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The article researches a stochastic hepatitis B epidemic model with saturated incidence rate, which is perturbed by both white
noise and colored noise. Firstly, we obtain a significant criterion RS

0 which relies on environmental noises. By means of
Lyapunov function approach, we show that there is a stationary distribution if RS

0 > 1. Its condition implies that when white
noise is small, in the stochastic model, there exists a stochastic positive equilibrium state without changing the basic properties
of its corresponding deterministic model. Secondly, we derive sufficient criteria for extinction of the disease. Finally, we
propose a definition of the solution to an impulsive stochastic functional differential equation with Markovian switching (ISFDM).

1. Introduction

Hepatitis B virus is a severe infectious disease that has
emerged as one of the greatest threats to human health in
the 21st century. An estimated 350 million people worldwide
have been infected with hepatitis B virus [1]. The mathemat-
ical model to describe hepatitis B virus transmission and its
dynamics has been extensively explored, which provides
some effective suggestions for further study on the progres-
sion and its control [2–5]. Recently, Khan et al. [6] investi-
gated a hepatitis B epidemic model with saturated
incidence rate:

dS
dt

=Λ −
αSI
1 + γI

− μ0 + νð ÞS,

dI
dt

= αSI
1 + γI

− μ0 + μ1 + βð ÞI,

dR
dt

= βI + νS − μ0R,

8>>>>>>>><>>>>>>>>:
ð1Þ

with Sð0Þ > 0, Ið0Þ > 0, and Rð0Þ > 0. In model (1), the birth
rate is denoted by Λ. The transmission rate of hepatitis B

is given by α, while μ0 and μ1, respectively, demonstrated
the natural and disease-induced death rates. Recovery rate
is denoted by β, while the vaccination and saturation rates
are ν and γ, respectively. According to the theory in [6], model
(1) always has the disease-free equilibrium E0 = ðS0, 0, R0Þ,
where the components are defined as S0 =Λ/ðμ0 + νÞ, and
R0 =Λν/ðμ0ðμ0 + νÞÞ. If R0 < 1, E0 is globally asymptotically
stable. If R0 > 1, E0 is unstable and there exists an endemic
equilibrium E∗ = ðS∗, I∗, R∗Þ which is globally asymptotically
stable, where R0 = αΛ/ððμ0 + νÞðμ0 + μ1 + βÞÞ.

In fact, epidemic models are inherently subject to a
continuous spectrum of disturbances [7–11]. Many
authors demonstrated that the white noise and colored
noise have a great destabilizing influence on the epidemic
transmission. Moreover, considering the effect of environ-
ment noise on the epidemic model has become a popular
trend in controlling the spread of disease [12–16]. In this
respect, some researches on stochastic hepatitis B virus
models have been reported [17–19]. Particularly, in the
epidemic model, the disease transmission rate α represents
an extremely important coefficient [16, 20]. In this paper,
by taking into account the effect of continuous-time Mar-
kov chain on the transmission rate α, we consider a
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stochastic analogue of the deterministic model (1):

dS = Λ −
α ξ tð Þð ÞSI
1 + γI

− μ0 + νð ÞS
� �

dt + σ1 ξ tð Þð ÞSdB1 tð Þ,

dI = α ξ tð Þð ÞSI
1 + γI

− μ0 + μ1 + βð ÞI
� �

dt + σ2 ξ tð Þð ÞIdB2 tð Þ,

dR = βI + νS − μ0Rð Þdt + σ3 ξ tð Þð ÞRdB3 tð Þ,

8>>>>>><>>>>>>:
ð2Þ

where BiðtÞ are independent standard Brownian motions
and σ2i stand for the intensities of BiðtÞ, i = 1, 2, 3. ξðtÞ, t
≥ 0, is a right-continuous Markov chain on the complete
probability space ðΩ,F ,P Þ with values in a finite space
M = f1, 2,⋯,Ng (see [21, 22]).

It is widely known that the stability of biomathematical
model has always been a hot issue in recent years [23–26].
Compared with their corresponding deterministic cases,
lots of stochastic models have no traditional positive equi-
librium state. Consequently, the research of ergodic sta-
tionary distribution of s stochastic biomathematical
model has been a research highlight. In addition, model
(2) incorporates white noise as well as colored noise pos-
sessing important practical significance [27]. The main
aim of this article is to prove the existence of stationary
distribution for model (2). Above all, to guarantee exis-
tence and uniqueness of globally positive solution for
model (2), we establish the following conclusion. Since
the proof is standard, we omit it here.

Lemma 1. For any initial value ðSð0Þ, Ið0Þ, Rð0Þ, ξð0ÞÞ ∈ℝ3
+

×M, there exists a unique positive solution ðSðtÞ, IðtÞ, RðtÞ
, ξðtÞÞ ∈ℝ3

+ ×M of model (2) on t ≥ 0 almost surely (a.s.).

2. Existence of a Unique and Ergodic
Stationary Distribution

Theorem 2. If RS
0 > 1, where

RS
0 =

∑k∈Mπkα kð ÞΛ
μ0 + ν +∑k∈Mπk σ21 kð Þ/2� �� �

μ0 + μ1 + β +∑k∈Mπk σ22 kð Þ/2� �� � ,
ð3Þ

then for any initial value ðSð0Þ, Ið0Þ, Rð0Þ, ξð0ÞÞ ∈ℝ3
+ ×M,

model (2) has a unique stationary distribution which is
ergodic.

Proof. In order to prove Theorem 2, we need to validate that
the feasibility of (A1), (A2), and (A3) in Lemma 7 in the
appendix holds. We have assumed (A1) holds in Section 1.
To verify (A3), we need to find a nonnegative C2-function
VðS, I, R, kÞ and a compact set Dε ∈ℝ4

+ such that LV ≤ −1

for all ðS, I, R, kÞ ∈ ðℝ3
+ \DεÞ ×M. Construct a C2-function

V S, I, Rð Þ =M −c1 ln S − c2 ln Ið Þ + ρ kð Þ + S + I + Rð Þρ+1
− ln S − ln I − ln R =MV1 + V2 + V3 + V4 + V5,

ð4Þ

where V1 = −c1 ln S − c2 ln I + ρðkÞ, V2 = ðS + I + RÞρ+1, V3
= − ln S, V4 = − ln I, V5 = − ln R, and 0 < ρ < 2μ0/max

i=1,2,3
fσ̆i2

g, where σ̆i =maxk∈MfσiðkÞg, and constants M, c1, c2, com-
pact set Dε and function ρðkÞ will be determined later.
Employing Itô’s formula [28–34], we can get

LV1 = −
c1Λ
S

+ c1α kð ÞI
1 + γI

+ c1 μ0 + ν + 1
2 σ

2
1 kð Þ

� �
−
c2α kð ÞS
1 + γI

+ c2 μ0 + μ1 + β + 1
2 σ

2
2 kð Þ

� �
= +〠

l∈M
ζklρ lð Þ − c1Λ

S
−
c2α kð ÞS
1 + γI

− 1 + γIð Þ + c1α kð ÞI
1 + γI

+ c1 μ0 + ν + 1
2σ

2
1 kð Þ

� �
+ c2 μ0 + μ1 + β + 1

2 σ
2
2 kð Þ

� �
+ 1 + γIð Þ + 〠

l∈M
ζklρ lð Þ ≤ −3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2α kð ÞΛ3

p
+ 1

+ c1 μ0 + ν + 1
2σ

2
1 kð Þ

� �
+ c2 μ0 + μ1 + β + 1

2 σ
2
2 kð Þ

� �
+ γI + c1α kð ÞI

1 + γI
+ 〠

l∈M
ζklρ lð Þ:

ð5Þ

Choose M1ðkÞ = −3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1c2αðkÞΛ3

p
+ 1 + c1ðμ0 + ν + ð1/2Þ

σ2
1ðkÞÞ + c2ðμ0 + μ1 + β + ð1/2Þσ22ðkÞÞ; on the basis of the

irreducibility of generator matrix Γ, one can find that for
Θ = ðΘð1Þ,Θð2Þ,⋯,ΘðNÞÞ, there exists ρ =
ðρð1Þ, ρð2Þ,⋯,ρðNÞÞT satisfying the following Poisson sys-

tem Γρ = ð∑N
k=1πkΘðkÞÞ1

 
−Θ. Let c1 and c2 satisfy

c1 μ0 + ν + 〠
k∈M

πk
σ2
1 kð Þ
2

 !
= c2 μ0 + μ1 + β + 〠

k∈M
πk

σ2
2 kð Þ
2

 !

= ∑k∈Mπkα kð ÞΛ
μ0 + ν +∑k∈Mπk σ21 kð Þ/2� �� �

μ0 + μ1 + β +∑k∈Mπk σ2
2 kð Þ/2� �� � :

ð6Þ

Then,

LV1 ≤ −
∑k∈Mπkα kð ÞΛ

μ0 + ν +∑k∈Mπk σ2
1 kð Þ/2� �� �

μ0 + μ1 + β +∑k∈Mπk σ22 kð Þ/2� �� �
+ 1 + γI + c1α kð ÞI

1 + γI
≤ − RS

0 − 1
� �

+ γI + c1ᾰI = −λ + φ Ið Þ,

ð7Þ
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where

λ = RS
0 − 1,

φ Ið Þ = γI + c1ᾰI,
ð8Þ

and set ᾰ =maxk∈MfαðkÞg. Applying Itô’s formula, one can
obtain

LV2 = ρ + 1ð Þ S + I + Rð Þρ Λ − μ0S − μ0 + μ1ð ÞI − μ0Rð Þ
+ 1
2 ρ ρ + 1ð Þ S + I + Rð Þρ−1 σ2

1 kð ÞS2 + σ22 kð ÞI2�
+ σ23 kð ÞR2� ≤ ρ + 1ð Þ S + I + Rð Þρ Λ − μ0 S + I + Rð Þð Þ
+ max

i=1,2,3
σ̆i

2� � ρ
2 ρ + 1ð Þ S + I + Rð Þρ+1 =Λ ρ + 1ð Þ S + I + Rð Þρ

− ρ + 1ð Þ μ0 −
ρ

2 max
i=1,2,3

σ̆i
2� �� �

S + I + Rð Þρ+1

≤ B −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

S + I + Rð Þρ+1

≤ B −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
,

ð9Þ

where

B = sup
S,I,Rð Þ∈ℝ3

+

Λ ρ + 1ð Þ S + I + Rð Þρ − 1
2 ρ + 1ð Þ

	
� μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

S + I + Rð Þ ρ+1ð Þ


<∞:

ð10Þ

Denote

C = sup
S,I,Rð Þ∈ℝ3

+

θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �	 

,

ð11Þ

where θ = B + ðμ0 + ν + ð1/2Þσ̆12Þ + ðμ0 + μ1 + β + ð1/2Þσ̆22Þ
+ ðμ0 + ð1/2Þσ̆32Þ. By using Itô’s formula, we also have

LV3 = −
Λ

S
+ α kð ÞI
1 + γI

+ μ0 + ν + 1
2σ

2
1 kð Þ,

LV4 = −
α kð ÞS
1 + γI

+ μ0 + μ1 + β + 1
2σ

2
2 kð Þ,

LV5 = −β
I
R
− ν

S
R
+ μ0 +

1
2σ

2
3 kð Þ:

ð12Þ

Hence, by (7), (9), and (12), we get

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
,

ð13Þ

where bα =mink∈MfαðkÞg. Here, we choose that the positive
constant M satisfies the following inequality:

−Mλ + C ≤ −2: ð14Þ

For arbitrary ε > 0, define the following bounded closed
set:

Dε = ε ≤ S ≤
1
ε
, ε ≤ I ≤

1
ε
, ε2 ≤ R ≤

1
ε2

	 

, ð15Þ

where ε satisfies the following conditions:

−
Λ

ε
+ K ≤ −1,

−Mλ +Mφ εð Þ + ᾰε + C ≤ −1,

−
β

ε
+ K≤−1,

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+D≤−1,

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ E≤−1,

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ F≤−1,

ð16Þ

where

K = sup
S,I,Rð Þ∈ℝ3

+

Mφ Ið Þ + ᾰI + Cf g,

D = sup Mφ Ið Þ + ᾰI + θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Iρ+1 + Rρ+1� �	 

,

E = sup Mφ Ið Þ + ᾰI + θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Rρ+1� �	 

,

F = sup Mφ Ið Þ + ᾰI + θ −
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1
� �	 


:

ð17Þ

Furthermore,

ℝ3
+ \Dε =D1 ∪D2 ∪D3 ∪D4 ∪D5 ∪D6, ð18Þ
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where

D1 = S, I, Rð Þ ∈ℝ3
+, 0 < S < ε

� �
,

D2 = S, I, Rð Þ ∈ℝ3
+, 0 < I < ε

� �
,

D3 = S, I, Rð Þ ∈ℝ3
+, 0 < R < ε2, S > ε, I > ε

� �
,

D4 = S, I, Rð Þ ∈ℝ3
+, S >

1
ε

	 

,

D5 = S, I, Rð Þ ∈ℝ3
+, I >

1
ε

	 

,

D6 = S, I, Rð Þ ∈ℝ3
+, R > 1

ε

	 

:

ð19Þ

Case 1. If ðS, I, RÞ ∈D1, we derive that

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

Λ

ε
+ K ≤ −1:

ð20Þ

Case 2. If ðS, I, RÞ ∈D2, we have

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −Mλ +Mφ εð Þ + ᾰε + C ≤ −1:

ð21Þ

Case 3. If ðS, I, RÞ ∈D3, we compute

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

β

ε
+ K ≤ −1:

ð22Þ

Case 4. If ðS, I, RÞ ∈D4, we derive

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+D ≤ −1:

ð23Þ

Case 5. If ðS, I, RÞ ∈D5, we conclude

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ E ≤ −1:

ð24Þ

Case 6. If ðS, I, RÞ ∈D6, we have

LV ≤ −Mλ +Mφ Ið Þ + ᾰI −
Λ

S
−

bαS
1 + γI

− β
I
R
− ν

S
R
+ θ

−
1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� �

Sρ+1 + Iρ+1 + Rρ+1� �
≤ −

1
2 ρ + 1ð Þ μ0 −

ρ

2 max
i=1,2,3

σ̆i
2� �� � 1

ερ+1
+ F ≤ −1:

ð25Þ

Then, we can obtain that for a sufficiently small ε, LV
< −1 for any ðS, I, RÞ ∈ℝ3

+ \Dε. Therefore, we can verify
(A3) in Lemma 7 of the appendix. On the other hand, the
diffusion matrix Dðx, kÞ = diag fσ21ðkÞS2, σ22ðkÞI2, σ23ðkÞR2g
of model (2) is positive definite, which implies that condition
(A2) in Lemma 7 holds. This completes the proof.☐

Now, consider the corresponding model (2) without Markov
switching:

dS = Λ −
αSI
1 + γI

− μ0 + νð ÞS
� �

dt + σ1SdB1 tð Þ,

dI = αSI
1 + γI

− μ0 + μ1 + βð ÞI
� �

dt + σ2IdB2 tð Þ,

dR = βI + νS − μ0Rð Þdt + σ3RdB3 tð Þ:

8>>>>>><>>>>>>:
ð26Þ

Define a parameter

R̂0 =
α
Ð∞
0 xπ xð Þdx

μ0 + μ1 + β + σ22/2
� � , ð27Þ

where

π xð Þ =Qx−2− 2 μ0+νð Þð Þ/σ21σ−2+ 2 μ0+νð Þð Þ/σ21
1 e

− 2/σ21
� �

Λ/xð Þ+ μ0+νð Þð Þ, x ∈ 0,+∞ð Þ:
ð28Þ

Similar to Theorem 3.1 in [35], it is easy to obtain the
following result.

Theorem 3. Let ðSðtÞ, IðtÞ, RðtÞÞ be the solution of model
(26). If R̂0 < 1, for any initial value ðSð0Þ, Ið0Þ, Rð0ÞÞ ∈ℝ3,
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then the solution ðSðtÞ, IðtÞ, RðtÞÞ of model (26) satisfies

lim
t⟶+∞

I tð Þ = 0 a:s:, ð29Þ

and the distribution of SðtÞ converges weakly to the measure
which has the density

π xð Þ =Qx−2− 2 μ0+νð Þð Þ/σ21ð Þσ−2+ 2 μ0+νð Þð Þ/σ21ð Þ
1 e

− 2/σ21
� �

Λ/xð Þ+ μ0+νð Þð Þ, x ∈ 0,+∞ð Þ,
ð30Þ

where Q is a constant such that
Ð∞
0 πðxÞdx = 1.

Remark 4. In Theorem 2, we derive RS
0 = R0 when αðkÞ ≡ α

and σiðkÞ ≡ 0. This conclusion accords with practice.

3. Numerical Examples

In this section, we will test our theory conclusion by Mil-
stein’s higher order method in [36].

Example 1. Let the generator of the Markov chain ζij be

Γ =

−
1
2

1
4

1
4

1
6 −

1
3

1
6

1
4

1
4 −

1
2

0BBBBBB@

1CCCCCCA, ð31Þ

in which ζij is a right-continuous Markov chain taking value
in M = f1, 2, 3g. By solving the linear equation πΓ = 0, we
obtain the unique stationary (probability) distribution π = ð
π1, π2, π3Þ = ð2/7, 3/7, 2/7Þ. Choose parameters Λ = 0:232, γ
= 0:9, μ0 = 0:000232, ν = 0:02, μ1 = 0:0000547, β = 0:12, αð1
Þ = 0:0013, αð2Þ = 0:00129, αð3Þ = 0:00132, σ1ð1Þ = 0:01, σ2ð
1Þ = 0:02, σ3ð1Þ = 0:06, σ1ð2Þ = 0:011, σ2ð2Þ = 0:022, σ3ð2Þ =
0:055, σ1ð3Þ = 0:009, σ2ð3Þ = 0:019, and σ3ð3Þ = 0:063. Then,
RS
0 = 1:2226 > 1. In view of Theorem 2, there is a stationary

distribution of model (2), and it is ergodic. Phase portrait
of ðSðtÞ, IðtÞ, RðtÞÞ and histograms of ðSðtÞ, IðtÞ, RðtÞÞ are
plotted in Figure 1.

Example 2. Select parameters Λ = 0:232, γ = 0:9, μ0 =
0:000232, ν = 0:02, μ1 = 0:0000547, β = 0:12, α = 0:04, σ1 =
0:1, σ2 = 0:08, and σ3 = 0:05. By calculation, R0 = αΛ/ððμ0
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Figure 1: SðtÞ, IðtÞ, and RðtÞ have ergodic property. The pictures in (a) are Markovian chain. The pictures in (c) are the density functions of
model (2) for k ∈M = f1, 2, 3g. The initial value Sð0Þ = 0:8, Ið0Þ = 0:7, and Rð0Þ = 1:1. Step size Δt = 0:001.
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+ νÞðμ0 + μ1 + βÞÞ = 3:87 > 1,
Ð∞
0 xπðxÞdx = 1:16, and R̂0 =

0:377 < 1. It means that there exists a unique endemic equi-
librium of determined model (1), which is globally asymp-
totically stable. Instead, in view of Theorem 3, we have
lim

t⟶+∞
IðtÞ = 0 a:s: and the distribution of SðtÞ in model

(26) converges weakly to the measure πðxÞ (see Figure 2).

4. Concluding Remarks

The paper successfully investigates extinction and stationary
distribution of a stochastic Markov switching hepatitis B epi-

demic model with saturated incidence rate. Besides the effect
of Markovian switching on the deterministic SIRS epidemic
models [37–39], pulse vaccination strategy (PVS) has been
adopted to control the outbreaks and fastly tackle the spread
of disease by wide areas [40]. In order to help future
research, we propose the following definition related to SIR
model by taking into account Markovian switching, impulse,
and infinite delay.

Definition 5. Considering the following impulsive stochastic
functional differential equation with Markovian
switching(ISFDM),

where Yðt + θÞ,−∞<θ ≤ 0, represents Cg-value stochastic

process, Cg = fψ∈Cðð−∞,0� ;ℝdÞ: ∥ψ∥cg = sup
−∞<s≤0

eqs ∣ ψðsÞ∣<
+∞g, gðsÞ = e−qs, q > 0,∣ψðsÞ∣ = ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ψ2
1ðsÞ + ψ2

2ðsÞ+⋯+ψ2
dðsÞ

p
,

and ðψ1ðsÞ, ψ2ðsÞ,⋯,ψdðsÞÞ ∈ℝd . Hk>−1, ζðtÞ denotes the
regime switching [41, 42]. For i = 1, 2, μiðθÞ is a measure
on ð−∞, 0�, 0 < t1 < t2<⋯, lim

k⟶+∞
tk = +∞. The initial condi-

tion Y0 ∈ Cg and ζð0Þ = 0, where Y0 = ϑ = fϑðθÞ: −∞<θ ≤ 0g
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Figure 2: The left column reflects the simulation of number variations of SðtÞ, RðtÞ and IðtÞ in model (26) with the initial value Sð0Þ =
0:8, Rð0Þ = 1:1, and Ið0Þ = 0:7 and the noise intensities given in Example 2. The right column reveals the relevant histogram of density
functions of the classes SðtÞ, RðtÞ, and IðtÞ. Step size Δt = 0:001.

dY tð Þ = F1 t, ζ tð Þ, Y tð Þ,
ð0
−∞

Y t + θð Þdμ1 θð Þ
� �

dt + F2 t, ζ tð Þ, Y tð Þ,
ð0
−∞

Y t + θð Þdμ2 θð Þ
� �

dB tð Þ,

t ≠ tk, k ∈N ,
Y t+kð Þ − Y tkð Þ =HkY tkð Þ, k ∈N ,

8>>>><>>>>:
ð32Þ
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is an F0-measurable Cg-valued random variable such that

ϑ∈M2ðð−∞, 0� ;ℝdÞ which is the family of all F0-measur-
able, ℝd-valued processes ψðtÞ, t∈ð−∞,0� such that E

Ð 0
−∞

jψðtÞj2dt<+∞. An ℝd-value stochastic process YðtÞ defined
on ℝ is called a solution of Equation (32) with initial condi-
tion above when YðtÞ satisfies the following criterion:

(i) YðtÞ is F t-adapted and continuous on ð0, t1Þ and
ðtk, tk+1Þ, k ∈N ; F1ðt, ζðtÞ, YðtÞ,

Ð 0
−∞Yðt + θÞdμ1ðθÞÞ

∈L1ð�ℝ+ ;ℝdÞ and F2ðt, ζðtÞ, YðtÞ,
Ð 0
−∞Yðt + θÞdμ2

ðθÞÞ ∈L2ð�ℝ+ ;ℝd×mÞ. Here, the interpretations of
L1ð�ℝ+ ;ℝdÞ and L2ð�ℝ+ ;ℝd×mÞ can be found in
[43]. BðtÞ stands for a m-dimension standard Brow-
nian motion

(ii) For each tk, k ∈N , Yðt+k Þ = lim
t⟶t+k

YðtÞ and YðtkÞ = Y

ðt−k Þ = lim
t⟶t−k

YðtÞ a.s.

(iii) YðtÞ satisfies the equivalent integral equation of (32)
for almost every t ∈ ½0,∞Þ \ tk and satisfies the
impulsive criterion at each t = tk, k ∈N with proba-
bility one

Remark 6. Liu and Wang [44] give a new definition of a solu-
tion of an impulsive stochastic differential equation (ISDE).
We propose Definition 5, which generalizes the definition
of a solution of ISDE to ISFDM, because time memory and
Markovian switching are very important in the fields of
infectious disease, biological engineering, chemical engineer-
ing, etc.

Appendix

Let ðXðtÞ, ξðtÞÞ be the diffusion process described by the fol-
lowing equation [(31)]:

dX tð Þ = b X tð Þ, ξ tð Þð Þdt + σ X tð Þ, ξ tð Þð ÞdB tð Þ, X 0ð Þ = x0, r 0ð Þ = γ,
ðA1Þ

where bð·, · Þ: ℝ ×M⟶ℝn, σð·, · Þ: ℝ ×M⟶ℝn×n, and
Dðx, kÞ = σðx, kÞσTðx, kÞ = ðdijðx, kÞÞ. For each k ∈M, let V
ð·, kÞ be any twice continuously differentiable function; the
operator L can be defined by

LV x, kð Þ = 〠
n

i=1
bi x, kð Þ ∂V x, kð Þ

∂xi
+ 1
2 〠

n

i,j=1
d x, kð Þ ∂

2V x, kð Þ
∂xi∂xj

+ 〠
N

l=1
ϑklV x, lð Þ:

ðA2Þ

According to theorems in [27], it follows the following
lemma which provides a criterion for the ergodic stationary
distribution of the solution ðXðtÞ, ξðtÞÞ to model (A1).

Lemma 7 ([22]). If the following conditions are satisfied:
(A1) ϑij > 0 for any i ≠ j.
(A2) For each k ∈M,Dðx, kÞ = ðdijðx, kÞÞ is symmetric

and satisfies λjϖj2 ≤ hDðx, kÞϖ, ϖi ≤ λ−1jϖj2 for all ϖ ∈ℝn,
with some constant λ ∈ ð0, 1� for all x ∈ℝn.

(A3) There exists a nonempty open set D with compact
closure, satisfying that, for each k ∈M, there is a nonnegative
function Vð·, kÞ: Dc ⟶ℝ such that Vðx, kÞ is twice contin-
uously differential and that for some α > 0,LVðx, kÞ ≤ −α, ð
x, k ∈Dc ×MÞ, then ðxðtÞ, ξðtÞÞ of system (A1) is positive
recurrent and ergodic. That is to say, there exists a unique
stationary distribution.
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In this paper, using the method of moving planes, we study the monotonicity in some directions and symmetry of the Dirichlet

problem involving the fractional Laplacian

ð−ΔÞα/2uðxÞ = f ðuðxÞÞ, x ∈Ω,
uðxÞ > 0, x ∈Ω,
uðxÞ = 0, x ∈ℝn \Ω,

8>><
>>: in a slab-like domain Ω =ℝn−1 × ð0, hÞ ⊂ℝn.

1. Introduction

The fractional Laplacian in ℝn is a nonlocal pseudo-
differential operator defined by

−Δð Þα/2u xð Þ = Cn,α limε⟶0

ð
ℝn\Bε xð Þ

u xð Þ − u zð Þ
x − zj jn+α dz, ð1Þ

where Cn,α is a normalisation constant and α is any real
number between 0 and 2. Let

Lα = u : ℝn ⟶ℝ1 ∣
ð
ℝn

u xð Þj j
1 + xj jn+α dx <∞

� �
: ð2Þ

Then, it is easy to verify that for u ∈ Lα ∩ C1,1
loc , the integral

on the right-hand side of (1) is well defined. Throughout this
paper, we consider the fractional Laplacian in this setting.

Due to applications in physics, chemistry, biology, prob-
ability, and finance, differential equations involving the frac-
tional Laplacian ð−ΔÞα/2 have received growing attention
from the mathematical communicity in recent years (see
[1–14]). There are many papers devoted to the study of qual-
itative properties of fractional Laplacian equations in

bounded or unbounded domains, but seldom are concerned
with slab-like domains. For example, in [15], the authors
established the symmetry and monotonicity of positive solu-
tions of the following problem with more general nonlinear-
ity on a bounded domain.

−Δð Þα/2u xð Þ = f u xð Þð Þ, x ∈ B1 0ð Þ,
u xð Þ = 0, x ∈ℝn \ B1 0ð Þ,

(
ð3Þ

using a direct method of moving planes. For local elliptic
operators, these kinds of approaches were introduced
decades ago in the paper [16] and then summarized in the
book [17], among which the narrow region principle and
the decay at infinity have been applied extensively by many
researchers to solve various problems. For more articles con-
cerning the method of moving plans for nonlocal equations,
please see [18–20] and the references therein.

However, there are some papers of elliptic second-order
boundary value problems concerned with features like
monotonicity in some directions and symmetry for positive
solutions in slab-like domains. For instance, in [21], using
the “sliding method,” the authors studied monotonicity in
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some directions and symmetry of elliptic second-order
boundary value problems of the type.

Δu + f uð Þ = 0, x ∈Ω,
u xð Þ > 0, x ∈Ω,
u xð Þ = 0, x ∈ ∂Ω,

8>><
>>: ð4Þ

in a slab Ω =ℝ × ð0, hÞ ⊂ℝ2. For more articles concern-
ing the “sliding method,” please see [22, 23] and the refer-
ences therein.

Motivated by the above work, in this paper, using the
direct method of moving planes, we study the monotonicity
in some directions and symmetry of fractional Laplacian
boundary value problems of the type.

−Δð Þα/2u xð Þ = f u xð Þð Þ, x ∈Ω,
u xð Þ > 0, x ∈Ω,
u xð Þ = 0, x ∈ℝn \Ω,

8>><
>>: ð5Þ

in a class of special unbounded domains Ω of ℝn: infinite
cylinders or more generally, product domains of the form

Ω =ℝn−j × ω, ð6Þ

where ω is a smooth bounded domain in ℝ j.
We denote the variables in Ω by ðx′, yÞ, x′ ∈ℝn−j, and

y ∈ ω ⊂ℝ j with j ≥ 1. It is not assumed that Ω is bounded.
The function f appearing in (5) will always be assumed to be
(globally) Lipschitz continuous. We firmly believe that the
result introduced here is of great importance, and the ideals
and methods can be applied to study a variety of nonlocal
problems with more general operators and nonlinearities.

In most of what follows, we consider the case j = 1. In
this case, the proof of monotonicity and symmetry yields
the following statement for j = 1.

Theorem 1. Let

Σ = x′, y
� �

∣ x′ ∈ℝn−1, 0 < y < h
n o

: ð7Þ

Suppose u ∈ Lα ∩ C1,1
locðΣÞ satisfies

−Δð Þα/2u = f uð Þ, inΣ,
u xð Þ > 0, inΣ,
u xð Þ = 0, inℝn \ Σ,

8>><
>>: ð8Þ

with f ð·Þ being Lipschitz continuous. Then, for any positive
l < h/2,

u x′, y
� �

< u x′, 2l − y
� �

, in〠
l

= x′, y
� �

∣ x′ ∈ℝn−1, 0 < y < l
n o

,

ð9Þ

and u is symmetric in y about y = h/2.

If we further assume that u ∈ C3
locð�Σh/2Þ, then

∂u
∂y

> 0, in〠
h/2

= x′, y
� �

∣ 0 < y < h
2

� �
: ð10Þ

Remark 2. Here, the domain Ω is an infinite cylinder, and it
is more general than the usual unbounded domains. For
instance, if we let h⟶∞ in Theorem 1, we can get mono-
tonicity of positive solutions of the Dirichlet problem involv-
ing the fractional Laplacian in the half space.

2. Preliminaries and Lemmas

Let Tλ be a hyperplane in ℝn. Without loss of generality, we
may assume that

Tλ = x = x′, y
� �

∈ℝn−1 × 0, hð Þ ∣ y = λ
n o

,

〠
λ

= x = x′, y
� �

∈ℝn−1 × 0, hð Þ ∣ 0 < y < λ
n o

:
ð11Þ

And for ðx′, yÞ ∈ Σλ, we let x
λ = ðx′, 2λ − yÞ be the reflec-

tion of x about the plane Tλ. Denote wλðxÞ = uðxλÞ − uðxÞ.
For simplicity of notation, in the following, we denote wλ
by w and Σλ by Σ.

Lemma 3 (Narrow region principle [15]). Let Ω be a
bounded narrow region in Σ, such that it is contained in fx
∣ λ − l < y < λg with small l. Suppose that w ∈ Lα ∩ C1,1

locðΩÞ
and is lower semicontinuous on �Ω. If cðxÞ is bounded from
below in Ω and

−Δð Þα/2w xð Þ + c xð Þw xð Þ ≥ 0 inΩ,
w xð Þ ≥ 0 inΣ \Ω,

w xλ
� �

= −w xð Þ inΣ,

8>>><
>>>:

ð12Þ

then for sufficiently small l, we have

w xð Þ ≥ 0 inΩ: ð13Þ

Furthermore, if w = 0 at some point in Ω, then

w xð Þ = 0 almost every where inℝn: ð14Þ

These conclusions hold for unbounded region Ω if we fur-
ther assume that

lim
∣x∣⟶∞

w xð Þ ≥ 0: ð15Þ

Lemma 4 (A Hopf type lemma for antisymmetric func-
tions [24]). Assume that w ∈ C3

locð�ΣÞ, lim
x⟶∂Σ

cðxÞ = oð1/
½distðx, ∂ΣÞ�2Þ, and
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−Δð Þα/2w xð Þ + c xð Þw xð Þ = 0 inΣ,
w xð Þ ≥ 0 inΣ,

w xλ
� �

= −w xð Þ inΣ:

8>>><
>>>:

ð16Þ

Then,

∂w
∂ν

< 0, x ∈ ∂Σ: ð17Þ

3. Proof of Theorem 1

Proof of Theorem 1. Now we carry on the method of moving
planes on the solution u along y direction.

Step 1. We show that, for sufficiently small λ > 0,

wλ xð Þ > 0, x ∈〠
λ

, ð18Þ

where wλðxÞ = uðxλÞ − uðxÞ.

As usual, we can easily verify that wλ satisfies the following
linear equation

−Δð Þα/2wλ + cλ xð Þwλ = 0, x ∈〠
λ

: ð19Þ

Indeed, uðxλÞ satisfies the same equation in (8) as uðxÞ;
thus, (19) is obtained by subtracting one from the other
and letting

cλ xð Þ =
f u xλ
� �� �

− f u xð Þð Þ
u xð Þ − u xλ

� � , u xð Þ ≠ u xλ
� �

,

0, u xð Þ = u xλ
� �

:

8>>><
>>>:

ð20Þ

By the assumption that f is (globally) Lipschitz continu-
ous, with some Lipschitz constant b, we have

cλk kL∞ Σλð Þ ≤ b,∀λ ∈ 0, h2

� 	
: ð21Þ

From the narrow region principle, we can easily know
that for sufficiently small σ > 0,

wλ xð Þ ≥ 0,∀x ∈〠
λ

, λ ∈ 0, σð Þ: ð22Þ

Furthermore, it follows from wλðx′, 0Þ > 0 that we have

wλ xð Þ > 0,∀x ∈〠
λ

, λ ∈ 0, σð Þ: ð23Þ

Step 2. The proof in Step 1 provides a starting point, from
which we can now move the plane Tλ to the right as long
as (18) holds to its limiting position.

Let

λ0 = sup λ ∈ 0, h2

� 	
∣wμ xð Þ > 0,∀x ∈〠

μ

, μ ≤ λ

( )
: ð24Þ

In this part, we show that

λ0 =
h
2 ,

wλ0
xð Þ ≡ 0, x ∈〠

λ0

:
ð25Þ

Suppose that λ0 < h/2, we show that the plane Tλ can be
moved further. To be more rigorous, we only need to prove
that there exists ε > 0, such that for any λ ∈ ðλ0, λ0 + εÞ, we
have

wλ0
xð Þ > 0, x ∈〠

λ0

: ð26Þ

This is a contradiction with the definition of λ0. Hence,
we have λ0 = h/2.

Now we prove (26) by the narrow region principle
(Lemma 3). By the definition of λ0, we can easily have

wλ0
xð Þ ≥ 0, x ∈〠

λ0

: ð27Þ

In fact, when λ0 < h/2, we have

xð Þ > 011wλ0
xð Þ > 0, x ∈〠

λ0

: ð28Þ

If not, there exists x̂ such that

wλ0
x̂ð Þ =min

Σλ0
wλ0

xð Þ = 0: ð29Þ

Then, we have

−Δð Þα/2wλ0
x̂ð Þ = Cn,αPV

ð
ℝn

−wλ0
zð Þ

x̂ − zj jn+α dz

= Cn,αPV
ð
Σλ0

−wλ0
zð Þ

x̂ − zj jn+α dz +
ð
ℝn\Σλ0

−wλ0
zð Þ

x̂ − zj jn+α dz

= Cn,αPV
ð
Σλ0

−wλ0
zð Þ

x̂ − zj jn+α dz +
ð
Σλ0

wλ0
zð Þ

x̂ − zλ


 

n+α dz

= Cn,αPV
ð
Σλ0

1
x̂ − zλ


 

n+α dz − 1

x̂ − zj jn+α
 !

� wλ0
zð Þdz < 0:

ð30Þ
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On the other hand,

−Δð Þα/2wλ0
x̂ð Þ = −Δα/2� �

u x̂λ0
� �

− −Δα/2� �
u x̂ð Þ

= f u x̂λ0
� �� �

− f u x̂ð Þð Þ = 0:
ð31Þ

This is a contradiction with (30). Thus, (28) holds.
Then, it follows from (28) that there exists a constant

c0 > 0 and δ > 0, such that

wλ0
xð Þ ≥ c0, x ∈ �Σλ0−δ: ð32Þ

Since wλ depends on λ continuously, there exists ε ∈
ð0, δÞ, such that for all λ ∈ ðλ0, λ0 + εÞ, we have

wλ xð Þ > 0, x ∈ �Σλ0−δ: ð33Þ

Then, from the narrow region principle (Lemma 3), we
conclude that for all λ ∈ ðλ0, λ0 + εÞ,

wλ xð Þ > 0, x ∈ �Σλ: ð34Þ

This is a contradiction with the definition of λ0.
Therefore, we must have λ0 = h/2, and

wλ0
xð Þ ≡ 0, x ∈〠

λ0

: ð35Þ

Consequently, for all λ: 0 < λ < h/2, we have wλ > 0 in Σλ.
Therefore, (9) holds, and u is symmetric in y about y = h/2.

Further, if we assume u ∈ C3
locð�Σh/2Þ, we now prove (10)

holds. Indeed, wλ satisfies the following linear equation

−Δð Þα/2wλ + cλ xð Þwλ = 0, x ∈〠
λ

, ð36Þ

with wλðx′, λÞ = 0. Also, by the former proof, we know that
wλ > 0 in Σλ. Here, we consider the distance from x to the
upper boundary fy = λg of Σλ, denoted by distðx, ∂ΣλÞ≕ d.
Then, dðx, ∂ΣλÞ = λ − y. Thus, by (20) we know that

lim
x⟶∂Σλ

c xð Þ d x, ∂〠
λ

 !" #2
= lim

x⟶∂Σλ

c xð Þ d λ − x2ð Þ½ �2 = 0:

ð37Þ

Therefore,

lim
x⟶∂Σλ

c xð Þ = o
1

d x, ∂Σλð Þ½ �2
 !

: ð38Þ

Consequently, the Hopf type lemma for antisymmetric
functions (Lemma 4) leads to

−2 ∂u
∂y

x′, λ
� �

≡
∂wλ

∂y
x′, λ
� �

< 0,∀x′ ∈ℝn−1, λ ∈ 0, h2

� 	
,

ð39Þ

which implies that (10) holds. This completes the proof.
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In this paper, we propose a novel and efficient numerical technique for solving linear and nonlinear fractional differential equations
(FDEs) with the φ-Caputo fractional derivative. Our approach is based on a new operational matrix of integration, namely, the φ-
Haar-wavelet operational matrix of fractional integration. In this paper, we derived an explicit formula for the φ-fractional integral
of the Haar-wavelet by utilizing the φ-fractional integral operator. We also extended our method to nonlinear φ-FDEs. The
nonlinear problems are first linearized by applying the technique of quasilinearization, and then, the proposed method is
applied to get a numerical solution of the linearized problems. The current technique is an effective and simple mathematical
tool for solving nonlinear φ-FDEs. In the context of error analysis, an exact upper bound of the error for the suggested
technique is given, which shows convergence of the proposed method. Finally, some numerical examples that demonstrate the
efficiency of our technique are discussed.

1. Introduction

Fractional differential equations are used to describe a wide
range of phenomena in natural science, and because of its
numerous applications in physical, chemical, and biological
sciences, fractional calculus has captivated the scientific com-
munity. Several researchers have recently focused their atten-
tion on the concept of the fractional derivative. The fractional
derivative is introduced in fractional calculus through the
fractional integral. Riemann, Liouville, Caputo, Hadamard,
Grunwald, and Letinkow are the pioneers in this field, having
contributed and published extensively on the subject. The
nonlinear fractional Schrodinger equations with the Riesz
space and the Caputo time-fractional derivatives are studied
using the finite difference/spectral-Galerkin method in [1].
For the Higgs boson equation in the de Sitter spacetime, a
finite difference/Galerkin spectral scheme was introduced in

[2] which retains the discrete energy dissipation property.
For the two-dimensional fractional wave equation with the
Weyl space-fractional operators, Ref. [3] proposes a high-
order compact difference method with fourth-order preci-
sion in space and second order in time. Explicit solutions to
differential equations of complex fractional orders with
respect to functions and continuous variable coefficients are
determined in [4]. Different types of fractional derivatives
have appeared in the literature that strengthen and generalize
the classical fractional operators defined by the aforemen-
tioned authors [5, 6]. Katugampola recently discovered a
new type of fractional integral operator which encompasses
the Riemann-Liouville and Hadamard operators in a single
form [7, 8]. Moreover, several other fractional operators are
being introduced to date. Due to a wide range of definitions
for fractional-order integrals and derivatives [9–11], the idea
of a fractional derivative of one function with respect to
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another function emerged. This class of fractional operators
depends on a kernel function and unifies many definitions
of fractional operators. Almeida used the idea of fractional
derivatives in the Caputo sense and introduced the φ-Caputo
fractional derivative of one function with respect to some other
function [12]. The proper choice of a trial function helps in the
modeling of physical phenomenon and makes the approach
more suitable from the application point of view [13, 14].

Wavelet analysis is a well-known and widely used math-
ematical method in engineering and other sciences [15, 16].
Wavelets are made up of function expressions that have been
extended into a sum of basic functions. A mother wavelet
function is translated and compressed to obtain these basic
functions. As a result, it inherits properties of locality and
smoothness, making it simple to research the properties of
integer and locality during the process of expressing func-
tions. Wavelets have sparked a lot of interest in using them
to solve classical ordinary and partial differential equations
numerically. Researchers have recently succeeded in extend-
ing several standard wavelet methods to numerical solutions
for fractional differential equations. Numerical integration
and numerical solutions of fractional ordinary and fractional
partial differential equations are some of the other applica-
tions of wavelet methods in applied mathematics. So, for
now, wavelets such as the Haar-wavelet, B-spline, Daube-
chies, and Legendre wavelet are used [17–21]. In Ref. [22],
the Genocchi wavelet-like operational matrix was used
together with the collocation method to solve nonlinear
FDEs. For solving fractional integrodifferential equations,
the Jacobi wavelet operational matrix of fractional integra-
tion is constructed and utilized in [23]. The Haar-wavelet is
a simple form of orthonormal wavelets with compact support
and has been used by many researchers. The Haar-wavelet
family consisted of rectangular functions. It also includes
the lower member of the Daubechies wavelet family, which
is suitable for computer implementation. The Haar-
wavelets are used to transform a fractional differential equa-
tion into an algebraic structure of finite variables [24–27].

For modeling different physical problems, it is difficult to
pick the right operator. Therefore, generalized operators of
fractional order should be developed for which classical oper-
ators are special cases. An effective way to deal with such a
variety is to merge these definitions into one by considering
fractional derivatives of function f with respect to another
function φ. The Riemann-Liouville operators of fractional
order are generalized by introducing the fractional-order dif-
ferentiation and integration of a function by another function
[28, 29]. In [12, 30], Almeida defined the φ-Caputo fractional
differential and integral operators and discussed its charac-
teristics. The contribution made by Almeida et al. plays a piv-
otal role in putting together a wide range of fractional
operators. Moreover, recent work on the φ-Caputo derivative
indicates that φ-Caputo fractional differential-based mathe-
matical models are more flexible and provide felicitous
results in many situations. In order to evaluate the growth
of the world population, Almeida [12] implemented the φ-
Caputo derivative and illustrated that the appropriate selec-
tion of a fractional operator determines the model’s preci-
sion. Using fixed-point theorems, Almeida et al. in [13]

investigated the existence and uniqueness of a solution for
nonlinear FDEs involving a φ-Caputo derivative. Almeida
et al. in [31] introduced the φ-shifted Legendre polynomials
for solving fractional oscillation equations containing the φ-
Caputo derivative of fractional order. We therefore see the
theory of φ-FDEs as a promising field for further study. In
this paper, taking motivation by the work cited above, we
developed a new numerical method for solving linear and
nonlinear boundary value problems in φ-FDEs.

The rest of the paper is organized as follows: We start
Section 2 with an overview of the fractional calculus followed
by a discussion of the classical Haar-wavelet and an approx-
imation of the functions by the Haar-wavelet. In Section 3,
we developed the φ-Haar operational matrix of fractional-
order integration of the Haar-wavelet and then utilize it for
a numerical solution of the φ-FDEs. In Section 3.1, the error
estimate of the developed technique is discussed in depth.
Section 4 is devoted to some numerical results and figures
that show the precision and effectuality of the developed
technique. Finally, a conclusion is given in the last section.

2. Preliminaries

Here, we present some vital definitions of φ-fractional oper-
ators and their basic properties which will be used in the sub-
sequent sections of the paper.

Let the function f : ½α, β�⟶ℝ be integrable, ρ a posi-
tive real number, n a natural number, and φ ∈ C1ð½α, β�Þ an
increasing function such that φ′ðζÞ ≠ 0∀ζ ∈ ½α, β�.

Definition 1. The Caputo fractional derivative of a function f
is defined by

CD
ρ
α f ζð Þ = 1

Γ n − ρð Þ
ðζ
α

ζ −I½ �n−ρ−1 d
dI

� �n

f Ið ÞdI, ð1Þ

where ζ ∈ ½α, β�, ρ ∈ℝ+, and n = dρe.

Definition 2 (see [9, 30, 32]). The φ-Riemann-Liouvile (φ-RL)
integration operator of fractional-order ρ of a function f ðζÞ
is defined as follows:

I ρ,φ
α f ζð Þ = 1

Γ ρð Þ
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �ρ−1 f Ið ÞdI: ð2Þ

The φ-RL derivative operator of fractional-order ρ of the
function f ðζÞ is defined as follows:

Dρ,φ
α f ζð Þ = 1

φ′ ζð Þ
d
dζ

 !n

I n−ρ,φ
α f ζð Þ

= 1
Γ n − ρð Þ

1
φ′ ζð Þ

d
dζ

 !n

�
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �n−ρ−1 f Ið ÞdI,

ð3Þ

where n = bρc + 1.
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Definition 3 (see [12]). Let ρ be a positive real number, n a
natural number, and f , φ ∈ Cnð½α, β�Þ such that φ is increas-
ing and φ′ðζÞ ≠ 0∀ζ ∈ ½α, β�. The φ-Caputo differential oper-
ator of fractional-order ρ is defined by

CDρ,φ
α f ζð Þ = 1

Γ n − ρð Þ
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �n−ρ−1Dn,φ f Ið ÞdI,

ð4Þ

where f ½n�φ ðζÞ = ðð1/φ′ðζÞÞðd/dζÞÞn f ðζÞ, n = bρc + 1 if ρ ∉ℕ,
whereas n = ρ if ρ ∈ℕ.

Remark 4. For particular choices of φðζÞ, these operators are
reduced to the following given operators of the fractional
order:

(i) φðζÞ = ζ refer to the classical RL and Caputo frac-
tional operators

(ii) φðζÞ = ln ðζÞ refer to the classical Hadamard and
Caputo-Hadamard fractional operators

2.1. Characteristics of the φ-Fractional Operators. Some fun-
damental characteristics of the φ-fractional operators are
listed below [12, 30].

Let f ðζÞ = ðφðζÞ − φðαÞÞγ, where γ > n and ρ > 0. Then,

Iρ,φα f ζð Þ = Γ γ + 1ð Þ
Γ ρ + γ + 1ð Þ φ ζð Þ − φ αð Þð Þρ+γ,

Dρ,φ
α f ζð Þ = Γ γ + 1ð Þ

Γ γ + 1 − ρð Þ φ ζð Þ − φ αð Þð Þγ−ρ,

Iρ,φα Dρ,φ
α f ζð Þ = f ζð Þ − 〠

n−1

k=0

Dk,φ f ζð Þ
k!

φ ζð Þ − φ αð Þð Þk:

ð5Þ

Example 5. Let f ðζÞ = ðζ − αÞγ, with γ > n and ρ > 0. Then,
the Caputo fractional derivative is given by

CDρ
α f ζð Þ = Γ γ + 1ð Þ

Γ γ + 1 − ρð Þ ζ − αð Þγ−ρ: ð6Þ

The Caputo fractional derivatives of sin ðζÞ and cos ðζÞ
are given by

CDρ
α sin ζð Þ = ζð Þ 1−ρð ÞE2,2−ρ −ζ2

� �
,

CDρ
α cos ζð Þ = ζð Þ−ρE2,1−ρ −ζ2

� �
,

ð7Þ

where Eα,β is the two-parameter Mittag-Leffler function
defined by

Eα,β = 〠
∞

ℓ=0

ζℓ

Γ αℓ + βð Þ : ð8Þ

2.2. Existence and Uniqueness of Solution for Nonlinear φ-
FDEs. In this section, we provide existence and uniqueness
theorems for nonlinear φ-FDEs.

Consider the nonlinear φ-FDE:

Dρ,φ
α y ζð Þ = f ζ, y ζð Þð Þ,

t ∈ α, β½ �:
ð9Þ

We have the initial conditions, namely, yðαÞ = yα and

y½ℓ�φ ðαÞ = yℓα, ℓ = 1,⋯, n − 1, where

(1) 0 < ρ ∉N and n = ½ρ� + 1
(2) yα and yℓα, where ℓ = 1,⋯, n − 1, are fixed reals

(3) y ∈ Cn−1½α, β�, such that Dρ,φ
α exists and is continuous

in ½α, β�
(4) f : ½α, β� ×ℝ⟶ℝ is continuous

Theorem 6. A function y ∈ Cn−1½α, β� is a solution to problem
(9) if and only if y satisfies the following fractional integral
equation:

y ζð Þ = f ζ, y ζð Þð Þ − 〠
n−1

ℓ=0

yℓα
ℓ!

φ ζð Þ − φ αð Þð Þℓ: ð10Þ

Theorem 7. Let f be a Lipschitz continuous function with
respect to the second variable, that is, ∃ is a positive constant
L such that

f ζ, x1ð Þ − f ζ, x2ð Þj j ≤ L x1 − x2j j, ∀ζ ∈ α, β½ �,∀x1, x2 ∈ℝ:

ð11Þ

Then, there is a constant h ∈ℝ+, such that there exists a
unique solution to problem (9) on the interval ½α, α + h� ⊆ ½α
, β�.

Proof of Theorems 6 and 7 can be seen in [13].

2.3. Approximation of Function by the Haar-Wavelet. The ith
Haar-wavelet defined on the interval ½α, β� is given by

hi ζð Þ =
1, for ζ ∈ ϰ1 ið Þ, ϰ2 ið Þ½ Þ,
−1, for ζ ∈ ϰ2 ið Þ, ϰ3 ið Þ½ Þ,
0, elsewhere,

8>><
>>: ð12Þ

where ϰ1ðiÞ = α + ðβ − αÞðk/mÞ, ϰ2ðiÞ = α + ðβ − αÞð2k + 1/
mÞ, ϰ3ðiÞ = α + ðβ − αÞðk + 1/mÞ, and m = 2j, where j = 0,
1, 2, 3,⋯, J and k = 0, 1, 2, 3,⋯,m − 1. Here, j and k are
the wavelet’s dilation and translation parameters, whereas
J is the maximum level of resolution. The relationship i
=m + k + 1 identifies the wavelet number i. For i ≥ 3,
equation (12) holds true.

3Journal of Function Spaces



The corresponding scaling functions of the Haar-wavelet
family for i = 1 and i = 2 are

h1 ζð Þ =
1, for ζ ∈ α, β½ �,
0, elsewhere,

(

h2 ζð Þ =

1, if ζ ∈ α, α + β

2

� �
,

−1, if ζ ∈ α + β

2 , β
� �

,

0, elsewhere:

8>>>>>><
>>>>>>:

ð13Þ

Any function yðζÞ defined and square integrable over the
interval ½0, 1Þ can be expressed in terms of the Haar-wavelet
as follows:

y ζð Þ = 〠
∞

i=0
cihi ζð Þ, ð14Þ

where the coefficients ci of the Haar-wavelet are defined by

ci = y ζð Þ, hi ζð Þh i =
ð1
0
y ζð Þhi ζð Þdζ: ð15Þ

In practice, only the firstm terms of the series in equation
(14) are considered, where m is a power of 2, that is,

y ζð Þ ≅ ym ζð Þ = 〠
m−1

i=0
cihi ζð Þ, ð16Þ

with vector form as

y ζð Þ ≅ ym ζð Þ = CT
mHm ζð Þ, ð17Þ

where CT
m = ½c0, c1, c2,⋯,cm−1� and HmðζÞ =

½h0ðζÞ, h1ðζÞ, h2ðζÞ,⋯,hm−1ðζÞ�T .

3. The φ-Haar-Wavelet Operational Matrix

In this section, our endeavor is to construct the φ-Haar-
wavelet operational matrix Pρ,φ of fractional-order ρ and
use it to solve φ-FDEs numerically. The φ-fractional integra-
tion of the Haar-wavelet is performed using equation (2).
Mathematically, the generalized fractional-order integration
of the Haar-wavelet, Hm = ½h0, h1, h2,⋯,hm−1�, is given by

Pρ,φ
i ζð Þ = 1

Γ ρð Þ
ðζ
α

φ′ Ið Þ φ ζð Þ − φ Ið Þ½ �ρ−1hi Ið ÞdI: ð18Þ

Analytically, these generalized φ-fractional integrals can
be approximated as follows:

Pρ,φ
i ζð Þ =

0, if ζ < ϰ1 ið Þ,
Φ1, if ζ ∈ ϰ1 ið Þ, ϰ2 ið Þ½ Þ,
Φ2, if ζ ∈ ϰ2 ið Þ, ϰ3 ið Þð �,
Φ3, if ζ > ϰ3 ið Þ,

8>>>>><
>>>>>:

ð19Þ

where

Φ1 =
1

Γ ρ + 1ð Þ φ ζð Þ − φ ϰ1 ið Þð Þ½ �ρ,

Φ2 =
1

Γ ρ + 1ð Þ φ ζð Þ − φ ϰ1 ið Þð Þð Þρ − 2 φ ζð Þ − φ ϰ2 ið Þð Þð Þρ� �
,

Φ3 =
1

Γ ρ + 1ð Þ φ ζð Þ − φ ϰ1 ið Þð Þð Þρ − 2 φ ζð Þð�
− φ ϰ2 ið Þð ÞÞρ + big φ ζð Þ − φ ϰ3 ið Þð Þð Þρ�: ð20Þ

Equation (19) holds for i > 1; for i = 1, we have

Pρ,φ
1 ζð Þ = 1

Γ ρ + 1ð Þ φ ζð Þ − φ αð Þ½ �ρ: ð21Þ

The fractional-order φ-Haar-wavelet operational matrix
Pρ,φ for the function φðζÞ = ζ2 and ρ = 0:75 is given by

Pρ,φ
m×m =

0:4342 −0:2816 −0:0998 −0:1763 −0:0356 −0:0623 −0:0806 −0:0953
−0:0210 0:1735 −0:0998 0:2392 −0:0356 −0:0623 0:1297 0:1153
−0:0739 0:0653 0:0613 −0:0204 −0:0356 0:0833 −0:0173 −0:0058
0:0653 −0:0653 0 0:1167 0 0 −0:1051 0:1635
−0:0285 0:0022 0:0221 −0:00291 0:0211 −0:0066 −0:0019 −0:0010
−0:0094 0:0318 −0:0224 −0:00901 0 0:0435 −0:0088 −0:0020
0:0064 −0:0064 0 0:06786 0 0 0:0616 −0:0113
0:0280 −0:0280 0 −0:05604 0 0 0 0:0779

2
666666666666666664

3
777777777777777775

: ð22Þ
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Also, the approximate and exact φ-RL fractional integra-
tion of φðζÞ = sin ð5ζÞ for J = 6 and various choices of ρ is
plotted in Figure 1.

3.1. Convergence Analysis of the φ-Haar-Wavelet Method. In
[33], the Caputo-type FDEs were recently analyzed for error.
Furthermore, utilizing the Haar wavelet, [34] proves conver-
gence for the solution of the nonlinear Fredholm integral
equations. In the present work, the upper limit for the error
estimate is calculated using the φ-Caputo fractional differen-
tial operator. The φ-Haar-wavelet method for FDEs is shown
to be convergent.

Theorem 8. Let ynðζÞ be continuous on interval ½α, β�, and
suppose ∃K > 0, such that jy½n�φ ðζÞj ≤ K∀ζ ∈ ½α, β�, where α, β
∈ℝ+, y½n�φ ðζÞ = ðð1/φ′ðζÞÞðd/dζÞÞnyðζÞ, and Dρ,φ

α ymðζÞ is the
approximation of Dρ,φ

α yðζÞ. Then, we have

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk kE ≤
β − αð ÞK φ′ βð Þ

� �m−ρ

Γ m − ρ + 1ð Þ
1

k m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ :

ð23Þ

Proof. Dρ,φ
α y can be approximated as follows:

Dρ,φ
α y ζð Þ = 〠

∞

i=α
cihi ζð Þ, ð24Þ

where

ci = Dρ,φ
α y ζð Þ, hi ζð Þh i =

ðβ
α

Dρ,φ
α y ζð Þð Þhi ζð Þdζ: ð25Þ

Suppose that Dρ,φ
α ym is the following approximation of

Dρ,φ
α y:

Dρ,φ
α ym ζð Þ = 〠

m−1

i=0
cihi ζð Þ, ð26Þ

where m = 2κ+1, κ = 1, 2, 3,⋯. Then,

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þ = 〠
∞

i=m
cihi ζð Þ = 〠

∞

i=2κ+1
cihi ζð Þ, ð27Þ

which implies that

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk k2E =
ðζ
α

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þð Þ2dζ

= 〠
∞

i=2κ+1
〠
∞

i′=2κ+1
cici′

ðζ
α

hi ζð Þhi′ ζð Þdζ:

ð28Þ

By orthogonality of the sequence fhmðζÞg, we have
Ð β
α

hmðζÞhmðζÞdζ = Im, where Im is the identity matrix of order
m. Therefore,

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk k2E = 〠
∞

i′=2κ+1
c2i : ð29Þ

From equation (25), we have

ci =
ðβ
α

Dρ,φ
α y ζð Þð Þhi ζð Þdζ

= 2 j/2ð Þ
ðα+ β−αð Þ k+ 1/2ð Þð Þ2− j

α+ β−αð Þk2− j
Dρ,φ
α y ζð Þdζ

(

−
ðα+ β−αð Þ k+1ð Þ2− j

α+ β−αð Þ k+ 1/2ð Þð Þ2− j
Dρ,φ
α y ζð Þdζ

)
:

ð30Þ

By the mean value theorem for integration, we have ∃ζ1,
ζ2 ∈ ðα, βÞ, such that

α + β − αð Þk2−j < ζ1 < α + β − αð Þ k + 1
2

� �
2−j,

α + β − αð Þ k + 1
2

� �
2−j < ζ2 < α + β − αð Þ k + 1ð Þ2−j,

ci = 2 j/2ð Þ β − αð Þ α + k + 1
2

� �
2−j − α + k2−j

	 
� �
Dρ,φ
α y ζ1ð Þ

�

− α + k + 1ð Þ2−j	 
	
− α + k + 1

2

� �
2−j

� �
Dρ,φ
α y ζ2ð Þ

�
= 2 j/2ð Þ β − αð Þ 2−j−1 Dρ,φ

α y ζ1ð Þ −Dρ,φ
α y ζ2ð Þð Þ
 �

:

ð31Þ

Hence,

c2i = 2−j−2 β − αð Þ2 Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þð Þ2: ð32Þ
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Employing the definition of the φ-Caputo fractional

derivative, the fact that φ is increasing and the condition j
y½n�φ ðζÞj ≤ K , we arrive at

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þj j

= 1
Γ m − ρð Þ

ðζ1
α

φ′ ζð Þ φ ζ1ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
−
ðζ2
α

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
≤

1
Γ m − ρð Þ

ðζ1
α

φ′ ζð Þ φ ζ1ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
−
ðζ1
α

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
+
ðζ2
ζ1

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1y n½ �
φ ζð Þdζ

�����
�����

≤
1

Γ m − ρð Þ
ðζ1
α

φ′ ζð Þ φ ζ1ð Þ − φ ζð Þð Þm−ρ−1
h 

− φ ζ2ð Þ − φ ζð Þð Þm−ρ−1
i
y n½ �
φ ζð Þ

��� ���dζ
+
ðζ2
ζ1

φ′ ζð Þ φ ζ2ð Þ − φ ζð Þð Þm−ρ−1 y n½ �
φ ζð Þ
��� ���dζ

!
,

ð33Þ

where

m − ρ − 1 > 0 = K
Γ m − ρ + 1ð Þ φ ζ1ð Þ − φ αð Þð Þm−ρ − φ ζ2ð Þð	
− φ αð ÞÞm−ρ + 2 φ ζ2ð Þ − φ ζ1ð Þð Þm−ρ
:

ð34Þ

Since ζ1 > α, ζ2 > α, and ζ2 > ζ1 and φðζÞ is an increasing
function, so

φ ζ1ð Þ − φ αð Þð Þm−ρ − φ ζ2ð Þ − φ αð Þð Þm−ρ < 0: ð35Þ

Therefore,

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þj j ≤ 2K
Γ m − ρ + 1ð Þ φ ζ2ð Þ − φ ζ1ð Þð Þm−ρ:

ð36Þ

By mean value theorem, ∃ϰ ∈ ½ζ, ζ2� ⊆ ½α, β�, such that φ
ðζ2Þ − φðζ1Þ ≤ ðζ2 − ζ1Þφ′ðϰÞ, we get

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þj j ≤ 2K
Γ m − ρ + 1ð Þ ζ2 − ζ1ð Þφ′ ϰð Þ

� �m−ρ

≤
2K

Γ m − ρ + 1ð Þ2j m−ρð Þ φ′ βð Þ
� �m−ρ

,

ð37Þ
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Figure 1: Exact and approximate φ-RL integration of the function f ðζÞ = sin ð5ζÞ for J = 6 and various choices of ρ and their maximum
absolute error.

Table 1: Optimal value of the upper bound of error at different J
and α = 0:25.

J yexact − yapprox xð Þ
��� ���

E
Optimality of the upper bound of error

4 3:5102 × 10−4 0.0714

5 2:8937 × 10−5 0.0216

6 6:8632 × 10−6 0.0542

7 3:2381 × 10−6 0.0139

Table 2: Maximum absolute error for various choices of ρ and J .

J ρ = 0:50 ρ = 0:70 ρ = 0:90 ρ = 1
0.5 3:2914 × 10−4 2:4211 × 10−4 2:3518 × 10−4 2:4036 × 10−4

0.6 1:1220 × 10−4 6:9659 × 10−5 5:9464 × 10−5 6:0560 × 10−5

0.7 3:8646 × 10−5 2:0316 × 10−5 1:5089 × 10−5 1:5199 × 10−5

0.8 1:3413 × 10−5 5:9901 × 10−6 3:8355 × 10−6 3:8072 × 10−6
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which gives

Dρ,φ
α y ζ1ð Þ −Dρ,φ

α y ζ2ð Þð Þ2 ≤ 4K2

Γ2 m − ρ + 1ð Þ22j m−ρð Þ φ′ βð Þ
� �2 m−ρð Þ

:

ð38Þ

Putting equation (38) into equation (32), we get

c2i ≤ 2−j−2 β − αð Þ2 4K2

Γ2 m − ρ + 1ð Þ22j m−ρð Þ φ′ βð Þ
� �2 m−ρð Þ

:

ð39Þ

Equations (29) and (39) give

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk k2E

= 〠
∞

i=2κ+1
c2i = 〠

∞

j=κ+1
〠

2 j+1−1

i=2 j
c2i

 !

≤ 〠
∞

j=κ+1
β − αð Þ2 K2

Γ2 m − ρ + 1ð Þ22j m−ρð Þ+j

· φ′ βð Þ
� �2 m−ρð Þ

2j+1 − 1 − 2 j + 1
	 


=
β − αð Þ2K2 φ′ βð Þ

� �2 m−ρð Þ

Γ2 m − ρ + 1ð Þ 〠
∞

j=κ+1

1
22j m−ρð Þ

=
β − αð Þ2K2 φ′ βð Þ

� �2 m−ρð Þ

Γ2 m − ρ + 1ð Þ
1

22 κ+1ð Þ m−ρð Þ
1

1 − 22 ρ−mð Þ ,

ð40Þ

which implies that

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk kE

≤
β − αð ÞK φ′ βð Þ

� �m−ρ

Γ m − ρ + 1ð Þ
1

2 κ+1ð Þ m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ :

ð41Þ

Let k = 2κ+1; (41) can also be written as

Dρ,φ
α y ζð Þ −Dρ,φ

α ym ζð Þk kE

≤
β − αð ÞK φ′ βð Þ

� �m−ρ

Γ m − ρ + 1ð Þ
1

k m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ :
ð42Þ

From the value of K , we can get an upper bound for the
error.

We first estimate the value of K . Since ynðζÞ is continuous
and bounded on ½α, β�, so y½n�φ ðζÞ is also continuous and
bounded on ½α, β� and is given by

y n½ �
φ ζð Þ ≅ 〠

m−1

i=0
cihi ζð Þ = CT

mHm ζð Þ, ð43Þ

where Cm = ½c0, c1, c2,⋯,cm−1�T and HmðζÞ =
½h0ðζÞ, h1ðζÞ, h2ðζÞ,⋯,hm−1ðζÞ�T .

0.7

Exact

0.6
0.5

y (
ζ) 0.4

0.3
0.2

0.1
0

0 0.1 0.2 0.3 0.4 0.5
x

0.6 0.7 0.8 0.9 1

Numerical

(a)

Absolute error

3.5

3

2.5

2

1.5

1

0.5

×10–4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

Figure 2: For J = 5, ρ = 0:6, and φðζÞ = sin ðζÞ: (a) approximate and exact solutions; (b) maximum absolute error.
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Integrating equation (43), we have

y n−1½ �
φ ζð Þ =

ðζ
α

y n½ �
φ ζð Þdζ + y n−1½ �

φ αð Þ

=
ðζ
α

y n½ �
φ ζð Þdζ ≅ CT

mP
1,φ
m×mHm ζð Þ:

ð44Þ

Similarly,

y n−2½ �
φ ζð Þ =

ðζ
α

y n−1½ �
φ ζð Þdζ + y n−2½ �

φ αð Þ

=
ðζ
α

y n−1½ �
φ ζð Þdζ ≅ CT

mP
2,φ
m×mHm ζð Þ:

ð45Þ

0
0

0.1

0.012
0.001

Exact
Numerical

0.008
0.006
0.004
0.002

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
x 

y(
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(a)

Absolute error

0
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4
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

0 0.1 0.2 0.3 0.4 0.5
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x)
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0
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0.7
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𝜁 =0.5

𝜁 =0.7

𝜁 =0.8
𝜁 =0.9
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(c)

Figure 3: (a) Approximate and exact solutions of equation (57) for ρ = 0:6 and φðζÞ = ζ2 − ζ: (b) Maximum absolute error. (c) Approximate
solutions of equation (57) for φðζÞ = ζ2 and various choices of ρ.
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Proceeding in the same way, we get

yφ ζð Þ ≅ CT
mP

m,φ
m×mHm ζð Þ: ð46Þ

By defining the points ζj = ððj − 1/2Þ/mÞ, j = 0, 1, 2,⋯,m.
Substituting ζj in equation (46), we have

yφ ζj
	 


≅ CT
mP

m,φ
m×mHm ζj

	 

: ð47Þ

The matrix form of equation (47) is as follows:

yφ ≅ CT
mP

m,φ
m×mHm ζj

	 

, ð48Þ

where yφ = ½yφðζ1Þ, yφðζ2Þ, yφðζ3Þ,⋯,yφðζmÞ�.
By using equation (48), we can investigate CT

m. From
equation (43), we may know the value of Dm,φðζÞ for each ζ
∈ ½α, β�.

Suppose ti ∈ ½α, β�, for i = 1, 2, 3,⋯, l, ti = ðti = ði − 1/lÞ/lÞ
, and we calculatey½n�φ ðtiÞ for i = 1, 2, 3,⋯, l; then, ε +max j
ynφðtiÞj may be measured as the approximation for K .

Obviously, this approximation would have additional
precision if l increases and ε is selected as β. ☐ ☐

Theorem 9. Let Dρ,φ
α ym, achieved by applying the φ-Haar-

wavelet, be the estimation of Dρ,φ
α y; then, the actual upper-

bound of error is given as follows:

y ζð Þ − ym ζð Þk kE ≤
KN

Γ ρ + 1ð ÞΓ m − ρ + 1ð Þ
1

k m−ρð Þ
1

1 − 22 ρ−mð Þ� � 1/2ð Þ ,

ð49Þ

where N =max jðβ − αÞðφðβÞÞm−ρðφðζÞ − φð0ÞÞρj.

Theorem 9 can be proven simply via Theorem 8. From
equation (49), we can understand that kyðζÞ − ymðζÞkE tends
to 0 as m tends to ∞, which shows that the φ-Haar-wavelet
technique converges.

Example 10. To demonstrate optimality of the upper bound
in equation (49), we consider the following φ-FDE:

Dρ,φ
0 y ζð Þ + y ζð Þ = φ ζð Þð Þ2ρ + Γ 2ρ + 1ð Þ

Γ ρ + 1ð Þ φ ζð Þð Þρ, 0 < ρ ≤ 1, ζ ∈ 0, 1½ �,

ð50Þ

with initial condition yð0Þ = 0, having the exact solution yðζ
Þ = ðφðζÞÞ2ρ.

Table 1 shows the optimal values of the upper bound of
error obtained for various options J and ρ = 0:25.

4. Numerical Solutions of φ-FDEs

In this section, we provide the solution to some problems in
linear and nonlinear φ-FDEs by employing the φ-Haar-
wavelet operational matrix technique.

4.1. Linear Case.Here, we consider two examples of linear φ-
FDEs for the numerical solution by the proposed method.

Example 11. Consider the composite oscillation equation of a
fractional order with the φ-Caputo fractional derivative:

Dρ,φ
0 y ζð Þ + y ζð Þ = φ ζð Þð Þ2 + 2

Γ 3 − ρð Þ φ ζð Þð Þ2−ρ, 0 < ρ ≤ 1, ζ ∈ 0, 1½ �,

ð51Þ

with the initial condition yð0Þ = 0. The exact solution of
equation (51) is given by yðζÞ = ðφðζÞÞ2. For numerical solu-
tions, we approximate Dρ,φ

0 yðζÞ as

Dρ,φ
0 y ζð Þ = CT

mHm ζð Þ: ð52Þ

Integrating equation (52) with the φ-Caputo integral
operator, we have

y ζð Þ =I
ρ,φ
0 CT

mHm ζð Þ + c1 = CT
mP

ρ,φ
m×mHm ζð Þ + c1: ð53Þ

Substituting the initial conditions in equation (51), we get

y ζð Þ = CT
mP

ρ,φ
m×mHm ζð Þ + φ 0ð Þð Þ2: ð54Þ

Substituting equations (52) and (54) for equation (51), we
have

CT
m Hm ζð Þ + Pρ,φ

m×mHm ζð Þð Þ = f ζð Þ, ð55Þ

where f ðζÞ = ðφðζÞÞ2 + ð2/Γð3 − ρÞÞðφðζÞÞ2−ρ − ðφð0ÞÞ2.
Equation (55) can be expressed in the matrix form as fol-

lows:

CT
m Hm ζð Þ + APρ,φ

m×mHm ζð Þð Þ = F, ð56Þ

where F = f ðζÞ: The value of CT
m can be obtained from equa-

tion (56). By using CT
m in equation (54), we can obtain the

numerical solutions. Table 2 represents approximate solu-
tions obtained for various choices of ρ and J . The exact and
numerical solutions of equation (51) and the maximum
absolute error are plotted in Figures 2(a) and 2(b), respec-
tively, for J = 5, ρ = 0:6, and φðζÞ = sin ðζÞ.

Table 3: Maximum absolute error for various choices of ρ and J .

J ρ = 0:60 ρ = 0:70 ρ = 0:80 ρ = 0:90
0.5 4:7700 × 10−5 4:4509 × 10−5 3:833 × 10−5 3:4673 × 10−5

0.6 1:4816 × 10−5 1:2922 × 10−5 1:0871 × 10−5 9:0534 × 10−6

0.7 4:6410 × 10−6 3:7700 × 10−6 2:9758 × 10−6 2:3511 × 10−6

0.8 1:4674 × 10−6 1:1071 × 10−6 8:1696 × 10−7 6:1074 × 10−7
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Example 12. In this example, consider the FDE involving the
φ-Caputo derivative:

Dρ,φ
0 y ζð Þ + y ζð Þ = φ ζð Þð Þ4 − 1

2 φ ζð Þð Þ3 − 3
Γ 4 − ρð Þ φ ζð Þð Þ3−ρ

+ 24
Γ 5 − ρð Þ φ ζð Þð Þ4−ρ,

ð57Þ

where 0 < ρ ≤ 1, ζ ∈ ½0, 1�, and the initial condition

y 0ð Þ = 0: ð58Þ

The exact solution of the problem (57) is given as follows:
yðζÞ = ðφðζÞÞ4 − ð1/2ÞðφðζÞÞ3. To get numerical solutions,
the φ-Haar-wavelet method is employed as follows. Let

Dρ,φ
0 y ζð Þ = CT

mHm ζð Þ: ð59Þ

Integrating equation (59) with the φ-Caputo integral
operator, we have

y ζð Þ =I
ρ,φ
0 CT

mHm ζð Þ + c1: ð60Þ

Substituting initial conditions in equation (60), we get
c1 = y0. Equation (60) becomes

y ζð Þ = CT
mP

ρ,φHm ζð Þ + y0: ð61Þ

Table 4: Maximum absolute error for φðζÞ = ζ3 and various choices of J and ρ.

J ρ = 0:60 ρ = 0:70 ρ = 0:80 ρ = 0:90 ρ = 1
0.5 2:9805 × 10−4 2:6189 × 10−4 9:0556 × 10−5 8:4937 × 10−5 4:0843 × 10−5

0.6 9:3858 × 10−5 8:2375 × 10−5 7:5629 × 10−5 4:5815 × 10−5 3:0209 × 10−5

0.7 8:0570 × 10−5 7:5617 × 10−5 6:8581 × 10−5 4:2393 × 10−6 2:5527 × 10−6

0.8 4:6741 × 10−5 3:3469 × 10−5 5:6175 × 10−6 3:0351 × 10−6 6:3818 × 10−7

0.9 3:2109 × 10−5 2:3126 × 10−5 7:8318 × 10−6 2:6165 × 10−7 1:5954 × 10−7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 1

𝜑(𝜁) = 𝜁
𝜑(𝜁) = 𝜁2
𝜑(𝜁) = 𝜁3
𝜑(𝜁) = 𝜁4

x

y(
x)

Figure 4: Approximate solutions for ρ = 1, J = 5, and different choices of φðζÞ.

Table 5: Maximum absolute error for various choices of ρ and J .

ρ J = 0:5 J = 0:6 J = 0:7 J = 0:8
0.60 3:9081 × 10−4 2:1491 × 10−4 1:6723 × 10−4 3:0569 × 10−5

0.70 3:6472 × 10−4 1:7153 × 10−4 3:2854 × 10−5 3:7074 × 10−5

0.80 3:2019 × 10−4 1:3570 × 10−4 2:8061 × 10−5 5:8283 × 10−6

0.90 2:6195 × 10−4 9:0689 × 10−5 1:8584 × 10−5 4:1523 × 10−6

0.1 2:2700 × 10−4 5:8851 × 10−5 1:4983 × 10−5 3:7800 × 10−6
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Substituting equations (59) and (60) for equation (57), we
get

CT
m Hm ζð Þ + a ζð ÞPρ−κ,φHm ζð Þ + b ζð ÞPρ,φHm ζð Þð Þ = F ζð Þ,

ð62Þ

where FðζÞ = ðφðζÞÞ4 − ð1/2ÞðφðζÞÞ3 − ð3/Γð4 − ρÞÞ
ðφðζÞÞ3−ρ + ð24/Γð5 − ρÞÞðφðζÞÞ4−ρ. Approximate solutions
are obtained by solving equations (61) and (62). The exact
solution, approximate solutions, and the maximum absolute
error are plotted in Figure 3 for J = 6 and ρ = 0:6. Also, the
maximum absolute errors obtained for various choices of ρ
and J are given in Table 3. We noticed that the maximum
absolute error decreases with an increase in J .

4.2. Nonlinear Case

Example 13. Consider the fractional-order Riccati differential
equation with the φ-Caputo fractional derivative:

Dρ,φ
0 y ζð Þ = −y2 ζð Þ + 1, 0 < ρ ≤ 1, ζ ∈ 0, 1½ �, ð63Þ

subject to the initial condition yð0Þ = 0. For ρ = 1, the exact
solution of equation (63) is given by yðζÞ = ðeφð2ζÞ − 1/eφð2ζÞ
+ 1Þ. For numerical solutions, we first utilize the quasilinear-
ization techniques to make the nonlinear terms of equation
(63) linear and then solve the linearized problem with the φ
-Haar-wavelet method. The linearized form of (63) is

Dρ,φ
0 yr+1 ζð Þ + 2yr ζð Þyr+1 ζð Þ = y2r ζð Þ + 1, ζ > 0, 0 < ρ ≤ 1,

ð64Þ

with the initial condition yr+1ð0Þ = 0:

Now, we apply the φ-Haar-wavelet method to equation
(64). Let

Dρ,φ
0 yr+1 ζð Þ = CT

mHm ζð Þ: ð65Þ

Operating the φ-Caputo integral on equation (65), we get

yr+1 ζð Þ =I ρ,φCT
mHm ζð Þ + c1 = CT

mP
ρ,φ
m×mHm ζð Þ + c1: ð66Þ

Putting the initial conditions in equation (66) gives

yr+1 ζð Þ = CT
mP

ρ,φ
m×mHm ζð Þ: ð67Þ

0 0.1 0.2 0.3 0.4

𝜁 =0.6
𝜁 =0.7
𝜁 =0.8

0.5
x

y(
x)

0.6 0.7 0.8

0.05

–0.1

–0.15

–0.2

–0.25

–0.3

–0.35

0

0.9 1

Exact 

𝜁 =0.9
𝜁 =1.0

Figure 5: Exact solution for ρ = 1 and numerical solutions for various choices of ρ.

Table 6: Comparison of results obtained in [31] and by our method
for φðζÞ = ðζ2/2Þ + ðζ/2Þ.

ζ
y-

Exact
y-Approximate by

[31]
Error by
[31]

Error by our
method

0.0 0.0000 0.00060 60 × 10−4 60 × 10−4

0.1 0.0031 0.0037 70 × 10−4 60 × 10−4

0.2 0.0144 0.0151 80 × 10−4 70 × 10−4

0.3 0.0380 0.0388 90 × 10−4 80 × 10−4

0.4 0.0783 0.0793 10 × 10−4 10 × 10−4

0.5 0.1416 0.1427 11 × 10−4 12 × 10−3

0.6 0.2313 0.2324 11 × 10−3 11 × 10−3

0.7 0.3542 0.3553 12 × 10−4 11 × 10−4

0.8 0.5274 0.5284 10 × 10−3 10 × 10−3

0.9 0.7411 0.7421 10 × 10−4 10 × 10−4

1.0 1.0000 1.0007 70 × 10−4 70 × 10−4
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Substituting equations (65) and (66) for equation (64), we
have

CT
m Hm ζð Þ + 2yr ζð ÞPρ,φ

m×mHm ζð Þð Þ = 1 + y2r ζð Þ: ð68Þ

The matrix form of equation (68) is given by

CT
m Hm ζð Þ + 2yrPρ,φ

m×mHm ζð Þð Þ = F, ð69Þ

where F = 1 + y2r : By solving the algebraic system given by
equation (69) for CT

m and substituting this value into equa-
tion (67), we will have the required numerical solution. In
Table 4, the maximum absolute error is given for φðζÞ = ζ3.
Also, approximate solutions for different choices of the func-
tion φ are plotted in Figure 4.

Example 14. Finally, consider the Riccati differential equation
of fractional order having the φ-Caputo fractional derivative:

Dρ,φ
0 y ζð Þ = 2y ζð Þ − y ζð Þ2 + 1, ð70Þ

where 0 < ρ ≤ 1 and ζ ∈ ½0, 1�.
Then, we subject this to the initial condition:

y 0ð Þ = 0: ð71Þ

When ρ = 1, yðζÞ = 1 +
ffiffiffi
2

p
tanh ð ffiffiffi

2
p

φðζÞ + ð1/2Þ log ððffiffiffi
2

p
− 1Þ/ð ffiffiffi

2
p

+ 1ÞÞÞ is the actual solution of problem (70).
For numerical solutions, we first utilize the quasilinearization
technique to linearize the nonlinear terms in equation (70)
and then solve the linearized FDE by the φ-Haar-wavelet
method.

Equation (70) in the linearized form is given by

Dρ,φ
0 yr+1 − 2 − 2yr ζð Þð Þyr+1 ζð Þ = y2r ζð Þ + 1, ζ > 0 and 0 < ρ ≤ 1,

ð72Þ

with the initial condition yr+1ð0Þ = 0.
Consider

Dρ,φ
0 yr+1 = CT

mHm ζð Þ: ð73Þ

Taking the φ-Caputo integral of (73),

yr+1 =I
ρ,φ
0 CT

mHm ζð Þ + c1: ð74Þ

Substituting the initial condition in equation (74), we have
c1 = 0:

Using c1 = 0 in equation (74), we get

yr+1 = CT
mP

ρ,φ
m×mHm: ð75Þ

Substituting equations (73) and (75) for equation (70), we get

CT
m Hm ζð Þ − 2 − 2yr ζð Þð Þð ÞPρ,φ

m×mHm ζð Þ = F ζð Þ: ð76Þ

Required approximate solutions can be obtained by using

the value of CT
m from equation (76) in equation (75). Table 5

shows that the maximum absolute error decreases by increas-
ing the values of J . Also, the approximate solutions are dis-
played in Figure 5 for various values of ρ.

Example 15. For comparison with another method, we con-
sider the following problem:

D 3/2ð Þ,φ
0 y ζð Þ + 2

Γ 3/2ð Þ y ζð Þ = 2
Γ 3/2ð Þ 1 + φ ζð Þð Þ 3/2ð Þ

� �
, ζ ∈ 0, 1½ �,

ð77Þ

with the initial condition yð0Þ = 0. The exact solution of
equation (77) is given by yðζÞ = ðφðζÞÞ2. This problem is
studied in [31] by using the operational matrix of the φ
-shifted Legendre polynomials.
For φðζÞ = ðζ2/2Þ + ðζ/2Þ, a comparison of the results obtained
in [31] and by the proposed method is given in Table 6.

5. Conclusion

In this article, the φ-FDEs are solved numerically by introduc-
ing the φ-Haar-wavelet operational matrix of integration of
fractional order. This operational matrix has been used to solve
both linear and nonlinear problems with success. In compari-
son to the other methods, this approach is simple and more
convergent. The developed method is used to solve a number
of linear and nonlinear problems, demonstrating its efficiency
and accuracy. Furthermore, the method’s error analysis is thor-
oughly examined. As a future work, the proposed method may
be applied to different wavelets as well as other operators.
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In this paper, we study the existence of positive solutions for the following nonlinear second-order third-point semi-positive BVP.
We derive an explicit interval of positive parameters, which for any l, μ in this interval, the existence of positive solutions to the
boundary value problem is guaranteed under the condition that aðt, xÞ, bðt, xÞ are all superlinear (sublinear), or one is
superlinear, the other is sublinear.

1. Introduction

In the applied mathematical field, three-point BVP can
describe many phenomena. Moshinsky [1] introduced the
vibrations of a guy wire with a uniform cross-section and
composed of N parts of different densities using a multipoint
BVP. Timoshenko [2] also revealed that the theory of elastic
stability can be used by the method of a three-point BVP. Il’in
and Moviseev [3] were the first to study this aspect. Since
then, more general nonlinear BVP have been studied by
several authors [4–25].

In their paper [7], Ma and Wang obtained the existence
of positive solutions for a three-point BVP by Krasnoselskii’s
fixed theorem:

u″ tð Þ + a tð Þu′ tð Þ + b tð Þu tð Þ + h tð Þf uð Þ = 0, 0 ≤ t ≤ 1,
u 0ð Þ = 0, u 1ð Þ = αu ηð Þ,

(

ð1Þ

where α is a positive constant, 0 < η < 1, aðtÞ ∈ Cð½0, 1�, R+Þ,
bðtÞ ∈ Cð½0, 1�, R−Þ, f ∈ CðR+, R+Þ,h ∈ Cð½0, 1�, R+Þ and there
exists x0 ∈ ð0,+∞Þ such that hðx0Þ > 0:

In our paper, we study the existence of positive solutions
of second-order third-point semipositive BVP:

Lxð Þ tð Þ + λa t, xð Þ + μb t, xð Þ, 0 ≤ t ≤ 1,
x 0ð Þ = 0, x 1ð Þ = αx ξð Þ,

(
ð2Þ

where ðLuÞðtÞ = u″ðtÞ + f ðtÞu′ðtÞ + gðtÞuðtÞ, λ, μ are posi-
tive parameters, 0 < ξ < 1, f ðtÞ ∈ C½0, 1�, and gðtÞ ∈ Cð½0, 1�,
ð−∞,0ÞÞ. And our paper also allows that aðt, xÞ, bðt, xÞ are
both semipositive and lower unbounded.

Our main tool is the following fixed point index theory.

Theorem 1 [4].We suppose that K ⊂ E is a cone in E, in which
E is a real Banach space, the open bounded set Ω1,Ω2 is in E,
θ ∈Ω1, �Ω1 ⊂Ω2, and T : K ∩ ð�Ω2 \Ω1Þ⟶ K . Suppose
operator T can be completely continuous and satisfies one of
the following conditions:

(i) kTxk ≤ kxk, ∀x ∈ K ∩ ∂Ω1; kTxk ≥ kxk, ∀x ∈ K ∩
∂Ω2

(ii) kTxk ≥ kxk, ∀x ∈ K ∩ ∂Ω1; kTxk ≤ kxk, ∀x ∈ K ∩
∂Ω2
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Then, operator T has at least one fixed point x∗ in K
∩ ð�Ω2 \Ω1Þ.

Theorem 2 [4].We suppose that P ⊂ E is a cone in E, in which
E is a real Banach space, the open bounded setΩ1,Ω2,Ω3 is in
E, θ ∈Ω1, �Ω1 ⊂Ω2, �Ω2 ⊂Ω3, and T : P ∩Ω3 ⟶ P. Suppose
operator A is completely continuous and satisfies the following
conditions:

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω1,
Txk k ≥ xk k, Ax ≠ x,∀x ∈ P ∩ ∂Ω2,
Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω3:

ð3Þ

Then, operator T has at least two fixed points x∗ and x∗∗ in
P ∩ ð�Ω3/Ω1Þ, and x∗ ∈ P ∩ ðΩ2/Ω1Þ and x∗∗ ∈ P ∩ ð�Ω3/�Ω2Þ.

2. Preliminaries and Lemmas

We set a Banach space E = Cð½0, 1�,ð−∞,+∞ÞÞ with norm
kxk =maxt∈I jxðtÞj. We know of the following lemmas
from Ref. [6].

Lemma 3. Settingξ1ðtÞas the positive solution of the equation,
we have:

Lξ1ð Þ tð Þ = 0, 0 ≤ t ≤ 1,
ξ1 0ð Þ = 0, ξ1 1ð Þ = 1:

(
ð4Þ

Then, ξ1ðtÞ ∈ ½0, 1� is strictly increasing on ½0, 1�, and ξ1′
ð0Þ > 0.

Lemma 4. Settingξ2ðtÞas the positive solution of the equation,
we have:

Lξ2ð Þ tð Þ = 0, 0 ≤ t ≤ 1,
ξ2 0ð Þ = 1, ξ2 1ð Þ = 0:

(
ð5Þ

Then, ξ2ðtÞ ∈ ½0, 1� is strictly decreasing on ½0, 1�.

From Lemma 3 and Lemma 4, we know that 0 < ξ1ðtÞ < 1,
0 < ξ2ðtÞ < 1. In the rest of our paper, the following condition
is used:

(C1) 0 < αξ1ðηÞ < 1, whereξ1ðtÞis given by Lemma 3

Throughout this paper, we shall use the following
notation:

G t, sð Þ = 1
ζ

ξ1 tð Þξ2 sð Þ, 0 ≤ t ≤ s ≤ 1,
ξ1 sð Þξ2 tð Þ, 0 ≤ s ≤ t ≤ 1,

(
ð6Þ

where ζ = ξ1′ð0Þξ2ð0Þ.

Obviously, from Ref. [6], we can be assured that when
(C1) holds, the BVP

Lxð Þ tð Þ + y tð Þ = 0, 0 ≤ t ≤ 1,
x 0ð Þ = 0, x 1ð Þ = αu ξð Þ,

(
ð7Þ

is equivalent to the following integral equation:

x tð Þ =
ð1
0
G t, sð Þe sð Þy sð Þds + αξ1 tð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð Þy sð Þds,

ð8Þ

where eðtÞ = exp ðÐ t0 f ðsÞdsÞ.
Set zðtÞ =min ððξ1ðtÞ/kξ1kÞ, ðξ2ðtÞ/kξ2kÞÞ. From (6), for

t ∈ ½0, 1�, we know that

z tð ÞG s, sð Þ ≤G t, sð Þ ≤G s, sð Þ: ð9Þ

We present some other lemmas that are important to our
main results.

Lemma 5 [7]. Assume that for any y ∈ Cð½0, 1�, ð0,+∞ÞÞ, xðtÞ
is the solution of the following BVP:

Lxð Þ tð Þ + y tð Þ = 0, 0 < t < 1,
x 0ð Þ = 0, x 1ð Þ = αx ξð Þ:

(
ð10Þ

Then, we have

x tð Þ ≥ z tð Þ xk k, t ∈ 0, 1½ �: ð11Þ

Lemma 6. Assume that �w is a solution of the following BVP:

Lxð Þ tð Þ = −B tð Þ, 0 < t < 1,
x 0ð Þ = 0, x 1ð Þ = αx ξð Þ,

(
ð12Þ

where B ∈ Cð0, 1Þ,M > 0. Then, there exists constant M > 0
and satisfies

�w tð Þ ≤M Bk kz tð Þ, t ∈ 0, 1½ �: ð13Þ

Proof. For t ∈ ½0, 1�, we can have

�w tð Þ =
ð1
0
G t, sð Þe sð ÞB sð Þds + αξ1 tð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð ÞB sð Þds:

ð14Þ
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Obviously, for t ∈ ½0, 1�, we have
ð1
0
G t, sð Þe sð ÞB sð Þds

= 1
ζ

ðt
0
ξ1 sð Þξ2 tð Þe sð ÞB sð Þds +

ð1
t
ξ1 tð Þξ2 sð Þe sð ÞM sð Þds

� �

≤
p 1ð Þ
ζ

ξ1 tð Þξ2 tð Þ
ðt
0
B sð Þds + ξ1 tð Þξ2 tð Þ

ð1
t
B sð Þds

� �

= e 1ð Þ ξ1k k ξ2k k
ζ

�
ξ1 tð Þ
ξ1k k

ξ2 tð Þ
ξ2k k

ðt
0
M sð Þds

+ ξ1 tð Þ
ξ1k k

ξ2 tð Þ
ξ2k k

ð1
t
B sð Þds

�

≤
e 1ð Þ ξ1k k ξ2k k

ζ
z tð Þ

ð1
0
B sð Þds ≤M1z tð Þ Bk k,

ð15Þ

where M1 = ðeð1Þkξ1kkξ2kÞ/ζ.
By the same method, we can know that

αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð ÞB sð Þds ≤M2z tð Þ Bk k, ð16Þ

where M2 = ðαeð1Þkξ1kkξ2kÞ/ð1 − αξ1ðξÞÞ.
So, by choosing constant M ≥M1 +M2, we have

�w tð Þ ≤M Bk kz tð Þ, 0 ≤ t ≤ 1: ð17Þ

☐

Lemma 7 [7]. Let 0 ≤ �lim
x∞

ðbðt, xÞ/xÞ ≤ L2, t ∈ ½0, 1�. Define the
following function:

G τð Þ = max
0≤t≤1,0≤x≤τ

b t, τð Þ: ð18Þ

Then

(i) G is a nondecreasing function for τ

(ii) 0 ≤ �lim
ρ∞

ðGðτÞ/τÞ ≤ K2

For g assumptions:

(C2) aðt, xÞ, bðt, xÞ ∈ C, ð½0, 1� × ½0,+∞ÞRÞ
From (C2), there exists a functionBðtÞ ∈ C½0, 1�, BðtÞ > 0,

which satisfies

a t, xð Þ ≥ −B tð Þ,
b t, xð Þ ≥ −B tð Þ,

∀t ∈ 0, 1ð Þ, x ≥ 0,
ð19Þ

where MkBk < 1. M is given by Lemma 6.

(C3) B1 ≤ a−∞ ≤∞,B2 ≤ b−∞ ≤∞

(C4) 0 ≤ a+∞ ≤ b1,0 ≤ b+∞ ≤ b2

(C5) K1 ≤ a−∞ ≤∞,0 ≤ b+∞ ≤ K2

where

min B1, B2ð Þ ≥ 2 λ + μð Þ min
0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds

� �−1

,

b1 + b2 ≤ λ + μð Þp 1ð Þ
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �� �−1

,

K1 ≥ 2 λ min
0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds

� �−1

,

a−∞ = limx⟶∞
a t, xð Þ

x
,

a+∞ = �limx⟶∞
a t, xð Þ

x
,

b−∞ = limx⟶∞
b t, xð Þ

x
,

b+∞ = �limx⟶∞
b t, xð Þ

x
: ð20Þ

Let ε = min
0≤t≤1

zðtÞ, and

�H t, xð Þ =
H t, xð Þ, x ≥ 0,
F t, 0ð Þ, x < 0,

(

�Y t, xð Þ =
Y t, xð Þ, x ≥ 0,
G t, 0ð Þ, x < 0,

ð21Þ

where Hðt, xÞ = aðt, xÞ + BðtÞ, Yðt, xÞ = bðt, xÞ + BðtÞ.
For any l > 0, we set

Hl = max
0≤t≤1,0≤x≤l

�H t, xð Þ,

Yl = max
0≤t≤1,0≤x≤l

�Y t, xð Þ:
ð22Þ

From Lemma 6, letting wðtÞ = �wðtÞ, then xðtÞ is the pos-
itive solution of problem (2) if and only if ~xðtÞ = xðtÞ +wðtÞ
is the solution of the following problem:

Lxð Þ tð Þ + λ�H t, x −wð Þ + μ�Y t, x −wð Þ = 0,
x 0ð Þ = 0, x 1ð Þ = αu ξð Þ,

(
ð23Þ

and ~xðtÞ >wðtÞ, 0 < t < 1; here, �H, �Y is given by (21).
Defining the cone P in E, we have

P = x ∈ E : x tð Þ ≥ xk kq tð Þ, t ∈ 0, 1½ �f g: ð24Þ

3Journal of Function Spaces



Obviously, problem (18) is equivalent to

x tð Þ =
ð1
0
Y t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds:

ð25Þ

Defining the operator T : E⟶ E, we have

Txð Þ tð Þ =
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ

� λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �
ds:

ð26Þ

Obviously TðPÞ ⊂ P and T is completely continuous.

3. Our Main Three Results

Theorem 8. Suppose condition (C1), condition (C2), and con-
dition (C3) hold. Then, for the small number λ, μ, problem (2)
has at least one positive solution.

Proof. Firstly, we choose sufficiently small λ, μ which satisfies
the following:

λ + μ < H1 + Y1½ �p 1ð Þ
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �� �−1
:

ð27Þ

Letting Ω1 = fx ∈ E : kxk < 1g, for any x ∈ P ∩ ∂Ω1, t ∈
½0, 1�, by the definition of operator T , we have

Txð Þ tð Þ ≤
ð1
0
G s, sð Þ λH1 + μY1½ �ds + αξ1 tð Þ

1 − αξ1 ξð Þ
�
ð1
0
G ξ, sð Þe sð Þ λH1 + μY1½ �ds

≤ λ + μð Þ H1 + Y1½ �e 1ð Þ

�
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
< 1 = xk k:

ð28Þ

Thus, we have

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω1: ð29Þ

Secondly, by (C3), we know that there exists constant
l1 > 0 which satisfies

a t, xð Þ ≥ B1x, b t, xð Þ ≥ B2x,∀x ≥ l1, t ∈ 0, 1½ �: ð30Þ

Letting r =max f2MkBk, ð2l1/εÞ, 2g, then r > 1. Set
Ω2 = fx ∈ E : kxk < rg, for any x ∈ P ∩ ∂Ω2, t ∈ ½0, 1�, we
have

x tð Þ −w tð Þ ≥ x tð Þ −M Bk kz tð Þ ≥ x tð Þ − M Bk k1
r

x tð Þ ≥ 1
2 x tð Þ:
ð31Þ

Therefore, we have xðtÞ −wðtÞ ≥ ð1/2ÞxðtÞ ≥ ðkxk/2ÞzðtÞ
≥ ðεr/2Þ ≥ l1.

Thus, by the definition of �H, �Y and (30), we can have

λ�H s, x sð Þ −w sð Þð Þ + μ�Y s, x sð Þ −w sð Þð Þ
≥ B1λ x sð Þ −w sð Þð Þ + B2μ x sð Þ −w sð Þð Þ
≥min B1, B2ð Þ λ + μð Þ x sð Þ −w sð Þð Þ:

ð32Þ

We have

Txð Þ tð Þ ≥
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

≥ min
0≤t≤1

ð1
0
G t, sð Þ min B1, B2ð Þ λ + μð Þ x sð Þ −w sð Þð Þds

≥
1
2 λ + μð Þ min B1, B2ð Þ min

0≤t≤1

ð1
0
G t, sð Þx sð Þds:

ð33Þ

Then, by Lemma 5, we have

Txð Þ tð Þk k ≥ 1
2 λ + μð Þ min B1, B2ð Þ min

0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds x tð Þk k:

ð34Þ

Therefore, by the definition of B1, B2, we have

Txk k ≥ xk k, ∀x ∈ K ∩ ∂Ω2: ð35Þ

Then, by (29), (35) and Theorem 1, operator T has at last
one fixed point ~xðtÞ ∈ P ∩ ð �Ω2/Ω1Þ, i.e., ~xðtÞ is the solution of
problem (2), and it is easy to know k~xk ≥ 1.

Finally, by (C2) and Lemma 3, we have

~x tð Þ ≥ ~xk kz tð Þ ≥ z tð Þ >M Bk kz tð Þ ≥ �w tð Þ =w tð Þ: ð36Þ

Thus, x = ~x −w is the positive solution of problem (2). ☐

Theorem 9. We suppose that condition (C1), (C2), and (C4)
hold, and the following condition also holds:

(C6) There exist constant D > 0, ρ > 0, and we have

a t, xð Þ ≥ ρ,
b t, xð Þ ≥ ρ,

x ∈ D,∞Þ½ , t ∈ 0, 1½ �:
ð37Þ
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Then, for the small number λ, μ, problem (2) has at least one
positive solution.

Proof. Firstly, let r =max f2MkBk, ð2D/εÞ, 2g, and

1 = 2r min
0≤t≤1

ð1
0
Y t, sð Þe sð Þ λ + μð Þρds

� �−1
: ð38Þ

Set Ω1 = fx ∈ E : kxk < rg, for any x ∈ P ∩ ∂Ω1, s ∈ ½0, 1�,
we have

x sð Þ −w sð Þ ≥ x sð Þ −M Bk kz sð Þ ≥ x sð Þ − M Bk k
r

x sð Þ ≥ 1
2 x sð Þ:

ð39Þ

Thus, xðsÞ −wðsÞ ≥ ð1/2ÞxðsÞ ≥ ðkxk/2ÞzðsÞ ≥ ðεr/2Þ ≥D.
Therefore, by (C6) and the definition of operator T , we have

Txð Þ tð Þ =
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ

� λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �
ds:

ð40Þ

For BðtÞ > 0, t ∈ ð0, 1Þ, we have

Txð Þ tð Þ ≥
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

≥
ð1
0
G t, sð Þe sð Þ λ ρ + B sð Þð Þ + μ ρ + B sð Þð Þ½ �ds

≥
1
2 min

0≤t≤1

ð1
0
G t, sð Þe sð Þ λ + μð Þρds = r = xk k:

ð41Þ

We can know that by the above discussion, we have

Txk k ≥ xk k,∀x ∈ P ∩ ∂Ω1: ð42Þ

Secondly, by (C4), we can have

0 ≤ lim
x⟶∞

�H s, x −wð Þ
u

≤ b1,

0 ≤ lim
x⟶∞

�Y s, x −wð Þ
u

≤ b2,

s ∈ 0, 1½ �:

ð43Þ

Then, there exists constant l2 > 0 which satisfies

�H s, x −wð Þ ≤ b1x,
�Y s, x −wð Þ ≤ b2x,

∀x ≥ l2, s ∈ 0, 1½ �:
ð44Þ

Letting R =max f2l2, 2rg, then r < R. Set Ω2 = fx ∈ E :
kxk < Rg, for any x ∈ P ∩ ∂Ω2, t ∈ ½0, 1�, we have

Txð Þ tð Þ ≤
ð1
0
G s, sð Þ λb1x sð Þ + μb2x sð Þ½ �ds

+ αξ1 tð Þ
1 − αξ1 ξð Þ

ð1
0
G ξ, sð Þe sð Þ λb1x sð Þ + μb2x sð Þ½ �ds:

ð45Þ

Thus, we have

Txð Þ tð Þ ≤ λ + μð Þ b1 + b2½ �e 1ð Þ

�
ð1
0
G s, sð Þx sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þx sð Þds

� �
:

ð46Þ

So, we have

Txð Þ tð Þk k ≤ λ + μð Þ b1 + b2½ �e 1ð Þ

�
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
xk k:

ð47Þ

Then, we can have by the definition of b1, b2

Txk k ≤ xk k,∀x ∈ K ∩ ∂Ω2: ð48Þ

☐

Then, similar to the proof of heorem 8, we have that
result of heorem 9 by Theorem 1.

Theorem 10. Suppose condition (C1), condition (C2), and
condition (C5) hold. Then, for sufficiently small λ, μ, problem
(2) has at least two positive solutions.

Proof. Firstly, by Lemma 7, there exists constant τ > 0 which
satisfies

G τð Þ ≤ K2τ: ð49Þ

Therefore, setting Ω1 = fx ∈ E : kxk < τg, for any x ∈ P
∩ ∂Ω1, t ∈ ½0, 1�, by the above discussion, for the quite small
λ, μ, we have

λHτ + μY τð Þ½ �e 1ð Þ
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
≤ τ:

ð50Þ
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We have

Txð Þ tð Þ ≤ λHτ + μY τð Þ½ �

�
ð1
0
G t, sð Þe sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð Þds

� �
≤ λHτ + μY τð Þ½ �e 1ð Þ

�
ð1
0
G s, sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þds

� �
≤ τ = xk k:

ð51Þ

Then, we have

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω1: ð52Þ

Secondly, by (C5), there exists a constant l3 > 1, which
satisfies

a t, xð Þ ≥ K1x, ∀x ≥ l3: ð53Þ

Letting r =max f2MkBk, ð2l3/εÞ, 2τg, and Ω2 = fx ∈ E :
kxk < rg, for any x ∈ P ∩ ∂Ω2, t ∈ ½0, 1�, we have

x tð Þ −w tð Þ ≥ x tð Þ −M Bk kz tð Þ ≥ x tð Þ − M∥B∥
r

x tð Þ ≥ 1
2 x tð Þ:

ð54Þ

Then, xðtÞ −wðtÞ ≥ ð1/2ÞxðtÞ ≥ ðkxk/2ÞzðtÞ ≥ ðrε/2Þ ≥ l3.
Therefore, by the definitions of �H, �Y and the above dis-

cussion, we have

Txð Þ tð Þ ≥
ð1
0
G t, sð Þe sð Þ λ�H s, x −wð Þ + μ�Y s, x −wð Þ� �

ds

≥
ð1
0
G t, sð Þe sð ÞλK1 x −wð Þds

≥
K1
2 λ min

0≤t≤1

ð1
0
G t, sð Þe sð Þz sð Þds ≥ r = xk k:

ð55Þ

Thus, we have

Txk k ≥ xk k,∀x ∈ P ∩ ∂Ω2: ð56Þ

Finally, letting

R =max
�

λHR + μYR½ �
�ð1

0
G s, sð Þe sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
�
ð1
0
G ξ, sð Þe sð Þds

�
, 2r

	
,

ð57Þ

then, τ < r < R. Set Ω3 = fx ∈ E : kxk < Rg, for any x ∈ P ∩ ∂
Ω3, t ∈ ½0, 1�, by the definition of operator T , we have

Txð Þ tð Þ ≤ λHR + μYR½ �

�
ð1
0
G s, sð Þe sð Þds + αξ1 1ð Þ

1 − αξ1 ξð Þ
ð1
0
G ξ, sð Þe sð Þds

� �
:

ð58Þ

Thus, we have

Txk k ≤ xk k, ∀x ∈ P ∩ ∂Ω3: ð59Þ

Then, similar to the proof of heorem 8, we have the result
of heorem 10 by Theorem 2. ☐

Remark 11. The results of these three theorems in our paper
also hold under the condition in which nonlinear aðt, xÞ,
bðt, xÞ are both lower semicontinuous.

Remark 12. We can obtain the results of Theorem 10 if we
replace condition (C5) with (C6)K1 ≤ b−∞ ≤∞, 0 ≤ a+∞ ≤ K2.
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In this paper, a quantum neural network with multilayer activation function is proposed by using multilayer Sigmoid function
superposition and learning algorithm to adjust quantum interval. On this basis, the quasiuniform stability of fractional quantum
neural networks with mixed delays is studied. According to the order of two different cases, the conditions of quasi uniform
stability of networks are given by using the techniques of linear matrix inequality analysis, and the sufficiency of the conditions
is proved. Finally, the feasibility of the conclusion is verified by experiments.

1. Introduction

Fractional calculus is an arbitrary extension of integer calcu-
lus in order. It has strong advantages and wide application
prospects in the fields of physics, chemistry, biology, econ-
omy, control, signal, and image processing. It has attracted
extensive attention from scholars at home and abroad and
has become one of the current research hotspots. In recent
years, due to the continuous development of fractional differ-
ential equations, many researchers began to pay attention to
the fractional-order theory, and the combination of
fractional-order and neural network give full play to the
advantages of fractional order. For example, literature [1–4]
combined fractional order with neural network and achieved
a good effect. Among them, Boroomand and Menhaj [4] pre-
sented the fractional-order Hopfield neural network model
and studied its stability through the quasienergy function.
[5–7] study on different fractional-order neural networks
and explore the influence of different factors on fractional-
order neural networks. This paper summarizes the synchro-
nization problem of neural network [8–12]. Dominik et al.
[13] considered discrete fractional-order artificial neural net-
works. Chaos and chaotic synchronization of fractional-
order neural networks are proposed [14]. Literature [15, 16]
explained and analyzed the dynamics of fractional-order
neural networks. The fractional-order neural network was

applied in different fields [17–21]. In recent years, the stabil-
ity of fractional-order neural network system has become a
research hotspot [22–31]. In reference [22], the stability
and passivity of a memristor-based fractional-order compet-
itive neural network (MBFOCNN) are analyzed by using
Caputo’s fractional derivative. The effectiveness of the pro-
posed results is finally verified by using analysis techniques
and other computational tools. In reference [23], the problem
of robust dissipation of Hopfield-type complex valued neural
network (HTCVNN) model with time-varying delay and lin-
ear fractional uncertainty is studied, and many numerical
models are designed to verify the results. In reference [24,
25], the global asymptotic stability of fractional quaternion
numerical bidirectional associative memory neural networks
(FQVBAMNNs) and fractional quaternion numerical mem-
ristic neural networks (FOQVMNNs) is studied. The effec-
tiveness of the results is proved by using related methods.
In reference [26, 27], the stability of fractional-order contin-
uous time quaternion numerical leaky integral echo state
neural network (NN) with multiple time-varying delays is
studied, and the feasibility of the method is verified by
numerical examples. In reference [28], the uniform stability
of a fractional-order leaky integral echo state neural network
(FOESN) with multiple delays is studied. The simulation
results show the effectiveness of the method. Literature [32,
33] proposed the time-delay correlation study of Caputo
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fractional-order neural network. However, there are few
studies on the behavior of fractional quantum neural net-
works with mixed delay. In this paper, a multilayer activation
function quantum neural network model is presented, and
the quasiuniform stability of fractional quantum neural net-
works with mixed delay is studied. It is proved by the formula
and simulated by the numerical case.

This article is organized as follows. In the second section,
we give the structure of the multilayer activation function of
the quantum neural network, based on which a fractional
quantum neural network model with mixed delay is pro-
posed. In the third section, it is proved that the fractional
quantum neural network system with mixed time delay is
quasiuniformly stable by corresponding definitions and
lemmas. In the fourth section, a concrete example is given
to verify the validity and applicability of the given results.

2. Model Composition and Preparation

2.1. Quantum Neural Network. Quantum neural network
belongs to the feed-forward type of neural network [34, 35].
Compared with the traditional feed-forward type of neural
network, the neurons in the hidden layer of quantum neural
network refer to the idea of quantum state superposition in
the quantum theory and carry out the linear superposition
of several Sigmoid functions, which is called the multilayer
activation function. Traditional activation functions can only
represent two states and orders of magnitude. When quan-
tized, a hidden layer neuron can represent more states and
orders of magnitude.

Each Sigmoid function superimposed has a different
quantum interval. By adjusting the quantum interval, the
data of different classes can be mapped to different orders
of magnitude or steps, so that the classification can have
more degrees of freedom. The quantum interval of the quan-
tum neural network can be obtained by training. The uncer-
tainty in the sampled data can be obtained and quantified by
a quantum neural network with an appropriate learning
algorithm.

Figure 1 shows a traditional three-layer feedforward neu-
ral network. Assume that the input layer I has n nodes, the

output layer O has k nodes, and the number of nodes in the
hidden layer H is m. Adjacent layer nodes are fully intercon-
nected, and nodes of the same layer are not connected. The
node output function in the hidden layer is

Hr = f WTX − θ
� �

r = 1, 2,⋯, u: ð1Þ

The output function of the node in the output layer is

Oi = f VTH − h
� �

j = 1, 2,⋯, n: ð2Þ

In the formula, f adopts Sigmoid function, and W is the
connection weight vector between each neuron in the input
layer and each neuron in the hidden layer. V is the connec-
tion weight vector between each neuron in the hidden layer
and each neuron in the output layer; θ is the threshold of
the hidden layer, and h is the threshold of the unit of the
output layer.

Quantum neural networks with multiple excitation
functions:

Hr =
1
n
〠
n

s=1
f U WTX − θs

� �� �
: ð3Þ

In the formula: f ðxÞ = 1/ð1 + exp ð−xÞÞ,W is the network
weight vector; X is the network input vector; U is the slope;
WTX is the input excitation of the quantum neuron; θs is
the quantum interval ðs = 1, 2,⋯, nÞ.

The learning of quantum neural network can be divided
into two steps: (1) adjusting the weight to make the input
data correspond to different class spaces; (2) adjust the quan-
tum interval of quantum neurons in the hidden layer to
reflect the uncertainty of data. The BP algorithm is used to
adjust the weight. Once the network weight is obtained, the
quantum interval can be adjusted by an appropriate algo-
rithm [36]. The idea of the algorithm is to minimize the out-
put change of the hidden layer neurons in the quantum
neural network based on the same kind of sample data.

I

X1 O1

O2

Ok

X2

Input layer Hidden layer Output layer

Wig

Vik

Xn

H O

Figure 1: Three-layer feedforward neural network graph structure.
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Assume that for class Cm, the output of the ith hidden
layer neuron changes as:

e2i,m =〠
xk

〠
xk∈Cm

Oi,m
� �

−Oi,k
� �2, ð4Þ

in the formula:Oi, k represents the output of the ith neuron in
the hidden layer when the network input vector is xk;

Oi,m
� �

=
1
Cmj j 〠

xixk∈Cm

Oi,k: ð5Þ

jCmj in the formula represents the cardinality of class
jCmj. It can be seen that e2i,m is a function of the quantum
interval θs. By taking the derivative of θsðs = 1,⋯, nÞ on both
sides of Equation (4) and finding the minimum value of e2i,m,
the variation formula of θi,s (i.e., layer S of the ith neuron in
the hidden layer) can be obtained.

Δθi,s = Z
U
nS

〠
k0

m=1xk

〠
xk∈Cm

Oi,m
� �

−Oi,k
� �∗ Vi,m,s

� �
−Vi,k,s

� �
,

ð6Þ

Vi,m,s
� Þ = 1

Cmj j〠xk
〠

xk∈Cm

Vi,k,s: ð7Þ

In formula (6), Z is the learning rate; k0 is the number of
nodes in the output layer, namely, the total number of classes;
k is the number of quantum interval layers; xk: xk ∈ Cm repre-
sents all samples belonging to the Cm class.

Among them:

Vi,k,s =Oi,k,s ∗ 1 −Oi,k,sð Þ: ð8Þ

In the formula: Oi,k,s = sigðU ∗ ðWTxk − θsÞÞ represents
the output of the sth quantum layer of the ith hidden layer
neuron when the input vector is xkðs = 1, 2,⋯, nÞ.
2.2. Caputo-Type Fractional Derivative Definition. In defini-
tion, f ðsÞ is a continuous function over R, for any β>0; the
β-order Caputo-type derivative of 0,f ðsÞ is defined as:

Dβ
0,s f sð Þ =D− n−βð Þ

0,s
dn

dtn
f sð Þ = 1

Γ n − βð Þ
ðs
0
s − τð Þβ−1 f n τð Þdτ:

ð9Þ

The following corollary can be drawn:

(1) When 0 < β < 1,Dβ
0,s f ðsÞ = ð1/ðΓð1 − βÞÞÞÐ s0ðs − τÞβ−1

f ðτÞdτ
(2) When f ðsÞ is a constant function, Dβ

0s f ðsÞ = 0

(3) D−βDβ f ðsÞ = f ðsÞ − ∑−f ðmÞ, β > 0,especially,when 0
< β < 1, when f ðsÞ

(4) is a one-dimensional function, D−βDβ f ðsÞ = f ðsÞ − f
ð0Þ.

(5) If α and γ are two constants, then D−βðαf ðsÞ + γhðtÞÞ
= αD−β f ðsÞ + γD−βhðtÞ, β ≥ 0

2.3. Fractional-Order Quantum Neural Network Model. Sup-
pose the following two conclusions are true:

(1) If vector x = ðxiÞ and matrix �A = ðaijÞ, we define the
Euclidean norm kxk of vector x to be kxk =∑jxij.
The matrix norm of the matrix k�Ak is defined as k�A
k =max1≤i≤n∑jaijj. In this paper, we set C = k�Ck, A
= k�Ak, B = k�Bk, and M = k �Mk

(2) The excitation functions FðxÞ, GðxÞ, and HðxÞ of the
fractional quantum neural network with mixed delay
both satisfy the Lipschiz condition, that is, for any u
, v ∈ R, u ≠ v, there exists a corresponding real num-
ber F,G,H > 0, such that kFðuÞ − FðvÞk ≤ Fku − vk
, kGðuÞ − GðvÞk ≤Gku − vk

The fractional quantum neural network model with
mixed time delay is shown below:

Dβxi tð Þ = −cixi tð Þ+〠aij f j xj tð Þ
� �

+〠bijgj xj t − τð Þ� �
+〠mij

ðt
t−σ

hi xi μð Þð Þdμ + Ii,

xi tð Þ = ψi tð Þ, t ∈ −γ, 0½ Þ, γ ∈max τ, 0f g,

8><
>:

ð10Þ

is converted to:

Dβx tð Þ = −�Cx tð Þ + �AF x tð Þð Þ + �BG x t − τð Þð Þ + �M
ðt
t−σ

H μð Þdμ + I,

x tð Þ = ψ tð Þ, t ∈ −γ, 0½ Þ, γ ∈max τ, σf g:

8><
>:

ð11Þ

Among them, 0 < β < 1, ði = 1, 2,⋯, nÞ, n represents the
number of neurons in a fractional quantum neural network
with mixed delay, and xðtÞ = ðx1ðtÞ, x2ðtÞ,⋯,xnðtÞÞ ∈ R is
the state vector of the neuron at time t.

F x tð Þð Þ = f1 x1 tð Þð Þ, f2 x2 tð Þð Þ,⋯,f n xn tð Þð Þð Þ,G x tð Þð Þ
= g1 x1 tð Þð Þ, g2 x2 tð Þð Þ,⋯,gn xn tð Þð Þð Þ

and HðxðtÞÞ = ðh1ðx1ðtÞÞ, h2ðx2ðtÞÞ,⋯, hnðxnðtÞÞÞT are the
activation function of fractional quantum neural network;
�C = diag ðci > 0Þ, �A = ðaiiÞ, �B = ðbijÞ, and �M = ðmijÞ are all
constant matrices; ci > 0 represents the rate of the isolated
resting state of the first neuron in the fractional-order quan-
tum neural network in the state of unconnected and without
external additional voltage difference; aj, bij, and mij repre-
sent the weight of the connection between the jth neuron
and the ith neuron; τj and σi represent the transmission delay

of the jth neuron along the axon; and I =
ðI1ðtÞ, I2ðtÞ,⋯, InðtÞÞT represents the external input and
deviation of the neuron.
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Set the initial conditions of the system, usually assuming
ψiðsÞ ∈ Cð½−γ, 0�RÞ, i ∈N+, and the norm on C is defined as
kψk = sup kψðsÞk.

Assume that xðtÞ and yðtÞ are two different solutions
whose initial values of model (11) are ψ ∈ C and ϕ ∈ C,
respectively, where ψð0Þ = ϕð0Þ = 0; let φ = ψ − φ, xðtÞ = yðtÞ
= eðtÞ = ðe1ðtÞ, e2ðtÞ,⋯, enðtÞÞT can be obtained:

 Dβe tð Þ = � C tð Þ
  + A F x tð Þð Þ � F y tð Þð Þð Þ
  + B G x t � τð Þð Þ � G y t � τð Þð Þð Þ

  +M
ðt
t�σ

H x μð Þð Þ � H y μð Þð Þð Þ

  · dμe tð Þ = φ tð Þ, t ∈ �γ, 0½ Þ, γ ∈max τ, σf g,

ð12Þ

where φ ∈ C, φð0Þ = 0 is the initial condition of model (12),
kφk = sups∈½−γ,0�kφðsÞk.

3. Main Result

Relevant definition:

Lemma 1. If xðsÞ ∈ Cn½0,+∞Þ and n − 1 < α, β < n ∈ Z+ then

D−αD−βx sð Þ =D− α+βð Þx sð Þ, α, β > 0,

DβD−βx sð Þ = x sð Þ, β ≥ 0,

D−βDβx sð Þ = x sð Þ − 〠
n−1

m=0

sm

m!
x mð Þ, β ≥ 0:

ð13Þ

Lemma 2 (Hölder inequality). Suppose that the real number
p, q > 1, and p, q satisfies ð1/pÞ + ð1/qÞ = 1, if j f ð·Þjp, jhð·Þjq
is a measurable function in space, and f , g : E⟶ R satisfiesÐ
Ej f ðxÞjdx <∞,

Ð
EjgðxÞjdx <∞, then f ð·Þhð·Þ is also a mea-

surable function and satisfies

ð
E
f xð Þh xð Þj jdx ≤

ð
E
f xð Þj jpdx

� 	1/p ð
E
h xð Þj jqdx

� 	1/q
: ð14Þ

In particular, when p = q = 2, it is the inequality that we
usually see. That is

ð
E
f xð Þh xð Þj jdx ≤

ð
E
f xð Þj j2dx

� 	1/2 ð
E
h xð Þj j2dx

� 	1/2
: ð15Þ

Lemma 3. Let k ∈N , x1, x2,⋯, xk be a nonnegative real num-
ber, then it can be obtained for any

〠
k

i=1
xi

 !η

≤ kη−1 〠
k

i=1
xið Þη: ð16Þ

Lemma 4 (Gronwall inequality). If xðtÞ, f ðtÞ, gðtÞ ≥ 0 is a
continuous function on ½0, TÞ, T <∞ and satisfies the follow-
ing inequality

x tð Þ ≤ f tð Þ +
ðt
0
g μð Þx μð Þdμ, t ∈ 0, T½ Þ: ð17Þ

Then, we can get

x tð Þ ≤ f tð Þ +
ðt
0
g μð Þf μð Þ exp

ðt
μ

g vð Þdv
( )

dμ, t ∈ 0, T½ Þ:

ð18Þ

In special cases, if f ðtÞ is a nonincreasing function, you
can get

x tð Þ ≤ f tð Þ exp
ðt
0
g vð Þdv


 �
, t ∈ 0, T½ Þ: ð19Þ

Definition 5. The initial time of the fractional quantum neu-
ral network system (11) with mixed delay is set to t0. For any
ξ > 0, there are two constants δ and T , 0 < δ < ξ, T > 0, so that
for any t ∈ J = ½t0, t0 + T�, when keðt0Þk < δ has keðtÞk < ξ,
then the system (11) is called quasiuniformly stable.

Theorem 6. When the order β ∈ ½0:5; 1Þ of the fractional
quantum neural network system (11) with mixed delay is
established, if the assumptions 2.3.1 and 2.3.2 are true and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P +Qe2t +W tð Þe w tð Þ+2ð Þt P

1 − e− 2+W tð Þð Þt

2 +W tð Þ +Q
1 − e−W tð Þt

W tð Þ
� 	s

<
ξ

δ
t ∈ J ,

ð20Þ

is true, where

P = 5 −
5M2H2γ2Γ 2β − 1ð Þ

Γ2 βð Þ4β ,N =
5M2H2

2βΓ βð Þ ,

Q =
5M2H2γ2Γ 2β − 1ð Þ

Γ2 βð Þ4β +
5B2G2Γ 2β − 1ð Þ 1 − e−2γ

� �
Γ2 βð Þ4β ,

L =
10Γ 2β − 1ð Þ C + AFð Þ2 + B2G2e−2γ

� �
Γ2 βð Þ4β ,

W tð Þ = L +Nt2β 1 − e−2t
� �

:

ð21Þ

Then, the system (11) is quasiuniformly stable.

Proof. We set the initial time t0 = 0 of the error system (12),
the initial condition is e0 = φð0Þ, and the expression of the
solution of the error system can be obtained from Lemma 1
as
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e tð Þ = φ 0ð Þ +D−β −�Ce tð Þ + �A F x tð Þð Þ − F y tð Þð Þð Þ�
+ �B G x t − τð Þð Þ −G y t − τð Þð Þð Þ + �M

ðt
t−σ

H x μð Þð Þ −H y μð Þð Þð Þdμ�
= φ 0ð Þ + 1

Γ βð Þ
ðt
0
t − μð Þβ−1 −�Ce μð Þ + �A F x μð Þð Þ − F y μð Þð Þð Þ�

+ �B G x μ − τð Þð Þ −G y μ − τð Þð Þð Þ + �M
ðt
t−δ

H x sð Þð Þ −H y sð Þð Þð Þds�dμ:
ð22Þ

From the hypotheses 1 and 2 and the basic properties of
the norm, we can get

e tð Þk k ≤ φ 0ð Þk k + 1
Γ βð Þ

ðt
0
t − μð Þβ−1 C e μð Þk k + AF e μð Þk k½

+ BG e μ − τð Þk k +
ðμ
μ−σ

MH e sð Þk kds�dμ
≤ φ 0ð Þk k + 1

Γ βð Þ
ðt
0
t − μð Þβ−1 C + AFð Þ e μð Þk kdμ

+
1

Γ βð Þ
ðt
0
t − μð Þβ−1BG e μ − τð Þk kdμ

+
1

Γ βð Þ
ðt
0
t − μð Þβ−1

ðt
−σ
MH e sð Þk kds

� 	
dμ

≤ φk k + 1
Γ βð Þ

ðt
0
t − μð Þβ−1 C + AFð Þ e μð Þk kdμ

+
1

Γ βð Þ
ðt
0
t − μð Þβ−1BG e μ − τð Þk kdμMHtβ

βΓ βð Þ
ðt
0
e μð Þk kdμ

+
MHσ φk k
Γ βð Þ

ðt
0
t − μð Þβ−1dμ:

ð23Þ

According to the Cauchy-Schwartz inequality in Lemma
2, we know

e tð Þk k ≤ φk k + 1
Γ βð Þ

ðt
0
t − μð Þ2β−2e2μdμ

� 	1/2

�
ðt
0
C + AFð Þ2∥e μð Þ∥2e−2μdμ

� 	1/2

+
1

Γ βð Þ
ðt
0
t − μð Þ2β−2e2μdμ

� 	1/2

�
ðt
0
B2G2∥e μ − τð Þ∥2e−2μdμ

� 	1/2

+
MHtβ

βΓ βð Þ
ðt
0
e2μdμ

� 	1/2 ðt
0
∥e μð Þ∥2e−2μdμ

� 	1/2

+
MHσ φk k
Γ βð Þ

ðt
0
e2μ t − μð Þ2β−2dμ

� 	1/2 ðt
0
e−2μdμ

� 	1/2
:

ð24Þ

Bring

ðt
0
t − μð Þ2β−2e2μdμ =

ðt
0
z2β−2e2 t−zð Þdz = e2t

ðt
0
z2β−2e−2zdz

=
e2t

22β−1

ð2t
0
μ2β−2e−μdμ <

2e2t

4β
Γ 2β − 1ð Þ,

ð25Þ

into Equation (24) to get

e tð Þk k ≤ φk k + 1
Γ βð Þ

2Γ 2β − 1ð Þe2t
4β

� 	1/2

�
ðt
0
C + AFð Þ2 e μð Þk k2e−2μdμ

� 	1/2

+
1

Γ βð Þ
2Γ 2β − 1ð Þe2t

4β

� 	1/2

�
ðt
0
B2G2 e μ − τð Þk k2e−2μdμ

� 	1/2

+
MHtβ

βΓ βð Þ
e2t − 1

2

� 	1/2 ðt
0
e μð Þk k2e−2μdμ

� 	1/2

+
MHσ φk k
Γ βð Þ

2Γ 2β − 1ð Þe2t
4β

� 	1/2 1 − e−2t

2

� 	1/2

:

ð26Þ

In Lemma 3, let k = 5, η = 2, we can get

e tð Þk k2 ≤ 5 −
5M2H2γ2Γ 2β − 1ð Þ

Γ2 βð Þ4β +
5M2H2σ2Γ 2β − 1ð Þ

Γ2 βð Þ4β




+
5B2G2Γ 2β − 1ð Þ 1 − e2γ

� �
Γ2 βð Þ4β

#
e2t
)

φk k2

+
10Γ 2β − 1ð Þ C + AFð Þ2 + B2G2e−2γ

� �
e2t

Γ2 βð Þ4β
(

+
5M2H2t2β e2t − 1

� �
2βΓ βð Þ

)ðt
0
e μð Þk k2e−2μdμ,

P = 5 −
5M2H2γ2Γ 2β − 1ð Þ

Γ2 βð Þ4β ,N =
5M2H2

2βΓ βð Þ ,

Q =
5M2H2γ2Γ 2β − 1ð Þ

Γ2 βð Þ4β +
5B2G2Γ 2β − 1ð Þ 1 − e−2γ

� �
Γ2 βð Þ4β ,

L =
10Γ 2β − 1ð Þ C + AFð Þ2 + B2G2e−2γ

� �
Γ2 βð Þ4β , ð27Þ

get

e tð Þk k2e−2t ≤ Pe−2t +Q
� �

φk k2 + L +Nt2β
� �

� 1 − e−2t
� �ðt

0
e μð Þk k2e−2μdμ:

ð28Þ

Using Gronwall inequality and letting WðtÞ = L +Nt2β

ð1 − e−2tÞ, get

e tð Þk k2e−2t ≤ Pe−2t +Q +W tð Þetw tð Þ P
1 − e− 2+W tð Þð Þt

2 +W tð Þ +Q
1 − e−W tð Þt

W tð Þ
� 	
 �

� φk k2,
ð29Þ

so
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e tð Þk k2 ≤ P +Qe2t +W tð Þe w tð Þ+2ð Þt P
1 − e− 2+W tð Þð Þt

2 +W tð Þ +Q
1 − e−W tð Þt

W tð Þ
� 	
 �

� φk k2,
ð30Þ

that is

e tð Þk k ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P +Qe2t +W tð Þe w tð Þ+2ð Þt P

1 − e− 2+W tð Þð Þt

2 +W tð Þ +Q
1 − e−W tð Þt

W tð Þ
� 	s

� φk k:
ð31Þ

☐

It can be seen that when kφk < δ, keðtÞk < ξ is easy to
know from Theorem 6. From Definition 5, it can be con-
cluded that the fractional quantum neural system (11) with
mixed time delay is quasiuniformly stable.

Theorem 7. If the order β ∈ ð0; 0:5Þ of fractional-order quan-
tum neural network system (11) with mixed delay is true,
assuming that 1 and 2 are true and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P + ~Qeqt +

~W tð Þ~P e ~w tð Þ+qð Þt − 1
� �
q + ~W tð Þ

+
~W tð Þ~Qe ~w tð Þ+qð Þt 1 − e−W tð Þt� �

~W tð Þ
q

s
<
ξ

δ
t ∈ J ,

ð32Þ

is true, where

~P = 5q−1, ~Q =
5q−1BqGq~E 1 − e−qγð Þ

q
+ 5q−1MqHqγq~E,

~L = 5q−1~E C + AFð Þq + 5q−1BqGqe−qγ~E,

~E = Γ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

 �q/p

, ~W tð Þ = L + ~Ntqβ, ~N =
5q−1MqHq

βqΓq βð Þ ,

ð33Þ

then the system (11) is quasiuniformly stable.

Proof from Theorem 6, we get

e tð Þk k ≤ φk k + 1
Γ βð Þ

ðt
0
t − μð Þβ−1 C + AFð Þ e μð Þk kdμ

+
1

Γ βð Þ
ðt
0
t − μð Þβ−1BG e μ − τð Þk kdμ

+
1

Γ βð Þ
ðt
0
t − μð Þβ−1

ðμ
μ−σ

MH e sð Þk kds
 !

dμ,

ð34Þ

let p = 1 + β and p = 1 + ð1/βÞ, obviously p, q > 1, from
Hölder’s inequality we can get

e tð Þk k ≤ φk k + 1
Γ βð Þ

ðt
0
t − μð Þpβ−pepμdμ

� 	1/p

�
ðt
0
C +AFð Þq e μð Þk kqe−qμdμ

� 	1/q
+

1
Γ βð Þ

�
ðt
0
t − μð Þpβ−pepμdμ

� 	1/p ðt
0
BqGq∥e μ − τð Þ∥qe−qμdμ

� 	1/q

+
MHtβept

βΓ βð Þ
ðt
0
∥e μð Þ∥qe−qμdμ

� 	1/q
+
MHσ∥φ∥
Γ βð Þ

�
ðt
0
epμ t − μð Þpβ−pdμ

� 	1/q
,

ð35Þ

0.4

0.3

0.2

0.1

x1

0.0
0 5 10 15

t

20 25 30

τ = 0.1
τ = 0.5
τ = 0.8

Figure 2: The trajectory graph of x1 for different τ.
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because

ðt
0
t − μð Þpβ−pepμdμ =

ðt
0
zpβ−pep t−zð Þdz = ept

ðt
0
zpβ−pe−pzdz

=
ept

ppβ−p+1

ðpt
0
μpβ−pe−μdμ <

ept

ppβ−p+1
Γ pβ − p + 1ð Þ,

ð36Þ

so

e tð Þk k ≤ φk k + eptΓ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

� 	1/p ðt
0
C + AFð Þq e μð Þk kqe−qμdμ

� 	1/q

+
eptΓ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

� 	1/p ðt
0
BqGq e μ − τð Þk kqe−qμdμ

� 	1/q

+
MHtβept

βΓ βð Þ
ðt
0
e μð Þk kqe−qμdμ

� 	1/q
+MHσ φk k

� eptΓ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

� 	1/p
:

ð37Þ
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𝜎 = 0.05
𝜎 = 0.2
𝜎 = 0.3

Figure 5: The trajectory graph of x2 for different σ.
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Figure 6: For the trajectory graph of different initial values x1.
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Figure 4: The trajectory graph of x1 for different σ.
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Figure 3: The trajectory graph of x2 for different τ.
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In Lemma 3, let k = 5, η = q, we can get

e tð Þk kq ≤ 5q−1 φk kq + 5q−1
eptΓ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

� 	q/p

�
ðt
0
C + AFð Þq e μð Þk kqe−qμdμ + 5q−1

eptΓ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

� 	q/p

�
ðt
0
BqGq e μ − τð Þk kqe−qμdμ + 5q−1MqHqtqβept

βqΓq βð Þ
�
ðt
0
e μð Þk kqe−qμdμ + 5q−1MqHqσq φk kq

� eptΓ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

� 	q/p

:

ð38Þ

Let

~E =
Γ pβ − p + 1ð Þ
Γp βð Þppβ−p+1

 �q/p

, ð39Þ

get

e tð Þk kq ≤ 5q−1 + 5q−1MqHqγq~Eeqt +
5q−1BqGq~E 1 − e−qγð Þeqt

q

 !
φk kq

+ 5q−1~E C + AFð Þqeqt + 5q−1MqHqtqβeqt

βqΓq βð Þ + 5q−1BqGqe−qγ~Eeqt

 �

�
ðt
0
e μð Þk kqe−qμdμ,

ð40Þ

then let

~P = 5q−1, ~N =
5q−1MqHq

βqΓq βð Þ ,

~Q =
5q−1BqGq~E 1 − e−qγð Þ

q
+ 5q−1MqHqγq~E,

~L = 5q−1~E C + AFð Þq + 5q−1BqGqe−qγ~E,

ð41Þ

then

e tð Þk kqe−qt ≤ ~Pe−qt +Q
� �

φk kq + ~L + ~Ntqβ
� �ðt

0
e μð Þk kqe−qμdμ: ð42Þ

Use Gronwall inequality and make ~WðtÞ = L + ~Ntqβ, and
get

0.2

0.1

0.0

0 5 10 15

t (𝛽 = 0.3)

20 25 30

x1

–0.1

–0.2

Figure 8: For the trajectory graph of different initial values x1.
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Figure 7: For the trajectory graph of different initial values x2. 0.2
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Figure 9: For the trajectory graph of different initial values x2.
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e tð Þk kq ≤ ~P + ~Qeqt +
~W tð Þ~P e ~w tð Þ+qð Þt − 1

� �
q + ~W tð Þ

+
~W tð Þ~Qe ~w tð Þ+qð Þt 1 − e−W tð Þt� �

~W tð Þ

" #

� φk kq,
ð43Þ

which is

e tð Þk k ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P + ~Qeqt +

~W tð Þ~P e ~w tð Þ+qð Þt − 1
� �
q + ~W tð Þ

+
~W tð Þ~Qe ~w tð Þ+qð Þt 1 − e−W tð Þt� �

~W tð Þ
q

s

� φk k:
ð44Þ

It can be seen that when kφk < δ, it is easy to know
keðtÞk < ξ from Theorem 6. From Definition 5, it can be
obtained that the fractional quantum neural system (11) with
mixed time delay is quasiuniformly stable.

4. Illustration

In this part, we give a specific example to verify the validity
and applicability of the given results.

The activation function in the above formula
is:f iðxiðtÞÞ = giðxiðtÞÞ = hiðxiðtÞÞ = sigmoidðxÞ, i = ð1, 2⋯ Þ,
F =H =G = 1.

By �B =
−0:5 −0:1

−0:2 −0:1

 !
, �A =

0:2 −0:1

0:1 −0:2

 !
, �C =

0:1 0

0 0:1

 !
, and �M =

0:4 −0:1

0:1 0:2

 !
, inferred B = 0:7, A

= 0:3, C = 0:1, and M = 0:5.
In this experiment, the experimental data show that by

controlling the corresponding parameters, we can study the
influence of another parameter on the trajectory of x1 and
x2 with different initial values. We set the parameters δ =
0:1, σ = 0:05, t0 = 0. Set the parameters when β=0.7, find L
= 2:7994, Q = 0:2278, N = 0:6878, WðtÞ = 3:0884, P =
4:9938, and find T = 0:6690 from the following inequality:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P +Qe2t +W tð Þe W tð Þ+2ð Þt P

1 − e− W tð Þ+2ð Þt

W tð Þ + 2
+Q

1 − e−W tð Þt

W tð Þ
� 	s

<
ε

δ
:

ð46Þ

When β = 0:3, find ~L = 83:7659, ~Q = 9:2269, ~N =
16:9440, ~WðtÞ = 84:1261, ~P = 213:7471, ~E = 2:4949. Find T
= 0:0522 from the following inequality.

Figure 2 is for σ = 0:1, β = 0:7, and x1ðtÞ = 0:5. For differ-
ent τ values ðτ = 0:1,0:5,0:8Þ, the corresponding trajectory of
x1. Figure 3 is for σ = 0:1, β = 0:7, and x2ðtÞ = 0:5. For differ-
ent τ values ðτ = 0:1, 0:5, 0:8Þ, the corresponding trajectory
of x2. It can be seen that the state trajectories of x1 and x2
converge to the equilibrium point.

Figure 4 shows the trajectory of x1 for τ = 1, β = 0:7, and
the initial value x1(t) =0.5, for different values of σ=0.05, 0.2,
0.3. Figure 5 shows the trajectory of x1 for τ = 1, β = 0:7, the

initial value x2(t) =0.5, for different values of σ = 0:05,0:2,0:3
the trajectory of x2. It can be seen that the state trajectories of
x1 and x2 converge to the equilibrium point.

Figure 6 shows the trajectory of x1 when β = 0:7, σ = 0:05,
and τ = 0:1, and the initial value x1ðtÞ takes different values.
Figure 7 shows the trajectory of x2 when β = 0:7, σ = 0:05,
and τ = 0:1, and the initial value x2ðtÞ takes different values.
It can be seen that the state trajectories of x1 and x2 converge
to the equilibrium point.

Figure 8 shows the trajectory of x1 when β = 0:3, σ = 0:05,
τ = 0:1, and the initial value x1ðtÞ takes different values.
Figure 9 shows the trajectory of x2 when β = 0:3, σ = 0:05,
and τ = 0:1, and the initial value x2ðtÞ takes different values.
It can be seen that the state trajectories of x1 and x2 converge
to the equilibrium point.

5. Conclusions

This paper uses the linear superposition of multilayer activa-
tion functions, uses learning algorithms to adjust quantum
intervals and other operations to quantize the neural net-
work, and proposes a quantum neural network model with
multilayer activation functions. On this basis, the quasiuni-
form stability of fractional quantum neural networks with
mixed time delays is studied. When β belongs to different
ranges, the sufficient conditions for the quasiuniform stabil-
ity of the fractional quantum neural network system with
mixed time delay are, respectively, discussed. Using the cor-
responding theorem, the proof of the theoretical result is
given. Finally, through numerical simulation, the feasibility
of the conclusions obtained in this paper is verified.
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Dβ x2 tð Þð Þ = −0:1x2 tð Þ + 0:1f1 x1 tð Þð Þ − 0:2f2 x2 tð Þð Þ − 0:2g1 x1 t − τð Þð Þ − 0:lg2 x2 t − τð Þð Þ +
ðt
t−σ

0:1h1 x1 μð Þð Þ + 0:2h2 x2 μð Þð Þ½ �dμ,

Dβ x1 tð Þð Þ = −0:1x1 tð Þ + 0:2f1 x1 tð Þð Þ − 0:1f2 x2 tð Þð Þ − 0:5g1 x1 t − τð Þð Þ − 0:lg2 x2 t − τð Þð Þ +
ðt
t−σ

0:4h1 x1 μð Þð Þ − 0:1h2 x2 μð Þð Þ½ �dμ:
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>>>:

ð45Þ

9Journal of Function Spaces



Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This work received support from the National Natural
Science Foundation of China (Nos. 61772295, 61572270,
and 61173056), the PHD Foundation of Chongqing Normal
University (No. 19XLB003), the Science and Technology
Research Program of Chongqing Municipal Education Com-
mission (Grant no. KJZD-M202000501), and Chongqing
Technology Innovation and Application Development
Special General Project (cstc2020jscx-lyjsAX0002).

References

[1] C. J. Zuñiga Aguilar, J. Gómez-Aguilar, V. Alvarado-Martínez,
and H. Romero-Ugalde, “Fractional order neural networks for
system identification,” Chaos, Solitons & Fractals, vol. 130,
article 109444, 2020.

[2] D. Sheng, Y. Wei, Y. Chen, and Y. Wang, “Convolutional neu-
ral networks with fractional order gradient method,” Neuro-
computing, vol. 408, pp. 42–50, 2020.

[3] J. Wang, Y. Wen, Y. Gou, Z. Ye, and H. Chen, “Fractional-
order gradient descent learning of BP neural networks with
Caputo derivative,” Neural Networks, vol. 89, pp. 19–30, 2017.

[4] A. Boroomand and M. B. Menhaj, “Fractional-order Hopfield
neural networks,” in Advances in Neuro-Information Process-
ing. ICONIP 2008, M. Köppen, N. Kasabov, and G. Coghill,
Eds., vol. 5506 of Lecture Notes in Computer Science,
pp. 883–890, Springer, Berlin, Heidelberg, 2008.

[5] L. Zhang and Y. Yang, “Different impulsive effects on synchro-
nization of fractional-order memristive BAM neural net-
works,” Nonlinear Dynamics, vol. 93, no. 2, pp. 233–250, 2018.

[6] Y. Gu, Y. Yu, and H. Wang, “Synchronization-based parame-
ter estimation of fractional-order neural networks,” Physica
A: Statistical Mechanics and its Applications, vol. 483,
pp. 351–361, 2017.

[7] L. Chen, C. Liu, R. Wu, Y. He, and Y. Chai, “Finite-time stabil-
ity criteria for a class of fractional-order neural networks with
delay,” Neural Computing and Applications, vol. 27, no. 3,
pp. 549–556, 2016.

[8] Y. Xingyu and J. Lu, “Synchronization of fractional order
memristor-based inertial neural networks with time delay,”
in 2020 Chinese Control And Decision Conference (CCDC),
Hefei, China, 2020.

[9] W. Zhang, J. Cao, D. Chen, and F. Alsaadi, “Synchronization
in fractional-order complex-valued delayed neural networks,”
Entropy, vol. 20, no. 1, p. 54, 2018.

[10] L. Kexue, P. Jigen, and G. Jinghuai, “A comment on "α-stability
and α-synchronization for fractional-order neural networks",”
Neural Networks, vol. 48, pp. 207-208, 2013.

[11] H. Liu, S. Li, H. Wang, Y. Huo, and J. Luo, “Adaptive synchro-
nization for a class of uncertain fractional-order neural net-
works,” Entropy, vol. 17, no. 12, pp. 7185–7200, 2015.

[12] T. Hu, X. Zhang, and S. Zhong, “Global asymptotic synchroni-
zation of nonidentical fractional-order neural networks,” Neu-
rocomputing, vol. 313, pp. 39–46, 2018.

[13] D. Sierociuk, G. Sarwas, and A. Dzieliński, “Discrete fractional
order artificial neural network,” Acta Mechanica et Automa-
tica, vol. 5, pp. 128–132, 2011.

[14] X. Huang, Z. Zhao, Z. Wang, and Y. Li, “Chaos and hyperch-
aos in fractional-order cellular neural networks,” Neurocom-
puting, vol. 94, pp. 13–21, 2012.

[15] C. Song and J. Cao, “Dynamics in fractional-order neural net-
works,” Neurocomputing, vol. 142, pp. 494–498, 2014.

[16] I. Batiha, R. Albadarneh, S. M. Momani, and I. H. Jebril,
“Dynamics analysis of fractional-order Hopfield neural net-
works,” International Journal of Biomathematics, vol. 13,
no. 8, article 2050083, 2020.

[17] M.-R. Chen, B.-P. Chen, G.-Q. Zeng, K.-D. Lu, and P. Chu,
“An adaptive fractional-order BP neural network based on
extremal optimization for handwritten digits recognition,”
Neurocomputing, vol. 391, pp. 260–272, 2020.

[18] M. Wu, J. Zhang, Z. Huang, X. Li, and Y. Dong, “Numerical
solutions of wavelet neural networks for fractional differential
equations,” Mathematicsl Methods in the Applied Sciences, pp.
1–14, 2021.

[19] C. Lu and X. Ding, “Periodic solutions and stationary distribu-
tion for a stochastic predator-prey system with impulsive per-
turbations,” Applied Mathematics and Computation, vol. 350,
pp. 313–322, 2019.

[20] Z. Aslipour and A. Yazdizadeh, “Identification of nonlinear
systems using adaptive variable-order fractional neural net-
works (case study: a wind turbine with practical results),” Engi-
neering Applications of Artificial Intelligence, vol. 85, pp. 462–
473, 2019.

[21] C. Lu, G. Sun, and Y. Zhang, “Stationary distribution and
extinction of a multi-stage HIV model with nonlinear stochas-
tic perturbation,” Journal of Applied Mathematics and Com-
puting, pp. 1–23, 2021.

[22] G. Rajchakit, P. Chanthorn, M. Niezabitowski, R. Raja,
D. Baleanu, and A. Pratap, “Impulsive effects on stability and
passivity analysis of memristor-based fractional-order com-
petitive neural networks,” Neurocomputing, vol. 417,
pp. 290–301, 2020.

[23] P. Chanthorn, G. Rajchakit, S. Ramalingam, C. P. Lim, and
R. Ramachandran, “Robust dissipativity analysis of Hopfield-
type complex-valued neural networks with time-varying
delays and linear fractional uncertainties,” Mathematics,
vol. 8, no. 4, p. 595, 2020.

[24] U. Humphries, G. Rajchakit, P. Kaewmesri et al., “Global sta-
bility analysis of fractional-order quaternion-valued bidirec-
tional associative memory neural networks,” Mathematics,
vol. 8, no. 5, p. 801, 2020.

[25] G. Rajchakit, P. Chanthorn, P. Kaewmesri, R. Sriraman,
and C. P. Lim, “Global Mittag–Leffler stability and stabili-
zation analysis of fractional-order quaternion-valued mem-
ristive neural networks,” Mathematics, vol. 8, no. 3, p. 422,
2020.

[26] S. M. A. Pahnehkolaei, A. Alfi, and J. T. Machado, “Stability
analysis of fractional quaternion-valued leaky integrator echo
state neural networks with multiple time-varying delays,”Neu-
rocomputing, vol. 331, pp. 388–402, 2019.

[27] S. M. A. Pahnehkolaei, A. Alfi, and J. T. Machado, “Delay inde-
pendent robust stability analysis of delayed fractional
quaternion-valued leaky integrator echo state neural networks
with QUAD condition,” Applied Mathematics and Computa-
tion, vol. 359, pp. 278–293, 2019.

10 Journal of Function Spaces



[28] S. M. Abedi Pahnehkolaei, A. Alfi, and J. A. T. Machado, “Uni-
form stability of fractional order leaky integrator echo state
neural network with multiple time delays,” Information Sci-
ences, vol. 418-419, pp. 703–716, 2017.

[29] R. Rakkiyappan, J. Cao, and G. Velmurugan, “Existence and
uniform stability analysis of fractional-order complex-valued
neural networks with time delays,” IEEE Transactions on Neu-
ral Networks and Learning Systems, vol. 26, no. 1, pp. 84–97,
2015.

[30] W. Ran-Chao, H. Xin-Dong, and C. Li-Ping, “Finite-time sta-
bility of fractional-order neural networks with delay,”Commu-
nications in Theoretical Physics, vol. 60, p. 189, 2013.

[31] S. Zhang, Y. Yu, and Q. Wang, “Stability analysis of fractional-
order Hopfield neural networks with discontinuous activation
functions,” Neurocomputing, vol. 171, pp. 1075–1084, 2016.

[32] H. Wu, X. Zhang, S. Xue, and P. Niu, “Quasi-uniform stability
of Caputo-type fractional-order neural networks with mixed
delay,” International Journal of Machine Learning and Cyber-
netics, vol. 8, no. 5, pp. 1501–1511, 2017.

[33] A. Alofi, J. Cao, A. Elaiw, and A. Al-Mazrooei, “Delay-depen-
dent stability criterion of Caputo fractional neural networks
with distributed delay,” Discrete Dynamics in Nature and Soci-
ety, vol. 2014, 6 pages, 2014.

[34] G. Purushothaman and N. B. Karayiannis, “Quantum neural
networks (QNNS): inherently fuzzy feedforward neural net-
works,” IEEE Transactions on Neural Networks, vol. 8, no. 3,
pp. 679–693, 1997.

[35] W. Rushi, Z. Daqi, and P. Li, “Character recognition algorithm
based on multi-layer excitation function quantum neural net-
work,” Data Acquisition and Processing, vol. 4, pp. 401–406,
2007.

[36] X.-F. Niu and W.-P. Ma, “A novel quantum neural network
based on multi-level activation function,” Laser Physics Letters,
vol. 18, no. 2, article 025201, 2021.

11Journal of Function Spaces



Research Article
Multiobjective Programming Strategy of Small- and Medium-
Sized Microenterprise Credit Based on Random Factors

Zhuoran Fan , Jilong Xu, and Yuchen Li

College of Mathematical Sciences, Ocean University of China, Qingdao, Shandong, China

Correspondence should be addressed to Zhuoran Fan; fanzhuoran@stu.ouc.edu.cn

Received 23 April 2021; Accepted 10 June 2021; Published 23 June 2021

Academic Editor: Chun Lu

Copyright © 2021 Zhuoran Fan et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this paper, we select eight indicators from the aspects of an enterprise’s bill transaction information, namely, whether the
enterprise’s loan is in breach of contract, effective invoice rate, total utilization rate of price and tax, negative invoice rate,
strength of enterprise, coefficient of variation, flow efficiency of assets, and influence of upstream and downstream enterprises;
then, we construct an evaluation index system. According to different industries, different categories, and the impact of random
factors, we divide the types of enterprises into 10 categories. Then, we use three kinds of Poisson random numbers to carry out
numerical simulation on the total price and tax of enterprises in different industries under the influence of COVID-19.

1. Background

When banks provide loans to small- and medium-sized and
microenterprises (small- and medium-sized and microenter-
prises are abbreviated as SMMEs), they often judge whether
to lend or not through credit risk assessment. Because of
the lack of mortgage assets in SMMEs, the bank will make
credit risk assessment based on the credit policy, influence,
strength, and stability of supply and demand relationship of
the enterprise, and then determine whether to lend, loan
amount, interest rate and term, and other credit strategies.
Some corporate banks have credit records, some have no
credit records. However, in the face of the impact of sudden
random factors on enterprises, how to give the credit strategy
when the annual total credit is fixed.

2. The Selection of Credit Risk
Quantitative Index

This paper analyzes the relevant data indicators of enter-
prises with credit records, takes into account the actual situ-
ation affecting the credit problems of SMMEs and refers to
the advanced international standards, and selects eight quan-
titative indicators affecting the credit risk of enterprises

according to China’s national conditions and the bank’s
credit policy:

(1) Whether the enterprise loan is in breach of contract is
an important indicator for the bank to examine
whether the enterprise can bring the money. Default
is 0 and nondefault is 1.Wi means whether ith enter-
prise is in breach of contract.Wi = 0means the enter-
prise defaults, whileWi = 1means that the enterprise
has not breached the contract

(2) Effective invoice rate: it is equal to the ratio of the
number of valid invoices to the total number of
invoices. Bi is used to denote the effective invoice rate
of the ith enterprise, YFi indicates the number of
valid invoices for the ith enterprise, and Ai represents
the total invoice number of the ith enterprise. Thus,
the corresponding formula of the effective invoice
rate of the ith enterprise is as follows:

Bi =
YFi

Ai
: ð1Þ

(3) Utilization rate of total price and tax: it is equal to the
ratio of the total price and tax of the valid invoice to
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the total price and tax of all invoices. Putting βi rep-
resents the utilization rate of the total price and tax
of an effective invoice of the ith enterprise

(4) Negative rate of invoice zi: it is equal to the ratio of
the number of invoices of the ith enterprise whose
value of the total invoice price and tax is “-” to the
number of total invoices of the ith enterprise

(5) EVAi: it is equal to the ratio of the difference between
the total price and tax of the output and input of
the ith enterprise to the total price and tax of input,
which indicates the strength of the enterprise. Putting
Si represents the total price and tax of the output
(sales revenue) of the ith enterprise, and Ji represents
the total price and tax of the ith enterprise’s input
(purchased products), which uses the following cor-
responding formula:

EVAi =
Si − Ji
Ji

: ð2Þ

(6) Coefficient of variation: it indicates the stability of
supply and demand relationship of enterprises. Using
ci represents the coefficient of variation of the ith
enterprise. xij represents the total input price and
tax of the ith enterprise in the jth month, sij is the
total output value tax of the ith enterprise in the jth
month, and Iij represents the net income of the ith
enterprise in the jthmonth. If xij = 0, let us take directly
EVAij = 0. The corresponding formula is follows:

Iij = Sij − xij,

EVAij =
Iij
xij

,

ci =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nð Þ∑12

j=1 EVAij − EVAij

� �2q
1/nð Þ∑12

j=1EVAij

,

ð3Þ

where EVAij represents the average value of EVAij in 12
months of the ith enterprise

(7) Liquidity efficiency of assets: it refers to the compar-
ative relationship between current assets and current
liabilities of SMMEs in the same period, that is, the
short-term solvency of SMMEs

The following table shows the asset flow data of the ith
enterprise in 12 months, as shown in Table 1.

The net income of the previous month is transferred to
the next month as part of the next month’s input, which
shows the liquidity of funds. The liquidity efficiency of the i
th enterprise asset μi can be expressed as follows:

μi =
m
12 , ð4Þ

where 12 represents 12 months, and m refers to the number
greater than 0 in EVAij of ith enterprise in 12 months. In fact,
μi is the proportion of the number of months whose value is
greater than 0 to the total number of months. The larger the
value indicates that the better the flow efficiency of ith
enterprise.

(8) Influence of upstream and downstream enterprises vi
: the influence is expressed by the maximum number
of effective cooperation between the ith enterprise
and upstream and downstream enterprises. In order
to quantitatively describe the influence of upstream
and downstream enterprises, the influence function
of upstream and downstream enterprises is intro-
duced with reference to the negative exponential
function of the psychological curve [1]:

vi = 1 − e− nið Þ1/3 , ð5Þ

where ni refers to the largest number of input invoice and
output invoice of the ith enterprise in 12 months. Following
the increase of ni, the influence of upstream and downstream
enterprises vi will also increase.

In the quantitative index system affecting the credit risk
of SMMEs, the first to fourth indexes reflect the reputation
of enterprises, the fifth index reflects the strength of enter-
prises, the sixth index reflects the stability of the supply and
demand relationship of enterprises, the seventh index reflects
the size of the credit risk of enterprises, and the eighth index
reflects the influence of enterprises and upstream and down-
stream enterprises.

3. Comprehensive Evaluation of Credit Risk
Quantitative Index System

In order to eliminate dimension and the positive and nega-
tive effects of index, in this paper, the fuzzy membership
method is used to standardize the index. Let yt j be the tth
index value of the jth evaluation object; wtj be the standard-
ized value of the tth index of the jth evaluation object and n
be the number of objects to be evaluated. Then, the positive
index standardization formula (6) and the negative index
standardization formula (7) can be used to standardize the
index [2]:

wtj =
yt j − min

1≤j≤n
yt j

max
1≤j≤n

yt j − min
1≤j≤n

yt j
, ð6Þ

wtj =
max
1≤j≤n

yt j − yt j

max
1≤j≤n

yt j − min
1≤j≤n

yt j
: ð7Þ

Among the 8 indicators of the quantitative index system
affecting credit risk of SMMEs, the fourth indicator (negative
invoice rate) and the sixth indicator (enterprise coefficient of
variation) are both negative indicators, which need to be
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processed with the help of formula (7), while other indicators
are calculated with the help of formula (6).

The following uses the entropy weight TOPSIS method to
evaluate the credit risk quantitative index system of SMMEs.
On the one hand, the entropy weight method is used to deter-
mine the coefficient of the credit risk quantitative index sys-
tem. On the other hand, the TOPSIS method, that is, the
technology of approaching the ideal solution, is used to
determine the ranking of the evaluated object n SMMEs.
The core idea of the TOPSIS method is to define the positive
ideal solution and negative ideal solution of the decision
problem, and then compare and evaluate the distance
between the solution and the positive ideal solution and neg-
ative ideal solution, and finally calculate the relative closeness
degree between each solution and the ideal solution, and
order the advantages and disadvantages of the solution.

3.1. Entropy Weight Method Being Used to Calculate the
Objective Weight of Indexes. Set wij as the normalized value
of the jth indicator in the ith system, where i = 1, 2,⋯, n
and j = 1, 2,⋯, 8. For a given index j, the larger the difference
of wij, the larger the comparative effect of this index has on
the system, that means the more information the index con-
tains and transmits.

The specific steps of the entropy method to determine the
index weight are as follows:

(i) Calculating the entropy value of 8 indicators such as
effective invoice rate. Set ej as the entropy value of
thejth index, the solution process is as follows [3]:

pij =
wij

∑n
i=1wij

,

ej = −
1
lnn

〠
n

i=1
pij ln pij,

ð8Þ

where pij is the characteristic proportion of the jth index in
the ith system, i = 1, 2,⋯, n and j = 1, 2,⋯, 8. ∑n

i=1wij are
the sum of all system observation data of the jth indicator

(ii) Calculation of the coefficient of variance gj of the jth
index gj = 1 − ej

(iii) Determine the weight coefficients of 8 indexes
sj = ðgj/∑

8
j=1gjÞ

3.2. Weighting of Standardized Data. Let yij be the weighted
value of the jth index standardized data of the ith SMMEs,
wij be the normalized value of the jth index observed value
of the ith SMMEs, and sj be the weight coefficient. According
to the weighting method, it can be seen that

yij =wijsj: ð9Þ

3.3. Determining the Positive and Negative Ideals of the
Evaluation System. Set y+j and y−j as the maximum and
minimum value of the jth index observation data, respectively,
j = 1, 2,⋯, 8:

y+j = max
1≤k≤n

ykj,

y−j = min
1≤k≤n

ykj:
ð10Þ

It is easy to know that the positive and negative ideal
solutions of the evaluation system are, respectively, y+j = ðy+1 ,
y+2 ,⋯,y+8 Þ and y−j = ðy−1 , y−2 ,⋯,y−8 Þ.
3.4. Calculating the Euclidean Distance between the
Evaluation System and the Ideal Solution. Let d+i be the
Euclidean distance between the weighted value of the ith
enterprise and the positive ideal solution and d−i be the
Euclidean distance between the weighted value of the ith
enterprise and the negative ideal solution. Then

d+i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y+1 − yi1ð Þ2 + y+2 − yi2ð Þ2+⋯+ y+8 − yi8ð Þ2

q
,

d−i =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y−1 − yi1ð Þ2 + y−2 − yi2ð Þ2+⋯+ y−8 − yi8ð Þ2

q
:

ð11Þ

3.5. Calculating the Relative Closeness Evaluation Result. Set
f i as the relative closeness of all the indexes and the ideal
solution of the ith enterprise, then

f i =
d−i

d−i + d+i
, ð12Þ

where i = 1, 2,⋯, n.
Determine the development status of the evaluated index

by calculating the closeness. The greater the relative closeness
f i, the closer the evaluated index is to the ideal solution, and
the better the development status.

Table 1: Asset flow data of enterprises.

Month 1 2 ⋯ 12

Total of input price and tax xi1 xi2 ⋯ xi,12

Total of output price and tax si1 si2 ⋯ si,12

Net income Ii1 = si1 − xi1 Ii2 = Ii1 + si2 − xi2 ⋯ Ii,12 = Ii,11 + si,12 − xi,12

EVAij Ii1/xi1 Ii2/xi2 ⋯ Ii12/xi12
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4. Banks’ Credit Strategies for SMMEs under
Random Factors

Let xi be the amount of the bank’s loan to the ith SMMEs and
li be the interest rate of the bank’s loan to the ith SMMEs.
Whether the bank gives loans to ith SMMEs, we use the 0‐1
function

ci =
1, bank made a loan to the ith enterprise,
0, bank does not lend to the ith enterprise:

(
ð13Þ

The production, operation, and economic benefits of
enterprises may be affected by some unexpected factors,
and the size of the impact is related to different industries
and different types of enterprises. For example, when
COVID-19 became widespread, the demand for medical ser-
vices and products produced by healthcare companies
increased rapidly. With the help of relevant state policies,
the total credit amount of banks to such healthcare compa-
nies and health enterprises will increase. At the same time,
in order to avoid the rapid transmission of COVID-19, the
state often needs to cut off some transmission routes. For
example, during the outbreak of COVID-19, the state issued
policies to close some self-employed small- and medium-
sized enterprises, so as to reduce the movement of people
and avoid cross-infection caused by too many people. In this
regard, banks will reduce the total amount of credit to such
self-employed SMMEs to avoid credit risk.

According to different industries, different categories,
and the size of the impact, we classify enterprises as follows:
self-employed enterprises, trade and transportation industry,
literature and art advertising industry, manufacturing indus-
try, service industry, financial investment industry, medical
and health industry, high-tech enterprises, catering industry,
and other industries.

In order to visually show the impact of credit risk and
possible sudden factors on each enterprise, we carry out the
numerical fluctuation of the total input price tax and the total
output price tax of 10 types of enterprises. According to the
actual impact of COVID-19 on society, the total input price
and tax and the total output price and tax of the medical
and health industry should be increased, while the total input
price and tax and the total output price and tax of the indi-
vidual business should be reduced. The concrete method is
to add random numbers (Poisson random numbers) that
are divided into three types for simulation.

The first category is to increase the total input and output
tax of the medical and health industry, and the total input
and output tax are, respectively, Ji and Si. By adding random
number αi (0~100%), the total input price and tax and the
total sales tax after the influence are, respectively ð1 + αiÞJi
and ð1 + αiÞSi. In MATLAB software, the function alpha1 =
rand ðlengthðlocation aÞ, 1Þ is used to achieve this [4, 5].

In the second category, for self-employed enterprises, the
total input price and tax and the total output price and tax of
the catering industry are reduced. The original total input
price and tax and the total output price and tax are, respec-
tively, Ji and Si. By adding random number γi (-100%~0),

the total input price and tax and the total output price and
tax are ð1 + γiÞJi and ð1 + γiÞSi. This is achieved with the help
of the functiongamma1 = rand ðlengthðlocation gÞ, 1Þ.

In the third category, the influence of other industries is rel-
atively small, and the random number φi (-50%~50%) is added
and fluctuates randomly, and the original total of the input
price and tax and the total of the output price and tax are Ji
and Si, respectively. The total input price and tax and output
price and tax are ð1 + φiÞJi and ð1 + φiÞSi. This is achieved with
the help of the function phi1 = rand ðlengthðlocation pÞ, 1Þ/2.

5. Multiobjective Planning Strategy of SMME’s
Credit under Random Factors

When the COVID-19 outbreak occurred, the demand for
services and products provided by medical and health enter-
prises also increased rapidly, and the resulting enterprise
profits also increased, so the ability of enterprises to repay
loans increased. It is a pity that the profit of the self-
employed enterprise is reduced or stagnated, and the ability
to repay the loan is weakened. Due to the impact of unex-
pected factors, the repayment ability is weakened and the
bank’s income is affected.

5.1. Determination of Objective Function. From the front, we
can see that f i means the comprehensive evaluation score of
the ith enterprise out of n enterprises. Let

fmin = min f if g, i = 1, 2,⋯n,
fmax = max f if g, i = 1, 2,⋯n:

ð14Þ

Let the ith enterprise repayment for the bank loan ratio
be τi. Taking it here

τi =
f i − fmin

fmax − fmin
: ð15Þ

Thus, the amount of the loan that the ith enterprise can
repay is τixi. To establish the objective function

max 〠
n

i=1
ci 1 − f ið Þliτixi: ð16Þ

On the other hand, the smaller the bank’s lending risk,
the better. f i/Ji indicates the unit capital risk of the ith
SMMEs, and xið f i/JiÞ represents the investment risk brought
by the capital flow xi of the ith SMMEs, and establishes an
objective function for this purpose:

min 〠
n

i=1
cixi

f i
J i
: ð17Þ

On the other hand, the bank loan amount should take into
account the business strength of the enterprise. This paper
uses the sample variance index of loan amount and total input
price and tax to describe the balance of credit amount, and
establishes the objective function for this purpose:
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min s2 = 1
n − 1〠

n

i=1

xi
Ji

−
1
n
〠
n

i=1

xi
Ji

 !2

: ð18Þ

5.2. Determination of Constraints

(i) The loan limit of the established bank to the
enterprise determined to be loaned is 10-100 (ten
thousand), so

10 ≤ xi ≤ 100,  i = 1, 2,⋯, n: ð19Þ

(ii) The annual loan interest rate of the bank to the
enterprise determined to lend is 4%~15%. Thus

4% ≤ li ≤ 15%, i = 1, 2,⋯, n: ð20Þ

(iii) The balance of a bank’s investment in enterprises.
It’s represented by xi/Ji. The demand for services
and products provided by medical and health enter-
prises is increasing rapidly. Therefore, the total input
price and tax of such enterprises should also be
increased, and the amount of bank loans to such
enterprises should be increased. When the number
of self-employed enterprises decreases or stagnates,
the total input value and tax should also be reduced,
and the amount of bank loans to such enterprises
should be reduced. The upper and lower limits of
the total balance of input price and tax for medical
and health input are adjusted to 0.8 and 2. Consider-
ing that an individual business cannot be given a
loan completely, the upper and lower limits of the
total balance of input price and tax of an individual
business are adjusted to 0.3 and 1, the upper and
lower limits of other industries remain at 0.5 and
1.5. SetM = “medical enterprise code”; G = “individ-
ual enterprise code”; and Q = “all other enterprise
codes”. We agreed that

0:8 ≤ xi
Ji

≤ 2,  i ∈M,

0:3 ≤ xi
Ji

≤ 1, i ∈G,

0:5 ≤ xi
Ji

≤ 1:5,  i ∈Q:

ð21Þ

(iv) Whether the bank loans to the enterprise and the
loan amount is consistent, let δ be a very small pos-
itive number andM be a very large positive number.
The values of 1 and 0 of ci, respectively, indicate that
the bank loans to the ith enterprise and does not
lend to the ith enterprise. In order to ensure the con-
sistency of bank loans to the enterprise and the loan
amount, there are constraints

δci ≤ xi ≤Mci: ð22Þ

(v) Total amount of loan. Assuming that the total
amount of loan is 100 million when the bank loans
to n enterprises, the unit here takes 10000 yuan.
We have

〠
n

i=1
xi = 104: ð23Þ

6. Example Checking

This paper verifies the multiobjective planning strategy of
SMMEs under the influence of COVID-19 by using the
related data. The original data of this paper comes from the
data of competition question C for CUMCM-2020 (China
University mathematical modeling competition), which can
be downloaded publicly [6] (http://www.mcm.edu.cn/html_
cn/node/10405905647c52abfd6377c0311632b5.html).

Firstly, the Poisson random number is considered, and
with the help of the TOPSIS evaluation method, the scores
and ranking comparison table of 302 enterprises before and
after the introduction of random distribution are obtained
[7–17]. The scores and ranking of the top 20 enterprises with
enterprise number before and after the introduction of ran-
dom distribution are shown in Table 2.

It can be seen from Table 2 that, after the introduction of
random distribution, the ranking of enterprises with enter-
prise labels ranging from 1 to 20 changed correspondingly—-
some changed greatly, while some changed less—indicating
that our model has good practicability.

After the introduction of random distribution, the
changes in scores and rankings.

of the top 20 enterprises among the 302 enterprises are
shown in Table 3.

As can be seen from Table 3, after the introduction of
random distribution, the number of the top 20 enterprises
is basically still in the top 20, indicating that our comprehen-
sive evaluation method is relatively good and the ranking dis-
tribution is relatively stable.

From Table 4, we can see the ranking changes of enter-
prises in the case of occurrence of emergent factors and
absence of emergent factors. It can be found that under the
influence of COVID-19, the rating and ranking of enterprises
in the medical and health industry have increased, indicating
that under the influence of COVID-19, such enterprises have
a good credit situation and a low credit risk. However, the
decline in the score and ranking of self-employed enterprises
indicates that under the influence of COVID-19, the credit
situation of such enterprises is poor and the credit risk is
high, which is in line with the actual situation. It indicates
that our TOPSIS evaluation method is effective and can be
better applied to the situation when random factors occur.

When the total annual credit of the bank is 100 million
yuan, we use the data given in the attached table of ques-
tion C to establish the multiobjective programming model
of 302 enterprises.
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Table 2: Comparison of scores and rankings of the top 20 enterprises with enterprise numbers before and after the introduction of random
distribution.

The score results of entropy weight method before introducing a
random distribution

The score results of entropy weight method after introducing a
random distribution

Enterprise numbers Score f i Ranking Enterprise numbers Score f i Ranking

1 0.03470546 133 1 0.01051545 258

2 0.03473871 132 2 0.01009714 271

3 0.26589653 77 3 0.2664342 52

4 0.29959602 8 4 0.36079418 3

5 0.26882309 21 5 0.31805003 22

6 0.2663194 61 6 0.04038756 92

7 0.26669382 46 7 0.01158391 189

8 0.26632932 59 8 0.0171994 112

9 0.26681615 40 9 0.01643889 114

10 0.26611135 72 10 0.11524284 72

11 0.26909606 19 11 0.32030139 17

12 0.2667195 44 12 0.31590827 32

13 0.26702299 31 13 0.01160196 187

14 0.26627581 63 14 0.11280042 75

15 0.26699131 33 15 0.31609219 31

16 0.27680573 15 16 0.32686684 12

17 0.2469376 90 17 0.29235498 47

18 0.26674657 42 18 0.31711769 26

19 0.26660041 50 19 0.31528929 40

20 0.24583911 93 20 0.24091041 58

Table 3: Changes in scores and rankings of the top 20 companies after the introduction of random distribution.

The score results of entropy weight method before introducing a
random distribution

The score results of entropy weight method after introducing a
random distribution

Enterprise numbers Score f i Ranking Enterprise numbers Score f i Ranking

206 0.65353762 1 206 0.74570025 1

30 0.51530701 2 30 0.55732306 2

4 0.36079418 3 237 0.33358854 3

107 0.34892084 4 235 0.31445308 4

92 0.34436155 5 89 0.31144136 5

89 0.34363768 6 107 0.30352414 6

76 0.34281575 7 220 0.30110706 7

220 0.34233996 8 4 0.29959602 8

122 0.33108545 9 92 0.2928879 9

26 0.32893502 10 76 0.29120591 10

62 0.32855488 11 122 0.28217424 11

16 0.32686684 12 26 0.28128101 12

38 0.32600357 13 38 0.28008684 13

45 0.32299682 14 62 0.27817557 14

110 0.32166147 15 16 0.27680573 15

33 0.32044747 16 45 0.27234886 16

11 0.32030139 17 33 0.27128483 17

53 0.3194912 18 110 0.27112156 18

111 0.31946501 19 11 0.26909606 19

63 0.31856213 20 63 0.26895159 20
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The multiobjective function includes the following: max
∑302

i=1 cið1 − f iÞliτixi, min ∑302
i=1 cixið f i/JiÞ, and

min s2 = 1
301〠

302

i=1
τi
xi
J i

−
1
302〠

302

i=1
τi
xi
J i

 !2

: ð24Þ

The constraint conditions are as follows:

10 ≤ xi ≤ 100,
4% ≤ li ≤ 15%,

τi =
f i − fmin

fmax − fmin
,

0:8 ≤ xi
Ji

≤ 2,  i ∈M

δci ≤ xi ≤Mci,

〠
302

k=1
xi = 104:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

, ð25Þ

The software programming of Lingo is used to solve the
above multiobjective function programming model [18]. In
the three target functions, let uðjÞ, ðj = 1, 2, 3Þ be the scale
coefficient of the jth objective function, which satisfies

u 1ð Þ + u 2ð Þ + u 3ð Þ = 1: ð26Þ

Set three different proportional coefficients and get differ-
ent results of different loan amounts, which are analyzed in
the following list (see Table 5).

According to the analysis in Table 5, the balance of credit
amount is important for banks. Finally, the eighth plan is
selected to obtain the specific credit plan for 302 SMMEs,

as shown in Table 6 below. The loan amount of enterprises
not listed in Table 6 is 100,000 yuan.

It can be found that during the COVID-19 epidemic, due
to the rapid increase in the demand for the services and prod-
ucts provided by the medical and health enterprises, the
investment of the finally obtained bank in this industry also
increased, the sales of the self-employed industry decreased
or stagnated, and the investment of the finally obtained bank
in this industry also decreased or stagnated. The investment
of banks in other industries is also adjusted accordingly to
maintain the survival and operation of the industry, which
is more consistent with the actual situation and demonstrates
the effectiveness and practicability of our model.

7. Sensitivity Analysis of the Model

The sensitivity of the model is used to analyze the sensitivity
and stability of the model. In order to test the stability and
effectiveness of the multiobjective programming strategy
model, sensitivity analysis is carried out.

In the case of COVID-19, 3 random Poisson numbers
were added to simulate the total value of the total tax and
total sales tax in each industry. In order to fully demonstrate
the sensitivity of the model, we changed the number of algo-
rithm runs and record the average scores of the 302 compre-
hensive evaluation scores obtained by each algorithm; then,
the average score of the comprehensive evaluation of the 20
algorithms was obtained and drawn. The results are shown
in Figure 1.

By checking whether the average value of the comprehen-
sive evaluation score is stable and centralized when the algo-
rithm runs for 20 times, we can verify whether the model is
stable. One can find that the average value of the comprehen-
sive evaluation score of 20 times is relatively centralized and
stable, floating in a certain range. It can be seen that our
model is stable and practical.

Table 4: Changes in medical and individual business scores and rankings after the introduction of random distribution.

The score results of entropy weight method before introducing
a random distribution

The score results of entropy weight method after introducing a
random distribution

Enterprise numbers Score f i Ranking Enterprise numbers Score f i Ranking

E195 (medical) 0.266610 48 E195 (medical) 0.314380 44

E398 (medical) 0.014558 189 E398 (medical) 0.012037 166

E420 (medical) 0.014021 227 E420 (medical) 0.013773 184

E373 (individual) 0.014911 162 E373 (individual) 0.009712 279

E124 (individual) 0.034705 133 E124 (individual) 0.010516 258

E125 (individual) 0.034739 132 E125 (individual) 0.010516 271

Table 5: Analysis of different results obtained by different scale coefficients of the three objective functions.

Plan 1 2 3 4 5 6 7 8

u 1ð Þ 0.7 0.6 0.6 0.5 0.6 0.5 0.4 0.3

u 2ð Þ 0.2 0.2 0.1 0.25 0.15 0.15 0.15 0.15

u 3ð Þ 0.1 0.2 0.3 0.25 0.25 0.35 0.45 0.55

The number of different values of the loan amount 7 9 9 8 11 17 19 20
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In this paper, the TOPSIS evaluation method is firstly
used to get the score and ranking comparison of 302 enter-
prises before and after the introduction of a random number,
and the ranking results are analyzed. Then, considering that
different industries each have a different ability to repay loans
when affected by COVID-19, the ratio factor that can repay
bank loans is introduced, and considering the floating

Table 6: List of the specific amount of 100 million yuan loan from
the bank to 302 SMMEs (yuan).

Enterprise number Loan amount

133 880344.8

147 548104

149 864340.1

166 532681.5

167 867680.4

171 150709.4

173 726597.9

178 836082.4

179 646818.7

182 425921

187 402967.4

190 414155.8

191 735308.3

193 338920

198 732913.7

205 313454.6

211 798931.5

242 184068.4

1 1000000

2 1000000

212 1000000

296 1000000

39 1000000

58 1000000

100 1000000

101 1000000

103 1000000

109 1000000

124 1000000

125 1000000

126 1000000

127 1000000

128 1000000

129 1000000

130 1000000

131 1000000

132 1000000

134 1000000

135 1000000

136 1000000

137 1000000

138 1000000

229 1000000

3 1000000

139 1000000

140 1000000

141 1000000

142 1000000

Table 6: Continued.

Enterprise number Loan amount

145 1000000

148 1000000

150 1000000

153 1000000

154 1000000

155 1000000

156 1000000

157 1000000

158 1000000

159 1000000

160 1000000

161 1000000

162 1000000

163 1000000

164 1000000

165 1000000

250 1000000

4 100000

169 1000000

170 1000000

174 1000000

175 1000000

176 1000000

177 1000000

181 1000000

183 1000000

184 1000000

185 1000000

186 1000000

189 1000000

196 1000000

197 1000000

199 1000000

200 1000000

201 1000000

202 1000000

203 1000000

204 1000000

258 1000000

5 100000
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amount of loans in different industries under national condi-
tions and policies, the objective function and constraints of
the multiobjective credit optimization model are modified,
and the multiobjective credit optimization model of enter-
prises influenced by COVID-19 is established. When the
total amount is 100 million, the corresponding credit deci-
sion is made. Finally, sensitivity analysis is carried out to test
the stability and effectiveness of the multiobjective program-
ming strategy model.

Data Availability

The original data of this paper comes from the data of com-
petition question C for CUMCM-2020 (China University
mathematical modeling competition), which can be down-
loaded publicly. Download from the following website:
http://www.mcm.edu.cn/html_cn/node/
10405905647c52abfd6377c0311632b5.html. The later data
used to support the findings of this study are included within
the supplementary information file(s).
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This paper is devoted to a class of impulsive fractional semilinear integrodifferential equations with nonlocal initial conditions.
Based on the semigroup theory and some fixed point theorems, the existence theory of PC-mild solutions is established under
the condition of compact resolvent operator. Furthermore, the uniqueness of PC-mild solutions is proved in the case of the
noncompact resolvent operator.

1. Introduction

The fractional evolution equation has been applied to many
fields, and scholars have obtained abundant research
achievements [1–13]. Impulsive fractional integrodifferential
equations can describe some phenomena which often occur
in physics, geology, and economics, for instance, earthquake,
the closing of the switch in the circuit, and so on. Many
scholars are committed to this subject and have achieved
plentiful results [1–7]. Based on the fact that nonlocal initial
conditions are more effective than classical initial conditions
in applied physics, the study of differential equations with
nonlocal conditions has attracted more and more researchers’
attention [8–13].

Ji and Li [14] studied the following impulsive differential
evolution equations with nonlocal conditions:

u′ tð Þ = Au tð Þ + f t, u tð Þð Þ, t ∈ 0, b½ �, t ≠ ti,
Δujt=ti = Ii u tið Þð Þ, i = 1, 2,⋯,m,

u 0ð Þ = g uð Þ,

8>><
>>: ð1Þ

where A is the generator of a strongly continuous semigroup
TβðtÞ; sufficient conditions for the existence of mild solutions
have been established by the Hausdorff measure of noncom-
pactness and fixed point theorems.

Zhu et al. [15] investigated the fractional semilinear inte-
grodifferential equations of mixed type with nonlocal condi-
tions:

cDβ
t u tð Þ = A tð Þu tð Þ + f t, u tð Þ, Gu tð Þ, Su tð Þð Þ, t ∈ 0, T0½ �,

u 0ð Þ + g uð Þ = u0,

(

ð2Þ

where 0 < β ≤ 1, AðtÞ is a closed linear operator with domain
DðAÞ defined on a Banach space E; the existence and unique-
ness of mild solutions have been established by k-set contrac-
tion and β-resolvent family.

Gou and Li [16] studied the fractional impulsive integro-
differential equations in Banach space E; local and global
existences of mild solutions have been proved by measure
of noncompactness and Sadovskii’s fixed point theorem:

cDβ
t u tð Þ + Au tð Þ = f t, u tð Þð Þ +

ðt
0
q t − sð Þg s, u sð Þð Þds, t ≥ 0, t ≠ tk,

Δujt=tk = Ik u t−kð Þð Þ, k = 1, 2,⋯,m,

u 0ð Þ = u0 ∈ E,

8>>>><
>>>>:

ð3Þ
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where 0 < β < 1, A : DðAÞ ⊂ E⟶ E is a closed linear oper-
ator and −A generates a uniformly bounded C0-semigroup
TðtÞ.

Inspired by these contributions, we consider the follow-
ing impulsive fractional semilinear integrodifferential equa-
tions with nonlocal initial conditions:

cDβ
t x tð Þ − A tð Þx tð Þ = f t, x tð Þ, Gxð Þ tð Þ, Hxð Þ tð Þð Þ, t ∈ 0, T½ �, t ≠ tk,

x 0ð Þ +w xð Þ = x0,
Δx tkð Þ = Ik x tkð Þð Þ, k = 1, 2,⋯,m,

8>><
>>:

ð4Þ

where cDβ
t is the Caputo’s fractional derivative of order β, β

∈ ð0, 1�, AðtÞ is a closed linear operator with domain DðAÞ
defined on a Banach space E, and two integral operators G
and H are defined by

Gx tð Þ =
ðt
0
g t, s, x sð Þð Þds,

Hx tð Þ =
ðT
0
h t, s, x sð Þð Þds,

ð5Þ

g : B × E⟶ E, h : B0 × E⟶ E are continuous and
nonlinear functions, B = fðt, sÞ ∣ 0 ≤ s ≤ t ≤ Tg, B0 = fðt, sÞ ∣
0 ≤ t, s ≤ Tg, f and ω are to be specified later, Ik : E⟶ Eðk
= 1, 2,⋯,mÞ are continuous impulsive functions, the pre-
fixed numbers tkðk = 1, 2,⋯,mÞ satisfy 0 = t0 < t1 < t2 <⋯<
tm < tm+1 = T , xðtkÞ = xðt−k Þ, and xðt−k Þ = lim

h⟶0−
xðtk + hÞ rep-

resent the left limit of xðtÞ at t = tk.
In this paper, we demonstrate the existence of PC-mild

solutions for problem (4) via the theory of semigroup and
fixed point theorem under the condition of compact resol-
vent operator. Meanwhile, the uniqueness of PC-mild solu-
tions is proved in the case of noncompact resolvent
operator. The kernels g and h of the integral operators G

and H are nonlinear functions; the function ω of the nonlo-
cal conditions is noncompact. In addition, the closed linear
operator AðtÞ is dependent on t. The rest of this paper is
organized as follows. In Section 2, some basic definitions
and lemmas are collected that will be needed throughout
the remaining sections. The existence and uniqueness of
PC-mild solutions are shown in Section 3 via the theories
of resolvent operators and various fixed point theorems.
Finally, the summary of our results comes in Section 4.

2. Preliminaries

Let ðE, k·kÞ be a Banach space, J = ½0, T� and 0 < T <∞. The
collection of all continuous functions from J into E, denoted
CðJ , EÞ, is a Banach space equipped with the norm kxkC =
max fkxðtÞk, t ∈ Jg for x ∈ CðJ , EÞ. Let PCðJ , EÞ = fx ∣ x
: J ⟶ E : x ∈ Cððtk, tk+1�, EÞ, and there exist xðt−k Þ and xðt+k Þ
with xðtkÞ = xðt−k Þ, k = 1,⋯,mg endowed with the PC-norm
kxkPC = sup fkxðtÞk, t ∈ Jg, J0 = ½0, t1�, J1 = ðt1, t2�,⋯, Jm =
ðtm, T�.

Lemma 1 (nonlinear alternative for single-valued maps). Let
E be a Banach space, C ⊂ E be a closed convex set, V be an
open subset of C, and 0 ∈ V . Suppose that Q : �V ⟶ C is
completely continuous, then either

(i) Q has a fixed point in �V or

(ii) there is a u ∈ ∂V and λ ∈ ð0, 1Þ with u = λQðuÞ

Lemma 2 (see [17]). Let 0 < η < 1, γ > 0, denote

Sn = ηn + C1
nη

n−1γ + C2
nη

n−2

2!
γ2+⋯+ γn

n!
, n ∈N , ð6Þ

where Ck
n = n!/ðk!ðn − kÞ!Þ. Then, for any fixed constant 0 <

ξ < 1 and any real number s > 1, we get

Sn ≤O
ξnffiffiffi
n

p
� �

+ o
1
ns

� �
= o

1
ns

� �
, as n⟶∞: ð7Þ

Definition 3 (see [18, 19]). The Caputo fractional derivative
of order β of a function f : ð0,∞Þ⟶ R is defined as

cDβ
t f tð Þ = 1

Γ n − βð Þð Þ
ðt
0
t − sð Þn−β−1 f nð Þ sð Þds, ð8Þ

where n − 1 < β < n, n ∈N , Γð·Þ denotes the Gamma func-
tion. The Laplace transform of the Caputo fractional deriva-
tive of order β is given as

L cDβ
t f tð Þ

� �
sð Þ = sβ L fð Þ sð Þ − 〠

n−1

j=1
sβ−j−1x jð Þ 0ð Þ,

 n − 1 < β ≤ n,
ð9Þ

where ðL f ÞðsÞ = Ð∞0 e−st f ðtÞdt is the Laplace transform of the
function f ðtÞ.

Definition 4 (see [20, 21]). Let AðtÞ be a closed and linear
operator with domain DðAÞ defined on a Banach space E
and β > 0. Let ρ½AðtÞ� be the resolvent set of AðtÞ; AðtÞ is
called the generator of a β-resolvent family if there exist ω
≥ 0 and a strongly continuous function Uβ : ℝ2

+ ⟶ BðEÞ
such that fλβ : Re λ > ωg ⊂ ρðAÞ and

λβI − A sð Þ
� �−1

x =
ð∞
0
e−λ t−sð ÞUβ t, sð Þxdt,  Re λð Þ > ω, x ∈ E:

ð10Þ

In this case, Uβðt, sÞ is called the β-resolvent family gen-
erated by AðtÞ.

Lemma 5 (see [21, 22]). Uβðt, sÞ satisfies the following
properties:
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(i) Uβðs, sÞ = I, Uβðt, sÞ =Uβðt, rÞUβðr, sÞ, for 0 ≤ s ≤ r
≤ t ≤ a

(ii) ðt, sÞ⟶Uβðt, sÞ is strongly continuous for 0 ≤ s ≤ t
≤ a

(iii) If Uβðt, sÞ is compact for t, s > 0, then the Uβðt, sÞ is
continuous in the uniform operator topology

Definition 6. A function x ∈ PCðJ , EÞ is said to be a PC-mild
solution of problem (4) if xðtÞ satisfies the integral equation:

x tð Þ =Uβ t, 0ð Þ x0 − ω xð Þð Þ

+
ðt
0
Uβ t, sð Þf s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þds

+ 〠
0<tk<t

Uβ t, tkð ÞIk x tkð Þð Þ, t ∈ J:

ð11Þ

3. Existence and Uniqueness of Mild Solution

Theorem 7. Assume that the conditions ðH1Þ-ðH3Þ hold true
and the resolvent operator Uβðt, sÞðt, s > 0Þ is compact.

ðH1Þ The function f : J × E × E × E⟶ E is continuous,
and there exist nonnegative Lebesgue integrable functions a,
li ∈ LðJ , R+Þði = 1, 2, 3Þ, for every t ∈ J , xi ∈ E, such that

f t, x1, x2, x3ð Þk k ≤ a tð Þ + l1 tð Þ x1k k + l2 tð Þ x2k k + l3 tð Þ x3k k:
ð12Þ

ðH2Þ There exist nonnegative Lebesgue integrable func-
tions b, c, li ∈ LðJ ,ℝ+Þði = 4, 5Þ, for all x ∈ E, such that

g t, s, xð Þk k ≤ b tð Þ + l4 tð Þ xk k,  t, sð Þ ∈ B,
h t, s, xð Þk k ≤ c tð Þ + l5 tð Þ xk k,  t, sð Þ ∈ B0:

ð13Þ

ðH3Þ The functions ω : PCðJ , EÞ⟶ E and Ik : E⟶ E
are continuous, and there exist constants dω, eω, dk, ek > 0,
such that

ω xð Þk k ≤ dω xk kPC + eω, x ∈ PC J , Eð Þ,
Ik xð Þk k ≤ dk xk k + ek, x ∈ E, k = 1, 2⋯m:

ð14Þ

Then, problem (4) has at least one PC-mild solution in
PCðJ , EÞ.

Proof. Let us consider the operatorQ : PCðJ , EÞ⟶ PCðJ , EÞ
as follows:

Qxð Þ tð Þ =Uβ t, 0ð Þ x0 − ω xð Þð Þ

+
ðt
0
Uβ t, sð Þf s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þds

+ 〠
0<tk<t

Uβ t, tkð ÞIk x tkð Þð Þ:
ð15Þ

It is easy to see that the operator Q is well defined in PC
ðJ , EÞ.

At first, we claim that Q : PCðJ , EÞ⟶ PCðJ , EÞ is a con-
tinuous operator. Let fxng∞0 ⊂ PCðJ , EÞ be a sequence such
that xn ⟶ xðn⟶∞Þ in PCðJ , EÞ. Since for all t ∈ J ,

Qxnð Þ tð Þ − Qxð Þ tð Þk k
≤ Uβ t, 0ð Þ ω xnð Þ − ω xð Þð Þ�� ��

+
ðt
0
Uβ t, sð Þ f s, xn sð Þ, Gxnð Þ sð Þ, Hxnð Þ sð Þð Þð

����
− f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð ÞÞds

����
+ 〠

m

k=1
Uβ t, tkð Þ Ik xn tkð Þð Þ − Ik x tkð Þð Þð Þ�� ��

≤M ω xnð Þ − ω xð Þk k +M
ðt
0
f s, xn sð Þ, Gxnð Þ sð Þ,ðk

� Hxnð Þ sð ÞÞ − f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þkds

+ 〠
m

k=1
M Ik xn tkð Þð Þ − Ik x tkð Þð Þk k,

ð16Þ

where M = max
0≤s≤t≤T

kUβðt, sÞk. Using the fact that f : J × E

× E × E⟶ E, ω : PCðJ , EÞ⟶ E, and Ik : E⟶ Eðk = 1,
2⋯mÞ are continuous, we obtain

Qxn −Qxk kPC ⟶ 0, as n⟶∞: ð17Þ

Therefore, Q : PCðJ , EÞ⟶ PCðJ , EÞ is continuous.
Furthermore, for any R > 0, we prove that QðTRÞ is

equicontinuous in Jkðk = 0, 1, 2⋯mÞ. For all x ∈ TR = fx ∈
PCðJ , EÞ: kxkPC ≤ Rg and τ1, τ2 ∈ Jkðτ1 ≤ τ2Þ, by the condi-
tion ðH3Þ, we have

Qxð Þ τ2ð Þ − Qxð Þ τ1ð Þk k
≤ Uβ τ2, 0ð Þ −Uβ τ1, 0ð Þ�� �� x0 − ω xð Þk k

+
ðτ2
τ1

Uβ τ2, sð Þf s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þds
�����

�����
+
ðτ1
0

Uβ τ2, sð Þ −Uβ τ1, sð Þ� 	
f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þds

����
����

+ 〠
0<tk<τ2

Uβ τ2, tkð ÞIk x tkð Þð Þ − 〠
0<tk<τ1

Uβ τ1, tkð ÞIk x tkð Þð Þ
�����

�����
≤ Uβ τ2, 0ð Þ −Uβ τ1, 0ð Þ	�� �� x0k k + dωR + eωð Þ

+
ðτ2
τ1

M f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þk kds

+ sup
s∈Jk

Uβ τ2, sð Þ −Uβ τ1, sð Þ�� ��
�
ðτ1
0

f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þk kds

+ 〠
m

k=1
Uβ τ2, tkð Þ −Uβ τ1, tkð Þ�� �� Ik x tkð Þð Þk k≕ I1 + I2 + I3 + I4:

ð18Þ
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For all x ∈ TR, s ∈ J , we get ∥xðsÞ∥≤R, by the condition
ðH2Þ,

Gxð Þ sð Þk k ≤
ðs
0
g s, ν, x νð Þð Þk kdν ≤

ðs
0
b νð Þ + l4 νð Þ x νð Þk kð Þdν

≤
ðT
0
b νð Þdν + R

ðT
0
l4 νð Þdν,

ð19Þ

meanwhile,

Hxð Þ sð Þk k ≤
ðT
0

h s, ν, x νð Þð Þk kdν ≤
ðT
0
c νð Þ + l5 νð Þ x νð Þk kð Þdν

≤
ðT
0
c νð Þdν + R

ðT
0
l5 νð Þdν:

ð20Þ

According to the condition ðH1Þ and the above
inequalities, for all s ∈ J , we get

f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þk k
≤ a sð Þ + l1 sð Þ x sð Þk k + l2 sð Þ Gxð Þ sð Þk k + l3 sð Þ Hxð Þ sð Þk k

≤ a sð Þ + l1 sð ÞR + l2 sð Þ
ðT
0
b νð Þdν + R

ðT
0
l4 νð Þdν

� �

+ l3 sð Þ
ðT
0
c νð Þdν + R

ðT
0
l5 νð Þdν

� �
≤ a1 sð Þ + b1 sð ÞR,

ð21Þ

where

a1 sð Þ = a sð Þ + l2 sð Þ
ðT
0
b νð Þdν + l3 sð Þ

ðT
0
c νð Þdν,

b1 sð Þ = l1 sð Þ + l2 sð Þ
ðT
0
l4 νð Þdν + l3 sð Þ

ðT
0
l5 νð Þdν:

ð22Þ

Obviously, a1ðsÞ and b1ðsÞ are nonnegative Lebesgue
integrable functions, then

I2 =
ðτ2
τ1

M f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þk kds

≤M
ðτ2
τ1

a1 sð Þ + b1 sð ÞRð Þds,

I3 = sup
s∈Jk

Uβ τ2, sð Þ −Uβ τ1, sð Þ�� ��
�
ðτ1
0

f s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þk kds

≤ sup
s∈Jk

Uβ τ2, sð Þ −Uβ τ1, sð Þ�� ��ðτ1
0

a1 sð Þ + b1 sð ÞRð Þds,

I4 = 〠
m

k=1
Uβ τ2, tkð Þ −Uβ τ1, tkð Þ�� �� Ik x tkð Þð Þk k

≤ 〠
m

k=1
Uβ τ2, tkð Þ −Uβ τ1, tkð Þ�� �� dkR + ekð Þ:

ð23Þ

In view of Lemma 5, the compactness of the resolvent
operator Uβðt, sÞðt, s > 0Þ implies the continuity in the uni-
form operator topology. As a result, from the above
inequalities, we deduce that kðQxÞðτ2Þ − ðQxÞðτ1Þk⟶ 0
independently of x ∈ TR as τ2 − τ1 ⟶ 0. That is, QðTRÞ
is equicontinuous in Jkðk = 0, 1, 2⋯mÞ.

In the end, we demonstrate that QðTRÞ ⊂ PCðJ , EÞ is
precompact.

For any tð0 < t ≤ TÞ, 0 < ε < t, and x ∈ TR, the operator
Qεx is defined by

Qεxð Þ tð Þ =Uβ t, 0ð Þ x0 − ω xð Þð Þ

+
ðt−ε
0
Uβ t, sð Þf s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þds

+ 〠
0<tk<t

Uβ t, tkð ÞIk x tkð Þð Þ, t ∈ J:

ð24Þ

Since Uβðt, sÞ is compact resolvent operator, the set
Y εðtÞ = fðQεxÞðtÞ: x ∈ TRg is relatively compact in E for
every ε (0 < ε < t).

Moreover, for any x ∈ TR, t ∈ J , one can show that

Qxð Þ tð Þ − Qεxð Þ tð Þk k
=
ðt
t−ε
Uβ t, sð Þf s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þds

����
����

≤M
ðt
t−ε

f sð , x s, Gxð Þ sð Þ, Hxð Þ sð Þð Þk kds

≤M
ðt
t−ε

a1 sð Þ + b1 sð ÞRð Þds:

ð25Þ

Thus, YðtÞ = fðQxÞðtÞ: x ∈ TRg is totally bounded.
Hence, YðtÞ is relatively compact in E, and so, with the help
of the Arzelà-Ascoli theorem, Q : PCðJ , EÞ⟶ PCðJ , EÞ is
completely continuous.

For 0 < λ < 1, let x = λðQxÞ, we get

x tð Þ = λUβ t, 0ð Þ x0 − ω xð Þð Þ

+ λ
ðt
0
Uβ t, sð Þf s, x sð Þ, Gxð Þ sð Þ, Hxð Þ sð Þð Þds

+ λ 〠
0<tk<t

Uβ t, tkð ÞIk x tkð Þð Þ:
ð26Þ

4 Journal of Function Spaces



Then, using the conditions ðH1Þ-ðH3Þ, it follows that

x tð Þk k ≤M x0 − ω xð Þk k +M
ðt
0
f s, x sð Þ,ðk

� Gxð Þ sð Þ, Hxð Þ sð ÞÞkds + 〠
m

k=1
M Ik x tkð Þð Þk k

≤M x0k k + dωR + eωð Þ +M
ðt
0
a1 sð Þð

+ b1 sð ÞRÞds + 〠
m

k=1
M dkR + ekð Þ

≤M x0k k + eωð Þ +M
ðT
0
a1 sð Þds + 〠

m

k=1
Mek

+ Mdω +M
ðT
0
b1 sð Þds + 〠

m

k=1
Mdk

 !
R≕ ρ:

ð27Þ

That is, kxðtÞk ≤ ρ for t ∈ J , then there exists a constant
ρ1 > ρ such that kxkPC ≠ ρ1. Let V = fx ∈ PCðJ , EÞ: kxkPC <
ρ1g, obviously, there is no x ∈ ∂V such that x = λðQxÞ for 0
< λ < 1. Therefore, thanks to Lemma 1, one gets that Q has
at least one fixed point x in V , which is a PC-mild solution
of problem (4). This completes the proof. ☐

Remark 8. Theorem 7 is proved under the condition that
Uβðt, sÞ is compact for t, s > 0 and the functions f , g, h meet
corresponding conditions; in the case that the resolvent oper-
atorUβðt, sÞ is noncompact, we would obtain Theorem 9 and
Theorem 10.

Theorem 9. Suppose that the conditions ðH4Þ-ðH6Þ are satis-
fied, M = max

0≤s<t≤T
kUβðt, sÞk, and MðLω +

Ð T
0 L1ðsÞds +

Ð T
0 L2ðsÞ

ds
Ð T
0 L4ðvÞdv +

Ð T
0 L3ðsÞds

Ð T
0 L5ðνÞdν +∑m

k=1LIkÞ < 1.
ðH4Þ The function f : J × E × E × E⟶ E is continuous,

and there exist nonnegative Lebesgue integrable functions Li
∈ LðJ ,ℝ+Þ ði = 1, 2, 3Þ, for any ui, vi ∈ E, t ∈ J , such that

f t, u1, u2, u3ð Þ − f t, v1, v2, v3ð Þk k
≤ L1 tð Þ u1 − v1k k + L2 tð Þ u2 − v2k k + L3 tð Þ u3 − v3k k:

ð28Þ

ðH5Þ There exist nonnegative Lebesgue integrable func-
tions L4, L5 ∈ LðJ ,ℝ+Þ, for each u, v ∈ E, such that

g t, s, uð Þ − g t, s, vð Þk k ≤ L4 tð Þ u − vk k,  t, sð Þ ∈ B,
h t, s, uð Þ − h t, s, vð Þk k ≤ L5 tð Þ u − vk k,  t, sð Þ ∈ B0:

ð29Þ

ðH6Þ The functions Ik : E⟶ E and ω : PCðJ , EÞ⟶ E
are continuous, and there exist nonnegative constants Lω, LIk
> 0, such that

ω uð Þ − ω vð Þk k ≤ Lω u − vk kPC , u, v ∈ PC J , Eð Þ,
Ik uð Þ − Ik vð Þk k ≤ LIk u − vk k, u, v ∈ E, k = 1, 2⋯m:

ð30Þ

Then, problem (4) has a unique PC-mild solution x⋆ in
PCðJ , EÞ.

Proof. It follows from the conditions ðH4Þ-ðH6Þ, for any u,
v ∈ PCðJ , EÞ, t ∈ J , one can derive

Quð Þ tð Þ − Qvð Þ tð Þk k
≤ Uβ t, 0ð Þ ω uð Þ − ω vð Þð Þ�� ��

+ 〠
0<tk<t

Uβ t, tkð Þ Ik u tkð Þð Þ − Ik v tkð Þð Þð Þ�� ��
+
ðt
0
Uβ t, sð Þ f s, u sð Þ, Guð Þ sð Þ, Huð Þ sð Þð Þð

����
− f s, v sð Þ, Gvð Þ sð Þ, Hvð Þ sð Þð ÞÞds

����
≤M ω uð Þ − ω vð Þk k + 〠

m

k=1
M Ik u tkð Þð Þ − Ik v tkð Þð Þk k

+M
ðt
0
f s, u sð Þ, Guð Þ sð Þ, Huð Þ sð Þð Þk

− f s, v sð Þ, Gvð Þ sð Þ, Hvð Þ sð Þð Þkds

≤MLω u − vk kPC + 〠
m

k=1
MLIk u tkð Þ − v tkð Þk k

+M
ðt
0
L1 sð Þ u sð Þ − v sð Þk k + L2 sð Þ Guð Þ sð Þ − Gvð Þ sð Þk kð

+ L3 sð Þ Huð Þ sð Þ − Hvð Þ sð Þk kÞds

≤MLω u − vk kPC + 〠
m

k=1
MLIk u − vk kPC

+M
ðt
0
L1 sð Þds u − vk kPC +

�
M
ðt
0
L2 sð Þ

ðs
0
L4 νð Þdνds

+M
ðt
0
L3 sð Þ

ðT
0
L5 νð Þdνds

�
u − vk kPC

≤M

 
Lω + 〠

m

k=1
LIk +

ðT
0
L1 sð Þds +

ðT
0
L2 sð Þds

ðT
0
L4 νð Þdν

+
ðT
0
L3 sð Þds

ðT
0
L5 νð Þdν

!
u − vk kPC:

ð31Þ

Based on the assumption, we have kQu −QvkPC <
ku − vkPC, which means that the operator Q is a contraction
mapping. Hence, the operator Q has a unique fixed point
x⋆ ∈ PCðJ , EÞ, which implies that problem (4) has a unique
PC-mild solution. This completes the proof. ☐

Theorem 10.Assume that the conditions ðH7Þ and ðH8Þ hold,
ω ≡ 0, M = max

0≤s<t≤T
kUβðt, sÞk, a =∑m

k=1MLIk < 1.
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ðH7Þ The function f : J × E × E × E⟶ E is continuous,
and there exist nonnegative Lebesgue integrable functions L
′1, L′2 ∈ LðJ ,ℝ+Þ, for all ui, vi ∈ E, t ∈ J , such that

f t, u1, u2, u3ð Þ − f t, v1, v2, v3ð Þk k
≤ L′1 tð Þ u1 − v1k k + L′2 tð Þ u2 − v2k k:

ð32Þ

ðH8Þ There exist constants Lg, LIk > 0, for all u, v ∈ E, sat-
isfying

g t, s, uð Þ − g t, s, vð Þk k ≤ Lg u − vk k,  t, sð Þ ∈ B,
Ik uð Þ − Ik vð Þk k ≤ LIk u − vk k, k = 1, 2⋯m:

ð33Þ

Then, problem (4) has a unique PC-mild solution x⋆ in
PCðJ , EÞ. For all t ∈ J , x0 ∈ PCðJ , EÞ, iterative sequence xnðtÞ
are defined by

xn tð Þ =Uβ t, 0ð Þx0 +
ðt
0
Uβ t, sð Þf s, xn−1 sð Þ,ð

� Gxn−1ð Þ sð Þ, Hxn−1ð Þ sð ÞÞds
+ 〠

0<tk<t
Uβ t, tkð ÞIk xn−1 tkð Þð Þ, n = 1, 2,⋯,

ð34Þ

uniformly converge to the unique PC-mild solution x⋆ðtÞ in
t ∈ J , and for any s > 0,

xn − x⋆k kPC = o
1
ns

� �
, as n⟶∞: ð35Þ

Proof. Combining the conditions ðH7Þ and ðH8Þ, for all t ∈ J ,
u, v ∈ PCðJ , EÞ, we get

Quð Þ tð Þ − Qvð Þ tð Þk k
≤M

ðt
0
f s, u sð Þ, Guð Þ sð Þ, Huð Þ sð Þð Þk

− f s, v sð Þ, Gvð Þ sð Þ, Hvð Þ sð Þð Þkds
+ 〠

0<tk<t
M Ik u tkð Þð Þ − Ik v tkð Þð Þk k

≤M
ðt
0
L1′ sð Þ + L2′ sð ÞLgs
� �

u sð Þ − v sð Þk kds

+ 〠
m

k=1
MLIk u tkð Þ − v tkð Þk k ≤

ðt
0
L sð Þ u sð Þ − v sð Þk kds

+ 〠
m

k=1
MLIk u − vk kPC ≤

ðt
0
L sð Þds + 〠

m

k=1
MLIk

 !
u − vk kPC

≤
ðt
0
L sð Þds + a

� �
u − vk kPC,

ð36Þ

where LðsÞ =MðL1′ðsÞ + L2′ðsÞLgTÞ. It is easy to see that L ∈
LðJ ,ℝ+Þ. Notice that a =∑m

k=1MLIk < 1, then there is ε > 0
such that 0 < b = ε + a < 1. For the above ε > 0, there exists a
continuous function ϕðsÞ such that

ðT
0
L sð Þ − ϕ sð Þj jds < ε: ð37Þ

Consequently,

Quð Þ tð Þ − Qvð Þ tð Þk k
≤
ðt
0
L sð Þ − ϕ sð Þj jds +

ðt
0
ϕ sð Þj jds

� �
u − vk kPC + a u − vk kPC

≤ ε +Φtð Þ u − vk kPC + a u − vk kPC ≤ b +Φtð Þ u − vk kPC
= C0

1b + C1
1
Φtð Þ
1!

� �
u − vk kPC,

ð38Þ

where Φ =max fjϕðsÞj: s ∈ Jg. We next prove the following
inequalities, for every positive integer n and t ∈ J ,

Qnuð Þ tð Þ − Qnvð Þ tð Þk k

≤

 
C0
nb

n + C1
n
bn−1 Φtð Þ

1! + C2
n
bn−2 Φtð Þ2

2!

+⋯+Cn
n
b0 Φtð Þn

n!

!
u − vk kPC,

ð39Þ

where Cm
n = n!/ðm!ðn −mÞ!Þ.

Assume that, for any positive integer k, we have

Qku
� �

tð Þ − Qkv
� �

tð Þ
��� ���

≤

 
C0
kb

k + C1
k
bk−1 Φtð Þ

1! + C2
k
bk−2 Φtð Þ2

2!

+⋯+Ck
k
b0 Φtð Þk

k!

!
u − vk kPC:

ð40Þ

By the formula Cm
k+1 = Cm

k + Cm−1
k , for all t ∈ J ,

Qk+1u
� �

tð Þ − Qk+1v
� �

tð Þ
��� ���

= Q Qku
� �

tð Þ −Q Qkv
� �

tð Þ
��� ���

≤M
ðt
0

f s, Qku
� �

sð Þ, G Qku
� �

sð Þ,H Qku
� �

sð Þ
� ����

− f s, Qkv
� �

sð Þ, G Qkv
� �

sð Þ,H Qkv
� �

sð Þ
� ����ds

+ 〠
0<tk<t

M Ik Qku
� �

tkð Þ − Ik Qkv
� �

tkð Þ
��� ���

≤M
ðt
0
L1′ sð Þ + L2′ sð ÞLgs
� �

Qku
� �

sð Þ − Qkv
� �

sð Þ
��� ���ds

+ 〠
m

k=1
MLIk Qku

� �
tkð Þ − Qkv

� �
tkð Þ

��� ���
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≤
ðt
0
L sð Þ Qku

� �
sð Þ − Qkv

� �
sð Þ

��� ���ds
+ 〠

m

k=1
MLIk Qku

� �
tkð Þ − Qkv

� �
tkð Þ

��� ���
≤
ðt
0
L sð Þ − ϕ sð Þj j

 
C0
kb

k + C1
k
bk−1 Φsð Þ

1!

+ C2
k
bk−2 Φsð Þ2

2! +⋯+Ck
k
b0 Φsð Þk

k!

!
ds u − vk kPC

+
ðt
0
ϕ sð Þj j

 
C0
kb

k + C1
k
bk−1 Φsð Þ

1!

+ C2
k
bk−2 Φsð Þ2

2! +⋯+Ck
k
b0 Φsð Þk

k!

!
ds u − vk kPC

+ 〠
m

k=1
MLIk

 
C0
kb

k + C1
k
bk−1 Φtkð Þ

1!

+ C2
k
bk−2 Φtkð Þ2

2! +⋯+Ck
k
b0 Φtkð Þk

k!

!
u − vk kPC

≤ ε

 
C0
kb

k + C1
k
bk−1 Φtð Þ

1! + C2
k
bk−2 Φtð Þ2

2!

+⋯+Ck
k
b0 Φtð Þk

k!

!
u − vk kPC +Φ

ðt
0

 
C0
kb

k

+ C1
k
bk−1 Φsð Þ

1! + C2
k
bk−2 Φsð Þ2

2! +⋯

+Ck
k
b0 Φsð Þk

k!
ds u − vk kPC + a

 
C0
kb

k + C1
k
bk−1 Φtð Þ

1!

+ C2
k
bk−2 Φtð Þ2

2! +⋯+Ck
k
b0 Φtð Þk

k!

!
u − vk kPC

≤ b

 
C0
kb

k + C1
k
bk−1 Φtð Þ

1! + C2
k
bk−2 Φtð Þ2

2! +⋯

+Ck
k
b0 Φtð Þk

k!

!
u − vk kPC +Φ

ðt
0

 
C0
kb

k + C1
k
bk−1 Φsð Þ

1!

+ C2
k
bk−2 Φsð Þ2

2! +⋯+Ck
k
b0 Φsð Þk

k!

!
ds u − vk kPC

≤

 
C0
k+1b

k+1 + C1
k+1

bk Φtð Þ
1! + C2

k+1
bk−1 Φtð Þ2

2!

+⋯+Ck+1
k+1

b0 Φtð Þk+1
k + 1ð Þ!

!
u − vk kPC:

ð41Þ

By mathematical induction, for every positive integer n,
we obtain

Qnu −Qnvk kPC ≤
 
C0
nb

n + C1
n
bn−1 Φtð Þ

1! + C2
n
bn−2 Φtð Þ2

2!

+⋯+Cn
n
b0 Φtð Þn

n!

!
u − vk kPC:

ð42Þ

Using Lemma 2, it follows that

Qnu −Qnvk kPC ≤ o
1
ns

� �
u − vk kPC, as n⟶∞: ð43Þ

Thus, for any fixed constant s > 1, we can find a positive
integer n0 such that, for any u, v ∈ PCðJ , EÞ and n > n0, we
have

Qnu −Qnvk kPC ≤
1
ns

u − vk kPC: ð44Þ

Applying the general Banach contraction mapping prin-
ciple, we deduce that the operator Q has a unique fixed point
x⋆ in PCðJ , EÞ, which means that problem (4) has a unique
PC-mild solution x⋆ in PCðJ , EÞ. This completes the proof.

☐

4. Conclusion

In this paper, we demonstrate the existence theory of PC-
mild solutions for the impulsive fractional semilinear inte-
grodifferential equations with nonlocal initial conditions (4)
via the theory of semigroup and fixed point theorem under
the condition of compact resolvent operator. Meanwhile,
the uniqueness of PC-mild solutions is proved under the con-
dition of noncompact resolvent operator. The kernels g and
h of the integral operators G andH are nonlinear functions,
and the function ω of the nonlocal initial conditions is non-
compact. In addition, the closed linear operator AðtÞ is
dependent on t. As a consequence, our main theorems
improve and generalize many existing results on this topic.
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In this paper, we will investigate a multiscale homogenization theory for a second-order elliptic problem with rapidly oscillating
periodic coefficients of the form ð∂/∂xiÞðaijðx/ε, xÞð∂uεðxÞ/∂xjÞÞ = f ðxÞ. Noticing the fact that the classic homogenization theory
presented by Oleinik has a high demand for the smoothness of the homogenization solution u0, we present a new estimate for
the homogenization method under the weaker smoothness that homogenization solution u0 satisfies than the classical
homogenization theory needs.

1. Introduction

Many people investigated the second-order elliptic problem
with a fixed boundary. As far as we know, there is not any
work related to the elliptic problem with periodic boundary
(see [1–3]). In this article, we will consider the following mul-
tiscale elliptic model problem:

Lεu
ε xð Þ ≡ ∂

∂xi
aij

x
ε
, x

� � ∂uε
∂xj

 !
= f xð Þ, inΩ,

uε xð Þ = g xð Þ, on ∂Ω:

8>><>>: ð1Þ

Here, Ω ⊂Rnðn ≥ 1Þ is a bounded domain, and the
matrix of coefficients aijðξ, xÞ: Rn ⟶Rn×n is symmetric
and satisfies the following conditions:

γ ξj j2 ≤ aij ξ, xð Þξiξj ≤ γ−1 ξj j2, ξ ∈Rn, for some γ ∈ 0, 1ð �

aij ξ + ξ′
� �

= aij ξð Þ, ξ ∈Rn, ξ′ ∈ Zn, 1 ≤ i, j ≤ n

ð2Þ

Assume that Q = ½0, 1�n. By the homogenization method,

Oleinik et al. (see [4, 5]) obtained the 1-order approximation
~uðxÞ of uε as follows:

~u xð Þ = u0 xð Þ + εNk x, x
ε

� � ∂u0 xð Þ
∂xk

, ð3Þ

where Nkðx, ξÞ is a 1-periodic function and satisfies the fol-
lowing equations:

∂
∂ξi

aij x, ξð Þ ∂N
k x, ξð Þ
∂ξj

 !
= −

∂aik x, ξð Þ
∂ξi

, inRn,

ð
Q
Nk ξ, xð Þdξ = 0,

8>>>><>>>>:
a∧ij xð Þ =

ð
Q

aij x, ξð Þ + aik x, ξð Þ ∂N
j x, ξð Þ
∂ξk

� �
dξ,

ð4Þ

and the homogenization solution u0 satisfies the problem as
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follows:

L0u
0 xð Þ ≡ ∂

∂xi
a∧ij xð Þ ∂u

0

∂xj

 !
= f xð Þ, inΩ,

u0 xð Þ = g xð Þ, on ∂Ω:

8>><>>: ð5Þ

Oleinik et al. (see [5], p. 28) proved the following result.
We end this section with the details of some notations.

Throughout this paper, the Einstein summation convention
is used: summation is taken over repeated indices, and ρðx,
∂ΩÞ denotes the distance between x and ∂Ω.

2. Some Useful Lemmas

Lemma 1.Under the assumption that u0 ∈H2ðΩÞ, there holds

uε − ~uk kH1 Ωð Þ ≤ cε1/2 u0
�� ��

H2 Ωð Þ: ð6Þ

There are numerous literatures discussing the homogeniza-
tion method (see [1, 2, 4–9]). There also are many works
(see [3, 10–16]) discussing the numerical methods of the
multiscale homogenization problem. We observe that most
of them are based on the assumption u0 ∈H2ðΩÞ, which is
unrealistic for some problems. For example, when f ∉ L2ðΩ
Þ. Let ~uiðxÞ = ð∂u0ðxÞ/∂xiÞ + ð∂Nkðξ, xÞ/∂ξiÞð∂u0ðxÞ/∂xkÞ.
As far as we know, it is the first time for us to estimate ~uiðx
Þ − ð∂uεðxÞ/∂xiÞ under the assumption that the homogeniza-
tion solution u0 belongs to the Sobolev space H1+sðΩÞ for the
case that 0 < s < 1.

Lemma 2. Assume that u ∈H1+sðΩÞ ∩W1,∞ðK2rÞ. Then,

∇ u − urð Þk kL2 Ωð Þ ≤ c rs uk kH1+s Ωð Þ + r1/2 ∇uk kL∞ K2rð Þ
� �

, ð7Þ

∇2ur
�� ��

L2 Ωð Þ ≤ c rs−1 uk kH1+s Ωð Þ + r−1/2 ∇uk kL∞ K2rð Þ
� �

: ð8Þ

Proof. One observes that k∇ðu − urÞk2L2ðΩÞ can be split into

∇ u − urð Þk k2L2 Ωð Þ = ∇ u − urð Þk k2L2 Ω\Krð Þ + ∇ u − urð Þk k2L2 Krð Þ:

ð9Þ

We first estimate k∇ðu − urÞk2L2ðΩ\KrÞ. Assume that x ∈
Ω \ Kr and Bðx, rÞ = fy ∈Ω : jx − yj ≤ rg. Note that the defi-
nition of ωrðzÞ implies

Ð
Ω
ωrðx − yÞdy = 1. By the definitions

of ωrðzÞ and urðxÞ, we have, for any 1 ≤ i ≤ n,

∂ur xð Þ
∂xi

=
ð
Ω

∂ωr x − yð Þ
∂xi

u yð Þdy = −
ð
Ω

∂ωr x − yð Þ
∂yi

u yð Þdy

=
ð
Ω

ωr x − yð Þ ∂u yð Þ
∂yi

dy =
ð
B x,rð Þ

ωr x − yð Þ ∂u yð Þ
∂yi

dy:

ð10Þ

Using (10), we obtain

∂ur xð Þ
∂xi

−
∂u xð Þ
∂xi

=
ð
B x,rð Þ

ωr x − yð Þ ∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

� �
dy:

ð11Þ

Furthermore, from the definition of ωrðzÞ and (11), it fol-
lows that

∂ u − urð Þ
∂xi

���� ����2
L2 Ω\Krð Þ

=
ð
Ω\Kr

ð
B x,rð Þ

ωr x − yð Þ ∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

� �
dy

" #2
dx,

ð12Þ

≤cr−2n
ð
Ω\Kr

ð
B x,rð Þ

∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

���� ����dy
" #2

dx: ð13Þ

Note that

ð
B x,rð Þ

∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

���� ����dy ≤ crs+n/2
ð
B x,rð Þ

∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

���� ���� x − yj j−s−n/2dy:

ð14Þ

This, together with (13), gives

∂ u − urð Þ
∂xi

���� ����2
L2 Ω\Krð Þ

≤ cr2s−n
ð
Ω\Kr

ð
B x,rð Þ

∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

���� ���� x − yj j−s−n/2dy
" #2

dx

≤ cr2s
ð
Ω\Kr

ð
B x,rð Þ

∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

���� ����2 x − yj j−2s−ndydx

≤ cr2s uk k2H1+s Ωð Þ:

ð15Þ

Next we estimate k∇ðu − urÞk2L2ðKrÞ. Assume that x ∈ Kr .
Set �ωrðx − yÞ = ωrðx − yÞ/Ð Bðx,rÞωrðx − yÞdy. Let �x = x or x +
Δx. We have

ur �xð Þ =
ð
B �x,rð Þ

�ωr �x − yð Þu yð Þdy

= u �xð Þ +
ð
B �x,rð Þ

�ωr �x − yð Þ u yð Þ − u xð Þð Þdy:
ð16Þ

Let ∣Δx ∣ ≤r. Note that �ωrðzÞ = 0whenever ∣z ∣ ≥r. By (16),
one observes that urðx + ΔxÞ − urðxÞ can be decomposed into
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ur x + Δxð Þ − ur xð Þ =
ð
B x+Δx,rð Þ

�ωr x + Δx − yð Þ u yð Þ − u xð Þð Þdy

−
ð
B x,rð Þ

�ωr x − yð Þ u yð Þ − u xð Þð Þdy

=
ð
B x+Δx,rð Þ

−
ð
B x,rð Þ

�ωr x + Δx − yð Þ u yð Þð

− u xð ÞÞdy +
ð
B x,rð Þ

�ωr x + Δx − yð Þ½

− �ωr x − yð Þ� u yð Þ − u xð Þð Þdy = I1 + I2:

ð17Þ

We need estimates I1 and I2. Assume that y ∈ Bðx + Δx,
rÞ \ Bðx, rÞ. Note that x + Δx ∈Ω. One observes thatÐ
Bðx+Δx,r/2Þ‍dy ≥ crn. Then, we have

ð
B x+Δx,r/2ð Þ

ωr x − yð Þdy ≥ c: ð18Þ

By the definition of �ωrðxÞ and (18), we have

�ωr x + Δx − yð Þj j ≤ cr−n: ð19Þ

Note that

u yð Þ − u xð Þj j ≤ cr uk kW1,∞ K2r+ Δxj jð Þ: ð20Þ

Inserting (19) and (20) into (17), we have

I1j j ≤ crn−1 Δxj jr−nr uk kW1,∞ K2r+ Δxj jð Þ ≤ c Δxj j uk kW1,∞ K2r+ Δxj jð Þ:
ð21Þ

We turn now to the estimation of I2. We split �ωrðx + Δ
x − yÞ − �ωrðx − yÞ into

�ωr x + Δx − yð Þ − �ωr x − yð Þ = ωr x + Δx − yð ÞÐ
B x+Δx,rð Þωr x + Δx − yð Þdy −

ωr x − yð ÞÐ
B x,rð Þωr x − yð Þdy

= ωr x + Δx − yð Þ
ð
B x+Δx,rð Þ

ωr x + Δx − yð Þdy
 !−1"

−
ð
B x,rð Þ

ωr x − yð Þdy
 !−1#

+ ωr x + Δx − yð Þ − ωr x − yð Þ½ Ð
B x,rð Þωr x − yð Þdy = J1 + J2:

ð22Þ

We need to estimate the two items of the right-hand side

of (22). Note that

ð
B x+Δx,rð Þ

ωr x + Δx − yð Þdy −
ð
B x,rð Þ

ωr x − yð Þdy
�����

�����
≤
ð
B x+Δx,rð Þ

−
ð
B x,rð Þ

ωr x + Δx − yð Þdy
�����

�����
+
ð
B x,rð Þ

ωr x + Δx − yð Þ − ωr x − yð Þ½ �dy∣ ≤ crn−1 Δxj jr−n

+ crnr−n−1 Δxj j ≤ cr−1 Δxj j:
ð23Þ

By (22) and (23), we have

J1j j ≤ cr−ncr−1 Δxj j ≤ cr−n−1 Δxj j: ð24Þ

To estimate J2, we have

J2j j ≤ cr−1 Δxj jr−n ≤ cr−n−1 Δxj j: ð25Þ

Plugging the above two estimates into (22), we obtain

�ωr x + Δx − yð Þ − �ωr x − yð Þj j ≤ cr−n−1 Δxj j: ð26Þ

This, together with (17), gives

I2j j ≤ crnr−n−1 Δxj jr uk kW1,∞ K2rð Þ ≤ c Δxj j uk kW1,∞ K2rð Þ: ð27Þ

Inserting (21) and (27) into (17), we have

ur x + Δxð Þ − ur xð Þj j ≤ c Δxj j uk kW1,∞ K2r+ Δxj jð Þ: ð28Þ

Furthermore, let Δx⟶ 0, we have

urk kW1,∞ Krð Þ ≤ c uk kW1,∞ K2rð Þ, ð29Þ

where we have used (28). Then, (7) follows by combining
(15) and (29). We turn now to the estimation of
k∇2urkL2ðΩÞ. We decompose k∇2urkL2ðΩÞ into

∇2ur
�� ��2

L2 Ωð Þ = ∇2ur
�� ��2

L2 Ω\Krð Þ + ∇2ur
�� ��2

L2 Krð Þ: ð30Þ

We first estimate k∇2urk2L2ðΩ\KrÞ. Assume that x ∈Ω \ Kr .
By (10), we have, for any 1 ≤ i, j ≤ n,

∂2ur xð Þ
∂xi∂xj

= ∂
Ð
Ω
ωr x − yð Þ ∂u yð Þ/∂yið Þdy� 	

∂xj

=
ð
Ω

∂ωr x − yð Þ
∂xj

∂u yð Þ
∂yi

dy:

ð31Þ

Note that x ∈Ω \ Kr . By the definition of ωrðx − yÞ, we
have

Ð
Ω
ð∂ωrðx − yÞ/∂xjÞdy = 0. Then, by (28) and (31), we
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have

∂2ur xð Þ
∂xi∂xj

= ∂
Ð
Ω
ωr x − yð Þ ∂u yð Þ/∂yið Þdy� 	

∂xj

=
ð
Ω

∂ωr x − yð Þ
∂xj

∂u yð Þ
∂yi

−
∂u xð Þ
∂xi

� �
dy:

ð32Þ

Finally, similarly to (15), by (32), we have

∇2ur
�� ��

L2 Ω\Krð Þ ≤ crs−1 uk kH1+s Ωð Þ: ð33Þ

We turn now to the estimation of k∇2urkL2ðKrÞ. Similarly
to (17), we have

ur x + 2Δxð Þ − 2ur x + Δxð Þ + ur xð Þ =
ð
B x,2rð Þ

�ωr x + 2Δx − yð Þ½

− 2�ωr x + Δx − yð Þ
+ �ωr x − yð Þ� u yð Þ − u xð Þð Þdy:

ð34Þ

Note that the definition of ωrðzÞ implies k�ωrkW2,1ðRnÞ ≤ c

r−2. Therefore, let Δx⟶ 0, from (34), it follows that

urk kW2,∞ Krð Þ ≤ c �ωrk kW2,1 Rnð Þcr uk kW1,∞ K2rð Þ
≤ cr−2r uk kW1,∞ K2rð Þ ≤ cr−1 uk kW1,∞ K2rð Þ:

ð35Þ

The desired result (8) follows by combining (33) and
(35). ☐

3. A New Estimate for Multiscale
Homogenization Method

In this section, we give the main results as follows.

Theorem 3. Assume that Kr = fx ∈Ω ∣ ρðx, ∂ΩÞ ≤ rg and Q
= ½0, 1�n. Assume also that Nk ∈W1,∞ðQÞ and u0 ∈H1+sðΩÞ
∩W1,∞ðKεÞ for some 0 < s < 1. Then,

∂uε

∂xi
− ~ui

���� ����
L2 Ωð Þ

≤ c ε1/2 u0
�� ��

W1,∞ Kεð Þ + εs u0
�� ��

H1+s Ωð Þ

� �
:

ð36Þ

Assume that χðzÞ ∈ C∞ðRnÞ is the cutoff function satis-
fying 0 ≤ χðzÞ ≤ 1, and χðzÞ = 1 if jzj ≤ 1/2, and χðzÞ = 0 if j
zj ≥ 1. Let ωrðzÞ = χðz/rÞ/Ð

Rnχðy/rÞdy. One observes thatÐ
Bð0,rÞωrðzÞdz = 1 and kωrkWk,∞ðRnÞ ≤ cr−k−n for all k ≥ 0. Set

urðxÞ =
Ð
Ω
ωrðx − yÞuðyÞdy/Ð

Ω
ωrðx − yÞdy. In the process of

proving Theorem 3, we need the above Lemma 2.
Based on Lemma 2, we can prove Theorem 3 as follows:

Proof. Assume that ωrðzÞ is defined as in Lemma 2. Set

�u0r xð Þ =
Ð
Ω
ωr x − yð Þu0 yð ÞdyÐ
Ω
ωr x − yð Þdy ,

f r xð Þ = ∂
∂xj

âij xð Þ ∂�u
0
r xð Þ
∂xi

� �
:

ð37Þ

We introduce uεrðxÞ by the following problem:

Lεu
ε
r xð Þ = f r xð Þ, inΩ,

uεr xð Þ = �u0r xð Þ, on ∂Ω:

(
ð38Þ

One observes that u0r ðxÞ and ~urðxÞ are the homogeniza-
tion solution of (38) and the 1-order approximation of uεrðx
Þ, respectively. We decompose ∂uεðxÞ/∂xi − ~uiðxÞ into

∂uε xð Þ
∂xi

− ~ui xð Þ = ∂ uε − uεrð Þ xð Þ
∂xi

+ ∂ uεr − ~urð Þ xð Þ
∂xi

+ ∂~ur xð Þ
∂xi

− ~ui xð Þ
� �

:

ð39Þ

We first estimate ∇ðuε − uεrÞðxÞ. Let Bε
1ðxÞ = ðuε − uεrÞðxÞ.

Note that Bε
1ðxÞ satisfies the following problem:

LεB
ε
1 xð Þ = f xð Þ − f r xð Þ, x ∈Ω,

Bε
1 xð Þ = g xð Þ − �u0r xð Þ, x ∈ ∂Ω:

(
ð40Þ

One observes that Bε
1ðxÞ can be split into

Bε
1 xð Þ = e1 xð Þ + eε2 xð Þ, ð41Þ

where e1ðxÞ = ðu0 − �u0r ÞðxÞ and eε2ðxÞ satisfies the following
problem:

Lεe
ε
2 xð Þ = f − f rð Þ xð Þ − ∂

∂xi
aij x, x

ε

� � ∂e1 xð Þ
∂xj

 !
, inΩ,

eε2 xð Þ = 0, on ∂Ω:

8>><>>:
ð42Þ

From the combination of the definition of �u0r and (7), it
follows that

∇ �u0r − u0
� 	�� ��

L2 Ωð Þ ≤ c rs u0
�� ��

H1+s Ωð Þ + r1/2 u0
�� ��

W1,∞ K2rð Þ

� �
:

ð43Þ

To estimate eε2ðxÞ, by (8) and the definitions of �u0r ðxÞ and
f rðxÞ, one observes that

∇eε2k kL2 Ωð Þ ≤ f − f rk kH−1 Ωð Þ + ∇ �u0r − u0
� 	�� ��

L2 Ωð Þ
≤ c ∇ �u0r − u0

� 	�� ��
L2 Ωð Þ ≤ crs u0

�� ��
H1+s Ωð Þ

+ cr1/2 u0
�� ��

W1,∞ K2rð Þ:

ð44Þ

4 Journal of Function Spaces



Combining (39), (41), (43), and (44), we have

∇ uε − uεrð Þk kL2 Ωð Þ = ∇Bε
1k kL2 Ωð Þ ≤ c rs u0

�� ��
H1+s Ωð Þ

�
+ r1/2 u0

�� ��
W1,∞ K2rð Þ

�
:

ð45Þ

Next, we estimate ðuεr − ~urÞðxÞ. Set Bε
2ðxÞ = ðuεr − ~urÞðxÞ.

By the method of asymptotic expansion (see [7], p. 27), one
finds that Bε

2ðxÞ can be split into Bε
2ðxÞ =wε

rðxÞ + θεrðxÞ, where
wε

rðxÞ and θεrðxÞ are defined by

Lεw
ε
r xð Þ ≡ ∂

∂xi
aij x, x

ε

� � ∂wε
r xð Þ
∂xj

 !
= ∂Fr,i xð Þ

∂xi
, inΩ,

wε
r xð Þ = 0, on ∂Ω,

8>><>>:
Lεθ

ε
r xð Þ = 0, inΩ,

θεr xð Þ = −εNk x
ε
, x

� � ∂�u0r xð Þ
∂xk

, on ∂Ω,

8><>:
ð46Þ

respectively, where

Fr,i xð Þ = − aij x, x
ε

� �
+ aik x, x

ε

� � ∂Nj ξð Þ
∂ξk

− âij

� �
∂�u0r xð Þ
∂xj

+ εaij x, x
ε

� �
Nk x

ε

� � ∂2�u0r xð Þ
∂xj∂xk

:

ð47Þ

We first estimate wε
rðxÞ. Note that (8) implies

�u0r
�� ��

H2 Ωð Þ ≤ c r−1+s u0
�� ��

H1+s Ωð Þ + r−1/2 u0
�� ��

W1,∞ K2rð Þ

� �
: ð48Þ

By the method of asymptotic expansion (see ([7], p. 27),
from (48), it follows that

wε
rk kH1 Ωð Þ ≤ cε �u0r

�� ��
H2 Ωð Þ ≤ c εr−1+s u0

�� ��
H1+s Ωð Þ

�
+ εr−1/2 u0

�� ��
W1,∞ K2rð Þ

�
:

ð49Þ

Assume that ϕðxÞ ∈ C∞ðΩÞ is a cutoff function satisfying
ϕðxÞ = 1 if ρðx, ∂ΩÞ ≤ ε, and ϕðxÞ = 0 if ρðx, ∂ΩÞ ≥ 2ε, and
k∇ϕkL∞ðΩÞ ≤ c2ε

−1. We split θεrðxÞ into

θεr xð Þ = ψε
r xð Þ + bψε

r xð Þ, ð50Þ

where ψε
rðxÞ = −εNkðx/ε, xÞð∂�u0r ðxÞ/∂xkÞϕðxÞ and bψε

rðxÞ sat-
isfies the following problem:

Lε bψε
r xð Þ = −

∂
∂xi

aij x, x
ε

� � ∂ψr xð Þ
∂xj

 !
, x ∈Ω,

bψε
r xð Þ = 0, x ∈ ∂Ω:

8>><>>: ð51Þ

To estimate ψε
rðxÞ, one has

ψε
rk kH1 Ωð Þ ≤ cεr−1 �u0r

�� ��
H1 Kεð Þ + cε �u0r

�� ��
H2 Kεð Þ: ð52Þ

We now estimate k�u0rkH1ðKεÞ. Assume that r = ε and VKε

denotes the volume of Kε if n = 3, or the area of Kε if n = 2.
One observes that

�u0r
�� ��

H1 Kεð Þ ≤ c
ffiffiffiffiffiffiffiffi
VKε

q
�u0r
�� ��

W1,∞ Kεð Þ
≤ cε1/2 �u0r

�� ��
W1,∞ Kεð Þ ≤ cε1/2 u0

�� ��
W1,∞ Kεð Þ:

ð53Þ

The combination of (8), (52), and (53) gives

ψε
rk kH1 Ωð Þ ≤ c ε1/2 u0

�� ��
W1,∞ K2εð Þ + εs u0

�� ��
H1+s Ωð Þ

� �
: ð54Þ

Using (51) and (54), we derive

bψε
r

�� ��
H1 Ωð Þ ≤ c ψε

rk kH1 Ωð Þ

≤ c ε1/2 u0
�� ��

W1,∞ K2εð Þ + εs u0
�� ��

H1+s Ωð Þ

� �
:

ð55Þ

The above two estimates, together with (50), imply

θεrk kH1 Ωð Þ ≤ c ε1/2 + ε3/2r−1
� 	

u0
�� ��

W1,∞ K2εð Þ: ð56Þ

Furthermore, by (49) and (56), we have

uεr − ~urk kH1 Ωð Þ = Bε
2k kH1 Ωð Þ ≤ c ε1/2 + ε3/2ε−1

� 	
u0
�� ��

W1,∞ K2εð Þ

h
+ εε−1+s u0

�� ��
H1+s Ωð Þ

�
≤ c ε1/2 u0

�� ��
W1,∞ K2εð Þ

�
+ εs u0
�� ��

H1+s Ωð Þ

�
,

ð57Þ

We next estimate ð∂~urðxÞ/∂xiÞ − ~uiðxÞ. Assume that r = ε.
Note that the definitions of u0r and u

ε
r imply u0r ðxÞ = �u0r ðxÞ. By

(7) and (47), we have

∂~ur
∂xi

− ~ui

���� ����
L2 Ωð Þ

≤ c ∇ u0 − �u0r
� 	�� ��

L2 Ωð Þ

≤ c εs u0
�� ��

H1+s Ωð Þ + ε1/2 u0
�� ��

W1,∞ K2εð Þ

� �
:

ð58Þ

Assume that r = ε. This, together with (39), (45), and
(57), gives the desired result (36). ☐
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In this paper, the Crank-Nicolson Fourier spectral method is proposed for solving the space fractional Schrödinger equation with
wave operators. The equation is treated with the conserved Crank-Nicolson Fourier Galerkin method and the conserved Crank-
Nicolson Fourier collocation method, respectively. In addition, the ability of the constructed numerical method to maintain the
conservation of mass and energy is studied in detail. Meanwhile, the convergence with spectral accuracy in space and second-
order accuracy in time is verified for both Galerkin and collocation approximations. Finally, the numerical experiments verify
the properties of the conservative difference scheme and demonstrate the correctness of theoretical results.

1. Introduction

The Schrödinger equation is one of the most basic equations
in quantum mechanics, which was proposed by Austrian
physicist Schrödinger in 1926. The equation can correctly
describe the quantum behaviors of wave function, which
has made great contributions to the study of quantum
mechanics. Since then, the Schrödinger system has attracted
a large number of mathematicians and physicists to explore
the characteristics of its solution and physical applications.
The study of conservative methods for the Schrödinger equa-
tion is one of the most popular research fields.

Over the past decades, most of the researches on the conser-
vativemethod of the Schrödinger equation focus on the integer-
order Schrödinger equation (e.g., see Refs. [1–7]). As models of
science and engineering are needed to be more realistic, the
fractional-order Schrödinger equation becomes one of the most
important models in the fields of Bose-Einstein condensation,
plasma, nonlinear optics, fluid dynamics [8, 9], etc. However,
few studies have been investigated on conservative methods
for the fractional Schrödinger equation. Besides that, most of
the existing fractional-order conservative methods are finite ele-
ment and finite difference methods [10, 11].

From the viewpoint of mathematics, the solution of the
Schrödinger system has important geometric structures such
as energy conservation andmultisymplectic structure. There-
fore, these properties should be maintained as much as pos-
sible in the construction of numerical methods. In this
paper, we consider the following nonlinear fractional Schrö-
dinger equation:

ϕtt y, tð Þ + −Δð Þα/2ϕ y, tð Þ + iκϕt y, tð Þ
+ β ϕ y, tð Þj j2ϕ y, tð Þ = 0, y ∈ a, bð Þ, 0 < t ≤ T ,

ð1Þ

subject to the boundary condition

ϕ a, tð Þ = ϕ b, tð Þ, 0 < t ≤ T , ð2Þ

and the initial conditions

ϕ y, 0ð Þ = ϕ0 yð Þ, ϕt y, 0ð Þ = ϕ1 yð Þ,  y ∈ a, bð Þ, ð3Þ

where β and κ are positive real constants, 1 < α ≤ 2, and i2

= −1. ϕ0ðyÞ and ϕ1ðyÞ are given real functions. The fractional
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Laplacian operator ð−ΔÞα/2 can be defined as a pseudo-
differential operator with the symbol −jξjα:

− −Δð Þα/2u x, tð Þ≔ −F−1 ξj jαû ξ, tð Þ� �
, ð4Þ

where F is the Fourier transform and û is the Fourier trans-
form of u.

The spectral method is a generalization of a standard sep-
aration variable method, for which Chebyshev polynomials
and Legendre polynomials are generally used as the basic
functions of approximate expansions. And the Fourier series
is convenient to deal with the periodic boundary conditions.
Bridges and Reich [12] first put forward the Hamiltonian sys-
tem using the Fourier spectrum discrete method in 2001.
Based on their theoretical ideas, Chen and Qin [13] in the
same year proposed the Fourier pseudo-spectral method for
the Hamiltonian partial differential equation and used it to
integrate the nonlinear Schrödinger equation with periodic
boundary conditions. For more comprehensive work on the
different conservative Fourier pseudo-spectral methods, refer
to [2, 14–16] and their references.

Since the equation is calculated on a finite interval ½a, b�,
it is converted into periodic boundary conditions in this
paper and studied on Ω = ½0, 2π� and I = ½0, T� below. Let

x = 2y − a − bð Þπ
b − a

+ π, x ∈ 0, 2π½ �: ð5Þ

Denote uðx, tÞ = ϕðy, tÞ, uð0, tÞ = uð2π, tÞ, u0ðxÞ = ϕ0ðyÞ,
and u1ðxÞ = ϕ1ðyÞ. Thus, (1)–(3) become

utt x, tð Þ +Mα −Δð Þα/2u x, tð Þ + iκut x, tð Þ
+ β u x, tð Þj j2u x, tð Þ = 0, x ∈ 0, 2πð Þ, 0 < t ≤ T ,

ð6Þ

u 0, tð Þ = u 2π, tð Þ, ð7Þ

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ, x ∈ 0, 2πð Þ, ð8Þ
where M = 2π/ðb − aÞ.
In fact, the nonlinear fractional Schrödinger equation

((6)–(8)) has two conserved quantities:

Q tð Þ =Q 0ð Þ, E tð Þ = E 0ð Þ,  0 ≤ t ≤ T , ð9Þ

where

Q tð Þ = κ

2 u ·, tð Þk k2L2 + Im ut , uð Þ,

E tð Þ = ut ·, tð Þk k2L2 +Mα −Δð Þα/4u ·, tð Þ�� ��2
L2
+ β

2 u ·, tð Þk k4L4 ,
ð10Þ

with

u ·, tð Þk kpLp =
ð
Ω

u x, tð Þj jpdx, p = 2, 4: ð11Þ

The outline of the remainder of this paper is as follows. In
Section 2, a conserved Crank-Nicolson Fourier Galerkin
method and a conserved Crank-Nicolson Fourier collocation
method are constructed to discrete time variables and spatial
variables. Energy-preserving and mass-preserving properties
of the new method are investigated, and the error estimate is
derived in Section 3. In Section 4, numerical experiments are
presented to illustrate the theoretical results. Finally, the con-
clusions are given in Section 5.

2. Crank-Nicolson Fourier Spectral Method and
Conservation Laws

Let C∞
perðΩÞ be the set of all complex-valued and 2π-periodic

C∞-functions onΩ. Denote ð·, · Þ as the inner product on the
space L2perðΩÞwith the L2 norm k·kL2perðΩÞ (abbreviated as k·k):

u xð Þ, v xð Þð Þ =
ð
Ω

u xð Þ�v xð Þdx,

u xð Þk kL2per Ωð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u xð Þ, u xð Þð Þ

p
:

ð12Þ

For μ as a nonnegative real number, let Hμ
perðΩÞ be the

closure of C∞
perðΩÞ. Note that H0

perðΩÞ = L2perðΩÞ. For any

function uðxÞ ∈ L2perðΩÞ, the following equations [17] can be
developed easily:

u xð Þ = 〠
ω∈ℤ

ûωe
iωx, ð13Þ

where the Fourier coefficients are arranged as

ûω = u, eiωx
� �

= 1
2π

ð
Ω

ue−iωxdx: ð14Þ

For the Fourier transform of fractional Laplacian −
ð−ΔÞα/2, we have

F − −Δð Þα/2u x, tð Þ� �
ωð Þ = − ωj jαF u x, tð Þf g ωð Þ: ð15Þ

In order to discretize the equation in the temporal direc-
tion, the time step is defined by τ = T/Nt . Denote difference
operator

δt
2un = un+1 − 2un + un−1

τ2
, δtun =

un+1 − un

τ
, δt̂un

= un+1 − un−1

2τ , ~un = un−1 + un+1

2 ,
ð16Þ

where n is a positive integer (0 ≤ n ≤Nt). Therefore, the
Crank-Nicolson method was used to discretize equation (6)
in the time axis.
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iκδt̂u
n = −δt

2un −Mα −Δð Þα/2~un

−
β

2 un−1
�� ��2 + un+1

�� ��2	 

~un + Rn,

ð17Þ

where Rn =Oðτ2Þ:
2.1. Crank-Nicolson Fourier Galerkin Method. For positive
even numberN, the basis function space can be constructed as

SN = span eiωx −
N
2 ≤ ω ≤

N
2 − 1

����� �
, ð18Þ

where the norm and seminorm of Hα
perðΩÞ are characterized

by

uk kα ≜ 〠
N/2ð Þ−1

ω=−N/2
1 + ωj j2α� �

ûωj j2
 !1/2

,

uj jα ≜ 〠
N/2ð Þ−1

ω=−N/2
ωj j2α ûωj j2

 !1/2

:

ð19Þ

Let

uN tð Þ = 〠
N/2ð Þ−1

ω=−N/2
ûω tð Þeiωx: ð20Þ

The orthogonal operators PN : L2perðΩÞ→ SN are defined
as follows:

PNu − u, vð Þ = 0, ∀v ∈ SN : ð21Þ

Lemma 1 [18, 19]. Suppose that u ∈Hs
perðΩÞ for all 0 ≤ μ ≤ s; it

holds that

u − PNuk kμ ≤ CNμ−s uk ks: ð22Þ

Denote

unN = 〠
N/2ð Þ−1

ω=−N/2
ûnωe

iωx, n = 0, 1,⋯,Nt: ð23Þ

The time variables of equation (6) are discretized by the
Crank-Nicolson method. And the discrete Fourier Galerkin
approximation for equation (6) has a modified scheme as fol-
lows:

τκun+1N − τ2Mαi −Δð Þα/2un+1N − 2iun+1N , v
� �

= τκun−1N + τ2Mαi −Δð Þα/2un−1N + 2iun−1N , v
� �

− 4iunN , vð Þ + βτ2i
2

un+1N

�� ��2un+1N + un−1N

�� ��2un−1N

		
+ un+1N

�� ��2un−1N + un−1N

�� ��2un+1N



, v


,

ð24Þ

u0N = PNu0, δt̂u0N = PNu1, ð25Þ
where un+1N ∈ SN , ∀v ∈ SN .

2.2. Crank-Nicolson Fourier Collocation Method. For positive
even number N , consider the points xj = 2πj/N , j = 0, 1,⋯,
N − 1, as collocation nodes. The discrete Fourier coefficients
[18] of a function u on ½0, 2π� with respect to the collocation
points are the following form:

ûω =
1
N

〠
N−1

j=0
u xj
� �

e−iωxj , ω = −
N
2 ,⋯, N2 − 1: ð26Þ

Using the inversion formula, we have

u xj
� �

= 〠
N/2ð Þ−1

ω=−N/2
ûωeiωxj , j = 0, 1,⋯,N − 1: ð27Þ

Define the interpolation operator IN [18] at the colloca-
tion points:

INu xj
� �

= u xj
� �

, j = 0, 1,⋯,N − 1: ð28Þ

According to (27),

INuð Þ xð Þ = 〠
N/2ð Þ−1

ω=−N/2
ûωeiωx: ð29Þ

Lemma 2 [18, 19]. For any u ∈Hs
perðΩÞ, s ≥ 1, the estimate

u − INuk k ≤ CN−s uk ks ð30Þ

in the sense of the Sobolev norm.

Combining Lemma 2 and the triangle inequality, Corol-
lary 3 is drawn.

Corollary 3. For any u ∈Hs
perðΩÞ, s ≥ 1, there exists a con-

stant C independent of u and N , such that

INuk k ≤ CN−s uk ks + uk k: ð31Þ

Using the Fourier collocation method to discrete the spa-
tial variables of the equation, we get the fully discrete scheme
for equations (6)–(8) as the following forms:

τκun+1N xj
� �

− τ2Mαi −Δð Þα/2un+1N xj
� �

− 2iun+1N xj
� �

= τκun−1N xj
� �

+ τ2Mαi −Δð Þα/2un−1N xj
� �

+ 2iun−1N xj
� �

− 4iunN xj
� �

+ βτ2i
2

IN

� un+1N xj
� ��� ��2un+1N xj

� �
+ un−1N xj

� ��� ��2un−1N xj
� �	 


+ βτ2i
2

IN un+1N xj
� ��� ��2un−1N xj

� �
+ un−1N xj

� ��� ��2un+1N xj
� �	 


,

ð32Þ
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u0N xj
� �

= u0 xj
� �

, δt̂u0N xj
� �

= u1 xj
� �

: ð33Þ

Applying the Fourier transformation to (24), we get the
following form:

τκ − τ2Mαi ωj jα − 2i
� �

ûn+1Nω = τκ + τ2Mαi ωj jα + 2i
� �

ûn−1Nω

− 4iûnNω +
βτ2i
2

F̂
n
Nω,

cu0N	 

ω
= cu0� �

ω
, d̂

δ t u
0
N


 �
ω

= cu1� �
ω
,

ð34Þ

where Fn
N = ðjun+1N j2un+1N + jun−1N j2un−1N + jun+1N j2un−1N + jun−1N j2

un+1N Þ, ω = −N/2,⋯N/2 − 1.

2.3. Theory Analysis of Conservation

Theorem 4. The Crank-Nicolson Fourier Galerkin method
(24) of solving equations (6)–(8) preserves the discrete mass
and discrete energy:

Qn =Q0, 0 ≤ n ≤Nt ,
En = E0, 0 ≤ n ≤Nt ,

ð35Þ

where

Qn = Im δtu
n
N , unNð Þ + κ

4
un+1N

�� ��2 + unNk k2
	

,

En = δtu
n
Nk k2 + Mα

2
−Δð Þα/4un+1N

�� ��2 + −Δð Þα/4unN
�� ��2	 


+ β

4
un+1N

�� ��4
L4 Ωð Þ + unNk k4L4 Ωð Þ

	 

:

ð36Þ

Proof. We derive the full discrete Fourier Galerkin method:

iκδt̂u
n
N , vð Þ = − δt

2unN , v
� �

−Mα −Δð Þα/2 ~unN , vð Þ
−
β

2 un−1N

�� ��2 + un+1N

�� ��2	 

~unN , v

	 

:

ð37Þ

Let v = ~unN in equation (37); it holds that

iκδt̂u
n
N , ~unNð Þ = − δt

2unN , ~unN
� �

−Mα −Δð Þα/2~unN , ~unN
� �

−
β

2 un−1N

�� ��2 + un+1N

�� ��2	 

~unN , ~unN

	 

:

ð38Þ

Taking the imaginary part of equation (38), due to

Im iκδt̂u
n
N , ~unNð Þ = κ Re δt̂u

n
N , ~unNð Þ

= κ Re un+1N − un−1N

2τ , u
n−1
N + un+1N

2


 �
= κ

4τ un+1N

�� ��2 − un−1N

�� ��2	 

,

Im δt
2unN , ~unN

� �
= 1
2τ Im δtu

n
N , un−1N + un+1N

� ��
− Im δtu

n−1
N , un−1N + un+1N

� ��
= 1
2τ 2 Im δtu

n
N , unNð Þ½ + Im δtu

n
N , un+1N − unN

� �
− Im δtu

n
N , unN − un−1N

� �
− Im δtu

n−1
N , un+1N − unN

� �
− Im δtu

n−1
N , unN − un−1N

� �
− 2 Im δtu

n−1
N , un−1N

� �
= 1
τ

Im δtu
n
N , unNð Þ − Im δtu

n−1
N , un−1N

� �� �
,

Im −Δð Þα/2~unN , ~unN
� �

= 0,

Im un−1N

�� ��2 + un+1N

�� ��2	 

~unN , ~unN

	 

= 0:

ð39Þ

Therefore,

Im δtu
n
N , unNð Þ − Im δtu

n−1
N , un−1N

� �
τ

+ κ

4τ un+1N

�� ��2 − un−1N

�� ��2	 

= 0,

ð40Þ

thus,

Im δtu
n
N , unNð Þ + κ

4 un+1N

�� ��2 + unNk k2
	 


= Im δtu
n−1
N , un−1N

� �
+ κ

4 unNk k2 + un−1N

�� ��2	 

:

ð41Þ

The above equality indicates that the method (24) main-
tains the conservation of the discrete mass. The following
items consider the conservation of the discrete energy.

Let v = δt̂u
n
N ; according to equation (37), we also get

iκδt̂u
n
N , δt̂unNð Þ = − δt

2unN , δt̂unN
� �

−Mα −Δð Þα/2~unN , δt̂unN
� �

−
β

2 un−1N

�� ��2 + un+1N

�� ��2	 

~unN , δt̂unN

	 

:

ð42Þ

Taking the real part of (42), due to

Re iκδt̂u
n
N , δt̂unNð Þ = 0, ð43Þ

Re δt
2unN , δt̂unN

� �
= 1
2τ Re δtu

n
N − δtu

n−1
N , δtunN + δtu

n−1
N

� �
= δtu

n
Nk k2 − δtu

n−1
N

�� ��2
2τ ,

ð44Þ
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Re −Δð Þα/2~unN , δt̂unN
� �
= Re −Δð Þα/2 u

n−1
N + un+1N

2 , u
n+1
N − un−1N

2τ


 �
= 1
4τ −Δð Þα/4un+1N , −Δð Þα/4un+1N

� ��
− −Δð Þα/4un−1N , −Δð Þα/4un−1N

� ��
= −Δð Þα/4un+1N

�� ��2 − −Δð Þα/4un−1N

�� ��2
4τ ,

ð45Þ

Re un−1N

�� ��2 + un+1N

�� ��2	 

~unN , δt̂unN

	 

= Re un−1N

�� ��2 + un+1N

�� ��2	 
 un−1N + un+1N

2 , u
n+1
N − un−1N

2τ


 �
= 1
4τ un+1N

�� ��4
L4 Ωð Þ − un−1N

�� ��4
L4 Ωð Þ

	 

,

ð46Þ
therefore, using (43)–(46), we obtain

δtu
n
Nk k2 − δtu

n−1
N

�� ��2
2τ + Mα

4τ −Δð Þα/4un+1N

�� ��2	
− −Δð Þα/4un−1N

�� ��2
 + β

8τ un+1N

�� ��4
L4 Ωð Þ − un−1N

�� ��4
L4 Ωð Þ

	 

= 0,

ð47Þ

thus,

δtu
n
Nk k2 + Mα

2 −Δð Þα/4un+1N

�� ��2 + −Δð Þα/4unN
�� ��2	 


+ β

4 un+1N

�� ��4
L4 Ωð Þ + unNk k4L4 Ωð Þ

	 

= δtu

n−1
N

�� ��2 + Mα

2 −Δð Þα/4unN
�� ��2 + −Δð Þα/4un−1N

�� ��2	 

+ β

4 unNk k4L4 Ωð Þ + un−1N

�� ��4
L4 Ωð Þ

	 

:

ð48Þ

Based on the above analysis, the method (24) also main-
tains the conservation of the discrete energy. ☐

3. Theory Analysis of Convergence

In order to simplify the notation, we always assume that C is
a positive constant in this article, which might be different in
every formula.

Lemma 5 [20]. For any discrete function unN , it holds that

un+1N

�� ��2 − unNk k2 ≤ τ δtu
n
Nk k2 + 1

2
un+1N

�� ��2 + unNk k2
	 

 �

:

ð49Þ

Lemma 6. For uN ∈Hμ
perðΩÞ, there exists a positive constant C,

such that

unNk k ≤ C, −Δð Þα/4unN
�� �� ≤ C, δtu

n
Nk k ≤ C, n = 0, 1,⋯,Nt:

ð50Þ

Proof. Using Theorem 4, it yields

δtu
n
Nk k2 + Mα

2 −Δð Þα/4un+1N

�� ��2 + −Δð Þα/4unN
�� ��2	 


+ β

4 un+1N

�� ��4
L4 Ωð Þ + unNk k4L4 Ωð Þ

	 

= En = E0,

ð51Þ

thus,

δtu
n
Nk k2 + Mα

2 −Δð Þα/4un+1N

�� ��2 + −Δð Þα/4unN
�� ��2	 


= E0 −
β

4 un+1N

�� ��4
L4 Ωð Þ + unNk k4L4 Ωð Þ

	 

:

ð52Þ

Because of β > 0, it satisfies

δtu
n
Nk k2 + Mα

2 −Δð Þα/4un+1N

�� ��2 + −Δð Þα/4unN
�� ��2	 


≤ C:

ð53Þ

Sum the inequalities of Lemma 5 from 0 to n yields

1 − τ

2
	 


un+1N

�� ��2 ≤ 1 + τ

2
	 


u0N
�� ��2 + τ δtu

0
N

�� ��2
+ τ〠

n

k=1
δtu

k
N

��� ���2 + ukN
��� ���2
 �

:
ð54Þ

Adding (53) and (54), we can obtain the following items:

1 − τ

2
	 


un+1N

�� ��2 + δtu
n
Nk k2

+ Mα

2 −Δð Þα/4un+1N

�� ��2 + −Δð Þα/4unN
�� ��2	 


≤ C + τ〠
n

k=1
δtu

k
N

��� ���2 + ukN
��� ���2
 �

:

ð55Þ

For τ is sufficiently small (τ < 1), this implies

1
2 un+1N

�� ��2 + δtu
n
Nk k2

+ Mα

2 −Δð Þα/4un+1N

�� ��2 + −Δð Þα/4unN
�� ��2	 


≤ C + 2τ〠
n

k=1


 1
2 ukN
��� ���2 + δtu

k−1
N

��� ���2
+ Mα

2 −Δð Þα/4ukN
��� ���2 + −Δð Þα/4uk−1N

��� ���2
 ��
:

ð56Þ
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According to the discrete Gronwall’s inequality, there is

1
2 un+1N

�� ��2 + δtu
n
Nk k2 + Mα

2
	

−Δð Þα/4un+1N

�� ��2
+ −Δð Þα/4unN
�� ��2
 ≤ C:

ð57Þ

Therefore,

unNk k ≤ C, −Δð Þα/4unN
�� ��2 ≤ C, δtu

n
Nk k ≤ C: ð58Þ

☐

Theorem 7. If s ≥ 1, assume that u ∈ C2ðI ;Hα
perðΩÞ ∩HsðΩÞÞ

is the exact solution of (6)–(8), and unN is the numerical solu-
tion of (24). It possesses the following conclusion:

unN − u x, tnð Þk k ≤ C τ2 +N−s uk ks
� �

: ð59Þ

Proof. Let u∗ = PNu, e = u − uN , ξ = u − u∗, and η = u∗ − uN ;
then, en = ξn + ηn. From triangle inequality and Lemma 1, it
yields

enk k ≤ ξn
�� �� + ηnk k ≤ CN−s uk ks + ηnk k: ð60Þ

According to the orthogonality of the projection operator
PN , we get

i κδt̂u
∗n, vð Þ = − δt

2un, v
� �

−Mα −Δð Þα/2~un, v� �
−
β

2 un−1
�� ��2 + un+1

�� ��2	 

~un, v

	 

+ Rn, vð Þ:

ð61Þ

The authors derive the full discrete Fourier Galerkin
method:

iκδt̂u
n
N , vð Þ = − δt

2unN , v
� �

−Mα −Δð Þα/2~unN , v
� �

−
β

2 un−1N

�� ��2 + un+1N

�� ��2	 

~unN , v

	 

:

ð62Þ

Subtracting equation (62) from equation (61), due to

δt̂u
∗n − δt̂u

n
N = u∗n+1 − u∗n−1

2τ −
un+1N − un−1N

2τ = ηn+1 − ηn−1

2τ ,

−δt
2un + δt

2unN = −
un+1 − 2un + un−1

τ2
+ un+1N − 2unN + un−1N

τ2

= −
en+1 − 2en + en−1

τ2
,

−Δð Þα/2~unN − −Δð Þα/2~un

= −Δð Þα/2 u
n−1
N + un+1N

2 − −Δð Þα/2 u
n−1 + un+1

2

= − −Δð Þα/2 un−1 − un−1N

� �
+ un+1 − un+1N

� �
2

= − −Δð Þα/2 e
n−1 + en+1

2 ,

ð63Þ

thus,

iκ δt̂η
n, vð Þ = − δ2t e

n, v
� �

−Mα −Δð Þα/2~en, v� �
−
β

2 un−1
�� ��2 + un+1

�� ��2	 

~un

	
− un−1N

�� ��2 + un+1N

�� ��2	 

~unN , v



+ Rn, vð Þ:

ð64Þ

According to the orthogonality of operator PN , i.e., ðPN
u − u, vÞ = 0, ∀v ∈ SN . Therefore,

ej, ηk
	 


= ξj + ηj, ηk
	 


= ξj, ηk
	 


+ ηj, ηk
	 


= ηj, ηk
	 


, j, k = 0, 1,⋯,Nt:
ð65Þ

Let v = δt̂η
n in (64), and taking the real part, due to

Re iκ δt̂η
n, δt̂ηnð Þð Þ = 0, ð66Þ

Re δt
2en, δt̂ηn

� �
= Re δt

2ηn, δt̂ηn
� �

= 1
2τ Re δtη

n − δtη
n−1, δtηn + δtη

n−1� �
= δtη

nk k2 − δtη
n−1�� ��2

2τ ,

ð67Þ

Re −Δð Þα/2~en, δt̂ηn
� �
= Re −Δð Þα/2~ηn, δt̂ηn

� �
= Re −Δð Þα/2 η

n−1 + ηn+1

2 , η
n+1 − ηn−1

2τ


 �
= 1
4τ −Δð Þα/4ηn+1, −Δð Þα/4ηn+1� ��
− −Δð Þα/4ηn−1, −Δð Þα/4ηn−1� ��

= −Δð Þα/4ηn+1�� ��2 − −Δð Þα/4ηn−1�� ��2
4τ ,

ð68Þ

therefore, using (66)-(68), this implies

Re Rn, δt̂ηnð Þ = δtη
nk k2 − δtη

n−1�� ��2
2τ + Mα

4τ
	

−Δð Þα/4ηn+1�� ��2
− −Δð Þα/4ηn−1�� ��2
 + Re Gn, δt̂ηnð Þ,

ð69Þ

where

Gnj j = β

2 un−1
�� ��2 + un+1

�� ��2	 

~un − un−1N

�� ��2 + un+1N

�� ��2	 

~unN

	 

= β

2 un−1
�� ��2 + un+1

�� ��2	 
 un−1 + un+1

2

����
−
β

2 un−1 − en−1
�� ��2 + un+1 − en+1

�� ��2	 
 un−1N + un+1N

2

����
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= β

2
	
un−1
�� ��2~en + un+1

�� ��2~en + en−1�un−1N ~unN

����
+ un−1�en−1~unN + en+1�un+1N ~unN + un+1�en+1~unN


����
≤
β

2
	
max un−1

�� ��, un+1�� ��, un−1N

�� ��, un+1N

�� ��� �2
� 2 en−1
�� �� + 2 en+1

�� �� + 2 ~enj j� �

:

ð70Þ

Thus, according to Lemma 6, we can get

Gnj j2 ≤ C en−1
�� ��2 + en+1

�� ��2	 

: ð71Þ

Note Lemma 1; it gives that

Gnk k2 =
ð
Ω

Gnj j2dx ≤ C en−1
�� ��2 + en+1

�� ��2	 

≤ C ηn−1

�� ��2 + ηn+1
�� ��2	 


+ CN−2s uk k2s :
ð72Þ

Then,

Re Gn, δt̂ηnð Þ ≤ Gnk k2 + δt̂η
nk k2

2
≤
1
2 δt̂η

nk k2 + C ηn−1
�� ��2 + ηn+1

�� ��2	 

+ CN−2s uk k2s ,

Re Rn, δt̂ηnð Þ ≤ Rnk k2 + δt̂η
nk k2

2 ≤
1
2 δt̂η

nk k2 + C τ4
� �

:

ð73Þ

Thus, (69) becomes

δtη
nk k2 − δtη

n−1�� ��2
2τ

+ Mα

4τ −Δð Þα/4ηn+1�� ��2 − −Δð Þα/4ηn−1�� ��2	 

≤ C ηn−1

�� ��2 + ηn+1
�� ��2	 


+ δt̂η
nk k2 + C τ4 +N−2s uk k2s

� �
:

ð74Þ

Because of

δt̂η
n = δtη

n + δtη
n−1

2 , ð75Þ

and from Lemma 5, it gives that

ηnk k2 − ηn−1
�� ��2
τ

≤ δtη
nk k2 + 1

2 ηnk k2 + ηn−1
�� ��2	 


: ð76Þ

Then, combining (74) and (76) leads to

δtη
nk k2 − δtη

n−1�� ��2
2τ + Mα

4τ
	

−Δð Þα/4ηn+1�� ��2
− −Δð Þα/4ηn−1�� ��2
 + ηnk k2 − ηn−1

�� ��2
τ

≤ C δtη
nk k2 + δtη

n−1�� ��2 + ηnk k2 + ηn+1
�� ��2 + ηn−1

�� ��2	 

+ C τ4 +N−2s uk k2s
� �

:

ð77Þ

Summing above inequalities (77) from 1 to n yields

1
2 δtη

nk k2 + Mα

4 −Δð Þα/4ηn+1�� ��2 + −Δð Þα/4ηn�� ��2	 

+ ηnk k2

≤ τC〠
n

i=1


 1
2 δtη

i�� ��2 + Mα

4
	

−Δð Þα/4ηi+1�� ��2
+ −Δð Þα/4ηi�� ��2
 + ηi

�� ��2� + C τ4 +N−2s uk k2s
� �

:

ð78Þ

Hence, using the discrete Gronwall’s inequality gives

1
2 δtη

nk k2 + Mα

4 −Δð Þα/4ηn+1�� ��2 + −Δð Þα/4ηn�� ��2	 

+ ηnk k2

≤ C τ4 +N−2s uk k2s
� �

,
ð79Þ

thus,

ηnk k2 ≤ C τ4 +N−2s uk k2s
� �

: ð80Þ

Substituting (80) into (60) can yield

enk k ≤ C N−s uk ks + τ2
� �

, ð81Þ

which immediately gives conclusion. ☐

Similar to the proof of Theorem 7, we can obtain the fol-
lowing theorem.

Theorem 8. Let s ≥ 1; assume that u ∈ C2ðI ;Hα
perðΩÞ ∩Hs

ðΩÞÞ is the exact solution of (6)–(8), and unN is the numerical
solution of (32). It possesses the following conclusion:

unN − u x, tnð Þk k ≤ C τ2 +N−s uk ks
� �

: ð82Þ

4. Numerical Example

Numerical examples will be proposed in this section to verify
the correctness of the theoretical analysis, that is, the conver-
gence of the numerical method and its ability to maintain
discrete mass and discrete energy.
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Example 1. Consider the nonlinear fractional Schrödinger
equation with the wave operator:

ϕtt + −Δð Þα/2ϕ + iϕt + ϕ y, tð Þj j2ϕ y, tð Þ = 0, y ∈ −10, 10ð Þ, t ∈ 0, Tð �,
ϕ −10, tð Þ = ϕ 10, tð Þ = 0,  t ∈ 0, T½ �,
ϕ y, 0ð Þ = 1 + ið Þy exp −10 1 − yð Þ2� �

, ϕt y, 0ð Þ = 0, y ∈ −10, 10ð Þ:

8>><>>:
ð83Þ

Let τ = 0:01, N = 128, and T = 10. Figures 1 and 2 present
the numerical solutions for α = 1:4 and α = 1:6. We can find
that the order of α will affect the shape of the solution.

There is no exact solution of (83) known for 1 < α < 2.
Therefore, numerical solution calculated by the method
(24) withN = 1024 and τ = 2−10 is taken as the reference solu-
tion. Let Φ be the numerical solution, and calculate the error
at t = tn in the sense of the discrete L2 norm:

error = ϕn −Φnk k: ð84Þ

The convergence rates in the direction of time and space
are calculated as

order =

log error τ1ð Þk k/ error τ2ð Þk kð Þ
log τ1/τ2ð Þ ,

log error N1ð Þk k/ error N2ð Þk kð Þ
log N1/N2ð Þ :

8>>><>>>: ð85Þ

Let T = 1. Tables 1 and 2 show that the numerical method
is proven to have spectral accuracy in space and second-order
accuracy in time for solving equation (83) with α = 1:4 and
α = 1:6.
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Figure 1: Numerical solutions for equation (83) with α = 1:4 when
τ = 0:01 and N = 128.
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Figure 2: Numerical solutions for equation (83) with α = 1:6 when
τ = 0:01 and N = 128.

Table 1: Errors and convergence rates in time forN = 512 and T = 1.

α τ Error Order

1.4

2−5 1:9071e − 2 —

2−6 4:7789e − 3 1.9966

2−7 1:1822e − 3 2.0152

1.6

2−5 3:2228e − 2 —

2−6 7:8070e − 3 1.9952

2−7 1:9320e − 3 2.0148

Table 2: Errors and convergence rates in space for τ = 2−10 and
T = 1.

α N Error Order

1.4

128 1:3922e − 2 —

256 8:4405e − 3 0.7220

512 3:9789e − 3 1.0850

1.6

128 1:9930e − 2 —

256 1:2081e − 2 0.7225

512 5:6949e − 3 1.0850
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Figure 3: Discrete mass error when τ = 0:01, N = 128, and α = 1:4.

8 Journal of Function Spaces



Figures 3–6 show the ability of the numerical method
(24) to maintain the discrete mass and discrete energy when
α = 1:4 and α = 1:6. It can be seen from the figure that the
numerical method (24) maintains the discrete mass and dis-
crete energy well.

5. Conclusion

For the fractional Schrödinger equation with wave operators,
we successfully constructed the effective conservative Crank-
Nicolson Fourier spectral method for solving this equation,
based on the relative theory of a fractional-order derivative
and its property. We give the strict theoretical derivation
for the convergence rate of the numerical method, i.e., Oðτ2
+N−skuksÞ. Finally, numerical examples are introduced to
verify the correctness of the theoretical results and the valid-
ity of our numerical methods. Both theoretical derivation

and numerical experiment verify that the numerical method
can keep the energy conservation and mass conservation of
the original fractional Schrödinger equation. Both environ-
mental noise and regime switching are important factors
[21–29]; we will introduce them in the model ((6)–(8)) in
the future.
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In this paper, we give a generalized definition namely strongly ðα, h‐mÞ-convex function that unifies many known definitions. By
applying this new definition, we present inequalities for unified integral operators which have connection with many of the well-
known results for different kinds of convex functions. Moreover, this paper at once provides refinements and generalizations of
a lot of fractional integral inequalities which are identified in remarks.

1. Introduction

There are many applications of convexity in diverse fields of
mathematics including operation research, mathematical sta-
tistics, optimization theory, and graph theory. In mathemat-
ical inequalities’ point of view, convex functions are very
important. They are extended and generalized in different
ways to obtain corresponding generalizations and extensions
of well-known inequalities. For the detail study of different
kinds of convex functions, we refer the readers to [1–7].

In recent years, the researchers are working on fractional
versions of mathematical inequalities by utilizing classical
and new kinds fractional integral/derivative operators, see
[8–11]. Also, several kinds of convex functions are applied
to obtain these fractional versions, for example, see [1, 12–
17] and references therein. The inequalities for fractional
integrals and derivatives are very useful in the study of frac-
tional differential equations. Using fractional differential
and integral inequalities, qualitative properties of fractional
differential equations involving the Riemann-Liouville and
the Caputo derivatives can be found frequently in literature.

Our objective is to investigate integral inequalities for
newly defined function called strongly ðα, h −mÞ-convex
function. Integral operators (5) and (6) are used to establish

these inequalities, and they have interesting consequences
for distinctive fractional inequalities for various types of
functions. Next, we give some definitions of known general-
ized fractional integral operators which can be directly
obtained from operators (5) and (6).

Definition 1 (see [18]). Let ψ : ½a, b�⟶ℝ be an integrable
function and ξ be an increasing positive function defined
on ½a, b� has a continuous derivative ξ′ on ða, bÞ. The frac-
tional integrals of a function ψ with respect to another func-
tion ξ on ½a, b� of order μ ðRðμÞ > 0Þ are defined by

μ
ξ Ia+ψ xð Þ = 1

Γ μð Þ
ðx
a
ξ xð Þ − ξ tð Þð Þμ−1ξ′ tð Þψ tð Þdt, x > a,

μ
ξ Ib−ψ xð Þ = 1

Γ μð Þ
ðb
x
ξ tð Þ − ξ xð Þð Þμ−1ξ′ tð Þψ tð Þdt, x < b,

ð1Þ

here, Γð:Þ represents the gamma function.

One can see a k-analogue of Definition 1 in [16]. The fol-
lowing generalized integral operator is given in [19].
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Definition 2. Let ψ, ξ : ½a, b�⟶ℝ, 0 < a < b be the functions
such that ψ be positive and ψ ∈ L1½a, b�, and ξ be differentia-
ble and increasing. Also let ϕ/x be an increasing function on
½a,∞Þ. Then, for x ∈ ½a, b�, the left and right integral opera-
tors are defined by

Fϕ,ξ
a+ ψ

� �
xð Þ =

ðx
a

ϕ ξ xð Þ − ξ tð Þð Þ
ξ xð Þ − ξ tð Þ ξ′ tð Þψ tð Þdt, x > a,

Fϕ,ξ
b−
ψ

� �
xð Þ =

ðb
x

ϕ ξ tð Þ − ξ xð Þð Þ
ξ tð Þ − ξ xð Þ ξ′ tð Þψ tð Þdt, x < b:

ð2Þ

The Mittag-Leffler function was introduced in 1903,
which is generalization of the exponential function just by a
single parameter with a convergence condition. The further
generalization by another parameter was given by Wiman;
further, it was extended by Prabhakar and then by other
authors; to see the importance of these extensions, we suggest
the reader to [20, 21]. By utilizing an extended generalized
Mittag-Leffler function, we have defined a fractional integral
operator.

Definition 3 (see [12]). Let α, γ, μ, c, l,w ∈ℂ, RðαÞ,RðμÞ,R
ðlÞ > 0, RðcÞ >RðγÞ > 0 and p ≥ 0, δ > 0 with 0 < k ≤ δ +Rð
μÞ. Let ψ ∈ L1½a, b� and x ∈ ½a, b�: The generalized fractional

integral operators εγ,δ,k,cμ,α,l,w,a+ψ and ε
γ,δ,k,c
μ,α,l,w,b−ψ are defined by:

ε
γ,δ,k,c
μ,α,l,w,a+ψ

� �
x ; pð Þ =

ðx
a
x − tð Þα−1Eγ,δ,k,c

μ,α,l w x − tð Þμ ; pð Þψ tð Þdt,

ε
γ,δ,k,c
μ,α,l,w,b−ψ

� �
x ; pð Þ =

ðb
x
t − xð Þα−1Eγ,δ,k,c

μ,α,l w t − xð Þμ ; pð Þψ tð Þdt,

ð3Þ

where

Eγ,δ,k,c
μ,α,l t ; pð Þ = 〠

∞

n=0

ηp γ + nk, c − γð Þ
η γ, c − γð Þ

cð Þnk
Γ μn + αð Þ

tn

lð Þnδ
, ð4Þ

is the extended generalized Mittag-Leffler function.

Unified integral operator is based on a kernel which also
involves a real valued strictly increasing function along with
two variables. This integral operator also unifies the above
definitions.

Definition 4 (see [22]). Let ψ, ξ : ½a, b�⟶ℝ, 0 < a < b be the
functions such that ψ be positive and ψ ∈ L1½a, b�, and ξ be
differentiable and strictly increasing. Also, let ϕ/x be differen-
tiable and strictly increasing. Also, let ½a,∞Þ and τ, l, γ, c ∈ℂ,
RðτÞ,RðlÞ > 0,RðcÞ >RðγÞ > 0, p, μ, δ ≥ 0 and 0 < k ≤ δ + μ
. Then, for x ∈ ½a, b�, the left and right integral operators are
defined by

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ

� �
x,w ; pð Þ =

ðx
a
Ky

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ yð Þd ξ yð Þð Þ,

ð5Þ

ξF
ϕ,γ,δ,k,c
μ,τ,l,b− ψ

� �
x,w ; pð Þ =

ðb
x
Kx

y Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ yð Þd ξ yð Þð Þ,

ð6Þ
where we have

Ky
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

= ϕ ξ xð Þ − ξ yð Þð Þ
ξ xð Þ − ξ yð Þ Eγ,δ,k,c

μ,τ,l w ξ xð Þ − ξ yð Þð Þμ ; p� �
:

ð7Þ

Several recently defined fractional integrals studied in
[12, 14, 18, 21, 23–30] can be reproduced from the above def-
inition, see ([31], Remarks 6 and 7). The following results are
obtained for strongly convex functions in [32].

Theorem 5. Let ψ : ½a, b�⟶ℝ be a positive, integrable, and
strongly convex function with modulus λ ≥ 0. Let ξ : ½a, b�
⟶ℝ be a strictly increasing and differentiable function, also
let ϕ/x be an increasing function on ½a, b�. If α, γ, η, c, l ∈ℝ+,
c > γ, p, μ, δ ≥ 0 and 0 < k ≤ δ + μ, then for x ∈ ða, bÞ, the fol-
lowing inequality holds:

ξF
ϕ,γ,δ,k,c
μ,α,l,a+ ψ

� �
x,w ; pð Þ + ξF

ϕ,γ,δ,k,c
μ,η,l,b− ψ

� �
x,w ; pð Þ

≤ Ka
x Eγ,δ,k,c

μ,α,l , ξ ; ϕ
� �

ξ xð Þ − ξ að Þð Þ ψ xð Þ + ψ að Þð Þð
−λ x − að Þ 2I a, x, Idξð Þ − a + xð ÞI a, x, ξð Þð ÞÞ
+ Kx

b Eγ,δ,k,c
μ,η,l , ξ ; ϕ

� �
ξ bð Þ − ξ xð Þð Þ ψ bð Þ + ψ xð Þð Þð

−λ b − xð Þ 2I x, b, Idξð Þ − x + bð ÞI x, b, ξð Þð ÞÞ,

ð8Þ

where Id is the identity function and Iða, b, ψÞ≔ Ð baψðtÞdt.
Theorem 6. Under the assumptions of Theorem 5, in addi-
tion, if ψðxÞ = ψða + b − xÞ, then, we have

f
a + b
2

� �
ξF

ϕ,γ,δ,k,c
μ,α,l,b− 1

� �
a,w ; pð Þ + λ

4 ξF
ϕ,γ,δ,k,c
μ,α,l,b− a + b − 2xð Þ2

� �

� a,w ; pð Þ + f
a + b
2

� �
ξF

ϕ,γ,δ,k,c
μ,η,l,a+ 1

� �
b,w ; pð Þ + λ

4

� ξF
ϕ,γ,δ,k,c
μ,η,l,a+ a + b − 2xð Þ2

� �
b,w ; pð Þ

≤ ξF
ϕ,γ,δ,k,c
μ,α,l,b− ψ

� �
a,w ; pð Þ + ξF

ϕ,γ,δ,k,c
μ,η,l,a+ ψ

� �
b,w ; pð Þ

≤ Ka
b Eγ,δ,k,c

μ,α,l , ξ ; ϕ
� �

+ Ka
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �� �

� ξ bð Þ − ξ að Þð Þ ψ bð Þ + ψ að Þð Þ − b − að Þλ 2I a, b, Idξð Þðð
− a + bð ÞI a, b, ξð ÞÞÞ:

ð9Þ

Theorem 7. Let ψ : ½a, b�⟶ℝ be a differentiable function. If
∣ψ′ ∣ is strongly convex with modulus λ ≥ 0 and ξ : ½a, b�
⟶ℝ be strictly increasing and differentiable, also let ϕ/x
be an increasing function on ½a, b�. If α, γ, η, c, l ∈ℝ+, c > γ,
p, μ, δ ≥ 0 and 0 < k ≤ δ + μ, then for x ∈ ða, bÞ, the following
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inequality holds:

ξF
ϕ,γ,δ,k,c
μ,α,l,a+ ψ ∗ ξ

� �
x,w ; pð Þ + ξF

ϕ,γ,δ,k,c
μ,η,l,b− ψ ∗ ξ

� �
x,w ; pð Þ

��� ���
≤ Ka

x Eγ,δ,k,c
μ,α,l , ξ ; ϕ

� �
× ξ xð Þ − ξ að Þð Þ ψ′ xð Þ�� �� + ψ′ að Þ�� ��� ��

− λ x − að Þ 2I a, x, Idξð Þ − a + xð ÞI a, x, ξð Þð ÞÞ
+ Kx

b Eγ,δ,k,c
μ,η,l , ξ ; ϕ

� �
ξ bð Þ − ξ xð Þð Þ ψ′ bð Þ�� �� + ψ′ xð Þ�� ��� ��

−λ b − xð Þ 2I x, b, Idξð Þ − x + bð ÞI x, b, ξð Þð ÞÞ:
ð10Þ

Next, we give some definitions of convex functions. The
definition of ðh‐mÞ-convex function is given as follows:

Definition 8 (see [5]). Let J ⊆ℝ be an interval containing ð0
, 1Þ and let h : J ⟶ℝ be a nonnegative function. A nonneg-
ative function ψ : ½0, b�⟶ℝ is called ðh‐mÞ-convex func-
tion if

ψ ζx +m 1 − ζð Þyð Þ ≤ h ζð Þψ xð Þ +mh 1 − ζð Þψ yð Þ, ð11Þ

holds for all x, y ∈ ½0, b�, m ∈ ½0, 1�, and ζ ∈ ð0, 1Þ.

Remark 9.

(i) For m = 1, (11) gives the definition of h-convex
function

(ii) For hðζÞ = ζ, (11) gives the definition of m-convex
function

(iii) For hðζÞ = ζ and m = 1, (11) gives the definition of
convex function

(iv) For hðζÞ = 1 andm = 1, (11) gives the definition of p
-function

(v) For hðζÞ = ζs andm = 1, (11) gives the definition of s
-convex function

(vi) For hðζÞ = 1/ζ andm = 1, (11) gives the definition of
Godunova-Levin function

(vii) For hðζÞ = 1/ζs and m = 1, (11) gives the definition
of s-Godunova-Levin function of second

Definition 10 (see [4]). A function ψ : ½0, b�⟶ℝ, b > 0 is
said to be ðα,mÞ-convex if

ψ ζx +m 1 − ζð Þyð Þ ≤ ζαψ xð Þ +m 1 − ζα
� �

ψ yð Þ, ð12Þ

holds for all x, y ∈ ½0, b� ζ ∈ ½0, 1� and ðα,mÞ ∈ ½0, 1�2.

Remark 11.

(i) For ðα,mÞ=ð1,mÞ, (12) provides m-convex function

(ii) For ðα,mÞ=ð1, 1Þ, (12) provides convex function

(iii) For ðα,mÞ=ð1, 0Þ, (12) provides star-shaped
function

Definition 12 see ([33]). A function ψ : ½0, b�⟶ℝ, b > 0 is
said to be ðs,mÞ-convex, where ðs,mÞ ∈ ½0, 1�2 if

ψ ζx +m 1 − ζð Þyð Þ ≤ ζsψ xð Þ +m 1 − ζð Þsψ yð Þ, ð13Þ

holds for all x, y ∈ ½0, b� and ζ ∈ ½0, 1�:

The following definition unifies ðh‐mÞ-convex, ðs,mÞ
-convex, and ðα,mÞ-convex functions in a single inequality.

Definition 13. Let J ⊆ℝ be an interval containing ð0, 1Þ and
let h : J ⟶ℝ be a nonnegative function. A nonnegative
function ψ : ½0, b�⟶ℝ is said to be ðα, h‐mÞ-convex func-
tion if

ψ ζx +m 1 − ζð Þyð Þ ≤ h ζα
� �

ψ xð Þ +mh 1 − ζα
� �

ψ yð Þ, ð14Þ

holds for all x, y ∈ ½0, b�, ζ ∈ ð0, 1Þ, ðα,mÞ ∈ ½0, 1�2.

Next, we give definitions of strongly convex, strongly ðs
,mÞ-convex, and strongly ðα,mÞ-convex functions.

Definition 14 (see [34]). Let I be a nonempty convex subset of
normed space ðX, k:kÞ. A real valued function ψ is said to be
strongly convex, with modulus λ ≥ 0, on I if for each a, b ∈ I
and ζ ∈ ½0, 1�,

ψ ζx + 1 − ζð Þyð Þ ≤ ζψ xð Þ + 1 − ζð Þψ yð Þ − λζ 1 − ζð Þ b − ak k2:
ð15Þ

Definition 15 (see [35]). A function ψ : ½0,+∞Þ⟶ℝ is said
to be strongly ðs,mÞ-convex function, with modulus λ ≥ 0,
for ðs,mÞ ∈ ½0, 1�2, if

ψ ζx +m 1 − ζð Þyð Þ ≤ ζsψ xð Þ +m 1 − ζð Þsψ yð Þ − λmζ 1 − ζð Þ y − xð Þ2,
ð16Þ

holds for all x, y ∈ ½0,+∞Þ and ζ ∈ ½0, 1�.

Definition 16 (see [36]). A function ψ : ½0, b�⟶ℝ, b > 0 is
said to be strongly ðα,mÞ-convex, where ðα,mÞ ∈ ½0, 1�2 if

ψ ζx +m 1 − ζð Þyð Þ ≤ ζαψ xð Þ +m 1 − ζα
� �

ψ yð Þ − λmζα 1 − ζα
� �

y − xj j2,
ð17Þ

holds for all x, y ∈ ½0, b� and ζ ∈ ½0, 1�:

Next, we give a property of the kernel given in (7), which
will be useful for finding the results of this paper.

P: Let ξ and ϕ/I be increasing functions. Then, for u < t

< v, u, v ∈ ½a, b�, the kernel Kv
uðEγ,δ,k,c

μ,τ,l , ξ ; ϕÞ satisfies the fol-
lowing inequality:
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Ku
t Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

ξ′ tð Þ ≤ Ku
v Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

ξ′ tð Þ: ð18Þ

It is easy to prove by using the following inequalities:

ϕ ξ tð Þ − ξ uð Þð Þ
ξ tð Þ − ξ uð Þ ξ′ tð Þ ≤ ϕ ξ vð Þ − ξ uð Þð Þ

ξ vð Þ − ξ uð Þ ξ′ tð Þ,

Eγ,δ,k,c
μ,τ,l w ξ tð Þ − ξ uð Þð Þμ ; p� �

≤ Eγ,δ,k,c
μ,τ,l w ξ vð Þ − ξ uð Þð Þμ ; p� �

:

ð19Þ

If ξ and ϕ/I are of opposite monotonicities, then (18)
holds in reverse direction. For further properties, see [37].

In Section 2, we will define a new notion of strongly ðα,
h‐mÞ-convex function which unifies several kinds of convex
functions in a single inequality. By applying this new defini-
tion, we give generalizations of results for strongly convex
functions. The results established here will produce general-
izations and refinements of fractional integral inequalities
for different kinds of convex and strongly convex functions
which have been published in various papers.

2. Main Results

We give the definition of a function will be called strongly ð
α, h‐mÞ-convex function.

Definition 17. Let J ⊆ℝ be an interval containing ð0, 1Þ and
let h : J ⟶ℝ be a nonnegative function. A nonnegative
function ψ : ½0, b�⟶ℝ is said to be strongly ðα, h‐mÞ-con-
vex function with modulus λ ≥ 0 if

ψ ζx +m 1 − ζð Þyð Þ ≤ h ζα
� �

ψ xð Þ +mh 1 − ζα
� �

ψ yð Þ −mλh ζα
� �

h 1 − ζα
� �

y − xj j2,
ð20Þ

holds for all x, y ∈ ½0, b�, ζ ∈ ð0, 1Þ, ðα,mÞ ∈ ½0, 1�2.

The definition of strongly ðh‐mÞ-convexity can be
achieved by taking α = 1 in (20).

Definition 18. Let J ⊆ℝ be an interval containing ð0, 1Þ and
let h : J ⟶ℝ be a nonnegative function. A nonnegative
function ψ : ½0, b�⟶ℝ is said to be strongly ðh‐mÞ-con-
vex function with modulus λ ≥ 0 if

ψ ζx +m 1 − ζð Þyð Þ ≤ h ζð Þψ xð Þ +mh 1 − ζð Þψ yð Þ −mλh ζð Þh 1 − ζð Þ y − xj j2,
ð21Þ

holds for all x, y ∈ ½0, b�, ζ ∈ ð0, 1Þ, m ∈ ½0, 1�.

One can obtain from (20) definitions of strongly convex,
strongly s-convex, strongly m-convex, strongly h-convex,
strongly ðα,mÞ-convex, and strongly ðs,mÞ-convex
functions.

Theorem 19. Let ψ ∈ L1½a, b� be a positive strongly ðα, h‐mÞ
-convex function with modulus λ ≥ 0, m ∈ ð0, 1�, 0 < a <mb.
Let ξ be strictly increasing and differentiable function, also

let ϕ/x be an increasing function on ½a, b� and hðxÞhðyÞ ≤ hð
x + yÞ. If τ, η, l, γ, c ∈ℝ+, c > γ, p, μ, δ ≥ 0 and 0 < k ≤ δ + μ,
then for x ∈ ða, bÞ, the following inequality holds:

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ

� �
x,w ; pð Þ + ξF

ϕ,γ,δ,k,c
μ,η,l,b− ψ

� �
x,w ; pð Þ

≤ Ka
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

x − að Þ ψ að ÞXa
x rα, h ; ξ′
� ��

+mψ
x
m

� �
Xa
x 1 − rα, h ; ξ′
� �

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!

+ Kx
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �

b − xð Þ × ψ bð ÞXb
x rα, h ; ξ′
� ��

+mψ
x
m

� �
Xb
x 1 − rα, h ; ξ′
� �

−
λ bm − xð Þ2h 1ð Þ ξ bð Þ − ξ xð Þð Þ

m b − xð Þ

!
,

ð22Þ

while Xa
xðrα, h ; ξ′Þ =

Ð 1
0hðrαÞξ′ðx − rðx − aÞÞdr, Xa

xð1 − rα, h
; ξ′Þ = Ð 10hð1 − rαÞξ′ðx − rðx − aÞÞdr.

Proof. Using ðPÞ, we can write the following inequalities

Kt
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

ξ′ tð Þ ≤ Ka
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

ξ′ tð Þ, t ∈ a, xð Þ,
ð23Þ

Kx
t Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

ξ′ tð Þ ≤ Kx
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �

ξ′ tð Þ, t ∈ x, bð Þ:
ð24Þ

Using strongly ðα, h‐mÞ-convexity of ψ, we have

ψ tð Þ ≤ h
x − t
x − a

� �α

ψ að Þ +mh 1 − x − t
x − a

� �α� �
ψ

x
m

� �

−
λ x − amð Þ2

m
h

x − t
x − a

� �α

h 1 − x − t
x − a

� �α� �
,

ð25Þ

ψ tð Þ ≤ h
t − x
b − x

� �α

ψ bð Þ +mh 1 − t − x
b − x

� �α� �
ψ

x
m

� �

−
λ bm − xð Þ2

m
h

t − x
b − x

� �α

h 1 − t − x
b − x

� �α� �
:

ð26Þ

From (23) and (25), the following inequality is obtained:

ðx
a
Kt

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ tð Þd ξ tð Þð Þ

≤ ψ að ÞKa
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

×
ðx
a
h

x − t
x − a

� �α

d ξ tð Þð Þ

+mψ
x
m

� �
Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
×
ðx
a
h 1 − x − t

x − a

� �α� �
d ξ tð Þð Þ

−
λ bm − xð Þ2

m
Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
×
ðx
a
h 1 − x − t

x − a

� �α� �
h

x − t
x − a

� �α

d ξ tð Þð Þ:

ð27Þ

By setting r = ðx − tÞ/ðx − aÞ on the right side and using
(5) on left side of above inequality, we get
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ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ

� �
x,w ; pð Þ ≤ Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
x − að Þ

× ψ að Þ
ð1
0
h rαð Þξ′ x − r x − að Þð Þdr

�

+mψ
x
m

� �ð1
0
h 1 − rαð Þξ′ x − r x − að Þð Þdr

−
λ x − amð Þ2

m

ð1
0
h 1 − rαð Þh rαð Þξ′ x − r x − að Þð Þdr

!
:

ð28Þ

The inequality (28) can take the following form:

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ

� �
x,w ; pð Þ ≤ Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
x − að Þ

× ψ að ÞXa
x rα, h ; ξ′
� �

+mψ
x
m

� �
Xa
x 1 − rα, h ; ξ′
� ��

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!
:

ð29Þ

On the other hand, multiplying (24) and (26), and adopt-
ing the same pattern as we did for (23) and (25), the following
inequality holds true:

ξF
ϕ,γ,δ,k,c
μ,η,l,b− ψ

� �
x,w ; pð Þ ≤ Kx

b Eγ,δ,k,c
μ,η,l , ξ ; ϕ

� �
b − xð Þ

× ψ bð Þ
ð1
0
h rαð Þξ′ x − r x − bð Þð Þdr

�

+mψ
x
m

� �ð1
0
h 1 − rαð Þξ′ x − r x − bð Þð Þdr

−
λ bm − xð Þ2

m

ð1
0
h 1 − rαð Þh rαð Þξ′ x − r x − bð Þð Þdr

!
:

ð30Þ

The inequality (30) can take the following form:

ξF
ϕ,γ,δ,k,c
μ,η,l,b− ψ

� �
x,w ; pð Þ ≤ Kx

b Eγ,δ,k,c
μ,η,l , ξ ; ϕ

� �
b − xð Þ × ψ bð ÞXb

x rα, h ; ξ′
� ��

+mψ
x
m

� �
Xb
x 1 − rα, h ; ξ′
� �

−
λ bm − xð Þ2h 1ð Þ ξ bð Þ − ξ xð Þð Þ

m b − xð Þ

!
:

ð31Þ

By adding (29) and (31), (22) can be achieved.☐

Corollary 20. For w = p = 0, (22) gives the following inequal-
ity obtained for fractional integral operator defined in [19]:

Fϕ,ξ
a+ ψ

� �
xð Þ

Γ τð Þ +
Fϕ,ξ
b− ψ

� �
xð Þ

Γ ηð Þ ≤
ϕ ξ xð Þ − ξ að Þð Þ x − að Þ
Γ τð Þ ξ xð Þ − ξ að Þð Þ ψ að ÞXa

x rα, h ; ξ′
� ��

+mψ
x
m

� �
Xa
x 1 − rα, h ; ξ′
� �

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!

+ ϕ ξ bð Þ − ξ xð Þð Þ b − xð Þ
Γ ηð Þ ξ bð Þ − ξ xð Þð Þ × ψ bð ÞXb

x rα, h ; ξ′
� �

+mψ
x
m

� �
Xb
x 1 − rα, h ; ξ′
� ��

−
λ bm − xð Þ2h 1ð Þ ξ bð Þ − ξ xð Þð Þ

m b − xð Þ

!
:

ð32Þ

Remark 21.

(i) For λ = 0, (22) gives ([38], Theorem 1)

(ii) For τ = η and hðζÞ = ζ, (22) gives ([39], Theorem
1)

(iii) For λ = 0, τ = η, α =m = 1, and hðζÞ = ζ, (22)
gives ([31], Theorem 8)

(iv) For λ = 0, ϕðζÞ = ΓðτÞζτ/k/kΓkðτÞ, hðζÞ = ξðtÞ = ζ
, α =m = 1, and w = p = 0, (22) gives ([40], Theo-
rem 1)

(v) For λ = 0, τ = η, the result of (iv) gives ([40], Cor-
ollary 1)

(vi) For λ = 0, k = 1, and x = a or x = b, the result of
(v) gives ([40], Corollary 2)

(vii) For λ = 0, k = 1, and x = ða + bÞ/2, the result of
(v) gives ([40], Corollary 3)

(viii) For λ = 0, ϕðζÞ = ζτ, α = 1, and ξðtÞ = ζ, (22) gives
([41], Theorem 1)

(ix) For λ = 0, ϕðζÞ = ζτ, α =m = 1, and hðζÞ = ξðtÞ
= ζ, (22) gives ([41], Corollary 1)

(x) For λ = 0, ϕðζÞ = ΓðτÞζτ, α = 1, w = p = 0, and ξð
ζÞ = ζ, (22) gives ([42], Theorem 2.1)

(xi) For λ = 0, τ = η, the result of (x) gives ([42], Cor-
ollary 2.2)

(xii) For λ = 0, τ = η, ϕðζÞ = ΓðτÞζτ, w = p = 0, ξðζÞ =
ζ, and α = 1 and using ([12], Remark 11), (22)
gives ([42], Corollary 2.3)

(xiii) For λ = 0, ϕðζÞ = ΓðτÞζτ, α = 1, w = p = 0, ξðζÞ
= ζ, and hðζÞ = 1, (22) gives inequality (26) of
([42], Corollary 2.4) similarly, under the same
assumptions along with hðζÞ = ζp, (22) gives
inequality (27) of ([42], Corollary 2.4)

(xiv) For λ = 0, ϕðζÞ = ΓðτÞζτ, w = p = 0, α =m = 1,
and ξðtÞ = hðζÞ = ζ, (22) gives ([43], Theorem 1)

(xv) For λ = 0, τ = η, the result of (xiv) gives ([43],
Corollary 1)

(xvi) For λ = 0, ϕðζÞ = ΓðτÞζτ, w = p = 0, α =m = 1,
and hðζÞ = ζ, (22) gives ([44], Theorem 1)

(xvii) For λ = 0, τ = η, ϕðζÞ = ΓðτÞζτ, w = p = 0, α =m
= 1, and hðζÞ = ζ, (22) gives ([44], Corollary 1)

(xviii) For λ = 0, ϕðζÞ = ζτ, ξðζÞ = ζ, and hðζÞ = ζs, α =
m = 1, (22) gives ([45], Theorem 2.1)

(xix) For λ = 0, τ = η, ϕðζÞ = ζτ, ξðζÞ = ζ, α =m = 1,
and hðζÞ = ζs, (22) gives ([45], Corollary 2.1)

(xx) For λ = 0, w = p = 0, α = 1, and hðζÞ = ζs, (22)
gives ([46], Theorem 1)

5Journal of Function Spaces



(xxi) For λ = 0, ϕðζÞ = ζτ, hðζÞ = ζs, α = 1, and ξðζÞ = ζ,
(22) gives ([47], Theorem 1)

(xxii) For λ = 0, τ = η, the result of (xxi) gives ([47],
Corollary 1)

(xxiii) For λ = 0, ϕðζÞ = ΓðτÞζτ/k/kΓkðτÞ, hðζÞ = z, and
w = p = 0, (22) gives ([15], Theorem 1)

(xxiv) For λ = 0, τ = η, the result of (xxiii) gives ([15],
Corollary 1)

(xxv) For ϕðζÞ = ζτ, ξðζÞ = ζ, and hðζÞ = ζ, (22) gives
([36], Theorem 4)

(xxvi) For τ = η, the result of (xxiv) gives ([36], Corol-
lary 1)

(xxvii) For ψ ∈ L∞½a, b�, the result of (xxiv) gives ([36],
Corollary 2)

(xxviii) For τ = η, the result of (xxvii) gives ([36], Corol-
lary 3)

(xxix) For ϕðζÞ = ζτ, ξðζÞ = ζ, and λ = 0, (22) gives
([48], Theorem 1)

(xxx) For τ = η, the result of (xxix) gives ([48], Corol-
lary 1)

(xxxi) For ψ ∈ L∞½a, b�, the result of (xxix) gives ([48],
Corollary 2)

(xxxii) For τ = η, the result of (xxxi), gives ([48], Corol-
lary 3)

For the proof of next theorem, we need the following
lemma.

Lemma 22. Let ψ : ½a, b�⟶ℝ, be a strongly ðα, h‐mÞ-con-
vex function with modulus λ ≥ 0, m ∈ ð0, 1�, 0 ≤ a <mb. If ψð
xÞ = ψðða +mb − xÞ/mÞ, then the following inequality holds:

ψ
a +mb

2

� �
≤ h

1
2α

� �
+mh

2α − 1
2α

� �� �
ψ xð Þ

−
λ

m
h

1
2α

� �
h

2α − 1
2α

� �
a − x +mb −mxð Þ2:

ð33Þ

Proof. As ψ is strongly ðα, h‐mÞ-convex function, we have

ψ
a +mb

2

� �
≤ h

1
2α
� �

ψ 1 − tð Þa +mtbð Þ +mh
2α − 1
2α

� �
ψ

t +m 1 − tð Þb
m

� �

−
λ

m
h

1
2α
� �

h
2α − 1
2α

� �
t 1 +mð Þ a −mbð Þ +mb −mað Þ2:

ð34Þ

Let x = að1 − tÞ +mtb. Then, we have a +mb − x = ta +
mð1 − tÞb, and using ψðða +mb − xÞ/mÞ = ψðxÞ, the inequal-
ity (33) is obtained.☐

The upcoming theorem provides the Hadamard inequal-
ity for strongly ðα, h‐mÞ-convex function.

Theorem 23. Under the assumptions of Theorem 19, in addi-
tion, if ψðxÞ = ψðða +mb − xÞ/mÞ, then, we have

1
h 1/2αð Þ +mh 2α − 1ð Þ/2αð Þ ψ

a +mb
2

� �
ξF

ϕ,γ,δ,k,c
μ,τ,l,b− 1

� �
a,w ; pð Þ

� ��

+ ξF
ϕ,γ,δ,k,c
μ,η,l,a+ 1

� �
b,w ; pð Þ + λ

m
h

1
2α

� �
h

2α − 1
2α

� �

� ξF
ϕ,γ,δ,k,c
μ,τ,l,b− a − x +mb −mxð Þ2

� �
a,w ; pð Þ

�
+ ξF

ϕ,γ,δ,k,c
μ,η,l,a+ a − x +mb −mxð Þ2

� �
b,w ; pð Þ

��
≤ ξF

ϕ,γ,δ,k,c
μ,η,l,a+ ψ

� �
b,w ; pð Þ + ξF

ϕ,γ,δ,k,c
μ,τ,l,b− ψ

� �
a,w ; pð Þ

≤ b − að Þ Ka
b Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

+ Ka
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �� �

� ψ bð ÞXa
b rα, h ; ξ′
� �

+mψ
a
m

� �
Xa
b 1 − rα, h ; ξ′
� ��

−
λ b −mað Þ2h 1ð Þ ξ bð Þ − ξ að Þð Þ

m b − að Þ

!
:

ð35Þ

Proof. Using ðPÞ, we can write the following inequalities:

Ka
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

ξ′ xð Þ ≤ Ka
b Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

ξ′ xð Þ, x ∈ a, bð Þ,
ð36Þ

Kx
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �

ξ′ xð Þ ≤ Ka
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �

ξ′ xð Þ, x ∈ a, bð Þ:
ð37Þ

Using strongly ðα, h‐mÞ-convexity of ψ, we have

ψ xð Þ ≤ h
x − a
b − a

� �α
ψ bð Þ +mh 1 − x − a

b − a

� �α� �
ψ

a
m

� �
−
λ a − bmð Þ2

m
h

x − a
b − a

� �α
h 1 − x − a

b − a

� �α� �
:

ð38Þ

Multiplying (36) and (38) and integrating the resulting
inequality over ½a, b�, we obtain
ðb
a
Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ xð Þd ξ xð Þð Þ ≤ ψ bð ÞKa

b Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �

×
ðb
a
h

x − a
b − a

� �α
d ξ xð Þð Þ +mψ

a
m

� �
Ka

b Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �

�
ðb
a
h 1 − x − a

b − a

� �α� �
d ξ xð Þð Þ − λ a − bmð Þ2

m

�
ðb
a
h

x − a
b − a

� �α
h 1 − x − a

b − a

� �α� �
d ξ xð Þð Þ:

ð39Þ

By setting r = ððx − aÞ/ðb − aÞÞ on the right side and using

6 Journal of Function Spaces



(5) on left side of above inequality, we get

ξF
ϕ,γ,δ,k,c
μ,τ,l,b− ψ

� �
a,w ; pð Þ ≤ Ka

b Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
b − að Þ

× ψ bð Þ
ð1
0
h rαð Þξ′ a + r b − að Þð Þdr +mψ

a
m

� ��

�
ð1
0
h 1 − rαð Þξ′ a + r b − að Þð Þdr − λ a − bmð Þ2

m

�
ð1
0
h rαð Þh 1 − rαð Þξ′ a + r b − að Þð Þdr

�
:

ð40Þ

The inequality (40) can take the following form:

ξF
ϕ,γ,δ,k,c
μ,τ,l,b− ψ

� �
a,w ; pð Þ ≤ Ka

b Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
b − að Þ

× ψ bð ÞXa
b rα, h ; ξ′
� �

+mψ
a
m

� �
Xa
b 1 − rα, h ; ξ′
� ��

−
λ a − bmð Þ2h 1ð Þ ξ bð Þ − ξ að Þð Þ

m b − að Þ

!
:

ð41Þ

Adopting the same pattern of simplification as we did for
(36) and (38), the following inequality can be observed for
(38) and (37):

ξF
ϕ,γ,δ,k,c
μ,η,l,a+ ψ

� �
b,w ; pð Þ ≤ Ka

b Eγ,δ,k,c
μ,η,l , ξ ; ϕ

� �
b − að Þ × ψ bð ÞXa

b rα, h ; ξ′
� ��

+mψ
a
m

� �
Xa
b 1 − rα, h ; ξ′
� �

−
λ a − bmð Þ2h 1ð Þ ξ bð Þ − ξ að Þð Þ

m b − að Þ

!
:

ð42Þ

By adding (41) and (42), following inequality can be
achieved:

ξF
ϕ,γ,δ,k,c
μ,η,l,a+ ψ

� �
b,w ; pð Þ + ξF

ϕ,γ,δ,k,c
μ,τ,l,b− ψ

� �
a,w ; pð Þ

≤ b − að Þ Ka
b Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

+ Ka
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �� �

ψ bð ÞXa
b rα, h ; ξ′
� ��

+mψ
a
m

� �
Xa
b 1 − rα, h ; ξ′
� �

−
λ a − bmð Þ2h 1ð Þ ξ bð Þ − ξ að Þð Þ

m b − að Þ

!
:

ð43Þ

Multiplying both sides of (33) by Ka
xðEγ,δ,k,c

μ,τ,l , ξ ; ϕÞdðξðxÞÞ
and integrating over ½a, b�, one can get

ψ
a +mb

2

� �ðb
a
Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
d ξ xð Þð Þ

≤ h
1
2α
� �

+mh
2α − 1
2α

� �� �ðb
a
Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ xð Þd ξ xð Þð Þ

−
λ

m
h

1
2α
� �

h
2α − 1
2α

� �ðb
a
Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
a − x +mb −mxð Þ2d ξ xð Þð Þ:

ð44Þ

By using the Definition 4, one can obtain the following
inequality:

1
h 1/2αð Þ +mh 2α − 1ð Þ/2αð Þ ψ

a +mb
2

� �
ξF

ϕ,γ,δ,k,c
μ,τ,l,b− 1

� �
a,w ; pð Þ

�

+ λ

m
h

1
2α
� �

× h
2α − 1
2α

� �
ξF

ϕ,γ,δ,k,c
μ,τ,l,b− a − x +mb −mxð Þ2

� �
a,w ; pð Þ

�
≤ ξF

ϕ,γ,δ,k,c
μ,τ,l,b− ψ

� �
a,w ; pð Þ:

ð45Þ

Now, multiplying by Kx
bðEγ,δ,k,c

μ,η , ξ ; ϕÞdðξðxÞÞ on both
sides of (33), then integrating over ½a, b�, we get

1
h 1/2αð Þ +mh 2α − 1ð Þ/2αð Þ ψ

a +mb
2

� �
ξF

ϕ,γ,δ,k,c
μ,η,l,a+ 1

� �
b,w ; pð Þ

�

+ λ

m
h

1
2α
� �

× h
2α − 1
2α

� �
ξF

ϕ,γ,δ,k,c
μ,η,l,a+ a − x +mb −mxð Þ2

� �
b,w ; pð Þ

�
≤ ξF

ϕ,γ,δ,k,c
μ,η,l,a+ ψ

� �
b,w ; pð Þ:

ð46Þ

From (43), (45), and (46), inequality (35) can be
achieved.☐

Corollary 24. For w = p = 0, (35) gives the following inequal-
ity obtained for the fractional integral operator that defined
in [19]:

1
h 1/2αð Þ +mh 2α − 1ð Þ/2αð Þ ψ

a +mb
2

� � Fϕ,ξ
b− 1

� �
að Þ

Γ τð Þ +
Fϕ,ξ
a+ 1

� �
bð Þ

Γ ηð Þ

0
@

0
@

+ λ

m
h

1
2α

� �
h

2α − 1
2α

� � Fϕ,ξ
b− a − x +mb −mxð Þ2

� �
að Þ

Γ τð Þ

0
@

+
Fϕ,ξ
a+ a − x +mb −mxð Þ2

� �
bð Þ

Γ ηð Þ

1
A
1
A ≤

Fϕ,ξ
a+ ψ

� �
bð Þ

Γ ηð Þ +
Fϕ,ξ
b− ψ

� �
að Þ

Γ τð Þ

≤
b − að Þ ξ bð Þ − ξ að Þð Þ

ξ bð Þ − ξ að Þ
1

Γ τð Þ + 1
Γ ηð Þ

� �
× ψ bð ÞXa

b rα, h ; ξ′
� ��

+mψ
a
m

� �
Xa
b 1 − rα, h ; ξ′
� �

−
λ b −mað Þ2h 1ð Þ ξ bð Þ − ξ að Þð Þ

m b − að Þ

!
:

ð47Þ

Remark 25.

(i) For λ = 0, τ = η, α =m = 1, and hðζÞ = ζ, (35) gives
([31], Theorem 22)

(ii) For λ = 0, ϕðζÞ = ΓðτÞζðτ/kÞ+1, hðζÞ = ξðζÞ = ζ, α =
m = 1, and w = p = 0, (35) gives ([40], Theorem 3)

(iii) For λ = 0, τ = η, the result of (ii) gives ([40], Corol-
lary 6)

(iv) For λ = 0, ϕðζÞ = ΓðτÞζτ+1, w = p = 0, α =m = 1,
and ξðζÞ = hðζÞ = ζ, (35) gives ([43], Theorem 3)

(v) For λ = 0, τ = η, and ϕðζÞ = ΓðτÞζτ in the result of
(v) gives ([43], Corollary 6)

(vi) For λ = 0, ϕðζÞ = ΓðτÞζτ+1, w = p = 0, α =m = 1,
and hðζÞ = ζ, (35) gives ([44], Theorem 3)
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(vii) For λ = 0, τ = η, the result of (vii) gives ([44], Cor-
ollary 3)

(viii) For λ = 0, ϕðζÞ = ζτ+1, ξðζÞ = ζ, and hðζÞ = ζs, α =
m = 1, (35) gives ([45], Theorem 2.4)

(ix) For λ = 0, τ = η, the result of (ix) gives ([45], Corol-
lary 2.6)

(x) For ϕðζÞ = ζτ+1, ξðζÞ = ζ, and hðζÞ = ζ, (35) gives
([36], Theorem 6)

(xi) For τ = η, the result of (xi) gives ([36], Corollary 5)

(xii) For ϕðζÞ = ζτ+1, ξðζÞ = ζ, and λ = 0, (35) gives ([48],
Theorem 4)

(xiii) For τ = η, the result of (xiii) gives ([48], Corollary 5)

Theorem 26. Let ψ : ½a, b�⟶ℝ be a differentiable function
such that ∣ψ′ ∣ is strongly ðα, h‐mÞ-convex with modulus λ ≥ 0
, m ∈ ð0, 1�, 0 < a <mb. Let ξ : ½a, b�⟶ℝ be strictly increas-
ing and differentiable function, also let ϕ/x be a function
which is increasing on the interval ½a, b� and hðxÞhðyÞ ≤ hðx
+ yÞ. If c > γ, p, μ, δ ≥ 0, τ, η, l, γ, c ∈ℝ+, and 0 < k ≤ δ + μ,
then for x ∈ ða, bÞ the following inequality holds:

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ ∗ ξð Þ

� �
x,w ; pð Þ + ξF

ϕ,γ,δ,k,c
μ,η,l,b− ψ ∗ ξð Þ

� �
x,w ; pð Þ

��� ���
≤ Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
× x − að Þ ψ′ að Þ�� ��Xa

x rα, h ; ξ′
� ��

+m ψ′ x
m

� ���� ���Xa
x 1 − rα, h ; ξ′
� �

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!

+ Kx
b Eγ,δ,k,c

μ,η,l , ξ ; ϕ
� �

b − xð Þ × ψ′ bð Þ�� ��Xb
x rα, h ; ξ′
� ��

+m ψ′ x
m

� ���� ���Xb
x 1 − rα, h ; ξ′
� �

−
λ b −mbð Þ2h 1ð Þ ξ bð Þ − ξ xð Þð Þ

m b − xð Þ

!
,

ð48Þ

where

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ ∗ ξ

� �
x,w ; pð Þ≔

ðx
a
Kt

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ′ tð Þd ξ tð Þð Þ,

ξF
ϕ,γ,δ,k,c
μ,η,l,b− ψ ∗ ξ

� �
x,w ; pð Þ≔

ðb
x
Kx

t Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ′ tð Þd ξ tð Þð Þ:

ð49Þ

Proof. Since ∣ψ′ ∣ is strongly ðα, h‐mÞ-convex function, one
can have

∣ψ′ tð Þ∣ ≤ h
x − t
x − a

� �α

∣ψ′ að Þ∣ +mh 1 − x − t
x − a

� �α� �
ψ′ x

m

� ���� ���
−
λ x − amð Þ2

m
h

x − t
x − a

� �α

h 1 − x − t
x − a

� �α� �
:

ð50Þ

The inequality (50) can take the following form:

− h
x − t
x − a

� �α

ψ′ að Þ�� �� +mh 1 − x − t
x − a

� �α� �
ψ′ x

m

� ���� ����

−
λ x − amð Þ2

m
h

x − t
x − a

� �α

h 1 − x − t
x − a

� �α� �!

≤ ψ′ tð Þ ≤ h
x − t
x − a

� �α

ψ′ að Þ�� �� +mh 1 − x − t
x − a

� �α� ��

� ψ′ x
m

� ���� ���− λ x − amð Þ2
m

h
x − t
x − a

� �α

h 1 − x − t
x − a

� �α� �!
:

ð51Þ

From inequality (51), we have

ψ′ tð Þ ≤ h
x − t
x − a

� �α

∣ψ′ að Þ∣ +mh 1 − x − t
x − a

� �α� �
ψ′ x

m

� ���� ���
−
λ x − amð Þ2

m
h

x − t
x − a

� �α

h 1 − x − t
x − a

� �α� �
:

ð52Þ

Multiplying (23) and (52) and integrating over ½a, x�, we
obtain

ðx
a
Kt

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
ψ′ tð Þd ξ tð Þð Þ

≤ ∣ψ′ að Þ∣Ka
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

×
ðx
a
h

x − t
x − a

� �α

d ξ tð Þð Þ

+m ψ′ x
m

� ���� ���Ka
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

×
ðx
a
h 1 − x − t

x − a

� �α� �
d ξ tð Þð Þ

−
λ bm − xð Þ2

m
Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
×
ðx
a
h 1 − x − t

x − a

� �α� �
h

x − t
x − a

� �α

d ξ tð Þð Þ,

ð53Þ

which gives

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ ∗ ξ

� �
x,w ; pð Þ

≤ Ka
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

x − að Þ ×
 

ψ′ að Þ�� ��Xa
x rα, h ; ξ′
� �

+m ψ′ x
m

� ���� ���Xa
x 1 − rα, h ; ξ′
� �

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!
:

ð54Þ

Using the other inequality of (51) and doing on the same
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way as adopted for the right hand inequality, one can get

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ ∗ ξ

� �
x,w ; pð Þ

≥ −Ka
x Eγ,δ,k,c

μ,τ,l , ξ ; ϕ
� �

x − að Þ ×
 

ψ′ að Þ�� ��Xa
x rα, h ; ξ′
� �

+m ψ′ x
m

� ���� ���Xa
x 1 − rα, h ; ξ′
� �

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!
:

ð55Þ

From (54) and (55), the following inequality is observed:

ξF
ϕ,γ,δ,k,c
μ,τ,l,a+ ψ ∗ ξ

� �
x,w ; pð Þ

��� ���
≤ Ka

x Eγ,δ,k,c
μ,τ,l , ξ ; ϕ

� �
x − að Þ ×

 
ψ′ að Þ�� ��Xa

x rα, h ; ξ′
� �

+m ψ′ x
m

� ���� ���Xa
x 1 − rα, h ; ξ′
� �

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!
:

ð56Þ

By applying strongly ðα, h‐mÞ-convexity of ∣ψ′ ∣ , one can
get

∣ψ′ tð Þ∣ ≤ h
t − x
b − x

� �α

∣ψ′ bð Þ∣ +mh 1 − t − x
b − x

� �α� �
ψ′ x

m

� ���� ���
−
λ bm − xð Þ2

m
h

t − x
b − x

� �α

h 1 − t − x
b − x

� �α� �
:

ð57Þ

By following the same steps as we did for (23) and (50),
from (24) and (57), one can get the following inequality:

ξF
ϕ,γ,δ,k,c
μ,η,l,b− ψ ∗ ξ

� �
x,w ; pð Þ

��� ���
≤ Kx

b Eγ,δ,k,c
μ,η,l , ξ ; ϕ

� �
b − xð Þ ×

 
ψ′ bð Þ�� ��Xb

x rα, h ; ξ′
� �

+m ψ′ x
m

� ���� ���Xb
x 1 − rα, h ; ξ′
� �

−
λ bm − xð Þ2h 1ð Þ ξ bð Þ − ξ xð Þð Þ

m b − xð Þ

!
:

ð58Þ

By adding (56) and (58), inequality (48) can be
achieved.☐

Corollary 27. For w = p = 0, (48) gives the following inequal-
ity obtained for the fractional integral operator that defined
in [19]:

Fϕ,ξ
a+ ψ ∗ ξ

� �
xð Þ

Γ τð Þ +
Fϕ,ξ
b− ψ ∗ ξ

� �
xð Þ

Γ ηð Þ

������
������

≤
ϕ ξ xð Þ − ξ að Þð Þ x − að Þ
Γ τð Þ ξ xð Þ − ξ að Þð Þ ×

 
ψ′ að Þ�� ��Xa

x rα, h ; ξ′
� �

+m ψ′ x/mð Þ�� ��Xa
x 1 − rα, h ; ξ′
� �

−
λ x −mað Þ2h 1ð Þ ξ xð Þ − ξ að Þð Þ

m x − að Þ

!

+ ϕ ξ bð Þ − ξ xð Þð Þ b − xð Þ
Γ ηð Þ ξ bð Þ − ξ xð Þð Þ ×

 
ψ′ bð Þ�� ��Xb

x rα, h ; ξ′
� �

+m ψ′ x/mð Þ�� ��Xb
x 1 − rα, h ; ξ′
� �

−
λ b −mbð Þ2h 1ð Þ ξ bð Þ − ξ xð Þð Þ

m b − xð Þ

!
:

ð59Þ

Remark 28.

(i) For λ = 0, (48) gives ([38], Theorem 4)

(ii) For λ = 0, τ = η, and hðζÞ = ζ, ((48) gives ([39],
Theorem 3)

(iii) For λ = 0, τ = η, α =m = 1, and hðζÞ = ζ, (48) gives
([31], Theorem 25)

(iv) For λ = 0, ϕðζÞ = ΓðτÞζðτ/kÞ+1, hðζÞ = ξðζÞ = ζ, α =
m = 1, and w = p = 0, (48) gives ([40], Theorem 2)

(v) For λ = 0, τ = η, the result of (iv) gives ([40], Cor-
ollary 4)

(vi) For λ = 0, ϕðζÞ = ζτ, α = 1, and ξðζÞ = ζ, (48) gives
([41], Theorem 2)

(vii) For λ = 0, m = 1, and hðζÞ = ζ, the result of (vi)
gives ([41], Corollary 2)

(viii) For λ = 0, ϕðζÞ = ΓðτÞζτ+1, α = 1, w = p = 0, and ξ
ðζÞ = ζ, (48) gives ([42], Theorem 2.6)

(ix) For λ = 0, τ = η, the result of (viii) gives ([42], Cor-
ollary 2.7)

(x) For λ = 0, ϕðζÞ = ΓðτÞζτ+1, w = p = 0, α =m = 1,
and ξðζÞ = hðζÞ = ζ, (48) gives ([43], Theorem 2)

(xi) For λ = 0, τ = η, and ϕðζÞ = ΓðτÞζτ, the result of
(x) gives ([43], Corollary 4)

(xii) For λ = 0, w = p = 0, ϕðζÞ = ΓðτÞζτ+1, α =m = 1,
and hðζÞ = ζ, (48) gives ([44], Theorem 2)

(xiii) For λ = 0, τ = η, the result of (xii) gives ([44], Cor-
ollary 2).

(xiv) For λ = 0, ξðζÞ = ζ and hðζÞ = ζs, ϕðζÞ = ζτ+1, α =
m = 1, (48) gives ([45], Theorem 2.3)
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(xv) For λ = 0, τ = η, the result of (xiv) gives ([45], Cor-
ollary 2.5)

(xvi) For λ = 0, w = p = 0, α = 1 and hðζÞ = ζs, (48) gives
([46], Theorem 2)

(xvii) For λ = 0, hðζÞ = ζs, ϕðζÞ = ΓðτÞζτ, α = 1, and ξðζ
Þ = ζ, (48) gives ([47], Theorem 3)

(xviii) For λ = 0, τ = η, the result of (xvii) gives ([47],
Corollary 5)

(xix) For λ = 0, hðζÞ = ζ, ϕðζÞ = ΓðτÞζðτ/kÞ+1, and w = p
= 0, (48) gives ([15], Theorem 2)

(xx) For λ = 0, τ = η, the result of (xix) gives ([15], Cor-
ollary 2)

(xxi) For ϕðζÞ = ζτ, ξðζÞ = ζ, and hðζÞ = ζ, (48) gives
([36], Theorem 5)

(xxii) For τ = η in the result of (xxi) gives ([36], Corol-
lary 4)

(xxiii) For ϕðζÞ = ζτ+1, ξðζÞ = ζ, and λ = 0, (48) gives
([48], Theorem 3)

(xxiv) For τ = η, the result of (xxiii) gives ([48], Corollary
4)

3. Concluding Remarks

A new definition is given and utilized to obtain some integral
inequalities via a unified integral operator. The established
results provide generalizations of many well-known inequal-
ities. They also give refinements of recently published results
for convex, m-convex, h-convex, s-convex, ðα,mÞ-convex, ð
s,mÞ-convex, ðh‐mÞ-convex and ðα, h‐mÞ-convex functions.
The reader also can obtain more fractional integral inequal-
ities by setting appropriate functions and parameters
involved in the kernel of unified integral operators.
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In view of the lack of objective data support for product evaluation methods in the industry, a triangular verification method was
proposed; it considered nursing beds as the study object and combined subjective evaluation with eye movement and
electroencephalogram. Because the triangular validation method is based on the numerical value between the indicators and the
frequency of ranking, this method is worth investigating for analyzing experimental data more scientifically. This paper focuses
on the further analysis of the experimental data, especially the use of interval estimation method. After analysis, we obtain that
proposal 2 is the optimal solution. This method is more suitable for product evaluation which will collect large amount of
experimental data to obtain more accurate results. For industrial product designers, the evaluation of products by users is very
important. In the design stage, how to grasp the user’s evaluation of the product more accurately is a difficult problem. This
paper takes nursing bed as the research object and studies the user participation design in order to make the product more
acceptable to most people after it is launched.

1. Introduction

Nursing beds are designed as original ordinary steel beds,
mechanical transmission beds, electric beds, or multifunc-
tional beds. With the development of computer technol-
ogy, development of multifunctional nursing beds is
increasing. The development of multifunctional nursing
beds is a breakthrough in realizing comprehensive nursing
and is also an innovation in patient healthcare function
[1]. With the development of information network, sensor,
intelligent control, and bionic technology as well as the
intersection of electromechanical technology and biotech-
nology, the development direction of multifunctional nurs-
ing bed is networking, digitalization, and intellectualization
[2, 3]. The higher the level of medical treatment, the
greater the pursuit of living standards and quality. Users
not only require basic functions, safety, and practicality
of the product but also pay more attention to comfort,

aesthetics, and emotion of the product [4, 5]. However,
the design of medical beds is obviously lacking in terms
of Kansei engineering [6, 7]. As a result, patients not only
suffer from illnesses but also feel inconvenienced due to
unreasonable designs [8]. It is extremely important to
improve and promote the design of medical beds for
patients. In recent years, most studies on nursing beds
focus on function and user experience. The research on
function focuses on solving problems of patients and
nurses when using nursing beds. For example, Enoi et al.
[9] designed a smart bed to help nurses move overweight
patients slowly and smoothly from the bed to other places.
In addition, Takanokura et al. developed a systematic
approach to use sensors around the nursing bed to prevent
falls and secondary injuries.

The evaluation of nursing beds also focuses on func-
tionality. Boorman et al. [10] assessed the value of a
“Clinitron” air-fluidized bed in the setting of a general
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plastic surgery unit by using pressure sensor data in 1981.
Milward et al. [11] put forward the Walsall scoring sys-
tem, which was designed with community patients in
mind; it was later improved by Chaloner and Franks
[12]. A scoring system is typically used to evaluate the
medical system for both hospital and community staff.
Some researchers pay more attention to decompressing
equipment such as the mattress of the nursing bed, which
can also be called a pressure-reducing foam mattress
(PRFM); they evaluated the role of PRFMs [13–15]. They
also focused on the evaluation of long-term clinical effi-
cacy of PRFMs and found that PRFMs perform well after
3 and 4 years, respectively, in two different clinics [16].
In 2016, Gray et al. not just evaluated PRFMs but also
electric bed frames [17]. All these studies focus on the
functionality of equipment and the extent to which it
can reduce the physical workload of nurses and improve
the dignity and comfort of patients.

In terms of a product evaluation system, the current
evaluation method is mainly based on expert opinions
combined with random sampling. Subjective factors are
major contributors in this evaluation method; it is impos-
sible to determine whether the obtained evaluation is a
true evaluation. Therefore, in a previous article, a triangu-
lar verification method, by combining subjective evalua-
tion, electroencephalogram (EEG) data, and eye
movement data, was proposed for a more convincing eval-
uation method [18].

Based on Kansei engineering [19], the psychological
and physiological data collected from the experiment were
combined, i.e., subjective evaluation, eye movement, and
EEG data; a triangular validation system of nursing bed,
which is based on the fact that there is correlation between
subjective evaluation, eye movement, and EEG data, was
established. The specific execution process is shown in
Figure 1.

In Figure 1, we first identify the purpose of the evaluation,
which is proposing four nursing bed designs. Participants
were selected, and the Likert scale method [20] was used to
obtain the subjective evaluation, eye movement, and EEG
data synchronously using an instrument. Finally, the four
proposals were ranked in terms of subjective evaluation, eye
movement data, and EEG data; the final results were verified

to improve the reliability of subjective evaluation. The four
proposed nursing beds are marked as C1, C2, C3, and C4
as shown in Figure 2.

The experimental method is shown in Figure 3. Tobii
X3-120 [21], a small eye movement tracking instrument
developed by Sweden Tobii Company, was used in the
experiment; its accuracy is 0.2 degrees and the sampling
rate is 120Hz. It can provide portability and large head
movement range and ensure high-quality tracking accu-
racy and stable tracking. The EEG signal acquisition
instrument used in the experiment was NeurOne innova-
tive research system produced by Mega Electronics, USA.
It has 24-bit analog-to-digital conversion with sensitivity
of 51 nV/bit and input range of +430mV, and the 40-
channel amplifier includes 32 EEG+8 bipolar channels.
This neuroscience measurement system provides a more
accurate and cleaner signal, faster sampling, modular solu-
tions, use of the latest processing in digital signal process-
ing, more flexibility, and scalability.

Data were obtained from 20 participants with normal
vision. All the data in this experiment were obtained
according to relevant standards. The experimental process
is as follows:

(1) Participants washed their hair with shampoo and
dried it

(2) Participants watched and understood the experimen-
tal guidance and signed the statement

(3) Researchers prepared experimental instruments

(4) Researchers explained the experimental process to
the participants

(5) At the beginning of the experiment, participants
looked at the first randomly occurring proposal of
the medical nursing bed and scored by pressing a
button from 1 to 5 (1—worst; 2—worse; 3—nor-
mal; 4—better; 5—best). When the participants
press the button, the first rendering experiment
ends and the second rendering experiment begins
until all the experimental materials are completed.
To ensure the effectiveness of the experiment, after
the first round of grading, four proposals will be

�e formulation of evaluation objectives

Selection of evaluation samples

Evaluation of eye movement test Evaluation of EEG test

Recording the brain waves at the
experience test evaluation

Record the behavior of the eyes

�e triangle method

User score

Subjective psychological evaluation

Figure 1: Experimental process of the triangular verification model.
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played randomly. The experiment was repeated 50
times

(6) After the experiment was completed, the eye tracker
and brain instrument stopped recording

The experimental procedure is shown in Figure 4.
According to the experiment, we obtain the following

data:

(1) The expected value of 20 people’s subjective evalua-
tion is

P = P1, P2, P3, P4ð ÞT : ð1Þ

Pi represents the expected value of the subjective evalua-
tion of proposal i and Pij represents the expected value of
participant j’s subjective evaluation of proposal i; the calcula-

tion process is as follows:

Pi =
1
20

〠
20

j=1
Pij 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 20ð Þ,

Pij =
1
50

〠
50

n=1
Pijn 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 20 ; 1 ≤ n ≤ 50ð Þ:

ð2Þ

(2) The expected value of 20 people’s eye movement data
is

E =

E11 E12 E13

E21 E22 E23

E31 E32 E33

E41 E42 E43

0
BBBBBB@

1
CCCCCCA
: ð3Þ

Proposal 1 Proposal 2

Proposal 4Proposal 3

Figure 2: Four proposed nursing beds.

Eye tracker

Scoring record

EEG

Data connection

Data export Data processing Data analysis

Subjects Test material
Display Host

Figure 3: Experimental data acquisition model.
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Ei1 represents the expected value of the fixation time for
proposal i (i = 1, 2, 3, 4) marked as e1. Ei2 represents the
expected value of the number of fixations for proposal i
(i = 1, 2, 3, 4) marked as e2. Ei3 represents the expected
value of the first fixation time for proposal i
(i = 1, 2, 3, 4) marked as e3; the calculation process is as
follows:

Eij =
1
20

〠
20

k=1
Eijk 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 3 ; 1 ≤ k ≤ 20ð Þ,

Eijk =
1
50

〠
50

n=1
Eijkn 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 3 ; 1 ≤ k ≤ 20 ; 1 ≤ n ≤ 50ð Þ:

ð4Þ

(3) The expected value of 20 people’s EEG data is

D =

D11 D12 ⋯ D1 j

D21 D22 ⋯ D2 j

D31 D32 ⋯ D3 j

D41 D42 ⋯ D4 j

0
BBBBB@

1
CCCCCA: ð5Þ

Dij represents the expected value of index j of EEG data
for proposal i (i = 1, 2, 3, 4). In this experiment, the observed
electrodes and overlapping topographic maps are shown in
Figure 5. According to the brain topographic map, 11 elec-
trodes were selected in the most active area, named F4, F7,
F8, FZ, FC1, FC2, FC5, FC6, ft9, ft10, and F3; therefore, in

Figure 4: Experimental setup.

32 ch BC-32-X22 epochs pruned with ICA

Fp1 Fp2

F8
F4Fz

FC2FC1FC5
FT9

F7
F3

FC6
FT10

CP6
TP10

P8

Iz

O2

P4PzP3
P7

CP5 CP1 CP2
TP9

T7 C3

+15.4
–15.4

–200798
Time (ms)

T8C4

O1

Figure 5: Electrode and topographic map.
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this experiment, 1 ≤ j ≤ 11.

Dij =
1
20

〠
20

k=1
Dijk 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 3 ; 1 ≤ k ≤ 20ð Þ,

Dijk =
1
50

〠
50

n=1
Dijkn 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 3 ; 1 ≤ k ≤ 20 ; 1 ≤ n ≤ 50ð Þ:

ð6Þ

Based on the above analysis, we can obtain matrix Z as
follows:

Z = P, E,Dð Þ: ð7Þ

The final data obtained are as follows:

The correlation analysis of the data is carried out, and the
results are shown in Tables 1–3.

It can be seen from the table that there is a certain corre-
lation between subjective evaluation data, eye movement
data, and EEG data. The first fixation time was negatively
correlated with other indicators because the shorter the first
fixation time, the more attention the participants paid, and
vice versa.

Then, we need to analyze the results in terms of three dif-
ferent factors, namely, subjective evaluation, eye movement,
and EEG data. First, proximity analysis is carried out.

Procedure 1. To calculate the maximum F+
ij and minimum F−

ij

of each evaluation index.

F+
ij =max Zij

� �
1 ≤ i ≤ 4 ; 1 ≤ j ≤ 15ð Þ,

F−
ij =min Zij

� �
1 ≤ i ≤ 4 ; 1 ≤ j ≤ 15ð Þ:

ð9Þ

Procedure 2. To calculate the distance from the maximum to
minimum of each proposal.

d+ij = F+
ij − Zij 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 15ð Þ,

d−ij = Zij − F+
ij 1 ≤ i ≤ 4 ; 1 ≤ j ≤ 15ð Þ:

ð10Þ

Procedure 3. To calculate relative closeness of evaluative
value and maximum value for each program.

We use the relative closeness of evaluative value and
maximum value for each proposal as the foundation of the
final evaluation for the design proposal.

Z′ij =
d−ij

d−ij + d+ij
: ð11Þ

Through the above steps, we can obtain the results of the
close degree analysis data as shown in Table 4. Because the
first fixation time is negatively related to other indicators,
the smaller the value, the closer will be the ranking.

Then, we use the frequency statistics method for the three
factors and obtain the final ranking method according to the
frequency of the four rankings. The specific calculation for-
mula is as follows:

f ip =
Rip

Zb
: ð12Þ

The frequency of proposal i appearing in the P ranking is
the number of effective evaluation indexes in different
dimensions. In this paper, in the subjective evaluation
dimension Zb = 1, in the eye movement evaluation dimen-
sion Zb = 3, and in the EEG evaluation dimension Zb = 11;
f ip is the frequency of proposal i appearing in the P ranking.
The specific frequency of the four proposals under different
dimensions and ranking is shown in Tables 5–7.

From Tables 5–7, we can see that from the perspective of
subjective evaluation, the ranking is C2>C1>C3>C4; from
the perspective of eye movement data, the ranking is
C2>C1>C4>C3; from the perspective of the EEG evaluation
data, the ranking is C2>C1>C4>C3. We can see that from
the three dimensions, which are subjective valuation, eye
movement data, and EEG objective data to evaluate the four
proposals, sorting results are the same. The triangular valida-
tion was passed, indicating that the experimental subject
evaluation is highly reliable.

Because the original triangular validation method mainly
relies on the size of the data value to arrange the data, which
is not convincing to a certain extent, there is contingency;
therefore, this study focuses on data processing, especially
of the confidence interval validation method used in data

Z =

3:65 1:86 6:69 1:28 2:46 2:9 2:67 3:56 2:45 4:11 1:74 3:15 1:67 6:04 3:97

3:76 2 7:88 1:21 3:08 2:97 3:1 4:09 3:43 4:76 1:99 3:31 2:11 6:32 4:94

3:07 1:75 6:33 1:54 1:69 2:64 2:37 2:63 2:27 3:76 1:39 2:48 1:39 5:4 3:31

3:45 1:85 6:11 1:37 2:01 2:74 2:51 3:01 2:55 3:73 1:36 2:43 1:61 5:47 3:49

0
BBBBB@

1
CCCCCA:

ð8Þ
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analysis. We assume that the reader is familiar with the basic
notions of statistical theory.

2. Methods

According to central limit theorem [22], for independent
random variables, when the number is large, the data distri-
bution follows a normal distribution. Then, according to
the correlation and significance between the fifteen indicators
of this experiment, F3 was selected as the specific analysis
index.

The specific data of proposal 1 of the F3 indicator are as
follows: F3‐1 = ð2:842 3:406 0:996 0:806 3:580 2:256 7:515
0:435 0:943 1:165 0:991 0:824 3:616 1:158 1:586 9:191 1:447
3:189 1:914 1:321Þ.

The box diagram of the F3 index is shown in Figure 6.
Because the experimental data of participant 7 and partici-
pant 16 deviated too much from other data, the data of these
two individuals was rejected [23].

The final data and sample size n, sample mean �X, sample
standard deviation S, and sample variance S2 are shown in
Table 8.

Table 4: Data table for proximity analysis.

Index C1 C2 C3 C4 Proposal sorting

P 0.84 1 0 0.55 C2>C1>C4>C3
e1 0.44 1 0 0.4 C2>C1>C4>C3
e2 0.33 1 0.12 0 C2>C1>C3>C4
e3 0.21 0 1 0.48 C2>C1>C4>C3∗

F4 0.55 1 0 0.23 C2>C1>C4>C3
F7 0.79 1 0 0.3 C2>C1>C4>C3
F8 0.41 1 0 0.19 C2>C1>C4>C3
FZ 0.64 1 0 0.26 C2>C1>C4>C3
FC1 0.16 1 0 0.24 C2>C4>C1>C3
FC2 0.37 1 0.03 0 C2>C1>C3>C4
FC5 0.6 1 0.05 0 C2>C1>C3>C4
FC6 0.82 1 0.06 0 C2>C1>C3>C4
FT9 0.39 1 0 0.31 C2>C1>C4>C3
FT10 0.7 1 0 0.08 C2>C1>C4>C3
F3 0.4 1 0 0.11 C2>C1>C4>C3

Table 5: Frequency table of subjective evaluation.

Subjective evaluation
proposal ranking

First
place

Second
place

Third
place

Fourth
place

Rip f ip Rip f ip Rip f ip Rip f ip
C1 0 0.00 1 1.00 0 0.00 0 0.00

C2 1 1.00 0 0.00 0 0.00 0 0.00

C3 0 0.00 0 0.00 0 0.00 1 1.00

C4 0 0.00 0 0.00 1 1.00 0 0.00

Final ranking C2 C1 C4 C3

Table 6: Frequency table of eye movement test evaluation.

Subjective evaluation
proposal ranking

First
place

Second
place

Third
place

Fourth
place

Rip f ip Rip f ip Rip f ip Rip f ip
C1 0 0.00 3 1.00 0 0.00 0 0.00

C2 3 1.00 0 0.00 0 0.00 0 0.00

C3 0 0.00 0 0.00 1 0.33 2 0.67

C4 0 0.00 0 0.00 2 0.67 1 0.33

Final ranking C2 C1 C4 C3

Table 7: Frequency table of EEG test evaluation.

Subjective evaluation
proposal ranking

First
place

Second
place

Third
place

Fourth
place

Rip f ip Rip f ip Rip f ip Rip f ip
C1 0 0.00 10 0.91 1 0.09 0 0.00

C2 11 1.00 0 0.00 0 0.00 0 0.00

C3 0 0.00 0 0.00 3 0.27 8 0.73

C4 0 0.00 1 0.09 7 0.64 3 0.27

Final ranking C2 C1 C4 C3

Table 1: Correlation analysis data 1.

P e1 e2 e3 F4 F7 F8 FZ

P 1 0.903 0.693 -0.998 0.919 0.966 0.862 0.944

e1 0.903 1 0.866 -0.926 0.963 0.903 0.973 0.949

e2 0.693 0.866 1 -0.731 0.921 0.822 0.954 0.890

e3 -0.998 -0.926 -0.731 1 -0.939 -0.973 -0.890 -0.959

F4 0.919 0.963 0.921 -0.939 1 0.97 0.988 0.996

F7 0.966 0.903 0.822 -0.973 0.97 1 0.921 0.988

F8 0.862 0.973 0.954 -0.89 0.988 0.921 1 0.970

FZ 0.944 0.949 0.890 -0.959 0.996 0.988 0.970 1

Table 2: Correlation analysis data 2.

P e1 e2 e3 F4 F7 F8 FZ

FC1 0.729 0.951 0.914 -0.767 0.895 0.767 0.951 0.855

FC2 0.773 0.905 0.993 -0.806 0.960 0.883 0.979 0.938

FC5 0.825 0.859 0.946 -0.847 0.962 0.940 0.944 0.959

FC6 0.835 0.784 0.865 -0.847 0.922 0.948 0.875 0.936

FT9 0.872 0.994 0.915 -0.899 0.972 0.898 0.990 0.952

FT10 0.887 0.872 0.902 -0.903 0.971 0.976 0.937 0.979

F3 0.838 0.951 0.973 -0.867 0.985 0.917 0.996 0.966

Table 3: Correlation analysis data 3.

FC1 FC2 FC5 FC6 FT9 FT10 F3

FC1 1 0.917 0.81 0.687 0.969 0.784 0.937

FC2 0.917 1 0.971 0.904 0.943 0.943 0.992

FC5 0.81 0.971 1 0.98 0.891 0.991 0.964

FC6 0.687 0.904 0.98 1 0.81 0.987 0.898

FT9 0.969 0.943 0.891 0.81 1 0.891 0.975

FT10 0.784 0.943 0.991 0.987 0.891 1 0.95

F3 0.937 0.992 0.964 0.898 0.975 0.95 1
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According to Table 8, we know the specific data, sample
average, and sample variance of F3-i (i = 1, 2, 3, 4). Accord-
ing to central limit theorem [22], F3-1 to F3-4 follows normal
distribution Nðμk, σ2kÞðk = 1, 2, 3, 4Þ approximately. Popula-
tion average μk and population variance σ2k ðk = 1, 2, 3, 4Þ
are unknown. (Formulas (13)–(15) and (17)–(20) are quoted
from references [22–27].) First, we analyze F3-1 and F3-2.

We need to find a confidence interval with a confidence
level of 0.90 for the variance ratio σ2

F3−1/σ2
F3−2 [23]. From

Table 8, we know n1 = 18, S2F3−1 = 1:138, n2 = 18, S2F3−1 =
1:530, and α = 0:10.

The F distribution has the following theorem:

F n1 − 1, n2 − 1ð Þ ~ S21/S22
σ21/σ22

: ð13Þ

Distribution Fðn1 − 1, n2 − 1Þ does not depend on any
unknown parameters. Taking ðS21/S22Þ/ðσ21/σ22Þ as the pivot
amount, we can obtain the following formula:

P F1−α/2 n1 − 1, n2 − 1ð Þ < S21/S22
σ2
1/σ22

< Fα/2 n1 − 1, n2 − 1ð Þ
� �

= 1 − α:

ð14Þ

Thus, we get a confidence interval of σ21/σ22 with a confi-
dence level of 1 − α:

S21
S22

1
Fα/2 n1 − 1, n2 − 1ð Þ ,

S21
S22

1
F1−α/2 n1 − 1, n2 − 1ð Þ

� �
: ð15Þ

According to the data table of F distribution, we can find
that F0:05ð17, 17Þ = 1:89, F0:95ð17, 17Þ = 1/1:89. According to
the above formula, it can be concluded that the confidence

0
Proposal 1 Proposal 2 Proposal 3

Box diagram of F3 index

Proposal 4

2

4

6

8

10

12

14

F3

Figure 6: Box diagram of the F3 index.

Table 8: F3 index data sheet.

Participant F3-1 F3-2 F3-3 F3-4

1 2.842 3.203 4.900 5.187

2 3.406 2.500 1.314 1.233

3 0.996 4.231 0.898 3.546

4 0.806 0.514 0.095 0.174

5 3.580 1.805 1.460 1.341

6 2.256 1.989 1.284 2.605

8 0.435 0.674 0.457 0.875

9 0.943 3.273 1.867 3.999

10 1.165 2.203 1.410 1.482

11 0.991 1.385 0.568 0.438

12 0.824 2.206 2.159 1.108

13 3.616 4.230 2.686 1.148

14 1.158 1.287 0.722 1.596

15 1.586 4.807 2.457 1.241

17 1.447 3.501 1.076 0.881

18 3.189 2.851 2.219 1.999

19 1.914 1.530 0.904 1.097

20 1.321 3.301 1.733 2.500

n 18 18 18 18
�X 1.804 2.527 1.567 1.803

S 1.067 1.237 1.097 1.309

S2 1.138 1.530 1.204 1.713

Table 9: Variance confidence interval data in the F3 index.

σ2F3−1
σ2F3−2

σ2F3−1
σ2F3−3

σ2F3−1
σ2F3−4

σ2F3−2
σ2F3−3

σ2F3−2
σ2F3−4

σ2F3−3
σ2F3−4

Lower bound 0.393 0.500 0.351 0.673 0.473 0.372

Upper bound 1.405 1.786 1.255 2.402 1.688 1.328
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interval of α = 0:10 is as follows:

1:138
1:530

×
1

1:89
,
1:138
1:530

× 1:89
� �

, ð16Þ

that is, ð0:393,1:405Þ.
Because the confidence interval contains 1, we can

assume that σ2
F3−1 and σ2F3−2 are not significantly different.

Similarly, we can conclude that there is no significant differ-
ence between the variance of the two proposals as shown in
Table 9.

Based on the above analysis, we may consider the vari-
ance of each set of data to be equal and assume that the pop-
ulation variance of each data is equal. Next, we will verify the
confidence interval of the population mean difference μF3−i
− μF3−j ð1 ≤ i ≠ j ≤ 4Þ [28]. We take F3 − 2 and F3 − 3 as

examples. We already know that �XF3−2 ~NðμF3−2, σ2F3−2/
nF3−2Þ and �XF3−3 ~NðμF3−3, σ2F3−3/nF3−3Þ. Due to their inde-
pendence, we know that

�XF3−2 − �XF3−3 ~N μF3−2 − μF3−3,
σ2F3−2
nF3−2

+
σ2
F3−3

nF3−3

� �
, ð17Þ

or it can be written as

�XF3−2 − �XF3−3
� 	

− μF3−2 − μF3−3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2F3−2/nF3−2
� 	

+ σ2F3−3/nF3−3
� 	q ~N 0, 1ð Þ: ð18Þ

A confidence level of �XF3−2 − �XF3−3 is obtained when
ð�XF3−2 − �XF3−3Þ − ðμF3−2 − μF3−3Þ/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðσ2F3−2/nF3−2Þ + ðσ2F3−3/nF3−3Þ
p

is chosen as a pivotal
quantity, and the confidence interval of 1 − α is

�XF3−2 − �XF3−3 ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2F3−2
nF3−2

+
σ2
F3−3

nF3−3

s0
@

1
A: ð19Þ

Although σ2
F3−2 and σ2F3−3 are unknown but from for-

mulas (12)–(15), we know that σ2F3−2 = σ2
F3−3; so we can

prove that

�XF3−2 − �XF3−3
� 	

− μF3−2 − μF3−3ð Þ
Sw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/nF3−2ð Þ + 1/nF3−3ð Þp ~ t nF3−2 + nF3−3 − 2ð Þ:

ð20Þ

In this formula, S2w = ððnF3−2 − 1Þ × S2F3−2 + ðnF3−3 − 1Þ
× S2F3−3Þ/ðnF3−2 + nF3−3 − 2Þ, Sw =

ffiffiffiffiffi
S2:w

q
.

According to Table 8, we know that �XF3−2 = 2:527,
SF3−2 = 1:040 and �XF3−3 = 1:567, SF3−3 = 1:097. We want to
verify the confidence interval with a confidence level of 0.95
for the two population mean difference μF3−2 − μF3−3. We
know 1 − α = 0:95, α/2 = 0:025, n2 = 18, n3 = 18, n2 + n3 − 2
= 34, t0:025ð34Þ = 2:0322, S2w = ð17 × 2:527 + 17 × 1:567Þ/34,
and Sw =

ffiffiffiffiffi
S2w

q
= 1:0803.

Based on the above formulas, we can obtain the confi-
dence intervals as

�XF3−2 − �XF3−3 ± Sw × t0:025 34ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
18

+
1
18

r !
= 0:960 ± 0:732ð Þ,

ð21Þ

that is, ð0:229,1:189Þ.
Because the lower bound of the confidence interval is

greater than zero, μF3−2 can be considered to be greater than
μF3−3. Thus, we can infer that according to the F3 index, pro-
posal 2 is better than proposal 3. Similarly, other results are
shown in Table 10.

Similarly, in proposal 3, proposal 1, and proposal 4, the
lower bound of confidence interval is lower than zero; there-
fore, we can conclude that according to the F3 index in this
analysis method, there is no significant difference between
proposal 3, proposal 1, and proposal 4.

Table 10: Confidence interval data of mean in the F3 index.

μF3−2 − μF3−1 μF3−1 − μF3−3 μF3−1 − μF3−4 μF3−2 − μF3−3 μF3−4 − μF3−3

Lower bound -0.004 -0.467 -0.737 0.229 -0.507

Upper bound 1.450 0.942 0.740 1.692 0.979

Table 11: Confidence interval data of mean in indexes.

μF8−2 − μF8−1 μF8−2 − μF8−3 μFZ−2 − μFZ−1 μFZ−2 − μFZ−3

Lower bound 0.071 0.278 0.584 0.240

Upper bound 1.671 1.828 2.033 1.878

μFT10−2 − μFT10−1 μFT10−2 − μFT10−3 μFT10−2 − μFT10−4

Lower bound 0.031 0.276 0.197

Upper bound 1.945 2.181 1.988

8 Journal of Function Spaces



3. Results

The same analysis method was adopted to verify the other 14
indexes; the nine indicators cannot draw a clear conclusion.
Specific conclusions are shown in Table 11. According to
the F8 index and FZ index, we can conclude that proposal 2
is better than proposal 1, and proposal 2 is better than pro-
posal 3. According to the FT10 index, we can conclude that
proposal 2 is better than proposal 1, proposal 3, and proposal
4.

According to the data obtained, we can see that proposal
2 is better than the others, that is, proposal 2 is the best,
which is consistent with the previous conclusion.

4. Conclusions

In this study, we improved the way of data comparison in the
triangular validation method. We apply the confidence inter-
val in statistics to the analysis model and improve the prob-
lem of previous data comparison which is being too simple.
Because less amount of data is collected in this experiment,
a definite result cannot be acquired from a single indicator.
However, according to statistical theory, when the number
of data sample is large, the model constructed will draw a
clear conclusion. This study shows that mathematical statis-
tics can be well used in product evaluation and that triangular
evaluation is deepened to make the evaluation model more
convincing and applicable. With the development of intelli-
gent wearable equipment, data acquisition will become more
convenient in the future. Therefore, this evaluation model
should have an extensive application and research value.
We hope that more mathematical and statistical knowledge
will be used for product evaluation to promote the develop-
ment of industrial evaluation systems. Next, we will analyze
the product evaluation in industrial design and guide the
product design process through the analysis of a large num-
ber of data.
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The recently introduced technique, namely, the extended complex method, is used to explore exact solutions for the generalized
fifth-order KdV equation. Appropriately, the rational, periodic, and elliptic function solutions are obtained by this technique.
The 3D graphs explain the different physical phenomena to the exact solutions of this equation. This idea specifies that the
extended complex method can acquire exact solutions of several differential equations in engineering. These results reveal that
the extended complex method can be directly and easily used to solve further higher-order nonlinear partial differential
equations (NLPDEs). All computer simulations are constructed by maple packages.

1. Introduction

In the 20 century, nonlinear science (NLS) plays a significant
role in special inventions, for example, the invention of the
radio, the discovery of DNA structure for biology, the devel-
opment of quantum theory for theoretical physics and chem-
istry, and the invention of transister for computer
engineering. It is well known that NLS belongs to the
NLPDEs which are introduced in several areas such as fluid
thermodynamics, plasma diffusion, biology, physics, geome-
try, and population dynamics.

Lots of studies are focused on the differential equations
[1–10], and many effective techniques are used to acquire
analytical and numerical solutions for NLPDEs such as
sine-cosine method [11], extended sinh-Gorden equation
expansion method [12], variation iteration algorithm [13],
homotopy perturbation method [14], F-expansion method
[15], Exp-function expansion method [16], first integral
method [17], Ansatz method [18], generalized Kudryashov
method [19], ðG′/GÞ-expansion method [20], projective Ric-
cati equationmethod [21], tanh method [22], nonpolynomial
spline method [23], B-spline method [24], B-spline colloca-

tion [25], Weierstrass elliptic function method [26], Laplace
decomposition method [27], extended direct algebraic
method [28, 29], Sub-ODE method [30], Darboux transfor-
mation [31], and extended tanh-coth method [32, 33]. The
generalized fifth-order KdV equation [34] is represented by

wt + swwx + f w2wx + ewxxx + μwxxxxx = 0, ð1Þ

where s, f , e, and μ are the arbitrary constants. This equa-
tion is a nonlinear model in many long wave physical phe-
nomena. It is used in the shallow water wave with surface
tension and magnetoacoustic wave in plasma. Several
researchers have explored the analytical solutions of gener-
alized fifth-order KdV equation such as Hedli and Kadem
have attained a new analytical solution for the fifth-order
KdV equation by the exponential expansion method [35].
Dinarvand et al. have found approximate analytical solu-
tions of the sawada-kotera and Lax’s fifth-order KdV
equations by homotopy analysis technique [36]. Salas
and Lugo have introduced extended tanh method to
obtain the exact solutions of the general fifth-order KdV
equation [37]. Alam and Xin et al. have attained new exact
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solutions by ðG′/GÞ-expansion method of modified KdV-
Zakharov-Kuznetsov equation [38]. Ganji and Abdollahza-
deh have introduced the sech method and rational exp-
function method to find the exact traveling wave solutions
of the Lax’s seventh-order KdV equation [39].

In the present work, our main purpose is to calculate
the generalized fifth-order KdV equation by the extended
complex method based on the concept of Yuan et al.
[40–46]. It is a remarkable approach to attain exact analyt-
ical solutions. Our technique would be potentially applied
to various processes of the engineering field. This article is
organized as mentioned as follows. In Section 2, methods
and materials are described. In Section 3, the application
of the introduced method is determined. Section 4 deals
with physical phenomena of important results. The com-
parison and conclusions are explained in Section 5.

2. Methods and Materials

Let us consider the general form of NLPDE

l w,wt ,wx ,wz ,wtt ,wxx ⋯⋯⋯ð Þ, ð2Þ

where the unknown function is w =wðx, tÞ and l is a polyno-
mial in w =wðx, tÞ and its derivatives.

Step 1. A transformation T : wðx, tÞ→WðzÞ is introduced,
and ðx, tÞ can be introduced in different standard; hence,
we have used the transformation such as

w x, tð Þ =W zð Þ, z = k x − ωtð Þ: ð3Þ

Step 2. The wðx, tÞ =WðzÞ, z = kðx − ωtÞ transform Eq. (2)
into nonlinear ODE:

T W,W ′,W ′′,W ′′′,⋯
� �

= 0, ð4Þ

in Eq. (4), where W primes are the derivatives w.r.t z. This
equation is reduced by further integration.

Step 3. Let the meromorphic solutions W of Eq. (4) have at
least one pole, and let us consider p, q ∈ℤ. For this condition,
we substitute the Laurent series

W zð Þ = 〠
∞

k=−q
Bkz

k, q > 0, B−q ≠ 0, ð5Þ

into Eq. (4), if we can find p distinct Laurent singular parts:

〠
−1

k=−q
Bkz

k, ð6Þ

then the weak hp, qi condition of Eq. (4) holds. Weierstrass
elliptic function ℘ðzÞ≔ ℘ðz, g2, g3Þ with double periods of
the equation is given as below:

℘′ zð Þ
� �2

= 4℘ zð Þ3 − g2℘ zð Þ − g3, ð7Þ

and the addition formula is mentioned as below:

℘ z − z0ð Þ = −℘ zð Þ + 1
4

℘′ zð Þ + ℘′ z0ð Þ
℘ zð Þ−℘ z0ð Þ

" #2
−℘ z0ð Þ: ð8Þ

Step 4. Putting the indeterminate forms

W zð Þ = 〠
y−1

i=1
〠
q

j=2

−1ð Þ jδ−ij
j − 1ð Þ!

dj−2

dzj−2
1
4

℘′ zð Þ + Gi

℘ zð Þ −Hi

" #2
−℘ zð Þ

 !

+ 〠
y−1

i=1

δ−i1
2

℘′ zð Þ +Gi

℘ zð Þ −Hi
  + 〠

q

j=2

−1ð Þjδ−yj
j − 1ð Þ!

dj−2

dzj−2
℘ zð Þ + δ0,

ð9Þ

W zð Þ = 〠
y

i=1
〠
q

j=1

δij

z − zið Þj
+ δ0, ð10Þ

W eαzð Þ = 〠
y

i=1
〠
q

j=1

δij

eαz − eαzið Þj
+ δ0, ð11Þ

into Eq. (4); hence, the number of equations is computed by
adjusting the coefficient to zero. These algebraic equations
are calculated by the source of maple. Equation (9) is the
elliptic solution W with pole at z = 0, where δ−ij are attained
by (4), G2

i = 4H3
i − g2Hi − g3, ∑

y
i=1 δ−i1 = 0. Equation (10) is

the rational function, and Eq. (11) is the exponential function
which are denoted as WðzÞ,WðeαzÞðα ∈ℂÞ, and they have y
ð≤pÞ distinct poles of multiplicity q.

Step 5. The meromorphic solutions are got with the arbitrary
pole. Substitute inverse transformation T−1 into meromor-
phic solutions; then, we obtain the exact analytical solutions
of NLPDEs.

3. Application of the Method

In this section, we would like to find the exact analytical solu-
tions of a generalized fifth-order KdV equation by extended
complex approach. Substitute

w x, tð Þ =W zð Þ, z = k x − ωtð Þ, ð12Þ

into Eq. (1), then obtain

−ωW ′ + sWW ′ + fW2W ′ + ek2W ′′′ + μk4W ′′′′′ = 0,
ð13Þ
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now, we integrate Eq. (13) w.r.t z; then, we attain new
ODE

−ωW + s
W2

2 + f
W3

3 + ek2W ′′ + μk4W ′′′′ = 0: ð14Þ

Putting (5) into (14) then we have p = 1 and q = 2;
hence, the weak h1, 2i condition of (14) holds. By weak h
1, 2i and (10), then rational solutions with pole at z = 0
are

Wr zð Þ = δ12
z − 1ð Þ2 + δ11

z − 1 + δ10, ð15Þ

substituting the WrðzÞ into Eq. (14); then, we have

1
6〠

7

i=1
c1iz

7−ið Þ z − 1ð Þ−6 = 0, ð16Þ

where

c11 = 2δ310 f + 3δ210s − 6δ10ω,

c12 = 6δ11δ210 f − 12δ310 f + 6δ11δ10s − 18δ210s − 6δ11ω + 36δ10ω,

c13 = 6δ12δ210 f + 6δ211δ10 f − 30δ11δ210 f + 30δ310 f + 6δ12δ10s
+ 3δ211s − 30δ11δ10s + 45δ210s − 6δ12ω + 30δ11ω − 90δ10ω,

c14 = 12δ12δ11δ10 f − 24δ12δ210 f + 2δ311 f − 24δ211δ10 f + 60δ11δ210 f
+ 12δ11ek2 − 40δ310 f + 6δ12δ11s − 24δ12δ10s − 12δ211s
+ 60δ11δ10s − 60δ212s + 24δ12ω − 60δ11ω + 120δ10ω,

c15 = 6δ212δ10 f + 6δ12δ211 f − 36δ12δ11δ10 f + 36δ12δ210 f + 36δ12ek2

− 6δ311 f + 36δ211δ10 f − 60δ11δ210 f − 36δ11ek2 + 30δ310 f + 3δ212s
− 18δ12δ11s + 36δ12δ10s + 18δ211s − 60δ11δ10s + 45δ210s
− 36δ12ω + 60δ11ω − 90δ10ω,

c16 = 144δ11k4μ + 6δ212δ11 f − 12δ212δ10 f − 12δ12δ211 f + 36δ12δ11δ10 f
− 24δ12δ210 f − 72δ12ek2 + 6δ311 f − 24δ211δ10 f + 30δ11δ210 f
+ 36δ11ek2 − 12δ310 f − 6δ212s + 18δ12δ11s − 24δ12δ10s
− 12δ211s + 30δ11δ10s − 18δ210s + 24δ12ω − 30δ11ω + 36δ10ω,

c17 = 720δ12k4μ − 144δ11k4μ + 2δ312 f − 6δ212δ11 f + 6δ212δ10 f
+ 6δ12δ211 f − 12δ12δ11δ10 f + 6δ12δ210 f + 36δ12ek2

− 2δ311 f + 6δ211δ10 f − 6δ11δ210 f − 12δ11ek2 + 2δ310 f
+ 3δ212s − 6δ12δ11s + 6δ12δ10s + 3δ211s − 6δ11δ10s
+ 3δ210s − 6δ12ω + 6δ11ω − 6δ10ω:

ð17Þ

By assuming that the coefficients of same powers con-
cerning z in Eq. (16) are zero, then we have numbers of
equations:

c1i = 0, i = 1, 2,⋯,7ð Þ: ð18Þ

By solving number of these equations, we obtain

δ12 = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2ffiffiffi

f
p , δ11 = 0, δ10 = 0, ð19Þ

then

Wr10 zð Þ = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2/

ffiffiffi
f

p

z − 1ð Þ2 , ð20Þ

where ω = 0 and s = −ð1/5Þð ffiffiffi
f

p
e
ffiffiffiffiffi
10

p
/ ffiffiffi

μ
p Þ;

δ12 =
24k2e
s

, δ11 = 0, δ10 =
6
5
e2

sμ
, ð21Þ

then

Wr20 zð Þ = 24k2e/s
z − 1ð Þ2 + 6

5
e2

sμ
, ð22Þ

where f = −ð5/8Þðμs2/e2Þ and ω = ð3/10Þðe2/μÞ.
WðzÞ = RðηÞ is a rational function of η = eαzðα ∈ℂÞ,

applying it into Eq. (14) then

−ωR + s
R2

2 + f
R3

3 + k2eα2 R′′η2 + R′η
� �

+ k4α4μ R 4ð Þη4 + 6R′′′η3 + 7R′′η2 + R′η
� �

= 0,
ð23Þ

substituting

Ws zð Þ = δ12
η − 1ð Þ2 + δ11

η − 1 + δ10, ð24Þ

into the Eq. (23), we attain that

1
6〠

7

i=1

c2iα
2η7−i

η − 1ð Þ6 = 0, ð25Þ

where

c21 = 2δ310 f + 3δ210s − 6δ10ω,
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c22 = 6α4δ11k4μ + 6α2δ11ek2 + 6δ11δ210 f
− 12δ310 f + 6δ11δ10s − 18δ210s − 6δ11ω + 36δ10ω,

c23 = 96δ12α4k4μ + 60α4δ11k4μ + 24δ12α2ek2 − 12α2δ11ek2

+ 6δ12δ210 f + 6δ211δ10 f − 30δ11δ210 f + 30δ310 f + 6δ12δ10s
+ 3δ211s − 30δ11δ10s + 45δ210s − 6δ12ω + 30δ11ω − 90δ10ω,

c24 = 396δ12α4k4μ − 36δ12α2ek2 + 12δ12δ11δ10 f − 24δ12δ210 f
+ 2δ311 f − 24δ211δ10 f + 60δ11δ210 f − 40δ310 f + 6δ12δ11s
− 24δ12δ10s − 12δ211s + 60δ11δ10s − 60δ210s + 24δ12ω
− 60δ11ω + 120δ10ω,

c25 = 2δ312 f − 6δ212δ11 f + 6δ212δ10 f + 6δ12δ211 f − 12δ12δ11δ10 f
+ 6δ12δ210 f − 2δ311 f + 6δ211δ10 f − 6δ11δ210 f + 2δ310 f
+ 3δ212s − 6δ12δ11s + 6δ12δ10s + 3δ211s − 6δ11δ10s
+ 3δ210s − 6δ12ω + 6δ11ω − 6δ10ω,

c26 = 216δ12α4k4μ − 60α4δ11k4μ + 12α2δ11ek2 + 6δ212δ10 f
+ 6δ12δ211 f − 36δ12δ11δ10 f + 36δ12δ210 f − 6δ311 f
+ 36δ211δ10 f − 60δ11δ210 f + 30δ310 f + 3δ212s − 18δ12δ11s
+ 36δ12δ10s + 18δ211s − 60δ11δ10s + 45δ210s − 36δ12ω
+ 60δ11ω − 90δ10ω,

c27 = 12δ12α4k4μ − 6α4δ11k4μ + 12δ12α2ek2 − 6α2δ11ek2

+ 6δ212δ11 f − 12δ212δ10 f − 12δ12δ211 f + 36δ12δ11δ10 f
− 24δ12δ210 f + 6δ311 f − 24δ211δ10 f + 30δ11δ210 f − 12δ310 f
− 6δ212s + 18δ12δ11s − 24δ12δ10s − 12δ211s + 30δ11δ10s
− 18δ210s + 24δ12ω − 30δ11ω + 36δ10ω:

ð26Þ

By assuming that the coefficients of the same powers con-
cerning η in Eq. (25) are zero, then obtain the numbers of
equations:

c2i = 0, i = 1, 2,⋯,7ð Þ: ð27Þ

Solve the numbers of these equations, then attain

δ12 = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2α2ffiffiffi

f
p , δ11 = −

6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2α2ffiffiffi

f
p , δ10 = 0, ð28Þ

where η = eαzðα ∈ℂÞ.

Ws e
αzð Þ = −

6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2α2/

ffiffiffi
f

p

eαz − 1ð Þ2 −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2α2/

ffiffiffi
f

p
eαz − 1 ,

Ws e
αzð Þ = −

6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2α2/

ffiffiffi
f

p� �
eαz

eαz − 1ð Þ2 ,

ð29Þ

so, we obtain the simply periodic solutions of Eq. (14) with
pole at z = 0

Ws10 zð Þ = −
3
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2α2

2
ffiffiffi
f

p coth2 α2 z − 1
� �

, ð30Þ

where ω = α4k4μ + α2ek2 and s = ð1/5Þðð5α2k2μ + eÞ ffiffiffiffiffi
10

p ffiffiffi
f

p
/ ffiffiffi

μ
p Þ. Furthermore,

δ12 = −
12α2ek2

s
, δ11 = −

12α2ek2
s

, δ10 = −
2α2ek2

s
, ð31Þ

where η = eαzðα ∈ℂÞ.

Ws e
αzð Þ = −

12α2ek2/s
eαz − 1ð Þ2 −

12α2ek2/s
eαz − 1 −

2α2ek2
s

,

Ws e
αzð Þ = −

12α2ek2/s
� �

eαz

eαz − 1ð Þ2 −
2α2ek2

s
,

ð32Þ

so, we attain again the simply periodic solutions of Eq. (14)
with pole at z = 0

Ws20 zð Þ = −
3α2ek2

s
coth2 α2 z
� �

−
5α2ek2

s
, ð33Þ

where ω = −α2ek2 and f = 0.
By the weak h1, 2i condition, so, we introduce here the

elliptic solutions by (9) with z = 0 pole.

Wd0 zð Þ = δ12℘ zð Þ + δ10, ð34Þ

substitute Wd0ðzÞ into Eq. (14); then, we have

〠
3

i=0
c3i℘i zð Þ = 0, ð35Þ
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where

c30 = −δ10ω + 1
2 δ

2
10s +

1
3 δ

3
10 f −

1
2 ek

2ag3 − 12δ12g3k
4μ,

c31 = −18δ12g2k
4μ + δ12δ

2
10 f + δ12δ10s − δ10ω,

c32 =
1
2 δ

2
12s + δ212δ10 f + 6ek2δ12,

c33 =
1
3 δ

3
12 f + 120δ12μk4:

ð36Þ

By assuming that the coefficients of the same powers
concerning ℘ðzÞ in Eq. (35) are zero, then obtain the num-

bers of equations:

c3i = 0, i = 0, 1,⋯,3ð Þ: ð37Þ

Solve these equation; then, we have

δ12 = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2ffiffiffi

f
p , δ10 = 0, ð38Þ
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Figure 1: Perspective view of 3D graph of Wr,1ðzÞ for the fixed
values ω = 2, z0 = 0:5, μ = 1, k = 1, and f = 1 represents the exact
solutions.
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Figure 2: Perspective view of 3D graph of Wr,1ðzÞ for the fixed
values ω = 2, z0 = −0:5, μ = 1, k = 1, and f = 1 represents the exact
solution.
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Figure 3: Perspective view of 3D graph of Ws,1ðzÞ for the fixed
values ω = 9, z0 = 1/6, μ = 1, k = 1, f = 1, and α = 1 represents the
exact solutions.
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Figure 4: Perspective view of 3D graph of Ws,1ðzÞ for the fixed
values ω = 9, z0 = −1/6, μ = 1, k = 1, f = 1, and α = 1 represents the
exact solutions.

5Journal of Function Spaces



and then we have

Wd0 zð Þ = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2ffiffiffi

f
p ℘ zð Þ, ð39Þ

hence, the elliptic general solutions of Eq. (14) with arbitrary
pole are expressed such as

Wd,1 zð Þ = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2ffiffiffi

f
p ℘ z − z0ð Þ, ð40Þ

where z0 ∈ℂ.

Applying the additional formula to the Wd,1ðzÞ, and we
attain

Wd,1 zð Þ = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2ffiffiffi

f
p −℘ zð Þ + 1

4
℘′ zð Þ + G1
℘ zð Þ −H1

 !2 !
+ 6

ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2ffiffiffi

f
p H1,

ð41Þ

where e = −24k2μ, s = −ð24/5Þk2 ffiffiffi
μ

p ffiffiffiffiffi
10

p ffiffiffi
f

p
, ω = −18g2k

4μ,
G1 = 4H3

1 − g2H1 − g3, and g2 and g3 are the arbitrary
constants.
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Figure 5: Perspective view of 3D graph of Wr,2ðzÞ for the fixed
values ω = 5, z0 = 1/3, μ = 1, k = 1, s = 1, and e = 1 represents exact
solutions.
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Figure 6: Perspective view of 3D graph of Wr,2ðzÞ for the fixed
values ω = 5, z0 = −1/3, μ = 1, k = 1, s = 1, and e = 1 represents
exact solutions.
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Figure 7: Perspective view of 3D graph of Ws,2ðzÞ for the fixed
values ω = 6, z0 = 1/8, μ = 1, k = 1, s = 1, e = 1, and α = 1 represents
exact solutions.
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values ω = 6, z0 = −1/8, μ = 1, k = 1, s = 1, e = 1, and α = 1
represents exact solutions.
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By the above approach, so, we obtain the meromorphic
solutions of Eq. (14) with arbitrary pole as mention as fol-
lows:

Wr,1 zð Þ = −
6
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2/

ffiffiffi
f

p

z − z0 − 1ð Þ2 , ð42Þ

where ω = 0, s = −ð1/5Þð ffiffiffi
f

p
e
ffiffiffiffiffi
10

p
/ ffiffiffi

μ
p Þ, and z0 ∈ℂ.

Wr,2 zð Þ = 24k2e/s
z − z0 − 1ð Þ2 + 6

5
e2

sμ
, ð43Þ

where f = −ð5/8Þðμs2/e2Þ, ω = ð3/10Þðe2/μÞ, and z0 ∈ℂ.

Ws,1 zð Þ = −
3
ffiffiffiffiffi
10

p ffiffiffi
μ

p
k2α2

2
ffiffiffi
f

p coth2 α2 z − z0ð Þ − 1
� �

, ð44Þ

where ω = α4k4μ + α2ek2, s = ð1/5Þðð5α2k2μ + eÞ ffiffiffiffiffi
10

p ffiffiffi
f

p
/ ffiffiffi

μ
p

Þ, and z0 ∈ℂ.

Ws,2 zð Þ = −
3α2ek2

s
coth2 α2 z − z0ð Þ
� �

−
5α2ek2

s
, ð45Þ

where ω = −α2ek2, f = 0, and z0 ∈ℂ.

4. Description about Figures

Here, we display the exact solutions for Wr,1ðzÞ, Ws,1ðzÞ,
Wr,2ðzÞ, and Ws,2ðzÞ by graphical phenomena as in
Figures 1–8. These graphs are represented by the source of
maple to persuade important results. Figures 1–8 display dif-
ferent multisolitary wave solutions that are obtained by dif-
ferent values of z0 and ω, whereas other parameters are
constant.

Figures 1 and 2 indicate the exact solutions for Wr,1ðzÞ,
adjust the values ω = 2, z0 = 0:5, μ = 1, k = 1, and f = 1 and
ω = 2, z0 = −0:5, μ = 1, k = 1, and f = 1.

Figures 3 and 4 indicate the exact solutions for Ws,1ðzÞ,
adjust the values ω = 9, z0 = 1/6, μ = 1, k = 1, f = 1, and α =
1 and ω = 9, z0 = −1/6, μ = 1, k = 1, f = 1, and α = 1.

Figures 5 and 6 indicate the exact solutions for Wr,2ðzÞ,
adjust the values ω = 5, z0 = 1/3, μ = 1, k = 1, s = 1, and e = 1
and ω = 5, z0 = −1/3, μ = 1, k = 1, s = 1, and e = 1.

Figures 7 and 8 indicate the exact solutions for Ws,2ðzÞ,
adjust the values ω = 6, z0 = 1/8, μ = 1, k = 1, s = 1, e = 1,
and α = 1 and ω = 6, z0 = −1/8, μ = 1, k = 1, s = 1, e = 1, and
α = 1.

5. Comparison and Conclusion

Khan et al. [25] represented the modified simple equation
technique for the analytical treatment of generalized fifth-
order KdV equation. This proposed technique provides fresh
exact solutions in the area of engineering and mathematical
physics. The results demonstrated the remarkable exact solu-
tions for this technique. For this purpose, we create the com-

parison between the modified simple equation technique and
the extended complex approach.

We employed the extended complex technique to explore
the exact analytical solutions of the generalized fifth-order
KdV equation. The graphical phenomena are showed by set-
ting the values of arbitrary parameters, and the graphical rep-
resentations are revealed the mechanism of wave behavior,
for example, Figures 1–8 depict that different multisolitary
wave solutions are attained by different values of z0 and ω,
whereas other parameters are constant. The extended com-
plex approach is calculated by the source of maple software.
This approach is a powerful analytical technique since it pro-
vides different new exact solutions which are indicated by the
forms of rational, periodic, and elliptic function solutions.
These results have been obtained by the extended complex
technique to show a deeper understanding of physical struc-
tures and provide remarkable exact solutions of higher
degree NPDEs.
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Recently, the applications and importance of integral transforms (or operators) with special functions and polynomials have
received more attention in various fields like fractional analysis, survival analysis, physics, statistics, and engendering. In this
article, we aim to introduce a number of Laplace and inverse Laplace integral transforms of functions involving the generalized
and reverse generalized Bessel matrix polynomials. In addition, the current outcomes are yielded to more outcomes in the
modern theory of integral transforms.

1. Introduction

Recently, the integral transforms (or operators) have been
extensively used tools in solving certain boundary value
problems and certain integral equations. They are also useful
in evaluating infinite integrals involving special functions or
in solving differential equations of mathematical physics
(see, e.g., [1–6] and the references cited therein). Laplace
transform is a type of the integral transforms that is the most
popular and widely used in several branches of astronomy,
engineering, applied statistics, probability distributions, and
applied mathematics (see, for instance, [7–13]).

A number of studies on the generalizations of Laplace
transform associated with special polynomials have been
contributed by Ortigueira and Machado [14], Jarad and
Abdeljawad [15], Ganie and Jain [16], and Saifa et al. [17].

In 1949, Krall and Frink [18] introduced and discussed
several properties of the generalized Bessel polynomials
(GBPs), which are given by

Yn α, β ; ξð Þ = 〠
n

s=0

n

s

 !
n + α − 1ð Þs

ξ

β

� �s

: ð1Þ

These polynomials, which seem to have been considered
first by Bochner [19], are also mentioned in Romanovsky
[20] and Krall [21].

Recently, these polynomials have been investigated in
diverse ways and turned out to be applicable in a number
of research fields (see, to exemplify, [22–25]).

Additionally, various extensions of the classical orthogo-
nal polynomials to matrix setting were investigated. The
matrix generalization of the generalized Bessel polynomials
Bθ,ϕ

n ðzÞ, z ∈ℂ, for parameters (square) matrices θ and ϕ,
was also introduced in diverse ways ([26]; see also [27]). Var-
ious studies of the generalized Bessel matrix polynomials
have been presented and discussed (see [27, 28]).

Recently, many works established Laplace integral trans-
forms of special functions like Gauss’s and Kummer’s
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functions [29], generalized hypergeometric functions [30,
31], Aleph-Functions [32], and Bessel functions [33].
Whereas, some formulas corresponding to integral trans-
forms of orthogonal matrix polynomials are little known
and traceless in the literature. This motivates us to discuss
Laplace integral transforms for functions involving general-
ized Bessel matrix polynomials. In particular, we obtain a
number of useful Laplace and inverse Laplace type integrals
of the generalized Bessel matrix polynomials together with
ceratin elementary matrix functions, exponential function,
logarithmic function, generalized hypergeometric matrix
functions, and Bessel functions and products of generalized
Bessel matrix polynomials. We also discuss some interesting
and special cases of our main results.

2. Preliminaries

Here, we state some basic definitions and preliminaries
which will be used in the article (see, for details, [34–36]).

Here and in the following sections, C and N denote the
sets of complex numbers and positive integers, respectively,
and N0 =N ∪ f0g: We denote by MrðℂÞ the space of r × r
complex matrices endowed with classical norm defined by

∥θ∥ = sup
y≠0

∥θy∥
∥y∥

� �
= sup ∥θy∥,∥y∥ = 1f g: ð2Þ

This norm satisfies the inequality ∥θϕ∥≤∥θ∥∥ϕ∥, where θ
and ϕ are in MrðℂÞ:

Definition 1. For any matrix θ inMrðℂÞ, the spectrum σðθÞ is
the set of all eigenvalues of θ for which we denote

α θð Þ =max R ηð Þ: η ∈ σ θð Þf g andβ θð Þ =min R ηð Þ: η ∈ σ θð Þf g,
ð3Þ

where αðθÞ refers to the spectral abscissa of θ and for which
βðθÞ = −αð−θÞ. A matrix θ ∈MrðℂÞ is said to be positive sta-
ble if and only if βðθÞ > 0.

Definition 2 (see [35, 36]). If θ ∈MrðℂÞ, and w ∈ C, then the
matrix exponential eθw is given to be

eθw = I + θw+⋯+ θ
n

n!
wn+⋯, ð4Þ

where I is the identity matrix in MrðℂÞ:

Definition 3 (see [37]). Let θ be a positive stable matrix in
MrðℂÞ with θ + nI is invertible for all integers n ∈N0, the
Gamma matrix function ΓðθÞ and the Digamma matrix
function ψðθÞ are defined, respectively, as follows:

Γ θð Þ =
ð∞
0
e−uuθ−Idu ; uθ−I = exp θ − Ið Þ ln uð Þ: ð5Þ

ψ θð Þ = Γ−1 θð ÞΓ′ θð Þ, ð6Þ

where Γ−1ðθÞ and Γ′ðθÞ are reciprocal and derivative of the
Gamma matrix function.

Note that the scalar Gamma and Digamma functions are
easily found when r = 1 in (5) and (6), respectively (see, e.g.,
[38, Section 1.1])).

Definition 4 (see [?]). For all θ in MrðℂÞ, we assume

θ + kI is invertible for all k ∈ℕ0, ð7Þ

and the Pochhammer symbol (the shifted factorial) is defined
by

θð Þr =
θ θ + Ið Þ⋯ θ + r − 1ð ÞIð Þ = Γ−1 θð ÞΓ θ + rIð Þ, r ∈ℕ,
I, r = 0:

(

ð8Þ

Lemma 5 (see [34]). Let θ be a matrix in MrðℂÞ such that
∥θ∥<1 and ∥I∥ = 1: Then, ðI + θÞ−1 exists, and we have

I + θð Þ−1 = I − θ + θ2 − θ3 + θ4 − θ5+⋯: ð9Þ

Definition 6 (see [39]). Letm and n be finite positive integers,
the generalized hypergeometric matrix function is given by

mFn θ ; ϕ ; zð Þ = 〠
∞

k=0

Ym
i=1

θið Þk
Yn
j=1

φj

� �
k

h i−1 zk
k!
, ð10Þ

where θi, 1 ≤ i ≤m and ϕj, 1 ≤ j ≤ n are commutative matrices
in MrðℂÞ with ϕj + kI are invertible for all integers k ∈N0
and 1 ≤ i ≤m. In [39], Abdalla discussed regions of conver-
gence of (2.6).

Note that for m = 1, n = 0 in (10), we have the Binomial
type matrix function 1F0ðθ;−;zÞ [39] as follows:

1F0 θ;−;zð Þ = 1 − zð Þ−θ = I + θz + θ θ + Ið Þz2
2! +⋯+ θð Þnzn

n!
+⋯, zj j < 1:

ð11Þ

Also, for m = 2, n = 1 in (10), we get the hypergeometric
matrix function 2F1 (cf. [40]).

Further, the substitution r = 1 in (10) leads to the classical
generalized hypergeometric functions [38, Section 1.5], see
also, [41].

Definition 7 (see [26]). Let θ and ϕ be commuting matrices in
MrðℂÞ such that ϕ is an invertible matrix. For any natural
number n ≥ 0, the nth generalized Bessel matrix polynomial
Bθ,θ

n ðzÞ is defined as
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Bθ,ϕ
n zð Þ = 〠

n

r=0

n

r

 !
θ + n − 1ð ÞIð Þr z ϕ−1

� 	r

= 〠
n

r=0

−1ð Þr
r!

−nIð Þr θ + n − 1ð ÞIð Þr z ϕ−1
� 	r

= 2F0 −nI, θ + n − 1ð ÞI;−;−z ϕ−1� 	
:

ð12Þ

In addition, the nth reverse generalized Bessel matrix
polynomial Θðθ,ϕÞ

n ðzÞ is given by (see [27])

Θ θ,ϕð Þ
n zð Þ = znBθ,ϕ

n z−1
� 	

= −1ð ÞnΓ−1 −θ − 2n − 2ð ÞIð ÞΓ
� −θ + n − 2ð ÞIð Þ × 1F1 −nI;−θ − 2n − 2ð ÞI ; ϕzð Þ:Θ θ,ϕð Þ

n zð Þ
= znBθ,ϕ

n z−1
� 	

= −1ð ÞnΓ−1 −θ − 2n − 2ð ÞIð ÞΓ
� −θ + n − 2ð ÞIð Þ × 1F1 −nI;−θ − 2n − 2ð ÞI ; ϕzð Þ:

ð13Þ

Obviously, the nth generalized Bessel matrix polynomial
Bðθ,ϕÞ

n ðzÞ when r = 1 is easily found to be the scalar general-
ized Bessel polynomials (1.1).

Definition 8. Let gðτÞ be a function of τ specified for τ > 0.
Then, the Laplace transform of gðτÞ is defined by

G λð Þ =L g τð Þ: λf g =
ð∞
0
e−λτg τð Þdτ, R λð Þ > 0, ð14Þ

provided that the improper integral exists, e−λu is the kernel
of the transformation and the function gðτÞ is called the
inverse Laplace transform of GðλÞ (see [1, Chapter 3]; see
also [7]).

The following Lemma, which may be easily derivable
from (14), will be desired in the sequel.

Lemma 9. Let θ be a positive stable and invertible matrix in
MrðℂÞ and RðλÞ > 0. Then, we have

L τθ : λ
n o

=
ð∞
0
e−λττθdτ = λ− θ+Ið Þ Γ θ + Ið Þ, ð15Þ

L τθ τ + 1ð Þ−1 : λ
n o

= Γ θ + Ið Þ eλ Γ −θ, λð Þ, ð16Þ

where Γðθ, λÞ is the incomplete Gamma matrix function [42].

L g τð Þeθτ : λ
n o

=G λI − θð Þ,

L−1 λ−θ : τ
n o

= τ θ−Ið Þ Γ−1 θð Þ:
ð17Þ

3. Laplace Type Integrals of Functions Involving
Bθ,ϕ

n ðzÞ and Θθ:ϕ
n ðzÞ

In this section, we investigate several Laplace-type trans-
forms of functions involving generalized and reverse general-

ized Bessel matrix polynomials asserted in the following
theorems:

Theorem 10. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0 and
ϕ + kI are invertible for all k ∈ℕ0: For the function

g1 zð Þ = zA−I Bθ,ϕ
n zð Þ, ð18Þ

we have

G1 λð Þ =L g1 zð Þ: λf g = λ−A Γ Að Þ3F0

−nI, θ + n − 1ð ÞI, A

−

;− λϕð Þ−1
2
664

3
775:

ð19Þ

Proof. From the expansion series of the Bθ,ϕ
n ðzÞ in (12) and

upon using (15) in Lemma 9, we obtain

G1 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
L zA+ s−1ð ÞI
n o

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
λ− A+sIð Þ Γ A + sIð Þ

= λ−A Γ Að Þ 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs Að Þs − λϕð Þ−1� 	s
s!

:

ð20Þ

Thus, we get the required result (19).

Theorem 11. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ, ϕ and A be matrices inMrðℂÞ such that βðAÞ > 0,ϕ + kI
are invertible for all k ∈ℕ0 and I − A satisfies the spectral
condition (7). Further, let

g2 zð Þ = zA− n+1ð ÞI Θn θ, ϕ ; zð Þ: ð21Þ

Then,

G2 λð Þ =L g2 zð Þ: λf g = λ−A Γ Að Þ2F1

−nI, θ + n − 1ð ÞI

I − A

; λθ−1

2
664

3
775:

ð22Þ

Proof. Starting from Definition 7, and applying the relation
(15), it follows that
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G2 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
L zA− s+1ð ÞI
n o

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
λ− A−sIð Þ Γ A − sIð Þ

= λ−A Γ Að Þ 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs I − Að Þs

 �−1 λϕ−1

� 	s
s!

:

ð23Þ

Thus, the result (22) is established.

Theorem 12. Let z, μ, λ ∈ℂ,Rðλ − μÞ > 0, n ∈ℕ0, and r ∈ℕ.
Also, let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0,
ϕ + kI are invertible for all k ∈ℕ0 and I − A satisfies the spec-
tral condition (7). If

g3 zð Þ = zA−I eμz Bθ,ϕ
n z−1
� 	

: ð24Þ

Then,

G3 λð Þ =L g3 zð Þ: λf g = λ − μð Þ−A Γ Að Þ2F1

−nI, θ + n − 1ð ÞI

I − A

; λ − μð Þϕ−1
2
664

3
775:

ð25Þ

Proof. For convenience, let the left-hand side of (25) be
denoted by S and by invoking the series expression of (12)
to S, we obtain

S = 〠
n

k=0

−nIð Þs θ + n − 1ð ÞIð Þk −ϕ−1
� 	s

s!

ð∞
0
zA− s−1ð ÞI e− −μ+λð Þz dz

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs −ϕ−1
� 	s

s!
−μ + λð Þ− A−sIð Þ Γ A − sIð Þ

= Γ Að Þ λ − μð Þ−A 〠
n

s=0
−nIð Þs θ + n − 1ð ÞIð Þs

� I − Að Þs

 �−1 λ − μð Þ ϕ−1� 	s

s!
,

ð26Þ

therefore, (25) as desired.

Theorem 13. Let z,w, λ ∈ℂ, RðλÞ > 0, n ∈ℕ0, and r ∈ℕ.
Also, let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0
and ϕ + kI are invertible for all k ∈ℕ0: For the function

g4 zð Þ = zA−I z +wð Þ−1 Bθ,ϕ
n zð Þ, ð27Þ

we have

G4 λð Þ =L g4 zð Þ: λf g =wA−I Γ Að Þ eλw

× 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk Að Þk
k!

Γ

� I − A − kI ; λwð Þ −wϕ−1
� 	k,

ð28Þ

where ΓðA, zÞ is the incomplete Gamma matrix function
defined in [42].

Proof. To prove (28), we consider

G4 λð Þ =
ð∞
0
zA−I z +wð Þ−1 Bθ,ϕ

n zð Þe−λzdz

= 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

−ϕ−1
� 	k

×
ð∞
0
zA+ k−1ð ÞI z +wð Þ−1 e−λzdz:

ð29Þ

According to (16) in Lemma 9, we get

G4 λð Þ = 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

Γ A + kIð Þ

×wA+ k−1ð ÞI eλwΓ 1 − kð ÞI − A,wλð Þ −ϕ−1
� 	k

= Γ Að ÞwA−Iewλ 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk Að Þk
k!

× Γ 1 − kð ÞI − A,wλð Þ −wϕ−1
� 	k

:

ð30Þ

This completes the proof of Theorem 13.

Theorem 14. Let z, λ, ν ∈ℂ, RðλÞ > 0, RðνÞ > 0,n,m ∈ℕ0,
and r ∈ℕ. Also let θ, ϕ and A be matrices inMrðℂÞ such that
βðAÞ > 0,ϕ + kI are invertible for all k ∈ℕ0,ð1 + nÞI − A and
ð2 − nÞI − A − θ satisfies the spectral condition (7). Further, let

g5 zð Þ = zA−I Bθ,λI
n z−1
� 	

BνI,ϕ
m z−1
� 	

: ð31Þ

Then,

G5 λð Þ = g5 zð Þ: λf g = λ−A Γ Að ÞΓ I − Að ÞΓ 2I − A − θð Þ × Γ−1

� 1 + nð ÞI − Að ÞΓ−1 2 − nð ÞI − A − θð Þ × 3F2

�
−mI, ν + n − 1ð ÞI, 2I − A − θ

1 + nð ÞI − A, 2 − nð ÞI − A − θ

; λ ϕ−1

2
6664

3
7775:

ð32Þ

Proof. To prove (32), we require the relation (15) and Defini-
tion 7, thus we arrive at
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G5 λð Þ = 〠
n

s=0
〠
m

j=0

−nIð Þs θ + n − 1ð ÞIð Þs −λ−1
� 	s

s!

×
−mIð Þj νI + m − 1ð ÞIð Þj −ϕ−1

� 	 j
j!

L zA− s+j+1ð ÞI
n o

= 〠
n

s=0
〠
m

j=0

−nIð Þs ϕ + n − 1ð ÞIð Þs −λ−1
� 	s

s!

×
−mIð Þj νI + m − 1ð ÞIð Þj −ϕ−1

� 	r
r!

Γ A − s + jð ÞIð Þ λ− A− s+jð ÞIð Þ

= λ− Að ÞΓ Að Þ 〠
m

j=0

−mIð Þj νI + m − 1ð ÞIð Þj −ϕ−1
� 	j

j!
I − Að Þj

h i−1

× 〠
n

s=0

−nIð Þs ϕ + n − 1ð ÞIð Þs
s!

1 − jð ÞI − Að Þs

 �−1

= λ−A Γ Að ÞΓ I − Að ÞΓ 2I − A − θð ÞΓ−1 I − θ + nIð ÞΓ−1

� 2I − A − θ − nIð Þ × 〠
m

j=0

−mIð Þj νI + m − 1ð ÞIð Þj −λϕ−1
� 	 j

j!

� 2I − A − θð Þj × 1 + nð ÞI − Að Þr

 �−1 2 − nð ÞI − A − θð Þj

h i−1
:

ð33Þ

This completes the proof of Theorem 14.

Theorem 15. Let z, λ ∈ℂ, RðλÞ > 0, n,m ∈ℕ0, and r ∈ℕ.
Also, let θ, ϑ, ϕ and A be matrices in MrðℂÞ such that βðAÞ
> 0,ϕ + kI, are invertible for all k ∈ℕ0,ϑ, ðθ + AÞ and θ + A
− I satisfies the spectral condition (7). Further, let

g6 zð Þ = zA−I Bθ,λzI
n 1ð ÞBϑ,ϕ

m zð ÞBϑ,ϕ
m −zð Þ: ð34Þ

Then,

G6 λð Þ =L g6 zð Þ: λf g = 2A−Iffiffiffi
π

p θ + A − Ið Þn Γ Að Þ λ−A I − Að Þn

 �−1

× 8F3

−mI, ϑ + m − 1ð ÞI, 1
2

θ − Ið Þ, 1
2
ϑ, 1

2
A + 1 − nð ÞIð Þ,

1
2

A − nIð Þ, 1
2

θ + A + nIð Þ, 1
2

θ + A + n − 1ð ÞIð Þ

ϑI, 1
2

θ + Að Þ, 1
2

θ + A − Ið Þ

; 16 λ ϕð Þ−2

2
66666666666664

3
77777777777775
:

ð35Þ

Proof. Applying the following formula (see [39])

Bϑ,ϕ
m zð ÞBϑ,ϕ

m −zð Þ = 4F1

−mI, ϑ + m − 1ð ÞI, 12 ϑ − Ið Þ, 12 ϑ

ϑ − I

; 4z2 ϕ−2

2
6664

3
7775:

ð36Þ

We thus find that

G6 λð Þ =L

· zA−I Bθ,λzI
n 1ð Þ4F1

−mI, ϑ + m − 1ð ÞI, 12 ϑ − Ið Þ, 12 ϑ

ϑ − I

; 4z2 ϕ−2

2
66664

3
77775

8>>>><
>>>>:

9>>>>=
>>>>;

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs
s!

−λ−1
� 	s × 〠

m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

· 1
2 ϑ − Ið Þ
� �

j

1
2 ϑ
� �

j

ϑ − Ið Þj
h i−1

4ϕ−2
� 	j ×L zA− s+1+2 jð ÞI

n o
:

ð37Þ

Making use of (15), we observe that

G6 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs
s!

−λ−1
� 	s

× 〠
m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

1
2 ϑ − Ið Þ
� �

j

1
2 ϑ
� �

j

� ϑ − Ið Þj
h i−1

× 4ϕ−2
� 	j

λ− A+ s−2jð ÞIð Þ Γ A − s − 2jð ÞIð Þ

= λ−AΓ Að Þ 〠
m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

1
2 ϑ − Ið Þ
� �

j

� 1
2 ϑ
� �

j

× ϑ − Ið Þj
h i−1

Að Þ2j 4 λϕð Þ−2� 	j
= 〠

n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs
s!

I − A − 2jIð Þs

 �−1

= λ−A
2A−Iffiffiffi
π

p Γ Að ÞΓ I − Að ÞΓ 2I − A − θð ÞΓ−1

� I − A + nIð ÞΓ−1 2I − A − θ − nIð Þ

× 〠
m

j=0

−mIð Þj ϑ + m − 1ð ÞIð Þj
j!

1
2 ϑ − Ið Þ
� �

r

1
2 ϑ
� �

j

� 1
2A
� �

j

ϑ − Ið Þj
h i−1

× 1
2 A + Ið Þ
� �

j

� 1
2 A + 1 − nð ÞIð Þ
� �

j

1
2 A − nIð Þ
� �

j

× 1
2 A + θ + nIð Þ
� �

j

1
2 A + θ + n − 1ð ÞIð Þ
� �

j

� 1
2 A + Ið Þ
� �

j

" #−1
× 1

2A
� �

j

" #−1 1
2 A + θð Þ
� �

j

" #−1

� 1
2 A + θ − Ið Þ
� �

j

" #−1
: 16 λϕð Þ−2� 	j

:

ð38Þ

Thus, after a simplification, we get the required result (35).

Theorem 16. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ, ϕ and A be matrices in MrðℂÞ such that βðAÞ > 0 and
ϕ + kI are invertible for all k ∈ℕ0: For the function
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g7 zð Þ = zA−I log zBθ,ϕ
n zð Þ, ð39Þ

then, we have

G7 λð Þ =L g7 zð Þ: λf g = λ−A Γ Að Þ〠
n

s=0
−nIð Þs θ + n − 1ð ÞIð Þs Að Þs

× − λϕð Þ−1� 	s
s!

ψ A + sIð Þ − log λð Þ,
ð40Þ

where ψðAÞ is the Digamma matrix function defined in (6).

Proof. The proof of this Theorem is quite straight forward as

G7 λð Þ =
ð∞
0
zA−I log zBθ,ϕ

n zð Þe−λzdz

= 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þk
s!

−ϕ−1
� 	s

×
ð∞
0
zA+ s−1ð ÞI log z e−λzdz:

ð41Þ

Upon using (2,2), we have

Γ A + sIð Þ =
ð∞
0
zA+ s−1ð ÞI e−z dz: ð42Þ

Hence,

Γ′ A + sIð Þ =
ð∞
0
zA+ s−1ð ÞI e−z log zdz: ð43Þ

We thus arrive at

Ψ A + sIð Þ = Γ′ A + sIð ÞΓ−1 A + sIð Þ
= Γ−1 A + sIð Þ

ð∞
0
zA+ s−1ð ÞI e−z log zdz:

ð44Þ

Therefore, we get

Ψ A + sIð Þ = λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log λzð Þdz

= λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log λð Þ + log zð Þ½ �dz

= λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log λð Þdz

+ λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log zð Þdz

= log λð Þ + λA+sI Γ−1 A + sIð Þ
ð∞
0
zA+ s−1ð ÞI e−λz log zð Þdz:

ð45Þ

We thus have

ð∞
0
zA+ s−1ð ÞI e−λz log zð Þdz = λ− A+sIð Þ Γ A + sIð Þ Ψ A + sIð Þ − log λ½ �:

ð46Þ

From the above equations, we get the required result as
follows:

G7 λð Þ = 〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs Að Þs
s!

� − λϕð Þ−1� 	s × λ−A Γ Að Þ Ψ A + sIð Þ − log λ½ �

= λ−A Γ Að Þ〠
n

s=0

−nIð Þs θ + n − 1ð ÞIð Þs Að Þs
s!

× − λϕð Þ−1� 	s
Ψ A + sIð Þ − log λ½ �:

ð47Þ

Theorem 17. Let z, λ ∈ℂ, RðλÞ > 0, n,m, q ∈ℕ0, and r ∈ℕ.
Also, let θ, ϕ, E,D and A be matrices in MrðℂÞ such that
βðAÞ > o, and ϕ + kI are invertible for all k ∈ℕ0: Further, let

g8 zð Þ = z2A−ImFq E ;D ; z2
� 	

Bθ,ϕ
n z2
� 	

: ð48Þ

Then,

G8 λð Þ =L g8 : λf g = 22A−Iffiffiffi
π

p Γ Að ÞΓ A + 1
2

� �
λ−2A

× 〠
n

k=0

1
k!

−nIð Þk θ + n − 1ð ÞIð Þk Að Þk A + 1
2

� �
k

−4 λ2ϕ
� 	−1� �k

× m+2Fq E, A + kI, A + k + 1
2

� �
I ;D ; 4 λð Þ−2

� �
,

ð49Þ

where mFqðE ;D ; zÞ is the generalized hypergeometric type
matrix functions defined in (10) such that Re ðλÞ > 0 if m <
q − 1 and Re ðλÞ > ∣βðAÞ ∣ if m = q − 1.

Proof. Using Definitions (10) and (12) and upon using (15),
we obtain

G8 λð Þ = 〠
n

k=0

1
k!

−nIð Þk θ + n − 1ð ÞIð Þk 4 ϕð Þ−1� 	k

× 〠
∞

r=0

Ym
i=1

Eið Þr
Yq
j=1

Dj

� 	
r

h i−1 1
k!
L z2A− 1−2k−2rð ÞI
n o

= 〠
n

k=0

1
k!

−nIð Þk θ + n − 1ð ÞIð Þk 4 ϕð Þ−1� 	k

× 〠
∞

r=0

Ym
i=1

Eið Þr
Yq
j=1

Dj

� 	
r

h i−1 1
k!

× λ−2A− 2k+2rð ÞI Γ

� 2A + 2k + 2rð ÞIð Þ:
ð50Þ
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Thus, after a simplification, we obtain the result (49) in
Theorem 3.11.

Theorem 18. Let z, υ, σ, λ ∈ℂ, RðλÞ > 0,RðυÞ > −1,RðσÞ
> 0, n,m ∈ℕ0, and r ∈ℕ. Also, let θ be matrix inMrðℂÞ such
that βðAÞ > 0 and ϕ + kI are invertible for all k ∈ℕ0: For the
function

g9 zð Þ = zυ/2 Jυ 2 σzð Þ1/2� 	
Bθ,λz

n 1ð Þ: ð51Þ

Then, we have

G9 λð Þ =L g9 zð Þ: λf g = συ/2 θ + υIð Þn
1

−υð Þn

� �
λ− υ+1ð Þ

× 2F2

1 + υ −m, θ + n + υð ÞI

1 + υ, θ + υI

;−σ
λ

2
6664

3
7775,

ð52Þ

where JυðzÞ is the Bessel function of the first kind of order υ
defined by (see, e.g., [38, 41, 43])

Jυ zð Þ = 〠
∞

s=0

−1ð Þs
s!Γ 1 + υ + sð Þ

z
2

� �υ+2s
: ð53Þ

Proof. According to (12) and (53) and upon sing (15), it fol-
lows that

G9 λð Þ =L zυ/2 Jυ 2 σzð Þ1/2� 	
Bθ,λz

n 1ð Þ
n o

= 〠
∞

m=0

−1ð Þm σð Þm+ υ/2ð Þ

m!Γ 1 + υ +mð Þ

× 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

−λ−1
� 	k

L z
υ
2+υ

2−k+m
n o

= σð Þυ/2 〠
∞

m=0

−σð Þm
m!Γ 1 + υ +mð Þ × 〠

n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
k!

� −λ−1
� 	k

Γ 1 + υ +m − kð Þ:λυ−m+k−1

= σð Þυ/2 λυ−1 〠
∞

m=0

−σð Þm λ−m Γ 1 + υ +mð Þ
m!Γ 1 + υ +mð Þ

× 〠
n

k=0

−nIð Þk θ + n − 1ð ÞIð Þk
− υ +mð Þð Þk k!

= σð Þυ/2 λ−υ−1 θ + υIð Þn
−υð Þn

� 〠
∞

m=0

1 + υ − nð Þm υ + nð ÞI + θð Þm θ + υIð Þm

 �−1

m! 1 + υð Þm
−σ
λ

� �m
:

ð54Þ

This completes the proof of Theorem 18.

4. Inverse Laplace Type Integrals of Functions
Involving BP,Q

n ðzÞ
Here, we obtain the following inverse Laplace type trans-
forms of generalized Bessel matrix polynomials with prod-
ucts of some functions in the following theorem:

Theorem 19. Let z, λ, σ ∈ℂ, RðλÞ > 1/2 ∣RðσÞ ∣ , n ∈ℕ0,
and r ∈ℕ. Also, let A be matrix in MrðℂÞ such that βðAÞ >
0: If

G10 λð Þ = Γ Að Þ λ + 1
2
σ

� �−A

B
A− n+1ð ÞI, 1

λ+1/2σ
n −σð Þ: ð55Þ

Then,

g10 zð Þ = zA−I exp −1
2
σz

� �
1 − σzð Þn: ð56Þ

Proof. It is sufficient to find Laplace transform of g10ðzÞ

G10 λð Þ =L zA−I exp −1
2 σz

� �
1 − σzð Þn

� �

=L zA−I exp −1
2 σz

� �
1
F0

−n

−
; σz

 !( )

= 〠
n

k=0

−nIð Þk σk
k!

L zA− 1−kð ÞI exp −1
2 σz

� �� �

= 〠
n

k=0

−nIð Þk σk
k!

Γ A + kIð Þ λ + 1
2 σ

� �− A+kIð Þ

= Γ Að Þ λ + 1
2 σ

� �−A

〠
n

k=0

−nIð Þk Að Þk
k!

σ

λ + 1/2σð Þ
� �k

,

ð57Þ

This finalizes the proof of Theorem 19.

Theorem 20. Let z, λ, σ ∈ℂ,RðλÞ > 0,RðσÞ > 0, n ∈ℕ0, and
r ∈ℕ. Also, let A be matrix inMrðℂÞ such that βðA + nIÞ > 0:
Further, let

G11 λð Þ = −1ð Þn σ1
2A+nI λ− A+ 2n+1ð ÞIð Þ exp −σ

λ
z

� �
BI−A−2nI,σ

n λð Þ:
ð58Þ

Then,

g11 zð Þ = z
A
2+nI Jυ 2 σzð Þ1/2� 	

: ð59Þ

Proof. By invoking to (15) and (53), we consider
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G11 λð Þ =L z
A
2+nI Jυ 2 σzð Þ1/2� 	n o

= 〠
∞

r=0

Γ−1 A + 1 + rð ÞIð Þ −σð Þr σA/2
r!

L zA+ n+rð ÞI
n o

= σA/2 Γ−1 A + Ið Þ 〠
∞

r=0

−ð Þr A + Ið Þr

 �−1

r!
Γ

� A + r + n + 1ð ÞIð Þ λ− A+ r+n+1ð ÞIð Þ

= σA/2 A + Ið Þn λ− A+ n+1ð ÞIð Þ exp −σ
λ

� �

�〠
n

r=0

−nIð Þr A + Ið Þr

 �−1
r!

σ

λ

� �r
= σ

A
2+nI A + Ið Þn λ− A+ 2n+1ð ÞIð Þ exp −σ

λ

� �

�〠
n

r=0

−nIð Þr A + Ið Þr

 �−1
r!

σ

λ

� �r−n
:

ð60Þ

Putting n − r = k, we obtain

G11 λð Þ = −1ð Þn σA
2+nI λ− A+ 2n+1ð ÞIð Þ exp −σ

λ

� �

× 〠
n

k=0

−nIð Þk − A + nIð Þð Þk
k!

−λ
σ

� �k

= −1ð Þn σ1
2A+nI λ− A+ 2n+1ð ÞIð Þ exp −σ

λ
z

� �
BI−A−2nI,σ

n λð Þ:
ð61Þ

This finalizes the proof of Theorem 20.

The remaining results, which are given in the following
theorems, can also be proven in a similar way. So we prefer
to omit the details.

Theorem 21. Let z, λ ∈ℂ,RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also,
let θ and ϕ be matrices in MrðℂÞ such that ϕ + kI are invert-
ible for all k ∈ℕ0: Further, let

G12 λð Þ = −ϕð Þn λθ+ 2n−2ð ÞI Γ 2I − θð Þ B
2I−θ−2nI, ϕ−λIð Þ

λ
n −nð Þ:

ð62Þ

Then,

g12 zð Þ = z− θ+ n−1ð ÞIð Þ Bθ,ϕ
n z−1
� 	

: ð63Þ

Theorem 22. Let z, λ ∈ℂ, RðλÞ > 0, n ∈ℕ0, and r ∈ℕ. Also
let θ and ϕ be matrices in MrðℂÞ such that ϕ + kI are invert-
ible for all k ∈ℕ0: Further, let

G13 λð Þ = 1
λ2
F0

−n, θ − n + 1ð ÞI
−

; λϕ−1
" #

: ð64Þ

Then,

g13 zð Þ =Bθ,ϕ
n z−1
� 	

: ð65Þ

Theorem 23. Let z, λ, μ ∈ℂ, RðλÞ >RðμÞ > 0, n ∈ℕ0, and
r ∈ℕ. Also let θ and ϕ be matrices in MrðℂÞ such that ϕ + k
I are invertible for all k ∈ℕ0: Further, let

G14 λð Þ = λ − μð Þ−12F0

−n, θ − 1 − nð ÞI
−

; λ − μð Þϕ−1
" #

:

ð66Þ

Then,

g14 zð Þ = exp μzð ÞBθ,ϕ
n z−1
� 	

: ð67Þ

5. Conclusion

In fact, this work is a continuation of the recent paper by
Abdalla [44]. In the current manuscript, the authors intro-
duced various Laplace integral formulas of generalized Bessel
matrix polynomials with certain elementary matrix func-
tions, Binomial matrix functions exponential function,
logarithmic function, generalized hypergeometric matrix
functions, and Bessel function of the first kind. We also pre-
sented inverse Laplace transforms of generalized Bessel
matrix polynomials with some functions. It is obvious that
the results presented here which are involved in certain
matrices in MrðℂÞ may reduce to yield the corresponding
scalar ones when r = 1. Furthermore, the results derived in
this article yields to many special cases; the interested reader
may be referred to (see, e.g., [1, 7, 45]).

A remarkably large number of Laplace transforms and
inverse Laplace transforms involving a variety of functions
and polynomials have been presented (see, e.g., [45, pp.
129–299]). In this connection, we tried to give matrix ver-
sions of those outcomes for Laplace transforms and inverse
Laplace formulas involving a variety of functions and poly-
nomials (see, [45, pp. 129–299]).
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In this paper, we consider an initial boundary value problem of stochastic viscoelastic wave equation with nonlinear damping and
logarithmic nonlinear source terms. We proved a blow-up result for the solution with decreasing kernel.

1. Introduction

In recent years, stochastic partial differential equations in a
separable Hilbert space have been studied by many authors,
and various results on the existence, uniqueness, stability,

blow-up, and other quantitative and qualitative properties
of solutions have been established.

In this work, we consider the following problem of sto-
chastic wave equation:

whereD is a bounded domain in IRn, n ∈ IN∗, with a smooth
boundary ∂D; μ, λ are the Lamé constants which satisfy μ > 0
, λ + μ ≥ 0; h is a positive function, p > q ≥ 2; the constant k is
a small nonnegative real number; and L2ðDÞ is the set of
square integrable function on D equipped with the inner
product h:, :i and its norm k:k2.

Wðx, tÞ is an infinite dimensional Wiener process, σðx, tÞ
is L2ðDÞ valued progressively measurable, and ε is a positive
constant which measures the strength of noise.

It is common to observe a wave motion as a physical
phenomenon which is mathematically modeled by a partial
differential equation of hyperbolic type. Much has been

utt − μΔu − λ + μð Þ∇ divuð Þ +
ðt
0
h t − sð ÞΔu sð Þ ds + utj jq−2ut = u uj jp−2 ln uj jk + εσ x, tð ÞWt x, tð Þ inD × 0,+∞� ½,

u x, tð Þ = 0 on ∂D × 0, +∞½ ½,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ in �D,

8>>>><
>>>>:

ð1Þ
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written about such equations regarding their widespread
applications to engineering and sciences. However, for more
realistic models, the random fluctuation had been taken into
consideration which led to introduced stochastic wave equa-
tion in 1960’s. Several examples of linear stochastic wave
propagation and applications can be found in [1]. Mueller
[2] was the first who investigate the existence of explosive
solutions for some stochastic wave equation. Motivated by
Mueller [2], Chow [3] was interested by knowing how does
a random perturbation affect the solution behavior for a wave
equation with a polynomial nonlinearity. He was concerned
with the existence of local and global solutions of the stochas-
tic equation:

utt = Δu + f uð Þ + σ uð ÞWt x, tð Þ in x ∈ℝd , t > 0,
u x, 0ð Þ = g xð Þ, ut x, 0ð Þ = h xð Þ,

(
ð2Þ

where the initial data g and h are given functions and the
nonlinear terms f ðuÞ and σðuÞ are assumed to be polyno-
mials in u. Four years later, he [4] established an energy
inequality and the exponential bound for a linear stochastic

equation and gave the existence theorem for a unique global
solution for the randomly perturbed wave equation:

utt + 2αut − A x, ∂xð Þu x, tð Þ = f x, tð Þ + σ x, tð ÞWt x, tð Þ in x ∈ℝd , t > 0,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = v0 xð Þ:

(

ð3Þ

In 2009, Chow [5] studied the problem of explosive solu-
tions for a class of nonlinear stochastic wave equation in a
domain D ⊂ℝd for d ≥ 3,

utt = c2Δ − α
� �

u + f uð Þ + σ u, x, tð ÞWt x, tð Þ in x ∈D, t > 0,
u x, 0ð Þ = g xð Þ, ut x, 0ð Þ = h xð Þ:

(

ð4Þ

We can mention some other works such as Cheng et al.
[6] who studied the existence of a global solution and blow-
up solutions for the nonlinear stochastic viscoelastic wave
equation with nonlinear damping and source terms:

The authors proved that finite time blow-up with non-
negative probability is explosive or it is explosive in energy
sense for p > q.

Moreover, Kim et al. [7] considered the stochastic quasi-
linear viscoelastic wave equation with nonlinear damping
and source terms:

They showed the existence of a global solution and blow-
up in finite time.

Recently, Yang et al. [8] treated the following stochastic
nonlinear viscoelastic wave equation:

utt − Δu +
ðt
0
h t − sð ÞΔu sð Þds + ut ∣

q−2ut = u
�� ��u����

p−2
+ εσ x, tð ÞWt x, tð Þ inD × 0, +∞� ½,

u x, tð Þ = 0 on ∂D × 0, +∞½ ½,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ in �D:

8>>>><
>>>>:

ð5Þ

∣ut
ρutt − Δu − Δutt +

ðt
0
h t − sð ÞΔu sð Þds + ut ∣

q−2ut = u
�� ��u����

����
p−2

+ εσ x, tð ÞWt x, tð Þ inD × 0,+∞� ½,

u x, tð Þ = 0 on ∂D × 0,+∞½ ½,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ in �D:

8>>>><
>>>>:

ð6Þ

utj jρutt − Δu − Δutt +
ðt
0
h t − sð ÞΔu sð Þ ds = σ x, tð ÞWt x, tð Þ inD × 0, +∞� ½,

u x, tð Þ = 0 on ∂D × 0, +∞½ ½,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ in �D:

8>>>><
>>>>:

ð7Þ
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They established the existence of global solution and
asymptotic stability of the solution by using some properties
of the convex function.

However, it was noticed that the logarithmic nonlinearity
appears naturally in many branches of physics such as nuclear
physics, optics, and geophysics (see [9, 10]). These specific
applications in physics and other fields attract a lot of mathe-
matical scientists to work with such problems. In the deter-
ministic case, Al-Gharabli [11] investigated the stability of
the solution of a viscoelastic plate equation with a logarithmic
nonlinearity source term for the following problem:

utt + Δ2u + u +
ðt
0
h t − sð ÞΔu2 sð Þds = u ln uj jk inD × 0, +∞� ½,

u = ∂u
∂ν

= 0 in ∂D × 0, +∞� ½,

u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ in �D,

8>>>>>><
>>>>>>:

ð8Þ

where D ⊆ℝ2 is a bounded domain with a smooth boundary
∂D. The vector ν is the unit outer normal to ∂D, and h is the
nondecreasing nonnegative function.

Mezouar et al. [12] treated a more general problem where
they considered the following nonlinear viscoelastic Kirch-
hoff equation with a time-varying delay term:

The paper is organized as follows: in Section 2, we intro-
duce some basic definitions, necessary assumptions, and
lemmas that are helpful in proving our main result. Section
3 is devoted to show the blow-up of the solution of our
problem.

2. Preliminaries

Let ðΩ,F , PÞ be a complete probability space for which a fil-
tration fF t , t ≥ 0g of increasing sub σ − fieldsF t is given and
Wðx, tÞ be a continuous Wiener random field in this space
with a mean zero and the covariance operator Q satisfying

Tr Qð Þ =〠
i≥1

λi <∞: ð10Þ

Wðx, tÞ is defined by

W x, tð Þ = 〠
∞

j=1

ffiffiffiffi
λj

q
βj tð Þej tð Þ, j ∈ IN∗, t ≥ 0, ð11Þ

where βjðtÞ is a sequence of real-valued standard Brownian
motions mutually independent on the probability space ðΩ
,F , PÞ, λj are the eigenvalues ofQ, and ej are the correspond-
ing eigenvectors. That is,

Qej = λ jej: ð12Þ

Note Eð:Þ stands for expectation with respect to probabil-
ity measure P. Let H be the set of L02 = L2ðQ1/2V , VÞ-valued
processes with the norm

∥ϕ tð Þ∥2H = E
ðt
0
∥ϕ sð Þ∥2L02ds = E

ðt
0
Tr ϕ sð ÞQϕ∗ sð Þð Þds <∞,

ð13Þ

where ϕ∗ðsÞ denotes the adjoint operator of ϕðsÞ and V =
H1

0ðDÞ which is equivalent to H1ðDÞ. For any process ϕðsÞ
∈H , we can define the stochastic integral with respect to
the Q-Wiener process as

Ð t
0ϕðsÞdWðsÞ which is a martingale.

For more details about the infinite dimensionWiener process
and stochastic integral, we refer to Da Prato and Zabczyk (pp.
90-96, [13]).

To state and prove our result, we need some assumptions.
A1. Assume that h : IR+ ⟶ IR+ is a C1 nonincreasing

function satisfying

h 0ð Þ > 0, μ −
ð∞
0
h sð Þds = l > 0, ð14Þ

and there exist tow nonnegative constants ς1 and ς2 such that

−ς1h tð Þ ≤ h′ tð Þ ≤ −ς2h tð Þ, t ≥ 0: ð15Þ

utj jlutt−M ∥∇u∥2
� �

Δu − Δutt +
ðt
0
h t − sð ÞΔu sð Þ ds + μ1g1 ut x, tð Þð Þ + μ2g2 ut x, t − τ tð Þð Þð Þ = ku ln uj j inD × 0, +∞� ½,

u x, tð Þ = 0 on ∂D × 0, +∞½ ½,
u x, 0ð Þ = u0 xð Þ, ut x, 0ð Þ = u1 xð Þ inD,
ut x, t − τ 0ð Þð Þ = f 0 x, t − τ 0ð Þð Þ inD × 0, τ 0ð Þ� ½:

8>>>>>>><
>>>>>>>:

ð9Þ
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A2. ð∞
0
h sð Þds < μ

p − 2ð Þp
p − 1ð Þ2 : ð16Þ

A3. p > q ≥ 2 and

2 < p ≤
2 n − 1ð Þ
n − 2 , if n ≥ 3,

2 < k≤+∞, if n = 1, 2:

8<
: ð17Þ

The following theorem states the existence and unique-
ness of a local solution of our problem; the proof can be
established by combining the proof given in [6, 12].

Theorem 1. Assume that (A1) and (A3) hold. If ðu0, u1Þ ∈H1
0

ðDÞ × L2ðDÞandEÐ t0∥σðtÞ∥22dt <∞, then there exists a solution
in whichuholds (1) on the interval ½0, T� in the sense of distribu-
tions over ð0, TÞ ×D for almost all w a test function such that

u, utð Þ ∈ L2 Ω ; L∞ 0, T½ � ; H2 Dð Þ ∩H1
0 Dð Þ� �

×H1
0 Dð Þ� �� �

∩ L2 Ω ; C 0, T½ � ;H1
0 Dð Þ × L2 Dð Þ� �� �

:

ð18Þ

We define the energy associated to the solution of system
(1) by

e tð Þ = 1
2 ∥ut∥

2
2 +

1
2 μ −

ðt
0
h sð Þds

� �
∥∇u∥22

+ λ + μ

2 ∥div u∥22 +
1
2 ho∇uð Þ tð Þ

+ k
p2

∥u∥pp −
1
p

ð
D

u ∣ p lnj juj

kdx, ð19Þ

where

hovð Þ tð Þ =
ðt
0
h t − sð Þ∥v :,tð Þ−v :,sð Þ∥2 ds: ð20Þ

We rewrite (1) as an equivalent Itô’s system

which can be written as the integral equation

Lemma 2 [14] (Sobolev-Poincaré’s inequality). Let m be a
number with

2 ≤m ≤ +∞ n = 1, 2ð Þ ð23Þ

or

2 ≤m ≤ 2n
n − 2ð Þ n ≥ 3ð Þ : ð24Þ

du = vdt,

dv = μΔu + λ + μð Þ∇ div uð Þ −
ðt
0
h t − sð ÞΔu sð Þ ds − vj jq−2v + u uj jp−2 ln uj jk

� 	
dt + εσ x, tð ÞdWt x, tð Þ inD × 0, +∞� ½,

u x, tð Þ = 0 on ∂D × 0, +∞½ ½,
u x, 0ð Þ = u0 xð Þ, v x, 0ð Þ = u1 xð Þ in �D,

8>>>>>>><
>>>>>>>:

ð21Þ

u tð Þ = u0 +
ðt
0
v sð Þds,

v tð Þ = v 0ð Þ +
ðt
0
μΔu + λ + μð Þ∇ div uð Þ −

ðt
0
h s − rð ÞΔu rð Þ dr − v ∣ q−2v + u

�� ��u����
p−2

ln uj jk
" #

ds +
ðt
0
εσ x, sð ÞdWs x, tð Þ inD × 0,+∞� ½,

u x, tð Þ = 0 on ∂D × 0, +∞½ ½,
u x, 0ð Þ = u0 xð Þ, v x, 0ð Þ = u1 xð Þ in �D:

8>>>>>>>>>><
>>>>>>>>>>:

ð22Þ
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Then there exists a constant Cs = CsðD,mÞ such that

∥u∥m ≤ Cs∥∇u∥2, for u ∈H1
0 Dð Þ: ð25Þ

Lemma 3 [15]. For h, φ ∈ C1ð½0,+∞½, IRÞ, we have
ð
D

h ∗ φφtdx = −
1
2
h tð Þ∥φ tð Þ∥22 +

1
2

h′oφ

 �

tð Þ

−
1
2
d
dt

hoφð Þ tð Þ −
ðt
0
h sð Þds

� �
∥φ∥2

� 	
:

ð26Þ

Lemma 4. Let ðu, vÞ be a solution of the problem (21) with the
initial data ðu0, v0Þ ∈H1

0ðDÞ × L2ðDÞ, E
Ð t
0∥σðsÞ∥22ds <∞.

Then, the energy functional defined by (19) satisfies

e tð Þ = e 0ð Þ −
ðt
0
∥v∥qqds −

1
2

ðt
0
h sð Þ∥∇u sð Þ∥22ds

+ 1
2

ðt
0
h′o∇u

 �

sð Þds +
ðt
0
v sð Þ, εσ x, sð ÞdWsh i

+ ε2

2
〠
∞

j=1

ðt
0

ð
D

λje
2
j xð Þσ2 x, sð Þdxds:

ð27Þ

Proof. We can apply the Itô’s formula to (21) for each x ∈D
after integrating the above equation over D to get

∥v tð Þ∥22 = ∥v 0ð Þ∥22 + 2
ð
D

ðt
0
v sð Þ μΔu + λ + μð Þ∇ div uð Þ½

−
ðs
0
h s − τð ÞΔu τð Þdτ − vj jq−2v + u uj jp−2 ln uj jk�dsdx

+ 2
ðt
0
v sð Þ, εσ x, sð ÞdWsh i

+ ε2 〠
∞

j=1

ðt
0

ð
D

λje
2
j xð Þσ2 x, sð Þdxds:

ð28Þ

By using integration by parts, we get

μ
ð
D

ðt
0
Δuv sð Þdxds = −μ

ð
D

ðt
0
∇u∇vdsdx

= −
μ

2 ∥∇u tð Þ∥22−∥∇u 0ð Þ∥22
� �

,
ð29Þ

ð
D

ðt
0
λ + μð Þ∇ div u sð Þð Þv sð Þdsdx

= − λ + μð Þ
ð
D

ðt
0
div u sð Þ div v sð Þdsdx

= −
λ + μ

2 ∥div u tð Þ∥22−∥ div u 0ð Þ∥22
� 


:

ð30Þ

By applying Lemma 3, we have

ðt
0

ð
D

ðs
0
h s − τð ÞΔu τð Þv sð Þdτdxds

= −
ðt
0

ð
D

ðs
0
h s − τð Þ∇u τð Þ∇v sð Þdτdxds

=
ðt
0

1
2 h sð Þ∥∇u sð Þ∥22 −

1
2 h′ o∇u

 �

sð Þ
�

+ 1
2
d
ds

h o∇uð Þ sð Þ −
ðs
0
h τð ÞdτÞ∥∇u sð Þ∥22

� 	�
ds:

ð31Þ

We have

ð
D

ðt
0
u u ∣ p−2 ln
�� ��u����

k

usdsdx

=
ðt
0

ð
D

1
p
d
ds

u sð Þj jp� �
ln uj jkdxds

=
ðt
0

ð
D

1
p
d
ds

u sð Þj jp ln uj jk

 ���

−
1
p
u sð Þj jp d

ds
ln uj jk

 ��

dx
�
ds

=
ð
D

1
p

uj jp ln uj jk

 �� �

dx −
k
p2

∥u∥pp:

ð32Þ

By replacing (29)–(32) in (28) and multiplying equation
(28) by 1/2, we arrive at (27).

3. Blow-Up

We prove our main result for p > q; we purpose

E
ð∞
0

ð
D

σ2 x, tð Þdxdt <∞, ð33Þ

G tð Þ = ε2

2 〠
∞

j=1
E
ðt
0

ð
D

λje
2
j xð Þσ2 x, sð Þdxds, ð34Þ

G ∞ð Þ = ε2

2 〠
∞

j=1
E
ð∞
0

ð
D

λje
2
j xð Þσ2 x, sð Þdxds

≤
ε2

2 Tr Qð Þc20E
ð∞
0

ð
D

σ2 x, sð Þdxds≔ E1 <∞,
ð35Þ

where

Tr Qð Þ = 〠
∞

j=1
λj <∞and c0 = sup

j≥1
∥ej∥∞ <∞: ð36Þ
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Lemma 5. Let ðu, vÞ be a solution of system (21) with initial
data ðu0, v0Þ ∈H1

0ðDÞ × L2ðDÞ. Then, we have

d
dt

Ee tð Þ = −E∥v tð Þ∥qq −
1
2
h tð ÞE∥∇u tð Þ∥22 +

1
2
E h′o∇u

 �

tð Þ

+ ε2

2
〠
∞

j=1
E
ð
D

λje
2
j xð Þσ2 x, tð Þdx,

ð37Þ

E u tð Þ, v tð Þh i = E u0, u1h i − μ
ðt
0
E∥∇u sð Þ∥22ds

− λ + μð Þ
ðt
0
E∥div u sð Þ∥22ds

+ E
ðt
0

ðs
0
h s − rð Þ ∇u rð Þ,∇u sð Þh idrds

− E
ðt
0
u sð Þ, v sð Þj jq−2v sð Þ� �

ds

+ E
ðt
0
u sð Þ, u sð Þ u sð Þj jp−2 ln u sð Þj jk
D E

ds

+ E
ðt
0
∥v sð Þ∥22ds:

ð38Þ
Proof. Using the Itô’s formula and by following the same way
as our discussions in Lemma 4 with taking the expectations,
we obtain (37).

We multiply the second equation in (22) by u and inte-
grate the result over D, and we take expectation; we obtain
(38).

We set HðtÞ = GðtÞ − EeðtÞ: As h is a positive decreasing
function so

H ′ tð Þ =G′ tð Þ − d
dt

Ee tð Þ = E∥v∥qq +
1
2 h tð ÞE∥∇u tð Þ∥22

−
1
2 E h′o∇u

 �

tð Þ ≥ E∥v∥qq:
ð39Þ

Consequently,

H ′ tð Þ ≥ 0: ð40Þ

Lemma 6. Let ðu, vÞ be a solution of system (21). Assume that
(A1) holds. Then, there exists a positive constant C such that

E∥u tð Þ∥sp+1 ≤ C G tð Þ −H tð Þ − 1
2
E∥v∥22

�

+ 1
p
E
ð
D

u ∣ p lnj ju
����
k

dx −
1
2
E h o∇uð Þ tð Þ

−
λ + μ

2
E∥div u∥22 + E∥u∥p+1p+1

�
,

ð41Þ

where 2 ≤ s ≤ p + 1.

Proof.

G tð Þ −H tð Þ − 1
2 E∥v∥

2
2 +

1
p
E
ð
D

uj jp ln uj jkdx

−
1
2 E ho∇uð Þ tð Þ − λ + μ

2 E∥div u∥22 + E∥u∥p+1p+1

= Ee tð Þ − 1
2 E∥v∥

2
2 +

1
p E
ð
D

uj jp ln uj jkdx

−
1
2 E ho∇uð Þ tð Þ + E∥u∥p+1p+1 −

λ + μ

2 ∥div u∥22

= 1
2 E∥ut∥

2
2 +

1
2 E μ −

ðt
0
h sð Þds

� �
∥∇u∥22

+ λ + μ

2 E∥div u∥22 +
1
2 E h o∇uð Þ tð Þ + k

p2
E∥u∥pp

−
1
p
E
ð
D

uj jp ln uj jkdx − 1
2 E∥v∥

2
2

+ 1
p
E
ð
D

uj jp ln uj jkdx − 1
2 E h o∇uð Þ tð Þ

−
λ + μ

2 E∥div u∥22 + E∥u∥p+1p+1

= 1
2 μ −

ðt
0
h sð Þds

� �
E∥∇u∥22 +

k
p2

E∥u∥pp + E∥u∥p+1p+1

≥
1
2 lE∥∇u∥

2
2 + E∥u∥p+1p+1:

ð42Þ

The last inequality is getting from (A1).

Case 7. If ∥u∥p+1 ≤ 1, then ∥u∥sp+1 ≤ ∥u∥2p+1.
By applying Lemma 2, we obtain ∥u∥sp+1 ≤ c∥∇u∥22, then

1
2 lE∥∇u∥

2
2 +

k
p2

E∥u∥p+1p+1 ≥
1
2 lE∥u∥

s
p+1 +

k
p2

E∥u∥p+1p+1 ≥ E∥u∥sp+1:

ð43Þ

Case 8. If ∥u∥p+1 ≥ 1, then ∥u∥p+1p+1 ≥ ∥u∥sp+1.
Hence,

1
2 lE∥∇u∥

2
2 + E∥u∥p+1p+1 ≥

1
2 lE∥∇u∥

2
2 + E∥u∥sp+1 ≥ E∥u∥sp+1: ð44Þ

Consequently, we obtain (41).
We are ready to state and prove our main result for p > q.

For this purpose, we define

L tð Þ≔H1−α tð Þ + δE u, vh i, ð45Þ

where

0 < α <min p − 1
2 p + 1ð Þ ,

p + 1 − q
p + 1ð Þq

� �
ð46Þ

and δ is a very small constant determined later.
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Theorem 9. Assume (A1) and (A2) hold. Let ðu, vÞ be a solu-
tion of system (21) with initial data ðu0, v0Þ ∈H1

0ðDÞ × L2ðDÞ
satisfying

Ee 0ð Þ ≤ − 1 + βð ÞE1, ð47Þ

where β is a nonnegative constant and E1 is given in (35). If
p > q, then there exists a positive time T0 ∈ ½0, T� such that

lim
t⟶T−

0

E e tð Þð Þ = +∞, ð48Þ

where

T0 =
1 − α

αKLα/1−α 0ð Þ ,

L 0ð Þ =H1−α 0ð Þ + δE u0, u1h i > 0,
ð49Þ

and K is given later.

Proof. Let

L tð Þ =H1−α tð Þ + δE u, vh i: ð50Þ

A direct differentiation of LðtÞ gives

L′ tð Þ = 1 − αð ÞH−α tð ÞH ′ tð Þ + δ −μE∥∇u tð Þ∥22
�

− λ + μð ÞE∥divu∥22 + E
ðt
0
h t − rð Þ ∇u rð Þ, ∇u tð Þh idr

− E u tð Þ, v tð Þj jq−2v tð Þ� �
+ E u tð Þ, u tð Þ u tð Þj jp−2 ln u tð Þj jk
D E

+ E∥v tð Þ∥22



= 1 − αð ÞH−α tð ÞH ′ tð Þ + δ −μE∥∇u tð Þ∥22
�

− λ + μð ÞE∥div u∥22 + E
ðt
0
h t − rð Þ ∇u rð Þ,∇u tð Þh idr

− E u tð Þ, v tð Þj jq−2v tð Þ� �
+ E u tð Þ, u tð Þ u tð Þj jp−2 ln u tð Þj jk
D E

+ E∥v tð Þ∥22


+ δp H tð Þ − G tð Þ + Ee tð Þ½ �:

ð51Þ

Recalling (39) and (19), (51) leads to

L′ tð Þ ≥ 1 − αð ÞH−α tð ÞE∥v∥qq + δp H tð Þ − G tð Þð Þ
+ δ

μp
2 − μ


 �
E∥∇u tð Þ∥22 + δ

p
2 + 1

 �

E∥v∥22

− δE u tð Þ, v tð Þj jq−2v tð Þ� �
−
δp
2 E
ðt
0
h sð Þds∥∇u∥22

+ δE
ðt
0
h t − rð Þ ∇u rð Þ,∇u tð Þh idr

+ λ + μð Þδ p
2 − 1

 �

E∥div u∥22 +
δk
p
E∥u∥pp

+ δp
2 E h o∇uð Þ tð Þ:

ð52Þ

By using Young’s and Hölder’s inequalities, we get

E
ðt
0
h t − rð Þ ∇u rð Þ,∇u tð Þh idr

= E
ðt
0
h t − rð Þ ∇u rð Þ−∇u tð Þ,∇u tð Þh idr + E

ðt
0
h sð Þds∥∇u tð Þ∥22

≥ −
p
2E h o∇uð Þ tð Þ − 1

2p E
ðt
0
h sð Þds∥∇u tð Þ∥22

+ E
ðt
0
h sð Þds∥∇u tð Þ∥22:

ð53Þ

Hence,

L′ tð Þ ≥ 1 − αð ÞH−α tð ÞE∥v∥qq + δp H tð Þ −G tð Þð Þ
+ δ

μp
2 − μ


 �
E∥∇u tð Þ∥22 + δ

p
2 + 1

 �

E∥v∥22

− δE u tð Þ, v tð Þj jq−2v tð Þ� �
+ δ 1 − 1

2p −
p
2

� �
E
ðt
0
h sð Þds∥∇u tð Þ∥22

−
δp
2 E h o∇uð Þ tð Þ + δp

2 E h o∇uð Þ tð Þ

+ λ + μð Þδ p
2 − 1

 �

E∥div u∥22 +
δk
p
E∥u∥pp

≥ 1 − αð ÞH−α tð ÞE∥v∥qq + δp H tð Þ −G tð Þð Þ
+ δ

μp
2 − μ


 �
E∥∇u tð Þ∥22 + δ

p
2 + 1

 �

E∥v∥22

− δE u tð Þ, v tð Þj jq−2v tð Þ� �
+ δ 1 − 1

2p −
p
2

� �
E
ðt
0
h sð Þds∥∇u tð Þ∥22

+ λ + μð Þδ p
2 − 1

 �

E∥div u∥22 +
δk
p
E∥u∥pp:

ð54Þ

As q < p + 1, then E∥uðtÞ∥qq ≤ cE∥uðtÞ∥p+1p+1 so by using
Young’s and Hölder’s inequality; we obtain

E u tð Þ, v tð Þj jq−2v tð Þ� �
≤ E∥v tð Þ∥qq

 �q−1/q

E∥u tð Þ∥qq

 �1/q

≤ c E∥v tð Þ∥qq

 �q−1/q

E∥u tð Þ∥p+1p+1

 �1/p+1

≤ c E∥v tð Þ∥qq

 �q−1/q

E∥u tð Þ∥p+1p+1
�
 � 1/p+1ð Þ− 1/qð Þ

E∥u tð Þ∥p+1p+1
�
 � 1/qð Þ

≤ c
q − 1
q

ξ E∥v tð Þ∥qq

 �

+ ξ1−q

q
E∥u tð Þ∥p+1p+1

 � !

� E∥u tð Þ∥p+1p+1
�
 � 1/p+1ð Þ− 1/qð Þ

,

ð55Þ

where ξ and c are constants.
We consider the following partition of D:

D1 = x ∈D : uj j > 1f g,D2 = x ∈D : ∣u∣≤1f g: ð56Þ
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We have

E
ð
D

uj jp ln uj jkdx = E
ð
D1

uj jp ln uj jkdx + E
ð
D2

uj jp ln uj jkdx

≤ E
ð
D1

uj jp ln uj jkdx

≤ E
ð
D1

k uj jp+1dx

≤ kE∥u∥p+1p+1:

ð57Þ

By (40), (47), and −Eeð0Þ =Hð0Þ, we have

1 + βð ÞG tð Þ < 1 + βð ÞE1 ≤H 0ð Þ ≤H tð Þ
≤G tð Þ + 1

p
E
ð
D

uj jp ln uj jkdx: ð58Þ

Therefore,

G tð Þ ≤ 1
1 + β

H tð Þ: ð59Þ

From (57), (58), and (59), we get

kE∥u tð Þ∥p+1p+1 ≥ E
ð
D1

k uj jp+1dx ≥ p H tð Þ −G tð Þð Þ ≥ p
β

1 + β
H tð Þ:

ð60Þ

As H is increasing positive nonnegative function and by
recalling (46), we get

E∥u tð Þ∥p+1p+1

 � 1/p+1ð Þ− 1/qð Þ

≤ p
β

k 1 + βð Þ
� � 1/p+1ð Þ− 1/qð Þ

H 1/p+1ð Þ− 1/qð Þ tð Þ

≤ p
β

k 1 + βð Þ
� � 1/p+1ð Þ− 1/qð Þ

H−α tð Þ

≤ p
β

k 1 + βð Þ
� � 1/p+1ð Þ− 1/qð Þ

H−α 0ð Þ:

ð61Þ

Taking into account (61) in (55), we find

E u tð Þ, v tð Þj jq−2v tð Þ� �
≤ c

pβ
k 1 + βð Þ
� � 1/p+1ð Þ− 1/qð Þ !

q − 1
q

ξ E∥v tð Þ∥qq

 �

H−α tð Þ

+ c
pβ

k 1 + βð Þ
� � 1/p+1ð Þ− 1/qð Þ !

ξ1−q

q
E∥u tð Þ∥p+1p+1


 �
H−α 0ð Þ:

ð62Þ

Substituting (62) into (54), we get

L′ tð Þ ≥ 1 − αð ÞH−α tð ÞE∥v∥qq + δp H tð Þ −G tð Þð Þ
+ δμ

p
2 − 1

 �

E∥∇u tð Þ∥22 + δ
p
2 + 1

 �

E∥v∥22

+ δ 1 − 1
2p −

p
2

� �
E
ðt
0
h sð Þds∥∇u tð Þ∥22

+ λ + μð Þδ p
2 − 1

 �

E∥div u∥22

− δ
a1 q − 1ð Þ

q
ξ E∥v∥qq

 �

H−α tð Þ

− δ
a1
q
ξ1−q E∥u∥p+1p+1


 �
H−α 0ð Þ + δk

p
E∥u∥pp,

ð63Þ

where a1 = cðpβ/ðkð1 + βÞÞÞð1/p+1Þ−ð1/qÞ:
Using Lemma 6, we arrive at

L′ tð Þ ≥ 1 − α − δ
a1 q − 1ð Þ

q
ξ

� �
H−α tð ÞE∥v∥qq + δp H tð Þð

− G tð ÞÞ + δμ
p
2 − 1

 �

E∥∇u tð Þ∥22 + δ
p
2 + 1

 �

E∥v∥22

+ δ 1 − 1
2p −

p
2

� �
E
ðt
0
h sð Þds∥∇u tð Þ∥22

+ λ + μð Þδ p
2 − 1

 �

∥div u∥22 − δ
a1
q
ξ1−qH−α 0ð ÞC

� G tð Þ −H tð Þ − 1
2 E∥v∥

2
2 +

1
p
E
ð
D

uj jp ln uj jkdx
�

+ E∥u∥p+1p+1 −
1
2 E h o∇uð Þ tð Þ − λ + μ

2 E∥div u∥22
�

+ δk
p
E∥u∥pp:

ð64Þ

Once ξ is fixed, we pick δ small enough so that

1 − α − δ
a1 q − 1ð Þ

q
ξ ≥ 0, ð65Þ

It implies that

L′ tð Þ ≥ δ p + a2ξ
1−q


 �
H tð Þ −G tð Þð Þ

+ δ
p
2 + 1 + a2

1
2 ξ

1−q
� �

E∥v∥22

− δa2ξ
1−q 1

p
E
ð
D

uj jp ln uj jkdx + δ λ + μð Þ

� ξ1−q
a2
2 + p

2 − 1

 �
 �

E∥div u∥22

+ δa2ξ
1−q 1

2 E h o∇uð Þ tð Þ + δa3E∥∇u tð Þ∥22

+ δk
p
E∥u∥pp − δa2ξ

1−qE∥u∥p+1p+1:

ð66Þ
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where a2 = Cða1/qÞH−αð0Þ and a3 = μððp/2Þ − 1Þ + ð1 − ð1/
2pÞ − ðp/2ÞÞÐ∞0 hðsÞds which is positive from (A2).

From (A1), (19), and Lemma 2, we have

H tð Þ −G tð Þ ≥ −
1
2 E∥v∥

2
2 −

μ

2 + 2Cs


 �
E∥∇u∥22

−
λ + μ

2 E∥div u∥22 −
1
2 E h o∇uð Þ tð Þ

−
k
p2

E∥u∥pp +
1
p
E
ð
D

uj jp ln uj jkdx + E∥u∥p+1p+1:

ð67Þ

Now we add and subtract δa4ðHðtÞ −GðtÞÞ in (66), and
using (67), we find

L′ tð Þ ≥ δ p − a4 + a2ξ
1−q


 �
H tð Þ −G tð Þð Þ

+ δ
p
2 + 1 − a4

2 + a2
1
2 ξ

1−q
� �

E∥v∥22

+ δ λ + μð Þ ξ1−q
a2
2 + p

2 − 1

 �

−
a4
2


 �
E∥div u∥22

+ δ a2ξ
1−q 1

2 − a4

� �
E h o∇uð Þ tð Þ

+ δ a3 − a4
μ + 4Cs

2

� �� �
E∥∇u tð Þ∥22

+ δk
p

1 − a4
p

� �
E∥u∥pp +

δ

p
a4 − a2ξ

1−q

 �

E
ð
D

uj jp ln uj jkdx

+ δ a4 − a2ξ
1−q


 �
E∥u∥p+1p+1,

ð68Þ

where a4 = min fa2ξ1−q, ð2a3/ðμ + 4CsÞÞg > 0.
Using (60), we obtain

L′ tð Þ ≥ δp
β

1 + β
H tð Þ + δ

p
2 + 1 − a4

2 + a2
1
2 ξ

1−q
� �

E∥v∥22

+ δ λ + μð Þ ξ1−q
a2
2 + p

2 − 1

 �

−
a4
2


 �
E∥div u∥22

+ δ

2 a2ξ
1−q − a4


 �
E h o∇uð Þ tð Þ

+ δ a3 − a4
μ + 4Cs

2

� �� �
E∥∇u tð Þ∥22

+ δk
p

1 − a4
p

� �
E∥u∥pp + δ a4 − a2ξ

1−q

 �

E∥u∥p+1p+1

≥ γ H tð Þ + E∥v∥22 + E∥div u∥22 + E h o∇uð Þ tð Þ�
+ E∥∇u tð Þ∥22 + E∥u∥pp + E∥u∥p+1p+1

�
≥ 0,

ð69Þ

where γ > 0 is the minimum of the coefficients ofHðtÞ, E∥v∥22,
E∥div u∥22, Eðh o∇uÞðtÞ, E∥∇uðtÞ∥22, and E∥u∥pp in (69).

Consequently,

L tð Þ ≥ L 0ð Þ > 0, ∀t > 0: ð70Þ

Next, we have

L tð Þð Þ1/1−α = H1−α tð Þ + δE u, vh i� �1/1−α
≤ 21/1−α H tð Þ + δ1/1−α E

ð
D

uvdx
����

����
1/1−α

 !
:

ð71Þ

Therefore, by using Hölder’s and Young’s inequalities, we
obtain

E
ð
D

uvdx
����

����
1/1−α

≤ c E∥u∥2p+1

 �1/2

E∥v∥22
� �1/2� �1/1−α

≤ c E∥u∥2p+1

 �1/ 2 1−αð Þð Þ

E∥v∥22
� �1/ 2 1−αð Þð Þ

≤ c
E∥u∥2p+1

 �η/ 2 1−αð Þð Þ

η
+ E∥v∥22
� �ζ/ 2 1−αð Þð Þ

ζ

2
64

3
75,

ð72Þ

with ð1/ηÞ + ð1/ζÞ = 1:
We choose = 2ð1 − αÞ,η = ð2ð1 − αÞÞ/1 − 2α, and we use

(46), so (72) becomes

E
ð
D

uvdx
����

����
1/1−α

≤ c 1 − 2αð ÞE∥u∥2/1−2αp+1 + E∥v∥22
h i

≤ c E∥u∥2/1−2αp+1 + E∥v∥22
h i

:

ð73Þ

By applying Lemma 6 with s = 2/1 − 2α and recalling
(19), we obtain

E
ð
D

uvdx
����

����
1/1−α

≤ c G tð Þ −H tð Þ − 1
2 E∥v∥

2
2

�

+ 1
p
E
ð
D

uj jp ln uj jkdx − 1
2 E ho∇uð Þ tð Þ

−
λ + μ

2 E∥div u∥22 + E∥u∥p+1p+1 + E∥v∥22

	

≤ c
1
2E∥v∥

2
2 +

1
2 μ −

ðt
0
h sð Þds

� �
E∥∇u∥22

�

+ λ + μ

2 E∥div u∥22 +
k
p2

E∥u∥pp +
1
2 E ho∇uð Þ tð Þ

−
1
p
E
ð
D

uj jp ln uj jkdx − 1
2 E∥v∥

2
2 +

1
p
E
ð
D

uj jp ln uj jkdx

−
1
2 E ho∇uð Þ tð Þ − λ + μ

2 E∥div u∥22 + E∥v∥22 + E∥u∥p+1p+1

	

≤ c E∥v∥22 +
1
2 μE∥∇u∥

2
2 +

k
p2

E∥u∥pp +
λ + μ

2 E∥div u∥22
�

+ 1
2 E ho∇uð Þ tð Þ + E∥u∥p+1p+1

	
:

ð74Þ
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Hence,

L tð Þð Þ1/1−α ≤ 21/1−α H tð Þ + δ1/1−αc E∥v∥22 +
1
2μE∥∇u∥

2
2

��

+ λ + μ

2 E∥div u∥22 +
k
p2

E∥u∥pp +
1
2 E ho∇uð Þ tð Þ + E∥u∥p+1p+1

	�

≤ ~C H tð Þ + E∥v∥22 + E∥∇u∥22 + E∥div u∥22 + E∥u∥pp
h
+ E ho∇uð Þ tð Þ + E∥u∥p+1p+1

i
,

ð75Þ

where ~C = 21/1−α max f1, cδ1/1−α, cδ1/1−αððλ + μÞ/2Þ, cδ1/1−α
ðk/p2Þg.

According to (69) and (75), we have

L tð Þð Þ1/1−α ≤
~C
γ
L′ tð Þ ≤ ~KL′ tð Þ: ð76Þ

In a direct integration of (76), we get

L tð Þð Þ1/1−α ≥ 1
L 0ð Þð Þ1/1−α − ~Kαt/ 1 − αð Þ� � : ð77Þ

Therefore, LðtÞ blows up in time T ≤ T0 = ð1 − αÞ/
ðαKLα/1−αð0ÞÞ, and the proof is completed.
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In this paper, numerical methods for solving fractional differential equations by using a triangle neural network are proposed. The
fractional derivative is considered Caputo type. The fractional derivative of the triangle neural network is analyzed first. Then, based
on the technique of minimizing the loss function of the neural network, the proposed numerical methods reduce the fractional
differential equation into a gradient descent problem or the quadratic optimization problem. By using the gradient descent
process or the quadratic optimization process, the numerical solution to the FDEs can be obtained. The efficiency and accuracy
of the presented methods are shown by some numerical examples. Numerical tests show that this approach is easy to implement
and accurate when applied to many types of FDEs.

1. Introduction

Fractional differential equations (FDEs) have been a hot
topic in many scientific fields, such as dynamical system con-
trol theory, fluid flow, modelling in rheology, dynamic pro-
cess of self-similar porous structure, diffusion transport
similar to diffusion, electric network, and probability statis-
tics [1–9]. These problems in science and engineering some-
times require us to get the solutions of various fractional
differential equations. But as we know, it is difficult to find
the exact solutions in most cases. So, we have to use numer-
ical methods to solve fractional differential equations.

In the literature, some numerical methods for solving
FDEs have been proposed, such as nonlinear functional anal-
ysis methods, including monotone iterative technique [10],
topological degree theory [11], and fixed point theorem
[12]. In addition, someone proposed the following numerical
methods: random walk [13], Adomian decomposition
method and variational iteration method [14], homotopy
perturbation method [15–17], etc.

In recent years, some scholars try to use the neural net-
work to solve differential equations [18–20]. Lagaris et al.
[21] proposed an artificial neural network method for solving
initial and boundary value problems. In their work, a trial
solution is adopted and written as the sum of two parts.
The first part satisfies the initial or boundary conditions
and does not contain adjustable parameters while the con-
struction of the second part does not affect the initial and
boundary conditions. Then, the neural network is trained
to satisfy the differential equation at many selected points.
The question for this method is that it is difficult to construct
the first part of the trial solution and this method cannot be
applied to fractional partial differential equations.

Piscopo et al. [22] also introduced a method to find the
numerical solutions of many types of differential equations.
The proposed method does not depend on the trial solution
and therefore has more flexibility in many cases. It can be
used for solving many types of ODE and PDE. The two men-
tioned neural network techniques motivate us to develop
more neural network methods to solve FDEs, but how to
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get the fractional order of the neural network is a difficult
problem.

To overcome this difficulty, in this work, we use a triangle
base neural network as basis function to propose an alterna-
tive method called triangle neural network methods. This
paper is organized as follows. In Section 2, we study the frac-
tional derivative of the triangle base neural network and pres-
ent the numerical method for solving many types of FDEs. In
Section 3, we show the efficiency of the proposed method by
some numerical examples. Section 4 is the conclusion.

2. Fractional Derivative of Triangle Neural
Network and Numerical Algorithm

2.1. Ordinary Fractional Differential Equation. To solve the
following fractional initial value problem (1) and boundary
value problem (2),

D αð Þy = f x, yð Þ,
y kð Þ 0ð Þ = yk, k = 0, 1,⋯,m − 1,

(
ð1Þ

where m = ½α�:

a xð ÞD αð Þy + b xð ÞD βð Þy = f xð Þ,
y 0ð Þ = y0, y lð Þ = y1,

(
ð2Þ

where aðxÞ and bðxÞ are real functions, 1 < α ≤ 2, 0 < β ≤ 1.
DðαÞ and DðβÞ are Caputo fractional derivative operators.

We consider the following triangle base neural network 1
(see Figure 1) to approximate the solution of problems (1)
and (2), where wj are weights for the neural networks and
CjðxÞ are triangle base functions as the following:

Cj xð Þ =
cos jxð Þ, j = 0, 1, 2,⋯,N ,
sin j −Nð Þx½ �, j =N + 1,N + 2,⋯, 2N ,

(
ð3Þ

where CjðxÞ are activation function of neurons in the hidden
layer of the above neural network and N is an integer and x
∈ ½0, π�.

Let the weight matrix be w = ½w0,w1,⋯,w2N �T and the
activation matrix be CðxÞ = ½c0ðxÞ, c1ðxÞ,⋯, c2NðxÞ�T . The
triangle base neural network can be written as

y = 〠
2N

j=0
wjCj xð Þ: ð4Þ

When this neural network is used to be the numerical
solution of problem (1), the loss function is

J = 1
2〠

m

k=1
e2 tð Þ = 1

2〠
m

k=1
D αð Þy xtð Þ − f xt , y xtð Þð Þ
h i2

: ð5Þ

For problem (2), The loss function is

J = 1
2〠

m

k=1
e2 tð Þ = 1

2〠
m

k=1
a xtð ÞD αð Þy xtð Þ + b xtð ÞD βð Þy xtð Þ − f xtð Þ
h i2

,

ð6Þ

where xt , t = 1, 2,⋯,m are training points. We have two
methods to minimize the loss function to get the correspond-
ing numerical solution. One is the gradient descent algo-
rithm, and another one is the optimization process. For
both methods, we need to compute the α derivative of the tri-
angle neural network. For this purpose, we have the following
theorems.

Theorem 1. For given α ∈ R+, f ðxÞ ∈ C1ðRÞ, then

D αð Þ f λxð Þ = λα f uð Þ u=λxj : ð7Þ

Proof. Since DðαÞ f ðxÞ = 1/Γð1 − αÞÐ x0 f ′ðτÞ/ðx − τÞαdτ:

We have

D αð Þ f λxð Þ = 1
Γ 1 − αð Þ

ðx
0

f λτð Þ½ �′
x − τð Þα dτ: ð8Þ

Let λτ = u, we have

D αð Þ f λxð Þ = 1
Γ 1 − αð Þ

ðλx
0

λf ′ uð Þ
x − u/λð Þα du

= 1
Γ 1 − αð Þ

ðλx
0

f ′ uð Þ
λx − uð Þαλ−α du

= 1
Γ 1 − αð Þ

ðλx
0

λα f ′ uð Þ
λx − uð Þα du

= λα

Γ 1 − αð Þ
ðλx
0

f ′ uð Þ
λx − uð Þα du = λαD αð Þ f λxð Þ:

ð9Þ

We also have the following.

C1

C2

x y(x)

CN

WN

W1

W2

1

1

1

Figure 1: Triangle neural network 1.
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Theorem 2. Given α ∈ R+, λ, b ∈ R, then

D αð Þ sin λx + bð Þ½ � = λα sin λx + b + απ

2

� �
,

D αð Þ cos λx + bð Þ½ � = λα cos λx + b + απ

2

� �
:

ð10Þ

Proof.

D αð Þ sin λx + bð Þ½ � =D αð Þ sin λxð Þ cos b + cos λxð Þsin bÞ½ �:
ð11Þ

From Theorem 1, we have

cos bD αð Þ sin λxð Þ + sin bD αð Þ cos λxð Þ
= cos bλα sin λx + απ

2
� �

+ sin bλα sin λx + απ

2
� �

= λα sin λx + b + απ

2
� �

:

ð12Þ

The second part of this theorem can be verified in the
same way. Based on Theorems 1 and 2, we can get the α
derivative of the triangle base neural network.

In fact, let the solution to problems (1) and (2) be

y = 〠
N

j=0
wj cos jx + 〠

N

j=0
wN+j sin jx

=w0 + 〠
N

j=1
wj cos jx + 〠

N

j=1
wN+j sin jx:

ð13Þ

We can get

D αð Þy = 〠
N

j=1
jαwj cos jx + α

2 π
� �

+ 〠
N

j=1
jαwN+j sin jx + α

2 π
� �

:

ð14Þ

Thus, we get the loss function for problem (1):

J = 1
2〠

m

k=1
e2 tð Þ = 1

2〠
m

k=1
D αð Þy xtð Þ − f xt , y xtð Þð Þ
h i2

= 1
2〠

m

t=1
〠
N

j=1

h
jαwj cos jxt +

α

2 π
� ��

+ jαwN+j sin jxt +
α

2 π
� ��

− f xt , y xtð Þð Þ
i2
:

ð15Þ

To carry out the gradient descent process, we have

∂J
∂wk

=
"
〠
m

t=1
〠
N

j=0
jα
�
wj cos jxt +

α

2 π
� �

+wN+j sin jx + α

2 π
� ��

− f x, yð Þ
#

⋅ kα cos kxt +
α

2 π
� �

− f y xt , yð Þ cos kxtð Þ
� �

ð16Þ

for j = 0, 1, 2,⋯,N , and we also have

∂J
∂wk

=
"
〠
m

t=1
〠
N

j=0
jαwj cos jxt +

α

2 π
� �

+wN+j sin jxt +
α

2 π
� ��

− f xt , yð Þ
#

⋅ kα sin kxt +
α

2 π
� �

− f y xt , yð Þ sin k −Nð Þxt
� �

ð17Þ

for j =N + 1,N + 2,⋯, 2N .
So, we can see that getting the numerical solution of (1) is

equivalent to finding wjs by minimizing the loss function J .
Usually, we have two methods to do this work. One is the
gradient descent method, and another one is adopting the
optimization process.

The gradient descent method is as below:

w n+1ð Þ
k =w nð Þ

k − η
∂J
∂wk

, k = 1, 2,⋯, 2N , ð18Þ

where η is the step size for the gradient descent. If the func-
tion f ðx, yÞ is a linear function of y, the initial value problem
can also be reduced to

min J = 1
2〠

m

k=1
D αð Þyk − f xk, ykð Þ
h i2

s:t: y 0ð Þ = y0:

ð19Þ

That is,

min J = 1
2〠

m

k=1
D αð Þyk − f xk, ykð Þ
h i2

s:t: 〠
N

i=0
wi = y0,

ð20Þ

which is a quadratic optimization problem. For fractional
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boundary value problem (2), the numerical solution can be
reduced to the following optimization process:

min J = 1
2〠

m

k=1
a xkð ÞD αð Þyk + b xkð ÞD βð Þyk − f xkð Þ
h i2

s:t:
〠
N

i=1
wi = y0,

〠
N

i=0
cos ilð Þwi + sin N + ið ÞlwN+i = y1:

8>>>>><
>>>>>:

ð21Þ

So, there are two methods to solve this problem. One
method is to get the solution through the gradient descent
method. Another method is using the optimization
technique.

2.2. Fractional Partial Differential Equation. For fractional
partial differential equation problem

∂αu x, tð Þ
∂tα

= a
∂2u x, tð Þ

∂x2
+ f t, xð Þ,

u 0, tð Þ = u0 tð Þ, u 1, tð Þ = u1 tð Þ, u x, 0ð Þ = v xð Þ,

8><
>: ð22Þ

where 0 < α ≤ 1, and problem

∂u x, tð Þ
∂t

= a
∂βu x, tð Þ

∂xβ
+ f t, xð Þ,

u 0, tð Þ = u0 tð Þ, u 1, tð Þ = u1 tð Þ, u x, 0ð Þ = v xð Þ,

8><
>: ð23Þ

where 1 < β ≤ 2. We use the triangle base neural network (see
Figure 2) to approximate the solution of problems (22) and
(23). The triangle base neural network can be written as

u x, yð Þ = 〠
N

i=1
wi sin ai1x + ai2y − bið Þ, ð24Þ

where ai1, ai2 are weights for the import layer in the neural
network, bi are bias parameters for the hidden layer in the

neural network, wi are weights for the export layer in the
neural network, and sin ðxÞ is the activation function of neu-
rons in the hidden layer.

Based on Theorems 1 and 2, we can get the fractional
derivative of the neural network as below:

∂αu x, yð Þ
∂xα

= 〠
N

i=1
wia

α
i1 sin ai1x + ai2y + bi +

α

2 π
� �

,

∂βu x, yð Þ
∂yβ

= 〠
N

i=1
wia

β
i2 sin ai1x + ai2y + bi +

α

2 π
� �

:

ð25Þ

The loss function for problem (22) is

min J = 1
2〠

m

k=1

∂αu
∂tαk

−
∂2u
∂x2k

− f tk, xkð Þ
" #2

+ 1
2 〠

m

tk ,xkð Þ∈B
u tk, xkð Þ − B tk, xkð Þ½ �2,

ð26Þ

where ðtk, xkÞ are training points and B is the boundary of
problem (22) and

B 0, tð Þ = u0 tð Þ,
B l, tð Þ = u1 tð Þ,
B x, 0ð Þ = v xð Þ:

ð27Þ

The loss function for problem (23) can be given in the
same way.

We use the gradient descent algorithm to train the neural
network. In fact, we can train the neural network by layers.
First, we train the export layer to get wis, then the bias
parameters to get bis in the hidden layer, and finally, we train
the import layer to get ai1s and ai2s.

3. Numerical Experiment

3.1. Numerical Test 1. Consider the following example 1:

D αð Þy = 1
x2 + 1 y +

Γ 3ð Þ
Γ 3 − αð Þ x

2−α,

y 0ð Þ = 1,

8><
>: ð28Þ

where 0 < α ≤ 1. The exact solution to this problem is y = x2

+ 1. We let α be 0:5, 0:9 and use the optimization method
when N = 5,N = 15 and gradient descent method when N
= 5,N = 15, respectively. The computational results are
listed in Tables 1 and 2.

3.2. Numerical Test 2. Consider the following example 2 for
boundary value problem:

D 1+αð Þy +D αð Þy =
ffiffiffi
2

p
sin x + π

4
� �

cos α

2 +
ffiffiffi
2

p
cos x + π

4
� �

sin α

2 ,

y 0ð Þ = 0, y π

2
� �

= 1,

8><
>:

ð29Þ

x

y

u

Figure 2: Neural network 2.
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where 0 < α ≤ 1. The exact solution to this problem is y =
sin x.

We let α be 0:5 andN = 30,N = 45, respectively; the com-
putational error is listed in Figure 3.

We let α be 0:8 and N = 20,N = 30. The computational
error is listed in Figure 4.

As we see in example 1, the solution becomes more accu-
rate when N is increased. And for the boundary value prob-
lem, we use two constraints when we use the optimization
process.

3.3. Numerical Test 3. Consider the following example 3:

∂αu x, tð Þ
∂tα

= −
Γ 4ð Þ

Γ 4 − αð Þ t
−α ∂

2u x, tð Þ
∂x2

,

u 0, tð Þ = u π, tð Þ = 0, u x, 0ð Þ = 0,

8><
>: ð30Þ

where 0 < α ≤ 1. The exact solution to this problem is u = t3

sin x.
We use the gradient descent method to solve this

problem, and the computational error is listed in
Figure 5. In the training process of the neural network,
we set a stopping criteria J < 10−5 for the computing pro-
cess to stop. If this stopping criteria cannot be achieved,
the computing will be stopped when 105 times of training
is completed.

3.4. Numerical Test 4. Consider the following example 4:

∂u x, tð Þ
∂t

= ∂βu x, tð Þ
∂xβ

− t3 sin x + β

2 π
� �

+ 3t2 sin x,

u 0, tð Þ = u π, tð Þ = 0, u x, 0ð Þ = 0,

8><
>:

ð31Þ

where 1 < β ≤ 2. The exact solution to this problem is u = t3

sin x.
We use the gradient descent method to solve this prob-

lem, and the computational error is listed in Figure 6.

Table 1: Computational errors for example 1 where α = 0:5, h = 0:1.

x 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h

optimi (N = 5) 0.010 0.013 0.015 0.016 0.018 0.019 0.021 0.022 0.024 0.026

optimi (N = 15) 0.003 0.003 0.008 0.009 0.012 0.014 0.013 0.014 0.015 0.016

grad, N = 5 0.011 0.013 0.017 0.019 0.025 0.021 0.020 0.019 0.027 0.030

grad, N = 15 0.008 0.008 0.007 0.004 0.005 0.009 0.012 0.018 0.015 0.013

Table 2: Computational errors for example 1 where α = 0:9, h = 0:1.

x 1 h 2 h 3 h 4 h 5 h 6 h 7 h 8 h 9 h 10 h

optimi (N = 5) 0.000 0.010 0.010 0.011 0.012 0.014 0.018 0.017 0.018 0.020

optimi (N = 15) 0.000 0.002 0.006 0.008 0.010 0.010 0.011 0.010 0.012 0.012

grad, N = 5 0.009 0.013 0.012 0.014 0.021 0.020 0.020 0.016 0.021 0.021

grad, N = 15 0.005 0.006 0.003 0.002 0.007 0.012 0.013 0.010 0.010 0.010
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Figure 3: Solution of Test 2 when α = 0:5.
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Figure 4: Solution of Test 2 when α = 0:8.
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4. Conclusion

The neural network method is a promising approach for
solving fractional differential equations. The difficulty for this
method is how to calculate the fractional derivatives of the
involved neural network. In this paper, we propose numeri-
cal methods for solving fractional differential equations
including the initial problem, boundary value problem, and
partial FDEs by using the triangle base neural network and
gradient descending method. All the involved fractional
derivatives in this work are considered as Caputo type. We
first analyze the fractional derivative of the triangle base neu-
ral network. Then, based on the loss function, the proposed
numerical methods reduce the fractional differential equa-
tion into the gradient descent process or the quadratic opti-
mization problem. By carrying out the gradient descent
process or the quadratic optimization process, we can get

the numerical solutions. Numerical tests show that this
approach is easy to implement and the solution is accurate
when applied to many types of FDEs.
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In this paper, we are concerned with Toeplitz operators whose symbols are complex Borel measures.When a complex Borel measure μ
on the unit circle is given, we give a formal definition of a Toeplitz operator Tμ with symbol μ, as an unbounded linear operator on the
Hardy space. We then study various properties of Tμ. Among them, there is a theorem that the domain of Tμ is represented by a
trichotomy. Also, it was shown that if the domain of Tμ contains at least one polynomial, then Tμ is densely defined. In addition,
we give evidence for the conjecture that Tμ with a singular measure μ reduces to a trivial linear operator.

1. Introduction

A classical Toeplitz operator is the compression of a multipli-
cation operator on the Lebesgue space L2ðTÞ of the unit circle
T to the Hardy space H2ðTÞ. The study of Toeplitz operators
seems to have originated from the paper of Toeplitz [1]. In
the paper [2], he used Toeplitz matrices to characterize non-
negative continuous functions on the unit circle in terms of
their Fourier coefficients. The remarkable paper of Brown
and Halmos [3] started the systematic study of spectral prop-
erties of Toeplitz operators. Since then, the theory of Toeplitz
operators has been studied in various ways. Recently, the the-
ory of Toeplitz operators has been studied in a variety of set-
tings and connections with other fields. One direction is to
deal with Toeplitz operators on reproducing kernel spaces
like Bergman spaces, Dirichlet spaces, or Fock spaces (cf.
[4–8]). Another direction is to study Toeplitz operators with
operator-valued symbols (cf. [9–11]). Also, truncated Toe-
plitz operators have attracted attention. A systematic
approach on truncated Toeplitz operators can be found in
the paper of Sarason in 2007 [12]. In that paper, he has used
“compatible” measures to describe bounded truncated Toe-
plitz operators. The boundedness of infinite Hankel matrices
is also related to the compatibility of measures: the infinite
Hankel matrix of the moment of a nonnegative Carleson
measure is bounded and vice versa [13]. (For related recent

studies, see [14].) These works inspired us to consider Toe-
plitz operators whose symbols are measures. The Toeplitz
operators whose symbols are measures have been studied in
the setting of Bergman spaces and other spaces (cf. [15],
chapter 7).

In this paper, we consider Toeplitz operators on the
Hardy space, whose symbols are measures. In this study,
unbounded Toeplitz operators arise naturally. When study-
ing unbounded Toeplitz operators, it was usually considered
that the symbols come from L2ðTÞ. In 2008, Sarason [16]
treated not only the case of L2ðTÞ-symbols but the case of
analytic functions on the open unit disk D. It is natural to
attempt to extend the symbols of Toeplitz operators to mea-
sures, because the initial reasearch for them was related to the
moment problem. As mentioned before, Toeplitz and Hankel
operators associated with measures can be seen in the papers
[13] and [12]. In this paper, we provide an explicit definition
of Toeplitz operators whose symbols are complex Borel mea-
sures and then consider their unbounded operator theory. As
the study on Toeplitz operators whose symbols are functions
shows the interplay between function theory and operator
theory, the study on Toeplitz operators whose symbols are
measures is also expected to show the interplay between mea-
sure theory and operator theory.

Our consideration for the symbol of a Toeplitz operator,
denoted by Tμ, is a complex Borel measure μ on the unit cir-
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cle. When we study an unbounded linear operator, we usu-
ally assume that its domain is dense, i.e., the operator is
densely defined. Hence, one may ask if Tμ is densely defined,

i.e., the domain is dense in H2. Toeplitz operators with
L2-symbols are always densely defined. Unlike when the
symbol is a function, it does not seem easy to answer the
question. Nonetheless, we will show that the domain of Tμ

is represented by a trichotomy (Theorem 8). In particular,
we can show that if the domain of Tμ contains at least one
polynomial, then Tμ is densely defined (Proposition 10).
We also give evidence for the conjecture that the cases of sin-
gular measures induce trivial linear operators (Theorem 15).

The organization of this paper is as follows. In Section 2,
we give notations, definitions, and preliminary facts, which
will be used in the sequel. In Section 3, we give a formal def-
inition of Toeplitz operators whose symbols are complex
Borel measures on T and then investigate their properties
in the viewpoint of unbounded linear operator theory.

2. Preliminaries

Let T be the unit circle in the complex plane. Let m be the
normalized Lebesgue measure on T , so that mðTÞ = 1. For 1
≤ p ≤∞, we write LpðTÞ = LpðT ,mÞ for the Lebesgue space
on T and HpðTÞ for the Hardy space on T . Note that HpðTÞ
is a closed subspace of LpðTÞ.

Let D be the open unit disk and let �D be the closed unit
disk in the complex plane. Let CAðDÞ denote the disk algebra,
i.e., the set of all continuous functions on �D which is analytic
on D.

For 1 ≤ p ≤∞, we writeHpðDÞ for the Hardy space on D.
Two spaces HpðDÞ and HpðTÞ are identified via nontangen-
tial limits and Poisson integral. Thus, we often write Hp to
denote the both of them. The norm in LpðTÞ (or HpðDÞ) will
be denoted by ∥·∥p and the inner product in L2ðTÞ (orH2ðDÞ)
will be denoted by h·, · i. We refer the reader to the texts [17–
19] and [20] for details of Hardy spaces.

The shift operator and its adjoint are one of the most
interesting operators on the Hardy space. For convenience,
we define them on HðDÞ, the class of all analytic functions
on D. For f ∈HðDÞ, define

Sf zð Þ = zf zð Þ z ∈Dð Þ,

S∗ f zð Þ = f zð Þ − f 0ð Þ
z

z ∈Dð Þ:
ð1Þ

The operators S and S∗ are often called the unilateral shift
and the backward shift, respectively. We refer the reader to
the text [21] which treats the shift operator in great detail.

One of the most remarkable theorems in analysis is
Beurling’s theorem (cf. [18, 20, 22]), which characterizes all
S-invariant subspaces of H2. (We use the term “subspace”
for a closed linear subspace.) For a nonzero subspace M of
H2, M is S-invariant if and only if

M = θH2 = θf : f ∈H2� �
, ð2Þ

for some inner function θ ∈H∞. A bounded analytic
function θ on D is called an inner function if its radial limit
θ∗ðeitÞ = limr→1−θðreitÞ has a unit modulus for almost all
eit ∈ T . If an inner function has no zero in D, we call it
a singular inner function.

LetMðTÞ be the set of all complex (finite) Borel measures
on T . Note that MðTÞ is a Banach space with the total varia-
tion norm ∥μ∥ = ∣ μ∣ðTÞ, where ∣μ ∣ is the total variation
measure of μ. We may regard the normalized Lebesgue mea-
sure m as a finite positive Borel measure. Hence, m ∈MðTÞ.
We write BT for the σ-algebra of all Borel sets in T . We
say μ is singular if μ⊥m.

Suppose that μ ∈MðTÞ. For any function f ∈ L1ðT ,∣μ ∣ Þ,
let f · μ denote the complex Borel measure on T defined by

f · μð Þ Eð Þ =
ð
E
f dμ E ∈BTð Þ: ð3Þ

Then, ∣f · μ ∣ = ∣f ∣ · ∣μ∣. Hence, ∥f · μ∥ = ∥f ∥L1ðT ,∣μ∣Þ. In
particular, for every f ∈ CðTÞ, the measure f · μ is defined
and ∥f · μ∥≤∥f ∥∞∥μ∥.

For μ ∈MðTÞ, the nth Fourier–Stieltjes coefficient of μ is
given by

bμ nð Þ =
ð
T

�ζ
n
dμ ζð Þ n ∈ℤð Þ: ð4Þ

For any μ ∈MðTÞ, the bilateral sequence bμ = fbμðnÞgn∈ℤ
is bounded and the mapping μ↦ bμ is a bounded linear
transformation from MðTÞ into ℓ∞ðℤÞ. Note that the map-
ping μ↦ bμ is one-to-one, and hence, a measure μ ∈MðTÞ
is completely determined by its Fourier–Stieltjes coefficients.
By the theorem of F. andM. Riesz, if μ ∈MðTÞ is analytic, i.e.,bμðnÞ = 0 for all n ≤ 0, then μ≪m and dμ/dm ∈H1ðTÞ; in
other words, μ = f ·m for some f ∈H1ðTÞ.

For the definition of Toeplitz operators whose symbols
are measures, we use the Cauchy transform as the “projec-
tion” of measures. For this reason, we use the notation Pμ
instead of Kμ for the Cauchy transform of μ. We refer the
reader to the text [23] for thorough treatments of the Cauchy
transform. For μ ∈MðTÞ, the analytic function Pμ on D,
given by

Pμð Þ zð Þ =
ð
T

1
1 − �ζz

dμ ζð Þ = 〠
∞

n=0
bμ nð Þzn z ∈Dð Þ, ð5Þ

is called the Cauchy transform of μ. Clearly, the mapping
P is a linear transformation from MðTÞ into HðDÞ. We
may regard f ∈ L1ðTÞ as the absolutely continuous mea-
sure f ·m ∈MðTÞ. Hence, we denote Pð f ·mÞ by Pf , i.e.,

Pfð Þ zð Þ =
ð
T

f ζð Þ
1 − �ζz

dm ζð Þ = 〠
∞

n=0
f̂ nð Þzn z ∈Dð Þ: ð6Þ

(Clearly, df ·mðnÞ = f̂ ðnÞ.) As we have identified H2ðDÞ
with H2ðTÞ, the mapping P may be regarded as the
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orthogonal projection of L2ðTÞ onto H2ðTÞ (the so-called
Riesz projection).

Let φ ∈ L2ðTÞ. The Toeplitz operator Tφ with symbol φ is

the linear operator on H2 with domain

D Tφ

� �
= f ∈H2 Dð Þ: P φfð Þ ∈H2 Dð Þ� �

, ð7Þ

given by

Tφ f = P φfð Þ f ∈D Tφ

� �� �
: ð8Þ

(Recall that every function inH2ðDÞmay be identified with
its nontangential limit function which belongs to H2ðTÞ.)
Clearly, CAðDÞ ⊆DðTφÞ. Hence, Tφ is densely defined. Also,
Tφ is closed. Observe that

φz
j, zi = φ, zi−j = bφ i − jð Þ, ð9Þ

for every i, j ∈ℕ ∪ f0g. Hence, the matrix representation of Tφ

with respect to the orthonormal basis f1, z, z2,⋯g is

bφ 0ð Þ bφ −1ð Þ bφ −2ð Þ ⋯

bφ 1ð Þ bφ 0ð Þ bφ −1ð Þ ⋯

bφ 2ð Þ bφ 1ð Þ bφ 0ð Þ ⋯

⋮ ⋮ ⋮ ⋱

2
666664

3
777775: ð10Þ

A matrix of this form is called a Toeplitz matrix; in other
words, an infinite matrix fαi,jgi,j≥0 is called a Toeplitz matrix if

αi,j = αi+1,j+1, ð11Þ

for every i, j ∈ℕ ∪ f0g.
For a bilateral sequence s = fsngn∈ℤ of complex numbers,

we denote by TðsÞ the infinite Toeplitz matrix corresponding
to s, i.e., TðsÞ is the infinite matrix whose ði, jÞ-entry is si−j.
Note that if φ ∈ L2ðTÞ, then the matrix representations of Tφ

is TðbφÞ. For n ∈ℕ ∪ f0g, we denote by TnðsÞ the ðn + 1Þ
× ðn + 1Þ Toeplitz matrix corresponding to s, i.e.,

Tn sð Þ =

s0 s−1 ⋯ s−n

s1 s0 ⋯ s−n+1

⋮ ⋮ ⋱ ⋮

sn sn−1 ⋯ s0

2
666664

3
777775: ð12Þ

3. The Main Results

Let μ be a complex Borel measure on T . For any function f
∈ CAðDÞ, f · μ is a complex Borel measure on T , and hence,
the Cauchy transform Pð f · μÞ is an analytic function on D.
Define

D Tμ

� �
= f ∈ CA Dð Þ: P f · μð Þ ∈H2 Dð Þ� �

: ð13Þ

It is easy to show that DðTμÞ is a linear manifold of

H2ðDÞ. Now define

Tμ f = P f · μð Þ f ∈D Tμ

� �� �
: ð14Þ

Then, Tμ is a linear operator on H2ðDÞ with domain
DðTμÞ.

Definition 1. The operator Tμ is called the Toeplitz operator
with symbol μ.

We begin with the following:

Proposition 2. Suppose that μ≪m and the Radon–Nikodym
derivative φ = dμ/dm belongs to L2ðTÞ. Then,DðTμÞ = CAðDÞ
and

Tμ f = Tφ f , ð15Þ

for every f ∈ CAðDÞ.

Proof. Suppose that μ = φ ·m, where φ ∈ L2ðTÞ. Let f be an
arbitrary function in CAðDÞ. Then,

P f · μð Þ zð Þ =
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ =
ð
T

f ζð Þφ ζð Þ
1 − �ζz

dm ζð Þ = P φfð Þ zð Þ,

ð16Þ

for every z ∈D, and so, Pð f · μÞ = Pðφf Þ. Since φf ∈ L2ðTÞ, it
follows that Pð f · μÞ ∈H2ðDÞ. Hence, f ∈DðTμÞ and

Tμ f = P f · μð Þ = P φfð Þ = Tφ f : ð17Þ

This completes the proof.

Proposition 2 shows that the notion of Tμ is a kind of
generalization of the Toeplitz operators whose symbols are
L2-functions.

Remark 3.

(a) Toeplitz operators with L1 -symbols: every function
φ ∈ L1ðTÞ would be regarded as the absolutely
continuous measure φ ·m ∈MðTÞ. Hence, we may
use Definition 1 to define Toeplitz operators with
L1-symbols: if φ ∈ L1ðTÞ and μ = φ ·m, then

D Tμ

� �
= f ∈ CA Dð Þ: P φfð Þ ∈H2 Dð Þ� �

, ð18Þ

Tμ f = P φfð Þ, ð19Þ
for f ∈DðTμÞ.
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(b) Toeplitz operators with H1 -symbols: let φ ∈H1ðTÞ
and put μ = φ ·m ∈MðTÞ. For every f ∈ CAðDÞ, φf
∈H1ðTÞ. Hence, Pðφf Þ = φf (if we view φ in the
right-hand side as a function inH1ðDÞ). It follows that

D Tμ

� �
= f ∈ CA Dð Þ: φf ∈H2 Dð Þ� �

, ð20Þ

Tμ f = φf , ð21Þ

for f ∈DðTμÞ. This shows that a Toeplitz operator with

H1-symbol behaves as a multiplication. Notice that the
action of Tμ is the same as that of Tφ defined in ([16],
Section 5). (In that paper, the domain of Tφ is given by

DðTφÞ = f f ∈H2ðDÞ: φf ∈H2ðDÞg.) Moreover, since φ is
of Smirnov class, φ = b/a for some a, b ∈H∞ðDÞ such that
a is an outer function, að0Þ > 0, and jaj2 + jbj2 = 1 on T . In
this case, DðTφÞ = aH2ðDÞ (cf. [16]). It follows that

D Tμ

� �
=D Tφ

� �
∩ CA Dð Þ = aH2 Dð Þ ∩ CA Dð Þ: ð22Þ

Since a is an outer function, it follows that aH2ðDÞ is
dense in H2ðDÞ.

Question: is aH2 ∩ CAðDÞ dense in H2?
We give some concrete examples.

Example 4.

(a) Let φ be the analytic function on D such that
ðφðzÞÞ2 = ð1 − zÞ−1 and φð0Þ = 1. Then, φ ∈H1ðDÞ
but φ ∉H2ðDÞ. Put μ = φ ·m. By Remark 3, (b), we
have

D Tμ

� �
= f ∈ CA Dð Þ: φf ∈H2 Dð Þ� �

: ð23Þ

How large is the domainDðTμÞ? Suppose that g ∈ CAðDÞ
and gð1Þ ≠ 0. Then, there exists a constant c > 0 such that ∣g
∣ ≥c on a neighborhood of ζ = 1. It follows that φg ∉H2ðDÞ.
Hence, g ∉DðTμÞ. This shows that

D Tμ

� �
⊆ f ∈ CA Dð Þ: f 1ð Þ = 0f g: ð24Þ

On the other hand, if r > 0 and if ψr is the function in
CAðDÞ which satisfies ðψrðzÞÞ1/r = 1 − z and ψrð0Þ = 1, then,
for every g ∈ CAðDÞ,

∥φψrg∥
2
2 =
ð
T

φ ζð Þj j2 ψr ζð Þj j2 g ζð Þj j2 dm ζð Þ

=
ð
T

1 − ζj j2r
∣1 − ζ ∣

g ζð Þj j2 dm ζð Þ

≤ ∥g∥2∞ ·
ð
T

1 − ζj j2r−1 dm ζð Þ

= ∥g∥2∞
2π

ðπ
−π

1 − eit
�� ��2r−1 dt

≤
∥g∥2∞
2π

ðπ
−π

tj j2r−1 dt

= ∥g∥2∞
π

π2r

2r ,

ð25Þ

and hence, φψrg ∈H2ðDÞ, i.e., ψrg ∈DðTμÞ. It follows that
[
r>0

ψrCA Dð Þ ⊆D Tμ

� �
: ð26Þ

Since ψ1 = 1 − z, we have

1 − zð Þ · CA Dð Þ ⊆D Tμ

� �
: ð27Þ

In particular,DðTμÞ contains all polynomials vanishing at
ζ = 1.

(b) Let μ = δ1 be the unit point mass concentrated at
ζ = 1. Note that the measure μ is discrete. Observe
that, for f ∈ CAðDÞ,

P f · μð Þ zð Þ =
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ = f 1ð Þ
1 − z

z ∈Dð Þ: ð28Þ

Since 1/ð1 − zÞ =∑∞
n=0 z

n, the function 1/ð1 − zÞ does not
belong to H2ðDÞ. It follows that Pð f · μÞ ∈H2ðDÞ if and only
if f ð1Þ = 0. Therefore,

D Tμ

� �
= f ∈ CA Dð Þ: f 1ð Þ = 0f g: ð29Þ

Also, we have

Tμ f = 0, ð30Þ

for all f ∈DðTμÞ. Hence, Tμ is trivial, i.e., Tμ f = 0 for all f
∈DðTμÞ. Consequently, Tμ is bounded (on DðTμÞ). Notice
that DðTμÞ does not contain the constant function 1. We

show later (see Remark 11) that DðTμÞ is dense in H2ðDÞ.

(c) The Cantor middle-third measure: let C denote the
Cantor ternary set and let φ be the Cantor function,
i.e., for x =∑∞

j=1 ðaj/3 jÞ ∈ C,
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φ xð Þ = 〠
∞

j=1

aj/2
2j , ð31Þ

and φðxÞ = sup fφðyÞ: y < x, y ∈ Cg for x ∉ C. Then, φ is con-
tinuous and monotonically increasing. Hence, there exists a
positive Borel measure μ on T such that

μ e2πiθ : 0 ≤ θ < t
n o� �

= φ tð Þ 0 ≤ t ≤ 1ð Þ: ð32Þ

The measure μ (the so-called Cantor middle-third mea-
sure) is a typical example of a singular continuous measure.
We refer the reader to the papers [24] and [25] which treat
measures of the Cantor type. It is known that

bμ nð Þ = −1ð Þn
Y∞
j=1

cos 2πn
3j n ∈ℤð Þ: ð33Þ

Hence,

μ∧ nð Þj j2 =
Y∞
j=1

1 − sin2 2πn3j
	 


n ∈ℤð Þ: ð34Þ

Since 0 ≤ sin2ð2πn/3jÞ < 1 for each j and ∑∞
j=1 sin2ð2πn/

3jÞ <∞, it follows that bμðnÞ ≠ 0. Note also that bμð−nÞ = bμðnÞ
and bμð3nÞ = bμðnÞ for every n ∈ℤ.Wemay here ask the follow-
ing questions:

(a) What is DðTμÞ? Is DðTμÞ dense in H2ðDÞ?
(b) What is Tμ? Is Tμ trivial?

We next ask: when is the domainDðTμÞ dense inH2ðDÞ ?
It does not seem easy to answer this question in general.
The following lemma is used to derive some properties
of DðTμÞ which are helpful to determine the density of

DðTμÞ in H2ðDÞ. Recall that S is the shift operator on
HðDÞ, i.e., if f ∈HðDÞ, then Sf ðzÞ = zf ðzÞ for z ∈D.

We then have the following:

Lemma 5. For every μ ∈MðTÞ and f ∈ CAðDÞ,

P Sf · μð Þ = SP f · μð Þ + P Sf · μð Þ 0ð Þ: ð35Þ

Proof. For each z ∈D,

P Sf · μð Þ zð Þ − P Sf · μð Þ 0ð Þ =
ð
T

ζf ζð Þ
1 − �ζz

dμ ζð Þ −
ð
T

ζf ζð Þ dμ ζð Þ

=
ð
T

�ζz

1 − �ζz
ζf ζð Þ dμ ζð Þ

= z
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ

= zP f · μð Þ zð Þ
= SP f · μð Þ zð Þ:

ð36Þ

The following proposition gives an important informa-
tion for the domain of Tμ.

Proposition 6. Let μ ∈MðTÞ and let α be a complex number
such that ∣α ∣ ≠ 1. Then, the following statements hold:

(a) For f ∈ CAðDÞ, f ∈DðTμÞ if and only if ðS − αÞf ∈D
ðTμÞ

(b) For f ∈H2ðDÞ, f ∈ clH2ðDðTμÞÞ if and only if ðS − αÞ
f ∈ clH2ðDðTμÞÞ

Proof. (a) Suppose that f ∈ CAðDÞ. Then, by Lemma 5,

P S − αð Þf · μð Þ = P Sf · μð Þ − P αf · μð Þ
= SP f · μð Þ + P Sf · μð Þ 0ð Þ − αP f · μð Þ
= S − αð ÞP f · μð Þ + P Sf · μð Þ 0ð Þ:

ð37Þ

Hence, PððS − αÞf · μÞ ∈H2ðDÞ if and only if ðS − αÞPð f ·
μÞ ∈H2ðDÞ. Since Pð f · μÞ ∈HðDÞ and ∣α ∣ ≠ 1, it follows that
Pð f · μÞ ∈H2ðDÞ if and only if ðS − αÞPð f · μÞ ∈H2ðDÞ. There-
fore, f ∈DðTμÞ if and only if ðS − αÞf ∈DðTμÞ. This proves (a).

(b) Suppose that f ∈H2ðDÞ and f ∈ clH2ðDðTμÞÞ. Then,
there exists a sequence f f jg in DðTμÞ such that ∥f − f j∥2
⟶ 0. Since S − α is a bounded operator on H2ðDÞ, we have

∥ S − αð Þf − S − αð Þf j∥2 = ∥ S − αð Þ f − f j
� �

∥2 ⟶ 0: ð38Þ

By (a), each ðS − αÞf j belongs to DðTμÞ. It follows that
ðS − αÞf ∈ clH2ðDðTμÞÞ.

Conversely, suppose that f ∈H2ðDÞ and ðS − αÞf ∈ clH2ð
DðTμÞÞ. Then, there exists a sequence fgjg in DðTμÞ such
that

∥ S − αð Þf − gj∥2 ⟶ 0: ð39Þ

We want to show that f ∈ clH2ðDðTμÞÞ. To see this we
consider two cases.

Case 1. (∣α ∣ <1). Assume first that gjðαÞ = 0 for all j. Then,

gj = S − αð Þf j, ð40Þ

where f j ∈ CAðDÞ. Since gj ∈DðTμÞ, it follows from (a) that
f j ∈DðTμÞ. Note that the approximate point spectrum of

the operator S on H2ðDÞ is σapðSÞ = T (cf. [26]). Since α does
not belong to T , the operator S − α is bounded below on H2

ðDÞ. It follows that there exists a constant c > 0 such that

∥ S − αð Þf − gj∥2 = ∥ S − αð Þ f − f j
� �

∥2 ≥ c · ∥f − f j∥2 ð41Þ

for all j. This implies that ∥f − f j∥2 → 0. Therefore, f ∈ clH2

ðDðTμÞÞ.

5Journal of Function Spaces



In the case that gjðαÞ ≠ 0 for some j, we may assume that
g1ðαÞ ≠ 0. Note that gj ⟶ ðS − αÞf weakly. Hence, gjðzÞ
⟶ ððS − αÞf ÞðzÞ for each z ∈D. In particular, we have

gj αð Þ⟶ 0: ð42Þ

Now put

hj = gj −
gj αð Þ
g1 αð Þg1  j = 1, 2, 3,⋯ð Þ: ð43Þ

Then, hj ∈DðTμÞ and hjðαÞ = 0 for all j. Observe that

∥ S − αð Þf − hj∥2 ≤ ∥ S − αð Þf − gj∥2 + ∣
gj αð Þ
g1 αð Þ ∣ g1k k2: ð44Þ

It follows that

∥ S − αð Þf − hj∥2 → 0: ð45Þ

Hence, by the preceding paragraph, we conclude that
f ∈ clH2ðDðTμÞÞ.

Case 2. (∣α ∣ >1). The operator S − α on H2ðDÞ is invertible.
Hence,

∥f − S − αð Þ−1gj∥2 ⟶ 0: ð46Þ

Since ðS − αÞ−1 = −∑∞
n=0 S

n/αn+1 andDðTμÞ is S-invariant
by (a), each ðS − αÞ−1gj belongs to clH2ðDðTμÞÞ. It follows
that f ∈ clH2ðDðTμÞÞ, and the proof is complete.

Remark 7. If we take α = 0 in Proposition 6, then the linear
subspaces DðTμÞ and its closure clH2ðDðTμÞÞ are S-invari-
ant. Also, the equality in Lemma 5 can be rewritten as S∗P
ðSf · μÞ = Pð f · μÞ. Consequently, we have S∗TμSf = Tμ f for
every f ∈DðTμÞ.

As a consequence of Proposition 6, we derive the follow-
ing theorem which describes the domain DðTμÞ. Recall that
an inner function is said to be singular if it has no zero in
the unit disk.

Theorem 8. Let μ ∈MðTÞ. Then, one of the following holds:

(i) DðTμÞ = f0g
(ii) DðTμÞ is dense in H2ðDÞ
(iii) clH2ðDðTμÞÞ = θH2ðDÞ, where θ is a singular inner

function

Proof. By Proposition 6, clH2ðDðTμÞÞ is an S-invariant sub-
space of H2ðDÞ. It follows from Beurling’s theorem that

clH2 D Tμ

� �� �
= θH2 Dð Þ, ð47Þ

where θ is an inner function or θ = 0. If θ = 0, then the case (i)
occures. If θ is a nonzero constant function, case (ii) occurs.
Now, suppose that θ is nonconstant. We show that θ has
no zero in D. To see this, choose any nonzero function f in
DðTμÞ. Fix an arbitrary point α of D and let n be the multi-
plicity of the zero of f at α. Then,

f zð Þ = z − αð Þng zð Þ z ∈Dð Þ, ð48Þ

where g ∈ CAðDÞ and gðαÞ ≠ 0. Hence, by a repeated applica-
tion of Proposition 6(a), we have

g ∈D Tμ

� �
⊆ θH2 Dð Þ: ð49Þ

It follows that g = θh for some h ∈H2ðDÞ. Thus, θðαÞ
cannot be 0. Since α was arbitrary, we conclude that θ has
no zero in D. Therefore θ is a singular inner function.

Remark 9. Unfortunately, we cannot find a concrete example
for the third case. It would be possible that the third case
never occurs.

The following proposition is another consequence of
Proposition 6 which gives a sufficient condition for the
domain DðTμÞ to be dense in H2ðDÞ.

Proposition 10. If clH2ðDðTμÞÞ contains a polynomial, then

DðTμÞ is dense in H2ðDÞ.

Proof. Suppose that clH2ðDðTμÞÞ contains a polynomial.
Then, by Proposition 6, (b), there exists a polynomial p ∈ c
lH2ðDðTμÞÞ, all of whose zeros are in T , such that pð0Þ = 1.
Let ζ1,⋯, ζN ∈ T be the zeros of p, listed according to their
multiplicities. Then,

p zð Þ = 1 − �ζ1z
� �

⋯ 1 − �ζNz
� �

: ð50Þ

Choose a sequence fkng in ℕ such that kn+1 >Nkn (e.g.,
kn = ðN + 1Þn). For each n ∈ℕ, define

pn zð Þ = 1
n
〠
n

j=1
1 − �ζ1z
� �kj	 


⋯ 1 − �ζNz
� �kj	 


: ð51Þ

All of them are polynomials, divisible by p. Since
clH2ðDðTμÞÞ is S-invariant, the polynomials pn belong
to DðTμÞ. It follows by a direct computation that

∥1 − pn∥
2
2 ≤

n
n2

N

1

 !
N

1

 !
+⋯+

N

N

 !
N

N

 !" #
, ð52Þ

for every n ∈ℕ. This implies that pn ⟶ 1 in H2ðDÞ.
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Therefore, the constant function 1 belongs to clH2ðDðTμÞÞ.
Since clH2ðDðTμÞÞ is S-invariant, we conclude that clH2ðDð
TμÞÞ =H2ðDÞ; in other words, DðTμÞ is dense in H2ðDÞ.

Remark 11. Proposition 10 shows that the domains DðTμÞ,
presented in (a) and (b) of Example 4, are dense in H2ðDÞ,
because they contain the polynomial pðzÞ = 1 − z. The proof
of Proposition 10 shows that every polynomial, all of whose
zeros are in T , is an outer function.

In order to consider the matrix representation of a linear
operator onH2ðDÞ, it is necessary that its domain contains all
polynomials. Let us interpret the condition that DðTμÞ con-
tains all polynomials. Note that this is equivalent to the con-
dition that DðTμÞ contains any polynomial which does not
vanish on T , by Proposition 6, (a).

Lemma 12. Let μ ∈MðTÞ. Then, the following are equivalent:

(i) DðTμÞ contains all polynomials, or equivalently,
DðTμÞ contains the constant function 1

(ii) μ≪m and dμ/dm ∈H2ðTÞ + �H1
0ðTÞ

Proof. ðiÞ⇒ ðiiÞ: suppose that the constant function 1 belongs
toDðTμÞ. Then, Pμ = Pð1 · μÞ ∈H2ðDÞ. Letψ denote the non-
tangential limit function of Pμ. Since Pμ =∑∞

n=0 bμðnÞzn, it fol-
lows that bψðnÞ = bμðnÞ for all n ∈ℕ ∪ f0g. Put ν = μ − ψ ·m.
Then, ν ∈MðTÞ and

bν nð Þ = bμ nð Þ − bψ nð Þ = 0, ð53Þ

for all n ∈ℕ ∪ f0g. It follows from the F. and M. Riesz theo-

rem that ν≪m and ν = χ ·m for some χ ∈ �H1
0ðTÞ. Thus, we

have μ = ν + ψ ·m = ðχ + ψÞ ·m. This proves (ii).
ðiiÞ⇒ ðiÞ: suppose that (ii) holds so that μ = ðψ + χÞ ·m

for some ψ ∈H2ðTÞ and χ ∈ �H1
0ðTÞ. Then, bμðnÞ = bψðnÞ for

all n ∈ℕ ∪ f0g. Hence, we have

〠
∞

n=0
μ∧ nð Þj j2 <∞: ð54Þ

Since Pμ =∑∞
n=0 bμðnÞzn, it follows that Pð1 · μÞ = Pμ ∈

H2ðDÞ. Clearly, the constant function 1 belongs to CAðDÞ.
Therefore, 1 ∈DðTμÞ. Now, Proposition 6, (a), implies that
DðTμÞ contains all polynomials.

Corollary 13. Let μ ∈MðTÞ be a real measure. Then, DðTμÞ
= CAðDÞ if and only if μ≪m and dμ/dm ∈ L2ðTÞ.

Proof. Suppose that DðTμÞ = CAðDÞ. Then, μ≪m and

μ = ðψ + χÞ ·m for some ψ ∈H2ðTÞ and χ ∈ �H1
0ðTÞ by

Lemma 12. Since μ is a real measure, we have

bμ −nð Þ =
ð
T

�z−n dμ =
�ð

T

�zn dμ

¯

=
�bμ nð Þ
¯

, ð55Þ

for every n ∈ℤ. Thus, bχð−nÞ = �bψðnÞ¯
for every n ∈ℕ.

Since ψ ∈H2ðTÞ, we have

〠
−1

n=−∞
χ∧ nð Þj j2 = 〠

∞

n=1
ψ∧ nð Þj j2 <∞: ð56Þ

It follows that χ ∈ �H2
0ðTÞ. Therefore, dμ/dm = ψ + χ

∈ L2ðTÞ.
The converse is a part of Proposition 2.

On the other hand, we would like to conjecture the
following:

Conjecture 14. Every Toeplitz operator with a singular sym-
bol is trivial.

We give evidence for Conjecture 14 by using the known
fact about the Cauchy transform. Let E be a closed subset of
T and let

F Eð Þ = g ∈H2 Dð Þ: g = Pμ for some μ ∈M Eð Þ� �
: ð57Þ

Then, it is known that FðEÞ = f0g if and only if mðEÞ = 0
(cf. [23], Theorem 5.5.2).

We then have the following:

Theorem 15. If μ ∈MðTÞ is singular andmðsup pμÞ = 0, then
Tμ is trivial.

Proof. Let E = sup pμ. By assumption, mðEÞ = 0. Thus,
FðEÞ = f0g. Suppose that f ∈DðTμÞ, i.e., f ∈ CAðDÞ and

Pð f · μÞ ∈H2ðDÞ. Note that sup pð f · μÞ ⊆ sup pμ = E. Hence,
f · μ ∈MðEÞ. So the function Pð f · μÞ ∈H2ðDÞ belongs to
FðEÞ = f0g. It follows that Pð f · μÞ = 0. We have shown
that Pð f · μÞ ∈H2ðDÞ implies Pð f · μÞ = 0. In other words,

f ∈D Tμ

� �
Tμ f = 0: ð58Þ

Therefore Tμ is trivial (on its domain).

Remark 16. Conjecture 14 seems to be known when μ is a
positive singular measure. Indeed, if μ is a positive singular
measure, then its Poisson integral is the real part of ð1 + θÞ/
ð1 − θÞ for some inner function θ (cf. [23], Remark 9.1.4).
Now, if f ∈ CAðDÞ and Pð f · μÞ ∈H2ðDÞ, then the function
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g = ð1 − θÞPð f · μÞ belongs to H2ðDÞ!θH2ðDÞ (cf. [27],
Chapter III), and hence, θ�g ∈ zH2ðDÞ. Since 1 − θ is the outer
H2-function, it follows that

�P f · μð Þ = �g
1θ =

�g

1 − �θ
= −

θ�g
1 − θ

, ð59Þ

which implies that �Pð f · μÞ ∈ zH2ðDÞ. Therefore, Pð f · μÞ = 0.

The Cantor-middle-third measure μ in Example 4, (c), is
a singular continuous measure, and its support is the Cantor
set (in T ) whose Lebesgue measure is 0. Hence, Theorem 15
implies that Tμ is trivial.

We have seen that the Toeplitz operator Tμ in Example 4,
(b), is a densely defined trivial linear operator. This result can
be extended to the case that μ has a finite support. In this
case, the fact that Tμ is trivial may follow from Theorem
15. However, we give a direct proof and also show that Tμ

is densely defined.

Proposition 17. Let μ ∈MðTÞ be a discrete measure whose
support is a finite set. Then, the Toeplitz operator Tμ is a
densely defined trivial linear operator with domain

D Tμ

� �
= f ∈ CA Dð Þ: f ζð Þ = 0 for every ζ ∈ sup pμf g: ð60Þ

Proof. Suppose that sup pμ consists of N distinct points ζ1,
⋯, ζN of T . Then,

μ = c1δζ1+⋯+cNδζN , ð61Þ

where c1,⋯, cN are nonzero complex numbers and δζ is the
unit point mass concentrated at ζ.

We first show that

D Tμ

� �
= f ∈ CA Dð Þ: f ζ1ð Þ =⋯ = f ζNð Þ = 0f g: ð62Þ

For any f ∈ CAðDÞ,

P f · μð Þ zð Þ = 〠
N

j=1
cjP f · δζ j
� �

zð Þ = 〠
N

j=1

cj f ζj
� �

1 − �ζjz
z ∈Dð Þ:

ð63Þ

It follows that

f ∈ CA Dð Þ: f ζ1ð Þ =⋯ = f ζNð Þ = 0f g ⊆D Tμ

� �
: ð64Þ

Conversely, let f ∈DðTμÞ. Then, Pð f · μÞ ∈H2ðDÞ. For
each j, put

Fj ζð Þ = cj f ζj
� �

1 − �ζjζ
ζ ∈ Tð Þ: ð65Þ

Then, F =∑N
j=1 Fj is the nontangential limit function of

Pð f · μÞ. Thus, F ∈H2ðTÞ. Choose disjoint open arcs I j ⊆ T

with ζj ∈ I j. Fix an index j0 and let χ denote the characteristic
function of I j0 . Then, χ · F ∈ L2ðTÞ. Also, χ · Fj ∈ L∞ðTÞ for
each j ≠ j0. Hence,

χ · Fj0
= χ · F − 〠

j≠j0

χ · Fj

� �
∈ L2 Tð Þ: ð66Þ

Since ð1 − χÞ · Fj0
∈ L∞ðTÞ, it follows that

Fj0
= χ · Fj0

+ 1 − χð Þ · Fj0
∈ L2 Tð Þ: ð67Þ

This implies that f ðζj0Þ = 0, because otherwise, Fj0
∉ L2ð

TÞ. Since j0 was arbitrary, we have f ðζjÞ = 0 for each j. It fol-
lows that

D Tμ

� �
⊆ f ∈ CA Dð Þ: f ζ1ð Þ =⋯ = f ζNð Þ = 0f g: ð68Þ

This proves (62). In particular, DðTμÞ contains the poly-
nomial pðzÞ = ðz − ζ1Þ⋯ ðz − ζNÞ. Hence, by Proposition 10,
DðTμÞ is dense in H2ðDÞ.

Equations (62) and (63) imply that Tμ f = 0 for all f ∈D
ðTμÞ, i.e., Tμ is trivial. This completes the proof.

Example 18. Let μ ∈MðTÞ be a discrete measure whose sup-
port has only finitely many limit points, for example,

μ = 〠
∞

n=1

1
2n δζn , ð69Þ

where ζn = eπi/2
n
. By an argument similar to the proof of

Proposition 17, we may show that

D Tμ

� �
= f ∈ CA Dð Þ: f ζð Þ = 0 for every ζ ∈ sup pμf g, ð70Þ

and Tμ f = 0 for all f ∈DðTμÞ. Hence, Tμ is trivial. Note that
every polynomial has only finitely many zeros. It follows that
DðTμÞ cannot contain any polynomial. Nevertheless, DðTμÞ
contains a nonzero function by Fatou’s theorem for CAðDÞ,
which says that, for any given closed set K ⊆ T with mð
KÞ = 0, there exists a function in CAðDÞ which vanishes
precisely on K (cf. [19]). Hence by Theorem 8, DðTμÞ
is dense in H2ðDÞ or clH2ðDðTμÞÞ = θH2ðDÞ for some singu-
lar inner function θ. But it does not seem easy to determine
whether DðTμÞ is dense in H2ðDÞ or not.

To each Toeplitz operator Tμ, there corresponds an infi-
nite Toeplitz matrix TðbμÞ. In general, however, it is a bit
awkward to call TðbμÞ as the matrix representation of Tμ,
because the domain DðTμÞ may not contain the monomials
zn. Nevertheless, often, information about Tμ gives informa-
tion about TðbμÞ. The following is one of such example.
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Corollary 19. Let μ ∈MðTÞ be a discrete measure whose sup-
port consists of N points of T . Then,

det Tn bμð Þ = 0, ð71Þ

for all n ≥N.

Proof. Suppose that μ is the discrete measure given by (61).
Then, the domain DðTμÞ is given by (62). Choose any poly-
nomial p in DðTμÞ whose degree is N (e.g., pðzÞ = ðz − ζ1Þ
⋯ ðz − ζNÞ). Write p =∑N

k=0 akz
k. Since Tμz

k =∑∞
n=0 bμðn −

kÞzn, it follows that

0 = Tμp = 〠
N

k=0
akTμz

k = 〠
N

k=0
ak 〠

∞

n=0
bμ n − kð Þzn

= 〠
∞

n=0
〠
N

k=0
akbμ n − kð Þ

 !
zn:

ð72Þ

Hence, we have

〠
N

k=0
akbμ n − kð Þ = 0, ð73Þ

for all n ≥ 0. Now, let n ≥N and put

x = a0 ⋯ aN 0 ⋯ 0½ �T ∈ℂn+1: ð74Þ

Then, by (73), TnðbμÞx = 0, i.e., x ∈ ker TnðbμÞ. Since x ≠ 0,
the square matrix TnðbμÞ is not invertible, or equivalently,
det TnðbμÞ = 0.

Lastly, we may ask: what is the adjoint of Tμ ? To answer
this question, we need the following:

Lemma 20. Let μ ∈MðTÞ. Then,

Tμ f , g
� �

=
ð
T

f �g dμ, ð75Þ

for every f ∈DðTμÞ and g ∈ CAðDÞ.

Proof. Suppose that f ∈DðTμÞ and g ∈ CAðDÞ. Then, Tμ f ∈
H2ðDÞ. Write Tμ f =∑∞

n=0 anz
n and g =∑∞

n=0 bnz
n. Then,

Tμ f , g
� �

= 〠
∞

n=0
an �bn: ð76Þ

Observe that, for each z ∈D,

Tμ f
� �

zð Þ =
ð
T

f ζð Þ
1 − �ζz

dμ ζð Þ =
ð
T

f ζð Þ〠
∞

n=0

�ζ
n
zn dμ ζð Þ

= 〠
∞

n=0

ð
T

f ζð Þ�ζn dμ ζð Þ

 �

zn:

ð77Þ

Hence, we have

an =
ð
T

f ζð Þ�ζn dμ ζð Þ: ð78Þ

Observe that, for each 0 < r < 1,

gr = 〠
∞

n=0
bnr

nzn ∈ CA Dð Þ: ð79Þ

It follows that

Tμ f , gr

� �
= 〠

∞

n=0
an �bnr

n = 〠
∞

n=0

ð
T

f ζð Þ�ζn �bnrn dμ ζð Þ

=
ð
T

f ζð Þ �〠∞
n=0 bnr

nζn dμ ζð Þ =
ð
T

f �gr dμ:

ð80Þ

If we let r⟶ 1, then ∥g − gr∥∞ ⟶ 0, and hence, hTμ f ,
gri⟶ hTμ f , gi and

Ð
T
f �gr dμ→ Ð

T
f �g dμ. This proves (75).

Assume that μ ∈MðTÞ and DðTμÞ is dense in H2ðDÞ.
Then, the adjoint T∗

μ of Tμ can be defined; the domain of
T∗
μ is

D T∗
μ

� �
= g ∈H2 Dð Þ: ∃h ∈H2 Dð Þs:t: Tμ f , g

� �
= f , hh i∀f ∈D Tμ

� �� �
,

ð81Þ

and, for each g ∈DðT∗
μÞ, T∗

μg is the (unique) element of

H2ðDÞ such that

Tμ f , g
� �

= f , T∗
μg

D E
, ð82Þ

for every f ∈DðTμÞ.
If φ ∈ L∞ðTÞ, then T∗

φ = T �φ. Hence, it is reasonable to

expect that the adjoint of Tμ is the Toeplitz operator induced
by the “complex conjugation” of μ. For μ ∈MðTÞ, define

�μ Eð Þ = �μ Eð Þ E ∈BTð Þ: ð83Þ

Then, �μ ∈MðTÞ. Of course, μ ∈MðTÞ is a real measure if
and only if �μ = μ. Note that

b�μ nð Þ =
�bμ −nð Þ
¯

, ð84Þ

for every n ∈ℤ.
We now have the following:

Proposition 21. Let μ ∈MðTÞ. Assume thatDðTμÞ is dense in
H2ðDÞ. Then,

T �μ ⊆ T∗
μ , ð85Þ

that is DðT �μÞ ⊆DðT∗
μÞ and T �μ = T∗

μ on DðT �μÞ.

9Journal of Function Spaces



Proof. Let g ∈DðT �μÞ. By Lemma 20, it follows that

Tμ f , g
� �

=
ð
T

f �g dμ =
�ð

T

g�f d�μ

¯

= f , T �μg
D E

, ð86Þ

for every f ∈DðTμÞ. It follows that g ∈DðT∗
μÞ and T∗

μg =
T �μg. Therefore, we conclude that

D T �μ
� �

⊆D T∗
μ

� �
, ð87Þ

and T∗
μg = T �μg for every g ∈DðT �μÞ. This completes the

proof.

If μ ∈MðTÞ, and T is the restriction of the Toeplitz oper-
ator Tμ to clH2ðDðTμÞÞ, then T is a densely defined linear

operator. In this case, T∗ is a linear operator from H2ðDÞ
onto clH2ðDðTμÞÞ. By the same argument as the proof of
Proposition 21, we have DðT �μÞ ⊆DðT∗Þ and T∗g = T �μg
for g ∈DðT �μÞ.

We also have the following:

Proposition 22. Let μ ∈MðTÞ be positive. Then, the following
hold:

(a) Tμ is positive, i.e., μ f , f ≥ 0 for all f ∈DðTμÞ
(b) ker Tμ = f f ∈ CAðDÞ: f ðζÞ = 0 for every ζ ∈ supp μg

Proof. (a) Suppose that μ ≥ 0. Then, by Lemma 20, we have

Tμ f , f
� �

=
ð
T

fj j2 dμ ≥ 0, ð88Þ

for every f ∈DðTμÞ.
(b) Suppose that μ ∈MðTÞ is positive. If f ∈ ker Tμ, thenÐ

T
j f j2 dμ = hTμ f , f i = 0. Hence, f = 0μ-a.e. on T . We show

that f = 0 on supp μ. Assume to the contrary that f ðζ0Þ ≠ 0
for some ζ0 ∈ sup pμ. Since f ∈ CAðDÞ, there exist a constant
ε > 0 and an open arc I ⊆ T with center ζ0 such that ∣f ðζÞ ∣ ≥ε
for all ζ ∈ I. Since ζ0 ∈ supp μ, we have μðIÞ > 0. It follows
that

ð
T

fj j2 dμ ≥
ð
I
fj j2 dμ ≥ ε · μ Ið Þ > 0, ð89Þ

which is a contradiction. Hence, f ðζÞ = 0 for all ζ ∈ supp μ.
Therefore,

ker Tμ ⊆ f ∈ CA Dð Þ: f = 0 on supp μf g: ð90Þ

The reverse inclusion is trivial.

The operator Tμ may be positive even though μ is com-
plex. For example, for any complex number α, the measure
α · δ1 is trivial, and hence, it is positive.

We conclude with a remark on the boundedness of Tμ. It

is well known (cf. [3]) that for φ ∈ L2ðTÞ, Tφ is bounded if
and only if φ ∈ L∞ðTÞ, in which case, ∥Tφ∥ = ∥φ∥∞. If μ ≥ 0
and Tμ is bounded, then

ð
T

fj j2 dμ ≤ c · ∥f ∥22  f ∈D Tμ

� �� �
: ð91Þ

Let us call a positive measure μ ∈MðTÞ a compatible
measure if μ satisfies (91) for all f ∈ CAðDÞ. The word “com-
patible” comes from the paper [12]. One can show that the
following statements are equivalent:

(i) μ is a compatible measure

(ii) μ≪m and dμ/dm ∈ L∞ðTÞ
(iii) DðTμÞ contains all polynomials and Tμ is bounded

If these conditions are satisfied and if φ = dμ/dm, then
DðTμÞ = CAðDÞ and

Tμ f = Tφ f , ð92Þ

for every f ∈ CAðDÞ. In (iii), we cannot reduce the condition
that DðTμÞ contains all polynomials to the condition that

DðTμÞ is dense inH2ðDÞ: there is a measure μ ∈MðTÞ which
is not compatible such that Tμ is densely defined and
bounded (see Example 4, (b)).
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The present research paper is related to the analytical studies of p-Laplacian heat equations with respect to logarithmic nonlinearity
in the source terms, where by using an efficient technique and according to some sufficient conditions, we get the global existence
and decay estimates of solutions.

1. A Brief History and Contribution

Consider the following nonlinear p-Laplacian problem:
equation with logarithmic nonlinearity:

ut − div ∇uj jp−2∇u� �
+ uj jp−2u = uj jp−2u ln uj j, x ∈Ω, t > 0,

u x, 0ð Þ = u0 xð Þ, x ∈Ω,
u x, tð Þ = 0, x ∈ ∂Ω, t ≥ 0,

8>><
>>:

ð1Þ

where Ω ⊂ Rn is a bounded domain with smooth boundary
∂Ω, the function u0 is given initial data and exponent p verify

2 < p<∞, if n ≤ p,

2 < p < np
n − p

, if n > p:

8<
: ð2Þ

In the last few decades, the researchers have shown sig-
nificant interest in polynomial nonlinear terms in different
areas, such as edge detection, viscoelasticity, engineering,
electromagnetic, electrochemistry, cosmology, signal pro-
cessing material science, turbulence, diffusion, physics, and
acoustics. Many other problems in applied sciences are also
modeled by linear and nonlinear evolutionary partial differ-
ential equations [1–13]. Various dynamical systems in phys-
ics and engineering are also modeled by using evolutionary
differential equations. Many researchers have contributed a
lot to provide an outstanding history of the evolutionary dif-
ferential partial equations related to pðxÞ-Laplacian such as
[13–17].

The majority of problems in science are nonlinear, and it
is not easy to find its analytical solutions. The physical prob-
lems are mostly designed by using higher nonlinear partial
differential equations (PDEs). It is found to be very difficult
to find the exact or analytical solutions for such problems.
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However, in the last several centuries, many scientists have
made significant progress and adopted different techniques
to study the analytical side of the nonlinear PDEs. Through
recent years and in the literature on nonlinear PDEs, loga-
rithmic nonlinearity has received much interest from mathe-
maticians and physicists. If we read in recent research, we
notice that logarithmic nonlinearity has been entered into
nonrelativistic wave equations that describe spinning parti-
cles that move in an external electromagnetic field and in
the relativistic wave equation for spinless particles (see, for
example, [2, 4, 18, 19]). In addition to what we mentioned
above, this type of nonlinearity is used in various branches
of physics such as optics, nuclear physics, geophysics, and
inflationary cosmology (to read about this in detail, see
[18–31]). Given all the basic previous meanings in physics,
the study of universal solutions of this type of nonlinear log-
arithms is of great interest on the part of mathematicians.

Recently, Wu and Xue in [32] gave the uniformly proof of
energy decay of the solution using the multiplier method of
the following problem:

utt − div ∇uj jp−2∇u� �
− Δut + utj jq−1ut = uj jp−1u: ð3Þ

Moreover, the author in [33] studied the exponential and
polynomial decay rate of solutions for seminar problem (3)
by applying the inequality of Nakao.

On the another handle, for a Laplacian parabolic equa-
tion related to the logarithmic in the right-hand side, the
authors in [24] gave the analytical side of the following prob-
lem:

ut − Δu − Δut = u ln u: ð4Þ

Then, in [27], Nhan and Truong studied the global exis-
tence, decay together with the blow up the solutions of the
following problem:

ut − div ∇uj jp−2∇u� �
− Δut = uj jp−2u ln uj j, ð5Þ

where p > 2: In addition, in [25], Cao and Liu gave for 1 < p
< 2, the blow up and global boundedness results of problem
(5).

Most recently, in [14], Piskin et al. studied the p-Lapla-
cian hyperbolic case

utt − div ∇uj jp−2∇u� �
+ uj jp−2u + ut = uj jp−2u ln uj j, x ∈Ω, t > 0:

ð6Þ

Motivated by the last mentioned papers, especially [14],
in this current research, we consider problem (1) with the
presence of nonlinear diffusion Δp = div ðj∇ujp−2∇uÞ, loga-
rithmic nonlinearity jujp−2u ln juj together with a damping
term which is an extension of the previous recent analytical
study in [14], where the authors considered the hyperbolic
case without damping terms. Our goal is to exploit a potential
well method for problem (1) in order to obtain global exis-
tence and decay estimate of solutions. More precisely, we give

the global existence and decay estimates of solutions under
some sufficient conditions.

2. Preliminaries

In this section, we put the definitions and lemmas that we
need in the rest of the paper:

uk kp = uk kLp Ωð Þ, uk k1,s = uk kW1,p
0 Ωð Þ = uk kp + ∇uk kp

� �1/p
,

ð7Þ

for 1 < p <∞: We denote the positive constants by C and Ci
(i = 1, 2,⋯).

We give the function of energy by

E tð Þ = 1
p

∇uk kpp +
1
p

uk kpp −
1
p

ð
Ω

ln uj jupdx + 1
p2

uk kpp: ð8Þ

Lemma 1. EðtÞ is a nonincreasing function, for t ≥ 0

E′ tð Þ = − utk k2 ≤ 0: ð9Þ

Proof. Multiplying equation (1) by ut and using the integra-
tion on Ω, we have

−
ð
Ω

div ∇uj jp−2∇u� �
utdx +

ð
Ω

uj jp−2uutdx +
ð
Ω

ututdx

=
ð
Ω

up−2u ln uj jutdx,

ð10Þ

d
dt

1
p

∇uk kpp +
1
p

uk kpp −
1
p

ð
Ω

ln uj jupdx + 1
p2

uk kpp
� �

= − utk k2:

ð11Þ
Thus,

E′ tð Þ = − utk k2: ð12Þ

Lemma 2 (see [5, 14]). Let u be any function u ∈W1,p
0 ðRnÞ \

f0g . Then, for p > 1, μ > 0

p
ð
Rn

up ln uj j
uk kLp Rnð Þ

 !
dx

≤ μ
ð
Rn

∇uj jpdx − n
p
ln pμe

nLp

 !ð
Rn

uj jpdx,
ð13Þ

where

Lp =
p
n

p − 1
e

� �p−1

π−p/2 Γ n/2 + 1ð Þ
Γ n p − 1ð Þ/p + 1ð Þ
� 	p/n

: ð14Þ
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Remark 3. Let u ∈W1,p
0 ðΩÞ \ f0g and by defining uðxÞ = 0 for

x ∈ Rn \Ω, we can write

p
ð
Ω

up ln uj j
uk kLp Ωð Þ

 !
dx

≤ μ
ð
Ω

∇uj jpdx − n
p
ln pμe

nLp

 !ð
Ω

uj jpdx:
ð15Þ

Lemma 4 (see [27]). Let ϑ > 0. Therefore, we can easy give the
following result:

log s ≤ Csϑ, ð16Þ

∀s ∈ ½1,∞Þ, such as C = e−1/ϑ:

Remark 5. According to Lemma 4, we have

sp log s ≤ Csp+ϑ, s ∈ 1,∞½ Þ: ð17Þ

Lemma 6 (see [34]).

(i) For all function u ∈W1,p
0 ðΩÞ, we have

uk kq ≤ Bq,p ∇uk kp, ð18Þ

for every q ∈ ½1,∞� if n ≤ p, and 1 ≤ q ≤ np/ðn − pÞ if n > p:We
choose constant Bq,p related only onΩ, p and q:Denote Bp,p by
Bp:

(ii) For every u ∈W1,p
0 ðΩÞ, p ≥ 1 with r ≥ 1, we get

uk kq ≤ C ∇uk kαp uk k1−αr , ð19Þ

where C > 0,

α = 1
r
−
1
q

� �
1
n
−
1
p
+ 1
r

� �−1

, ð20Þ

and we have the following:

(i) For p ≥ n = 1,r ≤ q ≤∞

(ii) For n > 1 and p < n,q ∈ ½r, ðnp/n − pÞ� if r ≤ np/n − p
and q ∈ ½r, ðnp/n − pÞ� if r ≤ np/n − p

(iii) For p = n > 1,r ≤ q <∞

(iv) For p > n > 1,r ≤ q ≤∞

3. Result of the Global Existence

We give in this section the proof of the global existence for
(1). First, putting the following functionals:

J uð Þ = 1
p

∇uk kpp +
p + 1
p2

uk kpp −
1
p

ð
Ω

ln uj jupdx, ð21Þ

I uð Þ = ∇uk kpp + uk kpp −
ð
Ω

ln uj jupdx: ð22Þ

Hence, (21) and (22) give

J uð Þ = 1
p
I uð Þ + 1

p2
uk kpp, ð23Þ

and we have

E uð Þ = J uð Þ: ð24Þ

As in [35], the potential depth of the well is given as

0 < d = inf
u

sup
λ≥0

J λuð Þ: u ∈W1,p
0 Ωð Þ, uk kpp ≠ 0


 �
, ð25Þ

0 < d = inf
u∈ℵ

J tð Þ: ð26Þ

Hence, two sets can be assigned, the first stableW and the
second V unstable by

W = u ∈W1,p
0 Ωð Þ: J uð Þ < d, I uð Þ > 0

n o
∪ 0f g,

V = u ∈W1,p
0 Ωð Þ: J uð Þ < d, I uð Þ < 0

n o
:

ð27Þ

Lemma 7. Let u be all function u ∈W1,p
0 ðΩÞ \ f0g, kukpp ≠ 0

and let ðλÞ = JðλuÞ. Hence, we have

(i) lim
λ→∞

gðλÞ = −∞, lim
λ→0+

gðλÞ = 0

(ii) IðλuÞ = λg′ðλÞ
>0, 0 ≤ λ < λ∗,
= 0, λ = λ∗,
<0, λ < λ∗<∞,

8>><
>>:

where

λ∗ = exp
∇uk kpp + uk kpp −

Ð
Ω
ln uj j uj jpdx

uk kpp

 !
: ð28Þ

Proof.

(i) From gðλÞ which we get
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g λð Þ = J λuð Þ = 1
p

λ∇uk kpp +
p + 1
p2

λuk kpp

−
1
p

ð
Ω

ln λuj j λuð Þpdx = λp

p
∇uk kpp

+ λp

p
p + 1
p

− ln λj j
� �

uk kpp

−
λp

p

ð
Ω

ln uj j uj jpdx:

ð29Þ

According to kukpp ≠ 0, we find lim
λ→∞

gðλÞ = −∞, and lim
λ→0

gðλÞ = 0:

(ii) From the derivative of gðλÞ, we get

g′ λð Þ = d
dλ

J λuð Þ
= λp−1 ∇uk kpp + 1 − ln λj jð Þ uk kpp

�
−
ð
Ω

ln uj j uj jpdx
�
:

ð30Þ

There exists a unique λ∗ verify ðd/dλÞJðλuÞjλ=λ∗ , by tak-
ing

λ∗ = exp
∇uk kpp + uk kpp −

Ð
Ω
ln uj j uj jpdx

uk kpp

 !
: ð31Þ

Of course, we note that the recent property is the result of
the following:

λ
dJ λuð Þ
dλ

= λg′ λð Þ = I λuð Þ: ð32Þ

Thus, we have the desired results such that

I λuð Þ = λg′ λð Þ
>0, 0 ≤ λ < λ∗,
= 0, λ = λ∗,
<0, λ < λ∗<∞:

8>><
>>: ð33Þ

Lemma 8. For every u ∈W1,p
0 ðΩÞ \ f0g and l = eðn+p

2Þ/p2

ðp2/nLpÞn/p
2

, we get

(i) If 0 < kukp < l, then IðuÞ > 0

(ii) If IðuÞ < 0, then kukp > l

(iii) If IðuÞ = 0, then kukp ≥ l

Proof. According to inequality of logarithmic Sobolev, it can
be found

I uð Þ = ∇uk kpp + uk kpp −
ð
Ω

ln uj j
uk kp

+ ln uk kp
 !

uj jpdx

≥ ∇uk kpp + 1 − ln uk kp
� �

uk kpp

−
μ

p

ð
Ω

∇uj jpdx − n
p2

ln pμe
nLp

 !ð
Ω

uj jpdx
" #

≥ 1 − μ

p

� �
∇uk kpp + 1 − ln uk kp +

n
p2

ln pμe
nLp

 ! !
uk kpp:

ð34Þ

Selecting μ = p in (34) gives

I uð Þ ≥ 1 − ln uk kp +
n
p2

ln p2e
nLp

 ! !
uk kpp: ð35Þ

Thus, we have

(i) If 0 < kukp < l, then IðuÞ > 0 using the last inequality

(ii) Suppose that IðuÞ < 0: This is due to (35), and it

uk kp ≥ e n+p2ð Þ/p2 p2

nLp

 !n/p2

= l ð36Þ

(iii) Similar to the proof of (ii), we prove (iii)

As for functional J , it represents the Nehari manifold

ℵ = u ∈W1,p
0 Ωð Þ \ 0f g: I uð Þ = 0

n o
: ð37Þ

Using Lemma 7 in order to prove that ℵ is an unempty
set, consider that if u ∈ℵ, we obtain

J uð Þ = 1
p2

uk kpp: ð38Þ

We use (23). Further, it proves that J is coercive with
respect to ℵ: In addition, if we give Ω1 and Ω2 such that

Ω1 = x ∈Ω : u xð Þ < 1j jf g,
Ω2 = x ∈Ω : u xð Þ ≥ 1j jf g:

ð39Þ
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From Remark 5, we can get that

ð
Ω

uj jp ln uj jdx ≤
ð
Ω1

uj jp ln uj jdx +
ð
Ω2

uj jp ln uj jdx

≤ C
ð
Ω2

uj jp+ζdx ≤ C uk kp+ζp+ζ,

ð40Þ

where ζ > 0: Under Lemma 6, we get

ð
Ω

ln uj j uj jpdx ≤ C uk kp+ζp+ζ ≤ C ∇uk kα p+ζð Þ
p uk k 1−αð Þ p+ζð Þ

p , ð41Þ

where

α = 1
p
−

1
p + ζ

� � 1
n
−
1
p
+ 1
p

� �−1
= nζ
p p + ζð Þ : ð42Þ

Choosing ζ < p2/n, we obtain

α p + ζð Þ < p: ð43Þ

By using Young’s inequality together with (41), we get

ð
Ω

uj jp ln uj jdx ≤ ε ∇uk kpp + Cε uk kpp
� �β

, ð44Þ

where ε > 0 and β = ð1 − αÞðp + ζÞ/p − αðp + ζÞ > 1: As u ∈ℵ,
by (22) and (44), we get

uk kpp + ∇uk kpp =
ð
Ω

uj jp ln uj jdx,

uk kpp + ∇uk kpp ≤ ε ∇uk kpp + Cε uk kpp
� �β

,

∇uk kpp ≤ ε ∇uk kpp + Cε uk kpp
� �β

,

1 − εð Þ ∇uk kpp ≤ Cε uk kpp
� �β

: ð45Þ

Select ε < 1. Then, combining (38) and (44), we find

J tð Þ = 1
p2

uk kpp ≥ Cε ∇uk kpp
� �1/β

: ð46Þ

Hence, the coercivity of J on ℵ.

Lemma 9.

(i) The depth of the potential well is given by

d = inf
u∈ℵ

J uð Þ = inf sup
λ≥0

J λuð Þ: u ∈W1,p
0 Ωð Þ/ 0f g, uk kpp ≠ 0


 �
ð47Þ

(ii) d admis a positive lower bound, given by

d ≥
1
p2

e n+p2ð Þ/p p2

nLp

 !n/p

= lp

p2
= K , ð48Þ

where Lp is given as in Lemma 2

(iii) There exists a positive function u ∈ℵ, verify JðuÞ = d

Proof.

(i) According to Lemma 7, it implies that for every u ∈
W1,p

0 ðΩÞ \ f0g, there exists a λ∗, verify Iðλ∗uÞ = 0,
that is λ∗u ∈ℵ: Using (47) gives

J λ∗uð Þ ≥ inf
u∈ℵ

J uð Þ = d: ð49Þ

From Lemma 7, the maximizer of JðλuÞ is exact λ∗, such
that

sup
λ≥0

J λuð Þ = J λ∗uð Þ = 1
p
I λ∗uð Þ + 1

p2
λ∗uk kpp =

1
p2

λ∗uk kpp:

ð50Þ

By the combination of (50) and (49), we find

inf
u∈W1,p

0 Ωð Þ/ 0f g
sup
λ≥0

J λuð Þ = inf
u∈W1,p

0 Ωð Þ/ 0f g
J λ∗uð Þ ≥ d: ð51Þ

So that, as u ∈W1,p
0 ðΩÞ \ f0g, we have d ≠ 0: And if u ∈ℵ

by (30), we obtain that λ∗ is the only critical point in ð0,∞Þ
of the mapping gðλÞ: Therefore,

sup
λ>0

J λuð Þ = J uð Þ, ð52Þ

for any u ∈ℵ: Then,

inf
u∈W1,p

0 Ωð Þ/ 0f g
sup
λ>0

J λuð Þ ≤ inf
u∈ℵ

sup
λ>0

J λuð Þ = inf
u∈ℵ

J uð Þ = d: ð53Þ

By (51) and (53), (i) is obtained.

(ii) From Lemma 7, ∀u ∈W1,p
0 ðΩÞ \ f0g, we get Iðλ∗tÞ

= 0: Lemma 8 gives
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λ∗uk kp ≥ e n+p2ð Þ/p2 p2

nLp

 !n/p2

= l: ð54Þ

By using (50) and (54), we get

sup
λ>0

J λuð Þ ≥ lp

p2
= K: ð55Þ

According to (i), we find that d ≥ K:

(iii) Consider the minimize sequence fukg∞k ⊂ u ∈ℵ for
J , verify

lim
k→∞

J ukð Þ = d: ð56Þ

Hence, we have fjukjg∞k ⊂ u ∈ℵ is also a minimizing
sequence for J due to jukj ⊂ u ∈ℵ and JðjukjÞ = JðukÞ: For
this, we can suppose that uk > 0 a.e. Ω for any k ∈ u ∈ℵ:

From it, we note that J is coercive on u ∈ℵ; in other
words, fukg∞k is bounded in W1,p

0 ðΩÞ: Since W1,p
0 ðΩÞ°LpðΩ

Þ is compact embedding, ∃u is a function and a subsequence
of fukg∞k , still given by fukg∞k , such that

uk → uweakly inW1,p
0 Ωð Þ,

uk → u strongly in Lp Ωð Þ,
uk xð Þ→ u xð Þ a:e:inΩ:

ð57Þ

Hence, u ≥ 0 on Ω and

J tð Þ = 1
p

∇uk kpp +
p + 1
p2

uk kpp −
1
p

ð
Ω

ln uj jupdx

≤ lim
k→∞

inf p + 1
p2

uk kpp +
1
p

∇uk kpp −
1
p

ð
Ω

ln uj jupdx
� �

= lim
k→∞

inf J ukð Þ = d:

ð58Þ

We apply Lebesgue dominated convergence theorem and
weak lower semicontinuity.

As uk ∈ u ∈ℵ, we have uk ∈W
1,p
0 ðΩÞ \ f0g and IðukÞ

which implies

ukk kp ≥ e n+p2ð Þ/p2 p2

nLp

 !n/p2

= l: ð59Þ

According to Lemma 8, we have kukp ≠ 0 converge

strongly in LpðΩÞ; that is to say, that u ∈W1,p
0 ðΩÞ \ f0g:

Moreover, using weak lower continuity, we find

I uð Þ = uk kpp + ∇uk kpp −
ð
Ω

ln uj jupdx

≤ lim
k→∞

inf uk kpp + ∇uk kpp −
ð
Ω

ln uj jupdx
� �

= lim
k→∞

inf I ukð Þ = 0:

ð60Þ

As a final stage of proof (iii), we prove that IðuÞ = 0: If
this is false, we get IðuÞ < 0 ; hence, by Lemma 7, ∃λ∗ < 1
which verifying Iðλ∗uÞ = 0: Further, we find

0 < d ≤ J λ∗uð Þ = 1
p2

λ∗uk kpp ≤
λ∗ð Þp
p2

lim
k→∞

inf ukk kpp
= λ∗ð Þp lim

k→∞
inf J ukð Þ = λ∗ð Þpd < d:

ð61Þ

And it produces a stark contrast. Meaning that the proof
of Lemma 9 has ended.

Definition 10. We say that function uðtÞ represents a weak
solution to problem (1) on Ω × ½0, TÞ, if

u ∈ C 0, Tð Þ ;W1,p
0 Ωð Þ

� �
∩ C1 0, Tð Þ ; L2 Ωð Þ� �

,

ut ∈ L
∞ 0, Tð Þ ; L2 Ωð Þ� � ð62Þ

satisfies

Lemma 11. Let u0 ∈W
1,p
0 ðΩÞ \ f0g and l = eðn+p

2Þ/p2

ðp2/nLpÞn/p
2

: Suppose that 0 < Eð0Þ < lp/p2 < d:

(i) If u0 ∈W, then u ∈W for 0 ≤ t ≤ T

(ii) If u0 ∈ V , then u ∈ V for 0 ≤ t ≤ T ,

such that T is the maximum time of existence of uðtÞ:

Proof.

(i) We put T is the maximum time of existence of solu-
tion u. From (24) combined with (47), we find

ð
Ω

∇uj jp−2∇u∇wdx +
ð
Ω

uj jp−2uw xð Þdx +
ð
Ω

utw xð Þdx = k
ð
Ω

ln u x, tð Þj jup−2 x, tð Þw xð Þdx, ∀w ∈H1
0 Ωð Þ,

u x, 0ð Þ = u0 xð Þ:

8><
>: ð63Þ
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J uð Þ ≤ J u0ð Þ < d,∀t ∈ 0, T½ Þ: ð64Þ

Then, we have uðtÞ ∈W for every t ∈ 0, TÞ. If it is false,
hence ∃t0 ∈ ½0, TÞ verify uðt0Þ ∈ ∂W, we get either Iðu0Þ = 0
and kΔðu0Þk ≠ 0 or (b) Jðu0Þ = d.

According to (64), (b) is impossible, that is, Iðu0Þ = 0
and kΔðu0Þk ≠ 0. But it is ∃Jðu0Þ ≥ d if 0 < d = inf

u∈ℵ
JðuÞ:

From this, we have a stark contrast, uðtÞ ∈W is obtained
for ∀t ∈ 0, TÞ:

(ii) In the same way, we prove case (ii)

Theorem 12. Consider u0ðxÞ ∈W1,p
0 ðΩÞ \ f0g. If Iðu0Þ > 0

and Eð0Þ < d or ku0kpp = 0: Therefore, problem (1) admits a

weak global solution uðtÞ ∈ L∞ð0,∞;W1,p
0 ðΩÞ \ f0gÞ,

utðtÞ ∈ L∞ð0,∞;L2ðΩÞÞ:

Proof. Consider the orthogonal basis fwjg∞j=1 of the “separa-
ble” space W1,p

0 ðΩÞ which is orthonormal in L2ðΩÞ: Let the
following subspace Vm on the finite dimensional

Vm = span w1,w2,⋯,wmf g, ð65Þ

where the projections of the initial data be defined by

um0 xð Þ = 〠
m

j=1
ajwj xð Þ→ u0 inH2

0 Ωð Þ, ð66Þ

for all j = 1, 2,⋯,m:
Now, we can see the approximated solutions of (1) as in

the following form

um x, tð Þ = 〠
m

j=1
hmj tð Þwj xð Þ, ð67Þ

of the approximate problem in Vm

It produces an ordinary differential equation system
(ODE) made up of unknown functions hmj ðtÞ. Starting from
the standard theory of existence, there are functions

hj : 0, tm½ Þ→ R, j = 1, 2,⋯,m, ð69Þ

which verify (68) in a maximal interval ½0, tmÞ, 0 < tm ≤ T:
Next, we prove that tm = T and that the local solution is uni-
formly bounded independent ofm and t. For this purpose, let
us replace w by umt in (68) and integrate by parts, we get

d
dt

Em tð Þ = − umtk k2 ≤ 0, ð70Þ

such as

Em tð Þ = 1
p

∇umk kpp +
p + 1
p2

umk kpp −
1
p

ð
Ω

umj jp ln umj jdx:

ð71Þ

Integrating (70) from 0 to t, and using (24), we obtain

J umð Þ +
ðt
0

umsk k2ds = Em 0ð Þ: ð72Þ

According to (68), with m→∞, we find Emð0Þ→ Eð0Þ:
We select m large enough; we find

J umð Þ +
ðt
0

umsk k2ds < d: ð73Þ

Hence, by (23), we have

J uð Þ = 1
p
I uð Þ + 1

p2
uk kpp: ð74Þ

By u0 ∈W,

J um 0ð Þð Þ = E 0ð Þ ; ð75Þ

we select m large enough and 0 ≤ t <∞; we find umð0Þ ∈W:
By (24) and Lemma 11, by picking m large enough and 0 ≤
t <∞, we get mðtÞ ∈W: Further, according to (24) and
(21), we obtain

1
p

∇umk kpp +
p + 1
p2

umk kpp −
1
p

ð
Ω

umj jp ln umj jdx +
ðt
0

umsk k2ds < d,

ð76Þ

ð
Ω

∇umj jp−2∇um∇wdx +
ð
Ω

umj jp−2umw xð Þdx +
ð
Ω

umt w xð Þdx = k
ð
Ω

umj jp−2 x, tð Þ ln um x, tð Þj jw xð Þdx,w ∈ Vm,

um 0ð Þ = um0 = 〠
m

j=1
u0,wj

� �
wj:

8>>>><
>>>>:

ð68Þ
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where 0 ≤ t <∞: By choosing m large enough and 0 ≤ t <∞
(76), we get

∇umk kpp < pd,

umk kpp <
p2

p + 1 d,

ðt
0

umsk k2ds < d: ð77Þ

According to Remark 5, we find

ð
Ω

umj jp ln umj jdx ≤
ð
Ω1

umj jp ln umj jdx

+
ð
Ω2

umj jp ln umj jdx

≤ C
ð
Ω2

umj jp+ζdx ≤ C umk kp+ζp+ζ,

ð78Þ

where ζ is pick satisfying p + ζ < np/ðn − pÞ as p < n and ζ > 0
as p ≥ n and Ω1 = fx ∈Ω : jumðxÞ < 1jg and Ω2 = fx ∈Ω : j
umðxÞ ≥ 1jg:

Applying the embedding theorem, Lemma 6 and Young’s
inequality, gives from (78):

ð
Ω

ln umj j umj jpdx

≤ C umk kp+ζp+ζ

≤ C ∇umuk kα p+ζð Þ
p umk k 1−αð Þ p+ζð Þ

p

≤ ε ∇umuk kpp + Cε umk kpp
� � 1−αð Þp p+ζð Þ/p p−α p+ζð Þ½ �

≤ Cε ∇umuk kpp:

ð79Þ

Therefore, we choose 0 < ζ for p > αðp + ζÞ, where ε ∈ ð0
, 1Þ with

α = 1
p
−

1
p + ζ

� � 1
n
−
1
p
+ 1
p

� �−1
, 1 − αð Þp p + ζð Þ

p − α p + ζð Þ > 1:

ð80Þ

Using (79) and (76), for 0 ≤ t <∞, we find
ð
Ω

ln umj j umj jpdx < Cεpd: ð81Þ

Hence, we get

um is uniformly bounded in L∞ 0,∞;W1,p
0 Ωð Þ

� �
,

umt is uniformly bounded in L∞ 0,∞;L2 Ωð Þ� �
:

8<
:

ð82Þ

Using the integration on (68), we get for 0 ≤ t <∞

ð
Ω

umwsdx =
ð
Ω

u0wsdx +
ðt
0

ð
Ω

ln umj jk umj jp−1wsdxds

−
ðt
0

ð
Ω

∇umj jp−2 sð Þ∇um sð Þ∇wsdxds

−
ðt
0

ð
Ω

umj jp−2 sð Þum sð Þwsdx:

ð83Þ

Further, after passing through the limit in (ref 4030), we
arrive at the weak solution leftðu rightÞ to the problem (ref
300). According to the initial data in (ref 300), we conclude
that ðuðx, 0ÞÞ = ðu0Þ in W1,p

0 .

4. Decay of Solution

In this section, by using the Lyapunov functional, we show
the decay of solution to (1).

First, we define the Lyapunov functional by

L tð Þ = E tð Þ + ε

2

ð
Ω

u2dx, ð84Þ

where ε > 0. We will prove the equivalence between LðtÞ and
EðtÞ.

Lemma 13. For ε > 0 small enough, we have

β1L tð Þ ≤ E tð Þ ≤ β2L tð Þ, ð85Þ

where β1, β2 > 0:
We find L ~ E by choosing ε small enough.

Theorem 14. Let u0 ∈ V . Assume further 0 < Eð0Þ < ðp + 1Þ/
p2μlp < d, where

l = en+p
2/p2 p2

nLp

 !n/p2

,

μn−p
2/npe 1−pð Þ n+p2ð Þ p

nLp

 !1−p/p

< μ < p β − pð Þ + βC∗

β − pð Þ ;

ð86Þ

hence, ∃c1, c2 > 0 satisfies

0 < E tð Þ ≤ c1e
−c2t , t ≥ 0: ð87Þ

Proof. A differentiation of LðtÞ and equation (1) gives

L′ tð Þ = E′ tð Þ + ε
ð
Ω

uutdx = − utk k2

− ε ∇uk kpp + uk kpp
� �

+ ε
ð
Ω

ln uj jupdx:
ð88Þ
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Adding and subtracting εβEðtÞ into (88) (β > 0), we
obtain

L′ tð Þ = − utk k2 + ε
β − p
p

� �
∇uk kpp + ε

β − p
p

� �
uk kpp

+ ε 1 − β

p

� �ð
Ω

ln uj jupdx + 1
p2

εβ uk kpp − εβE tð Þ

≤ − utk k2 + ε
β − p
p

� �
1 + C∗β

p β − pð Þ
� �

∇uk kpp

+ ε
β − p
p

� �
uk kpp + ε 1 − β

p

� �ð
Ω

ln uj jupdx:

ð89Þ

Using the inequality of logarithmic Sobolev together with
kukpp ≤ C∗k∇ukpp(C∗ > 0) gives

L′ tð Þ ≤ − utk k2 + ε
β − p
p

� �
1 + C∗β

p β − pð Þ
� �

∇uk kpp

+ ε
β − p
p

� �
uk kpp + ε 1 − β

p

� �ð
Ω

ln uj jupdx − εβE tð Þ

≤ −εβE tð Þ − utk k2 + ε
β − p
p

� �
1 + C∗β

p β − pð Þ −
μ

p

� �
∇uk kpp

− ε
β − p
p

� �
ln uk kp −

n
p2

ln pμe
nLp

 !
+ 1

 !" #
uk kpp:

ð90Þ

Noting that 0 < β < p and using (21) and Theorem 12, we
find

ln uk kp ≤ ln p2

p + 1 J uð Þ
� �

≤ ln p2

p + 1 E tð Þ
� �

≤ ln p2

p + 1 E 0ð Þ
� �

≤ ln μlp
� �

= ln μen+p
2/p pμ

nLp

 !n/p !
:

ð91Þ

By μ satisfying

μn−p
2/npe 1−pð Þ n+p2ð Þ p

nLp

 !1−p/p

< μ < p β − pð Þ + βC∗

β − pð Þ , ð92Þ

we guarantee

1 + C∗β

p β − pð Þ −
μ

p

� �
> 0, ð93Þ

ln uk kp −
n
p2

ln pμe
nLp

 !
+ 1

 !
> 0 ; ð94Þ

then, we obtain

L′ tð Þ ≤ −εβE tð Þ − utk k2: ð95Þ

Hence, inequality (95) becomes

L′ tð Þ ≤ −εβE tð Þ: ð96Þ

According to (85), we get

L′ tð Þ ≤ −εββ2L tð Þ: ð97Þ

Setting c2 = εββ2 > 0 and integrating (97) yield

L tð Þ ≤ c1e
−c2t: ð98Þ

Finally, by (85), we obtain (87). This is the end of the
proof.

5. Conclusion

As mentioned earlier in the introduction, the majority of
problems in science are nonlinear and their analytical solu-
tions are not easy to find, and most physical problems mostly
use higher nonlinear partial differential equations (PDEs). It
has been found to be extremely difficult to find accurate or
analytical solutions to such problems. However, in the past
several centuries, many scientists have made great progress
and adopted various techniques to study the analytical side
of these famous problems, and nonlinear logarithmic has also
received much attention from physicists and mathemati-
cians. Log nonlinearity was introduced into the relativistic
wave equation describing spinning particles moving in an
external electromagnetic field and in the relativistic wave
equation (see, for example, [1–3, 6, 14, 18, 19, 29, 36, 37]);
in this contribution, under some sufficient initial and bound-
ary conditions, we have studied the analytical side of p
-Laplacian heat equations with respect to logarithmic nonlin-
earity in the right-hand side, where the global existence and
decay estimates of weak solutions are proved. In the next
work, we extend our recent work to the coupled system for
this important problem. Also, some numerical examples will
be given in order to ensure the theory study by using some
famous algorithms which are presented in [38, 39].
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In this paper, we discuss a class of fractional semilinear integrodifferential equations of mixed type with delay. Based on the theories
of resolvent operators, the measure of noncompactness, and the fixed point theorems, we establish the existence and uniqueness of
global mild solutions for the equations. An example is provided to illustrate the application of our main results.

1. Introduction

Fractional calculus can be used to describe some nonclassical
phenomena in natural science and engineering applications.
Fractional differential equations have been applied in differ-
ent fields ranging from engineering, finance, and physics in
the past few decades. Researchers have conducted extensive
explorations on this subject and have achieved fruitful results
for the fractional differential equations [1–13]. Zhu and Han
[10] and Chadha and Pandey [11] studied the fractional inte-
grodifferential equations and discussed the existence of mild
solutions. Based on the theory of the resolvent family and
fixed point theorems, Chen et al. [14–17] analyzed nonau-
tonomous evolution equations in a Banach space. Moreover,
some researchers considered sufficient conditions on the
existence of mild solutions for fractional differential equations
by the measure of noncompactness [4, 18, 19]. The initial
boundary value problem for the fractional integrodifferential
equations with delay has been investigated by using fixed point
theorems [4, 5, 18, 20]. In [3, 21–24], differential equations of
mixed type have been studied and some results have been
concluded.

Chen [22] studied the fractional nonautonomous evolu-
tion equations of mixed type:

cDβ
t u tð Þ + A tð Þu tð Þ = f t, u tð Þ, Tu tð Þ, Su tð Þð Þ, t ∈ 0, að �,

u 0ð Þ = A−1 0ð Þu0,

(

ð1Þ

where

Tu tð Þ =
ðt
0
K t, sð Þu sð Þds,

Su tð Þ =
ða
0
H t, sð Þu sð Þds,

ð2Þ

where the kernels K andH are linear functions. The operator
T is an integral with a variable upper limit, and the operator S
is an ordinary definite integral; accordingly, problem (1) is
called fractional semilinear integrodifferential equations of
mixed type.

Li and Jia [25] investigated the existence of mild solutions
for abstract delay fractional differential equations:

cDβ
t u tð Þ = Au tð Þ + J1−βt f t, utð Þ, t ∈ 0, T½ �,

u tð Þ = φ tð Þ, t ∈ −r, 0½ �,

(
ð3Þ
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where β ∈ ð0, 1Þ, J1−βt is the Riemann-Liouville fractional
integral, the linear operator A is independent on t, and the
Lipschitz coefficient of f is constant.

To the best of our knowledge, there are no results on the
fractional integrodifferential equations of mixed type with
delay. Motivated by this idea, we consider the following
problem:

cDβ
t x tð Þ = A tð Þx tð Þ + J1−βt f t, xt ,Kxt ,Hxtð Þ, t ∈ 0, T0½ �,

x tð Þ = ϕ tð Þ, t ∈ −r, 0½ �,

(

ð4Þ

where β ∈ ð0, 1�, cDβ
t is the Caputo fractional derivative of

order β, AðtÞ is a closed and linear operator with domain

DðAÞ defined on a Banach space E, J1−βt is the Riemann-
Liouville fractional integral of order 1 − β, K and H are
defined by

Kxt =
ðt
0
K t, s, xsð Þds,

Hxt =
ðT0

0
H t, s, xsð Þds,

ð5Þ

where K : D × Cð½−r, 0� ; EÞ⟶ E and H : D0 × Cð½−r, 0� ; EÞ
⟶ E are continuous and nonlinear functions, D = fðt, sÞ
∈ R2 : 0 ≤ s ≤ t ≤ T0g, J = ½0, T0�, D0 = fðt, sÞ ∈ R2 : 0 ≤ t, s ≤
T0g, ϕ ∈ C½−r, 0�, f is to be specified later, and xt means
the element of Cð½−r, 0� ; EÞ defined by xtðθÞ = xðt + θÞ, −r
≤ θ ≤ 0, for x ∈ Cð½−r, T0� ; EÞ, t ∈ J .

We demonstrate the existence and uniqueness of global
mild solutions for problem (4) under the conditions of the
compact resolvent operator and noncompact resolvent oper-
ator, respectively. The kernels K and H of the operators K
and H are nonlinear functions. In addition, the operator A
ðtÞ is dependent on t: The rest of this paper is organized as
follows. Basic definitions and auxiliary results are presented
in Section 2. In Section 3, we prove the existence and unique-
ness of mild solutions via various fixed point theorems, the
measure of noncompactness, and the Banach contraction
mapping principle. An example is provided to illustrate the
main theorems in Section 4. Finally, Section 5 is the summary
of our results.

2. Preliminaries

Definition 1 [6, 26]. The Riemann-Liouville fractional inte-

gral Jβt and derivative Dβ
t of a function f : ð0,∞Þ⟶ R of

order β > 0 are defined by

Jβt f tð Þ = 1
Γ βð Þ

ðt
0
t − sð Þβ−1 f sð Þds,

Dβ
t f tð Þ = 1

Γ n − βð Þ
d
dt

� �nðt
0
t − sð Þn−β−1 f sð Þds,  n − 1 < β ≤ n,

ð6Þ

where f ðtÞ ∈ L1ðð0, T0Þ ; EÞ, Γð·Þ denotes the gamma func-
tion, and n ∈N .

Remark 2 [25]. Dβ
t f ðtÞ =Dm

t J
m−β
t f ðtÞ, where Dm

t = dm/dtm
and Jm−β

t f ðtÞ ∈Wm,1ðð0, T0Þ ; EÞ.

Definition 3 [26, 27]. The Caputo fractional derivative of
order β > 0 of a function f : ð0,∞Þ⟶ R is given by

cDβ
t f tð Þ = 1

Γ n − βð Þ
ðt
0
t − sð Þn−β−1 f nð Þ sð Þds, n − 1 < β < n:

ð7Þ

Remark 4 [25]. For the Riemann-Liouville fractional integral
operator and the Caputo fractional derivative operator, the
following conclusions are obtained:

cDβ
t f tð Þ =Dβ

t f tð Þ − 〠
m−1

k=0

tk

k!
f kð Þ 0ð Þ

 !
,

cDβ
t Jβt f tð Þ
� �

= f tð Þ,

Jβt
cDβ

t f tð Þð Þ
� �

= f tð Þ − 〠
m−1

k=0

tk

k!
f kð Þ 0ð Þ:

ð8Þ

Definition 5 [28, 29]. Let AðtÞ be a closed and linear operator
with domain DðAÞ defined on a Banach space E and β > 0.
Let ρ½AðtÞ� be the resolvent set of AðtÞ. AðtÞ is called the
generator of a β-resolvent family if there exist ω ≥ 0 and
a strongly continuous function Uβ : R2

+ ⟶ BðEÞ such that

fλβ : Re λ > ωg ⊂ ρðAÞ and

λβI − A sð Þ
� �−1

x =
ð∞
0
e−λ t−sð ÞUβ t, sð Þxdt,  Re λð Þ > ω, x ∈ E:

ð9Þ

In this case, Uβðt, sÞ is called the β-resolvent family
generated by AðtÞ.

Remark 6 [29, 30]. Uβðt, sÞ satisfies the following properties:

(1) Uβðs, sÞ = I and Uβðt, sÞ =Uβðt, rÞUβðr, sÞ, for 0 ≤ s
≤ r ≤ t ≤ a

(2) ðt, sÞ⟶Uβðt, sÞ is strongly continuous for 0 ≤ s ≤ t
≤ a

(3) If Uβðt, sÞ is compact for t, s > 0, then Uβðt, sÞ is con-
tinuous in the uniform operator topology

Lemma 7 [21]. Let B ⊂ C½J , E� be equicontinuous and
bounded; then, �CoB ⊂ C½J , E� is also equicontinuous and
bounded.
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Lemma 8 [24]. Let B ⊂ C½J , E� be equicontinuous and
bounded; then, αðBðtÞÞ is continuous on J and

α
ð
J
B sð Þds

� �
≤
ð
J
α B sð Þdsð Þ, α Bð Þ =max

t∈J
α B tð Þð Þ, ð10Þ

where α denotes the measure of noncompactness.

Lemma 9 [21]. Let E be a Banach space and D ⊂ E be
bounded; then, there exists a countable set D0 ⊂D such that
αðDÞ ≤ 2αðD0Þ.

Lemma 10 [31]. Let E be a Banach space and D ⊂ E be a
bounded closed and convex set. Assume that Q : D⟶D is
a strict set contraction mapping; then, Q has at least one fixed
point in D.

Definition 11. A function x ∈ Cð½−r, T0� ; EÞ is a mild solution
of problem (4), if x satisfies the following equations:

x tð Þ = Uβ t, 0ð Þϕ 0ð Þ +
ðt
0
Uβ t, sð Þf s, xs,Kxs,Hxsð Þds, t ∈ 0, T0½ �,

ϕ tð Þ, t ∈ −r, 0½ �:

8><
>:

ð11Þ

3. Main Results

Let us introduce the operator Ψ : Cð½−r, T0� ; EÞ⟶ Cð½−r,
T0� ; EÞ by

Ψx tð Þ = Uβ t, 0ð Þϕ 0ð Þ +
ðt
0
Uβ t, sð Þf s, xs,Kxs,Hxsð Þds, t ∈ 0, T0½ �,

ϕ tð Þ, t ∈ −r, 0½ �:

8><
>:

ð12Þ

Theorem 12. Assume that the following conditions hold:
(H1). The resolvent operator Uβðt, sÞ is compact for all t,

s > 0,M⋆ =max kUβðt, sÞk < +∞,0 ≤ s ≤ t ≤ T0.
(H2). K : D × Cð½−r, 0� ; EÞ⟶ E and H : D0 × Cð½−r, 0�

; EÞ⟶ E are continuous; there exist nonnegative Lebesgue
integrable functions pi ∈ LðJ , R+Þði = 1, 2Þ such that ∥Kðt, s,
xÞ∥≤p1ðtÞ∥x∥Cð½−r,0�;EÞ and ∥Hðt, s, xÞ∥≤p2ðtÞ∥x∥Cð½−r,0�;EÞ, for
all ðt, sÞ ∈D, ðt, sÞ ∈D0, x ∈ Cð½−r, 0� ; EÞ.

(H3). f : J × Cð½−r, 0� ; EÞ × Cð½−r, 0� ; EÞ × Cð½−r, 0� ; EÞ
⟶ E is continuous; there exist nonnegative Lebesgue inte-
grable functions a, Li ∈ LðJ , R+Þði = 1, 2, 3Þ such that ∥f ðt,
x1, x2, x3Þ∥≤aðtÞ +∑3

i=1LiðtÞ∥xi∥Cð½−r,0�;EÞ, for all t ∈ J , xi ∈ C
ð½−r, 0� ; EÞ.

Then, problem (4) has at least one mild solution x ∈ C
ð½−r, T0� ; EÞ.

Proof. Let us set the notation R1 > 0 such that

R1 ≥
M⋆ϕ0 +M⋆Ð T0

0 a sð Þds
1 −M⋆ Ð T0

0 L1 sð Þds + Ð T0
0 L2 sð ÞÐ T0

0 p1 νð Þdνds + Ð T0
0 L3 sð ÞÐ T0

0 p2 νð Þdνds
� � ,

ð13Þ

where ϕ0 = kϕð0Þk and ðÐ 0 T0L1ðsÞds +
Ð T0
0 L2ðsÞ

Ð T0
0 p1ðνÞdν

ds +
Ð T0
0 L3ðsÞ

Ð T0
0 p2ðνÞdνdsÞ−1 >M⋆.

First of all, we consider the set BR1
= fx ∈ Cð½−r, T0� ; EÞ

: kxkCð½−r,T0�;EÞ ≤ R1g and show that ΨBR1
⊂ BR1

. By using
conditions (H2) and (H3), for all x ∈ BR1

, we have

Ψxð Þ tð Þk k ≤ Uβ t, 0ð Þϕ 0ð Þ�� �� + ðt
0
Uβ t, sð Þf s, xs,Kxs,Hxsð Þ�� ��ds

≤M⋆ϕ0 +M⋆
ðt
0
f s, xs,Kxs,Hxsð Þk kds ≤M⋆ϕ0

+M⋆
ðt
0
a sð Þ + L1 sð Þ xsk k + L2 sð Þ Kxsk k + L3 sð Þ Hxsk kð Þds

≤M⋆ϕ0 +M⋆
ðt
0
a sð Þds +M⋆

ðt
0
L1 sð Þds +

ðt
0
L2 sð Þ

�

�
ðs
0
p1 νð Þdνds +

ðt
0
L3 sð Þ

ðT0

0
p2 νð Þdνds

�
xk kC −r,0½ �;Eð Þ

≤M⋆ϕ0 +M⋆
ðT0

0
a sð Þds +M⋆

ðT0

0
L1 sð Þds +

ðT0

0
L2 sð Þ

�

�
ðT0

0
p1 νð Þdνds +

ðT0

0
L3 sð Þ

ðT0

0
p2 νð Þdνds

�
xk kC −r,T0½ �;Eð Þ ≤ R1:

ð14Þ

So, we conclude that Ψ maps BR1
into itself.

Second, we prove that Ψ : BR1
⟶ BR1

is continuous.
Let fxng∞0 ⊂ Cð½−r, T0� ; EÞ, with xn ⟶ xðn⟶∞Þ, x

∈ Cð½−r, T0� ; EÞ. Using the fact that K : D × Cð½−r, 0� ; EÞ
⟶ E, H : D0 × Cð½−r, 0� ; EÞ⟶ E, and f : J × Cð½−r, 0� ;
EÞ × Cð½−r, 0� ; EÞ × Cð½−r, 0� ; EÞ⟶ E are continuous, we
obtain

f t, xnð Þt ,K xnð Þt ,H xnð Þt
� �

⟶ f t, xt ,Kxt ,Hxtð Þ n⟶∞ð Þ,
ð15Þ

for any t ∈ J uniformly. That is, for any ε > 0, there exists
a natural number N0, for n >N0, t ∈ J , such that

f t, xnð Þt ,K xnð Þt ,H xnð Þt
� �

− f t, xt ,Kxt ,Hxtð Þ�� �� ≤ ε

M⋆T0
,

ð16Þ

which implies that

Ψxnð Þ tð Þ − Ψxð Þ tð Þk k =
ðt
0
Uβ t, sð Þf s, xnð Þs,K xnð Þs,H xnð Þs

� �
ds

����
−
ðt
0
Uβ t, sð Þf s, xs,Kxs,Hxsð Þds

����
≤M⋆

ðt
0

f s, xnð Þs,K xnð Þs,H xnð Þs
� ���

− f s, xs,Kxs,Hxsð Þkds ≤M⋆T0
ε

M⋆T0
= ε:

ð17Þ

In consequence, Ψ : BR1
⟶ BR1

is continuous.
Furthermore, we prove that ΨðBR1

Þ is equicontinuous.
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To do this, let LðsÞ = L1ðsÞ + L2ðsÞ
Ð T0
0 p1ðνÞdν + L3ðsÞ

Ð T0
0

p2ðνÞdν. Obviously, it is a nonnegative Lebesgue integrable
function. For all x ∈ BR1

, t1, t2 ∈ Jðt1 < t2Þ, we have

Ψxð Þ t2ð Þ − Ψxð Þ t1ð Þ∥≤∥ Uβ t2, 0ð Þ −Uβ t1, 0ð Þ� �
ϕ 0ð Þ�� ��

+
ðt2
t1

Uβ t2, sð Þf s, xs,Kxs,Hxsð Þds
�����

�����
+
ðt1
0

Uβ t2, sð Þ −Uβ t1, sð Þ� �
f s, xs,Kxs,Hxsð Þds

����
����

≤ ϕ0 Uβ t2, 0ð Þ −Uβ t1, 0ð Þ�� �� +M⋆
ðt2
t1

f s, xs,Kxs,Hxsð Þk kds

+ sup
s∈J

Uβ t2, sð Þ −Uβ t1, sð Þ�� ��ðt1
0

f s, xs,Kxs,Hxsð Þk kds

≤ ϕ0 Uβ t2, 0ð Þ −Uβ t1, 0ð Þ�� �� +M⋆
ðt2
t1

a sð Þ + L sð ÞR1ð Þds

+ sup
s∈J

Uβ t2, sð Þ −Uβ t1, sð Þ�� ��ðt1
0
a sð Þ + L sð ÞR1ð Þds

≕ I1 + I2 + I3:

ð18Þ

In view of condition ðH1Þ, compactness of the resolvent
operator Uβðt, sÞðt, sÞ > 0 implies the continuity in the uni-
form operator topology. That is, for any ε > 0, there exists
δ1 > 0, for any jt2 − t1j < δ1, t1, t2 ∈ J , such that I3 < ε/3.
Hence, for the above ε > 0, by using properties of Uβðt, sÞ
and the above inequalities, there exists δ > 0 (δ < δ1) such
that kðΨxÞðt2Þ − ðΨxÞðt1Þk < ε, for any jt2 − t1j < δ, t1, t2 ∈ J
. Consequently, ΨðBR1

Þ is equicontinuous.
In the end, we prove that ΨðBR1

Þ is precompact.
For any fixed tðt ∈ ½−r, T0�Þ and 0 < ε < t, the operator

ðΨεxÞðtÞ is defined by

Ψεxð Þ tð Þ = Uβ t, 0ð Þϕ 0ð Þ +
ðt−ε
0
Uβ t, sð Þf s, xs,Kxs,Hxsð Þds, t ∈ 0, T0½ �,

ϕ tð Þ,  t ∈ −r, 0½ �:

8><
>:

ð19Þ

Since Uβðt, sÞðt, sÞ > 0 is a compact resolvent operator,
then the set Y εðtÞ = fðΨεxÞðtÞ: x ∈ BR1

g is relatively com-
pact in E for any ε (0 < ε < t).

Moreover, for any x ∈ BR1
, one can find that

Ψxð Þ tð Þ − Ψεxð Þ tð Þk k =
ðt
t−ε
Uβ t, sð Þf s, xs,Kxs,Hxsð Þds

����
����

≤M⋆
ðt
t−ε

f s, xs,Kxs,Hxsð Þds
����

����
≤M⋆

ðt
t−ε

a sð Þ + L sð ÞR1ð Þds

≤M⋆ a sð Þk k + L sð Þk kR1ð Þε:
ð20Þ

Thus, YðtÞ = fðΨxÞðtÞ: x ∈ BR1
g is totally bounded. Hence,

YðtÞ is relatively compact in E, and so, based on the Arzelà-
Ascoli theorem, Ψ : BR1

⟶ BR1
is completely continuous.

As all the assumptions of the Schauder fixed point theorem
are satisfied, the conclusion implies that the operator Ψ has
a fixed point x in Cð½−r ; T0�, EÞ, which is a global mild solu-
tion of problem (4). This completes the proof.

Next, we develop the existence of global mild solutions
for problem (4) via the measure of noncompactness and
fixed point theorem. Furthermore, we employ the nota-
tions: TR = fx ∈ Cð½−r, T0� ; EÞ: kxkCð½−r,T0�;EÞ ≤ Rg, k0 = sup
fkKðt, s, xsÞk: ðt, s, xsÞ ∈D × Cð½−r, 0� ; EÞg, h0 = sup fkHðt,
s, xsÞk: ðt, s, xsÞ ∈D0 × Cð½−r, 0� ; EÞg, and R ≥max fT0k0,
T0h0g.

Theorem 13. Assume that (H1) and the following conditions
hold:

(H4). The function f : J × TR × TR × TR ⟶ E is bounded
and continuous, which satisfies

lim
R→∞

sup M Rð Þ
R

< 1
T0M

⋆ , ð21Þ

where MðRÞ = sup fk f ðt, x1, x2, x3Þk: ðt, x1, x2, x3Þ ∈ J × TR
× TR × TRg.

(H5). For any R, there exist nonnegative Lebesgue integra-
ble functions qi ∈ LðJ , R+Þ, ði = 1, 2, 3, 4, 5Þ such that for any
equicontinuous and countable set Di ⊂ TRði = 1, 2, 3Þ, αð f ðt,
D1,D2,D3ÞÞ ≤ ∑3

i=1qiðtÞαðDiÞ, αðKðt, s,D2ÞÞ ≤ q4ðtÞαðD2Þ,
and αðHðt, s,D3ÞÞ ≤ q5ðtÞαðD3Þ.

(H6). 2M⋆Ð T0
0 ðq1ðsÞ + q2ðsÞ

Ð T0
0 q4ðνÞdν + q3ðsÞ

Ð T0
0 q5ðνÞd

νÞds < 1:
Then, problem (4) has at least one mild solution.

Proof. By (H4), there exists 0 < μ < 1/T0M
⋆ and R0 > 0, for

any R ≥ R0, such that

M Rð Þ < μR: ð22Þ

Let R⋆ =max fR0,M⋆ϕ0ð1 −M⋆T0μÞ−1g; we first con-
sider the set BR⋆ = fx ∈ Cð½−r, T0� ; EÞ: kxkCð½−r,T0�;EÞ ≤ R⋆g
and show that ΨBR⋆ ⊂ BR⋆ . From the above inequality, for
all x ∈ BR⋆ , we have

Ψxk kC −r,T0½ �;Eð Þ ≤ Uβ t, 0ð Þϕ 0ð Þ�� �� + ðt
0
Uβ t, sð Þ�� �� f s, xs,Kxs,Hxsð Þk kds

≤M⋆ϕ0 +M⋆T0M R⋆ð Þ ≤M⋆ϕ0 +M⋆T0μR
⋆ ≤ R⋆:

ð23Þ

Meanwhile, applying the arguments employed in the
proof of Theorem 12, we conclude that Ψ is a continuous
and bounded operator on BR⋆ .
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Then, we prove that ΨðBR⋆Þ is equicontinuous. For any
x ∈ BR⋆ , t1, t2 ∈ Jðt1 < t2Þ, we have

Ψxð Þ t2ð Þ − Ψxð Þ t1ð Þ ≤k k Uβ t2, 0ð Þ −Uβ t1, 0ð Þ� �
ϕ 0ð Þ�� ��

+
ðt2
t1

Uβ t2, sð Þf s, xs,Kxs,Hxsð Þ�� ��ds
+
ðt1
0

Uβ t2, sð Þ −Uβ t1, sð Þ� �
f s, xs,Kxs,Hxsð Þ�� ��ds

≤ ϕ0 Uβ t2, 0ð Þ −Uβ t1, 0ð Þ�� �� +M⋆ t2 − t1ð ÞM R⋆ð Þ
+ sup

s∈J
Uβ t2, sð Þ −Uβ t1, sð Þ�� ��M R⋆ð Þt1:

ð24Þ

By (H1), the compactness of Uβðt, sÞ, for ðt, sÞ > 0,
implies the continuity in the uniform operator topology.
Namely, for any ε > 0, there exists δ1 > 0, for any ∣t2 − t1 ∣ <
δ1, t1, t2 ∈ J , such that

sup
s∈J

Uβ t2, sð Þ −Uβ t1, sð Þ�� ��M R⋆ð Þt1 <
ε

3 : ð25Þ

Therefore, for the above ε > 0, there exists δ > 0 (δ < δ1)
such that kðΨxÞðt2Þ − ðΨxÞðt1Þk < ε, for all x ∈ BR⋆ , jt2 − t1j
< δ, t1, t2 ∈ J , which shows that ΨðBR⋆Þ is equicontinuous.
In view of Lemma 7, �CoΨðBR⋆Þ ⊂ BR⋆ is bounded and
equicontinuous.

Finally, we prove that Ψ : �CoΨðBR⋆Þ⟶ �CoΨðBR⋆Þ is a
condensing operator. By Lemma 9, for any D ⊂ �CoΨðBR⋆Þ,
there exists a countable set D0 = fxng ⊂D such that

α Ψ Dð Þð Þ ≤ 2α Ψ D0ð Þð Þ: ð26Þ

By using condition (H5) and Lemma 8, we obtain

α Ψ D0ð Þ tð Þð Þ = α
ðt
0
Uβ t, sð Þf s, D0ð Þs,K D0ð Þs,H D0ð Þs

� �
ds

� �

≤M⋆
ðt
0
α f s, D0ð Þs,K D0ð Þs,H D0ð Þs
� �� �

ds

≤M⋆
ðt
0
q1 sð Þα D0ð Þs

� �
+ q2 sð Þα K D0ð Þs

� ��
+ q3 sð Þα H D0ð Þs

� �Þds
≤M⋆

ðt
0

q1 sð Þ + q2 sð Þ
ðs
0
q4 νð Þd νð Þ

�

+ q3 sð Þ
ðT0

0
q5 νð Þd νð Þ

�
dsα Dð Þ:

ð27Þ

In addition, using Lemma 8, we have

α Ψ D0ð Þð Þ =max
t∈J

α Ψ D0ð Þ tð Þð Þ: ð28Þ

Consequently,

α Ψ Dð Þð Þ ≤ 2M⋆
ðT0

0
q1 sð Þ + q2 sð Þ

ðT0

0
q4 νð Þd νð Þ

�

+ q3 sð Þ
ðT0

0
q5 νð Þd νð Þ

�
dsα Dð Þ:

ð29Þ

By (H6), we obtain that Ψ is a condensing operator on
�CoΨðBR⋆Þ. By Lemma 10, there exists at least one fixed point
x ∈ �CoΨðBR⋆Þ ⊂ Cð½−r, T0� ; EÞ forΨ. In conclusion, problem
(4) has at least one global mild solution. This completes the
proof.

Remark 14. Theorems 12 and 13 above are concluded under
the conditions that Uβðt, sÞ is compact for t, s > 0 and the
functions f , K , and H satisfy corresponding conditions; in
contrast, when the resolvent operator Uβðt, sÞ is noncom-
pact, we could obtain Theorem 15 if f , K , and H meet the
Lipschitz conditions.

Theorem 15. Assume that the following conditions hold:
(H7). f : J × Cð½−r, 0� ; EÞ × Cð½−r, 0� ; EÞ × Cð½−r, 0� ; EÞ

⟶ E is continuous; there exist nonnegative Lebesgue inte-
grable functions gi ∈ LðJ , R+Þði = 1, 2, 3Þ, for all t ∈ J , ui, vi ∈
E, such that

f t, u1, u2, u3ð Þ − f t, v1, v2, v3ð Þk k ≤ 〠
3

i=1
gi tð Þ ui − vik kC −r,0½ �;Eð Þ:

ð30Þ

(H8). K : D × Cð½−r, 0� ; EÞ⟶ E and H : D0 × Cð½−r, 0�
; EÞ⟶ E; there exist nonnegative Lebesgue integrable func-
tions g4, g5 ∈ LðJ , R+Þ, for all u, v ∈ E, ðt, sÞ ∈D, ðt, sÞ ∈D0
such that

K t, s, uð Þ − K t, s, vð Þk k ≤ g4 tð Þ u − vk kC −r,0½ �;Eð Þ,
H t, s, uð Þ −H t, s, vð Þk k ≤ g5 tð Þ u − vk kC −r,0½ �;Eð Þ:

ð31Þ

(H9). M⋆Ð T0
0 ðg1ðsÞ + g2ðsÞ

Ð T0
0 g4ðνÞdν + g3ðsÞ

Ð T0
0 g5ðνÞd

νÞds < 1:
Then, problem (4) has a unique mild solution.

Proof. For any u, v ∈ Cð½−r, T0� ; EÞ,

Ψuð Þ tð Þ − Ψvð Þ tð Þk k ≤M⋆
ðt
0
f s, us,Kus,Husð Þk

− f s, vs,Kvs,Hvsð Þkds ≤M⋆
ðt
0
g1 sð Þ us − vsk kð

+ g2 sð Þ Kus −Kvsk k + g3 sð Þ Hus −Hvsk kÞds ≤M⋆
ðT0

0

� g1 sð Þ + g2 sð Þ
ðT0

0
g4 νð Þdν

�
+g3 sð Þ

ðT0

0
g5 νð Þdν

�
ds u − vk kC −r,T0½ �;Eð Þ:

ð32Þ

By (H9), we have kΨu −ΨvkCð½−r,T0�;EÞ < ku − vkCð½−r,T0�;EÞ.
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These arguments enable us to conclude that the operatorΨ is
a contraction mapping. Hence, the operator Ψ has a unique
fixed point x⋆ ∈ Cð½−r, T0� ; EÞ, which implies that problem
(4) has a unique global mild solution. This completes the
proof.

Remark 16. In Theorem 15, we develop the uniqueness of the
mild solution for problem (4) via the Banach contraction

mapping principle. In conditions (H7) and (H8), gi ∈ LðJ ,
R+Þði = 1, 2, 3, 4, 5Þ turn out to be nonnegative Lebesgue inte-
grable functions instead of constants.

4. An Application

In order to show the application of the main results, we con-
sider the following problem:

where 0 < β < 1, cDβ
t is the Caputo fractional derivative of

order β, J1−βt is the Riemann-Liouville fractional integral of
order 1 − β, Ω ⊂ℝn is a bounded domain with regular
boundary ∂Ω, and φ ∈ Cð½−r, 0� ; EÞ, E = Cð�Ω ;ℝÞ, �Ω =Ω

S
∂Ω:

By setting xðtÞ = xð·, tÞ, problem (33) can be rewritten as
the following abstract form:

cDβ
t x tð Þ = A tð Þx tð Þ + J1−βt f t, xt ,Kxt ,Hxtð Þ, t ∈ 0, 1½ �,

x tð Þ = φ tð Þ, t ∈ −r, 0½ �,

(

ð34Þ

where xt = xðt + θÞ, f ðt, xt ,Kxt ,HxtÞ = ððt/ð1 + t2ÞÞxt + ð1/
ð1 + t2ÞÞÐ t0aðsÞxsds + ð1/ð1 + etÞÞÐ 10bðsÞxsdsÞ, and

D Að Þ = x ∈ C �Ω, R
� �

: x′′ ∈ C �Ω, R
� �n o

,

A tð Þx = x′′, t ∈ −r, 0½ �:

8<
: ð35Þ

It is well known that the operator AðtÞ generates a β
-resolvent family Uβðt, sÞ [23, 25]. Let equation (34) satisfy
the conditions of Theorems 12–15; then, problem (34) has
a global mild solution, which means that problem (33) has
a mild solution.

5. Conclusion

In this paper, we study the existence and uniqueness of the
global mild solutions for the fractional integrodifferential
equations of mixed type with delay. Under the condition of
the compact resolvent operator, we obtain Theorems 12
and 13, respectively, via various fixed point theorems and
the measure of noncompactness. Theorem 15 is established
by using the Banach contraction mapping principle under
the condition of the noncompact resolvent operator. Further-
more, an example is provided to illustrate the main theorems.

The kernels K and H of the operators K and H are nonlin-
ear functions; meanwhile, the operator AðtÞ is dependent on
t. As a consequence, our main theorems improve and gener-
alize many corresponding results by using different methods.
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This paper studies the system of coupled nondegenerate viscoelastic Kirchhoff equations with a distributed delay. By using the
energy method and Faedo-Galerkin method, we prove the global existence of solutions. Furthermore, we prove the exponential
stability result.

1. Introduction

Let H =Ω × ðτ1, τ2Þ × ð0,∞Þ, in this work, we consider

uj jlutt −M ∇uk k2� �
Δu − Δutt +

ðt
0
g1 t − sð ÞΔu sð Þds −

ðτ2
τ1

μ1 ϱð Þj jΔut x, t − ϱð Þdϱ + f1 u, vð Þ = 0,

vj jlvtt −M ∇vk k2� �
Δv − Δvtt +

ðt
0
g2 t − sð ÞΔv sð Þds −

ðτ2
τ1

μ2 ϱð Þj jΔvt x, t − ϱð Þdϱ + f2 u, vð Þ = 0,

8>>>><
>>>>:

ð1Þ

where

x, ϱ, tð Þ ∈H , ð2Þ

under the initial and boundary conditions

u x, 0ð Þ, v x, 0ð Þð Þ = u0 xð Þ, v0 xð Þð Þ, inΩ,
ut x, 0ð Þ, vt x, 0ð Þð Þ = u1 xð Þ, v1 xð Þð Þ, inΩ,
ut x,−tð Þ, vt x,−tð Þð Þ = f0 x, tð Þ, g0 x, tð Þð Þ, inΩ × 0, τ2ð Þ,
u x, tð Þ = v x, tð Þ = 0, in ∂Ω × 0,∞ð Þ,

8>>>>><
>>>>>:

ð3Þ

where Ω be a bounded domain in ℝn with smooth boundary
∂Ω, l > 0 and Δ is the Laplacian operator, and the functions
μ1, μ2 : ½τ1, τ2�⟶ℝ are bounded, with 0 ≤ τ1 < τ2, and the
relaxation functions are denoted by g1, g2. The function M
is given by

M : ℝ+ ⟶ℝ+,
r↦M rð Þ = a + brγ,

ð4Þ

with a, b > 0, and γ ≥ 1, and the functions f1, f2 will be
defined later.
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In 1976, Kirchhoff developed an equation describing the
vibrations produced by a fixed series at its end, since it is con-
sidered a generalization of the d’Alembert equation, and it
belongs to the wave equation models. Over time, many
researchers and authors addressed these issues and problems
with their continuous and rapid development, for example,
see [1–4].

As for viscoelasticity, it is possible to delve into the fol-
lowing works for further clarification [3–10].

Also, the time or delay recorded in many natural and
physical phenomena, especially problems resulting from
vibrations, is an important factor for stability in general.
And it has been studied extensively by many authors, includ-
ing [5–7, 11–21]. Recently, in the presence of the varying
delay, Mezouar and Boularrass studied system (1); for more
information, see [22]. Based on these works, we in this work
expand the results in [22] by adding the term of distributed
delay.

We, under appropriate conditions, obtained the global
existence of solutions, and we proved the exponential stabil-
ity result of the system.

And we divided the paper into the following: in the sec-
ond part, we set out the necessary hypotheses and the main
result; in the third part, we prove the global existence of solu-
tions, while in the fourth part, we present our result for expo-
nential stability.

2. Preliminaries

In this section, we set the necessary hypotheses for proving
the main result.

We need the following assumptions:
(A1) gi : ℝ+ ⟶ℝ+, i = 1, 2 are C1 functions satisfying

g 0ð Þ > 0, a −
ð∞
0
gi sð Þds ≥ k > 0, i = 1, 2: ð5Þ

(A2) ∃ξi > 0 satisfying

gi′ tð Þ ≤ −ξigi tð Þ, i = 1, 2, t ≥ 0: ð6Þ

(A3) The number l satisfying 0 < l ≤ γ and

≤
2

n − 2 if n > 2,

γ<∞ if n ≤ 2:

8<
: ð7Þ

(A4)

f1 u, vð Þ = a1v + b1 vj jq+1 vj jp−1u,
f2 u, vð Þ = a1u + b2 uj jq+1 vj jp−1v,

(
ð8Þ

where a1 > 0, b1 = ðp + 1Þðp + qÞ, b2 = ðq + 1Þðp + qÞ such
that pand q are onjugate ðð1/pÞ + ð1/qÞ = 1Þ, p, q < γ − ð1/2Þ
and satisfy

2 ≤ p, q ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

2 n − 2ð Þ
r

if n > 2,

∞ if n ≤ 2:

8><
>: ð9Þ

We set the notations

g ∘Ψð Þ tð Þ≔
ðt
0
g t − sð Þ Ψ tð Þ −Ψ sð Þk k2ds: ð10Þ

As in [17], we introduce the new variables

ut x, t − ϱρð Þ =Z x, ρ, ϱ, tð Þ,
vt x, t − ϱρð Þ =Y x, ρ, ϱ, tð Þ:

(
ð11Þ

We have

ϱZ t x, ρ, ϱ, tð Þ +Zρ x, ρ, ϱ, tð Þ = 0,
ut x, tð Þ =Z x, 0, ϱ, tð Þ,

(

ϱY t x, ρ, ϱ, tð Þ +Yρ x, ρ, ϱ, tð Þ = 0,
vt x, tð Þ =Y x, 0, ϱ, tð Þ:

( ð12Þ

Consequently, problem (1) is equivalent to

uj jlutt −M ∇uk k2� �
Δu − Δutt +

ðt
0
g1 t − sð ÞΔu sð Þds −

ðτ2
τ1

μ1 ϱð Þj jΔZ x, 1, ϱ, tð Þdϱ + f1 u, vð Þ = 0,

vj jlvtt −M ∇vk k2� �
Δv − Δvtt +

ðt
0
g2 t − sð ÞΔv sð Þds −

ðτ2
τ1

μ2 ϱð Þj jΔY x, 1, ϱ, tð Þdϱ + f2 u, vð Þ = 0,

ρZ t x, ρ, ϱ, tð Þ +Zρ x, ρ, ϱ, tð Þ = 0,
ρY t x, ρ, ϱ, tð Þ +Yρ x, ρ, ϱ, tð Þ = 0,

8>>>>>>>>>><
>>>>>>>>>>:

ð13Þ
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where

x, ρ, s, tð Þ ∈Ω × 0, 1ð Þ × τ1, τ2ð Þ × 0,∞ð Þ, ð14Þ

with the initial and boundary conditions

u x, 0ð Þ, v x, 0ð Þð Þ = u0 xð Þ, v0 xð Þð Þ, inΩ,
ut x, 0ð Þ, vt x, 0ð Þð Þ = u1 xð Þ, v1 xð Þð Þ, inΩ,
ut x,−tð Þ, vt x,−tð Þð Þ = f0 x, tð Þ, g0 x, tð Þð Þ, inΩ × 0, τ2ð Þ,
u x, tð Þ = v x, tð Þ = 0, in ∂Ω × 0,∞ð Þ,
Z x, ρ, ϱ, 0ð Þ = f0 x, ρϱð Þ, inΩ × 0, 1ð Þ × 0, τ2ð Þ,
Y x, ρ, ϱ, 0ð Þ = g0 x, ρϱð Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð15Þ

We need the following lemma.

Lemma 1. The energy functional E, given by

E tð Þ = 1
l + 2

∥ut∥
l+2
l+2+∥vt∥l+2l+2

� �
+ b
2 γ+2ð Þ

� ∥∇u∥2 γ+2ð Þ+∥∇v∥2 γ+2ð Þ
� �

+ 1
2

a −
ðt
0
g1 sð Þds

� �
∥∇u∥2

+ 1
2

a −
ðt
0
g2 sð Þds

� �
∥∇v∥2+ 1

2
∥∇ut∥

2+∥∇vt∥2
� �

+ 1
2

g1∘∇uð Þ tð Þ + 1
2

g2∘∇vð Þ tð Þ + 1
2

ð1
0

ðτ2
τ1

ρ μ1 ρð Þj jð

� ∥∇Z∥2 + μ2 ρð Þj j∥∇Y∥2
�
dρdρ + α

ð
Ω

uvdx

+ p + qð Þ
ð
Ω

uj jp+1 vj jq+1dx,

ð16Þ

satisfies

E′ tð Þ ≤ −β
ðτ2
τ1

μ1 ϱð Þj j∥∇Z x, 1, ϱ, tð Þ∥2 + μ2 ϱð Þj j�
� ∥∇Y x, 1, ϱ, tð Þ∥2Þdϱ + λ ∥∇ut∥

2+∥∇vt∥2
� �

+ 1
2

g1′∘∇u
� �

tð Þ + 1
2

g2
′∘∇v

� �
tð Þ − 1

2
g1 tð Þ

� ∥∇u tð Þ∥2 − 1
2
g2 tð Þ∥∇v tð Þ∥2,

ð17Þ

where β = ðð1 − δ1Þ/2Þ > 0,
and λ =max fλ1 = ððδ1 + 1Þ/2ÞÐ τ2

τ1
jμ1ðρÞjdρ, λ2 = ððδ1 +

1Þ/2ÞÐ τ2
τ1
jμ2ðρÞjdρg, δ1 < 1.

Proof.Multiplying equation (13)1,2 by ut , vt , and we use (15),
one gets

d
dt

	 1
l + 2 ∥ut∥

l+2
l+2 +

b
2 γ + 1ð Þ ∥∇ut∥

2 γ+1ð Þ + 1
2 a −

ðt
0
g1 sð Þds

� �

� ∥∇u∥2 + 1
2 ∥∇ut∥

2 + 1
2 g1∘∇uð Þ tð Þ



−
1
2 g1′∘∇u
� �

tð Þ

+ 1
2g1 tð Þ∥∇u tð Þ∥2 +

ð
Ω

ut

ðτ2
τ1

μ1 ϱð Þj jΔZ x, 1, ϱ, tð Þdϱdx

+
ð
Ω

utvdx + b1

ð
Ω

utu uj jp−1 vj jq+1dx + d
dt

	 1
l + 2 ∥vt∥

l+2
l+2

+ b
2 γ + 1ð Þ ∥∇vt∥

2 γ+1ð Þ + 1
2 a −

ðt
0
g2 sð Þds

� �
∥∇v∥2

+ 1
2 ∥∇vt∥

2 + 1
2 g2∘∇vð Þ tð Þ



−
1
2 g2′∘∇v
� �

tð Þ

+ 1
2g2 tð Þ∥∇v tð Þ∥2 +

ð
Ω

vt

ðτ2
τ1

μ2 ϱð Þj jΔY x, 1, ϱ, tð Þdϱdx

+
ð
Ω

vtudx + b2

ð
Ω

vtv vj jp−1 uj jq+1dx:

ð18Þ

And multiplying equation (13)3 by −ΔZjμ1ðϱÞj, and
integrating the result over Ω × ð0, 1Þ × ðτ1, τ2Þ, one gets

d
dt

1
2

ð
Ω

ð1
0

ðτ2
τ1

ϱ μ1 ϱð Þj j ∇Zð Þ2dϱdρdx

= −
ð
Ω

ð1
0

ðτ2
τ1

∣μ1 ϱð Þ∣∇Z∇Zρdϱdρdx

= −
1
2

ð
Ω

ð1
0

ðτ2
τ1

μ1 ϱð Þj j d
dρ

∇Zð Þ2dϱdρdx

= 1
2

ð
Ω

ðτ2
τ1

μ1 ϱð Þj j ∇Z x, 0, ϱ, tð Þð Þ2 − ∇Z x, 1, ϱ, tð Þð Þ2� �
dϱdx

= 1
2

ðτ2
τ1

μ1 ϱð Þj jdρ
ð
Ω

∇utj j2dx − 1
2

ð
Ω

ðτ2
τ1

μ1 ϱð Þj j

� ∇Z x, 1, ϱ, tð Þð Þ2dϱdx = 1
2

ðτ2
τ1

μ1 ϱð Þj jdϱ
 !

� ∥∇ut∥2 −
1
2

ðτ2
τ1

∣μ1 ϱð Þ∣∥∇Z x, 1, ϱ, tð Þ∥2dϱ:

ð19Þ

Similarly, multiplying equation (13)4 by −ΔY ∣ μ2ðρÞ ∣ ,
we find

d
dt

1
2

ð
Ω

ð1
0

ðτ2
τ1

ϱ μ2 ϱð Þj j ∇Yð Þ2dϱdρdx

= 1
2

ðτ2
τ1

μ2 ϱð Þj jdϱ
 !

∥∇vt∥
2

−
1
2

ðτ2
τ1

μ2 ϱð Þj j∥∇Y x, 1, ϱ, tð Þ ∥2dϱ,

ð20Þ
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by using the inequalities of Young and Cauchy-Schwartz for
δ1 > 0, we have

ð
Ω

∇ut
ðτ2
τ1

μ1 ϱð Þj j∇Z x, 1, ϱ, tð Þdϱdx

≤
δ1
2

ðτ2
τ1

μ1 ϱð Þj jdϱ
 !

∥∇ut∥
2

+ δ1
2

ðτ2
τ1

μ1 ϱð Þj j ∇Z x, 1, ϱ, tð Þk k2dϱ:

ð21Þ

Similarly, we get

ð
Ω

∇vt
ðτ2
τ1

μ2 ϱð Þj j∇Y x, 1, ϱ, tð Þdϱdx

≤
δ1
2

ðτ2
τ1

μ2 ϱð Þj jdϱ
 !

∥∇vt∥
2 + δ1

2

ðτ2
τ1

μ2 ϱð Þj j

� ∥∇Y x, 1, ϱ, tð Þ∥2dϱ:

ð22Þ

By summing (18)–(20) and using (21) and (22), and
choosing δ1 such that δ1 < 1, we find (16) and (17). This
completes the proof.

3. Global Existence

Theorem 2. Suppose that (5)–(8) hold. Then, given ðu0, v0Þ
∈ ðH2ðΩÞ ∩H1

0ðΩÞÞ2, ðu1, v1Þ ∈ ðH1
0ðΩÞÞ2, and ð f0, g0Þ ∈

ðH1ðΩ, ð0, 1Þ, ðτ1, τ2ÞÞÞ2, there exists a weak solution ðu, v,
Z ,YÞ of problem (13)–(15) such that

u, v,Z ,Yð Þ ∈ L∞ ℝ+,H 1ð Þ, ut , vt
∈ L∞ ℝ+,H1

0 Ωð Þ� �
, utt , vtt

∈ L2 ℝ+,H1
0 Ωð Þ� �

,
ð23Þ

where

H 1 = H2 Ωð Þ ∩H1
0 Ωð Þ� �2 × H1 Ω, 0, 1ð Þ, τ1, τ2ð Þð Þ� �2

: ð24Þ

Proof. Let the Galerkin basis uj, vj,Z j,Y j, for n ≥ 1, we set

Wn = span u1, u2,:⋯ , unf g,
Kn = span v1, v2,:⋯ , vnf g:

ð25Þ

The sequences Z jðx, τ, pÞ,Y jðx, τ, pÞ are defined for 1
≤ j ≤ n by

Z j x, 0, pð Þ = uj xð Þ,Y j x, 0, pð Þ = vj xð Þ: ð26Þ

Then, taking Z jðx, 0, pÞ,Y jðx, 0, pÞ by over L2ðð0, 1Þ ×
ð0, 1Þ × ðτ1, τ2ÞÞ and denoting

Zn = span Z1,Z2,:⋯ ,Znf g,
Yn = span Y1,Y2,:⋯ ,Ynf g:

ð27Þ

Given initial data u0, v0 ∈H2ðΩÞ ∩H1
0ðΩÞ, u1, v1 ∈H1

0
ðΩÞ, and f0, g0 ∈ L

2ððΩÞ × ð0, 1Þ × ðτ1, τ2ÞÞ, we define the
approximations

um = 〠
n

j=1
gjm tð Þuj xð Þ,

vm = 〠
n

j=1
hjm tð Þvj xð Þ,

Zm = 〠
n

j=1
f jm tð ÞZ j x, τ, pð Þ,

Ym = 〠
n

j=1
kjm tð ÞY j x, τ, pð Þ:

ð28Þ

It investigates the following problem:

umtj jlumtt , uj

� �
+M ∥∇um tð Þ∥ð Þ ∇um,∇uj

� �
+ ∇umtt ,∇uj

� �
+ f1 um, vmð Þ, uj

� �
−
ðt
0
g1 t − sð Þ ∇um sð Þ,∇uj

� �
ds

+
ðτ2
τ1

μ1 ϱð Þj j ∇Zm x, 1, ϱ, tð Þ,∇uj

� �
dϱ = 0,

vmtj jlvmtt , vj
� �

+M ∥∇vm tð Þ∥ð Þ ∇vm,∇vj
� �

+ ∇vmtt ,∇vj
� �

+ f2 um, vmð Þ, vj
� �

−
ðt
0
g2 t − sð Þ ∇vm sð Þ,∇vj

� �
ds

+
ðτ2
τ1

μ2 ϱð Þj j ∇Ym x, 1, ϱ, tð Þ,∇vj
� �

dϱ = 0,

ϱZmt x, ρ, ϱ, tð Þ,Z j

� �
+ Zmρ x, ρ, ϱ, tð Þ,Z j

� �
= 0,

ϱYmt x, ρ, ϱ, tð Þ,Y j

� �
+ Ymρ x, ρ, ϱ, tð Þ,Y j

� �
= 0,

ð29Þ

with initial conditions

um 0ð Þ = um0 , umt 0ð Þ = um1 ,
vm 0ð Þ = vm1 , vmt 0ð Þ = vm1 ,
Zm 0ð Þ =Zm

0 ,Ym 0ð Þ =Ym
0 ,

ð30Þ
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which satisfies

um0 ⟶ u0, inH2 Ωð Þ ∩H1
0 Ωð Þ,

um1 ⟶ u1, inH1
0 Ωð Þ,

vm0 ⟶ v0, inH2 Ωð Þ ∩H1
0 Ωð Þ,

vm1 ⟶ v1, inH1
0 Ωð Þ,

Zm
0 ⟶Z0, in L2 Ω × 0, 1ð Þ × τ1, τ2ð Þð Þ,

Ym
0 ⟶Y0, in L2 Ω × 0, 1ð Þ × τ1, τ2ð Þð Þ:

ð31Þ

Noting that ðl/ð2ðl + 1ÞÞÞ + ð1/ð2ðl + 1ÞÞÞ + ð1/2Þ = 1, by
using Hölder’s inequality, we get

umtj jlumtt , uj

� �
=
ð
Ω

umtj jlumttujdx

≤
ð
Ω

∣ umtj2 l+1ð Þdx
� �1/ 2 l+1ð Þð Þ

� ∥umtt∥2 l+1ð Þ∥uj∥2:

ð32Þ

As (8) holds, using the embedding of Sobolev, the
terms ðjumtjlumtt , ujÞ and ðjvmtjlvmtt , vjÞ in (29) make
sense (see [22]).

First estimate.
As the sequences um0 , vm0 , um1 , vm1 ,Zm

0 ð:,:,0Þ and Ym
0 ð:,:,0Þ

converge and from (17) and Gronwall’s lemma, we get C1 > 0
independent of m such that

Em tð Þ + β
ðτ2
τ1

ϱ μ1 ϱð Þj j∥∇Zm x, 1, ϱ, tð Þ∥2�
+ μ2 ϱð Þj j∥∇Ym x, 1, ϱ, tð Þ∥2�dϱ ≤ C1,

ð33Þ

where

Em tð Þ = 1
l + 2 ∥umt∥

l+2
l+2+∥vmt∥

l+2
l+2

� �
+ b
2 γ+2ð Þ ∥∇um∥

2 γ+2ð Þ
�

+ ∥∇vm∥
2 γ+2ð Þ

�
+ 1
2 a −

ðt
0
g1 sð Þds

� �
∥∇um∥

2

+ 1
2 a −

ðt
0
g2 sð Þds

� �
∥∇vm∥

2+ 1
2 ∥∇umt∥

2 + ∥∇vmt∥
2� �

+ 1
2 g1∘∇umð Þ tð Þ + 1

2 g2∘∇vmð Þ tð Þ

+ 1
2

ð1
0

ðτ2
τ1

ϱ μ1 ϱð Þj j∥∇Zm∥
2 + μ2 ϱð Þj j∥∇Ym∥

2� �
dϱdρ

+ α
ð
Ω

umvmdx + p + qð Þ
ð
Ω

umj jp+1 vmj jq+1dx,

ð34Þ

using (33) and (8), one gets

um, vm are bounded in L∞loc ℝ+,H1
0 Ωð Þ� �

,

umt , vmt are bounded in L∞loc ℝ+,H1
0 Ωð Þ� �

,

Zm x, ρ, ϱ, tð Þ,Ym x, ρ, ϱ, tð Þ are bounded in
L∞loc ℝ+,H1

0
�

Ω × 0, 1ð Þ × τ1, τ2ð Þð Þ:

ð35Þ

The second estimate.
We multiply equation (29)1,2 by gjmtt , hjmtt ; by summing

j from 1 to n, one gets

ð
Ω

umtj jl umttj j2dx+
ð
Ω

M ∥∇um tð Þ∥ð Þ∇um∇umttdx

+
ð
Ω

∇umttj j2dx +
ð
Ω

f1 um, vmð Þumttdx

−
ð
Ω

ðt
0
g1 t − sð Þ∇um sð Þ∇umttdsdx

+
ð
Ω

ðτ2
τ1

μ1 ρð Þj j∇Zm x, 1, ρ, tð Þ∇umttdρdx = 0,
ð
Ω

vmtj jl vmttj j2dx+
ð
Ω

M ∥∇vm tð Þ∥ð Þ∇vm∇vmttdx

+
ð
Ω

∇vmttj j2dx +
ð
Ω

f2 um, vmð Þvmttdx

−
ð
Ω

ðt
0
g2 t − sð Þ∇vm sð Þ∇vmttdsdx

+
ð
Ω

ðτ2
τ1

μ2 ϱð Þj j∇Ym x, 1, ϱ, tð Þ∇vmttdϱdx = 0:

ð36Þ

By differentiating (29)3,4, we get

ϱZmtt x, ρ, ϱ, tð Þ +Zmtρ x, ρ, ϱ, tð Þ,Z j

� �
= 0,

ϱYmtt x, ρ, ϱ, tð Þ +Ymtρ x, ρ, ϱ, tð Þ,Y j

� �
= 0:

ð37Þ

And we multiply (37)1 by Z jmt and (37)2 by Y jmt ; by
summing j from 1 to n, we have

1
2 ϱ

d
dt

∥Zmt∥
2 + 1

2
d
dρ

∥Zmt∥
2 = 0,

1
2 ϱ

d
dt

∥Ymt∥
2 + 1

2
d
dρ

∥Ymt∥
2 = 0:

ð38Þ

Integrating the result (38) over ð0, 1Þwith respect to ρ, we
obtain

1
2
d
dt

ð1
0
ϱ∥Zmt∥

2dρ + 1
2 ∥Zmt x, 1, ϱ, tð Þ∥2 − 1

2 ∥umtt x, tð Þ∥2 = 0,

1
2
d
dt

ð1
0
ϱ∥Ymt∥

2dρ + 1
2 ∥Ymt x, 1, ϱ, tð Þ∥2 − 1

2 vmtt x, tð Þk k2 = 0:

ð39Þ
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Summing (36) and (39) and using MðrÞ ≥ a, we get

ð
Ω

umtj jl umttj j2dx+∥∇umtt∥
2

+ 1
2
d
dt

ð1
0
ϱ∥Zmt∥

2dρ + 1
2 ∥Zmt x, 1, ρ, tð Þ∥2

≤
1
2 ∥umtt∥

2 −
ð
Ω

a∇um∇umttdx −
ð
Ω

f1 um, vmð Þumttdx

+
ð
Ω

ðt
0
g1 t − sð Þ∇um sð Þ∇umttdsdx

−
ð
Ω

ðτ2
τ1

μ1 ϱð Þj j∇Zm x, 1, ϱ, tð Þ∇umttdϱdx,
ð
Ω

vmtj jl vmttj j2dx+∥∇vmtt∥
2

+ 1
2
d
dt

ð1
0
ϱ∥Ymt∥

2dρ + 1
2 ∥Ymt x, 1, ϱ, tð Þ∥2

≤
1
2 ∥vmtt x, tð Þ∥2 −

ð
Ω

a∇vm∇vmttdx

−
ð
Ω

f2 um, vmð Þvmttdx +
ð
Ω

ðt
0
g2 t − sð Þ∇vm sð Þ∇vmttdsdx

−
ð
Ω

ðτ2
τ1

∣μ2 ϱð Þ∣∇Ym x, 1, ϱ, tð Þ∇vmttdρdx:

ð40Þ

At this point, we estimate the RHS of (40).
Integrating by parts, and using Young’s and Poincare’

inequalities, one gets

−
ð
Ω

f1 um, vmð Þumttdx
����

���� ≤ C2
∗α

2 ∇umtk k2 + ∇vmtk k2� �

+ b1ηC
4q q+1ð Þ
∗

2 Ωj jq−12q ∥∇vm∥
4q q+1ð Þ

+ b1C
2p2
∗

8η ∥∇um∥
2p2 + b1C

2
∗

2 ∥∇umtt∥
2:

ð41Þ

Similarly, we get

−
ð
Ω

f2 um, vmð Þvmttdx
����

���� ≤ C2
∗α

2 ∥∇umt∥
2+∥∇vmt∥

2� �

+ b1ηC
4p p+1ð Þ
∗

2 Ωj j p−1ð Þ/2p∥∇um∥
4p p+1ð Þ

+ b1C
2q2
∗

8η ∥∇vm∥
2q2 + b1C

2
∗

2 ∥∇vmtt∥
2:

ð42Þ

And, by using the inequality of Young, we get

ð
Ω

a∇um∇umttdx
����

���� ≤ η∥∇umtt∥
2 + a2

4η ∥∇um∥
2,

ð
Ω

a∇vm∇vmttdx
����

���� ≤ η∥∇vmtt∥
2 + a2

4η ∥∇vm∥
2,

ð43Þ

we have

ð
Ω

ðt
0
g1 t − sð Þ∇um sð Þ∇umttdsdx

����
����

≤ η∥∇umtt∥
2 + a − kð Þg1 0ð Þ

4η

ðt
0
∥∇um sð Þ∥2ds,

ð
Ω

ðt
0
g2 t − sð Þ∇vm sð Þ∇vmttdsdx

����
����

≤ η∥∇vmtt∥
2 + a − kð Þg2 0ð Þ

4η

ðt
0
∥∇vm sð Þ∥2ds:

ð44Þ

Similarly, we get

ð
Ω

ðτ2
τ1

μ1 ϱð Þj j∇Zm x, 1, ϱ, tð Þ∇umttdϱdx

�����
�����

≤ ηλ1 ∇umttk k2 + 1
4η

ðτ2
τ1

μ1 ϱð Þj j ∇Zm x, 1, ϱ, tð Þk k2dϱ

�
ð
Ω

ðτ2
τ1

μ2 ϱð Þj j∇Ym x, 1, ϱ, tð Þ∇vmttdϱdx

�����
�����

≤ ηλ2∥∇vmtt∥
2 + 1

4η

ðτ2
τ1

∣μ2 ϱð Þ∣∥∇Ym x, 1, ϱ, tð Þ∥2dϱ,

ð45Þ

substituting (41)–(45) into (40), and using (17), one gets

ð
Ω

umtj jl umttj j2dx + 1 − η λ1 + 2ð Þ + 1 + b1ð ÞC2
∗

2

	 
� �

� ∇umttk k2 + 1
2
d
dt

ð1
0
ϱ Zmtk k2dϱ + 1

2 Zmt x, 1, ϱ, tð Þk k2

≤ C2 +
1
4η a − kð Þg1 0ð ÞC1T ,

ð
Ω

vmtj jl vmttj j2dx + 1 − η λ2 + 2ð Þ + 1 + b2ð ÞC2
∗

2

	 
� �

� ∇vmttk k2 + 1
2
d
dt

ð1
0
ϱ Ymtk k2dϱ + 1

2 Ymt x, 1, ϱ, tð Þk k2

≤ C2 +
1
4η a − kð Þg2 0ð ÞC1T ,

ð46Þ

where C2 > 0 depends on η, α, a, C∗, b1, b2, p, q, C1.
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Integrating (41) over ð0, tÞ, we get
ðt
0

ð
Ω

umt σð Þj jl umtt σð Þj j2dxdσ

+ 1 − η λ1 + 2ð Þ + 1 + b1ð ÞC2
∗

2

	 
� �

�
ðt
0
∇umtt σð Þk k2dσ + 1

2

ð1
0
ϱ Zmtk k2dϱ

+ 1
2

ðt
0
Zmt x, 1, ϱ, σð Þk k2dσ

≤ C2 +
1
4η a − kð Þg1 0ð ÞC1T

� �
T ,

ðt
0

ð
Ω

vmt σð Þl
��� ���vmtt σð Þ

����
2
dxdσ

+ 1 − η λ2 + 2ð Þ + 1 + b2ð ÞC2
∗

2

	 
� �

�
ðt
0
∇vmtt σð Þk k2dσ + 1

2

ð1
0
ϱ Ymtk k2dϱ

+ 1
2

ðt
0
Ymt x, 1, ϱ, σð Þk k2dσ

≤ C2 +
1
4η a − kð Þg2 0ð ÞC1T

� �
T:

ð47Þ

At this stage, choosing η > 0 such that

1 − η λi + 2ð Þ + 1 + bið ÞC2
∗

2

	 
� �
> 0, for i = 1, 2, ð48Þ

we find

ðt
0

∇umtt σð Þk k2 + ∇vmtt σð Þk k2� �
dσ

+ 1
2

ð1
0
ρ Zmtk k2 + Ymtk k2� �

dρ ≤ C3:

ð49Þ

We have from (17) and (49) that there exist subsequences
ðukÞ of ðumÞ and ðvkÞ of ðvmÞ such that

uk, vkð Þ⇀ u, vð Þweakly star in L∞ 0, T ,H1
0 Ωð Þ� �

,

ukt , vktð Þ⇀ ut , vtð Þweakly star in L∞ 0, T ,H1
0 Ωð Þ� �

,

uktt , vkttð Þ⇀ utt , vttð Þweakly star in L2 0, T ,H1
0 Ωð Þ� �

,

Zk,Ykð Þ⇀ Z ,Yð Þweakly star in
L∞ 0, T , L2
�

Ω × 0, 1ð Þ × τ1, τ2ð Þð Þ,
Zkt ,Yktð Þ⇀ Z t ,Y tð Þweakly star in

L∞ 0, T , L2
�

Ω × 0, 1ð Þ × τ1, τ2ð Þð Þ:
ð50Þ

We work now with the nonlinear term. From (17), we
find

uktj jlukt
��� ���

L2 0,T ,L2 Ωð Þð Þ =
ðT
0

uktk k2 l+1ð Þ
2 l+1ð Þdt

≤ C2 l+1ð Þ
∗

ðT
0

uktk k2 l+1ð Þ
2 dt ≤ C4,

ð51Þ

where C4 depends only on C∗, C1, T , l.
And from the theorem of Aubin-Lions (see Lions [23]),

we deduce that there exists a subsequence of ðukÞ, given by
ðukÞ, such that

ukt ⟶ ut stongly in L2 0, T , L2 Ωð Þ� �
, ð52Þ

we get

ukt ⟶ ut almost everywhere inΩ ×ℝ+: ð53Þ

Hence,

uktj jlukt ⟶ utj jlut almost everywhere inΩ ×ℝ+: ð54Þ

Thus, using (46) and (48) and the Lions lemma, we derive

uktj jlukt ⇀ utj jlut weakly in L2 0, T , L2 Ωð Þ� �
: ð55Þ

Similarly,

vktj jlvkt ⇀ vtj jlvt weakly in L2 0, T , L2 Ωð Þ� �
, ð56Þ

Zk,Ykð Þ⟶ Z ,Yð Þ stongly in
L2 0, T , L2
�

Ω × 0, 1ð Þ × τ1, τ2ð Þð Þ, ð57Þ

which implies

Zk,Ykð Þ⟶ z, yð Þ almost everywhere inΩ × 0, 1ð Þ
× τ1, τ2ð Þ ×ℝ+:

ð58Þ

The sequences ðukÞ and ðvkÞ satisfy

f1 uk, vkð Þ⟶ f1 u, vð Þ stongly in L2 0, T , L2 Ωð Þ� �
,

f2 uk, vkð Þ⟶ f2 u, vð Þ stongly in L2 0, T , L2 Ωð Þ� �
:

ð59Þ

We have

f1 uk, vkð Þ − f1 u, vð Þk k2 =
ð
Ω

vmj jq+1 umj jpum − vj jq+1 uj jpu�� ��2dx:
ð60Þ

Noting that ðl/2pÞ + ð1/2qÞ + ð1/2Þ = 1, by applying the
generalized Hölder’s and Young’s inequalities, and (8), we get

f1 uk, vkð Þ − f1 u, vð Þk k2 ≤ C ∇ um − uð Þk k2 + ∇ vm − vð Þk k2
 �
:

ð61Þ
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As ðukÞ and ðvkÞ are Cauchy sequences in L∞ð0, T ,H1
0ð

ΩÞÞ (prove it as in [1]), then we get (59)1. Similarly, we get
the convergence (59)2.

Multiplying (29) by ΨðtÞ ∈Dð0, TÞ and integrating the
result over ð0, TÞ, we get

−
1

l + 1

ðT
0

umtj jlumtt , uj

� �
Ψ′ tð Þdt

+
ðT
0
M ∇um tð Þk kð Þ ∇um,∇uj

� �
Ψ tð Þdt

+
ðT
0
∇umtt ,∇uj

� �
Ψ tð Þdt +

ðT
0

f1 um, vmð Þ, uj

� �
Ψ tð Þdt

−
ðT
0

ðt
0
g1 t − sð Þ ∇um sð Þ,∇uj

� �
Ψ tð Þdsdt

+
ðT
0

ðτ2
τ1

μ1 ϱð Þj j ∇Zm x, 1, ϱ, tð Þ,∇uj

� �
Ψ tð Þdϱdt = 0,

−
1

l + 1

ðT
0

vmtj jlvmtt , vj
� �

Ψ′ tð Þdt

+
ðT
0
M ∇vm tð Þk kð Þ ∇vm,∇vj

� �
Ψ tð Þdt

+
ðT
0
∇vmtt ,∇vj
� �

Ψ tð Þdt +
ðT
0

f2 um, vmð Þ, vj
� �

Ψ tð Þdt

−
ðT
0

ðt
0
g2 t − sð Þ ∇vm sð Þ,∇vj

� �
Ψ tð Þdsdt

+
ðT
0

ðτ2
τ1

μ2 ϱð Þj j ∇Ym x, 1, ϱ, tð Þ,∇vj
� �

Ψ tð Þdϱdt = 0,

ðT
0
ϱZmt x, ρ, ϱ, tð Þ +Zmρ x, ρ, ϱ, tð Þ,Z j

� �
Ψ tð Þdt = 0,

ðT
0
ρYmt x, ρ, ϱ, tð Þ +Ymρ x, ρ, ϱ, tð Þ,Y j

� �
Ψ tð Þdt = 0,

∀j = 1,⋯,m:

ð62Þ

We obtain (62) by the convergence of (50), (54), (56), and
(59). This completes the proof.

4. Exponential Decay

In this section, the stability result of the system (13)–(15) is
proved.

We need the following lemmas.

Lemma 3. The functional

F1 tð Þ≔ 1
l + 1

ð
Ω

utj jlutu + vtj jlvtv
� �

dx

+
ð
Ω

∇ut∇u+∇vt∇vð Þdx,
ð63Þ

satisfies

F1 tð Þ ≤ 1
l + 2

utk kl+2l+2 + vtk kl+2l+2

� �
+ 1
2

∇utk k2 + ∇vtk k2� �
+ l + 1ð Þ−1

l + 2
Cl+2
∗ + c

2

 !
∇uk kl+2 + ∇vk kl+2

� �
,

ð64Þ

F1′ tð Þ ≤
1

l + 1
utk kl+2l+2 + vtk kl+2l+2

� �
+ ∇utk k2 + ∇vtk k2� �

+ ε1 a − k + λð Þ − k + b1 + b2
2

+ α

� �
C2
∗

	 


� ∇uk k2 + ∇vk k2� �
+ 1
4ε1

ðτ2
τ1

μ1 ϱð Þj j ∇Z x, 1, ϱ, tð Þk k2�
+ μ2 ϱð Þj j ∇Y x, 1, ϱ, tð Þk k2�dϱ + 1

4ε1
g1∘∇u + g2∘∇vð Þ:

ð65Þ

Proof.

(1) By applying the inequalities of Young and Poincare’,
we find

F1 tð Þj j ≤ 1
l + 2 utk kl+2l+2 +

l + 1ð Þ−1
l + 2 uk kl+2 + 1

l + 2 vtk kl+2l+2

+ l + 1ð Þ−1
l + 2 vk kl+2 + 1

2 ∇utk k2 + ∇uk k2� �
+ 1
2 ∇vtk k2 + ∇vk k2� �

≤
1

l + 2 utk kl+2l+2 + vtk kl+2l+2

� �

+ 1
2 ∇utk k2 + ∇vtk k2� �

+ l + 1ð Þ−1
l + 2 Cl+2

∗ + c
2

 !

� ∇uk kl+2 + ∇vk kl+2
� �

ð66Þ

(2) Direct computation using integration by parts, we get

F1′ tð Þ =
ð
Ω

utj jlutt
� �

udx + 1
l + 1 utk kl+2l+2 +

ð
Ω

vtj jlvtt
� �

vdx

+ 1
l + 1 vtk kl+2l+2 −

ð
Ω

Δuttudx + ∇utk k2

−
ð
Ω

Δvttvdx + ∇vtk k2 = 1
l + 1 utk kl+2l+2 + vtk kl+2l+2

� �
−M ∇uk k2� �

∇uk k2 −M ∇vk k2� �
∇vk k2

+
ð
Ω

∇u
ðt
0
g1 t − sð Þ∇u sð Þdsdx

+
ð
Ω

∇v
ðt
0
g2 t − sð Þ∇v sð Þdsdx
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−
ð
Ω

∇u
ðτ2
τ1

μ1 ϱð Þj j∇Z x, 1, ϱ, tð Þdϱdx

+ ∇utk k2 −
ð
Ω

∇v
ðτ2
τ1

μ2 ϱð Þj j∇Y x, 1, ϱ, tð Þdϱdx

+ ∇vtk k2 − b1 + b2ð Þ
ð
Ω

vj jq+1 uj jp+1dx − 2α
ð
Ω

uvdx,

ð67Þ

estimate (65) easily follows by using MðrÞ ≥ a,
Young’s inequality for ε1 > 0, and (8).

Lemma 4. The functional

F2 tð Þ≔
ð
Ω

Δut −
1

l + 1
utj jlut

� �ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

+
ð
Ω

Δvt −
1

l + 1
vtj jlvt

� �ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx,

ð68Þ

satisfies

F2 tð Þ ≤ 1
l + 2

utk kl+2l+2 + vtk kl+2l+2

� �
+ 1
2

∇utk k2 + ∇vtk k2� �
+ l + 1ð Þ−1

l + 2
a − kð Þl+2Cl+2

∗ 22l+1
 !

� ∇uk k2 l+1ð Þ + ∇vk k2 l+1ð Þ
� �

+ 1
2

a − kð Þ

� 1 + l + 1ð Þ−1
l + 2

a − kð ÞlCl+2
∗

( )
g1∘∇u + g2∘∇vð Þ,

ð69Þ

and for any ε2 > 0,

F2′ tð Þ ≤
1

l + 1

�
1 −
ðt
0
g1 sð Þds

� �
utk kl+2l+2 + 1 −

ðt
0
g2 sð Þds

� �

� vtk kl+2l+2

�
+ 2ε2 a − kð Þ2 + αC2

∗
2

� �
∇uk k2 + ∇vk k2� �

+ ε2

(
a − kð Þ + l + 1ð Þ−1

l + 2
g1 0ð Þð Þl+2Cl+2

∗ 22 l+1ð Þ

+ b2
C4 p+1ð Þ
∗

2
+ b1

C2p
∗
2

)
M ∇uk k2� �

∇uk k2

+ ε2

(
a − kð Þ + l + 1ð Þ−1

l + 2
g2 0ð Þð Þl+2Cl+2

∗ 22 l+1ð Þ

+ b1
C4 q+1ð Þ
∗

2
+ b2

C2q
∗
2

)
M ∇vk k2� �

∇vk k2

+ ε2 −
ðt
0
g1 sð Þds

� �
∇utk k2 + ε2

ðτ2
τ1

μ1 ρð Þj j

� ∇Z x, 1, ρ, tð Þk k2dρ + ε2 −
ðt
0
g2 sð Þds

� �
∇vtk k2

+ ε2

ðτ2
τ1

μ2 ρð Þj j ∇Y x, 1, ρ, tð Þk k2dρ

+ M ∥∇u∥2
� �
4ε2

+ 2ε2 +
λ1
4ε2

+ αC2
∗

2

� �
a − kð Þ

( )

� g1∘∇uð Þ +
(
M ∥∇v∥2
� �
4ε2

+ 2ε2 +
λ2
4ε2

+ αC2
∗

2

� �

� a − kð Þ
)

g2∘∇vð Þ − g1 0ð Þ
4ε2

 
1 + l + 1ð Þ−1

l + 2

� g1 0ð Þð ÞlCl+2
∗

!
g1′∘∇u
� �

−
g2 0ð Þ
4ε2

�
 
1 + l + 1ð Þ−1

l + 2
g2 0ð Þð ÞlCl+2

∗

!
g2′∘∇v
� �

:

ð70Þ

Proof.

(1) By using Young’s inequality and the conjugate expo-
nents p′ = ðl + 2Þ/ðl + 1Þ, q′ = l + 2, and Hölder’s
inequality, we obtain

−
ð
Ω

1
l + 1 utj jlut

ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

����
����

≤
1

l + 2 utk kl+2l+2 +
l + 1ð Þ−1
l + 2

�
a − kð Þl+1Cl+2

∗

� 22l+1 a − kð Þ ∇uk k2 l+1ð Þ + 1
2 g1∘∇uð Þ

� ��
,

ð71Þ

−
ð
Ω

∇ut
ðt
0
g1 t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

����
����

≤
1
2 ∇utk k2 + 1

2 a − kð Þ g1∘∇utð Þ:
ð72Þ

Similarly, we get

−
ð
Ω

1
l + 1 vtj jlvt

ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx

����
����

≤
1

l + 2 vtk kl+2l+2 +
l + 1ð Þ−1
l + 2

�
a − kð Þl+1Cl+2

∗

� 22l+1 a − kð Þ ∇vk k2 l+1ð Þ + 1
2 g2∘∇vð Þ

� ��
,

ð73Þ
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−
ð
Ω

∇vt
ðt
0
g2 t − sð Þ ∇v tð Þ−∇v sð Þð Þdsdx

����
����

≤
1
2 ∇vtk k2 + 1

2 a − kð Þ g2∘∇vtð Þ
ð74Þ

By combining (71)–(74), we find (69).

(2) By derivation of F2, and integrating by parts and (15),
we find

F2′ tð Þ =
ð
Ω

M ∇uk k2� �
∇u
ðt
0
g1 t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

−
ð
Ω

ðt
0
g1 t − sð Þ∇u sð Þds

ðt
0
g1 t − sð Þ

� ∇u tð Þ−∇u sð Þð Þdsdx +
ð
Ω

ðτ2
τ1

μ1 ρð Þj j∇Z x, 1, ρ, tð Þ

�
ðt
0
g1 t − sð Þ ∇u tð Þ−∇u sð Þð Þds

� �
dρdx

+
ð
Ω

f1 u, vð Þ
ðt
0
g1 t − sð Þ u tð Þ − u sð Þð Þdsdx

−
ð
Ω

∇ut
ðt
0
g1′ t − sð Þ ∇u tð Þ−∇u sð Þð Þdsdx

−
ð
Ω

1
l + 1 utj jlut

ðt
0
g1′ t − sð Þ u tð Þ − u sð Þð Þdsdx

− ∇utk k2 + 1
l + 1 utk kl+2l+2

� � ðt
0
g1 sð Þds

� �

+
ð
Ω

M ∇vk k2� �
∇v
ðt
0
g2 t − sð Þ ∇v tð Þ−∇v sð Þð Þdsdx

−
ð
Ω

ðt
0
g2 t − sð Þ∇v sð Þds

ðt
0
g2 t − sð Þ

� ∇v tð Þ−∇v sð Þð Þdsdx +
ð
Ω

ðτ2
τ1

μ2 ρð Þj j∇Y x, 1, ρ, tð Þ

�
ðt
0
g2 t − sð Þ ∇v tð Þ−∇v sð Þð Þds

� �
dρdx

+
ð
Ω

f2 u, vð Þ
ðt
0
g2 t − sð Þ v tð Þ − v sð Þð Þdsdx

−
ð
Ω

∇vt
ðt
0
g2′ t − sð Þ ∇v tð Þ−∇v sð Þð Þdsdx

−
ð
Ω

1
l + 1 vtj jlvt

ðt
0
g2′ t − sð Þ v tð Þ − v sð Þð Þdsdx

− ∇vtk k2 + 1
l + 1 vtk kl+2l+2

� � ðt
0
g2 sð Þds

� �
ð75Þ

Using Young’s, Cauchy-Schwarz, Hölder’s, and Poin-
caré’s inequalities, and l ≤ γ, we obtain (70).

At this point, let us introduce the functional given by

Lemma 5. The functional

F3 tð Þ≔
ð
Ω

ð1
0

ðτ2
τ1

ρe−ρρ μ1 ρð Þj jZ2 + μ2 ρð ÞÞY2�� ��� �
dρdρdx,

ð76Þ

satisfies

F3 tð Þ ≤
ð
Ω

ð1
0

ðτ2
τ1

ρ μ1 ρð Þj jZ2 + μ2 ρð ÞÞY2�� ��� �
dρdρdx, ð77Þ

F3′ tð Þ ≤ −η1

ð1
0

ðτ2
τ1

ρ μ1 ρð Þj j Zk k2 + μ2 ρð Þj j Yk k2� �
� dρdρ + λ ∇utk k2 + ∇vtk k2� �

− η1

ðτ2
τ1

μ1 ρð Þj jð

� Z x, 1, ρ, tð Þk k2 + μ2 ρð Þj j Y x, 1, ρ, tð Þk k2�dρdρ,
ð78Þ

where η1 > 0.

Proof. By derivation of F3, and using equations (13)3 and
(13)4, we get

F3′ tð Þ = −2
ð
Ω

ð1
0

ðτ2
τ1

e−ρρ μ1 ρð Þj j∇Z∇Zρ x, ρ, ρ, tð Þdρdρdx

− 2
ð
Ω

ð1
0

ðτ2
τ1

e−ρρ μ2 ρð Þj j∇Y∇Yρ x, ρ, ρ, tð Þdρdρdx

= −
ð
Ω

ð1
0

ðτ2
τ1

ρe−ρρ μ1 ρð Þj j∇Z2dρdρdx

−
ð
Ω

ðτ2
τ1

μ1 ρð Þj j e−ρ∇Z2 x, 1, ρ, tð Þ − ∇Z2 x, 0, ρ, tð Þ
 �

� dρdx −
ð
Ω

ð1
0

ðτ2
τ1

ρe−ρρ μ2 ρð Þj j∇Y2dρdρdx

−
ð
Ω

ðτ2
τ1

μ2 ρð Þj j e−ρ∇Y2 x, 1, ρ, tð Þ

− ∇Y2 x, 0, ρ, tð Þ�dρdx:

ð79Þ

Applying the equality Zðx, 0, ρ, tÞ = utðx, tÞ, Yðx, 0, ρ, tÞ =
vtðx, tÞ, and e−ρ ≤ e−ρρ ≤ 1, for any 0 < ρ < 1, we get

F3′ tð Þ = −
ð1
0

ðτ2
τ1

ρe−ρρ μ1 ρð Þj j ∇Zk k2 + μ2 ρð Þj j ∇Yk k2� �
� dρdρ −

ðτ2
τ1

e−ρ μ1 ρð Þj j ∇Z x, 1, ρ, tð Þk k2�
+ μ2 ρð Þj j ∇Y x, 1, ρ, tð Þk k2Þdρ

+
ðτ2
τ1

μ1 ρð Þj jdρ
 !

∇utk k2 +
ðτ2
τ1

μ2 ρð Þj jdρ
 !

� ∇vtk k2:

ð80Þ

10 Journal of Function Spaces



As –e−ρ is an increasing function, we have –e−ρ ≤ −e−τ2 ,
for any ρ ∈ ½τ1, τ2�.

Then, setting η1 = e−τ2 , we find (78).

Theorem 6. Assume (5)–(8) hold, then ∃ζ1, ζ2 > 0 such that
the energy functional (16) satisfies

E tð Þ ≤ ζ2e
−ζ1t , ∀t ≥ t0: ð81Þ

Proof. We define the functional of Lyapunov

L tð Þ≔NE tð Þ + F1 tð Þ +N2F2 tð Þ + F3 tð Þ, ð82Þ

where N ,N2 > 0.
First, if we let

K tð Þ = F1 tð Þ +N2F2 tð Þ + F3 tð Þ, ð83Þ

then, by (64), (69), and (77), we get

K tð Þj j ≤ cE tð Þ: ð84Þ

Consequently,

K tð Þj j = L tð Þ −NE tð Þj j ≤ cE tð Þ, ð85Þ

which yields

N − cð ÞE tð Þ ≤L tð Þ ≤ N + cð ÞE tð Þ: ð86Þ

By derivation (82) and applying (17), (65), (70), (78), and
(6), one gets

L ′ tð Þ ≤ 1
l + 1 1 − h0ð Þ +N1f g utk kl+2l+2 + vtk kl+2l+2

h i
+ λ 1 +Nð Þ +N1 + ε2 − h0f g ∇utk k2 + ∇vtk k2� �
+
(
ε2M0 a − kð Þ + l + 1ð Þ−1

l + 2 h2C∗ð Þl+222 l+1ð Þ + R1

 !

+N1 ε1 a − k + λð Þ − k + b1 + b2
2 + α

� �
C2
∗

� �

+ 2ε2 a − kð Þ2 + αC2
∗

2

� �)
∇uk k2 + ∇vk k2
 �

+
(
−
1
ξ

M0
4ε2

+ 2ε2 +
λ

4ε2
+ αC2

∗
2

� �
a − kð Þ + N1

4ε1

� �

+ N
2 −

h1
4ε2

1 + l + 1ð Þ−1
l + 2 h1ð ÞlCl+2

∗

 !)

� g1′∘∇u
� �

+ g2′∘∇v
� �h i

− η1

ð1
0

ðτ2
τ1

ρ μ1 ρð Þj j Zk k2�
+ μ2 ρð Þj j Yk k2�dρdρ − η1 +Nβ − ε2 −

N1
4ε1

	 


�
ðτ2
τ1

μ1 ρð Þj j Z x, 1, ρ, tð Þk k2�
+ μ2 ρð Þj j Y x, 1, ρ, tð Þk k2�dρdρ,

ð87Þ

where h0 = min ðÐ t00 g1ðsÞds, Ð t00 g2ðsÞdsÞ, M0 = max ðMð
k∇uk2Þ,Mðk∇vk2:ÞÞ, h1 = min ðg1ð0Þ, g2ð0ÞÞ, h2 = max ðg1
ð0Þ, g2ð0ÞÞ,ξ =max ðξ1, ξ2Þ, and R1 = min ðb1ðC4ðq+1Þ

∗ /2Þ +
b2ðC4q

∗ /2Þ, b2ðC4ðp+1Þ
∗ /2Þ + b1ðC4p

∗ /2ÞÞ.
At this stage, choosing two fixed numbers N , N1, such

that N − c > 0, and

h1 − λ 1 +Nð Þ −N1 > 0,
α1 = h1 − 1 −N1 > 0,

ð88Þ

we choose ε2 small enough such that

α2 = h1 − λ 1 +Nð Þ −N1 − ε2 > 0: ð89Þ

After that, we choose ε1 small enough such that

α3 = η1 +Nβ − ε2 −
N1
4ε1

< 0,

α4 =
(
−ε2M0 a − kð Þ + l + 1ð Þ−1

l + 2 h2C∗ð Þl+222 l+1ð Þ + R1

 !

+N1 k − ε1 a − k + λð Þ − b1 + b2
2 + α

� �
C2
∗

� �

− 2ε2 a − kð Þ2 + αC2
∗

2

� �)
> 0,

α5 =
(
1
ξ

N1
4ε1

+ M0
4ε2

+ 2ε2 +
λ

4ε2
+ αC2

∗
2

� �
a − kð Þ

� �

−
N
2 + h1

4ε2
1 + l + 1ð Þ−1

l + 2 h1ð ÞlCl+2
∗

 !)
> 0:

ð90Þ

Thus, we get

L ′ tð Þ ≤ −1
l + 1 α1 utk kl+2l+2 + vtk kl+2l+2

h i
− α2 ∇utk k2 + ∇vtk k2� �

− α4 ∇uk k2 + ∇vk k2
 �
− α5 g1′∘∇u

� �
+ g2′∘∇v
� �h i
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− η1

ð1
0

ðτ2
τ1

ρ μ1 ρð Þj j Zk k2 + μ2 ρð Þj j Yk k2� �
dρdρ

+ α3

ðτ2
τ1

μ1 ρð Þj j Z x, 1, ρ, tð Þk k2 + μ2 ρð Þj j�
� Y x, 1, ρ, tð Þk k2Þdρdρ,

ð91Þ

c1E tð Þ ≤L tð Þ ≤ c2E tð Þ, ∀t ≥ 0, ð92Þ

using (16), estimates (91) and (86), respectively, we get

L ′ tð Þ ≤ −k1E tð Þ − k2E′ tð Þ,∀t ≥ t0, ð93Þ

for some k1, k2, c1, c2 > 0:
By the combination of (93) with (92), we obtain

R′ tð Þ ≤ −λ1R tð Þ, ð94Þ

where

R tð Þ =L tð Þ + k2E tð Þ ~ E tð Þ: ð95Þ

Integrating the result (94) over ðt0, tÞ, we find

R tð Þ ≤R t0ð Þe−ζ1 t−t0ð Þ, ∀t0 ≥ t: ð96Þ

It follows from (95) that (81) holds. This completes the
proof.
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