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We investigate the recently proposed holographic dark energy models with the apparent horizon as the IR cutoff by assuming
Kaniadakis and generalized Tsallis entropies in the fractal universe. The implications of these models are discussed for both the
interacting (I'=3Hb’p, ) and noninteracting (b* =0) cases through different cosmological parameters. Accelerated expansion
of the universe is justified for both models through deceleration parameter q. In this way, the equation of state parameter w,
describes the phantom and quintessence phases of the universe. However, the coincidence parameter 7=0,,/Q,; shows the
dark energy- and dark matter-dominated eras for different values of parameters. It is also mentioned here that the squared
speed of sound gives the stability of the model except for the interacting case of the generalized Tsallis holographic dark
energy model. It is mentioned here that the current dark energy models at the apparent horizon give consistent results with

recent observations.

1. Introduction

To acquire a unified understanding of various entropy mea-
sures and how they connect to each other in a generalized
form, it is required to recall characteristics of “classical”
entropies. In information theory, information can be col-
lected through the probability distribution of some events
that belong to the sample space of all possible events which
are called entropies. Gibbs was the first who stated a hypoth-
esis [1] which was the source of inspiration for people to
define numerous entropies [2-4]. We hear and read fre-
quently as it is claimed due to Gibbs that the black hole
(BH) entropy is proportional to the area of the BH boundary
in spite of having proportionality to the volume of BH. In
recent times, these entropies have been the source for the
modeling of cosmic evolution in different setups [5-7]. It is
a matter of fact that to retrieve thermodynamical extensivity
for nonstandard systems, the entropies generalizing that of
Boltzman-Gibbs (BG) become necessary. For the study of
BH, generalized entropies have been employed [8-11], also

for the construction of new holographic dark energy (HDE)
models [12, 13]. Besides this, it has been revealed that such
kind of entropies can affect the Jeans mass [14], can provide
a theoretical basis for the modified Newtonian dynamics
(MOND) theory [15], may be inspired by the quantum fea-
tures of gravity [16], and even may illustrate inflation without
assuming inflation [17]. The foundation stone of primary
HDE [18] is a holographic principle, and it is proposed on
Bakenstein entropy [19-21]. It is observed that the Hubble
horizon is a proper casual boundary for the universe meeting
thermodynamics and conservation laws [22-25]. However,
HDE suffers from some problems when the Hubble horizon
is considered the IR cutoff [18, 26]. Some other HDE models
based on generalized entropy can give a considerable descrip-
tion of accelerated expansion of the universe even when the
apparent horizon is used as the IR cutoff [12, 13, 27]. Conse-
quently, more suitable models of HDE may be found using
generalized entropies.

The Tsallis entropy is a generalized form of BG entropy
which was presented in 1988 by Constantino Tsallis [28] as
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a fundamental to generalize the standard statistical mechan-
ics. In the literature, there is a wide debate regarding the
physical relevance of Tsallis entropy [29, 30]. However, at
the start of the 21st century, there is an identified increasing
wide spectrum of an artificial, natural, and social complex
system which certifies the consequences and predictions that
resulted from this nonadditive entropy (i.e., nonextensive
statistical mechanics). In this regard, one of the most precise
investigated frameworks is developed by Kaniadakis which is
the Tsallis nonextensive statistical mechanics and the gener-
alized power law statistics [28].

A lot of work has been done by Dubey et al. [31], Sharma
et al. [32-34], Srivastava et al. [35], and Ghaffari et al. [17,
36] on cosmic expansion in various theories of gravity by
using recently obtained DE models such as new Tsallis
HDE (NTHDE), Réyni HDE (RHDE), and Barrow HDE
(BHDE). They have made versatile studies on accelerated
expansion of the universe through various cosmological
parameters and planes and found consistent results with
recent Planck’s data [37]. In recent times, the Kaniadakis
statistics have been studied as generalized entropy measures
[2, 4] with some gravitational and cosmological conse-
quences [7, 38]. In view of these generalized entropies,
HDE models have been developed by Moradpour et al.
[11]. They have examined the deceleration parameter, EoS
parameter, and coincidence parameter for these models
and found consistent results with recent Planck’s data. It is
suggested that generalized entropies must obey fundamental
laws of thermodynamics such as the zeroth law [39-43]. The
above arguments and work done are the sources of motiva-
tion due to which we are going to examine BH entropy in
the different well-known generalized entropy formalisms
and study their capability in representing the current
accelerated expansion of the universe by formulating their
corresponding HDE models.

In the next section, Tsallis entropy of BH will be calcu-
lated using the relation of Boltzmann and Tsallis entropies.
Additionally, Kaniadakis entropy of BH will be computed
using the relationship of Kaniadakis statistics with Tsallis
entropy. Moreover, Sharma-Mittal and Rényi entropies of
BH will also be discussed by applying their relation with Tsal-
lis entropy. In Section 3, the Kaniadakis holographic dark
energy (KHDE) will be discussed along with some of its cos-
mological consequences such as deceleration parameter g,
EoS parameter w¥, and the dimensionless ratio called coinci-
dence parameter 7=,/QX for both the interacting and
noninteracting cases. The stability of the achieved model
for both the interacting and noninteracting cases is also ana-
lyzed by the squared speed of sound C2. In Section 4, the
NTHDE of BH will be discussed. We will find some cosmo-
logical parameters using this model for both the noninteract-
ing and interacting cases such as deceleration parameter g,
EoS parameter w}, and the dimensionless ratio called coinci-
dence parameter 7 = (2,,/Q7. The squared speed of sound C?
will also be evaluated to investigate the stability of the model
taking both the interacting and noninteracting cases into
account. In Section 5, achieved results are compared with
the observational data and some concluding remarks about
our work have been discussed.
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2. Tsallis and Kaniadakis Entropies of BH

Both the Gibbs [1] and Shannon [44] entropies of distribu-
tion with W states working in the unit kz =1 leads to the
relation explicitly dealt in [11]:

w
S=-) P,In (P,), (1)

where P; represents the probability of occupying the ith state
for the classical system. The so-called von Neumann entropy
which is a quantum mechanical form of this entropy is repre-
sented as

s=-Trlpln (p)]. @)

The utilization of Equation (2) for the classical system
goes back to the proposal of Boltzmann, where p represents
the state density in the phase space [45]. One can obtain
the so-called Bekenstein entropy (Sgy =A/4) by applying
Equation (2) to a purely gravitational system [19]. Since
degrees of freedom are disseminated on the horizon without
any preference w.r.t. one another, one may consider that P; is
equal for all of them [20, 21] permitting us to write P, = 1/W.
In such manner, Equations (1) and (2) lead to the Boltzmann
entropy (S=1n (W)), and thus, we have [7]

SBH:%:ln(W)SW:exp (g), (3)

for horizon entropy and accordingly W(A). As a unique free
parameter generalized entropy, the Tsallis entropy is defined
as [4]

1
sr—_ =
QT 1-Q

M=

(P2-P,), (4)

I
—

where Q is an unknown free parameter named as the nonex-
tensive or Tsallis parameter (Sg — S for Q — 1). When the
probability distribution meets the conditions P;=1/W,
Equation (4) yields

r Whe-1

sr- -
Q 1-Q

(5)

The quantum features of gravity [7, 46] are also a source
for the existence of Q parameter. Now, taking § =1 - Q and
utilizing Equation (3) with Equation (5), one can find easily

1 2 8Spy/2) . [
Sh= =g (1~ Q)Su) 1] = % sinh (%)

(6)

In the scenario of loop quantum gravity, it is acquired by
applying the Tsallis entropy definition to BH [11, 47] that
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satisfying S, —> S whenever Q> 1 and f=1In (2)/7v/3 [11,
47]. Furthermore, Equation (6) and (7) become accordingly

the same when we consider f=1n (2)/mv/3.
Another single-free parameter generalized entropy is
Kaniadakis entropy (K-entropy) [2, 3, 11], defined as

w
- _ i —
Sk = Z 2K 2 K -K

i=1

A (e o)

(®)

where K represents an unknown parameter, and the limit K
— 0 is a way to obtain Boltzmann-Gibbs entropy [2, 3].
Comparing Equation (8) with (4) and (5), it can easily obtain

T T
_ SuxtSik

S
K 2

©)

Furthermore, by taking P; = 1/W, Equation (8) assists in
getting [2, 3, 11]

WK _wK

= 1
S = — (10)

Combining Equation (10) with Equation (3) yields

Sk = % sinh (KSpy). (11)

It is observed that Sharma-Mittal and Rényi entropies
can be obtained as a function of Tsallis entropy as [13, 48]

1
Sovi == ((1+(1-Q)Sp)¥"?-1),

§ R( ! ) (12)
S:

g 1+ (1-Qsy)

which leads to

1
Sop = R [exp (RSpy) — 1], & =Sy (13)

where R is an unknown parameter. It is suggested that =
In (2)/7/3; otherwise, (In (2)/Bm\/3)Sg; would occur in
mathematical results rather than Sgy.

3. Kaniadakis Holographic Dark Energy

As it was claimed by the HDE hypothesis that if the current
accelerated universe is driven by vacuum energy, then its
total amount stored in a packet with size L*> should not go
beyond the energy of BH having the same size as it [18]. By
keeping in mind this, one can generate the following relation
in view of Kaniadakis entropy (11) as

Sk

4_ K
AzpdocF,

(14)
for the vacuum energy pX. Now, taking the Hubble horizon

of the cosmos as the IR cutoff (i.e, L = 1/H = A = 4n/H?),
we obtain

3c¢2H* K
K = inh (=), 15
i sinh (75) (15)

where the constant ¢? is unknown [18], x belongs to a set of
real numbers [3], and H =a/a is the Hubble parameter.
Now, it is clear that we have p& —3c?H?/8 (the well-
known Bekenstein entropy-based HDE) when k — 0 [18].
Considering the pressureless fluid (with energy density p,,)
and the dark energy candidate (with pressure p; and density
pX), the energy-momentum conservation laws for the fractal
universe take the form

P+ (3H+ g>pm=F, (16)

b (31 ) putpa) =T, (17)

where the “dot” represents the derivative w.r.t. cosmic time f,
and the phenomenal term I' represents the interaction
between dark matter and DE (it also gives the flow of energy
between the two fluids) and has different mathematical
values for both the linear and nonlinear cases, among which
some linear cases are I', = 3Hb*(p, + p,), I, = 3Hb’p, , and

I'y=3Hb’p, [49-54] while some nonlinear cases are I', = 3

HO((3,/(P + P)) + o) T's = 3HO* (1P, + Pa)) + P o)y
T =3HU*((p3/(P,n + Pa)) + Pa+ Py)» and Iy =3Hb ((p},/(
P+ Py)) + py+p,) [53,54] with b* being the coupling con-
stant. We have chosen I'=3Hb’p, [49] as it is simple and
leads to precise results. The fractal profile is either timelike
or spacelike. We have chosen the timelike fractal profile in
the power law form as v =a"" [36, 55] with a being the scale
factor depending upon cosmic time ¢ and y being a positive
constant. In the fractal universe, the Friedmann equations
can be obtained as

1

vV w.
H2+H5_502=5(Pm+Pd)’ (18)
. v w Ov 1
H+H -H-+ —v*— — =——(p+3p), 19
s T3V T3y TP (19)

where Ov = (1/,/=g)0"(\/=g0,,v) with simplified relation as
Ov = - [0 + 3H0]. From simplification of (16), one can find

30,
P =

H;,
8

0

(1+2)%, (20)




where A=3-y - 3%, 2 represents the redshift parameter,
H, is the value of the Hubble parameter at t =0, and 2, =

8np,, /13H 2 with P, being a constant of integration.

The scope and importance of cosmological parameters is
increasing day by day as they are favorable tools to analyze
and track the history and evaluation of the universe. The
parameter ¢ is one which decides whether the universe is fac-
ing accelerated expansion or not (i.e., g < 0 gives the acceler-
ated expansion of the universe while g > 0 when the universe
has decelerating expansion behavior) [56, 57]. The equation
of state (EoS) parameter w, is one which decides the phases
of the cosmos (i.e., w; < —1 represents the phantom phase
of the universe, and —1 <w, < —1/3 describes the quintes-
sence phase while w; > —1/3 gives the vacuum phase of the
universe) [58, 59]. The squared speed of sound Cf is another
important cosmological parameter which decides whether
the model is stable or not (i.e., CS2 > 0 describes the stable
model while CS2 <0 only when the model is unstable) [57,

H =

8rkwH?y* (1+2) ™" +3kQ,, HIA(1+2)"
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58, 60]. The ratio of Q,, =p, /p. and Q,;=p,/p_ called the
coincidence parameter given by 7=, /Q;=p, /p, decides
the dark energy- and dark matter-dominated eras of the
universe (ie., 0<,,/Q;<1 describes the dark energy-
dominated era, and ,,/Q;>1 gives the dark matter-
dominated era) [61]. In the upcoming, we will discuss these
cosmological parameters.

Differentiating (18) with respect to cosmic time t and
substituting all necessary values in it, one can get

i -310,, HyAa™ - 8mxwH?y a >
" 487k — 487ky — 8kwy?a-? — 12¢2H? sinh (7rx/H?) + 67icc? cosh (mx/H?)

(21)

Using the transformation d/dt=—(1+z)H(d/dz) from
cosmic time f to the redshift parameter z, simplification of
(21) gives the relation for H in terms of the redshift
parameter as

H[487k — 487y — 8mkwy? (1 + 2)* — 12¢2H? sinh (mx/H?) + 6mkc® cosh (mx/H?)]’

where the “prime” denotes the derivative with respect to red-

shift parameter z. The deceleration parameter g which is of

H 8rkwH? Y’ (1 +2)™ + 3xkQ,, H2A(1 +2)"

great importance to decide the accelerated expansion of the
universe can be found as

H H?[487x — 487y — 8mrwy?(1 + 2)*Y — 12c2H? sinh (mk/H?) + 6mxc? cosh (mx/H?)|

Substituting the corresponding values and simplifying
(17), we obtain

K _ 3
47 8mk(y - 3)

- (1 +2) sinh (%))H, - c2H4(y —3) sinh (%) (24)

p [(anczH(l +2) cosh (%) -47H’

+3xb2Q,, H2(1 + z)A}.

The mathematical formalism for the EoS parameter is
wk = p&/pK, and the relation for w§ can be obtained by using
(15) and (24) in this formula as

K1y (ch(l + zz coth (rx/H?) _4(1+2) )H'
H(y-3) H(y-3)
3kb°Q,, HA(1+2)"
+ o .
c2H*(y - 3) sinh (mx/H?)

(25)

(23)

Some other important mathematical formulas of cosmo-
logical consequences which we will use later on are

_szp_m,
Pe
Q,="rd,
Pe
(26)

O _ Pn
Qi pa
_3H?

Pe™ 8

The ratio ,,/Q¥ which is of great importance to decide
about the dark energy- and dark matter-dominated eras of
the universe for the Kaniadakis entropy content of BH is
given by
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For interacting case

-0.985
-0.990
S
-0.995
-1.000
T T T
-0.5 0.0 0.5 1.0
z
—— k=1400
—— k=2500
— k=3600

FIGURE 1: Behavior of deceleration parameter q against redshift
parameter z considering different values of x when ,, =0.315, b*
=0.5,H,=67.9,w=-0.3, 2 =0.313, and y = 0.127.

Q,  x0Q, Hy(1+z)*

O @H*sinh (mx/H?)

(27)

The stability of the system is examined by a perturbed
parameter called the squared speed of sound (C?). The
mathematical formalism for this parameter is given by

5
For non-interacting case
-0.85 A
-0.90
N
-0.95
_1'00 a /
T T T
-0.5 0.0 0.5 1.0

—— k=1400

—— k=2500

— k=3600

FIGURE 2: Behavior of g against z.
)
Peft

where ps=p, +p5 and p. =pXK. Differentiating these
relations with respect to the redshift parameter leads to the
following mathematical result:

1

C=

i
. [2mcc2(1 +z) cosh (ﬂ—Z) (H/2 + HH' x (1 +z)’1 + HH'' + 271xH2H'” tanh (—
H H?

~4(1+2) sinh (g) ¢(3HH” + H'H'(1+2) " + H'H' = 2mex H” coth (H

(y-3) [KQmquA(l +2)4 "+ 2 {4H3H' sinh (mx/H?) - 2nkHH' cosh (mc/HZ)H

a
~—
—

(29)

N—

K
2

+ 3Kb2.Qm0H§A(1 +2)"1 - (y-3)HH' (4H2 sinh (H ) — 2k cosh (%))} .

Variation of q against z has been plotted for interacting
(Figure 1) and noninteracting (Figure 2) cases, respectively.
By considering x = 1400,2500,3600 with fixed values of other
parameters as 2, =0.315, b>=0.5, H,=67.9, 0 =—0.3, &
=0.313, and y=0.127, we obtain the cosmic acceleration
phase in both cases. Also, the values of the deceleration
parameter lie in the range [-1, 0) which is a compatible range
with observational data. In Figure 3, EoS parameter w§ for
the KHDE model is plotted versus deceleration parameter g
for the interacting case while in Figure 4, the same is plotted
for the noninteracting case. The evolved constant parameters
are taken, the same as in Figures 1 and 2. The phantom phase
of the universe is observed for the interacting case. For the
noninteracting case, the quintessence phase is achieved for

2

x = 1400, 2500 and the phantom phase for x = 3600. More-
over, the EoS parameter wg — —1 as z — —1 which coincides
with the ACDM model. In Figures 5 and 6, the coincidence
parameter 7=, /Q} is plotted against g for interacting
and noninteracting cases, respectively. The dark energy-
dominated era is recovered for the interacting case while
for the noninteracting case, when x = 1400, the interval —
0.95<2z<0.65 gives the energy-dominated era while z >
0.65 results in the matter-dominated era; for x = 2500, the
matter-dominated era is obtained when z > 0.83, and for «
= 3600, the matter-dominated era is achieved when z > 1.1.
The squared speed of sound C? which decides the stability
of the model is examined for both cases (interacting and
noninteracting) in Figures 7 and 8, respectively. For the
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FIGURE 3: Graph of EoS w versus deceleration parameter g.

For non-interacting case
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FIGURE 4: Variation of EoS parameter w5 versus deceleration
parameter q.

interacting case, C2 > 0 in the interval —0.95 < z < 0.63 which
leads to the stable model in this interval. The noninteracting
case model is stable when z < —0.18 while it becomes unsta-
ble when z > —-0.18.

4. New Tsallis Holographic Dark Energy

Considering the pattern of (14) and (15) and taking Tsallis
entropy (6) into account, it is easy to have NTHDE as

Y 372\ ST
P;“L—E:PLf:(g)L—g’ (30)

where T2 is an unknown real number [18]. Taking D? = nT?
and the apparent horizon as the IR cutoft (H = 1/L), we have
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0.6

0.5

0.4

Q,,
af
o
w
1

0.2
0.1
0.0 1,
-1.000 -0.998 -0.996 -0.994 -0.992 -0.990 -0.988 -0.986
q

—— k=1400

—— k=2500

—— k=3600

FiGure 5: Plot of coincidence parameter 7=0,/QX against
deceleration parameter q.

For non-interacting case
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FIGURE 6: Plot of 7 = Q,,/QX against g.

2D? X X
ph= XP < exp (E) sinh <E>’ (31)

in which X = 87/H?, where § belongs to a set of real numbers
[11]. Substituting all required assumed and obtained values
in (29), we get

3H'D?
T

- , 32
P d 47_[2 6 ( )
where A= exp (n8/2H?) sinh (n8/2H?*). Considering all
assumptions, differentiating (18) w.r.t. cosmic time t, and
putting necessary values in it, we reach the following result:

o I6EOHpu(Ls P nd0, A+ )
= 167‘[26(6 -6y —wy*(1+ z)ZV) _ 9D2/\(16H2 _ mS(cOth (TT)//ZHZ) . 1)) .

(33)
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FIGURE 7: Variation of squared speed of sound C? versus redshift
parameter z.

For non-interacting case
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FIGURE 8: Variation of squared speed of sound C? versus redshift
parameter z.

The deceleration parameter g for the NTHDE model is
obtained as

H
q=-1- ﬁ =-1
16728y w(1 +2)* + 6m0Q,, HXH2A(1 +2)*
+ . .
96720(1 - y) — 16m*8wy*(1 +2)* = 9D?A[16H” — 78 (coth (y/2H?) +1)]

(34)

Substituting the concern values from the NTHDE model
and simplifying Equation (17) yield
9’0, Hi(1+2)" 3D’H*H'A 3D*H(1+z)AH'
8(y-3) 4?8 4r(y -3) (35)

th 0 +1—4H2
2 o |

Py =

For interacting case
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FIGURE 9: Variation of deceleration parameter g against redshift
parameter z considering different values of § when Q, =0.315,

v =0.5,w=-0.3, H, = 67.9, D* =0.3136, and y = 0.127.
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FIGURE 10: Graph of q against z.

The relation for EoS parameter w} is obtainable after
simplifications of Equations (32) and (35) as

Wl = ﬁ _ 7T8b2.Qm0H§(l +2)° L
Tl 2HD(y-3)1

d d nd 47
—— coth|— |+ — - —|H'".
4H3 2H?) 4H® H

The coincidence parameter for the obtained model is

- O _ 80, Hy(1+2)" (37)
of 2D*H*)
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For non-interacting case
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The relation for a perturbed parameter called the squared
speed of sound which is given in (28) is obtainable as

1

Cl=
(y-3) [SH(S‘QmOHgA(l +2)*™ + 6D*HH' \[4H? - 18 - 8 coth (718/2H2)H

: [9n8bZQmOH§A(1 +2)2 4 6D x (y—3)HH'A
nd )
- ( 8 coth S —4H* + 78 | + 6D*n8P(1 + z)
. <H’2 +HH'(1+2)" + HH'' = 28H2H" + 76 x H>H" tanh <%>>
+6D*8(1+ z)A(H'z +HH'(1+2)" + HH' — ndHH"
—n8H2H'" coth (%) ) —24D*(1+ z)/\(3H2H'2 +HH'(1+2)"

+HH' - n0H"” - 76H" coth LSZ ,
2H

(38)

where 3= exp (78/2H?) cosh (n8/2H?).
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For non-interacting case
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The graph of deceleration parameter g against redshift
parameter z is plotted in Figures 9 and 10 for interacting
and noninteracting cases, respectively. Constant parameters
are § =4100,4700,5300, Qmu =0.315, b* = 0.5, H,=679, w
=-0.3, D* =0.313, and y = 0.127. Required results (acceler-
ated expansion) of the universe are achieved in both cases.
EoS parameter w] for the NTHDE model is plotted versus
deceleration parameter g for interacting and noninteracting
cases in Figures 11 and 12, respectively. The involved param-
eters are taken, the same as in Figures 9 and 10. The phantom
phase of the universe is observed for the interacting case, and
the quintessence phase is achieved for the noninteracting
case. In Figures 13 and 14, the coincidence parameter 7=
Q,,/QF is plotted against q for interacting and noninteracting
cases, respectively. The dark energy-dominated era is recov-
ered for the interacting case whereas for the noninteracting
case, when § =4100, the interval —0.95 <z <0.8 gives the
energy-dominated era while z > 0.8 results in the matter-
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For non-interacting case
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TaABLE 1
q Observational schemes

0.223
~0.64470:222
0.187
~0.6401*187
0.218
093077735

0.175
~1.2037°917

BAO+TDSL+Masers+Pantheon
BAO+TDSL+Masers+Pantheon+H
BAO+TDSL+Masers+Pantheon+H,

BAO+TDSL+Masers+Pantheon+H +H,

dominated era; for § =4700, the matter-dominated era is
obtained when z>1, and for §=5300, the matter-
dominated era is achieved when z > 1.23. In Figures 15 and
16, the squared speed of sound C? has been plotted to exam-
ine the stability of the model for both the interacting and
noninteracting cases, respectively. For the interacting case,
C? < 0 while for the noninteracting case, it leads to positive
values which describes the stable model.

9
TABLE 2
wy Observational schemes
-1.56734 Planck+lowE+TT
~1.58703 Planck+lowE+TT, TE, EE
-1.5779% Planck+lowE+lensing+TT, TE, EE

-1.40*319 Planck+lowE+lensing+BAO+TT, TE, EE

5. Conclusions

We have investigated the interacting and noninteracting
behaviors of KHDE and NTHDE with the apparent horizon
and extracted various cosmological parameters by varying
the value of x for KHDE and § for NTHDE and keeping all
other parameters fixed as 0, =0.315, b* =05, H,=67.9,

w=-0.3, =0.313, D* =0.313, and y = 0.127. The cosmo-
logical consequences resulted as follows.

5.1. Deceleration Parameter. For the KHDE model, the decel-
eration parameter g provides the accelerated universe in both
the interacting and noninteracting cases. The results
obtained in both cases for g are compared with Planck’s
observational data [62] presented in Table 1. It has been
found that the results of the KHDE model are consistent with
the observational data at the present epoch in both the inter-
acting and noninteracting cases. At z =0, for the interacting
case, we have achieved (x,q)=(1400,—0.9937), (2500,—
0.9939), (3600,-0.9944), and for the noninteracting case,
we obtained (x, q) = (1400,—0.9773), (2500,—0.9781), (3600,
—0.9800). The deceleration parameter g has given that
NTHDE can model the accelerated universe in both the
interacting and noninteracting cases. The results obtained
in both cases for g are compared with Planck’s observational
data [62] presented in Table 1. It has been found that the
results of the NTHDE model are consistent with the observa-
tional data at the present epoch in both the interacting and
noninteracting cases. At z=0, for the interacting case, we
achieve (8, g) = (4100,-0.99976), (4700,-0.99973), (5300,
0.99968), and for the noninteracting case, we obtain (3, q)
= (4100,-0.99954), (4700,-0.99948), (5300,-0.99939).

5.2. EoS Parameter. For the KHDE model, the EoS parameter
w’ has illustrated the phantom phase of the universe at dif-
ferent values of « for the interacting case. However, it shows
the quintessence phase of the universe for x = 1400, 2500 and
the phantom phase for x =3600 when the noninteracting
case is under consideration. Moreover, we compared these
results with Planck’s observational data [62] presented in
Table 2. The comparison shows that results obtained by the
KHDE model have consistency with the observational data
at z =0 in both cases. For the interacting case, we found the
values of (k,wX) at the present epoch as (1400,-1.16), (
2500,—1.12), (3600,—1.08) while for the noninteracting case,
we achieve (x, wX) = (1400,-0.988), (2500,-0.997), (3600,—
1.007). For the NTHDE model, the EoS parameter w] tells
about the phantom phase of the universe at different values
of § for the interacting case while it shows the quintessence
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phase of the universe for the noninteracting case. Moreover,
we compared these results obtained with Planck’s observa-
tional data [62] presented in Table 2. The comparison shows
that results obtained by the NTHDE model have consistency
with the observational data at z=0 in both cases. For the
interacting case, we found the values of (8, w? ) at the present
epoch as (4100,-1.032), (4700,—1.023), (5300,-1.017), and
for the noninteracting case, we achieve (3,w}) = (4100,—
0.99959), (4700,—0.99958), (5300,—0.99955).

5.3. Coincidence Parameter. For the KHDE model, the coin-
cidence parameter 7 =0, /QF is achieved for both the inter-
acting and noninteracting cases. For the interacting case, we
obtain the dark energy-dominated era for —0.95 < z < 1. For
the noninteracting case, when «x = 1400, the interval —0.95
<z<0.65 gives the energy-dominated era while z >0.65
results in the matter-dominated era; for x=2500, the
matter-dominated era is obtained when z > 0.83, and for «
= 3600, the matter-dominated era is achieved when z > 1.1.
The coincidence parameter for the NTHDE model 7=,/
OF has been examined for both the interacting and noninter-
acting cases. For the interacting case, we got the dark energy-
dominated era in the interval —0.95 < z < 1. For the noninter-
acting case, when 6 = 4100, the interval —0.95 < z < 0.8 gives
the energy-dominated era while z > 0.8 results in the matter-
dominated era; for 6 =4700, the matter-dominated era is
obtained when z>1, and for §=5300, the matter-
dominated era is achieved when z > 1.23.

5.4. Squared Speed of Sound. The squared speed of sound C2
which decides the stability of the model is examined for both
the interacting and noninteracting cases. For the interacting
case, C > 0 in the interval —0.95 < z < 0.63 which is a justifi-
cation for the stable model in this interval while the KHDE
model is unstable when z > 0.63. For the noninteracting case
model, behavior is stable when z < —0.1873 while it becomes
unstable when z>—0.1873. For the NTHDE model, the
squared speed of sound C? is examined for both the interact-
ing and noninteracting cases. For the interacting case, C* < 0
which gives that the achieved model is unstable for the
interacting case but it has given positive values of C? for the
noninteracting case in the interval —0.95 < z < 2, which is a
justification for the stable model.

Ghaffari et al. investigated the cosmological conse-
quences of the interacting THDE model with the apparent
radius in the fractal universe [36]. They constructed various
cosmological parameters such as the EoS parameter, the
deceleration parameter, and the evolution equation. They
suggested that THDE described the transition that took place
from the deceleration phase of the universe to the accelerated
phase, eventually in both the noninteracting and interacting
scenarios. Also, it is checked that the free parameters of the
models are compatible with the latest observational results
by using the Pantheon supernovae data, 6df, eBOSS, BOSS
DR12, CMB Planck 2015, and Gamma-Ray Burst. They also
found unstable behavior of the THDE model in both scenar-
ios. However, in our case, KHDE and NTHDE with the
apparent horizon in the fractal universe have provided con-

Advances in High Energy Physics

sistent results with recent Planck’s data [37] (as mentioned
in Tables 1 and 2). It is also found that at the present epoch,
the KHDE model is stable for the interacting case but unsta-
ble for the noninteracting case. The NTHDE model shows
unstable behavior for the interacting case while stable behav-
ior for the noninteracting case.

Data Availability

I have mentioned all the results in the manuscript and refer-
ences therein.
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The first gravitational-wave (GW) signal was detected in the year 2015 indicating tiny distortions of spacetime caused by
accelerated masses. We focused on the GW signals consisting of a peak GW strain of 1.0 x 1072! that shows merging pairs of
large masses. We applied the generalized entropy known as multiscale entropy to the GW interval time series recorded by
different observatories (H1, L1, and V1). This enables us to investigate the behavior of entropies on different scales as a method
of studying complexity and organization. We found that the entropies of GW interval data with similar physical properties
make the identical manner in different scales. Moreover, the results reveal that the signals collected by each observatory have
approximately a similar trend in the multiscale analysis results. According to our findings, although different signals have

different values for short-range correlations, the long-range correlations are not noticeable in most of them.

1. Introduction

Gravitational-wave (GW) signals, firstly predicted by Albert
Einstein in 1916, are known as transverse waves of spatial
strain with very small amplitudes which travel at the speed
of light [1, 2]. After linearizing weak-field equations, Sit-
zungsber found a solution for the field equations [3], and
then, Kerr generalized the solution for the rotating black
holes [4]. Lots of theoretical works in the purification of ana-
lytical studies of relativistic two-body dynamics were done [5,
6]. Moreover, since the signals of GW merger are accompa-
nied with electromagnetic emission as a gamma-ray burst
[7-9], the field of numerical-relativity simulations pro-
gressed, and in the later step, it led to advances in GW model-
ing of two massive binary mergers (e.g., see [10-14]).

In the last decade, the GW signals are detected by the net-
works of the Virgo [15] and LIGO [16] interferometers. The
first observation of GWs, which was appeared as a transient
GW signal, indicated a binary black hole merger [17]. For
other detections of GW mergers, the reader can refer to
[18, 19] and references therein. Since the GW sources can
be categorized in one of the three classes of transient and

bursts, periodic or continuous wave, and stochastic, the type
of method for analyzing GW data seems to be important
[20]. GWs are very weak signals of order 10" or even less
that travel in spacetime containing noises of order 1078, So,
it is not possible to study this kind of signal using methods
that are prevalent in statistics.

Using the Hurst exponent is one of the proposed ways to
discriminate stochastic (irregular) time series and signals
with long-range interaction within system components
(self-affinity) which was firstly proposed by Hurst in 1951
[21, 22]. In this approach, for a time series [y,], a self-
affinity of different parts of a signal can be explained by y,,
=afy , wherein a and H are a positive coefficient and the
Hurst exponent, respectively (e.g., see [23]). The range of
(0.5,1) for the Hurst exponent determines that there would
be long-term memory in the system of interest. Among lots
of methods for estimation of the Hurst exponent such as
the analyses of detrended fluctuation [24], rescale range
(e.g., [25]), and wavelet method [26], using the concept of
entropy enables us to issue solid results about the complexity
of a system and give a quantitative interpretation of long-
term memory in the system [27]. The multiscale entropy
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TastLE 1: The list of GW data.

Name Version l\f;;s)l Mass 2 (M) Network SNR Distance (Mpc) Strains

©
GW150914 v3 35.675] 30.6"39 24.4 440%13 H1 & L1
GW151012 v3 2327140 13.6744 10.0 10807330 H1 & L1
GW151226 v2 13733 7.7+22 13.1 450150 H1 & L1
GW170104 V2 30.8'73 20.0%47 13 990*410 H1 & L1
GW170608 v3 11.0%32 7.6%5 14.9 320*130 H1 & L1
GW170729 vl 50.2*182 34.0%%) 102 284071400 H1, L1 & V1
GW170809 vl 35.0°%3 23823 124 1030732 H1,L1 & V1
GW170814 v3 30.6"3% 25.2+28 159 600*330 H1, L1 & V1
GW170817 v3 1.46*512 1.2775% 33 40*7, HI, L1 & V1
GW170818 vl 3547773 26.7°%3 11.3 10607320 H1,L1 & V1
GW170823 vl 39.5%¢L2 29.0%87 11.5 1940*970 H1 & L1
GW190412 v2 30.1°48 8.3%5 19.0*92 74013 H1, L1 & V1
GW190425 vl 174547 156709 12.46%0% 159*% Ll & V1
GW190521 v2 85721 66 *17 14.670% 53007320 HI, L1 & V1
GW190814 vl 23213 2.59*008 25.0707 24173 H1,L1 & V1

(MSE) is firstly introduced in a paper for analyzing the com-
plexity of physiologic time series [28], and then, it was
broadly used in biological signals such as characterizing the
complexity of human heartbeat [29, 30]. For a review of other
improvements about the MSE estimation, the reader can
refer to [31].

Here, we applied the MSE to GW binary mergers to
investigate the entropy level of signals in different scales. To
do this, we employed the GW signals of events detected by
different observatories. It may help to characterize the GW
signals. This paper is organized as follows: the employed data
sets are described in Section 2. Section 3 is devoted to briefly
explaining the method. The results are discussed in Section 4.
The concluding remarks are given in Section 5.

2. Description of Data Sets

The networks of the Virgo interferometers in Cascina, Italy,
[15] and the Laser Interferometer Gravitational-wave Obser-
vatory [LIGO: [16] including two branches in Hanford,
Washington, USA (LHO), and Livingstone, Louisiana, USA
(LLO), with the arms of 4km record the received GW sig-
nals]. Recorded data are strains (AL/L) of the arms, caused
by gravitational waves; so, they are dimensionless. The data
published by the Virgo observatory is labeled “V1,” and the
two branches of LIGO detectors are known as “H1” and
“L1,” respectively. We employed the GW time series
(https://www.gw-openscience.org/data/) with the sampling
rate of 16 KHz during the period of 32 seconds (the time of
recording data). The employed data sets are categorized into
two groups. In the first group, the physical properties of trig-
gered events such as masses and distances of binaries have

TaBLE 2: The list of GWTC-1-marginal data.

Mass 1 Mass 2 Network Distance

Name Version M) (M) SNR (Mpo) Strains
170208 vl - - 10.0 Hﬁl&
170219 vl - - 9.6 - Hﬁl&
170405 vl - - 9.3 - Hﬁl&
170412 vl - - 9.7 - Hﬁl&
170423 vl - - 8.9 Hﬁl&

been found. We selected all confirmed GW data consisting
of 15 time series of compact binary mergers recorded by dif-
ferent observatories. The second group is marginal triggers
observed by LIGO and Virgo discovered by the advanced
interferometric GW detector network. This network can
detect frequencies in the range of 15 Hz up to a few kilohertz
belonging to inspiral, merger, and ringdown GW signals of
compact binary mergers (for more information about this
type of data set and some technical details, the reader can
refer to [32]). They are listed in the GW transient catalog
and are known as “GWTC-1-marginal.” We selected 5 times
series of this type of GW data. Details of the first and the sec-
ond groups of the GW data are given in Tables 1 and 2,
respectively (also, the extended reviews about the Advanced
LIGO and Advanced Virgo data sets are given in [33]). Both
groups of data sets are named by the date of observations
with a difference that the names of the first group have the
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prefix “GW.” For instance, the series “GW190425” belongs to
the first group and was recorded on 25 April 2019.

For a given data set By(t) (a time series with a Hurst
exponent of H), we can produce a data set from its incre-
ments as Gy(t) = ABy(t) = By (t + At) — By (t), which is
known as interval data set. Our measurements show that
the Gy(t) constructed from GW time series (listed in
Tables 1 and 2) has Gaussian distribution. Also, their Hurst
exponents are ranged from 0.61 to 0.89 (extracted by the
R/S method) led to categorize GW interval signals in the class
of the fractional Gaussian noises. We apply multiscale
entropy to GW interval data sets as explained in Section 3.

3. Multiscale Entropy Analysis

The time series of a system can be influenced by noises rooted
in the interaction between the system and its environment.
Inducing noise can accumulate short-range correlations in
time series that may lead to a nonoriginal long-range effect.
So, reducing the effect of undesirable noises and short-
range correlations from time series seems to be essential. This
task is accomplished by using the coarse-graining procedure.
To do this, the time series of length N with data points y,,
Y5 +++» Yy s partitioned into nonoverlapping windows with
the same length A. Averaging on data points over each win-
dow provides the coarse-grained signal as the following form

A 1
)’1<> )= ngzl)’@-nhq (1)

The new sequence with data points (ygA), - yx”/)/\) is

obtained, wherein A is known as scale factor. The late signal
can be determined by the m-dimensional vectors as follows:

Y 0)= (v Vo) 2)

In this step, the number of vector pairs with distances less
than r is counted. This set of pairs is denoted by n,,(r, A). The
task of finding the pairs set is repeated for the (m+1)
-dimensional vector pairs n,,,,(r, A). The sample entropy is

given by

Sg(m,r,A)=—

Since n,,,,(r,A) <n,,(r, 1), then Sy > 0. The diagram of

sample entropy versus scale factor can be representative of

the range of correlations. The whole process is named the
multiscale entropy (MSE) analysis [27].

4. Results and Discussions

We plotted the sample entropy of GW interval data for differ-
ent scale factors. To do this, 15 GW signals received from
binary mergers with some discovered physical properties
and 5 marginal triggers (GWTC-1-marginal data) with inde-
terminate parameters of sources were chosen to generate
interval data. The results of MSE analysis for binary mergers

Sample entropy

Scale factor

—— GW150914v3 —— GW170814v3
—— GW151012v3 —— GW170817v3
—o— GWI151226v2 —— GW170818v1
—=— GW170104v2 —— GW170823v1
GW170608v3 GW190412v2
GW170729v1 —o— GW190521v2

—— GW170809v1 GW190814v1

FIGURE 1: MSE analysis of the GW interval data recorded by H1
observatory.

recorded by observatories H1, L1, and V1 are shown in
Figures 1-3, respectively.

As we see in Figure 1, approximately all graphs have anal-
ogous trends, and despite consecutive peaks and valleys, they
all exhibit a decrement of sample entropy toward values
below 0.5. In scale 8, a valley can be seen for most of the
graphs except for four of them. Also, there is a progressing
convergence reaching its maximum value in the range [16,
17] which is the other noticeable case in Figure 1. In
Figure 2, the decreasing trend is repeated with a less obvious
convergence between graphs. One can see that the MSE anal-
ysis for the last six recorded data has very close and similar
trends. There is a valley in scale 16 for all graphs, and then,
the first four recorded data begin to show a divergent manner
gradually. In Figure 3, alongside the decrement of all trends
toward zero, a duality can be seen among the graphs. Both
groups of the graphs show consecutive peaks and valleys,
but it is obvious that the entropy behavior of the last four
recorded data is different from the others’ trend, and the
trends of the two groups of graphs follow the decline trends
completely out of phase after scale 11.

In the same manner, as explained above, the results for
interval data generated from marginal triggers recorded by
observatories H1 and L1 are displayed in Figures 4 and 5,
respectively. For the two last interval data generated from
GWTC-1-marginal H1 data discovered in April 2017, it is
seen that the sample entropies show the same behavior while
the others’ trends exhibit gradual declines through all scales.
The results for GWTC-1-marginal L1 data (except for the
signal taken on 8 February 2017 that is the first recoded data)
show similar falling trends in MSE graphs with fewer peaks
and valleys in comparing with the results of GWTC-1-
marginal H1. For all the graphs of 15 GW signals and 5 mar-
ginal triggers that monotonically decrease, the best model

can be obtained by fitting a g-exponential function, f(x) =
A[1 - B(q—1)x]"""%, wherein A, B, and q are constant values.
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Sample entropy

—— GW150914v3
—— GW151012v3
—o— GW151226v2
—=— GW170104v2

GW170608v3

GW170729v1
—— GW170809v1
—— GW170814v3

Scale factor

—— GW170817v3
—— GW170818v1
—— GW170823v1
GW190412v2
GW190425v1
—— GW190521v2
GW190814v1

FIGURE 2: MSE analysis of the GW interval data recorded by L1 observatory.

1.4

Sample entropy

0.2

oaf N AAC

GW170729v1
—— GW170809v1
—— GW170814v3
—— GW170817v3
—— GW170818v1

Scale factor

GW190412v2
GW190425v1
—— GW190521v2
GW190814v1

FIGURE 3: MSE analysis of the GW interval data recorded by V1 observatory.

To know whether there is any relation between the phys-
ical parameters of GW data and behavior of sample entropy
for their corresponding interval data in different scales, we
focused on masses, distances, and network SNR of binary
mergers. First of all, we compared the entropies of two GW
interval data with comparable characteristics in different
scales. As we see in Table 1, both the GW170809 (with mass
1 =35.0 M, mass 2 =23.8 M,,, distance =1030 Mpc, and net-
work SNR =12.4) and the GW170818 (with mass 1
=35.4M,, mass 2 =26.7 M, distance ~1060 Mpc, and net-
work SNR =11.3) have approximately the analogous proper-
ties. Their entropy trends are very similar in different scales
recorded by HI1 (Figure 1), L1 (Figure 2), and V1
(Figure 3). Then, we focused on two GW time series with dif-

ferent physical properties. As it is seen in Table 1, the mergers
of GW190521 data are more massive (mass 1 =~85M_ and
mass 2 66 M) than the others, and also, the distance of the
mergers from detectors is significant (=5300 Mpc). On the
other hand, the GW170817 mergers have the lowest masses
(mass 1 =1.46 M, and mass 2 =1.27 M) and are placed in a
shorter distance than the other mergers (=40 Mpc). Let us
make a comparison between the entropy diagrams of
mergers of the GW190521 with SNR =14.6 and the
GW170817 with SNR =33. A closer look at results extracted
from data recorded by H1 (Figure 1) shows that both approx-
imately have similar trends with in an in-phase manner.
However, the values of sample entropy for GW170817 are
higher than that of GW190521 in all scales. In Figure 2, we
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Sample entropy

—— 170208
170219
—o— 170405

Scale factor

—=— 170412
170423

FIGURE 4: MSE analysis of the GWTC-1-marginal interval data recorded by H1 observatory.
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F1GURE 5: MSE analysis of the GWTC-1-marginal interval data recorded by L1 observatory.

see the same trends for both data. The MSE diagram of
GW190521 has more fluctuations than that of obtained for
GW170817, and it takes the greater values at some scales.
We see in Figure 3 that rises and falls of both data are very
similar up to scale 10; after that, although both approxi-
mately have the analogous slopes, the fluctuation of
GW190521 data is more. In the GWTC-1-marginal data
set, the only recorded property is network SNR that is
approximately comparable for 170219 (network SNR =9.6)
and 170412 (network SNR =9.7) signals. The MSE diagrams
of the 170219 and 170412 interval data sets recorded by H1
show that their entropy behaviors are completely different.
The sample entropy of 170412 data takes the value zero in
some scales, while the minimum value of 170219 data
(=0.21) is in the scale 16. On the other hand, for the data
recorded by L1, the entropy behaviors are similar. Hence,
we can say that the network SNR does not play a key role
in determining the entropy behaviors of the GW signals.

5. Conclusions

In this study, we first generated interval data sets from GW
data and measured their Hurst exponent using R/S analysis.
Our measurements show that the interval data have the
Hurst exponents ranged from 0.61 to 0.89. We applied
MSE analysis as a method of investigating complexity and
organization in time series, on two groups of interval data
generated from GW data recorded by different observatories
(Virgo and LIGO). We found that the GW interval signals
with similar sources represent analogous behaviors in differ-
ent scales. Focusing on entropy diagrams of GWTC-1-
marginal interval data with about the same network SNR
demonstrates that the entropy behaviors of the GW interval
time series cannot relate to the network SNRs of observato-
ries. Moreover, the entropy-scale diagrams show that the
entropy behaviors of the GW interval data are analogous
for each observatory which may return to the characteristics



of each observatory depended on input noises, noise reduc-
tion methods, and/or the orientation of the received GW sig-
nals. All of the multiscale entropy analysis results for
corresponding interval data recorded by HI, L1, and V1
show a decreasing trend with some degrees of convergence.
The diversity of the entropy in small scales implies that the
signals have different values of short-range correlations. By
increasing the scale factor, the effects of short-range correla-
tions are excluded from signals. The declining trend of
entropy indicates that the long-term correlations cannot
have an effective influence on the system. The observed con-
vergence in the MSE graphs, especially during the last scale
factors, can be interpreted as the existence of similarity
between all the GW interval time series in lack of long-
range correlations. It suggests that this type of GW signal
should be categorized in the class of systems with a low level
of complexity.

Data Availability

We employed the GW time series with a sampling rate of
16 KHz during the period of 32 seconds (the time of record-
ing data). The link of used data sets is as follows: https://www
.gw-openscience.org/data/.
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In this work, we construct an interacting model of the Rényi holographic dark energy in the Brans-Dicke theory of gravity using
Rényi entropy in a spatially flat Friedmann-Lemaitre-Robertson-Walker Universe considering the infrared cut-off as the Hubble
horizon. In this setup, we then study the evolutionary history of some important cosmological parameters, in particular,
deceleration parameter, Hubble parameter, equation of state parameter, and Rényi holographic dark energy density parameter
in both nonflat Universe and flat Universe scenarios and also observe satisfactory behaviors of these parameters in the model.
We find that during the evolution, the present model can give rise to a late-time accelerated expansion phase for the Universe
preceded by a decelerated expansion phase for both flat and nonflat cases. Moreover, we obtain wp, — -1 as z — —1, which
indicates that this model behaves like the cosmological constant at the future. The stability analysis for the distinct estimations
of the Rényi parameter & and coupling coefficient b has been analyzed. The results indicate that the model is stable at the late time.

1. Introduction

The Virial theorem (1930s) which provided the Coma galaxy
cluster mass [1, 2], accompanied by the galaxy rotation curve
study (1970) [3] and the two different research groups’ obser-
vational results in the 1990s [4, 5], has uncovered one of the
most interesting issues of cosmology at present: the dark sec-
tor. It is suggested by the researchers that the five percent of
the present energy content of the cosmos is composed of the
radiation and the ordinary matter (baryons); the remaining
ninety-five percent is dominated by this dark component to
clarify the late accelerated expansion of the Universe. It is
believed that this dark sector of the Universe mainly includes
two constituents: dark energy (DE) and dark matter (DM).
Both are important and significant to understand the phe-
nomena of scales and nature. The significance of DM lies pri-
marily in the structure formation, for instance, to permit
baryonic structures to become nonlinear in the wake of decou-
pling from the photons. Interestingly, dark energy is the sub-

ject of study to answer the late-time accelerated expansion
for the observable Universe [6]. Also, the DM is narrated as
cold dark matter (CDM), and dark energy is portrayed by
the cosmological constant (A) in the standard cosmological
scenario. The dark component of the Universe with radiation
and baryons combined the ACDM model. Also, despite the
fact that the ACDM model appreciates an impressive observa-
tional achievement [7-9], there are still a number of hypothet-
ical and observational focuses that have the right to be
completely researched [10]. The greatest test lies in under-
standing the crucial idea of these dark sectors from the theo-
retical perspective [6]. In 2004, Li [11] proposed the idea of
holographic dark energy (HDE) which is also used to explain
the DE scenario to explain the late-time accelerated expansion
of the Universe inspired by the holographic principle [12-18].
Right after a paper by Li, the most complete generalization
which includes all known HDE models were suggested [19].
Furthermore, it is shown that the Nojiri-Odintsov HDE
describes also covariant theories unlike Li’'s HDE [20].
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Recently, inspired by the holographic principle and using
the Rényi entropy [21], a new dark energy model has been
proposed by Moradpour et al. [22] named the Rényi holo-
graphic dark energy (RHDE) model for the cosmological
and gravitational investigations. Generalizing one of the
entropy or gravity, as entropy-area connection relies on the
gravity hypothesis, will change the corresponding one. It is
proposed that by using the Rényi entropy, the modified
Friedmann equations can be obtained [23-25]. Ghaffari
et al. [26] proposed that inflation may be found in the Rényi
formalism. The RHDE models have been explored with IR
cut-off as the particle and future event horizons [27]. The
spatially homogeneous and anisotropic Bianchi VI, Universe
filled with RHDE with Granda-Oliveros and Hubble hori-
zons as the IR cut-off has been investigated in general relativ-
ity [28]. Recently, Sharma et al. [29, 30] discriminated the
RHDE model from the ACDM model by using different
diagnostic tools such as statefinder diagnostic and statefinder
hierarchy in ample details. Also, the RHDE model has been
compared with the holographic and Tsallis holographic dark
energy through the statefinder diagnostic tool [31].

Indeed, all the above attempts claim that, at least mathe-
matically, the DE density profile introduced under the shadow
of the RHDE hypothesis has considerable potential for model-
ling the DE behavior, and thus, more studies on this density
profile are motivated. Further, at large scales, the models pre-
senting interaction fare well when confronted with observa-
tional outcomes from the CMB [32] and matter distribution
[33]. Therefore, the interaction between DE and DM must
be handled seriously. Then again, there exist limits for the
quality of this association for different setups [34-48]. This
newly proposed Rényi HDE has also been examined by many
researchers by considering the interaction between DE and
DM to explain the accelerated expansion of the Universe with
different IR cut-offs in general relativity, braneworld, loop
quantum cosmology, and modified gravity [49-52]. Sharma
and Dubey [53] investigated the Rényi HDE model in the
Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe
considering different parametrizations of the interaction
between the DM and DE.

On the other side, the modified gravity theories have been
broadly applied in cosmology [54-56]. The modified theories
of gravity are not new and have a long history. A well-known
modified gravity theory, the Brans-Dicke gravity [57], is also
a choice to general relativity to explain the accelerated expan-
sion of the cosmos [58] and also can pass the experimental
tests from the solar system [59]. Theoretically, the value of
the Brans-Dicke coupling parameter has a smaller value than
observed by the observational data, which encouraged phys-
icists to suggest various DE scenarios to describe the present
cosmos in the Brans-Dicke formalism [58-60]. Using the
holographic principle, Gong [61] investigated the holo-
graphic bound in the Jordan and Einstein frames to the
Brans-Dicke gravity, and for larger w, the similar results were
proposed as those in general relativity. The similar problem
was studied in [62], by considering Bianchi identity as a
consistency condition. For the IR cut-off as a future event
horizon, the importance of Brans-Dicke gravity for the dust
matter and the HDE has been explored in [63]. It is proposed

Advances in High Energy Physics

that with the Hubble radius as infrared cut-off, the standard
HDE may not produce the accelerated expansion Universe
in the Brans-Dicke gravity, but the suitable description of
the Universe can be obtained by taking the IR cut-off as a
future event horizon [64]. Therefore, many other works pro-
posed that the Brans-Dicke gravity is suitable for the exami-
nation in the holographic dark energy scenario [65-71].
Observational constraints also have been proposed for a
sign-changeable interaction among the Universe sectors
[72-74]. Considering different IR cut-offs, the noninteracting
and interacting Tsallis HDE and their cosmological conse-
quences are explored in the Brans-Dicke theory [75-77].

Very recently, the authors constructed the noninteracting
RHDE model in the Brans-Dicke theory taking the Hubble
horizon as the IR cut-oft [78]. While in this work, we propose
the interacting RHDE model in the framework of the Brans-
Dicke theory in both flat and nonflat Universes. The paper is
organized as follows: we explored the interacting RHDE
model and physical parameters in the Brans-Dicke theory
in Section 2. We study the stability of the RHDE model in
Section 3. The conclusion is given in the last section.

Throughout the text, an “overdot” represents a derivative
with respect to cosmic time.

2. Interacting Rényi Holographic Dark
Energy in the Brans-Dicke Theory

We consider a homogeneous and isotropic FLRW Universe
which is described by the line element

dar?
2_ g2 2 2902 2 20742
ds* =dt —a(t)<w+rd0 +rs1n9d¢), (1)

where a(t) is the scale factor of the Universe, ¢ is the cosmic
time, and the curvature constant k = +1, 0, —1 corresponds to
closed, flat, and open Universes, respectively. The coordi-
nates 1, 0, and ¢ are known as comoving coordinates.

In BD theory, the action is given by [57, 79]

‘b*f’“ +L,|d% ()

1
S= ﬁjﬁ{ﬁm—w

where ¢ is the BD scalar field, R is the Ricci scalar, w is the BD
parameter, and L,, is the Lagrangian matter. Here, the grav-
itational constant (G) takes the place of the time-dependent
scalar field ¢, which is inversely proportional to G, i.e., ¢(¢)
= 1/87G. If we assume the matter field to consist of a perfect
fluid, then the BD field equations from the variation of action
(2) and for the FLRW space-time are obtained as [79]

. )
Sk ), e E ;
ol (@ 1) e O
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4w \a a w 2w 2 \w
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where H =a/a is the Hubble parameter, p, is the matter
energy density, p, is the RHDE density, and p/, is the RHDE
pressure. The BD scalar field evolution equation is

¢+3H¢—¢%<H2+a—k2+g>:0. (5)

2.1. Rényi Entropy and HDE. It is important to mention here
that it seems there is a deep connection between quantum
gravity and generalized entropy scenarios, and indeed, quan-
tum aspects of gravity may also be considered as another
motivation for considering generalized entropies [22, 80].
Tsallis entropy is one of the generalized entropy measures
which lead to acceptable results in the gravitational and dif-
ferent cosmological setups [23, 25, 43, 81-89]. Usually, Tsal-
lis entropy is defined as [86]

=

1
S e —
TET 1N«

5

(P - Py, (6)

I
—_

for a system consisting of W discrete states. In the above
equation, P; is the ordinary probability of accessing state i,
and N is a real parameter which may be originated from
the nonextensive features of the system such as the long-
range nature of gravity [22, 83, 86]. In fact, the concept of
nonextensivity is more complex than that of nonadditivity
[87]. For example, the well-known Bekenstein entropy is
nonadditive and nonextensive simultaneously (for details,
see Refs. [84, 85]). It is proposed recently that the Bekenstein
entropy (S=A/4, where A =4nL* and L is the IR cut-off) is
actually a Tsallis entropy leading to

1 é 1
S= 5 log <ZA+ 1) =5 log (781 +1), (7)

for the Rényi entropy content of the system [21, 22]. Here, §
is a free parameter and known in the current literature as the
real nonextensive parameter that quantifies the degree of
nonextensibility [22, 86, 87]. It is proposed in [90] that the
6 parameter affects the energy balance of the Universe. When
8 < 1, the gravitational field is strong enough in such a way
that we need only a small quantity of DE and DM to con-
struct the observable Universe. On the other hand, when §
> 1, the gravitational field is weak in such a way that we need,
contrarily to the § < 1 case, a larger quantity of DE and DM.
To sum up, 6 < 1 implies less DE and § > 1 implies more DE
than we would have if we consider the standard Boltzmann-
Gibbs scenario [90, 91]. In [22], the authors used the value of
6 from —1400 to —900. There are wide ranges for § which can
produce desired results, while we have taken the values of §
from —1600 to —1400. Authors investigated late-time acceler-
ation for a spatially flat dust filled Universe in the Brans-
Dicke theory in the presence of a positive cosmological con-
stant A, where the value for the Brans-Dicke-coupling con-
stant w is taken as 40,000 [92]. Authors have studied the
Tsallis holographic dark energy in the Brans-Dicke frame-
work using b* =0.05,0.10,0.15 and #=0.001,0.005,0.05
[77]. The primary focus is in [93] on the FLRW Universe

specified by WMAP data. The role of dark energy is played
by the vacuum energy density in this model, that is, one
had A* ~ p, = p,,. With the assumption p, oc TdS [22] and
L=1/H (i.e., Hubble horizon) and using Equation (7), we
obtained energy density for the RHDE as

_ 3¢H? ®)
Pp= (n8/H? + 1)871’

where ¢ is a numeric constant. We used T = H/2m and

A =47/H = 47(3V/47)*”; relations to get this equation
corroborated in a flat FLRW Universe [94]. One can get
pp =3c*H?/8m without §, which is in complete agreement
with the standard HDE [14-18]. It deserves mention here
that the apparent horizon is a proper causal boundary for
the cosmos in agreement with the thermodynamics laws.
Besides, in a flat FLRW Universe, Friedmann equations
indicate that whenever DE is dominant in the cosmos,
its energy density will scale with H* (for details, see [22,
94]). Therefore, from a thermodynamic point of view, a
HDE model in the flat FLRW Universe, for which the
radii of the apparent horizon and the Hubble horizon (1
/H) are the same, will be more compatible with the ther-
modynamics laws, if it can provide a proper description
for the Universe by using the Hubble horizon as its IR
cut-off. Following [68], we assume that ¢ oca”, ie., the
power law of scale factor in this case to the BD scalar field
¢. One can now easily obtain

. a
= -, 9
b=np" )
and hence,

¢:H2n2¢+¢nH. (10)

The Rényi HDE density with the Hubble horizon as
the IR cut-oft is given as

3 C2 H2 ¢28

- 8rr(md/H> +1) (1)

Pp

Here, the holographic principle [17] is used, and the
effective gravitational constant G is given by G.;=w/2
n¢*. The gravitational constant G may be found from
G.¢ as a limit. The RHDE energy density can be recovered
in the fundamental cosmology [22]. The Holographic DE
can also be found in the Brans-Dicke gravity for the case

6=1 [64]. The dimensionless density parameters are
defined as

_ dwp,, _ CHw¢®? kK
" 3gPHY P 27t (nd + H?)’ kT 2HY

Q¢:2n(% —1).
(12)

Our main goal of this work is to build a cosmological
model of late acceleration based on the BD theory of



gravity and on the assumption that the RHDE and the
pressureless dark matter do not conserve separately.
Therefore, we assume that both components—the RHDE
and the pressureless matter—interact with each other,
i.e., one component may grow at the expense of the other.
Hence, the energy conservation equations for them are
given as follows:

pp+3pp(l+wp)=-Q (13)
and
pm+3Hpm:Q’ (14)

where wp, =pp/p,, represents the Rényi HDE equation of
state (EoS) parameter and Q denotes the interaction term.
Clearly, for Q<0 (Q>0), there is an energy flow from
pressureless matter (RHDE) to RHDE (pressureless mat-
ter). We assume the form of interaction
asQ=3b"Hq(p,, + p,,) [41, 42, 74], in which b’ is the cou-
pling constant and q denotes the deceleration parameter.
Here, the main ingredient is the deceleration parameter g

(6 + H?) (3(3b° — 2n + 5) — 9b” + Q (681 +9) + 2n(2n(nw — 3) — 3) - 9)
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(=—d/aH?*) in the interaction term Q, and hence, Q can
change its sign when the expansion of our Universe
changes from the early decelerated (g>0) phase to the
late-time accelerated (g < 0) phase. So, the above interact-
ing term deserves further investigation in the present con-
text. Now, taking derivatives with respect to time of
Equation (11), we get

. o H

combined with relation Qp,' = Qp/H to obtain

Qp' =20, <n(a— 1)+ (ﬁ) %) (16)

where the prime denotes derivative with x =log a. Now,
taking the derivative with respect to time of Equation (3)
and substituting the value of (}’), &/.), p,» and p, from Equa-
tions (9), (10), (14), and (15), respectively, we get

T

Defining, as usual, the deceleration parameter as

@ _ | H
aH? H?’

(18)

and using Equation (17), we obtain

q=-1+

H? (=96 + 602y, + 4n(nw — 3) — 6) + 8 (-9b” + 12Q), + 4n(nw — 3) - 6) + 9b* (78 + H?)

(8 + H?) (3(3b% - 2n + 5) ) — 9b” + Q (681 +9) + 2n(2n(nw — 3) - 3) - 9)

(17)

(19)

The evolutionary behavior of the deceleration parame-
ter is plotted for the interacting Rényi HDE model versus
redshift z by finding its numerical solution using the ini-
tial values Qp,,=0.70 and H,=72.30, for both flat Uni-
verse 2, =0 and nonflat Universe 2, =0.012. It is
proposed by different observations that the Universe is in
an accelerated expansion phase, and the value of the decel-
eration parameter lies in the range —-1<¢g<0. Also, we
have used n=0.0005 [77] for all plots. All the physical
parameters are examined through & and coupling coeffi-
cient b* because they play a crucial role in the evolution
of dynamical parameters of the RHDE. From Figure 1,
we see the evolutionary behavior of g for interacting
RHDE in BD gravity, for distinct estimations of b* and

H?(-9b* + 60, + 4n(nw — 3) — 6) + 718 (—9b” + 122, + 4n(nw — 3) — 6) + 9b (n8 + H?) Q-

§ in the nonflat Universe (lower two panels) and flat Uni-
verse (upper two panels). We can observe from Figure 1
that the RHDE model shows the transition from an early
decelerated stage to a current accelerated stage for both
cases for distinct estimations of b* and parameter §. In
this context, it is worthwhile mentioning that the standard
HDE in the framework of BD theory can explain the
accelerated expansion if the event horizon is taken as the
role of the IR cut-off [64]. Such a scenario also predicts
no acceleration if the Hubble horizon is considered as
the IR cut-off. Therefore, the novelty of the present work
is that it can explain the current accelerated phase of the
Universe if we choose the IR cut-off to be the Hubble
horizon.
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Qo = 0.012, b* = -0.005, 1 = 0.0005, w = 40000
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F1GURE 1: The deceleration parameter (g) evolutionary behavior versus redshift for nonflat Universe (¢, d) and flat Universe (a, b) for distinct

values of 8 and b*. Here, H, = 72.30 and Q) = 0.704.

Combining Equations (13), (15), and (17) with each
other, the EoS parameter is obtained as

wp, = [3Q (H? (-9b + 602, + 4n(nw - 3) - 6)

+ 78 (~9b* + 120, + 4n(nw - 3) - 6) + 9% (8 + H) ;)]
x [(H? (2Qp(-4(8 - 1)’ w — 6n* (28 + w + 2)
+6(8+2)n+3(5-2n)Q) - 3b*(Q - 1)(3(2n - 5)Q
+2n(2n(—nw +w + 3) - 3) + 3)) + 78 (=367 (4 - 1)(3(2n - 5),
+2n(2n(—nw +w + 3) - 3) + 3) = 205, (6(2n - 5) + 4(8 - 2)n’w
+6n7 (=28 +w +4) - 6(8 + 1)n +9)))].

(20)

We have graphed the behavior of EoS parameter wj, of
our derived interacting RHDE model for both Q, =0 (two
upper panels) and Q, =0.012 (two lower panels) cases, in
Figure 2 for distinct values of parameter & and coupling coef-
ficient b*. According to this figure, it can be seen that wj, of
the RHDE model varies from quintessence to the phantom
region (wp, < —1). Moreover, we can observe that the EoS
parameter approaches ACDM model (wp, = —1) for all values
of 8 and b in the future, which is in agreement with cosmo-
logical observations. We also noted that the evolution of the
EoS parameter at an early time in both flat and nonflat Uni-
verses is more distinct for different values of § in comparison
to coupling coefficient b*.
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F1GURE 2: Evolutionary behavior of the EoS parameter wj, against redshift for interacting RHDE for nonflat Universe (c, d) and flat Universe
(a, b) for distinct values of 8 and b*. Here, Qp, = 0.704 and H, = 72.30.

By putting Equation (17) in Equation (16), we also obtain
the evolution of dimensionless RHDE density parameter as

8 (~3(30% - 21 + 5) 0y + 9b” — 30,,(20n + 3) + 2n(-2n*w + 6n + 3) +9)
H? (-9 + 6, + 4n(nw — 3) — 6) + 8 (-9b° + 120, + 4n(nw — 3) — 6) + 96> (w8 + H*) ;|

(21)

!

OQp ={(6-1)n+20p,x

We have shown the behavior of interacting RHDE den-  panels) and €, = 0.012, (two lower panels) cases, for distinct
sity parameter Qp, in Figure 3 for both Q, =0 (two upper  values of coupling coefficient b* and 8. The thermal history of
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the Universe, in particular, the successive sequence of matter
and DE era, can be observed from these figures for different
values of § and b* in both nonflat and flat Universes. We
also observed that the RHDE density parameter is consistent
with cosmological observations [7], and our results are
consistent.

We have plotted the behavior of the Hubble parameter
H of our derived interacting RHDE model for both the
0, =0 (two upper panels) and , =0.012, (two lower
panels) cases, in Figure 4 for distinct values of parameter
8 and coupling coefficient b*. It depicts that the variation
of § affects the behavior of H, while different values of
coupling coefficient b* do not affect it. The value of H

decreases and approaches to a positive value near 70 in
the far future.

3. Stability

In this section, we shall discuss the stability of the interacting
RHDE model through the squared sound speed v? in both
flat and nonflat Universes. The v?>0 (the real value of
speed), shows a regular propagating mode for a density per-
turbation. For v <0, the perturbation becomes an irregular
wave equation. Hence the negative squared speed (imaginary
value of speed) shows an exponentially growing mode for a
density perturbation. That is, an increasing density
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perturbation induces a lowering pressure, supporting the
emergence of instability [95].
The squared sound speed is given as [96, 97]

d
= Pp

N

Pp@p
= = - + wn. (22)
dpp  pPp i

Now, inserting the result of Equation (15) in Equation
(22), we get

" SO S H((r0 (w0 + 1) + 1) (FI/HP) +0n) 23)

We solve the Equation (23) numerically by using Mathe-
matica package NDSolve and plotted the squared sound
speed v? versus redshift z in Figure 5, for both 0, =0 (two
upper panels) and O, =0.012, (two lower panels) cases for
distinct values of the parameter § and coupling coefficient
b* From Figure 5, we observe that the RHDE model is not
stable initially by taking different values of & and b in both
flat and nonflat Universes, while for § = -1400 in both flat
and nonflat Universes, the value of the squared sound speed
v? diverges. By taking different values of b in both flat and
nonflat Universes, the RHDE model becomes stable at the
late time. By analyzing all these plots, we can say that values
of § and b* have qualitative effects on the nature of the
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and b?. Here, Qp, = 0.704 and H,, = 72.30.

squared sound speed v? in both the nonflat and the flat cos-
mos. The inset plot of Figure 5 shows a close-up of the outer
plot around z = 0 in which the difference can be seen. They
are not exactly identical but the difference is very small.

4. Concluding Remarks

In this work, we explored the role of the interacting FLRW
cosmos to model dark energy in the Brans-Dicke theory
framework using RHDE by taking an infrared cut-off as the
Hubble radius in both nonflat and flat Universes. The pres-
sureless matter is assumed to interact with the RHDE
through a sign-changeable interaction. In this analysis, we
have used the initial values Qp, =0.70, Q,,,=0.30, H, =

72.30, and n=0.005 [77] for both flat Universe ({2, =0)
and nonflat Universe (2, =0.012). It has been found that
for different values of the Rényi parameter § and the coupling
coefficient b7, the interacting RHDE model produces the suit-
able behavior for the deceleration parameter (gq), the EoS
parameter (wp), the RHDE density parameter (), and
the Hubble parameter, in both the cases (see Figures 1-4).
The effect of different values of § and b” is only quantitative
on these parameters.

As discussed earlier, the Brans-Dicke theory in the frame-
work of HDE can explain the accelerated expansion if we
choose the IR cut-oft to be the event horizon. The theory also
predicts no acceleration if we choose the IR cut-off to be the
Hubble horizon. However, in our case, the deceleration
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parameter g shows a smooth transition from the decelerated
phase (g > 0) early to the accelerated phase (g <0) at a later
time. Hence, a remarkable feature of this model is that RHDE
in the framework of the Brans-Dicke theory explains the
accelerated expansion if we choose the IR cut-off to be the
Hubble horizon. It has also been found that the EoS param-
eter wp, varies from a quintessence (wp, > —1) to the phantom
region (wp, < —1), and the RHDE model transits decelerating
to an accelerating stage of the Universe and wy, approach to
—1 as z — —1, which implies that the RHDE model imitates
the cosmological constant at a far future. It is observed that
the RHDE density parameter ), becomes 1 as z— -1.
Moreover, it is observed that the variation of § affects the
behavior of the Hubble parameter H, while different values
of b* do not affect it. Also, the value of H decreases and
approaches to a value near 70 in the far future. Furthermore,
we have investigated the classical stability of our model by
analyzing the squared sound speed v2. It has been found that
the stability of our model crucially depends on the choices of
the parameter & in both flat and nonflat Universes (see
Figure 5).

As we showed, the present model exhibits more interest-
ing phenomenology comparing to the standard scenario, and
hence, it can be a candidate for the description of nature. In a
follow-up study, we would like to perform an observational
analysis to constrain the parameter 6.
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In the present work, we study spherically symmetric gravitational collapse of a homogeneous fluid in the framework of Rastall
gravity. Considering a nonlinear equation of state (EoS) for the fluid profiles, we search for a class of nonsingular collapse
solutions and the possibility of singularity removal. We find that depending on the model parameters, the collapse scenario halts
at a minimum value of the scale factor at which a bounce occurs. The collapse process then enters an expanding phase in the
postbounce regime, and consequently the formation of a spacetime singularity is prevented. We also find that, in comparison to
the singular case where the apparent horizon forms to cover the singularity, the formation of apparent horizon can be delayed
allowing thus the bounce to be causally connected to the external universe. The nonsingular solutions we obtain satisfy the weak

energy condition (WEC) which is crucial for physical validity of the model.

1. Introduction

The process of gravitational collapse of a massive object and
its final outcome is one of the central questions in relativistic
astrophysics and gravitation theory. In the framework of gen-
eral relativity (GR), the Hawking and Penrose singularity
theorems predict that under physically reasonable condi-
tions, a continual collapse process leads to the formation of
a spacetime singularity, that is, a spacetime event where den-
sities and spacetime curvatures grow limitlessly and diverge
[1]. During the last years, much attempts have been directed
towards exploring different aspects of the gravitational col-
lapse process and the studies along this line of research indi-
cate that the spacetime singularity that forms as the collapse
end product could be dressed by a spacetime event horizon
(black hole formation) or visible by the observers in the uni-
verse (naked singularity formation) [2]. Usually, formation
of a naked singularity as the collapse outcome is considered
the violation of the cosmic censorship conjecture [3-5]. This
conjecture states that singularities that form as the collapse
final state will always be hidden by the event horizon of a
black hole and cannot be visible to the observers in the uni-
verse [6] (see [7] for a recent review on this conjecture).
However, during the past decades, many examples of naked

singularity formation as possible counterexamples to the cos-
mic censorship conjecture have been reported in the literature,
among which we can quote gravitational collapse of dust, per-
fect fluids, and radiation shells [8, 9]. Such a study has been
extended to gravitational collapse in the presence of a cosmo-
logical constant term [10], higher dimensional collapse models
[11-14], higher-order gravity theories [15], scalar field collapse
[16-20], and self-similar collapse [21-23] (see also [2] for a
recent review). Also, in the context of modified gravity theo-
ries, it is shown that naked singularities could form depending
on different aspects of the theory (see, e.g., [24-30]).

Despite the fact that the formation of naked singularities
may provide us a useful observational testbed for detecting
high energy phenomena, these objects seem unpleasant as
classical GR breaks down at the spacetime singularity. How-
ever, it is generally believed that such a singularity that forms
in a classical regime can be avoided once quantum gravity
corrections are taken into account. In this regard, a great
amount of work has been devoted to investigate nonsingular
collapse models, for example, corrections that may arise in
the strong field regime, as obtained in the framework of
some Loop Quantum Gravity (LQG) models [31-36]. Work
along this line has been also extended to modified gravity
models, e.g., singularity avoidance in Eddington-inspired
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Born-Infeld theory [37], modified Gauss-Bonnet gravity [38,
39], Horava-Lifshitz gravity [40], nonminimal coupling of
classical gravity with fermions [41], and other modified
gravity theories [42].

In the light of the above considerations, one may be moti-
vated to study modified gravity theories in the context of
which the collapse scenario leads to a nontrivial outcome,
different to singular collapse settings that have been studied
in GR [9]. In this regard, one can generalize the standard
GR to include a nonminimal coupling between geometry
and matter fields. As we know, in most of the modified grav-
ity theories, the energy-momentum source is characterized
by a divergence-free tensor field which couples to the geom-
etry in a minimal way [43, 44]. However, such a property of
the energy-momentum tensor (EMT) which leads to the
energy-momentum conservation law is not obeyed by the
particle production process [45-48]. Hence, it seems reason-
able to assume a nonvanishing divergence for EMT and seek
for a modified gravitational theory whose geometrical
degrees of freedom (not present in GR) may affect the final
fate of the collapse. In this regard, one may relax the condi-
tion on EMT conservation law; i.e., mathematically the rela-
tion VHT“ , =0 is not valid anymore [49-55]. This idea was
firstly put forward by Peter Rastall [54] who proposed a grav-
itational model in which the divergence of T* | is propor-
tional to the gradient of the Ricci scalar, ie, V, T, &< VR,

so that the usual conservation law is recovered in the flat
spacetime. This kind of modified gravity model has attracted
a great deal of attention recently and is in good agreement
with various observational data and theoretical expectations
[56]. In the present article, we are motivated to investigate a
simple model for gravitational collapse of an isotropic and
homogeneous matter distribution with nonlinear EoS in
Rastall gravity. We therefore proceed with considering the
field equations in Rastall gravity in Section 2 and search for
nonsingular collapse solutions in Section 3. Our conclusions
are drawn in Section 4.

2. Field Equations of Rastall Gravity

According to the original idea of Rastall [54], the vanishing of
covariant divergence of the matter energy-momentum tensor
is no longer valid and this vector field is proportional to the
covariant derivative of the Ricci curvature scalar as

V,T% = AV, %, (1)

where A is the Rastall parameter. The Rastall field equations
are then given by [54, 57]

Gab + Vgab‘% = KTab’ (2)

where y = kA is the Rastall dimensionless parameter and « is
the Rastall gravitational coupling constant. The above equa-
tion can be rewritten in an equivalent form as

Gop = KT (3)
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where

yT

Teff =T  —
ab ab 4Y_1

9ap (4)

is the effective energy-momentum tensor whose components
are given by [58, 59]

3y-1)p+ +2
TE0 = _ peft :_( Y )Z v, Pt)’ (5)
y-1

o e 3y-1)p, + -2

Tel = peff = (3y )1; y(p Pr), (6)
y-1

el e e 2y-1 + Pr

TE2 = Telf3 = peff _ (2y )i’; _)I’(P p,) ' (7)

It is noteworthy that in the limit of A — 0, the standard
GR is recovered. Moreover, for an electromagnetic field
source, we get TN =T, leading to G, = kT, Therefore,
the GR solutions for T =0, or equivalently R=0, are also
valid (the Rastall gravity) [57, 60].

3. Solutions to the Field Equations

In the framework of classical GR, the continual gravitational
collapse of a massive body under its own weight was inves-
tigated for the first time by Oppenheimer, Snyder, and Datt
(OSD) [61, 62]. They considered the evolution of a spheri-
cally symmetric homogeneous dust cloud which starts from
rest. The interior spacetime of such a collapse setting can
be described by the Friedman-Robertson-Walker metric
given by

42 =g+ L0 g2 + R (t, r)d(?, (8)
1 - kr?

where k determines the spatial curvature, R(t,7) = ra(t) is
the physical radius of the collapsing object, with a(t) being
the scale factor, and dQ?* is the standard line element on
the unit 2-sphere. The EMT of a pressureless matter is sim-
ply given by Tj =diag (-p,0,0,0), from which one can
find the Einstein field equations as

3k a

ol + 3; =2KgpP> (9)
k -2 .

—2+a—2+2g=0, (10)
a a a

where kg =47G. Also, the conservation of EMT (V, T} =0)
gives p = C/a’, where C is a constant. Substituting them for
energy density into equation (9) along with defining the
conformal time dr = dt/a, we arrive at the following solu-
tion for the scale factor:

a() = 5 (1+cos (1) t(n) = 5 (n-+sin (), (11)
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where 0 <# <. The above solution describes the collapse
process of a homogeneous dust fluid for which the scale
factor starts from the finite value g; at (7,7)=(0,0) and
becomes zero at (7,#) = (ma;/2, 7). The vanishing of the
scale factor at a finite time signals the formation of a space-
time singularity, i.e., a spacetime event at which the energy
density and curvature get arbitrary large values and diverge.
It can be shown that the singularity in the OSD model is
necessarily hidden by an event horizon and thus a black
hole is formed as the end state of a homogeneous dust col-
lapse (see, e.g., [63] for a review on the OSD model).

In the present section, we seek for a class of homogeneous
collapse solutions for which the formation of spacetime sin-
gularity is avoided. We shall see that this is possible in case
we generalize the OSD model from GR to Rastall gravity
along with assuming a nonlinear EoS for the fluid pressure.
To this aim, we begin with a homogeneous and isotropic
interior line element representing a spatially nonflat FLRW
geometry. The field equations for an isotropic source
(T} = diag (—p, p, p, p)) then read

a3k 2Kg
2a+a2+ k——;c - 2K L-y)p- (13)
at ot T P = 6)/7—1[( V)P = VPl

Applying the Bianchi identity on equation (3) leaves us
with the following continuity equation in Rastall gravity as

(%)m (%)P”H(PW):O. (14)

Next, we proceed to build and study collapse scenarios
assuming a polytropic EoS p = apP, where a and f3 are con-
stants. Equation (14) can be solved for this EoS, and the
solution reads

—(a;+pay)/3(p-1
In (@) +In <P,B(a1+a2)/3([31)(p+apﬁ) (a1+Bay)/3(B )) +Cy =0,
(15)
where C, is an integration constant and

1-3
a, = Y

3y
, 0y = S 1. 1
=y a, =y B+ (16)

In order to find an explicit expression for energy density,
we set a; = —f3a, within equation (15). This gives

, (17)

a;

2\ 310Gy
p(@)=p, (—)

where p; = p(t;) and a; = a(t;) are the initial values of energy
density and scale factor, respectively, and ¢ =t; is the initial
time at which the collapse begins. Equations (12) and (13)
can then be rewritten as (we set the units so that 2x; =1)

2 3y-1)/3y

3 a3k _ 6ocyp,(» (&) (4y-Dly ip (&) 3(4y-1)/(3y-1)
az  a? 6y -1 a "\a

>

(18)
2& + a_Z + 52 2(1 -7) 1(3y—1)/3y (&) (4y-D)ty
e e ’ (19)
2y a;\ 3(4y-1)/(3y-1)
6)/ —-1 pi (_) .

a

Next, we proceed to study the collapse dynamics using
numerical methods in order to solve equation (19). We fur-
ther employ equation (18) to find the initial condition on
the speed of collapse which is given by

12
3ka?(1 - 6y) +2p,a} (3y(1 + ocpi_my) - 1)
3a?(6y-1) '

at) = -
(20)

Figure 1(a) shows the numerical solution to equation (19)
for a closed geometry (k = 1) and different values of the Ras-
tall parameter. As we observe, the collapse starts its evolution
by a finite velocity, i.e., 4; <0 and continues through a con-
tracting regime until the bounce time t = t;, is reached. At this
time, the collapse process halts at a nonzero minimum value
of the scale factor so that we have a_;, = a(t,) and a(t,) =0
(see also Figure 1(b)). This minimum value of the scale factor
can be obtained through equation (18) as

20, N4 L)) N
hi ( & ) < & ) (3v—1)+3<i> ayp; " | =3k, =0,
6y =1 \anin Amin Amin

(21)

From Figure 1(a), we also note that the Rastall parameter
could change the minimum value of the scale factor and the
bounce time in such a way that the larger the values of the
y parameter, the greater the value of a,,;, and the sooner
the bounce occurs. For t > t,, the contracting regime switches
to an expanding regime and the collapsing body disperses as
the time passes. We also observe that the case of y =0 corre-
sponds to the GR limit of the theory where the gravitational
collapse process leads to singularity formation (see the
dashed curve). Figure 1(c) shows the behavior of collapse
acceleration. We therefore observe that the collapse experi-
ences four phases during its dynamical evolution. (i) During
the time interval at which a<0 and d <0, the collapse
undergoes an accelerated contracting regime. (ii) As time
goes by, the collapse enters a decelerated contracting regime
where a < 0 and a > 0. (iii) After the bounce time, the collapse
turns into an accelerated expanding phase for which a>0
and 4> 0. (iv) Finally, at later times, the collapse enters a
decelerated expanding regime where a >0 and 4 < 0.

For the sake of physical reasonability, we require that the
weak energy condition (WEC) be satisfied. According to this
condition, the energy density as measured by any local
observer must be positive. Hence, for the energy-
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FIGURE I: (a) The behavior of the scale factor over time for a; = 1.2,
p;=2.0, and a = 4.24. (b) The behavior of speed of collapse for the
same values of the parameters as chosen above. (c) The behavior
of acceleration of collapse for the same values of the parameters as
chosen above.

momentum tensor of ordinary matter and the effective fluid,
the conditions

p=0,p+p=>0, (22)

Pett Z 05 Pegr + Pegr 2 0 (23)

must be satisfied along any nonspacelike vector field. In
Figure 2(a), we have plotted for energy density the WEC
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FI1GURE 2: (a) The behavior of energy density over time for a; = 1.2,
p;=2.0, «=4.24, and y=0.14. The red curve stands for the case
with y=0. (b) The behavior of the Kretschmann scalar for the
same values of the parameters as chosen above.

for ordinary EMT and the WEC for effective EMT. We also
observe that in the limit where y — 0, the energy density
diverges signaling the occurrence of a spacetime singularity
(see the red curve). Another quantity that the divergence of
which implies singularity formation is the Kretschmann
scalar defined as

T = Ry RP = H' +2H* + 2HH
40(1 - 3y(+w))>? (24)
81(1+w)*(1-4y)*(t-t,)*

In Figure 2(a), we have plotted for the behavior of this
quantity where we observe that the Kretschmann scalar
behaves regularly and is finite throughout the collapse pro-
cess (black solid curve), while, for y=0 (red curve), this
quantity grows unboundedly and diverges at the singularity.
We also note that for =0 the results of [64] will be
recovered.

An important issue that needs to be examined in each
collapse setting is the study of dynamics of apparent horizon
and causal structure of spacetime during the evolution of the
collapse process. The apparent horizon is the outermost
boundary of the trapped region, and the condition for its
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1.2 |

FiGure 3: The behavior of the apparent horizon curve over time for
a;=12,p;=2.0,a=4.24,and y = 0.14. The red curve stands for the
case with y =0.

formation is provided by the requirement that the surface
with R(t, r) = Constant is lightlike or in other words g*"d,R

0,R =0 [9]. This condition for our model reduces to R+r
=1 from which we can find the radius of the apparent
horizon as

1

T (25)
" Var+1

In Figure 3, we have plotted for the radius of the apparent
horizon and compared the cases with y=0.14 and y=0. In
the former (black solid curve), we observe that during the
collapse process, the apparent horizon radius decreases to
the minimum value r=r_,, and then reaches a maximum
value at the bounce time. It then converges to the same min-
imum radius in the postbounce regime. The apparent hori-
zon curve will never vanish; ie., it will never hit the
singularity at R =0, in contrast to the case with y =0 where
the apparent horizon covers the singularity at a finite amount
of time, leading to black hole formation (see the red curve).

4. Concluding Remarks

In this work, we studied the process of gravitational collapse
of an isotropic homogeneous fluid which obeys a nonlinear
EoS, i.e., p = apF, between energy density and pressure pro-
file. We found that, depending on the model parameters,
nonsingular collapse solutions can be obtained in such a
way that the collapse starts from regular initial data, proceeds
for a while, and halts at a bounce time at which the scale fac-
tor reaches its minimum value. Then, after the bounce time is
passed, the collapse scenario turns into an expanding phase.
We further observed that the energy density and Kretsch-
mann scalar behave regularly and are finite throughout the
contracting and expanding regimes. In this regard, the space-
time singularity which is present in the OSD collapse model
is avoided. Also, for the singular model, the apparent horizon
necessarily forms to cover the singularity whereas in the
model described herein, the initial radius of the collapsing
matter (R(t;,7) =r) can be chosen as r <r.;,. In this case,
the horizon formation is prevented, and thus, the bounce
can be visible to faraway observers in the universe. As the

Rastall parameter is a measure of ability of matter and curva-
ture to interact with each other, we therefore conclude that
such an ability can provide a setting in which the formation
of spacetime singularities is avoided in a gravitational col-
lapse process.

As the final remarks, it is noteworthy that the present col-
lapse scenario can be compared to other collapse settings
such as gravitational collapse of a homogeneous Weyssenhoft
fluid in the framework of Einstein-Cartan gravity [65]. The
Weyssenhoff fluid is a generalization of a perfect fluid in
GR to include the intrinsic angular momentum (spin) of
the fermionic matter field. Comparing equations (18) and
(19) with the corresponding equations given in [65], we
observe that for y=-1/2, the collapse dynamics presented
in this work mimics that of a Weyssenhoff fluid with EoS w
=1/5. Although a more detailed and in-depth analysis is
needed in order to understand the correspondence between
the two theories, one may intuitively imagine a possible rela-
tion between matter-curvature coupling in Rastall theory and
spacetime torsion in Einstein-Cartan gravity. It is also worth
mentioning that the exterior spacetime of the collapsing body
can be obtained by matching the interior spacetime through a
timelike hypersurface to an exterior Vaidya spacetime [66-
68], using Israel-Darmois junction conditions [69]. By doing
so, one can show that in the framework of the present study,
the exterior region of the collapsing object is a Schwarzschild
spacetime with dynamical boundary [64, 65].
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In this paper, we adopt the Verlinde hypothesis on the origin of gravity as the consequence of the tendency of systems to increase
their entropy and employ the Tsallis statistics. Thereinafter, modifications to the Newtonian second law of motion, its gravity, and
radial velocity profile are studied. In addition, and in a classical framework, the corresponding cosmology and also its ability in

describing the inflationary phases are investigated.

1. Introduction

The study of the relation between thermodynamics and grav-
ity has a long history [1-7]. On the one hand, Gibbs shows
that gravitational systems are not extensive [1], a conclusion
in agreement with the Bekenstein entropy of black holes [2],
which is a nonextensive entropy. On the other, it seems that
all gravitational systems satisfy the Bekenstein entropy
bound expressed as [8]

Ac?
SBE: @a (1)

where A = 47R* and R denote the area of the system bound-
ary and its radius, respectively, and k (Boltzmann constant).
Using this entropy and Clausius relation, one can show that
the Einstein gravitational field is in fact a thermodynamic
equation of state [9]. This amazing result is valid in various
gravitational and cosmological setups which lead to notable
predictions about the behavior of cosmos and gravitational
systems [10-30]. Motivated by the Gibbs work [1], the non-
extensivity of the Bekenstein entropy, and based on the
long-range nature of gravity [31], recently, the use of nonex-
tensive statistical mechanics (based on possible generaliza-
tions of Gibbs entropy) has been proposed to model and
study some phenomena such as the cosmic evolution [32-
39], black holes [40-49], and Jeans mass [50, 51].

In order to find the probable thermodynamic aspects of
gravity, Verlinde describes it as the implication of the ten-
dency of systems to increase their entropy [52], an astonish-
ing approach which attracts investigators to itself [53-65]. In
the framework of generalized entropies, the Verlinde hypoth-
esis leads to significant implications on the cosmic evolution
[35, 66-68], Newtonian gravity [69], Jeans mass (as a stability
criterion) [70], and also gravitational systems [71-76].
Indeed, the differences between generalized entropies and
the Bekenstein entropy, originated from the nonextensive
viewpoint, can (i) describe the universe inflationary phases
[32-34, 39], (ii) relate Padmanabhan emergent gravity sce-
nario to the Verlinde hypothesis [32], and (iii) propose an
origin for the MOND theory [69].

Based on the Verlinde hypothesis [52], the entropy
change of a system increases as

AS=2m % Ax, 2)

when the test mass m has distance Ax =#h/mc= A, (reduced
Compton wavelength) with respect to the holographic screen
(boundary of system). This screen consists of N degrees of
freedom calculated by

Al
N=Gn 3)
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in agreement with Eq.(1) and thus Sg; = N/4 [2]. Following
[55, 56], we assume Ax =#A, from now, and use the Unruh
temperature [7]

1 ha
T: _, 4
21T ¢ ( )
to get [55, 56]
AS dS AA
F=T—=T—— =ma, (5)
Ax dA Ax

as the net force that source M applies to particle m, which
finally brings it acceleration a. Indeed, this result is available
if # =1/8m leading to Ax = A_/8m, to get Eq. (5). Now, com-
bining A = 47R* and Eq. (3) with

1
E= ENT:MCZ, (6)

and using Eq. (5), one easily reaches at Newtonian gravity

a=GRM. 7)

It is also useful to mention that it seems there is a deep
connection between generalized entropies and quantum
gravity scenarios, and indeed, quantum aspects of gravity
may also be considered as another motivation for consider-
ing generalized entropies [77, 78]. Tsallis entropy is one of
the generalized entropy measures which leads to acceptable
results in the cosmological and gravitational setups [32, 36,
40, 47, 49]. In fact, there are two Tsallis entropies [40, 47,
49]. One of them has been proposed by Tsallis and Cirto
[40] which is confirmed by the multifractal structure of hori-
zon in quantum gravity [78] and modifies Eq. (1) as S ~ A% (8
is a free unknown parameter [77]).

The second one has recently been calculated in [49] by
relying on statistical properties of degrees of freedom distrib-
uted on the holographic screen. The result is compatible with
a detailed study in the framework of quantum gravity [47].
This case proposes an exponential relation between the hori-
zon entropy and its surface, and we will focus on it in this
paper. In the next section, modifications to the Newtonian
second law of motion and also Newtonian gravity is derived
by using the Tsallis entropy. Its implications on the radial
velocity are also addressed. In the third section, after evaluat-
ing the Tsallis modification to the gravitational potential, we
adopt the approach of paper [79] and find out the corre-
sponding Friedmann first equation in a classical way in
which a test mass is located on the edge of the universe,
namely apparent horizon [79]. The possibility of obtaining
an accelerated universe is also debated in this section. A sum-
mary of the work is presented in the last section.
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2. Tsallis Gravity and Dynamics

Employing the Tsallis statistics, it has been recently shown
that Eq. (1) is modified as [49]

1

g = g lexp (L= )S) ~ 1, (8)

in full agreement with quantum gravity calculations [47].
Here, g is a free parameter evaluated from other parts of
physics and also observations, and Eq. (1) is recovered when
q =1[31, 47, 49]. In the nonextensive scenarios, Eq. (6) takes
the form [35, 80]

1
E= _—_NT=MdJ, (9)
5-3¢q

which approaches Eq. (1) at the appropriate limit of g = 1.
Now, following the recipe which led to Eq. (5), one can
use Eq. (8) to find

ds) AA 2+38)Mcn
FT = Td—jﬂ =ma exp (8%), (10)

where 6 =1 — g is the Tsallis second law of motion. Clearly,
Eq. (5) is recovered whenever § =0, and therefore, this
approach claims the net force F! that source M applies to
m depends on M. In order to obtain the above result, we used
Spe = N/4 [2],and N = ((5 — 3q)Mc?)/T. Of course, since the
relation F =ma works very well (classical regime), one can
deduce that § is very close to 0 meaning that the exponential
factor may have nonsensible effects in the classical regime.

The modified form of Eq. (7), called Tsallis gravity, is also
obtained as

M R}
aT:GqF exp <8R—g>, (11)

where R2 = Gh/c*n = I/m, I, denotes the Planck length, and
G, =((5-34)/2)G in full agreement with [35]. In order to
have a comparison between the Tsallis second law of motion
and also the Tsallis gravity and those of Newton, let us write

FT d

T _PG)

a’l I
" =(5-3q) exp (F)’

where d=8((2+38)Mc*m)/2h and 1=6R2. As a crucial
point, one should note that, for an event, the sign of a and
a’ should be the same (the predictions of different theories
about the value of accelerations should address the same
motion meaning that both of a” and a should have the same
sign). It leads to this limitation g < 5/3 meaning that & > -2/5.
Thus, [ and d can be negative.

Now, let us compare Eq. (11) with the results of [55] and
[56] where authors employ different entropies in the

(12)
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framework of the Verlinde theory and address two modifica-
tions for the Newtonian gravity. Unlike Eq. (11) of [11], the
modified gravity obtained in [55] (Eq. (17)) diverges at large
distances (R > 1). Of course, both of them claim that the
gravitational force between the source M and test particle
m can vanish for some points on their interface line, a prop-
erty incompatible with the Newtonian gravity and experi-
ence. From Eq. (11), one can easily see that the obtained
gravitational force does not diverge at large distances where
it will be ignorable. Thus, it seems that this equation is a more
reliable modification to the Newtonian gravity compared
with those of [55, 56].

2.1. Velocity Profile. For a circular motion at radius r with
velocity v, and thus acceleration (v*/r)(=a’) obeying Eq.
(11), one reaches

v=y/ 3 e ( : ) (13)

r 2r2

which implies that we should have g < 5/3 to get real values of
velocity.

On the other hand, if one assumes the mass m in the
gravitational field of source M feels the force GM mir?, then
using (10), we can write

GMmir* = F', (14)
yields
d
GM/r = v* exp (V—:), (15)

for a = (v?/r), finally leading to

G
V= Tm —dr (16)

if we expand exp (dr/v?) as 1 + (dr/v*). For a constant d, this
approximation is valid when radial acceleration (v*/r) is
small. Indeed, in this manner, the dr term leads to an increase
in the velocity of particle m, compared with the Newtonian
case for which v* = (Gm/r), if d < 0.

3. A Tsallis Cosmology

In order to find the Friedmann first equation correspond-
ing to the obtained Tsallis gravity, we follow the classical
viewpoint fully described in [79]. The series expansion
exp (IIr*) = Y32 " Inlr*" leads to

exp (I/r* = I
J‘#d?’z Z JWCZT’=—

IOZO: I
r&nl(2n+ 1)
(17)

combined with Eq. (11) to help us in calculating Tsallis

3
gravitational potential as
G M ln
=-1 . 18
¢(r) r r;) n!(2n +1)r2n (18)

Considering a test particle on the edge of a flat FRW
universe, and following the recipe of [79], this equation
leads to

B 871Gq &

X lﬂHZVl
H* = S 19
3 P,;)n!(2n+1) (19)

in which p is the cosmic fluid density and H denotes the
Hubble parameter, and we used the fact that the apparent
horizon is located at r=1/H. Moreover, the standard
Friedmann first equation [79] is recovered at the desired
limit of g=1 (or equally, § =0(||I=0)).

3.1. Accelerated Universe. Bearing the fact that the Hubble
parameter decreases during the cosmic evolution in mind,
rewriting Eq. (19) as

H’ _ 8nG, "
Zﬁo((lnHZ")/(n!(2n+1)))_ 3 P (20)

and keeping terms up to the H* term in LHS (the first correc-
tive term to the standard cosmology (H* = (87G,/3)p) due to
Tsallis gravitational potential), one easily reaches at

3 32nG,l
H2:21<1i 1- 9‘1p>. (21)

In order to have real solutions for H?, this equation
claims that there is a maximum bound on the density of cos-
mic fluid as p,, . =9/327G, | at which the universe feels a de-

Sitter phase with H = /3721 when 1>0. As the universe
expands, p decreases, and when p =0, the positive branch
experiences again the primary de-Sitter phase (H = v/3/I for
1> 0), but forever, while the universe expansion rate vanishes
for the negative solution. In fact, the vacuum solution (p = 0)
of the above Friedmann first equation is an inflationary uni-
verse for the positive branch and a Minkowski universe for
the negative branch.

4. Summary

In the framework of the Verlinde hypothesis on the origin of
gravity, we employed the recently proposed Tsallis entropy
[47, 49] to find its implications on the Newtonian dynamics
(second law of motion) and gravity. The velocity profile in
a circular motion has also been analyzed. Finally, adopting
the classical approach to get the Friedmann first equation
described in [79], the corresponding cosmology was achieved
after finding the Tsallis gravitational potential. The obtained
modified Friedmann first equation (20) includes a complex
function of H.



Since the Hubble parameter decreases during the cosmic
evolution, and because the standard Friedmann first equa-
tion (H*=(87nG/3)p) has notable achievements, we only
focused on the first corrective term due to the Tsallis gravita-
tional potential (i.e., we only hold terms up to H* in writing
Eq. (21)). We saw that, in some situations and depending
on the value of §, the resulting equation addresses the (anti)

\/3m/281; and H = /3n/8;,

depending on p. It also admits an upper bound on the energy
density of cosmic fluid of order of ((1,°G™1)/((2 +38)8)) ~
((10%1)/((2+38)8)). We also obtained that there are two
branches for the assumed approximation. Whenever p =0,
the positive branch, depending on the value of §, guides us
to an eternal (anti) de-Sitter phase, and the negative branch
addresses a Minkowskian fate for the universe.

de-Sitter universes with H =
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