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 e Coimbra concept of fractional order derivative is used to build a numerical approach using radial functions in this paper.  e
Coimbra derivative is capable of modelling a dynamic system with varying fractional order behaviour over time.  e proposed
scheme’s stability and convergence are investigated. In one and two space dimensions, the developed approach is validated for the
given model. By applying a periodic boundary condition on a bounded domain, the model’s periodicity is shown statistically.  e
acquired �ndings demonstrate the new numerical scheme’s potency and, as a result, its high order accuracy.

1. Introduction

 e Korteweg-De Vries (KdV) equation is �rst derived by
Boussinesq in the year 1870. Later on in 1895, the same
model was retrieved by Korteweg and de Vries [1] with the
presumption of compact amplitude and huge wave length.
In many nonlinear dispersive physical systems, the evolution
of long wave can be expressed by the KdV type equation (see
[2–5] and the references therein). In mathematical sciences
and engineering, evolutionary nonlinear equations play a
major role to model physical phenomena [2, 6]. In the theory
of shallow water waves, the KdV equation is one of the most
essential equations in nonlinear evolution developed in [4]
and the references therein. Some of the important aspects of
solutions of these dispersive equations discovered through
observations are their long-time behaviour and known
periodicity in time [7].  e important event of eventual
periodicity has been presented previously in [8], and in more
recent work [9, 10], a new solution is reestablished corre-
sponding to the KdV equation. In addition, the forced os-
cillations and the stability of the KdV equation have been
carried out in a very recent work [11–14]. In applied
mathematics, physics, and other related �elds, a rich �led of
research has evolved within the last century because of

computational and analytic research on fractional and
classical KdV equation [15–19].

Both the theory and application of fractional calculus
have advanced dramatically in the previous two decades. e
nonlocal quality of fractional calculus and its e�ectiveness in
reproducing anomalous di�usion that happens in transport
dynamics in complex systems, such as �uid motion in
viscoelastic medium, are the most important advantages
[20], anomalous transfer in biology [21] and porous ma-
terials [22], etc. Control theory, entropy theory, image
processing, and wave propagation phenomena all employing
fractional calculus can be found in [23–26].  e creation of
tools to o�er a mathematical structure for sophisticated
physical systems and processes has been aided by break-
throughs in current variable order (VO) fractional calculus
[27]. As a result of its appropriateness for modelling in a
wide range of subjects, including science, engineering, and a
variety of other disciplines, variable order fractional dif-
ferential equations (VO-FDEs) have gained prominence
[28–31]. Physical modelling utilizing VO-FDE models has
been the subject of a large-scale investigation. For example,
Kobelev et al. [32] highlighted the dynamical and statistical
systems with varying memory di¥culties where the fractal
dimension changes with coordinate and time. Coimbra et al.
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[33] used VO-fractional operators to investigate the visco-
elasticity oscillator. Al-Mekhlafi and Sweilam [34] proposed
a new multistrain TB model based on the VO-fractional
derivative as a nonlinear ordinary differential equation
extension. Due to the enormous number of applications,
analytical and numerical techniques for solving variable
order fractional order differential equations (VO-FDEs)
have increased substantially in the last year. +e analytical
solution of VO-FDEs, on the other hand, is frequently
difficult to obtain. +erefore, numerical approaches are used
as sophisticated methods for numerical approximation of
VO-FDEs in general [29, 35–38].

+e Caputo, the Liouville, the Marchaud, the Grunwald,
and the Coimbra definitions are some of the recent variable
order operator definitions suggested in the literature
[33, 39]. Samko et al. [39] analyzed that the Riemann var-
iable order definitions lost some features, meaning that the
Marchaud operator is better than the Riemann-Liouville
type operator. Ramirez et al. [40] also compared the variable
order operators such as operators due to Riemann-Liouville,
Marchaud, Caputo, and Coimbra using a simple criterion:
the variable order operator must return the correct fractional
derivative that corresponds to the argument of the func-
tional order. Only the operator due to Coimbra and the
Marchaud satisfy the aforementioned elementary condition
[40], as well as the Coimbra variable order operator is more
efficient numerically. Soon et al. [41] also demonstrated that
the Coimbra variable order operator satisfies a mapping
requirement and that it is the only formulation that returns
the necessary derivatives as a function of x(t) for transitions
between elastic and viscous regimes. Ramirez [40] dem-
onstrated that the Coimbra concept is the most appropriate
for physical modelling since it has essential properties that
are desirable.

+e numerical solution of the KdV problem of order
0< τ(t)< 1 and its eventual periodicity over confined domain
is achieved using RBF with Coimbra variable order derivative.
+e following equations represent the proposed models in
both one-dimensional and two-dimensional space:

D
τ(t)
t w(x, t) + εw(x, t)wx(x, t) + ]wxxx(x, t) � f(x, t), t> 0, x ∈ Ω,

(1)

with the following initial condition

w(x, t) � g(x), t � 0, x ∈ Ω, (2)

and the boundary conditions given by

w(x, t) � h(x, t), t≥ 0, x ∈ zΩ, (3)

where 0< τ(t)< 1.

D
τ(t)
t w(x, y, t) + εw2

(x, y, t)wx(x, y, t)

+ wxxx(x, y, t) + wxyy(x, y, t) � f(x, y, t),
(4)

where (x, y) ∈ Ω, with the following boundary and initial
conditions

w(x, y, t) � h(x, y, t) ∈ zΩ , t≥ 0, w(x, y, 0),

� g(x, y), (x, y) ∈ Ω.
(5)

+emodels in the above form are selected for the sake of
comparison given in [42]. +e Coimbra variable order de-
rivative is defined by (7) in the next section.

1.1. 'e KdV Equation. Suppose that a wave propagates
along a horizontal channel of the unform width along the
positive direction of x-axis alone. Let the depth of the
channel be d, t be the time, and x be the horizontal coor-
dinate and let w(x, t) be the vertical distance of the fluid
surface in equilibrium position. Let the amplitude of the
wave be small enough, then the irrotational wave propa-
gation can be modelled by the following equation known as
the KdV equation

w(x, y)t + εw(x, y)wx(x, y) + ]wxxx(x, y) � 0, (6)

where the first term ut represents the unform wave trans-
lation, and the other two terms εw(x, t)wx(x, t) and
]wxxx(x, t) serve for the modification of the wave under the
influences of nonlinear term wwx and dispersive term wxxx,
respectively.

1.2. Coimbra Variable Order Derivative. Modelling physical
problems is better using the Coimbra concept. Variable
order differentials are a useful tool for studying systems
where the order changes with regard to one or more pa-
rameters, such as the management of a nonlinear visco-
elasticity oscillator.

D
τ(t)
t w(t) �

1
Γ(1 − α(t))


t

0+

w′(s)ds

(t − s)
τ(t)

+
βt

− τ(t)

Γ(1 − τ(t))
. (7)

0< τ(t)< 1, β � w(0+) − w(0− ), and the above operator
require only one initial condition w(0+). +e integer order
derivative with respect to the variable t is denoted by w′(t)

[33].

2. Analysis of RBF Approximation Method for
Fractional Order KdV Equations

In the theory of multivariate approximation, the radial basis
functions (RBF) method is the most extensively used tool. A
generalized refinement of the multiquadric approach is RBF
approximation methods. +e MQ has a long history of
application and theoretical research can be found in [43, 44].
+e MQ approach is widely used in geology, geodesy,
geophysics, and other domains, see [44]. Franke [45] con-
ducted a comparative study in the field of MQ. Meanwhile, a
key period in RBF history occurred, see for example [46],
when Charles Micchelli refined the theory of the MQ
method by establishing requirements that guarantee the
system matrix nonsingularity for MQ methods. Schoenberg
[47] is attribute with the results that generate the invertibility
of the system matrix. Micchelli went on to say that
Schoenberg’s constraints could be relaxed to allow many
more functions to be included and that adequate conditions
for functions could be applied to make the system matrix
nonsingular. In 1990, physicist Kansa [48] discovery quickly
disseminated the study, and RBF is used in a systematic
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approach for numerically solving partial differential equa-
tions and is meshless [49]. In numerous branches of applied
areas [50, 51], a huge amount of mathematical applications
of RBF are employed. In numerical techniques for solving
PDEs with reasonable accuracy in multidimensions, Madych
exposed the convergence rate of spectral order for MQ
interpolation in [52]. In comparison to other state-of-the-art
methodologies, these findings propelled RBF research for-
ward swiftly, and the RBF methods drew appreciable at-
tention in the literature as mesh-free approaches and their
capacity to attain spectral accuracy for PDE numerical so-
lutions on irregular domains [53]. In this work, a numerical
scheme based on RBF and Coimbra derivative is constructed
for fractional order KdV equations (1)–(5) defined in the
following form:

D
τ(t)
t w(t, x) � f(t, x) + Lw(t, x), 0≤ t≤T, x ∈ Ω ⊂ Rd

, d≥ 1, (8)

with the following boundary and initial conditions

Bw(t, x) � g(t, x), x ∈ zΩ , w(t � 0, x) � w0(x), x ∈ Ω, (9)

with 0< τ(t)< 1.

3. Variable Order Differential
Operator Approximation

+ere are numerous definitions of varying order operators in
the literature [54], but in the current study, we are using the
definition due to Coimbra [33]. Because this variable order
derivative has a great capability to model many complicated

mechanical problems with accuracy, the Coimbra variable
order operator has the capability to investigate and analyze
the dynamics behaviour of many physical models, for ex-
ample, the fractional forces which cannot be approximated
accurately with constant order fractional operator or some
other variable order derivatives. In the work [40], the au-
thors performed a comparative study for solving a dy-
namical system and demonstrated that the Coimbra variable
order derivative produced better results in many aspects
than the nine definitions of variable order derivatives used in
this study.

Now, for the numerical approximation of the Coimbra
variable order derivative, we consider for t ∈ [0, T], and let
tn � (n − 1)δt, where n � 1, . . . , M + 1, then at time level tn,
the Coimbra variable order derivative defined in (7) can be
given by the following equation:

D
τ tn( )
tn

w �
1

Γ 1 − τ tn( ( 


tn

0
tn − s( 

− τ tn( )w′(x, s)ds

+
βt

− τ tn( )

Γ 1 − τ tn( ( 
.

(10)

Let us denote the last term of this equation by hn, then we
have

hn � t
− τ tn( ) β
Γ 1 − τ tn( ( 

. (11)

By using (11) in (10), we get the following form:

D
τ tn( )
n w x, tn(  � Cn 

n− 1

k�1


tk+1

tk

tn − s( 
− τ tn( )ds

w x, tk+1(  − w x, tk( 

δt
  + hn, (12)

where Cn � (1/Γ(1 − τ(tn))); after further simplification, we
get

D
τ tn( )
n w x, tn(  � Cn 

n− 1

k�1

w x, tk+1(  − w x, tk( 

δt
  

tk+1

tk

tn − s( 
− τ tn( )ds + hn, (13)

and by simplifying the integral involved, we have

D
τ tn( )
n w x, tn(  � Cn 

n− 1

k�1

tn − tk( 
1− τ tn( ) − tn − tk+1( 

1− τ tn( )

1 − τ tn( ( 
⎡⎢⎣ ⎤⎥⎦

w x, tk+1(  − w x, tk( 

δt
  + hn. (14)
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Denoting the quantity (tn − tk)1− τ(tn) − (tn − tk+1)
1− τ(tn)

by the bk+1, we get

D
τ tn( )
n w x, tn(  �

(δt)
− 1

Cn

Γ 1 − τ tn( ( 

n− 1

k�1
bk+1 w x, tk+1(  − w x, tk(   + hn, (15)

and assuming the value (δt)− 1Cn/Γ(1 − τ(tn)) be denoted by
an, we get

D
τ tn( )
n w x, tn(  � an 

n− 1

k�1
bk+1 w x, tk+1(  − w x, tk(   + hn. (16)

Splitting the first term of this series and rewriting in the
form, we have

D
τ tn( )
n w x, tn(  � an 

n− 2

k�1
bk w x, tk+1(  − w x, tk(   + anbn w x, tn(  − w x, tn− 1(   + hn. (17)

Assuming Sn � an
n− 2
k�1bk[w(x, tk+1) − (x, tk)] + hn, the

approximation of Coimbra variable order derivative can be
represented in the more simplified form

D
α tn( )
n w x, tn(  � anbn w

n
(x) − w

n− 1
(x)  + Sn, (18)

which is the Coimbra variable order differential operator’s
finite-difference approximation.

4. RBF Approximation Scheme

+e RBF interpolant can be characterized as a linear com-
bination of radial basis functions, as seen in the equation
below. For a set of N scattered nodes xi ∈ Ω ⊂ Rd, d≥ 1,

w x, tn(  � 
xj∈Ω

λnκj x − xj

�����

����� , x ∈ Ω, (19)

where λn denotes the expansion coefficients at any time tn, κj

denotes an RBF centred at xj ∈ Ω, and ‖.‖ denotes a distance
norm in Rd, d≥ 1. It is possible to obtain the matrix form of
(19) by

w
n

� Aλn
, (20)

where A is a square matrix termed a system matrix, and the
entries are Aij � κj(‖xi − xj‖). IfL is a spatial operator and
B is a boundary operator, then (19) is obtained.

Lw x, tn(  � 
xj∈Ω

λn
Lκj x − xj

�����

����� , x ∈ Ω,

Bw x, tn(  � 
xj∈Ω

λn
Bκj x − xj

�����

����� , x ∈ zΩ.

(21)

+e above two equations can be expressed in matrix
form by

Lw
n
(x)

Bw
n
(x)

  �

Lκj x − xj

�����

����� , x ∈ Ω

Bκj x − xj

�����

����� , x ∈ zΩ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠λn

. (22)

We obtain it in a more compressed form

MLBw
n
(x) � Dλn

, (23)

In case of identity operators L, B, the equation above can
be written as

w
n
(x) � Bλn

. (24)

Model equations (1)–(5) can be approximated in the
following way employing the θ− weighted scheme, VODO
finite-difference approximation, and RBF spatial operator
approximation

anbn w
n
(x) − w

n− 1
(x)  + Sn � θMLBw

n
(x)

+(1 − θ) MLBw
n− 1

(x) + f
n
(x).

(25)

Substituting the values of from (19) and (20), we get

anbnBλn
− anbnBλn− 1

  + Sn �(1 − θ))Dλn− 1
+ θDλn

+ f
n
(x),

bnanB − θD λn
� (1 − θ)D + anbnB λn− 1

+ f
n
(x) − Sn.

(26)

+is numerical strategy based on RBF can be solved at
any point in time tn to acquire the value of λn, for which we
can use (20). Using equation (20) to remove the value of λn,
we get

bnanB − θD A
− 1

w
n

� (1 − θ) D + bnanB A
− 1

w
n− 1

+ f
n
(x) − Sn.

(27)

+e amplification matrix of the numerical scheme (27) is
the following matrix E:

E � A bnanB − θD 
− 1

(1 − θ)D + bnanB A
− 1

. (28)

In fact, the matrices A and B are identical, as shown by
(20) and (24), because matrix B is a special instance of matrix
D for identity operators. It is evident from the definitions of
an and bn that they are positive real integers, hence
η � anbn > 0. As a result, (28) amplification matrix can be
represented in a more basic form as follows:

E � anbnAA
− 1

− θDA
− 1

 
− 1

anbnAA
− 1

+(1 − θ) DA
− 1

 . (29)

Now, for θ � (1/2), and denoting (1/2)DA− 1 by Q, we
obtain

E � [ηI − Q]
− 1

[ηI + Q]. (30)
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Lemma 1. If Q is a square matrix of rank N × N with
negative eigenvalues, then the estimate for any η> 0 is

(ηI − Q)
− 1

(ηI + Q)
����

����≤ 1. (31)

'is is also true for the Euclidean norm.

Proof: Let the eigenvectors of the matrix Q be ui 
N

i�1 with
the corresponding eigenvalues ]i, thus we have the following
equation:

(ηI − Q)
− 1

(ηI − Q)u
i

�
η + ]i

η − ]i

u
i
, i � 1, . . . N. (32)

Suppose the vectors be orthonormal eigensystem for the
matrix (ηI − Q)− 1(ηI − Q), since η> 0 and all the eigen-
values of the matrix Q are negative, so we obtain

(ηI − Q)
− 1

(ηI − Q)‖ � ‖
η + ]i

η − ]i

��������

��������
≤ 1,∀ i � 1, . . . N. (33)

□

5. The Numerical Scheme’s Error Analysis

+e VODO numerical scheme of order in time is
O((δt)2− τ), whereas RBF numerical scheme is mostly de-
pendent on the RBF utilized for the derivation of other
differentiation matrices and the RBF system matrix, as
demonstrated in the previous work discussion. +e order of
convergence of several forms of RBF has been determined in
[51]. Let the spatial numerical approximation corresponding
to the present numerical scheme for a given RBF be of order
O(hq), q≥ 0, and h be the separation distance between the
scattered nodes utilized for RBF interpolant. For the nu-
merical scheme specified in (22), let wn be the approximate
solution, w be the precise solution, and Θn � wn − w be the
error at time tn:

Θn � EΘn− 1 + O (δt)
2− τ)

+ h
q

 . (34)

+e above numerical technique’s amplification matrix,
E, is mostly determined by the type of RBF and the scale
factor used. Assume that when the condition of Lemma 1
holds for a given optimal shape parameter value and optimal
RBF option, then

‖E‖≤ 1, (35)

is a criterion for the numerical scheme’s stability in (27).
Assuming that both the initial solution value and the so-
lution are sufficiently smooth along with δt⟶ 0,

Θn‖≤ ‖E
����

���� Θn− 1
����

���� + C1 h
q

+(δt)
2− τ

 , n � 1: M + 1, (36)

where C1 stands for a constant. At time t � 0, the error ‖Θn‖

always fulfils the initial as well as the boundary condition via
mathematical induction.

Θn

����
����≤C1 1 + 

n− 1

i�1
‖E‖

i⎛⎝ ⎞⎠ (δt)
hq+2− τ

 , n � 1: M + 1, (37)

when the condition (35) holds, then

Θn

����
����≤ nC1 (δt)

2− τ
+ h

q
 , n � 1: M + 1, (38)

+is demonstrates that the current numerical method for
VODO is convergent.

6. The Numerical Methodology for Variable
Order Diffusion Models

Problem 1. We consider the KdV equation defined in
(1)–(3) for the following value of function f:

f(x, t) �
t
5
e

− x2

25
t
− τ

Γ(6 − τ)
−

t
2
xe

− x2

180000
+

x

10
−

x
3

15
⎡⎣ ⎤⎦, (39)

with the following initial condition

w(x, 0) � 0, a≤x≤ b, (40)

where the boundary conditions can be extracted from the
exact solution

w(x, t) �
t
5
e

− x2

3000
, (41)

where 0< τ < 1 is the fractional order. +e compactly sup-
ported radial basis function defined as κ(r, ε) � (35(εr)2 +

18εr + 3)(1 − εr)6+, with a support size of ε � 0.5, is used to
solve this issue across the spatial domain [− 4, 4] and the
number of points N � 100 are used. For various settings of
order τ, step size δt, and collocation points N, the results are
presented in Figures 1 and 2 and Table 1, where the accuracy
is quantified in terms of maximum error norm. When we
gave a periodic boundary condition at x � − 1, like w(a, t) �

sin(20πt)tanh(5t) with f � 0, the solution at each point of
the domain is periodic in time for 1D fractional order KdV
equation.

Problem 2. In this last example, we consider the following
2D KdV equation defined in (3)–(5) with the following value
of the function f

f(x, y, t) � t
6sech(x))sexh(y)

720
Γ(7 − τ)

t
− τ(t)

+ tanh(x) − 6 t
6sech(x)sech(y) 

2
− tanh2(x) + 5sech(x)

2
− tanh2(y) + sech(y)

2
  , (42)
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Figure 2: Approximate solution: periodicity of solution at x � − 1 (red), x � − 0.7588 (blue), and at x � − 0.5075 (green) at time t ∈ [0, 0.5],
x ∈ [− 1, 1], τ � 0.2, and δt � 0.001, with CS-RBF, ε � 0.5, corresponding to Problem 1.
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Figure 1: Approximate solution of RBF-based method (red) and exact solution (green) to Problem 1 at time t ∈ [0, 1], x ∈ [− 4, 4], α � 0.5,
and δt � 0.01, with CS-RBF, ε � 0.5.
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with the following initial:

w(x, y, 0) � 0, − 1≤ x, y≤ 1, (43)

and the boundary conditions can be taken from the fol-
lowing exact solution:

w(x, y, t) � t
6sech(x)sech(y), t> 0, (x, y) ∈ zΩ, (44)

0< τ(t)< 1, τ(t) � 0.4 + 0.2 sin(0.5πt/T). +e current
RBF-based solution solves this problem, and the results are
displayed in Figure 3 and Table 2, respectively. +e current
numerical technique appears to be convergent and stability
attained when δt⟶ 0. +is backs up the prior sections’

convergence and stability analysis of the current numerical
system is achieved.

Problem 3. In the last example, we consider the irregular
domain within the regular domain [− 1, 1]2. +e variable order
which is used in this computation is defined by the function
α(t) � 0.4 + 0.2 sin(0.5πt/T), T � 1. We used different
number of nodes N � 56, 196, 400, 676 in the irregular do-
main. +e radial basis function defined by κ(r, ε) �

�����
r2 + ε

√
is

implemented in this problem and its corresponding shape
parameter value changes solution accuracy, which is calculated
using the formula ε � (1/log(N)) [55]. +e results are shown
in graphical form and can be seen in Figure 4.
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Figure 3: A comparison of RBF-based numerical method and exact solution of Problem 2, for N � 102, t � 0.5,
τ(t) � 0.4 + 0.2 sin (0.5πt/T).

Table 2: An approximate solution to Problem 2 based on RBF, when t � 0.5, error � max (|wap − wex|).

(ε, N) δt � 0.1 δt � 0.01 δt � 0.001 δt � 0.0001
(1, 52) 0.0104 0.0016 1.7022e-004 1.8747e-005
(1, 62) 0.0111 0.0017 1.7335e-004 2.2170e-005
(1, 72) 0.0102 0.0016 1.7993e-004 1.8235e-005
(1, 102) 0.0114 0.0017 1.2957e-004 4.3734e-005

Table 1: An approximate solution to Problem 1 based on RBF, when t � 1, error � max (|wap − wex|).

(τ, N) δt � 0.1 δt � 0.01 δt � 0.001
(0.1, 102) 1.3572e-006 3.6674e-008 1.8149e-008
(0.2, 102) 3.2295e-006 7.7781e-008 1.6031e-008
(0.3, 102) 5.7785e-006 1.5589e-007 1.6168e-008
(0.5, 102) 1.3801e-005 5.2623e-007 2.4744e-008
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7. Conclusion

+e numerical solution of the variable order KdVmodels in
1D and 2D is achieved using an RBF-based numerical
approach. +e RBF is used to approximate the spatial
derivative, whereas the Coimbra derivative is used to ap-
proximate the variable order time differential operator. +e
numerical scheme’s stability and convergence are estab-
lished. +e current numerical technique is found to have a
sensitivity in temporal integration. +e periodicity of the
KdV equation in 1D is explored, and it is demonstrated that
the solution is periodic in time at each point of the domain
for the fractional order KdV in 1D. +e suggested nu-
merical system provides the capacity to numerically ap-
proximate numerous complex mechanical problems with
ease and precision. +e Coimbra variable order operator
can be used to examine and analyze the dynamics of a
variety of physical models, such as fractional forces, which
cannot be accurately modelled with a constant order
fractional operator.
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'is work is devoted to present a generalized complex discrete fractional Gaussian map. Analytical and numerical analyses
of the proposed map are conducted. 'e dynamical behaviors and stability of fixed points of the map are explored. 'e
existence of fractal Mandelbrot and Julia sets is examined along with the corresponding fractal characteristics. 'e in-
fluences of the key parameters of the map and fractional order are examined. Moreover, nonlinear controllers are designed
in the complex domain to control Julia sets generated by the map or to achieve synchronization between two Julia sets in
master/slave configuration. Numerical simulations are provided to attain a deep understanding of nonlinear behaviors of
the proposed map. 'en, a suggested efficient chaos-based encryption technique is introduced by integrating the com-
plicated dynamical behavior and fractal sets of the proposed map with the pseudo-chaos generated from the modified
lemniscate hyperchaotic map.

1. Introduction

Mathematical models are used to describe and under-
stand the interesting behaviors of nonlinear systems,
which arise in different disciplines of science. 'ere are a
plethora of mathematical tools, which have proved their
efficacy in mathematical modeling of biological, physical,
engineering, economic, and natural systems. Among
these tools, the differential equations, difference equa-
tions, and statistical methods have attracted a consid-
erable interest [1–5].

However, when dealing with systems with memory,
that is, the associated rate of changes depends on the past
values of state variables in addition to the present values,
the conventional continuous-time differential equation
and discrete-time maps cannot describe these systems
properly. To address this issue, mathematicians and en-
gineers employ fractional calculus to formulate nonlocal

differential operators, which are necessary to study sys-
tems with memory. Firstly, they focused on the fractional-
order differential equations (FDEs) for the past two de-
cades. 'e electric circuits, fluid mechanics, electro-
magnetics, immune systems, nanofluids, epidemics, and
biological and financial systems are only examples of the
fields, where FDEs are of great importance [6–13]. 'ere
are a few definitions for fractional-order derivatives and
integrals, which have been developed so far such as Rie-
mann–Lioville, Caputo Grunwald–Letinkov, andWyl–Riesez
fractional operators. More details are provided in refer-
ences [14–18]. In reference [19], a fractional-order model
based on Atangana–Baleanu–Caputo fractional derivative
was proposed to understand the dynamics of differenti-
ation of stem cells. 'e state-of-the-art developments in
special functions and mathematical analysis tools asso-
ciated with fractional-order differential equations are
provided in reference [20].
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'e numerical solutions of FDEs are usually carried out
with high computational cost and induce several types of
numerical errors.

'erefore, while searching for an efficient and reasonable
alternative, it is recognized that the fractional difference
operators can be applied in a straightforward way to the
mathematical modeling of different nonlinear systems. More
recently, attention has been turned to the discrete fractional
difference equations [21–25], where they have been suc-
cessfully applied in different fields.

On the other side, complex maps are found to exhibit
very interesting and fascinating geometrical structures
known as Julia and Mandelbrot fractal sets [26–28]. 'ese
sets are known to have fractal dimensions and have many
interesting applications. 'e nonlinear dynamics and cha-
otic behavior of discrete fractional Gauss maps are inves-
tigated in the literature. It has been observed that the
fractional Gauss map is more stable compared with the
associated integer map. 'e width of period-3 windows is
found to increase with the decrement in the value of frac-
tional order [29]. Also, the synchronization for standard
integer-order Gauss maps and discrete fractional Gauss
maps has been studied using a parameter estimation scheme
[30].'e emerging nonlinear dynamics and synchronization
in coupled integer-order and fractional-order Gauss maps
with different topologies have been explored in reference
[31, 32]. 'e motivation of this study is based on the ob-
servation that the nonlinear characteristics and dynamics of
the fractional complex maps are still almost an unexplored
point in literature. Indeed, there are very few works that
begin to investigate only the case of fractional-order complex
differential equations [33, 34]. 'e present work extends the
aforementioned works to the more general and unexplored
case, where the state variable of the map has complex values,
and it also investigates the emerging Julia and Mandelbrot
fractal sets along with synchronization methodology of dis-
crete fractional Gaussian map in complex domain for the first
time, to the best of authors’ knowledge. Moreover, the present
work combines the induced fractal sets into a proposed ef-
ficient chaos-based encryption technique.

'e very complicated behaviors of chaotic systems along
with noise-like dynamics, very broadband spectrum, and
ability to attain synchronization between distant systems
have been utilized efficiently in a plethora of schemes for
chaos-based communications [35–52]. In the last two de-
cades, the chaos-based cryptography has become a focus
research point of great interest. 'e critical evaluation of
chaos-based encryption systems reveals that it is essential to
keep high complexity and dimensionality of chaotic dy-
namics in encryption schemes along with effectively pre-
venting any information leakage by possible eavesdroppers
attacks [40–42]. 'e chaotic maps, in particular, are easily
implementable on digital hardware, which can be
straightforwardly integrated with modern communication
systems. However, several works have highlighted the
problem of degradation and suppression of chaotic behavior
in simple structure and low-dimensional chaotic maps.
'ese problems result from hardware finite precision of
floating numbers [43–45]. Also, the small key space in these

chaotic maps is another drawback. 'e employment of
multiple chaos systems and switching between their outputs
is offered along with sufficient long finite precision com-
putations to improve the performance of chaotic maps [46].
'e pseudo-chaotic orbits can be employed as another so-
lution to the aforementioned chaos degradation issue
[47, 48]. More specifically, pseudo-chaotic time series can be
attained by subtracting the output sequences of two
mathematically equivalent chaotic maps, which are non-
equivalent in computations when machine finite precision is
considered [47, 48]. 'e application of discrete fractional
complex maps in the field of chaos-based encryption systems
is also an unexplored research point, to the best of our
knowledge. So, this article aims also at investigating this
challenging task and providing a reliable encryption ma-
chine based on the complicated dynamics of a proposed
fractional complex map.

'is study is organized as follows: the mathematical
model of the proposed discrete fractional complex Gaussian
map is presented in Section 2. 'e control and synchro-
nization of Julia sets generated by the proposed map are
examined in Section 3. 'e proposed hybrid chaos-fractal
encryption scheme is presented in Section 4, while the as-
sociated security analysis is addressed in Section 5. Section 6
contains conclusion and final discussion.

2. Discrete Fractional Complex Gaussian Map

'e discrete fractional complex Gaussian map is proposed in
the following form:

CΔα0z(t) � e
−az2(t+α−1)

+ b, (1)

where z, a≠ 0, and b≠ 0 take complex values, whereas the
fractional order α ∈ (0, 1]. 'e complex discrete fractional
map (1) has infinite number of fixed points, which can be
evaluated from the following equation:

e
−az∗

2

� −b, (2)

or

z
∗

�
ln|b| + i θ0 +(2k + 1)π 

a
 

1/2

,

k � 0, ± 1, ± 2, . . . ,

(3)

where θ0 denotes the principal argument of complex-valued
constant b. 'is means that the equilibrium points of the
proposed map are determined according to the assigned
values for a, b, and k.

'e asymptotic stability analysis of fixed points in the
complex fractional Gaussian map (1) is conducted in the
following subsection:

2.1. Stability Analysis of Fixed Points

Theorem 1. 4e fixed point z∗ of the fractional complex
Gaussian map (1) is locally asymptotically stable if
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−2az
∗
e

− az∗2


< 2 cos
Arg −2az∗e− az∗2  − π

2 − α
⎛⎝ ⎞⎠

α

,

Arg −2az
∗
e

− az∗2
 




>
απ
2

.

(4)

Proof. Assume that ε(t) � z(t) − z∗, then the next linear-
ized map is derived from equation (1):

CΔα0ε(t) � −2az
∗
e

− az∗2ε(t + α − 1)

� cε(t + α − 1).
(5)

Expressing the above equation in terms of its real and
imaginary parts, it follows that

Δα0εr(t) + i
CΔαaεi(t) � cr + ici( 

· εr(t + α − 1) + iεi(t + α − 1)( ,
(6)

and therefore the next equivalent 2D discrete fractional
system is attained:

Δα0εr(t) � crεr(t + α − 1) − ciεi(t + α − 1),

Δα0εi(t) � ciεr(t + α − 1) + crεi(t + α − 1).
(7)

Now, the above two equations can be expressed as
follows:

Δα0εr(t)

Δα0εi(t)
  �

cr −ci

ci cr

 
εr(t + α − 1)

εi(t + α − 1)
 , (8)

where it can be verified that the eigenvalues of the matrix of
coefficients are given by cr ± ici.

Define Λ by

Λ �
cr −ci

ci cr

 , (9)

such that tr(Λ) � 2cr. and det(Λ) � c2
r + c2

i > 0. 'e zero
equilibrium point of equation (8) is asymptotically stable if
its associated eigenvalues satisfy

������

c
2
r + c

2
i



< 2 cos
tan− 1 ci/cr( 


 − π

2 − α
 

α

, tan− 1 ci

cr
 




>
απ
2

.

(10)

For z∗ � [ln|b| + i θ0 + (2k + 1)π /a]1/2, k � 0, ± 1,

± 2, . . ., the stability conditions reduce to

−2az
∗
e

− az∗2


< 2 cos
Arg −2az∗e− az∗2 



 − π
2 − α

⎛⎝ ⎞⎠

α

· Arg −2az
∗
e

− az∗2
 




>
απ
2

.

(11)

In this case, the trajectories which start from small initial
perturbations εr(0). and εi(0). around the origin will al-
gebraically decay to the equilibrium point such
that‖ε(n)‖ � O(n− α). as n⟶∞.

For the special case, where principal argument of b is
considered, that is, k � 0, we get

z
∗
1,2 �

1/2ln b2r + b2i(  + i θ0 + π( 

ar + iai

 

1/2

�
1/2arln b2r + b2i(  − ai θ0 + π( (  + i ar θ0 + π(  + 1/2ailn b2r + b2i( ( 

a2
r + a2

i

 

1/2

�
1

������

a
2
r + a

2
i

 r
∗1/2 cos

ϕ0
2

  + i sin
ϕ0
2

  ,
1

������

a
2
r + a

2
i

 r
∗1/2 cos

ϕ0 + π
2

  + i sin
ϕ0 + π

2
  ,

(12)

where a � ar + iai and b � br + ibi,

r
∗

�

����������������������������������������������������

1
2
arln b

2
r + b

2
i  − ai θ0 + π(  

2
+ ar θ0 + π(  +

1
2
ailn b

2
r + b

2
i  

2


,

ϕ0 � tan− 1 ar θ0 + π(  + 1/2ailn b
2
r + b

2
i 

1/2arln b
2
r + b

2
i  − ai θ0 + π( 

⎛⎝ ⎞⎠.

(13)
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'e specific forms of z∗1,2 can be substituted in above-
mentioned stability conditions to investigate their stability.

By the aid of numerical simulations, previous results re-
garding stability conditions of fixed points are validated for
different values of α, k, a, and b (Figure 1). 'e obtained so-
lution orbits indicate that the stability conditions are satisfied
for selected parameter sets employed in Figure 1.

2.2. Fractal Sets Induced by Discrete Fractional Complex
Gaussian Map. 'e notions of Julia fractal set and Man-
delbrot fractal set in integer-order complex-valued maps can
be extended to the general case of discrete fractional-order
complex maps. Given the next discrete fractional map of
order α

Δα0z(t) � Ψ(z(t + α − 1), μ), (14)

where Ψ: C⟶ C and μ ∈ C. 'e Julia set generated by
map (5) is described in the following definition
[26–28, 33, 34]:

Definition 2. 'e filled-in Julia set of complex-valued dis-
crete fractional map (5) is defined as the set Ω of initial
points z ∈ C, whose solution orbits are bounded. 'e
boundary of Ω set is referred to as zΩ and it is known as the
Julia set ΥαΨ of the map (5).

'e main characteristics of Julia set ΥαΨ are summarized
as follows [27, 28, 33, 34]:

(1) ΥαΨ ≠ϕ (Julia set is nonempty).
(2) ΥαΨ is invariant with respect to associated map (5) in

the forward and backward directions of time.
(3) Assuming that an attractive fixed point z of the

discrete fractional map (5) has period p and exists at
α, then ΥαΨ includes the basin of attraction of z.

'e well-knownMandelbrot set has been investigated by
Benoit Mandelbrot in 1979 [27, 28]. Its concept can also be
generalized to the discrete fractional case. More specifically,
fixing the value of fractional order α, the Mandelbrot set χαΨ
consists of the set of values of parameter μ ∈ C at which the
values of |z(t)|, t> 0 are bounded for z(0) � 0.

'e space-filling dimension can be employed to quantify
the fractal properties of Julia and Mandelbrot sets. In par-
ticular, the box-counting measure for dimension is one of
the most accessible measures in fractal analysis and it is
defined as follows:

Definition 3. Consider the nonempty bounded subset Ξ of
Rn and suppose that there are Nρ boxes with side length ρ,
which are required to cover the set Ξ. 'en, the box-
counting dimension (Minkowski–Bouligand dimension) is
determined by the following equation:

dimΞ � lim
ρ⟶0

log Nρ 

log(1/ρ)
, (15)

where Nρ is the number of boxes to cover Ξ. In addition, the
upper box dimension (entropy dimension) and the lower

box dimension (lower Minkowski dimension) of Ξ are also
defined, respectively, by the following equations:

dimΞ � lim
ρ⟶0

log Nρ 

log(1/ρ)
,

dim Ξ � lim
ρ⟶ 0

log Nρ 

log(1/ρ)
.

(16)

'e generation of Mandelbrot and Julia sets is explored
through numerical simulations at different values of pa-
rameters. 'e following table summarizes the obtained re-
sults at different values of fractional order α, constant q, and
exponent p. In addition, the box-counting dimensions for
the different cases considered in simulations are also pre-
sented in Table 1 'e corresponding Mandelbrot and Julia
sets are depicted in Figures 2 to 4.

3. Control and Synchronization of Julia Sets

'e problem of achieving control and synchronization of
Julia sets generated by the discrete fractional complex
Gaussian map is discussed in this section.

For two discrete fractional-order complex Gaussian
maps, the first map is known as the master map and it
produces the output z1(t), while the second map, with the
output z2(t), will be referred to as the slave one.

Definition 4. 'e synchronization between the master and
slave maps is achieved, if z2(t)⟶ z1(t) as t⟶∞. In
other words, it can be expressed as follows [33, 34]:

lim
t⟶∞

z2(t) − z1(t)


 � 0. (17)

When the synchronization is attained between two
trajectories, it implies that the corresponding characteristics
of convergence and divergence are identical. Assume that Υα1
and Υα2 denote the Julia sets induced by fractional-order
master and fractional-order slave Gaussian maps, respec-
tively, at fractional order α. 'erefore, the synchronization
between the mentioned two Julia sets can be defined as
follows [29,30]:

Definition 5. 'e asymptotic synchronization of the two
Julia sets Υα1 and Υα2 is satisfied if

lim
t⟶∞
Υα1 ∪Υ

α
2 − Υα1 ∩Υ

α
2(  � ∅. (18)

3.1. Control of Julia Sets of Discrete Fractional Complex
Gaussian Map. In this section, the appropriate controller is
designed in order to change the characteristics and geometry
of Julia sets generated by the proposed fractional map via
varying the type of stability of one of the fixed points of the
present map. More specifically, we consider the feedback
controller in the following form:

ϱ(t) � −ς(z(t) − z) − e
− az2(t)

− b, (19)

where z is the selected unstable fixed point intended to be
stabilized under the influence of controller and ς � ςr + iςi
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represents the complex-valued gain of the controller, which
can be evaluated as follows:

Theorem 6. Assume that the gain ς of controller ϱ(t) of the
controlled fractional-order complex Gaussian map

Δα0z(t) � e
− az2(t+α− 1)

+ b + ϱ(t + α − 1), (20)

fulfills the two inequalities

ςr > 0,

������

ς2r + ς2i


< 2α, (21)

then the fixed point z become stable, such that the associated
Julia set in its neighborhood is changed.

Proof. By applying the control signal (6), we get the fol-
lowing controlled fractional-order complex map:

Δα0z(t) � −ς(z(t + α − 1) − z). (22)

Defining δ(t) � z(t) − z ∈ C, equation (22) takes the
following form:
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Figure 1: Time series solution of fractional Gaussian map depicting stable fixed points at (a, b) a � 0.15 − 0.15i, α � 0.9, b � 0.71 + 0.25i and
(c, d) a � 0.3 + 0.2i, α � 0.85, b � 0.3 − 0.1i.

Table 1: Summary of fractal sets generated from complex fractional Gaussian map and their fractal dimensions.

Graph Fractal set Parameters Dimension

Figure 2(a) Mandelbrot set α � 1,

a � 0.5 + 0.3i
1.544

Figure 2(b) Julia set α � 1,

a � 0.5 + 0.3i
, b � 0.3 + 0.3i

1.838

Figure 2(c) Julia set α � 1,

a � 0.5 + 0.3i
, b � − 0.15 − 0.4i

1.6438

Figure 2(d) Mandelbrot set α � 1,

a � 0.19 − 0.5i

1.429

Figure 2(e) Julia set α � 1, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.8321
Figure 3(a) Mandelbrot set α � 0.8, a � 0.19 − 0.5i 1.753
Figure 3(b) Mandelbrot set α � 0.5, a � 0.19 − 0.5i 1.4775
Figure 3(c) Mandelbrot set α � 0.3, a � 0.19 − 0.5i 1.512
Figure 3(d) Julia set α � 0.8, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.781
Figure 3(e) Julia set α � 0.5, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.6574
Figure 3(f ) Julia set α � 0.3, a � 0.19 − 0.5i, b � 0.5 − 0.5i 1.932
Figure 4(a) Mandelbrot set α � 0.9, a � − 0.59 + 0.93i 1.5016
Figure 4(b) Julia set α � 0.9, a � −0.59 + 0.93i, b � − 0.75 − 0.05i 1.753
Figure 4(c) Mandelbrot set α � 0.5, a � 1.15 − 0.7i 1.483
Figure 4(d) Julia set α � 0.5, a � 1.15 − 0.7i, b � 0.5 − 0.5i 1.4485
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Δα0δ(t) � −ςδ(t + α − 1). (23)

'e corresponding two-dimensional real-valued frac-
tional map can be expressed as follows:
Δα0δr(t) � −ςrδr(t + α − 1) + ςiδi(t + α − 1),

Δα0δi(t) � −ςiδr(t + α − 1) − ςrδi(t + α − 1).
(24)

'en, the coefficients of the above system can be put in
the following matrix:

Λ �
−ςr ςi

−ςi −ςr

 , (25)

and the associated eigenvalues are computed as −ςr ± iςi.
Hence, the sufficient conditions required for local asymp-
totic stability of z can be formulated as ςr > 0 and������
ς2r + ς2i


< 2α. □

3.2. Synchronization of Julia Sets. 'e discrete fractional
master system is defined in the following form:

Δα0z1(t) � e
− az21(t+α− 1)

+ b, (26)

(a) (b) (c)

(d) (e) (f )

Figure 3: 'e Mandelbrot and Julia sets of generalized fractional Gaussian map obtained at specified values in Table 1.

(a) (b) (c) (d)

(e)

Figure 2: 'e Mandelbrot and Julia sets of generalized fractional Gaussian map obtained at specified values in Table 1.
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whereas the corresponding slave system is formulated as
follows:

Δα0z2(t) � e
− az22(t+α− 1)

+ b + ϕ z1, z2, t + α − 1( , (27)

where ϕ(z1, z2, t + α − 1) is the adequate controller to be
designed. Note that the initial values of two systems are
assumed to be different and since the present map has
infinite number of fixed points, the solutions z1 and z2 may
converge to different fixed points in the way that they induce
distinct filled Julia sets. When the synchronization is
achieved between the two maps, it is achieved for the as-
sociated Julia sets.

Theorem 7. 4e two fractional maps (8) and (9) are syn-
chronized under the influence of the following controller:

ϕ z1, z2, t + α − 1(  � e
− az21(t+α− 1)

− e
− az22(t+α− 1)

− κ z2(t + α − 1) − z1(t + α − 1)( ,

(28)

where the gain κ � κr + iκi, satisfying |κ|< 2α and κr > 0.

Proof. 'e discrete fractional error map is obtained by
subtracting equation (8) from equation (9) as follows:

Δα0e(t) � e
− az22(t+α− 1)

− e
− az21(t+α− 1)

+ ϕ z1, z2, t + α − 1( ,

e(t) � z2(t) − z1(t).

(29)

Using the proposed controller (10) into the above
fractional error system, it results in

Δα0e(t) � −κe(t + α − 1), (30)

or

Δα0 er(t) + iei(t)(  � −κr − iκi( 

· er(t + α − 1) + iei(t + α − 1)( ,
(31)

which can be expressed in the following two dimensional
system:

Δα0er(t) � −κrer(t + α − 1) + κiei(t + α − 1),

CΔei(t) � −κier(t + α − 1) − κrei(t + α − 1).
(32)

It is obvious that the eigenvalues of error system are
−κr ± iκi, so that the asymptotic stability to zero fixed point
of error system is attained provided that |κ|< 2α and κr > 0.

Numerical simulations are now employed to validate the
theoretical results acquired in this section. 'e synchroni-
zation between orbits of two fractional-order complex
Gaussian maps initiated from different initial conditions is
shown in Figure 5. □

4. Proposed Encryption Algorithm

'e objective of this section is to introduce an efficient
chaos-based encryption technique, which utilizes the idea of
pseudo-chaotic dynamics along with complicated fractal
patterns to boost its security performance.

Consider the following two modified chaotic lemniscate
maps [47]:

x1(n + 1) �
cos 23/2+r cos 2r

x1(n) sin 2r
x1(n) /1 + sin2 2r

x1(n)  

1 + sin2 23/2+r cos 2r
x1(n) sin 2r

x1(n) /1 + sin2 2r
x1(n)  

,

y1(n + 1) �
2

�
2

√
cos 2r cos 2r

y1(n) /1 + sin2 2r
y1(n)  sin 2r cos 2r

y1(n) /1 + sin2 2r
y1(n)  

1 + sin2 2r cos 2r
y1(n) /1 + sin2 2r

y1(n)  
,

(33)

(a) (b) (c) (d)

Figure 4: 'e Mandelbrot and Julia sets of generalized fractional Gaussian map obtained at specified values in Table 1.
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x2(n) �
cos 23/2 cos 2r

x2(n)( /
���������������

1 + sin2 2r
x2(n)( 



× 2r sin 2r
x2(n)( /

���������������

1 + sin2 2r
x2(n)( 



 

1 + sin2 23/2 cos 2r
x2(n)( /

���������������

1 + sin2 2r
x2(n)( 



× 2r sin 2r
x2(n)( /

���������������

1 + sin2 2r
x2(n)( 



 

,

y2(n) �
2 cos 2r/

���������������

1 + sin2 2r
y2(n)( 



× cos 2r
y2(n)( /

���������������

1 + sin2 2r
y2(n)( 



 

1 + sin2 2r cos 2r
y2(n)( /1 + sin2 2r

y2(n)(  
×
sin 2r sin 2r

x2(n)( /1 + sin2 2r
x2(n)(  

1/
�
2

√ .

(34)

It is obvious that these two maps are mathematically
equivalent, yet the finite floating-point representation ren-
ders the corresponding orbits diverge exponentially from
each other even in the case where identical initial conditions
are used. Now, a set of q random perturbation values,
b1, b2, . . . , pq , is chosen and used to update the generated
sequences from the above two systems as follows:

For n � 1: 1000

Xi(n) � xi(n) + b1,

Yi(n) � yi(n) + b1,

i � 1, 2.

(35)

For n � 1001: 2000

Xi(n) � xi(n) + b2,

Yi(n) � yi(n) + b2,

i � 1, 2.

(36)

. . ..
For n � (q − 1)(1000) + 1: q × 1000,

Xi(n) � xi(n) + bq,

Yi(n) � yi(n) + bq,

i � 1, 2.

(37)

'e modular one operations are employed to get

Xi(n) � mod Xi(n), 1( ,

Yi(n) � mod Yi(n), 1( ,
(38)

and hence, the associated lower bound errors can be ob-
tained by setting

eX(n) �
X1(n) − X2(n)

2
,

eX(n) �
Y1(n) − Y2(n)

2
.

(39)

Fractal images are used in the proposed encryption
technique to boost the security performance of the technique
via incorporating additional layers of encryption. More
specifically, the color components of each pixel in randomly
selected two fractal images are used to confuse the values of
each color component in the way that the first fractal image
is used with the plain image and the second one is concerned
with the shuffled plain image. In order to control and reduce
the computation cost, a catalog of secretly pregenerated
fractal images can be saved and then employed as one of the
secret keys in the scheme. 'e advantages of using discrete
fractional complex maps in the generation of fractal images
are that they significantly increase key space. In particular,
the two complex-valued parameters a and b in addition to
the real-valued parameters α, r, x(0), and y(0) are the key
parameters in the system in addition to the random per-
turbing values for pseudo-chaotic signals. 'is implies that
using IEEE 754 double-precision floating-point format, the
established key space is approximately 23922 for 256 × 256
plain images and increases considerably for larger plain
images. 'e pseudo-chaotic time series represented by the
obtained lower bound errors are utilized in the encryption
process as illustrated in the next section.
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Figure 5: Synchronization errors between master and slave systems at a � 0.15 − 0.15i, α � 0.9, b � 0.71 + 0.25i, where initial value for
master system is (−1.43 − 3i) and that for slave system is (−1.4 − 2.8i), whereas κ � 1 + i.
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4.1. Steps of the Proposed Algorithm

Step 1. 'e original color image is separated into
R-channel Pr, G-channel Pg, and B-channel Pb, which
are arranged into three matrices of size M × N.
Step 2. Establish three time-varying and plain-image
dependent perturbation values ξr,g,b by evaluating

ξr,g,b � ]τ(t) +
1

3(M × N)
2 

M

i�1


N

j�1
Pr,g,b(i, j), (40)

where the value of τ(t) refers to a scaled value of time
difference between the moment when the plain image
was supplied to encryption machine and another se-
cretly specified moment in the past, for example, 10 :
45 :12 : 73 Jan 1, 2000. 'e difference can be taken in
units of milliseconds. Also, the scaling factor ] is used
to render ]τ(t)spans the required range of time range.
Moreover, i and j are pixel positions of the R-channel,
G-channel, and B-channel matrices of plain images,
that is, Pr, Pg, Pb, respectively. We use ξr,g,b. as per-
turbation values for chaotic map parameter r, such that

r1,2,3 � r0 + ξr,g,b, (41)

where r0 is a base-value for r. 'erefore, three pseudo-
chaotic sequences are generated and utilized in per-
mutation and diffusion processes of the aforemen-
tioned three plain image channels.
Step 3. 'e chaotic lemniscate map is used to generate
two pseudo-chaotic sequences ex(i), ey(i) and used in
creating the following sequences:

rowColi � mod floor ex(i) × 1015 , 450  + 1,

ksi � mod floor ey(i) × 1015 , 256 .
(42)

We use mod operation between variables xi and M �

N to get a sequence to build a new position for pixels
value image matrices IR, IG, IB as shuffling process.
Also, we use mod operation between the variable yi and
256 to get a random sequence that we used it in en-
cryption process as a secret key.

Step 4. We get row(j) and column(j) as a new position
of image pixels, where j � 1, 2, . . . , M, from rowColi
sequence.
Step 5. Rearrange the pixel position as shuffle process as
follows:

IRsh(i, j) � IR(row(i), column(j)),

IGsh(i, j) � IG(row(i), column(j)),

IBsh(i, j) � IB(row(i), column(j)),

(43)

where IRsh and IR are the matrix for shuffled and plain
images, respectively, where i � 1, 2, . . . , M and
j � 1, 2, . . . , N are the image matrix dimensions.
Step 6. We use two randomly selected fractal images
from previously constructed catalog, for example,
Figures 6(a) and 6(b), as secret keys Keyf1 and Keyf2
for each red, green, and blue color images by separating
each color image from each fractal image and using it as
secret keys with corresponding color in the plain image.
'erefore, we have six secret keys based on the two
fractal images.
In addition, to enhance the confusion of the secret key,
we do a shuffle process as in step 4 to R-channel,
G-channel, and B-channel of fractal image (Figure 6(a))
before using them as a secret key.
Step 7. We divide the sequence ks to three sequences
ksr, ksg, ksb for each color in the plain image. To set the
secret keys in matrix form, the reshape function is used
as follows:

ksR � reshape(ksr, M, N),

ksG � reshape(ksg, M, N),

ksB � reshape(ksb, M, N),

(44)

to be used as secret keys ksR, ksG, ksB for red, green,
and blue channels in the plain images, respectively.
Step 8. Apply two bitwise XOR operation between
Keyf, ks, Ish to establish the encrypted image Ien as
follows:

IRen(i, j) � IRsh(i, j)⊕KeyfR1(i, j) ⊕KeyfR2(i, j) ⊕ ksR(i, j),

IGen(i, j) � IGsh(i, j)⊕KeyfG1(i, j) ⊕KeyfG2(i, j) ⊕ ksG(i, j),

IBen(i, j) � IBsh(i, j)⊕KeyfB1(i, j) ⊕KeyfB2(i, j) ⊕ ksB(i, j),

(45)

where IRen, IGen, and IBen are the encrypted images for
each color component in plain image.

'e process of decryption is carried out using the reverse
approach. 'e proposed encryption scheme is applied to
three colored images. 'e three perturbation constants that
are used in the proposed scheme are 3.9724 × 10− 4,

3.7782 × 10− 4, and 4.0288 × 10− 4 for baboon, pepper, and
house images, respectively. 'e values of r0, x(0), y(0) are
taken as 35, 0.5, 0.5, respectively. Figure 7 depicts the
original, shuffled, and encrypted images for the three images
with size M � N � 450 after applying the presented
algorithm.
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5. Security Analysis

'e proper encryption scheme must be evaluated to in-
vestigate his efficacy in resisting several types of attacks.
'ese involve brute force, statistical, differential, known-
plaintext, chosen-plaintext, and chosen-ciphertext attacks.
In this section, a thorough security analysis is carried out
considering these types of attacks.

5.1. Histogram. 'e histogram analysis is used to visualize
the distribution of pixels in an image before and after the
encryption process. Uniformity of pixels distribution in
encrypted data implies that statistical features of input data
are efficiently hidden by encryption operation. Histograms
for red, green, and blue plain, shuffled, and encrypted images
for baboon image are shown in Figure 8 whereas histograms
for red, green, and blue plain, shuffled, and encrypted images

(a) (b)

Figure 6: Example of fractal images that are generated by the proposed fractional complex map (1).

(a) (b) (c)

Figure 7: 'e plain, shuffled, and encrypted images in (a), (b), and (c), respectively, for baboon, pepper, and house images.
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for pepper image are shown in Figure 9. Finally, histograms
for red, green, and blue plain, shuffled, and encrypted images
for house image are shown in Figure 10.

In order to quantify the uniformity of histograms, the
variance of histogram is utilized as a useful measure. 'e
variance of histogram is calculated as follows [51]:

Var(h) �
1

2562


256

i�1


256

j�1

1
2

hi − hj 
2
, (46)

where h represents the histogram values arranged in vector
form and hi and hj denote the numbers of pixels having values
of i and j, respectively. 'e variance of histogram for original
and ciphered images is depicted in Table 2 with the percentage
of reduction between the plain and encrypted images. Noting
that the percentage of reduction is greater than 99.6% in the
red, green, blue baboon images and greater than 99.8% in three
separated colors for pepper and house images. 'ese results
confirm the efficiency of the proposed technique.
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Figure 8: Histograms for (a) red, (b) green, and (c) blue baboon image for plain, shuffled, and encrypted image, respectively.
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5.2. Key SpaceAnalysis. Evaluating the size of secret key space
in a specific encryption technique is a crucial step to evaluate its
performance against brute force attacks. When the capabilities
and characteristics of the state-of-the-art computer are taken
into account, it is found that a threshold value for a minimum
sufficient key space is a size of 2100 to ensure that the brute-
force attacks are unfeasible [47, 51]. In our suggested scheme,
the two complex-valued parameters a and b in addition to the
real-valued parameters α, r, x(0), and y(0) are the key pa-
rameters in the system in addition to the random perturbing

values for pseudo-chaotic signals. 'is implies that using IEEE
754 double-precision floating-point format, the attained key
space is approximately 23922 for 256 × 256 plain images and
increases considerably for larger plain images. Accordingly, the
presented scheme has key space that is much greater than the
minimum value of 2100.

5.3. CorrelationAnalysis. 'e correlation analysis utilized to
measure and quantify the similarity among adjacent pixels
throughout the image under consideration, which can be the
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Figure 9: Histograms for (a) red, (b) green, and (c) blue pepper image for plain, shuffled, and encrypted image, respectively.
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plain image or the encrypted image. 'e efficient en-
cryption scheme should make the correlation coefficient
as small as possible to boost the security against con-
ventional statistical attacks. 'e correlation coefficient
can be defined as follows:

r �
cov(x, y)

σxσy

, (47)

where σϕ �
������
var(ϕ)


, σψ �

������
var(ψ)


.

var(ϕ) �
1
N



N

i�1
ϕi − E(ϕ)( 

2
,

cov(ϕ,ψ) �
1
N



N

i�1
ϕi − E(ϕ)(  ψi(  − E(ψ)( ,

(48)

where the values of pixels of plain and encrypted images are
denoted by ϕ and ψ, respectively. 'e correlation values
between adjacent pixels in horizontal, vertical, and diagonal
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Figure 10: Histograms for (a) red, (b) green, and (c) blue house image for plain, shuffled, and encrypted image, respectively.
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directions are acquired for baboon, pepper, and house
images and listed in Table 3. It is obvious that the proposed
algorithm is immune to statistical attacks because it is
successfully minimized the values of correlation coefficients
in the encrypted images to about zero.

5.4. Information Entropy. 'e information entropy is an-
other powerful analysis tool used to find the unpredictability
and randomness in the proposed scheme. It is reported that
the optimum value is 8. 'e information entropy of a given
image is outlined as follows:

H(m) � 
2N−1

i�1
pilog2

1
pi

, (49)

where H(m) denotes the entropy in bits, m is an input
parameter, and finally the value of probability for parameter
m is referred to as pi.

'e entropy values for red, green, and blue images have
been evaluated for baboon, pepper, and house encrypted
images and summarized in Table 4. It is cleared that the
entropy values for the three images are very close to 8;
therefore, the proposed scheme is less feasible to expose
information of the plain image.

5.5. Differential Attack Analysis. To evaluate the immunity
of the proposed cryptosystem against the powerful differ-
ential, two useful quantities reevaluated, namely, the number
of pixels changing rate (NPCR) and unified average
changing intensity (UACI). 'ese measures identify the
sensitivity of the encryption scheme to change a single-pixel
value of supplied plain image or sensitivity to small changes
in the secret key.'e equations to evaluate NPCR and UACI
are expressed as follows [47]:

NPCR(%) �
1

M × N


M

i�1


N

j�1
sign C1(i, j) − C2(i, j)( 


 × 100,

UACI(%) �
1

M × N


M

i�1


N

j�1

C1(i, j) − C2(i, j)




255
× 100,

(50)

where the well-known sign function is referred to as sign(),
while Cis refer to the cipher image. In Table 5, the evaluated
values of UACI and NPCR are given for the three submitted
plain images. It is observed that the values of NPCR are
generally greater than 99.5, while those of UACI are greater
than 33.4, which indicates the sensitivity to a pixel change in
the proposed encryption algorithm.

5.6.CroppingAttack. In order to detect the robustness of the
proposed technique, some blocks of size 450 × 100 of a
cipher house image are converted into black. 'e restored
image after is depicted in Figure 11. Although there is a loss
of significant information, the encrypted image after the
decryption process is still recognizable.

Finally, the aforementioned results are summarized. 'e
proposed encryption technique combines the pseudo-chaos
of modified chaotic lemniscate map [47], which has a dis-
tinct complicated dynamics and large value of positive
Lyapunov exponent with the fractal images generated by
complex discrete fractional Gauss map. When compared
with different state-of-the-art chaos-based encryption
techniques, the main advantages of the present encryption
technique are as follows: (a) it deploys superior positive
values of maximum Lyapunov exponents. For example, the
maximum value of Lyapunov exponent of chaos employed
in the image encryption system [48] and bit-level

Table 2: 'e histogram variance and its reduction for the original
and cipher images for baboon, pepper, and house images.

Variance
Plain Encrypted Reduction (%)

Baboon
Red 176920 701.4429 99.6035
Green 348200 755.0115 99.7832
Blue 188610 650.039 99.6553

Pepper
Red 520530 818.9017 99.8427
Green 695920 672.1017 99.9034
Blue 1122000 694.6978 99.9381

House
Red 440620 710.8939 99.8387
Green 756780 764.3449 99.899
Blue 577050 800.1174 99.8613

Table 3: 'e correlation values between adjacent pixels, in all
directions, were obtained for red, green, and blue color compo-
nents in baboon, pepper, and house images, respectively.

Correlation coefficients
Horizontal Vertical Diagonal

Baboon

Red Plain 0.9193 0.864 0.8403
Cipher −0.0005 −0.0039 0.001

Green Plain 0.8795 0.7997 0.7628
Cipher 0.0032 −0.001 −0.0028

Blue Plain 0.9285 0.8827 0.8597
Cipher −0.0021 −0.0013 0.0027

Pepper

Red Plain 0.9681 0.9703 0.9519
Cipher 0.0001 −0.0000 −0.0007

Green Plain 0.9786 0.979 0.9616
Cipher 0.0000 −0.0036 −0.0003

Blue Plain 0.9654 0.9643 0.9414
Cipher −0.0048 −0.0044 −0.0029

House

Red Plain 0.9484 0.9467 0.9087
Cipher −0.0001 0.0024 0.0005

Green Plain 0.9286 0.9481 0.8893
Cipher −0.0005 −0.0003 −0.0004

Blue Plain 0.9704 0.9718 0.9472
Cipher −0.0005 0.0013 −0.0008

Table 4: 'e entropy for encrypted image for red, green, and blue
images for baboon, pepper, and house image, respectively.

Plain Red (%) Green (%) Blue (%)
Baboon 7.9992 7.9991 7.9993
Pepper 7.9991 7.9992 7.9992
House 7.9992 7.9991 7.9991
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permutation spatial system [48] is less than three, while it is
greater than 30 in the present scheme. (b) 'e pseudo-
chaotic time series tame the possible degradation of sta-
tistical features of chaos signals in the cases, where they are
applied immediately [46]. (c) 'e assigned keys for the
suggested encryption technique are set in a way that renders
them controlled by plain data features as well as the time
moment of their processing. 'is means that if identical
plain images are encrypted at different instants, different
secret keys will be used for the encryption process inducing
different cipher images. Moreover, the pseudo-chaos or
lower bound errors between the outputs of two interval
extensions are employed in the presented scheme instead of
applying chaotic signals directly in permutation and diffu-
sion stages. 'is adds another layer of security and hides the
internal characteristics of chaos generators maps. More
details about the lower bound errors and analysis of interval
extensions can be found in references [49, 50]. Now, the
critical scenario of known-plaintext attack (KPA) is con-
sidered, where the opponent successfully attains the specific

plain image and corresponding cipher image, and then he
cannot proceed further to obtain any extra useful infor-
mation about secret keys’ values, which will be used for
upcoming plain images as the scheme utilizes time-varying
secret keys. 'e proposed encryption technique can resist
KPA even in special cases when uniform plain images with
zero values of pixels are deployed, which may lead to a
degenerate performance in other encryption techniques
[52–54]. 'e adoption of fractal images in the scheme boosts
complexity, key space range, and security performance.
Moreover, if the opponent employs chosen-ciphertext attack
(CCA) to supply some specially selected cipher images to
decryption part of the scheme, he would not fulfill his target
too.

'e running time of the proposed encryption scheme on
personal computer with 16GB RAM and Intel Core i7-
8550U CPU 1.8GHz is approximately 0.582 s for 450 × 450
colored images. 'e comparison aspects with some recent
chaos-based encryption techniques are summarized in
Table 6.'eMCC and AVR abbreviations are used to denote

Table 5: NPCR and UACI results for red, green, and blue images for baboon, pepper, and house images, respectively.

Image NPCR (%) UACI (%)

Baboon
Red 99.601 33.559
Green 99.6015 33.4034
Blue 99.6133 33.534

Pepper
Red 99.6281 33.5021
Green 99.597 33.4069
Blue 99.5901 33.5242

House
Red 99.598 33.4591
Green 99.5817 33.4822
Blue 99.5936 33.542

(a)

(b)

Figure 11:'e encrypted house image after converting the left, middle, and right blocks, respectively, of the house image into black color (a)
and the corresponding recognizable decrypted images (b).
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the maximum correlation coefficients attained in all direc-
tions of encrypted color baboon/pepper images and average
running time, respectively.

6. Conclusion

'is study establishes a framework to study dynamical and
fractal characteristics, in addition to potential applications,
of generalized complex-valued discrete fractional Gaussian
map. 'e occurrence of Mandelbrot and Julia sets of the
proposed map is scrutinized at different scenarios for values
of parameters. 'e control and synchronization problems of
Julia sets in the complex domain are addressed. A combined
pseudo-chaos-fractal image encryption technique is intro-
duced as an efficient tool to resist several kinds of attacks. A
thorough security analysis is carried out to validate its ro-
bustness and efficiency against statistical, differential, and
cropping attacks. Indeed, there is a trade-off between in-
creasing chaoticity and security strength from one side and
computational speed from the other side. 'e present ap-
plication in this work is the first step and subsequent work
will focus on realization aspects on a suitable digital hard-
ware platform, that is, DSP or FPGA, further reduce its
running time, and discuss all possible issues that need
separate work and cannot be treated here. Future work can
also involve extending this study to the case of higher di-
mensional complex fractional maps [31, 32].
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[54] C. Li, D. Lin, B. Feng, J. Lü, and F. Hao, “Cryptanalysis of a
chaotic image encryption algorithm based on information
entropy,” IEEE Access, vol. 6, pp. 75834–75842, 2018.

[55] M. Alawida, J. S. Teh, A. Samsudin, and W. H. Alshoura, “An
image encryption scheme based on hybridizing digital chaos
and finite state machine,” Signal Processing, vol. 164,
pp. 249–266, 2019.

[56] M. Alawida, A. Samsudin, J. S. Teh, and R. S. Alkhawaldeh, “A
new hybrid digital chaotic system with applications in image
encryption,” Signal Processing, vol. 160, pp. 45–58, 2019.

Mathematical Problems in Engineering 17



[57] Y.-Q. Zhang, Y. He, P. Li, and X.-Y. Wang, “A new color
image encryption scheme based on 2DNLCML system and
genetic operations,”Optics and Lasers in Engineering, vol. 128,
Article ID 106040, 2020.

[58] M. Zhou and C. Wang, “A novel image encryption scheme
based on conservative hyperchaotic system and closed-loop
diffusion between blocks,” Signal Processing, vol. 171, Article
ID 107484, 2020.

18 Mathematical Problems in Engineering



Research Article
Qualitative Behavior of Solutions of Tenth-Order Recursive
Sequence Equation

E. M. Elsayed ,1,2 B. S. Alofi ,1 and Abdul Qadeer Khan 3

1King Abdulaziz University, Faculty of Science, Mathematics Department, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
3Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

Correspondence should be addressed to Abdul Qadeer Khan; abdulqadeerkhan1@gmail.com

Received 17 September 2021; Revised 14 November 2021; Accepted 31 December 2021; Published 14 February 2022

Academic Editor: Baogui Xin

Copyright © 2022 E. M. Elsayed et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Most nonlinear difference equations have exact solutions that are not always possible to obtain theoretically. As a result, a large
number of researchers investigate several qualitative aspects of difference equations in order to predict their lengthy behavior.-e
goal of our research is to obtain the solutions of a tenth-order difference equation Un+1 � Un− 9Un− 5Un− 1/Un− 7Un− 3( ±
1 ± Un− 9Un− 5Un− 1), n≥ 0, where the initial values are positive real numbers. Stability and periodicity are also investigated.

1. Introduction

Solving the difference equation is one of the problems that is
difficult to determine the solvability. -e aim of this study is
to solve difference equation of the tenth order and solve four
specific cases of the following difference equation:

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 ±1 ±Un− 9Un− 5Un− 1( 
, n≥ 0, (1)

where the initial conditions U− 9,U− 8,U− 7,U− 6,U− 5, U− 4,U− 3,

U− 2,U− 1,U0 are the arbitrary positive real numbers. We also
provide some properties of solutions such as periodicity in
two cases and stability in the other two cases. Difference
equations are used in a variety of probability problems such
as hypergeometric, binomial, and poison distribution. Dif-
ferential equations are related to difference equations in the
same way that discrete mathematics and continuous
mathematician are related. Difference equations are of
importance to computer scientists for a variety of reasons.
For example, when estimating the cost of an algorithm in
big-O notation, converting a difficult differential problem to

a nearly equivalent difference equation is the first step in
solving. -e study of asymptotic stability of nonlinear ra-
tional difference equations of high order is a difficult but
rewarding task. It is particularly beneficial for analyzing the
characteristics of mathematical models using different ap-
plications such as biological systems.-emain topic in study
is that the difference equations theory has been the as-
ymptotic behavior of rational form of difference equation.

In addition, various nonlinear trends in science and
engineering can be modeled by this type of equation, and the
solution of this type of equation provides a prototype for the
development of theory [1]. In the literature, many applica-
tions theories’ differences equations have been investigated.
El-Dessoky [2] investigated the behavior properties of the
solutions of the rational difference equation:

Un+1 � aUn +
bUnUn− 3

cUn− 4 + dUn− 3
. (2)

Ghazela et al. [3] researched the analytic qualities of
sixth-order difference equations:
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Un+1 �
bUn− 5

cUn− 2Un− 5 + d
. (3)

Al-Matrafi and Al-Zubaidi [4] achieved global and local
stability and forms of positive periodic solutions for two
types of recursive equations:

Un+1 � aUn− 1 ±
bUn− 1Un− 4

cUn− 4 − dUn− 6
. (4)

Exploring some properties of the behavior of solutions
appropriate to the class of recursive equation:

Un+1 � aUn− 1 ±
bUn− 1Un− 3

cUn− 3 − dUn− 5
, (5)

was the prime objective for Alayachi et al. in [5]. Sadiq and
Kalim [6] studied solutions, equilibrium points, and peri-
odicity of four types of difference equations:

Un+1 �
Un− 20

±1 ±Un− 6Un− 13Un− 20
. (6)

Elsayed in [7] was able to get the solutions to this dif-
ference questions:

Un+1 �
UnUn− 2Un− 4

Un− 1Un− 3 ± 1 ± UnUn− 2Un− 4( 
. (7)

For more articles in this direction, we refer the reader to
[8–14] and references cited therein.

2. The First Case:
Un+1= � Un−9Un−5Un−1/Un−7Un−3(1+Un−9 Un−5
Un−1)

-e aim of this section is studying the solutions form of the
particular case:

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 1 + Un− 9Un− 5Un− 1( 
, n � 0, 1, . . . . (8)

Theorem 1. Assume that (Un)∞n�− 9 are solutions of difference
equations. 0en, for n � 0, 1, 2, . . ., we see that all solutions of
equation (8) are given by the following formulas:

U12n− 9 �
A

n− 1
k�0(1 + 6kAEI)


n− 1
k�0(1 +(6k + 2)AEI)

,

U12n− 3 �
G

n− 1
k�0(1 +(6k + 3)AEI)


n− 1
k�0(1 +(6k + 5)AEI)

,

U12n− 8 �
B

n− 1
k�0(1 + 6kBFJ)


n− 1
k�0(1 +(6k + 2)BFJ)

,

U12n− 2 �
H

n− 1
k�0(1 +(6k + 3)BFJ)


n− 1
k�0(1 +(6k + 5)BFJ)

,

U12n− 7 �
C

n− 1
k�0(1 +(6k + 1)AEI)


n− 1
k�0(1 +(6k + 3)AEI)

,

U12n− 1 �
I

n− 1
k�0(1 +(6k + 4)AEI)


n− 1
k�0(1 +(6k + 6)AEI)

,

U12n− 6 �
D

n− 1
k�0(1 +(6k + 1)BFJ)


n− 1
k�0(1 +(6k + 3)BFJ)

,

U12n �
J

n− 1
k�0(1 +(6k + 4)BFJ)


n− 1
k�0(1 +(6k + 6)BFJ)

,

U12n− 5 �
E

n− 1
k�0(1 +(6k + 2)AEI)


n− 1
k�0(1 +(6k + 4)AEI)

,

U12n+1 �
AEI

n− 1
k�0(1 +(6k + 5)AEI)

CG(1 + AEI)
n− 1
k�0(1 +(6k + 7)AEI)

U12n− 4 �
F

n− 1
k�0(1 +(6k + 2)BFJ)


n− 1
k�0(1 +(6k + 4)BFJ)

,

U12n+2 �
BFJ

n− 1
k�0(1 +(6k + 5)BFJ)

DH(1 + BFJ)
n− 1
k�0(1 +(6k + 7)BFJ)

, (9)

where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. For n � 1, the result holds. Now suppose that n> 0
and that our assumption holds for n − 1, that is,

U12n− 21 �
A

n− 2
k�0(1 + 6kAEI)


n− 2
k�0(1 +(6k + 2)AEI)

,

U12n− 15 �
G

n− 2
k�0(1 +(6k + 3)AEI)


n− 2
k�0(1 +(6k + 5)AEI)

,

U12n− 20 �
B

n− 2
k�0(1 + 6kBFJ)


n− 2
k�0(1 +(6k + 2)BFJ)

,

U12n− 14 �
H

n− 2
k�0(1 +(6k + 3)BFJ)


n− 2
k�0(1 +(6k + 5)BFJ)

,

U12n− 19 �
C

n− 2
k�0(1 +(6k + 1)AEI)


n− 2
k�0(1 +(6k + 3)AEI)

,

U12n− 13 �
I

n− 2
k�0(1 +(6k + 4)AEI)


n− 2
k�0(1 +(6k + 6)AEI)

,
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U12n− 18 �
D

n− 2
k�0(1 +(6k + 1)BFJ)


n− 2
k�0(1 +(6k + 3)BFJ)

,

U12n− 12 �
J

n− 2
k�0(1 +(6k + 4)BFJ)


n− 2
k�0(1 +(6k + 6)BFJ)

,

U12n− 17 �
E

n− 2
k�0(1 +(6k + 2)AEI)


n− 2
k�0(1 +(6k + 4)AEI)

,

U12n− 11 �
AEI

n− 2
k�0(1 +(6k + 5)AEI)

CG(1 + AEI)
n− 2
k�0(1 +(6k + 7)AEI)

,

U12n− 16 �
F

n− 2
k�0(1 +(6k + 2)BFJ)


n− 2
k�0(1 +(6k + 4)BFJ)

,

U12n− 10 �
BFJ

n− 2
k�0(1 +(6k + 5)BFJ)

DH(1 + BFJ)
n− 2
k�0(1 +(6k + 7)BFJ)

. (10)

Now, we find from equation (8) that

U12n− 9 �
U12n− 19U12n− 15U12n− 11

U12n− 17U12n− 13 1 + U12n− 19U12n− 15U12n− 11( 

�
C

n− 2
k�0(1 +(6k + 1)AEI)/n− 2

k�0(1 +(6k + 3)AEI)G
n− 2
k�0(1 +(6k + 3)AEI)/C

n− 2
k�0(1 +(6k + 5)AEI)AEI

n− 2
k�0(1 +(6k + 5)AEI)/GC(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI)

E
n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 4)AEI)I
n− 2
k�0(1 +(6k + 4)AEI)/n− 2

k�0(1 +(6k + 6)AEI)

×
1

1 + C
n− 2
k�0(1 +(6k + 1)AEI)/n− 2

k�0(1 +(6k + 3)AEI)G
n− 2
k�0(1 +(6k + 3)AEI)/n− 2

k�0(1 +(6k + 5)AEI)AEI
n− 2
k�0(1 +(6k + 5)AEI)/CG(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI) 

,

U12n− 9 �
AGCEI

n− 2
k�0(1 +(6k + 1)AEI)/GC(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI)

EI
n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 6)AEI) 1 + AGCEI
n− 2
k�0(1 +(6k + 1)AEI)/GC(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI) 

�
A

n− 2
k�0(1 +(6k + 1)AEI)/(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI)


n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 6)AEI) 1 + AEI
n− 2
k�0(1 +(6k + 1)AEI)/(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI) 

�
A/(1 +(6n − 5)AEI)


n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 6)AEI)(1 + AEI/(1 +(6n − 5)AEI))
,

U12n− 9 �
A


n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 6)AEI)(1 +(6n − 5)AEI + AEI)

�
A


n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 6)AEI)(1 +(6n − 5)AEI + AEI)

�
A

n− 1
k�0(1 + 6kAEI)


n− 1
k�0(1 +(6k + 2)AEI)

,

U12n− 8 �
U12n− 18U12n− 14U12n− 10

U12n− 16U12n− 12 1 + U12n− 18U12n− 14U12n− 10( 

�
D

n− 2
k�0(1 +(6k + 1)BFJ)/n− 2

k�0(1 +(6k + 3)BFJ)H
n− 2
k�0(1 +(6k + 3)BFJ)/n− 2

k�0(1 +(6k + 5)BFJ)BFJ
n− 2
k�0(1 +(6k + 5)BFJ)/DH(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ)

F
n− 2
k�0(1 +(6k + 2)BFJ)/n− 2

k�0(1 +(6k + 4)BFJ)J
n− 2
k�0(1 +(6k + 4)BFJ)/n− 2

k�0(1 +(6k + 6)BFJ)

×
1

1 + D
n− 2
k�0(1 +(6k + 1)BFJ)/n− 2

k�0(1 +(6k + 3)BFJ)H
n− 2
k�0(1 +(6k + 3)BFJ)/n− 2

k�0(1 +(6k + 5)BFJ)BFJ
n− 2
k�0(1 +(6k + 5)BFJ)/DH(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ) 

�
DH BFJ

n− 2
k�0(1 +(6k + 1)BFJ)/DH(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ)

FJ
n− 2
k�0(1 +(6k + 2)BFJ)/n− 2

k�0(1 +(6k + 6)BFJ) 1 + BFJ
n− 2
k�0(1 +(6k + 1)BFJ)/(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ) 

�
B

n− 2
k�0(1 +(6k + 1)BFJ)/(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ)


n− 2
k�0(1 +(6k + 2)BFJ)/n− 2

k�0(1 +(6k + 6)BFJ) 1 + BFJ
n− 2
k�0(1 +(6k + 1)BFJ)/(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ) 

�
B/(1 +(6n − 5)BFJ)


n− 2
k�0(1 +(6k + 2)BFJ)/n− 2

k�0(1 +(6k + 6)BFJ)(1 + BFJ/(1 +(6n − 5)BFJ))
,

U12n− 8 �
B


n− 2
k�0(1 +(6k + 2)BFJ)/n− 2

k�0(1 +(6k + 6)BFJ)(1 +(6n − 5)BFJ + BFJ)

�
B


n− 2
k�0(1 +(6k + 2)BFJ)/n− 2

k�0(1 +(6k + 6)BFJ)(1 +(6n − 5)BFJ + BFJ)

�
B

n− 1
k�0(1 + 6kBFJ)


n− 1
k�0(1 +(6k + 2)BFJ)

,
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U12n− 7 �
U12n− 17U12n− 13U12n− 9

U12n− 15U12n− 11 1 + U12n− 17U12n− 13U12n− 9( 

�
E

n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 4)AEI)I
n− 2
k�0(1 +(6k + 4)AEI)/n− 2

k�0(1 +(6k + 6)AEI)A
n− 1
k�0(1 + 6kAEI)/n− 1

k�0(1 +(6k + 2)AEI)

G
n− 2
k�0(1 +(6k + 3)AEI)/n− 2

k�0(1 +(6k + 5)AEI)AEI
n− 2
k�0(1 +(6k + 5)AEI)/CG(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI)

×
1

1 + E
n− 2
k�0(1 +(6k + 2)AEI)/n− 2

k�0(1 +(6k + 4)AEI)I
n− 2
k�0(1 +(6k + 4)AEI)/n− 2

k�0(1 +(6k + 6)AEI)A
n− 1
k�0(1 + 6kAEI)/n− 1

k�0(1 +(6k + 2)AEI) 

�


n− 1
k�0(1 + 6kAEI)/(1 +(6n − 4)AEI)

n− 2
k�0(1 +(6k + 6)AEI)


n− 2
k�0(1 +(6k + 3)AEI)/C(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI) 1 + AEI

n− 1
k�0(1 + 6kAEI)/(1 +(6n − 4)AEI)

n− 2
k�0(1 +(6k + 6)AEI) 

�
1/(1 +(6n − 4)AEI)


n− 2
k�0(1 +(6k + 3)AEI)/C(1 + AEI)

n− 2
k�0(1 +(6k + 7)AEI)(1 + AEI/(1 +(6n − 4)AEI))

�
C(1 + AEI)


n− 2
k�0(1 +(6k + 3)AEI)/n− 2

k�0(1 +(6k + 7)AEI)((1 +(6n − 4)AEI) + AEI)

�
C

n− 1
k�0(1 +(6k + 1)AEI)


n− 1
k�0(1 +(6k + 3)AEI)

,

U12n− 6 �
U12n− 16U12n− 12U12n− 8

U12n− 14U12n− 10 1 + U12n− 16U12n− 12U12n− 8( 

�
F

n− 2
k�0(1 +(6k + 2)BFJ)/n− 2

k�0(1 +(6k + 4)BFJ)J
n− 2
k�0(1 +(6k + 4)BFJ)/n− 2

k�0(1 +(6k + 6)BFJ)B
n− 1
k�0(1 + 6kBFJ)/n− 1

k�0(1 +(6k + 2)BFJ)

H
n− 2
k�0(1 +(6k + 3)BFJ)/n− 2

k�0(1 +(6k + 5)BFJ)BFJ
n− 2
k�0(1 +(6k + 5)BFJ)/DH(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ)

× 1/ 1 +
F

n− 2
k�0(1 +(6k + 2)BFJ)


n− 2
k�0(1 +(6k + 4)BFJ)

J
n− 2
k�0(1 +(6k + 4)BFJ)


n− 2
k�0(1 +(6k + 6)BFJ)

B
n− 1
k�0(1 + 6kBFJ)/

n− 1
k�0(1 +(6k + 2)BFJ) 

�


n− 1
k�0(1 + 6kBFJ)/(1 +(6n − 4)BFJ)

n− 2
k�0(1 +(6k + 6)BFJ)


n− 2
k�0(1 +(6k + 3)BFJ)/D(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ) 1 + BFJ

n− 1
k�0(1 + 6kBFJ)/(1 +(6n − 4)BFJ)

n− 2
k�0(1 +(6k + 6)BFJ) 

�
1/(1 +(6n − 4)BFJ)


n− 2
k�0(1 +(6k + 3)BFJ)/D(1 + BFJ)

n− 2
k�0(1 +(6k + 7)BFJ)(1 + BFJ/(1 +(6n − 4)BFJ))

�
C

n− 1
k�0(1 +(6k + 1)BFJ)


n− 1
k�0(1 +(6k + 3)BFJ)

,

(11)

Also, we can prove the other relations. -e proof is
complete.

Theorem 2. Equation (8) has a unique equilibrium point
U � 0, which is nonhyperbolic.

Proof. To obtain equilibrium points of (8),

U �
U

3

U
2 1 + U

3
 

. (12)

-us,

U
3 1 + U

3
  � U

3
,

U
3 1 + U

3
− 1  � 0,

U
6

� 0.

(13)

Hence, U � 0 is the equilibrium point of equation (8).
Define a function h: (0,∞)5⟶ (0,∞), such that

h(r, s, t, u, v) �
rst

uv(1 + rst)
. (14)

-en,

hr(r, s, t, u, v) �
st

uv(1 + rst)
2,

hs(r, s, t, u, v) �
rt

uv(1 + rst)
2,

ht(r, s, t, u, v) �
rs

uv(1 + rst)
2,

hu(r, s, t, u, v) � −
rst

u
2
v(1 + rst)

,

hv(r, s, t, u, v) � −
rst

uv
2
(1 + rst)

.

(15)

-erefore,

hr(U, U, U, U, U) � 1,

hs(r, s, t, u, v) � 1,

ht(U, U, U, U, U) � 1,

hu(r, s, t, u, v) � − 1,

hv(U, U, U, U, U) � − 1.

(16)
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It follows the characteristic equation given by

λ10 − λ9 + λ8 − λ6 + λ4 − λ2 � 0. (17)

Hence,

λ8 − λ7 + λ6 − λ4 + λ2 − 1 � 0. (18)

Clearly, λ � 1 is one root of equation (17). -erefore, the
equilibrium point is nonhyperbolic.

We provide numerical examples for equation (8) in
order to confirm the results of this section.

Example 1. Assume the initial conditions are U− 9 � 7,
U− 8 � 15, U− 7 � 9, U− 6 � 5, U− 5 � 10, U− 4 � 8, U− 3 � 16,
U− 2 � 10, U− 1 � 6, and U0 � 11 (Figure 1).

Example 2. Suppose that U− 9 � 0.1, U− 8 � 0.2, U− 7 � 0.3,
U− 6 � 0.4, U− 5 � 0.5, U− 4 � 0.1, U− 3 � 0.2, U− 2 � 0.3,
U− 1 � 0.4, and U0 � 0.5 (Figure 2).

3. Second Case:
Un+1 = � Un−9Un−5Un−1/Un−7Un−3
(1−Un−9Un−5Un−1)

-e solutions to difference equations

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 1 − Un− 9Un− 5Un− 1( 
, n � 0, 1, . . . , (19)

are investigated in this section.

Theorem 3. Assume that Un 
∞
n�− 9 are solutions of difference

equations. 0en, for n � 0, 1, 2, . . ., we see that all solutions of
equation (19) are given by the following formulas:

U12n− 9 �
A

n− 1
k�0(1 − 6kAEI)


n− 1
k�0(1 − (6k + 2)AEI)

,

U12n− 3 �
G

n− 1
k�0(1 − (6k + 3)AEI)


n− 1
k�0(1 − (6k + 5)AEI)

,

U12n− 8 �
B

n− 1
k�0(1 − 6kBFJ)


n− 1
k�0(1 − (6k + 2)BFJ)

,

U12n− 2 �
H

n− 1
k�0(1 − (6k + 3)BFJ)


n− 1
k�0(1 − (6k + 5)BFJ)

,

U12n− 7 �
C

n− 1
k�0(1 − (6k + 1)AEI)


n− 1
k�0(1 − (6k + 3)AEI)

,

U12n− 1 �
I

n− 1
k�0(1 − (6k + 4)AEI)


n− 1
k�0(1 − (6k + 6)AEI)

,

U12n− 6 �
D

n− 1
k�0(1 − (6k + 3)BFJ)


n− 1
k�0(1 − (6k + 1)BFJ)

,

U12n �
J

n− 1
k�0(1 − (6k + 4)BFJ)


n− 1
k�0(1 − (6k + 4)BFJ)

,

U12n− 5 �
E

n− 1
k�0(1 − (6k + 2)AEI)


n− 1
k�0(1 − (6k + 4)AEI)

,

U12n+1 �
AEI

n− 1
k�0(1 − (6k + 5)AEI)

(1 − AEI) 
n− 1
k�0(1 − (6k + 7)AEI)

,

U12n− 4 �
F

n− 1
k�0(1 − (6k + 2)BFJ)


n− 1
k�0(1 − (6k + 4)BFJ)

,

U12n+2 �
BFJ

n− 1
k�0(1 − (6k + 5)BFJ)

(1 − BFJ)
n− 1
k�0(1 − (6k + 7)BFJ)

,

(20)
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U
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)

plot of U (n+1)=(U (n-9)*U (n-5)*U (n-1))/
((U (n-7)*U (n-3))*(+1+(U (n-9)*U (n-5)*U (n-1))))

Figure 1: -e solution of equation (8) when U− 9 � 7, U− 8 � 15,
U− 7 � 9, U− 6 � 5, U− 5 � 10, U− 4 � 8, U− 3 � 16, U− 2 � 10, U− 1 � 6,
and U0 � 11.
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plot of U (n+1)=(U (n-9)*U (n-5)*U (n-1))/
((U (n-7)*U (n-3))*(+1+(U (n-9)*U (n-5)*U (n-1))))

Figure 2: -e local stability of equilibrium point of equation (8)
when U− 9 � 0.1, U− 8 � 0.2, U− 7 � 0.3, U− 6 � 0.4, U− 5 � 0.5,
U− 4 � 0.1, U− 3 � 0.2, U− 2 � 0.3, U− 1 � 0.4, and U0 � 0.5.
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where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. -e proof is identical to the method to prove -e-
orem 1.

Theorem 4. Equation (19) has a unique equilibrium point
U � 0, which is nonhyperbolic.

Proof. To obtain equilibrium points of equation (19),

U �
U

3

U
2 1 − U

3
 

. (21)

-us,

U
3 1 − U

3
  � U

3
,

U
3 1 − U

3
− 1  � 0,

U
6

� 0.

(22)

Hence, U � 0 is the equilibrium point of equation (19).
Define a function h: (0,∞)5⟶ (0,∞), such that

h(r, s, t, u, v) �
rst

uv(1 − rst)
. (23)

-en,

hr(r, s, t, u, v) �
st

uv(1 − rst)
2,

hs(r, s, t, u, v) �
rt

uv(1 − rst)
2,

ht(r, s, t, u, v) �
rs

uv(1 − rst)
2,

hu(r, s, t, u, v) � −
rst

u
2
v(1 − rst)

,

hv(r, s, t, u, v) � −
rst

uv
2
(1 − rst)

.

(24)

-erefore,

hr(U, U, U, U, U) � 1,

hs(r, s, t, u, v) � 1,

ht(U, U, U, U, U) � 1,

hu(r, s, t, u, v) � − 1,

hv(U, U, U, U, U) � − 1.

(25)

It follows the characteristic equation given by

λ10 − λ9 + λ8 − λ6 + λ4 − λ2 � 0. (26)

Hence,

λ8 − λ7 + λ6 − λ4 + λ2 − 1 � 0. (27)

Clearly, λ � 1 is one root of equation (26). -erefore, the
equilibrium point is nonhyperbolic.

Example 3. We consider the present numerical example for
equation (19) for confirming the results of this section where
the initial conditions are U− 9 � 4, U− 8 � 12, U− 7 � 6,
U− 6 � 2, U− 5 � 8, U− 4 � 3, U− 3 � 11, U− 2 � 5, U− 1 � 2, and
U0 � 7 (Figure 3).

Example 4. We provide another numerical example for
equation (19) with initial values U− 9 � 0.1, U− 8 � 0.2,
U− 7 � 0.3, U− 6 � 0.4, U− 5 � 0.5, U− 4 � 0.1, U− 3 � 0.2,
U− 2 � 0.3, U− 1 � 0.4, and U0 � 0.5 (Figure 4).

4. Third Case:
Un+1 = � Un−9Un−5Un−1/Un−7Un−3(− 1−Un−9
Un−5Un−1)

-e goal of this section is to obtain the solutions form of the
particular case:

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 − 1 − Un− 9Un− 5Un− 1( 
, n � 0, 1, . . . .

(28)

Theorem 5. Every solution Un 
∞
n�− 9 of equation (28) is

periodic with period twelve, and it is in the form

A, B, C, D, E, F, G, H, I, J, −
AEI

CG(AEI + 1)
, −

BFJ

DH(BFJ + 1)
, . . . 

(29)

or

U12n− 9 � A,

U12n− 8 � B,

U12n− 7 � C,

U12n− 6 � D,

U12n− 5 � E,

U12n− 4 � F,

U12n− 3 � G,

U12n− 2 � H,

U12n− 1 � I,

U12n � J,

U12n+1 � −
AEI

CG(AEI + 1)
,

U12n+2 � −
BFJ

DH(BFJ + 1)
,

(30)
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where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. From n � 1,

U12n− 21 � A,

U12n− 20 � B,

U12n− 19 � C,

U12n− 18 � D,

U12n− 17 � E,

U12n− 16 � F,

U12n− 15 � G,

U12n− 14 � H,

U12n− 13 � I,

U12n− 12 � J,

U12n− 11 � −
AEI

CG(AEI + 1)
,

U12n− 10 � −
BFJ

DH(BFJ + 1)
. (31)

From equation (28), we see that

U12n− 9 �
U12n− 19U12n− 15U12n− 11

U12n− 17U12n− 13 − 1 − U12n− 19U12n− 15U12n− 11( 

�
CG(− AEI/CG(AEI + 1))

EI(− 1 − CG(− AEI/CG(AEI + 1)))

� A,

U12n− 8 �
U12n− 18U12n− 14U12n− 10

U12n− 16U12n− 12 − 1 − U12n− 18U12n− 14U12n− 10( 

�
DH(− BFJ/DH(BFJ + 1))

FJ(− 1 − DH(− BFJ/DH(BFJ + 1)))

� B,

U12n− 7 �
U12n− 17U12n− 13U12n− 9

U12n− 15U12n− 11 − 1 − U12n− 17U12n− 13U12n− 9( 

�
AEI

G(− AEI/CG(AEI + 1))(− 1 − AEI)

� C,

U12n− 6 �
U12n− 16U12n− 12U12n− 8

U12n− 14U12n− 10 − 1 − U12n− 16U12n− 12U12n− 8( 

�
BFJ

H(− BFJ/DH(BFJ + 1))(− 1 − BFJ)

� D,

U12n− 5 �
U12n− 15U12n− 11U12n− 7

U12n− 13U12n− 9 − 1 − U12n− 15U12n− 11U12n− 7( 

�
G(− AEI/CG(AEI + 1))C

IA(− 1 − G(− AEI/CG(AEI + 1))C)

� E,

U12n− 4 �
U12n− 14U12n− 10U12n− 6

U12n− 12U12n− 8 − 1 − U12n− 14U12n− 10U12n− 6( 

�
H(− BFJ/DH(BFJ + 1))D

JB(− 1 − H(− BFJ/DH(BFJ + 1))D)

� F,
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n
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plot of U (n+1)=(U (n-9)*U (n-5)*U (n-1))/
((U (n-7)*U (n-3))*(+1-(U (n-9)*U (n-5)*U (n-1))))

Figure 3: -e solution of equation (19) when U− 9 � 4, U− 8 � 12,
U− 7 � 6, U− 6 � 2, U− 5 � 8, U− 4 � 3, U− 3 � 11, U− 2 � 5, U− 1 � 2,
and U0 � 7.
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Figure 4: -e local stability of equilibrium point of equation (19)
with U− 9 � 0.1, U− 8 � 0.2, U− 7 � 0.3, U− 6 � 0.4, U− 5 � 0.5,
U− 4 � 0.1, U− 3 � 0.2, U− 2 � 0.3, U− 1 � 0.4, and U0 � 0.5.
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U12n− 3 �
U12n− 13U12n− 9U12n− 5

U12n− 11U12n− 7 − 1 − U12n− 13U12n− 9U12n− 5( 

�
IAE

(− AEI/CG(AEI + 1))C(− 1 − IAE)

� G,

U12n− 2 �
U12n− 12U12n− 8U12n− 4

U12n− 10U12n− 6 − 1 − U12n− 12U12n− 8U12n− 4( 

�
JBF

(− BFJ/DH(BFJ + 1))D(− 1 − JBF)

� H. (32)

Theorem 6. Every solution Un 
∞
n�− 9 of equation (28) is

periodic with period six, and it is of the form

A, B, C, D, E, F, A, . . .{ }, (33)

iff
A � G,

B � H,

C � I,

D � J,

AEI � − 2,

BFJ � − 2.

(34)
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Figure 5: -e solution of equation (28) with period twelve when U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6, U− 5 � 11, U− 4 � 9, U− 3 � 17,
U− 2 � 11, U− 1 � 7, and U0 � 12.
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Figure 6: -e solution of equation (28) with period six when initial values satisfies the conditions in -eorem 6, that are U− 9 � 1, U− 8 � 2,
U− 7 � 3, U− 6 � 4, U− 5 � − 0.6667, U− 4 � − 0.25, U− 3 � 1, U− 2 � 2, U− 1 � 3, and U0 � 4.
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Example 5. We present numerical example for equation (28)
for illustrating the results of this section where the initial
conditions are U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6,
U− 5 � 11, U− 4 � 9, U− 3 � 17, U− 2 � 11, U− 1 � 7, and U0 �

12 (Figure 5).

Example 6. For confirming the results of this section, we
consider numerical example for equation (28) where the
initial conditions are U− 9 � 1, U− 8 � 2, U− 7 � 3, U− 6 � 4,
U− 5 � − 0.6667, U− 4 � − 0.25, U− 3 � 1, U− 2 � 2, U− 1 � 3, and
U0 � 4 (Figure 6).

5. Fourth Case:
Un+1 = � Un−9Un−5Un−1/Un−7Un−3 (− 1+Un−9
Un−5Un−1)

-e solutions to difference equations

Un+1 �
Un− 9Un− 5Un− 1

Un− 7Un− 3 − 1 + Un− 9Un− 5Un− 1( 
, n � 0, 1, . . . ,

(35)

are studied in this section.

Theorem 7. Every solution Un 
∞
n�− 9 of equation (35) is

periodic with period twelve, and it is in the form

A, B, C, D, E, F, G, H, I, J, +
AEI

CG(AEI − 1)
, +

BFJ

DH(BFJ − 1)
, A, B, . . . ,

(36)

where U− 9 � A, U− 8 � B, U− 7 � C, U− 6 � D, U− 5 � E,
U− 4 � F, U− 3 � G, U− 2 � H, U− 1 � I, and U0 � J.

Proof. -e proof is identical to the method to prove -e-
orem 5.

Theorem 8. Every solution Un 
∞
n�− 9 of equation (35) is

periodic with period six, and it is in the form

A, B, C, D, E, F, A, . . .{ }. (37)
iff

A � G,

B � H,

C � I,

D � J,

AEI � 2,

BFJ � 2.

(38)

We provide numerical examples of equation (35) for
confirming our results.

Example 7. Assume that the starting conditions are as
follows: U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6, U− 5 � 11,
U− 4 � 9, U− 3 � 17, U− 2 � 11, U− 1 � 7, and U0 � 12
(Figure 7).

Example 8. Let the initial conditions be given by U− 9 � 1,
U− 8 � 2, U− 7 � 3, U− 6 � 4, U− 5 � 0.6667, U− 4 � 0.25,
U− 3 � 1, U− 2 � 2, U− 1 � 3, and U0 � 4 (Figure 8).

6. Conclusion

-is research discussed the structure and behavior of so-
lutions for four special cases of equation (1). In the second
and third sections, we proved the stability of the equilibrium
point. In the fourth and fifth sections, we obtained the
periodic solutions to the equations with periodicity twelve.
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Figure 7: -e solution of equation (35) with period twelve when
U− 9 � 8, U− 8 � 16, U− 7 � 10, U− 6 � 6, U− 5 � 11, U− 4 � 9, U− 3 � 17,
U− 2 � 11, U− 1 � 7, and U0 � 12.

0

0.5

1

1.5

2

2.5

3

3.5

4

U
 (n

)

plot of U (n+1)=(U (n-9)*U (n-5)*U (n-1))/
((U (n-7)*U (n-3))*(-1+(U (n-9)*U (n-5)*U (n-1))))

0 10 20 30 40 50 60
n

Figure 8:-e solution of equation (35) with period six when initial
values satisfies the conditions in -eorem 8, that are U− 9 � 1,
U− 8 � 2, U− 7 � 3, U− 6 � 4, U− 5 � 0.6667, U− 4 � 0.25, U− 3 � 1,
U− 2 � 2, U− 1 � 3, and U0 � 4.
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In addition, we studied the conditions of existence of the
periodic solutions with period six.
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A discreet fractional-order Cournot–Bertrand competition duopoly game is introduced based on the fractional-order difference
calculus of the Caputo operator. &e model is designed when players can make long memory decisions. &e local stability of
equilibrium points is discussed for the proposedmodel. Some numerical simulations explore the model’s bifurcation and chaos by
employing bifurcation diagrams, phase portraits, maximal Lyapunov exponents, and time series. According to our findings, the
fractional-order parameter has an effect on the game’s stability and dynamics.

1. Introduction

Game theory is one of the most interesting and complex
topics that many researchers are interested in understand-
ing. Game theory is concerned with predicting results for
strategic games in which participants, for example, two or
more firms competing on the market, have incomplete
information on the intentions of others. It is known that the
game theory is relevant to the study of corporate behavior in
oligopolistic markets, for example, the decisions that
companies must make in terms of production and pricing
levels, as well as the amount of money invested in research
and development. &e decision-making mechanism has an
important role to play in the process of adjusting the pro-
duction and profits of firms. Firms typically use one of the
following to change their market growth: näıve learning
expectation, adaptive learning expectation, limited learning
rationality, and local learning approximation. Discrete oli-
gopoly dynamics based on company profit maximizations
have been considered [1–7]. Furthermore, these models have
been utilized to examine the dynamic characteristics of

competitive markets, which has been classified as steady
state, periodic, and chaotic [8–14].

Fractional calculus, particularly discrete fractional cal-
culus, has attracted substantial interest in recent decades due
to its extensive significance in a wide range of scientific
disciplines, including complex systems with memory and
heredity. Researchers turned their attention to a discreet
fractional calculus and tried to develop a complete theo-
retical framework for this subject. &is is due to the im-
portance of this field in many real issues, such as discreet
adaptive systems, biological growth systems, and digital
engineering systems, all of which contain memory [15–20].
&e discrete difference analogues of classical Caputo and
Riemann derivatives have been introduced in [21]. In ad-
dition, advances have been made in the study of fractional
finite difference equations and the inclusion of fractional
difference equations [22–26]. Recently, the stability of
fractional time systems in a variety of real-world problems
has been investigated.&ese studies have shown that discrete
fractional systems are more realistic to process real systems
and have a rich dynamic compared to discrete systems with
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integer-order. Many studies have studied continuous frac-
tional differentiation representing the effects of economic
memory that have been presented [27–30] and the refer-
ences that exist in them as well. &e fractional-order dif-
ference equation, which is a natural extension of the integer-
order difference equation, has long-term memory effects
that have been explored in a few studies [25, 31–36]. Re-
cently, the fractional difference calculus was used in the
Cournot duopoly game [37] and the Bertrand duopoly game
[38]. &is reflects the long-term memory effects of Cour-
not–Bertrand dynamic games in the fractional-order form
for the game. Xin et al. [37, 38] investigated the dynamics of
the Cournot and Bertrand games, which indicated the
market evolution of the two enterprises.

&is work is especially interested in the novel discrete
fractional-order Cournot–Bertrand duopoly game, which is
a modification of the Cournot–Bertrand duopoly game with
integer-order [39]. We aim to extend this game to a frac-
tional case and to study the dynamics of the game. As we
know, fractional-order calculus is a general form of integer-
order calculus, so it has a higher representation for phe-
nomena with a long memory. It can be shown that the
fractional differentiation parameter is a vital indicator of the
bifurcation path and the chaos that is created and dis-
appeared. We will investigate the dynamics of the discreet
fractional-order Cournot–Bertrand duopoly game such as
the stability, bifurcation, and chaos of the proposed game. To
analyze complexity of the game, explicit stability criteria
[40, 41], asymptotic stability criteria [42] and the local
stability regions of the boundary and Nash equilibrium
points are provided through numerical simulation. &e
dynamic behavior of the proposed game is illustrated
through an exploratory investigation of equilibrium point
stability and numerical simulation. In this work, we are
analyzing a Cournot–Bertrand duopoly game similar to
Wang and Ma [39], but using a discrete fractional calculus.
&e equilibrium point structure dynamic reflects economic

explanations for the proposed game’s market of two
enterprises.

&e work is organized as seen follows. Section 2 de-
scribes the market dynamics of two enterprises using a
discrete fractional-order Cournot–Bertrand duopoly game.
&e Nash equilibrium local stability conditions are estab-
lished in Section 3. Using numerical simulations, we in-
vestigate local bifurcations, maximal Lyapunov exponents,
and phase portraits of complex dynamics in Section 4.
Section 5 contains a summary of the findings as well as a few
observations.

2. Preliminaries

In this section, some preliminaries about fractional-order
difference calculus are introduced. On an arbitrary time
scale, dynamic behaviors and applications of fractional
difference models were investigated in the last decade where
delta difference equation was used [40–43].

Assume that a sequence u(n) is given, and the isolated
time scale ℵa is represented in terms of real valued constant
τ, i.e., τ, τ + 1, τ + 2, . . . ,{ }, such that u: ℵτ⟶ R. Also, the
difference operator is denoted by Δ, where
Δu(n) � u(n + 1) − u(n). &en, we summarize some of the
basic definitions related to discrete fractional calculus as
follows.

Definition 1. For α> 0, the fractional sum of order α is given
by [21]

Δ− α
τ u(t) �

1
Γ(α)



t− α

m�τ

Γ(t − m)

Γ(t − m − α + 1)
u(m), t ∈ ℵτ+α.

(1)

Definition 2. &e Caputo-like delta difference of order α is
defined by [21, 42]

CΔατu(t) � Δ− (n− α)
τ Δ

n
u(t) �

1
Γ(n − α)



t− (n− α)

m�τ

Γ(t − m)

Γ(t − m − n + α + 1)
Δn

u(m),

t ∈ ℵτ+α, n � [α] + 1.

(2)

Theorem 1 (See [21, 40–43]). In order to solve the delta
fractional difference equation,

CΔατu(t) � f(t + α − 1, u(t + α − 1)),

Δk
u(t) � uk, n � [α] + 1, k � 0, 1, . . . , n − 1.

⎧⎨

⎩ (3)

As a result, the corresponding discrete integral equation
is

u(t) � u0(t) +
1
Γ(α)



t− α

m�τ+n− α
(t − σ(m))

(α− 1)
f(m + α − 1, u(m + α − 1)), t ∈ ℵτ+n, (4)
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where

u0(t) � 
n− 1

k�0

Γ(t − τ + 1)

k!Γ(t − τ − k + 1)
Δk

u(t). (5)

Remark 1. If τ � 0, we rewrite discrete integral equation in
the following numerical form:

u(n) � u0(t) +
1
Γ(α)



n

m�1

Γ(n − m + α)

Γ(n − m + 1)
f(u(m − 1)). (6)

Theorem 2 (See [40–42]). 7e linear discrete-time frac-
tional-order system is

CΔατU(t) � GU(t + α − 1), (7)

where U(t) � (u1(t), u2(t), . . . , un(t))T, 0< α≤ 1, G ∈ Rn×n,
and ∀ t ∈ ℵτ+1− α. 7e zero equilibrium of system (10) is as-
ymptotically stable if

λ ∈ z ∈ C: |z|< 2 cos
|argz| − π
2 − α

 

α

, |argz|>
απ
2

 , (8)

for all the eigenvalues λ of matrix G.

3. Discrete Fractional-OrderCournot–Bertrand
Duopoly Game

According to traditional oligopoly models [1, 6], firms
compete in the same strategic variable, such as output
(Cournot) or price (Bertrand). A hybrid model, commonly
known as the Cournot–Bertrand model [6, 39], permits
certain enterprises to compete in output, while others
compete in pricing. Real-world market observations that
match Cournot–Bertrand behavior have bolstered the
model’s validity and rapidly growing literature on ad-
vancements and applications. Long-term memory effects in
dynamic oligopoly games are economically significant
[34, 37, 38]. &erefore, we introduce the novel discrete
fractional-order Cournot–Bertrand duopoly game, which is
a modification of the Cournot–Bertrand duopoly game with
integer order. As a consequence, it has a better represen-
tation of phenomena with a long memory in oligopoly game.
&e main goal is to establish out how the fractal parameter
affects game dynamics including stability, bifurcation, and
chaos.

We suggest a simple Cournot–Bertrand duopoly com-
mon oligopoly game [39]. Two enterprises, denoted by the
letters i � 1, 2, produced differentiated goods with perfect
replacements and set their product pricing based on the
same market rule. Assume that pi(t) and qi(t) denote the
goods price and quantity output of firm i for the period
t ∈ Z+. &e inverse demand functions for a variety of
products 1 and 2 originate from the representative consumer
maximization of the following utility function [39]:

U q1, q2(  � q1 + q2 −
1
2

q
2
1 + 2dqq2 + q

2
2 , (9)

subjected to restrictions on the budget p1q1 + p2q2 � M.
&en, the inverse demand functions is defined as follows:

p1 � 1 − q1 − dq2,

p2 � 1 − q2 − dq1,
 (10)

where p1 and p2 represent the pricing of firm 1’s and firm 2’s
items, respectively, and q1 and q2 are the quantities of
products of company 1 and company 2. &e parameter
d ∈ [0, 1] is the product differentiation between two firms.
Products are homogeneous goods when d � 1, and each firm
has a monopoly case when d � 0.&e demand system can be
written in two strategic variables q1 and p2.

p1 � 1 − d − 1 − d
2

 q1 + dp2,

q2 � 1 − p2 − dq1.

⎧⎨

⎩ (11)

Consider that the two companies have the same unit cost
c> 0 and that the cost function has the same linear form:

Ci qi(  � cqi, i � 1, 2. (12)

&us, the profit functions for firms are given by

π1 � 1 − d − 1 − d
2

 q1 + dp2 − c q1,

π2 � p2 − c(  1 − p2 − dq1( .

⎧⎨

⎩ (13)

In the classical dynamical Cournot–Bertrand duopoly
game, to decide the corresponding profit-maximizing, every
player erroneously believes that its rival’s pricing in period
(t + 1) is the same as in period (t). &erefore, this type of
game does not have a long memory effect. &e traditional
game will be introduced using discrete fractional-order
calculus, and the two players will make decisions using a new
dynamic adjustment mechanism with long memory and
local marginal profit expectation. &us, the marginal profit
of two players is as follows [39]:

zπ1
zq1

� 1 − d − 2 1 − d
2

 q1 + dp2  − c ,

zπ2
zp2

� 1 + c − 2p2 − dq1( .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Assume that the two businesses have limited informa-
tion about the market demand function and also their price
decision is based on a dynamic adjustment process with
limited rationality and a long-term memory effect of mar-
ginal profit. In the next step, the firm decides to raise (re-
duce) the price of its product based on if the long-term
marginal profit is greater (less) than zero. As a result, we
utilize the dynamic adjustment process for the Cour-
not–Bertrand game as follows:

Δαq1 � ]1q1(t + α − 1)
zπ1
zq1

,

Δαp2 � ]2p2(t + α − 1)
zπ2

zp2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(15)
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where ]i is the speed of adjustment of firm i, i � 1, 2 and
α ∈ (0, 1) denotes a fractional-order number, indicating the

long-term memory effect. &us, the discrete fractional-order
Cournot–Bertrand duopoly game is as follows:

Δαq1 � ]1q1(t + α − 1) 1 − c − d + dp2(t + α − 1) − 2q1(t + α − 1) + 2d
2
q1(t + α − 1) ,

Δαp2 � ]2p2(t + α − 1) 1 + c − 2p2(t + α − 1) − dq1(t + α − 1)( .

⎧⎨

⎩ (16)

Remark 2. When α � 1, the model (16) devolves to the
Wang-Ma model [39]:

q1(t + 1) � q1(t) + ]1q1(t) 1 − c − d + dp2(t) − 2q1(t) + 2d
2
q1(t) ,

p2(t + 1) � p2(t) + ]2p2(t) 1 + c − 2p2(t) − dq1(t)( .

⎧⎨

⎩ (17)

Wewill show that the model game parameters, especially
the long-termmemory effect, have an effect on the long-term
dynamic response of our novel game when compared to the
Wang-Ma game [39].

In the next sections, several theoretical features corre-
sponding to game (16) are investigated.

4. The Equilibrium Points and Their
Local Stability

We solve the following equation to find the equilibrium
points of game system (16):

1 − c − d + dp2(t) − 2q1(t) + 2d
2
q1(t)  � 0,

1 + c − 2p2(t) − dq1(t)(  � 0.

⎧⎨

⎩ (18)

&eir four equilibria are E0 � (0, 0), E1 � (0, 1 + c/2),
E2 � (1 − c − d/2(1 − d2), 0), and E∗ � (2 − 2c − d + c d/4−

3d2, 2 + 2c − d + c d− d2 − 2cd2/4 − 3d2). In economics, its
equilibria mean

(i) &e equilibrium E0 is trivial equilibrium point
(ii) &e equilibrium point E1 implies that the best

quantity of the first player is q∗1 � 0 if the second

player sets its optimal product price p∗2 � 1 + c/2.
Likewise, the second player’s best price is
p∗2 � 1 + c/2 if the player uses a zero-price approach.
Clearly, E1 is a border equilibrium point that cor-
responds to the pure monopoly.

(iii) &e E2 equilibria indicates that the best quantity of
the first player is q∗1 � 1 − c − d/2(1 − d2) if the
second company determines the best good price
p∗2 � 0. Likewise, the first company’s best pricing is
q∗1 � 1 − c − d/2(1 − d2) if the company uses a zero-
price approach. Clearly, E2 is a border equilibrium
point.

(iv) &e equilibrium E∗ indicates two enterprises will
preserve their equilibrium quantity and pricing
jointly since no enterprise can gain an advantage by
deviating unilaterally from its own equilibrium.
Clearly, the point E∗ is a Nash equilibrium. &e
complexity of system (16) will be explored. First, the
Jacobian matrix of system (16) is computed at a
given equilibrium point E � (q∗1 , p∗2 ), and it can be
expressed as

J q1, p2(  �
]1 1 − c − d + dp

∗
2 + 4 d

2
− 1 q
∗
1  ]1dq

∗
1

− ]2dp
∗
2 ]2 1 + c − 4p

∗
2 − dq

∗
1( 

⎛⎝ ⎞⎠. (19)

&en, the following theorems are presented to clarify
linear stability for each equilibrium point in the model.

&e trivial equilibrium point E0 is unstable.

Proof. &e Jacobian matrix’s eigenvalues at E0 can be
demonstrated to be (]2(1 + c), ]1(1 − c − d)), which indi-
cate that one of them is always positive, and thus, the
conditions of asymptotic stability in &eorem 2 are not
satisfied. □

&e equilibrium point E1 is asymptotically stable if

]1(cd + 2 − 2c − d))< 0, ]2(1 + c)

< 2α, ]1(cd + 2 − 2c − d))


< 2α+1
.

(20)

Proof. &e eigenvalues of Jacobian matrix at E1 are
(− ]2(1 + c), 1/2]1(c d + 2 − 2c − d)), which means that the
conditions of asymptotic stability in &eorem 2 are satisfied
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if the second eigenvalue has a negative sign, and also, the
modulus of the two eigenvalues is bounded by 2α and 2α+1,
respectively. Figure 1 shows stability regions in some three
and two-dimensional spaces of model’s parameters, whereas

Figure 2 shows the resulting time series when the values of
parameters are selected in stable regions of E1.

&e equilibrium E2 is asymptotically stable if and only if

]1(c + d − 1)< 0, ]2 2cd
2

− cd − 2c + d
2

+ d − 2 > 0, 0< d< 1,

]2(c + d − 1)


< 2α,

]2 2cd
2

− cd − 2c + d
2

+ d − 2 < 2α+1 1 − d
2

 .

(21)

□
Proof. &e eigenvalues of Jacobian matrix at E2 are
(]1(c + d − 1), ]2(2cd2 − c d − 2c + d2 + d − 2)/2(d2 − 1)),
which means that the conditions of asymptotic stability in
&eorem 2 are satisfied if the two eigenvalues have negative
signs, and also, the modulus of the two eigenvalues is
bounded by 2α and 2α+1(1 − d2), respectively. □

However, detailed numerical examinations in space of
promoters show that the aforementioned conditions cannot
be simultaneously achieved at feasible values of parameters,
and therefore, due to the impossibility of numerically sat-
isfying the above conditions, the equilibrium point E2 is
unstable.

Finally, the Nash equilibrium point E∗ has long com-
plicated expressions for its associated eigenvalues which

renders numerical investigations of regions of stability in-
evitable. Figure 3 shows stability regions in some three and
two-dimensional spaces of model’s parameters, whereas
Figure 4 illustrates the resulting time series when the values
of parameters are selected in stable regions of E∗.

5. Numerical Simulations

In this section, the complex dynamic features of the discrete
fractional Cournot–Bertrand model (16) are investigated
using various methods such as bifurcation diagrams, phase
portraits, and MLE. &e effects of major model parameters
are investigated. For the present fractional discrete model
(16) using theorem (4), the system (16) can be numerically
rewritten as follows:

q1(n) � q1(0) +
1
Γ(α)



n

i�1

Γ(n − i + α)

Γ(n − i + 1)
]1q1(i − 1) 1 − c − d + dp2(i − 1) − 2q1(i − 1) + 2d

2
q1(i − 1) ,

p2(n) � p2(0) +
1
Γ(α)



n

i�1

Γ(n − i + α)

Γ(n − i + 1)
]2p2(i − 1) 1 + c − 2p2(i − 1) − dq1(i − 1)( .

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(22)

&e initial point (q1(0), p2(0)) � (0.2, 0.1) is used in the
following simulations. In particular, the complicated dynamics
exhibited by the model are examined via using the bifurcation
diagram, phase portraits, and maximal Lyapunov exponent
(MLE).&eLyapunov exponent for a one-dimensionalmap can
be calculated by calculating the average value for perturbations
from the trajectory over a time interval. &e Lyapunov expo-
nents for an n-dimensional mapping can be obtained using the
eigenvalues of the product of Jacobian matrices for integer-
order systems. In order to approximate the values of Lyapunov
exponents of the discrete fractional model (16), the Jacobian
matrix method which has been introduced byWu and Baleanu
[44] can be employed [45, 46]. In the following part, the nu-
merical analysis will look at the effects of the model’s main
parameters, as well as the effects of long-term memory and
adjustment speeds.

First, the influences of parameter ]1 in integer-order and
fractional-order cases are explored. Figure 5 shows bifurcation
diagrams and MLE plots versus parameter ]1 along with ex-
amples of phase portraits at some selected values of parameters.

Second, the influences of parameter ]2 in integer-order and
fractional-order cases are explored. Figure 6 shows bifurcation
diagrams and MLE plots versus parameter ]2, along with ex-
amples of phase portraits at some selected values of parameters.

&ird, the influences of parameter d in integer-order and
fractional-order cases are explored. Figure 7 shows bifurcation
diagrams and MLE plots versus parameter d along with ex-
amples of phase portraits at some selected values of parameters.

Finally, the effects of fractional-order α are explored.
Figure 8 shows bifurcation diagrams and MLE plots versus
parameter α along with examples of phase portraits at some
selected values of parameters.
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Figure 1: Stability regions of equilibrium point E1 in some three and two-dimensional spaces of model’s parameters when (a)
c � 1.15; d � 0.6, (b) c � 1.15; ]1 � 0.5; ]2 � 0.6, and (c) d � 0.5; ]1 � 0.7; ]2 � 0.7.
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Figure 2: Time series of model (16) at c � 1.15, d � 0.5, ]1 � 0.7, ]2 � 0.7, and α � 0.9.
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Figure 3: Stability regions of equilibrium point E∗ in some three and two-dimensional spaces of model’s parameters when (a)
c � 0.15; d � 0.8, (b) c � 1; ]1 � 0.4; ]2 � 0.7, and (c) d � 0.5; ]1 � 0.3; ]2 � 0.6.
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Figure 5: Continued.
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Figure 5: (a) Bifurcation diagram of system (16) vs. ]1 at c � 0.1; d � 0.2; ]2 � 2; α � 1. (b) MLE plot of system (16) vs. ]1 at
c � 0.1; d � 0.2; ]2 � 2;α � 1.(c) Phase portrait of system (16) at c � 0.1; d � 0.2; ]1 � 4.9; ]2 � 2;α � 1. (d)–(f) similar to (a)–(c) but forα � 0.95.
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Figure 6: (a) Bifurcation diagram of system (16) vs. ]2 at c � 0.1; d � 0.2; ]1 � 1.5; α � 1. (b) MLE plot of system (16) vs. ]2 at
c � 0.1; d � 0.2; ]1 � 1.5; α � 1. (c) Phase portrait of system (16) at c � 0.1; d � 0.2; ]1 � 1.5; ]2 � 3.4; α � 1. (d)–(f) similar to (a)–(c) but for
α � 0.95.
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6. Conclusion

&e new fractional-order Cournot–Bertrand game based
on a long memory effect is proposed. &e stability of the
game’s equilibrium points, including the Nash equilibria,
has been explored both qualitatively and numerically.
Bifurcation, phase portraiture, time series, and maximal
Lyapunov exponents’ diagrams have been used to analyze
the complex dynamic characteristics of the proposed
game. When we compared our new model to the Wang-
Ma model [39], we found that the game parameters, es-
pecially the long-term memory influence, had an effect on
the long-term dynamic response of our novel model. &is
is important for understanding the performance of the
duopoly game with the long-term memory effect.
According to our findings, the Cournot–Bertrand duopoly
game with the long-term memory effect is more efficient
than the duopoly game without long-term memory im-
pact from economic viewpoint. As a consequence, we
advise researchers to investigate the competitive games of
long-term memory impact further.
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We explore existence of fixed points, topological classifications around fixed points, existence of periodic points and prime period,
and bifurcation analysis of a three-species discrete food chain model with harvesting. Finally, theoretical results are
numerically verified.

1. Introduction

Many different types of interactions exist in nature between
various species of organisms on this planet Earth and are
studied under the discipline of ecology. Ecological in-
teractions are most fundamental part in biology which
determines community structure and development. Not all
interactions are positive, some are negative also. One of the
examples of negative correlation is ammensalism.
Ammensalism is a type of ecological interactions between
themembers of two different species in which one is harmed,
destroyed, or inhabited by the member of another species,
while the other remains unaffected, neither harmed nor
benefitted. It is a type of competitive behavior among dif-
ferent species and is frequently used to refer to asymmetrical
competitive association. Research in the field of ecology
draws the attention of several mathematicians such as Lotka
[1] and Volterra [2]. Nowadays, ecologist and mathemati-
cian jointly contributed to the growth of this area of
knowledge. Recently, many researchers have investigated the
dynamical properties of discrete-time ecological models
such as prey-predation, competitions, neutralism, and
mutualism by studying fixed points, local and global
attractivity, bounded, existence of bifurcation, and many
more. For instance, Beddington et al. [3] have explored the
behavior of following predator-prey model:

xn+1 � xne
r 1− xn/K( )( )− ayn ,

yn+1 � αxn 1 − e
− ayn( .

(1)

Chen [4] has explored global attractivity and perma-
nence of the following discrete multispecies system:

xin+1
� xin

e
bin

− 
k

l�1ailn
xln

− 
k

l�1ciln
yln ,

yjn+1
� yjn

e
− rjn

+ 
k

l�1djln
xln

− 
k

l�1ejln
yln .

(2)

Fang and Chen [5] have explored the permanence of
multispecies Lotka–Volterra competition predator-prey
system with delays. Furthermore, Fang et al. [6] have ex-
plored the dynamics of the following system:

xn+1 � xne
an− bnxn− cnyn/ m1n+m2nxn+m3nyn( )( ),

yn+1 � yne
− dn− enyn+ fnxn/ m1n+m2nxn+m3nyn( )( ).

(3)

Agiza et al. [7] have explored chaotic dynamics of the
following discrete model with Holling type II:

xn+1 � axn 1 − xn(  −
bxnyn

1 + εxn

,

yn+1 �
dxnyn

1 + εxn

.

(4)
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Huo and Li [8] have explored stable periodic solution of
the following discrete model:

xn+1 � xne
r1n− b1nxn− a1nyn ,

yn+1 � yne
r2n− a2n yn/xn( ).

(5)

Lu and Zhang [9] have studied the permanence and
global attractivity of the following discrete system:

xn+1 � xne
an− bnxn− mnyn/ An+xn( )( ),

yn+1 � yne
dn− en yn/xn( ).

(6)

Zhao and Zhang [10] explored the chaos and perma-
nence of the following discrete model:

xn+1 � (1 − d)xne
r 1− xn/k( )− ayn( ) + dσ xn− 1e

r 1− xn− 1/k( )( ),

yn+1 � (1 − d)xn 1 − e
− ayn( .

(7)

Zhao et al. [11] have investigated the dynamics of the
following discrete model:

xn+1 � xne
r 1− xn/k( )( )f yn, yn− 1( ,

yn+1 � xn 1 − f yn, yn− 1( ( ,
(8)

where f(yn, yn− 1) � e− a((1− d)yn+dσyn− 1).
On the contrary, in recent years, many papers have been

published to investigate the bifurcation analysis of certain
discrete models by choosing step size as a bifurcation pa-
rameter. For example, Salman et al. [12] have explored bi-
furcation analysis of the following discrete system:

xn+1 � xn +
δ
2

xn 1 − x
2
n  − yn ,

yn+1 � yn + δyn − s + cxn( ,

(9)

by choosing step size δ as a bifurcation parameter. Liu and
Xiao [13] have explored bifurcation analysis of the following
discrete system:

xn+1 � xn + δ rxn 1 − xn(  − bxnyn( ,

yn+1 � yn + δ − d + bxn( yn,
(10)

by choosing step size δ as a bifurcation parameter. Hasan
and Hama [14] have explored bifurcation analysis of the
following discrete system:

xn+1 � xn + dxn 1 − xn −
yn

1 + axn + byn

 ,

yn+1 � yn + dyn

cxn

1 + axn + byn

− e ,

(11)

by choosing step size d as a bifurcation parameter. Wu and
Zhang [15] have explored bifurcation analysis of the fol-
lowing discrete system:

xn+1 � xn + δxn K1 − α1xn − β12yn − c1xnyn( ,

yn+1 � yn + δyn K2 − α2yn − β21xn − c2xnyn( ,
(12)

by choosing step size δ as a bifurcation parameter. Rana [16]
has explored bifurcation analysis of the following discrete
system:

xn+1 � xn + δ xn 1 − xn(  −
axnyn

xn + yn

 ,

yn+1 � xn + δ − dyn +
bxnyn

xn + yn

 ,

(13)

by choosing step size δ as a bifurcation parameter. Rana and
Kulsum [17] have explored bifurcation analysis of the fol-
lowing discrete system:

xn+1 � xn + δxn 1 − xn −
yn

x
2
n + a

 ,

yn+1 � yn + δyn α −
βyn

xn

 ,

(14)

by choosing step size δ as a bifurcation parameter. Motivated
from the aforementioned studies, in this work, we explore
existence of fixed points, topological classifications around
fixed points, periodic points, and bifurcation analysis, by
choosing step size h as a bifurcation parameter, of the
following three species discrete food chain model with
harvesting:

xn+1 � xn + h a1 1 − k1( xn − α11x
2
n ,

yn+1 � yn + h a2 1 − k2( yn − α22y
2
n − α21xnyn ,

zn+1 � zn + h a3zn − α33z
2
n − α32ynzn ,

(15)

which is a discrete form of the following model:

dx

dt
� a1 1 − k1( x − α11x

2
,

dy

dt
� a2 1 − k2( y − α22y

2
− α21xy,

dz

dt
� a3z − α33z

2
− α32yz,

(16)

by Euler forward formula, where h is step size and t is
customary denoted by n. It is noted that, in model (16), x(t),
y(t), and z(t), respectively, denote populations of first,
second, and third species. Moreover z(t) denotes growth
rate of first, second, and third species; αii(i � 1, 2, 3) denotes
the rate of decrease of first, second, and third species due to
internal competitions; α21 denotes rate of decrease of second
species due to attack of first species; α32 denotes the rate of
decrease of third species due to attack of second species; k1
and k2, respectively, denote the harvesting rate of first and
second species. It is also important to note that all pa-
rameters h, a1, a2, a3, k1, k2, α11, α22, α21, α32, and α33 are
positive. In addition, it is important here to mention that we
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will explore dynamical properties of the discrete-time model
(15) instead of the continuous-timemodel, which is depicted
in (16), because discrete-time models governed by difference
equations are more realistic and appropriate than the
continuous ones in the case where populations have non-
overlapping generations, and moreover, discrete models can
also provide efficient computational results for numerical
simulations [12, 13].

)is paper is structured as follows. In Section 2, we study
the existence of fixed points of model (15) algebraically. )e
linearized form of model (15) is presented in Section 3. In
Section 4, we explored topological classification around fixed
points of the model. Existence of periodic points of model
(15) is explored in Section 5. In Section 6, we explored
detailed analysis of bifurcation around fixed points of model
(15).)eoretical results are verified numerically in Section 7.
Brief summary of the paper is presented in Section 8.

2. Study of Equilibrium Points

Here, we will study the boundary and interior equilibrium
points of model (15) as follows.

Lemma 1. Model (15) has atmost eight equilibrium points in
R3

+. Precisely,

(i) ∀ h, a1, a2, a3, k1, k2, α11, α22, α21, α32, α33 > 0; model
(15) has a trivial equilibrium point: P1 � (0, 0, 0).

(ii) ∀ a3, α33 > 0; model (15) has boundary equilibrium
point: P2 � (0, 0, a3/α33).

(iii) P3 � (0, (1 − k2)a2/α22, 0) is a boundary equilib-
rium point of (15) if k2 < 1.

(iv) P4 � ((1 − k1)a1/α11, 0, 0) is a boundary equilib-
rium point of (15) if k1 < 1.

(v) P5 � (0, (1 − k2)a2/α22, (a3α22 − α32(1 −

k2)a2)/α22α33) is a boundary equilibrium point of (15) if
a3 > α32(1 − k2)a2/α22 with k2 < 1.

(vi) P6 � ((1 − k1)a1/α11, 0, a3/α33) is a boundary
equilibrium point of (15) if k1 < 1.

(vii) P7 � ((1 − k1)a1/α11, (a2(1 − k2)α11 − a1(1 −

k1)α21)/α11α22, 0) is a boundary equilibrium point of (15)
if a2 > a1(1 − k1)α21/(1 − k2)α11 with k1, k2 < 1.

(viii) P8 � ((1 − k1)a1/α11, (a2(1 − k2)α11 − a1(1 −

k1)α21)/α11α22, (a3α11α22 − a2(1 − k2)α11α32 + a1(1 −

k1)α21α32)/α11α22α33) is an interior equilibrium point of
(15) if k1 < 1, a2 > a1(1 − k1)α21/(1 − k2)α11 and
a3 > (a2(1 − k2)α11α32 − a1(1 − k1)α21α32)/α11α22.

Proof. If model (15) has an equilibrium point, P � (x, y, z),
then

x � x + h a1 1 − k1( x − α11x
2

 ,

y � y + h a2 1 − k2( y − α22y
2

− α21xy ,

z � zn + h a3z − α33z
2

− α32yz .

(17)

)e simple computation yields that, for the values of
Pi(i � 1, . . . , 7), (17) satisfied identically. So, one can con-
clude that model (15) has seven boundary points:
Pi(i � 1, . . . , 7). In order to find interior point, from (17),
one obtains

a1 1 − k1(  − α11x � 0,

a2 1 − k2(  − α22y − α21x � 0,

a3 − α33z − α32y � 0.

(18)

From 1st of (18), one obtains

x �
1 − k1( a1

α11
. (19)

From 2nd equation of (18) and (19), one obtains

y �
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
. (20)

From 3rd equation of (18) and (20), one obtains

z �
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
.

(21)

From (19)–(21), one can conclude that P8 is an interior
equilibrium point of (15) if k1 < 1, a2 > (a1(1 − k1) α21/
(1 − k2)α11), and a3 > (a2(1 − k2)α11α32 − a1(1− k1)α21α32)
/α11α22. □

3. Linearized Form of Model (15)

)e variational matrix J|P about P under the map:

f1, f2, f3( ↦ xn+1, yn+1, zn+1( , (22)

where

f1 � x + h a1 1 − k1( x − α11x
2

 ,

f2 � y + h a2 1 − k2( y − α22y
2

− α21xy ,

f3 � z + h a3z − α33z
2

− α32yz ,

(23)

is

J|P �

1 + h a1 1 − k1(  − 2α11x(  0 0

− hα21y 1 + h a2 1 − k2(  − 2α22y − α21x(  0

0 − hα32z 1 + h a3 − 2α33z − α32y( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (24)
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with

λ1 � 1 + h a1 1 − k1(  − 2α11x( ,

λ2 � 1 + h a2 1 − k2(  − 2α22y − α21x( ,

λ3 � 1 + h a3 − 2α33z − α32y( .

(25)

4. Dynamical Behavior: Topological
Properties of Equilibrium Points

)e dynamical behavior about fixed points Pi(i � 1, . . . , 8)

of model (15) is explored in this section.

4.1. Dynamical Behavior aboutP1. From (25), eigenvalues of
J|P1

about P1 are

λ1 � 1 + ha1 1 − k1( ,

λ2 � 1 + ha2 1 − k2( ,

λ3 � 1 + ha3.

(26)

)e dynamical behavior about P1 of model (15) is
concluded as follows.

Lemma 2.

(i) For all allowed parametric values, h, a1, a2, a3, k1, k2,

α11, α22, α21, α32, α33 > 0, P1 is not sink.
(ii) P1 is a source if

0< h<min
2

a1 k1 − 1( 
,

2
a2 k2 − 1( 

 . (27)

(iii) P1 is a saddle if

h>max
2

a1 k1 − 1( 
,

2
a2 k2 − 1( 

 . (28)

(iv) P1 is nonhyperbolic if

h �
2

a1 k1 − 1( 
, (29)

or

h �
2

a2 k2 − 1( 
. (30)

4.2.Dynamical Behavior aboutP2. From (25), eigenvalues of
J|P2

about P2 are

λ1 � 1 + ha1 1 − k1( ,

λ2 � 1 + ha2 1 − k2( ,

λ3 � 1 − ha3.

(31)

)e dynamical behavior about P2 is concluded as
follows:

Lemma 3. (i) P2 is a sink if

h>max
2

a1 k1 − 1( 
,

2
a2 k2 − 1( 

 , 0< h<
2
a3

. (32)

(ii) P2 is a source if

0< h<min
2

a1 k1 − 1( 
,

2
a2 k2 − 1( 

 , h>
2
a3

. (33)

(iii) P2 is a saddle if

h<min
2

a1 k1 − 1( 
,

2
a2 k2 − 1( 

 , 0< h<
2
a3

. (34)

(iv) P2 is nonhyperbolic if

h �
2
a3

, (35)

or

h �
2

a1 k1 − 1( 
, (36)

or

h �
2

a2 k2 − 1( 
. (37)

4.3.Dynamical Behavior aboutP3. From (25), eigenvalues of
J|P3

about P3 are

λ1 � 1 + ha1 1 − k1( ,

λ2 � 1 − ha2 1 − k2( ,

λ3 � 1 + h
a3α22 − a2α32 1 − k2( 

α22
 .

(38)

)e dynamical behavior about P3 is concluded as follows.

Lemma 4.

(i) P3 is a sink if

h>max
2

a1 k1 − 1( 
,

2α22
a2α32 1 − k2(  − a3α22

 ,

0< h<
2

a2 1 − k2( 
.

(39)

(ii) P3 is a source if

0< h<min
2

a1 k1 − 1( 
,

2α22
a2α32 1 − k2(  − a3α22

 ,

h>
2

a2 1 − k2( 
.

(40)
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(iii) P3 is a saddle if

h>max
2

a1 k1 − 1( 
,

2
a2 1 − k2( 

 ,

0< h<
2α22

a2α32 1 − k2(  − a3α22
.

(41)

(iv) P3 is nonhyperbolic if

h �
2

a2 1 − k2( 
, (42)

or

h �
2

a1 k1 − 1( 
, (43)

or

h �
2α22

a2α32 1 − k2(  − a3α22
. (44)

4.4.Dynamical Behavior aboutP4. From (25), eigenvalues of
J|P4

about P4 are

λ1 � 1 − ha1 1 − k1( ,

λ2 � 1 + ha2 1 − k2( ,

λ3 � 1 + ha3.

(45)

)e dynamical behavior about P4 is concluded as
follows.

Lemma 5.

(i) For all allowed parametric values,
h, a1, a2, a3, k1, k2, α11, α22, α21, α32, α33 > 0, P4 is not
sink.

(ii) P4 is a source if

h>max
2

a1 1 − k1( 
,

2
a2 k2 − 1( 

 . (46)

(iii) P4 is a saddle if

0< h<min
2

a1 1 − k1( 
,

2
a2 k2 − 1( 

 . (47)

(iv) P4 is nonhyperbolic if

h �
2

a1 1 − k1( 
, (48)

or

h �
2

a2 k2 − 1( 
. (49)

4.5.Dynamical Behavior aboutP5. From (25), eigenvalues of
J|P5

about P5 are

λ1 � 1 + ha1 1 − k1( ,

λ2 � 1 − ha2 1 − k2( ,

λ3 � 1 + h − a3 +
α32 1 − k2( a2

α22
 .

(50)

)e dynamical behavior about P5 is concluded as
follows.

Lemma 6. (i) P5 is a sink if

h>max
2

a1 k1 − 1( 
,

2α22
a3α22 − a2α32 1 − k2( 

 ,

0< h<
2

a2 1 − k2( 
.

(51)

(ii) P5 is a source if

0< h<min
2

a1 k1 − 1( 
,

2α22
a3α22 − a2α32 1 − k2( 

 ,

h>
2

a2 1 − k2( 
.

(52)

(iii) P5 is a saddle if

h>max
2

a1 k1 − 1( 
,

2α22
a3α22 − a2α32 1 − k2( 

 ,

h>
2

a2 1 − k2( 
.

(53)

(iv) P5 is nonhyperbolic if

h �
2

a1 k1 − 1( 
, (54)

or

h �
a3α22 − 2α22

a2α32 1 − k2( 
, (55)

or

h �
2

a2 1 − k2( 
. (56)

4.6.Dynamical Behavior aboutP6. From (25), eigenvalues of
J|P6

about P6 are

λ1 � 1 − ha1 1 − k1( ,

λ2 � 1 + h a2 1 − k2(  −
a1α21 1 − k1( 

α11
 ,

λ3 � 1 − ha3.

(57)
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)e dynamical behavior about P6 is concluded as
follows.

Lemma 7.

(i) P6 is a sink if

0< h<min
2

a1 1 − k1( 
,
2
a3

 

h>
2α11

a1α21 1 − k1(  − a2α11 1 − k2( 
.

(58)

(ii) P6 is a source if

h>max
2

a1 1 − k1( 
,
2
a3

 ,

0< h<
2α11

a1α21 1 − k1(  − a2α11 1 − k2( 
.

(59)

(iii) P6 is a saddle if

0< h<min
2

a1 1 − k1( 
,
2
a3

 ,

0< h<
2α11

a1α21 1 − k1(  − a2α11 1 − k2( 
.

(60)

(iv) P6 is nonhyperbolic if

h �
2

a1 1 − k1( 
, (61)

or

h �
2
a3

, (62)

or

h �
2α11

a1α21 1 − k1(  − a2α11 1 − k2( 
. (63)

4.7.Dynamical Behavior aboutP7. From (25), eigenvalues of
J|P7

about P7 are

λ1 � 1 − ha1 1 − k1( ,

λ2 � 1 − h a2 1 − k2(  −
2a1α21 1 − k1( 

α11
 ,

λ3 � 1 + h a3 −
a2 1 − k2( α32

α22
+

a1α21α32 1 − k1( 

α11α22
 .

(64)

)e dynamical behavior about P7 is concluded as
follows:

Lemma 8.

(i) P7 is a sink if

0< h<min
2

a1 1 − k1( 
,

2α11
a2α11 1 − k2(  − 2a1α21 1 − k1( 

 ,

h>
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
.

(65)

(ii) P7 is a source if

h>max
2

a1 1 − k1( 
,

2α11
a2α11 1 − k2(  − 2a1α21 1 − k1( 

 ,

0< h<
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
.

(66)

(iii) P7 is a saddle if

0< h<min
2

a1 1 − k1( 
,

2α11
a2α11 1 − k2(  − 2a1α21 1 − k1( 

 ,

0< h<
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
.

(67)

(iv) P7 is nonhyperbolic if

h �
2

a1 1 − k1( 
, (68)

or

h �
2α11

a2α11 1 − k2(  − 2a1α21 1 − k1( 
, (69)

or

h �
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
.

(70)

4.8.Dynamical Behavior aboutP8. From (25), eigenvalues of
J|P8

about P8 are

λ1 � 1 − ha1 1 − k1( ,

λ2 � 1 − h a2 1 − k2(  −
2a1α21 1 − k1( 

α11
 ,

λ3 � 1 − h a3 −
a2 1 − k2( α32

α22
+

a1α21α32 1 − k1( 

α11α22
 .

(71)

)e dynamical behavior about P8 is concluded as follows.
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Lemma 9. (i) P8 is a sink if

!0< h<min
2

a1 1 − k1( 
,

2α11
a2α11 1 − k2(  − 2a1α21 1 − k1( 

,
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
 . (72)

(ii) P8 is a source if

!h>max
2

a1 1 − k1( 
,

2α11
a2α11 1 − k2(  − 2a1α21 1 − k1( 

,
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
 . (73)

(iii) P8 is a saddle if

0< h<min
2

a1 1 − k1( 
,

2α11
a2α11 1 − k2(  − 2a1α21 1 − k1( 

 ,

h>
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
.

(74)

(iv) P8 is nonhyperbolic if

h �
2

a1 1 − k1( 
, (75)

or

h �
2α11

a2α11 1 − k2(  − 2a1α21 1 − k1( 
, (76)

or

h �
2α11α22

a3α11α22 − a2α11α32 1 − k2(  + a1α21α32 1 − k1( 
.

(77)

5. Periodic Points

Wewill prove that Pi(i � 1, . . . , 8) of model (15) are periodic
points of period n.

Theorem 1. Equilibrium points Pi(i � 1, . . . , 8) of model
(15) are periodic points of prime period 1.

Proof. From (15), define

F(x, y, z) ≔ f1, f2, f3( , (78)

where f1, f2, and f3 are represented in (23). From (78), the
computation yields

F|P1�(0,0,0) � P1,

F|P2� 0,0, a3/α33( )( ) � P2,

F|P3� 0, 1− k2( )a2/α22 ,0( ) � P3,

F|P4� 1− k1( )a1/α11 ,0,0( ) � P4,

F|P5� 0, 1− k2( )a2/α22 , a3α22− α32 1− k2( )a2( )/α22α33( ) � P5,

F|P6� 1− k1( )a1/α11 ,0,a3/α33( ) � P6,

F|P7� 1− k1( )a1/α11 , a2 1− k2( )α11− a1 1− k1( )α21( )/α11α22 ,0( ) � P7,

F|P8� 1− k1( )a1/α11 , a2 1− k2( )α11− a1 1− k1( )α21( )/α11α22 , a3α11α22− a2 1− k2( )α11α32+a1 1− k1( )α21α32( )/α11α22α33( ) � P8.

(79)
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Hence, from (79), we can say that equilibrium points
Pi(i � 1, . . . , 8) of three species model (15) are periodic
points of prime period 1. □

Now, it is proved that equilibrium points Pi(i � 1, . . . , 8)

are period points of period n.

Theorem 2. P1 of model (15) is a periodic point of period n.

Proof. From (78), the following computation yields the
required statement:

F
2

� f1 + h a1 1 − k1( f1 − α11 f1( 
2

 ,

f2 + h a2 1 − k2( f2 − α22 f2( 
2

− α21f1f2 ,

f3 + h a3f3 − α33 f2( 
2

− α32f2f3 ⇒F
2
|P1

� P1,

F
3

� f
2
1 + h a1 1 − k1( f

2
1 − α11 f

2
1 

2
 ,

f
2
2 + h a2 1 − k2( f

2
2 − α22 f

2
2 

2
− α21f

2
1f

2
2(x, y, z) ,

f
2
3 + h a3f

2
3 − α33 f

2
2 

2
− α32f

2
2f

2
3 ⇒F

3
|P1

� P1,

⋮

F
n

� f
n
1 + h a1 1 − k1( f

n
1 − α11 f

n
1( 

2
 ,

f
n
2 + h a2 1 − k2( f

n
2 − α22 f

n
2( 

2
− α21f

n
1f

n
2 ,

f
n
3 + h a3f

n
3 − α33 f

n
2( 

2
− α32f

n
2f

n
3 ⇒F

n
|P1

� P1.

(80)□

Theorem 3. P2 of model (15) is a periodic point of period n.

Proof. Utilizing the computation as we have done in (80),
one gets the following required statement:

F
2
|P2� 0,0,a3/α33( ) � P2,

F
3
|P2� 0,0,a3/α33( ) � P2,

⋮

F
n
|P2� 0,0,a3/α33( ) � P2.

(81)

□

Theorem 4. P3 of model (15) is a periodic point of period n.

Proof. In view of (80), one gets the following required
statement:

F
2
|P3� 0, 1− k2( )a2/α22 ,0( ) � P3,

F
3
|P3� 0, 1− k2( )a2/α22 ,0( ) � P3,

⋮

F
n
|P3� 0, 1− k2( )a2/α22 ,0( ) � P3.

(82)

□

Theorem 5. P4 of model (15) is a periodic point of period n.

Proof. In view of (80), one gets the following required
statement:

F
2
|P4� 1− k1( )a1/α11 ,0,0( ) � P4,

F
3
|P4� 1− k1( )a1/α11 ,0,0( ) � P4,

⋮

F
n
|P4� 1− k1( )a1/α11 ,0,0( ) � P4.

(83)

□

Theorem 6. P5 of model (15) is a periodic point of period n.

Proof. From (80), one obtains

F
2
|P5� 0, 1− k2( )a2/α22 , a3α22− α32 1− k2( )a2( )/α22α33( ) � P5,

F
3
|P5� 0, 1− k2( )a2/α22 , a3α22− α32 1− k2( )a2( )/α22α33( ) � P5,

⋮

F
n
|P5� 0, 1− k2( )a2/α22 , a3α22− α32 1− k2( )a2( )/α22α33( ) � P5.

(84)

□

Theorem 7. P6 of model (15) is a periodic point of period n.

Proof. From (80), one obtains

F
2
|P6� 1− k1( )a1/α11 ,0,a3/α33( ) � P6,

F
3
|P6� 1− k1( )a1/α11 ,0,a3/α33( ) � P6,

⋮

F
n
|P6� 1− k1( )a1/α11 ,0,a3/α33( ) � P6.

(85)

□

Theorem 8. P7 of model (15) is a periodic point of period n.

Proof. From (80), one obtains

F
2
|P7� 1− k1( )a1/α11 , a2 1− k2( )α11 − a1 1− k1( )α21( )/α11α22 ,0( ) � P7,

F
3
|P7� 1− k1( )a1/α11 , a2 1− k2( )α11 − a1 1− k1( )α21( )/α11α22 ,0( ) � P7,

⋮

F
n
|P7� 1− k1( )a1/α11 , a2 1− k2( )α11 − a1 1− k1( )α21( )/α11α22 ,0( ) � P7.

(86)□

Theorem 9. P8 of model (15) is a periodic point of period n.

Proof. From (80), one obtains
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F
2
|P8� 1− k1( )a1/α11 , a2 1− k2( )α11− a1 1− k1( )α21( )/α11α22 , a3α11α22 − a2 1− k2( )α11α32+a1 1− k1( )α21α32( )/α11α22α33( ) � P8,

F
3
|P8� 1− k1( )a1/α11 , a2 1− k2( )α11− a1 1− k1( )α21( )/α11α22 , a3α11α22 − a2 1− k2( )α11α32+a1 1− k1( )α21α32( )/α11α22α33( ) � P8,

⋮

F
n
|P8� 1− k1( )a1/α11 , a2 1− k2( )α11− a1 1− k1( )α21( )/α11α22 , a3α11α22 − a2 1− k2( )α11α32+a1 1− k1( )α21α32( )/α11α22α33( ) � P8.

(87)

□
6. Analysis of Bifurcation

In this section, we give analysis of bifurcation about fixed
points Pi(i � 1, . . . , 8) of model (15) by bifurcation theory
[18, 19].

6.1.Analysis of Bifurcation atP1. Here, we will study analysis
of bifurcation at P1 of model (15). From (26), the simple
computation yields λ1|(29) � − 1, but λ2,3|(29) � 1 − (2a2(1 −

k2)/a1(1 − k1)), 1 − (2a3/ a1(1 − k1))≠ 1 or − 1. )is sug-
gests that model (15) could undergo a flip bifurcation around
P1 ifΩ � (h, a1, a2, a3, k1, k2, α11, α22, α21, α32, α33) passes the
curve:

F|P1
� Ω: h �

2
a1 k1 − 1( 

 . (88)

However, flip bifurcation cannot occur by computation,
so P1 is degenerated with high co-dimension as Ω ∈F|P1

.

6.2. Analysis of Bifurcation at P2. We will study analysis of
bifurcation at P2 of model (15). From (26), the simple
computation yields λ3|(35) � − 1, but λ1,2|(35) � 1 + (2a1(1 −

k1)/a3), 1 + (2a2(1 − k2)/a3)≠ 1 or − 1. )is suggests that
model (15) could undergo a flip bifurcation around P2 if Ω
passes the curve:

F|P2
� Ω: h �

2
a3

 . (89)

)e proof of following theorem shows that model (15)
undergoes flip bifurcation around P2 if Ω ∈ F|P2

.

Theorem 10. Model (15) undergo flip bifurcation around P2
if Ω ∈F|P2

.

Proof. It is noticed that three-species model (15) is invariant
with respect to x � y � 0. )us, we restrict (15) on
x � y � 0, to determine the bifurcation, where it takes the
form

zn+1 � zn + h a3zn − α33z
2
n . (90)

From (90), define

f(z) ≔ z + h a3z − α33z
2

 . (91)

Now, one denotes h � h∗ � (2/a3) and z � z∗ �

(a3/α33). )e computation yields

fz|h�h∗� 2/a3( ),z�z∗� a3/α33( ) � − 1, (92)

fzz|h�h∗� 2/a3( ),z�z∗� a3/α33( ) � −
4α33
a3
≠ 0, (93)

fh|h�h∗� 2/a3( ),z�z∗� a3/α33( ) � −
a
2
3

α33
≠ 0. (94)

From (92)–(94), it can be concluded that the model
undergoes flip bifurcation around P2 if Ω ∈F|P2

. □

6.3. Analysis of Bifurcation at P3. From (38), the compu-
tation yields λ2|(42) � − 1, but λ1,3|(42) � 1 + (2a1(1 −

k1)/a2(1 − k2)), 1 + (2/a2(1 − k2))[a3α22 − a2α32(1 − k2)]

≠ 1 or − 1.)is suggests that model (15) could undergo a flip
bifurcation around P3 if Ω passes the curve:

F|P3
� Ω: h �

2
a2 1 − k2( 

 . (95)

)e proof of following theorem shows that model (15)
undergoes flip bifurcation around P3 if Ω ∈F|P3

.

Theorem 11. Model (15) undergoes flip bifurcation around
P3 if Ω ∈F|P3

.

Proof. It is noticed that, w.r.t x � z � 0, model (15) is in-
variant. So, one restricts model (15) on x � z � 0, where it
becomes

yn+1 � yn + h a2 1 − k2( yn − α22y
2
n . (96)

From (96), define

f(y) ≔ y + ha2 1 − k2( y − hα22y
2
. (97)

Denote h � h∗ � (2/a2(1 − k2)) andy � y∗ � (a2(1 −

k2)/α22). By computation, one obtains
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fy|h�h∗� 2/a2 1− k2( )( ),y�y∗� a2 1− k2( )/α22( ) � − 1, (98)

fyy|h�h∗� 2/a2 1− k2( )( ),y�y∗� a2 1− k2( )/α22( ) � −
4α22

a2 1 − k2( 
≠ 0,

(99)

fh|h�h∗� 2/a2 1− k2( )( ),y�y∗� a2 1− k2( )/α22( ) �
a2 1 − k2( 

α22
≠ 0.

(100)

So, model (15) undergoes flip bifurcation by (98)–(100) if
Ω ∈F|P3

. □

6.4. Analysis of Bifurcation at P4. From (45), the compu-
tation yields λ1|(48) � − 1, but λ2,3|(48) � 1 + (2a2(1 − k2)/
a1(1 − k1)), 1 + (2a3/a1(1 − k1))≠ 1 or − 1. )is suggests
that model (15) could undergo a flip bifurcation around P4 if
Ω passes the curve:

F|P3
� Ω: h �

2
a1 1 − k1( 

 . (101)

)e proof of the following theorem shows that model
(15) undergoes flip bifurcation around P4 if Ω ∈ F|P4

.

Theorem 12. Model (15) undergoes flip bifurcation around
P4 if Ω ∈ F|P4

.

Proof. It is noticed that, w.r.ty � z � 0, model (15) is in-
variant. So, one restricts model (15) on y � z � 0, where it
becomes

xn+1 � xn + h a1 1 − k1( xn − α11x
2
n . (102)

From (102), define

f(x) ≔ x + ha1 1 − k1( x − hα11x
2
. (103)

Denote h � h∗ � (2/a1(1 − k1)), x � x∗ � (a1(1 −

k1)/α11). By computation, one obtains

fx|h�h∗� 2/a1 1− k1( )( ),x�x∗� a1 1− k1( )/α11( ) � − 1, (104)

fxx|h�h∗� 2/a1 1− k1( )( ),x�x∗� a1 1− k1( )/α11( ) � −
4α11

a1 1 − k1( 
≠ 0,

(105)

fh|h�h∗� 2/a1 1− k1( )( ),x�x∗� a1 1− k1( )/α11( ) �
a1 1 − k1( 

α11
≠ 0.

(106)

So, model (15) undergoes flip bifurcation by (104)–(106)
if Ω ∈F|P4

. □

6.5. Analysis of Bifurcation at P5. From (50), the compu-
tation yields λ1|(54) � − 1, but λ2,3|(54) � 1 + (2a2(1 −

k2)/a1(1 − k1)), 1 − (2/a1(1 − k1))[− a3 + (α32(1 − k2)a2/
α22)]≠ 1 or − 1. )is suggests that model (15) could undergo
flip bifurcation around P5 if Ω passes the curve:

F|P5
� Ω: h �

2
a1 k1 − 1( 

 . (107)

)e proof of the following theorem shows that model
(15) undergoes flip bifurcation around P5 if Ω ∈F|P5

.

Theorem 13. Model (15) undergoes flip bifurcation around
P5 if Ω ∈F|P5

.

Proof. Recall that if Ω ∈ F|P5
, then λ1|(54) � − 1, but

λ2,3|(54) � 1 + (2a2(1 − k2)/a1(1 − k1)), 1 − (2/a1(1 − k1))

[− a3 + (α32(1 − k2)a2/α22)]≠ 1 or − 1. So, hereafter, de-
tailed flip bifurcation is explored ifΩ varies in the nbhd of h,
i.e., h � h + ε, by assuming h≠ (2α22/(a3α22 − a2α32(1 −

k2))), 2/a2(1 − k2). Let

un � xn,

vn � yn −
1 − k2( a2

α22
,

wn � zn −
a3α22 − α32 1 − k2( a2

α22α33
.

(108)
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)en, (15) gives

un+1

vn+1

wn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1 + ha1 1 − k1(  0 0

− hα21
1 − k2( 

α22
a2 1 − ha2 1 − k2(  0

0 − hα32
a3α32 − α32 1 − k2( a2

α22α33
  1 + h − a3 +

α32 1 − k2( a2

α22
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

hα11u
2
n + a1 1 − k1( εun − α11εu

2
n

h
a2 1 − k2( ( 

2

α22
− α22 vn +

1 − k2( a2

α22
 

2

+ α21unvn
⎡⎣ ⎤⎦+

ε a2 1 − k2(  vn +
a2 1 − k2( 

α22
  − α22 vn +

1 − k2( a2

α22
 

2

− α21un vn +
a2 1 − k2( 

α22
 ⎡⎣ ⎤⎦

h a3
a3α32 − α32 1 − k2( a2

α22α33
  − α33 wn +

a3α22 − α32 1 − k2( a2

α22α33
 

2

−⎡⎣

α32vnwn −
1 − k2( a2

α22

a3α32 − α32 1 − k2( a2

α22α33
  + ε a3 wn +

a3α32 − α32 1 − k2( a2

α22α33
 −

α33 wn +
a3α22 − α32 1 − k2( a2

α22α33
 

2

− α32 vn +
1 − k2( a2

α22
  wn +

a3α22 − α32 1 − k2( a2

α22α33
 ⎤⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(109)

By using transformation,

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

a11 0 0

a21 a22 0

1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (110)

(109) takes the form

xn+1

yn+1

zn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− 1 0 0

0 λ2 0

0 0 λ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

F xn, yn, zn, ε( 

G xn, yn, zn, ε( 

H xn, yn, zn, ε( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(111)
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where

a11 �
− a1 − a2 + a1k1 + a2k2( α22 a1α22 + a3α22 − a1k1α22 − a2α32 + a2k2α32( α33

a2 − 1 + k2(  − a2 + a3 + a2k2( α21α
2
32

,

a21 � −
a1α22 + a3α22 − a1k1α22 − a2α32 + a2k2α32( α33

− a2 + a3 + a2k2( α232
,

a22 � −
− a2α22 + a3α22 + a2k2α22 − a2α32 + a2k2α32( α33

− a2 + a3 + a2k2( α232
,

F � xna1 1 − k1( ε − x
2
na11α11 + hx

2
na11α11 − x

2
na11α11ε,

G � −
a1a11 1 − k1( ε − x

2
na

2
11α11 + hx

2
na

2
11α11 − x

2
nεa

2
11α11

a11

+
h a

2
2 1 − k2( 

2/α22  + xna11α21 xna21 + ynα22(  − α22 xna21 + ynα221 − k2/α22( 
2

 

a21

+
εa2 1 − k2(  xna21 + ynα22 + a2 1 − k2( /α22( (  − xnεa11α21 xna21 + ynα22 + a2 1 − k2( /α22( ( 

a21

−
εα22 xna21 + ynα22 + a2 1 − k2( /α11( ( 

2

a21
,

H � h − xn xn + yn + zn( a11α32 −
a2 1 − k2( a3α32 − a2α32 1 − k2( 

α222α33


+
a3 a3α32 − a2α32 1 − k2( ( 

α22α33
− xn + yn + zn +

a3α32 − a2α32 1 − k2( 

α22α33
 

2

α33⎤⎦

−
h a

2
2 1 − k2( 

2/α22  + xna11α21 xna21 + ynα22(  − α22 xna21 + ynα22 1 − k2( /α22( ( 
2

 

a21

+
εa2 1 − k2(  xna21 + ynα22 + a2 1 − k2( /α22( (  − xnεa11α21 xna21 + ynα22 + a2 1 − k2( /α22( ( 

a21

−
εα22 xna21 + ynα22 + a2 1 − k2( /α11( ( 

2

a21

εa3 xn + yn + zn +
a3α32 − a2α32 1 − k2( 

α22α33
 

− ε xna21 + ynα22 +
a2 1 − k2( 

α22
 α32 xn + yn + zn +

a3α32 − a2 1 − k2( α32
α22α33

 

− xn + yn + zn +
a3α32 − a2α32 1 − k2( 

α22α33
 

2

α33.

(112)
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Now, consider (111) on the center manifold, i.e.,

W
c
(0) � xn, yn, zn( | yn, zn(  � χ1 xn( , χ2 xn( ( , χi(0) � 0, Dχi(0) � 0, i � 1, 2 , (113)

where

χi xn(  � aix
2

+ bix
3

+ O(x)
4
, for i � 1, 2. (114)

From (111) and (113), one obtains

χ1 − xn + F xn, χ1, χ2( (  � λ2χ1 xn(  + G xn, χ1, χ2( ,

χ2 − xn + F xn, χ1, χ2( (  � λ3χ2 xn(  + H xn, χ1, χ2( .

(115)

From (115), computation yields a1 � b1 � a2 � b2 � 0.
Finally, map (111); restrict to Wc(0) as

f xn(  � − xn + xna1 1 − k1( ε − x
2
na11α11 + hx

2
na11α11 − x

2
na11α11ε + O xn


 +|ε| 

3
 . (116)

For the model to undergo flip bifurcation, the following
should be nonzero:

Ω1 �
z2f

zxnzε
+
1
2

zf

zε
z2f

zx2
n

 |O � a1 1 − k1( ≠ 0,

Ω2 �
1
6

z3f

zx3
n

+
1
2

z2f

zx2
n

 

2
⎛⎝ ⎞⎠|O � a11α11 − ha11α11( 

2 > 0.

(117)

From (117), one can say that about P5 model (15) un-
dergoes flip bifurcation if Ω ∈F|P5

. Moreover, period-2
points bifurcating from P5 are stable since
Ω2 � (a11α11 − ha11α11)

2 > 0. □

6.6. Analysis of Bifurcation at P6. From (57), the compu-
tation yields λ1|(61) � − 1, but λ2,3|(61) � 1 + (2/a1(1 − k1))

[a2(1 − k2) − (a1α21(1 − k1)/α11)], 1 − (2a3/a1(1 − k1))

≠ 1 or − 1. )is suggests that model (15) could undergo flip
bifurcation around P6 if Ω passes the curve:

F|P6
� Ω: h �

2
a1 1 − k1( 

 . (118)

)e proof of the following theorem shows that model
(15) undergoes flip bifurcation around P6 if Ω ∈F|P6

.

Theorem 14. Model (15) undergoes flip bifurcation around
P6 if Ω ∈F|P6

.

Proof. Recall that if Ω ∈ F|P6
, then λ1|(61) � − 1, but

λ2,3|(61) � 1 + (2/a1(1 − k1))[a2(1 − k2) − (a1α21(1 − k1)/
α11)], 1 − (2a3/a1(1− k1))≠ 1 or − 1. So, hereafter, detailed
flip bifurcation is explored if Ω varies in the nbhd of h,
i.e., h � h + ε, by assuming h≠ (2/a3), 2α11/(a1α21(1 − k1) −

a2α11(1 − k2)). Let

un � xn −
1 − k1( a1

α11
,

vn � yn,

wn � zn −
a3

α33
.

(119)

)en, (15) gives
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un+1

vn+1

vn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1 − ha1 1 − k1(  0 0

0 1 + h a2 1 − k2(  −
a1α21 1 − k1( 

α11
  0

0 − hα32
a3

α32
1 − ha3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ h
a1 1 − k1( ( 

2

α11
− hα11 un +

a1 1 − k1( 

α11
 

2

+ εa1 1 − k1(  un +
a1 1 − k1( 

α11
  − εα11 un +

a1 1 − k1( 

α11
 

2
⎛⎝

− hα22v
2
n − hα22unvn + εa2 1 − k2( vn − εα22v

2
n − εα21vn un +

a1 1 − k1( 

α11
 

h
a
2
3

α33
− α33 wn +

a3

α33
 

2

− α32vnwn
⎛⎝ ⎞⎠

+εa3 wn +
a3

α33
  − εα33 wn +

a3

α33
 

2

− εα32vn wn +
a3

α33
 ⎞⎠⎞⎠.

(120)

Using transformation,

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

0 1 0

0 0 b23

1 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (121)

(120) becomes

xn+1

yn+1

zn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− 1 0 0

0 λ2 0

0 0 λ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

F1 xn, yn, zn, ε( 

G1 xn, yn, zn, ε( 

H1 xn, yn, zn, ε( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(122)

where

b23 �
α33 − a2α11 − a3α11 + a2k2α11 + a1α21 − a1k1α21( 

a3α11α32
,

F1 � − zna2 1 − k2( ε + zn yn +
a1 1 − k1( 

α11
 α21ε + hznα22 + hynznα22 + z

2
nb23α22ε

+ a3 xn + yn +
a3

α33
 ε − znb23α32 xn + yn +

a3

α33
 ε − xn + yn +

a3

α33
 

2

α33ε

+ h − xn + yn( znb23α32 +
a
2
3

α33
− xn + yn +

a3

α33
 

2

α33⎛⎝ ⎞⎠,

G1 � a1 1 − k1(  yn +
a1 1 − k1( 

α11
 ε − h yn +

a1 1 − k1( 

α11
 

2

+
ha

2
1 1 − k1( 

2

α11
− yn +

a1 1 − k1( 

α11
 

2

α11ε,

H1 � − zna2 1 − k2( ε + zn yn +
a1 1 − k1( 

α11
 α21ε + hznα22 + hynznα22 + z

2
nb23α22ε.

(123)
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Now, from model (122) on the center manifold,

W
c
(0) � xn, yn, zn( | yn, zn(  � χ3 xn( , χ4 xn( ( , χi(0) � 0, Dχi(0) � 0, i � 3, 4 , (124)

where

χi xn(  � aix
2

+ bix
3

+ O(x)
4
, for i � 3, 4. (125)

From (122) and (124), one has

χ3 − xn + F1 xn, χ3, χ4( (  � λ2χ3 xn(  + G1 xn, χ3, χ4( ,

χ4 − xn + F1 xn, χ3, χ4( (  � λ3χ4 xn(  + H1 xn, χ3, χ4( .

(126)

From (126), the calculation yields: a3 � b3 � a4 � b4 � 0.
)us, map (122); restrict to Wc(0) as

f xn(  � − xn + a3 xn +
a3

α33
 ε − xn +

a3

α33
 

2

α33ε + h
a
2
3

α33
− xn +

a3

α33
 

2

α33⎛⎝ ⎞⎠. (127)

From (117) and (127), the computation yields:
Ω1 � 3a3 − (ha2

3/α33)≠ 0 and Ω2 � h2α233 > 0. )is implies
that about P6 model (15) undergoes flip bifurcation if
Ω ∈F|P6

. Moreover, period-2 points bifurcating fromP6 are
stable since Ω2 � h2α233 > 0. □

6.7. Analysis of Bifurcation at P7. From (64), the compu-
tation yields λ1|(68) � − 1, but λ2,3|(68) � 1 − (2/a1(1 − k1))

[a2(1 − k2) − (2a1α21(1− k1)/α11)], 1 + (2/a1(1 − k1))[a3 −

(a2(1 − k2)α32/α22) + (a1α21α32(1− k1)/α11α22)]≠ 1 or − 1.
)is suggests that model (15) could undergo flip bifurcation
around P7 if Ω passes the curve:

F|P7
� Ω: h �

2
a1 1 − k1( 

 . (128)

)e proof of the following theorem shows that
model (15) undergoes flip bifurcation around P7 if
Ω ∈F|P7

.

Theorem 15. Model (15) undergoes flip bifurcation around
P7 if Ω ∈F|P7

.

Proof. Recall that if Ω ∈ F|P7
, then λ1|(68) � − 1, but

λ2,3|(68) � 1 − (2/a1(1 − k1))[a2(1 − k2) − (2a1α21(1− k1)/
α11)], 1 + (2/a1(1 − k1))[a3 − (a2(1 − k2)α32/α22) + (a1 α21
α32(1− k1)/α11α22)]≠ 1 or − 1. So, in the following, flip bi-
furcation is explored by assuming h≠ (2α11/(a2α11(1− k2) −

2a1α21 (1 − k1))), (2α11α22/a3α11α22 − a2α11α32(1 − k2)+

a1α21α32 (1 − k1)). Let

un � xn −
1 − k1( a1

α11
,

vn � yn −
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
,

wn � zn.

(129)

)en, (15) gives
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un+1

vn+1

vn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

1 − ha1 1 − k1(  0 0

− hα21
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
  1 − h a2 1 − k2(  −

2a1α21 1 − k1( 

α11
  0

0 0 1 + h a3 −
a2 1 − k2( α32

α22
+

a1α21α32 1 − k1( 

α11α22
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ h
a1 1 − k1( ( 

2

α11
− α11 un +

a1 1 − k1( 

α11
 

2
⎛⎝ ⎞⎠⎛⎝

+ ε a1 1 − k1(  un +
a1 1 − k1( 

α11
  − α11 un +

a1 1 − k1( 

α11
 

2
⎛⎝ ⎞⎠

· h a2 1 − k2( 
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
  + α22 vn +

a2 1 − k2( α11 − a1 1 − k1( α21
α11α22

 

2
⎡⎣

− α21
a1 1 − k1( 

α11

a2 1 − k2( α11 − a1 1 − k1( α21
α11α22

  + ε a2 1 − k2(  vn +
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
 

− α22 vn +
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
 

2

− α21 un +
a1 1 − k1( 

α11
  vn +

a2 1 − k2( α11 − a1 1 − k1( α21
α11α22

 h − α33w
2
n − α32vnwn  + ε a3wn − α33w

2
n

− α32wn vn +
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
 .

(130)

Using transformation,

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

c11 0 0

1 1 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (131)

(130) gives

xn+1

yn+1

zn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− 1 0 0

0 λ2 0

0 0 λ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

F2 xn, yn, zn, ε( 

G2 xn, yn, zn, ε( 

H2 xn, yn, zn, ε( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(132)
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where

c11 �
α11α22 ha1 1 − k1(  − ha2 1 − k2(  − 2ha1 1 − k1( α21/α11( ( 

hα21 a2 1 − k2( α11 − a1 1 − k1( α21( 
,

F2 �
h a1 1 − k1( ( 

2/α11  − xnc11 + a1 1 − k1( /α11( ( 
2α11  + ε a1 1 − k1(  xnc11 + a1 1 − k1( /α11( (  − xnc11 + a1 1 − k1( /α11( ( 

2α11 

c11
,

G2 � h
a2 1 − k2(  a2a11 1 − k2(  − a1 1 − k1( α21( 

α11α22
−

a1 1 − k1( α21 a2a11 1 − k2(  − a1 1 − k1( α21( 

α211α22


+ xn + yn +
a2a11 1 − k2(  − a1 1 − k1( α21

α11α22
 

2

α22⎤⎦

·
h a1 1 − k1( ( 

2/α11  − xnc11 + a1 1 − k1( /α11( ( 
2α11  + ε a1 1 − k1(  xnc11 + a1 1 − k1( /α11( (  − xnc11 + a1 1 − k1( /α11( ( 

2α11 

c11

+ ε a2 1 − k2(  xn + yn +
a2a11 1 − k2(  − a1 1 − k1( α21

α11α22
 

+
a1 1 − k1( α21 xn + yn + a2a11 1 − k2(  − a1 1 − k1( α21( /α11α22( ( 

3
xnc11 a2a11 1 − k2(  − a1 1 − k1( α21( /α11α22( ( α22

a11
,

H2 � h − xn + yn( znα32 − z
2α33  + ε zna3 − zn xn + yn +

a2a11 1 − k2(  − a1 1 − k1( α21
α11α22

 α32 − z
2
nα33 .

(133)

Now, using system (132) on the center manifold,

W
c
(0) � xn, yn, zn( | yn, zn(  � χ5 xn( , χ6 xn( ( , χi(0) � 0, Dχi(0) � 0, i � 5, 6 , (134)

where

χi xn(  � aix
2

+ bix
3

+ O(x)
4
, for i � 5, 6. (135)

In view of (132) and (134), we obtain

χ5 − xn + F2 xn, χ5, χ6( (  � λ2χ5 xn(  + G2 xn, χ5, χ6( ,

χ6 − xn + F2 xn, χ5, χ6( (  � λ3χ6 xn(  + H2 xn, χ5, χ6( .

(136)

Mathematical Problems in Engineering 17



From (136), one gets: a5 � b5 � a6 � b6 � 0. Finally, map
(132); restrict to Wc(0) as

f xn(  � − xn +
h a1 1 − k1( ( 

2/α11  − xnc11 + a1 1 − k1( /α11( ( 
2α11  + ε a1 1 − k1(  xnc11 + a1 1 − k1( /α11( (  − xnc11 + a1 1 − k1( /α11( ( 

2α11 

c11
.

(137)

From (117) and (137), the computation yields:Ω1 � a1(1
− k1)(1 − 2c11)≠ 0. Moreover, Ω2 � (hα11c11 + 2α11c11ε)

2

> 0. )is implies that about P7 model (15) undergoes flip
bifurcation if Ω ∈F|P7

. Moreover, period-2 points bi-
furcating from P7 are stable since Ω2 � (hα11c11 +

2α11c11ε)
2 > 0. □

6.8. Analysis of Bifurcation at P8. From (71), the computa-
tion yields λ1|(75) � − 1, but λ2,3|(75) � 1 − (2/a1(1 − k1))

[a2(1 − k2) − (2a1α21(1 − k1)/α11)], 1 − (2/a1(1 − k1))[a3 −

(a2(1 − k2)α32/α22) + (a1α21α32(1 − k1)/α11α22)]≠ 1 or − 1.
)is suggests that model (15) could undergo flip bifurcation
around P8 if Ω passes the curve:

F|P8
� Ω: h �

2
a1 1 − k1( 

 . (138)

)e proof of the following theorem shows that model
(15) undergoes flip bifurcation around P8 if Ω ∈ F|P8

.

Theorem 16. Model (15) undergoes flip bifurcation around
P8 if Ω ∈ F|P8

.

Proof. Recall that if Ω ∈ F|P8
, then λ1|(75) � − 1, but λ2,3

|(75) � 1 − (2/a1(1 − k1))[a2(1 − k2) − (2a1α21(1 − k1)/α11)
], 1 − (2/a1(1 − k1))[a3 − (a2(1 − k2)α32/α22) + (a1α21α32
(1 − k1)/α11α22)]≠ 1 or − 1. So, in the following, flip bi-
furcation is explored by assuming h≠ (2α11/(a2α11(1 − k2)

− 2a1α21(1 − k1))), (2α11α22/(a3α11α22 − a2α11α32(1 − k2) +

a1α21α32(1− k1))). Let

un � xn −
1 − k1( a1

α11
,

vn � yn −
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
,

wn � zn −
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
.

(139)

)en, (15) becomes

un+1

vn+1

vn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

1 − ha1 1 − k1(  0 0

− hα21
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
  1 − h a2 1 − k2(  −

2a1α21 1 − k1( 

α11
  0

0 − hα32
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
  1 − h a3 −

a2 1 − k2( α32
α22

+
a1α21α32 1 − k1( 

α11α22
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

F3 xn, yn, zn, ε( 

G3 xn, yn, zn, ε( 

H3 xn, yn, zn, ε( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(140)
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where

F3 � h
a1 1 − k1( ( 

2

α11
− α11 un +

a1 1 − k1( 

α11
 

2
⎛⎝ ⎞⎠ + ε a1 1 − k1(  un +

a1 1 − k1( 

α11
  − α11 un +

a1 1 − k1( 

α11
 

2
⎛⎝ ⎞⎠,

G3 � h a2 1 − k2( 
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
 

− α21 vn +
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
 

2

− α21unvn

− α21
a1 1 − k1( 

α11

a2 1 − k2( α11 − a1 1 − k1( α21
α11α22

 

+ ε a2 1 − k2(  vn +
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22
  − α22 vn +

a2 1 − k2( α11 − a1 1 − k1( α21
α11α22

 

2

− α21 un +
a1 1 − k1( 

α11
  vn +

a2 1 − k2( α11 − a1 1 − k1( α21
α11α22

 ,

H3 � h a3
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
  − α32vnwn

− α33 wn +
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
 

2

− α32
a2 1 − k2( α11 − a1 1 − k1( α21

α11α22

a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32
α11α22α33

 

+ ε a3 wn +
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
 

− α33 wn +
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
 

2
⎞⎠ − α32 vn +

a2 1 − k2( α11 − a1 1 − k1( α21
α11α22

 

ε × wn +
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
 .

(141)

Now, by utilizing transformation,

un

vn

wn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

d11 0 0

d21 d22 0

1 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (142)

gives

xn+1

yn+1

zn+1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− 1 0 0

0 λ2 0

0 0 λ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

xn

yn

zn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +

F
∗
2 xn, yn, zn, ε( 

G
∗
2 xn, yn, zn, ε( 

H
∗
2 xn, yn, zn, ε( 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

(143)

Mathematical Problems in Engineering 19



where

d11 �
α211 ha1 − ha1k1 − ha2 1 − k2(  − 2ha1 1 − k1( α21/α11( ( α222α33 ha1 − ha1k1 − h a3 − a2 1 − k2( α32/α22(  + a1 1 − k1( α21α32/α11α22( ( ( 

h
2α21 a2 1 − k2( α11 − a1 1 − k1( α21( α32 a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32( 

,

d21 �
α11α22 ha1 − ha1k1 − h a3 − a2 1 − k2( α32/α22(  + a1 1 − k1( α21α32/α11α22( ( ( α33

hα32 a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32( 
,

d22 � −
α33 − a2α11α22 + a3α11α22 + a2k2α11α22 − 2a1α21α22 + 2a1k1α21α22 − a2α11α32 + a2k2α11α32 + a1α21α32 − a1k1α21α32( 

α32 a3α11α22 − a2α11α32 + a2k2α11α32 + a1α21α32 − a1k1α21α32( 
,

F
∗
2 �

h a1 1 − k1( ( 
2/α11  − xnd11 + a1 1 − k1( /α11( ( 

2α11  + ε a1 1 − k1(  xnd11 + a1 1 − k1( /α11( (  − xnd11 + a1 1 − k1( /α11( ( 
2α11 

d11
,

G
∗
2 � −

d21 h a1 1 − k1( ( 
2/α11  − xnd11 + a1 1 − k1( /α11( ( 

2α11  + ε a1 1 − k1(  xnd11 + a1 1 − k1( /α11( (  − xnd11 + a1 1 − k1( /α11( ( 
2α11  

d11d22

+
h

d22
− xnd11 d21xn + d22yn( α21 − α21 d21xn + d22yn +

a2a11 1 − k2(  − a1 1 − k1( α21
α11α22

 

2
⎛⎝

+
a2 1 − k2(  a2a11 1 − k2(  − a1 1 − k1( α21( 

α11α22
−

a1 1 − k1( α21 a2a11 1 − k2(  − a1 1 − k1( α21( 

α211α22


+
ε

d22
a2 1 − k2(  d21xn + d22yn +

a2a11 1 − k2(  − a1 1 − k1( α21
α11α22

 

−
a1 1 − k1( α21 d11x + a1 1 − k1( /α11( (  d21xn + d22yn + a2a11 1 − k2(  − a1 1 − k1( α21( /α11α22( ( 

α11

− d21xn + d22yn +
a2a11 1 − k2(  − a1 1 − k1( α21

α11α22
 

2

α22⎞⎠,

H
∗
2 � h − yn + 2zn(  d21xn + d22yn( α32 − α32 xn + yn + zn +

a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32
α11α22α33

 

2
⎛⎝

+
a3 a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32( 

α11α22α33

−
a2a11 1 − k2(  − a1 1 − k1( α21( α32 a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32( 

α211α
2
22α33



+
d21 − d22(  h a1 1 − k1( ( 

2/α11  − d11xn + a1 1 − k1( /α11( ( 
2α11  + ϵ a1 1 − k1(  d11xn + a1 1 − k1( /α11( (  − d11xn + a1 1 − k1( /α11( ( 

2α11  

d11d22

−
h

d22
− d11xn d21xn + d22yn( α21 − α21 d21xn + d22yn +

a2a11 1 − k2(  − a1 1 − k1( α21
α11α22

 

2
⎛⎝

+
a2 1 − k2(  a2a11 1 − k2(  − a1 1 − k1( α21( 

α11α22
−

a1 1 − k1( α21 a2a11 1 − k2(  − a1 1 − k1( α21( 

α211α22


+
ε

d22
a2 1 − k2(  d21xn + d22yn +

a2a11 1 − k2(  − a1 1 − k1( α21
α11α22

 

−
a1 1 − k1( α21 d11xn + a1 1 − k1( /α11( (  d21xn + d22yn + a2a11 1 − k2(  − a1 1 − k1( α21( /α11α22( ( 

α11

− d21xn + d22yn +
a2a11 1 − k2(  − a1 1 − k1( α21

α11α22
 

2

α22⎞⎠

+ ε a3 xn + yn + zn +
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
 

− α32 d21xn + d22yn +
a2a11 1 − k2(  − a1 1 − k1( α21

α11α22
 

× xn + yn + zn +
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
 

− xn + yn + zn +
a3α11α22 − a2 1 − k2( α11α32 + a1 1 − k1( α21α32

α11α22α33
 

2

α33⎞⎠.

(144)
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Now, from system (143) on the center manifold

W
c
(0) � xn, yn, zn( | yn, zn(  � χ7 xn( , χ8 xn( ( , χi(0) � 0, Dχi(0) � 0, i � 7, 8 , (145)

where

χi xn(  � aix
2

+ bix
3

+ O(x)
4
, for i � 7, 8. (146)

From (143) and (145), we obtain

χ7 − xn + F
∗
2 xn, χ7, χ8( (  � λ2χ7 xn(  + G

∗
2 xn, χ7, χ8( ,

χ8 − xn + F
∗
2 xn, χ7, χ8( (  � λ3χ8 xn(  + H

∗
2 xn, χ7, χ8( .

(147)

From (147), computation yields: a7 � b7 � a8 � b8 � 0.
Finally, map (143); restrict to Wc(0) as

f
∗
1 xn(  � − xn +

h a1 1 − k1( ( 
2/α11  − xnd11 + a1 1 − k1( /α11( ( 

2α11  + ε a1 1 − k1(  xnd11 + a1 1 − k1( /α11( (  − xnd11 + a1 1 − k1( /α11( ( 
2α11 

d11
.

(148)

From (117) and (148), the computation yields:
Ω1 � a1(1 − k1)(1 − 2d11)≠ 0. Moreover, Ω2 � (hα11d11 +

2α11d11ε)
2 > 0. )is implies that about P8 model (15) un-

dergoes flip bifurcation if Ω ∈F|P8
. Moreover, period-2

points bifurcating from P8 are stable since Ω2 �

(hα11d11 + 2α11d11)
2 > 0. □

7. Numerical Simulations

Numerical simulations of three-species model (15) are
performed in this section to check previous theoretical
findings and to show rich dynamical behaviors. In this
regard, following eight cases are presented to address the
accuracy of theoretical results obtained about fixed points
for model (15):

Case I: if a1 � 4.1, a2 � 4.2, a3 � 0.08, k1 � 2.2, k2 � 0.6
, α11 � 0.04, α22 � 0.4, α21 � 0.09, α32 � 0.09,

and α33 � 0.4, then, from (29), one gets h �

0.4065040650406504. From (27), if h � 0.01
<min 0.4065040650406504,{ 0.20703933747412007}

and starting from (0.9, 0.1, 0.2), then Figure 1(a) in-
dicates that P1 of (15) is a source. However, if
h � 0.5>max 0.406504065040, 0.2070393374741{ },
then Figure 1(b) indicates that P1 of (15) is a saddle.
Hence, theoretical results obtained in Lemma 2 co-
incide with numerical simulations.
Case II: if a1 � 4.1, a2 � 4.2, a3 � 2.7, k1 � 2.2, k2
� 0.6, α11 � 1.2, α22 � 1.4, α21 � 1.9, α32 � 0.9, and
α33 � 0.4, then, from (35), one gets h �

0.7407407407407407. Figure 2(a) indicates if h � 0.01
< 0.7407407407407407, then P2 of (15) is a sink.
However, if h � 0.95> 0.7407407407407407, then
Figure 2(b) indicates that P2 is unstable. Moreover, if
h � 0.7407407407407407, then P2 exchanges the stability,

and in fact, flip bifurcation takes place by )eorem 10.
)erefore, the flip bifurcation diagrams are presented in
Figure 3. Finally, maximum Lyapunov exponents cor-
responding to Figure 3 are drawn in Figure 4.
Case III: if a1 � 4.1, a2 � 4.2, a3 � 2.7, k1 � 2.2, k2 �

1.6, α11 � 1.2, α22 � 1.4, α21 � 1.9, α32 � 0.9, and
α33 � 0.4, then, from (42), one gets h �

0.7936507936507935. Hence, P3 is stable if h<
0.7936507936507935, and exchange stability is h �

0.7407407407407407, and in fact, flip bifurcation takes
place by )eorem 11. )erefore, the flip bifurcation
diagrams with initial value (0, 0.3, 0.1) are presented in
Figure 5. Finally, maximum Lyapunov exponents
corresponding to Figure 5 are drawn in Figure 6.
Case IV: if a1 � 5.1, a2 � 4.2, a3 � 2.7, k1 � 0.09, k2 �

1.6, α11 � 1.2, α22 � 1.4, α21 � 1.9, α32 � 0.9, and α33 �

0.4, then, from (48), one gets h � 0.43094160
741219567. Hence, P4 is stable if h< 0.4309416074
1219567, and exchange stability is h � 0.43094160
741219567, and in fact, flip bifurcation takes place by
)eorem 12. )erefore, the flip bifurcation diagrams
with initial value (0.1, 0.2, 0.1) are presented in Fig-
ure 7. Finally, maximum Lyapunov exponents corre-
sponding to Figure 7 are drawn in Figure 8.
Case V: if a1 � 7.1, a2 � 4.2, a3 � 2.7, k1 � 1.9, k2 �

1.6, α11 � 1.2, α22 � 1.4, α21 � 1.9, α32 � 0.9, and
α33 � 0.4, then, from (54), one gets h � 0.312989
04538341166. Hence, P5 is stable if h< 0.312
98904538341166, and exchange stability is h �

0.31298904538341166, and in fact, flip bifurcation takes
place by )eorem 13. )erefore, the flip bifurcation
diagrams with initial value (0, 0.1, 0.1) are presented in
Figure 9. Finally, maximum Lyapunov exponents
corresponding to Figure 9 are drawn in Figure 10.
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Figure 9: Flip bifurcation diagrams at P5, where h ∈ [0.1, 1.4].
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Figure 11: Flip bifurcation diagrams at P6, where h ∈ [0.1, 1.4].
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Figure 13: Flip bifurcation diagrams at P7, where h ∈ [0.1, 1.0].
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Table 1: Dynamical classifications around fixed points of model (15).

Fixed
points Corresponding behavior

P1
Not sink; source if 0< h<min 2/a1(k1 − 1), 2/a2(k2 − 1) ; saddle if

h>max 2/a1(k1 − 1), 2/a2(k2 − 1) ; nonhyperbolic if h � 2/a1(k1 − 1) or h � 2/a2(k2 − 1)

P2

Sink if h>max 2/a1(k1 − 1), 2/a2(k2 − 1)  and 0< h< (2/a3)

Source if 0< h<min 2/a1(k1 − 1), 2/a2(k2 − 1)  and h> (2/a3)

Saddle if 0< h<min 2/a1(k1 − 1), 2/a2(k2 − 1)  and 0< h< (2/a3)

Nonhyperbolic if h � (2/a3) or h � (2/a1(k1 − 1)) or h � (2/a2(k2 − 1))

P3

Sink if h>max 2/a1(k1 − 1), 2α22/(a2α32(1 − k2) − a3α22)  and 0< h< 2/a2(1 − k2)

Source if 0< h<min 2/a1(k1 − 1), 2α22/(a2α32(1 − k2) − a3α22)  and h> 2/a2(1 − k2)

Saddle if h>max 2/a1(k1 − 1), 2/a2(1 − k2)  and 0< h< (2α22/(a2α32(1 − k2) − a3α22))
Nonhyperbolic if h � 2/a2(1 − k2) or h � 2/a1(k1 − 1) or h � 2α22/(a2α32(1 − k2) − a3α22)

P4

Not sink; source if h>max 2/a1(1 − k1), 2/a2(k2 − 1) 

Saddle if 0< h<min 2/a1(1 − k1), 2/a2(k2 − 1) 

Nonhyperbolic if h � (2/a1(1 − k1)) or h � (2/a2(k2 − 1))

P5

Sink if h>max 2/a1(k1 − 1), 2α22/(a3α22 − a2α32(1 − k2))  and 0< h< 2/a2(1 − k2)

Source if 0< h<min 2/a1(k1 − 1), 2α22/(a3α22 − a2α32(1 − k2))  and h> 2/a2(1 − k2)

Saddle if h>max 2/a1(k1 − 1), 2α22/(a3α22 − a2α32(1 − k2))  and h> 2/a2(1 − k2)

Nonhyperbolic if h � 2/a1(k1 − 1) or h � (a3α22 − 2α22)/a2α32(1 − k2) or h � 2/a2(1 − k2)
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Figure 15: Flip bifurcation diagrams at P8, where h ∈ [0.1, 4.2].
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Case VI: if a1 � 7.1, a2 � 4.2, a3 � 2.7, k1 � 0.0009, k2 �

1.6, α11 � 1.2, α22 � 1.4, α21 � 1.9, α32 � 0.9, α33 � 0.4
then from (61) one gets: h � 0.2819438903463822.
Hence P6 is stable if h< 0.2819438903463822, and
exchange stability if h � 0.2819438903463822 and
infact flip bifurcation takes place by )eorem 14.
)erefore the flip bifurcation diagrams with initial
value (0.1, 0, 0.1) are presented in Figure 11. Finally
maximum lypunov exponents corresponding to Fig-
ure 11 are drawn in Figure 12.
Case VII: If a1 � 9.1, a2 � 4.2, a3 � 2.7, k1 � 0.23, k2 �

4.6, α11 � 1.2, α22 � 1.4, α21 � 0.099, α32 � 5.9, and α33
� 2.4, then, from (68), one gets h � 0.285428
8568574283. Hence, P7 is stable if h< 0.2854
288568574283, and exchange stability is h � 0.2854
288568574283, and in fact, flip bifurcation takes place
by)eorem 15.)erefore, the flip bifurcation diagrams
with initial value (0.2, 0.1, 0) are presented in Figure 13.
Finally, maximum Lyapunov exponents corresponding
to Figure 13 are drawn in Figure 14.

Case VIII: if a1 � 9.1, a2 � 1.2, a3 � 2.7, k1 � 0.9, k2 �

0.006, α11 � 4.2, α22 � 1.4, α21 � 4.9, α32 � 1.9, and
α33 � 0.4, then, from (75), one gets h � 2.19780
21978021984. Hence, P7 � (0.21666666666666,

0.09366666666666, 6.305083333333) is stable if h<
2.1978021978021984, and exchange stability is
h � 2.1978021978021984, and in fact, flip bifurcation
takes place by )eorem 16. )erefore, flip bifurcation
diagrams with (0.2, 0.2, 0.4) are presented in Figure 15
which indicates that period-2 points bifurcate from
P8 are stable, since Ω2 � (hα11d11 + 2α11d11)

2 �

310.844023668> 0. Finally, maximum Lyapunov ex-
ponents corresponding to Figure 15 are drawn in
Figure 16.

8. Conclusion

)e work is about the existence of fixed points, topological
classifications around fixed points, periodic points, and
bifurcations of a three-species discrete food chain model
with harvesting in the region: R3

+ � (x, y, z): x, y, z≥ 0 .
We proved that, for all parametric values h, a1, a2, a3, k1, k2,
α11, α22, α21, α32, and α33, model (15) has trivial fixed point:
P1 � (0, 0, 0); boundary fixed points: P2 � (0, 0, a3/α33)
∀a3, α33 > 0; P3 � (0, (1 − k2)a2/α22, 0)if k2 < 1; P4 � ((1 −

k1)a1/α11, 0, 0)if k1 < 1; P5 � (0, (1 − k2)a2/α22, ((a3α22 −

α32(1 − k2)a2)/α22α33))if a3 > (α32(1 − k2)a2/α22)with k2
< 1; P6 � ((1 − k1)a1/α11, 0, a3/α33)if k1 < 1; P7 � ((1 − k1)

a1/α11, (a2(1 − k2)α11 − a1(1 − k1)α21)/α11α22, 0)if a2 > (a1
(1 − k1)α21/(1− k2)α11)with k1, k2 < 1. We also proved that
if k1 < 1, a2 > (a1(1 − k1)α21/(1 − k2)α11) and a3 > (a2(1
− k2)α11α32 − a1(1 − k1)α21α32)/α11α22; then, P8 � (((1 − k1)

a1/α11), (a2(1 − k2)α11 − a1(1 − k1)α21)/α11α22, (a3α11α22 −

a2(1 − k2)α11α32 + a1(1 − k1)α21α32)/α11α22α33) is an in-
terior equilibrium point of (15). Furthermore, we studied the
local stability with different topological classifications
around each fixed points whose main findings are presented
in Table 1. Next, for under consideration model (15), we also
studied existence of periodic points by existing theory.
Furthermore, we explored the existence of possible bi-
furcations about each fixed points in order to understand
dynamics of model (15) deeply. It is proved that (i) around
P1 model undergoes no flip bifurcation if Ω ∈ F|P1

�

Ω: h � 2/a1(k1 − 1) , (ii) around P2 model undergoes flip
bifurcation if Ω ∈ F|P2

� Ω: h � 2/a3 , (iii) around P3
model undergoes flip bifurcation if Ω ∈ F|P3

� Ω: h �{

2/a2(1 − k2)}, (iv) around P4 model undergoes flip bi-
furcation ifΩ ∈ F|P4

� Ω: h � 2/a1(1 − k1) , (v) aroundP5
model undergoes flip bifurcation if Ω ∈ F|P5

� Ω: h �{

2/a1(k1 − 1)}, (vi) around P6 model undergoes flip

Table 1: Continued.

Fixed
points Corresponding behavior

P6

Sink if 0< h<min 2/a1(1 − k1), 2/a3  and h> 2α11/(a1α21(1 − k1) − a2α11(1 − k2));
source if h>max 2/a1(1 − k1), 2/a3  and 0< h< 2α11/(a1α21(1 − k1) − a2α11(1 − k2));

saddle if 0< h<min 2/a1(1 − k1), 2/a3  and 0< h< 2α11/(a1α21(1 − k1) − a2α11(1 − k2));
nonhyperbolic if h � 2/a1(1 − k1) or h � (2/a3) or h � 2α11/(a1α21(1 − k1) − a2α11(1 − k2)).

P7

Sink if 0< h<min 2/a1(1 − k1), 2α11/(a2α11(1 − k2) − 2a1α21(1 − k1))  and
h> 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1))

Source if h>max 2/a1(1 − k1), 2α11/(a2α11(1 − k2) − 2a1α21(1 − k1))  and
0< h< 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1))

Saddle if 0< h<min 2/a1(1 − k1), 2α11/(a2α11(1 − k2) − 2a1α21(1 − k1))  and
h< 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1))

Nonhyperbolic if h � 2/a1(1 − k1) or h � 2α11/(a2α11(1 − k2) − 2a1α21(1 − k1)) or
h � 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1))

P8

Sink if
0< h<min 2/a1(1 − k1), 2α11/(a2α11(1 − k2) − 2a1α21(1 − k1)), 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1)) 

Source if
h>max 2/a1(1 − k1), 2α11/(a2α11(1 − k2) − 2a1α21(1 − k1)), 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1)) 

Saddle if 0< h<min 2/a1(1 − k1), 2α11/(a2α11(1 − k2) − 2a1α21(1 − k1))  and
h> 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1))

Nonhyperbolic if h � 2/a1(1 − k1) or h �
2α11

a2α11(1− k2)− 2a1α21(1− k1)
or h � 2α11α22/(a3α11α22 − a2α11α32(1 − k2) + a1α21α32(1 − k1))
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bifurcation if Ω ∈F|P6
� Ω: h � 2/a1(1 − k1) , (vii)

around P7 model undergoes flip bifurcation if Ω ∈F|P7
�

Ω: h � 2/a1(1 − k1) , and (viii) around P8 model un-
dergoes flip bifurcation ifΩ ∈ F|P8

� Ω: h � 2/a1(1 − k1) .
Finally, obtained results are verified numerically. )is re-
search can provide a framework for theoretical basis and
help for the research in different aspects of biology specif-
ically in the field of ecology.
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'e aim of this paper is to unify the extended Mittag-Leffler function and generalized Q function and define a unified Mittag-
Leffler function. Both the extended Mittag-Leffler function and generalized Q function can be obtained from the unified Mittag-
Leffler function. 'e Laplace, Euler beta, and Whittaker transformations are applied for this function, and generalized formulas
are obtained. 'ese formulas reproduce integral transformations of various deduced Mittag-Leffler functions and Q function.
Also, the convergence of this unified Mittag-Leffler function is proved, and an associated fractional integral operator
is constructed.

1. Introduction

'e exponential function naturally exists in the solution of
differential equations and plays a very vital role in solving
real-world problems modeled in the form of differential
mathematical systems. At the same time, the Mittag-Leffler
function provides assistance in the formulation of solutions
of complicated fractional dynamical systems.'e aim of this
paper is to unify two types of functions, namely, an extended
generalized Mittag-Leffler function given in (7) and the Q
function given in (8). We study Laplace, Euler beta, and
Whittaker transformations of extended generalized Mittag-
Leffler function given in (7) and the Q function given in (8)
in the compact formulas. Also we will define a compact form
of fractional integral operator.

First, we give some basic definitions and notations which
will be helpful to understand later definitions. 'ese include
the Laplace transform, Euler beta transform, Whittaker
transform, gamma function (Γ), beta function (B), p-beta
function (Bp), Mittag-Leffler function (Eα,β), extended
Mittag-Leffler function (Eλ,r,k,θ

α,β,c ), the fractional integral

operator associated with extended Mittag-Leffler function
and generalized Q function (Q

λ,ρ,θ,k,n

α,β,c,δ,μ,]).

Definition 1 (see [1]). Laplace transform of an integrable
function f on [0,∞) is defined as follows:

L[f(t)] � 
∞

0
e

− st
f(t)dt, (1)

where s ∈ C is the variable of the transform.

Definition 2 (see [2]).'e Euler beta transform of a function
f is defined by the following definite integral:

B[f(t); a, b] � 
1

0
t
a− 1

(1 − t)
b− 1

f(t)dt, (2)

where a and b are any complex number with R(a)> 0 and
R(b)> 0.

Definition 3 (see [2]).'eWhittaker transform is defined by
the following improper integral:
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∞

0
e

− (t/2)
t
]− 1ωλ,μ(t)dt �

Γ((1/2) + μ + ])Γ((1/2) − μ + ])

Γ(1 − λ + ])
,

(3)

where R(μ ± ])> − (1/2) and ωλ,μ is the Whittaker con-
fluent hypergeometric function.

Definition 4 (see [3]). 'e gamma function is defined by the
following improper integral:

Γ(z) � 
∞

0
e

− t
t
z− 1dt, (4)

where R(z)> 0.

Definition 5 (see [2]). 'e beta function is defined by a
definite integral and is given by

B(m, n) � 
1

0
t
m− 1

(1 − t)
n− 1dt, (5)

where R(m), R(n)> 0.

Definition 6 (see [4]). 'e Mittag-Leffler function with two
parameters is defined by the following series:

Eα,β(z) � 
∞

l�0

z
l

Γ(αl + β)
, (6)

where R(α)> 0.

Definition 7 (see [5]). An extended and generalized Mittag-
Leffler function (E

δ,μ,k,]
α,β,c ) is defined by the following series:

E
λ,r,k,θ
α,β,c (z; p) � 

∞

l�0

Bp(λ + lk, θ − λ)(θ)lkz
l

B(λ, θ − λ)(c)lrΓ(αl + β)
, (7)

where z, α, β, c, θ, λ ∈ C,R(α),R(β),R(c),R(θ),R(λ)> 0
with p≥ 0, r> 0, 0< k≤ r + R(α), and (θ)lk � (Γ(θ + lk)/
Γ(θ)).

Definition 8 (see [2]). A generalized Q function (Q
λ,ρ,θ,k,n

α,β,c,δ,μ,])

is defined by the following series:

Q
λ,ρ,θ,k,n

α,β,c,δ,μ,] z; a, b(  � 
∞

l�0


n
i�1 B bi, l( (λ)ρl(θ)klz

l


n
i�1 B ai, l( (c)δl(μ)]lΓ(αl + β)

,

(8)

where a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn), α, β, c, δ,

μ, ], λ, ρ, θ, ai, bi ∈ C, min R(α),R(β),R(c),R(θ),R(λ),

R(δ),R(ρ)}> 0, k ∈ (0, 1)∪N.

'e Mittag-Leffler function takes place naturally similar
to that of the exponential function in the solutions of
fractional integro-differential equations having the arbitrary
order. 'e Mittag-Leffler functions have to gain more rec-
ognition due to their wide applications in diverse fields
[5–9]. 'ey are used to define new fractional integral op-
erators, and the fractional integral operators are used to
generalize mathematical inequalities, see [5, 8, 10–14].

Our motivation is to introduce the unified Mittag-Leffler
function. In this paper, we unify the extended Mittag-Leffler
function (7) and generalized Q function (8) in a single
function named unified Mittag-Leffler function. We studied
the Laplace, Euler beta, andWhittaker transformation of the
unified Mittag-Leffler function and obtained the compact
formulas which reproduce integral transformations of
Mittag-Leffler function and generalized Q function. Fur-
thermore, the convergence of unifiedMittag-Leffler function
is proved, associated fractional integral operator is defined,
and its boundedness is provided.

In the next section, we give the definition of unified
Mittag-Leffler function and deduce extended generalized
Mittag-Leffler function and generalized Q functions.

2. Unified Mittag-Leffler Function

We define a Mittag-Leffler function (will be called the
unified Mittag-Leffler function) which unifies the functions
given in (7) and (8) as follows:

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] z; a, b, c, p(  � 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

z
l

Γ(αl + β)
,

(9)
where a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn), c � (c1, c2,

. . . , cn), ai, bi, ci ∈ C; i � 1, . . . , n such that R(ai),R(bi),

R(ci)> 0,∀ i. Also let α, β, c, δ, μ, ], λ, ρ, θ, z ∈ C,
min R(α),R(β),R(c),R(δ),R(λ),R(θ) > 0, and k ∈
(0, 1)∪N with k + R(ρ)<R(δ + ] + α), Im(ρ) �

Im(δ + ] + α).
For n � 1, (9) will obtain the following form:

M
λ,ρ,θ,k,1
α,β,c,δ,μ,] z; a, b, c, p(  � 

∞

l�0

Bp b1, a1( (λ)ρl(θ)kl

B c1, a1( (c)δl(μ)]l

z
l

Γ(αl + β)
.

(10)
By setting b1 � c1 + lk, a1 � θ − λ, c1 � λ, ρ � ] � 0, δ > 0

in (10), we will get (7). Also, by substituting ai � l, p � 0 and
R(ρ)> 0 in (9), we will obtain (8). Hence the newly defined
Mittag-Leffler function provides different kinds of related
functions by setting the specific values of the parameters.'e
functions defined in [2, 4–9, 15] are particular cases of this
newly defined function.

2.1. Integral Transforms of Unified Mittag-Leffler Function.
Now we give the integral transforms of the unified Mittag-
Leffler function. 'ese transformations include the Laplace
transform, Euler beta transform, and Whittaker transform.

2.1.1. Laplace Transform. First we give the Laplace trans-
form of the unified Mittag-Leffler function.

Theorem 1. For a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn),

c � (c1, c2, . . . , cn), ai, bi, ci ∈ C; i � 1, . . . , n such that
R(ai),R(bi),R(ci)> 0,∀ i. Also let α, β, c, δ, μ, ], λ, ρ,
θ, t ∈ C, min R(α),R(β),R(c),R(δ),R(λ),R(θ) > 0,
and k ∈ (0, 1)∪N with k + R(ρ)<R(δ + ] + α),
Im(ρ) � Im(δ + ] + α), and the Laplace transform of unified
Mittag-Leffler function is given as follows:
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L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � s
− 1

M
λ,ρ,θ,k,1,n

α,β,c,δ,μ,] s
− 1

; a, b, c, p .

(11)

Proof. By the definition of the Laplace transform of a
function, we have

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � 
∞

0
e

− st


∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

t
l

Γ(αl + β)
dt

� 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

1
Γ(αl + β)

l!

s
l+1

�
1
s



∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

1
Γ(αl + β)

s
− l

(1)l.

(12)

Hence the Laplace transform of the unified Mittag-
Leffler function can be given as follows:

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � s
− 1

M
λ,ρ,θ,k,1,n

α,β,c,δ,μ,] s
− 1

; a, b, c, p .

(13)

□

Corollary 1. For ai � l, p � 0, and R(ρ)> 0, the Laplace
transform of the unified Mittag-Leffler function will become

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � L Q
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; b, c(  . (14)

Proof. From 'eorem 1, we have

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � s
− 1



∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

(1)ls
− l

Γ(αl + β)
. (15)

For p � 0, Bp(x, y) � B(x, y). 'erefore the above expression becomes

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � s
− 1



∞

l�0


n
i�1 B bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

(1)ls
− l

Γ(αl + β)
. (16)

Putting ai � l and R(ρ)> 0, we get the following:

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � s
− 1



∞

l�0


n
i�1 B bi, l( (λ)ρl(θ)kl


n
i�1 B ci, l( (c)δl(μ)]l

l!s
− l

Γ(αl + β)
. (17)

Hence we get

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � L Q
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; b, c(  . (18)

Similarly for n� 1, b1� c1 + lk, a1� θ − λ, c1� λ, ρ� ]� 0
and δ > 0 one can have

L M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � L E
λ,δ,k,θ
α,β,c (t; p) . (19)

□

2.1.2. Euler Beta Transform. 'e Euler beta transformation of
the unifiedMittag-Leffler function is given in the next theorem.

Theorem 2. For a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn),

c � (c1, c2, . . . , cn), ai, bi, ci ∈ C; i � 1, . . . , n such that
R(ai),R(bi),R(ci)> 0,∀ i. Also let α, β, c, δ, μ, ], λ, ρ,
θ, t ∈ C, min R(α),R(β),R(c),R(δ),R(λ),R(θ) > 0,
and k ∈ (0, 1)∪N with k + R(ρ)<R(δ + ] + α),
Im(ρ) � Im(δ + ] + α), and the Euler beta transform of the
unified Mittag-Leffler function is given as follows:
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B M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( ; m, n  � 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

B(l + m, n)

Γ(αl + β)
. (20)

Proof. By the definition of beta transform of an integrable
function, we have the following:

B M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( ; m, n  � 
1

0
t
m− 1

(1 − t)
n− 1



∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

t
l

Γ(αl + β)
dt

� 
∞

l�0

Πn
i�1Bp bi, ai( (λ)ρl(θ)kl

Πn
i�1B ci, ai( (c)δl(μ)]l

1
Γ(αl + β)


1

0
t
(l+m)− 1

(1 − t)
n− 1dt

� 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

B(l + m, n)

Γ(αl + β)
.

(21)

□
Corollary 2. For ai � l, p � 0, and R(ρ)> 0, the Euler beta
transform of unified Mittag-Leffler function will become

B M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � B Q
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; b, c(  . (22)

Similarly for n� 1, b1� c1 + lk, a1� θ − λ, c1� λ, ρ� ]� 0
and δ > 0 one can have

B M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(   � B E
λ,δ,k,θ
α,β,c (t; p) . (23)

2.1.3. Whittaker Transform. 'e Whittaker transformation
of the unified Mittag-Leffler function is given in the next
theorem.

Theorem 3. For a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn),

c � (c1, c2, . . . , cn), ai, bi, ci ∈ C; i � 1, . . . , n such that
R(ai),R(bi),R(ci)> 0,∀ i. Also let α, β, c, δ, μ, ], ζ, ρ,

θ, t ∈ C, min R(α),R(β),R(c),R(δ),R(ζ),R(θ) > 0,
and k ∈ (0, 1)∪N with k + R(ρ)<R(δ + ] + α),
Im(ρ) � Im(δ + ] + α), and we have


∞

0
e

− (ϕt/2)
t
ξ− 1ωλ,ψ(ϕt)M

ζ,ρ,θ,k,n

α,β,c,δ,μ,] ωt
η
; a, b, c, p( dt

�
ϕ− ξ

(f − 1)!

(g − 1)!
M

ζ,ρ,θ,k,f,η,n

α,β,c,δ,μ,],g,η,1 ωϕ− η
; a, b, c, p( ,

(24)

where f � (1/2) ± ψ + ξ and g � 1 − λ + ξ.

Proof. Consider the following improper integral:


∞

0
e

− (ϕt/2)
t
ξ− 1ωλ,ψ(ϕt)M

ζ,ρ,θ,k,n

α,β,c,δ,μ,] ωt
η
; a, b, c, p( dt. (25)

By substituting ϕt � q in the above integral, we obtain
the following:


∞

0
e

− (q/2) q

ϕ
 

ξ− 1

ωλ,ψ(q)M
ζ,ρ,θ,k,n

α,β,c,δ,μ,] ω
q

ϕ
 

η

; a, b, c, p 
dq

ϕ

� ϕ− ξ

∞

0
e

− (q/2)
q
ξ− 1ωλ,ψ(q)

∞

l�0


n
i�1 Bp bi, ai( (ζ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl
(q/ϕ)

ηl

Γ(αl + β)
dq

� ϕ− ξ


∞

l�0


n
i�1 Bp bi, ai( (ζ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl
(1/ϕ)

ηl

Γ(αl + β)

∞

0
e

− (q/2)
q

(ξ+ηl)− 1ωλ,ψ(q)dq.

(26)
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By using the definition of Whittaker transformation, we
get

� ϕ− ξ


∞

l�0


n
i�1 Bp bi, ai( (ζ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl
(1/ϕ)

ηl

Γ(αl + β)

Γ((1/2) + ψ + ξ + ηl)Γ((1/2) − ψ + ξ + ηl)

Γ(1 − λ + ξ + ηl)

� ϕ− ξ


∞

l�0


n
i�1 Bp bi, ai( (ζ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl
(1/ϕ)

ηl

Γ(αl + β)

Γ((1/2) ± ψ + ξ + ηl)

Γ(1 − λ + ξ + ηl)Γ(1 + l)

� ϕ− ξ


∞

l�0


n
i�1 Bp bi, ai( (ζ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl
(1/ϕ)

ηl

Γ(αl + β)

Γ(g)Γ(f + ηl)Γ(f)

Γ(g)Γ(g + ηl)Γ(1 + l)Γ(f)

� ϕ− ξ


∞

l�0


n
i�1 Bp bi, ai( (ζ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl
(1/ϕ)

ηl

Γ(αl + β)

(f − 1)!(f)ηl

(g − 1)!(g)ηl(1)l

� ϕ− ξ(f − 1)!

(g − 1)!
M

ζ,ρ,θ,k,f,η,n

α,β,c,δ,μ,],g,η,1 ωϕ− η
; a, b, c, p( ,

(27)

where f: � (1/2) ± ψ + ξ and g: � 1 − λ + ξ, and the re-
quired result is obtained. □

Corollary 3. For ai � l, p � 0 and R(ρ)> 0, we have


∞

0
e

− (ϕt/2)
t
ξ− 1ωλ,ψ(ϕt)M

ζ,ρ,θ,k,n

α,β,c,δ,μ,] ωt
η
; a, b, c, p( dt

� 
∞

0
e

− (ϕt/2)
t
ξ− 1ωλ,ψ(ϕt)Q

ζ,ρ,θ,k,n

α,β,c,δ,μ,] ωt
η
; b, c( dt.

(28)

Similarly for n� 1, b1� c1 + lk, a1� θ − λ, c1� λ, ρ� ]� 0
and δ > 0 one can have


∞

0
e

− (ϕt/2)
t
ξ− 1ωλ,ψ(ϕt)M

ζ,ρ,θ,k,n

α,β,c,δ,μ,] ωt
η
; a, b, c, p( dt


∞

0
e

− (ϕt/2)
t
ξ− 1ωλ,ψ(ϕt)E

ζ,δ,k,n
α,β,c ωt

η
p( dt.

(29)

3. Convergence of Unified
Mittag-Leffler Function

Before stating the theorem for the convergence of the unified
Mittag-Leffler function, we give an important formula that
will be used in the proof of our theorem.

Definition 9. 'e asymptotic formula for the gamma
function is given in [5] the following:

Γ(a + z)

Γ(b + z)
� z

a− b 1 +
(a − b)(a + b − 1)

2z
+ O

1
z
2  ,

|z|⟶∞, |argz|< π.

(30)

Theorem 4. Je unified Mittag-Leffler function (M
λ,ρ,θ,k,n

α,β,c,δ,μ,])

converges absolutely for all values of t ∈ C if
k + R(ρ)<R(δ + ] + α) with Im(ρ) � Im(δ + ] + α).

Proof. By the definition of the unified Mittag-Leffler func-
tion, we have the following series:

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( 

� 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

t
l

Γ(αl + β)

� 

∞

l�0
alt

l
,

(31)

where

al �


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

1
Γ(αl + β)

al

al+1




�

(λ)ρl

(λ)ρl+ρ
·

(θ)kl

(θ)kl+k

·
(c)δl+δ

(c)δl

·
(μ)]l+]
(μ)]l

·
Γ(αl + α + β)

Γ(αl + β)




.

(32)

Applying limit on both sides, we get the following:

lim
l⟶∞

al

al+1




� lim

l⟶∞

(λ)ρl

(λ)ρl+ρ
·

(θ)kl

(θ)kl+k

·
(c)δl+δ

(c)δl

·
(μ)]l+]
(μ)]l

·
Γ(αl + α + β)

Γ(αl + β)




. (33)
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Using (30), the fractions involving Pochhammer sym-
bols and gamma function in (33) become the following:

(λ)ρl

(λ)ρl+ρ
� (ρl)

− ρ 1 −
2λ + ρ − 1

2l
+ O

1
(ρl)

2  , (34)

(θ)kl

(θ)kl+k

� (kl)
− k 1 −

2θ + k − 1
2l

+ O
1

(kl)
2  , (35)

(c)δl+δ

(c)δl

� (δl)
δ 1 +

2c + δ − 1
2l

+ O
1

(δl)
2  , (36)

(μ)]l+]
(μ)]l

� (]l)
] 1 +

2μ + ] − 1
2l

+ O
1

(]l)
2  , (37)

Γ(αl + α + β)

Γ(αl + β)
� (αl)

α 1 +
2β + α − 1

2l
+ O

1
(αl)

2  . (38)

Using (34)–(38) in (33), we get the following:

lim
l⟶∞

al

al+1




≈ lim

l⟶∞
|(ρl)

− ρ 1 −
2λ + ρ − 1

2l
+ O

1
(ρl)

2  

×(kl)
− k 1 −

2θ + k − 1
2l

+ O
1

(kl)
2  (δl)

δ 1 +
2c + δ − 1

2l
+ O

1
(δl)

2  

×(]l)
] 1 +

2μ + ] − 1
2l

+ O
1

(]l)
2  (αl)

α 1 +
2β + α − 1

2l
+ O

1
(αl)

2  |,

lim
l⟶∞

al

al+1




≈ lim

l⟶∞

δδ]]αα

ρρkk
· l

(δ+]+α)− (ρ+k)
.

(39)

'e formula for the radius of convergence of a series is

lim
l⟶∞

al

al+1




� R. (40)

'erefore, the function M
λ,ρ,θ,k,n

α,β,c,δ,μ,] converges absolutely
for all values of t if k + R(ρ)<R(δ + ] + α) with
Im(ρ) � Im(δ + ] + α). □ □

Next, we give recurrence relations of unified Mittag-
Leffler function.

Theorem 5. Let a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn), c �

(c1, c2, . . . , cn), ai, bi, ci ∈ C; i � 1, . . . , n such that
R(ai),R(bi),R(ci)> 0,∀ i. Also let α, β, c, δ, μ, ], λ, ρ,

θ, t ∈ C, min R(α),R(β),R(c),R(δ),R(λ),R(θ) > 0,
and k ∈ (0, 1)∪N with k + R(ρ)<R(δ + ] + α),
Im(ρ) � Im(δ + ] + α), and then the difference of two con-
secutive unified Mittag-Leffler functions is given as follows:

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(  − M
λ,ρ,θ,k,n

α,β,c− 1,δ,μ,] t; a, b, c, p( 

�
tδ

1 − c

d
dt

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( ,

(41)

with R(c)> 1.

Proof. By the definition of the unified Mittag-Leffler func-
tion, we have

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p(  − M
λ,ρ,θ,k,n

α,β,c− 1,δ,μ,] t; a, b, c, p( 

� 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (μ)]l

t
l

Γ(αl + β)

1
(c)δl

−
1

(c − 1)δl

 

� 

∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (μ)]l

t
l

Γ(αl + β)

Γ(c)

Γ(c + δl)

δl

1 − c

�
δt

1 − c


∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (μ)]l(c)δl

lt
l− 1

Γ(αl + β)

�
tδ

1 − c

d
dt

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( .

(42)

□
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Theorem 6. For m ∈ Z+, a � (a1, a2, . . . , an), b �

(b1, b2, . . . , bn), c � (c1, c2, . . . , cn),where ai, bi, ci ∈ C; i �

1, . . . , n such that R(ai),R(bi),R(ci)> 0,∀ i. Also let
α, β, c, δ, μ, ], λ, ρ, θ, t ∈ C, min R(α),R(β),R(c),R

(δ),R(λ),R(θ)} > 0 and k ∈ (0, 1)∪N with k + R(ρ)<
R(δ + ] + α), Im(ρ) � Im(δ + ] + α), and mth derivative of
unified Mittag-Leffler function is given by

d
dt

 

m

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( 

�
(λ)mρ(θ)mk

(c)mδ(μ)m]


∞

l�0


n
i�1 Bp bi, ai( (λ + ρm)ρl(θ + km)kl


n
i�1 B ci, ai( (c + δm)δl(μ + ]m)]l

·
(1 + l)mt

l

Γ(α(l + m) + β)
.

(43)

Proof. Differentiating the unified Mittag-Leffler function m
times, we get

d
dt

 

m

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( 

� 
∞

l�m


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

[l(l − 1), . . . , (l − (m − 1))]t
l− m

Γ(αl + β)

� 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρ(l+m)(θ)k(l+m)


n
i�1 B ci, ai( (c)δ(l+m)(μ)](l+m)

[(l + m)(l + m − 1), . . . , (l + 1)]t
l

Γ(αl + β)
.

(44)

We know that (θ)a+b � (θ + a)b(θ)a. 'erefore, we
obtain

d
dt

 

m

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] t; a, b, c, p( 

�
(λ)mρ(θ)mk

(c)mδ(μ)m]


∞

l�0


n
i�1 Bp bi, ai( (λ + ρm)ρl(θ + km)kl


n
i�1 B ci, ai( (c + δm)δl(μ + ]m)]l

·
(1 + l)mt

l

Γ(α(l + m) + β)
.

(45)

□

Next, we give the definition of fractional integral op-
erator with unified Mittag-Leffler (Mfunction) as the kernel.

Definition 10. Let f ∈ L1[a, b]. 'en ∀ ξ ∈ [a, b], the frac-
tional integral operator with Mfunction as its kernel is
defined as follows:

I
ω,λ,ρ,θ,k,n

a+ ,α,β,c,δ,μ,]f ξ; a, b, c, p(  � 
ξ

a
(ξ − t)

β− 1
M

λ,ρ,θ,k,n

α,β,c,δ,μ,] ω(ξ − t)
α
; a, b, c, p( f(t)dt,

I
ω,λ,ρ,θ,k,n

b− ,α,β,c,δ,μ,]f ξ; a, b, c, p(  � 
b

ξ
(t − ξ)

β− 1
M

λ,ρ,θ,k,n

α,β,c,δ,μ,] ω(t − ξ)
α
; a, b, c, p( f(t)dt,

(46)

with a � (a1, a2, . . . , an), b � (b1, b2, . . . , bn), c � (c1, c2,

. . . , cn),where ai, bi, ci,ω ∈ C; i � 1, . . . , n such that
R(ai),R(bi),R(ci)> 0,∀ i. Also let α, β, c, δ, μ, ], λ, ρ,

θ, t ∈ C, min R(α),R(β),R(c),R(δ),R(λ),R(θ) > 0,
and k ∈ (0, 1)∪N with k + R(ρ)<R(δ + ] + α),
Im(ρ) � Im(δ + ] + α).
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Remark 1. For n� 1, b1 � c1 + lk, a1 � θ − λ, c1 � λ, ρ� ]� 0,
δ > 0, we obtain the fractional integral operator containing
extended generalized Mittag-Leffler function in its kernel
and is given by [5];

εω,λ,δ,k,θ
a+ ,α,β,c f(ξ, p) � 

ξ

a
(ξ − t)

β− 1
E
λ,δ,k,θ
α,β,c ω(ξ − t)

α
, p( f(t)dt,

εω,λ,δ,k,θ
b− ,α,β,c f(ξ, p) � 

b

ξ
(t − ξ)

β− 1
E
λ,δ,k,θ
α,β,c ω(t − ξ)

α
, p( f(t)dt.

(47)

Now we give the proof of boundedness of the fractional
integral operator defined above.

Theorem 7. Let f ∈ L1[a, b]. If a � (a1, a2, . . . , an), b �

(b1, b2, . . . , bn), c � (c1, c2, . . . , cn), where ai, bi, ci,ω ∈ C; i �

1, . . . , n such that R(ai),R(bi),R(ci)> 0,∀ i. Also let
α, β, c, δ, μ, ], λ, ρ, θ, t ∈ C, min R(α),R(β),R(c),R

(δ),R(λ),R(θ)} > 0, and k ∈ (0, 1)∪N with k + R(ρ)<
R(δ + ] + α), Im(ρ) � Im(δ + ] + α), and then the frac-
tional integral operator I

ω,λ,ρ,θ,k,n

a+ ,α,β,c,δ,μ,]f is bounded on L1[a, b].

Proof. Applying 1-norm to the fractional integral operator
I
ω,λ,ρ,θ,k,n

a+ ,α,β,c,δ,μ,]f, we get the following:

I
ω,λ,ρ,θ,k,n

a+ ,α,β,c,δ,μ,]f
�����

�����1
� 

b

a

ξ

a
(ξ − t)

β− 1
M

λ,ρ,θ,k,n

α,β,c,δ,μ,] ω(ξ − t)
α
; a, b, c, p( f(t)dt




dξ

≤ 
b

a
|f(t)| 

b

t
(ξ − t)

R(β)− 1
M

λ,ρ,θ,k,n

α,β,c,δ,μ,] ω(ξ − t)
α
; a, b, c, p( 



dξ dt.

(48)

By substituting ξ − t � s, we obtain the following
inequality:

I
ω,λ,ρ,θ,k,n

a+ ,α,β,c,δ,μ,]f
�����

�����1
≤ 

b

a
|f(t)| 

b− t

0
s
R(β)− 1

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] ωs
α
; a, b, c, p( 



ds dt

≤ 
b

a
|f(t)| 

b− a

0
s
R(β)− 1

M
λ,ρ,θ,k,n

α,β,c,δ,μ,] ωs
α
; a, b, c, p( 



ds dt

≤ 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl

Γ(αl + β)





× 
b− a

0
s
R(α)l+R(β)− 1ds‖f‖1

≤ 
∞

l�0


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl

Γ(αl + β)

(b − a)
R(α)l

R(α)l + R(β)




×(b − a)

R(β)
‖f‖1,

I
ω,λ,ρ,θ,k,n

a+ ,α,β,c,δ,μ,]f
�����

�����1
≤K‖f‖1,

(49)

where

K �


n
i�1 Bp bi, ai( (λ)ρl(θ)kl


n
i�1 B ci, ai( (c)δl(μ)]l

ωl

Γ(αl + β)

(b − a)
R(α)l

R(α)l + R(β)




(b − a)

R(β)
.

(50)
□

4. Conclusions

In this paper, we extended the Mittag-Leffler function and
generalized Q function simultaneously. By applying the
Laplace, Euler beta, and Whittaker transformations on the
unified Mittag-Leffler function, compact formulas are
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established from which formulas for generalized Q function
and extended generalized Mittag-Leffler function are de-
duced. 'ese formulas also reproduce integral transfor-
mations of various deduced Mittag-Leffler functions.
Moreover, we proved the convergence of this unifiedMittag-
Leffler function and constructed the associated fractional
integral operator. Our proposed unified Mittag-Leffler
function and constructed fractional integral operator will
give new directions to the researcher working in this field.
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In this article, we present new integral inequalities for refined (α, h − m)-convex functions using unified integral operators (12)
and (13). (e established results provide the refinements of several well-known integral and fractional integral inequalities.

1. Introduction

Convex functions are important in diverse fields of math-
ematics, statistics, engineering, and optimization. Especially
in the formation of inequalities, they play a very vital role. In
the subject of mathematical analysis, inequalities provide a
significant contribution in developing classical concepts and
notions. For example, inequalities well known as Cau-
chy–Schwarz inequality, Chebyshev inequality, Minkowski
inequality, Hadamard inequality, and Jensen inequality are
utilized frequently in pure and applied mathematics. It is
always a challenge to extend, generalize, and refine such
inequalities by considering new classes of functions. In this
era, researchers are working on classical inequalities con-
cerning fractional integral and derivative operators. It can be
observed that the Hadamard inequality is studied more for
many kinds of fractional integral and derivative operators
than any other classical inequality, see [1–7] for more details.

(e aim of this paper is to study the refinements of
Hadamard and other integral inequalities recently studied in
[8–11]. (e consequences of these inequalities also provide
refinements of fractional integral inequalities connected
with the integral inequalities studied in the recent past.

(e article is organized as follows. In Section 2, we
suggest some preliminaries. In Section 3, the bounds of
unified integral operators are given using refined

(α, h − m)-convex functions. (ese are the refinements of
bounds already obtained in the literature. In Section 4, some
applications of the main results are given in the form of
fractional integral inequalities and their refinements.

2. Preliminaries

In this section, we give definitions of different kinds of
convex functions and integral operators which will be useful
in formulating the results of this paper. (roughout the
paper, all the functions are assumed to be real-valued
functions until specified.

Definition 1 (see [12]). A function Ω is called convex if

Ω tx1′ +(1 − t)y1′( ≤ tΩ x1′(  +(1 − t)Ω y1′( , (1)

holds for all x1′, y1′ ∈ I⊆R and t ∈ [0, 1].

Definition 2 (see [1]). A functionΩ is called (s, m)-convex if
for each x1′, y1′ ∈ [0, v]⊆R, we have

Ω tx1′ + m(1 − t)y1′( ≤ t
sΩ x1′(  + m(1 − t)

sΩ y1′( , (2)

where t ∈ [0, 1] and (s, m) ∈ [0, 1]2.
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Definition 3 (see [13]). A functionΩ is called (α, m)-convex
if for each x1′, y1′ ∈ [0, v]⊆R, we have

Ω tx1′ + m(1 − t)y1′( ≤ t
αΩ x1′(  + m 1 − t

α
( Ω y1′( , (3)

where (α, m) ∈ [0, 1]2 and t ∈ [0, 1].

Definition 4 (see [4]). Let h: J⟶ R is a function with
h ≡ 0 and (0, 1)⊆J. A function Ω is said to be
(h − m)-convex, if Ω, h≥ 0 and for each x1′, y1′ ∈ [0, v]⊆R,
we have

Ω tx1′ + m(1 − t)y1′( ≤ h(t)Ω x1′(  + mh(1 − t)Ω y1′( ,

(4)

where m ∈ [0, 1] and t ∈ (0, 1).

Definition 5 (see [4]). Let h: J⟶ R is a function with
h ≡ 0 and (0, 1)⊆J. A function Ω is said to be
(α, h − m)-convex, if Ω, h≥ 0 and for each x1′, y1′ ∈ [0, v]⊆R,
we have

Ω tx1′ + m(1 − t)y1′( ≤ h t
α

( Ω x1′(  + mh 1 − t
α

( Ω y1′( ,

(5)

where (α, m) ∈ [0, 1]2 and t ∈ (0, 1).

Definition 6 (see [14]). Let h: J⟶ R be a function with
h ≡ 0 and (0, 1)⊆J. A function Ω is called refined
(α, h − m)-convex function, if Ω, h≥ 0 and for each
x1′, y1′ ∈ [0, v]⊆R, we have

Ω tx1′ + m(1 − t)y1′( ≤ h t
α

( h 1 − t
α

(  Ω x1′(  + mΩ y1′( ( ,

(6)

where (α, m) ∈ (0, 1]2 and t ∈ (0, 1).
Inequality (6) gives refinements of several types of

convexities when 0< h(t)< 1, see [14].
(e need for integral operators in the study of fractional

derivatives is of immense importance. In the recent era,
integral operators are being used extensively for producing
new results in the literature. For references, see [2, 4–6].
Next, we give some fundamental integral operators which
are used in this paper.

Definition 7 (see [15]). Let Ω ∈ L1[x1′, y1′] and Δ be positive
and increasing function having a continuous derivative on
(x1′, y1′). (e left and right fractional integrals of Ω with
respect to Δ on [x1′, y1′] of order κ are given by

κ
ΔIy′+1
Ω(x) �

1
Γ(κ)


x

x1′
(Δ(x) − Δ(t))

κ− 1Δ′(t)Ω(t)dt, x>x1′,

κ
ΔIy′−1
Ω(x) �

1
Γ(κ)


y1′

x
(Δ(t) − Δ(x))

κ− 1Δ′(t)Ω(t)dt, x<y1′,

(7)

where Γ(.) is the gamma function and R(κ)> 0.

Definition 8 (see [16]). Let Ω ∈ L1[x1′, y1′] and Δ be positive
and increasing function having a continuous derivative on

(x1′, y1′). (e left and right k-fractional integrals of Ω with
respect to Δ on [x1′, y1′] of order κ are given by

κ
ΔIx′−1
Ω(x) �

1
kΓk(κ)


x

x1′
(Δ(x) − Δ(t))

(κ/k)− 1Δ′(t)Ω(t)dt, x>x1′, (8)

κ
ΔIy′−1
Ω(x) �

1
kΓk(κ)


y1′

x
(Δ(t) − Δ(x))

(κ/k)− 1Δ′(t)Ω(t)dt, x<y1′, (9)

where Γk(.) is the k-gamma function and R(κ), k> 0.

Definition 9 (see [17]). Let Ω ∈ L1[x1′, y1′] and x ∈ [x1′, y1′],
also let

σ, κ, α, ξ, c, ι ∈ C,R(κ),R(α),R(ξ)> 0,R(ι)>R(c)> 0
with p≥ 0, δ > 0, and 0< k≤ δ + R(κ), then the generalized
fractional integral operators ϵc,δ,k,ι

κ,α,ξ,σ,x′+1
Ω and ϵc,δ,k,ι

κ,α,ξ,σ,y′−1
Ω are

defined by

ϵc,δ,k,ι
κ,α,ξ,σ,x′+1
Ω (x; p) � 

x

x1′
(x − t)

α− 1
E

c,δ,k,ι
κ,α,ξ σ(x − t)

κ
; p( Ω(t)dt,

ϵc,δ,k,ι
κ,α,ξ,σ,y′−1
Ω (x; p) � 

y1′

x
(t − x)

α− 1
E

c,δ,k,ι
κ,α,ξ σ(t − x)

κ
; p( Ω(t)dt,

(10)

2 Mathematical Problems in Engineering



where E
c,δ,k,ι
κ,α,ξ (t; p) is the extended generalizedMittag–Leffler

function defined as

E
c,δ,k,ι
κ,α,ξ (t; p) � 

∞

n�0

ρp(c + nk, ι − c)

ρ(c, ι − c)

(ι)nk

Γ(κn + α)

t
n

(ξ)nδ
. (11)

Definition 10 (see [16]). Let Ω,Δ be real-valued functions
defined over [x1′, y1′]with 0<x1′ <y1′, whereΩ is positive and
integrable and Δ is differentiable and strictly increasing.
Also, let Υ/x be an increasing function on [x1′,∞) and
α, ξ, c, ι ∈ C, p, κ, δ ≥ 0, and 0< k≤ δ + κ. (en, for
x ∈ [x1′, y1′], the left and right integral operators are defined
as

ΔF
Υ,c,δ,k,ι
κ,α,ξx′+1
Ω (x, σ; p) � 

x

x1′
J

y
x E

c,δ,k,ι
κ,α,ξ ,Δ;Υ Δ′(y)Ω(y)dy, (12)

ΔF
Υ,c,δ,k,ι
κ,α,ξy′−1
Ω (x, σ; p) � 

y1′

x
J

x
y E

c,δ,k,ι
κ,α,ξ ,Δ;Υ Δ′(y)Ω(y)dy, (13)

where

J
y
x E

c,δ,k,ι
κ,α,ξ ,Δ;Υ  �

Υ(Δ(x) − Δ(y))

Δ(x) − Δ(y)
E

c,δ,k,ι
κ,α,ξ (σ(Δ(x) − Δ(y))

κ
; p). (14)

Mittag–Leffler functions give several fractional integrals
by assigning particular choice to the parameters involved in
it, see Remarks 6 and 7 in [16].

3. Main Results

(roughout the paper, we use the following notation:


1

0
h u

α
( h 1 − u

α
( Δ′ x − u x − x1′( ( du � H

x1′
x u

α
; h,Δ( .

(15)

Theorem 1. Let Ω be a positive, refined (α, h − m)-convex
and integrable function defined over [x1′, y1′]. Also, let Υ/x be
an increasing function defined on [x1′, y1′] and Δ be strictly
increasing and differentiable function on (x1′, y1′). *en, for
β, ξ, c, ι ∈ R, p, κ, ϑ, δ ≥ 0, 0< k≤ δ + κ, and 0< k≤ δ + ϑ, the
following result holds:

ΔF
Υ,c,δ,k,ι
k,β,ξ,y′+1
Ω (x, σ; p) + ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω (x, σ; p)

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Ω x1′(  + mΩ

x

m
   x − x1′( H

x1′
x u

α
; h,Δ( 

+ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x

m
   y1′ − x( H

x
y1′

v
α
; h,Δ( .

(16)

Proof. For the functions Υ/x and Δ, the following inequality
holds:

J
t
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(t)≤ J

x1′
x E

c,δ,k,ι
κ,α,ξ ,Δ;Υ Δ′(t). (17)

Using refined (α, h − m)-convexity of Ω, one can have

Ω(t)≤ h
x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

  Ω x1′(  + mΩ
x

m
  .

(18)

From (17) and (18), we have the following integral
inequality:
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x

x1′
J

t
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(t)Ω(t)dt ≤ J

x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Ω x1′(  + mΩ

x

m
  

× 
x

x1′
h

x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

 Δ′(t)dt.

(19)

Using (12) of Definition 10 on the left side of inequality
(19) and making change of the variable by setting u � x −

t/x − x1′ on the right-hand side of the above inequality, we
obtain

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω (x, σ; p)≤ J

x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω x1′(  + mΩ

x

m
  

× 
1

0
h u

α
( h 1 − u

α
( Δ′ x − u x − x1′( ( du.

(20)

(us, we obtain

ΔF
Υ,c,δ,k,ι
k,β,ξ,y′+1
Ω (x, σ; p)

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω x1′(  + mΩ

x

m
   x − x1′( H

x1′
x u

α
; h,Δ( .

(21)

Also, for t ∈ (x, y1′] and x ∈ (x1′, y1′), we can write

J
x
t E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(t)≤ J

x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(t). (22)

and

Ω(t)≤ h
t − x

y1′ − x
 

α

 h 1 −
t − x

y1′ − x
 

α

  Ω y1′(  + mΩ
x

m
  .

(23)

From (22) and (23), we have the following integral
inequality:


y1′

x
J

x
t E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(t)Ω(t)dt ≤ J

x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x

m
  

× 
y1′

x
h

t − x

y1′ − x
 

α

 h 1 −
t − x

y1′ − x
 

α

 Δ′(t)dt.

(24)

Using (13) of Definition 10 on the left-hand side and
making change of the variable by setting v � t − x/y1′ − x on
the right-hand side of the above inequality, we obtain

ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω (x, σ; p)≤ J

x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x

m
   y1′ − x( 

× 
1

0
h v

α
( h 1 − v

α
( Δ′ x + v y1′ − x( dv(

(25)
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(erefore,

ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω (x, σ; p)

≤ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x

m
   y1′ − x( H

x
y1′

v
α
; h,Δ( .

(26)

Combining (21) and (26), the required inequality (16) is
obtained. Hence, the proof is completed.

Next, we give the refinement of (eorem 1. □

Theorem 2. Under the assumptions of *eorem 1, if
0< h(t)< 1, then the following result holds:

ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′+1
Ω (x, σ; p) + ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω (x, σ; p)

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Ω x1′(  + mΩ

x

m
   x − x1′( H

x1′
x u

α
; h,Δ( 

+ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x

m
   y1′ − x( H

x
y1′

v
α
; h,Δ( 

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω x1′( H

x1′
x u

α
; h,Δ(  + mΩ

x

m
 H

x1′
x 1 − u

α
; h,Δ(  

+ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  y1′ − x(  Ω y1′( H

x
y1′

v
α
; h,Δ(  + mΩ

x

m
 H

x
y1′

1 − v
α
; h,Δ(  .

(27)

Proof. From (18) and (23), one can see that, for 0< h(t)< 1,

Ω(t)≤ h
x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

  Ω x1′(  + mΩ
x

m
  

≤ h
x − t

x − x1′
 

α

 Ω x1′(  + mh 1 −
x − t

x − x1′
 

α

 Ω
x

m
 ,

Ω(t)≤ h
t − x

y1′ − x
 

α

 h 1 −
t − x

y1′ − x
 

α

  Ω y1′(  + mΩ
x

m
  

≤ h
t − x

y1′ − x
 

α

 Ω y1′(  + mh 1 −
t − x

y1′ − x
 

α

 Ω
x

m
 .

(28)

Hence, by following the proof of (eorem 1, one can
obtain (27). Hence, the proof is completed. □

Corollary 1. Under the assumptions of *eorem 1, (16) gives
the following result:
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ΔF
Υ,c,δ,k,ι
k,β,ξ,y′+1
Ω (x, σ; p) + ΔF

Υ,c,δ,k,ι
k,β,ξ,y′−1
Ω (x, σ; p)

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω x1′(  + mΩ

x

m
  H

x1′
x u

α
; h,Δ( 

+ J
x
y1′

E
c,δ,k,ι
κ,β,ξ ,Δ;Υ  y1′ − x(  Ω y1′(  + mΩ

x

m
  H

x
y1′

v
α
; h,Δ( .

(29)

Now, we give the refinement of (eorem 5 in [9] in the
following corollary.

Corollary 2. *e following inequality for refined
(h − m)-convex function holds:

ΔF
Υ,c,δ,k,ι
k,β,ξ,y′+1
Ω (x, σ; p) + ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω (x, σ; p)

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Ω x1(  + mΩ

x

m
   Δ(x) − Δ x1′( ( 

+J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x

m
   Δ y1′(  − Δ(x)( ‖h‖

2
∞

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Ω x1′(  + mΩ

x

m
   Δ(x) − Δ x1′( (  

+J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x

m
   Δ y1′(  − Δ(x)( ‖h‖∞.

(30)

Proof. Using α � 1 and h ∈ L∞[0, 1] in (27), we obtain
inequality (30). □

Remark 1

(i) For Υ(x) � x
α′/kΓ(α′)/kΓk(α′), α′ > k> 0 with

p � ω � 0, inequality (16) coincides with (eorem
10 in [18]

(ii) For k � 1 along with the conditions of (i), in-
equality (29) coincides with (eorem 6 in [18]

(iii) ForΔ as identity function alongwith the conditions of
(i), inequality (29) coincides with (eorem 5 in [14]

(iv) For Δ as identity function and k � 1 along with the
conditions of (i), inequality (29) coincides with
(eorem 1 in [14]

(v) For h(t) � t and m � 1 � α, inequality (16) coin-
cides with (eorem 4 in [19]

(vi) For h(t) � t and m � 1 � α, inequality (29) coin-
cides with Corollary 1 in [19]

(vii) For h(t) � t and m � 1 � α along with the con-
ditions of (i), inequality (29) coincides with (e-
orem 3.1 in [20]

(viii) For h(t)≤ 1/
�
2

√
along with the conditions of (iv),

inequality (29) coincides with (eorem 2 in [14]
(ix) For h(t) � t and m � 1 � α along with the con-

ditions of (iii), inequality (29) coincides with
Corollary 8 in [14]

(x) For α � 1 and h(t) � t along with the conditions of
(iii), inequality (29) coincides with Corollary 14 in
[14]

(xi) For h(t) � ts and α � 1 along with the conditions
of (iii), inequality (29) coincides with Corollary 15
in [14]

(xii) For h(t) � t and α � 1 along with the conditions of
(iii), inequality (29) coincides with Corollary 16 in
[14]

(xiii) For h(t) � t and m � 1 � α along with the con-
ditions of (iv), inequality (29) coincides with
Corollary 1 in [14]

(xiv) For α � 1 and h(t) � t along with the conditions of
(iv), inequality (29) coincides with Corollary 2 in
[14]

(xv) For h(t) � ts and α � 1 along with the conditions
of (iv), inequality (29) coincides with Corollary 4 in
[14]

(xvi) For h(t) � t and α � 1 along with the conditions of
(iv), inequality (29) coincides with Corollary 5 in [14]

By using 0< h(t)< 1 and making different choices of
functions h and Δ and the parameters in (16), one can get the
refinements of many well-known inequalities for different
classes of convex functions which are mentioned in Remark
3 in [9].

Next, we give a lemma which we will use in the proof of
upcoming (eorem 3.
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Lemma 1. Let Ω: [0,∞)⟶ R be a refined
(α, h − m)-convex function. If Ω(x) � Ω(x1′ + y1′ − x

/m), x ∈ [x1′, y1′], and m ∈ (0, 1], then the following in-
equality holds:

Ω
x1′ + y1′

2
 ≤ h

1
2α

 h
2α − 1
2α

 (m + 1)Ω(x). (31)

Proof. Since Ω is refined (α, h − m)-convex, then following
inequality holds:

Ω
x1′ + y1′

2
 ≤ h

1
2α

 h
2α − 1
2α

 

× Ω
x − x1′

y1′ − x1′
y1′ +

y1′ − x

y1′ − x1′
x1′  + mΩ

x − x1′/y1′ − x1′( x1′ + y1′ − x/y1′ − x1′( y1′

m
  

≤ h
1
2α

 h
2α − 1
2α

  Ω(x) + mΩ
x1′ + y1′ − x

m
  .

(32)

UsingΩ(x) � Ω(x1′ + y1′ − x/m) in the above inequality,
we obtain (31). (is completes the proof. □

Remark 2.

(i) For h(t) � t and m � α � 1, (31) coincides with
Lemma 1 in [19]

(ii) For 0< h(t)< 1, (31) gives refinement of Lemma 1 in
[9]

Theorem 3. Under the assumptions of *eorem 1, the fol-
lowing result holds for Ω(x) � Ω(x1′ + y1′ − x/m):

1
h 1/2α( h 2α − 1/2α( (m + 1)

Ω
x1′ + y1′

2
 

× ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1

1  x1′, σ; p(  + ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′+1

1  y1′, σ; p(  

≤ ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω  x1′, σ; p(  + ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′+1
Ω  y1′, σ; p( 

≤ y1′ − x1′(  Ω y1′(  + mΩ
x1′

m
   J

x1′

y1′
E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ H

x1′

y1′
v
α
; h,Δ( 

+J
x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ H

x1′

y1′
v
α
; h,Δ( .

(33)

Proof. For the kernel defined in (14) and function Δ, the
following inequality holds:

J
x1′
x E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(x)≤ J

x1′

y1′
E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(x), x ∈ x1′, y1′( .

(34)

Using refined (α, h − m)-convexity of Ω, we have

Ω(x)≤ h
x − x1′

y1′ − x1′
 

α

 h 1 −
x − x1′

y1′ − x1′
 

α

  Ω y1′(  + mΩ
x1′

m
  .

(35)

From (34) and (35), we have the following integral
inequality:


y1′

x1′
J

x1′
x E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Ω(x)Δ′(x)dx≤ J

x1′

y1′
E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x1′

m
  

× 
y1′

x1

h
x − x1′

y1′ − x1′
 

α

 h 1 −
x − x1′

y1′ − x1′
 

α

 Δ′(x)dx.

(36)
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Using (13) of Definition 10 on the right-hand side and
making change of the variable by setting v � x − x1′/y1′ − x1′
on the right-hand side of the above inequality, we obtain

ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1

1Ω  x1′, σ; p( 

≤ J
x1′

y1′
E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  y1′ − x1′(  Ω y1′(  + mΩ

x1′

m
  H

x1′

y1′
v
α
; h,Δ( .

(37)

(e following inequality also holds true for x ∈ (x1′, y1′):

J
x
y1′

E
c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(x)≤ J

x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(x). (38)

From (35) and (38), the following integral inequality is
obtained:


y1′

x1′
J

x
y1′

E
c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(x)Ω(x)dx ≤ J

x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Ω y1′(  + mΩ

x1

m
  

× 
y1′

x1′
h

x − x1′

y1′ − x1′
 

α

 h 1 −
x − x1′

y1′ − x1′
 

α

 Δ′(x)dx.

(39)

Using (12) of Definition 10 on the left-hand side and
making change of the variable on the right-hand side of the
above inequality, we obtain

ΔF
Υ,c,δ,k,ι
k,β,ξ,y′+1

1Ω  y1′, σ; p( 

≤ J
x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  y1′ − x1′(  Ω y1′(  + mΩ

x1′

m
  H

x1′

y1′
v
α
; h,Δ( .

(40)

Now, using Lemma 1, we can write


y1′

x1′
Ω

x1′ + y1′

2
 J

x1′
x E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(x)dx

≤ h
1
2α

 h
2α − 1
2α

 (m + 1) 
y1′

x1′
J

x1′
x E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(x)Ω(x)dx,

(41)

which by using (13) of Definition 10 gives the following
integral inequality:

1
h 1/2α( h 2α − 1/2α( (m + 1)

Ω
x1′ + y1′

2
  ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′−1

1  x1′, σ; p( 

≤ ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω  x1′, σ; p( .

(42)

Again, using Lemma 1, we can write

Ω
x1′ + y1′

2
 J

x
y1′

E
c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(x)dx

≤ h
1
2α

 h
2α − 1
2α

 (m + 1) 
y1′

x1′
J

x
y1′

E
c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(x)Ω(x)dx,

(43)

which by using (12) of Definition 10 gives the following
fractional integral inequality:

1
h 1/2α( h 2α − 1/2α( (m + 1)

Ω
x1′ + y1′

2
  ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′+1

1  y1′, σ; p( 

≤ ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′+1
Ω  y1′, σ; p( .

(44)
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Inequality (33) will be obtained by using (37), (40), (42),
and (44).

(e following theorem is the refinement of(eorem 3. □

Theorem 4. Under the assumptions of *eorem 3, if
0< h(t)< 1, then the following refinement holds:

1
h 1/2α( h 2α − 1/2α( (m + 1)

Ω
x1′ + y1′

2
 

× ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1

1  x1′, σ; p(  + ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1

1  y1′, σ; p(  

≤
1

h 1/2α(  + mh 2α − 1/2α( 
Ω

x1′ + y1′

2
 

× ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1

1  x1′, σ; p(  + ΔF
Υ,c,δ,k,ι
κ,β,ξ,x′+1

1  y1′, σ; p(  

≤ ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′−1
Ω  x1′, σ; p(  + ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,x′+1
Ω  y1′, σ; p( 

≤ y1′ − x1′(  Ω y1′(  + mΩ
x1′

m
   J

x1′

y1′
E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ H

x1′

y1′
v
α
; h,Δ( 

+J
x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ H

x1′

y1′
v
α
; h,Δ( 

≤ y1′ − x1′(  J
x1′

y1′
E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  + J

x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  

× Ω y1′( H
x1′

y1′
v
α
; h,Δ(  + mΩ

x1′

m
 H

x1′

y1′
1 − v

α
; h,Δ(  .

(45)

Proof. From (35), one can see that, for 0< h(t)< 1,

Ω(x)≤ h
x − x1′

y1′ − x1′
 

α

 h 1 −
x − x1′

y1′ − x1′
 

α

  Ω y1′(  + mΩ
x1′

m
  

≤ h
x − x1′

y1′ − x1′
 

α

 Ω y1′(  + mh 1 −
x − x1′

y1′ − x1′
 

α

 Ω
x1′

m
 .

(46)

Hence, by following the proof of (eorem 3, one can
obtain (45). (is completes the proof. □

Corollary 3. Under the assumptions of *eorem 3, (33) gives
the following result:

1
h 1/2α( h 2α − 1/2α( (m + 1)

Ω
x1′ + y1′

2
  ΔF

Υ,c,δ,k,ι
κ,β,ξ,y′−1

1  x1′, σ; p( 

+ ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1

1  y1′, σ; p( ≤ ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′−1
Ω  x1′, σ; p(  + ΔF

Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω  y1′, σ; p( 

≤ 2 y1′ − x1′(  Ω y1′(  + mΩ
x1′

m
  J

x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ H

x1′

y1′
v
α
; h,Δ( .

(47)
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Now, we give the refinement of *eorem 6 in [9] in the
following corollary.

Corollary 4. *e following inequality for refined
(h − m)-convex function holds:

1
h
2
(1/2)(m + 1)

Ω
x1′ + y1′

2
  ΔF

Υ,c,δ,k,ι
κ,α,ξ,y′−1

1  x1′, σ; p(  + ΔF
Υ,c,δ,k,ι
κ,α,ξ,x′+1

1  y1′, σ; p(  

≤
1

h(1/2)(m + 1)
Ω

x1′ + y1′

2
  ΔF

Υ,c,δ,k,ι
κ,α,ξ,y′−1
Ω  x1′, σ; p(  + ΔF

Υ,c,δ,k,ι
κ,α,ξ,x′+1

1  y1′, σ; p(  

≤ ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′−1
Ω  x1′, σ; p(  + ΔF

Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω  y1′, σ; p( 

≤ 2 Ω y1′(  + mΩ
x1′

m
  J

x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Δ y1′(  − Δ x1′( ( ‖h‖

2
∞

≤ 2 Ω y1′(  + mΩ
x1′

m
  J

x1′

y1′
E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Δ y1′(  − Δ x1′( ( ‖h‖∞.

(48)

Proof. For h ∈ L∞[0, 1] and α � 1 in (45), one can obtain
(48). □

Remark 3

(i) For h(t) � t and m � 1 � α, inequality (33) coincides
with (eorem 5 in [19]

(ii) For h(t) � t and m � 1 � α, inequality (47) coincides
with Corollary 2 in [19]

By using 0< h(t)< 1 and making different choices of
functions h and Δ and the parameters in (33), one can get the

refinements of many well-known inequalities for different
classes of convex functions which are mentioned in Remark
5 of [9].

Theorem 5. Let Ω,Δ be differentiable functions such that
|Ω′| is refined (α, h − m)-convex and Δ be strictly increasing
over [x1′, y1′] and differentiable over [x1′, y1′]. Also, Υ/x be an
increasing function on [x1′, y1′] and β, ξ, c, ι ∈ R, p, κ, ϑ, δ ≥ 0,
0< k≤ δ + κ, and 0< k≤ δ + ϑ. *en, for x ∈ (x1′, y1′), we
have

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω∗Δ (x, σ; p) + ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω∗Δ (x, σ; p)





≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω′ x1′( 


 + m Ω′

x

m
 




 H

x1′
x u

α
; h,Δ( 

+ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  y1′ − x(  Ω′ y1′( 


 + m Ω′

x

m
 




 H

x
y1′

v
α
; h,Δ( ,

(49)

where

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω∗Δ (x, σ; p) � 

x

x1′
J

t
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(t)Ω′(t)dt,

ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω∗Δ (x, σ; p) � 

y1′

x
J

x
t E

c,δ,k,ι
ϑ,β,ξ ,Δ;Υ Δ′(t)Ω′(t)dt.

(50)

Proof. Using refined (α, h − m)-convexity of |Ω′| over
[x1′, y1′] implies
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Ω′(t)


≤ h
x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

  Ω′ x1′( 


 + m Ω′
x

m
 




 . (51)

Absolute value property implies the following relation:

− h
x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

  Ω′ x1′( 


 + m Ω′
x

m
 



 ≤Ω′(t)

≤ h
x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

  Ω′ x1′( 


 + m Ω′
x

m
 




 .

(52)

From (17) and the second inequality of (52), we have the
following inequality:


x

x1

J
t
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ Δ′(t)Ω′(t)dt≤ J

x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Ω′ x1′( 


 + m Ω′

x

m
 



 

× 
x

x1′
h

x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

 Δ′(t)dt,

(53)

which leads to the following fractional integral inequality:

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω∗Δ (x, σ; p)

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω′ x1′( 


 + m Ω

x

m
 




 H

x1′
x u

α
; h,Δ( .

(54)

Also, inequality (17) and the first inequality of (52) give
the following fractional integral inequality:

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω∗Δ (x, σ; p)

≥ − J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω′ x1′( 


 + m Ω′

x

m
 




 H

x1′
x u

α
; h,Δ( .

(55)

Again, using refined (α, h − m)-convexity of |Ω′| over
[x1′, y1′], we can write

Ω′(t)


≤ h
t − x

y1′ − x
 

α

 h 1 −
t − x

y1′ − x
 

α

  m Ω′
x

m
 




+ Ω′ y1′( 


 . (56)

and
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h
t − x

y1′ − x
 

α

 h 1 −
t − x

y1′ − x
 

α

  m Ω′
x

m
 




+ Ω′ y1′( 


 ≤Ω′(t)

≤ h
t − x

y1′ − x
 

α

 h 1 −
t − x

y1′ − x
 

α

  m Ω′
x

m
 




+ Ω′ y1′( 


 .

(57)

From (22) and the second inequality of (57), the fol-
lowing fractional integral inequality is obtained:

ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω∗Δ (x, σ; p)

≤ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  y1′ − x(  Ω′ y1′( 


 + m Ω′

x

m
 




 H

x
y1′

v
α
; h,Δ( ,

(58)

and (22) and the first inequality of (57) give the following
fractional integral inequality:

ΔF
Υ,c,δ,k,ι
ϑ,β,ξ,y′−1
Ω∗Δ (x, σ; p)

≥ − J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  y1′ − x(  Ω′ y1′( 


 + m Ω′

x

m
 




 H

x
y1′

v
α
; h,Δ( .

(59)

Inequality (49) will be obtained by using (54), (55), (58),
and (59). Hence, the proof is completed.

Next, we give refinement of (eorem 5 in the following
theorem. □

Theorem 6. Under the assumptions of *eorem 5, if
0< h(t)< 1, then the following refinement holds:

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1

,Ω∗Δ (x, σ; p) + ΔF
Υ,Ω∗ c,δ,k,ι
ϑ,β,ξ,y′−1

,Δ (x, σ; p)





≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω′ x1′( 


 + m Ω′

x

m
 



 H
x1′
x u

α
; h,Δ( 

+ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  y1′ − x(  Ω′ y1′( 


 + m Ω′

x

m
 




 H

x
y1′

v
α
; h,Δ( 

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω′ x1′( 


H

x1′
x u

α
; h,Δ( 

+m Ω′
x

m
 




H

x1′
x 1 − u

α
; h,Δ(  + J

x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  y1′ − x( 

× Ω′ y1′( 


H
x
y1′

v
α
; h,Δ(  + m Ω′

x

m
 




H

x
y1′

1 − v
α
; h,Δ(  .

(60)

Proof. From (51), one can see that, for 0< h(t)< 1,
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Ω′(t)


≤ h
x − t

x − x1′
 

α

 h 1 −
x − t

x − x1′
 

α

  Ω′ x1′( 


 + m Ω′
x

m
 




 

≤ h
x − t

x − x1′
 

α

  Ω′ x1′( 


 + mh 1 −
x − t

x − x1′
 

α

  Ω′
x

m
 




.

(61)

Hence, by following the proof of (eorem 5, one can
obtain (60). (is completes the proof. □

Corollary 5. Under the assumptions of *eorem 5, (49) gives
the following result:

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω∗Δ (x, σ; p) + ΔF

Υ,c,δ,k,ι
κ,β,ξ,y′−1
Ω∗Δ (x, σ; p)





≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  x − x1′(  Ω′ x1′( 


 + m Ω′

x

m
 




 H

x1′
x u

α
; h,Δ( 

+ J
x
y1′

E
c,δ,k,ι
κ,β,ξ ,Δ;Υ  y1′ − x(  Ω′ y1′( 


 + m Ω′

x

m
 




 H

x
y1′

v
α
; h,Δ( .

(62)

(e following corollary presents the refinement of
(eorem 7 in [9].

Corollary 6. *e following inequality for refined
(h − m)-convex function holds:

ΔF
Υ,c,δ,k,ι
κ,β,ξ,y′+1
Ω∗Δ (x, σ; p) + ΔF

Υ,c,δ,k,ι
ϑ,β,ξ,y′−1

1Ω∗g (x, σ; p)





≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Δ(x) − Δ x1′( (  Ω′ x1′( 


 + m Ω′

x

m
 




 

+ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Δ y1′(  − Δ(x)(  Ω′ y1′( 


 + m Ω′

x

m
 



 ‖h‖
2
∞

≤ J
x1′
x E

c,δ,k,ι
κ,β,ξ ,Δ;Υ  Δ(x) − Δ x1′( (  Ω′ x1′( 


 + m Ω′

x

m
 




 

+ J
x
y1′

E
c,δ,k,ι
ϑ,β,ξ ,Δ;Υ  Δ y1′(  − Δ(x)(  Ω′ y1′( 


 + m Ω′

x

m
 




 ‖h‖∞.

(63)

Proof. For h ∈ L∞[0, 1] and α � 1 in (60), we obtain
(63). □

Remark 4
(i) For h(t) � t and m � 1 � α, inequality (49) coincides

with (eorem 6 in [19]
(ii) For h(t) � t and m � 1 � α, inequality (62) coincides

with Corollary 3 in [19]

By using 0< h(t)< 1 and making different choices of
functions h and Δ and the parameters in (49), one can get the
refinements of many well-known inequalities for different

classes of convex functions which are mentioned in Remark
6 of [9].

4. Inequalities for Fractional IntegralOperators

In this section, we present the bounds of some of the
fractional integral operators which will be deduced from the
results of Section 3.

Proposition 1. Under the assumptions of *eorem 1, the
following result holds:
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Γ(β)
β
ΔIx′+1
Ω (x) +

β
ΔIy′−1
Ω (x) 

≤ Δ(x) − Δ x1′( ( 
β− 1 Ω x1′(  + mΩ

x

m
   x − x1′( H

x1′
x u

α
; h,Δ( 

+ Δ y1′(  − Δ(x)( 
β− 1 Ω y1′(  + mΩ

x

m
   y1′ − x( H

x
y1′

v
α
; h,Δ( .

(64)

Proof. For Υ(t) � tβ, β> 0, and p � σ � 0 in the proof of
(eorem 1, we obtain (64). □

Proposition 2. Under the assumptions of *eorem 1, the
following inequality holds:

Γ(β) x′+1
ΙΥΩ (x) + y′+1

ΙΥΩ (x) 

≤Υ x − x1′(  Ω x1′(  + mΩ
x

m
   

1

0
h u

α
( h 1 − u

α
( du

+ Υ y1′ − x(  Ω y1′(  + mΩ
x

m
   

1

0
h v

α
( h 1 − v

α
( dv.

(65)

Proof. Using Δ as identity function with σ � p � 0 in the
proof of (eorem 1, we obtain the required result. □

Corollary 7. For Υ(t) � Γ(β)tβ/k/kΓk(β) with β> k and
p � σ � 0, (12) and (13) reduce to the fractional integral
operators (8) and (9), which satisfy the following upper bound:

kΓk(β)
β
ΔI

κ
x′+1
Ω (x) +

β
ΔI

κ
y′+1
Ω (x) 

≤ Δ(x) − Δ x1′( ( 
(β/k)− 1 Ω x1′(  + mΩ

x

m
   x − x1′( H

x1′
x u

α
; h,Δ( 

+ Δ y1′(  − Δ(x)( 
(β/k)− 1 Ω y1′(  + mΩ

x

m
   y1′ − x( H

x
y1′

v
α
; h,Δ( .

(66)

Remark 5. For 0< h(t)< 1, (66) gives refinement of Cor-
ollary 8 in [9].

Corollary 8. Using Υ(t) � tβ and Δ as identity function for
β≥ 1 along with p � σ � 0, (12) and (13) give fractional in-
tegral β

x′
+

1

IΩ(x) and β
y′

−

1

IΩ(x) defined in [15], which satisfy
the following upper bound:

Γ(β)
β
ΔIx′+1
Ω(x) (x) +

β
ΔIy′+1
Ω (x) 

≤ x − x1′( 
β Ω x1′(  + mΩ

x

m
   

1

0
h u

α
( h 1 − u

α
( du

+ y1′ − x( 
β Ω y1′(  + mΩ

x

m
   

1

0
h v

α
( h 1 − v

α
( dv.

(67)

Corollary 9. Using Υ(t) � Γ(β)tβ/k/kΓk(β) and Δ as iden-
tity function along with p � σ � 0, (12) and (13) reduce to the

fractional integral operators βIκ
x′+1
Ω(x) and βIκ

y′+1
Ω(x) given

in [21], which satisfy the following upper bound:

β
I
κ
x′+1
Ω (x) +

β
I
κ
y′+1
Ω (x)

≤
1

kΓk(β)
x − x1′( 

β/k Ω x1′(  + mΩ
x

m
  

× 
1

0
h u

α
( h 1 − u

α
( du + y1′ − x( 

β/k Ω y1′(  + mΩ
x

m
  

× 
1

0
h v

α
( h 1 − v

α
( dv.

(68)

Remark 6. For 0< h(t)< 1, (68) gives refinement of Cor-
ollary 10 in [9].
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Corollary 10. For k � 1 in Corollary 9, the following upper
bound for Riemann–Liouville fractional integral is
satisfied:

β
Ix′+1
Ω (x) +

β
Iy′+1
Ω (x)≤

1
Γ(β)

x − x1′( 
β Ω x1′(  + mΩ

x

m
  

× 
1

0
h(u)

α
h 1 − u

α
( du + y1′ − x( 

β Ω y1′(  + mΩ
x

m
  

× 
1

0
h v

α
( h 1 − v

α
( dv.

(69)

Remark 7. For 0< h(t)< 1, (69) gives refinement of Cor-
ollary 11 in [9].

Similar bounds can be obtained for (eorems 3 and 5,
which we leave for the reader.

5. Conclusions

(is article is about the bounds of unified integral operators
via refined (α, h − m)-convexity.(e obtained results are the
refinements of some already published results. Moreover,
some deducible fractional integral operators and their re-
lated bounds are also given.
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Modelling some diseases with large mortality rates worldwide, such as COVID-19 and cancer is crucial. Fractional differential
equations are being extensively used in such modelling stages. However, exact analytical solutions for the solutions of such kind of
equations are not reachable. +erefore, close exact solutions are of interests in many scientific investigations. +e theory of
stability in the sense of Ulam and Ulam–Hyers–Rassias provides such close exact solutions. So, this study presents stability results
of some Caputo fractional differential equations in the sense of Ulam–Hyers, Ulam–Hyers–Rassias, and generalized
Ulam–Hyers–Rassias. Two examples are introduced at the end to show the validity of our results. In this way, we generalize several
recent interesting results.

1. Introduction and Preliminaries

Fractional calculus provides a powerful tool in both
theoretical frameworks and practical aspects. In many
disciplines, fractional modelling is much more suitable
than the classical one. +is is because of the nice mod-
elling tools that are available only in fractional calculus
(see e.g., [1, 2]). In particular, fractional calculus has been
used extensively in the modelling stages in the fields of
economics, chemistry, aerodynamics, physics, and poly-
mer rheology. It should be remarked also that a certain
kind of fractional derivative has been used recently to
model Ebola virus (see [3]) and HIV (see [4]). Fractional
differential equations with Caputo and Caputo–Fabrizio
derivatives are used recently by the authors in [5] for the
model of cancer-immune system.

+e stability issue has gained substantially important
attention in several research fields through applications.
+ere are many kinds of stability; one of them is the stability
introduced by Ulam in 1940. Since then, the problem is
known as Ulam–Hyers stability or simply Ulam stability (see
e.g., [6], for more details). Its applications for many types of
equations have been investigated by many researchers. For

more details on this concept, the readers can see the in-
teresting works [7–10]. +e stability problem that is intro-
duced by Ulam can be stated as follows.

Assume that G1 is a group and (G2, χ) a metric group.
Given some ε∗ > 0, does there exist δ∗ > 0 such that if
F: G1⟶ G2 satisfies

χ F x1x2( , F x1( F x2( ( < δ∗, (1)

for all x1, x2 ∈ G1, then a homomorphism F∗: G1⟶ G2
exists such that

χ F x1( , F
∗

x1( ( < ε∗, (2)

for all x1 ∈ G1?

Ulam’s problem has been extended in many directions
for interesting settings. In particular, Rassias (see [11])
generalized Ulam’s result for Banach spaces. +e nice result
of Rassias reads as follows (see [11]).

Theorem 1. Consider Banach spaces B and B∗, and suppose
a mapping Υ : B⟶ B∗ such that the function t↦Υ(tx)

from R into B∗ is continuous for each fixed x ∈ B. Assume
that there are some β≥ 0 and ω ∈ [0, 1), fulfilling
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Υ x1 + x2(  − Υ x1(  − Υ x2( 
����

����≤ β x1
����

����
ω

+ x2
����

����
ω

 , x1, x2 ∈ B∖ 0{ }.

(3)

Then, a unique solution exists Υ∗: B⟶ B∗ of the
Cauchy equation (F(x1 + x2) � F(x1) + F(x2)) with

Υ x1(  − Υ∗ x1( 
����

����≤
2β x1

����
����
ω

2 − 2ω



, x1 ∈ B∖ 0{ }. (4)

The theorem of Rassias (see [11]) is nowadays known as
the Hyers–Ulam–Rassias stability.

Throughout the study, we denote the set of reals by R,
the set of nonzero reals by R∗, and the set of complex
numbers by C, and we fix an interval I ≔ [], ] + T] for some
reals ], T with T> 0.

Definition 1. Let λ> 0, χ ∈ C. +e Mittag–Leffler function
(MLF) (see e.g., [2]) Eλ

is defined as

Eλ
(χ) ≔ 

∞

n�0

χn

Γ(λn + 1)
. (5)

Similar to the exponential function, the function h(s) �

Eλ
(M(s − c)

λ) satisfies CD
λ
c,sh(s) � Mh(s) and I

λ
c h(s) �

(1/M)(h(s) − 1), where M ∈ R∗.

Remark 1. Authors in [12–15] obtained some stability re-
sults by using the MLF.

Now, we present the notion of generalized metric as
follows. Let Z be a nonempty set.

Definition 2. A mapping ϑ: Z × Z⟶ [0,∞] is called a
generalized metric on Z if and only if ϑ satisfies the
following:

G1 ϑ(ξ1, ξ2) � 0 if and only if ξ1 � ξ2
G2 ϑ(ξ1, ξ2) � ϑ(ξ2, ξ1) for all ξ1, ξ2 ∈ Z

G3 ϑ(ξ1, ξ3)≤ ϑ(ξ1, ξ2) + ϑ(ξ2, ξ3) for all ξ1, ξ2, ξ3 ∈ Z

+e notion of stability in the sense of Ulam–Hyers (UH),
Ulam–Hyers–Rassias (UHR), and generalized UHR of
fractional differential equations can be introduced as follows
(see e.g., [16]). We consider the following fractional dif-
ferential equation:

H t, κ,
C

D
λ
],tκ(t)  � 0, (6)

and the following three inequalities:

H t, κ,
C

D
λ
],tκ(t) 




≤ ε, (7)

H t, κ,
C

D
λ
],tκ(t) 




≤ ϱ(t), (8)

H t, κ,
C

D
λ
],tκ(t) 




≤ εϱ(t), (9)

We define the stability of (6) as follows.

Definition 3. Equation (6) is called stable in the sense of UH
if for a given ε> 0 and a function κ which satisfies (7), and
there exists a solution κ0 of (6) such that

κ t1(  − κ0 t1( 


≤ cε. (10)

Definition 4. Equation (6) is called UHR stable if, for some
ε> 0 and a function κ satisfying (9), there exists a solution κ0
of (6) such that

κ t1(  − κ0 t1( 


≤ cεϱ t1( , (11)

where ϱ(t1) is some positive, nondecreasing, and continuous
function.

Definition 5. Equation (6) is called generalized UHR stable
if, for some ε> 0 and a function κ satisfying (8), there exists a
solution κ0 of (6) such that

κ t1(  − κ0 t1( 


≤ cϱ t1( . (12)

+e theorem below represents a basic well-known fixed
point theory (see [17]). +is theorem plays a fundamental
role in our study.

Theorem 2. Assume that (P, R) is a metric space that is
generalized completely. Let M: P⟶ P be a strictly con-
tractive operator. If there is an integer u≥ 0 with
R(Mu+1d, Mud)<∞ for some d ∈ P, therefore,

(a) liml⟶+∞Mld � d∗, where d∗ is the unique fixed
point of M in

P
∗ ≔ d1 ∈ P: R M

u
d, d1( <∞ . (13)

(b) If d1 ∈ P∗, then R(d1, d∗)≤ (1/(1 − K))R(Md1, d1).

Define the space X as X ≔ C(I,R).

Lemma 1. Define a metric d: X × X⟶ [0,∞] in such a
way that

d κ1, κ2(  � inf D ∈ [0,∞]:
κ1(s) − κ2(s)




Eλ
η(s − ])

λ
 

≤ Dβ(s), s ∈ I

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
,

(14)

where η> 0 and β ∈ C(I, (0, +∞)). ?en, (X, d) is a gen-
eralized complete metric space.

Remark 2. Note that the authors in [18] proved the existence
and uniqueness of global solutions using the norm:

‖κ‖c � supl∈[0,ϑ]

‖κ(l)‖

Eλ
cl

λ
 

, for κ ∈ C [0, ϑ],R
d

 .
(15)

+is contribution is considered as a generalized version
of the interesting results in [19–21]. Our contribution is
original for many reasons. First, the metric used is a function
of the Mittag–Leffler function. Second, the obtained results
are in a complete generalized metric space. +ird, the tool
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used is a version of Banach fixed point theory. +e main
purpose of this study is to study the stability of the following
initial value problem:

C
D

λ
],ωy(ω) � G(ω, y(ω)),

y(]) � y],

(16)

in the sense depicted in Definitions 3–5, where λ ∈ (0, 1),
CD

λ
],ω is the Caputo fractional derivative, and

G: I × R⟶ R is a given function. It should be noted that
the solution of the initial value problem (16) is given by

y(ω) � y] +
1
Γ(λ)


ω

]
(ω − ς)

λ− 1
G(ς, y(ς))dς. (17)

2. Stability Results

In this section, we present our main results. In other words,
we prove that, under certain conditions, functions that
satisfy (16) approximately (in some sense) are close (in some
way) to the solutions of (16). We have done this in both UH
sense and also in UHR sense. +e following theorem rep-
resents the stability of (16) in the sense of UHR.

Theorem 3. Assume G: I × R⟶ R is continuous and
satisfies

G ω, κ1(  − G ω, κ2( 


≤ LG κ1 − κ2


, (18)

for all ω ∈ I, κi ∈ R, i � 1, 2, and for some LG > 0. If an ab-
solutely continuous function x: I⟶ R satisfies

C
D

λ
],ωx(ω) − G(ω, x(ω))




≤ ε(ω), (19)

for all ω ∈ I, where ε> 0 and ϱ(ω) is a positive, nonde-
creasing, and continuous function, then there is a solution x∗

of (16) such that

x(ω) − x
∗
(ω)


≤

LG + δ
δ

 

MEλ
LG + δ( T

λ
 

Γ(λ + 1)
, εϱ(ω),

(20)

where

M � sups∈[],]+T]

(s − ])
λ

Eλ
LG + δ( (s − ])

λ
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (21)

and δ is any positive constant.

Proof. Define the metric d on X in this way:

d x1, x2(  � inf D ∈ [0,∞]:
x1(ω) − x2(ω)




Eλ
LG + δ( (ω − ])

λ
 

≤Dϱ(ω), ∀ω ∈ I

⎧⎪⎪⎨

⎪⎪⎩

⎫⎪⎪⎬

⎪⎪⎭
. (22)

Now, define the operator A: X⟶ X such that

(Ay)(ω) ≔ x(]) +
1
Γ(λ)


ω

]
(ω − s)

λ−1
G(s, y(s))ds.

(23)

It is easy to see that d(Ay0, y0)<∞, and
y ∈ X: d(y0, y)<∞  � X, ∀y0 ∈ X.

Now, we prove that the operator A is a strictly con-
tractive operator:

Ay1( (ω) − Ay2( (ω)


 ≤ 
ω

]

(ω − ς)
λ− 1

Γ(λ)
G ς, y1(ς)(  − G ς, y2(ς)(  dς





≤
1
Γ(λ)


ω

]
(ω − ς)

λ− 1
G ς, y1(ς)(  − G ς, y2(ς)( 


dς

≤ LG 
ω

]
(ω − ς)

λ− 1 y1(ς) − y2(ς)




Γ(λ)
dς

≤
LG

Γ(λ)

ω

]
(ω − ς)

λ− 1 y1(ς) − y2(ς)




Eλ
LG + δ( (ς − ])

λ
 

Eλ
LG + δ( (ς − ])

λ
 dς

≤
LGd y1, y2( 

Γ(λ)

ω

]
(ω − ς)

λ− 1ϱ(ς)Eλ
LG + δ( (ς − ])

λ
 dς, for allω ∈ I.

(24)
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Since ϱ is nondecreasing, therefore,

Ay1( (ω) − Ay2( (ω)


≤
LGd y1, y2( 

Γ(λ)
ϱ(ω) 

ω

]
(ω − ς)

λ− 1
Eλ

LG + δ( (ς − ])
λ

 dς

≤
LGd y1, y2( 

LG + δ
Eλ

LG + δ( (ω − ])
λ

  − 1 ϱ(ω)

≤
LGd y1, y2( 

LG + δ
Eλ

LG + δ( (ω − ])
λ

  ϱ(ω), for allω ∈ I,

(25)

so that

d Ay1,Ay2( ≤
LG

LG + δ
d y1, y2( , (26)

which means that the operator A is a strictly contractive
operator. Now, since we have

C
D

λ
],ωx(ω) − G(ω, x(ω))




≤ εϱ(ω), (27)

then,

|x(ω) − Ax(ω)|≤
ε
Γ(λ)


ω

]
(ω − ς)

λ− 1ϱ(ς)dς, (28)

which implies that

|x(ω) − Ax(ω)|

Eλ
LG + δ( (ω − ])

λ
 

≤
ε
Γ(λ + 1)

ϱ(ω)
(ω − ])

λ

Eλ
LG + δ( (ω − ])

λ
 

≤
εM
Γ(λ + 1)

ϱ(ω).

(29)

+erefore,
d(x,Ax)≤ ε

M

Γ(λ + 1)
. (30)

By employing +eorem 2, there is a solution x∗ of (16)
such that

d x, x
∗

( ≤ ε
LG + δ

δ
 

M

Γ(λ + 1)
, (31)

so that

x(ω) − x
∗
(ω)


≤

LG + δ
δ

 

MEλ
LG + δ( T

λ
 

Γ(λ + 1)
, εϱ(ω),

(32)
for all ω ∈ I.

+e following theorem represents the stability of (16) in
the sense of UH. □

Theorem 4. Assume G: I × R⟶ R is continuous and
satisfies

G ω, κ1(  − G ω, κ2( 


≤ LG κ1 − κ2


, ∀ω ∈ I, κi ∈ R, i � 1, 2.

(33)

If an absolutely continuous function x: I⟶ R satisfies

C
D

λ
],ωx(ω) − G(ω, x(ω))




≤ ε, (34)

for all ω ∈ I and some ε> 0, then there is a solution x∗ of (16)
such that

x(ω) − x
∗
(ω)


≤ ε

LG + δ
δ

 

MEλ
LG + δ( T

λ
 

Γ(λ + 1)
,

(35)

where

M � sups∈[],]+T]

(s − ])
λ

Eλ
LG + δ( (s − ])

λ
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (36)

and δ is any positive constant.

Proof. +e proof is similar to +eorem 3. □

Remark 3. It should be noted that, in our analysis, we do not
assume any condition on the constant LG, unlike the case of
+eorem 4.1 in [20], where the condition 0< (LGr

λ/(Γ(λ +

1)))< 1 was a basic condition.
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Remark 4. Note that our results of the UH stability are some
generalizations of the results obtained in [19].

+e following theorem represents the stability of (16) in
the sense of generalized UHR.

Theorem 5. Assume G: I × R⟶ R is continuous and
satisfies

G ω, κ1(  − G ω, κ2( 


≤LG κ1 − κ2


, (37)

for all ω ∈ I, κi ∈ R, i � 1, 2, and for some LG > 0. If an ab-
solutely continuous function x: I⟶ R satisfies

C
D

λ
],ωx(ω) − G(ω, x(ω))




≤ ϱ(ω), (38)

for all ω ∈ I, where ϱ(ω) is a positive, nondecreasing, and
continuous function, then there is a solution x∗ of (16) such
that

x(ω) − x
∗
(ω)


≤

LG + δ
δ

 

MEλ
LG + δ( T

λ
 

Γ(λ + 1)
ϱ(ω),

(39)

where

M � sups∈[],]+T]

(s − ])
λ

Eλ
LG + δ( (s − ])

λ
 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (40)

and δ is any positive constant.

Proof. +e proof is similar to +eorem 3. □

Remark 5. Notice that, in our study of the generalized UHR
stability, we do not assume any condition on LG, unlike the
case in +eorem 3.1 in [20].

Remark 6. Note that, in [19], the authors obtained stability
results for differential equations with integer-order deriv-
atives, while in our case, it is for fractional-order derivatives.
In this sense, we generalized the interesting results in [19].

3. Examples

Two illustrative examples are given to show the validity of
results.

Example 1. Consider equation (16) for λ � 0.6, ] � 0, T � 9,
and G(ω, κ) � ω2 sin(κ).

We have

ω2 sin κ1(  − ω2 sin κ2( 


≤ 81 κ1 − κ2


, ∀ω ∈ [0, 9], κ1, κ2 ∈ R.

(41)
+en, LG � 81.
Suppose that x satisfies

C
D

0.6
0,ωx(ω) − ω2 sin(x(ω))



≤ 0.01(ω + 2), (42)

for all ω ∈ [0, 9].

Here, ε � 0.01 and ψ(ω) � ω + 2. Using +eorem 3,
there is a solution x∗ of the fractional differential equation
and M> 0 such that

x(ω) − x
∗
(ω)


≤ 0.01M(ω + 2), ∀ω ∈ [0, 9]. (43)

Example 2. Consider equation (16) for λ � 0.4, ] � 0, T � 2,
and G(ω, κ) � ω4 cos(κ).

We have

ω4 cos κ1(  − ω4 cos κ2( 


≤ 16 κ1 − κ2


, ∀ω ∈ [0, 2], κ1, κ2 ∈ R.

(44)

+en, LG � 16.
Suppose that x satisfies

C
D

0.4
0,ωx(ω) − ω4 cos(x(ω))



≤ 0.01, (45)

for all ω ∈ [0, 2].
Here, ε � 0.01. Using+eorem 4, there is a solution x∗ of

the fractional differential equation and M> 0 such that

x(ω) − x
∗
(ω)


≤ 0.01M, ∀ω ∈ [0, 2]. (46)

4. Conclusion

It is known that, for the majority of fractional differential
problems, a widely applicable general approach to deter-
mine the analytical solutions is not available. In this paper,
we used a version of Banach fixed point theorem to prove
that, under certain conditions, functions that satisfy some
Caputo fractional differential equations approximately are
close in some sense to the exact solutions of such kind of
equations. In other words, we presented stability results for
some Caputo fractional differential equations in the sense
of UH, UHR, and generalized UHR. In our analysis, we
used a new metric as a function of the Mittag–Leffler
function. We end up with two examples that show the
validity of our results.

Data Availability

No data were used to support this study.

Disclosure

An earlier version of this work has been presented as pre-
print in Authorea.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+e authors extend their appreciation to the Deanship of
Scientific Research at Jouf University for funding this work
through research Grant no. DSR-2021-03-0121.

Mathematical Problems in Engineering 5



References

[1] I. Podlubny, “Fractional differential equations,” Mathematics
in Science and Engineering, Vol. 198, Academic Press, San
Diego, CA, USA, 1999.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, ?eory and
Applications of Fractional Differential Equations, Vol. 204,
Elsevier, Amsterdam, Netherlands, 2006.

[3] I. Koca, “Modelling the spread of Ebola virus with atangana-
baleanu fractional operators,” European Physical Journal Plus,
vol. 133, no. 3, pp. 1–11, 2018.

[4] D. Baleanu, H. Mohammadi, and S. Rezapour, “Analysis of
the model of HIV-1 infection of CD4+ T-cell with a new
approach of fractional derivative,” Advances in Difference
Equations, vol. 2020, no. 1, 17 pages, Article ID 71, 2020.
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'e principle purpose of this article is to examine some stability properties for the fixed point of the below rational difference
equation Un+1 � ξUn− 8 + (εU2

n− 8/(μUn− 8 + κUn− 17)) where ξ, ε, μ, and κ are arbitrary real numbers. Moreover, solutions for some
special cases of the proposed difference equation are introduced.

1. Introduction

In recent years, many researchers have tended to use difference
equations in mathematical models to explain the problems in
different sciences since they have a lot of features such as they
enable the scientists to introduce the predictions of their study
and it gives more accurate results. In addition, there are various
types of nonlinear difference equations that can be studied; one
of the most commonly used is rational nonlinear difference
equations. However, the research studies in the area of dif-
ference equations have two directions: first one is the analysis of
the behavior of solutions.'erefore, there are a huge number of
articles published to investigate the stability of the equilibrium
points and the existence of the periodic solutions for the
nonlinear difference equations (see, for example, [1–5]). 'e
second direction is to obtain the expressions of the solution if it
is possible since there is no explicit and enoughmethods to find
the solution of nonlinear difference equations (see, for example,
[6–11]).

Saleh and Farhat [12] investigated the stability properties
and the period two solutions of all nonnegative solutions of
the difference equation:

Vn+1 �
a1Vn + a2Vn− k

A + BVn− k

. (1)

In [13], Jia studied the solutions’ behavior of the high-
order fuzzy difference equation:

Vn+1 �
A1Vn− 1Vn− 2

B2 + 
k
i�3 DiVn− i

. (2)

Kerker et al. [14] investigated the global behavior of the
rational difference equation:

Vn+1 �
an + Vn

an + Vn− k

. (3)

Khaliq and Elsayed [15] examined the dynamics be-
havior and existence of the periodic solution of the differ-
ence equation:

Vn+1 � α1Vn− 2 +
α2V

2
n− 2

c1Vn− 2 + c2Vn− 5
. (4)

In [16], Saleh et al. studied the properties’ stability for a
nonlinear rational difference equation of a higher order:

Vn+1 �
β1 + β2Vn + β3Vn− k

B1Vn + B2Vn− k

. (5)

Sadiq and Kalim [17] obtained the solution behavior of
the difference equation:
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Vn+1 � α1Vn− 9 +
α2V

2
n− 19

α3Vn− 9 + α4Vn− 19
. (6)

To see more related work on the nonlinear difference
equation, refer to [18–43]. Our aim of this article is to in-
vestigate the dynamics of the solution for the below dif-
ference equation:

Un+1 � ξUn− 8 +
εU2

n− 8
μUn− 8 + κUn− 17

, (7)

where ξ, ε, μ, and κ are arbitrary real numbers with initial
conditions Uj for j � − 17, − 16, . . . , 0.

'is paper is collected as follows: in Section 2, the
boundedness of the solution is presented, andwe prove that the
periodic solution of period two does not exist in the next
section. Following that, we state the conditions of the local and
global stability of the equilibrium point in Sections 4 and 5,
respectively. 'en, we introduce the solutions’ forms for some
special cases in Section 6. Finally, we give some numerical
examples in order to illustrate the behavior of the solutions.

2. Boundedness of Solution

Theorem 1. If the following condition

ξ +
ε
μ

 < 1, (8)

is true, then every solution of (7) is bounded.

Proof. Assume that Un 
∞
n�− 17 is a solution of (7).'en, from

(7), we have

Un+1 � ξUn− 8 +
εU2

n− 8
μUn− 8 + κUn− 17

≤ ξUn− 8 +
εU2

n− 8
μUn− 8

� ξ +
ε
μ

 Un− 8.

(9)

Hence,

Un+1 ≤Un− 8, ∀n≥ 0. (10)

Implies that the subsequences U9n− 8 
∞
n�− 17, U9n− 7 

∞
n�− 17,

U9n− 6 
∞
n�− 17, U9n− 5 

∞
n�− 17, U9n− 4 

∞
n�− 17, U9n− 3 

∞
n�− 17,

U9n− 2 
∞
n�− 17, U9n− 1 

∞
n�− 17, and U9n 

∞
n�− 17 are nonincreas-

ing. 'us, they are bounded from above by Umax, where
Umax � max U− 17, U− 16, U− 15, U− 14, U− 13, U− 12, U− 11,

U− 10, U− 9, U− 8, U− 7, U− 6, U− 5, U− 4, U− 3, U− 2, U− 1, U0}. □

3. Periodicity of the Solution

Theorem 2. For nonlinear difference equation (7), there is no
periodic solution of period two.

Proof. To prove 'eorem 2, suppose that (7) has a positive
prime period two solutions presented as . . . , e, f, e, f, . . ..
'en,

e � ξf +
εf2

μf + κe
,

e �
ξμf

2
+ ξκef + εf2

μf + κe
,

(ξμ + ε)f2
� (μ − ξκ)ef + κe

2
.

(11)

Similarly,

f � ξe +
εe2

μe + κf
,

f �
ξμe

2
+ ξκef + εe2

μe + κf
,

(ξμ + ε)e2 � (μ − ξκ)fe + κf
2
.

(12)

Subtracting (11) from (12), we get

κ e
2

− f
2

  +(ξμ + ε) e
2

− f
2

  � 0,

(κ + ξμ + ε) e
2

− f
2

  � 0.
(13)

Since (κ + ξμ + ε)≠ 0, thus e � f, and this contradicts
the fact that e≠f. □

4. The Equilibrium Point and Local Stability

'e fixed points of (7) are given by

U � ξU +
εU2

μU + κU
,

(1 − ξ)U �
εU2

(μ + κ)U
,

((1 − ξ)(μ + κ) − ε)U2
� 0.

(14)

If (1 − ξ)(μ + κ)≠ ε, then (7) has only one equilibrium
point which is U � 0.

Assume g: (0,∞)2⟶ (0,∞) is a continuously dif-
ferentiable function defined by

g(v, w) � ξv +
εv2

μv + κw
. (15)

'erefore,

zg

zv
� ξ +

εμv
2

+ 2εκvw

(μv + κw)
2 ,

zg

zw
�

− κεv2

(μv + κw)
2.

(16)

'en,
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zg

zv
|v�w�U � ξ +

εμ + 2εκ
(μ + κ)

2,

zg

zw
|v�w�U �

− εκ
(μ + κ)

2.

(17)

Hence,

xn+1 − ξ +
εμ + 2εκ
(μ + κ)

2 xn +
εκ

(μ + κ)
2 xn− 1 � 0. (18)

Theorem 3. :e fixed point U � 0 is said to be a locally
asymptotically stable if the relation

ε(μ + 3k)<(1 − ξ)(μ + κ)
2
, (19)

is satisfied.

Proof. From 'eorem 5.10 in [44], it follows that U is as-
ymptotically stable if

P0


 + P1


< 1, (20)

where P0 � ξ + ((εμ + 2εκ)/(μ + κ)2) and P1 � (− εκ/
(μ + κ)2). 'en,

ξ +
εμ + 2εκ
(μ + κ)

2




+

− εκ
(μ + κ)

2




< 1,

ξ +
εμ + 3εκ
(μ + κ)

2 < 1.

(21)

Hence,

ε(μ + 3k)<(1 − ξ)(μ + κ)
2
. (22)

Finally, the proof is done. □

5. Global Attractivity of the Fixed Point

Theorem 4. :e fixed point U of (7) has to be a global
attracting when

μ(1 − ξ)≠ ε. (23)

Proof. From (16), we see that the function g(v, w), which
defined in (15), is increasing in v and decreasing in w. Let
(ρ, τ) be a solution of the system:

τ � g(τ, ρ),

ρ � g(ρ, τ),

τ � ξτ +
ετ2

μτ + κρ
,

ρ � ξρ +
ερ2

μρ + κτ
.

(24)

'erefore,

μ(1 − ξ)τ2 + κ(1 − ξ)τρ � ετ2, (25)

μ(1 − ξ)ρ2 + κ(1 − ξ)τρ � ερ2. (26)

Subtracting (25) from (26), we get

(μ(1 − ξ) − ε) τ2 − ρ2  � 0, (27)

and then, ρ � τ if μ(1 − ξ)≠ ε. 'us, from 'eorem 5.20 in
[44], we observe that there exists only one solution for (7)
and it is a global attractor if μ(1 − ξ)≠ ε. □

6. Special Cases

Now, we present the solutions’ expressions for special cases
of (7):

Un+1 � Un− 8 ±
U

2
n− 8

Un− 8 ± Un− 17
, (28)

where the initial conditions are

U− 17, U− 16, U− 15, U− 14, U− 13, U− 12, U− 11, U− 10, U− 9, U− 8, U− 7, U− 6, U− 5, U− 4, U− 3, U− 2, U− 1, (29)

and U0 are arbitrary real numbers.

6.1. First Equation. We solve the equation
Un+1 � Un− 8 +

U
2
n− 8

Un− 8 + Un− 17
. (30)
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Theorem 5. Assume Un 
∞
n�− 17 is a solution of (30); thus, for

n � 0, 1, . . .,

U9n− 8 � U− 8 

n

i�1

F2i+1U− 8 + F2iU− 17

F2iU− 8 + F2i− 1U− 17
 ,

U9n− 4 � U− 4 

n

i�1

F2i+1U− 4 + F2iU− 13

F2iU− 4 + F2i− 1U− 13
 ,

U9n− 7 � U− 7 

n

i�1

F2i+1U− 7 + F2iU− 16

F2iU− 7 + F2i− 1U− 16
 ,

U9n− 3 � U− 3 

n

i�1

F2i+1U− 3 + F2iU− 12

F2iU− 3 + F2i− 1U− 12
 ,

U9n− 6 � U− 6 

n

i�1

F2i+1U− 6 + F2iU− 15

F2iU− 6 + F2i− 1U− 15
 ,

U9n− 2 � U− 2 

n

i�1

F2i+1U− 2 + F2iU− 11

F2iU− 2 + F2i− 1U− 11
 ,

U9n− 5 � U− 5 

n

i�1

F2i+1U− 5 + F2iU− 14

F2iU− 5 + F2i− 1U− 14
 ,

U9n− 1 � U− 1 

n

i�1

F2i+1U− 1 + F2iU− 10

F2iU− 1 + F2i− 1U− 10
 ,

U9n � U0 

n

i�1

F2i+1U0 + F2iU− 9

F2iU0 + F2i− 1U− 9
 ,

(31)

where Fi 
∞
i�1 � 1, 1, 2, 3, 5, . . . ,{ } is the Fibonacci sequence.

Proof. We show that the expressions in (31) are solutions of
(30) by applying mathematical induction. First, the results
hold for n � 0. Second, we suppose that the forms are sat-
isfied for n − 1 and n − 2. Now, we prove that the results are
satisfied for n:

U9n− 17 � U− 8 
n− 1

i�1

F2i+1U− 8 + F2iU− 17

F2iU− 8 + F2i− 1U− 17
 ,

U9n− 13 � U− 4 
n− 1

i�1

F2i+1U− 4 + F2iU− 13

F2iU− 4 + F2i− 1U− 13
 ,

U9n− 16 � U− 7 

n− 1

i�1

F2i+1U− 7 + F2iU− 16

F2iU− 7 + F2i− 1U− 16
 ,

U9n− 12 � U− 3 
n− 1

i�1

F2i+1U− 3 + F2iU− 12

F2iU− 3 + F2i− 1U− 12
 ,

U9n− 15 � U− 6 

n− 1

i�1

F2i+1U− 6 + F2iU− 15

F2iU− 6 + F2i− 1U− 15
 ,

U9n− 11 � U− 2 

n− 1

i�1

F2i+1U− 2 + F2iU− 11

F2iU− 2 + F2i− 1U− 11
 ,

U9n− 14 � U− 5 

n− 1

i�1

F2i+1U− 5 + F2iU− 14

F2iU− 5 + F2i− 1U− 14
 ,

U9n− 10 � U− 1 

n− 1

i�1

F2i+1U− 1 + F2iU− 10

F2iU− 1 + F2i− 1U− 10
 ,

U9n− 9 � U0 

n− 1

i�1

F2i+1U0 + F2iU− 9

F2iU0 + F2i− 1U− 9
 ,

U9n− 18 � U0 

n− 2

i�1

F2i+1U0 + F2iU− 9

F2iU0 + F2i− 1U− 9
 ,

U9n− 26 � U− 8 

n− 2

i�1

F2i+1U− 8 + F2iU− 17

F2iU− 8 + F2i− 1U− 17
 ,

U9n− 22 � U− 4 

n− 2

i�1

F2i+1U− 4 + F2iU− 13

F2iU− 4 + F2i− 1U− 13
 ,

U9n− 25 � U− 7 

n− 2

i�1

F2i+1U− 7 + F2iU− 16

F2iU− 7 + F2i− 1U− 16
 ,

U9n− 21 � U− 3 

n− 2

i�1

F2i+1U− 3 + F2iU− 12

F2iU− 3 + F2i− 1U− 12
 ,

U9n− 24 � U− 6 

n− 2

i�1

F2i+1U− 6 + F2iU− 15

F2iU− 6 + F2i− 1U− 15
 ,

U9n− 20 � U− 2 

n− 2

i�1

F2i+1U− 2 + F2iU− 11

F2iU− 2 + F2i− 1U− 11
 ,

U9n− 23 � U− 5 

n− 2

i�1

F2i+1U− 5 + F2iU− 14

F2iU− 5 + F2i− 1U− 14
 ,

U9n− 19 � U− 1 

n− 2

i�1

F2i+1U− 1 + F2iU− 10

F2iU− 1 + F2i− 1U− 10
 .

(32)

From (30), it follows that
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U9n− 1 � U9n− 10 +
U

2
9n− 10

U9n− 10 + U9n− 19
,

� U9n− 10 1 +
U9n− 10

U9n− 10 + U9n− 19
 ,

� U9n− 10 1 +
U− 1

n− 1
i�1 F2i+1U− 1 + F2iU− 10( / F2iU− 1 + F2i− 1U− 10( ( 

U− 1
n− 1
i�1 F2i+1U− 1 + F2iU− 10( / F2iU− 1 + F2i− 1U− 10( (  + U− 1 

n− 2
i�1 F2i+1U− 1 + F2iU− 10( / F2iU− 1 + F2i− 1U− 10( ( 

 ,

� U9n− 10 1 +
U− 1

n− 2
i�1 F2i+1U− 1 + F2iU− 10( / F2iU− 1 + F2i− 1U− 10( (  F2n− 1U− 1 + F2n− 2U− 10( / F2n− 2U− 1 + F2n− 3U− 10(  

U− 1
n− 2
i�1 F2i+1U− 1 + F2iU− 10( / F2iU− 1 + F2i− 1U− 10( (  F2n− 1U− 1 + F2n− 2U− 10( / F2n− 2U− 1 + F2n− 3U− 10 + 1(  

 ,

� U9n− 10 1 +
F2n− 1U− 1 + F2n− 2U− 10( / F2n− 2U− 1 + F2n− 3U− 10(  

F2n− 1U− 1 + F2n− 2U− 10( / F2n− 2U− 1 + F2n− 3U− 10 + 1(  
 ,

� U9n− 10 1 +
F2n− 1U− 1 + F2n− 2U− 10

F2n− 1U− 1 + F2n− 2U− 10 + F2n− 2U− 1 + F2n− 3U− 10
 ,

� U9n− 10 1 +
F2n− 1U− 1 + F2n− 2U− 10

F2n− 1 + F2n− 2( U− 1 + F2n− 2 + F2n− 3( U− 10
 ,

� U9n− 10 1 +
F2n− 1U− 1 + F2n− 2U− 10

F2nU− 1 + F2n− 1U− 10
 ,

� U9n− 10
F2n− 1 + F2n( U− 1 + F2n− 2 + F2n− 1( U− 10

F2nU− 1 + F2n− 1U− 10
 ,

� U9n− 10
F2n+1U− 1 + F2nU− 10

F2nU− 1 + F2n− 1U− 10
 ,

� U− 1 

n− 1

i�1

F2i+1U− 1 + F2iU− 10

F2iU− 1 + F2i− 1U− 10
 ⎛⎝ ⎞⎠

F2n+1U− 1 + F2nU− 10

F2nU− 1 + F2n− 1U− 10
 ,

� U− 1 

n

i�1

F2i+1U− 1 + F2iU− 10

F2iU− 1 + F2i− 1U− 10
 .

(33)

'erefore,

U9n− 1 � U− 1

· 
n

i�1

F2i+1U− 1 + F2iU− 10

F2iU− 1 + F2i− 1U− 10
 . (34)

Similarly, one can investigate other expressions. 'e
proof is done. □

6.2. Second Equation. In this section, we introduce the so-
lution of the following equation:

Un+1 � Un− 8 +
U

2
n− 8

Un− 8 − Un− 17
. (35)

Theorem 6. Let Un 
∞
n�− 17 be a solution of (35); then, for

n � 0, 1, . . .,
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U9n− 8 � U− 8 

n

i�1

F2i+1U− 8 − F2iU− 17

F2iU− 8 − F2i− 1U− 17
 ,

U9n− 4 � U− 4 

n

i�1

F2i+1U− 4 − F2iU− 13

F2iU− 4 − F2i− 1U− 13
 ,

U9n− 7 � U− 7 

n

i�1

F2i+1U− 7 − F2iU− 16

F2iU− 7 − F2i− 1U− 16
 ,

U9n− 3 � U− 3 

n

i�1

F2i+1U− 3 − F2iU− 12

F2iU− 3 − F2i− 1U− 12
 ,

U9n− 6 � U− 6 

n

i�1

F2i+1U− 6 − F2iU− 15

F2iU− 6 − F2i− 1U− 15
 ,

U9n− 2 � U− 2 

n

i�1

F2i+1U− 2 − F2iU− 11

F2iU− 2 − F2i− 1U− 11
 ,

U9n− 5 � U− 5 

n

i�1

F2i+1U− 5 − F2iU− 14

F2iU− 5 − F2i− 1U− 14
 ,

U9n− 1 � U− 1 

n

i�1

F2i+1U− 1 − F2iU− 10

F2iU− 1 − F2i− 1U− 10
 ,

U9n � U0 

n

i�1

F2i+1U0 − F2iU− 9

F2iU0 − F2i− 1U− 9
 ,

(36)

where Fi 
∞
i�− 1 � 1, 0, 1, 1, 2, 3, 5, . . .{ } is the Fibonacci

sequence.

Proof. 'eproof will be the same as proof of'eorem 5, so it
is therefore omitted. □

6.3. :ird Equation. In this section, we present the solution
of the following equation:

Un+1 � Un− 8 −
U

2
n− 8

Un− 8 + Un− 17
. (37)

Theorem 7. Let Un 
∞
n�− 17 be a solution of (37); then, for

n � 0, 1, . . .,

U9n− 8 �
U− 8U− 17

FnU− 8 + Fn+1U− 17
,

U9n− 4 �
U− 4U− 13

FnU− 4 + Fn+1U− 13
,

U9n− 7 �
U− 7U− 16

FnU− 7 + Fn+1U− 16
,

U9n− 3 �
U− 3U− 12

FnU− 3 + Fn+1U− 12
,

U9n− 6 �
U− 6U− 15

FnU− 6 + Fn+1U− 15
,

U9n− 2 �
U− 2U− 11

FnU− 2 + Fn+1U− 11
,

U9n− 5 �
U− 5U− 14

FnU− 5 + Fn+1U− 14
,

U9n− 1 �
U− 1U− 10

FnU− 1 + Fn+1U− 10
,

U9n �
U0U− 9

FnU0 + Fn+1U− 9
,

(38)

where Fi 
∞
i�− 1 � 1, 0, 1, 1, 2, 3, 5, . . . ,{ }.

Proof. By using mathematical induction, we prove that (38)
are solutions of (37). First, the results for n � 0 are true.
Second, assume that the assumption holds for n − 2 and
n − 1.

U9n− 17 �
U− 8U− 17

Fn− 1U− 8 + FnU− 17
,

U9n− 13 �
U− 4U− 13

Fn− 1U− 4 + FnU− 13
,

U9n− 16 �
U− 7U− 16

Fn− 1U− 7 + FnU− 16
,

U9n− 12 �
U− 3U− 12

Fn− 1U− 3 + FnU− 12
,

U9n− 15 �
U− 6U− 15

Fn− 1U− 6 + FnU− 15
,

U9n− 11 �
U− 2U− 11

Fn− 1U− 2 + FnU− 11
,

U9n− 14 �
U− 5U− 14

Fn− 1U− 5 + FnU− 14
,

U9n− 10 �
U− 1U− 10

Fn− 1U− 1 + FnU− 10
,

U9n− 9 �
U0U− 9

Fn− 1U0 + FnU− 9
,

U9n− 18 �
U0U− 9

Fn− 2U0 + Fn− 1U− 9
,

U9n− 26 �
U− 8U− 17

Fn− 2U− 8 + Fn− 1U− 17
,

U9n− 22 �
U− 4U− 13

Fn− 2U− 4 + Fn− 1U− 13
,

6 Mathematical Problems in Engineering



U9n− 25 �
U− 7U− 16

Fn− 2U− 7 + Fn− 1U− 16
,

U9n− 21 �
U− 3U− 12

Fn− 2U− 3 + Fn− 1U− 12
,

U9n− 24 �
U− 6U− 15

Fn− 2U− 6 + Fn− 1U− 15
,

U9n− 20 �
U− 2U− 11

Fn− 2U− 2 + Fn− 1U− 11
,

U9n− 23 �
U− 5U− 14

Fn− 2U− 5 + Fn− 1U− 14
,

U9n− 19 �
U− 1U− 10

Fn− 2U− 1 + Fn− 1U− 10
.

(39)

Now, from (37), we have

U9n− 1 � U9n− 10 −
U

2
9n− 10

U9n− 10 + U9n− 19
,

� U9n− 10 1 −
U9n− 10

U9n− 10 + U9n− 19
 ,

� U9n− 10 1 −
U− 1U− 10/ Fn− 1U− 1 + FnU− 10( ( 

U− 1U− 10/ Fn− 1U− 1 + FnU− 10( (  + U− 1U− 10/ Fn− 2U− 1 + Fn− 1U− 10( ( 
 ,

� U9n− 10 1 −
U− 1U− 10/ Fn− 1U− 1 + FnU− 10( ( 

U− 1U− 10/ Fn− 1U− 1 + FnU− 10( (  1 + Fn− 1U− 1 + FnU− 10/Fn− 2U− 1 + Fn− 1U− 10(  
 ,

� U9n− 10 1 −
1

1 + Fn− 1U− 1 + FnU− 10/Fn− 2U− 1 + Fn− 1U− 10(  
 ,

� U9n− 10 1 −
Fn− 2U− 1 + Fn− 1U− 10

Fn− 2U− 1 + Fn− 1U− 10 + Fn− 1U− 1 + FnU− 10 
 

U9n− 10 1 −
Fn− 2U− 1 + Fn− 1U− 10

FnU− 1 + Fn+1U− 10
 ,

� U9n− 10
Fn − Fn− 2( U− 1 + Fn+1 − Fn− 1( U− 10

FnU− 1 + Fn+1U− 10
 ,

� U9n− 10
Fn− 1U− 1 + FnU− 10

FnU− 1 + Fn+1U− 10
 ,

�
U− 1U− 10

Fn− 1U− 1 + FnU− 10
 

Fn− 1U− 1 + FnU− 10

FnU− 1 + Fn+1U− 10
 ,

�
U− 1U− 10

FnU− 1 + Fn+1U− 10
.

(40)
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'us,

U9n− 1 �
U− 1U− 10

FnU− 1 + Fn+1U− 10
. (41)

Similarly, one can see that the other forms are true. 'e
proof is complete. □

6.4. Fourth Equation. We study the following equation:

Un+1 � Un− 8 −
U

2
n− 8

Un− 8 − Un− 17
. (42)

Theorem 8. Suppose that Un 
∞
n�− 17 is a solution of (42), then

there exists a periodic solution with period 54. Moreover,
Un 
∞
n�− 17 takes the form

U− 17, U− 16, U− 15, U− 14, U− 13, U− 12, U− 11, U− 10, U− 9, U− 8, U− 7,

U− 6, U− 5, U− 4, U− 3, U− 2, U− 1, U0, −
U− 8U− 17

U− 8 − U− 17
, −

U− 7U− 16

U− 7 − U− 16
, −

U− 6U− 15

U− 6 − U− 15
, −

U− 5U− 14

U− 5 − U− 14
,

−
U− 4U− 13

U− 4 − U− 13
, −

U− 3U− 12

U− 3 − U− 12
, −

U− 2U− 11

U− 2 − U− 11
, −

U− 1U− 10

U− 1 − U− 10
, −

U0U− 9

U0 − U− 19
, − U− 17, − U− 16,

− U− 15, − U− 14, − U− 13, − U− 12, − U− 11, − U− 10,

− U− 9, − U− 8, − U− 7, − U− 6, − U− 5, − U− 4, − U− 3, − U− 2, − U− 1, − U0,

U− 8U− 17

U− 8 − U− 17
,

U− 7U− 16

U− 7 − U− 16
,

U− 6U− 15

U− 6 − U− 15
,

U− 5U− 14

U− 5 − U− 14
,

U− 4U− 13

U− 4 − U− 13
,

U− 3U− 12

U− 3 − U− 12
,

U− 2U− 11

U− 2 − U− 11
,

U− 1U− 10

U− 1 − U− 10
,

U0U− 9

U0 − U− 19
, U− 17, U− 16, U− 15, U− 14, U− 13, U− 12, U− 11, U− 10,

U− 9, U− 8, U− 7, U− 6, U− 5, U− 4, U− 3, U− 2, U− 1, U0, . . ..

(43)

Proof. 'e proof of this case will be the same as the proof
presented for 'eorem 7 and will be omitted therefore. □

7. Numerical Examples

To illustrate the solution behavior of (7) for various cases, we
present some numerical examples.

Example 1. To show the stability of (7), we set two groups for
the values of the coefficients: (i) ξ � 0.5, ε � 0.1,

μ � 1.6, and κ � 0.2 and (ii) ξ � 0.5, ε � 5, μ � 10,

and κ � 0.001, and the initial conditions are

U− 17 � 0.1,

U− 16 � 0.2,

U− 15 � 0.3,

U− 14 � 0.4,

U− 13 � 0.5,

U− 12 � 0.6,

U− 11 � 0.7,

U− 10 � 0.8,

U− 9 � 0.9,

U− 8 � 1.2,

U− 7 � 1.5,

U− 6 � 2.2,

U− 5 � 2.3,

U− 4 � 2.5,

U− 3 � 4.2,

U− 2 � 4.6,

U− 1 � 4.8,

(44)

and U0 � 5.2. 'e result is obtained in Figure 1. It is clear
that (i) condition (23) is satisfied, which implies that the
solution tends to the fixed point U � 0, while the solution
moves away from the fixed point for (ii) since condition (23)
failed.

'e following examples have explained the solutions of
special case equations (30)–(42).

Example 2. We choose the initial conditions as
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U− 17 � 0.01,

U− 16 � 0.02,

U− 15 � 0.03,

U− 14 � 0.04,

U− 13 � 0.05,

U− 12 � 0.06,

U− 11 � 0.07,

U− 10 � 0.08,

U− 9 � 0.09,

U− 8 � 1.02,

U− 7 � 1.05,

U− 6 � 2.02,

U− 5 � 2.03,

U− 4 � 2.05,

U− 3 � 4.02,

U− 2 � 4.06,

U− 1 � 4.08,

(45)

and U0 � 5.02. 'e solution is given in Figure 2.

Example 3. In Figure 3, we set the initial conditions:

U− 17 � 0.01,

U− 16 � 0.02,

U− 15 � 0.03,

U− 14 � 0.04,

U− 13 � 0.05,

U− 12 � 0.06,

U− 11 � 0.07,

U− 10 � 0.08,

U− 9 � 0.09,

U− 8 � 1.02,

U− 7 � 1.05,

U− 6 � 2.02,

U− 5 � 2.03,

U− 4 � 2.05,

U− 3 � 4.02,

U− 2 � 4.06,

U− 1 � 4.08,

U0 � 5.02.

(46)

Example 4. For (37), we choose the initial conditions as

10 20 30 40 50 60 70 80 90 1000
n

0

1

2

3

4

5

6

U
n

(i)
(ii)

Figure 1: Plotting the solution of Un+1 � ξUn− 8 + (εU2
n− 8/μUn− 8 +

κUn− 17).
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n
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Figure 2: Plotting of the solution of Un+1 � Un− 8 + (U2
n− 8/

Un− 8 + Un− 17).

×104
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n
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n

Figure 3: 'e solution behavior of Un+1 � Un− 8 + (U2
n− 8/

Un− 8 − Un− 17).
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U− 17 � 2,

U− 16 � 2.1,

U− 15 � 2.2,

U− 14 � 2.3,

U− 13 � 2.4,

U− 12 � 2.5,

U− 11 � 2.6,

U− 10 � 2.7,

U− 9 � 2.8,

U− 8 � 3,

U− 7 � 3.1,

U− 6 � 3.2,

U− 5 � 3.3,

U− 4 � 3.4,

U− 3 � 3.5,

U− 2 � 3.6,

U− 1 � 3.7,

U0 � 3.8,

(47)

and then, the result is shown in Figure 4.

Example 5. We set the values

U− 17 � 0.01,

U− 16 � 0.02,

U− 15 � 0.03,

U− 14 � 0.04,

U− 13 � 0.05,

U− 12 � 0.06,

U− 11 � 0.07,

U− 10 � 0.08,

U− 9 � 0.09,

U− 8 � 1.02,

U− 7 � 1.05,

U− 6 � 2.02,

U− 5 � 2.03,

U− 4 � 2.05,

U− 3 � 4.02,

U− 2 � 4.06,

U− 1 � 4.08,

U0 � 5.02.

(48)

'e solution is given in Figure 5. Clearly, the solution is
periodic that means the result conforms with 'eorem 8.
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