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Miscellaneous types of function spaces appear very fre-
quently in several mathematical investigations. For example,
function spaces create the fundamentals of the study in
functional analysis, theory of real functions, theories of
differential and integral equations, operator theory, nonlinear
analysis, and control theory. Let us also mention that such
modern branches of mathematics as numerical analysis and
probability theory exploit also methods and tools of the
theory of function spaces.

This special issue presents a lot of ideas appearing in the
above quoted branches of mathematics. It contains twenty-
two papers devoted mainly to the study of function spaces
and their various properties. Moreover, this special issue
includes also a group of papers discussing some aspects of
operator theory in connection with properties of function
spaces in which those operators are investigated. Moreover,
a part of papers included in this issue is dedicated to the
solvability of some functional equations (differential, integral,
etc.) and to properties of solutions of those equations.

The first part of the papers, which are devoted to various
topics of operator theory in miscellaneous function spaces,
contains eight papers. Belowwe describe briefly those papers.
The paper of J. Huang and Y. Liu discusses a molecular
characterization of the Hardy space associated with the so-
called twisted convolutions. The results of the paper extend

several ones obtained by the first author and other authors.
An application to the boundedness of local Riesz transforms
on the Hardy spaces is also presented. Another paper of
the discussed part is authored by S. J. Chang et al. In
that paper the analysis of a generalized analytic Feynman
integral and a modified generalized analytic functions space
associated with the Feynman integral is conducted. Some
integration formulas for that integral are established and the
applicability to physical circumstances is indicated. J. Dong
et al. discuss in their paper the boundedness of singular
integrals associated with Schrödinger operators on Hardy
type function spaces.Themain tool used in the investigations
is a molecular characterization of Hardy spaces. The paper of
T. Acar et al. describes a new type Stancu operators which
create the generalization of Srivastava-Gupta operators.With
help of those operators an approximation of functions being
integrable on the interval (0,∞) can be realized. Moreover,
the rate of convergence of the approximations in question for
functions with derivatives of bounded variation is estimated.
X. Feng et al. discuss in their paper a multiplication operator
with a special symbol on the weighted Bergman space of the
unit ball in C𝑛. A few necessary and sufficient conditions for
the compactness of the mentioned multiplication operator
are given. In the paper of M. Nowak some general represen-
tation theorems for continuous linear operators acting from
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a suitable function space into a Banach space are obtained.
Moreover, strongly bounded operators are also studied. The
mentioned function space contains vector-valued continuous
functions defined on a completely regular Hausdorff space
with values in certain Banach space. The paper of J. Xu and
X. Yang studies new type of Herz-Morrey-Hardy spaces with
variable exponent.Those spaces are characterized in terms of
atom. With the help of that characterization a few results on
the boundedness of some singular integral operators defined
on spaces in question are derived. The other paper included
in the discussed group is authored by S. He et al. That
paper contains some results concerning the boundedness of
some fractional integrals on an infinitesimal generator of an
analytic semigroup defined on the Hilbert space of Lebesgue
type.

Now, we are going to present the group of six papers
dedicated to investigations connected with the theory of
function spaces. One paper included in this group is the
paper of H. Wang and Z. Wu. The authors deal with the
estimates of the 𝐿

𝑝
modulus of continuity of some classes

of functions of bounded Waterman-Young variation. The
obtained results are applied in obtaining some estimates of
Fourier coefficients of functions of the mentioned classes,
among others. A. M. Sarsenbi and P. A. Terekhin obtained
in their paper general conditions ensuring that a complete
biorthogonal conjugate system forms a Riesz basis.Moreover,
affine Riesz bases are constructed with the help of the
obtained results. The paper of J. Zhou discusses new spaces
of Lebesque measurable functions on the unit circle. That
space is closely related to a Sobolev space. A few results
expressed in terms of Möbius boundedness in a Sobolev
space are derived. Moreover, a dyadic characterization of
functions of the introduced new space with the aim of dyadic
arcs on the unit circle is also presented. In the paper of X.
Guo the representation of 𝑔-frames as linear combination
of simpler components (𝑔-orthonormal bases, 𝑔-Riesz bases,
and normalized tight 𝑔-frames) is considered. Moreover, the
dual and pseudodual 𝑔-frames are investigated and the dual
𝑔-frames are characterized in a constructive way. Y. Niu and
H. Wang study in their paper properties of functions in
the class of functions with 𝑝-bounded Wiener variation for
0 < 𝑝 < 1. The main result asserts that each such func-
tion can be represented as the difference of two increasing
functions from that class. The paper of Z. Pavić deals with
convex functions which satisfy some global convexity prop-
erties. The classical ideas associated with Jensen approach
to convexity are extended and studied in the paper in
question.

Two papers published in this special issue are mainly
devoted to operators acting in some function spaces. One
paper of that kind authored by O. Mej́ıa et al. deals with a
necessary and sufficient condition on a real function ℎ = ℎ(𝑡)
such that the composition operator𝐻 generated by the func-
tion ℎmaps the space of functions with bounded Schramm-
Korenblum variation into itself and is locally Lipschitzian.
Another announced paper of L. Zhou and J. Lu contains a
result which creates a generalization of the result of Krues and
Zhu concerning the boundedness of an integral operator in
the Lebesgue space 𝐿𝑝.

The fourth group of the papers included in this special
issue is formed by six papers devoted thoroughly to some
differential and integral equations in various function spaces.
One paper written by Z. Dai et al. is dedicated to the
Cauchy problem for the three-dimensional incompressible
Boussinesq equation. A blow-up criterion for weak solutions
of that equation in terms of the pressure is established in
a homogeneous Besov space. Another paper by J. Wang et
al. investigates a class of singular boundary value problems
of a fractional 𝑞-difference equation. Using a fixed point
theorem in partially ordered sets a few results on the existence
and uniqueness of solutions of the mentioned equation are
established. The paper of Y. Wu et al. shows how to obtain
limit cycles for a family of generalized nilpotent systems
of differential equations. The results of the paper are well
motivated and appropriately illustrated. The paper of M.
A. Darwish and B. Rzepka deals with the solvability of a
generalized fractional quadratic functional-integral equation
of Erdélyi-Kober type in the Banach space of functions being
continuous and bounded on the real half-axis. The technique
of measures of noncompactness is the main tool used in
considerations. T. Zając studies in his paper the existence
of nonnegative and monotonic solutions of a nonlinear
quadratic Volterra-Stieltjes integral equation. That equation
is considered in the classical space consisting of continuous
real functions defined on a bounded, closed interval. The
main tools used in considerations are the techniques of
Stieltjes integrals and measures of noncompactness. The
other paper included in the group in question is authored by
N. K. Ashirbayev et al. In that paper it is shown that some
classes of nonlinear integral equations (integral equations of
fractional order, integral equations of Volterra-Wiener-Hopf
type, integral equations of Erdélyi-Kober type, and integral
equations of Volterra-Chandrasekhar type) can be treated as
spacial cases of some nonlinear integral equation of Volterra-
Stieltjes type. Some results concerning Volterra-Stieltjes inte-
gral equations in several variables are also discussed.
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We discuss multiplication operator with a special symbol on the weighted Bergman space of the unit ball. We give the necessary
and sufficient conditions for the compactness of multiplication operator on the weighted Bergman space of the unit ball.

1. Introduction

Let 𝐵
𝑛
denote the unit ball in C𝑛, and let V be the normalized

Lebesgue volume measure on 𝐵
𝑛
. For −1 < 𝛼 < ∞, we

denote by V
𝛼
the measure on 𝐵

𝑛
defined by 𝑑V

𝛼
(𝑧) = 𝑐

𝛼
(1 −

|𝑧|
2

)
𝛼

𝑑V(𝑧), where 𝑐
𝛼
= Γ(𝑛+𝛼+1)/𝑛!Γ(𝛼+1) is a normalizing

constant such that V
𝛼
(𝐵
𝑛
) = 1. For 1 ≤ 𝑝 < ∞, we write

‖ ⋅ ‖
𝛼,𝑝

for the norm on 𝐿𝑝(𝐵
𝑛
, 𝑑V
𝛼
) and ⟨⋅, ⋅⟩

𝛼
for the inner

product on 𝐿2(𝐵
𝑛
, 𝑑V
𝛼
). The Bergman space 𝐴2

𝛼
(𝐵
𝑛
) is the

space of holomorphic functions which are square-integrable
with respect to measure 𝑑V

𝛼
on 𝐵
𝑛
. Reproducing kernels 𝐾𝛼

𝑤

and normalized reproducing kernels 𝑘𝛼
𝑤
in 𝐴2
𝛼
(𝐵
𝑛
) are given

by

𝐾
𝛼

𝑤
(𝑧) =

1

(1 − ⟨𝑧, 𝑤⟩)
𝑛+𝛼+1

,

𝑘
𝛼

𝑤
(𝑧) =

(1 − |𝑤|
2

)
(𝑛+𝛼+1)/2

(1 − ⟨𝑧, 𝑤⟩)
𝑛+𝛼+1

,

(1)

respectively, for 𝑧, 𝑤 ∈ 𝐵
𝑛
. For every ℎ ∈ 𝐴

2

𝛼
(𝐵
𝑛
) we have

⟨ℎ, 𝐾
𝛼

𝑤
⟩
𝛼
= ℎ(𝑤), for all 𝑤 ∈ 𝐵

𝑛
. The orthogonal projection

𝑃
𝛼
of 𝐿2(𝐵

𝑛
, 𝑑V
𝛼
) onto 𝐴2

𝛼
(𝐵
𝑛
) is given by

(𝑃
𝛼
𝑔) (𝑤) = ⟨𝑔,𝐾

𝛼

𝑤
⟩
𝛼
= ∫
𝐵
𝑛

𝑔 (𝑧)
1

(1 − ⟨𝑤, 𝑧⟩)
𝑛+𝛼+1

𝑑V
𝛼
(𝑧) ,

(2)

for 𝑔 ∈ 𝐿2(𝐵
𝑛
, 𝑑V
𝛼
) and 𝑤 ∈ 𝐵

𝑛
.

Given 𝑓 ∈ 𝐿
1

(𝐵
𝑛
, 𝑑V
𝛼
), the Toeplitz operator 𝑇

𝑓
: 𝐿
2

(𝐵
𝑛
,

𝑑V
𝛼
) → 𝐴

2

𝛼
(𝐵
𝑛
), the Hankel operator 𝐻

𝑓
: 𝐿
2

(𝐵
𝑛
, 𝑑V
𝛼
) →

(𝐴
2

𝛼
(𝐵
𝑛
))
⊥, and the multiplication operator𝑀

𝑓
: 𝐴
2

𝛼
(𝐵
𝑛
) →

𝐿
2

(𝐵
𝑛
, 𝑑V
𝛼
) are given by

(𝑇
𝑓
ℎ) (𝑧) = ∫

𝐵
𝑛

𝑓 (𝜔) ℎ (𝜔)

(1 − ⟨𝑧, 𝜔⟩)
𝑛+𝛼+1

𝑑V
𝛼
(𝜔) ,

(𝐻
𝑓
ℎ) (𝑧) = 𝑓 (𝑧) 𝑔 (𝑧) − (𝑇

𝑓
𝑔) (𝑧) ,

𝑀
𝑓
(ℎ) = 𝑓ℎ,

(3)

respectively. For𝑓 ∈ 𝐿1(𝐵
𝑛
, 𝑑V
𝛼
), we define the Berezin trans-

form of 𝑓 to be the function 𝑓; that is,

𝑓 (𝑧) = ∫
𝐵
𝑛

𝑓 (𝑤)
󵄨󵄨󵄨󵄨𝑘
𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨

2

𝑑V
𝛼
(𝑤) . (4)

If 𝑓 is bounded, then 𝑓 is a bounded function on 𝐵
𝑛
. Since

the kernels 𝑘𝛼
𝑧
converge weakly to zero as 𝑧 tends 𝜕𝐵

𝑛
, we

have that if 𝑓 is compact, then 𝑓 → 0 as 𝑧 → 𝜕𝐵
𝑛
. The

converse (in both cases) is not necessarily true. According to
the definition of Berezin transform, the mean oscillation of 𝑓
in the Bergman metric is the function MO(𝑓)(𝑧) defined on
𝐵
𝑛
by

MO (𝑓) (𝑧) = 󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

(𝑧) −
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨

2

. (5)
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For 𝑧 ∈ 𝐵
𝑛
, let 𝜓

𝑧
be the automorphism of 𝐵

𝑛
such that

𝜓
𝑧
(0) = 𝑧 and 𝜓

𝑧
= (𝜓
𝑧
)
−1. Thus, we have the change-of-

variable formula

∫
𝐵
𝑛

ℎ (𝜓
𝑧
(𝑤))

󵄨󵄨󵄨󵄨󵄨
𝑘
𝛼

𝑧
(𝑤)
2
󵄨󵄨󵄨󵄨󵄨
𝑑V
𝛼
(𝑤) = ∫

𝐵
𝑛

ℎ (𝑤) 𝑑V
𝛼
(𝑤) , (6)

for every ℎ ∈ 𝐿1(𝐵
𝑛
, 𝑑V
𝛼
).

Multiplication operators are one of the most widely
studied classes of concrete operators. The study of their
behavior on the Hardy and Bergman spaces has generated
an extensive list of results in the operator theory and in the
theory of function spaces [1–6]. One of the useful approaches
is the use of the Berezin transform [7–11]. This method
is motivated by its connections with quantum physics and
noncommutative geometry.

In general, Berezin transform 𝑓 plays important role in
giving necessary and sufficient conditions for the bound-
edness and compactness of the Toeplitz operator [12, 13].
However Berezin transform ̃

|𝑓|2 or the mean oscillation
MO(𝑓) is used to obtain the necessary and sufficient con-
ditions for the boundedness and compactness of the Hankel
operator or multiplication operator [14, 15]. This work is
partially motivated by using Berezin transform 𝑓 to obtain
necessary and sufficient conditions for the compactness of
multiplication operator on the weighted Bergman space of
the unit ball.

Throughout the paper, we will use the letter 𝑐 to denote
a generic positive constant that can change its value at each
occurrence.

2. Main Results

In this section, we give the necessary and sufficient condi-
tions for the compactness of multiplication operator on the
weighted Bergman space of the unit ball. We furthermore
obtain the necessary and sufficient conditions for the com-
pactness of Toeplitz operator and Hankel operator.

Theorem 1. Suppose |𝑓|/(1 − |𝑧|)4𝑛+4𝛼+4 is bounded on 𝐵
𝑛
.

Then 𝑀
𝑓

is compact operator on 𝐴
2

𝛼
(𝐵
𝑛
) if and only if

|̃𝑓|(𝑧) → 0 as 𝑧 → 𝜕𝐵
𝑛
.

Proof. Suppose |̃𝑓|(𝑧) → 0 as 𝑧 → 𝜕𝐵
𝑛
.

Since

⟨𝑀
𝑓
𝑔, ℎ⟩
𝛼

= ⟨𝑓𝑔, ℎ⟩
𝛼
= ⟨𝑔, 𝑓ℎ⟩

𝛼

, (7)

it is clear that (𝑀
𝑓
)
∗

= 𝑀
𝑓
. It suffices to prove that the

operator (𝑀
𝑓
)
∗ is compact by showing that (𝑀

𝑓
)
∗ can be

approximated by compact operators in the operator norm.
Let 𝑔 ∈ 𝐿2(𝐵

𝑛
, 𝑑V
𝛼
). Then (𝑀

𝑓
)
∗

𝑔 ∈ 𝐴
2

𝛼
(𝐵
𝑛
), so we have

((𝑀
𝑓
)
∗

𝑔) (𝑧) = ⟨(𝑀
𝑓
)
∗

𝑔,𝐾
𝛼

𝑧
⟩
𝛼

= ∫
𝐵
𝑛

𝑔 (𝑤) 𝑓 (𝑤)𝐾
𝛼

𝑧
(𝑤)𝑑V

𝛼
(𝑤) ,

(8)

for 𝑧 ∈ 𝐵
𝑛
.

We define for 0 < 𝑟 < 1 an operator 𝑆
𝑟
by

(𝑆
𝑟
𝑔) (𝑧) = ∫

𝐵
𝑛

𝜒
𝑟𝐵
𝑛

(𝑧) 𝑔 (𝑤) 𝑓 (𝑤)𝐾
𝛼

𝑧
(𝑤)𝑑V

𝛼
(𝑤) . (9)

Since |𝑓|/(1 − |𝑧|)4𝑛+4𝛼+4 is bounded on 𝐵
𝑛
, we prove that

∫
𝐵
𝑛

∫
𝐵
𝑛

󵄨󵄨󵄨󵄨󵄨
𝜒
𝑟𝐵
𝑛

(𝑧) 𝑓 (𝑤)𝐾
𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨󵄨

2

𝑑V
𝛼
(𝑤) 𝑑V

𝛼
(𝑧)

= ∫
𝑟𝐵
𝑛

∫
𝐵
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑤)𝐾

𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨󵄨

2

𝑑V
𝛼
(𝑤) 𝑑V

𝛼
(𝑧)

< +∞.

(10)

Thus, the operator 𝑆
𝑟
is a Hilbert-Schmidt operator. Since

((𝑀
𝑓
)
∗

− 𝑆
𝑟
) 𝑔 (𝑧)

= ∫
𝐵
𝑛

𝑔 (𝑤) 𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧) 𝑓 (𝑤)𝐾
𝛼

𝑧
(𝑤)𝑑V

𝛼
(𝑤) ,

(11)

(𝑀
𝑓
)
∗

− 𝑆
𝑟
is an integral operator with kernel 𝐾𝑓

𝑟
(𝑧, 𝑤) =

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧)𝑓(𝑤)𝐾𝛼
𝑧
(𝑤).

By Schur’s test, whenever there exists a positive measur-
able function ℎ on 𝐵

𝑛
and constants 𝑐

1
and 𝑐
2
such that

∫
𝐵
𝑛

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑓

𝑟
(𝑧, 𝑤)

󵄨󵄨󵄨󵄨󵄨
ℎ (𝑧) 𝑑V

𝛼
(𝑧) ≤ 𝑐

1
ℎ (𝑤) , (12)

for all 𝑤 in 𝐵
𝑛
, and

∫
𝐵
𝑛

󵄨󵄨󵄨󵄨󵄨
𝐾
𝑓

𝑟
(𝑧, 𝑤)

󵄨󵄨󵄨󵄨󵄨
ℎ (𝑤) 𝑑V

𝛼
(𝑤) ≤ 𝑐

2
ℎ (𝑧) , (13)

for all 𝑧 in 𝐵
𝑛
, we have

󵄩󵄩󵄩󵄩󵄩󵄩
(𝑀
𝑓
)
∗

− 𝑆
𝑟

󵄩󵄩󵄩󵄩󵄩󵄩
≤ 𝑐
1
𝑐
2
. (14)

Let ℎ(𝑧) = (1 − |𝑧|2)(𝑛+𝛼+1)/2. Since

𝐾
𝛼

𝑧
(𝜓
𝑧
(V)) 𝑘𝛼
𝑧
(V) =

1

(1 − |𝑧|
2

)
(𝑛+1+𝛼)/2

,

1 −
󵄨󵄨󵄨󵄨𝜓𝑧 (V)

󵄨󵄨󵄨󵄨

2

=

(1 − |𝑧|
2

) (1 − |V|2)

|1 − ⟨V, 𝑧⟩|2
,

(15)
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and Hölder inequality, it is easy to prove that

∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧)
󵄨󵄨󵄨󵄨𝑓 (𝑤)𝐾

𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨

(1 − |𝑤|
2

)
(𝑛+𝛼+1)/2

(1 − |𝑧|
2

)
(𝑛+𝛼+1)/2

𝑑V
𝛼
(𝑤)

= ∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧)
󵄨󵄨󵄨󵄨𝑓 (𝑤) 𝑘

𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨

(1 − |𝑤|
2

)
(𝑛+𝛼+1)/2

(1 − |𝑧|
2

)
𝑛+𝛼+1

𝑑V
𝛼
(𝑤)

= ∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧)
󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤)) 𝑘

𝛼

𝑧
(𝜓
𝑧
(𝑤))

󵄨󵄨󵄨󵄨

×

(1 −
󵄨󵄨󵄨󵄨𝜓𝑧 (𝑤)

󵄨󵄨󵄨󵄨

2

)
(𝑛+𝛼+1)/2

(1 − |𝑧|
2

)
𝑛+𝛼+1

󵄨󵄨󵄨󵄨𝑘
𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨

2

𝑑V
𝛼
(𝑤)

= ∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧)
󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤))

󵄨󵄨󵄨󵄨

(1 − |𝑤|
2

)
(𝑛+𝛼+1)/2

|1 − ⟨𝑧, 𝑤⟩|
2𝑛+2𝛼+2

𝑑V
𝛼
(𝑤)

= ∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧)√
󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤))

󵄨󵄨󵄨󵄨
√
󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤))

󵄨󵄨󵄨󵄨

×

(1 − |𝑤|
2

)
(𝑛+𝛼+1)/2

|1 − ⟨𝑧, 𝑤⟩|
2𝑛+2𝛼+2

𝑑V
𝛼
(𝑤)

≤ 𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧) [∫
𝐵
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤))
󵄨󵄨󵄨󵄨 𝑑V𝛼 (𝑤)]

1/2

× [

[

∫
𝐵
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤))
󵄨󵄨󵄨󵄨

(1 − |𝑤|
2

)
𝑛+𝛼+1

|1 − ⟨𝑧, 𝑤⟩|
4𝑛+4𝛼+4

𝑑V
𝛼
(𝑤)]

]

1/2

≤ 𝑐𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧) [∫
𝐵
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤))
󵄨󵄨󵄨󵄨 𝑑V𝛼 (𝑤)]

1/2

× [∫
𝐵
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝜓𝑧 (𝑤))
󵄨󵄨󵄨󵄨

1

(1 − |𝑧|)
3𝑛+3𝛼+3

𝑑V
𝛼
(𝑤)]

1/2

≤ 𝑐 [
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑧)]

1/2

= 𝑐
1
,

(16)

where 𝑐
1
= 𝑐[|̃𝑓|(𝑧)]

1/2, 𝑟 < |𝑧| < 1.
Since

𝐾
𝛼

𝑧
(𝜓
𝑧
(V)) 𝑘𝛼
𝑧
(V) =

1

(1 − |𝑧|
2

)
(𝑛+1+𝛼)/2

,

1 − ⟨𝜓
𝑧
(𝑤) , 𝑧⟩ =

1 − |𝑧|
2

1 − ⟨𝑤, 𝑧⟩
,

(17)

then we obtain

∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑧)
󵄨󵄨󵄨󵄨𝑓 (𝑤)𝐾

𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨

(1 − |𝑧|
2

)
(𝑛+𝛼+1)/2

(1 − |𝑤|
2

)
(𝑛+𝛼+1)/2

𝑑V
𝛼
(𝑧)

= ∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝑤)
󵄨󵄨󵄨󵄨𝑓 (𝑧)𝐾

𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨

(1 − |𝑤|
2

)
(𝑛+𝛼+1)/2

(1 − |𝑧|
2

)
(𝑛+𝛼+1)/2

𝑑V
𝛼
(𝑤)

= ∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝜓
𝑧
(𝑤))

󵄨󵄨󵄨󵄨𝑓 (𝑧)𝐾
𝛼

𝑧
(𝜓
𝑧
(𝑤))

󵄨󵄨󵄨󵄨

×

(1 −
󵄨󵄨󵄨󵄨𝜓𝑧 (𝑤)

󵄨󵄨󵄨󵄨

2

)
(𝑛+𝛼+1)/2

(1 − |𝑧|
2

)
(𝑛+𝛼+1)/2

󵄨󵄨󵄨󵄨𝑘
𝛼

𝑧
(𝑤)

󵄨󵄨󵄨󵄨

2

𝑑V
𝛼
(𝑤)

= ∫
𝐵
𝑛

𝜒
𝐵
𝑛
\𝑟𝐵
𝑛

(𝜓
𝑧
(𝑤))

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

×

(1 −
󵄨󵄨󵄨󵄨𝜓𝑧 (𝑤)

󵄨󵄨󵄨󵄨

2

)
(𝑛+𝛼+1)/2

|1 − ⟨𝑧, 𝑤⟩|
4𝑛+4𝛼+4

𝑑V
𝛼
(𝑤)

≤ 𝑐
2
,

(18)

where 𝑐
2
is positive number.

By the above analysis, we get (12) and (13). By Schur’s test
we get ‖(𝑀

𝑓
)
∗

− 𝑆
𝑟
‖ ≤ 𝑐
1
𝑐
2
, where 𝑐

1
→ 0 as |𝑧| → 𝜕𝐵

𝑛
and

𝑐
2
does not depend on 𝑟. So |̃𝑓|(𝑧) → 0 as 𝑧 → 𝜕𝐵

𝑛
implies

that𝑀
𝑓
is compact on 𝐴2

𝛼
(𝐵
𝑛
).

Suppose𝑀
𝑓
is compact on 𝐴2

𝛼
(𝐵
𝑛
).

Since the kernels 𝑘𝛼
𝑧
converge weakly to zero as 𝑧 tends

𝜕𝐵
𝑛
, thenwe have ‖𝑀

𝑓
𝑘
𝛼

𝑧
‖
𝛼,2

converges to zero as 𝑧 tends 𝜕𝐵
𝑛
.

So we obtain

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑧) ≤ [

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2

(𝑧)]

1/2

=
󵄩󵄩󵄩󵄩󵄩
𝑀
𝑓
𝑘
𝛼

𝑧

󵄩󵄩󵄩󵄩󵄩𝛼,2
󳨀→ 0, (19)

as 𝑧 → 𝜕𝐵
𝑛
.

Let 𝑓 ∈ 𝐿
1

(𝐵
𝑛
, 𝑑V
𝛼
) and let 𝑝 ≥ 1; we say that 𝑓 ∈

BMO𝑝
𝛼
(𝐵
𝑛
) whenever

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩BMO𝑝

𝛼

= sup
𝑧∈𝐵
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑓 ∘ 𝜓
𝑧
− 𝑓 (𝑧)

󵄩󵄩󵄩󵄩󵄩𝛼,𝑝
< ∞. (20)

Note that ‖ ⋅ ‖BMO𝑝
𝛼

does not distinguish constants, while
|‖𝑓‖|
𝛼,𝑝

= ‖𝑓‖BMO𝑝
𝛼

+ |𝑓(0)| is a norm in BMO𝑝
𝛼
(𝐵
𝑛
). By

Theorem 5 in [16], we know that BMO𝑝
𝛼
(𝐵
𝑛
) is equivalent to

BMO𝑝
𝜕
(see the definition in [16]).

For any 𝑝 ≥ 1, let VMO𝑝
𝛼
denote the subspace of BMO𝑝

𝛼

consisting of functions 𝑓 such that

lim
|𝑧|→1

−

󵄩󵄩󵄩󵄩󵄩
𝑓 ∘ 𝜓
𝑧
− 𝑓 (𝑧)

󵄩󵄩󵄩󵄩󵄩𝛼,𝑝
= 0. (21)

Theorem 2. Suppose 𝑓 ∈ 𝑉𝑀𝑂
1

𝛼
and |𝑓|/(1 − |𝑧|)4𝑛+4𝛼+4 is

bounded on 𝐵
𝑛
. Then the following are equivalent:
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(a) 𝑓(𝑧) → 0 as 𝑧 → 𝜕𝐵
𝑛
;

(b) 𝑀
𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
);

(c) 𝑇
𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
).

Proof. It suffices to prove that (𝑎) ⇔ (𝑏) and (𝑎) ⇔ (𝑐).

(𝑎) ⇔ (𝑏). Since
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑧) ,

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑧) −

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨

= ∫

𝐵
𝑛

(
󵄨󵄨󵄨󵄨𝑓 (𝑤)

󵄨󵄨󵄨󵄨 −
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨
)

(1 − |𝑧|
2

)
𝑛+𝛼+1

|1 − ⟨𝑧, 𝑤⟩|
2𝑛+2𝛼+2

𝑑V
𝛼
(𝑤)

≤ ∫
𝐵
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑤) − 𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨

(1 − |𝑧|
2

)
𝑛+𝛼+1

|1 − ⟨𝑧, 𝑤⟩|
2𝑛+2𝛼+2

𝑑V
𝛼
(𝑤)

= ∫
𝐵
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓 ∘ 𝜓
𝑧
(𝑤) − 𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨
𝑑V
𝛼
(𝑤)

=
󵄩󵄩󵄩󵄩󵄩
𝑓 ∘ 𝜓
𝑧
− 𝑓 (𝑧)

󵄩󵄩󵄩󵄩󵄩𝛼,1
,

(22)

then we obtain that 𝑓(𝑧) → 0 as 𝑧 → 𝜕𝐵
𝑛
if and only if

|̃𝑓|(𝑧) → 0 as 𝑧 → 𝜕𝐵
𝑛
. By Theorem 1, we obtain that𝑀

𝑓

is compact operator on 𝐴2
𝛼
(𝐵
𝑛
) if and only if 𝑓(𝑧) → 0 as

𝑧 → 𝜕𝐵
𝑛
.

(𝑎) ⇔ (𝑐). It is clear that 𝑓(𝑧) → 0 as 𝑧 → 𝜕𝐵
𝑛
if and only

if𝑇
𝑓
with BMO1

𝛼
symbol is compact operator on 𝐴2

𝛼
(𝐵
𝑛
) in

[12]. Since VMO1
𝛼
⊂ BMO1

𝛼
, then it is clear that 𝑓(𝑧) → 0

as 𝑧 → 𝜕𝐵
𝑛
if and only if 𝑇

𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
).

Corollary 3. Suppose 𝑓 ∈ 𝑉𝑀𝑂
1

𝛼
, |𝑓|/(1 − |𝑧|)

4𝑛+4𝛼+4 is
bounded on 𝐵

𝑛
, and𝐻

𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
). Then

𝑀
𝑓−
̃
𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
).

Proof. Suppose 𝐻
𝑓

is compact operator on 𝐴
2

𝛼
(𝐵
𝑛
). So

we obtain 𝐻
𝑓−
̃
𝑓

is compact operator on 𝐴
2

𝛼
(𝐵
𝑛
). Since

̃
𝑓− 𝑓̃(𝑧) → 0 as 𝑧 → 𝜕𝐵

𝑛
, then 𝑇

𝑓−
̃
𝑓
is compact operator

on 𝐴2
𝛼
(𝐵
𝑛
). Since

𝑀
𝑓−
̃
𝑓
𝑔 = 𝑇

𝑓−
̃
𝑓
𝑔 + 𝐻

𝑓−
̃
𝑓
𝑔, (23)

we obtain𝑀
𝑓−
̃
𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
).

By Lemma 17 andTheorem 19 in [16] andTheorem 2, we
obtain the following theorem.

Theorem 4. Suppose 𝑓 ∈ 𝑉𝑀𝑂
1

𝛼
, 𝑓(0) = 0, and |𝑓|/(1 −

|𝑧|)
4𝑛+4𝛼+4 is bounded on𝐵

𝑛
.Then the following are equivalent:

(a) 𝑀
𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
);

(b) 𝑇
𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
);

(c) 𝐻
𝑓
is compact operator on 𝐴2

𝛼
(𝐵
𝑛
).
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The paper deals with convex sets, functions satisfying the global convexity property, and positive linear functionals. Jensen’s type
inequalities can be obtained by using convex combinations with the common center. Following the idea of the common center, the
functional forms of Jensen’s inequality are considered in this paper.

1. Introduction

Introduction is intended to be a brief overview of the concept
of convexity and affinity. LetX be a real linear space. Let 𝑎, 𝑏 ∈

X be points and let 𝛼, 𝛽 ∈ R be coefficients. Their binomial
combination

𝛼𝑎 + 𝛽𝑏 (1)

is convex if 𝛼, 𝛽 ≥ 0 and if

𝛼 + 𝛽 = 1. (2)

If 𝑐 = 𝛼𝑎+𝛽𝑏, then the point 𝑐 itself is called the combination
center.

A set S ⊆ X is convex if it contains all binomial convex
combinations of its points. The convex hull convS of the set
S is the smallest convex set containing S, and it consists of
all binomial convex combinations of points of S.

Let C ⊆ X be a convex set. A function 𝑓 : C → R is
convex if the inequality

𝑓 (𝛼𝑎 + 𝛽𝑏) ≤ 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) (3)

holds for all binomial convex combinations 𝛼𝑎 + 𝛽𝑏 of pairs
of points 𝑎, 𝑏 ∈ C.

Requiring only the condition in (2) for coefficients and
requiring the equality in (3), we get a characterization of the
affinity.

Implementingmathematical induction, we can prove that
all of the above applies to 𝑛-membered combinations for any

positive integer 𝑛. In that case, the inequality in (3) is the
famous Jensen’s inequality obtained in [1]. Numerous papers
have been written on Jensen’s inequality; different types and
variants can be found in [2, 3].

2. Positive Linear Functionals and
Convex Sets of Functions

LetX be a nonempty set, and letX be a subspace of the linear
space of all real functions on the domainX. We assume that
X contains the unit function 1 defined by 1(𝑥) = 1 for every
𝑥 ∈ X.

LetI ⊆ R be an interval, and letXI be the set containing
all functions 𝑔 ∈ X with the image in I. Then, XI is
convex set in the spaceX. The same is true for convex sets of
Euclidean spaces. Let C ⊆ R𝑘 be a convex set, and let (X𝑘)C
be the set containing all function 𝑘-tuples 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈

X𝑘 with the image inC.Then, (X𝑘)C is convex set in the space
X𝑘.

A linear functional 𝐿 : X → R is positive (nonnegative)
if 𝐿(𝑔) ≥ 0 for every nonnegative function 𝑔 ∈ X, and 𝐿

is unital (normalized) if 𝐿(1) = 1. If 𝑔 ∈ X, then for every
unital positive functional 𝐿 the number 𝐿(𝑔) is in the closed
interval of real numbers containing the image of 𝑔. Through
the paper, the space of all linear functionals on the space X
will be denoted with L(X).

Let 𝑓 : R → R be an affine function, that is, the function
of the form 𝑓(𝑥) := 𝜅𝑥 + 𝜆 where 𝜅 and 𝜆 are real constants.
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If 𝑔1, . . . , 𝑔𝑛 ∈ X are functions and if 𝐿1, . . . , 𝐿𝑛 ∈ L(X) are
positive functionals providing the unit equality

𝑛

∑

𝑖=1

𝐿 𝑖 (1) = 1, (4)

then

𝑓(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖)) = 𝜅

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖) + 𝜆

𝑛

∑

𝑖=1

𝐿 𝑖 (1) =
𝑛

∑

𝑖=1

𝐿 𝑖 (𝜅𝑔𝑖 + 𝜆1)

=

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑔𝑖)) .

(5)
Respecting the requirement of unit equality in (4), the sum
∑
𝑛

𝑖=1
𝐿 𝑖(𝑔𝑖) could be called the functional convex combina-

tion. In the case 𝑛 = 1, the functional 𝐿 = 𝐿1 must be unital
by the unit equality in (4).

In 1931, Jessen stated the functional form of Jensen’s
inequality for convex functions of one variable; see [4].
Adapted to our purposes, that statement is as follows.

Theorem A. LetI ⊆ R be a closed interval, and let 𝑔 ∈ XI

be a function.
Then, a unital positive functional 𝐿 ∈ L(X) ensures the

inclusion
𝐿 (𝑔) ∈ I (6)

and satisfies the inequality
𝑓 (𝐿 (𝑔)) ≤ 𝐿 (𝑓 (𝑔)) (7)

for every continuous convex function 𝑓 : I → R providing
that f(𝑔) ∈ X.

If 𝑓 is concave, then the reverse inequality is valid in (7). If
𝑓 is affine, then the equality is valid in (7).

The intervalImust be closed, otherwise it could happen
that 𝐿(𝑔) ∉ I.The function𝑓must be continuous, otherwise
it could happen that the inequality in (7) does not apply. Such
boundary cases are presented in [5].

In 1937,McShane extended the functional form of Jensen’s
inequality to convex functions of several variables. He has
covered the generalization in two steps, calling them the
geometric (the inclusion in (8)) and analytic (the inequality
in (9)) formulation of Jensen’s inequality; see [6, Theorems
1 and 2]. Summarized in a theorem, that generalization is as
follows.

Theorem B. Let C ⊆ R𝑘 be a closed convex set, and let 𝑔 =

(𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)C be a function.
Then, a unital positive functional 𝐿 ∈ L(X) ensures the

inclusion
(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) ∈ C (8)

and satisfies the inequality
𝑓 (𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) ≤ 𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) (9)

for every continuous convex function 𝑓 : C → R providing
that 𝑓(𝑔1, . . . , 𝑔𝑘) ∈ X.

If 𝑓 is concave, then the reverse inequality is valid in (9). If
𝑓 is affine, then the equality is valid in (9).

3. Main Results

3.1. Functions of One Variable. The main result of this sub-
section is Theorem 1 relying on the idea of a convex function
graph and its secant line. Using functions that are more
general than convex functions and positive linear functionals,
we obtain the functional Jensen’s type inequalities.

Through the paper, we will use an interval I ⊆ R and a
bounded closed subinterval [𝑎, 𝑏] ⊆ I with endpoints 𝑎 < 𝑏.

Every number 𝑥 ∈ R can be uniquely presented as the
binomial affine combination

𝑥 =

𝑏 − 𝑥

𝑏 − 𝑎

𝑎 +

𝑥 − 𝑎

𝑏 − 𝑎

𝑏, (10)

which is convex if and only if the number 𝑥 belongs to the
interval [𝑎, 𝑏]. Let 𝑓 : I → R be a function, and let
𝑓
line
{𝑎,𝑏}

: R → R be the function of the line passing through the
points 𝐴(𝑎, 𝑓(𝑎)) and 𝐵(𝑏, 𝑓(𝑏)) of the graph of 𝑓. Applying
the affinity of the function 𝑓

line
{𝑎,𝑏}

to the combination in (10),
we obtain its equation

𝑓
line
{𝑎,𝑏}

(𝑥) =

𝑏 − 𝑥

𝑏 − 𝑎

𝑓 (𝑎) +

𝑥 − 𝑎

𝑏 − 𝑎

𝑓 (𝑏) . (11)

The consequence of the representations in (10) and (11) is the
fact that every convex function 𝑓 : I → R satisfies the
inequality

𝑓 (𝑥) ≤ 𝑓
line
{𝑎,𝑏}

(𝑥) for 𝑥 ∈ [𝑎, 𝑏] (12)

and the reverse inequality

𝑓 (𝑥) ≥ 𝑓
line
{𝑎,𝑏}

(𝑥) for 𝑥 ∈ I \ (𝑎, 𝑏) . (13)

In the following consideration, we use continuous func-
tions satisfying the inequalities in (12)-(13).

Theorem 1. LetI ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I be a
bounded closed subinterval, and let 𝑔 ∈ X[𝑎,𝑏] and ℎ ∈ XI\(𝑎,𝑏)

be functions.
Then, a pair of unital positive functionals 𝐿,𝐻 ∈ L(X) such

that

𝐿 (𝑔) = 𝐻 (ℎ) , (14)

satisfies the inequality

𝐿 (𝑓 (𝑔)) ≤ 𝐻 (𝑓 (ℎ)) (15)

for every continuous function 𝑓 : I → R satisfying (12)-(13)
and providing that 𝑓(𝑔), 𝑓(ℎ) ∈ X.

Proof. The number 𝐿(𝑔) belongs to the interval [𝑎, 𝑏] by the
inclusion in (6). Using the features of the function 𝑓 and
applying the affinity of the function 𝑓

line
{𝑎,𝑏}

, we get

𝐿 (𝑓 (𝑔)) ≤ 𝐿 (𝑓
line
{𝑎,𝑏}

(𝑔)) = 𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔))

= 𝑓
line
{𝑎,𝑏}

(𝐻 (ℎ)) = 𝐻 (𝑓
line
{𝑎,𝑏}

(ℎ))

≤ 𝐻 (𝑓 (ℎ))

(16)

because 𝑓line
{𝑎,𝑏}

(ℎ(𝑥)) ≤ 𝑓(ℎ(𝑥)) for every 𝑥 ∈ X.
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It is obvious that a continuous convex function 𝑓 : I →

R satisfies Theorem 1 for every subinterval [𝑎, 𝑏] ⊆ I with
endpoints 𝑎 < 𝑏. The function used inTheorem 1 is shown in
Figure 1. Such a function satisfies only the global property of
convexity on the sets [𝑎, 𝑏] andI \ (𝑎, 𝑏).

Involving the binomial convex combination 𝛼𝑎+𝛽𝑏 with
the equality in (14) by assuming that

𝐿 (𝑔) = 𝛼𝑎 + 𝛽𝑏 = 𝐻 (ℎ) (17)

and inserting the term 𝛼𝑓(𝑎) + 𝛽𝑓(𝑏) in (16) via the double
equality

𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔)) = 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) = 𝑓
line
{𝑎,𝑏}

(𝐻 (ℎ)) (18)

which is true because 𝑓
line
{𝑎,𝑏}

(𝛼𝑎 + 𝛽𝑏) = 𝛼𝑓(𝑎) + 𝛽𝑓(𝑏), we
achieve the double inequality

𝐿 (𝑓 (𝑔)) ≤ 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) ≤ 𝐻 (𝑓 (ℎ)) . (19)

The functions used in Theorem 1 satisfy the functional
form of Jensen’s inequality in the following case.

Corollary 2. Let I ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I
be a bounded closed subinterval, and let ℎ ∈ XI\(𝑎,𝑏) be a
function.

Then, a unital positive functional𝐻 ∈ L(X) such that

𝐻(ℎ) ∈ [𝑎, 𝑏] (20)

satisfies the inequality

𝑓 (𝐻 (ℎ)) ≤ 𝐻 (𝑓 (ℎ)) (21)

for every continuous function satisfying (12)-(13) and providing
that 𝑓(ℎ) ∈ X.

Proof. Putting 𝛼𝑎 + 𝛽𝑏 = 𝐻(ℎ), it follows that

𝑓 (𝐻 (ℎ)) = 𝑓 (𝛼𝑎 + 𝛽𝑏) ≤ 𝑓
line
{𝑎,𝑏}

(𝛼𝑎 + 𝛽𝑏)

= 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏) ≤ 𝐻 (𝑓 (ℎ))

(22)

by the right inequality in (19).

Now, we give a characterization of continuous convex
functions by using unital positive functionals.

Proposition 3. LetI ⊆ R be a closed interval. A continuous
function 𝑓 : I → R is convex if and only if it satisfies the
inequality

𝐿 (𝑓 (𝑔)) ≤ 𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔)) (23)

for every pair of interval endpoints 𝑎, 𝑏 ∈ I, every function𝑔 ∈

X[𝑎,𝑏] such that 𝑓(𝑔) ∈ X, and every unital positive functional
𝐿 ∈ L(X).

Proof. Let us prove the sufficiency. Let 𝑐 := 𝛼𝑎 + 𝛽𝑏 be a
convex combination of points 𝑎, 𝑏 ∈ I where 𝑎 < 𝑏. We
take the constant function 𝑔 = 𝑐1 in X[𝑎,𝑏] (actually 𝑔(𝑥) = 𝑐

y

xa b

y = f(x)

Figure 1: A continuous function satisfying (12)-(13).

for every 𝑥 ∈ X) and a unital positive functional 𝐿. Then,
connecting

𝐿 (𝑓 (𝑔)) = 𝐿 (𝑓 (𝑐) 1) = 𝑓 (𝑐) = 𝑓 (𝛼𝑎 + 𝛽𝑏) ,

𝑓
line
{𝑎,𝑏}

(𝐿 (𝑔)) = 𝑓
line
{𝑎,𝑏}

(𝛼𝑎 + 𝛽𝑏) = 𝛼𝑓 (𝑎) + 𝛽𝑓 (𝑏)

(24)

via (23), we get the convexity inequality in (3).

3.2. Functions of Several Variables. We want to transfer the
results of the previous subsection to higher dimensions. The
main result in this subsection is Theorem 6 generalizing
Theorem 1 to functions of several variables.

LetC ⊆ R2 be a convex set, let △ ⊆ C be a triangle with
vertices𝐴,𝐵, and𝐶, and let△𝑜 be its interior. In the following
observation, we assume that 𝑓 : C → R is a continuous
function satisfying the inequality

𝑓 (𝑃) ≤ 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) for 𝑃 ∈ △ (25)

and the reverse inequality

𝑓 (𝑃) ≥ 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) for 𝑃 ∈ C \ △
𝑜
, (26)

where𝑓plane
{𝐴,𝐵,𝐶}

is the function of the plane passing through the
corresponding points of the graph of 𝑓.

It should be noted that convex functions of two variables
do not generally satisfy (26). The next example confirms this
claim.

Example 4. We take the convex function 𝑓(𝑥, 𝑦) = 𝑥
2
+ 𝑦
2,

the triangle with vertices𝐴(0, 0), 𝐵(1, 0), and 𝐶(0, 2), and the
outside point 𝑃(1, 1).

The valuation of functions 𝑓 and 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑥, 𝑦) = 𝑥 + 2𝑦

at the point 𝑃 is

2 = 𝑓 (𝑃) < 𝑓
plane
{𝐴,𝐵,𝐶}

(𝑃) = 3 (27)

as opposed to (26).

The generalization of Theorem 1 to two dimensions is as
follows.
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Lemma 5. Let C ⊆ R2 be a closed convex set, let △ ⊆ C be
a triangle, and let 𝑔 = (𝑔1, 𝑔2) ∈ (X2)△ and ℎ = (ℎ1, ℎ2) ∈

(X2)C\△𝑜 be functions.
Then, a pair of unital positive functionals 𝐿,𝐻 ∈ L(X) such

that

(𝐿 (𝑔1) , 𝐿 (𝑔2)) = (𝐻 (ℎ1) ,𝐻 (ℎ2)) (28)

satisfies the inequality

𝐿 (𝑓 (𝑔1, 𝑔2)) ≤ 𝐻 (𝑓 (ℎ1, ℎ2)) (29)

for every continuous function satisfying (25)-(26) and provid-
ing that 𝑓(𝑔1, 𝑔2), 𝑓(ℎ1, ℎ2) ∈ X.

Proof. The proof is similar to that of Theorem 1. Using the
triangle vertices 𝐴, 𝐵, and 𝐶, we apply the plane function
𝑓
plane
{𝐴,𝐵,𝐶}

instead of the line function 𝑓
line
{𝑎,𝑏}

.

The previous lemma suggests how the results of the
previous subsection can be transferred to higher dimensions.

Let 𝑆1, . . . , 𝑆𝑘+1 ∈ R𝑘 be points. Their convex hull

S = conv {𝑆1, . . . , 𝑆𝑘+1} (30)

is the 𝑘-simplex inR𝑘 if the points 𝑆1 − 𝑆𝑘+1, . . . , 𝑆𝑘 − 𝑆𝑘+1 are
linearly independent.

LetC ⊆ R𝑘 be a convex set, and letS ⊆ C be a 𝑘-simplex
with vertices 𝑆1, . . . , 𝑆𝑘+1. In the consideration that follows,
we use a function 𝑓 : C → R satisfying the inequality

𝑓 (𝑃) ≤ 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
(𝑃) for 𝑃 ∈ S (31)

and the reverse inequality

𝑓 (𝑃) ≥ 𝑓
hyperplane
{𝑆1 ,...,𝑆𝑘+1}

(𝑃) for 𝑃 ∈ C \S
𝑜
, (32)

where 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
is the function of the hyperplane passing

through the corresponding points of the graph of 𝑓.

Theorem 6. Let C ⊆ R𝑘 be a closed convex set, let S ⊆ C

be a 𝑘-simplex, and let g = (𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)S and ℎ =

(ℎ1, . . . , ℎ𝑘) ∈ (X𝑘)C\S𝑜 be functions.
Then, a pair of unital positive functionals 𝐿,𝐻 ∈ L(X) such

that

(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) = (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) (33)

satisfies the inequality

𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘)) (34)

for every continuous function satisfying (31)-(32) and provid-
ing that 𝑓(𝑔1, . . . , 𝑔𝑘), 𝑓(ℎ1, . . . , ℎ𝑘) ∈ X.

Proof. Relying on the hyperplane function 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
where

𝑆1, . . . , 𝑆𝑘+1 are the simplex vertices, we can apply the proof
similar to that of Theorem 1.

Including the (𝑘 + 1)-membered convex combination
∑
𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 with the equality in (33) in a way that

(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) =

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝 = (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘))

(35)

and using the double equality

𝑓
hyperplane
{𝑆1 ,...,𝑆𝑘+1}

(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘))

=

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝)

= 𝑓
hyperplane
{𝑆
1
,...,𝑆
𝑘+1
}
(𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) ,

(36)

we can derive the double inequality

𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘)) .

(37)

The following functional form of Jensen’s inequality is
true for functions of several variables.

Corollary 7. LetC ⊆ R𝑘 be a closed convex set, let S ⊆ C be
a 𝑘-simplex, and let ℎ = (ℎ1, . . . , ℎ𝑘) ∈ (X𝑘)C\S𝑜 be a function.

Then, a unital positive functional𝐻 ∈ L(X) such that

(𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) ∈ S (38)

satisfies the inequality

𝑓 (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘)) (39)

for every continuous function satisfying (25)-(26) and provid-
ing that 𝑓(ℎ1, . . . , ℎ𝑘) ∈ X.

Continuous convex functions of several variables can be
characterized by unital positive functionals in the following
way. The dimension of a convex set is defined as the dimen-
sion of its affine hull.

Proposition8. LetC ⊆ R𝑘 be a closed convex set of dimension
𝑘. A continuous function 𝑓 : C → R is convex if and only if it
satisfies the inequality

𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤ 𝑓
hyperplane
{𝑆
1
,...,S
𝑘+1
}
(𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘)) (40)

for every (𝑘 + 1)-tuple of 𝑘-simplex vertices 𝑆1, . . . , 𝑆𝑘+1 ∈

C, every function 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)S such that
𝑓(𝑔1, . . . , 𝑔𝑘) ∈ X, and every unital positive functional 𝐿 ∈

L(X).

Proof. To prove the sufficiency, we take a convex combination
𝐶 = ∑

𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 of 𝑘-simplex vertices 𝑆1, . . . , 𝑆𝑘+1 ∈ C. If 𝐶 =

(𝑐1, . . . , 𝑐𝑘), we take the constant mapping 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈

(X𝑘)S consisting of constant functions 𝑔𝑖 = 𝑐𝑖1 and continue
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the proof in the same way as in Proposition 3. Finally, we get
Jensen’s inequality

𝑓(

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝) ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝) (41)

confirming the convexity of the function 𝑓.

4. Applications to Functional
Quasiarithmetic Means

Functions investigated in Subsection 3.1 can be included to
quasiarithmeticmeans by applyingmethods such as those for
convex functions. The basic facts relating to quasiarithmetic
and power means can be found in [7]. For more details on
different forms of quasiarithmetic and power means, as well
as their refinements, see [8].

The next generalization of Theorem 1 will be applied to
the consideration of functional quasiarithmetic means.

Corollary 9. LetI ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I be
a bounded closed subinterval, and let 𝑔1, . . . , 𝑔𝑛 ∈ X[𝑎,𝑏] and
ℎ1, . . . , ℎ𝑚 ∈ XI\(𝑎,𝑏) be functions.

Then, a pair of collections of positive functionals 𝐿 𝑖, 𝐻𝑗 ∈
L(X) providing the unit equalities ∑𝑛

𝑖=1
𝐿 𝑖(1) = ∑

𝑚

𝑗=1
𝐻𝑗(1) =

1 and the equality
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖) =

𝑚

∑

𝑗=1

𝐻𝑗 (ℎ𝑗) (42)

satisfies the inequality
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑔𝑖)) ≤

𝑚

∑

𝑗=1

𝐻𝑗 (𝑓 (ℎ𝑗)) (43)

for every continuous function satisfying (12)-(13) and providing
that all functions 𝑓(𝑔𝑖), 𝑓(ℎ𝑗) ∈ X.

Now, we present a way of introducing the functional
quasiarithmetic means. Let 𝑔1, . . . , 𝑔𝑛 ∈ XI be functions,
and let 𝜑 : I → R be a strictly monotone continuous
function such that all 𝜑(𝑔𝑖) ∈ X. Let 𝐿1, . . . , 𝐿𝑛 : X →

R be positive linear functionals providing the unit equality
∑
𝑛

𝑖=1
𝐿 𝑖(1) = 1. The quasiarithmetic mean of functions 𝑔𝑖

respecting the function 𝜑 and functionals 𝐿 𝑖 can be defined
by

𝑀𝜑 (𝐿1 . . . , 𝐿𝑛; 𝑔1, . . . , 𝑔𝑛) = 𝜑
−1

(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝜑 (𝑔𝑖))) . (44)

In what follows, we will use the abbreviation 𝑀𝜑(𝐿 𝑖, 𝑔𝑖)

for the above mean. The term in parentheses belongs to
the interval 𝜑(I), and therefore the quasiarithmetic mean
𝑀𝜑(𝐿 𝑖, 𝑔𝑖) belongs to the intervalI.

In applications of the function convexity, we use a pair
of strictly monotone continuous functions 𝜑, 𝜓 : I → R

such that 𝜓 is convex with respect to 𝜑 (it also says that 𝜓
is 𝜑-convex), which means that the function 𝑓 = 𝜓(𝜑

−1
) is

convex on the interval 𝜑(I). A similar notation is used for
the concavity.

Instead of the convexity of𝑓, we will apply the conditions
in (12)-(13) via Corollary 9 as follows.

Theorem 10. Let I ⊆ R be a closed interval, let [𝑎, 𝑏] ⊆ I
be a bounded closed subinterval, and let 𝑔1, . . . , 𝑔𝑛 ∈ X[𝑎,𝑏]
and ℎ1, . . . , ℎ𝑚 ∈ XI\(𝑎,𝑏) be functions. Let 𝐿 𝑖, 𝐻𝑗 ∈ L(X) be
a pair of collections of positive functionals providing the unit
equalities ∑𝑛

𝑖=1
𝐿 𝑖(1) = ∑

𝑚

𝑗=1
𝐻𝑗(1) = 1. Let 𝜑, 𝜓 : I → R be

strictly monotone continuous functions such that all functions
𝜑(𝑔𝑖), 𝜑(ℎ𝑗), 𝜓(𝑔𝑖), 𝜓(ℎ𝑗) ∈ X, and let 𝑓 = 𝜓(𝜑

−1
) be the

composite function.
If𝑓 satisfies (12)-(13) and𝜓 is increasing and if the equality

𝑀𝜑 (𝐿 𝑖, 𝑔𝑖) = 𝑀𝜑 (𝐻𝑗, ℎ𝑗) (45)

is valid, then we have the inequality

𝑀𝜓 (𝐿 𝑖, 𝑔𝑖) ≤ 𝑀𝜓 (𝐻𝑗, ℎ𝑗) . (46)

Proof. We takeJ = 𝜑(I) and [𝑐, 𝑑] = 𝜑([𝑎, 𝑏]).Wewill apply
Corollary 9 to the functions 𝑢𝑖 = 𝜑(𝑔𝑖) ∈ X[𝑐,𝑑] and V𝑗 =

𝜑(ℎ𝑗) ∈ XJ\(𝑐,𝑑) and the function 𝑓 : J → R.
Using the equality 𝜑(𝑀𝜑(𝐿 𝑖, 𝑔𝑖)) = 𝜑(𝑀𝜑(𝐻𝑗, ℎ𝑗)) and

including the functions 𝑢𝑖 and V𝑗, we have
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑢𝑖) =

𝑚

∑

𝑗=1

𝐻𝑗 (V𝑗) . (47)

Then, the inequality
𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑢𝑖)) ≤

𝑚

∑

𝑗=1

𝐻𝑗 (𝑓 (V𝑗)) (48)

follows from Corollary 9, and applying the increasing func-
tion 𝜓

−1, we get

𝜓
−1

(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑓 (𝑢𝑖))) ≤ 𝜓
−1

(

𝑚

∑

𝑗=1

𝐻𝑗 (𝑓 (V𝑗))) . (49)

The above inequality is actually the inequality in (46) because
𝑓(𝑢𝑖) = 𝜓(𝑔𝑖) and 𝑓(V𝑗) = 𝜓(ℎ𝑗).

All the cases of the above theorem are as follows.

Corollary 11. Let 𝑓 = 𝜓(𝜑
−1
) be the composite function

satisfying the conditions of Theorem 10.
If either 𝑓 satisfies (12)-(13) and 𝜓 is increasing or −𝑓

satisfies (12)-(13) and 𝜓 is decreasing and if the equality in (45)
is valid, then the inequality holds in (46).

If either 𝑓 satisfies (12)-(13) and 𝜓 is decreasing or −𝑓

satisfies (12)-(13) and 𝜓 is increasing and if the equality in (45)
is valid, then the reverse inequality holds in (46).

A special case of the quasiarithmetic means in (44) is
power means depending on real exponents 𝑟. Thus, using the
functions

𝜑𝑟 (𝑥) = {

𝑥
𝑟
, 𝑟 ̸= 0

ln𝑥, 𝑟 = 0,

(50)
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where 𝑥 ∈ (0,∞), we get the power means of order 𝑟 in the
form

𝑀𝑟 (𝐿 𝑖, 𝑔𝑖) =

{
{
{
{
{

{
{
{
{
{

{

(

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔
𝑟

𝑖
))

1/𝑟

, 𝑟 ̸= 0

exp(

𝑛

∑

𝑖=1

𝐿 𝑖 (ln𝑔𝑖)) , 𝑟 = 0.

(51)

To apply Theorem 1 to the power means, we use a closed
interval I = [𝜀,∞) where 𝜀 is a positive number and the
equality

𝑀1 (𝐿, 𝑔𝑖) =

𝑛

∑

𝑖=1

𝐿 𝑖 (𝑔𝑖) . (52)

Corollary 12. Let I = [𝜀,∞) be an unbounded closed
interval where 𝜀 > 0, let [𝑎, 𝑏] ⊂ I be a bounded closed
subinterval, and let 𝑔1, . . . , 𝑔𝑛 ∈ X[𝑎,𝑏] and ℎ1, . . . , ℎ𝑚 ∈

XI\(𝑎,𝑏) be functions. Let 𝐿 𝑖, 𝐻𝑗 ∈ L(X) be a pair of collections
of positive functionals providing the unit equalities∑𝑛

𝑖=1
𝐿 𝑖(1) =

∑
𝑚

𝑗=1
𝐻𝑗(1) = 1.

If

𝑀1 (𝐿 𝑖, 𝑔𝑖) = 𝑀1 (𝐻𝑗, ℎ𝑗) , (53)

then

𝑀𝑟 (𝐿 𝑖, 𝑔𝑖) ≤ 𝑀𝑟 (𝐻𝑗, ℎ𝑗) for 𝑟 ≥ 1,

𝑀𝑟 (𝐿 𝑖, 𝑔𝑖) ≥ 𝑀𝑟 (𝐻𝑗, ℎ𝑗) for 𝑟 ≤ 1.

(54)

Proof. The proof follows from Theorem 10 and Corollary 11
by using convex and concave functions such as 𝜑(𝑥) = 𝑥 and
𝜓(𝑥) = 𝑥

𝑟 for 𝑟 ̸= 0, and 𝜓(𝑥) = ln𝑥 for 𝑟 = 0.

5. Applications to Discrete and
Integral Inequalities

Our aim is to use Theorem 6 to obtain certain discrete and
integral inequalities concerning functions of several vari-
ables.The following is the application to discrete inequalities.

Proposition 13. LetC ⊆ R𝑘 be a closed convex set, letS ⊆ C
be a 𝑘-simplex, let∑𝑛

𝑖=1
𝛼𝑖𝐴 𝑖 be a convex combination of points

𝐴 𝑖 ∈ S, and let ∑𝑚
𝑗=1

𝛽𝑗𝐵𝑗 be a convex combination of points
𝐵𝑗 ∈ C \S𝑜.

If the above convex combinations have the common center
𝑛

∑

𝑖=1

𝛼𝑖𝐴 𝑖 =

𝑚

∑

𝑗=1

𝛽𝑗𝐵𝑗, (55)

then the inequality
𝑛

∑

𝑖=1

𝛼𝑖𝑓 (𝐴 𝑖) ≤

𝑚

∑

𝑗=1

𝛽𝑗𝑓 (𝐵𝑗) (56)

holds for every continuous function 𝑓 : C → R satisfying
(31)-(32).

Proof. We take the setX = C and the spaceX containing all
real functions onC. We also take any simplex vertex 𝑆 and its
coordinates (𝑠1, . . . , 𝑠𝑘).

Let 𝑔𝑝, ℎ𝑝 ∈ X (𝑝 = 1, . . . , 𝑘) be functions defined by

𝑔𝑝 (𝑥1, . . . , 𝑥𝑘) = {

𝑥𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ S

𝑠𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ C \S,

(57)

ℎ𝑝 (𝑥1, . . . , 𝑥𝑘) = {

𝑠𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ S𝑜

𝑥𝑝, (𝑥1, . . . , 𝑥𝑘) ∈ C \S𝑜.
(58)

Then, 𝑔 = (𝑔1, . . . , 𝑔𝑘) ∈ (X𝑘)S and ℎ = (ℎ1, . . . , ℎ𝑘) ∈

(X𝑘)C\S𝑜 .
Let 𝐿,𝐻 ∈ L(X) be summarizing unital positive func-

tionals defined by

𝐿 (𝑔) =

𝑛

∑

𝑖=1

𝛼𝑖𝑔 (𝐴 𝑖) ,

𝐻 (ℎ) =

𝑚

∑

𝑗=1

𝛽𝑗ℎ (𝐵𝑗) .

(59)

Applying the functional 𝐿 to the functions 𝑔𝑝 and the
functional𝐻 to the functions ℎ𝑝, we obtain

𝑛

∑

𝑖=1

𝛼𝑖𝐴 𝑖 = (𝐿 (𝑔1) , . . . , 𝐿 (𝑔𝑘))

= (𝐻 (ℎ1) , . . . , 𝐻 (ℎ𝑘)) =

𝑚

∑

𝑗=1

𝛽𝑗𝐵𝑗.

(60)

Now, we can apply Theorem 6 and get the inequality

𝑛

∑

𝑖=1

𝛼𝑖𝑓 (𝐴 𝑖) = 𝐿 (𝑓 (𝑔1, . . . , 𝑔𝑘)) ≤ 𝐻 (𝑓 (ℎ1, . . . , ℎ𝑘))

=

𝑚

∑

𝑗=1

𝛽𝑗𝑓 (𝐵𝑗)

(61)

which concludes the proof.

Proposition 13 does not generally hold for convex func-
tions. The next example demonstrates a concrete planar case
of 𝑘 = 2.

Example 14. We take the convex function 𝑓(𝑥, 𝑦) = 𝑥
2
+ 𝑦
2,

the triangle with vertices 𝐴1(−3, 0), 𝐴2(3, 0), and 𝐴3(0, 3),
and the outside points 𝐵1(−2, 2), 𝐵2(0, −2), and 𝐵3(2, 2).

Then, we have

1

3

𝐴1 +

1

3

𝐴2 +

1

3

𝐴3 =

3

8

𝐵1 +

2

8

𝐵2 +

3

8

𝐵3,

9 =

1

3

𝑓 (𝐴1) +

1

3

𝑓 (𝐴2) +

1

3

𝑓 (𝐴3)

>

3

8

𝑓 (𝐵1) +

2

8

𝑓 (𝐵2) +

3

8

𝑓 (𝐵3) = 7.

(62)
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More details on the behavior of a convex function of two
variables on the triangle and outside the triangle can be found
in [9, Theorem 3.2]. Triangle cones have a prominent part in
these considerations.

The integral analogy of the concept of convex combina-
tion is the concept of barycenter. Let 𝜇 be a positive measure
on R𝑘, and letA ⊆ R𝑘 be a 𝜇-measurable set with 𝜇(A) > 0.
Given the positive integer 𝑛, letA = ∪

𝑛

𝑖=1
A𝑛𝑖 be the partition

of pairwise disjoint 𝜇-measurable sets A𝑛𝑖. Taking points
𝐴𝑛𝑖 ∈ A𝑛𝑖, we determine the convex combination

𝐴𝑛 =

𝑛

∑

𝑖=1

𝜇 (A𝑛𝑖)

𝜇 (A)

𝐴𝑛𝑖 (63)

whose center 𝐴𝑛 belongs to convA. The 𝜇-barycenter of the
set A can be defined as the limit of the sequence (𝐴𝑛)𝑛; that
is,

𝑀(A, 𝜇) = lim
𝑛→∞

(

𝑛

∑

𝑖=1

𝜇 (A𝑛𝑖)

𝜇 (A)

𝐴𝑛𝑖)

=

1

𝜇 (A)

(∫

A

𝑥1 𝑑𝜇, . . . , ∫

A

𝑥𝑘 𝑑𝜇) .

(64)

As defined above, the point 𝑀(A, 𝜇) is in convA. So, the
convex sets contain its barycenters.

The application ofTheorem 6 to integral inequalities is as
follows.

Proposition 15. Let 𝜇 be a positive measure on R𝑘. Let C ⊆

R𝑘 be a closed convex set, let S ⊆ C be a 𝑘-simplex, and let
A ⊆ S andB ⊆ C \S𝑜 be sets of positive 𝜇-measures.

If the above sets have the common 𝜇-barycenter

𝑀(A, 𝜇) = 𝑀(B, 𝜇) , (65)

then the inequality

1

𝜇 (A)

∫

A

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 ≤

1

𝜇 (B)

∫

B

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇

(66)

holds for every continuous function 𝑓 : C → R satisfying
(31)-(32).

Proof. The proof is similar to that of Proposition 13 by using
X as the space of all 𝜇-integrable functions on C. We apply
the integrating unital positive functional 𝐿 defined by

𝐿 (𝑔) =

1

𝜇 (A)

∫

A

𝑔 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 (67)

to the functions 𝑔𝑝 of (57), as well as the integrating unital
positive functional𝐻 defined by

𝐻(ℎ) =

1

𝜇 (B)

∫

B

ℎ (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 (68)

to the functions ℎ𝑝 of (58).

If 𝑆1, . . . , 𝑆𝑘+1 are the simplex vertices, then using the
unique convex combination∑

𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 satisfying

𝑀(A, 𝜇) =

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝 = 𝑀(B, 𝜇) (69)

and applying (37), we obtain the extension of (66) as the
double inequality

1

𝜇 (A)

∫

A

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝)

≤

1

𝜇 (B)

∫

B

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇.

(70)

The above inequality is reminiscent of Hermite-Hadamard’s
inequality where discrete and integral terms are replaced, see
the below inequality in (72).

Implementing convex combinations to the integral
method, onemay derive the following version of theHermite-
Hadamard inequality for convex functions on simplexes.

Proposition 16. Let𝜇 be a positivemeasure onR𝑘. LetS ⊂ R𝑘

be a 𝑘-simplex of positive 𝜇-measure, let 𝑆1, . . . , 𝑆𝑘+1 be simplex
vertices, and let ∑𝑘+1

𝑝=1
𝛾𝑝𝑆𝑝 be their convex combination.

If the convex combination center and the 𝜇-barycenter ofS
both fall at the same point

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝 = 𝑀(S, 𝜇) , (71)

then the double inequality

𝑓(

𝑘+1

∑

𝑝=1

𝛾𝑝𝑆𝑝) ≤

1

𝜇 (S)

∫

S

𝑓 (𝑥1, . . . , 𝑥𝑘) 𝑑𝜇 ≤

𝑘+1

∑

𝑝=1

𝛾𝑝𝑓 (𝑆𝑝)

(72)

holds for every 𝜇-integrable convex function 𝑓 : S → R.

More on the important and interesting Hermite-Hada-
mard’s inequality, including historical facts about its name,
can be found in [10, 11].
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Let 𝑋 be a completely regular Hausdorff space, and let (𝐸, ‖ ⋅ ‖
𝐸
) and (𝐹, ‖ ⋅ ‖

𝐹
) be Banach spaces. Let 𝐶

𝑏
(𝑋, 𝐸) be the space of all

𝐸-valued bounded, continuous functions defined on 𝑋, equipped with the strict topologies 𝛽
𝑧
, where 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡. General

integral representation theorems of (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
)-continuous linear operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 with respect to the corresponding

operator-valued measures are established. Strongly bounded and (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
)-continuous operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 are studied.

We extend to “the completely regular setting” some classical results concerning operators on the spaces𝐶(𝑋, 𝐸) and𝐶
𝑜
(𝑋, 𝐸), where

𝑋 is a compact or a locally compact space.

1. Introduction and Terminology

Throughout the paper let (𝐸, ‖ ⋅ ‖
𝐸
) and (𝐹, ‖ ⋅ ‖

𝐹
) be real

Banach spaces, and let 𝐸󸀠 and 𝐹󸀠 denote the Banach duals
of 𝐸 and 𝐹, respectively. By 𝐵

𝐹
󸀠 and 𝐵

𝐸
we denote the closed

unit ball in 𝐹󸀠 and 𝐸, respectively. ByL(𝐸, 𝐹) we denote the
space of all bounded linear operators 𝑈 : 𝐸 → 𝐹. Given a
locally convex space (𝐿, 𝜉) by (𝐿, 𝜉)󸀠 or 𝐿󸀠

𝜉
we will denote its

topological dual. We denote by 𝜎(𝐿,𝐾) the weak topology on
𝐿 with respect to a dual pair ⟨𝐿, 𝐾⟩.

Assume that 𝑋 is a completely regular Hausdorff space.
Let 𝐶

𝑏
(𝑋, 𝐸) stand for the Banach space of all bounded

continuous, 𝐸-valued functions on 𝑋 provided with the
uniform norm ‖ ⋅ ‖. We write 𝐶

𝑏
(𝑋) instead of 𝐶

𝑏
(𝑋,R).

By 𝐶
𝑏
(𝑋, 𝐸)

󸀠 we denote the Banach dual of 𝐶
𝑏
(𝑋, 𝐸). For

𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) let 𝑓(𝑡) = ‖𝑓(𝑡)‖

𝐸
for 𝑡 ∈ 𝑋.

LetB (resp.,B𝑎) be the algebra (resp.,𝜎-algebra) of Baire
sets in𝑋, which is the algebra (resp., 𝜎-algebra) generated by
the class Z of all zero sets of functions of 𝐶

𝑏
(𝑋). By P we

denote the family of all cozero sets in 𝑋. Let 𝐵(B, 𝐸) stand
for the Banach space of all totally B-measurable functions
𝑓 : 𝑋 → 𝐸 (the uniform limits of sequences of 𝐸-valued
B-simple functions) provided with the uniform norm ‖ ⋅ ‖

(see [1, 2]). We will write 𝐵(B) instead of 𝐵(B,R).

Strict topologies 𝛽
𝑧
on 𝐶

𝑏
(𝑋) and 𝐶

𝑏
(𝑋, 𝐸) (for 𝑧 = 𝜎,

∞, 𝑝, 𝜏, 𝑡) play an important role in the topological measure
theory (see [3–12] for definitions and more details). Recall
that a subset𝐻 of 𝐶

𝑏
(𝑋, 𝐸) is said to be solid if 𝑓

1
∈ 𝐶

𝑏
(𝑋, 𝐸)

and 𝑓
2
∈ 𝐻 with 𝑓

1
(𝑡) ≤ 𝑓

2
(𝑡) for 𝑡 ∈ 𝑋 imply that 𝑓

1
∈ 𝐻.

Then 𝛽
𝑧
are locally convex-solid topologies on 𝐶

𝑏
(𝑋, 𝐸); that

is, they have a local base at 0 consisting of convex and solid
sets (see [6, Theorem 8.1], [10, Theorem 5]). We have 𝛽

𝑡
⊂

𝛽
𝜏
⊂ 𝛽

∞
⊂ 𝛽

𝜎
⊂ T

‖⋅‖
and 𝛽

𝑡
⊂ 𝛽

𝑝
⊂ 𝛽

𝜎
. For a net (𝑓

𝛼
)

in 𝐶
𝑏
(𝑋, 𝐸), 𝑓

𝛼
→ 0 for 𝛽

𝑧
if and only if 𝑓

𝛼
→ 0 for 𝛽

𝑧
in

𝐶
𝑏
(𝑋) (see [6, 10]).
Let 𝐶

𝑏
(𝑋) ⊗ 𝐸 stand for the algebraic tensor product of

𝐶
𝑏
(𝑋) and 𝐸; that is, 𝐶

𝑏
(𝑋) ⊗ 𝐸 is the space of all functions

∑
𝑛

𝑖=1
(𝑢
𝑖
⊗ 𝑥

𝑖
), where 𝑢

𝑖
∈ 𝐶

𝑏
(𝑋), 𝑥

𝑖
∈ 𝐸 for 𝑖 = 1, . . . , 𝑛, and

(𝑢
𝑖
⊗ 𝑥

𝑖
)(𝑡) = 𝑢

𝑖
(𝑡)𝑥

𝑖
for 𝑡 ∈ 𝑋. Then 𝐶

𝑏
(𝑋) ⊗ 𝐸 is dense in

(𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝑧
) for 𝑧 = ∞, 𝜏, 𝑡 (see [6, 8]). Moreover, 𝐶

𝑏
(𝑋) ⊗

𝐸 is dense in (𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝜎
) if 𝑋 or 𝐸 is a 𝐷-space (see [6,

Theorem 5.2], [13]) and in (𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝑝
) if𝑋 is real-compact

(see [10, Theorem 7]).
Let 𝐶

𝑟𝑐
(𝑋, 𝐸) denote the Banach space of all continuous

functions ℎ : 𝑋 → 𝐸 such that ℎ(𝑋) is a relatively compact
set in 𝐸, provided with the uniform norm ‖ ⋅ ‖. Then 𝐶

𝑏
(𝑋) ⊗

𝐸 ⊂ 𝐶
𝑟𝑐
(𝑋, 𝐸) ⊂ 𝐵(B, 𝐸).
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Linear operators from the spaces 𝐶
𝑟𝑐
(𝑋, 𝐸) and 𝐶

𝑏
(𝑋, 𝐸),

equipped with the strict topologies 𝛽
𝑧
(𝑧 = 𝜎,∞, 𝜏) to a

locally convex space (𝐹, 𝜉), were studied by Katsaras and
Liu [14], Aguayo-Garrido, Nova-Yanéz and Sanchez [15, 16],
and Khurana [17]. In particular, Katsaras and Liu found
an integral representation of weakly compact operators 𝑆 :
𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 and characterizations of (𝛽

𝑧
, 𝜉)-continuous

andweakly compact operators 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 for 𝑧 = 𝜎, 𝜏

(see [14, Theorems 3, 4, 5]). Aguayo-Arrido and Nova-Yanéz
derived aRiesz representation theorem for (𝛽

𝑧
, 𝜉)-continuous

and weakly compact operators 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 for 𝑧 =

∞, 𝜏 in terms of their representing operator measures (see
[15, Theorems 5 and 6]). If 𝑋 is a locally compact space,
continuous operators on 𝐶

𝑜
(𝑋, 𝐸) were studied by Dobrakov

(see [18]) and Mitter and Young (see [19]).
In this paper we develop the theory of continuous linear

operators from 𝐶
𝑏
(𝑋, 𝐸), equipped with the strict topologies

𝛽
𝑧
(𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡) to a Banach space (𝐹, ‖ ⋅ ‖

𝐹
). In partic-

ular, we extend to “the completely regular setting” some clas-
sical results of Brooks and Lewis (see [20, Theorem 5], [21,
Theorem 5.2], [22, Theorem 2.1]) concerning operators on
the spaces 𝐶(𝑋, 𝐸) and 𝐶

𝑜
(𝑋, 𝐸), where 𝑋 is a compact or

a locally compact space, respectively. In Section 2, using the
device of embedding the space 𝐵(B, 𝐸) into 𝐶

𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠 (the
Banach bidual of 𝐶

𝑟𝑐
(𝑋, 𝐸)), we state the integral represen-

tation of bounded linear operators from 𝐶
𝑟𝑐
(𝑋, 𝐸) to 𝐹. In

Section 3 we derive general Riesz representation theorems
for (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous linear operators 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) →

𝐹 (𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡) with respect to the corresponding
measures 𝑚 : B → L(𝐸, 𝐹󸀠󸀠) (see Theorems 9 and
14 below). Section 4 is devoted to the study of (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous and strongly bounded operators 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) →

𝐹.

2. Integral Representation of Bounded
Linear Operators on 𝐶

𝑟𝑐
(𝑋,𝐸)

Let𝑀(𝑋) stand for the Banach lattice of all Bairemeasures on
B, provided with the norm ‖]‖ = |]|(𝑋) (= the total variation
of ]). Due to the Alexandrov representation theorem 𝐶

𝑏
(𝑋)

󸀠

can be identified with𝑀(𝑋) through the lattice isomorphism
𝑀(𝑋) ∋ ] 󳨃→ 𝜑] ∈ 𝐶𝑏(𝑋)

󸀠, where 𝜑](𝑢) = ∫𝑋 𝑢 𝑑] for 𝑢 ∈
𝐶
𝑏
(𝑋) and ‖𝜑]‖ = ‖]‖ (see [4, Theorem 5.1]).
By 𝑀(𝑋, 𝐸󸀠) we denote the set of all finitely additive

measures 𝜇 :B → 𝐸
󸀠 with the following properties:

(i) for each 𝑥 ∈ 𝐸, the function 𝜇
𝑥
: B → R defined by

𝜇
𝑥
(𝐴) = 𝜇(𝐴)(𝑥) belongs to𝑀(𝑋),

(ii) |𝜇|(𝑋) < ∞, where |𝜇|(𝐴) stands for the variation of
𝜇 on 𝐴 ∈B.

In view of [23, Theorem 2.5] 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠 can be identified
with𝑀(𝑋, 𝐸󸀠) through the linear mapping𝑀(𝑋, 𝐸󸀠) ∋ 𝜇 󳨃→
Φ
𝜇
∈ 𝐶

𝑟𝑐
(𝑋, 𝐸)

󸀠, whereΦ
𝜇
(ℎ) = ∫

𝑋
ℎ𝑑𝜇 for ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸) and

‖Φ
𝜇
‖ = |𝜇|(𝑋). Then one can embed 𝐵(B, 𝐸) into 𝐶

𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠

by the mapping 𝜋 : 𝐵(B, 𝐸) → 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠, where for 𝑔 ∈
𝐵(B, 𝐸),

𝜋 (𝑔) (Φ
𝜇
) := ∫

𝑋

𝑔𝑑𝜇 for 𝜇 ∈ 𝑀(𝑋, 𝐸
󸀠
) . (1)

Let 𝑖
𝐹
: 𝐹 → 𝐹

󸀠󸀠 denote the canonical embedding; that is,
𝑖
𝐹
(𝑦)(𝑦

󸀠
) = 𝑦

󸀠
(𝑦) for 𝑦 ∈ 𝐹, 𝑦󸀠 ∈ 𝐹󸀠. Moreover, let 𝑗

𝐹
:

𝑖
𝐹
(𝐹) → 𝐹 stand for the left inverse of 𝑖

𝐹
; that is, 𝑗

𝐹
∘ 𝑖
𝐹
= 𝑖𝑑

𝐹
.

Assume that 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 is a bounded linear

operator. Let

𝑆 := 𝑆
󸀠󸀠
∘ 𝜋 : 𝐵 (B, 𝐸) 󳨀→ 𝐹

󸀠󸀠
, (2)

where 𝑆󸀠 : 𝐹󸀠 → 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠 and 𝑆󸀠󸀠 : 𝐶
𝑟𝑐
(𝑋, 𝐸)

󸀠󸀠
→ 𝐹

󸀠󸀠

denote the conjugate and biconjugate operators of 𝑆, respec-
tively. Then we can define a measure 𝑚 : B → L(𝐸, 𝐹󸀠󸀠)
(called a representing measure of 𝑆) by

𝑚(𝐴) (𝑥) := 𝑆 (1𝐴 ⊗ 𝑥) = (𝑆
󸀠󸀠
∘ ⊗ 𝜋) (1

𝐴
⊗ 𝑥)

for 𝐴 ∈B, 𝑥 ∈ 𝐸.
(3)

Then 𝑚̃(𝑋) < ∞, where the semivariation 𝑚̃(𝐴) of 𝑚 on
𝐴 ∈ B is defined by 𝑚̃(𝐴) := sup ‖∑𝑚(𝐴

𝑖
)(𝑥

𝑖
)‖
𝐹
󸀠󸀠 , where

the supremum is taken over all finiteB-partitions (𝐴
𝑖
) of 𝐴

and 𝑥
𝑖
∈ 𝐵

𝐸
for each 𝑖. For 𝑦󸀠 ∈ 𝐹󸀠 let us put

𝑚
𝑦
󸀠 (𝐴) (𝑥) := (𝑚 (𝐴) (𝑥)) (𝑦

󸀠
) for 𝐴 ∈B, 𝑥 ∈ 𝐸. (4)

Let |𝑚
𝑦
󸀠 |(𝐴) stand for the variation of𝑚

𝑦
󸀠 on𝐴.Then (see

[1, Section 4, Proposition 5])

𝑚̃ (𝐴) = sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝐴) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} . (5)

The following general properties of the operator 𝑆 :

𝐵(B, 𝐸) → 𝐹
󸀠󸀠 are well known (see [1, Section 6], [2, Section

1], [13, 24]):

𝑆 (𝑔) = ∫
𝑋

𝑔𝑑𝑚 for 𝑔 ∈ 𝐵 (B, 𝐸) , 󵄩󵄩󵄩󵄩󵄩𝑆
󵄩󵄩󵄩󵄩󵄩
= 𝑚̃ (𝑋) , (6)

and for each 𝑦󸀠 ∈ 𝐹󸀠,

𝑆 (𝑔) (𝑦
󸀠
) = ∫

𝑋

𝑔𝑑𝑚
𝑦
󸀠 for 𝑔 ∈ 𝐵 (B, 𝐸) . (7)

For 𝐴 ∈B let

∫
𝐴

𝑔𝑑𝑚 := ∫
𝑋

1
𝐴
𝑔𝑑𝑚 for 𝑔 ∈ 𝐵 (B, 𝐸) . (8)

From the general properties of 𝑆 it follows that

𝑆 (𝐶
𝑟𝑐 (𝑋, 𝐸)) ⊂ 𝑖𝐹 (𝐹) ,

𝑆 (ℎ) = 𝑗𝐹 (∫
𝑋

ℎ𝑑𝑚) for ℎ ∈ 𝐶
𝑟𝑐 (𝑋, 𝐸) .

(9)

Hence for each 𝑦󸀠 ∈ 𝐹󸀠 we get

𝑦
󸀠
(𝑆 (ℎ)) = ∫

𝑋

ℎ𝑑𝑚
𝑦
󸀠 for ℎ ∈ 𝐶

𝑟𝑐 (𝑋, 𝐸) , (10)
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and hence𝑚
𝑦
󸀠 ∈ 𝑀(𝑋, 𝐸

󸀠
). Moreover, we have

‖𝑆‖ =
󵄩󵄩󵄩󵄩󵄩
𝑆
󸀠󵄩󵄩󵄩󵄩󵄩

= sup {󵄩󵄩󵄩󵄩󵄩𝑆
󸀠
(𝑦
󸀠
)
󵄩󵄩󵄩󵄩󵄩
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {󵄩󵄩󵄩󵄩󵄩𝑦
󸀠
∘ 𝑆
󵄩󵄩󵄩󵄩󵄩
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {
󵄩󵄩󵄩󵄩󵄩󵄩
Φ
𝑚
𝑦
󸀠

󵄩󵄩󵄩󵄩󵄩󵄩
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝑋) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ,

(11)

and using (5) we get

‖𝑆‖ = 𝑚̃ (𝑋) . (12)

By 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) we will denote the space of all
measures 𝑚 : B → L(𝐸, 𝐹󸀠󸀠) such that 𝑚̃(𝑋) < ∞ and
𝑚
𝑦
󸀠 ∈ 𝑀(𝑋, 𝐸

󸀠
) for each 𝑦󸀠 ∈ 𝐹

󸀠. Thus the representing
measure𝑚 of 𝑆 belongs to𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)).

For any 𝑥 ∈ 𝐸 define

𝑆
𝑥 (𝑢) := 𝑆 (𝑢 ⊗ 𝑥) for 𝑢 ∈ 𝐶

𝑏 (𝑋) ,

𝑚
𝑥 (𝐴) := 𝑚 (𝐴) (𝑥) for 𝐴 ∈B.

(13)

Then 𝑆
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is a bounded linear operator. Let 𝜒 :

𝐵(B) → 𝐶
𝑏
(𝑋)

󸀠󸀠 stand for the canonical embedding; that is,
for 𝑢 ∈ 𝐵(B),

𝜒 (𝑢) (𝜑]) = ∫
𝑋

𝑢𝑑] for ] ∈ 𝑀 (𝑋) . (14)

Let

𝑆
𝑥
:= (𝑆

𝑥
)
󸀠󸀠
∘ 𝜒 : 𝐵 (B) 󳨀→ 𝐹

󸀠󸀠
. (15)

Then

𝑆
𝑥
(𝐶
𝑏 (𝑋)) ⊂ 𝑖𝐹 (𝐹) ,

𝑆
𝑥 (𝑢) = 𝑗𝐹 (𝑆𝑥 (𝑢)) for 𝑢 ∈ 𝐶

𝑏 (𝑋) .

(16)

The following lemma will be useful.

Lemma 1. Let 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 be a bounded linear

operator. Then 𝑆󸀠󸀠(𝜋(1
𝐴
⊗ 𝑥)) = (𝑆

𝑥
)
󸀠󸀠
(𝜒(1

𝐴
)) for any 𝑥 ∈ 𝐸

and 𝐴 ∈B.

Proof. Let 𝑦󸀠 ∈ 𝐹󸀠. Then for each 𝑢 ∈ 𝐶
𝑏
(𝑋),

(𝑦
󸀠
∘ 𝑆
𝑥
) (𝑢) = 𝑦

󸀠
(𝑆 (𝑢 ⊗ 𝑥))

= ∫
𝑋

(𝑢 ⊗ 𝑥) 𝑑𝑚𝑦󸀠 = ∫
𝑋

𝑢𝑑𝑚
𝑥,𝑦
󸀠

= 𝜑
𝑚
𝑥,𝑦
󸀠
(𝑢) .

(17)

Hence we have

(𝑆
𝑥
)
󸀠󸀠
(𝜒 (1

𝐴
)) (𝑦

󸀠
)

= 𝜒 (1
𝐴
) (𝑆

󸀠

𝑥
(𝑦
󸀠
))

= 𝜒 (1
𝐴
) (𝑦

󸀠
∘ 𝑆
𝑥
) = 𝜒 (1

𝐴
) (𝜑

𝑚
𝑥,𝑦
󸀠
)

= ∫
𝑋

1
𝐴
𝑑𝑚

𝑥,𝑦
󸀠 = 𝑚

𝑥,𝑦
󸀠 (1

𝐴
) = 𝑚

𝑥
(1
𝐴
) (𝑦

󸀠
) .

(18)

On the other hand, for each ℎ ∈ 𝐶
𝑟𝑐
(𝑋, 𝐸), (𝑦󸀠 ∘ 𝑆)(ℎ) =

∫
𝑋
ℎ𝑑𝑚

𝑦
󸀠 = Φ

𝑚
𝑦
󸀠
(ℎ), and hence

𝑆
󸀠󸀠
(𝜋 (1

𝐴
⊗ 𝑥))

= (1
𝐴
⊗ 𝑥) (𝑆

󸀠
(𝑦
󸀠
)) = 𝜋 (1

𝐴
⊗ 𝑥) (𝑦

󸀠
∘ 𝑆)

= 𝜋 (1
𝐴
⊗ 𝑥) (Φ

𝑚
𝑦
󸀠
) = Φ

𝑚
𝑦
󸀠
(1
𝐴
⊗ 𝑥)

= ∫
𝑋

(1
𝐴
⊗ 𝑥) 𝑑𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 (𝐴) (𝑥) = 𝑚𝑥 (1𝐴) (𝑦

󸀠
) .

(19)

It follows that 𝑆󸀠󸀠(𝜋(1
𝐴
⊗ 𝑥)) = (𝑆

𝑥
)
󸀠󸀠
(𝜒(1

𝐴
)), as desired.

From Lemma 1 for 𝐴 ∈B and 𝑥 ∈ 𝐸 we get

𝑚
𝑥 (𝐴) := 𝑆 (1𝐴 ⊗ 𝑥) = 𝑆

󸀠󸀠
(𝜋 (1

𝐴
⊗ 𝑥)) = (𝑆

𝑥
)
󸀠󸀠
(𝜒 (1

𝐴
)) ;

(20)

that is,

𝑚
𝑥 (𝐴) = 𝑆𝑥 (1𝐴) , 𝑆

𝑥 (𝑢) = ∫
𝑋

𝑢𝑑𝑚
𝑥

for 𝑢 ∈ 𝐵 (B) .

(21)

Nowwe are ready to prove the following Bartle-Dunford-
Schwartz type theorem (see [25, Theorem 5, pages 153-154]).

Theorem 2. Let 𝑆 : 𝐶
𝑟𝑐
(𝑋, 𝐸) → 𝐹 be a bounded linear oper-

ator and let𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its representing measure.Then
for each 𝑥 ∈ 𝐸 the following statements are equivalent.

(i) 𝑆
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly compact.

(ii) 𝑚(𝐴)(𝑥) ∈ 𝑖
𝐹
(𝐹) for each 𝐴 ∈ B and {𝑗

𝐹
(𝑚(𝐴)(𝑥)) :

𝐴 ∈B} is a relatively weakly compact set in 𝐹.
(iii) 𝑚

𝑥
:B → 𝐹

󸀠󸀠 is strongly bounded.

Proof. (i)⇒(ii) Assume that 𝑆
𝑥
is weakly compact. Then by

the Gantmacher theorem (𝑆
𝑥
)
󸀠󸀠
(𝐶
𝑏
(𝑋)

󸀠󸀠
) ⊂ 𝑖

𝐹
(𝐹) and (𝑆

𝑥
)
󸀠󸀠
:

𝐶
𝑏
(𝑋)

󸀠󸀠
→ 𝐹

󸀠󸀠 is weakly compact (see [26, Theorem 17.2]).
Hence 𝑆

𝑥
(𝐵(B)) ⊂ 𝑖

𝐹
(𝐹) and 𝑆

𝑥
: 𝐵(B) → 𝐹

󸀠󸀠 is weakly
compact. In view of (21) for each 𝑥 ∈ 𝐸, 𝑚

𝑥
(𝐴) ∈ 𝑖

𝐹
(𝐹) for

𝐴 ∈ B and 𝑚
𝑥
: B → 𝐹

󸀠󸀠 is strongly bounded (see [25,
Theorem 1, page 148]). It follows that {𝑗

𝐹
(𝑚(𝐴)(𝑥)) : 𝐴 ∈B}

is a relatively weakly compact subset of 𝐹 (see [24, Theorem
7]).

(ii)⇒(iii) It follows from [24, Theorem 7].
(iii)⇒(i) Assume that 𝑚

𝑥
: B → 𝐹

󸀠󸀠 is strongly bound-
ed. Then by (21) 𝑆

𝑥
: 𝐵(B) → 𝐹

󸀠󸀠 is weakly compact and in
view of (16) we derive that 𝑆

𝑥
is weakly compact.



4 Journal of Function Spaces

3. Integral Representation of Continuous
Linear Operators on 𝐶

𝑏
(𝑋,𝐸)

The spaces of all 𝜎-additive, 𝑢-additive, perfect, 𝜏-additive,
and tight members of 𝑀(𝑋) will be denoted by 𝑀

𝜎
(𝑋),

𝑀
∞
(𝑋),𝑀

𝑝
(𝑋),𝑀

𝜏
(𝑋), and𝑀

𝑡
(𝑋), respectively (see [3, 4]).

Then (𝐶
𝑏
(𝑋), 𝛽

𝑧
)
󸀠
= {𝜑] : ] ∈ 𝑀𝑧

(𝑋)} for 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡.
For the integration theory of functions𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸)with

respect to 𝜇 ∈ 𝑀
𝑧
(𝑋, 𝐸

󸀠
) we refer the reader to [6, page 197],

[5, Definition 3.10], [27, page 375]. For 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡 let

𝑀
𝑧
(𝑋, 𝐸

󸀠
)

:= {𝜇 ∈ 𝑀(𝑋, 𝐸
󸀠
) : 𝜇

𝑥
∈ 𝑀

𝑧 (𝑋) for each 𝑥 ∈ 𝐸} .
(22)

Then |𝜇| ∈ 𝑀
𝑧
(𝑋) if 𝜇 ∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
) (see [5, Proposition 3.9],

[6, Theorem 3.1], [10, Theorem 1]). For Φ ∈ 𝐶
𝑏
(𝑋, 𝐸)

󸀠 let us
put, for 𝑢 ∈ 𝐶

𝑏
(𝑋)

+,

|Φ| (𝑢) := sup {󵄨󵄨󵄨󵄨Φ (𝑓)
󵄨󵄨󵄨󵄨 : 𝑓 ∈ 𝐶𝑏 (𝑋, 𝐸) , 𝑓 ≤ 𝑢} . (23)

It is known that |Φ| : 𝐶
𝑏
(𝑋)

+
→ R+ is additive and positively

homogeneous and can be extended to a linear functional on
𝐶
𝑏
(𝑋) (denoted by |Φ| again) by |Φ|(𝑢) = |Φ|(𝑢+) − |Φ|(𝑢−)

for 𝑢 ∈ 𝐶
𝑏
(𝑋).

Theorem 3. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is dense in

(𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝜎
) (resp., 𝑧 = ∞; 𝑧 = 𝑝 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is dense

in (𝐶
𝑏
(𝑋, 𝐸), 𝛽

𝑝
); 𝑧 = 𝜏; 𝑧 = 𝑡). Then the following statements

hold.

(i) For a linear functional Φ on 𝐶
𝑏
(𝑋, 𝐸) the following

conditions are equivalent.

(a) Φ is 𝛽
𝑧
-continuous.

(b) There exists a unique 𝜇 ∈ 𝑀
𝑧
(𝑋, 𝐸

󸀠
) such that

Φ(𝑓) = Φ
𝜇
(𝑓) = ∫

𝑋

𝑓𝑑𝜇 𝑓𝑜𝑟 𝑓 ∈ 𝐶
𝑏 (𝑋, 𝐸) . (24)

(ii) For 𝜇 ∈ 𝑀
𝑧
(𝑋, 𝐸

󸀠
), |Φ

𝜇
|(𝑢) = ∫

𝑋
𝑢𝑑|𝜇| = 𝜑

|𝜇|
(𝑢) for

𝑢 ∈ 𝐶
𝑏
(𝑋).

Proof. (i) See [6, Theorems 5.3 and 4.2, Corollary 3.9], [5,
Theorem 3.13], and [10, Theorem 8].

(ii) See [6, Theorem 2.1].

Assume that M is a subset of 𝑀
𝑧
(𝑋, 𝐸

󸀠
) and

sup
𝜇∈M|𝜇|(𝑋) < ∞, where 𝑧 = 𝜎, ∞, 𝑝, 𝜏, 𝑡. Then we say

thatM satisfies the condition (𝐶
𝑧
) if we have the following:

(1) for 𝑧 = 𝜎: sup{|𝜇|(𝑍
𝑛
) : 𝜇 ∈ M} → 0 whenever

𝑍
𝑛
↓ 0, (𝑍

𝑛
) ⊂Z;

(2) for 𝑧 = ∞: for every partition of unity (𝑢
𝛼
)
𝛼∈A for 𝑋

and every 𝜀 > 0 there exists a finite setA
𝜀
inA such

that sup
𝜇∈M ∫𝑋

(1 − ∑
𝛼∈A
𝜀

𝑢
𝛼
)𝑑|𝜇| < 𝜀;

(3) for 𝑧 = 𝑝: for every continuous function 𝑓 from 𝑋

onto a separable metric space𝑌 and every 𝜀 > 0, there
is a compact subset 𝐾 of 𝑌 such that sup

𝜇∈M|𝜇|(𝑋 \

𝑓
1

(𝐾)) ≤ 𝜀;
(4) for 𝑧 = 𝜏: sup{|𝜇|(𝑍

𝛼
) : 𝜇 ∈ M} → 0 whenever

𝑍
𝛼
↓ 0, (𝑍

𝛼
) ⊂Z;

(5) for 𝑧 = 𝑡: for every 𝜀 > 0 there exists a compact subset
𝐾 of𝑋 such that sup{|𝜇|(𝑍) : 𝑍 ∈ Z, 𝑍 ⊂ 𝑋 \ 𝐾} ≤ 𝜀
for each 𝜇 ∈M.

The following lemmas will be useful.

Lemma 4. Assume that M is a subset of 𝑀
𝑧
(𝑋, 𝐸

󸀠
) and

sup
𝜇∈M|𝜇|(𝑋) < ∞, where 𝑧 = 𝜎 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense

in 𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense

in 𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Then the following statements are

equivalent.

(i) {Φ
𝜇
: 𝜇 ∈M} is 𝛽

𝑧
-equicontinuous.

(ii) {|Φ
𝜇
| : 𝜇 ∈M} is 𝛽

𝑧
-equicontinuous.

(iii) {𝜑
|𝜇|
: 𝜇 ∈M} is 𝛽

𝑧
-equicontinuous.

(iv) The condition (𝐶
𝑧
) holds.

Proof. (i)⇔(ii) See [9, Lemma 2].
(ii)⇔(iii) It follows fromTheorem 3.
(iii)⇔(iv) See [4, Theorem 11.14] for 𝑧 = 𝜎; [28, Propo-

sition 3.6] for 𝑧 = ∞; [28, Proposition 2.6] for 𝑧 = 𝑝; [4,
Theorem 11.24] for 𝑧 = 𝜏; and [28, Proposition 1.1] for 𝑧 =
𝑡.

Lemma 5. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in

𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝, and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense in

𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Let 𝜇 ∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
). Then for 𝐴 ∈ B

the following statements hold.

(i) A functionalΦ
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → R defined byΦ

𝐴
(ℎ) =

∫
𝐴
ℎ𝑑𝜇 is 𝛽

𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

-continuous and can by uniquely
extended to a 𝛽

𝑧
-continuous linear functional Φ

𝐴
:

𝐶
𝑏
(𝑋, 𝐸) → R, and one will write the following:

∫
𝐴

𝑓𝑑𝜇 := Φ
𝐴
(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (25)

(ii) | ∫
𝐴
𝑓𝑑𝜇| ≤ ∫

𝐴
𝑓𝑑|𝜇| for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

Proof. (i) Assume that (ℎ
𝛼
) is a net in 𝐶

𝑟𝑐
(𝑋, 𝐸) such that

ℎ
𝛼
→ 0 for 𝛽

𝑧
. Then

󵄨󵄨󵄨󵄨Φ𝐴 (ℎ𝛼)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝛼
𝑑𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 ≤ ∫

𝑋

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 . (26)

Since ℎ̃
𝛼
→ 0 for 𝛽

𝑧
in 𝐶

𝑏
(𝑋) and |𝜇| ∈ 𝑀

𝑧
(𝑋), we

obtain that Φ
𝐴
(ℎ
𝛼
) → 0; that is, Φ

𝐴
is 𝛽

𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

-con-
tinuous. Since 𝐶

𝑟𝑐
(𝑋, 𝐸) is dense in (𝐶

𝑏
(𝑋, 𝐸), 𝛽

𝑧
), Φ

𝐴
can

be uniquely extended to a 𝛽
𝑧
-continuous linear functional

Φ
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) → R (see [29, Theorem 2.6]).
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(ii) Assume that 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in

𝐶
𝑟𝑐
(𝑋, 𝐸) such that ℎ

𝛼
→ 𝑓 for 𝛽

𝑧
. Then ℎ̃

𝛼
→ 𝑓 for 𝛽

𝑧
in

𝐶
𝑏
(𝑋). Then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 − ∫

𝐴

𝑓𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐴

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝛼
− 𝑓
󵄨󵄨󵄨󵄨󵄨
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨

≤ ∫
𝑋

󵄨󵄨󵄨󵄨󵄨
ℎ̃
𝛼
− 𝑓
󵄨󵄨󵄨󵄨󵄨
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 ,

(27)

and hence ∫
𝐴
𝑓𝑑|𝜇| = lim

𝛼
∫
𝐴
ℎ̃
𝛼
𝑑|𝜇|. Since ∫

𝐴
𝑓𝑑𝜇 =

Φ
𝐴
(𝑓) = lim

𝛼
∫
𝐴
ℎ
𝛼
𝑑𝜇, we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

𝑓𝑑𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= lim

𝛼

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝛼
𝑑𝜇

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ lim
𝛼
∫
𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 = ∫

𝐴

𝑓𝑑
󵄨󵄨󵄨󵄨𝜇
󵄨󵄨󵄨󵄨 .

(28)

For 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡 let us put

𝑀
𝑧
(𝑋,L (𝐸, 𝐹

󸀠󸀠
))

:= {𝑚 ∈ 𝑀(𝑋,L (𝐸, 𝐹
󸀠󸀠
)) : 𝑚

𝑦
󸀠 ∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
)

for each 𝑦󸀠 ∈ 𝐹󸀠} .

(29)

Lemma 6. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in

𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝, and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense in

𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Assume that 𝑚 ∈ 𝑀

𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠))

and the set {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐹

󸀠
} satisfies the condition (𝐶

𝑧
). Then

for 𝐴 ∈B the following statements hold.

(i) An operator 𝑆
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → 𝐹

󸀠󸀠 defined by 𝑆
𝐴
(ℎ) =

∫
𝐴
ℎ𝑑𝑚 is (𝛽

𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

,‖ ⋅ ‖
𝐹
󸀠󸀠)-continuous and can be

uniquely extended to a (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
󸀠󸀠)-continuous linear

operator 𝑆
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) → 𝐹

󸀠󸀠, and one will write the
following.

∫
𝐴

𝑓𝑑𝑚 := 𝑆
𝐴
(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (30)

(ii) For each 𝑦󸀠 ∈ 𝐹󸀠, (∫
𝐴
𝑓𝑑𝑚)(𝑦

󸀠
) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 for 𝑓 ∈

𝐶
𝑏
(𝑋, 𝐸).

Proof. (i) In view of Lemma 5 the set {𝜑
|𝑚
𝑦
󸀠 |
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is

𝛽
𝑧
-equicontinuous in 𝐶

𝑏
(𝑋)

󸀠

𝛽
𝑧

. Assume that (ℎ
𝛼
) is a net in

𝐶
𝑟𝑐
(𝑋, 𝐸) such that ℎ

𝛼
→ 0 for 𝛽

𝑧
. Let 𝜀 > 0 be given. Then

there exists a neighborhood 𝑉
𝜀
of 0 for 𝛽

𝑧
in 𝐶

𝑏
(𝑋) such that

sup
𝑦
󸀠
∈𝐵
𝐹
󸀠
| ∫
𝑋
𝑢𝑑 |𝑚

𝑦
󸀠 || ≤ 𝜀 for 𝑢 ∈ 𝑉

𝜀
. Since ℎ̃

𝛼
→ 0 for 𝛽

𝑧

in 𝐶
𝑏
(𝑋), choose 𝛼

𝜀
such that ℎ

𝛼
∈ 𝑉

𝜀
for 𝛼 ≥ 𝛼

𝜀
. Hence

sup
𝑦
󸀠
∈𝐵
𝐹
󸀠
∫
𝑋
ℎ̃
𝛼
𝑑 |𝑚

𝑦
󸀠 | ≤ 𝜀 for 𝛼 ≥ 𝛼

𝜀
. It follows that, for

𝛼 ≥ 𝛼
𝜀
and each 𝑦󸀠 ∈ 𝐵

𝐹
󸀠 ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(∫
𝐴

ℎ
𝛼
𝑑𝑚) (𝑦

󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝐴

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝑋

ℎ̃
𝛼
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ 𝜀,

(31)

and hence,

󵄩󵄩󵄩󵄩𝑆𝐴(ℎ𝛼)
󵄩󵄩󵄩󵄩𝐹󸀠󸀠

= sup {󵄨󵄨󵄨󵄨󵄨𝑆𝐴 (ℎ𝛼) (𝑦
󸀠
)
󵄨󵄨󵄨󵄨󵄨
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀. (32)

This means that 𝑆
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → 𝐹

󸀠󸀠 is (𝛽
𝑧
|
𝐶
𝑟𝑐
(𝑋,𝐸)

, ‖ ⋅ ‖
𝐹
󸀠󸀠)-

continuous. Since 𝐶
𝑟𝑐
(𝑋, 𝐸) is 𝛽

𝑧
-dense in (𝐶

𝑏
(𝑋, 𝐸), 𝛽

𝑧
), 𝑆

𝐴

possesses a unique (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
󸀠󸀠)-continuous extension 𝑆

𝐴
:

𝐶
𝑏
(𝑋, 𝐸) → 𝐹

󸀠󸀠 (see [29, Theorem 2.6]). Let

∫
𝐴

𝑓𝑑𝑚 := 𝑆
𝐴
(𝑓) for 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (33)

(ii) Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in 𝐶

𝑟𝑐
(𝑋, 𝐸) such

that ℎ
𝛼
→ 𝑓 for 𝛽

𝑧
. By Lemma 5 and (7) for 𝑦󸀠 ∈ 𝐹󸀠 we have

(∫
𝐴

𝑓𝑑𝑚) (𝑦
󸀠
) = (lim

𝛼
(∫
𝐴

ℎ
𝛼
𝑑𝑚)) (𝑦

󸀠
)

= lim
𝛼
(∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠) (𝑦

󸀠
)

= lim
𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠 = ∫

𝐴

𝑓𝑑𝑚
𝑦
󸀠 .

(34)

Corollary 7. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense

in 𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝 and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense

in 𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡). Assume that𝑚 ∈ M

𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠))

and the set {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} satisfies the condition (𝐶

𝑧
). Then

for 𝐴 ∈B the following statements hold:

(a) 󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝐴)

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝐴

ℎ𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸, ‖ℎ‖ ≤ 1}

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

𝑓𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1} .

(b) 𝑚̃ (𝐴)

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝐴

ℎ𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸, ‖ℎ‖ ≤ 1}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫
𝐴

𝑓𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1} .

(35)

In particular, if 𝑈 ∈ P, then

(c) 󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝑈) = sup{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑈

ℎ𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

: ℎ ∈ 𝐶
𝑏 (𝑋) ⊗ 𝐸,

‖ℎ‖ ≤ 1, supp ℎ ⊂ 𝑈}

= sup
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫
𝑋

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(36)
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where the supremum is taken over all finite disjoint supported
collections {𝑢

1
, . . . , 𝑢

𝑛
} ⊂ 𝐶

𝑏
(𝑋) with ‖𝑢

𝑖
‖ ≤ 1 and supp 𝑢

𝑖
⊂

𝑈 and {𝑥
1
, . . . , 𝑥

𝑛
} ⊂ 𝐵

𝐸
. One has

(d) 𝑚̃ (𝑈) = sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑈

ℎ𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸,

‖ℎ‖ ≤ 1, supp ℎ ⊂ 𝑈}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∫
𝑈

𝑓𝑑𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1, supp𝑓 ⊂ 𝑈} .

(37)

Proof. Let 𝐴 ∈ B and 𝑦󸀠 ∈ 𝐹󸀠. Then by Lemma 5 for 𝑓 ∈
𝐶
𝑏
(𝑋, 𝐸) with ‖𝑓‖ ≤ 1 we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

𝑓𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝐴

𝑓𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴) . (38)

On the other hand, let 𝜀 > 0 be given.Then there exist a finite
B-partition (𝐴

𝑖
)
𝑛

𝑖=1
of 𝐴 and 𝑥

𝑖
∈ 𝐵

𝐸
, 𝑖 = 1, . . . , 𝑛, such that

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴) −

𝜀

3
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

(𝑚 (𝐴
𝑖
) (𝑥

𝑖
)) (𝑦

󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝑚
𝑥
𝑖
,𝑦
󸀠 (𝐴

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(39)

By the regularity of m
𝑥
𝑖
,𝑦
󸀠 ∈ 𝑀

𝑧
(𝑋) for 𝑖 = 1, . . . , 𝑛, we can

choose 𝑍
𝑖
∈ Z, 𝑍

𝑖
⊂ 𝐴

𝑖
such that |𝑚

𝑥
𝑖
,𝑦
󸀠 |(𝐴

𝑖
\ 𝑍

𝑖
) ≤ 𝜀/3𝑛

for 𝑖 = 1, . . . , 𝑛. Choose pairwise disjoint 𝑉
𝑖
∈ P with

𝑍
𝑖
⊂ 𝑉

𝑖
for 𝑖 = 1, . . . , 𝑛 such that |𝑚

𝑥
𝑖
,𝑦
󸀠 |(𝑉

𝑖
\ 𝑍

𝑖
) ≤ 𝜀/3𝑛.

Then for 𝑖 = 1, . . . , 𝑛 we can choose V
𝑖
∈ 𝐶

𝑏
(𝑋) with 0 ≤

V
𝑖
≤ 1

𝑋
, V
𝑖
|
𝑍
𝑖

≡ 1, and V
𝑖
|
𝑋\𝑉
𝑖

≡ 0 (see [4, page 115]).
Define ℎ

𝑜
= ∑

𝑛

𝑖=1
(V
𝑖
⊗ 𝑥

𝑖
). Then ‖ℎ

𝑜
‖ ≤ 1 and ∫

𝐴
ℎ
𝑜
𝑑𝑚

𝑦
󸀠 =

∑
𝑛

𝑖=1
∫
𝐴
V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 = ∑

𝑛

𝑖=1
∫
𝑉
𝑖
∩𝐴

V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 . Hence we get

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴) −

𝜀

3
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

𝑚
𝑥
𝑖
,𝑦
󸀠 (𝐴

𝑖
) −

𝑛

∑

𝑖=1

𝑚
𝑥
𝑖
,𝑦
󸀠 (𝑍

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑖=1

∫
𝑍
𝑖

V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 −

𝑛

∑

𝑖=1

∫
𝑉
𝑖
∩𝐴

V
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝐴

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑖
\ 𝑍

𝑖
) +

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑥
𝑖
,𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝑉
𝑖
\ 𝑍

𝑖
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜀

3
+
𝜀

3
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝐴

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(40)

and hence |𝑚
𝑦
󸀠 |(𝐴) ≤ | ∫

𝐴
ℎ
𝑜
𝑑 𝑚

𝑦
󸀠 | + 𝜀. Thus the proof of (a)

is complete.

In view of (5), (a), and Lemma 6 we get

𝑚̃ (𝐴) = sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝐴) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(∫
𝐴

ℎ𝑑𝑚) (𝑦
󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸,

‖ℎ‖ ≤ 1, 𝑦
󸀠
∈ 𝐵

𝐹
󸀠}

= sup {
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(∫
𝐴

𝑓𝑑𝑚) (𝑦
󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1, 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∫
𝐴

ℎ𝑑𝑚)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: ℎ ∈ 𝐶

𝑏 (𝑋) ⊗ 𝐸, ‖ℎ‖ ≤ 1}

= sup{
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(∫
𝐴

𝑓𝑑𝑚)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐹󸀠󸀠
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1} ;

(41)

that is, (b) holds.
Assume now that 𝑈 ∈ P. Let 𝑈

𝑖
= 𝑉

𝑖
∩ 𝑈 ∈ P for 𝑖 =

1, . . . , 𝑛.Then |𝑚
𝑥
𝑖
,𝑦
󸀠 |(𝑈

𝑖
\𝑍

𝑖
) ≤ |𝑚

𝑥
𝑖
,𝑦
󸀠 |(𝑉

𝑖
\𝑍

𝑖
) ≤ 𝜀/3𝑛 for 𝑖 =

1, . . . , 𝑛. For 𝑖 = 1, . . . , 𝑛 choose 𝑢
𝑖
∈ 𝐶

𝑏
(𝑋) with 0 ≤ 𝑢

𝑖
≤ 1

𝑋
,

𝑢
𝑖
|
𝑍
𝑖

≡ 1, and𝑢
𝑖
|
𝑋\𝑈
𝑖

≡ 0. Let ℎ
𝑜
= ∑

𝑛

𝑖=1
(𝑢
𝑖
⊗𝑥

𝑖
).Then ‖ℎ

𝑜
‖ ≤ 1

and supp ℎ
𝑜
⊂ 𝑈; and hence by (a), |𝑚

𝑦
󸀠 |(𝑈) ≤ | ∫

𝑈
ℎ
𝑜
𝑑𝑚

𝑦
󸀠 | +

𝜀. Note that ∫
𝑈
ℎ
𝑜
𝑑𝑚

𝑦
󸀠 = ∑

𝑛

𝑖=1
∫
𝑋
𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠 , where supp 𝑢

𝑖
are

pairwise disjoint and supp 𝑢
𝑖
⊂ 𝑈 for 𝑖 = 1, . . . , 𝑛. Thus (c)

holds.
Using (c) we easily show that (d) holds. Thus the proof is

complete.

Definition 8. Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a bounded linear

operator. Then the measure𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) defined by

𝑚(𝐴) (𝑥) := ((𝑇|𝐶
𝑟𝑐
(𝑋,𝐸)

)
󸀠󸀠

∘ 𝜋) (1
𝐴
⊗ 𝑥)

for 𝐴 ∈B, 𝑥 ∈ 𝐸
(42)

will be called a representing measure of 𝑇.

Now we state general Riesz representation theorems for
continuous linear operators on 𝐶

𝑏
(𝑋, 𝐸), provided with the

strict topologies 𝛽
𝑧
, where 𝑧 = 𝜎,∞, 𝑝, 𝜏, 𝑡.

Theorem 9. Assume that 𝑧 = 𝜎 and 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in

𝐶
𝑏
(𝑋, 𝐸) (resp., 𝑧 = ∞; 𝑧 = 𝑝, and 𝐶

𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝑝
-dense in

𝐶
𝑏
(𝑋, 𝐸); 𝑧 = 𝜏; 𝑧 = 𝑡).

(I) Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous

linear operator and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its
representing measure. Then the following statements
hold.

(i) 𝑚 ∈ 𝑀
𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and {𝑚

𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

satisfies the condition (𝐶
𝑧
).

(ii) For each 𝑦󸀠 ∈ 𝐹󸀠, 𝑦󸀠(𝑇(𝑓)) = ∫
𝑋
𝑓𝑑𝑚

𝑦
󸀠 for 𝑓 ∈

𝐶
𝑏
(𝑋, 𝐸).
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(iii) For each 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) and 𝐴 ∈ B there exists

a unique vector in 𝐹󸀠󸀠, denoted by ∫
𝐴
𝑓𝑑𝑚, such

that (∫
𝐴
𝑓𝑑𝑚)(𝑦

󸀠
) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 for each 𝑦󸀠 ∈ 𝐹󸀠.

(iv) For each 𝐴 ∈ B, the mapping 𝐶
𝑏
(𝑋, 𝐸) ∋ 𝑓 󳨃→

∫
𝐴
𝑓𝑑𝑚 ∈ 𝐹

󸀠󸀠 is a (𝛽
𝑧
, ‖ ⋅ ‖

𝐹
󸀠󸀠)-continuous linear

operator.

(v) For 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹) and 𝑇(𝑓) =

𝑗
𝐹
(∫
𝑋
𝑓𝑑𝑚).

(vi) ‖𝑇‖ = 𝑚̃(𝑋).

(II) Let 𝑚 ∈ 𝑀
𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and let the set {𝑚

𝑦
󸀠 : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} satisfy the condition (𝐶

𝑧
).Then the statements (iii)

and (iv) hold and for 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹)

and the mapping 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 defined by

𝑇(𝑓) := 𝑗
𝐹
(∫
𝑋
𝑓𝑑𝑚) is a (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator. Moreover, 𝑚 coincides with the representing
measure of 𝑇 and the statements (ii) and (vi) hold.

Proof. (I) In view of (10) for each 𝑦󸀠 ∈ 𝐹
󸀠, 𝑦󸀠(𝑇(ℎ)) =

∫
𝑋
ℎ𝑑𝑚

𝑦
󸀠 for ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸). By Theorem 3 for each 𝑦󸀠 ∈ 𝐹󸀠

there exists a unique 𝜇
𝑦
󸀠
∘𝑇
∈ 𝑀

𝑧
(𝑋, 𝐸

󸀠
) such that (𝑦󸀠∘𝑇)(𝑓) =

∫
𝑋
𝑓𝑑𝜇

𝑦
󸀠
∘𝑇

for 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). It follows that, for each 𝑦󸀠 ∈ 𝐹󸀠,

𝑚
𝑦
󸀠 = 𝜇

𝑦
󸀠
∘𝑇

(see [23, Theorem 2.5]) and this means that
𝑚 ∈ 𝑀

𝑧
(𝑋,L(𝐸, 𝐹󸀠󸀠)). Hence

𝑦
󸀠
(𝑇 (𝑓)) = ∫

𝑋

𝑓𝑑𝑚
𝑦
󸀠 for 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (43)

Since {𝑦󸀠 ∘ 𝑇 : 𝑦
󸀠
∈ 𝐵

𝐹
󸀠} is 𝛽

𝑧
-equicontinuous in

𝐶
𝑏
(𝑋, 𝐸)

󸀠

𝛽
𝑧

, by Lemma 4 the set {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} satisfies the

condition (𝐶
𝑧
). Thus (i) and (ii) hold. In view of Lemma 6,

(iii) and (iv) are satisfied.
According to (9) for each ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸), ∫

𝑋
ℎ𝑑𝑚 ∈ 𝑖

𝐹
(𝐹)

and𝑇(ℎ) = 𝑗
𝐹
(∫
𝑋
ℎ𝑑𝑚). Hence by Lemma 6, ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹).

Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in 𝐶

𝑟𝑐
(𝑋, 𝐸) such that

ℎ
𝛼
→ 𝑓 for 𝛽

𝑧
. Hence

𝑇 (𝑓) = lim
𝛼
𝑇 (ℎ

𝛼
) = lim

𝛼
𝑗
𝐹
(∫
𝑋

ℎ
𝛼
𝑑𝑚)

= 𝑗
𝐹
(lim
𝛼
∫
𝑋

ℎ
𝛼
𝑑𝑚) = 𝑗

𝐹
(∫
𝑋

𝑓𝑑𝑚) .

(44)

Thus (v) holds. Using (v) and Corollary 7 we get ‖𝑇‖ = 𝑚̃(𝑋).
(II) By Lemma 6 the statements (iii) and (iv) are satisfied.
Now let𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in𝐶

𝑟𝑐
(𝑋, 𝐸) such

that ℎ
𝛼
→ 𝑓 for 𝛽

𝑧
. Then by Lemma 6, ∫

𝑋
𝑓𝑑𝑚 = 𝑆

𝑋
(𝑓) =

lim
𝛼
∫
𝑋
ℎ
𝛼
𝑑𝑚 ∈ 𝑖

𝐹
(𝐹) because ∫

𝑋
ℎ
𝛼
𝑑𝑚 ∈ 𝑖

𝐹
(𝐹), and it

follows that 𝑇(= 𝑗
𝐹
∘ 𝑆
𝑋
) is (𝛽

𝑧
, ‖ ⋅ ‖

𝐹
)-continuous.

Let 𝑚
𝑜
∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) stand for the representing

measure of 𝑇. Note that, for 𝐴 ∈ B, 𝑥 ∈ 𝐸, and 𝑦󸀠 ∈ 𝐹󸀠
we have

(𝑚
𝑜 (𝐴) (𝑥)) (𝑦

󸀠
) = (((𝑇|

𝐶
𝑟𝑐
(𝑋,𝐸)

)
󸀠󸀠

∘ 𝜋) (1
𝐴
⊗ 𝑥)) (𝑦

󸀠
)

= 𝜋 (1
𝐴
⊗ 𝑥) ((𝑇|

𝐶
𝑟𝑐
(𝑋,𝐸)

)
󸀠

(𝑦
󸀠
))

= 𝜋 (1
𝐴
⊗ 𝑥) (𝑦

󸀠
∘ (𝑇|

𝐶
𝑟𝑐
(𝑋,𝐸)

))

= ∫
𝑋

(1
𝐴
⊗ 𝑥) 𝑑𝑚

𝑦
󸀠 = ∫

𝑋

1
𝐴
𝑑𝑚

𝑥,𝑦
󸀠

= (𝑚 (𝐴) (𝑥)) (𝑦
󸀠
) ;

(45)

that is,𝑚
𝑜
= 𝑚. By the first part of the proof (ii) and (vi) hold.

Thus the proof is complete.

Following [14, 27] by 𝑀
𝜎
(B𝑎) we denote the space of

all bounded countably additive, real-valued, regular (with
respect to zero sets) measures onB𝑎.

We define 𝑀
𝜎
(B𝑎, 𝐸󸀠) to be the set of all measures 𝜇 :

B𝑎 → 𝐸
󸀠 such that the following two conditions are

satisfied.

(i) For each 𝑥 ∈ 𝐸, the function 𝜇
𝑥
: B𝑎 → R, defined

by 𝜇
𝑥
(𝐴) = 𝜇(𝐴)(𝑥) for𝐴 ∈B𝑎, belongs to𝑀

𝜎
(B𝑎).

(ii) |𝜇|(𝑋) < ∞, where for each 𝐴 ∈ B𝑎, we define
|𝜇|(𝐴) = sup | ∑ 𝜇(𝐴

𝑖
)(𝑥

𝑖
)|, where the supremum is

taken over all finite B𝑎-partitions (𝐴
𝑖
) of 𝐴 and all

finite collections 𝑥
𝑖
∈ 𝐵

𝐸
.

It is known that if 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸󸀠), then |𝜇| ∈ 𝑀

𝜎
(B𝑎) (see

[27, Lemma 2.1]).
The following result will be of importance (see [27,

Theorem 2.5]).

Theorem 10. Let 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸

󸀠
). Then 𝜇 possesses a unique

extension 𝜇 ∈ 𝑀
𝜎
(B𝑎, 𝐸󸀠) and |𝜇|(𝑋) = |𝜇|(𝑋).

Arguing as in the proof of Lemma 6 we can obtain the
following lemma.

Lemma 11. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸)

and 𝜇 ∈ 𝑀
𝜎
(𝑋, 𝐸

󸀠
). Then for𝐴 ∈B𝑎 the following statements

hold.

(i) A functionalΦ
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → R defined byΦ

𝐴
(ℎ) =

∫
𝐴
ℎ𝑑𝜇 is 𝛽

𝜎
|
𝐶
𝑟𝑐
(𝑋,𝐸)

-continuous and can be uniquely
extended to a 𝛽

𝜎
-continuous linear functional Φ

𝐴
:

𝐶
𝑏
(𝑋, 𝐸) → R, and one will write the following:

∫
𝐴

𝑓𝑑𝜇 := Φ
𝐴
(𝑓) 𝑓𝑜𝑟 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (46)

(ii) For 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), | ∫

𝐴
𝑓𝑑𝜇| ≤ ∫

𝐴
𝑓𝑑|𝜇|.

By𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) we will denote the space of all oper-

ator measures 𝑚 : B → L(𝐸, 𝐹) such that 𝑚̃(𝑋) < ∞ and
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𝑚
𝑦
󸀠 ∈ 𝑀

𝜎
(𝑋, 𝐸

󸀠
) for each 𝑦󸀠 ∈ 𝐹󸀠. By𝑀

𝜎
(B𝑎,L(𝐸, 𝐹)) we

will denote the space of all operator measures 𝑚 : B𝑎 →

L(𝐸, 𝐹) with 𝑚̃(𝑋) < ∞ such that 𝑚
𝑦
󸀠 ∈ 𝑀

𝜎
(B𝑎, 𝐸󸀠) for

each 𝑦󸀠 ∈ 𝐹󸀠.

Remark 12. Note that in view of the Orlicz-Pettis theorem
every 𝑚 ∈ 𝑀

𝜎
(B𝑎,L(𝐸, 𝐹)) is countably additive in the

strong operator topology; that is, for each 𝑥 ∈ 𝐸, the measure
𝑚
𝑥
: B𝑎 → 𝐹 defined by 𝑚

𝑥
(𝐴) := 𝑚(𝐴)(𝑥) for 𝐴 ∈ B𝑎

is countably additive. Moreover, in view of [30, Theorem 2]
for each 𝑥 ∈ 𝐸, 𝑚

𝑥
is inner regular by zero sets and outer

regular by cozero sets; that is, for each 𝐴 ∈ B𝑎 and 𝜀 > 0
there exist 𝑍 ∈ Z with 𝑍 ⊂ 𝐴 and 𝑃 ∈ P with 𝐴 ⊂ P such
that ‖𝑚

𝑥
‖(𝐴 \ 𝑍) ≤ 𝜀 and ‖𝑚

𝑥
‖(𝑃 \ 𝐴) ≤ 𝜀, (‖𝑚

𝑥
‖(𝐴) denotes

the semivariation of𝑚
𝑥
on 𝐴 ∈B𝑎).

According to [14, Theorem 7] we have the following
theorem.

Theorem 13. Assume that 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) and

{𝑚(𝐴)(𝑥) : 𝐴 ∈ B} is a relatively weakly compact subset of
𝐹 for each 𝑥 ∈ 𝐸. Then 𝑚 possesses a unique extension 𝑚 ∈

𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) such that 𝑚̃(𝑋) = 𝑚̃(𝑋).

For a linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 and 𝑥 ∈ 𝐸 let

𝑇
𝑥
(𝑢) := 𝑇(𝑢 ⊗ 𝑥) for 𝑢 ∈ 𝐶

𝑏
(𝑋). For𝑚 ∈ 𝑀

𝜎
(B,L(𝐸, 𝐹󸀠󸀠))

and 𝑥 ∈ 𝐸 let𝑚
𝑥
(𝐴) := 𝑚(𝐴)(𝑥) for 𝐴 ∈B.

Theorem 14. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸).

(I) Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous lin-

ear operator such that 𝑇
𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly

compact for each 𝑥 ∈ 𝐸, and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠))
be the representing measure of 𝑇. Then the following
statements hold.

(i) 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and 𝑚̃(𝑍

𝑛
) → 0 when-

ever 𝑍
𝑛
↓ 0, (𝑍

𝑛
) ⊂Z.

(ii) 𝑚(𝐴)(𝑥) ∈ 𝑖
𝐹
(𝐹), for each 𝐴 ∈ B, 𝑥 ∈ 𝐸, and

the measure 𝑚
𝐹
: B → L(𝐸, 𝐹), defined by

𝑚
𝐹
(𝐴)(𝑥) := 𝑗

𝐹
(𝑚(𝐴)(𝑥)) for 𝐴 ∈ B, 𝑥 ∈

𝐸, belongs to 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) and possesses a

unique extension 𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) with

𝑚̃(𝑋) = 𝑚̃(𝑋) which is countably additive both
in the strong operator topology and in the weak
star operator topology. Moreover, 𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 for

𝑦
󸀠
∈ 𝐹

󸀠.
(iii) For every 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸) and 𝐴 ∈ B𝑎 there exists

a unique vector in 𝐹, denoted by ∫
𝐴
𝑓𝑑𝑚, such

that, for each 𝑦󸀠 ∈ 𝐹󸀠, 𝑦󸀠(∫
𝐴
𝑓𝑑𝑚) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 .

(iv) For each𝐴 ∈B𝑎, the mapping 𝑇
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) →

𝐹 defined by 𝑇
𝐴
(𝑓) = ∫

𝐴
𝑓𝑑𝑚 is a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear operator.
(v) 𝑇(𝑓) = 𝑇

𝑋
(𝑓) = ∫

𝑋
𝑓𝑑𝑚 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

(II) Let 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) be such that 𝑚̃(𝑍

𝑛
) → 0

whenever 𝑍
𝑛
↓ 0, (𝑍

𝑛
) ⊂ Z and for each 𝑥 ∈ 𝐸, let

𝑚
𝑥
:B → 𝐹

󸀠󸀠 be strongly bounded.Then the operator

𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 defined by 𝑇(𝑓) = 𝑗

𝐹
(∫
𝑋
𝑓𝑑𝑚) is

(𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and 𝑇

𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is weakly

compact for each 𝑥 ∈ 𝐸, and the statements (ii)–(v)
hold.

Proof. (I) (i) It follows fromTheorem 9.
(ii) In view of Theorem 2 𝑚(𝐴)(𝑥) ∈ 𝑖

𝐹
(𝐹) for 𝐴 ∈ B,

𝑥 ∈ 𝐸, and {𝑚
𝐹
(𝐴)(𝑥) : 𝐴 ∈ B} is a relatively weakly

compact in 𝐹 for each 𝑥 ∈ 𝐸. Since 𝑚
𝐹
∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹)),

by Theorem 13 𝑚
𝐹

possesses a unique extension 𝑚 ∈

𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) with 𝑚̃(𝑋) = 𝑚̃(𝑋). By the Orlicz-Pettis

theorem 𝑚 is countably additive in the strong operator
topology. Moreover, since, for each 𝑦󸀠 ∈ 𝐹

󸀠, |𝑚
𝑦
󸀠 | ∈

𝑀
𝜎
(B𝑎) = 𝑐𝑎(B𝑎), we obtain that 𝑚

𝑦
󸀠 ∈ 𝑐𝑎(B𝑎, 𝐸󸀠). This

means that 𝑚 : B𝑎 → L(𝐸, 𝐹) is countably additive in the
weak star operator topology.

Let 𝑦󸀠 ∈ 𝐹
󸀠. Then for 𝐴 ∈ B and 𝑥 ∈ 𝐸 we have

𝑚
𝑦
󸀠(𝐴)(𝑥) = 𝑚

𝑦
󸀠(𝐴)(𝑥), and byTheorem 10,𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 .

(iii) For 𝐴 ∈ B𝑎 let 𝑆
𝐴
(ℎ) := ∫

𝐴
𝑓𝑑𝑚 for ℎ ∈ 𝐶

𝑟𝑐
(𝑋, 𝐸).

Proceeding as in the proof of Lemma 6 we can show that
𝑆
𝐴
: 𝐶

𝑟𝑐
(𝑋, 𝐸) → 𝐹 is a (𝛽

𝜎
|
𝐶
𝑟𝑐
(𝑋,𝐸)

, ‖ ⋅ ‖
𝐹
)-continuous lin-

ear operator, and hence 𝑆
𝐴
possesses a unique (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-

continuous linear extension 𝑇
𝐴
: 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 (see [29,

Theorem 2.6]). Let us write the following:

∫
𝐴

𝑓𝑑𝑚 := 𝑇
𝐴
(𝑓) for 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) . (47)

Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). Choose a net (ℎ

𝛼
) in 𝐶

𝑟𝑐
(𝑋, 𝐸) such that

ℎ
𝛼
→ 𝑓 for 𝛽

𝜎
. For each 𝑦󸀠 ∈ 𝐹󸀠,𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 (see (i)) and by

Lemma 11 we have

𝑦
󸀠
(∫
𝐴

𝑓𝑑𝑚) = 𝑦
󸀠
(lim
𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚) = lim

𝛼
(𝑦

󸀠
(∫
𝐴

ℎ
𝛼
𝑑𝑚))

= lim
𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠 = lim

𝛼
∫
𝐴

ℎ
𝛼
𝑑𝑚

𝑦
󸀠

= ∫
𝐴

𝑓𝑑𝑚
𝑦
󸀠 = ∫

𝐴

𝑓𝑑𝑚
𝑦
󸀠 .

(48)

(iv) It follows from the proof of (iii).
(v) Let 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸). In view of Theorem 9, for each 𝑦󸀠 ∈

𝐹
󸀠, 𝑦󸀠(𝑇(𝑓)) = ∫

𝑋
𝑓𝑑𝑚

𝑦
󸀠 . On the other hand by (ii) for 𝑦󸀠 ∈

𝐹
󸀠 we have 𝑦󸀠(∫

𝑋
𝑓𝑑𝑚) = ∫

𝑋
𝑓𝑑𝑚

𝑦
󸀠 = ∫

𝑋
𝑓𝑑𝑚

𝑦
󸀠 . It follows

that 𝑇(𝑓) = ∫
𝑋
𝑓𝑑𝑚.

(II) Since {𝑚
𝑦
󸀠 : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} satisfies the condition (𝐶

𝜎
),

by Theorem 9 for 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ∫

𝑋
𝑓𝑑𝑚 ∈ 𝑖

𝐹
(𝐹) and

the mapping 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 defined by 𝑇(𝑓) :=

𝑗
𝐹
(∫
𝑋
𝑓𝑑𝑚) is a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear operator, and𝑚

coincides with the representing measure of 𝑇. Hence in view
ofTheorem 2 𝑇

𝑥
: 𝐶

𝑏
(𝑋) → 𝐹 is a weakly compact operator.

Thus by the first part of the proof the statements (ii)–(v) are
satisfied.

4. Strongly Bounded Operators on 𝐶
𝑏
(𝑋,𝐸)

Definition 15. A bounded linear operator 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) →

𝐹 is said to be strongly bounded if its representing measure
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𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) is strongly bounded; that is, 𝑚̃(𝐴
𝑛
) →

0 whenever (𝐴
𝑛
) is a pairwise disjoint sequence inB.

Note that𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) is strongly bounded if and
only if the family {|𝑚

𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is uniformly strongly

additive.

Now we are ready to state our main results that extend
some classical results of Lewis (see [20, Theorem 5], [31,
Lemma 1]) and Brooks and Lewis (see [22, Theorem 2.1], [21,
Theorem 5.2]) concerning operators on the spaces 𝐶(𝑋, 𝐸)
and 𝐶

𝑜
(𝑋, 𝐸), where 𝑋 is a compact or a locally compact

space, respectively.

Theorem 16. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸).

Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous linear

operator and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its representing
measure. Then 𝑚 ∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and the following

statements are equivalent.

(i) 𝑇 is strongly bounded.
(ii) sup {|𝑚

𝑦
󸀠 |(𝐴

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} → 0 whenever 𝐴

𝑛
↓ 0,

(𝐴
𝑛
) ⊂ B𝑎 (here 𝑚

𝑦
󸀠 ∈ 𝑀

𝜎
(B𝑎, 𝐸󸀠) denotes the

unique extension of𝑚
𝑦
󸀠 ∈ 𝑀

𝜎
(𝑋, 𝐸

󸀠
)).

(iii) If (𝐴
𝑛
) is a sequence inB𝑎 such that𝐴

𝑛
↓ 0, then there

exists a nested sequence (𝑈
𝑛
) in P such that 𝐴

𝑛
⊂ 𝑈

𝑛

for 𝑛 ∈ N and sup {‖𝑇(𝑓)‖
𝐹
: 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1

and supp𝑓 ⊂ 𝑈
𝑛
} → 0.

Proof. In view of Theorem 9 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)).

(i)⇒(ii) Assume that 𝑇 is strongly bounded. Since the
family {|𝑚

𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is uniformly strongly additive,

according to [25, Lemma 1, page 26] the family {|𝑚
𝑦
󸀠 | : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} is uniformly countably additive (see Theorem 16).
(ii)⇒(i) It follows from [25, Lemma 1, page 26].
(ii)⇒(iii) Assume that (ii) holds and (𝐴

𝑛
) is a sequence

inB𝑎 such that 𝐴
𝑛
↓ 0. Then there exists 𝜆 ∈ 𝑐𝑎(B𝑎)+ such

that {|𝑚
𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is uniformly 𝜆-continuous (see [25,

Theorem 4, pages 11-12]). Let 𝜀 > 0 be given. Hence there
exists 𝛿 > 0 such that sup{|𝑚

𝑦
󸀠 |(𝐴) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀/2

whenever 𝜆(𝐴) ≤ 𝛿 and 𝐴 ∈ B𝑎. Since 𝜆 is zero-set regular,
there exists a nested sequence (𝑈

𝑛
) inP so that𝐴

𝑛
⊂ 𝑈

𝑛
and

𝜆(𝑈
𝑛
\ 𝐴

𝑛
) ≤ 𝛿 for 𝑛 ∈ N. Hence sup{|𝑚

𝑦
󸀠 |(𝑈

𝑛
\ 𝐴

𝑛
) : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} ≤ 𝜀/2 for 𝑛 ∈ N. In view of (ii) there exists 𝑛

𝜀
∈ N

such that sup{|𝑚
𝑦
󸀠 |(𝐴

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀/2 for 𝑛 ≥ 𝑛

𝜀
.

Hence sup{|𝑚
𝑦
󸀠 |(𝑈

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} ≤ 𝜀 for 𝑛 ≥ 𝑛

𝜀
; that is,

sup {|𝑚
𝑦
󸀠 |(𝑈

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} → 0.

Let 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1, and supp 𝑓 ⊂ 𝑈

𝑛
. Then by

Theorem 9 we have

󵄩󵄩󵄩󵄩𝑇(𝑓)
󵄩󵄩󵄩󵄩𝐹
= sup {

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑋

𝑓𝑑𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

≤ sup {∫
𝑋

𝑓𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
: 𝑦

󸀠
∈ 𝐵

𝐹
󸀠}

≤ sup {󵄨󵄨󵄨󵄨󵄨𝑚𝑦󸀠
󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} .

(49)

It follows that sup{‖𝑇(𝑓)‖
𝐹
: 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1, supp

𝑓 ⊂ 𝑈
𝑛
} → 0.

(iii)⇒(ii) Assume that (iii) holds and𝐴
𝑛
↓ 0, (𝐴

𝑛
) ⊂B𝑎.

Then there exists a nested sequence (𝑈
𝑛
) inP such that𝐴

𝑛
⊂

𝑈
𝑛
for 𝑛 ∈ N and

sup {󵄩󵄩󵄩󵄩𝑇(𝑓)
󵄩󵄩󵄩󵄩𝐹
: 𝑓 ∈ 𝐶

𝑏 (𝑋, 𝐸) ,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ≤ 1, supp𝑓𝑛 ⊂ 𝑈𝑛}

󳨀→ 0.

(50)

Assume that (ii) does not hold.Then there exist 𝜀 > 0 and 𝑛
𝜀
∈

N such that sup{|𝑚
𝑦
󸀠 |(𝐴

𝑛
𝜀

) : 𝑦
󸀠
∈ 𝐵

𝐹
󸀠} ≥ 𝜀 and ‖𝑇(𝑓)‖

𝐹
≤

(1/8)𝜀 whenever 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸), ‖𝑓‖ ≤ 1, and supp𝑓 ⊂ 𝑈

𝑛
𝜀

.
It follows that there exists 𝑦󸀠

𝑜
∈ 𝐵

𝐹
󸀠 such that |𝑚

𝑦
󸀠 |(𝐴

𝑛
𝜀

) ≥ 𝜀.
Hence there exist a finiteB𝑎-partition (𝐵

𝑖
)
𝑘

𝑖=1
of𝐴

𝑛
𝜀

and 𝑥
𝑖
∈

𝐵
𝐸
, 𝑖 = 1, . . . , 𝑘, such that

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑛
𝜀

) −
𝜀

4
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

𝑚
𝑦
󸀠

𝑜

(𝐵
𝑖
) (𝑥

𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

(𝐵
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(51)

Since |(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

| ∈ 𝑀
𝜎
(B𝑎) is zero-set regular (see [4, page

118]), we can choose 𝑍
𝑖
∈ Z, 𝑍

𝑖
⊂ 𝐵

𝑖
, such that |(𝑚

𝑦
󸀠

𝑜

)
𝑥
𝑖

|(𝐵
𝑖
\

𝑍
𝑖
) ≤ 𝜀/4𝑘 for 𝑖 = 1, . . . , 𝑘. Choose pairwise disjoint 𝑉

𝑖
∈ P

with 𝑍
𝑖
⊂ 𝑉

𝑖
for 𝑖 = 1, . . . , 𝑘 such that |𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

|(𝑉
𝑖
\ 𝑍

𝑖
) ≤ 𝜀/4𝑘.

Let𝑈
𝑖
= 𝑉

𝑖
∩𝑈

𝑛
𝜀

for 𝑖 = 1, . . . , 𝑘.Then𝑈
𝑖
∈ P and |𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

|(𝑈
𝑖
\

𝑍
𝑖
) ≤ 𝜀/4𝑘 for 𝑖 = 1, . . . , 𝑘. For 𝑖 = 1, . . . , 𝑘 choose 𝑢

𝑖
∈ 𝐶

𝑏
(𝑋)

such that 0 ≤ 𝑢
𝑖
≤ 1

𝑋
, 𝑢
𝑖
|
𝑍
𝑖

≡ 0, and 𝑢
𝑖
|
𝑋\𝑈
𝑖

≡ 0 (see [4, page
115]). Let ℎ

𝑜
= ∑

𝑘

𝑖=1
(𝑢
𝑖
⊗ 𝑥

𝑖
). Then ‖ℎ

𝑜
‖ ≤ 1, supp ℎ

𝑜
⊂ 𝑈

𝑛
𝜀

,
and

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

=

𝑘

∑

𝑖=1

∫
𝑈
𝑖

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

. (52)

Hence we get

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑛
𝜀

) −
𝜀

4

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

(𝐵
𝑖
) −

𝑘

∑

𝑖=1

(𝑚
𝑦
󸀠

𝑜

)
𝑥
𝑖

(𝑍
𝑖
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘

∑

𝑖=1

∫
𝑍
𝑖

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

−

𝑘

∑

𝑖=1

∫
𝑈
𝑖

𝑢
𝑖
𝑑𝑚

𝑥
𝑖
,𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑚

𝑦
󸀠

𝑜

)
𝑥
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
(𝐵
𝑖
\ 𝑍

𝑖
) +

𝑘

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑥
𝑖
,𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝑈
𝑖
\ 𝑍

𝑖
)

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝜀

4
+
𝜀

4
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(53)
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Hence

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝑛
𝜀

) −
3

4
𝜀 ≥

1

4
𝜀,

󵄩󵄩󵄩󵄩𝑇(ℎ𝑜)
󵄩󵄩󵄩󵄩𝐹
≥
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

𝑜
(𝑇 (ℎ

𝑜
))
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑋

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑈
𝑛𝜀

ℎ
𝑜
𝑑𝑚

𝑦
󸀠

𝑜

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥
1

4
𝜀.

(54)

Thus we get a contradiction to ‖𝑇(ℎ
𝑜
)‖
𝐹
≤ (1/8)𝜀.

Thus the proof is complete.

Theorem 17. Assume that 𝐶
𝑏
(𝑋) ⊗ 𝐸 is 𝛽

𝜎
-dense in 𝐶

𝑏
(𝑋, 𝐸).

Let 𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and

strongly bounded operator and let 𝑚 ∈ 𝑀(𝑋,L(𝐸, 𝐹󸀠󸀠)) be its
representing measure. Then the following statements hold.

(i) 𝑚 ∈ 𝑀
𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) and 𝑚(𝐴)(𝑥) ∈ 𝑖

𝐹
(𝐹) for

𝐴 ∈ B, 𝑥 ∈ 𝐸, and the measure 𝑚
𝐹
: B → L(𝐸, 𝐹),

defined by 𝑚
𝐹
(𝐴)(𝑥) := 𝑗

𝐹
(𝑚(𝐴)(𝑥)) for 𝐴 ∈ B,

𝑥 ∈ 𝐸, belongs to 𝑀
𝜎
(𝑋,L(𝐸, 𝐹)) and possesses a

unique extension𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹))with 𝑚̃(𝑋) =

𝑚̃
𝐹
(𝑋) = 𝑚̃(𝑋) which is variationally semiregular;

that is, 𝑚̃(𝐴
𝑛
) → 0 whenever 𝐴

𝑛
↓ 0, (𝐴

𝑛
) ⊂B𝑎.

(ii) For every 𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸) and 𝐴 ∈ B𝑎 there exists a

unique vector in 𝐹, denoted by ∫
𝐴
𝑓𝑑𝑚, such that, for

each 𝑦󸀠 ∈ 𝐹󸀠, 𝑦󸀠(∫
𝐴
𝑓𝑑𝑚) = ∫

𝐴
𝑓𝑑𝑚

𝑦
󸀠 .

(iii) For each 𝐴 ∈ B𝑎, ∫
𝐴
𝑓
𝑛
𝑑𝑚 → 0 whenever (𝑓

𝑛
) is

a uniformly bounded sequence in 𝐶
𝑏
(𝑋, 𝐸) such that

𝑓
𝑛
(𝑡) → 0 for 𝑡 ∈ 𝑋.

(iv) 𝑇(𝑓) = ∫
𝑋
𝑓𝑑𝑚 for 𝑓 ∈ 𝐶

𝑏
(𝑋, 𝐸).

(v) 𝑇(𝑓
𝑛
) → 0 whenever (𝑓

𝑛
) is a uniformly bounded

sequence in 𝐶
𝑏
(𝑋, 𝐸) such that 𝑓

𝑛
(𝑡) → 0 for 𝑡 ∈ 𝑋.

Proof. (i) Note that, for 𝑥 ∈ 𝐸, ‖𝑚
𝑥
(𝐴)‖

𝐹
󸀠󸀠 ≤ 𝑚̃(𝐴)‖𝑥‖𝐸 for

𝐴 ∈ B. Hence 𝑚
𝑥
: B → 𝐹

󸀠󸀠 is strongly bounded, and
by Theorems 2 and 14 𝑚(𝐴)(𝑥) ∈ 𝑖

𝐹
(𝐹) and 𝑚

𝐹
possesses

a unique extension 𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) with 𝑚̃(𝑋) =

𝑚̃
𝐹
(𝑋) = 𝑚̃(𝑋). Since 𝑚

𝑦
󸀠 = 𝑚

𝑦
󸀠 for 𝑦󸀠 ∈ 𝐹󸀠, by Theorem 16

we have 𝑚̃(𝐴
𝑛
) = sup{|𝑚

𝑦
󸀠 |(𝐴

𝑛
) : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} → 0 whenever

𝐴
𝑛
↓ 0, (𝐴

𝑛
) ⊂B𝑎.

(ii) It follows from Theorem 14 because for each 𝑥 ∈ 𝐸,
𝑇
𝑥
: 𝐶

𝑐
(𝑋) → 𝐹 is weakly compact (see Theorem 2).

(iii) In view of (i) there exists 𝜆 ∈ 𝑐𝑎(B𝑎)
+ such that

{|𝑚
𝑦
󸀠 | : 𝑦

󸀠
∈ 𝐵

𝐹
󸀠} is 𝜆-continuous (see [25, Theorem 4,

pages 11-12]). Let (𝑓
𝑛
) be a sequence in 𝐶

𝑏
(𝑋, 𝐸) such that

sup
𝑛
‖𝑓
𝑛
‖ = 𝑀 < ∞ and 𝑓

𝑛
(𝑡) → 0 for every 𝑡 ∈ 𝑋. Let 𝜀 > 0

be given.Then there exists 𝛿 > 0 such that sup{|𝑚
𝑦
󸀠 |(𝐴) : 𝑦

󸀠
∈

𝐵
𝐹
󸀠} ≤ 𝜀/2𝑀 whenever 𝜆(𝐴) ≤ 𝛿, 𝐴 ∈ B𝑎. Since 𝑓

𝑛
∈ 𝐵(B)

for 𝑛 ∈ N, by the Egoroff theorem there exists 𝐴
𝛿
∈ B𝑎 with

𝜆(𝑋 \ 𝐴
𝛿
) ≤ 𝛿 and sup

𝑡∈𝐴
𝛿

𝑓
𝑛
(𝑡) → 0. Choose 𝑛

𝜀
∈ N such

that sup
𝑡∈𝐴
𝛿

𝑓
𝑛
(𝑡) ≤ 𝜀/2𝑚̃(𝑋) for 𝑛 ≥ 𝑛

𝜀
.

Let 𝐴 ∈ B𝑎. Note that 𝑚
𝑦
󸀠 = 𝑚

𝑦
󸀠 for 𝑦󸀠 ∈ 𝐹󸀠. Then by

Lemma 11 and (ii), for 𝑛 ≥ 𝑛
𝜀
and 𝑦󸀠 ∈ 𝐵

𝐹
󸀠 we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠
(∫
𝐴

𝑓
𝑛
𝑑𝑚)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫

𝐴

𝑓
𝑛
𝑑𝑚

𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∫
𝐴

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝑋

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨

= ∫
𝐴
𝛿

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
+ ∫

𝑋\𝐴
𝛿

𝑓
𝑛
𝑑
󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨

≤
𝜀

2𝑚̃ (𝑋)

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝐴

𝛿
) + 𝑀 ⋅

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝑋 \ 𝐴

𝛿
)

≤
𝜀

2𝑚̃ (𝑋)

󵄨󵄨󵄨󵄨󵄨
𝑚
𝑦
󸀠

󵄨󵄨󵄨󵄨󵄨
(𝑋) +𝑀 ⋅

𝜀

2𝑀
≤
𝜀

2
+
𝜀

2
= 𝜀.

(55)

Hence ‖ ∫
𝐴
𝑓
𝑛
𝑑𝑚‖

𝐹
≤ 𝜀 for 𝑛 ≥ 𝑛

𝜀
, as desired.

(iv) It follows fromTheorem 14.
(v) It follows from (iii) and (iv).

LetL∞
(B𝑎, 𝐸) stand for theBanach space of all bounded

strongly B𝑎-measurable functions 𝑔 : 𝑋 → 𝐸, equipped
with the uniform norm ‖ ⋅ ‖. Assume that𝑚 :B → L(𝐸, 𝐹)
with 𝑚̃(𝑋) < ∞ is variationally semiregular. Then every 𝑔 ∈
L∞

(B𝑎, 𝐸) is 𝑚-integrable (see [32, Definition 2, page 523
andTheorem 5, page 524]) and ∫

𝑋
𝑔
𝑛
𝑑𝑚 → 0whenever (𝑔

𝑛
)

is a uniformly bounded sequence inL∞
(B𝑎, 𝐸) converging

pointwise to 0 (see [33, Proposition 2.2]).
Recall that a series ∑∞

𝑖=1
𝑧
𝑖
in a Banach space 𝐺 is called

weakly unconditionally Cauchy (wuc) if, for each 𝑧󸀠 ∈ 𝐺
󸀠,

∑
∞

𝑖=1
|𝑧
󸀠
(𝑧
𝑖
)| < ∞. We say that a linear operator 𝑇 : 𝐺 → 𝐹

is unconditionally converging if for every weakly uncondition-
ally Cauchy series∑∞

𝑖=1
𝑧
𝑖
in𝐺, the series∑∞

𝑖=1
𝑇(𝑧

𝑖
) converges

unconditionally in a Banach space 𝐹.
As an application of Theorem 17 we have the following

result.

Corollary 18. Assume that𝐶
𝑏
(𝑋)⊗𝐸 is 𝛽

𝜎
-dense in𝐶

𝑏
(𝑋, 𝐸),

where 𝐸 is a separable Banach space which contains no
isomorphic copy of 𝑐

𝑜
. Let 𝑇 : 𝐶

𝑏
(𝑋, 𝐸) → 𝐹 be a

(𝛽
𝜎
, ‖ ⋅ ‖

𝐹
)-continuous and strongly bounded operator. Then 𝑇

is unconditionally converging.

Proof. Assume that∑∞
𝑖=1
𝑓
𝑖
is a wuc series in the Banach space

𝐶
𝑏
(𝑋, 𝐸). Hence∑∞

𝑖=1
|𝑥
󸀠
(𝑓
𝑖
(𝑡))| < ∞ for each 𝑡 ∈ 𝑋 and 𝑥󸀠 ∈

𝐸
󸀠 because 𝛿

𝑡,𝑥
󸀠 ∈ 𝐶

𝑏
(𝑋, 𝐸)

󸀠, where 𝛿
𝑡,𝑥
󸀠(𝑓) = 𝑥

󸀠
(𝑓(𝑡)) for

𝑓 ∈ 𝐶
𝑏
(𝑋, 𝐸). It follows that ∑∞

𝑖=1
𝑓
𝑖
(𝑡) is an unconditionally

convergent series in 𝐸 for each 𝑡 ∈ 𝑋 because 𝐸 contains no
isomorphic copy of 𝑐

𝑜
(see [34]). Let 𝑔

𝑜
(𝑡) = lim

𝑛
𝑆
𝑛
(𝑡) for 𝑡 ∈

𝑋, where 𝑆
𝑛
(𝑡) = ∑

𝑛

𝑖=1
𝑓
𝑖
(𝑡) for 𝑡 ∈ 𝑋, 𝑛 ∈ N. Then sup

𝑛
‖𝑆
𝑛
‖ <

∞ because ∑∞
𝑖=1
𝑓
𝑖
is wuc (see [34]) and 𝑆

𝑛
∈ L∞

(B𝑎, 𝐸)
because𝐸 is assumed to be separable (see [2,Theorem21, page
9]). Hence 𝑔

𝑜
∈L∞

(B𝑎, 𝐸) (see [2, Theorem 10, page 6]).
Let 𝑚 ∈ 𝑀

𝜎
(𝑋,L(𝐸, 𝐹󸀠󸀠)) be the representing measure

of 𝑇 and let 𝑚 ∈ 𝑀
𝜎
(B𝑎,L(𝐸, 𝐹)) be a unique extension

of 𝑚
𝐹
∈ 𝑀

𝜎
(B,L(𝐸, 𝐹)) (see Theorem 17). Since 𝑚 is
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variationally semiregular, in view of [33, Proposition 2.2] we
have

lim
𝑛

𝑛

∑

𝑖=1

𝑇 (𝑓
𝑖
) = lim

𝑛
∫
𝑋

𝑆
𝑛
𝑑𝑚 = ∫

𝑋

𝑔
𝑜
𝑑𝑚 ∈ 𝐸. (56)

Hence ∑∞
𝑖=1
𝑇(𝑓

𝑖
) = ∫

𝑋
𝑔
𝑜
𝑑𝑚. Finally, if (𝑛

𝑗
) is any permu-

tation of N, then lim
𝑛
∑
𝑛

𝑗=1
𝑓
𝑛
𝑗

(𝑡) = 𝑔
𝑜
(𝑡) for 𝑡 ∈ 𝑋. Then

∑
∞

𝑗=1
𝑇(𝑓

𝑛
𝑗

) = ∫
𝑋
𝑔
𝑜
𝑑𝑚, as desired.

Remark 19. A related result to Corollary 18 for strongly
bounded operators on the space 𝐶

𝑜
(𝑋, 𝐸) of 𝐸-valued con-

tinuous functions vanishing at infinity defined on a locally
compact space𝑋 was obtained by Brooks and Lewis (see [21,
Theorem 5.2]).

Recall that a Banach space 𝐸 is said to be a Schur space if
every weakly convergent sequence in 𝐸 is norm convergent.

As a consequence of Theorem 17 we derive the following
Dunford-Pettis type theorem for operators on 𝐶

𝑏
(𝑋, 𝐸).

Theorem 20. Assume that𝐶
𝑏
(𝑋)⊗𝐸 is 𝛽

𝜎
-dense in𝐶

𝑏
(𝑋, 𝐸),

where𝐸 is a Schur space. Let𝑇 : 𝐶
𝑏
(𝑋, 𝐸) → 𝐹 be a (𝛽

𝜎
, ‖⋅‖

𝐹
)-

continuous and strongly bounded operator. Then 𝑇(𝑓
𝑛
) → 0

in 𝐹 whenever (𝑓
𝑛
) is a 𝜎(𝐶

𝑏
(𝑋, 𝐸),𝑀

𝜎
(𝑋, 𝐸

󸀠
)) convergent to

0 sequence in 𝐶
𝑏
(𝑋, 𝐸).

Proof. Assume that 𝑓
𝑛
→ 0 for 𝜎(𝐶

𝑏
(𝑋, 𝐸),𝑀

𝜎
(𝑋, 𝐸

󸀠
)).

Then according to [11, Corollary 5], we obtain that sup
𝑛
‖𝑓
𝑛
‖ <

∞ and 𝑓
𝑛
(𝑡) → 0 in 𝜎(𝐸, 𝐸󸀠) for each 𝑡 ∈ 𝑋. It follows that

‖𝑓
𝑛
(𝑡)‖

𝐸
→ 0 for 𝑡 ∈ 𝑋 because 𝐸 is supposed to be a Schur

space. Using Theorem 17 we derive that 𝑇(𝑓
𝑛
) → 0 in 𝐹, as

desired.
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15, pp. 13–19, 1974.
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We discuss a class of singular boundary value problems of fractional 𝑞-difference equations. Some existence and uniqueness results
are obtained by a fixed point theorem in partially ordered sets. Finally, we give an example to illustrate the results.

1. Introduction

In recent years, many papers on fractional differential equa-
tions have appeared, because of their demonstrated applica-
tions in various fields of science and engineering; see [1–11]
and the references therein. Based on the increasingly exten-
sive application of discrete fractional calculus and the devel-
opment of 𝑞-difference calculus or quantum calculus (see
[12–19] and the references therein), fractional 𝑞-difference
equations have attracted the attention of researchers for the
numerous applications in a number of fields such as physics,
chemistry, aerodynamics, biology, economics, control theory,
mechanics, electricity, signal and image processing, bio-
physics, blood flow phenomena, aerodynamics, and fitting
of experimental data; see [20–23]. Some recent work on the
existence theory of fractional 𝑞-difference equations can be
found in [24–29]. However, the study of singular boundary
value problems (BVPs) with fractional 𝑞-difference equations
is at its infancy and lots of work on the topic should be done.

Recently, in [25], Ferreira has investigated the existence
of positive solution for the following fractional 𝑞-difference
equations BVP

(𝐷
𝛼

𝑞
𝑦) (𝑥) + 𝑓 (𝑥, 𝑦 (𝑡)) = 0, 0 < 𝑥 < 1,

𝑦 (0) = (𝐷
𝑞
) 𝑦 (0) = 0, (𝐷

𝑞
) 𝑦 (1) = 𝛽 ≥ 0,

(1)

by applying a fixed point theorem in cones.

More recently, in [30], Caballero et al. have studied
positive solutions for the following BVP:

(𝐷
𝛼

0
+𝑢) (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢 (1) = 0,

(2)

by fixed point theorem in partially ordered sets.
Motivated by the work above, in this paper, we discuss the

existence and uniqueness of solutions for the singular BVPs
of factional 𝑞-difference equations given by

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢 (1) = 0, (𝐷
𝑞
𝑢) (0) = 0,

(3)

where 2 < 𝛼 ≤ 3 and 𝑓 : [0, 1] × [0,∞) → [0,∞) is
continuous with lim

𝑡→0
+𝑓(𝑡, ⋅) = ∞ (i.e., 𝑓 is singular at

𝑡 = 0).

2. Preliminary Results

For convenience, we present some definitions and lemmas
which will be used in the proofs of our results.

Let 𝑞 ∈ (0, 1) and define

[𝑎]
𝑞
=
1 − 𝑞
𝑎

1 − 𝑞
, 𝑎 ∈ 𝑅. (4)
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The 𝑞-analogue of the power function (𝑎−𝑏)𝑛 with 𝑛 ∈ 𝑁
0

is

(𝑎 − 𝑏)
(0)

= 1, (𝑎 − 𝑏)
(𝑛)

=

𝑛−1

∏

𝑘=0

(𝑎 − 𝑏𝑞
𝑘

) ,

𝑛 ∈ 𝑁, 𝑎, 𝑏 ∈ 𝑅.

(5)

More generally, if 𝛼 ∈ 𝑅, then

(𝑎 − 𝑏)
(𝛼)

= 𝑎
𝛼

𝑛−1

∏

𝑛=0

𝑎 − 𝑏𝑞
𝑛

𝑎 − 𝑏𝑞𝛼+𝑛
. (6)

Note that if 𝑏 = 0 then 𝑎(𝛼) = 𝑎𝛼. The 𝑞-gamma function is
define by

Γ
𝑞
(𝑥) =

(1 − 𝑞)
(𝑥−1)

(1 − 𝑞)
𝑥−1
, 𝑥 ∈ 𝑅 \ {0, −1, −2, . . .} , (7)

and it satisfies Γ
𝑞
(𝑥 + 1) = [𝑥]

𝑞
Γ
𝑞
(𝑥).

Following, let us recall some basic concepts of 𝑞-calculus
[12].

Definition 1. For 0 < 𝑞 < 1, we define the 𝑞-derivative of a
real-value function 𝑓 as

(𝐷
𝑞
𝑓) (𝑥) =

𝑓 (𝑥) − 𝑓 (𝑞𝑥)

(1 − 𝑞) 𝑥
,

(𝐷
𝑞
𝑓) (0) = lim

𝑥→0

(𝐷
𝑞
𝑓) (𝑥) .

(8)

Note that lim
𝑞→1

−𝐷
𝑞
𝑓(𝑥) = 𝑓

󸀠

(𝑥).

Definition 2. The higher order 𝑞-derivatives are defined
inductively as

(𝐷
0

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) ,

(𝐷
𝑛

𝑞
𝑓) (𝑡) = 𝐷

𝑞
(𝐷
𝑛−1

𝑞
𝑓) (𝑡) , 𝑛 ∈ 𝑁.

(9)

For example, 𝐷
𝑞
(𝑡
𝑘

) = [𝑘]
𝑞
𝑡
𝑘−1, where 𝑘 is a positive

integer and the bracket [𝑘]
𝑞
= (𝑞
𝑘

− 1)/(𝑞 − 1). In particular,
𝐷
𝑞
(𝑡
2

) = (1 + 𝑞)𝑡.

Definition 3. The 𝑞-integral of a function 𝑓 in the interval
[0, 𝑏] is given by

(𝐼
𝑞
𝑓) (𝑥) = ∫

𝑥

0

𝑓 (𝑡) 𝑑
𝑞
𝑡 = 𝑥 (1 − 𝑞)

∞

∑

𝑛=0

𝑓 (𝑥𝑞
𝑛

) 𝑞
𝑛

,

𝑥 ∈ [0, 𝑏] .

(10)

If 𝑎 ∈ [0, 𝑏] and 𝑓 is defined in the interval [0, 𝑏], its integral
from 𝑎 to 𝑏 is define by

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑
𝑞
𝑡 = ∫

𝑏

0

𝑓 (𝑡) 𝑑
𝑞
𝑡 − ∫

𝑎

0

𝑓 (𝑡) 𝑑
𝑞
𝑡. (11)

Similarly as done for derivatives, an operator 𝐼𝑛
𝑞
can be define,

namely,

(𝐼
0

𝑞
𝑓) (𝑥) = 𝑓 (𝑥) ,

(𝐼
𝑛

𝑞
𝑓) (𝑥) = 𝐼

𝑞
(𝐼
𝑛−1

𝑞
𝑓) (𝑥) , 𝑛 ∈ 𝑁.

(12)

Observe that

𝐷
𝑞
𝐼
𝑞
𝑓 (𝑥) = 𝑓 (𝑥) , (13)

and if 𝑓 is continuous at 𝑥 = 0, then 𝐼
𝑞
𝐷
𝑞
𝑓(𝑥) = 𝑓(𝑥)−𝑓(0).

We now point out three formulas (
𝑖
𝐷
𝑞
denotes the

derivative with respect to variable 𝑖)

[𝑎 (𝑡 − 𝑠)]
(𝛼)

= 𝑎
𝛼

(𝑡 − 𝑠)
(𝛼)

, (14)

𝑡
𝐷
𝑞
(𝑡 − 𝑠)

(𝛼)

= [𝛼]
𝑞
(𝑡 − 𝑠)

(𝛼−1)

,

𝑥
𝐷
𝑞
∫

𝑥

0

𝑓 (𝑥, 𝑡) 𝑑
𝑞
𝑡 = ∫

𝑥

0

𝑥
𝐷
𝑞
𝑓 (𝑥, 𝑡) 𝑑

𝑞
𝑡 + 𝑓 (𝑞𝑥, 𝑥) .

(15)

Remark 4. Wenote that if𝛼 ≥ 0 and𝑎 ≤ 𝑏 ≤ 𝑡, then (𝑡−𝑎)(𝛼) ≥
(𝑡 − 𝑏)

(𝛼) [24].

Definition 5 (see [21]). Let 𝛼 ≥ 0 and 𝑓 be a function defined
on [0, 1]. The fractional 𝑞-integral of the Riemann-Liuville
type is (𝐼0

𝑞
𝑓)(𝑥) = 𝑓(𝑥) and

(𝐼
𝛼

𝑞
𝑓) (𝑥) =

1

Γ
𝑞
(𝛼)
∫

𝑥

0

(𝑥 − 𝑞𝑡)
(𝛼−1)

𝑓 (𝑡) 𝑑
𝑞
𝑡,

𝛼 > 0, 𝑥 ∈ [0, 1] .

(16)

Definition 6 (see [23]). The fractional 𝑞-derivative of the
Riemann-Liuville type of 𝛼 ≥ 0 is defined by (𝐷0

𝑞
𝑓)(𝑥) =

𝑓(𝑥) and

(𝐷
𝛼

𝑞
𝑓) (𝑥) = (𝐷

𝑚

𝑞
𝐼
𝑚−𝛼

𝑞
𝑓) (𝑥) , 𝛼 > 0, (17)

where𝑚 is the smallest integer greater than or equal to 𝛼.

Lemma 7 (see [21, 23]). Let 𝛼, 𝛽 ≥ 0 and let 𝑓 be a function
define on [0, 1]. Then, the next formulas hold:

(1) (𝐼𝛽
𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = (𝐼

𝛼+𝛽

𝑞
𝑓)(𝑥),

(2) (𝐷𝛼
𝑞
𝐼
𝛼

𝑞
𝑓)(𝑥) = 𝑓(𝑥).

Lemma 8 (see [24]). Let 𝛼 > 0 and let 𝑝 be a positive integer.
Then, the following equality holds:

(𝐼
𝛼

𝑞
𝐷
𝑝

𝑞
𝑓) (𝑥) = (𝐷

𝑝

𝑞
𝐼
𝛼

𝑞
𝑓) (𝑥)

−

𝑝−1

∑

𝑘=0

𝑥
𝛼−𝑝+𝑘

Γ
𝑞
(𝛼 + 𝑘 − 𝑝 + 1)

(𝐷
𝑘

𝑞
𝑓) (0) .

(18)

Lemma 9. Let 𝑦(𝑡) ∈ 𝐶[0, 1]⋂𝐿1[0, 1] and 2 < 𝛼 ≤ 3; then
the BVP

(𝐷
𝛼

𝑞
𝑢) (𝑡) + 𝑦 (𝑡) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 𝑢 (1) = 0, (𝐷
𝑞
𝑢) (0) = 0,

(19)
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has a unique solution

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠, (20)

where

𝐺 (𝑡, 𝑠)

=
1

Γ
𝑞
(𝛼)
{
(1 − 𝑠)

(𝛼−1)

𝑡
𝛼−1

− (𝑡 − 𝑠)
(𝛼−1)

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

(1 − 𝑠)
(𝛼−1)

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(21)

Proof. By Lemmas 7 and 8, we see that

(𝐷
𝛼

𝑞
𝑢) (𝑡) = −𝑦 (𝑡)

⇐⇒ (𝐼
𝛼

𝑞
𝐷
3

𝑞
𝐼
3−𝛼

𝑞
𝑢) (𝑡) = − (𝐼

𝛼

𝑞
𝑦) (𝑡)

⇐⇒ 𝑢 (𝑡) = 𝑐
1
𝑡
𝛼−1

+ 𝑐
2
𝑡
𝛼−2

+ 𝑐
3
𝑡
𝛼−3

−
1

Γ
𝑞
(𝛼)
∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

× 𝑦 (𝑠) 𝑑
𝑞
𝑠,

(22)

where 𝑐
1
, 𝑐
2
, and 𝑐

3
are some constants to be determined. Since

𝑢(0) = 0, wemust have 𝑐
3
= 0. Now, differentiating both sides

of (22) and using (15), we obtain

(𝐷
𝑞
𝑢) (𝑡) = [𝛼 − 1]

𝑞
𝑐
1
𝑡
𝛼−2

+ [𝛼 − 2]
𝑞
𝑐
2
𝑡
𝛼−3

−
1

Γ
𝑞
(𝛼)
∫

𝑡

0

[𝛼 − 1]
𝑞
(𝑡 − 𝑞𝑠)

(𝛼−2)

𝑦 (𝑠) 𝑑
𝑞
𝑠.

(23)

Using (𝐷
𝑞
𝑢)(0) = 0 and 𝑢(1) = 0, we must set 𝑐

2
= 0, and

𝑐
1
=
1

Γ
𝑞
(𝛼)
∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑
𝑞
𝑠. (24)

Finally, we obtain

𝑢 (𝑡) =
𝑡
𝛼−1

Γ
𝑞
(𝛼)
∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑
𝑞
𝑠

−
1

Γ
𝑞
(𝛼)
∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

𝑦 (𝑠) 𝑑
𝑞
𝑠

= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑦 (𝑠) 𝑑
𝑞
𝑠.

(25)

The proof is complete.

Lemma 10. Function 𝐺 defined above satisfies the following
conditions:

(i) 𝐺(𝑡, 𝑞𝑠) is a continuous function on [0, 1] × [0, 1];
(ii) 𝐺(𝑡, 𝑞𝑠) ≥ 0 for 𝑡, 𝑠 ∈ [0, 1].

Proof. (i) Obviously, 𝐺(𝑡, 𝑞𝑠) is continuous on [0, 1] × [0, 1].
(ii) Let

𝑔
1
(𝑡, 𝑠) = (1 − 𝑠)

(𝛼−1)

𝑡
𝛼−1

− (𝑡 − 𝑠)
(𝛼−1)

,

0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑔
2
(𝑡, 𝑠) = (1 − 𝑠)

(𝛼−1)

𝑡
𝛼−1

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(26)

It is clear that 𝑔
2
(𝑡, 𝑞𝑠) ≥ 0, for 𝑡, 𝑠 ∈ [0, 1]. Now, in view of

Remark 4, for 𝑡 ̸= 0

𝑔
1
(𝑡, 𝑞𝑠) = (1 − 𝑞𝑠)

(𝛼−1)

𝑡
𝛼−1

− (𝑡 − 𝑞𝑠)
(𝛼−1)

= 𝑡
𝛼−1

[(1 − 𝑞𝑠)
(𝛼−1)

− (1 −
𝑞𝑠

𝑡
)

(𝛼−1)

]

≥ 𝑡
𝛼−1

[(1 − 𝑞𝑠)
(𝛼−1)

− (1 − 𝑞𝑠)
(𝛼−1)

] = 0.

(27)

Therefore, 𝐺(𝑡, 𝑞𝑠) ≥ 0. This proof is complete.

ByJwe denote the class of those functions 𝛽 : [0,∞) →
[0, 1) satisfying the following condition; 𝛽(𝑡

𝑛
) → 1 implies

𝑡
𝑛
→ 0.

Theorem 11 (see [31]). Let (𝑋, ≤) be a partially ordered set and
suppose that there exists a metric 𝑑 in 𝑋 such that (𝑋, 𝑑) is a
complete metric space. Let 𝑇 : 𝑋 → 𝑋 be a nondecreasing
mapping such that there exists an element 𝑥

0
∈ 𝑋 with 𝑥

0
≤

𝑇𝑥
0
. Suppose that there exists 𝛽 ∈ J such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) ⋅ 𝑑 (𝑥, 𝑦)

for 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≥ 𝑦.
(28)

Assume that either 𝑇 is continuous or𝑋 is such that

if {𝑥
𝑛
} is a nondecreasing sequence in 𝑋

such that 𝑥
𝑛
󳨀→ 𝑥 then 𝑥

𝑛
≤ 𝑥 ∀𝑛 ∈ 𝑁.

(29)

Besides if

for each 𝑥, 𝑦 ∈ 𝑋 there exists 𝑧 ∈ 𝑋

which is comparable to 𝑥 and 𝑦,
(30)

then 𝑇 has a unique fixed point.

Let 𝐶[0, 1] = {𝑥 : [0, 1] → 𝑅, continuous} be the
Banach space with the classic metric given by 𝑑(𝑥, 𝑦) =
sup
0≤𝑡≤1
{|𝑥(𝑡) − 𝑦(𝑡)|}.

Notice that this space can be equippedwith a partial order
given by

𝑥, 𝑦 ∈ 𝐶 [0, 1] , 𝑥 ≤ 𝑦 ⇐⇒ 𝑥 (𝑡) ≤ 𝑦 (𝑡) , for 𝑡 ∈ [0, 1] .
(31)

In [32], it is proved that (𝐶[0, 1], ≤) satisfies condition (29)
of Theorem 11. Moreover, for 𝑥, 𝑦 ∈ 𝐶[0, 1], as the function
max(𝑥, 𝑦) ∈ 𝐶[0, 1], (𝐶[0, 1], ≤) satisfies condition (30).
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3. Main Result

In this section, we will consider the question of positive
solutions for BVP (3). At first, we prove some lemmas
required for the main result.

Lemma 12. Let 0 < 𝜎 < 1, 2 < 𝛼 ≤ 3 and 𝐹 : (0, 1] →
𝑅 is a continuous function with lim

𝑡→0
+𝐹(𝑡) = ∞. Suppose

that 𝑡𝜎𝐹(𝑡) is a continuous function on [0, 1].Then the function
defined by

𝐻(𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠) 𝑑
𝑞
𝑠 (32)

is continuous on [0, 1], where𝐺(𝑡, 𝑠) is Green function be given
in Lemma 9.

Proof. We will divide the proof into three parts.

Case 1 (𝑡
0
= 0). First,𝐻(0) = 0. Since 𝑡𝜎𝐹(𝑡) is continuous on

[0, 1], we can find a positive constant𝑀 such that |𝑡𝜎𝐹(𝑡)| ≤
𝑀 for any 𝑡 ∈ [0, 1]. Thus,

|𝐻 (𝑡) − 𝐻 (0)|

= |𝐻 (𝑡)|

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝐹 (𝑠) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑡
𝛼−1

− (𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

+∫

1

𝑡

(1 − 𝑞𝑠)
(𝛼−1)

𝑡
𝛼−1

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑡
𝛼−1

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

−∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑡
𝛼−1

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑑
𝑞
𝑠

+ 𝑀∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑑
𝑞
𝑠

=
𝑀𝑡
𝛼−1

Γ
𝑞
(𝛼)
[∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠

+∫

𝑡

0

(1 −
𝑞𝑠

𝑡
)

(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠] .

(33)

For ∫𝑡
0

(1 − (𝑞𝑠/𝑡))
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠, let 𝑢 = 𝑠/𝑡; then we obtain

∫

𝑡

0

(1 −
𝑞𝑠

𝑡
)

(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠 = 𝑡
1−𝜎

∫

1

0

(1 − 𝑞𝑢)
(𝛼−1)

𝑢
−𝜎

𝑑
𝑞
𝑢.

(34)

Hence,

|𝐻 (𝑡)| ≤
𝑀𝑡
𝛼−1

Γ
𝑞
(𝛼)
∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠

+
𝑀𝑡
𝛼−𝜎

Γ
𝑞
(𝛼)
∫

1

0

(1 − 𝑞𝑢)
(𝛼−1)

𝑢
−𝜎

𝑑
𝑞
𝑢

= (
𝑀𝑡
𝛼−1

Γ
𝑞
(𝛼)
+
𝑀𝑡
𝛼−𝜎

Γ
𝑞
(𝛼)
)𝛽
𝑞
(1 − 𝜎, 𝛼) ,

(35)

where 𝛽
𝑞
denotes the 𝑞-beta function.

When 𝑡 → 0, we see that 𝐻(𝑡) → 𝐻(0); that is 𝐻(𝑡) is
continuous at 𝑡

0
= 0.

Case 2 (𝑡
0
∈ (0, 1)). We should prove 𝐻(𝑡

𝑛
) → 𝐻(𝑡

0
) when

𝑡
𝑛
→ 𝑡
0
. Without loss of generality, we consider 𝑡

𝑛
> 𝑡
0
(it is

the same argument for 𝑡
𝑛
< 𝑡
0
). In fact,

󵄨󵄨󵄨󵄨𝐻 (𝑡𝑛) − 𝐻 (𝑡0)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

𝑡
𝛼−1

𝑛
(1 − 𝑞𝑠)

(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

− ∫

𝑡
𝑛

0

(𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

− ∫

1

0

𝑡
𝛼−1

0
(1 − 𝑞𝑠)

(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

+∫

𝑡
0

0

(𝑡
0
− 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

1

0

(𝑡
𝛼−1

𝑛
− 𝑡
𝛼−1

0
) (1 − 𝑞𝑠)

(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

− ∫

𝑡
0

0

(𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

− (𝑡
0
− 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

−∫

𝑡
𝑛

𝑡
0

(𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑠
𝜎

𝐹 (𝑠) 𝑑
𝑞
𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝑀(𝑡
𝛼−1

𝑛
− 𝑡
𝛼−1

0
)

Γ
𝑞
(𝛼)

∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠

+
𝑀

Γ
𝑞
(𝛼)
∫

𝑡
0

0

((𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

− (𝑡
0
− 𝑞𝑠)
(𝛼−1)

) 𝑠
−𝜎

𝑑
𝑞
𝑠
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+
𝑀

Γ
𝑞
(𝛼)
∫

𝑡
𝑛

𝑡
0

(𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠

=
𝑀

Γ
𝑞
(𝛼)
𝛽
𝑞
(1 − 𝜎, 𝛼) (𝑡

𝛼−1

𝑛
− 𝑡
𝛼−1

0
) +

𝑀

Γ
𝑞
(𝛼)
(𝑎
𝑛
+ 𝑏
𝑛
) ,

(36)

where

𝑎
𝑛
= ∫

𝑡
0

0

((𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

− (𝑡
0
− 𝑞𝑠)
(𝛼−1)

) 𝑠
−𝜎

𝑑
𝑞
𝑠,

𝑏
𝑛
= ∫

𝑡
𝑛

𝑡
0

(𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠.

(37)

When 𝑛 → ∞, we verify 𝑎
𝑛
→ 0.

As 𝑡
𝑛
→ 𝑡
0
, then ((𝑡

𝑛
− 𝑞𝑠)
(𝛼−1)

− (𝑡
0
− 𝑞𝑠)
(𝛼−1)

)𝑠
−𝜎

→ 0,
when 𝑛 → ∞. Moreover,

((𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

− (𝑡
0
− 𝑞𝑠)
(𝛼−1)

) 𝑠
−𝜎

≤ 2𝑠
−𝜎

,

∫

1

0

2𝑠
−𝜎

𝑑
𝑞
𝑠 =

2

[1 − 𝜎]
𝑞

𝑠
1−𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

0

=
2

[1 − 𝜎]
𝑞

< ∞.

(38)

We have ((𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

− (𝑡
0
− 𝑞𝑠)
(𝛼−1)

)𝑠
−𝜎 converges

pointwise to the zero function and |(𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

− (𝑡
0
−

𝑞𝑠)
(𝛼−1)

|𝑠
−𝜎 is bounded by a function belonging to 𝐿1[0, 1], by

Lebesgue’s dominated convergence theorem 𝑎
𝑛
→ 0 when

𝑛 → ∞.
Now, we prove 𝑏

𝑛
→ 0 when 𝑛 → ∞.

In fact, as

𝑏
𝑛
= ∫

𝑡
𝑛

𝑡
0

(𝑡
𝑛
− 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠

≤ ∫

𝑡
𝑛

𝑡
0

𝑠
−𝜎

𝑑
𝑞
𝑠 =

𝑠
1−𝜎

[1 − 𝜎]
𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡
𝑛

𝑡
0

=
1

[1 − 𝜎]
𝑞

(𝑡
1−𝜎

𝑛
− 𝑡
1−𝜎

0
) ,

(39)

and taking into account that 𝑡
𝑛
→ 𝑡
0
, we get 𝑏

𝑛
→ 0 when

𝑛 → ∞.
Above all, we obtain |𝐻(𝑡

𝑛
)−𝐻(𝑡

0
)| → 0, when 𝑛 → ∞.

Case 3 (𝑡
0
= 1). It is easy to check that 𝐻(1) = 0 and 𝐻(𝑡)

is continuous at 𝑡
0
= 1. The proof is the same as the proof of

Case 1.

Lemma 13. Suppose that 0 < 𝜎 < 1. Then,

max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑑
𝑞
𝑠 =
𝐴
𝛼−1

− 𝐴
𝛼−𝜎

Γ
𝑞
(𝛼)

𝛽
𝑞
(1 − 𝜎, 𝛼) , (40)

where 𝐴 = ((𝛼 − 1)/(𝛼 − 𝜎))1/(1−𝜎).

Proof.

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑑
𝑞
𝑠

= ∫

𝑡

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑡
𝛼−1

− (𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑑
𝑞
𝑠

+ ∫

1

𝑡

(1 − 𝑞𝑠)
(𝛼−1)

𝑡
𝛼−1

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑑
𝑞
𝑠

= ∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑡
𝛼−1

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑑
𝑞
𝑠

− ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛼−1)

Γ
𝑞
(𝛼)

𝑠
−𝜎

𝑑
𝑞
𝑠

=
𝑡
𝛼−1

Γ
𝑞
(𝛼)
∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑠

−
𝑡
𝛼−𝜎

Γ
𝑞
(𝛼)
∫

1

0

(1 − 𝑞𝑠)
(𝛼−1)

𝑠
−𝜎

𝑑
𝑞
𝑢

=
𝑡
𝛼−1

− 𝑡
𝛼−𝜎

Γ
𝑞
(𝛼)

𝛽
𝑞
(1 − 𝜎, 𝛼) .

(41)

Let 𝑔(𝑡) = 𝑡𝛼−1 − 𝑡𝛼−𝜎, 𝑡 ∈ [0, 1].
Since 𝑔󸀠(𝑡) = (𝛼 − 1)𝑡𝛼−2 − (𝛼 − 𝜎)𝑡𝛼−𝜎−1, let 𝑔󸀠(𝑡) = 0;

we can get 𝑔(𝑡) has a maximum at the point 𝑡
0
= 𝐴 = ((𝛼 −

1)/(𝛼 − 𝜎))
1/(1−𝜎).

Hence,

max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑑
𝑞
𝑠 =
𝐴
𝛼−1

− 𝐴
𝛼−𝜎

Γ
𝑞
(𝛼)

𝛽
𝑞
(1 − 𝜎, 𝛼) . (42)

For the convenience, we denote max
0≤𝑡≤1
∫
1

0

𝐺(𝑡,

𝑞𝑠)𝑠
−𝜎

𝑑
𝑞
𝑠 by 𝐾.

Next, we denote the class of functions 𝜙 : [0,∞) →
[0,∞) byA satisfying

(i) 𝜙 is nondecreasing;
(ii) 𝜙(𝑥) < 𝑥 for any 𝑥 > 0;
(iii) 𝛽(𝑥) = 𝜙(𝑥)/𝑥 ∈ J, whereJ is the class of functions

appearing inTheorem 11.

We give our main result as follows.

Theorem 14. Let 0 < 𝜎 < 1, 2 < 𝛼 ≤ 3, 𝑓 : [0, 1] × [0,∞) →
[0,∞) is continuous and lim

𝑡→0
+𝑓(𝑡, ⋅) = ∞, and 𝑡𝜎𝑓(𝑡, 𝑦)

is a continuous function on [0, 1] × [0,∞). Assume that there
exists 0 < 𝜆 ≤ 1/𝐾 such that for 𝑥, 𝑦 ∈ [0,∞) with 𝑦 ≥ 𝑥 and
𝑡 ∈ [0, 1],

0 ≤ 𝑡
𝜎

(𝑓 (𝑡, 𝑦) − 𝑓 (𝑡, 𝑥)) ≤ 𝜆𝜙 (𝑦 − 𝑥) , (43)

where 𝜙 ∈ A. Then the BVP (3) has a unique positive solution
(i.e., 𝑥(𝑡) > 0 for 𝑡 ∈ (0, 1)).
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Proof. We define the cone 𝑃 by

𝑃 = {𝑢 ∈ 𝐶 [0, 1] : 𝑢 (𝑡) ≥ 0} . (44)

It is clear that 𝑃 is a complete metric space as 𝑃 is a closed set
of 𝐶[0, 1]. It is also easy to check that 𝑃 satisfies conditions
(29) and (30) of Theorem 11.

We define the operator 𝑇 by

(𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑠
𝜎

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠.

(45)

In view of Lemma 12, 𝑇𝑢 ∈ 𝐶[0, 1]. Moreover, it follows from
the nonnegativeness of 𝐺(𝑡, 𝑞𝑠) and 𝑡𝜎𝑓(𝑡, 𝑦) that 𝑇𝑢 ∈ 𝑃 for
𝑢 ∈ 𝑃. Thus, 𝑇 : 𝑃 → 𝑃.

Next, we will prove that assumptions in Theorem 11 are
satisfied.

First, for 𝑢 ≥ V, we have

(𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

= ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑠
𝜎

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑
𝑞
𝑠

≥ ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑠
𝜎

𝑓 (𝑠, V (𝑠)) 𝑑
𝑞
𝑠

= (𝑇V) (𝑡) .

(46)

Hence, the operator 𝑇 is nondecreasing. Besides, for 𝑢 ≥ V
and 𝑢 ̸= V,

𝑑 (𝑇𝑢, 𝑇V)

= max
𝑡∈[0,1]

|(𝑇𝑢) (𝑡) − (𝑇V) (𝑡)|

= max
𝑡∈[0,1]

((𝑇𝑢) (𝑡) − (𝑇V) (𝑡))

= max
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) (𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))) 𝑑
𝑞
𝑠

= max
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑠
𝜎

(𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))) 𝑑
𝑞
𝑠

≤ max
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝜆𝜙 (𝑢 (𝑠) − V (𝑠)) 𝑑
𝑞
𝑠.

(47)

Since 𝜙 is nondecreasing and 𝑢(𝑠) − V(𝑠) ≤ 𝑑(𝑢, V),

𝑑 (𝑇𝑢, 𝑇V) ≤ max
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝜆𝜙 (𝑑 (𝑢, V)) 𝑑
𝑞
𝑠

= 𝜆𝜙 (𝑑 (𝑢, V)) max
𝑡∈[0,1]

∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑠
−𝜎

𝑑
𝑞
𝑠

= 𝜆𝜙 (𝑑 (𝑢, V)) 𝐾.

(48)

Moreover, when 0 < 𝜆 ≤ 1/𝐾, we get

𝑑 (𝑇𝑢, 𝑇V) ≤ 𝜙 (𝑑 (𝑢, V))

=
𝜙 (𝑑 (𝑢, V))
𝑑 (𝑢, V)

⋅ 𝑑 (𝑢, V)

= 𝛽 (𝑑 (𝑢, V)) ⋅ 𝑑 (𝑢, V) .

(49)

Obviously, the last inequality is satisfied for 𝑢 = V.
Taking into account that the zero function satisfies 0 ≤ 𝑇

0
,

in view ofTheorem 11, the operator𝑇 has a unique fixed point
𝑥(𝑡) in 𝑃.

At last, wewill prove𝑥(𝑡) is a positive solution.We assume
that there exists 0 < 𝑡

1
< 1 such that 𝑥(𝑡

1
) = 0. Since 𝑥(𝑡) of

problem (3) is a fixed point of the operator 𝑇, we have

𝑥 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑
𝑞
𝑠, for 0 < 𝑡 < 1,

𝑥 (𝑡
1
) = ∫

1

0

𝐺 (𝑡
1
, 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) 𝑑

𝑞
𝑠 = 0.

(50)

For the nonnegative character of 𝐺(𝑡, 𝑞𝑠) and 𝑓(𝑠, 𝑥), the last
relation gives

𝐺 (𝑡
1
, 𝑞𝑠) 𝑓 (𝑠, 𝑥 (𝑠)) = 0 a.e. (𝑠) . (51)

𝑓 is continuous and lim
𝑡→0
+𝑓(𝑡, ⋅) = ∞; then for𝑀 > 0, we

can find 𝛿 > 0, and, for 𝑠 ∈ [0, 1]∩(0, 𝛿), we have𝑓(𝑠, 0) > 𝑀.
It is clear that [0, 1] ∩ (0, 𝛿) ⊂ {𝑠 ∈ [0, 1] : 𝑓(𝑠, 𝑥(𝑠)) > 𝑀}
and 𝜇([0, 1] ∩ (0, 𝛿)) > 0, where 𝜇 is the Lebesgue measure
on [0, 1]. That is to say, 𝐺(𝑡

1
, 𝑞𝑠)𝑓(𝑠, 𝑥(𝑠)) = 0 a.e. (𝑠). This is

a contradiction because 𝐺(𝑡
1
, 𝑞𝑠) is a rational function in 𝑠.

Therefore, 𝑥(𝑡) > 0 for 𝑡 ∈ (0, 1).
The proof is complete.

4. Example

Consider the following singular BVP:

𝐷
5/2

1/2
𝑢 (𝑡) +

𝜆 (𝑡
2

+ 1) ln (1 + 𝑢 (𝑡))
𝑡1/2

= 0, 0 < 𝑡 < 1, 𝜆 > 0,

𝑢 (0) = 𝑢 (1) = 0, (𝐷
1/2
𝑢) (0) = 0.

(52)

Here, 𝛼 = 2.5, 𝑞 = 1/2, 𝜎 = 1/2, and 𝑓(𝑡, 𝑢) = 𝜆(𝑡2 +
1) ln(1 + 𝑢(𝑡))/𝑡1/2 for (𝑡, 𝑢) ∈ [0, 1] × [0,∞). Notice that 𝑓 is
continuous in [0, 1] × [0,∞) and lim

𝑡→0
+𝑓(𝑡, ⋅) = ∞.

At first, we define 𝜙 by

𝜙 : [0,∞) 󳨀→ [0,∞) , 𝜙 (𝑥) = ln (1 + 𝑥) . (53)

It is clear that 𝜙(𝑥) = ln(1 + 𝑥) is a nondecreasing function;
for 𝑢 ≥ V, we can get

𝜙 (𝑢) − 𝜙 (V) ≥ 0. (54)

Moreover, for 𝑢 ≥ V, 𝜙 also satisfies

𝜙 (𝑢) − 𝜙 (V) ≤ 𝜙 (𝑢 − V) . (55)
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In fact, when 𝑢 ≥ V,

𝜙 (𝑢 − V) − (𝜙 (𝑢) − 𝜙 (V)) = ln (1 + 𝑢 − V)

− (ln (1 + 𝑢) − ln (1 + V))

= ln (1 + 𝑢 − V) (1 + V)
(1 + 𝑢)

= ln(1 + (𝑢 − V) V
1 + 𝑢

) ≥ 0,

(56)

equivalently

𝜙 (𝑢) − 𝜙 (V) ≤ 𝜙 (𝑢 − V) . (57)

Above all, 0 ≤ 𝜙(𝑢) − 𝜙(V) ≤ 𝜙(𝑢 − V) for 𝑢 ≥ V.
Second, for 𝑢 ≥ V and 𝑡 ∈ [0, 1], we have

0 ≤ 𝑡
1/2

(𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V))

= 𝜆 (𝑡
2

+ 1) [ln (1 + 𝑢) − ln (1 + V)]

≤ 𝜆 (𝑡
2

+ 1) ln (1 + 𝑢 − V)

≤ 2𝜆 ln (1 + 𝑢 − V) ;

(58)

that is, 𝑓 satisfies assumptions of Theorem 14.
Third, we should prove 𝜙(𝑥) belongs to A. By elemental

calculus, it is easy to check that𝜙 is nondecreasing and 𝜙(𝑥) <
𝑥, for 𝑥 > 0.

In order to prove 𝛽(𝑥) = 𝜙(𝑥)/𝑥 ∈ J, we notice that if
𝛽(𝑡
𝑛
) → 1, then the sequence (𝑡

𝑛
) is a bounded sequence

because in contrary case, that is, 𝑡
𝑛
→ ∞, we get

𝛽 (𝑡
𝑛
) =

ln (1 + 𝑡
𝑛
)

𝑡
𝑛

󳨀→ 0. (59)

Now, we assume that 𝑡
𝑛
󴀀󴀂󴀠 0, and then we find 𝜀 > 0 such that

for each 𝑛 ∈ 𝑁 there exists 𝜌
𝑛
≥ 𝑛 with 𝑡

𝜌
𝑛

≥ 𝜀.
Since (𝑡

𝑛
) is a bounded sequence, we can find a subse-

quence (𝑡
𝑘
𝑛

) of (𝑡
𝜌
𝑛

) with 𝑡
𝑘
𝑛

→ 𝑎, for certain 𝑎 ∈ [0, 1).
When 𝛽(𝑡

𝑛
) → 1, it implies that

𝛽 (𝑡
𝑘
𝑛

) =
ln (1 + 𝑡

𝑘
𝑛

)

𝑡
𝑘
𝑛

󳨀→ 1. (60)

and, as the unique solution of ln(1 + 𝑥) = 𝑥 is 𝑥
0
= 0, we

deduce that 𝑎 = 0. Therefore, 𝑡
𝑘
𝑛

→ 0 and this contradicts
the fact that 𝑡

𝑘
𝑛

≥ 𝜀 for every 𝑛 ∈ 𝑁.
Thus, 𝑡

𝑛
→ 0 and this proves that 𝛽 ∈ J.

Finally, in view of Theorem 14,

2𝜆 ≤
1

𝐾
=

1

(((1/4)
3/2

− (1/4)
1/2

) /Γ
1/2
(3/2)) ⋅ 𝛽

1/2
(1/2, 3/2)

≈ 10.96511985;

(61)

that is, when 𝜆 ≤ 5.48256, boundary value problem (52) has
a unique positive solution.
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Wewill investigate properties of functions in theWiener class𝐵𝑉𝑝[𝑎, 𝑏]with 0 < 𝑝 < 1.We prove that any function in𝐵𝑉𝑝[𝑎, 𝑏] (0 <
𝑝 < 1) can be expressed as the difference of two increasing functions in 𝐵𝑉𝑝[𝑎, 𝑏]. We also obtain the explicit form of functions in
𝐵𝑉𝑝[𝑎, 𝑏] and show that their derivatives are equal to zero a.e. on [𝑎, 𝑏].

1. Introduction

Let 0 < 𝑝 < ∞. We say that a real valued function 𝑓 on [𝑎, 𝑏]
is of bounded 𝑝-variation and is denoted by 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏], if

𝑉𝑝𝑓 = sup
𝑇

(

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)
󵄨󵄨󵄨󵄨
𝑝
)

1/𝑝

< ∞, (1)

where the supremum is taken over all partitions 𝑇 : 𝑎 = 𝑥0 <

𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑏.When𝑝 = 1, we get thewell-known Jordan
bounded variation 𝐵𝑉[𝑎, 𝑏]; and when 1 < 𝑝 < ∞, we get
Wiener’s definition of bounded 𝑝-variation. There are many
other generalizations of 𝐵𝑉, such as bounded Φ-variation
in the sense of Young (see [1]) and Waterman’s Λ-bounded
variation (see [2]). The class 𝐵𝑉𝑝 and generalizations of 𝐵𝑉
have been studied mainly because of their applicability to
the theory of Fourier series and some good approximative
properties (see, e.g., [1–7]).

However, it should be mentioned that results of most
papers deal mostly with the case 𝑝 ≥ 1.This is because that in
this case 𝐵𝑉𝑝[𝑎, 𝑏] is a Banach space with the norm 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵𝑉𝑝
=

|𝑓(𝑎)| +𝑉𝑝𝑓 (see, e.g., [3]). In the case 0 < 𝑝 < 1, 𝐵𝑉𝑝[𝑎, 𝑏] is
no longer a Banach space and has not been studied as far aswe
know. Nevertheless, functions in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) have
many interesting properties; for example, their derivatives are
equal to zero a.e. on [𝑎, 𝑏].

In this paper, we will investigate properties of functions
in the class 𝐵𝑉𝑝[𝑎, 𝑏] with 0 < 𝑝 < 1. We will show that
𝐵𝑉𝑝[𝑎, 𝑏] is a Frechet space with the quasinorm

𝑞 (𝑓) =
󵄨󵄨󵄨󵄨𝑓 (𝑎)

󵄨󵄨󵄨󵄨
𝑝
+ (𝑉𝑝𝑓)

𝑝

. (2)

We will get the Jordan type decomposition theorem which
says that any function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) can be
expressed as the difference of two increasing functions in
𝐵𝑉𝑝[𝑎, 𝑏].We also get the representation theoremwhich gives
the explicit form of functions in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1).

2. Statement of Main Results

Clearly, for any fixed 𝑝 ∈ (0, 1), the Wiener class 𝐵𝑉𝑝[𝑎, 𝑏] is
a linear space. We define the functional 𝑞 on 𝐵𝑉𝑝[𝑎, 𝑏] by

𝑞 (𝑓) =
󵄨󵄨󵄨󵄨𝑓 (𝑎)

󵄨󵄨󵄨󵄨
𝑝
+ (𝑉𝑝𝑓)

𝑝

=
󵄨󵄨󵄨󵄨𝑓 (𝑎)

󵄨󵄨󵄨󵄨
𝑝

+ sup
𝑇

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑘) − 𝑓 (𝑥𝑘−1)
󵄨󵄨󵄨󵄨
𝑝
,

𝑓 ∈ 𝐵𝑉𝑝 [𝑎, 𝑏] .

(3)

From the inequality (𝑎 + 𝑏)𝑝 ≤ 𝑎
𝑝
+ 𝑏
𝑝
(𝑎, 𝑏 ≥ 0, 0 < 𝑝 < 1),

we get that 𝑞(𝑓 + 𝑔) ≤ 𝑞(𝑓) + 𝑞(𝑔). It then follows that 𝑞 is a
quasinorm on 𝐵𝑉𝑝[𝑎, 𝑏].

Our first result claims that 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1)

equipped with the quasinorm 𝑞 is a Frechet space.
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Theorem 1. TheWiener class 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) equipped
with the quasinorm 𝑞 is a Frechet space.

From the inequality

(

∞

∑

𝑖=1

𝑎
𝑝2
𝑖
)

1/𝑝2

≤ (

∞

∑

𝑖=1

𝑎
𝑝1
𝑖
)

1/𝑝1

, 𝑎𝑖 ≥ 0, 0 < 𝑝1 ≤ 𝑝2 < ∞,

(4)

we get that, for any 𝑓 ∈ 𝐵𝑉𝑝1
[𝑎, 𝑏],

𝑉𝑝2
𝑓 ≤ 𝑉𝑝1

𝑓, (5)

which means that 𝐵𝑉𝑝1[𝑎, 𝑏] ⊆ 𝐵𝑉𝑝2
[𝑎, 𝑏]. Specially, for 0 <

𝑝 < 1, 𝐵𝑉𝑝[𝑎, 𝑏] ⊆ 𝐵𝑉1[𝑎, 𝑏] ≡ 𝐵𝑉[𝑎, 𝑏]. This implies
that 𝐵𝑉𝑝[𝑎, 𝑏] functions are bounded, and the discontinuities
of a 𝐵𝑉𝑝[𝑎, 𝑏] function are simple and, therefore, at most
denumerable (see [8, Theorem 13.7 and Lemma 13.2]). By
the Jordan decomposition theorem, we know that every
function 𝑓 in 𝐵𝑉[𝑎, 𝑏] can be expressed as the difference
of two increasing functions 𝑔 and ℎ defined on [𝑎, 𝑏] (see
[8, Corollary 13.6]). If 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] ⊆ 𝐵𝑉[𝑎, 𝑏], we can
require that the above increasing functions 𝑔 and ℎ are still
in 𝐵𝑉𝑝[𝑎, 𝑏]. This is our next theorem.

Theorem 2 (Jordan type decomposition theorem). Any func-
tion in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) can be expressed as the difference
of two increasing functions in 𝐵𝑉𝑝[𝑎, 𝑏].

Let 𝑡 ∈ [𝑎, 𝑏], 𝑑 > 0, and 0 ≤ 𝑑
󸀠
≤ 𝑑. We set

ℎ𝑡,𝑑,𝑑󸀠 (𝑥) =

{{

{{

{

0, 𝑥 < 𝑡,

𝑑
󸀠
, 𝑥 = 𝑡,

𝑑, 𝑥 > 𝑡.

(6)

Then ℎ𝑡,𝑑,𝑑󸀠(𝑥) is increasing on [𝑎, 𝑏] with only one disconti-
nuity point 𝑡. Also, (ℎ𝑡,𝑑,𝑑󸀠 (𝑥))

󸀠
= 0 for 𝑥 ̸= 𝑡.

Let 𝑓 be an increasing function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1).
Denote by 𝐴 ≡ 𝐴(𝑓) the set of points of discontinuity of 𝑓.
Then𝐴 is atmost countable (see [8,Theorem 2.17]). Since𝑓 is
increasing, we get that, for any 𝑡 ∈ 𝐴, the right and left limits
𝑓(𝑡 + 0) and 𝑓(𝑡 − 0) of the function 𝑓 at 𝑡 exist, 𝑓(𝑡 + 0) −

𝑓(𝑡 − 0) > 0, and 0 ≤ 𝑓(𝑡) −𝑓(𝑡 − 0) ≤ 𝑓(𝑡 + 0) −𝑓(𝑡 − 0). For
𝑡 ∈ 𝐴, we define

ℎ̃𝑡 (𝑥) ≡ ℎ̃𝑡,𝑓 (𝑥) = ℎ𝑡,𝑓(𝑡+0)−𝑓(𝑡−0),𝑓(𝑡)−𝑓(𝑡−0) (𝑥) . (7)

Our next theorem characterizes the form of an increasing
function in 𝐵𝑉𝑝[𝑎, 𝑏]. Any increasing function 𝑓 in 𝐵𝑉𝑝[𝑎, 𝑏]
must be as follows:

𝑓 (𝑥) =

𝑁

∑

𝑛=1

ℎ𝑡𝑛 ,𝑑𝑛,𝑑
󸀠
𝑛
(𝑥) + 𝑐, (8)

where𝑁 ≤ ∞, 𝑡𝑛 ∈ [𝑎, 𝑏], 𝑑𝑛 > 0, 𝑑󸀠
𝑛
∈ [0, 𝑑𝑛], and∑

𝑁

𝑛=1
𝑑
𝑝

𝑛
<

∞.

Theorem 3. (1) If 𝑓(𝑥) = 𝑐 + ∑
𝑁

𝑛=1
ℎ𝑡𝑛 ,𝑑𝑛,𝑑

󸀠
𝑛
(𝑥), where𝑁 ≤ ∞,

𝑡𝑛 ∈ [𝑎, 𝑏], 𝑑𝑛 > 0, and 𝑑󸀠
𝑛
∈ [0, 𝑑𝑛], then 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] (0 <

𝑝 < 1) if and only if ∑𝑁
𝑛=1

𝑑
𝑝

𝑛
< ∞. In this case,

(

𝑁

∑

𝑛=1

𝑑
𝑝

𝑛
)

1/𝑝

≤ 𝑉𝑝 (𝑓) ≤ (2

𝑁

∑

𝑛=1

𝑑
𝑝

𝑛
)

1/𝑝

. (9)

(2) Let 𝑓 be an increasing function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 <

1). Then 𝑓(𝑥) = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥) + 𝑐, where 𝑐 is a constant, 𝐴 is the
set of points of discontinuity of 𝑓, and ℎ̃𝑡(𝑥) is defined by (7).

Finally, for an increasing function𝑓 in𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 <

1), by Theorem 3 we have 𝑓(𝑥) = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥) + 𝑐, where 𝐴 is
the set of points of discontinuity of 𝑓 and at most countable.
Since (ℎ̃𝑡 (𝑥))

󸀠

= 0, a.e. 𝑥 ∈ [𝑎, 𝑏], by the Fubini term by
termdifferentiation theorem (see [9, Proposition 4.6]), we get
𝑓
󸀠
(𝑥) = 0, a.e. 𝑥 ∈ [𝑎, 𝑏]. By Theorem 2, any function 𝑓 in

𝐵𝑉𝑝[𝑎, 𝑏] can be expressed as the difference of two increasing
functions𝑔(𝑥) and 𝑟(𝑥) in𝐵𝑉𝑝[𝑎, 𝑏]. ApplyingTheorem 3, we
get the representation theorem of functions in 𝐵𝑉𝑝[𝑎, 𝑏] (0 <
𝑝 < 1) as follows.

Corollary 4. Let 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1). Then 𝑓 can be
expressed in the following form:

𝑓 (𝑥) = 𝑔 (𝑥) − 𝑟 (𝑥) = ∑

𝑡∈𝐴1

ℎ̃𝑡,𝑔 (𝑥) − ∑

𝑡∈𝐴2

ℎ̃𝑡,𝑟 (𝑥) + 𝑐, (10)

where 𝑐 is a constant, 𝑔(𝑥), 𝑟(𝑥) are increasing functions in
𝐵𝑉𝑝[𝑎, 𝑏], ℎ̃𝑡,𝑔(𝑥) and ℎ̃𝑡,𝑟 are defined by (7), 𝐴1, 𝐴2 ⊆ 𝐴, and
𝐴1, 𝐴2, 𝐴 are the sets of points of discontinuity of 𝑔, 𝑟, and 𝑓,
respectively. Furthermore, 𝑓󸀠(𝑥) = 0, a.e. 𝑥 ∈ [𝑎, 𝑏].

3. Proofs of Theorems 1–3

Proof of Theorem 1. It suffices to prove that 𝐵𝑉𝑝[𝑎, 𝑏] is com-
plete. Let {𝑓𝑛} be a Cauchy sequence in 𝐵𝑉𝑝[𝑎, 𝑏]; that is,
𝑞(𝑓𝑛−𝑓𝑚) = |𝑓𝑛(𝑎)−𝑓𝑚(𝑎)|

𝑝
+(𝑉𝑝(𝑓𝑛−𝑓𝑚))

𝑝
→ 0 as 𝑛,𝑚 →

∞. For any 𝜉 ∈ [𝑎, 𝑏], using the partition𝑇 : 𝑎 ≤ 𝜉 ≤ 𝑏 and the
definition of𝑉𝑝𝑓, we get that {𝑓𝑛(𝜉)} is a Cauchy sequence in
R and converges to a number denoted by 𝑓(𝜉). For any 𝜀 > 0,
there exists an integer𝑁 such that 𝑞(𝑓𝑛−𝑓𝑚) ≤ 𝜀 for𝑚, 𝑛 > 𝑁.
Let 𝑇 : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑘 = 𝑏 be an arbitrary partition
of [𝑎, 𝑏]. Then

󵄨󵄨󵄨󵄨𝑓𝑚 (𝑎) − 𝑓𝑛 (𝑎)
󵄨󵄨󵄨󵄨
𝑝

+

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨(𝑓𝑚 − 𝑓𝑛) (𝑥𝑖) − (𝑓𝑚 − 𝑓𝑛) (𝑥𝑖−1)
󵄨󵄨󵄨󵄨
𝑝

≤ 𝑞 (𝑓𝑛 − 𝑓𝑚) ≤ 𝜀.

(11)

Letting𝑚 → ∞, we get that

󵄨󵄨󵄨󵄨𝑓 (𝑎) − 𝑓𝑛 (𝑎)
󵄨󵄨󵄨󵄨
𝑝
+

𝑘

∑

𝑖=1

󵄨󵄨󵄨󵄨(𝑓 − 𝑓𝑛) (𝑥𝑖) − (𝑓 − 𝑓𝑛) (𝑥𝑖−1)
󵄨󵄨󵄨󵄨
𝑝
≤ 𝜀.

(12)
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Taking the supremum over all partitions 𝑇, we have 𝑞(𝑓 −

𝑓𝑛) ≤ 𝜀 for 𝑛 > 𝑁. This means that 𝑓 = (𝑓 − 𝑓𝑛) +

𝑓𝑛 ∈ 𝐵𝑉𝑝[𝑎, 𝑏], and 𝑞(𝑓 − 𝑓𝑛) → 0 as 𝑛 → ∞. Hence,
𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1) is complete. Theorem 1 is proved.

Proof of Theorem 2. Suppose that 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 < 1).
Since𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏] ⊂ 𝐵𝑉[𝑎, 𝑏], by the Jordan decomposition
theorem (see [8, Corollary 13.6]), we have𝑓(𝑥) = 𝑔(𝑥)−𝑟(𝑥),
where 𝑔(𝑥), 𝑟(𝑥) are increasing functions on [𝑎, 𝑏]. Indeed,
we can choose 𝑔(𝑥) to be 𝑉𝑥

𝑎
(𝑓), the total variation function

of 𝑓 defined by

𝑉
𝑥

𝑎
(𝑓) = sup

𝑇

{

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖) − 𝑓 (𝑥𝑖−1)
󵄨󵄨󵄨󵄨} , (13)

where the supremum is taken over all partitions 𝑇 : 𝑎 = 𝑥0 <

𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑥 of [𝑎, 𝑥], 𝑟(𝑥) = 𝑉
𝑥

𝑎
(𝑓) − 𝑓(𝑥). It suffices to

show that 𝑔(𝑥) = 𝑉
𝑥

𝑎
(𝑓) ∈ 𝐵𝑉𝑝[𝑎, 𝑏]. For any fixed partition

𝑇 : 𝑎 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛 = 𝑏, we note that
󵄨󵄨󵄨󵄨𝑔 (𝑥𝑖) − 𝑔 (𝑥𝑖−1)

󵄨󵄨󵄨󵄨
𝑝
=
󵄨󵄨󵄨󵄨󵄨
𝑉
𝑥𝑖
𝑥𝑖−1

𝑓
󵄨󵄨󵄨󵄨󵄨

𝑝

= sup
𝑇𝑖

(

𝑚𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)

󵄨󵄨󵄨󵄨󵄨
)

𝑝

≤ sup
𝑇𝑖

𝑚𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)

󵄨󵄨󵄨󵄨󵄨

𝑝

,

(14)

where the supremum is taken over all partitions 𝑇𝑖 : 𝑥𝑖−1 =
𝜉𝑖,1 < 𝜉𝑖,2 < ⋅ ⋅ ⋅ < 𝜉𝑖,𝑚𝑖

= 𝑥𝑖 of [𝑥𝑖−1, 𝑥𝑖]. It follows that

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑔 (𝑥𝑖) − 𝑔 (𝑥𝑖−1)
󵄨󵄨󵄨󵄨
𝑝
≤

𝑛

∑

𝑖=1

sup
𝑇𝑖

𝑚𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)

󵄨󵄨󵄨󵄨󵄨

𝑝

= sup
𝑇𝑖 , 1≤𝑖≤𝑛

𝑛

∑

𝑖=1

𝑚𝑖

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜉𝑖,𝑗) − 𝑓 (𝜉𝑖,𝑗−1)

󵄨󵄨󵄨󵄨󵄨

𝑝

≤ (𝑉𝑝𝑓)
𝑝

,

(15)

which implies 𝑔 ∈ 𝐵𝑉𝑝[𝑎, 𝑏]. This completes the proof of
Theorem 2.

To proveTheorem 3, we introduce the next lemma.

Lemma 5. If 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏]⋂𝐶[𝑎, 𝑏] (0 < 𝑝 < 1), then 𝑓 is a
constant function.

Proof. It suffices to show that, for any 𝑑 ∈ [𝑎, 𝑏], 𝑓(𝑑) = 𝑓(𝑎).
Assume that there exists 𝑑 ∈ (𝑎, 𝑏] such that 𝑓(𝑑) ̸= 𝑓(𝑎).
Without loss of generality, we assume that𝑓(𝑎) < 𝑓(𝑑). Since
𝑓 ∈ 𝐶[𝑎, 𝑏], there exist 𝑛 − 1 points 𝜉1, 𝜉2, . . . , 𝜉𝑛−1 such that
𝑎 = 𝜉0 < 𝜉1 < ⋅ ⋅ ⋅ < 𝜉𝑛−1 < 𝜉𝑛 = 𝑑 and 𝑓(𝜉𝑖) = 𝑓(𝑎) + ((𝑓(𝑑)−

𝑓(𝑎))/𝑛)𝑖. Hence,

(𝑉𝑝𝑓)
𝑝

≥

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝜉𝑖) − 𝑓 (𝜉𝑖−1)
󵄨󵄨󵄨󵄨
𝑝

= 𝑛
1−𝑝 󵄨󵄨󵄨󵄨𝑓 (𝑑) − 𝑓 (𝑎)

󵄨󵄨󵄨󵄨
𝑝
󳨀→ ∞,

(16)

as 𝑛 → ∞, which implies that 𝑓 ∉ 𝐵𝑉𝑝[𝑎, 𝑏]. This leads to a
contradiction. Lemma 5 is proved.

Proof of Theorem 3. (1) Without loss of generality, we may
assume that𝑁 = ∞. Let 𝑇 : 𝑎 = 𝑦0 < 𝑦1 < ⋅ ⋅ ⋅ < 𝑦𝑚 = 𝑏 be a
partition of [𝑎, 𝑏]. For 𝑗, 1 ≤ 𝑗 ≤ 𝑚, we note that

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑦𝑗) − 𝑓 (𝑦𝑗−1)

󵄨󵄨󵄨󵄨󵄨

𝑝

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

∑

𝑛=1

(ℎ𝑡𝑛 ,𝑑𝑛,𝑑
󸀠
𝑛
(𝑦𝑗) − ℎ𝑡𝑛 ,𝑑𝑛,𝑑

󸀠
𝑛
(𝑦𝑗−1))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
𝑛

𝑦𝑗−1<𝑡𝑛<𝑦𝑗

𝑑𝑛 + ∑
𝑛
𝑡𝑛=𝑦𝑗−1

(𝑑𝑛 − 𝑑
󸀠

𝑛
) + ∑
𝑛
𝑡𝑛=𝑦𝑗

𝑑
󸀠

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

≤ ∑
𝑛

𝑦𝑗−1≤𝑡𝑛≤𝑦𝑗

𝑑
𝑝

𝑛
,

(17)

where an empty sum denotes 0. It follows that

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑦𝑗) − 𝑓 (𝑦𝑗−1)

󵄨󵄨󵄨󵄨󵄨

𝑝

≤

𝑚

∑

𝑗=1

( ∑
𝑛

𝑦𝑗−1≤𝑡𝑛≤𝑦𝑗

𝑑
𝑝

𝑛
) ≤ 2

∞

∑

𝑛=1

𝑑
𝑝

𝑛
.

(18)

Taking the supremum over all partitions of [𝑎, 𝑏], we obtain
that

(𝑉𝑝𝑓)
𝑝

≤ 2

∞

∑

𝑛=1

𝑑
𝑝

𝑛
. (19)

On the other hand, for any fixed 𝑚, by renumbering
{𝑡𝑛}
𝑚

𝑛=1
if necessary, we may assume that 𝑎 ≤ 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ <

𝑡𝑚 ≤ 𝑏. We set 𝑦𝑖 = ((𝑡𝑖 + 𝑡𝑖+1)/2) (1 ≤ 𝑖 ≤ 𝑚 − 1). Then
𝑇 : 𝑎 = 𝑦0 < 𝑦1 < 𝑦2 < ⋅ ⋅ ⋅ < 𝑦𝑚−1 < 𝑦𝑚 = 𝑏 is a partition of
[𝑎, 𝑏]. It follows that

(𝑉𝑝𝑓)
𝑝

≥

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑦𝑗) − 𝑓 (𝑦𝑗−1)

󵄨󵄨󵄨󵄨󵄨

𝑝

≥

𝑚

∑

𝑗=1

( ∑
𝑛

𝑦𝑗−1<𝑡𝑛<𝑦𝑗

𝑑𝑛)

𝑝

≥

𝑚

∑

𝑗=1

𝑑
𝑝

𝑗
.

(20)

Letting𝑚 → ∞, we get

𝑉𝑝𝑓 ≥ (

∞

∑

𝑛=1

𝑑
𝑝

𝑛
)

1/𝑝

. (21)

Combining (19) with (21), we get (9). Hence, 𝑓 ∈ 𝐵𝑉𝑝[𝑎, 𝑏]

(0 < 𝑝 < 1) if and only if ∑∞
𝑛=1

𝑑
𝑝

𝑛
< ∞.

(2) Let 𝑓 be an increasing function in 𝐵𝑉𝑝[𝑎, 𝑏] (0 < 𝑝 <

1) and 𝐴 the set of points of discontinuity of 𝑓 on [𝑎, 𝑏]. We
set ℎ𝑓(𝑥) = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥), where ℎ̃𝑡(𝑥) is defined by (7). Similar
to the proof of (21), we have

∑

𝑡∈𝐴

(𝑓 (𝑡 + 0) − 𝑓 (𝑡 − 0))
𝑝
≤ (𝑉𝑝𝑓)

𝑝

< ∞. (22)
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Applying the above proved result, we obtain that ℎ𝑓(𝑥) ∈

𝐵𝑉𝑝[𝑎, 𝑏]. We set 𝑔(𝑥) = 𝑓(𝑥) − ℎ𝑓(𝑥); then 𝑔 ∈ 𝐵𝑉𝑝[𝑎, 𝑏].
We will show that 𝑔(𝑥) is continuous on [𝑎, 𝑏].

Indeed, for 𝑥 ∈ [𝑎, 𝑏], we have

∑

𝑡∈𝐴

ℎ̃𝑡 (𝑥) ≤ ∑

𝑡∈𝐴

(𝑓 (𝑡 + 0) − 𝑓 (𝑡 − 0))

≤ (∑

𝑡∈𝐴

(𝑓 (𝑡 + 0) − 𝑓 (𝑡 − 0))
𝑝
)

1/𝑝

≤ 𝑉𝑝𝑓 < ∞.

(23)

By Weierstrass 𝑀-test (see [10, Theorem 7.10]), we get that
the series ∑𝑡∈𝐴 ℎ̃𝑡(𝑥) converges uniformly on [𝑎, 𝑏]. For 𝑥0 ∈
[𝑎, 𝑏]\𝐴, ℎ̃𝑡(𝑥) (𝑡 ∈ 𝐴) is continuous at 𝑥0, so ℎ𝑓(𝑥) =

∑𝑡∈𝐴 ℎ̃𝑡(𝑥) is also continuous at 𝑥0. It follows that 𝑔(𝑥) is
continuous at 𝑥0 for 𝑥0 ∈ [𝑎, 𝑏]\𝐴.

For 𝑥0 ∈ 𝐴, we set 𝑢(𝑥) = ∑𝑡∈𝐴\{𝑥0}
ℎ̃𝑡(𝑥). Then 𝑢(𝑥) is

continuous at 𝑥0 and ℎ𝑓(𝑥) = 𝑢(𝑥) + ℎ̃𝑥0
(𝑥). Hence,

ℎ𝑓 (𝑥0 + 0) = 𝑢 (𝑥0) + (𝑓 (𝑥0 + 0) − 𝑓 (𝑥0 − 0)) ,

ℎ𝑓 (𝑥0 − 0) = 𝑢 (𝑥0) ,

ℎ𝑓 (𝑥0) = 𝑢 (𝑥0) + (𝑓 (𝑥0) − 𝑓 (𝑥0 − 0)) .

(24)

Thus,

𝑔 (𝑥0 + 0) = 𝑔 (𝑥0) = 𝑔 (𝑥0 − 0) = 𝑓 (𝑥0 − 0) − 𝑢 (𝑥0) ,

(25)

from which we can deduce that 𝑔 is continuous at 𝑥0. Hence,
𝑔(𝑥) ∈ 𝐶[𝑎, 𝑏].

Since 𝑔(𝑥) ∈ 𝐶[𝑎, 𝑏]∩𝐵𝑉𝑝[𝑎, 𝑏], it follows from Lemma 5
that 𝑔(𝑥) is a constant 𝑐.Thus𝑓(𝑥) = ℎ𝑓(𝑥)+𝑐 = ∑𝑡∈𝐴 ℎ̃𝑡(𝑥)+

𝑐. The proof of Theorem 3 is complete.
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We introduce a new Stancu type generalization of Srivastava-Gupta operators to approximate integrable functions on the interval
(0,∞) and estimate the rate of convergence for functions having derivatives of bounded variation. Also we present simultenaous
approximation by new operators in the end of the paper.

1. Introduction

To approximate integrable functions on the interval (0,∞),
Srivastava and Gupta [1] introduced a general sequence of
linear positive operators 𝐺

𝑛,𝑐
as follows:

𝐺
𝑛,𝑐
(𝑓; 𝑥) = 𝑛

∞

∑
𝑘=1

𝑝
𝑛,𝑘
(𝑥; 𝑐) ∫

∞

0

𝑝
𝑛+𝑐,𝑘−1

(𝑡; 𝑐) 𝑓 (𝑡) 𝑑𝑡

+ 𝑝
𝑛,0
(𝑥; 𝑐) 𝑓 (0) ,

(1)

for a function 𝑓 ∈ 𝐻
𝛼
(0,∞), where 𝐻

𝛼
(0,∞) (𝛼 ≥ 0) is

the class of locally integrable functions defined on (0,∞) and
satisfying the growth condition

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀𝑡

𝛼

(𝑀 > 0; 𝛼 ≥ 0; 𝑡 󳨀→ ∞) , (2)

𝑝
𝑛,𝑘
(𝑥; 𝑐) =

(−𝑥)
𝑘

𝑘!
𝜙
(𝑘)

𝑛,𝑐
(𝑥) , (3)

𝜙
𝑛,𝑐
(𝑥) = {

𝑒−𝑛𝑥, 𝑐 = 0

(1 + 𝑐𝑥)
−𝑛/𝑐

, 𝑐 ∈ N := {1, 2, 3, . . .} .
(4)

The general sequence of operators 𝐺
𝑛,𝑐

has many inter-
esting properties in approximation theory, which is an
interesting area of research in the present era, and several
researchers have studied these operators; we can mention
some important studies on these operators (see [1–3]). In
[4], author introduced King and Stancu type generalization
of Srivastava-Gupta operators and presented some direct
results. Also, Verma and Agrawal [5] introduced a new
generalization of Srivastava-Gupta operators and studied the
rate of convergence for the functions having the derivatives
of bounded variation (BV). The rate of convergence for the
functions having the derivatives of (BV) is an active area
of research and many researchers studied this direction. We
refer the readers to [6–10] and references therein.

Stancu [11, 12] introduced generalizations of Bernstein
polynomials with one and two parameters (resp.), satisfying
the condition 0 ≤ 𝛼 ≤ 𝛽, as

𝑠
𝛼

𝑛
(𝑓, 𝑥) =

𝑛

∑
𝑘=0

𝑓(
𝑘

𝑛
)(
𝑛

𝑘
)
∏
𝑘−1

𝑠=0
(𝑥 + 𝛼𝑠)∏

𝑛−𝑘−1

𝑠=0
(1 − 𝑥 + 𝛼𝑠)

∏
𝑛−1

𝑠=0
(1 + 𝛼𝑠)

0 ≤ 𝑥 ≤ 1,
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𝑠
𝛼,𝛽

𝑛
(𝑓, 𝑥) =

𝑛

∑
𝑘=0

𝑓(
𝑘 + 𝛼

𝑛 + 𝛽
)(
𝑛

𝑘
)𝑥
𝑘

(1 − 𝑥)
𝑛−𝑘

0 ≤ 𝑥 ≤ 1,

(5)
for any 𝑓 ∈ 𝐶[0, 1]. Stancu type generalization of approxi-
mation operators present better approach depending on 𝛼, 𝛽.
Therefore, this kind of generalizations and their approxima-
tion properties have been studied intensively. We refer the
readers to [13–17] and references therein.Mishra et al. [18, 19],
V. N. Mishra, and L. N. Mishra [20] have established very
interesting results on approximation properties of various
functional classes using different types of positive linear
summability operators.

The purpose of this paper is to introduce a new Stancu
type generalization of the operators defined in [5] as

𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) =

𝑛Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑓 (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡.

(6)

By the definition of operators, it is clear that 𝐺(𝛼,𝛽)
𝑛,𝑟,𝑐
(𝑓; 𝑥) is

positive and linear. For 𝛼 = 𝛽 = 0, 𝐺(0,0)
𝑛,𝑟,𝑐
(𝑓; 𝑥) reduces

to operators defined in [5]. In this study we obtain the rate
of convergence for the functions having the derivatives of
bounded variation. Also, in the end of the paper, we study
the simultaneous approximation.

2. Auxiliary Results

In order to prove our main results, we need the following
lemmas.

Lemma 1. Let the𝑚th order moment be defined as

𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥) = 𝐺

(𝛼,𝛽)

𝑛,𝑐
((𝑡 − 𝑥)

𝑚

; 𝑥)

= (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡,

(7)
where 𝑛,𝑚 ∈ N ∪ {0}, and then, for 𝑛 > (𝑚 + 𝑟 + 1)𝑐, we have
the following recurrence relation:

(𝑛 − (𝑟 + 𝑚 + 1) 𝑐) (𝑛 + 𝛽)𝑈
𝑛,𝑟,𝑚+1

(𝑥)

= 𝑛𝑥 (1 + 𝑐𝑥) [(𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥))
󸀠

+ 𝑚𝑈
𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥)]

+ 𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥)

× [(𝑚 + 𝑟 + (𝑛 + 𝑟𝑐) 𝑥) 𝑛 + (𝛼 − (𝑛 + 𝛽) 𝑥)

× (𝑛 − (𝑟 + 2𝑚 + 1) 𝑐)]

+ 𝑈
𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥)

× [
𝑐𝑚 (𝛼 − (𝑛 + 𝛽) 𝑥)

2

− 𝑚𝑛 (𝛼 − (𝑛 + 𝛽) 𝑥)

𝑛 + 𝛽
] ,

𝑈
𝛼,𝛽

𝑛,𝑟,0
(𝑥) = 1,

𝑈
𝛼,𝛽

𝑛,𝑟,1
(𝑥) =

𝛼 − (𝑛 + 𝛽) 𝑥

𝑛 + 𝛽
+

𝑛 (𝑟 + (𝑛 + 𝑟𝑐) 𝑥)

(𝑛 − (𝑟 + 1) 𝑐) (𝑛 + 𝛽)
,

𝑈
𝛼,𝛽

𝑛,𝑟,2
(𝑥) =

𝑛𝑥 (1 + 𝑐𝑥)

(𝑛 − (𝑟 + 1) 𝑐) (𝑛 − (𝑟 + 2) 𝑐) (𝑛 + 𝛽)
2

+ (
𝛼

𝑛 + 𝛽
− 𝑥 +

𝑛 (𝑟 + (𝑛 + 𝑟𝑐) 𝑥)

(𝑛 − (𝑟 + 1) 𝑐) (𝑛 + 𝛽)
)

×
𝑛 (1 + 𝑟 + (𝑛 + 𝑟𝑐) 𝑥)

(𝑛 − (𝑟 + 2) 𝑐) (𝑛 + 𝛽)

+ (
𝛼

𝑛 + 𝛽
− 𝑥 +

𝑛 (𝑟 + (𝑛 + 𝑟𝑐) 𝑥)

(𝑛 − (𝑟 + 1) 𝑐) (𝑛 + 𝛽)
2
)

× (𝛼 − (𝑛 + 𝛽) 𝑥)

+
(𝛼 − (𝑛 + 𝛽) 𝑥) (𝑐 (𝛼 − (𝑛 + 𝛽) 𝑥) − 𝑛)

(𝑛 − (𝑟 + 2) 𝑐) (𝑛 + 𝛽)
2

.

(8)

Furthermore, 𝑈𝛼,𝛽
𝑛,𝑟,𝑚
(𝑥) is polynomial of degree𝑚 in 𝑥 and

𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥) = 𝑂 ((𝑛 + 𝛽)

−[(𝑚+1)/2]

) . (9)

Proof. By definition of 𝑈𝛼,𝛽
𝑛,𝑟,𝑚
(𝑥), taking the derivative of

𝑈𝛼,𝛽
𝑛,𝑟,𝑚
(𝑥), we get

(𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥))
󸀠

= − (𝑛 − 𝑟𝑐)𝑚

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚−1

𝑑𝑡

+ (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
󸀠

𝑛+𝑟𝑐,𝑘
(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

= −𝑚𝑈
𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥) + (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
󸀠

𝑛+𝑟𝑐,𝑘
(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡.

(10)

Hence, using the identity

𝑥 (1 + 𝑐𝑥) 𝑝
󸀠

𝑛+𝑟𝑐,𝑘
(𝑥; 𝑐) = (𝑘 − (𝑛 + 𝑟𝑐) 𝑥) 𝑝

𝑛+𝑟𝑐,𝑘
(𝑥; 𝑐)

(11)
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we have

𝑥 (1 + 𝑐𝑥) [(𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥))
󸀠

+ 𝑚𝑈
𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥)]

= (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

(𝑘 − (𝑛 + 𝑟𝑐) 𝑥) 𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

= (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑘𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

− (𝑛 + 𝑟𝑐) 𝑥𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥)

= 𝐼 − (𝑛 + 𝑟𝑐) 𝑥𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥) .

(12)

We can write 𝐼 as

𝐼 = [ (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

[𝑘 + 𝑟 − 1 − (𝑛 − (𝑟 − 1) 𝑐) 𝑡] 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

× (𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

+ (𝑛 − 𝑟𝑐) (𝑛 − (𝑟 − 1) 𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑡 (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

− (𝑟 − 1) (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡]

= 𝐼
1
+ 𝐼
2
− (𝑟 − 1)𝑈

𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥) .

(13)

To estimate 𝐼
2
using 𝑡 = ((𝑛 + 𝛽)/𝑛)[(((𝑛𝑡 + 𝛼)/(𝑛 + 𝛽)) − 𝑥) −

((𝛼/(𝑛 + 𝛽)) − 𝑥)], we have

𝐼
2
=
(𝑛 − (𝑟 − 1) 𝑐) (𝑛 + 𝛽)

𝑛

× [(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚+1

𝑑𝑡

− (
𝛼

𝑛 + 𝛽
− 𝑥) (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡] ,

𝐼
2
=
(𝑛 − (𝑟 − 1) 𝑐) (𝑛 + 𝛽)

𝑛

× [(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚+1

𝑑𝑡

− (
𝛼

𝑛 + 𝛽
− 𝑥)

× ((𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)

× (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡)]

=
(𝑛 − (𝑟 − 1) 𝑐) (𝑛 + 𝛽)

𝑛

× [𝑈
𝛼,𝛽

𝑛,𝑟,𝑚+1
(𝑥) − (

𝛼

𝑛 + 𝛽
− 𝑥)𝑈

𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥)] .

(14)

Next to estimate 𝐼
1
using the equality

𝑡 (1 + 𝑐𝑡) 𝑝
󸀠

𝑛−(𝑟−1)𝑐,𝑘+𝑟−1
(𝑡; 𝑐)

= [(𝑘 + 𝑟 − 1) − (𝑛 − (𝑟 − 1) 𝑐) 𝑡] 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) ,

(15)

we have

𝐼
1
= (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
󸀠

𝑛−(𝑟−1)𝑐,𝑘+𝑟−1
(𝑡; 𝑐) 𝑡 (

𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

+ 𝑐 (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
󸀠

𝑛−(𝑟−1)𝑐,𝑘+𝑟−1
(𝑡; 𝑐) 𝑡

2

(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

= J
1
+J
2
.

(16)
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Putting 𝑡 = ((𝑛+𝛽)/𝑛)[(((𝑛𝑡+𝛼)/(𝑛+𝛽))−𝑥)−((𝛼/(𝑛+𝛽))−𝑥)],
we get

J
1
=
𝑛 + 𝛽

𝑛

× [(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
󸀠

𝑛−(𝑟−1)𝑐,𝑘+𝑟−1
(𝑡; 𝑐) (

𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚+1

𝑑𝑡

− (
𝛼

𝑛 + 𝛽
− 𝑥) (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
󸀠

𝑛−(𝑟−1)𝑐,𝑘+𝑟−1
(𝑡; 𝑐) (

𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡] .

(17)

Now integrating by parts, we get

J
1
= − (𝑚 + 1) (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡

+ 𝑚(
𝛼

𝑛 + 𝛽
− 𝑥) (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚−1

𝑑𝑡

= − (𝑚 + 1)

× [ (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚

𝑑𝑡]

+ 𝑚(
𝛼

𝑛 + 𝛽
− 𝑥)

× [(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥)

𝑚−1

𝑑𝑡]

= − (𝑚 + 1)𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥)

+ 𝑚(
𝛼

𝑛 + 𝛽
− 𝑥)𝑈

𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥) .

(18)

Proceeding in a similar manner, we obtain the estimateJ
2
as

J
2
= −
𝑐 (𝑚 + 2) (𝑛 + 𝛽)

𝑛
𝑈
𝑛,𝑟,𝑚+1

(𝑥)

+
2𝑐 (𝑚 + 1) (𝑛 + 𝛽)

𝑛
(
𝛼

𝑛 + 𝛽
− 𝑥)𝑈

𝑛,𝑟,𝑚
(𝑥)

−
𝑐𝑚 (𝑛 + 𝛽)

𝑛
(
𝛼

𝑛 + 𝛽
− 𝑥)

2

𝑈
𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥) .

(19)

Combining the equations, we have

(𝑛 − (𝑟 + 𝑚 + 1) 𝑐) (𝑛 + 𝛽)𝑈
𝛼,𝛽

𝑛,𝑟,𝑚+1
(𝑥)

= 𝑛𝑥 (1 + 𝑐𝑥) [(𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥))
󸀠

+ 𝑚𝑈
𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥)]

+ 𝑈
𝛼,𝛽

𝑛,𝑟,𝑚
(𝑥)

× [(𝑚 + 𝑟 + (𝑛 + 𝑟𝑐) 𝑥) 𝑛 + (𝛼 − (𝑛 + 𝛽) 𝑥)

× (𝑛 − (𝑟 + 2𝑚 + 1) 𝑐)] + 𝑈
𝛼,𝛽

𝑛,𝑟,𝑚−1
(𝑥)

× [
𝑐𝑚 (𝛼 − (𝑛 + 𝛽) 𝑥)

2

− 𝑚𝑛 (𝛼 − (𝑛 + 𝛽) 𝑥)

𝑛 + 𝛽
]

(20)

which is the desired result.
Moments for 𝑚 = 0, 1, 2 can be easily obtained by using

the above recurrence relation.

Remark 2. For sufficiently large 𝑛, 𝐶 > 2, and 𝑥 ∈ (0,∞), it
can be seen from Lemma 1 that

𝑈
𝛼,𝛽

𝑛,𝑟,2
(𝑥) ≤

𝐶𝜎𝛼,𝛽
𝑟,𝑐
(𝑥)

𝑛 + 𝛽
, (21)

where 𝜎𝛼,𝛽
𝑟,𝑐
(𝑥) = [𝑥(1 + 𝑐𝑥) + 𝑥(𝛼 + 𝛽𝑥 + 𝑟(1 + 𝑐𝑥))] for the

convenient notation.

Remark 3. By using Cauchy-Schwarz inequality, it follows
from Remark 2 that, for sufficiently large 𝑛, 𝐶 > 2, and
𝑥 ∈ (0,∞),

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛𝑡 + 𝛼

𝑛 + 𝛽
− 𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤ [𝑈
𝛼,𝛽

𝑛,𝑟,2
(𝑥)]
1/2

≤ √
𝐶𝜎𝛼,𝛽
𝑟,𝑐
(𝑥)

𝑛 + 𝛽
.

(22)
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Lemma 4. Let 𝑥 ∈ (0,∞) and 𝐶 > 2; then, for sufficiently
large 𝑛, we have

𝜆
𝑛,𝑟
(𝑥, 𝑦) = (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
𝑦

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡

≤
𝐶𝑥 (1 + 𝑐𝑥)

𝑛 (𝑥 − 𝑦)
2
, 0 ≤ 𝑦 ≤ 𝑥,

1 − 𝜆
𝑛,𝑟
(𝑥, 𝑧) = (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

𝑧

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡

≤
𝐶𝑥 (1 + 𝑐𝑥)

𝑛 (𝑧 − 𝑥)
2
, 𝑥 ≤ 𝑧 ≤ ∞.

(23)

Proof. We give the proof for only first inequality, and the
other is similar. Using Remark 2 with 𝛼 = 𝛽 = 0, for
sufficiently large 𝑛 and 0 ≤ 𝑦 ≤ 𝑥 and ((𝑛𝑡 + 𝛼)/(𝑛 + 𝛽)) ≤ 𝑡,
we have

𝜆
𝑛,𝑟
(𝑥, 𝑦) = (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
𝑦

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡

≤ (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
𝑦

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)
(𝑡 − 𝑥)

2

(𝑦 − 𝑥)
2
𝑑𝑡

≤
𝐶𝑥 (1 + 𝑐𝑥)

𝑛 (𝑥 − 𝑦)
2
.

(24)

Lemma 5. Suppose 𝑓 is 𝑠 times differentiable on [0,∞) such
that 𝑓(𝑠−1)(𝑡) = 𝑂(𝑡𝛼), for some integer 𝛼 > 0 as 𝑡 → ∞.
Then, for any 𝑟, 𝑠 ∈ N

0
, and 𝑛 > max{𝛼, 𝑟 + 𝑠}, we have

𝐷
𝑠

𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) = (

𝑛

𝑛 + 𝛽
)

𝑠

𝐺
(𝛼,𝛽)

𝑛,𝑟+𝑠,𝑐
(𝑓; 𝑥) (𝐷

𝑠

𝑓, 𝑥) . (25)

Proof. Using the identity

𝑝
󸀠

𝑛,𝑘
(𝑥) = 𝑛 [𝑝

𝑛+𝑐,𝑘−1
(𝑥, 𝑐) − 𝑝

𝑛+𝑐,𝑘
(𝑥, 𝑐)] . (26)

One can observe that, even in case 𝑘 = 0, the above identity is
true with the condition 𝑝

𝑛+𝑐,negative(𝑥, 𝑐) = 0. Thus, applying
(26), we have

𝐷[𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
] (𝑓; 𝑥)

=
𝑛Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

∞

∑
𝑘=0

𝐷𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

=
𝑛Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

(𝑛 + 𝑟𝑐) [𝑝
𝑛+(𝑟+1)𝑐,𝑘−1

(𝑥, 𝑐) − 𝑝
𝑛+(𝑟+1)𝑐,𝑘

(𝑥, 𝑐)]

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

=
𝑛 (𝑛 + 𝑟𝑐) Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+(𝑟+1)𝑐,𝑘

(𝑥, 𝑐)

× ∫
∞

0

[𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟

(𝑡; 𝑐) − 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)]

× 𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

=
−𝑛 (𝑛 + 𝑟𝑐) Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟 + 1)

(𝑛 − 𝑟𝑐) Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+(𝑟+1)𝑐,𝑘

(𝑥, 𝑐)

× ∫
∞

0

𝐷𝑝
𝑛−𝑟𝑐,𝑘+𝑟

(𝑡; 𝑐) 𝑓 (
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

=
𝑛
2Γ ((𝑛/𝑐) + 𝑟 + 1) Γ ((𝑛/𝑐) − 𝑟)

(𝑛 + 𝛽) Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+(𝑟+1)𝑐,𝑘

(𝑥, 𝑐)

× ∫
∞

0

𝑝
𝑛−𝑟𝑐,𝑘+𝑟

(𝑡; 𝑐) 𝐷𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

=
𝑛

(𝑛 + 𝛽)
[𝐺
(𝛼,𝛽)

𝑛,𝑟+1,𝑐
] (𝐷𝑓; 𝑥) ,

(27)
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which means that the identity is satisfied for 𝑠 = 1. Let us
suppose that the result holds for 𝑠 = 𝑚; that is,

𝐷
𝑚

𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥)

= (
𝑛

𝑛 + 𝛽
)

𝑚

𝐺
(𝛼,𝛽)

𝑛,𝑟+𝑚,𝑐
(𝑓; 𝑥) (𝐷

𝑚

𝑓, 𝑥)

= (
𝑛

𝑛 + 𝛽
)

𝑚

×
𝑛Γ ((𝑛/𝑐) + 𝑟 + 𝑚) Γ ((𝑛/𝑐) − 𝑟 − 𝑚 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+(𝑟+𝑚)𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟+𝑚−1)𝑐,𝑘+𝑟+𝑚−1

(𝑡; 𝑐) 𝐷
𝑚

𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡.

(28)

Also, from (26) we can write

𝐷
𝑚+1

𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥)

= (
𝑛

𝑛 + 𝛽
)

𝑚

×
𝑛Γ ((𝑛/𝑐) + 𝑟 + 𝑚) Γ ((𝑛/𝑐) − 𝑟 − 𝑚 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝐷𝑝
𝑛+(𝑟+𝑚)𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟+𝑚−1)𝑐,𝑘+𝑟+𝑚−1

(𝑡; 𝑐) 𝐷
𝑚

𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

= (
𝑛

𝑛 + 𝛽
)

𝑚

×
𝑛Γ ((𝑛/𝑐) + 𝑟 + 𝑚) Γ ((𝑛/𝑐) − 𝑟 − 𝑚 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

(𝑛 + (𝑟 + 𝑚) 𝑐)

× [𝑝
𝑛+(𝑟+𝑚+1)𝑐,𝑘−1

(𝑥, 𝑐) − 𝑝
𝑛+(𝑟+𝑚+1)𝑐,𝑘

(𝑥, 𝑐)]

× ∫
∞

0

𝑝
𝑛−(𝑟+𝑚−1)𝑐,𝑘+𝑟+𝑚−1

(𝑡; 𝑐) 𝐷
𝑚

𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

= (
𝑛

𝑛 + 𝛽
)

𝑚

×
𝑐𝑛Γ ((𝑛/𝑐) + 𝑟 + 𝑚 + 1) Γ ((𝑛/𝑐) − 𝑟 − 𝑚 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+(𝑟+𝑚+1)𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

[𝑝
𝑛−(𝑟+𝑚−1)𝑐,𝑘+𝑟+𝑚

(𝑡; 𝑐)

− 𝑝
𝑛−(𝑟+𝑚−1)𝑐,𝑘+𝑟+𝑚−1

(𝑡; 𝑐)]𝐷
𝑚

𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

= −(
𝑛

𝑛 + 𝛽
)

𝑚

×
𝑐𝑛Γ ((𝑛/𝑐) + 𝑟 + 𝑚 + 1) Γ ((𝑛/𝑐) − 𝑟 − 𝑚 + 1)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+(𝑟+𝑚+1)𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝐷𝑝
𝑛−(𝑟+𝑚)𝑐,𝑘+𝑟+𝑚

(𝑡; 𝑐)

𝑛 − (𝑟 + 𝑚 − 1) 𝑐
𝐷
𝑚

𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡

(29)

and, integrating by parts the last integral, we have

𝐷
𝑚+1

𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥)

= (
𝑛

𝑛 + 𝛽
)

𝑚+1

×
𝑛Γ ((𝑛/𝑐) + 𝑟 + 𝑚 + 1) Γ ((𝑛/𝑐) − 𝑟 − 𝑚)

Γ ((𝑛/𝑐) + 1) Γ (𝑛/𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+(𝑟+𝑚+1)𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟+𝑚)𝑐,𝑘+𝑟+𝑚

(𝑡; 𝑐) 𝐷
𝑚+1

𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
)𝑑𝑡.

(30)

Hence we have

𝐷
𝑚+1

𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) = (

𝑛

𝑛 + 𝛽
)

𝑚+1

× 𝐺
(𝛼,𝛽)

𝑛,𝑟+𝑚+1,𝑐
(𝑓; 𝑥) (𝐷

𝑚+1

𝑓, 𝑥) ,

(31)

in which the result is true for 𝑠 = 𝑚 + 1, and hence by math-
ematical induction the proof of the lemma is completed.

3. Main Results

Throughout the paper by 𝐷𝐵
𝑞
(0,∞) we denote the class of

absolutely continuous functions 𝑓 on (0,∞) (where 𝑞 is a
some positive integer) satisfying the conditions:

(i) |𝑓(𝑡)| ≤ 𝐶
1
𝑡𝑞 and 𝐶

1
> 0,

(ii) the function 𝑓 has the first derivative on the interval
(0,∞) which coincide almost everywhere with a
function which is of bounded variation on every
finite subinterval of (0,∞). It can be observed that
for all functions 𝑓 ∈ 𝐷𝐵

𝑞
(0,∞) we can have the

representation

𝑓 (𝑥) = 𝑓 (𝑐) + ∫
𝑥

𝑐

𝜓 (𝑡) 𝑑𝑡, 𝑥 ≥ 𝑐 ≥ 0. (32)
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Theorem6. Let𝑓 ∈ 𝐷𝐵
𝑞
(0,∞), 𝑞 > 0, and 𝑥 ∈ (0,∞).Then,

for 𝐶 > 2 and sufficiently large 𝑛, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(Γ (𝑛/𝑐))
2

Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟)
𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶 (1 + 𝑐𝑥)

𝑛

[√𝑛]

∑
𝑘=1

𝑥+(𝑥/𝑘)

⋁
𝑥−(𝑥/𝑘)

(𝑓
󸀠

𝑥
(𝑥)) +

𝑥

√𝑛

𝑥+(𝑥/√𝑛)

⋁

𝑥−(𝑥/√𝑛)

(𝑓
󸀠

𝑥
(𝑥))

+
𝐶 (1 + 𝑐𝑥)

𝑛𝑥

󵄨󵄨󵄨󵄨󵄨
𝑓 (2𝑥) − 𝑓 (𝑥) − 𝑥𝑓

󸀠

(𝑥
+

) +
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨

+ 𝑂 (𝑛
−𝑞

) +
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨
√
𝐶𝑥 (1 + 𝑐𝑥)

𝑛

+ √
𝐶𝜎𝛼,𝛽
𝑟,𝑐
(𝑥)

𝑛 + 𝛽

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2
+

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2

× (
(𝛼 − 𝛽𝑥) (𝑛 − 𝑐 (𝑟 + 1)) + 2𝑛𝑟𝑐𝑥 + 𝑛𝑥𝑐 + 𝑛𝑟

(𝑛 − (𝑟 + 1) 𝑐) (𝑛 + 𝛽)
) ,

(33)

where 𝐶 is a constant which may be different on each occur-
rence.

Proof. Using the mean value theorem, we have

(Γ (𝑛/𝑐))
2

Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟)
𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) − 𝑓 (𝑥)

= (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) [𝑓(
𝑛𝑡 + 𝛼

𝑛 + 𝛽
) − 𝑓 (𝑥)] 𝑑𝑡

= ∫
∞

0

(∫
(𝑛𝑡+𝛼)/(𝑛+𝛽)

𝑥

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑓
󸀠

(𝑢) 𝑑𝑢)𝑑𝑡.

(34)

Also, using the identity

𝑓
󸀠

(𝑢) =
𝑓
󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

2
+ (𝑓
󸀠

)
𝑥

(𝑢)

+
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

2
sgn (𝑢 − 𝑥)

+ [𝑓
󸀠

(𝑥) −
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

2
] 𝜒
𝑥
(𝑢) ,

(35)

where

𝜒
𝑥
(𝑢) = {

1, 𝑢 = 𝑥;

0, 𝑢 ̸= 𝑥,
(36)

we have

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

(∫
𝑡

𝑥

[𝑓
󸀠

(𝑥) −
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

2
] 𝜒
𝑥
(𝑢) 𝑑𝑢)

× 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡 = 0.

(37)

Thus, using the above identities, we can write

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(Γ (𝑛/𝑐))
2

Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟)
𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
∞

0

(∫
𝑡

𝑥

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)

× [
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

2
+ (𝑓
󸀠

)
𝑥

(𝑢)] 𝑑𝑢)𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
∞

0

(∫
𝑡

𝑥

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)

× [
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

2
sgn (𝑢 − 𝑥)] 𝑑𝑢)𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(38)

Also, it can be verified that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
∞

0

(∫
𝑡

𝑥

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)

× [
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

2
sgn (𝑢 − 𝑥)]𝑑𝑢)𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2
[𝑈
𝑛,𝑟,2
(𝑥)]
1/2

,

(39)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
∞

0

(∫
𝑡

𝑥

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐)

× [
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

2
] 𝑑𝑢)𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2
𝑈
𝑛,𝑟,1
(𝑥) .

(40)
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Combining (38)–(40), we get

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(Γ (𝑛/𝑐))
2

Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟)
𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
∞

𝑥

(∫
𝑡

𝑥

𝑓
󸀠

𝑥
(𝑢) 𝑑𝑢) (𝑛 − 𝑟𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐) 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡

+ ∫
𝑥

0

(∫
𝑡

𝑥

𝑓
󸀠

𝑥
(𝑢) 𝑑𝑢) (𝑛 − 𝑟𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐) 𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2
[𝑈
𝑛,𝑟,2
(𝑥)]
1/2

+

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

) + 𝑓
󸀠

(𝑥
−

)
󵄨󵄨󵄨󵄨󵄨

2
𝑈
𝑛,𝑟,1
(𝑥)

=
󵄨󵄨󵄨󵄨󵄨
𝐴
𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥) + 𝐵

𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥)

󵄨󵄨󵄨󵄨󵄨
+

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2

× [𝑈
𝑛,𝑟,2
(𝑥)]
1/2

+

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2
𝑈
𝑛,𝑟,1
(𝑥) .

(41)

Applying Remark 2 and Lemma 1 in above equation, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(Γ (𝑛/𝑐))
2

Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟)
𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝐴
𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐵
𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥)

󵄨󵄨󵄨󵄨󵄨

+ √
𝐶𝜎𝛼,𝛽
𝑟,𝑐
(𝑥)

𝑛 + 𝛽

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) − 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨
𝑓󸀠 (𝑥+) + 𝑓󸀠 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2

× (
(𝛼 − 𝛽𝑥) (𝑛 − 𝑐 (𝑟 + 1)) + 2𝑛𝑟𝑐𝑥 + 𝑛𝑥𝑐 + 𝑛𝑟

(𝑛 − (𝑟 + 1) 𝑐) (𝑛 + 𝛽)
) .

(42)

In order to complete the proof of the theorem, it suffices
to estimate the terms 𝐴𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥) and 𝐵𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥). Applying

Remark 2 with 𝛼 = 𝛽 = 0, we get

󵄨󵄨󵄨󵄨󵄨
𝐴
𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥)

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
∞

𝑥

(∫
𝑡

𝑥

𝑓
󸀠

𝑥
(𝑢) 𝑑𝑢) (𝑛 − 𝑟𝑐)

×

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

2𝑥

(𝑓 (𝑡) − 𝑓 (𝑥))𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
2𝑥

𝑥

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (𝑡 − 𝑥) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
2𝑥

𝑥

𝑓
󸀠

𝑥
(𝑢) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨1 − 𝜆𝑛,𝑟 (𝑥, 2𝑥)
󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
2𝑥

𝑥

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑥
(𝑡)
󵄨󵄨󵄨󵄨󵄨
⋅
󵄨󵄨󵄨󵄨1 − 𝜆𝑛,𝑟 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

2𝑥

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝐶
1
𝑡
2𝑞

𝑑𝑡

+

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑥2
(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (𝑡 − 𝑥)
2

𝑑𝑡

+
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨
(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

2𝑥

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) |𝑡 − 𝑥| 𝑑𝑡

+
𝐶𝑥 (1 + 𝑐𝑥)

𝑛𝑥2
󵄨󵄨󵄨󵄨󵄨
𝑓 (2𝑥) − (𝑥) − 𝑥𝑓

󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨

+
𝐶 (1 + 𝑐𝑥)

𝑛

[√𝑛]

∑
𝑘=1

𝑥+(𝑥/𝑘)

⋁
𝑥

(𝑓
󸀠

𝑥
(𝑥))

+
𝑥

√𝑛

𝑥+(𝑥/√𝑛)

⋁
𝑥

(𝑓
󸀠

𝑥
(𝑥)) .

(43)

For estimating the integral

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐) ∫
∞

2𝑥

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝐶
1
𝑡
2𝑞

𝑑𝑡,

(44)
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we proceed as follows: since 𝑡 ≥ 2𝑥 implies that 𝑡 ≤ 2(𝑡 − 𝑥)
so by Schwarz inequality and Lemma 1,

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐) ∫
∞

2𝑥

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝐶
1
𝑡
2𝑞

𝑑𝑡

≤ 𝐶
1
2
𝑞

(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) 𝐶
1
(𝑡 − 𝑥)

2𝑞

𝑑𝑡

≤ 𝐶
1
2
𝑞

𝑈
𝑛,𝑟,2𝑞

(𝑥) = 𝑂 (𝑛
−𝑞

) as 𝑛 󳨀→ ∞.
(45)

By using Hölder’s inequality and Remark 2 (𝛼 = 𝛽 = 0), we
get the estimate as follows:

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨
(𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

2𝑥

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) |𝑡 − 𝑥| 𝑑𝑡

≤
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨

× ((𝑛 − 𝑟𝑐)

∞

∑
𝑘=0

𝑝
𝑛+𝑟𝑐,𝑘

(𝑥; 𝑐)

× ∫
∞

0

𝑝
𝑛−(𝑟−1)𝑐,𝑘+𝑟−1

(𝑡; 𝑐) (𝑡 − 𝑥)
2

𝑑𝑡)

1/2

≤
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨
√
𝐶𝑥 (1 + 𝑐𝑥)

𝑛
.

(46)

Collecting the estimates from (43)–(46), we obtain

󵄨󵄨󵄨󵄨󵄨
𝐴
𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑂 (𝑛

−𝑞

) +
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑥
+

)
󵄨󵄨󵄨󵄨󵄨

× √
𝐶𝑥 (1 + 𝑐𝑥)

𝑛
+
𝐶 (1 + 𝑐𝑥)

𝑛𝑥

×
󵄨󵄨󵄨󵄨󵄨
𝑓 (2𝑥) − 𝑓 (𝑥) − 𝑥𝑓

󸀠

(𝑥
+

) +
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨

+
𝐶 (1 + 𝑐𝑥)

𝑛

[√𝑛]

∑
𝑘=1

𝑥+(𝑥/𝑘)

⋁
𝑥

(𝑓
󸀠

𝑥
(𝑥))

+
𝑥

√𝑛

𝑥+(𝑥/√𝑛)

⋁
𝑥

(𝑓
󸀠

𝑥
(𝑥)) .

(47)

On the other hand, to estimate 𝐵𝛼,𝛽
𝑛,𝑟
(𝑓, 𝑥) by applying

Lemma 4 with 𝑦 = 𝑥 − (𝑥/√𝑛) and integration by parts, we
have

󵄨󵄨󵄨󵄨󵄨
𝐵
𝛼,𝛽

𝑛,𝑟
(𝑓, 𝑥)

󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑥

0

∫
𝑡

𝑥

𝑓
󸀠

𝑥
(𝑢) 𝑑
𝑡
𝜆
𝑛,𝑟
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (∫
𝑦

0

+∫
𝑥

𝑦

)
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

𝑥
(𝑡)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨𝜆𝑛,𝑟 (𝑥, 𝑡)

󵄨󵄨󵄨󵄨 𝑑𝑡

≤
𝐶𝑥 (1 + 𝑐𝑥)

𝑛
∫
𝑦

0

𝑥

⋁
𝑡

((𝑓
󸀠

)
𝑥

)
1

(𝑥 − 𝑡)
2
𝑑𝑡

+ ∫
𝑥

𝑦

𝑥

⋁
𝑡

((𝑓
󸀠

)
𝑥

) 𝑑𝑡

=
𝐶𝑥 (1 + 𝑐𝑥)

𝑛
∫
√𝑛

1

𝑥

⋁
(𝑥−(𝑥/𝑢))

((𝑓
󸀠

)
𝑥

) 𝑑𝑢

+
𝑥

√𝑛

𝑥

⋁

𝑥−(𝑥/√𝑛)

((𝑓
󸀠

)
𝑥

)

≤
𝐶𝑥 (1 + 𝑐𝑥)

𝑛

[√𝑛]

∑
𝑘=1

𝑥

⋁
𝑥−(𝑥/𝑘)

((𝑓
󸀠

)
𝑥

)

+
𝑥

√𝑛

𝑥

⋁

𝑥−(𝑥/√𝑛)

((𝑓
󸀠

)
𝑥

) ,

(48)

where 𝑢 = (𝑥/(𝑥 − 𝑡)).
Combining (41), (47), and (48), we get the desired result.

Corollary 7. Let 𝑓(𝑠) ∈ 𝐷𝐵
𝑞
(0,∞), 𝑞 > 0, and 𝑥 ∈ (0,∞).

Then, for 𝐶 > 2 and 𝑛 sufficiently large, one has

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(Γ (𝑛/𝑐))
2

Γ ((𝑛/𝑐) + 𝑟) Γ ((𝑛/𝑐) − 𝑟)
(
𝑛 + 𝛽

𝑛
)

𝑠

× 𝐷
𝑠

𝐺
(𝛼,𝛽)

𝑛,𝑟,𝑐
(𝑓; 𝑥) − 𝑓

𝑠

(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶 (1 + 𝑐𝑥)

𝑛

[√𝑛]

∑
𝑘=1

𝑥+(𝑥/𝑘)

⋁
𝑥−(𝑥/𝑘)

((𝐷
𝑠+1

𝑓)
𝑥

)

+
𝑥

√𝑛

𝑥+(𝑥/√𝑛)

⋁

𝑥−(𝑥/√𝑛)

((𝐷
𝑠+1

𝑓)
𝑥

) +
𝐶 (1 + 𝑐𝑥)

𝑛𝑥

×
󵄨󵄨󵄨󵄨󵄨
𝑓 (2𝑥) − (𝑥) − 𝑥𝐷

𝑠+1

𝑓 (𝑥
+

) +
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨

+ 𝑂 (𝑛
−𝑞

) +
󵄨󵄨󵄨󵄨󵄨
𝐷
𝑠+1

𝑓 (𝑥
+

)
󵄨󵄨󵄨󵄨󵄨
√
𝐶𝑥 (1 + 𝑐𝑥)

𝑛
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+ √
𝐶𝜎𝛼,𝛽
𝑟,𝑐
(𝑥)

𝑛 + 𝛽

󵄨󵄨󵄨󵄨󵄨
𝐷𝑠+1𝑓 (𝑥+) − 𝐷𝑠+1𝑓 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2

+

󵄨󵄨󵄨󵄨󵄨
𝐷𝑠+1𝑓 (𝑥+) + 𝐷𝑠+1𝑓 (𝑥−)

󵄨󵄨󵄨󵄨󵄨

2

× (
(𝛼 − 𝛽𝑥) (𝑛 − 𝑐 (𝑟 + 1)) + 2𝑛𝑟𝑐𝑥 + 𝑛𝑥𝑐 + 𝑛𝑟

(𝑛 − (𝑟 + 1) 𝑐) (𝑛 + 𝛽)
) ,

(49)

where ⋁𝑏
𝑎
𝑓
𝑥
denotes the total variation of 𝑓

𝑥
on [𝑎, 𝑏] and the

auxiliary function𝐷𝑠+1𝑓
𝑥
is defined by

𝐷
𝑠+1

𝑓
𝑥
(𝑡) =

{{{

{{{

{

𝐷𝑠+1𝑓 (𝑡) − 𝐷
𝑠+1𝑓 (𝑥−) , 0 ≤ 𝑡 ≤ 𝑥

0, 𝑡 = 𝑥

𝐷𝑠+1𝑓 (𝑡) − 𝐷
𝑠+1𝑓 (𝑥+) , 𝑥 < 𝑡 < ∞.

(50)

4. Conclusion

The results of our lemmas and theorems are more general
rather than the results of any other previously proved lemmas
and theorems, which will enrich the literature of applications
of quantum calculus in operator theory and convergence
estimates in the theory of approximations by positive linear
operators. The researchers and professionals working or
intend to work in areas of mathematical analysis and its
applications will find this research paper to be quite useful.
Consequently, the results so established may be found useful
in several interesting situations appearing in the literature on
mathematical analysis, pure and applied mathematics, and
mathematical physics. Some interesting applications of the
positive approximation linear operators can be seen in [21–
24].
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The authors introduce Herz-Morrey-Hardy spaces with variable exponents and establish the characterization of these spaces in
terms of atom. Applying the characterization, the authors obtain the boundedness of some singular integral operators on these
spaces.

1. Introduction

The Herz spaces go back to Beurling and Herz; see [1, 2].
Firstly, they attracted a lot of authors’ attention because they
could be used to characterize Fourier multipliers for Hardy
spaces; see [3].Then, in 1989 Chen and Lau in [4] andGarćıa-
Cuerva in [5] introduced now called nonhomogeuous Herz
type Hardy spaces. They found that these Herz type Hardy
spaces have a decomposition via central atoms. After that,
Lu et al. considered homogeuous Herz type Hardy spaces
and also obtained a central atomic decomposition for them.
Since then Herz type spaces have been studied extensively;
see monograph [6] for details. Meanwhile, in the last three
decades, the interest of the study for variable exponent
spaces has been increasing year by year. Variable exponent
spaces have many applications: in electrorheological fluid
[7], in differential equations [8] and references therein,
and in image restoration [9–11], for instance. Indeed, many
spaces with variable exponents appeared, such as: Lebesgue
spaces, Sobolev spaces and Bessel potential spaces with
variable exponent, Besov and Triebel-Lizorkin spaces with
variable exponents, Morrey spaces with variable exponents,
Campanato spaces with variable exponent, and Hardy spaces
with variable exponent; see [12–23] and references therein.
Moreover, the atomic, molecular, and wavelet decomposi-
tions of variable exponent Besov and Triebel-Lizorkin spaces
were given in [13, 14, 20, 21, 24]. The duality and reflexivity
of spaces 𝐵𝑠

𝑝(⋅),𝑞
and 𝐹𝑠

𝑝(⋅),𝑞
were discussed in [25]. The atomic

and molecular decompositions of Hardy spaces with variable
exponent and their applications for the boundedness of
singular integral operators were obtained in [22, 26].

Recently, as a generalization of Lebesgue spaces with
variable exponent, Herz spaces with variable exponents are
introduced. In fact, in 2010 Izuki proved the boundedness of
sublinear operators on Herz space with variable exponents
𝐾
𝛼,𝑞

𝑝(⋅)
and𝐾𝛼,𝑞

𝑝(⋅)
in [27]. In 2012, Almeida andDrihem obtained

boundedness results for a wide class of classical operators
on Herz spaces 𝐾𝛼(⋅),𝑞

𝑝(⋅)
and 𝐾

𝛼(⋅),𝑞

𝑝(⋅)
in [28]. Shi and the first

author in [29] considered Herz type Besov and Triebel-
Lizorkin spaces with one variable exponent. Then Dong and
first author in [30] established the boundedness of vector-
valued Hardy-Littlewood maximal operator in spaces 𝐾𝛼(⋅),𝑞

𝑝(⋅)

and𝐾𝛼(⋅),𝑞

𝑝(⋅)
and gave characterizations of Herz type Besov and

Triebel-Lizorkin spaces with variable exponents by maximal
functions. In [31], Wang and Liu introduced a certain Herz
type Hardy spaces with variable exponent. In 2013, Samko
introduced Herz spaces with three variable exponents and
obtained the boundedness of Hardy-Littlewood maximal
operator on them. In [32–34], the boundedness of singular
integrals and their commutators of BMO functions are
discussed in Herz Morrey spaces with variable exponents.
The Herz-Morrey spaces with constants were considered in
[35, 36]; however, there is no theory of Herz-Morrey type
Hardy spaces. In this paperwefill the gap and introduceHerz-
Morrey-Hardy spaces with variable exponents.
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The outline of the paper is as follows. In the rest of
the section we will recall some definitions and notions. In
Section 2, we will define the Herz-Morrey-Hardy spaces with
variable exponents 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and give their

atomic characterization. In Section 3, we obtain that certain
singular integral operators are bounded from Herz-Morrey-
Hardy spaces with variable exponents into Herz-Morrey
spaces with variable exponents as an application of the atomic
characterization.

Throughout this paper |𝐸| denotes the Lebesgue measure
and 𝜒

𝐸
the characteristic function for a measurable set 𝐸 ⊂

R𝑛. For a multi-index 𝛽 = (𝛽
1
, 𝛽

2
, . . . , 𝛽

𝑛
), we denote |𝛽| =

𝛽
1
+ 𝛽

2
+ ⋅ ⋅ ⋅ + 𝛽

𝑛
. We also use the notation 𝑎 ≲ 𝑏 if there

exists a constant 𝑐 > 0 such that 𝑎 ⩽ 𝑐𝑏. If 𝑎 ≲ 𝑏 and 𝑏 ≲ 𝑎 we
will write 𝑎 ≈ 𝑏. Finally we claim that 𝐶 is always a positive
constant but it may change from line to line.

Definition 1. Let 𝐸 be a measurable set inR𝑛 with |𝐸| > 0. Let
𝑝(⋅) : 𝐸 → [1,∞) be a measurable function. Denote

𝐿
𝑝(⋅)

(𝐸) := {𝑓 is measurable on 𝐸 : 𝜌
𝑝(⋅)

(
𝑓

𝜆
) < ∞

for some constant 𝜆 > 0} ,

(1)

where 𝜌
𝑝(⋅)

(𝑓) := ∫
𝐸

|𝑓(𝑥)|
𝑝(𝑥)d𝑥, and

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)(𝐸)

:= inf {𝜆 > 0 : 𝜌
𝑝(⋅)

(
𝑓

𝜆
) ⩽ 1} . (2)

Then 𝐿𝑝(⋅)(𝐸) is a Banach space with the norm ‖ ⋅‖
𝐿
𝑝(⋅)

(𝐸)
.

Let 𝐿1loc(R
𝑛

) be the collection of all locally integrable
functions on R𝑛. Given a function 𝑓 ∈ 𝐿

1

loc(R
𝑛

), the Hardy-
Littlewood maximal operatorM is defined by

M𝑓 (𝑥) := sup
𝑟>0

𝑟
−𝑛

∫
𝐵(𝑥,𝑟)

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 d𝑦, ∀𝑥 ∈ R

𝑛

, (3)

where and what follows 𝐵(𝑥, 𝑟) := {𝑦 ∈ R𝑛

: |𝑥 − 𝑦| < 𝑟}. We
also use the following notation: 𝑝

−
:= ess inf{𝑝(𝑥) : 𝑥 ∈ R𝑛

}

and 𝑝
+
:= ess sup{𝑝(𝑥) : 𝑥 ∈ R𝑛

}. The set P(R𝑛

) consists
of all 𝑝(⋅) satisfying 𝑝

−
> 1 and 𝑝

+
< ∞.B(R𝑛

) is the set of
𝑝(⋅) ∈ P(R𝑛

) satisfying the condition thatM is bounded on
𝐿
𝑝(⋅)

(R𝑛

). It is well known that if 𝑝(⋅) ∈ P(R𝑛

) satisfies the
following global log-Hölder continuous then 𝑝(⋅) ∈ B(R𝑛

);
see [37–42].

Definition 2. Let 𝛼(⋅) be a real-valued function onR𝑛. If there
exists 𝐶 > 0 such that, for all 𝑥, 𝑦 ∈ R𝑛, |𝑥 − 𝑦| < 1/2,

󵄨󵄨󵄨󵄨𝛼 (𝑥) − 𝛼 (𝑦)
󵄨󵄨󵄨󵄨 ⩽

𝐶

− log (󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨)
, (4)

then 𝛼(⋅) is said local log-Hölder continuous on R𝑛.
If there exists 𝐶 > 0, such that for all 𝑥 ∈ R𝑛,

|𝛼 (𝑥) − 𝛼 (0)| ⩽
𝐶

log (𝑒 + 1/ |𝑥|)
, (5)

then 𝛼(⋅) is said log-Hölder continuous at origin.

If there exist 𝛼
∞
∈ R and a constant 𝐶 > 0 such that for

all 𝑥 ∈ R𝑛

󵄨󵄨󵄨󵄨𝛼 (𝑥) − 𝛼∞
󵄨󵄨󵄨󵄨 ⩽

𝐶

log (𝑒 + |𝑥|)
, (6)

then 𝛼(⋅) is said log-Hölder continuous at infinity.
If𝛼(⋅) is both local log-Hölder continuous and log-Hölder

continuous at infinity, then 𝛼(⋅) is said global log-Hölder
continuous.

The sets of log-Hölder continuous functions, log-Hölder
continuous functions at origin, log-Hölder continuous func-
tions at infinity, global log-Hölder continuous are denoted by
P

log
loc(R

𝑛

),Plog
0
(R𝑛

),Plog
∞
(R𝑛

), andPlog
(R𝑛

), respectively.
We denote 𝑝󸀠(⋅) by the conjugate exponent to 𝑝(⋅), which

means 𝑝󸀠(⋅) = 𝑝(⋅)/(𝑝(⋅) − 1). It is also well known that 𝑝(⋅) ∈
B(R𝑛

) is equivalent to 𝑝󸀠(⋅) ∈ B(R𝑛

); see [39].
For simplicity, we denote 𝐿𝑝(⋅)(R𝑛

) by 𝐿𝑝(⋅). We will use
the following results.

Lemma 3 (see [43]). Let 𝑝(⋅) ∈ P(R𝑛

). If 𝑓 ∈ 𝐿
𝑝(⋅) and 𝑔 ∈

𝐿
𝑝
󸀠
(⋅), then 𝑓𝑔 is integrable on R𝑛 and

∫
R𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑥) 𝑔 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥 ⩽ 𝑟

𝑝

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅) , (7)

where 𝑟
𝑝
= 1 + 1/𝑝

−

− 1/𝑝
+.

Lemma 4 (see [27]). Let 𝑝(⋅) ∈ B(R𝑛

). Then there exist 0 <
𝛿
1
, 𝛿

2
< 1, and a positive constant 𝐶 depending only on 𝑝(⋅)

and 𝑛 such that for all balls 𝐵 inR𝑛 and all measurable subsets
𝑆 ⊂ 𝐵,

󵄩󵄩󵄩󵄩𝜒𝐵
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

󵄩󵄩󵄩󵄩𝜒𝑆
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

⩽ 𝐶
|𝐵|

|𝑆|
,

󵄩󵄩󵄩󵄩𝜒𝑆
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

󵄩󵄩󵄩󵄩𝜒𝐵
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

⩽ 𝐶(
|𝑆|

|𝐵|
)

𝛿1

,

󵄩󵄩󵄩󵄩𝜒𝑆
󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩𝜒𝐵
󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

⩽ 𝐶(
|𝑆|

|𝐵|
)

𝛿2

.

(8)

Lemma 5 (see [27]). Let 𝑝(⋅) ∈ B(R𝑛

). Then there exists a
positive constant 𝐶 such that, for any ball 𝐵 in R𝑛,

󵄩󵄩󵄩󵄩𝜒𝐵
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

󵄩󵄩󵄩󵄩𝜒𝐵
󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅) ⩽ 𝐶 |𝐵| . (9)

To give the definition of Herz-Morrey spaces with vari-
able exponents, let us introduce the following notations. Let
𝑘 ∈ Z, 𝐵

𝑘
:= {𝑥 ∈ R𝑛

: |𝑥| ⩽ 2
𝑘

}, 𝐿 ∈ Z, 𝐷
𝑘
:= 𝐵

𝑘
\ 𝐵

𝑘−1
, and

𝜒
𝑘
:= 𝜒

𝐷𝑘
. The symbol N

0
denotes the set of all nonnegative

integers. For 𝑚 ∈ N
0
, we denote 𝜒

𝑚
:= 𝜒

𝐷𝑚
if 𝑚 ≥ 1 and

𝜒
0
:= 𝜒

𝐵0
.

Definition 6. Let 0 < 𝑞 ⩽ ∞, 𝑝(⋅) ∈ P(R𝑛

), and 0 ≤ 𝜆 <

∞. Let 𝛼(⋅) be a bounded real-valued measurable function
on R𝑛. The homogeneous Herz-Morrey space 𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and
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nonhomogeneous Herz-Morrey space 𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
are defined,

respectively, by

𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
:= {𝑓 ∈ 𝐿

𝑝(⋅)

loc (R
𝑛

\ 0) :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

< ∞} ,

𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
:= {𝑓 ∈ 𝐿

𝑝(⋅)

loc (R
𝑛

) :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

< ∞} ,

(10)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

:= sup
𝐿∈Z

2
−𝐿𝜆

(

𝐿

∑

𝑘=−∞

󵄩󵄩󵄩󵄩󵄩
2
𝛼(⋅)𝑘

𝑓𝜒
𝑘

󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)
)

1/𝑞

,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

:= sup
𝐿∈N0

2
−𝐿𝜆

(

𝐿

∑

𝑘=0

󵄩󵄩󵄩󵄩󵄩
2
𝛼(⋅)𝑘

𝑓𝜒
𝑘

󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)
)

1/𝑞

.

(11)

Here there is the usual modification when 𝑞 = ∞.

Proposition 7. Let 𝑝(⋅) ∈ P(R𝑛

), 𝑞 ∈ (0,∞], and 𝜆 ∈

[0,∞). If 𝛼(⋅) ∈ 𝐿∞(R𝑛

) ∩P
log
0
(R𝑛

) ∩Plog
∞
(R𝑛

), then
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

≈ max
{

{

{

sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆

(

𝐿

∑

𝑘=−∞

2
𝑘𝛼(0)𝑞 󵄩󵄩󵄩󵄩𝑓𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅))

1/𝑞

,

sup
𝐿>0,𝐿∈Z

[

[

2
−𝐿𝜆

(

−1

∑

𝑘=−∞

2
𝑘𝛼(0)𝑞 󵄩󵄩󵄩󵄩𝑓𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅))

1/𝑞

+2
−𝐿𝜆

(

𝐿

∑

𝑘=0

2
𝑘𝛼(∞)𝑞 󵄩󵄩󵄩󵄩𝑓𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅))

1/𝑞

]

]

}

}

}

.

(12)

Proposition 7 is the generalization of Herz spaces with
variable exponents in [28], and it was used in [33, 34].

Lemma 8. Let 𝑝(⋅) ∈ B(R𝑛

), 0 < 𝑞 < ∞, and 𝜆 ∈ [0,∞).
Let 𝛼(⋅) be bounded and log-Hölder continuous both at the
origin and at infinity such that −𝑛𝛿

1
< 𝛼(0) ⩽ 𝛼

∞
< 𝑛𝛿

2
,

where 0 < 𝛿
1
, 𝛿

2
< 1 are constants in Lemma 4. Suppose that

𝑇 is a sublinear and bounded operator on 𝐿𝑝(⋅) satisfying size
condition

󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ⩽ 𝐶∫

R𝑛

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

−𝑛 󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 d𝑦 (13)

for all𝑓 ∈ 𝐿
1

loc(R
𝑛

)with compact support and a.e.𝑥 ∉ supp 𝑓.
Then there exists a positive constant 𝐶 such that
󵄩󵄩󵄩󵄩𝑇𝑓

󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

,
󵄩󵄩󵄩󵄩𝑇𝑓

󵄩󵄩󵄩󵄩𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

(14)

for any function 𝑓 belongs to 𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
and 𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
, respec-

tively.

Lemma 8 is the generalization of Herz spaces with varia-
ble exponents in [28]. For a proof, see [33].

2. The Atomic Characterization

In this section, we will introduce Herz-Morrey-Hardy spaces
with variable exponents 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
. To do

this, we need to recall some notations. S(R𝑛

) denotes the
Schwartz space of all rapidly decreasing infinitely differen-
tiable functions onR𝑛, andS󸀠

(R𝑛

) denotes the dual space of
S(R𝑛

). Let 𝐺
𝑁
𝑓 be the grand maximal function of 𝑓 defined

by

𝐺
𝑁
𝑓 (𝑥) := sup

𝜙∈A𝑁

󵄨󵄨󵄨󵄨𝜙
∗

󳶋
(𝑓) (𝑥)

󵄨󵄨󵄨󵄨 , 𝑥 ∈ R
𝑛

, (15)

whereA
𝑁
:= {𝜙 ∈ S(R𝑛

) : sup
|𝛼|,|𝛽|⩽𝑁,∀𝑥∈R𝑛 |𝑥

𝛼

𝐷
𝛽

𝜙(𝑥)| ⩽ 1}

and𝑁 > 𝑛 + 1 and 𝜙∗
󳶋
is the nontangential maximal operator

defined by

𝜙
∗

󳶋
(𝑓) (𝑥) := sup

|𝑦−𝑥|<𝑡

󵄨󵄨󵄨󵄨𝜙𝑡 ∗ 𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ,

∀𝑥 ∈ R
𝑛 with 𝜙

𝑡
(⋅) = 𝑡

−𝑛

𝜙(
⋅

𝑡
) .

(16)

The grandmaximal operator𝐺
𝑁
was firstly introduced by

Fefferman and Stein in [44] to study classical Hardy spaces.
For classical Hardy spaces, one can also see [45–47]. Nakai
and Sawano generalized them to variable exponent case in
[22].

Definition 9. Let 𝛼(⋅) ∈ 𝐿
∞

(R𝑛

), 0 < 𝑞 ≤ ∞, 𝑝(⋅) ∈ P(R𝑛

),
0 ≤ 𝜆 < ∞, and 𝑁 > 𝑛 + 1. The homogeneous Herz-
Morrey-Hardy space with variable exponents𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and

nonhomogeneous Herz-Morrey-Hardy space with variable
exponents𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
are defined, respectively, by

𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆

:= {𝑓 ∈ S
󸀠

(R
𝑛

) :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

:=
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

< ∞} ,

𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆

:= {𝑓 ∈ S
󸀠

(R
𝑛

) :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

:=
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

< ∞} .

(17)

Remark 10. If 𝛼(⋅) ≡ 𝛼 and 𝜆 = 0, these spaces were consid-
ered byWang and Liu in [31]. If 𝑝(⋅) and 𝛼(⋅) are constant and
𝜆 = 0, these are the classical Herz type Hardy spaces; see [6].

Let𝜓(𝑟) = 1 for 𝑟 ∈ [0, 1] and𝜓(𝑟) = 𝑟
−𝑁 for 𝑟 ∈ (1, +∞).

Then there exists 𝐶 > 0 such that 𝜙(𝑥) ≤ 𝐶𝜓(|𝑥|) for all 𝜙 ∈

A
𝑁
. Therefore, by [46, Proposition in Page 57], there exists

𝐶 > 0 such that 𝐺
𝑁
𝑓(𝑥) ⩽ 𝐶𝑀𝑓(𝑥) for all 𝑥 ∈ R𝑛. This

means that 𝐺
𝑁
𝑓 satisfies the size condition in Lemma 8. By

Lemma 8, if −𝑛𝛿
1
< 𝛼(0) ⩽ 𝛼

∞
< 𝑛𝛿

2
and 𝑝(⋅) ∈ B(R𝑛

),
then

𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
∩ 𝐿

𝑝(⋅)

loc (R
𝑛

\ {0}) = 𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅,𝜆)
,

𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
∩ 𝐿

𝑝(⋅)

loc (R
𝑛

) = 𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
.

(18)
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Thus we are interested in the case 𝑛𝛿
2
⩽ 𝛼(0), 𝛼

∞
< ∞.

In this case, we will establish a characterization of the spaces
𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
in terms of central atom. For 𝑢 ∈ R

we denote by [𝑢] the largest integer less than or equal to 𝑢.

Definition 11. Let 𝑝(⋅) ∈ P(R𝑛

) and 𝛼(⋅) ∈ 𝐿
∞

(R𝑛

) be
log-Hölder continuous both at the origin and infinity, and
nonnegative integer 𝑠 ⩾ [𝛼

𝑟
− 𝑛𝛿

2
]; here 𝛼

𝑟
= 𝛼(0), if 𝑟 < 1,

and 𝛼
𝑟
= 𝛼

∞
, if 𝑟 ⩾ 1, 𝑛𝛿

2
⩽ 𝛼

𝑟
< ∞ and 𝛿

2
as in Lemma 4.

(i) A function 𝑎 on R𝑛 is called a central (𝛼(⋅), 𝑝(⋅))-
atom, if it satisfies (1) supp 𝑎 ⊂ 𝐵(0, 𝑟); (2) ‖𝑎‖

𝐿
𝑝(⋅) ⩽

|𝐵(0, 𝑟)|
−𝛼𝑟/𝑛; (3) ∫

R𝑛
𝑎(𝑥)𝑥

𝛽d𝑥 = 0, |𝛽| ⩽ 𝑠.

(ii) A function 𝑎 onR𝑛 is called a central (𝛼(⋅), 𝑝(⋅))-atom
of restricted type, if it satisfies (1) supp 𝑎 ⊂ 𝐵(0, 𝑟),
𝑟 ⩾ 1; (2) ‖𝑎‖

𝐿
𝑝(⋅) ⩽ |𝐵(0, 𝑟)|

−𝛼𝑟/𝑛; (3) ∫
R𝑛
𝑎(𝑥)𝑥

𝛽d𝑥 =

0, |𝛽| ⩽ 𝑠.

Remark 12. If 𝑝(⋅) ≡ 𝑝 and 𝛼(⋅) ≡ 𝛼 are constant, then taking
𝛿
2
= 1 − 1/𝑝 we recover the classical case in [6].

Theorem 13. Let 0 < 𝑞 < ∞, 𝑝(⋅) ∈ B(R𝑛

), 0 ≤ 𝜆 < ∞, and
𝛼(⋅) ∈ 𝐿

∞

(R𝑛

) be log-Hölder continuous both at the origin
and infinity, 2𝜆 ⩽ 𝛼(⋅), 𝑛𝛿

2
⩽ 𝛼(0), 𝛼

∞
< ∞, and 𝛿

2
as in

Lemma 4.

(i) 𝑓 ∈ 𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
if and only if 𝑓 = ∑

∞

𝑘=−∞
𝜆
𝑘
𝑎
𝑘

in the sense of S󸀠

(R𝑛

), where each 𝑎
𝑘
is a central

(𝛼(⋅), 𝑝(⋅))-atom with support contained in 𝐵
𝑘
and

sup
𝐿∈Z2

−𝐿𝜆

∑
𝐿

𝑘=−∞
|𝜆

𝑘
|
𝑞

< ∞. Moreover,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

≈ inf sup
𝐿∈Z

2
−𝐿𝜆

(

𝐿

∑

𝑘=−∞

|𝜆
𝑘
|
𝑞

)

1/𝑞

, (19)

where the infimum is taken over all above decomposi-
tions of 𝑓.

(ii) 𝑓 ∈ 𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
if and only if 𝑓 = ∑

∞

𝑘=0
𝜆
𝑘
𝑎
𝑘
in the

sense of S󸀠

(R𝑛

), where each 𝑎
𝑘
is a central (𝛼(⋅), 𝑝(⋅))-

atom of restricted type with support contained in 𝐵
𝑘

and sup
𝐿∈Z2

−𝐿𝜆

∑
𝐿

𝑘=0
|𝜆

𝑘
|
𝑞

< ∞. Moreover

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

≈ inf sup
𝐿∈Z

2
−𝐿𝜆

(

𝐿

∑

𝑘=0

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

, (20)

where the infimum is taken over all above decomposi-
tions of 𝑓.

Proof. We only prove (i). The proof of (ii) is similar. We
use the ideas in [6]. To prove the necessity, we choose 𝜙 ∈

𝐶
∞

0
(R𝑛

) such that 𝜙 ⩾ 0, ∫
R𝑛
𝜙(𝑥)d𝑥 = 1, and supp 𝜙 ⊂ {𝑥 :

|𝑥| ⩽ 1}. For 𝑗 ∈ N
0
, let 𝜙

(𝑗)
(𝑥) := 2

𝑗𝑛

𝜙(2
𝑗

𝑥), ∀𝑥 ∈ R𝑛. For
each 𝑓 ∈ S󸀠

(R𝑛

), set 𝑓(𝑗)(𝑥) = 𝑓 ∗ 𝜙
(𝑗)
(𝑥), ∀𝑥 ∈ R𝑛. It is

obvious that 𝑓(𝑗) ∈ 𝐶∞

(R𝑛

) and lim
𝑗→∞

𝑓
(𝑗)

= 𝑓 in S󸀠

(R𝑛

).
Let 𝜓 be a radial smooth function such that supp 𝜓 ⊂ {𝑥 :

1/2 − 𝜀 ⩽ |𝑥| ⩽ 1 + 𝜀} with 0 < 𝜀 < 1/4, 𝜓(𝑥) = 1 for
1/2 ⩽ |𝑥| ⩽ 1. Let 𝜓

𝑘
(𝑥) := 𝜓(2

−𝑘

𝑥) for 𝑘 ∈ Z and

𝐴
𝑘,𝜀

:= {𝑥 : 2
𝑘−1

− 2
𝑘

𝜀 ⩽ |𝑥| ⩽ 2
𝑘

+ 2
𝑘

𝜀} . (21)

Observe that supp 𝜓
𝑘
⊂ 𝐴

𝑘,𝜀
and 𝜓

𝑘
(𝑥) = 1 for 𝑥 ∈ 𝐴

𝑘
:=

{𝑥 : 2
𝑘−1

⩽ |𝑥| ⩽ 2
𝑘

}. Obviously, 1 ⩽ ∑
∞

𝑘=−∞
𝜓
𝑘
(𝑥) ⩽ 2, 𝑥 ̸= 0.

Let

Φ
𝑘
(𝑥) :=

{

{

{

𝜓
𝑘
(𝑥)

∑
∞

𝑙=−∞
𝜓
𝑙
(𝑥)

, 𝑥 ̸= 0

0, 𝑥 = 0.

(22)

Then∑∞

𝑘=−∞
Φ
𝑘
(𝑥) = 1 for 𝑥 ̸= 0. For each𝑚 ∈ N, we denote

by P
𝑚
the class of all the real polynomials with the degree

less than 𝑚. Let 𝑃(𝑗)
𝑘
(𝑥) := 𝑃̃

𝐴𝑘,𝜀
(𝑓

(𝑗)

Φ
𝑘
)(𝑥)𝜒̃

𝐴𝑘,𝜀
∈ P

𝑚
(R𝑛

)

be the unique polynomial satisfying

∫
̃
𝐴𝑘,𝜀

(𝑓
(𝑗)

(𝑥)Φ
𝑘
(𝑥) − 𝑃

(𝑗)

𝑘
(𝑥)) 𝑥

𝛽d𝑥 = 0,

󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ⩽ 𝑚 = max {[𝛼 (0) − 𝑛𝛿

2
] , [𝛼

∞
− 𝑛𝛿

2
]} .

(23)

Write

𝑓
(𝑗)

(𝑥) =

∞

∑

𝑘=−∞

(𝑓
(𝑗)

(𝑥)Φ
𝑘
(𝑥) − 𝑃

(𝑗)

𝑘
(𝑥)) +

∞

∑

𝑘=−∞

𝑃
(𝑗)

𝑘
(𝑥)

:= 𝐼
(𝑗)
+ 𝐼𝐼

(𝑗)
.

(24)

For the term 𝐼
(𝑗)
, let 𝑔

(𝑗)

𝑘
(𝑥) := 𝑓

(𝑗)

(𝑥)Φ
𝑘
(𝑥) −

𝑃
(𝑗)

𝑘
(𝑥) and 𝑎

(𝑗)

𝑘
(𝑥) := 𝑔

(𝑗)

𝑘
(𝑥)/𝜆

𝑘
, where 𝜆

𝑘
:=

𝑏|𝐵
𝑘+1

|
𝛼𝑘+1/𝑛∑

𝑘+1

𝑙=𝑘−1
‖(𝐺

𝑁
𝑓)𝜒

𝑙
‖
𝐿
𝑝(⋅) and 𝑏 is a constant which

will be chosen later. Note that supp 𝑎
(𝑗)

𝑘
⊂ 𝐵

𝑘+1
, 𝐼

(𝑗)
=

∑
∞

𝑘=−∞
𝜆
𝑘
𝑎
(𝑗)

𝑘
(𝑥).

Now we estimate ‖𝑔(𝑗)
𝑘
‖
𝐿
𝑝(⋅) . To do this, let {𝜙𝑘

𝛾
: |𝛾| ⩽ 𝑚}

be the orthogonal polynomials restricted to𝐴
𝑘,𝜀

with respect
to the weight 1/|𝐴

𝑘,𝜀
|, which are obtained from {𝑥

𝛽

: |𝛽| ⩽ 𝑚}

by the Gram-Schmidt method, which means

⟨𝜙
𝑘

] , 𝜙
𝑘

𝜇
⟩ =

1

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

∫
̃
𝐴𝑘,𝜀

𝜙
𝑘

] (𝑥) 𝜙
𝑘

𝜇
(𝑥) d𝑥 = 𝛿]𝜇, (25)

where 𝛿]𝜇 = 1 for ] = 𝜇, otherwise 0.
It is easy to see that 𝑃(𝑗)

𝑘
(𝑥) = ∑

|𝛾|⩽𝑚
⟨𝑓

(𝑗)

Φ
𝑘
, 𝜙

𝑘

𝛾
⟩𝜙

𝑘

𝛾
(𝑥)

for 𝑥 ∈ 𝐴
𝑘,𝜀
. On the other hand, from

(1/|𝐴
𝑘,𝜀
|) ∫

̃
𝐴𝑘,𝜀

𝜙
𝑘

] (𝑥)𝜙
𝑘

𝜇
(𝑥)d𝑥 = 𝛿]𝜇 we infer that

1

󵄨󵄨󵄨󵄨󵄨
𝐴
1,𝜀

󵄨󵄨󵄨󵄨󵄨

∫
̃
𝐴1,𝜀

𝜙
𝑘

] (2
𝑘−1

𝑦) 𝜙
𝑘

𝜇
(2

𝑘−1

𝑦) d𝑦 = 𝛿]𝜇. (26)

Thus, we deduce 𝜙𝑘] (2
𝑘−1

𝑦) = 𝜙
1

](𝑦) a.e. That is, 𝜙𝑘] (𝑥) =

𝜙
1

](2
1−𝑘

𝑥) almost everywhere for 𝑥 ∈ 𝐴
𝑘,𝜀
. Therefore
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|𝜙
𝑘

] (𝑥)| ⩽ 𝐶 for𝑥 ∈ 𝐴
𝑘,𝜀
. By the generalizedHölder inequality

we have
󵄨󵄨󵄨󵄨󵄨󵄨
𝑃
(𝑗)

𝑘
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨
≲

1

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

∫
̃
𝐴𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨
𝑓
(𝑗)

(𝑥)Φ
𝑘
(𝑥)

󵄨󵄨󵄨󵄨󵄨
d𝑥

≲
1

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)

Φ
𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜒̃
𝐴𝑘,𝜀

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)
.

(27)

By Lemma 5 we have
󵄩󵄩󵄩󵄩󵄩󵄩
𝑔
(𝑗)

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
⩽
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)

Φ
𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
+
󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
(𝑗)

𝑘

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

≲
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)

Φ
𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
+

1

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)

Φ
𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

×
󵄩󵄩󵄩󵄩󵄩󵄩
𝜒̃
𝐴𝑘,𝜀

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜒̃
𝐴𝑘,𝜀

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

≲
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)

Φ
𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
+
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)

Φ
𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

≲
󵄩󵄩󵄩󵄩󵄩
(𝑓 ∗ 𝜙

(𝑗)
)Φ

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

⩽ 𝐶

𝑘+1

∑

𝑙=𝑘−1

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑙

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
.

(28)

Choose 𝑏 = 𝐶; then ‖𝑎
(𝑗)

𝑘
‖
𝐿
𝑝(⋅) ⩽ |𝐵

𝑘+1
|
−𝛼𝑘+1/𝑛 and each 𝑎

(𝑗)

𝑘

is a central (𝛼(⋅), 𝑝(⋅))-atom with support contained in 𝐵
𝑘+1

.
Here and below we abuse 𝛼

𝑘
:= 𝛼

2
𝑘 and it is well defined in

Definition 11. Thus,

sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨

𝑞

≲ sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝐵𝑘+1
󵄨󵄨󵄨󵄨

𝑞𝛼𝑘+1/𝑛

(

𝑘+1

∑

𝑙=𝑘−1

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑙

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝐵𝑘+1
󵄨󵄨󵄨󵄨

𝑞𝛼𝑘+1/𝑛 󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

:= 𝐴.

(29)

Now we estimate 𝐴. By the condition of 𝛼(⋅) and
Proposition 7 we consider it in two cases.

Case 1 (𝐿 ⩽ 0). Consider

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝐵𝑘+1
󵄨󵄨󵄨󵄨

𝑞𝛼𝑘+1/𝑛 󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩

𝑞

𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆

.

(30)

Case 2 (𝐿 > 0). Consider

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝐵𝑘+1
󵄨󵄨󵄨󵄨

𝑞𝛼𝑘+1/𝑛 󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

= 2
−𝐿𝜆𝑞

−2

∑

𝑘=−∞

2
(𝑘+1)𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

+ 2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−1

2
(𝑘+1)𝑞𝛼(∞) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲ 2
−𝐿𝜆𝑞

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

+ 2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼(∞) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩

𝑞

𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆

.

(31)

Hence,

sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨

𝑞

≲
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩

𝑝

𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆

. (32)

It remains to estimate 𝐼𝐼
(𝑗)
. Let {𝜓𝑘

𝑑
: |𝛾| ⩽ 𝑚} be the dual

basis of {𝑥𝛽 : |𝛽| ⩽ 𝑚} with respect to the weight 1/|𝐴
𝑘,𝜀
| on

𝐴
𝑘,𝜀
, that is,

⟨𝜓
𝑘

𝛾
, 𝑥

𝛽

⟩ =
1

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

∫
̃
𝐴𝑘,𝜀

𝑥
𝛽

𝜓
𝑘

𝛾
(𝑥) d𝑥 = 𝛿

𝛽𝛾
. (33)

Similar to the method of [48], let

ℎ
(𝑗)

𝑘,𝛾
(𝑥) :=

𝑘

∑

𝑙=−∞

(

𝜓
𝑘

𝛾
(𝑥) 𝜒̃

𝐴𝑘,𝜀
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

−

𝜓
𝑘+1

𝛾
(𝑥) 𝜒̃

𝐴𝑘+1,𝜀
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘+1,𝜀

󵄨󵄨󵄨󵄨󵄨

)

× ∫
R𝑛
𝑓
(𝑗)

(𝑦)Φ
𝑙
(𝑦) 𝑦

𝛾d𝑦.

(34)
We write

𝐼𝐼
(𝑗)

=

∞

∑

𝑘=−∞

∑

|𝛾|⩽𝑚

⟨𝑓
(𝑗)

Φ
𝑘
, 𝑥

𝛾

⟩𝜓
𝑘

𝛾
(𝑥) 𝜒̃

𝐴𝑘,𝜀
(𝑥)

= ∑

|𝛾|⩽𝑚

∞

∑

𝑘=−∞

(∫
R𝑛
𝑓
(𝑗)

Φ
𝑘
𝑥
𝛾d𝑥)

𝜓
𝑘

𝛾
(𝑥) 𝜒̃

𝐴𝑘,𝜀
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

= ∑

|𝛾|⩽𝑚

∞

∑

𝑘=−∞

(

𝑘

∑

𝑙=−∞

∫
R𝑛
𝑓
(𝑗)

(𝑥)Φ
𝑙
(𝑥) 𝑥

𝛾d𝑥)

× (

𝜓
𝑘

𝛾
(𝑥) 𝜒̃

𝐴𝑘,𝜀
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

−

𝜓
𝑘+1

𝛾
(𝑥) 𝜒̃

𝐴𝑘+1,𝜀
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘+1,𝜀

󵄨󵄨󵄨󵄨󵄨

)

=: ∑

|𝛾|⩽𝑚

∞

∑

𝑘=−∞

𝛼
𝑘,𝛾
ℎ
(𝑗)

𝑘,𝛾
(𝑥)

𝛼
𝑘,𝛾

=: ∑

|𝛾|⩽𝑚

∞

∑

𝑘=−∞

𝛼
𝑘,𝛾
𝑎
(𝑗)

𝑘,𝛾
(𝑥) ,

(35)

where

𝛼
𝑘,𝛾

:= 𝑏̃

𝑘+1

∑

𝑙=𝑘−1

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑙

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
󵄨󵄨󵄨󵄨𝐵𝑘+2

󵄨󵄨󵄨󵄨

𝛼𝑘+2/𝑛 (36)
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and 𝑏̃ is a constant which will be chosen later. Note that

∫
R𝑛

𝑘

∑

𝑙=−∞

󵄨󵄨󵄨󵄨Φ𝑙
(𝑥) 𝑥

𝛾󵄨󵄨󵄨󵄨 d𝑥 =
𝑘

∑

𝑙=−∞

∫
̃
𝐴𝑘,𝜀

󵄨󵄨󵄨󵄨Φ𝑙
(𝑥) 𝑥

𝛾󵄨󵄨󵄨󵄨 d𝑥

≲ 2
𝑘(𝑛+|𝛾|)

.

(37)

By a computation we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

R𝑛
𝑓
(𝑗)

(𝑦)

𝑘

∑

𝑙=−∞

Φ
𝑙
(𝑦) 𝑦

𝛾d𝑦
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ 2
𝑘(𝑛+|𝛾|)

𝐺
𝑁
𝑓 (𝑥) ,

𝑥 ∈ 𝐵
𝑘+2

.

(38)

Since
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜓
𝑘

𝛾
(𝑥) 𝜒̃

𝐴𝑘,𝜀
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘,𝜀

󵄨󵄨󵄨󵄨󵄨

−

𝜓
𝑘+1

𝛾
(𝑥) 𝜒̃

𝐴𝑘+1,𝜀
(𝑥)

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑘+1,𝜀

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ 2
−𝑘(𝑛+|𝛾|)

𝑘+1

∑

𝑙=𝑘−1

𝜒
𝑙
(𝑥) ,

(39)

it follows that

󵄩󵄩󵄩󵄩󵄩󵄩
ℎ
(𝑗)

𝑘,𝛾

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
⩽ 𝐶

𝑘+1

∑

𝑙=𝑘−1

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑙

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
. (40)

Take 𝑏̃ = 𝐶. It is easy to show that each 𝑎(𝑗)
𝑘,𝛾

is a central (𝛼(⋅),
𝑝(⋅))-atom with support contained in 𝐴

𝑘,𝜀
∪ 𝐴

𝑘+1,𝜀
⊂ 𝐵

𝑘+2
,

and

𝛼
𝑘,𝛾

= 𝐶

𝑘+1

∑

𝑙=𝑘−1

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑙

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
󵄨󵄨󵄨󵄨𝐵𝑘+2

󵄨󵄨󵄨󵄨

𝛼𝑘+2/𝑛

, (41)

where𝐶 is a constant independent of 𝑗,𝑓, 𝑘, and 𝛾. Moreover,
we have

sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

∑

|𝛾|⩽𝑚

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑘,𝛾

󵄨󵄨󵄨󵄨󵄨

𝑞

≲ sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝐵𝑘+2
󵄨󵄨󵄨󵄨

𝑞𝛼𝑘+2/𝑛

(

𝑘+1

∑

𝑙=𝑘−1

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑙

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝐵𝑘+2
󵄨󵄨󵄨󵄨

𝑞𝛼𝑘+2/𝑛 󵄩󵄩󵄩󵄩(𝐺𝑁
𝑓)𝜒

𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

:= 𝐵.

(42)

Using the same argument as before for 𝐴, we obtain

𝐵 ≲
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩

𝑞

𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

. (43)

Therefore,

sup
𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑

|𝛾|⩽𝑚

𝛼
𝑘,𝛾

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞

≲
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩

𝑝

𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆

. (44)

Thus, we obtain that

𝑓
(𝑗)

(𝑥) =

∞

∑

𝑑=−∞

𝜆
𝑑
𝑎
(𝑗)

𝑑
(𝑥) , (45)

where each 𝑎
(𝑗)

𝑑
is a central (𝛼(⋅), 𝑝(⋅))-atom with support

contained in 𝐴
𝑑,𝜀

∪ 𝐴
𝑑+1,𝜀

⊂ 𝐵
𝑑+2

, 𝜆
𝑑
is independent of 𝑗

and

sup
𝐿∈Z

2
−𝐿𝜆

(

𝐿

∑

𝑑=−∞

|𝜆
𝑑
|
𝑞

)

1/𝑞

⩽ 𝐶
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

< ∞, (46)

where 𝐶 is independent of 𝑗 and 𝑓.
Since

sup
𝑗∈N0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑎
(𝑗)

0

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
⩽
󵄨󵄨󵄨󵄨𝐵2

󵄨󵄨󵄨󵄨

−𝛼2/𝑛

, (47)

by the Banach-Alaoglu theorem we obtain a subsequence
{𝑎

(𝑗𝑛0
)

0
} of {𝑎(𝑗)

0
} converging in the weak ∗ topology of 𝐿𝑝(⋅) to

some 𝑎
0
∈ 𝐿

𝑝(⋅). It is easy to verify that 𝑎
0
is a central (𝛼(⋅),

𝑝(⋅))-atom supported on 𝐵
2
. Next, since

sup
𝑗𝑛0

∈N0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑎
(𝑗𝑛0

)

1

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
⩽
󵄨󵄨󵄨󵄨𝐵3

󵄨󵄨󵄨󵄨

−𝛼3/𝑛

, (48)

another application of the Banach-Alaoglu theorem yields
a subsequence {𝑎

(𝑗𝑛1
)

1
} of {𝑎(𝑗𝑛0 )

1
} which converges weak ∗

in 𝐿
𝑝(⋅) to a central (𝛼(⋅), 𝑝(⋅))-atom 𝑎

1
with support in 𝐵

3
.

Furthermore,

sup
𝑗𝑛1

∈N0

󵄩󵄩󵄩󵄩󵄩󵄩
𝑎
(𝑗𝑛1

)

−1

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
⩽
󵄨󵄨󵄨󵄨𝐵1

󵄨󵄨󵄨󵄨

−𝛼1/𝑛

. (49)

Similarly, there exists a subsequence {𝑎(𝑗𝑛−1 )
−1

} of {𝑎(𝑗𝑛1 )
−1

} which
converges weak ∗ in 𝐿

𝑝(⋅) to some 𝑎
−1

∈ 𝐿
𝑝(⋅), and 𝑎

−1
is

a central (𝛼(⋅), 𝑝(⋅))-atom supported on 𝐵
1
. Repeating the

above procedure for each 𝑑 ∈ Z, we can find a subsequence
{𝑎

(𝑗𝑛𝑑
)

𝑑
} of {𝑎(𝑗)

𝑑
} converging weak ∗ in 𝐿𝑝(⋅) to some 𝑎

𝑑
∈ 𝐿

𝑝(⋅)

which is a central (𝛼(⋅), 𝑝(⋅))-atom supported on 𝐵
𝑑+2

. By
using the diagonal method we obtain a subsequence {𝑗]} of
N
0
such that, for each 𝑑 ∈ Z, lim]→∞

𝑎
(𝑗])

𝑑
= 𝑎

𝑑
in the weak ∗

topology of 𝐿𝑝(⋅) and therefore in S󸀠

(R𝑛

).
Now we only need to prove that 𝑓 = ∑

∞

𝑑=−∞
𝜆
𝑑
𝑎
𝑑
in the

sense of S󸀠

(R𝑛

). For each 𝜑 ∈ S(R𝑛

), note that supp 𝑎
(𝑗])

𝑑
⊂

(𝐴
𝑑,𝜀
∪𝐴

𝑑+1,𝜀
) ⊂ (𝐴

𝑑−1
∪𝐴

𝑑
∪𝐴

𝑑+1
∪𝐴

𝑑+2
). Using the same

argument in [48], we have

⟨𝑓, 𝜑⟩ = lim
]→∞

∞

∑

𝑑=−∞

𝜆
𝑑
∫
R𝑛
𝑎
(𝑗])

𝑑
(𝑥) 𝜑 (𝑥) d𝑥. (50)
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Recall that𝑚 = max{[𝛼(0) − 𝑛𝛿
2
], [𝛼

∞
− 𝑛𝛿

2
]}. If 𝑑 ⩽ 0, then

by Lemmas 3 and 4 we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑛
𝑎
(𝑗])

𝑑
(𝑥) 𝜑 (𝑥) d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
R𝑛
𝑎
(𝑗])

𝑑
(𝑥)(𝜑 (𝑥) − ∑

|𝛽|⩽𝑚

𝐷
𝛽

𝜑 (0)

𝛽!
𝑥
𝛽

) d𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ ∫
R𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
(𝑗])

𝑑
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨
⋅ |𝑥|

𝑚+1 d𝑥

≲ 2
𝑑(𝑚+1)

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
(𝑗])

𝑑
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨
d𝑥

≲ 2
𝑑(𝑚+1−𝛼𝑑+2)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑑+2

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
𝑑(𝑚+1−𝛼𝑑+2) (

󵄨󵄨󵄨󵄨𝐵𝑑+2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵2
󵄨󵄨󵄨󵄨

)

𝛿2
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵2

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
𝑑(𝑚+1−𝛼𝑑+2+𝑛𝛿2)

󵄨󵄨󵄨󵄨𝐵2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵0
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵0

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
𝑑(𝑚+1−𝛼𝑑+2+𝑛𝛿2).

(51)

If 𝑑 > 0, let 𝑘
0
∈ N

0
such that min{𝑘

0
+𝛼(0)−𝑛, 𝑘

0
+𝛼

∞
−

𝑛} > 0; then by Lemmas 4 and 3 again we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑛
𝑎
(𝑗])

𝑑
(𝑥) 𝜑 (𝑥) d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲ ∫

R𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
(𝑗])

𝑑
(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨
|𝑥|

−𝑘0 d𝑥

≲ 2
−𝑑(𝑘0+𝛼𝑑+2)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑑+2

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
−𝑑(𝑘0+𝛼𝑑+2)

󵄨󵄨󵄨󵄨𝐵𝑑+2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵0
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵0

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
−𝑑(𝑘0+𝛼𝑑+2−𝑛).

(52)

Let

𝜇
𝑑
= {

󵄨󵄨󵄨󵄨𝜆𝑑
󵄨󵄨󵄨󵄨 2

𝑑(𝑚+1−𝛼𝑑+2+𝑛𝛿2), 𝑑 ⩽ 0

󵄨󵄨󵄨󵄨𝜆𝑑
󵄨󵄨󵄨󵄨 2

−𝑑(𝑘0+𝛼𝑑+2−𝑛), 𝑑 > 0.
(53)

Then

sup
𝐿∈Z

2
−𝐿𝜆

𝐿

∑

𝑑=−∞

󵄨󵄨󵄨󵄨𝜇𝑑
󵄨󵄨󵄨󵄨 ≲ (sup

𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑑=−∞

󵄨󵄨󵄨󵄨𝜆𝑑
󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

≲
󵄩󵄩󵄩󵄩𝐺𝑁

𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

< ∞,

󵄨󵄨󵄨󵄨𝜆𝑑
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑛
𝑎
(𝑗])

𝑑
(𝑥) 𝜑 (𝑥) d𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≲
󵄨󵄨󵄨󵄨𝜇𝑑

󵄨󵄨󵄨󵄨 ,

(54)

which implies that

⟨𝑓, 𝜑⟩ =

∞

∑

𝑑=−∞

lim
]→∞

𝜆
𝑑
∫
R𝑛
𝑎
(𝑗])

𝑑
(𝑥) 𝜑 (𝑥) d𝑥

=

∞

∑

𝑑=−∞

𝜆
𝑑
∫
R𝑛
𝑎
𝑑
(𝑥) 𝜑 (𝑥) d𝑥.

(55)

This establishes the identity we wanted.

To prove the sufficiency, for convenience, we denote
sup

𝐿∈Z2
−𝐿𝜆

∑
𝐿

𝑘=−∞
|𝜆

𝑘
|
𝑞

= Λ. Firstly we have

󵄩󵄩󵄩󵄩𝐺𝑁
𝑓
󵄩󵄩󵄩󵄩

𝑞

𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

≈ max{ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅) ,

sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

(

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

+

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼(∞) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅))}

≲ max {𝐼, 𝐼𝐼 + 𝐼𝐼𝐼} ,
(56)

where

𝐼 := sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

𝐼𝐼 :=

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

𝐼𝐼𝐼 := sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼(∞) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅) .

(57)

Now we have

𝐼 = sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

:= 𝐼
1
+ 𝐼

2
.

𝐼𝐼 =

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

+

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

:= 𝐼𝐼
1
+ 𝐼𝐼

2

𝐼𝐼𝐼 = sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ 󵄩󵄩󵄩󵄩(𝐺𝑁

𝑓)𝜒
𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

𝐿

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞
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+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

:= 𝐼𝐼𝐼
1
+ 𝐼𝐼𝐼

2
.

(58)

To estimate 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼we need a pointwise estimate for
𝐺
𝑁
𝑎
𝑙
(𝑥) on𝐷

𝑘
, where 𝑘 ⩾ 𝑙+2. Let 𝜙 ∈ A

𝑁
,𝑚 ∈ N such that

𝛼
𝑘
− 𝑛𝛿

2
< 𝑚 + 1. Denote by 𝑃

𝑚
the 𝑚th order Taylor series

expansion of 𝜙 at 𝑦/𝑡. If |𝑥 − 𝑦| < 𝑡, then from the vanishing
moment condition of 𝑎

𝑙
we have

󵄨󵄨󵄨󵄨𝑎𝑙 ∗ 𝜙𝑡 (𝑦)
󵄨󵄨󵄨󵄨

= 𝑡
−𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑛
𝑎
𝑙
(𝑧) (𝜙 (

𝑦 − 𝑧

𝑡
) − 𝑃

𝑚
(−

𝑧

𝑡
)) d𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≲ 𝑡
−𝑛

∫
R𝑛

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑧)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚+1

(1 +

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑦 − 𝜃𝑧)

𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

−(𝑛+𝑚+1)

d𝑧

≲ ∫
R𝑛

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑧)
󵄨󵄨󵄨󵄨 |𝑧|

𝑚+1

(𝑡 +
󵄨󵄨󵄨󵄨𝑦 − 𝜃𝑧

󵄨󵄨󵄨󵄨)
−(𝑛+𝑚+1) d𝑧,

(59)

where 0 < 𝜃 < 1. Since 𝑥 ∈ 𝐷
𝑘
for 𝑘 ∈ Z, we have |𝑥| ⩾ 2

𝑘−1.
From |𝑥 − 𝑦| < 𝑡 and |𝑧| < 2

𝑙, we have

𝑡 +
󵄨󵄨󵄨󵄨𝑦 − 𝜃𝑧

󵄨󵄨󵄨󵄨 ⩾
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦 − 𝜃𝑧

󵄨󵄨󵄨󵄨 ⩾ |𝑥| − |𝑧| ⩾
|𝑥|

2
. (60)

Thus,
󵄨󵄨󵄨󵄨𝑎𝑙 ∗ 𝜙𝑡 (𝑦)

󵄨󵄨󵄨󵄨

≲ ∫
R𝑛

󵄨󵄨󵄨󵄨𝑎𝑙 (𝑧)
󵄨󵄨󵄨󵄨 |𝑧|

𝑚+1

(
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑦 − 𝜃𝑧

󵄨󵄨󵄨󵄨)
−(𝑛+𝑚+1) d𝑧

≲ 2
𝑙(𝑚+1)

|𝑥|
−(𝑛+𝑚+1)

∫
R𝑛
|𝑎 (𝑧)| d𝑧

≲ 2
𝑙(𝑚+1)

2
−𝑘(𝑛+𝑚+1) 󵄨󵄨󵄨󵄨𝐵𝑙

󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)
.

(61)

Therefore, we have

𝐺
𝑁
𝑎
𝑙
(𝑥) ≲ 2

𝑙(𝑚+1)

2
−𝑘(𝑛+𝑚+1) 󵄨󵄨󵄨󵄨𝐵𝑙

󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)
,

𝑥 ∈ 𝐷
𝑘
, 𝑘 ⩾ 𝑙 + 2.

(62)

To proceed, we consider them into two cases 0 < 𝑞 ⩽ 1

and 1 < 𝑞 < ∞.
If 0 < 𝑞 ⩽ 1,

𝐼
1
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝑇𝑏𝑙)𝜒𝑘
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

−𝛼𝑙𝑙)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

× (

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼(0)𝑙𝑞

+

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞)

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑙)𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞

+ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑙=0

2
−𝑙𝜆𝑞 󵄨󵄨󵄨󵄨𝜆𝑙

󵄨󵄨󵄨󵄨

𝑞

2
(𝜆−𝛼∞)𝑙𝑞2

−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲ Λ + sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=𝐿

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞

+ Λ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑙=0

2
(𝜆−𝛼∞)𝑙𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞−𝐿𝜆𝑞

≲ Λ + sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑙=𝐿

2
−𝑙𝜆𝑞 󵄨󵄨󵄨󵄨𝜆𝑙

󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝐿)𝜆𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞

+ Λ

≲ Λ + Λ sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑙=𝐿

2
(𝑙−𝐿)𝜆𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞

≲ Λ.

𝐼
2
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1)−𝑘(𝑛+𝑚+1)

×
󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−(𝑙−𝑘)𝛼(0))

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0)))

𝑞

= sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿−1

∑

𝑙=−∞

𝐿

∑

𝑘=𝑙+1

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

≲ Λ.

(63)
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Then we turn to estimate 𝐼𝐼:

𝐼𝐼
1
=

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

≲

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛

)

𝑞

≲

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼(0)𝑙𝑞

+

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞)

≲

−1

∑

𝑘=−∞

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑙)𝑞

+

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞

≲

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞

+

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

+

∞

∑

𝑙=0

2
−𝑙𝜆𝑞 󵄨󵄨󵄨󵄨𝜆𝑙

󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲ Λ + Λ

𝑙

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

∞

∑

𝑙=0

2
(𝜆−𝛼∞)𝑙𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲ Λ.

(64)

𝐼𝐼
2
=

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1)−𝑘(𝑛+𝑚+1)

×
󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−(𝑙−𝑘)𝛼(0))

𝑞

≲

−1

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0)))

𝑞

≲

−1

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞)

=

−2

∑

𝑙=−∞

−1

∑

𝑘=𝑙+1

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞

≲

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

⩽ Λ.

(65)

Third, we estimate 𝐼𝐼𝐼:

𝐼𝐼𝐼
1
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ 󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

𝛼∞𝑞/𝑛

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ 󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

𝛼∞𝑞/𝑛

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛

)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

𝛼∞𝑞/𝑛 󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞 󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼∞𝑞/𝑛

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑘−𝑙)𝛼∞𝑞

= sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

× [

𝐿

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=0

2
(𝑘−𝑙)𝛼∞𝑞 +

∞

∑

𝑙=𝐿

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑙)𝛼∞𝑞]

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

∞

∑

𝑙=𝐿

2
(𝑙𝜆𝑞−𝐿𝜆𝑞)

2
−𝑙𝜆𝑞

𝑙

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑙)𝛼∞𝑞/2

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑙=𝐿

2
(𝑙−𝐿)𝜆𝑞

2
(𝐿−𝑙)𝛼∞𝑞/2

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑙=𝐿

2
(𝑙−𝐿)𝑞(𝜆−𝛼∞/2)

≲ Λ.

𝐼𝐼𝐼
2
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1)−𝑘(𝑛+𝑚+1)

×
󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−𝑙𝛼𝑙+𝑘𝛼∞)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−𝑙𝛼(0)+𝑘𝛼∞)

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

𝑘−1

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞))

𝑞
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≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑞𝑘[𝛼∞−(𝑚+1+𝑛𝛿2)]

× (

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1+𝑛𝛿2−𝛼(0)))

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

𝑘−1

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞)𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝑙(𝑚+1+𝑛𝛿2−𝛼(0))𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿−1

∑

𝑙=0

𝐿

∑

𝑘=𝑙+1

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞)𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

= sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

.

(66)

If 1 < 𝑞 < ∞, we have

𝐼
1
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛

)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝛼(0)(𝑘−𝑙)

)

𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

−𝛼∞𝑙)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑙)𝑞/2

)

× (

−1

∑

𝑙=𝑘

2
𝛼(0)(𝑘−𝑙)𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞/2)

× (

∞

∑

𝑙=0

2
−𝛼∞𝑗𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑙)𝑞/2

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞/2

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞/2

+ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑙=0

2
−𝑙𝜆𝑞 󵄨󵄨󵄨󵄨𝜆𝑙

󵄨󵄨󵄨󵄨

𝑞

2
(𝜆−𝛼∞/2)𝑙𝑞2

−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

⩽ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=𝐿

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞/2

+ Λ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑙=0

2
(𝜆−𝛼∞/2)𝑙𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞−𝐿𝜆𝑞

≲ Λ + sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑙=𝐿

2
−𝑙𝜆𝑞 󵄨󵄨󵄨󵄨𝜆𝑙

󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝐿)𝜆𝑞

×

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞/2

+ Λ

≲ Λ + Λ sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑙=𝐿

2
(𝑙−𝐿)𝜆𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞/2

≲ Λ.

𝐼
2
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1)−𝑘(𝑛+𝑚+1)

×
󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−(𝑙−𝑘)𝛼(0))

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0)))

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2)

× (

𝑘−1

∑

𝑙=−∞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2)

= sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿−1

∑

𝑙=−∞

𝐿

∑

𝑘=𝑙+1

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

⩽ Λ.

(67)
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Second, we estimate 𝐼𝐼. As the same argument before, we
obtain that

𝐼𝐼
1
=

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

≲

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛

)

𝑞

≲

−1

∑

𝑘=−∞

(

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
𝛼(0)(𝑘−𝑗)

)

𝑞

+

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
−𝛼∞𝑗)

𝑞

≲

−1

∑

𝑘=−∞

(

−1

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑙)𝑞/2

)(

−1

∑

𝑙=𝑘

2
𝛼(0)(𝑘−𝑙)𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

+

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞/2)(

∞

∑

𝑙=0

2
−𝛼∞𝑙𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲

−1

∑

𝑘=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑙)𝑞/2

+

∞

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑙𝑞/2

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

+

∞

∑

𝑙=0

2
(𝜆−𝛼∞/2)𝑙𝑞2

−𝑙𝜆𝑞

𝑙

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

⩽ Λ + Λ

∞

∑

𝑙=0

2
(𝜆−𝛼∞/2)𝑙𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲ Λ.

𝐼𝐼
2
=

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1)−𝑘(𝑛+𝑚+1)

×
󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−(𝑙−𝑘)𝛼(0))

𝑞

≲

−1

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0)))

𝑞

≲

−1

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2)

× (

𝑘−1

∑

𝑙=−∞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲

−1

∑

𝑘=−∞

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2)

=

−2

∑

𝑙=−∞

−1

∑

𝑘=𝑙+1

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2

≲

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

≲ Λ. (68)

Third, we estimate 𝐼𝐼𝐼. We have

𝐼𝐼𝐼
1
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ 󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

𝛼∞𝑞/𝑛

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩𝑎𝑙
󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ 󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

𝛼∞𝑞/𝑛

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛

)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ 󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

𝛼∞𝑞/𝑛

(

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞 󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙𝑞/(2𝑛)

)

× (

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙𝑞
󸀠
/(2𝑛)

)

𝑞/𝑞
󸀠

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

𝛼∞𝑞/(2𝑛) 󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞 󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼∞𝑞/(2𝑛)

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

∞

∑

𝑙=𝑘

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑘−𝑙)𝛼∞𝑞/2

= sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

[

𝐿

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝑙

∑

𝑘=0

2
(𝑘−𝑙)𝛼∞𝑞/2

+

∞

∑

𝑙=𝐿

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑙)𝛼∞𝑞/2]

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

∞

∑

𝑙=𝐿

2
(𝑗𝜆𝑞−𝐿𝜆𝑞)

2
−𝑙𝜆𝑞

𝑙

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑙)𝛼∞𝑞/2

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑙=𝐿

2
(𝑙−𝐿)𝜆𝑞

2
(𝐿−𝑙)𝛼∞𝑞/2

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑙=𝐿

2
(𝑙−𝐿)𝑞(𝜆−𝛼∞/2)

≲ Λ.
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𝐼𝐼𝐼
2
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩(𝐺𝑁
𝑎
𝑙
)𝜒

𝑘

󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1)−𝑘(𝑛+𝑚+1)

×
󵄨󵄨󵄨󵄨𝐵𝑙
󵄨󵄨󵄨󵄨

−𝛼𝑙/𝑛
󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑙

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

𝑘−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−𝑙𝛼𝑙+𝑘𝛼∞)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2)−𝑙𝛼(0)+𝑘𝛼∞)

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

𝑘−1

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞))

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑞𝑘[𝛼∞−(𝑚+1+𝑛𝛿2)]

× (

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨 2

𝑙(𝑚+1+𝑛𝛿2−𝛼(0)))

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

𝑘−1

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞)𝑞/2)

× (

𝑘−1

∑

𝑙=0

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞)𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

(

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝑙(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2)

× (

−1

∑

𝑙=−∞

2
𝑙(𝑚+1+𝑛𝛿2−𝛼(0))𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

𝑘−1

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞)𝑞/2

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
𝑙(𝑚+1+𝑛𝛿2−𝛼(0))𝑞/2

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿−1

∑

𝑙=0

𝐿

∑

𝑘=𝑙+1

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

2
(𝑙−𝑘)(𝑚+1+𝑛𝛿2−𝛼∞)𝑞/2

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=0

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

= sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑙=−∞

󵄨󵄨󵄨󵄨𝜆𝑙
󵄨󵄨󵄨󵄨

𝑞

⩽ Λ.

(69)
Thus, we finish the proof of Theorem 13.

3. Applications

As an application of the atomic decompositions, wewill prove
the following result.

Theorem 14. Let 0 < 𝑞 < ∞, 0 ≤ 𝜆 < ∞, 𝑝(⋅) ∈ B(R𝑛

), and
𝛼(⋅) ∈ 𝐿

∞

(R𝑛

) be log-Hölder continuous both at the origin and
infinity, 2𝜆 ≤ 𝛼(⋅), 𝑛𝛿

2
⩽ 𝛼(0), 𝛼

∞
< ∞, nonnegative integer

and 𝑠 = max{[𝛼(0)−𝑛𝛿
2
], [𝛼

∞
−𝑛𝛿

2
]}, and 𝛿

2
as in Lemma 4.

If a sublinear operator 𝑇 satisfies that

(i) 𝑇 is bounded on 𝐿𝑝(⋅);
(ii) there exists a constant 𝛿 > 0 such that 𝑠 + 𝛿 >

max{𝛼(0)−𝑛𝛿
2
, 𝛼

∞
−𝑛𝛿

2
}, and for any compact support

function 𝑓 with

∫
R𝑛
𝑓 (𝑥) 𝑥

𝛽d𝑥 = 0,
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨 ⩽ 𝑠, (70)

𝑇𝑓 satisfies the size condition
󵄨󵄨󵄨󵄨𝑇𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ⩽ 𝐶 (diam (supp 𝑓))
𝑠+𝛿

|𝑥|
−(𝑛+𝑠+𝛿) 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩1
,

𝑤ℎ𝑒𝑛 dist (𝑥, supp 𝑓) ⩾
|𝑥|

2
.

(71)

Then there exists a constant 𝐶 such that
󵄩󵄩󵄩󵄩𝑇𝑓

󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

,

󵄩󵄩󵄩󵄩𝑇𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

(72)

for 𝑓 ∈ 𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
and 𝑓 ∈ 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
, respectively.

Proof. It suffices to prove the homogeneous case. Suppose
𝑓 ∈ 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
. By Theorem 13, 𝑓 = ∑

∞

𝑗=−∞
𝜆
𝑗
𝑏
𝑗
converges

in S󸀠

(R𝑛

), where each 𝑏
𝑗
is a central (𝛼(⋅), 𝑞(⋅))-atom with

support contained in 𝐵
𝑗
and

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

≈ inf sup
𝐿∈Z

2
−𝐿𝜆

(

𝐿

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

)

1/𝑞

. (73)

For simplicity, we denote Λ = sup
𝐿∈Z2

−𝐿𝜆

∑
𝐿

𝑗=−∞
|𝜆

𝑗
|
𝑞. By

Proposition 7, we have
󵄩󵄩󵄩󵄩𝑇𝑓

󵄩󵄩󵄩󵄩

𝑞

𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅)𝜆

≈ max{ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅) ,

sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

(

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

+

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼(∞) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅))}

≲ max {𝐼, 𝐼𝐼 + 𝐼𝐼𝐼} ,
(74)
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where

𝐼 := sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅) ,

𝐼𝐼 :=

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅) ,

𝐼𝐼𝐼 := sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼(∞) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅) .

(75)

To complete our proof, we only need show that there
exists a positive constant 𝐶 such that 𝐼, 𝐼𝐼, 𝐼𝐼𝐼 ⩽ 𝐶Λ.

First, we estimate 𝐼:

𝐼 = sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

:= 𝐼
1
+ 𝐼

2
.

(76)

By the boundedness of 𝑇 in 𝐿𝑝(⋅), we have
󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
⩽
󵄩󵄩󵄩󵄩󵄩
𝑏
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
⩽
󵄨󵄨󵄨󵄨󵄨
𝐵
𝑗

󵄨󵄨󵄨󵄨󵄨

−𝛼𝑗/𝑛

= 2
−𝛼𝑗𝑗. (77)

Therefore, when 0 < 𝑞 ⩽ 1, we get

𝐼
1
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
−𝛼𝑗𝑗)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼(0)𝑗𝑞

+

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞)

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑗)𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞

+ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑗=0

2
−𝑗𝜆𝑞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝜆−𝛼∞)𝑗𝑞2

−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

⩽ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=𝐿

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞

+ Λ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑗=0

2
(𝜆−𝛼∞)𝑗𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞−𝐿𝜆𝑞

≲ Λ + sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑗=𝐿

2
−𝑗𝜆𝑞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝐿)𝜆𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞

+ Λ

≲ Λ + Λ sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑗=𝐿

2
(𝑗−𝐿)𝜆𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞

≲ Λ.

(78)

When 1 < 𝑞 < ∞, let 1/𝑞 + 1/𝑞󸀠 = 1 and we obtain

𝐼
1
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

|𝜆
𝑗
|2
−𝛼𝑗𝑗)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
𝛼(0)(𝑘−𝑗)

)

𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
−𝛼∞𝑗)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

(

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑗)𝑞/2

)

× (

−1

∑

𝑗=𝑘

2
𝛼(0)(𝑘−𝑗)𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞/2)

× (

∞

∑

𝑗=0

2
−𝛼∞𝑗𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑗)𝑞/2

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞/2

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞/2
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+ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑗=0

2
−𝑗𝜆𝑞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝜆−𝛼∞/2)𝑗𝑞2

−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

⩽ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=𝐿

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞/2

+ Λ sup
𝐿⩽0,𝐿∈Z

∞

∑

𝑗=0

2
(𝜆−𝛼∞/2)𝑗𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞−𝐿𝜆𝑞

≲ Λ + sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑗=𝐿

2
−𝑗𝜆𝑞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝐿)𝜆𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞/2

+ Λ

≲ Λ + Λ sup
𝐿⩽0,𝐿∈Z

−1

∑

𝑗=𝐿

2
(𝑗−𝐿)𝜆𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞/2

≲ Λ.

(79)

So, we have 𝐼
1
≲ Λ.

Second, we estimate 𝐼
2
. By (71) and Lemma 3, we get

󵄨󵄨󵄨󵄨󵄨
𝑇𝑏

𝑗
(𝑥)

󵄨󵄨󵄨󵄨󵄨
≲ |𝑥|

−(𝑛+𝑠+𝛿)

2
𝑗(𝑠+𝛿)

∫
𝐵𝑗

󵄨󵄨󵄨󵄨󵄨
𝑏
𝑗
(𝑦)

󵄨󵄨󵄨󵄨󵄨
d𝑦

≲ 2
−𝑘(𝑛+𝑠+𝛿)

2
𝑗(𝑠+𝛿)

󵄩󵄩󵄩󵄩󵄩
𝑏
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
𝑗(𝑠+𝛿−𝛼𝑗)−𝑘(𝑠+𝛿+𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)
.

(80)

So by Lemmas 3 and 4, we have
󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

≲ 2
𝑗(𝑠+𝛿−𝛼𝑗)−𝑘(𝑠+𝛿+𝑛)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)

≲ 2
𝑗(𝑠+𝛿−𝛼𝑗)−𝑘(𝑠+𝛿)2

−𝑘𝑛

(
󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩

−1

𝐿
𝑝󸀠(⋅)

)
󵄩󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
𝑗(𝑠+𝛿−𝛼𝑗)−𝑘(𝑠+𝛿)

󵄩󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

󵄩󵄩󵄩󵄩󵄩
𝜒
𝐵𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
󸀠(⋅)

≲ 2
(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼𝑗 .

(81)

Therefore, when 0 < 𝑞 ⩽ 1, by 𝑛𝛿
2
⩽ 𝛼(0) < 𝑠+𝛿+𝑛𝛿

2
we get

𝐼
2
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼(0)]𝑞)

= sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

−1

∑

𝑘=𝑗+1

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞

≲ Λ.

(82)

When 1 < 𝑞 < ∞, let 1/𝑞 + 1/𝑞
󸀠

= 1. Since 𝑛𝛿
2
⩽ 𝛼(0) <

𝑠 + 𝛿 + 𝑛𝛿
2
, by Hölder’s inequality, we have

𝐼
2
= sup

𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

|𝜆
𝑗
|2
(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼(0))

𝑞

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞/2)

× (

𝑘−1

∑

𝑗=−∞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲ sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑗=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞/2)

= sup
𝐿⩽0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

−1

∑

𝑘=𝑗+1

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞/2

≲ Λ.

(83)

Hence, we have 𝐼 ≲ Λ.
Third, we estimate 𝐼𝐼. Consider

𝐼𝐼 =

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0) 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

+

−1

∑

𝑘=−∞

2
𝑘𝑞𝛼(0)

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

:= 𝐼𝐼
1
+ 𝐼𝐼

2
.

(84)

When 0 < 𝑞 ⩽ 1, we get

𝐼𝐼
1
=

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
−𝛼𝑗𝑗)

𝑞
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≲

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼(0)𝑗𝑞

+

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞)

≲

−1

∑

𝑘=−∞

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑗)𝑞

+

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞

≲

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞

+

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+

∞

∑

𝑗=0

2
−𝑗𝜆𝑞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲ Λ + Λ

𝑗

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

∞

∑

𝑗=0

2
(𝜆−𝛼∞)𝑗𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲ Λ.

(85)

When 1 < 𝑞 < ∞, let 1/𝑞 + 1/𝑞󸀠 = 1 and we obtain

𝐼𝐼
1
=

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
−𝛼𝑗𝑗)

𝑞

≲

−1

∑

𝑘=−∞

(

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
𝛼(0)(𝑘−𝑗)

)

𝑞

+

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
−𝛼∞𝑗)

𝑞

≲

−1

∑

𝑘=−∞

(

−1

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
𝛼(0)(𝑘−𝑗)𝑞/2

)(

−1

∑

𝑗=𝑘

2
𝛼(0)(𝑘−𝑗)𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

+

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞/2)(

∞

∑

𝑗=0

2
−𝛼∞𝑗𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲

−1

∑

𝑘=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=−∞

2
𝛼(0)(𝑘−𝑗)𝑞/2

+

∞

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞/2

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+

∞

∑

𝑗=0

2
(𝜆−𝛼∞/2)𝑗𝑞2

−𝑗𝜆𝑞

𝑗

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

⩽ Λ + Λ

∞

∑

𝑗=0

2
(𝜆−𝛼∞/2)𝑗𝑞

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

≲ Λ.

(86)

For 𝐼𝐼
2
, when 0 < 𝑞 ⩽ 1, by 𝑛𝛿

2
⩽ 𝛼(0) < 𝑠 + 𝛿 + 𝑛𝛿

2
we get

𝐼𝐼
2
=

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
) 𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼(0)]𝑞)

=

−1

∑

𝑘=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

−1

∑

𝑘=𝑗+1

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞

≲

−1

∑

𝑘=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

⩽ Λ.

(87)

When 1 < 𝑞 < ∞, let 1/𝑞 + 1/𝑞󸀠 = 1. Since 𝑛𝛿
2
⩽ 𝛼(0) < 𝑠+

𝛿 + 𝑛𝛿
2
, by Hölder’s inequality, we have

𝐼𝐼
2
=

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼(0))

𝑞

≲

−1

∑

𝑘=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞/2)

× (

𝑘−1

∑

𝑗=−∞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲

−1

∑

𝑗=−∞

2
𝛼(0)𝑘𝑞

(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞/2)

=

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

−1

∑

𝑘=𝑗+1

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑞/2

≲ Λ.

(88)

So, we have 𝐼𝐼 ≲ Λ.
Finally, we estimate 𝐼𝐼𝐼:

𝐼𝐼𝐼 = sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ 󵄩󵄩󵄩󵄩(𝑇𝑓)𝜒𝑘

󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝑘𝑞𝛼∞ (

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

:= 𝐼𝐼𝐼
1
+ 𝐼𝐼𝐼

2
.

(89)
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When 0 < 𝑞 ⩽ 1, by the boundedness of 𝑇 in 𝐿𝑝(⋅), we have

𝐼𝐼𝐼
1
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

⩽ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞 󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩

𝑞

𝐿
𝑝(⋅)

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼𝑗𝑗𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
−𝛼∞𝑗𝑞

= sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=0

2
(𝑘−𝑗)𝛼∞𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

∞

∑

𝑗=𝐿

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑗)𝛼∞𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

∞

∑

𝑗=𝐿

2
(𝑗𝜆𝑞−𝐿𝜆𝑞)

2
−𝑗𝜆𝑞

𝑗

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑗)𝛼∞𝑞

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑗=𝐿

2
(𝑗−𝐿)𝜆𝑞

2
(𝐿−𝑗)𝛼∞𝑞

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑗=𝐿

2
(𝑗−𝐿)𝑞(𝜆−𝛼∞)

≲ Λ.

(90)

When 1 < 𝑞 < ∞, by the boundedness of 𝑇 in 𝐿
𝑝(⋅) and

Hölder’s inequality, we have

𝐼𝐼𝐼
1
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

⩽ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞 󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩

𝑞/2

𝐿
𝑝(⋅)
)

× (

∞

∑

𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩

𝑞
󸀠
/2

𝐿
𝑝(⋅)
)

𝑞/𝑞
󸀠

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞 󵄩󵄩󵄩󵄩󵄩
𝑏
𝑗

󵄩󵄩󵄩󵄩󵄩

𝑞/2

𝐿
𝑝(⋅)
)

× (

∞

∑

𝑗=𝑘

󵄩󵄩󵄩󵄩󵄩
𝑏
𝑗

󵄩󵄩󵄩󵄩󵄩

𝑞
󸀠
/2

𝐿
𝑝(⋅)
)

𝑞/𝑞
󸀠

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞 󵄨󵄨󵄨󵄨󵄨
𝐵
𝑗

󵄨󵄨󵄨󵄨󵄨

−𝛼𝑗𝑞/(2𝑛)

)

× (

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝐵
𝑗

󵄨󵄨󵄨󵄨󵄨

−𝛼𝑗𝑞
󸀠
/(2𝑛)

)

𝑞/𝑞
󸀠

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞/2(

∞

∑

𝑗=𝑘

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞 󵄨󵄨󵄨󵄨󵄨
𝐵
𝑗

󵄨󵄨󵄨󵄨󵄨

−𝛼𝑗𝑞/(2𝑛)

)

= sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑗

∑

𝑘=0

2
(𝑘−𝑗)𝛼∞𝑞/2

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

∞

∑

𝑗=𝐿

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑗)𝛼∞𝑞/2

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

∞

∑

𝑗=𝐿

2
(𝑗𝜆𝑞−𝐿𝜆𝑞)

2
−𝑗𝜆𝑞

𝑗

∑

𝑖=−∞

󵄨󵄨󵄨󵄨𝜆𝑖
󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=0

2
(𝑘−𝑗)𝛼∞𝑞/2

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑗=𝐿

2
(𝑗−𝐿)𝜆𝑞

2
(𝐿−𝑗)𝛼∞𝑞/2

≲ Λ + Λ sup
𝐿>0,𝐿∈Z

∞

∑

𝑗=𝐿

2
(𝑗−𝐿)𝑞(𝜆−𝛼∞/2)

≲ Λ.

(91)

When 0 < 𝑞 ⩽ 1, by 𝑛𝛿
2
⩽ 𝛼(0), 𝛼

∞
< 𝑠 + 𝛿 + 𝑛𝛿

2
we get

𝐼𝐼𝐼
2
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼𝑗]𝑞)

= sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼(0)]𝑞)

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

×

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

𝑘−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼∞]𝑞)
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≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
[𝛼∞−(𝑠+𝛿+𝑛𝛿2)]𝑘𝑞

×

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑗𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

∞

∑

𝑘=𝑗+1

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼∞)𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

≲ Λ.

(92)

When 1 < 𝑞 < ∞, let 1/𝑞 + 1/𝑞
󸀠

= 1. Since 𝑛𝛿
2
⩽ 𝛼(0),

𝛼
∞
< 𝑠 + 𝛿 + 𝑛𝛿

2
, by Hölder’s inequality, we have

𝐼𝐼𝐼
2
= sup

𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩
(𝑇𝑏

𝑗
)𝜒

𝑘

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(⋅)
)

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

𝑘−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼𝑗])

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼(0)])

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
𝛼∞𝑘𝑞(

𝑘−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
[(𝑠+𝛿+𝑛𝛿2)(𝑗−𝑘)−𝑗𝛼∞])

𝑞

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

2
[𝛼∞−(𝑠+𝛿+𝑛𝛿2)]𝑘𝑞

× (

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑗)

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

𝑘−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨
2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼∞))

𝑞

≲ ( sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑗𝑞/2)

× (

−1

∑

𝑗=−∞

2
(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑗𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

(

𝑘−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼∞)𝑞/2)

× (

𝑘−1

∑

𝑗=0

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼∞)𝑞

󸀠
/2

)

𝑞/𝑞
󸀠

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑠+𝛿+𝑛𝛿2−𝛼(0))𝑗𝑞/2

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿

∑

𝑘=0

𝑘−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼∞)𝑞/2

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

𝐿

∑

𝑘=𝑗+1

2
(𝑗−𝑘)(𝑠+𝛿+𝑛𝛿2−𝛼∞)𝑞/2

≲ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

−1

∑

𝑗=−∞

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

+ sup
𝐿>0,𝐿∈Z

2
−𝐿𝜆𝑞

𝐿−1

∑

𝑗=0

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑞

≲ Λ.

(93)

Thus we have 𝐼𝐼𝐼 ≲ Λ. This finishes the proof of Theorem 14.

Definition 15. Let 𝐾 be a locally integrable function on R𝑛

×

R𝑛

\ {𝑥 = 𝑦}. Then𝐾 is called a standard kernel if there exist
𝛿 ∈ (0, 1] and 𝐶 > 0, such that

󵄨󵄨󵄨󵄨𝐾 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ⩽

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
, 𝑥 ̸= 𝑦;

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑦) − 𝐾 (𝑥, 𝑦

󸀠

)
󵄨󵄨󵄨󵄨󵄨
⩽ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦

󸀠
󵄨󵄨󵄨󵄨󵄨

𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+𝛿

,

󵄨󵄨󵄨󵄨󵄨
𝑦 − 𝑦

󸀠
󵄨󵄨󵄨󵄨󵄨
⩽
1

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 ;

󵄨󵄨󵄨󵄨󵄨
𝐾 (𝑥, 𝑦) − 𝐾 (𝑥

󸀠

, 𝑦)
󵄨󵄨󵄨󵄨󵄨
⩽ 𝐶

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠
󵄨󵄨󵄨󵄨󵄨

𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+𝛿

,

󵄨󵄨󵄨󵄨󵄨
𝑥 − 𝑥

󸀠
󵄨󵄨󵄨󵄨󵄨
⩽
1

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 .

(94)

A linear operator 𝑇 : S(R𝑛

) → S󸀠

(R𝑛

) is called a Cald-
erón-Zygmund operator associated to a standard kernel 𝐾 if

(i) 𝑇 can be extended to a bounded operator on 𝐿2(R𝑛

);
(ii) for any 𝑓 ∈ 𝐿

2 with compact support and almost
everywhere 𝑥 ∉ supp 𝑓,

𝑇𝑓 (𝑥) = ∫
R𝑛
𝐾(𝑥, 𝑦) 𝑓 (𝑦) d𝑦. (95)

It is well known that a Calderón-Zygmund operator is
also bounded in 𝐿𝑝(⋅) for any 𝑝(⋅) ∈ B(R𝑛

); for example, see
[38].

Corollary 16. Let 𝛼(⋅) be a bounded and log-Hölder contin-
uous both at the origin and infinity such that 𝑛𝛿

2
⩽ 𝛼(0),
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𝛼
∞
< 𝑛𝛿

2
+𝛿with 𝛿

2
as in Lemma 4. Suppose𝑇 is a Calderón-

Zygmund operator associated to a standard kernel 𝐾. If 𝑝(⋅) ∈
B(R𝑛

), 0 < 𝑞 < ∞, and 0 ≤ 𝜆 < ∞, then there exists a
constant 𝐶 such that

󵄩󵄩󵄩󵄩𝑇𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

,

󵄩󵄩󵄩󵄩𝑇𝑓
󵄩󵄩󵄩󵄩𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

⩽ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆

(96)

for 𝑓 ∈ 𝐻𝑀𝐾
𝛼(⋅),𝑞

𝑝(⋅),𝜆
and 𝑓 ∈ 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
, respectively.

Proof. It is easy to know that 𝑠 = max{[𝛼(0) − 𝑛𝛿
2
], [𝛼

∞
−

𝑛𝛿
2
]} = 0when 𝑛𝛿

2
⩽ 𝛼(0) and 𝛼

∞
< 𝑛𝛿

2
+𝛿. Then the result

follows fromTheorem 14.

Remark 17. For Hardy type spaces, there are some char-
acterizations: maximal function, square function, atomic
decomposition, and molecular decomposition. To discuss
the boundedness of singular integrals in Hardy type spaces,
we use the atomic decomposition for the domain Hardy
space, while it is convenient to use another characterization
of Hardy space for the target Hardy space; for example,
see the proof of Theorem 6.7.4 in [49] and [50, 51]. In a
future paper, we will give the molecular decomposition of
spaces 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
. Then, by the atomic and

molecular decompositions, we will obtain the boundedness
of 𝑇 in Corollary 16 from 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
and 𝐻𝑀𝐾

𝛼(⋅),𝑞

𝑝(⋅),𝜆
into

themselves, respectively.
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[19] P. A. Hästö, “Local-to-global results in variable exponent
spaces,” Mathematical Research Letters, vol. 16, no. 2, pp. 263–
278, 2009.

[20] H. Kempka, “2-microlocal Besov and Triebel-Lizorkin spaces of
variable integrability,” RevistaMatematica Complutense, vol. 22,
no. 1, pp. 227–251, 2009.

[21] H. Kempka, “Atomic, molecular and wavelet decomposition
of generalized 2-microlocal Besov spaces,” Journal of Function
Spaces and Applications, vol. 8, no. 2, pp. 129–165, 2010.

[22] E. Nakai and Y. Sawano, “Hardy spaces with variable exponents
and generalized Campanato spaces,” Journal of Functional
Analysis, vol. 262, no. 9, pp. 3665–3748, 2012.

[23] J. Xu, “Variable Besov and Triebel-Lizorkin spaces,” Annales
Academiæ Scientiarum Fennicæ Mathematica, vol. 33, no. 2, pp.
511–522, 2008.

[24] J.-S. Xu, “An atomic decomposition of variable Besov and
Triebel-Lizorkin spaces,”Armenian Journal ofMathematics, vol.
2, no. 1, pp. 1–12, 2009.

[25] T. Noi, “Duality of variable exponent Triebel-Lizorkin and
Besov spaces,” Journal of Function Spaces and Applications, vol.
2012, Article ID 361807, 19 pages, 2012.

[26] Y. Sawano, “Atomic decompositions of Hardy spaces with vari-
able exponents and its application to bounded linear operators,”



Journal of Function Spaces 19

Integral Equations and Operator Theory, vol. 77, no. 1, pp. 123–
148, 2013.

[27] M. Izuki, “Boundedness of sublinear operators on Herz spaces
with variable exponent and application to wavelet characteriza-
tion,” Analysis Mathematica, vol. 36, no. 1, pp. 33–50, 2010.

[28] A. Almeida and D. Drihem, “Maximal, potential and singular
type operators on Herz spaces with variable exponents,” Journal
of Mathematical Analysis and Applications, vol. 394, no. 2, pp.
781–795, 2012.

[29] C. Shi and J. Xu, “Herz type Besov and Triebel-Lizorkin spaces
with variable exponent,” Frontiers of Mathematics in China, vol.
8, no. 4, pp. 907–921, 2013.

[30] B. Dong and J. Xu, “New Herz type Besov and Triebel-Lizorkin
spaces with variable exponents,” Journal of Function Spaces and
Applications, vol. 2012, Article ID 384593, 27 pages, 2012.

[31] H. Wang and Z. Liu, “The Herz-type Hardy spaces with
variable exponent and their applications,” Taiwanese Journal of
Mathematics, vol. 16, no. 4, pp. 1363–1389, 2012.

[32] Z.-H. Xuan and L.-S. Shu, “Boundedness of higher order
commutators on Herz-Morrey spaces with variable exponent,”
Journal of Nanjing University Mathematical Biquarterly, vol. 30,
no. 2, pp. 188–196, 2013.

[33] Y. Lu and Y. P. Zhu, “Boundedness of multilinear Calderón-
Zygmund singular operators on Morrey-Herz spaces with
variable exponents,” Acta Mathematica Sinica (English Series),
vol. 30, no. 7, pp. 1180–1194, 2014.

[34] C. Tang, Q. Wu, and J. Xu, “Commutators of multilinear
Calderón-Zygmund operator and BMO functions in Herz-
Morrey spaces with variable exponents,” Journal of Function
Spaces, vol. 2014, Article ID 162518, 12 pages, 2014.

[35] W. Gao, Y. Jiang, and X. Gong, “Boundedness of linear commu-
tators on Herz-Morrey spaces on spaces of homogeneous type,”
Chinese Quarterly Journal ofMathematics, vol. 25, no. 2, pp. 172–
181, 2010.

[36] X. Q. Zhao andW.H.Gao, “Boundedness of sublinear operators
on Herz-Morrey spaces,” Applied Mathematics. A Journal of
Chinese Universities. Series A, vol. 20, no. 1, pp. 55–62, 2005.

[37] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces,
Applied and Numerical Harmonic Analysis, Birkhäuser, Hei-
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Firstly, we study the representation of 𝑔-frames in terms of linear combinations of simpler ones such as 𝑔-orthonormal bases, 𝑔-
Riesz bases, and normalized tight 𝑔-frames.Then, we study the dual and pseudodual of 𝑔-frames, which are critical components in
reconstructions. In particular, we characterize the dual 𝑔-frames in a constructive way; that is, the formulae for dual 𝑔-frames are
given. We also give some 𝑔-frame like representations for pseudodual 𝑔-frame pairs. The operator parameterizations of 𝑔-frames
and decompositions of bounded operators are the key tools to prove our main results.

1. Introduction

A sequence (𝑓
𝑖
)
𝑖∈𝐼

of elements of a Hilbert space𝐻 is called a
frame for𝐻 if there are constants 𝐴, 𝐵 > 0 so that

𝐴
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2
≤ ∑

𝑖∈𝐼

󵄨󵄨󵄨󵄨⟨𝑓, 𝑓𝑖⟩
󵄨󵄨󵄨󵄨
2
≤ 𝐵

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2
, ∀𝑓 ∈ 𝐻. (1)

The numbers𝐴 and𝐵 are called the lower (resp., upper) frame
bounds. The frame is a tight frame if 𝐴 = 𝐵 and a normalized
tight frame if 𝐴 = 𝐵 = 1.

The concept of frame first appeared in the late 40s and
early 50s (see [1–3]). The development and study of wavelet
theory during the last decades also brought new ideas and
attention to frames because of their close connections. There
are many related references on this topic, see [4–8].

In [9], Sun raised the concept of𝑔-frame as follows, which
generalized the concept of frame extensively. A sequence
{Λ
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈N} is called a 𝑔-frame for𝐻with respect

to {𝐻
𝑖
: 𝑖 ∈ N}, which is a sequence of closed subspaces of a

Hilbert space𝐾, if there exist two positive constants 𝐴 and 𝐵
such that, for any 𝑓 ∈ 𝐻,

𝐴
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2
≤ ∑

𝑖∈N

󵄩󵄩󵄩󵄩Λ 𝑖𝑓
󵄩󵄩󵄩󵄩
2
≤ 𝐵

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2
, (2)

where 𝐴 is called the lower 𝑔-frame bound and 𝐵 is called
the upper 𝑔-frame bound. The largest lower frame bound

and the smallest upper frame bound are called the optimal
lower 𝑔-frame bound and the optimal upper 𝑔-frame bound,
respectively. We simply call {Λ

𝑖
: 𝑖 ∈ N} a 𝑔-frame for 𝐻

whenever the space sequence {𝐻
𝑖
: 𝑖 ∈ N} is clear. The tight

𝑔-frame and normalized tight 𝑔-frame are defined similarly.
We call {Λ

𝑖
: 𝑖 ∈ N} a 𝑔-frame sequence, if it is a 𝑔-frame for

span{Λ∗
𝑖
(𝐻
𝑖
)}
𝑖∈N. We call {Λ

𝑖
: 𝑖 ∈ N} a 𝑔-Bessel sequence, if

only the right inequality is satisfied. A 𝑔-frame {Γ
𝑗
: 𝑗 ∈ N}

for 𝐻 is called an alternate dual 𝑔-frame of {Λ
𝑗
: 𝑗 ∈ N}, if

for every 𝑓 ∈ 𝐻, we have

𝑓 = ∑

𝑗∈𝑁

Λ
𝑗
∗ Γ
𝑗
𝑓 = ∑

𝑗∈N

Γ
∗

𝑗
Λ
𝑗
𝑓. (3)

If {Λ
𝑗
: 𝑗 ∈N} is a𝑔-frame for𝐻, then the operator 𝑆 ∈ 𝐵(𝐻)

such that

𝑆𝑓 = ∑

𝑗∈N

Λ
∗

𝑗
Λ
𝑗
𝑓, ∀𝑓 ∈ 𝐻 (4)

is called the 𝑔-fame operator associated with {Λ
𝑗
: 𝑗 ∈ N}.

It is well-known that {Λ
𝑗
𝑆
−1
: 𝑗 ∈ N} is a dual 𝑔-frame of

{Λ
𝑗
: 𝑗 ∈ N}, which is called the canonical dual 𝑔-frame

associated with {Λ
𝑗
: 𝑗 ∈ N}. In this paper, we use dual of

𝑔-frames to denote any of the duals. Recently, 𝑔-frames in
Hilbert spaces have been studied intensively; formore details,
see [10–16] and the references therein.
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Frames and𝑔-frames have advantages of allowing decom-
posing and reconstructing elements in Hilbert spaces, in
which the dual and pseudodual of frames (𝑔-frames) play
important roles. Characterizing dual frames and general
frame decompositions is an important problem in pure
and applied fields. In [17–22], the authors study the dual
frames and frame-like decompositions in Hilbert spaces. In
particular, Li derived a general parametric and algebraic
formula for all duals of a frame in [17] and introduced the
pseudoframe decompositions in [18]. In this paper,motivated
by these works on frames, we consider similar problems on
𝑔-frames in Hilbert spaces and generalize the corresponding
results on frames to 𝑔-frames. Another interesting problem
in frame theory is representing general 𝑔-frames in terms of
special and more simpler 𝑔-frames such as 𝑔-orthonormal
bases, 𝑔-Riesz bases, and normalized tight 𝑔-frames. In [23],
the authors study similar questions on frames in Hilbert
spaces by applying the techniques of decomposing linear
bounded operators. In this paper, we will study the decom-
positions of 𝑔-frames in Hilbert spaces by using similar
techniques combing with what we have obtained on the
operator parameterizations for 𝑔-frames in [24].

Throughout this paper, we use N to denote the set of
natural numbers and C to denote the complex plane. All
Hilbert spaces in this paper are assumed to be separable
complex Hilbert spaces. This paper is organized as follows.
In Section 2, we give some definitions and lemmas which are
needed to understand the following sections. In Section 3,
we consider the decomposition of 𝑔-frames. In Section 4, the
dual and pseudodual of 𝑔-frames are considered.

2. Preliminary Definitions and Lemmas

In this section, we introduce some basic definitions and
lemmas which are necessary for the following sections.

Definition 1. Let Λ
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
), 𝑖 ∈N.

(i) If {𝑓 : Λ
𝑖
𝑓 = 0, 𝑖 ∈ N} = {0}, then we say that {Λ

𝑖
:

𝑖 ∈N} is 𝑔-complete.
(ii) If {Λ

𝑖
: 𝑖 ∈ N} is 𝑔-complete and there are positive

constants 𝐴 and 𝐵 such that, for any finite subset 𝐽 ⊂
N and 𝑔

𝑗
∈ 𝐻
𝑗
, 𝑗 ∈ 𝐽,

𝐴∑

𝑗∈𝐽

󵄩󵄩󵄩󵄩󵄩
𝑔
𝑗

󵄩󵄩󵄩󵄩󵄩

2

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑗∈𝐽

Λ
∗

𝑗
𝑔
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐵∑

𝑗∈𝐽

󵄩󵄩󵄩󵄩󵄩
𝑔
𝑗

󵄩󵄩󵄩󵄩󵄩

2

, (5)

then we say that {Λ
𝑖
: 𝑖 ∈ N} is a 𝑔-Riesz basis for𝐻

with respect to {𝐻
𝑖
: 𝑖 ∈N}.

(iii) We say {Λ
𝑖
: 𝑖 ∈ N} is a 𝑔-orthonormal basis for 𝐻

with respect to {𝐻
𝑖
: 𝑖 ∈N} if it satisfies the following:

⟨Λ
∗

𝑖
𝑔
𝑖
, Λ
∗

𝑗
𝑔
𝑗
⟩ = 𝛿
𝑖𝑗
⟨𝑔
𝑖
, 𝑔
𝑗
⟩ ,

∀𝑖, 𝑗 ∈N, 𝑔
𝑖
∈ 𝐻
𝑖
, 𝑔
𝑗
∈ 𝐻
𝑗
,

∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
Λ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2
, ∀𝑓 ∈ 𝐻.

(6)

Remark 2. It is obvious that any 𝑔-frame {Λ
𝑖
: 𝑖 ∈ N} is 𝑔-

complete and any 𝑔-orthonormal basis is a normalized tight
𝑔-frame.

Definition 3. Suppose that Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
), Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
)

for any 𝑗 ∈ N. If, for any 𝑥, 𝑦 ∈ 𝐻, we have ⟨𝑥, 𝑦⟩ =

∑
𝑗∈N⟨Λ 𝑗𝑥, Γ𝑗𝑦⟩, then we call {Λ

𝑗
: 𝑗 ∈ N} and {Γ

𝑗
: 𝑗 ∈ N}

a pair of pseudodual 𝑔-frames for𝐻. In particular, if {Λ
𝑗
: 𝑗 ∈

N} is a 𝑔-frame for 𝐻, we call {Γ
𝑗
: 𝑗 ∈ N} a pseudodual

𝑔-frame of {Λ
𝑗
: 𝑗 ∈N}.

Lemma 4 (see [25]). Let𝐻 be a Hilbert space. Then,

(1) for every invertible operator 𝑈 ∈ 𝐵(𝐻), there exists a
unique decomposition 𝑈 = 𝑊𝑃, where𝑊 is a unitary
operator and 𝑃 is a positive operator.

(2) for every positive operator 𝑃 ∈ 𝐵(𝐻) with ‖𝑃‖ ≤ 1,
𝑃 = (1/2)(𝑊 + 𝑊

∗
), where 𝑊 = 𝑃 + 𝑖√𝐼 − 𝑃2 is a

unitary operator.

Lemma 5 (see [26]). Given Hilbert space𝐻 and a sequence of
closed subspaces {𝐻

𝑗
: 𝑗 ∈ N} of a Hilbert space 𝐾, then there

exists a 𝑔-orthonormal basis {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} for

𝐻 with respect to {𝐻
𝑗
: 𝑗 ∈ N} if and only if ∑

𝑗∈N dim𝐻
𝑗
=

dim𝐻.

Lemma 6 (see [24]). Let {𝜃
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} be a 𝑔-

orthonormal basis for 𝐻 with respect to {𝐻
𝑗
: 𝑗 ∈ N}. Then,

the sequence {Λ
𝑗
: 𝑗 ∈ N} is a 𝑔-Bessel sequence for𝐻 if and

only if there is a unique bounded operator 𝑉 ∈ 𝐵(𝐻) such that
Λ
𝑗
= 𝜃
𝑗
𝑉
∗ for all 𝑗 ∈N.

Remark 7. Given the 𝑔-orthonormal basis {𝜃
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) :

𝑖 ∈ 𝑁}, the operator 𝑉 in Lemma 6 is called the 𝑔-preframe
operator associated with {Λ

𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁}.

Lemma 8 (see [24]). Suppose that {𝜃
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁} is

a 𝑔-orthonormal basis for𝐻, {Λ
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁} is a 𝑔-

Bessel sequence for𝐻, and𝑉 and 𝑆 are the 𝑔-preframe operator
and𝑔-frame operator associatedwith {Λ

𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁},

respectively. Then

(1) {Λ
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁} is a 𝑔-frame if and only if𝑉 is

onto;

(2) {Λ
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁} is a normalized tight 𝑔-frame

if and only if 𝑉 is a coisometry;

(3) {Λ
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁} is a 𝑔-Riesz basis if and only

if 𝑉 is invertible;

(4) {Λ
𝑖
∈ 𝐵(𝐻,𝐻

𝑖
) : 𝑖 ∈ 𝑁} is a 𝑔-orthonormal basis if

and only if 𝑉 is unitary.

Lemma 9 (see [23]). Let 𝑇 ∈ 𝐵(𝐻) be onto; then 𝑇 can be
written as a linear combination of two unitary operators if and
only if 𝑇 is invertible.



Journal of Function Spaces 3

3. Decompositions of 𝑔-Frames

In this section, we do some research on the decompositions
of 𝑔-frames in Hilbert spaces by using similar techniques in
[23] combing with what we have established on the operator
parameterizations for 𝑔-frames in [24].

Theorem 10. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is

a 𝑔-Bessel sequence for 𝐻. Let T be the 𝑔-preframe operator
associated with {Λ

𝑗
: 𝑗 ∈ N}. Then, for any 𝜀 ∈ (0, 1), there

exist three 𝑔-orthonormal bases {𝜃𝑙
𝑗
: 𝑗 ∈ N} (𝑙 = 1, 2, 3) such

that Λ
𝑗
= (1 − 𝜀)

−1
‖𝑇‖(𝜃

1

𝑗
+ 𝜃
2

𝑗
+ 𝜃
3

𝑗
) for any 𝑗 ∈N.

Proof. Since we have assumed that all Hilbert spaces are
separable, the 𝑔-orthonormal bases for 𝐻 with respect to
{𝐻
𝑗
: 𝑗 ∈ N} exist by Lemma 5. Let {𝜃

𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N}

be a 𝑔-orthonormal basis for𝐻 with respect to {𝐻
𝑗
: 𝑗 ∈N}.

Since {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-Bessel sequence

for 𝐻, there exists a bounded operator 𝑇 ∈ 𝐵(𝐻) such that
Λ
𝑗
= 𝜃
𝑗
𝑇
∗ for any 𝑗 ∈ N by Lemma 6. Define an operator

𝑈 ∈ 𝐵(𝐻) by 𝑈 = (1/2)𝐼 + ((1 − 𝜀)/2) ⋅ (𝑇∗/‖𝑇‖), where 𝐼 is
the identity operator on𝐻. Since

‖𝐼 − 𝑈‖ =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝐼 −

1 − 𝜀

2
⋅
𝑇
∗

‖𝑇‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝐼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1 − 𝜀

2
⋅
𝑇
∗

‖𝑇‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

2
+
1 − 𝜀

2
= 1 −

𝜀

2
< 1,

(7)

𝑈 is invertible. By Lemma 4, there exist a unitary 𝑉 and a
positive operator 𝑃 such that 𝑈 = 𝑉𝑃. Since

‖𝑃‖ =
󵄩󵄩󵄩󵄩󵄩
𝑉
−1
𝑈
󵄩󵄩󵄩󵄩󵄩
≤ ‖𝑈‖

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
𝐼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1 − 𝜀

2
⋅
𝑇
∗

‖𝑇‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

2
+
1 − 𝜀

2
≤ 1,

(8)

𝑃 = (1/2)(𝑊
∗
+ 𝑊), where𝑊 = 𝑃 + 𝑖√𝐼 − 𝑃2 is a unitary

operator by Lemma 4. So

𝑇
∗
=
2 ‖𝑇‖

1 − 𝜀
(𝑈 −

1

2
𝐼)

=
2 ‖𝑇‖

1 − 𝜀
(
𝑉

2
(𝑊 +𝑊

∗
) −

𝐼

2
)

=
‖𝑇‖

1 − 𝜀
(𝑉𝑊 + 𝑉𝑊

∗
− 𝐼) .

(9)

Hence,

Λ
𝑗
= 𝜃
𝑗
𝑇
∗
= 𝜃
𝑗
⋅
‖𝑇‖

1 − 𝜀
(𝑉𝑊 + 𝑉𝑊

∗
− 𝐼)

=
‖𝑇‖

1 − 𝜀
(𝜃
𝑗
𝑉𝑊 + 𝜃

𝑗
𝑉𝑊
∗
− 𝜃
𝑗
) .

(10)

Denote 𝜃1
𝑗
= 𝜃
𝑗
𝑉𝑊, 𝜃2

𝑗
= 𝜃
𝑗
𝑉𝑊
∗, and 𝜃3

𝑗
= −𝜃
𝑗
for any

𝑗 ∈ N. Then, it is easy to see that {𝜃𝑙
𝑗
: 𝑗 ∈ N} (𝑙 = 1, 2, 3)

are 𝑔-orthonormal bases for 𝐻, since 𝑉 and 𝑊 are unitary
operators. So Λ

𝑗
= (1 − 𝜀)

−1
‖𝑇‖(𝜃

1

𝑗
+ 𝜃
2

𝑗
+ 𝜃
3

𝑗
) for any 𝑗 ∈

N.

Since a 𝑔-frame is of course a 𝑔-Bessel sequence, the
following corollary is obvious.

Corollary 11. Every 𝑔-frame can be represented as a multiple
of sum of three 𝑔-orthonormal bases.

Theorem 12. A 𝑔-frame {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} for𝐻 can

be written as a linear combination of two 𝑔-orthonormal bases
for𝐻 if and only if {Λ

𝑗
: 𝑗 ∈N} is a 𝑔-Riesz basis for𝐻.

Proof. ⇒: Suppose that {Γ
𝑗
: 𝑗 ∈ N} and {𝐿

𝑗
: 𝑗 ∈ N} are

𝑔-orthonormal bases for 𝐻 such that Λ
𝑗
= 𝑎 ⋅ Γ

𝑗
+ 𝑏 ⋅ 𝐿

𝑗

for any 𝑗 ∈N. By Lemma 8, there exist surjective operator 𝑇
and unitary operator𝑈 such thatΛ

𝑗
= Γ
𝑗
𝑇
∗ and 𝐿

𝑗
= Γ
𝑗
𝑈 for

any 𝑗 ∈N. So, Γ
𝑗
𝑇
∗
= 𝑎 ⋅ Γ

𝑗
+ 𝑏 ⋅ Γ

𝑗
𝑈, ∀𝑗 ∈N. Hence, 𝑇Γ∗

𝑗
=

𝑎 ⋅Γ
∗

𝑗
+𝑏 ⋅𝑈

∗
Γ
∗

𝑗
, ∀𝑗 ∈N. It implies that 𝑇 = 𝑎 ⋅ 𝐼+𝑏 ⋅𝑈∗, since

Span{Λ∗
𝑗
(𝐻
𝑗
) : 𝑗 ∈ N} = 𝐻. So 𝑇 is invertible by Lemma 9.

Hence, {Λ
𝑗
: 𝑗 ∈N} is a 𝑔-Riesz basis for𝐻.

⇐: Since {Λ
𝑗
: 𝑗 ∈ N} is a 𝑔-Riesz basis for 𝐻, there

exist a 𝑔-orthonormal basis {𝜃
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} and an

invertible operator 𝑇 ∈ 𝐵(𝐻) such that Λ
𝑗
= 𝜃
𝑗
𝑇
∗ for any

𝑗 ∈N by Lemma 8.There exist two unitary operators𝑈
1
and

𝑈
2
in 𝐵(𝐻) and constants 𝑎, 𝑏 such that 𝑇∗ = 𝑎 ⋅𝑈

1
+𝑏 ⋅𝑈

2
by

Lemma 9. SoΛ
𝑗
= 𝜃
𝑗
𝑇
∗
= 𝜃
𝑗
(𝑎⋅𝑈
1
+𝑏⋅𝑈
2
) = 𝑎⋅𝜃

𝑗
𝑈
1
+𝑏⋅𝜃
𝑗
𝑈
2

for any 𝑗 ∈ N. Since {𝜃
𝑗
𝑈
1
: 𝑗 ∈ N} and {𝜃

𝑗
𝑈
2
: 𝑗 ∈ N} are

𝑔-orthonormal bases for 𝐻 by Lemmas 8 and 9, the result
follows.

Theorem 13. Every 𝑔-frame for 𝐻 is a multiple of two
normalized tight 𝑔-frames for𝐻.

Proof. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈N} is a 𝑔-frame for

𝐻 and {𝜃
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-orthonormal basis for

𝐻.Then, there exists a surjective operator𝑇 ∈ 𝐵(𝐻) such that
Λ
𝑗
= 𝜃
𝑗
𝑇
∗ for any 𝑗 ∈N by Lemma 8. Let𝑈 = 𝑇/2‖𝑇‖.Then,

‖𝑈‖ = 1/2 < 1 and 𝑈 is also surjective. Suppose that 𝑈 = 𝑉𝑃
is the polar decomposition of𝑈, where𝑉 is a coisometry and
𝑃 is a positive operator in 𝐵(𝐻). Since ‖𝑃‖ = ‖𝑉∗𝑈‖ ≤ ‖𝑈‖ <
1, then 𝑃 = (1/2)(𝑊 + 𝑊

∗
) with𝑊 = 𝑃 + 𝑖√𝐼 − 𝑃2 being a

unitary operator. So 𝑈 = 𝑉𝑃 = (1/2)𝑉(𝑊 + 𝑊
∗
). It follows

that 𝑇 = 2‖𝑇‖𝑈 = ‖𝑇‖(𝑉𝑊 + 𝑉𝑊
∗
). So

Λ
𝑗
= 𝜃
𝑗
𝑇
∗
= 𝜃
𝑗 ‖𝑇‖ (𝑊

∗
𝑉
∗
+𝑊𝑉

∗
)

= ‖𝑇‖ (𝜃𝑗𝑊
∗
𝑉
∗
+ 𝜃
𝑗
𝑊𝑉
∗
) .

(11)

Since 𝑉𝑊 and 𝑉𝑊∗ are coisometries, {𝜃
𝑗
𝑊
∗
𝑉
∗
: 𝑗 ∈ N}

and {𝜃
𝑗
𝑊𝑉
∗
: 𝑗 ∈ N} are normalized tight 𝑔-frames for 𝐻

by Lemma 8. This finishes the proof.

Theorem 14. Every 𝑔-frame for 𝐻 is a multiple of the sum of
a 𝑔-orthonormal basis for𝐻 and a 𝑔-Riesz basis for𝐻.
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Proof. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-frame

for𝐻 and {𝜃
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-orthonormal basis

for𝐻. Let𝑇 be the 𝑔-preframe operator associated with {Λ
𝑗
:

𝑗 ∈ N}; then Λ
𝑗
= 𝜃
𝑗
𝑇
∗ for any 𝑗 ∈ N. Define operator 𝑆 by

𝑆 = (3/4)𝐼 + (1/4)(1 − 𝜀) ⋅ (𝑇
∗
/‖𝑇‖); then

‖𝐼 − 𝑆‖ =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐼

4
−
1

4
⋅ (1 − 𝜀) ⋅

𝑇
∗

‖𝑇‖

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

4
⋅ 𝐼

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+
1 − 𝜀

4
< 1,

‖𝑆‖ ≤
3

4
+
1 − 𝜀

4
< 1.

(12)

So 𝑆 is invertible. Let 𝑆 = 𝑉𝑃 be the polar decomposition of 𝑆.
Then, 𝑉 is a unitary operator and 𝑃 is a positive operator by
Lemma 4. Since 𝑃 = 𝑉∗𝑆, ‖𝑃‖ = ‖𝑉∗𝑆‖ ≤ ‖𝑉∗‖ ⋅ ‖𝑆‖ < 1. So
𝑃 = (1/2)(𝑊+𝑊

∗
) by Lemma 4, where𝑊 = 𝑃+ 𝑖√𝐼 − 𝑃2 is

a unitary operator. So 𝑆 = 𝑉𝑃 = (1/2)(𝑉𝑊+𝑉𝑊∗). It implies
that

𝑇
∗
=
4 ‖𝑇‖

1 − 𝜀
(𝑆 −

3

4
⋅ 𝐼)

=
4 ‖𝑇‖

1 − 𝜀
(
1

2
⋅ (𝑉𝑊 + 𝑉𝑊

∗
) −

3

4
⋅ 𝐼)

=
2 ‖𝑇‖

1 − 𝜀
(𝑉𝑊 + 𝑉𝑊

∗
−
3

2
⋅ 𝐼)

=
2 ‖𝑇‖

1 − 𝜀
(𝑉𝑊 + 𝑅) ,

(13)

where 𝑅 = 𝑉𝑊∗ − (3/2) ⋅ 𝐼. Since
󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐼 −

−1

2
⋅ 𝑅

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐼

4
+
1

2
𝑉𝑊
∗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐼

4

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

2
⋅ 𝑉𝑊
∗
󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

4
+
1

2
=
3

4
< 1,

(14)

−(1/2) ⋅ 𝑅 is invertible. Hence, 𝑅 is invertible. So

Λ
𝑗
= 𝜃
𝑗
𝑇
∗
= 𝜃
𝑗
⋅
2 ‖𝑇‖

1 − 𝜀
⋅ (𝑉𝑊 + 𝑅)

=
2 ‖𝑇‖

1 − 𝜀
(𝜃
𝑗
𝑉𝑊 + 𝜃

𝑗
𝑅) .

(15)

Since {𝜃
𝑗
𝑉𝑊 : 𝑗 ∈ N} is a 𝑔-orthonormal basis for 𝐻 and

{𝜃
𝑗
𝑅 : 𝑗 ∈ N} is a 𝑔-Riesz basis for 𝐻 by Lemma 8, {Λ

𝑗
:

𝑗 ∈N} is a multiple of a sum of a 𝑔-orthonormal basis and a
𝑔-Riesz basis for𝐻.

4. Dual and Pseudodual 𝑔-Frames

In this section, we consider the characterizations of dual
and pseudodual 𝑔-frames. The algebraic formula about the
dual of 𝑔-frames for a given 𝑔-frame will be given and
some properties on dual and pseudodual 𝑔-frames will be
established.

Theorem 15. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-

frame for𝐻 and {𝜃
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-orthonormal

basis for 𝐻. Suppose that the 𝑔-preframe operator associated
with {Λ

𝑗
: 𝑗 ∈N} is𝑇; that is,Λ

𝑗
= 𝜃
𝑗
𝑇
∗ for any 𝑗 ∈N.Then,

{Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a dual 𝑔-frame of {Λ

𝑗
: 𝑗 ∈ N} if

and only if Γ
𝑗
= 𝜃
𝑗
𝑉
∗ for any 𝑗 ∈N, where𝑉 is a bounded left

inverse of 𝑇∗.

Proof. ⇒: Suppose that {Γ
𝑗
: 𝑗 ∈ N} is a dual 𝑔-frame of

{Λ
𝑗
: 𝑗 ∈ N}. Let 𝑉 be the 𝑔-preframe operator of {Γ

𝑗
: 𝑗 ∈

N}. Then, Γ
𝑗
= 𝜃
𝑗
𝑉
∗ for any 𝑗 ∈N and 𝑉 is bounded. Since,

for any 𝑓 ∈ 𝐻, we have 𝑓 = ∑
𝑗∈N Λ

∗

𝑗
Γ
𝑗
𝑓,

𝑓 = ∑

𝑗∈N

𝑇𝜃
∗

𝑗
𝜃
𝑗
𝑉
∗
𝑓 = 𝑇∑

𝑗∈N

𝜃
∗

𝑗
𝜃
𝑗
𝑉
∗
𝑓 = 𝑇𝑉

∗
𝑓. (16)

It implies that 𝑇𝑉∗ = 𝐼. Hence, 𝑉𝑇∗ = 𝐼. It follows that 𝑉 is
a bounded left inverse of 𝑇∗.

⇐: Since 𝑉𝑇∗ = 𝐼, 𝑉 is bounded surjective operator in
𝐵(𝐻). Hence, {Γ

𝑗
: 𝑗 ∈ N} is a 𝑔-frame for 𝐻 by Lemma 8.

Since

∑

𝑗∈N

Λ
∗

𝑗
Γ
𝑗
𝑓 = ∑

𝑗∈N

𝑇𝜃
∗

𝑗
𝜃
𝑗
𝑉
∗
𝑓 = 𝑇∑

𝑗∈N

𝜃
∗

𝑗
𝜃
𝑗
𝑉
∗
𝑓

= 𝑇𝑉
∗
𝑓 = 𝑓, ∀𝑓 ∈ 𝐻,

(17)

{Γ
𝑗
: 𝑗 ∈N} is a dual 𝑔-frame for𝐻.

Lemma 16. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-

frame for𝐻, whose𝑔-preframe operator is𝑇.Then,𝑉 is a linear
bounded left inverse of 𝑇∗ if and only if

𝑉 = 𝑆
−1
𝑇 +𝑊(𝐼 − 𝑇

∗
𝑆
−1
𝑇) , (18)

where 𝑆 is the 𝑔-frame operator associated with {Λ
𝑗
: 𝑗 ∈ N},

𝑊 ∈ 𝐵(𝐻), and 𝐼 is the identity operator in 𝐵(𝐻).

Proof. ⇒: Suppose 𝑉 is a linear bounded left inverse of 𝑇∗.
Let𝑊 = 𝑉. Then

𝑆
−1
𝑇 + 𝑉 (𝐼 − 𝑇

∗
𝑆
−1
𝑇) = 𝑆

−1
𝑇 + 𝑉 − 𝑉𝑇

∗
𝑆
−1
𝑇

= 𝑆
−1
𝑇 + 𝑉 − 𝑆

−1
𝑇 = 𝑉.

(19)

⇐: Suppose 𝑉 = 𝑆−1𝑇 +𝑊(𝐼 − 𝑇∗𝑆−1𝑇). Then

𝑉𝑇
∗
= 𝑆
−1
𝑇𝑇
∗
+𝑊(𝐼 − 𝑇

∗
𝑆
−1
𝑇)𝑇
∗

= 𝑆
−1
𝑆 +𝑊(𝑇

∗
− 𝑇
∗
𝑆
−1
𝑇𝑇
∗
) = 𝐼.

(20)

Hence, 𝑉 is a linear bounded left inverse of 𝑇∗.

Theorem 17. Suppose {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a 𝑔-

frame for𝐻, 𝑇 is its 𝑔-preframe operator, and 𝑆 is its 𝑔-frame
operator. Let {𝜃

𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} be a 𝑔-orthonormal

basis for𝐻. Then, {Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a dual 𝑔-frame

of {Λ
𝑗
: 𝑗 ∈ N} if and only if there exists a bounded operator

𝑊 ∈ 𝐵(𝐻) such that

Γ
𝑗
= Λ
𝑗
𝑆
−1
+ 𝜃
𝑗
𝑊
∗
− Λ
𝑗
𝑆
−1
𝑇𝑊
∗
, ∀𝑗 ∈N. (21)
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Proof. ⇒: Suppose that {Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a dual 𝑔-

frame of {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N}. Then, by Theorem 15,

we know that Γ
𝑗
= 𝜃
𝑗
𝑉
∗ for any 𝑗 ∈ N, where 𝑉 is a

linear bounded left inverse of 𝑇∗. By Lemma 16, 𝑉 = 𝑆−1𝑇 +
𝑊(𝐼−𝑇

∗
𝑆
−1
𝑇) for some linear bounded operator𝑊 ∈ 𝐵(𝐻).

Hence, for any 𝑗 ∈N, we have

Γ
𝑗
= 𝜃
𝑗
𝑉
∗
= 𝜃
𝑗
(𝑆
−1
𝑇 +𝑊(𝐼 − 𝑇

∗
𝑆
−1
𝑇))
∗

= 𝜃
𝑗
(𝑇
∗
𝑆
−1
+𝑊
∗
− 𝑇
∗
𝑆
−1
𝑇𝑊
∗
)

= 𝜃
𝑗
𝑇
∗
𝑆
−1
+ 𝜃
𝑗
𝑊
∗
− 𝜃
𝑗
𝑇
∗
𝑆
−1
𝑇𝑊
∗

= Λ
𝑗
𝑆
−1
+ 𝜃
𝑗
𝑊
∗
− Λ
𝑗
𝑆
−1
𝑇𝑊
∗
.

(22)

⇐: Suppose that there exists a linear bounded operator𝑊 ∈

𝐵(𝐻) such that Γ
𝑗
= Λ
𝑗
𝑆
−1
+ 𝜃
𝑗
𝑊
∗
− Λ
𝑗
𝑆
−1
𝑇𝑊
∗. Then,

Γ
𝑗
= 𝜃
𝑗
𝑇
∗
𝑆
−1
+ 𝜃
𝑗
𝑊
∗
− 𝜃
𝑗
𝑇
∗
𝑆
−1
𝑇𝑊
∗

= 𝜃
𝑗
(𝑇
∗
𝑆
−1
+𝑊
∗
− 𝑇
∗
𝑆
−1
𝑇𝑊
∗
)

= 𝜃
𝑗
(𝑆
−1
𝑇 +𝑊 −𝑊𝑇

∗
𝑆
−1
𝑇)
∗

.

(23)

So {Γ
𝑗
: 𝑗 ∈ N} is a 𝑔-Bessel sequence for 𝐻 and the 𝑔-

preframe operator associated with {Γ
𝑗
: 𝑗 ∈N} is

𝑉 = 𝑆
−1
𝑇 +𝑊 −𝑊𝑇

∗
𝑆
−1
𝑇

= 𝑆
−1
𝑇 +𝑊(𝐼 − 𝑇

∗
𝑆
−1
𝑇) .

(24)

Since 𝑉 is a linear bounded left inverse of 𝑇∗ by Lemma 16,
𝑉𝑇
∗
= 𝐼. Therefore, {Γ

𝑗
: 𝑗 ∈ N} is a dual 𝑔-frame of {Λ

𝑗
:

𝑗 ∈N} byTheorem 15.

Theorem 18. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a

𝑔-frame for 𝐻. If {Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a pseudodual

𝑔-frame of {Λ
𝑗
: 𝑗 ∈N}, then {Γ

𝑗
: 𝑗 ∈N} has lower 𝑔-frame

bound.

Proof. Since {Γ
𝑗
: 𝑗 ∈N} is a pseudodual 𝑔-frame of {Λ

𝑗
: 𝑗 ∈

N}, ⟨𝑥, 𝑦⟩ = ∑
𝑗∈N⟨Λ 𝑗𝑥, Γ𝑗𝑦⟩ for any 𝑥, 𝑦 ∈ 𝐻. In particular,

⟨𝑥, 𝑥⟩ = ∑
𝑗∈N⟨Λ 𝑗𝑥, Γ𝑗𝑥⟩; that is, ‖𝑥‖

2
= ∑
𝑗∈N⟨Λ 𝑗𝑥, Γ𝑗𝑥⟩.

Since

∑

𝑗∈N

⟨Λ
𝑗
𝑥, Γ
𝑗
𝑥⟩ ≤ ∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
Λ
𝑗
𝑥
󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
Γ
𝑗
𝑥
󵄩󵄩󵄩󵄩󵄩

≤ (∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
Λ
𝑗
𝑥
󵄩󵄩󵄩󵄩󵄩

2

)

1/2

⋅ (∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
Γ
𝑗
𝑥
󵄩󵄩󵄩󵄩󵄩

2

)

1/2

≤ (𝐵‖𝑥‖
2
)
1/2

⋅ (∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
Γ
𝑗
𝑥
󵄩󵄩󵄩󵄩󵄩

2

)

1/2

,

(25)

where 𝐵 is the upper 𝑔-frame bound of {Λ
𝑗
: 𝑗 ∈N}, hence,

∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
Γ
𝑗
𝑥
󵄩󵄩󵄩󵄩󵄩

2

≥
1

𝐵
⋅ ‖𝑥‖
2
. (26)

So {Γ
𝑗
: 𝑗 ∈N} has lower 𝑔-frame bound.

Corollary 19. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is a

𝑔-frame for 𝐻 and {Γ
𝑗
: 𝑗 ∈ N} is a pseudodual 𝑔-frame of

{Λ
𝑗
: 𝑗 ∈N}; then {Γ

𝑗
: 𝑗 ∈N} is 𝑔-complete.

Proof. Since {Γ
𝑗
: 𝑗 ∈ N} has lower 𝑔-frame bound by

Theorem 18, there exists a constant 𝐵 > 0 such that

∑

𝑗∈N

󵄩󵄩󵄩󵄩󵄩
Γ
𝑗
𝑥
󵄩󵄩󵄩󵄩󵄩

2

≥ 𝐵‖𝑥‖
2
, ∀𝑥 ∈ 𝐻. (27)

If Γ
𝑗
𝑥 = 0, for all 𝑗 ∈N, then 𝐵‖𝑥‖2 = 0; it follows that 𝑥 = 0.

So {Γ
𝑗
: 𝑗 ∈N} is 𝑔-complete.

Theorem 20. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} and

{Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} are a pair of pseudodual 𝑔-frames

for 𝐻. Then, for any 𝑥 ∈ 𝐻, 𝑥 = ∑
𝑗∈N Λ

∗

𝑗
Γ
𝑗
𝑥 if and only if

𝑥 = ∑
𝑗∈N Γ
∗

𝑗
Λ
𝑗
𝑥, where the series converge in norm of𝐻.

Proof. It is obvious that we only need to prove one direction;
the other direction is identical. Now, suppose that 𝑥 =

∑
𝑗∈N Λ

∗

𝑗
Γ
𝑗
𝑥. Since {Λ

𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} and {Γ

𝑗
∈

𝐵(𝐻,𝐻
𝑗
) : 𝑗 ∈ N} are a pair of pseudodual 𝑔-frames for

𝐻, we have ⟨𝑥, 𝑦⟩ = ∑
𝑗∈N⟨Λ 𝑗𝑥, Γ𝑗𝑦⟩∀𝑥, 𝑦 ∈ 𝐻. It is obvious

that𝑓
𝑁
(𝑦) = |∑

𝑁

𝑗=1
⟨Λ
𝑗
𝑥, Γ
𝑗
𝑦⟩−⟨𝑥, 𝑦⟩| is aweakly continuous

function on𝐻 and lim
𝑁→∞

𝑓
𝑁
(𝑦) = 0 for each 𝑥 ∈ 𝐻. Since

the closed unit ball of 𝐻 is weakly compact, for any 𝜀 > 0,
there exists𝑁

0
> 0 such that, for any ‖𝑦‖ ≤ 1 and any𝑁 > 𝑁

0
,

we have 𝑓
𝑁
(𝑦) < 𝜀. So whenever𝑁 > 𝑁

0
, we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑁

∑

𝑗=1

Γ
∗

𝑗
Λ
𝑗
𝑥 − 𝑥

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= sup
‖𝑦‖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨

𝑁

∑

𝑗=1

Γ
∗

𝑗
Λ
𝑗
𝑥 − 𝑥, 𝑦⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
‖𝑦‖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⟨

𝑁

∑

𝑗=1

Γ
∗

𝑗
Λ
𝑗
𝑥, 𝑦⟩ − ⟨𝑥, 𝑦⟩

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= sup
‖𝑦‖=1

𝑓
𝑁
(𝑦) ≤ 𝜀.

(28)

Hence, 𝑥 = ∑
𝑗∈N Γ
∗

𝑗
Λ
𝑗
𝑥.

Corollary 21. Suppose that {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} and

{Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈N}are a pair of pseudo𝑔-frames, 𝑥

0
∈ 𝐻.

If ∑
𝑗∈N Λ

∗

𝑗
Γ
𝑗
𝑥
0
is convergent, then

𝑥
0
= ∑

𝑗∈N

Λ
∗

𝑗
Γ
𝑗
𝑥
0
= ∑

𝑗∈N

Γ
∗

𝑗
Λ
𝑗
𝑥
0
. (29)

Proof. Since {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} and {Γ

𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) :

𝑗 ∈N}are a pair of pseudo 𝑔-frames, for any 𝑦 ∈ 𝐻, we have

⟨𝑦, 𝑥
0
⟩ = ∑

𝑗∈N

⟨Λ
𝑗
𝑦, Γ
𝑗
𝑥
0
⟩ = ⟨𝑦, ∑

𝑗∈N

Λ
∗

𝑗
Γ
𝑗
𝑥
0
⟩. (30)

So 𝑥
0
= ∑
𝑗∈N Λ

∗

𝑗
Γ
𝑗
𝑥
0
. It follows that 𝑥

0
= ∑
𝑗∈N Λ

∗

𝑗
Γ
𝑗
𝑥
0
=

∑
𝑗∈N Γ
∗

𝑗
Λ
𝑗
𝑥
0
byTheorem 20.
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Theorem 22. Suppose that {𝜃
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N} is

a 𝑔-orthonormal basis for 𝐻 and 𝑇
1
and 𝑇

2
are 𝑔-preframe

operators associated with 𝑔-frames {Λ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈ N}

and {Γ
𝑗
∈ 𝐵(𝐻,𝐻

𝑗
) : 𝑗 ∈N}, respectively. Then, {Λ

𝑗
: 𝑗 ∈N}

and {Γ
𝑗
: 𝑗 ∈ N} are 𝑔-biorthogonal if and only if 𝑇∗

1
𝑇
2
= 𝐼,

where 𝐼 is the identity operator in 𝐵(𝐻).

Proof. Since 𝑇
1
and 𝑇

2
are 𝑔-preframe operators associated

with 𝑔-frames {Λ
𝑗
: 𝑗 ∈ N} and {Γ

𝑗
: 𝑗 ∈ N}, respectively,

Λ
𝑗
= 𝜃
𝑗
𝑇
∗

1
and Γ
𝑗
= 𝜃
𝑗
𝑇
∗

2
for any 𝑗 ∈ N. So, for any 𝑖, 𝑗 ∈ N

and any 𝑔
𝑖
∈ 𝐻
𝑖
, 𝑔
𝑗
∈ 𝐻
𝑗
, we have

⟨Λ
∗

𝑖
𝑔
𝑖
, Γ
∗

𝑗
𝑔
𝑗
⟩ = ⟨𝑇

1
𝜃
∗

𝑖
𝑔
𝑖
, 𝑇
2
𝜃
∗

𝑗
𝑔
𝑗
⟩ = ⟨𝜃

∗

𝑖
𝑔
𝑖
, 𝑇
1
𝑇
∗

2
𝜃
∗

𝑗
𝑔
𝑗
⟩ .

(31)

If {Λ
𝑗
: 𝑗 ∈N} and {Γ

𝑗
: 𝑗 ∈N} are 𝑔-biorthogonal, then

⟨Λ
∗

𝑖
𝑔
𝑖
, Γ
∗

𝑗
𝑔
𝑗
⟩ = 𝛿
𝑖,𝑗
⟨𝑔
𝑖
, 𝑔
𝑗
⟩ = ⟨𝜃

∗

𝑖
𝑔
𝑖
, 𝜃
∗

𝑗
𝑔
𝑗
⟩ ,

∀𝑖, 𝑗 ∈N, ∀𝑔
𝑖
∈ 𝐻
𝑖
, 𝑔
𝑗
∈ 𝐻
𝑗
.

(32)

So

⟨𝜃
∗

𝑖
𝑔
𝑖
, 𝑇
1
𝑇
∗

2
𝜃
∗

𝑗
𝑔
𝑗
⟩ = ⟨𝜃

∗

𝑖
𝑔
𝑖
, 𝜃
∗

𝑗
𝑔
𝑗
⟩ ,

∀𝑖, 𝑗 ∈N, ∀𝑔
𝑖
∈ 𝐻
𝑖
, 𝑔
𝑗
∈ 𝐻
𝑗
.

(33)

It implies that 𝑇
1
𝑇
∗

2
= 𝐼.

Conversely, if 𝑇
1
𝑇
∗

2
= 𝐼, then

⟨Λ
∗

𝑖
𝑔
𝑖
, Γ
∗

𝑗
𝑔
𝑗
⟩ = ⟨𝜃

∗

𝑖
𝑔
𝑖
, 𝑇
1
𝑇
∗

2
𝜃
∗

𝑗
𝑔
𝑗
⟩

= ⟨𝜃
∗

𝑖
𝑔
𝑖
, 𝜃
∗

𝑗
𝑔
𝑗
⟩ = 𝛿
𝑖,𝑗
⟨𝑔
𝑖
, 𝑔
𝑗
⟩,

∀𝑖, 𝑗 ∈N, ∀𝑔
𝑖
∈ 𝐻
𝑖
, 𝑔
𝑗
∈ 𝐻
𝑗
.

(34)

So {Λ
𝑗
: 𝑗 ∈N} and {Γ

𝑗
: 𝑗 ∈N} are 𝑔-biorthogonal.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was partially supported by the Fundamental
Research Funds for the Central Universities (JBK140925).

References

[1] R. J. Duffin andA. C. Schaeffer, “A class of nonharmonic Fourier
series,” Transactions of the American Mathematical Society, vol.
72, pp. 341–366, 1952.

[2] B. de Sz. Nagy, “Expansion theorems of Paley-Wiener type,”
Duke Mathematical Journal, vol. 14, pp. 975–978, 1947.

[3] R. Young, An Introduction t Nonharmonic Fourier Series, Aca-
demic Press, New York, NY, USA, 1980.

[4] C. K. Chui, An Introduction to Wavelets, Academic Press, New
York, NY, USA, 1992.

[5] I. Daubechies, Ten Lectures on Wavelets, vol. 61 of CBMS-NSF
Regional Conference Series in Applied Mathematics, SIAM, 1992.

[6] E. Hernández and G. Weiss, A First Course on Wavelets, CRC
Press, Boca Raton, Fla, USA, 1996.

[7] S. G. Mallat, “Multiresolution approximations and wavelet
orthonormal basis of L2(R),” Transactions of the American
Mathematical Society, vol. 315, pp. 69–87, 1989.

[8] D. Han and D. Larson, “Bases, frames and group representa-
tions,” Memoirs of the American Mathematical Society, vol. 147,
no. 697, 2000.

[9] W. Sun, “G-frames and g-Riesz bases,” Journal of Mathematical
Analysis and Applications, vol. 322, no. 1, pp. 437–452, 2006.

[10] Y. C. Zhu, “Characterizations of g-frames and g-Riesz bases in
Hilbert spaces,” Acta Mathematica Sinica, vol. 24, no. 10, pp.
1727–1736, 2008.

[11] A. Najati, M. Faroughi, and A. Rahimi, “𝑔-frames and stability
of 𝑔-frames in Hilbert spaces,” Methods of Functional Analysis
and Topology, vol. 14, no. 3, pp. 271–286, 2008.

[12] Y. J. Wang and Y. C. Zhu, “G-frames and g-frame sequences
in Hilbert spaces,” Acta Mathematica Sinica, vol. 25, no. 12, pp.
2093–2106, 2009.

[13] A. Khosravi and K. Musazadeh, “Fusion frames and g-frames,”
Journal of Mathematical Analysis and Applications, vol. 342, no.
2, pp. 1068–1083, 2008.

[14] M. L.Ding andY. C. Zhu, “g-Besselian frames inHilbert spaces,”
Acta Mathematica Sinica, vol. 26, no. 11, pp. 2117–2130, 2010.

[15] J.-Z. Li and Y.-C. Zhu, “Exact g-frames in Hilbert spaces,”
Journal of Mathematical Analysis and Applications, vol. 374, no.
1, pp. 201–209, 2011.

[16] L. Zang, W. Sun, and D. Chen, “Excess of a class of g-frames,”
Journal of Mathematical Analysis and Applications, vol. 352, no.
2, pp. 711–717, 2009.

[17] S. Li, “On general frame decompositions,”Numerical Functional
Analysis and Optimization, vol. 16, no. 9-10, pp. 1181–1191, 1995.

[18] S. Li andH. Ogawa, “Pseudo-duals of frames with applications,”
Applied and Computational Harmonic Analysis, vol. 11, no. 2, pp.
289–304, 2001.

[19] S. Li and H. Ogawa, “Pseudoframes for subspaces with applica-
tions,” The Journal of Fourier Analysis and Applications, vol. 10,
no. 4, pp. 409–431, 2004.

[20] M. Bownik and J. Lemvig, “The canonical and alternate duals
of a wavelet frame,” Applied and Computational Harmonic
Analysis, vol. 23, no. 2, pp. 263–272, 2007.

[21] O. Christensen, “Frames and pseudo-inverses,” Journal ofMath-
ematical Analysis and Applications, vol. 195, no. 2, pp. 401–414,
1995.

[22] O. Christensen, A. M. Powell, and X. . Xiao, “A note on finite
dual frame pairs,” Proceedings of the American Mathematical
Society, vol. 140, no. 11, pp. 3921–3930, 2012.

[23] P. G. Casazza, “Every frame is a sum of three (but not two)
orthonormal bases—and other frame representations,” The
Journal of Fourier Analysis and Applications, vol. 4, no. 6, pp.
727–732, 1998.

[24] X. Guo, “Operator characterizations and some properties of
𝑔-frames on Hilbert spaces,” Journal of Function Spaces and
Applications, vol. 2013, Article ID 931367, 9 pages, 2013.



Journal of Function Spaces 7

[25] J. Conway, A Course in Functional Analysis, Graduate Texts in
Mathematics, Springer, New York, NY, USA, 1990.

[26] X. Guo, “𝑔-orthonormal basis in Hilbert spaces,” Acta Mathe-
matica Sinica, vol. 43, pp. 1047–1058, 2013 (Chinese).



Research Article
Boundedness of Singular Integrals on Hardy Type Spaces
Associated with Schrödinger Operators

Jianfeng Dong,1 Jizheng Huang,2 and Heping Liu3

1 Department of Mathematics, Shanghai University, Shanghai 200444, China
2 College of Sciences, North China University of Technology, Beijing 100144, China
3 LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China

Correspondence should be addressed to Jizheng Huang; hjzheng@163.com

Received 19 May 2014; Accepted 21 August 2014

Academic Editor: Jose Luis Sanchez

Copyright © 2015 Jianfeng Dong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let 𝐿 = −Δ + 𝑉 be a Schrödinger operator on R𝑛

, 𝑛 ≥ 3, where 𝑉 ̸≡ 0 is a nonnegative potential belonging to the reverse Hölder
class 𝐵

𝑛/2
. The Hardy type spaces𝐻𝑝

𝐿
, 𝑛/(𝑛 + 𝛿) < 𝑝 ≤ 1, for some 𝛿 > 0, are defined in terms of the maximal function with respect

to the semigroup {𝑒−𝑡𝐿}
𝑡>0

. In this paper, we investigate the bounded properties of some singular integral operators related to 𝐿, such
as 𝐿𝑖𝛾 and ∇𝐿−1/2, on spaces𝐻𝑝

𝐿
. We give the molecular characterization of𝐻𝑝

𝐿
, which is used to establish the𝐻𝑝

𝐿
-boundedness of

singular integrals.

1. Introduction

Let 𝐿 = −Δ + 𝑉 be a Schrödinger operator on R𝑛

, 𝑛 ≥ 3,
where 𝑉 ̸≡ 0 is a nonnegative potential belonging to the
reverse Hölder class 𝐵

𝑞
for some 𝑞 ≥ 𝑛/2; that is, there exists

a constant 𝐶 > 0 such that the reverse Hölder inequality

(
1

|𝐵|
∫
𝐵

𝑉
𝑞

(𝑥) 𝑑𝑥)

1/𝑞

≤ 𝐶(
1

|𝐵|
∫
𝐵

𝑉 (𝑥) 𝑑𝑥) (1)

holds for every ball 𝐵 in R𝑛. It is well known that if 𝑉 ∈ 𝐵
𝑞

then 𝑉 ∈ 𝐵
𝑞+𝜀

for some 𝜀 > 0. Also obviously, 𝐵
𝑞
1

⊂ 𝐵
𝑞
2

when 𝑞
1
> 𝑞

2
.

Some singular integral operators related to 𝐿, such as the
imaginary power 𝐿𝑖𝛾, and the Riesz transform ∇𝐿

−1/2 have
been studied by Shen [1]. Some of his results are following.
The operator 𝐿𝑖𝛾 is a Calderón-Zygmund operator for any
𝛾 ∈ R. ∇𝐿−1/2 is a Calderón-Zygmund operator if 𝑞 ≥ 𝑛.
When 𝑛/2 ≤ 𝑞 < 𝑛, ∇𝐿−1/2 is bounded on 𝐿𝑝 for 1 < 𝑝 ≤ 𝑝

0
,

where 1/𝑝
0
= 1/𝑞 − 1/𝑛. The above range of 𝑝 is optimal.

Earlier results were given by Fefferman [2] and Zhong [3].
The Hardy type spaces 𝐻𝑝

𝐿
, 𝑛/(𝑛 + 𝛿) < 𝑝 ≤ 1 for some

𝛿 > 0, associated with 𝐿, are studied by Dziubański and

Zienkiewicz [4, 5]. They establish the 𝐻𝑝,∞

𝐿
atomic decom-

position theorem and the Riesz transform characterization
of 𝐻1

𝐿
. Specifically, ∇𝐿−1/2 is bounded from 𝐻

1

𝐿
to 𝐿

1. We
will investigate the bounded properties of the operators 𝐿𝑖𝛾

and ∇𝐿−1/2 on spaces 𝐻𝑝

𝐿
. To do this, we give the molecular

characterization of𝐻𝑝

𝐿
.

Without loss of generalization, we assume that 𝑉 ∈ 𝐵
𝑞
0

for some 𝑞
0
> 𝑛/2 and set 𝛿 = min(2−𝑛/𝑞

0
, 1). When 𝑞

0
> 𝑛,

we set 𝜂 = 1 − 𝑛/𝑞
0
. Throughout the paper, we will use 𝐴 and

𝐶 to denote the positive constants, which are independent of
main parameters andmay be different at each occurrence. By
𝐵
1
∼ 𝐵

2
, we mean that there exists a constant 𝐶 > 1 such that

1/𝐶 ≤ 𝐵
1
/𝐵

2
≤ 𝐶.

Let {𝑇𝐿

𝑡
}
𝑡>0

= {𝑒
−𝑡𝐿

}
𝑡>0

be the semigroup of linear
operators generated by −𝐿 and 𝐾𝐿

𝑡
(𝑥, 𝑦) their kernels. Since

𝑉 is nonnegative, the Feynman-Kac formula implies that

0 ≤ 𝐾
𝐿

𝑡
(𝑥, 𝑦) ≤ 𝐾

𝑡
(𝑥 − 𝑦) = (4𝜋𝑡)

−𝑛/2

𝑒
−(4𝑡)
−1
|𝑥−𝑦|

2

, (2)

where𝐾
𝑡
(𝑥) is the convolution kernels of the heat semigroup

{𝑇
𝑡
}
𝑡>0

= {𝑒
𝑡Δ

}
𝑡>0

. The estimate (2) can be improved as

Hindawi Publishing Corporation
Journal of Function Spaces
Volume 2015, Article ID 409215, 11 pages
http://dx.doi.org/10.1155/2015/409215

http://dx.doi.org/10.1155/2015/409215


2 Journal of Function Spaces

follows. We introduce the auxiliary function 𝜌(𝑥, 𝑉) = 𝜌(𝑥)

defined by

𝜌 (𝑥) = sup{𝑟 > 0 : 1

𝑟𝑛−2
∫
𝐵(𝑥,𝑟)

𝑉 (𝑦) 𝑑𝑦 ≤ 1} . (3)

It is known that 0 < 𝜌(𝑥) < ∞. For every𝑁 > 0,

𝐾
𝐿

𝑡
(𝑥, 𝑦) ≤ 𝐶

𝑁
𝑡
−𝑛/2

𝑒
−(5𝑡)
−1
|𝑥−𝑦|

2

(1 +
√𝑡

𝜌 (𝑥)
+

√𝑡

𝜌 (𝑦)
)

−𝑁

,

(4)

(cf. [6, Theorem 4.10]). Let 0 < 𝛿
󸀠

< 𝛿; for every 𝑁 > 0 and
all |ℎ| ≤ √𝑡,
󵄨󵄨󵄨󵄨󵄨
𝐾

𝐿

𝑡
(𝑥 + ℎ, 𝑦) − 𝐾

𝐿

𝑡
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶
𝑁
(
|ℎ|

√𝑡
)

𝛿
󸀠

𝑡
−𝑛/2

𝑒
−𝐴𝑡
−1
|𝑥−𝑦|

2

(1 +
√𝑡

𝜌 (𝑥)
+

√𝑡

𝜌 (𝑦)
)

−𝑁

(5)

(cf. [6, Proposition 4.11]).
We define theHardy type spaces𝐻𝑝

𝐿
, 𝑛/(𝑛+𝛿) < 𝑝 ≤ 1, in

terms of the maximal function with respect to the semigroup
{𝑇

𝐿

𝑡
}
𝑡>0

.
For 𝑝 = 1, the Hardy space 𝐻1

𝐿
is defined, according to

Dziubański and Zienkiewicz [4], by

𝐻
1

𝐿
= {𝑓 ∈ 𝐿

1

: 𝑀
𝐿

𝑓 ∈ 𝐿
1

} , (6)

where

𝑀
𝐿

𝑓 (𝑥) = sup
𝑡>0

󵄨󵄨󵄨󵄨󵄨
𝑇
𝐿

𝑡
𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨
. (7)

The norm of a function 𝑓 ∈ 𝐻
1

𝐿
is defined to be ‖𝑓‖

𝐻
1

𝐿

=

‖𝑀
𝐿

𝑓‖
𝐿
1 .

The Hardy spaces,𝐻𝑝

𝐿
, 𝑛/(𝑛+𝛿) < 𝑝 < 1, consist of some

kind of distributions. But𝑀𝐿

𝑓(𝑥)may have no meaning for
a tempered distribution 𝑓 because 𝐾𝐿

𝑡
(𝑥, 𝑦) are not smooth.

Let 𝑓 be a locally integrable function. 𝐵 = 𝐵(𝑥, 𝑟) is the ball
of radius 𝑟 centered at 𝑥. Set

𝑓
𝐵
=

1

|𝐵|
∫
𝐵

𝑓 (𝑦) 𝑑𝑦,

𝑓 (𝐵, 𝑉) = {
𝑓
𝐵
, if 𝑟 < 𝜌 (𝑥) ,

0, if 𝑟 ≥ 𝜌 (𝑥) .

(8)

Let 𝑛/(𝑛 + 𝛿) < 𝑝 < 1, 1 ≤ 𝑞
󸀠

≤ ∞. A locally integrable
function𝑓 is said to be in the Campanato type spaceΛ𝐿

1/𝑝−1,𝑞
󸀠

if

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩Λ𝐿
1/𝑝−1,𝑞

󸀠

= sup
𝐵⊂R𝑑

{|𝐵|
1−1/𝑝

(∫
𝐵

󵄨󵄨󵄨󵄨𝑓 − 𝑓 (𝐵, 𝑉)
󵄨󵄨󵄨󵄨

𝑞
󸀠 𝑑𝑥

|𝐵|
)

1/𝑞
󸀠

}

< ∞.

(9)

All spaces Λ𝐿

1/𝑝−1,𝑞
󸀠 are mutually coincident with equivalent

norms and will be simply denoted by Λ𝐿

1/𝑝−1
(cf. [7]). Due to

(4) and (5), for every 𝑡 > 0,

sup
𝑥∈R𝑑

󵄩󵄩󵄩󵄩󵄩
𝐾

𝐿

𝑡
(𝑥, ⋅)

󵄩󵄩󵄩󵄩󵄩Λ𝐿
1/𝑝−1

< 𝐶𝑡
−𝑑/2𝑝

(10)

(cf. [7, Lemma 1]).Thus the semigroupmaximal function𝑀𝑓
is well defined for distributions in (Λ𝐿

1/𝑝−1
)
∗. We define the

Hardy space,𝐻𝑝

𝐿
, 𝑛/(𝑛 + 𝛿) < 𝑝 < 1, by

𝐻
𝑝

𝐿
= {𝑓 ∈ (Λ

𝐿

1/𝑝−1
)
∗

: 𝑀
𝐿

𝑓 ∈ 𝐿
𝑝

} , (11)

and set ‖𝑓‖
𝐻
𝑝

𝐿

= ‖𝑀
𝐿

𝑓‖
𝐿
𝑝 .

Similar to the classical case, the Hardy space 𝐻𝑝

𝐿
admits

an atomic decomposition. Let 𝑛/(𝑛+𝛿) < 𝑝 ≤ 1 ≤ 𝑞 ≤ ∞, 𝑝 ̸=

𝑞. A function 𝑎 is called an 𝐻𝑝,𝑞

𝐿
-atom associated with a ball

𝐵(𝑥
0
, 𝑟) if

(1) supp 𝑎 ⊂ 𝐵(𝑥
0
, 𝑟),

(2) ‖𝑎‖
𝐿
𝑞 ≤ |𝐵(𝑥

0
, 𝑟)|

1/𝑞−1/𝑝,
(3) 𝑖𝑓 𝑟 < 𝜌(𝑥

0
), then ∫ 𝑎(𝑥)𝑑𝑥 = 0.

Proposition 1 (see [7, Theorem 1]). Given 𝑝, 𝑞 as above, then
𝑓 ∈ 𝐻

𝑝

𝐿
if and only if 𝑓 can be written as 𝑓 = ∑

𝑗
𝜆
𝑗
𝑎
𝑗
, where

𝑎
𝑗
are𝐻𝑝,𝑞

𝐿
-atoms and∑

𝑗
|𝜆

𝑗
|
𝑝

< ∞.The sum converges in𝐻𝑝

𝐿

norm and also in (Λ𝐿

1/𝑝−1
)
∗ when 𝑝 < 1. Moreover,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝

𝐿

∼
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝,𝑞,𝑎

𝐿

= inf
{

{

{

(∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

}

}

}

, (12)

where the infimum is taken over all decompositions of 𝑓 into
𝐻

𝑝,𝑞

𝐿
-atoms.

Now we state the main results in this paper.

Theorem 2. For any 𝛾 ∈ R, the imaginary power 𝐿𝑖𝛾 is
bounded on𝐻𝑝

𝐿
for 𝑛/(𝑛 + 𝛿) < 𝑝 ≤ 1. When 𝑞

0
> 𝑛, the Riesz

transform ∇𝐿
−1/2 is bounded on 𝐻𝑝

𝐿
for 𝑛/(𝑛 + 𝜂) < 𝑝 ≤ 1.

Moreover, ∇𝐿−1/2 is bounded on𝐻1

𝐿
whenever 𝑞

0
> 𝑛/2.

Remark 3. When 𝑛/2 < 𝑞
0
< 𝑛, the kernel of Riesz transform

∇𝐿
−1/2 only satisfies the Hörmander condition with respect

to the second variable, which is weaker than the smoothness
condition of standard kernels. Thus we cannot expect, in
general consideration, to deal with the boundedness of
∇𝐿

−1/2 for the case of 𝑝 < 1.

In order to prove Theorem 2, we give the molecular
characterization of𝐻𝑝

𝐿
.

Let 𝑛/(𝑛 + 𝛿) < 𝑝 ≤ 1 ≤ 𝑞 ≤ ∞, 𝑝 ̸= 𝑞 and 𝜖 > 1/𝑝 − 1.
Set 𝑎 = 1 − 1/𝑝 + 𝜖, 𝑏 = 1 − 1/𝑞 + 𝜖. A function𝑀 ∈ 𝐿

𝑞 is
called an𝐻𝑝,𝑞,𝜖

𝐿
-molecule with the center 𝑥

0
if

(1) |𝑥|𝑛𝑏𝑀(𝑥) ∈ 𝐿
𝑞,
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(2) N(𝑀) = 𝜇
𝑏−𝑎

1
‖𝑀‖

𝑎/𝑏

𝐿
𝑞 ‖| ⋅ −𝑥

0
|
𝑛𝑏

𝑀‖
1−𝑎/𝑏

𝐿
𝑞 ≤ 1,

(3) 𝑖𝑓 ‖𝑀‖
1/(𝑎−𝑏)

𝐿
𝑞 < 𝜇

1
𝜌(𝑥

0
)
𝑛

, then ∫𝑀(𝑥)𝑑𝑥 = 0 ,

where 𝜇
1
is the volume of the unit ball.

Theorem 4. Given 𝑝, 𝑞, 𝜖 as above, then 𝑓 ∈ 𝐻
𝑝

𝐿
if and

only if 𝑓 can be written as 𝑓 = ∑
𝑗
𝜆
𝑗
𝑀

𝑗
, where 𝑀

𝑗
are

𝐻
𝑝,𝑞,𝜖

𝐿
-molecules and ∑

𝑗
|𝜆

𝑗
|
𝑝

< ∞. The sum converges in𝐻𝑝

𝐿

norm and also in (Λ𝐿

1/𝑝−1
)
∗ when 𝑝 < 1, where 𝑀

𝑗
are 𝐻𝑝

𝐿
-

molecules. Moreover,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝

𝐿

∼
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝,𝑞,𝜖,𝑀

𝐿

= inf
{

{

{

(∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

}

}

}

, (13)

where the infimum is taken over all decompositions of 𝑓 into
𝐻

𝑝,𝑞,𝜖

𝐿
-molecules.

Remark 5. It is easy to verify that any𝐻𝑝,𝑞

𝐿
-atom is an𝐻𝑝,𝑞,𝜖

𝐿
-

molecule with a constant factor less than or equal to 1. We
will see that the image of an𝐻𝑝,𝑞

𝐿
-atom under the action of a

singular integral operator may not be an𝐻𝑝,𝑞,𝜖

𝐿
-molecule but

is a sum of two𝐻𝑝,𝑞,𝜖

𝐿
-molecules up to constant factors. This

is different from the classical case.

This paper is organized as follows. In Section 2, we collect
some useful facts and results about the potential 𝑉, the
auxiliary function 𝜌(𝑥) and the kernels of operators 𝐿𝑖𝛾, and
∇𝐿

−1/2, which will be used in the sequel. Most of these results
are already known. In Section 3, we prove Theorem 4. The
proof of Theorem 2 is given in the last two sections. The𝐻𝑝

𝐿
-

boundedness for 𝑝 < 1 is proved in Section 4 while 𝐻1

𝐿
-

boundedness is proved in Section 5.

2. Preliminaries

First we list some known facts and results about the potential
𝑉, the auxiliary function 𝜌(𝑥), and the kernels of operators
𝐿
𝑖𝛾 and ∇𝐿−1/2.

Lemma 6. 𝑉(𝑥)𝑑𝑥 is a doubling measure; that is, there exists
a constant 𝐶

0
> 0 such that

∫
𝐵(𝑥,2𝑟)

𝑉 (𝑦) 𝑑𝑦 ≤ 𝐶
0
∫
𝐵(𝑥,𝑟)

𝑉 (𝑦) 𝑑𝑦. (14)

Lemma 7. Consider

1

𝑟𝑛−2
∫
𝐵(𝑥,𝑟)

𝑉 (𝑦) 𝑑𝑦 ≤ 𝐶(
𝑅

𝑟
)

𝑛/𝑞
0
−2

1

𝑅𝑛−2
∫
𝐵(𝑥,𝑅)

𝑉 (𝑦) 𝑑𝑦,

0 < 𝑟 < 𝑅 < ∞.

(15)

Lemma 8. There exists𝑚
0
> 0 such that

1

𝑅𝑛−2
∫
𝐵(𝑥,𝑅)

𝑉 (𝑦) 𝑑𝑦 ≤ 𝐶(1 +
𝑅

𝜌 (𝑥)
)

𝑚
0

. (16)

Lemma 9. There exists 𝑘
0
> 0 such that

1

𝐶
(1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑥)
)

−𝑘
0

≤
𝜌 (𝑦)

𝜌 (𝑥)
≤ 𝐶(1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑥)
)

𝑘
0
/(𝑘
0
+1)

.

(17)

In particular, 𝜌(𝑦) ∼ 𝜌(𝑥) if |𝑥 − 𝑦| < 𝐶𝜌(𝑥).

Let 𝐹𝐿

𝛾
(𝑥, 𝑦) and 𝐹

𝛾
(𝑥, 𝑦) be the kernels of 𝐿𝑖𝛾 and

(−Δ)
𝑖𝛾, respectively, and 𝑅

𝐿

(𝑥, 𝑦) and 𝑅(𝑥, 𝑦) the kernels of
∇𝐿

−1/2 and ∇(−Δ)−1/2, respectively. Set 𝐹
𝛾
(𝑥, 𝑦) = 𝐹

𝐿

𝛾
(𝑥, 𝑦) −

𝐹
𝛾
(𝑥, 𝑦), 𝑅̃(𝑥, 𝑦) = 𝑅

𝐿

(𝑥, 𝑦) − 𝑅(𝑥, 𝑦).

Lemma 10. 𝐿𝑖𝛾 is a Calderón-Zygmund operator. It does not
matter to assume that 𝑛/2 < 𝑞

0
< 𝑛. The kernel 𝐹𝐿

𝛾
(𝑥, 𝑦)

satisfies

󵄨󵄨󵄨󵄨󵄨
𝐹
𝐿

𝛾
(𝑥, 𝑦 + ℎ) − 𝐹

𝐿

𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤
𝐶𝑒

𝜋|𝛾|/2

|ℎ|
𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+𝛿

, |ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
,

(18)

and, for any𝑁 > 0,

󵄨󵄨󵄨󵄨󵄨
𝐹
𝐿

𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤
𝐶
𝑁
𝑒
𝜋|𝛾|/2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

−𝑁

. (19)

In addition,

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤
𝐶𝑒

𝜋|𝛾|/2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

𝛿

. (20)

Lemma 11. When 𝑛/2 < 𝑞
0
< 𝑛, ∇𝐿−1/2 is bounded on 𝐿𝑝 for

1 < 𝑝 ≤ 𝑝
0
, where 1/𝑝

0
= 1/𝑞

0
− 1/𝑛. The kernel 𝑅𝐿

(𝑥, 𝑦)

satisfies, for any𝑁 > 0,

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐿

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶
𝑁

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−1
(∫

𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

+
1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

)

× (1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

−𝑁

.

(21)

In addition,

󵄨󵄨󵄨󵄨󵄨
𝑅̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

≤
𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−1

× (∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

+
1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

(

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

𝛿

) .

(22)
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Lemma 12. When 𝑞
0
> 𝑛, ∇𝐿−1/2 is a Calderón-Zygmund

operator. The kernel 𝑅𝐿

(𝑥, 𝑦) satisfies

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐿

(𝑥, 𝑦 + ℎ) − 𝑅
𝐿

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶|ℎ|
𝜂

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+𝜂
,

|ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
,

(23)

and, for any𝑁 > 0,

󵄨󵄨󵄨󵄨󵄨
𝑅
𝐿

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨
≤

𝐶
𝑁

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

−𝑁

. (24)

In addition, for any 𝛿󸀠 < 1,

󵄨󵄨󵄨󵄨󵄨
𝑅̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

𝛿
󸀠

. (25)

For Lemmas 6–12, we refer readers to [1]. We also need
the following estimates about 𝐹

𝛾
(𝑥, 𝑦) and 𝑅̃(𝑥, 𝑦).

Lemma 13. When 𝑛/2 < 𝑞
0
< 𝑛,

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛾
(𝑥, 𝑦 + ℎ) − 𝐹

𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤
𝐶𝑒

𝜋|𝛾|/2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(

|ℎ|

𝜌 (𝑦)
)

𝛿

,

|ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
.

(26)

When 𝑞
0
> 𝑛, for any 𝛿󸀠 < 1,

󵄨󵄨󵄨󵄨󵄨
𝑅̃ (𝑥, 𝑦 + ℎ) − 𝑅̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(

|ℎ|

𝜌 (𝑦)
)

𝛿
󸀠

,

|ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
.

(27)

Proof. It is well known that

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛾
(𝑥, 𝑦 + ℎ) − 𝐹

𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

𝐶 |ℎ|

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+1
,

|ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
,

󵄨󵄨󵄨󵄨𝑅 (𝑥, 𝑦 + ℎ) − 𝑅 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐶 |ℎ|

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+1
,

|ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
.

(28)

Therefore, we also have the estimates

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛾
(𝑥, 𝑦 + ℎ) − 𝐹

𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤
𝐶𝑒

𝜋|𝛾|/2

|ℎ|
𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+𝛿

, |ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
,

(29)

󵄨󵄨󵄨󵄨󵄨
𝑅̃ (𝑥, 𝑦 + ℎ) − 𝑅̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨
≤

𝐶|ℎ|
𝜂

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛+𝜂
, |ℎ| ≤

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
.

(30)

We may assume that |𝑥 − 𝑦| < 𝜌(𝑦). Otherwise, Lemma 13 is
obvious.

We will use the following known facts (cf. [1]). Let
Γ
𝐿

(𝑥, 𝑦, 𝜏) and Γ(𝑥, 𝑦, 𝜏) denote, respectively, the fundamen-
tal solutions for the operators 𝐿+ 𝑖𝜏 and −Δ+ 𝑖𝜏 inR𝑛, where
𝜏 ∈ R.They satisfy the following estimates. For any 𝑘 > 0 and
|ℎ| ≤ |𝑥 − 𝑦|/2,

󵄨󵄨󵄨󵄨Γ (𝑥, 𝑦, 𝜏)
󵄨󵄨󵄨󵄨 ≤

𝐶
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2
,

󵄨󵄨󵄨󵄨󵄨
Γ
𝐿

(𝑥, 𝑦 + ℎ, 𝜏) − Γ
𝐿

(𝑥, 𝑦, 𝜏)
󵄨󵄨󵄨󵄨󵄨

≤
𝐶
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘

|ℎ|
𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2+𝛿

(1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

−𝑘

(31)

when 𝑛/2 < 𝑞
0
< 𝑛. Set Γ̃(𝑥, 𝑦, 𝜏) = Γ

𝐿

(𝑥, 𝑦, 𝜏) − Γ(𝑥, 𝑦, 𝜏).
Then Γ̃(𝑥, 𝑦, 𝜏) is expressed as

Γ̃ (𝑥, 𝑦, 𝜏) = −∫
R𝑛
Γ (𝑥, 𝑧, 𝜏) 𝑉 (𝑧) Γ

𝐿

(𝑧, 𝑦, 𝜏) 𝑑𝑧. (32)

Thus,

󵄨󵄨󵄨󵄨󵄨
Γ̃ (𝑥, 𝑦 + ℎ, 𝜏) − Γ̃ (𝑥, 𝑦, 𝜏)

󵄨󵄨󵄨󵄨󵄨

≤ ∫
R𝑛
|Γ (𝑥, 𝑧, 𝜏)| 𝑉 (𝑧)

󵄨󵄨󵄨󵄨󵄨
Γ
𝐿

(𝑧, 𝑦 + ℎ, 𝜏) − Γ
𝐿

(𝑧, 𝑦, 𝜏)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑧

≤ ∫
R𝑛
(𝐶

𝑘
|ℎ|

𝛿

𝑉 (𝑧) (1 + 𝜌(𝑦)
−1 󵄨󵄨󵄨󵄨𝑧 − 𝑦

󵄨󵄨󵄨󵄨)
−𝑘

𝑑𝑧)

× ((1 + |𝜏|
1/2

|𝑥 − 𝑧|)
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑧 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘

× |𝑥 − 𝑧|
𝑛−2󵄨󵄨󵄨󵄨𝑧 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2+𝛿

)

−1

= ∫
|𝑧−𝑥|<|𝑥−𝑦|/2

(⋅ ⋅ ⋅ ) + ∫
|𝑧−𝑦|<|𝑥−𝑦|/2

(⋅ ⋅ ⋅ )

+ ∫
|𝑧−𝑥|≥|𝑥−𝑦|/2,|𝑧−𝑦|≥|𝑥−𝑦|/2

(⋅ ⋅ ⋅ )

= 𝐼
1
+ 𝐼

2
+ 𝐼

3
.

(33)

Note that 𝑉 ∈ 𝐵
𝑞
0
+𝜀

for some 𝜀 > 0. Using Hölder inequality
and 𝐵

𝑞
0
+𝜀
condition, it is easy to see that, for 0 ≤ 𝜎 ≤ 𝛿,

∫
𝐵(𝑥,𝑅)

𝑉 (𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2+𝜎
𝑑𝑦 ≤

𝐶

𝑅𝑛−2+𝜎
∫
𝐵(𝑥,𝑅)

𝑉 (𝑦) 𝑑𝑦. (34)
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Note that 𝜌(𝑥) ∼ 𝜌(𝑦) when |𝑥 − 𝑦| < 𝜌(𝑦). Making use of
(34), we get

𝐼
1
≤

𝐶
𝑘
|ℎ|

𝛿

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2+𝛿

∫
|𝑧−𝑥|<|𝑥−𝑦|/2

𝑉 (𝑧) 𝑑𝑧

|𝑥 − 𝑧|
𝑛−2

≤
𝐶
𝑘
|ℎ|

𝛿

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2+𝛿

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2

× ∫

|𝑧−𝑥|<|𝑥−𝑦|/2

𝑉 (𝑧) 𝑑𝑧

≤
𝐶
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2

(
|ℎ|

𝜌 (𝑦)
)

𝛿

,

(35)

where we have used Lemma 7 in the last inequality. Similarly,

𝐼
2
≤

𝐶
𝑘
|ℎ|

𝛿

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2

∫

|𝑧−𝑦|<|𝑥−𝑦|/2

𝑉 (𝑧) 𝑑𝑧

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2+𝛿

≤
𝐶
𝑘
|ℎ|

𝛿

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2+𝛿

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2

× ∫

|𝑧−𝑦|<|𝑥−𝑦|/2

𝑉 (𝑧) 𝑑𝑧

≤
𝐶
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2

(
|ℎ|

𝜌 (𝑦)
)

𝛿

.

(36)

To estimate 𝐼
3
, we write

𝐼
3
≤

𝐶
𝑘
|ℎ|

𝛿

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘

× ∫

|𝑧−𝑦|≥|𝑥−𝑦|/2

(1 +

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝜌 (𝑦)
)

−𝑘

𝑉 (𝑧) 𝑑𝑧

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

2𝑛−4+𝛿

≤
𝐶
𝑘
|ℎ|

𝛿

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘

× (∫
|𝑥−𝑦|/2≤|𝑧−𝑦|<𝜌(𝑦)

𝑉 (𝑧) 𝑑𝑧

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

2𝑛−4+𝛿

+ 𝜌(𝑦)
𝑘

∫
|𝑧−𝑦|≥𝜌(𝑦)

𝑉 (𝑧) 𝑑𝑧

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

2𝑛−4+𝛿+𝑘

) .

(37)

Using Hölder inequality and 𝐵
𝑞
0

condition, we obtain

∫
|𝑥−𝑦|/2≤|𝑧−𝑦|<𝜌(𝑦)

𝑉 (𝑧) 𝑑𝑧

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

2𝑛−4+𝛿

≤ (∫

|𝑧−𝑦|<𝜌(𝑦)

𝑉(𝑧)
𝑞
0𝑑𝑧)

1/𝑞
0

× (∫

|𝑧−𝑦|≥|𝑥−𝑦|/2

𝑑𝑧

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

(2𝑛−4+𝛿)𝑞
󸀠

0

)

1/𝑞
󸀠

0

≤
𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2

𝜌(𝑦)
𝛿

.

(38)

Using Lemma 6 and taking 𝑘 sufficiently large, we get

𝜌(𝑦)
𝑘

∫
|𝑧−𝑦|≥𝜌(𝑦)

𝑉 (𝑧) 𝑑𝑧

󵄨󵄨󵄨󵄨𝑧 − 𝑦
󵄨󵄨󵄨󵄨

2𝑛−4+𝛿+𝑘

≤ 𝐶𝜌(𝑦)
4−2𝑛−𝛿

∞

∑

𝑗=1

2
−𝑗(2𝑛−4+𝛿+𝑘)

∫

|𝑧−𝑦|≤2
𝑗
𝜌(𝑦)

𝑉 (𝑧) 𝑑𝑧

≤ 𝐶𝜌(𝑦)
4−2𝑛−𝛿

∞

∑

𝑗=1

2
−𝑗(2𝑛−4+𝛿+𝑘)

𝐶
𝑗

0
∫

|𝑧−𝑦|≤𝜌(𝑦)

𝑉 (𝑧) 𝑑𝑧

≤ 𝐶𝜌(𝑦)
2−𝑛−𝛿

≤
𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−2

𝜌(𝑦)
𝛿

.

(39)

Therefore,
󵄨󵄨󵄨󵄨󵄨
Γ̃ (𝑥, 𝑦 + ℎ, 𝜏) − Γ̃ (𝑥, 𝑦, 𝜏)

󵄨󵄨󵄨󵄨󵄨

≤
𝐶
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−2

(
|ℎ|

𝜌 (𝑦)
)

𝛿

.

(40)

We also have

∇
𝑥
Γ̃ (𝑥, 𝑦, 𝜏) = −∫

R𝑛
∇
𝑥
Γ (𝑥, 𝑧, 𝜏) 𝑉 (𝑧) Γ

𝐿

(𝑧, 𝑦, 𝜏) 𝑑𝑧, (41)

where ∇
𝑥
Γ(𝑥, 𝑧, 𝜏) satisfies the estimate

󵄨󵄨󵄨󵄨∇𝑥Γ (𝑥, 𝑦, 𝜏)
󵄨󵄨󵄨󵄨 ≤

𝐶
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘

1

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−1
. (42)

If 𝑞
0
> 𝑛, by the same argument as (40), for any 𝛿󸀠 < 1,

󵄨󵄨󵄨󵄨󵄨
∇
𝑥
Γ̃ (𝑥, 𝑦 + ℎ, 𝜏) − ∇

𝑥
Γ̃ (𝑥, 𝑦, 𝜏)

󵄨󵄨󵄨󵄨󵄨

≤
𝐶
𝑘

(1 + |𝜏|
1/2 󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨)
𝑘󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨

𝑛−1

(
|ℎ|

𝜌 (𝑦)
)

𝛿
󸀠

.

(43)
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By the functional calculus and making use of (40), we obtain
󵄨󵄨󵄨󵄨󵄨
𝐹
𝛾
(𝑥, 𝑦 + ℎ) − 𝐹

𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

=
1

2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R

(−𝑖𝜏)
𝑖𝛾

(Γ̃ (𝑥, 𝑦 + ℎ, 𝜏) − Γ̃ (𝑥, 𝑦, 𝜏)) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶𝑒

𝜋|𝛾|/2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(

|ℎ|

𝜌 (𝑦)
)

𝛿

.

(44)

This proves (26).
Similarly, it follows from (43) that

󵄨󵄨󵄨󵄨󵄨
𝑅̃ (𝑥, 𝑦 + ℎ) − 𝑅̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

=
1

2𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R

(−𝑖𝜏)
−1/2

(∇
𝑥
Γ̃ (𝑥, 𝑦 + ℎ, 𝜏) − ∇

𝑥
Γ̃ (𝑥, 𝑦, 𝜏)) 𝑑𝜏

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛
(

|ℎ|

𝜌 (𝑦)
)

𝛿
󸀠

.

(45)

This proves (27).

3. Molecular Characterization

Essentially, the proof of Theorem 4 is the same as the usual
molecular theory.

Proof of Theorem 4. By Proposition 1, it is sufficient to prove
that for any𝐻𝑝,𝑞,𝜖

𝐿
-molecule𝑀(𝑥) admits an atomic decom-

position 𝑀 = ∑
𝑗
𝜆
𝑗
𝑎
𝑗
, where 𝑎

𝑗
are 𝐻

𝑝,𝑞

𝐿
-atoms and

∑
𝑗
|𝜆

𝑗
|
𝑝

< 𝐶.
We will give the proof in case 𝑞 = 2. The proof is similar

in the case of 𝑞 ̸= 2. Suppose 𝑀(𝑥) is an 𝐻
𝑝,2,𝜖

𝐿
-molecule

centered at 𝑥
0
. Let 𝜎 = ‖𝑀‖

1/(𝑎−𝑏)

𝐿
2

, where 𝜖 > 1/𝑝 − 1, 𝑎 =

1− 1/𝑝+ 𝜖, 𝑏 = 1/2+ 𝜖. If 𝜎 < 𝜇
1
𝜌(𝑥

0
)
𝑛, we return the usual

molecular theory (cf. [8]). Thus nothing needs to be proved.
Suppose 𝜎 ≥ 𝜇

1
𝜌(𝑥

0
)
𝑛. Set

𝐵
𝑘
= {𝑥 :

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨 ≤ 2

𝑘

𝜇
−1/𝑛

1
𝜎
1/𝑛

} , 𝑘 = 0, 1, 2, . . . ,

𝐸
0
= 𝐵

0
, 𝐸

𝑘
= 𝐵

𝑘
\ 𝐵

𝑘−1
, 𝑘 = 1, 2, . . . .

(46)

Then

𝑀(𝑥) =

∞

∑

𝑘=0

𝑀(𝑥) 𝜒
𝐸
𝑘
(𝑥) =

∞

∑

𝑘=0

𝑀
𝑘
(𝑥) . (47)

Note that supp 𝑀
𝑘
⊂ 𝐵

𝑘
and 2

𝑘

𝜇
−1/𝑛

1
𝜎
1/𝑛

≥ 𝜌(𝑥
0
), 𝑘 =

0, 1, 2, . . .. Also we have
󵄩󵄩󵄩󵄩𝑀0

󵄩󵄩󵄩󵄩𝐿2
≤ ‖𝑀‖

𝐿
2 = 𝜎

𝑎−𝑏

=
󵄨󵄨󵄨󵄨𝐵0

󵄨󵄨󵄨󵄨

1/2−1/𝑝

, (48)

󵄩󵄩󵄩󵄩𝑀𝑘

󵄩󵄩󵄩󵄩𝐿2
≤ 2

−(𝑘−1)𝑛𝑏

𝜇
𝑏

1
𝜎
−𝑏
󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨⋅ − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏

𝑀
󵄩󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 2
−(𝑘−1)𝑛𝑏

𝜎
−𝑏

‖𝑀‖
𝑎/(𝑎−𝑏)

𝐿
2

= 2
−(𝑘−1)𝑛𝑏

𝜎
𝑎−𝑏

= 2
𝑛𝑏−𝑘𝑛𝑎 󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

1/2−1/𝑝

.

(49)

Thus 𝑀
𝑘
(𝑥) = 𝜆

𝑘
𝑎
𝑘
(𝑥), 𝑘 = 0, 1, 2, . . ., where 𝑎

𝑘
are 𝐻𝑝,𝑞

𝐿
-

atoms and ∑∞

𝑘=0
|𝜆

𝑘
|
𝑝

< 𝐶.
Originally, the sum in (47) converges pointwise. When

𝑝 = 1, it is easy to see that the sum in (47) converges in 𝐿1. If
𝑛/(𝑛 + 𝛿) < 𝑝 < 1, for any 𝑔 ∈ Λ𝐿

1/𝑝−1
,

󵄩󵄩󵄩󵄩󵄩󵄩
(1 + |𝑥|

𝑛𝑏

)
−1

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩𝐿2

≤ (∫
|𝑥|<𝜌(0)

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

+

∞

∑

𝑘=1

2
−(𝑘−1)𝑛𝑏

𝜌(0)
−𝑛𝑏

× (∫
2
𝑘−1

𝜌(0)≤|𝑥|<2
𝑘
𝜌(0)

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨

2

𝑑𝑥)

1/2

≤ 𝐶

∞

∑

𝑘=0

2
−𝑘𝑛𝑎 󵄩󵄩󵄩󵄩𝑔

󵄩󵄩󵄩󵄩Λ𝐿
1/𝑝−1

≤ 𝐶
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩Λ𝐿
1/𝑝−1

.

(50)

Therefore,

󵄩󵄩󵄩󵄩𝑀𝑔
󵄩󵄩󵄩󵄩𝐿1

≤
󵄩󵄩󵄩󵄩󵄩
(1 + |𝑥|

𝑛𝑏

)𝑀
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩󵄩
(1 + |𝑥|

𝑛𝑏

)
−1

𝑔
󵄩󵄩󵄩󵄩󵄩󵄩𝐿2

< ∞. (51)

It follows that the sum in (47) converges in (Λ
𝐿

1/𝑝−1
)
∗. The

proof of Theorem 4 is completed.

4. 𝐻𝑝

𝐿
-Boundedness

In this section, we prove the boundedness of 𝐿𝑖𝛾 on𝐻𝑝

𝐿
, 𝑛/(𝑛+

𝛿) < 𝑝 ≤ 1. When 𝑞
0
> 𝑛, the boundedness of ∇𝐿−1/2 on

𝐻
𝑝

𝐿
, 𝑛/(𝑛 + 𝜂) < 𝑝 ≤ 1, can be proved by the same method.

In fact, their kernels satisfy similar estimates.
Let 𝑎(𝑥) be an 𝐻𝑝,𝑞

𝐿
-atom associated with a ball 𝐵(𝑥

0
, 𝑟)

for some suitable 𝑞. If 𝑟 ≥ 𝜌(𝑥
0
), we will prove that 𝐿𝑖𝛾𝑎(𝑥)

is an 𝐻
𝑝,𝑞,𝜖

𝐿
-molecule up to a constant factor. If 𝑟 < 𝜌(𝑥

0
),

𝐿
𝑖𝛾

𝑎(𝑥)may be not an𝐻𝑝,𝑞,𝜖

𝐿
-molecule up to a constant factor

but (−Δ)𝑖𝛾𝑎(𝑥)is (cf. [9]).Wewill prove that (𝐿𝑖𝛾−(−Δ)𝑖𝛾)𝑎(𝑥)
is an𝐻𝑝,𝑞,𝜖

𝐿
-molecule up to a constant factor for some suitable

𝜖. This means that ‖𝐿𝑖𝛾𝑎(𝑥)‖
𝐻
𝑝

𝐿

≤ 𝐶 uniformly. Because
the semigroup maximal function 𝑀

𝐿

𝑓 is subadditive, by
Proposition 1, 𝐿𝑖𝛾 is bounded on𝐻𝑝

𝐿
, 𝑛/(𝑛 + 𝛿) < 𝑝 ≤ 1.

First, let 𝑟 ≥ 𝜌(𝑥
0
). Because

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑖𝛾

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶‖𝑎 (𝑥)‖
𝐿
𝑞 ≤ 𝐶

󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)
󵄨󵄨󵄨󵄨

𝑎−𝑏

, (52)

where 𝜖 > 1/𝑝 − 1, 𝑎 = 1 − 1/𝑝 + 𝜖, 𝑏 = 1 − 1/𝑞 + 𝜖, we have

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑖𝛾

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩

1/(𝑎−𝑏)

𝐿
𝑞

≥
1

𝐶
𝜌(𝑥

0
)
𝑛

. (53)
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Thus there needs no the cancelation condition. We only need
to estimateN(𝐿

𝑖𝛾

𝑎). Write

(∫
R𝑛

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
𝐿
𝑖𝛾

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ (∫
𝐵(𝑥0 ,2𝑟)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
𝐿
𝑖𝛾

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫

|𝑥−𝑥0|≥2𝑟

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
𝐿
𝑖𝛾

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

= 𝐼
1
+ 𝐼

2
.

(54)

It is obvious that

𝐼
1
≤ 𝑟

𝑛𝑏
󵄩󵄩󵄩󵄩󵄩
𝐿
𝑖𝛾

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶
󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)

󵄨󵄨󵄨󵄨

𝑏

× ‖𝑎 (𝑥)‖
𝐿
𝑞 ≤ 𝐶

󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)
󵄨󵄨󵄨󵄨

𝑎

.

(55)

For 𝑦 ∈ 𝐵(𝑥
0
, 𝑟), if 𝜌(𝑦) > 𝑟, by Lemma 9, 𝜌(𝑦) ≤ 𝐶 𝜌(𝑥

0
) ≤

𝐶𝑟. Note that |𝑥 − 𝑦| ∼ |𝑥 − 𝑥
0
| when 𝑥 ∉ 𝐵(𝑥

0
, 2𝑟), 𝑦 ∈

𝐵(𝑥
0
, 𝑟). Using Lemma 10, we get

𝐼
2
=(∫

|𝑥−𝑥
0
|≥2𝑟

(∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏

×
󵄨󵄨󵄨󵄨󵄨
𝐹
𝐿

𝛾
(𝑥, 𝑦) 𝑎 (𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦)

𝑞

𝑑𝑥)

1/𝑞

≤ ∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦(∫

|𝑥−𝑥0|≥2𝑟

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞

×
󵄨󵄨󵄨󵄨󵄨
𝐹
𝐿

𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶∫
𝐵(𝑥0 ,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 𝑟

𝑁

𝑑𝑦

× (∫

|𝑥−𝑥0|≥2𝑟

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑛𝑏−𝑛−𝑁)𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶 𝑟
𝑛−𝑛/𝑝+𝑁

𝑟
𝑛𝑏−𝑛/𝑞

󸀠
−𝑁

≤ 𝐶
󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)

󵄨󵄨󵄨󵄨

𝑎

(56)

and provide 𝑁 > 𝑛𝜖. Therefore,

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏

𝐿
𝑖𝛾

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶
󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)

󵄨󵄨󵄨󵄨

𝑎

. (57)

It follows that

N (𝐿
𝑖𝛾

𝑎) = 𝜇
𝑏−𝑎

1

󵄩󵄩󵄩󵄩󵄩
𝐿
𝑖𝛾

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩

𝑎/𝑏

𝐿
𝑞

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏

𝐿
𝑖𝛾

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩

1−𝑎/𝑏

𝐿
𝑞

≤ 𝐶.

(58)

Next, suppose 𝑟 < 𝜌(𝑥
0
). Let us estimate

‖(𝐿
𝑖𝛾

− (−Δ)
𝑖𝛾

)𝑎(𝑥)‖
𝐿
𝑞 . Consider

(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
(𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ (∫
𝐵(𝑥0 ,2𝑟)

󵄨󵄨󵄨󵄨󵄨
(𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫
2𝑟≤|𝑥−𝑥0|<2𝜌(𝑥0)

󵄨󵄨󵄨󵄨󵄨
(𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫

|𝑥−𝑥0|≥2𝜌(𝑥0)

󵄨󵄨󵄨󵄨󵄨
(𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

= 𝐽
1
+ 𝐽

2
+ 𝐽

3
.

(59)

Note that 𝜌(𝑦) ∼ 𝜌(𝑥
0
), when 𝑦 ∈ 𝐵(𝑥

0
, 𝑟) and by Lemma 10,

we have

𝐽
1

= (∫
𝐵(𝑥
0
,2𝑟

(∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛾
(𝑥, 𝑦) 𝑎 (𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦)

𝑞

𝑑𝑥)

1/𝑞

≤ ∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 (∫

𝐵(𝑥
0
,2𝑟)

󵄨󵄨󵄨󵄨󵄨
𝐹
𝛾
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

𝑑𝑦

≤ 𝐶∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 𝜌(𝑥0)

−𝛿

(∫
𝐵(𝑥
0
,2𝑟)

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

(𝑛−𝛿)𝑞

)

1/𝑞

𝑑𝑦

≤ 𝐶𝜌(𝑥
0
)
−𝛿

𝑟
𝑛−𝑛/𝑝

(∫
𝐵(0,3𝑟)

𝑑𝑥

|𝑥|
(𝑛−𝛿)𝑞

)

1/𝑞

≤ 𝐶𝜌(𝑥
0
)
−𝛿

𝑟
𝑛/𝑞−𝑛/𝑝+𝛿

≤ 𝐶𝜌(𝑥
0
)
𝑛(𝑎−𝑏)

.

(60)

Here we choose 𝑞 such that 1 < 𝑞 < 𝑛/(𝑛 − 𝛿) and 𝑛/𝑞 −
𝑛/𝑝 + 𝛿 > 0 or, equivalently, 1 < 𝑞 < 𝑛𝑝/(𝑛 − 𝑝𝛿). When
2𝑟 ≤ |𝑥 − 𝑥

0
| < 2𝜌(𝑥

0
), using the cancelation condition of 𝑎

and Lemma 13, we obtain

󵄨󵄨󵄨󵄨󵄨
(𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝐵(𝑥
0
,𝑟)

(𝐹
𝛾
(𝑥, 𝑦) − 𝐹

𝛾
(𝑥, 𝑥

0
)) 𝑎 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶𝜌(𝑥

0
)
−𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛
∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦 − 𝑥0
󵄨󵄨󵄨󵄨

𝛿

𝑑𝑦

≤
𝐶𝜌(𝑥

0
)
−𝛿

𝑟
𝑛−𝑛/𝑝+𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛
.

(61)
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It follows that

𝐽
2
≤ 𝐶𝜌(𝑥

0
)
−𝛿

𝑟
𝑛−𝑛/𝑝+𝛿

(∫
2𝑟≤|𝑥−𝑥0|<2𝜌(𝑥0)

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑞
)

1/𝑞

≤ 𝐶𝜌(𝑥
0
)
−𝛿

𝑟
𝑛/𝑞−𝑛/𝑝+𝛿

≤ 𝐶𝜌(𝑥
0
)
𝑛(𝑎−𝑏)

.

(62)

When |𝑥 − 𝑥
0
| ≥ 2𝜌(𝑥

0
), by (29), we have

󵄨󵄨󵄨󵄨󵄨
(𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝐵(𝑥
0
,𝑟)

(𝐹
𝛾
(𝑥, 𝑦) − 𝐹

𝛾
(𝑥, 𝑥

0
)) 𝑎 (𝑦) 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛+𝛿

∫
𝐵(𝑥0 ,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑦 − 𝑥0
󵄨󵄨󵄨󵄨

𝛿

𝑑𝑦

≤
𝐶 𝑟

𝑛−𝑛/𝑝+𝛿

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛+𝛿

.

(63)

Then

𝐽
3
≤ 𝐶𝑟

𝑛−𝑛/𝑝+𝛿

(∫

|𝑥−𝑥0|≥2𝜌(𝑥0)

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑛+𝛿)𝑞

)

1/𝑞

≤ 𝐶𝑟
𝑛−𝑛/𝑝+𝛿

𝜌(𝑥
0
)
−𝑛/𝑞
󸀠
−𝛿

≤ 𝐶𝜌(𝑥
0
)
𝑛(𝑎−𝑏)

.

(64)

We have seen that
󵄩󵄩󵄩󵄩󵄩
(𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩

1/(𝑎−𝑏)

𝐿
𝑞

≥
1

𝐶
𝜌(𝑥

0
)
𝑛

. (65)

As above, there needs no the cancelation condition . To finish
the proof, we only need to proveN((𝐿

𝑖𝛾

− (−Δ)
𝑖𝛾

)𝑎) ≤ 𝐶 or,
equivalently,

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏

(𝐿
𝑖𝛾

− (−Δ)
𝑖𝛾

) 𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶 𝜌(𝑥
0
)
𝑛𝑎

. (66)

Write

(∫
R𝑛

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞 󵄨󵄨󵄨󵄨󵄨
𝐿
𝑖𝛾

− (−Δ)
𝑖𝛾

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ (∫
𝐵(𝑥
0
,2𝜌(𝑥
0
))

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞 󵄨󵄨󵄨󵄨󵄨
𝐿
𝑖𝛾

− (−Δ)
𝑖𝛾

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫
|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞 󵄨󵄨󵄨󵄨󵄨
𝐿
𝑖𝛾

−(−Δ)
𝑖𝛾

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

= 𝐻
1
+ 𝐻

2
.

(67)

It is clear that

𝐻
1
≤ 𝐶𝜌(𝑥

0
)
𝑛𝑏󵄩󵄩󵄩󵄩󵄩
𝐿
𝑖𝛾

− (−Δ)
𝑖𝛾

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶𝜌(𝑥
0
)
𝑛𝑎

. (68)

By (63),

𝐻
2
≤ 𝐶𝑟

𝑛−𝑛/𝑝+𝛿

(∫

|𝑥−𝑥0|≥2𝜌(𝑥0)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑛𝑏−𝑛−𝛿)𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶𝑟
𝑛−𝑛/𝑝+𝛿

𝜌(𝑥
0
)
𝑛𝑏−𝛿−𝑛/𝑞

󸀠

≤ 𝐶𝜌(𝑥
0
)
𝑛𝑎

,

(69)

where we have taken 𝜖 such that 1/𝑝 − 1 < 𝜖 < 𝛿/𝑛, which
implies that (𝑛𝑏 − 𝑛 − 𝛿)𝑞 + 𝑛 < 0. The proof is complete.

5. 𝐻1

𝐿
-Boundedness

In this section we prove the boundedness of ∇𝐿−1/2 on 𝐻
1

𝐿

when 𝑛/2 < 𝑞
0
< 𝑛.

Let 𝑎(𝑥) be an 𝐻1,𝑞

𝐿
-atom associated with a ball 𝐵(𝑥

0
, 𝑟)

for some suitable 𝑞. As the above section, if 𝑟 ≥ 𝜌(𝑥
0
),

we will prove that ∇𝐿−1/2𝑎(𝑥) is an 𝐻
1,𝑞,𝜖

𝐿
-molecule up to a

constant factor. If 𝑟 < 𝜌(𝑥
0
), we will prove that (∇𝐿−1/2 −

∇(−Δ)
−1/2

)𝑎(𝑥) is an 𝐻1,𝑞,𝜖

𝐿
-molecule up to a constant factor

for some suitable 𝜖. In any case we have ‖∇𝐿−1/2𝑎(𝑥)‖
𝐻
𝑝

𝐿

≤ 𝐶

uniformly.
Suppose 𝑟 ≥ 𝜌(𝑥

0
). It follows from Lemma 11 that

󵄩󵄩󵄩󵄩󵄩
∇𝐿

−1/2

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶‖𝑎 (𝑥)‖
𝑞
≤ 𝐶

󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)
󵄨󵄨󵄨󵄨

𝑎−𝑏

, (70)

provide 1 < 𝑞 ≤ 𝑝
0
, where 1/𝑝

0
= 1/𝑞

0
− 1/𝑛, 𝑎 = 𝜖 >

0, 𝑏 = 1 − 1/𝑞 + 𝜖. Thus there needs no the cancelation
condition. Write

(∫
R𝑛

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
∇𝐿

−1/2

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ (∫
𝐵(𝑥0 ,2𝑟)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
∇𝐿

−1/2

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫

|𝑥−𝑥0|≥2𝑟

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
∇𝐿

−1/2

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

= 𝐼
1
+ 𝐼

2
.

(71)

It is obvious that

𝐼
1
≤ 𝑟

𝑛𝑏
󵄩󵄩󵄩󵄩󵄩
∇𝐿

−1/2

𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶
󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)

󵄨󵄨󵄨󵄨

𝑏

‖𝑎 (𝑥)‖
𝐿
𝑞 ≤ 𝐶

󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)
󵄨󵄨󵄨󵄨

𝑎

.

(72)
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On the other hand, we have

𝐼
2
≤ (∫

|𝑥−𝑥
0
|≥2𝑟

(∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏

×
󵄨󵄨󵄨󵄨󵄨
𝑅
𝐿

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 )

𝑞

𝑑𝑥)

1/𝑞

𝑑𝑦

≤ ∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 (∫

|𝑥−𝑥
0
|≥2𝑟

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞

×
󵄨󵄨󵄨󵄨󵄨
𝑅
𝐿

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

𝑑𝑦

= ∫
𝐵(𝑥
0
,𝑟)

𝐺 (𝑦)
󵄨󵄨󵄨󵄨𝑎 (𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦.

(73)

Note that |𝑥−𝑦| ∼ |𝑥−𝑥
0
|when |𝑥−𝑥

0
| ≥ 2𝑟 and 𝑦 ∈ 𝐵(𝑥

0
, 𝑟)

and by Lemma 11,

𝐺 (𝑦)

≤ 𝐶𝜌(𝑦)
𝑁

×

{

{

{

(∫

|𝑥−𝑥0|≥2𝑟

(∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

×
𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑁−𝑛𝑏+𝑛−1)𝑞

)

1/𝑞

+(∫
|𝑥−𝑥
0
|≥2𝑟

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑁−𝑛𝑏+𝑛)𝑞

)

1/𝑞

}

}

}

.

(74)

Since 𝜌(𝑦) ≤ 𝐶𝑟 for 𝑦 ∈ 𝐵(𝑥
0
, 𝑟), it is clear that

𝜌(𝑦)
𝑁

(∫
|𝑥−𝑥
0
|≥2𝑟

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑁−𝑛𝑏+𝑛)𝑞

)

1/𝑞

≤ 𝐶𝑟
𝑛𝑏−𝑛/𝑞

󸀠

≤ 𝐶
󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)

󵄨󵄨󵄨󵄨

𝑎

(75)

provide 𝑁 > 𝑛𝑎. We have taken 𝑞 such that 1 < 𝑞 ≤ 𝑝
0
,

where 1/𝑝
0
= 1/𝑞

0
− 1/𝑛. Let 1/𝑞 = 1/𝑠 − 1/𝑛. Then 𝑠 ≤ 𝑞

0
.

Using the theorem on fractional integrals, 𝐵
𝑠
condition, and

Lemma 8, we obtain

𝜌(𝑦)
𝑁

(∫
|𝑥−𝑥
0
|≥2𝑟

(∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

×
𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑁−𝑛𝑏+𝑛−1)𝑞

)

1/𝑞

≤ 𝐶𝑟
𝑁

∞

∑

𝑗=1

(∫
2
𝑗
𝑟≤|𝑥−𝑥

0
|<2
𝑗+1

𝑟

1

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑛+𝑁−𝑛𝑏−1)𝑞

⋅ (∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶

∞

∑

𝑗=1

2
−𝑗𝑁

(2
𝑗

𝑟)
−𝑛+𝑛𝑏+1

× (∫
𝐵(𝑥
0
,2
𝑗+1

𝑟)

(∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶

∞

∑

𝑗=1

2
−𝑗𝑁

(2
𝑗

𝑟)
−𝑛+𝑛𝑏+1

(∫
𝐵(𝑥
0
,2
𝑗+1

𝑟)

𝑉(𝑥)
𝑠

𝑑𝑥)

1/𝑠

≤ 𝐶

∞

∑

𝑗=1

2
−𝑗𝑁

(2
𝑗

𝑟)
−𝑛+𝑛𝑏+1󵄨󵄨󵄨󵄨󵄨

𝐵(𝑥
0
, 2

𝑗+1

𝑟)
󵄨󵄨󵄨󵄨󵄨

1/𝑠−1

× ∫
𝐵(𝑥
0
,2
𝑗+1

𝑟)

𝑉 (𝑥) 𝑑𝑥

≤ 𝐶

∞

∑

𝑗=1

2
−𝑗(𝑁−𝑚

0
)

(2
𝑗

𝑟)
−𝑛+𝑛𝑏+𝑛/𝑠−1

= 𝐶

∞

∑

𝑗=1

2
−𝑗(𝑁−𝑚

0
−𝑛𝑎)

𝑟
𝑛𝑎

≤ 𝐶
󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)

󵄨󵄨󵄨󵄨

𝑎

(76)

provide 𝑁 sufficiently large. Thus 𝐺(𝑦) ≤ 𝐶 |𝐵(𝑥
0
, 𝑟)|

𝑎. It
follows that

𝐼
2
≤ ∫

𝐵(𝑥
0
,𝑟)

𝐺 (𝑦)
󵄨󵄨󵄨󵄨𝑎 (𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝐶
󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)

󵄨󵄨󵄨󵄨

𝑎

‖𝑎‖
𝐿
1 ≤ 𝐶

󵄨󵄨󵄨󵄨𝐵 (𝑥0, 𝑟)
󵄨󵄨󵄨󵄨

𝑎

.

(77)

Therefore, ‖| ⋅ −𝑥
0
|
𝑛𝑏

∇𝐿
−1/2

𝑎‖
𝐿
𝑞 ≤ 𝐶 |𝐵(𝑥

0
, 𝑟)|

𝑎 and
N(∇𝐿

−1/2

𝑎) ≤ 𝐶.
In case 𝑟 < 𝜌(𝑥

0
), we need to prove that (∇𝐿−1/2 −

∇(−Δ)
−1/2

)𝑎(𝑥) is an 𝐻
1,𝑞,𝜖

𝐿
-molecule up to a constant fac-

tor for some suitable 𝜖. First we give the estimate of
‖(∇𝐿

−1/2

− ∇(−Δ)
−1/2

)𝑎(𝑥)‖
𝐿
𝑞 . Write

(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
(∇𝐿

−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ (∫
𝐵(𝑥
0
,2𝜌(𝑥
0
))

󵄨󵄨󵄨󵄨󵄨
(∇𝐿

−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫
|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨󵄨
(∇𝐿

−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

= 𝐽
1
+ 𝐽

2
.

(78)
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We have

𝐽
1
≤ ∫

𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 (∫

𝐵(𝑥
0
,2𝜌(𝑥
0
))

󵄨󵄨󵄨󵄨󵄨
𝑅̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

𝑑𝑦

= ∫
𝐵(𝑥
0
,𝑟)

𝐺 (𝑦)
󵄨󵄨󵄨󵄨𝑎 (𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦.

(79)

By Lemma 11,

𝐺 (𝑦) ≤ (∫
𝐵(𝑥0,2𝜌(𝑥0))

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

(𝑛−1)𝑞

×(∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

𝑑𝑥)

1/𝑞

+ 𝐶𝜌(𝑦)
−𝛿

(∫
𝐵(𝑥
0
,2𝜌(𝑥
0
))

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

(𝑛−𝛿)𝑞

)

1/𝑞

= 𝐺
1
(𝑦) + 𝐺

2
(𝑦) .

(80)

Note that 𝜌(𝑦) ∼ 𝜌(𝑥
0
) when 𝑦 ∈ 𝐵(𝑥

0
, 𝑟). It is obvious that

𝐺
2
(𝑦) ≤ 𝐶𝜌(𝑥

0
)
−𝑛/𝑞
󸀠

= 𝐶𝜌(𝑥
0
)
𝑛(𝑎−𝑏)

, (81)

provide 1 < 𝑞 < 𝑛/(𝑛 − 𝛿). On the other hand, using the
theorem on fractional integrals and 𝐵

𝑠
condition with 𝑠 ≤

𝑞
0
, 1/𝑞 = 1/𝑠 − 1/𝑛, and 1 < 𝑞 < 𝑛/(𝑛 − 𝛿), we get

𝐺
1
(𝑦) ≤

∞

∑

𝑗=0

(∫
2
−𝑗+1

𝜌(𝑥
0
)≤|𝑥−𝑦|<2

−𝑗+2
𝜌(𝑥
0
)

𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

(𝑛−1)𝑞

⋅ (∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶

∞

∑

𝑗=0

(2
−𝑗

𝜌 (𝑥
0
))

−𝑛+1

× (∫

|𝑥−𝑦|<2
−𝑗+2

𝜌(𝑥0)

× (∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

𝑑𝑥)

1/𝑞

≤ 𝐶

∞

∑

𝑗=0

(2
−𝑗

𝜌 (𝑥
0
))

−𝑛+1

(∫
|𝑥−𝑦|<2

−𝑗+3
𝜌(𝑥
0
)

𝑉(𝑥)
𝑠

𝑑𝑥)

1/𝑠

≤ 𝐶

∞

∑

𝑗=0

(2
−𝑗

𝜌 (𝑥
0
))

−2𝑛+𝑛/𝑠+1

∫

|𝑥−𝑦|<2
−𝑗+3

𝜌(𝑥0)

𝑉 (𝑥) 𝑑𝑥

≤ 𝐶

∞

∑

𝑗=0

(2
−𝑗

𝜌 (𝑥
0
))

−𝑛+𝑛/𝑠−1

2
−𝑗𝛿

≤ 𝐶𝜌(𝑥
0
)
𝑛(𝑎−𝑏)

,

(82)

where we have used Lemma 7 in the last second inequality.
Thus,

𝐽
1
≤ ∫

𝐵(𝑥0 ,𝑟)

𝐺 (𝑦)
󵄨󵄨󵄨󵄨𝑎 (𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦 ≤ 𝐶𝜌(𝑥0)
𝑛(𝑎−𝑏)

. (83)

Since |𝑥−𝑦| ∼ |𝑥−𝑥
0
|when |𝑥−𝑥

0
| ≥ 2𝜌(𝑥

0
) and𝑦 ∈ 𝐵(𝑥

0
, 𝑟),

|𝑅̃(𝑥, 𝑦)| ≤ 𝐶/|𝑥 − 𝑦|
𝑛, it is easy to see that

𝐽
2
≤ ∫

𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 (∫

|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨󵄨
𝑅̃ (𝑥, 𝑦)

󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

𝑑𝑦

≤ 𝐶∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 (∫

|𝑥−𝑥0|≥2𝜌(𝑥0)

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛𝑞
)

1/𝑞

𝑑𝑦

≤ 𝐶∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 𝜌(𝑥0)

𝑛(𝑎−𝑏)

𝑑𝑦

≤ 𝐶𝜌(𝑥
0
)
𝑛(𝑎−𝑏)

.

(84)

Therefore we have
󵄩󵄩󵄩󵄩󵄩
(∇𝐿

−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶𝜌(𝑥
0
)
𝑛(𝑎−𝑏)

. (85)

As above, there needs no the cancelation condition. Write

(∫
R𝑛

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
(∇𝐿

−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

≤ (∫
𝐵(𝑥0 ,2𝜌(𝑥0))

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞

×
󵄨󵄨󵄨󵄨󵄨
(∇𝐿

−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫
|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
∇𝐿

−1/2

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

+ (∫
|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞󵄨󵄨󵄨󵄨󵄨
∇(−Δ)

−1/2

𝑎 (𝑥)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

= 𝐻
1
+ 𝐻

2
+ 𝐻

3
.

(86)

It is obvious that

𝐻
1
≤ 𝐶𝜌(𝑥

0
)
𝑛𝑏󵄩󵄩󵄩󵄩󵄩
(∇𝐿

−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶𝜌(𝑥
0
)
𝑛𝑎

.

(87)

We have

𝐻
2
≤ ∫

𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨

× (∫
|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞

×
󵄨󵄨󵄨󵄨󵄨
𝑅
𝐿

(𝑥, 𝑦)
󵄨󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

𝑑𝑦

= ∫
𝐵(𝑥
0
,𝑟)

𝐺
0
(𝑦)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦.

(88)
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Since |𝑥 − 𝑦| ∼ |𝑥 − 𝑥
0
| and 𝜌(𝑦) ∼ 𝜌(𝑥

0
) when |𝑥 − 𝑥

0
| ≥

2𝜌(𝑥
0
) and 𝑦 ∈ 𝐵(𝑥

0
, 𝑟), by Lemma 11,

𝐺
0
(𝑦)

≤ 𝐶𝜌(𝑥
0
)
𝑁

×

{

{

{

(∫

|𝑥−𝑥0|≥2𝜌(𝑥0)

(∫
𝐵(𝑥,|𝑥−𝑦|/4)

𝑉 (𝑧) 𝑑𝑧

|𝑧 − 𝑥|
𝑛−1

)

𝑞

×
𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑁−𝑛𝑏+𝑛−1)𝑞

)

1/𝑞

+(∫
|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑁−𝑛𝑏+𝑛)𝑞

)

1/𝑞

}

}

}

.

(89)

Similar to 𝐺(𝑦) in the proof of (77), we obtain 𝐺
0
(𝑦) ≤

𝐶𝜌(𝑥
0
)
𝑛𝑎 by the same argument. It follows that

𝐻
2
≤ ∫

𝐵(𝑥0,𝑟)

𝐺
0
(𝑦)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦 ≤ 𝐶 𝜌(𝑥

0
)
𝑛𝑎

. (90)

Using the cancelation condition of 𝑎,

𝐻
3
≤ ∫

𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 (∫

|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏𝑞

×
󵄨󵄨󵄨󵄨𝑅 (𝑥, 𝑦) − 𝑅 (𝑥, 𝑥0)

󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥)

1/𝑞

𝑑𝑦

≤ 𝐶∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨

× (∫
|𝑥−𝑥
0
|≥2𝜌(𝑥

0
)

󵄨󵄨󵄨󵄨𝑦 − 𝑥0
󵄨󵄨󵄨󵄨

𝑞

𝑑𝑥

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

(𝑛+1−𝑛𝑏)𝑞

)

1/𝑞

𝑑𝑦

≤ 𝐶∫
𝐵(𝑥
0
,𝑟)

󵄨󵄨󵄨󵄨𝑎 (𝑦)
󵄨󵄨󵄨󵄨 𝜌(𝑥0)

𝑛𝑎

𝑑𝑦

≤ 𝐶𝜌(𝑥
0
)
𝑛𝑎

,

(91)

where we have taken 𝜖 such that 0 < 𝜖 < 1/𝑛. This proves that
󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨𝑥 − 𝑥0
󵄨󵄨󵄨󵄨

𝑛𝑏

(∇𝐿
−1/2

− ∇(−Δ)
−1/2

) 𝑎 (𝑥)
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞

≤ 𝐶𝜌(𝑥
0
)
𝑛𝑎

. (92)

It follows that N((∇𝐿
−1/2

− ∇(−Δ)
−1/2

)𝑎) ≤ 𝐶. The proof is
completed.
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Let 𝐿 be the infinitesimal generator of an analytic semigroup on 𝐿2(R𝑛
)with Gaussian kernel bounds, and let 𝐿−𝛼/2 be the fractional

integrals of 𝐿 for 0 < 𝛼 < 𝑛. Assume that ⃗𝑏 = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚
) is a finite family of locally integrable functions; then the multilinear

commutators generated by ⃗𝑏 and 𝐿
−𝛼/2 are defined by 𝐿−𝛼/2

⃗𝑏
𝑓 = [𝑏

𝑚
, . . . , [𝑏

2
, [𝑏

1
, 𝐿
−𝛼/2

]], . . .]𝑓. Assume that 𝑏
𝑗
belongs to weighted

BMO space, 𝑗 = 1, 2, . . . , 𝑚; the authors obtain the boundedness of 𝐿−𝛼/2
⃗𝑏

onweightedMorrey spaces. As a special case, when 𝐿 = −Δ

is the Laplacian operator, the authors also obtain the boundedness of the multilinear fractional commutator 𝐼 ⃗𝑏
𝛼
on weightedMorrey

spaces. The main results in this paper are substantial improvements and extensions of some known results.

1. Introduction and Main Results

Assume that 𝐿 is a linear operator on 𝐿2(R𝑛), which generates
an analytic semigroup 𝑒

−𝑡𝐿 with a kernel 𝑝
𝑡
(𝑥, 𝑦) satisfying a

Gaussian upper bound; that is,

󵄨󵄨󵄨󵄨𝑝𝑡 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤

𝐶

𝑡𝑛/2
𝑒
−𝑐(|𝑥−𝑦|

2
/𝑡)
, (1)

for 𝑥, 𝑦 ∈ R𝑛 and all 𝑡 > 0.
The property (1) is satisfied by a large amount of differen-

tial operators. One can see [1] for details and examples.
For 0 < 𝛼 < 𝑛, the fractional integral 𝐿−𝛼/2 generated by

the operator 𝐿 is defined by

𝐿
−𝛼/2

𝑓 (𝑥) =
1

Γ (𝛼/2)
∫

∞

0

𝑒
−𝑡𝐿

(𝑓)
𝑑𝑡

𝑡−𝛼/2+1
(𝑥) . (2)

Let ⃗𝑏 = (𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑚
) be a finite family of locally

integrable functions; then the multilinear commutators gen-
erated by 𝐿−𝛼/2 and ⃗𝑏 are defined by

𝐿
−𝛼/2

⃗𝑏
𝑓 = [𝑏

𝑚
, . . . , [𝑏

2
, [𝑏

1
, 𝐿
−𝛼/2

]] , . . .] 𝑓, (3)

where𝑚 ∈ Z+.
Note that if 𝐿 = −Δ, which is Laplacian onR𝑛, then 𝐿

−𝛼/2

is the classical fractional integral 𝐼
𝛼
:

𝐼
𝛼
𝑓 (𝑥) =

Γ ((𝑛 − 𝛼) /2)

𝜋𝑛/22𝛼Γ (𝛼/2)
∫
R𝑛

𝑓 (𝑦)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼
𝑑𝑦, (4)

while 𝐿−𝛼/2
⃗𝑏

is the iterated commutator generated by ⃗𝑏 and 𝐼
𝛼
:

𝐼
⃗𝑏

𝛼
𝑓 = [𝑏

𝑚
, . . . , [𝑏

2
, [𝑏

1
, 𝐼
𝛼
]] , . . .] 𝑓, (5)

where𝑚 ∈ Z+.
When 𝑚 = 1, it is easy to see that 𝐿−𝛼/2

⃗𝑏
𝑓 = [𝑏, 𝐿

−𝛼/2
]𝑓

is the commutator generated by 𝐿−𝛼/2 and 𝑏, and when 𝑏
1
=

𝑏
2
= ⋅ ⋅ ⋅ = 𝑏

𝑚
, 𝐿−𝛼/2

⃗𝑏
is the higher commutator.

As we all know, if 𝑏 ∈ BMO, the commutator of
fractional integral operator [𝑏, 𝐼

𝛼
] is bounded from 𝐿

𝑝
(R𝑛)

to 𝐿
𝑞
(R𝑛), where 1 < 𝑝 < 𝑛/𝛼 and 1/𝑞 = 1/𝑝 −
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𝛼/𝑛 (see [2]). In 2004, Duong and Yan [1] generalized the
above classical result and obtained the (𝐿𝑝, 𝐿𝑞) boundedness
of the commutator [𝑏, 𝐿

−𝛼/2
] under the same conditions.

Simultaneously, the theory on multilinear integral operators
and multilinear commutators has attracted much attention
as a rapid developing field in harmonic analysis. Mo and
Lu [3] studied the (𝐿

𝑝
, 𝐿
𝑞
) boundedness of the multilinear

commutators 𝐿−𝛼/2
⃗𝑏

, where ⃗𝑏 = (𝑏
1
, . . . , 𝑏

𝑚
), 𝑏

𝑗
∈ BMO, and

𝑗 = 1, 2, . . . , 𝑚.
On the other hand, Muckenhoupt andWheeden [4] gave

some definitions of weighted bounded mean oscillation and
obtained some equivalent conditions for them.

Definition 1 (see [4]). Let 1 ≤ 𝑝 < ∞ and𝑤 be locally integral
in R𝑛 and let 𝑤 ≥ 0. A locally integrable function 𝑏 is said to
be in BMO

𝑝
(𝑤) if

‖𝑏‖BMO
𝑝
(𝑤)

= sup
𝑄

(
1

𝑤 (𝑄)
∫
𝑄

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏
𝑄

󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥)
1−𝑝

𝑑𝑥)

1/𝑝

≤ 𝐶,

(6)

where 𝑏
𝑄

= (1/|𝑄|) ∫
𝑄
𝑏(𝑦)𝑑𝑦 and the supremum is taken

over all balls 𝑄 ∈ R𝑛.
We may note that other weighted definitions for the

bounded mean oscillation also have been given by Mucken-
houpt and Wheeden in [4].

Definition 2 (see [4]). Let𝑤 be locally integral inR𝑛 and𝑤 ≥

0. A locally integrable function 𝑏 is said to be in BMO(𝑤) if
the norm of BMO(𝑤): ‖ ⋅ ‖

∗,𝑤
satisfies

‖𝑏‖
∗,𝑤

= sup
𝑄

1

𝑤 (𝑄)
∫
𝑄

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏
𝑄,𝑤

󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶, (7)

where 𝑏
𝑄,𝑤

= (1/𝑤(𝑄)) ∫
𝑄
𝑏(𝑧)𝑤(𝑧)𝑑𝑧 and the supremum is

taken over all balls 𝑄 ∈ R𝑛.
The above two definitions cannot contain each other;

throughout this paper, we will make some investigations on
the basis of Definition 2.

Recently, Wang [5] obtained some estimates for the com-
mutator [𝑏, 𝐼

𝛼
] on weighted Morrey space (see Definitions

3 and 4), where 𝑏 ∈ BMO
1
(𝑤). Furthermore, Wang and Si

[6] obtained the necessary and sufficient conditions for the
boundedness of [𝑏, 𝐿−𝛼/2] on weighted Morrey spaces when
𝑏 ∈ BMO

1
(𝑤).

Motivated by [1, 3, 5, 6], it is natural to raise the following
question: how to establish corresponding boundedness of
the multilinear commutator 𝐿−𝛼/2

⃗𝑏
𝑓 on the weighted Morrey

space, where ⃗𝑏 = (𝑏
1
, . . . , 𝑏

𝑚
), 𝑏

𝑗
∈ BMO(𝑤)?

The question is not motivated only by a mere quest to
extend the multilinear commutator 𝐿−𝛼/2

⃗𝑏
𝑓 from the classical

commutator [𝑏, 𝐼
𝛼
] but rather by their natural appearance in

analysis (see [3]).
To state the main results, we now give some definitions

and notations.

A weight is a locally integrable function on R𝑛 which
takes values in (0,∞) almost everywhere. For a weight 𝑤
and a measurable set 𝐸, we define 𝑤(𝐸) = ∫

𝐸
𝑤(𝑥)𝑑𝑥, the

Lebesgue measure of 𝐸, by |𝐸| and the characteristic function
of 𝐸 by 𝜒

𝐸
. For a real number 𝑝, 1 < 𝑝 < ∞; 𝑝󸀠 is the

conjugate of 𝑝; that is, 1/𝑝 + 1/𝑝
󸀠
= 1. The letter 𝐶 denotes

a positive constant that may vary at each occurrence but is
independent of the essential variable.

Definition 3 (see [7]). Let 1 ≤ 𝑝 < ∞, 0 < 𝜅 < 1; let 𝑤 be a
weight; then weighted Morrey space is defined by

𝐿
𝑝,𝜅

(𝑤) := {𝑓 ∈ 𝐿
𝑝

loc (𝑤) :
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)
< ∞} , (8)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

= sup
𝐵

(
1

𝑤 (𝐵)
𝜅
∫
𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝

𝑤 (𝑥) 𝑑𝑥)

1/𝑝

, (9)

and the supremum is taken over all balls 𝐵 in R𝑛.

Definition 4 (see [7]). Let 1 ≤ 𝑝 < ∞, 0 < 𝜅 < 1; let 𝑢, V be
weight; then two weights weighted Morrey space are defined
by

𝐿
𝑝,𝜅

(𝑢, V) := {𝑓 :
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑢,V) < ∞} , (10)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑢,V) = sup

𝐵

(
1

V (𝐵)𝜅
∫
𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝

𝑢 (𝑥) 𝑑𝑥)

1/𝑝

, (11)

and the supremum is taken over all balls 𝐵 in R𝑛. If 𝑢 = V,
then we denote 𝐿𝑝,𝜅(𝑢) for short.

Remark 5. (1) If 𝑤 = 1, 𝜅 = 𝜆/𝑛, and 0 < 𝜆 < 𝑛, then
𝐿
𝑝,𝜅

(𝑤) = 𝐿
𝑝,𝜆

(R𝑛), the classical Morrey space.
(2) If 𝜅 = 0, then 𝐿𝑝,0(𝑤) = 𝐿

𝑝
(𝑤), the weighted Lebesgue

space; if 𝑤 = 1, 𝜅 = 0, then 𝐿
𝑝,𝜅

(𝑤) = 𝐿
𝑝
(R𝑛), the Lebesgue

space.

Definition 6 (see [8]). A weight function 𝑤 is in the Muck-
enhoupt class 𝐴

𝑝
with 1 < 𝑝 < ∞ if for every ball 𝐵 in R𝑛,

there exists a positive constant 𝐶 which is independent of 𝐵
such that

(
1

|𝐵|
∫
𝐵

𝑤 (𝑥) 𝑑𝑥)(
1

|𝐵|
∫
𝐵

𝑤 (𝑥)
−1/(𝑝−1)

𝑑𝑥)

𝑝−1

≤ 𝐶. (12)

When 𝑝 = 1, 𝑤 ∈ 𝐴
1
, if

1

|𝐵|
∫
𝐵

𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶 ess inf
𝑥∈𝐵

𝑤 (𝑥) . (13)

When 𝑝 = ∞,𝑤 ∈ 𝐴
∞
, if there exist positive constants 𝛿 and

𝐶 such that given a ball 𝐵 and 𝐸 is a measurable subset of 𝐵,
then

𝑤 (𝐸)

𝑤 (𝐵)
≤ 𝐶(

|𝐸|

|𝐵|
)

𝛿

. (14)
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Definition 7 (see [9]). A weight function 𝑤 belongs to the
reverse Hölder class RH

𝑟
, if there exist two constants 𝑟 > 1

and 𝐶 > 0 such that the following reverse Hölder inequality

(
1

|𝐵|
∫
𝐵

𝑤 (𝑥)
𝑟
𝑑𝑥)

1/𝑟

≤ 𝐶
1

|𝐵|
∫
𝐵

𝑤 (𝑥) 𝑑𝑥, (15)

holds for every ball 𝐵 in R𝑛.

It is well known that if 𝑤 ∈ 𝐴
𝑝
with 1 ≤ 𝑝 < ∞, then

there exists 𝑟 > 1 such that𝑤 ∈ RH
𝑟
. It follows fromHölder’s

inequality that 𝑤 ∈ RH
𝑟
implies 𝑤 ∈ RH

𝑠
for all 1 < 𝑠 < 𝑟.

Moreover, if 𝑤 ∈ RH
𝑟
, 𝑟 > 1, then we have 𝑤 ∈ RH

𝑟+𝜀

for some 𝜀 > 0. We thus write 𝑟
𝑤

≡ sup{𝑟 > 1 : 𝑤 ∈

RH
𝑟
} to denote the critical index of 𝑤 for the reverse Hölder

condition.

Definition 8. The Hardy-Littlewood maximal operator 𝑀 is
defined by

𝑀𝑓(𝑥) = sup
𝑥∈𝐵

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦. (16)

Let 𝑤 be a weight. The weighted maximal operator 𝑀
𝑤
is

defined by

𝑀
𝑤
𝑓 (𝑥) = sup

𝑥∈𝐵

1

𝑤 (𝐵)
∫
𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑤 (𝑦) 𝑑𝑦. (17)

For 0 < 𝛼 < 𝑛, 𝑟 ≥ 1, the fractional maximal operator𝑀
𝛼,𝑟

is
defined by

𝑀
𝛼,𝑟
𝑓 (𝑥) = sup

𝑥∈𝐵

(
1

|𝐵|
1−𝛼𝑟/𝑛

∫
𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑟

𝑑𝑦)

1/𝑟

. (18)

And the fractional weighted maximal operator 𝑀
𝛼,𝑟,𝑤

is
defined by

𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥) = sup
𝑥∈𝐵

(
1

𝑤 (𝐵)
1−𝛼𝑟/𝑛

∫
𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨

𝑟

𝑤 (𝑦) 𝑑𝑦)

1/𝑟

.

(19)

If 𝛼 = 0, we denote𝑀
𝑟,𝑤

for short.

Definition 9. A family of operators {𝐴
𝑡
: 𝑡 > 0} is said to

be an “approximation to identity” if, for every 𝑡 > 0, 𝐴
𝑡

is represented by the kernel 𝑎
𝑡
(𝑥, 𝑦), which is a measurable

function defined onR𝑛×R𝑛, in the following sense: for every
𝑓 ∈ 𝐿

𝑝
(R𝑛), 𝑝 ≥ 1,

𝐴
𝑡
𝑓 (𝑥) = ∫

R𝑛
𝑎
𝑡
(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝑦,

󵄨󵄨󵄨󵄨𝑎𝑡 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ ℎ

𝑡
(𝑥, 𝑦) = 𝑡

−𝑛/2
𝑔(

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2

𝑡
) ,

(20)

for (𝑥, 𝑦) ∈ R𝑛 × R𝑛, 𝑡 > 0. Here, 𝑔 is a positive, bounded,
decreasing function satisfying

lim
𝑟→∞

𝑟
𝑛+𝜀

𝑔 (𝑟
2
) = 0, (21)

for some 𝜀 > 0.

Associated with an “approximation to identity” {𝐴
𝑡
: 𝑡 >

0}, Martell [10] introduced the sharp maximal function as
follows:

𝑀
♯

𝐴
𝑓 (𝑥) = sup

𝑥∈𝐵

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑦) − 𝐴

𝑡
𝐵

𝑓 (𝑦)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦, (22)

where 𝑡
𝐵
= 𝑟

2

𝐵
, 𝑟
𝐵
is the radius of the ball 𝐵, and 𝑓 ∈ 𝐿

𝑝
(R𝑛)

for some 𝑝 ≥ 1.
Notice that our analytic semigroup {𝑒

−𝑡𝐿
: 𝑡 > 0} is an

“approximation to identity.” In particular, denote

𝑀
♯

𝐿
𝑓 (𝑥) = sup

𝑥∈𝐵

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑦) − 𝑒

−𝑡
𝐵
𝐿
𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦. (23)

Next, we make some conventions on notation. Given
any positive integer 𝑚, for all 0 ≤ 𝑗 ≤ 𝑚, we denote by
𝐶
𝑚

𝑗
the family of all finite subsets 𝜎 = {𝜎

1
, 𝜎
2
, . . . , 𝜎

𝑗
} of

{1, 2, . . . , 𝑚} of different elements, and, for any 𝜎 ∈ 𝐶
𝑚

𝑗
, let

𝜎
󸀠
= {1, 2, . . . , 𝑚} \ 𝜎. Let ⃗𝑏 = (𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑚
); then, for any

𝜎 = {𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑗
} ∈ 𝐶

𝑚

𝑗
, we denote ⃗𝑏

𝜎
= (𝑏

𝜎
1

, 𝑏
𝜎
2

, . . . , 𝑏
𝜎
𝑗

),
𝑏
𝜎
(𝑥) = ∏

𝜎
𝑗
∈𝜎
𝑏
𝜎
𝑗

(𝑥) and ‖ ⃗𝑏
𝜎
‖BMO(𝑤) = ∏

𝜎
𝑗
∈𝜎
‖𝑏
𝜎
𝑗

‖BMO(𝑤), and
‖ ⃗𝑏‖BMO(𝑤) = ∏

𝜎
𝑗
∈{1,2,...,𝑚}

‖𝑏
𝜎
𝑗

‖BMO(𝑤) = ∏
𝑚

𝑗=1
‖𝑏
𝑗
‖BMO(𝑤).

In this paper, our main results are stated as follows.

Theorem 10. Assume the condition (1) holds. Let 0 < 𝛼 < 𝑛,
1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 − 𝛼/𝑛, 0 ≤ 𝜅 < 𝑝/𝑞, 𝑤𝑞/𝑝 ∈ 𝐴

1
,

and 𝑟
𝑤
> (1 − 𝜅)/(𝑝/𝑞 − 𝜅), where 𝑟

𝑤
denotes the critical index

of 𝑤 for the reverse Hölder condition. If 𝑏
𝑗
∈ 𝐵𝑀𝑂(𝑤), 𝑗 =

1, 2, . . . , 𝑚, then

󵄩󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

⃗𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩𝐵𝑀𝑂(𝑤)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

. (24)

Theorem 11. Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 − 𝛼/𝑛,
𝑤
𝑞/𝑝

∈ 𝐴
1
, and 𝑟

𝑤
> 𝑞/𝑝, where 𝑟

𝑤
denotes the critical index

of 𝑤 for the reverse Hölder condition. If 𝑏
𝑗
∈ 𝐵𝑀𝑂(𝑤), 𝑗 =

1, 2, . . . , 𝑚, then

󵄩󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

⃗𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝑤𝑞/𝑝)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩𝐵𝑀𝑂(𝑤)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤)

. (25)

Moreover, if 𝐿 = −Δ is the Laplacian, then

󵄩󵄩󵄩󵄩󵄩󵄩
𝐼
⃗𝑏

𝛼
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝑤𝑞/𝑝)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩𝐵𝑀𝑂(𝑤)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝(𝑤)

. (26)

Remark 12. We note that our results extend some results in
[1, 3]. To be specific, if we take 𝑚 = 1, 𝑤 = 1, and 𝜅 = 0

in Theorem 10, it is easy to see that our conclusion is the
main result of Duong and Yan [1]. If we only take 𝑤 = 1 and
𝜅 = 0 in Theorem 10, our result contains the corresponding
conclusion of [3].

The remaining part of this paper will be organized as
follows. In Section 2, we will give some known results and
prove some requisite lemmas. Section 3 is devoted to proving
the theorems of this paper.
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2. Requisite Lemmas

In this section, we will prove some lemmas and state some
known results about weights and weighted Morrey space.

Lemma 13 (see [11]). Let 𝑠 > 1, 1 ≤ 𝑝 < ∞, and 𝐴
𝑠

𝑝
= {𝑤 :

𝑤
𝑠
∈ 𝐴

𝑝
}. Then

𝐴
𝑠

𝑝
= 𝐴

1+(𝑝−1)/𝑠
∩ 𝑅𝐻

𝑠
. (27)

In particular, 𝐴𝑠
1
= 𝐴

1
∩ 𝑅𝐻

𝑠
.

Lemma 14 (see [10]). Assume that the semigroup 𝑒
−𝑡𝐿 has a

kernel 𝑝
𝑡
(𝑥, 𝑦) which satisfies the upper bound (1). Take 𝜆 > 0,

𝑓 ∈ 𝐿
1

0
(R𝑛) (the set of functions in 𝐿

1
(R𝑛) with bounded

support) and a ball 𝐵
0
such that there exists 𝑥

0
∈ 𝐵

0
with

𝑀𝑓(𝑥
0
) ≤ 𝜆. Then, for every 𝑤 ∈ 𝐴

∞
, 0 < 𝜂 < 1, we can

find 𝛾 > 0 (independent of 𝜆, 𝐵
0
, 𝑓, 𝑥

0
) and constants 𝐶, 𝑟 > 0

(which only depend on 𝑤) such that

𝑤({𝑥 ∈ 𝐵
0
: 𝑀𝑓 (𝑥) > 𝐴𝜆,𝑀

♯

𝐿
𝑓 (𝑥) ≤ 𝛾𝜆}) ≤ 𝐶𝜂

𝑟
𝑤 (𝐵

0
) ,

(28)

where 𝐴 > 1 is a fixed constant which depends only on 𝑛.

As a result, using the above good-𝜆 inequality together
with the standard arguments, we have the following estimates:

For every 𝑓 ∈ 𝐿
𝑝,𝜅

(𝑢, V), 1 < 𝑝 < ∞, 0 ≤ 𝜅 < 1; if
𝑢, V ∈ 𝐴

∞
, then
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑢,V) ≤
󵄩󵄩󵄩󵄩𝑀𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑢,V) ≤
󵄩󵄩󵄩󵄩󵄩
𝑀
♯

𝐿
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑢,V)

. (29)

In particular, when 𝑢 = V = 𝑤, 𝑤 ∈ 𝐴
∞
, we have

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

≤
󵄩󵄩󵄩󵄩𝑀𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)
≤
󵄩󵄩󵄩󵄩󵄩
𝑀
♯

𝐿
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

. (30)

Lemma 15 (Kolmogorov’s inequality; see [9, page 455]). Let
0 < 𝑟 < 𝑙 < ∞, for 𝑓 ≥ 0; define ‖𝑓‖

𝐿
𝑙,∞ = sup

𝑡>0
𝑡|{𝑥 ∈

R𝑛 : |𝑓(𝑥)| > 𝑡}|
1/𝑙,𝑁

𝑙,𝑟
(𝑓) = sup

𝐸
(‖𝑓𝜒

𝐸
‖
𝑟
/‖𝜒

𝐸
‖
ℎ
), and 1/ℎ =

1/𝑟 − 1/𝑙; then

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑙,∞

≤ 𝑁
𝑙,𝑟
(𝑓) ≤ (

𝑙

𝑙 − 𝑟
)

1/𝑟

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑙,∞

. (31)

Lemma 16 (see [4]). Let𝑤 ∈ 𝐴
∞
.Then the norm of𝐵𝑀𝑂(𝑤):

‖ ⋅ ‖
∗,𝑤

, is equivalent to the norm of 𝐵𝑀𝑂(R𝑛): ‖ ⋅ ‖
∗
; that is, if

𝑏 is a locally integrable function, then

‖𝑏‖∗,𝑤 = sup
𝑄

1

𝑤 (𝑄)
∫
𝑄

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏
𝑄,𝑤

󵄨󵄨󵄨󵄨 𝑤 (𝑥) 𝑑𝑥 ≤ 𝐶 (32)

is equivalent to

‖𝑏‖
∗
= sup

𝑄

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑏 (𝑥) − 𝑏
𝑄

󵄨󵄨󵄨󵄨 𝑑𝑥 ≤ 𝐶. (33)

Lemma 17 (see [5]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝−

𝛼/𝑛, and 𝑤
𝑞/𝑝

∈ 𝐴
1
; if 0 < 𝜅 < 𝑝/𝑞, 𝑟

𝑤
> (1 − 𝜅)/(𝑝/𝑞 − 𝜅),

then
󵄩󵄩󵄩󵄩𝑀𝛼,1

𝑓
󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)
. (34)

It also holds for 𝐼
𝛼
.

Lemma 18 (see [5]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 =

1/𝑝 − 𝛼/𝑛, and 𝑤
𝑞/𝑝

∈ 𝐴
1
; if 0 < 𝜅 < 𝑝/𝑞, 1 < 𝑟 < 𝑝,

𝑟
𝑤
> (1 − 𝜅)/(𝑝/𝑞 − 𝜅), then

󵄩󵄩󵄩󵄩𝑀𝑟,𝑤
𝑓
󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)
. (35)

Lemma 19 (see [5]). Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 =

1/𝑝 − 𝛼/𝑛, 0 < 𝜅 < 𝑝/𝑞, and 𝑤 ∈ 𝐴
∞
. Then, for 1 < 𝑟 < 𝑝,

󵄩󵄩󵄩󵄩𝑀𝛼,𝑟,𝑤
𝑓
󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)
. (36)

Remark 20. It is easy to see that Lemmas 17, 18, and 19 still
hold for 𝜅 = 0.

Lemma 21. Let 0 < 𝛼 < 𝑛, 1 < 𝑝 < 𝑛/𝛼, 1/𝑞 = 1/𝑝 − 𝛼/𝑛,
and 𝑤𝑞/𝑝 ∈ 𝐴

1
; if 0 ≤ 𝜅 < 𝑝/𝑞, 𝑟

𝑤
> (1 − 𝜅)/(𝑝/𝑞 − 𝜅), then

󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)
. (37)

Proof. Since semigroup 𝑒−𝑡𝐿 has a kernel 𝑝
𝑡
(𝑥, 𝑦) that satisfies

the upper bound (1), it is easy to see that, for 𝑥 ∈ R𝑛,
𝐿
−𝛼/2

𝑓(𝑥) ≤ 𝐼
𝛼
(|𝑓|)(𝑥). From the boundedness of 𝐼

𝛼
on

weighted Morrey space (see Lemma 17), we get

󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤
󵄩󵄩󵄩󵄩𝐼𝛼𝑓

󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)
≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

.

(38)

Remark 22. Since 𝐼
𝛼
is of weak (1, 𝑛/(𝑛 − 𝛼)) type, from the

above proof, we can obtain that 𝐿−𝛼/2 is of weak (1, 𝑛/(𝑛 −𝛼))

type.

Lemma 23 (see [1]). Assume the semigroup 𝑒
−𝑡𝐿 has a kernel

𝑝
𝑡
(𝑥, 𝑦) which satisfies the upper bound (1). Then, for 0 < 𝛼 <

𝑛, the differential operator 𝐿−𝛼/2 − 𝑒
−𝑡𝐿

𝐿
−𝛼/2 has an associated

kernel 𝐾̃
𝛼,𝑡
(𝑥, 𝑦) which satisfies

𝐾̃
𝛼,𝑡

(𝑥, 𝑦) ≤
𝐶

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

𝑛−𝛼

𝑡

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨

2
. (39)

Lemma 24. Assume the semigroup 𝑒
−𝑡𝐿 has a kernel 𝑝

𝑡
(𝑥, 𝑦)

which satisfies the upper bound (1), 𝑏 ∈ 𝐵𝑀𝑂(𝑤), and𝑤 ∈ 𝐴
1
.

Then, for 𝑓 ∈ 𝐿
𝑝
(R𝑛), 𝑝 > 1, 𝜎 ∈ 𝐶

𝑚

𝑗
(𝑗 = 1, 2, . . . , 𝑚), 1 <

𝜏 < ∞, and

sup
𝑥∈𝐵

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑡
𝐵
𝐿
((𝑏 − 𝑏

𝐵
)
𝜎
𝑓) (𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩𝐵𝑀𝑂(𝑤)
𝑀
𝜏,𝑤

𝑓 (𝑥) ,

(40)

where 𝑡
𝐵
= 𝑟

2

𝐵
and 𝑟

𝐵
is the radius of 𝐵.
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Proof. For any 𝑓 ∈ 𝐿
𝑝
(R𝑛), 𝑥 ∈ 𝐵, we have

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑒
−𝑡
𝐵
𝐿
((𝑏 − 𝑏

𝐵
)
𝜎
𝑓) (𝑦)

󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

≤
1

|𝐵|
∫
𝐵

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨(𝑏 (𝑧) − 𝑏
𝐵
)
𝜎
𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧 𝑑𝑦

≤
1

|𝐵|
∫
𝐵

∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨(𝑏 (𝑧) − 𝑏
𝐵
)
𝜎
𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧 𝑑𝑦

+
1

|𝐵|
∫
𝐵

∞

∑

𝑘=1

∫
2
𝑘+1
𝐵\2
𝑘
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨(𝑏 (𝑧) − 𝑏

𝐵
)
𝜎
𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧 𝑑𝑦

:= 𝐼 + 𝐼𝐼.

(41)

Noticing that 𝑦 ∈ 𝐵, 𝑧 ∈ 2𝐵, from (1), we get
󵄨󵄨󵄨󵄨󵄨
𝑝
𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝑡

−𝑛/2

𝐵
≤ 𝐶 |2𝐵|

−1
. (42)

Thus,

𝐼 ≤
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨(𝑏 (𝑧) − 𝑏
𝐵
)
𝜎

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

=
𝐶

|2𝐵|
∫
2𝐵

∏

𝜎
𝑗
∈𝜎

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
𝑗
(𝑧) − (𝑏

𝜎
𝑗

)
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧.

(43)

For simplicity, we only consider the case of 𝑗 = 2. We also
want to point out that althoughwe state our results on the case
of 𝑗 = 2, all results are valid on the multilinear case (𝑗 > 2)

without any essential difference and difficulty in the proof. So
it follows that

𝐼 ≤
𝐶

|2𝐵|
∫
2𝐵

(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵

− (𝑏
𝜎
1

)
𝐵

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2𝐵

− (𝑏
𝜎
2

)
𝐵

󵄨󵄨󵄨󵄨󵄨
)
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧

≤
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2𝐵

− (𝑏
𝜎
2

)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵

− (𝑏
𝜎
1

)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵

− (𝑏
𝜎
1

)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2𝐵

− (𝑏
𝜎
2

)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

:= 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4
.

(44)

We split 𝐼
1
as follows:

𝐼
1
≤

𝐶

|2𝐵|
∫
2𝐵

{
󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵,𝑤

− (𝑏
𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
}

× {
󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2𝐵,𝑤

− (𝑏
𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
}
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧

=
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2𝐵,𝑤

− (𝑏
𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵,𝑤

− (𝑏
𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵,𝑤

− (𝑏
𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2𝐵,𝑤

− (𝑏
𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

:= 𝐼
11
+ 𝐼

12
+ 𝐼

13
+ 𝐼

14
.

(45)

We now consider the four terms, respectively. Choose
𝜏
1
, 𝜏
2
, 𝜏, 𝑠 > 1 satisfing 1/𝜏

1
+ 1/𝜏

2
+ 1/𝜏 + 1/𝑠 = 1. According

to Hölder’s inequality and 𝑤 ∈ 𝐴
1
, we have

𝐼
11

=
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨
𝑤 (𝑧)

1/𝜏
1

×
󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨
𝑤 (𝑧)

1/𝜏
2
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨

× 𝑤 (𝑧)
1/𝜏

𝑤 (𝑧)
−1+1/𝑠

𝑑𝑧

≤
𝐶

|2𝐵|
(∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

𝜏
1

𝑤 (𝑧) 𝑑𝑧)

1/𝜏
1

× (∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

𝜏
2

𝑤 (𝑧) 𝑑𝑧)

1/𝜏
2

× (∫
2𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝜏

𝑤 (𝑧) 𝑑𝑧)

1/𝜏

(∫
2𝐵

𝑤 (𝑧)
−𝑠+1

𝑑𝑧)

1/𝑠

≤
𝐶

|2𝐵|

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗,𝑤
𝑀
𝜏,𝑤

𝑓 (𝑥)𝑤 (2𝐵)
1−1/𝑠

𝑤 (𝑥)
−1+1/𝑠

|2𝐵|
1/𝑠

= 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) (
𝑤 (2𝐵)

|2𝐵|
)

1−1/𝑠

𝑤 (𝑥)
−1+1/𝑠

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) .

(46)

In the above inequalities, we use the fact that if 𝑤 ∈ 𝐴
1
,

then 𝑤 ∈ 𝐴
∞
. Thus, the norm of BMO(𝑤) is equivalent to

the norm of BMO(R𝑛) (see Lemma 16).
For 𝐼

12
, we first estimate the term that contains (𝑏

𝜎
2

)
2𝐵
.

In fact, it follows from the John-Nirenberg lemma that there
exist 𝐶

1
> 0 and 𝐶

2
> 0 such that, for any ball 𝐵 and 𝛼 > 0,

󵄨󵄨󵄨󵄨󵄨
{𝑧 ∈ 2𝐵 :

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨
> 𝛼}

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

1 |2𝐵| 𝑒
−𝐶
2
𝛼/‖𝑏
𝜎2
‖
∗ ,

(47)
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since 𝑏 ∈ BMO(R𝑛). Using the definition of 𝐴
∞
, we get

𝑤({𝑧 ∈ 2𝐵 :
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨
> 𝛼})

≤ 𝐶𝑤 (2𝐵) 𝑒
−𝐶
2
𝛼𝛿/‖𝑏

𝜎2
‖
∗ ,

(48)

for some 𝛿 > 0. We can see that (48) yields

∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑤 (𝑧) 𝑑𝑧

= ∫

∞

0

𝑤({𝑧 ∈ 2𝐵 :
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨
> 𝛼}) 𝑑𝛼

≤ 𝐶𝑤 (2𝐵)∫

∞

0

𝑒
−𝐶
2
𝛼𝛿/‖𝑏

𝜎2
‖
∗𝑑𝛼

= 𝐶𝑤 (2𝐵)
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗
.

(49)

Thus,

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2𝐵,𝑤

− (𝑏
𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝑤 (2𝐵)
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑤 (𝑧) 𝑑𝑧

≤
𝐶

𝑤 (2𝐵)
𝑤 (2𝐵)

󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗
= 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗
.

(50)

On the basis of (50), we now estimate 𝐼
12
. For the above 𝜏,

select 𝑢, V such that 1/𝑢 + 1/V + 1/𝜏 = 1; by virtue of Hölder’s
inequality and 𝑤 ∈ 𝐴

1
, we have

𝐼
12

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗

1

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

= 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗

1

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

× 𝑤 (𝑧)
1/𝑢 󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑤 (𝑧)
1/𝜏

𝑤 (𝑧)
−1+1/V

𝑑𝑧

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗

1

|2𝐵|
(∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝑤 (𝑧) 𝑑𝑧)

1/𝑢

× (∫
2𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝜏

𝑤 (𝑧) 𝑑𝑧)

1/𝜏

(∫
2𝐵

𝑤 (𝑧)
−V+1

𝑑𝑧)

1/V

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥)
1

|2𝐵|
𝑤 (2𝐵)

1/𝑢+1/𝜏
𝑤 (𝑥)

−1+1/V
|2𝐵|

1/V

= 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) (
𝑤 (2𝐵)

|2𝐵|
)

1−1/V

𝑤 (𝑥)
−1+1/V

= 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) .

(51)

Analogous to the estimate of 𝐼
12
, we also have 𝐼

13
≤

𝐶‖ ⃗𝑏
𝜎
‖
∗
𝑀
𝜏,𝑤

𝑓(𝑥).

As for 𝐼
14
, taking advantage of Hölder’s inequality and

(50), we get

𝐼
14

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗

1

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

= 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗

1

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑤 (𝑧)

1/𝜏
𝑤 (𝑧)

1/𝜏
󸀠
−1

𝑑𝑧

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗

1

|2𝐵|
(∫

2𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨

𝜏

𝑤 (𝑧) 𝑑𝑧)

1/𝜏

× (∫
2𝐵

𝑤 (𝑧)
1−𝜏
󸀠

𝑑𝑧)

1/𝜏
󸀠

= 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗

1

|2𝐵|
𝑀
𝜏,𝑤

𝑓 (𝑥)𝑤 (2𝐵)
1/𝜏

𝑤 (𝑥)
1/𝜏
󸀠
−1

|2𝐵|
1/𝜏
󸀠

= 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) (
𝑤 (2𝐵)

|2𝐵|
)

1/𝜏

𝑤 (𝑥)
1/𝜏
󸀠
−1

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) .

(52)

Collecting the estimates of 𝐼
11
, 𝐼
12
, 𝐼
13
, and 𝐼

14
, it is easy to see

that

𝐼
1
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) . (53)

For term 𝐼
2
, using the fact that |𝑏

2𝐵
− 𝑏

𝐵
| ≤ 𝐶‖𝑏‖

∗
(see

[12]), we now get

𝐼
2
≤
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗

𝐶

|2𝐵|
∫
2𝐵

(
󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵,𝑤

− (𝑏
𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
)

×
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧

=

𝐶
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+

𝐶
󵄩󵄩󵄩󵄩󵄩
𝑏
𝜎
2

󵄩󵄩󵄩󵄩󵄩∗

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2𝐵,𝑤

− (𝑏
𝜎
1

)
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

:= 𝐼
21
+ 𝐼

22
.

(54)

By some estimates similar to those used in the estimate for
𝐼
12
, we conclude that

𝐼
21

≤ 𝐶
󵄩󵄩󵄩󵄩𝑏𝜎

󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) . (55)

For 𝐼
22
, using the same method as in dealing with 𝐼

14
, we get

𝐼
22

≤ 𝐶
󵄩󵄩󵄩󵄩𝑏𝜎

󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) . (56)

Therefore,

𝐼
2
≤ 𝐶

󵄩󵄩󵄩󵄩𝑏𝜎
󵄩󵄩󵄩󵄩∗

𝑀
𝜏,𝑤

𝑓 (𝑥) . (57)

Analogously,

𝐼
3
≤ 𝐶

󵄩󵄩󵄩󵄩𝑏𝜎
󵄩󵄩󵄩󵄩∗

𝑀
𝜏,𝑤

𝑓 (𝑥) . (58)
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An argument similar to that used in the estimate for 𝐼
14
leads

to

𝐼
4
≤ 𝐶

󵄩󵄩󵄩󵄩𝑏𝜎
󵄩󵄩󵄩󵄩∗

𝑀
𝜏,𝑤

𝑓 (𝑥) . (59)

Hence,

𝐼 ≤ 𝐼
1
+ 𝐼

2
+ 𝐼

3
+ 𝐼

4

≤ 𝐶
󵄩󵄩󵄩󵄩𝑏𝜎

󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) .

(60)

Next, we will consider the second term 𝐼𝐼 in (41). For any
𝑦 ∈ 𝐵, 𝑧 ∈ 2

𝑘+1
𝐵 \ 2

𝑘
𝐵, it is easy to get that |𝑦 − 𝑧| ≥ 2

𝑘−1
𝑟
𝐵

and

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

. (61)

Thus,

𝐼𝐼 ≤ 𝐶

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

∫
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨(𝑏 (𝑧) − 𝑏
𝐵
)
𝜎

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

= 𝐶

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

× ∫
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
𝐵

󵄨󵄨󵄨󵄨󵄨
⋅ ⋅ ⋅

󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
𝑗
(𝑧) − (𝑏

𝜎
𝑗

)
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧.

(62)

For simplicity, we also consider the case of 𝑗 = 2.

𝐼𝐼 ≤ 𝐶

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

× ∫
2
𝑘+1
𝐵

(
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2
𝑘+1
𝐵
− (𝑏

𝜎
1

)
𝐵

󵄨󵄨󵄨󵄨󵄨
)

× (
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2
𝑘+1
𝐵
− (𝑏

𝜎
2

)
𝐵

󵄨󵄨󵄨󵄨󵄨
)
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 𝑑𝑧

= 𝐶

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

× ∫
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+ 𝐶

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

× ∫
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2
𝑘+1
𝐵
− (𝑏

𝜎
1

)
𝐵

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
2
(𝑧) − (𝑏

𝜎
2

)
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+ 𝐶

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

× ∫
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
𝜎
1
(𝑧) − (𝑏

𝜎
1

)
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2
𝑘+1
𝐵
− (𝑏

𝜎
2

)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

+ 𝐶

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

󵄨󵄨󵄨󵄨2
𝑘+1𝐵

󵄨󵄨󵄨󵄨

× ∫
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
1

)
2
𝑘+1
𝐵
− (𝑏

𝜎
1

)
𝐵

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨󵄨
(𝑏
𝜎
2

)
2
𝑘+1
𝐵
− (𝑏

𝜎
2

)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧

:= 𝐼𝐼
1
+ 𝐼𝐼

2
+ 𝐼𝐼

3
+ 𝐼𝐼

4
.

(63)

For 𝐼𝐼
1
, similar to the estimate of 𝐼

1
, we have

𝐼𝐼
1
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥)

∞

∑

𝑘=1

𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) .

(64)

Noticing thatwe could use similarmethods of the estimates of
𝐼
2
, 𝐼
3
, and 𝐼

4
in the estimates of 𝐼𝐼

2
, 𝐼𝐼

3
, and 𝐼𝐼

4
, respectively.

From this together with the fact that |𝑏
2
𝑗+1
𝐵
− 𝑏

𝐵
| ≤ 2

𝑛
(𝑗 +

1)‖𝑏‖
∗
(see [12]), it is easy to get

𝐼𝐼
2
+ 𝐼𝐼

3
+ 𝐼𝐼

4
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

𝑓 (𝑥) . (65)

Therefore,

𝐼𝐼 ≤ 𝐶‖ ⃗𝑏
𝜎
‖
∗
𝑀
𝜏,𝑤

𝑓 (𝑥) . (66)

According to the estimates of 𝐼 and 𝐼𝐼, the lemma has been
proved.

Now, we will establish a lemma which plays an important
role in the proof of Theorem 10.

Lemma 25. Let 0 < 𝛼 < 𝑛, 𝑤 ∈ 𝐴
1
, and 𝑏 ∈ 𝐵𝑀𝑂(𝑤); then,

for all 𝑟 > 1, 𝜏 > 1, and 𝑥 ∈ R𝑛, we have

𝑀
♯

𝐿
(𝐿

−𝛼/2

⃗𝑏
𝑓) (𝑥)

≤ 𝐶 {
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝑟,𝑤

(𝐿
−𝛼/2

𝑓) (𝑥)

+

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

(𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓) (𝑥)

+
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑤 (𝑥)
−𝛼/𝑛

𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥)

+
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,1
𝑓 (𝑥)} .

(67)

Proof. For any given 𝑥 ∈ R𝑛, take a ball 𝐵 = 𝐵(𝑥
0
, 𝑟
𝐵
) which

contains 𝑥. For 𝑓 ∈ 𝐿
𝑝
(R𝑛), let 𝑓

1
= 𝑓𝜒

2𝐵
, 𝑓

2
= 𝑓 − 𝑓

1
.
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Denote the kernel of 𝐿−𝛼/2 by 𝐾
𝛼
(𝑥, 𝑦), ⃗𝜆 = (𝜆

1
, 𝜆
2
, . . . , 𝜆

𝑚
),

where 𝜆
𝑗
∈ R𝑛, 𝑗 = 1, 2, . . . , 𝑚. Then 𝐿

−𝛼/2

⃗𝑏
𝑓 can be written

in the following form:

𝐿
−𝛼/2

⃗𝑏
𝑓 (𝑦)

= ∫
R𝑛

𝑚

∏

𝑗=1

(𝑏
𝑗
(𝑦) − 𝑏

𝑗
(𝑧))𝐾

𝛼
(𝑦, 𝑧) 𝑓 (𝑧) 𝑑𝑧

= ∫
R𝑛

𝑚

∏

𝑗=1

((𝑏
𝑗
(𝑦) − 𝜆

𝑗
) − (𝑏

𝑗
(𝑧) − 𝜆

𝑗
))𝐾

𝛼
(𝑦, 𝑧) 𝑓 (𝑧) 𝑑𝑧

=

𝑚

∑

𝑖=0

∑

𝜎∈𝐶
𝑚

𝑖

(−1)
𝑚−𝑖

(𝑏 (𝑦) − 𝜆)
𝜎

× ∫
R𝑛

(𝑏 (𝑧) − 𝜆)
𝜎
󸀠 𝐾

𝛼
(𝑦, 𝑧) 𝑓 (𝑧) 𝑑𝑧.

(68)

Now expanding (𝑏(𝑧) − 𝜆)
𝜎
󸀠 as

(𝑏 (𝑧) − 𝜆)
𝜎
󸀠 = ((𝑏 (𝑧) − 𝑏 (𝑦)) + (𝑏 (𝑦) − 𝜆))

𝜎
󸀠 , (69)

and combining (68) with (69), it is easy to see that

𝑒
−𝑡
𝐵
𝐿
(𝐿

−𝛼/2

⃗𝑏
𝑓) (𝑦)

= 𝑒
−𝑡
𝐵
𝐿
(

𝑚

∏

𝑗=1

(𝑏
𝑗
− 𝜆

𝑗
) 𝐿

−𝛼/2
𝑓) (𝑦)

+

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

𝑒
−𝑡
𝐵
𝐿
((𝑏 − 𝜆)

𝜎
𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓) (𝑦)

+ (−1)
𝑚
𝑒
−𝑡
𝐵
𝐿
(𝐿

−𝛼/2
(

𝑚

∏

𝑗=1

(𝑏
𝑗
− 𝜆

𝑗
) 𝑓

1
))(𝑦)

+ (−1)
𝑚
𝑒
−𝑡
𝐵
𝐿
(𝐿

−𝛼/2
(

𝑚

∏

𝑗=1

(𝑏
𝑗
− 𝜆

𝑗
) 𝑓

2
))(𝑦) ,

(70)

where 𝑡
𝐵
= 𝑟

2

𝐵
and 𝑟

𝐵
is the radius of ball 𝐵.

Take 𝜆
𝑗

= (𝑏
𝑗
)
𝐵
, 𝑗 = 1, 2, . . . , 𝑚, and denote ⃗𝑏

𝐵
=

((𝑏
1
)
𝐵
, (𝑏

2
)
𝐵
, . . . , (𝑏

𝑚
)
𝐵
); then

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨
𝐿
−𝛼/2

⃗𝑏
𝑓 (𝑦) − 𝑒

−𝑡
𝐵
𝐿
(𝐿

−𝛼/2

⃗𝑏
𝑓) (𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

≤
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

(𝑏
𝑗
(𝑦) − (𝑏

𝑗
)
𝐵
) 𝐿

−𝛼/2
𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

(𝑏 (𝑦) − 𝑏
𝐵
)
𝜎
𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
)(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−𝑡
𝐵
𝐿
(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝐿

−𝛼/2
𝑓) (𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

𝑒
−𝑡
𝐵
𝐿
((𝑏 − 𝑏

𝐵
)
𝜎
𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓) (𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
−𝑡
𝐵
𝐿
(𝐿

−𝛼/2
(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
))(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

2
)(𝑦)

− 𝑒
−𝑡
𝐵
𝐿
(𝐿

−𝛼/2
(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

2
))(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

:=

7

∑

𝑖=1

𝐺
𝑖
.

(71)

We now estimate the above seven terms, respectively.We take
𝑚 = 2 as an example; the estimate for the case 𝑚 > 2 is the
same. For the first term 𝐺

1
, we split it as follows:

𝐺
1
=

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
1
(𝑦) − (𝑏

1
)
𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏
2
(𝑦) − (𝑏

2
)
𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐿
−𝛼/2

𝑓 (𝑦)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
𝑏
1
(𝑦) − (𝑏

1
)
𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
(𝑏
2
)
𝐵,𝑤

− (𝑏
2
)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐿
−𝛼/2

𝑓 (𝑦)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
(𝑏
1
)
𝐵,𝑤

− (𝑏
1
)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑏
2
(𝑦) − (𝑏

2
)
𝐵,𝑤

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐿
−𝛼/2

𝑓 (𝑦)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

+
1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨
(𝑏
1
)
𝐵,𝑤

− (𝑏
1
)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
(𝑏
2
)
𝐵,𝑤

− (𝑏
2
)
𝐵

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝐿
−𝛼/2

𝑓 (𝑦)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑦

:= 𝐺
11
+ 𝐺

12
+ 𝐺

13
+ 𝐺

14
.

(72)

Choose 𝑟
1
, 𝑟
2
, 𝑟, 𝑞 > 1 such that 1/𝑟

1
+ 1/𝑟

2
+ 1/𝑟 + 1/𝑞 = 1.

Noticing that 𝑤 ∈ 𝐴
1
, by Hölder’s inequality and the similar

estimate of 𝐼
1
, we have

𝐺
1
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝑟,𝑤

(𝐿
−𝛼/2

𝑓) (𝑥) . (73)

For 𝐺
2
, take 𝜏

1
, . . . , 𝜏

𝑗
, 𝜏, ] > 1 that satisfy 1/𝜏

1
+ ⋅ ⋅ ⋅ +

1/𝜏
𝑗
+ 1/𝜏 + 1/] = 1; then following Hölder’s inequality and

the same idea as that of 𝐺
1
yields

𝐺
2
≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

(𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓) (𝑥) . (74)
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To estimate 𝐺
3
, applying Lemma 15 (Kolmogorov’s ineq-

uality), weak (1, 𝑛/(𝑛 − 𝛼)) boundedness of 𝐿
−𝛼/2 (see

Remark 22), and Hölder’s inequality, we have

𝐺
3
=

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
)(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

≤
𝐶

|𝐵|
1−𝛼/𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑛/(𝑛−𝛼),∞

≤
𝐶

|𝐵|
1−𝛼/𝑛

∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

(𝑏
𝑗
(𝑦) − (𝑏

𝑗
)
𝐵
) 𝑓 (𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦.

(75)

We consider the case of 𝑚 = 2, for example, and we split 𝐺
3

as follows:

𝐺
3
≤

𝐶

|𝐵|
1−𝛼/𝑛

∫
2𝐵

(
󵄨󵄨󵄨󵄨𝑏1 (𝑦) − (𝑏

1
)
2𝐵

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨(𝑏1)2𝐵

− (𝑏
1
)
𝐵

󵄨󵄨󵄨󵄨)

× (
󵄨󵄨󵄨󵄨𝑏2 (𝑦) − (𝑏

2
)
2𝐵

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨(𝑏2)2𝐵

− (𝑏
2
)
𝐵

󵄨󵄨󵄨󵄨)
󵄨󵄨󵄨󵄨𝑓 (𝑦)

󵄨󵄨󵄨󵄨 𝑑𝑦

≤
𝐶

|𝐵|
1−𝛼/𝑛

∫
2𝐵

󵄨󵄨󵄨󵄨𝑏1 (𝑦) − (𝑏
1
)
2𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏2 (𝑦) − (𝑏
2
)
2𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

+
𝐶

|𝐵|
1−𝛼/𝑛

∫
2𝐵

󵄨󵄨󵄨󵄨𝑏1 (𝑦) − (𝑏
1
)
2𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨(𝑏2)2𝐵
− (𝑏

2
)
𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

+
𝐶

|𝐵|
1−𝛼/𝑛

∫
2𝐵

󵄨󵄨󵄨󵄨(𝑏1)2𝐵
− (𝑏

1
)
𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏2 (𝑦) − (𝑏
2
)
2𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

+
𝐶

|𝐵|
1−𝛼/𝑛

∫
2𝐵

󵄨󵄨󵄨󵄨(𝑏1)2𝐵
− (𝑏

1
)
𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨(𝑏2)2𝐵
− (𝑏

2
)
𝐵

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

:= 𝐺
31
+ 𝐺

32
+ 𝐺

33
+ 𝐺

34
.

(76)

Take 𝑟
1
, 𝑟
2
, 𝑟, 𝑞 > 1 such that 1/𝑟

1
+ 1/𝑟

2
+ 1/𝑟 + 1/𝑞 = 1;

by virtue of Hölder’s inequality and the same manner as that
used in dealing with 𝐼

1
, 𝐼
2
, 𝐼
3
in Lemma 24, we get

𝐺
31
+ 𝐺

32
+ 𝐺

33
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥) . (77)

For 𝐺
34
,

𝐺
34

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

1

|𝐵|
1−𝛼/𝑛

∫
2𝐵

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,1
𝑓 (𝑥) .

(78)

Therefore,

𝐺
3
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥) + 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,1
𝑓 (𝑥) . (79)

By Lemma 24, we have

𝐺
4
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝑟,𝑤

(𝐿
−𝛼/2

𝑓) (𝑥) ,

𝐺
5
≤ 𝐶

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗
𝑀
𝜏,𝑤

(𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓) (𝑥) .

(80)

Next, we consider the term 𝐺
6
:

𝐺
6
=

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
R𝑛

𝑝
𝑡
𝐵

(𝑦, 𝑧)

× (𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
))(𝑧) 𝑑𝑧

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

≤
1

|𝐵|
∫
𝐵

∫
2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
)(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑧 𝑑𝑦

≤
1

|𝐵|
∫
𝐵

∫
R𝑛\2𝐵

󵄨󵄨󵄨󵄨󵄨
𝑝
𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
)(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑧 𝑑𝑦

:= 𝐺
61
+ 𝐺

62
.

(81)

For 𝐺
61
, since 𝑦 ∈ 𝐵, 𝑧 ∈ 2𝐵, and |𝑝

𝑡
𝐵

(𝑦, 𝑧)| ≤ 𝐶|2𝐵|
−1, it

follows that

𝐺
61

≤
𝐶

|2𝐵|
∫
2𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝐿
−𝛼/2

(

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

1
)(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑧. (82)

Analogous to the estimate of 𝐺
3
, we have

𝐺
61

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥) + 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,1
𝑓 (𝑥) . (83)

For 𝐺
62
, note that 𝑦 ∈ 𝐵, 𝑧 ∈ 2

𝑘+1
𝐵 \ 2

𝑘
𝐵, and |𝑝

𝑡
𝐵

(𝑦, 𝑧)| ≤

𝐶(𝑒
−𝐶2
2(𝑘−1)

2
(𝑘+1)𝑛

/|2
𝑘+1

𝐵|). Hence, the estimate of𝐺
62
runs as

that of 𝐺
61
yields that

𝐺
62

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥) + 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,1
𝑓 (𝑥) . (84)

For the last term 𝐺
7
, applying Lemma 23, we have

𝐺
7
≤

1

|𝐵|
∫
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝐿
−𝛼/2

− 𝑒
−𝑡
𝐵
𝐿
𝐿
−𝛼/2

)

× (

𝑚

∏

𝑗=1

(𝑏
𝑗
− (𝑏

𝑗
)
𝐵
) 𝑓

2
)(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑦

≤
1

|𝐵|
∫
𝐵

∫
R𝑛\2𝐵

󵄨󵄨󵄨󵄨󵄨
𝐾̃
𝛼,𝑡
𝐵

(𝑦, 𝑧)
󵄨󵄨󵄨󵄨󵄨

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

(𝑏
𝑗
(𝑧) − (𝑏

𝑗
)
𝐵
) 𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑧 𝑑𝑦
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≤ 𝐶

∞

∑

𝑘=1

∫
2
𝑘+1
𝐵\2
𝑘
𝐵

𝑡
𝐵

󵄨󵄨󵄨󵄨𝑥0 − 𝑧
󵄨󵄨󵄨󵄨

𝑛−𝛼+2

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

(𝑏
𝑗
(𝑧) − (𝑏

𝑗
)
𝐵
) 𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑧

≤ 𝐶

∞

∑

𝑘=1

2
−2𝑘

󵄨󵄨󵄨󵄨2
𝑘𝐵

󵄨󵄨󵄨󵄨

1−𝛼/𝑛
∫
2
𝑘+1
𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

(𝑏
𝑗
(𝑧) − (𝑏

𝑗
)
𝐵
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 𝑑𝑧.

(85)

The same manner as that of 𝐺
3
gives us that

𝐺
7
≤ 𝐶

∞

∑

𝑘=1

2
−2𝑘

(
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥) +
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

𝑀
𝛼,1
𝑓 (𝑥))

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

(𝑀
𝛼,𝑟,𝑤

𝑓 (𝑥) +𝑀
𝛼,1
𝑓 (𝑥)) .

(86)

According to the above estimates, we have completed the
proof of Lemma 25.

3. Proof of Theorems

At first, we give the proof of Theorem 10.

Proof. It follows from Lemmas 13, 14, 25, and 17–21 that
󵄩󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

⃗𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑀𝐿

−𝛼/2

⃗𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤
󵄩󵄩󵄩󵄩󵄩󵄩
𝑀
♯

𝐿
(𝐿
−𝛼/2

⃗𝑏
𝑓)

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤ 𝐶{
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩󵄩
𝑀
𝑟,𝑤

(𝐿
−𝛼/2

𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

+

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑀
𝜏,𝑤

(𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

+
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩󵄩
𝑤
−𝛼/𝑛

𝑀
𝛼,𝑟,𝑤

(𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

+
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩𝑀𝛼,1
(𝑓)

󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)
}

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

+

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩𝑀𝛼,𝑟,𝑤
𝑓
󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤)

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

+

𝑚−1

∑

𝑗=1

∑

𝜎∈𝐶
𝑚

𝑗

𝐶
𝑗,𝑚

󵄩󵄩󵄩󵄩󵄩
⃗𝑏
𝜎

󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝐿
−𝛼/2

⃗𝑏
𝜎
󸀠

𝑓)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

.

(87)

Then, we can make use of an induction on 𝜎 ⊆ {1, 2, . . . , 𝑚}

to get that
󵄩󵄩󵄩󵄩󵄩󵄩
𝐿
−𝛼/2

⃗𝑏
𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞,𝜅𝑞/𝑝(𝑤𝑞/𝑝 ,𝑤)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
⃗𝑏
󵄩󵄩󵄩󵄩󵄩∗

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝑤)

. (88)

This completes the proof of Theorem 10.

Now, we are in the position of proving Theorem 11. If we
take 𝜅 = 0 inTheorem 10, we will immediately get our desired
results.
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With the aid of computer algebra systemMathematica 8.0 and by the integral factor method, for a family of generalized nilpotent
systems, we first compute the first several quasi-Lyapunov constants, by vanishing them and rigorous proof, and then we get
sufficient and necessary conditions under which the systems admit analytic centers at the origin. In addition, we present that
seven amplitude limit cycles can be created from the origin. As an example, we give a concrete system with seven limit cycles via
parameter perturbations to illustrate our conclusion. An interesting phenomenon is that the exponent parameter 𝑛 controls the
singular point type of the studied system. The main results generalize and improve the previously known results in Pan.

1. Introduction

A famous problem for the plane analytic systems of differ-
ential equations is under what conditions the local phase
portrait at a critical point 𝑝 is topologically equivalent to
the local phase portrait of the linear part of the system at 𝑝.
This problem has been solved by Poincaré and Bendixson for
hyperbolic critical points and for elementary critical points,
that is, for points having zero determinant and nonzero trace
linear part. Another problem is to characterize the local phase
portrait at an isolated critical point 𝑝.

When the matrix of the linear part at the origin is not
identically null but has its eigenvalues which are equal to zero,
at this moment, the origin is a nilpotent critical point. An
analytic system having an isolated nilpotent singularity at the
origin, in some suitable coordinates, can bewritten as follows:

𝑑𝑥

𝑑𝑡

= 𝑦 +

∞

∑

𝑖+𝑗=2

𝑎
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

= 𝑦 + 𝑋 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

=

∞

∑

𝑖+𝑗=2

𝑏
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

= 𝑌 (𝑥, 𝑦) .

(1)

Suppose that the function 𝑦 = 𝑦(𝑥) satisfies 𝑋(𝑥, 𝑦) = 0,
𝑦(0) = 0. Amelkin et al. proved (see, for instance, [1]) that
the origin of system (1) is a monodromic critical point (i.e., a
center or a focus) if and only if

𝑌 (𝑥, 𝑦 (𝑥)) = 𝛼𝑥
2𝑛−1

+ 𝑜 (𝑥
2𝑛−1

) , 𝛼 < 0,

[

𝜕𝑋(𝑥, 𝑦)

𝜕𝑥

+

𝜕𝑌(𝑥, 𝑦)

𝜕𝑥

]

𝑦=𝑦(𝑥)

= 𝛽𝑥
𝑛−1

+ 𝑜 (𝑥
𝑛−1

) ,

𝛽
2

+ 4𝑛𝛼 < 0,

(2)

where 𝑛 is a positive integer. Andreev [2] shows what the
behavior of the solutions in a neighborhood of the nilpotent
critical point is, except if it is a center or a focus (nilpotent
center problem). This last result can not distinguish between
a focus and a center. Takens [3] and Bogdanov [4] find
easy formal normal forms for the nilpotent critical points.
Moussu [5] has found the 𝐶∞ normal form for a nilpotent
center and asks if there exists an analytic normal form for
the nilpotent centers. Takens [3] proves that for any analytic
nilpotent center there exists an analytic change of variables
such that the new system can be written as a system of the
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form (1) and it is a time-reversible nilpotent center. However,
the aforementioned result is difficult to implement because,
in general, in order to decide if an analytic system has a
nilpotent center, we must know explicitly the analytic change
of variables which writes system (1) in the Berthier-Moussu
normal form. Writing systems in a convenient normal form,
Teixeira and Yang [6] study the relationship between time-
reversibility and the center-focus problem for elementary sin-
gular points and nilpotent singular points. Giné [7] develops
a method which provides necessary conditions for obtaining
a local analytic integral in a neighborhood of a generalized
nilpotent singular point. Garćıa and Giné [8] give a necessary
condition to have local analytic integrability in an analytic
nilpotent center. Giacomini et al. [9] studied the centers of
planar analytic vector fields which are a limit of linear-type
centers.

In this paper, we consider the system of differential
equations in the plane whose origin is a generalized nilpotent
singular point
𝑑𝑥

𝑑𝑡

= 𝑦
2𝑛−1

+ 𝑦
𝑛−1

(𝑎
30
𝑥
3

+ 𝑎
21
𝑥
2

𝑦
𝑛

+ 𝑎
12
𝑥𝑦
2𝑛

+ 𝑎
03
𝑦
3𝑛

) ,

𝑑𝑦

𝑑𝑡

= −2𝑥
3

+ 𝑏
02
𝑦
2𝑛

+ 𝑏
12
𝑥𝑦
2𝑛

+ 𝑏
03
𝑦
3𝑛

.

(3)
The origin of system (3) is a third-order nilpotent singular
point when 𝑛 = 1, while it is a total degenerate singular point
when 𝑛 > 1.

In Section 2, we give some preliminary knowledge con-
cerning the nilpotent critical point. In Section 3, we transform
the origin into a third-order nilpotent singular point by a
homeomorphism. Then, we compute the first several quasi-
Lyapunov constants and derive the sufficient and necessary
conditions for the origin to be an analytic center. In the last
section, we prove that there exist seven small amplitude limit
cycles in the neighborhood of the origin.

2. Computation of Quasi-Lyapunov Constants
and Determination of Analytic Centers

In this section, we first introduce some definitions, notations,
and symbols in order to make the paper compact and clear,
followed by an algorithm to obtain the necessary conditions
for the third-order nilpotent critical point of system (1) to be
an analytic center, and then we present several methods to
prove the sufficiency. More details are due to [10, 11].

If the origin of system (1) is a high-order critical point, it
is called a (2𝑛 − 1)th-order critical point when (2) is satisfied,
and it could be broken into 2𝑛 − 1 elementary critical points
in the neighborhood of the origin in the complex plane. It
is easy to show that the origin of system (1) is a third-order
monodromic critical point if and only if 𝑏

20
= 0 and (2𝑎

20
−

𝑏
11
)
2

+ 8𝑏
30
< 0.

Without loss of generality, we assume that
𝑎
20
= 𝜇, 𝑏

20
= 0, 𝑏

11
= 2𝜇, 𝑏

30
= −2. (4)

Otherwise, by letting (2𝑎
20
− 𝑏
11
)
2

+ 8𝑏
30
= −16𝜆

2, 2𝑎
20
+

𝑏
11

= 4𝜆𝜇, and taking the transformation 𝜉 = 𝜆𝑥,

𝜂 = 𝜆𝑦 + (1/4)(2𝑎
20
− 𝑏
11
)𝜆𝑥
2, we obtain the desired form.

Under (4), system (1) becomes the following real autonomous
planar system:

𝑑𝑥

𝑑𝑡

= 𝑦 + 𝜇𝑥
2

+

∞

∑

𝑖+2𝑗=3

𝑎
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

= 𝑋 (𝑥, 𝑦) ,

𝑑𝑦

𝑑𝑡

= −2𝑥
3

+ 2𝜇𝑥𝑦 +

∞

∑

𝑖+2𝑗=4

𝑏
𝑖𝑗
𝑥
𝑖

𝑦
𝑗

= 𝑌 (𝑥, 𝑦) .

(5)

In the following, we are going to classify the third-order
nilpotent critical point.

Theorem 1. For system (5), there exists a series with nonzero
convergence radius:

𝑢 (𝑥, 𝑦) = 𝑥 +

∞

∑

𝛼+𝛽=2

𝑎
󸀠

𝛼𝛽
𝑥
𝛼

𝑦
𝛽

,

V (𝑥, 𝑦) = 𝑦 +
∞

∑

𝛼+𝛽=2

𝑏
󸀠

𝛼𝛽
𝑥
𝛼

𝑦
𝛽

, 𝑏
󸀠

20
= −𝜇,

𝜁 (𝑥, 𝑦) = 1 +

∞

∑

𝛼+𝛽=1

𝑐
󸀠

𝛼𝛽
𝑥
𝛼

𝑦
𝛽

,

(6)

such that, by the transformation

𝑢 = 𝑢 (𝑥, 𝑦) , V = V (𝑥, 𝑦) , 𝑑𝑡 = 𝜁 (𝑥, 𝑦) 𝑑𝜏, (7)

system (5) is reduced to the following Liénard equation:

𝑑𝑢

𝑑𝜏

= V +
∞

∑

𝑘=1

𝐴
𝑘
𝑢
4𝑘

+

∞

∑

𝑘=0

𝐵
𝑘
𝑢
4𝑘+2

+

∞

∑

𝑘=1

𝐶
𝑘
𝑢
2𝑘+1

= 𝑈 (𝑢, V) ,

𝑑V
𝑑𝜏

= −2 (1 + 𝜇
2

) 𝑢
3

= 𝑉 (𝑢, V) ,

(8)

where 𝐵
0
= 2𝜇. In addition, the origin of system (5) is a center

if and only if 𝐶
𝑘
= 0 for all 𝑘.

The following two definitions are taken from [10].

Definition 2. (1) If𝜇 ̸= 0, then the origin of system (5) is called
a third-order nilpotent critical point of zero-class.

(2) If 𝜇 = 0 and there exists a positive integer 𝑠, such that
𝐵
0
= 𝐵
1
= ⋅ ⋅ ⋅ = 𝐵

𝑠−1
= 0, but 𝐵

𝑠
̸= 0, then the origin of

system (5) is called a third-order nilpotent critical point of
𝑠-class.

(3) If 𝜇 = 0 and 𝐵
𝑠
= 0 for all positive integer 𝑠, then the

origin of system (5) is called a third-order nilpotent critical
point of∞-class.

Definition 3. Let𝑓
𝑘
,𝑔
𝑘
be continuous and bounded functions

with respect to 𝜇 and 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑘 = 1, 2, . . .. If, for any integer

𝑚, there exist continuous and bounded functions of 𝜇 and all
𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
: 𝜉(𝑚)
1
, 𝜉
(𝑚)

2
, . . . , 𝜉

(𝑚)

𝑚−1
, such that

𝑓
𝑚
= 𝑔
𝑚
+ (𝜉
(𝑚)

1
𝑓
1
+ 𝜉
(𝑚)

2
𝑓
2
+ ⋅ ⋅ ⋅ + 𝜉

(𝑚)

𝑚−1
𝑓
𝑚−1
) , (9)
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then we say that 𝑓
𝑚
and 𝑔

𝑚
are equivalent, denoted by 𝑓

𝑚
∼

𝑔
𝑚
. If, for any integer 𝑚, we have 𝑓

𝑚
∼ 𝑔
𝑚
, we say that the

sequences of functions {𝑓
𝑚
} and {𝑔

𝑚
} are equivalent, denoted

by {𝑓
𝑚
} ∼ {𝑔

𝑚
}.

Remark 4. It is easy to see fromDefinition 3 that the following
conclusions hold.

(1) The equivalence relationship of two sequences of
functions is self-reciprocal, symmetric, and transmis-
sible.

(2) If, for some integer𝑚, 𝑓
𝑚
∼ 𝑔
𝑚
, then when 𝑓

1
= 𝑓
2
=

⋅ ⋅ ⋅ = 𝑓
𝑚−1

= 0, we have 𝑓
𝑚
= 𝑔
𝑚
.

(3) The relationship 𝑓
1
∼ 𝑔
1
implies that 𝑓

1
= 𝑔
1
.

The following three theorems were proved in [10].

Theorem 5. If the origin of system (5) is 𝑠-class, then the origin
of system (5) is a center if and only if there is an inverse
integrating factor𝑀𝑠+1.

If the origin of system (5) is ∞-class, then the origin of
system (5) is a center if and only if for any natural number 𝑙
there exists an inverse integrating factor 𝑀𝑙+1, where 𝑀 is a
power series given by

𝑀 = 𝑥
4

+ 𝑦
2

+

∞

∑

𝑘+2𝑗=5

𝑐
𝑘𝑗
𝑥
𝑘

𝑦
𝑗

. (10)

Theorem 6. For any natural number 𝑠 and a given number
sequence

{𝑐
0𝛽
} , 𝛽 ≥ 3, (11)

terms with the coefficients 𝑐
𝛼𝛽

satisfying 𝛼 ̸= 0 of the formal
series (10) can be constructed successively such that

𝜕

𝜕𝑥

(

𝑋

𝑀
𝑠+1
) +

𝜕

𝜕𝑦

(

𝑌

𝑀
𝑠+1
) =

1

𝑀
𝑠+2

∞

∑

𝑚=6

𝜔
𝑚
𝑥
𝑚

; (12)

that is,

(

𝜕𝑋

𝜕𝑥

+

𝜕𝑌

𝜕𝑦

)𝑀 − (𝑠 + 1) (

𝜕𝑀

𝜕𝑥

𝑋 +

𝜕𝑀

𝜕𝑦

𝑌) =

∞

∑

𝑚=6

𝜔
𝑚
𝑥
𝑚

,

(13)

where 𝑠𝜇 = 0.

Theorem 7. For 𝛼 ≥ 1, 𝛼 + 𝛽 ≥ 3 in (11) and (12), 𝑐
𝛼𝛽

is
uniquely determined by the recursive formula

𝑐
𝛼𝛽
=

1

(𝑠 + 1) 𝛼

(𝐴
𝛼−1,𝛽+1

+ 𝐵
𝛼−1,𝛽+1

) . (14)

For 𝑚 ≥ 1, 𝜔
𝑚
(𝑠, 𝜇) is uniquely determined by the recursive

formula

𝜔
𝑚
= 𝐴
𝑚,0
+ 𝐵
𝑚,0
, (15)

where

𝐴
𝛼𝛽
=

𝛼+𝛽−1

∑

𝑘+𝑗=2

[𝑘 − (𝑠 + 1) (𝛼 − 𝑘 + 1)] 𝑎
𝑘𝑗
𝑐
𝛼−𝑘+1,𝛽−𝑗

,

𝐵
𝛼𝛽
=

𝛼+𝛽−1

∑

𝑘+𝑗=2

[𝑗 − (𝑠 + 1) (𝛽 − 𝑗 + 1)] 𝑏
𝑘𝑗
𝑐
𝛼−𝑘,𝛽−𝑗+1

.

(16)

In (15), one sets
𝑐
00
= 𝑐
10
= 𝑐
01
= 0,

𝑐
20
= 𝑐
11
= 0, 𝑐

02
= 1,

𝑐
𝛼𝛽
= 0, if 𝛼 < 0 or 𝛽 < 0.

(17)

It follows fromTheorems 5–7 that if the origin of system
(5) is a center with 𝑠-class or∞-class, then, by choosing {𝑐

0𝛽
},

such that

𝜔
𝑘
= 0, 𝑘 = 6, 7, . . . . (18)

The following conclusion holds (seeTheorem 3.4 of [10]).

Theorem 8. If the origin of system (5) is∞-class, then when
the origin of system (5) is a center, in a neighborhood of the
origin, system (5) has an analytic inverse integrating factor

𝑀
∞
= 1 + ℎ.𝑜.𝑡. (19)

and an analytic first integral given by

𝐹 (𝑥, 𝑦) = 𝑥
4

+ 𝑦
2

+

∞

∑

𝑘+2𝑗=5

𝐶
𝑘𝑗
𝑥
𝑘

𝑦
𝑗

. (20)

According to [11], we have the following lemma.

Lemma 9. For system (5), if there exists a first integral which
is the power series (20) in the neighborhood of the origin, then
the origin of system (5) is a center.

By Theorem 1, if the origin of system (5) is a center,
there exist analytic transformations in the neighborhood of
the origin such that system (5) can be transformed into the
Liénard equations:

𝑑𝑢

𝑑𝜏

= V +
∞

∑

𝑘=1

𝐴
𝑘
𝑢
4𝑘

+

∞

∑

𝑘=0

𝐵
𝑘
𝑢
4𝑘+2

,

𝑑V
𝑑𝜏

= −2 (1 + 𝜇
2

) 𝑢
3

, 𝐵
0
= 2𝜇.

(21)

The vector field defined in (21) is symmetrical with
respect to the V-axis. Further, by the transformation

𝑤 = 𝑢
2

, V = V, 𝑑𝜏 = −

𝑑𝜏
󸀠

2𝑢

, (22)

system (21) is reduced to

𝑑𝑤

𝑑𝜏
󸀠
= −V −

∞

∑

𝑘=1

𝐴
𝑘
𝑤
2𝑘

−

∞

∑

𝑘=0

𝐵
𝑘
𝑤
2𝑘+1

,

𝑑V
𝑑𝜏
󸀠
= (1 + 𝜇

2

)𝑤, 𝐵
0
= 2𝜇.

(23)
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In the (𝑤, V)-phase plane, the origin of system (23) is an
elementary critical point (focus or center). Obviously, we
have the following.

Lemma 10. If there exists a power series F = F(𝑢, V) in 𝑢, V
satisfying

𝑑F

𝑑𝜏

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(21)

= 0, (24)

then F can be written as a power series in 𝑢2, V; namely,
F(𝑢, V) = 𝐺(𝑢2, V).

Then, we have the following theorem.

Theorem 11. The origin of system (5) is an analytic center if
and only if the origin of system (5) is a center and ∞-class;
namely, the origin of system (5) is a center and for any natural
number 𝑘, 𝐵

𝑘
= 0.

Corollary 12. If 𝜇 ̸= 0, the origin of system (5) is not an
analytic center.

Theorem 13. The origin of system (5) is an analytic center if
and only if there exists an analytic first integral 𝐹(𝑥, 𝑦) in the
neighborhood of the origin, which is the power series (23).

FromTheorems 8 and 13, we further have the following.

Theorem 14. The origin of system (5) is an analytic center if
and only if in the neighborhood of the origin of system (5) there
exists an analytic inverse integrating factor

𝑀
∞
= 1 +

∞

∑

𝑘+𝑗=1

𝐶
󸀠

𝑘𝑗
𝑥
𝑘

𝑦
𝑗

. (25)

Similarly, by Theorems 5 and 11, we have the following.

Theorem 15. The origin of system (5) is an analytic center, if
and only if, for any natural number 𝑠, there exists an inverse
integrating factor𝑀𝑠+1, where𝑀 is the power series (10).

Moreover, Theorems 7 and 15 imply the following.

Theorem 16. The origin of system (5) is an analytic center, if
and only if, for any natural number 𝑠, there exists a power series
𝑀 satisfying 𝜔

𝑚
= 0 in (12) for all𝑚.

Therefore, a new method of determining analytic nilpo-
tent center for a given system has been obtained in Theo-
rem 16.

Theorem 17. If the origin of system (5) is a nilpotent center and
system (5) is symmetric with respect to the origin, namely,

𝑋(−𝑥, −𝑦) = −𝑋 (𝑥, 𝑦) ,

𝑌 (−𝑥, −𝑦) = −𝑌 (𝑥, 𝑦) ,

(26)

then the origin of system (5) is an analytic center.

Theorem 18. If system (5) is symmetric with respect to the 𝑥-
axis, then the origin of system (5) is an analytic center.

Remark 19. If system (5) is symmetric with respect to the 𝑦-
axis, then the origin of system (5) may not be an analytic
center. For example, system (21) is symmetric with respect to
the V-axis, but the origin is an analytic center if and only if
𝐵
𝑘
= 0 for all 𝑘.

Eventually, by Theorem 11, we have the following.

Theorem 20. The origin of system (5) is an analytic center if
and only if system (5) can be changed into

𝑑𝑢

𝑑𝜏

= V +
∞

∑

𝑘=1

𝐴
𝑘
𝑢
4𝑘

,

𝑑V
𝑑𝜏

= −2𝑢
3 (27)

by the analytic transformation (7).

3. Analytic Center Conditions

In this section we will derive conditions for the origin of
system (3) to be an analytic center.

After the change

𝑥
1
= 𝑥, 𝑦

1
=

1

√𝑛

𝑦
𝑛

, 𝑑𝑡
1
= √𝑛𝑦

𝑛−1

𝑑𝑡, (28)

and renaming (𝑥
1
, 𝑦
1
, 𝑡
1
) with (𝑥, 𝑦, 𝑡), system (3) takes the

form

𝑑𝑥

𝑑𝑡

= 𝑦 +

1

√𝑛

𝑎
30
𝑥
3

+ 𝑎
21
𝑥
2

𝑦 + √𝑛𝑎
12
𝑥𝑦
2

+ 𝑛𝑎
03
𝑦
3

,

𝑑𝑦

𝑑𝑡

= −2𝑥
3

+ 𝑛𝑏
02
𝑦
2

+ 𝑛𝑏
12
𝑥𝑦
2

+ 𝑛
3/2

𝑏
03
𝑦
3

.

(29)

According toTheorem 7, we have the following.

Lemma 21. Assume that 𝑠 is a natural number. One can derive
a power series (10) for system (29) under which (12) is satisfied,
where

𝑐
00
= 0, 𝑐

10
= 0, 𝑐

01
= 0, 𝑐

20
= 0,

𝑐
11
= 0, 𝑐

02
= 1.

(30)

In addition, for any natural numbers 𝛼, 𝛽, 𝑐
𝛼𝛽

is given by the
following recursive formula:

𝑐
𝛼𝛽
= (2 (1 + 𝑠) (2 + 𝛽) 𝑐

−4+𝛼,2+𝛽

+

1

√𝑛

𝑎
30
(3 − (1 + 𝑠) (−3 + 𝛼)) 𝑐

−3+𝛼,1+𝛽

+ 𝑎
21
(2 − (1 + 𝑠) (−2 + 𝛼)) 𝑐

−2+𝛼,𝛽
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+ 𝑏
12
𝑛 (2 − (1 + 𝑠) 𝛽) 𝑐

−2+𝛼,𝛽

+ 𝑎
12
√𝑛 (1 − (1 + 𝑠) (−1 + 𝛼)) 𝑐

−1+𝛼,−1+𝛽

+ 𝑏
03
𝑛
3/2

(3 − (1 + 𝑠) (−1 + 𝛽)) 𝑐
−1+𝛼,−1+𝛽

+ 𝑏
02
𝑛 (2 − (1 + 𝑠) 𝛽) 𝑐

−1+𝛼,𝛽

− 𝑎
03
𝑛 (1 + 𝑠) 𝛼𝑐

𝛼,−2+𝛽
)

× ((𝑠 + 1) 𝛼)
−1

,

(31)

and, for any natural number 𝑚, 𝜔
𝑚
is given by the following

recursive formula:

𝜔
𝑚
= 2 (1 + 𝑠) 𝑐

−3+𝑚,1

+

1

√𝑛

𝑎
30
(3 − (−2 + 𝑚) (1 + 𝑠)) 𝑐

−2+𝑚,0

+ 𝑏
12
𝑛 (3 + 𝑠) 𝑐

−1+𝑚,−1

+ 𝑎
21
(2 − (−1 + 𝑚) (1 + 𝑠)) 𝑐

−1+𝑚,−1

+ 𝑏
03
𝑛
3/2

(3 + 2 (1 + 𝑠)) 𝑐
𝑚,−2

+ 𝑎
12
√𝑛 (1 − 𝑚 (1 + 𝑠)) 𝑐

𝑚,−2
+ 𝑏
02
𝑛 (3 + 𝑠) 𝑐

𝑚,−1

− 𝑎
03
(1 + 𝑚) 𝑛 (1 + 𝑠) 𝑐

1+𝑚,−3
.

(32)

Applying Lemma 21 and computing with Mathematica,
we have

𝜔
6
= −

4𝑠 − 1

√𝑛

𝑎
30
, 𝜔

7
∼ 3 (𝑠 + 1) 𝑐

03
,

𝜔
8
∼ −

2

5

√𝑛 (4𝑠 − 3) (𝑎
12
+ 3𝑛𝑏
03
) ,

𝜔
9
∼ −4𝑛

5/2

(𝑠 − 1) 𝑏
02
𝑏
03
.

(33)

From 𝜔
9
= 0, the analytic center problem of system (29)

can be broken down into three cases: (1) 𝑏
02
= 0, (2) 𝑏

03
= 0,

and (3) 𝑠 = 1.

Case 1. Consider 𝑏
02
= 0.

In this case, further calculation gives the following.

Theorem 22. For system (29), the first three quasi-Lyapunov
constants at the origin are given by

𝜆
1
=

1

√𝑛

𝑎
30
, 𝜆

2
∼

2

5

√𝑛 (𝑎
12
+ 3𝑛𝑏
03
) ,

𝜆
3
∼

4

7

𝑛
3/2

𝑏
03
(𝑎
21
+ 𝑛𝑏
12
) .

(34)

In the above expression of 𝜆
𝑘
, one has already let 𝜆

1
= 𝜆
2
=

⋅ ⋅ ⋅ = 𝜆
𝑘−1

= 0, 𝑘 = 2, 3.

FromTheorem 22, we obtain the following assertion.

Theorem 23. For system (29), all the quasi-Lyapunov con-
stants at the origin are zero if and only if the first three quasi-
Lyapunov constants at the origin are zero; that is, one of the
following two conditions holds:

𝑎
30
= 𝑎
12
= 𝑏
02
= 𝑏
03
= 0; (35)

𝑎
30
= 𝑏
02
= 0, 𝑎

12
+ 3𝑛𝑏
03
= 0, 𝑎

21
+ 𝑛𝑏
12
= 0.

(36)

Relevantly, both conditions are the analytic center conditions of
the origin.

Proof. When condition (35) is satisfied, system (29) can be
brought to

𝑑𝑥

𝑑𝑡

= 𝑦 (1 + 𝑎
21
𝑥
2

+ 𝑛𝑎
03
𝑦
2

) ,

𝑑𝑦

𝑑𝑡

= −𝑥 (2𝑥
2

− 𝑛𝑏
12
𝑦
2

) ,

(37)

whose vector field is symmetric with respect to the origin.
When condition (36) is satisfied, system (29) can be

brought to

𝑑𝑥

𝑑𝑡

= 𝑦 (1 − 𝑛𝑏
12
𝑥
2

− 3𝑛
3/2

𝑏
03
𝑥𝑦 + 𝑛𝑎

03
𝑦
2

) ,

𝑑𝑦

𝑑𝑡

= −2𝑥
3

+ 𝑛𝑏
12
𝑥𝑦
2

+ 𝑛
3/2

𝑏
03
𝑦
3

,

(38)

which is Hamiltonian and possesses the analytic first integral

𝐹
1
(𝑥, 𝑦) = 𝑥

4

+ 𝑦
2

− 𝑛𝑏
12
𝑥
2

𝑦
2

− 2𝑛
3/2

𝑏
03
𝑥𝑦
3

+

1

2

𝑛𝑎
03
𝑦
4

.

(39)

Case 2. Consider 𝑏
03
= 0.

In this case, 𝜆
1
= 𝜆
2
= 0 yields that

𝑎
30
= 𝑎
12
= 𝑏
03
= 0. (40)

Under this condition, system (29) becomes

𝑑𝑥

𝑑𝑡

= 𝑦 (1 + 𝑎
21
𝑥
2

+ 𝑛𝑎
03
𝑦
2

) ,

𝑑𝑦

𝑑𝑡

= −2𝑥
3

+ 𝑛𝑏
02
𝑦
2

+ 𝑛𝑏
12
𝑥𝑦
2

,

(41)

whose vector field is symmetric with respect to axis 𝑥.
Thus, system (29) has an analytic center at the origin when
condition (40) is satisfied.

Obviously, condition (35) is a special case of condition
(40).

Case 3. Consder 𝑠 = 1.
In this case, we have the following.
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Proposition 24. For system (29), one can determine succes-
sively the terms of the formal series𝑀(𝑥, 𝑦) = 𝑥4 + 𝑦2 + 𝑜(𝑟4),
such that

(

𝜕𝑋

𝜕𝑥

+

𝜕𝑌

𝜕𝑦

)𝑀 − 2(

𝜕𝑀

𝜕𝑥

𝑋 +

𝜕𝑀

𝜕𝑦

𝑌)

=

7

∑

𝑚=1

𝜆
𝑚
[(2𝑚 − 5) 𝑥

2𝑚+4

+ 𝑜 (𝑟
18

)] ,

(42)

where 𝜆
𝑚
is the 𝑚th quasi-Lyapunov constant at the origin of

system (29),𝑚 = 1, 2, . . . , 7.

Further calculation gives the following.

Theorem 25. For system (29), the first seven quasi-Lyapunov
constants at the origin are given by

𝜆
1
=

1

√𝑛

𝑎
30
,

𝜆
2
∼

2

5

√𝑛 (𝑎
12
+ 3𝑛𝑏
03
) ,

𝜆
3
∼

4

35

𝑛
3/2

𝑏
03
(5𝑎
21
+ 5𝑛𝑏
12
+ 11𝑛

2

𝑏
2

02
) ,

𝜆
4
∼ −

4

7875

𝑛
9/2

𝑏
2

02
𝑏
03
(−1475𝑏

12
+ 744𝑛𝑏

2

02
) ,

𝜆
5
∼ −

8

2512846875

𝑛
9/2

𝑏
2

02
𝑏
03

× (589594375𝑎
03
+ 395195814𝑛

3

𝑏
4

02
) ,

𝜆
6
∼ −

24

4352606774140625

𝑛
13/2

𝑏
2

02
𝑏
03

× (−1131416865765625𝑏
2

03
+ 529893701720802𝑛

3

𝑏
6

02
) ,

𝜆
7
∼ −

10573115332617676917216

38365073074138357421875

𝑛
23/2

𝑏
10

02
𝑏
03
.

(43)

In the above expression of 𝜆
𝑘
, we have already let 𝜆

1
= 𝜆
2
=

⋅ ⋅ ⋅ = 𝜆
𝑘−1

= 0, 𝑘 = 2, 3, 4, 5, 6, 7.

𝜆
𝑖
, 𝑖 = 1, 2, 3, 4, 5, 6, 7, in expression (43) vanish if and

only if one of conditions (36) and (40) holds.
Therefore, we see from Cases 1–3 the following.

Corollary 26. The origin of system (29) ((3)) is an analytic
center if and only if condition (36) or (40) holds.

Actually, when condition (36) holds, system (3) goes over
to

𝑑𝑥

𝑑𝑡

= 𝑦
2𝑛−1

(1 − 𝑛𝑏
12
𝑥
2

− 3𝑛𝑏
03
𝑥𝑦
𝑛

+ 𝑎
03
𝑦
2𝑛

) ,

𝑑𝑦

𝑑𝑡

= −2𝑥
3

+ 𝑏
12
𝑥𝑦
2𝑛

+ 𝑏
03
𝑦
3𝑛

,

(44)

which is Hamiltonian and possesses the analytic first integral

𝐹
2
(𝑥, 𝑦) = 𝑥

4

+

1

𝑛

𝑦
2𝑛

− 𝑏
12
𝑥
2

𝑦
2𝑛

− 2𝑏
03
𝑥𝑦
3𝑛

+

1

2𝑛

𝑎
03
𝑦
4𝑛

.

(45)

When condition (40) holds, system (3) goes over to

𝑑𝑥

𝑑𝑡

= 𝑦
2𝑛−1

(1 + 𝑎
21
𝑥
2

+ 𝑎
03
𝑦
2𝑛

) ,

𝑑𝑦

𝑑𝑡

= −2𝑥
3

+ 𝑏
02
𝑦
2𝑛

+ 𝑏
12
𝑥𝑦
2𝑛

,

(46)

whose vector field is symmetric with respect to axis 𝑥.

4. Multiple Bifurcation of Limit Cycles

In this section, we are going to establish the conditions for
𝑂(0, 0) to be at most a weak focus of order seven, and, more,
we will prove that the perturbed system of (29) can generate
seven limit cycles enclosing an elementary node at the origin.

From the fact 𝜆
1
= 𝜆
2
= 𝜆
3
= 𝜆
4
= 𝜆
5
= 𝜆
6
= 0, 𝜆

7
̸= 0,

we obtain the following.

Theorem 27. For system (29), the origin is a weak focus of
order seven if and only if

𝑎
30
= 0, 𝑎

12
= −3𝑛𝑏

03
,

𝑎
21
= −

1

5

𝑛 (5𝑏
12
+ 11𝑛𝑏

2

02
) , 𝑏

12
=

744

1475

𝑛𝑏
2

02
,

𝑎
03
= −

395195814

589594375

𝑛
3

𝑏
4

02
,

𝑏
2

03
=

529893701720802

1131416865765625

𝑛
3

𝑏
6

02
, 𝑏

02
𝑏
03

̸= 0.

(47)

Consider the perturbed system of (29):

𝑑𝑥

𝑑𝑡

= 𝛿 (𝜀) 𝑥 + 𝑦 +

1

√𝑛

𝑎
30
(𝜀) 𝑥
3

+ 𝑎
21
(𝜀) 𝑥
2

𝑦

+ √𝑛𝑎
12
(𝜀) 𝑥𝑦

2

+ 𝑛𝑎
03
(𝜀) 𝑦
3

,

𝑑𝑦

𝑑𝑡

= 2𝛿 (𝜀) 𝑦 − 2𝑥
3

+ 𝑛𝑏
02
𝑦
2

+ 𝑛𝑏
12
(𝜀) 𝑥𝑦

2

+ 𝑛
3/2

𝑏
03
(𝜀) 𝑦
3

.

(48)

In order to get seven limit cycles, we only need to show
that, when condition (47) holds, the Jacobian of the function
group (𝜆

1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
) with respect to the parameter

group (𝑎
30
, 𝑎
12
, 𝑎
21
, 𝑏
12
, 𝑎
03
, 𝑏
03
) does not equal zero. A direct

calculation gives that

𝜕 (𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
, 𝜆
5
, 𝜆
6
)

𝜕 (𝑎
30
, 𝑎
12
, 𝑎
21
, 𝑏
12
, 𝑎
03
, 𝑏
03
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨(47)

= −

127789436073926783638623356338176

145260521069842113268585205078125

𝑛
23

𝑏
18

02
𝑏
03

̸= 0.

(49)

The above discussions indicate the following.
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Theorem 28. If the origin of system (29) ((3)) is a weak focus
of order seven, for 0 < 𝛿 ≪ 1, making a small perturbation to
the coefficient group (𝑎

30
, 𝑎
12
, 𝑎
21
, 𝑏
12
, 𝑎
03
, 𝑏
03
), then, for system

(48), in a small neighborhood of the origin, there exist exactly
seven small amplitude limit cycles enclosing the origin 𝑂(0, 0),
which is an elementary node.

Example 29. Take

𝛿 (𝜀) = 𝜀
56

, 𝑎
30
(𝜀) = −𝜀

42

,

𝑎
12
(𝜀) = −

9√58877077968978/20801689

7375

𝑛
5/2

𝑐
3 sign (𝑐)

− 3𝑛𝜀
2

+ 𝜀
30

,

𝑎
21
(𝜀) = −

3989

1475

𝑛
2

𝑐
2

− 𝑛𝜀
12

− 𝜀
20

,

𝑏
12
(𝜀) =

744

1475

𝑛𝑐
2

+ 𝜀
12

,

𝑎
03
(𝜀) = −

395195814

589594375

𝑛
3

𝑐
4

+ 𝜀
6

,

𝑏
03
(𝜀)

=

3√58877077968978/20801689

7375

𝑛
3/2

𝑐
3 sign (𝑐) + 𝜀2,

𝑏
02
= 𝑐 sign (𝑐) ,

(50)

where 𝑐 is an arbitrary nonzero real constant.
Straightforward computations by using Theorem 25 give

the first seven quasi-Lyapunov constants at the origin of
system (48):

𝜆
1
= −

1

√𝑛

𝜀
42

+ 𝑜 (𝜀
42

) ,

𝜆
2
∼

2

5

√𝑛𝜀
30

+ 𝑜 (𝜀
30

) = 0.4√𝑛𝜀
30

+ 𝑜 (𝜀
30

) ,

𝜆
3
∼ −

12√58877077968978/20801689

51625

𝑛
3

𝑐
3 sign (𝑐) 𝜀20

+ 𝑜 (𝜀
20

) ≈ −0.391061𝑛
3

𝑐
3 sign (𝑐) 𝜀20 + 𝑜 (𝜀20) ,

𝜆
4
∼

4√19625692656326/62405067

4375

𝑛
6

𝑐
5 sign (𝑐) 𝜀12

+ 𝑜 (𝜀
12

) ≈ 0.512725𝑛
6

𝑐
5 sign (𝑐) 𝜀12 + 𝑜 (𝜀12) ,

𝜆
5
∼ −

8√15955688129593038/76759

2839375

𝑛
6

𝑐
5 sign (𝑐) 𝜀6

+ 𝑜 (𝜀
6

) ≈ −1.28458𝑛
6

𝑐
5 sign (𝑐) 𝜀6 + 𝑜 (𝜀6) ,

𝜆
6
∼

25434897682598496

4352606774140625

𝑛
19/2

𝑐
8

𝜀
2

+ 𝑜 (𝜀
2

)

≈ 5.8436𝑛
19/2

𝑐
8

𝜀
2

+ 𝑜 (𝜀
2

) ,

𝜆
7

∼ −

31719345997853030751648√58877077968978/20801689

282942413921770385986328125

×𝑛
13

𝑐
13 sign (𝑐) + 𝑜 (1) ≈ −0.188604𝑛13𝑐13 sign (𝑐)

+𝑜 (1) .

(51)

Then, for 0 < 𝜀 ≪ 1, system (48) has seven limit cycles Γ
𝑘
:

𝑟 = 𝑟(𝜃, ℎ
𝑘
(𝜀)) in a small neighborhood of the origin, where

ℎ
𝑘
(𝜀) = 𝑂(𝜀

𝑘

), 𝑘 = 1, 2, 3, 4, 5, 6, 7.
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We prove the condition “𝑐 is neither 0 nor a negative integer” can be dropped on the boundedness of a class of integral operators
𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝 space, which improves the result by Krues and Zhu. Besides, the exact norm of 𝑆

𝑎,𝑏,𝑐
on 𝐿

𝑝 space is also obtained under
the assumption 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏.

1. Introduction

Let B
𝑛
be the open unit ball in the complex space C𝑛. The

measure,

𝑑]
𝑡
= (1 − |𝑧|

2

)
𝑡

𝑑] (𝑧) , (1)

denotes the weighted Lebesguemeasure onB
𝑛
, where 𝑡 is real

parameter and ] is the normalized Lebesgue measure on B
𝑛

such that V(B
𝑛
) = 1. It is easy to know 𝑑]

𝑡
is finite if and only

if 𝑡 > −1. Suppose 1 ≤ 𝑝 < ∞; to simplify the notation, we
write 𝐿𝑝

𝑡
:= 𝐿

𝑝

(B
𝑛
, V

𝑡
) for the weighted 𝐿

𝑝-space under the
measure ]

𝑡
on B

𝑛
and 𝐿

𝑝

:= 𝐿
𝑝

0
for the usual 𝐿𝑝-space under

the measure ].
Suppose 𝑎, 𝑏, 𝑐 are real numbers, and a class of integral

operators is defined by

𝑆
𝑎,𝑏,𝑐

𝑓 (𝑧) = (1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓 (𝑤) 𝑑] (𝑤) . (2)

The class of integral operators is introduced by Kures and
Zhu [1]. And it is closely related to “maximal Bergman
projection” and Berezin transform. In fact, the boundedness

of Bergman projection on 𝐿
𝑝

𝛼
comes from the boundedness

of the operator

𝑃
♯

𝛼
𝑓 (𝑧) =

Γ (𝑛 + 𝛼 + 1)

𝑛!Γ (𝛼 + 1)
∫
B
𝑛

𝑓 (𝑤)

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝛼

𝑑V
𝛼
(𝑤) ,

𝛼 > −1,

(3)

on 𝐿
𝑝

𝛼
; see [2]. Therefore, we can call 𝑃

♯

𝛼
by “maximal

Bergman projection,” which is the particular case of 𝑆
𝑎,𝑏,𝑐

.
Berezin transforms, whatever the case of the unit disk [3, page
141] or the case of unit ball ([4, page 76], [5, page 383]), are all
concluded in the form of 𝑆

𝑎,𝑏,𝑐
with special 𝑎, 𝑏, 𝑐.

In [1], Krues and Zhu gave the sufficient and necessary
conditions of the boundedness of operator 𝑆

𝑎,𝑏,𝑐
.

Theorem A (see [1]). Suppose 𝑐 is neither 0 nor a negative
integer.

(1) The operator 𝑆
𝑎,𝑏,𝑐

is bounded on 𝐿
𝑝

𝑡
(1 < 𝑝 < ∞) if

and only if −𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), 𝑐 ≤ 𝑛 + 1 + 𝑎 + 𝑏.
(2) The operator 𝑆

𝑎,𝑏,𝑐
is bounded on 𝐿1

𝑡
if and only if −𝑎 <

𝑡+ 1 < 𝑏+1, 𝑐 = 𝑛+1+𝑎+𝑏 or −𝑎 < 𝑡+ 1 ≤ 𝑏+1, 𝑐 <

𝑛 + 1 + 𝑎 + 𝑏.

The main purposes of this note contain two parts. One
part is to prove the condition “𝑐 is neither 0 nor a nega-
tive integer” in Theorem A can be removed; see Section 3.
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The other part is to give the accurate norm of the operator
𝑆
𝑎,𝑏,𝑐

on 𝐿𝑝

𝑡
under the assumption 𝑐 = 𝑛+ 1+𝑎+ 𝑏, which can

be seen from the following two theorems.

Theorem 1. Suppose 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏. If 1 ≤ 𝑝 < ∞ and
−𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), then

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

=
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(4)

Else, we also give the sufficient and necessary conditions
of the operator 𝑆

𝑎,𝑏,𝑐
on 𝐿

∞ and the accurate norm under
𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 of this case, where 𝐿∞ denotes the set of
all essentially bounded and measurable functions under the
measure ]

𝑡
on B

𝑛
.

Theorem 2. The operator 𝑆
𝑎,𝑏,𝑐

is bounded on 𝐿
∞ if and only

if 𝑎 > 0, 𝑏 > −1, and 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 or 𝑎 ≥ 0, 𝑏 > −1, and
𝑐 < 𝑛 + 1 + 𝑎 + 𝑏. Moreover, when 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, we have

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿∞→𝐿

∞
=

𝑛!Γ (𝑎) Γ (1 + 𝑏)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
. (5)

Notice 𝑆
𝑎,𝑏,𝑐

is the generalization of “maximal Bergman
projection” and Berezin transformwhichwas first introduced
by Berezin [6]. The boundedness of Berezin transform of
𝑓 ∈ 𝐿

1

(D) is a well-known fact; see [7, Proposition 2.2]. But
the norm of it was not calculated out until 2008 by Dostanić;
see [8, Corollary 2]. Recently, the result by Dostanić has been
extended to several complex variables in [9, Theorem 1.1].
Thus, Theorems 1 and 2 promote the main results in [8, 9].
And they also imply the following corollary.

Corollary 3. Suppose 1 ≤ 𝑝 < ∞, 𝛼 > −1, and the norm of
𝑃
♯

𝛼
on 𝐿

𝑝

𝛼
can be

󵄩󵄩󵄩󵄩󵄩
𝑃
♯

𝛼

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
𝛼
→𝐿
𝑝

𝛼

=
Γ ((𝛼 + 1) /𝑝) Γ ((𝛼 + 1) − (𝛼 + 1) /𝑝) Γ (𝑛 + 𝛼 + 1)

Γ2 ((𝑛 + 1 + 𝛼) /2) Γ (𝛼 + 1)
,

(6)

which implies ‖𝑃♯

𝛼
‖
𝐿
𝑝

𝛼
→𝐿
𝑝

𝛼

grows at most like (𝛼 + 1)
−1 as 𝛼 →

−1.

Next, we will see that the boundedness of an operator
called Berezin-type transform on 𝐿

𝑝

𝑡
can also be obtained

from our main results.The Berezin-type transform is defined
by

B
𝑘,𝛼,𝛽

𝑓 (𝑧)

= 𝐶
𝑘,𝛼,𝛽

×∫
B
𝑛

(1 − |𝑧|
2

)
𝑛+𝛼+𝛽+𝑘+1

(1 − |𝑤|
2

)
𝑘

(1 − ⟨𝑧, 𝑤⟩)
𝑛+𝛼+𝑘+1

(1 − ⟨𝑤, 𝑧⟩)
𝑛+𝛽+𝑘+1

𝑓 (𝑤) 𝑑] (𝑤) ,

(7)

where

𝐶
𝑘,𝛼,𝛽

=
Γ (𝑛 + 𝛼 + 𝑘 + 1) Γ (𝑛 + 𝛽 + 𝑘 + 1)

Γ (𝑛 + 1) Γ (𝑘 + 1) Γ (𝑛 + 𝛼 + 𝛽 + 𝑘 + 1)
, (8)

and 𝑛 + 𝛼 + 𝛽 > 0, 𝑛 + 𝛼 > 0, 𝑛 + 𝛽 > 0, and 𝑘 >

−1. The transform was introduced by Li and Liu [10] when
they discuss whether themean-value property implies (𝛼, 𝛽)-
harmonicity for integrable functions on the unit ball in C𝑛.
Notice that

󵄨󵄨󵄨󵄨󵄨
B

𝑘,𝛼,𝛽
𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝑘,𝛼,𝛽
𝑆
𝑎,𝑏,𝑐

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑧) (9)

with 𝑎 = 𝑛 + 𝛼 + 𝛽 + 𝑘 + 1, 𝑏 = 𝑘, and 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏.
And B

𝑘,𝛼,𝛼
𝑓(𝑧) = 𝐶

𝑘,𝛼,𝛼
𝑆
𝑎,𝑏,𝑐

𝑓(𝑧) as 𝛼 = 𝛽. Therefore, the
boundedness of Berezin-type transform B

𝑘,𝛼,𝛽
on 𝐿

𝑝

𝑡
comes

from the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝

𝑡
. Thus, we

have the following result, which extends Propositions 3.3 and
3.4 in [10] combining the fact of Lemma 2.4 in [10] therein.

Corollary 4. If 1 ≤ 𝑝 < ∞ such that −𝑝(𝑛 + 𝛼 + 𝛽 + 𝑘 + 1) <

𝑡 + 1 < 𝑝(𝑘 + 1), then the Berezin-type B
𝑘,𝛼,𝛽

is bounded on
𝐿
𝑝

𝑡
and

󵄩󵄩󵄩󵄩󵄩
B

𝑘,𝛼,𝛽

󵄩󵄩󵄩󵄩󵄩𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

≤ 𝜆
𝑘,𝛼,𝛽,𝑝

Γ (𝑛 + 𝛼 + 𝑘 + 1) Γ (𝑛 + 𝛽 + 𝑘 + 1)

Γ2 (𝑛 + 1 + (𝛼 + 𝛽) /2 + 𝑘)
,

(10)

where

𝜆
𝑘,𝛼,𝛽,𝑝

=
Γ (𝑛 + 𝛼 + 𝛽 + 𝑘 + 1 + (𝑡 + 1) /𝑝) Γ (𝑘 + 1 − (𝑡 + 1) /𝑝)

Γ (𝑛 + 𝛼 + 𝛽 + 𝑘 + 1) Γ (𝑘 + 1)
.

(11)

Moreover, the Berezin-type transform is bounded on 𝐿
∞, and

󵄩󵄩󵄩󵄩󵄩
B

𝑘,𝛼,𝛽

󵄩󵄩󵄩󵄩󵄩𝐿∞→𝐿
∞
≤
Γ (𝑛 + 𝛼 + 𝑘 + 1) Γ (𝑛 + 𝛽 + 𝑘 + 1)

Γ2 (𝑛 + 1 + (𝛼 + 𝛽) /2 + 𝑘)
. (12)

2. Preliminaries

A number of hypergeometric functions will appear through-
out. We use the classical notation

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) to denote

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) =

∞

∑

𝑘=0

(𝛼)
𝑘
(𝛽)

𝑘

(𝛾)
𝑘

𝑧
𝑘

𝑘!
, (13)

with 𝛾 ̸= 0, −1, −2, . . ., where

(𝛼)
0
= 1, (𝛼)

𝑘
= 𝛼 (𝛼 + 1) ⋅ ⋅ ⋅ (𝛼 + 𝑘 − 1) for 𝑘 ≥ 1.

(14)

And the hypergeometric series in (13) converges absolutely
for all the value of |𝑧| < 1. Moreover, as |𝑧| → 1

−, it is easy
to know that

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) ≈

{{{

{{{

{

1, if 𝛾 − 𝛼 − 𝛽 > 0;

log 1

1 − |𝑧|
, if 𝛾 − 𝛼 − 𝛽 = 0;

(1 − |𝑧|)
𝛾−𝛼−𝛽

, if 𝛾 − 𝛼 − 𝛽 < 0,

(15)
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where 𝑎(𝑧) ≈ 𝑏(𝑧) represents the ratio and 𝑎(𝑧)/𝑏(𝑧) has a
positive finite limit as |𝑧| → 1

−. Now we list a few formulas
for easy reference (see [11, Chapter II]):

2
𝐹
1
(𝛼, 𝛽; 𝛾; 1) =

Γ (𝛾) Γ (𝛾 − 𝛼 − 𝛽)

Γ (𝛾 − 𝛼) Γ (𝛾 − 𝛽)
,

Re (𝛾 − 𝛼 − 𝛽) > 0,

(16)

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧) = (1 − 𝑧)

𝛾−𝛼−𝛽

2
𝐹
1
(𝛾 − 𝛼, 𝛾 − 𝛽; 𝛾; 𝑧) , (17)

2
𝐹
1
(𝛼, 𝛽; 𝛾; 𝑧)

=
Γ (𝛾)

Γ (𝜆) Γ (𝛾 − 𝜆)

× ∫

1

0

𝑡
𝜆−1

(1 − 𝑡)
𝛾−𝜆−1

2
𝐹
1
(𝛼, 𝛽; 𝜆; 𝑡𝑧) 𝑑𝑡,

Re 𝛾 > Re 𝜆 > 0;
󵄨󵄨󵄨󵄨arg (1 − 𝑧)

󵄨󵄨󵄨󵄨 < 𝜋; 𝑧 ̸= 1.

(18)

Lemma 5. Suppose Re 𝛿 > 0 and Re(𝜆 + 𝛿 − 𝛼 − 𝛽) > 0. Then

∫

1

0

𝑡
𝜆−1

(1 − 𝑡)
𝛿−1

2
𝐹
1
(𝛼, 𝛽; 𝜆; 𝑡) 𝑑𝑡

=
Γ (𝜆) Γ (𝛿) Γ (𝜆 + 𝛿 − 𝛼 − 𝛽)

Γ (𝜆 + 𝛿 − 𝛼) Γ (𝜆 + 𝛿 − 𝛽)
.

(19)

Proof. Note that, under the assumption of the lemma, both
sides of (18) are continuous at 𝑧 = 1. The lemma then follows
by letting 𝑧 → 1 in (18) and applying (16).

The following integral formulae concerning the hyperge-
ometric function are significant for our main results. And all
these formulae are contained in [12]. Now we list them.

Lemma 6 (see [12, Corollary 2.4]). For 𝛼 ∈ R and 𝛾 > −1, we
have

∫
B
𝑛

(1 − |𝑤|
2

)
𝛾

|1 − ⟨𝑧, 𝑤⟩|
2𝛼
𝑑] (𝑤)

=
𝑛!Γ (1 + 𝛾)

Γ (𝑛 + 1 + 𝛾)
2
𝐹
1
(𝛼, 𝛼; 𝑛 + 1 + 𝛾; |𝑧|

2

) .

(20)

Lemma 6 is also contained implicitly in the proof of
Theorem 1.4.10 in [13] (see the formula in page 19, line 5 of
[13]).

Lemma 7 (see [12, Corollary 2.5]). Suppose that 𝛼, 𝛽 > 0, 𝛾 ∈

R, and 𝑛 + 𝛼 + 𝛽 − 2𝛾 > 0. Then

∫
B
𝑛

|𝑧|
2𝛽

(1 − |𝑧|
2

)
𝛼−1 {

{

{

∫
B
𝑛

(1 − |𝑤|
2

)
𝛽−1

|1 − ⟨𝑧, 𝑤⟩|
2𝛾
𝑑] (𝑤)

}

}

}

𝑑] (𝑧)

=
𝑛 (𝑛!) Γ (𝛼) Γ (𝛽) Γ (𝑛 + 𝛼 + 𝛽 − 2𝛾)

Γ2 (𝑛 + 𝛼 + 𝛽 − 𝛾)
.

(21)

Proof. Using Lemma 6 in the inner integral, we have

𝑛!Γ (𝛽)

Γ (𝑛 + 𝛽)
∫
B
𝑛

|𝑧|
2𝛽

(1 − |𝑧|
2

)
𝛼−1

×
2
𝐹
1
(𝛾, 𝛾; 𝑛 + 𝛽; |𝑧|

2

) 𝑑] (𝑧)

=
𝑛 (𝑛!) Γ (𝛽)

Γ (𝑛 + 𝛽)
∫

1

0

𝑟
𝑛+𝛽−1

(1 − 𝑟)
𝛼−1

×
2
𝐹
1
(𝛾, 𝛾; 𝑛 + 𝛽; |𝑧|

2

) 𝑑𝑟.

(22)

Then (19) gives the result.

The following result, usually called Schur’s test, is a very
effective tool in proving the 𝐿

𝑝-boundedness of integral
operators. See, for example, [3].

Lemma 8. Suppose that (𝑋, 𝜇) is a 𝜎-finite measure space,
𝐾(𝑥, 𝑦) is a nonnegative measurable function on𝑋×𝑋, and 𝑇
is the associated integral operator:

𝑇𝑓 (𝑥) = ∫
𝑋

𝐾(𝑥, 𝑦) 𝑓 (𝑦) 𝑑𝜇 (𝑦) . (23)

Let 1 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 = 1. If there exist a positive
constant𝐶 and a positivemeasurable function 𝑢 on𝑋 such that

∫
𝑋

𝐾(𝑥, 𝑦) 𝑢(𝑦)
𝑞

𝑑𝜇 (𝑦) ≤ 𝐶𝑢(𝑥)
𝑞

, (24)

for almost every 𝑥 in𝑋, and

∫
𝑋

𝐾(𝑥, 𝑦) 𝑢(𝑥)
𝑝

𝑑𝜇 (𝑥) ≤ 𝐶𝑢(𝑦)
𝑝

, (25)

for almost every 𝑦 in 𝑋, then 𝑇 is bounded on 𝐿
𝑝

(𝑋, 𝜇) with
‖𝑇‖ ≤ 𝐶.

3. The Improvement

The section mainly proposes the condition “𝑐 is neither 0 nor
a negative integer” can be omitted in Theorem A. Notice the
condition is only used to give 𝑐 ≤ 𝑛+1+𝑎+𝑏while proving the
necessity for the boundedness of the operator 𝑆

𝑎,𝑏,𝑐
on𝐿𝑝

𝑡
(1 ≤

𝑝 < ∞); see [1, lemma 12]. Nowwewill give a newproof of the
necessity for the boundedness of 𝑆

𝑎,𝑏,𝑐
on 𝐿

𝑝

𝑡
in Propositions

9 and 11 to introduce the condition can be put off.

Proposition 9. Suppose the operator 𝑆
𝑎,𝑏,𝑐

is bounded on
𝐿
𝑝

𝑡
(1 < 𝑝 < ∞), and then −𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), 𝑐 ≤

𝑛 + 1 + 𝑎 + 𝑏.

Proof. Let 𝑞 be the number such that 1/𝑝 + 1/𝑞 = 1. For any
fixed 𝜖 > 0, define

𝑔
𝜖
(𝑤) = 𝐶

1
(𝜖) (1 − |𝑤|

2

)
(𝜖−(𝑡+1))/𝑝

,

ℎ
𝜖
(𝑧) = 𝐶

2
(𝜖) (1 − |𝑧|

2

)
(𝜖−(𝑡+1))/𝑞

|𝑧|
2(𝑏+1+(𝜖−𝑡−1)/𝑝)

,

(26)



4 Journal of Function Spaces

where

𝐶
1
(𝜖) = {

Γ (𝜖) Γ (𝑛 + 1)

Γ (𝑛 + 𝜖)
}

−1/𝑝

, (27)

𝐶
2
(𝜖) = {

𝑛Γ (𝜖) Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝)

Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝 + 𝜖)
}

−1/𝑞

.

(28)

Easy calculation shows ‖𝑔
𝜖
‖
𝑝,𝑡

= ‖ℎ
𝜖
‖
𝑞,𝑡

= 1. Notice the fact

󵄩
󵄩
󵄩
󵄩
𝑆
𝑎,𝑏,𝑐

󵄩
󵄩
󵄩
󵄩𝐿
𝑝

𝑡
→𝐿
𝑝

𝑡

= sup
‖𝑓‖
𝑝,𝑡

=1

‖𝑔‖
𝑞,𝑡

=1

×

{

{

{

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

B
𝑛

(∫

B
𝑛

(1 − |𝑧|
2

)

𝑎

×

(1 − |𝑤|
2

)

𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓 (𝑤) 𝑑]

𝑡
(𝑤))𝑔 (𝑧)𝑑V

𝑡
(𝑧)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

.

(29)

Then the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

on 𝐿𝑝

𝑡
leads to the

integral
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
B
𝑛

{

{

{

∫
B
𝑛

(1 − |𝑧|
2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐

𝑔
𝜖
(𝑤) 𝑑]

𝑡
(𝑤)

}

}

}

×ℎ
𝜖
(𝑧)𝑑]

𝑡
(𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐

󵄩󵄩󵄩󵄩𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

< +∞.

(30)

Hence, using Lemma 7 with 𝛼 = 𝑎 + 𝜖/𝑞 + (𝑡 + 1)/𝑝, 𝛽 =

𝑏 + 1 + (𝜖 − (𝑡 + 1))/𝑝, and 𝛾 = 𝑐/2, we can conclude that

𝑎 +
𝜖

𝑞
+
𝑡 + 1

𝑝
> 0, 𝑏 + 1 +

𝜖 − (𝑡 + 1)

𝑝
> 0,

𝑛 + 1 + 𝑎 + 𝑏 + 𝜖 − 𝑐 > 0.

(31)

Then the arbitrariness of 𝜖 gives

−𝑝𝑎 ≤ 𝑡 + 1 ≤ 𝑝 (𝑏 + 1) , 𝑐 ≤ 𝑛 + 1 + 𝑎 + 𝑏. (32)

Now, we will give the proof by dividing into the following
two cases.

When 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, by Lemma 7, the integral in (30)
equals

𝑛!Γ (𝑎 + (𝜖/𝑞) + ((𝑡 + 1) /𝑝)) Γ (𝑏 + 1 + ((𝜖 − (𝑡 + 1)) /𝑝))

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2 + 𝜖)

× {
Γ (𝑛 + 𝜖)

Γ (𝑛)
}

1/𝑝

× {
Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝 + 𝜖)

Γ (𝑛 + 𝑞 (𝑏 + 1) + 𝑞 (𝜖 − (𝑡 + 1)) /𝑝)
}

1/𝑞

.

(33)

Then letting 𝜖 → 0
+, by (30), we can know the limits

0 ≤ lim
𝜖→0
+

𝑛!Γ (𝑎 + (𝜖/𝑞) + ((𝑡 + 1) /𝑝)) Γ (𝑏 + 1 + ((𝜖 − (𝑡 + 1)) /𝑝))

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2 + 𝜖)

≤
󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐

󵄩󵄩󵄩󵄩𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

.

(34)

Then the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

gives −𝑝𝑎 < 𝑡 +

1 < 𝑝(𝑏 + 1).
When 𝑐 < 𝑛 + 1 + 𝑎 + 𝑏, take the function

𝑓
𝜆
(𝑧) = (1 − |𝑧|

2

)
𝜆

, (35)

with 𝜆 > 𝑎. The condition (32) implies the function 𝑓
𝜆
∈ 𝐿

𝑝

𝑡
.

And using Lemma 6, we have

𝑆
𝑎,𝑏,𝑐

𝑓
𝜆
(𝑧) = (1 − |𝑧|

2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓
𝜆
(𝑤) 𝑑V (𝑤)

= (1 − |𝑧|
2

)
𝑎 𝑛!Γ (1 + 𝑏 + 𝜆)

Γ (𝑛 + 1 + 𝑏 + 𝜆)

×
2
𝐹
1
(
𝑐

2
,
𝑐

2
; 𝑛 + 1 + 𝑏 + 𝜆; |𝑧|

2

) .

(36)

According to (15), we can obtain that 𝑆
𝑎,𝑏,𝑐

𝑓
𝜆
(𝑧) ≈ (1 − |𝑧|

2

)
𝑎.

Thus the boundedness of the operator 𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝

𝑡
(B

𝑛
) gives

that 𝑝𝑎 + 𝑡 > −1; that is, −𝑝𝑎 < 𝑡 + 1. Now we consider the
adjoint operator 𝑆∗

𝑎,𝑏,𝑐
of the operator 𝑆

𝑎,𝑏,𝑐
; that is,

𝑆
∗

𝑎,𝑏,𝑐
𝑓 (𝑧) = (1 − |𝑧|

2

)
𝑏−𝑡

∫
B
𝑛

(1 − |𝑤|
2

)
𝑎+𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑓 (𝑤) 𝑑V (𝑤) .

(37)

The boundedness of 𝑆
𝑎,𝑏,𝑐

on 𝐿
𝑝

𝑡
implies the boundedness of

𝑆
∗

𝑎,𝑏,𝑐
on 𝐿

𝑞

𝑡
. With the similar discussion above, we can obtain

that 𝑞(𝑏 − 𝑡) + 𝑡 > −1; that is, 𝑡 + 1 < 𝑝(𝑏 + 1).

When 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, (34) implies the following result.

Corollary 10. Suppose 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 and 1 < 𝑝 < ∞,
−𝑝𝑎 < 𝑡 + 1 < 𝑝(𝑏 + 1), and then

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

≥
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(38)

Proposition 11. The operator 𝑆
𝑎,𝑏,𝑐

is bounded on 𝐿
1

𝑡
if and

only if −𝑎 < 𝑡 + 1 < 𝑏 + 1, 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 or −𝑎 < 𝑡 + 1 ≤

𝑏 + 1, 𝑐 < 𝑛 + 1 + 𝑎 + 𝑏. And when 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏, we have

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿1
𝑡
→𝐿
1

𝑡

=
𝑛!Γ (1 + 𝑎 + 𝑡) Γ (𝑏 − 𝑡)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
. (39)

When 𝑐 < 𝑛 + 1 + 𝑎 + 𝑏, −𝑎 < 𝑡 + 1 = 𝑏 + 1, we have

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿1
𝑡
→𝐿
1

𝑡

=
𝑛!Γ (1 + 𝑎 + 𝑏) Γ (𝜎)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏 + 𝜎) /2)
, (40)

where 𝜎 = (𝑛 + 1 + 𝑎 + 𝑏) − 𝑐.
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Proof. By Lemma 6, we have

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿1
𝑡
→𝐿
1

𝑡

=
󵄩󵄩󵄩󵄩󵄩
𝑆
∗

𝑎,𝑏,𝑐

󵄩󵄩󵄩󵄩󵄩𝐿∞→𝐿
∞

= sup
𝑧∈B
𝑛

(1 − |𝑧|
2

)
𝑏−𝑡

∫
B
𝑛

(1 − |𝑤|
2

)
𝑎+𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑑] (𝑤)

=
𝑛!Γ (1 + 𝑎 + 𝑡)

Γ (𝑛 + 1 + 𝑎 + 𝑡)
sup
𝑧∈B
𝑛

(1 − |𝑧|
2

)
𝑏−𝑡

×
2
𝐹
1
(
𝑐

2
,
𝑐

2
; 𝑛 + 1 + 𝑎 + 𝑡; |𝑧|

2

) ,

(41)

where 𝑆∗
𝑎,𝑏,𝑐

denotes the adjoint operator of 𝑆
𝑎,𝑏,𝑐

. Then, using
(15), we can obtain that the operator 𝑆

𝑎,𝑏,𝑐
is bounded on 𝐿1

𝑡
if

and only if

1 + 𝑎 + 𝑡 > 0,

𝑏 − 𝑡 > 0,

𝑛 + 1 + 𝑎 + 𝑡 − 𝑐 ≥ 𝑡 − 𝑏,

(42)

or

1 + 𝑎 + 𝑡 > 0,

𝑏 − 𝑡 = 0,

𝑛 + 1 + 𝑎 + 𝑡 − 𝑐 > 0,

(43)

which gives the first part of the proposition.
Now we will give the second part. When 𝑐 < 𝑛 + 1 + 𝑎 +

𝑏 and −𝑎 < 𝑡 + 1 = 𝑏 + 1, the hypergeometric function in
(41) is increasing since its Taylor coefficients are all positive.
Applying (16), we have (40). When 𝑐 = 𝑛+1+𝑎+𝑏, (17) gives

2
𝐹
1
(
𝑛 + 1 + 𝑎 + 𝑏

2
,
𝑛 + 1 + 𝑎 + 𝑏

2
; 𝑛 + 1 + 𝑎 + 𝑡; |𝑧|

2

)

= (1 − |𝑧|
2

)
𝑡−𝑏

×
2
𝐹
1
(
𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡,

𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡;

𝑛 + 1 + 𝑎 + 𝑡; |𝑧|
2

) .

(44)

Thus (41), the increase of the last hypergeometric function,
and (16) lead to

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿1
𝑡
→𝐿
1

𝑡

=
󵄩󵄩󵄩󵄩󵄩
𝑆
∗

𝑎,𝑏,𝑐

󵄩󵄩󵄩󵄩󵄩𝐿∞→𝐿
∞

=
𝑛!Γ (1 + 𝑎 + 𝑡)

Γ (𝑛 + 1 + 𝑎 + 𝑡)

×
2
𝐹
1
(
𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡,

𝑛 + 1 + 𝑎 − 𝑏

2
+ 𝑡;

𝑛 + 1 + 𝑎 + 𝑡; 1)

=
𝑛!Γ (1 + 𝑎 + 𝑡) Γ (𝑏 − 𝑡)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(45)

4. The Proof of Theorems 1 and 2

Proof of Theorems 1 and 2. Since

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿∞→𝐿

∞
= sup

𝑧∈B
𝑛

(1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏

|1 − ⟨𝑧, 𝑤⟩|
𝑐
𝑑] (𝑤) ,

(46)

therefore Theorem 2 comes out as the same discussion as
Proposition 11.

Next, we will concentrate on the proof of Theorem 1.
Remember the hypothesis 𝑐 = 𝑛 + 1 + 𝑎 + 𝑏 throughout
the following proof. Since (39) gives the case of 𝑝 = 1, for
the case 1 < 𝑝 < ∞, Corollary 10 gives the lower bound of
‖𝑆

𝑎,𝑏,𝑐
‖
𝐿
𝑝

𝑡
→𝐿
𝑝

𝑡

. Thus we only show the fact

󵄩󵄩󵄩󵄩𝑆𝑎,𝑏,𝑐
󵄩󵄩󵄩󵄩𝐿𝑝
𝑡
→𝐿
𝑝

𝑡

≤
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
.

(47)

To this end, we will use Schur’s test (Lemma 8) with

𝐾 (𝑧, 𝑤) =
(1 − |𝑧|

2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

. (48)

Set

𝑢
𝑡
(𝑧) = (1 − |𝑧|

2

)
−(𝑡+1)/(𝑝𝑞)

, (49)

where 𝑞 is the conjugate exponent of𝑝 such that 1/𝑝+1/𝑞 = 1.
It then suffices to show

(1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

𝑢
𝑡
(𝑤)

𝑞

𝑑]
𝑡
(𝑤)

≤
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
𝑢
𝑡
(𝑧)

𝑞

,

(50)

for all 𝑧 ∈ B
𝑛
, and

(1 − |𝑤|
2

)
𝑏−𝑡

∫
B
𝑛

(1 − |𝑧|
2

)
𝑎

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

𝑢
𝑡
(𝑧)

𝑝

𝑑]
𝑡
(𝑧)

≤
𝑛!Γ (𝑎 + (𝑡 + 1) /𝑝) Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
𝑢
𝑡
(𝑤)

𝑝

(51)
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for all 𝑤 ∈ B
𝑛
. We only prove (50), since (51) comes from the

same way as (50). Applying Lemma 6 and (17), we have

(1 − |𝑧|
2

)
𝑎

∫
B
𝑛

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

𝑢
𝑡
(𝑤)

𝑞

𝑑]
𝑡
(𝑤)

= (1 − |𝑧|
2

)
𝑎 𝑛!Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ (𝑛 + 𝑏 + 1 − (𝑡 + 1) /𝑝)

×
2
𝐹
1
(
𝑛 + 1 + 𝑎 + 𝑏

2
,
𝑛 + 1 + 𝑎 + 𝑏

2
;

𝑛 + 𝑏 + 1 −
𝑡 + 1

𝑝
; |𝑧|

2

)

=
𝑛!Γ (𝑏 + 1 − (𝑡 + 1) /𝑝)

Γ (𝑛 + 𝑏 + 1 − (𝑡 + 1) /𝑝)
(1 − |𝑧|

2

)
−(𝑡+1)/𝑝

×
2
𝐹
1
(
𝑛 + 1 + 𝑏 − 𝑎

2
−
𝑡 + 1

𝑝
,
𝑛 + 1 + 𝑏 − 𝑎

2

−
𝑡 + 1

𝑝
; 𝑛 + 1 + 𝑏 −

𝑡 + 1

𝑝
; |𝑧|

2

) .

(52)

By (16), the last hypergeometric function is bounded from the
above by

2
𝐹
1
(
𝑛 + 1 + 𝑏 − 𝑎

2
−
𝑡 + 1

𝑝
,
𝑛 + 1 + 𝑏 − 𝑎

2

−
𝑡 + 1

𝑝
; 𝑛 + 1 + 𝑏 −

𝑡 + 1

𝑝
; 1)

=
Γ (𝑛 + 1 + 𝑏 − (𝑡 + 1) /𝑝) Γ (𝑎 + (𝑡 + 1) /𝑝)

Γ2 ((𝑛 + 1 + 𝑎 + 𝑏) /2)
,

(53)

since it is increasing on the interval [0, 1). This proves (50),
which in turn implies (47). The proof is completed.

5. Remark

The topic on the exact norm of an operator is an interesting
but difficult problem. In this note, we only give the accurate
norm of the generalized operator 𝑆

𝑎,𝑏,𝑐
on 𝐿

𝑝

𝑡
under 𝑐 = 𝑛 +

1 + 𝑎 + 𝑏. But for other cases, except the particular case (40),
we can give an upper bound of ‖𝑆

𝑎,𝑏,𝑐
‖
𝐿
𝑝

𝑡
→𝐿
𝑝

𝑡

by Theorem 1
according to the fact

(1 − |𝑧|
2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑐

≤
2
𝜎

(1 − |𝑧|
2

)
𝑎

(1 − |𝑤|
2

)
𝑏−𝑡

|1 − ⟨𝑧, 𝑤⟩|
𝑛+1+𝑎+𝑏

(54)

and a lower bound for one fixed 𝜖 > 0 by (30) and Lemma 7;
thus the problem of the norm of other cases may be left as an
open problem to consider.
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The Boussinesq equations describe the three-dimensional incompressible fluid moving under the gravity and the earth rotation
which come from atmospheric or oceanographic turbulence where rotation and stratification play an important role. In this paper,
we investigate the Cauchy problem of the three-dimensional incompressible Boussinesq equations. By commutator estimate, some
interpolation inequality, and embedding theorem, we establish a blow-up criterion of weak solutions in terms of the pressure 𝑝 in
the homogeneous Besov space ̇𝐵

0

∞,∞
.

1. Introduction

This paper is devoted to establish a blow-up criterion of
weak solutions to the Cauchy problem for 3-dimensional
Boussinesq equations:

𝑢
𝑡
+ 𝑢 ⋅ ∇𝑢 − 𝜂Δ𝑢 + ∇𝑝 = 𝜃𝑒

3
, (1)

𝜃
𝑡
+ 𝑢 ⋅ ∇𝜃 − ]Δ𝜃 = 0, (2)

∇ ⋅ 𝑢 = 0, (3)

𝑡 = 0 : 𝑢 = 𝑢
0
(𝑥) , 𝜃 = 𝜃

0
(𝑥) , (4)

where 𝑢 is the velocity, 𝑝 is the pressure, and 𝜃 is the small
temperature deviations which depends on the density. 𝜂 ≥ 0

is the viscosity, ] ≥ 0 is called the molecular diffusivity, and
𝑒
3

= (0, 0, 1)
𝑇. The above systems describe the evolution of

the velocity field 𝑢 for a three-dimensional incompressible
fluid moving under the gravity and the earth rotation which
come from atmospheric or oceanographic turbulence where
rotation and stratification play an important role.

When the initial density 𝜃
0
is identically zero (or con-

stant) and 𝜂 = 0, then (1)–(4) reduces to the classical incom-
pressible Euler equation:

𝑢
𝑡
+ 𝑢 ⋅ ∇𝑢 + ∇𝑝 = 0,

∇ ⋅ 𝑢 = 0,

𝑢 (𝑥, 𝑡)|𝑡=0 = 𝑢
0
(𝑥) .

(5)

From the investigation of (5), we cannot expect to have a
better theory for the Boussinesq system than that of the Euler
equation. For the Euler equation, a well-known criterion for
the existence of global smooth solutions is the Beale-Kato-
Majda criterion [1]. It states that the control of the vorticity
of the fluid 𝜔 = curl 𝑢 in 𝐿

1
(0, 𝑇; 𝐿

∞
) is sufficient to get the

global well posedness.
The Boussinesq equations (1)–(4) are of relevance to

study a number of models coming from atmospheric or
oceanographic turbulence where rotation and stratification
play an important role.The scalar function 𝜃may for instance
represent temperature variation in a gravity field and 𝜃𝑒

3
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the buoyancy force. For the regularity criteria of the Navier-
Stokes equations, we can refer to Zhou et al. [2–9], Fan and
Ozawa [10], He [11], Zhang and Chen [12], and Escauriaza et
al. [13].

From the mathematical point of view, the global well
posedness for two-dimensional Boussinesq equations which
has recently drawn much attention seems to be in a satis-
factory state. More precisely, global well posedness has been
shown in various function spaces and for different viscosities;
we refer, for example, to [14–19]. In contrast, in the case
when 𝜂 = ] = 0, the Boussinesq system exhibits vorticity
intensification and the global well-posedness issue remains
an unsolved challenging open problem (except if 𝜃

0
is a

constant, of course) which may be formally compared to
the similar problem for the three-dimensional axisymmetric
Euler equations with swirl.

In the three-dimensional case, there are only few results
(see [20–24]). Hmidi andRousset [23] proved the global well-
posedness for the three-dimensional Euler-Boussinesq equa-
tions with axisymmetric initial data without swirl. Danchin
and Paicu [20] obtained a global existence and uniqueness
result for small data in Lorentz space.

Our purpose of this paper is to obtain a blow-up criterion
of weak solutions in terms of Besov space.

Now, we state our result as follows.

Theorem 1. Assume that (𝑢
0
, 𝜃
0
) ∈ 𝐻

3
(𝑅
3
) with div 𝑢

0
= 0 in

𝑅
3. Assume that the pressure 𝑝 satisfies the condition

∫

𝑇

0

󵄩󵄩󵄩󵄩∇𝑝(𝑡)
󵄩󵄩󵄩󵄩
2/3

̇𝐵
0

∞,∞

(1 + ln (1 +
󵄩󵄩󵄩󵄩∇𝑝 (𝑡)

󵄩󵄩󵄩󵄩 ̇𝐵0
∞,∞

))
2/3

𝑑𝑡 < +∞; (6)

then the solution (𝑢, 𝜃) can be extended smoothly only up to 𝑇.

The paper is organized as follows. We first state some
important inequalities in Section 2. We will proveTheorem 1
in Section 3.

2. Preliminaries

Throughout this paper, we use the following usual notations.
𝐿
𝑝
(𝑅
3
) denotes the Lebesgue space and 𝐻

𝑚
(𝑅
3
) denotes the

standard Sobolev space. BMO denotes the space of bounded
mean oscillations. ̇𝐵

0

𝑚,𝑛
is the homogeneous Besov space,

where 0 ≤ 𝑚, 𝑛 ≤ +∞.

Lemma 2. There exists a uniform positive constant 𝐶, such
that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

𝐿
4 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵𝑀𝑂 ,

(7)

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 ̇𝐵0
∞,2

≤ 𝐶(1 +
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 ̇𝐵0
∞,∞

ln1/2 (𝑒 +
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐻𝑠−1)) (8)

hold for all vectors 𝑓 ∈ 𝐻
𝑠−1

(𝑅
3
) with 𝑠 > 5/2.

Proof. See, for example, [19] or [25].

Lemma 3. From (1), one has

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩𝐿2 ≤ 𝐶 (‖𝑢 ⋅ ∇𝑢‖𝐿2 + ‖𝜃‖𝐿2) ,

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

𝐿
2 ≤ 𝐶 (‖𝑢 ⋅ ∇𝑢‖

1/2

𝐿
2 + ‖𝜃‖

1/2

𝐿
2 ) .

(9)

Lemma 4. Assume thatΛ = (−Δ)
1/2; one has the commutator

estimate due to Kato and Ponce [24]:

󵄩󵄩󵄩󵄩Λ
𝑠
(𝑓𝑔) − 𝑓Λ

𝑠
𝑔
󵄩󵄩󵄩󵄩𝐿𝑝

≤ 𝐶 (
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩𝐿𝑝1
󵄩󵄩󵄩󵄩󵄩
𝜆
𝑠−1

𝑔
󵄩󵄩󵄩󵄩󵄩𝐿𝑞1

+
󵄩󵄩󵄩󵄩Λ
𝑠
𝑓
󵄩󵄩󵄩󵄩𝐿𝑝2

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐿𝑞2 ) ,

(10)

with 𝑠 > 0, 1/𝑝 = 1/𝑝
1
+ 1/𝑞
1
= 1/𝑝

2
+ 1/𝑞
2
.

Lemma 5 (the Gagliardo-Nirenberg inequality). Consider

󵄩󵄩󵄩󵄩∇𝑓
󵄩󵄩󵄩󵄩𝐿4 ≤ 𝐶

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
1/5

𝐿
4

󵄩󵄩󵄩󵄩Δ𝑓
󵄩󵄩󵄩󵄩
4/5

𝐿
2 , (11)

󵄩󵄩󵄩󵄩∇𝑓
󵄩󵄩󵄩󵄩𝐿3 ≤ 𝐶

󵄩󵄩󵄩󵄩∇𝑓
󵄩󵄩󵄩󵄩
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑓
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

, (12)

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿3

≤ 𝐶
󵄩󵄩󵄩󵄩∇𝑓

󵄩󵄩󵄩󵄩
1/6

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑓
󵄩󵄩󵄩󵄩󵄩

5/6

𝐿
2

. (13)

3. Proof of Theorem 1

Proof of Theorem 1. Multiplying (1) by 𝑢, using (3), and inte-
grating in 𝑅

3, we derive

1

2

𝑑

𝑑𝑡
‖𝑢‖
2

𝐿
2 + 𝜂 ‖∇𝑢‖

2

𝐿
2

= ∫
𝑅
3

𝜃𝑒
3
⋅ 𝑢 𝑑𝑥 ≤ ‖𝜃‖𝐿2 ‖𝑢‖𝐿2

≤
1

2
‖𝜃‖
2

𝐿
2 +

1

2
‖𝑢‖
2

𝐿
2 .

(14)

Multiplying (2) by 𝜃, using (3), and integrating in 𝑅
3, we

obtain

1

2

𝑑

𝑑𝑡
‖𝜃‖
2

𝐿
2 + ] ‖∇𝜃‖𝐿2 = 0. (15)

Combining (14) and (15), using the Gronwall inequality,
we deduce that

‖𝑢‖𝐿∞(0,𝑇;𝐿2) + ‖𝑢‖𝐿2(0,𝑇;𝐻1) ≤ 𝐶,

‖𝜃‖𝐿∞(0,𝑇;𝐿2) + ‖𝜃‖𝐿2(0,𝑇;𝐻1) ≤ 𝐶.

(16)
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Multiplying (1) by |𝑢|
2
𝑢, using (3) and (7), and integrating

in 𝑅
3, we derive

∫ [|𝑢|
2
⋅ 𝑢 (𝑢
𝑡
+ 𝑢 ⋅ ∇𝑢 − 𝜂Δ𝑢 + ∇𝑝)]

=
1

4

𝑑

𝑑𝑡
∫ |𝑢|
4
𝑑𝑥 + ∫ |𝑢|

2
⋅ 𝑢
2
⋅ ∇𝑢 𝑑𝑥

+
𝜂

2
∫ (∇ |𝑢|

2
)
2

𝑑𝑥

+ 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥 + ∫ (𝑢 ⋅ ∇𝑝) |𝑢|

2
𝑑𝑥

= ∫ |𝑢|
2
⋅ 𝑢 ⋅ 𝜃𝑒

3
𝑑𝑥

≤ 𝐶∫ (|𝑢|
4
+ |𝜃|
4
) 𝑑𝑥;

(17)

that is,

1

4

𝑑

𝑑𝑡
∫ |𝑢|
4
𝑑𝑥 +

𝜂

2
∫ (∇ |𝑢|

2
)
2

𝑑𝑥 + 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥

≤ −∫ (𝑢 ⋅ ∇𝑝) |𝑢|
2
𝑑𝑥 + 𝐶∫ |𝑢|

4
+ |𝜃|
4
𝑑𝑥

≤ ‖𝑢‖
3

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩𝐿4 + 𝐶 ‖𝑢‖

4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4

≤ 𝐶 ‖𝑢‖
3

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

𝐿
2

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

BMO + 𝐶 ‖𝑢‖
4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4 .

(18)

Multiplying (2) by |𝜃|
2
𝜃, using (3), and integrating in 𝑅

3,
we arrive at

∫(|𝜃|
2
⋅ 𝜃 ⋅ 𝜃
𝑡
+ |𝜃|
2
𝜃 ⋅ 𝑢 ⋅ ∇𝜃 − ] |𝜃|

2
⋅ 𝜃 ⋅ Δ𝜃) 𝑑𝑥

=
1

4

𝑑

𝑑𝑡
∫ |𝜃|
4
𝑑𝑥 + ]∫ |𝜃|

2
(∇𝜃)
2
𝑑𝑥

+
]
2
∫ |𝜃|
2
(div 𝜃)

2
𝑑𝑥.

(19)

Combining (18) and (19), using (9) and (16), we derive that

1

4

𝑑

𝑑𝑡
∫ (|𝜃|

4
+ |𝑢|
4
) 𝑑𝑥 +

𝜂

2
∫ (∇ |𝑢|

2
)
2

𝑑𝑥

+ 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥 + ]∫ |𝜃|

2
(∇𝜃)
2
𝑑𝑥

+
]
2
∫ |𝜃|
2
(div 𝜃)

2
𝑑𝑥,

≤ 𝐶 ‖𝑢‖
3

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

𝐿
2

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

BMO + 𝐶 ‖𝑢‖
4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4

≤ 𝐶 ‖𝑢‖
3

𝐿
4 (‖𝑢 ⋅ ∇𝑢‖

1/2

𝐿
2 + ‖𝜃‖

1/2

𝐿
2 )

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
1/2

BMO

+ 𝐶 ‖𝑢‖
4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4

≤ 2𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

BMO +
𝜂

2
‖|𝑢| ∇𝑢‖

2

𝐿
2

+ 𝐶 ‖𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

4

𝐿
4 + 𝐶 ‖𝜃‖

4

𝐿
4 ,

(20)

which implies

𝑑

𝑑𝑡
∫ (|𝜃|

4
+ |𝑢|
4
) 𝑑𝑥 + 𝜂∫ (∇ |𝑢|

2
)
2

𝑑𝑥

+ 𝜂∫ |𝑢|
2
|∇𝑢|
2
𝑑𝑥 + ]∫ |𝜃|

2
(∇𝜃)
2
𝑑𝑥

+ ]∫ |𝜃|
2
(div 𝜃)

2
𝑑𝑥

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

BMO + 4𝐶 ‖𝜃‖
2

𝐿
2

+ 4𝐶 ‖𝑢‖
4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

̇𝐵
0

∞,∞

ln1/3 (1 +
󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩𝐻2)

+ 4𝐶 ‖𝜃‖
2

𝐿
2 + 4𝐶 ‖𝑢‖

4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

̇𝐵
0

∞,∞

× ln1/3 (1 + ‖∇Δ𝑢‖𝐿2 + ‖Δ𝜃‖𝐿2)

+ 4𝐶 ‖𝜃‖
2

𝐿
2 + 4𝐶 ‖𝑢‖

4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4

≤ 8𝐶 ‖𝑢‖
4

𝐿
4

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

̇𝐵
0

∞,∞

(1 + ln (1 +
󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩 ̇𝐵0
∞,∞

))
2/3

× ln (1 + ‖∇Δ𝑢‖𝐿2 + ‖Δ𝜃‖𝐿2)

+ 4𝐶 ‖𝜃‖
2

𝐿
2 + 4𝐶 ‖𝑢‖

4

𝐿
4 + 4𝐶 ‖𝜃‖

4

𝐿
4 .

(21)

Choosing 𝑡 ∈ [𝑇
∗
, 𝑇] and setting

𝑦 (𝑡) = sup
𝑡∈[𝑇∗ ,𝑇]

(‖∇ ⋅ Δ𝑢 (𝑡)‖𝐿2 + ‖Δ𝜃‖𝐿2) , (22)

we have

sup
𝑡∈[𝑇∗ ,𝑇]

(‖𝑢‖𝐿4 + ‖𝜃‖𝐿4) ≤ 𝐶
∗
(1 + 𝑦 (𝑡))

𝐶𝜀
, (23)

where 𝜀 is a small enough constant, such that

∫

𝑇

𝑇∗

󵄩󵄩󵄩󵄩∇𝑝
󵄩󵄩󵄩󵄩
2/3

̇𝐵
0

∞,∞

(1 + ln (1 +
󵄩󵄩󵄩󵄩∇𝑝

󵄩󵄩󵄩󵄩 ̇𝐵0
∞,∞

))
2/3

𝑑𝑡 < 𝜀. (24)

Next, we want to estimate the 𝐿
2-norm of ∇𝑢 and ∇𝜃.

Multiplying (1) by −Δ𝑢, integrating in 𝑅
3, and using (3)

and (11), we derive that

∫𝑢
𝑡
⋅ (−Δ𝑢) 𝑑𝑥 + ∫ (𝑢 ⋅ ∇𝑢) (−Δ𝑢) 𝑑𝑥

+ 𝜂 ‖Δ𝑢‖
2

𝐿
2 + ∫∇𝑝 ⋅ (−Δ𝑢) 𝑑𝑥

= −∫𝜃𝑒
3
⋅ Δ𝑢 𝑑𝑥;

(25)
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that is,

1

2

𝑑

𝑑𝑡
∫ |∇𝑢|

2
𝑑𝑥 + 𝜂∫ |Δ𝑢|

2
𝑑𝑥

= ∫ (𝑢 ⋅ ∇𝑢) Δ𝑢 𝑑𝑥 − ∫𝜃𝑒
3
Δ𝑢𝑑𝑥

≤ ‖𝑢‖𝐿4 ‖∇𝑢‖𝐿4 ‖Δ𝑢‖𝐿2 + ‖Δ𝑢‖𝐿2 ‖𝜃‖𝐿2

≤ 𝐶 ‖𝑢‖𝐿4 ‖𝑢‖
1/5

𝐿
4 ‖Δ𝑢‖

4/5

𝐿
2 ‖Δ𝑢‖𝐿2 +

𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2

≤
𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 +

𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝜃‖𝐿2 ‖Δ𝜃‖𝐿2

≤
𝜂

2
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 +

]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2 .

(26)

Multiplying (2) by −Δ𝜃, integrating in 𝑅
3, and using (3)

and (11), we derive that

∫𝜃
𝑡
⋅ (−Δ𝜃) 𝑑𝑥 + ∫ (𝑢 ⋅ ∇𝜃) (−Δ𝜃) 𝑑𝑥 + ] ‖Δ𝜃‖

2

𝐿
2 = 0; (27)

that is,

1

2

𝑑

𝑑𝑡
∫ |∇𝜃|

2
𝑑𝑥 + ]∫ |Δ𝜃|

2
𝑑𝑥

= ∫ (𝑢 ⋅ ∇𝜃) Δ𝜃 +
𝜂

4
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2 𝑑𝑥

≤ ‖𝑢‖𝐿4 ‖∇𝜃‖𝐿4 ‖Δ𝜃‖𝐿2

≤ 𝐶 ‖𝑢‖𝐿4 ‖𝜃‖
1/5

𝐿
4 ‖Δ𝜃‖

4/5

𝐿
2 ‖Δ𝜃‖𝐿2

≤
]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

10

𝐿
4 ‖𝜃‖
2

𝐿
4 .

(28)

Combining (26) and (28), using (16), we deduce

1

2

𝑑

𝑑𝑡
∫ (|∇𝑢|

2
+ |∇𝜃|

2
) 𝑑𝑥 + 𝜂∫ |Δ𝑢|

2
𝑑𝑥 + ]∫ |Δ𝜃|

2
𝑑𝑥

≤
𝜂

2
‖Δ𝑢‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 +

]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝜃‖

2

𝐿
2

+
]
4
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

10

𝐿
4 ‖𝜃‖
2

𝐿
4

=
𝜂

2
‖Δ𝑢‖
2

𝐿
2 +

]
2
‖Δ𝜃‖
2

𝐿
2 + 𝐶 ‖𝑢‖

12

𝐿
4 + 𝐶 ‖𝜃‖

2

𝐿
2

+ 𝐶 ‖𝑢‖
10

𝐿
4 ‖𝜃‖
2

𝐿
4 ;

(29)

that is,

𝑑

𝑑𝑡
∫ (|∇𝑢|

2
+ |∇𝜃|

2
) 𝑑𝑥 + 𝜂∫ |Δ𝑢|

2
𝑑𝑥 + ]∫ |Δ𝜃|

2
𝑑𝑥

≤ 2𝐶 ‖𝑢‖
12

𝐿
4 + 2𝐶 ‖𝜃‖

2

𝐿
2 + 2𝐶 ‖𝑢‖

10

𝐿
4 ‖𝜃‖
2

𝐿
4 ,

(30)

which implies that

‖∇𝑢 (𝑡, ⋅)‖
2

𝐿
2 + ‖∇𝜃 (𝑡, ⋅)‖

2

𝐿
2 ≤ 𝐶 (1 + 𝑦 (𝑡))

𝐶𝜀
. (31)

Last, wewill estimate the𝐻3-normand𝐻
4-normof𝑢 and

𝜃 and use the operator Λ to derive our goal.
Applying Λ

3
= (−Δ)

3/2 to (1) and then multiplying (1)
with Λ

3
𝑢, we deduce

∫Λ
3
𝑢
𝑡
⋅ Λ
3
𝑢 𝑑𝑥 + ∫Λ

3
(𝑢 ⋅ ∇𝑢) ⋅ Λ

3
𝑢 𝑑𝑥

− 𝜂∫Λ
3
Δ𝑢 ⋅ Λ

3
𝑢 𝑑𝑥 + ∫Λ

3
∇𝑝 (Λ

3
𝑢) 𝑑𝑥

= ∫Λ
3
𝜃𝑒
3
⋅ Λ
3
𝑢 𝑑𝑥;

(32)

that is,
1

2

𝑑

𝑑𝑡
∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + 𝜂∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −∫ [Λ
3
(𝑢 ⋅ ∇𝑢) − 𝑢 ⋅ ∇Λ

3
𝑢] ⋅ Λ

3
𝑢 𝑑𝑥 + ∫Λ

3
𝜃𝑒
3
Λ
3
𝑢 𝑑𝑥

≤ 𝐶(‖∇𝑢‖𝐿3
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
3
+

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

) +
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

‖𝜃‖𝐿2

≤ 𝐶 ‖∇𝑢‖
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

‖∇𝑢‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

‖𝜃‖𝐿2 + 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 ‖∇𝑢‖
13/12

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2 + 𝐶

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

≤
𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

+ 𝐶 ‖∇𝑢‖
13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 2𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2 +

𝜂

16

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

≤ 𝐶 ‖∇𝑢‖
13/12

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖𝜃‖𝐿2 + 𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+

𝜂

8

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿2

=
𝜂

4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖∇𝑢‖

13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 2𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2 .

(33)

Similarly, applying Λ
3 to (2) and multiplying (2) by Λ

3
𝜃,

we derive

∫Λ
3
𝜃
𝑡
(Λ
3
𝜃) 𝑑𝑥 + ∫Λ

3
(𝑢 ⋅ ∇𝜃) Λ

3
𝜃 𝑑𝑥

− ]∫Λ
3
Δ𝜃 ⋅ Λ

3
𝜃 𝑑𝑥 = 0;

(34)
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that is,

1

2

𝑑

𝑑𝑡
∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ]∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

= −∫Λ
3
(𝑢 ⋅ ∇𝜃) Λ

3
𝜃 𝑑𝑥

= 𝐶 ‖∇𝑢‖𝐿3
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
3
+

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩𝐿3

‖∇𝜃‖𝐿3
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩𝐿3

≤ 𝐶 ‖∇𝑢‖
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

‖∇𝜃‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶 ‖∇𝑢‖
1/6

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/6

𝐿
2

‖∇𝜃‖
3/4

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

1/4

𝐿
2

× ‖∇𝜃‖
1/6

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

5/6

𝐿
2

≤ 𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 +

]
4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝑢‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

+ 𝐶 ‖∇𝜃‖
3/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

‖∇𝜃‖
1/3

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

5/3

𝐿
2

≤ 𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 +

]
4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝑢‖
2

𝐿
2 +

𝜂

4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝜃‖
9

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

3

𝐿
2
‖∇𝜃‖
2

𝐿
2 +

]
4

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
.

(35)

Combining (33) and (35), we have

1

2

𝑑

𝑑𝑡
(∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝑢
󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
Λ
3
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

+ 𝜂∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ]∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤
𝜂

2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖∇𝑢‖

13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 2𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 𝐶 ‖𝜃‖𝐿2

+ 𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 +

]
2

󵄩󵄩󵄩󵄩󵄩
Λ
4
𝜃
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

+ 𝐶 ‖∇𝑢‖
2

𝐿
2 + 𝐶 ‖∇𝜃‖

9

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

3

𝐿
2
‖∇𝜃‖
2

𝐿
2 ;

(36)

that is,

𝑑

𝑑𝑡
(∫

󵄨󵄨󵄨󵄨󵄨
Λ
3
𝑢
󵄨󵄨󵄨󵄨󵄨

2 󵄨󵄨󵄨󵄨󵄨
Λ
3
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥)

+ 𝜂∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝑢
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥 + ]∫
󵄨󵄨󵄨󵄨󵄨
Λ
4
𝜃
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝑥

≤ 2𝐶 ‖∇𝑢‖
13/10

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

1/2

𝐿
2

+ 4𝐶
󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

2

𝐿
2
+ 2𝐶 ‖𝜃‖𝐿2

+ 2𝐶 ‖∇𝑢‖
9/2

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝑢
󵄩󵄩󵄩󵄩󵄩

3/2

𝐿
2

‖∇𝜃‖
2

𝐿
2 + 2𝐶 ‖∇𝑢‖

2

𝐿
2

+ 2𝐶 ‖∇𝜃‖
9

𝐿
2

󵄩󵄩󵄩󵄩󵄩
Λ
3
𝜃
󵄩󵄩󵄩󵄩󵄩

3

𝐿
2
‖∇𝜃‖
2

𝐿
2 .

(37)

Choosing 𝜀 small enough, using (16), (23), and (24), we
conclude that

‖𝑢‖𝐿∞(0,𝑇;𝐻3) + ‖𝑢‖𝐿2(0,𝑇;𝐻4) ≤ 𝐶,

‖𝜃‖𝐿∞(0,𝑇;𝐻3) + ‖𝜃‖𝐿2(0,𝑇;𝐻4) ≤ 𝐶.

(38)

We complete the proof.

Conflict of Interests

The authors declare that they have no competing interests.

Authors’ Contribution

The authors declare that the work was realized in collab-
oration with the same responsibility. All authors read and
approved the final paper.

Acknowledgments

All authors thank the reviewers for their suggestions; this
paper was in part supported by the NNSF of China (nos.
11326154 and U1304101), the NSFC Projects of Education
Department of Henan Province (no. 14B110029), and the
Program for Science and Technology Innovation Talents in
University of Henan Province (no. 13HASTIT040).

References

[1] J. T. Beale, T. Kato, andA.Majda, “Remarks on the breakdownof
smooth solutions for the 3-D Euler equations,”Communications
in Mathematical Physics, vol. 94, no. 1, pp. 61–66, 1984.

[2] Y. Zhou, “Regularity criteria in terms of pressure for the 3-D
Navier-Stokes equations in a generic domain,” Mathematische
Annalen, vol. 328, no. 1-2, pp. 173–192, 2004.

[3] Y. Zhou, “On regularity criteria in terms of pressure for the
Navier-Stokes equations in R3,” Proceedings of the American
Mathematical Society, vol. 134, no. 1, pp. 149–156, 2006.

[4] Y. Zhou, “On a regularity criterion in terms of the gradient of
pressure for the Navier-Stokes equations in 𝑅

𝑁,” Zeitschrift für
Angewandte Mathematik und Physik: ZAMP, vol. 57, no. 3, pp.
384–392, 2006.

[5] Y. Zhou and S. Gala, “Logarithmically improved regularity
criteria for the Navier-Stokes equations in multiplier spaces,”
Journal of Mathematical Analysis and Applications, vol. 356, no.
2, pp. 498–501, 2009.

[6] Y. Zhou, “A new regularity criterion for the Navier-Stokes
equations in terms of the gradient of one velocity component,”
Methods and Applications of Analysis, vol. 9, no. 4, pp. 563–578,
2002.

[7] Y. Zhou, “A new regularity criterion for weak solutions to the
Navier-Stokes equations,” Journal de Mathématiques Pures et
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We are going to discuss some important classes of nonlinear integral equations such as integral equations ofVolterra-Chandrasekhar
type, quadratic integral equations of fractional orders, nonlinear integral equations of Volterra-Wiener-Hopf type, and nonlinear
integral equations of Erdélyi-Kober type. Those integral equations play very significant role in applications to the description of
numerous real world events. Our aim is to show that the mentioned integral equations can be treated from the view point of
nonlinear Volterra-Stieltjes integral equations.The Riemann-Stieltjes integral appearing in those integral equations is generated by
a function of two variables. The choice of a suitable generating function enables us to obtain various kinds of integral equations.
Some results concerning nonlinear Volterra-Stieltjes integral equations in several variables will be also discussed.

1. Introduction

In the theory of integral equations and their numerous appli-
cations, one can encounter some classes of integral equations
having an important significance. This fact is mainly con-
nected with applications of the mentioned classes of integral
equations to the description of several real world events
which appear in engineering, mechanics, physics, mathemat-
ical physics, electrochemistry, bioengineering, porousmedia,
viscoelasticity, control theory, transport theory, kinetic the-
ory of gases, radiative transfer, and other important branches
of exact science and applied mathematics (cf. [1–12]).

Let us distinguish and describe some important classes of
nonlinear integral equations mentioned tacitly above.

The first class we are going to present is the class
of the so-called quadratic integral equations of Volterra-
Chandrasekhar type (see [1, 7, 13, 14], e.g.). The interest in
the study of those integral equations was initiated around
1950 by the famous astrophysicist Chandrasekhar [1], who
investigated the following integral equation:

𝑥 (𝑡) = 𝑙 + 𝑥 (𝑡) ∫

1

0

𝑡

𝑡 + 𝑠

𝜑 (𝑠) 𝑥 (𝑠) 𝑑𝑠, (1)

being the so-called quadratic (nonlinear) integral equation
and called the Chandrasekhar integral equation.

Nowadays, integral equation (1) has been generalized
in a few directions but in general two principal types of
generalizations of (1) are investigated, namely, the quadratic
integral equation of Fredholm-Chandrasekhar type

𝑥 (𝑡) = 𝑎 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑠)) ∫

𝑎

0

V (𝑡, 𝑠, 𝑥 (𝑠))
𝑡 + 𝑠

𝑑𝑠 (2)

and the quadratic integral equation of Volterra-Chandrasekhar
type

𝑥 (𝑡) = 𝑎 (𝑡) + 𝑓 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

V (𝑡, 𝑠, 𝑥 (𝑠))
𝑡 + 𝑠

𝑑𝑠. (3)

We will focus on integral equations having form (3), that is,
on nonlinear integral equations of Volterra-Chandrasekhar
type.

The second class of nonlinear integral equations which
will be discussed is the class of the so-called nonlinear integral
equations of fractional order. Such equations have the form

𝑥 (𝑡) = 𝑎 (𝑡) +

𝑓 (𝑡, 𝑥 (𝑡))

Γ (𝛼)

∫

𝑡

𝑎

V (𝑡, 𝑠, 𝑥 (𝑠))
(𝑡 − 𝑠)

1−𝛼
𝑑𝑠, (4)
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where 𝛼 ∈ (0, 1) is a fixed number and Γ(𝛼) denotes the
gamma function.

Observe that (4) is the so-called singular integral equation
(of Abel type). These equations were very intensively studied
during the last three decades and found a vast number
of applications. Mathematicians working in the theory of
integral equations of fractional orders wrote several papers
and monographs devoted to those equations [4, 5, 8–11, 15–
20].

Thenext, third class of nonlinear integral equationswhich
we would like to present, is associated with the so-called
nonlinear integral equations of Volterra-Wiener-Hopf type.
Such equations are a special case of integral equations with
kernels depending on the difference of arguments and they
also play very important role in applications (cf. [3, 12, 21–
23]).

TheVolterra-Wiener-Hopf integral equation has the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0

𝑘 (𝑡 − 𝑠) V (𝑠, 𝑥 (𝑠)) 𝑑𝑠, (5)

where 𝑡 ∈ R
+
= [0,∞) or 𝑡 ∈ [0, 𝑇] with 𝑇 > 0.

Now, let us describe the fourth class of nonlinear inte-
gral equations being the object of our study as well as
being recently very intensively investigated with regard to
its numerous applications [24–30]. That class comprises
integral equations called the nonlinear Erdélyi-Kober integral
equations and having the form

𝑥 (𝑡) = 𝑎 (𝑡) +

1

Γ (𝛼)

∫

𝑡

0

𝑚𝑠
𝑚−1

𝑠
𝑝V (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡
𝑚
− 𝑠
𝑚
)
1−𝛼

𝑑𝑠, (6)

where 𝛼, 𝑚, and 𝑝 are positive constant and 𝛼 ∈ (0, 1).
Moreover, 𝑡 ∈ 𝐼 = [0, 1] (or 𝐼 = [𝑎, 𝑏]).

Obviously, the integral equation of Erdélyi-Kober type
creates the generalization of the integral equation of frac-
tional order (4). Indeed, putting in (6) 𝑚 = 1 and including
the factor 𝑠𝑝 into the function V(𝑡, 𝑠, 𝑥), we obtain (4) with
𝑓(𝑡, 𝑥) ≡ 1.

Our aim in this paper is to show that all four classes
of nonlinear integral equations (3)–(6) can be treated from
one point of view. More precisely, we show that with help of
nonlinear Volterra-Stieltjes integral equations we are able to
unify all those classes in such a way that they are particular
cases of the mentioned Volterra-Stieltjes integral equations.

The paper has a review character and is based on the
results from [14, 21, 25, 31].

2. Notation, Definitions, and Auxiliary Results

In this section, we provide notation, definitions, and auxiliary
results which will be needed in our further considerations.
Firstly, we recall a few facts concerning functions of bounded
variation [32]. Thus, assume that 𝑥 is a real function defined
on the fixed interval [𝑎, 𝑏].Then, the symbol⋁𝑏

𝑎
𝑥 denotes the

variation of the function 𝑥 on the interval [𝑎, 𝑏]. If⋁𝑏
𝑎
𝑥 < ∞,

we say that 𝑥 is of bounded variation on [𝑎, 𝑏]. Similarly, if
we have a function 𝑢(𝑡, 𝑠) = 𝑢 : [𝑎, 𝑏] × [𝑐, 𝑑] → R, then we
denote by⋁𝑞

𝑡=𝑝
𝑢(𝑡, 𝑠) the variation of the function 𝑡 → 𝑢(𝑡, 𝑠)

on the interval [𝑝, 𝑞] ⊂ [𝑎, 𝑏], where 𝑠 is a fixed number in
[𝑐, 𝑑]. In a similar way, we define the quantity⋁𝑞

𝑠=𝑝
𝑢(𝑡, 𝑠).

Now, assume that 𝑥 and 𝜑 are two real functions defined
on the interval [𝑎, 𝑏].Then, we can define the Stieltjes integral
(in the Riemann-Stieltjes sense)

∫

𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡) , (7)

under appropriate assumptions on the functions 𝑥 and 𝜑 (cf.
[32]). For example, if we require that 𝑥 is continuous and 𝜑 is
of bounded variation on [𝑎, 𝑏], then the Stieltjes integral (7)
does exist [32].

Let us mention that in our considerations we will often
use the following two important lemmas [32].

Lemma 1. If 𝑥 is Stieltjes integrable on the interval [𝑎, 𝑏] with
respect to a function 𝜑 of bounded variation, then

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑏

𝑎

|𝑥 (𝑡)| 𝑑 (

𝑡

⋁

𝑎

𝜑) . (8)

Lemma 2. Let 𝑥
1
, 𝑥
2
be Stieltjes integrable functions on the

interval [𝑎, 𝑏] with respect to a nondecreasing function 𝜑, such
that 𝑥

1
(𝑡) ≤ 𝑥

2
(𝑡) for 𝑡 ∈ [𝑎, 𝑏]. Then,

∫

𝑏

𝑎

𝑥
1
(𝑡) 𝑑𝜑 (𝑡) ≤ ∫

𝑏

𝑎

𝑥
2
(𝑡) 𝑑𝜑 (𝑡) . (9)

Obviously, in a similar way we can also consider Stieltjes
integrals of the form

∫

𝑏

𝑎

𝑥 (𝑠) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (10)

where 𝑔 : [𝑎, 𝑏] × [𝑎, 𝑏] → R and the symbol 𝑑
𝑠
indicates

the integration with respect to 𝑠. The details concerning the
integral of this type will be given later.

Now, assume that 𝑥 is a real function defined on the
interval [𝑎, 𝑏]. Denote by 𝜔(𝑥, 𝜀) the modulus of continuity of
the function 𝑥 defined by the formula

𝜔 (𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| :

𝑡, 𝑠 ∈ [𝑎, 𝑏] , |𝑡 − 𝑠| ≤ 𝜀} .

(11)

Similarly, if 𝑝(𝑡, 𝑠) = 𝑝 : [𝑎, 𝑏] × [𝑐, 𝑑] → R, then we can
define the modulus of continuity of the function 𝑝(𝑡, 𝑠) with
respect to each variable separately. For example,

𝜔 (𝑝 (𝑡, ⋅) , 𝜀) = sup {󵄨󵄨󵄨
󵄨
𝑝 (𝑡, 𝑢) − 𝑝 (𝑡, V)󵄨󵄨󵄨

󵄨
:

𝑢, V ∈ [𝑐, 𝑑] , |𝑢 − V| ≤ 𝜀} ,
(12)

where 𝑡 is a fixed number in the interval [𝑎, 𝑏].
Inwhat follows, we recall some facts concerningmeasures

of noncompactness which will be used later on [33].
To this end, assume that 𝐸 is an infinite dimensional

Banach space with the norm ‖ ⋅ ‖ and zero element 𝜃. Denote
by 𝐵(𝑥, 𝑟) the closed ball centered at 𝑥 and of radius 𝑟. The
symbol 𝐵

𝑟
will denote the ball 𝐵(𝜃, 𝑟).
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For a given nonempty bounded subset𝑋 of 𝐸, we denote
by 𝜒(𝑋) the so-called Hausdorff measure of noncompactness
of the set𝑋 [33]. This quantity is defined by the formula

𝜒 (𝑋) = inf {𝜀 > 0 : 𝑋 has a finite 𝜀-net in 𝐸} . (13)

Let us mention that the function 𝜒 has several useful
properties and is often applied in nonlinear analysis [33].
Obviously, the concept of a measure of noncompactness may
be defined in amore generalway [33, 34], but for our purposes
the Hausdorff measure of noncompactness defined by (13)
will be completely sufficient.

Indeed, in our further considerations, we will work in
the Banach space 𝐶(𝐼) consisting of real functions defined
and continuous on the interval 𝐼 = [𝑎, 𝑏], with the standard
maximum norm. If 𝑋 is a nonempty and bounded subset of
𝐶(𝐼), then the Hausdorff measure of noncompactness of 𝑋
can be expressed by the formula [33]

𝜒 (𝑋) =

1

2

𝜔
0
(𝑋) , (14)

where

𝜔
0
(𝑋) = lim

𝜀→0

𝜔 (𝑋, 𝜀) , (15)

and the symbol 𝜔(𝑋, 𝜀) stands for the modulus of continuity
of the set𝑋 defined in the following way:

𝜔 (𝑋, 𝜀) = sup {𝜔 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} . (16)

In our further considerations, we will utilize the fixed
point theorem of Darbo type [33], which is formulated below.

Theorem3. LetΩ be a nonempty, bounded, closed, and convex
subset of the space 𝐸 and let 𝑄 : Ω → Ω be a continuous
mapping such that there exists a constant 𝑘 ∈ [0, 1) for which
𝜒(𝑄𝑋) ≤ 𝑘𝜒(𝑋) for an arbitrary nonempty subset 𝑋 of Ω.
Then, 𝑄 has at least one fixed point in the set Ω.

Further on, we recall some facts concerning the so-called
superposition operator [35]. To this end, assume that 𝐼 =

[𝑎, 𝑏] and 𝑓 : [𝑎, 𝑏] × R → R is a given function. Then,
to every function 𝑥 : 𝐼 → R, we may assign the function 𝐹𝑥
defined by the formula

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , (17)

for 𝑡 ∈ 𝐼. The operator 𝐹 defined in such a way is called the
superposition operator generated by the function 𝑓 = 𝑓(𝑡, 𝑥).
For our further purposes, we will need the following result
concerning the behaviour of the superposition operator 𝐹 in
the space 𝐶(𝐼) [35].

Lemma 4. The superposition operator 𝐹 defined by (17)
transforms the space 𝐶(𝐼) into itself and is continuous if and
only if the function 𝑓 generating the operator 𝐹 is continuous
on the set 𝐼 ×R.

3. A Nonlinear Volterra-Stieltjes Integral
Equation and Its Special Cases

The considerations of this section are focused on the follow-
ing nonlinear Volterra-Stieltjes integral equation:

𝑥 (𝑡) = 𝑎 (𝑡) +

𝑓 (𝑡, 𝑥 (𝑡))

Γ (𝛼)

∫

𝑡

0

V (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (18)

where 𝑡 ∈ 𝐼 = [0, 1] and Γ(𝛼) (similarly as earlier) denotes
the gamma function. Moreover, 𝛼 is a fixed number in the
interval (0, 1). Let us notice that the interval [0, 1] can be
replaced by any interval [𝑎, 𝑏].

The details concerning assumptions imposed on the
components of (18) will be given later. Now, we show
that integral equation (18) unifies all previously considered
integral equations (3)–(6).

At the beginning, denote by Δ the triangle

Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡 ≤ 1} , (19)

and consider the function 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R defined in the
following way:

𝑔 (𝑡, 𝑠) =

{

{

{

𝑡 ln 𝑡 + 𝑠
𝑡

for 0 < 𝑠 ≤ 𝑡
0 for 𝑡 = 0.

(20)

It is easy to see that the above function 𝑔(𝑡, 𝑠) is continuous
on the triangle Δ. On the other hand, we get

𝑑
𝑠
𝑔 (𝑡, 𝑠) = (

𝜕

𝜕𝑠

𝑔 (𝑡, 𝑠)) 𝑑𝑠 =

𝑡

𝑡 + 𝑠

𝑑𝑠. (21)

Hence, we see that the integral equation of Volterra-
Chandrasekhar type (3) (or (1), in the simplest case) can be
treated as a special case of (18).

Further, consider the function 𝑔(𝑡, 𝑠) defined by the
formula

𝑔 (𝑡, 𝑠) =

1

𝛼

[𝑡
𝛼
− (𝑡 − 𝑠)

𝛼
] , (22)

where (𝑡, 𝑠) ∈ Δ. Obviously, we have

𝑑
𝑠
𝑔 (𝑡, 𝑠) =

1

(𝑡 − 𝑠)
1−𝛼
𝑑𝑠, (23)

which shows that the integral equation of fractional order (4)
is also a particular case of (18).

To show that the Volterra-Wiener-Hopf integral equation
(5) is a special case of (18), let us consider the function 𝑔(𝑡, 𝑠)
given by the formula

𝑔 (𝑡, 𝑠) = ∫

𝑠

0

𝑘 (𝑡 − 𝑧) 𝑑𝑧, (24)

under appropriate assumptions imposed on the function 𝑘 =
𝑘(𝑢) (cf. [21]). Obviously, we have

𝑑
𝑠
𝑔 (𝑡, 𝑠) =

𝜕

𝜕𝑠

(∫

𝑠

0

𝑘 (𝑡 − 𝑧) 𝑑𝑧) 𝑑𝑠 = 𝑘 (𝑡 − 𝑠) 𝑑𝑠, (25)

and we see that (5) is in fact a special case of (18).
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Finally, let us take into account the nonlinear Erdélyi-
Kober integral equation (6). Then, putting

𝑔 (𝑡, 𝑠) = 𝑡
𝛼𝑚
− (𝑡
𝑚
− 𝑠
𝑚
)
𝛼

, (26)

for (𝑡, 𝑠) ∈ Δ, we have that

𝑑
𝑠
𝑔 (𝑡, 𝑠) =

𝛼𝑚𝑠
𝑚−1

(𝑡
𝑚
− 𝑠
𝑚
)
1−𝛼
𝑑𝑠. (27)

Thus, we see that the integral equation (6) is also a special case
of (18).

Now, we formulate theorem on the existence of solutions
of Volterra-Stieltjes integral equation (18) imposing assump-
tions of such a type that the obtained theorem will ensure
also the existence of solutions of all particular cases of (18)
mentioned above.

We will consider the existence of solutions of (18) under
the following hypotheses.

(i) The function 𝑎 = 𝑎(𝑡) is continuous on the interval 𝐼.
(ii) The function 𝑓(𝑡, 𝑥) = 𝑓 : 𝐼 × R → R is continuous

and satisfies the Lipschitz condition with respect to
the second variable; that is, there exists a constant 𝑘 >
0 such that

󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝑘

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
, (28)

for all 𝑡 ∈ 𝐼 and 𝑥, 𝑦 ∈ R.
(iii) The function 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R is continuous.
(iv) The function 𝑠 → 𝑔(𝑡, 𝑠) is of bounded variation on

the interval [0, 𝑡] for each fixed 𝑡 ∈ 𝐼.
(v) For any 𝜀 > 0, there exists 𝛿 > 0 such that, for all

𝑡
1
, 𝑡
2
∈ 𝐼, 𝑡

1
< 𝑡
2
, and 𝑡

2
− 𝑡
1
≤ 𝛿, the following

inequality holds:

𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] ≤ 𝜀. (29)

(vi) 𝑔(𝑡, 0) = 0 for any 𝑡 ∈ 𝐼.
(vii) V : Δ × R → R is continuous such that |V(𝑡, 𝑠, 𝑥)| ≤

𝜙(|𝑥|) for all (𝑡, 𝑠) ∈ Δ and for each 𝑥 ∈ R, where
𝜙 : R
+
→ R
+
is a nondecreasing function.

Now, we provide a few properties of the function 𝑔 =

𝑔(𝑡, 𝑠) which will be needed in our further considerations.
Obviously, we will assume that 𝑔 satisfies assumptions (iii)–
(vi).

Let us notice that these properties were proved in [14].

Lemma 5. Let assumptions (iii)–(v) be satisfied. Then, for an
arbitrarily fixed number 𝑡

2
∈ 𝐼 (𝑡
2
> 0) and for any 𝜀 > 0, there

exists 𝛿 > 0 such that if 𝑡
1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, and 𝑡

2
− 𝑡
1
≤ 𝛿 then

𝑡
2

⋁

𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠) ≤ 𝜀. (30)

Lemma 6. Under assumptions (iii)–(v), the function

𝑡 󳨀→

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) (31)

is continuous on the interval 𝐼.

Corollary 7. There exists a finite positive constant𝐾 such that

𝐾 = sup{
𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) : 𝑡 ∈ 𝐼} . (32)

In fact, the above statement is an immediate consequence
of the continuity of the function

𝑡 󳨀→

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) . (33)

Further, let us denote by 𝐹
1
the finite constant (cf.

assumption (iii)) defined by the formula

𝐹
1
= max {󵄨󵄨󵄨

󵄨
𝑓 (𝑡, 0)

󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ 𝐼} . (34)

Now, we are prepared to formulate the last assumption
utilized in our considerations.

(viii) There exists a positive solution 𝑟
0
of the inequality

‖𝑎‖ + 𝐾 (𝑘𝑟 + 𝐹1
) 𝜙 (𝑟) ≤ 𝑟, (35)

such that 𝑘𝐾𝜙(𝑟
0
) < 1.

Ourmain result is formulated in the form of the following
theorem.

Theorem 8. Under assumptions (i)–(viii), there exists at least
one solution 𝑥 = 𝑥(𝑡) of (18) belonging to the space 𝐶(𝐼).

Proof. At the beginning, let us introduce two functions𝑀(𝜀),
𝑁(𝜀) defined in the following way:

𝑀(𝜀) = sup{
𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] :

𝑡
1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} ,

𝑁 (𝜀) = sup{
𝑡
2

⋁

𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠) : 𝑡

1
, 𝑡
2
∈ 𝐼, 𝑡
1
< 𝑡
2
, 𝑡
2
− 𝑡
1
≤ 𝜀} .

(36)

Notice that in view of assumption (v) we have that𝑀(𝜀) → 0

as 𝜀 → 0. Similarly, 𝑁(𝜀) → 0 as 𝜀 → 0 which is an easy
consequence of Lemma 5.

Next, for a fixed 𝑥 ∈ 𝐶(𝐼) and 𝑡 ∈ 𝐼, let us denote

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

(𝑉𝑥) (𝑡) = ∫

𝑡

0

V (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) ,

(𝑄𝑥) (𝑡) = 𝑎 (𝑡) + (𝐹𝑥) (𝑡) (𝑉𝑥) (𝑡) .

(37)
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Further, fix arbitrarily 𝜀 > 0 and take 𝑡
1
, 𝑡
2
∈ 𝐼 such that

𝑡
1
< 𝑡
2
and 𝑡
2
− 𝑡
1
≤ 𝜀. Then, in view of our assumptions

and Lemmas 1 and 2, for a fixed 𝑥 ∈ 𝐶(𝐼), we obtain
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡

2
) − (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
2

0

V (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠) − ∫

𝑡
1

0

V (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

V (𝑡
2
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

−∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
2
, 𝑠)

−∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡
2

𝑡
1

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑s(
𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥 (𝑠)) − V (𝑡

1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

[𝑔 (𝑡
2
, 𝑝) − 𝑔 (𝑡

1
, 𝑝)])

≤ 𝜙 (‖𝑥‖) ∫

𝑡
2

𝑡
1

𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑥 (𝑠)) − V (𝑡

1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
2
, 𝑝))

+ 𝜙 (‖𝑥‖) ∫

𝑡
1

0

𝑑
𝑠
(

𝑠

⋁

𝑝=0

[𝑔 (𝑡
2
, 𝑝) − 𝑔 (𝑡

1
, 𝑝)])

≤ 𝜙 (‖𝑥‖) [

𝑡
2

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠) −

𝑡
1

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠)]

+ 𝜔 (𝜀)

𝑡
1

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠) + 𝜙 (‖𝑥‖)

𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)]

≤ 𝜙 (‖𝑥‖)

𝑡
2

⋁

𝑠=𝑡
1

𝑔 (𝑡
2
, 𝑠)

+ 𝜔 (𝜀)

𝑡
2

⋁

𝑠=0

𝑔 (𝑡
2
, 𝑠) + 𝜙 (‖𝑥‖)𝑀 (𝜀)

≤ 𝜙 (‖𝑥‖)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (‖𝑥‖)𝑀 (𝜀) ,

(38)

where we denoted

𝜔 (𝜀)

= sup {󵄨󵄨󵄨
󵄨
V (𝑡
2
, 𝑠, 𝑦) − V (𝑡

1
, 𝑠, 𝑦)

󵄨
󵄨
󵄨
󵄨
:

(𝑡
1
, 𝑠) , (𝑡

2
, 𝑠) ∈ Δ,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑦 ∈ [− ‖𝑥‖ , ‖𝑥‖]} .

(39)

Moreover, the functions𝑀(𝜀), 𝑁(𝜀) are defined by (36) and
the constant𝐾 is defined by (32).

Observe that in view of the uniform continuity of the
function V on the setΔ×[−‖𝑥‖, ‖𝑥‖]we infer that𝜔(𝜀) → 0 as
𝜀 → 0. Linking this fact with Lemma 5 and the properties of
the functions𝑀(𝜀) and𝑁(𝜀) indicated previously, we deduce
from (38) that the function 𝑉𝑥 is continuous on the interval
𝐼.

On the other hand, the function 𝐹𝑥 is continuous on
𝐼 which is an easy consequence of assumption (ii) and
Lemma 4. Thus, keeping in mind the above established facts,
assumption (i), and (37), we conclude that the function𝑄𝑥 is
continuous on the interval 𝐼. This means that the operator 𝑄
transforms the space 𝐶(𝐼) into itself.

In what follows, we show that the operator 𝑄 is contin-
uous on the space 𝐶(𝐼). To this end, let us first observe that
in view of the properties of the superposition operator 𝐹 (cf.
Lemma 4) it is sufficient to show that the operator 𝑉 defined
by (37) is continuous on 𝐶(𝐼).

To do this, fix 𝜀 > 0 and 𝑥 ∈ 𝐶(𝐼). Next, take an arbitrary
function𝑦 ∈ 𝐶(𝐼)with ‖𝑥−𝑦‖ ≤ 𝜀.Then, in view of Lemma 1,
for an arbitrary fixed 𝑡 ∈ 𝐼, we obtain
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡) − (𝑉𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

0

󵄨
󵄨
󵄨
󵄨
V (𝑡, 𝑠, 𝑥 (𝑠)) − V (𝑡, 𝑠, 𝑦 (𝑠))󵄨󵄨󵄨

󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡, 𝑝)) .

(40)

Now, let us denote

𝑃 = ‖𝑥‖ + 𝜀,

𝜔
𝑃
(V, 𝜀) = sup {|V (𝑡, 𝑠, 𝑤) − V (𝑡, 𝑠, 𝑢)| :

(𝑡, 𝑠) ∈ Δ, 𝑤, 𝑢 ∈ [−𝑃, 𝑃] , |𝑤 − 𝑢| ≤ 𝜀} .

(41)

Then, from (40), we derive the following inequalities:
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡) − (𝑉𝑦) (𝑡)

󵄨
󵄨
󵄨
󵄨

≤ ∫

𝑡

0

𝜔
𝑃
(V, 𝜀) 𝑑

𝑠
(

𝑠

⋁

𝑧=0

𝑔 (𝑡, 𝑧))

≤ 𝜔
𝑃
(V, 𝜀)

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) ≤ 𝐾𝜔
𝑃
(V, 𝜀) .

(42)

Hence, in virtue of the uniform continuity of the function V
on the set Δ× [−𝑃, 𝑃], we deduce that𝑉 is continuous on the
space 𝐶(𝐼).
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In what follows, let us fix arbitrarily 𝑥 ∈ 𝐶(𝐼). Then,
taking into account the imposed assumptions and applying
Lemmas 1 and 2, for a fixed 𝑡 ∈ 𝐼, we get

|(𝑄𝑥) (𝑡)| ≤ |𝑎 (𝑡)|

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥 (𝑡))

󵄨
󵄨
󵄨
󵄨
∫

𝑡

0

|V (𝑡, 𝑠, 𝑥 (𝑠))| 𝑑𝑠(
𝑠

⋁

𝑝=0

𝑔 (𝑡, 𝑝))

≤ ‖𝑎‖ + [
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0)

󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡, 0)

󵄨
󵄨
󵄨
󵄨
]

× ∫

𝑡

0

𝜙 (‖𝑥‖) 𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡, 𝑝))

≤ ‖𝑎‖ + (𝑘 ‖𝑥‖ + 𝐹1
) 𝜙 (‖𝑥‖)

𝑡

⋁

𝑠=0

𝑔 (𝑡, 𝑠) .

(43)

Hence, in view of Corollary 7, we derive the following
estimate:

‖𝑄𝑥‖ ≤ ‖𝑎‖ + (𝑘 ‖𝑥‖ + 𝐹1
)𝐾𝜙 (‖𝑥‖) . (44)

Then, keeping in mind assumption (viii), we deduce that
there exists a number 𝑟

0
such that 𝑄 transforms the ball 𝐵

𝑟
0

into itself and 𝑘𝐾𝜙(𝑟
0
) < 1.

In what follows, let us take a nonempty subset 𝑋 of the
ball 𝐵

𝑟
0

and 𝑥 ∈ 𝑋. Next, fix 𝜀 > 0 and choose 𝑡
1
, 𝑡
2
∈ 𝐼 such

that 𝑡
1
< 𝑡
2
and 𝑡
2
− 𝑡
1
≤ 𝜀. Then, applying (38), we obtain

󵄨
󵄨
󵄨
󵄨
(𝑄𝑥) (𝑡

2
) − (𝑄𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑎 (𝑡
2
) − 𝑎 (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
) (𝑉𝑥) (𝑡

2
) − (𝐹𝑥) (𝑡

2
) (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
) (𝑉𝑥) (𝑡

1
) − (𝐹𝑥) (𝑡

1
) (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (𝑎, 𝜀)

+
󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡

2
) − (𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
(𝑉𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
(𝐹𝑥) (𝑡

2
) − (𝐹𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (𝑎, 𝜀) + [
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥 (𝑡
2
)) − 𝑓 (𝑡

2
, 0)
󵄨
󵄨
󵄨
󵄨
+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 0)
󵄨
󵄨
󵄨
󵄨
]

× {𝜙 (‖𝑥‖)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (‖𝑥‖)𝑀 (𝜀)}

+

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡
1

0

V (𝑡
1
, 𝑠, 𝑥 (𝑠)) 𝑑

𝑠
𝑔 (𝑡
1
, 𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× {
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥 (𝑡
2
)) − 𝑓 (𝑡

2
, 𝑥 (𝑡
1
))
󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑓 (𝑡
2
, 𝑥 (𝑡
1
)) − 𝑓 (𝑡

1
, 𝑥 (𝑡
1
))
󵄨
󵄨
󵄨
󵄨
}

≤ 𝜔 (𝑎, 𝜀) + (𝑘 ‖𝑥‖ + 𝐹1
)

× {𝜙 (‖𝑥‖)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (‖𝑥‖)𝑀 (𝜀)}

+ ∫

𝑡
1

0

󵄨
󵄨
󵄨
󵄨
V (𝑡
1
, 𝑠, 𝑥 (𝑠))

󵄨
󵄨
󵄨
󵄨
𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
1
, 𝑝))

× {𝑘
󵄨
󵄨
󵄨
󵄨
𝑥 (𝑡
2
) − 𝑥 (𝑡

1
)
󵄨
󵄨
󵄨
󵄨
+ 𝜔
1

𝑟
0

(𝑓, 𝜀)} ,

(45)

where we denoted

𝜔
1

𝑟
0

(𝑓, 𝜀) = sup {󵄨󵄨󵄨
󵄨
𝑓 (𝑡
2
, 𝑥) − 𝑓 (𝑡

1
, 𝑥)
󵄨
󵄨
󵄨
󵄨
:

𝑡
1
, 𝑡
2
∈ 𝐼,

󵄨
󵄨
󵄨
󵄨
𝑡
2
− 𝑡
1

󵄨
󵄨
󵄨
󵄨
≤ 𝜀, 𝑥 ∈ [−𝑟

0
, 𝑟
0
]} .

(46)

Further, from (45), we get
󵄨
󵄨
󵄨
󵄨
(𝑄𝑥) (𝑡

2
) − (𝑄𝑥) (𝑡

1
)
󵄨
󵄨
󵄨
󵄨

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝜙 (𝑟
0
) ∫

𝑡
1

0

𝑑
𝑠
(

𝑠

⋁

𝑝=0

𝑔 (𝑡
1
, 𝑝)) {𝑘𝜔 (𝑥, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)}

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝐾𝜙 (𝑟
0
) {𝑘𝜔 (𝑥, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)} .

(47)

Hence, we have

𝜔 (𝑄𝑥, 𝜀)

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) + 𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝐾𝜙 (𝑟
0
) {𝑘𝜔 (𝑥, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)} .

(48)

Consequently, we derive the following inequality:

𝜔 (𝑄𝑋, 𝜀)

≤ 𝜔 (𝑎, 𝜀) + (𝑘𝑟
0
+ 𝐹
1
)

× {𝜙 (𝑟
0
)𝑁 (𝜀) + 𝐾𝜔 (𝜀) +𝜙 (𝑟

0
)𝑀 (𝜀)}

+ 𝐾𝜙 (𝑟
0
) {𝑘𝜔 (𝑋, 𝜀) + 𝜔

1

𝑟
0

(𝑓, 𝜀)} .

(49)

Now, taking into account the fact that 𝜔(𝜀) → 0,𝑀(𝜀) →
0, and 𝑁(𝜀) → 0 as 𝜀 → 0 and keeping in mind that the
function 𝑓 is uniformly continuous on the set 𝐼 × [−𝑟

0
, 𝑟
0
],

we derive from (49) the following estimate:

𝜔
0
(𝑄𝑋) ≤ 𝑘𝐾𝜙 (𝑟

0
) 𝜔
0
(𝑋) . (50)
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From the above estimate, assumption (viii), and Theorem 3,
we infer that there exists at least one fixed point 𝑥 of the
operator𝑄 in the ball 𝐵

𝑟
0

. Obviously, the function 𝑥 = 𝑥(𝑡) is
a solution of (18). This completes the proof.

In order to illustrate the result contained in Theorem 8,
we provide an example.

Example 9. Let us consider the following nonlinear integral
equation of Erdélyi-Kober type:

𝑥 (𝑡) = 𝑡 exp 𝑡

+

1

Γ (1/2)

∫

𝑡

0

(4/3) 𝑠
7/3
(𝑡 + sin 𝑠2 + 3√𝑥2 (𝑠))

(𝑡
4/3
− 𝑠
4/3
)
1/2

𝑑𝑠,

(51)

for 𝑡 ∈ 𝐼 = [0, 1]. At first, let us observe that this equation can
be written in the form (6). Indeed, we have

𝑥 (𝑡) = 𝑡 exp 𝑡

+

1

Γ (1/2)

∫

𝑡

0

(4/3) 𝑠
1/3
𝑠
2
(𝑡 + sin 𝑠2 + 3√𝑥2 (𝑠))

(𝑡
4/3
− 𝑠
4/3
)
1/2

𝑑𝑠.

(52)

Thus, (52) is a particular case of (6) if we put 𝑎(𝑡) = 𝑡 exp 𝑡,
𝛼 = 1/2,𝑚 = 4/3, 𝑝 = 2, and

V (𝑡, 𝑠, 𝑥) = 𝑡 + sin 𝑠2 + 𝑥2/3. (53)

Further, let us notice that (52) can be treated as a particular
case of Volterra-Stieltjes integral equation (18) if we take into
account the fact that the function 𝑔 = 𝑔(𝑡, 𝑠) appearing in (18)
has the form (26); that is,

𝑔 (𝑡, 𝑠) = 𝑡
2/3
− (𝑡
4/3
− 𝑠
4/3
)

1/2

. (54)

It is easily seen that such a function 𝑔(𝑡, 𝑠) satisfies assump-
tions (iii)–(vi) of Theorem 8. Moreover, we see that 𝑓(𝑡, 𝑥) ≡
1 and |V(𝑡, 𝑠, 𝑥)| ≤ 2 + 𝑥2/3.

Thus, applying Theorem 8, we can accept that 𝜙(𝑟) = 2 +
𝑟
2/3. We omit further, technical details (cf. [25]) but the final
conclusion asserts that (52) has a solution in the space 𝐶(𝐼)
belonging to the ball 𝐵

4
.

4. Further Results and Remarks

The result contained in Theorem 8 does not cover some
cases being important with regard to applications. Obviously,
we can also formulate a more general theorem than that
presented above and concerning the existence of solutions of
(18) which are defined, continuous, and bounded on R

+
and

are satisfying some other conditions (e.g., having a limit at
infinity).

On the other hand, we can always adapt a suitable version
of Theorem 8 in combination with the considered particular
class of integral equations discussed above.

For example, if we consider the Volterra-Wiener-Hopf
integral equation (5), then its generalized Volterra-Stieltjes
counterpart has the form

𝑥 (𝑡) = 𝑎 (𝑡) + ∫

𝑡

0

V (𝑠, 𝑥 (𝑠)) 𝑑
𝑠
𝑔 (𝑡, 𝑠) , (55)

with the function 𝑔(𝑡, 𝑠) of the form (24). Then, we can
formulate the following existence result concerning (55) [21]
(cf. also [36]).

Theorem 10. Assume that the following hypotheses are satis-
fied.

(i) The function 𝑎 = 𝑎(𝑡) is continuous and bounded on
R
+
. Moreover, there exists the limit lim

𝑡→∞
𝑎(𝑡) (of

course, this limit is finite).
(ii) v : R

+
× R → R is continuous and there exists a

function 𝜓 : R
+
→ R

+
being nondecreasing on R

+
,

𝜓(0) = 0, and lim
𝑡→0

𝜓(𝑡) = 0 such that
󵄨
󵄨
󵄨
󵄨
V (𝑠, 𝑥) − V (𝑠, 𝑦)󵄨󵄨󵄨

󵄨
≤ 𝜓 (

󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
) , (56)

for all 𝑠 ∈ R
+
and 𝑥, 𝑦 ∈ R.

(iii) The function 𝑠 → V(𝑠, 0) is bounded on R
+
.

(iv) 𝑔(𝑡, 𝑠) = 𝑔 : Δ → R is uniformly continuous on the
triangle Δ = {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤ 𝑡}.

(v) The function 𝑠 → 𝑔(𝑡, 𝑠) is of bounded variation on
the interval [0, 𝑡] for each fixed 𝑡 ∈ R

+
.

(vi) For any 𝜀 > 0, there is 𝛿 > 0 such that, for all 𝑡
1
, 𝑡
2
∈

R
+
, 𝑡
1
< 𝑡
2
, and 𝑡

2
− 𝑡
1
≤ 𝛿, the inequality

𝑡
1

⋁

𝑠=0

[𝑔 (𝑡
2
, 𝑠) − 𝑔 (𝑡

1
, 𝑠)] ≤ 𝜀 (57)

holds.
(vii) 𝑔(𝑡, 0) = 0 for all 𝑡 ≥ 0.
(viii) The function 𝑡 → ⋁

𝑡

𝑠=0
𝑔(𝑡, 𝑠) is bounded on R

+
.

(ix) There exists a positive solution 𝑟
0
of the inequality

‖𝑎‖ + (𝜓 (𝑟) + 𝑉1
)𝐾 ≤ 𝑟, (58)

where ‖𝑎‖ = sup{|𝑎(𝑡)| : 𝑡 ≥ 0}, 𝑉
1
= sup{|V(𝑠, 0)| :

𝑠 ≥ 0}, and 𝐾 = sup{⋁𝑡
𝑠=0
𝑔(𝑡, 𝑠) : 𝑡 ≥ 0}.

Then, (55) has at least one solution 𝑥 = 𝑥(𝑡) which is defined,
continuous, and bounded on R

+
and has a finite limit at

infinity.

Further, let us mention that the crucial role inTheorem 8
is played by assumption (v) (the same assumption appears as
assumption (vi) in Theorem 10). That assumption seems to
be rather difficult to be verified in practice. But it turns out
that, in considerations which cover all our particular classes
of the above indicated integral equations, we can replace the
mentioned assumption by less restrictive ones which are very
convenient in verification.

For example, we formulate below the assumption of such
a type which is connected withTheorem 10 (see [21]).
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(x) For arbitrary 𝑡
1
, 𝑡
2
∈ R
+
such that 𝑡

1
< 𝑡
2
, the function

𝑠 → 𝑔(𝑡
2
, 𝑠)−𝑔(𝑡

1
, 𝑠) is nonincreasing on the interval

[0, 𝑡
1
].

Then, we have the following lemma [21].

Lemma 11. Let assumptions (iv) and (vii) of Theorem 10 be
satisfied. Moreover, we assume that the function 𝑔 = 𝑔(𝑡, 𝑠)

satisfies condition (𝑥). Then, 𝑔 satisfies assumption (vi) of
Theorem 10.

It can be shown that Lemma 11 enables us to formu-
late convenient requirements concerning, for example, the
function 𝑘 = 𝑘(𝑢) appearing in (6), which guarantee
that the Volterra-Wiener-Hopf counterpart of (55) satisfies
assumptions imposed in Theorem 10. We omit details which
can be found in [21].

5. Remarks concerning Nonlinear
Volterra-Stieltjes Integral Equations
in Two Variables

In this final section, we indicate the possibility of investi-
gations concerning the nonlinear Volterra-Stieltjes integral
equationswith an unknown function of two ormore variables
(cf. [31]). For example, the Volterra-Stieltjes integral equation
in two variables has the form
𝑢 (𝑡, 𝑥) = 𝑎 (𝑡, 𝑥) + 𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

× ∫

𝑡

0

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦)) 𝑑
𝑦
𝑔
2
(𝑥, 𝑦) 𝑑

𝑠
𝑔
1
(𝑡, 𝑠) ,

(59)

for (𝑡, 𝑥) ∈ 𝐼2, where 𝐼 = [0, 1]. Obviously, the interval [0, 1]
can be replaced by any closed and bounded interval [𝑎, 𝑏].

We will not formulate in detail assumptions concern-
ing the functions involved in (59). Those assumptions are
combinations and a refinement of assumptions imposed in
Theorem 8 (cf. [31]).

It is worthwhile mentioning that the Volterra-Stieltjes
integral equation in two variables (59) covers a lot of
particular cases being a combination of nonlinear integral
equations of the type (3)–(6). For example, we can consider
the functional integral equation with functions involved
depending on two variables which has the form

𝑢 (𝑡, 𝑥) = 𝑎 (𝑡, 𝑥)

+

𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

Γ (𝛼) Γ (𝛽)

∫

𝑡

0

∫

𝑥

0

V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦))

(𝑡 − 𝑠)
1−𝛼
(𝑥 − 𝑦)

1−𝛽
𝑑𝑠 𝑑𝑦,

(60)

for 𝑡, 𝑥 ∈ 𝐼 and for 𝛼, 𝛽 being fixed numbers in the interval
(0, 1). Obviously, (60) is a particular case of (59) if we put

𝑔
1
(𝑡, 𝑠) =

1

𝛼

[𝑡
𝛼
− (𝑡 − 𝑠)

𝛼
] ,

𝑔
2
(𝑥, 𝑦) =

1

𝛽

[𝑥
𝛽
− (𝑥 − 𝑦)

𝛽

] ,

(61)

for (𝑡, 𝑠) ∈ Δ
1
and (𝑥, 𝑦) ∈ Δ

2
, where Δ

1
= {(𝑡, 𝑠) : 0 ≤ 𝑠 ≤

𝑡 ≤ 1} and Δ
2
= {(𝑥, 𝑦) : 0 ≤ 𝑦 ≤ 𝑥 ≤ 1}.

On the other hand, we can also consider the functional
integral equation with functions depending on two variables,
which has other mixed forms composed of functions 𝑔 =

𝑔(𝑡, 𝑠) appearing in previously investigated integral equations
(3)–(6).

Thus, we can consider the nonlinear Volterra-Stieltjes
integral equation with an unknown function depending on
two variables and having the form

𝑢 (𝑡, 𝑥) = 𝑎 (𝑡, 𝑥)

+

𝑓 (𝑡, 𝑥, 𝑢 (𝑡, 𝑥))

Γ (𝛼)

∫

𝑡

0

∫

𝑥

0

𝑡V (𝑡, 𝑠, 𝑥, 𝑦, 𝑢 (𝑠, 𝑦))

(𝑡 + 𝑠) (𝑥 − 𝑦)
1−𝛼

𝑑𝑠 𝑑𝑦,

(62)

for 𝑡, 𝑥 ∈ 𝐼 and for 𝛼 being a fixed number in the interval
(0, 1).

Observe that (62) is a particular case of (59) if we put

𝑔 (𝑡, 𝑠) =

{

{

{

𝑡 ln 𝑡 + 𝑠
𝑡

for 0 < 𝑠 ≤ 𝑡
0 for 𝑡 = 0,

𝑔
2
(𝑥, 𝑦) =

1

𝛼

[𝑥
𝛼
− (𝑥 − 𝑦)

𝛼

] ,

(63)

for (𝑥, 𝑦) ∈ Δ
2
.

Hence, we see that (62) represents the mixed type of
Chandrasekhar and fractional order integral equations.

Obviously, it is not difficult to construct othermixed types
of nonlinear integral equations with unknown functions in
two variables which are particular cases of (59). For example,
we can construct nonlinear integral equation in two variables
of mixed type of Erdélyi-Kober and fractional order, of
Erdélyi-Kober and Wiener-Hopf type, and so on.

The details are rather involved and we will not present
details (cf. [31]).
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grals on the unbounded interval,” Optimization, vol. 63, no. 8,
pp. 1235–1248, 2014.
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We give a necessary and sufficient condition on a function ℎ : R → R under which the nonlinear composition operator 𝐻,
associated with the function ℎ,𝐻𝑢(𝑡) = ℎ(𝑢(𝑡)), acts in the space 𝜅Φ𝐵𝑉[𝑎, 𝑏] and satisfies a local Lipschitz condition.

1. Introduction

Given a function ℎ : R → R, the composition operator 𝐻
associated with the function ℎ maps each function 𝑢 :

[𝑎, 𝑏] → R into the composition function 𝐻𝑢 : [𝑎, 𝑏] → R

defined by

𝐻𝑢 (𝑡) := ℎ (𝑢 (𝑡)) , (𝑡 ∈ [𝑎, 𝑏]) . (1)

More generally, given ℎ : [𝑎, 𝑏]×R → R, we consider the
operator𝐻, defined by

𝐻𝑢 (𝑡) := ℎ (𝑡, 𝑢 (𝑡)) , (𝑡 ∈ [𝑎, 𝑏]) . (2)

This operator is also called superposition operator or sub-
stitution operator or Nemytskij operator associated with ℎ. In
what follows, wewill refer to (1) as the autonomous case and to
(2) as the nonautonomous case. For an extensive treatment of
composition operator and function spaces we refer to the
monographs Appell et al. [1], Appell and Zabrejko [2], and
Runst and Sickel [3].

In 1984, Sobolevskij [4] proved the following statement:
“the autonomous composition operator associated with ℎ :

R → R is locally Lipschitz in the space Lip[𝑎, 𝑏] if and only
if the derivative ℎ

󸀠 exists and is locally Lipschitz.” In recent
articles Appell et al. [5] and Merentes et al. [6] obtained sev-
eral results of the Sobolevskij type. As the authors explain in
the introduction, the significance of these results lies in the
fact that inmost applications tomany nonlinear problems it is

sufficient to impose a local Lipschitz condition, instead of
a global Lipschitz condition. In fact they proved that
Sobolevskij’s result is valid in the spaces𝐵𝑉

𝜑
[𝑎, 𝑏],𝐻𝐵𝑉[𝑎, 𝑏],

𝑅𝑉
𝜑
[𝑎, 𝑏], and Φ𝐵𝑉[𝑎, 𝑏].
Motivated by the work done in the papers [5, 6], we

establish a similar result to the one given by Sobolevskij, in the
space of functions 𝜅Φ𝐵𝑉[𝑎, 𝑏].

Although the composition operator (or Nemytskij opera-
tor) is very simple, it turns out to be one of the most inter-
esting and important operators studied in nonlinear func-
tional analysis; the behavior of this operator exhibits many
surprising and even pathological features in various function
spaces. For example, about 35 years ago Dahlberg [7] proved
the following: for 1 ≤ 𝑝 ≤ ∞ and 1+(1/𝑝) < 𝑚 < 𝑛/𝑝 integer,
if 𝐻 maps the Sobolev space 𝑊

𝑚

𝑝
(R𝑛) into itself, then ℎ

is a linear function. Among these pathologies there is one
called degeneracy phenomenon, which states that the global
Lipschitz condition necessarily leads to affine functions in
various functions spaces.This property was first proved in [8]
for the space Lip[𝑎, 𝑏]. Additional information about the
degeneracy phenomena can be found in [9, 10].

This paper is organized as follows: Section 2 contains def-
initions, notations, and necessary background about the class
of functions of bounded 𝜅Φ-variation in the sense of
Schramm-Korenblum; Section 3 contains the main theorem.
Also in this section we state and prove a Helly-type theorem,
which plays a crucial role in the demonstration of our
Sobolevskij-type result.
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2. Some Function Spaces

The concept of functions of bounded variation has been well
known since C. Jordan gave the complete characterization of
functions of bounded variation as a difference of two increas-
ing functions in 1881.This class of functions exhibits so many
interesting properties that it makes a suitable class of func-
tions in a variety of contexts with wide applications in pure
and applied mathematics [1, 11].

Definition 1. Let 𝑓 : [𝑎, 𝑏] → R be a function. For a given
partition 𝜋 : 𝑎 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑏 of the interval [𝑎, 𝑏],

𝜎 (𝑓, 𝜋) = 𝜎 (𝑓, 𝜋; [𝑎, 𝑏]) :=

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑡
𝑖
) − 𝑓 (𝑡

𝑖−1
)
󵄨󵄨󵄨󵄨 (3)

is called the variation of 𝑓 on [𝑎, 𝑏] with respect to 𝜋.
The (possibly infinite) number,

𝑉 (𝑓; [𝑎, 𝑏]) := sup
𝜋

𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑡
𝑖
) − 𝑓 (𝑡

𝑖−1
)
󵄨󵄨󵄨󵄨 , (4)

where the supremum is taken over all partitions 𝜋 of the
interval [𝑎, 𝑏] is called the total variation of 𝑓 on [𝑎, 𝑏]. If
𝑉(𝑓; [𝑎, 𝑏]) < ∞, we say that 𝑓 has bounded variation. The
collection of all functions of bounded variation on [𝑎, 𝑏] is
denoted by 𝐵𝑉[𝑎, 𝑏].

This notion of a function of bounded variation has been
generalized by several authors. One of these generalized
versions was given by Korenblum in 1975 [12]. He considered
a new kind of variation, called 𝜅-variation, and introduced a
function 𝜅 for distorting the expression |𝑡

𝑗
− 𝑡
𝑗−1

| in the par-
tition itself, rather than the expression |𝑓(𝑡

𝑗
) − 𝑓(𝑡

𝑗−1
)| in the

range. One advantage of this alternative approach is that a
function of bounded 𝜅-variationmay be decomposed into the
difference of two simpler functions called 𝜅-decreasing func-
tions.

Definition 2. A function 𝜅 : [0, 1] → [0, 1] is called a distor-
tion function (𝜅-function) if 𝜅 satisfies the following
properties:

(1) 𝜅 is continuous with 𝜅(0) = 0 and 𝜅(1) = 1;
(2) 𝜅 is concave and increasing;
(3) lim

𝑡→0
+(𝜅(𝑡)/𝑡) = ∞.

Korenblum (see [12]) introduced the definition of
bounded 𝜅-variation as follows.

Definition 3. Let 𝜅 be a distortion function, 𝑓 a real function
𝑓 : [𝑎, 𝑏] → R, and 𝜋 : 𝑎 = 𝑡

0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑛
= 𝑏 a partition

of the interval [𝑎, 𝑏]. Let one consider

𝜅 (𝑓, 𝜋) :=
∑
𝑛

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑡
𝑖
) − 𝑓 (𝑡

𝑖−1
)
󵄨󵄨󵄨󵄨

∑
𝑛

𝑖=1
𝜅 ((𝑡
𝑖
− 𝑡
𝑖−1

) / (𝑏 − 𝑎))
,

𝜅𝑉 (𝑓) = 𝜅𝑉 (𝑓; [𝑎, 𝑏]) := sup
𝜋

𝜅 (𝑓, 𝜋) ,

(5)

where the supremum is taken over all partitions 𝜋 of the
interval [𝑎, 𝑏]. In the case 𝜅𝑉(𝑓; [𝑎, 𝑏]) < ∞ one says that 𝑓
has bounded 𝜅-variation on [𝑎, 𝑏] and one will denote by
𝜅𝐵𝑉[𝑎, 𝑏] the space of functions of bounded 𝜅-variation on
[𝑎, 𝑏].

Schramm in 1985 [13] considered aΦ-sequence as follows.

Definition 4 (Φ-sequence). Let Φ = {𝜙
𝑛
}
𝑛≥1

be a sequence of
increasing convex functions, defined on R

+
= [0,∞) such

that

(1) 𝜙
𝑛
(0) = 0, 𝑛 ≥ 1;

(2) 𝜙
𝑛
(𝑡) > 0 for 𝑡 > 0.

We will say that Φ is a Φ
∗-sequence if 𝜙

𝑛+1
(𝑡) ≤ 𝜙

𝑛
(𝑡) for

all 𝑛 and 𝑡 and a Φ-sequence if in addition ∑
𝑛
𝜙
𝑛
(𝑡) diverges

for 𝑡 > 0.

From now on, all sequences considered in this work will
beΦ-sequences. We will consider a nonoverlapping family of
subintervals 𝐼

𝑛
= [𝑡
𝑛−1

, 𝑡
𝑛
] of the interval 𝐼 = [𝑎, 𝑏], (𝑛 =

1, 2, . . .); it means that 𝐼
𝑖
∩ 𝐼
𝑗
either is empty or contains a

single point for 𝑖, 𝑗 = 1, 2, . . ., 𝑖 ̸= 𝑗.

Definition 5. If Φ is a Φ-sequence, one says that a function
𝑓 : [𝑎, 𝑏] → R is of bounded Φ-variation if the Φ-sums
∑
𝑛
𝜙
𝑛
(|𝑓(𝑡
𝑛
) − 𝑓(𝑡

𝑛−1
)|) < ∞ for any nonoverlapping collec-

tion {𝐼
𝑛
} of the interval 𝐼.

Definition 6 (condition 𝛿
2
generalized for small values 𝐺

𝛿
2

).
The Φ-sequence Φ = {𝜙

𝑛
}
𝑛≥1

satisfies condition 𝐺
𝛿
2

if and
only if there exist 𝑡

0
> 0 and𝑀(𝑡

0
) > 0 such that

𝑚

∑

𝑛=1

𝜙
𝑛
(2𝑡) ≤ 𝑀(𝑡

0
)

𝑚

∑

𝑛=1

𝜙
𝑛
(𝑡) 0 ≤ 𝑡 ≤ 𝑡

0
, 𝑚 ≥ 1. (6)

We may define, for 𝑓 of bounded Φ-variation, the total
Φ-variation of 𝑓 by

𝑉
Φ
(𝑓) = 𝑉

Φ
(𝑓; [𝑎, 𝑏]) := sup∑

𝑛

𝜙
𝑛
(
󵄨󵄨󵄨󵄨𝑓 (𝑡
𝑛
) − 𝑓 (𝑡

𝑛−1
)
󵄨󵄨󵄨󵄨) ,

(7)

where the supremum is taken over all {𝐼
𝑛
}, 𝐼
𝑛

⊆ [𝑎, 𝑏].
Hernández and Rivas (see [14]) showed that ifΦ = {𝜙

𝑛
}
𝑛≥1

is
aΦ-sequence andΦ satisfies condition𝐺

𝛿
2

, then𝑉
Φ
[𝑎, 𝑏] is a

linear space. We denote by Φ𝐵𝑉[𝑎, 𝑏] the collection of all
functions 𝑓 such that 𝑐𝑓 is of bounded Φ-variation for some
𝑐 > 0.

S. K. Kim and J. Kim in 1986 [15] considered a bounded
𝜅Φ-variation as follows.

Definition 7. Let 𝜅 : [0, 1] → [0, 1] be a distortion function
and Φ = {𝜙

𝑛
}
𝑛≥1

a Φ-sequence and let 𝑓 : [𝑎, 𝑏] → R. One
defines

𝜅𝜎
𝜙
(𝑓, 𝐼
𝑛
) :=

∑
𝑚

𝑛=1
𝜙
𝑛
(
󵄨󵄨󵄨󵄨𝑓 (𝑡
𝑛
) − 𝑓 (𝑡

𝑛−1
)
󵄨󵄨󵄨󵄨)

∑
𝑚

𝑛=1
𝜅 ((𝑡
𝑛
− 𝑡
𝑛−1

) / (𝑏 − 𝑎))
,

𝜅𝑉
Φ
(𝑓) = 𝜅𝑉

Φ
(𝑓; [𝑎, 𝑏]) := sup 𝜅𝜎

𝜙
(𝑓, 𝐼
𝑛
) .

(8)
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If 𝜅𝑉
Φ
(𝑓; [𝑎, 𝑏]) < ∞, we say that 𝑓 has bounded 𝜅Φ-

variation in the interval [𝑎, 𝑏] and this number denotes the
𝜅Φ-variation of 𝑓 in Schramm-Korenblum’s sense in [𝑎, 𝑏].
The class of functions that has bounded 𝜅Φ-variation in the
interval [𝑎, 𝑏] is denoted by 𝜅𝑉

Φ
[𝑎, 𝑏]. The vector space gen-

erated by this class is denoted by 𝜅Φ𝐵𝑉[𝑎, 𝑏].
Let us consider 𝜅𝑉

Φ
(𝑐𝑓) as a function of variable 𝑐. IfΦ =

{𝜙
𝑛
}
𝑛≥1

is a sequence of increasing convex functions, 𝜙
𝑛
(0) =

0, 𝑡 ≥ 0, we have 𝜙
𝑛
(𝑐𝑡) ≤ 𝑐𝜙

𝑛
(𝑡), 0 ≤ 𝑐 ≤ 1. Let 𝜅𝑉

Φ
(𝑓) < ∞

and let 0 < 𝑐 ≤ 1. Then 𝜅𝑉
Φ
(𝑐𝑓) ≤ 𝑐𝜅𝑉

Φ
(𝑓) → 0 as 𝑐 → 0.

With this in mind, we define a norm in the space 𝜅Φ𝐵𝑉
0
=

{𝑓 ∈ 𝜅Φ𝐵𝑉 | 𝑓(𝑎) = 0} as follows:

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 = inf {𝑐 > 0 | 𝜅𝑉

Φ
(
𝑓

𝑐
) ≤ 1} . (9)

Wewill consider the following norm in the space 𝜅Φ𝐵𝑉[𝑎, 𝑏]:
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝜅Φ =
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∞ + 𝜇
𝜙
(𝑓) (𝑓 ∈ 𝜅Φ𝐵𝑉 [𝑎, 𝑏]) , (10)

where 𝜇
𝜙
(𝑓) = inf{𝑐 > 0 | 𝜅𝑉

Φ
(𝑓/𝑐) ≤ 1} and ‖ ⋅ ‖

∞
denotes

the supremum norm.
By the above definition, we have the following.

Theorem 8 (see [16]). Let {𝑓
𝑛
} ⊂ 𝜅Φ𝐵𝑉

0
be a sequence such

that 𝑓
𝑛
converges to 𝑓 almost everywhere with 𝑓 ∈ 𝜅Φ𝐵𝑉

0
.

Then
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 ≤ lim
𝑛→∞

inf 󵄩󵄩󵄩󵄩𝑓𝑛
󵄩󵄩󵄩󵄩 ; (11)

that is, the Luxemburg norm is lower semicontinuous on
𝜅Φ𝐵𝑉

0
.

Theorem 9 (see [15]). (𝜅Φ𝐵𝑉
0
, ‖ ⋅ ‖) is a Banach space.

Definition 10 (see [17]). Let Φ = {𝜙
𝑛
}
𝑛≥1

be a Φ-sequence. A
real function 𝑓 : [𝑎, 𝑏] → R is said to be 𝜅Φ-decreasing on
[𝑎, 𝑏] if there exists a positive constant 𝑐 such that for each
subinterval 𝐼 of [𝑎, 𝑏]

𝜙
𝑛
(
󵄨󵄨󵄨󵄨𝑓 (𝐼)

󵄨󵄨󵄨󵄨) ≤ 𝑐𝜅 (
|𝐼|

𝑏 − 𝑎
) . (12)

Lemma 11 (see [16]). For any 𝜅-function and anyΦ-sequence
Φ = {𝜙

𝑛
}
𝑛≥1

, one has the following:

(1) 𝜅𝑉
Φ
(𝑓/‖𝑓‖

𝜅Φ
) ≤ 1, 𝑓 ∈ 𝜅Φ𝐵𝑉,

(2) if ‖𝑓‖
𝜅Φ

≤ 1, then 𝜅𝑉
Φ
(𝑓) ≤ ‖𝑓‖

𝜅Φ
, 𝑓 ∈ 𝜅Φ𝐵𝑉.

Lemma 12 (see [18]). Let 𝜅 : [0, 1] → [0, 1] be a distortion
function and Φ = {𝜙

𝑛
}
𝑛≥1

a Φ-sequence and let 𝑓 ∈

𝜅Φ𝐵𝑉[𝑎, 𝑏] and 𝑐 > 0. Then 𝜇
𝜙
(𝑓) < 𝑐 if and only if

𝜅𝑉
Φ
(𝑓/𝑐) < 1.

Theorem 13 (see [15] or [17]). If a function𝑓 is 𝜅Φ-decreasing
on [𝑎, 𝑏], then one has the following properties.

(1) 𝑓 is of bounded 𝜅Φ-variation.
(2) 𝑓(𝑥

+

0
) and 𝑓(𝑦

−

0
) exist for any 𝑎 ≤ 𝑥

0
< 𝑏 and 𝑎 <

𝑦
0
≤ 𝑏.

(3) 𝑓 is continuous on [𝑎, 𝑏].

Theorem 14 (see [18]). Let 𝜅 : [0, 1] → [0, 1] be a distortion
function, letΦ = {𝜙

𝑛
}
𝑛≥1

be aΦ-sequence, let ℎ : R → R, and
let 𝐻 be the composition operator associated with ℎ. 𝐻 maps
the space Lip [0, 1] into the space 𝜅Φ𝐵𝑉[0, 1] or 𝜅𝐵𝑉[0, 1] if
and only if ℎ is locally Lipschitz. Furthermore, the operator𝐻 is
bounded.

The following lemma is basic for our main result.

Lemma 15 (invariance principle). Let ℎ : R → R be a
function. Then the composition operator (1) maps the space
𝜅Φ𝐵𝑉[𝑎, 𝑏] into itself if and only if it maps, for any other choice
of 𝑐 < 𝑑, the space 𝜅Φ𝐵𝑉[𝑐, 𝑑] into itself.

Proof. Suppose that the composition operator defined by
𝐻𝑢 = ℎ∘𝑢maps the space 𝜅Φ𝐵𝑉[𝑎, 𝑏] into itself.The function
𝛼 : [𝑐, 𝑑] → [𝑎, 𝑏] defined by

𝛼 (𝑡) :=
𝑏 − 𝑎

𝑑 − 𝑐
(𝑡 − 𝑐) + 𝑎 (𝑐 ≤ 𝑡 ≤ 𝑑) (13)

is a strictly increasing homeomorphism between [𝑐, 𝑑] and
[𝑎, 𝑏] with inverse

𝛼
−1

(𝑠) =
𝑑 − 𝑐

𝑏 − 𝑎
(𝑠 − 𝑎) + 𝑐 (𝑎 ≤ 𝑠 ≤ 𝑏) (14)

which satisfies 𝛼(𝑐) = 𝑎 and 𝛼(𝑑) = 𝑏. Let P([𝑎, 𝑏]) denote
the family of all partitions of [𝑎, 𝑏]. Thus, 𝛼 : P([𝑐, 𝑑]) →

P([𝑎, 𝑏]) with

𝛼 ({𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑚−1
, 𝑡
𝑚
})

= {𝛼 (𝑡
0
) , 𝛼 (𝑡

1
) , . . . , 𝛼 (𝑡

𝑚−1
) , 𝛼 (𝑡

𝑚
)}

(15)

defines a one-to-one correspondence between all partitions
of [𝑐, 𝑑] and all partitions of [𝑎, 𝑏].

Given V ∈ 𝜅Φ𝐵𝑉[𝑐, 𝑑], the function 𝑢 := V ∘ 𝛼
−1 belongs

to 𝜅Φ𝐵𝑉[𝑎, 𝑏], by the definition of functions of bounded 𝜅Φ-
variation, and so 𝐻𝑢 = ℎ ∘ V ∘ 𝛼

−1 belongs to 𝜅Φ𝐵𝑉[𝑎, 𝑏], by
assumption. But for 𝑃 ∈ P([𝑐, 𝑑]) and 𝛼(𝑃) ∈ P([𝑎, 𝑏]) as
above we have

𝜅𝜎
𝜙
(ℎ ∘ 𝑢, 𝛼 (𝑃))

= 𝜅𝜎
𝜙
(ℎ ∘ V ∘ 𝛼

−1
, 𝑃)

=
∑
𝑚

𝑗=1
𝜙
𝑗
(
󵄨󵄨󵄨󵄨󵄨
ℎ (𝑢 (𝛼 (𝑡

𝑗
))) − ℎ (𝑢 (𝛼 (𝑡

𝑗−1
)))

󵄨󵄨󵄨󵄨󵄨
)

∑
𝑚

𝑗=1
𝑐𝜅 (

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝛼 (𝑡

𝑗
)) − 𝑢 (𝛼 (𝑡

𝑗−1
))

󵄨󵄨󵄨󵄨󵄨
/ (𝑏 − 𝑎))

=
∑
𝑚

𝑗=1
𝜙
𝑗
(
󵄨󵄨󵄨󵄨󵄨
ℎ (V (𝑡

𝑗
)) − ℎ (V (𝑡

𝑗−1
))

󵄨󵄨󵄨󵄨󵄨
)

∑
𝑚

𝑗=1
𝑐𝜅 (

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
/ (𝑑 − 𝑐))

= 𝜅𝜎
𝜙
(ℎ ∘ V, 𝑃) .

(16)

Passing to the supremum with respect to 𝑃 ∈ P([𝑐, 𝑑])

and 𝛼(𝑃) ∈ P([𝑎, 𝑏]) we conclude that 𝜅𝑉
Φ
(ℎ ∘ V; [𝑐, 𝑑]) =

𝜅𝑉
Φ
(ℎ ∘ 𝑢; [𝑎, 𝑏]).



4 Journal of Function Spaces

3. Main Results

In the proof of the main result of this paper, we will employ a
compactness result, for instance, Helly’s selection principle or
second Helly’s theorem. Helly’s theorem for functions of
generalized variation has been of some importance for a long
time. Helly’s selection principle has been the subject of inten-
sive research, and many applications, generalizations, and
improvements of them can be found in the literature (see, e.g.,
[19–21] and the references therein).

In this part wewill state and prove ourmain results. In the
proof of ourmain result wemake use of aHelly-type selection
theorem for a 𝜅Φ-decreasing function.

In the paper [22] Cyphert and Kelingos proved the same
result for an arbitrary infinite family of functions defined on
[0, 1] which is both uniformly bounded and uniformly 𝜅-
decreasing.

Theorem 16 (Helly-type selection theorem). An arbitrary
infinite family of functions defined on [0, 1] which is both uni-
formly bounded and uniformly 𝜅Φ-decreasing contains a sub-
sequence which converges at every point of [0, 1] to a 𝜅Φ-
decreasing function.

Proof. Let us denote byF an arbitrary infinite family of func-
tions defined on [0, 1], which is both uniformly bounded and
uniformly 𝜅Φ-decreasing. Then, there exists a constant 𝑐 > 0

such that for every 𝑓 ∈ F and every pair 0 ≤ 𝑥 < 𝑦 ≤ 1

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑐, (17)

𝜙
𝑛
(𝑓 (𝑦) − 𝑓 (𝑥)) ≤ 𝑐𝜅 (𝑦 − 𝑥) . (18)

Using (17) we can, by means of the standard Cantor diago-
nalization technique, find a sequence of functions 𝑓

𝑘
in F

which converges pointwise at each rational point of [0, 1], to a
function 𝑔. Since each 𝑓

𝑘
satisfies (18), so does 𝑔, for all

rational numbers 𝑥, 𝑦 ∈ [0, 1].
Define 𝑔 at irrational points 𝑥 by

𝑔 (𝑥) = lim
𝑦→𝑥

−

𝑔 (𝑦) , 𝑦 rational. (19)

The existence of this limit can be seen as follows:

𝐴 = lim inf
Q∋𝑦→𝑥−

𝑔 (𝑦) ≤ lim sup
Q∋𝑦→𝑥−

𝑔 (𝑦) = 𝐵 as 𝑦 → 𝑥
−
,

𝑦 rational.
(20)

Let {𝑦
𝑖
} and {𝑦

󸀠

𝑖
} be two sequences of rational points

converging to 𝑥, arranged so that 𝑦
1
< 𝑦
󸀠

1
< 𝑦
2
< 𝑦
󸀠

2
< ⋅ ⋅ ⋅ < 𝑥

and such that 𝑔(𝑦
𝑖
) → 𝐴 and 𝑔(𝑦

󸀠

𝑖
) → 𝐵 as 𝑖 → ∞. Then

𝜙
𝑛
(𝑔 (𝑦
󸀠

𝑖
) − 𝑔 (𝑦

𝑖
)) ≤ 𝑐𝜅 (𝑦

󸀠

𝑖
− 𝑦
𝑖
) ,

𝜙
𝑛
(𝑔 (𝑦
󸀠

𝑖
) − 𝑔 (𝑦

𝑖
)) = 𝜙

𝑛
( lim
𝑦→𝑦

󸀠

𝑖

𝑔 (𝑦) − lim
𝑦→𝑦

−

𝑖

𝑔 (𝑦))

= 𝜙
𝑛
(𝐵 − 𝐴) ≤ 0.

(21)

Then 𝜙
𝑛
(𝐵 − 𝐴) = 0, and hence 𝐴 = 𝐵.

From (19) we obtain, by taking limits of rational points in
inequality (18), that 𝑔 satisfies (18) for all pairs of positive real
numbers; that is, 𝑔 is 𝜅Φ-decreasing with constant 𝑐 on [0, 1].
By Theorem 13 𝑔 is of bounded 𝜅Φ-variation and 𝑔 is con-
tinuous. Hence, by another Cantor diagonalization process, a
convergent subsequence of the functions 𝑓

𝑘
can be found.

Now, let us consider 0 < 𝑡 < 1 and 𝜀 > 0. Then, we fix two
rational numbers 𝑦

1
and 𝑦

2
with 𝑦

1
< 𝑡 < 𝑦

2
such that

󵄨󵄨󵄨󵄨𝑔 (𝑦
𝑖
) − 𝑔 (𝑡)

󵄨󵄨󵄨󵄨 <
𝜀

3
, 𝑖 = 1, 2,

𝑐𝜅 (
󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑡

󵄨󵄨󵄨󵄨) <
𝜀

3
, 𝑖 = 1, 2.

(22)

Since the sequence {𝑓
𝑘
}, 𝑘 = 1, 2, . . ., converges to 𝑔 in the

rational numbers, there exists𝑁 > 0 such that

󵄨󵄨󵄨󵄨𝑓𝑘 (𝑦𝑖) − 𝑔 (𝑦
𝑖
)
󵄨󵄨󵄨󵄨 <

𝜀

3
, 𝑖 = 1, 2, 𝑘 ≥ 𝑁. (23)

Now, from (22) and (23) we obtain

𝑔 (𝑡) − 𝑓
𝑘
(𝑡) = (𝑓

𝑘
(𝑦
2
) − 𝑓
𝑘
(𝑡)) + (𝑔 (𝑡) − 𝑔 (𝑦

2
))

+ (𝑔 (𝑦
2
) − 𝑓
𝑘
(𝑦
2
))

≤ 𝑐𝜅 (
󵄨󵄨󵄨󵄨𝑦2 − 𝑡

󵄨󵄨󵄨󵄨) + (𝑔 (𝑡) − 𝑔 (𝑦
2
))

+ (𝑔 (𝑦
2
) − 𝑓
𝑘
(𝑦
2
))

<
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀.

(24)

Similarly,

𝑓
𝑘
(𝑡) − 𝑔 (𝑡) = (𝑓

𝑘
(𝑡) − 𝑓

𝑘
(𝑦
1
)) + (𝑔 (𝑦

1
) − 𝑔 (𝑡))

+ (𝑓
𝑘
(𝑦
1
) − 𝑔 (𝑦

1
))

≤ 𝑐𝜅 (
󵄨󵄨󵄨󵄨𝑡 − 𝑦
1

󵄨󵄨󵄨󵄨)

+ (𝑔 (𝑦
1
) − 𝑔 (𝑡)) + (𝑓

𝑘
(𝑦
1
) − 𝑔 (𝑦

1
))

<
𝜀

3
+

𝜀

3
+

𝜀

3
= 𝜀.

(25)

Then, |𝑓
𝑘
(𝑡) − 𝑔(𝑡)| < 𝜀.

We are now in a position to formulate and prove ourmain
result.

Theorem 17. Let us suppose that the composition operator 𝐻
associatedwith ℎmaps the space 𝜅Φ𝐵𝑉[𝑎, 𝑏] into itself.Then𝐻

is locally Lipschitz if and only if ℎ󸀠 exists and is locally Lipschitz
in R.

Proof. First let us assume that ℎ
󸀠 is locally Lipschitz in R.

Given 𝑢 ∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏], for 𝑟 > 0, we denote by𝐾
1
(𝑟) themin-

imal Lipschitz constant of ℎ󸀠 and by 𝐾
2
(𝑟) the supremum of

|ℎ
󸀠
| on the bounded set

𝐵
𝑟
:= ⋃

𝑎≤𝑡≤𝑏

{𝑢 (𝑡) : ‖𝑢‖
𝜅Φ

≤ 𝑟} ⊂ R. (26)
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The finiteness of𝐾
2
(𝑟) implies that𝐻 satisfies a local Lip-

schitz condition with respect to the norm ‖ ⋅ ‖
∞
, so we only

have to prove a local Lipschitz condition for𝐻with respect to
the 𝜅Φ-variation norm. We will prove this by applying twice
the mean value theorem.

In fact, let us fix𝑢, V ∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏]with𝑢 ̸= V and ‖𝑢‖
𝜅Φ

≤

𝑟, ‖V‖
𝜅Φ

≤ 𝑟. Given a partition 𝑃 = {𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑚
} of [𝑎, 𝑏], we

split the index set {1, . . . , 𝑚} into a union 𝐼 ∪ 𝐽 of disjoint sets
𝐼 and 𝐽 by defining the following:

𝑗 ∈ 𝐼 if
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗−1

) − V (𝑡
𝑗−1

)
󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

(27)

and 𝑗 ∈ 𝐽 if
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗−1

) − V (𝑡
𝑗−1

)
󵄨󵄨󵄨󵄨󵄨

>
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
.

(28)

By the classical mean value theorem we find 𝛼
𝑗
between V(𝑡

𝑗
)

and 𝑢(𝑡
𝑗
) such that

𝐻𝑢(𝑡
𝑗
) − 𝐻V (𝑡

𝑗
) = ℎ
󸀠
(𝛼
𝑗
) [𝑢 (𝑡

𝑗
) − V (𝑡

𝑗
)]

(𝑗 = 1, 2, . . . , 𝑚) .

(29)

Now, by definition of 𝐼 we have
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
− 𝛼
𝑗−1

󵄨󵄨󵄨󵄨󵄨
≤ 2

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+ 2

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

(𝑗 ∈ 𝐼) .

(30)

A straightforward calculation shows then that
󵄨󵄨󵄨󵄨󵄨
𝐻𝑢 (𝑡

𝑗
) − 𝐻V (𝑡

𝑗
) − 𝐻𝑢 (𝑡

𝑗−1
) + 𝐻V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(𝛼
𝑗
) [𝑢 (𝑡

𝑗
) − V (𝑡

𝑗
)] − ℎ

󸀠
(𝛼
𝑗−1

) [𝑢 (𝑡
𝑗−1

) − V (𝑡
𝑗−1

)]
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(ℎ
󸀠
(𝛼
𝑗
) − ℎ
󸀠
(𝛼
𝑗−1

)) [𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
)]

+ ℎ
󸀠
(𝛼
𝑗−1

) [𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
) − 𝑢 (𝑡

𝑗−1
) + V (𝑡

𝑗−1
)]
󵄨󵄨󵄨󵄨󵄨

≤ 𝐾
1
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝛼
𝑗
− 𝛼
𝑗−1

󵄨󵄨󵄨󵄨󵄨
‖𝑢 − V‖

∞

+ 𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
) − 𝑢 (𝑡

𝑗−1
) + V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

≤ [2𝐾
1
(𝑟) ‖𝑢 − V‖

∞
+ 𝐾
2
(𝑟)]

× [
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
]

= 𝐾
3
(𝑟) [

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
] .

(31)

Since 𝜙
𝑛
(𝑡
1
) ≤ 𝜙
𝑛
(𝑡
2
) for 𝑡

1
≤ 𝑡
2
, we obtain that

𝜙
𝑛
(
󵄨󵄨󵄨󵄨󵄨
𝐻𝑢 (𝑡

𝑗
) − 𝐻V (𝑡

𝑗
) − 𝐻𝑢 (𝑡

𝑗−1
) + 𝐻V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

≤ 𝜙
𝑛
(𝐾
3
(𝑟) [

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
]) ,

(32)

and dividing by∑𝑚
𝑗=1

𝜅(|𝑡
𝑗
−𝑡
𝑗−1

|/(𝑏−𝑎)) and adding on 𝑗 ∈ 𝐼

we get that

∑

𝑗∈𝐼

(𝜙
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝐻𝑢 (𝑡

𝑗
) − 𝐻V (𝑡

𝑗
) − 𝐻𝑢 (𝑡

𝑗−1
) + 𝐻V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

×(

𝑚

∑

𝑗=1

𝜅(

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨

𝑏 − 𝑎
))

−1

)

≤ ∑

𝑗∈𝐼

(𝜙
𝑗
(𝐾
3
(𝑟) [

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
])

×(

𝑚

∑

𝑗=1

𝜅(

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨

𝑏 − 𝑎
))

−1

)

≤ ∑

𝑗∈𝐼

(
(1/2) 𝜙

𝑗
(2𝐾
3
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

∑
𝑚

𝑗=1
𝜅 (

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨
/ (𝑏 − 𝑎))

+
(1/2) 𝜙

𝑗
(2𝐾
3
(𝑟)

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

∑
𝑚

𝑗=1
𝜅 (

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨
/ (𝑏 − 𝑎))

)

=
1

2
𝜅𝜎
𝜙
(2𝐾
3
(𝑟) 𝑢, 𝑃) +

1

2
𝜅𝜎
𝜙
(2𝐾
3
(𝑟) V, 𝑃)

≤ 𝐾
3
(𝑟) (‖𝑢‖

𝜅Φ
+ ‖V‖
𝜅Φ

) ≤ 𝐾
4
(𝑟) ‖𝑢 − V‖

𝜅Φ
.

(33)

Again, by the mean value theorem, we find 𝛽
𝑗
between

𝑢(𝑡
𝑗
) and 𝑢(𝑡

𝑗−1
) and 𝛾

𝑗
between V(𝑡

𝑗
) and V(𝑡

𝑗−1
) such that

𝐻𝑢(𝑡
𝑗
) − 𝐻𝑢 (𝑡

𝑗−1
) = ℎ
󸀠
(𝛽
𝑗
) [𝑢 (𝑡

𝑗
) − 𝑢 (𝑡

𝑗−1
)]

(𝑗 = 1, 2, . . . , 𝑚) ,

𝐻V (𝑡
𝑗
) − 𝐻V (𝑡

𝑗−1
) = ℎ
󸀠
(𝛾
𝑗
) [V (𝑡

𝑗
) − V (𝑡

𝑗−1
)]

(𝑗 = 1, 2, . . . , 𝑚) .

(34)

By definition of 𝐽 we have

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛾
𝑗

󵄨󵄨󵄨󵄨󵄨
< 2

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
)
󵄨󵄨󵄨󵄨󵄨
+ 2

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗−1

) − V (𝑡
𝑗−1

)
󵄨󵄨󵄨󵄨󵄨
. (35)

A straightforward calculation shows that

󵄨󵄨󵄨󵄨󵄨
𝐻𝑢 (𝑡

𝑗
) − 𝐻V (𝑡

𝑗
) − 𝐻𝑢 (𝑡

𝑗−1
) + 𝐻V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(𝛽
𝑗
) [𝑢 (𝑡

𝑗
) − 𝑢 (𝑡

𝑗−1
)] − ℎ

󸀠
(𝛾
𝑗
) [V (𝑡

𝑗
) − V (𝑡

𝑗−1
)]
󵄨󵄨󵄨󵄨󵄨
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=
󵄨󵄨󵄨󵄨󵄨
(ℎ
󸀠
(𝛽
𝑗
) − ℎ
󸀠
(𝛾
𝑗
)) [𝑢 (𝑡

𝑗
) − 𝑢 (𝑡

𝑗−1
)]

+ℎ
󸀠
(𝛾
𝑗
) [𝑢 (𝑡

𝑗
) − 𝑢 (𝑡

𝑗−1
) − V (𝑡

𝑗
) + V (𝑡

𝑗−1
)]
󵄨󵄨󵄨󵄨󵄨

≤ 𝐾
1
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝛽
𝑗
− 𝛾
𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

+ 𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
) − 𝑢 (𝑡

𝑗−1
) + V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

< 2𝐾
1
(𝑟) [

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − V (𝑡

𝑗
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗−1

) − V (𝑡
𝑗−1

)
󵄨󵄨󵄨󵄨󵄨
]

×
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

+ 𝐾
2
(𝑟) [

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
]

≤ 4𝐾
1
(𝑟) ‖𝑢 − V‖

∞

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

+ 𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

+ 𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

≤ (4𝐾
1
(𝑟) ‖𝑢 − V‖

∞
+ 𝐾
2
(𝑟))

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

+ 𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝐾
5
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+ 𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
.

(36)

Since 𝜙
𝑛
(𝑡
1
) ≤ 𝜙
𝑛
(𝑡
2
) for 𝑡

1
≤ 𝑡
2
, we obtain that

𝜙
𝑛
(
󵄨󵄨󵄨󵄨󵄨
𝐻𝑢 (𝑡

𝑗
) − 𝐻V (𝑡

𝑗
) − 𝐻𝑢 (𝑡

𝑗−1
) + 𝐻V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

≤ 𝜙
𝑛
(𝐾
5
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
+ 𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
) ,

(37)

and dividing by∑𝑚
𝑗=1

𝜅(|𝑡
𝑗
−𝑡
𝑗−1

|/(𝑏−𝑎)) and adding on 𝑗 ∈ 𝐽

we get that

∑

𝑗∈𝐽

(
𝜙
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝐻𝑢 (𝑡

𝑗
) − 𝐻V (𝑡

𝑗
) − 𝐻𝑢 (𝑡

𝑗−1
) + 𝐻V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

∑
𝑚

𝑗=1
𝜅 (

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨
/ (𝑏 − 𝑎))

)

≤ ∑

𝑗∈𝐽

(𝜙
𝑗
(𝐾
5
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨

+𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

×(

𝑚

∑

𝑗=1

𝜅(

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨

𝑏 − 𝑎
))

−1

)

≤ ∑

𝑗∈𝐽

(
(1/2) 𝜙

𝑗
(2𝐾
5
(𝑟)

󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑗
) − 𝑢 (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

∑
𝑚

𝑗=1
𝜅 (

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨
/ (𝑏 − 𝑎))

+
(1/2) 𝜙

𝑗
(2𝐾
2
(𝑟)

󵄨󵄨󵄨󵄨󵄨
V (𝑡
𝑗
) − V (𝑡

𝑗−1
)
󵄨󵄨󵄨󵄨󵄨
)

∑
𝑚

𝑗=1
𝜅 (

󵄨󵄨󵄨󵄨󵄨
𝑡
𝑗
− 𝑡
𝑗−1

󵄨󵄨󵄨󵄨󵄨
/ (𝑏 − 𝑎))

)

=
1

2
𝜅𝜎
𝜙
(2𝐾
5
(𝑟) 𝑢, 𝑃) +

1

2
𝜅𝜎
𝜙
(2𝐾
2
(𝑟) V, 𝑃)

≤ 𝐾
6
(𝑟) (‖𝑢‖

𝜅Φ
+ ‖V‖
𝜅Φ

)

≤ 𝐾
7
(𝑟) ‖𝑢 − V‖

𝜅Φ
.

(38)

Summing up both partial sums and observing that 𝐾
4
(𝑟)

and𝐾
7
(𝑟) do not depend on the partition 𝑃 we conclude that

𝜅𝑉
Φ
(

𝐻𝑢 − 𝐻V
(𝐾
4
(𝑟) + 𝐾

7
(𝑟)) ‖𝑢 − V‖

𝜅Φ

) ≤ 1 (39)

which proves the assertion.
Conversely, suppose that𝐻 satisfies a Lipschitz condition.

By assumption, the constant

𝐾 (𝑟) := sup{
‖𝐻𝑢 − 𝐻V‖

𝜅Φ

‖𝑢 − V‖
𝜅Φ

: 𝑢, V ∈ 𝜅Φ𝐵𝑉 [𝑎, 𝑏] ,

‖𝑢‖
𝜅Φ

≤ 𝑟, ‖V‖
𝜅Φ

≤ 𝑟, 𝑢 ̸= V}
(40)

is finite for each 𝑟 > 0. Considering, in particular, both func-
tions 𝑢 and V in (40) constant, we see that

|ℎ (𝑢) − ℎ (V)| ≤ 𝐾 (𝑟) |𝑢 − V| (𝑢, V ∈ R, |𝑢| ≤ 𝑟, |V| ≤ 𝑟) .

(41)

This shows that ℎ is locally Lipschitz, and so the derivative
ℎ
󸀠 exists almost everywhere in R. It remains to prove that ℎ󸀠

exists everywhere in R and is locally Lipschitz. For the proof
of the first claim we show that ℎ󸀠 exists in any closed interval
𝐼 = [𝑎, 𝑏].

Given 𝑟 > 0, we consider 𝑧 ∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏] with ‖𝑧‖
𝜅Φ

≤

𝑟/2. Let {𝛼
𝑛
}
∞

𝑛=1
be a decreasing sequence of positive real

numbers converging to 0; without loss of generality, we may
assume that 𝛼

𝑛
≤ 𝑟/2 for all 𝑛 ∈ N. We define a sequence of

functions ℎ
𝛼
𝑛
,𝑧
: [𝑎, 𝑏] → R by

ℎ
𝛼
𝑛
,𝑧
(𝑡) =

ℎ (𝑧 (𝑡) + 𝛼
𝑛
) − ℎ (𝑧 (𝑡))

𝛼
𝑛

(𝑡 ∈ [𝑎, 𝑏]) . (42)

Since the composition operator 𝐻 associated with ℎ acts
in the space 𝜅Φ𝐵𝑉[𝑎, 𝑏], by assumption, the functions ℎ

𝛼
𝑛
,𝑧

given by (42) belong to 𝜅Φ𝐵𝑉[𝑎, 𝑏].
Now, we show that the sequence {ℎ

𝛼
𝑛
,𝑧
}
∞

𝑛=1
has uniformly

bounded 𝜅Φ-variation for all 𝑧 ∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏] with ‖𝑧‖
𝜅Φ

≤

𝑟/2. In fact, let𝜋 = {𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑚
} be a partition of the interval

[𝑎, 𝑏]. For each 𝑛 ∈ N we define functions 𝑢
𝑛
and V by

𝑢
𝑛
(𝑡) = 𝑧 (𝑡) + 𝛼

𝑛
, V (𝑡) = 𝑧 (𝑡) (𝑡 ∈ [𝑎, 𝑏]) . (43)

Then ‖𝑢
𝑛
‖
𝜅Φ

≤ 𝑟 and ‖V‖
𝜅Φ

≤ 𝑟. Furthermore, from
Lemma 11, (42), and (43), we obtain the estimates
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∑
𝑚

𝑗=1
𝜙
𝑗
(
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑛
[ℎ
𝛼
𝑛
,𝑧
(𝑡
𝑗
) − ℎ
𝛼
𝑛
,𝑧
(𝑡
𝑗−1

)]
󵄨󵄨󵄨󵄨󵄨
/
󵄩󵄩󵄩󵄩𝐻𝑢
𝑛
− 𝐻V󵄩󵄩󵄩󵄩𝜅Φ)

∑
𝑚

𝑗=1
𝜅 (𝑏 − 𝑎)

=
∑
𝑚

𝑗=1
𝜙
𝑗
(
󵄨󵄨󵄨󵄨󵄨
ℎ (𝑧 (𝑡

𝑗
) + 𝛼
𝑛
) − ℎ (𝑧 (𝑡

𝑗
)) − ℎ (𝑧 (𝑡

𝑗−1
) + 𝛼
𝑛
) + ℎ (𝑧 (𝑡

𝑗−1
))

󵄨󵄨󵄨󵄨󵄨
/
󵄩󵄩󵄩󵄩𝐻𝑢
𝑛
− 𝐻V󵄩󵄩󵄩󵄩𝜅Φ)

∑
𝑚

𝑗=1
𝜅 (𝑏 − 𝑎)

=
∑
𝑚

𝑗=1
𝜙
𝑗
(
󵄨󵄨󵄨󵄨󵄨
ℎ (𝑢
𝑛
(𝑡
𝑗
)) − ℎ (V (𝑡

𝑗
)) − ℎ (𝑢

𝑛
(𝑡
𝑗−1

)) + ℎ (V (𝑡
𝑗−1

))
󵄨󵄨󵄨󵄨󵄨
/
󵄩󵄩󵄩󵄩𝐻𝑢
𝑛
− 𝐻V󵄩󵄩󵄩󵄩𝜅Φ)

∑
𝑚

𝑗=1
𝜅 (𝑏 − 𝑎)

=
∑
𝑚

𝑗=1
𝜙
𝑗
((𝐻𝑢
𝑛
− 𝐻V) /󵄩󵄩󵄩󵄩𝐻𝑢

𝑛
− 𝐻V󵄩󵄩󵄩󵄩𝜅Φ)

∑
𝑚

𝑗=1
𝜅 (𝑏 − 𝑎)

≤ 𝜅𝑉
Φ
(

𝐻𝑢
𝑛
− 𝐻V

󵄩󵄩󵄩󵄩𝐻𝑢
𝑛
− 𝐻V󵄩󵄩󵄩󵄩𝜅Φ

; [𝑎, 𝑏]) ≤ 1.

(44)

Since the partition 𝜋 = {𝑡
0
, 𝑡
1
, . . . , 𝑡

𝑚
} was arbitrary, the

inequality

𝜅𝑉
Φ
(

𝛼
𝑛
ℎ
𝛼
𝑛
,𝑧

󵄩󵄩󵄩󵄩𝐻𝑢
𝑛
− 𝐻V󵄩󵄩󵄩󵄩𝜅Φ

; [𝑎, 𝑏]) ≤ 1 (45)

holds for every 𝑛 ∈ N and each 𝑧 ∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏] with ‖𝑧‖
𝜅Φ

≤

𝑟/2. From Lemma 11, the definition of the function ℎ
𝛼
𝑛
,𝑧
in

(42), and the definition of the functions 𝑢
𝑛
and V in (43), we

further get
󵄩󵄩󵄩󵄩󵄩
𝛼
𝑛
ℎ
𝛼
𝑛
,𝑧

󵄩󵄩󵄩󵄩󵄩𝜅Φ
=

󵄩󵄩󵄩󵄩ℎ (𝑧 + 𝛼
𝑛
) − ℎ (𝑧)

󵄩󵄩󵄩󵄩𝜅Φ

=
󵄩󵄩󵄩󵄩ℎ (𝑢
𝑛
) − ℎ (V)󵄩󵄩󵄩󵄩𝜅Φ

≤ 𝐾 (𝑟)
󵄩󵄩󵄩󵄩𝑢𝑛 − V󵄩󵄩󵄩󵄩𝜅Φ = 𝐾 (𝑟) 𝛼

𝑛

(46)

and hence ‖ℎ
𝛼
𝑛
,𝑧
‖
𝜅Φ

≤ 𝐾(𝑟). By Lemma 11, we conclude that

𝜅𝑉
Φ
(ℎ
𝛼
𝑛
,𝑧
) ≤ 𝐾 (𝑟) , (47)

which shows that the sequence {ℎ
𝛼
𝑛,𝑧

}
∞

𝑛=1
satisfies the hypothe-

ses of Theorem 16.
Theorem 16 ensures the existence of a pointwise conver-

gent subsequence of {ℎ
𝛼
𝑛
,𝑧
}
∞

𝑛=1
; without loss of generality we

assume that the whole sequence {ℎ
𝛼
𝑛
,𝑧
}
∞

𝑛=1
converges point-

wise on [𝑎, 𝑏] to some function 𝑓 ∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏].
Now we define 𝑧(𝑡) := 𝜆𝑡, where 𝜆 > 0 is so small that

‖𝑧‖
𝜅Φ

≤ 𝑟/2. By (43) we see that

𝑓 (𝑡) = lim
𝑛→∞

ℎ (𝑧 (𝑡) + 𝛼
𝑛
) − ℎ (𝑧 (𝑡))

𝛼
𝑛

= lim
𝑛→∞

ℎ (𝜆𝑡 + 𝛼
𝑛
) − ℎ (𝜆𝑡)

𝛼
𝑛

= 𝜆ℎ
󸀠

(𝜆𝑡)

(48)

for almost all 𝑡 ∈ [𝑎, 𝑏]. Since the primitive of 𝑓 and the func-
tion 𝑡 󳨃→ ℎ(𝜆𝑡) are both absolutely continuous and have the
same derivative on [𝑎, 𝑏], we conclude that they differ only by

some constant on [𝑎, 𝑏], and so ℎ
󸀠 exists everywhere on [𝑎, 𝑏].

From the invariance principle (Lemma 15) we deduce that the
derivative ℎ󸀠 of ℎ exists on any interval and so everywhere in
R.

It remains to prove that ℎ󸀠 satisfies a local Lipschitz condi-
tion. Denoting by𝐹 the composition operator associatedwith
the function 𝑓 from (48), we claim that, for 𝑧 ∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏]

with ‖𝑧‖
𝜅Φ

≤ 𝑟/2, we have

‖𝐹𝑧‖
𝜅Φ

≤ 𝐾 (𝑟) , (49)

where 𝐾(𝑟) is the Lipschitz constant from (40). In fact, we
conclude that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝜅Φ ≤ lim

𝑛→∞

inf 󵄩󵄩󵄩󵄩ℎ𝑛
󵄩󵄩󵄩󵄩𝜅Φ, (50)

whenever the sequence {ℎ
𝑛
}
∞

𝑛=1
of functions ℎ

𝑛
∈ 𝜅Φ𝐵𝑉[𝑎, 𝑏]

converges pointwise on [𝑎, 𝑏] to a function𝑓. Combining this
with (47) and the observation that the sequence {ℎ

𝛼
𝑛
,𝑧
(𝑎)}

converges as 𝑛 → ∞, we obtain (49). We conclude that the
composition operator 𝐹 maps the space 𝜅Φ𝐵𝑉[𝑎, 𝑏] into
itself, and so the corresponding function𝑓 is locally Lipschitz
on R. By (48), the same is true for the function ℎ

󸀠.
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We introduce a new space 𝑄
𝐾
(𝜕D) of Lebesgue measurable functions on the unit circle connecting closely with the Sobolev space.

We obtain a necessary and sufficient condition on 𝐾 such that 𝑄
𝐾
(𝜕D) = BMO(𝜕D), as well as a general criterion on weight

functions 𝐾
1
and 𝐾

2
, 𝐾

1
≤ 𝐾

2
, such that 𝑄

𝐾1
(𝜕D) ⫋ 𝑄

𝐾2
(𝜕D). We also prove that a measurable function belongs to 𝑄

𝐾
(𝜕D) if

and only if it is Möbius bounded in the Sobolev space 𝐿2

𝐾
(𝜕D). Finally, we obtain a dyadic characterization of functions in 𝑄

𝐾
(𝜕D)

spaces in terms of dyadic arcs on the unit circle.

1. Introduction

In recent years a new class of Möbius invariant function
spaces, called 𝑄 spaces, has attracted a lot of attention. These
spaces were originally defined in [1] as spaces of analytic
functions in the unit disc D in the complex plane C. Later
on, some further generalizations such as 𝐹(𝑝, 𝑞, 𝑠) and 𝑄

𝐾

appeared; see [2, 3], for example. Let 𝜕D be the boundary
of D. For 𝑝 ∈ (−∞,∞), Xiao studied the space 𝑄

𝑝
(𝜕D) in

paper [4], consisting of all Lebesgue measurable functions
𝑓 : 𝜕D → C with
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑄
𝑝
(𝜕D)

= sup
𝐼⊂𝜕D

(
1

|𝐼|
𝑝
∬

𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2−𝑝
|𝑑𝑢| |𝑑V|)

1/2

< ∞,

(1)

where the supremum is taken over all subarcs 𝐼 ⊂ 𝜕D and |𝐼| is
the arc length of 𝐼. A series of results of𝑄

𝑝
(𝜕D) can be found

in [4–6]. Note that if 𝑝 = 2, then 𝑄
𝑝
(𝜕D) coincides with

BMO(𝜕D), the space of measurable functions of bounded
mean oscillation on 𝜕D introduced by John and Nirenberg
in [7]. For any given arc 𝐼 ⊂ 𝜕D and 𝐿2

(𝜕D) function 𝑓, the
square mean oscillation of 𝑓 on 𝐼 is defined by

Φ
𝑓 (𝐼) =

1

|𝐼|
∫

𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓𝐼

󵄨󵄨󵄨󵄨

2

|𝑑𝑢| , (2)

where

𝑓
𝐼
=
1

|𝐼|
∫

𝐼

𝑓 (𝑢) |𝑑𝑢| . (3)

Then a function 𝑓 ∈ 𝐿
2
(𝜕D) is said to belong to the space

BMO(𝜕D) if and only if ‖𝑓‖2

BMO(𝜕D)
= sup

𝐼⊂𝜕DΦ𝑓
(𝐼) < ∞.

In paper [2], Essén and Wulan studied 𝑄
𝐾

spaces of
holomorphic functions on the unit disc D and developed
their general theory. Later on, Wulan and Zhou gave a
decomposition theoremon𝑄

𝐾
spaces and built a relationship

between𝑄
𝐾
spaces of analytic functions and theMorrey type

space; see [8, 9], for example. Our aim in this paper will be
to extend these ideas to the real 𝑄

𝐾
spaces so that we may

obtain related results on the “real𝑄
𝐾
spaces” by using known

results on real Hardy spaces. Historically, the “real variable”
theory of Hardy spaces has proved to be important in the
development of harmonic analysis. We feel that these spaces
are intrinsically interesting and that understanding them
better will help inform our study of spaces of holomorphic
functions.

As a continuation of [2], Essén et al. described the
boundary values behavior of analytic functions in 𝑄

𝐾
spaces

[10] as follows.
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Theorem EWX. Let 𝐾 : [0,∞) → [0,∞) be nondecreasing
and satisfy the conditions

∫

1

0

𝜑
𝐾 (𝑡)

𝑑𝑡

𝑡
< ∞, (4)

∫

∞

1

𝜑
𝐾 (𝑡)

𝑑𝑡

𝑡2
< ∞, (5)

where

𝜑
𝐾 (𝑠) = sup

0<𝑡≤1

𝐾 (𝑠𝑡)

𝐾 (𝑡)
, 0 < 𝑠 < ∞. (6)

Then 𝑓 ∈ 𝐻2 belongs to the space 𝑄
𝐾
if and only if

sup
𝐼⊂𝜕D

(∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢||𝑑V|)
1/2

< ∞.

(7)

The above theorem suggests the following definition of
𝑄

𝐾
(𝜕D) spaces on the unit circle. Let 𝐾 : [0,∞) → [0,∞)

be a nondecreasing function.The space𝑄
𝐾
(𝜕D) consists of all

Lebesgue measurable functions 𝑓 on 𝜕D for which (7) holds.
If 𝐾(𝑡) = 𝑡

𝑝, 0 ≤ 𝑝 < ∞, 𝑄
𝐾
(𝜕D) coincides with 𝑄

𝑝
(𝜕D).

The space 𝑄
𝐾
(𝜕D) first appeared in [11], where Pau gave that

the Szegö projection from 𝑄
𝐾
(𝜕D) to 𝑄

𝐾
is bounded and

surjective. By [10] and [11] we know that 𝑄
𝐾
= 𝐻

2
∩ 𝑄

𝐾
(𝜕D)

if the weight function𝐾 satisfies conditions (4) and (5).
In addition, 𝑓 ≲ 𝑔 (for two functions 𝑓 and 𝑔) means

that there is a constant 𝐶 > 0 (independent of 𝑓 and 𝑔) such
that 𝑓 ≤ 𝐶𝑔. We say that 𝑓 ≈ 𝑔 (i.e., 𝑓 is comparable with 𝑔)
whenever 𝑓 ≲ 𝑔 ≲ 𝑓. In the whole paper we assume that𝐾 is
doubling; that is, 𝐾(2𝑡) ≈ 𝐾(𝑡).

2. BMO and 𝑄
𝐾
(𝜕D) Spaces

In this section, we investigate the relationship between spaces
𝑄

𝐾
(𝜕D) and BMO(𝜕D) and study how 𝑄

𝐾
(𝜕D) depends on

the weight function𝐾.
The following identity is easily verified:

1

|𝐼|
2
∬

𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V| = 2Φ𝑓 (𝐼) . (8)

Proposition 1. 𝑄
𝐾
(𝜕D) is a subset of 𝐵𝑀𝑂(𝜕D) for all𝐾.

Proof. For 𝐼 ⊂ 𝜕D, it is easy to see that

𝐼 × 𝐼

= {(𝑧, 𝑤) : 0 < |𝑧 − 𝑤| < |𝐼| , 𝑧, 𝑤 ∈ 𝐼}⋃ {(𝑧, 𝑧) , 𝑧 ∈ 𝐼} .

(9)

Note that the area measure of {(𝑧, 𝑧), 𝑧 ∈ 𝐼} is zero. For 𝑧, 𝑤 ∈

𝐼, we have

{(𝑧, 𝑤) : 0 < |𝑧 − 𝑤| < |𝐼| , 𝑧, 𝑤 ∈ 𝐼}

⊂

∞

⋃

𝑘=1

{(𝑧, 𝑤) :
|𝐼|

2𝑘
< |𝑧 − 𝑤| ≤

|𝐼|

2𝑘−1
} .

(10)

Suppose that 𝑓 ∈ 𝑄
𝐾
(𝜕D). For 𝐼 ⊂ 𝜕D and integer 𝑘, denote

by 2−𝑘
𝐼 the subarcs of 𝐼 with arc length 2−𝑘

|𝐼|. Then

∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V|

≤

∞

∑

𝑘=1

∬
|𝐼|/2
𝑘
<|𝑢−V|≤|𝐼|/2

𝑘−1

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V|

≲
1

𝐾 (1)

∞

∑

𝑘=1

(
|𝐼|

2𝑘
)

2

×∬
|𝑢−V|≤|𝐼|/2

𝑘−1

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
2−𝑘

|𝐼|
)

× |𝑑𝑢| |𝑑V|

≲
1

𝐾 (1)

∞

∑

𝑘=1

(
|𝐼|

2𝑘
)

2

× 2
𝑘
∬

𝐼/2
𝑘−1

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(
|𝑢 − V|
21−𝑘

|𝐼|
) |𝑑𝑢| |𝑑V|

≲ |𝐼|
2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

𝑄
𝐾

(𝜕D)
.

(11)

We have 𝑓 ∈ BMO(𝜕D) by (8).

Corollary 2. The space 𝑄
𝐾
(𝜕D) is Banach with the norm of

‖𝑓‖ = |𝑓(0)| + ‖𝑓‖
𝑄
𝐾

(𝜕D)
, where ‖𝑓‖

𝑄
𝐾

(𝜕D)
is the supremum of

(7).

Proof. Let {𝑓
𝑛
} be a Cauchy sequence in 𝑄

𝐾
(𝜕D). By

Proposition 1 we know that 𝑄
𝐾
(𝜕D) is subset of BMO(𝜕D).

Hence {𝑓
𝑛
} is a Cauchy sequence in BMO(𝜕D) as well and

𝑓
𝑛
→ 𝑓 in BMO(𝜕D) for some 𝑓. It follows from Fatou’s

lemma that, for every integer 𝑛 ≥ 1,

󵄩󵄩󵄩󵄩𝑓 − 𝑓𝑛

󵄩󵄩󵄩󵄩𝑄
𝐾

(𝜕D)
≤ lim sup

𝑗 → ∞

󵄩󵄩󵄩󵄩󵄩
𝑓

𝑗
− 𝑓

𝑛

󵄩󵄩󵄩󵄩󵄩𝑄
𝐾

(𝜕D)
. (12)

This gives 𝑓
𝑛
→ 𝑓 in 𝑄

𝐾
(𝜕D).

Theorem 3. 𝑄
𝐾
(𝜕D) = 𝐵𝑀𝑂(𝜕D) if and only if

∫

1

0

𝐾 (𝑠)

𝑠2
𝑑𝑠 < ∞. (13)

Proof. Assume that 𝑓 ∈ BMO(𝜕D) and (13) holds. We use 𝑛𝐼
for the arc in 𝜕D which has the same center as 𝐼 and length
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𝑛|𝐼| for a nonnegative integer 𝑛. For any given 𝐼 ⊂ 𝜕D and
|𝑡| ≤ |𝐼|, then

∫
𝐼

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖(𝜃+𝑡)
) − 𝑓 (𝑒

𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜃

≲ ∫
𝐼

{
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖(𝜃+𝑡)
) − 𝑓

𝐼

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖𝜃
) − 𝑓

𝐼

󵄨󵄨󵄨󵄨󵄨

2

} 𝑑𝜃

≲ |𝐼|
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
+ ∫

𝐼

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖(𝜃+𝑡)
) − 𝑓

3𝐼

󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜃

+ |𝐼|
󵄨󵄨󵄨󵄨𝑓3𝐼

− 𝑓
𝐼

󵄨󵄨󵄨󵄨

2

≲ |𝐼|
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
.

(14)

By the inequality 2𝑥/𝜋 < sin𝑥 < 𝑥 for 0 < 𝑥 < 𝜋/2 and
the above estimate, we have

∬
𝐼

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖𝜃
) − 𝑓 (𝑒

𝑖𝜑
)
󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑒
𝑖𝜃 − 𝑒𝑖𝜑󵄨󵄨󵄨󵄨

2
𝐾(

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖𝜃
− 𝑒

𝑖𝜑󵄨󵄨󵄨󵄨󵄨

|𝐼|
) 𝑑𝜃 𝑑𝜑

≲ ∫
|𝑡|≤|𝐼|

∫
𝐼

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖(𝜃+𝑡)
) − 𝑓 (𝑒

𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑒
𝑖(𝜃+𝑡) − 𝑒𝑖𝜃󵄨󵄨󵄨󵄨

2

× 𝐾(

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖(𝜃+𝑡)
− 𝑒

𝑖𝜃󵄨󵄨󵄨󵄨󵄨

|𝐼|
) 𝑑𝜃 𝑑𝑡

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
|𝐼| ∫

|𝑡|≤|𝐼|

𝐾 (|sin (𝑡/2)| / |𝐼|)
(sin (𝑡/2))2

𝑑𝑡

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
|𝐼| ∫

|𝐼|

0

𝐾 (𝑡/ |𝐼|)

(𝑡/2)
2

𝑑𝑡

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
∫

1

0

𝐾 (𝑠)

𝑠2
𝑑𝑠.

(15)

The above estimate shows that BMO(𝜕D) ⊂ 𝑄
𝐾
(𝜕D). This

and Proposition 1 imply BMO(𝜕D) = 𝑄
𝐾
(𝜕D).

Conversely, suppose that 𝑄
𝐾
(𝜕D) = BMO(𝜕D). If

∫

1

0

𝐾 (𝑠)

𝑠2
𝑑𝑠 = ∞, (16)

we can choose an integer sequence {𝜆
𝑗
}
∞

𝑗=1
such that

∫

1

2𝜋2
−𝜆𝑗

𝐾 (𝑠)

𝑠2
𝑑𝑠 ≥ 𝑗, 𝑗 = 1, 2, 3, . . . . (17)

Define a function 𝑓 as follows:

𝑓 (𝑒
𝑖𝜃
) =

∞

∑

𝑗=1

1

𝑗
𝑒

𝑖2
𝜆𝑗𝜃
. (18)

Then 𝑓 ∈ BMO(𝜕D) ([12], page 178). By assumption we have
𝑓 ∈ 𝑄

𝐾
(𝜕D). It is easy to see that

∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖(𝜃+𝑡)
) − 𝑓 (𝑒

𝑖𝜃
)
󵄨󵄨󵄨󵄨󵄨

2

𝑑𝜃 =

∞

∑

𝑗=1

1

𝑗2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖2
𝜆𝑗 𝑡
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

. (19)

We give the following estimate which will be proved later:

∫

𝜋

0

sin2 𝑛𝑡

2

𝐾 (𝑡)

𝑡2
𝑑𝑡 ≳ ∫

𝜋

2𝜋/𝑛

𝐾 (𝑡)

𝑡2
𝑑𝑡, 𝑛 = 1, 2, . . . . (20)

By (17), (19), and (20), we have

∬

2𝜋

0

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖𝜃
) − 𝑓 (𝑒

𝑖𝜑
)
󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑒
𝑖𝜃 − 𝑒𝑖𝜑󵄨󵄨󵄨󵄨

2
𝐾(

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖𝜃
− 𝑒

𝑖𝜑󵄨󵄨󵄨󵄨󵄨

2𝜋
)𝑑𝜃 𝑑𝜑

=

∞

∑

𝑗=1

1

𝑗2
∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖2
𝜆𝑗 𝑡
− 1

󵄨󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑒
𝑖𝑡 − 1

󵄨󵄨󵄨󵄨

2
𝐾(

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖𝑡
− 1

󵄨󵄨󵄨󵄨󵄨

2𝜋
)𝑑𝑡

≳

∞

∑

𝑗=1

1

𝑗2
∫

𝜋

0

sin2
(2

𝜆
𝑗𝑡/2)

sin2
(𝑡/2)

𝐾 (𝑡) 𝑑𝑡

≳

∞

∑

𝑗=1

1

𝑗2
∫

𝜋

0

sin2 2
𝜆
𝑗𝑡

2

𝐾 (𝑡)

𝑡2
𝑑𝑡

≳

∞

∑

𝑗=1

1

𝑗2
∫

𝜋

2𝜋2
−𝜆𝑗

𝐾 (𝑡)

𝑡2
𝑑𝑡

≳

∞

∑

𝑗=1

1

𝑗
= ∞.

(21)

We now prove (20). Note that 𝑗/𝑛 ≥ (𝑗 + 1)/2𝑛 is valid for
all 𝑗, 𝑛 = 1, 2, . . . and𝐾(2𝑡) ≈ 𝐾(𝑡). Then

∫

𝜋

0

sin2 𝑛𝑡

2

𝐾 (𝑡)

𝑡2
𝑑𝑡

=

𝑛−1

∑

𝑗=0

∫

((𝑗+1)/𝑛)𝜋

𝑗𝜋/𝑛

1 − cos 𝑛𝑡
2

𝐾 (𝑡)

𝑡2
𝑑𝑡

≥

𝑛−1

∑

𝑗=0

𝐾(𝑗𝜋/𝑛)

((𝑗 + 1)𝜋/𝑛)
2
∫

((𝑗+1)/𝑛)𝜋

𝑗𝜋/𝑛

1 − cos 𝑛𝑡
2

𝑑𝑡

≳

𝑛−1

∑

𝑗=1

𝐾((𝑗 + 1) 𝜋/𝑛)

((𝑗 + 1)𝜋/𝑛)
2

𝜋

2𝑛

≥
1

2

𝑛−1

∑

𝑗=1

(
𝑗

𝑗 + 1
)

2

∫

((𝑗+1)/𝑛)𝜋

𝑗𝜋/𝑛

𝐾 (𝑡)

𝑡2
𝑑𝑡

≳ ∫

𝜋

2𝜋/𝑛

𝐾 (𝑡)

𝑡2
𝑑𝑡.

(22)

The proof is complete.

It is reasonable to assume that lim
𝑟 → 0
+𝐾(𝑟) = 0 for

otherwise weight function𝐾 basically dose not play any role.
Moreover, the function 𝑓 must be at least locally 𝐿2 on the
boundary when 𝑓 belongs to the 𝑄

𝐾
spaces. Therefore the

weight function 𝐾 plays a role only if 𝑡 is small. Then the
following result is obvious.
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Theorem 4. Let 𝑟
0
∈ (0, 1) such that 𝐾(𝑟

0
) > 0, and set

𝐾
1
(𝑟) = inf(𝐾(𝑟), 𝐾(𝑟

0
)). Then 𝑄

𝐾
1

(𝜕D) = 𝑄
𝐾
(𝜕D).

Proof. Since𝐾
1
≤ 𝐾 and𝐾

1
is nondecreasing, it is easy to see

that 𝑄
𝐾
(𝜕D) ⊂ 𝑄

𝐾
1

(𝜕D). We now prove 𝑄
𝐾
1

(𝜕D) ⊂ 𝑄
𝐾
(𝜕D).

Note that there exists an integer𝑚 ∈ N such that𝑚−1
≤ 𝑟

0
/2.

If 𝑓 ∈ 𝑄
𝐾
1

(𝜕D), then 𝑓 ∈ BMO(𝜕D) by Proposition 1. For
any 𝐼 ⊂ 𝜕D, divide 𝐼 into the 𝑚 subarcs of length |𝐼|/𝑚. For
1 ≤ 𝑗 ≤ 𝑚, denote 𝐼

𝑗
the 𝑗th subarcs, arranged in the natural

order. Let 𝐼
𝑗,𝑘

be the smallest subarcs containing 𝐼
𝑗
and 𝐼

𝑘
.

Then we have

𝐴 =

𝑚

∑

𝑗,𝑘=1

𝑘−1≤𝑗≤𝑘+1

∫
𝐼
𝑗

∫
𝐼
𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

=

𝑚

∑

𝑗,𝑘=1

𝑘−1≤𝑗≤𝑘+1

∫
𝐼
𝑗

∫
𝐼
𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾

1
(
|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

≤ ∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾

1
(
|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑄
𝐾1

(𝜕D)
,

𝐵 =

𝑚

∑

𝑗,𝑘=1

𝑗>𝑘+1,𝑗<𝑘−1

∫
𝐼
𝑗

∫
𝐼
𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

≤ 𝐾 (1)

𝑚

∑

𝑗,𝑘=1

𝑗>𝑘+1,𝑗<𝑘−1

(
𝑚

𝐼
)

2

∫
𝐼
𝑗

∫
𝐼
𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V|

≲

𝑚

∑

𝑗,𝑘=1

𝑗>𝑘+1,𝑗<𝑘−1

𝑚

|𝐼|
(∫

𝐼
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑢) − 𝑓𝐼

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨

2

|𝑑𝑢|

+∫
𝐼
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (V) − 𝑓𝐼

𝑗,𝑘

󵄨󵄨󵄨󵄨󵄨󵄨

2

|𝑑V|)

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑄
𝐾1

(𝜕D)
.

(23)

The above estimate gives

∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

= 𝐴 + 𝐵 ≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑄
𝐾1

(𝜕D)
.

(24)

Hence 𝑓 ∈ 𝑄
𝐾
(𝜕D). So we have 𝑄

𝐾
1

(𝜕D) ⊂ 𝑄
𝐾
(𝜕D). The

proof is complete.

The following result is natural in viewof Proposition 1 and
Theorem 3.

Theorem 5. Let 𝐾
1
≤ 𝐾

2
and assume that 𝐾

1
(𝑟)/𝐾

2
(𝑟) → 0

as 𝑟 → 0. If

∫

1

0

𝐾
2 (𝑠)

𝑠2
𝑑𝑠 = ∞, (25)

then 𝑄
𝐾
2

(𝜕D) ⫋ 𝑄
𝐾
1

(𝜕D).

Proof. Obviously, we have 𝑄
𝐾
2

(𝜕D) ⊂ 𝑄
𝐾
1

(𝜕D). We assume
that 𝑄

𝐾
1

(𝜕D) = 𝑄
𝐾
2

(𝜕D). The open mapping theorem tells
us that the identity map from one of those spaces into the
other one is continuous. Therefore there exists a constant
𝐶 such that ‖ ⋅ ‖

𝑄
𝐾2

(𝜕D)
≤ 𝐶‖ ⋅ ‖

𝑄
𝐾1

(𝜕D)
. By the assumption,

there exists an integer 𝑚 such that 𝐾
1
(𝑡) ≤ (2𝐶)

−1
𝐾

2
(𝑡) for

𝑡 ≤ 𝑚
−1. For any 𝐼 ⊂ 𝜕D, divide 𝐼 into the 2𝑚 subarcs of

length |𝐼|/(2𝑚). For 1 ≤ 𝑗 ≤ 2𝑚, denote by 𝐼
𝑗
the 𝑗th subarcs,

arranged in the natural order. Applying the same manner in
handing A and B in the proof of Theorem 4, we can deduce
that if 𝑓 ∈ 𝑄

𝐾
2

(𝜕D), then
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑄
𝐾2

(𝜕D)

≤ 𝐶sup
𝐼⊂𝜕D

∬
𝐼

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖𝜃
) − 𝑓 (𝑒

𝑖𝜑
)
󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑒
𝑖𝜃 − 𝑒𝑖𝜑󵄨󵄨󵄨󵄨

2

× 𝐾
1
(

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖𝜃
− 𝑒

𝑖𝜑󵄨󵄨󵄨󵄨󵄨

|𝐼|
) 𝑑𝜃 𝑑𝜑

= 𝐶sup
𝐼⊂𝜕D

(

2𝑚

∑

𝑗,𝑘=1

𝑘−1≤𝑗≤𝑘+1

+

2𝑚

∑

𝑗,𝑘=1

𝑗<𝑘−1,𝑗>𝑘+1

)

×∫
𝐼
𝑗

∫
𝐼
𝑘

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑒

𝑖𝜃
) − 𝑓 (𝑒

𝑖𝜑
)
󵄨󵄨󵄨󵄨󵄨

2

󵄨󵄨󵄨󵄨𝑒
𝑖𝜃 − 𝑒𝑖𝜑󵄨󵄨󵄨󵄨

2
𝐾

1
(

󵄨󵄨󵄨󵄨󵄨
𝑒

𝑖𝜃
− 𝑒

𝑖𝜑󵄨󵄨󵄨󵄨󵄨

|𝐼|
) 𝑑𝜃 𝑑𝜑

≤ 𝐶sup
𝐼⊂𝜕D

(
1

2𝐶

2𝑚

∑

𝑗,𝑘=1

𝑘−1≤𝑗≤𝑘+1

∫
𝐼
𝑗

∫
𝐼
𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾

2

×(
|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|)

+ 𝐶sup
𝐼⊂𝜕D

(

2𝑚

∑

𝑗,𝑘=1

𝑗<𝑘−1,𝑗>𝑘+1

∫
𝐼
𝑗

∫
𝐼
𝑘

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾

1

×(
|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|)

=
1

2

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑄
𝐾2

(𝜕D)
+𝑀

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
,

(26)
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where 𝑀 is a constant which is dependent on 𝐶. Conse-
quently, for any 𝑓 ∈ 𝑄

𝐾
2

(𝜕D) and 𝐼 ⊂ 𝜕D, we have

∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾

2
(
|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V| ≲ 󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
.

(27)

A simple computation shows that 𝑧𝑛
∈ 𝑄

𝐾
2

(𝜕D) for
𝑛 = ±1, ±2, . . . . So all polynomials belong to𝑄

𝐾
2

(𝜕D) spaces.
For any given 𝑔(𝑢) = ∑

∞

𝑗=−∞
𝑎

𝑗
𝑢

𝑗
∈ BMO(𝜕D), denote by

𝑔
𝑛
(𝑢) = ∑

𝑛

𝑗=−𝑛
𝑎

𝑗
𝑢

𝑗 the truncation of the function 𝑔. Then
𝑔

𝑛
∈ 𝑄

𝐾
2

(𝜕D) and ‖𝑔
𝑛
‖BMO(𝜕D)

≤ ‖𝑔‖BMO(𝜕D)
. Applying

Fatou’s lemma, we deduce that

sup
𝐼⊂𝜕D

∬
𝐼

󵄨󵄨󵄨󵄨𝑔 (𝑢) − 𝑔 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾

2
(
|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

≲
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
.

(28)

Equation (28) and Proposition 1 show BMO(𝜕D) = 𝑄
𝐾
2

(𝜕D).
It follows fromTheorem 3 that the integral (13) with 𝐾 = 𝐾

2

must be convergent, which contradicts our assumption. We
conclude that we must have 𝑄

𝐾
2

(𝜕D) ⫋ 𝑄
𝐾
1

(𝜕D).

3. Möbius Invariant 𝑄
𝐾
(𝜕D) Spaces

Let 𝐾 : [0,∞) → [0,∞) be a nondecreasing function.
The Sobolev type space 𝐿2

𝐾
(𝜕D) consists of those Lebesgue

measurable functions 𝑓 : 𝜕D → C satisfying

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿
2

𝐾
(𝜕D)

= (∬
𝜕D

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(|𝑢 − V|) |𝑑𝑢| |𝑑V|)

1/2

< ∞.

(29)

If 𝐾(𝑡) = 𝑡𝑝, 0 ≤ 𝑝 < ∞, then 𝐿2

𝐾
(𝜕D) = 𝐿2

𝑝
(𝜕D) are sobolev

spaces and are introduced in [4]. See [13] about the theory of
Sobolev spaces. If𝐾(𝑡) = 𝑡𝑝, 𝑝 > 1, then 𝐿2

(𝜕D) is a subspace
of 𝐿2

𝐾
(𝜕D). From Section 2 it turns out that𝑄

𝐾
(𝜕D) is closely

related to the Sobolev type space𝐿2

𝐾
(𝜕D) on the unit circle. By

(7) and (29) it follows that 𝑄
𝐾
(𝜕D) is a subspace of 𝐿2

𝐾
(𝜕D).

As a matter of fact, we have the following result.

Theorem 6. Let 𝐾 satisfy condition (4). Then 𝑓 ∈ 𝑄
𝐾
(𝜕D), if

and only if

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑄
𝐾

(𝜕D)
= sup

𝑎∈D

󵄩󵄩󵄩󵄩𝑓 ∘ 𝜙𝑎

󵄩󵄩󵄩󵄩𝐿
2

𝐾
(𝜕D)

< ∞, (30)

where 𝜙
𝑎
(𝑧) = (𝑎 − 𝑧)/(1 − 𝑎𝑧) is a Möbius transformation of

the unit disk for 𝑎 ∈ D.

Proof. We acknowledge that this proof is suggested by the
technique of [4]. Firstly, we give the following equality for
𝑢 = 𝜙

𝑎
(𝑧) and V = 𝜙

𝑎
(𝑤):

∬
𝜕D

󵄨󵄨󵄨󵄨𝑓 ∘ 𝜙𝑎 (𝑧) − 𝑓 ∘ 𝜙𝑎 (𝑤)
󵄨󵄨󵄨󵄨

2

|𝑧 − 𝑤|
2

𝐾 (|𝑧 − 𝑤|) |𝑑𝑧| |𝑑𝑤|

= ∬
𝜕D

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V| .

(31)

Sufficiency. Suppose that (30) holds. Choose an arc 𝐼 ⊂ 𝜕D.
Without loss of generality, we assume |𝐼| < 1/4. We choose a
point of 𝑎 ∈ D (𝑎 ̸= 0) such that 𝑎/|𝑎| and 2𝜋(1 − |𝑎|) are the
center and arc length of 𝐼, respectively. We have the following
estimate:

1

|1 − 𝑎𝑢|
≈
1

|𝐼|
, 𝑢 ∈ 𝐼. (32)

Then

∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

≲ ∬
𝜕D

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V| .

(33)

By (31) we complete the proof of sufficiency.

Necessity. We assume that 𝑓 ⊂ 𝑄
𝐾
(𝜕D). For any 𝑎 ∈ D, let 𝐼

𝑎

be the arc in 𝜕Dwith the midpoint of 𝑎/|𝑎| and the arc length
of 2𝜋(1 − |𝑎|). If 𝑎 = 0, we set 𝐼

𝑎
= 𝜕D. Also, define

𝐼
𝑛
= 2

𝑛
𝐼
𝑎
, 𝑛 = 0, 1, . . . , 𝑁 − 1, (34)

where𝑁 is the smallest integer such that 2𝑁
|𝐼

𝑎
| ≥ 2𝜋; that is,

𝐼
𝑁
= 𝜕D. Then

∬
𝜕D

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V|

= ∬
𝐼
0

+

𝑁−1

∑

𝑛=0

𝑁−1

∑

𝑚=0

∫
𝐼
𝑛+1\𝐼𝑛

∫
𝐼
𝑚+1

\𝐼
𝑚

{⋅ ⋅ ⋅ }

≤ ‖𝑓‖
2

𝑄
𝐾

(𝜕D)
+ 𝐴 + 𝐵,

(35)
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where

𝐴 =

𝑁−1

∑

𝑛=0

𝑁−1

∑

𝑚≤𝑛

∫
𝐼
𝑛+1\𝐼𝑛

∫
𝐼
𝑚+1

\𝐼
𝑚

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V| ,

𝐵 =

𝑁−1

∑

𝑛=0

𝑁−1

∑

𝑚>𝑛

∫
𝐼
𝑛+1\𝐼𝑛

∫
𝐼
𝑚+1

\𝐼
𝑚

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

×𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V| .

(36)

For any given 𝑢 ∈ 𝐼
𝑛+1

\ 𝐼
𝑛
, 𝑛 = 1, 2, . . ., we have

1

|1 − 𝑎𝑢|
≲

1

2𝑛
(1 − |𝑎|)

. (37)

By (32) and (37), we obtain that

𝑁−1

∑

𝑛=0

∬
𝐼
𝑛+1

\𝐼
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V|

≲

𝑁−1

∑

𝑛=0

∬
𝐼
𝑛+1

\𝐼
𝑛

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(
|𝑢 − V|
22𝑛 󵄨󵄨󵄨󵄨𝐼0

󵄨󵄨󵄨󵄨

) |𝑑𝑢| |𝑑V|

≲

𝑁−1

∑

𝑛=0

𝜑
𝐾
(
1

2𝑛
)∬

𝐼
𝑛+1

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(
|𝑢 − V|
2𝑛+1 󵄨󵄨󵄨󵄨𝐼0

󵄨󵄨󵄨󵄨

) |𝑑𝑢| |𝑑V|

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑄
𝐾

(𝜕D)
∫

1

0

𝜑
𝐾 (𝑠)

𝑠
𝑑𝑠.

(38)

On the other hand, by Lemma 2.1 of [10], condition (4)
implies that𝐾(𝑡) ≲ 𝑡𝑐 for small enough 𝑐 > 0. Then

𝑁−1

∑

𝑛=1

∑

𝑚<𝑛−1

∫
𝐼
𝑛+1

\𝐼
𝑛

∫
𝐼
𝑚+1

\𝐼
𝑚

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V|

≲

𝑁−1

∑

𝑛=1

∑

𝑚<𝑛−1

∫
𝐼
𝑛+1

\𝐼
𝑛

∫
𝐼
𝑚+1

\𝐼
𝑚

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

(2
𝑛 − 2𝑚

)
2󵄨󵄨󵄨󵄨𝐼0

󵄨󵄨󵄨󵄨

2

× 𝐾(
(2

𝑛
− 2

𝑚
)
󵄨󵄨󵄨󵄨𝐼0
󵄨󵄨󵄨󵄨

2

2𝑚+𝑛󵄨󵄨󵄨󵄨𝐼0
󵄨󵄨󵄨󵄨

2
) |𝑑𝑢| |𝑑V|

≲

𝑁−1

∑

𝑛=1

∑

𝑚<𝑛−1

𝐾(
1

2𝑚
)

× ∫
𝐼
𝑛+1

\𝐼
𝑛

∫
𝐼
𝑚+1

\𝐼
𝑚

(
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑢) − 𝑓𝐼

𝑚

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑓 (V) − 𝑓𝐼

𝑚

󵄨󵄨󵄨󵄨󵄨

2

)

× (2
2𝑛󵄨󵄨󵄨󵄨𝐼0

󵄨󵄨󵄨󵄨

2
)

−1

|𝑑𝑢| |𝑑V|

≲

𝑁−1

∑

𝑛=1

∑

𝑚<𝑛−1

2
𝑚(1−𝑐)

2𝑛

× (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
+

1

2𝑛 󵄨󵄨󵄨󵄨𝐼0
󵄨󵄨󵄨󵄨

× ∫
𝐼
𝑛+1

\𝐼
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑢) − 𝑓𝐼

𝑚

󵄨󵄨󵄨󵄨󵄨

2

|𝑑𝑢|)

≲

𝑁−1

∑

𝑛=1

∑

𝑚<𝑛−1

2
𝑚(1−𝑐)

2𝑛

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
(1 + (𝑛 − 𝑚)

2
)

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

BMO(𝜕D)

∞

∑

𝑛=1

𝑛
2

2𝑛𝑐
.

(39)

Here we apply the following estimate:

1

󵄨󵄨󵄨󵄨𝐼𝑛+1

󵄨󵄨󵄨󵄨

∫
𝐼
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑢) − 𝑓𝐼

𝑚

󵄨󵄨󵄨󵄨󵄨

2

|𝑑𝑢|

≤
1

󵄨󵄨󵄨󵄨𝐼𝑛+1

󵄨󵄨󵄨󵄨

∫
𝐼
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑢) − 𝑓𝐼

𝑛+1

󵄨󵄨󵄨󵄨󵄨

2

|𝑑𝑢| +
󵄨󵄨󵄨󵄨󵄨
𝑓

𝐼
𝑚

− 𝑓
𝐼
𝑛+1

󵄨󵄨󵄨󵄨󵄨

2

≤
1

󵄨󵄨󵄨󵄨𝐼𝑛+1

󵄨󵄨󵄨󵄨

∫
𝐼
𝑛+1

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑢) − 𝑓𝐼

𝑛+1

󵄨󵄨󵄨󵄨󵄨

2

|𝑑𝑢|

+ (

𝑛+1

∑

𝑗=𝑚+1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓

𝐼
𝑗−1

− 𝑓
𝐼
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
)

2

≲ (𝑛 − 𝑚)
2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

BMO(𝜕D)
.

(40)
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The above estimate gives that

𝐴 = (

𝑁−1

∑

𝑛=0

∬
𝐼
𝑛+1

\𝐼
𝑛

+

𝑁−1

∑

𝑛=1

∫
𝐼
𝑛+1

\𝐼
𝑛

∫
𝐼
𝑛
\𝐼
𝑛−1

) {⋅ ⋅ ⋅ }

+

𝑁−1

∑

𝑛=1

∑

𝑚<𝑛−1

∫
𝐼
𝑛+1

\𝐼
𝑛

∫
𝐼
𝑚+1

\𝐼
𝑚

{⋅ ⋅ ⋅ }

≲
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝑄
𝐾

(𝜕D)
.

(41)

Applying the same manner in handing 𝐴, we have 𝐵 ≲

‖𝑓‖
2

𝑄
𝐾

(𝜕D)
. Therefore, we obtain

∬
𝜕D

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2

× 𝐾(

|𝑢 − V| (1 − |𝑎|2)

|1 − 𝑎𝑢| |1 − 𝑎V|
) |𝑑𝑢| |𝑑V| ≲ 󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

𝑄
𝐾

.

(42)

The proof is complete.

Corollary 7. 𝑄
𝐾
(𝜕D) is a Möbius invariant space in the sense

that |‖𝑓‖|
𝑄
𝐾

(𝜕D)
= |‖𝑓 ∘ 𝜙

𝑎
‖|

𝑄
𝐾

(𝜕D)
for any 𝑓 ∈ 𝑄

𝐾
(𝜕D) and

𝑎 ∈ D.

Proof. Corollary 7 is obvious byTheorem 6.

4. Dyadic Characterization

For given arc 𝐼 ⊂ 𝜕D, denote by 𝐼
𝑛
the set of the 2𝑛 arcs of

length 2−𝑛
|𝐼| obtained by 𝑛 successive bipartition of 𝐼. The

discrete characterization of 𝑄
𝑝
(𝜕D) space is given in [5]. We

will prove a discrete characterization of 𝑄
𝐾
(𝜕D) spaces. The

following is the principle result of this section.

Theorem 8. Let 𝐾 satisfy condition (4). Then 𝑓 ∈ 𝐿
2
(𝜕D)

belongs to the space 𝑄
𝐾
(𝜕D), if and only if

sup
𝐼⊂𝜕D

∞

∑

𝑛=0

∑

𝐽∈𝐼
𝑛

𝐾(
1

2𝑛
)Φ

𝑓 (𝐽) < ∞. (43)

We first acknowledge that this proof is suggested by the
technique of [5]. To prove Theorem 8, we need the following
lemmas.

Lemma 9. Let 𝐼 ⊂ 𝜕D be an arc. If 𝑓 ∈ 𝐿2
(𝜕D), then

Ψ
𝑓,𝐾 (𝐼) ≈ ∑

𝐽∈𝐼
1

Ψ
𝑓,𝐾 (𝐽) + ∑

𝐽∈𝐼
1

󵄨󵄨󵄨󵄨𝑓𝐽
− 𝑓

𝐼

󵄨󵄨󵄨󵄨

2
, (44)

where

Ψ
𝑓,𝐾 (𝐼) =

∞

∑

𝑛=0

∑

𝐽∈𝐼
𝑛

𝐾(
1

2𝑛
)Φ

𝑓 (𝐽) . (45)

Proof. The following result can be found in [5]:

Φ
𝑓 (𝐼) =

1

2
∑

𝐽∈𝐼
1

Φ
𝑓 (𝐽) +

1

22
∑

𝐽∈𝐼
1

󵄨󵄨󵄨󵄨𝑓𝐽
− 𝑓

𝐼

󵄨󵄨󵄨󵄨

2
. (46)

Note that 𝐼
𝑘
= ∪

𝐽∈𝐼
1

𝐽
𝑘−1

and 𝐾(2
−𝑘
) ≈ 𝐾(2

−𝑘−1
), 𝑘 =

0, 1, 2 . . .. By (46), we have

Ψ
𝑓,𝐾 (𝐼) = Φ𝑓 (𝐼) +

∞

∑

𝑘=1

∑

𝐽∈𝐼
1

∑

𝑈∈𝐼
𝑘−1

𝐾(
1

2𝑘
)Φ

𝑓 (𝑈)

≈ ∑

𝐽∈𝐼
1

(Ψ
𝑓,𝐾 (𝐽) + Φ𝑓 (𝐽) +

󵄨󵄨󵄨󵄨𝑓𝐽
− 𝑓

𝐼

󵄨󵄨󵄨󵄨

2
)

≈ ∑

𝐽∈𝐼
1

(Ψ
𝑓,𝐾 (𝐽) +

󵄨󵄨󵄨󵄨𝑓𝐽
− 𝑓

𝐼

󵄨󵄨󵄨󵄨

2
) .

(47)

The proof is complete.

Lemma 10. Let 𝐾 satisfy condition (4). Let 𝐼, 𝐼󸀠
, 𝐼

󸀠󸀠 be three
arcs of equal length: |𝐼| = |𝐼

󸀠
| = |𝐼

󸀠󸀠
|, such that 𝐼󸀠 and 𝐼󸀠󸀠 are

adjacent and 𝐼 ⊂ 𝐼󸀠
∪ 𝐼

󸀠󸀠. Then for any 𝑓 ∈ 𝐿2
(𝜕D), we have

Ψ
𝑓,𝐾 (𝐼) ≤ Ψ𝑓,𝐾

(𝐼
󸀠
) + Ψ

𝑓,𝐾
(𝐼

󸀠󸀠
) +

󵄨󵄨󵄨󵄨𝑓𝐼
󸀠 − 𝑓

𝐼
󸀠󸀠

󵄨󵄨󵄨󵄨 . (48)

Proof. See [5] about the proof of the following inequality:

Φ
𝑓 (𝐼) ≤ Φ𝑓

(𝐼
󸀠
) + Φ

𝑓
(𝐼

󸀠󸀠
) +

󵄨󵄨󵄨󵄨𝑓𝐼
󸀠 − 𝑓

𝐼
󸀠󸀠

󵄨󵄨󵄨󵄨

2
. (49)

Without loss of generality, we assume that 𝐼󸀠
= [0, 1) and 𝐼󸀠󸀠

=

[1, 2). For each integer 𝑗 ≥ 0, let {𝐼
𝑗,𝑘
}
2
𝑗
+1

𝑘=1
be the set of the 2𝑗+1

dyadic arcs of length 2−𝑗 contained in 𝐼󸀠
∪ 𝐼

󸀠󸀠, arranged in the
natural order. If 𝐽 ∈ 𝐼

𝑗
, then 𝐽 ∈ 𝐼

𝑗,𝑘
∪ 𝐼

𝑗,𝑘+1
for some 𝑘; by

(48) we have

Φ
𝑓
(𝐼

𝑗
) ≤ Φ

𝑓
(𝐼

𝑗,𝑘
) + Φ

𝑓
(𝐼

𝑗,𝑘+1
) +

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓

𝐼
𝑗,𝑘

− 𝑓
𝐼
𝑗,𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨

2

. (50)

The different choices of 𝐽 ∈ 𝐼
𝑗
yield different 𝑘. Summing over

all 𝑗 and 𝐽, we have

Ψ
𝑓,𝐾 (𝐼) =

∞

∑

𝑗=0

∑

𝐽∈𝐼
𝑗

𝐾(
1

2𝑗
)Φ

𝑓 (𝐽)

≤ 2

∞

∑

𝑗=0

2
𝑗+1

∑

𝑘=1

𝐾(
1

2𝑗
)Φ

𝑓
(𝐼

𝑗,𝑘
)

+

∞

∑

𝑗=0

2
𝑗+1

−1

∑

𝑘=1

𝐾(
1

2𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓

𝐼
𝑗,𝑘

− 𝑓
𝐼
𝑗,𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨

2

.

(51)

It is easy to see that

∞

∑

𝑗=0

2
𝑗+1

∑

𝑘=1

𝐾(
1

2𝑗
)Φ

𝑓
(𝐼

𝑗,𝑘
) ≲ Ψ

𝑓,𝐾
(𝐼

󸀠
) + Ψ

𝑓,𝐾
(𝐼

󸀠󸀠
) . (52)

The following estimate about the final double sum first
appeared in Lemma 1 of [5]. Consider

2
𝑗+1

−1

∑

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓

𝐼
𝑗,𝑘

− 𝑓
𝐼
𝑗,𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨

2

≲

𝑗

∑

𝑙=1

∑

𝐽∈𝐼
󸀠

𝑗−𝑙
∪𝐼
󸀠󸀠

𝑗−𝑙

𝑙
2
Φ

𝑓 (𝐽) +
󵄨󵄨󵄨󵄨𝑓𝐼
󸀠 − 𝑓

𝐼
󸀠󸀠

󵄨󵄨󵄨󵄨

2
.

(53)
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If 𝐾 satisfies condition (4), Lemma 2.1 in [10] implies that
there exists some small enough 𝑐 > 0 such that 𝑡−𝑐

𝐾(𝑡) is
nondecreasing. Substituting 𝑗 = 𝑚 + 𝑙 and summing over 𝑗,
we finally obtain

∞

∑

𝑗=0

2
𝑗+1

−1

∑

𝑘=1

𝐾(
1

2𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑓

𝐼
𝑗,𝑘

− 𝑓
𝐼
𝑗,𝑘+1

󵄨󵄨󵄨󵄨󵄨󵄨

2

≲

∞

∑

𝑙=1

∞

∑

𝑚=0

∑

𝐽∈𝐼
󸀠

𝑚
∪𝐼
󸀠󸀠

𝑚

𝐾(
1

2𝑚+𝑙
) 𝑙

2
Φ

𝑓 (𝐽)

+

∞

∑

𝑗=0

𝐾(
1

2𝑗
)
󵄨󵄨󵄨󵄨𝑓𝐼
󸀠 − 𝑓

𝐼
󸀠󸀠

󵄨󵄨󵄨󵄨

2

≲

∞

∑

𝑙=1

𝑙
2

2𝑙𝑐

∞

∑

𝑚=0

∑

𝐽∈𝐼
󸀠

𝑚
∪𝐼
󸀠󸀠

𝑚

𝐾(
1

2𝑚
)Φ

𝑓 (𝐽)

+
󵄨󵄨󵄨󵄨𝑓𝐼
󸀠 − 𝑓

𝐼
󸀠󸀠

󵄨󵄨󵄨󵄨

2
∫

1

0

𝜑
𝐾 (𝑡)

𝑑𝑡

𝑡

≲ Ψ
𝑓,𝐾

(𝐼
󸀠
) + Ψ

𝑓,𝐾
(𝐼

󸀠󸀠
) +

󵄨󵄨󵄨󵄨𝑓𝐼
󸀠 − 𝑓

𝐼
󸀠󸀠

󵄨󵄨󵄨󵄨

2
.

(54)

Thus we have proved (49) and hence the proof is complete.

Lemma 11. If 𝐾 satisfies condition (4), then there exists a
𝑝 ∈ (0,∞) such that 𝐾(𝑡)/𝑡𝑝 is nonincreasing. Furthermore,
𝐾(𝑡) ≈ 𝐾(2𝑡) for any 0 < 𝑡 < ∞.

Proof. Lemma 11 can be found in [14].

Proof of Theorem 8. We now prove the necessity. It is easy to
see that

1

|𝐼|
2
∬

𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V| = 2Φ𝑓 (𝐼) . (55)

By (55), we have

Ψ
𝑓,𝐾 (𝐼) =

1

2

∞

∑

𝑘=0

∑

𝐽∈𝐼
𝑘

𝐾(
1

2𝑘
)
2

2𝑘

|𝐼|
2
∬

𝐽

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V|

= ∬
𝜕D

𝛼
𝐼 (𝑢, V)

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V| ,

(56)

where

𝛼
𝐼 (𝑢, V) =

1

2

∞

∑

𝑘=0

∑

𝐽∈𝐼
𝑘

𝐾(
1

2𝑘
)
2

2𝑘

|𝐼|
2
𝜒

𝐽 (𝑢) 𝜒𝐽 (V) (57)

and 𝜒
𝐽
(𝑢) = 1, for 𝑢 ∈ 𝐽, and 𝜒

𝐽
(𝑢) = 0, for 𝑢 ∈ 𝜕D \ 𝐽.

Note that |𝑢 − V| ≤ 2
−𝑘
|𝐼| because of 𝑢, V ∈ 𝐽 ∈ 𝐼

𝑘
. Since

𝐾 satisfies condition (4), by Lemma 11 we may assume that

𝑡
−2
𝐾(𝑡) is nonincreasing. In fact, if 𝑝 ≥ 2, we can replace𝐾(𝑡)

with 𝑡2 byTheorem 3. Then

𝛼
𝐼 (𝑢, V) =

1

2

∞

∑

𝑘=0

∑

𝐽∈𝐼
𝑘

𝐾(
|𝐼|

2𝑘
|𝐼|
)
2

2𝑘

|𝐼|
2
𝜒

𝐽 (𝑢) 𝜒𝐽 (V)

≲ ∑

2
𝑘
|𝑢−V|≤|𝐼|

𝐾(
|𝐼|

2𝑘
|𝐼|
)
2

2𝑘

|𝐼|
2

≤
𝐾 (|𝑢 − V| / |𝐼|)

|𝑢 − V|2
.

(58)

This gives

Ψ
𝑓,𝐾 (𝐼) ≲ ∬

𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V| . (59)

For sufficiency, we claim that

∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

2

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

≲
1

|𝐼|
∫

|𝐼|

−|𝐼|
Ψ

𝑓,𝐾 ({𝐼 + 𝑡}) 𝑑𝑡 + Ψ𝑓,𝐾 (𝐼) ,

(60)

where {𝐼 + 𝑡} = {𝑧 + 𝑒𝑖𝑡
, 𝑧 ∈ 𝐼} for 𝐼 ⊂ 𝜕D.

In fact, by (56) and Fubini’s theorem, we have

1

|𝐼|
∫

|𝐼|

−|𝐼|

Ψ
𝑓,𝐾 ({𝐼 + 𝑡}) 𝑑𝑡

= ∬
𝜕D

1

|𝐼|
∫

|𝐼|

−|𝐼|

𝛼
{𝐼+𝑡} (𝑢, V) 𝑑𝑡

×
󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)

󵄨󵄨󵄨󵄨

2

|𝑑𝑢| |𝑑V| .

(61)

This and (56) show that it suffices to verify

𝐾 (|𝑢 − V| / |𝐼|)
|𝑢 − V|2

≲
1

|𝐼|
∫

|𝐼|

−|𝐼|

𝛼
{𝐼+𝑡} (𝑢, V) 𝑑𝑡 + 𝛼𝐼 (𝑢, V) . (62)

First, suppose that 𝑢, V ∈ 𝐼with |𝑢−V| ≤ |𝐼|/2 and let 𝑙 ∈ N∪0

be such that 2−𝑙−2
|𝐼| < |𝑢−V| ≤ 2−𝑙−1

|𝐼|. Noting that 𝑢 ∉ {𝐼+𝑡}
and thus 𝛼

{𝐼+𝑡}
(𝑢, V) = 0 when |𝑡| > |𝐼|,

1

|𝐼|
∫

|𝐼|

−|𝐼|

𝛼
{𝐼+𝑡} (𝑢, V) 𝑑𝑡

≥
1

2 |𝐼|
∫

𝜕D

∑

𝐽∈{𝐼+𝑡}
𝑙

𝐾(
1

2𝑙
)

1

󵄨󵄨󵄨󵄨2
−𝑙𝐼
󵄨󵄨󵄨󵄨

2
𝜒

𝐽 (𝑢) 𝜒𝐽 (V) 𝑑𝑡

=
2

2𝑙

|𝐼|
3
𝐾(

1

2𝑙
) ∑

𝐽∈𝐼
𝑙

∫
𝜕D

𝜒
{𝐽+𝑡} (𝑢) 𝜒{𝐽+𝑡}

(𝑦) 𝑑𝑡

≳
1

|𝐼|

𝐾 (|𝑢 − V| / |𝐼|)
|𝑢 − V|2

∑

𝐽∈𝐼
𝑙

∫
𝜕D

𝜒
{𝐽+𝑡} (𝑢) 𝜒{𝐽+𝑡} (V) 𝑑𝑡.

(63)

For each 𝐽, the final integral equals |𝐽| − |𝑢− V| ≥ |𝐽|/2. Hence
the sumover 𝐽 is at least |𝐼|/2 and (62) holds for |𝑢−V| ≤ |𝐼|/2.
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If 𝑢, V ∈ 𝐼 with |𝑢 − V| > |𝐼|/2, by (57) we have

𝛼
𝐼 (𝑢, V) ≥ 𝐾(

1

2
)

1

|𝐼|
2
≳
𝐾 (|𝑢 − V| / |𝐼|)

|𝑢 − V|2
. (64)

Hence (62) holds in this case.
We now assume that 𝑓 is defined on R with constant 𝑓

𝐼

outside 𝐼. Let 𝐼
+
and 𝐼

−
be the two arcs of the same length

as 𝐼 that are adjacent to 𝐼 on the left and right, respectively.
Note that Ψ

𝑓,𝐾
(𝐼

−
) = Ψ

𝑓,𝐾
(𝐼

+
) = 0 and 𝑓

𝐼
+

= 𝑓
𝐼
−

= 𝑓
𝐼
. Note

that {𝐼 + 𝑡} ⊂ 𝐼 ∪ 𝐼
+
for 0 < 𝑡 < |𝐼| and {𝐼 + 𝑡} ⊂ 𝐼 ∪ 𝐼

−
for

−|𝐼| < 𝑡 < 0. Lemma 10 and (60) give

∬
𝐼

󵄨󵄨󵄨󵄨𝑓 (𝑢) − 𝑓 (V)
󵄨󵄨󵄨󵄨

|𝑢 − V|2
𝐾(

|𝑢 − V|
|𝐼|

) |𝑑𝑢| |𝑑V|

≲
1

|𝐼|
∫

|𝐼|

−|𝐼|

Ψ
𝑓,𝐾 ({𝐼 + 𝑡}) 𝑑𝑡 + Ψ𝑓,𝐾 (𝐼)

≲
1

|𝐼|
∫

|𝐼|

−|𝐼|

Ψ
𝑓,𝐾 (𝐼) 𝑑𝑡 + Ψ𝑓,𝐾 (𝐼)

≲ Ψ
𝑓,𝐾 (𝐼) .

(65)

The proof is complete.

Corollary 12. Let 0 < 𝑝 < ∞. Then 𝑓 ∈ 𝐿
2
(𝜕D) belongs to

𝑄
𝑝
(𝜕D) if and only if

sup
𝐼⊂𝜕D

∞

∑

𝑛=0

∑

𝐽∈𝐼
𝑛

(
1

2𝑛
)

𝑝

Φ
𝑓 (𝐽) < ∞. (66)

Proof. The nondecreasing function 𝐾 satisfies condition (4)
if 𝐾(𝑡) = 𝑡

𝑝
, 0 < 𝑝 < ∞. The desired result follows from

Theorem 8.
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In this paper we find the general conditions for a complete biorthogonal conjugate system to form a Riesz basis. We show that if
a complete biorthogonal conjugate system is uniformly bounded and its coefficient space is solid, then the system forms a Riesz
basis. We also construct affine Riesz bases as an application to the main result.

1. Main Result

The aim of this paper is to find the general conditions for
a complete biorthogonal conjugate system to form a Riesz
basis, following the results obtained by Bari [1], Christensen
[2], Sarsenbi with coauthors [3–5], San Antolin and Zalik [6],
and Guo [7].

Let {𝑢
𝑛
(𝑥)}
∞

𝑛=1
and {V

𝑛
(𝑥)}
∞

𝑛=1
be a complete biorthogonal

conjugate system of functions from 𝐿
2

(0, 1) space.
By system coefficient space {𝑢

𝑛
(𝑥)}
∞

𝑛=1
we denote the

space𝑋(𝑢) of all the numeric sequences 𝑎 = {𝑎
𝑛
}
∞

𝑛=1
such that

the series∑∞
𝑛=1

𝑎
𝑛
𝑢
𝑛
(𝑥) converges in 𝐿2(0, 1). It is evident that

coefficient space 𝑋(𝑢) is complete under the norm ‖𝑎‖
𝑋(𝑢)

=

sup
𝑛∈N‖∑

𝑛

𝑘=1
𝑎
𝑘
𝑢
𝑘
(𝑥)‖, and a natural basis 𝜀

𝑖
= {𝛿
𝑖𝑗
}
∞

𝑗=1
, 𝑖 ∈ N,

where 𝛿
𝑖𝑗
is a Kronecker delta, forms a𝑋(𝑢) space basis.

A Banach coordinate space 𝑋 of numeric sequences 𝑎 =
{𝑎
𝑛
}
∞

𝑛=1
is said to be solid if 𝑏 ∈ 𝑋 follows from 𝑎 ∈ 𝑋 and

|𝑏
𝑛
| ≤ |𝑎

𝑛
|, 𝑛 ∈ N (the inequality ‖𝑏‖

𝑋
≤ ‖𝑎‖

𝑋
, as it is put by

the precise definition, is not required here).
It is clear that 𝑋(𝑢) space is solid if natural basis is

an unconditional basis for 𝑋(𝑢). The latter follows from
unconditional basicity for a system {𝑢

𝑛
(𝑥)}
∞

𝑛=1
.

Theorem 1. Let {𝑢
𝑛
(𝑥)}
∞

𝑛=1
and {V

𝑛
(𝑥)}
∞

𝑛=1
be a complete

biorthogonal conjugate system of functions that is uniformly
bounded:

∫
1

0

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ 𝐶, ∫
1

0

󵄨󵄨󵄨󵄨V𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 ≤ 𝐶, 𝑛 ∈ N. (1)

Let there be given coefficient spaces 𝑋(𝑢) and 𝑋(V) which are
both solid. Then {𝑢

𝑛
(𝑥)}
∞

𝑛=1
and {V

𝑛
(𝑥)}
∞

𝑛=1
system form a Riesz

basis.

Proof. We consider the series ∑∞
𝑛=1

𝑎
𝑛
𝑢
𝑛
(𝑥) for a numeric

sequence {𝑎
𝑛
}
∞

𝑛=1
∈ ℓ
2 and show that series converges for

almost all choices of signs, that is, series
∞

∑
𝑛=1

𝑎
𝑛
𝑟
𝑛
(𝑡) 𝑢
𝑛
(𝑥) , (2)

where {𝑟
𝑛
(𝑡)}
∞

𝑛=1
is the Rademacher system and converges for

almost all 𝑡 ∈ [0, 1] in 𝐿
2 metrics by variable 𝑥 (e.g., [8,

Chapter 2]).
We use the results from [8] claiming that convergence of

series ∑∞
𝑛=1

𝑓
𝑛
(𝑥) for almost all choices of signs is equivalent

to

(

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑓𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

)

1/2

∈ 𝐿
2

(0, 1) . (3)

For the series considered ∑∞
𝑛=1

𝑎
𝑛
𝑢
𝑛
(𝑥), by Levi’s theorem we

have

∫
1

0

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥 =

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
2

∫
1

0

󵄨󵄨󵄨󵄨𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

𝑑𝑥

≤ 𝐶

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
2

< ∞,

(4)
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meaning

(

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛𝑢𝑛 (𝑥)
󵄨󵄨󵄨󵄨
2

)

1/2

∈ 𝐿
2

(0, 1) . (5)

Convergence of the series∑∞
𝑛=1

𝑎
𝑛
𝑢
𝑛
(𝑥) for almost all choices

of signs is shown.
Now take a fixed 𝑡

0
∈ [0, 1] such that the series

∑
∞

𝑛=1
𝑎
𝑛
𝑟
𝑛
(𝑡
0
)𝑢
𝑛
(𝑥) converges in 𝐿2(0, 1) space. By the solidity

condition for coefficient space 𝑋(𝑢) in 𝐿
2

(0, 1), the series
∑
∞

𝑛=1
𝑎
𝑛
𝑢
𝑛
(𝑥) converges, too.

Thus for any numeric sequence 𝑎 = {𝑎
𝑛
}
∞

𝑛=1
∈ ℓ
2 the

series ∑∞
𝑛=1

𝑎
𝑛
𝑢
𝑛
(𝑥) converges in 𝐿2(0, 1). Then the following

equivalent inequalities are satisfied:
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∞

∑
𝑛=1

𝑎
𝑛
𝑢
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐵

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨
2

, {𝑎
𝑛
}
∞

𝑛=1
∈ ℓ
2

,

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑓, 𝑢𝑛
󵄨󵄨󵄨󵄨
2

≤ 𝐵
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩
2

, 𝑓 ∈ 𝐿
2

(0, 1) .

(6)

This means that {𝑢
𝑛
(𝑥)}
∞

𝑛=1
is Bessel system.

Besselian property for a system {V
𝑛
(𝑥)}
∞

𝑛=1
is proved in

the same way. It is clear that Besselian property for both
biorthogonal conjugate systems {𝑢

𝑛
(𝑥)}
∞

𝑛=1
and {V

𝑛
(𝑥)}
∞

𝑛=1

implies the Riesz basicity for these systems.

Remark 2. Note that in Theorem 1 we can replace the coeffi-
cient space𝑋(𝑢) with𝑋(𝑢) ∩ ℓ2 and𝑋(V) with𝑋(V) ∩ ℓ2.

2. Affine Riesz bases

Let function 𝑢 : R → R have a support supp 𝑢 ⊂ [0, 1].
Using the representation 𝑛 = 2𝑘+𝑗, 𝑘 = 0, 1, . . ., 𝑗 = 0, . . . , 2𝑘−
1 for 𝑛 ∈ N, we assume

𝑢
𝑛
(𝑥) = 𝑢

𝑘,𝑗
(𝑥) = 2

𝑘/2

𝑢 (2
𝑘

𝑥 − 𝑗) . (7)

Besides, we suppose 𝑢
0
(𝑥) = 1, 𝑥 ∈ [0, 1]. System of functions

{𝑢
𝑛
(𝑥)}
∞

𝑛=0
is called an affine system generated by a function

𝑢. Here and elsewhere we assume

𝑢 ∈ 𝐿
2

(0, 1) , ∫
1

0

𝑢 (𝑥) 𝑑𝑥 = 0. (8)

Note that the classic example of an affine system of functions
is the Haar wavelet {ℎ

𝑛
(𝑥)}
∞

𝑛=0
generated by the function

ℎ (𝑥) =

{{{{{{

{{{{{{

{

1, 𝑥 ∈ [0,
1

2
) ,

−1, 𝑥 ∈ [
1

2
, 1) ,

0, 𝑥 ∉ [0, 1) .

(9)

We enumerate the functions of Rademacher system {𝑟
𝑘
}
∞

𝑘=0

𝑟
𝑘
= 2
−𝑘/2

2
𝑘
−1

∑
𝑗=0

ℎ
𝑘,𝑗
, 𝑘 = 0, 1, . . . . (10)

We suppose that an affine system {𝑢
𝑛
(𝑥)}
∞

𝑛=0
generator 𝑢 can

be represented by Rademacher system

𝑢 =

∞

∑
𝑘=0

𝑎
𝑘
𝑟
𝑘
,

∞

∑
𝑘=0

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨
2

< ∞. (11)

In this case we have the following completeness criterion for
a system {𝑢

𝑛
(𝑥)}
∞

𝑛=0
. Let the function

𝑈 (𝑧) =

∞

∑
𝑘=0

𝑎
𝑘
𝑧
𝑘

, |𝑧| < 1, (12)

be analytic in the unit disk with coefficients 𝑎
𝑘
from (11).

Theorem 3 (see [9]). A necessary and sufficient condition for
an affine system {𝑢

𝑛
(𝑥)}
∞

𝑛=0
to be complete in 𝐿2(0, 1) space is

that analytic function 𝑈(𝑧) is outer function.

The following results are true for function 𝑢 in the form
(11).

Theorem 4. System {V
𝑛
(𝑥)}
∞

𝑛=0
that is biorthogonal conjugate

to the affine system {𝑢
𝑛
(𝑥)}
∞

𝑛=0
exists and is complete in 𝐿2(0, 1)

space if 𝑎
0

̸= 0.

Proof. Suppose

𝑉 (𝑧) =
1

𝑈 (𝑧)
=

∞

∑
𝑘=0

𝑏
𝑘
𝑧
𝑘

, (13)

that is,

𝑎
0
𝑏
0
= 1,

𝑘

∑
]=0
𝑎]𝑏𝑘−] = 0, 𝑘 ≥ 1. (14)

Then it follows from the results of [10] that

V
𝑛
= V (𝛼

1
, . . . , 𝛼

𝑘
) =

𝑘

∑
]=0
2
−(𝑘−])/2

𝑏
𝑘−]ℎ (𝛼1, . . . , 𝛼]) , (15)

where 𝑛 ∈ N and 𝑛 = 2
𝑘

+ ∑
𝑘

]=1 𝛼]2
𝑘−] is binary expansion,

ℎ(𝛼
1
, . . . , 𝛼]) = ℎ

𝑚
is the Haar function for 𝑚 = 2

]
+

∑
]
𝜇=1

𝛼
𝜇
2
]−𝜇, and V

0
(𝑥) = 1, 𝑥 ∈ [0, 1]. The explicit

representation (15) shows that V
𝑛
is a Haar polynomial of

degree 𝑛. Hence it follows that the system {V
𝑛
(𝑥)}
∞

𝑛=0
is

complete.

Nowwe can formulate the Riesz basicity test for affine sys-
tem {𝑢

𝑛
(𝑥)}
∞

𝑛=0
with form (11) generator, based onTheorem 1.

Theorem 5. Let analytic function 𝑈(𝑧) have an absolutely
convergent Taylor-series expansion

∞

∑
𝑘=0

󵄨󵄨󵄨󵄨𝑎𝑘
󵄨󵄨󵄨󵄨 < ∞ (16)

and𝑈(𝑧) does not vanish in the closed unit disk (|𝑧| ≤ 1). Then
an affine system of functions {𝑢

𝑛
(𝑥)}
∞

𝑛=0
forms a Riesz basis.
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Proof. By the conditions of the theorem, 𝑈(𝑧) is outer func-
tion. ByTheorem 3, an affine system {𝑢

𝑛
(𝑥)}
∞

𝑛=0
is complete in

𝐿
2

(0, 1) space. ByTheorem 4, biorthogonal conjugate system
{V
𝑛
(𝑥)}
∞

𝑛=0
is complete, too.

Obviously, ‖𝑢
𝑛
‖ ≤ max{1, ‖𝑢‖}. From representation (15)

we get

󵄩󵄩󵄩󵄩V𝑛
󵄩󵄩󵄩󵄩
2

≤

∞

∑
𝑘=0

2
−𝑘󵄨󵄨󵄨󵄨𝑏𝑘

󵄨󵄨󵄨󵄨
2

< ∞, 𝑛 ∈ N. (17)

We need to take into account that by Wiener theorem on
absolutely convergent Taylor series we have

∞

∑
𝑘=0

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 < ∞. (18)

Finally, from results of [11] it follows that 𝑋(𝑢) ∩ ℓ2 = ℓ2 and
𝑋(V)∩ℓ2 = ℓ2, so all the conditions fromTheorem 1 including
the Remark are satisfied.
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We give a molecular characterization of the Hardy space associated with twisted convolution. As an application, we prove the
boundedness of the local Riesz transform on the Hardy space.

1. Introduction

In this paper, we consider the 2𝑛 linear differential operators

𝑍𝑗 =
𝜕

𝜕𝑧𝑗

+
1

4
𝑧𝑗, 𝑍𝑗 =

𝜕

𝜕𝑧𝑗

−
1

4
𝑧𝑗,

on C
𝑛
, 𝑗 = 1, 2, . . . , 𝑛.

(1)

Together with the identity they generate a Lie algebra ℎ𝑛

which is isomorphic to the 2𝑛 + 1 dimensional Heisenberg
algebra. The only nontrivial commutation relations are

[𝑍𝑗, 𝑍𝑗] = −
1

2
𝐼, 𝑗 = 1, 2, . . . , 𝑛. (2)

The operator 𝐿 defined by

𝐿 = −
1

2

𝑛

∑

𝑗=1

(𝑍𝑗𝑍𝑗 + 𝑍𝑗𝑍𝑗) (3)

is nonnegative, self-adjoint, and elliptic. Therefore, it gener-
ates a diffusion semigroup {𝑇𝐿

𝑡 }𝑡>0 = {𝑒
−𝑡𝐿
}𝑡>0. The operators

in (1) generate a family of “twisted translations” 𝜏𝑤 on C𝑛

defined on measurable functions by

(𝜏𝑤𝑓) (𝑧) = exp(1
2

𝑛

∑

𝑗=1

(𝑤𝑗𝑧𝑗 + 𝑤𝑗𝑧𝑗))𝑓 (𝑧)

= 𝑓 (𝑧 + 𝑤) exp( 𝑖
2
Im (𝑧 ⋅ 𝑠𝑤)) .

(4)

The “twisted convolution” of two functions𝑓 and 𝑔 onC𝑛 can
now be defined as

(𝑓 × 𝑔) (𝑧) = ∫

C𝑛
𝑓 (𝑤) 𝜏−𝑤𝑔 (𝑧) 𝑑𝑤

= ∫

C𝑛
𝑓 (𝑧 − 𝑤) 𝑔 (𝑤) 𝜔 (𝑧, 𝑤) 𝑑𝑤,

(5)

where 𝜔(𝑧, 𝑤) = exp((𝑖/2) Im(𝑧 ⋅ 𝑤)). More about twisted
convolution can be found in [1–3].

In [4], the authors defined the Hardy space 𝐻
1
𝐿(C

𝑛
)

associated with twisted convolution. They gave several char-
acterizations of 𝐻1

𝐿(C
𝑛
) via maximal functions, the atomic

decomposition, and the behavior of the local Riesz transform.
As applications, the boundedness of Hömander multipliers
on Hardy spaces is considered in [5]. The “twisted cancella-
tion” and Weyl multipliers were introduced for the first time
in [6]. Recently, Huang andWang [7] defined theHardy space
𝐻

𝑝

𝐿 (C
𝑛
) associated with twisted convolution for 2𝑛/(2𝑛 +

1) < 𝑝 < 1. Huang gave the characterizations of the Hardy
space associated with twisted convolution by the Lusin area
integral function and Littlewood-Paley function in [8] and
established the boundedness of the Weyl multiplier on the
Hardy space associated with twisted convolution by these
characterizations in [9].The purpose of this paper is to give a
molecular characterization for𝐻𝑝

𝐿 (C
𝑛
). As an application, we

prove the boundedness of the local Riesz transform on the
Hardy space𝐻𝑝

𝐿 (C
𝑛
).
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We first give some basic notations about 𝐻𝑝

𝐿 (C
𝑛
). Let B

denote the class of 𝐶∞-functions 𝜑 on C𝑛, supported on the
ball 𝐵(0, 1) such that ‖𝜑‖∞ ≤ 1 and ‖∇𝜑‖∞ ≤ 2. For 𝑡 > 0,
let 𝜑𝑡(𝑧) = 𝑡

−2𝑛
𝜑(𝑧/𝑡). Given 𝜎 > 0, 0 < 𝜎 ≤ +∞, and a

tempered distribution 𝑓, define the grand maximal function

𝑀𝜎𝑓 (𝑧) = sup
𝜑∈B

sup
0<𝑡<𝜎

󵄨󵄨󵄨󵄨𝜑𝑡 × 𝑓 (𝑧)
󵄨󵄨󵄨󵄨 . (6)

Then, the Hardy space𝐻𝑝

𝐿 (C
𝑛
) can be defined by

𝐻
𝑝

𝐿 (C
𝑛
) = {𝑓 ∈ S

󸀠
(C

𝑛
) : 𝑀∞𝑓 ∈ 𝐿

𝑝
(C

𝑛
)} . (7)

For any 𝑓 ∈ 𝐻𝑝

𝐿 (C
𝑛
), define ‖𝑓‖𝐻

𝑝

𝐿
(C𝑛) = ‖𝑀∞𝑓‖𝐿𝑝 .

Definition 1. Let 0 < 𝑝 ≤ 1 ≤ 𝑞 ≤ ∞ and 𝑝 ̸= 𝑞. A function
𝑎(𝑧) is a𝐻𝑝,𝑞

𝐿 -atom for the Hardy space𝐻𝑝

𝐿 (C
𝑛
) associated to

a ball 𝐵(𝑧0, 𝑟) if

(1) supp 𝑎 ⊂ 𝐵(𝑧0, 𝑟);

(2) ‖𝑎‖𝑞 ≤ |𝐵(𝑧0, 𝑟)|
1/𝑞−1/𝑝;

(3) ∫
C𝑛
𝑎(𝑤)𝜔(𝑧0, 𝑤)𝑑𝑤 = 0.

We define the atomic Hardy space𝐻𝑝,𝑞

𝐿 (C𝑛
) to be the set

of all tempered distributions of the form ∑𝑗 𝜆𝑗𝑎𝑗 (the sum
converges in the topology of S󸀠

(C𝑛
)), where 𝑎𝑗 are 𝐻𝑝,𝑞

𝐿 -
atoms and ∑𝑗 |𝜆𝑗|

𝑝
< +∞.

The atomic quasinorm in𝐻𝑝,𝑞

𝐿 (C𝑛
) is defined by

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿-atom = inf

{

{

{

(∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝
}

}

}

, (8)

where the infimum is taken over all decompositions 𝑓 =

∑𝑗 𝜆𝑗𝑎𝑗 and 𝑎𝑗 are𝐻
𝑝,𝑞

𝐿 -atoms.
The following result has been proved in [4, 7].

Proposition 2. Let 2𝑛/(2𝑛 + 1) < 𝑝 ≤ 1. Then, for a tempered
distribution 𝑓 on C𝑛, the following are equivalent:

(i) 𝑀∞𝑓 ∈ 𝐿
𝑝
(C𝑛

);
(ii) for some 𝜎, 0 < 𝜎 < +∞,𝑀𝜎𝑓 ∈ 𝐿

𝑝
(C𝑛

);

(iii) for some radial function 𝜑 ∈ S, such that ∫
C𝑛
𝜑(𝑧)𝑑𝑧 ̸=

0, we have

sup
0<𝑡<1

󵄨󵄨󵄨󵄨𝜑𝑡 × 𝑓 (𝑧)
󵄨󵄨󵄨󵄨 ∈ 𝐿

𝑝
(C

𝑛
) ; (9)

(iv) 𝑓 can be decomposed as 𝑓 = ∑𝑗 𝜆𝑗𝑎𝑗, where 𝑎𝑗 are
𝐻

𝑝,𝑞

𝐿 -atoms and ∑𝑗 |𝜆𝑗|
𝑝
< +∞.

Corollary 3. Let 2𝑛/(2𝑛 + 1) < 𝑝 ≤ 1 and 1 < 𝑞 ≤ ∞. Then,
𝐻

𝑝,𝑞

𝐿 (C𝑛
) = 𝐻

𝑝

𝐿 (C
𝑛
) with equivalent norms.

In order to give the main result of this paper, we need the
dual space of Hardy space𝐻𝑝

𝐿 (C
𝑛
).

Definition 4. Let 0 ≤ 𝛼 < 1/2𝑛; a locally integrable function
𝑓 is said to be in the Campanato type space Λ𝐿

𝛼 if there exists
a constant𝐾 > 0 such that, for every ball 𝐵 = 𝐵(𝑧, 𝑟),

|𝐵|
−𝛼
(∫

𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝜐) − (
1

|𝐵|
∫

𝐵

𝑓 (𝑢) 𝜔 (𝑧, 𝑢) 𝑑𝑢)𝜔 (𝑧, 𝜐)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

×
𝑑𝜐

|𝐵|
)

1/2

≤ 𝐾.

(10)

The norm ‖𝑓‖Λ𝐿
𝛼

of 𝑓 is the least value of 𝐾 for which the
above inequality holds.

The dual space of 𝐻1
𝐿(C

𝑛
) is the BMO type space

BMO𝐿(C
𝑛
) (cf. [4]). Note that Λ𝐿

0 is identified with BMO𝐿.
Let H𝑝,2,𝑎

𝐿 denote the space of finite linear combinations of
𝐻

𝑝,2

𝐿 -atoms, which coincides with 𝐿2
𝑐(C

𝑛
), the space of square

integrable functions with compact support. By Proposition 2,
H

𝑝,2,𝑎

𝐿 is a dense subspace of𝐻𝑝

𝐿 (C
𝑛
). Set

L𝑔 (𝑓) = ∫

C𝑛
𝑓 (𝑧) 𝑔 (𝑧) 𝑑𝑧, 𝑓 ∈H

𝑝,2,𝑎

𝐿 , 𝑔 ∈ 𝐿
2
loc (C

𝑛
) .

(11)

Similar to the classical case in [10], we immediately obtain
the following theorem which proves that Λ𝐿

1/𝑝−1 is the dual
space of𝐻𝑝

𝐿 (C
𝑛
) for 2𝑛/(2𝑛 + 1) < 𝑝 < 1.

Theorem 5. Let 2𝑛/(2𝑛 + 1) < 𝑝 < 1. Then

(a) suppose 𝑔 ∈ Λ𝐿
(1/𝑝)−1; thenL𝑔 given by (11) extends to

a bounded linear functional on𝐻𝑝

𝐿 (C
𝑛
) and satisfies

󵄩󵄩󵄩󵄩󵄩
L𝑔

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩Λ𝐿
(1/𝑝)−1

; (12)

(b) conversely, every bounded linear functional L on
𝐻

𝑝

𝐿 (C
𝑛
) can be realized asL = L𝑔 with 𝑔 ∈ Λ𝐿

(1/𝑝)−1

and
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩Λ𝐿
(1/𝑝)−1

≤ 𝐶 ‖L‖ . (13)

Remark 6. Wemay define the spaceΛ𝐿
(1/𝑝)−1,𝑞󸀠

, 2𝑛/(2𝑛+1) <
𝑝 < 1, 1 ≤ 𝑞󸀠

≤ ∞, by

|𝐵|
1−(1/𝑝)

(∫

𝐵

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓 (𝜐) − (
1

|𝐵|
∫

𝐵

𝑓 (𝑢) 𝜔 (𝑧, 𝑢) 𝑑𝑢)𝜔 (𝑧, 𝜐)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞󸀠

×
𝑑𝜐

|𝐵|
)

1/𝑞󸀠

≤ 𝐾,

(14)

where𝐵 = 𝐵(𝑧, 𝑟).The norm ‖𝑓‖Λ𝐿
(1/𝑝)−1,𝑞

󸀠

of𝑓 is the least value
of𝐾 for which the above inequality holds. Due toTheorem 5,
Λ

𝐿
(1/𝑝)−1,𝑞󸀠

is also identified with the dual space of 𝐻𝑝

𝐿 (C
𝑛
).

The proof is almost the same as that of Theorem 5. Thus, the
space Λ𝐿

(1/𝑝)−1,𝑞󸀠
coincides with Λ𝐿

(1/𝑝)−1 and ‖𝑓‖Λ𝐿
(1/𝑝)−1,𝑞

󸀠

∼

‖𝑓‖Λ𝐿
(1/𝑝)−1

.
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Definition 7. Let 2𝑛/(2𝑛 + 1) < 𝑝 ≤ 1 ≤ 𝑞 ≤ ∞,𝑝 ̸= 𝑞, and
𝜖 > (1/𝑝) − 1. Set 𝑎 = 1 − (1/𝑝) + 𝜖, 𝑏 = 1 − (1/𝑝) + 𝜖. A
function𝑀 ∈ 𝐿

𝑞 is called a 𝐻𝑝,𝑞,𝜖

𝐿 -molecule with the center
𝑧0 if

(1) |𝑧|2𝑛𝑏
𝑀(𝑧) ∈ 𝐿

𝑞,

(2) N(𝑀) = ‖𝑀‖
𝑎/𝑏
𝐿𝑞

‖| ⋅ −𝑧0|
2𝑛𝑏
𝑀‖

1−(𝑎/𝑏)

𝐿𝑞 < ∞,

(3) ∫
C𝑛
𝑀(𝑧)𝜔(𝑧0, 𝑧) 𝑑𝑧 = 0.

Then, we can obtain a molecular characterization of
𝐻

𝑝

𝐿 (C
𝑛
) as follows.

Theorem 8. Given 𝑝, 𝑞, 𝜖 as in Definition 7, then 𝑓 ∈ 𝐻
𝑝

𝐿

if and only if 𝑓 can be written as 𝑓 = ∑𝑗 𝜆𝑗𝑀𝑗, where 𝑀𝑗

are𝐻𝑝,𝑞,𝜖

𝐿 -molecules and ∑𝑗 |𝜆𝑗|
𝑝
< ∞. The sum converges in

𝐻
𝑝

𝐿 norm and also in (Λ𝐿
(1/𝑝)−1)

∗ when 2𝑛/(2𝑛 + 1) < 𝑝 < 1.
Moreover,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝

𝐿

∼
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐻
𝑝,𝑞,𝜖,𝑀

𝐿

= inf
{

{

{

(∑

𝑗

󵄨󵄨󵄨󵄨󵄨
𝜆𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
)

1/𝑝
}

}

}

, (15)

where the infimum is taken over all decompositions of 𝑓 into
𝐻

𝑝,𝑞,𝜖

𝐿 -molecules.

Let 𝜓 be a 𝐶∞-function onC𝑛 with compact support and
such that 𝜓 ≡ 1 on a neighborhood of zero. Define

𝑅𝑗 (𝑧) =

𝑧𝑗

|𝑧|
2𝑛+1

𝜓 (𝑧) , 𝑅𝑗 (𝑧) =

𝑧𝑗

|𝑧|
2𝑛+1

𝜓 (𝑧) , (16)

for 𝑗 = 1, 2, . . . , 𝑛.
We refer to the singular integral operators 𝑅𝑗, 𝑅𝑗 defined

by left twisted convolution with these kernels as the local
Riesz transforms. The terminology is motivated by the fact
that they are essentially the operators which are formally
defined as 𝑍𝑗𝐿

−1/2, 𝑍𝑗𝐿
−1/2, 𝑗 = 1, 2, . . . , 𝑛.

As an application of Theorem 8, we can prove the
following.

Theorem 9. The local Riesz transforms 𝑅𝑗, 𝑅𝑗, 𝑗 = 1, 2, . . . , 𝑛
are bounded on𝐻𝑝

𝐿 (C
𝑛
), where 2𝑛/(2𝑛 + 1) < 𝑝 ≤ 1.

Remark 10. When 𝑝 = 1, Theorem 9 is proved by the con-
nection between𝐻1

𝐿(C
𝑛
) and Hardy space on the Heisenberg

group𝐻1
(H𝑛) (cf. Lemma 4.9 in [4]).

Throughout the paper, we will use 𝐶 to denote a positive
constant, which is independent of main parameters and may
be different at each occurrence. By 𝐵1 ∼ 𝐵2, we mean that
there exists a constant 𝐶 > 1 such that 1/𝐶 ≤ 𝐵1/𝐵2 ≤ 𝐶.

2. Molecule Characterization of 𝐻𝑝

𝐿 (C
𝑛
)

In this section, we prove the main result of this paper. Firstly,
we have the following lemma.

Lemma 11. If 𝑎 is a𝐻𝑝,𝑞

𝐿 -atom for 2𝑛/(2𝑛 + 1) < 𝑝 ≤ 1 ≤ 𝑞 ≤
+∞ supported in 𝐵(𝑧0, 𝑟), then 𝑎 is a𝐻

𝑝,𝑞,𝜀

𝐿 -molecule centered
at 𝑧0 and

N (𝑎) ≤ 𝐶, (17)

where 𝜖 > 0 and 𝐶 is a positive constant that is independent of
𝑎.

Proof. Since

‖𝑎‖𝑞 ≤ |𝐵|
1/𝑞−1/𝑝

= |𝐵|
𝑎−𝑏
, (18)

we get
󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨⋅ − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛𝑏
𝑎(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩𝑞
≤ 𝑟

2𝑛𝑏
‖𝑎‖𝑞 ≤ 𝐶|𝐵|

𝑏
|𝐵|

𝑎−𝑏
= 𝐶|𝐵|

𝑎
. (19)

Therefore,

N (𝑎) ≤ 𝐶|𝐵|
(𝑎/𝑏)(𝑎−𝑏)

|𝐵|
𝑎(1−(𝑎/𝑏))

= 𝐶. (20)

This proves that 𝑎 is a molecule with center at 𝑧0.

The following lemma is the key step for the proof of
Theorem 8.

Lemma 12. If 𝑀 is a 𝐻𝑝,𝑞,𝜖

𝐿 -molecule with center at 𝑧0, then
𝑀 ∈ 𝐻

𝑝,𝑞

𝐿 (C𝑛
) and

‖𝑀‖𝐻
𝑝

𝐿

≤ 𝐶N (𝑀) , (21)

where 𝐶 is independent of𝑀.

Proof. If 𝑞 = 2, let 𝜎 = ‖𝑀‖
1/(2𝑛(𝑎−𝑏))
2 ,𝐸0 = {𝑧 ∈ C𝑛

: |𝑧−𝑧0| ≤

𝜎}, and 𝐸𝑘 = {𝑧 ∈ C𝑛
: 2

𝑘−1
𝜎 < |𝑧 − 𝑧0| ≤ 2

𝑘
𝜎}. Denote

𝑀𝑘 = 𝑀𝜒𝑘, where 𝜒𝑘 is the characteristic function of 𝐸𝑘.
Let

𝑃𝑘 (𝑧) =
1

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

𝑀(𝑢) 𝜔 (𝑧0, 𝑢) 𝑑𝑢𝜔 (𝑧0, 𝑧) 𝜒𝑘 (𝑧) . (22)

Then

∫

C𝑛
(𝑀𝑘 (𝑧) − 𝑃𝑘 (𝑧)) 𝜔 (𝑧0, 𝑧) 𝑑𝑧

= ∫

𝐸
𝑘

𝑀(𝑧) 𝜔 (𝑧0, 𝑧) 𝑑𝑧 − ∫

𝐸
𝑘

𝑀(𝑧) 𝜔 (𝑧0, 𝑧) 𝑑𝑧 = 0.

(23)

Without loss of generality, we can assume that N(𝑀) = 1.
Then

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨⋅ − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛𝑏
𝑀(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩

1−(𝑎/𝑏)

2
= ‖𝑀‖

−𝑎/𝑏
2 . (24)

Therefore,
󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨⋅ − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛((1/2)+𝜖)
𝑀(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩2
= ‖𝑀‖

−𝑎/(𝑏−𝑎)
2 = 𝜎

2𝑛𝑎
. (25)

Let 𝐵𝑘 = {𝑧 ∈ C𝑛
: |𝑧 − 𝑧0| ≤ 2

𝑘
𝜎}. Then

supp (𝑀𝑘 − 𝑃𝑘) ⊆ 𝐸𝑘 ⊆ 𝐵𝑘. (26)
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In the following, we will prove

1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐵
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘 − 𝑃𝑘
󵄨󵄨󵄨󵄨

2
𝑑𝑧 ≤

𝐶

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧. (27)

In fact, by

∫

𝐸
𝑘

(𝑀𝑘 (𝑧) − 𝑃𝑘 (𝑧)) 𝑃𝑘 (𝑧) 𝑑𝑧 = 0, (28)

we have

1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐵
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧) − 𝑃𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧

=
1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐵
𝑘

(𝑀𝑘 (𝑧) − 𝑃𝑘 (𝑧)) (𝑀𝑘 (𝑧) − 𝑃𝑘 (𝑧)) 𝑑𝑧

=
1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐵
𝑘

(𝑀𝑘 (𝑧) − 𝑃𝑘 (𝑧))𝑀𝑘 (𝑧) 𝑑𝑧.

(29)

Since

∫

𝐸
𝑘

𝑀𝑘 (𝑧) 𝑃𝑘 (𝑧) 𝑑𝑧

= ∫

𝐸
𝑘

𝑀𝑘 (𝑧)
1

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

𝑀(𝑢) 𝜔 (𝑧0, 𝑢) 𝑑𝑢𝜔 (𝑧0, 𝑧) 𝑑𝑧

=
1

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

𝑀(𝑢)𝜔 (𝑧0, 𝑢) 𝑑𝑢∫

𝐸
𝑘

𝑀𝑘 (𝑧) 𝜔 (𝑧0, 𝑧) 𝑑𝑧

=
󵄨󵄨󵄨󵄨𝐸𝑘

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
,

(30)

we get

1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐵
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧) − 𝑃𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧

=
1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧 − ∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑃𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧

≤
1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧 ≤

𝐶

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧.

(31)

Therefore, (27) holds true. In particular, we have

1

󵄨󵄨󵄨󵄨𝐵0
󵄨󵄨󵄨󵄨

∫

𝐵
0

󵄨󵄨󵄨󵄨𝑀0(𝑧) − 𝑃0(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧

≤
𝐶

󵄨󵄨󵄨󵄨𝐸0
󵄨󵄨󵄨󵄨

∫

𝐸
0

󵄨󵄨󵄨󵄨𝑀0(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧

≤ 𝐶𝜎
−2𝑛
𝜎

4𝑛((1/2)−(1/𝑝))
= 𝐶

󵄨󵄨󵄨󵄨𝐵0
󵄨󵄨󵄨󵄨

−2/𝑝
.

(32)

For 𝑘 ≥ 1,

1

󵄨󵄨󵄨󵄨𝐵𝑘
󵄨󵄨󵄨󵄨

∫

𝐵
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧) − 𝑃𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧

≤
𝐶

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧)
󵄨󵄨󵄨󵄨

2
𝑑𝑧

=
𝐶

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧)
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛(1+2𝜖)

×
󵄨󵄨󵄨󵄨𝑧 − 𝑧0

󵄨󵄨󵄨󵄨

−2𝑛(1+2𝜖)
𝑑𝑧

≤ 𝐶(2
𝑘
𝜎)

−2𝑛
(2

𝑘−1
𝜎)

−2𝑛(1+2𝜖)

× ∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑀𝑘(𝑧)
󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛(1+2𝜖)
𝑑𝑧

≤ 𝐶𝜎
−4𝑛(1+𝜖)

2
−4𝑘𝑛−4𝑘𝑛𝜖

𝜎
4𝑛𝑎

≤ 𝐶2
−4𝑘𝑛−4𝑘𝑛𝜖−4𝑘𝑛/𝑝

(2
𝑘
𝜎)

−2𝑛/𝑝

= 𝐶2
−4𝑘𝑛𝑎󵄨󵄨󵄨󵄨𝐵𝑘

󵄨󵄨󵄨󵄨

−2/𝑝
,

(33)

where 𝐶 depends on 𝑛, 𝜖. This proves that𝑀𝑘 − 𝑃𝑘 = 𝜆𝑘𝑎𝑘,
where 𝑎𝑘 is a𝐻

𝑝,2

𝐿 -atom supported on 𝐵𝑘 and |𝜆𝑘| ≤ 𝐶2
−2𝑘𝑛𝑎.

Now, we prove that∑∞
𝑘=1 𝑃𝑘(𝑧) has atomic decomposition.

For 𝑘 ≥ 1,

󵄨󵄨󵄨󵄨𝑃𝑘 (𝑧)
󵄨󵄨󵄨󵄨 ≤

1

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

|𝑀 (𝑢)| 𝑑𝑢

=
1

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

∫

𝐸
𝑘

󵄨󵄨󵄨󵄨𝑢 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛𝑏
|𝑀 (𝑢)|

󵄨󵄨󵄨󵄨𝑢 − 𝑧0
󵄨󵄨󵄨󵄨

−2𝑛𝑏
𝑑𝑢

≤ 𝐶(2
𝑘
𝜎)

−2𝑛𝑏 1

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨⋅ − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛𝑏
𝑀(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩2

󵄨󵄨󵄨󵄨𝐸𝑘
󵄨󵄨󵄨󵄨

1/2

≤ 𝐶(2
𝑘
𝜎)

−2𝑛𝑏−𝑛
𝜎

2𝑛𝑎

= 𝐶2
−𝑘𝑛(1+2𝑏)

𝜎
−2𝑛/𝑝

.

(34)

Therefore,

𝑃𝑘 (𝑧) =

∞

∑

𝑙=𝑘+1

(𝑃𝑙−1 (𝑧) − 𝑃𝑙 (𝑧)) . (35)

Let

𝑁
𝑘
=

∞

∑

𝑙=𝑘

∫

𝐸
𝑙

𝑀(𝑢)𝜔 (𝑧0, 𝑢) 𝑑𝑢. (36)

Then,

𝑁
0
=

∞

∑

𝑙=0

∫

𝐸
𝑙

𝑀(𝑢) 𝜔 (𝑧0, 𝑢) 𝑑𝑢

= ∫

C𝑛
𝑀(𝑢)𝜔 (𝑧0, 𝑢) 𝑑𝑢 = 0.

(37)
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Thus, by Abel transform,

∞

∑

𝑘=0

𝑃𝑘 (𝑧) =

∞

∑

𝑘=0

∞

∑

𝑙=𝑘+1

(𝑃𝑙−1 (𝑧) − 𝑃𝑙 (𝑧))

=

∞

∑

𝑘=0

𝑁
𝑘+1

{
󵄨󵄨󵄨󵄨𝐸𝑘

󵄨󵄨󵄨󵄨

−1
𝜔 (𝑧0, 𝑧) 𝜒𝑘 (𝑧)

−
󵄨󵄨󵄨󵄨𝐸𝑘+1

󵄨󵄨󵄨󵄨

−1
𝜔 (𝑧0, 𝑧) 𝜒𝑘+1 (𝑧)} .

(38)

Following from (34), we obtain

󵄨󵄨󵄨󵄨󵄨
𝑁

𝑘+1
{
󵄨󵄨󵄨󵄨𝐸𝑘

󵄨󵄨󵄨󵄨

−1
𝜔 (𝑧0, 𝑧) 𝜒𝑘 (𝑧)

−
󵄨󵄨󵄨󵄨𝐸𝑘+1

󵄨󵄨󵄨󵄨

−1
𝜔 (𝑧0, 𝑧) 𝜒𝑘+1 (𝑧)}

󵄨󵄨󵄨󵄨󵄨

≤ 𝐶2
−2𝑛(𝑘+1)𝜖

𝜎
2𝑛−(2𝑛/𝑝)󵄨󵄨󵄨󵄨𝐵𝑘+1

󵄨󵄨󵄨󵄨

−1

= 𝐶2
−2𝑛(𝑘+1)𝜖

𝜎
2𝑛−(2𝑛/𝑝)

(2
𝑘+1
𝜎)

−1

= 𝐶2
−2𝑛𝑎(𝑘+1)󵄨󵄨󵄨󵄨𝐵𝑘+1

󵄨󵄨󵄨󵄨

−1/𝑝
.

(39)

Let 𝜇𝑘 = 𝐶2
−2𝑛𝑎(𝑘+1) and

𝑏𝑘 (𝑧) = 𝐶
−1
2

2𝑛𝑎(𝑘+1)
𝑁

𝑘+1
{
󵄨󵄨󵄨󵄨𝐸𝑘

󵄨󵄨󵄨󵄨

−1
𝜔 (𝑧0, 𝑧) 𝜒𝑘 (𝑧)

−
󵄨󵄨󵄨󵄨𝐸𝑘+1

󵄨󵄨󵄨󵄨

−1
𝜔 (𝑧0, 𝑧) 𝜒𝑘+1 (𝑧)} .

(40)

Then, 𝑏𝑘 are𝐻
𝑝,∞

𝐿 -atoms, ∑∞
𝑘=0 |𝜇𝑘|

𝑝
< ∞, and

∞

∑

𝑘=0

𝑃𝑘 (𝑧) =

∞

∑

𝑘=0

𝜇𝑘𝑏𝑘 (𝑧) . (41)

Therefore,

𝑀(𝑧) =

∞

∑

𝑘=0

𝜆𝑘𝑎𝑘 (𝑧) +

∞

∑

𝑘=0

𝜇𝑘𝑏𝑘 (𝑧) (42)

holds pointwise, where 𝑎𝑘 are 𝐻𝑝,2

𝐿 -atoms and 𝑏𝑘 are 𝐻𝑝,∞

𝐿 -
atoms, and

∞

∑

𝑘=0

{
󵄨󵄨󵄨󵄨𝜆𝑘
󵄨󵄨󵄨󵄨

𝑝
+
󵄨󵄨󵄨󵄨𝜇𝑘
󵄨󵄨󵄨󵄨

𝑝
} < ∞. (43)

When 𝑝 = 1, it is easy to see that the sum in (42) converges
in 𝐿1.

To prove𝑀 ∈ 𝐻
𝑝,𝑞

𝐿 for 2𝑛/(2𝑛 + 1) < 𝑝 < 1, we need to
show that, for every 𝑔 ∈ Λ𝐿

(1/𝑝)−1,

∫

C𝑛
𝑀(𝑧) 𝑔 (𝑧) 𝑑𝑧

= lim
𝑚 → ∞

𝑚

∑

𝑘=0

∫

C𝑛
{𝜆𝑘𝑎𝑘 (𝑧) + 𝜇𝑘𝑏𝑘 (𝑧)} 𝑔 (𝑧) 𝑑𝑧.

(44)

In fact, (44) implies that (42) holds in S󸀠
(C𝑛

).

For any 𝑧 ∈ C𝑛, there exists 𝑘 ≥ 0 such that 𝑧 ∈ 𝐸𝑘. If
𝑘 = 0, then

𝑀(𝑧) = 𝜆0𝑎0 (𝑧) + 𝜇0𝑏0 (𝑧) . (45)

If 𝑘 ≥ 1, then

𝑀(𝑧) = 𝜆𝑘 (𝑧) 𝑎𝑘 (𝑧) +

𝑘

∑

𝑗=𝑘−1

𝜇𝑗𝑏𝑗 (𝑧) . (46)

Therefore, when |𝑧 − 𝑧0| ≤ 2
𝑚
𝜎,

∞

∑

𝑘=0

(𝜆𝑘𝑎𝑘 (𝑧) + 𝜇𝑘𝑏𝑘 (𝑧))

=

𝑚

∑

𝑘=0

(𝜆𝑘𝑎𝑘 (𝑧) + 𝜇𝑘𝑏𝑘 (𝑧)) = 𝑀 (𝑧) .

(47)

Thus,

∫

{𝑧:|𝑧−𝑧
0
|≤2𝑚𝜎}

𝑚

∑

𝑘=0

(𝜆𝑘𝑎𝑘 (𝑧) + 𝜇𝑘𝑏𝑘 (𝑧)) 𝑔 (𝑧) 𝑑𝑧

= ∫

{𝑧:|𝑧−𝑧
0
|≤2𝑚𝜎}

𝑀(𝑧) 𝑔 (𝑧) 𝑑𝑧.

(48)

Let 𝑚 → ∞; the right side is ∫
C𝑛
𝑀(𝑧)𝑔(𝑧)𝑑𝑧. The left side

is

lim
𝑚 → ∞

𝑚

∑

𝑘=0

∫

{𝑧:|𝑧−𝑧
0
|≤2𝑚𝜎}

(𝜆𝑘𝑎𝑘 (𝑧) + 𝜇𝑘𝑏𝑘 (𝑧)) 𝑔 (𝑧) 𝑑𝑧

= lim
𝑚 → ∞

𝑚

∑

𝑘=0

∫

C𝑛
(𝜆𝑘𝑎𝑘 (𝑧) + 𝜇𝑘𝑏𝑘 (𝑧)) 𝑔 (𝑧) 𝑑𝑧.

(49)

This proves (42) and the case of 𝑞 = 2 for Lemma 12 is proved.
Similarly, the case of 𝑞 ̸= 2 can be proved as the case of 𝑞 = 2.
Lemma 12 is proved.

Proof of Theorem 8. Theorem 8 follows from Lemmas 11 and
12.

3. The Boundedness of Local Riesz
Transform on 𝐻𝑝

𝐿 (C
𝑛
)

In this section, we prove the boundedness of local Riesz
transform on𝐻𝑝

𝐿 (C
𝑛
) by usingTheorem 8.

Proof of Theorem 9. By Theorem 8, it is sufficient to prove
that, for any𝐻𝑝,2

𝐿 -atom 𝑎, 𝑅𝑗(𝑎) is a𝐻
𝑝,2,𝜀

𝐿 -molecule and the
normN(𝑅𝑗(𝑎)) ≤ 𝐶, where 𝐶 is independent of 𝑎.

Assume that supp 𝑎 ⊂ 𝐵(𝑧0, 𝑟); then

∫

C𝑛
𝑅𝑗 (𝑎) (𝑧) 𝜔 (𝑧0, 𝑧) 𝑑𝑧

= ∫

C𝑛
(∫

C𝑛
𝑎 (𝑧 − 𝑢)

𝑢𝑖

|𝑢|
2𝑛+1

𝜓 (𝑢) 𝜔 (𝑧, 𝑢) 𝑑𝑢)

× 𝜔 (𝑧0, 𝑧) 𝑑𝑧
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= ∫

C𝑛

𝑢𝑖

|𝑢|
2𝑛+1

𝜓 (𝑢) (∫

C𝑛
𝑎 (𝑧 − 𝑢) 𝜔 (𝑢 + 𝑧0, 𝑧) 𝑑𝑧)

× 𝜔 (𝑧0, 𝑧) 𝑑𝑢 = 0,

(50)

where the last equality is valid because 𝑎(⋅ − 𝑢) is an atom
supported on 𝐵(𝑢 + 𝑧0, 𝑟). This proves that 𝑅𝑗(𝑎) satisfies
moment condition.

Denote𝑀(𝑧) = 𝑅𝑗(𝑎)(𝑧). Then, we have

‖𝑀‖2 =
󵄩󵄩󵄩󵄩󵄩
𝑅𝑗(𝑎)

󵄩󵄩󵄩󵄩󵄩2
≤ 𝐶‖𝑎‖2

≤ |𝐵|
1/2−1/𝑝

= 𝐶|𝐵|
𝑎−𝑏
.

(51)

Let 𝐵∗
= {𝑧 ∈ C𝑛

: |𝑧 − 𝑧0| ≤ 2𝑟}. Then,

∫

C𝑛

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛(1+2𝜖)
|𝑀(𝑧)|

2
𝑑𝑧

= ∫

𝐵∗

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛(1+2𝜀)
𝑀(𝑧)

2
𝑑𝑧

+ ∫

(𝐵∗)
𝑐

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛(1+2𝜖)
|𝑀(𝑧)|

2
𝑑𝑧 = 𝐼 + 𝐼𝐼.

(52)

For 𝐼,

𝐼 ≤ 𝐶|𝐵|
1+2𝜖

∫

C𝑛
|𝑀(𝑧)|

2
𝑑𝑧 ≤ 𝐶|𝐵|

2+2𝜖−(2/𝑝)
= 𝐶|𝐵|

2𝑎
. (53)

For 𝐼𝐼, since
󵄨󵄨󵄨󵄨󵄨
𝑅𝑗 (𝑎) (𝑧)

󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

C𝑛
𝑎 (𝑢)

𝑧𝑗 − 𝑢𝑖

|𝑧 − 𝑢|
2𝑛+1

𝜓 (𝑧 − 𝑢) 𝜔 (𝑧, 𝑢) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

C𝑛
𝑎 (𝑢) 𝜔 (𝑧0, 𝑢) (

𝑧𝑗 − 𝑢𝑖

|𝑧 − 𝑢|
2𝑛+1

𝜓 (𝑧 − 𝑢)

× 𝜔 (𝑧0 − 𝑧, 𝑢)

−

𝑧𝑗 − 𝑧0,𝑗

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛+1
𝜓 (𝑧 − 𝑧0)

×𝜔 (𝑧0 − 𝑧, 𝑧0) ) 𝑑𝑢

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶∫

C𝑛

󵄨󵄨󵄨󵄨𝑢 − 𝑧0
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛+1
|𝑎 (𝑢)| 𝑑𝑢

≤ 𝐶𝑟|𝐵|
1−1/𝑝 1

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛+1
,

(54)

we get

𝐼𝐼 ≤ 𝐶𝑟
2
|𝐵|

2−2/𝑝
∫

(𝐵∗)
𝑐

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

2𝑛(1+2𝜖)

󵄨󵄨󵄨󵄨𝑧 − 𝑧0
󵄨󵄨󵄨󵄨

4𝑛+2
𝑑𝑧. (55)

Let 0 < 𝜖 < 1/2𝑛. Then

𝐼𝐼 ≤ 𝐶|𝐵|
2+2𝜖−2/𝑝

= 𝐶|𝐵|
2𝑎
. (56)

Therefore,

N (𝑀) = ‖𝑀‖
𝑎/𝑏
2

󵄩󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨⋅ − 𝑧0
󵄨󵄨󵄨󵄨

𝑛(1+2𝜖)
𝑀(⋅)

󵄩󵄩󵄩󵄩󵄩󵄩

1−(𝑎/𝑏)

2

≤ 𝐶|𝐵|
(𝑎/𝑏)(𝑎−𝑏)

|𝐵|
𝑎(1−(𝑎/𝑏))

= 𝐶.

(57)

This completes the proof of Theorem 9.
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We analyze the generalized analytic function space Feynman integral and then defined a modified generalized analytic function
space Feynman integral to explain the physical circumstances. Integration formulas involving the modified generalized analytic
function space Feynman integral are established which can be applied to several classes of functionals.

1. Introduction

Let 𝐶
0
[0, 𝑇] denote the one-parameter Wiener space, that is,

the space of continuous real-valued functions𝑥 on [0, 𝑇]with
𝑥(0) = 0, and let𝑚 denoteWienermeasure. Since the concept
of the Feynman integral was introduced by Feynman and
Kac, many mathematicians studied the “analytic” Feynman
integral of functionals in several classes of functionals [1–
7]. Recently the authors have introduced an approach to
the solutions of the diffusion equation and the Schrödinger
equation via the Fourier-type functionals on Wiener space
[6].

The function space 𝐶
𝑎,𝑏

[0, 𝑇], induced by a generalized
Brownian motion, was introduced by Yeh in [8] and studied
extensively in [9–11]. In [11] the authors have studied the
generalized analytic Feynman integral for functionals in a
very general function space 𝐶

𝑎,𝑏
[0, 𝑇].

In this paper, we present an analysis of the generalized
analytic Feynman integral on function space. We define
a modified generalized analytic function space Feynman
integral (AFSFI) and then explain the physical circumstances
with respect to an anharmonic oscillator using the concept
of the modified generalized analytic Feynman integral on
function space.

The Wiener process used in [1–7] is stationary in time
and is free of drift while the stochastic process used in this

paper, as well as in [9–12], is nonstationary in time, is subject
to a drift 𝑎(𝑡), and can be used to explain the position of the
Ornstein-Uhlenbeck process in an external force field [13].

2. Preliminaries

Let 𝑎(𝑡) be an absolutely continuous real-valued function on
[0, 𝑇] with 𝑎(0) = 0, 𝑎󸀠(𝑡) ∈ 𝐿

2
[0, 𝑇], and let 𝑏(𝑡) be a strictly

increasing, continuously differentiable real-valued function
with 𝑏(0) = 0 and 𝑏

󸀠
(𝑡) > 0 for each 𝑡 ∈ [0, 𝑇].The generalized

Brownian motion process 𝑌 determined by 𝑎(𝑡) and 𝑏(𝑡) is
a Gaussian process with mean function 𝑎(𝑡) and covariance
function 𝑟(𝑠, 𝑡) = min{𝑏(𝑠), 𝑏(𝑡)}. By Theorem 14.2 in [14],
the probability measure 𝜇 induced by 𝑌, taking a separable
version, is supported by 𝐶

𝑎,𝑏
[0, 𝑇] (which is equivalent to the

Banach space of continuous functions 𝑥 on [0, 𝑇]with 𝑥(0) =

0 under the sup norm). Hence, (𝐶
𝑎,𝑏

[0, 𝑇],B(𝐶
𝑎,𝑏

[0, 𝑇]), 𝜇)

is the function space induced by 𝑌 where B(𝐶
𝑎,𝑏

[0, 𝑇]) is
the Borel 𝜎-algebra of 𝐶

𝑎,𝑏
[0, 𝑇]. We then complete this

function space to obtain (𝐶
𝑎,𝑏

[0, 𝑇],W(𝐶
𝑎,𝑏

[0, 𝑇]), 𝜇) where
W(𝐶
𝑎,𝑏

[0, 𝑇]) is the set of all Wiener measurable subsets of
𝐶
𝑎,𝑏

[0, 𝑇].
A subset 𝐴 of 𝐶

𝑎,𝑏
[0, 𝑇] is said to be scale-invariant

measurable provided 𝜌𝐴 ∈ W(𝐶
𝑎,𝑏

[0, 𝑇]) for all 𝜌 > 0, and a
scale-invariantmeasurable set𝑁 is said to be a scale-invariant
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null set provided 𝜇(𝜌𝑁) = 0 for all 𝜌 > 0. A property that
holds except on a scale-invariant null set is said to hold scale-
invariant almost everywhere(s-a.e.) [15].

Let 𝐿2
𝑎,𝑏

[0, 𝑇] be the Hilbert space of functions on [0, 𝑇]

which are Lebesgue measurable and square integrable with
respect to the Lebesgue Stieltjes measures on [0, 𝑇] induced
by 𝑎(⋅) and 𝑏(⋅); that is,

𝐿
2

𝑎,𝑏
[0, 𝑇] = {V : ∫

𝑇

0

V2 (𝑠) 𝑑𝑏 (𝑠) < ∞,

∫

𝑇

0

V2 (𝑠) 𝑑 |𝑎| (𝑠) < ∞} ,

(1)

where |𝑎|(𝑡) denotes the total variation of the function 𝑎 on
the interval [0, 𝑡].

For 𝑢, V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇], let

(𝑢, V)
𝑎,𝑏

= ∫

𝑇

0

𝑢 (𝑡) V (𝑡) 𝑑 [𝑏 (𝑡) + |𝑎| (𝑡)] . (2)

Then (⋅, ⋅)
𝑎,𝑏

is an inner product on 𝐿
2

𝑎,𝑏
[0, 𝑇] and ‖𝑢‖

𝑎,𝑏
=

√(𝑢, 𝑢)
𝑎,𝑏

is a norm on 𝐿
2

𝑎,𝑏
[0, 𝑇]. In particular note that

‖𝑢‖
𝑎,𝑏

= 0 if and only if 𝑢(𝑡) = 0 a.e. on [0, 𝑇]. Furthermore
(𝐿
2

𝑎,𝑏
[0, 𝑇], ‖ ⋅ ‖

𝑎,𝑏
) is a separable Hilbert space. Note that all

functions of bounded variation on [0, 𝑇] are elements of
𝐿
2

𝑎,𝑏
[0, 𝑇]. Also note that if 𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡, then

𝐿
2

𝑎,𝑏
[0, 𝑇] = 𝐿

2
[0, 𝑇]. In fact,

(𝐿
2

𝑎,𝑏
[0, 𝑇] , ‖⋅‖𝑎,𝑏) ⊂ (𝐿

2

0,𝑏
[0, 𝑇] , ‖⋅‖0,𝑏)

= (𝐿
2
[0, 𝑇] , ‖⋅‖2)

(3)

since the two norms ‖ ⋅ ‖
0,𝑏

and ‖ ⋅ ‖
2
are equivalent.

For V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇] and 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇] we let

⟨V, 𝑥⟩ = ∫

𝑇

0

V (𝑡) 𝑑𝑥 (𝑡) (4)

denote the Paley-Wiener-Zygmund (PWZ) stochastic inte-
gral. Following are some facts about the PWZ stochastic
integral [10–12].

(1) The PWZ stochastic integral ⟨V, 𝑥⟩ is essentially inde-
pendent of the complete orthonormal set {𝜙

𝑗
}
∞

𝑗=1
.

(2) If V is of bounded variation on [0, 𝑇], then the PWZ
stochastic integral ⟨V, 𝑥⟩ equals the Riemann-Stieltjes
integral ∫𝑇

0
V(𝑡) 𝑑𝑥(𝑡) for s-a.e. 𝑥 ∈ 𝐶

𝑎,𝑏
[0, 𝑇].

(3) The PWZ integral has the expected linearity proper-
ties.

(4) For all V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇], ⟨V, 𝑥⟩ is aGaussian randomvari-

able with mean ∫
𝑇

0
V(𝑠) 𝑑𝑎(𝑠) and variance ∫

𝑇

0
V2(𝑠)

𝑑𝑏(𝑠).

Throughout this paper we will assume that each func-
tional 𝐹 : 𝐶

𝑎,𝑏
[0, 𝑇] → C we consider is scale-invariant

measurable and that

∫
𝐶
𝑎,𝑏
[0,𝑇]

󵄨󵄨󵄨󵄨𝐹 (𝜌𝑥)
󵄨󵄨󵄨󵄨 𝑑𝜇 (𝑥) < ∞ (5)

for each 𝜌 > 0.
We finish this section by stating the notion of generalized

analytic function space Feynman integral, cf. [10, 11].

Definition 1. Let C denote the complex numbers, let C
+

=

{𝜆 ∈ C : Re(𝜆) > 0}, and let C̃
+

= {𝜆 ∈ C :

𝜆 ̸= 0 and Re(𝜆) ≥ 0}. Let 𝐹 : 𝐶
𝑎,𝑏

[0, 𝑇] → C be a
measurable functional such that, for each 𝜆 > 0, the function
space integral

𝐽 (𝜆) = ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥) 𝑑𝜇 (𝑥) (6)

exists. If there exists a function 𝐽
∗
(𝜆) analytic in C

+
such

that 𝐽∗(𝜆) = 𝐽(𝜆) for all 𝜆 > 0, then 𝐽
∗
(𝜆) is defined to be

the analytic function space integral of 𝐹 over 𝐶
𝑎,𝑏

[0, 𝑇] with
parameter 𝜆, and for 𝜆 ∈ C

+
we write

𝐽
∗
(𝜆) = ∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) . (7)

Let 𝑞 ̸= 0 be a real number and let 𝐹 be a functional such
that 𝐽∗(𝜆) exists for all 𝜆 ∈ C

+
. If the following limit exists,

we call it the generalized AFSFI of 𝐹with parameter 𝑞 and we
write

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = lim
𝜆→−𝑖𝑞

∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) , (8)

where 𝜆 → −𝑖𝑞 through values in C
+
.

3. Analogue of the Generalized AFSFI

The differential equation

𝜕

𝜕𝑡
𝜓 (𝑢, 𝑡) =

1

2𝜆
Δ𝜓 (𝑢, 𝑡) − 𝑉 (𝑢) 𝜓 (𝑢, 𝑡) (9)

is called the diffusion equation with initial condition
𝜓(𝑢, 0) = 𝜑(𝑢), where Δ is the Laplacian and 𝑉 is an
appropriate potential function. Many mathematicians have
considered the Wiener integral of functionals of the form

𝐹 (𝜆
−1/2

𝑥 + 𝑢) , (10)

where 𝑢 is a real number. It is a well-known fact that the
Wiener integral of the functional having the form

exp{−∫

𝑇

0

𝑉(𝜆
−1/2

𝑥 (𝑡) + 𝑢) 𝑑𝑡} 𝜑 (𝜆
−1/2

𝑥 (𝑇) + 𝑢) (11)

forms the solution of the diffusion equation (9) by the
Feynman-Kac formula. If time is replaced by an imaginary
time, this diffusion equation becomes the Schrödinger equa-
tion

𝑖
𝜕

𝜕𝑡
𝜓 (𝑢, 𝑡) = −

1

2
Δ𝜓 (𝑢, 𝑡) + 𝑉 (𝑢) 𝜓 (𝑢, 𝑡) (12)
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with the initial condition 𝜓(𝑢, 0) = 𝜑(𝑢). Hence the solution
to the Schrödinger equation (12) can be obtained via the ana-
lytic Feynman integral. An approach to finding the solution
to the diffusion equation (9) and the Schrödinger equation
(12) involves the harmonic oscillator 𝑉(𝑢) = (𝑘/2)𝑢

2; for
a more detailed study, see [6]. However, it can be difficult
to obtain the solution for the diffusion equation (9) and
the Schrödinger equation (12) with respect to anharmonic
oscillators.

In this paper, we consider the following functional:

exp{−∫

𝑇

0

𝑉(𝜆
−1/2

𝑥 (𝑡) + 𝑐 (𝜆) ℎ (𝑡)) 𝑑𝑡}

× 𝜑 (𝜆
−1/2

𝑥 (𝑇) + 𝑐 (𝜆) ℎ (𝑡)) ,

(13)

where 𝑐(𝜆) is a real numberwith respect to 𝜆 and ℎ(𝑡) is a real-
valued function on [0, 𝑇]. When ℎ(𝑡) = 𝑢 for all 𝑡 ∈ [0, 𝑇]

and 𝑐(𝜆) is independent of the value 𝜆, the functional in (13)
reduces the functional in (11). That is to say, our functional
(13) is more generalized compared with the functional in (11).
Hence, all results and formulas for the functional in (11) are
special cases of our results and formulas.

We will now explain the importance of the functionals
given by (13). For a positive real number 𝑘, when the potential
function is𝑉(𝑢) = (𝑘/2)𝑢

2, the diffusion equation (9) is called
the diffusion equation for a harmonic oscillator with 𝑉. For
𝜉 ∈ R,

𝑉
1
(𝑢) ≡ 𝑉 (𝑢 + 𝜉) =

𝑘

2
(𝑢 + 𝜉)

2 (14)

is just the translation of 𝑉; thus, it is called the diffusion
equation for a harmonic oscillator with 𝑉

1
. However, for an

appropriate function ℎ(𝑡) on [0, 𝑇],

𝑉
2
(𝑢) ≡ 𝑉 (𝑢 + ℎ (𝑢)) =

𝑘

2
(𝑢 + ℎ(𝑢))

2 (15)

may be an anharmonic oscillator. For example, consider the
following.

(1) If ℎ(𝑡) = 𝑢
2 on [0, 𝑇], then

𝑉
3
(𝑢) =

𝑘

2
(𝑢
2
+ 2𝑢
3
+ 𝑢
4
) . (16)

In this case, the diffusion equation (9) is called the
diffusion equation for anharmonic oscillator with 𝑉

3

because it contains the “𝑢3-term.”This means that the
status of the harmonic oscillator can be exchanged
for the status of the anharmonic oscillator under
certain physical circumstances. We can explain this
phenomenon by considering the Wiener integral of
the functional in (13).

(2) For a real number 𝛾, if ℎ(𝑡) = −𝑢 + √𝑢2(𝑢2 − 𝛾2) on
[0, 𝑇], then

𝑉
4
(𝑢) =

𝑘

2
𝑢
2
(𝑢
2
− 𝛾
2
) . (17)

In this case, the diffusion equation (9) is called the
diffusion equation for double-well potential with 𝑉

4
.

As such, it is a harmonic oscillator.

(3) Furthermore, we see that, for V ∈ 𝐿
2

𝑎,𝑏
[0, 𝑇], ℎ ∈

𝐶
𝑎,𝑏

[0, 𝑇], and 𝑢 ∈ R,

⟨V, 𝑥 + 𝑢⟩ = ⟨V, 𝑥⟩ ,

⟨V, 𝑥 + ℎ⟩ = ⟨V, 𝑥⟩ + ⟨V, ℎ⟩
(18)

provided ⟨V, ℎ⟩ ̸= 0.Thus, the functionals presented in
this paper are more meaningful than the functionals
given in previous papers [6, 11]. This also has impli-
cations regarding the generalizations of our research
observations.

We are now ready to state the definition of the modified
generalized AFSFI.

Definition 2. Let ℎ ∈ 𝐶
𝑎,𝑏

[0, 𝑇] be given. Let 𝐹 : 𝐶
𝑎,𝑏

[0, 𝑇] →

C be such that, for each 𝜆 > 0, the function space integral

𝐽 (𝜆) = ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥 + 𝑐 (𝜆) ℎ) 𝑑𝜇 (𝑥) (19)

exists for all 𝜆 > 0 where 𝑐(𝜆) is a nonnegative real number
which depends on 𝜆. If there exists a function 𝐽

∗
(𝜆) analytic

in C
+
such that 𝐽

∗
(𝜆) = 𝐽(𝜆) for all 𝜆 > 0, then 𝐽

∗
(𝜆) is

defined to be the modified analytic function space integral of
𝐹 over 𝐶

𝑎,𝑏
[0, 𝑇] with parameter 𝜆, and for 𝜆 ∈ C

+
we write

𝐽
∗
(𝜆) = ∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) . (20)

Let 𝑞 ̸= 0 be a real number and let 𝐹 be a functional such

that ∫𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹(𝑥) 𝑑𝜇(𝑥) exists for all 𝜆 ∈ C
+
. If the following

limit exists, we call it the modified generalized AFSFI of 𝐹
with parameter 𝑞 and we write

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = lim
𝜆→−𝑖𝑞

∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) , (21)

where 𝜆 approaches −𝑖𝑞 through values in C
+
.

Remark 3. We have the following assertions with respect to
the modified generalized AFSFI.

(1) If ℎ(𝑡) ≡ 0 on [0, 𝑇] or 𝑐(𝜆) = 0, then we can write

∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = ∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) ,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) = ∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥) .

(22)

(2) In the setting of classical Wiener space (in our
research, when 𝑎(𝑡) ≡ 0 and 𝑏(𝑡) = 𝑡 on [0, 𝑇]), our
modified generalized AFSFI, the generalized AFSFI,
and the analytic Feynman integral coincide. Hence all
results and formulas in [2, 3, 5, 6, 16] are corollaries of
our results and formulas in this paper.

We conclude this section by listing several integration for-
mulas for simple functionals to compare with the generalized
AFSFI and the modified generalized AFSFI. For all nonzero
real number 𝑞, we have Tables 1 and 2.
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Table 1: Modified generalized AFSFI (𝑗 = 1, 2).

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
, ℎ

𝐶
𝑎, 𝑏
[0, 𝑇]

𝐹
𝑗
(𝑥) 𝑑𝜇 (𝑥)

𝐹
1
(𝑥) = 𝑥 (𝑇) (

𝑖

𝑞
)

1/2

𝑎 (𝑇) + 𝑐 (𝑞) ℎ (𝑇)

𝐹
2
(𝑥) = 𝑒

𝑥(𝑇) exp{(
𝑖

𝑞
)

1/2

𝑎 (𝑇) +
𝑖

2𝑞
𝑏 (𝑇) + 𝑐 (𝑞) ℎ (𝑇)}

Table 2: Generalized AFSFI (𝑗 = 1, 2).

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎, 𝑏
[0, 𝑇]

𝐹
𝑗
(𝑥) 𝑑𝜇 (𝑥)

𝐹
1
(𝑥) = 𝑥 (𝑇) (

𝑖

𝑞
)

1/2

𝑎 (𝑇)

𝐹
2
(𝑥) = 𝑒

𝑥(𝑇) exp{(
𝑖

𝑞
)

1/2

𝑎 (𝑇) +
𝑖

2𝑞
𝑏 (𝑇)}

4. Some Properties for the Modified
Generalized AFSFI

In this section we establish a Fubini theorem for themodified
analytic function space integrals and the modified general-
ized AFSFIs for functionals on 𝐶

𝑎,𝑏
[0, 𝑇]. We also use these

Fubini theorems to establish various modified generalized
analytic Feynman integration formulas.

First, we define a function to simply express many results
and formulas in this paper. For 𝑛 ≥ 2, define a function 𝐻

𝑛
:

C̃𝑛
+

→ C̃
+
by

𝐻
𝑛
(𝑧
1
, . . . , 𝑧

𝑛
) =

𝑛

∑

𝑗=1

𝑧
−1/2

𝑗
− (

𝑛

∑

𝑗=1

𝑧
−1

𝑗
)

1/2

, (23)

where ∑
𝑛

𝑗=1
𝑧
−1/2

𝑗
̸= 0 and ∑

𝑛

𝑗=1
𝑧
−1

𝑗
̸= 0. Note that 𝐻

𝑛
is a

symmetric function for all 𝑛 = 2, 3, . . .. In this paper we
will assume that, for all (𝑧

1
, . . . , 𝑧

𝑛
) ∈ C̃𝑛

+
and (∑

𝑛

𝑗=1
𝑧
−1

𝑗
)
1/2,

𝑛 = 1, 2, . . ., and 𝑧
−1/2

𝑗
, 𝑗 = 1, 2, . . . , 𝑛, are always chosen to

have positive real parts.
In our first theorem, we show that the modified general-

ized AFSFIs are commutative.

Theorem 4. Let ℎ
1
and ℎ

2
be elements of 𝐶

𝑎,𝑏
[0, 𝑇] and let 𝐹

be a functional defined on 𝐶
𝑎,𝑏

[0, 𝑇] such that

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

󵄨󵄨󵄨󵄨𝐹 (𝛾𝑥 + 𝛽𝑦 + 𝑐 (𝛾) ℎ
1
+ 𝑐 (𝛽) ℎ

2
)
󵄨󵄨󵄨󵄨

× 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦) < ∞,

(24)

for all nonzero real numbers 𝛾 and 𝛽. Then for all 𝑞
1
, 𝑞
2
∈ R −

{0},

∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) ,

(25)

where ≐ means that if either side exists, both sides exist and
equality holds.

Proof. First, using the symmetric property, for all 𝜆, 𝛽 > 0,

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥 + 𝛽
−1/2

𝑦 + 𝑐 (𝜆) ℎ
1

+ 𝑐 (𝛽) ℎ
2
) 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦)

= ∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝛽
−1/2

𝑦 + 𝜆
−1/2

𝑥 + 𝑐 (𝛽) ℎ
2

+ 𝑐 (𝜆) ℎ
1
) 𝑑 (𝜇 × 𝜇) (𝑦, 𝑥) .

(26)

This can be analytically continued in 𝜆 and 𝛽 for (𝜆, 𝛽) and so
we have, for all (𝜆, 𝛽) ∈ C

+
× C
+
,

∫

𝑎𝑛
𝑐(𝛽)

𝛽
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝑐(𝛽)

𝛽
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) .

(27)

Next, let 𝐸 be a subset of C̃
+

× C̃
+
containing the point

(−𝑖𝑞
1
, −𝑖𝑞
2
) and it is such that (𝜆, 𝛽) ∈ 𝐸 implies that 𝜆+𝛽 ̸= 0.

Note that the function

H (𝜆, 𝛽) ≡ ∫

𝑎𝑛
𝑐(𝛽)

𝛽
,ℎ
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝑐(𝜆)

𝜆
,ℎ
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑦 + 𝑧) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑧)

(28)

is continuous on 𝐸 and is uniformly continuous on 𝐸

provided 𝐸 is compact.Then by the continuity ofH and (27),
we can establish (25) as desired.

The following theorem was established in [12, 17]. For-
mula (29) is called the Fubini theorem with respect to the
function space integrals.

Theorem 5. Let 𝐹 be as in Theorem 4 above. Then

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝛾𝑥 + 𝛽𝑦) 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹(√𝛾2 + 𝛽2𝑧

+ (𝛾 + 𝛽 − √𝛾2 + 𝛽2) 𝑎) 𝑑𝜇 (𝑧)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹(√𝛾2 + 𝛽2𝑧 + 𝐻
2
(𝛾
−2
, 𝛽
−2
) 𝑎) 𝑑𝜇 (𝑧) .

(29)
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To establish Theorem 7, we need the following lemma.

Lemma6. Let𝐹 be as inTheorem4 above.Then for all (𝜆, 𝛽) ∈

C
+
× C
+
with 𝜆 + 𝛽 ̸= 0,

∫

𝑎𝑛
𝛽

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛
𝜆

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(30)

where 𝛾 = 𝜆𝛽/(𝜆 + 𝛽) and 𝑐(𝛾) = 𝐻
2
(𝜆, 𝛽).

Proof. Using (29), it follows that for 𝜆 > 0 and 𝛽 > 0

∫
𝐶
2

𝑎,𝑏
[0,𝑇]

𝐹 (𝜆
−1/2

𝑥 + 𝛽
−1/2

𝑦) 𝑑 (𝜇 × 𝜇) (𝑥, 𝑦)

= ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹(√𝜆−1 + 𝛽−1𝑧 + 𝐻
2
(𝜆, 𝛽) 𝑎) 𝑑𝜇 (𝑧) .

(31)

This last expression is defined for 𝜆 > 0 and 𝛽 > 0. For
𝛽 > 0, it can be analytically continued in 𝜆 ∈ C

+
. Also for

𝜆 > 0, it can be analytically continued in 𝛽 ∈ C
+
. Therefore

since 𝜆 ∈ C
+
and 𝛽 ∈ C

+
implies that 𝜆𝛽/(𝜆 + 𝛽) ∈ C

+
, we

conclude that the last expression in proof of Lemma 6 can be
analytically continued into C

+
to equal the analytic function

space integral

∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) , (32)

which completes the proof of Lemma 6 as desired.

The following theorem is the main result with respect to
the modified generalized AFSFI.

Theorem7. Let𝐹 be as in Lemma6 above.Then for all 𝑞
1
, 𝑞
2
∈

R − {0} with 𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
3
)

𝑞
3
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(33)

where 𝑞
3
= 𝑞
1
𝑞
2
/(𝑞
1
+ 𝑞
2
) and 𝑐(𝑞

3
) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
).

Proof. First note that, for all 𝑞
1
, 𝑞
2
∈ R−{0}with 𝑞

1
+𝑞
2

̸= 0, if
𝜆 → −𝑖𝑞

1
and 𝛽 → −𝑖𝑞

2
, then 𝜆𝛽/(𝜆+𝛽) → −𝑖(𝑞

1
𝑞
2
/(𝑞
1
+

𝑞
2
)). Now using this fact and (30) it follows that

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ lim
𝛽→−𝑖𝑞

2

lim
𝜆→−𝑖𝑞

1

∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧)

≐ lim
𝜆𝛽/(𝜆+𝛽)→−𝑖(𝑞1𝑞2/(𝑞1+𝑞2))

∫

𝑎𝑛
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
3
)

𝑞
3
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(34)

where 𝛾 and 𝑐(𝛾) are as in Lemma 6. Hence we complete the
proof as desired.

Equations (35)–(37) below follow bymathematical induc-
tion andTheorem 7 above.

Corollary 8. Let 𝐹 be as inTheorem 7 above.Then one has the
following assertions.

(1) For all 𝑞 ∈ R − {0},

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞/2
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(35)

where 𝑐(𝑞) = 𝐻
2
(−𝑖𝑞, −𝑖𝑞).

(2) For all 𝑞
1
, . . . , 𝑞

𝑛
∈ R − {0} with ∑

𝑘

𝑗=1
(𝑞
1
. . . 𝑞
𝑘
/𝑞
𝑗
) ̸= 0

for 𝑘 = 2, . . . , 𝑛,

∫

𝑎𝑛𝑓
𝑞𝑛

𝐶
𝑎,𝑏
[0,𝑇]

⋅ ⋅ ⋅ ∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
) 𝑑 (𝜇 × ⋅ ⋅ ⋅ × 𝜇) ( ⃗𝑥)

≐ ∫

𝑎𝑛𝑓
𝑐(𝛽𝑛)

𝛽𝑛

,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(36)

where ⃗𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
), 𝛽
𝑛
= 𝑞
1
. . . 𝑞
𝑛
/∑
𝑛

𝑗=1
(𝑞
1
. . . 𝑞
𝑛
/

𝑞
𝑗
), and 𝑐(𝛽

𝑛
) = 𝐻

𝑛
(−𝑖𝑞
1
, . . . , −𝑖𝑞

𝑛
). Furthermore,

∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

⋅ ⋅ ⋅ ∫

𝑎𝑛𝑓
𝑞

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥
1
+ ⋅ ⋅ ⋅ + 𝑥

𝑛
) 𝑑 (𝜇 × ⋅ ⋅ ⋅ × 𝜇) ( ⃗𝑥)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞/𝑛)

𝑞/𝑛
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(37)

where 𝑐(𝑞/𝑛) = 𝐻
2
(−𝑖𝑞, . . . , −𝑖𝑞).

Next we establish some integration formulas with respect
to the modified generalized AFSFIs.

(1) A formula showing that the double modified gener-
alized AFSFIs can be expressed by just one modified
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generalized AFSFI. For all 𝑞
1
, 𝑞
2

∈ R − {0} with
𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
1
,𝑞
2
)

𝑞
1
𝑞
2
/(𝑞
1
+𝑞
2
)
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(38)

where 𝑐(𝑞
1
, 𝑞
2
) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
) + 𝑐(𝑞

1
) + 𝑐(𝑞

2
).

Furthermore, if 𝑐(𝑞
1
) + 𝑐(𝑞

2
) = −𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
), then

∫

𝑎𝑛𝑓
𝑐(𝑞
2
)

𝑞
2
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑞
1
𝑞
2
/(𝑞
1
+𝑞
2
)

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) .

(39)

(2) A relationship between the modified generalized
AFSFI and the generalized AFSFI. For all 𝑞

1
, 𝑞
2

∈

R − {0} with 𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑐(𝑞
3
)

𝑞
3
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧) ,

(40)

where 𝑞
3
= 𝑞
1
𝑞
2
/(𝑞
1
+𝑞
2
) and 𝑐(𝑞

3
) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
)+

𝑐(𝑞
1
).

(3) A formula relating the modified generalized AFSFI
and the generalized AFSFI. For all 𝑞

1
, 𝑞
2
∈ R − {0},

∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

≐ ∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑐(𝑞
1
)

𝑞
1
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥))𝑑𝜇 (𝑦) .

(41)

5. Examples

In this section, we provide several brief examples in which we
apply our formulas and results.

5.1. Banach Algebra S(𝐿
2

𝑎,𝑏
[0,𝑇]). Let 𝑀(𝐿

2

𝑎,𝑏
[0, 𝑇]) be the

space of complex-valued, countably additive Borel measures
on 𝐿
2

𝑎,𝑏
[0, 𝑇]. The Banach algebra S(𝐿

2

𝑎,𝑏
[0, 𝑇]) consists of

those functionals 𝐹 on 𝐶
𝑎,𝑏

[0, 𝑇] expressible in the form

𝐹 (𝑥) = ∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp {𝑖 ⟨V, 𝑥⟩} 𝑑𝑓 (V) (42)

for s-a.e. 𝑥 ∈ 𝐶
𝑎,𝑏

[0, 𝑇] where the associated measure 𝑓 is an
element of𝑀(𝐿

2

𝑎,𝑏
[0, 𝑇]).

Example 1. Let 𝑞
0
be a fixed nonzero real number. Let

𝐹 ∈ S(𝐿
2

𝑎,𝑏
[0, 𝑇]) be given by (42) above. Suppose that

corresponding measure 𝑓 of 𝐹 satisfies the condition

∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp
{{

{{

{

4

√2
󵄨󵄨󵄨󵄨𝑞0

󵄨󵄨󵄨󵄨

∫

𝑇

0

|V (𝑠)| 𝑑 |𝑎| (𝑠)

}}

}}

}

󵄨󵄨󵄨󵄨𝑑𝑓 (V)󵄨󵄨󵄨󵄨 < ∞.

(43)

Then for all nonzero real number 𝑞 with |𝑞| ≥ |𝑞
0
|,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥)

= ∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp{ −
𝑖

2𝑞
(V2, 𝑏󸀠)

+𝑖 (𝑐 (𝑞) + (
𝑖

𝑞
)

1/2

)(V, 𝑎󸀠)} 𝑑𝑓 (V) ,

(44)

where

(V, 𝑎󸀠) = ∫

𝑇

0

V (𝑡) 𝑑𝑎 (𝑡) , (V2, 𝑏󸀠) = ∫

𝑇

0

V2 (𝑡) 𝑑𝑏 (𝑡) .

(45)

Next, using Theorem 7, we can compute the double
generalized AFSFIs of 𝐹 ∈ S(𝐿

2

𝑎,𝑏
[0, 𝑇]) by just one modified

generalized AFSFI. That is to say, for all 𝑞
1
, 𝑞
2

∈ R with
|𝑞
1
| ≥ |𝑞
0
|, |𝑞
2
| ≥ |𝑞
0
| and 𝑞

1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

= ∫

𝑎𝑛𝑓
𝑐(𝛾)

𝛾
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑧) 𝑑𝜇 (𝑧)

= ∫
𝐿
2

𝑎,𝑏
[0,𝑇]

exp{−
𝑖

2
(

1

𝑞
1

+
1

𝑞
2

) (V2, 𝑏󸀠)

+ 𝑖 ((
𝑖

𝑞
1

)

1/2

+ (
𝑖

𝑞
2

)

1/2

)

× (V, 𝑎󸀠) } 𝑑𝑓 (V) ,

(46)

where 𝛾 = 𝑞
1
𝑞
2
/(𝑞
1

+ 𝑞
2
) and 𝑐(𝛾) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
).

Furthermore the last expression in (46) equals the expression

∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) . (47)

5.2.The Fourier Transform of a Complex-ValuedMeasure. For
given 𝑚 = (𝑚

1
, . . . , 𝑚

𝑛
) ∈ R𝑛 and ⃗𝜎2 = (𝜎

2

1
, . . . , 𝜎

2

𝑛
) ∈ R𝑛
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with 𝜎
2

𝑗
> 0, 𝑗 = 1, . . . , 𝑛, let ]

𝑚,
⃗
𝜎
2
be the Gaussian measure

given by

]
𝑚,
⃗
𝜎
2
(𝐵) = (

𝑛

∏

𝑗=1

2𝜋𝜎
2

𝑗
)

−1/2

∫
𝐵

exp
{

{

{

−

𝑛

∑

𝑗=1

(𝑢
𝑗
− 𝑚
𝑗
)
2

2𝜎
2

𝑗

}

}

}

𝑑 ⃗𝑢,

(48)

where 𝐵 ∈ B(R𝑛). Then ]
𝑚,
⃗
𝜎
2
is a complex-valued Borel

measure on R𝑛 and

]̂
𝑚,
⃗
𝜎
2
( ⃗𝑢) = exp

{

{

{

−
1

2

𝑛

∑

𝑗=1

𝜎
2

𝑗
𝑢
2

𝑗
+ 𝑖

𝑛

∑

𝑗=1

𝑚
𝑗
𝑢
𝑗

}

}

}

, (49)

where ]̂
𝑚,
⃗
𝜎
2
is the Fourier transform of the Gaussian measure

]
𝑚,
⃗
𝜎
2
.

Example 2. Let {𝛼
1
, . . . , 𝛼

𝑛
} be any orthonormal set in

𝐿
2

𝑎,𝑏
[0, 𝑇] and let 𝐹 : 𝐶

𝑎,𝑏
[0, 𝑇] → R𝑛 be the functional

defined by

𝐹 (𝑥) = ]̂
𝑚,
⃗
𝜎
2
(⟨𝛼
1
, 𝑥⟩ , . . . , ⟨𝛼

𝑛
, 𝑥⟩) , (50)

where Var[⟨𝛼
𝑗
, 𝑥⟩
2
] = 1 for all 𝑗 = 1, 2, . . . , 𝑛. Then for all

nonzero real number 𝑞,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,𝑎

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥) 𝑑𝜇 (𝑥)

= (

𝑛

∏

𝑗=1

1

2(1 − (−𝑖𝑞)
−1/2

𝜎
2

𝑗
)

)

1/2

× exp
{

{

{

𝑛

∑

𝑗=1

((−𝑖𝑞)
−1/2

× [𝑖4𝐴
𝑗
𝑚
𝑗
− (−𝑖𝑞)

−1/2
𝑚
2

𝑗
+ 2𝐴
2

𝑗
𝜎
2

𝑗
])

×(2 (2 − (−𝑖𝑞)
−1/2

𝜎
2

𝑗
))
−1}

}

}

× exp
{

{

{

−
𝑐 (𝑞)

2

𝑛

∑

𝑗=1

𝜎
2

𝑗
⟨𝛼
𝑗
, ℎ⟩ + 𝑖𝑐 (𝑞)

𝑛

∑

𝑗=1

𝑚
𝑗
⟨𝛼
𝑗
, ℎ⟩

}

}

}

,

(51)

where𝐴
𝑗
= ∫
𝑇

0
𝛼
𝑗
(𝑡)𝑑𝑎(𝑡). UsingTheorem 7, we can compute

the double generalized AFSFIs of 𝐹 given by (50) by just one

modified generalized AFSFI. That is to say, for all 𝑞
1
, 𝑞
2
∈ R

with 𝑞
1
+ 𝑞
2

̸= 0,

∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑥)) 𝑑𝜇 (𝑦)

= (

𝑛

∏

𝑗=1

1

2 (1 − (−𝑖𝑄)
−1/2

𝜎
2

𝑗
)

)

1/2

× exp
{

{

{

𝑛

∑

𝑗=1

((−𝑖𝑄)
−1/2

× [𝑖4𝐴
𝑗
𝑚
𝑗
− (−𝑖𝑄)

−1/2
𝑚
2

𝑗
+ 2𝐴
2

𝑗
𝜎
2

𝑗
])

×(2 (2 − (−𝑖𝑄)
−1/2

𝜎
2

𝑗
))
−1}

}

}

× exp
{

{

{

−
𝑐 (𝑄)

2

𝑛

∑

𝑗=1

𝜎
2

𝑗
⟨𝛼
𝑗
, ℎ⟩ + 𝑖𝑐 (𝑄)

𝑛

∑

𝑗=1

𝑚
𝑗
⟨𝛼
𝑗
, ℎ⟩

}

}

}

,

(52)

where 𝑄 = 𝑞
1
𝑞
2
/(𝑞
1
+ 𝑞
2
) and 𝑐(𝑄) = 𝐻

2
(−𝑖𝑞
1
, −𝑖𝑞
2
).

Furthermore, the last expression in (52) equals the expression

∫

𝑎𝑛𝑓
𝑞
1

𝐶
𝑎,𝑏
[0,𝑇]

(∫

𝑎𝑛𝑓
𝑞
2

𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥 + 𝑦) 𝑑𝜇 (𝑦))𝑑𝜇 (𝑥) . (53)

5.3. The Generalized Fourier-Hermite Functional on Function
Space. For each 𝑚 = 0, 1, 2, . . ., and for each 𝑗 = 1, 2, . . ., let
𝐻
𝑗

𝑚
(𝑢) denote the generalized Hermite polynomial

𝐻
𝑗

𝑚
(𝑢) ≡ (−1)

𝑚
(𝑚!)
−1/2

(𝐵
𝑗
)
𝑚/2 exp{

(𝑢 − 𝐴
𝑗
)
2

2𝐵
𝑗

}

×
𝑑
𝑚

𝑑𝑢𝑚
(exp

{

{

{

−

(𝑢 − 𝐴
𝑗
)
2

2𝐵
𝑗

}

}

}

) .

(54)

Then for each 𝑗 = 1, 2, . . ., the set

{(2𝜋𝐵
𝑗
)
−1/4

𝐻
𝑗

𝑚
(𝑢) exp{−

(𝑢 − 𝐴
𝑗
)
2

4𝐵
𝑗

} : 𝑚 = 0, 1, . . .}

(55)

is a complete orthonormal set in 𝐿
2
(R). Now we define

Φ
(𝑚
1
,...,𝑚
𝑘
)
(𝑥) =

𝑘

∏

𝑗=1

𝐻
𝑗

𝑚
𝑗

(⟨𝛼
𝑗
, 𝑥⟩) . (56)

The functionals in (56) are called the generalized Fourier-
Hermite functionals. It is known that these functionals form
a complete orthonormal set in 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇]); that is to say, let
𝐹 ∈ 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇]) and, for𝑁 = 1, 2, . . ., let

𝐹
𝑁
(𝑥) =

𝑁

∑

𝑚
1
,...,𝑚
𝑁
=0

𝐴
𝐹

(𝑚1 ,...,𝑚𝑁)
Φ
(𝑚
1
,...,𝑚
𝑁
)
(𝑥) , (57)
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where 𝐴
𝐹

(𝑚
1
,...,𝑚
𝑁
)
is the generalized Fourier-Hermite coeffi-

cient,

𝐴
𝐹

(𝑚
1
,...,𝑚
𝑁
)
≡ ∫
𝐶
𝑎,𝑏
[0,𝑇]

𝐹 (𝑥)Φ(𝑚
1
,...,𝑚
𝑁
) (𝑥) 𝑑𝜇 (𝑥) . (58)

Then

𝐹 (𝑥) = lim
𝑁→∞

𝐹
𝑁
(𝑥)

= lim
𝑁→∞

𝑁

∑

𝑚
1
,...,𝑚
𝑁
=0

𝐴
𝐹

(𝑚
1
,...,𝑚
𝑁
)
Φ
(𝑚
1
,...,𝑚
𝑁
)
(𝑥)

(59)

is called the generalized Fourier-Hermite series expansion of
𝐹. In (59), the limit is taken in the 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇])-sense.

Example 3. Let 𝑞
0

be a nonzero real number and let
Φ
(𝑚
1
,...,𝑚
𝑁
)
be the generalized Fourier-Hermite functional

given by (56) above. Then for all nonzero real number 𝑞 with
|𝑞| ≥ |𝑞

0
|, themodified generalized AFSFI ofΦ

(𝑚
1
,...,𝑚
𝑁
)
exists

and it is given by the formula

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

Φ
(𝑚
1
,...,𝑚
𝑁
)
𝑑𝜇 (𝑥) =

𝑁

∏

𝑗=1

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝜙
(𝑚
𝑗
,𝑗)
𝑑𝜇 (𝑥) ,

(60)

where

𝜙
(𝑚
𝑗
,𝑗)

(𝑥) = 𝐻
𝑗

𝑚
𝑗

(⟨𝛼
𝑗
, 𝑥⟩) ,

∫

𝑎𝑛𝑓
𝑐(𝑞)

𝑞
,ℎ

𝐶
𝑎,𝑏
[0,𝑇]

𝜙
(𝑚
𝑗
,𝑗)
𝑑𝜇 (𝑥)

= (2𝜋𝐵
𝑗
)
−1/2

∫
𝑅

𝐻
𝑗

𝑚
((−𝑖𝑞)

−1/2
𝑢 + 𝑐 (𝑞) ⟨ ⃗𝛼, ℎ⟩)

× exp
{

{

{

−

(𝑢 − 𝐴
𝑗
)
2

2𝐵
𝑗

}

}

}

𝑑𝑢.

(61)

The last expression is valid because the generalized Hermite
functional is a polynomial with degree𝑚

𝑗
and hence it has an

analytic extension.

Remark 9. Since the set of generalized Fourier-Hermite
functionals

M ≡ {Φ
(𝑚
1
,...,𝑚
𝑘
)
}
∞

𝑘=1
(62)

is a complete orthonormal set in 𝐿
2
(𝐶
𝑎,𝑏

[0, 𝑇]), we could
extend the results for functionals in 𝐿

2
(𝐶
𝑎,𝑏

[0, 𝑇]) under the
appropriate conditions.

6. Conclusions

In Section 3, we presented our analysis of the generalized
AFSFI and defined the modified generalized AFSFI. Further-
more we explained the physical circumstances with respect to
an anharmonic oscillator using the concept of the modified

generalized AFSFI. That is to say, we introduced some new
concepts in order to explain various physical circumstances.
In Section 4, we established some relationships with respect
to the modified generalized AFSFI involving the generalized
AFSFI; see Theorem 7. Finally, we applied our results to
various classes of functionals studied in [2, 4, 10, 11].
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We study the existence of monotonic and nonnegative solutions of a nonlinear quadratic Volterra-Stieltjes integral equation in the
space of real functions being continuous on a bounded interval. The main tools used in our considerations are the technique of
measures of noncompactness in connection with the theory of functions of bounded variation and the theory of Riemann-Stieltjes
integral.The obtained results can be easily applied to the class of fractional integral equations and Volterra-Chandrasekhar integral
equations, among others.

1. Introduction

The aim of this paper is to study of monotonic and nonneg-
ative solutions of the nonlinear quadratic Volterra-Stieltjes
integral equation having the form

𝑥 (𝑡) = (𝐹
1
𝑥) (𝑡) + (𝐹

2
𝑥) (𝑡) ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏) ,

(1)

where 𝑡 ∈ [𝑎, 𝑏] and 𝐹
1
, 𝐹
2
are superposition operators

defined on the function space 𝐶[𝑎, 𝑏]. The precise defini-
tions will be given later. We show the existence of such
solutions of the previous equation under some reasonable
and handy assumptions. In our considerations, we use the
technique associated with measures of noncompactness and
the Riemann-Stieltjes integral with a kernel depending on
two variables. Moreover, the theory of functions of bounded
variation is also employed.

The main result of the paper is contained in Theorem 8.
That theorem covers, as particular cases, the classical Volterra
integral equation, the integral equation of fractional order,
and the Volterra counterpart of the famous integral equa-
tion of Chandrasekhar type. It is worth pointing out that
differential and integral equations of fractional order create
an important branch of nonlinear analysis and the theory of
integral equations.Moreover, these equations have found a lot

of applications connected with real world problems. Integral
equations of Chandrasekhar type can be often encountered in
several applications as well.

This paper can be considered as a continuation of [1, 2]
(cf. also [3–5]).

2. Preliminaries

At the beginning, we provide some basic facts concerning
functions of bounded variation and the Riemann-Stieltjes
integral. We refer to [6] or [7] for more information about
this subject. Assume that 𝑥 is a real function defined on the
interval [𝑎, 𝑏]. The symbol ⋁𝑏

𝑎
𝑥 stands for the variation of

the function 𝑥 on the interval [𝑎, 𝑏]. In case of a function
𝑢(𝑡, 𝜏) = 𝑢 : 𝐴 → R , where 𝐴 ⊂ R2, the symbol
⋁
𝑞

𝜏=𝑝
𝑢(𝑡, 𝜏) denotes the variation of the function 𝜏 → 𝑢(𝑡, 𝜏)

on the interval [𝑝, 𝑞]which is contained in the domain of this
function, where the variable 𝑡 is fixed. Further, assume that
𝑥, 𝜑 are given real functions defined on the interval [𝑎, 𝑏].
Then, under some additional conditions imposed on 𝑥 and
𝜑, we can define the Riemann-Stieltjes integral

∫

𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡) (2)
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Journal of Function Spaces
Volume 2014, Article ID 601824, 5 pages
http://dx.doi.org/10.1155/2014/601824

http://dx.doi.org/10.1155/2014/601824


2 Journal of Function Spaces

of the function𝑥with respect to the function𝜑. In such a case,
we say that 𝑥 is integrable in the Riemann-Stieltjes sense on
the interval [𝑎, 𝑏] with respect to 𝜑.

Now, we recall two useful properties of the Riemann-
Stieltjes integral, which will be employed in the sequel.

Theorem1. (a) If𝑥 is 𝑎 continuous function and𝜑 is a function
of bounded variation on the interval [𝑎, 𝑏], then 𝑥 is Riemann-
Stieltjes integrable on [𝑎, 𝑏] with respect to 𝜑.

(b) Suppose that 𝑥
1
and 𝑥

2
are functions being Riemann-

Stieltjes integrable on the interval [𝑎, 𝑏] with respect to 𝑎
nondecreasing function 𝜑 and 𝑥

1
(𝑡) ≤ 𝑥

2
(𝑡), for 𝑡 ∈ [𝑎, 𝑏].

Then,

∫

𝑏

𝑎

𝑥
1
(𝑡) 𝑑𝜑 (𝑡) ≤ ∫

𝑏

𝑎

𝑥
2
(𝑡) 𝑑𝜑 (𝑡) . (3)

In what follows we will use the Riemann-Stieltjes integral
of the form

∫

𝑏

𝑎

𝑥 (𝜏) 𝑑
𝜏
𝑔 (𝑡, 𝜏) , (4)

where the symbol 𝑑
𝜏
indicates the integration with respect

to the variable 𝜏 and 𝑡 is fixed. Let us mention that, in some
situations, lower and upper limit of the integration can also
depend upon the variable 𝑡.

Now, we deal with the discussion of basic facts connected
with measures of noncompactness. We refer to [8] (see
also [9]) for a more detailed discussion. Assume that 𝐸
is a real Banach space. Denote by 𝐵(𝑥, 𝑟) the closed ball
centered at 𝑥 and with radius 𝑟. Instead of 𝐵(0, 𝑟), we will
write 𝐵

𝑟
. If 𝑋 is a subset of 𝐸, then the symbols 𝑋 and

Conv𝑋 denote the closure and convex closed hull of the
set 𝑋, respectively. Further, denote by M

𝐸
the family of all

nonempty and bounded subsets of 𝐸. The symbolN
𝐸
stands

for the subfamily of M
𝐸
consisting of all relatively compact

sets. We will accept the following definition of a measure of
noncompactness.

Definition 2. A mapping 𝜇 : M
𝐸
→ R

+
= [0, +∞) will

be called a measure of noncompactness in the space 𝐸 if it
satisfies the following conditions:

(1) the family ker 𝜇 = {𝑋 ∈M
𝐸
: 𝜇(𝑋) = 0} is nonempty

and ker 𝜇 ⊂ N
𝐸
;

(2) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌);
(3) 𝜇(𝑋) = 𝜇(𝑋) = 𝜇(Conv𝑋);
(4) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+(1−𝜆)𝜇(𝑌), for 𝜆 ∈ [0, 1];
(5) if (𝑋

𝑛
) is a sequence of closed sets belonging to M

𝐸

such that 𝑋
𝑛+1
⊂ 𝑋
𝑛
, for 𝑛 = 1, 2, . . ., and if lim

𝑛→∞

𝜇(𝑋
𝑛
) = 0, then the intersection 𝑋

∞
= ⋂
∞

𝑛=1
𝑋
𝑛
is

nonempty.

An important example of a measure of noncompactness
is the Hausdorff measure of noncompactness defined by the
formula
𝜒 (𝑋) = inf {𝜀 > 0 : 𝑋 has a finite 𝜀 − net in 𝐸} ,

𝑋 ∈M
𝐸
.

(5)

The key role in our studies will be played by Darbo’s fixed
point theorem.

Theorem3. LetΩ be a nonempty, bounded, closed, and convex
subset of the space 𝐸 and let 𝑄 : Ω → Ω be a continuous
transformation. Assume that there exists a constant 𝑘 ∈ [0, 1)
such that 𝜇(𝑄𝑋) ≤ 𝑘𝜇(𝑋) for any nonempty subset 𝑋 of Ω.
Then, 𝑄 has at least one fixed point in the setΩ. Moreover, the
set Fix 𝑄 of all fixed points of 𝑄 belonging toΩ is a member of
the family ker 𝜇.

The considerations in this paper will be placed in the
Banach space 𝐶[𝑎, 𝑏] consisting of all real functions defined
and continuous on the bounded interval [𝑎, 𝑏] with the
standard maximum norm.

Finally, we turn our attention to the superposition (or
Nemytskii) operator which appears very frequently in non-
linear analysis. We refer to monographs [6, 10] for detailed
information covering the properties of this operator. To
define the operator in question, suppose that 𝑓 : [𝑎, 𝑏]×R →
R is a given function. For any function𝑥(𝑡) = 𝑥 : [𝑎, 𝑏] → R,
we can define the function 𝐹𝑥 by putting

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏] . (6)

The operator 𝐹 defined in such a way is called the superposi-
tion operator generated by the function 𝑓.

3. Main Result

In this section, we will investigate the nonlinear quadratic
Volterra-Stieltjes integral equation which has the form

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡)) + 𝑓

2
(𝑡, 𝑥 (𝑡))

× ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏) , 𝑡 ∈ 𝐼 = [0,𝑀] ,

(7)

where 𝑀 > 0 is fixed number. Obviously, in our further
considerations the interval 𝐼 = [0,𝑀] can be replaced by
any interval [𝑎, 𝑏]. We look for monotonic and nonnegative
solutions of this equation in the space 𝐶[0,𝑀]. In our study,
we will need some results obtained in [1, 2].

At the beginning, let us consider the following conditions.

(i) The functions 𝑓
𝑖
: 𝐼 × R → R (𝑖 = 1, 2) are

continuous and there exist nondecreasing functions
𝑘
𝑖
: R
+
→ R

+
such that

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑡, 𝑥) − 𝑓

𝑖
(𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝑘
𝑖
(𝑟)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
(𝑖 = 1, 2) , (8)

for any 𝑡 ∈ 𝐼 and for all 𝑥, 𝑦 ∈ [−𝑟, 𝑟], where 𝑟 ≥ 0 is
an arbitrary fixed number.

Observe that, on the basis of the above condition, we may
define the finite constants 𝐹

1
, 𝐹
2
by putting

𝐹
𝑖
= max {󵄨󵄨󵄨

󵄨
𝑓
𝑖
(𝑡, 0)
󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ 𝐼} (𝑖 = 1, 2) . (9)

Let Δ
𝑀
denote the following triangle:

Δ
𝑀
= {(𝑡, 𝜏) ∈ R

2
: 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑀} . (10)
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(ii) The function 𝑢 : Δ
𝑀
×R → R is continuous. More-

over, there exists a continuous function Φ : R
+
→

R
+
such that

|𝑢 (𝑡, 𝜏, 𝑥)| ≤ Φ (|𝑥|) , (11)

for all (𝑡, 𝜏) ∈ Δ
𝑀
and 𝑥 ∈ R.

(iii) The function𝑔 : Δ
𝑀
→ R is continuouswith respect

to the variable 𝜏 on the interval [0, 𝑡], where 𝑡 ∈ 𝐼 is
fixed.

(iv) For any 𝑡 ∈ 𝐼, the function 𝜏 → 𝑔(𝑡, 𝜏) is of bounded
variation on the interval [0, 𝑡].

(v) For each 𝜀 > 0, there exists 𝛿 > 0 such that, for all
𝑡, 𝑠 ∈ 𝐼 and |𝑠 − 𝑡| ≤ 𝛿, the following inequality holds

min{𝑡,𝑠}
⋁

𝜏=0

[𝑔 (𝑠, 𝜏) − 𝑔 (𝑡, 𝜏)] ≤ 𝜀. (12)

Remark 4. It can be shown (see [1, 2]) that the constant

𝐾 = max{
𝑡

⋁

𝜏=0

𝑔 (𝑡, 𝜏) : 𝑡 ∈ 𝐼} (13)

is well defined and finite.

(vi) The operator 𝑇 : 𝐶(𝐼) → 𝐶(𝐼) is continuous and
there exists a nondecreasing function Ψ : R

+
→ R
+

such that ‖𝑇𝑥‖ ≤ Ψ(‖𝑥‖), for any 𝑥 ∈ 𝐶(𝐼).
(vii) There exists a positive real number 𝑟

0
which satisfies

the inequalities

𝑟𝑘
1
(𝑟) + 𝐹

1
+ 𝐾(𝑟𝑘

2
(𝑟) + 𝐹

2
)Φ (Ψ (𝑟)) ≤ 𝑟,

𝑘
1
(𝑟) + 𝐾𝑘

2
(𝑟)Φ (Ψ (𝑟)) < 1.

(14)

Remark 5. Observe that if 𝑟
0
is a positive solution of the first

inequality from condition (vii) and if one of the terms 𝐹
1

and𝐾𝐹
2
Φ(Ψ(𝑟

0
)) does not vanish, then the second inequality

from (vii) is automatically satisfied.

Now, let us consider the operators 𝐹
𝑖
(𝑖 = 1, 2), 𝑈, and 𝑉

defined on the space 𝐶(𝐼) by the following formulas:

(𝐹
𝑖
𝑥) (𝑡) = 𝑓

𝑖
(𝑡, 𝑥 (𝑡)) (𝑖 = 1, 2) ,

(𝑈𝑥) (𝑡) = ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏) ,

(𝑉𝑥) (𝑡) = (𝐹
1
𝑥) (𝑡) + (𝐹

2
𝑥) (𝑡) (𝑈𝑥) (𝑡) .

(15)

Theorem 6. Let conditions (i)–(vii) hold. Then, the operator
𝑉
|𝐵
𝑟
0

: 𝐵
𝑟
0

→ 𝐵
𝑟
0

is well defined and continuous and has
at least one fixed point, which gives that (7) has at least one
solution in the ball 𝐵

𝑟
0

, where 𝑟
0
is a number appearing in

condition (vii).

The basic idea of the proof of Theorem 6 is to study
behaviour of the operator 𝑉 with respect to the Hausdorff
measure of noncompactness in connection withTheorem 3.

Remark 7. Additionally, all solutions of (7) from the ball 𝐵
𝑟
0

are equicontinuous.This observation results directly from the
Arzela-Ascoli theorem andTheorem 3.

We can now formulate our main result about monotonic-
ity and nonnegativity of the solutions of (7). In our study, we
will consider the following conditions.

(i󸀠) The functions 𝑓
𝑖
: 𝐼 ×R → R (𝑖 = 1, 2) are such that

(1) 𝑓
𝑖
(𝐼 ×R

+
) ⊂ R
+
;

(2) the function 𝑡 → 𝑓
𝑖
(𝑡, 𝑥) is nondecreasing on

𝐼, for any fixed 𝑥 ∈ R
+
;

(3) the function 𝑥 → 𝑓
𝑖
(𝑡, 𝑥) is nondecreasing on

R
+
, for any fixed 𝑡 ∈ 𝐼.

(ii󸀠) (a) The function 𝑢 : Δ
𝑀
×R → R is such that

(1) 𝑢(Δ
𝑀
×R
+
) ⊂ R
+
;

(2) the function 𝑡 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
[𝜏,𝑀], for any fixed 𝜏 ∈ 𝐼 and 𝑥 ∈ R

+
;

(3) for each 𝑡, 𝑠 ∈ 𝐼 such that 𝑡 < 𝑠, the function
𝜏 → 𝑔(𝑠, 𝜏) − 𝑔(𝑡, 𝜏) is nondecreasing on [0, 𝑡];

(4) for any function 𝑥 ∈ 𝐵
𝑟
0

which is nonnegative
and nondecreasing on 𝐼, the function𝑇𝑥 is non-
negative on 𝐼, where 𝑟

0
is a number appearing in

condition (vii).

Or

(b) The function 𝑢 : Δ
𝑀
×R → R is such that

(1) 𝑢(Δ
𝑀
×R
+
) ⊂ R
+
;

(2) the function 𝑡 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
[𝜏,𝑀], for any fixed 𝜏 ∈ 𝐼 and 𝑥 ∈ R

+
;

(3) the function 𝜏 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
[0, 𝑡], for any fixed 𝑡 ∈ 𝐼 and 𝑥 ∈ R

+
;

(4) the function 𝑥 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
R
+
for any fixed (𝑡, 𝜏) ∈ Δ

𝑀
;

(5) for each 𝑡, 𝑠 ∈ 𝐼 such that 𝑡 < 𝑠, the function
𝜏 → 𝑔(𝑠, 𝜏) − 𝑔(𝑡, 𝜏) is nondecreasing on [0, 𝑡];

(6) 𝑔(𝑠, 𝑠) − 𝑔(𝑡, 𝑡) + 𝑔(𝑡, 0) − 𝑔(𝑠, 0) ≥ 0;
(7) for any function 𝑥 ∈ 𝐵

𝑟
0

which is nonnegative
and nondecreasing on 𝐼, the function 𝑇𝑥 is
nonnegative and nondecreasing on 𝐼, where 𝑟

0

is a number appearing in condition (vii).

(iii󸀠) For each 𝑡 ∈ 𝐼 the function 𝜏 → 𝑔(𝑡, 𝜏) is nonde-
creasing on [0, 𝑡].

The following theorem is a completion of Theorem 6.

Theorem 8. Suppose that conditions (i)–(vii) and (i󸀠)–(iii󸀠)
are fulfilled. Then, (7) has at least one solution in 𝐵

𝑟
0

which
is nonnegative and nondecreasing, where 𝑟

0
is a number

appearing in condition (vii).



4 Journal of Function Spaces

Proof. Let 𝐵+
𝑟
0

denote set of all nonnegative and nondecreas-
ing functions from the ball𝐵

𝑟
0

. It is clear that𝐵+
𝑟
0

is nonempty,
bounded, closed, and convex. FromTheorem 6, we conclude
that the operator 𝑉

|𝐵
+

𝑟
0

is continuous. We show that 𝑉(𝐵+
𝑟
0

) ⊂

𝐵
+

𝑟
0

. To this end, fix 𝑥 ∈ 𝐵+
𝑟
0

and take 𝑡, 𝑠 ∈ 𝐼 such that 𝑠 > 𝑡.
Since (𝐹

𝑖
𝑥)(𝑡) = 𝑓

𝑖
(𝑡, 𝑥(𝑡)) ≥ 0 and

(𝐹
𝑖
𝑥) (𝑠) − (𝐹

𝑖
𝑥) (𝑡) = 𝑓

𝑖
(𝑠, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑡, 𝑥 (𝑡))

≥ 𝑓
𝑖
(𝑡, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑡, 𝑥 (𝑡)) ≥ 0,

(16)

we obtain 𝐹
𝑖
(𝐵
+

𝑟
0

) ⊂ 𝐵
+

𝑟
0

, for 𝑖 = 1, 2.
It is easily seen that (𝑈𝑥)(𝑡) ≥ 0 so it suffices to check

monotonicity of the operator 𝑈. We get

(𝑈𝑥) (𝑠) − (𝑈𝑥) (𝑡)

= ∫

𝑠

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

− ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏)

= ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

− ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏)

≥ ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

− ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏)

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

= ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
[𝑔 (𝑠, 𝜏) − 𝑔 (𝑡, 𝜏)]

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏) .

(17)

Further proving process depends on which of conditions
(ii󸀠(a)) or (ii󸀠(b)) is satisfied.

Assume that condition (ii󸀠(a)) holds. Then based on
Theorem 1, the two last integrals in estimation (17) are
nonnegative and indeed (𝑈𝑥)(𝑠) − (𝑈𝑥)(𝑡) ≥ 0.

Now, assume that condition (ii󸀠(b)) is satisfied. Coming
back to estimation (17), we obtain

(𝑈𝑥) (𝑠) − (𝑈𝑥) (𝑡)

≥ ∫

𝑡

0

𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) 𝑑
𝜏
[𝑔 (𝑠, 𝜏) − 𝑔 (𝑡, 𝜏)]

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

= 𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) [𝑔 (𝑠, 𝑡) − 𝑔 (𝑡, 𝑡) − (𝑔 (𝑠, 0) − 𝑔 (𝑡, 0))

+𝑔 (𝑠, 𝑠) − 𝑔 (𝑠, 𝑡)]

= 𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) [𝑔 (𝑠, 𝑠) − 𝑔 (𝑡, 𝑡) + 𝑔 (𝑡, 0)

−𝑔 (𝑠, 0)] ≥ 0

(18)

and, consequently, 𝑈(𝐵+
𝑟
0

) ⊂ 𝐵
+

𝑟
0

. Finally, we have 𝑉(𝐵+
𝑟
0

) ⊂

𝐵
+

𝑟
0

. UsingTheorems 3 and 6, we obtain the existence of a fixed
point of the operator𝑉 in 𝐵+

𝑟
0

. This means that (7) has at least
one nonnegative and nondecreasing solution in 𝐵

𝑟
0

, and the
proof is complete.

Remark 9. It can be shown (see for instance [1]) that if the
function 𝑔 : Δ

𝑀
→ R is continuous on the triangle Δ

𝑀

and for arbitrarily fixed 𝑡, 𝑠 ∈ 𝐼 such that 𝑡 < 𝑠, the function
𝜏 → 𝑔(𝑠, 𝜏) − 𝑔(𝑡, 𝜏) is monotonic (nondecreasing or
nonincreasing) on the interval [0, 𝑡]; then𝑔 satisfies condition
(v).

4. Applications and an Example

The topic of this section is to present some applications of
Theorem 8 in the situation of the classical integral equations.

Let us consider the equation

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡)) +

̃
𝑓
2
(𝑡, 𝑥 (𝑡))

Γ (𝛼)

× ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏))

(𝑡 − 𝜏)
1−𝛼

𝑑𝜏, 𝑡 ∈ 𝐼,

(19)

where Γ denotes the Euler gamma function and𝛼 > 0. It is the
well-known integral equation of fractional order. If we take on
the set Δ

𝑀
the function 𝑔 defined by

𝑔 (𝑡, 𝜏) =

1

𝛼

[𝑡
𝛼
− (𝑡 − 𝜏)

𝛼
] , (20)

then it is easy to check that (19) is a special case of (7). Using
Remark 9 and the standard methods of differential calculus,
we can show that the function 𝑔 satisfies conditions (iii)–(v),
(ii󸀠), and (iii󸀠). Additionally, we have 𝐾 = (1/𝛼)𝑀𝛼, where
𝐾 is the constant appearing in Remark 4. Making use of the
fact that Γ(𝛼 + 1) = 𝛼Γ(𝛼) for 𝛼 > 0, condition (vii) in this
situation takes the following form:

(vii∗) there exists a positive real number 𝑟
0
which satisfies

the inequalities

𝑟𝑘
1
(𝑟) + 𝐹

1
+

𝑀
𝛼

Γ (𝛼 + 1)

(𝑟
̃
𝑘
2
(𝑟) + 𝐹

2
)Φ (Ψ (𝑟)) ≤ 𝑟,

𝑘
1
(𝑟) +

𝑀
𝛼

Γ (𝛼 + 1)

̃
𝑘
2
(𝑟)Φ (Ψ (𝑟)) < 1,

(21)

where 𝐹
2
= max{| ̃𝑓

2
(𝑡, 0)| : 𝑡 ∈ 𝐼} and ̃𝑘

2
is a function chosen

for ̃𝑓
2
based on condition (i).



Journal of Function Spaces 5

Obviously, when 𝛼 = 1, (19) reduces to the classical
nonlinear quadratic Volterra integral equation.

Now, let us consider the equation

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡)) + 𝑓

2
(𝑡, 𝑥 (𝑡))

× ∫

𝑡

0

𝑡

𝑡 + 𝜏

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑𝜏, 𝑡 ∈ 𝐼.

(22)

It is the Volterra counterpart of the quadratic integral equation
of Chandrasekhar type. This equation is also a special case of
(7), in which

𝑔 (𝑡, 𝜏) =

{

{

{

𝑡 ln(1 + 𝜏
𝑡

) , (𝑡, 𝜏) ∈ Δ
𝑀
\ {(0, 0)}

0, 𝑡 = 𝜏 = 0.

(23)

Using, as before, Remark 9 and the standard methods of
differential calculus, we can show that this function satisfies
conditions (iii)–(v), (ii󸀠(a)), and (iii󸀠). Additionally, we have
𝐾 = 𝑀 ln 2, where 𝐾 is the constant appearing in Remark 4.

Let us observe that if we put 𝑓
2
(𝑡, 𝑥) ≡ 0 in (7), we

obtain the classical functional equation of the first order on
the interval 𝐼.

We finish by providing an example illustrating
Theorem 8.

Example 1. Let us consider the following integral equation:

𝑥 (𝑡) = 𝑡𝑒
−𝑡
+

𝑡
2
+ 𝑥 (𝑡)

Γ (2/3)

× ∫

𝑡

0

1

2𝜋

√|𝑥 (𝜏)|arctg (4 + 𝑡2 + 𝜏2)
3

√𝑡 − 𝜏

𝑑𝜏, 𝑡 ∈ [0, 1] .

(24)

Obviously, this equation is a special case of (19) if we put 𝛼 =
2/3 and

𝑓
1
(𝑡, 𝑥) = 𝑡𝑒

−𝑡
,

̃
𝑓
2
(𝑓, 𝑥) = 𝑡

2
+ 𝑥,

𝑢 (𝑡, 𝜏, 𝑥) =

1

2𝜋

√|𝑥| arctg (4 + 𝑡2 + 𝜏2) ,

𝑇𝑥 = 𝑥.

(25)

In is easy to check that conditions (i)–(vi), (i󸀠), (ii󸀠(b)), and
(iii󸀠) of Theorem 8 are satisfied and 𝑘

1
(𝑟) = 0, 𝐹

1
= 1/𝑒,

̃
𝑘
2
(𝑟) = 1, 𝐹

2
= 1, Φ(𝑟) = (1/4)√𝑟, and Ψ(𝑟) = 𝑟. Using

standard estimation Γ(𝛼) > 0.8856 for 𝛼 > 0 and taking 𝑟
0
=

1, we verify that condition (vii∗) is also satisfied. Therefore,
in case of (24), we can apply Theorem 8. This means that
(24) has at least one nonnegative and nondecreasing solution
belonging to the ball 𝐵

1
of the space 𝐶[0, 1].
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We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space 𝐵𝐶(R
+
). We

show that this equation has at least one asymptotically stable solution.

1. Introduction
Quadratic integral equations with nonsingular kernels have
received a lot of attention because of their useful applications
in describing numerous events and problems of the real
world. For example, quadratic integral equations are often
applicable in kinetic theory of gases, in the theory of neutron
transport, and in the traffic theory; see [1–8]. The existence
of solutions for several classes of nonlinear quadratic integral
equations with nonsingular kernels has been studied by
several authors, for example, Argyros [9], Banaś et al. [10–
12], Benchohra and Darwish [13, 14], Caballero et al. [15–
17], Darwish et al. [18, 19], Leggett [20], and Stuart [21].
There is a great interest in studying singular quadratic integral
equations by many authors, after the appearance of Darwish’s
paper [22], for example, Banaś and O’Regan [23], Banaś and
Rzepka [24, 25], Darwish [26, 27], Darwish and Sadarangani
[28], Darwish and Ntouyas [29], Darwish et al. [30], and
Wang et al. [31, 32].

In this paper, we will study the quadratic functional-
integral equation of fractional order
𝑥 (𝑡) = 𝑎 (𝑡)

+𝑓(𝑡,
𝛽𝑔 (𝑡, 𝑥 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ R
+
,

(1)
where 𝛼 ∈ (0, 1) and 𝛽 > 0.

If 𝛽 = 1 and 𝑓(𝑡, 𝑢) = 𝑢, we obtain a quadratic Urysohn-
Volterra integral equation of fractional order studied by
Banas’ and O’Regan in [23] while in the case where 𝛽 = 1,
𝑓(𝑡, 𝑢) = 𝑢, and 𝑢(𝑡, 𝑠, 𝑥) = V(𝑡, 𝑥), we get a fractional
quadratic integral equation of Hammerstein-Volterra type
studied by Darwish in [22]. Moreover, in the case where
𝛽 = 1, we obtain the quadratic functional-integral equation of
fractional order studied by Darwish and Sadarangani in [28].

The aim of this paper is to prove the existence of solutions
of (1) in the space of real functions, defined, continuous,
and bounded on an unbounded interval. Moreover, we will
obtain some asymptotic characterization of solutions of (1).
Our proof depends on suitable combination of the technique
of measures of noncompactness and the Schauder fixed point
principle.

2. Notation and Auxiliary Facts

This section is devoted to collecting some definitions and
results which will be needed further on. First, we recall
from [33–35] that the Erdélyi-Kober fractional integral of a
continuous function 𝑓 is defined as

𝐼
𝛾

𝛽
𝑓 (𝑡) =

𝛽

Γ (𝛾)
∫

𝑡

0

𝑠
𝛽−1

𝑓 (𝑠)

(𝑡𝛽 − 𝑠𝛽)
1−𝛾

𝑑𝑠, 𝛽 > 0, 0 < 𝛾 < 1. (2)
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When 𝛽 = 1, we obtain Riemann-Liouville fractional inte-
gral; that is,

𝐼
𝛾

𝑓 (𝑡) =
1

Γ (𝛾)
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)
1−𝛾

𝑑𝑠, 0 < 𝛾 < 1. (3)

Now, let (𝐸, ‖ ⋅ ‖) be an infinite dimensional Banach
space with zero element 𝜃. Let 𝐵(𝑥, 𝑟) denote the closed ball
centered at 𝑥 with radius 𝑟. The symbol 𝐵

𝑟
stands for the ball

𝐵(𝜃, 𝑟).
If𝑋 is a subset of𝐸, then𝑋 andConv𝑋 denote the closure

and convex closure of 𝑋, respectively. Moreover, we denote
byM

𝐸
the family of all nonempty and bounded subsets of 𝐸

and by N
𝐸
its subfamily consisting of all relatively compact

subsets.
Next we give the definition of the concept of a measure of

noncompactness [36].

Definition 1. Amapping 𝜇 : M
𝐸
→ R
+
= [0,∞) is said to be

a measure of noncompactness in 𝐸 if it satisfies the following
conditions.

(1) The family ker 𝜇 = {𝑋 ∈ M
𝐸
: 𝜇(𝑋) = 0} is nonempty

and ker 𝜇 ⊂ N
𝐸
.

(2) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌).
(3) 𝜇(𝑋) = 𝜇(Conv𝑋) = 𝜇(𝑋).
(4) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+(1−𝜆)𝜇(𝑌) for 0 ≤ 𝜆 ≤ 1.
(5) If 𝑋

𝑛
∈ M
𝐸
, 𝑋
𝑛
= 𝑋
𝑛
, 𝑋
𝑛+1

⊂ 𝑋
𝑛
for 𝑛 = 1, 2, 3, . . .

and lim
𝑛→∞

𝜇(𝑋
𝑛
) = 0, then𝑋

∞
= ⋂
∞

𝑛=1
𝑋
𝑛
̸= 0.

The family ker 𝜇 described above is called the kernel of
the measure of noncompactness 𝜇. Let us observe that the
intersection set 𝑋

∞
from (5) belongs to ker 𝜇. In fact, since

𝜇(𝑋
∞
) ≤ 𝜇(𝑋

𝑛
) for every, then we have that 𝜇(𝑋

∞
) = 0.

In what follows we will work in the Banach space
𝐵𝐶(R

+
) consisting of all real functions defined, bounded, and

continuous on R
+
. This space is equipped with the standard

norm

‖𝑥‖ = sup {|𝑥 (𝑡)| : 𝑡 ≥ 0} . (4)

Next, we give the construction of themeasure of noncom-
pactness in 𝐵𝐶(R

+
) which will be used as main tool of the

proof of our main result; see [37, 38] and references therein.
Let us fix a nonempty and bounded subset 𝑋 of 𝐵𝐶(R

+
)

and numbers 𝜀 > 0 and 𝑇 > 0. For arbitrary function 𝑥 ∈

𝑋 let us denote by 𝜔𝑇(𝑥, 𝜀) the modulus of continuity of the
function 𝑥 on the interval [0, 𝑇]; that is,

𝜔
𝑇

(𝑥, 𝜀) = sup {|𝑥 (𝑡) − 𝑥 (𝑠)| : 𝑡, 𝑠 ∈ [0, 𝑇] , |𝑡 − 𝑠| ≤ 𝜀} .
(5)

Further, let us put

𝜔
𝑇

(𝑋, 𝜀) = sup {𝜔𝑇 (𝑥, 𝜀) : 𝑥 ∈ 𝑋} ,

𝜔
𝑇

0
(𝑋) = lim

𝜀→0

𝜔
𝑇

(𝑋, 𝜀) ,

𝜔
∞

0
(𝑋) = lim

𝑇→∞

𝜔
𝑇

0
(𝑋) .

(6)

Moreover, for a fixed number 𝑡 ∈ R
+
let us define

𝑋 (𝑡) = {𝑥 (𝑡) : 𝑥 ∈ 𝑋} ,

diam𝑋 (𝑡) = sup {󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨 : 𝑥, 𝑦 ∈ 𝑋} ,

𝑐 (𝑋) = lim sup
𝑡→∞

diam𝑋 (𝑡) .

(7)

Let us mention that the kernel ker𝜔∞
0

consists of all
nonempty and bounded sets𝑋 such that functions belonging
to 𝑋 are locally equicontinuous on R

+
. On the other hand,

the kernel ker 𝑐 is the family containing all nonempty and
bounded sets 𝑋 in the space 𝐵𝐶(R

+
) such that the thickness

of the bundle formed by the graphs of functions belonging to
𝑋 tends to zero at infinity.

Finally, with the help of the above quantities we can define
a measure of noncompactness as

𝜇 (𝑋) = 𝜔
∞

0
(𝑋) + 𝑐 (𝑋) . (8)

The function 𝜇 is a measure of noncompactness in the space
𝐵𝐶(R

+
) [36, 37].

In the end of this section, we recall the definition of
the asymptotic stability solutions which will be used in the
proof of our main result. To this end we assume that Ω is a
nonempty subset of the space𝐵𝐶(R

+
). Let𝑄 : Ω → 𝐵𝐶(R

+
)

be a given operator. We consider the following operator
equation:

𝑥 (𝑡) = (𝑄𝑥) (𝑡) , 𝑡 ∈ R
+
. (9)

Definition 2. One says that solutions of (9) are asymptotically
stable if there exists a ball 𝐵(𝑥

0
, 𝑟) such that Ω ∩ 𝐵(𝑥

0
, 𝑟) ̸= 0

and such that for each 𝜀 > 0 there exists 𝑇 > 0 such that
for arbitrary solutions 𝑥 = 𝑥(𝑡), 𝑦 = 𝑦(𝑡) of this equation
belonging to Ω ∩ 𝐵(𝑥

0
, 𝑟) the inequality |𝑥(𝑡) − 𝑦(𝑡)| ≤ 𝜀 is

satisfied for any 𝑡 ≥ 𝑇.

3. The Existence and Asymptotic
Stability of Solutions

In this section we will study (1) assuming that the following
hypotheses are satisfied.

(ℎ
1
) 𝑎 : R

+
→ R is a continuous and bounded function

on R
+
.

(ℎ
2
) 𝑓 : R

+
×R → R is continuous and the function 𝑡 →

𝑓(𝑡, 0) is bounded on R
+
with 𝑓

∗
= sup{|𝑓(𝑡, 0)| :

𝑡 ∈ R
+
}. Moreover, there exists a continuous function

𝑚(𝑡) = 𝑚 : R
+
→ R
+
such that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑚 (𝑡)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 (10)

for all 𝑥, 𝑦 ∈ R and for any 𝑡 ∈ R
+
.

(ℎ
3
) 𝑔 : R

+
× R → R is continuous and there exists a

continuous function 𝑛(𝑡) = 𝑛 : R
+
→ R
+
such that

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥) − 𝑔 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 (11)

for all 𝑥, 𝑦 ∈ R and for any 𝑡 ∈ R
+
.
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(ℎ
4
) 𝑢 : R

+
× R
+
× R → R is a continuous function.

Moreover, there exist a function 𝑙(𝑡) = 𝑙 : R
+
→ R
+

being continuous on R
+
and a function Φ : R

+
→

R
+
being continuous and nondecreasing on R

+
with

Φ(0) = 0 such that
󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠, 𝑥) − 𝑢 (𝑡, 𝑠, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝑙 (𝑡) Φ (
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) (12)

for all 𝑡, 𝑠 ∈ R
+
such that 𝑡 ≥ 𝑠 and for all 𝑥 ∈ R.

For further purpose let us define the function 𝑢
∗
:

R
+
→ R
+
by 𝑢∗(𝑡) = max{|𝑢(𝑡, 𝑠, 0)| : 0 ≤ 𝑠 ≤ 𝑡}.

(ℎ
5
) The functions 𝜙, 𝜓, 𝜉, 𝜂 : R

+
→ R

+
defined by

𝜙(𝑡) = 𝑚(𝑡)𝑛(𝑡)𝑙(𝑡)𝑡
𝛼𝛽, 𝜓(𝑡) = 𝑚(𝑡)𝑛(𝑡)𝑢

∗
(𝑡)𝑡
𝛼𝛽,

𝜉(𝑡) = 𝑚(𝑡)𝑙(𝑡)|𝑔(𝑡, 0)|𝑡
𝛼𝛽, and 𝜂(𝑡) = 𝑚(𝑡)𝑢

∗
(𝑡)|𝑔(𝑡,

0)|𝑡
𝛼𝛽 are bounded on R

+
and the functions 𝜙

and 𝜉 vanish at infinity; that is, lim
𝑡→∞

𝜙(𝑡) =

lim
𝑡→∞

𝜉(𝑡) = 0.
(ℎ
6
) There exists a positive solution 𝑟

0
of the inequality

(‖𝑎‖ + 𝑓
∗

) Γ (𝛼 + 1)

+ [𝜙
∗

𝑟Φ (𝑟) + 𝜓
∗

𝑟 + 𝜉
∗

Φ (𝑟) + 𝜂
∗

]

≤ 𝑟Γ (𝛼 + 1)

(13)

and 𝜙∗Φ(𝑟
0
) + 𝜓
∗
< Γ(𝛼 + 1), where 𝜙∗ = sup{𝜙(𝑡) :

𝑡 ∈ R
+
}, 𝜓∗ = sup{𝜓(𝑡) : 𝑡 ∈ R

+
}, 𝜉∗ = sup{𝜉(𝑡) : 𝑡 ∈

R
+
}, and 𝜂∗ = sup{𝜂(𝑡) : 𝑡 ∈ R

+
}.

Now, we are in a position to state and prove our main
result.

Theorem3. Let the hypotheses (ℎ
1
)−(ℎ
6
) be satisfied.Then (1)

has at least one solution 𝑥 ∈ 𝐵𝐶(R
+
) and all solutions of this

equation belonging to the ball 𝐵
𝑟0
are asymptotically stable.

Proof. Denote by F the operator associated with the right-
hand side of (1). Then, (1) takes the form

𝑥 = F𝑥, (14)

where

F𝑥 = 𝑎 + 𝐹H𝑥,

(H𝑥) (𝑡) = (𝐺𝑥) (𝑡) ⋅ (U𝑥) (𝑡) ,

(U𝑥) (𝑡) =
𝛽

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠, 𝑡 ∈ R
+
.

(15)

Here, 𝐹 and 𝐺 are the superposition operators, generated by
the functions 𝑓 = 𝑓(𝑡, 𝑥) and 𝑔 = 𝑔(𝑡, 𝑥) involved in (1),
defined by

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , (16)

(𝐺𝑥) (𝑡) = 𝑔 (𝑡, 𝑥 (𝑡)) , (17)

respectively, where 𝑥 = 𝑥(𝑡) is an arbitrary function defined
on R
+
(see [39]).

Solving (1) is equivalent to finding a fixed point of the
operatorF defined on the space 𝐵𝐶(R

+
).

For convenience, we divide the proof into several steps.

Step 1 (F𝑥 is continuous on R
+
). To prove the continuity of

the functionF𝑥 onR
+
it suffices to show that if 𝑥 ∈ 𝐵𝐶(R

+
),

then U𝑥 is continuous function on R
+
, thanks to (ℎ

1
), (ℎ
2
),

and (ℎ
3
). For this purpose, take an arbitrary 𝑥 ∈ 𝐵𝐶(R

+
) and

fix 𝜀 > 0 and 𝑇 > 0. Assume that 𝑡
1
, 𝑡
2
∈ [0, 𝑇] are such that

|𝑡
2
− 𝑡
1
| ≤ 𝜀. Without loss of generality we can assume that

𝑡
2
> 𝑡
1
. Then we get

󵄨󵄨󵄨󵄨(U𝑥) (𝑡2) − (U𝑥) (𝑡1)
󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡2

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

1
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡2

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
2
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

−
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝑢 (𝑡
1
, 𝑠, 𝑥 (𝑠))

(𝑡
𝛽

1
− 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝛽

Γ (𝛼)
∫

𝑡2

𝑡1

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡1, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

× [(𝑡
𝛽

1
− 𝑠
𝛽

)
𝛼−1

− (𝑡
𝛽

2
− 𝑠
𝛽

)
𝛼−1

] 𝑑𝑠.

(18)
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Let us denote

𝜔
𝑇

𝑑
(𝑢, 𝜀)

= sup {󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑦) − 𝑢 (𝑡1, 𝑠, 𝑦)
󵄨󵄨󵄨󵄨 : 𝑠, 𝑡1, 𝑡2 ∈ [0, 𝑇] ,

𝑡
1
≥ 𝑠, 𝑡

2
≥ 𝑠,

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1
󵄨󵄨󵄨󵄨 ≤ 𝜀,

𝑦 ∈ [−𝑑, 𝑑] ; 𝑑 ≥ 0} ;

(19)

then we obtain

󵄨󵄨󵄨󵄨(U𝑥) (𝑡2) − (U𝑥) (𝑡1)
󵄨󵄨󵄨󵄨

≤
𝛽

Γ (𝛼)

× ∫

𝑡2

𝑡1

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽

Γ (𝛼)

× ∫

𝑡1

0

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡1, 𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 0)

󵄨󵄨󵄨󵄨]

× [(𝑡
𝛽

1
− 𝑠
𝛽

)
𝛼−1

− (𝑡
𝛽

2
− 𝑠
𝛽

)
𝛼−1

] 𝑑𝑠

≤
𝛽

Γ (𝛼)
∫

𝑡2

𝑡1

𝑠
𝛽−1

[𝑙 (𝑡
2
)Φ (|𝑥 (𝑠)|) + 𝑢

∗
(𝑡
2
)]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)

Γ (𝛼 + 1)
[𝑡
𝛼𝛽

2
− (𝑡
𝛽

2
− 𝑡
𝛽

1
)
𝛼

]

+
𝛽

Γ (𝛼)
∫

𝑡1

0

𝑠
𝛽−1

[𝑙 (𝑡
1
)Φ (|𝑥 (𝑠)|) + 𝑢

∗

(𝑡
1
)]

× [(𝑡
𝛽

1
− 𝑠
𝛽

)
𝛼−1

− (𝑡
𝛽

2
− 𝑠
𝛽

)
𝛼−1

] 𝑑𝑠

≤
[𝑙 (𝑡
2
)Φ (‖𝑥‖) + 𝑢

∗
(𝑡
2
)]

Γ (𝛼 + 1)
(𝑡
𝛽

2
− 𝑡
𝛽

1
)
𝛼

+

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)

Γ (𝛼 + 1)
𝑡
𝛼𝛽

2

+
𝑙 (𝑡
1
)Φ (‖𝑥‖) + 𝑢

∗
(𝑡
1
)

Γ (𝛼 + 1)
[𝑡
𝛼𝛽

1
− 𝑡
𝛼𝛽

2
+ (𝑡
𝛽

2
− 𝑡
𝛽

1
)
𝛼

] .

(20)

Thus

𝜔
𝑇

(U𝑥, 𝜀)

≤
1

Γ (𝛼 + 1)
{2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (‖𝑥‖) + 𝑢̂ (𝑇)] + 𝑇
𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)} ,

(21)

where

𝑙̂ (𝑇) = max {𝑙 (𝑡) : 𝑡 ∈ [0, 𝑇]} ,

𝑢̂ (𝑇) = max {𝑢∗ (𝑡) : 𝑡 ∈ [0, 𝑇]} .
(22)

In view of the uniform continuity of the function 𝑢 on
[0, 𝑇]×[0, 𝑇]×[−‖𝑥‖, ‖𝑥‖]wehave that𝜔𝑇

‖𝑥‖
(𝑢, 𝜀) → 0 as 𝜀 →

0. From the above inequality we infer that the functionU𝑥 is
continuous on the interval [0, 𝑇] for any 𝑇 > 0. This yields
the continuity of U𝑥 on R

+
and, consequently, the function

F𝑥 is continuous on R
+
.

Step 2 (F𝑥 is bounded onR
+
). In view of our hypotheses for

arbitrary 𝑥 ∈ 𝐵𝐶(R
+
) and for a fixed 𝑡 ∈ R

+
we have

|(F𝑥) (𝑡)|

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎 (𝑡) + 𝑓(𝑡,
𝛽𝑔 (𝑡, 𝑥 (𝑡))

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ‖𝑎‖ +
𝛽

Γ (𝛼)
𝑚 (𝑡) [

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥 (𝑡)) − 𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

× ∫

𝑡

0

𝑠
𝛽−1

[|𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡, 𝑠, 0)| + |𝑢 (𝑡, 𝑠, 0)|]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
󵄨󵄨󵄨󵄨𝑓 (𝑡, 0)

󵄨󵄨󵄨󵄨

≤ ‖𝑎‖ + 𝑓
∗

+
𝛽𝑚 (𝑡) [𝑛 (𝑡) ‖𝑥‖ +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[𝑙 (𝑡) Φ (|𝑥 (𝑠)|) + 𝑢
∗

(𝑡)]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤ ‖𝑎‖ + 𝑓
∗

+
𝑚 (𝑡) [𝑛 (𝑡) ‖𝑥‖ +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼 + 1)

× [𝑙 (𝑡) Φ (‖𝑥‖) + 𝑢
∗

(𝑡)] 𝑡
𝛼𝛽

= ‖𝑎‖ + 𝑓
∗

+
1

Γ (𝛼 + 1)
[𝜙 (𝑡) ‖𝑥‖Φ (‖𝑥‖)

+ 𝜓 (𝑡) ‖𝑥‖ + 𝜉 (𝑡)Φ (‖𝑥‖) + 𝜂 (𝑡)] .

(23)

Hence,F𝑥 is bounded on R
+
, thanks to hypothesis (ℎ

5
).
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Step 3 (F maps the ball 𝐵
𝑟0
into itself). Steps 2 and 3 allow

us to conclude that the operator F transforms 𝐵𝐶(R
+
) into

itself. Moreover, from the last estimate we have

‖F𝑥‖

≤ ‖𝑎‖ + 𝑓
∗

+
1

Γ (𝛼 + 1)
[𝜙
∗

‖𝑥‖Φ (‖𝑥‖) + 𝜓
∗

‖𝑥‖ + 𝜉
∗

Φ (‖𝑥‖) + 𝜂
∗

] .

(24)

From the last estimate with hypothesis (ℎ
6
) we deduce that

there exists 𝑟
0
> 0 such that the operator F maps 𝐵

𝑟0
into

itself.

Step 4 (an estimate of F with respect to the quantity 𝑐). Let
us take a nonempty set 𝑋 ⊂ 𝐵

𝑟0
. Then, for arbitrary 𝑥, 𝑦 ∈ 𝑋

and for a fixed 𝑡 ∈ R
+
, we obtain

󵄨󵄨󵄨󵄨(F𝑥) (𝑡) − (F𝑦) (𝑡)
󵄨󵄨󵄨󵄨

≤
𝛽𝑚 (𝑡)

Γ (𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑔 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑥 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

−𝑔 (𝑡, 𝑦 (𝑡)) ∫

𝑡

0

𝑠
𝛽−1

𝑢 (𝑡, 𝑠, 𝑦 (𝑠))

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝛽𝑚 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑥 (𝑡)) − 𝑔 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

|𝑢 (𝑡, 𝑠, 𝑥 (𝑠))|

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 𝑦 (𝑡))
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡, 𝑠, 𝑦 (𝑠))

󵄨󵄨󵄨󵄨

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[|𝑢 (𝑡, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡, 𝑠, 0)| + |𝑢 (𝑡, 𝑠, 0)|]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) [𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

𝑙 (𝑡) Φ (
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[𝑙 (𝑡) Φ (|𝑥 (𝑠)|) + 𝑢
∗

(𝑡)]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) [𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

𝑙 (𝑡) Φ (|𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) (|𝑥 (𝑡)| +

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨)

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

Φ (|𝑥 (𝑠)|)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑢

∗

(𝑡)
󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)

󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

Φ(|𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

Φ(|𝑥 (𝑠)| +
󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
2𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) 𝑟

0
Φ(𝑟
0
)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑢

∗

(𝑡) diam𝑋 (𝑡)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) 𝑟

0
Φ(2𝑟
0
)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨 Φ (2𝑟

0
)

Γ (𝛼)
∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
2𝜙 (𝑡) 𝑟

0
Φ(𝑟
0
)

Γ (𝛼 + 1)
+

𝜓 (𝑡)

Γ (𝛼 + 1)
diam𝑋 (𝑡)

+
𝜙 (𝑡) 𝑟

0
Φ(2𝑟
0
)

Γ (𝛼 + 1)
+
𝜉 (𝑡)Φ (2𝑟

0
)

Γ (𝛼 + 1)
.

(25)

Hence, we can easily deduce the following inequality:

diam (F𝑋) (𝑡) ≤
2𝜙 (𝑡) 𝑟

0
Φ(𝑟
0
)

Γ (𝛼 + 1)
+

𝜓 (𝑡)

Γ (𝛼 + 1)
diam𝑋 (𝑡)

+
𝜙 (𝑡) 𝑟

0
Φ(2𝑟
0
)

Γ (𝛼 + 1)
+
𝜉 (𝑡) Φ (2𝑟

0
)

Γ (𝛼 + 1)
.

(26)
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Now, taking into account hypothesis (ℎ
5
) we obtain

𝑐 (F𝑋) ≤ 𝑞𝑐 (𝑋) , (27)

where 𝑞 = (𝜙∗Φ(𝑟
0
)+𝜓
∗
)/Γ(𝛼+1) ≥ 𝜓

∗
/Γ(𝛼+1). Obviously,

in view of hypothesis (ℎ
6
) we have that 𝑞 < 1.

Step 5 (an estimate of F with respect to the modulus of
continuity 𝜔∞

0
). Take arbitrary numbers 𝜀 > 0 and 𝑇 > 0.

Choose a function 𝑥 ∈ 𝑋 and take 𝑡
1
, 𝑡
2
∈ [0, 𝑇] such that

|𝑡
2
− 𝑡
1
| ≤ 𝜀. Without loss of generality we can assume that

𝑡
2
> 𝑡
1
. Then, taking into account our hypotheses and (21),

we have

󵄨󵄨󵄨󵄨(F𝑥) (𝑡
2
) − (F𝑥) (𝑡

1
)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝑎 (𝑡2) − 𝑎 (𝑡1)

󵄨󵄨󵄨󵄨

+ 𝑚 (𝑡
2
)
󵄨󵄨󵄨󵄨(𝐺𝑥) (𝑡2) (U𝑥) (𝑡2) − (𝐺𝑥) (𝑡1) (U𝑥) (𝑡2)

󵄨󵄨󵄨󵄨

+ 𝑚 (𝑡
2
)
󵄨󵄨󵄨󵄨(𝐺𝑥) (𝑡1) (U𝑥) (𝑡2) − (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1)

󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀)

+
𝛽𝑚 (𝑡

2
)
󵄨󵄨󵄨󵄨𝑔 (𝑡2, 𝑥 (𝑡2)) − 𝑔 (𝑡1, 𝑥 (𝑡1))

󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡2

0

𝑠
𝛽−1

[
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 𝑥 (𝑠)) − 𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑢 (𝑡2, 𝑠, 0)

󵄨󵄨󵄨󵄨]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝑚 (𝑡
2
) [
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 𝑥 (𝑡1)) − 𝑔 (𝑡1, 0)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 0)

󵄨󵄨󵄨󵄨]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (‖𝑥‖) + 𝑢̂ (𝑇)] + 𝑇
𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +

𝛽𝑚 (𝑡
2
) [𝑛 (𝑡

2
)
󵄨󵄨󵄨󵄨𝑥 (𝑡2) − 𝑥 (𝑡1)

󵄨󵄨󵄨󵄨 + 𝜔
𝑇

𝑔
(𝜀)]

Γ (𝛼)

× ∫

𝑡2

0

𝑠
𝛽−1

[𝑙 (𝑡
2
)Φ (|𝑥 (𝑠)|) + 𝑢

∗
(𝑡
2
)]

(𝑡
𝛽

2
− 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝑚 (𝑡
2
) [𝑛 (𝑡

1
)
󵄨󵄨󵄨󵄨𝑥 (𝑡1)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 0)

󵄨󵄨󵄨󵄨]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (‖𝑥‖) + 𝑢̂ (𝑇)] + 𝑇
𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +
𝑡
𝛼𝛽

2

Γ (𝛼 + 1)
𝑚 (𝑡
2
)

× [𝑛 (𝑡
2
) 𝜔
𝑇

(𝑥, 𝜀) + 𝜔
𝑇

𝑔
(𝜀)] [𝑙 (𝑡

2
)Φ (𝑟
0
) + 𝑢
∗

(𝑡
2
)]

+
𝑚̂ (𝑇) [𝑛 (𝑡

1
) 𝑟
0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +
[𝜙 (𝑡
2
)Φ (𝑟
0
) + 𝜓 (𝑡

2
)]

Γ (𝛼 + 1)
𝜔
𝑇

(𝑥, 𝜀)

+

𝑇
𝛼𝛽
𝜔
𝑇

𝑔
(𝜀)

Γ (𝛼 + 1)
𝑚̂ (𝑇) [𝑙̂ (𝑇)Φ (𝑟

0
) + 𝑢̂ (𝑇)]

+
𝑚̂ (𝑇) [𝑛 (𝑇) 𝑟

0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨

≤ 𝜔
𝑇

(𝑎, 𝜀) +
[𝜙
∗
Φ(𝑟
0
) + 𝜓
∗
]

Γ (𝛼 + 1)
𝜔
𝑇

(𝑥, 𝜀)

+

𝑇
𝛼𝛽
𝜔
𝑇

𝑔
(𝜀)

Γ (𝛼 + 1)
𝑚̂ (𝑇) [𝑙̂ (𝑇)Φ (𝑟

0
) + 𝑢̂ (𝑇)]

+
𝑚̂ (𝑇) [𝑛 (𝑇) 𝑟

0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+
󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨 .

(28)

In the last estimates, we have denoted by

𝜔
𝑇

𝑔
(𝜀) = sup {󵄨󵄨󵄨󵄨𝑔 (𝑡2, 𝑥) − 𝑔 (𝑡1, 𝑥)

󵄨󵄨󵄨󵄨 : 𝑡1, 𝑡2 ∈ [0, 𝑇] ,

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1
󵄨󵄨󵄨󵄨 ≤ 𝜀, 𝑥 ∈ [−𝑟0, 𝑟0]} ,

𝑛 (𝑇) = max {𝑛 (𝑡) : 𝑡 ∈ [0, 𝑇]} ,

𝑚̂ (𝑇) = max {𝑚 (𝑡) : 𝑡 ∈ [0, 𝑇]} ,

𝑔 (𝑇) = max {󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨 : 𝑡 ∈ [0, 𝑇]} .

(29)
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Hence,

𝜔
𝑇

(F𝑥, 𝜀)

≤ 𝜔
𝑇

(𝑎, 𝜀) +
[𝜙
∗
Φ(𝑟
0
) + 𝜓
∗
]

Γ (𝛼 + 1)
𝜔
𝑇

(𝑥, 𝜀)

+

𝑇
𝛼𝛽
𝜔
𝑇

𝑔
(𝜀)

Γ (𝛼 + 1)
𝑚̂ (𝑇) [𝑙̂ (𝑇)Φ (𝑟

0
) + 𝑢̂ (𝑇)]

+
𝑚̂ (𝑇) [𝑛 (𝑇) 𝑟

0
+ 𝑔 (𝑇)]

Γ (𝛼 + 1)

× {2𝜀
𝛼𝛽

[𝑙̂ (𝑇)Φ (𝑟
0
) + 𝑢̂ (𝑇)] + 𝑇

𝛼𝛽

𝜔
𝑇

‖𝑥‖
(𝑢, 𝜀)}

+ sup
𝑡1,𝑡2∈[0,𝑇], ‖𝑥‖≤𝑟0

󵄨󵄨󵄨󵄨𝑓 (𝑡2, (𝐺𝑥) (𝑡1) (U𝑥) (𝑡1))

−𝑓 (𝑡
1
, (𝐺𝑥) (𝑡

1
) (U𝑥) (𝑡

1
))
󵄨󵄨󵄨󵄨 .

(30)

Since the function 𝑓(𝑡, 𝑦) is uniformly continuous on the set
[0, 𝑇]×[−𝐻,𝐻], the function 𝑔(𝑡, 𝑥) is uniformly continuous
on the set [0, 𝑇] × [−𝑟

0
, 𝑟
0
] and the function 𝑢(𝑡, 𝑠, 𝑥) is

uniformly continuous on the set [0, 𝑇] × [0, 𝑇] × [−𝑟
0
, 𝑟
0
],

where

𝐻 = sup
{

{

{

𝛽
󵄨󵄨󵄨󵄨𝑔 (𝑡1, 𝑥 (𝑡1))

󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡1

0

𝑠
𝛽−1 󵄨󵄨󵄨󵄨𝑢 (𝑡1, 𝑠, 𝑥 (𝑠))

󵄨󵄨󵄨󵄨

(𝑡
𝛽

1
− 𝑠𝛽)
1−𝛼

𝑑𝑠 : 𝑡
1
∈ [0, 𝑇] ,

‖𝑥‖ ≤ 𝑟
0

}

}

}

;

(31)

we have
sup {󵄨󵄨󵄨󵄨𝑓 (𝑡2, 𝑦) − 𝑓 (𝑡1, 𝑦)

󵄨󵄨󵄨󵄨 : 𝑡1, 𝑡2 ∈ [0, 𝑇] ,
󵄨󵄨󵄨󵄨𝑡2 − 𝑡1

󵄨󵄨󵄨󵄨 ≤ 𝜀,

󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 ≤ 𝐻} 󳨀→ 0 as 𝜀 󳨀→ 0.

(32)

It is easy to see that𝐻 < ∞ because 𝑢(𝑡, 𝑠, 𝑥) is bounded on
[0, 𝑇]×[0, 𝑇]×[−𝑟

0
, 𝑟
0
],𝑔(𝑡, 𝑥) is bounded on [0, 𝑇]×[−𝑟

0
, 𝑟
0
],

and (𝛽/Γ(𝛼)) ∫𝑡1
0
(𝑠
𝛽−1

/(𝑡
𝛽

1
− 𝑠
𝛽
)
1−𝛼

)𝑑𝑠 ≤ 𝑇
𝛼𝛽
/Γ(𝛼 + 1).

Therefore, from the last estimate we derive the following
one:

𝜔
𝑇

0
(F𝑋) ≤ 𝑞𝜔

𝑇

0
(𝑋) . (33)

Hence we have

𝜔
∞

0
(F𝑋) ≤ 𝑞𝜔

∞

0
(𝑋) . (34)

Step 6 (F is contraction with respect to the measure of
noncompactness 𝜇). From (27) and (34) and the definition of
the measure of noncompactness 𝜇 given by formula (8), we
obtain

𝜇 (F𝑋) ≤ 𝑞𝜇 (𝑋) . (35)

Step 7. We construct a nonempty, bounded, closed, and
convex set 𝑌 on which we will apply a fixed point theorem.

In the sequel let us put 𝐵1
𝑟0

= ConvF(𝐵
𝑟0
), 𝐵2
𝑟0

=

ConvF(𝐵
1

𝑟0

), and so on. In this way we have constructed
a decreasing sequence of nonempty, bounded, closed, and
convex subsets (𝐵𝑛

𝑟0

) of 𝐵
𝑟0
such that F(𝐵

𝑛

𝑟0

) ⊂ 𝐵
𝑛

𝑟0

for 𝑛 =

1, 2, . . .. Hence, in view of (35) we obtain

𝜇 (𝐵
𝑛

𝑟0

) ≤ 𝑞
𝑛

𝜇 (𝐵
𝑟0
) , for any 𝑛 = 1, 2, 3, . . . . (36)

This implies that lim
𝑛→∞

𝜇(𝐵
𝑛

𝑟0

) = 0. Hence, taking into
account Definition 1 we infer that the set 𝑌 = ⋂

∞

𝑛=1
𝐵
𝑛

𝑟0

is nonempty, bounded, closed, and convex subset of 𝐵
𝑟0
.

Moreover, 𝑌 ∈ ker 𝜇. Also, the operatorFmaps 𝑌 into itself.

Step 8 (F is continuous on the set 𝑌). Let us fix a number
𝜀 > 0 and take arbitrary functions 𝑥, 𝑦 ∈ 𝑌 such that ‖𝑥 −
𝑦‖ ≤ 𝜀. Using the fact that 𝑌 ∈ ker 𝜇 and keeping in mind the
structure of sets belonging to ker 𝜇we can find a number 𝑇 >

0 such that for each 𝑧 ∈ 𝑌 and 𝑡 ≥ 𝑇 we have that |𝑧(𝑡)| ≤ 𝜀.
SinceFmaps 𝑌 into itself, we have thatF𝑥,F𝑦 ∈ 𝑌. Thus,
for 𝑡 ≥ 𝑇 we get
󵄨󵄨󵄨󵄨(F𝑥) (𝑡) − (F𝑦) (𝑡)

󵄨󵄨󵄨󵄨 ≤ |(F𝑥) (𝑡)| +
󵄨󵄨󵄨󵄨(F𝑦) (𝑡)

󵄨󵄨󵄨󵄨 ≤ 2𝜀. (37)

On the other hand, let us assume 𝑡 ∈ [0, 𝑇]. Then we obtain
󵄨󵄨󵄨󵄨(F𝑥) (𝑡) − (F𝑦) (𝑡)

󵄨󵄨󵄨󵄨

≤
𝛽𝑚 (𝑡) 𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑥 (𝑡) − 𝑦 (𝑡)
󵄨󵄨󵄨󵄨

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

[𝑙 (𝑡) Φ (|𝑥 (𝑠)|) + 𝑢
∗

(𝑡)]

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
𝛽𝑚 (𝑡) [𝑛 (𝑡)

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨]

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

𝑙 (𝑡) Φ (
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨)

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
[𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) Φ (𝑟

0
) + 𝑚 (𝑡) 𝑛 (𝑡) 𝑢

∗

(𝑡)] 𝜀𝛽

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

+
[𝑚 (𝑡) 𝑛 (𝑡) 𝑙 (𝑡) 𝑟

0
+ 𝑚 (𝑡) 𝑙 (𝑡)

󵄨󵄨󵄨󵄨𝑔 (𝑡, 0)
󵄨󵄨󵄨󵄨] Φ (𝜀) 𝛽

Γ (𝛼)

× ∫

𝑡

0

𝑠
𝛽−1

(𝑡𝛽 − 𝑠𝛽)
1−𝛼

𝑑𝑠

≤
𝜙 (𝑡)Φ (𝑟

0
) + 𝜓 (𝑡)

Γ (𝛼 + 1)
𝜀 +

𝜙 (𝑡) 𝑟
0
+ 𝜉 (𝑡)

Γ (𝛼 + 1)
Φ (𝜀)

≤
𝜙
∗
Φ(𝑟
0
) + 𝜓
∗

Γ (𝛼 + 1)
𝜀 +

𝜙
∗
𝑟
0
+ 𝜉
∗

Γ (𝛼 + 1)
Φ (𝜀) .

(38)
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Now, taking into account (37) and (38) and hypothesis (ℎ
5
)

we conclude that the operatorF is continuous on the set 𝑌.

Step 9 (application of Schauder fixed point principle). Link-
ing all above-obtained facts about the set 𝑌 and the operator
F : 𝑌 → 𝑌 and using the classical Schauder fixed point
principle we deduce that the operatorF has at least one fixed
point 𝑥 in the set 𝑌. Obviously the function 𝑥 = 𝑥(𝑡) is
a solution of the quadratic integral equation (1). Moreover,
since 𝑌 ∈ ker 𝜇 we have that all solutions of (1) belonging to
𝐵
𝑟0
are asymptotically stable in the sense of Definition 2.This

completes the proof.

4. Example

In this section, we present an example as an application of
Theorem 3.

Consider the following integral equation of fractional
order:

𝑥 (𝑡) = 𝑡𝑒
−𝑡

+
1

1 + 𝑡3

+ arctan[[

[

1

𝑡2 + 1
⋅
sin (𝑥𝑡)
2Γ (1/2)

∫

𝑡

0

√1 + 𝛿 |𝑥 (𝑠)|

√𝑠√√𝑡 − √𝑠

𝑑𝑠
]
]

]

,

𝑡 ∈ R
+
.

(39)

Equation (39) is a special case of (1), where 𝛼 = 1/2, 𝛽 = 1/2,
𝛿 is a positive constant, and

𝑎 (𝑡) = 𝑡𝑒
−𝑡

,

𝑓 (𝑡, 𝑥) =
1

1 + 𝑡3
+ arctan( 1

𝑡2 + 1
⋅ 𝑥) ,

𝑔 (𝑡, 𝑥) = sin (𝑥𝑡) ,

𝑢 (𝑡, 𝑠, 𝑥) = √1 + 𝛿 |𝑥|.

(40)

It is easy to check that the assumptions of Theorem 3 are
satisfied. In fact we have that the function 𝑎(𝑡) = 𝑡𝑒

−𝑡 is
continuous and bounded on R

+
and ‖𝑎‖ = 1/𝑒.

The function𝑓(𝑡, 𝑥) = (1/(1+𝑡3))+arctan((1/(𝑡2+1)) ⋅𝑥)
satisfies assumption (ℎ

2
)with𝑚(𝑡) = 1/(𝑡2+1) and |𝑓(𝑡, 0)| =

𝑓(𝑡, 0) = 1/(1 + 𝑡
3
), being 𝑓∗ = 1.

Moreover, the function 𝑔(𝑡, 𝑥) = sin(𝑥𝑡) satisfies assump-
tion (ℎ

3
) with 𝑛(𝑡) = 𝑡.

The function 𝑢(𝑡, 𝑠, 𝑥) = √1 + 𝛿|𝑥| satisfies assumption
(ℎ
4
) with 𝑙(𝑡) = 1, Φ(𝑟) = √𝛿𝑟, 𝑢(𝑡, 𝑠, 0) = 1, and 𝑢∗ = 1.
Next, we are going to check that assumption (ℎ

5
) is

satisfied.The functions𝜙,𝜓, 𝜉, and 𝜂 appearing in assumption
(ℎ
5
) take the form

𝜙 (𝑡) =
𝑡
5/4

𝑡2 + 1
; 𝜓 (𝑡) =

𝑡
5/4

𝑡2 + 1
;

𝜉 (𝑡) = 0; 𝜂 (𝑡) = 0.

(41)

It is easy to see that lim
𝑡→∞

𝜙(𝑡) = lim
𝑡→∞

𝜉(𝑡) = 0.

Moreover we have 𝜙∗ = 𝜓∗ = (3/8)⋅(5/3)5/8, 𝜉∗ = 𝜂∗ = 0,
and Γ(3/2) = (1/2)√𝜋.

Therefore the inequality in assumption (ℎ
6
)

‖𝑎‖ + 𝑓
∗

+
1

Γ (𝛼 + 1)

× [𝜙
∗

𝑟Φ (𝑟) + 𝜓
∗

𝑟 + 𝜉
∗

Φ (𝑟) + 𝜂
∗

] ≤ 𝑟

(42)

has the form

1

𝑒
+ 1 +

2

√𝜋
[𝜙
∗√𝛿𝑟
3/2

+ 𝜓
∗

𝑟] ≤ 𝑟. (43)

We can easily check that the number 𝑟
0
= 7 is a solution of the

inequality (43) for 𝛿 ≤ 0, 02. Now, byTheorem 3, we infer that
our equation has a solution in 𝐵

𝑟0
⊂ 𝐵𝐶(R

+
) and all solutions

of (39) which belongs to 𝐵
𝑟0
are asymptotically stable in the

sense of the Definition 2.
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[25] J. Banaś and B. Rzepka, “Nondecreasing solutions of a quadratic
singular Volterra integral equation,” Mathematical and Com-
puter Modelling, vol. 49, no. 3-4, pp. 488–496, 2009.

[26] M.A.Darwish, “Onmonotonic solutions of a singular quadratic
integral equation with supremum,”Dynamic Systems and Appli-
cations, vol. 17, no. 3-4, pp. 539–549, 2008.

[27] M. A. Darwish, “On existence and asymptotic behaviour of
solutions of a fractional integral equation,” Applicable Analysis,
vol. 88, no. 2, pp. 169–181, 2009.

[28] M. A. Darwish and K. Sadarangani, “On existence and asymp-
totic stability of solutions of a functional-integral equation of
fractional order,” Journal of Convex Analysis, vol. 17, no. 2, pp.
413–426, 2010.

[29] M. A. Darwish and S. K. Ntouyas, “On a quadratic fractional
Hammerstein-Volterra integral equation with linear modifica-
tion of the argument,” Nonlinear Analysis: Theory, Methods &
Applications, vol. 74, no. 11, pp. 3510–3517, 2011.

[30] M. A. Darwish, J. Henderson, and D. O’Regan, “Existence
and asymptotic stability of solutions of a perturbed fractional
functional-integral equation with linear modification of the
argument,” Bulletin of the Korean Mathematical Society, vol. 48,
no. 3, pp. 539–553, 2011.
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Some sharp estimates of the 𝐿𝑝 (1 ≤ 𝑝 < ∞) modulus of continuity of classes of Λ 𝜑-bounded variation are obtained. As direct
applications, we obtain estimates of order of Fourier coefficients of functions of Λ 𝜑-bounded variation, and we also characterize
some sufficient and necessary conditions for the embedding relations𝐻𝜔

𝑝
⊂ Λ 𝜑𝐵𝑉. Our results include the corresponding known

results of the class Λ𝐵𝑉 as a special case.

1. Introduction and Main Results

To generalize the notion of functions of bounded variation,
Wiener [1] introduced the class 𝐵𝑉𝛽 (𝛽 > 1) of functions
of 𝛽-bounded variation. Young [2] introduced the notion of
functions of 𝜑-bounded variation, andWaterman [3] studied
a class of Λ-bounded variations. Combining the notion of Λ-
bounded variationwith that of𝜑-bounded variation, Leindler
[4] introduced the class Λ 𝜑𝐵𝑉 of functions of Λ 𝜑-bounded
variation, and both classes of Λ-bounded variation and 𝜑-
bounded variation are its special cases. Actually the class
Λ 𝜑𝐵𝑉 first appeared in Schramm and Waterman’s paper [5],
and some restrictions are imposed on 𝜑 in their definition.
Here we adopt Leindler’s definition.

Definition 1. Let 𝜑 : [0,∞) → R be a nondecreasing
function with 𝜑(0) = 0, and let Λ =: {𝜆𝑘} be a nondecreasing
sequence of positive numbers such that ∑

∞

𝑘=1
(1/𝜆𝑘) =

+∞. Let Γ be the set of all sequences of nonoverlapping
subintervals [𝑎𝑘, 𝑏𝑘] in [𝑎, 𝑏]. If for any Δ = {(𝑎𝑘, 𝑏𝑘) ⊂ [𝑎, 𝑏],
𝑘 = 1, 2, . . . , 𝑛, 𝑛 ∈ Z+} ∈ Γ, a real valued function 𝑓 :

[𝑎, 𝑏] → R satisfies the condition

𝑛

∑

𝑘=1

𝜑 (
󵄨󵄨󵄨󵄨𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)

󵄨󵄨󵄨󵄨)

𝜆𝑘
< ∞, (1)

then 𝑓 is said to be of Λ 𝜑-bounded variation, and this fact is
denoted by 𝑓 ∈ Λ 𝜑𝐵𝑉. And the quantity

𝑉Λ 𝜑
(𝑓; [𝑎, 𝑏]) := sup

Δ∈Γ

{

𝑛

∑

𝑘=1

𝜑 (
󵄨󵄨󵄨󵄨𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)

󵄨󵄨󵄨󵄨)

𝜆𝑘
} (2)

is said to be Λ 𝜑-total variation of 𝑓.
In the special case when 𝜑(𝑥) = 𝑥

𝛽
(𝛽 ≥ 1), 𝑓 is said

to be of Λ 𝛽-bounded variation, and we write 𝑓 ∈ Λ 𝛽𝐵𝑉

and 𝑉Λ 𝛽
(𝑓; [𝑎, 𝑏]) = 𝑉Λ 𝜑

(𝑓; [𝑎, 𝑏]), and if 𝛽 = 1, 𝑓 is said
to be of Λ-bounded variation, and we denote 𝑓 ∈ Λ𝐵𝑉 and
𝑉Λ(𝑓; [𝑎, 𝑏]) = 𝑉Λ 1

(𝑓; [𝑎, 𝑏]).
In the case Λ = {1}, we get the class of 𝜑-bounded

variation, and 𝑓 is said to be of 𝜑-bounded variation, and we
denote 𝑉𝜑(𝑓; [𝑎, 𝑏]) = 𝑉Λ 𝜑

(𝑓; [𝑎, 𝑏]). More specifically, when
𝜑(𝑥) = 𝑥

𝛽
(𝛽 ≥ 1), we say that 𝑓 is of 𝛽-bounded variation,

and we denote 𝑓 ∈ 𝐵𝑉𝛽 and 𝑉𝛽(𝑓; [𝑎, 𝑏]) = 𝑉𝜑(𝑓; [𝑎, 𝑏]). The
class 𝐵𝑉𝛽 is also called the Wiener class and 𝐵𝑉1 is the well-
known class of bounded variation 𝐵𝑉.

It is easily seen from the definition that Λ 𝜑𝐵𝑉 functions
are bounded; that is, Λ 𝜑𝐵𝑉[𝑎, 𝑏] ⊆ 𝐵[𝑎, 𝑏], and the disconti-
nuities of a Λ 𝜑𝐵𝑉 function are simple and therefore at most
denumerable, where 𝐵[𝑎, 𝑏] denotes the class of bounded real
valued functions on [𝑎, 𝑏].

Let Λ =: {𝜆𝑘} be a nondecreasing sequence of positive
numbers such that ∑∞

𝑘=1
(1/𝜆𝑘) = +∞. If a continuous
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and nondecreasing function 𝜆(𝑠) on [0,∞) such that 𝜆(𝑠) ≡
𝜆1, 0 ≤ 𝑠 ≤ 1 and 𝜆(𝑘) = 𝜆𝑘, 𝑘 = 1, 2, . . ., then we say that 𝜆(𝑠)
generates Λ. By the nondecreasing property of Λ, it is easily
verified that if 𝜆(𝑠) generates Λ, then

1

2
∫

𝑛

0

d𝑠
𝜆 (𝑠)

≤

𝑛

∑

𝑘=1

1

𝜆𝑘
≤ ∫

𝑛

0

d𝑠
𝜆 (𝑠)

, 𝑛 ≥ 1. (3)

Let 𝜆(𝑥) be a nonnegative real-valued function on [0,∞).
If there exists 𝑎 > 0 such that 𝜆(2𝑥) ≤ 𝑎𝜆(𝑥), 𝑥 ∈ (0, 𝐴)

for some positive constant 𝐴, then we say that 𝜆(𝑥) satisfies
the condition Δ 2. If 𝜆(𝑥) generates Λ = {𝜆𝑘} and satisfies
the condition Δ 2, we say that Λ satisfies the condition Δ 2.
Obviously the conditionΔ 2 here is a very weak restriction on
𝜆(𝑥) and Λ.

Let 𝜔(𝑡) be a modulus of continuity, that is, a continuous
and nondecreasing function on [0, +∞) satisfying 𝜔(0) = 0

and 𝜔(𝑡1 + 𝑡2) ≤ 𝜔(𝑡1) + 𝜔(𝑡2) for nonnegative 𝑡1 and 𝑡2. As
usual, for 1 ≤ 𝑝 ≤ ∞, denote by 𝐻𝜔

𝑝
≡ 𝐻

𝜔(𝑡)

𝑝
the class of

functions for which ‖𝑓‖
𝐻𝜔
𝑝

:= sup
𝑡>0
(𝜔(𝑓, 𝑡)𝑝/𝜔(𝑡)) < ∞,

where
𝜔(𝑓; 𝑡)

𝑝

:=

{{{{

{{{{

{

sup
0≤ℎ≤𝑡

{∫

𝑏

𝑎

󵄨󵄨󵄨󵄨𝑓(𝑥 + ℎ) − 𝑓(𝑥)
󵄨󵄨󵄨󵄨
𝑝d𝑥}

1/𝑝

, 1 ≤ 𝑝 < ∞,

sup
0≤ℎ≤𝑡

sup
𝑥∈[𝑎,𝑏]

󵄨󵄨󵄨󵄨𝑓 (𝑥 + ℎ) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨 , 𝑝 = ∞

(4)

is the 𝐿𝑝 modulus of continuity of 𝑓. We write 𝐻𝜔 instead
of 𝐻𝜔

∞
and 𝐻𝛼

𝑝
(0 < 𝛼 ≤ 1) instead of 𝐻𝑡

𝛼

𝑝
≡ Lip(𝛼, 𝑝), the

Lipschitz class, for brevity.
Functions of classes 𝐵𝑉𝛽, 𝜑𝐵𝑉, Λ𝐵𝑉, and Λ 𝜑𝐵𝑉 are

considered in trigonometric Fourier series and some of them
share good approximative properties (see [1–3, 6–11], etc.).
What we mention here is the following theorem proved by
Shiba [12], Schramm andWaterman [5], and Wang [13]:

Theorem A. (a) If 𝑓 ∈ Λ 𝛽𝐵𝑉, 1 ≤ 𝛽 < 2𝑟, 1 ≤ 𝑟 < ∞, and

∑
∞

𝑛=1
(∑

𝑛

𝑘=1
(1/𝜆𝑘))

−1/2𝑟
(𝜔𝛽+(2−𝛽)𝑠(𝑓; 𝜋/𝑛))

1−𝛽/2𝑟

𝑛1/2
< ∞,

(5)
where 1/𝑟 + 1/𝑠 = 1, then the Fourier series of 𝑓 converges
absolutely.

(b) If 𝜑 is Δ 2, 𝑓 ∈ Λ 𝜑𝐵𝑉, 1 ≤ 𝛽 < 2𝑟, 1 ≤ 𝑟 < ∞, and

∑
∞

𝑛=1
[𝜑

−1
((∑

𝑛

𝑘=1
(
1

𝜆𝑘
))

−1

𝜔
2𝑟−𝛽

𝛽+(2−𝛽)𝑠
(𝑓;

𝜋

𝑛
))]

1/2𝑟

𝑛1/2
< ∞,

(6)
where 1/𝑟 + 1/𝑠 = 1, then the Fourier series of 𝑓 converges
absolutely.

Embedding relations between various generalized
bounded variation classes and the class𝐻𝜔

𝑝
(or the Lipschitz

class𝐻𝛼

𝑝
) are also investigated in recent years. It iswell known

that 𝐻1

𝑝
⊂ 𝐻

1

1
= 𝐵𝑉 ⊂ Λ𝐵𝑉. For 𝑓 ∈ Λ𝐵𝑉, the estimates

of 𝐿𝑝 modulus of continuity of 𝑓 had been given in [13] for
𝑝 = 1 and in [9, 14] for 1 < 𝑝 < ∞. Furthermore, Goginava
in [15] and Li and Wang in [9] proved that, for 1 ≤ 𝑝 < ∞,
0 < 𝛼, 𝛿 ≤ 1,

{𝑛
𝛿
} 𝐵𝑉 ⊂ 𝐻

𝛼

𝑝
iff 𝛼 ≤ min{ 1

𝑝
, 1 − 𝛿} . (7)

For more detailed results on this topic, we refer readers to [4,
9, 10, 14–25].

In this paper, we obtain some sharp estimates of 𝐿𝑝 (1 ≤
𝑝 < ∞) modulus of continuity of the classes Λ 𝜑𝐵𝑉 in the
case of that 𝜑 is convex. More specifically, our results include
estimates of 𝐿1 modulus of continuity of the classes Λ 𝜑𝐵𝑉,
estimates of 𝐿𝑝 (1 ≤ 𝑝 < ∞) modulus of continuity of the
classes Λ 𝛽𝐵𝑉, and specially estimates of 𝐿𝑝 (1 ≤ 𝑝 < ∞)

modulus of the classes {(𝑛+1)𝛼ln𝛾(𝑛+1)}𝛽𝐵𝑉 (0 ≤ 𝛼 ≤ 1, 𝛽 ≥

1, 𝛾 ∈ R). Our results extend and include the corresponding
known results of the class Λ𝐵𝑉 as a special case and are
also sharp in most cases. As direct applications, we obtain
estimates of order of Fourier coefficients of functions of Λ 𝜑-
bounded variation, and we also characterize some sufficient
and necessary conditions for the embedding relations 𝐻𝜔

𝑝
⊂

Λ 𝜑𝐵𝑉 and𝐻𝜔

𝑝
⊂ 𝜑𝐵𝑉.

Now we state our main results, and in what follows,
without loss of generality, we always assume that [𝑎, 𝑏] =

[0, 2𝜋], and functions in various generalized bounded vari-
ation classes are 2𝜋 periodic.

Theorem2. LetΛ 𝜑𝐵𝑉 be the class of functions ofΛ 𝜑-bounded
variation, and let 𝜆(𝑠) generate Λ, where 𝜑 is convex and 𝜑−1
is the inverse function of 𝜑. Then, for 𝑓 ∈ Λ 𝜑𝐵𝑉,

𝜔(𝑓; 𝑡)
1
≤ 4𝜋𝜑

−1
(
𝑉Λ 𝜑

(𝑓; [0, 2𝜋])

∫
1/𝑡

0
(𝑑𝑠/𝜆 (𝑠))

) , (8)

and this estimate is sharp in the sense of order provided that Λ
satisfies the condition Δ 2.

Corollary 3 is a direct result of Theorem 2 by choosing
𝜑(𝑥) = 𝑥 and Λ = {1}, respectively.

Corollary 3. (a) Let Λ𝐵𝑉 be the class of functions of Λ-
bounded variation, and let𝜆(𝑠) generateΛ.Then, for𝑓 ∈ Λ𝐵𝑉,

𝜔(𝑓; 𝑡)
1
≤
4𝜋𝑉Λ (𝑓; [0, 2𝜋])

∫
1/𝑡

0
(𝑑𝑠/𝜆 (𝑠))

, (9)

and this estimate is sharp in the sense of order provided that Λ
satisfies the condition Δ 2.

(b) Let 𝜑𝐵𝑉 be the class of functions of 𝜑-bounded
variation, where 𝜑 is convex. Then, for 𝑓 ∈ 𝜑𝐵𝑉,

𝜔(𝑓; 𝑡)
1
≤ 4𝜋𝜑

−1
(𝑡𝑉𝜑 (𝑓; [0, 2𝜋])) , (10)

and this estimate is sharp in the sense of order.
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The first part of Corollary 3(a) is due to Wang [13].
For special Λ’s, one has

Corollary 4. Let 𝑓 ∈ Λ 𝜑𝐵𝑉 and 𝜑 be convex. Then

(a) for Λ = {𝑛
𝛼
} (0 ≤ 𝛼 < 1),

𝜔(𝑓; 𝑡)
1
≤ 𝑐𝜑

−1
(𝑡

1−𝛼
𝑉Λ 𝜑

(𝑓; [0, 2𝜋])) ; (11)

(b) for Λ = {𝑛},

𝜔(𝑓; 𝑡)
1
≤ 𝑐𝜑

−1
(
𝑉Λ 𝜑

(𝑓; [0, 2𝜋])

ln (1/𝑡)
) ; (12)

(c) for Λ = {(𝑛 + 1) ln(𝑛 + 1)},

𝜔(𝑓; 𝑡)
1
≤ 𝑐𝜑

−1
(
𝑉Λ 𝜑

(𝑓; [0, 2𝜋])

ln ln (1/𝑡)
) ; (13)

(d) for Λ = {ln𝛾(𝑛 + 1)} (𝛾 > 0),

𝜔(𝑓; 𝑡)
1
≤ 𝑐𝜑

−1
(𝑡 ln−𝛾 (1

𝑡
)𝑉Λ 𝜑

(𝑓; [0, 2𝜋])) ; (14)

(e) for Λ = {(𝑛 + 1)ln𝛾(𝑛 + 1)} (−∞ < 𝛾 < 1),

𝜔(𝑓; 𝑡)
1
≤ 𝑐𝜑

−1
(
𝑉Λ 𝜑

(𝑓; [0, 2𝜋])

ln1−𝛾 (1/𝑡)
) ; (15)

(f) for Λ = {(𝑛 + 1)
𝛼ln𝛾(𝑛 + 1)} (0 < 𝛼 < 1, 𝛾 ∈ R \ {0}),

𝜔(𝑓; 𝑡)
1
≤ 𝑐𝜑

−1
(𝑡

1−𝛼ln−𝛾 (1
𝑡
)𝑉Λ 𝜑

(𝑓; [0, 2𝜋])) . (16)

The above estimates are sharp in the sense of order.

Let 𝑓(𝑥) be an integrable function on [0, 2𝜋] and let its
Fourier coefficients be defined as follows:

𝑎𝑛 (𝑓) =
1

𝜋
∫

2𝜋

0

𝑓 (𝑡) cos 𝑛𝑡 d𝑡,

𝑏𝑛 (𝑓) =
1

𝜋
∫

2𝜋

0

𝑓 (𝑡) sin 𝑛𝑡 d𝑡,

𝑐𝑛 (𝑓) = 𝑎𝑛 (𝑓) + 𝑖𝑏𝑛 (𝑓) .

(17)

We note that

󵄨󵄨󵄨󵄨𝑐𝑛 (𝑓)
󵄨󵄨󵄨󵄨 ≤

1

2𝜋
∫

2𝜋

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡) − 𝑓(𝑡 +

𝜋

𝑛
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
d𝑡

≤ 𝑐𝜔1 (𝑓;
1

𝑛
) , 𝑐 > 0.

(18)

Theorem 2 implies the following estimates of Fourier coeffi-
cients.

Corollary 5. (a) Let Λ 𝜑𝐵𝑉 be the class of functions of Λ 𝜑-
bounded variation, and let 𝜆(𝑠) generate Λ, where 𝜑 is convex
and 𝜑−1 is the inverse function of 𝜑. Then, for 𝑓 ∈ Λ 𝜑𝐵𝑉,

󵄨󵄨󵄨󵄨𝑎𝑛 (𝑓)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏𝑛 (𝑓)
󵄨󵄨󵄨󵄨

} = O(𝜑
−1
(

1

∫
𝑛

0
(ds/𝜆 (s))

)) , 𝑛 ≥ 1. (19)

(b) Let 𝜑𝐵𝑉 be the class of functions of 𝜑-bounded
variation, where 𝜑 is convex and 𝜑−1 is the inverse function of
𝜑. Then for 𝑓 ∈ 𝜑𝐵𝑉

󵄨󵄨󵄨󵄨𝑎𝑛 (𝑓)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑏𝑛 (𝑓)
󵄨󵄨󵄨󵄨

} = O(𝜑
−1
(
1

𝑛
)) , 𝑛 ≥ 1. (20)

Corollary 5(a) includes Wang’s result [13] for the class
Λ𝐵𝑉 as a special case of 𝜑(𝑥) = 𝑥.

Theorem 6. Let Λ 𝛽𝐵𝑉 (𝛽 ≥ 1) be class of functions of Λ 𝛽-
bounded variation, and let 𝜆(𝑠) generate Λ = {𝜆𝑛}. Set 𝜙(𝑧) =
∫
𝑧

0
(𝑑𝑠/𝜆(𝑠)) and assume 𝑓 ∈ Λ 𝛽𝐵𝑉.
(a) For 1 ≤ 𝑝 ≤ 𝛽,

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐 (

𝑉Λ 𝛽
(𝑓; [0, 2𝜋])

∫
1/𝑡

0
(ds/𝜆(s))

)

1/𝛽

, (21)

and this estimate is sharp in the sense of order provided that Λ
satisfies the condition Δ 2.

(b) For 1 < 𝑝 < ∞,

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐 (𝑉Λ 𝛽

(𝑓; [0, 2𝜋])
1/𝛽

(𝑡∫

1/𝑡

0

dz
𝜙(𝑧)

𝑝/𝛽
)

1/𝑝

. (22)

(c) If, for some 𝛽 < 𝑝 < ∞, 𝜙(𝑧)(𝛽−𝑝)/𝛽𝜆(𝑧) is bounded on
[1,∞), then

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐 (𝑉Λ 𝛽

(𝑓; [0, 2𝜋])
1/𝛽

𝑡
1/𝑝
. (23)

Unfortunately we cannot assert the sharpness of our
estimates in (b) and (c) ofTheorem 6 for the case 𝛽 < 𝑝 < ∞.
Our next theorems concern some important special case of
the class Λ 𝛽𝐵𝑉 and elaborate on the estimates inTheorem 6.
Among the classes considered here are {𝑛𝛼}𝛽𝐵𝑉 (0 ≤ 𝛼 ≤

1, 𝛽 ≥ 1) and {(𝑛 + 1)𝛼ln𝛾(𝑛 + 1)}𝛽𝐵𝑉 (0 ≤ 𝛼 ≤ 1, 𝛽 ≥ 1, 𝛾 ∈

R).

Theorem 7. (a) Let {𝑛𝛼}𝛽𝐵𝑉 (0 ≤ 𝛼 ≤ 1, 𝛽 ≥ 1) be the class of
functions of {𝑛𝛼}𝛽-bounded variation. Then, for 𝑓 ∈ {𝑛

𝛼
}𝛽𝐵𝑉

and 1 ≤ 𝑝 < ∞, one has

(i) 𝜔(𝑓; 𝑡)𝑝 ≤ 𝑐(𝑉Λ 𝛽
(𝑓; [0, 2𝜋]))

1/𝛽
𝑡
min{(1−𝛼)/𝛽,1/𝑝}, 0 ≤

𝛼 < 1;
(ii) 𝜔(𝑓; 𝑡)𝑝 ≤ 𝑐(𝑉Λ 𝛽(𝑓; [0, 2𝜋]))

1/𝛽
(1/ ln 𝑡−1)1/𝛽, 𝛼 = 1.

(b) Let 𝐵𝑉𝛽 (𝛽 ≥ 1) be the class of 𝛽-bounded variation,
that is, the Wiener class. Then, for 𝑓 ∈ 𝐵𝑉𝛽 and 1 ≤ 𝑝 < ∞,

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉𝛽 (𝑓; [0, 2𝜋]))

1/𝛽

𝑡
min{1/𝛽,1/𝑝}

, (24)

and both estimates in (a) and (b) are sharp in the sense of order.
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Li andWang’s results in [9] are extended in theTheorems
6 and 7, which can be treated as the case 𝛽 = 1 of our theo-
rems.

Theorem 8. Let 𝑓 ∈ Λ 𝛽𝐵𝑉 (𝛽 ≥ 1). The following assertions
are true.

(a) For Λ = {ln𝛾(𝑛 + 1)} (𝛾 > 0),

𝜔(𝑓; 𝑡)
𝑝

≤

{{

{{

{

𝑐(𝑉Λ 𝛽
(𝑓; [0, 2𝜋]))

1/𝛽

(𝑡 ln𝛾 (1
𝑡
))

1/𝛽

, 1 ≤ 𝑝 ≤ 𝛽,

𝑐(𝑉Λ 𝛽
(𝑓; [0, 2𝜋]))

1/𝛽

𝑡
1/𝑝
, 𝛽 < 𝑝 < ∞.

(25)

(b) For Λ = {(𝑛 + 1) ln(𝑛 + 1)},

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓; [0, 2𝜋]))
1/𝛽

(ln ln 1
𝑡
)

−1/𝛽

, 1 ≤ 𝑝 < ∞.

(26)

(c) For Λ = {(𝑛 + 1)ln𝛾(𝑛 + 1)} (−∞ < 𝛾 < 1),

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓; [0, 2𝜋]))
1/𝛽

(ln 1
𝑡
)

−(1−𝛾)/𝛽

,

1 ≤ 𝑝 < ∞.

(27)

(d) For Λ = {(𝑛 + 1)
𝛼
/ln𝛾(𝑛 + 1)} (0 < 𝛼 < 1, 𝛾 > 0),

𝜔(𝑓; 𝑡)
𝑝

≤

{{

{{

{

𝑐(𝑉Λ𝛽
(𝑓; [0, 2𝜋]))

1/𝛽

𝑡
(1−𝛼)/𝛽

(ln 1
𝑡
)

−𝛾/𝛽

, 1 ≤ 𝑝 <
𝛽

1 − 𝛼
,

𝑐(𝑉Λ𝛽
(𝑓; [0, 2𝜋]))

1/𝛽

𝑡
1/𝑝
, 𝑝 ≥

𝛽

1 − 𝛼
.

(28)

(e) For Λ = {(𝑛 + 1)
𝛼ln𝛾(𝑛 + 1)} (0 < 𝛼 < 1, 𝛾 > 0)

𝜔(𝑓; 𝑡)
𝑝

≤

{{

{{

{

𝑐(𝑉Λ𝛽
(𝑓; [0, 2𝜋]))

1/𝛽

𝑡
(1−𝛼)/𝛽

(ln 1
𝑡
)

𝛾/𝛽

, 1 ≤ 𝑝 <
𝛽

1 − 𝛼
,

𝑐(𝑉Λ𝛽
(𝑓; [0, 2𝜋]))

1/𝛽

𝑡
1/𝑝
, 𝑝 >

𝛽

1 − 𝛼
.

(29)

And all above estimates are sharp in the sense of order.

Remark 9. In (e), for 𝑝 = 𝛽/(1 − 𝛼), we only have

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓; [0, 2𝜋]))
1/𝛽

𝑡
1/𝑝
(ln 1

𝑡
)

1/𝑝+𝛾/𝛽

. (30)

We do not know whether this estimate is sharp in the sense
of order. However there exists 𝑓𝑛 ∈ Λ 𝛽𝐵𝑉 such that

𝑉Λ 𝛽
(𝑓𝑛; [0, 2𝜋]) ≍ 1, 𝑛 󳨀→ +∞,

𝜔(𝑓𝑛;
𝜋

𝑛
)
𝑝

≥ 𝑐(
𝜋

𝑛
)

1/𝑝

, 𝑛 ≥ 10.

(31)

This exception indicates that the estimates of the 𝐿𝑝 modulus
of continuity 𝜔(𝑓; 𝑡)𝑝 (𝛽 < 𝑝 < +∞) of classes of Λ 𝛽-
bounded variation are complicated, and Theorem 6 cannot
cover all cases of the class Λ 𝛽𝐵𝑉 (𝛽 ≥ 1).

As direct applications of the above theorems, we char-
acterize some sufficient and necessary conditions for the
embedding relations between the generalized bounded vari-
ation classes and the class𝐻𝜔

𝑝
(or𝐻𝛿

𝑝
).

Corollary 10. On the embedding relations between the gener-
alized bounded variation classes and the class 𝐻𝜔

𝑝
or 𝐻𝛿

𝑝
, the

following assertions are true.

(a) Let Λ 𝜑𝐵𝑉 be the class of functions of Λ 𝜑-bounded
variation and let 𝜑 be convex; let 𝜆(𝑠) generate Λ and
Λ satisfy the condition Δ 2. Then

Λ 𝜑𝐵𝑉 ⊂ 𝐻
𝜔

1
iff 𝜔 (𝑡) = O(𝜑

−1
((∫

1/𝑡

0

d𝑠
𝜆 (𝑠)

)

−1

)) ,

𝑡 󳨀→ 0.

(32)

(b) Let 𝜑𝐵𝑉 be the class of functions of 𝜑-bounded varia-
tion and let 𝜑 be convex. Then

𝜑𝐵𝑉 ⊂ 𝐻
𝜔

1
iff 𝜔 (𝑡) = O (𝜑

−1
(𝑡)) , 𝑡 󳨀→ 0. (33)

(c) Let Λ 𝛽𝐵𝑉 be the class of functions of Λ 𝛽-bounded
variation and let 𝜆(𝑠) generate Λ.

(i) If, for 1 ≤ 𝑝 ≤ 𝛽, Λ satisfies the condition Δ 2,
then

Λ 𝛽𝐵𝑉 ⊂ 𝐻
𝜔

𝑝
𝑖𝑓𝑓 𝜔 (𝑡) = O((∫

1/𝑡

0

d𝑠
𝜆 (𝑠)

)

−1/𝛽

) ,

𝑡 󳨀→ 0.

(34)

(ii) If, for 𝛽 < 𝑝 < ∞, 𝜙(𝑧)(𝛽−𝑝)/𝛽𝜆(𝑧) is bounded on
[1,∞) and 0 < 𝛿 ≤ 1/𝑝, then Λ 𝛽𝐵𝑉 ⊂ 𝐻

𝛿

𝑝
.

(d) Let {𝑛𝛼}𝛽𝐵𝑉 (0 ≤ 𝛼 ≤ 1, 𝛽 ≥ 1) be the class of
functions of {𝑛𝛼}𝛽-bounded variation. Then, for 1 ≤

𝑝 < ∞,

(i) {𝑛𝛼}𝛽𝐵𝑉 ⊂ 𝐻
𝛿

𝑝
(0 ≤ 𝛼 < 1) if and only if 𝛿 ≤

min{(1 − 𝛼)/𝛽, 1/𝑝}.
(ii) {𝑛}𝛽𝐵𝑉 ⊂ 𝐻

𝜔

𝑝
if and only if 𝜔(𝑡) = O((ln(1/

𝑡))
−1/𝛽

), 𝑡 → 0.

(e) Let 𝐵𝑉𝛽 (𝛽 ≥ 1) be the class of functions of 𝛽-bounded
variation, that is, Wiener class; then, for 1 ≤ 𝑝 < ∞,
𝐵𝑉𝛽 ⊂ 𝐻

𝛿

𝑝
if and only if 𝛿 ≤ min{1/𝛽, 1/𝑝}.
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This paper is organized as follows. In Section 2, we first
state three lemmas, and then by them we prove Theorem 2.
Lemma 12 provides our proofs crucial upper estimates and
Lemma 13 will be used repeatedly in proving the sharpness
of our estimates. In Section 3, we prove Theorem 6, and the
same estimate technique in [9] is partly used in our proof.
Theorems 7 and 8 are proved in Section 4. For the case 𝛽 <

𝑝 < ∞, the difficulty in our proofs of Theorems 7 and 8 is
to prove the sharpness of our estimates and the key is to con-
struct extreme functions by Lemma 13.

2. Proof of Theorem 2

Before we start our proof of Theorem 2, we prove three
lemmas. Lemmas 11 and 12 will also be used in the proof
of Theorem 6. Lemma 13 will be employed repeatedly in the
proof of the sharpness of our estimates. Lemmas 12 and 13
are of independent interest for functions of Λ 𝜑-bounded
variation.

Lemma 11. Let 𝑓 ∈ 𝐿𝑝[𝑎, 𝑏] (𝑝 ≥ 1). Then

𝐹 (ℎ) = (∫

𝑏

𝑎

󵄨󵄨󵄨󵄨𝑓(𝑥 + ℎ) − 𝑓(𝑥)
󵄨󵄨󵄨󵄨
𝑝
𝑑𝑥)

1/𝑝

(35)

is continuous on [0,∞).

Proof. Using triangle inequality of 𝐿𝑝 norm, for any ℎ1, ℎ2 >
0, we have

󵄨󵄨󵄨󵄨𝐹 (ℎ1) − 𝐹 (ℎ2)
󵄨󵄨󵄨󵄨 ≤

󵄩󵄩󵄩󵄩𝑓 (⋅ + ℎ1) − 𝑓 (⋅ + ℎ2)
󵄩󵄩󵄩󵄩𝑝

≤ 𝜔(𝑓;
󵄨󵄨󵄨󵄨ℎ1 − ℎ2

󵄨󵄨󵄨󵄨)𝑝.

(36)

The right continuity of𝜔(𝑓; 𝑡)𝑝 at 𝑡 = 0 implies the continuity
of 𝐹(ℎ).

Lemma 12. Let Δ = {[𝑎𝑘, 𝑏𝑘] : 1 ≤ 𝑘 ≤ 𝑛, 𝑛 ∈ Z+} ∈ Γ

be an arbitrary sequence of nonoverlapping intervals in [𝑎, 𝑏],
Λ = {𝜆𝑘}, 𝜑 convex, and 𝜑−1 the function of 𝜑. Then, for 𝑓 ∈

Λ 𝜑𝐵𝑉,

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)
󵄨󵄨󵄨󵄨 ≤ 𝑛𝜑

−1
(
𝑉Λ 𝜑

(𝑓; [𝑎, 𝑏])

∑
𝑛

𝑘=1
𝜆−1
𝑘

) . (37)

Specifically, if 𝑓 ∈ 𝜑𝐵𝑉, then ∑
𝑛

𝑘=1
|𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)| ≤

𝑛𝜑
−1
(𝑉𝜑(𝑓; [𝑎, 𝑏])/𝑛).

Proof. By the definition ofΛ 𝜑-total variation and letting𝐴 𝑖 =

1/𝜆𝑖 and 𝐵𝑘 = 𝜑(|𝑓(𝑏𝑘) − 𝑓(𝑎𝑘)|) in summation transform

(

𝑛

∑

𝑖=1

𝐴 𝑖)(

𝑛

∑

𝑘=1

𝐵𝑘)

=

𝑛−1

∑

𝑘=0

{

𝑛−𝑘

∑

𝑖=1

𝐴 𝑖𝐵𝑖+𝑘 +

𝑛

∑

𝑖=𝑛−𝑘+1

𝐴 𝑖𝐵𝑖+𝑘−𝑛} ,

(38)

we have
𝑛

∑

𝑘=1

𝜑 (
󵄨󵄨󵄨󵄨𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)

󵄨󵄨󵄨󵄨) ≤
𝑛

∑
𝑛

𝑘=1
𝜆−1
𝑘

𝑉Λ 𝜑
(𝑓; [𝑎, 𝑏]) . (39)

Note that if 𝜑 is an increasing convex function on [0,∞),
then 𝜑−1 is increasing and concave on [0,∞). The concavity
of 𝜑−1 implies that 𝜑−1(𝑎𝑥) ≥ 𝑎𝜑

−1
(𝑥), 0 < 𝑎 ≤ 1. Therefore,

by Jensen’s inequality and the above inequality, we finally get

𝑛

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)
󵄨󵄨󵄨󵄨

= 𝑛

𝑛

∑

𝑘=1

𝜑
−1
(𝜑 (

󵄨󵄨󵄨󵄨𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)
󵄨󵄨󵄨󵄨))

𝑛

≤ 𝑛𝜑
−1
(
1

𝑛

𝑛

∑

𝑘=1

𝜑 (
󵄨󵄨󵄨󵄨𝑓 (𝑏𝑘) − 𝑓 (𝑎𝑘)

󵄨󵄨󵄨󵄨))

≤ 𝑛𝜑
−1
(
𝑉Λ 𝜑

(𝑓; [𝑎, 𝑏])

∑
𝑛

𝑘=1
𝜆−1
𝑘

) .

(40)

This completes the proof of Lemma 12.

Lemma 13. Let a𝑛 = {𝑎𝑘}
𝑛

𝑘=1
be a given set of nonnegative and

nonincreasing numbers. Define a function 𝑓(𝑥) on [0, 2𝜋] as

𝑓a𝑛 (𝑥) =
{

{

{

𝑎𝑖,
(2𝑖 − 1) 𝜋

𝑛
≤ 𝑥 <

2𝑖𝜋

𝑛
, 𝑖 = 1, 2, . . . , 𝑛,

0, other points of [0, 2𝜋] ,
(41)

and extend it to R with period 2𝜋. Then

(a) 𝑓 ∈ Λ 𝜑𝐵𝑉[0, 2𝜋] and 𝑉Λ 𝜑
(𝑓a𝑛 ; [0; 2𝜋]) = ∑

𝑛

𝑖=1

(1/𝜆2𝑖−1 + 1/𝜆2𝑖)𝜑(𝑎𝑖);

(b) 𝜔(𝑓a𝑛 ; 𝜋/𝑛)𝑝 = ((2𝜋/𝑛)∑
𝑛

𝑘=1
𝑎
𝑝

𝑘
)
1/𝑝, 𝑝 ≥ 1;

(c) ∑𝑛

𝑖=1
(𝜑(𝑎𝑖)/𝜆𝑖) ≤ 𝑉Λ 𝜑

(𝑓a𝑛 ; [0; 2𝜋]) ≤ 2∑
𝑛

𝑖=1
(𝜑(𝑎𝑖)/𝜆𝑖).

Proof. By the definition of Λ 𝜑-total variation and the non-
negative and nonincreasing properties of a𝑛, direct computa-
tion proves (a). SinceΛ = {𝜆𝑘} is nondecreasing, it is obvious
that (a) implies (c). For (b), computation shows that

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

=

𝑛

∑

𝑘=1

∫

2𝑘𝜋/𝑛

(2(𝑘−1)𝜋)/𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓a𝑛 (𝑥 +

𝜋

𝑛
) − 𝑓a𝑛(𝑥)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝

d𝑥

=
2𝜋

𝑛

𝑛

∑

𝑘=1

𝑎
𝑝

𝑘
.

(42)

Now we proveTheorem 2.

Proof of Theorem 2. We write 𝑉Λ 𝜑(𝑓) = 𝑉Λ 𝜑
(𝑓; [0, 2𝜋]) for

simplicity. By Lemma 11, there exists an ℎ𝑡 ∈ (0, 𝑡] such that

𝜔(𝑓; 𝑡)
1
= ∫

2𝜋

0

󵄨󵄨󵄨󵄨𝑓 (𝑥 + ℎ𝑡) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨 d𝑥. (43)
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If we set 𝑁 = [2𝜋/ℎ𝑡] and consider the periodicity of 𝑓(𝑥),
then

𝜔(𝑓; 𝑡)
1
=
1

𝑁
∫

2𝜋

0

𝐹𝑡 (𝑥) d𝑥, (44)

where

𝐹𝑡 (𝑥) =

𝑁

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡) − 𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)
󵄨󵄨󵄨󵄨 . (45)

From Jensen’s inequality and Lemma 12, for all 𝑥 ∈ [0, 2𝜋],
the concavity of 𝜑−1 implies

𝐹𝑡 (𝑥) ≤ 𝑁𝜑
−1
(
𝑉Λ 𝜑

(𝑓)

∑
𝑁

𝑘=1
𝜆−1
𝑘

) ≤ 2𝑁𝜑
−1
(

𝑉Λ 𝜑
(𝑓)

∫
𝑁

0
(d𝑠/𝜆 (𝑠))

) .

(46)

Substituting (46) into (44), we get

𝜔(𝑓; 𝑡)
1
≤ 4𝜋𝜑

−1
(

𝑉Λ 𝜑
(𝑓)

∫
𝑁

0
(d𝑠/𝜆 (𝑠))

) . (47)

Since the right of (47) is decreasing with respect to 𝑁 and
𝑁 = [2𝜋/ℎ𝑡] ≥ [2𝜋/𝑡] ≥ 1/𝑡, the estimate in Theorem 2 is
obtained from (47) directly.

Now we show that our estimate is sharp in the sense of
order under the assumption thatΛ satisfies the condition Δ 2.

We choose

𝑎𝑘 = 𝜑
−1
(

1

2𝜋∫
𝑛/𝜋

0
(d𝑠/𝜆 (𝑠))

) , 𝑘 = 1, . . . , 𝑛, (48)

and consider function 𝑓a𝑛(𝑥) defined in Lemma 13.
We have

∫
𝑛

0
(d𝑠/𝜆 (𝑠))

4 ∫
𝑛

0
(d𝑠/𝜆 (𝑠/𝜋))

=
∫
𝑛

0
(d𝑠/𝜆 (𝑠))

4𝜋 ∫
𝑛/𝜋

0
(d𝑠/𝜆 (𝑠))

≤ 𝑉Λ 𝜑
(𝑓a𝑛)

≤
∫
𝑛

0
(d𝑠/𝜆 (𝑠))

𝜋 ∫
𝑛/𝜋

0
(d𝑠/𝜆 (𝑠))

=
∫
𝑛

0
(d𝑠/𝜆 (𝑠))

∫
𝑛

0
(d𝑠/𝜆 (𝑠/𝜋))

, 𝑛 ≥ 10,

(49)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)
1

= 2𝜋𝜑
−1
(

1

2𝜋∫
𝑛/𝜋

0
(d𝑠/𝜆 (𝑠))

) , 𝑛 ≥ 10.

(50)

If Λ satisfies the condition Δ 2, that is, there exists 𝑎 > 0

such that 𝜆(2𝑥) ≤ 𝑎𝜆(𝑥), 𝑥 > 0, then

𝜆 (
𝑠

𝜋
) ≤ 𝜆 (𝑠) = 𝜆 (𝜋 ⋅

𝑠

𝜋
) ≤ 𝜆 (4 ⋅

𝑠

𝜋
) ≤ 𝑎

2
𝜆 (

𝑠

𝜋
) ,

(51)

and this yields

∫

𝑛

0

d𝑠
𝜆 (𝑠)

≤ ∫

𝑛

0

d𝑠
𝜆 (𝑠/𝜋)

≤ 𝑎
2
∫

𝑛

0

d𝑠
𝜆 (𝑠)

. (52)

From (49) and (52), we have

0 <
1

4𝑎2
≤ 𝑉Λ 𝜑

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10. (53)

On the other hand, (50), the concavity and the mono-
tonicity of 𝜑−1 imply that

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)
1

≥ 𝜑
−1
(

1

∫
𝑛/𝜋

0
(d𝑠/𝜆 (𝑠))

)

≥ 𝜑
−1
(

𝑉Λ 𝜑
(𝑓a𝑛)

∫
𝑛/𝜋

0
(d𝑠/𝜆 (𝑠))

) , 𝑛 ≥ 10.

(54)

Obviously, (53) and (54) mean the sharpness of our estimate
inTheorem 2.

Proof of Corollary 4. Obviously the Λ’s in Corollary 4 satisfy
the condition Δ 2. The proofs of (a), (b), (c), and (e) in
Corollary 4 are obvious. In (d), we have

𝜆 (𝑠) = ln𝛾 (𝑠 + 1) , 𝑠 ≥ 1,

∫

𝑧

0

d𝑠
𝜆 (𝑠)

≍
𝑧

ln𝛾𝑧
, 𝑧 󳨀→ +∞,

(55)

and in (f), we have

𝜆 (𝑠) = (𝑠 + 1)
𝛼ln𝛾 (𝑠 + 1) , 𝑠 ≥ 1,

∫

𝑧

0

d𝑠
𝜆 (𝑠)

≍
𝑧
1−𝛼

ln𝛾𝑧
, 𝑧 󳨀→ +∞,

(56)

which complete the proofs of (d) and (f) of Corollary 4.

3. Proof of Theorem 6

In this section we prove Theorem 6. The proof of
Theorem 6(a) is based on Hölder’s inequality and Lemma 12.
We use techniques used by Li and Wang [9] in the proofs of
(b) and (c) of Theorem 6. Lemma 12 plays a crucial role in
the whole proof of Theorem 6.

Proof of Theorem 6. As in the proof of Theorem 2, it is easily
seen from Lemma 11 that, for 1 ≤ 𝑝 < ∞, there exists an
ℎ𝑡 ∈ (0, 𝑡] such that

𝜔(𝑓; 𝑡)
𝑝

𝑝
=
1

𝑁
∫

2𝜋

0

𝐹𝑡 (𝑥) d𝑥, (57)

where

𝐹𝑡 (𝑥) =

𝑁

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡) − 𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)
󵄨󵄨󵄨󵄨
𝑝
,

𝑁 = [
2𝜋

ℎ𝑡
] .

(58)
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Wefirst prove (a).Wenote that 𝑟 = 𝛽/𝑝 > 1 for 1 ≤ 𝑝 < 𝛽.
Let 𝑠 > 0 satisfy 1/𝑟 + 1/𝑠 = 1. By Hölder’s inequality and
Lemma 12, we have

𝐹𝑡 (𝑥)

≤ (

𝑁

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑓(𝑥 + 𝑘ℎ𝑡) − 𝑓(𝑥 + (𝑘 − 1)ℎ𝑡)
󵄨󵄨󵄨󵄨
𝛽
)

1/𝑟

(

𝑁

∑

𝑘=1

1
𝑠
)

1/𝑠

≤ (
𝑁𝑉Λ 𝛽

(𝑓)

∑
𝑁

𝑘=1
𝜆−1
𝑘

)

1/𝑟

𝑁
1/𝑠

= 𝑁(
𝑉Λ 𝛽

(𝑓)

∑
𝑁

𝑘=1
𝜆−1
𝑘

)

𝑝/𝛽

.

(59)

For 𝑝 = 𝛽, Lemma 12 directly yields

𝐹𝑡 (𝑥) ≤ 𝑁(
𝑉Λ 𝛽

(𝑓)

∑
𝑁

𝑘=1
𝜆−1
𝑘

) . (60)

Thus, for 1 ≤ 𝑝 ≤ 𝛽, we obtain

𝐹𝑡 (𝑥) ≤ 𝑁(
𝑉Λ 𝛽

(𝑓)

∑
𝑁

𝑘=1
𝜆−1
𝑘

)

𝑝/𝛽

. (61)

Substituting (61) into (57) and noting that 𝑁 = [2𝜋/ℎ𝑡] ≥

[2𝜋/𝑡] ≥ 1/𝑡, we prove the desired estimate in Theorem 6(a).
If Λ satisfies the condition Δ 2, then from the proof of

Theorem 2, we know that

∫

𝑛

0

d𝑠
𝜆 (𝑠)

≍ ∫

𝑛/𝜋

0

d𝑠
𝜆 (𝑠)

, 𝑛 󳨀→ ∞. (62)

If we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(

1

∫
𝑛/𝜋

0
(d𝑠/𝜆(𝑠))

)

1/𝛽

, 𝑘 = 1, 2, . . . , 𝑛,

where 𝜀𝑛 =
∫
𝑛/𝜋

0
(d𝑠/𝜆 (𝑠))

2 ∫
𝑛

0
(d𝑠/𝜆 (𝑠))

≍ 1, 𝑛 󳨀→ +∞,

(63)

and consider the functions 𝑓a𝑛(𝑥) defined in Lemma 13, then
we have

1

4
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (64)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜋𝜀
𝑝/𝛽

𝑛
(

1

∫
𝜋/𝑛

0
(d𝑠/𝜆(𝑠))

)

𝑝/𝛽

≥ 𝑐(
𝑉Λ 𝛽

(𝑓a𝑛)

∫
𝜋/𝑛

0
(d𝑠/𝜆(𝑠))

)

𝑝/𝛽

, 𝑛 ≥ 10.

(65)

Equations (64) and (65) show that the estimate in
Theorem 6(a) is sharp.

Now we prove (b). Without loss of generality, we assume
that 𝜆1 = 1 and denote𝜓(𝑥) = 𝑥

𝛽
(𝛽 ≥ 1) and𝜓−1

(𝑥) = 𝑥
1/𝛽.

From the definition of 𝑉Λ 𝛽(𝑓), we first have

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡) − 𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝜓

−1
(𝑉Λ 𝛽

(𝑓)) .

(66)

Denote by 𝜎𝑚 (𝑚 ≥ 0) the set of integers 𝑘 (1 ≤ 𝑘 ≤ 𝑁) for
which

2
−𝑚−1

𝜓
−1
(𝑉Λ 𝛽

(𝑓)) <
󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡) − 𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)

󵄨󵄨󵄨󵄨

≤ 2
−𝑚
𝜓
−1
(𝑉Λ 𝛽

(𝑓)) .

(67)

Then ∑
∞

𝑚=0
|𝜎𝑚| = 𝑁, and there are at most 𝑁 nonempty

𝜎𝑚, where |𝜎𝑚| denotes the number of the elements in 𝜎𝑚.
Obviously |𝜎𝑚| ≤ 𝑁,𝑚 ≥ 0.

Hence we have

𝐹𝑡 (𝑥) =

∞

∑

𝑚=0

∑

𝑘∈𝜎𝑚

󵄨󵄨󵄨󵄨𝑓(𝑥 + 𝑘ℎ𝑡) − 𝑓(𝑥 + (𝑘 − 1)ℎ𝑡)
󵄨󵄨󵄨󵄨
𝑝

≤ (𝜓
−1
(𝑉Λ 𝛽

(𝑓)))
𝑝
∞

∑

𝑚=0

2
−𝑚𝑝 󵄨󵄨󵄨󵄨𝜎𝑚

󵄨󵄨󵄨󵄨

= (𝑉Λ 𝛽
(𝑓))

𝑝/𝛽

{ ∑

𝑚≤𝑀

2
−𝑚𝑝 󵄨󵄨󵄨󵄨𝜎𝑚

󵄨󵄨󵄨󵄨 + ∑

𝑚>𝑀

2
−𝑚𝑝 󵄨󵄨󵄨󵄨𝜎𝑚

󵄨󵄨󵄨󵄨}

=: (𝑉Λ 𝛽
(𝑓))

𝑝/𝛽

(𝐴1 + 𝐴2) ,

(68)

with𝑀 > 0 to be determined.
From (67) and Lemma 12, we have, for |𝜎𝑚| ̸= 0,

2
−𝑚−1

𝜓
−1
(𝑉Λ 𝛽

(𝑓))
󵄨󵄨󵄨󵄨𝜎𝑚

󵄨󵄨󵄨󵄨

≤ ∑

𝑘∈𝜎𝑚

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡) − 𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)
󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨𝜎𝑚

󵄨󵄨󵄨󵄨 𝜓
−1
(
𝑉Λ 𝛽

(𝑓)

∑
|𝜎𝑚|

𝑖=1
𝜆−1
𝑖

) ,

(69)

and thus
|𝜎𝑚|

∑

𝑖=1

1

𝜆𝑖
≤

𝑉Λ 𝛽
(𝑓)

𝜓 (2−𝑚−1𝜓−1 (𝑉Λ 𝛽
(𝑓)))

= 2
𝛽(𝑚+1)

. (70)

Therefore,

𝜙 (
󵄨󵄨󵄨󵄨𝜎𝑚

󵄨󵄨󵄨󵄨) = ∫

|𝜎𝑚|

0

d𝑠
𝜆 (𝑠)

≤ 2

|𝜎𝑚|

∑

𝑖=1

1

𝜆𝑖
≤ 2

𝛽(𝑚+1)+1
. (71)

If we set 𝑧𝑚 = 𝜙
−1
(2

𝛽(𝑚+1)+1
), where 𝜙

−1 is the inverse
function of 𝜙, then

󵄨󵄨󵄨󵄨𝜎𝑚
󵄨󵄨󵄨󵄨 ≤ 𝑧𝑚, 2

−𝑚
=

2
1+1/𝛽

𝜙(𝑧𝑚)
1/𝛽

. (72)
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From the monotonicity of 𝜆(𝑥), it is easily verified that
𝜙(2𝑧) ≤ 2𝜙(𝑧). And from this we also have

𝜙 (2𝑧𝑚−1) ≤ 2𝜙 (𝑧𝑚−1) = 2
1−𝛽

𝜙 (𝑧𝑚) ≤ 𝜙 (𝑧𝑚) , 𝑚 ≥ 1.

(73)

This yields

2𝑧𝑚−1 ≤ 𝑧𝑚, 𝑧𝑚 ≤ 2 (𝑧𝑚 − 𝑧𝑚−1) , 𝑚 ≥ 1. (74)

Now we estimate 𝐴1 and 𝐴2 in (68).
By means of (72) and (74), we first have

𝐴1 ≤ ∑

𝑚≤𝑀

2
(2+1/𝛽)𝑝 𝑧𝑚

𝜙(𝑧𝑚)
𝑝/𝛽

≤ 2
(2+1/𝛽)𝑝+1

∑

𝑚≤𝑀

𝑧𝑚 − 𝑧𝑚−1

𝜙(𝑧𝑚)
𝑝/𝛽

≤ 𝑐𝑝 ∫

𝑧𝑀

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
.

(75)

If we choose𝑀 = [log𝜙(𝑁)/2
2

/𝛽] − 1, then 𝑧𝑀 ≤ 𝑁 ≤ 𝑧𝑀+1.
From (72) and the monotonicity of 𝜙(𝑧), we have

𝐴2 ≤ 𝑁 ∑

𝑚>𝑀

2
−𝑝𝑚

= 𝑁 ⋅
2
−𝑝(𝑀+1)

1 − 2−𝑝

≤ 2
(1+1/𝛽)𝑝+1 𝑁

𝜙(𝑧𝑀+1)
𝑝/𝛽

≤ 𝑐𝑝
𝑁

𝜙(𝑁)
𝑝/𝛽

.

(76)

Inserting (75) and (76) into (68) and noting that ∫𝑁
0
(d𝑧/

𝜙(𝑧)
𝑝/𝛽

) ≥ (𝑁/𝜙(𝑁)
𝑝/𝛽

), for 𝑥 ∈ [0, 2𝜋], we get

𝐹𝑡 (𝑥) ≤ 𝑐3(𝑉Λ 𝛽
(𝑓))

𝑝/𝛽

[∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
+

𝑁

𝜙(𝑁)
𝑝/𝛽

]

≤ 2𝑐𝑝(𝑉Λ 𝛽
(𝑓))

𝑝/𝛽

∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
.

(77)

Combining (77) and (57), we finally obtain

𝜔(𝑓; 𝑡)
𝑝

𝑝
≤ 𝑐𝑝(𝑉Λ 𝛽

(𝑓))
𝑝/𝛽 1

𝑁
∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
. (78)

Since 𝑁 = [2𝜋/ℎ𝑡] ≥ [2𝜋/𝑡] ≥ 1/𝑡 and the right of (78) is
decreasing with respect to 𝑁, the proof of Theorem 6(b) is
complete.

Finally we prove Theorem 6(c). Notice that Λ is nonde-
creasing. It follows from (67) that

𝐹𝑡 (𝑥)

=

∞

∑

𝑚=0

∑

𝑘∈𝜎𝑚

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡) − 𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)
󵄨󵄨󵄨󵄨
𝑝−𝛽

×
󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡) − 𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)

󵄨󵄨󵄨󵄨
𝛽

≤ (𝑉Λ 𝛽
(𝑓))

(𝑝−𝛽)/𝛽

×

∞

∑

𝑚=0

2
−𝑚(𝑝−𝛽)

∑

𝑘∈𝜎𝑚

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝑘ℎ𝑡)

−𝑓 (𝑥 + (𝑘 − 1) ℎ𝑡)
󵄨󵄨󵄨󵄨
𝛽

≤ (𝑉Λ 𝛽
(𝑓))

(𝑝−𝛽)/𝛽
∞

∑

𝑚=0

2
−𝑚(𝑝−𝛽)

𝜆𝑘𝑚
Ω𝑚,

(79)

where

𝑘𝑚 =
󵄨󵄨󵄨󵄨𝜎0
󵄨󵄨󵄨󵄨 +

󵄨󵄨󵄨󵄨𝜎1
󵄨󵄨󵄨󵄨 + ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝜎𝑚
󵄨󵄨󵄨󵄨 ,

Ω𝑚 =

𝑘𝑚

∑

𝑗=𝑘𝑚−1+1

󵄨󵄨󵄨󵄨𝑓 (𝑥 + 𝜎𝑚 (𝑗) ℎ𝑡) − 𝑓 (𝑥 + (𝜎𝑚 (𝑗) − 1) ℎ𝑡)
󵄨󵄨󵄨󵄨
𝛽

𝜆𝑗
,

(80)

and 𝜎𝑚(𝑗) ∈ 𝜎𝑚, 𝑘−1 = 0. It is obvious that ∑∞

𝑚=0
Ω𝑚 ≤

𝑉Λ 𝛽
(𝑓).
By (72) and (74), we know that

𝑘𝑚 ≤

𝑚

∑

𝑗=0

𝑧𝑗 ≤

𝑚

∑

𝑗=1

2 (𝑧𝑗 − 𝑧𝑗−1) + 𝑧0 ≤ 2𝑧𝑚. (81)

Assume that 𝜙(𝑧)(𝛽−𝑝)/𝛽𝜆(𝑧) is bounded on [1,∞). From (72)
and the fact 𝜙(2𝑧𝑚) ≤ 2𝜙(𝑧𝑚),𝑚 ≥ 0, we obtain

2
−𝑚(𝑝−𝛽)

𝜆𝑘𝑚
≤
2
(1+1/𝛽)(𝑝−𝛽)

𝜆 (2𝑧𝑚)

𝜙(𝑧𝑚)
(𝑝−𝛽)/𝛽

≤ 𝑐𝜙(2𝑧𝑚)
(𝛽−𝑝)/𝛽

𝜆 (2𝑧𝑚) ≤ 𝑐, 𝑚 ≥ 0.

(82)

Finally, (79) yields

𝐹𝑡 (𝑥) ≤ 𝑐(𝑉Λ 𝛽
(𝑓))

(𝑝−𝛽)/𝛽
∞

∑

𝑚=0

Ω𝑚

≤ 𝑐(𝑉Λ 𝛽
(𝑓))

𝑝/𝛽

, 𝑥 ∈ [0, 2𝜋] .

(83)

Since𝑁 ≥ 1/𝑡, we proveTheorem 6(c) from (57).
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4. Proofs of Theorems 7 and 8

In this section, we proveTheorems 7 and 8.

Proof of Theorem 7. Theorem 7(a) implies Theorem 7(b) by
letting𝛼 = 0.We only need to proveTheorem 7(a). Obviously
Λ = {𝑛

𝛼
} (0 ≤ 𝛼 < 1) satisfies the condition Δ 2 and we have

𝜆 (𝑧) = 𝑧
𝛼
, 𝑧 ≥ 1,

𝜙 (𝑧) = ∫

𝑧

0

d𝑠
𝜆 (𝑠)

≍ 𝑧
1−𝛼

, 𝑧 ≥ 1.

(84)

For 1 ≤ 𝑝 ≤ 𝛽, it follows from Theorem 6(a) that 𝜔(𝑓; 𝑡)𝑝 ≤
𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽
𝑡
(1−𝛼)/𝛽, and the order of this estimate is sharp.

For 𝛽 < 𝑝 < 𝛽/(1 − 𝛼), 1 − (𝑝/𝛽)(1 − 𝛼) > 0, we have

∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
≍ ∫

𝑁

1

d𝑧
𝑧𝑝(1−𝛼)/𝛽

≍ 𝑁
1−(𝑝/𝛽)(1−𝛼)

,

𝑁 󳨀→ ∞.

(85)

Substituting into Theorem 6(b), we get 𝜔(𝑓; 𝑡)𝑝 ≤

𝑐(𝑉Λ 𝛽
(𝑓))

1/𝛽
𝑡
(1−𝛼)/𝛽.

For 𝛽/(1−𝛼) ≤ 𝑝 < ∞, 𝛼+ (1−𝛼)(𝛽−𝑝)/𝛽 ≤ 0, we have

𝜙(𝑧)
(𝛽−𝑝)/𝛽

𝜆 (𝑧) ≤ 𝑐1𝑧
𝛼+(1−𝛼)(𝛽−𝑝)/𝛽

≤ 𝐶 < ∞, 𝑧 ≥ 1.

(86)

ByTheorem 6(c), we get the estimate

𝜔(𝑓; 𝑡)
𝑝
≤ (𝑉Λ 𝛽

(𝑓))
1/𝛽

𝑡
1/𝑝
. (87)

If Λ = {𝑛}, then Λ satisfies the condition Δ 2, and

𝜆 (𝑧) = 𝑧, 𝑧 ≥ 1;

𝜙 (𝑧) = ∫

𝑧

0

d𝑠
𝜆 (𝑠)

≍ ln (𝑧 + 1) ≍ ln 𝑧, 𝑧 ≥ 1.

(88)

For 1 ≤ 𝑝 ≤ 𝛽, (ii) follows fromTheorem 6(a) and the order
in the estimate (ii) is also sharp.

For 𝛽 < 𝑝 < ∞, we have

1

𝑁
∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
≍
1

𝑁
∫

𝑁

1

d𝑧
ln (𝑧 + 1)𝑝/𝛽

≍
1

(ln 𝑧)𝑝/𝛽
,

𝑁 󳨀→ ∞.

(89)

Substituting intoTheorem 6(b), we get (ii).
Nowwe show the sharpness of the estimates in (i) and (ii)

for 𝛽 < 𝑝 < ∞.
For this purpose, we consider 𝑓a𝑛(𝑥) defined in

Lemma 13.
In (i), for 𝛽 < 𝑝 < 𝛽/(1 − 𝛼), we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(
𝜋

𝑛
)

(1−𝛼)/𝛽

, 𝑘 = 1, 2, . . . , 𝑛,

where 𝜀𝑛 =
𝑛
1−𝛼

2𝜋1−𝛼∑
𝑛

𝑘=1
𝑘−𝛼

≍ 1, 𝑛 󳨀→ ∞.

(90)

From Lemma 13, we know that

1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10,

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜋𝜀
𝑝/𝛽

𝑛
(
𝜋

𝑛
)

𝑝(1−𝛼)/𝛽

≥ 𝑐(𝑉Λ 𝛽
(𝑓a𝑛))

𝑝/𝛽

(
𝜋

𝑛
)

𝑝(1−𝛼)/𝛽

, 𝑛 ≥ 10.

(91)

For 𝛽/(1 − 𝛼) ≤ 𝑝 < ∞, 𝑝(1 − 𝛼)/𝛽 ≥ 1, we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
𝑘
−(1−𝛼)/𝛽

(ln (𝑘 + 1))−(1+𝜎)/𝛽 (𝜎 > 0) ,

𝑘 = 1, 2, . . . , 𝑛,

(92)

where

𝜀𝑛 = (2

𝑛

∑

𝑘=1

𝑘
−1
(ln (𝑘 + 1))−(1+𝜎))

−1

≍ 1, 𝑛 󳨀→ +∞. (93)

From Lemma 13, we have

1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10,

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

=
2𝜋

𝑛
𝜀
𝑝/𝛽

𝑛

𝑛

∑

𝑘=1

𝑘
−(1−𝛼)𝑝/𝛽

(ln (1 + 𝑘))−(1+𝜎)𝑝/𝛽

≥ 𝑐(𝑉Λ 𝛽
(𝑓a𝑛))

𝑝/𝛽𝜋

𝑛
, 𝑛 ≥ 10.

(94)

In (ii), for 𝛽 < 𝑝 < ∞, we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(
𝑛

𝜋
)

1/𝛽

, 𝑘 = 1, 2, . . . , 𝑛, (95)

where

𝜀𝑛 =
ln (𝑛/𝜋)
2∑

𝑛

𝑘=1
𝑘−1

≍ 1, 𝑛 󳨀→ +∞. (96)

From Lemma 13, we know that

1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10,

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜋𝜀
𝑝/𝛽

𝑛
(ln( 𝑛

𝜋
))

−𝑝/𝛽

≥ 𝑐(𝑉Λ 𝛽
(𝑓a𝑛))

−𝑝/𝛽

(ln 𝑛

𝜋
)

−𝑝/𝛽

, 𝑛 ≥ 10.

(97)

Obviously the above functions 𝑓a𝑛 chosen prove the
sharpness of our estimates inTheorem 7 for 𝛽 < 𝑝 < ∞.

The proof of Theorem 8 is similar to that of Theorem 7,
but computations are more complicated.
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Proof of Theorem 8. Let 𝜆(𝑠) generate Λ and 𝜙(𝑧) = ∫
𝑧

0
(d𝑠/

𝜆(𝑠)). It is readily seen that Λ’s in (a), (b), (c), (d), and (e)
satisfy the condition Δ 2.

In (a), we have

𝜆 (𝑠) = ln𝛾 (𝑠 + 1) (𝛾 > 0) , 𝑠 ≥ 1,

𝜙 (𝑧) ≍
𝑧 + 1

ln𝛾 (𝑧 + 1)
≍

𝑧

ln𝛾𝑧
, 𝑧 ≥ 2.

(98)

In (b), we have

𝜆 (𝑠) = (𝑠 + 1) ln (𝑠 + 1) , 𝑠 ≥ 1,

𝜙 (𝑧) ≍ ln ln (𝑧 + 1) ≍ ln ln 𝑧, 𝑧 ≥ 10.
(99)

In (c), we have

𝜆 (𝑠) = (𝑠 + 1) ln𝛾 (𝑠 + 1) (−∞ < 𝛾 < 1) , 𝑠 ≥ 1,

𝜙 (𝑧) ≍ (ln (𝑧 + 1))1−𝛾 ≍ (ln 𝑧)1−𝛾, 𝑧 ≥ 2.

(100)

In (d), we have

𝜆 (𝑠) =
(𝑠 + 1)

𝛼

ln𝛾 (𝑠 + 1)
(0 < 𝛼 < 1, 𝛾 > 0) , 𝑠 ≥ 1,

𝜙 (𝑧) ≍ (𝑧 + 1)
1−𝛼

(ln𝛾 (𝑧 + 1)) ≍ 𝑧1−𝛼ln𝛾𝑧, 𝑧 ≥ 2.

(101)

In (e), we have

𝜆 (𝑠) = (𝑠 + 1)
𝛼ln𝛾 (𝑠 + 1) (0 < 𝛼 < 1, 𝛾 > 0) , 𝑠 ≥ 2,

𝜙 (𝑧) ≍
(𝑧 + 1)

1−𝛼

ln𝛾 (𝑧 + 1)
≍
𝑧
1−𝛼

ln𝛾𝑧
, 𝑧 ≥ 2.

(102)

FromTheorem 6(a) we obtain sharp estimates in (a), (b), (c),
(d), and (e) for 1 ≤ 𝑝 ≤ 𝛽.

Now we prove the estimates in Theorem 8 for 𝛽 < 𝑝 <

∞. We apply (b) and (c) in Theorem 6 for upper estimates.
The technique used here to show the sharpness is the same as
that of the proof of Theorem 7 and the key is to choose a𝑛 to
construct extreme functions 𝑓a𝑛(𝑥) defined in Lemma 13.

In (a), for 𝛽 < 𝑝 < ∞, we have

𝜙(𝑧)
(𝛽−𝑝)/𝛽

𝜆 (𝑧) ≍
(ln (𝑧 + 1))𝑝𝛾/𝛽

(𝑧 + 1)
(𝑝−𝛽)/𝛽

< +∞, 𝑧 ≥ 1. (103)

FromTheorem 6(b), we obtain

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽

𝑡
1/𝑝
. (104)

If we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(𝑘 + 1)

−1/𝛽
(ln(𝑘 + 1))−(1+𝛾+𝜎)/𝛽

(𝜎 > 0) , 𝑘 = 1, 2, . . . , 𝑛,

(105)

where

𝜀𝑛 = (2

𝑛

∑

𝑘=1

(𝑘 + 1)
−1
(ln (𝑘 + 1))−(1+𝜎))

−1

≍ 1, 𝑛 󳨀→ +∞,

(106)

then

1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (107)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜀
𝑝/𝛽

𝑛

𝑛

∑

𝑘=1

((𝑘 + 1)
−𝑝/𝛽

(ln (𝑘 + 1))−(𝑝(1+𝜎)/𝛽))

⋅
𝜋

𝑛
≥ 𝑐(𝑉Λ 𝛽

(𝑓a𝑛))
𝑝/𝛽

⋅
𝜋

𝑛
, 𝑛 ≥ 10.

(108)

Equations (107) and (108) imply the sharpness of (104).
In (b), we have

1

𝑁
∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
≍
1

𝑁
∫

𝑁

1

d𝑧
(ln ln (𝑧 + 1))𝑝/𝛽

≍
1

(ln ln𝑁)𝑝/𝛽
, 𝑁 󳨀→ +∞.

(109)

Again fromTheorem 6(b), we have

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽

(ln ln1
𝑡
)

−1/𝛽

. (110)

If we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(ln ln 𝑛

𝜋
)

−1/𝛽

, 𝑘 = 1, 2, . . . , 𝑛, (111)

where

𝜀𝑛 =
ln ln (𝑛/𝜋)

2∑
𝑛

𝑘=1 [(𝑘 + 1) (ln (𝑘 + 1))]
−1

≍ 1, 𝑛 󳨀→ +∞,

(112)

then

1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (113)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

=
2𝜋

𝑛
𝜀
𝑝/𝛽

𝑛

𝑛

∑

𝑘=1

(ln ln 𝑛
𝜋
)

−𝑝/𝛽

≥ 𝑐(𝑉Λ 𝛽
(𝑓a𝑛))

𝑝/𝛽

(ln ln 𝑛
𝜋
)

−𝑝/𝛽

, 𝑛 ≥ 10.

(114)

Equations (113) and (114) imply the sharpness of (110).
In (c), for 𝛽 < 𝑝 < ∞, we have

1

𝑁
∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
≍
1

𝑁
∫

𝑁

1

d𝑧
(ln (𝑧 + 1))𝑝(1−𝛾)/𝛽

≍
1

(ln𝑁)𝑝(1−𝛾)/𝛽
, 𝑁 󳨀→ ∞.

(115)

FromTheorem 6(b), we get

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽

(ln 1
𝑡
)

−(1−𝛾)/𝛽

. (116)
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If we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(ln 𝑛

𝜋
)

−(1−𝛾)/𝛽

, 𝑘 = 1, 2, . . . , 𝑛, (117)

where

𝜀𝑛 =
(ln (𝑛/𝜋))1−𝛾

2∑
𝑛

𝑘=1
(𝑘 + 1)

−1
(ln (𝑘 + 1))−𝛾

≍ 1, 𝑛 󳨀→ +∞,

(118)

then

1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (119)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜋𝜀
𝑝/𝛽

𝑛
(ln 𝑛

𝜋
)

−𝑝(1−𝛾)/𝛽

≥ 𝑐(𝑉Λ 𝛽
(𝑓a𝑛))

𝑝/𝛽

(ln 𝑛

𝜋
)

−𝑝(1−𝛾)/𝛽

, 𝑛 ≥ 10.

(120)

Equations (119) and (120) imply the sharpness of (116).
In (d), for 𝛽 < 𝑝 < 𝛽/(1 − 𝛼), we have

1

𝑁
∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
≍
1

𝑁
∫

𝑁

1

d𝑧
(𝑧 + 1)

𝑝(1−𝛼)/𝛽
(ln (𝑧 + 1))𝑝𝛾/𝛽

≍
1

𝑁𝑝(1−𝛼)/𝛽(ln𝑁)𝑝𝛾/𝛽
, 𝑁 󳨀→ ∞.

(121)

FromTheorem 6(b), we get

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽

𝑡
(1−𝛼)/𝛽

(ln 1
𝑡
)

−𝛾/𝛽

. (122)

If we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(
𝜋

𝑛
)

(1−𝛼)/𝛽

(ln 𝑛

𝜋
)

−𝛾/𝛽

, 𝑘 = 1, 2, . . . , 𝑛, (123)

where

𝜀𝑛 =
(𝑛/𝜋)

1−𝛼
(ln (𝑛/𝜋))𝛾

2∑
𝑛

𝑘=1
(𝑘 + 1)

−𝛼ln𝛾 (𝑘 + 1)
≍ 1, 𝑛 󳨀→ +∞, (124)

then

1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (125)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜋𝜀
𝑝/𝛽

𝑛
(
𝜋

𝑛
)

𝑝(1−𝛾)/𝛽

(ln 𝑛

𝜋
)

−𝑝𝛾/𝛽

≥ 𝑐(𝑉Λ 𝛽
(𝑓a𝑛))

𝑝/𝛽

(
𝜋

𝑛
)

𝑝(1−𝛾)/𝛽

(ln 𝑛

𝜋
)

−𝑝𝛾/𝛽

,

𝑛 ≥ 10.

(126)

Equations (125) and (126) imply the sharpness of (122).

For 𝛽/(1 − 𝛼) ≤ 𝑝 < ∞, 𝛽 − 𝑝(1 − 𝛼) ≤ 0, we have

𝜙(𝑧)
(𝛽−𝑝)/𝛽

𝜆 (𝑧) ≍
(𝑧 + 1)

𝛽−𝑝(1−𝛼)/𝛽

(ln (𝑧 + 1))𝑝𝛾/𝛽
< +∞, 𝑧 ≥ 1. (127)

FromTheorem 6(c), we get

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽

𝑡
1/𝑝
. (128)

If we choose
𝑎𝑘 = 𝜀

1/𝛽

𝑛
(𝑘 + 1)

−(1−𝛼+𝜎)/𝛽
(ln(𝑘 + 1))−𝛾/𝛽

(𝜎 > 0) , 𝑘 = 1, 2, . . . , 𝑛,

(129)

where

𝜀𝑛 = (2

𝑛

∑

𝑘=1

(𝑘 + 1)
−(1+𝜎)

)

−1

≍ 1, 𝑛 󳨀→ +∞, (130)

then
1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (131)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜀
𝑝/𝛽

𝑛

𝑛

∑

𝑘=1

((𝑘 + 1)
−(𝑝(1−𝛼+𝜎)/𝛽)

(ln (𝑘 + 1))−𝑝𝛾/𝛽)

⋅
𝜋

𝑛
≥ 𝑐(𝑉Λ 𝛽

(𝑓a𝑛))
𝑝/𝛽

⋅
𝜋

𝑛
, 𝑛 ≥ 10.

(132)

Equations (131) and (132) imply the sharpness of (128).
In (e), for 𝛽 < 𝑝 < 𝛽/(1 − 𝛼), we have

1

𝑁
∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
≍
1

𝑁
∫

𝑁

1

(ln (𝑧 + 1))𝑝𝛾/𝛽

(𝑧 + 1)
𝑝(1−𝛼)/𝛽

d𝑧

≍
(ln𝑁)𝑝𝛾/𝛽

𝑁𝑝(1−𝛼)/𝛽
, 𝑁 󳨀→ ∞.

(133)

FromTheorem 6(b), we get

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽

𝑡
(1−𝛼)/𝛽

(ln 1
𝑡
)

𝛾/𝛽

. (134)

If we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(
𝜋

𝑛
)

(1−𝛼)/𝛽

(ln 𝑛

𝜋
)

𝛾/𝛽

, 𝑘 = 1, 2, . . . , 𝑛, (135)

where

𝜀𝑛 =
(𝑛/𝜋)

1−𝛼
(ln (𝑛/𝜋))−𝛾

2∑
𝑛

𝑘=1
(𝑘 + 1)

−𝛼
(ln (𝑘 + 1))−𝛾

≍ 1 𝑛 󳨀→ +∞, (136)

then
1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (137)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜋𝜀
𝑝/𝛽

𝑛
(
𝑛

𝜋
)

𝑝(1−𝛾)/𝛽

(ln 𝑛

𝜋
)

𝑝𝛾/𝛽

≥ 𝑐(𝑉Λ 𝛽
(𝑓a𝑛))

𝑝/𝛽

(
𝑛

𝜋
)

𝑝(1−𝛾)/𝛽

(ln 𝑛

𝜋
)

𝑝𝛾/𝛽

,

𝑛 ≥ 10.

(138)

Equations (137) and (138) imply the sharpness of (134).
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For 𝛽/(1 − 𝛼) < 𝑝 < ∞, 𝛽 − 𝑝(1 − 𝛼) < 0, we have

𝜙(𝑧)
(𝛽−𝑝)/𝛽

𝜆 (𝑧) ≍
(ln (𝑧 + 1))𝑝𝛾/𝛽

(𝑧 + 1)
(𝑝(1−𝛼)−𝛽)/𝛽

< +∞, 𝑧 ≥ 1. (139)

FromTheorem 6(c), we get

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓))
1/𝛽

𝑡
1/𝑝
. (140)

If we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(𝑘 + 1)

−(1−𝛼+𝜎)/𝛽
(ln (𝑘 + 1))𝛾/𝛽

(𝜎 > 0) , 𝑘 = 1, 2, . . . , 𝑛,

(141)

where

𝜀𝑛 = (2

𝑛

∑

𝑘=1

(𝑘 + 1)
−(1+𝜎)

)

−1

≍ 1, 𝑛 󳨀→ +∞, (142)

then
1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10, (143)

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜀
𝑝/𝛽

𝑛

𝑛

∑

𝑘=1

(𝑘 + 1)
−𝑝(1−𝛼+𝜎)/𝛽

(ln (𝑘 + 1))𝑝𝛾/𝛽

⋅
𝜋

𝑛
≥ 𝑐(𝑉Λ 𝛽

(𝑓a𝑛))
𝑝/𝛽

⋅
𝜋

𝑛
, 𝑛 ≥ 10.

(144)

Equations (143) and (144) imply the sharpness of (140).
But, for 𝑝 = 𝛽/(1 − 𝛼), we have

𝜙(𝑧)
(𝛽−𝑝)/𝛽

𝜆 (𝑧) ≍ (ln (𝑧 + 1))𝑝𝛾/𝛽 󳨀→ +∞,

as 𝑧 󳨀→ +∞,

1

𝑁
∫

𝑁

0

d𝑧
𝜙(𝑧)

𝑝/𝛽
≍
1

𝑁
∫

𝑁

1

(ln(𝑧 + 1))𝑝𝛾/𝛽

𝑧 + 1
d𝑧 ≍ (ln𝑁)1+𝑝𝛾/𝛽

𝑁
,

𝑁 󳨀→ +∞.

(145)

Theorem 6(c) is not applicable for this case. From
Theorem 6(b), we obtain

𝜔(𝑓; 𝑡)
𝑝
≤ 𝑐(𝑉Λ 𝛽

(𝑓; [0, 2𝜋]))
1/𝛽

𝑡
1/𝑝
(ln 1

𝑡
)

1/𝑝+𝛾/𝛽

. (146)

Unfortunately this estimate is not sharp in the sense of order.
However, if we choose

𝑎𝑘 = 𝜀
1/𝛽

𝑛
(𝑘 + 1)

−(1−𝛼)/𝛽
(ln (𝑘 + 1))−(1−𝛾+𝜎)/𝛽

(𝜎 > max {0, 𝛾 − 𝛼}) , 𝑘 = 1, 2, . . . , 𝑛,

(147)

where

𝜀𝑛 = [

𝑛

∑

𝑘=1

(𝑘 + 1)
−1
(ln (𝑘 + 1))−(1+𝜎)]

−1

≍ 1, 𝑛 󳨀→ +∞,

(148)

then we have
1

2
≤ 𝑉Λ 𝛽

(𝑓a𝑛) ≤ 1, 𝑛 ≥ 10,

𝜔(𝑓a𝑛 ;
𝜋

𝑛
)

𝑝

𝑝

= 2𝜀
𝑝/𝛽

𝑛

𝑛

∑

𝑘=1

(𝑘 + 1)
−1
(ln (𝑘 + 1))−(1−𝛾+𝜎)/(1−𝛼)

⋅
𝜋

𝑛
≥ 𝑐 ⋅

𝜋

𝑛
, 𝑛 ≥ 10.

(149)

In other words, there exists 𝑓𝑛 ∈ Λ 𝛽𝐵𝑉 such that

𝑉Λ 𝛽
(𝑓) ≍ 1, 𝑛 󳨀→ +∞,

𝜔(𝑓𝑛;
𝜋

𝑛
)
𝑝

≥ 𝑐(
𝜋

𝑛
)

1/𝑝

, 𝑛 ≥ 10.

(150)

This exception indicates that our methods used in this paper
cannot cover all cases of estimates of 𝐿𝑝 (1 ≤ 𝑝 < ∞) mod-
ulus of continuity of classes of functions of Λ 𝛽-bounded var-
iation.

Proof of Corollary 10. Obviously Theorem 2 implies (a) and
(b). (c) follows from Theorem 6. Finally, (d) and (e) are
obtained fromTheorem 7 directly.
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