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Big Data is attracting more and more attention in various
fields nowadays, changing thewaywe live greatly, and proving
to be one of the hottest research topics. The base of big data
lies in the huge volume and scale of data, hence making it
better for us to make decisions if we can extract more useful
information from the huge amount of data.

The tremendous development of 5G, especially with the
combination of Internet and Internet-of-Thing (IoT), boosts
the amount and type of wireless data dramatically. Compared
with the 4G, the bandwidth (over hundreds of MHz), central
frequency (centimeter and millimeter wave band), amount
of antennas (3-dimensional and massive MIMO), number of
sensors (IoT), and application scenarios expand enormously,
leading to the rapid growth in the amount of data. To bemore
specific, as for the IoT, the density of sensors is increasing
rapidly in 5G systems and sensors are distributed everywhere
in a typical scenario which is leading to the exponential
growth in wireless links, making it difficult for conventional
channel characterization methods to handle it .

It is crucial to characterize the wireless channel accurately
to guarantee the demand of 5G system. The preliminary per-
formance of big data provides a promising prospect in various
fields. By using big data, we can mine the characteristic of
wireless channel deeply and parameterize the channel more
precisely, which has never been studied. In this special issue,
we cordially invite some researchers to contribute papers that
discuss the channel modeling and simulation for 5G systems
using big data andmachine learning, as well as other artificial

intelligence theories. And this special issue provides the state-
of-art research in this field.

The paper “A Survey onMachine Learning-BasedMobile
Big Data Analysis: Challenges and Applications” investigates
how to identify the requirement and the development of
machine learning-based mobile big data (MBD) analysis
through discussing the insights of challenges in theMBD and
reviewing state-of-the-art application of data analysis in the
area ofMBD.The paper introduced the development ofMBD
and reviewed the frequently applied data analysis methods.
Three typical applications of MBD analysis, namely, wireless
channel modeling, human online and offline behavior anal-
ysis, and speech recognition and verification in the Internet
of vehicles, are introduced, respectively. Finally the paper
proposed fivemain challenges including large-scale andhigh-
speed-M-Internet, overfitting and underfitting problems,
generalization problem, cross-modal learning, and extended
channel dimensions.

The paper “A Full Duplex D2DClustering Resource Allo-
cation Scheme Based on a K-means Algorithm” talks about
the Device-to-Device (D2D) technology problem of resource
allocation and control in a single-cell scene. The concept of
a restricted D2D communication area and a restricted D2D
user-reusage area is put forward to reduce the complexity and
interference intensity of resource allocation. And under the
premise of satisfying the QoS (Quality of Service) demands
of every system user, the resource allocation algorithm is
improved, the optimal allocation of resources is carried
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out, and the algorithm’s processes are given in detail. The
simulation result shows a good performance in eliminating
interference and improving the spectrum efficiency and the
system fairness.

As the unmanned aerial vehicle (UAV) plays an important
role in many applications due to its high flexibility and low
cost, more and more research is implemented to explore
the channel characterization of Air-to-Air (AA) scenario.
The paper titled “Air-to-Air Path Loss Prediction Based
on Machine Learning Methods in Urban Environments”
proposes path loss models for the UAV AA scenario based
on machine learning. A ray-tracing software has been uti-
lized to generate the data for an urban AA scenario. And
the models have been learned by two machine learning
algorithms, Random Forest and k-Nearest Neighbor (KNN).
The test data have been used to evaluate the accuracy
performance of these machine-learning based models and
two empirical models, SUI model and COST231-W-I model.
It has been demonstrated that machine learning provides a
flexible modeling approach based on the training data for
such complex environment, and Random Forest has the best
prediction performance. In addition, the importance of five
input features for the path loss in the AA scenario is analyzed.
Results have confirmed that the path visibility is the dominant
factor. Propagation distance and elevation angle have also
shown great influences.

The paper “PredictingWirelessMmWaveMassiveMIMO
Channel Characteristics Using Machine Learning Algo-
rithms” deals with the topic of the prediction of channel
statistical characteristics based on the well-known machine
learning algorithm, convolutional neural network (CNN),
for three dimensional millimeter wave massive multiple-
input multiple output indoor channels. The ray tracing
software, Wireless InSite, is used in this paper to build the
measurement datasets. A complete description of the process
for creating and training a CNN-based model is presented
with special emphasis on the training process. The results
show good fittings between the predicted channel statistical
characteristics and the real channel statistical characteristics.

As we know, tunnel scenario is a major and signif-
icant communication scenario attracting more and more
attention with the rapid development of high-speed railway.
The paper titled “Channel Characteristics of Rail Traffic
Tunnel Scenarios Based on Ray-Tracing Simulator” provides
a good understanding of channel characterization of tunnel
scenarios based on ray-tracing.The channel characteristics in
different carrier frequencies and tunnel cross sections were
analyzed and some important conclusions are drawn: the
channel experiences a severe and stable fading in long arched
tunnels compared to other tunnel scenarios. The presence of
the vehicle body introduces additional 35 dB of the path loss,
which leads to the fluctuation and instability of the channel.
K-factor changes severely when the distance between Tx and
Rx is smaller than 100m and then decrease smoothly in far
region.

The paper “Analysis of Nonstationary Characteristics
for High-Speed Railway Scenarios” presents the analysis of
nonstationary characteristics in typical high-speed railway
(HSR) scenarios involving rural, station, and suburban,

according to passive long-term evolution (LTE) based chan-
nel measurements. Additionally, a four-state Markvo chain
model (MCM) is established to characterize the birth-death
(B-D) process of multipath components (MPCs), and the
corresponding state transition probability matrix and steady-
state probability are provided. The results provide helpful
information for nonstationary channel modeling of HSR
communication systems.

The paper titled “A Request-Based Handover Strategy
Using NDN for 5G” explores the small cell base stations
(SBS) handover problem in ultra-dense networks (UDN)
for 5G. Request-Based Handover Strategy (RBHS) is pre-
sented to improve the user experience in performance and
obtain the optimal allocation of resources, and a caching
mechanism based on the users’ requests is introduced for
it. The proposed caching mechanism and access network
selection mechanism were validated utilizing ndnSim. The
simulation results demonstrate that the proposed strategy
achieves around 30% higher cache hit rate and 20% more
traffic reduction, compared with the access network selection
base on SINR.

The paper “MU-MIMODownlink Capacity Analysis and
Optimum Code Weight Vector Design for 5G Big Data Mas-
sive Antenna Millimeter Wave Communication” discusses
the design of the optimum beam-vector for each user to
minimize interference from other users inmultiuser multiple
input multiple output (MU-MIMO) wireless communication
system. The nonlinear sum-rate analysis using dirty paper
coding (DPC) in Ricean fading channels based on signal-
to-leakage plus noise ratio (SLNR) was undertaken. And a
new method is proposed to find an optimum beam weight
vector by exploring the power iteration method using eigen-
vector approximation.The proposed method achieves higher
performance regarding mean achievable sum-rate capacity
per user, proving to provide significant system capacity
enhancement compared with the SVD method.

In conclusion, this special issue brings new insights
into the intricate characterization and modeling of wireless
channel based on big data.We hope that this information will
be helpful to the development of 5G and provide some novel
methods to resolve some wireless channel problems.
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This paper proposes a procedure of predicting channel characteristics based on awell-knownmachine learning (ML) algorithm and
convolutional neural network (CNN), for three-dimensional (3D) millimetre wave (mmWave) massive multiple-input multiple-
output (MIMO) indoor channels.The channel parameters, such as amplitude, delay, azimuth angle of departure (AAoD), elevation
angle of departure (EAoD), azimuth angle of arrival (AAoA), and elevation angle of arrival (EAoA), are generated by a ray tracing
software. After the data preprocessing, we can obtain the channel statistical characteristics (including expectations and spreads of
the above-mentioned parameters) to train the CNN.The channel statistical characteristics of any subchannels in a specified indoor
scenario can be predicted when the location information of the transmitter (Tx) antenna and receiver (Rx) antenna is input into the
CNN trained by limited data.The predicted channel statistical characteristics can well fit the real channel statistical characteristics.
The probability density functions (PDFs) of error square and root mean square errors (RMSEs) of channel statistical characteristics
are also analyzed.

1. Introduction

The fifth generation (5G) wireless communication networks
have lots of novel requirements, such as the 1000 times
the system capacity with respect to the fourth generation
(4G) networks, wide frequency range (covering millimetre
wave (mmWave) bands, e.g., 450MHz–100GHz), increased
data rate, reduced latency, energy, and cost [1–6]. To sat-
isfy the above-mentioned requirements, several advanced
technologies, such as mmWave and massive multiple-input
multiple-output (MIMO), have been proposed and brought
new challenges on channel modeling. Since the perfor-
mance bound of wireless communication systems is deter-
mined by channel characteristics [7], an accurate channel
model plays an important role in designing, evaluating,
and developing wireless communication systems. The 5G
wireless communication channel models, such as mobile and

wireless communications Enablers for the Twenty-twenty
Information Society (METIS) channelmodel [8],Millimetre-
Wave Evolution for Backhaul and Access (MiWEBA) channel
model [9], ITU-R IMT-2020 channel model [10], COST
2100 channel model [11, 12], IEEE 802.11 ay channel models
[13], millimetre-wave based mobile radio access network for
fifth generation integrated communications (mmMAGIC)
channel model [14], quasi deterministic radio channel gen-
erator user manual and documentation (QuaDRiGa) chan-
nel model [15, 16], and a general three-dimensional (3D)
nonstationary 5G channel model [17], can be classified as
deterministic and stochastic channel models. As the most
important technologies of 5G wireless communication net-
works,massiveMIMOandmmWave have also attracted great
attentions. According to the massive MIMO and mmWave
indoor channel measurement in [18], authors in [19] did the
massive MIMO andmmWave channel parameter estimation.
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Authors in [20] summarized recent massive MIMO channel
measurements andmodels.The above-mentionedmodels are
complex and hard to use. So a revolutionary channel model
is necessary.

The explosive increase of frequencies/bandwidths, anten-
nas, and new services/scenarios will generate massive data
and bring the research of 5G wireless communications to the
era of artificial intelligence (AI) [21, 22]. Machine learning
(ML), as an important branch of AI, has received extensive
attentions due to its capability of digging the valuable and
hidden rules from enormous unknown channel information.
It can take advantages of both the low complexity of stochastic
channel models and the accuracy of deterministic channel
models. As a conventional ML algorithm, convolutional
neural network (CNN) exhibits excellent performance on
compressing and processing redundant channel information
[23].

Until now, there are two kinds of applications of AI to
5G wireless communication channels. One is measurement
data preprocessing based on statistical learningmethods, e.g.,
clustering algorithms. The Kernel-Power-Density algorithm
proposed in [24] used the kernel density and only considered
the neighboring points when computing the density. Authors
in [25] proposed a novel clustering framework based on
Kernel-Power-Density algorithm and took elevation angles
into consideration. The Kuhn–Munkres algorithm was pro-
posed to solve the tracking problem in [26].TheKalman filter
in [27] was used to track the clusters and to predict the cluster
positions. Furthermore, several other algorithms were used
for clusters identification in measurement data preprocess-
ing, such as KPowerMeans algorithm [28] and hierarchical
tree [29]. The above-mentioned clustering algorithms play
a significant role in conventional cluster-based stochastic
channel models, such as COST 2100 channel model and
WINNER channel models, but it cannot predict the channel
characteristics.Theother one is to predict the channel charac-
teristics based on ML algorithms which can dig the mapping
relationship between physical environment information and
the channel characteristics. The function between frequency,
distance, and path loss (PL) was modeled by two types of
artificial neural networks (ANNs), i.e., multilayer perceptron
(MLP) and radial basis function (RBF) [30–34]. In [35], PL
was also modeled as a mapping relationship between delay
and the atmosphere by MLP. Authors in [36] and [37] mod-
eled Doppler frequency shift by RBF and MLP, respectively.
The mapping relationship between channel characteristics
and geographical location was modeled by a feed-forward
network (FFN) in [38] and a DeepFi architecture in [39].
In-vehicle wireless channels at 60GHz were modeled by a
FFN and a RBF network [40, 41]. Author in [42] proposed
a three-layer structure based on ML –“wave, cluster-nuclei,
and channel”. Most of the existing research works can only
obtain the mapping relationship between a single channel
characteristic and physical channel environment information
but cannot predict comprehensive channel characteristics. At
the same time, the channel characteristics of any subchannels
in a specified scenario cannot be predicted until now, while
they play an important role on channel estimation and
communication quality. CNN can compress and process

redundant channel information well, but it has not been
applied to channel characteristics prediction.

In this paper, we propose an AI enabled procedure to
predict channel statistical characteristics based on CNN
to obtain the mapping relationship between the location
information of transmitter (Tx) and receiver (Rx) antennas
and almost all the characteristics of amplitude, delay, and
angles.Themain contributions of this paper are summarized
as follows:

(1) A procedure of predicting channel statistical charac-
teristics based on a specified CNN for 3D mmWave
MIMO indoor channels is proposed in this paper.
With the location information of Tx and Rx antennas,
the CNN can predict eleven comprehensive channel
statistical characteristics, including PL, delay spread
(DS), delay mean (DM), azimuth angle mean of
departure (AAMD), azimuth angle mean of arrival
(AAMA), azimuth angle spread of departure (AASD),
azimuth angle spread of arrival (AASA), elevation
angle mean of departure (EAMD), elevation angle
mean of arrival (EAMA), elevation angle spread of
departure (EASD), and elevation angle spread of
arrival (EASA).

(2) This is the first time to compare five different wireless
channel characteristic datasets, which are collected by
different ways. By comparing their training results, we
can obtain better rules of data generation and collec-
tion.Therefore, it has a profound guiding significance
for data generation and collection.

We have organized the rest of the paper as follows.
The AI enabled procedure to predict channel statistical
characteristics is shown in Section 2. In Section 3, we describe
the two indoor scenarios of data collection and the principle
of data preprocessing. The five datasets are also given in
this section. The proposed CNN is shown in Section 4. In
Section 5, we discuss and analyze the results. Conclusions and
future work are given in Section 6.

2. System Model

The flowchart of AI enabled procedure to predict channel
statistical characteristics is shown in Figure 1. Firstly, we
set up the indoor scenario and obtain simulated channel
information. At this time, we construct two 3D indoor
scenarios by setting the sizes and materials of rooms and
objects in a ray tracing software. Then we can obtain the
multipath component parameters (amplitude, delay, azimuth
angle of departure (AAoD), elevation angle of departure
(EAoD), azimuth angle of arrival (AAoA), and elevation
angle of arrival (EAoA)). We do the data preprocessing to
obtain the channel statistical characteristics (PL, DM, DS,
AAMA, AASA, AAMD, AASD, EAMA, EASA, EAMD, and
EASD) to build the dataset. The dataset of the specified
indoor scenario is built to be separated as two sets by the
proportion of 7:3 randomly. One is the train set, the other
is the validation set. Samples in both the train set and
the validation set have 3D coordinates of Tx and Rx as
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Figure 1: The flowchart of channel characteristic predicting procedure.

input vectors and channel statistical characteristics as output
vectors. The train set is used to train the CNN. The input
vectors of the validation set are put into the CNN to obtain
the predicted output vectors.Whether train theCNNagain or
not is determined by comparing and analyzing the root mean
square errors (RMSEs) and probability density functions
(PDFs) between the predicted output vectors and output
vectors of the validation set. More detailed information will
be shown in the following sections.

3. Database Generation

The ray tracing software, Wireless InSite [43], is used to build
the simulation datasets. Ray tracing is a classical deterministic
method used for modeling radio propagations. It is based on
the geometrical optic (GO) and uniform theory of diffraction
(UTD). The interactions between rays and objects can be
classified as reflection, transmission, scattering, and diffrac-
tion. By tracing paths in a specified scenario we build in the
simulator, all the possible rays can be obtained and we can get
the parameter vector𝜔𝑖𝑗,𝑠 of the 𝑠-th (𝑠 = 1, 2, . . . , 𝑆, 𝑆 = 250)
multipath between the 𝑖-th Tx antenna and 𝑗-th Rx antenna;
i.e.,

𝜔𝑖𝑗,𝑠 = [𝛼𝑖𝑗,𝑠, 𝜏𝑖𝑗,𝑠, 𝜃T𝑖𝑗,𝑠, 𝜙T𝑖𝑗,𝑠, 𝜃R𝑖𝑗,𝑠, 𝜙R𝑖𝑗,𝑠] (1)

where 𝛼𝑖𝑗,𝑠, 𝜏𝑖𝑗,𝑠, 𝜃T𝑖𝑗,𝑠, 𝜙T𝑖𝑗,𝑠, 𝜃R𝑖𝑗,𝑠, and 𝜙R𝑖𝑗,𝑠 are the amplitude,
delay, AAoD, EAoD, AAoA, and EAoA of the 𝑠-th multipath
between the 𝑖-th Tx antenna and 𝑗-th Rx antenna, respec-
tively.

3.1.TheDescriptions ofDataGeneration. To verify the general
predicted capability of the CNN, we construct two indoor
scenarios in Wireless InSite to collect multipath component
parameters. One is a virtual classroom scenario shown in
Figure 2; the other is a real lab scenario shown in Figure 3.

3.1.1. The Virtual Classroom Scenario. The virtual classroom
environment is about 8 × 6 × 3 m3 with 12 desks whose size
is about 1.6 × 0.4 × 1.2 m3. The intervals of desks are 0.6m
along x-axis and 0.8m along y-axis. Desks are made of wood.
The ceiling ismade of concrete. Both floor andwalls aremade
of 3-layered dielectric in [44]. The layout of the classroom is
shown in Figure 2(a). Figure 2(b) shows the 3D ray tracing
scenario of the classroom constructed in Wireless InSite.

In this virtual scenario, at most 3 orders of reflection and
1 order of diffraction are simulated. The maximum number
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Figure 2: The environment information of the virtual scenario.

of paths allowed in simulation is 250. For the complexity
of simulation, we do not take scattering which is caused
by surface roughness into consideration while the power
loss caused by rough surface of objects is calculated by the
reflection coefficient multiplied with roughness coefficient.
The carrier frequency and bandwidth are set to 60GHz
and 2GHz, respectively. To evaluate the performance of
data collection, two datasets are built. In the 10 × 100
random dataset (10100R, R stands for random) of the virtual
classroom scenario, we set up 10 Tx isotropic antennas with
0 dBi antenna gain in all directions and 100 Rx isotropic
antennas at random location information to obtainmultipath
parameters of 1000 subchannels. 32 Tx isotropic antennas
and 32 Rx isotropic antennas are randomly set up in 32 × 32
random dataset (3232R, R stands for random) of the virtual
classroom scenario to obtain channel parameters of 1024
subchannels. In indoor uplink communication scenarios, the
Txs can be mobile phones, laptops, iPads, etc., while the Rxs
are normally access points (APs) located on the ceilings. In a
virtual classroom environment, we assume that the height of
Txs is 1.5m and the height of Rxs is 3m.

3.1.2. The Lab Scenario. The size of the lab scenario is
approximately 7.2×7.2×2.7m3. Its floor and ceiling aremade
of concrete but decorated with antistatic-electricity board.
It has four sides of walls. One is a partition wall which is
made of plaster board, and other sides of wall are made of
concrete. Two high built small windows are on the one side
wall while a large window almost cover the other side of wall.
The lab is furnished withmultiple desks and chairs, and other
office furniture such as computers, bookshelf, and electronic
devices. Desks made of frosted surface chipboard are about
0.75mheight at desktop level but with two or three additional
0.45m clapboards. Chairs are made of fabric cover and
metal and plastic support. The electromagnetic properties
of above-mentioned building and furniture materials were
characterized by a lot of material measurements [45–47].
There is a small storage room in the corner of the lab. The

photo and layout of the lab are shown in Figures 3(a) and 3(b),
respectively. Figure 3(c) shows the 3D ray tracing scenario of
the lab constructed in Wireless InSite.

The lab supplies such as books and computer monitors
on the desk are not modeled in the 3D ray tracing scenario,
because their irregular shapes lead to significant increase of
computational complexity and they are shadowed by higher
clapboards on the desktop usually. Similarly, we also neglect
chairs in the scenario modeling because they are about 0.8m
high which is lower than antennas and chairs were positioned
nearby the desks. Since the lab scenario is more complex
than the virtual classroom, at most 5 orders of reflection,
3 orders of transmission, and 1 order of diffraction are
simulated in the ray tracing setup of this lab scenario. The
maximum number of propagation paths is 250. The carrier
frequency and bandwidth are set to 60GHz and 2GHz,
respectively. To evaluate the performance of data collection,
three datasets are built. In the 30×30 random dataset (3030R,
R stands for random) of the lab scenario, we set up 30 Tx
isotropic antennas and 30 Rx isotropic antennas at random
location information to obtain channel parameters of 900
subchannels. 30 Tx isotropic antennas and 30 Rx isotropic
antennas are set up by grid at 1m intervals in 30 × 30 grid
dataset (3030G, G stands for grid) of the lab scenario to
obtain multipath component parameters of 900 subchannels.
Similarly, 211 Tx isotropic antennas and 211 Rx isotropic
antennas are set up by grid at 0.4m intervals in the 211 × 211
grid dataset (211211G, G stands for grid) of the lab scenario
to get channel parameters of 44521 subchannels. In the lab
environment, we assume that the height of Txs is 1.5m and
the height of Rxs is 2.7m.

3.2. Data Processing. For conciseness, we use channel char-
acteristic vector 𝜛𝑖𝑗 instead of the parameter vectors of 250
multipaths; i.e.,𝜛𝑖𝑗
= [𝜌𝑖𝑗, 𝜇𝑖𝑗, 𝜇M,𝑖𝑗, 𝜗T𝑖𝑗 , 𝜑T𝑖𝑗 , 𝜗R𝑖𝑗 , 𝜑R𝑖𝑗 , 𝜗TM,𝑖𝑗, 𝜑TM,𝑖𝑗, 𝜗RM,𝑖𝑗, 𝜑RM,𝑖𝑗] (2)
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Figure 3: The environment information of the lab scenario.

where 𝜌𝑖𝑗 is PL of the subchannel from 𝑖-th Tx antenna to𝑗-th Rx antenna, 𝜇𝑖𝑗(𝜇M,𝑖𝑗) is DS (DM) of the subchannel
from 𝑖-th Tx antenna to 𝑗-th Rx antenna, 𝜗TM,𝑖𝑗, 𝜗RM,𝑖𝑗, 𝜗T𝑖𝑗 , and𝜗R𝑖𝑗 are AAMD, AAMA, AASD, and AASA, respectively, and𝜑TM,𝑖𝑗, 𝜑RM,𝑖𝑗, 𝜑T𝑖𝑗 , and 𝜑R𝑖𝑗 are EAMD, EAMA, EASD, and EASA,
respectively. They can be further expressed as

𝜌𝑖𝑗 = 10 × log10 𝑆∑
𝑠=1

𝛼2𝑖𝑗,𝑠 (3)

𝜇𝑖𝑗 = √∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜏2𝑖𝑗,𝑠∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 − (∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜏𝑖𝑗,𝑠∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 )
2

(4)

𝜗T𝑖𝑗 = √∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜃T𝑖𝑗,𝑠2∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 − (∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜃T𝑖𝑗,𝑠∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 )
2

(5)

𝜗R𝑖𝑗 = √∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜃R𝑖𝑗,𝑠2∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 − (∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜃R𝑖𝑗,𝑠∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 )
2

(6)

𝜑T𝑖𝑗 = √∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜙T𝑖𝑗,𝑠2∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 − (∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜙T𝑖𝑗,𝑠∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 )
2

(7)

𝜑R𝑖𝑗 = √∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜙R𝑖𝑗,𝑠2∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 − (∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠𝜙R𝑖𝑗,𝑠∑𝑆𝑠=1 𝛼2𝑖𝑗,𝑠 )
2

(8)

𝜇M,𝑖𝑗 = ∑𝑆𝑠=1 𝜏𝑖𝑗,𝑠𝑆 (9)

𝜗TM,𝑖𝑗 = ∑𝑆𝑠=1 𝜃T𝑖𝑗,𝑠𝑆 (10)

𝜗RM,𝑖𝑗 = ∑𝑆𝑠=1 𝜃R𝑖𝑗,𝑠𝑆 (11)

𝜑TM,𝑖𝑗 = ∑𝑆𝑠=1 𝜙T𝑖𝑗,𝑠𝑆 (12)

𝜑RM,𝑖𝑗 = ∑𝑆𝑠=1 𝜙R𝑖𝑗,𝑠𝑆 . (13)
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After data preprocessing, the details of datasets are shown
in Table 1. We separated the total samples into train sets and
validation sets by the proportion of 7:3 randomly.

4. Architecture of the Proposed CNN for
Channel Characteristics Prediction

The architecture of the CNN is presented in Figure 4. It
includes two main stages: first stage configuring two con-
volutional layers and second stage configuring four dense
layers which are also called fully connected layers. It requires
a large number of iterations to obtain the neural network
convergence to fit the thresholds nodes and the weights of
connections for the least loss. The input vector 𝑋𝑖𝑗 is 3D
coordinates of the 𝑖-th Tx antenna and the 𝑗-th Rx antenna.
The output vector 𝑌𝑖𝑗 is the channel characteristic vector of
the subchannel between the 𝑖-th Tx and the 𝑗-th Rx 𝜛𝑖𝑗. They
can be expressed as

𝑋𝑖𝑗 = [𝑥T𝑖𝑗, 𝑦T𝑖𝑗 , 𝑧T𝑖𝑗 , 𝑥R𝑖𝑗, 𝑦R𝑖𝑗 , 𝑧R𝑖𝑗] (14)

𝑌𝑖𝑗 = 𝜛𝑖𝑗
= [𝜌𝑖𝑗, 𝜇𝑖𝑗, 𝜇M,𝑖𝑗, 𝜗T𝑖𝑗 , 𝜑T𝑖𝑗 , 𝜗R𝑖𝑗 , 𝜑R𝑖𝑗 , 𝜗TM,𝑖𝑗, 𝜑TM,𝑖𝑗, 𝜗RM,𝑖𝑗, 𝜑RM,𝑖𝑗] . (15)

The first convolutional layer filters the 1 × 6 input vector
with 16 kernels of size 1 × 3. The second convolutional layer
takes the output of the first convolutional layer as input
and filters it with 32 kernels of size 16 × 3. Both of the
two convolutional layers take with a stride of one node. We
zero pad the activation to match the number of features.
After each convolutional layer, batch normalization in [48]
and rectified linear unit (ReLU) are placed to speed up the
model convergence. The output of the second convolutional
layer is then fully connected to 16 neurons. The following
dense layers have 16, 32, 64, and 1 neurons, respectively. In
order to obtain the optimized training result, we train the
11 channel characteristics individually by the CNN. Each
time we input all 6 elements of 𝑋𝑖𝑗 into CNN and output 1
element of 𝑌𝑖𝑗. ReLU is placed after each dense layer except
the last layer. Unlike in computer vision, we do not place
pooling layer between the convolutional layers, because the
input of our network which is only 6 nodes is relatively
sparser than the image which commonly contains millions
of pixels. Pooling layer will lose useful information and make
the model convergence at a high loss.

As shown in Table 2, this model has 7280 parameters
in total. Most parameters are between the second convolu-
tional layer and the first dense layer. The number of these
parameters accounts for 42.20% of the total number of model
parameters.

The CNN of one output node was designed. The 11
different labels (PL, DM, DS, AAMA, AASA, AAMD, AASD,
EAMA, EASA, EAMD, and EASD) are individually used to
train the CNN to obtain the different weights in terms of
the least loss. Once the label is determined, the loss function
and back propagation are applied end-to-end. The mean
square error (MSE) function is used as the loss function in all
CNNs of 11 labels. The learning rate is fixed throughout once

training.We used an equal learning rate which was initialized
at 0.0001 for all layers. The root mean square propagation
(RMSProp) in [49] withmomentum of 0.9 and smooth factor
of 10−6 is used to optimize the weights of the model. The
update rule for weight 𝛽 is

𝐸 [𝑔2]
𝑡
= 0.9𝐸 [𝑔2]

𝑡−1
+ 0.1𝑔2𝑡 (16)

𝛽𝑡+1 = 𝛽𝑡 − 𝜂√𝐸 [𝑔2]
𝑡
+ 𝜅𝑔𝑡 (17)

where 𝑡 is the iteration index, 𝜂 is the learning rate, 𝜅 is
smooth factor, and 𝑔𝑡 is the gradient of the current iteration𝑡.

Glorot uniform initializer in [50], which is also called
Xavier uniform initializer, was used to initialize theweights in
each layer. The weight was randomly created from a uniform
distribution within [−𝜀, 𝜀] with

𝜀 = √ 6𝜄𝑖𝑛 + 𝜄𝑜𝑢𝑡 (18)

where 𝜄𝑖𝑛 is the number of input units and 𝜄𝑜𝑢𝑡 is the number
of output units in the weight tensor.We initialized the neuron
biases in both convolutional layers and dense layers with the
constant 0. This initialization accelerates the early stages of
learning by providing the ReLUs with positive inputs.

5. Results and Analysis

The target of this section is twofold. The first intention is to
verify theCNN in two indoor scenarios. Second, wewill carry
out comparisons between five different datasets to analyze the
influence of dataset in CNN.

5.1. Fittings between Predicted and Real Channel Character-
istics. In both the virtual classroom scenario and the lab
scenario, all the predicted channel statistical characteristics
generated by the CNN are in fairly good agreements with the
channel statistical characteristics generated by the ray tracing
software. In Figures 5–7, we show the fittings of PL, DM,
and AAMA between predicted results and virtual simulation
data in the two scenarios, respectively. As we can see, the
predicted capability of the CNN is very good, and we can use
this method to predict the channel statistical characteristics
with limited simulation data in specified indoor scenarios.
This shows that AI is meaningful for channel modeling.
The massive data in wireless communication should be fully
used and explored to make the performance of wireless
communication networks better.

5.2. RMSE. To evaluate and compare the performances of the
CNNwith different datasets, we calculate the RMSE between
predicted channel statistical characteristics and virtual simu-
lation channel statistical characteristics; i.e.,

𝑅 (𝑙) = √E [(𝑙𝑝 − 𝑙𝑟)2] (19)
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Table 1: The Details of Databases.

Scenario Dataset Tx Rx No. of sample No. of train set No. of validation set

Virtual scenario 10100R 10 100 1000 700 300
3232R 32 32 1024 717 307

Lab scenario
3030R 30 30 900 630 270
3030G 30 30 900 630 270
211211G 211 211 44521 31165 13356

1x6 32x616x6 1x16

1x32 1x64

The first
dense layer

Kernel1,
1x3

Kernel2,
16x3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00

6

16

3

32
6

Zero
Padding

Input vector

Output
vector

The first convolutional layer The second convolutional layer

The second
dense layer

The third
dense layer

The fourth
dense layer

16

Figure 4: Architecture of the proposed CNN for channel statistical characteristics prediction.

Table 2: The parameter numbers of CNN layers.

Layers No. of parameters
First convolutional layer 48
Second convolutional layer 1536
First dense layer 3072
Second dense layer 512
Third dense layer 2048
Fourth dense layer 64
Total 7280

where𝑅(𝑙) is the RMSE of the channel characteristic 𝑙, such as
PL, DM, DS, AAMA, AASA, AAMD, AASD, EAMA, EASA,
EAMD, and EASD. 𝑙𝑝 and 𝑙𝑟 denote the predicted result
and virtual simulation result of the channel characteristic,
respectively.

The RMSEs of channel statistical characteristics with two
datasets in the virtual scenario are listed in Table 3. Train
loss (TL) is the RMSE between the channel characteristic
generated by the CNN and the virtual simulation channel
characteristic in train data. Validation loss (VL) is the RMSE
between the channel characteristic predicted by the CNN and
the virtual measurement channel characteristic in the test
data. In Table 3, VL of channel statistical characteristics of the
10100R is always larger than TL. Similar result is shown in the
3232R.The parameters of the CNN are trained based onMSE
optimizer in the train data, and the test data is different for the

train data absolutely. So the results in the test data cannot be
optimized as good as those in the train data.The performance
of the CNN in the 10100R is better than in the 3232R, which is
most obvious in the PL. The TL of the PL in 10100R (0.6408)
is only 14.26% of that in 3232R (4.4932). The VL of the PL in
10100R (0.9586) is only 20.04% of that in 3232R (4.7832).

The RMSEs of channel statistical characteristics with two
datasets in the lab scenario are listed in Table 4. As we can see,
the performance of the CNN in the 3030G is better than that
in the 3030R, which is most obvious in the PL. The TL of the
PL in 3030G (1.0616) is only 34.70% of that in 3030R (3.0590).
The VL of the PL in 3030G (1.3186) is only 41.27% of that in
3030R (3.1949). The performance of the CNN in the 211211G
is better than that in the 3030G, which is most obvious in
the AAMD.The TL of the AAMD in 211211G (6.7187) is only
47.27% of that in 3030G (14.2148). The VL of the AAMD in
211211G (7.1652) is only 35.24% of that in 3030G (20.3331).

There are 1024 samples and 1000 samples in the 3232R
and the 10100R, respectively. The sample numbers of the
two datasets belong to the same order of magnitudes, and
both of them are generated when Txs and Rxs are randomly
located. According to the specified Tx antenna locations,
there are 100 samples with different Rx antenna locations in
the 10100R, while there are only 32 samples with different Rx
antenna locations in the 3232R. The former is more various
and more robust, which explains that the performance of
10100R is better than 3232R. The performance is determined
by the robustness of data even they are in the same order
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Figure 5: The predicted fitting of PL in two scenarios.
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Figure 6: The predicted fitting of DM in two scenarios.
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Figure 7: The predicted fitting of AAM in two scenarios.
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Table 3: RMSE Loss with Different Dataset in the Virtual Scenarios.

Dataset 10100R 3232R 10100R and 3232R

RMSE TL VL TL VL TL in 10100R
TL in 3232R VL in 10100R

VL in 3232R
PL 0.6408 0.9586 4.4932 4.7832 0.1426 0.2004
DM 0.4232 0.4762 1.2986 2.3647 0.3259 0.2014
DS 0.2895 0.3708 1.7822 1.9887 0.1624 0.1865
AAMA 11.0096 13.3897 14.3276 14.4829 0.7684 0.9245
AASA 4.6625 5.6897 17.2259 18.7624 0.2707 0.3033
AAMD 11.8287 13.4187 12.8583 14.6427 0.9199 0.9164
AASD 5.3249 6.3327 21.0490 21.3898 0.2529 0.2961
EAMA 1.3355 1.4970 3.8356 4.8577 0.3482 0.3082
EASA 1.5680 1.8255 3.5929 3.8308 0.4364 0.4765
EAMD 0.8228 0.9298 2.8473 4.3977 0.2890 0.2114
EASD 2.3911 3.0512 2.7861 3.2362 0.8582 0.9428

Table 4: RMSE Loss with Different Dataset in the Lab Scenarios.

Dataset 3030R 3030G 211211G 3030G and 3030R 211211G and 3030G

RMSE TL VL TL VL TL VL TL in 3030G
TL in 3030R VL in 3030G

VL in 3030R TL in 211211G
TL in 3030G VL in 211211G

VL in 3030G
PL 3.0596 3.1949 1.0616 1.3186 1.0439 1.1459 0.3470 0.4127 0.9833 0.8690
DM 1.8142 2.0642 1.4970 1.8566 1.0196 1.0645 0.8252 0.8994 0.6811 0.5734
DS 0.4866 0.5037 0.2698 0.3528 0.2168 0.3038 0.5545 0.7004 0.8036 0.8611
AAMA 19.1869 19.8408 8.9489 9.0166 7.0688 7.5453 0.4664 0.4544 0.7899 0.8368
AASA 12.6992 12.2539 8.0887 8.4545 5.1746 5.8588 0.6369 0.6899 0.6397 0.6930
AAMD 17.7100 20.5364 14.2148 20.3331 6.7187 7.1652 0.8026 0.9901 0.4727 0.3524
AASD 15.1566 14.7420 8.3635 12.6681 6.2428 6.5880 0.5518 0.8593 0.7464 0.5200
EAMA 3.3544 3.4216 1.4747 1.7197 1.2807 1.4928 0.4396 0.5026 0.8684 0.8681
EASA 1.5093 1.8472 0.8160 0.6658 0.8084 0.4824 0.5356 0.3604 0.9907 0.7245
EAMD 2.2215 2.4836 1.9990 1.9906 1.6045 1.7258 0.8998 0.8015 0.8027 0.8670
EASD 0.3008 0.3739 0.2989 0.3697 0.2287 0.2360 0.9937 0.9888 0.7603 0.6384

of magnitudes. It is determined by the robustness of data.
The comparison between the performance of 3030G and
3030R shows that the data collection in grid is better than
that in random.The comparison between the performance of
211211G and 3030G shows that more robust data generated by
the specified collection way results in a better predicted per-
formance.The above-mentioned conclusions have significant
meaning on data collection.

5.3. PDF of Channel Characteristics Error Square. For the
further analysis of the performance of five different datasets,
the PDF of channel statistical characteristics error square
which can show the distribution of the channel statistical
characteristics error square are given in Figure 8. The PDFs
of error square of DM and AAMA are shown in Figures
8(a) and 8(b), respectively. In view of that the train loss
and validation loss in the 211211G of lab scenario are only
slightly lower than those of the 3030G in lab scenario in
Table 4, and the advantage of large dataset is not obvious if
we take the time and energy consuming of data collection
into account. However, Figures 8(a) and 8(b) show that the
core superiority of the 211211G in lab scenario is the PDFs of

error square in which the proportion of accurate predicted
channel characteristic (error square = 0) is very large. It
is better that the lower channel characteristic error square
has higher probability and vice versa. In Figure 8(b), the
proportion of accurate predicted AAMA of the 3232R in the
virtual scenario (error square = 0) is larger than that of the
10100R in the virtual scenario, but the proportion of predicted
AAMA with a high error square in the 3232R in the virtual
scenario is also larger than that of the 10100R in the virtual
classroom scenario. The fleet decline tendency of PDF of
channel characteristic error square is what we expected.

6. Conclusions and Future Work

The AI enabled procedure to predict channel statistical
characteristics has been proposed in this paper. The channel
parameters of massive MIMO and mmWave indoor channel
have been generated by a ray tracing softwareWireless InSite.
The channel statistical characteristics after data preprocess-
ing, such as PL, DM, DS, AAMA, AASA, AAMD, AASD,
EAMA, EASA, EAMD, and EASD, can be predicted by
CNN. A virtual classroom scenario and a real lab scenario
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Figure 8: The PDF of channel statistical characteristics error square with different datasets.

have been set up to verify this algorithm. The good fittings
between the predicted channel statistical characteristics and
the real channel statistical characteristics have been shown
in this paper. By comparing between the performance of
different datasets, the better data collection rule has also
been proposed.The generalization ofAI enabled procedure to
predict channel statistical characteristics formore scenarios is
an important task to be solved in the future.
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With the developing of 5G, it is widely accepted that 5G will use a system architecture that supports the ultradense networks
(UDN) deployments. In this architecture, a user will be covered by a large amount of small cell base stations (SBS) in 5G. However,
selecting an SBS for handover is a great challenge. To address the challenge, the emerging content-orientedNamedDataNetworking
(NDN) has attractive advantages, such as providing name-based routing. In this paper, a request-based handover strategy (RBHS) is
presented to improve the user experience in performance and obtain the optimal allocation of resources, and a cachingmechanism
based on the users’ requests is introduced for it. The proposed caching mechanism and access network selection mechanism were
validated utilizing ndnSIM. Simulation results demonstrate that our proposed strategy achieves around 30% higher cache hit rate
and 20% more traffic reduction, compared with the access network selection based on SINR.

1. Introduction

Mobile data traffic and mobile devices have been expo-
nentially growing, and monthly global mobile data traffic
maybe surpasses 15 exabytes in 2018, which poses a significant
challenge to the mobile communication system [1–6]. The
current deploying fourth-generation mobile communication
system (4G) has been unable to meet the new challenge.
Then the fifth-generation mobile communication system
(5G) has been proposed to address the challenge, which
aims to achieve 1000 times higher mobile data volumes,
10 times higher number of connected devices, 10 times
higher typical end-user data rates, 10 times the spectral
efficiency, 5 times lower latency, and 25 times the average cell
throughput compared with 4G [3]. In order to achieve the
5G system requirements, the 5G cellular architecture should
use a system architecture that supports ultradense networks
(UDN) deployments [4–6]. The UDN means that, in the
coverage of macro base station (Macro), the density of SBS
with low-power radio transmission technology will reach 10
times more than the existing density of SBS deployment, the
distance between the SBS will be 10 meters or less [7, 8],
the users per square kilometer will reach 25000 [9], and the
number of active users and the number of SBS reach 1 to 1

ratio in the future [10]. Nevertheless, it is a great challenge to
choose the optimal small cell base station (SBS) to connect
in the environment of ultradense small cell base stations to
relieve the burden of the links between Macro and backbone.

In this paper, we propose a request-based handover
strategy (RBHS). The goals of this strategy are to make the
optimal allocation of network resources, reduce the data
traffic and decrease the latency, and let the user obtain the
optimal allocation of resources, in order to improve the user
experience. In RBHS, we will focus on the analysis of user
requests. For the purposes of analysis and calculation of
user requests, we introduce the Named Data Networking
(NDN) into 5G cellular architecture. NDN is a new Internet
architecture and is initiated by National Science Foundation
(National Science Foundation, NSF) in 2010 [7, 8]. In NDN,
each router is equipped with a fixed amount of memory
to cache content, which results in the difference between
NDN and the traditional IP networks. Basically, NDN runs
requester-driven communication model; i.e., a client will first
send out an interest packet for the desired content and then
a router that has the same content in local cache memory
will return the content within a data packet. Taking the
exponentially growing mobile data traffic into account, we
also introduce cache module into SBS as well as Macro.
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Figure 1: The evolution of 5G cellular architecture.

By caching the popular contents in SBS and Macro, the
corresponding requests will no longer need to trace back the
server which will save a considerable amount of redundant
traffic. In summary, the strategy of this paper is divided into
two parts; one is caching mechanism and the other one is
handover mechanism.

The rest of the paper is organized as follows: Section 2
summarizes the related work. Section 3 introduces our sys-
tem model which includes the caching mechanism and the
handover mechanism. The RBHS is presented in Section 4.
The evaluation setting, metrics, impact factors, and simu-
lation results of RBHS are discussed in Section 5. Finally,
Section 6 concludes the paper.

2. Related Work

As the amount of mobile data traffic continued to rise as
well as the explosive growth of mobile devices [1–6], 5G
has become a quite hot topic nowadays. More and more
researchers pay their attention to the horizontal topic [1, 2].
METIS (mobile and wireless communications enablers for
the 2020 information society) is an integrated project partly
funded by the European Commission under the FP7 research
framework and is considered as the 5G flagship project [2, 3].
What is more, 863 plan in China launched a 5Gmajor project
phase I and phase II separately in June 2013 and March 2014
[3]. At present, countries around the world are having a wide
range of discussions for 5G development vision, application
requirements, candidate of frequencies, and key technical
indexes. Under the joint efforts of the countries around
the world, 5G vision and capability requirements have been
basically clear. The standardization for 5G has been in full
gear since early 2016 [2] and would be set in 2018. According
to [1–6], 5G will use a system architecture that supports
the ultradense networks (UDN) deployment, which may
consist of different types of infrastructure elements (BSs),
such as macro-, micro-, pico-BSs. Low-power BSs like pico-
BS will be used to enhance coverage and capacity by covering
areas that are much smaller than a macro-BS coverage area.
The UDN offers multiple options for satisfying application
requirements [1, 3].

Therefore, in such complex environment, it is wise to
introduce the NDN into 5G cellular architecture. NDN is
a content-centric architecture, which provides name-based
routing [11, 12]. Based on this characteristic, we can obtain
the user request information easily which cannot be done
in the IP networks. NDN has several attractive advantages,

such as network load reduction, low dissemination latency,
and energy efficiency. To achieve these benefits from NDN
paradigm, the content caching mechanism plays the most
important role. The solution [13] proposed, called Hamlet,
differs from previous work by reason that it helps users
to make the decision about what information to keep, and
for how long, based on a probabilistic estimate of what
is cached in the neighborhood. The work [14] proposes a
collaborative caching scheme guided by traffic engineering
(TECC) for the emerging content-centric networks. The
work [15] presents a collaborative caching scheme guided
by traffic engineering (TECC) for the emerging content-
centric networks. The work [16] develops a popularity-based
coordinated caching strategy named the Effective Multipath
Caching (EMC) scheme. The works [17–20] introduce cache
into small cell base station.

Considering that the users are more likely to take a more
active role in 5G (e.g., selecting the set of serving base stations,
performing advanced interference rejection, or exploiting
local cooperation) [2], we suggest taking the user request into
the caching policy as well as handover policy. In this work, we
develop a request-based handover strategy, which adopts the
NDN network architecture. To our best knowledge, very few
studies have tried to do that.

3. System Model and Problem Statement

Since NDN is newly proposed in 5G, we first sketch out
the 5G cellular architecture using NDN in this section.
Then, combined with our optimized objective, we illustrate
the key issue of caching mechanism and handover mecha-
nism.

3.1. An Overview of the 5G Cellular Architecture Using NDN.
UDN is a promising network densification cellular archi-
tecture in the 5G era, which aims at spectrum-efficient and
energy-efficient solution that copes with a large number of
devices and the huge mobile data traffic in future wireless
applications. As illustrated in Figure 1, the 5G network will
further enable the existing small cell miniaturization and
distribution. And the distribution of small cell in the future
will be further intensive; the density of base station deploy-
ment will increase by more than 10 times. That is, users will
be more likely to be repeatedly covered by SBS (small cell
base stations) and UE (user equipment) can reselect SBS. We
suggest taking the users requests into consideration through
introducing NDN architecture.
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Figure 2: The process of handover.

As well known, NDN is a protocol stack [7, 8], which is
easier to be managed and achieves better performance than
IP protocol stack. There are two types of packets in NDN,
interest and data. When a user requests for content, it will
send out an interest packet which contains the name of the
interested content. And data packets are the reply messages
issued by the nodes that have the data satisfying the name of
the interested content. Data is transmitted only in response
to an interest and consumes that interest. NDN has three
main data structures: Forwarding Information Base (FIB),
Content Store (CS), andPending Interest Table (PIT).TheFIB
is used to forward interest packets toward potential sources
of matching data. The CS is the same as the buffer memory of
an IP router but has a different replacement policy. The PIT
keeps track of Interests forwarded upstream toward content
sources so that returned data can be sent downstream to its
requesters.

In our strategy, we propose to install FIB, CS, and PIT
into SBS and Macro to fulfill the architecture of NDN. It is
obvious that handover may cause data packet to be returned
to an inaccessible location (the previous connected SBS).
Furthermore, to receive these unreceived data packets, UE
needs to initiate the recovery mechanism by retransmitting
its interest packets. As a result, the handover in NDN
architecture may increase the retransmission probability and
introduce significant latency. How to solve this problem is the
main difficulty of introducing the NDN architecture into 5G.
We noticed that the user can simultaneously be connected
to several wireless access technologies and seamlessly move
between them (see media independent handover or vertical
handover, IEEE 802.21, also expected to be provided by future
4G releases). We suggest, in 5G, UE may simultaneously

connect to the previous SBS and the new selected SBS. And
the timing of disconnection to the previous SBS is the time
finish of the last request. The handover process is shown in
Figure 2.

What ismore, we suggest adding a reconnection list to the
interest packet which involves SBS that can be reconnected.
And, besides the interest packet and the data packet, we add
the confirmation packet which is used to request the data
from SBS after reconnection. The details of the three types
of packet are described in Figure 3. What is more, in order
to facilitate the decision making, we add two tables: neighbor
cache table (NCT) and neighbor state table (NST), which are
shown inFigure 4.TheNCT is used to record the content data
cached by the nearby SBS.The NST is used to record the state
of the nearby SBS.

In the next subsection, we will discuss mechanism about
caching and handover.

3.2. Caching Mechanism. Based on the characteristics of 5G
cellular architecture andNDNarchitecture, we have observed
that while the popular contents are cached in the SBS (or
Macro) and the user request for the same content, the SBS
can directly deliver the content to the user without asking
the server. For example, as shown in Figure 5, when UE1
requests for content data D1, UE1 can directly get D1 form
SBS1 or Macro with no need to send the request to the
server.

Since every base SBS are equipped with a limited storage
space to cache content data, how to improve the cache hit rate
effectively attracted our attention. It has become apparent that
the technical key issues of caching mechanism fall into the
following two questions [4]:
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Figure 5: Introducing NDN in 5G.

(1) What to cache?
There are various contents in the Internet, and the cache

space of SBS is limited. It is hence important to decide what
content to cache taking into account content popularity. And
SBSdonot necessarily have to cache similar contents since the
users they serve are different and they can share and exchange
contents. Obviously, it is of vital importance to improve the

diversity of the cached content to augment the hit ratio of the
cache content.

(2) How to cache?
Caching policies, deciding what to cache, and when to

release caches are crucial for overall caching performance.
And the goal of the caching policy is to augment the hit ratio.
Under the consideration, the current popularity, the trend of
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popularity, storage size, and the location of replicas should be
involved in the strategy.

3.3. Access Network Selection Mechanism. In wireless com-
munication system, the density of the distribution of small
cell base station led to the network repetitive coverage. And,
in 5G era, this feature will become more and more obvious.
For the repetitive coverage, there are diverse SBS to connect.
That is, every user can reselect other SBS orMacro.Therefore,
the main topic of handover mechanism can be divided into
two parts:

(1) When to reselect the SBS?
As shown in Figure 5, when UE2 requests content data

D6, UE2 will connect to SBS2 and obtain content data D6
from the CS of SBS2. After that, if UE2 requests content data
D1, then UE2 will first consider reconnecting to SBS1, SBS3,
or Macro.

(2) How to reselect SBS?
In the above case, when UE2 decides to reselect SBS, it is

obvious that it need choose one from SBS1, SBS3, and Macro.
We suggest taking the condition of UE and the condition of
base station into account.

4. RBHS: The Effective Handover Strategy

With the object of reducing the traffic between themacro and
the server, we need to gain a high cache hit rate. We suggest
that the timing of handover and the cache update mechanism
are very important.

Our strategy process is shown in Figure 6.
When UE sends an interest packet to the local SBS,

the local SBS will first check the NCT according to the

reconnection list in the interest packet. If not found, the local
SBS will add the interest to the PIT and send the request to
the next hop according to the FIB. Else, it will trigger the
handover mechanism.

When the handover mechanism is active, the local SBS
will compute the rank of the SBS in the reconnection list.
Then the local SBS will let UE reconnect to the best SBS. After
reconnection, UE will send a confirmation packet to the SBS
to get the request data.

Considering the above content, we consider the receiving
contents as a trigger of the cachingmechanism.When the SBS
receives data, it will first check the PIT. If not matching, it will
drop the data. Or else it will add the data to the CS. If the CS
is full, it will replace the data which is of the lowest rank and
then send the data to UE according to PIT and FIB.

4.1. Request-Based Caching Mechanism (RBCM). Following
the discussion in Section 3.2, we need to decide which data
should be cache in the limit cache space and the update
strategy which will be active when the cache space is full.

As illustrated in Figure 5, the local SBS will send the UE’s
request to the next hop only if there is no cache in the local
SBS and the neighbors. Hence, if the incoming data match
the PIT entry, the data will be stored in the CS and also will
be sent to the requested UE according to the PIT and FIB.The
question is, when the CS is full, how could the new incoming
data be stored in the CS? It is obvious that we need to replace
a content in the CS with the new incoming data. Therefore,
it is meaningful to rank the data in the CS by setting a factor
“value” to make sure the most valuable contents are stored in
the caching space.

As well known, the goal of increasing the traffic saving
is equivalent to the goal of storing the much more popular
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data in the CS. Obviously, different data has different popu-
larity, and the probability of UE requesting different data is
different. But we cannot get the popularity of data. Because
the more popular the data is, the higher cache hit it will be,
we believe that the cache hit would affect the factor of ”value”,
and we will take the cache hit count into consideration. We
define the “ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡” for each data stored in the CS, which
indicates the popularity of the data. For 𝑑𝑎𝑡𝑎𝑖 in the CS,
when the UE’s request matches the 𝑑𝑎𝑡𝑎𝑖, then ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡𝑖 =
ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡𝑖 + 1. As we noticed, the popularity of data changes
over time. Although the popularity of the data is high in this
period, it may decline in the next period. Hence, the time of
the data to be stored also should be taken into account.

As the UE can reselect the access network based on the
request, it can reach all the data that are cache in the local
SBS or in the SBS in the reconnection list. In other words,
from the UE’s viewpoint, all the CS in the local SBS and in the
SBS in the reconnection list can be seen as a whole, therefore
increasing the cache hit rate which means that we need to
improve the diversity in the adjacent SBS. If the data in the
CS is also stored in the CS of the adjacent SBS, the value of
the data will decrease. The more the replicas exist in the CS
of the adjacent SBS, the less the value of data will be.

Considering the above, the mathematical expression of
the value is as follows:

V𝑎𝑙𝑗,𝑖 (t) = ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡𝑖
𝑡 − 𝑡𝑖

∗ 1
𝑛𝑖

(1)

As shown in formula (1), 𝑖 means the 𝑑𝑎𝑡𝑎𝑖; 𝑗 means the
𝑆𝐵𝑆𝑗. 𝑛𝑖 is the number of replicas existing in the adjacent SBS.
𝑡 is the current time, 𝑡𝑖 is the time when 𝑑𝑎𝑡𝑎𝑖 is stored, and
ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡𝑖 represents the total number of theUE’s request from
𝑡𝑖 to 𝑡. So ℎ𝑖𝑡𝑐𝑜𝑢𝑛𝑡𝑖/(𝑡 − 𝑡𝑖) indicates the popularity of 𝑑𝑎𝑡𝑎𝑖
in (𝑡𝑖, 𝑡).

After calculating all the values of data stored in the SBS,
we could rank the data by value. And the value will be
periodically updated. If new incoming data matches the PIT
and will be stored in the CS while the CS is full, the data with
min value will be deleted to cache the new incoming data.

4.2. Request-Based Handover Mechanism (RBHM). Follow-
ing the discussion in Section 3.3, we need to decide the best
timing of reselection and choose SBS. Based on the RBHM,
we assume that the data in the adjacent SBS are sufficiently
diverse. From the UE’s viewpoint, the CS of all the adjacent
SBS can be seen as a whole. But, in fact, each SBS is present
individually. As a result, if we want to get the data from the
SBS directly, we need to select the SBS which has already
stored the data. According to the above analysis, the best
timing of handover is the time after the UE determines
to request some new content, which makes the currently
connected network no longer the best access network. What
is more, the request should be the most important part of
handover. Channel capacity for a device may be determined
by its RSS. In general, RSS depends on the distance between
the UE and its attached BS. Also, to some extent, the RSS
represents the mobility. Hence, the RSS should be taken into
consideration. As the SINR and the load condition of the SBS

will affect the performance of access SBS, we also take SINR
and load condition into consideration.

UE will periodically measure the RSS and SINR and
choose the SBS with the RSS and SINR over the threshold.
First order the SBS by RSS. And select the top n SBS by
RSS and record sorting number as 𝑟𝑎𝑛𝑘𝑅𝑆𝑆,𝑖. Then order the
top n SBS by SINR and record sorting number as 𝑟𝑎𝑛𝑘𝑆𝐼𝑁𝑅,𝑖.
Finally add the top n SBS into the reconnection list in interest
packet (n is the length of reconnection list). From the interest
packet, the local SBS can obtain the reconnection SBS as
candidate. We define the Weighted RSS (𝑊𝑅𝑆𝑆) andWeighted
SINR (𝑊𝑆𝐼𝑁𝑅) for each candidate. So 𝑊𝑅𝑆𝑆,𝑖 and 𝑊𝑆𝐼𝑁𝑅,𝑖 are
expressed as

𝑊𝑅𝑆𝑆,𝑖 =
𝑟𝑎𝑛𝑘𝑅𝑆𝑆,𝑖

∑𝑖 𝑟𝑎𝑛𝑘𝑅𝑆𝑆,𝑖
(2)

𝑊𝑆𝐼𝑁𝑅,𝑖 =
𝑟𝑎𝑛𝑘𝑆𝐼𝑁𝑅,𝑖

∑𝑖 𝑟𝑎𝑛𝑘𝑆𝐼𝑁𝑅,𝑖
(3)

The range of 𝑊𝑅𝑆𝑆,𝑖 and 𝑊𝑆𝐼𝑁𝑅,𝑖 is [0, 1].
After that we need to define the weighted data (𝑊𝑑𝑎𝑡𝑎)

for each candidate. From the predefined neighbor cache table
(NCT) which records the content data stored in neighbor, we
could find out whether the candidate has the data or not. So
𝑊𝑑𝑎𝑡𝑎,𝑖 is expressed as

𝑊𝑑𝑎𝑡𝑎,𝑖

= {
{
{

0, 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑑𝑜 𝑛𝑜𝑡 𝑒𝑥𝑖𝑡 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑆 𝑜𝑓 𝐶𝑖
1, 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑒𝑥𝑖𝑡 𝑖𝑛 𝑡ℎ𝑒 𝐶𝑆 𝑜𝑓 𝐶𝑖

(4)

The range of 𝑊𝑑𝑎𝑡𝑎,𝑖 is [0, 1].
We also define the weighted load (𝑊𝑙𝑜𝑎𝑑) for each candi-

date. From the predefined neighbor state table (NST) which
records the amount of UE the SBS connect to. For the
candidate 𝐶𝑖, set its load as 𝑙𝑜𝑎𝑑𝑖; set max connection number
as 𝑚𝑎𝑥𝑖. So 𝑊𝑙𝑜𝑎𝑑,𝑖 is expressed as

𝑊𝑙𝑜𝑎𝑑,𝑖 = 1 − 𝑙𝑜𝑎𝑑𝑖
𝑚𝑎𝑥𝑖

(5)

The range of 𝑊𝑙𝑜𝑎𝑑,𝑖 is [0, 1].
After that, we use the parameter 𝑆𝑢,𝑖, to represent the cost

of the UE u connecting to the candidate 𝐶𝑖. Based on the
aforementioned analysis, 𝑆𝑢,𝑖 is expressed as

𝑆𝑢,𝑖 = 𝑤1 ∗ 𝑊𝑑𝑎𝑡𝑎,𝑖 + 𝑤2 ∗ 𝑊𝑅𝑆𝑆,𝑖 + 𝑤3 ∗ 𝑊𝑆𝐼𝑁𝑅,𝑖
+ 𝑤4 ∗ 𝑊𝑙𝑜𝑎𝑑,𝑖

(6)

We utilize the Analytic Hierarchy Process (AHP) [21] to
calculate 𝑤1, 𝑤2, 𝑤3, 𝑤4. The AHP is a structured technique
for organizing and analyzing complex decisions, based on
mathematics and psychology. Rather than prescribing a
“correct” decision, the AHP helps decision makers find one
that best suits their goal and their understanding of the
problem. In our consideration, comparedwith𝑊𝑅𝑆𝑆,𝑖 ,𝑊𝑆𝐼𝑁𝑅,𝑖,
and 𝑊𝑙𝑜𝑎𝑑,𝑖, 𝑊𝑑𝑎𝑡𝑎,𝑖 is strongly preferred. And compared with
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Figure 7: Strategy performance versus relative cache capacity.

𝑊𝑙𝑜𝑎𝑑,𝑖 and𝑊𝑆𝐼𝑁𝑅,𝑖,𝑊𝑅𝑆𝑆,𝑖 ismoderately preferred. And𝑊𝑙𝑜𝑎𝑑,𝑖
is as important as 𝑊𝑆𝐼𝑁𝑅,𝑖.

From the above, we can obtain 𝑆𝑢,𝑖 which represent the
benefit of UE u reconnection to the SBS candidate 𝐶𝑖. After
calculate all 𝑆𝑢,𝑖 of UE u, we could acquire the maximum
of all 𝑆𝑢,𝑖. Then UE u will reconnects to 𝐶𝑚𝑎𝑥. And as we
known, the requested content has already been stored in the
reconnection SBS; then we can get the requested content by
the reconnection SBS instead of sending a request to the
server.

5. Simulation Results

In this section, we implement the handover strategy of RBHS
in the ndnSIM simulator [22].

5.1. Simulation Setting. Considering the peculiar character
which we add into the NDN architecture, we have modified
the source code of ndnSIM. The basic configurations are
explained as follows.

(1) Simulation environment: We set the simulation envi-
ronment to the population density area. And we assume that
all the SBS are evenly distributed around the Macro and
all the UE pieces are randomly distributed in this area. For
simplicity, the mobility model of UE is set to random walk
with low speed.

(2) Performance metric: We take the traffic-saving rate
(TSR) as the dominant metric to show the importance of
saving the overall traffic between Macro and server. The
TSR is the ratio of the average amount of traffic reduced by
adopting RBHS to the amount of traffic which reselects SBS
according to SINR. In our context, the traffic is equivalent
to the number of the incoming packets. The cache hit rate
indicates that the SBShas the data in theCS and could directly
deliver the data to the UE without sending the request to
server, which also represents saving the traffic. So we also
involve it into our work.

(3) The compared handover strategy: The main idea of
our strategy is request-based. The cache hit rate and the
traffic-saving rate are increased by introducing the request-
based mechanism to relieve the burden of the link between
Macro and backbone caused by the growing mobile traffic

data and the UDN. So we take the handover strategy based
on the SINR and load condition.

(4) Input data: We generate the synthetic input data as
the following descriptions. Let D = {𝑑𝑎𝑡𝑎1, 𝑑𝑎𝑡𝑎2, 𝑑𝑎𝑡𝑎3,
. . . , 𝑑𝑎𝑡𝑎𝑖, . . . , 𝑑𝑎𝑡𝑎𝑛} donate the set of content items. All the
requests are identical and independently distributed within
the set D.

The requests of each UE follow the Zipf–Mandelbrot law
also known as the Pareto-Zipf law. The probability mass
function is given by

f (𝑘;𝑁, 𝑞, 𝑠) = 1/ (𝑘 + 𝑞)𝑠
𝐻𝑁,𝑞,𝑠

(7)

where𝐻𝑁,𝑞,𝑠 is given by

𝐻𝑁,𝑞,𝑠 =
𝑁

∑
𝑖=1

1
(𝑖 + 𝑞)𝑠 (8)

In the formula,𝑁 is the total number of data, 𝑘 is the rank
of the data, and 𝑞 and 𝑠 are the parameters of distribution.
And 𝑠 is the skewness factor indicating the consideration
degree of the arrival of the requests.

(5) Impact factor and default setting: To explore the
effectiveness and the scalability of RBHS, we take impact
factors into consideration, including the cache size, request
pattern, content population, and the size of reconnection list
attaching in the interest packet.

We set a default setting as follows. Associating with the
size of chunks, we describe the cache size as relative cache
size, which is the proportion of the cache size per SBS in the
total size of all data. The relative cache size at each SBS is
set to 3%. And the total number of data is N=1000. And the
skewness factor is s=0.7. And the size of reconnecting list is
list size=3.

5.2. Experiment Results. (1) Impact of cache size: We conduct
the experiment in the range of relative cache size from 1% to
5%, while other parameters follow the default setting.

Figure 7 compares the cache hit rate and the traffic-
saving rate (TSR) gained by the two strategies. Obviously, our
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Figure 9: Cache hit rate versus number of data.

proposed RBHS significantly outperforms the baseline of the
strategy based on the SINR.

(2) Impact of the request pattern: As explained before, the
requests follow the Zipf–Mandelbrot law. The parameter 𝑠 is
the key factor of Zipf–Mandelbrot law indicating the degree
of the concentration of requests. In short, the larger 𝑠 is, the
fewer the data covering the major requests are.

In Figure 8, we test the impact of request patterns on
effectiveness of the two strategy. Parameter 𝑠 varies from
0.5 to 1.0 under the default setting. As shown in Figure 7,
obviously, the more concentrated the requests are, the more
effective the strategy is.

(3) Impact of the data population: To examine the
scalability of the RBHS, we collect test data coving a large
range of data scales, whose number of items varies from 500
up to 20,000.

Given that the relative cache size is fixed to 3%, we get
the result in Figure 9. We are excited to see the saved traffic
is increasing smoothly as the scale enlarges, which means
RBHSwill achieve even better performance if being deployed
in the large network, considering the UE requests of data are
increasing exponentially nowadays.

(4) Impact of the reconnection list: As mentioned in
Section 4.2, by setting the size of reconnection list, we can
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Figure 10: Cache hit rate versus reconnection list size.

pretend that the cache size of the SBS is extended to (list
size∗cache size) or smaller than (list size∗cache size) because
there are copies existing in the adjacent SBS. As shown
in Figure 10, the cache hit rate is increasing by the size of
reconnection list and tends to be stable. We think that the
reason why cache hit rate tends to be stable is that the effect
of the reconnection list size is limited to the variety of the CS
in the SBS.

6. Conclusion and Future Work

In this paper, we propose a request-base handover strategy,
which can be divided into caching mechanism and handover
mechanism, in order to deal with the UND in 5G. For
the sake of the analysis of the user requests, we introduce
NDN into 5G cellular architecture. And the simulation
results demonstrate our proposed RBHS is effective and
scalable.

In the future, since there are some horizontal topics of
5G such as D2D, we are to develop a handover strategy that
takes the D2D communication into account. That means
the conditions we need to consider become more compli-
cated.



Wireless Communications and Mobile Computing 9

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

Thework described in this paper was fully supported by “the
Fundamental Research Funds for the Central Universities”
(no. 2017JBM005).

References

[1] P. Demestichas,A. Georgakopoulos, D. Karvounas et al., “5G on
the Horizon: key challenges for the radio-access network,” IEEE
Vehicular Technology Magazine, vol. 8, no. 3, pp. 47–53, 2013.

[2] T. Inoue, “5G standards progress and challenges,” in Proceedings
of the 2017 IEEE Radio andWireless Symposium (RWS), pp. 1–4,
IEEE, Phoenix, Ariz, USA, January 2017.

[3] C.-X. Wang, F. Haider, X. Gao et al., “Cellular architecture and
key technologies for 5G wireless communication networks,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 122–130,
2014.

[4] X. Wang, M. Chen, T. Taleb, A. Ksentini, and V. C. M. Leung,
“Cache in the air: exploiting content caching and delivery
techniques for 5G systems,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 131–139, 2014.

[5] B. Bangerter, S. Talwar, R. Arefi, and K. Stewart, “Networks and
devices for the 5G era,” IEEE Communications Magazine, vol.
52, no. 2, pp. 90–96, 2014.

[6] N. Bhushan, J. Li, D. Malladi et al., “Network densification:
the dominant theme for wireless evolution into 5G,” IEEE
Communications Magazine, vol. 52, no. 2, pp. 82–89, 2014.

[7] R. Arshad, H. Elsawy, S. Sorour, T. Y. Al-Naffouri, and M.-
S. Alouini, “Handover Management in 5G and Beyond: A
Topology Aware Skipping Approach,” IEEE Access, vol. 4, pp.
9073–9081, 2016.

[8] I. Hwang, B. Song, and S. Soliman, “A holistic view on hyper-
dense heterogeneous and small cell networks,” IEEE Communi-
cations Magazine, vol. 51, no. 6, pp. 20–27, 2013.

[9] S. Liu, J. Wu, C. H. Koh, and V. K. N. Lau, “A 25 Gb/s(/km2)
Urban wireless network beyond IMT-advanced,” IEEE Commu-
nications Magazine, vol. 49, no. 2, pp. 122–129, 2011.

[10] Qualcomm Research, LTE Rel-12 & Beyond, 2012, http://www
.qualcomm.com/1000x/.

[11] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H.
Briggs, and R. L. Braynard, “Networking named content,” in
Proceedings of the 5th ACMConference on Emerging Networking
Experiments and Technologies (CoNEXT ’09), pp. 1–12, ACM,
December 2009.

[12] L. Zhang, D. Estrin, J. Burke et al., “Named data networking
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The tunnel scenario is a major rail communication scenario. In this paper, the radio channel characteristics of tunnel scenarios with
different carrier frequencies, different distances between the transmitter (Tx) and receiver (Rx), and cross sections are simulated
with a ray-tracing tool. Key parameters such as path loss, Rician K-factor, rootmean square (RMS) delay spread, and angular spread
are studied. According to the results, higher frequencies introduce larger path loss and the presence of the vehicle body increases
the path loss by about 35 dB in the scenario; at the same time it will also cause the fluctuation and instability of the path loss. Besides,
the influence of reflections from the side walls is significant on radio propagation. The channel experiences more severe fading in
a narrow tunnel compared with others.

1. Introduction

The rail traffic communications have experienced a rapid
development recently, such as high-speed railway, municipal
railway, and urban railway system. The rail traffic scenario
is indispensable for both private and public mobile com-
munications. It is widely agreed that the wireless channel
model is significant to carry out mobile communications
research, system development, and network deployment, and
so on [1]. Currently, the Long-Term Evolution Railway (LTE-
R) system has been recommended to replace the global
system for mobile communication railway (GSM-R) system
for high-speed train (HST) communication system as a part
of intelligent transportation systems (ITS) [2, 3]. In addition,
the research on 5th-Generation wireless systems (5G) based
on high-speed railway (HSR) has become a trend to meet the
need of transmission capabilities [4–6]. Thus the study on
channel models in rail traffic system for new communication
system is indispensable.

The wireless channel research needs to be carried out
for various typical rail traffic scenarios (viaducts, tunnels,
cuttings, etc.), considering the significant differences between
the rail traffic scenarios and the public network scenarios [7].

Field test and ray tracer (RT) are two well-known methods
for implementing channel characterization. Field test in the
field of rail traffic is hard, costly, and long-term. RT provides
a means of accurately prediction of the wave propagation
which is timesaving and convenient. Therefore, RT is widely
used in channel modeling for confined environments.

Tunnel scenario is one of the most common scenarios,
especially in the mountainous and hilly areas. Considering
the unique construction, the wireless propagation in tunnel
scenarios is different fromotherHST scenarioswhich attracts
a lot of research interests [8–10]. Leaky cables andDistributed
Antenna System (DAS) [11, 12] are mainly two promising
methods to provide radio coverage in tunnels. Several tunnel
channel models were proposed in recent years, such as ray-
tracing model, multimode model, and propagation-graph
theory based model [13, 14]. A real multipath propagation
model for radio transmission in typical rectangular subway
tunnel was presented in [15] using RT to analyze Doppler
spread. The three-dimensional (3D) models of six scenario
modules for mmWave and THz train-to-infrastructure chan-
nels were defined and constructed for the first time in
[16], which considered reality obstacle objects. Based on the
wideband measurements conducted in the tunnel scenario
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by using the mobile hotspot network system, the authors in
[17] explored key channel characteristics in different HSR
scenarios by 3D RT. Besides, suggestions on symbol rate,
subframe bandwidth, and polarization configuration were
provided to guide the 5G mmWave communication system
design in typical HSR scenarios.

The aforementioned research summarized that themajor-
ity of existing works contribute to modeling methods based
on large-scale parameters. However, previous models were
analyzed and compared based on field test. The measure-
ments results such as channel impulse response (CIR) are
mixed with a variety of factors. In addition, measurements
focusing on narrowband single-input single-output (SISO)
systems at low frequency band result in missing multipath
parameters such as angular spread and Doppler shift. There
is still an urgent demand for an accurate complete chan-
nel model considering large-scale parameters, small-scale
parameters, and spatial parameters [18, 19] for multitype
tunnel scenarios in SISO systems or multiple-input multiple-
output (MIMO) systems. Based on RT, channel parameters
such as the path loss, multipath delay, and angular spread
can be obtained exactly and analyzed. This paper provides
the simulation results in different type of tunnels at 1.8 GHz.
Optimized deployment recommendations are provided for
MIMO systems and antenna configuration.

The rest of the paper is organized as follows. The existing
channel models for the tunnel scenario of 3GPP are intro-
duced in Section 2. The defined tunnel scenarios and simu-
lation setup are presented in Section 3. Key parameters such
as path loss, Rician K-factor, root mean square (RMS) delay
spread, and angular spread in tunnels with different cross
sections at different frequencies are analyzed in Section 4.
Conclusions are drawn in Section 5.

2. Channel Models

3GPP TSG-RAN WG4 in RAN#66 meeting defined four
typical high-speed railway scenarios. A variety of standard
channel models in tunnel scenarios were adopted by 3GPP
[20–23], like the single tap channel, time delay line (TDL)
model, etc.

Scenarios 2c and 2g are corresponding to tunnel scenarios
covered by leaky cables. The coverage of the Evolved Node
B (eNB) is extended by deploying leaky cables in the 2g and
2c scenarios, which is shown in Table 1. In scenario 2g, the
User Equipment (UE) communicates directly with the leaky
cable in the tunnel. The signal is severely attenuated due
to the shielding of the train body in this case. In scenarios
2c, relays are set up on the train. The UE achieves two-hop
communication with the leaky cable through relay as shown
in Figure 1. Since the transmit power gradually attenuates
along the leaky cable, RF amplifiers will typically be applied
to ensure adequate signal strength. The propagation channel
between the in-car relay and the UE does not involve high-
speed movement.

3GPP R4-154106 proposes a one-tap channel model for
leaky cables deployment in the tunnel scenario as shown in
Figure 2, where D0 is the distance between two neighbor

RF 
amplifier

d
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Feeder

Radiating 
point

Relay velocity v
TrainUE

D

d


Figure 1: Leaky cable coverage with relay.

Leaky cable
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D

d

Figure 2: Detail illustration of leaky cable.

radiating points; the radiation angle of radiating point is
denoted as 𝜃0. It can be assumed that the receiver (Rx) is
covered by 8-9 radiation spots. The RF receive signal is

𝑟 (𝑡) = ∑
𝑘

𝑥 (𝑡)√𝑃𝑘𝑒𝑗2𝜋(𝑓𝑐−𝑓𝑑,𝑘)𝑡 + 𝑧 (𝑡)

= 𝑥 (𝑡) 𝑒𝑗2𝜋𝑓𝑐𝑡∑
𝑘

√𝑃𝑘𝑒−𝑗2𝜋𝑓𝑑,𝑘𝑡 + 𝑧 (𝑡)
(1)

where 𝑃𝑘 denotes the normalized received power of the 𝑘𝑡ℎ
radiation spot, 𝑓𝑑,𝑘 is the respective Doppler shift, z(t) is the
received noise, and x(t) is the transmitted signal.Thepower of
the fading gain can bemodeled as a Rician distribution based
on the central limit theorem.

However, this model is only a simplifiedmodel. It ignores
the reflection component and the scattering component
which should be considered in a limited space. Besides,
the parameters, such as tunnel size, cross section, internal
electromagnetic (EM) properties of tunnel walls, surface
roughness, and antenna polarizationmode, affect the channel
characteristics. RT views radio waves reflected by surfaces
of the tunnel. It solves the problem of large workload and
poor applicability in field test and also compensates for the
inability of the traditional model to provide specific wireless
channel parameters, such as amplitude, delay, Doppler shift,
and angular spread, which is of great significance for wireless
communication systems. It is an effective modeling method
to establish a 3D channel model of the rail communication
scenarios and analyze the radio signal propagation under dif-
ferent coverage patterns and multiple fading characteristics.

3. Scenario Definition and Simulation Setup

3.1. Tunnel Scenarios Definition. Given the different geologi-
cal conditions, the cross section of the tunnel varied in reality.
Four typical shapes of cross sections: rectangular, arched,
long arched (combined rectangular and semicircular), and
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Table 1: Tunnel scenarios by leaky cables.

Scenarios Description Notation

2c
The tunnel is equipped with a leaky cable
that communicates with the train’s roof
RP and with the UE through the RP

Two hop

2g Laying leaky cables in the tunnel to
achieve direct coverage of the UE One hop

semicircular, are shown in Figure 3. The side length of
rectangular is 6m in tunnel a; the height of arched is 6m, and
the center of circle is 2m high above the ground in tunnel b;
tunnel c contains a rectangular whose side length is 4m and a
semicircular whose radius is 2m; the radius of semicircular
is 6m in tunnel d. The number of tunnel surface in the
simulation is 4, 10, 9, and 13, respectively. Figure 4 shows
the details of the simplified tunnel model referring to the
metro tunnel project boundary map provided by the China
Railway Fourth Survey and Design Institute Group Co., Ltd.
The train model is shown in Figure 5. The 3D tunnel models
in this work are built by Google SketchUp. These models are
considered in the following simulation analysis.

3.2. Parameters Setup. The simulation parameters should be
carefully determined to ensure that the simulation results are
accurate and effective and make simulation energy-friendly
and timesaving. RT supports a variety of radio wave propa-
gation mechanisms, such as direction, reflection, scattering,
diffraction, and transmission. Reflection order means that
rays experience up to several times specular reflection from
transmitter (Tx) to Rx. The appropriate reflection order is
necessary not only to reflect the actual reflectance, but also
to avoid a longer simulation time.

Based on the above ideas, the channel characteristics
under different reflection orders are simulated and analyzed
in tunnel scenario in Figure 4 with all radio wave propagation
mechanisms. The key channel characteristics, such as Rician
K-factor, delay spread, angle spread of angle of arrival (AOA),
and angle of departure (AOD), are compared, respectively,
under different reflection orders range from 6𝑡ℎ-9𝑡ℎ.When the
reflection order is set to higher than 6𝑡ℎ, there is rarely a
change. In addition, we define

𝑃𝐿error (𝑖, 𝑗) =
󵄨󵄨󵄨󵄨󵄨𝑃𝐿 𝑖,𝑓 − 𝑃𝐿𝑗,𝑓

󵄨󵄨󵄨󵄨󵄨
𝑃𝐿𝑗,𝑓

(2)

where the 𝑃𝐿𝑖,𝑓 is the path loss when the frequency is 𝑓 and
the reflection order is 𝑖. The 𝑃𝐿𝑒𝑟𝑟𝑜𝑟(i, j) shows the difference
rate between 𝑖𝑡ℎ and 𝑗𝑡ℎ order in a series of frequencies. The
CDF of 𝑃𝐿𝑒𝑟𝑟𝑜𝑟 is shown in Figure 6. The means of 𝑃𝐿𝑒𝑟𝑟𝑜𝑟(8,
9), 𝑃𝐿𝑒𝑟𝑟𝑜𝑟(7, 8), and 𝑃𝐿𝑒𝑟𝑟𝑜𝑟(6, 7) are 4.26 × 10−12, 1.9 ×
10−2, and 0.18, respectively. The 𝑃𝐿𝑒𝑟𝑟𝑜𝑟(8, 9) is the smallest,
ranging from 6.41 × 10−13 to 1.72 × 10−11. The 𝑃𝐿𝑒𝑟𝑟𝑜𝑟(7, 8)
ranges from 4.97 × 10−5 to 0.12. The 𝑃𝐿𝑒𝑟𝑟𝑜𝑟(6, 7) ranges from
1.73 × 10−4 to 0.53, which is larger than others. As a result,
the path loss up to higher than 8𝑡ℎ order is hardly change.
Thus the 8𝑡ℎ order is adopted in simulation due to a tradeoff

Table 2: Parameters setup.

Parameter Value
Frequency 1.8 GHz / 5.8 GHz
Transmitting power 25 dBm

Antenna(Tx, Rx) Omnidirectional antenna
(vertically polarized)

Tx location (0, 0, 3)
Rx location (x, 0, 5)
Reflection order 8
Bandwidth 10 MHz
Resolution 1 MHz

between computational complexity and precision as shown
in Table 2. Considering the fact that the tunnel scenarios are
long straight tunnels covered by concrete with no vents and
pipes and other obstacles, diffraction is irrelevant here as well
as transmission because the Tx is not fixed in the wall.

Detailed parameters setup is shown in Table 2. The
frequency is set to 1.8 GHz and 5.8GHz in order to compare
channel characteristics at different frequencies. Signal propa-
gates with 25 dBm of transmitting power. Tx is fixed at one
end of the tunnel with the height of 3m. Rx moves along
the x-axis with the height of 5m. Both of them use vertically
polarized omnidirectional antennas. The channel bandwidth
B = 10MHz, and the system time domain resolution Δt = 1
/ B. In order to better observe the path with the maximum
excess delay max, the number of simulated frequency points
𝑁𝑓 should be determined enough [24]:

𝜏max ≤ 𝑁𝑓 × Δ𝑡 (3)

in which, in other words, the frequency domain resolutionΔf
= B / N𝑓 should be set sufficiently.

4. Simulation Results and Analyses

In this section, the simulation results of tunnel channel char-
acteristics in different cross sections and different frequencies
are presented and analyzed. Furthermore, suggestions on
optimized deployment are provided.

4.1. Large-Scale Parameters. The reliable large-scale channel
models are essential to network deployment and optimiza-
tion. Typically, the path loss is expressed as

𝑃𝐿 (𝑑) = 𝐴 + 10𝑛 lg (𝑑) + 𝑋 (4)
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Figure 3: Regular cross sections for tunnels. (a) Rectangular. (b) Arched. (c) Long arched. (d) Semicircular.

Figure 4: Simplified tunnel model (actual scenario).

Figure 5: Train model for HST.

where the PL(d) is path loss without small-scale fading and
it is a function of the distance between Tx and Rx [25]. n is
path loss exponent, and X (shadow fading) is the zero-mean
Gaussian randomvariablewith standard deviation𝜎. Figure 7
shows the path loss at 1.8 GHz in different cross sections. In
the 0-190m section, the path loss is nearly the same. However
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Figure 6: CDF of 𝑃𝐿𝑒𝑟𝑟𝑜𝑟.

in the 190-500m section, the path loss in tunnel c has a
higher path loss than other tunnels. The path loss in tunnel
c can be divided into two phases, and path loss exponents
are 1.96 and 3.62, respectively, which means that there is
a breakpoint (𝑑0 = 190.10m) in this scenario. These tunnel
cross sections have the same height, and the width varies in
shape and size. The path loss fitting result given in Table 3
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Figure 8: Received power at different frequencies in tunnel c.

indicates that the lateral shape has an important impact on
the path loss in the empty tunnel with strong line of sight
(LOS) path.The path loss exponent in tunnel c is greater than
2 because of the existing breakpoint. The path loss exponents
are 1.77, 1.84, and 1.88 in tunnel a, d, and b, respectively.
Compared with the measurement results in straight arched
tunnel [26, 27] and rectangular tunnel [28–30], the value of
path loss exponent 1.96 in tunnel c is similar to 1.40-2.03 at
954-2000MHz in straight arched tunnel. Meanwhile, path
loss exponent 1.77 in tunnel a is similar to 1.65-1.94 at 945-
2650MHz in rectangular tunnel. Simulation results in this
paper are basically consistent with the measurement results
in previous work.

Figure 8 shows the received power at different frequencies
in tunnel c. As the frequency increases, the received power
decreases.When the distance betweenTx andRx equals 50m,
the received power at 1.8 GHz is 11 dB higher than that at
5.8 GHz. Received power has larger fluctuation, and deeper

Tunnel c with train
Empty Tunnel c

0

60

100 450150 500200 250 300 350 40050

Distance [m]

140

120

100

80

40

Pa
th

 L
os

s [
dB

]

Figure 9: Path loss in empty tunnel and tunnel with train.

Table 3: Path loss fitting result at 1.8 GHZ.

Parameter A n 𝜎
Tunnel a 41.29 1.77 0.74
Tunnel b 39.46 1.88 0.45
Tunnel c 31.82 2.30 1.60
Tunnel d 41.29 1.84 0.60

Table 4: Path loss fitting result in tunnel c.

Parameter A n 𝜎
1.8 GHz 31.82 2.31 1.60
5.8 GHz 51.51 1.78 1.45

fading is prone to occur in higher frequency. Based on the
similar simulation scenario and parameters setup, the same
conclusion is also reflected on the simulation results at three
different typical carrier frequencies, i.e., 900MHz, 2.45GHz,
and 5.75GHz in [31]. Table 4 shows the fitting parameters
at different frequencies. The path loss exponent is 2.31 at
1.8 GHz, while the path loss exponent is less than 2 at higher
frequency. Results confirm that the frequency band has a
strong impact on the wireless propagation.

For the tunnel with train, the path loss result in selected
locations is shown in Figure 9. Rx is fixed on the head of
train when the train gradually moves away from the Tx. The
obstruction and reflection of the train make the received
signal experience longer distance and greater attenuation.The
corresponding number of arriving rays reduces sharply. The
path loss increases by 35.58 dBwith the presence of the vehicle
body. The result shows that the path loss in the empty tunnel
scenario rises more steadily. Suggestions are given that the
antenna deployment in reality scenarios should make sure
of the existence of LOS path between Tx and Rx. Moreover,
antenna placement is selected carefully to make the blocking
effect of the train as small as possible for which further
researches are needed.
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Figure 10: (a) Rician K-factor at 1.8 GHz. (b) CDF of Rician K-factor at all the snapshots.

Table 5: Small scale parameters.

Parameter
Mean

K-factor
[dB]

Percentage
of K<25 dB

Mean
delay spread
[ns]

95 % of
delay spread
range [ns]

Tunnel a 13.7 88% 0.47 0.31-0.76
Tunnel b 14.98 86% 0.37 0.09-0.75
Tunnel c 10.82 94.8% 0.33 0.17-0.66
Tunnel d 14.46 87% 0.40 0.16-0.80

4.2. Small-Scale Parameters. Small-scale parameters have an
important impact in wireless communication system design
and analysis. Rician K-factor, RMS delay spread, and angular
spread are key parameters to describe the small-scale charac-
teristics. Table 5 shows the K-factor and RMS delay spread in
different tunnel scenarios.

4.2.1. Rician K-Factor. Rician K-factor is defined as the radio
of the power of LOS path to the power of non-line-of-sight
(NLOS) paths [32]. Figure 10 shows K-factor at 1.8 GHz and
CDF of K-factor at all the snapshots. Figure 10(a) depicts that
the simulation section can be divided into two parts; K-factor
fluctuates severely in part one (0-100m) and then decreases
smoothly in part two (100-500m). In the first 50m, the fading
is weak, but, after that, the fading is increasingly serious
whatever the tunnel scenario is. Table 5 demonstrates that
94.8% of K-factor in all the snapshots in tunnel c is lower than
25 dB, but there is about 88% of K-factor lower than 25 dB in
other tunnel scenarios as shown in Figure 10(b).Themean K-
factor of tunnel scenarios is around 13.49 dB larger than the
result 11.5 dB of empirical cluster characteristics extracted for
tunnel scenarios at 2.14GHz [33]. Since the path loss increases
with frequency, LOS path experiences a deeper fading at
2.14GHz. In conclusion, channel characteristics in tunnel c
experience a severe fading than others.

4.2.2. RMS Delay Spread. Figure 11 shows that RMS delay
spread at 1.8 GHz and CDF of RMS delay spread at all the
snapshots.Tunnel a is the rectangular tunnel (W6m×H6m),
and tunnel c is the long arched tunnel (W4m × H6m). The
most apparent difference between tunnel a and tunnel c is
their widths. RMS delay spread in tunnel a is larger than that
in tunnel c along the simulation section. In Table 5, we notice
that RMS delay spread is lower than 0.8 ns in at least 95%
at all the snapshots, and the maximum RMS delay spread is
1.18 ns. The results in Table 5 illustrate that 95% of the RMS
delay spreads at all the snapshots in tunnel a and tunnel c are
0.45 ns and 0.49 ns, respectively, which is narrow compared
with other scenarios. On the other hand, mean RMS delay
spread is the largest in tunnel a, and the weighted average of
the delay spread in tunnel c is the smallest. As a result, the
channel in tunnel c experiences amore stable fading.TheRMS
delay spread varies in ns because of fewer obstacles in empty
tunnel, which is similar to the measurement results of delay
spread 2-27 ns in mine tunnels [34].

4.3. Spatial Parameters. The RMS angular spreads in tunnel
c and CDF of angular spreads are shown in Figure 12. ASA,
ESA, ASD, and ESD are angular spreads of the azimuth angle
of arrival, the elevation angle of arrival, the azimuth angle
of departure, and elevation angle of departure, respectively.
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Figure 11: (a) RMS delay spread at 1.8 GHz. (b) CDF of RMS delay spread at all the snapshots.
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Figure 12: Tunnel c scenario. (a) RMS angular spread at 1.8 GHz. (b) CDF of RMS angular spread at all the snapshots.

Figure 11 illustrates that ESA, ASD, and ESD decrease slowly
as the Rx moves far away from Tx, and they are lower
than 10.20∘ at all the snapshots. The means of ASA, ESA,
ASD, and ESD are 51.25∘, 0.67∘, 1.63∘, and 0.95∘, respectively.
99% of ESA, ASD, and ESD are less than 5∘. However, ASA
varies differently comparedwith others. It gradually increases
and the max ASA is 123.90∘ when the distance between Tx
and Rx reaches 500m. Angular spread in straight tunnel
scenario in work [17] varies similarly, in which ASD becomes
larger as the distance of Tx and Rx increases and others
decrease at the same time. ASA is greater than others in the
majority of the snapshots, which indicates that the impact
of reflections from the side walls is significant on radio
propagation. Multiantennas can be considered to implement

a MIMO system so that the system capacity can be increased
by achieving diversity and multiplexing. Besides, directional
antennas can be deployed to drop the ASA and reduce the
impact of Doppler spread on the channel.

Simulation results reveal that ASA, ESA, ASD, and ESD
vary similarly in tunnels b, c, and d. The ASA is compared
in tunnels b, c, and d as shown in Figure 13. The maximum
of ASA in tunnels b, c, and d is 65.8∘, 123.9∘, and 73.8∘,
respectively. It is obvious that ASA in tunnel c is larger than
that in tunnel d, whereas ASA in tunnel b is the lowest at the
majority of snapshots. This observation indicates that spatial
fading is affected by the cross section. Furthermore, the side
walls have a more significant impact on the channel in a
narrow tunnel than a wider one.
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5. Conclusion

In this paper, the radio channel characteristics of several
tunnel scenarios were simulated with RT. The channel
characteristics in different carrier frequencies and tunnel
cross sections were analyzed. The key parameters, such as
path loss, Rician K-factor, RMS delay spread, and angular
spread were simulated and analyzed. The presence of the
vehicle body introduces additional 35 dB of the path loss,
which leads to the fluctuation and instability of the channel.
K-factor changes severely when the distance between Tx and
Rx is smaller than 100m and then decreases smoothly in
far region. The channel has short delay spread (1.18 ns) due
to strong LOS and the limited space. The side walls have
a significant influence on radio propagation especially in a
narrow tunnel. Therefore, the conclusion can be drawn that
the channel experiences a severe and stable fading in long
arched tunnels compared to other tunnel scenarios.The other
parameters (i.e., Doppler spread, coherence time, antenna
polarization, etc.) and leaky cable for coverage will be studied
in the future work.
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This paper attempts to identify the requirement and the development of machine learning-based mobile big data (MBD) analysis
through discussing the insights of challenges in themobile big data. Furthermore, it reviews the state-of-the-art applications of data
analysis in the area of MBD. Firstly, we introduce the development of MBD. Secondly, the frequently applied data analysis methods
are reviewed. Three typical applications of MBD analysis, namely, wireless channel modeling, human online and offline behavior
analysis, and speech recognition in the Internet of Vehicles, are introduced, respectively. Finally, we summarize themain challenges
and future development directions of mobile big data analysis.

1. Introduction

With the success of wireless local access network (WLAN)
technology (a.k.a. Wi-Fi) and the second/third/fourth gen-
eration (2G/3G/4G) mobile network, the number of mobile
phones, which is 7.74 billion, 103.5 per 100 inhabitants all
over the world in 2017, is rising dramatically [1]. Nowadays,
mobile phone can not only send voice and text messages, but
also easily and conveniently access the Internet which has
been recognized as the most revolutionary development of
mobile Internet (M-Internet). Meanwhile, worldwide active
mobile-broadband subscriptions in 2017 have increased to
4.22 billion, which is 9.21% higher than that in 2016 [1].
Figure 1 shows the numbers of mobile-cellular telephone
and active mobile-broadband subscriptions of the world and
main districts from 2010 to 2017. The numbers which are
up to the bars are the mobile-cellular telephone or active
mobile-broadband subscriptions (million) in the world of
the year which increase each year. Under the M-Internet,
various kinds of content (image, voice, video, etc.) can be sent
and received everywhere and the related applications emerge
to satisfy people’s requirements, including working, study,

daily life, entertainment, education, and healthcare. In China,
mobile applications giants, i.e., Baidu, Alibaba, and Tencent,
held 78% of M-Internet online time per day in apps which
was about 2,412 minutes in 2017 [2].This figure indicates that
M-Internet has entered a rapid growth stage.

Nowadays, more than 1 billion smartphones are in use
and producing a great quantity of data every day. This
situation brings far-reaching impacts on society and social
interaction and increases great opportunities for business.
Meanwhile, with the rapid development of the Internet-of-
Things (IoT), much more data is automatically generated
by millions of machine nodes with growing mobility, for
example, sensors carried by moving objects or vehicles. The
volume, velocity, and variety of these data are increasing
extremely fast, and soon they will become the new criterion
for data analytics of enterprises and researchers. Therefore,
mobile big data (MBD) has been already in our lives and is
being enriched rapidly. The trend for explosively increased
data volume with the increasing bandwidth and data rate in
the M-Internet has followed the same exponential increase
as Moore’s Law for semiconductors [3]. The prediction [2]
about the global data volume will grow up to 47 zettabytes
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Figure 1: Mobile-cellular telephone subscriptions (million) in (a) and active mobile-broadband subscriptions (million) in (b) of the world
and main districts [1].

(1 zettabyte = 1 × 1021 bytes) by 2020 and 163 zettabytes
by 2025. For M-Internet, 3.7 exabytes (1 exabyte = 1 ×1018 bytes) data have been generated per month from the
mobile data traffic in 2015 [4], 7.2 exabytes in 2016 [5], 24
exabytes by 2019 on forecasting [5], and 49 exabytes by 2021
on forecasting [5]. According to the statistical and prediction
results, a concept called MBD has appeared.

TheMBD can be considered as a huge quantity of mobile
data which are generated from a massive number of mobile
devices and cannot be processed and analyzed by a single
machine [6, 7]. MBD is playing and will play a more impor-
tant role than ever before by the popularization of mobile
devices including smartphones and IoT gadgets especially in
the era of 4G and the forthcoming the fifth generation (5G)
[4, 8].

With the rapid development of information technologies,
various data generated from different technical fields are
showing explosive growth trends [9]. Big data has broad
application prospects in many fields and has become impor-
tant national strategic resources [10]. In the era of big data,
many data analysis systems are facing big challenges as the
volume of data increases. Therefore, analysis for MBD is
currently a highly focused topic. The importance of MBD
analysis is determined by its role in developing complex
mobile systems which supports a variety of intelligently inter-
active services, for example, healthcare, intelligent energy
networks, smart buildings, and online entertainments [4].
MBD analysis can be defined as mining terabyte-level or
petabyte-level data collected from mobile users and wireless
devices at the network-level or the app-level to discover
unknown, latent, and meaningful patterns and knowledge
with large-scale machine learning methods [11].

Present requirements of MBD are based on software-
defined in order to be more scalable and flexible. M-Internet
environment in the future will be even more complex and
interconnected [12]. For this purpose, data centers of MBD
need to collect user statistics information of millions of users

and obtainmeaningful results by properMBD analysis meth-
ods. For the decreasing price of data storage andwidely acces-
sible high performance computers, an expansion of machine
learning has come into not only theoretical researches, but
also various application areas of big data. Even though, there
is a long way to go for the machine learning-based MBD
analysis.

Machine learning technology has been used by many
Internet companies in their services: from web searches [13,
14] to content filtering [15] and recommendation [16, 17] on
online social communities, shopping websites, or contend
distribution platforms. Furthermore, it is also frequently
appearing in products like smart cellphones, laptop comput-
ers, and smart furniture. Machine learning systems are used
to detect and classify objects, return most relevant searching
results, understand voice commands, and analyze using
habits. In recent years, big data machine learning has become
a hot spot [18]. Some conventionalmachine learningmethods
based on Bayesian framework [19–22], distributed optimiza-
tion [23–26], andmatrix factorization [27] can be applied into
the aforementioned applications and have obtained good per-
formances in small data sets. On this foundation, researchers
have always been trying to fill their machine learning model
with more and more data [28]. Furthermore, the data we
got is not only big but also has features such as multisource,
dynamic and sparse value; these features make it harder to
analyze MBD with conventional machine learning methods.
Therefore, the aforementioned applications implemented
with conventional machine learning methods have fallen
in a bottleneck period for low accuracy and generalization.
Recently, a class of novel techniques, called deep learning,
is applied in order to make the effort to solve the problems
and has obtained good performances [29]. Machine learning,
especially deep learning, has been an essential technique in
order to use big data effectively.

Most conventional machine learning methods are shal-
low learning structures with one or none hidden layers.



Wireless Communications and Mobile Computing 3

These methods performed well in practical use and were
precisely analyzed theoretically. But when dealing with high-
dimensional or complicated data, shallow machine learning
methods show their weakness. Deep learning methods are
developed to learn better representations automatically with
deep structure by using supervised or unsupervised strategies
[30, 31].The features extracted by deep hidden layers are used
for regression, classification, or visualization. Deep learning
uses more hidden layers and parameters to fit functions
which could extract high level features from complex data;
the parameters will be set automatically using large amount of
unsupervised data [32, 33].Thehidden layers of deep learning
algorithms help themodel learn better representation of data;
the higher layers learn specific and abstract features from
global features learned by lower layers. Many surveys show
that nonlinear feature extractors that are linked up as stacks
such as deep learning methods always perform better in
machine learning tasks, for example, a more accurate clas-
sification method [34], better learning of data probabilistic
models [35], and the extraction of robust features [36]. Deep
learning methods have proved useful in data mining, natural
language processing, and computer vison applications. A
more detailed introduction of deep learning is presented in
Section 3.1.4.

Artificial Intelligence (AI) is a technology that develops
theories, methods, techniques, and applications that simulate
or extend human brain abilities. The research of observ-
ing, learning, and decision-making process in human brain
motivates the development of deep learning, which was
first designed aiming to emulate the human brain’s neural
structures. Further observation on neural signals processing
and the effect on brain mechanisms [37–39] inspired the
architecture design of deep learning network, using layers
and neuron connections to generalize globally. Conventional
methods such as support vectormachines, decision trees, and
case-based reasoning which are based on statistics or logic
knowledge of human may fall short when facing complex
structure or relationships of data. Deep learning methods
can learn patterns and relationships from hidden layers and
may benefit the signal processing study in human brain
with visualization methods of neural network. Deep learning
has attracted much attention from AI researchers recently
because of its state-of-the-art performance in machine learn-
ing domains including no only the aforementioned natural
language processing (NLP), but also speech recognition [40,
41], collaborative filtering [42], and computer vision [43, 44].

Deep learning has been successfully used in industry
products which have access to big data from users. Com-
panies in United States such as Google, Apple, Facebook,
and Chinese companies like Baidu, Alibaba, and Tencent
have been collecting and analyzing data from millions of
users and pushing forward deep learning based applications.
For example, Tencent YouTu Lab has developed identifica-
tion (ID) card identification and bank card identification
systems. These systems can read information from card
images to check user information while registering and bank
information while purchasing. The identification systems are
based on deep learning model and large volume of user
data provided by Tencent. Apple develops Siri, a virtual

intelligent assistant in iPhones, to answer questions about
weather, location, news according to voice commands and
dial numbers or send text messages. Siri also utilizes deep
learning methods and uses data from apple services [45].
Google uses deep learning onGoogle translation service with
massive data collected by Google search engine.

MBD contains a large variety of information of offline
data and online real-time data stream generated from smart
mobile terminals, sensors, and services and hastens various
applications based on the advancement of data analysis tech-
nologies, such as collaborative filtering-based recommenda-
tion [46, 47], user social behavior characteristics analysis
[48–51], vehicle communications in the Internet of Vehicles
(IoV) [52], online smart healthcare [53], and city residents’
activity analysis [6]. Although the machine learning-based
methods are widely applied in the MBD fields and obtain
good performances in real data test, the present methods still
need to be further developed.Therefore, five main challenges
facing MBD analysis regarding the machine learning-based
methods include large-scale and high-speed M-Internet,
overfitting and underfitting problems, generalization prob-
lem, cross-modal learning, and extended channel dimensions
and should be considered.

This paper attempts to identify the requirement and the
development of machine learning-based mobile big data
analysis through discussing the insights of challenges in
the MBD and reviewing state-of-the-art applications of data
analysis in the area of MBD. The remainder of the paper is
organized as follows. Section 2 introduces the development
of data collection and properties of MBD. The frequently
adopted methods of data analysis and typical applications
are reviewed in Section 3. Section 4 summarizes the future
challenges of MBD analysis and provides suggestions.

2. Development and Collection of
the Mobile Big Data

2.1. Data Collection. Data collection is the foundation of
a data processing and analysis system. Data are collected
from mobile smart terminals and Internet services, or
called mobile Internet devices (MIDs) generally, which are
multimedia-capable mobile devices providing wireless Inter-
net access and contain smartphones, wearable computers,
laptop computers, wireless sensors, etc. [54].

MBD can be divided into two hierarchical data form:
transmission and application data, from bottom to top. The
transmission data focus on solving channel modeling [55,
56] and user access problems corresponding to the physical
transmission system of M-Internet. On this foundation,
application data focus on the applications based on the MBD
including social networks analysis [57–59], user behavior
analysis [48, 50, 60], speech analysis and decision in IoV [61–
66], smart grid [67, 68], networked healthcare [53, 69, 70],
finance services [46, 71], etc.

Due to the heterogeneity of theM-Internet and the variety
of the access devices, the collected data are unstructured and
usually in many categories and formats, which make data
preprocessing become an essential part of a data processing
and analysis system in order to ensure the input data complete
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and reliable [72].Data preprocessing can be divided into three
steps which are data cleaning, generation of implicit ratings,
and data integration [46].

(1) Data Cleaning. Due to possible equipment failures, trans-
mission errors, or human factor, raw data are “dirty data”
which cannot be directly used, generally [46].Therefore, data
cleaning methods including outlier detection and denoising
are applied in the data preprocessing to obtain the data meet
required quality. Manual removal of error data is difficult and
impossible to accomplish inMBDdue to themassive volume.
Common data cleaning methods can alleviate the dirty data
problem to some extent by training support vector regression
(SVR) classifiers [73], multiple linear regression models [74],
autoencoder [75], Bayesian methods [76–78], unsupervised
methods [79], or information-theoretic models [79].

(2) Generation of Implicit Ratings. Generation of implicit
ratings is mainly applied in recommend systems.The volume
of rating data increases rapidly by analyzing specific user
behaviors to solve data sparsity problem with machine learn-
ing algorithms, for example, neural networks and decision
trees [46].

(3) Data Integration. Data integration is a step to integrate
data from different resources with different formats and
categories and to handle missing data fields [7].

Figure 2 represents the procedures of data collection and
preprocessing.

2.2. Properties ofMobile Big Data. TheMBDbrings amassive
amount of new challenges to conventional data analysis
methods for its high dimensionality, heterogeneity, and
other complex features from applications, such as planning,
operation and maintenance, optimization, and marketing
[57]. This section discusses the five Vs (short for volume,
velocity, variety, value, and veracity) features [80] deriving
from big data towards the MBD. The five Vs features have
been improved in M-Internet, while it makes users access
Internet anytime and anywhere [81].

(1) Volume: Large Number of MIDs, Exabyte-Level Data, and
High-Dimensional Data Space. Volume is the most obvious

feature of MBD. In the forthcoming 5G network and the
era of MBD, conventional store and analysis methods are
incapable of processing the 1000x or more wireless traffic
volume [7, 82]. It is of great urgency to improve present
MBD analysis methods and propose new ones. The methods
should be simple and cost-effective to be implemented for
MBD processing and analysis. Moreover, they should also be
effective enough without requiring a massive amount of data
for model training. Finally, they are precise to be applied in
various fields [81].

(2) Velocity: Real-Time Data Streams and Efficiency Require-
ment. Velocity can be considered as the speed at which
data are transmitted and analyzed [83]. The data is now
continuously streaming into the servers in real-time and
makes the original batch process break down [84]. Due to
the high generating rate of MBD, velocity is the efficiency
requirement of MBD analysis since real-time data processing
and analysis are extremely important in order to maximize
the value of MBD streams [7].

(3) Variety: Heterogeneous and Nonstructured Mobile Mul-
timedia Contents. Due to the heterogeneity of MBD which
means that mobile data traffic comes from spatially dis-
tributed data resources (i.e., MIDs), the variety of MBD
arises and makes the MBD more complex [4]. Meanwhile,
the nonstructured MBD also causes the variety. The MBD
can be divided into structured data, semistructured data,
and unstructured data. Here, unstructured data are usually
collected in new applications and have randomdata fields and
contents [7]; therefore, they are difficult to analyze before data
cleaning and integration.

(4) Value: Mining Hidden Knowledge and Patterns from Low
Density Value Data. Value, or low density value of MBD, is
caused by a large amount of useless or repeated information
in the MBD. Therefore, we need to mine the big value by
MBD analyzing which is hidden knowledge and patterns
extraction. The purified data can provide comprehensive
information to conductmore effectively analysis results about
user demands, user behaviors, and user habits [85] and
to achieve better system management and more accurate
demand prediction and decision-making [86].
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(5) Veracity: Consistency, Trustworthiness, and Security of
MBD. The veracity of MBD includes two parts: data consis-
tency and trustworthiness [80]. It can also be summarized as
data quality. MBD quality is not guaranteed due to the noise
of transmission channel, the equipment malfunctioning,
and the uncalibrated sensors of MIDs or the human factor
(for instance, malicious invasion) resulting in low-quality
data points [4]. Veracity of MBD ensures that the data
used in analysis process are authentic and protected from
unauthorized access and modification [80].

3. Applications of Machine Learning
Methods in the Mobile Big Data Analysis

3.1. Development of Data Analysis Methods. In this section,
we present some recent achievements in data analysis from
four different perspectives.

3.1.1. Divide-and-Conquer Strategy and Sampling of Big Data.
The strategies dividing and conquering big data is a com-
puting paradigm dealing with big data problems. The devel-
opment of distributed and parallel computing makes divide-
and-conquer strategy particularly important.

Generally speaking, whether the diversity of samples in
learning data benefits the training results varies. Some redun-
dant and noisy data can cause a large amount of storage cost
as well as reducing the efficiency of the learning algorithm
and affecting the learning accuracy. Therefore, it is more
preferable to select representative samples to form a subset
of original sample space according to a certain performance
standard, such as maintaining the distribution of samples,
topological structure, and keeping classification accuracy.
Then learning method will be constructed on previous
formed subset to finish the learning task. In this way, we can
maintain or even improve the performance of big data analyz-
ing algorithmwithminimumcomputing and stock resources.
The need to learn with big data demands on sample selection
methods. But most of the sample selection method is only
suitable for smaller data sets, such as the traditional con-
densed nearest neighbor [93], the reduced nearest neighbor
[94], and the edited nearest neighbor [95]; the core concept
of these methods is to find the minimum consistent subset.
To find the minimum consistent subset, we need to test every
sample and the result is very sensitive to the initialization of
the subset and samples setting order. Li et al. [96] proposed
a method to select the classification and edge boundary
samples based on local geometry andprobability distribution.
They keep the space information of the original data but
need to calculate k-means for each sample. Angiulli et al. [97,
98] proposed a fast condensation nearest neighbor (FCNN)
algorithm based on condensed nearest neighbor, which tends
to choose the classification boundary samples.

Jordan [99] proposed statistical inference method for big
data. When dealing with statistical inference with divide-
and-conquer algorithm, we need to get confidence intervals
from huge data sets. By data resampling and then calculating
confidence interval, the Bootstrap theory aims to obtain the
fluctuation of the evaluation value. But it does not fit big
data. The incomplete sampling of data can lead to erroneous

range fluctuations. Data sampling should be correct in order
to provide statistical inference calibration. An algorithm
named Bag of Little Bootstraps was proposed, which can
not only avoid this problem, but also has many advantages
on computation. Another problem discussed in [99] is
massive matrix calculation. The divide-and-conquer strategy
is heuristic, which has a good effect in practical application.
However, new theoretical problems arise when trying to
describe the statistical properties of partition algorithm. To
this end, the support concentration theorem based on the
theory of random matrices has been proposed.

In conclusion, data partition and parallel processing
strategy is the basic strategy to deal with big data. But the
current partition and parallel processing strategy uses little
data distribution knowledge, which has influence on the
load balancing and the calculation efficiency of big data
processing.Hence, there exists an urgent requirement to solve
the problem about how to learn the distribution of big data for
the optimization of load balancing.

3.1.2. Feature Selection of BigData. In the field of datamining,
such as document classification and indexing, the dataset is
always large, which contains a large number of records and
features. This leads to the low efficiency of algorithm. By
feature selection, we can eliminate the irrelevant features and
increase the speed of task analysis. Thus, we can get a better
preformed model with less running time.

Big data processing faces a huge challenge on how to
deal with high-dimensional and sparse data. Traffic network,
smartphone communication records, and information shared
on Internet provide a large number of high-dimensional
data, using tensor (such as a multidimensional array) as
natural representation. Tensor decomposition, in this condi-
tion, becomes an important tool for summary and analysis.
Kolda [100] proposed an efficient use of the memory of the
Tucker decomposition method named as memory-efficient
Tucker (MET) decomposition decreasing time and space cost
which traditional tensor decomposition algorithm cannot do.
MET adaptively selects execution strategy based on available
memory in the process of decomposition. The algorithm
maximizes the speed of computation in the premise of using
the available memory. MET avoid dealing with the large
number of sporadic intermediate results proceeded during
the calculation process. The adaptive selections of operation
sequence not only eliminate the intermediate overflow prob-
lem, but also save memory without reducing the precision.
On the other hand, Wahba [101] proposed two approaches to
the statisticalmachine learningmodel which involve discrete,
noisy, and incomplete data. These two methods are regular-
ized kernel estimation (RKE) and robust manifold unfolding
(RMU). These methods use dissimilarity between training
information to get nonnegative low rank definite matrix.
The matrix will then be embedded into a low dimensional
Euclidean space, which coordinate can be used as features
of various learning modes. Similarly, most online learning
research needs to access all features of training instances.
Such classic scenario is not always suitable for practical
applications when facing high-dimensional data instances or
expensive feature sets. In order to break through this limit,
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Hoi et al. [102] propose an efficient algorithm to predict
online feature solving problem using some active features
based on their study of sparse regularization and truncation
technique. They also test the proposed algorithm in some
public data sets for feature selection performance.

The traditional self-organizing map (SOM) can be used
for feature extraction. But the low speed of SOM limits its
usage on large data sets. Sagheer [103] proposed a fast self-
organizing map (FSOM) to solve this problem. The goal of
this method is to find a feature space where data is mainly
distributed in. If there exits such area, data can be extracted
in these areas instead of information extraction in overall
feature spaces. In this way, we can greatly reduce extraction
time.

Anaraki [104] proposed a threshold method of fuzzy
rough set feature selection based on fuzzy lower approxima-
tion. This method adds a threshold to limit the QuickReduct
feature selection.The results of the experiment prove that this
method can also help the accuracy of feature extraction with
lower running time.

Gheyas et al. [105] proposed a hybrid algorithm of sim-
ulated annealing and genetic algorithm (SAGA), combining
the advantages of simulated annealing algorithm, genetic
algorithm, greedy algorithm, and neural network algorithm,
to solve the NP-hard problem of selecting optimal feature
subset. The experiment shows that this algorithm can find
better optimal feature subset, reducing the time cost sharply.
Gheyas pointed in as conclusion that there is seldom a single
algorithm which can solve all the problems; the combination
of algorithms can effectively raise the overall affect.

To sum up, because of the complexity, high dimen-
sionality, and uncertain characteristics of big data, it is an
urgent problem to solve how to reduce the difficulty of big
data processing by using dimension reduction and feature
selection technology.

3.1.3. Big Data Classification. Supervised learning (classifi-
cation) faces a new challenge of how to deal with big data.
Currently, classification problems involving large-scale data
are ubiquitous, but the traditional classification algorithms do
not fit big data processing properly.

(1) Support Vector Machine (SVM). Traditional statistical
machine learning method has two main problems when
facing big data. (1) Traditional statistical machine learning
methods are always involving intensive computing which
makes it hard to apply on big data sets. (2) The prediction
of model that fits the robust and nonparameter confidence
interval is unknown. Lau et al. [106] proposed an online
support vector machine (SVM) learning algorithm to deal
with the classification problem for sequentially provided
input data. The classification algorithm is faster, with less
support vectors, and has better generalization ability. Laskov
et al. [107] proposed a rapid, stable, and robust numerical
incremental support vectormachine learningmethod. Chang
et al. [108] developed an open source package called LIBSVM
as a library for SVM code implementation.

In addition, Huang et al. [109] present a large margin
classifier M4. Unlike other large margin classifiers which

locally or globally constructed separation hyperplane, this
model can learn both local and global decision bound-
ary. SVM and minimax probability machine (MPM) has a
close connection with the model. The model has important
theoretical significance and furthermore, the optimization
problem of maxi-min margin machine (M4) can be solved in
polynomial time.

(2) Decision Tree (DT). Traditional decision tree (DT), as a
classic classification learning algorithm, has a large memory
requirement problem when processing big data. Franco-
Arcega et al. [110] put forward a method of constructing DT
frombig data, which overcomes someweakness of algorithms
in use. Furthermore, it can use all training data without
saving them in memory. Experimental results showed that
this method is faster than current decision tree algorithm
on large-scale problems. Yang et al. [111] proposed a fast
incremental optimization decision tree algorithm for large
data processing with noise. Compared with former deci-
sion tree data mining algorithm, this method has a major
advantage on real-time speed for data mining, which is quite
suitable when dealing with continuous data from mobile
devices. The most valuable feature of this model is that it
can prevent explosive growth of the decision tree size and
the decrease of prediction accuracy when the data packet
contains noise.Themodel can generate compact decision tree
and predict accuracy even with highly noisy data. Ben-Haim
et al. [112] proposed an algorithmof building parallel decision
tree classifier.The algorithm runs in distributed environment
and is suitable for large amount and streaming data. Com-
pared with serial decision tree, the algorithm can improve
efficiency under the premise of accuracy error approxima-
tion.

(3) Neural Network and Extreme Learning Machine (ELM).
Traditional feedforward neural networks usually use gradient
descent algorithm to tune weight parameters. Generally
speaking, slow learning speed and poor generalization per-
formance are the bottlenecks that restrict the application of
feedforward neural network. Huang et al. [113] discarded the
iterative adjustment strategy of the gradient descent algo-
rithm and proposed extreme learning machine (ELM). This
method randomly assigns the input weights and the devia-
tions of the single hidden layer neural network. It can analyze
the output weights of the network by one step calculation.
Compared to the traditional feedforward neural network
training algorithm, the network weights can be determined
by multiple iterations, and the training speed of ELM is
significantly improved.

However, due to the limitation of computing resource and
computational complexity, it is a difficult problem to train a
single ELM on big data. There are usually two ways to solve
this problem: (1) training ELM [114] based with divide-and-
conquer strategy; (2) introducing parallel mechanism [115]
to train a single ELM. It is shown in [116, 117] that a single
ELM has strong function approximation ability. Whether it
is possible to extend this approximation capability to ELM
based on divide-and-conquer strategy is a key index to
evaluate the possibility that ELM can be applied to big data.
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Some of the related studies also include effective learning to
solve such problem [118].

In summary, the traditional classification method of
machine learning is difficult to apply to the analysis of big
data directly. The study of parallel or improved strategies
of different classification algorithms has become the new
direction.

3.1.4. Big Data Deep Learning. With the unprecedentedly
large and rapidly growing volumes of data, it is hard for
us to get hidden information from big data with ordinary
machine learning methods. The shallow-structured learning
architectures of most conventional learning methods are not
fit for the complex structures and relationships in these
input data. Big data deep learning algorithm, with its deep
architectures and globally feature extracting ability, can learn
complex patterns and hidden connections beyond big data
[37, 119]. It has had state-of-the-art performances in many
benchmarks and also been applied in industry products. In
this section, we will introduce some deep learning methods
in big data analytics.

Big data deep learning has some problems: (1) the hidden
layers of deep network make it difficult to learn from a given
data vector, (2) the gradient descent method for parameters
learning makes the initialization time increasing sharply as
the number of parameters arises, and (3) the approximations
at the deepest hidden layer may be poor. Hinton et al. [32]
proposed a deep architecture: deep belief network (DBN)
which can learn from both labeled and unlabeled data by
using unsupervised pretraining method to learn unlabeled
data distributions and a supervised fine-tune method to
construct the models, and solved part of the aforementioned
problems. Meanwhile, subsequent researches, for example,
[120], improved the DBN trying to solve the problems.

Convolutional neural network (CNN) [121] is another
popular deep learning network structure for big data ana-
lyzing. A CNN has three common features including local
receptive fields, shared weights, and spatial or temporal sub-
sampling, and two typical types of layers [122, 123]. Con-
volutional layers are key parts of CNN structure aiming to
extract features from image. Subsampling layers, which are
also called pooling layers, adjust outputs from convolutional
layer to get translation invariance. CNN is mainly applied
in computer vision field for big data, for example, image
classification [124, 125] and image segmentation [126].

Document (or textual) representation, also part of NLP,
is the basic method for information retrieval and important
to understand natural language. Document representation
finds specific or important information from the documents
by analyzing document structure and content. The unique
information could be document topic or a set of labels
highly related to the document. Shallowmodels for document
representation only focus on small part of the text and
get simple connection between words and sentences. Using
deep learning can get global representation of the document
because of its large receptive field and hidden layers which
could extract more meaningful information. The deep learn-
ing methods for document representationmake it possible to
obtain features from high-dimensional textual data. Hinton

et al. [127] proposed deep generative model to learn binary
codes for documents which make documents easy to store
up. Socher et al. [128] proposed a recursive neural network on
analyzing natural language and contexts, achieving state-of-
the-art results on segmentation and understanding of natural
language processing. Kumer et al. [129] proposed recurrent
neural networks (RNN) which construct search space from
large amount of textual data.

With the rapid growth and complexity of academic and
industry data sets, how to train deep learning models with
large amount of parameters has been a major problem. The
works in [40, 41, 43, 130–133] proposed effective and sta-
ble parameter updating methods for training deep models.
Researchers focus on large-scale deep learning that can be
implemented in parallel including improved optimizers [131]
and new structures [121, 133–135].

In conclusion, big data deep learning methods are the
key methods of data mining. They use complex structure
to learn patterns from big data sets and multimodal data.
The development of data storage and computing technology
promotes the development of deep learning methods and
makes it easier to use in practical situations.

3.2. Wireless Channel Modeling. As is well known, wireless
communication transmits information through electromag-
netic waves between a transmitting antenna and a receiving
antenna, which is deemed as a wireless channel. In the past
few decades, the channel dimension has been extended to
space, time, and frequency, which means the channel prop-
erty is comprehensively discovered. Another development is
that channel characteristics can be accurately described by
different methods, such as channel modeling [136].

Liang et al. [137] used machine learning to predict
channel state information so as to decease the pilot overhead.
Especially for 5G, wireless big data emerges and its related
technologies are employed to traditional communication
research to meet the demand of 5G. However, the wireless
channel is essentially a physical electromagnetic wave, and
the current 5G channelmodel research follows the traditional
way. Zhang [138] proposed an interdisciplinary study of
big data and wireless channels, which is a cluster-based
channel model. In the cluster-nuclei based channel model,
the multipath components (MPCs) are aggregated into a
traditional stochastically channel model. At the same time,
the scene is discerned by the computer and the environment
is rebuilt by machine learning methods. Then, by matching
the real propagation objects with the clusters, the cluster-
nuclei, which are the key factors in contacting deterministic
environment and stochastic clusters, can be easily found.
There are two main steps employing the machine learning
methods in the cluster-nuclei based channel model. The
recent progress is shown as follows.

3.2.1. A Gaussian Mixture Model (GMM) Based Channel
MPCs Clustering Method. The MPCs are clustered with the
Gaussian mixture model (GMM) [87, 139]. Using sufficient
statistic characteristics of channel multipath, the GMM can
get clusters corresponding to the multipath propagation
characteristics. The GMM assumes that all the MPCs consist
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Figure 3: Clustering results of GMM [87].

of several Gaussian distributions in varying proportions.
Given a set of 𝑁 channel multipath 𝑋, the log-likelihood of
the Gaussian mixture model is

𝐿 (𝑋;Θ) = 𝑁∑
𝑖=1

log
𝐾∑
𝑘=1

𝜋𝑘𝑝 (𝑥𝑖 | 𝑧𝑖; 𝜇𝑘, Σ𝑘) , (1)

where Θ = {𝜋𝑘, 𝜇𝑘, Σ𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ , 𝐾} is the set of all the
parameters and 𝜋𝑘 ∈ [0, 1] is the prior probability satisfying
the constraint∑𝐾𝑘=1 𝜋𝑘 = 1. To estimate theGMMparameters,
expectation maximization (EM) algorithm is employed to
solve the log-likelihood function of GMM [87]. Figure 3
illustrates the simulation result ofGMMclustering algorithm.

As seen in Figure 3, the GMM clustering obtains clearly
compact clusters. As scattering property of the channel
multipath obeys Gaussian distribution, the compact clusters
can accord with the multipath scattering property. Moreover,
corresponding to the clustering mechanism of GMM, paper
[87] proposed a compact index (CI) to evaluate the clustering
results shown as follows:

𝐶𝐼 = tr (𝐵) / (𝐾 − 1)
tr (𝑊) / (𝐿 − 𝐾) ∙ ( 𝐾∑

𝑘=1

𝑆2𝑘) , (2)

where 𝑆2𝑘 is the variance of the kth cluster and tr(𝐵) and tr(𝑊)
are given as

tr (𝐵) = 𝐾∑
𝑘=1

𝐿𝑘 ∙ 𝑀𝐶𝐷 (𝑐𝑘, 𝑐)2, (3)

tr (𝑊) = 𝐾∑
𝑘=1

∑
𝑗∈𝐶
𝑛

𝑀𝐶𝐷(𝑥𝑗, 𝑐𝑘)2, (4)

where 𝐿𝑘 is the number of multipaths corresponding to
the kth cluster. Both the means and variances of the clus-
ters are considered in CI. Considering sufficient statistics
characteristics, CI can uncover the inherent information of
multipath parameters and provide appropriate explanation to

the clustering result. Besides, considering sufficient statistics
characteristics, the CI can evaluate the clustering resultsmore
reasonably.

3.2.2. Identifying the Scatters with the Simultaneous Localiza-
tion andMapping Algorithm (SLAM). In order to reconstruct
three-dimensional (3D) propagation environment and to find
themain deterministic objects, simultaneous localization and
mapping (SLAM) algorithm is used to identify the texture
from the measurement scenario picture [140, 141]. Figure 4
illustrates our indoor reconstruction result with SLAM algo-
rithm.

The texture of propagation environment can be used to
search for the main scatters in the propagation environment.
Then, the three-dimensional propagation environment can
be reconstructed with the deep learning method.

Then the mechanism to form the cluster-nuclei is clear.
The channel impulse response can be produced by machine
learning with a limited number of cluster-nuclei, i.e., decision
tree [142], neural network [143], and mixture model [144].
Based on the database from various scenarios, antenna
configurations, and frequency, channel changing rules can be
explored and then input into the cluster-nuclei based mod-
eling. Finally, the predication of channel impulse response in
various scenarios and configuration can be realized [138].

3.3. Analyses of Human Online and Offline Behavior Based
on Mobile Big Data. The advances of wireless networks and
increasing mobile applications bring about explosion of
mobile traffic data. It is a good source of knowledge to obtain
the individuals’ movement regularity and acquire the mobil-
ity dynamics of populations of millions [145]. Previous
researches have described how individuals visit geographical
locations and employed mobile traffic data to analyze human
offline mobility patterns. Representative works like [146, 147]
explore the mobility of users in terms of the number of
base stations they visited, which turned out to be a heavy
tail distribution. Authors in [146, 148, 149] also reveal that
a few important locations are frequently visited by users.
In particular, these preferred locations are usually related to
home andwork places.Moreover, throughdefining ameasure
of entropy, Song et al. [150] believe that 93% of individual
movements are potentially predictable. Thus, various models
have been applied to describe the human offline mobility
behavior [151]. Passively collecting human mobile traffic data
while users are accessing the mobile Internet has many
advantages like low energy consumption. In general, the
mobile big data covers a wide range and a great number
of populations with fine time granularity, which gives us an
opportunity to study human mobility at a scale that other
data sources are very hard to reach [152]. Novel offline user
mobility models developed based on the mobile big data are
expected to benefit many fields, including urban planning,
road traffic engineering, telecommunication network con-
struction, and human sociology [145].

Online browsing behavior is another important facet
regarding user behavior when it comes to network resource
consumption. A variety of applications are now available
on smart devices, covering all aspects of our daily life and
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(a) (b)

Figure 4: Recognition of multiobjects with SLAM algorithm: (a) real indoor scene and (b) reconstruction result with SLAM algorithm.

(a) App usage behavior of Bob in temporal and spatial dimension

(b) App usage behavior of crowds at crowd gathering place

Figure 5: App usage behavior in daily life: (a) the app usage behavior of an individual and (b) app usage behavior of crowds at crowd gathering
places [50].

providing convenience. For example, we can order taxies,
shop, and book hotels using mobile phones. Yang et al.
[49] provide a comprehensive study on user behaviors in
exploiting the mobile Internet. It has been found that many
factors, such as data usage and mobility pattern, may impact
people’s online behavior on mobile devices. It is discovered
that the more the number of distinct cells a user visit, the
more diverse applications user has visited. Zheng et al. [153]
analyze the longitudinal impact of proximity density, per-
sonality, and location on smartphone traffic consumption. In
particular, location has been proven to have strong influences
on what kinds of apps users prefer to use [149, 153]. The
aforementioned observations point out that there is a close
relationship between online browsing behavior and offline
mobility behavior.

Figure 5(a) is an example of how browsed applications
and current location related to each other from the view
of temporal and spatial regularity. It has been found that
the mobility behaviors have strong influences on online
browsing behavior [149, 153, 154]. Similar trends can also be
observed for crowds at crowd gathering places, as is shown
in Figure 5(b); i.e., certain apps are favored at places that

group people together and provide some specific functions.
The authors in [50] tried to measure the relationship between
human mobility and app usage behavior. In particular, the
authors proposed a rating framework which can forecast
the online app usage behavior for individuals and crowds.
Building the bridge between human offline mobility and
online mobile Internet behavior can tell us what people
really need in daily life. Content providers can leverage this
knowledge to appropriately recommend content for mobile
users. At the same time, Internet service providers (ISPs) can
use this knowledge to optimize networks for better end-user
experiences.

In order to make full use of users’ online and offline
information, some researchers begin to quantize the interplay
between online social network and offline social network
and investigate network dynamics from the view of mobile
traffic data [155–158]. Specifically, the online and offline
social networks are, respectively, constructed based on online
interest based and location based social network among
mobile users. The two different networks are grouped into
layers of a multilayer social network 𝑀 = {𝐺𝑜𝑛, 𝐺𝑜𝑓𝑓}, as
shown in Figure 6. 𝐺𝑜𝑓𝑓 and 𝐺𝑜𝑛 depict offline and online
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Figure 6: Multilayer model of a network [88].

social network separately. In each layer, the graph is described
as G = ⟨V,E⟩, where 𝑉 and 𝐸, respectively, represent node
sets and edge sets. Nodes, such as 𝑢1, . . . , 𝑢4, represent users.
Edges exist among users when users share similar object-
based interests [88]. Combining information from manifold
networks in a multilayer structure provides a new insight
into user interactions between virtual and physical worlds.
It sheds light on the link generation process from multiple
views, which will improve social bootstrapping and friend
recommendations in various valuable applications by a large
margin [158].

So far, we have summarized some representative works
related to human online and offline behaviors. It is mean-
ingful to note that owing to the highly spatial-temporal and
nonhomogeneous nature of mobile traffic data, a pervasive
framework is challenging yet indispensable to realize the
collection, processing, and analyses of massive data, reducing
resource consumption and improving Quality of Experience
(QoE).The seminalwork byQiao et al. [60] proposes a frame-
work forMBD (FMBD). It provides comprehensive functions
on data collection, storage, processing, analyzing, and man-
agement tomonitor and analyze themassive data. Figure 7(a)
displays the architecture of FMBD, while Figure 7(b) shows
the considered mobile networks framework. With the inter-
action between user equipment and 2G/3G/4G network,
real massive mobile data can be collected by traffic moni-
toring equipment (TME). The implementation modules are
employed based on Apache software [159]. FMBD builds
a security environment and easy-to-use platform both for
operators and data analysts, showing good performance on
energy efficiency, portability, extensibility, usability, security,
and stability. In order to meet the increasing demands on
traffic monitoring and analyzing, the framework provides a
solution to deal with large-scale mobile big data.

In conclusion, the prosperity of continuously emerg-
ing mobile applications and users’ increasing demands on
accessing Internet all bring about challenges for current and
future mobile networks. This section surveys the literature
on analyses of human online and offline behavior based
on the mobile traffic data. Moreover, a framework has also
been investigated, in order to meet the higher requirement
of dealing with dramatically increased mobile traffic data.
The analyses based on the big data will provide valuable
information for the ISPs on network deployment, resource

management, and the design of future mobile network
architectures.

3.4. Speech Recognition and Verification for the Internet of
Vehicles. With the significant development of smart vehicle
produces, intelligent vehicle based Internet of Vehicle (IoV)
technologies have received widespread attention of many
giant Internet businesses [160–162]. The IoV technologies
include the communication between different vehicles and
vehicles to sensors, roads, and humans. These communica-
tions can help the IoV system sharing and the gathering
information on vehicles and their surrounds.

One of the challenges in the real-life applications of
smart vehicles and IoV systems is how to design a robust
interactive method between drivers and the IoV system
[163]. The level of focusing on driving will directly affect
the danger of driver and passengers; hence, the attention
of drivers should be paid on the complex road situation
in order to avoid accidents during an intense driving. So,
using the voices transfer information to the IoV systems is
an effective solution for assistant and cooperative driving.
By building a speech recognition interactive system, the
driver can check traffic jams near the destination or order
a lunch in the restaurant near the rest stop through the
IoV system by using voice-based interaction. The speech
recognition interactive system for IoV system can reduce
the risk of vehicle accident, and the drivers do not need to
touch the control panels or any buttons. A useful speech
recognition system in IoV can simplify the life of the drivers
and passengers in vehicles [164]. In the IoV system, drivers
want to use their own voice commands to control the driving
vehicles, and the IoV system must recognize the difference
between an authorized and unauthorized user. Therefore, an
automatic speaker verification system is necessary in IoV,
which can protect the vehicle from the imposters.

Recently, many deep learning methods have been applied
in the speech recognition and speaker verification systems
[41, 165–167], and published results show that speech pro-
cessing methods driven by MBD and deep learning can
obviously improve the performance of the existing speech
recognition and speaker verification system [40, 168, 169]. In
the IoV systems, millions of sensors collect abundant vehicles
and environmental noises from engines and streets will
significantly reduce the accuracy of speech processing system,
while the traditional speech enhancement methods, for
example, Wiener filtering [170] and minimum mean-square
error estimation (MMSE) [171] which focus on advancing
signal noise ratio (SNR), do not take full advantage of a
priori distribution of noises around vehicles. With the help
of machine learning and deep learning methods, we can use
a priori knowledge of the noises to improve the robustness of
speech processing systems.

For speech recognition task, deep-neural-network
(DNN) can be applied to train an effective monophone
classifier, instead of the traditional GMM based classifier.
Moreover, the deep-neural-network hidden Markov model
(DNN-HMM) speech recognition model can significantly
improve the performance of Gaussian mixture model hidden
Markov model (GMM-HMM) models [172–174]. As shown
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Figure 7: The overall architecture of framework for mobile big data (FMBD) and our considered mobile networks architecture [60].
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Figure 8: Multitraining DNN [89].

in Figure 8, making full use of the self-adaption power of
DNN, we can use the multitraining methods to improve
the robustness of DNN monophone classifier by adding
noise into the training data [89]. The experimental results
in [89, 175] show that the multitraining method can build a
matched training and testing condition which can improve
the accuracy of noisy speech recognition, especially for the
prior knowledge of noise types that we can easily obtain in
vehicles.

As shown in Figure 9, a DNN can also be used to train
a feature mapping network (FMN) which uses noisy features
as input and corresponding clean features as training target.
Enhanced features extracted by the FMN can improve the
performance of speech recognition systems. Han et al. [176]
used FMN to extract one enhanced Mel-frequency cepstral
coefficient (MFCC) frame from 15 noisy MFCCs frames. Xu
et al. [90] built a FMN which learned the mapping from
a log spectrogram to a log Mel filter bank. The enhanced
feature can remarkably reduce the word error rate in speech
recognition.

Besides getting themapping feature directly, theDNNcan
also be used to train an ideal binarymask (IBM)which can be
used to separate the clean speech from background noise as
shown in Figure 10 [91, 177, 178]. With a priori knowledge of
noise types and SNR,we can generate IBMs as training targets
and use noisy power spectral as training data. In the test
phase, we can use the learned IBMs to get enhanced features
which can improve the robustness of speech recognition.

In speaker verification tasks, the classical GMM based
methods, for example, Gaussian mixture model universal
background model (GMM-UBM) [179] and i-vector systems
[180], need to build a background GMM, firstly, using a large
quantity of speaker independent speeches. Then, by comput-
ing the statistics information on each GMM component of
enrollment speakers, we can get speaker models or speaker i-
vectors. However, a trained monophone classification DNN
can replace the function of GMM by computing the statis-
tics information on each monophone instead of on GMM
components. Many published papers [181–184] show that the
DNN-i-vector based speaker verification systems work better
than the GMM-i-vector method on detection accuracy and
robustness.

Unlike in the speech recognition tasks where the DNNs
are used to get enhanced features from noisy features,
researchersmore prefer to use aDNNor convolutional neural
network (CNN) to generate noise robustness bottleneck
feature directly in speaker verification tasks [185–187]. As
shown in Figure 11, acoustic features or feature maps are
used to train a DNN/CNN with a bottleneck layer which
has less nodes and closes to the output layer. Speaker ID,
noise types, monophone labels, or combination of these
labels are used as training targets. Outputs of bottleneck
layers include abundant differentiated information and can
be used as speaker verification features which improve the
performance of classical speaker verification methods such
as the aforementioned GMM-UBM and i-vector. Similar to
the multitraining method, adding noisy speeches into the
training data can also improve the robustness of extracted
bottleneck features [65, 92].

Recently, some adversarial training methods are intro-
duced to extract noise invariant bottleneck features [64, 188].
As shown in Figure 12, the adversarial network includes two
parts, i.e., an encoding network (EN) which can extract noise
invariant features and a discriminative network (DN) which
can judge noise types of the noise invariant feature generated
from EN. Therefore, we can get robustness noise invariant
features from EN which can improve the performance of
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speaker verification system by adversarial training these two
parts in turn [64, 188].

In conclusion, using DNN and machine learning meth-
ods can make full use of the MBD collected from the IoV
systems. Moreover, it improves the performance of speech
recognition and speaker verification methods applied in the
voice interactive systems.

4. Conclusions and Future Challenges

Although the machine learning-based methods introduced
in Section 3 are widely applied in the MBD fields and obtain

good performances in real data test, the present methods still
need to be further developed.Therefore, five main challenges
facing MBD analysis regarding the machine learning-based
methods should be considered as follows.

(1) Large-Scale andHigh-SpeedM-Internet.Due to the growth
of MIDs and high speed of M-Internet, increasingly various
mobile data traffic is introduced and results in a heavy
load to the wireless transmission system, which leads us
to improve wireless communication technologies including
WLAN and cellular mobile communication. In addition, the
requirement of real-time services and applications depends
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on the development ofmachine learning-basedMBDanalysis
methods towards high efficiency and precision.

(2) Overfitting and Underfitting Problems. A benefit of MBD
tomachine learning and deep learning lies in the fact that the
risk of overfitting becomes smaller with more and more data
available for training [28]. However, underfitting is another
problem for the oversize data volume. In this condition, a
larger model might be a better selection, while the model can
express more hidden information of the data. Nevertheless,
larger model which generally implies a deeper structure
increases runtime of the model which affects the real-time
performance. Therefore, the model size in machine learning
and deep learning, which represents number of parameters,
should be balanced to model performance and runtime.

(3) Generalization Problem. As the massive scale of MBD, it
is impossible to gain entire data even if they are only in a
specific field. Therefore, the generalization ability which can
be defined as suitable of different data subspace, or called
scalability, of a trained machine learning or deep learning
model is of great importance for evaluating the perform-
ance.

(4) Cross-Modal Learning.The variety of MBD causes multi-
ple modalities of data (for example, images, audios, personal
location, web documents, and temperature) generated from
multiple sensors (correspondingly, cameras, sound recorders,
position sensor, and temperature sensor). Multimodal learn-
ing should learn from multimodal and heterogeneous input
data with machine learning and deep learning [4, 189] and
obtain hidden knowledge and meaningful patterns; however,
it is quite difficult to discover.

(5) Extended Channel Dimensions. The channel dimensions
have been extended to three domains, i.e., space, time, and
frequency, which means that the channel property is com-
prehensively discovered. Meanwhile, the increasing antenna
number, high bandwidth, and various application scenarios
bring the big data of channel measurements and estimations,

especially for 5G.The finding channel characteristics need to
be precisely described by more advanced channel modeling
methodologies.

In this paper, the applications and challenges of machine
learning-based MBD analysis in the M-Internet have been
reviewed and discussed.The development of MBD in various
application scenarios requires more advanced data analysis
technologies especially machine learning-based methods.
Three typical applications of MBD analysis focus on wireless
channel modeling, human online and offline behavior anal-
ysis, and speech recognition and verification in the Internet
of Vehicles, respectively, and the machine learning-based
methods used are widely applied in many other fields. In
order to meet the aforementioned future challenges, three
main study aims, i.e., accuracy, feasibility, and scalability [28],
are highlighted for present and futureMBD analysis research.
In future work, accuracy improving will be also the primary
task on the basis of a feasible architecture for MBD anal-
ysis. In addition, as the aforementioned discussion of the
generalization problem, scalability has obtained more and
more attentions especially in a classification or recognition
problem where scalability also includes the increase in the
number of inferred classes. It is of great importance to
improve the scalability of themethods with the high accuracy
and feasibility in order to face the analysis requirements of
MBD.
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This paper presents the analysis of nonstationary characteristics for high-speed railway (HSR) scenarios, according to passive long-
term evolution- (LTE-) based channel measurements. The measurement data collected in three typical scenarios, rural, station,
and suburban, are processed to obtain the channel impulse responses (CIRs). Based on the CIRs, the nonstationarity of the HSR
channel is studied focusing on the stationarity interval, and a four-state Markov chain model is generated to describe the birth-
death process of multipath components. The presented results will be useful in dynamic channel modeling for future HSR mobile
communication systems.

1. Introduction

With the rapid development of high-speed railways (HSRs),
there appears a growth in demand for new railway com-
munication services, for example, real-time monitoring,
train multimedia dispatching, railway emergency commu-
nications, railway Internet of Things (IoT), and broadband
wireless access for train passengers [1]. To satisfy such ever-
increasing requirements, broadbandwireless communication
systems for HSR have recently attracted much attention
in the world. Since 2014, International Union of Railways
(UIC) has considered replacing the current global system for
mobile communications for railway (GSM-R) with the long-
term evolution for railway (LTE-R) [2]. In China, fourth-
generation (4G) networks have been deployed along most of
HSRs, for a total of 15,000 km by 2014, and as HSRs continue
to grow, the dedicated 4G networks that grow with them will
exceed 30,000 km in 2020. For future fifth-generation (5G)
mobile communication system, it is reported that one of its
aims is to provide high-data-rate access under high mobility
scenarios [3].

Since the radio channel determines the performance of
broadband wireless mobile communication systems, detailed
knowledge and accurate characterization of its parameters in
diverse scenarios are vital.Thepropagation characteristics are

in disparity under various HSR environments. In this case,
the characterization of HSR channels should consider the
influence of scenarios.

So far, a wide variety of the studies have concentrated
on the long-term fading behavior, involving path loss and
shadowing, in multiple HSR scenarios [4–8]. There are a
few research works on the short-term fading behavior, based
on wideband channel measurements conducted on HSR. By
contrast, the nonstationary behavior, which has been widely
studied for vehicle-to-vehicle (V2V) channels [9, 10], is rarely
investigated in HSR environments. To fill this research gap,
we present the analysis of the nonstationary characteristics
for multiple HSR scenarios. Passive channel measurements
are conducted for three typical scenarios, rural, station, and
suburban, in an HSR LTE network. Considering the interval
of stationarity and the dynamic evolution of multipath com-
ponents (MPCs), the nonstationary behavior is analyzed and
compared in different scenarios.

The remainder of this paper is outlined as follows.
Section 2 reviews the related work focusing on short-term
fading and nonstationary behaviors. In Section 3, our passive
channel measurements based on LTE are introduced. Then,
the nonstationary characteristics are analyzed in Section 4,
respectively. Finally, conclusions are drawn in Section 5.
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Table 1: Summary of investigation on short-term fading and nonstationary behaviors in HSR environments.

Scenario Short-term fading behavior Nonstationary behavior
Fading severity Time dispersion Frequency dispersion Space dispersion Stationarity interval Birth-death process

Viaduct [11, 12, 16] [11] [11, 12] [15] [25] [26]
Cutting [13, 14, 17] [13, 14] [13, 14] [15] - -
Rural [18] [18, 19] [19] [18, 19] - -
Hilly terrain [20] [21] [21] - - -
Tunnel [22] [22] [22] - - -
Station [23, 24] [24] - [24] -
Suburban/urban - - - - - -

2. Related Work

Unique HSR scenarios, such as viaduct, cutting, tunnel,
station, hilly terrain, rural, and suburban, have a significant
impact on propagation characteristics. In our previous work,
fading severity and time-frequency-space dispersion of HSR
channels in the viaduct and cutting scenarios were deeply
characterized based on measurements using Propsound [11–
15]. In [15], spatial characteristics, involving angle of arrival
(AOA), root-mean-square (RMS) angle spread (AS), and
spatial correlation (SC), were analyzed according to a so-
called moving virtual antenna array (VAA) scheme. Authors
in [16, 17] proposed a statistic model for Ricean K-factor,
which investigated the impact of the viaduct height and the
cutting width. The WINNER II model [18] and COST 2100
TD [19] provided some measurement results of short-term
fading behavior for rural scenarios. There were also a few
results of K-factor, RMS delay spread (DS), and Doppler
power spectral density (DPSD) measured in the hilly terrain
and tunnel scenarios [20–22]. Authors in [23, 24] presented
detailed analysis of fading severity and time dispersion in
open-type and semiclosed station scenarios. For the non-
stationary behavior, stationarity interval (SI) in the viaduct
scenario was investigated based on GSM-R measurements,
which showed that conventional channel models offered SI
much larger than the actualmeasured ones [25].We also tried
to adopt a RUN testmethod to obtain the SI for the open-type
station scenario in [24]. Additionally, a four-state Markov
chain was used to model the birth-death (B-D) process of
MPCs in the viaduct scenario [26].

Table 1 summarizes the existing measurement campaigns
about short-term fading and nonstationary behaviors in
different HSR environments. It can be found that there
are a few results of time-frequency-space characteristics in
some HSR scenarios. However, the characterization of the
nonstationary behavior is largely neglected inmost scenarios.
Therefore, this paper aims to investigate the nonstationary
behavior in the rural, station, and suburban scenarios.

3. Channel Measurements

3.1. Measurement Scenarios. An LTE network deployed on
Beijing to Tianjin (BT) HSR in China was chosen in our
measurements [27]. It is a hybrid network composed of a
dedicated network and a common network. The architecture
of the dedicated network is completely different from the

Table 2: Measurement parameters in the BT HSR LTE network.

Scenario Rural Station Suburban
eNB side

Frequency 1.89 GHz 2.605 GHz
Bandwidth 18 MHz 18 MHz
CRS power 12.2 dBm 12.2 dBm
Antenna type Directional Directional
Antenna gain 17.4 dBi 18.6 dBi
Horizontal beamwidth 67 deg 60 deg
Vertical beamwidth 6.6 deg 4.9 deg
Electric tilted angle 3 deg 3 deg

Sounder side
Antenna type Omnidirectional Omnidirectional
Antenna gain 8.5 dBi 8.5 dBi
Speed of HST 285 km/h 185 km/h

Network side
Distance between PSs 1.2 km
Height of PS 30 m
Height of rail track 10 m
Distance between PS
and rail track 30 m

common network, which adopts building baseband unit
(BBU) plus remote radio unit (RRU) to achieve the special
narrow-strip-shaped coverage instead of the cellular cover-
age. In this architecture, one physical site (PS) deploys two
RRUs, which transmit signals by directional antennas in
opposite directions along the railway track. The RRUs are
connected together via optical fiber and then to a BBU that
is in charge of radio frequency (RF) signal processing.

The LTE sounder is placed on a high-speed train (HST)
to collect the channel data, which experiences multiple
scenarios along the BT railway line, such as rural, station,
and suburban. In our measurement, the rural and station
scenarios are within the coverage of dedicated network, while
the suburban scenario is covered by the common network.
The detailed measurement parameters for different scenarios
in the network are listed in Table 2. The carrier frequency
is 1.89 GHz for the rural and station scenarios and 2.605
GHz for the suburban scenario. When the HST moves into
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(a) (b) (c)

Figure 1: Measurement scenarios. (a) Rural. (b) Station. (c) Suburban.

Local CRS
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Figure 2: The procedure of data processing.

the suburban area, the speed is decreased from 285 km/h to
185 km/h. The specification of the directional eNB antenna
such as gain and beamwidth has slight difference in different
frequencies. At Rx side, the LTE sounder is connected to a
train-mounted omnidirectional antenna.The average spacing
between neighboring PSs is around 1.2 km. The height and
distance difference between the PS and the rail track are about
20 m and 30 m, respectively.

The measured scenarios are shown in Figure 1. As for
the rural scenario, the transmit antenna is much higher than
the surroundings, which are light forests and a few buildings
with an average height of less than 10 m. The link between
the transmitter (Tx) and Rx generally has a strong line-of-
sight (LoS) component. However, after a certain distance,
the impact of the sparse scatterers will be noticed at the Rx
represented by non-LoS (NLoS) components. With regard
to the station scenario, in the measurement, the HST runs
through the station without stopping. The measured station
can be regarded as an open-type station with two awnings
that only cover the platform supporting a clear free space over
the rail. However, the awnings can still produce lots of NLoS
components to complicate the fading behavior. The length
of the station is 440 m, the width of the awning is 14 m,
and the width of the gap between the two awnings is 9 m.
Suburban is a transition zone between the rural and urban.
The NLoS components in the suburban environment will be
much richer than those in the rural environment.The density
of the buildings in the suburban scenario is similar to that in
the urban scenario, but the height of the buildings is lower.
Since the measured suburban is close to the urban area, some
remote high buildings could affect the results.

3.2. Data Processing. Baseband data (BB) collected by the
LTE sounder in the multilink regions are used for offline
processing. The procedure of data processing is shown in
Figure 2. Firstly, cell search is implemented to determine the

cell identity and obtain synchronized frames for extracting
received CRSs and generating local CRSs. Then, frequency-
domain correlation is used to estimate channel frequency
responses which can be subsequently transformed to the
raw CIRs by inverse fast Fourier transform (IFFT) operation
[28].

4. Results and Analysis

4.1. Stationarity Interval. High mobility leads to the viola-
tion of wide sense stationary (WSS) condition for wireless
channels under HSR scenarios. The stationarity interval (SI)
is defined as the maximum time or distance duration, over
which the channel satisfies the WSS condition. It is summa-
rized by [29] that there are severalmetrics that can be used for
measuring the SI, involving local region of stationarity (LRS),
correlation matrix distance (CMD), and spectral divergence
(SD). Besides, some statistical tests for the WSS of a random
process can also be applied to the determination of SI, such
as RUN test and reverse arrangement test. The LRS method
has been used to estimate the time interval ofHSR channels in
[25].TheRUN test was applied to the RMSDS data to identify
the stationary distance in the station scenario [24]. In this
paper, we choose the classical LRS approach to characterize
the SI in the measured scenarios.

The aim of the LRS method is to find the maximum
interval within which the correlation coefficient between two
consecutive PDPs exceeds a predefined threshold 𝑐𝑡ℎ. The
correlation coefficient between PDPs is defined as

𝑐 (𝑥𝑘, Δ𝑥) = 𝑃 (𝑥𝑘) 𝑃 (𝑥𝑘 + Δ𝑥)
max {𝑃 (𝑥𝑘)2, 𝑃 (𝑥𝑘 + Δ𝑥)2}

, (1)

where

𝑃 (𝑥𝑘) = 1
𝑁
𝑘+𝑁−1∑
𝑚=𝑘

󵄨󵄨󵄨󵄨ℎ (𝑥𝑚)󵄨󵄨󵄨󵄨2 , (2)

where 𝑁 is the window size and ℎ(𝑥𝑚) are the samples of
channel impulse response.

Then, the SI can be estimated as

𝐼𝑘 = (𝑘max − 𝑘min) Δ𝑥 (3)

where
𝑘max = argmax

𝑘+1≤𝑚≤𝐿−𝑁

𝑐 (𝑥𝑘, 𝑚Δ𝑥) < 𝑐𝑡ℎ (4)

𝑘min = argmin
1≤𝑚≤𝑘−1

𝑐 (𝑥𝑘, 𝑚Δ𝑥) < 𝑐𝑡ℎ (5)
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Table 3: Analysis results of the SI in different scenarios.

Scenario Method Statistics SI (m)
𝑐𝑡ℎ = 0.7 𝑐𝑡ℎ = 0.8 𝑐𝑡ℎ = 0.9

Rural LRS
Mean value 14.3 6.46 2.84
60% of CCDF 8.22 4.29 1.65
80% of CCDF 4.74 2.64 0.99

Station LRS
Mean value 7.27 3.84 1.87
60% of CCDF 5.02 2.55 1.17
80% of CCDF 3.07 1.25 0.37

Suburban LRS
Mean value 7.62 3.74 1.37
60% of CCDF 5.43 2.33 0.86
80% of CCDF 3.54 1.25 0.35

Viaduct [26] LRS 60% of CCDF - 1.8 -
80% of CCDF - 0.81 -

Standard models [26] LRS 60% of CCDF - 3.4 -
Station [25] RUN test 80% of CCDF 4
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Figure 3: CCDFs of SI in rural, station, and suburban scenarios.

where 𝐿 is the length of used data. Here, we consider three
typical correlation threshold values: 𝑐𝑡ℎ = 0.7, 𝑐𝑡ℎ = 0.8, and𝑐𝑡ℎ = 0.9.

Figure 3 compares the derived SI results for different 𝑐𝑡ℎ
and scenarios in terms of complementary CDF (CCDF).
With the increase of 𝑐𝑡ℎ, the SI is gradually decreasing. For𝑐𝑡ℎ = 0.9, only slight difference can be observed in different
environments, while there is an obvious deviation for 𝑐𝑡ℎ =0.7 and 𝑐𝑡ℎ = 0.8. Focusing on the cases of 𝑐𝑡ℎ = 0.7 and𝑐𝑡ℎ = 0.8, we find that the SI values in the rural scenario are
larger than those in the station or suburban scenarios. This
is understandable from the completely different scattering
environment. Since LoS is dominant in the rural scenario,

the MPCs have smaller dynamic changes over time, and
thus the stationary distance is longer. When it comes to the
station and suburban scenarios, due to the rich reflection and
scattering components from the awnings or buildings, the
nonstationarity is more serious, and thus the SI decreases.
This nonstationarity could be originated from a special physi-
cal phenomena, for example, “appearance anddisappearance”
or “birth and death” of MPCs [26], which will be further
investigated in the following subsection.

The detailed statistical SI results including mean value
and 60% and 80% of CCDF for different scenarios are listed
in Table 3. For 𝑐𝑡ℎ = 0.8, the mean value of SI is 6.46 m in
the rural scenario, while those are 3.84 m and 3.74 m in the
station and suburban scenarios. In 60% and 80% of cases, the
channel could be stationary over a distance of 2.33-4.29mand
1.25-2.64 m for the measured scenarios, respectively. These
values are higher than the results of 1.8 m for 60% and 0.81 m
for 80% reported in [25]. From [25], the calculated stationary
interval for standard channel models is equal to 3.4 m for
60%, which is shorter than the one of 4.29 m for the rural
scenario but is longer than the ones of 2.55 m and 2.33 m for
the station and suburban scenarios. It is also observed that
the value of SI in 80% of the cases in the measured station
scenario is smaller than that of around 4 m in the station
scenario reported in [24]. This variance could be due to the
use of different calculation methods.

4.2. Birth-Death Process. The nonstationarity of the channel
is basically due to the dynamic evolution of MPCs when the
Rx is in motion, for example, appearance to disappearance or
B-D. To describe this B-D process, a four-state Markov chain
model (MCM) is used, where each state is defined as follows
[30]:

(i) 𝑆0: no “births” or “deaths”
(ii) 𝑆1: “births” only
(iii) 𝑆2: “deaths” only
(iv) 𝑆3: both “births” and “deaths”
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Table 4: Analysis results of the B-D process in different scenarios.

Scenario State transition probability matrix Steady-state probability

Rural

[[[[[[[
[

0.3361 0.4025 0.1203 0.1411
0.0497 0.0315 0.5348 0.3841
0.1658 0.7148 0.0282 0.0912
0.0332 0.0600 0.2505 0.6563

]]]]]]]
]

[0.1017 0.2533 0.2530 0.3920]

Station

[[[[[[[
[

0.2791 0.2093 0.1628 0.3488
0.0224 0.0096 0.4936 0.4744
0.0354 0.7235 0.0129 0.2283
0.0081 0.0471 0.0905 0.8544

]]]]]]]
]

[0.0189 0.1374 0.1366 0.7071]

Suburban

[[[[[[[
[

0.1870 0.2439 0.1463 0.4228
0.0557 0.0557 0.2256 0.6630
0.0780 0.4150 0.0613 0.4457
0.0151 0.0464 0.0690 0.8695

]]]]]]]
]

[0.0287 0.0837 0.0837 0.8039]

Viaduct [17]

[[[[[[[
[

0.2917 0.5208 0.1667 0.0208
0.0200 0.1000 0.5200 0.3600
0.2577 0.4330 0.0928 0.2165
0.0673 0.2115 0.2788 0.4423

]]]]]]]
]

[0.1371 0.2800 0.2857 0.2971]
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Figure 4: State transition diagram of the four-state MCM.

Note that the state in the MCM only considers the varia-
tion of MPCs from the current moment to the next moment.
With the motion of the Rx, the states can be transformed to
each other. Figure 4 illustrates the state transition diagram
of the four-state MCM [30]. The probabilistic switching
process between states in the MCM is controlled by the state
transition probability matrix P given by

P = {𝑝𝑖𝑗} =
[[[[[
[

𝑝00 𝑝01 𝑝02 𝑝03
𝑝10 𝑝11 𝑝12 𝑝13
𝑝20 𝑝21 𝑝22 𝑝23
𝑝30 𝑝31 𝑝32 𝑝33

]]]]]
]

(6)

where 𝑖 and 𝑗 represent the state index, while 𝑝𝑖𝑗 is the
transition probability from state 𝑆𝑖 to state 𝑆𝑗. Note that 𝑝𝑖𝑗
must satisfy the following requirement:

0 ≤ 𝑝𝑖𝑗 ≤ 1, 𝑖, 𝑗 = 0, 1, . . . , 𝑁 − 1 (7)

𝑁−1∑
𝑗=0

𝑝𝑖𝑗 = 1, 𝑖 = 0, 1, . . . , 𝑁 − 1 (8)

where𝑁 is the number of states; that is,𝑁 = 4 in our case.
The steady-state probability can be expressed as

P𝑆 = [𝑃𝑆0 𝑃𝑆1 𝑃𝑆2 𝑃𝑆3] (9)

which satisfies 𝑃𝑆0 + 𝑃𝑆1 + 𝑃𝑆2 + 𝑃𝑆3 = 1. Each element in P𝑆
indicates the overall state occupancy probability.

The obtained results of the state transition probability
matrix in different scenarios are listed in Table 4. Here, the
state transition matrix is derived from each CIR. Since the
sample rate of CIR is 2000 Hz and the velocity of train is
79 m/s, the reference value for state transition matrix is 0.04
m. It is observed that in the suburban scenario the next state
is more likely to transit into the state 𝑆3 no matter what the
current state is 𝑆0, 𝑆1, or 𝑆2. This means some new MPCs are
born and older MPCs die most of the time because of the
rich reflection and scattering components in the suburban
scenario. For other scenarios, in the case of 𝑆0, the next state
could be any one of the four states; in the case of 𝑆1, 𝑆2 or𝑆3 have the maximum probability to be the next state; in
the case of 𝑆2, the next state is more likely to transit into𝑆1; in the case of 𝑆3, the next state is still likely to be 𝑆3.
The results show the nonsymmetric transition matrix, which
means that the transition probability from state A to state B
has no relationship with that from state B to state A.

According to the state transition probability matrix, the
steady-state probability can be derived, as listed in Table 4.
It is found that 𝑆3 is the most likely state in the station
and suburban scenarios. For the rural scenario, either 𝑆1, 𝑆2,
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or 𝑆3 could be the steady state. It is worth noting that 𝑆1
and 𝑆2 have approximately similar steady-state probability
in any scenario. This confirms that the appearance and
disappearance of MPCs are equivalent. The above results in
the rural scenario are similar to those in the open viaduct
scenario reported in [26].The obtained results can be applied
for ON/OFF tapped delay line models that use the Markov
chain to model the ON/OFF process of MPCs [31].

5. Conclusion

This paper analyzes the nonstationary characteristics in typi-
calHSR scenarios, rural, station, and suburban, depending on
the passive LTE-based channel measurements. With regard
to the nonstationary characteristics, it is found that the SI
is longest in the rural scenario. Additionally, a four-state
MCM is established to characterize the B-D process ofMPCs,
and the corresponding state transition probability matrix and
steady-state probability are provided. These results show the
realistic channel characteristics in the HSR communication
network, which will provide helpful information for nonsta-
tionary channel modeling of HSR communication systems.
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Recently, unmanned aerial vehicle (UAV) plays an important role in many applications because of its high flexibility and low cost.
To realize reliable UAV communications, a fundamental work is to investigate the propagation characteristics of the channels. In
this paper, we propose path loss models for the UAV air-to-air (AA) scenario based on machine learning. A ray-tracing software
is employed to generate samples for multiple routes in a typical urban environment, and different altitudes of Tx and Rx UAVs are
taken into consideration. Two machine-learning algorithms, Random Forest and KNN, are exploited to build prediction models
on the basis of the training data. The prediction performance of trained models is assessed on the test set according to the metrics
including the mean absolute error (MAE) and root mean square error (RMSE). Meanwhile, two empirical models are presented
for comparison. It is shown that the machine-learning-based models are able to provide high prediction accuracy and acceptable
computational efficiency in the AA scenario. Moreover, Random Forest outperforms other models and has the smallest prediction
errors. Further investigation is made to evaluate the impacts of five different parameters on the path loss. It is demonstrated that
the path visibility is crucial for the path loss.

1. Introduction

In recent years, unmanned aerial vehicles (UAVs), as aircraft
without pilots on board, have shown great promise due
to their high mobility and deployment flexibility. With the
development of UAV manufacturing, its cost is reduced
while its performance continuously increases. As a result,
there are more and more attractive applications for UAV,
such as traffic monitoring, emergency rescue, forest fire
detection, cargo transport, and so on [1, 2]. Stable and
efficient wireless communication links are indispensable in
most UAV applications. Therefore, the UAV communications
play an important role in the future fifth-generation wireless
networks (5G), providing vast coverage and reliable relaying.

Meanwhile, the propagation environment of UAV-aided
communication systems differs from that of traditional ones,
which brings enormous challenges. An accurate under-
standing of the UAV wireless channels is crucial for the
design and deployment of these communication systems.
The wireless signals from/to UAVs may be obstructed and

may encounter different propagation conditions along the
path. The attenuation of the electromagnetic wave, which is
usually described by the path loss, is of great significance
for the link budget analysis and network planning for UAV
communications. Therefore, many works have been finished
to develop flexible and precise models for the path loss in the
UAV communication scenarios.

The high altitude range of 500m to 2000m was con-
sidered in [3], and the air-to-ground (AG) channel based
on the curved-earth two-ray model was investigated in
various scenarios. In [4], a statistical propagation model was
proposed for the UAV channel at low altitude in the urban
environment, and it was shown that the prediction results
were dependent on the elevation angle between the airborne
transmitter (Tx) and the receiver (Rx) on the ground. In
[5], the impact of the UAV altitude on path loss exponent
and shadow fading in the rural scenario was studied. In [6],
statistical path loss models were established bymodifying the
current 3GPP terrestrial channel models for urban macrocell
and rural macrocell scenarios. In [7, 8], measurements were
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carried out in suburban scenarios, and large-scale parameters
and multipath components were extracted and analyzed. In
[9], measurement campaigns were conducted in an urban
scenario and a distance-dependent model was proposed for
the UAV path loss prediction.

Most of these aforementioned works are focused on the
AG communication. An alternative application approach of
UAVs is to use them as both sides of the communication, i.e.,
air-to-air (AA) communication. Until now, only a few papers
have investigated the channel models in the AA scenario.
In [10], Rice model was extended to derive the AA channel
parameters and it was reported that the attenuation caused by
the distance effect followed a free-space model. In [11], with
data generated by a ray-tracing software, the close-in free-
space model and excess fading loss model were adopted to
characterize the path loss in the AA channel.

Furthermore, the existing works are mainly based on
empirical models, such as free-space model and log-distance
model, which rely on data collected in specific propagation
scenarios. Statistical analysis is performed to build the map-
ping relationship between path loss and parameters such
as propagation distance and flight altitude. The empirical
models are computationally efficient and easy to implement.
They can describe the statistical characteristics of the path
loss at a given distance in the measured scenario. However,
the actual path loss at a specific location cannot be obtained.
Besides, the accuracy of these models decreases when they
are applied to more general environments [12].

Another candidate solution is to utilize deterministic
approaches, such as ray tracing and finite-difference time-
domain (FDTD), within which the path loss values are
calculated by applying radio wave propagation mechanisms
and numerical analysis techniques to model computational
electromagnetics. With detailed geographic information and
dielectric properties of materials, these methods are very
accurate and reliable for predicting the spatial distribution of
electromagnetic fields. Due to the high cost of carrying out
measurement campaigns, the deterministic approaches have
been widely used for wireless network planning. The only
disadvantage is that the computation procedure consumes
huge time and memory resources and thus it is inappropriate
to use these approaches for real-time applications. Moreover,
the complicated calculation has to be run again once the
propagation environment changes.

Actually, path loss modeling is a supervised regression
problem and can be solved by machine learning [13]. It has
been proved that machine-learning-based models are able
to provide more accurate path loss prediction results than
the empirical ones and are more computationally efficient
than the deterministic approaches [12]. Different algorithms
have been adopted to train prediction models in traditional
terrestrial communication scenarios. For example, artificial
neural networks (ANNs) were used for path loss prediction
in urban [14], suburban [15], rural [16], and railway [17]
scenarios. Support vector regression (SVR) was applied for
the prediction of path loss in suburban environment in [18].
In order to build a connectivity model for an environmental
wireless sensor network, several methods, including Random
Forest, Adaboost, ANNs, and K-Nearest-Neighbors (KNN),

were analyzed and compared in [13]. It was reported that Ran-
dom Forest performed better than others for the considered
complex terrain environments.

In this paper, we build the prediction models for path
loss in the AA scenario based on machine learning. Two
algorithms, Random Forest and KNN, are taken into consid-
eration. To evaluate the feasibility of the proposed models,
the ray-tracing approach is used to generate data for training
and testing purposes. In addition, the prediction accuracies of
machine-learning-based models are compared with those of
the empirical ones, such as the Stanford University Interim
(SUI) model [19] and the COST231-W-I model [20]. It is
shown that the proposed models outperform the empirical
ones. Furthermore, we analyze the commonly used parame-
ters related to the path loss in the AA scenario, including the
propagation distance, TxUAValtitude, RxUAV altitude, path
visibility, and elevation angle. Meanwhile, the importance of
these parameters is discussed.

We summarize the major contributions and novelties of
this paper as follows.(1)The path loss for the UAV communication in the AA
scenario is modeled based on machine learning methods,
including Random Forest and KNN algorithms.(2) The prediction results are evaluated with the data
generated by a ray-tracing software. It is proved that the
machine-learning-based models are able to provide better
accuracy than the empirical ones.(3)We analyze the impacts of different parameters on the
AA path loss and sort these parameters by their importance.

The remainder of this paper is organized as follows.
The considered AA propagation environment and the ray-
tracing-based data generation are described in Section 2.
Section 3 presents the machine-learning-based methods
for path loss prediction. The model training procedure is
introduced in Section 4. In Section 5, the performance of
machine-learning-based models is evaluated and the impor-
tance ranking of different parameters is discussed. At last,
conclusions are drawn in Section 6.

2. Propagation Environment Description

In order to investigate the path lossmodel in the AA scenario,
we consider a typical urban environment in which two UAVs
are employed as Tx and Rx. As a new emerging scenario,
measurements for AA communications are still in a very
preliminary stage. Since the machine-learning-based models
require a large amount of data for training purpose, a ray-
tracing software is employed to generate data for model
building and performance evaluation. It has been proved
that the channel data obtained by the ray-tracing software
are in good agreement with the actual measured values [21].
As illustrated in Figure 1, the considered environment is a
region in Helsinki, with dimensions of 1000m by 600m.
Gray areas and green areas indicate buildings and grounds,
respectively. The maximum height of the buildings is 50m.
All the buildings are assumed to be made of concrete with
the following dielectric half-space properties: permittivity 6,
conductivity 0.02, and thickness 0.3m. The material of the
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Figure 1: Urban environment for AA communications.

ground surface is assigned as asphalt whose permittivity is 10
and conductivity is 0.01.

The simulations were performed at the central frequency
of 2.4GHz, with a bandwidth of 100MHz. The red square in
Figure 1 represented the position of the Tx UAV, which was
equipped with a directional antenna. Rx UAV was moved at
a spacing of 2m along six different routes. Different flight
altitudes were taken into account for both Tx and Rx UAVs.
The altitudes of the Tx UAV included 60m, 70m, and 80m.
Meanwhile, Rx UAV were assumed to fly at heights of 10m,
20m, 30m, and 40m, lower than the maximum height of the
buildings. It should be noted that the direct, reflected, and
diffracted paths were considered, whereas the penetration
paths were neglected because of the high attenuation through
building. Details of the parameter setting can be found in
Table 1.

Through calculations, we obtain the spatial distribution of
received powers. Then, path loss values at different locations
can be extracted. In practice, the path loss in the AA scenario
is related to many environmental parameters. The goal of
the machine learning method is to find the optimal function
describing the relationship between these parameters and the
path loss. In the following analysis, five parameters which
have impacts on the path loss are selected as the input features
of the machine-learning-based models and they are listed as
follows.

(1) Propagation distance (𝑑, in meter): the distance
between the Tx and Rx UAVs calculated from their
coordinates.

(2) Tx altitude (ℎ
𝑡
, in meter): the height of Tx UAV from

the ground, with three values of 50m, 60m, and 70m.

Table 1: Parameter configuration.

Parameter Value
Environment Helsinki urban scenario
Area 1000 m × 600 m
Max. building height 50 m
Carrier frequency 2.4 GHz
Bandwidth 100 MHz
Transmit power 15 dBm
Tx altitude 60, 70, 80 m
Rx altitude 10, 20, 30, 40 m
Distance between adjacent Rx positions 2 m
Number of Tx locations 1 × 3
Number of Rx locations 405 × 4
Max. number of reflection 10
Max. number of diffraction 1
Max. penetration Not simulated

(3) Rx altitude (ℎ
𝑟
, in meter): the height of Rx UAV from

the ground, with four values of 10m, 20m, 30m, and
40m.

(4) Path visibility (𝐼V, 0 or 1): parameter indicating
whether there exists line-of-sight (LOS) path between
the Tx and Rx UAVs. 𝐼V = 1 for the LOS case and𝐼V = 0 for the non-line-of-sight (NLOS) case.

(5) Elevation angle (𝜃, −𝜋/2 to 𝜋/2): the angle between
the LOS path and the horizontal.

We collected all the samples when the Tx UAV was in
different altitudes and the Rx UAV flied along six routes at
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Input:
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, 𝐼V𝑖, 𝜃𝑖), 𝑖 = 1, ..., 𝑁.

Number of ensemble members 𝑇.
Training Process:

For 𝑡 = 1 to 𝑇:(1) Take a bootstrap sample {𝑋
𝑡
, 𝑌
𝑡
} of size𝑁 from {𝑋, 𝑌}.(2) Use {𝑋

𝑡
, 𝑌
𝑡
} as the training data to train the 𝑡th ensemble member by using binary recursive partitioning.(3) Repeat the following steps recursively for each unsplit node until the stopping criterion is met:(i) Select𝑚 features randomly from the 𝑓 available features (𝑓 = 5 in this study).(ii) Calculate the square error for each possible splitting point of each feature, and find the best binary split

among all binary splits on the𝑚 features.(iii) Split the node into two descendant nodes using the best split.
Prediction:

Given a new x = (𝑑, ℎ
𝑡
, ℎ
𝑟
, 𝐼V, 𝜃), the predicted path loss value is obtained by 𝑃𝐿󸀠 = (1/𝑇)∑𝑇

𝑡=1
ℎ̂
𝑡
(x), where ℎ̂

𝑡
(x)

is the prediction of the 𝑡th ensemble member.

Algorithm 1: Random Forest algorithm for path loss prediction in the AA scenario.

different heights. Each sample was with an output (path loss
value) and five input features. Removing the locations where
the received signals are too weak to detect, we obtained 5508
samples in total. Then, these samples were separated into two
set, training set and test set. The former were utilized to train
the models while the latter were employed to evaluate the
performance of the trained models.

3. Machine-Learning-Based Models for AA
Path Loss Prediction

Machine learning is a method to improve performance on
a specific task based on extensive data and a flexible model
architecture. In recent years, it has been widely used in many
fields like computer vision, speech recognition, autonomous
driving, and so on. Machine learning tasks can be broadly
classified into supervised learning and unsupervised learn-
ing, depending on whether data samples have labels or not.
For supervised learning, tasks can be further divided into
classification problems and regression problems based on
whether the predicted values are discrete or continuous. The
AApath loss prediction is a typical regression task, which can
be solved bymany algorithms, such as Random Forest, ANN,
and SVR. We aim to build the path loss prediction model in
the AA scenario based on machine learning. With given path
loss values and corresponding input features, the model can
be trained and then the path loss values in new conditions can
be predicted with the various inputs.

In this study, two typical supervised learning algorithms,
Random Forest and KNN, are chosen to build prediction
models for the AA path loss. Their performance evaluation
results will be compared in Section 5 and Random Forest
will be proved to have a better agreement with the test data
compared with KNN. The major principles of these two
algorithms are introduced as follows.

3.1. Random Forest. Ensemble learning, which uses multiple
individual learners to solve classification and regression prob-
lems, can achieve a significantly superior generalization per-
formance [22]. Random Forest is a commonly used ensemble

learning algorithm and employs decision tree as ensemble
member. It applies bootstrap aggregating to select training
samples for each ensemble member. Ensemble members are
trained based on these samples and then the final result
is obtained by averaging the results of all the ensemble
members.

Besides, RandomForest further introduces random selec-
tion of features in the decision tree training process. Usually,
the traditional decision tree selects an optimal feature from
the feature set of current node for split. For Random Forest, a
subset is randomly chosen from the feature set of each node,
and then the optimal feature is selected from this subset.

In ensemble learning, the greater the diversity of ensem-
ble members, the better the prediction performance. By
introducing sample perturbations and feature perturbations,
the diversity of ensemble members in Random Forest is
increased. It can improve the generalization performance of
the model. It is worth noting that the decision trees grow
without pruning, due to the randomness of samples and
features. Algorithm 1 shows the method we used for path loss
prediction in the AA scenario. The detailed descriptions of
Random Forest can be found in [23].

Random Forest is easy to implement and can realize
parallel computing. It is also insensitive to input data and can
handle thousands of input features. In addition, an important
advantage of Random Forest is that it can sort the importance
of features. In the following, we will use this property to
analyze the significance of different input features for the AA
path loss.

3.2. KNN. KNN is a classical machine learning algorithm
that is often used to solve classification problems. It has no
explicit training process and its implementation is simple.The
mechanism of KNN is to find the 𝑘 training samples closest
to the sample to be predicted based on a distance metric
and then to perform prediction based on the information of
these 𝑘 neighbors. It is also suitable for regression tasks by
averaging the values of 𝑘 neighbors to get the final prediction
result.
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The distance metric plays a very important role in KNN.
The distance reflects the difference between two samples.
Commonly used distance metrics include Manhattan dis-
tance, Euclidean distance, and so on. In this study, Euclidean
distance is chosen for analysis. In general, features have
different ranges of values and their influences on the distance
calculation are not the same. As a result, KNN algorithm
is more sensitive to the input data compared with Random
Forest. For the sake of fairness, the samples need to be
normalized before model training. In this study, 𝑍-score
normalization method is adopted and it can be expressed
as

𝑥
𝑁
= 𝑥𝑖 − 𝜇𝜎 (1)

where𝑥
𝑖
is the input value of the feature, 𝑥

𝑁
is the normalized

value, 𝜇 is the mean, and 𝜎 is the standard deviation.

4. Model Training and Accuracy Metrics

The procedure of machine-learning-based path loss predic-
tors for AA channel is introduced as follows. Firstly, we
collect enough data samples for analysis, each with path
loss record and corresponding input features. As mentioned
above, for KNN the features need to be scaled by the
normalization process, while for Random Forest it is not
necessary. Secondly, these samples can be divided into two
categories, training set and test set, which are used for model
training and evaluation purposes, respectively. Thirdly, based
on the training data and selected algorithms, we train the
model and tune its parameters. Finally, some metrics are
employed to assess the prediction accuracy of the trained
model, and then in view of the evaluated results we can
further improve the machine-learning-based predictor for
the path loss in the AA scenario.

In this section, we will introduce the division of training
set and test set. Then, the model training process is explained
in detail. In addition, accuracy metrics for model validation
are presented.

4.1. Data Division. The performance of the machine-
learning-based models strongly depends on the amount and
quality of training data. In general, more training samples
lead to more accurate reflections of the inherent laws. Thus,
we must try to obtain enough samples in order to get
accurate models for path loss prediction. In addition, the
rules extracted from the model training are hidden in the
samples, so the training samples must be representative.
Different from the training data, the test set is used to assess
and further improve the trained models.

As aforementioned, 5508 samples were collected in the
considered AA scenario, including samples from six routes at
all different Tx/Rx altitudes. In this study, the samples from
the third route with the Rx altitudes of 20m and 30m were
used for test purpose, and they did not participate in the
training process.The remaining samples were included in the
training set. Then, the proportions of the training samples
and test ones were 84% and 16%.

4.2. Model Training. Model training aims at acquiring
parameters for the model to optimize the performance and
effectiveness of the path loss prediction. Some machine
learning algorithms, such as ANN and SVR, have many
parameters whose values need to be set before the learning
process begins. In contrast, Random Forest and KNN have
only a few parameters that need to be tuned and thus they are
both efficient for implementation.

For Random Forest, the model accuracy is affected by the
parameters including maximum tree depth and the number
of ensemble members. The former controls the maximum
split number of the decision tree and the latter determines the
size of the ensemble. Generally, a small ensemble with deep
decision trees has a greater tendency to overfit than a shallow
ensemble of many decision trees [13].

For KNN, the number of neighbors, 𝑘, is determinis-
tic for the prediction performance. If 𝑘 is too small, the
model becomes complicated and may overlearn when the
neighboring points are noises. Meanwhile, large 𝑘makes the
model structure simple but neighboring samples with large
differences will affect the prediction result.

These aforementioned parameters cannot be learned
directly from the data. The optimization methods for tuning
parameters mainly include grid search, random search, and
Bayesian optimization. In this study, grid search is used to
find the optimal combination of parameters by searching all
possible points in the given range. For Random Forest, we
evaluate the following parameters: the number of ensemble
members between 10 and 200 (at 10-unit intervals) and the
maximum tree depths between 5 and 50 (at 5-unit intervals).
For KNN, the value of 𝑘 is set between 2 to 10 with the interval
of 1. The obtained parameters are as follows. For Random
Forest, the depth of trees and the number of ensemble
members are finally set as 30 and 140, respectively. The
number of neighbors is equal to 5 in KNN.

4.3. Metrics for Evaluating Prediction Accuracy. To evaluate
the performance of different models, two statistical proper-
ties, mean absolute error (MAE) and root mean square error
(RMSE) [24], are chosen as metrics. They can be calculated
by comparing the predicted path loss with the data in the test
set as

MAE = 1𝐼
𝐼∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨𝑃𝐿 𝑖 − 𝑃𝐿 𝑖󸀠󵄨󵄨󵄨󵄨󵄨 , (2)

RMSE = √ 1𝐼
𝐼∑
𝑖=1

(𝑃𝐿
𝑖
− 𝑃𝐿
𝑖

󸀠)2 (3)

where 𝐼 is the total number of test samples, 𝑃𝐿 𝑖 is the path
loss value of the 𝑖th sample in the test set, and 𝑃𝐿

𝑖

󸀠 is the
predicted value.

5. Model Validation and Results

In this section, we will evaluate the performance of these
machine-learning-based models in the AA scenario. Two
empirical models are also considered for comparison. In
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Table 2: Statistics analysis for different predictors.

Evaluation indicators Random Forest KNN SUI COST231-W-I
MAE (dB) 2.27 4.56 7.54 26.67
RMSE (dB) 3.06 8.90 13.40 28.53
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Figure 2: Prediction performance of differentmodelswhenRxUAV
moves in the third route (ℎ

𝑡
= 60m and ℎ

𝑟
= 30m).

addition, the impacts of different features on the path loss are
analyzed.

5.1. Comparisons between Empirical Models and Machine-
Learning-Based Models. As an example, we consider the
samples in the test set gathered when the Tx and Rx altitudes
are 60m and 30m, respectively. The predicted path loss
results from different models are shown in Figure 2. Sample
indexes are corresponding to different positions of Rx UAV
in the third route from up to down in Figure 1. As mentioned
in Section 2, the distance between two adjacent Rx positions
is 2m. As shown in Figure 1, LOS path exists when the Rx
UAVmoves in themiddle, corresponding to the sample index
from 72 to 79. It can be found that the path loss values are
quite small in this area. In Figure 2, it is illustrated that the
machine-learning-based models can accurately approximate
the realistic path loss values generated by the ray-tracing
software. Two empirical models, SUI model and COST231-
W-I model, are chosen for comparison. The description of
whether the LOS path exists is not included in the SUI
model. Thus, there are large gaps from the path loss results
predicted by the SUI model to the true values under the
LOS condition. The COST231-W-I model can describe the
path loss variations in both LOS and NLOS conditions.
Apart from the path visibility, this model also involves the
distance, Tx altitude, Rx altitude, and elevation angle into
the model parameters. However, its predicted results are
much larger than the true values. The major reason may be
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Figure 3: Prediction error distributions for the machine-learning-
based models.

the fact that the application scenarios of the COST231-W-
I model differ from what we used during the analysis. It
reflects the poor generalization performance of the empirical
model; i.e., its accuracy decreases when it is applied to a
different environment. Furthermore, as shown in Figure 2,
these empirical models neglect some details of the path loss
fluctuations and it is difficult to use them for characterizing
the path loss value at a specific location.

Considering all samples in the test set, we can get the
statistical assessment of these different models. The MAEs
and RMSEs of prediction results are illustrated in Table 2. It
is shown that both Random Forest and KNN outperform the
empirical models.Thesemachine-learning-based models can
also depict the fluctuations of path loss in detail.

5.2. Comparisons between RandomForest and KNN. As listed
in Table 2, Random Forest provides the best fit to the test
data, with 2.27 dB MAE and 3.06 dB RMSE. KNN also offers
acceptable results whereas its predicted values are almost
unchanged under the LOS condition. The reason is that,
within theKNNmodel, the path loss is predicted by averaging
the values of the nearest 𝑘 neighbors. Due to the limited
number of collected LOS samples, a similar path loss value
is probably estimated.

Figure 3 shows the distributions of prediction errors for
the two machine-learning-based models. It is shown that
most errors concentrate in the range of −5 dB to 5 dB and
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Random Forest shows a higher prediction accuracy than
KNN.

5.3. Computational Efficiency. Another aspect to be evaluated
is the computational efficiency. The path loss values should
be generated in a short time so that the spatial distribution
of electromagnetic fields can be quickly updated when the
propagation environment changes. The generation durations
of our machine-learning-based models are recorded. The
computer we used to run the programs has an AMD A8-
4500M processor and 4GB of memory. The required times
of Random Forest and KNN predictors are 8.71 s and 5.95
s, respectively. In contrast, running the ray-tracing software
would take more than 10 minutes to generate all the samples
in the test set.This comparison result is preliminary but it still
reflects that the machine-learning-based model can provide
higher computational efficiency to the network planning than
the deterministic approaches.

5.4. Analysis of Feature Importance. As mentioned, there are
many parameters related to the path loss in the AA scenario
and they serve as the input features in our machine-learning-
based models. For example, the ray-tracing-based path loss
values in the third route at different Tx altitudes are shown
in Figure 4. The altitude of the Rx UAV is 10m and three
different Tx altitudes are taken into account, including 60m,
70m, and 80m. It is shown that in the selected low-altitude
UAVAAscenario, the path loss values at different Tx altitudes
are very close. Besides, when the altitude of the Tx UAV is
fixed at 70m. The path loss values at different Rx altitudes
are illustrated in Figure 5. According to Figures 4 and 5, the
path visibility is vital for the path loss in the considered AA
scenario.The propagation distances corresponding to sample
indexes are also shown in these two figures.
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Figure 5: Path loss values with different Rx altitudes (ℎ
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Table 3: Normalized importance of different features.

Feature Importance
Path visibility 0.7438
Propagation distance 0.1137
Elevation angle 0.1045
Tx altitude 0.0317
Rx altitude 0.0064

The following task is to investigate the significance of
different input parameters. Fortunately, Random Forest can
give a natural ranking of the features in the model. In this
study, the mean decrease impurity method [23] is employed
to analyze the importance of features. As introduced above,
Random Forest is composed of multiple decision trees. Each
node in the decision tree is a condition about a feature, in
order to divide the data into two sets according to different
response variables. For regression problems, variance or
least-squares fitting is often used as impurity. During the
training process, it can be calculated how much impurity of
the tree is reduced by a feature. For Random Forest, it is
possible to calculate the average reduced impurity of each
feature and to use it as the importance of the feature.

Table 3 shows the normalized contribution of each
parameter used in the model based on Random Forest.
The path visibility has the greatest impact, followed by the
propagation distance, elevation angle, Tx altitude, and Rx
altitude. Similar to results shown in Figures 4 and 5, the flight
altitudes of UAVs have small influences on the path loss. A
possible reason is that the selected scenario is a low-altitude
UAVAA scenario and the heights of buildings are close to the
flight altitudes of UAVs.
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6. Conclusions

In this paper, we have proposed a modeling mechanism
for AA path loss based on machine learning. A ray-tracing
software has been utilized to generate the data for an urban
AA scenario, which was subsequently divided into a training
set and a test set to be used by the models. The models have
been learned by two machine learning algorithms, Random
Forest and KNN. The test data have been used to evaluate
the accuracy performance of these machine-learning-based
models and two empirical models, SUI model and COST231-
W-I model. It has been demonstrated that machine learning
provides a flexible modeling approach based on the training
data for such complex environment and Random Forest
has the best prediction performance. In addition, we have
analyzed the importance of five input features for the path
loss in the AA scenario. Results have confirmed that the path
visibility is the dominant factor. Propagation distance and
elevation angle have also shown great influences.

Since the UAV AA communication is a newly emerging
scenario, the channel modeling and path loss prediction in
such a scenario are still in a very preliminary stage. Future
work should incorporate introduction of more machine-
learning-based models like ANN and SVR. Different sce-
narios should also be taken into account to verify the
generalization property of these models. Last but not least,
measurement campaigns should be carried out in the AA sce-
nario. More measured data are expected to further improve
the performance and feasibility of the machine-learning-
based path loss predictors.
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Although the Device-to-Device (D2D) technology in cellular networks can improve the performance of cellular systems, it creates
a large amount of interference in traditional communications. In this paper, the problem of resource allocation and control in a
single-cell scene is studied. First, the concept of a restricted D2D communication area and a restricted D2D user-reusage area is
put forward to reduce the complexity and interference intensity of resource allocation. Second, under the premise of satisfying
the QoS (Quality of Service) demands of every system user, the resource allocation algorithm is improved, the optimal allocation
of resources is carried out, and the algorithm’s processes are given in detail. Our simulated experiments show that the proposed
method greatly improves the spectrum efficiency and the system fairness.

1. Introduction

In recent years, the rise and rapid development of smart
phones have profoundly changed the way we communicate
and enjoy digital entertainment. The wide use of wireless
applications, such as cloud computing, surfing the Internet,
and downloading and watching digital multimedia, has
created a large demand for high-speed and efficient wire-
less communication technology. 5G is the next-generation
mobile communication system that is being developed for
the expected demand of information and communication
after 2020. It will have higher spectrum utilization and
transmission rate, significantly improved transmission delay
and QoS (Quality of Service) perception, and an increased
number of access links and security [1].

Device-to-Device (D2D) technology [2, 3] is a hot topic
in the field ofmobile communication.UsingD2D technology,
adjacent terminals can transmit data within a close range
through a direct link without a central node. In this case,
the base station sends only some control information, which
greatly reduces the load of the base station [2, 4, 5]. D2Dusers
can effectively reuse the wireless resources authorized by the
network to enhance the reusage rate of the wireless spectrum
and expand the throughput and coverage of heterogeneous

cellular networks [6, 7]. In full duplex mode, the spectrum
benefit is doubled as a result of allowing users to synchronize
and send and receive signals simultaneously [8, 9]. This
technology can greatly improve the wireless transmission
rate, and it has great technical advantages and application
prospects. As such, it is a promising option for future 5G
communication.

However, under the same cell, channel resources are
reused by D2D communication and cellular users simulta-
neously. So, while D2D communication technology brings
convenience, it also results in frequency interference [10].
As the number of users increases, the interference between
them also rises. The problem of network capacity optimiza-
tion and power allocation also arises, which leads to an
increase in the power consumption of the entire system. In
heterogeneous networks, there are two resource allocation
schemes: one is local resource allocation (fixed-cell user
resource and adaptive resource allocation for aD2Dpair) and
the other is global resource allocation (the cell service user
and theD2Dpair are allocated resources jointly) [11]. Because
D2D communications can compete and cooperate with each
other to share resources, their individual or group behaviors
conform to the inherent nature of game theory, which allows
them to be effectively modeled and analyzed [12].
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The combination ofD2D communication technology and
a cognitive radio (CR) can effectively reduce interference
[13]. CR technology, through interactions with the exter-
nal environment in terms of multidimensional spectrum
detection, as well as real-time and interactive environments,
is able to perceive any interference and make subsequent
judgments so that cognitive users can choose the most
appropriate communication frequency to avoid interference
to primary users under the condition of the spectrum with
the primary users sharing [14]. How to manage the spectrum
resources of the community as a whole, reasonably determine
the communication power of each device, and minimize
the interference between devices have become the main
bottleneck for D2D communication to enter the practical
stage. It is worthwhile to try to achieve power stability [15, 16]
or learn from software reliability prediction through context
sensitive rate Boolean control network [17].

Considering the strengths and weaknesses of current
D2D communication research, we have studied resource
allocation and power control in the single-cell scenario based
on the work of [18]. First, the concept of a restricted D2D
communication area and a restricted D2D usage area is put
forward to reduce the complexity and interference intensity of
resource allocation. Second, under the premise of satisfying
the QoS of all users in the system, the resource allocation
algorithm is improved, the optimal allocation of resources
is carried out, and a detailed description of the algorithm’s
processes is given. Our simulated experiments show that the
proposed method greatly improves the spectrum efficiency
and system fairness.

2. Problem Description

For a single-cell model, it is assumed that the cell includes𝑀 cellular users and 𝑁 D2D user pairs, and the number
of subchannels in this cell is 𝐿. The set of cellular users is𝐶 = {𝐶1, 𝐶2, . . . , 𝐶𝑀}, while the set of D2D user pairs is 𝐷 ={𝐷1, 𝐷2, . . . , 𝐷𝑁}. D2D user pairs can reuse the cellular users’
uplink resources. Compared with a user device, the base
station has stronger anti-interference ability and processing
power, and the amount of data in the cellular network is
asymmetric, where the uplink resources are not fully utilized
[19, 20].Therefore, the D2D communication discussed in this
paper chooses to reuse the uplink resources of the cellular
system.

Assuming that the location coordinates of each user
device are known to the base station, the channel gain
between any users and between the users and the base stations
can be calculated. In a cellular system model, BS is the base
station, and the 𝑖th D2D user pair D2D𝑖 reuses the uplink
resource of the 𝑗th cellular user. See Figure 1.

As shown in Figure 1, CU𝑗 send signals to the BS, where
the channel gain is 𝑔𝑗,𝐵. The transmitter D2D𝑖,𝑡𝑥 of the 𝑖th
D2D pairs D2D𝑖 sends signals to the receiver D2D𝑖,𝑟𝑥, where
the channel gain is 𝑔𝑖. When CU𝑗 transmits a signal, there
is interference to D2D𝑖,𝑟𝑥, where the channel gain is ℎ𝑖,𝑗.
Additionally, there are interferences to the base station when
D2D𝑖,𝑡𝑥 transmits a signal, where the channel gain is ℎ𝑖,𝐵 and
the Gaussian white noise is𝑁0.
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Figure 1: System model.

Regarding the road-loss model, the slow fading caused by
the multipath effect and the fast fading caused by the shadow
effect should also be considered. As such, the channel gains
of the D2D pairs’ transmitter D2D𝑖,𝑡𝑥 to the base station and
CU𝑗 to D2D𝑖,𝑟𝑥 can be expressed as

ℎ𝑖,𝐵 = 𝐾 ⋅ 𝛿𝑖,𝐵 ⋅ 𝜉𝑖,𝐵 ⋅ 𝑑−𝛼𝑖,𝐵 , (1)

ℎ𝑖,𝑗 = 𝐾 ⋅ 𝛿𝑖,𝑗 ⋅ 𝜉𝑖,𝑗 ⋅ 𝑑−𝛼𝑖,𝑗 . (2)

Among them, 𝐾 is the road-loss constant and 𝛼 is the road
loss index, which are both determined by the cellular system
environment. 𝑑𝑖,𝐵 is the distance from D2D𝑖,𝑡𝑥 to the base
station, and 𝑑𝑖,𝑗 is the distance fromCU𝑗 to D2D𝑖,𝑟𝑥. 𝛿𝑖,𝐵 is the
fast fading gain from D2D𝑖,𝑡𝑥 to the base station, which has
an exponential distribution, 𝛿𝑖,𝑗 is the fast fading gain from
CU𝑗 to D2D𝑖,𝑟𝑥, which also has an exponential distribution,𝜉𝑖,𝐵 is the slow fading gain from D2D𝑖,𝑡𝑥 to the base station,
which has a logarithmic distribution, and 𝜉𝑖,𝑗 is the slow
fading gain fromCU𝑗 toD2D𝑖,𝑟𝑥, which also has a logarithmic
distribution.

The foregoing description shows that there are three kinds
of interference in the considered scenario: (1) interference
from the D2D transmitter to the cellular system; (2) inter-
ference from the cellular users to the D2D receiver; and (3)
interference between D2D pairs sharing the same spectrum
resources. The problem to be solved in this paper is to
establish a cellular resource reuse state system model under
the consideration of all three kinds of interference and use it
to determine the best resource allocation plan.

3. Resource Allocation Scheme Satisfying
System QoS

3.1. D2D User Pairs Delimit Communication Restricted Areas.
As a D2D user reuses the upstream resource of a cellular user,
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Figure 2: Cellular users in relation to the limited D2D communica-
tion area and the reusage area.

the closer the D2D user is to the base station, the greater the
amount of interference is imparted to the BS receiving the CU
(cellular user) signals. Therefore, to reduce the interference,
we propose an improvement to the total throughput of the
system while also reducing the computation complexity; we
suggest restricting the size of the D2D communication area.
In this area, D2D is considered to contribute a large amount
of interference to the base station. Out of this area, any
interference from D2D to the base station can be ignored.
Assuming that 𝑃𝑑max is the maximum transmission power of
all D2D users, 𝐼𝑑,𝐵 indicates the interference threshold value
of all D2D users to the base station, which must satisfy

𝐼𝑑,𝐵 ≥ 𝑃𝑑max ⋅ ℎ𝑖,𝐵. (3)

The interference of all D2D users to the base station must
be less than this threshold value; otherwise, it will cause
more serious interference to the base station, so that cellular
users cannot communicate effectively. Among them, 𝐼𝑑,𝐵 is
obtained via long-term observations of a cellular cell. By
combining (1) and (3), we can solve for the radius 𝑅1, which
is the radius of D2D communication limited area:

𝑑𝑖,𝐵 ≥ [𝑃𝑑max ⋅ 𝐾 ⋅ 𝛿𝑖,𝐵 ⋅ 𝜉𝑖,𝐵𝐼𝑑,𝐵 ]𝛼
−1

= 𝑅1. (4)

Therefore, the limited D2D communication area is a circular
area of radius 𝑅1 with the BS at the center (see Figure 2).
When the base station receives a request to establish a D2D
link, the base station first determines whether the D2D
transmitter is in the D2D communication area, and if it is,
then this prohibits the establishment of D2D link.

3.2. Cellular Users Are Restricted to the Reusage Area. We can
see from Figure 1 that when D2D users and cellular users use
the same uplink resources, there will be interference from
CU𝑗 to D2D𝑖,𝑟𝑥, where the closer the distance between them

is, the greater the interference will become. Therefore, we
propose to delineate a restricted reusage area for the cellular
users to reduce this kind of interference. Assuming that𝑃𝑐max represents the maximum transmit power of the cellular
users, 𝐼𝑐,𝑑 represents the threshold value of the cellular users’
interference to the D2D users. Hence, the total imparted
interference from all cellular users to the D2D users must
be less than this threshold value; otherwise the D2D users
cannot communicate normally. That is to say, the following
formula should be satisfied:

𝐼𝑐,𝑑 ≥ 𝑃𝑐max ⋅ ℎ𝑖,𝑗. (5)

Among them, 𝐼𝑐,𝑑 is determined by long-term observations of
cellular cells. If we combine (2) and (5), we can calculate the
restricted area radius 𝑅2 of the cellular users:

𝑑𝑖,𝑗 ≥ [𝑃𝑐max ⋅ 𝐾 ⋅ 𝛿𝑖,𝑗 ⋅ 𝜉𝑖,𝑗𝐼𝑐,𝑑 ]𝛼
−1

= 𝑅2. (6)

So, the limited, reusage area for a cellular user is a circle with
radius 𝑅2, where D2D𝑖,𝑟𝑥 is located at the center (Figure 2).
Any cellular users in this area are not selected as potential
reusage objects by any D2D pairs.

3.3. System Model Establishment. To satisfy all users QoS
requests, we must ensure that the D2D users and cellu-
lar users reach their respective minimum SINR (signal-to-
interference-plus-noise ratio). For device𝐾 in the cellular𝑚,
the SINR of the device when communicating is

SINR (𝑚, 𝑘) = 𝑃𝑅 (𝑚, 𝑘)𝐼 (𝑚, 𝑘) + 𝑃𝑛 , ∀𝑚, 1 ≤ 𝑚 ≤ 𝑀. (7)

Among them, 𝑃𝑅(𝑚, 𝑘) = 𝑃𝑇(𝑚, 𝑘) ⋅ 𝐺𝑇(𝑚, 𝑘) indicates the
valid signal strength that device 𝐾 receives from cellular 𝑚,𝑃𝑇(𝑚, 𝑘) is the transmission power of each base station RB
(resource block),𝐺𝑇(𝑚, 𝑘) is the channel gain between the BS
and the device, and 𝐼(𝑚, 𝑘) is the summed interference from
all other devices.

The goal is to maximize the system’s throughput:

max ( 𝑁∑
𝑖=1

log2 (1 + 𝛾CU𝑗) + 𝐾∑
𝑗=1

log2 (1 + 𝛾DU𝑖)) (8)

s.t. 𝛾CU𝑗 = 𝑃𝑐𝑗ℎ𝑐𝑗,𝐵∑𝑘𝑖=1 𝑃𝑑𝑖 ℎ𝑑𝑖,𝑐𝑗𝑥𝑖,𝑗 + 𝑁0 ≥ SINR𝑐min,
∀𝑗 ∈ 𝐶,

(8a)

𝛾DU𝑖
= 𝑃𝑑𝑖 ℎ𝑑𝑖,𝑑𝑖∑𝑘𝑗=1,𝑙 ̸=𝑖 𝑃𝑑𝑙 ℎ𝑑𝑙,𝑑𝑖𝑥𝑙,𝑖 + ∑𝑁𝑗=1 𝑃𝑐𝑗ℎ𝑐𝑗,𝑑𝑖𝑥𝑖,𝑗 + 𝑁0
≥ SINR𝑑min, ∀𝑖 ∈ 𝐷,

(8b)

0 ≤ 𝑃𝑐𝑗 ≤ 𝑃𝑐max, ∀𝑖 ∈ 𝐶, (8c)
0 ≤ 𝑃𝑑𝑖 ≤ 𝑃𝑑max, ∀𝑗 ∈ 𝐶. (8d)
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Among them, 𝛾CU𝑗 represents the actual SINR of the cellular
users, and 𝛾DU𝑖 represents the actual SINR of the D2D users.𝑃𝑐𝑗 and 𝑃𝑑𝑖 , respectively, represent the actual transmission
power of the cellular users 𝑗 and the D2D users 𝑖, while ℎ𝑐𝑗,𝐵
indicates the channel gain between the cellular users 𝑗 and
the base station. The model is 128.1 + 37.6 ⋅ lg𝐷, where 𝐷
is the distance between the cellular users and the BS in units
of Km. ℎ𝑑𝑖,𝑑𝑖, ℎ𝑑𝑙,𝑑𝑖, ℎ𝑐𝑗,𝑑𝑖, and ℎ𝑑𝑖,𝑐𝑗, respectively, represent the
channel gain between users, where the model is 10 ⋅ lg𝐷4 and𝐷 is the distance between two users in units of m. 𝑥𝑖,𝑗 is a
binary value: if users 𝑖 and 𝑗 share the same resources, 𝑥𝑖,𝑗 =1; otherwise 𝑥𝑖,𝑗 = 0. Finally, 𝑃𝑐max and 𝑃𝑑max, respectively,
represent the minimum SINR of a cellular user and a D2D
pair when they communicate normally.

The foregoing objective function represents the max-
imum throughput of the complete system. The first two
restricted conditions (see (8a) and (8b)) ensure that cellular
users and D2D users meet their QoS needs. Only those D2D
users that satisfy these two conditions can be connected to the
network at the same time. The last two restricted conditions
(see (8c) and (8d)) indicate that the transmission power of
the cellular and D2D users should not exceed the maximum
transmission power.

3.4. D2D Pair Clustering to Solve the Problem of Interference
between D2D Pairs and Each Other. In cellular communi-
cation systems, there is interference between D2D pairs and
each other. To effectively use the available system resources,
it is necessary to reduce this kind of interference by grouping
D2D pairs into clusters. It is considered that, in the same
cluster, the interference between D2D pairs and each other
can be ignored, and it is possible to reuse resources for
the same CU. As their location coordinates are known, the
distance between the D2D pairs can be calculated.The closer
the distance betweenD2Dpairs is, the greater the interference
becomes; that is, the distance between D2D pairs is inversely
proportional to the interference value. The reciprocal of the
distance value is used to represent of the interference, where
a matrix of interference values between the D2D pairs can
be formed. Then, the 𝐾-means clustering method is used to
divide the D2D clusters according to their interference value
in thematrix. Assuming that the total number of D2D pairs is𝑁, all D2D devices are grouped as𝑋 = {𝑥(𝑖), 𝑖 = 1, 2, . . . , 𝑁}.
After clustering, 𝐾𝐶 clusters are formed and recorded as 𝐶 ={𝑐(𝑗), 𝑗 = 1, 2, . . . , 𝐾𝐶}. The specific algorithm process is as
follows:(1)Randomly select the initial cluster centers of𝐾𝐶 as𝑈 ={𝑢(𝑗), 𝑗 = 1, 2, . . . , 𝐾𝐶}.(2)The distance between samples is calculated, and their
interference value in thematrix is formed from the reciprocal
of the distance value, and the sample is added to the cluster
with the smallest interference value.(3)Calculate the summed square distance between points
in cluster 𝑐(𝑗) and the cluster center 𝑢(𝑗), as well as the total
summed square distance:

𝐽 [𝑐 (𝑗)] = ∑
𝑥(𝑖)∈𝑐(𝑗)

󵄩󵄩󵄩󵄩𝑥 (𝑖) − 𝑢 (𝑗)󵄩󵄩󵄩󵄩2 ,

𝐽 (𝐶) = 𝐾𝐶∑
𝑗=1

𝐽 [𝑐 (𝑗)] = 𝐾𝐶∑
𝑗=1

𝑁𝑈𝐸∑
𝑖=1

𝑑𝑗𝑖 󵄩󵄩󵄩󵄩𝑥 (𝑖) − 𝑢 (𝑗)󵄩󵄩󵄩󵄩2 ,

𝑑𝑗𝑖 = {{{
1, 𝑥 (𝑖) ∈ 𝑐 (𝑗)
0, 𝑥 (𝑖) ∉ 𝑐 (𝑗) .

(9)

According to the least-square method and the Lagrange
principle, the cluster center 𝑢(𝑗) takes the average of each
sample point within the corresponding cluster 𝑐(𝑗).(4) According to these steps, we iterate and update the
cluster until 𝐽(𝐶) converges to aminimumvalue, whereby the
iteration is complete.

After iteration, we output the centers of the 𝐾𝐶 clusters{𝑢1, 𝑢2, . . . , 𝑢𝐾𝐶} and decide which D2D devices are included
in each cluster.

3.5. Resource Allocation of the D2D User Cluster under a QoS
Guarantee. Through the aforementioned steps, all D2D pairs
are divided into𝐾 clusters, each of which is called𝑔𝑘. Because
the interference arising from the D2D network is different
for each TTI (Transmission Time Interval), the number and
the size of the clusters are not fixed, which makes full use
of the instantaneous channel state information of the D2D
network. The main task of this section is to determine which
subchannel is assigned to which cluster.

Let us consider the following model for resource sharing:
the cellular users are allocated resources as a prior, and each
user occupies a cellular RB. A single D2D cluster can reuse
most of the cellular users’ spectrum resources; otherwise, a
cellular spectrum resource is only reused by a single D2D
cluster. The channel allocation is represented by the matrix𝑌 = [𝑦𝑘𝑛]. Element 𝑦𝑘𝑛 = 1 indicates that channel 𝑛 is
assigned to the D2D cluster 𝐾; otherwise, it is equal to 0.
The goal of this article is to find an allocation method 𝑌opt
to maximize the throughput of the whole system; that is,

𝑌opt = arg
𝑌∈𝐽

max∑
𝐾

∑
𝑛

𝑅𝑘𝑛 ⋅ 𝑦𝑘𝑛, (10)

among which 𝑅𝑘𝑛 represents the data rate of the cluster 𝐾 to
the RB𝑛. To ensure normal communication throughout the
original cellular network, in the actual resource allocation
stage, it is necessary to screen anyD2Dusers not onlymeeting
the D2DQoS request from each cluster and to also ensure the
normal communication of all cellular users and grant them
access to the network. Therefore, the D2D pairs in the same
cluster𝑔𝑘 are different, which shared different resource blocks
of the same cellular user. Cluster 𝑔𝑘𝑗Share is used to represent
a D2D set that can share RB𝑗 in cluster 𝑔𝑘.

For a particular RB, the screening process for the D2D
users that can eventually access the network is as follows:

(1) Initialization: consider the case of a particular cluster𝑔𝑘 sharing RB𝑗, and create two new clusters of 𝑔𝑘𝑗 and𝑔𝑘𝑗Share(2) for 𝑖 = 1 : 𝑀 (𝐼,GK) do
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calculate the distance 𝑑𝑖,𝑗 between CU𝑗 and D2D𝑖
on RB𝑗
calculate the distance 𝑑𝑖,𝐵 between D2D𝑖 and the
base station BS
calculating the SINR𝑑𝑖 of D2D𝑖
if D2D𝑖 satisfies SINR𝑑𝑖 ≥ SINR𝑑min and 𝑑𝑖,𝐵 ≥ 𝑅1
and 𝑑𝑖,𝑗 ≥ 𝑅2
put D2D𝑖 into cluster 𝑔𝑘𝑗

end if
end for

(3) for 𝑖 = 1 : 𝑀 (𝑖 ∈ 𝑔𝑘𝑗) do
calculate the interference value of D2D𝑖 to the
cellular user in RB𝑗

end for
Ascendingly sort the interference values of all D2D
users in 𝑔𝑘𝑗(4) for D2D users after sorting do

calculate the SINR of the cellular user after added
the D2D pairs
if the SINR of the cellular user satisfies SINR ≥
SINR𝑐min

break
end if
else
put this D2D user into cluster 𝑔𝑘𝑗Share

end else
end for

Step (2) filters the D2D pairs in cluster 𝑔𝑘 by considering
the interference between the D2D pairs and the base station
and from the cellular users to the D2D users. If a QoS
request cannot be fulfilled, we then obtain cluster 𝑔𝑘𝑗. Step(3) calculates the interference value of each D2D pair in
cluster 𝑔𝑘𝑗 and, according to the interference value sorts the
corresponding D2D users. Step (4) starts with the D2D pair
that has the minimum value of interference from cellular
users in cluster𝑔𝑘𝑗 and then calculates the SINRof the cellular
user when this D2D pair is shared RB𝑗. If the SINR is less
than the minimum SINR of the cellular user, the system does
not allow the D2D pair to share RB𝑗; otherwise, it puts the
D2D pair into cluster 𝑔𝑘𝑗Share. The system then considers the
D2D user with the second smallest interference value and
calculates these cellular users’ SINR. The entire process is
repeated until every D2D pair in 𝑔𝑘𝑗 has been calculated.
Finally, all D2D users in cluster 𝑔𝑘𝑗 which can share RB𝑗 are
obtained and are represented by the cluster 𝑔𝑘𝑗Share.

In this paper, we use throughput𝑅𝑗 to characterize the
throughput achieved by each cluster to each RB. Finally, we
construct a two-dimensional throughput𝑅𝑗 matrix based on
the cluster number and the RB number and allocate resources
for each cluster according to the constructed matrix.

The throughput𝑅𝑗 value of the cluster 𝑔𝑘 sharing RB𝑗 is
defined as

throughput𝑅𝑗

= [log2 (1 + 𝛾CU) +∑
𝑖

log2 (1 + 𝛾DU𝑖)] , (11)

𝛾DU𝑖 = 𝑃𝑑𝑖 ℎ𝑑𝑖,𝑑𝑖∑𝑗,𝑙 ̸=𝑖 𝑃𝑑𝑙 ℎ𝑑𝑙,𝑑𝑗 + 𝑃𝑐ℎ𝑐,𝑑𝑖 + 𝑁0 , ∀𝑖, 𝑙 ∈ 𝑔𝑘𝑗share, (12)

𝛾CU = 𝑃𝑐ℎ𝑐,𝐵∑𝑖 𝑃𝑑maxℎ𝑑𝑖,𝑐 + 𝑁0 , ∀𝑖 ∈ 𝑔𝑘𝑗share. (13)

Among them, 𝛾DU𝑖 is the D2D users’ SINR in cluster 𝑔𝑘𝑗share
in RB𝑗 and 𝛾CU indicates the cellular users’ SINR in RB𝑗 when
there is interference from the D2D users in cluster 𝑔𝑘𝑗share.

The specific resource allocation process is as follows:

(1) Initialize: according to (11), calculate the
throughput𝑅𝑗 of each cluster in each RB, and
then construct the throughput𝑅𝑗 matrix. Assuming𝑆 is the set of RBs that have not yet been allocated, 𝑗
shows a single RB, 𝑗 ∈ 𝑆.

(2) while (𝑆 ̸= 0):
In the throughput𝑅𝑗 matrix, find the maximum
throughput𝑅𝑗 value, and its corresponding RB𝑗
and cluster 𝑔𝑘𝑗share;
Allocate RB𝑗 to cluster 𝑔𝑘𝑗share;
Set all RB𝑗 corresponding to throughput𝑅𝑗 to−1,000.
𝑆 = 𝑆 − {𝑗};

End while
(3) Power distribution: the final transmission power of

each D2D pair 𝑖 is
𝑃𝑑𝑖
= 𝑃𝑑max(the number of RB that been allocated to D2D𝑖) ,

(14)

where the transmission power of cellular users is 𝑃𝑐 =𝑃𝑐max.

4. Simulation Results and Analysis

4.1. Simulation Parameters. A single-cell scenario with a
radius of 500m is considered, where all CUs and DUs are
randomly distributed uniformly in the cell. The D2D pairs
and CU are static, and each receiver and each transmitter
have a single antenna. In the simulation, it is assumed that
the amount of self-interference cancellation of the full duplex
D2D node is 110 dB [24], the antenna gain is 14.0 dBi [25],
the uplink bandwidth is set to 1.4MHz, and the resource
block RB is six. All parameters are shown in Table 1. The
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Table 1: Simulation parameters.

Parameter Parameter value
Radius of cellular users (Km) 0.5
Average distance of D2D pair (m) 25
System bandwidth (MHz) 1.4
RB bandwidth (KHz) 240
Number of cellular users 6
Number of D2D pairs 0, 10, 20, 30, 40, 50, 60, 70, 80
The maximum transmit power of cellular user (dBm) 23
The maximum transmit power of D2D pair (dBm) 10
Noise spectrum density (dBm/Hz) −174
Cellular link road-loss model (Km) [21–23] 128.1 + 37.6 lg𝐷
D2D link road-loss model (m) [21–23] 127 + 30 lg𝐷
Cellular user SINR threshold (dB) [0, 25] uniform distribution
D2D pair SINR threshold (dB) [0, 25] uniform distribution
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Figure 3: Influence of the radius of the D2D communication area
versus the average SINR of the system.

simulation was performed using Matlab, where the goal
of our proposed scheme is to determine the optimized
total system throughput and average SINR, which are then
compared with the full duplex random resource allocation
scheme of [18, 26] to verify its validity.

4.2. Verification Analysis

4.2.1. D2D Communication Restricted Area Verification. Fig-
ure 3 is a chart of the average SINR change of the system
for increasing radii of the D2D communication area. From
Figure 3, we can see that as the D2D communication area
radius increases from 0 to 150m, the average SINR increase
is not very obvious. However, when the radius exceeds 150m,
the average SINR of the system increases with an increase of
the radius of the D2D communication area. It can be seen
that, to reduce the interference from the D2D users to base
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Figure 4: Influence of the number of D2Dpairs on the total capacity
of the system.

station, it is necessary for the cell to delimit a restricted D2D
communication area. Under the experimental conditions set
in this paper, the radius of the restrictedD2D communication
area is ∼150m. At the same time, it can be seen from Figure 4
that the proposed algorithm is obviously better than the
resource block random allocation algorithm used by other
authors [18, 26].

4.2.2. Influence of the Number of D2D Pairs to the Total
System Throughput Verification. Figure 4 shows the total
system throughput of the two resource allocation schemes
as the number of D2D pairs increases. From this figure,
we can see that when the number of D2D pairs is <20,
the throughput of the proposed resource allocation scheme
is similar to that of the random allocation scheme. As the
number of D2D pairs increases, the total throughput of the
two schemes gradually increases, but the throughput of our
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Figure 5: CDFs of the system capacity for the two considered
schemes.

proposed scheme is significantly higher than that of the
random resource allocation scheme.

4.2.3. Comparison of the Cumulative Distribution of the
Total System Throughput. Figure 5 shows the cumulative
distribution functions (CDFs) of the total throughput of the
system for the two schemes. Since our method uses a 𝐾-
means algorithm to cluster the D2D pairs, where interference
can be ignored for each pair, and then allocates the optimal
RB to the D2D cluster, we are able to fully utilize the system’s
available and reusable RBs, and the number of D2D links
established in the cellular system is maximized. Therefore,
compared with the reference algorithm, the total throughput
of the system has been significantly improved.

5. Conclusions

We analyzed the status of D2D pairs that reuse the resources
of cellular users in the same 5G channel in a cellular
communication system to eliminate the interference of D2D
pairs to the base station, CU users to D2D receivers, andD2D
pairs with each other. We proposed several countermeasures
and solutions, where a function model was constructed to
maximize the system’s efficiency. To eliminate the interfer-
ence of D2D users to the base station, the concept of a limited
D2D communication area is proposed. The interference of
D2D users to the base station outside of the restricted area
is negligible. The concept of a limited reusage area to combat
the interference of CU users to D2D users is proposed. It is
possible for the D2D users to reuse the CU resource outside
of the restricted area. To address the interference between
D2Dpairs, we suggest using the interference intensity value to
the cluster D2D pairs based on a 𝐾-means algorithm, where
the larger the interference value is between D2D pairs, the
smaller the probability of being placed into a cluster is. In the
same cluster, the interference can be neglected between D2D

pairs; that is to say, they can reuse the same CU resources.
Then, we described the resource allocation algorithm, where
we allocated CU resource blocks to the clustered D2D pairs
and allocated the best RBs to D2D pairs. As demonstrated
with a simulation performed withMatlab, our method is able
to eliminate interference and improve the system’s overall
performance.
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Multiuser multiple input multiple output (MU-MIMO) wireless communication system provides substantial downlink throughput
in millimeter wave (mmWave) communication by allowing multiple users to communicate at the same frequency and time slots.
However, the design of the optimum beam-vector for each user to minimise interference from other users is challenging. In this
paper, based on the concept of signal-to-leakage plus noise ratio (SLNR), we analyze the ergodic sum-rate capacity using statistical
Eigen-mode (SE) and zero-forcing (ZF) models with Ricean fading channel. In the analysis, the orthogonality of channel vectors
between users is assumed to guarantee interference cancelation from other cochannel users. The impact of the number of antenna
elements on the achievable sum-rate capacity obtained by dirty paper coding (DPC) method considered as a nonlinear scheme
for approximating average system capacity is studied. A power iterative precoding scheme that iteratively finds the most dominant
eigenvector (optimum weight vector) for minimising cochannel interference (CCI), that is, maximising the SLNR for all users
simultaneously, is designed resulting in enhancement of average system capacity. The average system capacities achieved by the
proposed power iterative technique in this study compared with the singular value decomposition (SVD) method are in the ranges
of 5–11 bps/Hz and 1–6 bps/Hz, respectively.Therefore, the proposed power iterative method achieves higher performance than the
SVD regarding achievable sum-rate capacity.

1. Introduction

Millimeter wave (mmWave) communication which ex-
plores shorter propagation distance in frequency band of
20–40GHz is a key enabler for the fifth generation (5G)
mobile communication systems [1]. The mmWave commu-
nication also provides significant benefits to a variety of
applications such as vehicular communication, wire-able
networks, and autonomous robots [2]. In downlink trans-
mission for a MU-MIMO system, a base station (BS) serves

multiple users simultaneously in the same frequency and
time slot. Thus the throughput can be enhanced by spatial
multiplexing. However, the cochannel interference (CCI)
becomes a dominant factor in capacity due to nonorthogonal
signalling [3]. Hence, minimising CCI as much as possible
at the end users is of importance. CCI can be suppressed
by using linear precoders and decoders at transmitter and
receiver sides [4]. Additionally, the channel state information
(CSI) as well as partial information on the transmitter side
can be used to improve the system’s performance [5]. For all
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users served by the BS, the CSI should be known in advance at
the BS to support theCCIminimisationwhich is not available
at user’s end. Explicitly, the overhead on the system is reduced
in this approach because the channel information feedback is
not required [6, 7]. To perfectly cancel CCI at each end user,
the restriction on the system configuration is necessary. For
instance, the number of antenna elements at the BS should be
larger than the total number of antennas at the end users [7].
This assumption is usually valid for single antenna per user
which is generally adopted in the MU-MIMO system.

There are several studies that have been undertaken in
MU-MIMO downlink systems on how to minimise the CCI
problem related to CSI and analyze the achievable sum-rate
per user as well as the average system capacity. In [8], an
in-depth capacity analysis for nonorthogonal multiple access
(NOMA) mmWave massive MIMO systems was provided.
A simplified mmWave channel model was also explored by
extending the uniform random single-path (UR-SP) model
with the angle-of-arrival (AOA). Furthermore, the capacity
analysis was divided into high and low signal to noise ratio
(SNR) regimes, where the dominant factors for the signal
to interference plus noise ratio (SINR) were determined as
interference and noise. A multicast beamforming approach
was proposed in [9], where users locatedwithin the proximity
of the BS can receive two different data streams simultane-
ously, while those away can receive only one data stream. In
[7], a model was designed to transmit beamforming vectors
to maximise the signal to leakage ratio (SLR), minimising
transmission power which may cause interference to other
users. The model is not restricted to a certain number of
transmission antenna elements and can be extended to more
general scenarios. An asymptotic deterministic SLNR opti-
misation approach for regularized zero-forcing (RZF) con-
sidering perfect CSI and antenna correlation was proposed
[10]. It was found that when the users are homogeneously
distributed and the number of antenna elements is large
enough (𝑀 → ∞), the SLNR is asymptotically equal to SINR.
In [11], an efficient statistical Eigen-mode space division
multiple access (SE-SDMA) scheme for downlink ergodic
sum-rate analysis based on SLNRwas proposed. Tomaximise
the approximate ergodic sum-rate capacity, authors in [12]
designed an optimal beamforming vector for each user based
on a three-dimensional beamforming algorithm.The authors
in [3] focused on imperfect CSI scenario and developed a
robust SLNR approach for compensating performance degra-
dation caused by random CSI errors. In [13], a precoding
scheme for heterogeneous networks (Het-Nets)was proposed
based on SLNR under imperfect CSI scenario. In this case,
regularization parameter was used to “weight” the precoding
information for other cells (BSs).

In this paper based on the SLNR concept and Ricean
fading channel model with perfect CSI in MU-MIMO sys-
tems, the statistical Eigen-mode (SE) and zero-forcing (ZF)
models are derived. In addition, the average achievable sum-
rate by each user and the overall average system capac-
ity with different number of users are analyzed. Besides,
the expression of dirty paper coding (DPC) method as a
function of number of users (𝑈) and number of antenna
elements (𝑀) is addressed. Moreover, the impact of 𝑈 on

the average achievable sum-rate is demonstrated. The Ricean
fading channel with the line-of-sight (LOS) and scattering
components as channel model are adopted. We find that the
ergodic capacity of DPC is approximately free from channel
matrix which mainly depends on the number of BS antenna
elements and average transmission power.

Furthermore, by exploring the leakage signal criteria, we
propose a new design solution for precoding based on the
proposed power iteration technique. The technique finds the
optimum weight vector which maximises the SLNR, that
is, enhances the system capacity by obtaining the dominant
eigenvector for minimising the CCI. Finally, we compare
the proposed method with the conventional solutions such
as SVD. The numerical results demonstrate that significant
throughput performance can be achieved with the proposed
technique.

A comparative study of the proposed and SVD methods
regarding computation complexity and storage is also carried
out. The simplicity of the proposed algorithm is observed
in approximating only one eigenvalue of a matrix in a
sequence which is considerably more efficient as the number
of iterations increase. In comparison, the SVDhas to calculate
all eigenvectors and pick the one with the most significant
eigenvalue (the maximum eigenvalue), which requires larger
computation capability and storage capacity.

The contributions of this paper are in twofold:(1) The SE and ZF beam former models in Ricean
fading channel are examined based on SLNR instead of the
commonly used SINR and orthogonal condition of the beam
weight vector in MU-MIMO systems. The linear achievable
sum-rate capacity is investigated using these models to vali-
date the proposedmethod.Moreover, in nonlinear achievable
sum-rate capacity, the DPC technique regarding the impact
of the number of users and antenna elements on the ergodic
capacity is addressed. The results show that the number of
antenna elements has a significant contribution to the ergodic
capacity, and the DPC sum-rate capacity logarithmically
increases with the number of users.(2) A new optimum weight vector is developed based on
the proposed power iterationmethod, which allows each user
to maximise the SLNR and minimise the CCI from other
users.The proposedmethod comparedwith the conventional
SVD method shows that the proposed method can achieve
better performance with relatively low cost.

This paper is organized as follows. In Section 2, the MU-
MIMO downlink system is introduced. The beamforming
and leakage signal approaches are presented in Section 3.
In Section 4, the results and discussion of the study are
presented. Finally, the conclusion is drawn in Section 5.
The significant proofs of the algorithm are addressed in the
appendix.

In this paper, the superscript (∙)𝐻, (∙)𝑇 and (∙)∗ denote the
conjugate-transpose (Hermitian), transpose, and conjugate,
respectively. 𝐸{∙}, I𝑀, and 𝐶𝑁 are the expectation operator,
square identity matrix of size 𝑀 × 𝑀, and Gaussian random
complex numbers, respectively.



Wireless Communications and Mobile Computing 3

+
+

+

+

w1s1 (t)

w2s2 (t)

wKsK (t)

x(t)

h1w1

h2w1



hKw1


U

n1(t)

n2(t)

nK(t)

y1(t)

y2(t)

yK(t)

U

UK

Base Station (BS)
Leakage from U1 to others

Mobile users (K users)

Figure 1: Schematic diagram for leakage signals in MU-MIMO system model from the first user to all other users.

2. System Model

Consider the MU-MIMO system model shown in Figure 1.
The BS is equipped with 𝑀 uniform linear transmission
antennas that serve 𝑈 users simultaneously. Assume that
each user is equipped with a single antenna element [3].
Additionally, the number of the BS antenna elements is
assumed to be larger than that of users (𝑀 ≥ 𝑈); and the
power is equally allocated among all users [11, 12].

2.1. Signal Model. From the previous assumptions, the
received signal 𝑦𝑘 at 𝑘th user is given by

𝑦𝑘 = √𝑝𝑘h𝐻𝑘 w𝑘𝑥𝑘 + √𝑝𝑗 𝑈∑
𝑗=1,𝑗 ̸=𝑘

h𝐻𝑘 w𝑗𝑠𝑗 + 𝑛𝑘. (1)

The expression in (1) can be rewritten in a more simplified
form as

𝑦𝑘 = √𝑝𝑘 𝑈∑
𝑗=1

h𝐻𝑘 w𝑗𝑠𝑗 + 𝑛𝑘, (2)

where h𝑘 ∈ C1×𝑀 is the flat Ricean downlink channel
vector between the BS and the 𝑘th user. The weight vector
w𝑗 ∈ C𝑀×1 is unit normalised beamforming vector of user𝑗 and satisfies ‖w𝑗‖ = 1. Furthermore, the vector 𝑠𝑗 is the
transmitted data symbol of user 𝑗 with 𝐸[|𝑠𝑗|2] = 1. 𝑛𝑘 →𝐶𝑁(0, 𝜎𝑘) is unit normalised (𝜎2𝑘 = 1) complex additive white
Gaussian noise (AWGN). Moreover, 𝑝𝑘 is the transmission
power of the 𝑘th user under the constraint∑𝑈𝑘=1 𝑝𝑘 ≤ 𝑃. Since
the total transmission power (𝑃) is divided among all the
users equally, the average power can be written as 𝑝𝑘 = 𝑃/𝑈
for each user [3, 11, 12]. Consequently, the signal magnitude
of each user can be written as 𝑝|h𝐻𝑘 w𝑘| while the interference
of the 𝑘th user is determined by the sum of interference
from all other users. Hence, the interference can be denoted
as ∑𝑈𝑗=1,𝑗 ̸=𝑘 𝑝|h𝐻𝑘 w𝑗|2. Thus the SINR of the 𝑘th user can be
expressed as in (3) [12, 14]:

(Note: for simplicity we drop the “subscript 𝑘” from 𝑝𝑘 in
the rest of the paper).

SINR𝑘 = 𝑝 󵄨󵄨󵄨󵄨󵄨h𝐻𝑘 w𝑘󵄨󵄨󵄨󵄨󵄨21 + ∑𝑈𝑗=1,𝑗 ̸=𝑘 𝑝 󵄨󵄨󵄨󵄨󵄨h𝐻𝑘 w𝑗󵄨󵄨󵄨󵄨󵄨2 . (3)

The corresponding average achievable data rate for user 𝑘 can
be written as 𝑅𝑘 = 𝐸 [log2 (1 + SINR𝑘)] . (4)

By substituting (3) into (4), the average achievable sum rate
per user is given as in (5) [15, 16].

𝑅𝑘 = 𝐸{{{log2(1 + 𝑝 󵄨󵄨󵄨󵄨󵄨h𝐻𝑘 w𝑘󵄨󵄨󵄨󵄨󵄨21 + ∑𝑈𝑗=1,𝑗 ̸=𝑘 𝑝 󵄨󵄨󵄨󵄨󵄨h𝐻𝑘 w𝑗󵄨󵄨󵄨󵄨󵄨2)}}} . (5)

Subsequently, the overall system ergodic sum-rate capacity
can be written in bps/Hz as

𝑅system = 𝑈∑
𝑘=1

𝑅𝑘. (6)

2.2. Channel Model. In this subsection, we describe the
channel model as in [11, 12]. In the most recent studies
on mmWave communication, the Rayleigh fading channel
model is employed which faces difficulty in capturing the
fading variation in the presence of the LOS component.
Moreover, mmWave MU massive antenna system can be
used mainly in 5G hotpot scenarios in the LOS case. To
overcome the capturing problem in Rayleigh fading channel,
the Ricean fading channel is applied in this paper. Consid-
ering the Ricean fading channel model, the channel vector
has two components: LOS and Rayleigh random distribution
components.Thus, the channel vector can be expressed as [11]

h𝑘 = √ 𝐾𝑘𝐾𝑘 + 1h𝑘 + √ 1𝐾𝑘 + 1h𝑤,𝑘, (7)

where 𝐾𝑘 is the power ratio between the LOS component
and scattering components, also called Ricean𝐾-factor of the
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𝑘th user. Moreover, the channel vector h𝑤,𝑘 is the random
component, and the entries are independent and identical
distribution complex Gaussian random variables. Vector
h𝑘 (𝑘 = 1, 2, . . . , 𝑈) is the deterministic component of the
channelmean vector of the 𝑘th user. Based on the assumption
that the BS is equippedwith𝑀uniform linear array antennas,
the deterministic channel vector for each user can be written
as [17, 18]

h𝑘 = [1, 𝑒𝑗2𝜋𝜆−1𝑑 sin(𝜃𝑘) ⋅ ⋅ ⋅ 𝑒𝑗(𝑀−1)2𝜋𝜆−1𝑑 sin(𝜃𝑘)] , (8)

where 𝑑 is the space between two antenna elements, 𝜆 is the
wavelength of the signal, and 𝜃𝑘 is the angle of departure
(AoD) for the 𝑘th user, 𝜃𝑘 ∈ [−𝜋, 𝜋].
3. Beamforming and Leakage Signals

It is assumed that all users have a perfect instantaneous
knowledge of their channel vectors while the BS knows all
users channel vector including the channel mean vector.
Additionally, assuming𝑈 users, it is difficult to maximise the
average system capacity due to a couple of 𝑈 calculations
(capacity of each user) required. Therefore, it is hard to use
SINR directly to obtain the optimum beamforming vector(w𝑘). To overcome this problem, the SLNR can be easily
implemented to control the leakage signals from a specific
user to other users as shown in Figure 1. The SLNR of the𝑘th user can be written as in (9) by assuming unit normalised
Gaussian noise [4, 16]:

SLNR𝑘 = 𝑝 󵄨󵄨󵄨󵄨󵄨h𝐻𝑘 w𝑘󵄨󵄨󵄨󵄨󵄨21 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 󵄨󵄨󵄨󵄨󵄨h𝐻𝑗 w𝑘󵄨󵄨󵄨󵄨󵄨2 . (9)

Equations (3) and (9) have different denominators to define
SINR and SLNR. In (3), the user channel vector h𝑘 is used
with other users’ beamforming vectors w𝑗|𝑈𝑗=1, 𝑗 ̸= 𝑘 to
calculate SLNR of the 𝑘th user. While in (9) the 𝑘th user
beamforming vector w𝑘 is used with other users’ channel
vectors h𝑗|𝑈𝑗=1, 𝑗 ̸= 𝑘 to calculate SLNR of the 𝑘th user.
Besides, the lower bound (LB) on the average SLNR of the𝑘th user can be represented as 𝐸{SLNR𝑘} ≥ {SLNR𝑘}LB
demonstrated in [11, 16]:

SLNR𝑘 = {SLNR𝑘}LB= 𝑝w𝐻𝑘 h𝐻𝑘 h𝑘w𝑘1 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 w𝐻𝑘 h𝐻𝑗 h𝑗w𝑘{SLNR𝑘}LB ≜ 𝑝w𝐻𝑘 R𝑘w𝑘1 + 𝑝w𝐻
𝑘

∑𝑈𝑗=1,𝑗 ̸=𝑘 R𝑗w𝑘 .
(10)

In (10), we can have R𝑘 ≜ 𝐸{h𝐻𝑘 h𝑘}:
R𝑗 ≜ 𝐸 {h𝐻𝑗 h𝑗} = 𝐾𝑗𝐾𝑗 + 1R𝑗 + 1𝐾𝑗 + 1 I𝑀, (11)

where R𝑘 is a Hermitian matrix (channel correlation matrix)
which can be constructed as in (12), where R𝑗 ≜ h

𝐻

𝑗 h𝑗,
and h𝑗 is calculated in (8). Hence, R𝑘 of the 𝑘th user can
be decomposed regarding the deterministic component of
channel vector h𝑘 after normalisation by a factor √𝑀 [6].
Therefore, we can use the normalised version h𝑘/√𝑀 in the
decomposition of the channel correlation matrix as in

R𝑘 = ( h
𝐻

𝑘√𝑀 Ũ𝐻𝑘 )((((
(

𝐾𝑘𝑀𝐾𝑘 + 1 + 1𝐾𝑘 + 1 0 ⋅ ⋅ ⋅ 00 1𝐾𝑘 + 1 ⋅ ⋅ ⋅ 0... ... d
...0 0 ⋅ ⋅ ⋅ 1𝐾𝑘 + 1

))))
)

( h
𝐻

𝑘√𝑀̃
U𝑘

), (12)

where Ũ𝐻𝑘 is the orthogonal subspace of h
𝐻

𝑘 /√𝑀. Then
we can obtain the optimum beamforming vector which
maximises the lower bound of the SLNR as follows:

wopt
𝑘

= 1√𝑀h
𝐻

𝑘 for 𝑘 = 1, 2, . . . , 𝑈. (13)

On the other hand, to minimise the denominator of (9) we
have

h𝑗w
opt
𝑘

= 1√𝑀h𝑗h
𝐻

𝑘 = 0, 𝑗 ̸= 𝑘, 𝑗 = 1, 2, . . . , 𝑈, (14)

where vector wopt
𝑘

is orthogonal to (1/√𝑀)h𝐻𝑗 . Accordingly,
from (12) we have

w𝐻𝑘 R𝑘w𝑘 = 𝐾𝑘𝐾𝑘 + 1𝑀 + 1𝐾𝑘 + 1
w𝐻𝑘 R𝑗w𝑘 = 1𝐾𝑘 + 1 , for 𝑗 ̸= 𝑘. (15)

The maximum value of the lower bound can be achieved if
wopt
𝑘

is orthogonal to (1/√𝑀)h𝐻𝑗 . By substituting (15) in (10),
we have

{SLNR𝑘}max
LB = 𝑝 ((𝐾𝑘/ (𝐾𝑘 + 1))𝑀 + 1/ (𝐾𝑘 + 1))1 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 (1/ (𝐾𝑗 + 1)) . (16)
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In (16), the lower bound is directly affected by the number of
antenna elements𝑀, the Ricean factor𝐾, and the number of
users 𝑈. Assuming that the number of users is increased as𝑘 = 1 → 𝑈, taking 𝐾 = 0 and 𝐾 → ∞, the lower bounds of
SLNR are expressed approximately as (𝑝/(1 + 𝑝(𝑈 − 1)))|𝐾=0
and 𝑀 ∗ 𝑝|𝐾→∞, respectively. Therefore, it is seen that the
lower bound is independent of 𝑀 when 𝐾 = 0.
3.1. Analysis of Linear Achievable Rates by SE and ZF. In
this section, we evaluate the Ergodic sum-rate capacity of SE
obtained by (13) and (14) and assume that ZF capacity has
perfect CSI when calculating the mean gap loss between 𝑅SE

and 𝑅ZF. Based on the orthogonal beamforming condition in
(13) and (14), the achievable sum-rate capacity obtained by
the 𝑘th user is given by

𝑅SE
𝑘 = 𝐸{{{{{log2(1
+ 𝑝 󵄨󵄨󵄨󵄨󵄨󵄨(1/√𝑀) h𝑘h𝐻𝑘 󵄨󵄨󵄨󵄨󵄨󵄨21 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 󵄨󵄨󵄨󵄨󵄨󵄨(1/√𝑀) h𝑘h𝐻𝑗 󵄨󵄨󵄨󵄨󵄨󵄨2)

}}}}}
≈ 𝐸{{{log2(1 + 𝑝 󵄨󵄨󵄨󵄨󵄨h𝑘wopt

𝑘

󵄨󵄨󵄨󵄨󵄨21 + 𝑝∑𝑈𝑗=1,𝑗 ̸=𝑘 󵄨󵄨󵄨󵄨󵄨h𝑘wopt
𝑗

󵄨󵄨󵄨󵄨󵄨2)}}} .
(17)

The achievable sum-rate capacity by ZF is expressed as𝑅ZF
𝑘 = log2 (1 + 𝑝 󵄨󵄨󵄨󵄨󵄨h𝑘wZF

𝑘

󵄨󵄨󵄨󵄨󵄨) , (18)

wherewZF
𝑘 is the unit normalised beamforming vector, which

is selected as the 𝑘th column of the normalised matrix
w = H(HH𝐻)−1 with H = [h𝐻1 h𝐻2 ⋅ ⋅ ⋅ h𝐻𝑈] to suppress
the interference from all other users for |h𝑗wZF

𝑘 | = 0, if𝑘 ̸= 𝑗. Accordingly, the mean gap loss Δ𝑅ZF−SEwith perfect
instantaneous CSI is given byΔ𝑅ZF−SE = 𝑅ZF − 𝑅SE. (19)

From the orthogonal condition (1/√𝑀)h𝑗h𝐻𝑘 = 0|𝑗 ̸=𝑘 which
is addressed in (14), we neglect the interference from the other
users to the 𝑘th user regarding the signal component. In this
case the sum-rate capacity 𝑅SE used in (14) changes to the
loose bound sum-rate capacity of the 𝑘th user expressed as
[11]

𝑅SE
𝑘 ≥ 𝐸{log2 (1 + 𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1√𝑀h𝑘h

𝐻

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2)}
− 𝐸{{{log2(1 + 𝑝 𝑈∑

𝑗=1,𝑗 ̸=𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1√𝑀h𝑘h
𝐻

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2)}}} . (20)

Using (18) and (20), we rewrite (19) as the mean gap loss in
(21) asΔ𝑅ZF−SE

≤ 𝑈∑
𝑘=1

𝐸 {log2 (1 + 𝑝 󵄨󵄨󵄨󵄨󵄨h𝑘wZF
𝑘

󵄨󵄨󵄨󵄨󵄨2)}
− 𝐸{log2 (1 + 𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1√𝑀h𝑘h

𝐻

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2)}
+ 𝐸{{{log2(1 + 𝑝 𝑈∑

𝑗=1,𝑗 ̸=𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 1√𝑀h𝑘h
𝐻

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨2)}}} .
(21)

3.2. Nonlinear Achievable Rate Analysis by DPC. The BS
can serve all users simultaneously and achieve maximum
system capacity as much as possible as the CSI is known at
the BS. In MIMO systems, the system capacity obtained by
downlink strategy is called DPC. Practically, it is challenging
to implement DPC because the encoding and decoding have
high computations which is ineffective for large number of
users. The achievable sum-rate capacity of the DPC can be
written as [19]

𝑅DPC = max log(󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨1 + 𝑈∑
𝑘=1

𝑝h∗𝑘h𝑘󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨) ,
𝑝 ≥ 0, 𝑈𝑘=1 ≤ 𝑃. (22)

When the number of users is large, the DPC achievable sum-
rate capacity is approximately expressed as [19, 20]𝑅DPC = 𝑀 log(1 + 𝑃𝑀 log𝑈) . (23)

From (23), we can observe that the sum-rate capacity
increases linearly with the number of antenna elements.
However, the approximate achievable sum-rate capacity is a
nonlinear function of 𝑈. Therefore, the DPC is regarded as a
nonlinear model.

3.3. OptimumWeight Vector Formulation. In this subsection,
we find the solution for optimumweight vectorwopt, in which
the maximum SLNR can be achieved to guarantee that all
users have the ability to access the limited resources. For equal
transmission of power to all users in a given case, we need
to design w𝑘, 𝑘 = 1, 2, . . . , 𝑈 to maximise the SLNR for
each user at the same time minimise interference. Hence, the
optimum weight vector wopt

𝑘
= argmax(SLR𝑘) can be written

as follows:

wopt
𝑘

= argmax( 󵄩󵄩󵄩󵄩h𝑘w𝑘󵄩󵄩󵄩󵄩2∑𝑈𝑗=1,𝑗 ̸=𝑘 󵄩󵄩󵄩󵄩󵄩h𝑗w𝑘󵄩󵄩󵄩󵄩󵄩2) (24)

SLR𝑘 = 󵄩󵄩󵄩󵄩h𝑘w𝑘󵄩󵄩󵄩󵄩2∑𝑈𝑗=1,𝑗 ̸=𝑘 󵄩󵄩󵄩󵄩󵄩h𝑗w𝑘󵄩󵄩󵄩󵄩󵄩2 . (25)
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Step 1: Initial Inputs. number of users 𝑈;
number of iteration 𝑁;
initial non-zero vector X0;
Tolerance Tol.

Step 2: For 𝑘 = 1: 𝑈 //to construct the CICTM for each user;
Calculate h𝑤,𝑘 and h𝑘 as defined in Section 2.2;
Calculate for h𝑘 as in (7);
Construct the CICTM h̃𝑘 for each user as in (29);

End
Step 3: For 𝑘 = 1: 𝑈 //to compute wopt

𝑘
for each user.

Calculate matrix A for 𝑘th user as in (31)
Step 4: While 𝑖 ≤ 𝑁;

set: y𝑖 = Ax𝑖−1, and x𝑖 = y𝑖/𝛼𝑖; (normalisation)
“the value of x𝑖 is the scaled version of y𝑖”

if |𝛼𝑖 − 𝛼𝑖−1| ≤ Tol, then 𝑖 = 𝑁 + 1;
else, set 𝑖 = 𝑖 + 1;
end

Step 5: calculate the dominant eigenvector k1 ≈ x𝑖;
the dominant eigenvalue 𝜆1 = x∗𝑖 Ax𝑖/x∗𝑖 x𝑖;

End;
Step 6: SLNR maximise weight vector 󵱰w𝑘 = x𝑖;

End;
Step 7: Output: the optimum weight vector 󵱰w𝑘 for each user.

Algorithm 1: Steps for the proposed power iteration method.

Equation (24) is subjected to

Constraint 1: 󵄩󵄩󵄩󵄩w𝑘󵄩󵄩󵄩󵄩2 = 1, 𝑘 = 1, 2, . . . , 𝑈
Constraint 2: 󵄩󵄩󵄩󵄩󵄩h𝑗w𝑘󵄩󵄩󵄩󵄩󵄩2 = 0, 𝑗, 𝑘 = 1, 2, . . . , 𝑈, 𝑗 ̸= 𝑘. (26)

Consequently, the SLNR is written as

SLNR𝑘 = 󵄩󵄩󵄩󵄩h𝑘w𝑘󵄩󵄩󵄩󵄩21 + ∑𝑈𝑗=1,𝑗 ̸=𝑘 󵄩󵄩󵄩󵄩󵄩h𝑗w𝑘󵄩󵄩󵄩󵄩󵄩2 . (27)

Equation (27) is further written as

SLNR𝑘 = 󵄩󵄩󵄩󵄩h𝑘w𝑘󵄩󵄩󵄩󵄩21 + 󵄩󵄩󵄩󵄩󵄩h̃𝑘w𝑘󵄩󵄩󵄩󵄩󵄩2 , (28)

where h̃𝑘 is congregate interfering channel transfer matrix
(CICTM) of the 𝑘th user, which is an extended channel
matrix that excludes h𝑘 only for the 𝑘th user. Then h𝑘 is
written as

h̃𝑘 = [h1 h2 ⋅ ⋅ ⋅ h𝑘−1 h𝑘+1 ⋅ ⋅ ⋅ h𝑈−1 h𝑈]𝑇
⋅ ( 𝑈∑
𝑗=1
𝑗 ̸=𝑘

1 × 𝑀), (29)

where h̃𝑘 ∈ C𝑀×(𝑈−1)and h𝑘 ∈ C1×𝑀. The optimum weight
code vector can be derived from (28) as follows [21]:

wopt
𝑘

∝ max. eigenvector ((I𝑀 + h̃∗𝑘 h̃𝑘)−1 h∗𝑘h𝑘) , (30)

where I𝑀 is 𝑀 × 𝑀 square identity matrix.

The optimum weight code vector in (30) is called SVD
solution, which is determined from thematrix in (29). Some-
times, when calculating the maximum eigenvalues for the
given matrix, the dominant eigenvector does not correspond
to the optimum code weight vector. Hence, the eigenvalues
are put in ascending or descending order; then an optimum
vector corresponding to the most significant eigenvalue is
easily selected but at the expense of extra overhead to the
system [4, 7]. To enhance the system performance and
minimise the cost, a new approximation method expected
to improve the average user achievable sum-rate capacity is
proposed.

3.4. Proposed OptimumWeight Vector Design. Anewmethod
is developed based on power iteration method to find the
optimumweight vector.Themethod requires only oneweight
vector during implementation. Equation (30) is modified
and adopted as the main matrix in the proposed power
approximation method as follows:

A = (I𝑀 + h̃∗𝑘 h̃𝑘)−1 h∗𝑘h𝑘. (31)

3.4.1. Power Approximation Method. The power approxima-
tion method generates a sequence of vectors A𝑖x0, where
x0 is a nonzero initial selected vector. By normalising these
sequence vectors under conditions stated in Section 3.4.3, the
vector converges to the dominant eigenvector corresponding
to the most significant eigenvalue. The normalisation is used
to ensure that the most significant component of the given
iteration is equal to one [22].The steps in the proposed power
iteration method are given in Algorithm 1.
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This algorithm is summarised in a sequence of iterations
as follows:

x𝑖 = 1𝛼𝑖Ax𝑖−1, (32)

where 𝛼𝑖 is the component (magnitude) of vector Ax𝑖−1.
Before proceeding to the next iteration, it is necessary
to scale down (normalised) the sequence vectors in each
approximation so as to keep the largest component at unity.

3.4.2. Convergence of the Algorithm. The matrix A is 𝑛 × 𝑛
square matrix with 𝑛 eigenvalues [𝜆1, 𝜆2, 𝜆3, . . . , 𝜆𝑛], which
are in descending order as |𝜆1| > |𝜆2| ≥ |𝜆3| ⋅ ⋅ ⋅ ≥ |𝜆𝑛|.
With the initial vector X0 chosen, the sequences {X𝑘 =[𝑥(𝑘)1 𝑥(𝑘)2 ⋅ ⋅ ⋅ 𝑥(𝑘)𝑛 ]𝑇} and {𝑐𝑘} are recursively generated by
the relations Y𝑘 = AX𝑘 and X𝑘+1 = (1/𝑐𝑘+1)Y𝑘, where𝑐𝑘+1 = 𝑥(𝑘)𝑗 and 𝑥(𝑘)𝑗 = max1≤𝑖≤𝑛{|𝑥(𝑘)𝑖 |}. These sequences
converge to the dominant eigenvector V1 and eigenvalue 𝜆1,
respectively, as lim𝑘→∞X𝑘 = V1 and lim𝑘→∞𝑐𝑘 = 𝜆1. The
proof of convergence is referred to in Appendix A.

3.4.3. The Speed of Convergence. Referring to (A.6) in
Appendix A, we observe that the coefficient of V𝑗 in the
sequence X𝑘 goes to zero, which is proportional to (𝜆j/𝜆1)𝑘;
the convergence speed of sequence {X𝑘} to V1 is governed
by (𝜆2/𝜆1)𝑘. Therefore, the rate of convergence and the
convergence of the constants {𝑐𝑘} to 𝜆1 are linear. For any
linear convergent sequence {𝑝𝑘}, we can use the Aitken Δ2
technique which is used to make the linearly convergent
sequences fast.The new convergence of the sequence {𝑝𝑘} can
be written as

𝑝𝑘 = (𝑝𝑘+1 − 𝑝𝑘)2𝑝𝑘+2 − 2𝑝𝑘+1 + 𝑝𝑘 . (33)

The convergence property of the algorithm is given by the
following.

	eorem 1. Assume that there is one and only one eigenvalue𝜆1 of A, and 𝜆1 is semisimple; then either the initial vector x0
which has no component in the invariant subspace associated
with 𝜆1 or the sequence of vectors generated by the algorithm
converges to the eigenvector associated with 𝜆1and 𝑖 and
converges to 𝜆1. The proof is shown in Appendix B.

Definition 2. Eigenvalue 𝜆1 of matrix A is semisimple with
the degree of 𝑛 if it has a geometric multiplicity one and
algebraic multiplicity 𝑛. The vector A𝑖x0 is normalised by a
specific scalar 𝛼𝑖 to make the most significant component
of the vector unity. The initial vector x0 is decomposed as
follows:

𝑥0 = 𝑝∑
𝑗=1

𝑃𝑗x0, (34)

where 𝑃𝑗, 𝑗 = 1, 2, . . . , 𝑝, are the spectral projectors associ-
ated with the eigenvalues 𝜆𝑗, 𝑗 = 1, 2, . . . , 𝑝.

From the formula A𝑃𝑗 = 𝑃𝑗(𝜆𝑗Ι + D𝑗), the power can be
written asA𝑖𝑃𝑗 = 𝑃𝑗(𝜆𝑗Ι+D𝑗)𝑖, where Ι is the identity matrix
andD𝑗 is the diagonal matrix. Consequently, we have

x𝑖 = 1𝛼𝑖A𝑖 𝑝∑𝑗=1𝑃𝑗x0 = 1𝛼𝑖 𝑝∑𝑗=1A𝑖𝑃𝑗x0
= 1𝛼𝑖 𝑝∑𝑗=1𝑃𝑗 (𝜆𝑗Ι + D𝑗)𝑖 x0. (35)

Referring to the Definition 2, D1 = 0 because 𝜆1 is a
semisimple eigenvalue. Thus, we obtain

x𝑖 = 1𝛼𝑖 𝑝∑𝑗=1𝑃𝑗 (𝜆𝑗𝑃𝑗 + D𝑗)𝑖 x0
= 1𝛼𝑖 (𝜆𝑘1𝑃1x0 + 𝑝∑

𝑗=2

𝑃𝑗 (𝜆𝑗𝑃𝑗 + D𝑗)𝑖 x0)
= 𝜆𝑖1𝛼𝑖 (𝑃1x0 + 𝑝∑

𝑗=2

1𝜆𝑖1 (𝜆𝑗𝑃𝑗 + D𝑗)𝑖 𝑃𝑗x0) .
(36)

The spectral radius of each operator (𝜆𝑗𝑃𝑗 + D𝑗)𝜆−1 < 1 and|𝜆𝑗𝜆−11 | < 1 means that the 𝑖th power will converge to zero.
Theorem 1 is true when 𝑃1x0 = 0. However, if 𝑃1x0 ̸= 0,
x𝑖 converge to normalise 𝑃1x0 so that the most significant
component is one. Meanwhile, the scalar 𝛼𝑖 converges to the
eigenvalue 𝜆1, which is an immediate consequence in the
form

Ax𝑖−1 = 𝛼𝑖x𝑖. (37)

Thus, the sequence of vectors x𝑖 is proven to converge to the
optimum weight vector which maximises the SLNR in (28).
The optimum weight vector is equal to the vector x𝑖:󵱰w = x𝑖. (38)

The result in (38), which is the main objective of this paper,
maximises the 𝑘th user SLNRwhen substituted in (28) to find
SLNR𝑘.

3.5. Cost Analysis. In this subsection, the cost function is
analyzed regarding storage space required for the proposed
power iteration technique and SVD method. Referring to
(30), the value (I𝑀 + h̃∗𝑘 h̃𝑘)−1h∗𝑘h𝑘 results in a new square
matrix with dimension𝑀×𝑀, where𝑀 denotes the number
of antenna elements. Therefore, finding wopt

𝑘
for each user by

using the solution of SVD in (30), we need to find at least
two matrices, 𝑀 × 𝑀 left eigenvectors matrix, 𝑀 × 𝑀 right
eigenvectors matrix, and 𝑀 diagonal eigenvalues from the
original 𝑀 × 𝑀 matrix. On the other hand, the required
storage memory for the 𝑘th user is equal to the size of three
matrices in addition to the original square matrix. Hence,
the total storage becomes (3𝑀2 + 𝑀) ∗ 𝑈 (full SVD), where𝑈 is the number of users. Then, the determination of the
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Figure 2: Storage capacity required by the proposed technique and
the SVD (full SVDand reduced SVD)method regarding the number
of antenna elements.

optimum weight vector can be from the right eigenvector
or left eigenvector based on the corresponding maximum
eigenvalue. Furthermore, we can reduce the size by taking
only one side eigenvectors matrix (left or right) to save𝑀2 redundant storage size. Thus the reduced new storage
capacity can be written as (2𝑀2 + 𝑀) ∗ 𝑈 (reduced SVD).

Similarly, only the original square matrix with dimension𝑀 × 𝑀 and a vector with size 𝑀 × 1 is required in the
proposed power approximation method. In this case, there
is no need for storing the previous iteration result as it can be
overwritten up to the last iteration or reaches the determined
tolerance. Thus, the required storage for the power iteration
technique is (𝑀2 + 𝑀) ∗ 𝑈 which is much less than full and
reduced SVDs.

Figure 2 shows the storage capacity required in the
proposed power iteration technique and SVDmethod. From
Figure 2, it is observed that the number of antenna elements
has a significant effect on the cost function. However, the
proposed method has much less storage space compared to
SVD hence recommended for a massive MIMO with large
antennas.

4. Simulation Results and Discussion

In this section, the numerical results are presented with the
following assumptions: the equal power allocation strategy(𝑝𝑘 = 𝑃/𝑈) and noise effect (𝜎𝑘 = 𝜎) for all users are the same
[23]. Additionally, the AoD for each user is in a horizontal
direction with the uniform distribution in the range [−𝜋, 𝜋].
Furthermore, for each user the Ricean 𝐾-factor has uniform
distribution in the range of [𝐾min, 𝐾max], where𝐾min = 10 dB
and𝐾max = 30 dB.Moreover, the number of users is increased
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Figure 3: Sum-rate capacities for SE on the number of antenna
elements.

up to 𝑈 = 32. For SE and ZF analysis 𝑀 = 16, 32, 64,
and 128 are selected as the numbers of transmission antenna
elements. The ergodic sum-rate capacities of SE and ZF are
obtained in Figures 3 and 4. In Figure 3. It is observed that
the average system capacity of SE is, respectively, directly and
inversely proportional to the number of antenna elements
and number of users. Moreover, when the number of users is
small, the impact of 𝑀 on the SE capacity is more significant
and conversely when the numbers are large, the impact is less
significant. The SE achieves average capacities approximately
in the range of 1.6–6.2 bps/Hz. At maximum number of users(𝑈 = 32) with 𝑀 = 16, the corresponding SE sum-
rate capacity is less than 1.6 bps/Hz. This is because each
user faces CCI interference which is considered as sum of
leakage signals from all other cochannel users. Referring to
(17), it is validated that as the number of users increases, the
overall contributed interference to the 𝑘th user also increases.
Therefore, the increase in the denominator in (17) causes a
reduction in the sum-rate capacity per user resulting in an
average lower system capacity.

In Figure 4, it is shown that the ergodic sum-rate capac-
ities obtained by ZF are directly proportional to the number
of antenna elements. By referring to (18) the interference
from the other users is perfectly suppressed by the orthogonal
beamforming for user channel and weight vectors. These
vectors are orthogonal to each other based on the condition|h𝑗wZF
𝑘 | = 0 in which 𝑘 ̸= 𝑗.
Moreover, the number of antenna elements 𝑀 has much

contribution on the average system capacity with ZF than SE
as comparatively shown in Figures 4 and 3. The maximum
achievable capacities are 105 bps/Hz and 6.2 bps/Hz for ZF
and SE, respectively, because of the interference effects on SE.

Figure 5 shows the upper bound of themean-rate capacity
gap loss (𝑅ZF −𝑅SE) between ZF and SE. Since the number of
users tends to be large, the difference in themean rate capacity
is most likely the ZF capacity, because the capacity obtained
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Figure 4: Achievable sum-rate capacities for ZF beamforming on
the number of antenna elements.
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Figure 5: Mean gap loss capacity (𝑅ZF −𝑅SE)which is the difference
between ZF and SE capacities.

by ZF is close to 15 times that obtained by SE, which precisely
affects the mean-gap loss. Nevertheless, when the number of
users increases, the difference tends to be very big. It is explicit
that when the number of users is large under any number of
antenna elements, the achievable sum-rate capacity obtained
by SE almost tends to be zero. However, the ergodic sum-rate
capacity achieved by ZF positively increases with increase in
the number of antenna elements and tends to a fixed level
with large number of users. Meanwhile, the achievable sum-
rate capacity is not profoundly affected by the number of
users.

As shown in Figures 3–5, the simulation results depict
that the ZF seems ideal due to a perfect cancellation of CCI.
However, in practice SE is dominant and realisable because
it is challenging to ensure that the interference is perfectly
cancelled by the orthogonal condition between the channel

5 10 15 20 25 30 350
Number of Users (U)

M = 16 element
M = 32 element

M = 64 element
M = 128 element

0

50

100

150

200

250

300

Su
m

 R
at

e C
ap

ac
ity

 (b
ps

/H
z)

Figure 6: Achievable sum-rate capacities for DPC on the number of
antenna elements.

vector and optimum weight vector. Thus, carefully focusing
the beams alignment between the BS and the users a high
system capacity can be achieved.

In Figure 6, the antenna elements 𝑀 = 16, 32, 64, and
128 are considered with number of users up to 32 to satisfy𝑀 ≥ 𝑈 and show the effects of 𝑀 < 𝑈 (𝑀 = 16). The results
show that the ergodic sum-rate capacity achieved by DPC is
nonlinearly increased with the number of users. Moreover, if
the number of users is fixed to 25, at the number of antenna
elements 16, 32, 64, and 128, respectively, the corresponding
ergodic sum-rate capacities are 80, 105, 175, and 250 bps/Hz,
respectively. As the number of users is increased, the system
capacity also increases. Thus, comparing the DPC with ZF
and SE achieves much higher capacity with large number of
antenna elements and users; hence it can provide multiuser
diversity gain.

The results in Figures 7–9 are used to comparatively
evaluate the proposed power iteration method in (38) and
the SVD method in (30). In Figure 7, it is observed that
the SLNR in the range −10.5 dB to 37 dB achieves the system
capacities in the range 5 bps/Hz to 11 bps/Hz for the proposed
method. On the other hand, the SVD method has the SLNR
in the range −15 dB to 31 dB that achieves system capacities in
the range 1 bps/Hz to 6 bps/Hz. It is clear that the proposed
method has the average throughput nearly two times that of
SVD. The main reason is due to the efficiency of the weight
vector obtained in the proposed method that is capable of
minimising the CCI much more than in the SVD. It is
expected that the system capacity can be enhanced in case
the BS has more antenna elements but at a higher simulation
time. Additionally, the SVD method has a drawback in
finding the exact eigenvector corresponding to the dominant
eigenvalue in which the eigenvalues are not always in an
orderly way (ascending or descending), which limits the SVD
performance. Figures 8 and 9 are theCumulativeDistribution
Function (CDF) and Probability Density Function (PDF) of
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Figure 7: Sum-rate capacities for the proposed power iteration
technique and SVD method.
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Figure 8: CDFs of the SLNRs for the proposed power iteration and
SVD methods.

SLNR of the proposed and SVD methods, respectively. It is
observed that the proposed method achieves a much better
SLNRs than the SVD method.

5. Conclusion

In this paper, based on MU-MIMO with massive antennas,
the ergodic capacity for linear sum-rate analysis including
SE and ZF beamforming based on SLNR technique is
investigated. In addition, the nonlinear sum-rate analysis
using DPC in Ricean fading channels based on SLNR was
undertaken. A new method is proposed to find an optimum
beam weight vector by exploring the power iteration method
using eigenvector approximation. The number of antenna
elements is selected up to 128 dramatically increasing the
system capacity. By way of simulation, the most significant
dominant eigenvector to maximise SLNR as well as minimise
the CCI is obtained. By comparing with the SVD method,
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Figure 9: PDFs of the SLNRs for the proposed power iteration and
SVD methods.

the proposedmethod achieves higher performance regarding
mean achievable sum-rate capacity per user. The throughput
of the proposedmethod is in the range of 5 bps/Hz–11 bps/Hz,
while that of SVD in the range of 1 bps/Hz–6 bps/Hz. There-
fore, the proposed method can provide significant system
capacity enhancement. In future work, the proposed power
iteration technique is recommended for a 5G MU massive
antenna system.

Appendix

A. Proof of the Algorithm

As we know, matrixA has 𝑛 eigenvalues and 𝑛 corresponding
eigenvectors V𝑗 (𝑗 = 1, 2, . . . , 𝑛) which are linearly inde-
pendent and normalised and form a basis for 𝑛 dimensional
space. Thus, let the initial vector X0 be written as the linear
combination form as

X0 = 𝑏1V1 + 𝑏2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛V𝑛. (A.1)

Assume vector X0 = [𝑥1 𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛]𝑇 is chosen in such
a way that 𝑏1 ̸= 0, and the elements of X0 are scaled so
that max1≤𝑗≤𝑛{|𝑥𝑗|} = 1. As the vectors {V𝑗}𝑛𝑗=1 represent
the eigenvectors of the matrix A, the multiplication AX0 is
followed by normalisation as follows:

Y0 = AX0 = A (𝑏1V1 + 𝑏2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛V𝑛)= 𝑏1AV1 + 𝑏2AV2 + ⋅ ⋅ ⋅ + 𝑏𝑛AV𝑛= 𝑏1𝜆1V1 + 𝑏2𝜆2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛𝜆𝑛V𝑛= 𝜆1 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆𝑛𝜆1)V𝑛) .
(A.2)

Moreover, also we have

X1 = 𝜆1𝑐1 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆𝑛𝜆1)V𝑛) . (A.3)
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After 𝑘 iterations we arrive at

Y𝑘−1 = AX𝑘−1 = A
𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1V1

+ 𝑏2 (𝜆2𝜆1)𝑘−1 V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆2𝜆1)𝑘−1 V𝑛)= 𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1AV1 + 𝑏2 (𝜆2𝜆1)𝑘−1 AV2 + ⋅ ⋅ ⋅
+ 𝑏𝑛 (𝜆2𝜆1)𝑘−1 AV𝑛) = 𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1𝜆1V1
+ 𝑏2 (𝜆2𝜆1)𝑘−1 𝜆2V2 + ⋅ ⋅ ⋅ + 𝑏𝑛 (𝜆2𝜆1)𝑘−1 𝜆𝑛V𝑛)= 𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)𝑘 V2 + ⋅ ⋅ ⋅
+ 𝑏𝑛 (𝜆2𝜆1)𝑘 V𝑛) .

(A.4)

Furthermore, we have

X𝑘 = 𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘 (𝑏1V1 + 𝑏2 (𝜆2𝜆1)𝑘−1 V2 + ⋅ ⋅ ⋅
+ 𝑏𝑛 (𝜆2𝜆1)𝑘−1 V𝑛) . (A.5)

Since we assumed that |𝜆𝑗|/|𝜆1| < 1 for 𝑗 = 2, 3, . . . , 𝑛, then
we have

lim
𝑘→∞

𝑏𝑗 (𝜆𝑗𝜆1)V𝑗 = 0, for 𝑗 = 2, 3, . . . , 𝑛. (A.6)

Hence it follows that

lim
𝑘→∞

X𝑘 = lim
𝑘→∞

𝑏1𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘V1. (A.7)

We need both vectors X𝑘 and V1 to be normalised and their
most significant component is 1.

lim
𝑘→∞

𝑏1𝜆𝑘1𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘 = 1. (A.8)

B. Proof of the Convergence

For the sequence of vectors {X𝑘} which converges to the
dominant eigenvector:

lim
𝑥→∞

X𝑘 = V1. (B.1)

By substituting 𝑘 with 𝑘 − 1, it yields
lim
𝑘→∞

𝑏1𝜆𝑘−11𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 = 1. (B.2)

By merging both into (A.8), we get

lim
𝑥→∞

𝜆1𝑐𝑘 = lim
𝑥→∞

𝑏1𝜆𝑘1/𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘𝑏1𝜆𝑘−11 /𝑐1𝑐2 ⋅ ⋅ ⋅ 𝑐𝑘−1 = 11 = 1. (B.3)

Therefore, the sequences of the constants {𝑐𝑘} converge to the
dominant eigenvalue as

lim
𝑥→∞

𝑐𝑘 = 𝜆1. (B.4)
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