 𝑥 < 0},

𝑆
+: saddle in the region {(𝑥, 𝑦) | 𝑥 > 0},

𝑆
−: saddle in the region {(𝑥, 𝑦) | 𝑥 < 0},

𝐿
+: curvilinear or straightline in the region {(𝑥, 𝑦) |

𝑥 > 0},
𝐿
−: curvilinear or straightline in the region {(𝑥, 𝑦) |

𝑥 < 0}.

It is easy to obtain the following Table 1 which shows
conditions for each possible phase portrait appearing above.
Also, cases (3), (5), (7), (9), and (13) in Figure 2 are equivalent
to cases (2), (6), (8), (10), and (12), respectively, bymaking the
transformation

(𝑥, 𝑦) → (−𝑥, 𝑦) , (8)

together with time rescaling 𝑑𝑡 = −𝑑𝜏.
The authors Liu and Han [7] studied system (1) in a

subcase of the case (1) of Figure 2 by taking 𝑎1 = 𝑏1 = 1, 𝑎0 =

𝑏0 = 0. By using the first order Melnikov function, they
proved that the maximal number of limit cycles on Poincaré
bifurcations is n up to first-order in 𝜀. The authors Liang
et al. [8] considered system (1) in the case (5) of Figure 2
by taking 𝑎1 = −1, 𝑎0 = 1, 𝑏1 = 1, and 𝑏0 = 0. By using
the same method, they gave lower bounds of the maximal
number of limit cycles in Hopf, and Homoclinic bifurcations,
and derived an upper bound of the maximal number of limit
cycles bifurcating from the periodic annulus between the
center and the Homoclinic loop up to the first-order in 𝜀.
Clearly, the maximal number of limit cycles in the case (7) or
(8) of Figure 2 is [(𝑛−1)/2] onPoincaré,Hopf andHomoclinic

bifurcations up to first-order in 𝜀, by using the first order
Melnikov function.

This paper focuses on studying the limit cycle bifurcations
of system (1) in the case (1) of Figure 2 by using the first order
Melnikov function. That is, system (1) satisfies

𝑎1 ≥ 0, 𝑎0 ≥ 0, 𝑎0 + 𝑎1 > 0,

𝑏1 ≥ 0, 𝑏0 ≤ 0, 𝑏0 < 𝑏1.

(9)

Clearly, system (1) |𝜀=0 satisfying (9) has a family of periodic
orbits

𝐿ℎ = 𝐿
+

ℎ
∪ 𝐿

−

ℎ

= {(𝑥, 𝑦) | 𝐻
+
(𝑥, 𝑦) = ℎ}

∪ {(𝑥, 𝑦) | 𝐻
−
(𝑥, 𝑦) = ℎ} , ℎ > 0,

(10)

such that the limit of 𝐿ℎ as ℎ → 0
+ is the origin. The

intersection points of the closed curve 𝐿ℎ with the positive 𝑦-
axis and the negative 𝑦-axis are denoted by 𝐴(ℎ) = (0, √2ℎ)

and 𝐴1(ℎ) = (0, −√2ℎ), respectively. Let

𝑀
+
(ℎ, 𝛿) = ∫

𝐴𝐴1

𝑞
+
𝑑𝑥 − 𝑝

+
𝑑𝑦,

𝑀
−
(ℎ, 𝛿) = ∫

𝐴1𝐴

𝑞
−
𝑑𝑥 − 𝑝

−
𝑑𝑦, ℎ > 0.

(11)

Then, from Liu and Han [7], the first-order Melnikove
function corresponding to system (1) is

𝑀(ℎ, 𝛿) = 𝑀
+
(ℎ, 𝛿) + 𝑀

−
(ℎ, 𝛿) , ℎ ∈ (0, +∞) . (12)

Let 𝑍(𝑛) denote the maximal number of zeros of 𝑀(ℎ, 𝛿) for
ℎ > 0 and 𝑁(𝑛) the cyclicity of system (1) at the origin. Then,
we can obtain the following.

Theorem 1. Let (9) be satisfied. For any given 𝑛 ≥ 1,
one has Table 2.

This paper is organized as follows. In Section 2, we will
provide some preliminary lemmas, which will be used to
prove the main results. In Section 3, we present the proof of
Theorem 1.

2. Preliminary Lemmas

In this section, we will derive expressions of 𝑀
+
(ℎ, 𝛿),

𝑀
−
(ℎ, 𝛿) in (11). First, we have the following.

Lemma 2. Suppose system (1) satisfies (9). Then,
(i)M+

(ℎ, 𝛿) in (11) can be written as

𝑀
+
(ℎ, 𝛿) = 𝑀

+

1
(ℎ, 𝛿) +

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

2𝑘 + 1
𝑎
+

0,2𝑘
ℎ
𝑘+1/2

, (13)

where

𝑀
+

1
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+𝑗=0

𝑝
+

𝑖𝑗
∫
𝐴1𝐴

𝑥
𝑖+1

𝑦
𝑗
𝑑𝑦 =

𝑛−1

∑

𝑖+𝑗=0

𝑞
+

𝑖𝑗
∫
𝐴1𝐴

𝑥
𝑖
𝑦
𝑗+1

𝑑𝑥,

(14)
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Table 1: Coefficient conditions for phase portraits (1)–(13).

Coefficient conditions 𝑎1 ≥ 0, 𝑎0 ≥ 0 𝑎1 > 0 𝑎1 ≤ 0, 𝑎0 ≤ 0 𝑎1 < 0

𝑎1 + 𝑎0 > 0 𝑎0 < 0 𝑎1 + 𝑎0 < 0 𝑎0 > 0

𝑏1 ≥ 0, 𝑏0 ≤ 0, 𝑏1 > 𝑏0 (1) (2) (5)
𝑏1 > 0, 𝑏0 > 0 (3) (4) (7) (9)
𝑏1 ≤ 0, 𝑏0 ≥ 0, 𝑏0 > 𝑏1 (8)

(11) (𝑎2
0
𝑏1 = 𝑎1𝑏

2

0
),

𝑏1 < 0, 𝑏0 < 0 (6) (10) (12) (𝑎2
0
𝑏
1
> 𝑎

1
𝑏
2

0
),

(13) (𝑎2
0
𝑏
1
< 𝑎

1
𝑏
2

0
)

Table 2

𝑎1 > 0, 𝑎0 = 0 𝑎1 = 0, 𝑎0 > 0 𝑎1 > 0, 𝑎0 > 0

𝑏1 > 0, 𝑍(𝑛) = 𝑛, 𝑍(𝑛) = 𝑛 + [
𝑛 + 1

2
], 𝑍(𝑛) = 𝑛 + [

𝑛 + 1

2
],

𝑏0 = 0 𝑁(𝑛) ≥ 𝑛 𝑁(𝑛) ≥ 𝑛 + [
𝑛 + 1

2
] 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2
]

𝑏
1
= 0, 𝑍(𝑛) = 𝑛 + [

𝑛 + 1

2
], 𝑍(𝑛) = 𝑛, 𝑛 + [

𝑛 + 1

2
] ≤ 𝑍(𝑛) ≤ 𝑛 + 2 [

𝑛 + 1

2
]

𝑏0 < 0 𝑁(𝑛) ≥ 𝑛 + [
𝑛 + 1

2
] 𝑁(𝑛) ≥ 𝑛 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2
],

𝑏1 > 0, 𝑍(𝑛) = 𝑛 + [
𝑛 + 1

2
], 𝑛 + [

𝑛 + 1

2
] ≤ 𝑍(𝑛) ≤ 𝑛 + 2 [

𝑛 + 1

2
] 𝑛 ≤ 𝑍(𝑛) ≤ 𝑛 + [

𝑛 + 1

2
] ,

𝑎
2

0

𝑎1

=
𝑏
2

0

𝑏1

,

𝑏
0
< 0 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2
] 𝑁(𝑛) ≥ 𝑛 + [

𝑛 + 1

2
], 𝑛 ≤ 𝑍(𝑛) ≤ 𝑛 + 2 [

𝑛 + 1

2
] ,

𝑎
2

0

𝑎1

̸=
𝑏
2

0

𝑏1

𝑁(𝑛) ≥ 𝑛,

(a) 𝑎 = 0, 𝑏 > 0 (b) 𝑎 = 0, 𝑏 < 0

(c) 𝑎 > 0 (d) 𝑎 < 0

Figure 1: The possible phase portraits of system (7).
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𝑦

𝑦

𝑦

𝑦 𝑦𝑦

𝑦
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𝑥

𝑥

𝑥

𝑥 𝑥𝑥

𝑥

𝑥𝑥
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0
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0
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00

00
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Figure 2: The possible phase portraits of system (1) |𝜀=0. (1) GC. (2) HoC
+. (3) HoC−. (4) HoC−C+. (5) HoS+. (6) HoS−. (7) HoC−L+. (8)

HoC+L−. (9) HoC−HoS+. (10) HoC+HoS
−

. (11) HeS−S+. (12) HeS+. (13) HeS−.
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with

𝑝
+

𝑖𝑗
= 𝑎

+

𝑖+1,𝑗
+

𝑗 + 1

𝑖 + 1
𝑏
+

𝑖,𝑗+1
, 𝑞

+

𝑖𝑗
= 𝑏

+

𝑖,𝑗+1
+

𝑖 + 1

𝑗 + 1
𝑎
+

𝑖+1,𝑗
.

(15)

(ii) (ℎ, 𝛿) in (11) can be expressed as

𝑀
−
(ℎ, 𝛿) = 𝑀

−

1
(ℎ, 𝛿) −

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

2𝑘 + 1
𝑎
−

0,2𝑘
ℎ
𝑘+1/2

, (16)

where

𝑀
−

1
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+𝑗=0

𝑝
−

𝑖𝑗
∫
𝐴1𝐴

𝑥
𝑖+1

𝑦
𝑗
𝑑𝑦 =

𝑛−1

∑

𝑖+𝑗=0

𝑞
−

𝑖𝑗
∫
𝐴1𝐴

𝑥
𝑖
𝑦
𝑗+1

𝑑𝑥,

(17)

with

𝑝
−

𝑖𝑗
= 𝑎

−

𝑖+1,𝑗
+

𝑗 + 1

𝑖 + 1
𝑏
−

𝑖,𝑗+1
, 𝑞

−

𝑖𝑗
= 𝑏

−

𝑖,𝑗+1
+

𝑖 + 1

𝑗 + 1
𝑎
−

𝑖+1,𝑗
.

(18)

Proof. We only prove (i) since (ii) can be verified in a similar
way. By (11), we obtain

𝑀
+
(ℎ, 𝛿) = ∫

𝐴𝐴1

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

+ ∫
→
𝐴1𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

− ∫
→
𝐴1𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

= ∮
𝐴𝐴1∪

→

𝐴1𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥 − 𝑝

+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

+ ∫
→
𝐴1𝐴

𝑝
+
(0, 𝑦, 𝛿) 𝑑𝑦,

(19)

which follows that by Green formula and (3)

𝑀
+
(ℎ, 𝛿) = 𝑀

+

1
(ℎ, 𝛿) +

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

2𝑘 + 1
𝑎
+

0,2𝑘
ℎ
𝑘+1/2

, (20)

where

𝑀
+

1
(ℎ, 𝛿) = ∬

int𝐴𝐴1∪
→

𝐴1𝐴

(𝑝
+

𝑥
+ 𝑞

+

𝑦
) 𝑑𝑥 𝑑𝑦. (21)

Then, by Green formula again

𝑀
+

1
(ℎ, 𝛿) = − ∮

𝐴𝐴1∪
→

𝐴1𝐴

𝑝
+
(𝑥, 𝑦, 𝛿) 𝑑𝑦

= ∮
𝐴𝐴1∪

→

𝐴1𝐴

𝑞
+
(𝑥, 𝑦, 𝛿) 𝑑𝑥,

(22)

where

𝑝
+
(𝑥, 𝑦, 𝛿) = 𝑝

+
(𝑥, 𝑦, 𝛿) − 𝑝

+
(0, 𝑦, 𝛿) + ∫

𝑥

0

𝑞
+

𝑦
(𝑢, 𝑦, 𝛿) 𝑑𝑢,

𝑞
+
(𝑥, 𝑦, 𝛿) = 𝑞

+
(𝑥, 𝑦, 𝛿) − 𝑞

+
(𝑥, 0, 𝛿) + ∫

𝑦

0

𝑝
+

𝑥
(𝑥, V, 𝛿) 𝑑V.

(23)

By (3), (4), and the above formulas, we have

𝑝
+
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑎
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
−

𝑛

∑

𝑗=0

𝑎
+

0𝑗
𝑦
𝑗
+

𝑛

∑

𝑖+𝑗=1

𝑗

𝑖 + 1
𝑏
+

𝑖𝑗
𝑥
𝑖+1

𝑦
𝑗−1

= 𝑥

𝑛−1

∑

𝑖+𝑗=0

(𝑎
+

𝑖+1,𝑗
+

𝑗 + 1

𝑖 + 1
𝑏
+

𝑖,𝑗+1
)𝑥

𝑖
𝑦
𝑗

= 𝑥

𝑛−1

∑

𝑖+𝑗=0

𝑝
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
,

(24)

𝑞
+
(𝑥, 𝑦, 𝛿) =

𝑛

∑

𝑖+𝑗=0

𝑏
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
−

𝑛

∑

𝑗=0

𝑏
+

𝑖0
𝑥
𝑖
+

𝑛

∑

𝑖+𝑗=1

𝑖

𝑗 + 1
𝑎
+

𝑖𝑗
𝑥
𝑖−1

𝑦
𝑗+1

= 𝑦

𝑛−1

∑

𝑖+𝑗=0

(𝑏
+

𝑖,𝑗+1
+

𝑖 + 1

𝑗 + 1
𝑎
+

𝑖+1,𝑗
)𝑥

𝑖
𝑦
𝑗

= 𝑦

𝑛−1

∑

𝑖+𝑗=0

𝑞
+

𝑖𝑗
𝑥
𝑖
𝑦
𝑗
.

(25)

Combining (20)–(25) gives (13) and (14). Thus, the proof is
ended.

Then, using Lemma 2 and (6) we can obtain the following
three lemmas.

Lemma 3. (i) If a1 = 0, a0 > 0, thenM+
(ℎ, 𝛿) in (11) has form

M+
(ℎ, 𝛿) = ℎ

1/2

n
∑

𝑖+2𝑘=0

𝐵
+

𝑖,2𝑘
ℎ
𝑖+𝑘

, (26)

where

B+
0,2𝑘

=
2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1
,

𝐵
+

𝑖,2𝑘
=

2
𝑘+1+1/2

𝑎𝑖
0

(𝑎
+

𝑖,2𝑘
+

2𝑘 + 1

𝑖
𝑏
+

𝑖−1,2𝑘+1
)

× ∫

𝜋/2

0

sin2𝑘𝜃cos𝑖+1 𝜃 d𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(27)

(ii) If b1 = 0, b0 < 0, then we have

𝑀
−
(ℎ, 𝛿) = ℎ

1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

, (28)
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where

𝐵
−

0,2𝑘
= −

2
𝑘+1+1/2

𝑎
−

0,2𝑘

2𝑘 + 1
,

𝐵
−

𝑖,2𝑘
=

−2
𝑘+1+1/2

𝑏𝑖
0

(𝑎
−

𝑖,2𝑘
+

2𝑘 + 1

𝑖
𝑏
−

𝑖−1,2𝑘+1
)

× ∫

𝜋/2

0

sin2k 𝜃cos2𝑖+1𝜃d𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(29)

Proof. Note that along ÂA1, 𝑥 = ℎ/𝑎0 − (1/2𝑎0)𝑦
2. Then,

inserting it into (14) follows that

𝑀
+

1
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+𝑗=0

𝑝
+

𝑖𝑗
∫

√2ℎ

−√2ℎ

(
ℎ

𝑎0

−
1

2𝑎0

𝑦
2
)

𝑖+1

𝑦
𝑗
𝑑𝑦

=

𝑛−1

∑

𝑖+2𝑘=0

𝑝
+

𝑖,2𝑘

2𝑖𝑎
𝑖+1

0

∫

√2ℎ

0

(2ℎ − 𝑦
2
)
𝑖+1

𝑦
2𝑘

𝑑𝑦.

(30)

Let 𝑦 = √2ℎ sin 𝜃. Then we have 𝑑𝑦 = √2ℎ cos 𝜃 𝑑𝜃 and the
above integral can be carried into

∫

√2ℎ

0

(2ℎ − 𝑦
2
)
𝑖+1

𝑦
2𝑘

𝑑𝑦 = (2ℎ)
𝑖+1+𝑘+(1/2)

× ∫

𝜋/2

0

sin2𝑘𝜃cos2(𝑖+1)+1 𝜃 d𝜃.

(31)

Thus, using (30) and the above equation we can write (13) as

𝑀
+
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+2𝑘=0

2
𝑘+1+1/2

𝑝
+

𝑖,2𝑘

𝑎
𝑖+1

0

× ∫

𝜋/2

0

sin2𝑘𝜃cos2(𝑖+1)+1 𝜃𝑑𝜃 × ℎ
𝑖+1+𝑘+1/2

+

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1
ℎ
𝑘+1/2

= ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
+

𝑖,2𝑘
ℎ
𝑖+𝑘

,

(32)

where

𝐵
+

0,2𝑘
=

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1
,

𝐵
+

𝑖,2𝑘
=

2
𝑘+1+1/2

𝑝
+

𝑖−1,2𝑘

𝑎𝑖
0

∫

𝜋/2

0

sin2𝑘𝜃 cos2𝑖+1 𝜃 𝑑𝜃, 1 ≤ 𝑖 ≤ 𝑛,

(33)

which gives (i) by (15). Thus, (i) holds and we can prove (ii)
in the same way by (16)–(18). This ends the proof.

Lemma 4. Let system (5a) satisfy (3) and (4). Then

(i) If a1 > 0, a0 = 0,M+
(ℎ, 𝛿) has the expression

M+
(ℎ, 𝛿) = √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

, (34)

where

𝐴
+

0,2𝑘
=

2(√2)
2𝑘+1

𝑎
+

0,2𝑘

2𝑘 + 1
,

𝐴
+

𝑖,2k =
2(√2)

2𝑘+1+𝑖

(√𝑎1)
𝑖

(𝑏
+

𝑖−1,2𝑘+1
+

𝑖

2𝑘 + 1
𝑎
+

𝑖,2𝑘
)

× ∫

𝜋/2

0

sini−1𝜃cos2𝑘+2𝜃 𝑑𝜃, 𝑖 ≥ 1.

(35)

(ii) If a1 > 0, a0 ̸=0, M+
(ℎ, 𝛿) can be written as

𝑀
+
(ℎ, 𝛿) = √ℎ[

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
+

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1
𝑎
+

𝑖+1,2𝑘
)𝜙

+

𝑖𝑘
(ℎ)

+

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1
ℎ
𝑘
]

+

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
+

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1
𝑎
+

𝑖+1,2𝑘
)

×

𝑖

∑

𝑟=0, 𝑟 even
𝛼
+

𝑖𝑟𝑘
(2ℎ +

𝑎
2

0

𝑎1

)

𝑘+𝑟/2

𝐼
+

00
(ℎ, 𝛿) ,

(36)

or

M+
(ℎ, 𝛿) = √ℎ𝜓

+

[n/2] (ℎ, 𝛿)

+ (2ℎ +
a2
0

a1
)𝜑

+

[(n−1)/2] (2ℎ +
a2
0

a1
, 𝛿)

× (
𝜋

2
− arcsin

a0
√2a1ℎ + a2

0

),

(37)

where

𝐼
+

00
(ℎ, 𝛿) = ∫

√2ℎ+a2
0
/a1

a0/√a1
√2ℎ +

a2
0

a1
− v2dv, (38)

each 𝛼
+

𝑖𝑟𝑘
is a nonzero constant and 𝜙

+

𝑖𝑘
,𝜓+

[n/2], 𝜑
+

[(n−1)/2]
are polynomials of degree k + [(𝑖 + 1)/2], [n/2], [(n −

1)/2], respectively.
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Proof. Since 𝑦 = ±√2ℎ − 𝑎1𝑥
2 − 2𝑎0𝑥 along the curve

𝐴𝐴1, 𝑀
+

1
(ℎ, 𝛿) in (14) becomes

𝑀
+

1
(ℎ, 𝛿)

=

𝑛−1

∑

𝑖+𝑗=0

𝑞
+

𝑖𝑗
∫
𝐴𝐴1

𝑥
𝑖
𝑦
𝑗+1

𝑑𝑥

=

𝑛−1

∑

𝑖+𝑗=0

𝑞
+

𝑖𝑗
[

[

∫

(−𝑎0+√2𝑎1ℎ+𝑎
2

0
)/𝑎1

0

𝑥
𝑖
(2ℎ − 𝑎1𝑥

2
− 2𝑎0𝑥)

(𝑗+1)/2

𝑑𝑥]

]

+ ∫

0

(−𝑎0+√2𝑎1ℎ+𝑎
2

0
)/𝑎1

𝑥
𝑖
(−1)

𝑗+1
(2ℎ − 𝑎1𝑥

2
− 2𝑎0𝑥)

(𝑗+1)/2

𝑑𝑥

=

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘
𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) ,

(39)

where

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿)

= ∫

(−𝑎0+√2𝑎1ℎ+𝑎
2

0
)/𝑎1

0

𝑥
𝑖
[2ℎ +

𝑎
2

0

𝑎1

− 𝑎1(𝑥 +
𝑎0

𝑎1

)

2

]

𝑘+1/2

𝑑𝑥.

(40)

Let V = √𝑎1(𝑥 + 𝑎0/𝑎1). Then, we have 𝑑V = √𝑎1𝑑𝑥 and the
above equation becomes

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) =

1

(√𝑎1)
𝑖+1

∫

√2ℎ+𝑎2
0
/𝑎1

𝑎0/√𝑎1

(V −
𝑎0

√𝑎1

)

𝑖

× (2ℎ +
𝑎
2

0

𝑎1

− V
2
)

𝑘+(1/2)

𝑑V.

(41)

For 𝑎0 = 0, make the transformation V = √2ℎ sin 𝜃. Then,
we have by (41)

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) =

(√2ℎ)
2𝑘+1+𝑖+1

(√𝑎1)
𝑖+1

∫

𝜋/2

0

sin𝑖𝜃cos2𝑘+2 𝜃 𝑑𝜃. (42)

Substituting the above formula into (37), together with (13),
gives that

𝑀
+
(ℎ, 𝛿) =

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘

(√𝑎1)
𝑖+1

× ∫

𝜋/2

0

sin𝑖𝜃cos2𝑘+2 𝜃 𝑑𝜃 × (√2ℎ)
2𝑘+1+𝑖+1

+

𝑛

∑

2𝑘=0

2𝑎
+

0,2𝑘

2𝑘 + 1
(√2ℎ)

2𝑘+1

=

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

,

(43)

where

𝐴
+

0,2𝑘
=

2(√2)
2𝑘+1

𝑎
+

0,2𝑘

2𝑘 + 1
,

𝐴
+

𝑖,2𝑘
=

2(√2)
2𝑘+1+𝑖

𝑞
+

𝑖−1,2𝑘

(√𝑎1)
𝑖

× ∫

𝜋/2

0

sin𝑖−1 𝜃cos2𝑘+2 𝜃 𝑑𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(44)

Thus, by (15) and the above discussion we know that (i) holds.
For 𝑎0 ̸=0, (41) can be represented as

𝐼
+

𝑖,2𝑘
(ℎ, 𝛿) =

1

(√𝑎1)
𝑖+1

𝑖

∑

𝑟=0

𝐶
𝑟

𝑖
(−

𝑎0

√𝑎1

)

𝑖−𝑟

𝐼
+

𝑟𝑘
(ℎ, 𝛿) , (45)

where

𝐼
+

𝑟𝑘
(ℎ, 𝛿) = ∫

√2ℎ+𝑎2
0
/𝑎1

𝑎0/√𝑎1

V
𝑟
(2ℎ +

𝑎
2

0

𝑎1

− V
2
)

𝑘+1/2

𝑑V. (46)

Recall that

∫ V
𝑟
(2ℎ +

𝑎
2

0

𝑎1

− V
2
)

𝑘+1/2

𝑑V

=
V
𝑟+1

(2ℎ + 𝑎
2

0
/𝑎1 − V

2
)
𝑘+1/2

2𝑘 + 2 + 𝑟

+
(2𝑘 + 1) (2ℎ + 𝑎

2

0
/𝑎1)

2𝑘 + 2 + 𝑟

× ∫ V
𝑟
(2ℎ +

𝑎
2

0

𝑎1

− V
2
)

𝑘−1/2

𝑑V.

(47)

Then, by (46) and the above equation we obtain that

𝐼
+

𝑟𝑘
(ℎ, 𝛿) = −

𝑎
𝑟+1

0
(2ℎ)

𝑘+1/2

𝑎
(𝑟+1)/2

1
(2𝑘 + 2 + 𝑟)

+
(2𝑘+1) (2ℎ+𝑎

2

0
/𝑎1)

2𝑘+2+𝑟
𝐼
+

𝑟,𝑘−1
(ℎ, 𝛿) , 𝑘≥1, 𝑟≥0.

(48)

It follows that

𝐼
+

𝑟𝑘
(ℎ, 𝛿) = −

𝑎
𝑟+1

0

𝑎
(𝑟+1)/2

1

√2ℎ�̃�
+

𝑟𝑘
(ℎ)

+ �̃�
+

𝑟𝑘
(2ℎ +

𝑎
2

0

𝑎1

)

𝑘

𝐼
+

𝑟0
(ℎ, 𝛿) , 𝑘 ≥ 1, 𝑟 ≥ 0,

(49)
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where

�̃�
+

𝑟𝑘
=

(2𝑘+1) (2𝑘−1) (2𝑘−3) × ⋅ ⋅ ⋅ × 3

(2𝑘+2+𝑟) (2𝑘+𝑟) (2𝑘−2+𝑟) × ⋅ ⋅ ⋅ × (4+𝑟)
,

�̃�
+

𝑟𝑘
(ℎ) =

(2ℎ)
𝑘

2𝑘 + 2 + 𝑟
+

2𝑘 + 1

(2𝑘 + 2 + 𝑟) (2𝑘 + 𝑟)

× (2ℎ +
𝑎
2

0

𝑎1

) (2ℎ)
𝑘−1

+
(2𝑘 + 1) (2𝑘 − 1)

(2𝑘 + 2 + 𝑟) (2𝑘 + 𝑟) (2𝑘 − 2 + 𝑟)

× (2ℎ +
𝑎
2

0

𝑎1

)

2

(2ℎ)
𝑘−2

+ ⋅ ⋅ ⋅

+
(2𝑘 + 1) (2𝑘 − 1) × ⋅ ⋅ ⋅ × 5

(2𝑘 + 2 + 𝑟) (2𝑘 + 𝑟) (2𝑘 − 2 + 𝑟) × ⋅ ⋅ ⋅ × (4 + 𝑟)

× (2ℎ +
𝑎
2

0

𝑎1

)

𝑘−1

2ℎ,

(50)

which is a polynomial of degree 𝑘 in ℎ. For convenience,
introduce

𝜑
+

𝑟𝑘
(ℎ) = {

�̃�
+

𝑟𝑘
(ℎ) , 𝑘 ≥ 1,

0, 𝑘 = 0,
𝛼
+

𝑟𝑘
= {

�̃�
+

𝑟𝑘
, 𝑘 ≥ 1,

1, 𝑘 = 0.

(51)

Then, combining (49) and (51) gives that

𝐼
+

𝑟𝑘
(ℎ, 𝛿) = −

𝑎
𝑟+1

0

𝑎
(𝑟+1)/2

1

√2ℎ𝜑
+

𝑟𝑘
(ℎ)

+ 𝛼
+

𝑟𝑘
(2ℎ +

𝑎
2

0

𝑎1

)

𝑘

𝐼
+

𝑟0
(ℎ, 𝛿) , 𝑘 ≥ 0, 𝑟 ≥ 0.

(52)

Further, by using the formula

∫ V
𝑟
(2ℎ +

𝑎
2

0

𝑎1

− V
2
)

1/2

𝑑V

=
−V

𝑟−1
(2ℎ + 𝑎

2

0
/𝑎1 − V

2
)
3/2

𝑟 + 2

+
(𝑟 − 1) (2ℎ + 𝑎

2

0
/𝑎1)

𝑟 + 2

× ∫ V
𝑟−2

(2ℎ +
𝑎
2

0

𝑎1

− V
2
)

1/2

𝑑V,

(53)

we have that

𝐼
+

𝑟0
(ℎ, 𝛿) =

𝑎
𝑟−1

0
(2ℎ)

3/2

𝑎
(𝑟−1)/2

1
(𝑟 + 2)

+
𝑟 − 1

𝑟 + 2
(2ℎ +

𝑎
2

0

𝑎1

) 𝐼
+

𝑟−2,0
(ℎ, 𝛿) , 𝑟 ≥ 1.

(54)

It follows that

𝐼
+

𝑟0
(ℎ, 𝛿) = (2ℎ)

3/2
�̃�
+

𝑟
(ℎ)

+ �̃�
+

𝑟
(2ℎ +

𝑎
2

0

𝑎1

)

𝑟/2

𝐼00 (ℎ, 𝛿) , 𝑟 ≥ 1,

(55)

where

�̃�
+

𝑟
=

{

{

{

0, 𝑟 odd,
(𝑟 − 1) (𝑟 − 3) × ⋅ ⋅ ⋅ × 3 × 1

(𝑟 + 2) 𝑟 (𝑟 − 2) × ⋅ ⋅ ⋅ × 6 × 4
, 𝑟 even,

�̃�
+

𝑟
(ℎ) =

𝑎
𝑟−1

0

(𝑟 + 2) 𝑎
(𝑟−1)/2

1

+
(𝑟 − 1) 𝑎

𝑟−3

0

(𝑟 + 2) 𝑟𝑎
(𝑟−3)/2

1

(2ℎ +
𝑎
2

0

𝑎1

)

+
(𝑟 − 1) (𝑟 − 3) 𝑎

𝑟−5

0

(𝑟 + 2) 𝑟 (𝑟 − 2) 𝑎
(𝑟−5)/2

1

(2ℎ +
𝑎
2

0

𝑎1

)

2

+ ⋅ ⋅ ⋅

+ ( (𝑟 − 1) (𝑟 − 3) × ⋅ ⋅ ⋅ × (𝑟 + 1 − 2 [
(𝑟 − 1)

2
])

×𝑎
𝑟−1−2[(𝑟−1)/2]

0
)

× ( (𝑟 + 2) 𝑟 (𝑟 − 2) × ⋅ ⋅ ⋅ × (𝑟 + 2 − 2 [
(𝑟 − 2)

2
])

× 𝑎
(𝑟−1)/2−[(𝑟−1)/2]

1
[
(𝑟 − 1)

2
])

−1

× (2ℎ +
𝑎
2

0

𝑎1

)

[(𝑟−1)/2]

,

(56)

which is a polynomial of degree [(𝑟 − 1)/2] in ℎ. Let

𝜑
+

𝑟
(ℎ) = {

�̃�
+

𝑟
(ℎ) , 𝑟 ≥ 1,

0, 𝑟 = 0,
𝛼
+

𝑟
= {

�̃�
+

𝑟
, 𝑟 ≥ 1,

1, 𝑟 = 0.
(57)

Then, we have that by (55) and the above

𝐼
+

𝑟0
(ℎ, 𝛿) = (2ℎ)

3/2
𝜑
+

𝑟
(ℎ)

+ 𝛼
+

𝑟
(2ℎ +

𝑎
2

0

𝑎1

)

𝑟/2

𝐼
+

00
(ℎ, 𝛿) , 𝑟 ≥ 0.

(58)

Substituting the above equation into (52), one can find that

𝐼
+

𝑟𝑘
(ℎ, 𝛿) = √ℎ𝜓

+

𝑟𝑘
(ℎ) + 𝛼𝑟𝑘𝛼𝑟(2ℎ +

𝑎
2

0

𝑎1

)

𝑘+𝑟/2

× 𝐼
+

00
(ℎ, 𝛿) , 𝑟 ≥ 0, 𝑘 ≥ 0,

(59)

where 𝛼𝑟 = 0 for 𝑟 odd, 𝛼𝑟 > 0 for 𝑟 even, and

𝜓
+

𝑟𝑘
(ℎ, 𝛿) = −

√2𝑎
𝑟+1

0

𝑎
(𝑟+1)/2

1

𝜑
+

𝑟𝑘
(ℎ)

+ 2√2ℎ𝛼𝑟𝑘(2ℎ +
𝑎
2

0

𝑎1

)

𝑘

𝜑
+

𝑟
(ℎ) ,

(60)
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which is a polynomial of degree 𝑘 + [(𝑟 + 1)/2] in ℎ.
Combining (37), (45), and (59) gives that

𝑀
+

1
(ℎ, 𝛿) = √ℎ

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘

(√𝑎1)
𝑖+1

𝑖

∑

𝑟=0

𝐶
𝑟

𝑖
(−

𝑎0

√𝑎1

)

𝑖−𝑟

𝜓
+

𝑟𝑘
(ℎ)

+

𝑛−1

∑

𝑖+2𝑘=0

2𝑞
+

𝑖,2𝑘

(√𝑎1)
𝑖+1

×

𝑖

∑

𝑟=0, 𝑟 even
𝐶
𝑟

𝑖
𝛼𝑟𝑘𝛼𝑟(−

𝑎0

√𝑎1

)

𝑖−𝑟

× (2ℎ +
𝑎
2

0

𝑎1

)

𝑘+𝑟/2

𝐼
+

00
(ℎ, 𝛿) ,

(61)

which implies (35), together with (13) and (15).
Note that

∫√𝑎2 − 𝑥2𝑑𝑥 =
1

2
[𝑥√𝑎2 − 𝑥2 + 𝑎

2 arcsin 𝑥

|𝑎|
] . (62)

Then, we have

𝐼
+

00
(ℎ, 𝛿) = −

𝑎0

2√𝑎1

√2ℎ +
1

2
(2ℎ +

𝑎
2

0

𝑎1

)

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

).

(63)

Inserting the above formula into (35), we can obtain (36).
Hence, the proof is finished.

Similar to Lemma 4, we can obtain the following lemma
about 𝑀−

(ℎ, 𝛿).

Lemma 5. Let system (5b) satisfy (3) and (4). Then
(i) If 𝑏1 > 0, 𝑏0 = 0, M−

(ℎ, 𝛿) in (11) has the expression

𝑀
−
(ℎ, 𝛿) = √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐴
−

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

, (64)

where

𝐴
−

0,2𝑘
= −

2(√2)
2𝑘+1

𝑎
−

0,2𝑘

2𝑘 + 1
,

𝐴
−

𝑖,2𝑘
=

2(√2)
2𝑘+1+𝑖

(√𝑏1)
𝑖

(𝑏
−

𝑖−1,2𝑘+1
+

𝑖

2𝑘 + 1
𝑎
−

𝑖,2𝑘
)

× ∫

0

−𝜋/2

sin𝑖−1𝜃cos2𝑘+2𝜃 d𝜃, 1 ≤ 𝑖 ≤ 𝑛.

(65)

(ii) If 𝑏1 > 0, 𝑏0 ̸=0,𝑀
−
(ℎ, 𝛿) in (11) has the form

𝑀
−
(ℎ, 𝛿) = √ℎ[

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
−

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1
𝑎
−

𝑖+1,2𝑘
)𝜙

−

𝑖𝑘
(ℎ)

−

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
−

0,2𝑘

2𝑘 + 1
ℎ
𝑘
]

+

𝑛−1

∑

𝑖+2𝑘=0

(𝑏
−

𝑖,2𝑘+1
+

𝑖 + 1

2𝑘 + 1
𝑎
−

𝑖+1,2𝑘
)

×

𝑖

∑

𝑟=0, 𝑟 even
𝛼
−

𝑖𝑟𝑘
(2ℎ +

𝑏
2

0

𝑏1

)

𝑘+𝑟/2

𝐼
−

00
(ℎ, 𝛿) ,

(66)

or

𝑀
−
(ℎ, 𝛿) = √ℎ𝜓

−

[𝑛/2]
(ℎ, 𝛿) + (2ℎ +

𝑏
2

0

𝑏1

)𝜑
−

[(𝑛−1)/2]

× (2ℎ +
𝑏
2

0

𝑏1

, 𝛿)(
𝜋

2
+ arcsin

𝑏0

√2𝑏1ℎ + 𝑏2
0

),

(67)

where

𝐼
−

00
(ℎ, 𝛿) = ∫

𝑏0/√𝑏1

−√2ℎ+𝑏2
0
/𝑏1

√2ℎ +
𝑏
2

0

𝑏1

− V2𝑑V, (68)

each 𝛼
−

𝑖𝑟𝑘
is nonzero constant and 𝜙

−

𝑖𝑘
, 𝜓

−

[𝑛/2]
, 𝜑
−

[(𝑛−1)/2]
are

polynomials of degree 𝑘 + [(𝑖 + 1)/2], [𝑛/2], [(𝑛 − 1)/2],
respectively.

3. Proof of Theorem 1

In this section, we will prove the main results. Obviously,
under (9) there are the following 9 subcases:

(1) 𝑎1 = 𝑏1 = 0, 𝑎0 > 0, 𝑏0 < 0,

(2) 𝑎1 > 0, 𝑏1 > 0, 𝑎0 = 𝑏0 = 0,

(3) 𝑎1 > 0, 𝑏0 < 0, 𝑎0 = 𝑏1 = 0,

(4) 𝑎1 > 0, 𝑎0 > 0, 𝑏1 = 0, 𝑏0 < 0,

(5) 𝑎1 > 0, 𝑎0 > 0, 𝑏1 > 0, 𝑏0 = 0,

(6) 𝑎1 > 0, 𝑎0 > 0, 𝑏1 > 0, 𝑏0 < 0,

(7) 𝑎0 > 0, 𝑏1 > 0, 𝑎1 = 𝑏0 = 0,

(8) 𝑎1 = 0, 𝑎0 > 0, 𝑏1 > 0, 𝑏0 < 0,

(9) 𝑎1 > 0, 𝑎0 = 0, 𝑏1 > 0, 𝑏0 < 0.

We only give the proof of Subcases 1, 2, 3, 4, 5, and 6. And
the Subcases 7, 8, and 9 can be verified, similar to Subcases 3,
4, and 5, respectively.
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Subcase 1. 𝑎1 = 𝑏1 = 0, 𝑎0 > 0, 𝑏0 < 0. From (12) and
Lemma 3, one can obtain that

𝑀(ℎ, 𝛿) = 𝑀
+
(ℎ, 𝛿) + 𝑀

−
(ℎ, 𝛿)

= ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
+

𝑖,2𝑘
ℎ
𝑖+𝑘

+ ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

= ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

(𝐵
+

𝑖,2𝑘
+ 𝐵

−

𝑖,2𝑘
) ℎ

𝑖+𝑘
,

(69)

which implies that 𝑀(ℎ, 𝛿) has at most 𝑛 isolated positive
zeros for ℎ > 0. To show that this bound can be reached, take
𝑎
−

𝑖𝑗
= 𝑏

±

𝑖𝑗
= 0, 𝑎

+

𝑖𝑗
= 0, 𝑗 ≥ 1. Then, by (27) and (29), (69) has

the form

𝑀(ℎ, 𝛿) = ℎ
1/2

𝑛

∑

𝑖=0

𝐵
+

𝑖0
ℎ
𝑖
, (70)

where

𝐵
+

00
= 2

1+1/2
𝑎
+

00
, 𝐵

+

𝑖0
=

2
1+1/2

𝑎𝑖
0

(2𝑖)!!

(2𝑖 + 1)!!
𝑎
+

𝑖0
, 𝑖 ≥ 1.

(71)

Hence, using (70) we can take 𝑎
+

𝑖0
, 𝑖 = 0, 1, . . . , 𝑛 as free

parameters to produce 𝑛 simple positive zeros of𝑀(ℎ, 𝛿) near
ℎ = 0, which gives 𝑛 limit cycles correspondingly near the
origin. Thus, 𝑁(𝑛) ≥ 𝑛 in this case. This ends the proof.

Subcase 2. 𝑎1 > 0, 𝑏1 > 0, 𝑎0 = 𝑏0 = 0 Similar to the above
and using (32) and (64), 𝑀(ℎ, 𝛿) in (12) has the expression of
the form

𝑀(ℎ, 𝛿) =

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

+

𝑛

∑

𝑖+2𝑘=0

𝐴
−

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

= √ℎ

𝑛

∑

𝑙=0

𝐴 𝑙(
√ℎ)

𝑙

,

(72)

where 𝐴 𝑙 = ∑
𝑖+2𝑘=𝑙

(𝐴
+

𝑖,2𝑘
+ 𝐴

−

𝑖,2𝑘
). Further, taking 𝑎

−

𝑖𝑗
= 𝑏

±

𝑖𝑗
=

0, 𝑎
+

𝑖𝑗
= 0, 𝑗 ≥ 1, then, by (34) and (65), 𝑀(ℎ, 𝛿) in (72)

becomes

𝑀(ℎ, 𝛿) = ℎ
1/2

𝑛

∑

𝑖=0

𝐴
+

𝑖0
(√ℎ)

𝑖

, (73)

where

𝐴
+

00
=

2𝑎
+

00

2𝑘 + 1
,

𝐴
+

𝑖0
=

2𝑖𝑎
+

𝑖0

(√𝑎1)
𝑖
∫

𝜋/2

0

sin𝑖−1𝜃cos2 𝜃 d𝜃, 𝑖 ≥ 1.

(74)

Thus, from (72) and (73), we can discuss similar to Subcase 1.
This finishes the proof.

Subcase 3. 𝑎1 > 0, 𝑏0 < 0, 𝑎0 = 𝑏1 = 0 By Lemmas 3, and 4
and (12), we can have that

𝑀(ℎ, 𝛿) =

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

2𝑘+1+𝑖

+ ℎ
1/2

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

= ℎ
1/2

(

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

+

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

)

= ℎ
1/2

𝑀
∗
(ℎ, 𝛿) .

(75)

Let us prove that𝑀∗
(ℎ, 𝛿) has at most 𝑛+[(𝑛+1)/2] zeros on

the open interval (0, +∞). For the purpose, let√ℎ = 𝜆. Then,
for 𝑛 = 2𝑙, 𝑙 ≥ 1, 𝑀∗

(ℎ, 𝛿) in (75) has the expression

𝑀
∗
(ℎ, 𝛿) =

𝑛

∑

𝑖+2𝑘=0

𝐴
+

𝑖,2𝑘
𝜆
𝑖+2𝑘

+

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
𝜆
2𝑖+2𝑘

=

2𝑙

∑

𝑗=0

𝐶𝑗𝜆
𝑗
+

𝑙

∑

𝑗=1

𝐶2𝑙+𝑗𝜆
2𝑗+2𝑙

≜ 𝑀(𝜆, 𝛿) ,

(76)

where

𝐶𝑗 = ∑

𝑖+2𝑘=𝑗

𝐴
+

𝑖,2𝑘
+ ∑

2𝑖+2𝑘=𝑗

𝐵
−

𝑖,2𝑘
, 𝑗 = 0, 1, 2, . . . , 2𝑙,

𝐶2𝑙+𝑗 = ∑

𝑖+𝑘=𝑗+𝑙

𝐵
−

𝑖,2𝑘
, 𝑗 = 1, 2, . . . , 𝑙.

(77)

To prove𝑀
∗
(ℎ, 𝛿)has atmost 𝑛+[(𝑛+1)/2] zeros, it suffices to

prove𝑀(𝜆, 𝛿) has at most 𝑛+ [(𝑛+1)/2] = 3𝑙 zeros for 𝜆 > 0.
By Rolles theoremwe need only to prove that𝑑2𝑙𝑀(𝜆, 𝛿)/𝑑𝜆

2𝑙

has at most 𝑙 zeros for 𝜆 ∈ (0, +∞). From (76), we can have
that

𝑑
2𝑙
𝑀(𝜆, 𝛿)

𝑑𝜆2𝑙
= 𝐶2𝑙 (2𝑙)! +

𝑙

∑

𝑗=1

𝐶2𝑙+𝑗𝐴
2𝑙

2𝑙+2𝑗
𝜆
2𝑗

, (78)

which shows that 𝑑2𝑙𝑀(𝜆, 𝛿)/𝑑𝜆
2𝑙 has at most 𝑙 zeros for 𝜆 >

0. Thus, 𝑀(ℎ, 𝛿) has at most 3𝑙 zeros for ℎ > 0. To prove 3𝑙

zeros can appear, we only need to prove that𝑀∗
(ℎ, 𝛿) in (75)

can appear 3𝑙 zeros for ℎ > 0 small. Let 𝑏±
𝑖𝑗

= 0, 𝑎
±

𝑖𝑗
= 0, 𝑗 ≥

1, 𝑎
−

𝑖0
= 0, 0 ≤ 𝑖 ≤ 𝑙, and 𝑎

−

2𝑙
̸=0. Then 𝑀

∗
(ℎ, 𝛿) in (75) can be

expressed as by (29) and (34)

𝑀
∗
(ℎ, 𝛿) =

2𝑙

∑

𝑖=0

𝐴
+

𝑖0
(√ℎ)

𝑖

+

2𝑙

∑

𝑖=𝑙+1

𝐵
−

𝑖0
(√ℎ)

2𝑖

= 𝐴
+

00
+ 𝐴

+

10
√ℎ + 𝐴

+

20
(√ℎ)

2

+ ⋅ ⋅ ⋅

+ 𝐴
+

2𝑙−1,0
(√ℎ)

2𝑙−1

+ 𝐴
+

2𝑙,0
(√ℎ)

2𝑙

+ 𝐵
−

𝑙+1,0
(√ℎ)

2𝑙+2

+ 𝐵
−

𝑙+2,0
(√ℎ)

2𝑙+4

+ ⋅ ⋅ ⋅ + 𝐵
−

2𝑙,0
(√ℎ)

4𝑙

,

(79)
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where

𝐴
+

00
= 2√2𝑎

+

00
,

𝐴
+

𝑖0
=

2(√2)
𝑖+1

(√𝑎1)
𝑖

𝑖𝑎
+

𝑖0
, 𝑖 = 1, 2, . . . , 2𝑙,

𝐵
−

𝑖0
=

−2√2

𝑏𝑖
0

𝑎
−

𝑖0
∫

𝜋/2

0

cos2𝑖+1 𝜃𝑑𝜃

=
−2√2

𝑏𝑖
0

(2𝑖)!!

(2𝑖 + 1)!!
𝑎
−

𝑖0
, 𝑖 = 𝑙 + 1, . . . , 2𝑙.

(80)

Thus, by changing the sign of 𝑎
−

2𝑙,0
, 𝑎
−

2𝑙−1,0
, . . . , 𝑎

−

𝑙+1,0
, 𝑎

+

2𝑙,0
,

𝑎
+

2𝑙−1,0
, . . . , 𝑎+

00
in turn such that

𝑎
−

𝑖−1,0
𝑎
−

𝑖0
< 0, 𝑖 = 2𝑙, 2𝑙 − 1, . . . , 𝑙 + 2,

𝑎
−

𝑙+1
𝑎
+

2𝑙,0
> 0, 𝑎

+

𝑖−1,0
𝑎
+

𝑖0
< 0, 𝑖 = 2𝑙, 2𝑙 − 1, . . . , 1,

0 <
𝑎
+

00

 ≪
𝑎
+

10

 ≪ ⋅ ⋅ ⋅ ≪

𝑎
+

2𝑙,0



≪
𝑎
−

𝑙+1

 ≪
𝑎
−

𝑙+2

 ≪
𝑎
−

2𝑙−1

 ≪ 1,

(81)

we can find 3𝑙 simply positive zeros ℎ1, ℎ2, . . . , ℎ3𝑙 with 0 <

ℎ3𝑙 < ℎ3𝑙−1 < ⋅ ⋅ ⋅ < ℎ1 ≪ 1. For 𝑛 = 2𝑙 + 1, 𝑙 = 0, 1, . . ., we can
discuss in a similar way.Thus, this bound can be reached and
𝑁(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2]. The proof is finished.

Subcase 4. 𝑎1 > 0, 𝑎0 > 0, 𝑏1 = 0, 𝑏0 < 0 From (12) and
Lemmas 3 and 4, we get that

𝑀(ℎ, 𝛿) = √ℎ𝜓
+

[𝑛/2]
(ℎ, 𝛿) + (2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +
𝑎
2

0

𝑎1

, 𝛿)(𝜋 − 2 arcsin
𝑎0

√2𝑎1ℎ + 𝑎2
0

)

+ √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

= √ℎ𝑓𝑛 (ℎ, 𝛿) + (2ℎ +
𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +
𝑎
2

0

𝑎1

, 𝛿)(𝜋 − 2 arcsin
𝑎0

√2𝑎1ℎ + 𝑎2
0

),

(82)

where

𝑓𝑛 (ℎ, 𝛿) = 𝜓
+

[𝑛/2]
(ℎ, 𝛿) +

𝑛

∑

𝑖+2𝑘=0

𝐵
−

𝑖,2𝑘
ℎ
𝑖+𝑘

, (83)

which is a polynomial of degree 𝑛 in ℎ. Let 𝜆 = √ℎ. Then
ℎ = 𝜆

2
, 𝜆 ∈ (0, +∞), and (82) becomes

𝑀(ℎ, 𝛿) = 𝜆𝑓𝑛 (𝜆
2
)

+ V (𝜆, 𝛿)(
𝜋

2
− arcsin

𝑎0

√2𝑎1𝜆
2 + 𝑎2

0

)

≜ �̃� (𝜆, 𝛿) ,

(84)

where

V (𝜆, 𝛿) = (2𝜆
2
+

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎1

, 𝛿) . (85)

One can see that (𝑑/𝑑𝜆)(�̃�(𝜆, 𝛿)/V(𝜆, 𝛿)) = 𝑢(𝜆, 𝛿)/V
2
(𝜆, 𝛿),

where

𝑢 (𝜆, 𝛿) = (2𝜆
2
+

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎1

, 𝛿)

×
𝑑

𝑑𝜆
(𝜆𝑓𝑛 (𝜆

2
, 𝛿)) − 𝜆𝑓𝑛 (𝜆

2
, 𝛿)

×
𝑑

𝑑𝜆
[(2𝜆

2
+

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎1

, 𝛿)]

+
√2𝑎0

√𝑎1

(2𝜆
2
+

𝑎
2

0

𝑎1

)

× (𝜑
+

[(𝑛−1)/2]
(2𝜆

2
+

𝑎
2

0

𝑎1

, 𝛿))

2

.

(86)

Denote by #{𝜆 ∈ (0, +∞) | 𝑓(𝜆) = 0} the number of zeros of
the function in the interval (0, +∞) taking into account their
multiplicities. Note that

deg V = 2 [
𝑛 + 1

2
] , deg 𝑢 = 2 (𝑛 + [

𝑛 + 1

2
]) , (87)

and they are even functions in 𝜆. Therefore,

# {𝜆 ∈ (0, +∞) | V (𝜆, 𝛿)} ≤ [
𝑛 − 1

2
] ,

# {𝜆 ∈ (0, +∞) | 𝑢 (𝜆, 𝛿)} ≤ 𝑛 + [
𝑛 + 1

2
] .

(88)

Then, from [8], we can obtain that

# {𝜆 ∈ (0, +∞) | �̃� (𝜆, 𝛿) = 0}

≤ # {𝜆 ∈ (0, +∞) | V (𝜆, 𝛿)}

+ # {𝜆 ∈ (0, +∞) | 𝑢 (𝜆, 𝛿)} + 1

≤ [
𝑛 − 1

2
] + 𝑛 + [

𝑛 + 1

2
] + 1

= 𝑛 + 2 [
𝑛 + 1

2
] ,

(89)
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which implies that 𝑍(𝑛) ≤ 𝑛 + 2[(𝑛 + 1)/2]. Now, we verify
𝑍(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2].

Make the transformation 𝑢 = √V2/2ℎ − 𝑎2
0
/2𝑎1ℎ. Then

𝐼
+

00
(ℎ, 𝛿) in (35) becomes

𝐼
+

00
(ℎ, 𝛿) =

(2ℎ)
3/2

√𝑎2
0
/𝑎1

∫

1

0

𝑢(1 − 𝑢
2
)
1/2

√1 + (2ℎ𝑎1𝑢
2/𝑎2

0
)

𝑑𝑢, (90)

which follows that as ℎ > 0 small

𝐼
+

00
(ℎ, 𝛿)

=
(2ℎ)

3/2

√𝑎2
0
/𝑎1

∫

1

0

𝑢(1 − 𝑢
2
)
1/2

× [1 +

+∞

∑

𝑚=1

(−1)
𝑚

(2𝑚 − 1)!!

(2𝑚)!!
(

2𝑎1

𝑎2
0

)

𝑚

ℎ
𝑚
𝑢
2𝑚

]𝑑𝑢.

(91)

Note that

∫

1

0

𝑢
2𝑚+1

(1 − 𝑢
2
)
1/2

𝑑𝑢

= ∫

𝜋/2

0

sin2𝑚+1𝜃cos2𝜃𝑑𝜃 (Let 𝑢 = sin 𝜃)

=
(2𝑚)!!

(2𝑚 + 3)!!
, 𝑚 = 0, 1, 2, . . . .

(92)

Inserting the above formula into (91) gives that

𝐼00 (ℎ, 𝛿) = 2√ℎ√
2𝑎1

𝑎2
0

+∞

∑

𝑚=0

𝐶𝑚(
2𝑎1

𝑎2
0

)

𝑚

ℎ
𝑚+1

, (93)

where

𝐶𝑚 =
(−1)

𝑚

(2𝑚 + 1) (2𝑚 + 3)
, 𝑚 ≥ 0. (94)

Take 𝑏
−

𝑖𝑗
= 𝑎

+

𝑖𝑗
= 0, 𝑎

−

𝑖𝑗
= 0, 𝑗 ≥ 1, 𝑏

+

𝑖𝑗
= 0, 𝑖 ≥ 1. Then, by

(28), (35), and (93), we can obtain that for ℎ > 0 small

𝑀(ℎ, 𝛿) = √ℎ[

𝑛

∑

𝑖=0

−2√2 (2𝑖)!!

(2𝑖 + 1)!!𝑏
𝑖

0

𝑎
−

𝑖0
ℎ
𝑖
+

𝑛−1

∑

2𝑘=0

𝑏
+

0,2𝑘+1
𝜓
+

0𝑘
(ℎ)

+

𝑛−1

∑

2𝑘=0

2
𝑘+1

𝛼
+

00𝑘
√

2𝑎1

𝑎2
0

𝑏
+

0,2𝑘+1
(ℎ +

𝑎
2

0

2𝑎1

)

𝑘

×

+∞

∑

𝑚=0

𝐶𝑚(
2𝑎1

𝑎2
0

)

𝑚

ℎ
𝑚+1

]

= √ℎ∑

𝑖≥0

V𝑖ℎ
𝑖
,

(95)

where

V𝑖 =
−2√2 (2𝑖)!!

(2𝑖 + 1)!!𝑏
𝑖

0

𝑎
−

𝑖0

+ 𝐿 𝑖 (𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
) , 𝑖 = 0, 1, 2, . . . , 𝑛

V𝑛+1+𝑖 =

𝑛−1

∑

2𝑘=0

𝛼
+

00𝑘
2
𝑘+1

(
2𝑎1

𝑎2
0

)

𝑛+𝑖−𝑘+1/2

×

𝑘

∑

𝑟=0

𝐶
𝑟

𝑘
𝐶𝑛+𝑖−𝑟𝑏

+

0,2𝑘+1
, 𝑖 ≥ 0,

(96)

with 𝐿 𝑖, 𝑖 = 0, 1, . . . , 𝑛 being linear combination,
𝐿 𝑖(0, 0, . . . , 0) = 0. One can find that

𝜕 (V0, V1, . . . , V𝑛, V𝑛+1, V𝑛+2, . . . , V𝑛+[(𝑛+1)/2])

𝜕 (𝑎
−

00
, 𝑎
−

10
, . . . , 𝑎

−

𝑛0
, 𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
)

= (

𝐴1 𝐴2

0 2√
2𝑎1

𝑎2
0

𝐴3

) ≡ 𝐴,

(97)

where 𝐴2 is a (𝑛 + 1) × [(𝑛 + 1)/2] matrix,

𝐴1 =
(
(

(

−2√2 0 0 ⋅ ⋅ ⋅ 0

0
−4√2

𝑏0

0 ⋅ ⋅ ⋅ 0

0 0
−16√2

15𝑏2
0

⋅ ⋅ ⋅ 0

...
...

...
. . .

...

0 0 0 ⋅ ⋅ ⋅
−2√2 (2𝑛)!!

(2𝑛 + 1)!!𝑏
𝑛

0

)
)

)

,

𝐴3 = (𝛼
+

000
𝛽0, 2𝛼

+

001
𝛽1, 2

2
𝛼
+

002
𝛽2, . . . ,

2
[(𝑛−1)/2]

𝛼
+

00,[(𝑛−1)/2]
𝛽[(𝑛−1)/2]) ,

(98)

with 𝛽𝑖 are [(𝑛 + 1)/2] × 1 matrix satisfying

𝛽𝑖 =

(
(
(
(
(
(
(
(

(

(
2𝑎1

𝑎2
0

)

𝑛−𝑖
𝑖

∑
𝑟=0

𝐶
𝑟

𝑖
𝐶𝑛−𝑟

(
2𝑎1

𝑎2
0

)

𝑛+1−𝑖
𝑖

∑
𝑟=0

𝐶
𝑟

𝑖
𝐶𝑛+1−𝑟

...

(
2𝑎1

𝑎2
0

)

𝑛+[(𝑛−1)/2]−𝑖
𝑖

∑
𝑟=0

𝐶
𝑟

𝑖
𝐶𝑛+[(𝑛−1)/2]−𝑟

)
)
)
)
)
)
)
)

)

,

𝑖 = 0, 1, 2, . . . , [
𝑛 − 1

2
] .

(99)
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Hence, we can obtain that from (97)

|𝐴| = (2√
2𝑎1

𝑎2
0

)

[(𝑛+1)/2]

𝐴1


𝐴3



= (2𝛼
+

0
√

2𝑎1

𝑎2
0

)

[(𝑛+1)/2]
[(𝑛−1)/2]

∏

𝑖=0

2
𝑖
𝛼
+

00𝑖

𝑛

∏

𝑖=0

−2√2 (2𝑖)!!

(2𝑖 + 1)!!𝑏
𝑖

0

|𝐵| ,

(100)

where

𝐵 = (𝛽0, 𝛽1, . . . , 𝛽[(𝑛−1)/2]) , (101)

and 𝛽𝑖 are given in (99). We claim that |𝐴| ̸= 0. We only
need to prove |𝐵| ̸= 0 by the above formula. Using elemen-
tary transformations to |𝐵| by multiplying 𝑖th column by
(2𝑎1/𝑎

2

0
)
𝑖−1

, 𝑖 = 2, 3, . . . , [(𝑛 + 1)/2], we can obtain that by
(99) and (101)

|𝐵| = (
2𝑎1

𝑎2
0

)

𝑛[(𝑛+1)/2]

𝐵1
 ,

(102)

where

𝐵1
 =



𝐶𝑛

1

∑
𝑟=0

𝐶
𝑟

1
𝐶𝑛−𝑟 ⋅ ⋅ ⋅

[(𝑛−1)/2]

∑
𝑟=0

𝐶
𝑟

[(𝑛−1)/2]
𝐶𝑛−𝑟

𝐶𝑛+1

1

∑
𝑟=0

𝐶
𝑟

1
𝐶𝑛+1−𝑟 ⋅ ⋅ ⋅

[(𝑛−1)/2]

∑
𝑟=0

𝐶
𝑟

[(𝑛−1)/2]
𝐶𝑛+1−𝑟

...
...

. . .
...

𝐶𝑛+[(𝑛−1)/2]

1

∑
𝑟=0

𝐶
𝑟

1
𝐶𝑛+[(𝑛−1)/2]−𝑟 ⋅ ⋅ ⋅

[(𝑛−1)/2]

∑
𝑟=0

𝐶
𝑟

[(𝑛−1)/2]
𝐶𝑛+[(𝑛−1)/2]−𝑟



.

(103)

Nowwewill use elementary transformations to𝐵1 as follows.

(1) Add the first columnmultiplying by −1 to 𝑖th column,
𝑖 = 2, 3, . . . , [(𝑛 + 1)/2].

(2) Add the second column multiplying by −𝐶
1

𝑖−1
to 𝑖th

column, 𝑖 = 3, 4, . . . , [(𝑛 + 1)/2].

(3) Add the third column multiplying by −𝐶
2

𝑖−1
to 𝑖th

column, 𝑖 = 4, 5, . . . , [(𝑛 + 1)/2]

...

[(𝑛 − 1)/2]. Add the [(𝑛 − 1)/2]th column multiplying by
−𝐶

[(𝑛−3)/2]

[(𝑛−1)/2]
to [(𝑛 + 1)/2]th column,

[(𝑛 + 1)/2]. multiply 𝑖th column by (−1)
𝑖−1, 𝑖 =

2, 3, . . . , [(𝑛 + 1)/2].
Then, |𝐵1| becomes, together with (94)

𝐵1
 = (−1)

[(𝑛−1)/2][(𝑛+1)/2]/2 det (�̃�
0
, �̃�
1
, . . . , �̃�

[(𝑛−1)/2]
)

= 2
[(𝑛+1)/2]

(−1)
𝑛[(𝑛+1)/2] det (𝛽

0
, 𝛽
1
, . . . , 𝛽

[(𝑛−1)/2]
)

≜ 2
[(𝑛+1)/2]

(−1)
𝑛[(𝑛+1)/2] 𝐵2

 ,

(104)
where

�̃�
𝑖
=

(
(
(

(

(−1)
𝑛

(2 (𝑛 − 𝑖) + 1) (2 (𝑛 − 𝑖) + 3)

(−1)
𝑛+1

(2 (𝑛 + 1 − 𝑖) + 1) (2 (𝑛 + 1 − 𝑖) + 3)

...
(−1)

𝑛+[(𝑛−1)/2]

(2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 1) (2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 3)

)
)
)

)

,

𝛽
𝑖
= (

(

1

2 (𝑛 − 𝑖) + 1
−

1

2 (𝑛 − 𝑖) + 3
1

2 (𝑛 + 1 − 𝑖) + 1
−

1

2 (𝑛 + 1 − 𝑖) + 3

...
1

2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 1
−

1

2 (𝑛 + [(𝑛 − 1) /2] − 𝑖) + 3

)

)

,

(105)

with 𝑖 = 0, 1, . . . , [(𝑛 − 1)/2]. For 𝐵2 in (104) by adding a
column on the left and a row on the above, we can obtain
that, together with adding 𝑖th column to (𝑖+1)th columnwith
𝑖 = 1, 2, . . . , [(𝑛 + 1)/2]

𝐵2
 =



1 1 1 ⋅ ⋅ ⋅ 1

1

2𝑛 + 3

1

2𝑛 + 1

1

2𝑛 − 1
⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 1

1

2𝑛 + 5

1

2𝑛 + 3

1

2𝑛 + 1
⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 3

...
...

...
. . .

...

1

2 (𝑛 + [(𝑛 − 1) /2]) + 3

1

2 (𝑛 + [(𝑛 − 1) /2]) + 1

1

2 (𝑛 + [(𝑛 − 1) /2]) − 1
⋅ ⋅ ⋅

1

2𝑛 + 1



, (106)
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which implies that |𝐴3| ̸= 0 by (102) and (104) if |𝐵2| ̸= 0. We claim that |𝐵2| ̸= 0 and

𝐵3
 =



1

2𝑛 + 3

1

2𝑛 + 1

1

2𝑛 − 1
⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 1
1

2𝑛 + 5

1

2𝑛 + 3

1

2𝑛 + 1
⋅ ⋅ ⋅

1

2 (𝑛 − [(𝑛 − 1) /2]) + 3
...

...
. . .

...
...

1

2 (𝑛 + [(𝑛 − 1) /2]) + 3

1

2 (𝑛 + [(𝑛 − 1) /2]) + 1

1

2 (𝑛 + [(𝑛 − 1) /2]) − 1
⋅ ⋅ ⋅

1

2𝑛 + 1
1

2 (𝑛 + [(𝑛 + 1) /2]) + 3

1

2 (𝑛 + [(𝑛 + 1) /2]) + 1

1

2 (𝑛 + [(𝑛 + 1) /2]) − 1
⋅ ⋅ ⋅

1

2𝑛 + 3



̸= 0. (107)

Now, we prove them by induction on 𝑛. For 𝑛 = 1, 2 we have



1 1

1

5

1

3



=
2

15
,



1 1

1

7

1

5



=
2

35
,



1

5

1

3

1

7

1

5



=
−4

525
,



1

7

1

5

1

9

1

7



=
−4

2205
,

(108)

which means that (106) and (107) hold for 𝑛 = 1, 2. Suppose
(106) and (107) hold for 𝑛 = 2𝑙 − 1, 2𝑙, 𝑙 ≥ 1. That is, we have
for 𝑛 = 2𝑙

𝐵2
 =



1 1 1 ⋅ ⋅ ⋅ 1

1

4𝑙 + 3

1

4𝑙 + 1

1

4𝑙 − 1
⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1
⋅ ⋅ ⋅

1

2𝑙 + 5

...
...

...
. . .

...

1

6𝑙 + 1

1

6𝑙 − 1

1

6𝑙 − 3
⋅ ⋅ ⋅

1

4𝑙 + 1



≜ |𝐶| ̸=0,

𝐵3
 =



1

4𝑙 + 3

1

4𝑙 + 1

1

4𝑙 − 1
⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1
⋅ ⋅ ⋅

1

2𝑙 + 5

...
...

. . .
...

...
1

6𝑙 + 1

1

6𝑙 − 1

1

6𝑙 − 3
⋅ ⋅ ⋅

1

4𝑙 + 1

1

6𝑙 + 3

1

6𝑙 + 1

1

6𝑙 − 1
⋅ ⋅ ⋅

1

4𝑙 + 3



̸= 0.

(109)

Then for 𝑛 = 2𝑙 + 1, we have

𝐵2
 =



1 1 1 ⋅ ⋅ ⋅ 1

1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1
⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 7

1

4𝑙 + 5

1

4𝑙 + 3
⋅ ⋅ ⋅

1

2𝑙 + 5
...

...
...

. . .
...

1

6𝑙 + 5

1

6𝑙 + 3

1

6𝑙 + 1
⋅ ⋅ ⋅

1

4𝑙 + 3



,

𝐵3
 =



1

4𝑙 + 5

1

4𝑙 + 3

1

4𝑙 + 1
⋅ ⋅ ⋅

1

2𝑙 + 3

1

4𝑙 + 7

1

4𝑙 + 5

1

4𝑙 + 3
⋅ ⋅ ⋅

1

2𝑙 + 5

...
...

. . .
...

...
1

6𝑙 + 5

1

6𝑙 + 3

1

6𝑙 + 1
⋅ ⋅ ⋅

1

4𝑙 + 3

1

6𝑙 + 7

1

6𝑙 + 5

1

6𝑙 + 3
⋅ ⋅ ⋅

1

4𝑙 + 5



.

(110)

Note that by the first equation of (109) there only exist
𝛼1, 𝛼2, . . . , 𝛼l+1 such that
𝐵2

 = [
1

6𝑙 + 5
− (

𝛼1

6𝑙 + 3
+

𝛼2

6𝑙 + 1
+ ⋅ ⋅ ⋅ +

𝛼𝑙+1

4𝑙 + 3
)] |𝐶|

=
−2

6𝑙 + 5
[

𝛼1

6𝑙 + 3
+

2𝛼2

6𝑙 + 1
+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼𝑙+1

4𝑙 + 3
] |𝐶|

(111)

since 𝛼1 + 𝛼2 + ⋅ ⋅ ⋅ + 𝛼l+1 = 1, where 𝐶 is given in (109). If
|𝐵2| = 0, then we can obtain that from (109) and (111)

𝛼1

6𝑙 + 3
+

2𝛼2

6𝑙 + 1
+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼𝑙+1

4𝑙 + 3
= 0. (112)

Note that
𝛼1

4𝑙 + 3
+

𝛼2

4𝑙 + 1
+ ⋅ ⋅ ⋅ +

𝛼𝑙+1

2𝑙 + 3
=

1

4𝑙 + 5
,

𝛼1

4𝑙 + 5
+

𝛼2

4𝑙 + 3
+ ⋅ ⋅ ⋅ +

𝛼𝑙+1

2𝑙 + 5
=

1

4𝑙 + 7
,

...
𝛼1

6𝑙 + 1
+

𝛼2

6𝑙 − 1
+ ⋅ ⋅ ⋅ +

𝛼𝑙+1

4𝑙 + 1
=

1

6𝑙 + 3
,

(113)

which follows that, together with (112)
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𝛼1

4𝑙 + 3
+

2𝛼2

4𝑙 + 1
+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼𝑙+1

2𝑙 + 3
= 0,

𝛼1

4𝑙 + 5
+

2𝛼2

4𝑙 + 3
+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼𝑙+1

2𝑙 + 5
= 0,

...
𝛼1

6𝑙 + 1
+

2𝛼2

6𝑙 − 1
+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼𝑙+1

4𝑙 + 1
= 0,

𝛼1

6𝑙 + 3
+

2𝛼2

6𝑙 + 1
+ ⋅ ⋅ ⋅ +

(𝑙 + 1) 𝛼𝑙+1

4𝑙 + 3
= 0.

(114)

By the second equation in (109) and the above formula, we
have

𝛼1 = 𝛼2 = ⋅ ⋅ ⋅ = 𝛼l+1 = 0. (115)

This is a contradiction with 𝛼1 + 𝛼2 + ⋅ ⋅ ⋅ + 𝛼𝑙+1 = 1. Hence
𝛼1/(6𝑙 + 3) + 2𝛼2/(6𝑙 + 1) + ⋅ ⋅ ⋅ + (𝑙 + 1)𝛼𝑙+1/(4𝑙 + 3) ̸=0, which
means that (106) holds for 𝑛 = 2𝑙 + 1. Since |𝐵2| ̸= 0 in (110),
there only exist 𝛽1, 𝛽2, . . . , 𝛽𝑙+1 such that

𝛽1 +
𝛽2

4𝑙 + 5
+

𝛽3

4𝑙 + 7
+ ⋅ ⋅ ⋅ +

𝛽𝑙+1

6𝑙 + 5
=

1

6𝑙 + 7
,

𝛽1 +
𝛽2

4𝑙 + 3
+

𝛽3

4𝑙 + 5
+ ⋅ ⋅ ⋅ +

𝛽𝑙+1

6𝑙 + 3
=

1

6𝑙 + 5
,

...

𝛽1 +
𝛽2

2𝑙 + 3
+

𝛽3

2𝑙 + 5
+ ⋅ ⋅ ⋅ +

𝛽𝑙+1

4𝑙 + 3
=

1

4𝑙 + 5
,

(116)

with 𝛽1 ̸=0 since the last row in the second formula of (110)
is linearly independent with all rows in the first formula of
(110), which means that (107) holds for 𝑛 = 2𝑙 + 1. In a
similar way, we can prove (106) and (107) hold for 𝑛 = 2𝑙 + 2.
Hence, the claim holds. So, from (99) we can know that
𝑎
−

00
, 𝑎
−

10
, . . . , 𝑎

−

𝑛0
, 𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
can be taken as free

parameters. So we can choose these values such that

V𝑖V𝑖+1 < 0, 𝑖 = 0, 1, . . . , 𝑛 + [
(𝑛 − 1)

2
] ,

0 <
V0

 ≪
V1

 ≪ ⋅ ⋅ ⋅ ≪
V𝑛+[(𝑛+1)/2]

 ≪ 1,

(117)

which yields that by (97) and (96)𝑀(ℎ, 𝛿) can appear 𝑛+[(𝑛+

1)/2] positive zeros for ℎ > 0 small. We also can know that
𝑁(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2]. Hence, the conclusion is proved.

Subcase 5. 𝑎1 > 0, 𝑎0 > 0, 𝑏1 > 0, 𝑏0 = 0 By (36) and (67),
one can see that

𝑀(ℎ, 𝛿) = √ℎ𝜓
+

[𝑛/2]
(ℎ, 𝛿) + (2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +
𝑎
2

0

𝑎1

, 𝛿)(
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

)

+ √ℎ

𝑛

∑

𝑖+2𝑘=0

𝐴
−

𝑖,2𝑘
(√ℎ)

𝑖+2𝑘

= √ℎ𝑔[𝑛/2] (ℎ, 𝛿) + 𝑔
[(𝑛+1)/2]

(ℎ, 𝛿)

+ (2ℎ +
𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

),

(118)

where

𝑔[𝑛/2] (ℎ, 𝛿) = 𝜓
+

[𝑛/2]
(ℎ, 𝛿) +

[𝑛/2]

∑

𝑙=0

∑

𝑖+2𝑘=2𝑙

𝐴
−

𝑖,2𝑘
ℎ
l
,

𝑔
[(𝑛+1)/2]

(ℎ, 𝛿) =

[(𝑛−1)/2]

∑

𝑙=0

∑

𝑖+2𝑘=2𝑙+1

𝐴
−

𝑖,2𝑘
ℎ
𝑙+1

, 𝑛 ≥ 1.

(119)

For convenience, we denote by 𝑔𝑛 any polynomial of degree
𝑛 although its coefficients may be different when it appears in
different place.Then, we claim that for any 2 ≤ 𝑘 ≤ [(𝑛−1)/2]

𝑑
𝑘
𝑀(ℎ, 𝛿)

𝑑ℎ𝑘
=

𝑘

∑

𝑗=0

ℎ
1/2−𝑘+𝑗

𝑔[𝑛/2]−𝑗 +
𝑑
𝑘
𝑔
[(𝑛+1)/2]

𝑑ℎ𝑘

+

𝑘−2

∑

𝑗=0

𝑔𝑗ℎ
−𝑗−1/2

(2ℎ +
𝑎
2

0

𝑎1

)

−𝑗−1

+
𝑑
𝑘

𝑑ℎ𝑘
[(2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

).

(120)
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Now, we verify this claim by induction on 𝑘. For 𝑘 = 2, by
(118) we can obtain that

𝑑𝑀(ℎ, 𝛿)

𝑑ℎ
=

1

2
ℎ
−1/2

𝑔[𝑛/2] (ℎ, 𝛿)

+ ℎ
1/2

𝑑𝑔[𝑛/2] (ℎ, 𝛿)

𝑑ℎ
+

𝑑𝑔
[(𝑛+1)/2]

𝑑ℎ

+
𝑑

𝑑ℎ
[(2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

)

+ (2ℎ +
𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]

× (2ℎ +
𝑎
2

0

𝑎1

, 𝛿)
𝑎0

√2𝑎1
√ℎ (2ℎ + 𝑎2

0
/𝑎1)

= ℎ
−1/2

𝑔[𝑛/2] + ℎ
1/2

𝑔[𝑛/2]−1 +
𝑑𝑔

[(𝑛+1)/2]

𝑑ℎ

+
𝑑

𝑑ℎ
[(2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

× (
𝜋

2
− arcsin

a0
√2a1ℎ + a2

0

),

(121)

which follows that

𝑑
2
𝑀(ℎ, 𝛿)

𝑑ℎ2
= ℎ

−3/2
𝑔[𝑛/2] + ℎ

−1/2
𝑔[𝑛/2]−1

+ℎ
1/2

𝑔[𝑛/2]−2+
𝑑
2
𝑔
[(𝑛+1)/2]

𝑑ℎ2
+

𝑔0

√ℎ (2ℎ + 𝑎2
0
/𝑎1)

+
𝑑
2

𝑑ℎ2
[(2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

).

(122)

Hence, (120) holds for 𝑘 = 2. Suppose (120) holds for 𝑘, 2 ≤

𝑘 ≤ [(𝑛 − 1)/2] − 1. Then for 𝑘 + 1, we have

𝑑
𝑘+1

𝑀(ℎ, 𝛿)

𝑑ℎ𝑘+1

=

𝑘

∑

𝑗=0

(
1

2
− 𝑘 + 𝑗) ℎ

1/2−(𝑘+1)+𝑗
𝑔[𝑛/2]−𝑗

+

𝑘

∑

𝑗=0

ℎ
1/2−𝑘+𝑗

𝑔[𝑛/2]−1−𝑗 +
𝑑
𝑘+1

𝑔
[(𝑛+1)/2]

𝑑ℎ𝑘+1

+
𝑑
𝑘+1

𝑑ℎ𝑘+1
[(2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

)

+
𝑑
𝑘

𝑑ℎ𝑘
[(2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

×
𝑎0

√2𝑎1
√ℎ (2ℎ + 𝑎2

0
/𝑎1)

+

𝑘−2

∑

𝑗=0

(ℎ(2ℎ +
𝑎
2

0

𝑎1

)
𝑑

𝑑ℎ
𝑔𝑗

−𝑔𝑗 [2 (𝑗 + 1) ℎ + (𝑗 +
1

2
)(2ℎ +

𝑎
2

0

𝑎1

)])

× (ℎ
𝑗+3/2

(2ℎ +
𝑎
2

0

𝑎1

)

𝑗+2

)

−1

,

(123)

which implies that (120) holds for 𝑘 + 1. Thus, the claim is
proved. Then, taking 𝑘 = [(𝑛 − 1)/2], we can obtain that by
differentiating it

𝑑
[(𝑛+1)/2]

𝑀(ℎ, 𝛿)

𝑑ℎ[(𝑛+1)/2]
=

[𝑛/2]

∑

𝑗=0

ℎ
1/2−[(𝑛+1)/2]+𝑗

𝑔[𝑛/2]−𝑗

+

[(𝑛+1)/2]−2

∑

𝑗=0

𝑔𝑗ℎ
−𝑗−1/2

(2ℎ +
𝑎
2

0

𝑎1

)

−𝑗−1

+
𝑑
[(𝑛+1)/2]

𝑔
[(𝑛+1)/2]

𝑑ℎ[(𝑛+1)/2]
+

𝑑
[(𝑛+1)/2]

𝑑ℎ[(𝑛+1)/2]

× [(2ℎ +
𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

).

(124)

One can find that

𝑑
[(𝑛+1)/2]+1

𝑀(ℎ, 𝛿)

𝑑ℎ[(𝑛+1)/2]+1
=

[𝑛/2]

∑

𝑗=0

ℎ
1/2−[(𝑛+1)/2]−1+𝑗

𝑔[𝑛/2]−𝑗

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔𝑗ℎ
−𝑗−1/2

(2ℎ +
𝑎
2

0

𝑎1

)

−𝑗−1
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= ℎ
−[(𝑛+1)/2]−1/2

× (2ℎ +
𝑎
2

0

𝑎1

)

−[(𝑛+1)/2]

𝐹 (ℎ, 𝛿) ,

(125)

where

𝐹 (ℎ, 𝛿) = (2ℎ +
𝑎
2

0

𝑎1

)

[(𝑛+1)/2] [𝑛/2]

∑

𝑗=0

ℎ
𝑗
𝑔[𝑛/2]−𝑗

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔𝑗ℎ
[(𝑛+1)/2]−𝑗

× (2ℎ +
𝑎
2

0

𝑎1

)

[(𝑛+1)/2]−𝑗−1

,

(126)

where 𝐹 is a polynomial of degree [𝑛/2] + [(𝑛 + 1)/2]. Since
𝑀(0, 𝛿) = 0 from (118), it is easy to see that 𝑀(ℎ, 𝛿) has at
most [𝑛/2] + 2[(𝑛 + 1)/2] = 𝑛 + [(𝑛 + 1)/2] zeros for ℎ >

0 by Rolle theorem. As the above discussion, we only prove
𝑍(𝑛) ≥ 𝑛 + [(𝑛 + 1)/2] as ℎ > 0 small, which implies 𝑁(𝑛) ≥

𝑛+[(𝑛+1)/2]. For the purpose, take 𝑏
−

𝑖𝑗
= 𝑎

+

𝑖𝑗
= 0, 𝑎

−

𝑖𝑗
= 0, 𝑗 ≥

1, 𝑏
+

𝑖𝑗
= 0, 𝑖 ≥ 1. Then using (49), (51), we can write 𝑀(ℎ, 𝛿)

in (12) as

𝑀(ℎ, 𝛿) = √ℎ[

[

−2√2𝑎
−

00
+

𝑛

∑

𝑖=1

2(√2)
𝑖+1

𝑖

(√𝑏1)
𝑖

𝑎
−

𝑖0

× ∫

0

−𝜋/2

sin𝑖−1𝜃cos2 𝜃 𝑑𝜃(√ℎ)
𝑖

+

𝑛−1

∑

2𝑘=0

𝑏
+

0,2𝑘+1
𝜓
+

0𝑘
(ℎ)

+

𝑛−1

∑

2𝑘=0

2
𝑘+1

𝛼
+

00𝑘
√

2𝑎1

𝑎2
0

𝑏
+

0,2𝑘+1

× (ℎ +
𝑎
2

0

2𝑎1

)

𝑘 +∞

∑

𝑚=0

𝐶𝑚(
2𝑎1

𝑎2
0

)

𝑚

ℎ
𝑚+1]

]

.

(127)

For 𝑛 = 2𝑙, 𝑙 ≥ 1, (127) can be written as

𝑀(ℎ, 𝛿) = √ℎ[

2𝑙

∑

𝑖=0

V𝑖(
√ℎ)

𝑖

+ ∑

𝑖≥0

V2𝑙+1+𝑖ℎ
𝑙+1+𝑖

] , (128)

where

V0 = −2√2𝑎
−

00
.

V2𝑖+1 =
2(√2)

2𝑖+2

(2𝑖 + 1)

(√𝑏1)
2𝑖+1

𝑎
−

2𝑖+1,0

× ∫

0

−𝜋/2

sin2𝑖𝜃cos2 𝜃 𝑑𝜃, 𝑖 = 0, 1, . . . , 𝑙 − 1,

V2𝑖 =
2(√2)

2𝑖+1

2𝑖

(√𝑏1)
2𝑖

𝑎
−

2𝑖,0
∫

0

−𝜋/2

sin2𝑖−1𝜃cos2𝜃 𝑑𝜃

+ 𝐿2𝑖 (𝑏
+

01
, 𝑏
+

03
, . . . , 𝑏

+

0,2[(𝑛−1)/2]+1
) , 𝑖 = 1, 2, . . . , 𝑙,

V2𝑙+1+𝑖 =

𝑙−1

∑

𝑘=0

2
𝑘+1

𝛼
+

00𝑘
(

2𝑎1

𝑎2
0

)

𝑙−𝑘+𝑖+1/2

× 𝑏
+

0,2𝑘+1

𝑘

∑

𝑟=0

𝐶
𝑟

𝑘
𝐶𝑙+𝑖−𝑟, 𝑖 = 0, 1, . . . , [

𝑛 − 1

2
] ,

(129)

which implies that 𝑀(ℎ, 𝛿) can appear 𝑛 + [(𝑛 + 1)/2] zeros
in ℎ > 0 small by using the same method with the Subcase 4.
For 𝑛 = 2𝑙+1, 𝑙 = 0, 1, . . ., we can discuss by (127) in a similar
way. Hence, the conclusion holds.

Subcase 6. 𝑎1 > 0, 𝑎0 > 0, 𝑏1 > 0, 𝑏0 < 0. We have as the
above

𝑀(ℎ, 𝛿) = √ℎ (𝜓
+

[𝑛/2]
(ℎ, 𝛿) + 𝜓

−

[𝑛/2]
(ℎ, 𝛿))

+ (2ℎ +
𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(ℎ, 𝛿)

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

)

+ (2ℎ +
𝑏
2

0

𝑏1

)𝜑
−

[(𝑛−1)/2]
(ℎ, 𝛿)

× (
𝜋

2
+ arcsin

𝑏0

√2𝑏1ℎ + 𝑏2
0

).

(130)

Similar to the Subcase 5, we can prove that for any 2 ≤ 𝑘 ≤

[(𝑛 − 1)/2]

𝑑
𝑘
𝑀(ℎ, 𝛿)

𝑑ℎ𝑘

=

𝑘

∑

𝑗=0

ℎ
1/2−𝑘+𝑗

𝑔[𝑛/2]−𝑗
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+

𝑘−2

∑

𝑗=0

𝑔𝑗ℎ
−𝑗−1/2

(2ℎ +
𝑎
2

0

𝑎1

)

−𝑗−1

+

𝑘−2

∑

𝑗=0

𝑔𝑗ℎ
−𝑗−1/2

(2ℎ +
𝑏
2

0

𝑏1

)

−𝑗−1

+
𝑑
𝑘

𝑑ℎ𝑘
[(2ℎ +

𝑎
2

0

𝑎1

)𝜑
+

[(𝑛−1)/2]
(2ℎ +

𝑎
2

0

𝑎1

, 𝛿)]

× (
𝜋

2
− arcsin

𝑎0

√2𝑎1ℎ + 𝑎2
0

)

+
𝑑
𝑘

𝑑ℎ𝑘

[
[
[

[

(2ℎ +
𝑏
2

0

𝑏1

)𝜑
+

[

[

(𝑛 − 1)

2
]

]

(2ℎ +
𝑏
2

0

𝑎1

, 𝛿)
]
]
]

]

× (
𝜋

2
− arcsin

𝑏0

√2𝑏1ℎ + 𝑏2
0

).

(131)

Taking 𝑘 = [(𝑛 − 1)/2] and differentiating the above twice
follow that

𝑑
[(𝑛+1)/2]+1

𝑀(ℎ, 𝛿)

𝑑ℎ[(𝑛+1)/2]+1
=

[𝑛/2]

∑

𝑗=0

ℎ
1/2−[(𝑛+1)/2]−1+𝑗

𝑔[𝑛/2]−𝑗

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔𝑗ℎ
−𝑗−1/2

(2ℎ +
𝑎
2

0

𝑎1

)

−𝑗−1

+

[(𝑛+1)/2]−1

∑

𝑗=0

𝑔𝑗ℎ
−𝑗−1/2

(2ℎ +
𝑏
2

0

𝑏1

)

−𝑗−1

.

(132)

If 𝑎2
0
/𝑎1 = 𝑏

2

0
/𝑏1, then it is easy to see that (132) has the same

formwith (125). Hence, we can know that𝑀(ℎ, 𝛿) has atmost
[𝑛/2]+2[(𝑛+1)/2] zeros for ℎ ∈ (0, +∞). If 𝑎2

0
/𝑎1 ̸=𝑏

2

0
/𝑏1, then

(132) can be written as

𝑑
[(𝑛+1)/2]+1

𝑀(ℎ, 𝛿)

𝑑ℎ[(𝑛+1)/2]+1
= ℎ

−[(𝑛+1)/2]−1/2
(2ℎ +

𝑎
2

0

𝑎1

)

−[(𝑛+1)/2]

× (2ℎ +
𝑏
2

0

𝑏1

)

−[(𝑛+1)/2]

𝐹 (ℎ, 𝛿) ,

(133)

where

𝐹 (ℎ, 𝛿) = (2ℎ +
𝑎
2

0

𝑎1

)

[(𝑛+1)/2]

(2ℎ +
𝑏
2

0

𝑏1

)

[(𝑛+1)/2]

×

[𝑛/2]

∑

𝑗=0

ℎ
𝑗
𝑔[𝑛/2]−𝑗

+ (2ℎ +
𝑏
2

0

𝑏1

)

[(𝑛+1)/2] [(𝑛+1)/2]−1

∑

𝑗=0

𝑔𝑗ℎ
[(𝑛+1)/2]−𝑗

× (2ℎ +
𝑎
2

0

𝑎1

)

[(𝑛+1)/2]−𝑗−1

+ (2ℎ +
𝑎
2

0

𝑎1

)

[(𝑛+1)/2] [(𝑛+1)/2]−1

∑

𝑗=0

𝑔𝑗ℎ
[(𝑛+1)/2]−𝑗

× (2ℎ +
𝑏
2

0

𝑏1

)

[(𝑛+1)/2]−𝑗−1

,

(134)

where 𝐹 is a polynomial of degree [𝑛/2]+2[(𝑛+1)/2] in ℎ. By
Rolle theorem, we can obtain that𝑀(ℎ, 𝛿) has at most [𝑛/2]+
3[(𝑛 + 1)/2] zeros for ℎ > 0 since 𝑀(0, 𝛿) = 0. Now, we only
need to prove 𝑍(𝑛) ≥ 𝑛. Take 𝑎

−

𝑖𝑗
= 𝑏

−

𝑖𝑗
= 0, 𝑎

+

𝑖𝑗
= 𝑏

+

𝑖𝑗
= 0, 𝑖 ≥

1. Then, by Lemmas 4, 5, one can see that for ℎ > 0 small

𝑀(ℎ, 𝛿) = √ℎ[

𝑛

∑

2𝑘=0

2
𝑘+1+1/2

𝑎
+

0,2𝑘

2𝑘 + 1
ℎ
𝑘
+

𝑛−1

∑

2𝑘=0

𝑏
+

0,2𝑘+1
𝜓
+

0𝑘
(ℎ)

+

𝑛−1

∑

2𝑘=0

2
𝑘+1

𝛼
+

00𝑘
√

2𝑎1

𝑎2
0

𝑏
+

0,2𝑘+1
(ℎ +

𝑎
2

0

2𝑎1

)

𝑘

×

+∞

∑

𝑚=0

𝐶𝑚(
2𝑎1

𝑎2
0

)

𝑚

ℎ
𝑚+1

] .

(135)

Similarly, we can discuss the above formula such that such
that 𝑀(ℎ, 𝛿) can appear 𝑛 zeros for ℎ > 0 small. Hence, the
conclusion is proved.
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This paper deals with the existence and iteration of positive solutions for nonlinear second-order impulsive integral boundary value
problems with 𝑝-Laplacian on infinite intervals. Our approach is based on the monotone iterative technique.

1. Introduction

The theory of impulsive differential equations has been
emerging as an important area of investigation in recent
years. It has been extensively applied to biology, biologic
medicine, optimum control in economics, chemical tech-
nology, population dynamics, and so on. It is much richer
because all the structure of its emergence has deep physical
background and realistic mathematical model and coin-
cides with many phenomena in nature. For an introduction
of the basic theory of impulsive differential equations in
𝑅
𝑛, the reader is referred to see Lakshmikantham et al.

[1, 2], Samoı̆lenko and Perestyuk [3], and the references
therein.

Boundary value problems on infinite intervals arise quite
naturally in the study of radially symmetric solutions of
nonlinear elliptic equations and models of gas pressure in
a semi-infinite porous medium; see [4–7], for example. In
a recent paper [8], by means of a fixed-point theorem due
to Avery and Peterson, Li and Nieto obtained some new
results on the existence of multiple positive solutions for the
following multipoint boundary value problem with a finite
number of impulsive times on an infinite interval:

𝑢

(𝑡) + 𝑞 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) = 0,

∀0 < 𝑡 < ∞, 𝑡 ̸= 𝑡𝑘, 𝑘 = 1, 2, . . . , 𝑝,

Δ𝑢 (𝑡𝑘) = 𝐼𝑘 (𝑢 (𝑡𝑘)) , 𝑘 = 1, 2, . . . , 𝑝,

𝑢 (0) =

𝑚−2

∑

𝑖=1

𝛼𝑖𝑢 (𝜉𝑖) , 𝑢

(∞) = 0,

(1)

where 𝑓 ∈ 𝐶([0, +∞) × [0, +∞), [0, +∞)), 𝐼𝑘 ∈ 𝐶([0,

+∞), [0, +∞)), 𝑢(∞) = lim𝑡→∞𝑢

(𝑡), 0 < 𝜉1 < 𝜉2 < ⋅ ⋅ ⋅ <

𝜉𝑚−2 < +∞, 0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑝 < +∞, and
𝑞 ∈ 𝐶([0, +∞), [0, +∞)).

Boundary value problems with integral boundary con-
ditions for ordinary differential equations arise in different
fields of applied mathematics and physics such as heat
conduction, chemical engineering, underground water flow,
thermoelasticity, and plasma physics. Moreover, boundary
value problems with Riemann-Stieltjes integral conditions
constitute a very interesting and important class of problems.
They include two-point, three-point, and multipoint bound-
ary value problems as special cases; see [9–14]. For boundary
value problems with other integral boundary conditions and
comments on their importance, we refer the reader to the
papers [11–20] and the references therein.

There are relatively few papers available for integral
boundary value problems for impulsive differential equations
on an infinite interval with an infinite number of impulsive
times up to now. In [21], Zhang et al. investigated the existence
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of minimal nonnegative solution for the following second-
order impulsive differential equation

−𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) = 0, 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡𝑘,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . . ,

Δ𝑥
𝑡=𝑡𝑘

= 𝐼𝑘 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . . ,

𝑥 (0) = ∫

+∞

0

𝑔 (𝑡) 𝑥 (𝑡) d𝑡, 𝑥

(∞) = 0,

(2)

where𝑓∈𝐶(𝐽×𝐽×𝐽, 𝐽), 𝐼𝑘 ∈ 𝐶(𝐽, 𝐽), 𝐼𝑘 ∈ 𝐶(𝐽, 𝐽), 𝐽 = [0, +∞),
0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅, 𝑡𝑘 → ∞, and 𝑔(𝑡) ∈ 𝐿[𝐽, 𝐽] with
∫
+∞

0
𝑔(𝑡)d𝑡 < 1. Δ𝑥|𝑡=𝑡𝑘 denotes the jump of 𝑥(𝑡) at 𝑡 = 𝑡𝑘,

that is,

Δ𝑥|𝑡=𝑡𝑘
= 𝑥 (𝑡

+

𝑘
) − 𝑥 (𝑡

−

𝑘
) , (3)

where 𝑥(𝑡+
𝑘
) and 𝑥(𝑡−

𝑘
) represent the right-hand limit and left-

hand limit of 𝑥(𝑡) at 𝑡 = 𝑡𝑘, respectively. Δ𝑥

|𝑡=𝑡𝑘

has a similar
meaning to 𝑥(𝑡).

In the past few years, the existence and the multiplicity
of bounded or unbounded positive solutions to nonlinear
differential equations on infinite intervals have been studied
by several different techniques; we refer the reader to [5–
8, 21–29] and the references therein. However, most of these
papers only considered the existence of positive solutions
under various boundary value conditions. Seeing such a fact,
a natural question which arises is “how can we find the
solutions when they are known to exist?” More recently, Ma
et al. [30] and Sun et al. [31, 32] established iterative schemes
for approximating the solutions for some boundary value
problems defined on finite intervals by virtue of the iterative
technique.

However, to the author’s knowledge, the corresponding
theory for impulsive integral boundary value problems with
𝑝-Laplacian operator and infinite impulsive times on infinite
intervals has not been considered till now. Motivated by
previous papers, the purpose of this paper is to obtain the
existence of positive solutions and establish a corresponding
iterative scheme for the following impulsive integral bound-
ary value problem of second-order differential equation with
𝑝-Laplacian on an infinite interval

(𝜑𝑝 (𝑥

(𝑡)))


+ 𝑞 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥

(𝑡)) = 0, 𝑡 ∈ 𝐽



+
,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . . ,

𝑥 (0) = ∫

+∞

0

𝑔 (𝑡) 𝑥 (𝑡) d𝑡, 𝑥

(∞) = 𝑥∞,

(4)

where 𝜑𝑝(𝑠) = |𝑠|
𝑝−2

𝑠, 𝑝 > 1, 𝐽 = [0, +∞), 𝐽+ = (0, +∞), 𝐽
+
=

𝐽+ \ {𝑡1, 𝑡2, . . . , 𝑡𝑘, . . .}, 0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅, 𝑡𝑘 → ∞,
and 𝑔(𝑡) ∈ 𝐿[𝐽, 𝐽] with ∫+∞

0
𝑔(𝑡)d𝑡 < 1, ∫+∞

0
𝑡𝑔(𝑡)d𝑡 < +∞,

and 0 ≤ 𝑥(∞) = lim𝑡→+∞𝑥

(𝑡).

It is clear that
𝜑𝑝 (𝑠 + 𝑡)

≤
{

{

{

2
𝑝−1

(𝜑𝑝 (𝑠) + 𝜑𝑝 (𝑡)) , 𝑝 ≥ 2, 𝑠, 𝑡 > 0,

𝜑𝑝 (𝑠) + 𝜑𝑝 (𝑡) , 1 < 𝑝 < 2, 𝑠, 𝑡 > 0,

(5)

𝜑
−1

𝑝
(𝑠 + 𝑡)

≤
{

{

{

2
1/(𝑝−1)

(𝜑
−1

𝑝
(𝑠) + 𝜑

−1

𝑝
(𝑡)) , 𝑝 ≥ 2, 𝑠, 𝑡 > 0,

𝜑
−1

𝑝
(𝑠) + 𝜑

−1

𝑝
(𝑡) , 1 < 𝑝 < 2, 𝑠, 𝑡 > 0.

(6)

Throughout this paper, we adopt the following assumptions.
(H1) 𝑓(𝑡, 𝑢, 𝑣) ∈ 𝐶(𝐽 × 𝐽 × 𝐽, 𝐽), 𝑓(𝑡, 0, 0) ̸≡ 0 on any

subinterval of 𝐽, and when 𝑢, 𝑣 are bounded, 𝑓(𝑡, (1 +
𝑡)𝑢, 𝑣) is bounded on 𝐽.

(H2) 𝑞(𝑡) is a nonnegative measurable function defined
in 𝐽+ and 𝑞(𝑡) does not identically vanish on any
subinterval of 𝐽+, and

0 < ∫

+∞

0

𝑞 (𝑡) d𝑡 < +∞,

0 < ∫

+∞

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) d𝜏) d𝑠 < +∞.

(7)

(H3) 𝐼𝑘 ∈ 𝐶(𝐽, 𝐽), and there exist 𝑎𝑘 ≥ 0, 𝑏𝑘 ≥ 0 such that

0 ≤ 𝐼𝑘 (𝑥) ≤ 𝑎𝑘 + 𝑏𝑘𝑥, for 𝑥 ∈ 𝐽 (𝑘 = 1, 2, 3, . . .) ,

𝑎
∗
=

∞

∑

𝑘=1

𝑎𝑘 < +∞, 𝑏
∗
=

∞

∑

𝑘=1

𝑏𝑘 (1 + 𝑡𝑘) < +∞,

(8)

with 𝑏∗ < (1/3)(1 − ∫+∞
0

𝑔(𝑡)d𝑡).
If 𝑝 = 2, 𝐼𝑘 = 0 (𝑘 = 1, 2, . . .), 𝑔(𝑡) ≡ 0, 𝑥(∞) = 0, then

BVP (4) reduces to the following two-point boundary value
problem:

−𝑥

(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) = 0, 𝑡 ∈ 𝐽,

𝑥 (0) = 0, 𝑥

(∞) = 0,

(9)

which has been studied in [23].
Compared with [8, 21], the main features of the present

paper are as follows. Firstly, second-order differential oper-
ator is replaced by a more general 𝑝-Laplacian operator.
Secondly, in this paper,𝑥∞ in boundary value conditionsmay
not be zero which will bring about computational difficul-
ties. Thirdly, by applying monotone iterative techniques, we
construct successive iterative schemes starting offwith simple
known functions. It is worth pointing out that the first terms
of our iterative schemes are simple functions. Therefore, the
iterative schemes are significant and feasible.

The rest of this paper is organized as follows. In Section 2,
we give some preliminaries and establish several lemmas.The
main theorems are formulated and proved in Section 3.Then,
in Section 4, an example is presented to illustrate the main
results.
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2. Preliminaries and Several Lemmas

Definition 1. Let𝐸 be a real Banach space. A nonempty closed
set 𝑃 ⊂ 𝐸 is said to be a cone provided that

(1) 𝑎𝑢 + 𝑏𝑣 ∈ 𝑃 for all 𝑢, 𝑣 ∈ 𝑃 and all 𝑎 ≥ 0, 𝑏 ≥ 0,

(2) 𝑢, −𝑢 ∈ 𝑃 implies that 𝑢 = 0.

Definition 2. A map 𝛼 : 𝑃 → [0, +∞) is said to be concave
on 𝑃, if 𝛼(𝑡𝑢 + (1 − 𝑡)𝑣) ≥ 𝑡𝛼(𝑢) + (1 − 𝑡)𝛼(𝑣) for all 𝑢, 𝑣 ∈ 𝑃
and 𝑡 ∈ [0, 1].

Let 𝑃𝐶[𝐽, 𝑅] = {𝑥 : 𝑥 is a map from 𝐽 into 𝑅 such that
𝑥(𝑡) is continuous at 𝑡 ̸= 𝑡𝑘, left continous at 𝑡 = 𝑡𝑘 and 𝑥(𝑡

+

𝑘
)

exists for 𝑘 = 1, 2, . . . , }, 𝑃𝐶1[𝐽, 𝑅] = {𝑥 ∈ 𝑃𝐶[𝐽, 𝑅] : 𝑥

(𝑡)

exists and is continuous at 𝑡 ̸= 𝑡𝑘, left continous at 𝑡 = 𝑡𝑘 and
𝑥

(𝑡
+

𝑘
) exists for 𝑘 = 1, 2, . . . , }

𝐹𝑃𝐶 [𝐽, 𝑅]

= {𝑥 ∈ 𝑃𝐶 [𝐽, 𝑅] : sup
𝑡∈𝐽

|𝑥 (𝑡)|

1 + 𝑡
< ∞} ,

𝐸 = 𝐷𝑃𝐶
1
[𝐽, 𝑅]

= {𝑥 ∈ 𝑃𝐶
1
[𝐽, 𝑅] : sup

𝑡∈𝐽

|𝑥 (𝑡)|

1 + 𝑡
< ∞, sup

𝑡∈𝐽


𝑥

(𝑡)

< ∞} .

(10)

Obviously,𝐷𝑃𝐶1[𝐽, 𝑅] ⊂ 𝐹𝑃𝐶[𝐽, 𝑅]. It is clear that 𝐹𝑃𝐶[𝐽, 𝑅]
is a Banach space with the norm

‖𝑥‖𝐹 = sup
𝑡∈𝐽

|𝑥 (𝑡)|

1 + 𝑡
, (11)

and𝐷𝑃𝐶1[𝐽, 𝑅] is also a Banach space with the norm

‖𝑥‖𝐷 = max {‖𝑥‖𝐹,

𝑥
𝐵

} , (12)

where ‖𝑥‖𝐵 = sup
𝑡∈𝐽
|𝑥

(𝑡)|. Let 𝐽0=[0, 𝑡1], 𝐽𝑘= (𝑡𝑘, 𝑡𝑘+1] (𝑘 =

1, 2, 3, . . .). Define a cone 𝑃 ⊂ 𝐸 by

𝑃 = {𝑥 ∈ 𝐸 : 𝑥 is concave and nondecreasing on 𝐽,

𝑥 (𝑡) ≥ 0, 𝑥

(𝑡) ≥ 0, 𝑡 ∈ 𝐽} .

(13)

Remark 3. If 𝑥 satisfies (4), then (𝜑𝑝(𝑥

(𝑡)))

= −𝑞(𝑡)𝑓(𝑡,

𝑥(𝑡), 𝑥

(𝑡)) ≤ 0, and 𝑡 ∈ [0, +∞) which implies that 𝜑𝑝(𝑥


(𝑡))

is nonincreasing on 𝐽; that is, 𝑥(𝑡) is also nonincreasing on 𝐽.
Thus, 𝑥 is concave on [0, +∞). Moreover, if 𝑥(∞) = 𝑥∞ ≥ 0,
then 𝑥(𝑡) ≥ 0, 𝑡 ∈ [0, +∞), and so 𝑥 is monotone increasing
on [0, +∞).

Lemma 4. Let conditions (H1)–(H3) hold. Then, 𝑥 ∈ 𝑃 with
(𝜑𝑝(𝑥


(𝑡)))

∈ 𝐶(0, +∞) is a solution of BVP (4) if and only

if 𝑥 ∈ 𝐶[0, +∞) is a fixed point of the following operator
equation:

(𝐴𝑥) (𝑡)

=
1

1 − ∫
+∞

0
𝑔 (𝑡) d 𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d 𝜏

+𝜑𝑝 (𝑥∞) ) d 𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))] d 𝑡

+ ∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d 𝜏

+𝜑𝑝 (𝑥∞) ) d 𝑠

+ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘)) .

(14)

Proof. Suppose that 𝑥 ∈ 𝑃 with (𝜑𝑝(𝑥

(𝑡)))

∈ 𝐶(0, +∞) is a

solution of BVP (4). For 𝑡 ∈ 𝐽, integrating (4) from 𝑡 to +∞,
we have

∫

+∞

𝑡

𝜑𝑝(𝑥

(𝜏))


d𝜏

= −∫

+∞

𝑡

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏.

(15)

That is
𝜑𝑝 (𝑥

(∞)) − 𝜑𝑝 (𝑥


(𝑡))

= −∫

+∞

𝑡

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏,

(16)

which implies that

𝑥

(𝑡)

= 𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) .

(17)

If 𝑡1 < 𝑡 ≤ 𝑡2, integrating (17) from 0 to 𝑡1, we get that

𝑥 (𝑡1) − 𝑥 (0)

= ∫

𝑡1

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠.

(18)
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Integrating (17) from 𝑡1 to 𝑡, we obtain

𝑥 (𝑡) − 𝑥 (𝑡
+

1
)

= ∫

𝑡

𝑡1

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠.

(19)

Adding (18) and (19) together, we have

𝑥 (𝑡)

= 𝑥 (0)

+ ∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

+ 𝐼1 (𝑥 (𝑡1)) , 𝑡1 < 𝑡 ≤ 𝑡2.

(20)

Repeating previous process, we get that

𝑥 (𝑡)

= 𝑥 (0)

+ ∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

+ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))

= ∫

+∞

0

𝑔 (𝑡) 𝑥 (𝑡) d𝑡

+ ∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

+ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘)) .

(21)

It follows that

∫

+∞

0

𝑔 (𝑡) 𝑥 (𝑡) d𝑡

=
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))] d𝑡.

(22)

Substituting (22) into (21), we get that

𝑥 (𝑡)

=
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏+𝜑𝑝 (𝑥∞)) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))] d𝑡

+ ∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏+𝜑𝑝 (𝑥∞)) d𝑠

+ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘)) .

(23)

For 𝑥 ∈ 𝑃, there exists 𝑟0 such that ‖𝑥‖𝐷 < 𝑟0. Set 𝐵𝑟0 =
sup{𝑓(𝑡, (1 + 𝑡)𝑢, 𝑣) | (𝑡, 𝑢, 𝑣) ∈ 𝐽 × [0, 𝑟0] × [0, 𝑟0]}, and we
have by (H1) and (H3) that

∫

+∞

0

𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) d𝑠 ≤ ∫

+∞

0

𝑞 (𝑠) d𝑠 ⋅ 𝐵𝑟0 ,

∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘)) ≤

∞

∑

𝑘=1

𝐼𝑘 (𝑥 (𝑡𝑘)) ≤ 𝑎
∗
+ 𝑏
∗
𝑟0 < +∞.

(24)

By (6), (24), we have

𝑥 (𝑡)

=
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))] d𝑡
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+ ∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

+ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))

≤
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 ⋅ 𝜑−1
𝑝

× (∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))

+ 𝑡𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑟0)

≤ 2
1/(𝑝−1)

(
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

⋅ ∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 + 𝑡)

× [𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏) + 𝑥∞]

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑟0) .

(25)

It follows from (24) and (25) that the right term in (23) is well
defined. Thus, we have proved that 𝑥 is a fixed point of the
operator 𝐴 defined by (14).

Conversely, suppose that 𝑥 ∈ 𝐶[0, +∞) is a fixed point of
the operator equation (14). Evidently,

Δ𝑥|𝑡=𝑡𝑘
= 𝐼𝑘 (𝑥 (𝑡𝑘)) (𝑘 = 1, 2, . . .) . (26)

Direct differentiation of (14) implies that, for 𝑡 ̸= 𝑡𝑘,

𝑥

(𝑡) = 𝜑

−1

𝑝
(∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) d𝑠 + 𝜑𝑝 (𝑥∞)) ,

Δ𝑥
𝑡=𝑡𝑘

= 0 (𝑘 = 1, 2, . . .) ,

(𝜑𝑝 (𝑥

(𝑡)))


= −𝑞 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥

(𝑡)) ,

(27)

which means that (𝜑𝑝(𝑥

(𝑡)))

∈ 𝐶(𝐽


). It is easy to verify that

𝑥(0) = ∫
+∞

0
𝑔(𝑡)𝑥(𝑡)d𝑡, 𝑥(∞) = 𝑥∞. The proof of Lemma 4

is complete.

To obtain the complete continuity of 𝐴, the following
lemma is still needed.

Lemma5 (see [33, 34]). Let𝑊 be a bounded subset of𝑃.Then,
𝑃 is relatively compact in 𝐸 if {𝑊(𝑡)/(1 + 𝑡)} and {𝑊(𝑡)} are
both equicontinuous on any finite subinterval 𝐽𝑘 ∩ [0, 𝑇] (𝑘 =
1, 2, . . .) for any 𝑇 > 0, and for any 𝜀 > 0, there exists 𝑁 > 0

such that


𝑥 (𝑡

)

1 + 𝑡
−
𝑥 (𝑡

)

1 + 𝑡



< 𝜀,

𝑥

(𝑡

) − 𝑥

(𝑡

)

< 𝜀, ∀𝑡


, 𝑡

≥ 𝑁,

(28)

uniformly with respect to 𝑥 ∈ 𝑊 as 𝑡, 𝑡 ≥ 𝑁, where𝑊(𝑡) =

{𝑥(𝑡) | 𝑥 ∈ 𝑊},𝑊 (𝑡) = {𝑥 (𝑡) | 𝑥 ∈ 𝑊}, 𝑡 ∈ [0, +∞).

This lemma is a simple improvement of the Corduneanu
theorem in [33, 34].

Lemma 6. Let (H1)–(H3) hold. Then 𝐴 : 𝑃→𝑃 is completely
continuous.

Proof. For any 𝑥 ∈ 𝑃, by (14), we have

𝜑𝑝 ((𝐴𝑥)

) (𝑡) = ∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) d𝑠 + 𝜑𝑝 (𝑥∞) ,

(𝜑𝑝(𝐴𝑥)

(𝑡))


= −𝑞 (𝑡) 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥

(𝑡)) .

(29)

It follows from (14), (29), and (H1) that (𝐴𝑥)(𝑡)≥0, (𝐴𝑥)

(𝑡) ≥

𝑥∞ ≥ 0, (𝐴𝑥)(𝑡) ≤ 0, that is,𝐴(𝑃) ⊂ 𝑃. Now,we prove that𝐴
is continuous and compact respectively. Let 𝑥𝑛 ∈ 𝑃, 𝑥𝑛 → 𝑥

as 𝑛 → ∞, then there exists 𝑟0 such that sup𝑛∈𝑁\{0}‖𝑥𝑛‖ < 𝑟0.
Let 𝐵𝑟0 = sup{𝑓(𝑡, (1 + 𝑡)𝑢, 𝑣) | (𝑡, 𝑢, 𝑣) ∈ 𝐽 × [0, 𝑟0] × [0, 𝑟0]}.
By (H1) and (H2), we have

∫

+∞

0

𝑞 (𝜏)

𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥



𝑛
(𝜏)) − 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥


(𝜏))


d𝜏

≤ 2𝐵𝑟0
⋅ ∫

+∞

0

𝑞 (𝑠) d𝑠 < +∞.

(30)

It follows from (30) and dominated convergence theorem that

∫

+∞

0

𝑞 (𝜏)

𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥



𝑛
(𝜏)) − 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥


(𝜏))


d𝜏

→ ∫

+∞

0

𝑞 (𝜏)

𝑓 (𝜏, 𝑥 (𝜏) , 𝑥


(𝜏)) − 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥


(𝜏))


d𝜏,

(31)

which implies that

𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥


𝑛
(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

−𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠



→ 0, 𝑛 → ∞.

(32)
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By (30)–(32), (H3) and dominated convergence theorem, we
get that
𝐴𝑥𝑛 − 𝐴𝑥

𝐹

= sup
𝑡∈𝐽

{

{

{

1

1 + 𝑡

×



1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× [∫

+∞

0

𝑔 (𝑡)

× ∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥


𝑛
(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠 d𝑡

− ∫

+∞

0

𝑔 (𝑡)

× ∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑
𝑝
(𝑥
∞
) ) d𝑠 d𝑡

+ ∫

+∞

0

𝑔 (𝑡)

⋅∑

𝑡𝑘<𝑡

(𝐼𝑘 (𝑥𝑛 (𝑡𝑘)) − 𝐼𝑘 (𝑥 (𝑡𝑘)))] d𝑡

+ ∫

𝑡

0

[𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥


𝑛
(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) )

− 𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) )] d𝑠

+∑

𝑡𝑘<𝑡

(𝐼𝑘 (𝑥𝑛 (𝑡𝑘)) − 𝐼𝑘 (𝑥 (𝑡𝑘)))



}

}

}

≤
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑡𝑔 (𝑡) d𝑡

⋅


𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥


𝑛
(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))

−𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))



+


𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥𝑛 (𝜏) , 𝑥


𝑛
(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))

−𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))



+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡) ⋅ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥𝑛 (𝑡𝑘)) − 𝐼𝑘 (𝑥 (𝑡𝑘))
 d𝑡

+ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥𝑛 (𝑡𝑘)) − 𝐼𝑘 (𝑥 (𝑡𝑘))
 → 0 (𝑛 → ∞) ,


(𝐴𝑥𝑛)


− (𝐴𝑥)

𝐵

= sup
𝑡∈𝐽

{


𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑥𝑛 (𝑠) , 𝑥


𝑛
(𝑠)) d𝑠 + 𝜑𝑝 (𝑥∞))

−𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) d𝑠 + 𝜑𝑝 (𝑥∞))


}

→ 0 (𝑛 → ∞) .

(33)

It follows from (33) that 𝐴 is continuous.
LetΩ ⊂ 𝑃 be any bounded subset.Then, there exists 𝑟 > 0

such that ‖𝑥‖𝐷 ≤ 𝑟 for any 𝑥 ∈ Ω. Obviously,
‖𝐴𝑥‖𝐹

= sup
𝑡∈𝐽

{

{

{

1

1 + 𝑡

×



1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))] d𝑡

+ ∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))



}

}

}
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≤
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 ⋅ 𝜑−1
𝑝

× (∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))

+ 𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑟)

≤ 2
1/(𝑝−1) [

[

1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 + 1]

]

× [𝜑
−1

𝑝
(𝐵𝑟) ⋅ 𝜑

−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) + 𝑥∞]

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑟) ,


(𝐴𝑥)
𝐵

= sup
𝑡∈𝐽

{


𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) d𝑠 + 𝜑𝑝 (𝑥∞))


}

≤ 2
1/(𝑝−1)

[𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝑠) d𝑠) ⋅ 𝜑−1
𝑝
(𝐵𝑟) + 𝑥∞] .

(34)

From (34), (H2), and (H3), we know that 𝐴Ω is bounded.
For any 𝑇 > 0, 𝑥 ∈ Ω, 𝑡

, 𝑡 ∈ 𝐽𝑘 ∩ [0, 𝑇] with 𝑡

< 𝑡
, by

the absolute continuity of the integral, we have



(𝐴𝑥) (𝑡

)

1 + 𝑡
−
(𝐴𝑥) (𝑡


)

1 + 𝑡



≤
1

(1 + 𝑡) (1 − ∫
+∞

0
𝑔 (𝑡) d𝑡)

⋅ ∫

+∞

0

𝑔 (𝑡) d𝑡

⋅ ∫

𝑡


𝑡
𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡) d𝑡

⋅ ∫

𝑡


0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

⋅



1

1 + 𝑡
−

1

1 + 𝑡



+
1

1 + 𝑡

× ∫

𝑡


𝑡
𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

+ ∫

𝑡


0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

⋅



1

1 + 𝑡
−

1

1 + 𝑡



+
𝑎
∗
+ 𝑏
∗
𝑟

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

⋅



1

1 + 𝑡
−

1

1 + 𝑡



≤
2
1/(𝑝−1)

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× [∫

𝑡


𝑡
(𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) ⋅ 𝜑−1
𝑝
(𝐵𝑟) + 𝑥∞) d𝑠

+ ∫

𝑡


0

(𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) ⋅ 𝜑−1
𝑝
(𝐵𝑟) + 𝑥∞) d𝑠

⋅



1

1 + 𝑡
−

1

1 + 𝑡


]

+
𝑎
∗
+ 𝑏
∗
𝑟

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

⋅



1

1 + 𝑡
−

1

1 + 𝑡



→ 0 uniformly as 𝑡

→ 𝑡

,


𝜑𝑝 ((𝐴𝑥)


(𝑡

)) − 𝜑𝑝 ((𝐴𝑥)


(𝑡

))


=



∫

𝑡


𝑡
𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥


(𝑠)) d𝑠



≤ 𝐵𝑟 ⋅



∫

𝑡


𝑡
𝑞 (𝑠) d𝑠



→ 0 uniformly as 𝑡

→ 𝑡

.

(35)

Thus, we have proved that 𝐴Ω is equicontinuous on any 𝐽𝑘 ∩
[0, 𝑇].
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Next, we prove that for any 𝜀 > 0, 𝑥 ∈ Ω, there exits
sufficiently large𝑁 > 0 such that



(𝐴𝑥) (𝑡

)

1 + 𝑡
−
(𝐴𝑥) (𝑡


)

1 + 𝑡



< 𝜀,


(𝐴𝑥)

(𝑡

) − (𝐴𝑥)


(𝑡

)

< 𝜀, ∀𝑡


, 𝑡

≥ 𝑁.

(36)

For any 𝑥 ∈ Ω, we have

lim
𝑡→+∞

1

1 + 𝑡

⋅ [

[

1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

×∫

+∞

0

𝑔 (𝑡) ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘)) d𝑡 + ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))]

≤ lim
𝑡→+∞

1

1 + 𝑡
⋅

𝑎
∗
+ 𝑏
∗
𝑟

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

= 0,

lim
𝑡→+∞

1

1 + 𝑡

⋅ ∫

+∞

0

𝑔 (𝑡)

⋅ [∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠] d𝑡

≤ lim
𝑡→+∞

1

1 + 𝑡
2
1/(𝑝−1)

× (
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡)

× [𝜑
−1

𝑝
(𝐵𝑟) ⋅ 𝜑

−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) + 𝑥∞] = 0,

lim
𝑡→+∞

1

1 + 𝑡

⋅ ∫

𝑡

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞)) d𝑠

= lim
𝑡→+∞

𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏+𝜑𝑝 (𝑥∞))

= 𝑥∞.

(37)

It follows from (37) that

lim
𝑡→∞



(𝐴𝑥) (𝑡)

1 + 𝑡



= lim
𝑡→∞

1

1 + 𝑡

×
{

{

{

1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))] d𝑡

+ ∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))}

= 𝑥∞.

(38)

On the other hand, we arrive at

lim
𝑡→∞


(𝐴𝑥)

(𝑡)


= lim
𝑡→∞

𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) d𝑠 + 𝜑𝑝 (𝑥∞))

= 𝑥∞.

(39)

Thus, (36) can be easily derived from (38) and (39). So, by
Lemma 5, we know that 𝐴Ω is relatively compact. Thus, we
have proved that 𝐴 : 𝑃 → 𝑃 is completely continuous.
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3. Main Results

For notational convenience, we denote that

𝑚 = 2
1/(𝑝−1)

(
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 + 1)

⋅ 𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) ,

(40)

𝑚

= (

1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 + 1)

⋅ 𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) ,

(41)

𝑛 = 2
1/(𝑝−1)

(
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 + 1)𝑥∞,

(42)

𝑛

= (

1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 + 1)𝑥∞, (43)

Λ = max
{

{

{

𝑎
∗

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡 − 3𝑏∗

, 𝑛
}

}

}

,

Λ

= max

{

{

{

𝑎
∗

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡 − 3𝑏∗

, 𝑛

}

}

}

.

(44)

Theorem 7. Assume that (H1)–(H3) hold, and there exists

𝑑 > {
3Λ, 𝑎𝑠 𝑝 ≥ 2,

3Λ

, 𝑎𝑠 1 < 𝑝 < 2

(45)

such that

(A1) 𝑓(𝑡, 𝑥1, 𝑦1) ≤ 𝑓(𝑡, 𝑥2, 𝑦2) for any 0 ≤ 𝑡 < +∞, 0 ≤

𝑥1 ≤ 𝑥2 ≤ 𝑑, 0 ≤ 𝑦1 ≤ 𝑦2 ≤ 𝑑,

(A2)

𝑓 (𝑡, (1 + 𝑡) 𝑢, 𝑣) ≤

{{{{{

{{{{{

{

𝜑𝑝 (
𝑑

3𝑚
) , 𝑎𝑠 𝑝 ≥ 2,

𝜑𝑝 (
𝑑

3𝑚
) , 𝑎𝑠 1 < 𝑝 < 2,

(𝑡, 𝑢, 𝑣) ∈ [0, +∞) × [0, 𝑑] × [0, 𝑑] ,

(46)

(A3) 𝐼𝑘(𝑥1) ≤ 𝐼𝑘(𝑥2) (𝑘 = 1, 2, . . . , ), for any 0 ≤ 𝑥1 ≤ 𝑥2.

Then, the boundary value problem (4) admits positive,
nondecreasing on [0, +∞) and concave solutions 𝑤∗ and 𝑣∗
such that 0 < ‖𝑤

∗
‖𝐷 ≤ 𝑑, and lim𝑛→∞𝑤𝑛 = lim𝑛→∞𝐴

𝑛
𝑤0 =

𝑤
∗, where

𝑤0 (𝑡) = 𝑑 + 𝑑𝑡, 𝑡 ∈ 𝐽, (47)

and 0 < ‖𝑣
∗
‖𝐷 ≤ 𝑑, lim𝑛→∞𝑣𝑛 = lim𝑛→∞𝐴

𝑛
𝑣0 = 𝑣

∗, where
𝑣0(𝑡) = 0, 𝑡 ∈ 𝐽.

Proof. Weonly prove the case that𝑝 ≥ 2. Another case can be
proved in a similar way. By Lemma 6, we know that 𝐴 : 𝑃 →

𝑃 is completely continuous. From the definition of 𝐴, (A1),
and (A3), we can easily get that 𝐴𝑥1 ≤ 𝐴𝑥2 for any 𝑥1, 𝑥2 ∈ 𝑃
with 𝑥1 ≤ 𝑥2, 𝑥



1
≤ 𝑥


2
. Denote that

𝑃𝑑 = {𝑥 ∈ 𝑃 | ‖𝑥‖𝐷 ≤ 𝑑} . (48)

In what follows, we first prove that 𝐴 : 𝑃𝑑 → 𝑃𝑑. If 𝑥 ∈ 𝑃𝑑,
then ‖𝑥‖𝐷 ≤ 𝑑. By (6), (40), (42), (44), (H3), (A2), and (A3),
we get that

‖𝐴𝑥‖𝐹

= sup
𝑡∈𝐽

{
1

1 + 𝑡

×



1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))] d𝑡

+ ∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑥 (𝑡𝑘))



}

≤
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 ⋅ 𝜑−1
𝑝

× (∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))
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+ 𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏 + 𝜑𝑝 (𝑥∞))

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑑)

≤ 2
1/(𝑝−1) [

[

1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 + 1]

]

× [𝜑
−1

𝑝
(𝜑𝑝 (

𝑑

3𝑚
)) ⋅ 𝜑

−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) + 𝑥∞]

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑑)

≤
𝑑

3
+
𝑑

3
+
𝑑

3
= 𝑑,

(49)

(𝐴𝑥)
𝐵

= sup
𝑡∈𝐽

{


𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑥

(𝑠)) d𝑠+𝜑𝑝 (𝑥∞))


}

≤ 2
1/(𝑝−1)

[𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝑠) d𝑠) 𝜑−1
𝑝
(𝜑𝑝 (

𝑑

3𝑚
))+𝑥∞]

≤ 𝑑.

(50)

Thus, we get that ‖𝐴𝑥‖𝐷 ≤ 𝑑. Hence, we have proved that
𝐴 : 𝑃𝑑 → 𝑃𝑑.

Let 𝑤0(𝑡) = 𝑑 + 𝑑𝑡, 0 ≤ 𝑡 < +∞, then 𝑤0(𝑡) ∈ 𝑃𝑑. Let
𝑤1 = 𝐴𝑤0, 𝑤2 = 𝐴

2
𝑤0, then by Lemma 6, we have that 𝑤1 ∈

𝑃𝑑 and 𝑤2 ∈ 𝑃𝑑. Denote that

𝑤𝑛+1 = 𝐴𝑤𝑛 = 𝐴
𝑛+1

𝑤0, 𝑛 = 0, 1, 2, . . . . (51)

Since 𝐴 : 𝑃𝑑 → 𝑃𝑑, we have that

𝑤𝑛 ∈ 𝐴 (𝑃𝑑) ⊂ 𝑃𝑑, 𝑛 = 1, 2, 3, . . . . (52)

It follows from the complete continuity of 𝐴 that {𝑤𝑛}
∞

𝑛=1

is a sequentially compact set. We assert that {𝑤𝑛}
∞

𝑛=1
has a

convergent subsequence {𝑤𝑛𝑘}
∞

𝑘=1
, and there exists 𝑤∗ ∈ 𝑃𝑑

such that 𝑤𝑛𝑘 → 𝑤
∗.

By (51), (A1)–(A3), we get that
𝑤1 (𝑡)

=
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑔 (𝑡)

× [∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑤0 (𝜏) , 𝑤


0
(𝜏)) d𝜏

+𝜑𝑝 (𝑥∞) ) d𝑠

+∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑤0 (𝑡𝑘))] d𝑡

+ ∫

𝑡

0

𝜑
−1

𝑝

× (∫

+∞

𝑠

𝑞 (𝜏) 𝑓 (𝜏, 𝑤0 (𝜏) , 𝑤


0
(𝜏)) d𝜏+𝜑𝑝 (𝑥∞)) d𝑠

+ ∑

𝑡𝑘<𝑡

𝐼𝑘 (𝑤0 (𝑡𝑘))

≤
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

× ∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 ⋅ 𝜑−1
𝑝

× (∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏+𝜑𝑝 (𝑥∞))

+ 𝑡𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) 𝑓 (𝜏, 𝑥 (𝜏) , 𝑥

(𝜏)) d𝜏+𝜑𝑝 (𝑥∞))

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑑)

≤ 2
1/(𝑝−1)

(
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

⋅ ∫

+∞

0

𝑡𝑔 (𝑡) d𝑡)

× [𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏)𝜑−1
𝑝
(𝜑𝑝 (

𝑑

3𝑚
)) + 𝑥∞]

+ 2
1/(𝑝−1)

𝑡 [𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏)𝜑−1
𝑝
(𝜑𝑝 (

𝑑

3𝑚
)) + 𝑥∞]

+
1

1 − ∫
+∞

0
𝑔 (𝑡) d𝑡

(𝑎
∗
+ 𝑏
∗
𝑑)

≤ 𝑑 + 𝑑𝑡 = 𝑤0 (𝑡) ,

𝑤


1
(𝑡)

= (𝐴𝑤0)

(𝑡)

= 𝜑
−1

𝑝
(∫

+∞

𝑡

𝑞 (𝑠) 𝑓 (𝑠, 𝑤0 (𝑠) , 𝑤


0
(𝑠)) d𝑠 + 𝜑𝑝 (𝑥∞))

≤ 2
1/(𝑝−1)

[𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏)𝜑−1
𝑝
(𝜑𝑝 (

𝑑

3𝑚
)) + 𝑥∞]

≤ 𝑑

= 𝑤


0
(𝑡) , 0 ≤ 𝑡 < +∞.

(53)

So, by (53) (A1)–(A3) we have

𝑤2 (𝑡) = (𝐴𝑤1) (𝑡) ≤ (𝐴𝑤0) (𝑡) = 𝑤1 (𝑡) , 0 ≤ 𝑡 < +∞,

𝑤


2
(𝑡) = (𝐴𝑤1)


(𝑡) ≤ (𝐴𝑤0)


(𝑡) = (𝑤1)


(𝑡) , 0 ≤ 𝑡 < +∞.

(54)
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By induction, we get that

𝑤𝑛+1 (𝑡) ≤ 𝑤𝑛 (𝑡) ,

𝑤


𝑛+1
(𝑡) ≤ 𝑤



𝑛
(𝑡) ,

0 ≤ 𝑡 < +∞, 𝑛 = 0, 1, 2, . . . .

(55)

Hence, we claim that 𝑤𝑛 → 𝑤
∗ as 𝑛 → ∞. Applying the

continuity of 𝐴 and 𝑤𝑛+1 = 𝐴𝑤𝑛, we get that 𝐴𝑤
∗
= 𝑤
∗.

Let 𝑣0(𝑡) = 0, 0 ≤ 𝑡 < +∞, then 𝑣0(𝑡) ∈ 𝑃𝑑. Let 𝑣1 =
𝐴𝑣0, 𝑣2 = 𝐴

2
𝑣0. By Lemma 6, we have that 𝑣1 ∈ 𝑃𝑑 and 𝑣2 ∈

𝑃𝑑. Denote

𝑣𝑛+1 = 𝐴𝑣𝑛 = 𝐴
𝑛+1

𝑣0, 𝑛 = 0, 1, 2, . . . . (56)

Since 𝐴 : 𝑃𝑑 → 𝑃𝑑, we have that 𝑣𝑛 ∈ 𝐴(𝑃𝑑) ⊂ 𝑃𝑑, 𝑛 =

1, 2, 3, . . .. It follows from the complete continuity of 𝐴 that
{𝑣𝑛}
∞

𝑛=1
is a sequentially compact set. And, we assert that

{𝑣𝑛}
∞

𝑛=1
has a convergent subsequence {𝑣𝑛𝑘}

∞

𝑘=1
and there exists

𝑣
∗
∈ 𝑃𝑑 such that 𝑣𝑛𝑘 → 𝑣

∗.
Since 𝑣1 = 𝐴𝑣0 ∈ 𝑃𝑑, we have

𝑣1 (𝑡) = (𝐴𝑣0) (𝑡) = (𝐴0) (𝑡) ≥ 0, 0 ≤ 𝑡 < +∞,

𝑣


1
(𝑡) = (𝐴𝑣0)


(𝑡) = (𝐴0)


(𝑡) ≥ 0 = 𝑣



0
(𝑡) , 0 ≤ 𝑡 < +∞.

(57)

By (A1)–(A3), we have

𝑣2 (𝑡) = (𝐴𝑣1) (𝑡) ≥ (𝐴0) (𝑡) = 𝑣1 (𝑡) , 0 ≤ 𝑡 < +∞,

𝑣


2
(𝑡) = (𝐴𝑣1)


(𝑡) ≥ (𝐴0)


(𝑡) = 𝑣



1
(𝑡) , 0 ≤ 𝑡 < +∞.

(58)

By induction, we get that

𝑣𝑛+1 (𝑡) ≥ 𝑣𝑛 (𝑡) ,

𝑣


𝑛+1
(𝑡) ≥ 𝑣



𝑛
(𝑡) ,

0 ≤ 𝑡 < +∞, 𝑛 = 0, 1, 2, . . . .

(59)

Hence, we claim that 𝑣𝑛 → 𝑣
∗ as 𝑛 → ∞. Applying the

continuity of 𝐴 and 𝑣𝑛+1 = 𝐴𝑣𝑛, we get that 𝐴𝑣
∗
= 𝑣
∗.

Since 𝑓(𝑡, 0, 0) ̸≡ 0, 0 ≤ 𝑡 < ∞, then the zero function is
not the solution of BVP (4). Thus, 𝑣∗ is a positive solution of
BVP (4). By Lemma 4 we know that 𝑤∗ and 𝑣∗ are positive,
nondecreasing on [0, +∞) and concave solutions of the BVP
(4).

We can easily get that Theorem 7 holds for 1 < 𝑝 < 2 in a
similar manner.

Remark 8. The iterative schemes inTheorem 7 are𝑤0(𝑡) = 𝑑+
𝑑𝑡,𝑤𝑛+1 = 𝐴𝑤𝑛 = 𝐴

𝑛+1
𝑤0, 𝑛 = 0, 1, 2, . . . and 𝑣0(𝑡) = 0, 𝑣𝑛+1 =

𝐴𝑣𝑛 = 𝐴
𝑛+1

𝑣0, 𝑛 = 0, 1, 2, . . .. They start off with a known
simple linear function and the zero function respectively.This
is convenient in application.

Theorem 9. Assume that (𝐻1)–(𝐻3) hold, and there exist

𝑑𝑛 > 𝑑𝑛−1 > ⋅ ⋅ ⋅ > 𝑑1 > {
3Λ, as𝑝 ≥ 2,
3Λ

, as 1 < 𝑝 < 2

(60)

such that

(A
1
) 𝑓(𝑡, 𝑥1, 𝑦1) ≤ 𝑓(𝑡, 𝑥2, 𝑦2) for any 0 ≤ 𝑡 < +∞, 0 ≤

𝑥1 ≤ 𝑥2, 0 ≤ 𝑦1 ≤ 𝑦2.
(A
2
)

𝑓 (𝑡, (1 + 𝑡) 𝑢, 𝑣) ≤

{{{{{

{{{{{

{

𝜑𝑝 (
𝑑𝑘

3𝑚
) , 𝑎𝑠 𝑝 ≥ 2,

𝜑𝑝 (
𝑑𝑘

3𝑚
) , 𝑎𝑠 1 < 𝑝 < 2

(𝑡, 𝑢, 𝑣) ∈ [0, +∞) × [0, 𝑑𝑘] × [0, 𝑑𝑘] , 𝑘 = 1, 2, . . . , 𝑛.

(61)

(A
3
) 𝐼𝑘(𝑥1) ≤ 𝐼𝑘(𝑥2) (𝑘 = 1, 2, . . . , ), for any 0 ≤ 𝑥1 ≤ 𝑥2.

Then, the boundary value problem (4) admits positive nonde-
creasing on [0, +∞) and concave solutions𝑤∗

𝑘
and 𝑣∗
𝑘
, such that

0 < ‖𝑤
∗

𝑘
‖
𝐷
≤ 𝑑𝑘, and lim𝑛→∞𝑤𝑘𝑛 = lim𝑛→∞𝐴

𝑛
𝑤𝑘0 = 𝑤

∗

𝑘
,

where

𝑤0 (𝑡) = 𝑑𝑘 + 𝑑𝑘𝑡, 𝑡 ∈ 𝐽, (62)

and 0 < ‖𝑣
∗

𝑘
‖𝐷 ≤ 𝑑𝑘, lim𝑛→∞𝑣𝑘𝑛 = lim𝑛→∞𝐴

𝑛
𝑣𝑘0 = 𝑣

∗

𝑘
,

where 𝑣0(𝑡) = 0, 𝑡 ∈ 𝐽.

Remark 10. It is easy to see that𝑤∗ and 𝑣∗ inTheorem 7 may
coincide, and then the boundary value problem (4) has only
one solution in 𝑃. Similarly, positive solutions𝑤∗

𝑘
and 𝑣∗
𝑘
may

also coincide.

4. An Example

Example 11. Consider the following impulsive integral
boundary value problem:

(

𝑥

𝑥

)


+ 𝑒
−6𝑡
𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) = 0, 𝑡 ∈ 𝐽+,

Δ𝑥|𝑡=𝑘 =
1

9
[

1

2𝑘+2
𝑥 (𝑘) +

1

2𝑘+1
(1 + 𝑥 (𝑘))

1/6
] ,

𝑥 (0) = ∫

+∞

0

1

(1 + 𝑡)
3
𝑥 (𝑡) d𝑡, 𝑥


(∞) =

√2

3
,

(63)

where
𝑓 (𝑡, 𝑢, 𝑣)

=

{{

{{

{

1

64
|sin (101𝑡 + 20)| + 1

72
(

𝑢

1 + 𝑡
)

3

+
1

10
(
𝑣

20
) , 𝑢 ≤ 2,

1

64
|sin (101𝑡 + 20)| + 1

72
(

2

1 + 𝑡
)

3

+
1

10
(
𝑣

20
) , 𝑢 ≥ 2.

(64)

It is clear that conditions (H1), (A1), and (A3) hold for 𝑝 =

3, 𝑞(𝑡) = 𝑒
−6𝑡, 𝑔(𝑡) = 1/(1 + 𝑡)

3. By direct computation, we
obtain that

∫

+∞

0

𝑞 (𝑡) d𝑡 = 1

6
, ∫

+∞

0

𝜑
−1

𝑝
(∫

+∞

𝑠

𝑞 (𝜏) d𝜏) d𝑠 =
√3

18
,

(65)

which implies that (H2) holds.
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Obviously, 𝐼𝑘 ∈ 𝐶(𝐽, 𝐽). Using a simple inequality

(1 + 𝑢)
𝛼
≤ 1 + 𝛼𝑢, ∀𝑢 ≥ 0, 0 < 𝛼 < 1, (66)

we get that

𝐼𝑘 (𝑥 (𝑘)) ≤
1

9
[

1

2𝑘+2
𝑥 (𝑘) +

1

2𝑘+1
(1 +

1

6
𝑥 (𝑘))]

≤
1

9
⋅
1

2𝑘+1
+

2

27
⋅
1

2𝑘+1
𝑥 (𝑘) .

(67)

Thus, (H3)holds for 𝑎𝑘 = (1/9)⋅(1/2
𝑘+1

), 𝑏𝑘 = (2/27)⋅(1/2
𝑘+1

).
Considering that

∫

+∞

0

𝑔 (𝑡) d𝑡 = ∫
+∞

0

1

(1 + 𝑡)
3
d𝑡 = 1

2
,

∫

+∞

0

𝑡𝑔 (𝑡) d𝑡 = ∫
+∞

0

𝑡

(1 + 𝑡)
3
d𝑡 = 1

2
,

𝜑
−1

𝑝
(∫

+∞

0

𝑞 (𝜏) d𝜏) = 𝜑
−1

𝑝
(
1

6
) =

√6

6
,

(68)

we can obtain that

𝑎
∗
=

∞

∑

𝑘=1

𝑎𝑘 =
1

18
,

𝑏
∗
=

2

27

∞

∑

𝑘=1

1 + 𝑘

2𝑘+1
=

2

27
(

∞

∑

𝑘=1

1

2𝑘+1
+

∞

∑

𝑘=1

𝑘

2𝑘+1
) =

1

9
,

𝑚 = √3, 𝑛 = 2, Λ = 2.

(69)

Take 𝑑 = 8. In this case, we have

𝜑𝑝 (
𝑑

3𝑚
) = 𝜑𝑝 (

8

3√3
) =

64

27
. (70)

On the other hand, nonlinear term 𝑓 satisfies

𝑓 (𝑡, (1 + 𝑡) 𝑢, 𝑣)

≤
1

64
+
1

9
+

1

25
=

2401

14400
, 𝑡 ∈ [0, +∞) , 𝑢, 𝑣 ∈ [0, 8] ,

(71)

which means that (A2) holds. Thus, we have checked that
all the conditions of Theorem 7 are satisfied. Therefore, the
conclusion of Theorem 7 holds.
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In this paper, a two-species nonautonomous stochastic mutualism system is investigated. The intrinsic growth rates of the two
species at time t are estimated by 𝑟𝑖(𝑡) + 𝜎𝑖(𝑡) ̇𝐵𝑖(𝑡), 𝑖 = 1, 2, respectively. Viewing the different intensities of the noises 𝜎𝑖(𝑡), 𝑖 = 1, 2
as two parameters at time t, we conclude that there exists a global positive solution and the pth moment of the solution is bounded.
We also show that the system is permanent, including stochastic permanence, persistence in mean, and asymptotic boundedness in
time average. Besides, we show that the large white noise will make the system nonpersistent. Finally, we establish sufficient criteria
for the global attractivity of the system.

1. Introduction

For more than three decades, mutualism of multispecies has
attracted the attention of bothmathematicians and ecologists.
By definition, in a mutualism of multispecies, the interac-
tion is beneficial for the growth of other species. Lotka-
Volterra mutualism systems have long been used as standard
models to mathematically address questions related to this
interaction. Among these, nonautonomous Lotka-Volterra
mutualism models are studied by many authors, see [1–7]
and references therein. The classical nonautonomous Lotka-
Volterra mutualism system can be expressed as follows:

̇𝑥𝑖 (𝑡) = 𝑥𝑖 (𝑡)
[
[
[

[

𝑟𝑖 (𝑡) − 𝑎𝑖𝑖 (𝑡) 𝑥𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑗 ̸= 𝑖

𝑎𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)
]
]
]

]

,

𝑖 = 1, 2, . . . , 𝑛,

(1)

where 𝑥𝑖(𝑡), 𝑖 = 1, 2, . . . , 𝑛 is the density of the 𝑖th population
at time 𝑡, 𝑟𝑖(𝑡) > 0, 𝑖 = 1, 2, . . . , 𝑛 is the intrinsic growth
rate of the 𝑖th population at time 𝑡, 𝑟𝑖(𝑡)/𝑎𝑖𝑖(𝑡) > 0, 𝑖 =

1, 2, . . . , 𝑛 is the carrying capacity at time 𝑡, and coefficient
𝑎𝑖𝑗(𝑡) > 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛 describes the influence of the 𝑗th
population upon the 𝑖th population at time 𝑡.

It is shown in [1] that if different conditions hold (see
conditions (a)–(e) in [1]), then the solution of system (1) is
bounded, permanent, extinct, and global attractive, respec-
tively.However, when the intrinsic growth rate and coefficient
𝑎𝑖𝑗(𝑡) are periodic, it is shown in [3] that there exists positive
periodic solution and almost periodic solutions are obtained.

From another point of view, environmental noise always
exists in real life. It is an interesting problem, bothmathemat-
ically and biologically, to determine how the structure of the
model changes under the effect of a fluctuating environment.
Many authors studied the biological models with stochastic
perturbation, see [8–12] and references therein. In [8] Ji et
al. discussed the following two-species stochastic mutualism
system

𝑑𝑥1 (𝑡) = 𝑥1 (𝑡) [(𝑟1 − 𝑎11𝑥1 (𝑡) + 𝑎12𝑥2 (𝑡)) 𝑑𝑡 + 𝜎1𝑑𝐵1 (𝑡)] ,

𝑑𝑥2 (𝑡) = 𝑥2 (𝑡) [(𝑟2 + 𝑎21𝑥1 (𝑡) − 𝑎22𝑥2 (𝑡)) 𝑑𝑡 + 𝜎2𝑑𝐵2 (𝑡)] ,

(2)

where 𝐵𝑖(𝑡), 𝑖 = 1, 2 are mutually independent one dimen-
sional standard Brownian motions with 𝐵𝑖(0) = 0, 𝑖 = 1, 2,
and𝜎𝑖, 𝑖 = 1, 2 are the intensities of white noise. It is shown in
[8] that if 𝑎11𝑎22 > 𝑎12𝑎21 then there is a unique nonnegative
solution of system (2). For small white noise there is a sta-
tionary distribution of (2) and it has ergodic property.
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Biologically, this implies that with small perturbation of
environment, the stability of the two species varies with the
intensity of white noise, and both species will survive.

However, almost all known stochasticmodels assume that
the growth rate and the carrying capacity of the population
are independent of time 𝑡. In contrast, the natural growth
rates of many populations vary with 𝑡 in real situation, for
example, due to the seasonality. As a matter of fact, nonau-
tonomous stochastic population systems have recently been
studied by many authors, for example, [13–17].

In this paper we consider the system

𝑑𝑥1 (𝑡) = 𝑥1 (𝑡) [(𝑟1 (𝑡) − 𝑎11 (𝑡) 𝑥1 (𝑡) + 𝑎12 (𝑡) 𝑥2 (𝑡)) 𝑑𝑡

+𝜎1 (𝑡) 𝑑𝐵1 (𝑡) ] ,

𝑑𝑥2 (𝑡) = 𝑥2 (𝑡) [(𝑟2 (𝑡) + 𝑎21 (𝑡) 𝑥1 (𝑡) − 𝑎22 (𝑡) 𝑥2 (𝑡)) 𝑑𝑡

+𝜎2 (𝑡) 𝑑𝐵2 (𝑡) ] ,

(3)

where 𝑟𝑖(𝑡), 𝑎𝑖𝑗(𝑡), 𝜎𝑖(𝑡), 𝑖, 𝑗 = 1, 2 are all continuous bounded
nonnegative functions on [0, +∞).The objective of our study
is to investigate the long-time behavior of system (3). As in
[8], we mainly discuss when the system is persistent and
when it is not under a fewer conditions. More specifically,
we show that there is a positive solution of system (3) and its
𝑝th moment bounded in Section 2. In Section 3, we deduce
the persistence of the system. If the white noise is not large
such that 𝑟𝑙

𝑖
− ((𝜎

𝑢

𝑖
)
2
/2) > 0, 𝑖 = 1, 2, we will prove that the

solution of system (3) is a stochastic persistence. In addition,
we show that every component of the solution is persistent
in mean. We further deduce that every component of the
solution of system (3) is an asymptotic boundedness inmean.
In Section 4, we show that largerwhite noisewillmake system
(3) nonpersistent. Finally, we study the global attractivity of
system (3).

Throughout this paper, unless otherwise specified, let
(Ω, {F𝑡}𝑡≥0, 𝑃) be a complete probability space with a filtra-
tion {F𝑡}𝑡≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all 𝑃-null sets). Let 𝑅

2

+
be the

positive cone of 𝑅2, namely, 𝑅2
+
= {𝑥 ∈ 𝑅

2
: 𝑥𝑖 > 0, 𝑖 = 1, 2}.

If 𝑥 ∈ 𝑅
𝑛, its norm is denoted by |𝑥| = (∑

𝑛

𝑖=1
𝑥
2

𝑖
)
1/2. If 𝑓(𝑡)

is a continuous bounded function on [0, +∞), we use the
notation sup

𝑓
𝑢
= sup

𝑡∈[0,+∞)

𝑓 (𝑡) , 𝑓
𝑙
= min

𝑡∈[0,+∞)

𝑓 (𝑡) . (4)

2. Existence and Uniqueness of
the Positive Solution

In population dynamics, the first concern is that the solution
should be nonnegative. In order to do that a stochastic differ-
ential equation can have a unique global (i.e., no explosion
at any finite time) solution for any given initial value, the
coefficients of the equation are generally required to satisfy
the linear growth condition and local Lipschitz condition
(Mao [18]). However, the coefficients of system (3) do not

satisfy the linear growth condition, though they are locally
Lipschitz continuous, so the solution of system (3) may
explode at a finite time. Following the way developed byMao
et al. [19], we show that there is a unique positive solution of
(3).

Theorem 1. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
. Then, there is a

unique positive solution 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) of system (3) on
𝑡 ≥ 0 for any given initial value 𝑥(0) ∈ 𝑅

2

+
, and the solution

will remain in 𝑅2
+
with probability 1, namely, 𝑥(𝑡) ∈ 𝑅2

+
for all

𝑡 ≥ 0 almost surely.

The proof ofTheorem 1 is similar to [8]. But it is skilled in
taking the value of 𝜖. We show it here.

Proof. Since the coefficients of the equation are locally Lips-
chitz continuous, for any given initial value 𝑥(0) ∈ 𝑅

2

+
there

is an unique local solution 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡)) on 𝑡 ∈ [0, 𝜏𝑒),
where 𝜏𝑒 is the explosion time. To show that this solution is
global, we need to show that 𝜏𝑒 = ∞ a.s. Let 𝑚0 > 1 be
sufficiently large for every component of 𝑥(0) lying within
the interval [1/𝑚0, 𝑚0]. For each integer 𝑚 ≥ 𝑚0, define the
stopping time

𝜏𝑚 = inf {𝑡 ∈ [0, 𝜏𝑒) : min {𝑥1(𝑡) , 𝑥2(𝑡)}

≤
1

𝑚
or max {𝑥1(𝑡) , 𝑥2(𝑡)} ≥ 𝑚},

(5)

where throughout this paper we set inf 0 = ∞ (as usual 0
denotes the empty set). Clearly, 𝜏𝑚 is increasing as𝑚 → ∞.
Set 𝜏∞ = lim𝑚→∞𝜏𝑚, whence 𝜏∞ ≤ 𝜏𝑒 a.s. If we can show
that 𝜏∞ = ∞ a.s., then 𝜏𝑒 = ∞ a.s. and 𝑥(𝑡) ∈ 𝑅

2

+
a.s. for all

𝑡 ≥ 0. In other words, to complete the proof, all we need to
show is that 𝜏∞ = ∞ a.s. If this statement is false, there is a
pair of constant 𝑇 > 0 and 𝜀 ∈ (0, 1) such that

𝑃 {𝜏∞ ≤ 𝑇} > 𝜀. (6)

Hence, there is an integer𝑚1 ≥ 𝑚0 such that

𝑃 {𝜏𝑚 ≤ 𝑇} ≥ 𝜀 ∀𝑚 ≥ 𝑚1. (7)

We define

𝑉 (𝑥) = 𝑎
𝑢

21
(𝑥1 − 1 − log𝑥1) + 𝑎

𝑢

12
(𝑥2 − 1 − log𝑥2) . (8)

By Itô’s formula, we have

𝑑𝑉 (𝑥) = {𝑎
𝑢

21
(1−

1

𝑥1

)𝑥1 [𝑟1 (𝑡)−𝑎11 (𝑡) 𝑥1+𝑎12 (𝑡) 𝑥2]

+𝑎
𝑢

12
(1−

1

𝑥2

)𝑥2 [𝑟2 (𝑡)+𝑎21 (𝑡) 𝑥1−𝑎22 (𝑡) 𝑥2]

+
1

2
[𝑎

𝑢

21
𝜎
2

1
(𝑡) + 𝑎

𝑢

12
𝜎
2

2
(𝑡)] } 𝑑𝑡
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+ 𝑎
𝑢

21
𝜎1 (𝑡) (𝑥1 − 1) 𝑑𝐵1 (𝑡)

+ 𝑎
𝑢

12
𝜎2 (𝑡) (𝑥2 − 1) 𝑑𝐵2 (𝑡)

:= 𝐿𝑉𝑑𝑡 + 𝑎
𝑢

21
𝜎1 (𝑡) (𝑥1 − 1) 𝑑𝐵1 (𝑡)

+ 𝑎
𝑢

12
𝜎2 (𝑡) (𝑥2 − 1) 𝑑𝐵2 (𝑡) ,

(9)

where

𝐿𝑉 = 𝑎
𝑢

21
(1 −

1

𝑥1

)𝑥1 [𝑟1 (𝑡) − 𝑎11 (𝑡) 𝑥1 + 𝑎12 (𝑡) 𝑥2]

+ 𝑎
𝑢

12
(1 −

1

𝑥2

)𝑥2 [𝑟2 (𝑡) + 𝑎21 (𝑡) 𝑥1 − 𝑎22 (𝑡) 𝑥2]

+
1

2
[𝑎

𝑢

21
𝜎
2

1
(𝑡) + 𝑎

𝑢

12
𝜎
2

2
(𝑡)]

≤ 𝑎
𝑢

21
[ (𝑟

𝑢

1
+ 𝑎

𝑢

11
) 𝑥1 − 𝑎

𝑙

12
𝑥2 − 𝑎

𝑙

11
𝑥
2

1

+𝑎
𝑢

12
𝑥1𝑥2 − 𝑟

𝑙

1
+
1

2
(𝜎

𝑢

1
)
2
]

+ 𝑎
𝑢

12
[ (𝑟

𝑢

2
+ 𝑎

𝑢

22
) 𝑥2 − 𝑎

𝑙

21
𝑥1 − 𝑎

𝑙

22
𝑥
2

2

+𝑎
𝑢

21
𝑥1𝑥2 − 𝑟

𝑙

2
+
1

2
(𝜎

𝑢

2
)
2
] .

(10)

According to Young inequality, note that 𝑥1𝑥2 ≤ 𝜖𝑥
2

1
+

(1/4𝜖)𝑥
2

2
, where 𝑎𝑢

21
/2𝑎

𝑙

22
< 𝜖 < 𝑎

𝑙

11
/2𝑎

𝑢

12
, then,

𝐿𝑉 ≤ 𝑎
𝑢

21
[ (𝑟

𝑢

1
+ 𝑎

𝑢

11
) 𝑥1 − 𝑎

𝑙

12
𝑥2 − 𝑎

𝑙

11
𝑥
2

1

+𝑎
𝑢

12
(𝜖𝑥

2

1
+
1

4𝜖
𝑥
2

2
) − 𝑟

𝑙

1
+
1

2
(𝜎

𝑢

1
)
2
]

+ 𝑎
𝑢

12
[ (𝑟

𝑢

2
+ 𝑎

𝑢

22
) 𝑥2 − 𝑎

𝑙

21
𝑥1 − 𝑎

𝑙

22
𝑥
2

2

+𝑎
𝑢

21
(𝜖𝑥

2

1
+
1

4𝜖
𝑥
2

2
) − 𝑟

𝑙

2
+
1

2
(𝜎

𝑢

2
)
2
]

= − (𝑎
𝑢

21
𝑎
𝑙

11
− 2𝜖𝑎

𝑢

21
𝑎
𝑢

12
) 𝑥

2

1

+ [𝑎
𝑢

21
(𝑟
𝑢

1
+ 𝑎

𝑢

11
) − 𝑎

𝑢

12
𝑎
𝑙

21
] 𝑥1

− 𝑎
𝑢

21
𝑟
𝑙

1
+
1

2
𝑎
𝑢

21
(𝜎

𝑢

1
)
2

− (𝑎
𝑢

12
𝑎
𝑙

22
−
1

2𝜖
𝑎
𝑢

21
𝑎
𝑢

12
)𝑥

2

2

+ [𝑎
𝑢

12
(𝑟
𝑢

2
+ 𝑎

𝑢

22
) − 𝑎

𝑢

21
𝑎
𝑙

12
] 𝑥2

− 𝑎
𝑢

12
𝑟
𝑙

2
+
1

2
𝑎
𝑢

12
(𝜎

𝑢

2
)
2

≤ 𝐾.

(11)

Since 𝑎𝑢
21
/2𝑎

𝑙

22
< 𝜖 < 𝑎

𝑙

11
/2𝑎

𝑢

12
, we obtain −(𝑎𝑢

21
𝑎
𝑙

11
− 2𝜖𝑎

𝑢

12
) <

0 and −(𝑎𝑢
12
𝑎
𝑙

22
− (1/2𝜖)𝑎

𝑢

21
𝑎
𝑢

12
) < 0. Hence, 𝐾 is a positive

constant. Integrating both sides of (9) from 0 to 𝜏𝑚 ∧ 𝑇, we
therefore obtain

𝑉 (𝑥 (𝜏𝑚 ∧ 𝑇)) − 𝑉 (𝑥 (0))

≤ ∫

𝜏𝑚∧𝑇

0

𝐾𝑑𝑡 + ∫

𝜏𝑚∧𝑇

0

𝑎
𝑢

21
𝜎1 (𝑡) (𝑥1 (𝑡) − 1) 𝑑𝐵1 (𝑡)

+ ∫

𝜏𝑚∧𝑇

0

𝑎
𝑢

12
𝜎2 (𝑡) (𝑥2 (𝑡) − 1) 𝑑𝐵2 (𝑡) .

(12)

Whence, taking expectations yields

𝐸 [𝑉 (𝑥 (𝜏𝑚 ∧ 𝑇))] ≤ 𝑉 (𝑥 (0)) + 𝐾𝐸 (𝜏𝑚 ∧ 𝑇)

≤ 𝑉 (𝑥 (0)) + 𝐾𝑇.

(13)

Set Ω𝑚 = {𝜏𝑚 ≤ 𝑇} for 𝑚 ≥ 𝑚1 and by (7), 𝑃(Ω𝑚) ≥ 𝜀. Note
that for every 𝜔 ∈ Ω𝑚, there is 𝑥1(𝜏𝑚, 𝜔) or 𝑥2(𝜏𝑚, 𝜔) equals
either𝑚 or 1/𝑚, and therefore

𝑉 (𝑥 (𝜏𝑚, 𝜔))

≥ min {𝑎𝑢
21
, 𝑎

𝑢

12
} (𝑚 − 1 − log𝑚) ∧ ( 1

𝑚
− 1 − log 1

𝑚
)

:= ℎ (𝑚) ,

(14)

where lim𝑚→∞ℎ(𝑚) = ∞. It then follows from (13) that

𝐸 [𝑉 (𝑥 (0))] + 𝐾𝑇 ≥ 𝐸 [1Ω𝑚
⋅ 𝑉 (𝑥 (𝜏𝑚, 𝜔))] ≥ 𝜖ℎ (𝑚) ,

(15)

where 1Ω𝑚 is the indicator function of Ω𝑚. Letting 𝑚 → ∞

leads to the contradiction

∞ > 𝑉 (𝑥 (0)) + 𝐾𝑇 = ∞, (16)

so we must have 𝜏∞ = ∞ a.s. This completes the proof of
Theorem 1.

Remark 2. By Theorem 1, we observe that for any given
initial value 𝑥(0) ∈ 𝑅

2

+
, there is a unique solution 𝑥(𝑡) =

(𝑥1(𝑡), 𝑥2(𝑡)) of system (3) on 𝑡 ≥ 0 and the solution will
remain in 𝑅

2

+
with probability 1, no matter how large the

intensities of white noise are. So, under the same assumption
there is an global unique positive solution of the correspond-
ing deterministic system of system (3).

Next, we show that the 𝑝th moment of the solution of
system (3) is bounded in time average.
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Theorem 3. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
. Then there exists a

positive constant𝐾(𝑝) such that the solution 𝑥(𝑡) of system (3)
has the following property:

𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)] ≤ 𝐾 (𝑝) , ∀𝑡 ∈ [0,∞) , 𝑝 > 1,

(17)

where 𝑐1, 𝑐2 satisfy

(𝑎
𝑢

21
)
𝑝+1

𝑎𝑙
11
(𝑎𝑙
22
)
𝑝
<
𝑐1

𝑐2

<
𝑎
𝑙

22
(𝑎

𝑙

11
)
𝑝

(𝑎𝑢
12
)
𝑝+1

. (18)

Proof. By Itô’s formula, we have

𝑑𝑥
𝑝

1
(𝑡) = 𝑝𝑥

𝑝

1
(𝑡) [(𝑟1 (𝑡) − 𝑎11 (𝑡) 𝑥1 (𝑡) + 𝑎12 (𝑡) 𝑥2 (𝑡)) 𝑑𝑡

+𝜎1 (𝑡) 𝑑𝐵1 (𝑡) ]

+
1

2
𝑝 (𝑝 − 1) 𝑥

𝑝

1
(𝑡) 𝜎

2

1
(𝑡) 𝑑𝑡

= 𝑝 [(𝑟1 (𝑡) +
𝑝 − 1

2
𝜎
2

1
(𝑡)) 𝑥

𝑝

1
(𝑡) − 𝑎11 (𝑡) 𝑥

𝑝+1

1
(𝑡)

+𝑎12 (𝑡) 𝑥
𝑝

1
(𝑡) 𝑥2 (𝑡) ] 𝑑𝑡

+ 𝜎1 (𝑡) 𝑝𝑥
𝑝

1
(𝑡) 𝑑𝐵1 (𝑡)

= 𝑝 [𝛼1 (𝑡) 𝑥
𝑝

1
(𝑡) − 𝑎11 (𝑡) 𝑥

𝑝+1

1
(𝑡)

+𝑎12 (𝑡) 𝑥
𝑝

1
(𝑡) 𝑥2 (𝑡)] 𝑑𝑡

+ 𝜎1 (𝑡) 𝑝𝑥
𝑝

1
(𝑡) 𝑑𝐵1 (𝑡)

≤ 𝑝 [𝛼
𝑢

1
𝑥
𝑝

1
(𝑡) − 𝑎

𝑙

11
𝑥
𝑝+1

1
(𝑡) + 𝑎

𝑢

12
𝑥
𝑝

1
(𝑡) 𝑥2 (𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

1
𝑥
𝑝

1
(𝑡) 𝑑𝐵1 (𝑡) ,

(19)

where 𝛼1(𝑡) = 𝑟1(𝑡) + ((𝑝 − 1)/2)𝜎
2

1
(𝑡), and

𝑑𝑥
𝑝

2
(𝑡) = 𝑝𝑥

𝑝

2
(𝑡) [(𝑟2 (𝑡) − 𝑎22 (𝑡) 𝑥2 (𝑡) + 𝑎21 (𝑡) 𝑥1 (𝑡)) 𝑑𝑡

+𝜎2 (𝑡) 𝑑𝐵2 (𝑡) ]

+
1

2
𝑝 (𝑝 − 1) 𝑥

𝑝

2
(𝑡) 𝜎

2

2
(𝑡) 𝑑𝑡

= 𝑝 [(𝑟2 (𝑡) +
𝑝 − 1

2
𝜎
2

2
(𝑡)) 𝑥

𝑝

2
(𝑡) − 𝑎22 (𝑡) 𝑥

𝑝+1

2
(𝑡)

+𝑎21 (𝑡) 𝑥
𝑝

2
(𝑡) 𝑥1 (𝑡) ] 𝑑𝑡

+ 𝜎2 (𝑡) 𝑝𝑥
𝑝

2
(𝑡) 𝑑𝐵2 (𝑡)

= 𝑝 [𝛼2 (𝑡) 𝑥
𝑝

2
(𝑡) − 𝑎22 (𝑡) 𝑥

𝑝+1

2
(𝑡)

+𝑎21 (𝑡) 𝑥
𝑝

2
(𝑡) 𝑥1 (𝑡)] 𝑑𝑡 + 𝜎2 (𝑡) 𝑝𝑥

𝑝

2
(𝑡) 𝑑𝐵2 (𝑡)

≤ 𝑝 [𝛼
𝑢

2
𝑥
𝑝

2
(𝑡) − 𝑎

𝑙

22
𝑥
𝑝+1

2
(𝑡) + 𝑎

𝑢

21
𝑥
𝑝

2
(𝑡) 𝑥1 (𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

2
𝑥
𝑝

2
(𝑡) 𝑑𝐵2 (𝑡) ,

(20)

where 𝛼2(𝑡) = 𝑟2(𝑡) + ((𝑝 − 1)/2)𝜎
2

2
(𝑡). According to Young

inequality, we obtain

𝑥
𝑝

1
(𝑡) 𝑥2 (𝑡) ≤ 𝜖1𝑥

𝑝+1

1
(𝑡) +

1

𝑝 + 1
(

𝑝

𝑝 + 1
)

𝑝

(
1

𝜖1

)

𝑝

𝑥
𝑝+1

2
(𝑡) ,

𝜖1 =
𝑝𝑎

𝑙

11

(𝑝 + 1) 𝑎𝑢
12

,

𝑥
𝑝

2
(𝑡) 𝑥1 (𝑡) ≤ 𝜖2𝑥

𝑝+1

2
(𝑡) +

1

𝑝 + 1
(

𝑝

𝑝 + 1
)

𝑝

(
1

𝜖2

)

𝑝

𝑥
𝑝+1

1
(𝑡) ,

𝜖2 =
𝑝𝑎

𝑙

22

(𝑝 + 1) 𝑎𝑢
21

.

(21)

Thus, we have

𝑑𝑥
𝑝

1
(𝑡) ≤ 𝑝 [𝛼

𝑢

1
𝑥
𝑝

1
(𝑡) − 𝑎

𝑙

11
𝑥
𝑝+1

1
(𝑡) + 𝑎

𝑢

12
𝜖1𝑥

𝑝+1

1
(𝑡)

+𝑎
𝑢

12

1

𝑝 + 1
(

𝑝

𝑝 + 1
)

𝑝

(
1

𝜖1

)

𝑝

𝑥
𝑝+1

2
(𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

1
𝑥
𝑝

1
(𝑡) 𝑑𝐵1 (𝑡) ,

𝑑𝑥
𝑝

2
(𝑡) ≤ 𝑝 [𝛼

𝑢

2
𝑥
𝑝

2
(𝑡) − 𝑎

𝑙

22
𝑥
𝑝+1

2
(𝑡) + 𝑎

𝑢

21
𝜖2𝑥

𝑝+1

2
(𝑡)

+𝑎
𝑢

21

1

𝑝 + 1
(

𝑝

𝑝 + 1
)

𝑝

(
1

𝜖2

)

𝑝

𝑥
𝑝+1

1
(𝑡)] 𝑑𝑡

+ 𝑝𝜎
𝑢

2
𝑥
𝑝

2
(𝑡) 𝑑𝐵2 (𝑡) .

(22)

Since 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, there exist two positive constants 𝑐1, 𝑐2

which satisfy

(𝑎
𝑢

21
)
𝑝+1

𝑎𝑙
11
(𝑎𝑙
22
)
𝑝
<
𝑐1

𝑐2

<
𝑎
𝑙

22
(𝑎

𝑙

11
)
𝑝

(𝑎𝑢
12
)
𝑝+1

. (23)

Therefore,

𝑑 (𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡))

≤−𝑝[(𝑐1𝑎
𝑙

11
−𝑐1𝑎

𝑢

12
𝜖1−𝑐2𝑎

𝑢

21

𝑝
𝑝

(𝑝+1)
𝑝+1

𝜖
𝑝

2

)𝑥
𝑝+1

1
(𝑡)

+(𝑐2𝑎
𝑙

22
−𝑐1𝑎

𝑢

21
𝜖2−𝑐1𝑎

𝑢

12

𝑝
𝑝

(𝑝+1)
𝑝+1
𝜖
𝑝

1

)𝑥
𝑝+1

2
(𝑡)

−

2

∑

𝑖=1

𝑐𝑖𝛼
𝑢

𝑖
𝑥
𝑝

𝑖
(𝑡)] 𝑑𝑡 +

2

∑

𝑖=1

𝑐𝑖𝑝𝜎
𝑢

𝑖
𝑥
𝑝

𝑖
(𝑡) 𝑑𝐵𝑖 (𝑡) .

(24)

From (23) and the values of 𝜖1, 𝜖2, we obtain

𝑎
𝑢

21
(𝑝

𝑝
/(𝑝 + 1)

𝑝+1
𝜖
𝑝

2
)

𝑎𝑙
11
− 𝑎𝑢

12
𝜖1

<
𝑐1

𝑐2

<
𝑎
𝑙

22
− 𝑎

𝑢

21
𝜖2

𝑎𝑢
12
(𝑝𝑝/(𝑝 + 1)

𝑝+1
𝜖
𝑝

1
)

,

(25)



Abstract and Applied Analysis 5

which implies that 𝑐1𝑎
𝑙

11
−𝑐1𝑎

𝑢

12
𝜖1−𝑐2𝑎

𝑢

21
(𝑝

𝑝
/(𝑝+1)

𝑝+1
𝜖
𝑝

2
) > 0

and 𝑐2𝑎
𝑙

22
− 𝑐1𝑎

𝑢

21
𝜖2 − 𝑐1𝑎

𝑢

12
(𝑝

𝑝
/((𝑝 + 1)

𝑝+1
𝜖
𝑝

1
)) > 0. Let

𝛼 = max {𝛼𝑢
1
, 𝛼

𝑢

2
} ,

𝛽 = min{𝑐−(𝑝+1)/𝑝
1

[𝑐1𝑎
𝑙

11
− 𝑐1𝑎

𝑢

12
𝜖1 − 𝑐2𝑎

𝑢

21

𝑝
𝑝

(𝑝 + 1)
𝑝+1

𝜖
𝑝

2

] ,

𝑐
−(𝑝+1)/𝑝

2
[𝑐2𝑎

𝑙

22
− 𝑐1𝑎

𝑢

21
𝜖2 − 𝑐1𝑎

𝑢

12

𝑝
𝑝

(𝑝 + 1)
𝑝+1

𝜖
𝑝

1

]} ,

(26)

then we have

𝑑 (𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡))

≤ 𝑝[𝛼(

2

∑

𝑖=1

𝑐𝑖𝑥
𝑝

𝑖
(𝑡)) − 𝛽(

2

∑

𝑖=1

𝑐
1+(1/𝑝)

𝑖
𝑥
𝑝+1

𝑖
)]𝑑𝑡

+

2

∑

𝑖=1

𝑐𝑖𝑝𝜎
𝑢

𝑖
𝑥
𝑝

𝑖
(𝑡) 𝑑𝐵𝑖 (𝑡) .

(27)

Hence, we get

𝑑𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)]

𝑑𝑡

≤ 𝑝𝛼𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)]

− 𝑝𝛽𝐸 [𝑐
1+(1/𝑝)

1
𝑥
𝑝+1

1
(𝑡) + 𝑐

1+(1/𝑝)

2
𝑥
𝑝+1

2
(𝑡)]

≤ 𝑝𝛼𝐸 [𝑐1𝑥
𝑝

1
(𝑡)+𝑐2𝑥

𝑝

2
(𝑡)]

− 𝑝𝛽 {[𝐸 (𝑐1𝑥
𝑝

1
(𝑡))]

1+(1/𝑝)

+[𝐸 (𝑐2𝑥
𝑝

2
(𝑡))]

1+(1/𝑝)

}

≤ 𝑝𝛼𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)]

− 𝑝𝛽 ⋅ 2
−1/𝑝

[𝐸 (𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡))]

1+(1/𝑝)

.

(28)

By the comparison theorem, we get

lim sup
𝑡→∞

𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)] ≤ 2(

𝛼

𝛽
)

𝑝

:= 𝑀 (𝑝) , (29)

which implies that there is a 𝑇0 > 0, such that

𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)] ≤ 2𝑀(𝑝) , ∀𝑡 > 𝑇0. (30)

Besides, note that 𝐸[𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)] is continuous, then

there is a �̃�(𝑝) > 0 such that

𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)] ≤ �̃� (𝑝) , ∀𝑡 ∈ [0, 𝑇0] . (31)

Let 𝐾(𝑝) = max{2𝑀(𝑝), �̃�(𝑝)}, then

𝐸 [𝑐1𝑥
𝑝

1
(𝑡) + 𝑐2𝑥

𝑝

2
(𝑡)] ≤ 𝐾 (𝑝) , ∀𝑡 ∈ [0,∞) . (32)

3. Persistence

Theorem 1 shows that the solution of system (3)will remain in
the positive cone 𝑅2

+
if 𝑎𝑙

11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
. Studying a population

system, we pay more attention on whether the system is
persistent. In this section, we first show that the solution
is a stochastic permanence. Next we show that the solution
is persistent in time average. Moreover, we show that the
solution 𝑥(𝑡) of system (3) is an asymptotic boundedness in
time average.

3.1. Stochastic Permanence. Let 𝑦(𝑡) be the solution of a
randomized nonautonomous competitive equation:

𝑑𝑦𝑖 (𝑡) = 𝑦𝑖 (𝑡)
[

[

(𝑏𝑖 (𝑡)−

𝑛

∑

𝑗=1

𝑎𝑖𝑗 (𝑡) 𝑦𝑗 (𝑡))𝑑𝑡 + 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡)
]

]

,

𝑖 = 1, 2, . . . , 𝑛,

(33)

where 𝐵𝑖(𝑡), 𝑖 = 1, 2, . . . , 𝑛, are independent standard
Brownian motions, 𝑦(0) = 𝑦0 > 0 while 𝑦0 is independent
of 𝐵(𝑡), and 𝑏𝑖(𝑡), 𝑎𝑖𝑗(𝑡), 𝜎𝑖(𝑡) are all continuous bounded
nonnegative functions on [0, +∞).

Lemma 4 (see [15]). Assume that 𝑏𝑙
𝑖
− ((𝜎

𝑢

𝑖
)
2
/2) > 0, 𝑖 =

1, 2, . . . , 𝑛, then for any given initial value 𝑦(0) ∈ 𝑅
𝑛

+
, the

solution 𝑦(𝑡) of (36) has the properties

lim sup
𝑡→∞

𝐸(
1

𝑦 (𝑡)

𝜃
) ≤ 𝐻, (34)

where 𝐻 is a constant, 𝜃 is an arbitrary positive constant
satisfying

𝜃max
1≤𝑖≤𝑛

(𝜎
𝑢

𝑖
)
2
< 2min

1≤𝑖≤𝑛
(𝑏𝑖 (𝑡) −

𝜎
2

𝑖
(𝑡)

2
)

𝑙

. (35)

Let𝑁(𝑡) be the solution of a randomized nonautonomous
logistic equation

𝑑𝑁 (𝑡) = 𝑁 (𝑡) [(𝑎 (𝑡) − 𝑏 (𝑡)𝑁 (𝑡)) 𝑑𝑡 + 𝛼 (𝑡) 𝑑𝐵 (𝑡)] , (36)

where 𝐵(𝑡) is a 1-dimensional standard Brownian motion,
𝑁(0) = 𝑁0 > 0, and𝑁0 is independent of 𝐵(𝑡).

Lemma 5 (see [13]). Assume that 𝑎(𝑡), 𝑏(𝑡), and 𝛼(𝑡) are
bounded continuous functions defined on [0,∞), 𝑎(𝑡) > 0

and 𝑏(𝑡) > 0. Then there exists a unique continuous positive
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solution of (36) for any initial value𝑁(0) = 𝑁0 > 0, which is
global and represented by

𝑁(𝑡) = exp{∫
𝑡

0

[𝑎 (𝑠) − (
𝛼
2
(𝑠)

2
)] 𝑑𝑠 + 𝛼 (𝑠) 𝑑𝐵 (𝑠)}

× ((
1

𝑁0

)+∫

𝑡

0

𝑏 (𝑠) exp{∫
𝑠

0

[𝑎 (𝜏)−(
𝛼
2
(𝜏)

2
)]𝑑𝜏

+𝛼 (𝜏) 𝑑𝐵 (𝜏) } 𝑑𝑠)

−1

,

𝑡 ≥ 0.

(37)

From Lemma 4 we have the following.

Lemma 6. Assume that 𝑎𝑙 − ((𝛼𝑢)2/2) > 0, then for any given
initial value 𝑁(0) ∈ 𝑅+, the solution 𝑁(𝑡) of (36) has the
properties

lim sup
𝑡→∞

𝐸(
1

𝑁𝜃 (𝑡)
) ≤ 𝐻, (38)

where𝐻 is a constant, 𝜃 is positive constant satisfying

𝜃(𝛼
𝑢
)
2
< 2[𝑎

𝑙
−
(𝛼

𝑢
)
2

2
] . (39)

Let 𝜙(𝑡) = (𝜙1(𝑡), 𝜙2(𝑡))
𝑇 be the solution of

𝑑𝜙𝑖 (𝑡) = 𝜙𝑖 (𝑡) [(𝑟𝑖 (𝑡) − 𝑎𝑖𝑖 (𝑡) 𝜙𝑖 (𝑡)) 𝑑𝑡 + 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡)] ,

𝑖 = 1, 2,

(40)

where 𝐵𝑖(𝑡), 𝑖 = 1, 2, are independent standard Brownian
motions, 𝜙(0) = 𝜙0 > 0, and 𝜙0 ∈ 𝑅

2

+
, 𝑟𝑖(𝑡), 𝑎𝑖𝑖(𝑡), 𝜎𝑖(𝑡), 𝑖 =

1, 2 are all continuous bounded nonnegative functions on
[0, +∞). From Lemma 4 it is easy to know the following.

Lemma 7. Assume that 𝑟𝑙
𝑖
= 𝑟

𝑙

𝑖
− ((𝜎

𝑢

𝑖
)
2
/2) > 0, 𝑖 = 1, 2, then

for any given initial value 𝜙(0) ∈ 𝑅2
+
, the solution 𝜙(𝑡) of (40)

has the properties

lim sup
𝑡→∞

𝐸(
1

𝜙𝜃
𝑖
(𝑡)
) ≤ 𝐻𝑖, 𝑖 = 1, 2, (41)

where 𝐻𝑖, 𝑖 = 1, 2 are two constants, 𝜃 is positive constant
satisfying

𝜃(𝜎
𝑢

𝑖
)
2
< 2𝑟

𝑙

𝑖
, 𝑖 = 1, 2. (42)

Lemma 8. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝑥0 ∈ 𝑅
2

+
, the solution 𝑥(𝑡) of system (3) has the

properties

𝑥𝑖 (𝑡) ≥ 𝜙𝑖 (𝑡) , 𝑖 = 1, 2, (43)

lim sup
𝑡→∞

𝐸(
1

𝑥𝜃
𝑖
(𝑡)
) ≤ 𝐻𝑖, 𝑖 = 1, 2, (44)

where 𝐻𝑖, 𝑖 = 1, 2 are two constants, 𝜃 is positive constant
satisfying

𝜃(𝜎
𝑢

𝑖
)
2
< 2𝑟

𝑙

𝑖
, 𝑖 = 1, 2. (45)

Proof. Equation (43) follows directly from the classical com-
parison theorem of stochastic differential equations (see
[20]). Thus, we obtain

lim sup
𝑡→∞

𝐸(
1

𝑥𝜃
𝑖
(𝑡)
) ≤ lim sup

𝑡→∞

𝐸(
1

𝜙𝜃
𝑖
(𝑡)
) ≤ 𝐻𝑖, 𝑖 = 1, 2.

(46)

Definition 9. System (3) is said to be stochastically permanent
if for any 𝜀 ∈ (0, 1), there exists a pair of positive constants 𝛿 =
𝛿(𝜖) and 𝑀 = 𝑀(𝜖) such that for any initial value 𝑥0 ∈ 𝑅

2

+
,

the solution obeys

lim inf
𝑡→∞

𝑃 {𝑥𝑖 (𝑡) ≤ 𝑀 (𝜖)} ≥ 1 − 𝜖,

lim inf
𝑡→∞

𝑃 {𝑥𝑖 (𝑡) ≥ 𝛿 (𝜖)} ≥ 1 − 𝜖, 𝑖 = 1, 2.

(47)

Theorem 10. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, 𝑟

𝑙

𝑖
> 0, 𝑖 = 1, 2,

then system (3) is stochastically permanent.

The proof is a simple application of the Chebyshev
inequality, we omit it.

3.2. Persistence in Time Average. Theorem 10 shows that if the
white noise is not large, the solution of system (3) is survive
with large probability. In this part, we show 𝑥(𝑡) is persistence
in mean.

Lemma 11. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝜙(0) ∈ 𝑅
2

+
, the solution 𝜙(𝑡) of (40) has the

properties

𝑧𝑖 (𝑡) 𝑒
−[max0≤𝑠≤𝑡 ∫

𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)−∫

𝑡

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)]

≤ 𝜙𝑖 (𝑡) ≤ 𝑧𝑖 (𝑡) 𝑒
−[min0≤𝑠≤𝑡 ∫

𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)−∫

𝑡

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)],

𝑖 = 1, 2,

(48)

where 𝑧(𝑡) = (𝑧1(𝑡), 𝑧2(𝑡)) is the solution of

𝑑𝑧𝑖 (𝑡) = 𝑧𝑖 (𝑡) [𝑟𝑖 (𝑡) −
𝜎
2

𝑖
(𝑡)

2
− 𝑎

𝑢

𝑖𝑖
𝑧𝑖 (𝑡)] 𝑑𝑡,

𝑧𝑖 (0) = 𝜙𝑖 (0) , 𝑖 = 1, 2.

(49)
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Proof. From Lemma 5, we know

1

𝜙𝑖 (𝑡)
=

1

𝜙𝑖 (0)
𝑒
−∫
𝑡

0
[𝑟𝑖(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠+𝜎𝑖(𝑠)𝑑𝐵𝑖(𝑠)

+ 𝑎
𝑢

𝑖𝑖
∫

𝑡

0

𝑒
−∫
𝑡

0
[𝑟𝑖(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠+𝜎𝑖(𝑠)𝑑𝐵𝑖(𝑠)

× 𝑒
+∫
𝑠

0
[𝑟𝑖(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏+𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)𝑑𝑠

= 𝑒
−∫
𝑡

0
𝜎𝑖(𝑠)𝑑𝐵𝑖(𝑠) [

1

𝜙𝑖 (0)
𝑒
−∫
𝑡

0
[𝑟𝑖(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠

+ 𝑎
𝑢

𝑖𝑖
∫

𝑡

0

𝑒
−∫
𝑡

𝑠
[𝑟𝑖(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏

× 𝑒
∫
𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)𝑑𝑠]

≤ 𝑒
−∫
𝑡

0
𝜎𝑖(𝑠)𝑑𝐵𝑖(𝑠) [

1

𝜙𝑖 (0)
𝑒
−∫
𝑡

0
[𝑟𝑖(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠

+ 𝑎
𝑢

𝑖𝑖
𝑒
max0≤𝑠≤𝑡(∫

𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏))

×∫

𝑡

0

𝑒
−∫
𝑡

𝑠
[𝑟𝑖(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏

𝑑𝑠]

≤
𝑒
max0≤𝑠≤𝑡[∫

𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)]−∫

𝑡

0
𝜎𝑖(𝑠)𝑑𝐵𝑖(𝑠)

𝑧𝑖 (𝑡)
.

(50)

Similarly, we have

1

𝜙𝑖 (𝑡)
≥ 𝑒

−∫
𝑡

0
𝜎𝑖(𝑠)𝑑𝐵𝑖(𝑠) [

1

𝜙𝑖 (0)
𝑒
−∫
𝑡

0
[𝑟𝑖(𝑠)−(𝜎

2

𝑖
(𝑠)/2)]𝑑𝑠

+ 𝑎
𝑢

𝑖𝑖
𝑒
min0≤𝑠≤𝑡(∫

𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏))

×∫

𝑡

0

𝑒
−∫
𝑡

𝑠
[𝑟𝑖(𝜏)−(𝜎

2

𝑖
(𝜏)/2)]𝑑𝜏

𝑑𝑠]

≥
𝑒
min0≤𝑠≤𝑡[∫

𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)]−∫

𝑡

0
𝜎𝑖(𝑠)𝑑𝐵𝑖(𝑠)

𝑧𝑖 (𝑡)
.

(51)

Lemma 12. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝑧(0) ∈ 𝑅
2

+
, the solution 𝑧(𝑡) of (49) has the

following properties

�̃�𝑖 (𝑡) ≤ 𝑧𝑖 (𝑡) ≤ �̂�𝑖 (𝑡) ,

lim
𝑡→∞

�̃�𝑖 (𝑡) =
𝑟
𝑙

𝑖

𝑎𝑢
𝑖𝑖

, lim
𝑡→∞

�̂�𝑖 (𝑡) =
𝑟
𝑢

𝑖

𝑎𝑢
𝑖𝑖

,

(52)

where �̃�(𝑡) = (�̃�1(𝑡), �̃�2(𝑡)), �̂�(𝑡) = (�̂�1(𝑡), �̂�2(𝑡)) are the
solutions of the two equations, respectively,

𝑑�̃�𝑖 (𝑡) = �̃�𝑖 (𝑡) [𝑟
𝑙

𝑖
− 𝑎

𝑢

𝑖𝑖
�̃�𝑖 (𝑡)] 𝑑𝑡, �̃�𝑖 (0) = 𝑧𝑖 (0) , 𝑖 = 1, 2,

(53)

𝑑�̂�𝑖 (𝑡) = �̂�𝑖 (𝑡) [𝑟
𝑢

𝑖
− 𝑎

𝑢

𝑖𝑖
�̂�𝑖 (𝑡)] 𝑑𝑡, �̂�𝑖 (0) = 𝑧𝑖 (0) , 𝑖 = 1, 2.

(54)

Proof. Let �̃�(𝑡) = (�̃�1(𝑡), �̃�2(𝑡)), �̂�(𝑡) = (�̂�1(𝑡), �̂�2(𝑡)) are the
solutions of SDE (53) and (54), respectively, with the positive
initial value 𝑧(0). By Lemma 5, we know

�̃�𝑖 (𝑡) =
𝑒
𝑟
𝑙

𝑖
𝑡

1/�̃�𝑖 (0) + (𝑎
𝑢

𝑖𝑖
/𝑟
𝑙

𝑖
) (𝑒𝑟

𝑙

𝑖
𝑡 − 1)

,

�̂�𝑖 (𝑡) =
𝑒
𝑟
𝑢

𝑖
𝑡

1/�̂�𝑖 (0) + (𝑎
𝑢

𝑖𝑖
/𝑟
𝑢

𝑖
) (𝑒𝑟

𝑢

𝑖
𝑡 − 1)

.

(55)

Thus,

lim
𝑡→∞

�̃�𝑖 (𝑡) =
𝑟
𝑙

𝑖

𝑎𝑢
𝑖𝑖

, lim
𝑡→∞

�̂�𝑖 (𝑡) =
𝑟
𝑢

𝑖

𝑎𝑢
𝑖𝑖

. (56)

By the classical comparison theorem of ordinary differential
equations, we know

�̃�𝑖 (𝑡) ≤ 𝑧𝑖 (𝑡) ≤ �̂�𝑖 (𝑡) . (57)

Lemma 13. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝜙(0) ∈ 𝑅
2

+
, the solution 𝜙(𝑡) of (40) has the

properties

lim
𝑡→∞

log𝜙𝑖 (𝑡)
𝑡

= 0, 𝑎.𝑠. (58)

Proof. By Lemma 12, we know

𝑒
−[max0≤𝑠≤𝑡 ∫

𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)−∫

𝑡

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)]

≤
𝜙𝑖 (𝑡)

𝑧𝑖 (𝑡)
≤ 𝑒

−[min0≤𝑠≤𝑡 ∫
𝑠

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)−∫

𝑡

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏)].

(59)

So, we have

∫

𝑡

0

𝜎𝑖 (𝜏) 𝑑𝐵𝑖 (𝜏)−max
0≤𝑠≤𝑡

∫

𝑠

0

𝜎𝑖 (𝜏) 𝑑𝐵𝑖 (𝜏)

≤ log𝜙𝑖 (𝑡)−log 𝑧𝑖 (𝑡)

≤∫

𝑡

0

𝜎𝑖 (𝜏) 𝑑𝐵𝑖 (𝜏)

−min
0≤𝑠≤𝑡

∫

𝑠

0

𝜎𝑖 (𝜏) 𝑑𝐵𝑖 (𝜏) .

(60)

Let𝑀𝑖(𝑡) = ∫
𝑡

0
𝜎𝑖(𝜏)𝑑𝐵𝑖(𝜏), then

⟨𝑀𝑖,𝑀𝑖⟩𝑡 = ∫

𝑡

0

𝜎
2

𝑖
(𝜏) 𝑑𝜏. (61)



8 Abstract and Applied Analysis

Since 𝜎𝑖(𝑡), 𝑖 = 1, 2 are bounded, then

lim
𝑡→∞

⟨𝑀𝑖,𝑀𝑖⟩𝑡

𝑡
= lim

𝑡→∞

1

𝑡
∫

𝑡

0

𝜎
2

𝑖
(𝜏) 𝑑𝜏 < ∞, a.s. (62)

By the strong law of large numbers, we know

lim
𝑡→∞

𝑀𝑖 (𝑡)

𝑡
= lim

𝑡→∞

∫
𝑡

0
𝜎𝑖 (𝜏) 𝑑𝐵𝑖 (𝜏)

𝑡
= 0, a.s. (63)

Thus,

lim
𝑡→∞

max
0≤𝑠≤𝑡



𝑀𝑖 (𝑠)

𝑡


= 0, a.s. (64)

Then from (60) we obtain

lim
𝑡→∞

log𝜙𝑖 (𝑡)
𝑡

= 0, a.s. (65)

Lemma 14. Assume that 𝑟𝑙
𝑖
> 0, 𝑖 = 1, 2, then for any given

initial value 𝜙(0) ∈ 𝑅
2

+
, the solution 𝜙(𝑡) of (40) has the

properties

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝜙𝑖 (𝑠) 𝑑𝑠 ≥
𝑟
𝑙

𝑖

𝑎𝑢
𝑖𝑖

, 𝑎.𝑠. (66)

Proof. By Itô’s formula, we have

𝑑 log𝜙𝑖 (𝑡) = [𝑟𝑖 (𝑡) −
𝜎
2

𝑖
(𝑡)

2
− 𝑎

𝑢

𝑖𝑖
𝜙𝑖 (𝑡)] 𝑑𝑡 + 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) .

(67)

Integrating both sides of this equation from 0 to 𝑡 yields

log𝜙𝑖 (𝑡)
𝑡

−
log𝜙𝑖 (0)

𝑡
=
∫
𝑡

0
[𝑟𝑖 (𝑠) − (𝜎

2

𝑖
(𝑠) /2)] 𝑑𝑠

𝑡

−
𝑎
𝑢

𝑖𝑖
∫
𝑡

0
𝜙𝑖 (𝑠) 𝑑𝑠

𝑡
+
∫
𝑡

0
𝜎𝑖 (𝑠) 𝑑𝐵𝑖 (𝑠)

𝑡
.

(68)

By Lemma 13, we know that

lim
𝑡→∞

∫
𝑡

0
𝜎𝑖 (𝑠) 𝑑𝐵𝑖 (𝑠)

𝑡
= lim

𝑡→∞

log𝜙𝑖 (𝑡)
𝑡

= 0, a.s. (69)

Hence,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝜙𝑖 (𝑠) 𝑑𝑠 =
1

𝑎𝑢
𝑖𝑖

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

[𝑟𝑖 (𝑠) −
𝜎
2

𝑖
(𝑠)

2
] 𝑑𝑠

≥
𝑟
𝑙

𝑖

𝑎𝑢
𝑖𝑖

, a.s.

(70)

Definition 15. System (3) is said to be persistent in time
average if

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥𝑖 (𝑠) 𝑑𝑠 > 0, 𝑖 = 1, 2. (71)

Theorem 16. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and 𝑟𝑙

𝑖
> 0, 𝑖 =

1, 2, then the solution 𝑥(𝑡) of system (3) with any initial value
𝑥(0) ∈ 𝑅

2

+
has the following property:

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥𝑖 (𝑠) 𝑑𝑠 ≥
𝑟
𝑙

𝑖

𝑎𝑢
𝑖𝑖

,

lim inf
𝑡→∞

log𝑥𝑖 (𝑡)
𝑡

≥ 0, 𝑎.𝑠.,

(72)

and so system (3) is persistent in time average.

Proof. By Lemma 8, we know that

𝑥𝑖 (𝑡) ≥ 𝜙𝑖 (𝑡) 𝑖 = 1, 2, (73)

where 𝜙(𝑡) = (𝜙1(𝑡), 𝜙2(𝑡)) is the solution of system (40).
Moreover, by Lemma 14 we know that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥𝑖 (𝑠) 𝑑𝑠 ≥ lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝜙𝑖 (𝑠) 𝑑𝑠 ≥
𝑟
𝑙

𝑖

𝑎𝑢
𝑖𝑖

, a.s.

(74)

Hence, by Lemma 13 we know that

lim inf
𝑡→∞

log𝑥𝑖 (𝑡)
𝑡

≥ lim inf
𝑡→∞

log𝜙𝑖 (𝑡)
𝑡

= 0, a.s. (75)

3.3. Asymptotic Boundedness of Integral Average. Theorem 16
shows that every component of the solution 𝑥(𝑡) of system (3)
will survive forever in time average, if the white noise is not
large. In this part, we further deduce that every component of
𝑥(𝑡) of system (3) will be an asymptotic boundedness in time
average. Before we give the result, we do some preparation
work.

Lemma 17. Let 𝑓 ∈ 𝐶[[0,∞) × Ω, (0,∞)], 𝐹(𝑡) ∈ ((0,∞) ×

Ω, 𝑅). If there exist positive constants 𝜆0 and 𝜆 such that

log𝑓 (𝑡) ≥ 𝜆𝑡 − 𝜆0 ∫
𝑡

0

𝑓 (𝑠) 𝑑𝑠 + 𝐹 (𝑡) , 𝑡 ≥ 0, 𝑎.𝑠., (76)

and lim𝑡→∞(𝐹(𝑡)/𝑡) = 0 a.s., then

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≥
𝜆

𝜆0

, 𝑎.𝑠. (77)

Proof. The proof is similar to the proof of Lemma in [21]. Let

𝜑 (𝑡) = ∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠. (78)

Since 𝑓 ∈ 𝐶[[0,∞) × Ω, (0,∞)], 𝜑(𝑡) is differentiable on
[0,∞) and

𝑑𝜑 (𝑡)

𝑑𝑡
= 𝑓 (𝑡) > 0, for 𝑡 ≥ 0. (79)
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Substituting 𝑑𝜑(𝑡)/𝑑𝑡 and 𝜑(𝑡) into (76), we obtain the
following:

log
𝑑𝜑 (𝑡)

𝑑𝑡
≥ 𝜆𝑡 − 𝜆0𝜑 (𝑡) + 𝐹 (𝑡) , (80)

thus

𝑒
𝜆0𝜑(𝑡)

𝑑𝜑 (𝑡)

𝑑𝑡
≥ 𝑒

𝜆𝑡+𝐹(𝑡)
, for 𝑡 ≥ 0. (81)

Note that lim𝑡→∞(𝐹(𝑡)/𝑡) = 0 a.s., then for 0 < 𝜀 <

min{1, 𝜆}, ∃𝑇 = 𝑇(𝜔) > 0 andΩ𝜀 ⊂ Ω such that𝑃(Ω𝜀) > 1−𝜀

and 𝐹(𝑡) ≥ −𝜀𝑡, 𝑡 ≥ 𝑇, 𝜔 ∈ Ω𝜀. Then we have

𝑒
𝜆0𝜑(𝑡)

𝑑𝜑 (𝑡)

𝑑𝑡
≥ 𝑒

(𝜆−𝜀)𝑡
, for 𝑡 ≥ 𝑇, 𝜔 ∈ Ω𝜀. (82)

Integrating inequality (82) from 0 to 𝑡 results in the following:

𝜆
−1

0
[𝑒
𝜆0𝜑(𝑡) − 𝑒

𝜆0𝜑(𝑇)] ≥ (𝜆 − 𝜀)
−1
[𝑒
(𝜆−𝜀)𝑡

− 𝑒
(𝜆−𝜀)𝑇

] . (83)

This inequality can be rewritten into

𝑒
𝜆0𝜑(𝑡) ≥ 𝑒

𝜆0𝜑(𝑇) + 𝜆0(𝜆 − 𝜀)
−1
[𝑒
(𝜆−𝜀)𝑡

− 𝑒
(𝜆−𝜀)𝑇

] . (84)

Taking the logarithm of both sides and dividing both sides by
𝑡(> 0) yields

𝜑 (𝑡)

𝑡
≥ 𝜆

−1

0

log {𝑒𝜆0𝜑(𝑇) + 𝜆0(𝜆 − 𝜀)
−1
[𝑒

(𝜆−𝜀)𝑡−𝑒
(𝜆−𝜀)𝑇

]}

𝑡
.
(85)

Then,

lim inf
𝑡→∞

𝜑 (𝑡)

𝑡
≥
𝜆 − 𝜀

𝜆0

, 𝜔 ∈ Ω𝜀. (86)

Letting 𝜀 → ∞ yields

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑓 (𝑠) 𝑑𝑠 ≥
𝜆

𝜆0

, a.s. (87)

This finishes the proof of the Lemma.

Theorem 18. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and 𝑟𝑙

𝑖
> 0, 𝑖 =

1, 2, then the solution 𝑥(𝑡) of system (3) with any initial value
𝑥(0) ∈ 𝑅

2

+
has the property

𝑥
∗

𝑖
≤ lim

𝑡→∞

1

𝑡
∫

𝑡

0

𝑥𝑖 (𝑠) 𝑑𝑠 ≤ 𝑥
∗

𝑖
, 𝑖 = 1, 2, 𝑎.𝑠., (88)

where

𝑥
∗

1
=

𝑎
𝑢

22
𝑟
𝑙

1
+ 𝑎

𝑙

12
𝑟
𝑙

2

𝑎𝑢
11
𝑎𝑢
22
− 𝑎𝑙

12
𝑎𝑙
21

, 𝑥
∗

2
=

𝑎
𝑢

11
𝑟
𝑙

2
+ 𝑎

𝑙

21
𝑟
𝑙

1

𝑎𝑢
11
𝑎𝑢
22
− 𝑎𝑙

12
𝑎𝑙
21

,

𝑥
∗

1
=

𝑎
𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2

𝑎𝑙
11
𝑎𝑙
22
− 𝑎𝑢

12
𝑎𝑢
21

, 𝑥
∗

2
=

𝑎
𝑙

11
𝑟
𝑢

2
+ 𝑎

𝑢

21
𝑟
𝑢

1

𝑎𝑙
11
𝑎𝑙
22
− 𝑎𝑢

12
𝑎𝑢
21

.

(89)

Proof. To prove the results, we only need to prove

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥𝑖 (𝑠) 𝑑𝑠 ≥ 𝑥
∗

𝑖
, 𝑖 = 1, 2, a.s. (90)

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥𝑖 (𝑠) 𝑑𝑠 ≤ 𝑥
∗

𝑖
, 𝑖 = 1, 2, a.s. (91)

By Itô’s formula, we have

𝑑 log𝑥1 (𝑡)

= [𝑟1 (𝑡) −
1

2
𝜎
2

1
(𝑡) − 𝑎11 (𝑡) 𝑥1 (𝑡) + 𝑎12 (𝑡) 𝑥2 (𝑡)] 𝑑𝑡

+ 𝜎1 (𝑡) 𝑑𝐵1 (𝑡) ,

𝑑 log𝑥2 (𝑡)

= [𝑟2 (𝑡) −
1

2
𝜎
2

2
(𝑡) + 𝑎21 (𝑡) 𝑥1 (𝑡) − 𝑎22 (𝑡) 𝑥2 (𝑡)] 𝑑𝑡

+ 𝜎2 (𝑡) 𝑑𝐵2 (𝑡) .

(92)

First, we prove (91). Integrating both sides of (92) from 0 to 𝑡
yields

log𝑥1 (𝑡) = log𝑥1 (0) + ∫
𝑡

0

𝑟1 (𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑎11 (𝑠) 𝑥1 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑎12 (𝑠) 𝑥2 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠) ,

log𝑥2 (𝑡) = log𝑥2 (0) + ∫
𝑡

0

𝑟2 (𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑎22 (𝑠) 𝑥2 (𝑠) 𝑑𝑠

+ ∫

𝑡

0

𝑎21 (𝑠) 𝑥1 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎2 (𝑠) 𝑑𝐵2 (𝑠) ,

(93)

where 𝑟𝑖(𝑠) = 𝑟𝑖(𝑠) − (1/2)𝜎
2

𝑖
(𝑠), 𝑖 = 1, 2. Since 𝑥𝑖(𝑡) > 0, 𝑖 =

1, 2, hence

log𝑥1 (𝑡) ≤ log𝑥1 (0) + 𝑟
𝑢

1
𝑡 − 𝑎

𝑙

11
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠

+ 𝑎
𝑢

12
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠) ,

log𝑥2 (𝑡) ≤ log𝑥2 (0) + 𝑟
𝑢

2
𝑡 − 𝑎

𝑙

22
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠

+ 𝑎
𝑢

21
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎2 (𝑠) 𝑑𝐵2 (𝑠) .

(94)
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So we have

𝑎
𝑙

22
log𝑥1 (𝑡) + 𝑎

𝑢

12
log𝑥2 (𝑡)

≤ 𝑎
𝑙

22
[log𝑥1 (0) + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠)] + 𝑎
𝑙

22
𝑟
𝑢

1
𝑡

+ 𝑎
𝑢

12
[log𝑥2 (0) + ∫

𝑡

0

𝜎2 (𝑠) 𝑑𝐵2 (𝑠)] + 𝑎
𝑢

12
𝑟
𝑢

2
𝑡

− (𝑎
𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

21
𝑎
𝑢

12
)∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠.

(95)

ByTheorem 16, we know that

lim inf
𝑡→∞

log𝑥𝑖 (𝑡)
𝑡

≥ 0, 𝑖 = 1, 2, a.s. (96)

Obviously,

lim
𝑡→∞

log𝑥𝑖 (0) + ∫
𝑡

0
𝜎𝑖 (𝑠) 𝑑𝐵𝑖 (𝑠)

𝑡
= 0, 𝑖 = 1, 2, a.s. (97)

Hence, we have

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠 ≤
𝑎
𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2

𝑎𝑙
11
𝑎𝑙
22
− 𝑎𝑢

21
𝑎𝑢
12

≜ 𝑥
∗

1
, a.s. (98)

Similarly, we have

lim sup
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠 ≤
𝑎
𝑙

11
𝑟
𝑢

2
+ 𝑎

𝑢

12
𝑟
𝑢

1

𝑎𝑙
11
𝑎𝑙
22
− 𝑎𝑢

21
𝑎𝑢
12

≜ 𝑥
∗

2
, a.s. (99)

Next, we prove that (90) is true. Taking integration both
sides of (92) from 0 to 𝑡, we have

log𝑥1 (𝑡) ≥ log𝑥1 (0) + 𝑟
𝑙

1
𝑡 − 𝑎

𝑢

11
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠

+ 𝑎
𝑙

12
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠) ,

log𝑥2 (𝑡) ≥ log𝑥2 (0) + 𝑟
𝑙

2
𝑡 − 𝑎

𝑢

22
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠

+ 𝑎
𝑙

21
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠 + ∫

𝑡

0

𝜎2 (𝑠) 𝑑𝐵2 (𝑠) .

(100)

ByTheorem 16 we know that

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠 ≥
𝑟
𝑙

1

𝑎𝑢
11

≜ 𝑀1, a.s.,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠 ≥
𝑟
𝑙

2

𝑎𝑢
22

≜ 𝑁1, a.s.,

(101)

then for any 𝜀 > 0, there is a 𝑇(𝜔) > 0 such that

1

𝑡
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠 ≥ 𝑁1 − 𝜀, (102)

for 𝑡 > 𝑇(𝜔). It follows from (100) that, for 𝑡 > 𝑇(𝜔),

log𝑥1 (𝑡) ≥ log𝑥1 (0) + 𝑟
𝑙

1
𝑡 − 𝑎

𝑢

11
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠

+ 𝑎
𝑙

12
(𝑁1 − 𝜀) 𝑡 + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠)

= log𝑥1 (0) − 𝑎
𝑢

11
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠

+ [𝑟
𝑙

1
+ 𝑎

𝑙

12
(𝑁1 − 𝜀)] 𝑡 + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠) .

(103)

From Lemma 17, we have

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠 ≥
𝑟
𝑙

1
+ 𝑎

𝑙

12
(𝑁1 − 𝜀)

𝑎𝑢
11

:= 𝑀2 > 𝑀1.

(104)

Similarly, we have

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠 ≥
𝑟
𝑙

2
+ 𝑎

𝑙

21
(𝑀1 − 𝜀)

𝑎𝑢
22

:= 𝑁2 > 𝑁1.

(105)

Continuing this process, we obtain two sequences 𝑀𝑛,

𝑁𝑛 (𝑛 = 1, 2, . . .) such that

𝑀𝑛 =
𝑟
𝑙

1
+ 𝑎

𝑙

12
(𝑁𝑛−1 − 𝜀)

𝑎𝑢
11

, (106)

𝑁𝑛 =
𝑟
𝑙

2
+ 𝑎

𝑙

21
(𝑀𝑛−1 − 𝜀)

𝑎𝑢
22

. (107)

By induction, we can easily show that 𝑀𝑛+1 > 𝑀𝑛, 𝑁𝑛+1 >

𝑁𝑛, 𝑛 = 1, 2, . . ., that is, sequences {𝑀𝑛, 𝑛 = 1, 2, . . .} and
{𝑁𝑛, 𝑛 = 1, 2, . . .} are nondecreasing.Moreover, note that (98)
and (99), then the sequences {𝑀𝑛, 𝑛 = 1, 2, . . .} and {𝑁𝑛, 𝑛 =

1, 2, . . .}, have upper bounds.Therefore, there are two positive
𝑀,𝑁 such that

lim
𝑛→∞

𝑀𝑛 = 𝑀, lim
𝑛→∞

𝑁𝑛 = 𝑁,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠 ≥ 𝑀, lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥2 (𝑠) 𝑑𝑠 ≥ 𝑁,

(108)

which together with (106) implies

𝑎
𝑢

11
𝑀− 𝑎

𝑙

12
𝑁 = 𝑟

𝑙

1
− 𝜀𝑎

𝑙

12
,

𝑎
𝑢

22
𝑁 − 𝑎

𝑙

21
𝑀 = 𝑟

𝑙

2
− 𝜀𝑎

𝑙

21
.

(109)

Letting 𝜀 → 0 yields

𝑀 =
𝑎
𝑢

22
𝑟
𝑙

1
+ 𝑎

𝑙

12
𝑟
𝑙

2

𝑎𝑢
11
𝑎𝑢
22
− 𝑎𝑙

12
𝑎𝑙
21

≜ 𝑥
∗

1
,

𝑁 =
𝑎
𝑢

11
𝑟
𝑙

1
+ 𝑎

𝑙

21
𝑟
𝑙

2

𝑎𝑢
11
𝑎𝑢
22
− 𝑎𝑙

12
𝑎𝑙
21

≜ 𝑥
∗

1
.

(110)
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Hence,

lim inf
𝑡→∞

1

𝑡
∫

𝑡

0

𝑥𝑖 (𝑠) 𝑑𝑠 ≥ 𝑥
∗

𝑖
, 𝑖 = 1, 2, a.s., (111)

which is as required.

4. Nonpersistence

In this section, we discuss the dynamics of system (3) as the
white noise is getting larger. We show that system (3) will
be nonpersistent if the white noise is large, which does not
happen in the deterministic system.

Definition 19. System (3) is said to be nonpersistent, if there
are positive constants 𝑞1, 𝑞2 such that

lim
𝑡→∞

2

∏

𝑖=1

𝑥
𝑞𝑖

𝑖
(𝑡) = 0 a.s. (112)

Theorem20. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and 𝑎𝑙

22
𝑟
𝑢

1
+𝑎

𝑢

12
𝑟
𝑢

2
<

0, then system (3) is nonpersistent, where 𝑟𝑖(𝑠) = 𝑟𝑖(𝑠) −

(𝜎
2

𝑖
(𝑠)/2), 𝑖 = 1, 2.

Proof. Since 𝑥𝑖(𝑡) > 0, 𝑖 = 1, 2 and 𝑎𝑙11𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, from (93)

we have

𝑎
𝑙

22
log𝑥1 (𝑡) + 𝑎

𝑢

12
log𝑥2 (𝑡)

≤ {𝑎
𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2
} 𝑡 − (𝑎

𝑙

11
𝑎
𝑙

22
− 𝑎

𝑢

21
𝑎
𝑢

12
)∫

𝑡

0

𝑥1 (𝑠) 𝑑𝑠

+ 𝑎
𝑙

22
[log𝑥1 (0) + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠)]

+ 𝑎
𝑢

12
[log𝑥2 (0) + ∫

𝑡

0

𝜎2 (𝑠) 𝑑𝐵2 (𝑠)]

≤ 𝐾1𝑡 + 𝑎
𝑙

22
[log𝑥1 (0) + ∫

𝑡

0

𝜎1 (𝑠) 𝑑𝐵1 (𝑠)]

+ 𝑎
𝑢

12
[log𝑥2 (0) + ∫

𝑡

0

𝜎2 (𝑠) 𝑑𝐵2 (𝑠)] ,

(113)

where𝐾1 = 𝑎
𝑙

22
𝑟
𝑢

1
+ 𝑎

𝑢

12
𝑟
𝑢

2
which together with

lim
𝑡→∞

𝑎
𝑙

22
[log𝑥1 (0) + ∫

𝑡

0
𝜎1 (𝑠) 𝑑𝐵1 (𝑠)]

𝑡

= lim
𝑡→∞

𝑎
𝑢

12
[log𝑥2 (0) + ∫

𝑡

0
𝜎2 (𝑠) 𝑑𝐵2 (𝑠)]

𝑡
= 0, a.s.,

(114)

implies

lim
𝑡→∞

1

𝑡
[𝑎

𝑙

22
log𝑥1 (𝑡) + 𝑎

𝑢

12
log𝑥2 (𝑡)] ≤ 𝐾1, a.s. (115)

If 𝐾1 < 0, then there must be

lim
𝑡→∞

𝑥
𝑎
𝑙

22

1
(𝑡) 𝑥

𝑎
𝑢

12

2
(𝑡) = 0, a.s. (116)

Hence, system (3) is nonpersistent.

Theorem 21. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
and (𝑎

𝑢

21
𝑟
𝑢

1
+

𝑎
𝑙

11
𝑟
𝑢

2
) < 0, then system (3) is nonpersistent, where 𝑟𝑖(𝑠) =

𝑟𝑖(𝑠) − (𝜎
2

𝑖
(𝑠)/2), 𝑖 = 1, 2.

Here we omit the proof ofTheorem 21 which is similar to
the proof of Theorem 20.

Remark 22. If (𝜎𝑙
𝑖
)
2
> 2𝑟

𝑢

𝑖
, 𝑖 = 1, 2, then the conditions in

Theorems 20 and 21 are obviously satisfied, respectively. That
is to say, the large white noise will lead to the population
system being non-persistent.

5. Global Attractivity

In this section, we turn to establishing sufficient criteria for
the global attractivity of stochastic system (3).

Definition 23. Let 𝑥(𝑡), 𝑦(𝑡) be two arbitrary solutions of
system (3) with initial values 𝑥(0), 𝑦(0) ∈ 𝑅

2

+
, respectively.

If

lim
𝑡→∞

𝑥 (𝑡) − 𝑦 (𝑡)
 = 0, a.s., (117)

then we say system (3) is globally attractive.

Theorem 24. Assume that 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, then system (3) is

globally attractive.

Proof. Let 𝑥(𝑡), 𝑦(𝑡) be two arbitrary solutions of system (3)
with initial values 𝑥(0), 𝑦(0) ∈ 𝑅

2

+
. By the Itô’s formula, we

have

𝑑 log𝑥𝑖 (𝑡) = [𝑟𝑖 (𝑡) −
1

2
𝜎
2

𝑖
(𝑡) − 𝑎𝑖𝑖 (𝑡) 𝑥𝑖 (𝑡) + 𝑎𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)] 𝑑𝑡

+ 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) , 𝑖, 𝑗 = 1, 2, 𝑗 ̸= 𝑖,

𝑑 log𝑦𝑖 (𝑡) = [𝑟𝑖 (𝑡) −
1

2
𝜎
2

𝑖
(𝑡) − 𝑎𝑖𝑖 (𝑡) 𝑦𝑖 (𝑡) + 𝑎𝑖𝑗 (𝑡) 𝑦𝑗 (𝑡)] 𝑑𝑡

+ 𝜎𝑖 (𝑡) 𝑑𝐵𝑖 (𝑡) , 𝑖, 𝑗 = 1, 2, 𝑗 ̸= 𝑖.

(118)

Then,

𝑑 (log𝑥𝑖 (𝑡) − log𝑦𝑖 (𝑡))

= {−𝑎𝑖𝑖 (𝑡) [𝑥𝑖 (𝑡) − 𝑦𝑖 (𝑡)] + 𝑎𝑖𝑗 (𝑡) [𝑥𝑖 (𝑡) − 𝑦𝑖 (𝑡)]} 𝑑𝑡,

𝑖, 𝑗 = 1, 2, 𝑗 ̸= 𝑖.

(119)



12 Abstract and Applied Analysis

Since 𝑎𝑙
11
𝑎
𝑙

22
> 𝑎

𝑢

12
𝑎
𝑢

21
, there exist two positive constants 𝑐1, 𝑐2

which satisfy

𝑎
𝑢

21

𝑎𝑙
11

<
𝑐1

𝑐2

<
𝑎
𝑙

22

𝑎𝑢
12

. (120)

Thus, 𝑐1𝑎
𝑙

11
− 𝑐2𝑎

𝑢

21
> 0, 𝑐2𝑎

𝑙

22
− 𝑐1𝑎

𝑢

12
> 0.

Consider a Lyapunov function 𝑉(𝑡) defined by

𝑉 (𝑡) = 𝑐1
log𝑥1 (𝑡) − log𝑦1 (𝑡)



+ 𝑐2
log𝑥2 (𝑡) − log𝑦2 (𝑡)

 , 𝑡 ≥ 0.

(121)

A direct calculation of the right differential 𝑑+𝑉(𝑡) of 𝑉(𝑡)
along the ordinary differential equation (119) leads to

𝑑
+
𝑉 (𝑡) = 𝑐1 sgn (𝑥1 (𝑡) − 𝑦1 (𝑡)) 𝑑 [log𝑥1 (𝑡) − log𝑦1 (𝑡)]

+ 𝑐2 sgn (𝑥2 (𝑡) − 𝑦2 (𝑡)) 𝑑 [log𝑥2 (𝑡) − log𝑦2 (𝑡)]

= 𝑐1 sgn (𝑥1 (𝑡) − 𝑦1 (𝑡))

× [−𝑎11 (𝑡) (𝑥1 (𝑡) − 𝑦1 (𝑡)) 𝑑𝑡

+𝑎12 (𝑡) (𝑥2 (𝑡) − 𝑦2 (𝑡)) 𝑑𝑡]

+ 𝑐2 sgn (𝑥2 (𝑡) − 𝑦2 (𝑡))

× [𝑎21 (𝑡) (𝑥1 (𝑡) − 𝑦1 (𝑡)) 𝑑𝑡

−𝑎22 (𝑡) (𝑥2 (𝑡) − 𝑦2 (𝑡)) 𝑑𝑡]

≤ − 𝑐1𝑎
𝑙

11

𝑥1 (𝑡) − 𝑦1 (𝑡)
 𝑑𝑡

+ 𝑐1𝑎
𝑢

12

𝑥2 (𝑡) − 𝑦2 (𝑡)
 𝑑𝑡

− 𝑐2𝑎
𝑙

22

𝑥2 (𝑡) − 𝑦2 (𝑡)
 𝑑𝑡

+ 𝑐2𝑎
𝑢

21

𝑥1 (𝑡) − 𝑦1 (𝑡)
 𝑑𝑡

= − (𝑐1𝑎
𝑙

11
− 𝑐2𝑎

𝑢

21
)
𝑥1 (𝑡) − 𝑦1 (𝑡)

 𝑑𝑡

− (𝑐2𝑎
𝑙

22
− 𝑐1𝑎

𝑢

12
)
𝑥2 (𝑡) − 𝑦2 (𝑡)

 𝑑𝑡

≤ − 𝛾

2

∑

𝑖=1

𝑥𝑖 (𝑡) − 𝑦𝑖 (𝑡)
 𝑑𝑡,

(122)

where 𝛾 = min{𝑐1𝑎
𝑙

11
− 𝑐2𝑎

𝑢

21
, 𝑐2𝑎

𝑙

22
− 𝑐1𝑎

𝑢

12
}. Integrating both

sides of (122) form 0 to 𝑡, we have

𝑉 (𝑡) + 𝛾∫

𝑡

0

2

∑

𝑖=1

𝑥𝑖 (𝑠) − 𝑦𝑖 (𝑠)
 𝑑𝑠 ≤ 𝑉 (0) < ∞. (123)

Let 𝑡 → ∞, we obtain

∫

∞

0

𝑥 (𝑠) − 𝑦 (𝑠)
 𝑑𝑠 ≤ ∫

∞

0

2

∑

𝑖=1

𝑥𝑖 (𝑠) − 𝑦𝑖 (𝑠)
 𝑑𝑠

≤
𝑉 (0)

𝛾
< ∞ a.s.

(124)

Note that 𝑢(𝑡) = 𝑥(𝑡) − 𝑦(𝑡). Clearly, 𝑢(𝑡) ∈ 𝐶(𝑅+, 𝑅
2
) a.s. It

is straightforward to see from (124) that

lim inf
𝑡→∞

|𝑢 (𝑡)| = 0 a.s. (125)

Next, we prove that

lim
𝑡→∞

|𝑢 (𝑡)| = 0 a.s. (126)

ByTheorem 3 we obtain that the 𝑝th moment of the solution
of system (3) is bounded, the following proof is similar to the
proof of Theorem 6.2 in [15] and hence is omitted.
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We establish a new existence result on homoclinic solutions for a second-order nonperiodic Hamiltonian systems.This homoclinic
solution is obtained as a limit of solutions of a certain sequence of nil-boundary value problems which are obtained by theminimax
methods. Some recent results in the literature are generalized and extended.

1. Introduction

Consider the following second-order Hamiltonian system:

̈𝑢 (𝑡) + ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ R, (HS)

where 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑁) ∈ R𝑁, 𝑉(𝑡, 𝑢) = −𝐾(𝑡, 𝑢) +

𝑊(𝑡, 𝑢), 𝐾,𝑊 : R × R𝑁
→ R are 𝐶1 maps. We will say

that a solution 𝑢 : R → R𝑁 of (HS) is homoclinic (to 0), if
𝑢(𝑡) → 0, as |𝑡| → ∞. In addition, if 𝑢 ̸≡ 0, then 𝑢 is called
a nontrivial homoclinic solution.

Inspired by the excellent monographs [1, 2], by now, the
existence and multiplicity of homoclinic solutions for Ham-
iltonian systems have been extensively investigated in many
papers via variational methods; see [3–7] for the first order
systems and [8–19] for the second systems, and most of them
treat the following system:

̈𝑢 (𝑡) − 𝐿 (𝑡) 𝑢 (𝑡) + ∇𝑊(𝑡, 𝑢 (𝑡)) = 0, 𝑡 ∈ R, (1)

where 𝐿(𝑡) is a symmetric matrix-valued function and 𝑊 ∈

𝐶
1
(R,R𝑁

).
For the periodic case, the periodicity is used to control the

lack of compactness due to the fact that (1) is set on all R. In
1990, Rabinowitz [12] first proved that (1) has a 2𝑘𝑇-periodic
solution 𝑢𝑘, which is bounded uniformly for 𝑘, and obtained a
homoclinic solution for (1) as a limit of 2𝑘𝑇-periodic solution.

For the nonperiodic case, the problem is quite different
from the one described in nature. Rabinowitz andTanaka [13]
introduced a type of coercive condition on the matrix 𝐿:
(L1) 𝑙(𝑡) := inf |𝑥|=1𝐿(𝑡)𝑥 ⋅ 𝑥 → +∞, as |𝑡| → ∞.

They first obtained the existence of homoclinic solution
for the nonperiodic system (1) under the well-known (AR)
growth condition by using Ekeland’s variational principle.

In 1995, Ding [8] strengthened condition (L1) by
(L2) there exists a constant 𝛼 > 0 such that

𝑙 (𝑡) |𝑡|
−𝛼

→ +∞ as |𝑡| → ∞. (2)

Under the condition (L2) and some subquadratic conditions
on 𝑊(𝑡, 𝑢), Ding proved the existence and multiplicity of
homoclinic solutions for the system (1). From then on, the
condition (L1) or (L2) is extensively used in nonperiodic
second-order Hamiltonian systems. However, the assump-
tion (L1) or (L2) is a rather restrictive and not very natural
condition as it excludes, for example, the case of constant
matrices 𝐼𝑁.

In 2005, Izydorek and Janczewska [9] first presented the
“pinching” condition (see the following (V2)) and relaxed the
conditions (L1) and (L2). They studied the general periodic
Hamiltonian system

̈𝑢 (𝑡) + ∇𝑉 (𝑡, 𝑢 (𝑡)) = 𝑓 (𝑡) , 𝑡 ∈ R, (3)
where 𝑉(𝑡, 𝑢) = −𝐾(𝑡, 𝑢) + 𝑊(𝑡, 𝑢) and obtained the follow-
ing result.
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Theorem A (see [9]). Let the following conditions hold:

(V1) 𝑉(𝑡, 𝑢) = −𝐾(𝑡, 𝑢) + 𝑊(𝑡, 𝑢), where 𝑉 is continuous
and 𝑇 periodic with respect to 𝑡, 𝑇 > 0;

(V2) there exist 𝑏1, 𝑏2 > 0 such that

𝑏1|𝑢|
2
≤ 𝐾 (𝑡, 𝑢) ≤ 𝑏2|𝑢|

2
, ∀ (𝑡, 𝑢) ∈ R ×R

𝑁
; (4)

(V3) 𝐾(𝑡, 𝑢) ≤ (𝑢, ∇𝐾(𝑡, 𝑢)) ≤ 2𝐾(𝑡, 𝑢) for all (𝑡, 𝑢) ∈ R ×

R𝑁;
(V4) ∇𝑊(𝑡, 𝑢) = 𝑜(|𝑢|) as 𝑢 → 0 uniformly in 𝑡;
(V5) there is a constant 𝜇 > 2 such that

0 < 𝜇𝑊 (𝑡, 𝑢) ≤ (∇𝑊 (𝑡, 𝑢) , 𝑢) , ∀ (𝑡, 𝑢) ∈ R ×R
𝑁
; (5)

(V6) 𝑏1 := min{1, 2𝑏1} > 2𝑀 and ‖𝑓‖𝐿2 < (𝑏1 − 2𝑀)/2𝐶
∗,

where𝑀 = sup{𝑊(𝑡, 𝑢) : 𝑡 ∈ [0, 𝑇], |𝑢| = 1} and 𝐶∗ is
a positive constant depending on 𝑇.

Then the system (3) possesses a nontrivial homoclinic solution
𝑢 ∈ 𝑊

1,2
(R,R𝑁

) such that ̇𝑢(𝑡) → 0 as 𝑡 → ±∞.

From then on, following the idea of [9], some researchers
are devoted to relaxing the conditions (L1) and (L2) and
studying the existence of homoclinic solutions of system (HS)
or (3) under the periodicity assumption of the potential, such
as [10, 11, 16, 19].

Very recently, Daouas [3] removed the periodicity con-
dition and studied the existence of homoclinic solutions for
the nonperiodic system (3), when 𝑊 is superquadratic at
the infinity. Motivated by [3], in this work, we will study
the existence of homoclinic solutions of the nonperiodic
system (HS), when 𝑊 satisfies the asymptotically quadratic
condition at the infinity. It is worth noticing that there are
few works concerning this case for system (HS) or (3) up to
now.

Our result is presented as follows.

Theorem 1. Let 𝐴 := sup{𝐾(𝑡, 𝑢) : 𝑡 ∈ R, |𝑢| ≤ 1} < +∞

hold. Moreover, assume that the following conditions hold:

(H1) 𝐾(𝑡, 0) ≡ 0, and there exists a constant 𝑎 > 0 such that

𝐾 (𝑡, 𝑢) ≥ 𝑎|𝑢|
2
, ∀ (𝑡, 𝑢) ∈ R ×R

𝑁
; (6)

(H2) there exists 𝛽 ∈ (1, 2] such that

𝐾 (𝑡, 𝑢) ≤ (𝑢, ∇𝐾 (𝑡, 𝑢)) ≤ 𝛽𝐾 (𝑡, 𝑢) , ∀ (𝑡, 𝑢) ∈ R ×R
𝑁
;

(7)

(H3) 𝑊(𝑡, 0) ≡ 0 and ∇𝑊(𝑡, 𝑢) = 𝑜(|𝑢|) as 𝑢 → 0

uniformly in 𝑡, and there exist,𝑀0 > 0 such that

|∇𝑊 (𝑡, 𝑢)|

|𝑢|
≤ 𝑀0, (8)

for any 𝑡 ∈ R and 𝑢 ∈ R𝑁;
(H4) 𝑊(𝑡, 𝑢) − 𝑤(𝑡)|𝑢|

2
= 𝑜(|𝑢|

2
) as |𝑢| → ∞ uniformly in

𝑡, where 𝑤 ∈ 𝐿
∞
(R,R) with 𝑤∞ := inf 𝑡∈R𝑤(𝑡) > 2𝐴;

(H5) �̃�(𝑡, 𝑢) := (1/2)(∇𝑊(𝑡, 𝑢), 𝑢) − 𝑊(𝑡, 𝑢) → +∞ as
|𝑢| → +∞, and

inf {�̃� (𝑡, 𝑢)

|𝑢|
2

: 𝑡 ∈ R with 𝑐 ≤ |𝑢| < 𝑑} > 0, (9)

for any 𝑐, 𝑑 > 0.

Then the system (HS) possesses a nontrivial homoclinic solution
𝑢 ∈ 𝑊

1,2
(R,R𝑁

) such that ̇𝑢(𝑡) → 0 as 𝑡 → ±∞.

Remark 2. Theorem 1 treats the asymptotically quadratic case
on𝑊. Consider the functions

𝐾 (𝑡, 𝑢) = (1 + 𝑒
−|𝑡|

) |𝑢|
2
,

𝑊 (𝑡, 𝑢) = 𝑑 (𝑡) |𝑢|
2
(1 −

1

ln (𝑒 + |𝑢|)
) ,

(10)

where 𝑑 ∈ 𝐿
∞
(R,R) and inf 𝑡∈R𝑑(𝑡) > 4 + 32𝜋

2.
A straightforward computation shows that 𝐾 and 𝑊

satisfy the assumptions of Theorem 1, but 𝐾 does not satisfy
the conditions (L1) and (L2). Hence, Theorem 1 also extends
the results in [8, 13].

The remainder of this paper is organized as follows.
In Section 2, some preliminary results are presented. In
Section 3, we give the proof of Theorem 1.

2. Preliminaries

Following the similar idea of [20], consider the following nil-
boundary value problems:

̈𝑢 (𝑡) + ∇𝑉 (𝑡, 𝑢 (𝑡)) = 0, ∀𝑡 ∈ [−𝑇, 𝑇] ,

𝑢 (−𝑇) = 𝑢 (𝑇) = 0.

(11)

For each 𝑇 > 0, let 𝐸𝑇 = 𝑊
1,2
([−𝑇, 𝑇],R𝑁

), where

𝑊
1,2

([−𝑇, 𝑇] ,R
𝑁
)

={𝑢 : [−𝑇, 𝑇]→R
𝑁 is an absolutely continuous function,

𝑢 (−𝑇) = 𝑢 (𝑇) = 0 and ̇𝑢 ∈ 𝐿
2
([−𝑇, 𝑇] ,R

𝑁
)} ,

(12)

equipped with the norm

‖𝑢‖ = (∫

𝑇

−𝑇

[| ̇𝑢 (𝑡)|
2
+ |𝑢 (𝑡)|

2
] 𝑑𝑡)

1/2

. (13)

Furthermore, for 𝑝 > 1, let 𝐿𝑝
𝑇

= 𝐿
𝑝
([−𝑇, 𝑇],R𝑁

) and
𝐿
∞

𝑇
= 𝐿

∞
([−𝑇, 𝑇],R𝑁

) under their habitual norms. We need
the following result.

Proposition 3 (see [9]). There is a positive constant 𝐶 such
that for each 𝑇 > 0 and 𝑢 ∈ 𝐸𝑇 the following inequality holds:

‖𝑢‖𝐿∞
𝑇

≤ 𝐶 ‖𝑢‖ . (14)
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Note that the inequality (14) holds true with constant𝐶 =

√2 if 𝑇 ≥ 1/2 (see [9]). Subsequently, we may assume this
condition is fulfilled.

Consider a functional 𝐼 : 𝐸𝑇 → R defined by

𝐼 (𝑢) = ∫

𝑇

−𝑇

[
1

2
| ̇𝑢 (𝑡)|

2
− 𝑉 (𝑡, 𝑢 (𝑡))] 𝑑𝑡

=
1

2
∫

𝑇

−𝑇

| ̇𝑢 (𝑡)|
2
𝑑𝑡 + ∫

𝑇

−𝑇

𝐾 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

− ∫

𝑇

−𝑇

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡.

(15)

Then 𝐼 ∈ 𝐶
1
(𝐸𝑇,R), and it is easy to show that for all 𝑢, 𝑣 ∈

𝐸𝑇, we have

𝐼

(𝑢) 𝑣 = ∫

𝑇

−𝑇

[( ̇𝑢 (𝑡) , ̇𝑣 (𝑡))−(𝑊(𝑡, 𝑢(𝑡)), ∇𝑉 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡))] 𝑑𝑡

= ∫

𝑇

−𝑇

[( ̇𝑢 (𝑡) , ̇𝑣 (𝑡)) + (∇𝐾 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡))

− (∇𝑊 (𝑡, 𝑢 (𝑡)) , 𝑣 (𝑡))] 𝑑𝑡.

(16)

It is well known that critical points of 𝐼 are classical solutions
of the problem (11). We will obtain a critical point of 𝐼 by
using an improved version of the Mountain Pass Theorem.
For completeness, we give this theorem.

Recall that a sequence {𝑢𝑗} is a (𝐶)-sequence for the
functional 𝜑 if 𝜑(𝑢𝑗) is bounded and (1 + ‖𝑢𝑗‖)𝜑


(𝑢𝑗) → 0.

A functional 𝜑 satisfies the (𝐶)-condition if and only if any
(𝐶)-sequence for 𝜑 contains a convergent subsequence.

Theorem4 (see [21]). Let𝐸 be a real Banach space, and let𝜑 ∈

𝐶
1
(𝐸,R) satisfy the (C)-condition and 𝜑(0) = 0. If 𝜑 satisfies

the following conditions:

(A1) there exist constants 𝜌, 𝛼 > 0 such that 𝜑|𝜕𝐵𝜌(0) ≥ 𝛼;

(A2) there exists 𝑒 ∈ 𝐸 \ 𝐵𝜌(0) such that 𝜑(𝑒) ≤ 0, then 𝜑

possesses a critical value 𝑐 ≥ 𝛼 given by

𝑐 = inf
𝑔∈Γ

max
𝑠∈[0,1]

𝜑 (𝑓 (𝑠)) , (17)

where 𝐵𝜌(0) is an open ball in 𝐸 of radius 𝜌 at about 0,
and

Γ = {𝑓 ∈ 𝐶 ([0, 1] , 𝐸) : 𝑓 (0) = 0, 𝑓 (1) = 𝑒} . (18)

Proof. As shown in Bartolo et al. [22], a deformation lemma
can be proved with the (𝐶)-condition replacing the usual
(𝑃𝑆)-condition, and it turns out that the standard version
Mountain Pass Theorem (see Rabinowitz [21]) holds true
under the (𝐶)-condition.

Lemma 5. Assume that (𝐻2) holds, then

𝐾 (𝑡, 𝑢) ≤ 𝐾(𝑡,
𝑢

|𝑢|
) |𝑢|

𝛽
, ∀𝑡 ∈ R, |𝑢| ≥ 1. (19)

Proof. From (H2) it follows that for 𝑢 ̸= 0 a map given by

(0,∞) ∋ 𝜈 → 𝑊(𝑡, 𝜈
−1
𝑢) (20)

is nondecreasing. Similar to the proof in [12], we can get the
conclusion.

Lemma 6 (see [9]). Let 𝑢 : R → R𝑁 be a continuous map
such that ̇𝑢 is locally square integrable. Then, for all 𝑡 ∈ R, one
has

|𝑢 (𝑡)| ≤ √2(∫

𝑡+1/2

𝑡−1/2

(|𝑢 (𝑠)|
2
+ | ̇𝑢 (𝑠)|

2
) 𝑑𝑠)

1/2

. (21)

3. Proof of Theorem 1

Lemma 7. Under the assumptions of Theorem 1, the problem
(11) possesses a nontrivial solution.

Proof. It suffices to prove that the functional 𝐼 satisfies all the
assumptions of Theorem 4.

Step 1. We show that the functional 𝐼 satisfies the (𝐶)-
condition. Let

𝐼 (𝑢𝑗) be bounded and (1 +

𝑢𝑗

) 𝐼


(𝑢𝑗) → 0. (22)

Observe that, for 𝑗 large, it follows from (H1) and (H2) that
there exists a constant 𝐶0 such that

𝐶0 ≥ 𝐼 (𝑢𝑗) −
1

2
𝐼

(𝑢𝑗) 𝑢𝑗

= ∫

𝑇

−𝑇

[
1

2
(∇𝑊(𝑡, 𝑢𝑗) , 𝑢𝑗) −𝑊(𝑡, 𝑢𝑗)] 𝑑𝑡

+ ∫

𝑇

−𝑇

[𝐾 (𝑡, 𝑢𝑗) −
1

2
(∇𝐾 (𝑡, 𝑢𝑗) , 𝑢𝑗)] 𝑑𝑡

≥ ∫

𝑇

−𝑇

�̃� (𝑡, 𝑢) 𝑑𝑡.

(23)

Arguing indirectly, assume as a contradiction that ‖𝑢𝑗‖ →

∞. Setting 𝑣𝑗 = 𝑢𝑗/‖𝑢𝑗‖, then ‖𝑣𝑗‖ = 1, and by Proposition 3,
one has


𝑣𝑗
𝐿∞
𝑇

≤ √2

𝑣𝑗

= √2. (24)

Note that

𝐼

(𝑢𝑗) 𝑢𝑗 =


̇𝑢𝑗


2

𝐿2
𝑇

+ ∫

𝑇

−𝑇

(∇𝐾 (𝑡, 𝑢𝑗) , 𝑢𝑗) 𝑑𝑡

− ∫

𝑇

−𝑇

(∇𝑊(𝑡, 𝑢𝑗) , 𝑢𝑗) 𝑑𝑡

≥

̇𝑢𝑗


2

𝐿2
𝑇

+ ∫

𝑇

−𝑇

𝐾(𝑡, 𝑢𝑗) 𝑑𝑡

− ∫

𝑇

−𝑇

(∇𝑊(𝑡, 𝑢𝑗) , 𝑢𝑗) 𝑑𝑡

≥ 𝐶1


𝑢𝑗


2

− ∫

𝑇

−𝑇


∇𝑊(𝑡, 𝑢𝑗)




𝑢𝑗

𝑑𝑡,

(25)
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where 𝐶1 = min{1, 𝑎} > 0. This implies that

∫

𝑇

−𝑇


∇𝑊(𝑡, 𝑢𝑗)




𝑢𝑗



𝑢𝑗


2
𝑑𝑡 = ∫

𝑇

−𝑇


∇𝑊(𝑡, 𝑢𝑗)




𝑣𝑗


2


𝑢𝑗


𝑑𝑡 → 𝐶1.

(26)

Set for 𝑠 ≥ 0

ℎ (𝑠) := inf {�̃� (𝑡, 𝑢) : 𝑡 ∈ [−𝑇, 𝑇] , 𝑢 ∈ R
𝑁 with |𝑢| ≥ 𝑠} .

(27)

By (H5), ℎ(𝑠) → ∞ as 𝑠 → ∞.
For 0 ≤ 𝑙 < 𝑚, let

Ω𝑗 (𝑙, 𝑚) = {𝑡 ∈ [−𝑇, 𝑇] : 𝑙 ≤

𝑢𝑗 (𝑡)


< 𝑚} ,

𝐶
𝑚

𝑙
= inf {�̃� (𝑡, 𝑢)

|𝑢|
2

: 𝑡 ∈ [−𝑇, 𝑇] with 𝑙 ≤ |𝑢 (𝑡)| < 𝑚} .

(28)

Then by (H5), 𝐶
𝑚

𝑙
> 0. One has

�̃� (𝑡, 𝑢𝑗) ≥ 𝐶
𝑚

𝑙


𝑢𝑗


2

, ∀𝑡 ∈ Ω𝑗 (𝑙, 𝑚) . (29)

It follows from (23) that

𝐶0 ≥ ∫
Ω𝑗(0,𝑙)

�̃� (𝑡, 𝑢𝑗) 𝑑𝑡 + ∫
Ω𝑗(𝑙,𝑚)

�̃� (𝑡, 𝑢𝑗) 𝑑𝑡

+ ∫
Ω𝑗(𝑚,∞)

�̃� (𝑡, 𝑢𝑗) 𝑑𝑡

≥ ∫
Ω𝑗(0,𝑙)

�̃� (𝑡, 𝑢𝑗) 𝑑𝑡 + 𝐶
𝑚

𝑙
∫
Ω𝑗(𝑙,𝑚)


𝑢𝑗


2

𝑑𝑡

+ ℎ (𝑚)

Ω𝑗 (𝑚,∞)



(30)

which implies that


Ω𝑗 (𝑚,∞)


≤

𝐶0

ℎ (𝑚)
→ 0 (31)

as𝑚 → ∞ uniformly in 𝑗, and for any fixed 0 < 𝑙 < 𝑚

∫
Ω𝑗(𝑙,𝑚)


𝑣𝑗


2

𝑑𝑡 =
1


𝑢𝑗


2
∫
Ω𝑗(𝑙,𝑚)


𝑢𝑗


2

𝑑𝑡 ≤
𝐶0

𝐶𝑚

𝑙


𝑢𝑗


2
→ 0

(32)

as 𝑗 → ∞. Using (14) and (31), we have

∫
Ω𝑗(𝑚,∞)


𝑣𝑗


2

𝑑𝑡≤

𝑣𝑗


2

𝐿∞
𝑇

⋅

Ω𝑗 (𝑚,∞)


≤2


Ω𝑗 (𝑚,∞)


→0

(33)

as𝑚 → ∞ uniformly in 𝑗.
Let 0 < 𝜖 < 𝐶1/3. By (H3) there is 𝑙𝜖 > 0 such that

|∇𝑊 (𝑡, 𝑢)| <
𝜖

4𝑇
|𝑢| (34)

for all |𝑡| ≤ 𝑙𝜖. Consequently,

∫
Ω𝑗(0,𝑙𝜖)


∇𝑊(𝑡, 𝑢𝑗)




𝑣𝑗


2


𝑢𝑗


𝑑𝑡 ≤
𝜖

4𝑇
∫
Ω𝑗(0,𝑙𝜖)


𝑣𝑗


2

𝑑𝑡

≤
𝜖

4𝑇


𝑣𝑗


2

𝐿∞
𝑇

2𝑇 < 𝜖

(35)

for all 𝑗.
By (31), we can take𝑚𝜖 large such that

∫
Ω𝑗(𝑚𝜖,∞)


𝑣𝑗


2

𝑑𝑡 <
𝜖

𝑀0

. (36)

Hence, by (H3) one has

∫
Ω𝑗(𝑚𝜖 ,∞)


∇𝑊(𝑡, 𝑢𝑗)




𝑣𝑗


2


𝑢𝑗


𝑑𝑡 ≤ 𝑀0 ∫
Ω𝑗(𝑚𝜖 ,∞)


𝑣𝑗


2

𝑑𝑡 < 𝜖

(37)

for all 𝑗. By (32) there exists 𝑗0 such that

∫
Ω𝑗(𝑙𝜖,𝑚𝜖)


∇𝑊(𝑡, 𝑢𝑗)




𝑣𝑗


2


𝑢𝑗


𝑑𝑡 ≤ 𝑀0 ∫
Ω𝑗(𝑙𝜖 ,𝑚𝜖)


𝑣𝑗


2

𝑑𝑡 < 𝜖

(38)

for all 𝑗 ≥ 𝑗0. By (35)–(38), one has

lim sup
𝑗→∞

∫

𝑇

−𝑇


∇𝑊(𝑡, 𝑢𝑗)




𝑣𝑗


2


𝑢𝑗


𝑑𝑡 ≤ 3𝜖 < 𝐶1
(39)

which contradicts with (26). So {𝑢𝑗} is bounded in 𝐸𝑇. In a
similar way to Proposition B. 35 in [21], we can prove that
{𝑢𝑗} has a convergent subsequence. Hence 𝐼 satisfies the (𝐶)-
condition.

Step 2. We show that the functional 𝐼 satisfies the condition
(A1) of Theorem 4.

Observe that, by (H3) and (H4), given 0 < 𝜖 < 𝑎, there
exists some 𝐶𝜖 > 0 such that

|𝑊 (𝑡, 𝑢)| ≤ 𝜀|𝑢|
2
+ 𝐶𝜀|𝑢|

𝑝 (40)

for all 𝑢 ∈ R𝑁 and 𝑡 ∈ [−𝑇, 𝑇], where 𝑝 > 2. It follows from
(H1), (40), and Proposition 3 that

𝐼 (𝑢) =
1

2
∫

𝑇

−𝑇

| ̇𝑢 (𝑡)|
2
𝑑𝑡 + ∫

𝑇

−𝑇

𝐾 (𝑡, 𝑢 (𝑡)) 𝑑𝑡

− ∫

𝑇

−𝑇

𝑊(𝑡, 𝑢 (𝑡)) 𝑑𝑡

≥
1

2
‖ ̇𝑢‖

2

𝐿2
𝑇

+ 𝑎‖𝑢‖
2

𝐿2
𝑇

− 𝜖‖𝑢‖
2

𝐿2
𝑇

− 𝐶𝜖 ∫

𝑇

−𝑇

|𝑢 (𝑡)|
𝑝
𝑑𝑡

≥
1

2
‖ ̇𝑢‖

2

𝐿2
𝑇

+ 𝑎‖𝑢‖
2

𝐿2
𝑇

− 𝜖‖𝑢‖
2

𝐿2
𝑇

− 2𝑇𝐶𝜖‖𝑢‖
𝑝

𝐿∞
𝑇

≥ min {1
2
, 𝑎 − 𝜖} ‖𝑢‖

2
− 2

𝑝/2+1
𝑇𝐶𝜖‖𝑢‖

𝑝
.

(41)
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Hence there exist 𝛼 > 0 and 𝜌 > 0 such that 𝐼(𝑢) ≥ 𝛼 for all
𝑢 ∈ 𝐸𝑇 with ‖𝑢‖ = 𝜌.

Step 3. We show that the functional 𝐼 satisfies the condition
(A2) of Theorem 4.

By (H4), there exists 𝐵 > 0 such that

𝑊(𝑡, 𝑢) ≥ 𝑤∞|𝑢|
2
− 𝐵, ∀𝑡 ∈ [−𝑇, 𝑇] , 𝑢 ∈ R

𝑁
. (42)

Let

𝑒 (𝑡) = 𝜁 |sin (𝜔𝑡)| 𝑒0, 𝑡 ∈ [−𝑇, 𝑇] , (43)

where 𝜔 = 2𝜋/𝑇 and 𝑒0 = (1, 0, . . . , 0). Clearly, 𝑒 ∈ 𝐸𝑇. By
(15), (42), and Lemma 5, one has

𝐼 (𝑒) =
𝜁
2
𝜔
2

2
∫

𝑇

−𝑇

|cos (𝜔𝑡)|2𝑑𝑡+∫
{𝑡∈[−𝑇,𝑇];|𝑒(𝑡)|≤1}

𝐾 (𝑡, 𝑒 (𝑡)) 𝑑𝑡

+∫
{𝑡∈[−𝑇,𝑇];|𝑒(𝑡)|≥1}

𝐾 (𝑡, 𝑒 (𝑡)) 𝑑𝑡 − ∫

𝑇

−𝑇

𝑊(𝑡, 𝑒 (𝑡)) 𝑑𝑡

≤
𝑇𝜁

2
𝜔
2

2
+ 2𝑇𝐴 + 𝐴∫

{𝑡∈[−𝑇,𝑇];|𝑒(𝑡)|≥1}

|𝑒 (𝑡)|
𝛽
𝑑𝑡

− 𝑤∞𝜁
2
∫

𝑇

−𝑇

|sin (𝜔𝑡)|2𝑑𝑡 + 2𝑇𝐵

=
𝑇𝜁

2
𝜔
2

2
+ 2𝑇𝐴 + 𝐴𝜁

2
∫

𝑇

−𝑇

|sin (𝜔𝑡)|2𝑑𝑡 − 𝑇𝑤∞𝜁
2

+ 2𝑇𝐵

= 𝑇(
𝜔
2

2
+ 𝐴 − 𝑤∞)𝜁

2
+ 2𝑇 (𝐴 + 𝐵) .

(44)

Since 𝑤∞ > 2𝐴 + 32𝜋
2 and 𝑇 > √2/𝐴𝜋, then 𝜔

2
/2 + 𝐴 −

𝑤∞ < 0. So 𝐼(𝑒) → −∞ as |𝜁| → ∞. So, we can choose
large enough 𝜁 ∈ R such that ‖𝑒‖ > 𝜌 and 𝐼(𝑒) < 0.

Clearly 𝐼(0) = 0; then, by application ofTheorem 4, there
exists a critical point 𝑢𝑇 ∈ 𝐸𝑇 of 𝐼 such that 𝐼(𝑢𝑇) ≥ 𝛼 for all
𝑇 > √2/𝐴𝜋.

Lemma 8. 𝑢𝑇 is bounded uniformly in 𝑇 > √2/𝐴𝜋.

Proof. Define the set of paths

Γ𝑇 = {𝑓 ∈ 𝐶 ([0, 1] , 𝐸𝑇) | 𝑓 (0) = 0, 𝑓 (1) = 𝑒} . (45)

It follows from Lemma 7 that there exists a solution 𝑢𝑇 of
problem (11) at which

inf
𝑓∈Γ𝑇

max
𝑠∈[0,1]

𝐼 (𝑓 (𝑠)) ≡ 𝐷𝑇 (46)

is achieved. Let 𝑇 > 𝑇. Since any function in 𝐸𝑇 can be
regarded as belonging to 𝐸

𝑇
if one extends it by zero in

[−𝑇, 𝑇] \ [−𝑇, 𝑇], then Γ𝑇 ⊂ Γ
𝑇
. Therefore, for any solution

𝑢𝑇 of problem (11), we obtain

𝐼 (𝑢𝑇) = 𝐷𝑇 ≤ 𝐷1/2 uniformly in 𝑇 > √
2

𝐴
𝜋. (47)

Notice that 𝐼(𝑢𝑇) = 0, and together with (47), one has

𝐼 (𝑢𝑇) ≤ 𝐷1/2, (1 + 𝑢𝑇)

𝐼

(𝑢𝑇)


= 0. (48)

The rest of the proof is similar to that of Step 1 in Lemma 7.
Hence there exists a constant𝑀1 > 0, independent of 𝑇 such
that

𝑢𝑇
 ≤ 𝑀1, ∀𝑇 > √

2

𝐴
𝜋. (49)

The proof is complete.

Take a sequence 𝑇𝑛 → ∞, and consider the problem
(11) on the interval [−𝑇𝑛, 𝑇𝑛]. By Lemma 7, there exists a
nontrivial solution 𝑢𝑛 := 𝑢𝑇𝑛

of problem (11).

Lemma9. Let {𝑢𝑛}𝑛∈N be the sequence given above.Then there
exists a subsequence {𝑢𝑛𝑗}𝑗∈N convergent to 𝑢0 in 𝐶

1

loc(R,R
𝑁
).

Proof. First we prove that the sequences ‖𝑢𝑛‖𝐿∞
𝑇𝑛

, ‖ ̇𝑢𝑛‖𝐿∞
𝑇𝑛

, and
‖ ̈𝑢𝑛‖𝐿∞

𝑇𝑛

are bounded. From (14) and (49), for 𝑛 large enough,
one has

𝑢𝑛
𝐿∞
𝑇𝑛

≤ 𝐶𝑀1 := 𝑀2. (50)

By (11) and (50), for all 𝑡 ∈ [−𝑇𝑛, 𝑇𝑛], there exists 𝑀3 > 0

independent of 𝑛 such that

 ̈𝑢𝑛
𝐿∞
𝑇𝑛

≤ 𝑀3. (51)

It follows from theMean ValueTheorem that for every 𝑛 ∈ 𝑁

and 𝑡 ∈ R, there exists 𝜏𝑛 ∈ [𝑡 − 1, 𝑡] such that

̇𝑢𝑛 (𝜏𝑛) = ∫

𝑡

𝑡−1

̇𝑢𝑛 (𝑠) 𝑑𝑠 = 𝑢𝑛 (𝑡) − 𝑢𝑛 (𝑡 − 1) . (52)

Combining the above with (50), and (51) we get

 ̇𝑢𝑛 (𝑡)
 =



∫

𝑡

𝜏𝑛

̈𝑢𝑛 (𝑠) 𝑑𝑠 + ̇𝑢𝑛 (𝜏𝑛)



≤ ∫

𝑡

𝑡−1

 ̈𝑢𝑛 (𝑠)
 𝑑𝑠 +

𝑢𝑛 (𝑡) − 𝑢𝑛 (𝑡 − 1)


≤ 𝑀3 + 2𝑀2 := 𝑀4

(53)

and hence for 𝑛 large enough

 ̇𝑢𝑛
𝐿∞
𝑇𝑛

≤ 𝑀4. (54)

Second we show that the sequences {𝑢𝑛}𝑛∈N and { ̇𝑢𝑛}𝑛∈N are
equicontinuous. Indeed, for any 𝑛 ∈ N and 𝑡1, 𝑡2 ∈ R, by (54),
we have

𝑢𝑛 (𝑡1) − 𝑢𝑛 (𝑡2)
 =



∫

𝑡1

𝑡2

̇𝑢𝑛 (𝑠) 𝑑𝑠



≤ ∫

𝑡1

𝑡2

 ̇𝑢𝑛 (𝑠)
 𝑑𝑠

≤ 𝑀3

𝑡1 − 𝑡2
 .

(55)
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Similarly, by (51), one gets
 ̇𝑢𝑛 (𝑡1) − ̇𝑢𝑛 (𝑡2)

 ≤ 𝑀2

𝑡1 − 𝑡2
 . (56)

By using the Arzelà-Ascoli Theorem, we obtain the existence
of a subsequence {𝑢𝑛𝑗}𝑗∈N and a function 𝑢0 such that

𝑢𝑛𝑗
→ 𝑢0, as 𝑗 → ∞ in 𝐶

1

loc (R,R
𝑁
) . (57)

The proof is complete.

Lemma 10. Let 𝑢0 : R → R𝑁 be the function given by (57).
Then 𝑢0 is the homoclinic solution of (HS).

Proof. First we show that 𝑢0 is a solution of (HS). Let {𝑢𝑛𝑗}𝑗∈N
be the sequence given by Lemma 9, then

̈𝑢𝑛𝑗
(𝑡) + ∇𝑉(𝑡, 𝑢𝑛𝑗

(𝑡)) = 0 (58)

for every 𝑗 ∈ N and 𝑡 ∈ [−𝑇𝑛𝑗
, 𝑇𝑛𝑗

]. Take 𝑏, 𝑐 ∈ R with 𝑏 < 𝑐.
There exists 𝑗0 ∈ N such that for all 𝑗 > 𝑗0; we get [𝑏, 𝑐] ⊂

[−𝑇𝑛𝑗
, 𝑇𝑛𝑗

] and

̈𝑢𝑛𝑗
(𝑡) = −∇𝑉(𝑡, 𝑢𝑛𝑗

(𝑡)) , ∀𝑡 ∈ [𝑏, 𝑐] . (59)

Integrating (59) from 𝑏 to 𝑡 ∈ [𝑏, 𝑐], we have

̇𝑢𝑛𝑗
(𝑡) − ̇𝑢𝑛𝑗

(𝑏) = −∫

𝑡

𝑏

∇𝑉(𝑠, 𝑢𝑛𝑗
(𝑠)) 𝑑𝑠, ∀𝑡 ∈ [𝑏, 𝑐] .

(60)

Since 𝑢𝑛𝑗 → 𝑢0 uniformly on [𝑏, 𝑐] and ̇𝑢𝑛𝑗
→ ̇𝑢0 uniformly

on [𝑏, 𝑐] as 𝑗 → ∞, then, from (60), we obtain

̇𝑢0 (𝑡) − ̇𝑢0 (𝑏) = −∫

𝑡

𝑏

∇𝑉 (𝑠, 𝑢0 (𝑠)) 𝑑𝑠, ∀𝑡 ∈ [𝑏, 𝑐] . (61)

Because of the arbitrariness of 𝑏 and 𝑐, we conclude that 𝑢0
satisfies (HS).

Second we prove that 𝑢0(𝑡) → 0, as |𝑡| → ∞. Note that,
by (49), for 𝑘 ∈ N, there exists 𝑗0 ∈ N such that, for all 𝑗 > 𝑗0,
one has

∫

𝑇𝑛𝑗

−𝑇𝑛𝑗

[

𝑢𝑛𝑗

(𝑡)


2

+

̇𝑢𝑛𝑗
(𝑡)



2

] 𝑑𝑡 ≤

𝑢𝑛𝑗



2

≤ 𝑀
2

1
. (62)

Letting 𝑗 → ∞, one gets

∫

𝑇𝑛𝑗

−𝑇𝑛𝑗

[
𝑢0 (𝑡)


2
+
 ̇𝑢0 (𝑡)


2
] 𝑑𝑡 ≤ 𝑀

2

1 (63)

and letting 𝑗 → ∞, we have

∫

+∞

−∞

[
𝑢0 (𝑡)


2
+
 ̇𝑢0 (𝑡)


2
] 𝑑𝑡 ≤ 𝑀

2

1
(64)

and so

∫
|𝑡|≥𝑟

[
𝑢0 (𝑡)


2
+
 ̇𝑢0 (𝑡)


2
] 𝑑𝑡 → 0. (65)

From Lemma 6 and (65), we obtain 𝑢0(𝑡) → 0 as |𝑡| → ∞.

Next we show that ̇𝑢0(𝑡) → 0 as |𝑡| → ∞. Indeed,
applying again Lemma 6 to ̇𝑢0, we obtain

 ̇𝑢0 (𝑡)
 ≤

√2(∫

𝑡+1/2

𝑡−1/2

(
 ̇𝑢0 (𝑠)


2
+
 ̈𝑢0 (𝑠)


2
) 𝑑𝑠)

1/2

. (66)

Also, from (65), we get

∫

𝑡+1/2

𝑡−1/2

 ̇𝑢0 (𝑠)

2
𝑑𝑠 → 0, as |𝑡| → ∞. (67)

Hence, it is enough to prove that

∫

𝑡+1/2

𝑡−1/2

 ̈𝑢0 (𝑠)

2
𝑑𝑠 → 0, as |𝑡| → ∞. (68)

Since 𝑢0 is a solution of (HS), one has

∫

𝑡+1/2

𝑡−1/2

 ̈𝑢0 (𝑠)

2
𝑑𝑠 = ∫

𝑡+1/2

𝑡−1/2

∇𝑉 (𝑠, 𝑢0 (𝑠))

2
𝑑𝑠. (69)

Since ∇𝑉(𝑡, 0) = 0 for all 𝑡 ∈ R and 𝑢0(𝑡) → 0, as |𝑡| → ∞,
(68) follows from (69).

Finally, similar to the proof in [12], we can prove that 𝑢0
is nontrivial, and we omit it here. The proof of Theorem 1 is
complete.
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We study the existence of a positive periodic solution for second-order singular semipositone differential equation by a nonlinear
alternative principle of Leray-Schauder. Truncation plays an important role in the analysis of the uniform positive lower bound for
all the solutions of the equation. Recent results in the literature (Chu et al., 2010) are generalized.

1. Introduction

In this paper, we study the existence of positive 𝑇-periodic
solutions for the following singular semipositone differential
equation:

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝑓 (𝑡, 𝑥, 𝑥


) , (1)

where ℎ, 𝑎 ∈ 𝐶(𝑅/𝑇𝑍, 𝑅) and the nonlinearity𝑓 ∈ 𝐶((𝑅/𝑇𝑍)×
(0, +∞) × 𝑅, 𝑅) satisfies 𝑓(𝑡, 𝑥, 𝑥) ≥ −𝑀 for some𝑀 > 0. In
particular, the nonlinearity may have a repulsive singularity
at 𝑥 = 0, which means that

lim
𝑥→0+

𝑓 (𝑡, 𝑥, 𝑦) = +∞, uniformly in (𝑡, 𝑦) ∈ 𝑅
2
. (2)

Electrostatic or gravitational forces are the most important
examples of singular interactions.

During the last two decades, the study of the existence
of periodic solutions for singular differential equations has
attracted the attention of many researchers [1–4]. Some
strong force conditions introduced by Gordon [5] are stan-
dard in the related earlier works [6, 7]. Compared with the
case of a strong singularity, the study of the existence of
periodic solutions under the presence of a weak singularity is
more recent [2, 8, 9], but has also attracted many researchers.
Some classical tools have been used to study singular dif-
ferential equations in the literature, including the method of
upper and lower solutions [10], degree theory [11], some fixed
point theorem in cones for completely continuous operators

[12], Schauder’s fixed point theorem [8, 9, 13], and a nonlinear
Leray-Schauder alternative principle [2, 3, 14, 15].

However the singular differential equations, in which
there is the damping term, that is, the nonlinearity is depen-
dent on the derivative, has not attractedmuch attention in the
literature. Several existence results can be found in [14, 16, 17].

The aim of this paper is to further show that the nonlinear
Leray-Schauder alternative principle can be applied to (1) in
the semipositone cases, that is, 𝑓(𝑡, 𝑥, 𝑥) ≥ −𝑀 for some
𝑀 > 0.

The remainder of the paper is organized as follows. In
Section 2, we state some known results. In Section 3, themain
results of this paper are stated and proved. To illustrate our
result, we select the following system:

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = (1 + |𝑥|

𝛾
) (𝑥
−𝛼
+ 𝜇𝑥
𝛽
) + 𝑒 (𝑡) , (3)

where 𝛼 > 1, 𝛽 > 0, 1 > 𝛾 ≥ 0, 𝜇 > 0 is a positive parameter,
𝑒(𝑡) is a 𝑇-periodic function.

In this paper, let us fix some notations to be used in the
following: given 𝜑 ∈ 𝐿

1
[0, 𝑇], we write 𝜑 ≻ 0 if 𝜑 ≥ 0

for almost everywhere 𝑡 ∈ [0, 𝑇] and it is positive in a set
of positive measure. The usual 𝐿𝑝-norm is denoted by ‖ ⋅ ‖𝑝.
𝑝
∗ and 𝑝∗ the essential supremum and infinum of a given

function 𝑝 ∈ 𝐿1[0, 𝑇], if they exist.
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2. Preliminaries

We say that

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 0, (4)

associated to the periodic boundary conditions

𝑥 (0) = 𝑥 (𝑇) , 𝑥

(0) = 𝑥


(𝑇) , (5)

is nonresonant when its unique solutions is the trival one.
When (4)-(5) is nonresonant, as a consequence of Fredholm’s
alternative, the nonhomogeneous equation

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝑙 (𝑡) (6)

admits a unique 𝑇-periodic solution, which can be written as

𝑥 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑙 (𝑠) 𝑑𝑠, (7)

where 𝐺(𝑡, 𝑠) is the Green’s function of problem (4)-(5).
Throughout this paper, we assume that the following standing
hypothesis is satisfied.

(A) The Green function 𝐺(𝑡, 𝑠), associated with (4)-(5), is
positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

In other words, the strict antimaximum principle holds
for (4)-(5).

Definition 1. We say that (4) admits the antimaximum prin-
ciple if (6) has a unique 𝑇-periodic solution for any 𝑙 ∈
C(R/𝑇Z) and the unique 𝑇-periodic solution 𝑥𝑙(𝑡) > 0 for
all 𝑡 if 𝑙 ≻ 0.

Under hypothesis (A), we denote

𝐴 = min
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝐵 = max
0≤𝑠,𝑡≤𝑇

𝐺 (𝑡, 𝑠) , 𝜄 =
𝐴

𝐵
. (8)

Thus 𝐵 > 𝐴 > 0 and 0 < 𝜄 < 1. We also use𝑤(𝑡) to denote the
unique periodic solution of (6) with 𝑙(𝑡) = 1 under condition
(5), that is, 𝑤(𝑡) = (L1)(𝑡). In particular, 𝑇𝐴 ≤ 𝑤(𝑡) ≤ 𝑇𝐵.

With the help of [18, 19], the authors give a sufficient con-
dition to ensure that (4) admits the antimaximum principle
in [14]. In order to state this result, let us define the functions

𝜎 (ℎ) (𝑡) = exp(∫
𝑡

0

ℎ (𝑠) 𝑑𝑠) ,

𝜎1 (ℎ) (𝑡) = 𝜎 (ℎ) (𝑇) ∫

𝑡

0

𝜎ℎ (𝑠) 𝑑𝑠 + ∫

𝑇

𝑡

𝜎 (ℎ) (𝑠) 𝑑𝑠.

(9)

Lemma 2 (see [14, Corollary 2.6]). Assume that 𝑎 ̸≡ 0 and
the following two inequalities are satisfied:

∫

𝑇

0

𝑎 (𝑠) 𝜎 (ℎ) (𝑠) 𝜎1 (−ℎ) (𝑠) 𝑑𝑠 ≥ 0,

sup
0≤𝑡≤𝑇

{∫

𝑡+𝑇

𝑡

𝜎 (−ℎ) (𝑠) 𝑑𝑠 ∫

𝑡+𝑇

𝑡

[𝑎 (𝑠)]+𝜎 (ℎ) (𝑠) 𝑑𝑠} ≤ 4,

(10)

where [𝑎(𝑠)]+ = max{𝑎(𝑠), 0}.Then theGreen’s function𝐺(𝑡, 𝑠),
associated with (5), is positive for all (𝑡, 𝑠) ∈ [0, 𝑇] × [0, 𝑇].

Next, recall a well-known nonlinear alternative principle
of Leray-Schauder, which can be found in [20] and has been
used by Meehan and O’Regan in [4].

Lemma 3. Assume Ω is an open subset of a convex set 𝐾 in
a normed linear space 𝑋 and 𝑝 ∈ Ω. Let 𝑇 : Ω → 𝐾 be a
compact and continuous map. Then one of the following two
conclusions holds:

(I) 𝑇 has at least one fixed point inΩ.
(II) There exists 𝑥 ∈ 𝜕Ω and 0 < 𝜆 < 1 such that 𝑥 =

𝜆𝑇𝑥 + (1 − 𝜆)𝑝.

In applications below, we take 𝐾 = 𝐶
1

𝑇
= {𝑥 : 𝑥, 𝑥


∈

𝐶(𝑅/𝑇𝑍, 𝑅)} ⊂ 𝑋 with the norm ‖𝑥‖ = max𝑡∈[0,𝑇]|𝑥(𝑡)| and
define Ω = {𝑥 ∈ 𝐶

1

𝑇
: ‖𝑥‖ < 𝑟}.

3. Main Results

In this section, we prove a new existence result of (1).

Theorem 4. Suppose that (4) satisfies (A) and

𝑎 (𝑡) ≻ 0. (11)

Furthermore, assume that there exist three constants𝑀,𝑅0, 𝑟 >
𝑀𝑤
∗
/𝜄 such that:

(H1) 𝐹(𝑡, 𝑥, 𝑦) = 𝑓(𝑡, 𝑥, 𝑦)+𝑀 ≥ 0 for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇]×
(0, 𝑟] × 𝑅.

(H2) 𝑓(𝑡, 𝑥, 𝑦) ≥ 𝑔0(𝑥) for (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑅0] × 𝑅,
where the nonincreasing continuous function
𝑔0(𝑥) > 0 satisfies lim𝑥→0+𝑔0(𝑥) = +∞ and
lim𝑥→0+ ∫

𝑅0

𝑥
𝑔0(𝑢)𝑑𝑢 = +∞.

(H3) 0 ≤ 𝐹(𝑡, 𝑥, 𝑦) ≤ (𝑔(𝑥) + ℎ(𝑥))(|𝑦|), for all (𝑡, 𝑥, 𝑦) ∈
[0, 𝑇] × (0, 𝑟] × 𝑅, where 𝑔(⋅) > 0 is nonincreasing in
(0, 𝑟] and ℎ(⋅)/𝑔(⋅) ≥ 0, (⋅) ≥ 0 are nondecreasing in
(0, 𝑟].

(H4)
𝑟

𝑔 (𝜄𝑟 − 𝑀𝑤∗) (1 + ℎ (𝑟) /𝑔 (𝑟))  ((𝑟 + 𝑀) 𝐿)
> 𝑤
∗
, (12)

where

𝐿 =
2 ∫
𝑇

0
𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑑𝑡

min0≤𝑡≤𝑇𝜎 (ℎ) (𝑡)
. (13)

Then (1) has at least one positive periodic solution 𝑢(𝑡)
with 0 < ‖𝑢 +𝑀𝑤‖ ≤ 𝑟.

Proof. For convinence, let us write 𝑍(𝑡) = 𝑥(𝑡) − 𝑀𝑤(𝑡),
𝑍𝑛(𝑡) = 𝑥𝑛(𝑡) − 𝑀𝑤(𝑡), where 𝑤(𝑡) = (L1)(𝑡). Let

𝐴ℎ = min
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡) , 𝐵ℎ = max
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡) , 𝜄ℎ =
𝐵ℎ

𝐴ℎ

,

(14)

𝑀ℎ = (𝑟 +𝑀) 𝐿 ⋅ max
0≤𝑡≤𝑇

|ℎ (𝑡)| . (15)
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First we show that

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝐹 (𝑡, 𝑍 (𝑡) , 𝑍


(𝑡)) (16)

has a solution 𝑥 satisfying (5), 0 < ‖𝑥‖ ≤ 𝑟 and 𝑍(𝑡) > 0 for
𝑡 ∈ [0, 𝑇]. If this is true, it is easy to see that 𝑍(𝑡) will be a
positive solution of (1)–(5) with 0 < ‖𝑍 +𝑀𝑤‖ ≤ 𝑟.

Choose 𝑛0 ∈ {1, 2, . . .} such that 1/𝑛0 < 𝑟, and then let
𝑁0 = {𝑛0, 𝑛0 + 1 + ⋅ ⋅ ⋅}.

Consider the family of equations

𝑥

+ ℎ (𝑡) 𝑥


+ 𝑎 (𝑡) 𝑥 = 𝜆𝐹𝑛 (𝑡, 𝑍 (𝑡) , 𝑍


(𝑡)) +

𝑎 (𝑡)

𝑛
, (17)

where 𝜆 ∈ [0, 1], 𝑛 ∈ 𝑁0, 𝑥 ∈ 𝐵𝑟 = {𝑥 : ‖𝑥‖ < 𝑟} and
𝐹𝑛(𝑡, 𝑥, 𝑦) = 𝐹(𝑡,max{1/𝑛, 𝑥}, 𝑦).

A𝑇-periodic solution of (17) is just a fixed of the operator
equation

𝑥 = 𝜆𝑇𝑛 (𝑥) + (1 − 𝜆) 𝑝, (18)

where 𝑝 = 1/𝑛 and 𝑇𝑛 is a completely continuous operator
defined by

(𝑇𝑛𝑥) (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹𝑛 (𝑠, 𝑍 (𝑠) , 𝑍

(𝑠)) 𝑑𝑠 +

1

𝑛
, (19)

where we have used the fact

∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑎 (𝑠) 𝑑𝑠 ≡ 1. (20)

We claim that for any 𝑇-periodic solution 𝑥𝑛(𝑡) of (17)
satisfies


𝑥


𝑛


≤ 𝐿𝑟. (21)

Note that the solution 𝑥𝑛(𝑡) of (17) is also satisfies the
following equivalent equation

(𝜎 (ℎ) (𝑡) 𝑥


𝑛
)


+ 𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥𝑛

= 𝜎 (ℎ) (𝑡) (𝜆𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛
) .

(22)

Integrating (22) from 0 to 𝑇, we obtain

∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥𝑛 (𝑡) 𝑑𝑡

= ∫

𝑇

0

𝜎 (ℎ) (𝑡) (𝜆𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛
) 𝑑𝑡.

(23)

By the periodic boundary conditions, we have 𝑥(𝑡0) = 0
for some 𝑡0 ∈ [0, 𝑇]. Therefore,

𝜎 (ℎ) (𝑡) 𝑥



𝑛
(𝑡)


=


∫

𝑡

𝑡0

(𝜎 (ℎ) (𝑠) 𝑥


𝑛
(𝑠))


𝑑𝑠



=


∫

𝑡

𝑡0

𝜎 (ℎ) (𝑠) (𝜆𝐹𝑛 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) +

𝑎 (𝑠)

𝑛
− 𝑎 (𝑠) 𝑥𝑛 (𝑠))


𝑑𝑠

≤



∫

𝑇

0

𝜎 (ℎ) (𝑠) (𝜆𝐹𝑛 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) +

𝑎 (𝑠)

𝑛
+ 𝑎 (𝑠) 𝑥𝑛 (𝑠))



𝑑𝑠

= 2∫

𝑇

0

𝜎 (ℎ) (𝑠) 𝑎 (𝑠) 𝑥𝑛 (𝑠) 𝑑𝑠

≤ 2𝑟∫

𝑇

0

𝜎 (ℎ) (𝑠) 𝑎 (𝑠) 𝑑𝑠,

(24)

where we have used the assumption (11) and ‖𝑥𝑛‖ < 𝑟.
Therefore,

(min
0≤𝑡≤𝑇

𝜎 (ℎ) (𝑡))

𝑥


𝑛
(𝑡)

≤ 2𝑟 ∫

𝑇

0

𝜎 (ℎ) (𝑠) 𝑎 (𝑠) 𝑑𝑠, (25)

which implies that (21) holds. In particular, let 𝜆𝐹𝑛(𝑡, 𝑍(𝑡),
𝑍

(𝑡)) + 𝑎(𝑡)/𝑛 = 1 in (17), we have


𝑤

(𝑡)

≤ 𝐿. (26)

Choose 𝑛1 ∈ 𝑁0 such that 1/𝑛1 ≤ 𝑅1, and then let 𝑁1 =
{𝑛1, 𝑛1 + 1, . . .}. The following lemma holds.

Lemma 5. There exists an integer 𝑛2 > 𝑛1 large enough such
that, for all 𝑛 ∈ 𝑁2 = {𝑛2, 𝑛2 + 1, . . .},

𝑍𝑛 (𝑡) = 𝑥𝑛 (𝑡) − 𝑀𝑤 (𝑡) ≥
1

𝑛
. (27)

Proof. The lower bound in (27) is established by using the
strong force condition of 𝑓(𝑡, 𝑥, 𝑦). By condition (H2), there
exists 𝑅1 ∈ (0, 𝑅0) and a continuous function 𝑔0(𝑥) such that
𝐹 (𝑡, 𝑥, 𝑦) − 𝑎 (𝑡) 𝑥 ≥ 𝑔0 (𝑥) > max {𝑀 +𝑀, 𝜄ℎ𝑟‖𝑎‖1}

(28)
for all (𝑡, 𝑥, 𝑦) ∈ [0, 𝑇] × (0, 𝑅1] ×𝑅, where 𝑔0(𝑥) satisfies also
the strong force condition like in (H2).

For 𝑛 ∈ 𝑁1, let 𝛼𝑛 = min0≤𝑡≤𝑇𝑍𝑛(𝑡), 𝛽𝑛 = max0≤𝑡≤𝑇𝑍𝑛(𝑡).
If 𝛼𝑛 ≥ 𝑅1, due to 𝑛 ∈ 𝑁1, (27) holds.
If 𝛼𝑛 < 𝑅1, we claim that, for all 𝑛 ∈ 𝑁1,

𝛽𝑛 > 𝑅1. (29)
Otherwise, suppose that 𝛽𝑛 ≤ 𝑅1 for some 𝑛 ∈ 𝑁1. Then it is
easy to verify

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) > 𝜄ℎ𝑟‖𝑎‖1. (30)

In fact, if 1/𝑛 ≤ 𝑍𝑛(𝑡) ≤ 𝑅1, we obtain from (28)

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) = 𝐹 (𝑡, 𝑍𝑛 (𝑡) , 𝑍



𝑛
(𝑡))

≥ 𝑎 (𝑡) 𝑍𝑛 (𝑡) + 𝑔0 (𝑍𝑛 (𝑡))

≥ 𝑔0 (𝑍𝑛 (𝑡))

> 𝜄ℎ𝑟‖𝑎‖1.

(31)
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and, if 𝑍𝑛(𝑡) ≤ 1/𝑛, we have

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) = 𝐹(𝑡,

1

𝑛
, 𝑍


𝑛
(𝑡)) ≥

𝑎 (𝑡)

𝑛
+ 𝑔0 (

1

𝑛
)

≥ 𝑔0 (
1

𝑛
) > 𝜄ℎ𝑟‖𝑎‖1.

(32)

Integrating (22) (with 𝜆 = 1) from 0 to 𝑇, we deduce that

0 = ∫

𝑇

0

{(𝜎 (ℎ) (𝑡) 𝑥


𝑛
)


+ 𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥𝑛

−𝜎 (ℎ) (𝑡) (𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛
)} 𝑑𝑡

= ∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥𝑛𝑑𝑡

− ∫

𝑇

0

𝜎 (ℎ) (𝑡) 𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) 𝑑𝑡

− ∫

𝑇

0

𝜎 (ℎ) (𝑡)
𝑎 (𝑡)

𝑛
𝑑𝑡

< ∫

𝑇

0

𝑎 (𝑡) 𝜎 (ℎ) (𝑡) 𝑥𝑛𝑑𝑡

− ∫

𝑇

0

𝜎 (ℎ) (𝑡) 𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) 𝑑𝑡

< 0,

(33)

where estimation (30) and the fact ‖𝑥𝑛‖ < 𝑟 are used. This is
a contradiction. Hence (29) holds.

Due to 𝛼𝑛 < 𝑅1, that is, 𝛼𝑛 = min0≤𝑡≤𝑇[𝑥𝑛(𝑡) − 𝑀𝑤(𝑡)] =
𝑥𝑛(𝑎𝑛) − 𝑀𝑤(𝑎𝑛) < 𝑅1 for some 𝑎𝑛 ∈ [0, 𝑇]. By (29), there
exists 𝑐𝑛 ∈ [0, 𝑇] (without loss of generality, we assume 𝑎𝑛 <
𝑐𝑛.) such that 𝑥𝑛(𝑐𝑛) = 𝑀𝑤(𝑐𝑛) + 𝑅1 and 𝑥𝑛(𝑡) ≤ 𝑀𝑤(𝑡) + 𝑅1
for 𝑎𝑛 ≤ 𝑡 ≤ 𝑐𝑛.

It can be checked that

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) > 𝑎 (𝑡) 𝑍𝑛 (𝑡) + 𝑀 +𝑀ℎ, (34)

where𝑀ℎ is defined by (15).
In fact, if 𝑡 ∈ [𝑎𝑛, 𝑐𝑛] is such that 1/𝑛 ≤ 𝑍𝑛(𝑡) ≤ 𝑅1, we

have

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡))

= 𝐹 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡))

≥ 𝑎 (𝑡) 𝑍𝑛 (𝑡) + 𝑔0 (𝑥) > max {𝑀 +𝑀, 𝜄ℎ𝑟‖𝛼‖1}

≥ 𝑎 (𝑡) 𝑍𝑛 (𝑡) + 𝑀 +𝑀.

(35)

and, if 𝑡 ∈ [𝑎𝑛, 𝑐𝑛] is such that 𝑍𝑛(𝑡) ≤ 1/𝑛, we have

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) = 𝐹 (𝑡,

1

𝑛
, 𝑍


𝑛
(𝑡))

≥
𝑎 (𝑡)

𝑛
+ 𝑔0 (

1

𝑛
) >

𝑎 (𝑡)

𝑛
+𝑀 +𝑀ℎ

≥ 𝑎 (𝑡) 𝑍𝑛 (𝑡) + 𝑀 +𝑀ℎ.

(36)

So (34) holds.
Using (17) (with 𝜆 = 1) for 𝑥𝑛(𝑡) and the estimation (34),

we have, for 𝑡 ∈ [𝑎𝑛, 𝑐𝑛]

𝑍


𝑛
(𝑡) = − ℎ (𝑡) 𝑍



𝑛
(𝑡) − 𝑎 (𝑡) 𝑍𝑛 (𝑡)

− 𝑀 + 𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) +

𝑎 (𝑡)

𝑛

> − ℎ (𝑡) 𝑍


𝑛
(𝑡) − 𝑎 (𝑡) 𝑍𝑛 (𝑡)

− 𝑀 + 𝑎 (𝑡) 𝑍𝑛 (𝑡) + 𝑀 +𝑀ℎ +
𝑎 (𝑡)

𝑛

≥ −𝑀ℎ − 𝑎 (𝑡) 𝑍𝑛 (𝑡) − 𝑀

+ 𝑎 (𝑡) 𝑍𝑛 (𝑡) + 𝑀 +𝑀ℎ +
𝑎 (𝑡)

𝑛

≥
𝑎 (𝑡)

𝑛
≥ 0.

(37)

As 𝑍
𝑛
(𝑎𝑛) = 0, 𝑍



𝑛
(𝑡) > 0 for all 𝑡 ∈ [𝑎𝑛, 𝑐𝑛], so 𝑍𝑛(𝑡) is strictly

increasing on [𝑎𝑛, 𝑐𝑛].Weuse 𝜉𝑛 to denote the inverse function
of 𝑍𝑛 restricted to [𝑎𝑛, 𝑐𝑛].

Suppose that (27) does not hold, that is, for some 𝑛 ∈ 𝑁1,
𝑍𝑛(𝑡) < 1/𝑛 < 𝑅1. Then there would exist 𝑏𝑛 ∈ (𝑎𝑛, 𝑐𝑛) such
that 𝑍𝑛(𝑏𝑛) = 1/𝑛 and

𝑍𝑛 (𝑡) ≤
1

𝑛
for 𝑎𝑛 ≤ 𝑡 ≤ 𝑏𝑛,

1

𝑛
≤ 𝑍𝑛 (𝑡) ≤ 𝑅1 for 𝑏𝑛 ≤ 𝑡 ≤ 𝑐𝑛.

(38)

Multiplying (17) (with 𝜆 = 1) by 𝑍
𝑛
(𝑡) and integrating from

𝑏𝑛 to 𝑐𝑛, we obtain

∫

𝑅1

1/𝑛

𝐹 (𝜉𝑛 (𝑍) , 𝑍, 𝑍

) 𝑑𝑍

= ∫

𝑐𝑛

𝑏𝑛

𝐹 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐𝑛

𝑏𝑛

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐𝑛

𝑏𝑛

(𝑥


𝑛
(𝑡) + ℎ (𝑡) 𝑥



𝑛
(𝑡) + 𝑎 (𝑡) 𝑥𝑛 (𝑡) −

𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡
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= ∫

𝑐𝑛

𝑏𝑛

𝑥


𝑛
(𝑡) (𝑥


𝑛
(𝑡) − 𝑀𝑤


(𝑡)) 𝑑𝑡 + ∫

𝑐𝑛

𝑏𝑛

ℎ (𝑡) 𝑥


𝑛
(𝑡) 𝑍


𝑛
(𝑡) 𝑑𝑡

+ ∫

𝑐𝑛

𝑏𝑛

(𝑎 (𝑡) 𝑥𝑛 (𝑡) −
𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡.

(39)

By the facts ‖𝑥𝑛‖ < 𝑟, ‖𝑥
𝑛
‖ ≤ 𝐿𝑟, ‖𝑤‖ ≤ 𝑟 and the

definition of 𝑍𝑛(𝑡), we can obtain |𝑍𝑛(𝑡)| ≤ 𝑟 + 𝑇𝐵, |𝑍


𝑛
(𝑡)| ≤

(𝑟+𝑀)𝐿, together with ‖𝑥𝑛‖ < 𝑟, implies that the second term
and the third term are bounded. The first term is

([𝑥


𝑛
(𝑐𝑛)]
2

− [𝑥


𝑛
(𝑏𝑛)]
2

)

2

−𝑀(𝑥


𝑛
(𝑐𝑛) 𝑤


(𝑐𝑛) − 𝑥



𝑛
(𝑏𝑛) 𝑤


(𝑏𝑛))

+𝑀∫

𝑐𝑛

𝑏𝑛

𝑥


𝑛
(𝑡) 𝑤

(𝑡) 𝑑𝑡,

(40)

which is also bounded.As a consequence, there exists a𝐵1 > 0
such that

∫

𝑅1

1/𝑛

𝐹 (𝜉𝑛 (𝑍) , 𝑍, 𝑍

) 𝑑𝑍 ≤ 𝐵1. (41)

On the other hand, by (H2), we can choose 𝑛2 ∈ 𝑁1 large
enough such that

∫

𝑅1

1/𝑛

𝐹 (𝜉𝑛 (𝑍) , 𝑍, 𝑍

) 𝑑𝑍 ≥ ∫

𝑅1

1/𝑛

𝑔0 (𝑍) 𝑑𝑍 > 𝐵1 (42)

for all 𝑛 ∈ 𝑁2 = {𝑛2, 𝑛2 + 1, . . .}. So (27) holds.

Furthermore, we can prove 𝑍𝑛(𝑡) has a uniform positive
lower bound 𝛿.

Lemma 6. There exist a constant 𝛿 > 0 such that, for all 𝑛 ∈
𝑁2,

𝑍𝑛 (𝑡) ≥ 𝛿. (43)

Proof. Multiplying (17) (with 𝜆 = 1) by 𝑍
𝑛
(𝑡) and integrating

from 𝑎𝑛 to 𝑐𝑛, we obtain

∫

𝑅1

𝛼𝑛

𝐹 (𝜉𝑛 (𝑍) , 𝑍, 𝑍

) 𝑑𝑍

= ∫

𝑐𝑛

𝑎𝑛

𝐹 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐𝑛

𝑎𝑛

𝐹𝑛 (𝑡, 𝑍𝑛 (𝑡) , 𝑍


𝑛
(𝑡)) 𝑍



𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐𝑛

𝑎𝑛

(𝑥


𝑛
(𝑡) + ℎ (𝑡) 𝑥



𝑛
(𝑡) + 𝑎 (𝑡) 𝑥𝑛 (𝑡) −

𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡

= ∫

𝑐𝑛

𝑎𝑛

𝑥


𝑛
(𝑡) (𝑥


𝑛
(𝑡) − 𝑀𝑤


(𝑡)) 𝑑𝑡 + ∫

𝑐𝑛

𝑎𝑛

ℎ (𝑡) 𝑥


𝑛
(𝑡) 𝑍


𝑛
(𝑡) 𝑑𝑡

+ ∫

𝑐𝑛

𝑎𝑛

(𝑎 (𝑡) 𝑥𝑛 (𝑡) −
𝑎 (𝑡)

𝑛
)𝑍


𝑛
(𝑡) 𝑑𝑡.

(44)

In the same way as in the proof of (41), one way readily
prove that the right-hand side of the above equality is
bounded. On the other hand, if 𝑛 ∈ 𝑁2, by (H2),

∫

𝑅1

𝛼𝑛

𝐹 (𝜉𝑛 (𝑍) , 𝑍, 𝑍

) 𝑑𝑍

≥ ∫

𝑅1

𝛼𝑛

𝑔0 (𝑍) 𝑑𝑍 +𝑀(𝑅1 − 𝛼𝑛) → +∞

(45)

if 𝛼𝑛 → 0+. Thus we know that there exists a constant 𝛿 > 0
such that 𝛼𝑛 ≥ 𝛿. Hence (43) holds.

Next, we will prove (17) has periodic solution 𝑥𝑛(𝑡).
For 𝜄𝑟 > 0, we can choose 𝑛3 ∈ 𝑁2 such that 1/𝑛3 < 𝜄𝑟,

which together with (H4) imply

𝑤
∗
𝑔 (𝜄𝑟 − 𝑀𝑤

∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿) +

1

𝑛3

< 𝑟. (46)

Let𝑁3 = {𝑛3, 𝑛3 + 1, . . .}. For 𝑛 ∈ 𝑁3, consider (17).
Next we claim that any fixed point 𝑥𝑛 of (18) for any 𝜆 ∈

[0, 1] must satisfy ‖𝑥𝑛‖ ̸= 𝑟. So, by using the Leray-Schauder
alternative principle, (17) (with 𝜆 = 1) has a periodic solution
𝑥𝑛(𝑡). Otherwise, assume that 𝑥𝑛 is a fixed point 𝑥𝑛 of (18) for
some 𝜆 ∈ [0, 1] such that ‖𝑥𝑛‖ = 𝑟. Note that

𝑥𝑛 (𝑡) −
1

𝑛
= 𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹𝑛 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) 𝑑𝑠

≥ 𝜆𝐴∫

𝑇

0

𝐹𝑛 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) 𝑑𝑠

= 𝜄𝐵𝜆∫

𝑇

0

𝐹𝑛 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) 𝑑𝑠

≥ 𝜄max
𝑡∈[0,𝑇]

{𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹𝑛 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) 𝑑𝑠}

= 𝜄


𝑥𝑛 −

1

𝑛


.

(47)

For 𝑛 ∈ 𝑁3, we have

𝑥𝑛 (𝑡) ≥ 𝜄


𝑥𝑛 −

1

𝑛


+
1

𝑛
≥ 𝜄 (

𝑥𝑛
 −

1

𝑛
) +

1

𝑛
≥ 𝜄𝑟. (48)

By (27) and assumption (H3), for all 𝑡 ∈ [0, 𝑇] and 𝑛 ∈ 𝑁3,
we have

𝑥𝑛 (𝑡)

= 𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹𝑛 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) 𝑑𝑠 +

1

𝑛

= 𝜆∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) 𝑑𝑠 +

1

𝑛
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≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑍𝑛 (𝑠) , 𝑍


𝑛
(𝑠)) 𝑑𝑠 +

1

𝑛

≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) (𝑔 (𝑍𝑛 (𝑠)) + ℎ (𝑍𝑛 (𝑠)))  (

𝑍


𝑛
(𝑠)

) 𝑑𝑠

+
1

𝑛

≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑔 (𝑍𝑛 (𝑠)) (1 +
ℎ (𝑍𝑛 (𝑠))

𝑔 (𝑍𝑛 (𝑠))
)  (


𝑍


𝑛
(𝑠)

) 𝑑𝑠

+
1

𝑛

≤ ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝑔 (𝜄𝑟 − 𝑀𝑤
∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿) 𝑑𝑠

+
1

𝑛

≤ 𝑔 (𝜄𝑟 − 𝑀𝑤
∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿)𝑤

∗
+
1

𝑛3

.

(49)

Therefore,

𝑟 = ‖𝑥‖ ≤ 𝑔 (𝜄𝑟 − 𝑀𝑤
∗
) (1 +

ℎ (𝑟)

𝑔 (𝑟)
)  ((𝑟 + 𝑀) 𝐿)𝑤

∗
+
1

𝑛3

.

(50)

This is a contradiction to the choice of 𝑛3 and the claim is
proved.

The fact ‖𝑥𝑛‖ < 𝑟 and ‖𝑥


𝑛
(𝑡)‖ < 𝐿𝑟 show that {𝑥𝑛}𝑛∈𝑁3 is

a bounded and equicontinuous family on [0, 𝑇]. NowArzela-
Ascoli Theorem guarantees that {𝑥𝑛}𝑛∈𝑁3 has a subsequence
{𝑥𝑛𝑘

}𝑘∈N, converging uniformly on [0, 𝑇] to a function 𝑥 ∈

𝐶[0, 𝑇]. From the fact ‖𝑥𝑛‖ < 𝑟 and 𝑥𝑛(𝑡) > 𝛿, 𝑥 satisfies
𝛿 ≤ 𝑥(𝑡) ≤ 𝑟 for all 𝑡. Moreover, {𝑥𝑛𝑘} satisfies the integral
equation

𝑥𝑛𝑘
(𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑍𝑛𝑘
(𝑠) , 𝑍



𝑛𝑘
(𝑠)) 𝑑𝑠 +

1

𝑛𝑘

. (51)

Letting 𝑘 → ∞, we arrive at

𝑥 (𝑡) = ∫

𝑇

0

𝐺 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠) − 𝑀𝑤 (𝑠) , 𝑥

(𝑠) − 𝑀𝑤


(𝑠)) 𝑑𝑠,

(52)

where the uniform continuity of 𝐹(𝑡, 𝑥, 𝑦) on [0, 𝑇] × [𝛿, 𝑟] ×
[−(𝑟 + 𝑀)𝐿, (𝑟 + 𝑀)𝐿] is used. Therefore, 𝑥 is a positive
periodic solution of (16) and 𝑍(𝑡) = 𝑥(𝑡) − 𝑀𝑤(𝑡) ≥ 𝛿. Thus
we complete the prove of Theorem 4.

Corollary 7. Let the nonlinearity in (1) be

𝑓 (𝑡, 𝑥, 𝑦) = (1 +
𝑦

𝛾
) (𝑥
−𝛼
+ 𝜇𝑥
𝛽
) + 𝑒 (𝑡) , (53)

where 𝛼 > 1, 𝛽 > 0, 1 > 𝛾 ≥ 0, 𝜇 > 0 is a positive parameter,
𝑒(𝑡) is a 𝑇-periodic function.

(i) If 𝛽 + 𝛾 < 1, then (1) has at least one positive periodic
solution for each 𝜇 > 0.

(ii) If 𝛽 + 𝛾 ≥ 1, then (1) has at least one positive periodic
solution for each 0 < 𝜇 < 𝜇1, where 𝜇1 is some positive
constant.

Proof. We will apply Theorem 4 with 𝑀 = max0≤𝑡≤𝑇|𝑒(𝑡)|
and 𝑔(𝑥) = 𝑥

−𝛼
, ℎ(𝑥) = 𝜇𝑥

𝛽
+ 2𝑀, (𝑦) = 1 + |𝑦|

𝛾. Then
condition (H1)–(H3) are satisfied and existence condition
(H4) becomes

𝜇 <
𝑟(𝜄𝑟 − 𝑀𝑤

∗
)
𝛼
− 𝑤
∗
(1 + (𝑟 +𝑀)

𝛾
𝐿
𝛾
) (1 + 2𝑀𝑟

𝛼
)

𝑤∗ (1 + (𝑟 +𝑀)
𝛾
𝐿𝛾) 𝑟𝛼+𝛽

.

(54)

So (1) has at least one positive periodic solution for

0 < 𝜇 < 𝜇1

= sup
𝑟>𝑀𝑤∗/𝜄

(𝑟(𝜄𝑟 − 𝑀𝑤
∗
)
𝛼
− 𝑤
∗
(1 + (𝑟 +𝑀)

𝛾
𝐿
𝛾
)

× (1 + 2𝑀𝑟
𝛼
) )

× (𝑤
∗
(1 + (𝑟 +𝑀)

𝛾
𝐿
𝛾
)𝑟
𝛼+𝛽
)
−1

.

(55)

Note that 𝜇1 = ∞ if 𝛽 + 𝛾 < 1 and 𝜇1 < ∞ if 𝛽 + 𝛾 ≥ 1. We
have the desired results.
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This paper presents a new generalized Nicholson’s blowflies system with patch structure and
nonlinear density-dependent mortality terms. Under appropriate conditions, we establish some
criteria to guarantee the exponential extinction of this system. Moreover, we give two examples
and numerical simulations to demonstrate our main results.

1. Introduction

To describe the population of the Australian sheep blowfly and agree well with the
experimental date of Nicholson [1], Gurney et al. [2] proposed the following Nicholson’s
blowflies equation:

N ′(t) = −δN(t) + pN(t − τ)e−aN(t−τ). (1.1)

Here, N(t) is the size of the population at time t, p is the maximum per capita daily egg
production, (1/a) is the size at which the population reproduces at its maximum rate, δ is the
per capita daily adult death rate, and τ is the generation time. There have been a large number
of results on this model and its modifications (see, e.g., [3–8]). Recently, Berezansky et al. [9]
pointed out that a new study indicates that a linear model of density-dependent mortality
will be most accurate for populations at low densities and marine ecologists are currently in
the process of constructing new fishery models with nonlinear density-dependent mortality
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rates. Consequently Berezansky et al. [9] presented the following Nicholson’s blowflies
model with a nonlinear density-dependent mortality term

N ′(t) = −D(N(t)) + PN(t − τ)e−aN(t−τ), (1.2)

where P is a positive constant and functionD might have one of the following forms:D(N) =
aN/(N + b) or D(N) = a − be−N with positive constants a, b > 0.

Wang [10] studied the existence of positive periodic solutions for the model (1.2) with
D(N) = a − be−N . Hou et al. [11] investigated the permanence and periodic solutions for
the model (1.2) with D(N) = aN/(N + b). Furthermore, Liu and Gong [12] considered the
permanence for a Nicholson-type delay systems with nonlinear density-dependent mortality
terms as follows:

N ′
1(t) = −D11(t,N1(t)) +D12(t,N2(t)) + c1(t)N1(t − τ1(t))e−γ1(t)N1(t−τ1(t))

N ′
2(t) = −D22(t,N2(t)) +D21(t,N1(t)) + c2(t)N2(t − τ2(t))e−γ2(t)N2(t−τ2(t)),

(1.3)

where

Dij(t,N) =
aij(t)N
bij(t) +N

or Dij(t,N) = aij(t) − bij(t)e−N, (1.4)

aij , bij , ci, γi : R → (0,+∞) are all continuous functions bounded above and below by positive
constants, and τj(t) ≥ 0 are bounded continuous functions, ri = supt∈Rτi(t) > 0, and i, j = 1, 2.

On the other hand, since the biological species compete and cooperate with each
other in real world, the growth models given by patch structure systems of delay differential
equation have been provided by several authors to analyze the dynamics of multiple species
(see, e.g., [13–16] and the reference therein). Moreover, the extinction phenomenon often
appears in the biology, economy, and physics field and the main focus of Nicholson’s
blowflies model is on the scalar equation and results on patch structure of this model
are gained rarely [14, 16], so it is worth studying the extinction of Nicholson’s blowflies
system with patch structure and nonlinear density-dependent mortality terms. Motivated
by the above discussion, we shall derive the conditions to guarantee the extinction of
the following Nicholson-type delay system with patch structure and nonlinear density-
dependent mortality terms:

N ′
i(t) = −Dii(t,Ni(t)) +

n∑

j=1,j /= i

Dij

(
t,Nj(t)

)

+
l∑

j=1

cij(t)Ni

(
t − τij(t)

)
e−γij (t)Ni(t−τij (t)),

(1.5)

where

Dij(t,N) =
aij(t)N
bij(t) +N

or Dij(t,N) = aij(t) − bij(t)e−N, (1.6)
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aij , bij , cik, γik : R → (0,+∞) are all continuous functions bounded above and below by posi-
tive constants, and τik(t) ≥ 0 are bounded continuous functions, ri = max1≤j≤l{supt∈Rτij(t)} >
0, and i, j = 1, 2, . . . , n, k = 1, 2, . . . , l. Furthermore, in the case Dij(t,N) = aij(t) − bij(t)e−N ,
to guarantee the meaning of mortality terms we assume that aij(t) > bij(t) for t ∈ R and
i, j = 1, 2, . . . , n. The main purpose of this paper is to establish the conditions ensuring the
exponential extinction of system (1.5).

For convenience, we introduce some notations. Throughout this paper, given a
bounded continuous function g defined on R, let g+ and g− be defined as

g− = inf
t∈R

g(t), g+ = sup
t∈R

g(t). (1.7)

Let Rn(Rn
+) be the set of all (nonnegative) real vectors, we will use x = (x1, . . . , xn)

T ∈
Rn to denote a column vector, in which the symbol (T ) denotes the transpose of a vector.
We let |x| denote the absolute-value vector given by |x| = (|x1|, . . . , |xn|)T and define ||x|| =
max1≤i≤n|xi|. Denote C =

∏n
i=1C([−ri, 0], R) and C+ =

∏n
i=1C([−ri, 0], R+) as Banach

spaces equipped with the supremum norm defined by ||ϕ|| = sup−ri≤t≤0max1≤i≤n|ϕi(t)| for all
ϕ(t) = (ϕ1(t), . . . , ϕn(t))

T ∈ C (or ∈ C+). If xi(t) is defined on [t0 − ri, ν) with t0, ν ∈ R and
i = 1, . . . , n, then we define xt ∈ C as xt = (x1

t , . . . x
n
t )

T where xit(θ) = xi(t+θ) for all θ ∈ [−ri, 0]
and i = 1, . . . , n.

The initial conditions associated with system (1.5) are of the form:

Nt0 = ϕ, ϕ =
(
ϕ1, . . . , ϕn

)T ∈ C+, ϕi(0) > 0, i = 1, . . . , n. (1.8)

We write Nt(t0, ϕ)(N(t; t0, ϕ)) for a solution of the initial value problem (1.5) and (1.8). Also,
let [t0, η(ϕ)) be the maximal right-interval of existence of Nt(t0, ϕ).

Definition 1.1. The system (1.5) with initial conditions (1.8) is said to be exponentially extinct,
if there are positive constants M and κ such that |Ni(t; t0, ϕ)| ≤ Me−κ(t−t0), i = 1, 2 . . . , n.
Denote it as Ni(t; t0, ϕ) = O(e−κ(t−t0)), i = 1, 2, . . . , n.

The remaining part of this paper is organized as follows. In Sections 2 and 3, we shall
derive some sufficient conditions for checking the extinction of system (1.5). In Section 4, we
shall give two examples and numerical simulations to illustrate our results obtained in the
previous sections.

2. Extinction of Nicholson’s Blowflies System with
Dij(t,N) = aij(t)N/(bij(t) +N)(i, j = 1, 2, . . . , n)

Theorem 2.1. Suppose that there exists positive constant K1 such that

a−ii
b+ii +K1

>
n∑

j=1,j /= i

a+ij

b−ij
+

l∑

j=1

c+ij

γ−ij eK1
, i = 1, 2, . . . , n. (2.1)

Let

E1 =
{
ϕ | ϕ ∈ C+, ϕ(0) > 0, 0 ≤ ϕi(t) < K1, ∀t ∈ [−ri, 0], i = 1, 2, . . . , n

}
. (2.2)
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Moreover, assume N(t; t0, ϕ) is the solution of (1.5) with ϕ ∈ E1 and Dij(t,N) = (aij(t)N/(bij(t) +
N)) (i, j = 1, 2, . . . ,n). Then,

0 ≤Ni

(
t; t0, ϕ

)
< K1, ∀t ∈ [t0, η

(
ϕ
))
, i = 1, 2, . . . , n,

η
(
ϕ
)
= +∞.

(2.3)

Proof. Set N(t) = N(t; t0, ϕ) for all t ∈ [t0, η(ϕ)). In view of ϕ ∈ C+, using Theorem 5.2.1
in [17, p. 81], we have Nt(t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)). Assume, by way of contradiction,
that (2.3) does not hold. Then, there exist t1 ∈ [t0, η(ϕ)) and i ∈ {1, 2, . . . , n} such that

Ni(t1) = K1, 0 ≤Nj(t) < K1 ∀t ∈ [t0 − rj , t1
)
, j = 1, 2, . . . , n. (2.4)

Calculating the derivative of Ni(t), together with (2.1) and the fact that supu≥0ue
−u = 1/e

and a(t)N/(b(t) +N) ≤ a(t)N/b(t) for all t ∈ R,N ≥ 0, (1.5) and (2.4) imply that

0 ≤N ′
i(t1)

= −Dii(t1,Ni(t1)) +
n∑

j=1,j /= i

Dij

(
t1,Nj(t1)

)

+
l∑

j=1

cij(t1)Ni

(
t1 − τij(t1)

)
e−γij (t1)Ni(t1−τij (t1))

≤ − aii(t1)Ni(t1)
bii(t1) +Ni(t1)

+
n∑

j=1,j /= i

aij(t1)Nj(t1)
bij(t1)

+
l∑

j=1

cij(t1)
γij(t1)

1
e

≤
⎛

⎝− a−ii
b+ii +K1

+
n∑

j=1,j /= i

a+ij

b−ij
+

l∑

j=1

c+ij

γ−ij eK1

⎞

⎠K1

< 0,

(2.5)

which is a contradiction and implies that (2.3) holds. From Theorem 2.3.1 in [18], we easily
obtain η(ϕ) = +∞. This ends the proof of Theorem 2.1.

Theorem 2.2. Suppose that there exists positive constant K1 satisfying (2.1) and

a−ii
b+ii +K1

>
n∑

j=1,j /= i

a+ij

b−ij
+

l∑

j=1

c+ij , i = 1, 2, . . . , n. (2.6)

Then the solution N(t; t0, ϕ) of (1.5) with ϕ ∈ E1 and Dij(t,N) = (aij(t)N/(bij(t) +N)) (i, j =
1, 2, . . . , n) is exponentially extinct as t → +∞.
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Proof. Define continuous functions Γi(ω) by setting

Γi(ω) = ω − a−ii
b+ii +K1

+
n∑

j=1,j /= i

a+ij

b−ij
+

l∑

j=1

c+ije
ωri , i = 1, 2, . . . , n. (2.7)

Then, from (2.6), we obtain

Γi(0) = − a−ii
b+ii +K1

+
n∑

j=1,j /= i

a+ij

b−ij
+

l∑

j=1

c+ij < 0, i = 1, 2, . . . , n. (2.8)

The continuity of Γi(ω) implies that there exists λ > 0 such that

Γi(λ) = λ − a−ii
b+ii +K1

+
n∑

j=1,j /= i

a+ij

b−ij
+

l∑

j=1

c+ije
λri < 0, i = 1, 2, . . . , n. (2.9)

Let

yi(t) =Ni(t)eλ(t−t0), i = 1, 2, . . . , n. (2.10)

Calculating the derivative of y(t) along the solution N(t) of system (1.5) with ϕ ∈ E1, we
have

y′
i(t) = λyi(t) + eλ(t−t0)N ′

i(t)

= λyi(t) −
aii(t)yi(t)

bii(t) +Ni(t)
+

n∑

j=1,j /= i

aij(t)yj(t)
bij(t) +Nj(t)

+
l∑

j=1

cij(t)eλτij (t)yi
(
t − τij(t)

)
e−γij (t)Ni(t−τij (t)), i = 1, 2, . . . , n.

(2.11)

Let M1 denote an arbitrary positive number and set

M1 > yi(t), ∀t ∈ [t0 − ri, t0], i = 1, 2, . . . , n. (2.12)

We claim that

yi(t) < M1, ∀t ∈ [t0,+∞), i = 1, 2, . . . , n. (2.13)

If this is not valid, there must exist t2 ∈ (t0,+∞) and i ∈ {1, 2, . . . , n} such that

yi(t2) =M1, yj(t) < M1, ∀t < t2, j = 1, 2, . . . , n. (2.14)
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Then, from (2.3) and (2.11), we have

0 ≤ y′
i(t2)

= λyi(t2) −
aii(t2)yi(t2)

bii(t2) +Ni(t2)
+

n∑

j=1,j /= i

aij(t2)yj(t2)
bij(t2) +Nj(t2)

+
l∑

j=1

cij(t2)eλτij (t2)yi
(
t2 − τij(t2)

)
e−γij (t2)Ni(t2−τij (t2))

≤ λM1 − aii(t2)M1

bii(t2) +K1
+

n∑

j=1,j /= i

aij(t2)M1

bij(t2)
+

l∑

j=1

cij(t2)eλriM1

≤
⎛

⎝λ − a−ii
b+ii +K1

+
n∑

j=1,j /= i

a+ij

b−ij
+

l∑

j=1

c+ije
λri

⎞

⎠M1

< 0.

(2.15)

This contradiction implies that (2.13) holds. Thus,

Ni(t) = yi(t)e−λ(t−t0) ≤M1e
−λ(t−t0) ∀t ∈ [t0 − ri,+∞), i = 1, 2, . . . , n. (2.16)

This completes the proof.

3. Extinction of Nicholson’s Blowflies System with
Dij(t,N) = aij(t) − bij(t)e−N(i, j = 1, 2, . . . , n)

Theorem 3.1. Suppose that there exists positive constant K2 such that

a−ii >
n∑

j=1,j /= i

a+ij +

⎛

⎝b+ii −
n∑

j=1,j /= i

b−ij

⎞

⎠e−K2 +
l∑

j=1

c+ij

γ−ij e
, i = 1, 2, . . . , n, (3.1)

−aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

) ≥ 0, i = 1, 2, . . . , n. (3.2)

Let

E2 =
{
ϕ | ϕ ∈ C+, ϕ(0) > 0, 0 ≤ ϕi(t) < K2, ∀t ∈ [−ri, 0], i = 1, 2, . . . , n

}
. (3.3)
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Moreover, assume N(t; t0, ϕ) is the solution of (1.5) with ϕ ∈ E2 and Dij(t,N) = aij(t) − bij(t)
e−N (i, j = 1, 2, . . . , n). Then,

0 ≤Ni

(
t; t0, ϕ

)
< K2, ∀t ∈ [t0, η

(
ϕ
))
, i = 1, 2, . . . , n, (3.4)

η
(
ϕ
)
= +∞. (3.5)

Proof. Set N(t) =N(t; t0, ϕ) for all t ∈ [t0, η(ϕ)). Rewrite the system (1.5) as

N ′(t) = f(t,Nt), (3.6)

where f(t, φ) = (f1(t, φ), f2(t, φ), . . . , fn(t, φ))
T and

fi
(
t, φ
)
= − aii(t) + bii(t)e−φi(0) +

n∑

j=1,j /= i

(
aij(t) − bij(t)e−φj (0)

)

+
l∑

j=1

cij(t)φi
(−τij(t)

)
e−γij (t)φi(−τij (t)), i = 1, 2, . . . , n, φ ∈ C.

(3.7)

In view of (3.2), whenever φ ∈ C satisfies φ ≥ 0, φi(0) = 0 for some i and t ∈ R, then

fi
(
t, φ
)
= − aii(t) + bii(t) +

n∑

j=1,j /= i

(
aij(t) − bij(t)e−φj (0)

)

+
l∑

j=1

cij(t)φi
(−τij(t)

)
e−γij (t)φi(−τij (t))

≥ − aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

)

≥ 0.

(3.8)

Thus, using Theorem 5.2.1 in [17, p. 81], we have Nt(t0, ϕ) ∈ C+ for all t ∈ [t0, η(ϕ)) and
ϕ ∈ E2 ⊂ C+. Assume, by way of contradiction, that (3.4) does not hold. Then, there exist
t3 ∈ [t0, η(ϕ)) and i ∈ {1, 2, . . . , n} such that

Ni(t3) = K2, 0 ≤Nj(t) < K2 ∀t ∈ [t0 − rj , t3
)
, j = 1, 2, . . . , n. (3.9)
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Calculating the derivative of Ni(t), together with (3.1) and the fact that supu≥0 ue
−u = 1/e,

(1.5) and (3.9) imply that

0 ≤ N ′
i(t3)

= −Dii(t3,Ni(t3)) +
n∑

j=1,j /= i

Dij

(
t3,Nj(t3)

)
+

l∑

j=1

cij(t3)Ni

(
t3 − τij(t3)

)

× e−γij (t3)Ni(t3−τij (t3))

≤ − aii(t3) + bii(t3)e−K2 +
n∑

j=1,j /= i

(
aij(t3) − bij(t3)e−K2

)
+

l∑

j=1

cij(t3)
γij(t3)

1
e

≤ − a−ii +
n∑

j=1,j /= i

a+ij +

⎛

⎝b+ii −
n∑

j=1,j /= i

b−ij

⎞

⎠e−K2 +
l∑

j=1

c+ij

γ−ij e

< 0,

(3.10)

which is a contradiction and implies that (3.4) holds. From Theorem 2.3.1 in [18], we easily
obtain η(ϕ) = +∞. This ends the proof of Theorem 3.1.

Theorem 3.2. Let (3.1) and (3.2) hold. Moreover, suppose that there exist two positive constants λ̃
and M̃ such that

−aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

) ≤ M̃e−λ̃(t−t0), t ∈ R, i = 1, 2, . . . , n, (3.11)

b−ii > 1 +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ij , i = 1, 2, . . . , n. (3.12)

Then the solution N(t; t0, ϕ) of (1.5) with ϕ ∈ E2 and Dij(t,N) = aij(t) − bij(t)e−N (i, j =
1, 2, . . . , n), is exponentially extinct as t → +∞.

Proof. Define continuous functions Γi(ω) by setting

Γi(ω) = ω − b−ii + 1 +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ije
ωri , i = 1, 2, . . . , n. (3.13)

Then, from (3.12), we obtain

Γi(0) = −b−ii + 1 +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ij < 0, i = 1, 2, . . . , n. (3.14)
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The continuity of Γi(ω) implies that there exists 0 < μ < λ̃ such that

Γi
(
μ
)
= μ − b−ii + 1 +

K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ije
μri < 0, i = 1, 2, . . . , n. (3.15)

Let

xi(t) =Ni(t)eμ(t−t0), i = 1, 2, . . . , n. (3.16)

Calculating the derivative of x(t) along the solution N(t) of system (1.5) with ϕ ∈ E2, in view
of (3.4) and (3.11), we have

x′
i(t) = μxi(t) + eμ(t−t0)N ′

i(t)

= μxi(t) + eμ(t−t0)
⎡

⎣−aii(t) + bii(t)e−Ni(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)e−Nj (t)

)
⎤

⎦

+
l∑

j=1

cij(t)eμτij (t)xi
(
t − τij(t)

)
e−γij (t)Ni(t−τij (t))

≤ μxi(t) + eμ(t−t0)
⎡

⎣ − aii(t) + bii(t)
(

1 −Ni(t) +
1
2
N2

i (t)
)

+
n∑

j=1,j /= i

(
aij(t) − bij(t)

(
1 −Nj(t)

))
⎤

⎦ +
l∑

j=1

c+ije
μrixi
(
t − τij(t)

)

= μxi(t) + eμ(t−t0)
⎡

⎣−aii(t) + bii(t) +
n∑

j=1,j /= i

(
aij(t) − bij(t)

)
⎤

⎦ − bii(t)xi(t)

+
1
2
bii(t)Ni(t)xi(t) +

n∑

j=1,j /= i

bij(t)xj(t) +
l∑

j=1

c+ije
μrixi
(
t − τij(t)

)

≤ μxi(t) + M̃e(μ−λ̃)(t−t0) − b−iixi(t) +
K2

2
b+iixi(t)

+
n∑

j=1,j /= i

b+ijxj(t) +
l∑

j=1

c+ije
μrixi
(
t − τij(t)

)
.

(3.17)

Let M2 denote an arbitrary positive number and set

M2 > max
{
xi(t), M̃

}
∀t ∈ [t0 − ri, t0], i = 1, 2, . . . , n. (3.18)
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We claim that

xi(t) < M2, ∀t ∈ [t0,+∞), i = 1, 2, . . . , n. (3.19)

If this is not valid, there must exist t4 ∈ (t0,+∞) and i ∈ {1, 2, . . . , n} such that

xi(t4) =M2, xj(t) < M2, ∀t < t4, j = 1, 2, . . . , n. (3.20)

Then, from (3.15) and (3.17), we have

0 ≤ x′
i(t4)

≤ μxi(t4) + M̃e(μ−λ̃)(t4−t0) − b−iixi(t4) +
K2

2
b+iixi(t4)

+
n∑

j=1,j /= i

b+ijxj(t4) +
l∑

j=1

c+ije
μrixi
(
t4 − τij(t4)

)

≤
⎡

⎣μ + 1 − b−ii +
K2

2
b+ii +

n∑

j=1,j /= i

b+ij +
l∑

j=1

c+ije
μri

⎤

⎦M2

< 0.

(3.21)

This contradiction implies that (3.19) holds. Thus,

Ni(t) = xi(t)e−μ(t−t0) ≤M2e
−μ(t−t0) ∀t ∈ [t0 − ri,+∞), i = 1, 2, . . . , n. (3.22)

This completes the proof.

4. Numerical Examples

In this section, we give two examples and numerical simulations to demonstrate the results
obtained in previous sections.
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Example 4.1. Consider the following Nicholson’s blowflies system with patch structure and
nonlinear density-dependent mortality terms:

N ′
1(t) = − (25 + |cos 3 t|)N1(t)

5 + |sin 2t| +N1(t)
+

(1 + |sin 2t|)N2(t)
3 + |cos 3t| +N2(t)

+
(1 + |cos 2t|)N3(t)
3 + |sin 3t| +N3(t)

+
1
4

(
1 + cos2t

)
N1(t − 2|sin t|)e−4N1(t−2| sin t|)

+
1
4

(
1 + sin2t

)
N1(t − 2|cos t|)e−4N1(t−2| cos t|)

N ′
2(t) = − (25 + |sin 3t|)N2(t)

5 + |cos 2t| +N2(t)
+

(1 + |cos 2t|)N1(t)
3 + |sin 3t| +N1(t)

+
(1 + |sin 2t|)N3(t)
3 + |cos 3t| +N3(t)

+
1
4

(
1 + sin2t

)
N2(t − 2|cos t|)e−4N2(t−2| cos t|)

+
1
4

(
1 + cos2t

)
N2(t − 2|sin t|)e−4N2(t−2| sin t|)

N ′
3(t) = − (25 + |sin 5t|)N3(t)

5 + |cos 6t| +N3(t)
+

(1 + |cos 3t|)N1(t)
3 + |sin 2t| +N1(t)

+
(1 + |sin 3t|)N2(t)
3 + |cos 2t| +N2(t)

+
1
4

(
1 + sin22t

)
N3(t − 2|cos 2t|)e−4N3(t−2| cos 2t|)

+
1
4

(
1 + cos22t

)
N3(t − 2|sin 2t|)e−4N3(t−2| sin 2t|).

(4.1)

Obviously, a−ii = 25, b+ii = 6, (i = 1, 2, 3), a+ij = 2, b−ij = 3, (i, j = 1, 2, 3, i /= j), c+ij = 1/2, γ−ij =
4, (i = 1, 2, 3, j = 1, 2). Let K1 = e, then we have

25
6 + e

=
a−ii

b+ii +K1
>

3∑

j=1,j /= i

a+ij

b−ij
+

2∑

j=1

c+ij

γ−ij eK1
=

4
3
+

1
4e2

,

25
6 + e

=
a−ii

b+ii +K1
>

3∑

j=1,j /= i

a+ij

b−ij
+

2∑

j=1

c+ij =
7
3
.

(4.2)

Then (4.2) imply that the system (4.1) satisfies (2.1) and (2.6). Hence, from Theorems 2.1
and 2.2, the solution N(t) of system (4.1) with Dij(t,N) = aij(t)N/(bij(t) +N)(i, j = 1, 2, 3)
and ϕ ∈ E1 = {ϕ | ϕ ∈ C+, ϕ(0) > 0 and 0 ≤ ϕi(t) < e, for all, t ∈ [−2, 0], i = 1, 2, 3} is
exponentially extinct as t → +∞ and N(t) = N(t, 0, ϕ) = O(e−κt), κ ≈ 0.0001. The fact is
verified by the numerical simulation in Figure 1.
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Figure 1: Numerical solution N(t) = (N1(t),N2(t),N3(t))
T of system (4.1) for initial value ϕ(t) ≡

(0.5, 1.7, 2.6)T .

Example 4.2. Consider the following Nicholson’s blowflies system with patch structure and
nonlinear density-dependent mortality terms:

N ′
1(t) = − (12 + |sin t|) + (11 + |cos t|)e−N1(t) +

(
1 +

1
2
|sin t|

)
−
(

1
2
+

1
2
|cos t|

)
e−N2(t)

+
(

1 +
1
2
|sin t|

)
−
(

1
2
+

1
2
|cos t|

)
e−N3(t) +

1
4

(
1 + cos2t

)
N1(t − 2|sin t|)e−N1(t−2| sin t|)

+
1
4

(
1 + sin2t

)
N1(t − 2|cos t|)e−N1(t−2| cos t|)

N ′
2(t) = − (12 + |cos t|) + (11 + |sin t|)e−N2(t) +

(
1 +

1
2
|cos t|

)
−
(

1
2
+

1
2
|sin t|

)
e−N1(t)

+
(

1 +
1
2
|cos t|

)
−
(

1
2
+

1
2
|sin t|

)
e−N3(t) +

1
4

(
1 + sin2t

)
N2(t − 2|cos t|)e−N2(t−2| cos t|)

+
1
4

(
1 + cos2t

)
N2(t − 2|sin t|)e−N2(t−2| sin t|)

N ′
3(t) = − (12 + |sin 2t|) + (11 + |cos 2t|)e−N3(t) +

(
1 +

1
2
|sin 2t|

)
−
(

1
2
+

1
2
|cos 2t|

)
e−N1(t)

+
(

1 +
1
2
|sin 2t|

)
−
(

1
2
+

1
2
|cos 2t|

)
e−N2(t)

+
1
4

(
1 + cos22t

)
N3(t − 2|sin 2t|)e−N3(t−2| sin 2t|)

+
1
4

(
1 + sin22t

)
N3(t − 2|cos 2t|)e−N3(t−2| cos 2t|). (4.3)
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Figure 2: Numerical solution N(t) = (N1(t),N2(t),N3(t))
T of system (4.3) for initial value ϕ(t) ≡

(0.1, 0.5, 0.9)T .

Obviously, a−ii = 12, b−ii = 11, b+ii = 12, (i = 1, 2, 3), a+ij = 3/2, b−ij = 1/2, b+ij = 1, (i, j =
1, 2, 3, i /= j), c+ij = 1/2, γ−ij = 1, (i = 1, 2, 3, j = 1, 2). Let K2 = 1, then we have

12 = a−ii >
3∑

j=1,j /= i

a+ij +

⎛

⎝b+ii −
n∑

j=1,j /= i

b−ij

⎞

⎠e−K2 +
2∑

j=1

c+ij

γ−ij e
= 3 +

12
e
, i = 1, 2, 3,

−aii(t) + bii(t) +
3∑

j=1,j /= i

(
aij(t) − bij(t)

)
= 0, i = 1, 2, 3,

11 = b−ii > 1 +
K2

2
b+ii +

3∑

j=1,j /= i

b+ij +
2∑

j=1

c+ij = 10, i = 1, 2, 3.

(4.4)

Then (4.4) imply that the system (4.3) satisfies (3.1), (3.2), (3.11), and (3.12). Hence, from
Theorems 3.1 and 3.2, the solution N(t) of system (4.1) withDij(t,N) = aij(t)−bij(t)e−N(i, j =
1, 2, 3) and ϕ ∈ E2 = {ϕ | ϕ ∈ C+, ϕ(0) > 0 and 0 ≤ ϕi(t) < 1, for all, t ∈ [−2, 0], i = 1, 2, 3}
is exponentially extinct as t → +∞ and N(t) = N(t, 0, ϕ) = O(e−κt), κ ≈ 0.0001. The fact is
verified by the numerical simulation in Figure 2.

Remark 4.3. To the best of our knowledge, few authors have considered the problems
of the extinction of Nicholson’s blowflies model with patch structure and nonlinear
density-dependent mortality terms. Wang [10] and Hou et al. [11] have researched the
permanence and periodic solution for scalar Nicholson’s blowflies equation with a nonlinear
density-dependent mortality term. Liu and Gong [12] have considered the permanence
for Nicholson-type delay systems with nonlinear density-dependent mortality terms and
Takeuchi et al. [13] have investigated the global stability of population model with patch
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structure. Faria [14], Liu [15], and Berzansky et al. [16] have, respectively, studied the local
and global stability of positive equilibrium for constant coefficients of Nicholson’s blowflies
model with patch structure. It is clear that all the results in [10–16] and the references therein
cannot be applicable to prove the extinction of (4.1) and (4.3). This implies that the results of
this paper are new.
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[4] M. R. S. Kulenović, G. Ladas, and Y. G. Sficas, “Global attractivity in Nicholson’s blowflies,” Applicable
Analysis, vol. 43, no. 1-2, pp. 109–124, 1992.

[5] J. W.-H. So and J. S. Yu, “Global attractivity and uniform persistence in Nicholson’s blowflies,”
Differential Equations and Dynamical Systems, vol. 2, no. 1, pp. 11–18, 1994.

[6] M. Li and J. Yan, “Oscillation and global attractivity of generalized Nicholson’s blowfly model,” in
Differential Equations and Computational Simulations, pp. 196–201, World Scientific, River Edge, NJ,
USA, 2000.

[7] Y. Chen, “Periodic solutions of delayed periodic Nicholson’s blowflies models,” The Canadian Applied
Mathematics Quarterly, vol. 11, no. 1, pp. 23–28, 2003.

[8] J. Li and C. Du, “Existence of positive periodic solutions for a generalized Nicholson’s blowflies
model,” Journal of Computational and Applied Mathematics, vol. 221, no. 1, pp. 226–233, 2008.

[9] L. Berezansky, E. Braverman, and L. Idels, “Nicholson’s blowflies differential equations revisited:
main results and open problems,” Applied Mathematical Modelling, vol. 34, no. 6, pp. 1405–1417, 2010.

[10] W. Wang, “Positive periodic solutions of delayed Nicholson’s blowflies models with a nonlinear
density-dependent mortality term,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 4708–4713,
2012.

[11] X. Hou, L. Duan, and Z. Huang, “Permanence and periodic solutions for a class of delay Nicholson’s
blowflies models,” Applied Mathematical Modelling, vol. 37, no. 3, pp. 1537–1544, 2012.

[12] B. Liu and S. Gong, “Permanence for Nicholson-type delay systems with nonlinear density-
dependent mortality terms,” Nonlinear Analysis: Real World Applications, vol. 12, no. 4, pp. 1931–1937,
2011.

[13] Y. Takeuchi, W. Wang, and Y. Saito, “Global stability of population models with patch structure,”
Nonlinear Analysis: Real World Applications, vol. 7, no. 2, pp. 235–247, 2006.

[14] T. Faria, “Global asymptotic behaviour for a Nicholson model with patch structure and multiple
delays,” Nonlinear Analysis: Theory, Methods & Applications, vol. 74, no. 18, pp. 7033–7046, 2011.

[15] B. Liu, “Global stability of a class of delay differential systems,” Journal of Computational and Applied
Mathematics, vol. 233, no. 2, pp. 217–223, 2009.

[16] L. Berezansky, L. Idels, and L. Troib, “Global dynamics of Nicholson-type delay systems with
applications,” Nonlinear Analysis: Real World Applications, vol. 12, no. 1, pp. 436–445, 2011.

[17] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative
System, vol. 41 of Mathematical Surveys and Monographs, American Mathematical Society, Providence,
RI, USA, 1995.



Abstract and Applied Analysis 15

[18] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional-Differential Equations, vol. 99 of Applied
Mathematical Sciences, Springer, New York, NY, USA, 1993.



Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 613038, 14 pages
doi:10.1155/2012/613038

Research Article
A Generalized Nonuniform Contraction and
Lyapunov Function

Fang-fang Liao,1 Yongxin Jiang,2 and Zhiting Xie2

1 Nanjing College of Information Technology, Nanjing 210046, China
2 Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China

Correspondence should be addressed to Fang-fang Liao, liaofangfang8178@sina.com

Received 19 November 2012; Accepted 1 December 2012

Academic Editor: Juntao Sun

Copyright q 2012 Fang-fang Liao et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

For nonautonomous linear equations x′ = A(t)x, we give a complete characterization of general
nonuniform contractions in terms of Lyapunov functions. We consider the general case of
nonuniform contractions, which corresponds to the existence of what we call nonuniform (D,μ)-
contractions. As an application, we establish the robustness of the nonuniform contraction under
sufficiently small linear perturbations. Moreover, we show that the stability of a nonuniform
contraction persists under sufficiently small nonlinear perturbations.

1. Introduction

We consider nonautonomous linear equations

x′ = A(t)x, (1.1)

where A : R
+
0 → B(X) is a continuous function with values in the space of bounded linear

operators in a Banach space X. Our main aim is to characterize the existence of a general
nonuniform contraction for (1.1) in terms of Lyapunov functions.

We assume that each solution of (1.1) is global, and we denote the corresponding
evolution operator by T(t, s), which is the linear operator such that

T(t, s)x(s) = x(t), t, s ∈ R
+
0 , (1.2)
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for any solution x(t) of (1.1). Clearly, T(t, t) = Id and

T(t, τ)T(τ, s) = T(t, s), t, τ, s ∈ R
+
0 . (1.3)

We shall say that an increasing function μ : R
+
0 → [1,+∞) is a growth rate if

μ(0) = 1, lim
t→+∞

μ(t) = +∞. (1.4)

Given two growth rates μ, ν, we say that (1.1) admits a nonuniform (μ, ν)-contraction if there
exist constants K,α > 0 and ε ≥ 0 such that

‖T(t, s)‖ ≤ K
(
μ(t)
μ(s)

)−α
νε(s), t ≥ s ≥ 0. (1.5)

We emphasize that the notion of nonuniform (μ, ν)-contraction often occurs under reasonably
weak assumptions. We refer the reader to [1] for details.

In this work, we mainly consider more general nonuniform contractions (see (2.1)
below) and we give a complete characterization of such contractions in terms of Lyapunov
functions, especially in terms of quadratic Lyapunov functions, which are Lyapunov
functions defined in terms of quadratic forms. The importance of Lyapunov functions
is well established, particularly in the study of the stability of trajectories both under
linear and nonlinear perturbations. This study goes back to the seminal work of Lyapunov
in his 1892 thesis [2]. For more results, we refer the reader to [3–6] for the classical
exponential contractions and dichotomies, [7–9] for the nonuniform exponential contractions
and nonuniform exponential dichotomies.

The proof of this paper follows from the ideas in [9, 10]. As an application, we provide
a very direct proof of the robustness of the nonuniform contraction, that is, of the persistence
of the nonuniform contraction in the equation

x′ = [A(t) + B(t)]x (1.6)

for any sufficiently small linear perturbation B(t). We remark that the so-called robustness
problem also has a long history. In particular, the problem was discussed by Massera and
Schäffer [11], Perron [12], Coppel [3] and in the case of Banach spaces by Daletskiı̆ and Kreı̆n
[13]. For more recent work we refer to [14–16] and the references therein.

Furthermore, for a large class of nonlinear perturbations f(t, x) with f(t, 0) = 0 for
every t, we show that if (1.1) admits a nonuniform contraction, then the zero solution of the
equation

x′ = A(t)x + f(t, x) (1.7)

is stable. The proof uses the corresponding characterization between the nonuniform contra-
ctions and quadratic Lyapunov functions.
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2. Lyapunov Functions and Nonuniform Contractions

Given a growth rate μ and a functionD : R
+
0 → (0,+∞), we say that (1.1) admits a nonuniform

(D,μ)-contraction if there exists a constant α > 0 such that

‖T(t, s)‖ ≤ D(s)
(
μ(t)
μ(s)

)−α
, t ≥ s ≥ 0. (2.1)

The nonuniform (μ, ν)-contraction is a special case of nonuniform (D,μ)-contraction with
D(s) = Kνε(s).

Now we introduce the notion of Lyapunov functions. We say that a continuous
function V : (0,+∞) ×X → R

−
0 is a strict Lyapunov function to (1.1) if

(1) for every t > 0 and x ∈ X,

‖x‖ ≤ |V (t, x)| ≤ D(t)‖x‖, (2.2)

(2) for every t ≥ s > 0 and x ∈ X,

V (s, x) ≤ V (t, T(t, s)x), (2.3)

(3) there exists a constant γ > 0 such that for every t ≥ s > 0 and x ∈ X,

|V (t, T(t, s)x)| ≤
(
μ(t)
μ(s)

)−γ
|V (s, x)|. (2.4)

The following result gives an optimal characterization of nonuniform (D,μ)-
contractions in terms of strict Lyapunov functions.

Theorem 2.1. (1.1) admits a nonuniform (D,μ)-contraction if and only if there exists a strict
Lyapunov function for (1.1).

Proof. We assume that there exists a strict Lyapunov function for (1.1). By (1) and (3), for
every t ≥ s > 0 and x ∈ X, we have

‖T(t, s)x‖ ≤ |V (t, T(t, s)x)|

≤
(
μ(t)
μ(s)

)−γ
|V (s, x)|

≤ D(s)
(
μ(t)
μ(s)

)−γ
‖x‖.

(2.5)

Therefore, (1.1) admits a nonuniform (D,μ)-contraction with α = γ .
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Next we assume that (1.1) admits a nonuniform (D,μ)-contraction. For t > 0 and x ∈
X, we set

V (t, x) = − sup
{
‖T(τ, t)x‖

(
μ(τ)
μ(t)

)α

: τ ≥ t
}
. (2.6)

By (2.1), we have |V (t, x)| ≤ D(t)‖x‖. Moreover, setting τ = t, we obtain |V (t, x)| ≥ ‖x‖. This
establishes (1). Furthermore, for t ≥ s, we have

|V (t, T(t, s)x)| = sup
{
‖T(τ, t)T(t, s)x‖

(
μ(τ)
μ(t)

)α

: τ ≥ t
}

=
(
μ(s)
μ(t)

)α

sup
{
‖T(τ, s)x‖

(
μ(τ)
μ(s)

)α

: τ ≥ t
}

≤
(
μ(s)
μ(t)

)α

sup
{
‖T(τ, s)x‖

(
μ(τ)
μ(s)

)α

: τ ≥ s
}

=
(
μ(t)
μ(s)

)−α
|V (s, x)|.

(2.7)

Therefore, V is a strict Lyapunov function for (1.1).

Next we consider another class of Lyapunov functions, namely, those defined in terms
of quadratic forms.

Let S(t) ∈ B(X) be a symmetric positive-definite operator for each t > 0. A quadratic
Lyapunov function V is given as

H(t, x) = 〈S(t)x, x〉, V (t, x) = −
√
H(t, x). (2.8)

Given linear operators M,N, we write M ≤N if 〈Mx,x〉 ≤ 〈Nx, x〉 for x ∈ X.

Theorem 2.2. Assume that there exist constants c > 0 and d ≥ 1 such that

‖T(t, s)‖ ≤ c whenever μ(t) ≤ dμ(s), t ≥ s > 0. (2.9)

Then (1.1) admits a nonuniform (D,μ)-contraction (up to a multiplicative constant) if and only if
there exist symmetric positive definite operators S(t) and constants C,K > 0 such that S(t) is of class
C1 in t > 0 and

‖S(t)‖ ≤ CD(t)2, (2.10)

S′(t) +A∗(t)S(t) + S(t)A(t) ≤ −(Id +KS(t))
μ′(t)
μ(t)

. (2.11)
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Proof. We first assume that (1.1) admits a nonuniform (D,μ)-contraction. Consider the linear
operators

S(t) =
∫∞

t

T(τ, t)∗T(τ, t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ, (2.12)

for some constant ρ ∈ (0, α). Clearly, S(t) is symmetric for each t > 0. Moreover, by (2.8), we
have

‖H(t, x)‖ =
∫∞

t

‖T(τ, t)x‖2
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

≤ D(t)2‖x‖2
∫∞

t

(
μ(τ)
μ(t)

)−2ρ μ′(τ)
μ(τ)

dτ

=
D(t)2

2ρ
‖x‖2.

(2.13)

Since S(t) is symmetric, we obtain

‖S(t)‖ = sup
x /= 0

|H(t, x)|
‖x‖2

≤ D(t)2

2ρ
(2.14)

and therefore (2.10) holds. Since

∂

∂t
T(τ, t) = −T(τ, t)A(t),

∂

∂t
T(τ, t)∗ = −A(t)∗T(τ, t)∗, (2.15)

we find that S(t) is of class C1 in t with derivative

S′(t) = −μ
′(t)
μ(t)

−
∫∞

t

A(t)∗T(τ, t)∗T(τ, t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

−
∫∞

t

T(τ, t)∗T(τ, t)A(t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

− 2
(
α − ρ)μ

′(t)
μ(t)

∫∞

t

T(τ, t)∗T(τ, t)
(
μ(τ)
μ(t)

)2(α−ρ)μ′(τ)
μ(τ)

dτ,

(2.16)

which implies that

S′(t) = −μ
′(t)
μ(t)

−A(t)∗S(t) − S(t)A(t) − 2
(
α − ρ)μ

′(t)
μ(t)

S(t). (2.17)
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Therefore,

S′(t) +A(t)∗S(t) + S(t)A(t) = −μ
′(t)
μ(t)

(
Id + 2

(
α − ρ)S(t)), (2.18)

which establishes (2.11) with K = 2(α − ρ).
Now we assume that conditions (2.9) and (2.10)-(2.11) hold. Set x(t) = T(t, τ)x(τ). By

(2.10), we have

‖H(t, x(t))‖ ≤ ‖S(t)‖ · ‖x(t)‖2 ≤ CD(t)2‖x(t)‖2. (2.19)

Lemma 2.3. There exists a constant η > 0 such that

H(t, x(t)) ≥ η‖x(t)‖2. (2.20)

Proof of Lemma 2.3. Note that

d

dt
H(t, x(t)) =

〈
S′(t)x(t), x(t)

〉
+ 〈S(t)A(t)x(t), x(t)〉 + 〈S(t)x(t), A(t)x(t)〉

=
〈(
S′(t) + S(t)A(t) +A(t)∗S(t)

)
x(t), x(t)

〉
.

(2.21)

Hence, by condition (2.11), and the fact that K > 0 we obtain

d

dt
H(t, x(t)) ≤ −μ

′(t)
μ(t)

‖x(t)‖2. (2.22)

Now given τ > 0, take t > τ such that μ(t) = dμ(τ) with d as in (2.9). Then

H(t, x(t)) −H(τ, x(τ)) =
∫ t

τ

d

dv
H(v, x(v))dv

≤ −
∫ t

τ

μ′(v)
μ(v)

‖x(v)‖2dv

= −
∫ t

τ

μ′(v)
μ(v)

‖T(v, τ)x(τ)‖2dv

≤ −‖x(τ)‖2
∫ t

τ

μ′(v)
μ(v)

1

‖T(τ, v)‖2
dv.

(2.23)
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It follows from (2.9) that

H(t, x(t)) −H(τ, x(τ)) ≤ − 1
c2 ‖x(τ)‖

2
∫ t

τ

μ′(v)
μ(v)

dv

= − logd
c2 ‖x(τ)‖2.

(2.24)

Since H(t, x(t)) ≥ 0, we have

H(τ, x(τ)) ≥ H(τ, x(τ)) −H(t, x(t)) ≥ logd
c2 ‖x(τ)‖2 (2.25)

which yields (2.20) with η = (logd)/c2 > 0.

Lemma 2.4. For t ≥ τ , one has

H(t, x(t)) ≤
(
μ(t)
μ(τ)

)−K
H(τ, x(τ)). (2.26)

Proof of Lemma 2.4. By conditions (2.11) and (2.21), we have

d

dt
H(t, x(t)) ≤ −Kμ′(t)

μ(t)
H(t, x(t)). (2.27)

Therefore,

H(t, x(t)) −H(τ, x(τ)) =
∫ t

τ

d

dv
H(v, x(v))dv

≤ −K
∫ t

τ

μ′(v)
μ(v)

H(v, x(v))dv.

(2.28)

It follows from Gronwall’s lemma that

H(t, x(t)) ≤
(
μ(t)
μ(τ)

)−K
H(τ, x(τ)), (2.29)

which yields the desired result.
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By Lemmas 2.3 and 2.4 together with (2.19), we obtain

‖T(t, τ)x(τ)‖2 = ‖x(t)‖2

≤ η−1H(t, x(t))

≤ η−1
(
μ(t)
μ(τ)

)−K
H(τ, x(τ))

≤ η−1CD(τ)2
(
μ(t)
μ(τ)

)−K
‖x(τ)‖2,

(2.30)

and therefore,

‖T(t, τ)‖2 ≤ η−1CD(τ)2
(
μ(t)
μ(τ)

)−K
, (2.31)

which implies that (1.1) admits a nonuniform (D,μ)-contraction.

As an application of Theorem 2.2, we establish the robustness of nonuniform (D,μ)-
contractions. Roughly speaking, a nonuniform contraction for (1.1) is said to be robust if (1.6)
still admits a nonuniform contraction for any sufficiently small perturbation B(t).

Theorem 2.5. Let A,B : R
+
0 → B(X) be continuous functions such that (1.1) admits a nonuniform

(D,μ)-contraction with condition (2.9). Suppose further that D(t) ≥ 1 for every t > 0 and

‖B(t)‖ ≤ δD−2(t)
μ′(t)
μ(t)

, t > 0 (2.32)

for some δ > 0 sufficiently small. Then (1.6) admits a nonuniform (D,μ)-contraction.

Proof. Let U(t, s) be the evolution operator associated to (1.6). It is easy to verify that

U(t, s) = T(t, s) +
∫ t

s

T(t, τ)B(τ)U(τ, s)dτ. (2.33)

For every t ≥ s > 0 with μ(t) ≤ dμ(s), we have

‖U(t, s)‖ ≤ c +
∫ t

s

cδD−2(τ)
μ′(τ)
μ(τ)

‖U(τ, s)‖dτ

≤ c + cδ
∫ t

s

μ′(τ)
μ(τ)

‖U(τ, s)‖dτ.
(2.34)
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Using Gronwall’s inequality, we obtain

‖U(t, s)‖ ≤ c exp

(
cδ

∫ t

s

μ′(τ)
μ(τ)

dτ

)
≤ c exp

(
cδ logd

)
(2.35)

for every t ≥ s > 0 with μ(t) ≤ dμ(s). Therefore condition (2.9) also holds for the perturbed
equation (1.6).

Now we consider the matrices S(t) in (2.12). Condition (2.10) can be obtained as in the
proof of Theorem 2.2. For condition (2.11), it is sufficient to show that

S(t)B(t) + B(t)∗S(t) ≤ ϑμ
′(t)
μ(t)

Id (2.36)

for some constant ϑ < 1. Using (2.10) and (2.32), we have

S(t)B(t) + B(t)∗S(t) ≤ 2‖S(t)‖ · ‖B(t)‖

≤ 2CD(t)2δD(t)−2μ
′(t)
μ(t)

= 2Cδ
μ′(t)
μ(t)

,

(2.37)

and taking δ sufficiently small, we find that (2.36) holds with some ϑ < 1.

3. Stability of Nonlinear Perturbations

Before stating the result, we fist prove an equivalent characterization of property (3). Given
matrices S(t) ∈ B(X) for each t ∈ R

+
0 , we consider the functions

Ḣ(t, x) =
d

dh
H(t + h, T(t + h, h)x) |h=0,

V̇ (t, x) =
d

dh
V (t + h, T(t + h, h)x) |h=0,

(3.1)

whenever the derivatives are well defined and H,V are given as (2.8).

Lemma 3.1. Let V, μ be C1 functions. Then property (3) is equivalent to

V̇ (t, T(t, τ)x) ≥ −γV (t, T(t, τ)x)
μ′(t)
μ(t)

, t > τ. (3.2)
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Proof. Now we assume that property (3) holds. If t > τ and h > 0, then

V (t + h, T(t + h, τ)x) = V (t + h, T(t + h, t)T(t, τ)x)

≥
(
μ(t + h)
μ(t)

)−γ
V (t, T(t, τ)x),

lim
h→ 0+

V (t + h, T(t + h, τ)x) − V (t, T(t, τ)x)
h

≥ V (t, T(t, τ)x) lim
h→ 0+

(
μ(t + h)/μ(t)

)−γ − 1
h

= −γV (t, T(t, τ)x)
μ′(t)
μ(t)

.

(3.3)

Similarly, if h < 0 is such that t + h > τ , then

V (t + h, T(t + h, τ)x) ≤
(
μ(t + h)
μ(t)

)−γ
V (t, T(t, τ)x),

lim
h→ 0−

V (t + h, T(t + h, τ)x) − V (t, T(t, τ)x)
h

≥ V (t, T(t, τ)x) lim
h→ 0−

(
μ(t + h)/μ(t)

)−γ − 1
h

= −γV (t, T(t, τ)x)
μ′(t)
μ(t)

.

(3.4)

This establishes (3.2).
Next we assume that (3.2) holds. We rewrite (3.2) in the form

V̇ (t, T(t, τ)x)
V (t, T(t, τ)x)

≥ −γ μ
′(t)
μ(t)

, t > τ, (3.5)

which implies that

log
(
V (t, T(t, τ)x)

V (τ, x)

)
=
∫ t

τ

V̇ (v, T(v, τ)x)
V (v, T(v, τ)x)

dv

≥ −γ
∫ t

τ

μ′(v)
μ(v)

dv

= log
(
μ(t)
μ(τ)

)−γ
,

(3.6)

and hence property (3) holds.
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Theorem 3.2. Assume that (1.1) admits a nonuniform (D,μ)-contraction satisfying (2.9). Suppose
further that there exists a constant l > 0 such that l < α and

∥∥f(t, x)
∥∥ ≤ l μ

′(t)
μ(t)

‖x‖, t > 0, x ∈ X. (3.7)

Then for each k > −α + l, there exists C > 0 such that

∥∥y(t)
∥∥ ≤ CD(s)

(
μ(t)
μ(s)

)k∥∥y(s)
∥∥, t ≥ s (3.8)

for every solution y(t) of (1.7).

Proof. For S(t) as in (2.12) and H(t, x(t)) as in (2.8), we have, for every t ≥ s,

H(t, T(t, s)x(s)) =
∫∞

t

‖T(v, s)x(s)‖2
(
μ(v)
μ(t)

)2(α−ρ)μ′(v)
μ(v)

dv

=
(
μ(t)
μ(s)

)−2(α−ρ) ∫∞

t

‖T(v, s)x(s)‖2
(
μ(v)
μ(s)

)2(α−ρ)μ′(v)
μ(v)

dv

≤
(
μ(t)
μ(s)

)−2(α−ρ) ∫∞

s

‖T(v, s)x(s)‖2
(
μ(v)
μ(s)

)2(α−ρ)μ′(v)
μ(v)

dv

=
(
μ(t)
μ(s)

)−2(α−ρ)
H(s, x(s)).

(3.9)

Since V (t, x) = −
√
H(t, x), we have

V (t, T(t, s)x(s)) ≥
(
μ(t)
μ(s)

)−(α−ρ)
V (s, x(s)), t ≥ s. (3.10)

Applying Lemma 3.1, we obtain

V̇ (t, T(t, s)x(s)) ≥ −(α − ρ)μ
′(t)
μ(t)

V (t, T(t, s)x(s)), t ≥ s. (3.11)

In particular, for t = s,

V̇ (s, x(s)) ≥ −(α − ρ)μ
′(s)
μ(s)

V (s, x(s)). (3.12)

From the identity Ḣ = 2V V̇ that for every s > 0 and x ∈ X, we have

Ḣ(s, x) ≤ −2
(
α − ρ)μ

′(s)
μ(s)

H(s, x). (3.13)
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On the other hand,

Ḣ(s, x) =
〈(
S′(s) + S(s)A(s) +A(s)∗S(s)

)
x, x

〉
. (3.14)

Therefore,

0 ≥ Ḣ(s, x) + 2
(
α − ρ)μ

′(s)
μ(s)

H(s, x)

=
〈(

S′(s) + S(s)A(s) +A(s)∗S(s) + 2
(
α − ρ)μ

′(s)
μ(s)

S(s)
)
x, x

〉
,

(3.15)

and hence

S′(t) + S(t)A(t) +A(t)∗S(t) + 2
(
α − ρ)μ

′(t)
μ(t)

S(t) ≤ 0. (3.16)

Therefore, if y(t) is a solution of (1.7), then

d

dt
H
(
t, y(t)

)
=
〈
S′(t)y(t), y(t)

〉
+
〈
S(t)A(t)y(t), y(t)

〉
+
〈
S(t)y(t), A(t)y(t)

〉

+
〈
S(t)f

(
t, y(t)

)
, y(t)

〉
+
〈
S(t)y(t), f

(
t, y(t)

)〉

=
〈(
S′(t) + S(t)A(t) +A(t)∗S(t)

)
y(t), y(t)

〉

+
〈(
S(t) + S(t)∗

)
y(t), f

(
t, y(t)

)〉

≤ −2
(
α − ρ)μ

′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2 +
〈(
S(t) + S(t)∗

)
y(t), f

(
t, y(t)

)〉

≤ −2
(
α − ρ)μ

′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2 + 2‖S(t)‖ · ∥∥f(t, y(t))∥∥ · ∥∥y(t)∥∥

≤ −2
(
α − ρ)μ

′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2 + 2l
μ′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2

= −2
(
α − ρ − l)μ

′(t)
μ(t)

‖S(t)‖ · ∥∥y(t)∥∥2
.

(3.17)

If ρ is small enough such that α − ρ − l > 0, then

d

dt
H
(
t, y(t)

) ≤ −2
(
α − ρ − l)μ

′(t)
μ(t)

H
(
t, y(t)

)
, (3.18)

and hence

H
(
t, y(t)

) −H(
s, y(s)

) ≤ −2
(
α − ρ − l)

∫ t

s

μ′(τ)
μ(τ)

H
(
τ, y(τ)

)
dτ. (3.19)
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It follows from Gronwall’s inequality that

H
(
t, y(t)

) ≤ H(
s, y(s)

)( μ(t)
μ(s)

)−2(α−ρ−l)
, t ≥ s. (3.20)

Now given s > 0, take t > s such that μ(t) = dμ(s) with d as in (2.9). Then

H
(
s, y(s)

)
=
∫∞

s

∥∥T(τ, s)y(s)
∥∥2

(
μ(τ)
μ(s)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

≥
∫ t

s

∥∥T(τ, s)y(s)
∥∥2

(
μ(τ)
μ(s)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

≥ 1
c2

∥∥y(s)
∥∥2

∫ t

s

(
μ(τ)
μ(s)

)2(α−ρ)μ′(τ)
μ(τ)

dτ

=
1

2c2
(
α − ρ)

∥∥y(s)
∥∥2

{(
μ(t)
μ(s)

)2(α−ρ)
− 1

}

=
1

2c2
(
α − ρ)

∥∥y(s)
∥∥2

{
d2(α−ρ) − 1

}
.

(3.21)

Taking

κ =
1

2c2
(
α − ρ)

{
d2(α−ρ) − 1

}
> 0, (3.22)

then

H
(
s, y(s)

) ≥ κ∥∥y(s)∥∥2
. (3.23)

It follows from (2.13) and (3.20) that

∥∥y(t)
∥∥ ≤ κ1/2

√
H
(
t, y(t)

)

≤ κ1/2
√
H
(
s, y(s)

)( μ(t)
μ(s)

)−(α−ρ−l)

≤ κ1/2

√
1

2ρ
D(s)

(
μ(t)
μ(s)

)−(α−ρ−l)∥∥y(s)
∥∥.

(3.24)

Now the proof is finished.
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The relation between the notions of nonuniform asymptotic stability and admissibility is
considered. Using appropriate Lyapunov norms, it is showed that if any of their associated
Lp spaces, with p ∈ (1,∞], is admissible for a given evolution process, then this process is a
nonuniform (μ, ν) contraction and dichotomy. A collection of admissible Banach spaces for any
given nonuniform (μ, ν) contraction and dichotomy is provided.

1. Introduction

The study of the admissibility property has a fairly long history, and it goes back to the
pioneering work of Perron [1] in 1930. Perron concerned originally the existence of bounded
solutions of the equation

x′ = A(t)x + f(t) (1.1)

in Rn for any bounded continuous perturbation f : R
+
0 → Rn. This property can be used

to deduce the stability or the conditional stability under sufficiently small perturbations of a
given linear equation:

x′ = A(t)x. (1.2)

His result served as a starting point for many works on the qualitative theory of the solutions
of differential equations. Moreover, a simple consequence of one of the main results in that
paper stated explicitly in [2, Theorem 1] is probably the first step in the literature concerning
the study of the relation between admissibility and the notions of stability and conditional
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stability. We refer the reader to [2] for details. Relevant results concerning the extension of
Perron’s problem in the more general framework of the infinite-dimensional Banach spaces
with bounded A(t) were obtained by Daleckij and Krein [3], Massera and Schäffer [4], and
the work of Levitan and Zhikov [5] for certain cases of unbounded A(t).

Over the last decades an increasing interest can be seen in the study of the asymptotic
behavior of evolution equations in abstract spaces. In [6, 7], Latushkin et al. studied the
dichotomy of linear skew-product semiflows defined on compact spaces. Using the so-
called evolution semigroup, they expressed its dichotomy in terms of hyperbolicity of a
family of weighted shift operators. In [8–10], Preda et al. considered related problems in
the particular case of uniform exponential behavior. A large class of Schäffer spaces, which
were introduced by Schäffer in [11] (see also [4]), acted as admissible spaces for the case of
uniform exponential dichotomies. It is worth noting here the works by Huy [12–16] in the
study of the existence of an exponential dichotomy for evolution equations.

In the case of nonuniform exponential dichotomies, Preda and Megan [17] obtained
related results also for the class of Schäffer spaces, but using a notion of dichotomy
which is different from the original one motivated by ergodic theory and the nonuniform
hyperbolicity theory, as detailed, for example, in [18, 19]. In the more recent work [20],
the authors consider the same weaker notion of exponential dichotomy and obtain sharper
relations between admissibility and stability for perturbations and solutions in C0. Important
contributions in this aspect have been made by Barreira et al. [2, 18, 19, 21–25]. Particularly, in
[22], Barreira and Valls showed an equivalence between the admissibility of their associated
Lp spaces (p ∈ (1,∞]) and the nonuniform exponential stability of certain evolution families
by using appropriate adapted norms. They also establish a collection of admissible Banach
spaces for any given nonuniform exponential dichotomy in [2]. Recently, Preda et al. [26]
studied the connection between the (non)uniform exponential dichotomy of a non(uniform)
exponentially bounded, strongly continuous evolution family and the admissibility of some
function spaces, which extended those results established in [2, 22].

In the present paper, inspired by Barreira and Valls [2, 22], we give a characterization
of nonuniform asymptotic stability in terms of admissibility property. We consider a more
general type of dichotomy which is called (μ, ν) dichotomy in [21], also proposed in [27]. In
this dichotomy, not only the usual exponential behavior is replaced by an arbitrary, which
may correspond, for example, to situations when the Lyapunov exponents are all infinity
or are all zero, but also different growth rates for the uniform and nonuniform parts of the
dichotomy are considered. It extended exponential dichotomy in various ways. In [21], it
has also been showed that there is a large class of equations exhibiting this behavior. We
emphasize that the characterization in our paper is a very general one; it includes as particular
cases many interesting situations among them we can mention some results in previous
references. To some extent, our results have a certain significance to study the theory of
nonuniform hyperbolicity.

2. Admissibility for Nonuniform (μ, ν) Contractions

We first concentrate on the simpler case of admissibility for nonuniform (μ, ν) contractions,
leaving the more elaborate case of admissibility for nonuniform (μ, ν) dichotomies for the
second part of the paper. This allows us to present the results and their proofs without
some accessory technicalities. After the introduction of some basic notions, using appropriate
adapted Lyapunov norms, we show that the admissibility with respect to some space Lp with
p ∈ (1,∞] is sufficient for an evolution process to be a nonuniform (μ, ν) contraction.
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2.1. Basic Notions

We say that an increasing function μ : R
+ → [1,+∞) is a growth rate if

μ(0) = 1, lim
t→+∞

μ(t) = +∞. (2.1)

We say that a family of linear operators T(t, s), t ≥ s ≥ 0 in a Banach space X is an
evolution process if:

(1) T(t, t) = Id and T(t, τ)T(τ, s) = T(t, s), t, τ, s > 0;

(2) (t, s, x) �→ T(t, s)x is continuous for t ≥ s ≥ 0 and x ∈ X.

In this section, we also assume that

(3) there exist ω ≥ 0, D > 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)‖ ≤ D
(
μ(t)
μ(s)

)ω
νε(s), t ≥ s ≥ 0. (2.2)

We consider the new norms

‖x‖′t = sup

{
‖T(σ, t)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}
, x ∈ X, t ∈ R

+
0 . (2.3)

These satisfy

‖x‖ ≤ ‖x‖′t ≤ Dνε(t)‖x‖, x ∈ X, t ∈ R
+
0 . (2.4)

Moreover, with respect to these norms the evolution process has the following bounded
growth property.

Proposition 2.1. If T is an evolution process, then

‖T(t, s)x‖′t ≤
(
μ(t)
μ(s)

)ω
‖x‖′s (2.5)

for every t ≥ s ≥ 0 and x ∈ X.

Proof. We have

‖T(t, s)x‖′t = sup

{
‖T(σ, t)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}

≤
(
μ(t)
μ(s)

)ω
sup

{
‖T(σ, t)x‖

(
μ(σ)
μ(s)

)−ω
, σ ≥ s

}

=
(
μ(t)
μ(s)

)ω
‖x‖′s

(2.6)

which yields the desired inequality.
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Definition 2.2. We say that an evolution process T is a nonuniform (μ, ν) contraction in R
+
0 if

there exist some constants α, D > 0, ε ≥ 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)‖ ≤ D
(
μ(t)
μ(s)

)−α
νε(s), t ≥ s ≥ 0. (2.7)

When ε = 0, we say that (1.2) has a uniform (μ, ν) contraction or simply a (μ, ν) contraction.

In the following, we introduce several Banach spaces that are used throughout the
paper. We first set

Lp =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f
∥∥
p <∞

}
(2.8)

for each p ∈ [1,∞), and

L∞ =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f
∥∥
∞ <∞} (2.9)

Respectively, with the norms

∥∥f
∥∥
p =
(∫∞

0

∣∣f(t)
∣∣p
)1/p

,
∥∥f
∥∥
∞ = ess sup

t∈R
+
0

∣∣f(t)
∣∣. (2.10)

Then for each p ∈ [1,∞] the set Lp of the equivalence classes [f] of functions g ∈ Lp such
that g = f Lebesgue-almost everywhere is a Banach space (again with the norms in (2.10)).

For each Banach space E = Lp, with p ∈ [1,∞], we set

E(X) =
{
f : R

+
0 −→ X Bochner-measurable : t �−→ ∥∥f(t)∥∥′t ∈ E

}
(2.11)

using the norms ‖ · ‖′t in (2.3), and we endow E(X) = Lp(X) with the norm

∥∥f
∥∥′
p = ‖F‖p, where F(t) =

∥∥f(t)
∥∥′
t. (2.12)

Repeating arguments in the proof of Theorem 3 in [22], we obtain the following
statement.

Lemma 2.3. For each p ∈ [1,∞] and E = Lp, the set E(X) is a Banach space with the norm in
(2.12), and the convergence in E(X) implies the pointwise convergence Lebesgue-almost everywhere.

Definition 2.4. We say that a Banach space E is admissible for the evolution process T if for
each f ∈ E(X) the function xf : R

+
0 → X defined by

xf(t) =
∫∞

0
T(t, τ)f(τ)dτ (2.13)

is in L∞ (see (2.11)).
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By Lemma 2.3 we know that L∞ is a Banach space with the norm

∥∥g
∥∥′
∞ = ess sup

t∈R
+
0

∥∥g(t)
∥∥′
t. (2.14)

Lemma 2.5. There exists K > 0 such that

∥∥xf
∥∥′
∞ ≤ K∥∥f∥∥′p for every f ∈ E(X). (2.15)

Proof. We define a linear operator G : E(X) → L∞(X) by Gf = xf . We use the closed graph
theorem to show that G is bounded. For this, let us take a sequence (fn)n∈N ⊂ E(X) and
f ∈ E(X) such that fn → f in E(X) when n → ∞ and also h ∈ L∞(X) such that Gfn → h in
L∞(X) when n → ∞. We need to show that Gf = h Lebesgue-almost everywhere. For each
t ≥ 0 and n ∈N we have

∥∥(Gfn
)
(t) − (Gf)(t)∥∥′t = sup

{∥∥∥∥∥

∫ t

0
T(σ, t)T(t, τ)

(
fn(τ) − f(τ)

)
dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

= sup

{∥∥∥∥∥

∫ t

0
T(σ, τ)

(
fn(τ) − f(τ)

)
dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ sup

{∫ t

0

∥∥T(σ, τ)
(
fn(τ) − f(τ)

)∥∥
(
μ(σ)
μ(t)

)−ω
dτ : σ ≥ t

}

= sup

{∫ t

0

∥∥T(σ, τ)
(
fn(τ) − f(τ)

)∥∥
(
μ(σ)
μ(τ)

)−ω( μ(t)
μ(τ)

)ω
dτ : σ ≥ t

}

=
∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τ

(
μ(t)
μ(τ)

)ω
dτ

≤ μ(t)ω
∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τdτ.

(2.16)

According to Hölder’s inequality, there exists α = α([0, t]) such that

∥∥(Gfn
)
(t) − (Gf)(t)∥∥′t ≤ μ(t)ω

∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τdτ ≤ μ(t)ωα∥∥(fn(τ) − f(τ)

)∥∥′
p. (2.17)

Therefore, for each t ≥ 0, letting n → ∞ we find that (Gfn)(t) → (Gf)(t). This shows that
Gf = h Lebesgue-almost everywhere, and by the closed graph theorem, we conclude that G
is a bounded operator. This completes the proof of the lemma.

2.2. Criterion for Nonuniform (μ, ν) Contraction

Theorem 2.6. If for some p ∈ (1,∞] the space E = Lp is admissible for the evolution process T , then
T is a nonuniform (μ, ν) contraction.



6 Abstract and Applied Analysis

Proof. We follow arguments in [22]. Given x ∈ X and t0 ≥ 0, we define a function f : R
+
0 → X

by

f(t) =

{
T(t, t0)x, t ∈ [t0, t0 + 1]
0, t ∈ R

+
0 \ [t0, t0 + 1].

(2.18)

We note that

∥∥f(t)
∥∥′
t ≤ ‖T(t, t0)x‖′tχ[t0,t0+1](t). (2.19)

Then, for each t ∈ [t0, t0 + 1] and x ∈ X, we have

‖T(t, t0)x‖′t = sup

{
‖T(σ, t)T(t, t0)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}

≤
(
μ(t)
μ(t0)

)ω
sup

{
‖T(σ, t0)x‖

(
μ(σ)
μ(t0)

)−ω
, σ ≥ t0

}

=
(
μ(t)
μ(t0)

)ω
‖x‖′t0

≤
(
μ(t0 + 1)
μ(t0)

)ω
‖x‖′t0 .

(2.20)

Therefore,

∥∥f(t)
∥∥′
p ≤
(
μ(t0 + 1)
μ(t0)

)ω
‖x‖′t0

∥∥χ[t0,t0+1](t)
∥∥
p =
(
μ(t0 + 1)
μ(t0)

)ω
‖x‖′t0 (2.21)

and in particular f ∈ E(X). On the other hand, according to (2.13) and (2.18), we have

xf(t) =
∫ t0+1

t0

T(t, τ)T(τ, t0)xdτ = T(t, t0)x (2.22)

for all t ≥ t0 + 1, which implies that

‖T(t, t0)x‖′t =
∥∥xf
∥∥′
t
≤ ∥∥xf

∥∥′
∞. (2.23)

By Lemma 2.5 and (2.21)–(2.23), we obtain

‖T(t, t0)x‖′t ≤
∥∥xf
∥∥′
∞ ≤ K∥∥f∥∥′p ≤ K

(
μ(t0 + 1)
μ(t0)

)ω
‖x‖′t0 (2.24)
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for all t ≥ t0 + 1, t0 ≥ 0, and x ∈ X. We claim that

‖T(t, t0)‖′ := sup
x /= 0

‖T(t, t0)x‖′t
‖x‖′t0

≤ L, L =
(
μ(t0 + 1)
μ(t0)

)ω
max{K, 1} (2.25)

for all t ≥ t0. Indeed, for t ≥ t0 + 1 inequality (2.25) follows from (2.24), and for t ∈ [t0, t0 + 1]
the inequality follows from (2.20).

Now given x ∈ X, t0 ≥ 0, and δ > 0, we define a function g : R
+
0 → X by

g(t) =

{
T(t, t0)x, t ∈ [t0, t0 + δ]
0, t ∈ R

+
0 \ [t0, t0 + δ].

(2.26)

It follows from (2.25) that

∥∥g(t)
∥∥′
t ≤ ‖T(t, t0)x‖′t ≤ L‖x‖′t0 (2.27)

and thus,

g ∈ E(X),
∥∥g
∥∥′
p ≤ Lδ1/p‖x‖′t0 . (2.28)

On the other hand, writing y = T(t0 + δ, t0)x,

δ2

2
∥∥y
∥∥′
t0+δ

=

∥∥∥∥∥

∫ t0+δ

t0

(τ − t0)ydτ
∥∥∥∥∥

′

t0+δ

= sup

{∥∥∥∥∥T(σ, t0 + δ)
∫ t0+δ

t0

(τ − t0)ydτ
∥∥∥∥∥

(
μ(σ)

μ(t0 + δ)

)−ω
: σ ≥ t0 + δ

}

= sup

{∥∥∥∥∥

∫ t0+δ

t0

(τ − t0)T(σ, t0)xdτ
∥∥∥∥∥

(
μ(σ)

μ(t0 + δ)

)−ω
: σ ≥ t0 + δ

}

≤ sup

{∫ t0+δ

t0

(τ − t0)‖T(σ, t0)x‖
(

μ(σ)
μ(t0 + δ)

)−ω
dτ : σ ≥ t0 + δ

}

=
∫ t0+δ

t0

(τ − t0) sup

{
∥∥T(σ, t0 + δ)y

∥∥
(

μ(σ)
μ(t0 + δ)

)−ω
: σ ≥ t0 + δ

}
dτ

=
∫ t0+δ

t0

(τ − t0)
∥∥y
∥∥′
t0+δ

dτ

=
∫ t0+δ

t0

(τ − t0)‖T(t0 + δ, τ)T(τ, t0)x‖′t0dτ

(2.29)
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Since

xg(t) =
∫ t

0
T(t, τ)g(τ)dτ =

⎧
⎪⎪⎨

⎪⎪⎩

0, t ∈ [0, t0]
(t, t0)T(t, t0)x, t ∈ [t0, t0 + δ],
δT(t, t0)x, t ∈ [t0 + δ,∞),

(2.30)

it follows from Lemma 2.5, (2.25), and (2.28) that

δ2

2
‖T(t0 + δ, t0)x‖′t0+δ ≤ L

∫ t0+δ

t0

(τ − t0)‖T(τ, t0)x‖′τdτ

= L
∫ t0+δ

t0

∥∥xg(τ)
∥∥′
τ
dτ ≤ Lδ∥∥xg

∥∥′
∞

≤ KLδ∥∥g∥∥′p ≤ KL2δ(p+1)/p‖x‖′t0

(2.31)

for all t0 ≥ 0, δ > 0, and x ∈ X; we thus obtain

δ2

2
‖T(t0 + δ, t0)x‖′t0+δ ≤ KL2δ(p+1)/p‖x‖′t0 (2.32)

so

‖T(t0 + δ, t0)‖′ ≤ 2KL2δ(1−p)/p (2.33)

for all t0 ≥ 0 and δ > 0. Since (1 − p)/p < 0 for p ∈ (1,∞], there exists δ0 > 0 sufficiently large
such that

K0 := 2KL2δ(1−p)/p < 1. (2.34)

Setting n = [(lnμ(t) − lnμ(t0))/δ0] for each t ≥ t0, we have

T(t, t0) = T(t, t0 + nδ0)T(t0 + nδ0, t0). (2.35)

By (2.25) and (2.33) we obtain

‖T(t, t0)‖′ ≤ L‖T(t0 + nδ0, t0)‖′

≤ L
n−1∏

i=0
‖T(t0 + (i + 1)δ0, t0 + iδ0)‖′ ≤ LKn

0

(2.36)

for t ≥ t0. By (2.34) and

n =
[

lnμ(t) − lnμ(t0)
δ0

]
≥ lnμ(t) − lnμ(t0)

δ0
− 1 (2.37)
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this implies that

‖T(t, t0)‖′ ≤ d
(
μ(t)
μ(t0)

)−α
, (2.38)

where

d =
L

K0
, α = − 1

δ0
lnK0. (2.39)

We note that d, α > 0. Since

‖T(t, t0)x‖′t ≥ ‖T(t, t0)x‖, (2.40)

and by (2.4),

‖x‖′t0 = sup

{
‖T(σ, t0)x‖

(
μ(σ)
μ(t0)

)−ω
: σ ≥ t0

}
≤ Dνε(t0)‖x‖. (2.41)

It follows from (2.38) that

‖T(t, t0)‖ = sup
x /= 0

‖T(t, t0)x‖
‖x‖ ≤ Dνε(t0)sup

x /= 0

‖T(t, t0)x‖′t
‖x‖′t0

≤ dDνε(t0)
(
μ(t)
μ(t0)

)−α
(2.42)

for any t ≥ t0. Therefore, the evolution process T is a nonuniform (μ, ν) contraction with α

and D̃ = dD. This concludes the proof of Theorem 2.6.

2.3. Admissible Spaces for Nonuniform (μ, ν) Contractions

We consider the spaces

L
p

D =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f
∥∥
p,D <∞

}
(2.43)

for each p ∈ [1,∞), and

L∞
D =

{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f
∥∥
∞,D <∞

}
, (2.44)

respectively, with the norms

∥∥f
∥∥
p,D =

(∫∞

0

∣∣f(t)
∣∣p
(
Dνε(t)

(
μ(t)
μ′(t)

)1/q
)p)1/p

,

∥∥f
∥∥
∞,D = ess sup

t∈R
+
0

(∣∣f(t)
∣∣Dνε(t)

μ(t)
μ′(t)

)
.

(2.45)
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In a similar manner to that in Lemma 2.3 these normed spaces induce Banach spaces Lp

D and
Lp

D(X) for each p ∈ [1,∞], the last one with norm

∥∥f
∥∥′
p,D = ‖F‖p,D, where F(t) =

∥∥f(t)
∥∥′
t. (2.46)

Theorem 2.7. If the evolution process T is a nonuniform (μ, ν) contraction, then for any p ∈ [1,∞]
the space Lp

D is admissible for T .

Proof. We first take f ∈ L∞
D . Then

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥

∫ t

0
T(σ, t)T(t, τ)f(τ)dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

= sup

{∥∥∥∥∥

∫ t

0
T(σ, τ)f(τ)dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ sup

{∫ t

0
‖T(σ, τ)‖ · ∥∥f(τ)∥∥dτ : σ ≥ t

}

≤ sup

{∫ t

0
Dντ(τ)

(
μ(σ)
μ(τ)

)−α∥∥f(τ)
∥∥′
τdτ : σ ≥ t

}

≤ sup

{∫ t

0
Dντ(τ)

(
μ(t)
μ(τ)

)−α∥∥f(τ)
∥∥′
τdτ : σ ≥ t

}

≤ ∥∥f∥∥′∞,D

∫ t

0

(
μ(t)
μ(τ)

)−α μ′(τ)
μ(τ)

dτ

≤ ∥∥f∥∥′∞,D

1 − μ(t)−α
α

≤ 1
α

∥∥f
∥∥′
∞,D.

(2.47)

Therefore,

∥∥xf
∥∥′
∞ = sup

t≥0

∥∥xf(t)
∥∥′
t
≤ sup

t≥0

1
α

∥∥f
∥∥′
∞,D <∞ (2.48)

and L∞
D is admissible for T .
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Now we take f ∈ Lp

D(X) for some p ∈ [1,∞). Using Hölder’s inequality we obtain

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥

∫ t

0
T(σ, t)T(t, τ)f(τ)dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ sup

{∫ t

0
Dντ(t)

(
μ(t)
μ(τ)

)−α∥∥f(τ)
∥∥′
τdτ : σ ≥ t

}

≤ ∥∥f∥∥′p,D
(∫ t

0

(
μ(t)
μ(τ)

)−αq μ′(τ)
μ(τ)

dτ

)1/q

≤ ∥∥f∥∥′p,D
(

1 − μ(t)−αq
αq

)1/q

≤ 1
(
αq
)1/q

∥∥f
∥∥′
p,D,

(2.49)

where 1/p + 1/q = 1. We conclude that Lp

D is also admissible for T .

3. Admissibility for Nonuniform (μ, ν) Dichotomies

We consider in this second part admissibility for nonuniform (μ, ν) dichotomies. It
generalizes the usual notion of exponential dichotomy in several ways: besides introducing
a nonuniform term, causing that any conditional stability may be nonuniform, we consider
rates that may not be exponential as well as different rates in the uniform and nonuniform
parts. After introducing some basic notions, we show that the admissibility with respect to
some space Lp with p ∈ (1,∞] is sufficient for an evolution process to be a nonuniform (μ, ν)
dichotomy. When compared to the case of contractions, this creates substantial complications.
We also provide a collection of admissible Banach spaces for any given nonuniform (μ, ν)
dichotomy.

3.1. Basic Notions

We consider an evolution process T(t, s), t ≥ s ≥ 0 satisfied 1, 2 in Section 2.
We also consider a function P : R

+
0 → B(X), where B(X) is the set of bounded linear

operators in X, such that

(1) P(t)2 = P(t), for every t ≥ 0;

(2) (t, x) �→ P(t)x is continuous in R
+
0 ×X.

We will refer to P as a projection function. Given an evolution process T , we say that a
projection function P is compatible with T if:

(1) T(t, s)p(s) = P(t)T(t, s), for every t, τ, s > 0;

(2) the map

T(t, σ) | kerP(σ) : kerP(σ) −→ kerP(t) (3.1)

is invertible for every t ≥ s ≥ 0.
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We also assume that

(3) there exist D > 0, ω ≥ 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)P(s)‖ ≤ D
(
μ(t)
μ(s)

)ω
νε(s), t ≥ s ≥ 0. (3.2)

‖T(t, s)Q(s)‖ ≤ D
(
μ(s)
μ(t)

)ω
νε(s), s ≥ t ≥ 0. (3.3)

We note that due to the invertibility assumption in condition (1.2), condition (3.3) is
simply a version of (3.2) when time goes backwards.

We always consider in the paper an evolution process T together with a projection
function P which is compatible with T (and which satisfies (3.2) and (3.3)). We write

U(t, s) = T(t, s)P(s), V (t, s) = T(t, s)Q(s), (3.4)

where Q(t) = Id − P(t) for each t ≥ 0. we consider the new norms

‖x‖′t = sup

{
‖U(σ, t)x‖

(
μ(σ)
μ(t)

)−ω
, σ ≥ t

}

+ sup

{
‖V (σ, t)x‖

(
μ(t)
μ(σ)

)−ω
, 0 ≤ σ ≤ t

}
.

(3.5)

for each x ∈ X and t ∈ R
+
0 , where V (σ, t) denotes the inverse of the map in (3.1). We have

‖x‖′t ≥ ‖P(t)x‖ + ‖Q(t)x‖ ≥ ‖P(t)x +Q(t)x‖ = ‖x‖. (3.6)

Moreover, by (3.2) and (3.3),

‖x‖′t ≤ 2Dνε(t)‖x‖, x ∈ X, t ∈ R
+
0 . (3.7)

Definition 3.1. We say that an evolution process T is a nonuniform (μ, ν) dichotomy in R
+ if

there exist a projection function P : R
+
0 → B(X) compatible with T , some constants α, D > 0,

ε ≥ 0 and two growth rates μ(t), ν(t) such that

‖T(t, s)P(s)‖ ≤ D
(
μ(t)
μ(s)

)−α
νε(s), t ≥ s ≥ 0.

‖T(t, s)Q(s)‖ ≤ D
(
μ(s)
μ(t)

)−β
νε(s), s ≥ t ≥ 0,

(3.8)

When ε = 0, we say that (1.2) has a uniform (μ, ν) dichotomy or simply a (μ, ν) dichotomy.
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In the following, we still consider several spaces Lp, L∞, respectively, with the norms
(2.10), which induce Banach spaces Lp for each p ∈ [1,∞]. We also set E(X) as in (2.11) but
using the norms ‖ · ‖′t in (3.5), we endow E(X) = Lp(X) with the norm in (2.12).

We also obtain easily the same statement in Lemma 2.3 for the set E(X) using the
norms ‖ · ‖′t in (3.5).

Definition 3.2. We say that a Banach space E is admissible for the evolution process T if for
each f ∈ E(X)

(1) the function

R
+
0 � τ �−→

{
V (t, τ)f(τ), τ ≥ t,
0, 0 ≤ τ < t (3.9)

is in L1(X) for each t ≥ 0;

(2) the function xf : R
+
0 → X defined by

xf(t) =
∫ t

0
U(t, τ)f(τ)dτ −

∫∞

t

V (t, τ)f(τ)dτ (3.10)

is in L∞(X).

We note that since ‖Q(t)x‖ ≤ ‖Q(t)x‖′t for every x ∈ X, and t ≥ 0, any function in
L1(X) is also integrable in R+

0 , and thus the first condition ensures that the function xf is well
defined. By Lemma 2.3 we know that L∞(X) is a Banach space with the norm

∥∥g
∥∥′
∞ = ess sup

t∈R
+
0

∥∥g(t)
∥∥′
t. (3.11)

Lemma 3.3. If for some p ∈ [1,∞] the space E = Lp is admissible for the evolution process T , then
there exists K > 0 such that

∥∥xf
∥∥′
∞ ≤ K∥∥f∥∥′p for every f ∈ E(X). (3.12)

Proof. We follow arguments in [2]. For each t ≥ 0, we define a map Ht : E(X) → L1(X) by

(
Htf
)
(τ) =

{
V (t, τ)f(τ), τ ≥ t,
0, 0 ≤ τ < t. (3.13)

Clearly, Ht is linear. We use the closed graph theorem to show that Ht is bounded. For this,
let us take a sequence (fn)n∈N ⊂ E(X) and f ∈ E(X) such that fn → f in E(X) when n → ∞,
and also g ∈ L1(X) such that Htfn → g in L1(X) when n → ∞. We need to show that
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Htf = g Lebesgue-almost everywhere. By Lemma 2.3, the sequence fn converges pointwise
Lebesgue-almost everywhere. Therefore,

(
Htfn

)
(τ) = V (t, τ)fn(τ) −→ V (t, τ)f(τ) =

(
Htf
)
(τ) (3.14)

when n → ∞, for Lebesgue-almost every τ ∈ [t,+∞). On the other hand, since Htfn → g
in L1(X) when n → ∞, we also have (Htfn)(τ) → g(τ) when n → ∞, for Lebesgue-almost
every τ ∈ [t,+∞). This shows that Htf = g Lebesgue-almost everywhere, and Ht is bounded
for each t ≥ 0.

We define a linear operator G : E(X) → L∞(X) by Gf = xf . We use again the closed
graph theorem to show thatG is bounded. For this, let us take a sequence (fn)n∈N ⊂ E(X) and
f ∈ E(X) such that fn → f in E(X) when n → ∞, and also h ∈ L∞(X) such that Gfn → h
in L∞(X) when n → ∞. We write

(
G1f
)
(t) = P(t)

(
Gf
)
(t) =

∫ t

0
U(t, τ)f(τ)dτ,

(
G2f
)
(t) = Q(t)

(
Gf
)
(t) = −

∫∞

t

V (t, τ)f(τ)dτ.

(3.15)

Using the similar proof of Lemma 2.5, for each t ≥ 0 and n ∈N we have

∥∥(G1fn
)
(t) − (G1f

)
(t)
∥∥′
t = sup

{∥∥∥∥∥

∫ t

0
U(σ, t)U(t, τ)

(
fn(τ) − f(τ)

)
dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

≤ μ(t)ω
∫ t

0

∥∥fn(τ) − f(τ)
∥∥′
τdτ.

(3.16)

According to Hölder’s inequality, there exists α = α([0, t]) such that

∥∥(G1fn
)
(t) − (G1f

)
(t)
∥∥′
t ≤ μ(t)ωα

∥∥(fn(τ) − f(τ)
)∥∥′

p. (3.17)

Furthermore, we have

∥∥(G2fn
)
(t) − (G2f

)
(t)
∥∥′
t ≤ sup

{∫∞

t

∥∥V (σ, t)V (t, τ)
(
fn(τ) − f(τ)

)∥∥
(
μ(t)
μ(σ)

)−ω
dτ : 0 ≤ σ ≤ t

}

=
∫∞

t

sup

{
∥∥V (σ, t)Ht

(
fn − f

)
(τ)
∥∥
(
μ(t)
μ(σ)

)−ω
: 0 ≤ σ ≤ t

}
dτ

=
∫∞

t

∥∥Ht

(
fn − f

)
(τ)
∥∥′
tdτ =

∥∥Ht

(
fn − f

)∥∥1
t .

(3.18)
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It follows from (3.17) and (3.18) that

∥∥(Gfn
)
(t) − (Gf)(t)∥∥′t ≤ μ(t)ωα

∥∥fn − f
∥∥′
p +
∥∥Ht

(
fn − f

)∥∥1
t . (3.19)

Therefore, for each t ≥ 0, letting n → ∞ we find that (Gfn)(t) → (Gf)(t). This shows
that Gf = h Lebesgue-almost everywhere, and by the closed graph theorem, we conclude
that G is a bounded operator. This completes the proof of the lemma.

3.2. Criterion for Nonuniform (μ, ν) Dichotomy

Theorem 3.4. If for some p ∈ (1,∞] the space E = Lp is admissible for the evolution process T , then
T is a nonuniform (μ, ν) dichotomy.

Proof. We first consider the space Pt0 = ImP(t0). Given x ∈ Pt0 and t0 ≥ 0, repeating argument
of the proof in Theorem 2.6, except limiting T(t, t0) on Pt0 , we obtain

‖T(t, t0) | Pt0‖′ ≤ d
(
μ(t)
μ(t0)

)−α
, (3.20)

where

d =
L

K0
, α = − 1

δ0
lnK0. (3.21)

We note that d, α > 0. For each x ∈ Pt0 , we have

‖T(t, t0)x‖′t ≥ ‖T(t, t0)x‖, (3.22)

and by (3.2),

‖x‖′t0 = sup

{
‖U(σ, t0)x‖

(
μ(σ)
μ(t0)

)−ω
: σ ≥ t0

}
≤ Dνε(t0)‖x‖. (3.23)

It follows from (3.5) and (3.20) that

‖T(t, t0) | Pt0‖ = sup
x∈Pt0\{0}

‖T(t, t0)x‖
‖x‖

≤ Dνε(t0) sup
x∈Pt0\{0}

‖T(t, t0)x‖′t
‖x‖′t0

≤ dDνε(t0)
(
μ(t)
μ(t0)

)−α

(3.24)

for any t ≥ t0.
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Now we consider the space Qt0 = KerP(t0). Given x ∈ Qt0 and t0 ≥ 0, we define a
function f : R

+
0 → X by

f(t) =

{
V (t, t0)x, t ∈ R

+
0
⋂
[t0 − 1, t0]

0, t ∈ R
+
0 \ [t0 − 1, t0].

(3.25)

Clearly, f(t) ∈ Qt for every t ≥ 0. Moreover, for each t ∈ [0, t0 − 1] (this interval may be
empty), we have

xf(t) = −
∫ t0

t0−1
V (t, τ)V (τ, t0)xdτ

= −
∫ t0

t0−1
V (t, t0)xdτ = −V (t, t0)x,

(3.26)

and it follows from Lemma 3.3 that

‖V (t, t0)x‖′t =
∥∥xf
∥∥′
∞ ≤ K∥∥f∥∥′p (3.27)

for t ∈ [0, t0 − 1].
On the other hand, for each t ∈ [t0 − 1, t0], we have

∥∥f(t)
∥∥′
t = sup

{
∥∥V (σ, t)f(t)

∥∥
(
μ(t)
μ(σ)

)−ω
, 0 ≤ σ ≤ t

}

≤ sup

{
‖V (σ, t)V (t, t0)x‖

(
μ(t)
μ(σ)

)−ω
, 0 ≤ σ ≤ t

}

≤
(
μ(t0)
μ(t)

)ω
sup

{
‖V (σ, t0)x‖

(
μ(t0)
μ(σ)

)−ω
, 0 ≤ σ ≤ t0

}

≤
(

μ(t0)
μ(t0 − 1)

)ω
‖x‖′t0 .

(3.28)

So

∥∥f
∥∥′
p =
∫

R
+
0
⋂
[t0−1,t0]

∥∥f(t)
∥∥′
tdt ≤

(
μ(t0)

μ(t0 − 1)

)ω
‖x‖′t0 (3.29)

and in particular f ∈ E(X). We thus have

‖V (t, t0)x‖′t ≤ K
∥∥f
∥∥′
p ≤ K

(
μ(t0)

μ(t0 − 1)

)ω
‖x‖′t0 (3.30)
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for every t ∈ [0, t0 − 1], and x ∈ Qt0 . This implies that

‖V (t, t0)‖′ := sup
x∈Qt0\{0}

‖V (t, t0)x‖′t
‖x‖′t0

≤ L, L =
(

μ(t0)
μ(t0 − 1)

)ω
max{K, 1} (3.31)

for all t ≤ t0. Indeed, for t ∈ [0, t0 − 1] inequality (3.31) follows from (3.30), and for t ∈
R

+
0
⋂
[t0 − 1, t0] the inequality follows from (3.28).

Now given x ∈ Qt0 , t0 ≥ 0, and δ > 0, we define a function g : R
+
0 → X by

g(t) =

{
V (t, t0)x, t ∈ R

+
0
⋂
[t0 − δ, t0]

0, t ∈ R
+
0 [t0 − δ, t0].

(3.32)

It follows from (3.31) that

∥∥g(t)
∥∥′
t ≤ ‖V (t, t0)x‖′t ≤ L‖x‖′t0 , (3.33)

and thus,

g ∈ E(X),
∥∥g
∥∥′
p ≤ Lδ1/p‖x‖′t0 . (3.34)

On the other hand, in a similar manner to that in (2.29),

δ2

2
‖V (t0 − δ, t0)x‖′t0−δ =

∥∥∥∥∥

∫ t0

t0−δ
(τ − t0)V (t0 − δ, t0)xdτ

∥∥∥∥∥

′

t0−δ

≤
∫ t0

t0−δ
(t0 − τ) sup

{
‖V (t0 − δ, t0)x‖′t0−δ : 0 ≤ σ ≤ t0 − δ

}
dτ

=
∫ t0

t0−δ
(t0 − τ)‖V (t0 − δ, t0)x‖′t0dτ

=
∫ t0

t0−δ
(t0 − τ)‖V (t0 − δ, τ)V (τ, t0)x‖′t0dτ.

(3.35)

Since

xg(t) = −
∫∞

t

V (t, τ)g(τ)dτ =

⎧
⎪⎪⎨

⎪⎪⎩

0, t ∈ [t0,∞)
(t − t0)V (t, t0)x, t ∈ [t0 − δ, t0].
−δV (t, t0)x, t ∈ [0, t0 − δ].

(3.36)
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It follows from Lemma 3.3, (3.31), and (3.34) that

δ2

2
‖V (t0 − δ, t0)x‖′t0−δ ≤ L

∫ t0

t0−δ
(t0 − τ)‖V (τ, t0)x‖′τdτ

= L
∫ t0

t0−δ

∥∥xg(τ)
∥∥′
τ
dτ ≤ Lδ∥∥xg

∥∥′
∞

≤ KLδ∥∥g∥∥′p ≤ KL2δ(p+1)/p‖x‖′t0

(3.37)

for all t0 ≥ 0, δ > 0, and x ∈ Qt0 ; we thus obtain

δ2

2
‖V (t0 − δ, t0)x‖′t0−δ ≤ KL2δ(p+1)/p‖x‖′t0 (3.38)

so

‖V (t0 − δ, t0)‖′ ≤ 2KL2δ(1−p)/p (3.39)

for all t0 ≥ 0 and δ > 0. Taking the same δ0 as before, and setting n = [(lnμ(t0) − lnμ(t))/δ0]
for each t ≤ t0, we have

V (t, t0) = V (t, t0 − nδ0)V (t0 − nδ0, t0). (3.40)

By (3.31) and (3.39) we obtain

‖V (t, t0)‖′ ≤ L‖V (t0 − nδ0, t0)‖′

≤ L
n−1∏

i=0
‖V (t0 − (i + 1)δ0, t0 − iδ0)‖′ ≤ LKn

0

(3.41)

for t ≤ t0, where K0 := 2KL2δ
(1−p)/p
0 < 1. Since

n =
[

lnμ(t0) − lnμ(t)
δ0

]
≥ lnμ(t0) − lnμ(t)

δ0
− 1, (3.42)

this implies that

‖V (t, t0)‖′ ≤ d
(
μ(t)
μ(t0)

)α
, (3.43)

where

d =
L

K0
, α = − 1

δ0
lnK0. (3.44)
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We note that d, α > 0. By (3.6)

‖V (t, t0)x‖′t ≥ ‖V (t, t0)x‖, (3.45)

and by (3.3),

‖x‖′t0 = sup

{
‖V (σ, t0)x‖

(
μ(t0)
μ(σ)

)−ω
: 0 ≤ σ ≤ t0

}
≤ Dνε(t0)‖x‖ (3.46)

for x ∈ Qt0 . It follows from (3.43) that

‖V (t, t0) | Qt0‖ = sup
x∈Qt0\{0}

‖V (t, t0)x‖
‖x‖

≤ Dνε(t0) sup
x∈Qt0\{0}

‖V (t, t0)x‖′t
‖x‖′t0

≤ dDνε(t0)
(
μ(t)
μ(t0)

)α

(3.47)

for any t ≤ t0. To show that T is a nonuniform exponential dichotomy, we note that setting
t = s in (3.2) and (3.3) yields

‖P(s)‖ ≤ Dνε(s), ‖Q(s)‖ ≤ Dνε(s) (3.48)

for every s ≥ 0. Together with (3.24) and (3.47) this implies that

‖T(t, s)P(s)‖ ≤ ‖T(t, s) | Ps‖‖P(s)‖

≤ dD2
(
μ(t)
μ(s)

)−α
ν2ε(s), t ≥ s ≥ 0.

‖T(t, s)Q(s)‖ ≤ ‖T(t, s) | Qs‖‖P(s)‖

≤ dD2
(
μ(s)
μ(t)

)−α
ν2ε(s), s ≥ t ≥ 0.

(3.49)

This shows that T is a nonuniform (μ, ν) dichotomy with α, α, dD2 and 2ε.

3.3. Admissible Spaces for a Nonuniform (μ, ν) Dichotomy

We consider the spaces

L
p

D =
{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f
∥∥
p,D <∞

}
(3.50)
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for each p ∈ [1,∞), and

L∞
D =

{
f : R

+
0 −→ R Lebesgue-measurable :

∥∥f
∥∥
∞,D <∞

}
, (3.51)

respectively, with the norms

∥∥f
∥∥
p,D =

(∫∞

0

∣∣f(t)
∣∣p
(
Dνε(t)

(
μ(t)
μ′(t)

)1/q
)p)1/p

,

∥∥f
∥∥
∞,D = ess sup

t∈R
+
0

(∣∣f(t)
∣∣Dνε(t)

μ(t)
μ′(t)

)
.

(3.52)

In a similar manner to Lemma 2.3 these normed spaces induce Banach spaces Lp

D and Lp

D(X)
for each p ∈ [1,∞], the last one with norm

∥∥f
∥∥′
p,D = ‖F‖p,D, where F(t) =

∥∥f(t)
∥∥′
t. (3.53)

Theorem 3.5. If the evolution process T is a nonuniform (μ, ν) dichotomy, then for any p ∈ [1,∞]
the space Lp

D is admissible for T .

Proof. We first take f ∈ L∞
D . Then

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥

∫ t

0
U(σ, t)U(t, τ)f(τ)dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

+ sup

{∥∥∥∥

∫∞

t

V (σ, t)V (t, τ)f(τ)dτ
∥∥∥∥
(
μ(t)
μ(σ)

)−ω
: 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
‖U(σ, τ)‖ · ∥∥f(τ)∥∥

(
μ(σ)
μ(t)

)−ω
dτ : σ ≥ t

}

+ sup

{∫∞

t

‖V (σ, τ)‖ · ∥∥f(τ)∥∥
(
μ(t)
μ(σ)

)−ω
dτ : 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
Dνε(τ)

(
μ(σ)
μ(τ)

)−α∥∥f(τ)
∥∥dτ : σ ≥ t

}

+ sup

{∫∞

t

Dνε(τ)
(
μ(σ)
μ(τ)

)β∥∥f(τ)
∥∥dτ : 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
Dνε(τ)

(
μ(t)
μ(τ)

)−α∥∥f(τ)
∥∥′
τdτ : σ ≥ t

}

+ sup

{∫∞

t

Dνε(τ)
(
μ(t)
μ(τ)

)β∥∥f(τ)
∥∥′
τdτ : 0 ≤ σ ≤ t

}
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≤ ∥∥f∥∥′∞,D

∫ t

0

(
μ(t)
μ(τ)

)−α μ′(τ)
μ(τ)

dτ +
∥∥f
∥∥′
∞,D

∫∞

t

(
μ(t)
μ(τ)

)β μ′(τ)
μ(τ)

dτ

=
1
α

∥∥f
∥∥′
∞,D

(
1 − μ(t)−α) + 1

β

∥∥f
∥∥′
∞,D

≤
(

1
α
+

1
β

)∥∥f
∥∥′
∞,D.

(3.54)

Therefore,

∥∥xf
∥∥′
∞ = sup

t≥0

∥∥xf(t)
∥∥′
t
≤ sup

t≥0

(
1
α
+

1
β

)∥∥f
∥∥′
∞,D <∞ (3.55)

and L∞
D is admissible for T .
Now we take f ∈ Lp

D(X) for some p ∈ [1,∞). Using Hölder’s inequality we obtain

∥∥xf(t)
∥∥′
t
= sup

{∥∥∥∥∥

∫ t

0
U(σ, t)U(t, τ)f(τ)dτ

∥∥∥∥∥

(
μ(σ)
μ(t)

)−ω
: σ ≥ t

}

+ sup

{∥∥∥∥

∫∞

t

V (σ, t)V (t, τ)f(τ)dτ
∥∥∥∥
(
μ(t)
μ(σ)

)−ω
: 0 ≤ σ ≤ t

}

≤ sup

{∫ t

0
Dνε(τ)

(
μ(t)
μ(τ)

)−α∥∥f(τ)
∥∥′
τdτ : σ ≥ t

}

+ sup

{∫∞

t

Dνε(τ)
(
μ(t)
μ(τ)

)β∥∥f(τ)
∥∥′
τdτ : 0 ≤ σ ≤ t

}

≤ ∥∥f∥∥′p,D
(∫ t

0

(
μ(t)
μ(τ)

)−αq μ′(τ)
μ(τ)

dτ

)1/q

+
∥∥f
∥∥′
p,D

(∫∞

t

(
μ(t)
μ(τ)

)βq μ′(τ)
μ(τ)

dτ

)1/q

=
∥∥f
∥∥′
p,D

(
1 − μ(t)−αq

αq

)1/q

+
(

1
βq

)1/q∥∥f
∥∥′
p,D

≤
(

1
(
αq
)1/q

+
1

(
βq
)1/q

)
∥∥f
∥∥′
p,D,

(3.56)

where 1/p + 1/q = 1. We conclude that Lp

D is also admissible for T .
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Analytical properties like existence, uniqueness, and asymptotic behavior of solutions are studied
for the following singular initial value problem: gi(t)y′

i(t) = aiyi(t)(1 + fi(t,y(t),
∫ t

0+ Ki(t, s,y(t),
y(s))ds)), yi(0+) = 0, t ∈ (0, t0], where y = (y1, . . . , yn), ai > 0, i = 1, . . . , n are constants and t0 > 0.
An approach which combines topological method of T. Ważewski and Schauder’s fixed point
theorem is used. Particular attention is paid to construction of asymptotic expansions of solutions
for certain classes of systems of integrodifferential equations in a right-hand neighbourhood of a
singular point.

1. Introduction and Preliminaries

Singular initial value problem for ordinary differential and integro-differential equations is
fairly well studied (see, e.g., [1–16]), but the asymptotic properties of the solutions of such
equations are only partially understood. Although the singular initial value problems were
widely considered using various methods (see, e.g., [1–13, 16]), our approach to this problem
is essentially different from others known in the literature. In particular, we use a combination
of the topological method of T. Ważewski [8] and Schauder’s fixed point theorem [11]. Our
technique leads to the existence and uniqueness of solutions with asymptotic estimates in
the right-hand neighbourhood of a singular point. Asymptotic expansions of solutions are
constructed for certain classes of systems of integrodifferential equations as well.

Consider the following problem:

gi(t)y′
i(t) = aiyi(t)

(
1 + fi

(
t,y(t),

∫ t

0+
Ki(t, s,y(t),y(s))ds

))
, (1.1)
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yi(0+) = 0, t ∈ (0, t0], (1.2)

where y = (y1, . . . , yn), ai > 0 are constants, fi ∈ C0(J ×R
n ×R,R), Ki ∈ C0(J × J ×R

n ×R
n,R),

J = (0, t0], t0 > 0, i = 1, . . . , n.
Denote

(i) f(t) = O(g(t)) as t → 0+ if there is a right-hand neighbourhood U(0) and a constant
K > 0 such that (f(t)/g(t)) ≤ K for t ∈ U(0).

(ii) f(t) = o(g(t)) as t → 0+ if there is valid limt→ 0+f(t)/g(t) = 0.

(iii) f(t) ∼ g(t) as t → 0+ if there is valid limt→ 0+f(t)/g(t) = 1.

Definition 1.1. The sequence of functions (φn(t)) is called an asymptotic sequence as t → 0+

if

φn+1(t) = o
(
φn(t)

)
as t → 0+ (1.3)

for all n.

Definition 1.2. The series
∑
cnφn(t), cn ∈ R, is called an asymptotic expansion of the function

f(t) up to Nth term as t → 0+ if

(a) (φn(t)) is an asymptotic sequence,

(b)

[
f(t) −

N∑

n=1

cnφn(t)

]
= o

(
φN(t)

)
, as t → 0+. (1.4)

The functions gi, fi, andKi will be assumed to satisfy the following:

(i) gi(t) ∈ C1(J), gi(t) > 0, gi(0+) = 0, g ′
i(t) ∼ ψi(t)g

λi
i (t) as t → 0+, λi > 0, ψi(t)gτi (t) =

o(1) as t → 0+ for each τ > 0, i = 1, . . . , n,

(ii) |fi(t, u, v)| ≤ |u| + |v|, | ∫ t0+ Ki(t, s,y(t),y(s))ds| ≤ ri(t)|y|, 0 < ri(t) ∈ C(J), ri(t) =
ϕi(t, Ci)o(1) as t → 0+ where ϕi(t, Ci) = Ci exp(

∫ t
t0
(ai/gi(s))ds) is the general

solution of the equation gi(t)y′
i(t) = aiyi(t).

In the text, we will apply topological method of Ważewski and Schauder’s theorem.
Therefore we give a short summary of them.

Let f(t,y) be a continuous function defined on an open (t,y) set Ω ⊂ R×R
n, Ω0 an open

set of Ω, ∂Ω0 the boundary of Ω0, and Ω
0

the closure of Ω0. Consider the following system of
ordinary differential equations:

y′ = f(t,y). (1.5)

Definition 1.3 (see [17]). The point (t0,y0) ∈ Ω ∩ ∂Ω0 is called an egress (or an ingress point)
of Ω0 with respect to system (1.5) if for every fixed solution of the problem y(t0) = y0, there
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exists an ε > 0 such that (t,y(t)) ∈ Ω0 for t0−ε ≤ t < t0 (t0 < t ≤ t0+ε). An egress point (ingress

point) (t0,y0) of Ω0 is called a strict egress point (strict ingress point) of Ω0 if (t,y(t)) /∈ Ω
0

on
interval t0 < t ≤ t0 + ε1 (t0 − ε1 ≤ t < t0) for an ε1.

Definition 1.4 (see [18]). An open subset Ω0 of the set Ω is called an (u, v) subset of Ω with
respect to system (1.5) if the following conditions are satisfied.

(1) There exist functions ui(t,y) ∈ C1(Ω,R), i = 1, . . . , m and vj(t,y) ∈ C[Ω,R] j =
1, . . . , n,m + n > 0 such that

Ω0 =
{
(t,y) ∈ Ω : ui(t,y) < 0, vj(t,y) < 0 ∀i, j}. (1.6)

(2) u̇α(t,y) < 0 holds for the derivatives of the functions uα(t,y), α = 1, . . . , m along
trajectories of system (1.5) on the set

Uα =
{
(t,y) ∈ Ω : uα(t,y) = 0, ui(t,y) ≤ 0, vj(t,y) ≤ 0, ∀j and i /=α

}
. (1.7)

(3) v̇β(t,y) > 0 holds for the derivatives of the functions vβ(t,y), β = 1, . . . , n along
trajectories of system (1.5) on the set

Vβ =
{
(t,y) ∈ Ω : uβ(t,y) = 0, ui(t,y) ≤ 0, vj

(
t, y

) ≤ 0, ∀i andj /= β
}
. (1.8)

The set of all points of egress (strict egress) is denoted by Ω0
e (Ω0

se).

Lemma 1.5 (see [18]). Let the set Ω0 be a (u, v) subset of the set Ω with respect to system (1.5).
Then

Ω0
se = Ω0

e =
m⋃

α=1

Uα \
n⋃

β=1

Vβ. (1.9)

Definition 1.6 (see [18]). Let X be a topological space and B ⊂ X.

Let A ⊂ B. A function r ∈ C(B,A) such that r(a) = a for all a ∈ A is a retraction
from B to A in X.

The set A ⊂ B is a retract of B in X if there exists a retraction from B to A in X.

Theorem 1.7 (Ważewski’s theorem [18]). LetΩ0 be some (u, v) subset ofΩ with respect to system
(1.5). Let S be a nonempty compact subset ofΩ0 ∪Ω0

e such that the set S∩Ω0
e is not a retract of S but

is a retract Ω0
e. Then there is at least one point (t0,y0) ∈ S ∩Ω0 such that the graph of a solution y(t)

of the Cauchy problem y(t0) = y0 for (1.5) lies on its right-hand maximal interval of existence.

Theorem 1.8 (Schauder’s theorem [19]). Let E be a Banach space and S its nonempty convex and
closed subset. If P is a continuous mapping of S into itself and PS is relatively compact then the
mapping P has at least one fixed point.
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2. Main Results

Theorem 2.1. Let assumptions (i) and (ii) hold, then for each Ci /= 0 there is one solution y(t,C) =
(y1(t, C1), y2(t, C2), . . . , yn(t, Cn)), C = (C1, . . . , Cn) of initial problem (1.1) and (1.2) such that

∣∣∣y(j)
i (t, Ci) − ϕ(j)

i (t, Ci)
∣∣∣ ≤ δ

(
ϕ2
i (t, Ci)

)(j)
, j = 0, 1, (2.1)

for t ∈ (0, tΔ], where 0 < tΔ ≤ t0, δ > 1 is a constant, and tΔ depends on δ,Ci, i = 1, . . . , n.

Proof. (1) Denote E the Banach space of vector-valued continuous functions h(t) on the
interval [0, t0] with the norm

‖h(t)‖ = max
t∈[0,t0]

|hi(t)|, i = 1, . . . , n. (2.2)

The subset S of Banach space E will be the set of all functions h(t) from E satisfying the
inequality

∣∣hi(t) − ϕi(t, Ci)
∣∣ ≤ δϕ2

i (t, Ci). (2.3)

The set S is nonempty, convex, and closed.
(2) Now we will construct the mapping P . Let h0(t) ∈ S be an arbitrary function.

Substituting h0(t), h0(s) instead of y(t), y(s) into (1.1), we obtain the following differential
equation:

gi(t)y′
i(t) = aiyi(t)

(
1 + fi

(
t,y(t),

∫ t

0+
Ki(t, s,h0(t),h0(s))ds

))
, i = 1, . . . , n. (2.4)

Put

yi(t) = ϕi(t, Ci) + ϕ
(1−μ)
i (t, Ci)Y0i(t), (2.5)

y′
i(t) = ϕ′

i(t, C) +
1

gi(t)
ϕ
(1−μ)
i (t, Ci)Y1i(t), (2.6)

where 0 < μ < 1 is a constant and new functions Y0i(t), Y1i(t) satisfy the differential equations
as

gi(t)Y ′
0i(t) =

(
μ − 1

)
aiY0i(t) + Y1i(t), i = 1, . . . , n. (2.7)

From (2.3), it follows

h0i(t) = ϕi(t, Ci) +H0i(t), |H0i(t)| ≤ δϕ2
i (t, Ci). (2.8)
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Substituting (2.5), (2.6), and (2.8) into (2.4), we get

Y1i(t) = aiY0i(t) +
(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t) ,

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn) +H0n(t), ϕ1(s, C1)

+H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)
.

(2.9)

Substituting (2.9) into (2.7), we get

gi(t)Y′
0i(t) = μaiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn) +H0n(t), ϕ1(s, C1)

+H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)
.

(2.10)

In view of (2.5) and (2.6), it is obvious that a solution of (2.10) determines a solution of (2.4).
Now we use Ważewski’s topological method. Consider an open set Ω ⊂ R

+ × R
n.

Denote Y0 = (Y01, . . . , Y0n). Define an open subset Ω0 ⊂ Ω as follows:

Ω0 = {(t,Y0) : ui(t,Y0) < 0, v(t,Y0) < 0, i = 1, . . . , n},
Uα = {(t,Y0) : uα(t,Y0) = 0, ui(t,Y0) ≤ 0, v(t,Y0) ≤ 0, i = 1, . . . , n, i /=α},

Vβ = V =
{
(t,Y0) : v(t,Y0) = 0, uj(t,Y0) ≤ 0, i = 1, . . . , n

}
,

(2.11)

where

ui(t,Y0) = Y 2
0i −

(
δϕ

(1+μ)
i (t, Ci)

)2
, v(t,Y0) = t − t0, i = 1, . . . , n. (2.12)
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Calculating the derivatives u̇α(t,Y0), v̇(t,Y0) along the trajectories of (2.10) on the set Uα, V ,
α = 1, . . . , n we obtain

u̇α(t,Y0) =
2aα
gα(t)

[
μY 2

0α(t) +
(
Y0α(t)ϕ

μ
α(t, Cα) + Y 2

0α(t)
)

× fα
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)
.

−δ2(1 + μ
)
ϕ

2(1+μ)
α (t, Cα)

]
.

(2.13)

Since

lim
t→+0

ψi(t)gτi (t) = 0 for any τ > 0, i = 1, . . . , n

g ′
i(t) ∼ ψi(t)gλii (t) as t → 0+, λi > 0, i = 1, . . . , n,

(2.14)

then there exists a positive constant Mi such that

g ′
i(t) < Mi, t ∈ (0, t0], i = 1, . . . , n. (2.15)

Consequently,

∫ t

t0

ds

gi(s)
<

1
Mi

∫ t

t0

g ′
i(s)dt
gi(s)

=
1
Mi

ln
gi(t)
gi(t0)

−→ −∞ as t −→ 0+, i = 1, . . . , n. (2.16)

From here limt→ 0+ϕi(t, Ci) = 0 and by L’Hospital’s rule ϕτi (t, Ci)gσi (t) = o(1), for t → 0+,
i = 1, . . . , n, σ is an arbitrary real number. These both identities imply that the powers of
ϕi(t, Ci) affect the convergence to zero of the terms in (2.13), in a decisive way.

Using the assumptions of Theorem 2.1 and the definition of Y0(t), ϕi(t, Ci), i = 1, . . . , n,
we get that the first term μY 2

0α(t, Cα) in (2.13) has the following form:

μY 2
0α(t) = μδ

2ϕ
2(1+μ)
α (t, Cα), (2.17)
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and the second term

(
Y0α(t)ϕ

μ
α(t, Cα) + Y 2

0α(t)
)

× fα
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Kα

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +H01(s), . . . ϕn(s, Cn)

+H0n(s))ds
)
.

(2.18)

is bounded by terms with exponents which are greater than ϕ
2(1+μ)
α (t, Cα), α = 1, . . . , n. From

here, we obtain

sgn u̇α(t,Y0) = −δ2(1 + μ
)
ϕ

2(1+μ)
α (t, Cα) = −1 (2.19)

for sufficiently small t∗, depending on Cα α = 1, . . . , n, δ, 0 < t∗ ≤ t0.
It is obvious that sgn v̇(t,Y0) = 1.
Change the orientation of the axis t into opposite. Then, with respect to the new system

of coordinates, the set Ω0 is the (u, v) subset with respect to system (2.10). By Ważewski’s
topological method, we state that there exists at least one integral curve of (2.10) lying in Ω0

for t ∈ (0, t∗). It is obvious that this assertion remains true for an arbitrary function h0(t) ∈ S.
Now we prove the uniqueness of a solution of (2.10). Let Y0(t) = (Y 01(t), . . . , Y 0n(t))

be also the solution of (2.10). Putting

Z0i = Y0i − Y 0i, i = 1, . . . , n (2.20)

and substituting into (2.10), we obtain

gi(t)Z′
0i(t) = μaiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiZ0i(t)
)

× fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)

(
Z0i(t) + Y 01(t)

)
, . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn)

(
Z0n(t) + Y 0n(t)

)
,

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +H01(s), . . . ϕn(s, Cn) +H0n(s)
)
ds

)
.

(2.21)
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Define

Ω1(δ) = {(t,Z0) : 0 < t < t∗, u1i(t,Z0) < 0, v1(t,Z0) < 0, 0 < t < t∗, i = 1, . . . , n}
U1α = {(t,Z0) : u1α(t,Z0) = 0, u1i(t,Z0) ≤ 0, v1(t,Z0) ≤ 0, i = 1, . . . , n, i /=α},

V1β = V =
{
(t,Z0) : v1(t,Z0) = 0, uj(t,Z0) ≤ 0, i = 1, . . . , n

}
,

(2.22)

where

u1i(t,Z0) = Z2
0i −

(
δϕ

(1+μ−γ)
i

)2
, 0 < γ < μ, v1(t,Z0) = t − t∗. (2.23)

Using the same method as above, we have

sgn u̇1i(t,Z0) = −1, sgn v̇1(t,Z0) = 1, i = 1, . . . , n (2.24)

for sufficiently small t♦, 0 < t♦ ≤ t∗. It is obvious that Ω0 ⊂ Ω1(δ) for t ∈ (0, t♦). Let Z0(t) =
(Z01(t), . . . , Z0n(t)) be any nonzero solution of (2.10) such that (t1,Z0(t1)) ∈ Ω1 for 0 < t1 < t♦.
Let δ ∈ (0, δ) be such a constant that (t1,Z0(t1)) ∈ ∂Ω1(δ). If the curve Z0(t) lay in Ω1(δ) for
0 < t < t1, then (t1,Z0(t1)) would have to be a strict egress point of ∂Ω1(δ) with respect to the
original system of coordinates. This contradicts the relation (2.24). Therefore there exists only
the trivial solution Z0(t) ≡ 0 of (2.21), so Y0 = Y0(t) is the unique solution of (2.10).

From (2.5) we obtain

∣∣yi(t, Ci) − ϕi(t, Ci)
∣∣ ≤ δϕ2

i (t, Ci), i = 1, . . . , n, (2.25)

where (y1(t, C1), . . . , yn(t, Cn)) is the solution of (2.4) for t ∈ (0, t♦]. Similarly, from (2.6) and
(2.9), we have

∣∣y′
i(t, Ci) − ϕ′

i(t, Ci)
∣∣ =

∣∣∣∣
1

gi(t)
ϕ
(1−μ)
i (t, Ci)Y1i(t)

∣∣∣∣

≤
∣∣∣∣

1
gi(t)

ϕ
(1−μ)
i (t, Ci)2aiδϕ

(1−μ)
i (t, Ci)

∣∣∣∣ = δ
(
ϕ2
i (t, Ci)

)′
.

(2.26)

It is obvious (after a continuous extension of y(t,C) for t = 0, y(0+) = 0) that P : h0 → y maps
S into itself and PS ⊂ S.

(3) We will prove that PS is relatively compact and P is a continuous mapping.
It is easy to see, by (2.25) and (2.26), that PS is the set of uniformly bounded and

equicontinuous functions for t ∈ [0, t♦]. By Ascoli’s theorem, PS is relatively compact.
Let {hk(t)} be an arbitrary sequence vector-valued functions in S such that

‖hk(t) − h0(t)‖ = εk, lim
k→∞

εk = 0, h0(t) ∈ S. (2.27)
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The solution Yk(t) = (Yk1, . . . , Y kn) of the following equation:

gi(t)Y ′
0i(t) = μaiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) +H01(t), . . . , ϕn(t, Cn)

+H0n(t), ϕ1(s, C1) +Hk1(s), . . . ϕn(s, Cn) +Hkn(s)
)
ds

)
.

(2.28)

corresponds to the function hk(t) and Yk(t) ∈ Ω0 for t ∈ (0, t♦). Similarly, the solution Y0(t)
of (2.10) corresponds to the function h0(t). We will show that |Yk(t) − Y0(t)| → 0 uniformly
on [0, tΔ], where 0 < tΔ ≤ t♦, tΔ is a sufficiently small constant which will be specified later.
Consider the following region:

Ω0k =
{
(t,Y0) : 0 < t < t♦, u0ki(t,Y0) < 0, v0(t,Y0) < 0, i = 1, . . . , n

}
, (2.29)

where

u0ki(t,Y0) =
(
Y0i(t) − Y 0i(t)

)2 −
(
εkϕ

(1+μ−ν)
i (t, Ci)

)2
, 0 < ν < α, i = 1, . . . , n, k ≥ 1,

v0(t,Y0) = t − t♦.
(2.30)

There exists sufficiently small constant tΔ ≤ t♦ such that Ω0 ⊂ Ω0k for any k, t ∈ (0, tΔ).
Investigate the behaviour of integral curves of (2.28) with respect to the boundary ∂Ω0k, t ∈
(0, tΔ]. Using the same method as above, we obtain the following trajectory derivatives:

sgn u̇0k(t,Y0) = −1, sgn v̇0(t,Y0) = 1 (2.31)

for t ∈ (0, tΔ] and any k. By Ważewski’s topological method, there exists at least one solution
Yk(t) lying in Ω0k, 0 < t < tΔ. Hence, it follows that

∣∣∣Yki(t) − Y 0i(t)
∣∣∣ ≤ εkϕ1+μ−ν

i ≤Niεk, (2.32)

Ni > 0, i = 1, . . . , n are constants depending on Ci, tΔ. From (2.5), we obtain

∣∣yki(t) − y0i(t)
∣∣ = ϕ(1−μ)

i (t, Ci)
∣∣∣Yki(t) − Y 0i(t)

∣∣∣ ≤ niεk, (2.33)

where ni > 0, i = 1, . . . , n are constants depending on tΔ, Ci, Ni. This estimate implies that P
is continuous.
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We have thus proved that the mapping P satisfies the assumptions of Schauder’s fixed
point theorem and hence there exists a function h(t) ∈ S with h(t) = P(h(t)). The proof of
existence of a solution of (1.1) is complete.

Now we will prove the uniqueness of a solution of (1.1). Substituting (2.5) and (2.6)
into (1.1), we get

Y1i(t) = aiY0i(t) +
(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn)Y0n(t), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)Y01(s), . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)Y0n(s)

)
ds

)
.

(2.34)

Equation (2.7) may be written in the following form:

gi(t)Y ′
0i(t) = aiY0i(t) +

(
aiϕ

μ

i (t, Ci) + aiY0i(t)
)

× fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)Y0n(t),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)Y01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn)

× Y0n(t), ϕ1(s, C1) + ϕ
(1−μ)
1 (s, C1)Y01(s), . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)Y0n(s)

)
ds

)
.

(2.35)

Now we know that there exists the solution y0(t) = (y01(t, C1), . . . , y0n(t, Cn)) of (1.1)
satisfying (1.2) such that

y0i(t, Ci) = ϕi(t, Ci) + ϕ
(1−μ)
i (t, Ci)T0i(t), i = 1, . . . , n, (2.36)

where T0(t) = (T01(t), . . . , T0n(t)) is the solution of (2.35).
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Denote Wi0(t) = Y0i(t) − T0i(t), i = 1, . . . , n. Substituting Wi0(t) into (2.35), we obtain

gi(t)W ′
0i(t) = aiW0i(t) +

(
aiϕ

μ

i (t, Ci) + aiW0i(t)
)

×
[
fi

(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

× (W01(s) + T01(s)), . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)(W0n(s) + T0n(s))

)
ds

)

− fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn)T0n(t)

+ ϕ(1−μ)
n (t, Cn)T0n(t), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

× T01(s), . . . ϕn(s, Cn) + ϕ
(1−μ)
n (s, Cn)T0n(s)

)
ds

)]
.

(2.37)

Let

1Ω0 =
{
(t,W0) : 0 < t < tΔ, u1i(t,W0) < 0, v1(t,W0) < 0

}
, (2.38)

where

u1i(t,W0) =W2
1i −

(
δϕ

(1+μ−ρ)
i (t, Ci)

)2
, 0 < ρ < μ, v1(t,W0) = t − tΔ, i = 1, . . . , n. (2.39)

If (2.37) had only the trivial solution lying in 1Ω0, then Y0(t) = T0(t) would be only one
solution of (2.37) and from here, by (2.35), y0(t) would be only one solution of (1.1) satisfying
(1.2) for t ∈ (0, tΔ].
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We will suppose that there exists nontrivial solution W0(t) of (2.37) lying in 1Ω0.
Substituting W0i(s) instead of W0i(s), i = 1, . . . , n into (2.37), we obtain the following
differential equation:

gi(t)W ′
0i(t) = aiW0i(t) +

(
aiϕ

μ

i (t, Ci) + aiW0i(t)
)

×
[
fi

(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)(W01(t) + T01(t)), . . . , ϕn(t, Cn)

+ ϕ(1−μ)
n (t, Cn) × (W0n(t) + T0n(t)), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

×
(
W01(s) + T01(s)

)
, . . . ϕn(s, Cn)

+ϕ(1−μ)
n (s, Cn)

(
W0n(s) + T0n(s)

))
ds

)

− fi
(
t, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn) + ϕ

(1−μ)
n (t, Cn),

∫ t

0+
Ki

(
t, s, ϕ1(t, C1) + ϕ

(1−μ)
1 (t, C1)T01(t), . . . , ϕn(t, Cn)T0n(t)

+ ϕ(1−μ)
n (t, Cn)T0n(t), ϕ1(s, C1) + ϕ

(1−μ)
1 (s, C1)

× T01(s), . . . ϕn(s, Cn) + ϕ
(1−μ)
n (s, Cn)T0n(s)

)
ds

)]
.

(2.40)

Calculating the derivative u̇1i(t,W0) along the trajectories of (2.40) on the set ∂1Ω0, we
get sgn u̇1i(t,W0) = −1 for t ∈ (0, tΔ], i = 1, . . . , n.

By the same method as in the case of the existence of a solution of (1.1), we obtain that
in 1Ω0 there is only the trivial solution of (2.40). The proof is complete.

3. Asymptotic Expansions of Solutions

Diblı́k [3] investigated a singular initial problem for implicit ordinary differential equations
and constructed asymptotic expansions of solutions in a right-hand neighbourhood of a
singular point. Some results about asymptotic expansions of solutions for integrodifferential
equations with separable kernels are given in [3, 10, 12].
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The aim of this section is to show that results of paper [2] for ordinary differential
equations are possible to extend on certain classes systems integrodifferential equations with
a separable kernel in the following form:

g(t)y′
i = yi +

∫ t

0+

⎛

⎝
Ni∑

|σi|+|ωi|=2

uσiωi(t)vσiωi(s)y
σi(t)yωi(s)

⎞

⎠ds, (3.1)

where Ni ∈ N, σi = (li1, . . . , lin), ωi = (ji1, . . . , jin), lik, jik ∈ N ∪ {0}, k = 1, . . . , n,

|σi| =
n∑

k=1

lik, |ωi| =
n∑

k=1

jik, yσi(t) =
n∏

k=1

ylik
k (t), yωi(s) =

n∏

k=1

y
jik
k (s),

uσiωi(t), vσiωi(t) ∈ C0(J), J = (0, t0], i = 1, . . . , n.

(3.2)

We will construct the solution of (3.1) in the form of one parametric asymptotic
expansions as

yi(t, C) =
∞∑

h=1

fih(t)φh(t, C), i = 1, . . . , n, (3.3)

where φ(t, C) is the general solution of the differential equation g(t)y′ = y so that

φ(t, C) = C exp

[∫ t

t0

dτ

g(τ)

]
, (3.4)

fi1(t) ≡ 1, fih(t), h ≥ 2, i = 1, . . . , n are unknown functions, C/= 0 is a constant.
Consider the following differential equation:

g(t)y′ = qy + p(t). (3.5)

Diblı́k [3] proved asymptotic estimates of the solution of (3.5) which we can be formulated
as follows.

Theorem 3.1. Assume that

(I) Let q be a constant, q < 0, g(t) ∈ C1(J), g(t) > 0, limt→ t+0
g(t) = 0, g ′(t) ∼ ψ1(t)gλ1(t) as

t → t+0 , λ1 > 0, limt→ t+0
ψ1(t)gτ(t) = 0, τ is any positive number.

(II) p(t) ∈ C(J), p(t) = b0(t)gλ(t) + O(b1(t)gλ+ε(t)), ε > 0, limt→ t+0
bm(t)g ′(t) = 0,

m = 0, 1, b0(t) ∈ C(J), b0(t)/= 0, b′0(t) ∼ ψ2(t)gλ2(t) as t → t+0 , λ2 + 1 > 0,
limt→ t+0

ψ2(t)gτ(t) = 0, limt→ t+0
gτ(t)(b0(t))

−1 = 0.
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Then (3.5) has a unique solution on (0, t], 0 < t ≤ t0, satisfying asymptotic estimates

y(x) =
−1
q
b0(x)gλ(x) +O

(
gν(x)

)
, y′(x) = O

(
gν−1(x)

)
, (3.6)

where ν ∈ (λ, λ + min{λ1, λ2 + 1, ε}).

Now we will show the results of Theorem 3.1. regarding only differential equation
(3.5) we can apply to system of integrodifferential equations (3.1).

Substituting (3.3) into (3.1) and comparing the terms with the same powers of φ(t, C),
we obtain the following system of recurrence equations:

g(t)f ′
ih = (1 − h)fih + φ−h(t, C)

∫ t

0+
Rih(t, s)ds, (3.7)

h ≥ 2, i = 1, . . . , n and

Rih(t, s) = Rih

[
f11(t), . . . , fih−1(t), . . . , fn1(t), . . . , fnh−1(t),

f11(s), . . . , f1h−1(s), . . . , fn1(s), . . . , fnh−1(s)
]
.

(3.8)

Denote

pih(t) = φ−h(t, C)
∫ t

0+
Rih(t, s)ds, (3.9)

then it is obvious that the recurrence equations

g(t)f ′
ih = (1 − h)fih + pih(t) (3.10)

h ≥ 2, i = 1, . . . , n have the same form as (3.5) with the constant q = 1 − h. Hence we can
apply Theorem 3.1, after the modification of assumption (II) of Theorem 3.1 for indices h ≥ 2,
i = 1, . . . , n, to recurrence (3.10) which we will demonstrate with the following example.

Example 3.2. Consider the following system of integrodifferential equations:

t2y′
1 = y1 +

∫ t

0+

1
t3
y1(s)y2(s)ds,

t2y′
2 = y2 +

∫ t

0+

√
ty1(t)y2(s)ds.

(3.11)

System (3.11) has the form of system (3.1) for

σ1ω1 = (0, 0, 1, 1), uσ1ω1(t) =
1
t3
, vσ1ω1(s) = 1, N1 = 2

σ2ω2 = (1, 0, 0, 1), uσ2ω2(t) =
√
t, vσ2ω2(s) = 1, N2 = 2.

(3.12)
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We will construct a solution of system (3.11) in the following form:

y1 =
∞∑

k=1

f1k(t)φk(t, C), y2 =
∞∑

k=1

f2k(t)φk(t, C), (3.13)

where φ(t, C) is the general solution of the equation t2y′ = y. We will demonstrate the
calculation of coefficients fih for h = 3. Substituting (3.13) in (3.11) and comparing the terms
with the same powers of φ(t, C), we obtain the following system of recurrence equations:

φ1(t, C): 1 = 1,

1 = 1.
(3.14)

φ2(t, C): t2f ′
12 = −f12 + φ−2(t, C)

∫ t

0+

1
t3
φ2(s, C)ds,

t2f ′
22 = −f22 + φ−2(t, C)

∫ t

0+

√
t φ(t, C)φ(s, C)ds.

(3.15)

φ3(t, C): t2f ′
13 = −2f13 + φ−3(t, C)

∫ t

0+

1
t3
[
f12(s) + f22(s)

]
φ3(s, C)ds,

t2f ′
23 = −2f23 + φ−3(t, C)

∫ t

0+

√
t
[
f12(t)φ2(t, C)φ(s, C)

+f22(s)φ2(s, C)φ(t, C)
]
ds.

(3.16)

Put

u1 = φ−2(t, C)
∫ t

0+
φ2(s, C)ds, u2 = φ−1(t, C)

∫ t

0+
φ(s, C)ds. (3.17)

Differentiating both equations (3.17), we obtain the following differential equations:

t2u′1 = −2u1 + t2, (3.18)

t2u′2 = −u2 + t2. (3.19)

Equation (3.18) satisfies assumptions of Theorem 3.1. with following functions and
coefficients:

a = −2, b0(t) = 1, gλ(t) =
(
t2
)1 ⇒ λ = 1, b1(t) = 0,

g ′(t) =
(
t2
)′

= 2
(
g(t)

)1/2 ⇒ λ1 =
1
2
, b′0(t) = 0 · gλ2(t).

(3.20)
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Hence we can choose a constant λ2 + 1 > 1/2 and similarly ε > 1/2. By Theorem 3.1.,
we have

u1 =
1
2
t2 +O

(
t2ν1

)
, ν1 ∈

(
1,

3
2

)
. (3.21)

Second equation (3.19) is different from (3.18) only in the constant a = −1. Thus

u2 = t2 +O
(
t2ν2

)
, ν2 ∈

(
1,

3
2

)
. (3.22)

Substituting solutions (3.21) and (3.22) into (3.15) instead of integral terms, we obtain for
unknown coefficients f12, f22 the following differential equations:

t2f ′
12 = −f12 +

1
2t

+O
(
t2ν1−3

)
, (3.23)

t2f ′
22 = −f22 + t5/2 +O

(
t2ν2+1/2

)
. (3.24)

For (3.23), we can put

a = −1, b0(t) =
1
2
, gλ(t) =

(
t2
)−1/2

, λ = −1
2
, b1(t) = 1,

ε = ν1 − 1, g ′(t) =
(
t2
)′

= 2
(
g(t)

)1/2 ⇒ λ1 =
1
2
, b′0(t) = 0 · gλ2(t).

(3.25)

Then we can choose a constant λ2 + 1 > 1/2. By Theorem 3.1., we get

f12(t) =
1
2t

+O
(
t2ν12

)
, f ′

12(t) = O
(
t2ν12−2

)
, ν12 ∈

(
−1

2
, 0
)
. (3.26)

Similarly for (3.24), we can put a = −1, b0(t) = 1, gλ(t) = (t2)5/4, λ = 5/4, b1(t) = 1, ε = ν2 − 1,

g ′(t) =
(
t2
)′

= 2
(
g(t)

)1/2 =⇒ λ1 =
1
2
, b′0(t) = 0 · gλ2(t). (3.27)

Then we can choose a constant λ2 + 1 > 1/2. By Theorem 3.1., we have

f22(t) = t5/2 +O
(
t2ν22

)
, f ′

22(t) = O
(
t2ν22−2

)
, ν22 ∈

(
5
4
,

7
4

)
. (3.28)
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Substituting coefficients f12, f22 into (3.16) and using the same method as in the calculation
of coefficients f12, f22, we have

f13(t) =
1

12t2
+O

(
t2ν13

)
, f ′

13(t) = O
(
t2ν13−1

)
, ν13 ∈

(
−1,−1

2

)
,

f23(t) =
1
4
t3/2 +O

(
t2ν23

)
, f ′

23(t) = O
(
t2ν23−1

)
, ν23 ∈

(
3
4
,

5
4

)
.

(3.29)

Thus the solution of system (3.11) has for h = 3 the following asymptotic expansions:

y1 ≈ φ(t, C) +
[

1
2t

+O
(
t2ν12

)]
φ2(t, C) +

[
1

12t2
+O

(
t2ν13

)]
φ3(t, C),

y2 ≈ φ(t, C) +
[
t5/2 +O

(
t2ν22

)]
φ2(t, C) +

[
1
4
t3/2 +O

(
t2ν23

)]
φ3(t, C).

(3.30)
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Three-point boundary value problems of second-order differential equation with a p-Laplacian on
finite and infinite intervals are investigated in this paper. By using a new continuation theorem,
sufficient conditions are given, under the resonance conditions, to guarantee the existence of
solutions to such boundary value problems with the nonlinear term involving in the first-order
derivative explicitly.

1. Introduction

This paper deals with the three-point boundary value problem of differential equation with
a p-Laplacian

(
Φp

(
x′))′ + f

(
t, x, x′) = 0, 0 < t < T,

x(0) = x
(
η
)
, x′(T) = 0,

(1.1)

where Φp(s) = |s|p−2s, p > 1, η ∈ (0, T) is a constant, T ∈ (0,+∞], and x′(T) = limt→ T−x′(t).
Boundary value problems (BVPs) with a p-Laplacian have received much attention

mainly due to their important applications in the study of non-Newtonian fluid theory, the
turbulent flow of a gas in a porous medium, and so on [1–10]. Many works have been done
to discuss the existence of solutions, positive solutions subject to Dirichlet, Sturm-Liouville,
or nonlinear boundary value conditions.
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In recent years, many authors discussed, solvability of boundary value problems at
resonance, especially the multipoint case [3, 11–15]. A boundary value problem of differential
equation is said to be at resonance if its corresponding homogeneous one has nontrivial
solutions. For (1.1), it is easy to see that the following BVP

(
Φp

(
x′))′ = 0, 0 < t < T,

x(0) = x
(
η
)
, x′(T) = 0

(1.2)

has solutions {x | x = a, a ∈ R}. When a/= 0, they are nontrivial solutions. So, the problem in
this paper is a BVP at resonance. In other words, the operator L defined by Lx = (Φp(x′))′ is
not invertible, even if the boundary value conditions are added.

For multi-point BVP at resonance without p-Laplacians, there have been many exis-
tence results available in the references [3, 11–15]. The methods mainly depend on the
coincidence theory, especially Mawhin continuation theorem. At most linearly increasing
condition is usually adopted to guarantee the existence of solutions, together with other suita-
ble conditions imposed on the nonlinear term.

On the other hand, for BVP at resonance with a p-Laplacian, very little work has been
done. In fact, when p /= 2, Φp(x) is not linear with respect to x, so Mawhin continuation
theorem is not valid for some boundary conditions. In 2004, Ge and Ren [3, 4] established
a new continuation theorem to deal with the solvability of abstract equation Mx = Nx,
where M, N are nonlinear maps; this theorem extends Mawhin continuation theorem. As an
application, the authors discussed the following three-point BVP at resonance

(
Φp

(
u′
))′ + f(t, u) = 0, 0 < t < 1,

u(0) = 0 = G
(
u
(
η
)
, u(1)

)
,

(1.3)

where η ∈ (0, 1) is a constant andG is a nonlinear operator. Through some special direct-sum-
spaces, they proved that (1.3) has at least one solution under the following condition.

There exists a constant D > 0 such that f(t,D) < 0 < f(t,−D) for t ∈ [0, 1] and
G(x,D) < 0 < G(x,−D) or G(x,D) > 0 > G(x,−D) for |x| � D.

The above result naturally prompts one to ponder if it is possible to establish similar
existence results for BVP at resonance with a p-Laplacian under at most linearly increasing
condition and other suitable conditions imposed on the nonlinear term.

Motivated by the works mentioned above, we aim to study the existence of solutions
for the three-point BVP (1.1). The methods used in this paper depend on the new Ge-
Mawhin’s continuation theorem [3] and some inequality techniques. To generalize at most
linearly increasing condition to BVP at resonance with a p-Laplacian, a small modification
is added to the new Ge-Mawhin’s continuation theorem. What we obtained in this paper is
applicable to BVP of differential equations with nonlinear term involving in the first-order
derivative explicitly. Here we note that the techniques used in [3] are not applicable to such
case. An existence result is also established for the BVP at resonance on a half-line, which is
new for multi-point BVPs on infinite intervals [16, 17].

The paper is organized as follows. In Section 2, we present some preliminaries. In
Section 3, we discuss the existence of solutions for BVP (1.1) when T is a real constant, which
we call the finite case. In Section 4, we establish an existence result for the bounded solutions
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to BVP (1.1) when T = +∞, which we call the infinite case. Some explicit examples are also
given in the last section to illustrate our main results.

2. Preliminaries

For the convenience of the readers, we provide here some definitions and lemmas which
are important in the proof of our main results. Ge-Mawhin’s continuation theorem and the
modified one are also stated in this section.

Lemma 2.1. Let Φp(s) = |s|p−2s, p > 1. Then Φp satisfies the properties.

(1) Φp is continuous, monotonically increasing, and invertible. MoreoverΦ−1
p = Φq with q > 1

a real number satisfying 1/p + 1/q = 1;

(2) for any u, v � 0,

Φp(u + v) � Φp(u) + Φp(v), if p < 2,

Φp(u + v) � 2p−2(Φp(u) + Φp(v)
)
, if p � 2.

(2.1)

Definition 2.2. Let R2 be an 2-dimensional Euclidean space with an appropriate norm | · |. A
function f : [0, T] × R2 → R is called Φq-Carathéodory if and only if

(1) for each x ∈ R2, t �→ f(t, x) is measurable on [0, T];

(2) for a.e. t ∈ [0, T], x �→ f(t, x) is continuous on R2;

(3) for each r > 0, there exists a nonnegative function ϕr ∈ L1[0, T] with ϕr,q(t) :=
Φq(
∫T
t ϕr(τ)dτ) ∈ L1[0, T] such that

|x| � r implies
∣∣f(t, x)

∣∣ϕr(t), a.e. t ∈ [0, T]. (2.2)

Next we state Ge-Mawhin’s continuation theorem [3, 4].

Definition 2.3. Let X, Z be two Banach spaces. A continuous opeartor M : X ∩ domM →
Z is called quasi-linear if and only if ImM is a closed subset of Z and KerM is linearly
homeomorphic to Rn, where n is an integer.

Let X2 be the complement space of KerM in X, that is, X = KerM ⊕ X2. Ω ⊂ X an
open and bounded set with the origin 0 ∈ Ω.

Definition 2.4. A continuous operator Nλ : Ω → Z, λ ∈ [0, 1] is said to be M-compact in Ω if
there is a vector subspace Z1 ⊂ Z with dimZ1 = dim KerM and an operator R : Ω × [0, 1] →
X2 continuous and compact such that for λ ∈ [0, 1],

(I −Q)Nλ

(
Ω
)
⊂ ImM ⊂ (I −Q)Z, (2.3)

QNλx = 0, λ ∈ (0, 1) ⇐⇒ QNx = 0, ∀x ∈ Ω, (2.4)

R(·, 0) is the zero operator, R(·, λ)|Σλ = (I − P)|Σλ , (2.5)

M[P + R(·, λ)] = (I −Q)Nλ, (2.6)
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where P , Q are projectors such that ImP = KerM and ImQ = Z1, N = N1, Σλ = {x ∈ Ω,
Mx =Nλx}.

Theorem 2.5 (Ge-Mawhin’s continuation theorem). Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) be two Banach
spaces, Ω ⊂ X an open and bounded set. Suppose M : X ∩ dom M → Z is a quasi-linear operator
andNλ : Ω → Z, λ ∈ [0, 1] isM-compact. In addition, if

(i) Mx/=Nλx, for x ∈ domM ∩ ∂Ω, λ ∈ (0, 1),

(ii) QNx/= 0, for x ∈ KerM ∩ ∂Ω,

(iii) deg(JQN,Ω ∩ KerM, 0)/= 0,

whereN =N1. Then the abstract equationMx =Nx has at least one solution in dom M ∩Ω.

According to the usual direct-sum spaces such as those in [3, 5, 7, 11–13], it is difficult
(maybe impossible) to define the projectorQ under the at most linearly increasing conditions.
We have to weaken the conditions of Ge-Mawhin continuation theorem to resolve such
problem.

Definition 2.6. Let Y1 be finite dimensional subspace of Y .Q : Y → Y1 is called a semiprojector
if and only if Q is semilinear and idempotent, where Q is called semilinear provided Q(λx) =
λQ(x) for all λ ∈ R and x ∈ Y .

Remark 2.7. Using similar arguments to those in [3], we can prove that when Q is a semi-
projector, Ge-Mawhin’s continuation theorem still holds.

3. Existence Results for the Finite Case

Consider the Banach spaces X = C1[0, T] endowed with the norm ‖x‖X = max{‖x‖∞, ‖x′‖∞},
where ‖x‖∞ = max0�t�T |x(t)| and Z = L1[0, T] with the usual Lebesgue norm denoted by
‖ · ‖z. Define the operator M by

M : domM ∩X −→ Z, (Mx)(t) =
(
Φp(x′(t))

)′
, t ∈ [0, T], (3.1)

where domM = {x ∈ C1[0, T],Φp(x′) ∈ C1[0, T], x(0) = x(η), x′(T) = 0}. Then by direct
calculations, one has

KerM = {x ∈ domM ∩X : x(t) = c ∈ R, t ∈ [0, T]},

ImM =

{
y ∈ Z :

∫η

0
Φq

(∫T

s

y(τ)dτ

)
ds = 0

}
.

(3.2)

Obviously, KerM � R and ImM is close. So the following result holds.

Lemma 3.1. LetM be defined as (3.1), thenM is a quasi-linear operator.
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Set the projector P and semiprojector Q by

P : X −→ X, (Px)(t) = x(0), t ∈ [0, T], (3.3)

Q : Z −→ Z,
(
Qy
)
(t) =

1
ρ
Φp

(∫η

0
Φq

(∫T

s

y(τ)dτ

)
ds

)
, t ∈ [0, T], (3.4)

where ρ = ((1/q)(Tq − (T − η)q))p−1. Define the operator Nλ : X → Z, λ ∈ [0, 1] by

(Nλx)(t) = −λf(t, x(t), x′(t)), t ∈ [0, T]. (3.5)

Lemma 3.2. Let Ω ⊂ X be an open and bounded set. If f is a Carathéodory function, Nλ is M-
compact in Ω.

Proof. Choose Z1 = ImQ and define the operator R : Ω × [0, 1] → KerP by

R(x, λ)(t) =
∫ t

0
Φq

(∫T

s

λ
(
f(τ, x(τ), x′(τ)) − (Qf)(τ))dτ

)
ds, t ∈ [0, T]. (3.6)

Obviously, dimZ1 = dim KerM = 1. Since f is a Carathéodory function, we can prove
that R(·, λ) is continuous and compact for any λ ∈ [0, 1] by the standard theories.

It is easy to verify that (2.3)–(2.5) in Definition 2.3 hold. Besides, for any x ∈ domM ∩
Ω,

M[Px + R(x, λ)](t) =

(
Φp

[
x(0) +

∫ t

0
Φq

(∫T

s

λ
(
f
(
τ, x(τ), x′(τ)

)
dτ − (Qf)(τ))dτ

)
ds

]′)′

= ((I −Q)Nλx)(t), t ∈ [0, T].
(3.7)

So Nλ is M-compact in Ω.

Theorem 3.3. Let f : [0, T] × R2 → R be a Carathéodory function. Suppose that

(H1) there exist e(t) ∈ L1[0, T] and Carathéodory functions g1, g2 such that

∣∣f(t, u, v)
∣∣ � g1(t, u) + g2(t, v) + e(t) for a.e. t ∈ [0, T] and all (u, v) ∈ R2,

lim
x→∞

∫T
0 gi(τ, x)dτ
Φp(|x|) = ri ∈ [0,+∞), i = 1, 2;

(3.8)

(H2) there exists B1 > 0 such that for all tη ∈ [0, η] and x ∈ C1[0, T] with ‖x‖∞ > B1,

∫T

tη

f
(
τ, x(τ) , x′(τ)

)
dτ /= 0; (3.9)
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(H3) there exists B2 > 0 such that for each t ∈ [0, T] and u ∈ Rwith |u| > B2 either uf(t, u, 0) �
0 or uf(t, u, 0) � 0. Then BVP (1.1) has at least one solution provided

α1 := 2q−2
(
Tp−1r1 + r2

)q−1
< 1, if p < 2,

α2 :=
(

2p−2Tp−1r1 + r2

)q−1
< 1, if p � 2.

(3.10)

Proof. Let X, Z, M, Nλ, P , and Q be defined as above. Then the solutions of BVPs (1.1)
coincide with those of Mx =Nx, where N =N1. So it is enough to prove that Mx =Nx has
at least one solution.

Let Ω1 = {x ∈ domM : Mx =Nλx, λ ∈ (0, 1)}. If x ∈ Ω1, then QNλx = 0. Thus,

Φp

(∫η

0
Φq

(∫T

s

f
(
τ, x(τ), x′(τ)

)
dτ

)
ds

)
= 0. (3.11)

The continuity of Φp and Φq together with condition (H2) implies that there exists ξ ∈ [0, T]
such that |x(ξ)| � B1. So

|x(t)| � |x(ξ)| +
∫ t

ξ

∣∣x′(s)
∣∣ds � B1 + T‖x′‖∞, t ∈ [0, T]. (3.12)

Noting that Mx =Nλx, we have

x′(t) = Φq

(∫T

t

λf
(
τ, x(τ), x′(τ)

)
dτ

)
,

x(t) = x(0) +
∫ t

0
Φq

(∫T

s

λf
(
τ, x(τ), x′(τ)

)
dτ

)
ds.

(3.13)

If p < 2, choose ε > 0 such that

α1,ε := 2q−2
(
Tp−1(r1 + ε) + (r2 + ε)

)q−1
< 1. (3.14)

For this ε > 0, there exists δ > 0 such that

∫T

0
gi(τ, x)dτ � (ri + ε)Φp(|x|) ∀|x| > δ, i = 1, 2. (3.15)

Set

gi,δ =
∫T

0

(
max
|x|�δ

gi(τ, x)
)
dτ, i = 1, 2. (3.16)
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Noting (3.12)-(3.13), we have

∣∣x′(t)
∣∣ =

∣∣∣∣∣Φq

(∫T

t

λf
(
τ, x(τ), x′(τ)

)
dτ

)∣∣∣∣∣ � Φq

(∫T

0

∣∣f
(
τ, x(τ), x′(τ)

)∣∣dτ
)

� Φq

(∫T

0

(
g1(τ, x) + g2

(
τ, x′) + e(τ)

)
dτ

)

� Φq

(
(r1 + ε)Φp(|x|) + (r2 + ε)Φp

(∣∣x′∣∣) + g1,δ + g2,δ + ‖e‖L1

)

� α1,ε
∥∥x′∥∥

∞ + Bδ,

(3.17)

where Bδ = 2q−2((r1 + ε)B
p−1
1 + g1,δ + g2,δ + ‖e‖L1)

q−1
. So

∥∥x′∥∥
∞ � Bδ

1 − α1,ε
:= B′. (3.18)

And then ‖x‖X � max{B1 + TB′, B′} := B.
Similarly, if p � 2, we can obtain ‖x‖X � max{B1 + TB̃′, B̃′} := B̃, where

B̃′ =

(
2p−2(r1 + ε)B

p−1
1 + g1,δ + g2,δ + ‖e‖L1

)q−1

1 − α2,ε
,

α2,ε =
(

2p−2Tp−1(r1 + ε) + (r2 + ε)
)q−1

.

(3.19)

Above all, Ω1 is bounded.
Set Ω2,i := {x ∈ KerM : (−1)iμx + (1 − μ)JQNx = 0, μ ∈ [0, 1]}, i = 1, 2, where

J : ImQ → KerM is a homeomorphism defined by Ja = a for any a ∈ R. Next we show
that Ω2,1 is bounded if the first part of condition (H3) holds. Let x ∈ Ω2,1, then x = a for some
a ∈ R and

μa =
(
1 − μ)1

ρ
Φp

(∫η

0
Φq

(∫T

s

f(τ, a, 0)dτ

)
ds

)
. (3.20)

If μ = 0, we can obtain that |a| � B1. If μ/= 0, then |a| � B2. Otherwise,

μa2 = a
(
1 − μ)1

ρ
Φp

(∫η

0
Φq

(∫T

s

f(τ, a, 0)dτ

)
ds

)

=
(
1 − μ)1

ρ
Φp

(∫η

0
Φq

(∫T

s

af(τ, a, 0)dτ

)
ds

)
� 0,

(3.21)

which is a contraction. So ‖x‖X = |a| � max{B1, B2} and Ω2,1 is bounded. Similarly, we can
obtain that Ω2,2 is bounded if the other part of condition (H3) holds.
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Let Ω = {x ∈ X : ‖x‖X < max{B(B̃), B1, B2} + 1}. Then Ω1 ∪ Ω2,1 (∪ Ω2,2) ⊂ Ω. It is
obvious that Mx/=Nλx for each (x, λ) ∈ (domM ∩ ∂Ω) × (0, 1).

Take the homotopy Hi : (KerM ∩Ω) × [0, 1] → X by

Hi

(
x, μ
)
= (−1)iμx +

(
1 − μ)JQNx, i = 1 or 2. (3.22)

Then for each x ∈ KerM ∩ ∂Ω and μ ∈ [0, 1], Hi(x, μ)/= 0, so by the degree theory

deg = {JQN,KerM ∩Ω, 0} = deg
{
(−1)iI,KerM ∩Ω, 0

}
/= 0. (3.23)

Applying Theorem 2.5 together with Remark 2.7, we obtain that Mx = Nx has a solution in
domM ∩Ω. So (1.1) is solvable.

Corollary 3.4. Let f : [0, T] × R2 → R be a Carathéodory function. Suppose that (H2), (H3) in
Theorem 3.3 hold. Suppose further that

(H1′) there exist nonnegative functions gi ∈ L1[0, T], i = 0, 1, 2 such that

∣∣f(t, u, v)
∣∣ � g1(t)|u|p−1 + g2(t)|v|p−1 + g0(t) for a.e. t ∈ [0, T] and all (u, v) ∈ R2.

(3.24)

Then BVP (1.1) has at least one solution provided

2q−2
(
Tp−1∥∥g1

∥∥
L1 +
∥∥g2
∥∥
L1

)q−1
< 1, if p < 2,

(
2p−2Tp−1∥∥g1

∥∥
L1 +
∥∥g2
∥∥
L1

)q−1
< 1, if p � 2.

(3.25)

If f is a continuous function, we can establish the following existence result.

Theorem 3.5. Let f : [0, T] × R2 → R be a continuous function. Suppose that (H1), (H3) in
Theorem 3.3 hold. Suppose further that

(H2′) there exist B3, a > 0, b, c � 0 such that for all u ∈ R with |u| > B3, it holds that

∣∣f(t, u, v)
∣∣ � a|u| − b|v| − c ∀t ∈ [0, T] and all v ∈ R. (3.26)

Then BVP (1.1) has at least one solution provided

2q−2

((
b

a
+ T
)p−1

r1 + r2

)q−1

< 1, if p < 2,

(
2p−2
(
b

a
+ T
)p−1

r1 + r2

)q−1

< 1, if p � 2.

(3.27)
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Proof. If x ∈ domM such that Mx = Nλx for some λ ∈ (0, 1), we have QNλx = 0. The conti-
nuity of f and Φq imply that there exists ξ ∈ [0, T] such that f(ξ, x(ξ), x′(ξ)) = 0. From (H2′),
it holds

|x(ξ)| � max
{
B3,

b

a

∥∥x′∥∥
∞ +

c

a

}
. (3.28)

Therefore,

|x(t)| � |x(ξ)| +
∫ t

ξ

∣∣x′(s)
∣∣ds �

(
b

a
+ T
)∥∥x′∥∥

∞ +
c

a
+ B1, t ∈ [0, T]. (3.29)

With a similar way to those in Theorem 3.3, we can prove that (1.1) has at least one solution.

Corollary 3.6. Let f : [0, T] × R2 → R be a continuous function. Suppose that conditions in
Corollary 3.4 hold except (H2) changed with (H2′). Then BVP (1.1) is also solvable.

4. Existence Results for the Infinite Case

In this section, we consider the BVP (1.1) on a half line. Since the half line is noncompact, the
discussions are more complicated than those on finite intervals.

Consider the spaces X and Z defined by

X =
{
x ∈ C1[0,+∞), lim

t→+∞
x(t) exists, lim

t→+∞
x′(t) exists

}
,

Z =
{
y ∈ L1[0,+∞),

∫+∞

0
Φq

(∫+∞

s

∣∣y(τ)
∣∣dτ
)
ds < +∞

}
,

(4.1)

with the norms ‖x‖X = max{‖x‖∞, ‖x′‖∞} and ‖y‖Z = ‖y‖L1 , respectively, where ‖x‖∞ =
sup0�t<+∞|x(t)|. By the standard arguments, we can prove that (X, ‖ · ‖X) and (Z, ‖ · ‖Z) are
both Banach spaces.

Let the operators M,Nλ, and P be defined as (3.1), (3.3), and (3.5), respectively,
expect T replaced by +∞. Set ω(t) = ((1 − e−(q−1)η)/(q − 1))

1−p
e−t, t ∈ [0,+∞) and define the

semiprojector Q : Y → Y by

(
Qy
)
(t) = w(t)Φp

(∫η

0
Φq

(∫+∞

s

y(τ)dτ
)
ds

)
, t ∈ [0,+∞). (4.2)

Similarly, we can show that M is a quasi-linear operator. In order to prove that Nλ is
M-compact in Ω, the following criterion is needed.

Theorem 4.1 (see [16]). Let M ⊂ C∞ = {x ∈ C[0,+∞), lim t→+∞x(t) exists}. Then M is rela-
tively compact if the following conditions hold:

(a) all functions fromM are uniformly bounded;

(b) all functions fromM are equicontinuous on any compact interval of [0,+∞);

(c) all functions fromM are equiconvergent at infinity, that is, for any given ε > 0, there exists
a T = T(ε) > 0 such that |f(t) − f(+∞)| < ε, for all t > T , f ∈M.
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Lemma 4.2. Let Ω ⊂ X an open and bounded set with 0 ∈ Ω. If f is a Φq-Carathéodory function,
Nλ isM-compact in Ω.

Proof. Let Z1 = ImQ and define the operator R : Ω × [0, 1] → KerP by

R(x, λ)(t) =
∫ t

0
Φq

(∫+∞

s

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf)(τ))dτ
)
ds, t ∈ [0,+∞). (4.3)

We just prove that R(·, λ) : Ω × [0, 1] → X is what we need. The others are similar and are
omitted here.

Firstly, we show that R is well defined. Let x ∈ Ω, λ ∈ [0, 1]. Because Ω is bounded,
there exists r > 0 such that for any x ∈ Ω, ‖x‖X � r. Noting that f is a Φq-Carathéodory
function, there exists ϕr ∈ L1[0,+∞) with ϕr,q ∈ L1[0,+∞) such that

∣∣f
(
t, x(t), x′(t)

)
�
∣∣ϕr(t), a.e. t ∈ [0,+∞). (4.4)

Therefore

|R(x, λ)(t)| =
∣∣∣∣∣

∫ t

0
Φq

(∫+∞

s

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf)(τ))dτ
)
ds

∣∣∣∣∣

�
∫+∞

0
Φq

(∫+∞

s

(
ϕr(τ) + Υrω(τ)

)
dτ

)
ds < +∞, ∀t ∈ [0,+∞),

(4.5)

where Υr = Φp(
∫η

0 Φq(
∫+∞
s ϕr(τ)dτ)ds). Meanwhile, for any t1, t2 ∈ [0,+∞), we have

|R(x, λ)(t1) − R(x, λ)(t2)| �
∫ t2

t1

Φq

(∫+∞

s

λ
∣∣f
(
τ, x(τ), x′(τ)

) − (Qf)(τ)∣∣dτ
)
ds

�
∫ t2

t1

Φq

(∫+∞

s

(
ϕr(τ) + Υrω(τ)

)
dτ

)
ds

−→ 0, as t1 −→ t2,

(4.6)

∣∣∣∣∣

∫ t2

t1

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf)(τ))dτ
∣∣∣∣∣ �
∫ t2

t1

(
ϕr(τ) + Υrω(τ)

)
dτ −→ 0, as t1 −→ t2.

(4.7)

The continuity of Φq concludes that

∣∣R(x, λ)′(t1) − R(x, λ)′(t2)
∣∣ −→ 0, as t1 −→ t2. (4.8)

It is easy to see that limt→+∞R(x, λ)(t) exists and limt→+∞R(x, λ)′(t) = 0. So R(x, λ) ∈ X.
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Next, we verify that R(·, λ) is continuous. Obviously R(x, λ) is continuous in λ for any
x ∈ Ω. Let λ ∈ [0, 1], xn → x in Ω as n → +∞. In fact,

∣∣∣∣

∫+∞

0

(
f
(
τ, xn, x

′
n

) − f(τ, x, x′))dτ
∣∣∣∣ � 2

∥∥ϕr
∥∥
L1 ,

∣∣∣∣∣

∫ t

0

[
Φq

(∫+∞

s

f
(
τ, xn, x

′
n

)
dτ

)
−Φq

(∫+∞

s

f
(
τ, x, x′)dτ

)]
ds

∣∣∣∣∣ � 2
∥∥ϕr,q
∥∥
L1 .

(4.9)

So by Lebesgue Dominated Convergence theorem and the continuity of Φq, we can obtain

‖R(xn, λ) − R(x, λ)‖X −→ 0, as n −→ +∞. (4.10)

Finally, R(·, λ) is compact for any λ ∈ [0, 1]. Let U ⊂ X be a bounded set and λ ∈ [0, 1],
then there exists r0 > 0 such that ‖x‖X � r0 for any x ∈ U. Thus we have

‖R(x, λ)‖X = max
{‖R(x, λ)‖∞,

∥∥R′(x, λ)
∥∥
∞
}

� max
{∫+∞

0
Φq

(∫+∞

s

(
ϕr0(τ) + Υr0ω(τ)

)
dτ

)
ds,

Φq

(∫+∞

0

(
ϕr0(τ) + Υω(τ)

)
dτ

)}
,

|R(x, λ)(t) − R(x, λ)(+∞)| =
∣∣∣∣

∫+∞

t

Φq

(∫+∞

s

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf)(τ))dτ
)
ds

∣∣∣∣

�
∫+∞

t

Φq

(∫+∞

s

(
ϕr0(τ) + Υr0ω(τ)

)
dτ

)
ds −→ 0,

uniformly as t −→ +∞,

∣∣R(x, λ)′(t) − R(x, λ)′(+∞)
∣∣ =
∣∣∣∣Φq

(∫+∞

t

λ
(
f
(
τ, x(τ), x′(τ)

) − (Qf)(τ))dτ
)∣∣∣∣

� Φq

(∫+∞

t

(
ϕr0(τ) + Υω(τ)

)
dτ

)
−→ 0,

uniformly as t → +∞.

(4.11)

Those mean that R(·, λ) is uniformly bounded and equiconvergent at infinity. Similarly to
the proof of (4.3) and (4.6), we can show that R(·, λ) is equicontinuous. Through Lemma 4.2,
R(·, λ)U is relatively compact. The proof is complete.

Theorem 4.3. Let f : [0,+∞) × R2 → R be a continuous and Φq-Carathéodory function. Suppose
that
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(H4) there exist functions g0, g1, g2 ∈ L1[0,+∞) such that

∣∣f(t, u, v)
∣∣ � g1(t)|u|p−1 + g2(t)|v|p−1 + g0(t) for a.e. t ∈ [0,+∞) and all (u, v) ∈ R2,

∥∥gi,q
∥∥
L1 :=

∫+∞

0
Φq

(∫+∞

s

∣∣gi(τ)
∣∣dτ
)
ds < +∞, i = 0, 1, 2,

∥∥g1
∥∥

1 :=
∫+∞

0
tp−1∣∣g1(τ)

∣∣dτ < +∞;

(4.12)

(H5) there exists γ > 0 such that for all ζ satisfying

f(ζ, u, v) = 0, f(t, u, v)/= 0, t ∈ [0, ζ), (u, v) ∈ R2, (4.13)

it holds ζ � γ ;

(H6) there exist B4, a > 0, b, c � 0 such that for all u ∈ R with |u| > B4, it holds

∣∣f(t, u, v)
∣∣ � a|u| − b|v| − c ∀t ∈ [0, γ], v ∈ R; (4.14)

(H7) there exists B5 > 0 such that for all t ∈ [0,+∞) and u ∈ Rwith |u| > B5 either uf(t, u, 0) �
0 or uf(t, u, 0) � 0. Then BVP (1.1) has at least one solution provided

max
{

2q−2∥∥g1,q
∥∥
L1 , β1

}
< 1, if p < 2,

max
{∥∥g1,q

∥∥
L1 , β2

}
< 1, if p � 2,

(4.15)

where

β1 := 2q−2

((
b

a
+ γ
)p−1∥∥g1

∥∥
L1 +
∥∥g1
∥∥

1 +
∥∥g2
∥∥
L1

)q−1

,

β2 :=

(
22(p−2)

(
b

a
+ γ
)p−1∥∥g1

∥∥
L1 + 22(q−2)∥∥g1

∥∥
1 +
∥∥g2
∥∥
L1

)q−1

.

(4.16)

Proof. Let X, Z, M, Nλ, P, and Q be defined as above. Let Ω1 = {x ∈ domM : Mx = Nλx,
λ ∈ (0, 1)}. We will prove that Ω1 is bounded. In fact, for any x ∈ Ω1, QNλx = 0, that is,

ω(t) Φp

(∫η

0
Φq

(∫+∞

s

λf
(
τ, x(τ), x′(τ)

)
dτ

)
ds

)
= 0. (4.17)
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The continuity of Φp and Φq together with conditions (H5) and (H6) implies that there exists
ξ � γ such that

|x(ξ)| � max
{
B4,

b

a
‖x′‖∞ +

c

a

}
. (4.18)

So, we have

|x(t)| � |x(ξ)| +
∣∣∣∣∣

∫ t

ξ

x′(s)ds

∣∣∣∣∣ � max
{
B4,

b

a
‖x′‖∞ +

c

a

}
+
(
t + γ
)∥∥x′∥∥

∞, t ∈ [0,+∞).

(4.19)

If p < 2, it holds

|x(t)|p−1 �
((

b

a
+ γ
)p−1

+ tp−1

)
∥∥x′∥∥p−1

∞ +
( c
a
+ B4

)p−1
, t ∈ [0,+∞). (4.20)

Therefore

∣∣x′(t)
∣∣ =
∣∣∣∣Φq

(∫+∞

t

λf
(
τ, x(τ), x′(τ)

)
dτ

)∣∣∣∣

� Φq

(∫+∞

0

(
g1(τ)|x(τ)|p−1 + g2(τ)

∣∣x′(τ)
∣∣p−1 + g0(τ)

)
dτ

)

� β1
∥∥x′∥∥

∞ + 2q−2
(
(c/a + B4)

p−1∥∥g1
∥∥
L1 +
∥∥g0
∥∥
L1

)q−1
, t ∈ [0,+∞)

(4.21)

concludes that

∥∥x′∥∥
∞ �

2q−2
(
(c/a + B4)

p−1∥∥g1
∥∥
L1 +
∥∥g0
∥∥
L1

)q−1

1 − β1
:= C. (4.22)

Meanwhile

|x(t)| =
∣∣∣∣∣x(0) +

∫ t

0
Φq

(∫+∞

s

λf
(
τ, x(τ), x′(τ)

)
dτ

)
ds

∣∣∣∣∣

� |x(0)| +
∫+∞

0
Φq

(∫+∞

s

(
g1|x|p−1 + g2

∣∣x′∣∣p−1 + g0

)
dτ

)
ds

� 2q−2∥∥g1,q
∥∥
L1‖x‖∞ + C0

(4.23)

implies that

‖x‖∞ � C0

1 − 2q−2
∥∥g1,q
∥∥
L1

, (4.24)

where C0 = (b/a + γ + 22(q−2)‖g2,q‖L1)C + B4 + c/a + 22(q−2)‖g0,q‖L1 .
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If p � 2, we can prove that

∥∥x′∥∥
∞ �

(
2p−2(B4 + c/a)

p−1∥∥g1
∥∥
L1 +
∥∥g0
∥∥
L1

)q−1

1 − β2
:= C̃,

‖x‖∞ �

(
b/a + γ +

∥∥g2,q
∥∥
L1

)
C̃ + B4 + c/a +

∥∥g0,q
∥∥
L1

1 − ∥∥g1,q
∥∥
L1

.

(4.25)

So Ω1 is bounded. With the similar arguments to those in Theorem 3.3, we can com-
plete the proof.

5. Examples

Example 5.1. Consider the three-point BVPs for second-order differential equations

(
x′(t)
∣∣x′(t)

∣∣)′ = a2(t)x′(t) + a1(t)x2(t) sgnx(t) + a0(t), 0 < t < 1,

x(0) = x
(
η
)
, x′(1) = 0,

(5.1)

where ai(t) ∈ C1[0, 1], i = 0, 1, 2 with a1 = min |a1(t)| > 0.
Take

f(t, u, v) = a1(t)u2 sgnu + a2(t)v + a0(t),

g1(t, u) = |a1(t)|u2,

g2(t, v) = |a2(t)||v|,

(5.2)

and e(t) = |a0(t)|. Then, we have

∣∣f(t, u, v)
∣∣ � g1(t, u) + g2(t, v) + e(t), for (t, u, v) ∈ [0, 1] × R2

max
0�t�1

g1(t, x)
|x| = ‖a1‖L1 ∈ [0,+∞),

max
0�t�1

g1(t, x)
|x| = 0,

∣∣f(t, u, v)
∣∣ � a1|u| − ‖a2‖∞|v| − ‖a0‖∞, for (t, |u|, v) ∈ [0, T] × [1,+∞) × R,

uf(t, u, 0) = a1(t)|u|3 + a0(t)u � 0, for (t, |u|) ∈ [0, 1] ×
⎡

⎣
√

‖a0‖∞
a1

,+∞
⎞

⎠.

(5.3)

By using Theorem 3.5, we can concluded that BVP (5.1) has at least one solution if

(‖a2‖∞
a1

+ 1
)2

‖a1‖∞ <
1
2
. (5.4)
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Example 5.2. Consider the three-point BVPs for second-order differential equations on a half
line

x′′(t) + e−αtp(t)x(t) + q(t) = 0, 0 < t < +∞,

x(0) = x
(
η
)
, lim

t→+∞
x′(t) = 0,

(5.5)

where α > (1+
√

5)/2, p(t) = max{sin βt, 1/2} and q(t) continuous on [0,+∞) with q(t) > 0 (or
q(t) < 0) on [0, 1) and q ≡ 0 on [1,+∞).

Denote f(t, u) = e−αtp(t)u+ q(t). Set g1(t) = e−αt, g0(t) = q(t). By direct calculations, we
obtain that ‖g1‖L1 = 1/α, ‖g1,q‖L1 = ‖g1‖1 = 1/α2 and ‖g0,q‖L1 � ‖g0‖L1 � ‖q‖∞. Furthermore,

∣∣f(t, u)
∣∣ �
∣∣g1(t)

∣∣|u| + ∣∣g0(t)
∣∣,

∣∣f(t, u)
∣∣ � 1

2
e−α|u| − ∥∥q∥∥∞.

(5.6)

If there exists ξ ∈ [0,+∞) such that f(ξ, u) = 0, then ξ � 1. Otherwise

uf(ξ, u) = e−αξp(ξ)u2 � 1
2
e−αξu2 > 0, ∀u ∈ R \ {0} (5.7)

which is a contraction.
Obviously max{1/α, 1/α + 1/α2} < 1. Meanwhile, it is easy to verify that condition

(H7) holds. So Theorem 4.3 guarantees that (5.5) has at least one solution.
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[2] M. Garcı́a-Huidobro, R. Manásevich, P. Yan, and M. Zhang, “A p-Laplacian problem with a multi-

point boundary condition,” Nonlinear Analysis, vol. 59, no. 3, pp. 319–333, 2004.
[3] W. Ge and J. Ren, “An extension of Mawhin’s continuation theorem and its application to boundary

value problems with a p-Laplacian,” Nonlinear Analysis, vol. 58, no. 3-4, pp. 477–488, 2004.
[4] W. Ge, Boundary Value Problems for Nonlinear Ordinnary Differential Equaitons, Science Press, Beijing,

China, 2007.
[5] D. Jiang, “Upper and lower solutions method and a singular superlinear boundary value problem

for the one-dimensional p-Laplacian,” Computers & Mathematics with Applications, vol. 42, no. 6-7, pp.
927–940, 2001.
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We consider the existence of multiple solutions of the singular elliptic problem −div(|x|−ap
|∇u|p−2∇u) + |u|p−2u/|x|(a+1)p = f |u|r−2u + h|u|s−2u + |x|−bp∗ |u|p∗−2u, u(x) → 0 as |x| → +∞, where
x ∈ R

N , 1 < p < N, a < (N − p)/p, a ≤ b ≤ a + 1, r, s > 1, p∗ = Np/(N − pd), d = a + 1 − b. By
the variational method and the theory of genus, we prove that the above-mentioned problem has
infinitely many solutions when some conditions are satisfied.

1. Introduction and Main Results

In this paper, we consider the existence of multiple solutions for the singular elliptic problem

−div
(
|x|−ap|∇u|p−2∇u

)
+

|u|p−2u

|x|(a+1)p
= f |u|r−2u + h|u|s−2u + |x|−bp∗ |u|p∗−2u, x ∈ R

N,

u(x) −→ 0 as |x| −→ +∞,

(1.1)

where 1 < p < N, a < (N − p)/p, a ≤ b ≤ a + 1, r > 1, p∗ = Np/(N − pd), d = a + 1 − b. f(x)
and h(x) are nonnegative functions in R

N .
In recent years, the existence of multiple solutions on elliptic equations has been

considered by many authors. In [1], Assunção et al. considered the following quasilinear
degenerate elliptic equation:

−div
(
|x|−ap|∇u|p−2∇u

)
+ λ|x|−(a+1)p|u|p−2u = |x|−bq|u|q−2u + f, (1.2)
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where x ∈ R
N, 1 < p < N, q =Np/[N−p(a+1−b)]. When λ = 0, f = εg, where 0 < ε ≤ ε0 and

0 ≤ g ∈ (Lq
b
(RN))∗; the authors proved that problem (1.2) has at least two positive solutions.

Rodrigues in [2] studied the following critical problem on bounded domain Ω ∈ R
N :

−div
(
|x|−ap|∇u|p−2∇u

)
= |x|−bp∗ |u|p∗−2u + |x|−βf |u|r−2u, x ∈ Ω,

u(x) = 0, on ∂Ω.
(1.3)

By the variational method on Nehari manifolds [3, 4], the author proved the existence of at
least two positive solutions and the nonexistence of solutions when some certain conditions
are satisfied. When p = 2 and a = −1, Miotto and Miyagaki in [5] considered the semilinear
Dirichlet problem in infinite strip domains

−Δu + u = λf(x)|u|q−1 + h(x)|u|p−1, x ∈ Ω,

u(x) = 0, on ∂Ω.
(1.4)

The authors also proved that problem (1.4) has at least two positive solutions by the methods
of Nehari manifold. For other references, we refer to [6–11] and the reference therein. In fact,
motivated by [1, 2, 5], we consider the problem (1.1). Since our problem is singular and is
studied in the whole space R

N , the loss of compactness of the Sobolev embedding renders a
variational technique that is more delicate. By the variational method and the theory of genus,
we prove that problem (1.1) has infinitely many solutions when some suitable conditions are
satisfied.

In order to state our result, we introduce some weighted Sobolev spaces. For r, s ≥ 1
and g = g(x) > 0 in RN , we define the spaces Lr(RN, g) and Ls(RN, g) as being the set of
Lebesgue measurable functions u : R

N → R
1, which satisfy

‖u‖r,g = ‖u‖Lr(RN,g) =
(∫

RN

g(x)|u|rdx
)1/r

<∞,

‖u‖s,g = ‖u‖Ls(RN,g) =
(∫

RN

g(x)|u|sdx
)1/s

<∞.

(1.5)

Particularly, when g(x) ≡ 1, we have

‖u‖r = ‖u‖Lr(RN) =
(∫

RN

|u|rdx
)1/r

<∞. (1.6)

We denote the completion of C∞
0 (RN) by X =W1,p

a (RN) with the norm of

‖u‖X =
(∫

RN

|x|−ap|u|pdx
)1/p

, (1.7)

where 1 < p < N and a < (N − p)/p. It is easy to find that X is a reflexive and separable
Banach space with the norm ‖u‖X .
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The following Hardy-Sobolev inequality is due to Caffarelli et al. [12], which is called
Caffarelli-Kohn-Nirenberg inequality. There exist constants S1, S2 > 0 such that

(∫

RN

|x|−bp∗ |u|p∗dx
)p/p∗

≤ S1

∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0

(
R
N
)
, (1.8)

∫

RN

|x|−(a+1)p|u|pdx ≤ S2

∫

RN

|x|−ap|∇u|pdx, ∀u ∈ C∞
0

(
R
N
)
, (1.9)

where p∗ =Np/(N − pd) is called the Sobolev critical exponent.
In the present paper, we make the following assumptions:

(A1) f(x) ∈ Lσ1(RN, g1)
⋂
L∞

loc(R
N \ {0}) for 1 < r < p, where g1 = |x|(a+1)rσ1 , σ1 = p/(p −

r);

(A2) f(x) ∈ Lσ2(RN, g2)
⋂
L∞

loc(R
N\{0}) for p < r < p∗, where g2 = |x|brσ2 , σ2 = p∗/(p∗−r).

(A3) h(x) ∈ Lμ(RN, g3)
⋂
L∞

loc(R
N \{0}) for p < s < p∗, where g3 = |x|μbp∗ , μ = p∗/(p∗ −s).

Then, we give some basic definitions.

Definition 1.1. u ∈ X is said to be a weak solution of (1.1) if for any ϕ ∈ C∞
0 (RN) there holds

∫

RN

(
|x|−ap|∇u|p−2∇u · ∇ϕ +

|u|p−2uϕ

|x|(a+1)p

)
dx =

∫

RN

f |u|r−2uϕdx +
∫

RN

h|u|s−2uϕdx

+
∫

RN

|x|−bp∗ |u|p∗−2uϕdx.

(1.10)

Let I(u) : X → R
1 be the energy functional corresponding to problem (1.1), which is

defined as

I(u) =
1
p

∫

RN

(
|x|−ap|∇u|p + |u|p

|x|(a+1)p

)
dx − 1

r

∫

RN

f |u|rdx − 1
s

∫

RN

h|u|sdx − 1
p∗

∫

RN

|u|p∗

|x|bp∗
dx,

(1.11)

for all u ∈ X. Then the functional I ∈ C1(X,R1) and for all ϕ ∈ X, there holds

〈
I ′(u), ϕ

〉
=
∫

RN

(
|x|−ap|∇u|p−2∇u∇ϕ +

|u|p−2uϕ

|x|(a+1)p

)
dx −

∫

RN

f(x)|u|r−2uϕdx

−
∫

RN

h(x)|u|s−2uϕdx −
∫

RN

|x|−bp∗ |u|p∗−2uϕdx.

(1.12)

It is well known that the weak solutions of problem (1.1) are the critical points of the
functional I(u), see [13]. Thus, to prove the existence of weak solutions of (1.1), it is sufficient
to show that I(u) admits a sequence of critical points in X.

Our main result in this paper is the following.
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Theorem 1.2. Let 1 < p < N, a < (N − p)/p, a ≤ b ≤ a + 1, r > 1, p∗ = Np/(N − pd), d =
a + 1 − b, max{r, p} < s < p∗. Assume (A1)–(A3) are fulfilled. Then problem (1.1) has infinitely
many solutions in X.

2. Preliminary Results

Our proof is based on variational method. One important aspect of applying this method is
to show that the functional I(u) satisfies (PS)c condition which is introduced in the following
definition.

Definition 2.1. Let c ∈ R1 and X be a Banach space. The functional I(u) ∈ C1(X,R) satisfies
the (PS)c condition if for any {un} ⊂ X such that

I(un) −→ c, I ′(un) −→ 0 in X∗ as n −→ ∞ (2.1)

contains a convergent subsequence in X.

The following embedding theorem is an extension of the classical Rellich-Kondrachov
compactness theorem, see [14].

Lemma 2.2. Suppose Ω ⊂ R
N is an open bounded domain with C1 boundary and 0 ∈ Ω. N ≥

3, a < (N − p)/p. Then the embedding W1,p
0 (Ω, |x|−ap) ↪→ Lr(Ω, |x|−α) is continuous if 1 ≤ r ≤

Np/(N − p) and 0 ≤ α ≤ (1 + a)r +N(1 − r/p), and is compact if 1 ≤ r < Np/(N − p) and
0 ≤ α < (1 + a)r +N(1 − r/p).

Now we prove an embedding theorem, which is important in our paper.

Lemma 2.3. Assume (A1)-(A2) and 1 < r < p∗. Then the embedding X ↪→ Lr(RN, f) is compact.

Proof. We split our proof into two cases.
(i) Consider 1 < r < p.
By the Hölder inequality and (1.9) we have that

‖u‖r
Lr(RN,f) =

∫

RN

f(x)|u|rdx ≤
(∫

RN

|u|p|x|−(a+1)pdx

)r/p(∫

RN

fσ1 |x|(a+1)rσ1dx

)1/σ1

=
(∫

RN

|u|p|x|−(a+1)pdx

)r/p∥∥f
∥∥
Lσ1 (RN,g1)

≤ S
r/p

2 ‖u‖rX
∥∥f
∥∥
Lσ1 (RN,g1)

,

(2.2)

where g1 = |x|(a+1)rσ1 , σ1 = p/(p − r). Then the embedding is continuous. Next, we will prove
that the embedding is compact.

Let BR be a ball center at origin with the radius R > 0. For the convenience, we denote
Lr(RN, f) by Z, that is, Z = Lr(RN, f). Assume {un} is a bounded sequence in X. Then {un}
is bounded in X(BR). We choose α = 0 in Lemma 2.2, then there exist u ∈ Z(BR) and a
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subsequence, still denoted by {un}, such that ‖un−u‖Lr(BR) → 0 as n → ∞. We want to prove
that

lim
R→∞

sup
u∈X\{0}

‖u‖Z(BcR)
‖u‖X

= 0, (2.3)

where BcR = R
N \ BR. In fact, we obtain from (2.2) that

‖u‖rZ(BcR) ≤ S
r/p

2 ‖u‖rX
∥∥f
∥∥
Lσ1 (BcR,g1)

. (2.4)

The fact f ∈ Lσ1(RN, g1) shows that

lim
R→∞

∫

BcR

fσ1g1dx = 0. (2.5)

Then (2.4) and (2.5) imply that

‖u‖Z(BcR)
‖u‖X

≤ S1/p
2

∥∥f
∥∥1/r
Lσ1 (BcR,g1)

, (2.6)

which gives (2.3).
In the following, we will prove that un → u strongly in Z(RN).
Since X is a reflexive Banach space and {un} is bounded in X. Then we may assume,

up to a subsequence, that

un ⇀ u in X. (2.7)

In view of (2.3), we get that for any ε > 0 there exists Rε > 0 large enough such that

‖un‖Z(BcRε ) ≤ ε‖un‖X (n = 1, 2, . . .). (2.8)

On the other hand, due to the compact embedding X(BRε) ↪→ Z(Rε) in Lemma 2.2, we have
that

lim
n→∞

‖un − u‖Z(BRε ) = 0. (2.9)

Therefore, there is N0 > 0 such that

‖un − u‖Z(BRε ) < ε, (2.10)
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for n > N0. Thus, the inequalities (2.8) and (2.10) show that

‖un − u‖Z ≤ ‖un − u‖Z(BRε ) + ‖un − u‖Z(BcRε )

≤ ‖un − u‖Z(BRε ) + ‖un‖Z(BcRε ) + ‖u‖Z(BcRε )

≤ (1 + ‖un‖X + ‖u‖X)ε.

(2.11)

This shows that {un} is convergent in Z = Lr(RN, f).
(ii) Consider p ≤ r < p∗.
It follows from (1.8) and the Hölder inequality that

‖u‖r
Lr(RN,f) =

∫

RN

f(x)|u|rdx ≤
(∫

RN

|x|−bp∗ |u|p∗dx
)r/p∗(∫

RN

fσ2 |x|brσ2dx

)1/σ2

≤ S
r/p

1

(∫

RN

|x|−ap|∇u|pdx
)r/p(∫

RN

fσ2 |x|brσ2dx

) 1/σ2

≤ S
r/p

1 ‖u‖rX
∥∥f
∥∥
Lσ2 (RN,g2)

,

(2.12)

where g2 = |x|brσ2 , σ2 = p∗/(p∗ − r). Thus, the fact of f ∈ Lσ2(RN, g2) and (2.12) imply that the
embedding is continuous. Similar to the proof of (i) we can also prove that the embedding
X ↪→ Lr(RN, f) is compact for p ≤ r < p∗.

Similarly, we have the following result of compact embedding.

Lemma 2.4. Assume 1 < p < s < p∗ and (A3), then the embedding X ↪→ Ls(RN, h) is compact.

The following concentration compactness principle is a weighted version of the
Concentration Compactness Principle II due to Lions [15–18], see also [19, 20].

Lemma 2.5. Let 1 < p < N, −∞ < a < (N−p)/p, a ≤ b ≤ a+1, p∗ =Np/(N−pd), d = a+1−b.
Suppose that {un} ⊂W1,p

a (RN) is a sequence such that

un ⇀ u in W
1,p
a

(
R
N
)
,

|x|−ap|∇un|p ⇀ μ in M
(
R
N
)
,

|x|−bp∗ |un|p
∗
⇀ η in M

(
R
N
)
,

un −→ u a.e. on R
N,

(2.13)

where μ, η are measures supported on Ω and M(RN) is the space of bounded measures in R
N . Then

there are the following results.
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(1) There exists some at most countable set J , a family {xj ∈ Ω | j ∈ J} of distinct points in
R
N , and a family {ηj | j ∈ J} of positive numbers such that

η = |x|−bp∗ |u|p∗ +
∑

j∈J
ηjδxj , (2.14)

where δxj is the Dirac measure at xj .

(2) The following equality holds

μ ≥ |x|−ap|∇u|p +
∑

j∈J
μjδxj , (2.15)

for some family {μj > 0 | j ∈ J} satisfying

S1
(
ηj
)p/p∗ ≤ μj ∀j ∈ J,

∑

j∈J

(
ηj
)p/p∗ ≤ ∞. (2.16)

(3) There hold

lim
n→+∞

sup
∫

Ω
|x|−ap|∇un|pdx =

∫

Ω
dμ + μ∞,

lim
n→+∞

sup
∫

Ω
|x|−bp∗ |∇un|p

∗
dx =

∫

Ω
dη + η∞,

(2.17)

where

μ∞ := lim
R→∞

lim
n→+∞

sup
∫

Ω
⋂
BcR

|x|−ap|∇un|pdx,

η∞ := lim
R→∞

lim
n→+∞

sup
∫

Ω
⋂
BcR

|x|−bp∗ |∇un|p
∗
dx.

(2.18)

Lemma 2.6. Let 1 < p < r < s < p∗. Then I(u) satisfies the (PS)c condition with c ≤ (1/r −
1/p∗)Sp

∗/(p∗−p)
1 , where S1 is as in (1.8).

Proof. We will split the proof into three steps.
Step 1. {un} is bounded in X.

Let {un} be a (PS)c sequence of I(u) in X, that is,

I(un) −→ c, I ′(un) −→ 0 in X∗ as n −→ ∞. (2.19)
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Then, we have

1 + c + ‖un‖X ≥ I(un) − 1
r

〈
I ′(un), un

〉

=
(

1
p
− 1
r

)
‖un‖pX +

(
1
r
− 1
s

)
‖un‖sLs(RN,h) +

(
1
r
− 1
p∗

)
‖un‖p

∗

Lp
∗ (RN)

≥
(

1
p
− 1
r

)
‖un‖pX.

(2.20)

Since p > 1, (2.20) shows that {un} is bounded in X.
Step 2. There exists {un} in X such that un → u in Lp

∗
(RN).

The inequality (1.8) shows that {un} is bounded in Lp
∗
(RN, |x|−bp∗). Then the

above argument and the compactness embedding in Lemma 2.2 mean that the following
convergence hold:

un ⇀ u in W
1,p
0

(
R
N
)
,

un ⇀ u in Lp
∗(

R
N, |x|−bp∗

)
,

un −→ u a.e. in R
N.

(2.21)

It follows from Lemma 2.5 that there exist nonnegative measures μ and η such that

|x|−bp∗ |un|p
∗
⇀ η = |x|−bp∗ |u|p∗ +

∑

j∈J
ηjδxj , (2.22)

|x|−ap|∇un|p ≥ |x|−ap|∇u|p +
∑

j∈J
μjδxj . (2.23)

Thus, in order to prove un → u in Lp
∗
(RN) it is sufficient to prove that ηj = η∞ = 0.

For the proof of ηj = 0, we define the functional ψ ∈ C∞
0 (RN) such that

ψ ≡ 1, in B
(
xj , ε
)
, ψ ≡ 0, in B

(
xj , 2ε

)c
,
∣∣∇ψ∣∣ ≤ 2

ε
, (2.24)

where xj belongs to the support of dη. It follows from (2.1) that

lim
n→∞

〈I ′(un), unψ〉 = 0. (2.25)
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Since ‖un‖X is bounded, we can get from (1.8)-(1.9), Lemmas 2.3 and 2.5 that

lim
n→∞

∫

RN

|x|−ap|∇un|p−2∇un∇ψundx = lim
n→∞

(∫

RN

|x|−bp∗ |un|p
∗
ψ dx −

∫

RN

|x|−(a+1)p|un|pψ dx

−
∫

RN

|x|−ap|∇un|pψ dx +
∫

RN

f(x)|un|rψ dx

+
∫

RN

h(x)|un|sψ dx
)

−→
∫

RN

ψdη −
∫

RN

ψdμ = ηj − μj (as ε −→ 0).

(2.26)

On the other hand,

lim
n→∞

∫

RN

|x|−ap|∇un|p−2∇un∇ψundx

≤ lim
n→∞

(∫

RN

|x|−ap|∇un|pdx
)(p−1)/p(∫

RN

|x|−ap|un|p
∣∣∇ψ∣∣pdx

)1/p

≤ c
(∫

B2ε

∣∣∇ψ∣∣Ndx
)1/N(∫

B2ε

|x|(−aNp)/(N−p)|u|Np/(N−p)dx

)(N−p)/Np

≤ c
(∫

B2ε

|x|(−aNp)/(N−p)|u|Np/(N−p)dx

)(N−p)/Np

−→ 0 (ε −→ 0),

(2.27)

where B2ε � B(xj , 2ε). Then μj = ηj ; furthermore, (2.16) implies that μj = ηj = 0 or ηj >

S
p∗/(p∗−p)
1 . We will prove that the later does not hold. Suppose otherwise, there exists some

j0 ∈ J such that ηj0 > S
p∗/(p∗−p)
1 . Then (2.19) and Lemma 2.4 show that

c + o(1) = I(un) − 1
r

〈
I ′(un), un

〉

=
(

1
p
− 1
r

)
‖un‖pX +

(
1
r
− 1
p∗

)∫

Ω
|x|−bp∗ |un|p

∗
dx

≥
(

1
r
− 1
p∗

)
ηj0 >

(
1
r
− 1
p∗

)
S
p∗/(p∗−p)
1 ,

(2.28)

which contradicts the hypothesis of c. Then μj = ηj = 0.
Similarly, we define the functional ψ1 ∈ C∞

0 (RN) as

ψ1 ≡ 0, |x| < R, ψ1 ≡ 1, |x| > 2R,
∣∣∇ψ1

∣∣ ≤ 2
R
. (2.29)
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Then, the similar proof as above shows that η∞ = μ∞ = 0. Thus, we can deduce from (2.22)
that

∫

RN
|x|−bp∗ |un|p

∗
dx −→

∫

RN
|x|−bp∗ |u|p∗dx as n −→ ∞, (2.30)

which implies that un → u in Lp
∗
(RN, |x|−bp∗).

Step 3. {un} converges strongly in X.
The following inequalities [21] play an important role in our proof:

|ξ − ζ|p ≤
⎧
⎨

⎩
c
〈
|ξ|p−2ξ − |ζ|p−2ζ, ξ − ζ

〉
for p ≥ 2,

c
〈
|ξ|p−2ξ − |ζ|p−2ζ, ξ − ζ

〉p/2(|ξ|p + |ζ|p)(2−p)/2 for 1 < p < 2.
(2.31)

Our aim is to prove that {un} is a Cauchy sequence of X. In fact, let ψ = un − um in (1.12), it
follows from (2.19) that

Amn +
∫

RN
|x|−(a+1)p

(
|un|p−2un − |um|p−2um

)
(un − um)dx

=
〈
I ′(un) − I ′(um), un − um

〉

+
∫

RN
f(x)

(
|un|r−2un − |um|r−2um

)
(un − um)dx

+
∫

RN
h(x)

(
|un|s−2un − |um|s−2um

)
(un − um)dx

+
∫

RN
|x|−bp∗

(
|un|p

∗−2un − |um|p
∗−2um

)
(un − um)dx,

(2.32)

where

Amn =
∫

RN
|x|−ap

(
|∇un|p−2∇un − |∇um|p−2∇um

)
· ∇(un − um)dx. (2.33)

Using the inequalities (2.31), we can get by direct computation that

Amn ≥

⎧
⎪⎪⎨

⎪⎪⎩

c

∫

RN
|x|−ap|∇(un − um)|pdx, p ≥ 2

c

(∫

RN
|x|−ap|∇(un − um)|pdx

)2/p

, 1 < p < 2,
(2.34)

with some constant c > 0, independent of n and m.
Then the Hölder inequality together with (1.8) and (2.30) yield that

∫

RN
|x|−bp∗

(
|un|p

∗−2un − |um|p
∗−2um

)
(un − um)dx −→ 0 (as n,m −→ ∞). (2.35)
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Similarly, we have from the Hölder inequality, Lemmas 2.3 and 2.4 that

∫

RN
f(x)

(
|un|r−2un − |um|r−2um

)
(un − um)dx −→ 0 (as n,m −→ ∞),

∫

RN
h(x)

(
|un|s−2un − |um|s−2um

)
(un − um)dx −→ 0 (as n,m → ∞).

(2.36)

Therefore, the above estimates imply that ‖un − um‖X → 0 (n,m → ∞), that is, {un} is a
Cauchy sequence of X. Then {un} converges strongly in X and we complete the proof.

Similarly, we have the following lemma.

Lemma 2.7. Let 1 < r < p < s < p∗. Then I(u) satisfies the (PS)c condition with c ≤ (1/s −
1/p∗)Sp

∗/(p∗−p)
1 + (((s − r)/(s − p))S2)

r/(p−r)((r − p)(s − r)/prs)‖f‖p/(p−r)
Lσ1 (RN,g1)

, where S1, S2 are as
in (1.8), and (1.9) respectively.

Proof. Step 1. {un} is bounded in X.
Let {un} be a (PS)c sequence of I(u) in X. Then we have from Lemma 2.3 that

c + 1 + ‖un‖X ≥ I(un) − 1
s

〈
I ′(un), un

〉

=
(

1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
‖un‖rLr(RN,f) +

(
1
s
− 1
p∗

)
‖un‖p

∗

Lp
∗ (RN)

≥
(

1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
S
r/p

2 ‖un‖rX
∥∥f
∥∥
Lσ1 (RN,g1)

.

(2.37)

Since 1 < r < p < s, (2.37) shows that ‖un‖ is bounded in X.
Step 2. There exists {un} in X such that un → u in Lp

∗
(RN).

Similar to the proof of Lemma 2.5, we can get that μj = ηj = 0 or ηj > S
p∗/(p∗−p)
1 by

applying the functional ψ. Now we prove that there is no j0 ∈ J such that ηj0 > S
p∗/(p∗−p)
1 .

Suppose otherwise, then

c + o(1) = I(un) − 1
s

〈
I ′(u), un

〉

=
(

1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
‖un‖rLr(RN,f) +

(
1
s
− 1
p∗

)
‖un‖p

∗

Lp
∗ (RN)

≥
(

1
p
− 1
s

)
‖un‖pX −

(
1
r
− 1
s

)
S
r/p

2 ‖un‖rX
∥∥f
∥∥
Lσ1 (RN,g1)

+
(

1
s
− 1
p∗

)
S
p∗/(p∗−p)
1 .

(2.38)

Let

q(t) =
(

1
p
− 1
s

)
tp −

(
1
r
− 1
s

)
S
r/p

2

∥∥f
∥∥
Lσ1 (RN,g1)

tr , t ≥ 0. (2.39)
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Then q(t) has the unique minimum point at

t0 =
[
s − r
s − pS

r/p

2

∥∥f
∥∥
Lσ1(RN,g1)

]1/(p−r)
,

q(t0) =
(
s − r
s − pS2

)r/(p−r) (r − p)(s − r)
prs

∥∥f
∥∥p/(p−r)
Lσ1 (RN,g1)

.

(2.40)

Then it follows from (2.38) that

c + o(1) ≥
(

1
s
− 1
p∗

)
S
p∗/(p∗−p)
1 +

(
s − r
s − pS2

)(r/p−r) (r − p)(s − r)
prs

∥∥f
∥∥p/(p−r)
Lσ1 (RN,g1)

, (2.41)

which contradicts the hypothesis of c.
Step 3. {un} converges strongly in X.

By Lemma 2.4, this result can be similarly obtained by the method in Lemma 2.6, so
we omit the proof.

3. Existence of Infinitely Solutions

In this section, we will use the minimax procedure to prove the existence of infinity many
solutions of problem (1.1). Let A denotes the class of A ⊂ X \ {0} such that A is closed in
X and symmetric with respect to the origin. For A ∈ A, we recall the genus γ(A) which is
defined by

γ(A) := min
{
m ∈N : ∃φ ∈ C(A,Rm \ {0}), φ(x) = −φ(−x)}. (3.1)

If there is no mapping φ as above for anym ∈N, then γ(A) = +∞, and γ(∅) = 0. The following
proposition gives some main properties of the genus, see [13, 22].

Proposition 3.1. Let A,B ∈ A. Then

(1) if there exists an odd map g ∈ C(A,B), then γ(A) ≤ γ(B),
(2) if A ⊂ B, then γ(A) ≤ γ(B),
(3) γ(A

⋃
B) ≤ γ(A) + γ(B).

(4) if S is a sphere centered at the origin in R
N , then γ(S) =N,

(5) if A is compact, then γ(A) < ∞ and there exists δ > 0 such that Nδ(A) ∈ A and
γ(Nδ(A)) = γ(A), whereNδ(A) = {x ∈ X : ‖x −A‖ ≤ δ}.

Lemma 3.2. Assume (A1)–(A3). Then for anym ∈N, there exists ε = ε(m) > 0 such that

γ({u ∈ X : I(u) ≤ −ε}) ≥ m. (3.2)
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Proof. For given m ∈ N
+, let Xm be a m-dimensional subspace of X. If p < r < s < p∗, then for

u ∈ Xm we have

I(u) =
1
p
‖u‖pX − 1

r
‖u‖rLr(RN,f) −

1
s
‖u‖sLs(RN,h) −

1
p∗

‖u‖p∗
Lp

∗ ≤ 1
p
‖u‖pX − 1

r
‖u‖rLr(RN,f). (3.3)

The fact that all the norms on finite dimensional space are equivalent implies that for all
u ∈ Xm

I(u) ≤ 1
p
‖u‖pX − c‖u‖rX, (3.4)

for some constant c > 0. Then there exist large ρ > 0 and small ε > 0 such that

I(u) ≤ −ε, ‖u‖Xm
= ρ. (3.5)

Denote

Sρ =
{
u ∈ Xm : ‖u‖Xm

= ρ
}
. (3.6)

Then Sρ is a sphere centered at the origin with radius of ρ and

Sρ ⊂ {u ∈ X : I(u) ≤ −ε} � I−ε. (3.7)

Therefore, Proposition 3.1 shows that γ(I−ε) ≥ γ(Sρ) = m.
If r < p < s < p∗, we have

I(u) =
1
p
‖u‖pX − 1

r
‖u‖r

Lr(RN,f) −
1
s
‖u‖s

Ls(RN,h) −
1
p∗

‖u‖p∗
Lp

∗ ≤ 1
p
‖u‖pX − 1

s
‖u‖sLs(RN,h). (3.8)

Since ‖u‖sLs(RN,h) is also a norm and all norms on the finite dimensional space Xm are
equivalent, we have

I(u) ≤ 1
p
‖u‖pX − c‖u‖sX. (3.9)

Then there exist large σ > 0 and small ε > 0 such that

I(u) ≤ −ε, ‖u‖Xm
= σ. (3.10)

Denote

Sσ =
{
u ∈ Xm : ‖u‖Xm

= σ
}
. (3.11)



14 Abstract and Applied Analysis

Then Sσ is a sphere centered at the origin with radius of σ and

Sσ ⊂ {u ∈ X : I(u) ≤ −ε} � I−ε. (3.12)

Therefore, Proposition 3.1 shows that γ(I−ε) ≥ γ(Sσ) = m.

Let Am = {A ∈ A : γ(A) ≥ m}. It is easy to check that Am+1 ⊂ Am(m = 1, 2, . . .). We
define

cm = inf
A∈Am

sup
u∈A

I(u). (3.13)

It is not difficult to find that

c1 ≤ c2 ≤ · · · ≤ cm ≤ · · · . (3.14)

and cm > −∞ for any m ∈ N since I(u) is coercive and bounded below. Furthermore, we
define the set

Kc =
{
u ∈ X : I(u) = c, I ′(u) = 0

}
. (3.15)

Then, Kc is compact and we have the following important lemma, see [22].

Lemma 3.3. All the cm are critical values of I(u). Moreover, if c = cm = cm+1 = · · · = cm+τ , then
γ(Kc) ≥ 1 + τ .

Proof of Theorem 1.2. In view of Lemmas 2.6 and 2.7, I(u) satisfies the (PS)c condition in X.
Furthermore, as the standard argument of [13, 22, 23], Lemma 3.3 gives that I(u) has infinity
many critical points with negative values. Thus, problem (1.1) has infinitely many solutions
in X, and we complete the proof.
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1984.

[16] P.-L. Lions, “The concentration-compactness principle in the calculus of variations. The locally
compact case. II,” Annales de l’Institut Henri Poincaré Analyse Non Linéaire, vol. 1, no. 4, pp. 223–283,
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We study the existence of periodic solutions of some second-order Hamiltonian systems with
impulses. We obtain some new existence theorems by variational methods.

1. Introduction

Consider the following systems:

ü(t) = f(t, u(t)), a.e. t ∈ [0, T],

Δu̇(tk) = gk
(
u
(
t−k
))
, k = 1, 2, . . . , m,

u(T) − u(0) = u̇(T) − u̇(0) = 0,

(1.1)

where k ∈ Z, u ∈ R
n, Δu̇(tk) = u̇(t+

k
) − u̇(t−

k
) with u̇(t±

k
) = limt→ t±

k
u̇(t), gk(u) = gradu

Gk(u), Gk ∈ C1(Rn,Rn) for each k ∈ Z, there exists an m ∈ Z such that 0 = t0 < t1 < · · · < tm <
tm+1 = T , and we suppose that f(t, u) = graduF(t, u) satisfies the following assumption.

(A) F(t, x) is measurable in t for x ∈ R
n and continuously differentiable in x for a.e.

t ∈ [0, T], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ; R+) such that

|F(t, x)| + ∣∣f(t, x)
∣∣ ≤ a(|x|)b(t), (1.2)

for all x ∈ R
n and t ∈ [0, T].
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Many solvability conditions for problem (1.1) without impulsive effect are obtained,
such as, the coercivity condition, the convexity conditions (see [1–4] and their references),
the sublinear nonlinearity conditions, and the superlinear potential conditions. Recently,
by using variational methods, many authors studied the existence of solutions of some
second-order differential equations with impulses. More precisely, Nieto in [5, 6] considers
linear conditions, [7–10] the sublinear conditions, and [11–16] the sublinear conditions
and the other conditions. But to the best of our knowledge, except [7] there is no result
about convexity conditions with impulsive effects. By using different techniques, we obtain
different results from [7].

We recall some basic facts which will be used in the proofs of our main results. Let

H1
T =

{
u : [0, T] −→ R

n absolutely continuous; u(0) = u(T), u̇(t) ∈ L2(0, T ; Rn)
}
, (1.3)

with the inner product

〈u, v〉 =
∫T

0
(u(t), v(t))dt +

∫T

0
(u̇(t), v̇(t))dt, ∀u, v ∈ H1

T , (1.4)

where (·, ·) denotes the inner product in R
n. The corresponding norm is defined by

‖u‖ =

(∫T

0
(u(t), u(t))dt +

∫T

0
(u̇(t), u̇(t))dt

)1/2

, ∀u ∈ H1
T . (1.5)

The space H1
T has some important properties. For u ∈ H1

T , let u = (1/2T)
∫T

0 u(t)dt, and
ũ = u(t) − u. Then one has Sobolev’s inequality (see Proposition 1.3 in [1]):

‖ũ‖2
∞ ≤ T

12

∫T

0
|u̇(t)|2dt. (1.6)

Consider the corresponding functional ϕ on H1
T given by

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt +

∫T

0
F(t, u(t))dt +

m∑

k=1

Gk(u(tk)). (1.7)

It follows from assumption (A) and the continuity of gk one has that ϕ is continuously
differentiable and weakly lower semicontinuous on H1

T . Moreover, we have

〈
ϕ′(u), v〉 =

∫T

0
(u̇(t), v̇(t))dt +

∫T

0

(
f(t, u(t)), v(t)

)
dt +

m∑

k=1

(
gk(u(tk)), v(tk)

)
, (1.8)

for u, v ∈ H1
T and ϕ′ is weakly continuous and the weak solutions of problem (1.1) correspond

to the critical points of ϕ (see [8]).
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Theorem 1.1 ([2, Theorem 1.1]). Suppose that V andW are reflexive Banach spaces, ϕ ∈ C1(V ×
W,R), ϕ(v, ·) is weakly upper semi-continuous for all v ∈ V , and ϕ(·, w) : V → R is convex for all
w ∈W and ϕ′ is weakly continuous. Assume that

ϕ(0, w) −→ −∞ (1.9)

as ‖w‖ → ∞ and for everyM > 0,

ϕ(v,w) −→ +∞, (1.10)

as ‖v‖ → ∞ uniformly for ‖w‖ ≤M. Then ϕ has at least one critical point.

2. Main Results

Theorem 2.1. Assume that assumption (A) holds. If further

(H1) F(t, ·) is convex for a.e. t ∈ [0, T], and

(H2) there exist η, θ > 0 such that Gk(x) ≥ η|x| + θ, for all x ∈ R
n, then (1.1) possesses at least

one solution inH1
T .

Remark 2.2. (H1) implies there exists a point x for which

∫T

0
∇F(t, x)dt = 0. (2.1)

Proof of Theorem 2.1. It follows Remark 2.2, (1.6), and (H2) that

ϕ(u) =
1
2

∫T

0
|u̇(t)|2dt +

∫T

0
(F(t, u(t)) − F(t, x))dt +

∫T

0
F(t, x)dt +

m∑

k=1

Gk(u(tk))

=
1
2

∫T

0
|u̇(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), u(t) − x)dt +

m∑

k=1

Gk(u(tk))

≥ 1
2

∫T

0
|u̇(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), ũ

)
dt +

m∑

k=1

η|ũ + u| +mθ

≥ 1
2

∫T

0
|u̇(t)|2dt −

(∫T

0

∣∣f(t, x)
∣∣dt

)
‖ũ‖∞ +mη|u| −mη‖ũ‖∞ +mθ

≥ 1
2

∫T

0
|u̇(t)|2dt − C0

(∫T

0
|u̇(t)|2dt

)1/2

+mη|u| +mθ,

(2.2)

for all u ∈ H1
T and some positive constant C0. As ‖u‖ → ∞ if and only if (|u|2 + ‖u̇‖2

2)
1/2 →

∞, we have ϕ(u) → +∞ as ‖u‖ → ∞. By Theorem 1.1 and Corollary 1.1 in [1], ϕ has a
minimum point in H1

T , which is a critical point of ϕ. Hence, problem (1.1) has at least one
weak solution.
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Theorem 2.3. Assume that assumption (A) and (H1) hold. If further

(H3) there exist η, θ > 0 and α ∈ (0, 2) such that Gk(x) ≤ η|x|α + θ for all x ∈ R
n and

(H4) there exist some β > α and γ > 0 such that

|x|−β
∫T

0
F(t, x)dt ≤ −γ, (2.3)

for |x| ≥M and t ∈ [0, T], whereM is a constant, then (1.1) possesses at least one solution inH1
T .

Remark 2.4. We can find that our condition (H4) is very different from condition (vii) in [7]
since we prove this by the saddle point theorem substituted for the least action principle.

Proof of Theorem 2.3. We prove ϕ satisfies the (PS) condition at first. Suppose {un} is such an
sequence that {ϕ(un)} is bounded and limn→∞ϕ′(un) = 0. We will prove it has a convergent
subsequence. By (H3) and (1.6), we have

m∑

k=1

Gk(u(tk)) ≤
m∑

k=1

η|ũ(tk) + u|α +mθ

≤ 4mη
(|ũ(tk)|α + |u|α) +mθ

≤ C1‖u̇‖α2 + C2|u|α + C3,

(2.4)

for some positive constants C1, C2, C3. By Remark 2.2, (1.6), and (2.4), we have

ϕ(un) =
1
2

∫T

0
|u̇n(t)|2dt +

∫T

0
(F(t, un(t)) − F(t, x))dt +

∫T

0
F(t, x)dt +

m∑

k=1

Gk(un(tk))

=
1
2

∫T

0
|u̇n(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), un(t) − x

)
dt +

m∑

k=1

Gk(un(tk))

=
1
2

∫T

0
|u̇n(t)|2dt +

∫T

0
F(t, x)dt +

∫T

0

(
f(t, x), ũn

)
dt +

m∑

k=1

Gk(un(tk))

≥ 1
2

∫T

0
|u̇n(t)|2dt −

(∫T

0

∣∣f(t, x)
∣∣dt

)
‖ũn‖∞ − C1‖u̇n‖α2 − C2|un|α − C4

≥ 1
2

∫T

0
|u̇n(t)|2dt − C5

(∫T

0
|u̇n(t)|2dt

)1/2

− C1‖u̇n‖α2 − C2|un|α − C4,

(2.5)

for some positive constants C4, C5, which implies that

C|un|α/2 ≥
(∫T

0
|u̇n(t)|2dt

)1/2

− C6, (2.6)



Abstract and Applied Analysis 5

for some positive constants C, C6. By (1.6), the above inequality implies that

‖ũn‖∞ ≤ C7

(
|un|α/2 + 1

)
, (2.7)

for the positive constant C7. The one has

|un(t)| ≥ |un| − |ũn| ≥ |un| − ‖ũn‖∞ ≥ |un| − C7

(
|un|α/2 + 1

)
, ∀t ∈ [0, T]. (2.8)

If {|un|} is unbounded, we may assume that, going to a subsequence if necessary,

|un| −→ ∞ as n −→ ∞. (2.9)

By (2.8) and (2.9), we have

|un(t)| ≥ 1
2
|un|, (2.10)

for all large n and every t ∈ [0, T]. By (2.10) and (H4), one has |un(t)| ≥ M for all large n. It
follows from (H4), (2.4), (2.6), (2.7), and above inequality that

ϕ(un) ≤
(
C|un|α/2 + C6

)2 −
∫T

0
γ |un(t)|βdt + C2‖ũ‖α∞ + C2|u|α + C3

≤
(
C|un|α/2 + C6

)2 − 2−β|un|βTγ + C8

(
|un|α/2 + 1

)α
+ C2|u|α + C3,

(2.11)

for large n and the positive constant C8, which contradicts the boundedness of ϕ(un) since
β > α. Hence (|un|) is bounded. Furthermore, (un) is bounded by (2.6). A similar calculation
to Lemma 3.1 in [9] shows that ϕ satisfies the (PS) condition. We now prove that ϕ satisfies
the other conditions of the saddle point theorem. Assume that H̃1

T = {u ∈ H1
T : u = 0}, then

H1
T = H̃1

T ⊕ R
n. From above calculation, one has

ϕ(u) ≥ 1
2

∫T

0
|u̇(t)|2dt − C5

(∫T

0
|u̇(t)|2dt

)1/2

− C1‖u̇‖α2 − C4, (2.12)

for all u ∈ H̃1
T , which implies that

ϕ(u) −→ +∞, (2.13)
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as ‖u‖ → ∞ in H̃1
T . Moreover, by (H3) and (H4) we have

ϕ(x) =
∫T

0
F(t, x)dt +

m∑

k=1

Gk(x)

≤ − Tγ |x|β +mη|x|α +mθ,
(2.14)

for |x| > M, which implies that

ϕ(x) −→ −∞, (2.15)

as |x| → ∞ in R
n since β > α. Now Theorem 2.3 is proved by (2.13), (2.15), and the saddle

point theorem.

Theorem 2.5. Assume that assumption (A) holds. Suppose that F(t, ·), Gk(x) are concave and satisfy

(H5) Gk(x) ≤ −η|x| + θ for some positive constant η, θ > 0, then (1.1) possesses at least one
solution in H1

T.

Proof of Theorem 2.5. Consider the corresponding functional ϕ on R
n × H̃1

T given by

ϕ(u) = −1
2

∫T

0
|u̇(t)|2dt −

∫T

0
F(t, u(t))dt −

m∑

k=1

Gk(u(tk)), (2.16)

which is continuously differentiable, bounded, and weakly upper semi-continuous on H1
T .

Similar to the proof of Lemma 3.1 in [2], one has that ϕ(x +w) is convex in x ∈ R
n for every

w ∈ H̃1
T . By the condition, we have −Gk(x+w) ≥ −2Gk((1/2)x)+Gk(−w). Similar to the proof

of Theorem 3.1, we have

ϕ(x +w) = − 1
2

∫T

0
|ẇ|2dt −

∫T

0
F(t, x +w)dt −

m∑

k=1

Gk(x +w)

≥ − 1
2

∫T

0
|ẇ|2dt −

(∫T

0

∣∣f(t, x)
∣∣dt

)
‖w‖∞ −

m∑

k=1

Gk(x +w) + C9

≥ − 1
2

∫T

0
|ẇ|2dt − C0

(∫T

0
|ẇ|2dt

)1/2

− 2Gk

(
1
2
x

)
+Gk(−w) + C9,

(2.17)
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which means ϕ(x+w) → +∞ as |x| → ∞, uniformly for w ∈ H̃1
T with ‖w‖ ≤M by (H5) and

(1.6). On the other hand,

ϕ(w) = − 1
2

∫T

0
|ẇ|2dt −

∫T

0
F(t,w)dt −

m∑

k=1

Gk(w)

≤ − 1
2

∫T

0
|ẇ|2dt + C0

(∫T

0
|ẇ|2dt

)1/2

+mη‖w‖∞ + C9,

(2.18)

which implies that ϕ(w) → −∞ as ‖w‖ → ∞ ∈ H̃1
T by (H5) and (1.6). We complete our proof

by Theorem 1.1.
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The existence and multiplicity of solutions for second-order differential equations with a
parameter are discussed in this paper. We are mainly concerned with the semipositone case. The
analysis relies on the nonlinear alternative principle of Leray-Schauder and Krasnosel’skii’s fixed
point theorem in cones.

1. Introduction

In this paper, we consider the problem of existence, multiplicity, and nonexistence of positive
solutions for the following boundary value problem (BVP):

−(a(t)x′)′ + b(t)x = λf(t, x), t ∈ I,
x(0) = x(2π), a(0)x′(0) = a(2π)x′(2π),

(Eλ)

where I := [0, 2π], λ is a positive parameter, f(t, x) ∈ Car(I × R
+,R), and a(t), b(t) are real-

valued measurable functions defined on [0, 2π] and satisfy the following condition:

a(t) > 0, b(t) ≥ 0, b(t)/≡ 0,
∫2π

0

dt

a(t)
<∞,

∫2π

0
b(t)dt <∞. (H1)



2 Abstract and Applied Analysis

Here, the symbol Car(I×R
+,R) denotes the set of functions satisfying the Carathédory

conditions on I × R
+; that is,

(i) f(·, x) : I → R is Lebesgue integrable for each fixed x ∈ R
+, and

(ii) f(t, ·) : R
+ → R is continuous for a.e. t ∈ I.

Due to a wide range of applications in physics and engineering, second-order bound-
ary value problems have been extensively investigated by numerous researchers in recent
years. For a small sample of such work, we refer the reader to [1–18] and the references
therein. When a(t) = 1, b(t) = m2, λ = 1 of (Eλ), in [11, 18], by using Krasnosel’skii’s
fixed point theorem, the existence and multiplicity of positive solutions are established to
the periodic boundary value problem:

−x′′ +m2x = f(t, x), t ∈ I,
x(0) = x(2π), x′(0) = x′(2π),

(1.1)

where f(t, x) ∈ Car(I × R
+,R+).

In [8], Graef et al. consider the second-order periodic boundary value problem:

−x′′ +m2x = λg(t)f(x), t ∈ I,
x(0) = x(2π), x′(0) = x′(2π),

(1.2)

where g : I → R
+ is continuous and f : R

+ → R
+ is continuous and f(x) > 0 for x > 0. Under

different combinations of superlinearity and sublinearity of the function f , various existence,
multiplicity, and nonexistence results for positive solutions are derived in terms of different
value of λ via Krasnosel’skii’s fixed point theorem.

Hao et al. [9] use the Global continuation theorem, fixed point index theory, and
approximate method to study the following periodic boundary value problems:

−x′′ + a(t)x = λf(t, x), t ∈ I,
x(0) = x(2π), x′(0) = x′(2π),

(1.3)

where a ∈ L1(0, 2π) and f(t, x) ∈ Car(I × R
+,R+).

In [10], by using the fixed point index theory, He et al. study the existence and
multiplicity of positive solutions to BVP (Eλ). Motivated by the above works, we establish
the results of existence, multiplicity, and nonexistence of positive solutions for BVP (Eλ)
via Leray-Schauder alternative principle and Krasnosel’skii’s fixed point in the semipositone
case, that is, f(t, x) +M > 0 for some M > 0. Notice that we do not need f(t, x) > 0 for any
t ∈ [0, 2π] and x > 0, which is an essential condition of [9, 10].

The main result of the present paper is summarized as follows.

Theorem 1.1. Assume that

f0 := lim
x→ 0+

max
t∈[0,2π]

f(t, x)
x

<∞, f∞ := lim
x→+∞

max
t∈[0,2π]

f(t, x)
x

<∞. (1.4)
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Then, there exist 0 < λ < λ such that (Eλ) has no positive solution for λ < λ and at least two positive
solutions for λ ≥ λ.

Remark 1.2. The main result above is a generalization of [9, Theorem 1.2] and [10, Theorem
1.2] and some other known results, in which f0 and f∞ must be zero, besides f(t, x) is
positive.

The remaining part of the paper is organized as follows. Some preliminary results will
be given in Section 2. In Section 3, existence results are obtained using a nonlinear alternative
of Leray-Schauder and fixed point theorem in cones when λ is large enough; the proof of
Theorem 1.1 is also given.

2. Preliminaries and Lemmas

In this section, we present some preliminary results which will be needed in subsequent
sections. Denote by u(x) and v(x) the solutions of the corresponding homogeneous equation:

−(a(t)x′)′ + b(t)x = 0, t ∈ I, (2.1)

under the initial conditions

u(0) = 1, a(0)u(0) = 0, v(0) = 0, a(0)v(0) = 1. (2.2)

Lemma 2.1 (see [2, Theorem 2.4], [10, Lemma 2.1]). Assume that (H1) holds and h ∈ C(I,R+).
Then for the solution x(t) of the BVP

−(a(t)x′)′ + b(t)x = h(t), t ∈ I,
x(0) = x(2π), a(0)x′(0) = a(2π)x′(2π),

(2.3)

the formula

x(t) = (Lh)(t) :=
∫2π

0
G(t, s)h(s)ds, t ∈ I (2.4)

holds, where

G(t, s) =
v(2π)
D

u(t)u(s) − a(2π)u′(2π)
D

v(t)v(s)

+

⎧
⎪⎪⎨

⎪⎪⎩

a(2π)v′(2π) − 1
D

u(t)v(s) − u(2π) − 1
D

u(s)v(t), 0 ≤ s ≤ t ≤ 2π,

a(2π)v′(2π) − 1
D

u(s)v(t) − u(2π) − 1
D

u(t)v(s), 0 ≤ t ≤ s ≤ 2π,

(2.5)

and D = u(2π) + a(2π)v′(2π) − 1 > 0.



4 Abstract and Applied Analysis

Lemma 2.2 (see [2, Theorem 2.5], [10, Lemma 2.2]). Under condition (H1), the Green’s function
of the BVP (2.3) is positive, that is, G(t, s) > 0 for t, s ∈ I.

Remark 2.3. We denote

A = min
0≤s,t≤2π

G(t, s), B = max
0≤s,t≤2π

G(t, s), σ =
A

B
. (2.6)

Thus, B > A > 0 and 0 < σ < 1. In this paper, we use ω(t) to denote the unique periodic
solution of (2.3) with h(t) = 1, that is, ω(t) = (L1)(t). Obviously, A ≤ ‖ω‖∞/2π ≤ B.

Remark 2.4. If a(t) = 1, b(t) = m2 > 0, then the Green’s function G(t, s) of the boundary value
problem (2.3) has the form

G(t, s) = G(|t, s|) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp(m(t − s)) + exp(m(2π − t + s))
2m
(
exp(2mπ) − 1

) , 0 ≤ s ≤ t ≤ 2π,

exp(m(s − t)) + exp(m(2π − s + t))
2m
(
exp(2mπ) − 1

) , 0 ≤ t ≤ s ≤ 2π.
(2.7)

It is obvious that G(t, s) > 0 for 0 ≤ s, t ≤ 2π , and a direct calculation shows that

A =
emπ

m(e2mπ − 1)
, B =

1 + e2mπ

2m(e2mπ − 1)
, σ =

2emπ

1 + e2mπ
< 1. (2.8)

In the obtention of the second periodic solution of (Eλ), we need the following well-
known fixed point theorem of compression and expansion of cones [19].

Lemma 2.5 (see Krasnosel’skii [19]). Let X be a Banach space and K(⊂ X) a cone. Assume that
Ω1, Ω2 are open subsets of X with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

T : K ∩
(
Ω2 \Ω1

)
−→ K (2.9)

be a continuous and compact operator such that either

(i) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2, or

(ii) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2 \Ω1).

In the applications below, we take X = C[0, 2π] with the supremum norm ‖ · ‖ and
define

K =
{
x ∈ X : x(t) ≥ 0 ∀t, min

0≤t≤2π
x(t) ≥ σ‖x‖

}
, (2.10)

where ‖x(t)‖ = max0≤t≤2π |x(t)|.
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One may readily verify thatK is a cone inX. Finally, we define an operator T : X → K
by

(Tx)(t) =
∫2π

0
G(t, s)F(s, x(s))ds, (2.11)

for x ∈ X and t ∈ [0, 2π], where F : [0, 2π] × R → [0,∞) is continuous and G(t, s) is the
Green function defined above.

Lemma 2.6 (see [12, Lemmas 2.2, 2.3], [13, Lemma 2.4]). T is well defined and maps X into K.
Moreover, T : X → K is continuous and completely continuous.

3. Proof of Theorem 1.1

In this section we establish the existence, multiplicity, and nonexistence of positive solutions
to the periodic boundary problem (Eλ). The first existence result is based on the following
nonlinear alternative of Leray-Schauder, which can be found in [15].

Lemma 3.1. Assume Ω is a relatively compact subset of a convex set K in a normed space X. Let
T : Ω → K be a compact map with 0 ∈ Ω. Then one of the following two conclusions holds:

(I) T has at least one fixed point in Ω.

(II) There exist x ∈ Ω and 0 < λ < 1 such that x = λTx.

Since we are mainly interested in the semipositone case, without loss of generality, we
may assume that f(t, x) satisfies the following.

(F1) There is a constantM > 0 such that f(t, x)+M > 0 for all (t, x) ∈ [0, 2π]×(0,∞) and
let F(t, x) := λ(f(t, x) +M) > 0. Besides, we introduce the following assumption on
f(t, x).

(F2) there exists a continuous, nonnegative function g(x) on (0,∞) such that

f(t, x) ≤ g(x), ∀(t, x) ∈ [0, 2π] × (0,∞), (3.1)

that is,

F(t, x) ≤ λ(g(x) +M), ∀(t, x) ∈ [0, 2π] × (0,∞), (3.2)

and g(x) > 0 is nondecreasing in x ∈ (0,∞).

Theorem 3.2. Suppose f(t, x) satisfies (F1) and (F2). Suppose further that
(F3) there exists r > M‖ω‖/σ such that

r

λ
(
g(r) +M

) > ‖ω‖, (3.3)

where σ and ω are as in Section 2.
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Then (Eλ) has at least one positive periodic solution with 0 < ‖x +Mω‖ < r.

Proof. The existence is proved using the Leray-Schauder alternative principle. Consider the
following equation:

−(a(t)x′)′ + b(t)x = μF(t, x(t) −Mω(t)), t ∈ I,
x(0) = x(2π), a(0)x′(0) = a(2π)x′(2π),

(3.4)

where μ ∈ [0, 1]. Problem (3.4) is equivalent to the following fixed point problem in C[0, 2π]:

x = μTx, (3.5)

where T denotes the operator defined by (2.11), with F(t, x) replaced by F(t, x −Mω).
We claim that any fixed point x of (3.5) for any μ ∈ [0, 1] must satisfy ‖x‖/= r.
Then we have from condition (F2), for all t ∈ I,

x(t) = μTx(t)

= μ

∫2π

0
G(t, s)F(s, x(s) −Mω(s))ds

≤
∫2π

0
G(t, s)F(s, x(s) −Mω(s))ds

≤
∫2π

0
G(t, s)

(
λ
(
g(x −Mω) +M

))
ds

≤ λ
(
g(r) +M

)‖ω‖.

(3.6)

Therefore,

r = ‖x‖ ≤ λ(g(r) +M)‖ω‖. (3.7)

This is a contradiction to the condition (F3). From this claim, the nonlinear alternative of
Leray-Schauder guarantees that (3.5) (with μ = 1) has a fixed point, denoted by x̂1(t), that is,

−(a(t)x̂′
1

)′ + b(t)x̂1 = λ
(
f(t, x̂1(t) −Mω(t)) +M

)
, t ∈ I,

x̂1(0) = x̂1(2π), a(0)x̂′
1(0) = a(2π)x̂

′
1(2π).

(3.8)

Using Lemma 2.5 and condition (F3), for all t ∈ I, we have

x̂1(t) ≥ σ‖x̂1‖ = σr > σ · M‖ω‖
σ

=M‖ω‖ > 0, (3.9)
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that is,

x̂1(t) −M‖ω‖ > 0. (3.10)

Let

x∗
1(t) = x̂1(t) −Mω. (3.11)

It is easy to see that x∗
1(t) is a solution of (Eλ) which satisfies 0 < ‖x∗

1 +Mω‖ < r. Thus, the
proof of Theorem 3.2 is completed.

Theorem 3.3. Suppose that conditions (F1)–(F3) hold. In addition, it is assumed that the following
two conditions are satisfied.

(F4) There exists a continuous, nonnegative function h(x) on (0,∞) such that

f(t, x) +M ≥ h(x), ∀(t, x) ∈ [0, 2π] × (0,∞), (3.12)

that is,

F(t, x) ≥ λh(x), ∀(t, x) ∈ [0, 2π] × (0,∞), (3.13)

and h(x) > 0 is nondecreasing in x ∈ (0,∞).
(F5) There exists a positive number R > r such that

R

λh(σR −M‖ω‖) ≤ ‖ω‖. (3.14)

Then, besides the periodic solution x constructed in Theorem 3.2, (Eλ) has another positive
periodic solution x̃ with r < ‖x̃ +Mω‖ < R.

Proof. As in the proof of Theorem 3.2, we only need to show that (3.8) has a periodic solution
with x̂2 ∈ C[0, 2π] with x̂2 > Mω and r < ‖x̂2‖ < R.

Let X = C[0, 2π] and K the cone in X in Section 2. Let Ω1 = Br and Ω2 = BR be balls
in X. The operator T : K ∩ (Ω2 \ Ω1) → K is defined by (2.11), with F(t, x) replaced by
F(t, x − Mω). Note that any x ∈ K ∩ (Ω2 \ Ω1) satisfies 0 < σr ≤ x(t) ≤ R, thus T is well
defined.

First we have ‖Tx‖ ≤ ‖x‖ for x ∈ K ∩ ∂Ω1. In fact, if x ∈ K ∩ ∂Ω1, then ‖x‖ = r. Now
the estimate ‖Tx‖ ≤ r can be obtained almost following the same ideas in proving (3.7). We
omit the details here.
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Next we show that ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂Ω2. To see this, let x ∈ K ∩ ∂Ω2, then
‖x‖ = R and x ≥ σR; it follows from conditions (F4) and (F5) that, for 0 ≥ t ≥ 2π ,

Tx(t) =
∫2π

0
G(t, s)F(s, x(s) −Mω(s))ds

≥
∫2π

0
G(t, s)(λ(h(x −Mω)))ds

≥ λh(σR −M‖ω‖)‖ω‖ ≥ R = ‖x‖.

(3.15)

Now Lemma 2.5 guarantees that T has a fixed point x̂2 ∈ K ∩ (Ω2 \ Ω1), thus r ≤
‖x̂2(t)‖ ≤ R.

Finally, x∗
2(t) = x̂2(t) − Mω will be the another desired positive periodic solution of

(Eλ). We omit the details because they are much similar to that in the proof of Theorem 3.2.

Now we are in a position to present the proof of Theorem 1.1.

Proof of Theorem 1.1. Consider v(x) > 0 be an eigenfunction satisfying

−(a(t)v′)′ + b(t)v = λ1v, t ∈ I,
v(0) = v(2π), a(0)v′(0) = a(2π)v′(2π),

(3.16)

corresponding to the principal eigenvalue λ1. Let x be a positive solution of (Eλ). Multiplying
(3.16) by x and (Eλ) by v, and subtracting we obtain

∫2π

0

(
λf(t, x) − λ1x

)
v dx = 0. (3.17)

Since f0 < ∞ and f∞ < ∞, there exist positive numbers η1, η2, ε1, and ε2 such that
ε1 < ε2 and

∣∣f(t, x)
∣∣ ≤ η1x for x ∈ [0, ε1],

∣∣f(t, x)
∣∣ ≤ η2x for x ∈ [ε2,∞),

(3.18)

with t ∈ I. Let the positive number η3 be defined by

η3 = max
{
η1, η2, max

ε1<x<ε2

{∣∣∣∣
f(t, x)
x

∣∣∣∣
}}

. (3.19)

Then

∣∣f(t, x)
∣∣ ≤ η3x for x ∈ [0,∞). (3.20)
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Thus, there exists a λ > 0, for 0 < λ < λ satisfying |λ1/λ| > η3. (3.17) cannot hold, and
hence (Eλ) has no positive solution for λ < λ.

Note that the sublinearity of f(t, x) near x = ∞, we can construct a suitable g(x) in
(F2) which satisfies limr→∞g(r)/r < ∞. This means that there exists λ > λ1 satisfying (3.3)
with r being large enough. There also exists λ > λ2 = R/‖ω‖(h(σR−M‖ω‖)) satisfying (3.14).
Let λ = max(λ1, λ2). Thus, with the help of Theorems 3.2 and 3.3, (Eλ) has at least two positive
solution for λ > λ. This completes the proof of the theorem.

Example 3.4. Let the nonlinearity in (Eλ) be

f(t, x) = α(t)g(x) exp(−xγ), (3.21)

with γ > 0, α(t) is a continuous function for all t ∈ I and g(x) is a real coefficient polynomial
function which has zero constant term. Then Theorem 1.1 is valid.

Proof. In this case, with the function f(t, x) = α(t)g(x) exp(−xγ), it is easy to verify

f0 := lim
x→ 0+

max
t∈[0,2π]

f(t, x)
x

= lim
x→ 0+

max
t∈[0,2π]

α(t)g(x) exp(−xγ)
x

<∞,

f∞ := lim
x→+∞

max
t∈[0,2π]

f(t, x)
x

= lim
x→+∞

max
t∈[0,2π]

α(t)g(x) exp(−xγ)
x

= 0 <∞.

(3.22)

Then the conclusion follows from Theorem 1.1 that there exists 0 < λ < λ such that
(Eλ) has no positive solution for λ < λ and at least two positive solutions for λ ≥ λ.
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Let L denote the operator generated in �2(N,C2) by an+1y
(2)
n+1 + bny

(2)
n + pny

(1)
n = λy

(1)
n , an−1y

(1)
n−1 +

bny
(1)
n + qny

(2)
n = λy

(2)
n , n ∈ N, and the boundary condition (γ0 + γ1λ)y

(2)
1 + (β0 + β1λ)y

(1)
0 = 0,

where (an), (bn),(pn), and (qn), n ∈ N are complex sequences, γi, βi ∈ C, i = 0, 1, and λ is
an eigenparameter. In this paper we investigated the principal functions corresponding to the
eigenvalues and the spectral singularities of L.

1. Introduction

Consider the boundary value problem (BVP)

−y′′ + q(x)y = λ2y, 0 ≤ x <∞,

y(0) = 0,
(1.1)

in L2(R+), where q is a complex-valued function and λ ∈ C is a spectral parameter. The
spectral theory of the above BVP with continuous and point spectrum was investigated
by Naı̆mark [1]. He showed the existence of the spectral singularities in the continuous
spectrum of (1.1). Note that the eigen and associated functions corresponding to the spectral
singularities are not the elements of L2(R+).

In [2, 3] the effect of the spectral singularities in the spectral expansion in terms
of the principal vectors was considered. Some problems related to the spectral analysis of
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difference equations with spectral singularities were discussed in [4–7]. The spectral analysis
of eigenparameter dependent nonselfadjoint difference equation was studied in [8, 9].

Let us consider the nonselfadjoint BVP for the discrete Dirac equations

an+1y
(2)
n+1 + bny

(2)
n + pny

(1)
n = λy(1)

n , n ∈ N,

an−1y
(1)
n−1 + bny

(1)
n + qny

(2)
n = λy(2)

n , n ∈ N,

(1.2)

(
γ0 + γ1λ

)
y
(2)
1 +

(
β0 + β1λ

)
y
(1)
0 = 0, γ0β1 − γ1β0 /= 0, γ1 /=a−1

0 β0, (1.3)

where
(

y
(1)
n

y
(2)
n

)
, n ∈ N are vector sequences, an /= 0, bn /= 0 for all n ∈ N, γi, βi ∈ C, and i = 0, 1

and, λ is a spectral parameter.
In [10] the authors proved that eigenvalues and spectral singularities of (1.2)-(1.3)

have a finite number with finite multiplicities, if the condition,

∞∑

n=1

exp
(
εnδ
)(|1 − an| + |1 + bn| +

∣∣pn
∣∣ +
∣∣qn
∣∣) <∞ (1.4)

holds, for some ε > 0 and 1/2 ≤ δ < 1.
In this paper, we aim to investigate the principal functions corresponding to the

eigenvalues and the spectral singularities of the BVP (1.2)-(1.3).

2. Discrete Spectrum of (1.2)-(1.3)

Let for some ε > 0 and 1/2 ≤ δ < 1,

∞∑

n=1

exp
(
εnδ
)(|1 − an| + |1 + bn| +

∣∣pn
∣∣ +
∣∣qn
∣∣) <∞, (2.1)

be satisfied. It has been shown that [10] under the condition (2.1), (1.2) has the solution

fn(z) =

(
f
(1)
n (z)
f
(2)
n (z)

)
= αn

(
I +

∞∑

m=1

Anme
imz

)(
eiz/2

−i
)
einz, n = 1, 2, . . . , (2.2)

f
(1)
0 (z) = α11

0

{
eiz/2

[
1 +

∞∑

m=1

A11
0me

imz

]
− i

∞∑

m=1

A12
0me

imz

}
, (2.3)

for λ = 2 sin(z/2) and z ∈ C+ := {z ∈ C : Im z ≥ 0}, where

αn =

(
α11
n α12

n

α21
n α22

n

)
, I =

(
1 0
0 1

)
, Anm =

(
A11
nm A12

nm

A21
nm A22

nm

)
. (2.4)
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Note that αijn and A
ij
nm (i, j = 1, 2) are uniquely expressed in terms of (an), (bn), (pn), and

(qn),n ∈ N as follows

α11
n =

[ ∞∏

k=n+1

(−1)n−kbkak−1

]−1

,

α12
n = 0,

α22
n =

[
bn

∞∏

k=n+1

(−1)n−k+1bkak−1

]−1

,

α21
n = α22

n

[
pn +

∞∑

k=n+1

(
pk + qk

)
]
,

A12
n1 = −

∞∑

k=n+1

(
pk + qk

)
,

A11
n1 =

∞∑

k=n+1

[
ak+1ak + b2

k − pkqk +
(
pk + qk

)
A12
k1 − 2

]
,

A22
n1 = − 1 + an+1an +

(
A12
n1

)2
+A11

n1,

A21
n1 = −

∞∑

k=n

{(
qk+1 +A12

k1

)[
ak+1ak + qk+1

(
pk+1 + qk+1

)
+ qk+1A

12
k1

+b2
k+1 +A

11
k+1,1 − 1

]
−A12

k1

(
1 +A11

k1

)}
+

∞∑

k=n+1

(
qkA

22
k1 − b2

kpk
)
,

A12
n2 = − an+1an

(
qn+1 +A12

n1

)
+A12

n1A
11
n1 +A

12
n1 −A21

n1,

A11
n2 =

∞∑

k=n+1

{(
b2
k − 1

)
A11
k1 − ak+1ak

[(
qk+1 +A12

k1

)
A12
k+1,1 −A22

k+1,1

]

−
(
pk −A12

k1

)[
qkA

11
k1 +A

12
k1 −A12

k2

]
− qkA21

k1 +A
12
k1A

12
k2 −A22

k1

}
,

A22
n2 = − an+1an

(
qn+1 +A12

n1

)
A12
n+1,1 + an+1anA

22
n+1,1 +A

12
n1A

12
n2 −A11

n1 +A
11
n2,

A21
n2 =

∞∑

k=n

{
A12
k1A

11
k2 + A21

k2 − ak+1ak
[(
qk+1 +A12

k1

)
A11
k+1,1 −A21

k+1,1

]}

−
∞∑

k=n+1

[(
qk +A12

k−1,1

)(
qkA

12
k2 −A11

k1 +A
11
k2

)
+ b2

kA
21
k2 − pkA22

k2 +A
21
k1

]
,

(2.5)



4 Abstract and Applied Analysis

and for m ≥ 3

A12
nm = − an+1an

[(
qn+1 +A12

n1

)
A11
n+1,m−2 +A

21
n+1,m−2

]

+A12
n1A

11
n,m−1 +A

12
n,m−1 −A21

n,m−1,

A11
nm = −

∞∑

k=n+1

ak+1ak
[(
qk+1 +A12

k1

)
A12
k+1,m−1 −A22

k+1,m−1

]

−
∞∑

k=n+1

(
pk −A12

k1

)(
qkA

11
k,m−1 +A

12
k,m−1 −A12

km

)
+

∞∑

k=n+1

(
b2
k − 1

)
A11
k,m−1

−
∞∑

k=n+1

qkA
21
k,m−1 +

∞∑

k=n+1

A12
k1A

12
km −

∞∑

k=n+1

A22
k,m−1,

A22
nm = − an+1an

[(
qn+1 +A12

n1

)
A11
n+1,m−1 −A22

n+1,m−1

]
+A12

n1A
12
nm +A11

nm −A11
n,m−1,

A21
nm = −

∞∑

k=n

ak+1ak
[(
qk+1 +A12

k1

)
A11
k+1,m−1 −A21

k+1,m−1

]

−
∞∑

k=n+1

(
qk −A12

k−1,1

)(
qkA

21
km +A11

k,m−1 −A22
km

)
−

∞∑

k=n+1

(
b2
k − 1

)
A12
km

+
∞∑

k=n

A12
k1A

22
km +

∞∑

k=n+1

qkA
22
km +

∞∑

k=n

A12
km −

∞∑

k=n+1

A21
k,m−1.

(2.6)

Moreover

∣∣∣Aij
nm

∣∣∣ ≤ C
∞∑

k=n+[|m/2|]

(|1 − ak| + |1 + bk| +
∣∣pk
∣∣ +
∣∣qk
∣∣) (2.7)

holds, where [|m/2|] is the integer part of m/2 and C > 0 is a constant. Therefore fn is vector-
valued analytic function with respect to z in C+ := {z ∈ C : Im z > 0} and continuous in C+

[10]. The solution f(z) = (fn(z)) =
(

f
(1)
n (z)

f
(2)
n (z)

)
is called Jost solution of (1.2).

Let us define

F(z) =
(
γ0 + 2γ1 sin

z

2

)
f
(2)
1 (z) +

(
β0 + 2β1 sin

z

2

)
f
(1)
0 (z). (2.8)

It follows (2.2) and (2.3) that the function F is analytic in C+, continuous up to the real axis,
and

F(z + 4π) = F(z). (2.9)
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We denote the set of eigenvalues and spectral singularities of L by σd(L) and σss(L), respec-
tively. From the definition of the eigenvalues and spectral singularities we have [10]

σd =
{
λ : λ = 2 sin

z

2
, z ∈ P0, F(z) = 0

}
,

σss =
{
λ : λ = 2 sin

z

2
, z ∈ [0, 4π], F(z) = 0

}
,

(2.10)

where P0 := {z : z ∈ C, z = x + iy, 0 ≤ x ≤ 4π, y > 0}. The finiteness of the multiplicities
of eigenvalues and spectral singularities has been proven in [10]. Using (2.2), (2.3), and (2.8)
we obtain

F(z) =
{
γ0 + γ1

[
(−i)
(
ei(z/2) − e−i(z/2)

)]}
f
(2)
1 (z)

+
{
β0 + β1

[
(−i)
(
ei(z/2) − e−i(z/2)

)]}
f
(1)
0 (z)

= iα11
0 β1 +

(
γ1α

22
1 + α11

0 β0

)
ei(z/2) + i

(
−γ0α

22
1 + γ1α

22
1 − α11

0 β1

)
eiz

+
(
γ0α

21
1 − γ1α

22
1

)
ei(3z/2) − iγ1α

21
1 e

2iz

+
∞∑

m=1

α11
0 β1A

12
0me

i(m−(1/2))z + i
∞∑

m=1

(
−α11

0 β0A
12
0m + α11

0 β1A
11
0m

)
eimz

+
∞∑

m=1

(
γ1α

21
1 A

12
1m + γ1α

22
1 A

22
1m + α11

0 β0A
11
0m − α11

0 β1A
12
0m

)
ei(m+(1/2))z

+ i
∞∑

m=1

(
−γ0α

21
1 A

12
1m − γ0α

22
1 A

22
1m + γ1α

21
1 A

11
1m + γ1α

22
1 A

21
1m

−α11
0 β1A

11
0m

)
ei(m+1)z

+
∞∑

m=1

(
γ0α

21
1 A

11
1m + γ0α

22
1 A

21
1m − γ1α

21
1 A

12
1m − γ1α

22
1 A

22
1m

)
ei(m+(3/2))z

+ i
∞∑

m=1

(
−γ1α

21
1 A

11
1m − γ1α

22
1 A

21
1m

)
ei(m+2)z.

+ i
∞∑

m=1

(
−γ1α

21
1 A

11
1m − γ1α

22
1 A

21
1m

)
ei(m+2)z.

(2.11)

Definition 2.1. The multiplicity of a zero of F in P := P0 ∪ [0, 4π] is called the multiplicity of
the corresponding eigenvalue or spectral singularity of the BVP (1.2), (1.3).

3. Principal Functions

In this section we also assume that (2.1) holds.
Let λ1, λ2, . . . , λk and λk+1, λk+2, . . . , λν denote the zeros of F in P0 and [0, 4π] with

multiplicities m1, m2, . . . , mk and mk+1, mk+2, . . . , mν, respectively.
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Let us define � :=
(
�̃
�̂

)
where

(
�̃y
)

n
= an+1y

(2)
n+1 + bny

(2)
n + pny

(1)
n , n ∈ N,

(
�̂y
)

n
= an−1y

(1)
n−1 + bny

(1)
n + qny

(2)
n , n ∈ N.

(3.1)

Definition 3.1. Let λ = λ0 be an eigenvalue of L. If the vectors yn, d/(dλyn), d2/dλ2yn, . . . ,
dν/dλνyn,

dj

dλj
y :=

{
dj

dλj
yn

}

n∈N

,
(
j = 0, 1, . . . , ν; n ∈ N

)
, (3.2)

satisfy the equations

(
�y
)
n − λ0yn = 0,

(
�

(
dj

dλj
y

))

n

− λ0
dj

dλj
yn − dj−1

dλj−1
yn = 0, j = 1, 2, . . . , ν, n ∈ N,

(3.3)

then the vector yn is called the eigenvector corresponding to the eigenvalue λ = λ0 of L. The
vectors (d/dλ)yn, (d2/dλ2)yn, . . . , (dν/dλν)yn are called the associated vectors correspond-
ing to λ = λ0. The eigenvector and the associated vectors corresponding to λ = λ0 are called
the principal vectors of the eigenvalue λ = λ0. The principal vectors of the spectral singulari-
ties of L are defined similarly.

We define the vectors

dj

dλj
Vn(λi) =

⎛
⎜⎜⎜⎜⎜⎝

1
j!

{
dj

dλj
E
(1)
n (λ)

}

λ=λi

1
j!

{
dj

dλj
E
(2)
n (λ)

}

λ=λi

⎞
⎟⎟⎟⎟⎟⎠
,

n ∈ N, j = 0, 1, . . . , mi − 1, i = 1, 2, . . . , k, k + 1, . . . , ν,

(3.4)

where λ = 2 sin(z/2) and

En(λ) =

⎛

⎝E
(1)
n (λ)

E
(2)
n (λ)

⎞

⎠ := fn
(

2 arcsin
λ

2

)
=

⎛
⎜⎜⎝

f
(1)
n

(
2 arcsin

λ

2

)

f
(2)
n

(
2 arcsin

λ

2

)

⎞
⎟⎟⎠. (3.5)
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If

y(λ) =
{
yn(λ)

}
:=

(
y
(1)
n (λ)
y
(2)
n (λ)

)

n∈N

(3.6)

is a solution of (1.2), then

dj

dλj
y(λ) =

{(
dj

dλj

)
yn(λ)

}

n∈N

:=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
dj

dλj

)
y
(1)
n (λ)

(
dj

dλj

)
y
(2)
n (λ)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(3.7)

satisfies

⎛
⎜⎜⎜⎝

an−1
dj

dλj
y
(2)
n+1(λ) + bn

dj

dλj
y
(2)
n (λ) + pn

dj

dλj
y
(1)
n (λ)

an−1
dj

dλj
y
(1)
n−1(λ) + bn

dj

dλj
y
(1)
n (λ) + qn

dj

dλj
y
(2)
n (λ)

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

λ
dj

dλj
y
(1)
n (λ) + j

dj−1

dλj−1
y
(1)
n (λ)

λ
dj

dλj
y
(2)
n (λ) + j

dj−1

dλj−1
y
(2)
n (λ)

⎞
⎟⎟⎟⎠.

(3.8)

From (3.4) and (3.8) we get that

(�V (λi))n − λ0Vn(λi) = 0,
(
�

(
dj

dλj
V (λi)

))

n

− λ0
dj

dλj
Vn(λi) − dj−1

dλj−1
Vn(λi) = 0,

n ∈ N, j = 1, 2, . . . , mi − 1, i = 1, 2, . . . , ν.

(3.9)

The vectors dj/dλjVn(λi), j = 0, 1, 2, . . . , mi − 1, i = 1, 2, . . . , k and dj/dλjVn(λi), j = 0, 1, 2, . . . ,
mi − 1, i = k + 1, k + 2, . . . , ν are the principal vectors of eigenvalues and spectral singularities
of L, respectively.

Theorem 3.2.

dj

dλj
Vn(λi) ∈ �2

(
N,C2

)
, j = 0, 1, 2, . . . , mi − 1, i = 1, 2, . . . , k,

dj

dλj
Vn(λi) /∈ �2

(
N,C2

)
, j = 0, 1, 2, . . . , mi − 1, i = k + 1, k + 2, . . . , ν.

(3.10)
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Proof. Using (3.5) we get that

{
dj

dλj
E
(1)
n (λ)

}

λ=λi

=
j∑

t=0

Ct

{
dt

dλt
f
(1)
n (z)

}

z=zi
, n ∈ N,

{
dj

dλj
E
(2)
n (λ)

}

λ=λi

=
j∑

t=0

Dt

{
dt

dλt
f
(2)
n (z)

}

z=zi
, n ∈ N,

(3.11)

where λi = 2 sin zi/2, zi ∈ P = P0 ∪ [0, 4], i = 1, 2, . . . , k and Ct, Dt are constant depending on
λ. From (2.2) we obtain that

{
dt

dλt
f
(1)
n (z)

}

z=zi
= α11

n i
t

(
n +

1
2

)t
eizi(n+(1/2))

+
∞∑

m=1

α11
n

{
A11
nmi

t

(
m + n +

1
2

)t
ei(m+n+(1/2))zi

−A12
nmi

t+1(m + n)tei(m+n)zi

}
,

(3.12)

{
dt

dλt
f
(2)
n (z)

}

z=zi
= α21

n i
t

(
n +

1
2

)t
eizi(n+(1/2)) − i(in)tα22

n e
inzi

+
∞∑

m=1

α21
n

{
A11
nmi

t

(
m + n +

1
2

)t
ei(m+n+(1/2))zi

−A12
nmi

t+1(m + n)tei(m+n)zi

}

+
∞∑

m=1

α22
n

{
A21
nmi

t

(
m + n +

1
2

)t
ei(m+n+(1/2))zi

−A22
nmi

t+1(m + n)tei(m+n)zi

}
.

(3.13)

For the principal vectors (dj/dλj)Vn(λi) = {(dj/dλj)Vn(λi)}n∈N
, j = 0, 1, . . . , mi − 1, i = 1, 2,

. . . , k corresponding to the eigenvalues of L we get

1
j!

{
dj

dλj
E
(1)
n (λ)

}

λ=λi

=
1j

j!

j∑

t=0

Ct

{
dt

dλt
f
(1)
n (zi)

}
,

j = 0, 1, . . . , mi − 1, i = 1, 2, . . . , k,

1
j!

{
dj

dλj
E
(2)
n (λ)

}

λ=λi

=
1j

j!

j∑

t=0

Dt

{
dt

dλt
f
(2)
n (zi)

}
,

j = 0, 1, . . . , mi − 1, i = 1, 2, . . . , k.

(3.14)
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Since Imλi > 0 for i = 1, 2, . . . , k from (3.14) we obtain that

∥∥∥∥∥
dj

dλj
Vn

∥∥∥∥∥

2

=
∞∑

n=1

⎛

⎝
∣∣∣∣∣

1
j!

{
dj

dλj
E
(1)
n (λ)

}

λ=λi

∣∣∣∣∣

2

+

∣∣∣∣∣
1
j!

{
dj

dλj
E
(2)
n (λ)

}

λ=λi

∣∣∣∣∣

2
⎞

⎠

=
(

1
j!

)2 ∞∑

n=1

⎛

⎝
∣∣∣∣∣

j∑

t=0

Ct

{
dt

dλt
f
(1)
n (zi)

}∣∣∣∣∣

2

+

∣∣∣∣∣

j∑

t=0

Dt

{
dt

dλt
f
(2)
n (zi)

}∣∣∣∣∣

2⎞

⎠

≤
(

1
j!

)2 ∞∑

n=1

{(
j∑

t=0

∣∣∣∣Ct

{
dt

dλt
f
(1)
n (zi)

}∣∣∣∣
2)

+

(
j∑

t=0

∣∣∣∣Dt

{
dt

dλt
f
(2)
n (zi)

}∣∣∣∣
2)}

≤
(

1
j!

)2
( ∞∑

n=1

j∑

t=0

max{|Ct|, |Dt|}
(∣∣∣∣
{
dt

dλt
f
(1)
n (zi)

}∣∣∣∣ +
∣∣∣∣
{
dt

dλt
f
(2)
n (zi)

}∣∣∣∣
))2

,

(3.15)

or

∥∥∥∥∥
dj

dλj
Vn

∥∥∥∥∥

2

≤
(

1
j!

)2
{ ∞∑

n=1

[
j∑

t=0

max{|Ct|, |Dt|}

×
{(∣∣∣α11

n

∣∣∣ +
∣∣∣α21

n

∣∣∣
)(∣∣∣∣n +

1
2

∣∣∣∣
t

e−(n+(1/2)) Im zi

)
+
∣∣∣α22

n

∣∣∣|n|te−n Im zi

}

+
j∑

t=0

max{|Ct|, |Dt|}
{ ∞∑

m=1

(∣∣∣α11
n

∣∣∣ +
∣∣∣α21

n

∣∣∣
)(∣∣∣A11

nm

∣∣∣
∣∣∣∣m + n +

1
2

∣∣∣∣
t

e−(m+n+(1/2)) Im zi

)

+
∣∣∣A12

nm

∣∣∣|m + n|te−(m+n) Im zi

}

+
j∑

t=0
|Dt|
{ ∞∑

m=1

∣∣∣α22
n

∣∣∣
(∣∣∣A21

nm

∣∣∣
∣∣∣∣m + n +

1
2

∣∣∣∣
t

e−(m+n+(1/2)) Im zi +
∣∣∣A22

nm

∣∣∣|m + n|t

×e−(m+n) Im zi

)}]}2

.

(3.16)

From (3.16),

(
1
j!

)2 ∞∑

n=1

j∑

t=0

max{|Ct|, |Dt|}

⎧
⎪⎪⎨

⎪⎪⎩

(∣∣α11
n

∣∣ +
∣∣α21

n

∣∣)
(∣∣∣∣n +

1
2

∣∣∣∣
t

e−(n+(1/2)) Im zi

)

+
∣∣α22

n

∣∣|n|te−n Im zi

⎫
⎪⎪⎬

⎪⎪⎭

≤ A
(
j!
)2

∞∑

n=1

(
1 +
(
n +

1
2

)
+
(
n +

1
2

)2

+ · · · +
(
n +

1
2

)j)
e−(n+(1/2)) Im zi
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+
(

1 + n + n2 + · · · + nj
)
e−n Im zi

≤ A
(
j + 1
)2

(
j!
)2

∞∑

n=1

[(
n +

1
2

)j
e−(n+(1/2)) Im zi + nje−n Im zi

]
<∞.

(3.17)

Holds, where

A = max{|Ct|, |Dt|}max
{(∣∣∣α11

n

∣∣∣ +
∣∣∣α21

n

∣∣∣
)
,
∣∣∣α22

n

∣∣∣
}
. (3.18)

Now we define the function

gn(z) =
j∑

t=0

max{|Ct|, |Dt|}
{ ∞∑

m=1

(∣∣∣α11
n

∣∣∣ +
∣∣∣α21

n

∣∣∣
)(∣∣∣A11

nm

∣∣∣
∣∣∣∣m + n +

1
2

∣∣∣∣
t

e−(m+n+(1/2)) Im zi

+
∣∣∣A12

nm

∣∣∣|m + n|te−(m+n) Im zi

)}

+
j∑

t=0
|Dt|
{ ∞∑

m=1

∣∣∣α22
n

∣∣∣
(∣∣∣A21

nm

∣∣∣
∣∣∣∣m + n +

1
2

∣∣∣∣
t

e−(m+n+(1/2)) Im zi

+
∣∣∣A22

nm

∣∣∣|m + n|te−(m+n) Im zi

)}
.

(3.19)

So we get

(
1
j!

)2 ∞∑

n=1

[
j∑

t=0

max{|Ct|, |Dt|}
{ ∞∑

m=1

(∣∣∣α11
n

∣∣∣ +
∣∣∣α21

n

∣∣∣
)(∣∣∣A11

nm

∣∣∣
∣∣∣∣m + n +

1
2

∣∣∣∣
t

e−(m+n+(1/2)) Im zi

+
∣∣∣A12

nm

∣∣∣|m + n|te−(m+n) Im zi

)}

+
j∑

t=0
|Dt|
{ ∞∑

m=1

∣∣∣α22
n

∣∣∣
(∣∣∣A21

nm

∣∣∣
∣∣∣∣m + n +

1
2

∣∣∣∣
t

e−(m+n+(1/2)) Im zi

+
∣∣∣A22

nm

∣∣∣|m + n|te−(m+n) Im zi

)}]

=
(

1
j!

)2 ∞∑

n=1

gn(z).

(3.20)
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Using the boundness of Aij
nm and α

ij
n , i, j = 1, 2 we obtain that

gn(z) ≤ max{|Ct|, |Dt|}M
j∑

t=0

∞∑

m=1

{∣∣∣∣m + n +
1
2

∣∣∣∣
t

e−(m+n+(1/2)) Im zi

+|m + n|te−(m+n) Im zi

}
,

(3.21)

where

M = max
{(∣∣∣α11

n

∣∣∣ +
∣∣∣α21

n

∣∣∣
)∣∣∣A11

nm

∣∣∣,
∣∣∣α22

n

∣∣∣
∣∣∣A21

nm

∣∣∣,
(∣∣∣α11

n

∣∣∣ +
∣∣∣α21

n

∣∣∣
)∣∣∣A12

nm

∣∣∣,
∣∣∣α22

n

∣∣∣
∣∣∣A22

nm

∣∣∣
}
.

(3.22)

If we take max{|Ct|, |Dt|}M =N, we can write

gn(z) ≤ N
j∑

t=0

e−n Im zi
∞∑

m=1

{(
m + n +

1
2

)t
e−m Im zi + (m + n)te−m Im zi

}

= Ne−n Im zi

{ ∞∑

m=1

2e−m Im zi +
∞∑

m=1

e−m Im zi

((
m + n +

1
2

)
+ (m + n)

)
+ · · ·

+
∞∑

m=1

e−m Im zi

((
m + n +

1
2

)j
+ (m + n)j

)}

≤ Ne−n Im zi
∞∑

m=1

j∑

t=0

e−m Im zi

((
m + n +

1
2

)t
+ (m + n)t

)

≤ Be−n Im zi ,

(3.23)

where

B = A
∞∑

m=1

j∑

t=0

e−m Im zi

((
m + n +

1
2

)t
+ (m + n)t

)
. (3.24)

Therefore we have

(
1
j!

)2 ∞∑

n=1

gn(z) ≤
(

1
j!

)2 ∞∑

n=1

Be−n Im zi <∞. (3.25)

From (3.17) and (3.25) dj/dλjVn(λi) ∈ �2(N,C2), j = 0, 1, . . . , mi − 1, i = 1, 2, . . . , k.
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On the other hand, since Im zi = 0 for j = 0, 1, . . . , mi − 1; i = k + 1, k + 2, . . . , ν using
(3.12) we find that

∞∑

n=1

∣∣∣∣∣α
11
n i

t

(
n +

1
2

)t
eizi(n+(1/2))

∣∣∣∣∣

2

= ∞, (3.26)

but the other terms in (3.12) belongs �2(N,C2), so dj/(dλj)E(1)
n (λ) /∈ �2(N,C2). Similarly from

(3.13) we get dj/(dλj)E(2)
n (λ) /∈ �2(N,C2), then we obtain that dj/(dλj)Vn(λi) /∈ �2(N,C2),

j = 0, 1, . . . , mi − 1; i = k + 1, k + 2, . . . , ν.

Let us introduce Hilbert space j = 0, 1, 2, . . .

H−j(N) =

{
y =

(
y
(1)
n

y
(2)
n

)
:
∑

n∈N

(1 + |n|)−2j
(∣∣∣y(1)

n

∣∣∣
2
+
∣∣∣y(2)

n

∣∣∣
2
)
<∞
}
, (3.27)

with

∥∥y
∥∥2
−j =

∑

n∈N

(1 + |n|)−2j
(∣∣∣y(1)

n

∣∣∣
2
+
∣∣∣y(2)

n

∣∣∣
2
)
. (3.28)

Theorem 3.3. dj/(dλj)Vn(λi) ∈ H−(j+1)(N), j = 0, 1, 2, . . . , mi − 1, i = k + 1, k + 2, . . . , ν.

Proof. Using (3.4), (3.14) we have

∑

n∈N

(1 + |n|)−2(j+1)

⎛

⎝
∣∣∣∣∣

1
j!

{
dj

dλj
E
(1)
n (λ)

}

λ=λi

∣∣∣∣∣

2

+

∣∣∣∣∣
1
j!

{
dj

dλj
E
(2)
n (λ)

}

λ=λi

∣∣∣∣∣

2
⎞

⎠

=
∑

n∈N

(1 + |n|)−2(j+1)

(
j!
)2

⎧
⎨

⎩

∣∣∣∣∣

j∑

t=0

Ct

{
dt

dλt
f
(1)
n (zi)

}∣∣∣∣∣

2

+

∣∣∣∣∣

j∑

t=0

Dt

{
dt

dλt
f
(2)
n (zi)

}∣∣∣∣∣

2
⎫
⎬

⎭

≤ 1
(
j!
)2

∞∑

n=1

(1 + |n|)−2(j+1)

⎧
⎨

⎩

(
j∑

t=0

∣∣∣∣Ct

{
dt

dλt
f
(1)
n (zi)

}∣∣∣∣

)2

+

(
j∑

t=0

∣∣∣∣Dt

{
dt

dλt
f
(2)
n (zi)

}∣∣∣∣

)2
⎫
⎬

⎭,

(3.29)

for j = 0, 1, 2, . . . , mi − 1, i = k + 1, k + 2, ν. Since Im zi = 0, using (3.29) we obtain

∑

n∈N

(1 + |n|)−2(j+1) 1
(
j!
)2

(
j∑

t=0

∣∣∣∣Ct

{
dt

dλt
f
(1)
n (zi)

}∣∣∣∣

)2

=
1
(
j!
)2

∞∑

n=1

{
j∑

t=0
(1 + |n|)−(j+1)

(
n +

1
2

)t∣∣∣α11
n

∣∣∣|Ct|

+
j∑

t=0
|Ct|
∣∣∣α11

n

∣∣∣(1 + |n|)−(j+1)
∞∑

m=1

∣∣∣A11
nm

∣∣∣
(
m + n +

1
2

)t
+
∣∣∣A12

nm

∣∣∣(m + n)t
}2
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=
1
(
j!
)2

∞∑

n=1

⎧
⎨

⎩

(
j∑

t=0
(1 + |n|)−(j+1)

(
n +

1
2

)t∣∣∣α11
n

∣∣∣|Ct|
)2

+ 2(1 + |n|)−2(j+1)
∣∣∣α11

n

∣∣∣
2
[

j∑

t=0

(
n +

1
2

)t
|Ct|
]

×
[

j∑

t=0
|Ct|

∞∑

m=1

∣∣∣A11
nm

∣∣∣
(
m + n +

1
2

)t
+
∣∣∣A12

nm

∣∣∣(m + n)t
]

+

(
j∑

t=0
|Ct|(1 + |n|)−(j+1)

∣∣∣α11
n

∣∣∣
∞∑

m=1

∣∣∣A11
nm

∣∣∣
(
m + n +

1
2

)t
+
∣∣∣A12

nm

∣∣∣(m + n)t
)2
⎫
⎬

⎭.

(3.30)

Using (3.30), (2.1), and (2.7) we first obtain that

(
j∑

t=0
|Ct|
∣∣∣α11

n

∣∣∣(1 + |n|)−(j+1)
∞∑

m=1

(∣∣∣A11
nm

∣∣∣
(
m + n +

1
2

)t
+
∣∣∣A12

nm

∣∣∣(m + n)t
))2

≤ 4

(
j∑

t=0
|Ct|
∣∣∣α11

n

∣∣∣
∞

m=1
(1 + |n|)−(j+1)

(
m + n +

1
2

)t
C

×
∞∑

j=n+�m/2	

(∣∣1 − aj
∣∣ +
∣∣1 + bj

∣∣ +
∣∣pj
∣∣ +
∣∣qj
∣∣)e−εj

δ

eεj
δ

⎞

⎠
2

≤ 4

{
j∑

t=0

∣∣∣α11
n

∣∣∣
∞∑

m=1

(1 + |n|)−(j+1)
(
m + n +

1
2

)t
C exp

(
−ε
(n +m

4

)δ)

×
∞∑

j=n+�m/2	
eεj

δ(∣∣1 − aj
∣∣ +
∣∣1 + bj

∣∣ +
∣∣pj
∣∣ +
∣∣qj
∣∣)
⎫
⎬

⎭

2

≤ C1

(
j∑

t=0
(1 + |n|)−(j+1)

∞∑

m=1

(
m + n +

1
2

)t
exp
(
−ε
(n +m

4

)δ)
)2

≤ C1

(
j∑

t=0
(1 + |n|)−(j+1)

∞∑

m=1

(
m + n +

1
2

)t
exp
(
−ε
(n +m

4

)1/2)
)2

≤ C1

⎛
⎜⎝

j∑

t=0
(1 + |n|)−(j+1)

∞∑

m=1

(
m + n +

1
2

)t
exp

⎛
⎜⎝−ε

√
2

4

⎛
⎜⎝n

1
2 +m

1
2

⎞
⎟⎠

⎞
⎟⎠

⎞
⎟⎠

2
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= C1(1 + |n|)−2(j+1) exp

(
−ε

√
2

4
n1/2

)(
j∑

t=0

∞∑

m=1

(
m + n +

1
2

)t
exp

(
−ε

√
2

4
m1/2

))2

= G exp

⎛
⎜⎝−ε

√
2

4
n

1
2

⎞
⎟⎠(1 + |n|)−2(j+1),

(3.31)

where

C1 =

⎛

⎝2C
∣∣∣α11

n

∣∣∣
∞∑

j=n+�m/2	
eεj

δ(∣∣1 − aj
∣∣ +
∣∣1 + bj

∣∣ +
∣∣pj
∣∣ +
∣∣qj
∣∣)
⎞

⎠
2

,

G = C1

(
j∑

t=0

∞∑

m=1

(
m + n +

1
2

)t
exp

(
−ε

√
2

4
m1/2

))2

.

(3.32)

So we get from (3.31)

∞∑

n=1

(
j∑

t=0
|Ct|(1 + |n|)−(j+1)

∣∣∣α11
n

∣∣∣
∞∑

m=1

∣∣∣A11
nm

∣∣∣
(
m + n +

1
2

)t
+
∣∣∣A12

nm

∣∣∣(m + n)t
)2

≤ G
∞∑

n=1

exp

(
−ε

√
2

4
n1/2

)
(1 + |n|)−2(j+1) <∞.

(3.33)

Secondly, using (3.30) and (3.31) we obtain that

∞∑

n=1

2

{[
j∑

t=0

∣∣∣α11
n

∣∣∣|Ct|(1 + |n|)−(j+1)
(
n +

1
2

)t]

×
[

j∑

t=0
|Ct|
∣∣∣α11

n

∣∣∣
∞∑

m=1

(1 + |n|)−(j+1)

((
m + n +

1
2

)t∣∣∣A11
nm

∣∣∣ + (m + n)t
∣∣∣A12

nm

∣∣∣
)]}

≤
∞∑

n=1

[
j∑

t=0
(1 + |n|)−2(j+1)

(
n +

1
2

)t
exp

(
−ε

√
2

4
n1/2

)
G1/2

]
<∞,

(3.34)

and also the first part of the (3.31) obviously convergent so, we get from (3.33) and (3.34)

∑

n∈N

(1 + |n|)−2(j+1) 1
(
j!
)2

(
j∑

t=0

∣∣∣∣Ct

{
dt

dλt
f
(1)
n (zi)

}∣∣∣∣

)2

<∞, (3.35)
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and similarly

∑

n∈N

(1 + |n|)−2(j+1) 1
(
j!
)2

(
j∑

t=0

∣∣∣∣Dt

{
dt

dλt
f
(2)
n (zi)

}∣∣∣∣

)2

<∞. (3.36)

Finally dj/(dλj)Vn(λi) ∈ H−(j+1)(N), j = 0, 1, 2, . . . , mi − 1, i = k + 1, k + 2, . . . , ν.
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We consider a predator-prey model in which the preys disperse among n patches (n ≥ 2) with
stochastic perturbation. We show that there is a unique positive solution and find out the sufficient
conditions for the extinction to the system with any given positive initial value. In addition, we
investigate that there exists a stationary distribution for the system and it has ergodic property.
Finally, we illustrate the dynamic behavior of the system with n = 2 via numerical simulation.

1. Introduction

Interest has been growing in the study of the dynamic relationship between predators and
their preys due to its universal existence and importance. However, due to the spatial
heterogeneity and the increasing spread of human activities, the habitats of many biological
species have been separated into isolated patches. In some of these patches, without the
contribution from other patches, the species will go to extinction. Recently, the effect of
dispersion on the species survival has been an important subject in population biology (see
[1–10] and the references cited therein). Particularly, two species predator-prey systems with
dispersal have received great attention from both theoretical andmathematical biologists and
many good results have been achieved (see [1, 2, 7, 9–11]). The analysis of these papers
has been centered around the coexistence of populations, stability (local and global), and
permanence of equilibria. Zhang and Teng [11] established the sufficient conditions on
the boundedness, permanence, and existence of positive periodic solution for two species
predator-prey model. Kuang and Takeuchi [1] studied a predator-prey system with prey
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dispersal in a two-patch environment; they obtained the existence, local and global stability
of the positive steady state and analyzed both the stabilizing and destabilizing effects of
dispersion by introducing examples.

Li and Shuai [2] considered the model

ẋi = xi
(
ri − bixi − eiyi

)
+

n∑

j=1

dij
(
xj − αijxi

)
,

ẏi = yi
(−γi − δiyi + εixi

)
, i = 1, 2, . . . , n,

(1.1)

where xi, yi denote the densities of preys and predators on the patch i, respectively. The
parameters in themodel are nonnegative constants and ei, εi are positive. The constants dij are
the dispersal rate from patch j to i, and the constants αij can be selected to represent different
boundary conditions in the continuous diffusion case [12]. Let (dij) denote n × n dispersal
matrix. By constructing a Lyapunov function and using graph theory, Li and Shuai proved
the uniqueness and globally asymptotically stability of a positive equilibrium, whenever it
exists, if (dij) is irreducible and there exists i such that bi > 0 or δi > 0.

The model mentioned above is a deterministic model which assumes that the
parameters in the model are all deterministic irrespective environmental fluctuations. In fact,
population dynamics is inevitably affected by environmental white noise, such as weather
and epidemic disease. Therefore, the deterministic models are often subject to stochastic
perturbation, and it is useful to reveal how the noise affects the population system. There
are some authors who have studied the dynamics of predator-prey models with stochastic
perturbations (see [13–15]). Ji et al. [13] studied a predator-prey with modified Leslie-Gower
and Holling-type II schemes with stochastic perturbation; they got some good results about
existence, uniqueness, and extinction of positive solution. Cai and Lin [15] investigated
a predator-prey stochastic system with competition among predators and obtained the
probability distribution of the system state variables at the state of statistical stationarity.
But, until now, few people study the dynamical behavior of the predator-prey system with
diffusion under the influence of white noise. However, the diffusion phenomenon and
environmental white noise are universal existence in nature. Therefore, we want to study
the effect of random perturbations on the predator-prey system on the basis of the existing
diffusion model and the contents of this paper are of great significance.

In this paper, we take into account the effect of randomly fluctuating and stochastically
perturb intrinsic growth rate in each equations of (1.1):

ri −→ ri + σ1iḂ1i(t),

−γi −→ −γi + σ2iḂ2i(t), i = 1, 2, . . . , n,
(1.2)

where B1i(t), B2i(t) are mutually independent Brownian motions and σ1i, σ2i are posi-
tiveconstants representing the intensity of the white noises, respectively. Then the stochastic
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system takes the following form:

dxi =

⎡

⎣xi
(
ri − bixi − eiyi

)
+

n∑

j=1

dij
(
xj − αijxi

)
⎤

⎦dt + σ1ixidB1i(t),

dyi = yi
(−γi − δiyi + εixi

)
dt + σ2iyidB2i(t), i = 1, 2, . . . , n.

(1.3)

Throughout this paper, we assume dij are nonnegative constants, (dij) is irreducible, and the
parameters ri, γi, bi, ei, δi, εi are positive constants.

In order to obtain better dynamic properties of the SDE (1.3), we will show that
there exists a unique positive global solution with any initial positive value, and its pth
moment is bounded in Section 2. In the study of a population dynamics, permanence is a very
important and interesting topic regarding the survival of populations in ecological system. In
a deterministic system, it is usually solved by showing the global attractivity of the positive
equilibrium of the system. But, as mentioned above, it is impossible to expect stochastic
system (1.3) to tend to a steady state. So we attempt to investigate the stationary distribution
of this system by Lyapunov functional technique. The stationary can be considered a weak
stability, which appears as the solution is fluctuating in a neighborhood of the equilibrium
point of the corresponding deterministic model. In Section 3, we will show if the white noise
is small, there is a stationary distribution of SDE (1.3) and it has ergodic property. Existing
results on dynamics in a patchy environment have largely been restricted to extinction
analysis which means that the population system will survive or die out in the future due
to the increased complexity of global analysis. In Section 4, we give the sufficient conditions
for extinction. In Section 5, we make numerical simulation to conform our analytical results.
Finally, for the completeness of the paper, we give an appendix containing some theories
which will be used in previous sections.

The key method used in this paper is the analysis of Lyapunov functions [6, 13, 14, 16].
We will also use the graph theory in Section 3 and some graph definitions can be found in the
appendix.

Throughout this paper, unless otherwise specified, let (Ω, {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and F0 contains all P -null sets). Let R2n

+ denote the positive cone of R2n, namely,
R2n

+ = {(x1, y1, . . . , xn, yn) ∈ R2n : xi > 0, yi > 0, i = 1, 2, . . . , n}. For convenience and simplicity
in the following discussion, denote X(t) = (x1(t), y1(t), x2(t), y2(t), . . . , xn(t), yn(t)). If A is a
vector or matrix, its transpose is denoted by AT . If A is a matrix, its trace norm is denoted by
|A| =

√
trace(ATA) whilst its operator norm is denoted by ‖A‖ = sup{|Ax| : |x| = 1}.

2. Positive and Global Solutions

In order for a stochastic differential equation to have a unique global (i.e., no explosion at any
finite time) solution, the coefficients of the equation are generally required to satisfy the linear
growth condition and local Lipschitz condition (see [17]). However, the coefficients of SDE
(1.3) do not satisfy the linear growth condition, though they are locally Lipschitz continuous,
so the solution of SDE (1.3) may explode at a finite time. In this section, we will prove the
solution of stochastic system (1.3) with any positive initial value is not only positive but also
not exploive in infinity at any finite time.
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Theorem 2.1. For any given initial value X(0) ∈ R2n
+ , there is a unique positive solution X(t) of

SDE (1.3), and the solution will remain in R2n
+ with probability 1.

Proof. We define a C2-function V : R2n
+ → R+:

V (X(t)) =
n∑

i=1

[
εi
(
xi − 1 − logxi

)
+ ei

(
yi − 1 − logyi

)]
. (2.1)

Applying Itô’s formula, we have

LV =
n∑

i=1

⎛

⎝εi

⎧
⎨

⎩(xi − 1)

⎡

⎣ri − bixi − eiyi +
n∑

j=1

dij

(
xj

xi
− αij

)⎤

⎦ +
σ2
1i

2

⎫
⎬

⎭

+ ei

[
(
yi − 1

)(−γi − δiyi + εixi
)
+
σ2
2i

2

]
dt

⎞

⎠

=
n∑

i=1

⎡

⎣−εibix2
i − eiδiy2

i + εi

⎛

⎝ri −
n∑

j=1

dijαij + bi − ei
⎞

⎠xi + εi
n∑

j=1

dijxj

− εi
n∑

j=1

dij
xj

xi
+ ei

(−γi + δi + εi
)
yi + εi

⎛

⎝
n∑

j=1

dijαij − ri +
σ2
1i

2

⎞

⎠ + ei

(
γi +

σ2
2i

2

)⎤

⎦dt

≤
n∑

i=1

⎡

⎣−εibix2
i − eiδiy2

i + εi

⎛

⎝ri −
n∑

j=1

dijαij + bi − ei
⎞

⎠xi + εi
n∑

j=1

dijxj

+ ei
(−γi + δi + εi

)
yi + εi

⎛

⎝
n∑

j=1

dijαij − ri +
σ2
1i

2

⎞

⎠ + ei

(
γi +

σ2
2i

2

)⎤

⎦.

(2.2)

It is clear that the coefficient of quadratic term is negative, sowemust be able to find a positive
constant number K that satisfies

LV ≤ K, (2.3)

and K is independent of xi, yi, and t. By the similar proof of Li and Mao [18, Theorem 2.1],
we can obtain the desired assertion.

Theorem 2.1 shows that the solution of SDE (1.3) will remain in the positive cone R2
+

with probability 1. This nice property provides us with a great opportunity to discuss the pth
moment and stochastically ultimately boundedness of the solution.
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Definition 2.2 (see [18]). The solution X(t) of SDE (1.3) is said to be stochastically ultimately
bounded, if for any ε ∈ (0, 1), there exists a positive constant χ(= χ(ε)), such that for any
initial value X(0) ∈ R2n

+ , the solution X(t) to (1.3) has the property that

lim sup
t→∞

P
{|x(t)| > χ} < ε. (2.4)

Lemma 2.3. For any given initial value X(0) ∈ R2n
+ , there exist positive constants κ(p), pi, and

qi (i = 1, 2, . . . , n), such that the solution X(t) of SDE (1.3) has the following property:

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ κ(p), t ≥ 0, p > 1. (2.5)

Proof. By Itô’s formula and Young inequality, we compute

d

(
1
p
x
p

i

)
= x

p−1
i dxi +

p − 1
2

x
p−2
i (dxi)

2

=

⎡

⎣−bixp+1i +

⎛

⎝ri +
p − 1
2

σ2
1i −

n∑

j=1

dijαij

⎞

⎠x
p

i − eix
p

i yi +
n∑

j=1

dijx
p−1
i xj

⎤

⎦dt

+ σ1ix
p

i dB1i(t)

≤
⎡

⎣−bixp+1i +

⎛

⎝ri +
p − 1
2

σ2
1i +

n∑

j=1

dijαij

⎞

⎠x
p

i +
n∑

j=1

dij

(
p − 1
p

x
p

i +
1
p
x
p

j

)⎤

⎦dt

+ σ1ix
p

i dB1i(t)

=

⎡

⎣−bixp+1i +

⎛

⎝ri +
p − 1
2

σ2
1i +

n∑

j=1

dijαij +
p − 1
p

n∑

j=1

dij

⎞

⎠x
p

i +
1
p

n∑

j=1

dijx
p

j

⎤

⎦dt

+ σ1ix
p

i dB1i(t),

d

(
1
p
y
p

i

)
= y

p−1
i dyi +

p − 1
2

y
p−2
i

(
dyi

)2

=
[
−δiyp+1i +

(
−γi +

p − 1
2

σ2
2i

)
y
p

i + εixiy
p

i

]
dt + σ2iy

p

i dB2i(t)

≤
[
−δiyp+1i +

(
−γi +

p − 1
2

σ2
2i

)
y
p

i + εi
(

1
p + 1

k
−p
i x

p+1
i +

p

p + 1
kiy

p+1
i

)]
dt

+ σ2iy
p

i dB2i(t)

=

[(
−δi +

pεiki
p + 1

)
y
p+1
i +

(
−γi +

p − 1
2

σ2
2i

)
y
p

i +
εik

−p
i

p + 1
x
p+1
i

]
dt + σ2iy

p

i dB2i(t),

(2.6)
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where ki (i = 1, 2, . . . , n) are positive constants to be determined. Hence, for positive constants
pi, qi, we have

d

[
n∑

i=1

(
pix

p

i + qiy
p

i

)]

≤
n∑

i=1

⎧
⎨

⎩−ppibixp+1i + pi

⎡

⎣pri +
p
(
p − 1

)

2
σ2
1i +

n∑

j=1

dij
(
p − 1 + pαij

)
+

n∑

j=1

dji
pj

pi

⎤

⎦xpi

+ pqi
(
−δi +

pεiki
p + 1

)
y
p+1
i + pqi

(
−γi +

p − 1
2

σ2
2i

)
y
p

i +
pqiεik

−p
i

p + 1
x
p+1
i

⎫
⎬

⎭dt

+ p
n∑

i=1

piσ1ix
p

i dB1i(t) + p
n∑

i=1

qiσ2iy
p

i dB2i(t)

=
n∑

i=1

{
−p

(
pibi −

qiεik
−p
i

p + 1

)
x
p+1
i − pqi

(
δi −

pεiki
p + 1

)
y
p+1
i

+ pi

⎡

⎣pri +
p
(
p − 1

)

2
σ2
1i +

n∑

j=1

dij
(
p − 1 + pαij

)
+

n∑

j=1

dji
pj

pi

⎤

⎦xpi

+pqi
(
−γi +

p − 1
2

σ2
2i

)
y
p

i

}
dt

+ p
n∑

i=1

piσ1ix
p

i dB1i(t) + p
n∑

i=1

qiσ2iy
p

i dB2i(t).

(2.7)

Next, we claim that there exist pi > 0, qi > 0, and ki > 0 such that

pibi −
qiεik

−p
i

p + 1
> 0, δi −

pεiki
p + 1

> 0. (2.8)

In fact, we only need 0 < ki < (p + 1)δi/pεi and 0 < qi = pi/m, where m is a sufficiently large
positive integer. Let
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αi =: pri +
p
(
p − 1

)

2
σ2
1i +

n∑

j=1

dij
(
p − 1 + pαij

)
+

n∑

j=1

dji
pj

pi
,

α′i =: p
(
−γi +

p − 1
2

σ2
2i

)
,

βi =: pp
−1/p
i

(
bi −

εik
−p
i

m
(
p + 1

)
)
,

β′i =: pq
−1/p
i

(
δi −

pεiki
p + 1

)
,

α̌ =: max
{
α1, α

′
1, . . . , αn, α

′
n

}
,

β̂ =: min
{
β1, β

′
1, . . . , βn, β

′
n

}
.

(2.9)

It is clear that ᾰ > 0, β̂ > 0. Then

d

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤
[
α̌

n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)
− β̂

n∑

i=1

(
p
(p+1)/p
i x

p+1
i (t) + q(p+1)/pi y

p+1
i (t)

)]
dt

+ p
n∑

i=1

piσ1ix
p

i (t)dB1i(t) + p
n∑

i=1

qiσ2iy
p

i (t)dB2i(t).

(2.10)

Integrating it from 0 to t and taking expectations of both sides, we obtain that

dE
[∑n

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

dt

≤
{
α̌E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

− β̂E
[

n∑

i=1

(
p
(p+1)/p
i x

p+1
i (t) + q(p+1)/pi y

p+1
i (t)

)]}

≤
⎧
⎨

⎩α̌E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

− (2n)−1/pβ̂E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)](p+1)/p

⎫
⎬

⎭

= E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

⎧
⎨

⎩α̌ − (2n)−1/pβ̂E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]1/p

⎫
⎬

⎭.

(2.11)

Therefore, letting z(t) = E[
∑n

i=1(pix
p

i (t) + qiy
p

i (t))], we have

dz(t)
dt

≤ z(t)
(
α̌ − (2n)−1/pβ̂z1/p(t)

)
. (2.12)
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Notice that the solution of equation

dz(t)
dt

= z(t)
(
α̌ − (2n)−1/pβ̂z1/p(t)

)
(2.13)

obeys

z(t) −→ 2n ·
(
α̌

β̂

)p

, as t −→ ∞. (2.14)

By comparison theorem, we can get

lim sup
t→∞

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ 2n ·
(
α̌

β̂

)p

:= L
(
p
)
, (2.15)

which implies that there is a T > 0, such that

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ 2L
(
p
)
, t > T. (2.16)

In addition E[
∑n

i=1(pix
p

i (t) + qiy
p

i (t))] is continuous, so we have

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ C(p), t ∈ [0, T]. (2.17)

Let κ(p) = max{2L(p), C(p)}, then

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≤ κ(p), t ≥ 0, p > 1. (2.18)

This completes the proof.

Theorem 2.4. The solutions of system (1.3) are stochastically ultimately bounded for any initial value
X(0) ∈ R2n

+ .

Proof. From Theorem 2.1, the solution X(t) will remain in R2n
+ with probability 1. Let

Q = min{p1, q1, p2, q2, . . . , pn, qn}. Note that |X(t)| = [
∑n

i=1(x
2
i + y2

i )]
1/2 and |X(t)|p ≤

(2n)p/2[
∑n

i=1(x
p

i + y
p

i )]. Therefore, we get

E

[
n∑

i=1

(
pix

p

i (t) + qiy
p

i (t)
)]

≥ QE
[

n∑

i=1

(
x
p

i (t) + y
p

i (t)
)]

≥ (2n)−p/2QE|X(t)|p, (2.19)
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and by (2.5) we have

E|X(t)|p ≤ (2n)p/2

Q
κ
(
p
)
=: κ̃

(
p
)
< +∞. (2.20)

Applying the Chebyshev inequality yields the required assertion.

3. Stationary Distribution

In this section, we investigate there is a stationary distribution for SDE (1.3) instead of
asymptotically stable equilibria. Before giving the main theorem, we first give a lemma (see
[2]).

Lemma 3.1 (see [2]). Assume (dij) is irreducible. If there exists i such that bi > 0 or δi > 0, then,
whenever a positive equilibrium E∗ exists for system (1.1), it is unique and globally asymptotically
stable in the positive cone R2n

+ .

In the section, we assume system (1.1) exists and the positive equilibrium E∗ =
(x∗

1, y
∗
1, . . . , x

∗
n, y

∗
n) satisfies the equation

x∗
i

(
ri − bix∗

i − eiy∗
i

)
+

n∑

j=1

dij
(
x∗
j − αijx∗

i

)
= 0,

y∗
i

(−γi − δiy∗
i + εix

∗
i

)
= 0, i = 1, 2, . . . , n,

(3.1)

where x∗
i > 0, y∗

i > 0.
We now state a theorem in which the graph theory will be used. Assume ci (i =

1, 2, . . . , n) defined as in Lemma A.1 are nonnegative constants and A = (dijεix∗
j )n×n (i =

1, 2, . . . , n).

Theorem 3.2. Assume δ < min{min1≤i≤n{ciεibi(x∗
i )

2},min1≤i≤n{cieiδi(y∗
i )

2}}. Then there is a
stationary distribution μ(·) for SDE (1.3) and it has ergodic property. Here (x∗

1, y
∗
1, . . . , x

∗
n, y

∗
n) is

the solution of (3.1), and δ = (1/2)
∑n

i=1(ciεibix
∗
i σ

2
1i + cieiδiy

∗
i σ

2
2i).

Proof. Define V : El = R2n
+ → R+:

V (X(t)) =
n∑

i=1

[
εi

(
xi − x∗

i − x∗
i log

xi
x∗
i

)
+ ei

(
yi − y∗

i − y∗
i log

yi
y∗
i

)]
. (3.2)
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Then

LV =
n∑

i=1

ci

⎧
⎨

⎩εi
(
xi − x∗

i

)
⎡

⎣(ri − bixi − eiyi
)
+

n∑

j=1

dij

(
xj

xi
− αij

)⎤

⎦

+ ei
(
yi − y∗

i

)(−γi − δiyi + εixi
)
+
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

⎫
⎬

⎭.

(3.3)

By (3.1), we have

ri = bix∗
i + eiy

∗
i −

n∑

j=1

dij

(
x∗
j

x∗
i

− αij
)
,

−γi = δiy∗
i − εix∗

i , i = 1, 2, . . . , n.

(3.4)

Substituting this into (3.3) gives

LV =
n∑

i=1

ci

⎡

⎣−εibi
(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 + εi
(
xi − x∗

i

) n∑

j=1

dij

(
xj

xi
−
x∗
j

x∗
i

)

+
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

⎤

⎦

=
n∑

i=1

ci

⎡

⎣ − εibi
(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 +
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

+ εi
n∑

j=1

dijx
∗
j

(
xj

x∗
j

− xi
x∗
i

− x∗
i xj

xix
∗
j

+ 1

)⎤

⎦

=
n∑

i=1

ci

⎧
⎨

⎩ − εibi
(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 +
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

+ εi
n∑

j=1

dijx
∗
j

[(
− xi
x∗
i

+ log
xi
x∗
i

)
−
(
−xj
x∗
j

+ log
xj

x∗
j

)
+

(
1 − x∗

i xj

xix
∗
j

+ log
x∗
i xj

xix
∗
j

)]⎫⎬

⎭

≤
n∑

i=1

ci

⎧
⎨

⎩ − εibi
(
xi − x∗

i

)2 − eiδi
(
yi − y∗

i

)2 +
1
2
εix

∗
i σ

2
1i +

1
2
eiy

∗
i σ

2
2i

+ εi
n∑

j=1

dijx
∗
j

[(
− xi
x∗
i

+ log
xi
x∗
i

)
−
(
−xj
x∗
j

+ log
xj

x∗
j

)]⎫⎬

⎭,

(3.5)
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Here we use the fact: 1 − a + loga ≤ 0, for a > 0 with equality holding if and only if a = 1.
Since (dij) is irreducible, εi > 0, x∗

j > 0, we know matrix A = (dijεix∗
j ) is irreducible. Let

Gi(xi) = −xi/x∗
i + log(xi/x∗

i ), Gj(xj) = −xj/x∗
j + log(xj/x∗

j ), and by Lemma A.1, we have

n∑

i,j=1

ci
(
dijεix

∗
j

)(
− xi
x∗
i

+ log
xi
x∗
i

)
=

n∑

i,j=1

ci
(
dijεix

∗
j

)(
−xj
x∗
j

+ log
xj

x∗
j

)

(3.6)

which implies that

LV ≤
n∑

i=1

[
−ciεibi

(
xi − x∗

i

)2 − cieiδi
(
yi − y∗

i

)2] +
1
2

n∑

i=1

(
ciεix

∗
i σ

2
1i + cieiy

∗
i σ

2
2i

)
. (3.7)

The following proof of ergodicity is similar to Theorem 3.2 in [19]. Assume δ =
(1/2)

∑n
i=1(ciεix

∗
i σ

2
1i + cieiy

∗
i σ

2
2i), then

LV ≤
n∑

i=1

[
−ciεibi

(
xi − x∗

i

)2 − cieiδi
(
yi − y∗

i

)2] + δ. (3.8)

Note that δ < min{min1≤i≤n{ciεibi(x∗
i )

2},min1≤i≤n{cieiδi(y∗
i )

2}}, then the ellipsoid

n∑

i=1

[
−ciεibi

(
xi − x∗

i

)2 − cieiδi
(
yi − y∗

i

)2] + δ = 0 (3.9)

lies entirely in R2n
+ . We can take U to be a neighborhood of the ellipsoid with U ⊂ El = R2n

+ ,
so for X ∈ El \ U, LV ≤ −N (N is a positive constant), which implies the condition (B.2)
in Lemma A.2 is satisfied. Therefore, the solution X(t) is recurrent in the domain U, which
together with Remark A.3 and Lemma A.4 implies X(t) is recurrent in any bounded domain
D ⊂ R2n

+ . Thus, for any D, there is

M = min
{
min
1≤i≤n

{
σ2
1ix

2
i

}
,min
1≤i≤n

{
σ2
2iy

2
i

}
,
(
x1, y1, . . . , xn, yn

) ∈ D
}
> 0 (3.10)

such that

n∑

i,j=1

aij(x)ξiξj =
n∑

i=1

(
σ2
1ix

2
i ξ

2
i + σ

2
2iy

2
i ξ

2
i

)
≥M‖ξ‖2, (3.11)

for all (x1, y1, . . . , xn, yn) ∈ U, ξ ∈ Rn, which implies that condition (B.1) is also satisfied.
Therefore, the stochastic system (1.3) has a stable stationary distribution μ(·) and it is ergodic.
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4. Extinction

In this section, we will show that if the noise is sufficiently large, the solution to the associated
SDE (1.3) will become extinct with probability 1, although the solution to the original
equation (1.1)may be persistent. For example, recall a simple case, namely, the scalar logistic
equation

dN(t) =N(t)(a − bN(t))dt, t ≥ 0, (4.1)

with initial value N0 > 0. It is well known that, when a > 0, b > 0, the solution N(t) is
persistent, because

lim
t→∞

N(t) =
b

a
. (4.2)

However, consider its associated stochastic equation

dN(t) =N(t)[(a − bN(t))dt + σdB(t)], t ≥ 0, (4.3)

where σ > 0, then the solution to this stochastic equation will become extinct with probability
1, that is to say, if σ2 > 2a,

lim
t→∞

N(t) = 0 a.s. (4.4)

The following theorem reveals the important fact that the environmental noise may make the
population extinct.

Theorem 4.1. For any given initial value X(0) ∈ R2n
+ , the solution of the SDE (1.3) has the property

that

lim sup
t→∞

log
(∑n

i=1 xi
)

t
≤ ľ1 −

σ̂2
1

2
a.s. (4.5)

Here

ľ1 = max

⎧
⎨

⎩max
1≤i≤n

⎧
⎨

⎩ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎫
⎬

⎭, 0

⎫
⎬

⎭,
σ̂2
1

2
=

1
2
∑n

i=1
(
1/σ2

1i

) . (4.6)

Particularly, if ľ1 − σ̂2
1/2 < 0, then limt→∞(x1(t), x2(t), . . . , xn(t)) = 0 a.s.

Proof. Define

V =
n∑

i=1

xi. (4.7)
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By Itô’s formula, we have

dV =
n∑

i=1

⎡

⎣rixi − bix2
i − eixiyi +

n∑

j=1

dij
(
xj − αijxi

)
⎤

⎦dt +
n∑

i=1

σ1ixidB1i(t)

=
n∑

i=1

⎡

⎣−bix2
i − eixiyi +

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi

⎤

⎦dt +
n∑

i=1

σ1ixidB1i(t).

(4.8)

Thus we compute

d logV =
1
V
dV − 1

2V 2 (dV )2

=
1
V

n∑

i=1

⎡

⎣−bix2
i − eixiyi +

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi

⎤

⎦dt

+
1
V

n∑

i=1

σ1ixidB1i(t) − 1
2V 2

n∑

j=1

σ2
1ix

2
i dt,

(4.9)

Letting ľ1 = max{max1≤i≤n{ri +
∑n

j=1 dji −
∑n

j=1 dijαij}, 0}, we compute

1
V

n∑

i=1

⎡

⎣−bix2
i − eixiyi +

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi

⎤

⎦ ≤ 1
V

n∑

i=1

⎛

⎝ri +
n∑

j=1

dji −
n∑

j=1

dijαij

⎞

⎠xi ≤ ľ1.

(4.10)

By Cauchy inequality, we compute also

− 1
2V 2

n∑

i=1

σ2
1ix

2
i = −

∑n
i=1

(
σ2
1ix

2
i

)

2
(∑n

i=1 xi
)2 ≤ −

(∑n
i=1 xi

)2

2
∑n

i=1
(
1/σ2

1i

) · (∑n
i=1 xi

)2 = − 1
2
∑n

i=1
(
1/σ2

1i

) =: − σ̂
2
1

2
,

(4.11)

where σ̂2
1/2 = 1/2

∑n
i=1(1/σ

2
1i). Substituting these two inequalities into (4.9) yields

d logV ≤
(
ľ1 −

σ̂2
1

2

)
dt +

1
V

n∑

i=1

σ1ixidB1i(t). (4.12)

This implies

logV (X(t)) ≤ logV (X(0)) +
∫ t

0

(
ľ1 −

σ̂2
1

2

)
dt +M(t), (4.13)
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whereM(t) is a martingale defined by

M(t) =
∫ t

0

1
V

n∑

i=1

σ1ixi(s)dB1i(s) =
∫ t

0

∑n
i=1 σ1ixi(s)dB1i(s)∑n

i=1 xi(s)
(4.14)

withM(0) = 0. The quadratic variation of this martingale is

〈M,M〉t =
∫ t

0

∑n
i=1 σ

2
1ix

2
i (s)

(∑n
i=1 xi(s)

)2ds ≤ σ̌2
1

∫ t

0

∑n
i=1 x

2
i (s)∑n

i=1 x
2
i (s)

ds = σ̌2
1 t, (4.15)

where σ̌1 = max1≤i≤n{σ1i}. By the strong law of large numbers for martingale (see [17, 20]),
we have

lim
t→∞

M(t)
t

= 0 a.s. (4.16)

It finally follows from (4.13) by dividing t on the both sides and then letting t → ∞ that

lim sup
t→∞

logV
t

≤ lim sup
t→∞

1
t

∫ t

0

(
ľ1 −

σ̂2
1

2

)
dt = ľ1 −

σ̂2
1

2
a.s. (4.17)

which implies the required assertion.

Remark 4.2. Theorem 4.1 shows that if the condition ľ1− σ̂2
1/2 < 0 holds, that is, when the prey

population is disturbed by large white noise, the species of prey will extinct.

Now we give the following theorem which describes the entire extinction.

Theorem 4.3. For any given initial value X(0) ∈ R2n
+ , the solution of the SDE (1.3) has the property

that

lim sup
t→∞

log
[∑n

i=1
(
εixi + eiyi

)]

t
≤ ľ − σ̂2

2
a.s. (4.18)

Here

l̆ = max

⎧
⎨

⎩max
1≤i≤n

⎧
⎨

⎩ri +
n∑

j=1

(
dji

εj

εi
− dijαij

)⎫⎬

⎭, 0

⎫
⎬

⎭,
σ̂2

2
=

1
2
∑n

i=1
(
1/σ2

1i + 1/σ2
2i

) . (4.19)

Particularly, if ľ − σ̂2/2 < 0, then limt→∞X(t) = 0 a.s.
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Proof. The proof of the theorem is similar to Theorem 4.1, we only give the main proof
procedure. Define

V (X(t)) =
n∑

i=1

(
εixi + eiyi

)
. (4.20)

Let ľ =: max{max1≤i≤n{ri+
∑n

j=1 dji(εj/εi)−
∑n

j=1 dijαij}, 0} and σ̂2/2 = 1/2
∑n

i=1(1/σ
2
1i+1/σ

2
2i).

By Itô’s formula, we compute

d logV ≤ 1
V

n∑

i=1

εi

⎛

⎝ri +
n∑

j=1

dji
εj

εi
−

n∑

j=1

dijαij

⎞

⎠xidt − 1
2V 2

n∑

i=1

(
ε2i σ

2
1ix

2
i + e

2
i σ

2
2iy

2
i

)
dt

+
1
V

(
n∑

i=1

εiσ1ixidB1i(t) +
n∑

i=1

eiσ2iyidB2i(t)

)

≤
(
ľ − σ̂2

2

)
dt +

1
V

n∑

i=1

(
εiσ1ixidB1i(t) + eiσ2iyidB2i(t)

)
.

(4.21)

The rest of the proof is similar to Theorem 4.1.

Remark 4.4. Theorem 4.3 states that when the prey and predator population are all disturbed
by large white noise and the condition ľ − σ̂2/2 < 0 holds, the two species will be extinct.

5. Numerical Simulation

In this section, in order to better study the effect of white noise in diffusion system, we assume
αij = 1, dij are nonnegative constants, (dij) is irreducible (i, j = 1, 2), and d11 = d22 = 1.
Consider the predator-prey system with n = 2, that is,

dx1 =
[
x1
(
r1 − b1x1 − e1y1

)
+ d12(x2 − x1)

]
dt + σ11x1dB11(t),

dy1 = y1
(−γ1 − δ1y1 + ε1x1

)
dt + σ21y1dB21(t),

dx2 =
[
x2
(
r2 − b2x2 − e2y2

)
+ d21(x1 − x2)

]
dt + σ12x2dB12(t),

dy2 = y2
(−γ2 − δ2y2 + ε2x2

)
dt + σ22y2dB22(t).

(5.1)
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Figure 1: The solution of stochastic system (5.1)with small white noise and its histogram: σ11 = σ12 = σ21 =
σ22 = 0.01.
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Figure 2: Population distribution scatter corresponding to Figure 1. The scatter points around (x∗
1, y

∗
1)

.=
(0.7174, 0.1545) and (x∗

2, y
∗
2)

.= (0.7107, 0.1356), respectively. The system has a stationary distribution.
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Figure 3: The solution of stochastic system compared to the deterministic system: σ11 = σ12 = σ21 = σ22 =
0.01. The blue and red lines represent the solutions of system (5.1), and the black and green lines represent
the solutions of corresponding undisturbed system. These lines are almost coincident.
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Figure 4: The solution of stochastic system with large white noise and its histogram: σ11 = 0.4, σ12 =
0.3, σ21 = 0.3, σ22 = 0.4. The fluctuations on the left figures are more intense and histogram distribution
is not concentrated comparing with Figure 1.



18 Abstract and Applied Analysis

0 1 2
0

0.2

0.4

0.6

0.8

1

y
1

x1

(a)

0

0.2

0.4

0.6

0.8

1

y
2

0 1 2

x2

(b)

Figure 5: Population distribution scatter corresponding to Figure 4. The scatter is not around the
equilibrium points of the corresponding deterministic system. There is not a stationary distribution in
system (5.1).
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Figure 6: The solution of stochastic system compared to the deterministic system: σ11 = 0.4, σ12 = 0.3, σ21 =
0.3, σ22 = 0.4. The predator population y2 will die out although its corresponding deterministic system is
globally stable. The blue and red lines represent the solutions of system (5.1), and the black and green lines
represent the solutions of corresponding undisturb system.
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Figure 7: The solution of stochastic system compared to the deterministic system: σ11 = 1.4, σ12 = 1.5, σ21 =
0.01, σ22 = 0.01. The prey population suffer the large white noise which leads to the prey and predator
extinction. The blue and red lines represent the solutions of system (5.1), and the black and green lines
represent the solutions of corresponding undisturb system.

In order to better study the previous results, we will numerically simulate the solution
of (5.1). By the method mentioned in [21], we consider the following discretized equation:

x1,k+1 = x1,k +
[
x1,k

(
r1 − b1x1,k − e1y1,k

)
+ d12(x2,k − x1,k)

]
h

+ σ11x1,k
√
hξ1,k +

1
2
σ2
11x1,k

(
hξ21,k − h

)
,

y1,k+1 = y1,k + y1,k
(−γ1 − δ1y1,k + ε1x1,k

)
h + σ21y1,k

√
hη1,k +

1
2
σ2
21y1,k

(
hη21,k − h

)
,

x2,k+1 = x2,k +
[
x2,k

(
r2 − b2x2,k − e2y2,k

)
+ d21(x1,k − x2,k)

]
h

+ σ12x2,k
√
hξ2,k +

1
2
σ2
12x2,k

(
hξ22,k − h

)
,

y2,k+1 = y2,k + y2,k
(−γ2 − δ2y2,k + ε2x2,k

)
h + σ22y2,k

√
hη2,k +

1
2
σ2
22y2,k

(
hη22,k − h

)
.

(5.2)

Using the discretized equation and the help of Matlab software, we choose the
appropriate parameters r1 = 0.4, r2 = 0.3, b1 = 0.5, b2 = 0.4, e1 = e2 = 0.2, d11 =
d22 = 1, d12 = 1.1, d21 = 1.2, γ1 = γ2 = 0.2, δ1 = δ2 = 0.1, ε1 = ε2 = 0.3, the initial
value (x1(0), y1(0), x2(0), y2(0)) = (0.8, 0.2, 0.7, 0.18), and time step h = 0.01; then E∗ =
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Figure 8: The solution of stochastic system compared to the deterministic system: σ11 = σ12 = 0.01, σ21 =
0.8, σ22 = 0.7. The predator population suffer the large white noise and then extinction. The blue and
red lines represent the solutions of system (5.1), and the black and green lines represent the solutions of
corresponding undisturb system.

(x∗
1, y

∗
1, x

∗
2, y

∗
2)

.= (0.7174, 0.1545, 0.7107, 0.1356). In order to better investigate the white noise,
we divide its intensity into small, medium, and large three cases to study.

In Figures 1, 2, and 3, we choose σ11 = σ12 = σ21 = σ22 = 0.01
and c1

.= 0.86088, c2
.= 0.78177 (c1, c2 satisfy Lemma A.1 and Theorem 3.2); then

δ = (1/2)
∑2

i=1(ciεibix
∗
i σ

2
1i + cieiδiy

∗
i σ

2
2i)

.= 9.9 × 10−6, and so the condition δ <

min{min1≤i≤2{ciεibi(x∗
i )

2},min1≤i≤2{cieiδi(y∗
i )

2}} .= 4.11 × 10−4 is also satisfied. Therefore, by
Theorem 3.2, there is a stationary distribution (see the histogram on the right in Figure 1).
From the left picture in Figure 1, we can see that the solution of system (5.1) is fluctuating in a
small neighborhood. Moreover, from Figure 2, we find that almost all population distribution
lies in the neighborhood, which can be imagined by a circular or elliptic region centered
at (x∗

1, y
∗
1), (x

∗
2, y

∗
2) (see the scatter picture in Figure 2). Figure 3 shows that when the white

noise is small, stochastic system imitates deterministic system and their curves are almost
coincident. Hence, the solution of (5.1) is ergodicity, although there is no equilibrium of the
stochastic system as the deterministic system. All of these imply system (5.1) is a stochastic
stability.

Comparing with small white noise as in Figures 1, 2, and 3, we select the relatively
large white noise σ11 = 0.4, σ12 = 0.3, σ21 = 0.3, σ22 = 0.4, c1

.= 0.86088, c2
.= 0.78177 in Figures 4,

5, and 6. We find that δ = 0.0107 > min{min1≤i≤2{ciεibi(x∗
i )

2},min1≤i≤2{cieiδi(y∗
i )

2}} = 2.875 ×
10−4, so the conditions of Theorem 3.2 are not satisfied; therefore, there is not a stationary
distribution although the deterministic system is global asymptotic stability. The condition
ľ− σ̂2/2 > 0, that is, all extinction condition does not hold by Theorem 4.3 and the predator y2
will die. From Figure 4, we see that the fluctuations on the left figures are more intense and
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histogram distribution is not concentrated comparing with Figure 1, y2(t) close to the point
0.

In Figure 7, we assume both the predator and the prey population suffered large white
noise; we choose σ11 = 1.4, σ12 = 1.5, σ21 = 0.01, σ22 = 0.01, which satisfy the cases said
in Theorem 4.1, that is ľ1 − σ̂2

1/2
.= −0.0239 < 0. As the case in Theorem 4.1 expected, the

large white noise leads to the extinction of the prey which also leads to the extinction of the
predator, so the solution of system (5.1) tends to zero.

In Figure 8, we choose the same parameters as in Figure 1, but change the value of
σ21, σ22 to σ21 = 0.8, σ22 = 0.7, which do not meet the conditions for extinction of the two
species as in Theorem 4.3. The predator population suffer the large white noises and then die
out, but the prey will survive.

From these figures, we can get the following conclusions: when the white noise is
small, system (5.1) imitates its deterministic system (see Figures 1, 2, and 3). But when the
white noise is relatively large, it will bring more big deviation (see Figures 4, 5, and 6)
even the extinction of the species (see Figures 6, 7, and 8), which will not happen in the
deterministic system. However, when the intensity of the white noise on prey species is large,
the predator and prey population will be extinct (see Figure 7). In real world, the large white
noise may be bad weather, serious epidemic, which can be considered as the decisive factors
responsible for the extinction of populations. Therefore, the study of stochastic model has
great practical significance.

Appendix

In this section, we list some theories used in the previous sections.

(1) Some Graph Theories [2, 22]

A directed graph or digraph G=(V, E) contains a set V = 1, 2, . . . , n of vertices and a set E of
arcs (i, j) leading from initial vertex i to terminal vertex j. In our convention, aij > 0 if and
only if there exists an arc from vertex j to vertex i in G.

A digraph G is weighted if each arc (j, i) is assigned a positive weight aij . Given a
weighted digraph (G, A) with n vertices, where A = (aij)n×n is weight matrix, whose entry
aij equals the weight of arc (j, i) if it exists, and 0 otherwise.

A digraph (G,A) is strongly connected if for any pair of distinct vertices, there exists a
directed path from one to the other. A weighted digraph (G, A) is strongly connected iff the
weight matrix A is irreducible.

The Laplacian matrix of (G, A) is defined as

LA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑

i /= 1

a1i −a12 · · · −a1n

−a21
∑

i /= 2

a2i · · · −a2n
...

...
. . . · · ·

−an1 an2 · · ·
∑

i /=n

ani

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A.1)

Let ci denote the cofactor of the ith diagonal element of LA, which has the following property.
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Lemma A.1 (see [2]). Assume n ≥ 2. If (G, A) is strongly connected. Then

(1) ci > 0 for 1 ≤ i ≤ n,
(2) the following identity holds:

n∑

i,j=1

ciaijGi(xi) =
n∑

i,j=1

ciaijGj

(
xj
)
, (A.2)

where Gi(xi) (1 ≤ i ≤ n) are arbitrary functions.

(2) Some Theories about the Stationary Distribution [23]

Let X(t) be a homogeneous Markov Process in El (El denotes l-space) described by the
stochastic equation

dX(t) = b(X)dt +
k∑

r=1

gr(X)dBr(t). (A.3)

The diffusion matrix is

A(x) =
(
aij(x)

)
, aij(x) =

k∑

r=1

gir(x)g
j
r(x). (A.4)

Assumption B. There exists a bounded domain U ⊂ El with regular boundary Γ, having the
following properties:

(B.1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the
diffusion matrix A(x) is bounded away from zero.

(B.2) If x ∈ El \ U, the mean time τ at which a path issuing from x reaches the set U is
finite and supx∈KExτ <∞ for every compact subset K ⊂ El.

Lemma A.2 (see [23]). If Assumption B holds, then the Markov process X(t) has a stationary
distribution μ(A). Let f(·) be a function integrable with respect to the measure μ. Then

Px

{
lim
T→∞

1
T

∫T

0
f(X(t))dt =

∫

El

f(x)μ(dx)

}
= 1 (A.5)

for all x ∈ El.

Remark A.3. Theorem 2.1 shows that there exists a unique positive solution X(t) =
(x1(t), y1(t), . . . xn(t), yn(t)) of SDE (1.3). Besides, from the proof of Theorem 2.1, we obtain

LV ≤ K. (A.6)
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Now define V = V +K; then

LV ≤ V (A.7)

and we can get

VR = inf
X∈R2n

+ \Dm

V (X) −→ ∞ asm −→ ∞, (A.8)

where Dm = (1/m,m) × (1/m,m) × · · · × (1/m,m). By [23] (Remark 2 of Theorem 4.1), we
obtain the solution X(t) is a homogeneous Markov process in R2n

+ .

Lemma A.4 (see [23]). LetX(t) be a regular temporally homogeneous Markov process in El. IfX(t)
is recurrent relative to some bounded domainU, then it is recurrent relative to any nonempty domain
in El.
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This paper deals with the periodic solutions of a class of fourth-order superlinear differential
equations. By using the classical variational techniques and symmetric mountain pass lemma, the
periodic solutions of a single equation in literature are extended to that of equations, and also, the
cubic growth of nonlinear term is extended to a general form of superlinear growth.

1. Introduction

The existence of periodic solutions of fourth-order differential equations has been studied
by more and more researchers [1–6]. The application methods contain mainly Clark theorem
[2–4], Cone theory [6], and so on.

For a single equation, Tersian and Chaparova [2] study the existence of infinitely many
unbounded solutions, using symmetric mountain pass lemma:

uiv − pu′′ + a(x)u − b(x)u3 = 0, x ∈ R,

u(0) = u(L) = 0, u′′(0) = u′′(L) = 0.
(1.1)

It is a natural problem to wonder whether symmetric mountain pass lemma method
may be applied not only to single equations but also to systems of differential equations.
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In this paper we study the existence of periodic solutions of the fourth-order equations, by
making use of the classical variational techniques and symmetric mountain pass lemma

u(4) − cu′′ + a(x)u − ∂F(x, u, v)
∂u

= 0, 0 < x < L,

v(4) − dv′′ + b(x)v − ∂F(x, u, v)
∂v

= 0, 0 < x < L,

u(0) = u′′(0) = u(L) = u′′(L) = 0,

v(0) = v′′(0) = v(L) = v′′(L) = 0.

(1.2)

Through studying System (1.2), (1.1) of the corresponding conclusions are extended.
The paper is organized as follows. In Section 2, we consider the result of System (1.2)

under certain conditions. In Section 3, we prove the main result of this paper and give an
example.

2. Main Result

In this paper, we state our main result. First we give the following list of assumptions on the
parameters in System (1.2):

(A) a(x) > 0, b(x) > 0, c > −π2/L2, d > −π2/L2.

(F1) F is an even functional about (u, v). That is, F(x,−u,−v) = F(x, u, v) for every
(u, v) ∈ R2.

(F2) There exists β > 2, as u2 + v2 /= 0, we have

u · ∂F(x, u, v)
∂u

+ v · ∂F(x, u, v)
∂v

≥ βF(x, u, v) > 0 for every x ∈ R. (2.1)

(F3) F(x, u, v) = o(u2 + v2) with respect to x consistently, as u2 + v2 → 0.

Denote a1 = minx∈[0,L]a(x), a2 = maxx∈[0,L]a(x), b1 = minx∈[0,L]b(x), b2 =
maxx∈[0,L]b(x).

From condition (A), we obtain ai > 0, bi > 0, when i = 1, 2.

Remark 2.1. Let z = (u, v) ∈ R2, then condition (F2) is transformed to

(∇F(x, z), z) > βF(x, z) > 0 for every z/= 0, (2.2)

where (·, ·) represents the usual inner product in R2.

Remark 2.2. From (F3), we obtain lim|z|→ 0F(x, z)/|z|2 = 0, where | · | represents normal norm
in R2. Besides, from the continuity of F, we obtain F(x, 0, 0) = 0.
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Our main result is as follows.

Theorem 2.3. Suppose a(x), b(x), and F satisfy (A), (F1)–(F3). Then System (1.2) has infinitely
many distinct pairs of solutions zn = (un, vn), which are critical points of the functional I : X → R,
and I(zn) → ∞ as n → ∞.

In this paper, the existence of periodic solutions of a single equation in System (1.1) are
extended to the case of equations, and also the cubic growth of nonlinear term is extended to
a general form of superlinear growth.

3. Variational Structure and the Proof of Result

In this section, we prove the main result stated in Section 2.

3.1. Variational Structure

Denote

X(L) =
(
H2(0, L) ∩H1

0(0, L)
)2
. (3.1)

Then X(L) is a Hilbert space. The norm is

‖z‖2 = ‖u‖2
c + ‖v‖2

d, (3.2)

where

‖u‖c =
{∫L

0

[∣∣u′′(x)
∣∣2 + c

∣∣u′(x)
∣∣2 + a(x)|u(x)|2

]
dx

}1/2

,

‖v‖d =

{∫L

0

[∣∣v′′(x)
∣∣2 + d

∣∣v′(x)
∣∣2 + b(x)|v(x)|2

]
dx

}1/2

,

(3.3)

z = (u, v) ∈ X(L). The corresponding inner product are

〈z1, z2〉| =
∫L

0

[(
z′′1, z

′′
2
)
+ c

(
u′1, u

′
2
)
+ d

(
v′

1, v
′
2
)
+ a(x)(u1, u2) + b(x)(v1, v2)

]
dx,

〈u1, u2〉|c =
∫L

0

[(
u′′1, u

′′
2
)
+ c

(
u′1, u

′
2
)
+ a(x)(u1, u2)

]
dx,

〈v1, v2〉|d =
∫L

0

[(
v′′

1, v
′′
2
)
+ d

(
v′

1, v
′
2
)
+ b(x)(v1, v2)

]
dx.

(3.4)
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For every z = (u, v) ∈ X(L), using Poincaré inequality [7], we obtain

∫L

0
u2dx ≤ L2

π2

∫L

0
u

′2dx,

∫L

0
u

′2dx ≤ L2

π2

∫L

0
u′′2dx. (3.5)

Thus, we can define another norm ‖ · ‖1 in X(L). That is, for every z ∈ X(L),

‖z‖1 =

{∫L

0

∣∣z′′(x)
∣∣2
dx

}1/2

. (3.6)

The inner product in X(L) as follows:

〈z1, z2〉|1 =
∫L

0

(
z′′1(x), z

′′
2(x)

)
dx, z1, z2 ∈ X(L). (3.7)

The two different norms (3.2) and (3.6) are equivalent in X(L).
In this section we consider System (1.2). The Fréchet derivative of I is given by the

following:

I(u, v) =
1
2

∫L

0

[
u′′2 + cu

′2 + a(x)u2 + v′′2 + dv
′2 + b(x)v2

]
dx −

∫L

0
F(x, u, v)dx, (3.8)

where z = (u, v) ∈ X(L).

Remark 3.1. In general, the growth of F is limited by the differentiability of functional I, but
we apply truncation techniques in [8]. First, introduce auxiliary functional and the auxiliary
functional is Fréchet differentiable. Second, we use critical point theory to prove the existence
of critical point of auxiliary functional, then prove the existence of the original equation.
However, in order to avoid technical complexity, we assume directly functional I is Fréchet
differentiable.

In fact, for every z = (u, v) ∈ X(L), z = (u, v) ∈ X(L), we obtain

〈
I ′(z), z

〉
=
〈
I ′u(u, v), u

〉
+
〈
I ′v(u, v), v

〉
, (3.9)

where

〈
I ′u(u, v), u

〉
=
∫L

0

[
u′′u′′ + cu′u′ + a(x)uu − ∂F(x, u, v)

∂u
u

]
dx,

〈
I ′v(u, v), v

〉
=
∫L

0

[
v′′v′′ + cv′v′ + a(x)vv − ∂F(x, u, v)

∂v
v

]
dx.

(3.10)

and I ′u(u, v), I
′
v(u, v) ∈ [H2(0, L) ∩H1

0(0, L)]
∗, I ′(z) ∈ X(L)∗.
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It is similar to the discussion of [8], the solutions of System (1.2) corresponds to the
critical point of the functional I, so we need to discuss the critical point of functional I. In
order to prove Theorem 2.3, we introduce below definition and lemma.

Definition 3.2 (see [9]). Let X be a real Banach space, I ∈ C1(X,R), I is a Fréchet continuously
differentiable functional in X(L). I is said to be satisfying Palais-Smale (PS) condition if any
sequence {un} ⊂ X for which {I(un)} is bounded and {I ′(un)} → 0 as j → ∞, possesses a
convergent subsequence.

Lemma 3.3 (see [8]). Let X be an infinite dimensional Banach space and (Xn)n be a sequence of
finite dimensional subspaces of X such that dimXn = n,

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ X,
∞⋃

n=1

Xn = X. (3.11)

Let I ∈ C1(X,R) be an even functional, I(0) = 0, and I satisfy (PS) condition. Suppose that

(A1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α, and

(A2) for every n there is an Rn > 0 such that I ≤ 0 on Xn \ BRn .

Then I possesses infinitely many pairs of critical points with unbounded sequence of critical
values.

3.2. The Proof of Result

Step 1 (Functional I satisfies (PS) condition). Let {zn} = {(un, vn)} be a (PS) sequence in X,
that is, {I(zn)} is bounded and I ′(zn) → 0, as n → ∞. Suppose that {zn} is unbounded in X,
that is, ‖zn‖ → ∞ as n → ∞. Since

I(zn) +
1
γ

∥∥I ′(zn)
∥∥‖zn‖ ≥ I(zn) − 1

γ

〈
I ′(zn), zn

〉
=

1
γ
‖zn‖2, (3.12)

it follows that

I(zn)

‖zn‖2
+
‖I ′(zn)‖
γ‖zn‖ ≥ 1

γ
, (3.13)

where γ ≥ 4. Letting n → ∞ in (3.13), we have a contradiction with ‖zn‖ → ∞ as n → ∞.
Therefore {zn} is a bounded sequence in X(L). Passing if necessary to a subsequence

we may assume that {zn} is weakly convergent to a function z ∈ X(L), zn ⇀ z in X(L), and
zn → z in C[(0, L)].
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From the Lebesgue theorem, z ∈ X(L), zn ⇀ z inX(L), and zn → z inC[(0, L)], letting
n → ∞ in (3.9)

〈
I ′(zn, zn)

〉
= ‖zn‖2 −

∫L

0

∂F(x, un, vn)
∂u

undx − ∂F(x, un, vn)
∂v

vndx,

〈
I ′(zn, z)

〉
= 〈zn, z〉 −

∫L

0

∂F(x, un, vn)
∂u

udx − ∂F(x, un, vn)
∂v

v dx,

(3.14)

we obtain

lim
n→∞

‖zn‖2 =
∫L

0

∂F(x, u, v)
∂u

udx +
∂F(x, u, v)

∂v
v dx = ‖z‖2. (3.15)

From (3.15) and z ∈ X(L), zn ⇀ z in X(L), we have ‖zn − z‖ → 0 as n → ∞.

Remark 3.4. γ is the largest sum of the order of u and v.

Step 2 (Geometric conditions). Let e1 = (1, 0), e2 = (0, 1), then {e1, e2} constitutes a pair of
standard orthogonal base in R2. Let us define X2m to be the subspace of X(L)

X2m = span
{

sin
kπx

L
ei, i = 1, 2, k = 1, 2, . . . , m

}
, (3.16)

for every m ∈ N. We have dimX2m = 2m, X1 ⊂ X2 · · · ⊂ X2m ⊂ X, ⋃∞
n=1 Xn = X.

For a given constant ρ > 0, define a bounded closed set K ⊂ X2m

K =

{
z = (u, v) ∈ X2m | z =

m∑

k=1

[
αk sin

kπx

L
e1 + βk sin

kπx

L
e2

]
,
m∑

k=1

(
α2
k + β

2
k

)
= ρ2

}
. (3.17)

Define mapping H : X2m → R2m. For any z ∈ X2m, we obtain

H(z) =

(
α1, β1, α2, β2, . . . , αm, βm

)

ρ
. (3.18)

It is clear that H is a linear odd mapping. For every z ∈ X2m, we have

‖z‖2
1 =

∫L

0

[∣∣u′′(x)
∣∣2 +

∣∣v(x)′′
∣∣2
]
dx

=
π4

2L3

m∑

k=1

k4
(
α2
k + β

2
k

)
.

(3.19)
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So

ρ2π4

2L3 |H(z)|2 ≤ |z|21 ≤ ρ2(mπ)4

2L3 |H(z)|2. (3.20)

From (3.20), we obtain H is an odd homeomorphism from X2m to R2m. Then H is an odd
homeomorphism from K to S2m−1, since H(K) = S2m−1.

On one hand, from functional (3.8) and using Sobolev’s embedding theorem, we
obtain

I(z) ≥ 1
2
‖z‖2 − ε|z|2L

≥ 1
2
‖z‖2 − επ

2

L
‖z‖2.

(3.21)

Thus condition (A1) is fulfilled if ε = L/4π2, ρ = ‖z‖/2.
On the other hand, as −F(x, u, v) < 0, then there exists σ, such that −F(x, u, v) <

−(1/4)σ‖z‖4
1.

Denote A(n) = (nπ/L)4 + p(nπ/L)2 + a. From functional (3.8), we obtain

I(z) ≤ 1
2

∫L

0

(
z′′2 + pz

′2 + az2
)
dx −

∫L

0
F(x, z)dx

≤ L

4
A(n)‖z‖2

1 −
∫L

0
F(x, z)dx

≤ L

4
A(n)‖z‖2

1 −
L

4
σ‖z‖4

1,

(3.22)

where p = max{c, d}, a = max{a2, b2}. Here choosing Rn = ‖z‖1 ≥
√
A(n)/σ, we obtain

I(z) ≤ 0. (3.23)

So (A2) holds. The proof of Theorem 2.3 is completed.

Example 3.5. In System (1.2), consider the problem:

F(x, u, v) = p0(x)un + p1(x)un−1v + · · · + pi(x)un−ivi + · · · + pn−1(x)uvn−1 + pn(x)vn, (3.24)

where pi(x) ≥ 0, but there exists at least one pi(x)/= 0, n is an even and n ≥ 4, i = 0, 1, 2, . . . , n.

It is obvious that F(x,−u,−v) = F(x, u, v) and F(x, u, v) = o(u2 + v2) as u2 + v2 → 0.
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For the superlinear property, we calculate that

u · ∂F(x, u, v)
∂u

+ v · ∂F(x, u, v)
∂v

= np0(x)un + (n − 1)p1(x)un−1v + · · · + (n − i)pi(x)un−ivi + · · · + pn−1(x)uvn−1

+ p1(x)un−1v + · · · + ipi(x)un−ivi + · · · + (n − 1)pn−1(x)uvn−1 + npn(x)vn

= nF(x, u, v)

≥ 4F(x, u, v).

(3.25)

Therefore, there exists β = 4 > 2, as u2 + v2 /= 0, we have

u · ∂F(x, u, v)
∂u

+ v · ∂F(x, u, v)
∂v

≥ 4F(x, u, v) > 0 for every x ∈ R. (3.26)

So F satisfies the conditions (F1)–(F3). We only choose a(x) > 0, b(x) > 0, c >
−π2/L2, d > −π2/L2, then the condition (A) is satisfied. Therefore, System (1.2) has infinitely
many distinct pairs of solutions by using Theorem 2.3.
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We investigate the existence of multiple solutions for a class of nonhomogeneous Neumann
problem with a perturbed term. By using variational methods and three critical point theorems
of B. Ricceri, we establish some new sufficient conditions under which such a problem possesses
three solutions in an appropriate Orlicz-Sobolev space.

1. Introduction

Consider the following nonhomogeneous Neumann problem with a perturbed term:

−div(α(|∇u|)∇u) + α(|u|)u = λf(x, u) + μg(x, u), in Ω,

∂u

∂ν
= 0, on ∂Ω,

(
Pλ,μ

)

where Ω is a bounded domain in R
N(N ≥ 3) with smooth boundary ∂Ω, ν is the outer normal

to ∂Ω, f, g : Ω×R → R are two Carathéodory functions, λ > 0, μ ≥ 0 are two parameters, and
the function α : (0,∞) → R is such that ϕ(t) : R → R defined by

ϕ(t) =

{
α(|t|)t, t /= 0,
0, t = 0,

(1.1)

is an odd, strictly increasing homeomorphism from R to R.



2 Abstract and Applied Analysis

It is well known that these kinds of problems are important in applications in many
fields, such as elasticity, fluid dynamics, and image processing (see [1–4]). Since the operator
in the divergence form is nonhomogeneous, we introduce Orlicz-Sobolev space which is
an appropriate setting for these problems. Such space originated with Nakano [5] and
was developed by Musielak and Orlicz [6]. Many properties of Sobolev spaces have been
extended to Orlicz-Sobolev space (see [7–10]). Several authors have widely studied the
existence of solutions for the relevant problem by means of variational techniques, monotone
operator methods, fixed point, and degree theory (see [11–15]). To the best of our knowledge,
for the perturbed nonhomogeneous Neumann problem, there has so far been few papers
concerning its multiple solutions. Motivated by the above facts, in this paper, we establish
some new sufficient conditions under which such a problem possesses three weak solutions
in Orlicz-Sobolev space.

This paper is organized as follows. In Section 2, some preliminaries are presented. In
Section 3, we discuss the existence of three weak solutions for problem

(
Pλ,μ

)
.

2. Preliminaries

We start by recalling some basic facts about Orlicz-Sobolev space. Let ϕ be as in
Introduction and Φ(t) : R → R,

Φ(t) =
∫ t

0
ϕ(s)ds. (2.1)

We observe that Φ is, a Young function, that is Φ(0) = 0, Φ is convex and limt→∞Φ(t) = +∞.
Furthermore, since Φ(t) = 0 if and only if t = 0, limt→ 0(Φ(t)/t) = 0, and limt→∞(Φ(t)/t) =
+∞, then Φ is called an N-function. The function Φ∗ is called the complementary function of
Φ and it satisfies

Φ∗(t) = sup{st −Φ(s); s ≥ 0}, ∀t ≥ 0. (2.2)

Assume that Φ satisfies the following structural hypotheses

(Φ1) 1 < lim inft→∞(tϕ(t)/Φ(t)) ≤ p0 := supt>0(tϕ(t)/Φ(t)) <∞;

(Φ2)N < p0 := inft>0(tϕ(t)/Φ(t)) < lim inft→∞(log(Φ(t))/ log(t)).

Further, we also assume that the function

(Φ3) [0,∞) 	 t → Φ(
√
t) is convex.

The Orlicz space LΦ(Ω) defined by Φ is the space of measurable functions u : Ω → R

such that

‖u‖LΦ
:= sup

{∫

Ω
u(x)v(x)dx;

∫

Ω
Φ∗(|v(x)|)dx ≤ 1

}
<∞. (2.3)

Then (LΦ(Ω), ‖ · ‖LΦ) is a Banach space whose norm is equivalent to the Luxemburg norm

‖u‖Φ := inf
{
k > 0;

∫

Ω
Φ
( |u(x)|

k

)
dx ≤ 1

}
. (2.4)
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We denote by W1LΦ(Ω) the Orlicz-Sobolev space, defined by

W1LΦ(Ω) =
{
u ∈ LΦ;

∂u

∂xi
∈ LΦ, i = 1, 2, . . . ,N

}
. (2.5)

This is a Banach space with respect to the norm

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ. (2.6)

Lemma 2.1 (see [13]). OnW1LΦ(Ω) the norms

‖u‖1,Φ = ‖|∇u|‖Φ + ‖u‖Φ,
‖u‖2,Φ = max{‖|∇u|‖Φ, ‖u‖Φ},

‖u‖ := inf
{
μ > 0;

∫

Ω

[
Φ
( |u(x)|

μ

)
+ Φ

( |∇u(x)|
μ

)]
dx ≤ 1

}
,

(2.7)

are equivalent. Moreover, for every u ∈W1LΦ(Ω), one has

‖u‖ ≤ 2‖u‖2,Φ ≤ 2‖u‖1,Φ ≤ 4‖u‖. (2.8)

Lemma 2.2. Let u ∈W1LΦ(Ω), then

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ ‖u‖p0

, if ‖u‖ > 1,

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ ‖u‖p0 , if ‖u‖ < 1.

(2.9)

Proof. For the proof of

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx, if ‖u‖ > 1,

‖u‖p0 ≤
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx, if ‖u‖ < 1,

(2.10)

we can see Lemma 2.2 of the paper [13]. Since p0 ≥ (tϕ(t))/Φ(t) for all t ≥ 0, it follows that
letting σ > 1, we have

log(Φ(σt)) − log(Φ(t)) =
∫σt

t

ϕ(s)
Φ(s)

ds ≤
∫σt

t

p0

s
ds = log

(
σp

0
)
. (2.11)

Thus, one has

Φ(σt) ≤ σp0
Φ(t), t > 0, σ > 1. (2.12)
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Moreover, by the definition of the norm, we remark that

∫

Ω

[
Φ
( |u(x)|

‖u‖
)
+ Φ

( |∇u(x)|
‖u‖

)]
dx ≤ 1. (2.13)

Therefore, we have

∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx =

∫

Ω

[
Φ
(
‖u‖ |u(x)|‖u‖

)
+ Φ

(
‖u‖ |∇u(x)|‖u‖

)]
dx

≤ ‖u‖p0
∫

Ω

[
Φ
( |u(x)|

‖u‖
)
+ Φ

( |∇u(x)|
‖u‖

)]
dx

≤ ‖u‖p0
,

(2.14)

for all ‖u‖ > 1.
Similar techniques as those used in the proof of (2.12), we have

Φ(t) ≤ τp0Φ
(
t

τ

)
, t > 0, 0 < τ < 1. (2.15)

Therefore, we can obtain

∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ ‖u‖p0

∫

Ω

[
Φ
( |u(x)|

‖u‖
)
+ Φ

( |∇u(x)|
‖u‖

)]
dx

≤ ‖u‖p0 ,

(2.16)

for all ‖u‖ < 1.

Lemma 2.3 (see [13]). Let u ∈W1LΦ(Ω) and assume that

∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx ≤ r (2.17)

for some 0 < r < 1, then one has ‖u‖ < 1.

Lemma 2.4 (see [13]). If p0 > N, thenW1LΦ(Ω) is compactly embedded in C0(Ω) and there exists
a constant c > 0 such that

‖u‖∞ ≤ c‖u‖1,Φ, ∀u ∈W1LΦ(Ω), (2.18)

where ‖u‖∞ := supx∈Ω|u(x)|.

Now, one recall, a three critical theorem of B. Ricceri. If X is a real Banach space, denote
by WX (see [16]) the class of all functionals Φ : X → R possessing the following property:
if {un} is a sequence in X converging weakly to u and lim infn→∞Φ(un) ≤ Φ(u), then {un}
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has a subsequence converging strongly to u. For example, if X is uniformly convex and g :
[0,+∞) → R is a continuous, strictly increasing function, then, by a classical results, the
functional u → g(‖u‖) belongs to the class WX .

Lemma 2.5 (see [16]). Let X be a separable and reflexive real Banach space; let I : X → R be
a coercive, sequentially weakly lower semicontinuous C1 functional, belonging to WX , bounded on
each bounded subset of X and whose derivative admits a continuous inverse on X∗; J : X → R a
C1 functional with compact derivative. Assume that I has a strict local minimum u0 with I(u0) =
J(u0) = 0. Finally, setting

α′ = max

{
0, lim sup

‖u‖→+∞

J(u)
I(u)

, lim sup
u→u0

J(u)
I(u)

}
,

β′ = sup
u∈I−1(0,+∞)

J(u)
I(u)

,

(2.19)

assume that α′ < β′. Then for each compact interval [a, b] ⊂ (1/β′, 1/α′) (with the conventions
(1/0) = +∞, (1/ + ∞) = 0), there exists B > 0 with the following property: for every λ ∈ [a, b]
and every C1 functional Ψ : X → R with compact derivative, there exists δ > 0 such that, for each
μ ∈ [0, δ], the equation

I ′(x) = λJ ′(x) + μΨ′(x) (2.20)

has at least three solutions in X whose norms are less than B.

Lemma 2.6 (see [17]). Let X be a reflexive real Banach space; S ⊂ R an interval, let I : X → R

be a sequentially weakly lower semicontinuous C1 functional, bounded on each bounded subset of X
and whose derivative admits a continuous inverse on X∗; J : X → R a C1 functional with compact
derivative. Assume that

lim
‖u‖→∞

[I(u) − λJ(u)] = +∞ (2.21)

for all λ ∈ S, and that there exists ρ ∈ R such that

sup
λ∈S

inf
u∈X

[
I(u) + λ

(
ρ − J(u))] < inf

u∈X
sup
λ∈S

[
I(u) + λ

(
ρ − J(u))]. (2.22)

Then there exist a nonempty open setA ⊂ S and a positive number B, with the following property: for
every λ ∈ A and every C1 functional Ψ : X → R with compact derivative, there exists δ > 0 such
that, for each μ ∈ [0, δ], the equation

I ′(x) = λJ ′(x) + μΨ′(x) (2.23)

has at least three solutions in X whose norms are less than B.
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Lemma 2.7 (see [18]). Let X be a nonempty set and I, J two real functions on X. Assume that there
are r > 0 and x0, x1 ∈ X such that

I(x0) = J(x0) = 0, I(x1) > r, sup
x∈I−1(]−∞,r])

J(x) < r
J(x1)
I(x1)

. (2.24)

Then for each ρ satisfying

sup
x∈I−1(]−∞,r])

J(x) < ρ < r
J(x1)
I(x1)

, (2.25)

one has

sup
λ≥0

inf
u∈X

[
I(u) + λ

(
ρ − J(u))] < inf

u∈X
sup
λ≥0

[
I(u) + λ

(
ρ − J(u))]. (2.26)

3. Proof of the Main Results

Set γ = inf{(∫Ω(Φ(|∇u(x)|)+Φ(|u(x)|))dx/∫Ω F(x, u(x))dx) :u ∈ X, ∫Ω F(x, u(x))dx>0}.

Theorem 3.1. Let Φ be a function satisfying the structural hypotheses (Φ1–Φ3) and the following
conditions hold

(H1) max{lim supξ→ 0(supx∈ΩF(x, ξ)/|ξ|p
0
), lim sup|ξ|→∞(supx∈ΩF(x, ξ)/|ξ|p0)} ≤0,

(H2) supu∈X
∫
Ω F(x, u(x))dx > 0.

Then, for each compact interval [a, b] ⊂ (γ,∞), there exists B > 0 with the following property: for
every λ ∈ [a, b] and g, there exists δ > 0 such that, for each μ ∈ [0, δ], the problem

(
Pλ,μ

)
has at least

three weak solutions whose norms in X are less than B.

Proof of Theorem 3.1. In order to apply Lemma 2.5, we let

I(u) =
∫

Ω
[Φ(|∇u(x)|) + Φ(|u(x)|)]dx,

J(u) =
∫

Ω
F(x, u(x))dx, Ψ(u) =

∫

Ω
G(x, u(x))dx.

(3.1)

We divide our proof into two steps as follows.
Step 1. We show that some fundamental assumptions are satisfied.

X :=W1LΦ(Ω). Obviously, X is a separable and reflexive real Banach space (see [13]).
By Lemma 2.2, it is easy to see that I(u) is a coercive, bounded on each bounded subset of X.
On the other hand, I, J,Ψ ∈ C1(X,R) with the derivatives given by

〈
I ′(u), v

〉
=
∫

Ω
[α(|∇u(x)|)∇u(x) · ∇v(x) + α(|u(x)|)u(x)v(x)]dx,

〈
J ′(u), v

〉
=
∫

Ω
f(x, u(x))v(x)dx,

〈
Ψ′(u), v

〉
=
∫

Ω
g(x, u(x))v(x)dx,

(3.2)
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for any u, v ∈ X. Hence, the critical points of the functional I − λJ − μΨ are exactly the weak
solutions for problem

(
Pλ,μ

)
. Moreover, owing that Φ is convex, it follows that I is convex.

Hence, one has that I is sequentially weakly lower semicontinuous. The fact X is compactly
embedded into C0(Ω) implies that operators J ′,Ψ′ is compact. As the proof of Lemma 3.2 in
[15], we know that I ′ has a continuous inverse.

Moreover, if {un} is a sequence in X converging weakly to u and lim infn→∞ I(un) ≤
I(u), remark that I is sequentially weakly lower semicontinuous, one has

I(u) ≤ lim inf
n→∞

I(un) ≤ I(u). (3.3)

Then, up to a subsequence, we deduce that I(un) → I(u) = d. Taking into account that
{(un + u)/2} converges weakly to u and I is sequentially weakly lower semicontinuous, we
have

d = I(u) ≤ lim inf
n→∞

I
(un + u

2

)
. (3.4)

We assume by contradiction that un does not converge to u in X. Hence, there exist ε0 > 0 and
a subsequence {unm} of (un) such that

∥∥∥∥
unm − u

2

∥∥∥∥ > ε0, ∀m. (3.5)

Then there exists ε1 > 0 such that

I

(
unm − u

2

)
> ε1, ∀m. (3.6)

On the other hand,

1
2
I(u) +

1
2
I(unm) − I

(
unm + u

2

)
≥ I

(
unm − u

2

)
> ε1, (3.7)

(see [19]). Letting m → ∞ in the above inequality we obtain

d − ε1 ≥ lim sup
m→∞

I

(
unm + u

2

)
(3.8)

and that is a contradiction with (3.4). It follows that un converges strongly to u and I ∈ WX .
In addition, I(0) = J(0) = 0.
Step 2. We show that α′ = 0, β′ > 0.

In view of (H1), for all ε > 0, there exists τ1 > 0 such that

F(x, ξ) ≤ ε|ξ|p0
, (3.9)
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for any |ξ| ∈ [0, τ1]. For ‖u‖ < min{1, (τ1/2c)}, we have

|u(x)| ≤ ‖u‖∞ ≤ c‖u‖1,Φ ≤ 2c‖u‖ ≤ τ1,

lim sup
u→ 0

J(u)
I(u)

≤ lim sup
u→ 0

ε
∫
Ω |u|p0

dx

‖u‖p0 ≤ lim sup
u→ 0

ε|Ω|(2c‖u‖)p0

‖u‖p0 ≤ 0.
(3.10)

By (H1), for all ε > 0, there exists 0 < τ1 < τ2 such that

F(x, ξ) ≤ ε|ξ|p0 , (3.11)

for any |ξ| > τ2. Further, for each ‖u‖ > 1, we have

J(u)
I(u)

≤
∫
Ω(|u|≤τ2)

F(x, u(x))dx

‖u‖p0
+

∫
Ω(|u|>τ2)

F(x, u(x))dx

‖u‖p0

≤
∫
Ω(|u|≤τ2)

F(x, u(x))dx

‖u‖p0
+
ε|Ω|(2c‖u‖)p0

‖u‖p0
.

(3.12)

So we get

lim sup
‖u‖→∞

J(u)
I(u)

≤ 0. (3.13)

Then, with the notation of Lemma 2.5, we have α′ = 0. By assumption (H2), we have β′ > 0.
Thus, all the hypotheses of Lemma 2.5 are satisfied. Clearly, γ = 1/β′. Finally, by Lemma 2.5,
we can obtain the Theorem 3.1.

Example 3.2. Let p > N + 1. Define

ϕ(t) =
|t|p−2t

log(1 + |t|) , t /= 0, (3.14)

and ϕ(0) = 0. By [13], one has

p0 = p − 1 < p0 = p. (3.15)

Let F(x, t) = |t|p+1 − |t|p+2. Since F ≤ 0 if |t| is large enough and F > 0 if |t| is small enough,
moreover, it is easy to see lim supξ→ 0(supx∈ΩF(x, ξ)/|ξ|p

0
) = 0, the conditions of Theorem 3.1

can be satisfied.

Remark 3.3. Since F in [13] is p0-sublinear, the results of [13] do not fit to the problem treated
in the previous Example 3.2 even if μ = 0, that is, there is no perturbed nonlinear term. In
addition, for nonhomogeneous Neumann problem with a perturbed term, we can have the
following result when F is p0-sublinear, which extends the results of [13].
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Theorem 3.4. Let Φ be a function satisfying the structural hypotheses (Φ1–Φ3) and the following
conditions.

(H3) There exist two constants γ, δ with γ < 2c such that Φ(δ) > (γp
0
/(2c)p

0 |Ω|) and

∫
Ω max|ξ|≤γF(x, ξ)dx

γp
0 <

∫
Ω F(x, δ)dx

(2c)p
0 |Ω|Φ(δ)

, (3.16)

where |Ω| denotes the Lebesgue measure of the set Ω.
(H4) There exist h(x), k(x) ∈ L1(Ω; R+) and 0 < s < p0 such that |F(x, t)| ≤ h(x) + k(x)|t|s

for every (x, t) ∈ Ω × R.
Then, there exist a nonempty open set A ⊂ [0,∞) and a positive number B, for each λ ∈ A

and for every g, there exists δ > 0 such that, for each μ ∈ [0, δ], the problem
(
Pλ,μ

)
has at least three

weak solutions whose norms in X are less than B.

Proof of Theorem 3.4. Let us consider I, J,Ψ as the proof of Theorem 3.1. For any λ > 0, u ∈ X,
by (H4) we have

I(u) − λJ(u) ≥
∫

Ω
[Φ(|u(x)|) + Φ(|∇u(x)|)]dx − λ‖u‖s∞

∫

Ω
k(x)dx − λ

∫

Ω
h(x)dx

≥ ‖u‖p0 − λ(2c)s‖u‖s
∫

Ω
k(x)dx − λ

∫

Ω
h(x)dx,

(3.17)

for ‖u‖ > 1. Since 0 < s < p0, one has lim‖u‖→∞[I(u) − λJ(u)] = +∞ for all λ ≥ 0.
Let r := (γp

0
/(2c)p

0
), x1 = δ. For r > 0, I(u) ≤ r, we have

|u(x)| ≤ ‖u‖∞ ≤ c‖u‖1,Φ ≤ 2c‖u‖ ≤ γ, ∀x ∈ Ω. (3.18)

Hence, one has

supu∈I−1(]−∞,r]) J(u)
r

≤ (2c)p
0 ∫

Ω max|ξ|≤γ F(x, ξ)dx

γp
0 . (3.19)

From (H3), it follows that

supI(u)≤rJ(u)

r
<
J(δ)
I(δ)

. (3.20)

Since all the assumptions of Lemmas 2.7 and 2.6 are satisfied, then, there is a nonempty open
set A ⊂ [0,∞) and a positive number B, for each λ ∈ A and for every g there exists δ > 0 such
that, for each μ ∈ [0, δ], the problem has at least three weak solutions whose norms in X are
less than B.
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This paper gives an application of Mawhin’s coincidence degree and matrix spectral theory to
a predator-prey model with M-predators and N-preys. The method is different from that used
in the previous work. Some new sufficient conditions are obtained for the existence and global
asymptotic stability of the periodic solution. The existence and stability conditions are given in
terms of spectral radius of explicit matrices which are much different from the conditions given by
the algebraic inequalities. Finally, an example is given to show the feasibility of our results.

1. Introduction and Motivation

1.1. History and Motivations

Mawhin’s coincidence degree theory has been applied extensively to study the existence of
periodic solutions for nonlinear differential systems (e.g. see [1–16] and references therein).
The most important step of applying Mawhin’s degree theory to nonlinear differential
equations is to obtain the priori bounds of unknown solutions to the operator equation
Lx = λNx. However, different estimation techniques for the priori bounds of unknown
solutions to the equation Lx = λNx may lead to different results. Most of papers obtained
the priori bounds by employing the inequalities:

x(t) ≤ x(ξ) +
∫ω

0
|ẋ(t)|dt, x(t) ≥ x(η) −

∫ω

0
|ẋ(t)|dt,

x(ξ) = min
t∈[0,ω]

x(t), x
(
η
)
= max

t∈[0,ω]
x(t).

(1.1)
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These inequalities lead to a relatively strong condition given in terms of algebraic inequality
or classic norms (see e.g., [3–16]). Different from standard consideration, in this paper, we
employ matrix spectral theory to obtain the priori bounds, not the above inequalities. So in
this paper, the existence and stability of periodic solution for a multispecies predator-prey
model is studied by jointly employing Mawhin’s coincidence degree and matrix spectral
theory.

1.2. Model Formulation

One of classical Lotka-Vlterra system is predator-prey models which have been investigated
extensively by mathematicians and ecologist. Many good results have been obtained
for stability, bifurcations, chaos, uniform persistence, periodic solution, almost periodic
solutions. It has been observed that most of works focus on either two or three species model.
There are few paper considering the multispecies model. To model the dynamic behavior of
multispecie predator-prey system, Yang and Rui [17] proposed a predator-prey model with
M-predators and N-preys of the form:

ẋi(t) = xi(t)

[
bi(t) −

N∑

k=1

aik(t)xk(t) −
M∑

l=1

cil(t)yl(t)

]
, i = 1, 2, . . . ,N,

ẏj(t) = yj(t)

[
−rj(t) +

N∑

k=1

djk(t)xk(t) −
M∑

l=1

ejl(t)yl(t)

]
, j = 1, 2, . . . ,M,

(1.2)

where xi(t) denotes the density of prey species Xi at time t, yj(t) denotes the density of
predator species Yj at time t. The coefficients bi(t), rj(t), aik(t), cil(t), djk(t), and ejl(t), (i, k =
1, . . . ,N; j, l = 1, . . . ,M) are nonnegative continuous periodic functions defined on t ∈
(−∞,+∞). The coefficient bi is the intrinsic growth rate of prey species Xi, rj is the death
rate of the predator species Yj , aik measures the amount of competition between the prey
species Xi and Xk (k /= i, i, k = 1, . . . ,N), ejl measures the amount of competition between

the predator species Yj and Yk (k /= j, j, k = 1, . . . ,M), and the constant k̃ij
Δ= dij/cij denotes

the coefficient in conversing prey species Xi into new individual of predator species Yj (i =
1, . . . ,N; j = 1, . . . ,M). By using the differential inequality, Zhao and Chen [18] improved the
results of Yang and Rui [17]. Recently, Xia et al. [19] obtained some sufficient conditions for
the existence and global attractivity of a unique almost periodic solution of the system (1.2).

It is more natural to consider the delay model because most of the species start
interacting after reaching a maturity period. Hence many scholars think that the delayed
models are more realistic and appropriate to be studied than ordinary model. Delayed system
is important also because sometimes time delays may lead to oscillation, bifurcation, chaos,
instability which may be harmful to a system. Inspired by the above argument, Wen [20]
considered a periodic delayed multispecies predator-prey system as follows:

ẋi(t) = xi(t)

⎡

⎣bi(t) − aii(t)xi(t) −
N∑

k=1,k /= i

aik(t)xk(t − τik) −
M∑

l=1

cil(t)yl
(
t − ηil

)
⎤

⎦,

ẏj(t) = yj(t)

⎡

⎣−rj(t) +
N∑

k=1

djk(t)xk
(
t − δjk

) − ejj(t)yj(t) −
M∑

l=1,l /= j

ejl(t)yl
(
t − ξjl

)
⎤

⎦,

(1.3)
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where bi(t), rj(t), aik(t), cil(t), djk(t), ejl(t), ejl(t) (i, k = 1, 2, . . . ,N; j, l = 1, 2, . . . ,M) are
assumed to be continuous ω-periodic functions and the delays τik, δjk, ηil, ξjl are assumed
to be positive constants. The system (1.3) is supplemented with the initial condition:

xi(θ) = φi(θ), yj(θ) = ψi(θ), θ ∈ [−τ, 0], φi(0) > 0, ψi(0) > 0, (1.4)

where

τ = max
{

max
1≤i,k≤n

τik, max
1≤i≤N,1≤l≤M

ηil, max
1≤j,l≤M

ξjl, max
1≤j≤M,1≤k≤N

δjk

}
> 0. (1.5)

It is easy to see that for such given initial conditions, the corresponding solution of the system
(1.3) remains positive for all t ≥ 0. The purpose of this paper is to obtain some new and
interesting criteria for the existence and global asymptotic stability of periodic solution of the
system (1.3).

1.3. Comparison with Previous Work

To obtain the periodic solutions of the system (1.3), the method used in [20] is based
on employing the differential inequality and Brower fixed point theorem. Different from
consideration taken by [20], our method is based on combining matrix spectral theory
with Mawhin’s degree theory. In our method, we study the global asymptotic stability by
combining matrix’s spectral theory with Lyapunov functional method. The existence and
stability conditions are given in terms of spectral radius of explicit matrices. These conditions
are much different from the sufficient conditions obtained in [20].

1.4. Outline of This Work

The structure of this paper is as follows. In Section 2, some new and interesting sufficient
conditions for the existence of periodic solution of system (1.3) are obtained. Section 3 is
devoted to examining the stability of the periodic solution obtained in the previous section.
In Section 4, some corollaries are presented to show the effectiveness of our results. Finally,
an example is given to show the feasibility of our results.

2. Existence of Periodic Solutions

In this section, we will obtain some sufficient conditions for the existence of periodic solution
of the system (1.3).

2.1. Preliminaries on the Matrix Theory and Degree Theory

For convenience, we introduce some notations, definitions, and lemmas. Throughout this
paper, we use the following notations.

(i) We always use i, k = 1, . . . ,N; j, l = 1, . . . ,M, unless otherwise stated.



4 Abstract and Applied Analysis

(ii) If f(t) is a continuous ω-periodic function defined on R, then we denote

f = min
t∈[0,ω]

∣∣f(t)
∣∣, f = max

t∈[0,ω]

∣∣f(t)
∣∣, m

(
f
)
=

1
ω

∫ω

0
f(t)dt. (2.1)

We use x = (x1, . . . , xn)
T ∈ R

n to denote a column vector, D = (dij)n×n is an n × n matrix, DT

denotes the transpose of D, and En is the identity matrix of size n. A matrix or vector D > 0
(resp., D ≥ 0) means that all entries of D are positive (resp., nonnegative). For matrices or
vectors D and E, D > E (resp., D ≥ E) means that D − E > 0 (resp., D − E ≥ 0). We denote the
spectral radius of the matrix D by ρ(D).

If v = (v1, v2, . . . , vn)
T ∈ R

n, then we have a choice of vector norms in R
n, for instance

‖v‖1, ‖v‖2, and ‖v‖∞ are the commonly used norms, where

‖v‖1 =
n∑

j=1

|vi|, ‖v‖2 =

⎧
⎨

⎩

n∑

j=1

|vi|2
⎫
⎬

⎭

1/2

, ‖v‖∞ = max
1≤i≤n

|vi|. (2.2)

We recall the following norms of matrices induced by respective vector norms. For instance
if A = (aij)n×n, the norm of the matrix ‖A‖ induced by a vector norm ‖ · ‖ is defined by

‖A‖p = sup
v∈Rn,v /= 0

‖Av‖p
‖v‖p

= sup
‖v‖p=1

‖Av‖p = sup
‖v‖p≤1

‖Av‖p. (2.3)

In particular one can show that ‖A‖1 = max1≤j≤n
∑n

i=1 |aij | (column norm), ‖A‖2 =

[λmax(ATA)]1/2 = [max. eigenvalue of (ATA)]1/2 and ‖A‖∞ = max1≤i≤n
∑n

j=1 |aij | (row
norm).

Definition 2.1 (see [1, 21]). Let X,Z be normed real Banach spaces, let L : DomL ⊂ X → Z
be a linear mapping, and N : X → Z be a continuous mapping. The mapping L is called a
Fredholm mapping of index zero, if dimKerL = codim ImL < +∞ and ImL is closed in Z.
If L is a Fredholm mapping of index zero and there exist continuous projectors P : X → X
and Q : Z → Z such that ImP = KerL , KerQ = ImL = Im(I −Q), then L | domL ∩ KerP :
(I − P)X → ImL is invertible. We denote the inverse of that map by KP . If Ω is an open
bounded subset of X, the mapping N will be called L-compact on Ω if QN(Ω) is bounded
and KP (I − Q)N : Ω → X is compact. Since ImQ is isomorphic to KerL, there exists an
isomorphism J : ImQ → KerL.

Definition 2.2 (see [1, 22]). Let Ω ⊂ R
n be open and bounded, f ∈ C1(Ω,Rn) ∩ C(Ω,Rn) and

y ∈ R
n/f(∂Ω ∪Nf), that is, y is a regular value of f . Here, Nf = {x ∈ Ω : Jf(x) = 0}, the

critical set of f and Jf is the Jacobian of f at x. Then the degree deg{f,Ω, y} is defined by

deg
{
f,Ω, y

}
=

∑

x∈f−1(y)
sgn Jf(x), (2.4)
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with the agreement that
∑
φ = 0. For more details about Degree Theory, the reader may

consult Deimling [22].

Lemma 2.3 (Continuation Theorem [1]). Let Ω ⊂ X be an open and bounded set and L be a
Fredholmmapping of index zero andN be L-compact onΩ (i.e.,QN(Ω) is bounded andKP (I−Q)N :
Ω → X is compact). Assume

(i) for each λ ∈ (0, 1), x ∈ ∂Ω ∩ DomL, Lx/=λNx;

(ii) for each x ∈ ∂Ω ∩ KerL, QNx/= 0 and deg{JQN,Ω ∩ KerL, 0}/= 0.

Then Lx =Nx has at least one solution in Ω ∩ DomL.

Definition 2.4 (see [23, 24]). A real n × n matrix A = (aij) is said to be an M-matrix if aij ≤ 0,
i, j = 1, 2, . . . , n, i /= j, and A−1 ≥ 0.

Lemma 2.5 (see [23, 24]). LetA ≥ 0 be an n×n matrix and ρ(A) < 1, then (En −A)−1 ≥ 0, where
En denotes the identity matrix of size n.

Now we introduce some function spaces and their norms, which will be valid
throughout this paper. Denote

X =
{
U(t) = (u(t), v(t))T ∈ C1

(
R,RN+M

)
| U(t +ω) = U(t) ∀t ∈ R

}
,

Z =
{
U(t) = (u(t), v(t))T ∈ C

(
R,RN+M

)
| U(t +ω) = U(t) ∀t ∈ R

}
.

(2.5)

The norms are given by

|Un(t)|0 = max
t∈[0,ω]

|Un(t)|, |Un(t)|1 = |Un(t)|0 +
∣∣U̇n(t)

∣∣
0, i = 1, 2, . . . ,N +M,

‖Un(t)‖0 = max
1≤n≤N+M

{|Un(t)|0}, ‖Un(t)‖1 = max
1≤n≤N+M

{|Un(t)|1}.
(2.6)

Obviously, X and Z, respectively, endowed with the norms ‖ · ‖1 and ‖ · ‖0 are Banach spaces.

2.2. Result on the Existence of Periodic Solutions

Theorem 2.6. Assume that the following conditions hold:

(H1): the system of algebraic equations:

m(bi) −m(aii)ui −
N∑

k=1,k /= i

m(aik)uk −
M∑

l=1

m(cil)wl = 0, i = 1, 2, . . . ,N,

m
(−rj

)
+

N∑

k=1

m
(
djk
)
uk −m

(
ejj
)
wj −

M∑

l=1,l /= j

m
(
ejl
)
wl = 0, j = 1, 2, . . . ,M,

(2.7)

has finite solution (u∗1, . . . , u
∗
N,w

∗
1, . . . , w

∗
M)T ∈ R

N+M
+ with u∗ > 0, w∗ > 0;
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(H2): ρ(K) < 1, where K =
(

PN×N QN×M
MM×N NM×M

)

(N+M)×(N+M)
,

PN×N =
(
pik
)
N×N, pik =

{
0, i = k,
aika

−1
kk
, i /= k.

QN×M =
(
qil
)
N×M, qil = cile−1

ll ,

MM×N =
(
mjk

)
M×N, mjk = djka−1

kk,

NM×M =
(
njl
)
M×M, njl =

{
0, j = l,
ejle

−1
ll
, j /= l.

(2.8)

Then system (1.3) has at least one positive ω-periodic solution.

Proof. Note that every solution

U(t) = (u(t), v(t))T = (u1(t), . . . , uN(t), v1(t), . . . , vM(t))T ∈ X (2.9)

of the system (1.3) with the initial condition is positive. By using the following changes of
variables:

ui(t) = lnxi(t), vj(t) = lnyj(t), i = 1, 2, . . . ,N, j = 1, 2, . . . ,M, (2.10)

the system (1.3) can be rewritten as

u̇i(t) = bi(t) − aii(t)eui(t) −
N∑

k=1,k /= i

aik(t)euk(t−τik) −
M∑

l=1

cil(t)evl(t−ηil), i = 1, 2, . . . ,N,

v̇j(t) = −rj(t) +
N∑

k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl), j = 1, 2, . . . ,M.

(2.11)

Obviously, system (1.3) has at least one ω-periodic solution which is equivalent to the system
(2.11) having at least one ω-periodic solution. To prove Theorem 2.6, our main tasks are
to construct the operators (i.e., L, N, P , and Q) appearing in Lemma 2.3 and to find an
appropriate open set Ω satisfying conditions (i), (ii) in Lemma 2.3.

For any U(t) ∈ X, in view of the periodicity, it is easy to check that

Δi(U, t) = bi(t) − aii(t)eui(t) −
N∑

k=1,k /= i

aik(t)euk(t−τik) −
M∑

l=1

cil(t)evl(t−ηil) ∈ Z,

Δj(U, t) = −rj(t) +
N∑

k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl) ∈ Z.
(2.12)
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Now, we define the operators L,N as follows:

L : DomL ⊂ X −→ Z, L(u(t), v(t)) =

(
dui(t)
dt

,
dvj(t)
dt

)
∈ Z,

N : X −→ Z is defined by NU =
(
Δi(U, t)
Δj(U, t)

)
.

(2.13)

Define, respectively, the projectors P : X → X and Q : Z → Z by

PU =
1
ω

∫ω

0
U(t)dt, U ∈ X,

QU =
1
ω

∫ω

0
U(t)dt, U ∈ Z.

(2.14)

It is obvious that the domain of L in X is actually the whole space, and

KerL = {x(t) ∈ X | Lx(t) = 0, i.e. ẋ(t) = 0} = R
N+M,

ImL =
{
z(t) ∈ Z |

∫ω

0
z(t)dt = 0

}
is closed in Z.

(2.15)

Moreover, P, Q are continuous operators such that

ImP = R
N = KerL, ImL = KerQ = Im(I −Q),

dim KerL = codim ImL =N +M < +∞.
(2.16)

It follows that L is a Fredholm mapping of index zero. Furthermore, the generalized inverse
(to L) KP : ImL → DomL ∩ KerP exists, which is given by

KP

(
y
)
=
∫ t

0
y(s)ds − 1

ω

∫ω

0

∫ t

0
y(s)dsdt. (2.17)

Then QN : X → Z and KP (I −Q)N : X → X are defined by

QNU =

⎛
⎜⎜⎜⎜⎝

1
ω

∫ω

0
Δi(U, t)dt

1
ω

∫ω

0
Δj(U, t)dt

⎞
⎟⎟⎟⎟⎠
,

KP (I −Q)Nx =
∫ t

0
NU(s)ds − 1

ω

∫ω

0

∫ t

0
NU(s)dsdt −

(
t

ω
− 1

2

)∫ω

0
NU(s)ds.

(2.18)
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Clearly,QN andKP (I−Q)N are continuous. By using the generalized Arzela-Ascoli theorem,
it is not difficult to prove that (KP (I −Q)N)(Ω) is relatively compact in the space (X, ‖ · ‖1).
The proof of this step is complete.

Then, in order to apply condition (i) of Lemma 2.3, we need to search for an
appropriate open bounded subset Ω, denoted by

Ω = Un(t) ∈ X | |Un(t)|1 = |Un(t)|0 +
∣∣U̇n(t)

∣∣
0 < hn. (2.19)

Specifically, our aim is to find an appropriate hn. Corresponding to the operator equation
Lx = λNx for each λ ∈ (0, 1), we have

u̇i(t) = λ

⎡

⎣bi(t) − aii(t)eui(t) −
N∑

k=1,k /= i

aik(t)euk(t−τik) −
M∑

l=1

cil(t)evl(t−ηil)
⎤

⎦,

v̇j(t) = λ

⎡

⎣−rj(t) +
N∑

k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl)
⎤

⎦.

(2.20)

Since U(t) ∈ X, each Un(t), n = 1, 2, . . . ,N + M, as components of U(t), is continuously
differentiable and ω-periodic. In view of continuity and periodicity, there exists ti ∈ [0, ω]
such that ui(ti) = maxt∈[0,ω]|ui(t)|, i = 1, 2, . . . ,N, and there also exists tN+j ∈ [0, ω] such that
vj(tN+j) = maxt∈[0,ω]|vj(t)|, j = 1, 2, . . . ,M. Accordingly, u̇i(ti) = 0, v̇j(tN+j) = 0, and we get

bi(ti) − aii(ti)eui(ti) −
N∑

k=1,k /= i

aik(ti)euk(ti−τik) −
M∑

l=1

cil(ti)evl(tN+j−ηil) = 0,

−rj
(
tN+j

)
+

N∑

k=1

djk
(
tN+j

)
euk(ti−δjk) − ejj

(
tN+j

)
evj (tN+j ) −

M∑

l=1,l /= j

ejl
(
tN+j

)
evl(tN+j−ξjl) = 0.

(2.21)

That is,

aii(ti)eui(ti) = bi(ti) −
N∑

k=1,k /= i

aik(ti)euk(ti−τik) −
M∑

l=1

cil(ti)evl(tN+j−ηil),

ejj
(
tN+j

)
evj (tN+j ) = −rj

(
tN+j

)
+

N∑

k=1

djk
(
tN+j

)
euk(ti−δjk) −

M∑

l=1,l /= j

ejl
(
tN+j

)
evl(tN+j−ξjl).

(2.22)

Note that uk(tk) = maxt∈[0,ω]|uk(t)| and vl(tN+l) = maxt∈[0,ω]|vl(t)|, which implies

uk(ti) ≤ uk(tk), uk(ti − τik) ≤ uk(tk), uk
(
ti − δjk

) ≤ uk(tk);
vl
(
tN+j

) ≤ vl(tN+l), vl
(
tN+j − ηil

) ≤ vl(tN+l), vl
(
tN+j − ξjl

) ≤ vl(tN+l).
(2.23)
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It follows that

aiie
ui(ti) ≤

∣∣∣aii(ti)eui(ti)
∣∣∣

=

∣∣∣∣∣∣
bi(ti) −

N∑

k=1,k /= i

aik(ti)euk(ti−τik) −
M∑

l=1

cil(ti)evl(tN+j−ηil)

∣∣∣∣∣∣

≤ bi +
N∑

k=1,k /= i

aike
uk(ti−τik) +

M∑

l=1

cile
vl(tN+j−ηil)

≤ bi +
N∑

k=1,k /= i

aike
uk(tk) +

M∑

l=1

cile
vl(tN+l),

ejje
vj (tN+j ) ≤

∣∣∣ejj
(
tN+j

)
evj (tN+j )

∣∣∣

=

∣∣∣∣∣∣
−rj
(
tN+j

)
+

N∑

k=1

djk
(
tN+j

)
euk(ti−δjk) −

M∑

l=1,l /= j

ejl
(
tN+j

)
evl(tN+j−ξjl)

∣∣∣∣∣∣

≤ rj +
N∑

k=1

djke
uk(ti−δjk) +

M∑

l=1,l /= j

ejle
vl(tN+j−ξjl)

≤ rj +
N∑

k=1

djke
uk(tk) +

M∑

l=1,l /= j

ejle
vl(tN+l).

(2.24)

Let

aiie
ui(ti) = zi(ti), ejje

vj (tN+j ) = z̃j
(
tN+j

)
. (2.25)

Using (2.25), the inequalities (2.24) become

zi(ti) ≤ bi +
N∑

k=1,k /= i

aika
−1
kkzk(tk) +

M∑

l=1

cile
−1
ll z̃l(tN+l),

z̃j
(
tN+j

) ≤ rj +
N∑

k=1

djka
−1
kkzk(tk) +

M∑

l=1,l /= j

ejle
−1
ll z̃l(tN+l),

(2.26)

or

zi(ti) −
N∑

k=1,k /= i

aika
−1
kkzk(tk) −

M∑

l=1

cile
−1
ll z̃l(tN+l) ≤ bi,

z̃j
(
tN+j

) −
N∑

k=1

djka
−1
kkzk(tk) −

M∑

l=1,l /= j

ejle
−1
ll z̃l(tN+l) ≤ rj ,

(2.27)
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which implies

(
EN×N − PN×N −QN×M

−MM×N EM×M −NM×M

)

(N+M)×(N+M)
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

z1(t1),
. . . ,

zN(tN),
z̃1(tN+1),
. . . ,

z̃M(tN+M)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

≤

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1,
. . . ,

bN,
r1,
. . . ,
rM

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (2.28)

where

PN×N =
(
pik
)
N×N, pik =

{
0, i = k,
aika

−1
kk, i /= k,

QN×M =
(
qil
)
N×M, qil = cile−1

ll ,

MM×N =
(
mjk

)
M×N, mjk = djka−1

kk,

NM×M =
(
njl
)
M×M, njl =

{
0, j = l,
ejle

−1
ll
, j /= l.

(2.29)

Set D = (b1, . . . , bN, r1, . . . , rM)T . It follows from (2.28) and (H2) that

(E −K)(z1(t1), . . . , zN(tN), z̃1(tN+1), . . . , z̃M(tN+M))T ≤ D. (2.30)

In view of ρ(K) < 1 and Lemma 2.5, we get (EN+M −K)−1 ≥ 0. Let

H =
(
h̃1, . . . , h̃N, h̃N+1, . . . , h̃N+M

)T
:= (E −K)−1D ≥ 0. (2.31)

Using (2.30) and (2.31), we get

(z1(t1), . . . , zN(tN), z̃1(tN+1), . . . , z̃M(tN+M))T ≤ H, (2.32)

or

zi(ti) ≤ h̃i, i = 1, 2, . . . ,N, z̃j
(
tN+j

) ≤ h̃N+j , j = 1, 2, . . . ,M. (2.33)

Then

ui(ti) ≤ ln
h̃i
aii
, vj

(
tN+j

) ≤ ln
h̃N+j

ejj
, (2.34)
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which implies

|un(t)|0 = max
t∈[0,ω]

|un(t)| = max
t∈[0,ω]

{
ui(ti), vj

(
tN+j

)}
= max

{
ln

h̃i
aii
, ln

h̃N+j

ejj

}
. (2.35)

On the other hand, it follows from (2.31) that

(E −K)H = D, or H = KH +D, (2.36)

that is

h̃i =
N∑

k=1,k /= i

pikh̃k +
M∑

l=1

qilh̃N+l + bi,

h̃N+j =
N∑

k=1

mjkh̃k +
M∑

l=1,l /= j

njlh̃N+l + rj .

(2.37)

Estimating (2.20), by using (2.25), (2.33), and (2.37), we have

|u̇i(t)|0 = λ

∣∣∣∣∣∣
bi(t) − aii(t)eui(t) −

N∑

k=1,k /= i

aik(t)euk(t−τik) −
M∑

l=1

cil(t)evl(t−ηil)

∣∣∣∣∣∣
0

≤ bi + aii
∣∣∣eui(t)

∣∣∣
0
+

N∑

k=1,k /= i

aik
∣∣∣euk(t−τik)

∣∣∣
0
+

M∑

l=1

cil
∣∣∣evl(t−ηil)

∣∣∣
0

= bi + aiieui(ti) +
N∑

k=1,k /= i

aike
uk(tk) +

M∑

l=1

cile
vl(tN+l)

= bi + aiia−1
ii zi(ti) +

N∑

k=1,k /= i

aika
−1
kkzk(tk) +

M∑

l=1

cile
−1
ll z̃l(tN+l)

= bi + zi(ti) +
N∑

k=1,k /= i

aika
−1
kkzk(tk) +

M∑

l=1

cile
−1
ll z̃l(tN+l)

≤ bi + h̃i +
N∑

k=1,k /= i

pikh̃k +
M∑

l=1

qilh̃N+l

= h̃i + h̃i = 2h̃i,
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∣∣v̇j(t)
∣∣

0 = λ

∣∣∣∣∣∣
−rj(t) +

N∑

k=1

djk(t)euk(t−δjk) − ejj(t)evj (t) −
M∑

l=1,l /= j

ejl(t)evl(t−ξjl)

∣∣∣∣∣∣
0

≤ rj +
N∑

k=1

djk
∣∣∣euk(t−δjk)

∣∣∣
0
+

M∑

l=1,l /= j

ejl
∣∣∣evl(t−ξjl)

∣∣∣
0
+ ejj

∣∣∣evj (t)
∣∣∣

0

= rj +
N∑

k=1

djke
uk(tk) +

M∑

l=1,l /= j

ejle
vl(tN+l) + ejjevj (tN+j )

= rj +
N∑

k=1

djka
−1
kkzk(tk) +

M∑

l=1,l /= j

ejle
−1
ll z̃l(tN+l) + ejje−1

jj zj
(
tN+j

)

= rj +
N∑

k=1

djka
−1
kkzk(tk) +

M∑

l=1,l /= j

ejle
−1
ll z̃l(tN+l) + z̃j

(
tN+j

)

≤ rj +
N∑

k=1

mjkh̃k +
M∑

l=1,l /= j

njlh̃N+l + h̃N+j

= h̃N+j + h̃N+j = 2h̃N+j .

(2.38)

The above relations imply

|u̇n(t)|0 = max
t∈[0,ω]

|u̇n(t)| = max
t∈[0,ω]

{
u̇i(t), v̇j(t)

}
= max

{
2h̃i, 2h̃N+j

}
. (2.39)

Further, it follows form the definition of norm that

|un(t)|1 = |un(t)|0 + |u̇n(t)|0 = max

{
ln

h̃i
aii
, ln

h̃N+j

ejj

}
+ max

{
2h̃i, 2h̃N+j

}
. (2.40)

Let us set the following:

hn = max

{
ln

h̃i
aii
, ln

h̃N+j

ejj

}
+ max

{
2h̃i, 2h̃N+j

}
+ d, (2.41)

where d is any positive constant.
Then for any solution of Lx = λNx, we have |un(t)|1 = |un(t)|0 + |u̇n(t)|0 < hn for all

n = 1, 2, . . . ,N +M. Obviously, hn are independent of λ and the choice of U(t). Consequently,
by taking this hn, the open subset Ω satisfies that Ω ∩ DomL, that is, the open subset Ω
satisfies the assumption (i) of Lemma 2.3.

Now in the last step of the proof, we need to verify that for the given open bounded
set Ω obtained in Step 2, the assumption (ii) of Lemma 2.3 also holds. That is, for each U ∈
∂Ω ∩ KerL, QNU/= 0 and deg{JQN,Ω ∩ KerL, 0}/= 0.
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Take U ∈ ∂Ω ∩ KerL. Then, in view of KerL = R
N+M, U is a constant vector in R

N+M,
denoted by U = (u1, . . . , uN, v1, . . . , vM)T and with the property

|Un| = |Un|0 = |Un|1 = hn. (2.42)

By operating U by QN gives

(QNU)n =

⎛
⎜⎜⎜⎝

m(bi) −m(aii)eui −
N∑

k=1,k /= i
m(aik)euk −

M∑
l=1
m(cil)evl

m
(−rj

)
+

N∑
k=1
m
(
djk
)
euk −m(ejj

)
evj −

M∑
l=1,l /= j

m
(
ejl
)
evl

⎞
⎟⎟⎟⎠. (2.43)

It is easy to obtain that (QNU)n and deg{JQN,Ω∩KerL, 0}/= 0, where deg(·) is the Brouwer
degree and J is the identity mapping since ImQ = KerL. We have shown that the open subset
Ω ⊂ X satisfies all the assumptions of Lemma 2.3. Hence, by Lemma 2.3, the system (2.11)
has at least one positive ω-periodic solution in DomL ∩Ω. By (2.10), the system (1.3) has at
least one positive ω-periodic solution. This completes the proof of Theorem 2.6.

3. Globally Asymptotic Stability

Under the assumption of Theorem 2.6, we know that system (1.3) has at least one positive
ω-periodic solution, denoted by X∗(t) = (x∗

1(t), . . . , x
∗
N(t), y∗

1(t), . . . , y
∗
M(t))T . The aim of this

section is to derive a set of sufficient conditions which guarantee the existence and global
asymptotic stability of the positive ω-periodic solution X∗(t).

Before the formal analysis, we recall some facts which will be used in the proof.

Lemma 3.1 (see [25]). Let f be a nonnegative function defined on [0,+∞] such that f is integrable
on [0,+∞] and is uniformly continuous on [0,+∞]. Then limt→+∞f(t) = 0.

Lemma 3.2 (see [23, 24]). Let K = (Γij)n×n be a matrix with nonpositive off-diagonal elements. K
is anM-matrix if and only if there exists a positive diagonal matrix ξ = diag(ξ1, ξ2, . . . , ξn) such that

ξiaii >
∑

j /= i

ξjaij , i = 1, 2, . . . , n. (3.1)

Theorem 3.3. Assume that all the assumptions in Theorem 2.6 hold. Then system (1.3) has a unique
positive ω-periodic solution X∗(t) which is globally asymptotically stable.

Proof. Let X(t) = (x(t), y(t))T = (x1(t), . . . , xN(t), y1(t), . . . , yM(t))T be any positive solution
of system (1.3). It is easy to see that ρ(KT) = ρ(K) < 1. Thus, in view of Lemma 2.5 and
Definition 2.4, (E − KT ) is an M-matrix, where E denotes an identity matrix of size N +M.
Therefore, by Lemma 3.2, there exists a diagonal matrix L = diag(α1, . . . , αN, β1, . . . , βM) with
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positive diagonal elements such that the product (E − KT )L is strictly diagonally dominant
with positive diagonal entries, namely,

αiaii >
N∑

k=1,k /= i

αkaki +
M∑

l=1

βldli, i = 1, . . . ,N,

βjejj >
N∑

k=1

αkckj +
M∑

l=1,l /= j

βlelj , j = 1, . . . ,M.

(3.2)

Now, we define a Lyapunov function V (t) as follows:

V (t) =
N∑

i=1

αi

⎡

⎣∣∣lnxi(t) − lnx∗
i (t)

∣∣ +
N∑

K=1,K /= i

∫ t

t−τik
aik(s + τik)

∣∣xk(t) − x∗
k(t)

∣∣ds

+
M∑

l=1

∫ t

t−ηil
cil
(
s + ηil

)∣∣yl(t) − y∗
l (t)

∣∣ds

⎤

⎦

+
M∑

j=1

βj

⎡

⎣
∣∣∣lnyj(t) − lny∗

j (t)
∣∣∣ +

N∑

K=1

∫ t

t−δjk
djk
(
s + δjk

)∣∣xk(t) − x∗
k(t)

∣∣ds

+
M∑

l=1,l /= j

∫ t

t−ξjl
ejl
(
s + ξjl

)∣∣yl(t) − y∗
l (t)

∣∣ds

⎤

⎦, t ≥ t0.

(3.3)

Calculating the upper right derivative of V (t) and using (3.2), we get

D+V (t) ≤
N∑

i=1

αi

⎡

⎣ − aii(t)
∣∣xi(t) − x∗

i (t)
∣∣ +

N∑

k=1,k /= i

aik(t + τik)
∣∣xk(t) − x∗

k(t)
∣∣

+
M∑

l=1

cil
(
t + ηil

)∣∣yl(t) − y∗
l (t)

∣∣
⎤

⎦

+
M∑

j=1

βj

⎡

⎣ − ejj(t)
∣∣∣yj(t) − y∗

j (t)
∣∣∣ +

N∑

k=1

djk
(
t + δjk

)∣∣xk(t) − x∗
k(t)

∣∣

+
M∑

l=1,l /= j

ejl
(
t + ξjl

)∣∣yl(t) − y∗
l (t)

∣∣
⎤

⎦
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≤ −
N∑

i=1

αi

⎡

⎣ − aii
∣∣xi(t) − x∗

i (t)
∣∣ +

N∑

k=1,k /= i

aik
∣∣xk(t) − x∗

k(t)
∣∣

+
M∑

l=1

cil
∣∣yl(t) − y∗

l (t)
∣∣
⎤

⎦

+
M∑

j=1

βj

⎡

⎣ − ejj
∣∣∣yj(t) − y∗

j (t)
∣∣∣ +

N∑

k=1

djk
∣∣xk(t) − x∗

k(t)
∣∣

+
M∑

l=1,l /= j

ejl
∣∣yl(t) − y∗

l (t)
∣∣
⎤

⎦

= −
N∑

i=1

⎛

⎝αiaii −
N∑

k=1,k /= i

αkaki −
M∑

l=1

βldli

⎞

⎠∣∣xi(t) − x∗
i (t)

∣∣

−
M∑

j=1

⎛

⎝βjejj −
N∑

k=1

αkckj −
M∑

l=1,l /= j

βlelj

⎞

⎠
∣∣∣yj(t) − y∗

j (t)
∣∣∣

= − c
⎧
⎨

⎩

N∑

i=1

∣∣xi(t) − x∗
i (t)

∣∣ +
M∑

j=1

∣∣∣yj(t) − y∗
j (t)

∣∣∣

⎫
⎬

⎭,

(3.4)

where

c = min

⎧
⎨

⎩αiaii −
N∑

k=1,k /= i

αkaki −
M∑

l=1

βldli, βjejj −
N∑

k=1

αkckj −
M∑

l=1,l /= j

βlelj

⎫
⎬

⎭ > 0. (3.5)

It follows from (3.4) that D+V (t) ≤ 0. Obviously, the zero solution of (1.3) is Lyapunov stable.
On the other hand, integrating (3.4) over [t0, t] leads to

V (t) − V (t0) � −c
∫ t

t0

⎡

⎣
N∑

i=1

∣∣xi(s) − x∗
i (s)

∣∣ +
M∑

j=1

∣∣∣yj(s) − y∗
j (s)

∣∣∣

⎤

⎦ds, t � 0, (3.6)

or

V (t) + c
∫ t

t0

⎡

⎣
N∑

i=1

∣∣xi(s) − x∗
i (s)

∣∣ +
M∑

j=1

∣∣∣yj(s) − y∗
j (s)

∣∣∣

⎤

⎦ds � V (t0) < +∞, t � t0. (3.7)

Noting that V (t) � 0, it follows that

∫ t

t0

⎡

⎣
N∑

i=1

∣∣xi(s) − x∗
i (s)

∣∣ +
M∑

j=1

∣∣∣yj(s) − y∗
j (s)

∣∣∣

⎤

⎦ds � V (t0)
c

< +∞, t � t0. (3.8)
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Therefore, by Lemma 3.1, it is not difficult to conclude that

lim
t→+∞

∣∣Xi(t) −X∗
i (t)

∣∣ = 0. (3.9)

Theorem 3.3 follows.

4. Corollaries and Remarks

In order to illustrate some features of our main results, we will present some corollaries and
remarks in this section. From the proofs of Theorems 2.6 and 3.3, one can easily deduce the
following corollary.

Corollary 4.1. In addition to (H1), further suppose that E − K or E − KT is an M-matrix. Then
system (1.3) has a unique positive ω-periodic solution which is globally asymptotically stable.

Now recall that for a given matrix K, its spectral radius ρ(K) is equal to the minimum
of all matrix norms of K, that is, for any matrix norm ‖ · ‖, ρ(K) ≤ ‖K‖. Therefore, we have
the following corollary.

Corollary 4.2. In addition to (H1), if one further supposes that there exist positive constants ξi, i =
1, 2, . . . , n, ηj , j = 1, 2, . . . , m such that one of the following inequalities holds.

(1) max{max1≤k≤n{a−1
kk
ξ−1
k
[
∑n

i=1,i /= k ξiaik +
∑m

l=1 ηjdjk]}, max1≤l≤m{e−1
ll
η−1
l
[
∑n

i=1 ξicli +∑m
j=1,j /= l ηjejl]}} < 1, or equivalently, for all k = 1, . . . , n, l = 1, 2, . . . , n,

ξkakk >
n∑

i=1,i /= k

ξiaik +
m∑

l=1

ηjdjk,

ηlell >
n∑

i=1

ξicli +
m∑

j=1,j /= l

ηjejl.

(4.1)

(2)
∑n+m

i=1
∑n+m

j=1 (ξ−1
i ξjkij)

2 < 1, whereK = (kij)(n+m)×(n+m) has been defined in Theorem 2.6.

(3) max{max1≤i≤n{a−1
ii ξ

−1
i [
∑n

k=1,k /= i ξkaki +
∑m

l=1 ηldli]}, max1≤j≤m{e−1
jj η

−1
j [
∑n

k=1 ξkckj +∑m
l=1,l /= j ηlelj]}} < 1, or equivalently, for all i = 1, . . . , n, j = 1, 2, . . . , n,

ξiaii >
n∑

k=1,k /= i

ξk|aki| +
m∑

l=1

ηl|dli|,

ηjejj >
n∑

k=1

ξk
∣∣ckj

∣∣ +
m∑

l=1,l /= j

ηl
∣∣elj
∣∣.

(4.2)

Then system (1.3) has a unique positive ω-periodic solution which is globally asymptotically stable.

Proof. For any matrix norm ‖ · ‖ and any nonsingular matrix S, ‖K‖S = ‖S−1KS‖ also
defines a matrix norm. Let us denote D = diag(ξ1, ξ2, . . . , ξn), then the conditions (1.2) and
(1.3) correspond to the column norms and Frobenius norm of matrix DKD−1, respectively.
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Figure 1: Asymptotic behavior of system (5.1) with initial values (x1(0), x2(0), y1(0)) = (1, 1, 1),
(0.3, 0.3, 0.3), (7, 7, 7), respectively, t ∈ [0, 25].

Condition (2.10) corresponds to the row norms of DKTD−1 and note that ρ(DKTD−1) =
ρ(DKD−1). Now Corollary 4.2 follows immediately.

5. Example

In this section, an example and its simulations are presented to illustrate the feasibility and
effectiveness of our results.

Example 5.1. Consider the following periodic predator-prey model with 2-predators and 1-
prey:

ẋ1(t) = x1(t)
[

7 + sin t − x1(t) − 1
4
x2(t) − 1

10
y1(t − 1)

]
,

ẋ2(t) = x2(t)
[

7 + cos t − 1
4
x1(t) − x2(t) − 1

4
y1(t)

]
,

ẏ1(t) = y1(t)
[
− 1

20
(1 + cos t) +

3
2
x1(t − 1) +

1
4
x2(t) − 1

2
y1(t)

]
.

(5.1)

Simple computation leads to

K =

⎛
⎜⎜⎜⎜⎜⎝

0 a−1
22a12 e−1

11c11

a−1
11a21 0 e−1

11c21

a−1
11d11 a−1

22d12 0

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
4

1
5

1
4

0 0

3
2

1
4

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.2)
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By using mathematica, we see that ρ(K) = 0.633982 < 1. Thus, the system (5.1) has a periodic
solution which is globally asymptotically stable. Figure 1 shows the asymptotic behavior of
the periodic solution.

Remark 5.2. In this example, one can observe that though the spectral ρ(K) < 1, the matrix
norms of the matrix K are all bigger than 1. For instance, the column norm: is

‖K‖1 = max
1≤j≤3

⎧
⎨

⎩a−1
jj

3∑

i=1,i /= j

aij

⎫
⎬

⎭ = 0 +
3
2
+

1
4
> 1. (5.3)

Acknowledgments

This work was supported by NNSFC (no. 11271333 and no. 11171090). The first author also
acknowledges the supports by the foundation of Slovene human resources development and
scholarship fund. He thanks Professor Valery G. Romanovski and Professor Marko Robnik
for warm hospitality during his stay at CAMTP in University of Maribor as a Research
Fellow.

References

[1] R. E. Gaines and J. L. Mawhin, Coincidence Degree, and Nonlinear Differential Equations, Springer, Berlin,
Germany, 1977.

[2] J. K. Hale and J. Mawhin, “Coincidence degree and periodic solutions of neutral equations,” Journal
of Differential Equations, vol. 15, pp. 295–307, 1974.

[3] J. Mawhin, “Leray-Schauder continuation theorems in the absence of a priori bounds,” Topological
Methods in Nonlinear Analysis, vol. 9, no. 1, pp. 179–200, 1997.

[4] A. Capietto, J. Mawhin, and F. Zanolin, “Continuation theorems for periodic perturbations of
autonomous systems,” Transactions of the American Mathematical Society, vol. 329, no. 1, pp. 41–72,
1992.

[5] Z. Zhang and J. Luo, “Multiple periodic solutions of a delayed predator-prey system with stage
structure for the predator,” Nonlinear Analysis, vol. 11, no. 5, pp. 4109–4120, 2010.

[6] Z. Zhang and Z. Hou, “Existence of four positive periodic solutions for a ratio-dependent predator-
prey system with multiple exploited (or harvesting) terms,” Nonlinear Analysis, vol. 11, no. 3, pp.
1560–1571, 2010.

[7] Y. Li, “Periodic solutions of a periodic delay predator-prey system,” Proceedings of the American
Mathematical Society, vol. 127, no. 5, pp. 1331–1335, 1999.

[8] M. Fan, Q. Wang, and X. Zou, “Dynamics of a non-autonomous ratio-dependent predator-prey
system,” Proceedings of the Royal Society of Edinburgh A, vol. 133, no. 1, pp. 97–118, 2003.

[9] H.-F. Huo, “Periodic solutions for a semi-ratio-dependent predator-prey system with functional
responses,” Applied Mathematics Letters, vol. 18, no. 3, pp. 313–320, 2005.

[10] W. Ding and M. Han, “Dynamic of a non-autonomous predator-prey system with infinite delay and
diffusion,” Computers & Mathematics with Applications, vol. 56, no. 5, pp. 1335–1350, 2008.

[11] Y. Xia, J. Cao, and S. S. Cheng, “Periodic solutions for a Lotka-Volterra mutualism system with several
delays,” Applied Mathematical Modelling, vol. 31, no. 9, pp. 1960–1969, 2007.

[12] Y. Xia and M. Han, “Multiple periodic solutions of a ratio-dependent predator-prey model,” Chaos,
Solitons & Fractals, vol. 39, no. 3, pp. 1100–1108, 2009.

[13] J. Chu and M. Li, “Positive periodic solutions of Hill’s equations with singular nonlinear
perturbations,” Nonlinear Analysis A, vol. 69, no. 1, pp. 276–286, 2008.

[14] J. Chu and J. J. Nieto, “Impulsive periodic solutions of first-order singular differential equations,”
Bulletin of the London Mathematical Society, vol. 40, no. 1, pp. 143–150, 2008.



Abstract and Applied Analysis 19

[15] J. Wang, Y. Zhou, and W. Wei, “Impulsive problems for fractional evolution equations and optimal
controls in infinite dimensional spaces,” Topological Methods in Nonlinear Analysis, vol. 38, no. 1, pp.
17–43, 2011.

[16] J. Wang, Y. Zhou, and M. Medved, “Qualitative analysis for nonlinear fractional differential equations
via topological degree method,” Topological Methods in Nonlinear Analysis. In press.

[17] P. Yang and X. Rui, “Global attractivity of the periodic Lotka-Volterra system,” Journal of Mathematical
Analysis and Applications, vol. 233, no. 1, pp. 221–232, 1999.

[18] J. Zhao and W. Chen, “Global asymptotic stability of a periodic ecological model,” AppliedMathematics
and Computation, vol. 147, no. 3, pp. 881–892, 2004.

[19] Y. Xia, F. Chen, A. Chen, and J. Cao, “Existence and global attractivity of an almost periodic ecological
model,” Applied Mathematics and Computation, vol. 157, no. 2, pp. 449–475, 2004.

[20] X. Z. Wen, “Global attractivity of a positive periodic solution of a multispecies ecological competition-
predator delay system,” Acta Mathematica Sinica, vol. 45, no. 1, pp. 83–92, 2002.

[21] D. Guo, J. Sun, and Z. Liu, Functional Method in Nonlinear Ordinary Differential Equations, Shangdong
Scientific Press, Shandong, China, 2005.

[22] K. Deimling, Nonlinear Functional Analysis, Springer, New York, NY, USA, 1985.
[23] J. P. LaSalle, The Stability of Dynamical System, SIAM, Philadelphia, Pa, USA, 1976.
[24] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Science, Academic Press, New

York, NY, USA, 1929.
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