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Matjaž Perc, Slovenia
Vu Ngoc Phat, Vietnam
Maria do Rosário Pinho, Portugal
Seppo Pohjolainen, Finland
Stanislav Potapenko, Canada
Sergio Preidikman, USA
Carsten Proppe, Germany
Hector Puebla, Mexico



Justo Puerto, Spain
Dane Quinn, USA
Kumbakonam Rajagopal, USA
Gianluca Ranzi, Australia
Sivaguru Ravindran, USA
G. Rega, Italy
Pedro Ribeiro, Portugal
J. Rodellar, Spain
Rosana Rodriguez-Lopez, Spain
Alejandro J. Rodriguez-Luis, Spain
Carla Roque, Portugal
Rubén Ruiz Garćıa, Spain
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As most of technological environments or practical systems
have a high complexity, complex dynamical systems have
become the subject of intensive research in systems and
control theory. The complexity of the system leads to severe
difficulties that are encountered in the tasks of analyzing the
system and designing and implementing control strategies
algorithms. Here, the mathematical modeling and advanced
control will provide a basis for the design and operation of
complex dynamical systems, and these advanced techniques
would result in potential and sustainable benefits.

This special issue contains four parts, that is, modeling
and model approximation, stability analysis and robust con-
trol, filtering and state estimation, and engineering applica-
tions of complex dynamical systems. The contents of these
parts are summarized as follows.

(1) Modeling and Model Approximation. “Frequency weighted
model order reduction technique and error bounds for discrete
time systems” by M. Imran et al. proposes a new frequency
weighted technique for balanced model reduction of discrete
time systems. The proposed technique guarantees stable
reduced order models even for the case when two sided
weightings are presented. “Modeling and optimal control of a
class of warfare hybrid dynamic systems based on Lanchester
(n, 1) attrition model” by X. Chen and A. Zhang establishes
a class of warfare hybrid dynamic systems by Lanchester
equation in a (n, 1) battle. This model can be characterized

by the interaction of continuous-time models (governed by
Lanchester equation) and discrete event systems (described
by variable tactics).

(2) Stability Analysis and Robust Control. “Stability and 𝑙
1
-

gain control of positive switched systems with time-varying
delays via delta operator approach” by H. R. Karimi et al.
investigates the problems of stability and 𝑙

1
-gain controller

design for positive switched systemswith time-varying delays
via delta operator approach. The purpose is to design a
switching signal and a state feedback controller such that
the resulting closed-loop system is exponentially stable with
𝑙
1
-gain performance. “Localized and energy-efficient topology

control in wireless sensor networks using fuzzy-logic control
approaches” by J.-F. Martinez et al. aims at improving the net-
work connectivity and fault-tolerant capability in response
to node failures, while taking into account the fact that the
control approach has to be localized and energy-efficient.
Two fuzzy controllers are proposed in this paper: one is
learning-based fuzzy-logic topology control, and the other
one is rules-based fuzzy-logic topology control.

(3) Filtering and State Estimation. “Disturbance attraction
domain estimation for saturated Markov jump systems with
truncated Gaussian process” by K. L. Teo et al. studies
the disturbance attraction domain estimation of saturated
Markov jump systems with truncated Gaussian process.
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The problem of the optimal disturbance attraction domain is
solved through searching for the most appropriate auxiliary
parameters in the defined domain. “Recursive estimation for
dynamical systems with different delay rates sensor network
and autocorrelated process noises” by J. Feng solves the
recursive estimation problem for a class of uncertain dynam-
ical systems with different delay rates sensor network and
autocorrelated process noises. The desired recursive robust
estimators including recursive robust filter, predictor, and
smoother are proposed by using the orthogonal projection
theorem and an innovation analysis approach.

(4) Engineering Applications. “Command filtered adaptive
fuzzy neural network backstepping control for marine power
system” by X. Zhang and L. Mu designs a novel command-
filtered adaptive fuzzy neural network backstepping con-
trol method to retrain chaotic oscillation of marine power
system. The main result, command-filtered adaptive fuzzy
neural network backstepping control law, is presented for
marine power system, and the Lyapunov stability theory is
applied to prove that the system can remain closed-loop and
asymptotically stable with this proposed controller. “Robust
parametric control of spacecraft rendezvous” by D. Gu and
Y. Liu proposes a method to design the robust parametric
control for autonomous rendezvous of spacecrafts. A novel
concise control law for spacecraft rendezvous is given based
on eigenstructure assignment and model reference theory.
“Attitude analysis and robust adaptive backstepping sliding
mode control of spacecrafts orbiting irregular asteroids” by C.
Liang and Y. Li investigates attitude stability analysis and
robust control algorithms for spacecrafts orbiting irregular
asteroids withmodel uncertainties and external disturbances.
“Rotor-flying manipulator: modeling, analysis, and control” by
B. Yang et al. conducts the modeling, analysis, and control of
the combined system, called rotor-flying multijoint manipu-
lator (RF-MJM).Thedetailed dynamicsmodel is constructed,
and the full-state feedback linear quadratic regulator control
problem is solved through obtaining linearized model near
steady state.

Of course, the selected issues and papers are not a
comprehensive representation of the area of this special
issue. Nonetheless, they represent the rich and many-faceted
knowledge that we have the pleasure of sharing with the
readers.
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In order to retrain chaotic oscillation of marine power system which is excited by periodic electromagnetism perturbation, a novel
command-filtered adaptive fuzzy neural network backstepping controlmethod is designed. First, themathematicalmodel ofmarine
power system is established based on the two parallel nonlinear model. Then, main results of command-filtered adaptive fuzzy
neural network backstepping control law are given. And the Lyapunov stability theory is applied to prove that the system can
remain closed-loop asymptotically stable with this controller. Finally, simulation results indicate that the designed controller can
suppress chaotic oscillation with fast convergence speed that makes the system return to the equilibrium point quickly; meanwhile,
the parameter which induces chaotic oscillation can also be discriminated.

1. Introduction

Structure ofmodernmarine power systems has becomemore
complicated, especially the emergence of high-performance
ship electric propulsion applications.The capacity of the ship
power systems has been significantly improved, in which
the reliability and stability of the ship power system made
more high demand. In recent years, researchers found that
chaotic oscillations appeared in marine power system during
the voyage or paroxysmal bursts. Chaotic oscillations could
lead to system instability, which poses a potential threat for
the safe operation of the marine power grid [1, 2]. At present,
the power system chaos control method is mainly for land-
based power system, the idea is generally the mature control
methods such as adaptive compensation control, feedback
control, and inverse system control, transplanted to control
the chaotic system [3–6].

In control theory, backstepping is a technique developed
in the 1990s for designing close-loop stabilizing control sys-
tems a special class of nonlinear dynamical systems [7].These
systems are built from subsystems that radiate out from an
irreducible subsystem that can be stabilized using some other
methods. Because of this recursive structure, the designer
can start the design process at the known-stable system

and “back-out” new controllers that progressively stabilize
each outer subsystem. The process terminates when the final
external control is reached. Hence, this process is known as
backstepping. So far, backstepping control has made many
achievements, like adaptive backstepping control, adaptive
sliding mode backstepping control, dynamic surface control,
and so forth [8–14].

Recently, fuzzy logic [15–18] and neural networks [14, 19,
20] are increasingly receiving attention in solving complex
and practical problems. Although both fuzzy logic and
neural networks are universal approximators, there are some
differences between them. The former has characteristics of
linguistic information and logic control. The latter possesses
characteristics of fault tolerance, parallelism, and learning if
network training is carefully designed. However, fuzzy logic
and neural networks have complementary characteristics.
Thus, the development of integrated fuzzy neural networks
(FNNs) that possess the merits of both fuzzy logic and neural
networks has grown rapidly [21–24].

Based on the aforementioned works, this paper develops
an adaptive backstepping control with command-filtered
compensation and fuzzy neural network technology for
marine power systems. In order to suppress the chaotic
marine power system oscillations, based on a mathematical

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 461431, 6 pages
http://dx.doi.org/10.1155/2014/461431

http://dx.doi.org/10.1155/2014/461431


2 Mathematical Problems in Engineering

E1 ∠ 𝛿1 E2 ∠ 𝛿2x
d1 x

d2xl r1 r1
xl

Load
P, Q

Figure 1: Block diagram of the two parallel models.

model of two-machine parallel marine power system,
command-filtered adaptive fuzzy neural network backstep-
ping chaos controller is designed. Lyapunov stability theory
proves that the controlled system can be maintained closed-
loop asymptotically stable. The rest of this paper is organized
as follows. In Section 2, a brief description for two parallel
nonlinear mathematical model and fuzzy neural network is
given. In Section 3, main results of command-filtered adap-
tive fuzzy neural network backstepping control technique are
developed. In Section 4, simulation results are presented to
show the effectiveness of the proposed control technique.
Finally, some conclusions are made in Section 5.

2. Background

2.1. Two Parallel Nonlinear Mathematical Model. The basic
structure of the power supply network of marine power
system can be expressed as in Figure 1, where 𝐸

1
∠ 𝛿
1
and

𝐸
2
∠ 𝛿
2
are emf of two generators in the system, respectively,

𝑥


𝑑1
and 𝑥

𝑑2
are synchronous reactance of two generators,

respectively, 𝑥
𝑙
and 𝑟
𝑙
are the line resistance and reactance,

respectively, and 𝑃 and 𝑄 describe the system load. Because
of the short-circuit in the marine power system, the line
resistance is very small, which often can be neglected.

Consider same case of generator parameters. Let 𝛿 = 𝛿
1
−

𝛿
2
and𝜔 = 𝜔

1
−𝜔
2
be relative power angle and relative power

angle velocity of the two equivalent generators. Then, two-
machine interconnected system can be described as follows:

𝑑𝛿

𝑑𝑡
= 𝜔,

𝐻
𝑑𝜔

𝑑𝑡
= 𝑃
𝑚
− 𝐷𝜔 − 𝑃

𝑒
(1 + Δ𝑝 cos𝛽𝑡) sin 𝛿,

(1)

where 𝐻 and 𝐷 are equivalent inertia and damping, respec-
tively, 𝑃

𝑚
is the input mechanical power of generator, and 𝑃

𝑒

is the electromagnetic power of system output. 𝑃
𝑒
⋅ Δ𝑝 cos𝛽𝑡

is electromagnetic perturbation which is introduced to study
chaotic motion for the marine power system under distur-
bance, where 𝑃

𝑒
⋅ Δ𝑝 describes the amplitude of disturbanc,

and 𝛽 describes the frequency of disturbance.

Through the transformation 𝜏 = 𝑡√𝑃
𝑒
/𝐻, 𝑥(𝜏) = 𝛿(𝑡),

and 𝑦(𝜏) = √𝐻/𝑃
𝑒
𝜔(𝑡). Equation (1) can be written as

𝑑𝑥

𝑑𝜏
= 𝑦,

𝑑𝑦

𝑑𝜏
= − sin𝑥 − 𝜆𝑦 + 𝜌 + 𝜇 cos 𝛾𝜏 sin𝑥,

(2)

where 𝜆 = 𝐷√𝑃
𝑒
/𝐻, 𝜌 = 𝑃

𝑚
/𝑃
𝑒
, 𝜇 = Δ𝑝, and 𝛾 = 𝛽√𝑃

𝑒
/𝐻.

According to transformation, we know that the system state
variables 𝑥 and 𝑦 were obtained by the transformation of 𝛿
and 𝜔, which have the physical meaning of power angle error
and the power angle error relative velocity between the two
generators.

2.2. Fuzzy-Neural Network for Approximation. Figure 2
depicts a functional link FNN which consists of fuzzy logic
and neural network. The FLS can be divided into two parts:
some fuzzy IF-THEN rules and a fuzzy inference engine.
The fuzzy inference engine uses the fuzzy IF-THEN rules
to perform a mapping form an input linguistic vector 𝑧 =
[𝑧
1
, . . . , 𝑧

𝑚
]
𝑇
∈ R𝑚 to a scalar output variable 𝑦

𝑓
∈ R. The

𝑖th fuzzy IF-THEN rule can be characterized by the following
form [20, 21]:

IF 𝑧
1
is 𝐴𝑖
1
, . . . , 𝑧

𝑚
is 𝐴𝑖
𝑚

THEN 𝑦
𝑓
is 𝐵𝑖 (𝑖 = 1, . . . , 𝑁) ,

(3)

where 𝐴𝑖
𝑗
and 𝐵𝑖 are fuzzy sets. By using product inference,

center-average, and singleton fuzzifier,𝑁 is the total number
of rules. Then, the output of the FNN can be expressed as

𝑦
𝑓
=

∑
𝑁

𝑖=1
𝜔
𝑖
[∏
𝑚

𝑗
𝜇
𝐴
𝑖

𝑗

(𝑧
𝑗
)]

∑
𝑁

𝑖=1
[∏
𝑚

𝑗
𝜇
𝐴
𝑖

𝑗

(𝑧
𝑗
)]

= 𝑊
𝑇
𝑃 (𝑧) , (4)

where 𝜇
𝐴
𝑖

𝑗

(𝑧
𝑗
) is the membership function value of the

fuzzy variable, 𝜔𝑖 is the point at which 𝜇
𝐵
𝑖(𝜔
𝑖
) = 1, and

𝑊 = [𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁
] is an adjustable parameter vector. We

assume that an upper limit ‖𝜀(𝑧)‖ ≤ 𝜀
𝑀

of the functional
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Figure 2: Functional link a fuzzy-neural network structure.

reconstruction error is known. 𝑃 = [𝑝1, 𝑝2, . . . , 𝑝𝑁] is a fuzzy
basis vector, where 𝑝𝑖 is defined as

𝑝
𝑖
(𝑧) =

∏
𝑚

𝑗
𝜇
𝐴
𝑖

𝑗

(𝑧
𝑗
)

∑
𝑁

𝑖=1
[∏
𝑚

𝑗
𝜇
𝐴
𝑖

𝑗

(𝑧
𝑗
)]

. (5)

The truth value 𝑝𝑖 (layer III) of the antecedent part of the 𝑖th
implication is calculated by (5). Among the commonly used
defuzzification strategies, the output (layer IV) of the FNN
is expressed as (4). The fuzzy logic approximator based on
the neural network can be established. The approximator has
four layers. At layer I, nodes, which are input ones, stand for
the input linguistic variables. At layer II, nodes represent the
values of the membership function value. At layer III, nodes
are the values of the fuzzy basis vector. Each node of layer III
performs a fuzzy rule. The links between layer III and layer
IV are fully connected by the weighting vector 𝜔, that is, the
adjusted parameters. At layer IV, the output stands for the
value of 𝑦

𝑓
.

3. Main Results

When the system is already in chaotic motion, the controller
can control the chaotic system for any arbitrary unstable equi-
librium points. In this section, command-filtered adaptive
fuzzy neural network backstepping controller is designed for
the chaotic motion of the marine power system. A control
input 𝑢 is added to the equation of state (2), and the formula
(6) can be described as follows:

𝑑𝑥

𝑑𝜏
= 𝑦,

𝑑𝑦

𝑑𝜏
= − sin𝑥 − 𝜆𝑦 + 𝜌 + 𝜇 cos 𝛾𝜏 sin𝑥 + 𝑢.

(6)

Also, the system (6) can be described as an affine system with
unknown parameter and disturbance by

𝑑𝑋
1

𝑑𝜏
= 𝑋
2
,

𝑑𝑋
2

𝑑𝜏
= 𝐹 (𝑋) + 𝐻 (𝑥) 𝜇 + 𝑢 + 𝑑 (𝑡) ,

(7)

where𝐹(𝑋) = − sin𝑥−𝜆𝑦+𝜌, 𝐻(𝑥) = cos 𝛾𝜏 sin𝑥, and𝑑(𝑡) is
disturbance. In the following works, the 𝑑(𝑡) can be estimated
by the fuzzy neural network (4) as follows:

𝑑 (𝑡) = 𝑊
𝑇
𝑃 (𝑥, 𝑦) . (8)

Then, (7) can be also described as

𝑑𝑋
1

𝑑𝜏
= 𝑋
2
,

𝑑𝑋
2

𝑑𝜏
= 𝐹 (𝑋) +𝑊

𝑇

𝑃 (𝑥, 𝑦) + 𝑢 + 𝑑 (𝑡) ,

(9)

where 𝑊 = [𝑊, 𝜇]
𝑇 and 𝑃(𝑥, 𝑦) = [𝑃

𝑇
(𝑥, 𝑦),𝐻(𝑥)]

𝑇.
Define the state tracking error variables 𝐸

1
and 𝐸

2
that are

introduced as follows:

𝐸
1
= 𝑋
1
− 𝑋
𝑐

1
,

𝐸
2
= 𝑋
2
− 𝑋
𝑐

2
,

(10)

where 𝑋𝑐
1
and 𝑋𝑐

2
are the filtered-command of 𝑋

1
and 𝑋

2
,

respectively. From (7) and (10), we have

𝑑𝐸
1

𝑑𝜏
= 𝑋
2
−
𝑑𝑋
𝑐

1

𝑑𝜏
, (11)

𝑑𝐸
2

𝑑𝜏
= 𝐹 (𝑋) +𝑊

𝑇

𝑃 (𝑥, 𝑦) + 𝑢 −
𝑑𝑋
𝑐

2

𝑑𝜏
. (12)
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The task is to stabilize (11) with respect to the Lyapunov
function:

𝑉
1
=
1

2
𝐸
𝑇

1
𝐸
1
, (13)

and the time derivative of 𝑉
1
with respect to time is given by

𝑑𝑉
𝑐

1

𝑑𝜏
= 𝐸
𝑇

1

𝑑𝐸
1

𝑑𝜏
= 𝐸
𝑇

1
(𝑋
2
−
𝑑𝑋
𝑐

1

𝑑𝜏
) . (14)

The virtual controller can be designed as

𝑋
𝑑

2
=
𝑑𝑋
𝑐

1

𝑑𝜏
− 𝐾
1
𝐸
1
, (15)

where 𝐾
1
is a positive definite matrix to be designed.

Substituting (15) into (14), we have 𝑑𝑉𝑐
1
/𝑑𝜏 ≤ 0.

To solve the derivative of the virtual control problems, the
command filter is used to eliminate the impact of derivative
of the virtual item and control saturation. Pass 𝑋𝑑

2
through

a second-order filter for obtaining the 𝑑𝑋𝑑
2
/𝑑𝜏, the second-

order filter can be described as

𝑑𝑞
1

𝑑𝜏
= 𝑞
2
,

𝑑𝑞
2

𝑑𝜏
= −2𝜉𝑞

1
− 𝜉
2
(𝑞
1
− 𝑋
𝑑

2
) ,

(16)

where 𝑞
1
= 𝑋
𝑐

2
and 𝑞

2
= 𝑑𝑋

𝑐

2
/𝑑𝜏. Redefine tracking error

𝐸
1
= 𝐸
1
− 𝜀, and design

𝑑𝜀

𝑑𝜏
= −𝐾
1
𝜀 + (𝑋

𝑐

2
− 𝑋
𝑑

2
) . (17)

We choose the Lyapunov function

𝑉
2
=
1

2
[𝐸
𝑇

1
𝐸
1
+ 𝐸
𝑇

2
𝐸
2
+
̃
𝑊

𝑇

Ξ
1

̃
𝑊] , (18)

where ̃𝑊 = ̂𝑊−𝑊. Then the time derivative of𝑉
2
is given by

𝑑𝑉
2

𝑑𝜏
= 𝐸
𝑇

1

𝑑𝐸
1

𝑑𝜏
+ 𝐸
𝑇

2

𝑑𝐸
2

𝑑𝜏
+
̃
𝑊

𝑇

Ξ
1

𝑑
̃
𝑊

𝑑𝜏
. (19)

We design the global control law and the parameter update
law for 𝜇 as

𝑢 =
𝑑𝑋
𝑐

2

𝑑𝜏
− 𝐹 (𝑋) − 𝐸

1
− 𝐾
2
𝐸
2
−
̂
𝑊

𝑇

𝑃 (𝑥, 𝑦) ,

𝑑
̂
𝑊

𝑑𝜏
= Ξ
−1

1
𝑃(𝑥, 𝑦)

𝑇

𝐸
2
,

(20)
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Figure 3: Chaotic attractor under 𝜇 = 1.3.

where 𝐾
2
is a positive constant to be designed. Substituting

(17) and (20) into (19) yields

𝑑𝑉
2

𝑑𝜏
= 𝐸
𝑇

1
(−𝐾
1
𝐸
1
+ 𝐸
2
)

+ 𝐸
𝑇

2
(𝐹 (𝑋) + 𝑢 +𝑊

𝑇

𝑃 (𝑥, 𝑦) −
𝑑𝑋
𝑐

2

𝑑𝜏
) −

̃
𝑊

𝑇

Ξ
1

𝑑
̂
𝑊

𝑑𝜏

= − 𝐾
1
𝐸
𝑇

1
𝐸
1

+ 𝐸
𝑇

2
(𝐹 (𝑋) + 𝑢 +𝑊

𝑇

𝑃 (𝑥, 𝑦) + 𝐸
1
−
𝑑𝑋
𝑐

2

𝑑𝜏
)

−
̃
𝑊

𝑇

Ξ
1

𝑑
̂
𝑊

𝑑𝜏

= − 𝐾
1
𝐸
𝑇

1
𝐸
1
− 𝐾
2
𝐸
𝑇

2
𝐸
2
−
̃
𝑊

𝑇

(𝐻(𝑋)
𝑇
𝐸
2
− Ξ
1

𝑑
̂
𝑊

𝑑𝜏
)

= − 𝐾
1
𝐸
𝑇

1
𝐸
1
− 𝐾
2
𝐸
𝑇

2
𝐸
2
≤ 0.

(21)

4. Simulation Results

Simulations were performed in the MATLAB/SIMULINK
environment. From numerical analysis of the marine power
system’s chaotic motion, we can obtain the results that when
the amplitude 𝜇 = 0.3, chaotic behavior will occur in marine
power system with 𝜆 = 0.4, 𝜌 = 0.2, 𝛾 = 0.8. We assume
the disturbance 𝑑(𝑡) = 0.2 sin(0.02𝑡). We can obtain the
motion state of the marine power system in Figures 3 and
4. Form Figure 3, it can be seen that the system power angle
and the angular velocity of the phase diagram of movement
are ergodicity, which shows that the system appeared in
chaos.The system experiences a similar random but does not
attenuation. It can determine that 𝜇 = 1.3 when the system
enters the chaotic motion state.

If the perturbation amplitude 𝜇 is unknown, then chaotic
oscillation appears in system at this time. In order to suppress
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Figure 4: Timing diagramof power angle 𝛿 and relative power angle
velocity 𝜔.
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Figure 5: The curve of power angle 𝛿.

chaos, the parameter 𝜇 must be identified. Here, command-
filtered adaptive backstepping controller is used to control the
marine power system after 100 s in chaotic state running.The
controller parameters are designed as 𝐾

1
= 2, 𝐾

2
= 2, Ξ

1
=

𝐼
3×3

, and𝑊(0) = [0, 0, 0]𝑇.The parameter of filter is designed
as 𝜉 = 100. Figures 5 and 6 show the curve of power angle and
the angular velocity of marine power system. And the phase
diagram is shown in Figure 7.

It can be seen the results from Figures 5 and 6, before
100 seconds, power angle 𝛿, and relative power angle velocity
𝜔, are in a chaotic state. While the designed controller is
added after 100 seconds, system is quickly stabilized. This
indicates the proposed control algorithm has a very reliable
stabilization ability for the marine power system’s chaotic
motion.

5. Conclusions

We have carried out a systematic study on command-
filtered adaptive fuzzy neural network backstepping control
scheme for marine power system. Due to the adaptive fuzzy
neural network, backstepping method can adaptively make
the convergence of error to origin with external bounded
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Figure 6: The curve of power angle velocity 𝜔.
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Figure 7: Phase diagram of power angle 𝛿 and relative power angle
velocity 𝜔.

disturbance. Therefore, the state error of the ship power sys-
tem to the original can be asymptotically stable equilibrium
point. Simulation results show that the proposed method not
only guarantees closed-loop stability of the controlledmarine
power system, but also identifies well the caused chaotic
system parameter.
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Formal methods can strongly contribute to improve dependability of controllers during design, by providing means to avoid
flaws due to designers’ omissions or specifications misinterpretations. This paper presents a synthesis method dedicated to logic
controllers. Its goal is to obtain the control laws from specifications given in natural language by symbolic computation.The formal
framework that underlies this method is the Boolean algebra of 𝑛-variable switching functions. In this algebra, thanks to relations
and theorems presented in this paper, it is possible to formally express logical controllers specifications, to automatically detect
inconsistencies in specifications, and to obtain automatically the set of solutions or to choose an optimal solution according to
given optimization criteria. The application of this synthesis method to an example allows illustrating its main advantages.

1. Introduction

Programmable logic controllers (PLCs) are industrial auto-
mation components that receive input signals coming from
sensors and send output signals to actuators, in accor-
dance with control laws implemented into a user program
(Figure 1). The control algorithms that allow the real time
calculation of new output values, according to the current
state of the PLC and the observation of new values of inputs,
are written in standardized languages, such as ladder diagram
(LD), structured text (ST) or instruction list (IL) [1]. A
PLC cyclically performs three tasks: inputs reading, program
execution, and outputs updating. The period of this task may
be constant (periodic scan) or may vary (cyclic scan).

Because of their reliability, even in very severe condi-
tions in terms of temperature, vibrations, electromagnetic
perturbations, and so forth, PLCs are frequently used for
the control of safety-critical systems (energy production,
transport, chemical industry, etc.). In this context, improving
the reliability of the user program has been one of the main
challenges of the past two decades in the field of automa-
tion. Among the different techniques that can be used in
this aim [2], formal verification and validation and formal
synthesis are the most efficient. Verification is the proof that

the internal semantics of a model is correct, independently
from the modeled system. The searched properties of the
models are stability, deadlock existence, and so on . The
validation determines if the model agrees with the designer’s
purpose [3]. Efficient validation/verification techniques of
PLC programs [4], most often based on model-checking
technique, have been proposed by researchers and are now
widely used in industry [5], despite problems of state-space
explosion that arise when treating large scale systems.

Contrary to verification techniques that aim at proving,
after a PLC program has beenmore or less correctly designed
by an expert, that control laws are safe, automatic synthesis
methods aim at systematically generating control laws which
guarantee by construction the respect of expected safety
properties. The avoidance of human errors during the design
of controllers is one of the main reasons for which synthesis
is a very important subject of research in the field of discrete
event systems (DES) since the end of 80’s.

Most part of recent works in this area are still based onto
the Supervisory ControlTheory (SCT) [6] and are aiming for
the synthesis of a supervisor, and not directly to the controller
of an automated system. Furthermore, the use of state models
(Finite Automata, Petri Nets, etc.) and their composition
for the construction of the models of the plant and of
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Program initialization

Inputs reading

Program execution

Ouputs updading

PLCInputs Outputs

...
...

Program:
IF R1 THEN

OFLO: = 0; EMPTY:= 1; PTR := −1;
NI: = LIMIT (MN := 1, IN := N, MX := 128);
OUT: = 0;

ELSIF POP AND NOT EMPTY THEN
OFLO: = 0; PTR := PTR := −1;
EMPTY:= PTR<0;
IF EMPTY THEN OUT := 0;
ELSE OUT:= STK[PTR];
END_IF;

END_IF;

Figure 1: PLC basic principle.

the specifications generates a complexity which remains
problematic for the synthesis of a supervisor for complex
systems [7]. It is therefore interesting to explore other ways
for performing synthesis, such as algebraic approaches. In
previousworks, we proposed amethod specifically developed
to get the control laws that can be directly implemented into
the controller [8]. We have chosen to synthesize these control
laws under the form of recurrent Boolean equations because
of the wide possibilities they offer for the formalization of
safety requirements and for implementation.

Nevertheless, whatever is the used synthesis method,
one of the weak links of the automatic generation of the
control laws is the step of formal transcription by the designer
(within state models or algebraic expressions) of the informal
requirements and safety properties the controller has to
satisfy. In the case of SCT, some authors have proposed more
or less generic approaches for the construction of the models
of the plant [9] or of the specifications [10]. But in any case, the
hypothesis that requirements can be inconsistent has never
been taken into account. Unfortunately in the framework of
industrial collaborations we have been able to verify that it is
always the case. In this paper we show how, in consideration
of specific hypotheses, it is possible to install a correction loop
for helping the designer to formalize these requirements and
so improving the synthesis method robustness to the lack of
precision of the specifications.

This paper is organized as follows. Some basics of alge-
braic synthesis given in Sections 2 and 3 recall the main
steps of our method. Section 4 presents the mathematical
framework of our approach and new results that allow us
to accept inconsistencies in specifications. The strategy we
developed for making the synthesis more robust to the lack
of consistency of the specifications is described in Section 5,
thanks to a case study.

2. Problem Statement

Figure 2 proposes a generic representation of a DES whose
controller has 𝑝 Boolean inputs (𝑢

𝑖
), 𝑞 Boolean outputs (𝑦

𝑗
),

and 𝑟 Boolean state variables (𝑥
𝑙
). Plant and controller are

connected through a closed loop exchanging inputs and
outputs signals. The state variables, needed for expressing
sequential behaviors of the controller, are represented by
internal variables.

Combinational
behavior

State variables
behavior

Controller

Plant

//

/

p q

r

xl yjui

{yj[k] = Fj(u1[k], . . . , up[k], x1[k − 1], . . . , xr[k − 1])

xl[k] = Fq+1(u1[k], . . . , up[k], x1[k − 1], . . . , xr[k − 1])

Figure 2: A sequential DES.

The algebraic modeling of the control laws of the con-
troller necessitates the definition of (𝑞+𝑟) switching functions
of (𝑝+𝑟) variables. Even if this representation is very compact
(the 𝑟 Boolean state variables allow the representation of 2𝑟
different states), the construction by hands of these switching
functions is a very tedious and error-prone task [11]; the
controller of Figure 2 admits 2𝑝 inputs combinations can send

2
𝑞 outputs combinations and can express (22

(𝑝+𝑟)

)
(𝑞+𝑟)

sequen-
tial behaviors. That is the reason why algebraic modeling
approaches have been replaced by methods based on state
models since the middle of 50’s [12, 13]. Nevertheless, thanks
to recent mathematical results obtained onto Boolean alge-
bras [14, 15], the automatic algebraic synthesis of switching
functions is now possible.

In [16] an interesting approach for the systematic con-
struction of a reactive program from its formal specification is
proposed. In this work, the program synthesis is considered
as a theorem proving activity. A program with input 𝑥 and
output 𝑦, specified by the formula 𝜑(𝑥, 𝑦), is constructed
as a byproduct of proving the theorem (∀𝑥)(∃𝑦)𝜑(𝑥, 𝑦).
The specification 𝜑(𝑥, 𝑦) characterizes the expected relation
between the input 𝑥 and the output 𝑦 computed by the
program. This approach is based on the observation that
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the formula (∀𝑥)(∃𝑦)𝜑(𝑥, 𝑦) is equivalent to the second-
order formula (∃𝑓)(∀𝑥)𝜑(𝑥, 𝑓(𝑥)), stating the existence of a
function 𝑓, such that 𝜑(𝑥, 𝑓(𝑥)) holds for every 𝑥.

This approach provides a conceptual framework for the
rigorous derivation of a program from its formal specifica-
tion. It has also been used to synthesize specifications under
the form of finite automata from their linear temporal logic
(LTL) description [17].

The core of our approach is based on this strategy: we aim
at deducing the (𝑞+𝑟) switching functions of (𝑝+𝑟) variables
which define the behavior of the controller from a formula
𝜑(𝑢
𝑖
[𝑘], 𝑥
𝑙
[𝑘 − 1], 𝑦

𝑗
[𝑘], 𝑥
𝑙
[𝑘]) that holds for every 𝑘, every

𝑢
𝑖
[𝑘], and every 𝑥

𝑙
[𝑘 − 1].

To cope with combinatorial explosion, switching func-
tions will be handled through a symbolic representation (and
not their truth-tables which contain 2(𝑝+𝑟) Boolean values).
Each input 𝑢

𝑖
(resp., output 𝑦

𝑗
) of the controller will be

represented by a switching function 𝑈
𝑖
(resp., 𝑌

𝑗
). To take

into account the recursive aspect of state variables, each state
variable 𝑥

𝑙
will be represented by two switching functions:𝑋

𝑙

(for time [𝑘]) and
𝑝
𝑋
𝑙
(for time [𝑘 − 1]).

According to this representation, the synthesis of control
laws of a logical system from its specification can now be
transformed into the search of the solutions to themathemat-
ical problem as follows:

(∀𝑈
𝑖
) (∀
𝑝
𝑋
𝑙
) (∃𝑌
𝑗
) (∃𝑋

𝑙
) 𝜑 (𝑈

𝑖
,
𝑝
𝑋
𝑙
, 𝑌
𝑗
, 𝑋
𝑙
) , (1)

where (𝑈
𝑖
,
𝑝
𝑋
𝑙
, 𝑌
𝑗
, 𝑋
𝑙
) are (𝑝 + 𝑞+ 2𝑟) switching functions of

(𝑝 + 𝑟) variables.

3. Overview of Our Method

The input data of the proposed method (Figure 3) are
unformal functional and safety requirements given by the
designer. In practice, these requirements are most often
given in a textual form and/or by using technical Taylor-
made languages (Gantt diagrams, function blocks diagrams,
Grafcet, etc.) or imposed standards.

All the steps of our synthesis method are implemented
into a prototype software tool developed in Python (Case
studies are available online: http://www.lurpa.ens-cachan.fr/-
226050.kjsp). The first step is the formalization of require-
ments within an algebraic description; examples are given
in Section 5.2. Requirements expressed with a state model
can directly be translated into recurrent Boolean equations,
thanks to the algorithm proposed by Machado et al. [18]. In
case where the knowhow of the designer enables him to build
a priori the global form of the solution (or of a part of the
whole solution) it is also possible to give fragments of solution
as requirements [19].

The second step consists in checking the consistency of
the set of requirements by symbolic calculation.The sufficient
condition for checking this consistency has been given in [20]
but no strategy has been proposed for coping with potential
inconsistencies. In this paper we show that thanks to new
theorems the causes of these inconsistencies can be pointed
out. It is then possible for the designer to fix priority rules

Functional and
safety requirements

Formalization1

Set of formalized
requirements

Consistency checking2

Priorities between
requirements

Inconsistency
conditionsSystem of equations

Equation solving3

Parametric
solution

Solution choice4

Control laws

Optimization
criteria

Figure 3: The algebraic synthesis method step by step.

between the concerned requirements that will allow finding,
if exist, solutions despite inconsistencies.

The core of the method is the third step, which consists
in the synthesis of the control laws. This step is performed
by solving the system of equations which represents the set
of consistent requirements.Themathematical results we have
obtained (Theorem 12 given in Section 4.3), allow finding a
parametric expression of the set of solutions.

In the fourth step of the method, a particular solution has
to be chosen among the set of solutions. For that, a specific
value of each parameter of the general solution has to be
fixed. In a previous work [19], we showed how well chosen
heuristics can be used for fixing these parameters. In this
paper, we show that the choice of a particular solution among
the set of solutions can be expressed as an optimization
problem.Wepropose new theorems that allow calculating the
maximum and the minimum of a Boolean formula, and we
show how optimal solutions can be automatically found. For
ergonomic reasons, the synthesized control laws can finally
be displayed under the form of a finite automaton [21].

After the mathematical background of the method has
been recalled, we are going to show how, in consideration
of specific hypotheses, the second step of the method can be
improved by a correction loop helping the designer to formal-
ize the requirements and so improving the robustness of our
synthesismethod to the lack of precision of the specifications.
The strategy to find an optimal solution according to given
criteria will be also presented.

4. Mathematical Foundations

This section is composed of five subsections. Sections 4.1
and 4.2 recall some classical results about Boolean algebras
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and the Boolean algebra of 𝑛-variable switching functions.
Section 4.3 presents how to solve Boolean equations. Sections
4.4 and 4.5 present specific results obtained for the algebraic
synthesis of control laws.

4.1. Boolean Algebra: Typical Feature

Definition 1 (Boolean algebra). (Definition 15.5 of [22]) Let
B be a nonempty set that contains two special elements 0 (the
zero element) and 1 (the unity, or one, element) and on which
we define two closed binary operations +, ⋅, and an unary
operation .Then (B, +, ⋅, , 0, 1) is called a Boolean algebra
if the following conditions are satisfied for all 𝑥, 𝑦, 𝑧 ∈ B:

Commutative Laws:
𝑥 + 𝑦 = 𝑦 + 𝑥

𝑥 ⋅ 𝑦 = 𝑦 ⋅ 𝑥

Distributive Laws:
𝑥 ⋅ (𝑦 + 𝑧) = (𝑥 ⋅ 𝑦) + (𝑥 ⋅ 𝑧)

𝑥 + (𝑦 ⋅ 𝑧) = (𝑥 + 𝑦) ⋅ (𝑥 + 𝑧)

Identity Laws:
𝑥 + 0 = 𝑥

𝑥 ⋅ 1 = 𝑥

Inverse Laws:
𝑥 + 𝑥 = 1

𝑥 ⋅ 𝑥 = 0

0 /= 1.

(2)

Many Boolean algebras could be defined. The most
known are the two-element Boolean algebra: ({0, 1}, ∨, ∧, ¬,
0, 1) and the algebra of classes (set of subsets of a set 𝑆):
(2
𝑆
, ∪, ∩, , 0, 𝑆).

Definition 2 (Boolean formula). (From Section 3.6 of [15])
A Boolean formula (or a Boolean expression) on B is any
formula which represents a combination of members of B
by the operations +, ⋅, or .

By construction, any Boolean formula on B represents
one and only one member of B. Two Boolean formulae are
equivalent if and only if they represent the same member of
B. Later on, a Boolean formula F built with the members
(𝛼
1
, . . . , 𝛼

𝑛
) ofB is denotedF(𝛼

1
, . . . , 𝛼

𝑛
).

Theorem 3 (Boole’s expansion of a Boolean formula). Let
(𝛼
1
, . . . , 𝛼

𝑛
) be 𝑛members ofB \ {0, 1}. Any Boolean Formula

F(𝛼
1
, . . . , 𝛼

𝑛
) can be expanded as

F (𝛼
1
, . . . , 𝛼

𝑛
) = F

0
(𝛼
2
, . . . , 𝛼

𝑛
) ⋅ 𝛼
1
+F
1
(𝛼
2
, . . . , 𝛼

𝑛
) ⋅ 𝛼
1
,

(3)

where F
0
(𝛼
2
, . . . , 𝛼

𝑛
) and F

1
(𝛼
2
, . . . , 𝛼

𝑛
) are Boolean for-

mulae of only 𝛼
2
, . . . , 𝛼

𝑛
. These two formulae can be directly

obtained fromF(𝛼
1
, . . . , 𝛼

𝑛
) as follows:

F
0
(𝛼
2
, . . . , 𝛼

𝑛
) = F(𝛼

1
, . . . , 𝛼

𝑛
)
𝛼1←0

= F (0, 𝛼
2
, . . . , 𝛼

𝑛
)

F
1
(𝛼
2
, . . . , 𝛼

𝑛
) = F (𝛼

1
, . . . , 𝛼

𝑛
)
𝛼1←1

= F (1, 𝛼
2
, . . . , 𝛼

𝑛
) .

(4)

The relation equality is not the only defined relation
on a Boolean algebra. It is also possible to define a partial
order relation between members ofB. This relation is called
Inclusion-Relation in [15].

Definition 4 (Inclusion-Relation). (Definition 15.6 of [22].) If
𝑥, 𝑦 ∈ B, define 𝑥 ≤ 𝑦 if and only if 𝑥 ⋅ 𝑦 = 𝑥.

As Relation Inclusion is reflexive (𝑥 ≤ 𝑥), antisymmetric
(if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦), and transitive (if 𝑥 ≤ 𝑦

and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧), this relation defines a partial order
between members ofB (Theorem 15.4 of [22]).

Since in any Boolean algebra, 𝑥 ⋅ 𝑦 = 𝑥 ⇔ 𝑥 ⋅ 𝑦 = 0, we
also have 𝑥 ≤ 𝑦 ⇔ 𝑥 ⋅ 𝑦 = 0.

Remark 5. For the algebra of classes (2𝑆, ∪, ∩, , 0, 𝑆), the
Inclusion-Relation is the well-known relation ⊆ and we have:
𝑥 ⊆ 𝑦 ⇔ 𝑥 ∩ 𝑦 = 𝑥.

Theorem 6 (reduction of a set of relations). (Theorem 5.3.1 of
[15].) Any set of simultaneously asserted relations built with the
members (𝛼

1
, . . . , 𝛼

𝑛
) ofB can be reduced to a single equivalent

relation such as:F(𝛼
1
, . . . , 𝛼

𝑛
) = 0.

To obtain this equivalent relation, it is necessary

(i) to rewrite each equality according to

F
1
(𝛼
1
, . . . , 𝛼

𝑛
) = F

2
(𝛼
1
, . . . , 𝛼

𝑛
)

⇐⇒ F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ⋅F
2
(𝛼
1
, . . . , 𝛼

𝑛
)

+F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ⋅F
2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0,

(5)

(ii) to rewrite each inclusion according to

F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ≤ F

2
(𝛼
1
, . . . , 𝛼

𝑛
)

⇐⇒ F
1
(𝛼
1
, . . . , 𝛼

𝑛
) ⋅F
2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0,

(6)

(iii) to group together rewritten equalities as follows:

{
F
1
(𝛼
1
, . . . , 𝛼

𝑛
) = 0

F
2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0

⇐⇒ F
1
(𝛼
1
, . . . , 𝛼

𝑛
) +F

2
(𝛼
1
, . . . , 𝛼

𝑛
) = 0.

(7)

4.2. The Boolean Algebra of 𝑛-Variable Switching Functions.
To avoid confusion between Boolean variables and Boolean
functions of Boolean variables, each Boolean variable 𝑏

𝑖
is

denoted by
𝑏
𝑏
𝑖
. The set of the two Boolean values

𝑏
0 and

𝑏
1

is denoted by 𝐵 = {
𝑏
0,
𝑏
1}.

Definition 7 (𝑁-variable switching functions). (FromSection
3.11 of [15].) An 𝑛-variable switching function is a mapping of
the form

𝑓:𝐵𝑛 → 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣→ 𝑓 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
)

where 𝐵 = {
𝑏
0,
𝑏
1} .

(8)
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The domain of a 𝑛-variable switching function has 2𝑛
elements and the codomain has 2 elements; hence, there are
2
2
𝑛

𝑛-variable switching functions. Let 𝐹
𝑛
(𝐵) be the set of the

2
2
𝑛

𝑛-variable switching functions.
𝐹
𝑛
(𝐵) contains (𝑛 + 2) specific 𝑛-variable switching

functions: the 2 constant functions (0, 1) and the 𝑛 projection-
functions (𝑓𝑖Proj). These functions are defined as follows:

0:𝐵𝑛 → 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣→

𝑏
0

1:𝐵𝑛 → 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣→

𝑏
1

𝑓
𝑖

Proj:𝐵
𝑛
→ 𝐵

(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∣→

𝑏
𝑏
𝑖
,

(9)

𝐹
𝑛
(𝐵) can be equipped with three closed operations (two

binary and one unary operations)

Op. + : 𝐹
𝑛
(𝐵)
2
→ 𝐹
𝑛
(𝐵)

(𝑓, 𝑔) ∣→ 𝑓 + 𝑔

Op. ⋅ : 𝐹
𝑛
(𝐵)
2
→ 𝐹
𝑛
(𝐵)

(𝑓, 𝑔) ∣→ 𝑓 ⋅ 𝑔

Op. : 𝐹
𝑛
(𝐵) → 𝐹

𝑛
(𝐵)

𝑓 ∣→ 𝑓,

(10)

where ∀(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∈ 𝐵
𝑛,

(𝑓 + 𝑔) (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
)

= 𝑓 (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∨ 𝑔 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ,

(𝑓 ⋅ 𝑔) (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
)

= 𝑓 (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∧ 𝑔 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ,

𝑓 (
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) = ¬𝑓 (

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) .

(11)

(𝐹
𝑛
(𝐵), +, ⋅, , 0, 1) is a Boolean algebra [22]. Then, it is

possible to write a Boolean formula of 𝑛-variable switch-
ing functions and relations between Boolean formula of
𝑛-variable switching functions. In the case of 𝑛-variable
switching functions, relations Equality and Inclusion can also
be presented as follows:

(i) 𝑓 and 𝑔 are equal (𝑓 = 𝑔) if and only if the columns
of the truth-tables of 𝑓, 𝑔 are exactly the same, that
is, ∀(

𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∈ 𝐵

𝑛, 𝑓(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) = 𝑔(

𝑏
𝑏
1
,

. . . ,
𝑏
𝑏
𝑛
).

(ii) 𝑓 is included into 𝑔 (𝑓 ≤ 𝑔) if and only if the value
of 𝑔 is always

𝑏
1 when the value of 𝑓 is

𝑏
1, that

is, ∀(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) ∈ 𝐵

𝑛, [𝑓(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) =

𝑏
0], or

[𝑔(
𝑏
𝑏
1
, . . . ,
𝑏
𝑏
𝑛
) =
𝑏
1].

Remark 8. Each 𝑛-variable switching function can be ex-
pressed as a composition of (𝑓1Proj, . . . , 𝑓

𝑛

Proj, 0, 1) by opera-
tions +, ⋅ and .

Therefore, the Boolean algebra (𝐹
𝑛
(𝐵), +, ⋅, , 0, 1) is a

mathematical framework which allows composing and to
comparing switching functions. Thanks to the results pre-
sented in the next subsection, this framework allows also
solving Boolean equations systems of switching functions.

4.3. Solutions of Boolean Equations over Boolean Algebra
𝐹
𝑛
(𝐵). In [15], Brown explains that many problems in the

application of Boolean algebra may be reduced to solving an
equation of the form

𝑓 (𝑋) = 0, (12)

over a Boolean algebraB. Formal procedures for producing
solution of this equationwere developed by Boole himself as a
way to treat problems of logical inference. Boolean equations
have been studied extensively since Boole’s initial work (a
bibliography of nearly 400 sources is presented in [14]).These
works concern essentially the two-element Boolean algebra
({
𝑏
0,
𝑏
1}, ∨, ∧, ¬,

𝑏
0,
𝑏
1).

In our case, we focus on the Boolean algebra of 𝑛-
variable switching functions 𝐹

𝑛
(𝐵). We consider a Boolean

system composed of 𝑚 relations among members of 𝐹
𝑛
(𝐵)

for which 𝑘 of them are considered as unknowns. Theorems
presented in this section permit to solve any system of
Boolean equations as it exists in a canonic form of a Boolean
system of 𝑘 unknowns and we are able to calculate solutions
for this form.

4.3.1. Canonic Form of a Boolean System of 𝑘 Unknowns over
Boolean Algebra 𝐹

𝑛
(𝐵). Consider the Boolean algebra of 𝑛-

variable switching functions (𝐹
𝑛
(𝐵), +, ⋅, , 0, 1).

(i) Let (𝑓1Proj, . . . , 𝑓
𝑛

Proj) be the 𝑛 projection-functions of
𝐹
𝑛
(𝐵).

(ii) Let (𝑥
1
, . . . , 𝑥

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

unknowns.

For notational convenience, we note “𝑋
𝑘
” as the vector

(𝑥
1
, . . . , 𝑥

𝑘
) of the 𝑘 unknowns and “Proj” as the vector

(𝑓
1

Proj, . . . , 𝑓
𝑛

Proj) of the 𝑛 projection-functions of 𝐹𝑛(𝐵).

Theorem 9 (reduction of a set of relations between 𝑛-variable
switching functions). Any set of simultaneously asserted rela-
tions of switching functions can be reduced to a single equiva-
lent relation such as

F (𝑋
𝑘
, Proj) = 0. (13)

This theorem comes fromTheorem 6.
In order to be able to write a canonic form for a Boolean

system of 𝑘 unknowns over Boolean algebra 𝐹
𝑛
(𝐵), we

introduce the following notation: for 𝑥 ∈ 𝐹
𝑛
(𝐵) and 𝑎 ∈ {0, 1},

𝑥
𝑎 is defined by

𝑥
0
= 𝑥, 𝑥

1
= 𝑥. (14)
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This notation is extended to vectors as follows: for 𝑋
𝑘
=

(𝑥
1
, . . . , 𝑥

𝑘
) ∈ 𝐹

𝑛
(𝐵)
𝑘 and 𝐴

𝑘
= (𝑎
1
, . . . , 𝑎

𝑘
) ∈ {0, 1}

𝑘, 𝑋𝐴𝑘
𝑘

is defined by

𝑋
𝐴𝑘

𝑘
=

𝑖=𝑘

∏

𝑖=1

𝑥
𝑎𝑖

𝑖
= 𝑥
𝑎1

𝑖
⋅ ⋅ ⋅ ⋅ ⋅ 𝑥

𝑎𝑘

𝑘
. (15)

Theorem 10 (canonic form of a Boolean equation). Any
Boolean equation 𝐸𝑞(𝑋

𝑘
, 𝑃𝑟𝑜𝑗) = 0 can be expressed within

the canonic form

∑

𝐴𝑘∈{0,1}
𝑘

Eq (𝐴
𝑘
, Proj) ⋅ 𝑋𝐴𝑘

𝑘
= 0, (16)

where 𝐸𝑞(𝐴
𝑘
, 𝑃𝑟𝑜𝑗) (with 𝐴

𝑘
∈ {0, 1}

𝑘) are the
2
𝑘
𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡𝑠 of 𝐸𝑞(𝑋

𝑘
, 𝑃𝑟𝑜𝑗) = 0 according to 𝑋

𝑘

(the term of “discriminant” comes from [15]).

This canonic form is obtained by expanding Eq(𝑋
𝑘
,Proj)

according to the 𝑘 unknowns (𝑥
1
, . . . , 𝑥

𝑘
). For example, we

have
Eq (𝑥,Proj) = Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥,

Eq (𝑥
1
, 𝑥
2
,Proj) = Eq (0, 0,Proj) ⋅ 𝑥

1
⋅ 𝑥
2

+ Eq (0, 1,Proj) ⋅ 𝑥
1
⋅ 𝑥
2

+ Eq (1, 0,Proj) ⋅ 𝑥
1
⋅ 𝑥
2

+ Eq (1, 1,Proj) ⋅ 𝑥
1
⋅ 𝑥
2
.

(17)

4.3.2. Solution of a Single-Unknown Equation over 𝐹
𝑛
(𝐵).

The following theorem has initially been demonstrated for
the two-element Boolean algebra [14]. A generalization for
all Boolean algebras can be found in [15], but no detailed
demonstration is given. A new formalization of this theorem
and its full demonstration are given below.

Theorem 11 (solution of a single-unknown equation). The
Boolean equation over 𝐹

𝑛
(𝐵)

𝐸𝑞 (𝑥, 𝑃𝑟𝑜𝑗) = 0, (18)

for which the canonic form is

𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) ⋅ 𝑥 + 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗) ⋅ 𝑥 = 0, (19)

is consistent (i.e., has at least one solution) if and only if the
following condition is satisfied:

𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) ⋅ 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗) = 0. (20)

In this case, a general form of the solutions is

𝑥 = 𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) + 𝑝 ⋅ 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗), (21)

where 𝑝 is an arbitrary parameter, that is, a freely-chosen
member of 𝐹

𝑛
(𝐵).

This solution can also be expressed as

𝑥 = 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗) ⋅ (𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) + 𝑝)

= 𝑝 ⋅ 𝐸𝑞 (0, 𝑃𝑟𝑜𝑗) + 𝑝 ⋅ 𝐸𝑞 (1, 𝑃𝑟𝑜𝑗).

(22)

Proof. This theorem can be proved in four steps as follows:

(a) Equation (18) is consistent if and only if (20) is
satisfied;

(b) Equation (21) is a solution of (18) if (20) is satisfied;
(c) each solution of (18) can be expressed as (21);
(d) if (20) is satisfied, the three parametric forms pro-

posed are equivalent.

Step (a) can be proved as follows: Equation (20) is a
sufficient condition for (18) to admit solutions since 𝑥 =

Eq(0,Proj) is an obvious solution of (18). Equation (20) is
also a necessary condition as if (18) admits a solution, then
(18) can be also expressed thanks to the consensus theorem
as Eq(0,Proj) ⋅𝑥+Eq(1,Proj) ⋅𝑥+Eq(0,Proj) ⋅Eq(1,Proj) = 0
and we have necessarily Eq(0,Proj) ⋅ Eq(1,Proj) = 0.

To prove Step (b), it is sufficient to substitute the expres-
sion for 𝑥 from (21) into (18) and to use (20) as follows:

Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥

= Eq (0,Proj) ⋅ (Eq (0,Proj) + 𝑝 ⋅ Eq(1,Proj))

+ Eq (1,Proj) ⋅ (Eq (0,Proj) + 𝑝 ⋅ Eq(1,Proj))

= Eq (0,Proj) ⋅ Eq (0,Proj) ⋅ (𝑝 ⋅ Eq (1,Proj))

+ Eq (0,Proj) ⋅ Eq (1,Proj)

+ 𝑝 ⋅ Eq (1,Proj) ⋅ Eq (1,Proj)

= 0 + 0 + 0 = 0.

(23)

To prove Step (c), it is sufficient to find one element 𝑝 of
𝐹
𝑛
(𝐵) for each solution for 𝑥 of (18). Let us consider 𝑝 defined

by “𝑝 = Eq(0,Proj) ⋅ Eq(1,Proj) ⋅ 𝑥” where 𝑥 is a solution to
(18). Then we have

{

{

{

Eq (0,Proj) ⋅ Eq (1,Proj) = 0
Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥 = 0
𝑝 = Eq(0,Proj) ⋅ Eq(1,Proj) ⋅ 𝑥

⇒ 𝑥 = Eq (0,Proj) + 𝑝 ⋅ Eq(1,Proj)

(24)

as

𝑥 = 1 ⋅ 𝑥 = (Eq (0,Proj) + Eq (1,Proj)

+Eq (0,Proj) ⋅ Eq (1,Proj)) ⋅ 𝑥

= Eq (0,Proj) ⋅ 𝑥 + Eq (1,Proj) ⋅ 𝑥

+ Eq (0,Proj) ⋅ Eq (1,Proj) ⋅ 𝑥

= Eq (0,Proj) ⋅ 𝑥 + 0 + Eq (1,Proj)

⋅ (Eq (0,Proj) ⋅ Eq (1,Proj) ⋅ 𝑥)

as Eq (1,Proj) ⋅ 𝑥 = 0
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= Eq (0,Proj) ⋅ 𝑥 + Eq (0,Proj) ⋅ 𝑥

+ Eq (1,Proj) ⋅ 𝑝 as Eq (0,Proj) ⋅ 𝑥 = 0

= Eq (0,Proj) ⋅ (𝑥 + 𝑥) + 𝑝 ⋅ Eq (1,Proj)

= Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj).
(25)

To prove Step (d), it is sufficient to rewrite (21) in the two
other forms by using (20) as follows:

𝑥 = 1 ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj)

= (Eq (1,Proj) + Eq (1,Proj)) ⋅ Eq (0,Proj)

+ 𝑝 ⋅ Eq (1,Proj)

= Eq (0,Proj) ⋅ Eq (1,Proj) + (Eq (0,Proj) + 𝑝)

⋅ Eq(1,Proj)

= 0 + Eq(1,Proj) ⋅ (Eq (0,Proj) + 𝑝)

= Eq (1,Proj) ⋅ (Eq (0,Proj) + 𝑝) ,

𝑥 = 1 ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj)

= (𝑝 + 𝑝) ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj)

= 𝑝 ⋅ Eq (0,Proj) + 𝑝 ⋅ (Eq (0,Proj) + Eq (1,Proj))

= 𝑝 ⋅ Eq (0,Proj)

+ 𝑝 ⋅ (Eq (0,Proj) ⋅ Eq (1,Proj) + Eq (1,Proj))

= 𝑝 ⋅ Eq (0,Proj) + 𝑝 ⋅ (0 + Eq (1,Proj))

= 𝑝 ⋅ Eq (0,Proj) + 𝑝 ⋅ Eq (1,Proj).
(26)

4.3.3. Solution of 𝑘-Unknown Equations over 𝐹
𝑛
(𝐵). The

global result presented in the following theorem can be found
in [14] or [15]. However, in these works, the solution is not
expressed with a parametric form, but with intervals only.
The formulation presented in this paper is more adapted
to symbolic computation and is mandatory for practice
optimization.

A 𝑘-unknown equation can be solved by solving suc-
cessively 𝑘 single-unknown equations. If we consider the 𝑘-
unknown equation as a single-unknown equation of 𝑥

𝑘
, its

consistence condition corresponds to a (𝑘 − 1)-unknown
equation.The process can be iterated until 𝑥

1
. After substitut-

ing 𝑆(𝑥
1
) for 𝑥

1
in the last equation, it is possible to find the

solution for 𝑥
2
. Then, it is sufficient to apply this procedure

again (𝑘 − 2) times to obtain successively the solutions 𝑆(𝑥
3
)

to 𝑆(𝑥
𝑘
).

Theorem 12 (solution of a 𝑘-unknown equation). The
Boolean equation over 𝐹

𝑛
(𝐵)

𝐸𝑞
0
(𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0 (27)

is consistent (i.e., has at least one solution) if and only if the
following condition is satisfied:

∏

𝐴𝑘∈{0,1}
𝑘

𝐸𝑞
0
(𝐴
𝑘
, 𝑃𝑟𝑜𝑗) = 0. (28)

If (28) is satisfied, (27) admits one or more 𝑘-tuple solutions
(𝑆(𝑥
1
), . . . , 𝑆(𝑥

𝑘
)) such each component 𝑆(𝑥

𝑖
) is defined by

𝑆 (𝑥
𝑖
) = ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

𝐸𝑞
𝑖−1

(0, 𝐴
𝑘−𝑖
, 𝑃𝑟𝑜𝑗)

+ 𝑝
𝑖
⋅ ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

𝐸𝑞
𝑖−1

(1, 𝐴
𝑘−𝑖
, 𝑃𝑟𝑜𝑗),

(29)

with

(i) 𝐸𝑞
𝑖
(𝑥
𝑖+1
, . . . , 𝑥

𝑘
, 𝑃𝑟𝑜𝑗) = 𝐸𝑞

𝑖−1
(𝑥
𝑖
, 𝑥
𝑖+1
, . . . , 𝑥

𝑘
,

𝑃𝑟𝑜𝑗)|
𝑥𝑖←𝑆(𝑥𝑖)

(ii) 𝑝
𝑖
is an arbitrary parameter, that is, a freely-chosen

member of 𝐹
𝑛
(𝐵).

The full demonstration of this theorem cannot be given
in this paper because of lack of space (a full demonstration by
mathematical induction can be found in [8]). A description of
the different steps of the proof and the detail of the principal
steps are given below.

Proof (elements of Proof). Equation (27) can be solved by
applying Theorems 3 and 11 𝑘 times according to the
unknowns 𝑥

𝑘
to 𝑥
1
as follows.

According toTheorem 3, (27) is equivalent to

Eq
0
(𝑋
𝑘−1

, 0,Proj) ⋅ 𝑥
𝑘
+ Eq
0
(𝑋
𝑘−1

, 1,Proj) ⋅ 𝑥
𝑘
= 0. (30)

According to Theorem 11, (30) admits solutions in 𝑥
𝑘
if and

only if

Eq
0
(𝑋
𝑘−1

, 0,Proj) ⋅ Eq
0
(𝑋
𝑘−1

, 1,Proj) = 0. (31)

Equation (31) is an equationwith (𝑘−1)unknowns. Each term
of (31) can be expanded according to 𝑥

𝑘−1
and (31) can be

written in the form

(Eq
0
(𝑋
𝑘−2

, 0, 0,Proj) ⋅ Eq
0
(𝑋
𝑘−2

, 0, 1,Proj)) ⋅ 𝑥
𝑘−1

+ (Eq
0
(𝑋
𝑘−2

, 1, 0,Proj) ⋅ Eq
0
(𝑋
𝑘−2

, 1, 1,Proj)) ⋅ 𝑥
𝑘−1

= 0.

(32)

According toTheorem 11, (32) admits solutions in 𝑥
𝑘−1

if and
only if

∏

𝐴2∈{0,1}
2

Eq
0
(𝑋
𝑘−2

, 𝐴
2
,Proj) = 0. (33)
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Equation (33) is an equation with (𝑘 − 2) unknowns. Each
term of (33) can be expanded according to 𝑥

𝑘−2
and (33) can

be written in the form

( ∏

𝐴2∈{0,1}
2

Eq
0
(𝑋
𝑘−3

, 0, 𝐴
2
,Proj)) ⋅ 𝑥

𝑘−2

+ ( ∏

𝐴2∈{0,1}
2

Eq
0
(𝑋
𝑘−3

, 1, 𝐴
2
,Proj)) ⋅ 𝑥

𝑘−2
= 0.

(34)

In the end, we obtain an equation of only one unknown
𝑥
1
defined by

( ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(0, 𝐴
𝑘−1

,Proj)) ⋅ 𝑥
1

+ ( ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(1, 𝐴
𝑘−1

,Proj)) ⋅ 𝑥
1
= 0.

(35)

According to Theorem 11, (35) admits solutions if and
only if

∏

𝐴𝑘∈{0,1}
𝑘

Eq
0
(𝐴
𝑘
,Proj) = 0. (36)

When (36) is satisfied, the 𝑘 equations for 𝑥
1
to 𝑥
𝑘

admit solutions. Equation (27) is then coherent and admits
solutions.

When (36) is satisfied, solutions of (35) for 𝑥
1
are

𝑆 (𝑥
1
) = ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(0, 𝐴
𝑘−1

,Proj)

+ 𝑝
1
⋅ ∏

𝐴𝑘−1∈{0,1}
𝑘−1

Eq
0
(1, 𝐴
𝑘−1

,Proj).
(37)

After substituting 𝑆(𝑥
1
) for 𝑥

1
into (27), we obtain a new

equation Eq
1
(𝑥
2
, . . . , 𝑥

𝑘
,Proj) = 0 involving the (𝑘 − 1)

unknowns (𝑥
2
, . . . , 𝑥

𝑘
), where

Eq
1
(𝑥
2
, . . . , 𝑥

𝑘
,Proj) = Eq

0
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
,Proj) |

𝑥1←𝑆(𝑥1)
.

(38)

By applying the previous procedure, we can obtain 𝑆(𝑥
2
)

and Eq
2
(𝑥
3
, . . . , 𝑥

𝑘
,Proj).Then, it suffices to apply this proce-

dure again (𝑘−2) times to obtain successively solutions 𝑆(𝑥
3
)

to 𝑆(𝑥
𝑘
).

It is important to note that the order in which unknowns
are treated affects only the parametric form of the 𝑘-tuple
solution.This is due to the fact that the same 𝑘-tuple solution
can be represented with several distinct parametric forms.

4.3.4. Partial Conclusions. Thanks to theorems presented
above, it is possible to obtain a parametric representation
of all the solutions of any set of simultaneously asserted
relations with 𝑘 unknowns, if a solution exists. In practice,
due to the complexity of systems to be designed, proposed
set of simultaneously asserted relations is generally incon-
sistent [23]. To simplify the work of the designer, we have
proved complementary theorems to improve the robustness
of our method to the lack of precision of the specifications
(Section 4.4).

When several solutions exist, the comparison of solutions
according to a given criterion can be envisaged since the
Boolean algebra 𝐹

𝑛
(𝐵) is equipped with a partial order. To

simplify the work of the designer too, we have developed a
method to calculate the best solutions according to one or
several criteria (Section 4.5).

4.4.Theorems toCopewith Inconsistencies of Specifications. In
practice, it is very difficult for a designer to specify the whole
requirements of a complex system without inconsistencies. It
is the reasonwhy requirements given by the designer are often
declared as inconsistent according to Theorem 12. Since the
inconsistency condition is a Boolean formula, it is possible to
use it for the detection of the origin of inconsistencies. Two
cases have to be considered as follows:

(i) Several requirements cannot be simultaneously
respected. In this case, a hierarchy between require-
ments can be proposed in order to find a solution.
The requirements which have the lower priority have
to be corrected for becoming consistent with the
requirements which have the higher priority. This
strategy is based onTheorem 14.

(ii) Thedetected inconsistency refers to specific combina-
tions of projection-functions for which the designer
knows that they are impossible blocking the synthesis
process, it is necessary to introduce new assumptions
and to use Theorem 13.

Theorem 13 (solution of a Boolean equation according to an
assumption among the projection-functions). The following
problem

Equationtosolve:

𝐸𝑞
0
(𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

Assumptions:

A (𝑃𝑟𝑜𝑗) = 0

(39)

admits the same solutions as the following equation:

𝐸𝑞
0
(𝑋
𝑘
, 𝑃𝑟𝑜𝑗) ≤ A (𝑃𝑟𝑜𝑗) . (40)
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Proof. According to A(Proj) = 0, Eq
0
(𝑋
𝑘
,Proj) = 0 can be

rewritten as

{
Eq
0
(𝑋
𝑘
,Proj) = 0

A (Proj) = 0

⇐⇒ A (Proj) + Eq
0
(𝑋
𝑘
,Proj) = 0

⇐⇒ A (Proj) +A (Proj) ⋅ Eq
0
(𝑋
𝑘
,Proj) = 0

⇐⇒ {
A(Proj) ⋅ Eq

0
(𝑋
𝑘
,Proj) = 0

A (Proj) = 0

⇐⇒ {
Eq
0
(𝑋
𝑘
,Proj) ≤ A (Proj)

A (Proj) = 0.

(41)

EquationA(Proj) ⋅ Eq
0
(𝑋
𝑘
,Proj) = 0 is consistent if and

only if the following condition is true (Theorem 12):

A (Proj) ⋅ ∏

𝐴𝑘∈{0,1}
𝑘

Eq
0
(𝐴
𝑘
,Proj) = 0. (42)

By construction, this new condition is the subset of the
initial condition (∏

𝐴𝑘∈{0,1}
𝑘Eq
0
(𝐴
𝑘
,Proj) = 0) for which the

proposed assumption is satisfied. All the other terms have
been removed.

If (42) is satisfied, (40) admits one or more 𝑘-tuple
solutions where each component 𝑆(𝑥

𝑖
) is defined by

𝑆 (𝑥
𝑖
) = A(Proj)

⋅ ( ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(0, 𝐴
𝑘−𝑖
,Proj)

+ 𝑝
𝑖
⋅ ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(1, 𝐴
𝑘−𝑖
,Proj))

+A (Proj) ⋅ 𝑝
𝑖
.

(43)

AsA(Proj) = 0, 𝑆(𝑥
𝑖
) can also be expressed as

𝑆 (𝑥
𝑖
) = ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(0, 𝐴
𝑘−𝑖
,Proj) + 𝑝

𝑖

⋅ ∏

𝐴𝑘−𝑖∈{0,1}
𝑘−𝑖

Eq
𝑖−1

(1, 𝐴
𝑘−𝑖
,Proj).

(44)

When A(Proj) = 0 is satisfied, the solutions of (40) are also
solution to Eq

0
(𝑋
𝑘
,Proj) = 0.

Theorem 14 (Solution of a Boolean equation system accord-
ing to a priority rule between requirements). The following
problem

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑜solve:

𝐻𝑅 FH (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

𝐿𝑅 FL (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

𝑂𝑅 FO (𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑟𝑢𝑙𝑒𝑏𝑒𝑡𝑤𝑒𝑒𝑛requirements:

𝐻𝑅 ≫ 𝐿𝑅,

(45)

where

(i) FH(𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0 is the formal expression of the
requirements which have the higher priority (HR);

(ii) FL(𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0 is the formal expression of the
requirements which have the lower priority (LR);

(iii) FO(𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0 is the formal expression of the others
requirements (OR);

(iv) 𝐻𝑅 ≫ 𝐿𝑅 is the priority rule between inconsistent
requirements,

admits the same solutions as the system of equations as follows:

FH (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) = 0

FL (𝑋
𝑘
, 𝑃𝑟𝑜𝑗) ≤ I (𝑃𝑟𝑜𝑗)

FO (𝑋𝑘, 𝑃𝑟𝑜𝑗) = 0,

(46)

whereI(𝑃𝑟𝑜𝑗) is the inconsistency condition between require-
ments “HR” and “LR”:

I (𝑃𝑟𝑜𝑗) = ∏

𝐴𝑘∈{0,1}
𝑘

(FH (𝐴
𝑘
, 𝑃𝑟𝑜𝑗) +FL (𝐴

𝑘
, 𝑃𝑟𝑜𝑗)) .

(47)

Proof. Thanks to Theorem 12, the inconsistency condition
I(Proj) between requirements “HR” and “LR” can be found
by solving equation FH(𝑋𝑘,Proj) + FL(𝑋𝑘,Proj) = 0. We
have

I (Proj) = ∏

𝐴𝑘∈{0,1}
𝑘

(FH (𝐴
𝑘
,Proj) +FL (𝐴

𝑘
,Proj)) .

(48)

To remove the inconsistency between requirements “HR” and
“LR” according to the priority rule “HR≫ LR”, it is necessary
to restrict the range of requirement “LR” to the part for which
there is no inconsistency, that is, I(Proj) = 0. That is the
case, whenFL(𝑋𝑘,Proj) = 0 is replaced byFL(𝑋𝑘,Proj) ≤
I (Proj).

Thanks to Theorem 12, (49) admits always one or more
𝑘-tuple solutions and it is impossible to find a less restrictive
condition over requirement “LR”.

FH (𝑋
𝑘
,Proj) = 0

FL (𝑋
𝑘
,Proj) ≤ I (Proj) .

(49)
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4.5. Optimal Solutions of Boolean Equations over 𝐹
𝑛
(𝐵). The

goal of this step is to be able to obtain automatically the
parametric form of the 𝑘-tuples solutions of 𝐹

𝑛
(𝐵) which

satisfy not only a given equation (Eq(𝑋
𝑘
,Proj) = 0) of

Boolean functions but also which maximize (or minimize) a
Boolean formula of these Boolean functions (F

𝐶
(𝑋
𝑘
,Proj))

corresponding to the desired optimization criterion.
Generally speaking, the search of the best solution tuples

according to a given criterion when the space of solutions is
composed of discrete values is a complex mathematical issue.
It is sometimes necessary to make a side-by-side comparison
of each solution in order to identify the best one. In our case,
this exhaustive method which cannot be used as 𝐹

𝑛
(𝐵) is only

provided by a partial order; two particular solutions cannot
always be ordered between themselves.

Nevertheless, it is possible to obtain the researched
parametric form of the 𝑘-tuples thanks to the following
results.

(i) When an equation between Boolean functions has
one or more solution tuples in 𝐹

𝑛
(𝐵), every Boolean

formula onto these Boolean functions can be rewrit-
ten thanks to only projection-functions of 𝐹

𝑛
(𝐵) and

free parameters of 𝐹
𝑛
(𝐵) which are describing these

solution tuples.
(ii) Every Boolean formula expressed as a composition

of projection-functions of 𝐹
𝑛
(𝐵) and free parameters

of 𝐹
𝑛
(𝐵) has a unique maximum and a unique

minimum.These extrema can be expressed thanks to
only projection-functions of 𝐹

𝑛
(𝐵).

Hence it is then possible to rewrite the initial problem

Problem to solve:

Eq (𝑋
𝑘
,Proj) = 0

Optimization Criterion:

Maximization of FC (𝑋𝑘,Proj) ,

(50)

into a 2-equation system to solve

Eq (𝑋
𝑘
,Proj) = 0

F
𝐶
(𝑋
𝑘
,Proj) = Max

{𝑋𝑘|Eq(𝑋𝑘 ,Proj)=0}
(F
𝐶
(𝑋
𝑘
,Proj)) . (51)

4.5.1. Extrema of a Boolean Formula according to Freely
Chosen Members of 𝐹

𝑛
(𝐵). Considering the Boolean algebra

of 𝑛-variable switching functions (𝐹
𝑛
(𝐵), +, ⋅, , 0, 1),

(i) let (𝑓1Proj, . . . , 𝑓
𝑛

Proj) be the 𝑛 projection-functions of
𝐹
𝑛
(𝐵);

(ii) let (𝑝
1
, . . . , 𝑝

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

freely chosen members. Let “𝑃
𝑘
” be the corresponding

vector.

Any formula F(𝑃
𝑘
,Proj) for which 𝑃

𝑘
are freely chosen

members of 𝐹
𝑛
(𝐵) defines a subset of 𝐹

𝑛
(𝐵). According to

the relation ≤, elements of this subset can be compared.

In this specific case, the subset defined byF(𝑃
𝑘
,Proj) admits

a minimal element and a maximal element.

Theorem 15 (minimum and maximum of a Boolean for-
mula). Any formulaF(𝑃

𝑘
, Proj) for which 𝑃

𝑘
are freely chosen

members of 𝐹
𝑛
(𝐵) admits a minimum and amaximum defined

as follows:

Min
𝑃𝑘∈𝐹𝑛(𝐵)

𝑘

(F (𝑃
𝑘
, Proj)) = ∏

𝐴𝑘∈{0,1}
𝑘

F (𝐴
𝑘
, Proj)

Max
𝑃𝑘∈𝐹𝑛(𝐵)

𝑘

(F (𝑃
𝑘
, Proj)) = ∑

𝐴𝑘∈{0,1}
𝑘

F (𝐴
𝑘
, Proj) ,

(52)

Proof. To prove this theorem, it is necessary to establish that

(1) ∏
𝐴𝑘∈{0,1}

𝑘F(𝐴
𝑘
,Proj) is a lower bound of F(𝑃

𝑘
,

Proj);
(2) It exists at least one specific combination of 𝑃

𝑘
for

whichF(𝑃
𝑘
,Proj) = ∏

𝐴𝑘∈{0,1}
𝑘F(𝐴

𝑘
,Proj);

(3) ∑
𝐴𝑘∈{0,1}

𝑘F(𝐴
𝑘
,Proj) is an upper bound of F(𝑃

𝑘
,

Proj);
(4) It exists at least one specific combination of 𝑃

𝑘
for

whichF(𝑃
𝑘
,Proj) = ∑

𝐴𝑘∈{0,1}
𝑘F(𝐴

𝑘
,Proj).

Details of this proof can be found in [24].

4.5.2. Optimization Problem. Considering the Boolean alge-
bra of 𝑛-variable switching functions (𝐹

𝑛
(𝐵), +, ⋅, , 0, 1),

(i) let (𝑓1Proj, . . . , 𝑓
𝑛

Proj) be the 𝑛 projection-functions of
𝐹
𝑛
(𝐵). Let “Proj” be the corresponding vector;

(ii) Let (𝑥
1
, . . . , 𝑥

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

unknowns. Let “𝑋
𝑘
” be the corresponding vector;

(iii) Let (𝑝
1
, . . . , 𝑝

𝑘
) be 𝑘 elements of 𝐹

𝑛
(𝐵) considered as

freely chosen members. Let “𝑃
𝑘
” be the corresponding

vector.;
(iv) Let Eq(𝑋

𝑘
,Proj) = 0 be the Boolean equation to solve;

(v) LetFC(𝑋𝑘,Proj) be the Boolean formula of the given
criterion to optimize (maximization or minimiza-
tion).

Themethod we propose, to obtain the parametric form of
the 𝑘-tuple of switching functions solution of Eq(𝑋

𝑘
,Proj) =

0 according to a given optimization criterionFC(𝑋𝑘,Proj) is
composed of five steps as follows.

(i) The first step is to establish the parametric form of the
𝑘-tuple solution to Eq(𝑋

𝑘
,Proj) = 0 only, thanks to

Theorem 12.
(ii) The second step is to establish the parametric form

of the given optimization criterion FC(𝑋𝑘,Proj) by
substituting 𝑆(𝑥

𝑖
) for 𝑥

𝑖
. Let FSC(𝑃𝑘,Proj) be the

result of this substitution.
(iii) The third step is to calculate the extremum

of FSC(𝑃𝑘,Proj) according to Theorem 15. Let
FEC(Proj) be the Boolean formula of this extremum.
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Pump1

Pump2

To the distributing system

Tank

Figure 4: Structure of the water supply system.

(iv) The fourth step is to replace the given criterion by the
equivalent relation

F
𝐶
(𝑋
𝑘
,Proj) = FEC (Proj) . (53)

(v) The fifth step is to establish the parametric form of the
𝑘-tuple solution of the equivalent problem

Eq (𝑋
𝑘
,Proj) = 0

FCrit (𝑋𝑘,Proj) = FExtCrit (Proj) .
(54)

4.5.3. Partial Conclusions. Thanks to theorems presented
in this section, it is now possible to obtain a parametric
representation of the optimal solutions according to a given
criterion, of any set of simultaneously asserted relations with
𝑘 unknowns if a solution exists.

The proposed method also permits to associate simulta-
neously or sequentially several criteria.

(i) When several criteria are treated simultaneously, the
optimization problem can admit no solution. That is
the case when the given criteria are antagonist.

(ii) When several criteria are treated sequentially, the
obtained solutions satisfy the criteria with a given
priority order. An example of optimization with
several criteria treated sequentially is presented in the
next section.

5. Algebraic Synthesis of Logical
Controllers with Optimization Criteria
and Incoherent Requirements

5.1. Control System Specifications. The studied system is the
controller of a water supply system composed of two pumps
which are working in redundancy (Figure 4). The water
distribution is made when it is necessary according to the
possible failures of elements (the pumps and the distributing
system).

The expected behavior of the control system regarding
the application requirements can be expressed by the set of
assertions given hereafter:

(i) The two pumps never operate simultaneously.
(ii) A pump cannot operate if it is out of order.

(iii) When a global failure is detected, no pump can
operate.

(iv) Pumps can operate if and only if a water distribution
request is present.

(v) Priority is given according to “pr” (pump1 has priority
when “pr” is true).

(vi) In order to reduce the wear of the pumps, it is
necessary to restrict the number of starting of the
pumps.

5.1.1. Inputs and Outputs of the Controller. The Boolean
inputs and outputs of this controller are given in Figure 5(a).
Each pump is controlled thanks to a Boolean output (“p1”
and “p2”). The controller is informed of water distribution
requests thanks to the input “req.” Inputs “f1” and “f2” inform
the controller of a failure of the corresponding pump and “gf ”
indicates a global failure of the installation. The values o or 1
of input “Pr” decide which pump has priority.

5.1.2. Control Laws to Synthetize. Our approach does not
allow identifying automatically which state variables must
be used. They are given by the designer according to its
interpretation of the specification.

For the water distribution system, we propose to use 2
state variables, one for each output. According to this choice,
2 7-variable switching functions (𝑃1 and 𝑃2) have to be
synthesized (Figure 5(b)). They represent the unknowns of
our problem. For this case study, the 7 projection-functions
of 𝐹
7
(𝐵) are therefore as follows.

(i) The 5 switching functions (Rq, F1, F2, GF, and Pr)
which characterize the behavior of the inputs of the
controller and are defined as follows:

Rq:𝐵7 → 𝐵

(rq [𝑘] , . . . , p2 [𝑘 − 1]) ∣→ rq [𝑘] .
(55)

(ii) The 2 switching functions (
𝑝
𝑃1 and

𝑝
𝑃2) which char-

acterize the previous behavior of the state variables of
the controller and are defined as follows:

𝑝
𝑃1: 𝐵7 → 𝐵

(rq [𝑘] , . . . , p2 [𝑘 − 1]) ∣→ p1 [𝑘 − 1] .
(56)

5.2. Algebraic Formalization of Requirements. The complete
formalization of the behavior of the water distribution system
is given in Figure 5(c). In order to illustrate the power
of expression of relations Equality and Inclusion, several
examples (generic assertions and equivalent formal relations
illustrated in the case study) are given hereafter. It is impor-
tant to note that the relation Inclusion permits to express
distinctly necessary conditions and sufficient conditions.This
relation is the cornerstone of our approach.

(i) Pump1 and Pump2 never operate simultaneously:𝑃1⋅
𝑃2 = 0;

(ii) If Pump1 operates, Pump2 cannot operate: 𝑃1 ≤ 𝑃2;
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(a) Inputs and Outputs of the Controller

Control of
the water

distribution
system

(Request of water) rq
(Pump1 failure) f1
(Pump2 failure) f2
(Global failure) gf

(Priority to Pump1) pr

p1 (Command of Pump1)

p2 (Command of Pump2)

(b) General form of the Expected Control Laws

p1 [𝑘] = P1 (rq [𝑘] , f1 [𝑘] , f2 [𝑘] gf [𝑘] , pr [𝑘] , p1 [𝑘 − 1] , p2 [𝑘 − 1])

p2 [𝑘] = P2 (rq [𝑘] , f1 [𝑘] , f2 [𝑘] gf [𝑘] , pr [𝑘] , p1 [𝑘 − 1] , p2 [𝑘 − 1])

p1 [0] =
𝑏
0 p2 [0] =

𝑏
0

(c) Formal Specification

Requirements:

R1 P1 ⋅ P2 = 0 (∗The two pumps never operate simultaneously.∗)
R2 F1 ≤ P1 (∗Pump 1 cannot operate if it is out of order (F1).∗)
R3 F2 ≤ P2 (∗Pump2 cannot operate if it is out of order (F2).∗)
R4 GF ≤ (P1 ⋅ P2) (∗When a global failure is detected (GF), no pump can operate.∗)
R5 (P1 + P2) ≤ Rq (∗It is necessary to have are quest for pumps operate.∗)
R6 Rq ≤ (P1 + P2) (∗It is sufficient to have a request for pumps operate.∗)

Priority rules:

R4 ≫ R6 (∗Failure requirements has priority on a functional requirement.∗)
{R2,R3} ≫ R6 (∗Failure requirements has priority on a functional requirement.∗)

Optimization criteria:

(1) Minimization of: ((P1 ⋅
𝑝
𝑃1) + (P2 ⋅

𝑝
𝑃2)) (∗Minimization of the possibility to start a pump.∗)

(2) Maximization of: ((Pr ⋅ P1) + (Pr ⋅ P2)) (∗Maximization of the priority order between the two pumps.∗)

(d) Solution obtained by symbolic calculation

P1 = Rq ⋅ GF ⋅ F1 ⋅ (F2 + Pr ⋅ (
𝑝
𝑃1+
𝑝
𝑃2) +

𝑝
P 1 ⋅
𝑝
𝑃2)

P2 = Rq ⋅ GF ⋅ F2 ⋅ (F1 + Pr ⋅ (
𝑝
𝑃2+
𝑝
𝑃1) +

𝑝
P 2 ⋅
𝑝
𝑃1)

(e) Control laws of the water distribution system

p1 [𝑘] = rq [𝑘] ∧ ¬gf [𝑘] ∧ ¬f1 [𝑘] ∧ (f2 [𝑘] ∨ pr [𝑘] ∧ (p1 [𝑘 − 1] ∨ ¬p2 [𝑘 − 1]) ∨ p1 [𝑘 − 1] ∧ ¬p2 [𝑘 − 1])

p2 [𝑘] = rq [𝑘] ∧ ¬gf [𝑘] ∧ ¬f1 [𝑘] ∧ (f1 [𝑘] ∨ pr [𝑘] ∧ (p2 [𝑘 − 1] ∨ ¬p1 [𝑘 − 1]) ∨ p2 [𝑘 − 1] ∧ ¬p1 [𝑘 − 1])

p1 [0] =
𝑏
0 p2 [0] =

𝑏
0

Figure 5: Details of the case study.
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(iii) It is necessary to have a request for pumps operate:
(𝑃1 + 𝑃2) ≤ Rq;

(iv) It is sufficient to have a request for pumps operate:
Rq ≤ (𝑃1 + 𝑃2);

(v) When Pump1 is failed, it is sufficient to have a request
for Pump2 operate: F1 ⋅ Rq ≤ 𝑃2;

(vi) When Pump1 is failed, it is necessary to have a request
for Pump2 operate: F1 ⋅ 𝑃2 ≤ Rq.

It is possible to prove that some of these formal expres-
sions are equivalent (e.g., the first two). When a designer
hesitates between two forms, he has the possibility, by using
symbolic calculation, to check if the proposed relations are
equivalent or not.

As 𝑃1 and
𝑝
𝑃1 represent the behavior of pump1 at,

respectively, times [𝑘] and [𝑘−1], it is also possible to express
relations about starts and stops of this pump as follows.

(i) It is necessary to have a request to start pump1: (𝑃1 ⋅
𝑝
𝑃1) ≤ Rq.

(ii) When pump1 operates, it is sufficient to have a global
failure to stop pump1: (

𝑝
𝑃1 ⋅ GF) ≤ (𝑃1 ⋅

𝑝
𝑃1).

5.3. Synthesis Process. In traditional design methods, the
design procedure of a logic controller is not a linear process,
but an iterative one converging to an acceptable solution. At
the beginning of the design, requirements are neither com-
plete nor without errors. Most often, new requirements are
added during the search of solutions, and others are cor-
rected. This complementary information is given by the
designer after analysis of the partial solutions he found
or when inconsistencies have been detected. If we do not
make the hypothesis that the specifications are complete and
consistent, designing a controller with a synthesis technique
is also an iterative process in which the designer plays an
important role.

5.3.1. Analysis of Requirements. For this case study, we choose
to start with requirements R1 to R6. For this subset of
requirements, the result given by your software tool was the
following inconsistency condition:I = Rq ⋅GF+Rq ⋅F1 ⋅F2.

Since requirements are declared inconsistent, we have to
give complementary information to precise our specification.
By analyzing each term of this formula, it is possible to detect
the origin of the inconsistency:

(i) Rq ⋅ GF: what happens if we have simultaneously
a request and a global failure? We consider that
requirement R4 is more important than requirement
R6 (R4 ≫ R6) as no pump can operate for this
configuration.

(ii) Rq ⋅ F1 ⋅ F2: what happens if we have simultaneously
a request and a failure of each pump? We consider
that requirements R2 and R3 aremore important than
requirement R6 ({R2,R3} ≫ R6).

With these priority rules, all the requirements are now
coherent and the set of all the solutions can be computed.

5.3.2. Optimal Solutions. For choosing a control law of the
water supply system among this set of possible solutions, we
will now take into account the given optimization criteria.
The first criterion aims at minimizing the number of starting
of each pump in order to reduce its wear.The second criterion
aims atmaximizing the use of the pump indicated by the value
of parameter Pr. The method we propose allows proving that
proposed criteria cannot be treated simultaneously since they
are antagonist (to strictly the priority use of the pump fixed
by parameter Pr, it is necessary to permute pumps when Pr
changes of value, implying a supplementary start of a pump).
Details can be found in [25].

All the priorities rules and optimization criteria used for
this case study are given in Figure 5(c).The solutionwe obtain
is proposed in Figure 5(d).

5.3.3. Implementing Control Laws. The synthesized control
laws presented in Figure 5(e) have been obtained by trans-
lating the expression of the two unknowns according to
the projection-functions into relations between recurrent
Boolean equations. These control laws can be automatically
translated in the syntax of the ladder diagram language [1]
before being implemented into a PLC.The code is composed
of only 4 rungs (Figure 6).

The synthesized control laws can be given under the
form of an automatically built input/output automaton with
guarded transitions [21] (Figure 7).

6. Discussion

In our approach, the synthesis of control laws is based on
the symbolic calculation, a prototype software tool has been
developed to avoid tedious calculus and to aid the designer
during the different steps of the synthesis. This tool (that
can be obtained on request by the authors) performs all the
computations required for inconsistencies detection between
requirements and for control laws generation. In this tool,
all the Boolean formulas are stored in the form of reduced
ordered binary decision diagrams, which allows efficient
calculations. For example, the computations for synthesizing
a controller for the water supply system that we developed
above have been made in less than 10ms onto a classical
laptop.

Our approach has been tested on several studies cases
(some of them are available online: http://www.lurpa.ens-
cachan.fr/-226050.kjsp). The feedbacks of these experiences
allowed us to identify some of its limits and its possibilities;
the most important are given below.

We have first to recall that our method can only be used
for binary systems (systems whose inputs and outputs of their
controller are Boolean values).Nevertheless, in practicemany
systems, like manufacturing systems, transport systems, and
so on, are fully or partially binary.

In our opinion the main advantage of our approach
is that, contrary to traditional engineering approaches, the
synthesized control laws are not depending on designer’s skill
or of his correct interpretation of the system requirements.
On the other hand, the quality of the synthesis results highly
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Figure 6: Ladder diagram of the code to implement into the PLC.

Table 1: Futures concerning a same case study.

Formal requirements Synthesized controller PLC program (structured text)

Supervisory Control Theory
Plant behavior: 11 finite automata
(481 states and 1330 transitions)
Specifications: 11 finite automata

Finite automaton of 45
states and 70 transitions 130 lines

Algebraic synthesis 8 equations and 2 priority rules 2 6-variable switching
functions 4 lines

E0-1 = rq ∧ ¬gf ∧ ¬f1∧ (f2 ∨ pr)
E0-2 = rq ∧ ¬gf ∧ ¬f2 ∧ (f1∨ ¬pr)

E1-0 = ¬rq ∨ gf ∨ f1 ∧ f2

E2-0 = ¬rq ∨ gf ∨ f1 ∧ f2
E2-1 = rq ∧ ¬gf ∧ f2 ∧ ¬f1
E2-1 = rq ∧ ¬gf ∧ f2 ∧ ¬f1

E2-0 E0-2

E0-1

E1-0

E 2-
1

E 1-
2

0 1

2

{ } {p1}

{p2}

E1-2 = rq ∧ ¬gf ∧ f1 ∧ ¬f2{
Figure 7: State model of the obtained control law.

depends on the relevance of the requirements proposed by
the designer.This step of formalization, by the designer, of the
informal requirements of the system to be controlled is the
Achilles heel of all synthesis methods, including the Supervi-
sory Control Theory (SCT), and cannot be automated.

The objective comparison of our approach with other
synthesis methods, and more especially with SCT, is very
difficult because the models used and the theoretical basics
are very different. Nevertheless, we tested both approaches on
same study cases. One of them, the control of an automatic
parking gate, has been published in [26].The results obtained
in this case are summarized in Table 1.

Furthermore, one may note that the supervisor that
is synthesized by SCT is optimal in the sense where it

is the most permissive; that is, the one that reduces the
less the plant behavior in order to force it to respect the
specifications. As shown in this paper our method allows
to cope with inconsistencies in specifications, what is not
possible with SCT, and also allows to find optimal controllers
by choosing different optimization criteria (most permissive,
most restrictive, most safe controller, etc.).

7. Conclusion

Many research works in the field of DES aim at formalizing
steps of the systems life cycle. Since 20 years, significant
progresses have been obtained for the synthesis, verification,
performance evaluation, and diagnosis of DESs. Neverthe-
less, one of the common difficulties of these works is the
translation of informal expression of the knowledge of a
system into formal requirements. Few works have paid
attention to this important task which is very error prone. In
this paper, we proposed an iterative process that allows coping
with inconsistencies of the requirements during the synthesis
of the controller. The framework in which we proposed this
approach is an algebraic synthesis method. Since the problem
is located in the frontier between formal and informal,
intervention of the designer is necessary. Nevertheless, we
have shown that this intervention can be guided by the results
of the formal method provides.
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[8] Y. Hietter, Synthése algèbrique de lois de commande pour les
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This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial
information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the
relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous
is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the
system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

1. Introduction

With further exploration into the space, a set of complexmis-
sions is in the space development agenda such as large-scale
structure assembling, sending and picking up astronauts, and
repairing, saving, and docking, orbital propellant resupply
based on the autonomous rendezvous technology [1]. Due
to the essential position, many scholars have been focusing
on the control problem during rendezvous and some results
enlightened deeper research. In the approximately circular
orbit, C-W equations [2], derived by Clohessy and Wiltshire,
have been widely applied for the depiction of the relative
motion between neighboring spacecrafts. The early stage of
control design based on C-W equation revealed a number of
open-loopmethods such as V-bar, R-bar, dual impulsive, and
multiple impulsive [3]. With the benefits of control theory
flourishing, plenty of advanced control methods are used
to solve the rendezvous problems such as using artificial
potential function in [4], slidingmode control in [5], adaptive
control in [6], and H-infinity theory in [7].

Though theC-Wequation supplies an explicit description
of the relative motion for spacecrafts, there is an obstacle
when applied in reality that the real-time angle velocity of the
target spacecraft could not be obtained accurately as result
of detection errors and perturbation from environment. This
parameter uncertainty affects the control force and system
stability directly. It is necessary to investigate the uncertain
model for spacecraft rendezvous not depending on accurate

value of real-time angle velocity. The traditional robust
control method could deal with parametric uncertainty to
recognize rendezvous but some expecting system characters
are hard to be included during the control design.

In this paper, the spacecraft rendezvous problem with
uncertain parameter would be solved by robust parametric
method which allows freedom to improve system perfor-
mance. The robust control integrates eigenstructure assign-
ment andmodel reference theory to propose a concise control
law for spacecraft rendezvous which takes into consideration
the system performance such as the control constraints and
fuel saving. In the rest of this paper, a relative motion
model with uncertainty for the spacecraft rendezvous is to
be established; the design of the robust parametric control
law follows; besides, we apply the robust parametric control
for an example to illustrate the effectiveness of this design
approach.

2. Problem Formation

2.1. Equations of Motion. The coordinate frame for the two
spacecrafts rendezvous is based on the target spacecraft orbit,
described in Figure 1. We set the original point at the target’s
mass center; 𝑥, 𝑦, and 𝑧 indicate along-track, the radial, and
out of plane components of the position vector of the chaser
satellite in the target satellite’s local-vertical-local-horizontal
(LVLH) frame, respectively.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 961367, 5 pages
http://dx.doi.org/10.1155/2014/961367

http://dx.doi.org/10.1155/2014/961367


2 Mathematical Problems in Engineering

O

z

x

y

Earth center

Target spacecraft

Chaser spacecraft

Figure 1: Orbital coordinate.

The spacecraft rendezvous in the circle orbit would obey
the C-W equations

̈𝑥 − 2𝜔 ̇𝑦 = −𝑓
𝑥

̈𝑦 − 2𝜔 ̇𝑥 − 3𝜔
2
= −𝑓
𝑦

̈𝑧 + 𝜔
2
𝑧 = −𝑓

𝑧
,

(1)

where 𝑥, 𝑦, and 𝑧 stand for the relative position between the
chase spacecraft and the target spacecraft; 𝜔 represents the
average angle velocity of the target spacecraft; 𝑓

𝑥
, 𝑓
𝑦
, and 𝑓

𝑧

stand for the control acceleration on each axis.
According to the equation, the state and control vector

can be described as

𝑋 = [𝑥 𝑦 𝑧 ̇𝑥 ̇𝑦 ̇𝑧]
𝑇

,

𝑢 = [−𝑓𝑥 −𝑓𝑦 −𝑓𝑧]
𝑇

,

(2)

and output vector 𝑌 can be

𝑌 = [𝑥 𝑦 𝑧]
𝑇

. (3)

Then, we get

𝑋 = 𝐴𝑋 + 𝐵𝑢

𝑌 = 𝐶𝑋,

(4)

where

𝐴 =
[
[
[

[

0
3

I
3

0 0 0 0 −2𝜔 0

0 3𝜔
2

0 2𝜔 0 0

0 0 −𝜔
2
0 0 0

]
]
]

]

𝐵 = [
0
3

I
3

] , 𝐶 = [I3 0
3] ,

(5)

and 0
3
represents the matrix with the values of all elements

equal to zero; I
3
represents the unit matrix.

2.2. Problem Description. The classical C-W equations need
accurate angle velocity simultaneously which is difficult to
obtain due to the detection error. Therefore, we consider the
uncertain item 𝜃 to the angle velocity to make the system
model closer to reality.

When the angle velocity changes are

𝜔 = 𝜔
0
(1 + 𝜃) , (6)

the system model can be described as

𝑋 = 𝐴
𝑐
𝑋 + 𝐵𝑢

𝑌 = 𝐶𝑋,
(7)

where

𝐴
𝑐
= 𝐴
0
+ Δ𝐴

𝐴
0
=
[
[
[

[

0
3

I
3

0 0 0 0 −2𝜔
0
0

0 3𝜔
2

0
0 2𝜔

0
0 0

0 0 −𝜔
2

0
0 0 0

]
]
]

]

Δ𝐴 =
[
[

[

03 03
0 0 0 0 −2𝜃𝜔0 0

0 3𝜔
2

0
(2𝜃 + 𝜃

2
) 0 2𝜃𝜔0 0 0

0 0 −𝜔
2

0
(2𝜃 + 𝜃

2
) 0 0 0

]
]

]

.

(8)

The object of the designing control law is to recognize

lim
𝑡→∞

[𝑌 (𝑡) − 𝑌
𝑟
(𝑡)] = 0, (9)

where 𝑌(𝑡) is the output of the system and 𝑌
𝑟
(𝑡) represent

the reference relative position between chase spacecraft and
target spacecraft. Meanwhile, the uncertainty brings trouble
to the stability of the system which would be taken into
consideration during designing the control law.

3. Design of Robust Parametric Control

The design of the control law aims at reaching the reference
point of the chase spacecraft and keeping the closed loop
system stable. It could be separated into two parts as stabi-
lization controller and trajectory tracking controller.

3.1. Trajectory Tracking Controller. To begin with, we would
design the tracking controller based on the model reference
theory. Lemma 1 supplies theoretical evidence for the linear
tracking problems referred to [8].

Lemma 1. For the system, if the stabilization feedback control
law 𝐾 exists, the control law following the form as

𝑢 = 𝐾𝑋 + 𝐺𝑌
𝑟 (10)

would obtain the result of tracking reference signal, which
means that

lim
𝑡→∞

[𝑌 (𝑡) − 𝑌
𝑟
(𝑡)] = 0, (11)
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where feedforward control law 𝐺 could be calculated from the
following equation:

𝐺 = 𝑈 − 𝐾𝑍 (12)

and 𝑈, 𝑍 could be calculated as

[
𝑍

𝑈
] = [

𝐴 𝐵

𝐶 𝐷
]

−1

[
0

𝐼
] . (13)

According to Lemma 1, the rendezvous system could
track the reference position when the feedback control law
𝐾 stabilizes the system. Then, the critical task of designed
controller is to find a robust stabilization control law 𝐾.
Regarding the eigenstructure assignment of linear system,
some useful results would be utilized in the later part which
are from [8].

Lemma 2. Suppose 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑟, and (𝐴, 𝐵) is
controllable. 𝑠

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are a set of complex numbers,

which are symmetric about the real axis. Then, the matrices
𝐾 ∈ R𝑟×𝑛 and 𝑉 ∈ C𝑛×𝑛 satisfying

𝐴 = 𝐴 + 𝐵𝐾 = 𝑉 diag (𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
) 𝑉
−1 (14)

are given by

𝐾 = 𝑊𝑉
−1

𝑉 = [V1 V
2
⋅ ⋅ ⋅ V
𝑛] , V

𝑖
= 𝑁 (𝑠

𝑖
) 𝑓
𝑖

𝑤 = [𝑤1 𝑤2 ⋅ ⋅ ⋅ 𝑤𝑛] , 𝑤
𝑖
= 𝐷 (𝑠

𝑖
) 𝑓
𝑖
,

(15)

where 𝑓
𝑖
∈ C𝑟, 𝑖 = 1, 2, . . . , 𝑛, are arbitrary vectors which

satisfy

𝑓
𝑖
= 𝑓
𝑗

if 𝑠
𝑖
= 𝑠
𝑗

det (𝑉) ̸= 0

(16)

and 𝑁(𝑠) and 𝐷(𝑠) are right comprime polynomial matrices
satisfying

(𝑠𝐼 − 𝐴)
−1
𝐵 = 𝑁 (𝑠)𝐷

−1
(𝑠) . (17)

For the rendezvous system in this paper, we could
calculate according to Lemma 2 as

𝑁(𝑠) = [

[

−1 0 0 −𝑠 0 0

0 −1 0 0 −𝑠 0

0 0 −1 0 0 −𝑠

]

]

𝑇

𝐷 (𝑠) = [

[

−𝑠
2

−2𝜔
0
𝑠 0

−2𝜔
0
𝑠 3𝜔
2

0
− 𝑠
2

0

0 0 𝜔
2

0
− 𝑠
2

]

]

.

(18)

Lemma 2 supplies a concise parametric formula for state
feedback law 𝐾 in which the poles of the closed-loop
system are included. Proper poles would not only guarantee
the system stabilization but also enhance system characters
through optimization in some specific fields. Besides, the
parametric method offers all kinds of freedom to design
the control system with the free parametric vectors 𝑓

𝑖
, 𝑖 =

1, 2, . . . , 𝑛, which enable us to adjust these parameters for
system stabilization.

3.2. Stabilization Controller. Using the control law

𝑢 = 𝐾𝑋 + 𝐺𝑌
𝑟
, (19)

the closed-loop system can be described as

𝑋 = (𝐴
𝑘
+ Δ𝐴)𝑋 + 𝐵𝐺𝑌

𝑟
, (20)

where

𝐴
𝑘
= 𝐴
0
+ 𝐵𝐾. (21)

When𝐴
𝑘
is a nondefectivematrix and the closed-loop system

owns the required poles 𝑠
𝑖
(𝑖 = 1, 2, . . . , 𝑛), the sufficient

condition for the system stabilization with the uncertainty
item Δ𝐴 is [9]

‖Δ𝐴‖2 <
1

‖𝑃‖2

, (22)

where 𝑃 is a symmetric positive definite solution of the
following:

𝐴
𝑇

𝑘
𝑃 + 𝑃𝐴

𝑘
= −2𝐼. (23)

Lemma 3 provides the parametric expression for 𝑃 based on
the eigenstucture of the system.

Lemma 3. The solution to (23) has the following parametric
representation:

𝑃 = 2𝑉
−𝑇
𝑄𝑉
−1
, (24)

where

𝑄 = [−
V𝑇
𝑖
V
𝑗

𝑠
𝑖
+ 𝑠
𝑗

]

𝑛×𝑛

(25)

and 𝑠
𝑖
, V
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, are respectively the eigenvalues and

corresponding eigenvectors of 𝐴
𝑘
.

For a better stabilization system, we hope to minimize
‖𝑃‖
2
which is the result of some adjustments for the parame-

ters 𝑠
𝑖
(𝑖 = 1, 2, . . . , 𝑛) and 𝑓

𝑖
(𝑖 = 1, 2, . . . , 𝑛).

3.3. Optimization of Control Law. We have established the
connection between the system characters and the parame-
ters 𝑠
𝑖
and 𝑓
𝑖
through the design of the control law.Therefore,

the design problem for the rendezvous system can be con-
verted into the following nonlinear optimization problem:

min 𝐽 (𝑠
𝑖
, 𝑓
𝑖
) (26a)

s.t. 𝑎
𝑖
≤ Re (𝑠

𝑖
) ≤ 𝑏
𝑖
< 0 (26b)

𝑐
𝑖
≤ Im (𝑠

𝑖
) ≤ 𝑑
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (26c)

where 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, and 𝑑

𝑖
specify the desired areas of the closed-

loop eigenvalues.
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Figure 2: Autonomous rendezvous trajectory of chaser.
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Figure 3: Control inputs during rendezvous mission.

The performance index is chosen as follows:

𝐽 = 𝛼𝐿
𝑇
𝐾
𝑇
𝐾𝐿 + 𝛽‖𝐾‖𝐹 + 𝛾‖𝑃‖2, (27)

where 𝐿 denotes the initial state of system; 𝛼, 𝛽, and 𝛾 are
the weighting factors. The first part of (27) is chosen due to
the consideration of the input constraint. The second item of
(27) takes into consideration fuel consumption. The last part
of (27) is used for global stability of the rendezvous system.

The optimization discussed above could be solved resort-
ing to the optimization tool in MATLAB for its convenience.
Then, the poles 𝑠

𝑖
(𝑖 = 1, 2, . . . , 𝑛) of the system and free

parametric vectors 𝑓
𝑖
(𝑖 = 1, 2, . . . , 𝑛) would be fixed to

calculate the feedback matrix for the robust control.

4. Numerical Simulations

In this section, our control law designed through the method
proposed above would be tested by an example of spacecrafts
in the final approaching in rendezvous mission. With the
assumption that the target is in the geosynchronous orbit,
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Figure 4: Relative position of two spacecraft.

we set the standard angle velocity 𝜔
0
= 7.2921 × 10

−5 rad/s.
Suppose the initial state vector is

𝑋(0) = [500 −1500 −800 −1.0 0.1 0.1]
𝑇 (28)

and the desired final state is

𝑋(𝑡
𝑓
) = [0 0 0 0 0 0]

𝑇

, (29)

where 𝑡
𝑓

is final time of the rendezvous mission. The
weighting factors in the performance index 𝐽 are

𝛼 = 0.1, 𝛽 = 15, 𝛾 = 0.0001. (30)

Specify the desired closed-loop eigenvalue regions as

−0.1 ≤ Re (𝑠
𝑖
) ≤ −0.001, −0.1 ≤ Im (𝑠

𝑖
) ≤ 0.1. (31)

By solving the optimization problem (26a), (26b), and
(26c), we gain the poles 𝑠

𝑖
of the system and free parametric

vectors 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 6,

𝑠
1,2
= −0.0064 ∓ 0.0008i, 𝑠

3,4
= −0.0456 ∓ 0.0519i,

𝑠
5,6
= −0.0606 ∓ 0.0094i

𝑓
1,2
= [

[

−11.0091 ∓ 50.3604i
−0.8446 ± 20.1762i
−2.1281 ± 0.5444i

]

]

,

𝑓
3,4
= [

[

14.0820 ± 2.7142i
5.5407 ∓ 20.7854i
−12.6640 ± 26.1508i

]

]

,

𝑓
5,6
= [

[

31.5687 ± 7.1917i
−1.5892 ± 4.2163i
−0.3478 ± 12.9690i

]

]

.

(32)

According to Lemma 2 and (15), we get
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𝑉 =

[
[
[
[
[

[

11.0091 + 50.3604i 11.0091 − 50.3604i −14.0820 − 2.7142i −14.0820 + 2.7142i −31.5687 − 7.1917i −31.5687 + 7.1917i
0.8446 − 20.1762i 0.8446 + 20.1762i −5.5407 + 20.7854i −5.5407 − 20.7854i 1.5892 − 4.2163i 1.5892 + 4.2163i
2.1281 − 0.5444i 2.1281 + 0.5444i 12.6640 − 26.1508i 12.6640 + 26.1508i 0.3478 − 12.9690i 0.3478 + 12.9690i
−0.1107 − 0.3135i −0.1107 + 0.3135i 0.7830 − 0.6071i 0.7830 + 0.6071i 1.9807 + 0.1391i 1.9807 − 0.1391i
0.0107 + 0.1298i 0.0107 − 0.1298i −0.8261 − 1.2354i −0.8261 + 1.2354i −0.056 + 0.2704i −0.056 − 0.2704i
−0.0132 + 0.0052i −0.0132 − 0.0052i 0.7797 + 1.8497i 0.7797 − 1.8497i 0.1008 + 0.7892i 0.1008 − 0.7892i

]
]
]
]
]

]

𝑊 = [

−0.0001 + 0.0022i −0.0001 − 0.0022i 0.0217 − 0.0651i 0.0217 + 0.0651i −0.1050 − 0.0617i −0.1050 + 0.0617i
0.0002 − 0.0009i 0.0002 + 0.0009i −0.0949 − 0.0389i −0.0949 + 0.0389i 0.0108 − 0.0132i 0.0108 + 0.0132i

0.0001 0.0001 0.1160 + 0.0760i 0.1160 − 0.0760i 0.0160 + 0.0461i 0.0160 − 0.0461i
] .

(33)

Then, the stabilization control law 𝐾 to (15) is

𝐾 = [
−0.0011 −0.0020 0.0027 −0.0685 −0.0435 −0.0271

0.0005 0.0013 −0.0028 0.0170 0.0149 −0.0587

0.0000 −0.0009 0.0013 0.0053 −0.1128 −0.0040

] .

(34)

Assume the uncertainty 𝜃 = 0.01 which leads to

‖Δ𝐴‖2 = 1.4584 × 10
−6
. (35)

Meanwhile, the closed-loop poles 𝑠
𝑖
and parametric vectors

𝑓
𝑖
could be used to calculate as

1

‖𝑃‖2

= 1.5037 × 10
−5
. (36)

It is obvious that the rendezvous process could reach the
desired state with the control law 𝐾 when the inequality
(22) has satisfied. The rendezvous trajectory and the relative
position of the two spacecraft are showed in Figures 2 and
4 and the effectiveness could be proved simultaneously. Due
to the proper optimization function, the control inputs have
been constrained to [−1, 1] which can be seen in Figure 3.
The motion in every axis direction changes smoothly so that
the simulation system gets closer to the real engineering
requirement showed in Figure 3.

5. Conclusion

This paper has proposed a method to design the robust
control law for spacecraft rendezvous in the final approach
subject to parameter uncertainty in near circle orbit. Based on
the eigenstructure assignment and model reference theory,
the control law is constructed with the closed-loop poles and
design freedom. Through solving an optimization problem,
we obtain the poles and parametric vectors to calculate the
control law which has been proved useful by simulation.
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To the direct weight optimization identification of the nonlinear system, we add some linear terms about input sequences in the
former linear affine function so as to approximate the nonlinear property. To choose the two classes of unknown weights in the
more linear terms, this paper derives the detailed process on how to choose these unknown weights from theoretical analysis and
engineering practice, respectively, and makes sure of their key roles between the unknown weights. From the theoretical analysis,
the added unknown weights’ auxiliary role can be known in the whole process of approximating the nonlinear system. From the
practical analysis, we learn how to transform one complex optimization problem to its corresponding common quadratic program
problem. Then, the common quadratic program problem can be solved by the basic interior point method. Finally, the efficiency
and possibility of the proposed strategies can be confirmed by the simulation results.

1. Introduction

The theory of system identification can be divided into linear
system and nonlinear system identification. In the classical
reference [1], the identification of linear system is discussed
in the time domain. Then, the whole system identification
field can be divided into four procedures and the accuracy
analyses corresponding to various identification algorithms
are explained in the probability framework.The time domain
identification can be extended to the frequency domain in
[2]. Now, the research on the nonlinear system identification
point out that the nonlinear system can be approximately
regarded as a linear term adding a distortion term in [3].
All the nonlinear characteristic factors of the nonlinear
system can be contained in this distortion term. In [4], many
special nonlinear systems are studied, for example, Wiener
system, Hammerstein system, and so forth. So, various
identification methods are proposed to solve these nonlinear
system identification problems, such asminimumprobability
method, covariance instrumental variable method, and blind
maximum likelihood method. The most practical method
that is used to identify the nonlinear system is the basis

function method. After prior selecting a group of basis
functions, the nonlinear system is approximatively expanded
under the prior basis functions. In order to attain the required
accuracy, let the approximate error between the expansion
and nonlinear system converge to zero by adjusting the
unknown weights of each basis function. In [5], the process
about how to construct the orthonormal basis functions using
some prior poles of the denominator is given.

Based on the idea of adjusting the unknown weights to
improve the approximate accuracy with basis function, a
new nonlinear system identification method-direct weight
optimizationwas proposed in [6].Themain core is that firstly
we select an estimator that is linear in the observed output
data of the nonlinear system and the adjusted weights are
contained in this linear affine function expression. When
disturbance noise exists, we get an optimization problem
under the condition of the optimum approximate error. The
optimum adjusted weights are derived in theory through the
classical optimality KKT condition. In [7], the basic idea of
the new direct weight optimization is applied to identify each
weight that exists in the piecewise affine system. In [8], the
effect of the perturb from the direct weight optimization is
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analyzed. It points out that when one parameter’s perturb
range tends to infinity, the solution can be expressed as a
piecewise linear solution path.

Based on the foundation idea of the references, we directly
collect not only the observed output sequences but also
the input sequences. Because the input sequences can be
designed freely. So, the two sequences are all known as the
prior information. From all above descriptions, we add the
observed output and input sequences in the linear affine func-
tion simultaneously. Then, there exist two kinds of unknown
weights about each observed input-output sequences. When
compared with [3], many unknown weights corresponding
to the all input sequences are added.These unknown weights
can not only alleviate the dependence coming from the
unknown weights of the only observed output sequences but
also avoid negative effect from the perturbance. After adding
some linear terms about the input sequences, the expected
minimal mean square error is adopted as a criterion func-
tion to select those unknown weights. In the optimization
problem of solving those unknown weight, the contribution
of this paper is to deduce the selection strategy from the
theory and engineering practice, respectively. We gain the
unknown adjusted weights using optimality KKT sufficient
and necessary condition and find that the second unknown
weights that correspond to the observed output sequences
are easy to get. Their concrete expressions of the second
unknown weights do not depend on the first unknown
weights corresponding to the input sequences. The whole
selection process tells us that the second unknown weights
undertake the key roles and the first unknown weights
undertake the auxiliary roles. But this auxiliary effect coming
from the first unknown weights may not be neglected.

This paper is organized as follows. In Section 2, we
describe the problem discussed in this paper. In Section 3,
we propose to add the input sequences to the linear affine
function and derive an upper bound value of the objective
function. In Section 4, we derive two kinds of unknown
weights by using optimality KKT condition from [9]. In
Section 5, the interior point algorithm is applied to solve
a quadratic programming problem to get the unknown
weights. The convergences of the two methods are analyzed,
respectively, in Section 6. In Section 7, the numerical simu-
lation results are given to validate the efficiency. Finally, the
conclusions are drawn in Section 8.

2. Problem Description

Given the observed data {𝜑(𝑡), 𝑦(𝑡)}
𝑁

𝑡=1
from the nonlinear

system,

𝑦 (𝑡) = 𝑓
0
(𝜑 (𝑡)) + 𝑒 (𝑡) , (1)

where 𝑓
0
(𝜑(𝑡)) is an unknown nonlinear system which need

to be identified, 𝜑(𝑡) is called the regression vector and 𝑒(𝑡)

is an independent zero mean stochastic white noise with
variance 𝜎2

𝑒
. When the regression vector 𝜑(𝑡) is chosen as the

following form, the nonlinear system is called an exogenous
input model:

𝜑 (𝑡) = [𝑢 (𝑡 − 1) ⋅ ⋅ ⋅ 𝑢 (𝑡 − 𝑛
𝑢
) 𝑒 (𝑡 − 1) ⋅ ⋅ ⋅ 𝑒 (𝑡 − 𝑛

𝑒
)]
𝑇

.

(2)

Suppose a linear affine function is used to approximate the
nonlinear system 𝑓

0
(𝜑(𝑡)) as follows:

𝑓 (𝜑
∗
(𝑡)) = 𝑎

0
+

𝑁

∑

𝑡=1

𝑎
𝑡
𝑢 (𝑡) +

𝑁

∑

𝑡=1

𝑏
𝑡
𝑦 (𝑡) . (3)

In (3), a linear term comprised of𝑁 terms of input sequences
{𝑢(𝑡)}

𝑁

𝑡=1
is added. Then, we identify more 𝑁 unknown

weights {𝑎
𝑖
}
𝑁

𝑖=1
additionally. As the approximation perfor-

mance depends tightly on the 2𝑁 + 1 unknown weights. The
main goal of this paper is to determine a parameter vector 𝜃
which is consisted of 2𝑁 + 1 unknown weights:

𝜃 = [𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
, 𝑏
1
, . . . , 𝑏

𝑁
]
𝑇

. (4)

3. Direct Weight Optimization Identification

As the nonlinear system 𝑓
0
(𝜑(𝑡)) is approximated by the

linear affine function 𝑓(𝜑
∗
(𝑡)), we want to find a linear affine

function 𝑓(𝜑
∗
(𝑡)) at an arbitrarily given point 𝜑

∗
(𝑡). The

approximation accuracy depends on the weights {𝑎
𝑡
}
𝑁

𝑡=0
and

{𝑏
𝑡
}
𝑁

𝑡=1
. A most commonly used criterion function would be

the mean square error:

𝑊(𝜑
∗
, 𝑓
0
, 𝜃) = 𝐸[𝑓 (𝜑

∗
(𝑡)) − 𝑓

0
(𝜑
∗
(𝑡))]
2

. (5)

Substituting (3) into (5), we obtain

𝑊(𝜑
∗
, 𝑓
0
, 𝜃) = 𝐸[𝑎

0
+

𝑁

∑

𝑡=1

𝑎
𝑡
𝑢 (𝑡) +

𝑁

∑

𝑡=1

𝑏
𝑡
𝑦 (𝑡) − 𝑓

0
(𝜑
∗
(𝑡))]

2

.

(6)

Substituting (1) into (6), the objection function is expanded
to the following expression:

𝑊(𝜑
∗
, 𝑓
0
, 𝜃) =[𝑎

0
+

𝑁

∑

𝑡=1

𝑎
𝑡
𝑢 (𝑡) +

𝑁

∑

𝑡=1

𝑏
𝑡
𝑓
0
(𝜑 (𝑡)) −𝑓

0
(𝜑
∗
(𝑡))]

2

+ 𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑏
2

𝑡
.

(7)
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To simplify the description, we introduce the notation 𝜑(𝑡) =

𝜑(𝑡) −𝜑
∗
(𝑡). Then, after adding and subtracting the same two

terms, the equality is not changed. Consider

𝑊(𝜑
∗
, 𝑓
0
, 𝜃)

= [𝑎
0
+

𝑁

∑

𝑡=1

𝑎
𝑡
𝑢 (𝑡) +

𝑁

∑

𝑡=1

𝑏
𝑡
(𝑓
0
(𝜑 (𝑡)) − 𝑓

0
(𝜑
∗
(𝑡))

−∇𝑓
0
(𝜑
∗
(𝑡)) 𝜑 (𝑡))

+𝑓
0
(𝜑
∗
(𝑡)) (

𝑁

∑

𝑡=1

𝑏
𝑡
− 1) + ∇𝑓

0
(𝜑
∗
(𝑡))

𝑁

∑

𝑡

𝑏
𝑡
𝜑 (𝑡)]

2

+ 𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑏
2

𝑡
.

(8)

In (8), the square term is called the square bias term and the
last term is the variance error term caused by the unmodeled
factor. From (8), we see that the bias term will be arbitrarily
large, unless we impose two constraint conditions of the
unknown weights {𝑏

𝑡
}
𝑁

𝑡=1
:

𝑁

∑

𝑡=1

𝑏
𝑡
= 1,

𝑁

∑

𝑡=1

𝑏
𝑡
𝜑 (𝑡) = 0. (9)

Under (9), the objective function can be simplified to the
following expression:

𝑊(𝜑
∗
, 𝑓
0
, 𝜃)

= [𝑎
0
+

𝑁

∑

𝑡=1

𝑎
𝑡
𝑢 (𝑡) +

𝑁

∑

𝑡=1

𝑏
𝑡
(𝑓
0
(𝜑 (𝑡)) − 𝑓

0
(𝜑
∗
(𝑡))

−∇𝑓
0
(𝜑
∗
(𝑡)) 𝜑 (𝑡)) ]

2

+ 𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑏
2

𝑡
.

(10)

Expanding the nonlinear system 𝑓
0
(𝜑(𝑡)) with Taylor series

around 𝑓
0
(𝜑
∗
) gives

𝑓
0
(𝜑 (𝑡)) = 𝑓

0
(𝜑
∗
) +

𝑑𝑓
0
(𝜑 (𝑡))

𝑑𝜑 (𝑡)
(𝜑 (𝑡) − 𝜑

∗
(𝑡))

+
1

2

𝑑
2
𝑓
0
(𝜑 (𝑡))

𝑑𝜑(𝑡)
2

(𝜑 (𝑡) − 𝜑
∗
(𝑡))
2

.

(11)

Assume that the nonlinear function 𝑓
0
satisfies the following

Lipschitz condition:

𝑓0 (𝜑 (𝑡)) − 𝑓
0
(𝜑
∗
(𝑡)) − ∇𝑓

0
(𝜑
∗
(𝑡)) 𝜑 (𝑡)

 ≤
𝐿

2
𝜑
2
(𝑡) ,

(12)

where 𝐿 is a constant; letting us combine the above three
formulas, we obtain an upper bound on the mean square
error (10). Consider

𝑊(𝜑
∗
, 𝑓
0
, 𝑤
𝑁
) ≤ (

𝑎0
 +

𝑁

∑

𝑡=1

𝑎𝑡
 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑏𝑡

𝜑 (𝑡)


2

)

2

+ 𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑏
2

𝑡
.

(13)

The minimum mean square error expectations
𝑊(𝜑
∗
, 𝑓
0
, 𝑤
𝑁
) can be converted to the minimum upper

bound value of the right side in (13). Hence, an optimization
problem is getting

min
𝜃
2𝑁+1

(
𝑎0

 +

𝑁

∑

𝑡=1

𝑎𝑡
 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑏𝑡

𝜑 (𝑡)


2

)

2

+ 𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑏
2

𝑡

subject to
𝑁

∑

𝑡=1

𝑏
𝑡
= 1,

𝑁

∑

𝑡=1

𝑏
𝑡
𝜑 (𝑡) = 0.

(14)

Because an additional term∑
𝑁

𝑡=1
|𝑎
𝑡
||𝑢(𝑡)| exists in (14), so

the complexity of this paper increases.

4. Optimality KKT Sufficient and
Necessary Condition

Notice that there exist some absolute operations in (14). Some
slack variables 𝑠

𝑡
, 𝑤
𝑡
are introduced to eliminate the absolute

operations as follows:
𝑏𝑡

 ≤ 𝑠
𝑡
, 𝑡 = 1, 2, . . . , 𝑁,

𝑎𝑡
 ≤ 𝑤
𝑡
, 𝑡 = 0, 1, . . . , 𝑁.

(15)

Using these slack variables 𝑠
𝑡
, 𝑤
𝑡
in (14), the optimization

problem can be formulated as

min
𝜃
2𝑁+1
,{𝑠𝑡}
𝑁

𝑡=1
,{𝑤𝑡}
𝑁

𝑡=0

(𝑤
0
+

𝑁

∑

𝑡=1

𝑤
𝑡 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑠
𝑡

𝜑 (𝑡)

2

)

2

+ 𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑠
2

𝑡
,

subject to 𝑠
𝑡
≥ 𝑏
𝑡
, 𝑠
𝑡
≥ −𝑏
𝑡
, 𝑡 = 1, . . . , 𝑁

𝑤
𝑡
≥ 𝑎
𝑡
, 𝑤
𝑡
≥ −𝑎
𝑡
, 𝑡 = 0, . . . , 𝑁

𝑁

∑

𝑡=1

𝑏
𝑡
= 1,

𝑁

∑

𝑡=1

𝑏
𝑡
𝜑 (𝑡) = 0.

(16)

Now, the next problem is to solve the solutions of the
optimization problem (16)

(𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
, 𝑏
1
, . . . , 𝑏

𝑁
, 𝑠
𝑡
|
𝑁

1
, 𝑤
𝑡
|
𝑁

0
) . (17)
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Applying the optimality KKT sufficient and necessary condi-
tion to (16), the Lagrangian function is written as

𝐿 (𝜃
2𝑁+1

, 𝑠
𝑡
|
𝑁

1
, 𝑤
𝑡
|
𝑁

0
, 𝜆
1
, 𝜆
2
, 𝜇
±

𝑡
|
𝑁

𝑡=0
, 𝛾
±

𝑡
|
𝑁

𝑡=1
)

= (𝑤
0
+

𝑁

∑

𝑡=1

𝑤
𝑡 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑠
𝑡

𝜑 (𝑡)

2

)

2

+ 𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑠
2

𝑡

− 𝜆
1
(

𝑁

∑

𝑡=1

𝑏
𝑡
− 1) − 𝜆

2
(

𝑁

∑

𝑡=1

𝑏
𝑡
𝜑 (𝑡)) −

𝑁

∑

𝑡=0

𝜇
+

𝑡
(𝑤
𝑡
− 𝑎
𝑡
)

−

𝑁

∑

𝑡=0

𝜇
−

𝑡
(𝑤
𝑡
+ 𝑎
𝑡
) −

𝑁

∑

𝑡=1

𝛾
+

𝑡
(𝑠
𝑡
− 𝑏
𝑡
) −

𝑁

∑

𝑡=1

𝛾
−

𝑡
(𝑠
𝑡
+ 𝑏
𝑡
) ,

(18)

where 𝜆
1
and 𝜆

2
are the Lagrangian multipliers correspond-

ing to the equality constraint and 𝜇
±

𝑡
|
𝑁

𝑡=0
and 𝛾

±

𝑡
|
𝑁

𝑡=1
are the

Lagrangian multiplier vectors corresponding to the 2𝑁 + 1

inequality constraint

𝜇
±

𝑡
= (𝜇
±

0
, 𝜇
±

1
, . . . , 𝜇

±

𝑁
)
𝑇

, 𝛾
±

𝑡
= (𝛾
±

1
, . . . , 𝛾

±

𝑁
)
𝑇

. (19)

From the optimality KKT condition, we find the equality
relations for the optimal solution as follows:

𝜕𝐿

𝜕𝑎
𝑡

= 𝜇
+

𝑡
− 𝜇
−

𝑡
= 0, 𝑡 = 0, . . . , 𝑁,

𝜕𝐿

𝜕𝑏
𝑡

= − 𝜆
1
− 𝜆
2
𝜑 (𝑡) + 𝛾

+

𝑡
− 𝛾
−

𝑡
= 0, 𝑡 = 1, . . . , 𝑁,

𝜕𝐿

𝜕𝑠
𝑡

= 2(𝑤
0
+

𝑁

∑

𝑡=1

𝑤
𝑡 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑠
𝑡

𝜑 (𝑡)

2

)

×
𝜑 (𝑡)


2

+ 2𝜎
2

𝑒
𝑠
𝑡
− 𝛾
+

𝑡
− 𝛾
−

𝑡
= 0,

𝜕𝐿

𝜕𝑤
0

= 2(𝑤
0
+

𝑁

∑

𝑡=1

𝑤
𝑡 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑠
𝑡

𝜑 (𝑡)

2

)

− 𝜇
+

0
− 𝜇
−

0
= 0,

𝜕𝐿

𝜕𝑤
𝑡

= 2(𝑤
0
+

𝑁

∑

𝑡=1

𝑤
𝑡 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑠
𝑡

𝜑 (𝑡)

2

) |𝑢 (𝑡)|

− 𝜇
+

𝑡
− 𝜇
−

𝑡
= 0,

𝑁

∑

𝑡=1

𝑏
𝑡
= 1,

𝑁

∑

𝑡=1

𝑏
𝑡
𝜑 (𝑡) = 0,

𝜇
+

𝑡
(𝑤
𝑡
− 𝑎
𝑡
) = 0, 𝜇

−

𝑡
(𝑤
𝑡
+ 𝑎
𝑡
) = 0,

𝛾
+

𝑡
(𝑠
𝑡
− 𝑏
𝑡
) = 0, 𝛾

−

𝑡
(𝑠
𝑡
+ 𝑏
𝑡
) = 0,

𝜇
±

𝑡
≥ 0, 𝑡 = 0, . . . , 𝑁, 𝛾

±

𝑡
≥ 0, 𝑡 = 1, . . . , 𝑁.

(20)

Through analyzing many subformulas in (20), we find many
implicit optimal equalities:

𝑏𝑡
 = 𝑠
𝑡
, 𝑡 = 1, 2, . . . , 𝑁,

𝑎𝑡
 = 𝑤
𝑡
, 𝑡 = 0, 1, . . . , 𝑁.

(21)

From the first subformula in (20), we see that 𝜇
+

𝑡
= 𝜇
−

𝑡
.

Further, if 𝑎
𝑡
> 0 in the ninth subformula in (20), then we see

that𝑤
𝑡
+ 𝑎
𝑡
= |𝑎
𝑡
| + 𝑎
𝑡
= 2𝑎
𝑡
> 0. The ninth subformula holds

evenwhen 𝜇
−

𝑡
= 0, so from the first subformula we derive that

𝜇
+

𝑡
= 𝜇
−

𝑡
= 0. (22)

In the second subformula in (20), if 𝑎
𝑡
< 0, it implies that

𝑤
𝑡
− 𝑎
𝑡
=

𝑎𝑡
 − 𝑎
𝑡
= −2𝑎

𝑡
> 0. (23)

If the eighth subformula in (20) holds, we make 𝜇
+

𝑡
= 0 and,

from the first subformula, we see that 𝜇+
𝑡
= 𝜇
−

𝑡
= 0.

When all the equalities 𝑎
𝑡

= 0 hold, it means all
unknown weights of the input sequences are equal to zeros.
Synthesizing two cases 𝑎

𝑡
> 0 and 𝑎

𝑡
< 0, we obtain that

𝜇
+

𝑡
= 𝜇
−

𝑡
= 0,

𝜕𝐿

𝜕𝑎
𝑡

= 0, 𝑡 = 0, . . . , 𝑁.

(24)

Substituting (24) into the each subformula in (20), every
subformula in (20) can be simplified

𝜆
1
+ 𝜆
2
𝜑 (𝑡) = 𝛾

+

𝑡
− 𝛾
−

𝑡
, 𝑡 = 1, . . . , 𝑁,

2(
𝑎0

 +

𝑁

∑

𝑡=1

𝑎𝑡
 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑏𝑡

𝜑 (𝑡)


2

)
𝜑 (𝑡)


2

+ 2𝜎
2

𝑒

𝑏𝑡
 = 𝛾
+

𝑡
+ 𝛾
−

𝑡
,

2 (
𝑎0

 +

𝑁

∑

𝑡=1

𝑎𝑡
 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑏𝑡

𝜑 (𝑡)


2

) = 0,

𝑁

∑

𝑡=1

𝑏
𝑡
= 1,

𝑁

∑

𝑡=1

𝑏
𝑡
𝜑 (𝑡) = 0,

𝛾
+

𝑡
(
𝑏𝑡

 − 𝑏
𝑡
) = 0, 𝛾

−

𝑡
(
𝑏𝑡

 + 𝑏
𝑡
) = 0.

(25)

The equality relations represented by the fourth and fifth
subformula in (25) are completely implied in the constructed
Lagrangian function. Substituting the third subformula into
the second subformula, we get

2𝜎
2

𝑒

𝑏𝑡
 = 𝛾
+

𝑡
+ 𝛾
−

𝑡
. (26)

When 𝑏
𝑡
> 0, from the seventh subformula in (25), we get

|𝑏
𝑡
| + 𝑏
𝑡
= 2𝑏
𝑡
> 0.

If the seventh subformula holds, let 𝛾−
𝑡

= 0. Substituting
𝛾
−

𝑡
= 0 in the first subformula, we get

𝛾
+

𝑡
= 𝜆
1
+ 𝜆
2
𝜑 (𝑡) . (27)
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Substituting the above equality into (26), the following equal-
ity holds:

𝑏
𝑡
=

𝛾
+

𝑡

2𝜎2
𝑒

=
𝜆
1
+ 𝜆
2
𝜑 (𝑡)

2𝜎2
𝑒

. (28)

When considering 𝑏
𝑡
< 0, we get

𝛾
+

𝑡
= 0,

𝜆
1
+ 𝜆
2
𝜑 (𝑡) = −𝛾

−

𝑡

− 2𝜎
2

𝑒
𝑏
𝑡
= 𝛾
−

𝑡
= − (𝜆

1
+ 𝜆
2
𝜑 (𝑡)) .

(29)

Formulating the above the equality relations, we get

𝑏
𝑡
=

𝜆
1
+ 𝜆
2
𝜑 (𝑡)

2𝜎2
𝑒

. (30)

All the above give us how to solve the unknown weights
{𝑏
𝑡
}
𝑁

𝑡=1
. Substituting (28) into the third subformula in (25), we

see that

𝑎0
 +

𝑁

∑

𝑡=1

𝑎𝑡
 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝜆1 + 𝜆
2
𝜑 (𝑡)



2𝜎2
𝑒

𝜑 (𝑡)

2

= 0. (31)

The following three equations are established:

𝑎0
 = 0,

𝑁

∑

𝑡=1

𝑎𝑡
 |𝑢 (𝑡)| = 0,

𝑁

∑

𝑡=1

(𝜆
1
+ 𝜆
2
𝜑 (𝑡))

𝜑 (𝑡)

2

= 0.

(32)

From (32), we can see that

𝑎
0
= 𝑎
1
= ⋅ ⋅ ⋅ = 𝑎

𝑁
= 0,

𝜆
1

𝑁

∑

𝑡=1

𝜑 (𝑡)

2

+ 𝜆
2

𝑁

∑

𝑡=1

𝜑 (𝑡)
𝜑 (𝑡)


2

= 0.

(33)

Then,

𝜆
1

𝜆
2

= −
∑
𝑁

𝑡=1
𝜑 (𝑡)

𝜑 (𝑡)

2

∑
𝑁

𝑡=1

𝜑 (𝑡)

2

. (34)

Generally when considered in the complex domain, it is
easy to get that

𝑎0
 +

𝑁

∑

𝑡=1

𝑎𝑡
 |𝑢 (𝑡)| = −

𝐿

2

𝑁

∑

𝑡=1

𝜆
1
+ 𝜆
2
𝜑 (𝑡)

2𝜎2
𝑒

𝜑 (𝑡)

2 (35)

as |𝑢(𝑡)| represents the amplitude value of the input excite
signal. When this amplitude is chosen to be constant |𝑢(𝑡)| =
𝑘 (𝑘 is a constant), then (35) implies

𝑎0
 + 𝑘

𝑁

∑

𝑡=1

𝑎𝑡
 = −

𝐿

2

𝑁

∑

𝑡=1

𝜆
1
+ 𝜆
2
𝜑 (𝑡)

2𝜎2
𝑒

𝜑 (𝑡)

2

. (36)

In the linear algebra from [10], the commonly used
selection method is to impose a constrained condition about
the unknown weights {𝑎

𝑡
}
𝑁

𝑡=0
in order to guarantee unique-

ness

𝑁

∑

𝑡=0

𝑎
𝑡
= 1. (37)

To eliminate the absolute notation in (36), assume that the
former 𝑘

1
+1weights {𝑎

𝑡
}
𝑁

𝑡=0
are positive and the latter𝑁−𝑘

1

weights are negative. Thus, we get

[
[

[

1 1 ⋅ ⋅ ⋅ 1 1 ⋅ ⋅ ⋅ 1

1 1 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0

1 0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 1

]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
0

...
𝑎
𝑘

𝑎
𝑘+1

...
𝑎
𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[

[

1

1

2
−

𝐿

4

𝑁

∑

𝑡=1

𝜆
1
+ 𝜆
2
𝜑 (𝑡)

2𝜎2
𝑒

𝜑 (𝑡)

2

1

2
+

𝐿

4

𝑁

∑

𝑡=1

𝜆
1
+ 𝜆
2
𝜑 (𝑡)

2𝜎2
𝑒

𝜑 (𝑡)

2

]
]
]
]
]
]
]
]
]
]

]

.

(38)

In the singular degradation linear equation (38), we get a
group of unknownweight sequences {𝑎

𝑡
}
𝑁

𝑡=0
through selecting

𝑁 − 2 free variables.

5. Solve the Unknown Weights Iteratively

To solve the unknown weights iteratively from the practice
point, suppose 𝑎

0
= 𝑤
0

= 0 in (16), and there exists
three kinds of variables as the decision variables: 𝜃2𝑁, {𝑠

𝑡
}
𝑁

𝑡=1
,

{𝑤
𝑡
}
𝑁

𝑡=1
.

For convenience, introduce a column vector whose
dimension is 4𝑁. Consider

𝜂 = (𝜃
2𝑁

, 𝑠
1
, . . . , 𝑠

𝑁
, 𝑤
1
, . . . , 𝑤

𝑁
)
𝑇

. (39)
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Formulating 4𝑁 inequalities constrained conditions in (16)
to a matrix product form,

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 0

...
0 ⋅ ⋅ ⋅ −1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 1

1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 0

...
0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ 0 −1 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

...
0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ −1 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

...
0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 1 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑎
1

...
𝑎
𝑁

𝑏
1

...
𝑏
𝑁

𝑠
1

...
𝑠
𝑁

𝑤
1

...
𝑤
𝑁

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

≥ ⃗0,

(40)

where ⃗0 is an 4𝑁 × 1 zero vector, and denoting the above
equality’s left hand as matrix𝐴, 𝐴 is 4𝑁× 4𝑁. The inequality
constrain conditions can be simplified

𝐴𝜂 ≥ 0. (41)

Similarly, the two equalities constrained conditions can be
simplified to the matrix product form as follows:

[
1 ⋅ ⋅ ⋅ 1 −1 ⋅ ⋅ ⋅ −1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0 𝜑 (1) ⋅ ⋅ ⋅ 𝜑 (𝑁) 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0
]

× [𝑎1 ⋅ ⋅ ⋅ 𝑎
𝑁

𝑏
1

⋅ ⋅ ⋅ 𝑏
𝑁

𝑠
1

⋅ ⋅ ⋅ 𝑠
𝑁

𝑤
1

⋅ ⋅ ⋅ 𝑤
𝑁]
𝑇

= 0,

(42)

where 0 is a 2 × 1 zero vector, and denoting the above
equality’s left hand as matrix 𝐵, 𝐵 is 2 × 4𝑁. The equality
constraint conditions can be simplified

𝐵𝜂 = 0. (43)

It is obvious that the second term of the objective function
can be rewritten as

𝜎
2

𝑒

𝑁

∑

𝑡=1

𝑠
2

𝑡
= 𝜎
2

𝑒
𝜂
𝑇
[
[
[

[

0 0 0 0

0 0 0 0

0 0 𝐸 0

0 0 0 0

]
]
]

]

𝜂 = 𝜎
2

𝑒
𝜂
𝑇
𝐶
2
𝜂. (44)

Furthermore, the computation in the bracket of the objective
function can be rewritten as

𝑤
0
+

𝑁

∑

𝑡=1

𝑤
𝑡 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑠
𝑡

𝜑 (𝑡)

2

= [0 ⋅ ⋅ ⋅ 0
𝐿

2

𝜑 (1)

2

⋅ ⋅ ⋅
𝐿

2

𝜑 (𝑁)

2

|𝑢 (1)| ⋅ ⋅ ⋅ |𝑢 (𝑁)|] 𝜂

= 𝐶
𝑇

1
𝜂.

(45)

Squaring (45), we get

(𝑤
0
+

𝑁

∑

𝑡=1

𝑤
𝑡 |𝑢 (𝑡)| +

𝐿

2

𝑁

∑

𝑡=1

𝑠
𝑡

𝜑 (𝑡)

2

)

2

= 𝜂
𝑇
𝐶
1
𝐶
𝑇

1
𝜂. (46)

Combining (41), (43), (44), and (46), a new optimization
problem is to get

min
𝜂
4𝑁

𝜂
𝑇
(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) 𝜂

subject to 𝐴𝜂 ≥ 0, 𝐵𝜂 = 0

(47)

as the new objective function (47) is a quadratic function
about decision variable 𝜂. Also, the inequality and equality
constraints are linear functions about 𝜂. Generally, (47) is a
quadratic programming problem. The interior point method
is applied to solve it.

Defining the Lagrangian function according to (47),

𝐿 (𝜂,𝑚, 𝑛) = 𝜂
𝑇
(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) 𝜂 − 𝑚𝐴𝜂 − 𝑛𝐵𝜂. (48)

Setting the partial derivative with respect to the fact that 𝜂 is
zero, we get the equality

(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) 𝜂 − 𝐴

𝑇
𝑚 − 𝐵

𝑇
𝑛 = 0,

𝑚, 𝑛 ≥ 0, 𝑚 (𝐴𝜂) = 0, 𝐴𝜂 ≥ 0, 𝐵𝜂 = 0.

(49)

Introducing a slack variable 𝑧 ≥ 0 to eliminate the inequality
constraint 𝐴𝜂 ≥ 0, we rewrite (49)

(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) 𝜂 − 𝐴

𝑇
𝑚 − 𝐵

𝑇
𝑛 = 0,

𝐵𝜂 = 0, 𝐴𝜂 − 𝑧 = 0, 𝑧𝑚
𝑇
= 0.

(50)

Suppose that the matrix comprised by (50) is

𝐹 =
[
[
[

[

(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) 𝜂 − 𝐴

𝑇
𝑚 − 𝐵

𝑇
𝑛

𝐴𝜂 − 𝑧

𝐵𝜂

𝑍Λ𝑒 − 𝜀𝑒

]
]
]

]

, (51)

where
𝑍 = diag (𝑧

1
, . . . , 𝑧

4𝑁
) ; Λ = diag (𝑚

1
, . . . , 𝑚

4𝑁
) ;

𝜀 ∈ [0, 1] , 𝑒 = [1, 1 ⋅ ⋅ ⋅ 1]
𝑇
.

(52)

The constrained minimum is solved by updating unknown
vector 𝜂 iteratively. This minimum solution is the station-
ary point of the Lagrangian function. During the minimal
process, a new iteration value 𝜂 is updated by adding a
correct termΔ𝜂 to the current estimation.When applying the
constrained Gauss-Newton method, the Δ𝜂 must satisfy the
solution of the following equality:

[
[
[

[

𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2

0 −𝐴 −𝐵

𝐴 −𝐼 0 0

0 𝐵 0 0

0 Λ 𝑍 0

]
]
]

]

[
[
[

[

Δ𝜂

Δ𝑧

Δ𝑚

Δ𝑛

]
]
]

]

= −
[
[
[

[

(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) 𝜂 − 𝐴

𝑇
𝑚 − 𝐵

𝑇
𝑛

𝐴𝜂 − 𝑧

𝐵𝜂

𝑍Λ𝑒 − 𝜀𝑒

]
]
]

]

= −𝐹.

(53)



Mathematical Problems in Engineering 7

At time 𝑘 + 1, the new iterate is defined as the vector

(𝜂
𝑘+1

, 𝑧
𝑘+1

, 𝑚
𝑘+1

, 𝑛
𝑘+1

)

= (𝜂
𝑘
, 𝑧
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
) + V (Δ𝜂, Δ𝑧, Δ𝑚, Δ𝑛) ,

(54)

where the step length of the search direction must satisfy the
following inequality:

(𝑧
𝑘+1

, 𝑚
𝑘+1

) > 0. (55)

The search direction is determined by (53). We may add a
Levenberg-Marquardt parameter 𝛿

2 based on 𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2

in order to avoid the singular phenomenon. It makes the left
top cornermatrix (1, 1) of the leftmatrix in (53) change to the
matrix𝐶

1
𝐶
𝑇

1
+𝜎
2

𝑒
𝐶
2
+𝛿
2
𝐼. So, it can guarantee that an inverse

matrix exists and its inverse matrix is definite and bounded.

6. Algorithms Analysis

Now, we analyze the convergences of the two algorithms
(20) and (54), respectively. From Sections 4 and 5, we see
that the solution of (20) is derived from the optimality KKT
sufficient and necessary condition and the solution of (54) is
an iterative solution.

According to the optimality KKT necessary and sufficient
condition which is similar to [11], the convergence of the
algorithm used to identify the unknown weights is given.

Theorem 1. Assume that 𝜂
∗
is a solution of the quadratic

programming problem (47) which satisfies the optimality KKT
necessary and sufficient condition (20). If Matrix (𝐶

1
𝐶
𝑇

1
+

𝜎
2

𝑒
𝐶
2
) is positive semidefinite for some Lagrangian multipliers

𝑚 and 𝑛, then 𝜂
∗
is a global solution of quadratic programming

problem (47).

Proof. If 𝜂 is any other feasible point for (47), we have that
𝐴𝜂 ≥ 0, 𝐵𝜂 = 0 for all 𝜂 ∈ 𝑅

4𝑁. Hence, using the optimality
KKT necessary and sufficient condition, we have that

(𝜂 − 𝜂
∗
)
𝑇

(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) = ∑𝑚

𝑖
(𝜂 − 𝜂

∗
) + ∑𝑛

𝑖
𝐵𝜂 ≥ 0.

(56)

By elementary manipulation, we find that

𝑞 (𝜂) = 𝜂
𝑇
(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) 𝜂,

𝑞 (𝜂) ≥ 𝑞 (𝜂
∗
) + (𝜂 − 𝜂

∗
)
𝑇

(𝐶
1
𝐶
𝑇

1
+ 𝜎
2

𝑒
𝐶
2
) (𝜂 − 𝜂

∗
) ≥ 𝑞 (𝜂

∗
) ,

(57)

where the first inequality follows from (56) and the second
inequality follows from positive semidefinite of (𝐶

1
𝐶
𝑇

1
+

𝜎
2

𝑒
𝐶
2
). We have shown that 𝑞(𝜂) ≥ 𝑞(𝜂

∗
) for any feasible 𝜂,

so 𝜂
∗
is a global solution.

Theorem 1 tells us that if a solution which satisfies all the
equality (20) can be found, then it will be a global solution for
the original quadratic problem.

When the interior point algorithm is applied to solve (47)
iteratively, its convergence conclusion can be gotten.

Theorem 2. Suppose that quadratic function 𝜂
𝑇
(𝐶
1
𝐶
𝑇

1
+

𝜎
2

𝑒
𝐶
2
)𝜂 and linear function 𝐴𝜂, 𝐵𝜂 are all continuous second

differentiable functions in a neighborhood of a regular station-
ary point 𝜂

∗
with associated multipliers𝑚

∗
, 𝑛
∗
.

Suppose also that the functions 𝑚(), 𝑛() used to set the
value of 𝜂 satisfy 𝑚(𝜂

∗
) = 𝑚

∗
, 𝑛(𝜂
∗
) = 𝑛
∗
and are continuous

at 𝜂
∗
. Then, there exists a neighborhood 𝑉 of 𝜂

∗
such that if

the first iterates 𝜂
1
∈ 𝑉, the above interior point algorithm is

well defined and generates a sequence {𝜂
𝑘
} iteratively by (54)

converging superlinearly into 𝜂
∗
.

Proof. Simplifying (53) to emphasize the iterative number, the
linear system (53) can be written as

𝐹

(𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
) [

[

Δ𝜂
𝑘

Δ𝑚
𝑘

Δ𝑛
𝑘

]

]

= −𝐹 (𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
) . (58)

If 𝜂
𝑘
is in some neighborhood of the regular stationary point

𝜂
∗
, with associated multipliers 𝑚

∗
, 𝑛
∗
satisfies (𝑚

𝑘
, 𝑛
𝑘
) →

(𝑚
∗
, 𝑛
∗
).

Furthermore, 𝐹

(𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
) = 𝐹


(𝜂
𝑘
, 𝑚(𝜂
𝑘
), 𝑛(𝜂
𝑘
)) is

nonsingular and has a bounded inverse on that neighbor-
hood. With the notation

𝑧
𝑘+1

= [

[

𝜂
𝑘+1

𝑚
𝑘

𝑛
𝑘

]

]

, 𝑧
𝑘,∗

= [

[

𝜂
𝑘

𝑚
∗

𝑛
∗

]

]

, 𝑧
∗
= [

[

𝜂
∗

𝑚
∗

𝑛
∗

]

]

,

(59)

and with the objective and constraint functions that are all
continuous second differentiable functions, we have

𝑧
𝑘+1

− 𝑧
∗

= 𝑧
𝑘,∗

− 𝑧
∗
− 𝐹

(𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
)
−1

𝐹 (𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
)

= 𝐹

(𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
)
−1

𝐹 (𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
) (𝑧
𝑘,∗

− 𝑧
∗
)

− 𝐹 (𝑧
∗
) − ∫

1

0

𝐹

(𝜂
∗
+ 𝑡 (𝜂
𝑘
− 𝜂
∗
) , 𝑚
𝑘
, 𝑛
𝑘
) (𝑧
𝑘,∗

− 𝑧
∗
) 𝑑𝑡.

(60)

Using 𝐹(𝑧
∗
) = 0 and taking norms, we get

𝑧𝑘+1 − 𝑧
∗



≤ 𝐶(∫

1

0

𝐹

(𝜂
𝑘
, 𝑚
𝑘
, 𝑛
𝑘
) − 𝐹

(𝜂
∗
+ 𝑡 (𝜂
𝑘
− 𝜂
∗
) , 𝑚
𝑘
, 𝑛
𝑘
) 𝑑𝑡)

× (𝜂
𝑘
− 𝜂
∗
) ,

(61)

where 𝐶 is a positive constant. Since 𝐹

(⋅, 𝑚(𝜂), 𝑛(𝜂)) is

continuous at 𝜂
∗
and the last estimate gives 𝑧

𝑘+1
− 𝑧
∗

=

𝑜(‖𝜂
𝑘
− 𝜂
∗
‖), it implies the superlinear convergence of 𝜂

𝑘
to

𝜂
∗
and

[
𝑚
𝑘

𝑛
𝑘

] − [
𝑚
∗

𝑛
∗

] = 𝑜 (
𝜂𝑘 − 𝜂

∗

) . (62)
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Figure 1: The relations between the friction force and the speed
under sine position input signal.

7. Simulation Example

As the nonlinear system can be approximated by a linear
affine function using direct weight optimization method, we
apply this idea to approximate the Stribeck nonlinear friction
which appears in the flight simulation turntable system.

The Stribeck nonlinear friction model is described as

𝑓 (𝑡) = (𝑓
𝑐
+ (𝑓
𝑠
− 𝑓
𝑐
) 𝑒
−( ̇𝜃(𝑡)/ ̇𝜃𝑠)

2

) sgn ( ̇𝜃 (𝑡)) + 𝐾 ̇𝜃(𝑡) ,

(63)

where 𝑓
𝑠
is the maximum static friction force, 𝑓

𝑐
is coulomb

friction force, 𝐾 is a viscous friction coefficient, and ̇𝜃
𝑠
is the

critical Stribeck speed. Let us regard ̇𝜃(𝑡) in (56) as 𝜑(𝑡) in (1)
and apply the new linear affine function to approximate the
Stribeck nonlinear friction model as follows:

𝑓 (𝑡) = 𝑎
0
+

𝑁

∑

𝑡=1

𝑎
𝑡
̇𝜃(𝑡) +

𝑁

∑

𝑡=1

𝑏
𝑡
𝑓 (𝑡) , (64)

where ̇𝜃(𝑡) is treated as the input signal. We minimize the
performance function (10) to obtain the unknown parameter
vector (𝑎

0
, 𝑎
1
, . . . , 𝑎

𝑁
, 𝑏
1
, . . . , 𝑏

𝑁
). The interior point algo-

rithm is applied to solve it and the number of𝑁 is selected by
trying test method.When𝑁 is increased to some fixed value,
we survey whether the performance index function will not
change much. If not, then this fixed value is the number of𝑁.
Next, we make some simulations on the Stribeck nonlinear
friction.

In Figure 1, we plot the relation curve between the friction
force and the speed under sine position input signal. We
compare the three curves of the true nonlinear friction with
the proposedmethod, classical method. In Figure 1, the black
curve represents the true nonlinear friction force, the green
represents the linear affine curve proposed by our method,
and the red curve represents the curve designed by [3]. From
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Figure 2: The relations between the friction force and the speed
under slope position input signal.

Figure 1, when the speed is low, the difference is very much
obvious. But if the speed is increased, the black and green
curve will coincide and the red curve starts to flutter away the
black curve. It means that the relationship between the true
nonlinear friction force and the linear affine friction force
derived from our method will be equal. Then, if the speed
is chosen sufficiently high, this paper’s linear affine friction
force can be used to replace the true nonlinear friction
force. To the classical method, it should spend more time to
approximate the true nonlinear friction force.

In Figure 2,we plot the relation curve between the friction
force and the speed under slope position input signal in
the flight simulation turntable. From Figure 2, we see that
from the beginning, the linear affine function derived by our
method can tightly approximate the nonlinear friction force
and it has little swing. But to the classical method, the error
is high even from the beginning and in the approximation
process the curve has much more swings.

We plot the crawl phenomenon under slope position
input signal in Figure 3. From Figure 3, each output corre-
sponding to the nonlinear friction model is full of many
irregular curves. And each output corresponding to the linear
affine function model is full of many piecewise lines. The
embodiment of the approximation is to use these piecewise
lines to approximate the irregular curve at different time peri-
ods. In every time period, the approximation error is defined
as the derivation between the line and the corresponding
curve. At the beginning, this deviation error is bigger. As the
time goes, the lines are close to the curve and the approximate
error is small.

8. Conclusion

This paper derives how to choose the unknown weights from
the theory and engineering, respectively, in the improved
direct weight optimization method. Because the input
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sequences should be designed to sufficiently excite the non-
linear system, further research on the optimal input signal
design must be dealt with in future.
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Chaotic dynamics of numerous memristor-based circuits is widely reported in literature. Recently, some works have appeared
which study the problem of synchronization control of these systems in a master-slave configuration. In the present paper, the
spontaneous dynamic behavior of two chaotic memristor-based Chua’s circuits, mutually interacting through a coupling resistance,
was studied via computer simulations in order to study possible self-organized synchronization phenomena. The used memristor
is a flux controlled memristor with a cubic nonlinearity, and it can be regarded as a time-varying memductance. The memristor, in
effect, retains memory of its past dynamic and any difference in the initial conditions of the two circuits results in different values
of the corresponding memductances. In this sense, due to the memory effect of the memristor, even if coupled circuits have the
same parameters they do not constitute two completely identical chaotic oscillators. As is known, for nonidentical chaotic systems,
in addition to complete synchronizations (CS) other weaker forms of synchronization which provide correlations between the
signals of the two systems can also occur. Depending on initial conditions and coupling strength, both chaotic and nonchaotic
synchronization are observed for the system considered in this work.

1. Introduction

One of the most important topics of contemporary science
focuses on the study of continuous and discrete dynamical
systems [1–3], analysing their organization as nonlinear
evolving structures [4–6] or as artificial agents in synthetic
environments [7, 8]. Chaos is the most striking feature of
their behaviour. Chaotic systems are nonlinear deterministic
systems that display highly complex dynamic with several
peculiar features such as fractal properties of the motion in
the phase space (strange attractors) and, especially, extraor-
dinary sensitivity to initial conditions and system parameters
variations. This implies that, even for two identical chaotic
systems, a slight difference in the initial conditions grows
exponentially in time resulting in completely different tra-
jectories. Consequently, chaotic systems intrinsically would
seem to defy synchronization. Nonetheless, two coupled
chaotic systems also can exhibit some form of synchroniza-
tion, meaning by that a dynamical state wherein a correlation
exists among a given property of their motion [9, 10].

The synchronization between chaotic systems, either
identical or nonidentical, is a fundamental phenomenon in
nonlinear dynamics, observed in diverse areas of science
and technology. Studies on chaos synchronization are of
great interest, both from a theoretical and applicative point
of view, due to their possible applications, for example,
in cryptography and secure communications [11–13]. The
synchronization of chaotic oscillators is also an important
process in many biological systems [14].

Since the pioneering works of Pecora et al. [9, 15], it has
become known that it is possible to force two chaotic systems
to synchronize, and various methods for chaos control and
synchronization have been developed [16] such as those
based, for example, on sliding-mode control or linear matrix
inequality, just to name a few [17–21].

On the other hand, spontaneous synchronization is also
possible for nonlinear systems. More precisely, depending
on the modalities of interaction between the systems, it is
possible to distinguish between two configurations leading
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to synchronization: unidirectional coupling (drive-response
ormaster-slave configuration) and bidirectional coupling [10,
22].

In the first case, one of the two systems evolves freely
and forces the other system to follow a certain function
of the master dynamic, producing external synchronization.
This approach is affected, in large part, by the point of view
of the dynamics systems control theory. For example, the
synchronization control of memristor-based chaotic systems
in a drive-response configuration has been recently studied
using adaptive control and fuzzy modelling [23, 24].

On the contrary, in the bidirectional coupling configura-
tion spontaneous synchronization is due to the mutual inter-
actions between the chaotic oscillators which self-organize
their dynamics and, in this case, the synchronization is
configured as an emergent phenomenon. In effect, sponta-
neous synchronization is recognized in various areas, ranging
from physics to biology and social sciences [25]. A typical
bidirectional coupling producing synchronization for many
dynamical systems is the so-called “diffusive coupling,” where
the mutually forcing term is proportional to the differences
between the states of the systems [26, 27]. The present work
considers this coupling configuration and, for the first time
as far as the authors’ knowledge is concerned, results of
numerical investigations on the spontaneous dynamics of two
resistively coupled memristor-based Chua’s circuit are pre-
sented. The “memristor” is the so-called fourth elementary
circuit element, theorized by Chua in 1971 [28] in order to
complete the mathematical relations connecting pairs of the
four fundamental circuit variables (current, voltage, charge,
and magnetic flux). It is a two-terminal circuit element
in which the magnetic flux 𝜑 between the terminals is
a nonlinear function of the electric charge 𝑞 that passes
through the device. Formally, a memristor is characterized
by a relation 𝑓(𝜑, 𝑞) = 0, called “the memristor constitutive
relation,” linking charge and flux, and its memductance is
defined as 𝑊(𝜑) = 𝑑𝑞(𝜑)/𝑑𝜑. In the case of nonlinear
constitutive relation, the memductance value depends upon
the history of the device (i.e., taking into account the Lenz’s
law 𝑉 = 𝑑𝜑/𝑑𝑡, the memductance varies according to the
integral over time of the applied voltage). Therefore, the
behavior of thememristor depends on its past history and the
memristor retains memory of its state even when no current
passes through it.

Despite its theorization in 1971, a physical realization
of a memristor only occurred in 2008 in the form of a
nanometer-sized solid-state two-terminal device, realized by
Stan William’s group at the Hewlett-Packard (HP) Labs [29].
After its discovery, studies on the special properties of the
memristor as electric device have received increasing interest
[30, 31]. Many papers focus on the possible technological
applications of the memristor, for example, in order to build
ultra-dense nonvolatile memories [32], or new kinds of
high performance computers [33, 34]. Moreover, the special
properties of the memristor appear useful in the modelling
cognitive process [35, 36] and to emulate the human brain
[37, 38]. The memristor is also of great interest in the field
of chaotic dynamical systems. Due to the nonlinearity of

its constitutive relation, the memristor-based circuits can
generate chaotic dynamics [39–44]. In particular, depending
on the parameters and initial conditions of the memristor, a
chaotic circuit withmemory can produce transient chaos and
intermittence [45–47].

The memristor used in this work is characterized by
a cubic nonlinearity that makes the behavior of the single
circuit chaotic. Since the actual memductance value depends
on the history of the applied voltage, starting from different
initial conditions the memristors in the two circuits have
different memories, which results in different values of the
memductance. In this sense, despite having the same circuit
parameters, the two circuits can be viewed as nonperfectly
identical chaotic oscillators.

It is worth noting that for nonequivalent chaotic oscilla-
tors, and depending on the coupling strength, several kinds of
synchronization exist [10, 15, 48]. In particular, for identical
systems complete synchronization (CS) is possible, and the
trajectories of the two systems overlap perfectly. For example,
it is known that two bidirectional coupledChua’s circuit reach
a state of complete synchronization [49]. A weaker form of
synchronization, also possible for nonidentical systems, is
phase synchronization (PS), where only the phases of the
interacting oscillators are correlated [50]. Other forms of
synchronization are lag synchronizations (LG) [51, 52] and
rhythm synchronization (RS) [53], characterized by a fixed
time lag between the trajectories of two coupled nonidentical
oscillators. A more general synchronization state, that seems
to be the chaos synchrony most frequently found in natural
systems [54], is the generalized synchronization (GS). It
is characterized by a functional relationship between the
trajectories of two coupled systems [55, 56], either identical or
nonidentical. Therefore, generally speaking, chaos synchro-
nization refers to a dynamic process in which two coupled
chaotic systems adjust a given property of their motion to
a common behavior, ranging from complete agreement of
trajectories to a generic relationship between them.

In order to evaluate the presence of synchronization,
the two-dimensional phase portrait between corresponding
signals can be used. When CS occurs, the phase portrait
consists in a straight line at 45∘. Conversely, if two signals
are uncorrelated there will be an isotropic cloud of points
in the diagram. Between these two extremes, any “structure”
in the phase diagram indicates the existence of some kind of
correlation between the signals.

In this work, synchronization states, in the sense dis-
cussed above, were identified by the appearance of patterns
in the phase portraits. This paper is organized as follows.
In Section 2, the single memristor based Chua’s circuit is
presented. The diffusive coupling schema and the equations
for the coupled circuits are derived in Section 3. Results of
numerical simulations are presented in Section 4. Finally our
main conclusions are summarized in Section 5.

2. The Memristor-Based Chua’s Circuit

Thememristor-based chaotic circuit considered in this work
was proposed and described byMuthuswamy [57]. It consists
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Figure 1: The memristor-based Chua’s circuit: the Chua’s diode is replaced by a flux-controlled active memristor.
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Figure 2: 3D projection of the double-scroll type attractor generated by (3a)–(3d) for initial conditions [−24.33, −12480, −7294, 2.948] and
corresponding state variables 𝑥, 𝑦, 𝑧, and 𝑤 as a function of the time.
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Figure 4: 3D projection of the Chua’s spiral-type attractor generated by (3a)–(3d) for initial conditions [0.0 23000 1250 1], and
corresponding time series of state variables 𝑥, 𝑦, 𝑧, and 𝑤.
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Figure 5: 3D projection of the one-period limit cycle attractor generated by (3a)–(3d) for initial conditions [112.4047, 27015, 9360, −4.0542],
and corresponding nonchaotic pseudosinusoidal oscillations of higher amplitude with respect to the chaotic dynamic.

of a Chua’s circuit with the diode replaced by a flux-controlled
active memristor (Figure 1) characterized by a cubic contin-
uous nonlinearity for the 𝑞 − 𝜑 constitutive relation:

𝑞 (𝜑) = 𝛼𝜑 + 𝛽𝜑
3
, (1)

where 𝛼 = −0.667 ⋅ 10
−3 and 𝛽 = 0.029 ⋅ 10

−3. The
memductance is given by

𝑊(𝜑) = 𝛼 + 3𝛽𝜑
2
. (2)

Note that the memductance is negative for 𝜑 ∈

(−√−𝛼/(3𝛽), √−𝛼/(3𝛽)), therefore the considered memris-
tor is an active element on this interval of magnetic flux
[39, 57].

By applying the Kirchhoff ’s laws to the memristor-based
Chua’s circuit of Figure 1, the following state equations are
obtained:

𝑑𝑥

𝑑𝑡
= −

𝑦

𝐿
, (3a)
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𝑑𝑦

𝑑𝑡
=

1

𝐶
2

(
𝑧 − 𝑦

𝑅
+ 𝑥) , (3b)

𝑑𝑧

𝑑𝑡
=

1

𝐶
1

(
𝑦 − 𝑧

𝑅
− 𝑖
𝑀
) , (3c)

𝑑𝑤

𝑑𝑡
= 𝑧, (3d)

where 𝑥 is the current through the inductor 𝐿, 𝑦 and
𝑧 represent the voltages across the capacitor 𝐶

2
and 𝐶

1
,

respectively, 𝑤 is the magnetic flux and 𝑖
𝑀

= 𝑊(𝜑) ⋅ 𝑉
1
is

the current through the memristor.
Note that (3a)–(3c) are formally identical to ones reported

in the literature for the Chua’s circuit [58] with the only
difference that the current of the diode is replaced by
the current through the memristor. Moreover, due to the
presence of a new equation for the magnetic flux (or for
the charge in the case of charge-controlled memristor), the
substitution of the Chua’s diode with a memristor augments
the dimension of the equation set describing the original
circuit. To obtain chaotic dynamic, the circuit parameters are
set to 𝐿 = 18mH, 𝐶

2
= 68 nF, 𝐶

1
= 6.8 nF, and 𝑅 = 2000Ω

in original paper describing this circuit [57], and a chaotic
attractor is found by numerical simulation of (3a)–(3d)
starting from the following initial conditions: 𝑥(0) = 0,

𝑦(0) = 0.11, 𝑧(0) = 0.11, and 𝑤(0) = 0. In order to
study the dynamics of the memristor-based Chua’s circuits,
the MATLAB function ode45 implementing an explicit 4th
and 5th order Runge-Kutta formula based on the Dormand-
Prince method [59] is used in this work.

A chaotic dynamics was also found for initial conditions
[−24.33, −12480, −7294, 2.948]. Figure 2 shows a 3D projec-
tion of the attractor with corresponding time series of the
signals.

As is well known, however, chaotic systems are very
sensitive to the changes of the initial conditions and different
initial values can generate totally different behavior. In order
to describe the diverse dynamics of the system (3a)–(3d)
produced to vary the initial conditions, the peaks of the flux
𝑤(𝑡) as a function of its initial values 𝑤(0) was calculated
for initial conditions [0, 23000, 1250, 𝑤(0)]. The resulting
bifurcation diagram is shown in Figure 3 (peaks of 𝑤(𝑡) were
recorded after transient).

Coexistence of multiple attractors in the phase space is
evident, and a very interesting progression of the dynamics
with varying 𝑤(0) appears. For example, a scenario with
Hopf-like bifurcations and period doubling bifurcations is
evident between points 𝑎 and 𝑏 of Figure 3, with limit cycles
of increasing period (a zoom-in image of this area is shown
in the box at the top). For lower 𝑤(0) values up to the point
𝑐, there is an area of fully developed chaos with Chua’s spiral-
type attractor (Figure 4).Windows of 𝑛-order limit cycles and
trivial fixed points (0, 0, 0, 𝑤 = const) corresponding to the
damping of the system also appear.

Between positions 𝑑 and 𝑒, the expansion of points
indicates the birth of a double-scroll type attractor (such
as that shown in Figure 2). Finally, the straight lines at
lower values of 𝑤(0) indicate the saturation of the systems
to a period one orbit, with nonchaotic pseudosinusoidal
oscillations of higher amplitude.

Therefore, in addition to the chaotic behaviour and
depending on the initial conditions of the circuit, nonchaotic
oscillations and damped oscillations are also identified for
the system (3a)–(3d). In particular, for initial conditions
[112.4047, 27015, 9360, −4.0542] and [−178.1619, −66031,
−16762, 4.5430] the system produces nonchaotic and pseu-
dosinusoidal oscillations, with a limit cycle of period 1 in
the phase space (Figure 5). This dynamics corresponds to
the saturation described above. For initial conditions [22,
10000, 0.15, 0.2] and [−20, −10000, 50000, −2] the circuit
is damped, and a sink appears in the phase space. These
values are just some of the initial conditions that have been
considered in order to obtain a coarse characterization of
the basins of attraction for the system (3a)–(3d). Further
investigations are needed to adequately describe these basins
of attraction but it is beyond the scope of the present work.
However, the initial conditions indicated above produce the
whole dynamic behaviors observed for the single circuit.They
result in distant areas of the single circuit phase space and
were used to simulate the coupling of circuits starting from
significantly different initial conditions, as described in the
following section.
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Figure 8: Phase portraits between corresponding signals of the two coupled circuits during the steady state of nonchaotic oscillation (C-C
initial conditions) for different coupling strength. From top: 𝑅

12
= 100, 10000, 40000.

3. The Coupling Scheme

In this study, two memristor-based Chua’s circuits described
above are mutually coupled through a resistor 𝑅

12
as shown

in Figure 6.
The equations describing the dynamic of the system are:

𝑑𝑥
1

𝑑𝑡
= −

𝑦
1

𝐿
, (4a)

𝑑𝑦
1

𝑑𝑡
=

1

𝐶
2

(
𝑧
1
− 𝑦
1

𝑅
+ 𝑥
1
) , (4b)

𝑑𝑧
1

𝑑𝑡
=

1

𝐶
1

(
𝑦
1
− 𝑧
1

𝑅
− (

𝑧
1
− 𝑧
2

𝑅
12

) −𝑊(𝑤
1
) ⋅ 𝑧
1
) , (4c)

𝑑𝑥
2

𝑑𝑡
= −

𝑦
2

𝐿
, (4d)

𝑑𝑦
2

𝑑𝑡
=

1

𝐶
2

(
𝑧
2
− 𝑦
2

𝑅
+ 𝑥
2
) , (4e)

𝑑𝑧
2

𝑑𝑡
=

1

𝐶
1

(
𝑦
2
− 𝑧
2

𝑅
+ (

𝑧
1
− 𝑧
2

𝑅
12

) −𝑊(𝑤
2
) ⋅ 𝑧
2
) , (4f)

𝑑𝑤
1

𝑑𝑡
= 𝑧
1
, (4g)

𝑑𝑤
2

𝑑𝑡
= 𝑧
2
, (4h)

where symbols have the same meaning as in (3a)–(3d), and
subscripts refer to the two circuits.

Accurate numerical integration of (4a)–(4h) was per-
formed for different values of the coupling resistor 𝑅

12

in order to investigate the occurrence of self-induced
synchronization phenomena during the free evolution of
the system. Since, depending on the initial conditions, the
behavior of the single memristor-based circuit can be chaotic
(C), oscillating with pseudosinusoidal (PS) dynamics, and
damped (D); there are 6 qualitatively different choices for
the initial conditions of the two coupled circuits: C-C,
C-D, C-PS, D-D, D-PS, and PS-PS. All of these cases were
examined using the initial conditions given above. The range
of variation for the coupling resistor was initially set to 𝑅

12
∈

{0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 15.0, 20.0,
25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.00}⋅
10
3. Note that the presence of the resistor 𝑅 = 1000 in the

circuit fixes a natural length scale for the resistances, and the
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Figure 9: Pair of time series of the two mutually coupled circuits, for C-C initial conditions and 𝑅
12

= 20000. Signals are out of phase with
different amplitudes, and some kind of AS is observed.

investigated range for the coupling factor 𝑅
12

correspond to
∼10
−1
𝑅 ≤ 𝑅

12
≤ ∼ 10

2
𝑅, that is, a variation of a few orders

of magnitude with respect to 𝑅. Numerical simulations were
carried out for 𝑡 ∈ [0, 1] s. Additional values of 𝑅

12
and

longer integration times were investigated when deemed
necessary, as detailed below.

4. Simulation Results

The results obtained in the C-C and C-D cases qualita-
tively reproduce the entire phenomenology observed in all
the simulations performed for this study, and only these two
cases will be presented below in detail.

4.1. Chaotic-Chaotic (C-C) Initial Conditions. For high cou-
pling (low 𝑅

12
) nonchaotic synchronization occurs. In more

details, for 𝑅
12

∈ [100, 40000] and 𝑅
12

̸=20000, after an
initial transient during which the two circuits oscillate in a
chaotic and uncorrelatedway, they reach a state of nonchaotic
synchronization. In Figure 7 the time series of the variables𝑦

1

and𝑦
2
in the case of𝑅

12
= 17000 are depicted.The qualitative

trend of other signals is similar to the presented one.
It is evident that an initial state of chaotic behavior exists,

with a double-scroll type attractor such as that shown in
Figure 2, followed by a situation in which the two circuits
oscillate with larger amplitude in a pseudosinusoidalmanner.
In this latter case the trajectories of the two coupled circuits
are limit cycles of order 1 in their respective phase space, as
shown in Figure 4.

The existence of some kind of synchronization in this
state of nonchaotic oscillation is evidenced by the appear-
ance of well-defined curves in the phase portraits between
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12
= 20000. (b)

2D projection (𝑦 versus 𝑧) of the Chua’s spiral type attractor is depicted.
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Figure 14: Phase diagrams for chaotic-chaotic initial conditions and 𝑅
12
= 9000. The signals are considered on a time interval of 0.02 s.

corresponding signals of the two coupled circuits (Figure 8).
In particular, for 𝑅

12
= 100 the signals are practically

coincident except for a constant bias for the flux, and a
straight line appears in the phase diagrams (Figure 8(a)).
For the other investigated values of 𝑅

12
, the curves in the

phase diagrams assume the form of a hysteresis-like loop
with a single pinch (Figures 8(b) and 8(c))). It is worthy
to note that during this steady state of pseudosinusoidal
oscillation, the corresponding signals present a periodic
phase shift.The amplitude difference between the signals and
the initial phase shift change as 𝑅

12
varies, and this deter-

mines the different aspect of the phase diagrams shown in
Figure 8.

For 𝑅
12

= 20000 the behavior of the system is quite
different. After a chaotic and uncorrelated transient, the
two coupled circuits achieve a steady state in which the
corresponding signals are completely out of phase (Figure 9).

Somekind of antisynchronization [60] (AS)with significantly
different amplitudes is observed in this case. Moreover, as
shown in Figure 10, phase trajectories of the two systems
evolve on different attractors; in particular, the circuit 2 is on
a Chua’s spiral-type attractor.

The phase diagrams are now more complex (Figure 11),
but they still indicate the presence of some kind of synchro-
nization [53].

The steady state behavior for 𝑅
12

= 20000 with the
signals out of phase seems to be peculiar. Indeed, simula-
tions carried out for 𝑅

12
∈ {19.1, 19.2, 19.5, 19.9, 19.999,

c20.001, 20.01, 20.1, 20.2}⋅103 have produced results in accor-
dance with that previously reported for 𝑅

12
≤ 40000 and

𝑅
12

̸=20000 (in-phase pseudosinusoidal oscillations).
For 𝑅

12
= 40000, the system presents a new feature: the

duration of the chaotic and uncorrelated transient is different
for the two coupled circuits (Figure 12). Only after both
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phase-synchronization.

circuits enter into high-amplitude pseudosinusoidal oscilla-
tion synchronization occurs, with characteristics similar to
cases of R

12
̸=20000. In particular, the attractors of the two

circuits are limit cycles of order 1.
Finally, for 𝑅

12
≥ 45000 the two circuits are practically

uncoupled and the respective signals still remain uncorre-
lated. In more details, after a transient in which both circuits
oscillate chaotically, only one circuit begins to oscillate
in nonchaotic way with pseudosinusoidal oscillations and
greater amplitude for 𝑅

12
= 45000. This uncorrelated coexis-

tence of order and chaos remained unchanged in simulations
of the dynamics of the system up to 80 s. For 𝑅

12
≥ 50000 the

two circuits remain in chaotic and uncorrelated oscillation.

4.2. Chaotic-Damped (C-D) Initial Conditions. Similarly as
discussed above, a synchronization state with pseudosinu-
soidal oscillations is also observed in this case for low
coupling. Moreover, a situation of chaotic oscillations with
strong correlation between signals is also found at high
coupling for 𝑅

12
≤ 9000.

In more detail, for 𝑅
12

= 100 (Figure 13(a)) the phase
portraits indicate a condition of CS, but as 𝑅

12
increases the

correlation between the signals rapidly decreases (Figures
13(b) and 13(c)). In effect, the phase diagrams contain points
whose dispersion around the diagonal depends on the value
of 𝑅
12
. For the lowest investigated value of 𝑅

12
, trajectories in

the phase portraits remain most of the time on the diagonal,
and the synchronization is easy to recognize. As𝑅

12
increases,

the duration of periods of desynchronization, that is, the
amount of points far from the diagonal, increases and itmasks
possible “structures” indicating correlation.

In order to highlight this behavior, in Figure 14 the
phase diagrams are plotted for a time interval of 0.02 s with
𝑅
12

= 9000. Despite the cloud-like shape of the corre-
sponding phase diagram in Figure 13(c), from Figure 14 it

is clear that the system passes through a sequence of phase-
synchronized states. In effect, observing the signals of the two
circuits (Figure 15) it is possible to note a rapid alternation of
situations inwhich the signals are uncorrelated and situations
in which the signals oscillate in phase, and a deconstruction
and recomposition of the state of phase synchronization
happen.

For 10000 ≤ 𝑅
12

≤ 20000 the two circuits reach a
state of nonchaotic synchronization with pseudosinusoidal
oscillations. More precisely, as reported in Figure 16(a) for
𝑅
12

= 10000, after a chaotic transient the circuits have
a behavior similar to that shown in Figure 7, with high-
amplitude pseudosinusoidal oscillations that result strongly
correlated.The attractors of the synchronized circuit are limit
cycles of order 1 (such as that shown in Figure 5).

For 𝑅
12

∈ [15000, 20000] the chaotic transient disappears
and systems immediately synchronize with nonsaturated
oscillations (phase diagrams depicted in Figures 16(b) and
16(c)). The attractors are limit cycles of periods 1 and 2,
respectively, which result similar to the attractors displayed
by the single system (3a)–(3d) during the period doubling
bifurcations described in section 2. The amplitude of the
oscillations for the circuit starting from damping initial
condition is an order of magnitude lower than the other
circuit.

Finally, for 𝑅
12

≥ 25000 both the two systems remain in
chaotic oscillation at different amplitudes evolving on Chua’s
spiral like attractors. The phase portraits for this case, shown
in Figure 17, indicate very weak or null correlation. Unlike
what happens for 𝑅

12
≤ 9000, also at smaller time scale,

coherent substructures do not emerge in the phase diagrams.

5. Conclusion

In this paper the problem of spontaneous self-
synchronization of two mutually coupled memristor-based
Chua’s circuits is investigated via numerical simulations. The
great sensitivity of the single circuit on initial conditions
was here investigated by means of a bifurcations diagram
for the maxima of the flux 𝑤(𝑡) as a function of its initial
values 𝑤(0). A complex progression of the dynamics with
varying initial conditions is evident. Beside chaotic (C)
dynamics, pseudosinusoidal (PS) oscillations, and damped
(D) oscillations were also identified for the single memristor
based circuit.

A diffusive coupling between two of these circuits was
realized with a resistor 𝑅

12
and accurate numerical simu-

lations were performed for various values of the coupling
resistor and for different initial conditions. Synchronization
states were identified by the appearance of patterns in the
phase portraits of the system which indicate correlation
between the signals of the two circuits.

It was found that, depending on the initial conditions and
on the coupling strength, both nonchaotic and chaotic syn-
chronization is possible for the coupled circuits. Nonchaotic
synchronization with positive correlation between signals
seems to be the most frequent situation for the investigated
system, and it was observed for all the initial conditions
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Figure 16: Phase diagram during the pseudosinusoidal oscillations of the two coupled circuits starting from chaotic-damped initial
conditions. From top: 𝑅

12
= 10000, 15000, 20000.

examined and for a wide range of 𝑅
12
values. In this case the

circuits exhibit pseudosinusoidal waveform oscillations with
a small periodic phase shift between corresponding signals
of the two coupled circuits. This results in curves forming a
hysteresis-like loop in the phase portraits.

Chaotic synchronization was found only for C-D initial
conditions at high coupling (small values of 𝑅

12
) and it is

produced by a rapid succession of uncorrelated and phase-
correlated oscillations. Phase portraits show points scattered
around the diagonal line, with positive correlation.The dura-
tion of the period during which the signals are uncorrelated
increases with 𝑅

12
and more smeared phase portraits occur.

With respect to the whole numerical results obtained in
this study, a peculiar situation was detected for C-C initial
conditions at 𝑅

12
= 9000. In this case the oscillations of the

two circuits are completely out of phase andwith significantly
different amplitudes. Phase portraits show complex patterns
with negative correlation that clearly indicate some kind of
synchronization.

Moreover, numerical integrations showed that transient
chaos, already reported in literature for single memristor-
based systems, also is possible for the coupled circuits

examined in this work. In fact, chaotic and uncorrelated
oscillations may precede for a significant time the onset of
pseudosinusoidal synchronization.

Finally, computer simulations also indicate the possibility
of uncorrelated coexistence of chaos and order. In partic-
ular, this situation can be a transient state which precedes
nonchaotic synchronization or, for low coupling strength, a
stationary state of the coupled circuits.

Therefore, the two mutually coupled memristor-based
chaotic circuits studied in this work display a complex
dynamic with a great variety of both chaotic and nonchaotic
synchronisms. A possible interpretation for this can be that,
due to the presence of the memory effect of the memristor
that results in different memductances values for the circuits,
the two considered dynamical systems are not completely
identical, and various kinds of synchronization are expected.
In effect, if complete synchronization appears only at high
coupling strength, some form of phase synchronization or
generalized synchronization seems to be more suitable for
interpreting most of the numerical results obtained in this
work, which could provide new insights for further study
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Figure 17: Phase diagram during the chaotic oscillations of the two circuits starting from chaotic-damped initial conditions and coupled with
high values of 𝑅

12
. From top: 𝑅

12
= 25000, 40000, 100000.

to better understand the spontaneous dynamic of coupled
memristor-based chaotic systems. In particular, although
the results presented here are not directly generalizable to
the case of multiple mutually coupled oscillators, because
emergent phenomena can occur in the case of collective
dynamics, they may be a useful reference for studying
multiple systems. For example, the spontaneous dynam-
ics of multiple memristor-based Chua’s circuits diffusively
coupled in a ring geometry has been investigated in our
recent paper [61]. In addition to chaotic and nonchaotic
synchronization, also emerging chaotic steady waves and
quasi-periodic traveling waves along the ring have been
observed.
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The relationship between structural controllability and observability of complex systems is studied. Algebraic and graph theoretic
tools are combined to prove the extent of some controller/observer duality results. Two types of control design problems are
addressed and some fundamental theoretical results are provided. In addition new algorithms are presented to compute optimal
solutions for monitoring large scale real networks.

1. Introduction

The controllability and observability analysis of dynamical
systems has been an active area of research in control theory
since the pioneer work of Kalman for the linear time invariant
(LTI) case [1]. Since then, progress has been carried out in
several directions such as the controllability/observability of a
class of nonlinear systems [2–5], some types of fuzzy systems
[6, 7], and the structural controllability/observability of LTI
systems [8–10], aimed at robust system monitoring.

The structural controllability analysis of LTI systems was
initially stated by [8]. Such analysis is intended tomodel those
system properties which only rely on the existence or not
of dependencies among inputs, outputs, and state variables;
the existence of a dependency is reflected in the model by
some nonzero system parameter (which multiplies the corre-
sponding coupling term) but does not depend on the specific
value of such parameter. In [8] both linear algebraic and graph
characterizations of structural controllability are presented,
the second one by means of analyzing the associated directed
graph which precisely represents the dependencies among
state variables and input signals.

This correspondence between some properties of system
dynamics and the structure of the associated directed net-
work has been analyzed in the context of large scale and
distributed control systems [11, 12]. Conversely, the same
correspondence has led to the study of complex networks
from a control theoretic perspective [13]; there, the analysis of
a graph has been identified with the structural controllability
of an associated LTI system, where the controllability concept
can be accordingly interpreted depending on the nature and
meaning of the network under study. In this structural LTI
system framework, some specific problems concerning the
minimum number of required inputs (which corresponds
to the number of required controllers or actuators) to guar-
antee controllability have attracted the attention of several
researchers (see [10–16], where some computational solutions
have been provided).

The present paper deepens on the relationship between
network analysis and the controllability as well as the observ-
ability properties of associated dynamical systems. First, the
analysis and design of systems regarding their structural
properties are formalized.Then, the potential duality between
controllability and observability is analyzed in the framework
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of some design problems, providing new theoretical results
which relate both concepts. Finally, properties of maxi-
mummatchings (MMs) and strongly connected components
(SCCs) are demonstrated, which lead to new computational
tools for analyzing complex networks [17–19].

The paper is organized as follows. Section 2 presents
the main results on structural controllability of LTI systems.
Two problems concerning the optimal design of the control
matrix are addressed in Section 3; there, algebraic and
graph theoretic tools are combined, and the corresponding
computational algorithms are presented. Section 4 considers
the observability problem and theoretically demonstrates
several duality results which are confirmed via computa-
tional simulations. Some fundamental properties of maxi-
mum matchings and strongly connected components of the
network are demonstrated in Section 5. The algorithms for
computing several controllability and observability related
properties in complex networks are presented in Section 6.
Finally, concluding remarks are summarized in Section 8.

2. Structural Controllability of LTI Systems

This section presents several controllability results for LTI
systems of the form

̇𝑥 = 𝐴𝑥 + 𝐵𝑢, (1)

where 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚 are given a priori.
This is the case for many engineering problems, where
physical restrictions define both the relationship between
state variables (matrix 𝐴) and the possible location of system
actuators (matrix 𝐵).

First, the classical controllability problem is stated and
the need to undertake a structural analysis perspective is
motivated. Secondly, some useful results on the structural
analysis of matrices are demonstrated; finally, the structural
controllability problem is analyzed.

2.1. Classical Controllability. Roughly speaking, system (1) is
controllable (in the classical sense) when it is possible to lead
the system state variable 𝑥(𝑡) from any initial point 𝑥

0
to any

arbitrary point 𝑥
1
in a finite time period.

Classical control theory states that system (1) is control-
lable if and only if the corresponding controllability matrix

C (𝐴, 𝐵) = (𝐵 |𝐴𝐵|𝐴
2
𝐵 ⋅ ⋅ ⋅ | 𝐴

𝑛−1
𝐵) (2)

satisfies rank(C) = 𝑛 (see [1]). Hence, the classical con-
trollability problem can be formulated as a linear algebra
rank condition; this implies that, in some practical cases, the
problemmay be ill-conditioned and too sensitive to potential
parameter variations. Hence, the need of performing robust
analyses not affected by modelling errors and/or uncertain-
ties motivates the study of structural properties.

2.2. Structural Properties. In practice, the elements of matri-
ces 𝐴 and 𝐵 may not be precisely known. This leads to
the definition of structural properties as those which do not
change with variations in the nonzero values of the elements

of matrices 𝐴 and 𝐵. Structural analysis considers two types
of entries in the matrices, zero and nonzero entries, and
addresses those properties which are preserved no matter
what the exact value of the nonzero entries is, except for a set
of their values with zero Lebesgue measure in the parameter
space; see [8]; such properties are called generic [9]. Hence,
the nonzero entriesmay be represented by a 1-value (defining
then a binary matrix) or, alternatively, the 𝑋-symbol. This
will allow for a straightforward graphical representation of
the system as shown in Section 2.3.

2.2.1. Algebraic Properties: Generic Rank. We introduce here
the concept of a matrix generic rank (denoted by rank

𝑔
),

which happens to play an important role in characterizing its
structural properties. As mentioned earlier, the generic rank
of a matrix 𝐴, say rank

𝑔
𝐴, is the rank of such matrix for all

values of its nonzero entries except those that lie in a set of
zero measures. We now define some basic concepts aimed to
characterize the generic rank of an 𝑛 × 𝑚 matrix 𝐴 (with
𝑛 ≤ 𝑚 unless stated otherwise).

Definition 1 ([see 16]). An 𝑛 × 𝑚 matrix 𝐴 is of form (𝑡) for
some 𝑡, 1 ≤ 𝑡 ≤ 𝑛, if for some 𝑘 in the range𝑚− 𝑡 < 𝑘 ≤ 𝑚, 𝐴
contains a zero submatrix of order (𝑛 + 𝑚 − 𝑡 − 𝑘 + 1) × 𝑘.

Remark 2 ([see 16]). If𝐴 has form (𝑡), then clearly𝐴 has form
(𝑗) for 𝑡 < 𝑗 ≤ 𝑛.

The following lemma will be employed in the proof of
Theorem 5.

Lemma 3. Given a matrix 𝐴, let 𝐴 be a matrix structurally
equivalent to 𝐴 except for a fixed zero of 𝐴 which has been
replaced by an arbitrary nonzero entry in 𝐴. Then, if 𝐴 is not
of form (𝑡), then 𝐴 is not of form (𝑡).

Proof. From Definition 1, we have that, given 𝑡, ∀𝑘 in the
range𝑚 − 𝑡 < 𝑘 ≤ 𝑚, 𝐴 does not contain a zero submatrix of
order (𝑛 +𝑚 − 𝑡 − 𝑘 + 1) × 𝑘. Hence, based on the way 𝐴 has
been constructed from 𝐴, matrix 𝐴 does not contain a zero
submatrix of order (𝑛 + 𝑚 − 𝑡 − 𝑘 + 1) × 𝑘 either. This means
that 𝐴 is not of form (𝑡).

We can now state the following theorem which provides
an alternative way to define the generic rank of a matrix.

Theorem 4 (see [9], Theorem 2.2). For any 𝑛 × 𝑚matrix 𝐴,
it is rank

𝑔
𝐴 = 𝑡,

(i) for 𝑡 = 𝑛 if and only if 𝐴 is not form (𝑛),
(ii) for 1 ≤ 𝑡 < 𝑛 if and only if 𝐴 is of form (𝑡 + 1) but not

of form (𝑡).

We end up with the following generic result, which will
be useful for structural controllability analysis.

Theorem 5. Given a matrix 𝐴, let 𝐴 be a matrix structurally
equivalent to 𝐴 except for a fixed zero of 𝐴 which has been
replaced by an arbitrary entry in 𝐴

. Then rank
𝑔
𝐴


≥

rank
𝑔
𝐴.
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1
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A =(
0 0 0

1 0 0

1 0 0

)

B =(
1 0

0 0

0 1

)

u1 u2

Figure 1: Control configuration (𝐴, 𝐵) and its graph representation.
Squared nodes represent control inputs, yellow nodes are directly
controlled, and blue nodes are controlled by other nodes in the
network.

Proof. Let us consider the case rank
𝑔
𝐴 = 𝑡 = 𝑛. Then 𝐴 is

not of form (𝑛); considering Lemma 3, this implies that 𝐴 is
not of form (𝑛) which is equivalent to rank

𝑔
𝐴

= 𝑡 = 𝑛. Let

us now consider the case rank
𝑔
𝐴 = 𝑡 < 𝑛. Then 𝐴 is of form

(𝑡 + 1), but not of form (𝑡). Hence𝐴 is not of form (𝑡), which
implies that rank

𝑔
𝐴

≥ 𝑡.

(Note that, knowing that 𝐴 is not of form (𝑡), then if 𝐴
is of form (𝑡 + 1), then rank

𝑔
𝐴

= 𝑡; and if 𝐴 is not of form

(𝑡 + 1), then rank
𝑔
𝐴

≥ 𝑡 + 1 > 𝑡 = rank

𝑔
𝐴.)

2.3. The Graph Perspective. The matrix binary form suggests
a straightforward alternative representation of the system as
a graph 𝐺 := (𝑉, 𝐸), where state variables appear as the nodes
(or vertices belonging to set 𝑉) and the elements of 𝐴 are
represented by the existence of a link or edge (nonzero entries
correspond to an existing link belonging to set 𝐸). Concern-
ing matrix 𝐵, nonzero entries are reflected as links from an
external input to the corresponding node (see Figure 1).

Several system structural properties can be analyzed by
referring to its associated graph; in the following, structural
controllability is addressed and we emphasize its alternative
analysis via a graph theoretic approach.

2.4. Structural Controllability Conditions. In [8] systems of
the form (𝐴, 𝑏) are analyzed, where column 𝑏 represents
the scalar input influence on the state variables. Structural
controllability is analyzed via both matrix and graph theory
perspectives. The system (network) is proved to be struc-
turally controllable if and only if all nodes are accessible from
the input and the network presents no dilation, which is
equivalent to say that the graph is spanned by an input cactus
[8, 10].

Structural controllability for multi-input systems defined
by a given pair (𝐴, 𝐵) was first addressed in [9] by analyzing
two properties of matrix [𝐴 | 𝐵]: the first one is related to
accessibility and the second one (which is rank

𝑔
[𝐴 | 𝐵])

relates to the absence of dilations. Fortunately, the problem
can be reduced to solely computing the generic rank of the
associated extended controllability matrix.

Again, from a graph theory perspective, the system
(network) is structurally controllable if and only if there exists
a vertex disjoint union of input cacti [10] that covers all the
state vertices (see, for instance, [20]).

2

1

3

1+

2+

3+

1−

2−

3−

Figure 2: Dynamical system graph and its bipartite representation.
Red links represent edges in themaximummatching. Adding control
inputs to every right-unmatched node guarantees the controllability
matrix to have full rank.

2.4.1. The Use of Maximum Matchings. In [21] the equiva-
lence between computing the generic rank of a matrix and
computing a maximum matching (MM) in 𝐺 := (𝑉, 𝐸)

over the associated bipartite graph (see [15] for details) is
indicated (see Figure 2). A matching is any subset of 𝐸 so
that all nodes in 𝑉 have neither more than one incoming
edge nor more than one outgoing edge belonging to the
matching. Amatching ismaximum if there are no other larger
matchings (i.e., a matching containing a larger number of
edges); note that maximum matchings (MMs) need not be
unique. A matching is perfect if all nodes of the network
have an incoming edge belonging to the matching (i.e., the
number of links belonging to thematching equals the number
of nodes in the network).Maximummatchings (MMs)will be
considered in detail in the following sections, where it will be
shown that the equivalence between generic rank evaluation
and the determination of aMM is in accordance with the fact
that aMMprovides a subgraph which guarantees the absence
of dilations.

In the next section, some control design problems (on
the matrix 𝐵) are presented, where both the algebraic and the
graph theoretic perspectives can still be employed to address
them. Again, the computation of MMs will prove to be an
efficient step towards their solution.

3. Optimal Design of 𝐵

There are practical situations inwhich onlymatrix𝐴 is known
as a characterization of the system dynamics, and there is no a
priori restriction about the structure of matrix 𝐵. This can be
interpreted as if any state variable can be directly accessed by
a control signal. Then, the selection of an appropriate matrix
𝐵 can be addressed as a design goal.

Different optimization criteria can be defined for the
design of matrix 𝐵. In the following, we formulate two differ-
ent problems aimed to minimize the control requirements.
Both problems can be formulated either in the classical
control context (with a specific 𝐴matrix) or in the structural
analysis framework considered in this paper.

3.1. Minimum Number of Required Inputs. The first problem
is concerned with minimizing the number of inputs or
actuators, independently of the fact that such actuators may
need to be connected as an input to more than one state
variable.
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Problem 6. Find 𝐵 with a minimum number of columns
(inputs or actuators) so that (𝐴, 𝐵) is controllable.

Note that, since a column of 𝐵 may have more than one
nonzero entry, the number of inputs may be smaller than
the number of states directly accessed by an input (i.e., the
number of nonzero rows).

Obviously, the solutions to this problem are not unique;
and it is straightforward to prove that, given two different
solutions 𝐵

1
and 𝐵

2
, the number of state variables directly

accessed by each of them may be different.
The design of an optimal 𝐵 has not been an important

issue in classical control theory since most of the time such
matrix is given a priori (or it is restricted to access only a
subset of state variables) in real engineering problems.

When structural controllability is considered, the main
result concerning the minimum number of required inputs
is stated in the following theorem.

Theorem 7. Let us consider the LTI system

̇𝑥 = 𝐴𝑥 (3)

and let 𝑛
𝑐
be the minimum number of inputs (𝑐 stands for

controllers) to make it structurally controllable. Then

𝑛
𝑐
= max {1, 𝑛 − rank

𝑔
𝐴} . (4)

Proof. As stated in [8], the system will be structurally con-
trollable if all its variables are accessible from the inputs and
the system presents no dilation. The accessibility condition
requires having at least one input to the system, which implies
that 𝑛

𝑐
≥ 1. The condition of no dilation can be expressed as

follows:

rank
𝑔
(𝐴 | 𝐵) = 𝑛, (5)

where 𝑛 is the number of state variables in the system. Since

rank
𝑔
𝐴 ≤ rank

𝑔
(𝐴 | 𝐵) (6)

the structure of the system, described by 𝐴, determines the
conditions imposed to 𝐵 to make the system controllable.

Given𝐴, the problem of finding theminimumnumber of
inputs of the system is thus reduced to finding the minimum
number of column vectors forming a matrix 𝐵 that satisfies
(5). To comply with the accessibility condition, we may face
two different cases: if rank

𝑔
𝐴 = 𝑛, we need 𝐵 to have at

least one column with some nonzero entry; if rank
𝑔
𝐴 <

𝑛, the already nonzero matrix 𝐵 selected to satisfy the no-
dilation condition may need to add extra nonfixed values to
its column vectors, but either of these operations will not
affect the no-dilation condition since it will never reduce
rank
𝑔
(𝐴 | 𝐵) as stated in Theorem 5. In other words, the

range condition expressed in (5)will determine theminimum
number of inputs of the system, regardless of the number
of variables/vertices affected by them. This result reduces
Problem 6 to the rank analysis of (5).

Therefore, 𝐵 can be chosen to comply with (5) just by
constructing as many independent columns as 𝑛 − rank

𝑔
𝐴,

1

2

3

4

5

6

7

u1 u2

Figure 3: Adding inputs to every right-unmatched nodemight leave
inaccessible nodes (grey in the figure). To overcome this problem,
one may either add wirings (dashed line) from any existing input or
include new dedicated inputs (𝑢

2
).

keeping in mind that if 𝑛 − rank
𝑔
𝐴 = 0 we need 𝐵 to have

one column. Hence

𝑛
𝑐
= max{1, min

rank𝑔(𝐴|𝐵)=𝑛
{rank

𝑔
𝐵}}

= max {1, 𝑛 − rank
𝑔
𝐴} .

(7)

3.1.1. Computation of 𝑛
𝑐
: TheMaximumMatching Alternative.

A priori, the computation of 𝑛
𝑐
would rely on calculating

the generic rank of matrix 𝐴. Hence, only the no-dilation
property must be taken into account to compute 𝑛

𝑐
, inde-

pendently of accessibility issues. This implies that, once a
matrix 𝐵 satisfying the rank condition has been selected, we
may only further require changing some of its zero terms to
one (without altering its generic rank and 𝑛

𝑐
) to cope with

accessibility.
Alternatively, the network theory perspective provides a

way of determining the value of 𝑛
𝑐
by the calculation of MMs

on the network associated bipartite graph (see [13]). Such
MM, denoted byM, need not be unique. Any MM provides
a decomposition of the graph into paths and cycles; it can be
proved that 𝑛

𝑐
is the number of right-unmatched vertices of

M (note also that 𝑛
𝑐
= |𝑉| − |M|) and such value does not

depend on the specificM that we may have found. Note that
any MM only takes into account the no-dilation property
and it does not provide information about node accessibility;
equivalently, once a set of control inputs has been connected
to the right-unmatched nodes, in order to complete the
control configuration, we may require adding some new
wires from any input(s) to the nonaccessible nodes, without
altering the number of required inputs, 𝑛

𝑐
(see dashed line

in Figure 3).
The computation of differentMs has been analyzed in [14,

15].

3.2. Minimum Number of Directly Controlled States (or Dedi-
cated Inputs). The second optimization problem associated
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with matrix 𝐵 is concerned with the minimum number of
states that have to be directly controlled with an input signal.

Problem 8. Find 𝐵 with a minimum number of columns so
that each column of 𝐵 has only one nonzero entry (i.e., it
represents a dedicated input) and (𝐴, 𝐵) is controllable.

In this case, the number of dedicated inputs 𝑛
𝑑𝑐
is exactly

the same as the number of states directly accessed by an
input. For example, in Figure 3, two states have to be directly
accessed; hence, two dedicated inputs are required.

3.2.1. Computation of 𝑛
𝑑𝑐
: Again the Maximum Matching

Alternative. In [10], Problem 8 has been formalized by
considering a graph theoretic perspective. In fact, 𝑛

𝑑𝑐
is equal

to the minimum number of disjoint state cacti that span the
network. As stated there, 𝑛

𝑑𝑐
can be indirectly computed by

resorting to the relationship between graph cacti decomposi-
tions and the more easily computable maximum matchings.
One must remember that a MM provides an alternative
decomposition of the graph into paths and cycles. Unfortu-
nately, the accessibility information from right-unmatched
nodes to cycles is lost in a MM. Hence further analysis is
required, where the relationship between the information
provided by the MM and the graph strongly connected
components (SCCs) becomes crucial.

In [10] it is shown that theminimumnumber of dedicated
inputs 𝑛

𝑑𝑐
is given by

𝑛
𝑑𝑐
= 𝑛
𝑐
+ 𝛽
𝑐
− 𝛼
𝑐
, (8)

where 𝑛
𝑐
again is the number of right-unmatched vertices

with respect to the found maximum matching M, 𝛽
𝑐
is the

number of nontop linked strongly connected components
(SCC), and 𝛼

𝑐
is the so-called maximum assignability index

of the network (to be explained below).
Each MM M found provides a set of right-unmatched

nodes that are assigned an external control input. (As men-
tioned earlier, although the set of right-unmatched vertices
may change from one MM to another, its size 𝑛

𝑐
does not

depend on the specificMMM found.) Concerning the cycles
provided by the matching, some of them may be accessible
from a control input and some others may not. Since this
accessibility information is not provided by the matching,
further analysis is required, knowing that the nonaccessible
cycles can only show up within the nontop linked SCCs, in
order to determine 𝛽

𝑐
− 𝛼
𝑐
.

Let 𝑆 be the set of all SCCs and let 𝑆nt ⊂ 𝑆 be the set
of all nontop linked SCCs (|𝑆nt| = 𝛽

𝑐
). Then each specific

M defines a partition in 𝑆nt = 𝑆
ru
nt (M) ⊔ 𝑆

rm
nt (M) (where

⊔ stands for the disjoint union of sets) so that elements of
𝑆
ru
nt (M) ⊂ 𝑆nt contain vertices which belong to the set of right-
unmatched (ru) vertices provided by M; one can interpret
that the elements of 𝑆runt (M) are directly assigned an external
control byM so that their accessibility is guaranteed. In this
context, the meaning of 𝛼

𝑐
as the maximum assignability

index of the network is formally stated by

𝛼
𝑐
= max

M

𝑆
ru
nt (M)

 . (9)

On the other hand, the elements of 𝑆rmnt (M) = 𝑆nt(M)\𝑆
ru
nt (M)

do not contain any of the right-unmatched vertices provided
by M; hence, additional dedicated input(s) (equivalent to a
wiring from any input(s) in theminimumnumber of required
inputs problem) to at least one node belonging to each one
of such elements will be required to complete full node
accessibility [13]. If dedicated inputs were to be employed to
implement such specific matching and associated wiring, the
total number of inputs would be

𝑛
𝑑𝑐
(M) = 𝑛

𝑐
+ 𝑛
𝑤𝑐
(M) , (10)

where 𝑛
𝑤𝑐
(M) stands for the number of additional wires

required. Hence, Problem 8 can be formulated as finding
a MM M∗ which minimizes 𝑛

𝑤𝑐
(M). Since the number of

required wires also satisfies 𝑛
𝑤𝑐
(M) = |𝑆

rm
nt (M)| = 𝛽

𝑐
−

|𝑆
ru
nt (M)|, we have that

𝑛
∗

𝑤
= 𝑛
𝑤𝑐
(M
∗
) = min

M
𝑛
𝑤𝑐
(M)

= 𝛽
𝑐
−max

M

𝑆
ru
nt (M)

 = 𝛽𝑐 − 𝛼𝑐.

(11)

Since 𝛽
𝑐
is solely determined by the network topology (being

independent of the obtained M), the solution of Problem 8
requires the computation of 𝛼

𝑐
(by solving a maximization

problem over all possibleMs).

4. Observability of LTI Systems and
Duality Results

We now consider the LTI system defined by

̇𝑥 = 𝐴𝑥 + 𝐵𝑢,

𝑦 = 𝐶𝑥,

(12)

where again 𝐴 ∈ R𝑛×𝑛, 𝐵 ∈ R𝑛×𝑚, and 𝐶 ∈ R𝑝×𝑛 are
given a priori. This system is said to be observable (in the
classical sense) if, for any known input𝑢, the state space initial
condition 𝑥

0
can be determined in finite time by measuring

only the output vector 𝑦(𝑡).
It can be shown that for LTI systems matrix 𝐵 does

not affect the observability property, which only depends
on the relationship between matrices 𝐴 and 𝐶. Hence, the
observability analysis can be addressed relying on a duality
property (see [22] for details).

In the following, we address structural observability and
associated design issues which will provide similar results
to the controllability analysis performed earlier. In addition,
duality issues are considered when referring to both struc-
tural controllability and observability properties.

4.1. Observability and Optimal Design of 𝐶. In the same
way as for the controllability analysis, there are practical
situations, where no restrictions on matrix 𝐶 exist, so that it
can be freely selected. Therefore one can formulate diverse
problems concerning the design of optimal 𝐶 matrices
satisfying different minimality requirements.

Such matrix 𝐶 design problems can be related to the
previously presented design problems for matrix 𝐵, invoking
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duality. In the following we demonstrate some results con-
cerning the design of both optimal 𝐵 and 𝐶matrices.

4.2. Minimum Number of Required Inputs and Outputs.
Given the LTI system (12), we state the following result
concerning Problem 6 and its dual counterpart.

Theorem 9. Consider system (12), where only matrix 𝐴 is
predefined (i.e., matrices 𝐵 and 𝐶 and the corresponding
dimensions of 𝑢 and 𝑦 can be freely designed); let 𝑛

𝑐
be the

minimum number of inputs to make it structurally controllable
and let 𝑛

𝑜
be the minimum number of outputs (𝑜 will stand for

observability) to make it structurally observable. Then

𝑛
𝑐
= 𝑛
𝑜
. (13)

(This result was empirically noted in [14].)

Proof. By invoking the duality between the observability and
controllability concepts [22], the observability analysis of the
system defined by matrix 𝐴 can be performed by studying
the controllability of the system defined by 𝐴

𝑇. Since the
structural properties are grounded on the classical ones,
determining the minimum number of outputs to guarantee
structural observability in a system defined by𝐴 is equivalent
to determining the minimum number of inputs to guarantee
structural controllability of the system defined by 𝐴𝑇.

The dual system will be structurally controllable if

rank
𝑔
(𝐴
𝑇
𝐶
𝑇
) = 𝑛. (14)

And again, the minimum number of inputs for that new
system would be

𝑛
𝑜
= max{1, min

rank𝑔(𝐴𝑇|𝐶𝑇)=𝑛
{rank

𝑔
𝐶
𝑇
}}

= max {1, 𝑛 − rank
𝑔
𝐴
𝑇
} .

(15)

Since

rank
𝑔
𝐴 = rank

𝑔
𝐴
𝑇 (16)

we conclude that

𝑛
𝑜
= max {1, 𝑛 − rank

𝑔
𝐴
𝑇
}

= max {1, 𝑛 − rank
𝑔
𝐴} = 𝑛

𝑐
.

(17)

This proof relies only on algebraic properties of 𝐴. An
alternative proof can be constructed using graph theoretical
results and the duality principle. Based on duality, the observ-
ability analysis in a given graph 𝐺 := (𝑉, 𝐸), with adjacency
matrix 𝐴, is equivalent to the controllability analysis in a
graph whose adjacency matrix is 𝐴𝑇; that is, a graph 𝐺

𝑑
:=

(𝑉, 𝐸

) with the same set of nodes 𝑉 and whose links in 𝐸

have the directions of links in 𝐸 flipped. We call such a graph
𝐺
𝑑
the dual graph of 𝐺.

Every MM M of 𝐺 (considered merely as a set of links,
neglecting their directions) is also a MM of 𝐺

𝑑
. Also, M is

composed by a disjoint union of paths and cycles, so that the
number of required inputs 𝑛

𝑐
is determined by the size of such

paths and cycles. Since flipping the directions of links does
not change the number and size of those paths and cycles, we
have 𝑛

𝑐
= 𝑛
𝑜
.The 𝑛

𝑜
sensors would be connected to the right-

unmatched vertices determined by M in 𝐺
𝑑
or equivalently

to the left-unmatched vertices determined byM in 𝐺.
Note that this result does not imply that the number of

required wirings should be the same, since it will depend
on the accessibility of the cycles provided by M, which can
change from 𝐺 to 𝐺

𝑑
(the directions of links do matter when

determining accessibility), as illustrated in the following
subsection.

4.3. Minimum Number of Dedicated Outputs. Given the
LTI system (12), we now consider the dual counterpart of
Problem 8, that is, the required dedicated outputs for guar-
anteeing observability.

Based on duality it can be shown that the minimum
number of dedicated outputs (sensors) 𝑛do is given by

𝑛do = 𝑛𝑜 + 𝛽𝑜 − 𝛼𝑜, (18)

where 𝑛
𝑜
= 𝑛
𝑐
again corresponds to the left-unmatched

vertices in 𝐺 provided by M, 𝛽
𝑜
is the size of the set 𝑆nb

composed by the nonbottom linked SCCs, and 𝛼
𝑜
is the

maximum assignability index of the network (now also
referred to as the nonbottom linked SCCs).

A parallel reasoning to the one carried out for controlla-
bility can be performed for the observability analysis, where
the left-unmatched vertices play the role of the previous right-
unmatched ones and the nonbottom linked SCCs play the
role of the previous nontop linked ones.

4.4. Dedicated Inputs versus Dedicated Outputs. It is obvious
that, in general,𝛽

𝑜
need not be equal to𝛽

𝑐
; by the sameway,𝛼

𝑜

may not be equal to 𝛼
𝑐
. Accordingly, the number of required

wirings 𝑛
𝑤𝑜
(M)may be different from 𝑛

𝑤𝑐
(M). Therefore we

get the following.

Remark 10. Consider system (12) and let 𝑛
𝑑𝑐
be theminimum

number of dedicated inputs to make it structurally control-
lable, and let 𝑛do be the minimum number of dedicated
outputs to make it structurally observable. Then 𝑛

𝑑𝑐
may or

may not to be equal to 𝑛do.

For instance, if 𝐴 = [ 0 1
0 0
], then 𝑛

𝑑𝑐
= 1 = 𝑛do, whereas if

𝐴 = [
0 1 1

0 0 0

0 0 1

], then 𝑛
𝑑𝑐
= 1 ̸= 2 = 𝑛do (see Figure 4).

(This result was also empirically discovered in [14].)
The difference of value between 𝑛

𝑑𝑐
and 𝑛do suggests that

the relationship between these two quantities can shed some
light on a further characterization of the network properties.
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Figure 4: The system in the left can be controlled with only one
dedicated input. However, its dual system for observability in the
right needs an additional wiring to guarantee accessibility.

5. Properties of Maximum Matchings and
Strongly Connected Components

In this section some fundamental results are presented
for addressing the practical solution of the two problems
presented in Section 3. In order to simplify the exposition,
the controllability problem will be considered to illustrate
the results. Note that the whole reasoning applies also to the
observability analysis, which is performed bymerely applying
the same reasoning to the dual network.

As mentioned earlier, 𝑛
𝑐
can be obtained via the compu-

tation of a MM. We will see that MMs are also crucial for
the computation of 𝑛

𝑑𝑐
together with the properties of the

SCCs. In the following some fundamental results concerning
the properties of MMs and the network SCCs are presented.

5.1. Properties of Maximum Matchings. We begin by stating
some properties which characterize the structure of the set
of possible MMs; precisely, the construction of a MM from
another one by only performing few changes is addressed,
which will lead to characterize similarities between different
MMs. In order to make the notation easy, the MM, as
subgraph of 𝐺 := (𝑉, 𝐸), will be defined withM representing
their set of links.

Given a MMM so that one of its right-unmatched nodes
in 𝑉

ru
(M) has an incoming link in 𝐸, the following results

address the possibility of constructing a new MMM whose
𝑉

ru
(M) is obtained by just swapping such node of 𝑉ru

(M)

by another node in 𝑉rm
(M).

Lemma 11. LetM be aMMand let𝑉𝑟𝑢(M) be the set of right-
unmatched nodes of M. Let V

1
∈ 𝑉
𝑟𝑢
(M) be such that there

exists a link (V
2
, V
1
) ∈ 𝐸 (going from some node V

2
to V
1
).Then,

there exist a node V
3
and a MM M such that M = M ⊔

{(V
2
, V
1
)} \ {(V

2
, V
3
)} implying that𝑉𝑟𝑢(M) = 𝑉𝑟𝑢(M) \ {V

1
} ⊔

{V
3
}.

Proof. Let us consider the subgraph 𝐺
1
:= (𝑉, 𝐸

1
) with 𝐸

1
=

M ⊔ {(V
2
, V
1
)}. Obviously, 𝐸

1
must contain some (V

2
, V
3
), a

second outgoing link from V
2
(if not, 𝐸

1
would become a

matching with more links thanM, leading to a contradiction

with the maximality ofM). By removing such link we obtain
a new subgraph with the same number of links as M and
satisfying again the no-dilation condition (i.e., a new MM),
M = 𝐸

1
⊔ (V
2
, V
1
) = M ⊔ (V

2
, V
1
) \ (V
2
, V
3
) which satisfies

𝑉
ru
(M) = 𝑉ru

(M) \ {V
1
} ⊔ {V
3
}.

Remark 12. Note that if V
1
∈ 𝑉

ru
(M) and there exists M

such that V
1
∉ 𝑉

ru
(M), then Lemma 11 does apply, implying

the existence ofM, where V
1
has been swapped in𝑉ru

(M) by
another single node to form 𝑉

ru
(M).

Lemma 13. Let M be a MM and let 𝑉𝑟𝑚(M) be the set of
right-matched nodes of M. Let V

1
∈ 𝑉
𝑟𝑚
(M) be such that

there exists M with V
1
∈ 𝑉
𝑟𝑢
(M). Then, there exist a node

V
𝑗
∈ 𝑉
𝑟𝑢
(M) ∩𝑉

𝑟𝑚
(M) and aMMM such that𝑉𝑟𝑢(M) =

𝑉
𝑟𝑢
(M) \ {V

𝑗
} ⊔ {V
1
}.

Proof. Let us consider (V
2
, V
1
) ∈ M, the link right-matching

node V
1
. Note that (V

2
, V
1
) ∉ M since V

1
∈ 𝑉

ru
(M). Let us

now consider V
3
̸= V
1
such that (V

2
, V
3
) ∈ M. Note that M

must contain such a link; otherwise,M⊔{(V
2
, V
1
)}would be

a valid matching, contradicting M being maximum. If we
construct 𝐸

1
= M \ {(V

2
, V
1
)} ⊔ {(V

2
, V
3
)}, then we face two

possibilities.

(1) If V
3
∈ 𝑉

ru
(M), then 𝐸

1
= M would be the matching

we are looking for such that 𝑉ru
(M) = 𝑉

ru
(M) \

{V
3
} ⊔ {V
1
}.

(2) If V
3
∉ 𝑉

ru
(M), then 𝐸

1
would have two incoming

links to V
3
. Let V

4
be such that (V

4
, V
3
) ∈ M (note that

V
4
̸= V
2
since V

3
̸= V
1
and (V

2
, V
1
) ∈ M). Let also V

5
̸= V
1
,

V
3
, such that (V

4
, V
5
) ∈ M (note that such link must

exist; otherwise,M ⊔ {(V
4
, V
3
), (V
2
, V
1
)} \ {(V

2
, V
3
)} =

M ⊔ (M \ 𝐸
1
) would be a valid matching, leading to

a contradiction). We construct 𝐸
2
= 𝐸
1
\ {(V
4
, V
3
)} ⊔

{(V
4
, V
5
)}, where again we can have two possibilities:

if V
5
∈ 𝑉

ru
(M), then we are done with 𝐸

2
= M

and 𝑉
ru
(M) = 𝑉

ru
(M) \ {V

5
} ⊔ {V

1
}. Otherwise,

we could apply the same reasoning recursively until
some node V

𝑗
̸= V
1
, V
3
, V
5
, . . . is encountered such that

V
𝑗
∈ 𝑉

ru
(M) ∩ 𝑉

rm
(M) allowing its swapping with

V
1
.

Lemma 14. LetM be aMMand let𝑉𝑟𝑚(M) be the set of right-
matched nodes of M. Let {V

1
, . . . , V

𝑘
} ∈ 𝑉

𝑟𝑚
(M) be such that

there existsM with V
1
, . . . , V

𝑘
∈ 𝑉
𝑟𝑢
(M). Then, there exists

a set of nodes {V
1
, . . . , V

𝑘
} ⊂ 𝑉

𝑟𝑢
(M ∩ 𝑉

𝑟𝑚
(M) and a MM

M such that 𝑉𝑟𝑢(M) = 𝑉𝑟𝑢(M) \ {V
1
, . . . , V

𝑘
} ⊔ {V
1
, . . . , V

𝑘
}.

Proof. From the previous Lemma 13, we can construct a MM
M
1
such that 𝑉ru

(M
1
) = 𝑉

ru
(M) \ {V

1
} ⊔ {V
1
} for some V

1
∈

𝑉
rm
(M). Applying again the same reasoning of Lemma 13,

we can construct a new MM M
2
such that 𝑉ru

(M
2
) =

𝑉
ru
(M) \ {V

1
, V
2
} ⊔ {V

1
, V
2
}, where again V

2
∈ 𝑉

rm
(M)

which guarantees that V
2
∉ {V
1
, . . . , V

𝑘
}. The procedure can

be applied repeatedly for each V
𝑗
to obtain a new M

𝑗
such

that 𝑉ru
(M
𝑗
) = 𝑉

ru
(M) \ {V

1
, . . . V
𝑗
} ⊔ {V

1
, . . . , V

𝑗
} with
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V
𝑗
∈ 𝑉

rm
(M) which guarantees that V

𝑗
∉ {V
1
, . . . V
𝑘
}. When

𝑗 = 𝑘, the desired result holds.

These lemmas will allow for an efficient search of appro-
priate MMs.

5.2. Properties of the Elements of 𝑆
𝑛𝑡
. We now address some

properties of 𝑆nt, the set of nontop linked SCCs, from the
point of view of their relationship with the different MMs
which can be defined in the network.

For every𝐺
𝑖
∈ 𝑆nt, let𝑉𝑖 represent the set of its vertices or

nodes. For any MMM, let 𝑉
𝑖
(M) ⊆ 𝑉

𝑖
be the set of nodes of

𝐺
𝑖
having an outgoing link inM. Then we can define 𝑉𝑏

𝑖
(M)

and 𝑉
𝑜

𝑖
(M) to be a partition of 𝑉

𝑖
into two subsets: nodes

whose outgoing links inM are between nodes of𝐺
𝑖
and those

whose outgoing links leave 𝐺
𝑖
, respectively, so that |𝑉

𝑖
(M)| =

|𝑉
𝑏

𝑖
(M)| + |𝑉

𝑜

𝑖
(M)| ≤ |𝑉

𝑖
|. Note that 𝑉ru

𝑖
(M), the set of

right-unmatched nodes of 𝐺
𝑖
for M, satisfies |𝑉ru

𝑖
(M)| =

|𝑉
𝑖
| − |𝑉

𝑏

𝑖
(M)| (hence |𝑉𝑜

𝑖
(M)| ≤ |𝑉

ru
𝑖
(M)|).

If 𝑉ru
𝑖
(M) = 0, all nodes of 𝐺

𝑖
are right-matched for M

and we define𝐺
𝑖
∈ 𝑆

rm
nt (M). We can then define the following

subset of 𝑆nt:

𝑆
rm
nt = {𝐺𝑖 ∈ 𝑆nt | ∃M, 𝐺

𝑖
∈ 𝑆

rm
nt (M)} . (19)

Wewill see that the elements of 𝑆rmnt accept a perfectmatching;
hence, they may end up being inaccessible from any input
in a given MM, requiring an additional dedicated input.
Therefore, further analysis of this type of subgraphs is
required.

The following theorem analyzes the existence and simi-
larity among different MMs when focused on the elements of
𝑆
rm
nt .

Theorem 15. If 𝐺
𝑖
∈ 𝑆
𝑟𝑚

𝑛𝑡
(equivalently, 𝐺

𝑖
accepts a perfect

matching), then

(1) |𝑉
𝑖
(M)| = |𝑉

𝑏

𝑖
(M)| + |𝑉

𝑜

𝑖
(M)| = |𝑉

𝑖
| (equivalently,

|𝑉
𝑜

𝑖
(M)| = |𝑉

𝑟𝑢

𝑖
(M)|) for allM;

(2) given any M, it is possible to construct an alternative
M so that 𝑉𝑜

𝑖
(M) is any arbitrary subset of 𝑉𝑜

𝑖
(M)

(|𝑉𝑜
𝑖
(M)| taking the corresponding arbitrary value

between 0 and |𝑉𝑜
𝑖
(M)|) andM is the same asM for

links not outgoing from nodes of 𝐺
𝑖
.

(In particular, one can construct such aM so that 𝑉𝑜
𝑖
(M) =

0, meaning that 𝐺
𝑖
∈ 𝑆
𝑟𝑚

𝑛𝑡
(M)).

Proof. (1) Let us first consider the existingM such that 𝐺
𝑖
∈

𝑆
rm
nt (M). Then every node of 𝐺

𝑖
must have an input link

belonging to M, necessarily coming from another node of
𝐺
𝑖
. Therefore, |𝑉

𝑖
(M)| = |𝑉

𝑖
| so that M defines a perfect

matching in 𝐺
𝑖
; note also that |𝑉

𝑖
(M)| = |𝑉

𝑏

𝑖
(M)|, so that all

links outgoing from 𝐺
𝑖
do not belong to M (|𝑉𝑜

𝑖
(M)| = 0).

The same can be said for any otherM satisfying𝐺
𝑖
∈ 𝑆

rm
nt (M).

Let now M be an alternative MM so that 𝐺
𝑖
∉ 𝑆

rm
nt (M)

(i.e.,1 ≤ |𝑉
ru
𝑖
(M)| ≤ |𝑉

𝑖
|). We will show now that |𝑉𝑜

𝑖
(M)| =

|𝑉
ru
𝑖
(M)|.

Note that |𝑉
𝑖
(M)| = |𝑉

𝑏

𝑖
(M)| + |𝑉

𝑜

𝑖
(M)| = |𝑉

𝑖
| −

|𝑉
ru
𝑖
(M)| + |𝑉

𝑜

𝑖
(M)|. On one hand, if |𝑉𝑜

𝑖
(M)| < |𝑉

ru
𝑖
(M)|,

we would have |𝑉
𝑖
(M)| < |𝑉

𝑖
| and could define M with the

(known existing) perfect matching in 𝐺
𝑖
so that |𝑉𝑏

𝑖
(M)| =

|𝑉
𝑖
| and |𝑉𝑜

𝑖
(M)| = 0 which would allowM to preserve the

same links asM in the rest of the network; this would imply
|M| > |M| leading to a contradiction. On the other hand, if
|𝑉
𝑜

𝑖
(M)| > |𝑉

ru
𝑖
(M)|, we would have |𝑉

𝑖
(M)| > |𝑉

𝑖
| leading

also to a contradiction.
Therefore |𝑉𝑜

𝑖
(M)| = |𝑉

ru
𝑖
(M)| and |𝑉

𝑖
(M)| = |𝑉

𝑖
|.

(2) Let M be any MM; note that, from 1, |𝑉
𝑖
(M)| = |𝑉

𝑖
|.

We begin by constructingM such that |𝑉𝑜
𝑖
(M)| = 0, in two

parts. On one hand,M would contain the (known existing)
perfect matching in 𝐺

𝑖
so that |𝑉

𝑖
(M)| = |𝑉

𝑏

𝑖
(M)| = |𝑉

𝑖
|.

Since |𝑉𝑜
𝑖
(M)| = 0, this would allow completing M by

keeping the same links as M in the rest of the network
(satisfying |M| = |M|).

We can now construct M so that 𝑉𝑜
𝑖
(M) is any

arbitrary subset of𝑉𝑜
𝑖
(M). Since𝑉𝑜

𝑖
(M) ⊂ 𝑉𝑏

𝑖
(M) for each

of its nodes, we can remove the (known existing) outgoing
link in M and restore the corresponding link in M. This
again would allow completingM by keeping the same links
asM andM in the rest of the network.

Finally, note the true equivalence in the theorem state-
ment: for any 𝐺

𝑖
∈ 𝑆nt, we have that 𝐺𝑖 ∈ 𝑆

rm
nt if and only if

𝐺
𝑖
accepts a perfect match. If 𝐺

𝑖
∈ 𝑆

rm
nt (M), we have already

seen that M defines a perfect matching in 𝐺
𝑖
. Alternatively,

consider that 𝐺
𝑖
accepts a perfect match. As shown above,

given any M, either 𝐺
𝑖
∉ 𝑆

rm
nt (M) or we can construct M

such that 𝐺
𝑖
∈ 𝑆

rm
nt (M


).

We now formulate a result illustrating the existence of
MMs which can make or not, one by one, the elements of 𝑆nt
to be right-unmatched.

Corollary 16. Let 𝐺
1
, 𝐺
2
∈ 𝑆
𝑟𝑚

𝑛𝑡
(M) for someM.

(1) If there exist M
1
and M

2
satisfying 𝑆

𝑟𝑢

𝑛𝑡
(M
1
) ⊇

𝑆
𝑟𝑢

𝑛𝑡
(M) ∪ {𝐺

1
} and 𝑆𝑟𝑢

𝑛𝑡
(M
2
) ⊇ 𝑆

𝑟𝑢

𝑛𝑡
(M) ∪ {𝐺

2
}, then

there may not existM
3
satisfying 𝑆𝑟𝑢

𝑛𝑡
(M
3
) ⊇ 𝑆
𝑟𝑢

𝑛𝑡
(M)∪

{𝐺
1
, 𝐺
2
}.

(2) The other way around, if there exists M
3
satisfying

𝑆
𝑟𝑢

𝑛𝑡
(M
3
) ⊇ 𝑆

𝑟𝑢

𝑛𝑡
(M) ∪ {𝐺

1
, 𝐺
2
}, then there must exist

M
1
andM

2
satisfying 𝑆𝑟𝑢

𝑛𝑡
(M
1
) = 𝑆
𝑟𝑢

𝑛𝑡
(M
3
) \ {𝐺
2
} and

𝑆
𝑟𝑢

𝑛𝑡
(M
2
) = 𝑆
𝑟𝑢

𝑛𝑡
(M
3
) \ {𝐺
1
}.

Proof. (1) The first part of the corollary is obvious due to
the interdependence of the outgoing links in the elements of
𝑆
rm
nt (M). For instance, let us consider

𝐴 =

[
[
[
[
[

[

0 1 0 0 0

1 0 1 0 0

0 0 0 0 0

0 0 1 0 1

0 0 0 1 0

]
]
]
]
]

]

(20)

whose graphical representation can be found in Figure 5.
There existsM such that 𝐺

1
is the subgraph gathering nodes
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1 2

3

4 5

G1 G2

Figure 5: 𝐺
1
and 𝐺

2
are interdependent because they cannot both

belong to 𝑆runt (M) for anyM.

{1, 2}, and𝐺
2
gathers {4, 5}.There existM

1
andM

2
satisfying

𝑆
ru
nt (M1) = 𝑆

ru
nt (M) ∪ {𝐺

1
} and 𝑆runt (M2) = 𝑆

ru
nt (M) ∪ {𝐺

2
}, but

noM
3
satisfying 𝑆runt (M3) = 𝑆

ru
nt (M) ∪ {𝐺

1
, 𝐺
2
}.

(2) Given M
3
, such that 𝑆runt (M3) ⊇ 𝑆

ru
nt (M) ∪ {𝐺

1
, 𝐺
2
},

then, by Theorem 15, we can construct a new MM (let us call
it M
1
) such that 𝐺

2
∈ 𝑆

rm
nt (M1), M1 being the same as M

3

for links not outgoing fromnodes of𝐺
2
(this includes all links

involving nodes of𝐺
1
, since there cannot be links from nodes

of 𝐺
2
to nodes of 𝐺

1
). Therefore 𝑆runt (M1) = 𝑆

ru
nt (M3) \ {𝐺2}.

The same reasoning can be applied to justify the existence
ofM
2
.

We now consider the optimality with respect to 𝑛
𝑑𝑐
: aMM

M∗ is optimal if 𝑛
𝑑𝑐
(M∗) ≤ 𝑛

𝑑𝑐
(M) for any other M. The

following result provides information about the existence of
optimal solutions in a standard form.

Corollary 17. Let 𝐺
𝑖
∈ 𝑆
𝑟𝑚

𝑛𝑡
; then there exists an optimal M∗

such that |𝑉𝑟𝑢
𝑖
(M∗)| = |𝑉𝑜

𝑖
(M∗)| ≤ 1.

Proof. Let us consider M∗ being optimal and |𝑉ru
𝑖
(M∗)| =

|𝑉
𝑜

𝑖
(M∗)| > 1. By Theorem 15, we can construct a new MM

(let us call it M∗) such that |𝑉ru
𝑖
(M∗)| = |𝑉

𝑜

𝑖
(M∗)| =

1, M∗ being the same as M∗ for links not outgoing from
nodes of 𝐺

𝑖
. Note that neitherM∗ norM∗ require a wiring

on 𝐺
𝑖
, and the required wirings in the rest of the network

remain unchanged. Hence, invoking (10), we have 𝑛
𝑑𝑐
(M∗) =

𝑛
𝑑𝑐
(M∗).

Remark 18. Let 𝐺
𝑖
∈ 𝑆

rm
nt and let M∗ be optimal with

|𝑉
ru
𝑖
(M∗)| = |𝑉𝑜

𝑖
(M∗)| ≥ 1. LetM be such that |𝑉ru

𝑖
(M)| =

|𝑉
𝑜

𝑖
(M)| = 0, M being the same as M∗ for links not

outgoing from nodes of 𝐺
𝑖
. Then M is not optimal since a

new wiring is required and 𝑛
𝑑𝑐
(M) = 𝑛

𝑑𝑐
(M∗) + 1.

Nevertheless, there may exist another optimal M∗ such
that |𝑉ru

𝑖
(M∗)| = |𝑉

𝑜

𝑖
(M∗)| = 0, but M∗ should be

necessarily different from M∗ for links not outgoing from
nodes of 𝐺

𝑖
.

5.3. Compatibility. We are now ready to state the final results
whichwill determine the steps of the algorithms for searching
optimal solutionsM∗.

Definition 19. Let 𝐺
𝑖
∈ 𝑆

rm
nt . We say that 𝐺

𝑖
is top-assignable

if and only if there exists a MMM such that |𝑉𝑜
𝑖
(M)| = 1.

Note that we only need to consider top-assignable ele-
ments of 𝐺

𝑖
∈ 𝑆

rm
nt in the search for an optimumM∗.

Definition 20. Let𝐺
1
, . . . , 𝐺

𝑘
∈ 𝑆

rm
nt be top-assignable. We say

that {𝐺
1
, . . . , 𝐺

𝑘
} are compatible if and only if there exists a

MMM such that 𝐺
1
, . . . , 𝐺

𝑘
∈ 𝑆

ru
nt (M).

By Theorem 15 it is equivalent to guarantee that there
exists a M such that |𝑉𝑜

𝑖
(M)| = 1, 𝑖 = 1, . . . , 𝑘. Note that

all unitary sets of the form {𝐺
𝑖
} with 𝐺

𝑖
assignable are also

compatible; the definition provides new insights when being
particularized for pairs {𝐺

1
, 𝐺
2
} (i.e., pairwise compatibility

implicitly addressed in Corollary 16).
We say that {𝐺

1
, . . . , 𝐺

𝑘
} are incompatible if they are not

compatible.
The following lemma proves a fundamental property of

compatibility and incompatibility.

Lemma 21. Let 𝐼 = {1, . . . , |𝑆
𝑟𝑚

𝑛𝑡
|} so that 𝑆𝑟𝑚

𝑛𝑡
= {𝐺
𝑖
: 𝑖 ∈

𝐼}. Let 𝐼
1
, 𝐼
2
be two different nonempty subsets of 𝐼, such that

G
1
= {𝐺
𝑖
: 𝑖 ∈ 𝐼

1
} and G

2
= {𝐺
𝑖
: 𝑖 ∈ 𝐼

2
} are subsets of 𝑆𝑟𝑚

𝑛𝑡

so that all elements of G
1
are compatible among them and all

elements ofG
2
are also compatible among them. Let us consider

|𝐼
1
| = 𝑘 ≤ 𝑙 = |𝐼

2
| without loss of generality. Then, there exists

G
3
= {𝐺
𝑖
: 𝑖 ∈ 𝐼

3
} compatible such that |𝐼

2
| ≤ |𝐼

3
| and 𝐼

1
⊆

𝐼
3
⊆ 𝐼
1
∪ 𝐼
2
(equivalently,G

1
⊆ G
3
⊆ G
1
∪G
2
).

Proof. From the hypotheses, there must exist the following
MMs:

(i) M such that |𝑉𝑜
𝑖
(M)| = 0, 𝑖 ∈ 𝐼

1
∪ 𝐼
2
(sinceG

1
,G
1
⊂

𝑆
rm
nt );

(ii) M
1
such that |𝑉𝑜

𝑖
(M
1
)| = 1, 𝑖 ∈ 𝐼

1
(since G

1
is

compatible);
(iii) M

2
such that |𝑉𝑜

𝑖
(M
2
)| = 1, 𝑖 ∈ 𝐼

2
(since G

2
is

compatible).

Let us consider the subgraph 𝐺
1,2

= 𝐺 − ∪
𝑖∈𝐼1∪𝐼2

𝐺
𝑖
,

where all nodes of 𝐺
𝑖
∈ M

1
∪ M
2
are removed from 𝐺

together with the links outgoing from them. Note that M
restricted to each𝐺

𝑖
, 𝑖 = 𝐼

1
∪𝐼
2
defines a perfect submatching

M
𝐺𝑖

on it. Hence, M restricted to 𝐺
1,2

defines a maximum
submatching M

𝐺12
on it; otherwise, a matching larger than

M could be constructed on the whole graph by adding to the
new larger submatching the subgraphs 𝐺

𝑖
, 𝑖 ∈ 𝐼

1
∪ 𝐼
2
with

their corresponding perfect submatchings.
Let us consider nowM

1,𝐺1,2
andM

2,𝐺1,2
, the correspond-

ing submatchings of M
1
and M

2
on 𝐺
1,2
, respectively. By

Theorem 15, all these submatchings are maximum in 𝐺
1,2

having all size |M| −∑
𝑖∈𝐼1∪𝐼2

|𝑉
𝑖
(M)|. By constructionM

1,𝐺1,2

has 𝑘 right-unmatched nodes (let us call them V
𝑖
, 𝑖 ∈ 𝐼

1
) each

one being the destination of the corresponding link outgoing
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𝐺
𝑖
∈ G
1
; by the same way M

2,𝐺1,2
has 𝑙 right-unmatched

nodes (let us call them V
𝑖
, 𝑖 ∈ 𝐼

2
) destination of the links

outgoing 𝐺
𝑖
∈ G
2
in M

2
. Let 𝐼

12
= 𝐼
1
− 𝐼
2
; then for all

V
𝑖
𝑖 ∈ 𝐼
12
, we have V

𝑖
∈ 𝑉

ru
(M
1
) ∩ 𝑉

rm
(M
2
), 𝑖 ∈ 𝐼

12
, and

we can apply Lemma 14 to 𝐼
12

obtaining 𝐼
12

(which satisfies
𝐼


12
∩𝐼
1
= 0) andM

3
such that𝑉ru

(M
3
) = 𝑉

ru
(M
2
)\{V
𝑖
: 𝑖 ∈

𝐼


12
} ⊔ {V
𝑖
: 𝑖 ∈ 𝐼

12
}. Then, we have that, for 𝐼

3
= 𝐼
2
\ 𝐼


12
∪ 𝐼
12
,

𝐼
1
⊂ 𝐼
3
and |𝐼

3
| ≥ |𝐼

2
|. Completing such submatching with

the corresponding submatchings, M
1,𝐺𝑖

, 𝑖 ∈ 𝐼
1
, M
2,𝐺𝑖

, 𝑖 ∈

𝐼
3
− 𝐼
1
, and M

𝐺𝑖
, 𝑖 ∈ 𝐼



12
, we would complete the required

MM to end the proof.

The following corollaries prove some relationships when
the sets are modified element by element; they also show that
pairwise incompatibility, besides being symmetric, is also a
transitive property.

Corollary 22. Let 𝐺
1
, . . . , 𝐺

𝑘
, 𝐺
𝑘+1

∈ 𝑆
𝑟𝑚

𝑛𝑡
be top-assignable,

so that {𝐺
1
, . . . , 𝐺

𝑘
} are compatible and {𝐺

1
, . . . , 𝐺

𝑘
,𝐺
𝑘+1

} are
incompatible. Then, there exists 1 ≤ 𝑗 ≤ 𝑘 such that
{𝐺
1
, . . . , 𝐺

𝑗−1
, 𝐺
𝑗+1
, . . . , 𝐺

𝑘+1
} are compatible.

Proof. Calling G
1
= {𝐺
1
, . . . , 𝐺

𝑘
} and G

2
= {𝐺
𝑘+1

} we only
need to apply Lemma 21.

Corollary 23. Let 𝐺
1
, 𝐺
2
, 𝐺
3
∈ 𝑆
𝑟𝑚

𝑛𝑡
be top-assignable, so that

𝐺
3
is incompatible with both 𝐺

1
and 𝐺

2
, respectively. Then 𝐺

1

and 𝐺
2
are incompatible.

Proof. Keeping the assumptions, we will consider 𝐺
1
and 𝐺

2

to be compatible; then, applying Lemma 21, we know that
either {𝐺

1
, 𝐺
3
} or {𝐺

1
, 𝐺
3
} must be compatible, which leads

to a contradiction.

Corollary 24. Let 𝐺
1
, 𝐺
2

∈ 𝑆
𝑟𝑚

𝑛𝑡
be top-assignable and

incompatible. If 𝐺
1
is compatible with 𝐺

3
, then 𝐺

2
is also

compatible with 𝐺
3
.

Proof. If we consider 𝐺
2
and 𝐺

3
incompatible, the first

assumption and the transitivity property would imply 𝐺
1

and 𝐺
3
being incompatible, which contradicts the second

assumption.

Finally, Lemma 21 allows for a useful characterization of
the set of possible optimal matchings.

Theorem 25. Let G = {𝐺
1
, . . . , 𝐺

𝑘
} ⊂ 𝑆

𝑟𝑚

𝑛𝑡
be top-assignable

and compatible. Then ∃M∗ such that |𝑉𝑟𝑢
𝑖
(M∗)| = 1, for 𝑖 =

1, . . . , 𝑘 (i.e.,G ⊂ 𝑆
𝑟𝑢

𝑛𝑡
(M∗)).

Proof. Let us consider ∃M∗ optimal, so that 𝑆runt (M
∗
) =

{𝐺


1
, . . . , 𝐺



𝑙
} = G, where obviously 𝑘 ≤ 𝑙 (otherwiseM such

that G = {𝐺
1
, . . . , 𝐺

𝑘
} ⊂ 𝑆

ru
nt (M) would provide a larger set

of right-unmatched components contradicting the optimality
of M∗). Then applying Lemma 21, we can construct a new
compatible set G = {𝐺



1
, 𝐺


2
, . . . , 𝐺



𝑙
} satisfying G ⊂ G

and |G| ≥ |G|. Since M is optimum, then |G| =

|G| and MM M is also optimum, satisfying the theorem
statement.

6. A New Algorithm for Computing 𝑛
𝑑𝑐

The proposed algorithm for locating an optimal M∗ is as
follows.

(1) Determine 𝑆nt.
(2) Determine all elements of 𝑆nt accepting a perfect

matching; for each 𝐺
𝑖
∈ 𝑆nt, we remove the links

outgoing 𝐺
𝑖
and compute a maximum submatching

in 𝐺
𝑖
. If such matching is perfect, then 𝐺

𝑖
accepts a

perfect matching.
Let 𝑆rmnt = {𝐺

1
, . . . , 𝐺

𝑘
} ⊂ 𝑆nt be the elements of 𝑆nt

accepting a perfect matching. We call 𝐺 = 𝐺 − 𝐺
1
−

⋅ ⋅ ⋅ − 𝐺
𝑘
the subgraph, where 𝐺

1
, . . . , 𝐺

𝑘
are removed

from 𝐺 together with the links outgoing from them.
(3) For all elements of 𝑆rmnt , determine the set of top-

assignable elements 𝑆rm/tant = {𝐺
1
, . . . , 𝐺

𝑚
}; for doing

so, we apply procedure P1.
If a given 𝐺

𝑖
happens to be assignable, then a

maximum submatching M
𝑖,𝐺
 is already available

which might also give additional information about
assignability of other 𝐺

𝑗
’s as well as compatibility

among them.
(4) Construct 𝑆 = {𝐺

1
, . . . , 𝐺

𝑙
} as the maximum set of

assignable and compatible elements provided by the
previous step (the index being reordered without loss
of generality). Note that if some assignable element
has been found, 𝑆 will contain at least one element.
If no 𝐺

𝑖
is assignable, then 𝑆 = 0, implying that we

are done since all elements of 𝑆rmnt require a dedicated
input.

(5) For 𝑖 = 𝑙+1, . . . , 𝑚, check compatibility of 𝑆 = 𝑆∪{𝐺
𝑖
}

(applying procedure P2). If 𝑆 is compatible, then 𝑆 =
𝑆
.

(6) 𝛼
𝑐
= |𝑆nt| − |𝑆

rm
nt | + |𝑆|.

(7) By (8) and keeping in mind |𝑆nt| = 𝛽
𝑐
, 𝑛
𝑑𝑐
is directly

obtained as

𝑛
𝑑𝑐
= 𝑛
𝑐
+
𝑆nt

 − 𝛼𝑐. (21)

The basic procedures are as follows.

(P1) Given 𝐺
𝑖
∈ 𝑆

rm
nt , this procedure determines if it is

top-assignable. We first compute a maximum sub-
matching in 𝐺, calledM

𝐺
 ; |M
𝐺
 | is to be employed

as a reference of the attainable MM size (note that
|𝑉

ru
𝐺
 (M𝐺)| = |𝑉

ru
𝐺
(M
𝐺
)|, where M

𝐺
refers to the

whole network, and it is obtained by adding to M
𝐺


the perfect submatchings corresponding to each 𝐺
𝑖
).

Then, for all𝐺
𝑖
, we check the existence of a maximum

submatching in𝐺 having one right-unmatched node
belonging to the set of destination nodes of links
outgoing 𝐺

𝑖
(i.e., for each destination node, the links

entering it are removed and the existence of a MM in
such new graph is checked. Note that onemay need to
check for all the destinationnodes associatedwith𝐺

𝑖
).

If such maximum submatching is found, we define 𝐺
𝑖
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Figure 6: The result of applying the proposed algorithm for minimizing the number of dedicated inputs.

to be assignable. If𝐺
𝑖
is top-assignable, this procedure

will provide at least onemaximumsubmatchingM
𝑖,𝐺


associated with one of such destination nodes.
(P2) Given 𝑆 and 𝐺

𝑙+1
∈ 𝑆nt top-assignable, determine if

they are compatible. For doing so, we only need to
consider the existence of a maximum submatching in
𝐺
 which has one right-unmatched node belonging

to each set of destination nodes of links outgoing
each 𝐺

𝑖
, 𝑖 = 1, . . . , 𝑙 and one right-unmatched node

(different from the previous one) belonging to the
set of destination nodes of links outgoing 𝐺

𝑙+1
. Note

that one may need to check for all the possible
pairings of different destination nodes associatedwith
𝑆 and 𝐺

𝑙+1
, respectively. If 𝑆 and 𝐺

𝑙+1
are compatible,

this procedure will provide at least one maximum
submatchingM

1,2,...,𝑙+1
associated with a pair of such

nodes.
The search of such maximum submatchingM

1,2,...,𝑙+1

can be (sometimes) simplified by using available
maximum submatchings M

1,2,...,𝑙
and M

𝐺𝑙+1
from P1

and following the procedure proposed in Lemma 13.

6.1. Suboptimal Solutions. Finding the control configuration
with the minimum number of dedicated inputs might be
computationally expensive for large networks; hence the
consideration of a suboptimal solution can be useful. Con-
sidering the expression proposed in [10],

𝑛
𝑑𝑐
= 𝑛
𝑐
+
𝑆nt

 − 𝛼𝑐, (22)

a suboptimal solution could be proposed, requiring 𝑛
𝑐
+

|𝑆nt| dedicated inputs. This upper bound can be computed
by determining the nontop linked SCCs of 𝐺(𝑉, 𝐸) and
performing a MM search on the network. Since the MM
search dominates the complexity of the algorithm, computing
such suboptimal solution takes 𝑂(√𝑉𝐸) time.

Analogously, given the definition of 𝛼
𝑐
in step (10) of the

algorithm proposed on Section 6, the minimum number of
required inputs can also be expressed as

𝑛
𝑑𝑐
= 𝑛
𝑐
+
𝑆

rm
nt
 − |𝑆| . (23)

Note that a new smaller upper bound to 𝑛
𝑑𝑐

can also
be derived from this expression by just computing 𝑛

𝑐
and

|𝑆
rm
nt |. While the latter is already available at step (2) of the

algorithm, 𝑛
𝑐
can be obtained by just performing a MM

search on 𝐺.
This suboptimal solution computes the MMs of sub-

graphs𝐺 and 𝑆rmnt = {𝐺1, . . . , 𝐺𝑘} ⊂ 𝑆nt that define a partition
on 𝐺(𝑉, 𝐸). Since the time complexity of a MM search is
superlinear, finding a MM for each of the subgraphs is faster
than computing a MM of the whole network. This means
that this latter upper bound is not only closer to the optimal
solution but also less computationally expensive.

7. A Comparative Example

The following example illustrates the behavior of the new
proposed algorithm. If we consider the network in Figure 6,
the application of a simple MM-based algorithm plus direct
wiring keeping track of accessibility (see [15] for details)
may provide (depending on the obtained MM) a different
number of required dedicated input signals, ranging from
four (corresponding to a solution with two unmatched
nodes and only two wirings, in the most favourable case)
to eight (two unmatched nodes plus six wirings, in the
worst case). If we combine the MM-based algorithm with
another one which also determines the SCCs for an ordered
accessibility track (see [16]), we may obtain (again depending
on the obtained MM) solutions ranging from four dedicated
inputs (corresponding to an optimal solution) to six (two
unmatched nodes plus four wirings, in the worst case).

The new proposed algorithm always leads to an optimal
solution by first determining 𝑆rmnt = {𝐺

1
, 𝐺
2
, 𝐺
3
, 𝐺
4
}; then,

applying procedure P1, it finds that 𝐺
1
is not assignable

whereas𝐺
2
, 𝐺
3
, 𝐺
4
are assignable. Finally, applying procedure

P2, it determines that 𝐺
2
, 𝐺
3
, 𝐺
4
are pairwise compatible but

G = {𝐺
2
, 𝐺
3
, 𝐺
4
} is not compatible. These results lead to

selecting (among others) the optimal MM M∗ shown in the
figure such that G

1
= {𝐺
2
, 𝐺
3
} ⊂ 𝑆

ru
nt (M
∗
). (Note that nodes

3 and 4 are controlled since they constitute a cycle which is
accessible from either 𝑢

1
or 𝑢
2
.)
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8. Concluding Remarks

Structural controllability and observability of complex
directed networks have been analyzed by combining
algebraic and graph theoretic tools. Two different design
problems have been addressed and the extent of some
controller/observer duality results has been demonstrated.
In addition, some results concerning the structure of optimal
solutions and their relationship with respect to MM have
also been proved; these results have led to new algorithms
to efficiently compute optimal and suboptimal solutions for
monitoring large scale real networks.
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Equipping multijoint manipulators on a mobile robot is a typical redesign scheme to make the latter be able to actively influence
the surroundings and has been extensively used for many ground robots, underwater robots, and space robotic systems. However,
the rotor-flying robot (RFR) is difficult to be made such redesign. This is mainly because the motion of the manipulator will bring
heavy coupling between itself and the RFR system, which makes the system model highly complicated and the controller design
difficult.Thus, in this paper, the modeling, analysis, and control of the combined system, called rotor-flying multijoint manipulator
(RF-MJM), are conducted. Firstly, the detailed dynamics model is constructed and analyzed. Subsequently, a full-state feedback
linear quadratic regulator (LQR) controller is designed through obtaining linearized model near steady state. Finally, simulations
are conducted and the results are analyzed to show the basic control performance.

1. Introduction

Rotor-flying robot (RFR) has been researched for several
decades and achieved great development. To date, RFRs have
shown their priority inmany applications, such as search, res-
cue, and surveillance [1–6]. However, these applications are
often passive. That means the RFR system can’t manipulate
the interested objects by a direct physical interaction.

Most recently, this problem has attained more and more
attentions from many researches. For example, some
researchers suggest to equip a gripper on the RFR system
so that the RFR system can grasp as shown Figure 1 [7–9].
But it still has some disadvantages including that (1) the
manipulation can only be implemented through controlling
the attitude of the RFR system. However, the precise control
of the RFR system is difficult due to its complicated dynamics,
and the precise manipulation is impossible. (2) With this
structure, in order to manipulate an object, the RFR must
approach it. This, however, may both bring the so-called
ground effect and “blow” the object, which makes the precise
control much more difficult.

In this paper, a new system structure as shown in Figure 2
is proposed. The system is composed of an RFR system and

a multijoint manipulator and thus called rotor-flying mul-
tijoint manipulator (RF-MJM). Compared to the structure
in Figure 1, the multiple-joint manipulator can be used to
regulate position and attitude of the end-gripper. This is very
useful to compensate the control imprecision of the RFR
system and makes precise manipulation much easier.

However, it is obvious that the system shown in Figure 2
is very difficult to be controlled. This is mainly because the
RFR system itself is very sensitive to the external disturbance
(force/moment), especially for the time varying disturbance,
for example, from amovingmanipulator as the new proposed
RF-MJM system.Thus, it is very important and necessary for
us to study the detailed model that can describe the coupling
between the RFR and the manipulator. What is more, to
construct a full-state high fidelity dynamics model is also a
benefit for optimizing the design parameters, for example,
the mass, the joint number, and the configuration of the
manipulator, and testing the designed control algorithms.

Thus in this paper, the dynamics model of the RF-
MJM system is constructed and analyzed to show its basic
performance.Moreover, the linear LQR controller is designed
to test the basic closed loop performance of it. The main
contributions of this paper are as the following three aspects:
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(a) (b)

Figure 1: RFR system designed by Yale University (a) and DLR (b).

Figure 2: Sketch of the RF-MJM system.

(1) a detailed full-state high fidelity nonlinear dynamics
model of the RF-MJM system is constructed through using
Euler-Lagrangemethod; (2) the dynamics couplings between
the RFR and the manipulator are analyzed in detail, which
is good for the optimal design of the system configuration;
(3) LQR controller is designed based on the linearized system
model and simulations are conducted to show the basic
control performance of the new proposed system.

2. Dynamics Model of RF-MJM

The dynamics model of the RF-MJM is composed of three
parts as shown in Figure 3: the body dynamics model, the
mid-dynamics model, and the actuator model. The body
dynamics model describes the relation between the motion
state and the external force/torque exerting on the body
of the robot; the mid-dynamics model represents how the
force/torque is produced, that is, the aerodynamics of the
RFR, and the torque from the manipulator joint motor, while
the actuator model depicts the dynamical characteristic of
the actuator, for example, the motors of the manipulator and
the steering engine of the RFR. For the RF-MJM system,

Body dynamics model

Actuator model

Mid-dynamics model

Force/torque exerting 
on the robot

State of actuator

Motion state of 
robot

System output

System input

Figure 3: Model structure of the RF-MJM system.

the coupling between the RFR and the manipulator will
mainly influence the body dynamics model, which, then, will
be discussed in this paper.

ARF-MJM system is actually amultilink system shown as
in Figure 4,where the cube denotes theRFR and the ellipsoids
denote the link of themanipulator; Σ

0
, Σ
𝐼
, Σ
𝐸
, and Σ

𝑖
are RFR

body-fixed reference frame, earth-fixed inertial frame, end-
gripper frame, and the frame of the 𝑖th joint of manipulator;
𝐽
𝑖
(𝑖 = 1, 2, . . . , 𝑛) denote the joint of the manipulator; 𝑝

𝑖

denotes its position vector in the frame of Σ
𝐼
; 𝐶

0
and 𝐶

𝑖
are

the position vector of the center of mass (COM) of the link
RFR and the link 𝑖; 𝑑

0
and 𝑑

𝑖
are the position vectors of 𝐶

0

and 𝐶
𝑖
; 𝑎
𝑖
is the vector from 𝐽

𝑖
to 𝐶

𝑖
; 𝑏
0
is the vector from

COM of the RFR to the first joint; 𝑏
𝑖
is vector from 𝐶

𝑖
to 𝐽

𝑖+1
;

𝑛 is the number of the manipulator’s link.

2.1. Kinematics Model. In this paper, we suppose that both
the RFR system and the manipulator are rigid. Thus, the
following geometric relations are satisfied:

𝑑
𝑖
= 𝑑

0
+ 𝑏

0
+

𝑖−1

∑

𝑘=1

(𝑎
𝑘
+ 𝑏

𝑘
) + 𝑎

𝑖
. (1)

Differentiate it with respect to time and we have

V
𝑖
= ̇𝑑

𝑖
= V

0
+ 𝜔

0
× (𝑑

𝑖
− 𝑑

0
) +

𝑖

∑

𝑘=1

{
̇

𝑘
𝑘
× (𝑑

𝑖
− 𝑝

𝑘
) ̇𝜃
𝑘
} ,

(2)
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Figure 4: System structure of the RF-MJM system.

where V
0
and V

𝑖
are the linear velocity of the COM of the RFR

and the link 𝑖, respectively; 𝜔
0
is the angular velocity of the

RFR in the frame of Σ
𝐼
; 𝜃
𝑘
is the angular position vector of

the 𝑘th joint; 𝑘
𝑘
denotes the unit vector of the axis 𝑍

𝑖
of the

𝑖th joint frame; 𝑑
𝑖
, 𝑝

𝑘
represent the position vectors of the

COM of the link 𝑖 and the 𝑘th joint. The angular velocity of
the 𝑖th joint can be denoted as

𝜔
𝑖
= 𝜔

0
+

𝑖

∑

𝑘=1

𝑘
𝑘
̇𝜃
𝑘
. (3)

Combine (2) and (3), and the kinematic model of the RF-
MJM system is

[
V
𝑖

𝜔
𝑖

] = 𝐽
𝑏𝑖
[
V
0

𝜔
0

] + 𝐽
𝑚𝑖
Θ̇, (4)

where 𝐽
𝑏𝑖
is the Jacobian matrix of the RFR system and has

the following form:

𝐽
𝑏𝑖
= [

𝐸 −𝑑
0𝑖

0 𝐸
] + [

𝐽
𝑏V𝑖
𝐽
𝑏𝜔𝑖

] . (5)

In (5), 𝐸 is the unity matrix with proper dimension:

𝑑
0𝑖
= 𝑑

𝑖
− 𝑑

0
= [𝑑0𝑖,𝑥 𝑑

0𝑖,𝑦
𝑑
0𝑖,𝑧]

𝑇 (6)

and 𝑑
0𝑖
is the skew-symmetric matrix of the vector 𝑑

0𝑖
; that

is,

𝑑
0𝑖
= [

[

0 −𝑑
0𝑖,𝑧

𝑑
0𝑖,𝑦

𝑑
0𝑖,𝑧

0 −𝑑
0𝑖,𝑥

−𝑑
0𝑖,𝑦

𝑑
0𝑖,𝑥

0

]

]

. (7)

𝐽
𝑚𝑖
in (4) is the Jacobianmatrix of themanipulator system

defined as

𝐽
𝑚𝑖
= [

𝑘
1
× (𝑑

𝑖
− 𝑝

1
) ⋅ ⋅ ⋅ 𝑘

𝑖
× (𝑑

𝑖
− 𝑝

𝑖
)

𝑘
1

⋅ ⋅ ⋅ 𝑘
𝑖

] = [
𝐽
𝑚V𝑖
𝐽
𝑚𝜔𝑖

] . (8)

Also, we can transform the linear velocity of the RFR V
0

into the velocity in the RFR body frame; that is,

V
0
= [

[

𝑐𝜃𝑐𝜑 𝑠𝜙𝑠𝜃𝑐𝜑 − 𝑐𝜙𝑠𝜑 𝑐𝜙𝑠𝜃𝑐𝜑 + 𝑠𝜙𝑠𝜑

𝑐𝜃𝑠𝜑 𝑐𝜙𝑐𝜑 + 𝑠𝜃𝑠𝜙𝑠𝜑 𝑐𝜙𝑠𝜃𝑠𝜑 − 𝑠𝜙𝑐𝜑

−𝑠𝜃 𝑠𝜙𝑐𝜃 𝑐𝜙𝑐𝜃

]

]

[

[

𝑢

V
𝑤

]

]

, (9)
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where 𝑐 and 𝑠 mean trigonometric function cos and sin,
respectively;Φ = [𝜙, 𝜃, 𝜓]𝑇 represents the attitude of theRFR;
[𝑢, V, 𝑤] is the linear velocity of the RFR in the RFR body fixed
reference frame.

Similarly, the relation between the angular velocity in the
frame of Σ

𝐼
and that in the body frame is as follows:

𝜔
0
=

[
[
[
[

[

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃

0 cos𝜙 − sin𝜙

0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

]
]
]
]

]

[
[
[
[

[

𝑝

𝑞

𝑟

]
]
]
]

]

, (10)

where 𝑝, 𝑞, and 𝑟 are the components of the angular velocity
along the axes of the RFR body fixed reference frame.

2.2. Dynamics Model. In this section, the dynamics model of
the RF-MJM system will be deduced using Euler-Lagrange
method.

2.2.1. Kinetic Energy. Firstly, the kinetic energy of the system
can be denoted as

𝐸
𝑘
=
1

2

𝑛

∑

𝑖=1

(𝜔
𝑇

𝑖
𝐼
𝑖
𝜔
𝑖
+ 𝑚

𝑖
V𝑇
𝑖
V
𝑖
) , (11)

where𝑚
𝑖
and 𝐼

𝑖
are the mass and the inertia tensor of the 𝑖th

part[10].
Substitute (2) and (3) into (11), we have

𝐸
𝑘
=
1

2

[
[

[

V0

𝜔0

Θ̇

]
]

]

𝑇

[
[
[

[

𝜛𝐸 𝜛𝑑
𝑇

0𝑔
𝐽𝑇𝜔

𝜛𝑑0𝑔 𝐻𝜔 𝐻𝜔𝜙

𝐽
𝑇

𝑇𝜔
𝐻
𝑇

𝜔𝜙
𝐻𝑚

]
]
]

]

[
[

[

V0

𝜔0

Θ̇

]
]

]

=
1

2

[
[

[

V0

𝜔0

Θ̇

]
]

]

𝑇

𝐻
[
[

[

V0

𝜔0

Θ̇

]
]

]

,

(12)

where 𝐻 is called the inertia matrix of the RF-MJM system
with

𝐻
𝑚
=

𝑛

∑

𝑖=1

(𝐽
𝑇

𝑅𝑖
𝐼𝐽
𝑅𝑖
+ 𝑚

𝑖
𝐽
𝑇

𝑇𝑖
𝐽
𝑇𝑖
)

𝐽
𝑇𝜔
=

𝑛

∑

𝑖=1

(𝑚
𝑖
𝐽
𝑇𝑖
)

𝐻
𝜔
=

𝑛

∑

𝑖=1

(𝐼
𝑖
+ 𝑚

𝑖
𝑑
𝑇

0𝑖
𝑑
0𝑖
) + 𝐼

0

𝐻
𝜔𝜙
=

𝑛

∑

𝑖=1

(𝐼
𝑖
𝐽
𝑅𝑖
+ 𝑚

𝑖
𝑑
𝑇

0𝑖
𝐽
𝑇𝑖
)

𝐽
𝑅𝑖
= [𝑘1 𝑘2 ⋅ ⋅ ⋅ 𝑘𝑖 0 ⋅ ⋅ ⋅ 0]

𝐽
𝑇𝑖

= [𝑘1×(𝑑𝑖−𝑝1) 𝑘2× (𝑑𝑖−𝑝2) ⋅ ⋅ ⋅ 𝑘𝑖 × (𝑑𝑖− 𝑝𝑖) 0 ⋅ ⋅ ⋅ 0] ,

𝑑
𝑔
=
∑
𝑛

1=0
𝑚
𝑖
𝑑
𝑖

∑
𝑛

1=0
𝑚
𝑖

.

(13)

2.2.2. Potential Energy. In this part, the potential energy due
to the gravity will be deduced. Firstly, based on Figure 2, (1)
can be rewritten as

𝑑
𝑖
= 𝑑

0
+

𝑖

∑

𝑘=1

(
𝐼
𝐴
𝑘−1
𝐶
𝑘−1,𝑘

−
𝐼
𝐴
𝑘
𝐶
𝑘,𝑘
) , (14)

where 𝐼
𝐴
0
and 𝐼

𝐴
𝑘
denote the coordinate transformation

matrix from the frame Σ
0
and the frame Σ

𝑘
to the frame

Σ
𝐼
, respectively; 𝐶

𝑘,𝑘
is the position vector from joint 𝑖 to

the COM of the 𝑖th partdenoted in the 𝑖th joint coordinate
system.

With (14), the potential energy due to gravity of the RF-
MJM system can be easily obtained as follows:

𝐸
𝑝
= −

𝑛

∑

𝑖=0

𝑚
𝑖
𝐺
𝑇
𝑑
𝑖

=

𝑛

∑

𝑖=0

𝑚
𝑖
𝐺
𝑇
(𝑑

0
+

𝑖−1

∑

𝑘=1

(
𝐼
𝐴
𝑘−1
𝐶
𝑘−1,𝑘

−
𝐼
𝐴
𝑘−1
𝐶
𝑘,𝑘
)) ,

(15)

where

𝐺 = [

[

0

0

𝑔

]

]

(16)

and 𝑔 is the acceleration due to gravity.

2.2.3. Dynamics Model. The Euler-Lagrangian equation of
the RF-MJM system is

𝐿 = 𝐸
𝑘
− 𝐸

𝑝
. (17)

From (12), the kinetic energy can be rewritten as

𝐸
𝑘
=
1

2
[𝜛V𝑇

0
𝐸V
0
+ 𝜛𝜔

𝑇

0
𝑑
0𝑔
V
0
+ Θ̇

𝑇
𝐽
𝑇

𝑇𝜔
V
0

+ 𝜛V𝑇
0
𝑑
𝑇

0𝑔
𝜔
0
+ 𝜔

𝑇

0
𝐻
𝜔
𝜔
0
+ Θ̇

𝑇
𝐻
𝑇

𝜔𝜙
𝜔
0

+ V𝑇
0
𝐽
𝑇𝜔
Θ̇ + 𝜔

𝑇

0
𝐻
𝜔𝜙
Θ̇ + Θ̇

𝑇
𝐻
𝑚
Θ̇] .

(18)
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Thus we have

𝜕𝐸
𝑘

𝜕 ̇𝑞
=

[
[
[
[
[
[
[

[

𝜕𝐸
𝑘

𝜕V
0

𝜕𝐸
𝑘

𝜕𝜔
0

𝜕𝐸
𝑘

𝜕Θ̇

]
]
]
]
]
]
]

]

=
[
[
[

[

𝜛𝐸V
0
+ 𝜛𝑑

𝑇

0𝑔
𝜔
0
+ 𝐽

𝑇𝜔
Θ̇

𝐻
𝜔
𝜔
0
+ 𝜛𝑑

0𝑔
V
0
+ 𝐻

𝜔𝜙
Θ̇

𝐻
𝑚
Θ̇ + 𝐻

𝑇

𝜔𝜙
𝜔
0
+ 𝐽

𝑇

𝑇𝜔
V
0

]
]
]

]

, (19)

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕 ̇𝑞
) =

[
[
[
[
[
[
[

[

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕V
0

)

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕𝜔
0

)

𝑑

𝑑𝑡
(
𝜕𝐸
𝑘

𝜕Θ̇
)

]
]
]
]
]
]
]

]

=

[
[
[
[
[
[

[

𝜛𝐸 ̇V
0
+ 𝜛

̇
�̃�

𝑇

0𝑔
𝜔
0
+ 𝜛𝑑

𝑇

0𝑔
̇𝜔
0
+ 𝐽

𝑇𝜔
Θ̈ + ̇𝐽

𝑇𝜔
Θ̇

𝐻
𝜔
𝜔
0
+ 𝐻

𝜔
̇𝜔
0
+ 𝜛

̇
�̃�
0𝑔
V
0
+ 𝜛𝑑

0𝑔
̇V
0
+ 𝐻

𝜔𝜙
Θ̇ + 𝐻

𝜔𝜙
Θ̈

𝐻
𝑚
Θ̇ + 𝐻

𝑚
Θ̈ + 𝐻

𝑇

𝜔𝜙
𝜔
0
+ 𝐻

𝑇

𝜔𝜙
̇𝜔
0
+ ̇𝐽

𝑇

𝑇𝜔
V
0
+ 𝐽

𝑇

𝑇𝜔
̇V
0

]
]
]
]
]
]

]

, (20)

𝜕𝐸
𝑘

𝜕𝑞
=

[
[
[
[
[
[
[
[

[

𝜕𝐸
𝑎

𝜕𝑝
+
𝜕𝐸
𝑏

𝜕𝑝
+
𝜕𝐸
𝑐

𝜕𝑝

𝜕𝐸
𝑎

𝜕Φ
+
𝜕𝐸
𝑏

𝜕Φ
+
𝜕𝐸
𝑐

𝜕Φ

𝜕𝐸
𝑎

𝜕Θ
+
𝜕𝐸
𝑏

𝜕Θ
+
𝜕𝐸
𝑐

𝜕Θ

]
]
]
]
]
]
]
]

]

, (21)

where

𝑞 =

[
[
[
[

[

𝑋

Φ

Θ

]
]
]
]

]

, ̇𝑞 =

[
[
[
[

[

V
0

𝜔
0

Θ̇

]
]
]
]

]

(22)

are the position vector and the velocity vector of the RF-MJM
system, respectively;𝑋 is the position vector of the RFR; and

𝐸
𝑎
= 𝜛𝜔

𝑇

0
𝑑
0𝑔
V
0
; 𝐸

𝑏
=
1

2
𝜔
𝑇

0
𝐻
𝜔
𝜔
0
;

𝐸
𝑐
= (V𝑇

0
𝐽
𝑇𝜔
+ 𝜔

𝑇

0
𝐻
𝜔𝜙
+
1

2
Θ̇
𝑇
𝐻
𝑚
) Θ̇.

(23)

Similarly, with respect to the potential energy term, we
have

𝜕𝐸
𝑝

𝜕𝑋
=

𝑛

∑

𝑖=0

𝑚
𝑖

[
[
[
[
[
[
[
[
[

[

𝜕𝑔
𝑇
𝑑
0

𝜕𝑥
0

𝜕𝑔
𝑇
𝑑
0

𝜕𝑦
0

𝜕𝑔
𝑇
𝑑
0

𝜕𝑧
0

]
]
]
]
]
]
]
]
]

]

, (24)

𝜕𝐸
𝑝

𝜕Θ
= −(

𝑛

∑

𝑖=0

𝑚
𝑖
𝜕𝑔
𝑇

× (𝑑
0
+

𝑖

∑

𝑗=1

(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)))

× (𝜕Θ)
−1
,

(25)

𝜕𝐸
𝑝

𝜕Φ

= −

[
[
[
[
[
[
[

[

𝜕𝐸
𝑝

𝜕𝜙

𝜕𝐸
𝑝

𝜕𝜃
𝜕𝐸
𝑝

𝜕𝜑

]
]
]
]
]
]
]

]

= −

[
[
[
[
[
[
[
[
[

[

−∑
𝑛

𝑖=1
𝑚
𝑖
𝜕𝑔
𝑇
∑
𝑖

𝑗=1
(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)

𝜕𝜙

−∑
𝑛

𝑖=1
𝑚
𝑖
𝜕𝑔
𝑇
∑
𝑖

𝑗=1
(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)

𝜕𝜃

−∑
𝑛

𝑖=1
𝑚
𝑖
𝜕𝑔
𝑇
∑
𝑖

𝑗=1
(
𝐼
𝐴
𝑗−1
∗𝐶

𝑗−1,𝑗
−
𝐼
𝐴
𝑗
∗𝐶

𝑗,𝑗
)

𝜕𝜑

]
]
]
]
]
]
]
]
]

]

.

(26)

Thus, the dynamics model of the RF-MJM system can be
obtained through the following Euler-Lagrange equation:

𝑑

𝑑𝑡

𝜕𝐸
𝑘

𝜕 ̇𝑞
−
𝜕𝐸
𝑘

𝜕𝑞
+
𝜕𝐸
𝑃

𝜕𝑞
= 𝜏. (27)

Substitute (20)–(21) and (24)–(26) into (27) and after
simplifying we can obtain the following dynamics model of
the RF-MJM system:

[
𝐻
𝑏
𝐻
𝑏𝑚

𝐻
𝑇

𝑏𝑚
𝐻
𝑚

][
𝑋
𝑏

Θ̈
] + [

𝐶
𝑏

𝐶
𝑚

] + [
𝐺
𝑏

𝐺
𝑚

] = [
𝐹
𝑝

𝜏
𝑚

] , (28)

where

𝑋
𝑏
= [

̇V
0

̇𝜔
0

] . (29)
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𝐶
𝑏
and𝐶

𝑚
are theCoriolis and centrifugal force of the system;

𝐺
𝑏
and 𝐺

𝑚
are the force due to gravity;

𝐹
𝑝
= [

𝐹
𝐵

𝑀
𝐵

] ; 𝐹
𝐵
=
[
[

[

𝐹
𝑥

𝐹
𝑦

𝐹
𝑧

]
]

]

; 𝑀
𝐵
=
[
[

[

𝐿

𝑀

𝑁

]
]

]

(30)

are the force and moment produced by the RFR; the other
terms are defined as follows:

𝐻
𝑏
= [

𝐻
𝑏11

𝐻
𝑏12

𝐻
𝑏21

𝐻
𝑏22

]

𝐻
𝑏11
= 𝜛𝐸; 𝐻

𝑏12
= 𝜛𝑑

𝑇

𝑜𝑔
;

𝐻
𝑏21
= 𝜛𝑑

𝑜𝑔
; 𝐻

𝑏22
= 𝐻

𝜔

𝐻
𝑏𝑚
= [

𝐻
𝑏𝑚V

𝐻
𝑏𝑚𝜔

]

2×1

𝐻
𝑏𝑚V
= 𝐽

𝑇𝜔
; 𝐻

𝑏𝑚𝜔
= 𝐻

𝜔𝜙

𝐶
𝑏
= [

𝐶
𝑏V

𝐶
𝑏𝜔

]

𝐶
𝑏V = 𝜛

̇
�̃�

𝑇

0𝑔
𝜔
0
+ ̇𝐽

𝑇𝜔
Θ̇ − 𝜛𝜔

𝑇

0

𝜕𝑑
0𝑔

𝜕𝑋
V
0
− V𝑇

0

𝜕𝐽
𝑇𝜔

𝜕𝑋
Θ̇

− 𝜔
𝑇

0

𝜕𝐻
𝜔𝜙

𝜕𝑋
Θ̇ −

1

2
(𝜔

𝑇

0

𝜕𝐻
𝜔

𝜕𝑋
𝜔
0
+ Θ̇

𝑇 𝜕𝐻𝑚

𝜕𝑋
Θ̇)

𝐶
𝑏𝜔
= 𝐻

𝜔
𝜔
0
+ 𝜛

̇
�̃�
0𝑔
V
0
+ 𝐻

𝜔𝜙
Θ̇ − 𝜛𝜔

𝑇

0

𝜕𝑑
0𝑔

𝜕Φ
V
0
− V𝑇

0

𝜕𝐽
𝑇𝜔

𝜕Φ
Θ̇

− 𝜔
𝑇

0

𝜕𝐻
𝜔𝜙

𝜕Φ
Θ̇ −

1

2
(𝜔

𝑇

0

𝜕𝐻
𝜔

𝜕Φ
𝜔
0
+ Θ̇

𝑇 𝜕𝐻𝑚

𝜕Φ
Θ̇) .

𝐶
𝑚
=
1

2

̇𝐽
𝑇

𝑇𝜔
V
0
+
1

2
V𝑇
0
̇𝐽
𝑇𝜔
+
1

2
𝐻
𝑇

𝜔𝜙
𝜔
0
+
1

2
𝜔
𝑇

0
𝐻
𝜔𝜙
+ 𝐻

𝑚
Θ̇.

(31)

2.2.4. Extended Dynamics Model. When the manipulator
contacts some external objects, the dynamics model (28)
becomes

[

𝐻
𝑏
𝐻
𝑏𝑚

𝐻
𝑇

𝑏𝑚
𝐻
𝑚

][

[

𝑋
𝑏

Θ̈

]

]

+ [

[

𝐶
𝑏

𝐶
𝑚

]

]

+ [

[

𝐺
𝑏

𝐺
𝑏

]

]

= [

[

𝐹
𝑝

𝜏
𝑚

]

]

+ [

[

𝐽
𝑇

𝑏

𝐽
𝑇

𝑚

]

]

𝐹
𝑒
,

(32)

where 𝐹
𝑒
is the force and torque exerting on the end of the

manipulator; 𝐽
𝑏
and 𝐽

𝑚
are the Jacobian matrix defined as

𝐽
𝑏
= [

[

𝐸 −𝑝
0𝑖

0 𝐸

]

]

; 𝑝
0𝑖
= 𝑝

𝑖
− 𝑑

0
;

𝐽
𝑚
= [

𝑘
1
× (𝑝

𝑒
− 𝑝

1
) 𝑘

2
× (𝑝

𝑒
− 𝑝

2
) ⋅ ⋅ ⋅ 𝑘

𝑛
× (𝑝

𝑒
− 𝑝

𝑛
)

𝑘
1

𝑘
2

⋅ ⋅ ⋅ 𝑘
𝑛

] .

(33)

Furthermore, if we consider the aerodynamics of the RFR
system, the force and moment produced by the RFR 𝐹

𝑝
can

be denoted as the following mathematical equations [11]:

𝐹
𝑋
= −𝑇

𝑀
sin 𝑎

1𝑠
; 𝐹

𝑌
= 𝑇

𝑀
sin 𝑏

1𝑠
− 𝑇

𝑇
;

𝐹
𝑍
= −𝑇

𝑀
cos 𝑎

1𝑠
cos 𝑏

1𝑠
;

𝐿 = −(
𝜕𝐿
𝑀

𝜕𝑏
1𝑠

) 𝑏
1𝑠
− 𝑄

𝑀
sin 𝑎

1𝑠
;

𝑀 = (
𝜕𝑀

𝑀

𝜕𝑎
1𝑠

)𝑎
1𝑠
− 𝑄

𝑀
sin 𝑏

1𝑠
− 𝑄

𝑇
;

𝑁 = −𝑄
𝑀
cos 𝑎

1𝑠
cos 𝑏

1𝑠
,

(34)

where 𝑇
𝑀

and 𝑇
𝑇
are the forces derived from the main

rotor and tail rotor of the RFR, and 𝑎
1𝑠

and 𝑏
1𝑠

stand for
the longitudinal and lateral flapping angle of main rotor,
respectively; the forces 𝑇

𝑀
and 𝑇

𝑇
and the moments 𝑄

𝑀
and

𝑄
𝑇
can be calculated as [12, 13].
Up to now, we have constructed the nonlinear dynamics

model of the RF-MJM system.

3. Analysis of Dynamics
Model and Linearization

3.1. Analysis of the Dynamics Model. In order to understand
the coupling between the RFR and manipulator clearly, we
rewrite the system model (28) as follows:

[
𝐻
𝑏
(Φ,Θ) 𝐻

𝑏𝑚
(Φ,Θ)

𝐻
𝑇

𝑏𝑚
(Φ,Θ) 𝐻

𝑚
(Φ,Θ)

][
𝑋
𝑏

Θ̈
] + [

[

𝐶
𝑏
(V
0
, 𝜔
0,
Θ,Φ, Φ̇)

𝐶
𝑚
(V
0
, 𝜔
0,
Θ,Φ, Φ̇)

]

]

+ [
𝐺
𝑏
(𝑋,Θ,Φ)

𝐺
𝑏
(Θ,Φ)

] = [
𝐹
𝑝

𝜏
𝑚

] .

(35)

From (35), it can be easily seen that the coupling between the
RFR and the manipulator appears in all the terms except for
the exerting force/moment. That means the RF-MJM system
model is more complicated than the RFR system model as
shown in [11]. These can be summarized as follows.

(1) Compared to the RFR model, there are some new
terms in the system (28), such as𝐶

𝑏V.These new terms
make the system model more complicated, and the
result is that some control algorithm that has been
shown to be fit for RFR system cannot be used directly
in the RF-MJM system. For example, in reference
[11], a RFR system is proved to be approximate
feedback linearizable. This, unfortunately, cannot be
implemented in the RF-MJM system.

(2) The system structure of the RF-MJM is of great
complication compared to the RFR system. This can
be easily seen through the preceding system equa-
tions. Again, the reason is because of the coupling
between the RFR and the manipulator. The higher
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complication results in heavier nonlinearity which
makes the controller design of the RF-MJM systemex-
traordinarily challenging.

3.2. Linearization and LQR Controller Design. In the above
section, we have obtained the detailed mathematical model
of the RF-MJM system, which can be easily computed and
simulated through using symbolic computation toolbox of
MATLAB. However, this kind of controller is difficult to be
used due to the high complexity and nonlinearities. Thus, in
this section, we will try to find the linearizedmodel of the RF-
MJM system and analyze the influence of the parameters on
the system parameters.

The linearization can be implemented through the follow-
ing steps: firstly, search the trim point of the RF-MJM system;
secondly, compute the derivatives of the system model with
respect to the state and input to obtain the system matrix of
the desired linear model. With the linearized model, some
linear controller design strategies, for example, the LQR
controller, can be used to stabilize the original nonlinear
system. In the following content of this section, taking
one-joint RF-MJM system as an example, the linearization
and the LQR control design will be conducted and system
performance will be analyzed.

A trim point, also known as an equilibrium point, of a
nonlinear system is a point in the state space of a dynamic
system, and at this point, the derivatives of the states with
respect to time are precisely zeros.

The state vector of the RF-MJM can be denoted as

[𝑥 𝑦 𝑧 𝜙 𝜃 𝜓 𝑢 V 𝑤 𝑝 𝑞 𝑟 Θ Θ̇] (36)

and the input vector is

[𝑎1𝑠 𝑏1𝑠 𝜃𝑀 𝜃
𝑇
𝜏
Θ] , (37)

where 𝑎
1𝑠
and 𝑏

1𝑠
are the cyclic pitch angle of the main rotor,

respectively; 𝜃
𝑀

and 𝜃
𝑇
are the collective pitch angle of the

main rotor and the tilt rotor, respectively.
Based on the definition of trim point, all the velocity state

should be set to zeros; that is,

𝑢 = V = 𝑤 = 𝑝 = 𝑞 = 𝑟 = Θ̇ = 0. (38)

Also, all the derivatives of the states with respect to time
should be zeros. Under condition (38), this is equivalent to

[
𝑋
𝑏

Θ̈
] = 𝐻

−1
([
𝐹
𝑝

𝜏
𝑚

] + [
𝐽
𝑇

𝑏

𝐽
𝑇

𝑚

]𝐹
𝑒
− [

𝐶
𝑏

𝐶
𝑚

] − [
𝐺
𝑏

𝐺
𝑏

]) = 0
7×1
.

(39)

The right-hand side of (31) is only related to 𝜙, 𝜃, 𝜓, Θ,
and input vector, so we have 9 free variables and 7 equalities.
Furthermore, if we define 𝜏

Θ
= 0 and𝜓 = 0, we will have only

7 free variables. Thus, the trim point can be obtained directly
by solving the nonlinear equalities (39), which can be easily
conducted using some searching function in MATLAB.

In order to evaluate the influence of the mass of the
manipulator on the whole system, we list out the trim point

Table 1: Parameters of RF-MJM system.

Parameter Describe Unit
𝑚
0
= 9.5 The mass of rotor-flying robot (RFR) kg

𝑚
1
= 2.5 The mass of manipulator kg

𝐼
0𝑥𝑥

= 0.1634 Moment of inertia of RFR kgm2

𝐼
0𝑦𝑦

= 0.5782 Moment of inertia of RFR kgm2

𝐼
0𝑧𝑧

= 0.6306 Moment of inertia of RFR kgm2

𝐼
1𝑥𝑥

= 0.1399 Moment of inertia of manipulator kgm2

𝐼
1𝑦𝑦

= 0.1399 Moment of inertia of manipulator kgm2

𝐼
1𝑧𝑧

= 0.00112 Moment of inertia of manipulator kgm2

𝑙
0
= 0.3 The length from the centroid of RFR m

𝑙
1
= 0.4 The length of half of the first link m

𝜙 = 0.0769 Roll angle rad
𝜃 = 0.0211 Pitch angle rad
𝜓 = any value Yaw angle rad
𝜃
1
= 0.0211 Joint movement angle rad

𝐹
0
= [0 0 0]

𝑇

External force N

𝑇
0
= [0 0 0]

𝑇

External torque Nm

of the linearization system with different manipulator masses
(the parameters of the system are listed out in Table 1, and the
trim point is in Table 2 in the next section).

The linearization system model is

Δ𝑋 = 𝐴Δ𝑋 + 𝐵Δ𝑢, (40)

where
Δ𝑋 = 𝑋 − 𝑋trim

𝐴 =

[
[
[
[
[
[
[

[

0
3×3

𝐸
3
0
3×3

0
3×3

0
3×1

0
3×1

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝐴
5

𝐴
6

0
3×3

0
3×3

0
3×3

𝐸 0
3×1

0
3×1

𝐴
7

𝐴
8

𝐴
9
𝐴
10

𝐴
11

𝐴
12

0
1×3

0
1×3

0
1×3

0
1×3

0 1

𝐴
13

𝐴
14

𝐴
15

𝐴
16

𝐴
17

𝐴
18

]
]
]
]
]
]
]

]

𝐵 = [0
5×3

𝐵
𝑇

1
0
5×3

𝐵
𝑇

2
0
5×1

𝐵
𝑇

3
]
𝑇

.

(41)

Furthermore, in order to analyze the performance of
system (40), the eigenvalues of𝐴matrix are given in Figure 5.
From it, we can get the following results.

(1) Thewhole system is static-instable since it has positive
eigenvalues.

(2) With increase of the manipulator mass, the distribu-
tion of eigenvalues will be more diverging.

3.3. LQR Controller Design. Next, we will design the full
state-feedback linear quadratic regulation (LQR) controller
for the RFM system. In the state-feedback version of the
LQR problem [14], we assume that the whole state 𝑥 can be
measured and therefore it is available to control. Solution to
the optimal state-feedback LQR problem is to find 𝑢(𝑡) =
−𝐾𝑥(𝑡) that minimizes

𝐽LQR = ∫
∞

0

(𝑥
𝑇
𝑄𝑥 + 𝑢

𝑇
𝑅𝑢) 𝑑𝑡, (42)
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Table 2: Trim points corresponding to different masses of manipulator.

Trim point 𝑚
1
= 2.5 kg 𝑚

1
= 2 kg 𝑚

1
= 1.5 kg 𝑚

1
= 1 kg 𝑚

1
= 0.5 kg

𝜙 0.0769 0.0732 0.0697 0.0662 0.0626
𝜃 0.0211 0.0204 0.0197 0.0190 0.0183
𝜃
1

0.0211 0.0205 0.0198 0.0191 0.0183
𝜃
𝑀

0.0436 0.0409 0.0381 0.0354 0.0326
𝜃
𝑇

−0.1282 −0.1245 −0.1207 −0.1169 −0.1130
𝑎
1𝑠

0.0211 0.0204 0.0197 0.0190 0.0183
𝑏
1𝑠

0.0195 0.0169 0.0145 0.0123 0.0103

where 𝐾 is given by 𝐾 = 𝑅
−1
𝐵
𝑇
𝑃 and 𝑃 is found by solving

some continuous time algebraic Riccati equations. So we can
easily get the eigenvalues of the open loop system and the
closed loop systemby thematrices𝐴 and𝐴−𝐵𝐾, respectively.

4. Simulations

In this section, simulations will be conducted using the
preceding nonlinear system model and the LQR controller.
In the simulation, the manipulator’s mass is 2.5 kg, and the
other parameters are given in Table 1.

And the trim point of the whole system is listed out in
Table 2.

With these parameters, the system matrices 𝐴 and 𝐵 are
as follows:

𝐴 =

[
[
[
[
[
[
[

[

0
3×3

𝐸 0
3×3

0
3×3

0
3×1

0
3×1

0
3×3

0
3×3

𝐴
3
0
3×3

𝐴
5
0
3×1

0
3×3

0
3×3

0
3×3

𝐸 0
3×1

0
3×1

0
3×3

0
3×3

𝐴
9
0
3×3

𝐴
11

0
3×1

0
1×3

0
1×3

0
1×3

0
1×3

0 1

0
1×3

0
1×3

𝐴
15

0
1×3

𝐴
17

0

]
]
]
]
]
]
]

]

𝐵 = [0
14×3

𝐵
𝑇

1
0
14×3

𝐵
𝑇

2
0
14×1

𝐵
𝑇

3
]
𝑇

,

(43)

where

𝐴
3
=
[
[

[

0.0015 9.7636 0.9945

−9.8000 −0.0005 0.2102

0.0001 0.0005 0.0014

]
]

]

;

𝐴
9
=
[
[

[

−0.0087 −0.0083 0.1834

−0.0130 0.0255 −0.8587

−0.2013 −0.2456 −0.0635

]
]

]

;

𝐴
5
=
[
[

[

3.5861

−0.0077

0.0310

]
]

]

; 𝐴
11
= [

[

−0.0547

−24.4857

−0.8988

]

]

;

𝐴
15
= [0.0110 −0.0924 2.6951] ;

𝐴
17
= 40.1487;

𝐵
𝑇

1
=

[
[
[
[
[

[

−0.5451 −7.9183 −147.7390

−1.2434 −9.3478 0.6158

−21.7522 0.4534 −0.2015

−0.5829 7.2377 −0.7650

0.2990 −0.0006 0.0009

]
]
]
]
]

]

;
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Figure 6: States and inputs profile under LQR controller (46).

𝐵
𝑇

2
=

[
[
[
[
[
[

[

16.7653 −2.5282 168.3611

−32.8659 14.0449 125.4196

20.9082 178.3726 4.0958

−121.2649 11.0285 −0.2925

0.0011 0.6932 −0.0534

]
]
]
]
]
]

]

;

𝐵
𝑇

3
= [−3.9371 −9.0113 −99.1817 −4.2009 3.4137] .

(44)

From these equations, it can be seen that the coupling
between the manipulator and RFR, denoted by 𝐴

5
, 𝐴

11
, 𝐴

15
,
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Figure 7: Continued.
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and 𝐴
17

is heavy. Using the following QR parameters in the
LQR controller,
𝑄 = diag (1, 1, 1, 1, 1, 1, 10, 10, 10, 10, 10, 10, 10, 10) ;

𝑅 = diag (1000, 1000, 1000, 1000, 1000) ,
(45)

the LQR feedback control law is designed as
𝑢 = 𝐾Δ𝑥

𝐾 = [𝐾1 𝐾2 𝐾3 𝐾4 𝐾5] ,

(46)

where

𝐾
1
=

[
[
[
[
[
[
[

[

0.0097 −0.0037 −0.0226

0.0119 0.0058 0.0210

−0.0232 −0.0014 0.0013

−0.0018 0.0308 −0.0066

0.0149 −0.0006 −0.0008

]
]
]
]
]
]
]

]

𝐾
2
=

[
[
[
[
[
[
[

[

0.0200 −0.0071 −0.0291

0.0238 0.0116 0.0287

−0.0544 −0.0019 0.0031

−0.0042 0.0575 −0.0079

0.0308 −0.0013 −0.0016

]
]
]
]
]
]
]

]

𝐾
3
=

[
[
[
[
[
[
[

[

0.0502 0.1489 0.1317

−0.0816 0.1670 0.1279

0.0053 −0.4953 −0.3462

−0.3754 −0.0384 −0.0293

0.0104 0.2401 0.0991

]
]
]
]
]
]
]

]

𝐾
4
=

[
[
[
[
[
[
[

[

0.0169 0.0637 0.0751

−0.0226 0.0663 0.0827

−0.0015 −0.2717 −0.0288

−0.1208 −0.0214 −0.0058

0.0040 0.1085 0.0073

]
]
]
]
]
]
]

]

𝐾
5
=

[
[
[
[
[
[
[

[

0.6994 0.1310

0.5973 0.1125

−4.2835 −0.8102

−0.3735 −0.0691

1.1293 0.2157

]
]
]
]
]
]
]

]

.

(47)

With the controller (46), the system can be stabilized
with acceptable performance near the trim point, and the
simulation results with initial state (0.1, 0, −0.1, 0, 0, 0, 0.07,
0.04, 0, 0, 0, 0.03, 0) are shown in Figure 6.

From Figure 6, it can be seen that a linear LQR controller
can stabilize the whole system near the trim point. However,
the stabilizing region of LQR is very limited; we have tested
that only when the attitude of the whole system satisfies the
following conditions (all the initial velocities are set to zeros),
the LQR control is effective (46):

−0.1389 ≤ 𝜃 ≤ 0.3911

−0.6731 ≤ 𝜙 ≤ 0.5469

−0.0619 ≤ 𝜃
1
≤ 0.0611.

(48)

Now in the next simulation, two periodic sinusoidal
signals, as disturbances with different frequencies, are added
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Figure 8: Decoupling between RFR and manipulator.

to the input of themanipulator to test motion influence of the
manipulator on the whole system:

𝑑
1
= 0.01 sin (0.5𝜋𝑡) (49)

𝑑
2
= 0.01 sin (1.0𝜋𝑡) . (50)

The results are as in Figure 7.
Simultaneously, in order to test the coupling between

the RFR and the manipulator, the linear accelerations and
the angular accelerations of the new RF-MJM system are
compared to the helicopter system with the same parameters
as in Table 1; that is,

[

[

error 1
error 2
error 3

]

]

= [

[

𝑎RF−MJM,𝑥
𝑎RF−MJM,𝑦
𝑎RF−MJM,𝑧

]

]

− [

[

𝑎RFR,𝑥
𝑎RFR,𝑦
𝑎RFR,𝑧

]

]

;

[

[

error 4
error 5
error 6

]

]

= [

[

̇𝜔RF−MJM,𝑥
̇𝜔RF−MJM,𝑦
̇𝜔RF−MJM,𝑧

]

]

− [

[

̇𝜔RFR,𝑥
̇𝜔RFR,𝑦
̇𝜔RFR,𝑧

]

]

.

(51)

The results are given in Figure 8, which presents the extra
force andmoment exerted on the RFR due to themanipulator
and its motion.

5. Conclusions

In this paper, the detailed nonlinear dynamics model of
a rotor-flying multijoint (RF-MJM) system is constructed
through using Euler-Lagrange method. Compared to the
rotor-flying vehicle system, the model nonlinearities and

complexity of the new RF-MJM are analyzed in detail. More-
over, linear analysis is conducted with respect to the con-
structed nonlinear model near its trim point, and the influ-
ence of the manipulator mass on the system’s local per-
formance is researched. Furthermore, LQR controller is
designed based on the linearized system model. Finally,
simulation results show that (1) a linear LQR controller is
able to stabilize the system near steady state and presents
acceptable performance; however, (2) the stabilization region
of LQR controller is very limited, and the performance of
LQR controller is sensitive to the external disturbance. Thus,
in the future work, nonlinear and robust control scheme will
be researched to overcome the disadvantages of the linear
controller.
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Internet worms exploiting zero-day vulnerabilities have drawn significant attention owing to their enormous threats to Internet
in the real world. To begin with, a worm propagation model with time delay in vaccination is formulated. Through theoretical
analysis, it is proved that the worm propagation system is stable when the time delay is less than the threshold 𝜏

0
and Hopf

bifurcation appears when time delay is equal to or greater than 𝜏
0
. Then, a worm propagation model with constant quarantine

strategy is proposed.Through quantitative analysis, it is found that constant quarantine strategy has some inhibition effect but does
not eliminate bifurcation. Considering all the above, we put forward impulsive quarantine strategy to eliminate worms.Theoretical
results imply that the novel proposed strategy can eliminate bifurcation and control the stability of worm propagation. Finally,
simulation results match numerical experiments well, which fully supports our analysis.

1. Introduction

With the rapid growth of information technologies and net-
work applications, severe challenges, in form of requirement
of a suitable defense system, have been posed to make
sure of the safety of the valuable information stored on
system and in transit. For example, worms that exploit zero-
day vulnerabilities have brought severe threats to Internet
security in the real world. To date, none of the patches
could effectively and reliably immunize the hosts thoroughly
against being attacked by those worms. It may take a period
of time for users to immunize their computers if they are in
infected state. In addition, the failure of some vaccination
measures or worm-variants may also lead to high risks
that the hosts being immunized would be infected again.
On the other hand, the propagation of worms in a system
of interacting computers could be compared to contagious
diseases in human population. In computer science field,
computers are like individuals in an ecological system and
thus the same mechanism of birth and death should be
considered. Being infected by network worms or quarantined
by IDS (intrusion detection systems), hosts will become

dangerous and their owners will have to reinstall the system.
Another factor to consider is that when new computers are
brought, most of them have preinstalled operating systems
but without newest safety patches while old computers are
discarded and recycled. Consequently, in order to imitate the
real world, birth and death rates should be introduced to
worm propagations model.

Considering all the above, we firstly construct a worm
propagation model with time delay in vaccination based on
the classical epidemic Kermack-Mckendrick model [1] to
describe the current situation. Through theoretical analysis,
it is proved that Hopf bifurcation appears when time delay
is equal to or greater than the threshold 𝜏

0
, which leads

the number of infected hosts to be unpredictable and the
propagation of worms to be out of control. In order to
make up the deficiency of vaccination strategy and eliminate
the negative impact of time delay, quarantine strategies are
proposed to improve vaccination effect and eliminate bifur-
cation. The current quarantine strategy generally depends
on the intrusion detection system, which can be classified
into two categories: misuse and anomaly intrusion detection.
Misuse intrusion detection system can accurately detect
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Figure 1: State transition diagram of delayed model.

known worms. Based on misuse intrusion detection system,
we propose constant quarantine strategy. Although it does
improve vaccination effect, the system is still out of control
and Hopf bifurcation is not eliminated either. Furthermore,
the system fails to detect unknown worms and worm-
variants. Anomaly intrusion detection system is of help
in detecting these kinds of worm. However, it is always
accompanied by high false-positive rate.

Consequently, this paper proposes a worm propagation
model with impulsive quarantine strategy based on a hybrid
intrusion detection system that combines both misuse and
anomaly intrusion detection to make up for the gaps existing
in the two systems. After adoption impulsive quarantine
strategy, it is clearly proved that Hopf bifurcation is elimi-
nated thoroughly so that the system is stable.

The rest of the paper is organized as follows. In the next
section, related work on time delay and quarantine strategy
is introduced. Section 3 provides a worm propagation model
with time delay in vaccination. In Section 4, we construct a
delayed worm propagation model with constant quarantine
and analyze it in detail. Then, in Section 5, a delayed worm
propagation model using impulsive quarantine strategy is
proposed, and its analysis is performed. Section 6 presents
numerical analyses and simulation experiments based on
Slammer worm. Simulation results match well with numer-
ical ones. Finally, Section 7 gives the conclusions.

2. Related Work

With the similarity between Internet worms and biological
diseases, epidemiological models have been widely used in
modeling the propagation of worms [2–6]. To make the
worm transmission in computer network work as in the real
word, the research within the data-driven framework has
been done [7–9]. Although some human factors are included,
these models cannot restrain worms effectively. Thus, a
variety of containment strategies have been applied to worm
propagationmodels. As far as we know, the use of quarantine
strategies has produced a great effect on controlling disease.
People use quarantine strategies widely inworm containment
enlightened by this [10–16]. In addition, some scholars have
done research on time delay [17–19].

However, previous studies have failed to consider the
appropriate quarantine strategy to eliminate the negative
effect of time delay. For instance, the pulse quarantine
strategy that Yao has proposed [12] does lead to worm
elimination with a relatively low value, but time delay is
not considered, which leads to Hopf bifurcation so that the
worm propagation systemwill be unstable and out of control.
In this paper, constant quarantine and impulsive quarantine

strategies are proposed to constrain the worms spreading and
even eliminate Hopf bifurcation.

3. Worm Propagation Model with
Time Delay in Vaccination

With regard to worms exploiting zero-day vulnerabilities,
none of the patches could effectively and reliably immunize
the hosts. After the hosts are being infected, some measures,
such as cutting off the network connection, running manual
antivirus, or setting firewall, are taken to remove the worms.
With these measures being carried out, the hosts cannot
further infect other susceptible hosts, but they are in fact
not vaccinated completely. Namely, detecting and cleaning
worms take a period of time. Therefore, time delay should
be considered in actual conditions. Since time delay exists,
infected hosts go through a temporary state (delayed) after
vaccination. Consequently, on the basis of KMmodel, we give
a worm propagation model with time delay in vaccination.
We assume all hosts are in one of four states: susceptible state
(S), infected state (I), delayed state (D), and vaccinated state
(V). The state transition diagram of the delayed model is
given in Figure 1.

Let 𝑆(𝑡) denote the number of susceptible hosts at time 𝑡,
𝐼(𝑡) denote the number of infected hosts at time 𝑡,𝐷(𝑡) denote
the number of delayed hosts at time 𝑡, and 𝑉(𝑡) denote the
number of vaccinated hosts at time 𝑡. 𝛽 is the infection rate at
which susceptible hosts are infected by infected hosts and 𝛾
is the rate of removal of infected from circulation. As worms
and worm-variants exist, 𝜇 is the rate that vaccinated hosts
back to susceptible hosts.The newborn hosts enter the system
with the same rate ], of which a portion 1 − 𝑝 is recovered by
installing patches at birth. Time delay is denoted by 𝜏.

In order to show it clearly, we list in Notations section
some frequently used notations in this paper.

3.1. Description of DelayedModel. From the above definitions
in the paper, we write down the complete differential equa-
tions of the delayed model:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝑆 (𝑡) + 𝜇𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) − ]𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= (1 − 𝑝) ]𝑁 + 𝛾𝐼 (𝑡 − 𝜏) − 𝜇𝑉 (𝑡) − ]𝑉 (𝑡) .

(1)
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Asmentioned above, the population size is set𝑁, which is set
to unity:

𝑆 (𝑡) + 𝐼 (𝑡) + 𝐷 (𝑡) + 𝑉 (𝑡) = 𝑁. (2)

3.2. Stability of the Positive Equilibrium and
Bifurcation Analysis

Theorem 1. The system has a unique positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑉
∗
) when it satisfies the following condition:

(𝐻
1
) (𝛽𝑁 − 𝛾 − ])(𝜇 + ])/𝛽(1 − 𝑝)]𝑁 > 1, where 𝑆∗ =
(𝛾 + ])/𝛽,𝐷∗ = 0, 𝑉∗ = (𝛾𝐼∗ + (1 − 𝑝)]𝑁)/(𝜇 + V).

Proof. For system (1), if all the derivatives on the left of equal
sign of the system are set to 0, which implies that the system
becomes stable, we can derive

𝑆 =
𝛾 + ]
𝛽

,

𝐷 = 0,

𝑉 =
𝛾𝐼
∗
+ (1 − 𝑝) ]𝑁
𝜇 + V

.

(3)

Substituting the value of each variable in (3) for each of (2),
then we can derive

𝑆
∗
+ 𝐼
∗
+
𝛾𝐼
∗
+ (1 − 𝑝) ]𝑁
𝜇 + V

= 𝑁. (4)

Obviously, if (𝐻
1
) is satisfied, (4) has one unique pos-

itive root 𝐼∗ and there is one unique positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑉
∗
) of system (1). The proof is completed.

According to (2),𝑉(𝑡) = 𝑁−𝑆(𝑡)−𝐼(𝑡)−𝐷(𝑡); thus, system
(1) can be simplified to

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 + 𝜇 (𝑁 − 𝑆 (𝑡) − 𝐼 (𝑡) − 𝐷 (𝑡))

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) − ]𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷(𝑡) .

(5)

The Jacobi matrix of (5) about 𝐸∗(𝑆∗, 𝐼∗, 𝐷∗) is given by

𝐽 (𝐸
∗
) = (

−𝜇 − 𝛽𝐼
∗
− ] −𝜇 − 𝛽𝑆

∗
−𝜇

𝛽𝐼
∗

𝛽𝑆
∗
− 𝛾 − ] 0

0 𝛾 − 𝛾𝑒
−𝜆𝜏

−]
) . (6)

The characteristic equation of that matrix can be obtained by

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= 0. (7)

Let

𝑝
2
= 𝜇 + 𝛽𝐼

∗
+ 3] − 𝛽𝑆∗ + 𝛾,

𝑝
1
= 𝛽 (2] − 𝜇 + 𝛾) 𝐼∗ − 𝛽𝑆∗ (𝜇 + 2]) − 2𝛽2𝐼∗𝑆∗

+ 𝜇 (2] + 𝛾) + ] (3]2 + 2𝛾) ,

𝑝
0
= 𝛽𝐼
∗
(]𝛾 + ]2 + 𝜇𝛾 − 𝜇]) − ]𝛽𝑆∗ (𝜇 + ])

− 2]𝛽2𝑆∗𝐼∗ + ]𝜇𝛾 + ]2 (𝜇 + 𝛾 + ]) ,

𝑞
0
= −𝛽𝜇𝛾𝐼

∗
.

(8)

Then 𝑃(𝜆) = 𝜆3 + 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
, 𝑄(𝜆) = 𝑞

0
.

Theorem 2. The positive equilibrium 𝐸
∗ is locally asymptoti-

cally stable without time delay, if the following holds:

(𝐻
2
) 𝑝
2
> 0, 𝑝

1
𝑝
2
− (𝑝
0
+ 𝑞
0
) > 0, 𝑝

0
+ 𝑞
0
> 0.

Proof. If 𝜏 = 0, (7) reduces to

𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + (𝑝

0
+ 𝑞
0
) = 0. (9)

According to Routh-Hurwitz criterion, all the roots of (9)
have negative real parts. Therefore, it can be deduced that
the positive equilibrium 𝐸

∗ is locally asymptotically stable
without time delay. The proof is completed.

Obviously, 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of (7). After separating
the real and imaginary parts, it can be written as

−𝑝
2
𝜔
2
+ 𝑝
0
+ 𝑞
0
cos (𝜔𝜏) = 0, (10)

−𝜔
3
+ 𝑝
1
𝜔 − 𝑞
0
sin (𝜔𝜏) = 0, (11)

which implies

𝜔
6
+ 𝐷
3
𝜔
4
+ 𝐷
2
𝜔
2
+ 𝐷
1
= 0, (12)

where

𝐷
3
= 𝑝
2

2
− 2𝑝
1
,

𝐷
2
= 𝑝
1
− 2𝑝
2
𝑝
0
,

𝐷
1
= 𝑝
2

0
− 𝑞
2

0
.

(13)

Let 𝑧 = 𝜔2; (12) can be written as

ℎ (𝑧) = 𝑧
3
+ 𝐷
3
𝑧
2
+ 𝐷
2
𝑧 + 𝐷

1
. (14)

Δ is defined as Δ = 𝐷
2

3
− 3𝐷
2
. Hence, we can get a solution

𝑧
∗
= (√Δ − 𝐷

3
)/3 of ℎ(𝑧).

Lemma 3. Suppose that (𝐻
2
) 𝑝
2
> 0, 𝑝

1
𝑝
2
− (𝑝
0
+ 𝑞
0
) > 0;

𝑝
0
+ 𝑞
0
> 0 is satisfied.

(1) If one of the following holds: (a) Δ > 0, 𝑧∗ < 0; (b)
Δ > 0, 𝑧∗ > 0; and ℎ(𝑧∗) > 0, then all roots of (7) have
negative real parts when 𝜏 ∈ [0, 𝜏

0
) and 𝜏

0
is a certain

positive constant.
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(2) If the conditions (a) and (b) are not satisfied, then all
roots of (7) have negative real parts for all 𝜏 ≥ 0.

Proof. When 𝜏 = 0, (7) can be reduced to

𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + (𝑝

0
+ 𝑞
0
) = 0. (15)

By the Routh-Hurwitz criterion, all roots of (9) have
negative real parts and only if

𝑝
2
> 0, 𝑝

1
𝑝
2
− (𝑝
0
+ 𝑞
0
) > 0, 𝑝

0
+ 𝑞
0
> 0. (16)

Considering (14), it is easy to see from the characters of
cubic algebraic equation that ℎ(𝑧) is a strictly monotonically
increasing function if Δ ≤ 0. If Δ > 0, 𝑧∗ < 0 or Δ > 0,
𝑧
∗
> 0 and ℎ(𝑧∗) > 0, then ℎ(𝑧) has no positive root. Hence,

(7) has no purely imaginary roots for any 𝜏 > 0, which implies
that the positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑉
∗
) of system

(1) is absolutely stable. Therefore, the following theorem on
the stability of positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑉
∗
) can be

easily obtained.

Theorem 4. Assume that (𝐻
1
) and (𝐻

2
) are satisfied, and

Δ > 0, 𝑧∗ < 0 or Δ > 0, 𝑧∗ > 0. and ℎ(𝑧
∗
) > 0,

then the positive equilibrium𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑉
∗
) of system (1) is

absolutely stable. Namely, 𝐸∗(𝑆∗, 𝐼∗, 𝐷∗, 𝑉∗) is asymptotically
stable for any time delay 𝜏 > 0.

Assume that the coefficients in ℎ(𝑧) satisfy the condition
as follows:

(𝐻
3
) Δ > 0, 𝑧

∗
> 0, ℎ(𝑧∗) < 0.

According to lemma, it is proved that (14) has at least a
positive root 𝜔

0
, namely, the characteristic equation (7) has a

pair of purely imaginary roots ±𝑖𝜔
0
.

In view of the fact that (7) has a pair of purely imaginary
roots ±𝑖𝜔

0
, the corresponding 𝜏

𝑘
> 0 is given by eliminating

sin(𝜔𝜏) in (10) and (11):

𝜏
𝑘
=
1

𝜔
0

arccos[
𝑝
2
𝜔
2

0
− 𝑝
0

𝑞
0

] +
2𝑘𝜋

𝜔
0

(𝑘 = 0, 1, 2, . . .) .

(17)

Let 𝜆(𝜏) = V(𝜏) + 𝑖𝜔(𝜏) be the root of (7), so that V(𝜏
𝑘
) = 0

and 𝜔(𝜏
𝑘
) = 𝜔
0
are satisfied when 𝜏 = 𝜏

𝑘
.

Lemma 5. Suppose ℎ(𝑧
0
) ̸=0. If 𝜏 = 𝜏

0
, then ±𝑖𝜔

0
is a pair of

purely imaginary roots of (7). In addition, if the conditions in
Lemma 3 are satisfied, then

𝑑(Re 𝜆)
𝑑𝜏

𝜏=𝜏𝑘

> 0. (18)

This signifies that there exists at least one eigenvalue with
positive real part for 𝜏 > 𝜏

𝑘
. Differentiating both sides of (7)

with respect to 𝜏, it can be written as

(
𝑑𝜆

𝑑𝜏
)

−1

=
(3𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
) − 𝑞
0
𝜏𝑒
−𝜆𝜏

𝑞
0
𝜆𝑒−𝜆𝜏

. (19)

Therefore,

sgn [𝑑Re 𝜆
𝑑𝜏

]

𝜏=𝜏𝑘

= sgn[Re(𝑑𝜆
𝑑𝜏
)

−1

]

𝜆=𝑖𝜔0

= sgn
𝜔
2

0

Λ
(3𝜔
4

0
+ 2𝐷
2
𝜔
2

0
+ 𝐷
1
)

= sgn
𝜔
2

0

Λ
{ℎ

(𝜔
2

0
)}

= sgn {ℎ (𝜔2
0
)} ,

(20)

where Λ = 𝑞
0
𝜔
2

0
; then it follows the hypothesis (𝐻

3
) that

ℎ

(𝜔
2

0
) ̸=0.

Hence,

𝑑(Re 𝜆)
𝑑𝜏

𝜏=𝜏𝑘

> 0. (21)

The root of characteristic equation (7) crosses from left to
right on the imaginary axis as 𝜏 continuously varies from a
value less than 𝜏

𝑘
to one greater than 𝜏

𝑘
according to Routh’s

theorem. Therefore, according to the Hopf bifurcation theorem
[20] for functional differential equations, the transverse condi-
tion holds and the conditions for Hopf bifurcation are satisfied
at 𝜏 = 𝜏

𝑘
. Then the following result can be obtained.

Theorem 6. Suppose that the conditions (𝐻
1
) and (𝐻

2
) are

satisfied.

(1) The equilibrium𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑉
∗
) is locally asymptot-

ically stable when 𝜏 ∈ [0, 𝜏
0
), but unstable when 𝜏 > 𝜏

0
.

(2) If condition (𝐻
3
) is satisfied, the system will

undergo Hopf bifurcation at the positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑉
∗
)when 𝜏 = 𝜏

𝑘
(𝑘 = 0, 1, 2, . . .), where

𝜏
𝑘
is defined by (17).

This implies that when time delay 𝜏 < 𝜏
0
, the system will

stabilize at its infection equilibrium point, which is beneficial
to implement a containment strategy; when 𝜏 ≥ 𝜏

0
, the system

will be unstable and worms cannot be effectively controlled.

4. A Delayed Worm Propagation Model with
Constant Quarantine

Enlightened by the methods in disease control, quarantine
is selected as an effective way to diminish the speed of
worm propagation.The current quarantine strategy generally
depends on the intrusion detection system, which can be
classified into two categories: misuse and anomaly intrusion
detection [12]. As the delayed model cannot make sure of
the system stable and controlled, quarantine strategies should
be taken into consideration to further control the worm
propagation.

4.1. Using Constant Quarantine Strategy to Model a Delayed
Worm Propagation. Misuse intrusion detection system
builds a database with the feature of known attack behaviors.
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Figure 2: State transition diagram of constant quarantine model.

The system can recognize the invaders once their behaviors
agree with one of the databases and accurately detect known
worms [12]. By applying misuse intrusion detection system
for its relatively high accuracy, we add a new state called
quarantine state (𝑄) [9], but only infected hosts will be
quarantined. 𝑄(𝑡) denote the number of quarantined hosts
at time 𝑡. Unlike the quarantine strategy against epidemics,
the implementation of constant quarantine strategy depends
on the misuse intrusion detection system. Infected hosts will
be quarantined at rate 𝛼 which depends on the performance
of intrusion detection system and network devices. When
infected hosts are quarantined, they will get rid of worms
and get patched at rate 𝛿. The state transition diagram of
constant quarantine model is given in Figure 2.

4.2. Description of Constant Quarantine Model. According to
the definitions above in the paper, the differential equations
of constant quarantine model are given as follows:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) + 𝜇𝑉 (𝑡) − ]𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝐼 (𝑡) − 𝛼𝐼 (𝑡) − ]𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷(𝑡) ,

𝑑𝑄 (𝑡)

𝑑𝑡
= 𝛼𝐼 (𝑡) − 𝛿𝑄 (𝑡) − ]𝑄 (𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡 − 𝜏) + 𝛿𝑄 (𝑡) − 𝜇𝑉 (𝑡) + (1 − 𝑝) ]𝑁 − ]𝑉 (𝑡) .

(22)

Similarly,

𝑆 (𝑡) + 𝐼 (𝑡) + 𝐷 (𝑡) + 𝑄 (𝑡) + 𝑉 (𝑡) = 𝑁. (23)

4.3. Stability of the Positive Equilibrium and
Bifurcation Analysis

Theorem 7. The system has a unique positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
)when it satisfies the following condition:

(𝐻
1
) 𝛽𝑁(𝜇 + 𝑝])/𝜇(𝜇 + ])(𝛾 + 𝛼 + ]) > 1, where 𝑆∗ =
(𝛾 + 𝛼 + ])/𝛽, 𝐷∗ = 0, 𝑄∗ = (𝛼/(𝛿 + ]))𝐼∗, 𝑉∗ =
((𝛾 + 𝛼 + ])/𝜇)(]/𝛽 + 𝐼∗) − 𝑝]𝑁/𝜇.

Proof. For system (22), if all the derivatives on the left of equal
sign of the system are set to 0, which implies that the system
becomes stable, we can get

𝑆 =
𝛾 + 𝛼 + ]

𝛽
,

𝐷 = 0,

𝑄 =
𝛼

𝛿 + ]
𝐼
∗
,

𝑉 =
𝛾 + 𝛼 + ]

𝜇
(
]
𝛽
+ 𝐼
∗
) −

𝑝]𝑁
𝜇

.

(24)

Substituting the value of each variable in (24) for each of
(23), then we can get

𝑆
∗
+

𝛼

𝛿 + ]
𝐼
∗
+ 𝐼
∗
+
𝛾 + 𝛼 + ]

𝜇
(
]
𝛽
+ 𝐼
∗
) −

𝑝]𝑁
𝜇

= 𝑁.

(25)

Obviously, if (𝐻
1
) is satisfied, (25) has one unique pos-

itive root 𝐼∗, and there is one unique positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) of system (22). The proof is com-

pleted.

According to (23), 𝑉(𝑡) = 𝑁 − 𝑆(𝑡) − 𝐼(𝑡) − 𝐷(𝑡) − 𝑄(𝑡);
thus, system (22) can be simplified to

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 + 𝜇 (𝑁 − 𝑆 (𝑡) − 𝐼 (𝑡) − 𝐷 (𝑡) − 𝑄 (𝑡))

− 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝑆 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) − ]𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷 (𝑡) ,

𝑑𝑄 (𝑡)

𝑑𝑡
= 𝛼𝐼 (𝑡) − 𝛿𝑄 (𝑡) − ]𝑄 (𝑡) .

(26)

The Jacobi matrix of (26) about 𝐸∗(𝑆∗, 𝐼∗, 𝐷∗, 𝑄∗) is given by

𝐽 (𝐸
∗
) = (

−𝛽𝐼
∗
− ] − 𝜇 −𝛽𝑆

∗
− 𝜇 −𝜇 −𝜇

𝛽𝐼
∗

𝛽𝑆
∗
− 𝛾 − 𝛼 − ] 0 0

0 𝛾 − 𝛾𝑒
−𝜆𝜏

−] 0

0 𝛼 0 −𝛿 − 𝜇

) .

(27)

The characteristic equation of that matrix can be obtained by

𝑃 (𝜆) + 𝑄 (𝜆) 𝑒
−𝜆𝜏

= 0. (28)
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Let
𝑝
3
= 𝑎 + 𝑏 + 𝑐 + ],

𝑝
2
= 𝑎𝑏 + 𝑐] + (𝑎 + 𝑏) (] + 𝑐) + 𝛽𝐼∗𝑑,

𝑝
1
= 𝑎𝑏 (] + 𝑐) + ]𝑐 (𝑎 + 𝑏) + 𝛽𝐼∗ (𝑑 (] + 𝑐) + 𝜇 (𝛼 + 𝛾)) ,

𝑝
0
= 𝑎𝑏𝑐] + 𝛽𝐼∗ (𝑐𝑑] + 𝛼𝜇] + 𝑐𝜇𝛾) ,

𝑞
1
= −𝜇𝛾𝛽𝐼

∗
,

𝑞
0
= −𝛽𝜇𝑐𝛾𝐼

∗
,

(29)

where
𝑎 = 𝛽𝐼

∗
+ ] + 𝜇,

𝑏 = 𝛾 + 𝛼 + 𝜇 − 𝛽𝑆
∗
,

𝑐 = 𝛿 + ],

𝑑 = 𝛽𝑆
∗
+ 𝜇

(30)

then

𝑃 (𝜆) = 𝜆
4
+ 𝑝
3
𝜆
3
+ 𝑝
2
𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
,

𝑄 (𝜆) = 𝑞
1
𝜆 + 𝑞
0
.

(31)

Theorem 8. The positive equilibrium 𝐸
∗ is locally asymptoti-

cally stable without time delay, if the following holds:

(𝐻
2
) 𝑝
3
> 0, 𝑑

1
> 0, 𝑑

2
> 0, (𝑝

1
+ 𝑞
1
)𝑑
1
− 𝑝
3

2
𝑑
2
> 0,

where
𝑑
1
= 𝑝
3
𝑝
2
− (𝑝
1
+ 𝑞
1
) ,

𝑑
2
= 𝑝
0
+ 𝑞
0
.

(32)

Proof. If 𝜏 = 0, (28) reduces to

𝜆
4
+ 𝑝
3
𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑝
1
+ 𝑞
1
) 𝜆 + (𝑝

0
+ 𝑞
0
) = 0. (33)

According to Routh-Hurwitz criterion, all the roots of
(33) have negative real parts.Therefore, it can be deduced that
the positive equilibrium 𝐸

∗ is locally asymptotically stable
without time delay. The proof is completed.

Obviously, 𝜆 = 𝑖𝜔 (𝜔 > 0) is a root of (28). After
separating the real and imaginary parts, it can be written as

𝜔
4
− 𝑝
2
𝜔
2
+ 𝑝
0
+ 𝑞
1
𝜔 sin (𝜔𝜏) + 𝑞

0
cos (𝜔𝜏) = 0,

−𝑝
3
𝜔
3
+ 𝑝
1
𝜔 + 𝑞
1
𝜔 cos (𝜔𝜏) − 𝑞

0
sin (𝜔𝜏) = 0,

(34)

which implies

𝜔
6
+ 𝐷
3
𝜔
4
+ 𝐷
2
𝜔
2
+ 𝐷
1
= 0, (35)

where

𝐷
3
= 𝑝
2

3
− 2𝑝
2
,

𝐷
2
= 𝑝
2

2
+ 2𝑝
0
− 2𝑝
1
𝑝
3
,

𝐷
1
= 𝑝
2

1
− 𝑞
2

1
− 2𝑝
2
𝑝
0
.

(36)

Let 𝑧 = 𝜔2, and (35) can be written as

ℎ (𝑧) = 𝑧
3
+ 𝐷
3
𝑧
2
+ 𝐷
2
𝑧 + 𝐷

1
. (37)

Δ is defined as Δ = 𝐷
2

3
− 3𝐷
2
. Hence, we can get a solution

𝑧
∗
= (√Δ − 𝐷

3
)/3 of ℎ(𝑧).

Lemma 9. Suppose that (𝐻
2
)𝑝
3
> 0, 𝑑

1
> 0, and 𝑑

2
> 0;

(𝑝
1
+ 𝑞
1
)𝑑
1
− 𝑝
3

2
𝑑
2
> 0 is satisfied.

(1) If one of the following holds: (a) Δ > 0, 𝑧∗ < 0; (b)
Δ > 0, 𝑧∗ > 0 and ℎ(𝑧∗) > 0. Then all roots of (28)
have negative real parts when 𝜏 ∈ [0, 𝜏

0
), 𝜏
0
is a certain

positive constant.
(2) If the conditions (a) and (b) are not satisfied, then all

roots of (28) have negative real parts for all 𝜏 ≥ 0.

Proof. when 𝜏 = 0, (28) can be reduced to

𝜆
4
+ 𝑝
3
𝜆
3
+ 𝑝
2
𝜆
2
+ (𝑝
1
+ 𝑞
1
) 𝜆 + (𝑝

0
+ 𝑞
0
) = 0. (38)

By the Routh-Hurwitz criterion, all roots of (33) have
negative real parts and only if

𝑝
3
> 0, 𝑑

1
> 0, 𝑑

2
> 0, (𝑝

1
+ 𝑞
1
) 𝑑
1
− 𝑝
3

2
𝑑
2
> 0.

(39)

Considering (37), it is easy to see from the characters of
cubic algebraic equation that ℎ(𝑧) is a strictly monotonically
increasing function if Δ ≤ 0. If Δ > 0, 𝑧∗ < 0 or Δ > 0, 𝑧∗ > 0
and ℎ(𝑧∗) > 0, then ℎ(𝑧) has no positive root. Hence, (28) has
no purely imaginary roots for any 𝜏 > 0, which implies that
the positive equilibrium𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) of system (22)

is absolutely stable. Therefore, the following theorem on the
stability of positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) can be

easily obtained.

Theorem 10. Assume that (𝐻
1
) and (𝐻

2
) are satisfied, and

Δ > 0, 𝑧∗ < 0 orΔ > 0, 𝑧∗ > 0, and ℎ(𝑧∗) > 0, then the positive
equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) of system (22) is absolutely

stable. Namely, 𝐸∗(𝑆∗, 𝐼∗, 𝐷∗, 𝑄∗, 𝑉∗) is asymptotically stable
for any time delay 𝜏 > 0.

Assume that the coefficients in ℎ(𝑧) satisfy the condition as
follows:

(𝐻
3
) Δ > 0, 𝑧

∗
> 0, ℎ(𝑧

∗
) < 0.

According to lemma, it is proved that (37) has at least a
positive root 𝜔

0
, namely, the characteristic equation (28) has a

pair of purely imaginary roots ±𝑖𝜔
0
.

In view of the fact that (28) has a pair of purely imaginary
roots ±𝑖𝜔

0
, the corresponding 𝜏

𝑘
> 0 is given by eliminating

sin(𝜔𝜏) in (34):

𝜏
𝑘

=
1

𝜔
0

arccos [
𝑞
0
(𝑝
2
𝜔
2

0
− 𝜔
4

0
− 𝑝
0
) + 𝑞
1
𝜔
0
(𝑝
3
𝜔
3

0
− 𝑝
1
𝜔
0
)

𝑞2
1
𝜔2
0
+ 𝑞2
0

]

+
2𝑘𝜋

𝜔
0

(𝑘 = 0, 1, 2, . . .) .

(40)
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Let 𝜆(𝜏) = V(𝜏) + 𝑖𝜔(𝜏) be the root of (28), so that V(𝜏
𝑘
) = 0

and 𝜔(𝜏
𝑘
) = 𝜔
0
are satisfied when 𝜏 = 𝜏

𝑘
.

Lemma 11. Suppose ℎ(𝑧
0
) ̸=0. If 𝜏 = 𝜏

0
, then ±𝑖𝜔

0
is a pair of

purely imaginary roots of (28). In addition, if the conditions in
Lemma 9 are satisfied, then

𝑑 (Re 𝜆)
𝑑𝜏

𝜏=𝜏𝑘

> 0. (41)

This signifies that there exists at least one eigenvalue with
positive real part for 𝜏 > 𝜏

𝑘
. Differentiating both sides of (28)

with respect to 𝜏, it can be written as

(
𝑑𝜆

𝑑𝜏
)

−1

=
(4𝜆
3
+ 3𝑝
3
𝜆
2
+ 2𝑝
2
𝜆 + 𝑝
1
) + 𝑞
1
𝑒
−𝜆𝜏

− (𝑞
1
𝜆 + 𝑞
0
) 𝜏𝑒
−𝜆𝜏

(𝑞
1
𝜆 + 𝑞
0
) 𝜆𝑒−𝜆𝜏

.

(42)
Therefore

sgn [𝑑Re 𝜆
𝑑𝜏

]

𝜏=𝜏𝑘

= sgn[Re(𝑑𝜆
𝑑𝜏
)

−1

]

𝜆=𝑖𝜔0

= sgn
𝜔
2

0

Γ
(4𝜔
6

0
+ 3𝐷
3
𝜔
4

0
+ 2𝐷
2
𝜔
2

0
+ 𝐷
1
)

= sgn
𝜔
2

0

Γ
{ℎ

(𝜔
2

0
)}

= sgn {ℎ (𝜔2
0
)} ,

(43)

where Γ = 𝑞
1

2
𝜔
0

4
+ 𝑞
0
𝜔
0

2; then it follows the hypothesis (𝐻
3
)

that ℎ(𝜔
0

2
) ̸=0.

Hence,
𝑑(Re 𝜆)
𝑑𝜏

𝜏=𝜏𝑘

> 0. (44)

The root of characteristic equation (28) crosses from left to
right on the imaginary axis as 𝜏 continuously varies from a
value less than 𝜏

𝑘
to one greater than 𝜏

𝑘
according to Routh’s

theorem. Therefore, according to the Hopf bifurcation theorem
for functional differential equations, the transverse condition
holds and the conditions for Hopf bifurcation are satisfied at
𝜏 = 𝜏
𝑘
. Then the following result can be obtained.

Theorem 12. Suppose that the conditions (𝐻
1
) and (𝐻

2
) are

satisfied.
(1) Equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) is locally asymp-

totically stable when 𝜏 ∈ [0, 𝜏
0
), but unstable when

𝜏 > 𝜏
0
.

(2) If condition (𝐻
3
) is satisfied, the system will

undergo Hopf bifurcation at the positive equilibrium
𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝐷
∗
, 𝑄
∗
, 𝑉
∗
) when 𝜏 = 𝜏

𝑘
(𝑘 = 0, 1, 2, . . .),

where 𝜏
𝑘
is defined by (40).

This implies that when time delay 𝜏 < 𝜏
0
, the system will

be stable at its infection equilibrium point so that it is easy to

control and eliminate worms; when 𝜏 ≥ 𝜏
0
, the system will be

unstable but the threshold 𝜏
0
is greater than delayed model’s,

which illustrates the model with constant quarantine strategy
gets stable easier and the users have more time to remove
worms.

5. A Delayed Worm Propagation Model with
Impulsive Quarantine

5.1. Using Impulsive Quarantine Strategy to Model a Delayed
Worm Propagation. Although constant quarantine strategy
based on misuse intrusion detection does improve vaccina-
tion effect, the system is out of control and bifurcation is
still not eliminated. In addition, the system fails to detect
unknown worms and worm-variants. Anomaly intrusion
detection system is of help in detecting these kinds of worm.
However, the system is accompanied by high false-positive
rate. To solve the problem of constant quarantine strategy
and anomaly intrusion detection system, we proposed a
novel quarantine strategy called impulsive quarantine based
on a hybrid intrusion detection system, which can make
up for the gaps existing in the two systems. Impulsive
quarantine is implemented as follows: constant quarantine of
infected hosts found by the misuse detection is performed,
while susceptible and infected hosts detected by anomaly
detection are quarantined in an impulsive way every 𝑇 units
of time. The advantages of this strategy lie in both avoiding
a high false-positive rate caused by anomaly detection and
making up for the insufficiency of the misuse detection
in detecting unknown worms [12]. Impulsive quarantine
strategy adds two transitions as a result of the influence of
the anomaly detection method. The susceptible and infected
hosts detected by anomaly detectionmethod are quarantined
at rate 𝜃

1
and 𝜃
2
, respectively. Other settings are identical to

those of constant quarantine model.
The state transition diagram of impulsive quarantine

model is given in Figure 3.

5.2. Description of Impulsive Quarantine Model. The com-
plete differential equations of the impulsive quarantinemodel
are showed as follows:
𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝑆 (𝑡) + 𝜇𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝐼 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡 − 𝜏) + 𝛿𝑄 (𝑡) − ]𝑉 (𝑡) − 𝜔𝑉 (𝑡) + (1 − 𝑝) ]𝑁,

𝑑𝑄 (𝑡)

𝑑𝑡
= 𝛼𝐼 (𝑡) − 𝛿𝑄 (𝑡) − ]𝑄 (𝑡) ,

𝑡 ̸=𝑛𝑇,

𝑆 (𝑛𝑇
+
) = 𝑆 (𝑛𝑇

−
) − 𝜃
1
𝑆 (𝑛𝑇
−
) ,

𝐼 (𝑛𝑇
+
) = 𝐼 (𝑛𝑇

−
) − 𝜃
2
𝐼 (𝑛𝑇
−
) ,
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Figure 3: State transition diagram of impulsive quarantine model.

𝐷(𝑛𝑇
+
) = 𝐷 (𝑛𝑇

−
) ,

𝑄 (𝑛𝑇
+
) = 𝑄 (𝑛𝑇

−
) + 𝜃
1
𝑆 (𝑛𝑇
−
) + 𝜃
2
𝐼 (𝑛𝑇
−
) ,

𝑉 (𝑛𝑇
+
) = 𝑉 (𝑛𝑇

−
) ,

𝑡 = 𝑛𝑇,

(45)

where 𝑛 = 0, 1, 2, . . ., the impulsive strategy is applied at a
discrete time 𝑡 = 𝑛𝑇, and 𝑇 is the interval time of impulsive
quarantine. 𝑛𝑇+ is the moment at which we apply the 𝑛th
impulsive quarantine measure, whereas 𝑛𝑇− is the time just
before the 𝑛th impulsive quarantine measure is applied.

5.3. Global Attractivity of Infection-Free Periodic Solution. We
have

𝑆 (𝑡) + 𝐼 (𝑡) + 𝐷 (𝑡) + 𝑄 (𝑡) + 𝑉 (𝑡) = 𝑁. (46)

Since 𝑄(𝑡) = 𝑁 − 𝑆(𝑡) − 𝐼(𝑡) − 𝐷(𝑡) − 𝑉(𝑡), then system (45)
can be rewritten as

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝑆 (𝑡) + 𝜇𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝐼 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡 − 𝜏) + 𝛿 (𝑁 − 𝑆 (𝑡) − 𝐼 (𝑡) − 𝐷 (𝑡) − 𝑉 (𝑡))

− 𝜇𝑉 (𝑡) − ]𝑉 (𝑡) + (1 − 𝑝) ]𝑁,

𝑑𝑄 (𝑡)

𝑑𝑡
= 𝛼𝐼 (𝑡) − 𝛿𝑄 (𝑡) − ]𝑄 (𝑡) ,

𝑡 ̸=𝑛𝑇,

𝑆 (𝑛𝑇
+
) = 𝑆 (𝑛𝑇

−
) − 𝜃
1
𝑆 (𝑛𝑇
−
) ,

𝐼 (𝑛𝑇
+
) = 𝐼 (𝑛𝑇

−
) − 𝜃
2
𝐼 (𝑛𝑇
−
) ,

𝐷 (𝑛𝑇
+
) = 𝐷 (𝑛𝑇

−
) ,

𝑄 (𝑛𝑇
+
) = 𝑄 (𝑛𝑇

−
) + 𝜃
1
𝑆 (𝑛𝑇
−
) + 𝜃
2
𝐼 (𝑛𝑇
−
) ,

𝑉 (𝑛𝑇
+
) = 𝑉 (𝑛𝑇

−
) ,

𝑡 = 𝑛𝑇.

(47)

We may see that the first four equations in (47) are
independent of the fourth equation. Therefore, the fourth
equation can be omitted without loss of generality [21].
Hence, model (47) can be rewritten as

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝑆 (𝑡) + 𝜇𝑉 (𝑡) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝐼 (𝑡) − 𝛾𝐼 (𝑡) − 𝛼𝐼 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡 − 𝜏) + 𝛿 (𝑁 − 𝑆 (𝑡) − 𝐼 (𝑡) − 𝐷 (𝑡) − 𝑉 (𝑡))

− 𝜇𝑉 (𝑡) − ]𝑉 (𝑡) + (1 − 𝑝) ]𝑁,

𝑡 ̸=𝑛𝑇,

𝑆 (𝑛𝑇
+
) = 𝑆 (𝑛𝑇

−
) − 𝜃
1
𝑆 (𝑛𝑇
−
) ,

𝐼 (𝑛𝑇
+
) = 𝐼 (𝑛𝑇

−
) − 𝜃
2
𝐼 (𝑛𝑇
−
) ,

𝐷 (𝑛𝑇
+
) = 𝐷 (𝑛𝑇

−
) ,

𝑉 (𝑛𝑇
+
) = 𝑉 (𝑛𝑇

−
) ,

𝑡 = 𝑛𝑇.

(48)

In the following, we introduce some notations and definitions
in subsequent sections.

Let

𝑅
+
= [0,∞) ,

𝑅
4

+
= {𝑍 ∈ 𝑅

4
: 𝑍 ≥ 0} .

(49)

Denote 𝑓 = (𝑓
1
, 𝑓
2
, 𝑓
3
, 𝑓
4
)
𝑇, the map defined by the right

hand of the four equations of system (48).
Let𝐶 be the space of continuous functions on [−𝜔, 0]with

uniform norm.The initial conditions for (48) are

(𝜙
1
(𝜁) , 𝜙

2
(𝜁) , 𝜙

3
(𝜁) , 𝜙

4
(𝜁)) ∈ 𝐶

+
= 𝐶 ([−𝜔, 0] , 𝑅

4

+
) ,

𝜙
𝑖
(0) > 0, 𝑖 = 1, 2, 3, 4.

(50)
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Definition 13. System (48) is said to be permanent if there
exists a compact regionΩ

0
∈ intΩ such that every solution of

system (48) with initial conditions (50) will eventually enter
and remain in regionΩ

0
.

The solution of system (48) is a piecewise continuous
function 𝑍 : 𝑅

+
→ 𝑅
4

+
, 𝑍(𝑡) is continuous on [𝑛𝑇, (𝑛 + 1)𝑇],

𝑘 ∈ 𝑍
+
, and 𝑍(𝑛𝑇

+
) = lim

𝑡→𝑛𝑇
+𝑍(𝑡) exists. Obviously

the smooth properties of 𝑓 guarantee the global existence
and uniqueness of solutions of system (48) for detail on
fundamental properties of impulsive systems [22, 23]. The
following lemma is obtained.

Lemma 14. Suppose 𝑍(𝑡) is a solution of system (48) with
initial conditions (50), then 𝑍(𝑡) ≥ 0 for all 𝑡 ≥ 0.

Denote

Ω = {(𝑆, 𝐼, 𝐷, 𝑉) ∈ 𝑅
4
| 𝑆 ≥ 0, 𝐼 ≥ 0, 𝐷 ≥ 0, 𝑉 ≥ 0} . (51)

It is easy to show that Ω is positively invariant with respect to
(48) with initial conditions (48).

Lemma 15 (see [21, 22]). Consider the following equation:

̇𝑥(𝑡) = 𝑎
1
𝑥 (𝑡 − 𝜔) − 𝑎

2
𝑥 (𝑡) , (52)

where 𝑎
1
, 𝑎
2
, 𝜔 > 0; 𝑥(𝑡) > 0 for −𝜔 ≤ 𝑡 ≤ 0.

We have

(i) if 𝑎
1
< 𝑎
2
, then lim

𝑡→∞
𝑥(𝑡) = 0,

(ii) if 𝑎
1
> 𝑎
2
, then lim

𝑡→∞
𝑥(𝑡) = +∞.

The proofs of case (i) and case (ii) are given in Theorems 2.1
[24] and 2.2 [25], respectively.

We first demonstrate the existence of the infection-free
periodic solution, in which infected individuals are entirely
absent from the population permanently, that is, 𝐼(𝑡) = 0 for
all 𝑡 ≥ 0. Under this condition, the 𝑆,𝐷, and 𝑉must satisfy

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑝]𝑁 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − ]𝑆 (𝑡) + 𝜇𝑉 (𝑡) ,

𝑑𝐷 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡) − 𝛾𝐼 (𝑡 − 𝜏) − ]𝐷(𝑡) ,

𝑑𝑉 (𝑡)

𝑑𝑡
= 𝛾𝐼 (𝑡 − 𝜏) + 𝛿 (𝑁 − 𝑆 (𝑡) − 𝐼 (𝑡) − 𝐷 (𝑡) − 𝑉 (𝑡))

− 𝜇𝑉 (𝑡) − ]𝑉 (𝑡) + (1 − 𝑝) ]𝑁,

𝑡 ̸=𝑛𝑇,

𝑆 (𝑛𝑇
+
) = 𝑆 (𝑛𝑇

−
) − 𝜃
1
𝑆 (𝑛𝑇
−
) ,

𝐷 (𝑛𝑇
+
) = 𝐷 (𝑛𝑇

−
) ,

𝑉 (𝑛𝑇
+
) = 𝑉 (𝑛𝑇

−
) ,

𝑡 = 𝑛𝑇.

(53)

First we show below that the susceptible population 𝑆

oscillates with period 𝑇, in synchronization with the periodic

pulse vaccination. From the first and fourth equations of system
(53), we have that

𝑆 (𝑡) = 𝑝𝑁 + (𝑆
∗
− 𝑝𝑁) 𝑒

−](𝑡−𝑛𝑇)
, 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇

(54)

is globally asymptotically stable, where

𝑆
∗
=
𝑝𝑁 (1 − 𝜃

1
) (1 − 𝑒

−]𝑇
)

(1 − (1 − 𝜃
1
) 𝑒−]𝑇)

. (55)

From the second and fifth equations of system (53), we have
lim
𝑡→∞

𝐷(𝑡) = 0. Further, it follows from the third and sixth
equations of system (53) that lim

𝑡→∞
𝑉(𝑡) = ([(1−𝑝)]+𝛿]𝑁−

𝛿𝑆(𝑡))/(𝛿 + ] + 𝜇).

Therefore (𝑆(𝑡), 0, 0, ([(1−𝑝)]+𝛿]𝑁−𝛿𝑆(𝑡))/(𝛿+]+𝜇)) is
the infection-free periodic solution of system (48). In the rest
of this section, we establish the global attractivity condition
for the infection-free periodic solution.

Theorem 16. The infection-free periodic solution (𝑆(𝑡), 0,
0, ([(1−𝑝)]+𝛿]𝑁−𝛿𝑆(𝑡))/(𝛿+]+𝜇)) of system (48) is globally
attractive provided that 𝑅∗ < 1, where

𝑅
∗
=

𝛽𝑝𝑁 (1 − 𝜃
1
) (1 − 𝑒

−]𝑇
)

(] + 𝛾 + 𝛼) (1 − (1 − 𝜃
1
) 𝑒−𝜇𝑇)

. (56)

Proof. Since 𝑅∗ < 1, we can choose 𝜀
0
> 0 sufficiently small

such that

𝛽(
𝑝𝑁(1 − 𝜃

1
) (1 − 𝑒

−]𝑇
)

(1 − (1 − 𝜃
1
) 𝑒−]𝑇)

+ 𝜀
0
) < ] + 𝛾 + 𝛼. (57)

It follows from the first equation of (48) that

̇𝑆(𝑡) ≤ 𝑝]𝑁 − ]𝑆 (𝑡) + 𝜇𝑉 (𝑡) . (58)

Thus we consider the comparison impulsive differential
system

̇𝑥(𝑡) = 𝑝]𝑁 − ]𝑥 (𝑡) , 𝑡 ̸=𝑛𝑇

𝑥 (𝑛𝑇
+
) = (1 − 𝜃

1
) 𝑥 (𝑛𝑇

−
) , 𝑡 = 𝑛𝑇.

(59)

According to [26], we obtain that the periodic solution of
system (59)

𝑥 (𝑡) = 𝑆 (𝑡) = 𝑝𝑁 + (𝑆
∗
− 𝑝𝑁) 𝑒

−](𝑡−𝑛𝑇)
,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇

(60)

is globally asymptotically stable, where

𝑥
∗
= 𝑆
∗
=
𝑝𝑁 (1 − 𝜃

1
) (1 − 𝑒

−]𝑇
)

1 − (1 − 𝜃
1
) 𝑒−]𝑇

. (61)

Let (𝑆(𝑡), 𝐼(𝑡), 𝐷(𝑡), 𝑉(𝑡)) be the solution of system (48)
with initial values (50) and let 𝑆(0+) = 𝑆

0
> 0, 𝑥(𝑡) be

the solution of system (59) with initial value 𝑥(0+) = 𝑆
0
.
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In view of the comparison theorem in impulsive differential
equations [18, 19], there exists an integer 𝑛

1
> 0 such that

𝑆 (𝑡) < 𝑥 (𝑡) < 𝑥 (𝑡) + 𝜀
0
, 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇, (62)

that is,

𝑆 (𝑡) < 𝑆 (𝑡) + 𝜀
0
≤
𝑝𝑁 (1 − 𝜃

1
) (1 − 𝑒

−]𝑇
)

(1 − (1 − 𝜃
1
) 𝑒−]𝑇)

+ 𝜀
0
≜ 𝑆
𝑀
,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇, 𝑛 > 𝑛
1
,

(63)

where 𝑆(𝑡) is defined (55). Further, from the second equation
of system (48), we know that (63) implies

̇𝐼(𝑡) ≤ 𝛽𝑆
𝑀
𝐼 (𝑡) − (] + 𝛾 + 𝛼) 𝐼 (𝑡) , 𝑡 > 𝑛𝑇, 𝑛 > 𝑛

1
. (64)

Consider the following comparison differential system:

𝑦 (𝑡) = 𝛽𝑆
𝑀
𝑦 (𝑡) − (] + 𝛾 + 𝛼) 𝑦 (𝑡) , 𝑡 > 𝑛𝑇, 𝑛 > 𝑛

1
.

(65)

From (57), we have 𝛽𝑆
𝑀
< ] + 𝛾 + 𝛼. According to Lemma 15

we have lim
𝑡→∞

𝑦(𝑡) = 0.
Let (𝑆(𝑡), 𝐼(𝑡), 𝐷(𝑡), 𝑉(𝑡)) be the solution of system (48)

with initial values (50) and 𝐼(0+) = 𝐼
0
> 0; let 𝑦(𝑡) be the

solution of system (65) with initial value 𝑦(0+) = 𝐼
0
. Consider

the second and the sixth equations of system (48); according
to Lemma 15, we have lim sup

𝑡→∞
𝐼(𝑡) ≤ lim sup

𝑡→∞
𝑦(𝑡) =

0. Incorporating into the positivity of 𝐼(𝑡), we know that

lim
𝑡→∞

𝐼 (𝑡) = 0. (66)

Therefore, for any 𝜀
1
> 0 (sufficiently small), there exists an

integer 𝑛
2
> 𝑛
1
such that 𝐼(𝑡) < 𝜀

1
for all 𝑡 > 𝑛

2
𝑇.

For the third equation of system (48), we have

̇𝐷(𝑡) < 𝛾𝜀
1
− ]𝐷 (𝑡) for 𝑡 > 𝑛

2
𝑇. (67)

Consider comparison differential equation, for 𝑡 > 𝑛
2
𝑇,

̇𝑧(𝑡) = 𝛾𝜀
1
− ]𝑧 (𝑡) . (68)

It is easy to see that 𝑧(𝑡) = 𝛾𝜀
1
/]. According to the comparison

theorem, there is a 𝑛
3
> 𝑛
2
such that, for all 𝑡 > 𝑛

3
𝑇,

𝐷 (𝑡) ≤
𝛾𝜀
1

]
+ 𝜀
1
. (69)

Therefore, in view of the positivity of 𝐷(𝑡) and sufficiently
small 𝜀

1
, it follows from (69) that

lim
𝑡→∞

𝐷 (𝑡) = 0. (70)

Moreover, for the first equation of system (48), we have

̇𝑆(𝑡) ≥ 𝑝]𝑁 − (] + 𝛽𝜀
1
) 𝑆 (𝑡) for 𝑛 > 𝑛

3
𝑇. (71)

Consider the following equations, for 𝑡 > 𝑛𝑇 and 𝑛 > 𝑛
3
:

̇𝑢(𝑡) = 𝑝]𝑁 − (] + 𝛽𝜀
1
) 𝑢 (𝑡) , 𝑡 ̸=𝑛𝑇,

𝑢 (𝑛𝑇
+
) = (1 − 𝜃

1
) 𝑢 (𝑛𝑇

−
) , 𝑡 = 𝑛𝑇.

(72)

According to [27], we know that the periodic solution of
system (72)

�̃� (𝑡) =
𝑝]𝑁
] + 𝛽𝜀

1

+ (𝑢
∗
−

𝑝]𝑁
] + 𝛽𝜀

1

) 𝑒
−(]+𝛽𝜀1)(𝑡−𝑛𝑇),

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇

(73)

is globally asymptotically stable, where

𝑢
∗
=

𝑝]𝑁
] + 𝛽𝜀

1

(1 − 𝜃
1
) (1 − 𝑒

−(]+𝛽𝜀1)𝑇)

(1 − (1 − 𝜃
1
) 𝑒−(]+𝛽𝜀1)𝑇)

. (74)

According to the comparison theorem in impulsive differen-
tial equations, there exists an integer 𝑛

4
> 𝑛
3
such that

𝑆 (𝑡) > �̃� (𝑡) − 𝜀
1
, 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) , 𝑛 > 𝑛

4
. (75)

Since that 𝜀
1
is arbitrarily small, consider (63) and (75); we

have that

𝑆 (𝑡) = 𝑝𝑁(1 −
𝜃
1
(1 − 𝑒

−]𝑇
)

1 − (1 − 𝜃
1
) 𝑒−]𝑇

𝑒
−](𝑡−𝑛𝑇)

) ,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇

(76)

is globally attractive, that is,

lim
𝑡→∞

𝑆 (𝑡) = 𝑆 (𝑡) . (77)

For the fourth equation of system (48), we have

𝑉 (𝑡) ≤ [𝛿 + (1 − 𝑝) ]]𝑁 − 𝛿𝑆 (𝑡) − 𝛿𝑉 (𝑡) − 𝜇𝑉 (𝑡) − ]𝑉 (𝑡)
(78)

for 𝑡 > 𝑛
4
𝑇.

It is easy to obtain that there is a 𝑛
5
> 𝑛
4
such that

𝑉 (𝑡) <
[𝛿 + (1 − 𝑝) ]]𝑁 − 𝛿𝑆 (𝑡)

𝛿 + ] + 𝜇
+ 𝜀
1

for 𝑡 > 𝑛
5
𝑇. (79)

In a similar way, there is a 𝑛
6
> 𝑛
5
:

𝑉 (𝑡) >
[𝛿 + (1 − 𝑝) ]]𝑁 − 𝛿𝑆 (𝑡)

𝛿 + ] + 𝜇
− 𝜀
1

for 𝑡 > 𝑛
6
𝑇. (80)

Since that 𝜀
1
is arbitrarily small, consider (79) and (80); we

have
lim
𝑡→∞

𝑉 (𝑡)

= ( [𝛿 + (1 − 𝑝) ]]𝑁

−𝛿𝑝𝑁(1 −
(𝜃
1
(1 − 𝑒

−]𝑇
))

(1 − (1 − 𝜃) 𝑒−]𝑇)
𝑒
−](𝑡−𝑛𝑇)

))

× (𝛿 + ] + 𝜇)−1.

(81)

It follows from (66), (70), (77), and (81) that the infection-free
periodic solution (𝑆(𝑡), 0, 0, ([(1−𝑝)]+𝛿]𝑁−𝛿𝑆(𝑡))/(𝛿+]+𝜇))
is globally attractive. The proof of Theorem 16 is complete.
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Figure 4: Worm propagation trend of model with time delay when
𝜏 < 𝜏
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6. Numerical and Simulation Experiments

In order to simulate the worm propagation in the real world,
the parameters in the experiments are practical values. The
Slammerworm is selected for experiments [10]. 750,000 hosts
are picked as the population size, and the worm’s average
scan rate is 3300 per second. The worm infection rate can be
calculated as𝛼 = 𝜂𝑁/232 = 0.5763, whichmeans that average
0.5763 hosts of all the hosts can be scanned by one host. The
infection rate is𝛽 = 3300/232 = 0.00000077, the recovery rate
of infectious hosts is 𝛾 = 0.19, the quarantine rate is 𝛼 = 0.15,
and the removal rate of quarantined hosts is 𝛿 = 0.04. The
rest of the parameters are 𝑝 = 0.9, 𝜇 = 0.031, and ] = 0.026.
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Figure 6: Number of infected hosts when 𝜏 is changed.

At the beginning, there are 50 infected hosts, while others are
susceptible.The following numerical analyses are supplement
for the above results.

6.1. Numerical Experiments of Worm Propagation Model
with Time Delay in Vaccination. According to the above
parameters, as shown in Figure 4, the curves of three kinds
of host in system (1) are presented when 𝜏 = 5 < 𝜏

0
. All of the

three kinds of host get stable quickly, which illustrates that𝐸∗
is asymptotically stable. It implies that the number of infected
hosts stays very low and can be predicted. Further strategies
can be developed and utilized to eliminate worms.

However, when time delay 𝜏 gets increased and then reach
the threshold 𝜏

0
, 𝐸∗ will lose its stability and a bifurcation

will occur. Figure 5 shows the susceptible, infected, and
vaccinated hosts in system (1) when 𝜏 = 100 > 𝜏

0
. In this

figure, we can clearly see that the number of infected hosts
will outburst after a short period of peace and repeat again
and again but not in the same period, which means that it is
hard to predict the number of infected hosts and to develop
further strategies to eliminate worms.

In order to see the influence of time delay, 𝜏 is set to a
different value each time with other parameters remaining
the same. Figure 6 shows the number of infected hosts in the
same coordinate with time delays 𝜏 = 5, 𝜏 = 15, 𝜏 = 45, and
𝜏 = 90. Initially, the four curves are overlapped, which means
that time delay has little effect in the initial stage of worm
propagation. With time delay increasing, the curve begins
to oscillate. When time delay passes through the threshold
𝜏
0
, the infecting process gets unstable. Meanwhile, it can be

discovered that the amplitude and period of the number of
infected hosts get increased.

In Figure 7, the projection of the phase portrait of system
(1) in (𝑆, 𝐼, 𝑉)-space is presented when 𝜏 = 35 and 𝜏 = 45. In
Figure 8, when 𝜏 = 35, it is clear that the curve converges
to a fixed point which suggests that the system is stable.
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Figure 7: The projection of the phase portrait of system (1) in (𝑆, 𝐼, 𝑉)-space.
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Figure 8: The phase portrait of susceptible hosts 𝑠(𝑡) and infected hosts 𝐼(𝑡).

When 𝜏 = 45, the curve converges to a limit circle which
implies that the system is unstable. Figure 9 shows bifurcation
diagram with 𝜏 from 1 to 100; Hopf bifurcation will occur
when 𝜏 = 𝜏

0
= 38.

6.2. Numerical Experiments of Worm Propagation Model with
Constant Quarantine Strategy. In order to show the impact of

constant quarantine strategy, we analyze the numerical results
after adopting the constant quarantine strategy. Further, we
compare them with the worm propagation model with time
delay.

Figure 10 shows the curves of three kinds of host in system
(22) when 𝜏 = 5 < 𝜏

0
. All of the three kinds of host get stable

quickly, which illustrates that 𝐸∗ is asymptotically stable.
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When time delay 𝜏 gets increased and then reach the
threshold 𝜏

0
, 𝐸∗ will lose its stability and a bifurcation

will occur. Figure 11 shows the susceptible, infected, and
vaccinated hosts in system (22) when 𝜏 = 100 > 𝜏

0
. In this

figure, we can clearly see that the number of infected hosts
will outburst after a short period of peace and repeat again
and again but the range is much less than delayed model’s. It
implies that the constant quarantine strategy can’t eliminate
the Hopf bifurcation, but it can reduce the max number of
infected hosts.

In Figure 12, when 𝜏 = 100 > 𝜏
0
, it is clear that

the maximum of infected hosts is diminished sharply from
220,000 to 38,000, which illustrates that constant quaran-
tine strategy has much better inhibition impact than single
vaccination. However, constant quarantine strategy cannot
eliminate theHopf bifurcation; the system is still unstable and
out of control.

Figure 13 shows the projection of the phase portrait of
system (22) in (𝑆, 𝐼, 𝑉)-space when 𝜏 = 40 and 𝜏 = 55. In
Figure 14, when 𝜏 = 40, it is clear that the curve converges to
a fixed point which suggests that the system is stable. When
𝜏 = 55, the curve converges to a limit circle which implies that
the system is unstable. Figure 15 shows bifurcation diagram
with 𝜏 from 1 to 90; we find that Hopf bifurcation will occur
when 𝜏 = 𝜏

0
= 46. The threshold is greater than delayed

model’s, which illustrates the model gets stable easier and the
users have more time to remove worms.

6.3. Numerical Experiments of Worm Propagation Model
with Impulsive Quarantine Strategy. The paper performs
the numerical experiments and compares the results with
constant quarantine model after using impulsive quarantine
strategy. The interval time of impulsive quarantine is set
𝑇 = 10. The susceptible and infected hosts detected by the
anomaly intrusion detection method are quarantined at rate
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Figure 13: The projection of the phase portrait of system (22) in (𝑆, 𝐼, 𝑉)-space.
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Figure 14: The phase portrait of susceptible hosts 𝑆(𝑡) and infected hosts 𝐼(𝑡).

𝜃
1
= 0.00002315 and 𝜃

2
= 0.6, respectively. Other parameters

are the same as constant quarantine model.
Figure 16 shows the curves of four kinds of host when 𝜏 =

5 < 𝜏
0
. All of the four kinds of host get stable more quickly,

which illustrates that 𝐸∗is asymptotically stable. After using
impulsive quarantine strategy, Figure 17 shows the curves of
three kinds of hosts when 𝜏 = 100 > 𝜏

0
. All kinds of hosts

get stable within 4 hours, which implies that Hopf bifurcation
has been eliminated thoroughly. In Figure 18, the number of
infected hosts has been shown without quarantine, adopt-
ing quarantine strategy, and impulsive quarantine strategy,
respectively. It is clear that the number of infected hosts is

almost 0 after using the impulsive quarantine strategy, which
is even much less than model using constant quarantine
strategy. The result means that the impulsive quarantine
strategy works well. Thus, the system will be stable and
controlled so that the worm will not break out again.

6.4. Simulation Experiments. The discrete-time simulation is
an expanded version of Zou’s program [8] simulating Code
Red worm propagation. The system in our simulation exper-
iment consists of 750,000 hosts that can reach each other
directly, which is consistent with the numerical experiments,
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0
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and there is no topology issue in our simulation. At the
beginning of simulation, 50 hosts are randomly chosen to be
infected and the others are all susceptible. In the simulation
experiments, the implement of transition rates of the model
is based on probability. Under the propagation parameters
of the Slammer worm, some simulation experiments are
performed. Figure 19 shows that numerical and simulation
curve of infected hosts match well when using the constant
quarantine strategy and Figure 20 shows that numerical and
simulation curve of infected hosts match well after using the
impulsive quarantine strategy, whatever the value of 𝜏 is.

7. Conclusions

By considering that time delay leads to Hopf bifurcation
so that the worm propagation system will be out of con-
trol, this paper proposes two quarantine strategies: constant
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Figure 18: Comparison of infected hosts without quarantine,
adopting constant quarantine strategy and impulsive quarantine
strategy, respectively, when 𝜏 > 𝜏
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.

quarantine and impulsive quarantine strategy to control the
stability of worm propagation. Through theoretical analysis
and simulation experiments, the following conclusions can be
derived.

(1) In order to accord with actual facts in the real
world, a worm propagation model with time delay
in vaccination is constructed. The critical time delay
𝜏
0
where Hopf bifurcation appears is obtained. When

time delay 𝜏 < 𝜏
0
, the worm propagation system

will stabilize at its infection equilibrium point, which
is beneficial to implement a containment strategy to
eliminate the worm completely. When time delay 𝜏 ≥
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Figure 19: Comparison of numerical and simulation curve of the infected hosts of constant quarantine model.
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Figure 20: Comparison of numerical and simulation curve of the infected hosts of impulsive quarantine model.

𝜏
0
, Hopf bifurcation appears, implying that the system

will be unstable and the worm cannot be effectively
controlled.

(2) Constant quarantine strategy based on misuse IDS
has only some inhibition impact.Through theoretical
analysis, the threshold 𝜏

0
is greater than delayed

model’s so that the users have more time to clean
worms. Nevertheless, constant quarantine strategy
cannot eliminate bifurcation.

(3) Impulsive quarantine strategy is proposed, which can
both make up for the gaps existing in the misuse

and anomaly IDS and eliminate bifurcation.Through
theoretical analysis and numerical experiments, the
numerical results match theoretical ones well, which
fully support our analysis.

Furthermore, various factors can affect worm propaga-
tion. The paper focuses on analyzing the influence of time
delay. Other impact factors to worm propagation will be a
major emphasis of our future research.
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Notations

𝑁: Total number of hosts in the network
𝑆(𝑡): Number of susceptible hosts at time 𝑡
𝐼(𝑡): Number of infected hosts at time 𝑡
𝐷(𝑡): Number of delayed hosts at time 𝑡
𝑄(𝑡): Number of quarantined hosts at time 𝑡
𝑉(𝑡): Number of vaccinated hosts at time 𝑡
𝛽: Infection rate
𝛾: Removal rate of infected hosts
𝜇: Rate from vaccinated to susceptible hosts
]: Birth and death rates
𝑝: Birth ratio of susceptible hosts
𝛼: Quarantine rate
𝛿: Removal rate of quarantined hosts
𝑇: The interval time of impulsive quarantine
𝜃
1
: Quarantine rate of susceptible hosts using

impulsive quarantine
𝜃
2
: Quarantine rate of infected hosts using

impulsive quarantine
𝜏: Time delay of detecting and removing

worms.
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This paper investigates the disturbance attraction domain estimation of saturated Markov jump systems with truncated Gaussian
process. The aim is to estimate the disturbance domain of attraction so that the state is maintained in a neighbour around the
origin by a state feedback controller regardless of bounded disturbance. The problem is formulated as parameter-dependent linear
matrix inequalities (LMIs).The optimal disturbance attraction domain is obtained through searching formost appropriate auxiliary
parameters in the defined domain. A numerical example is presented to show the potential application of the results.

1. Introduction

For a system subject to abrupt structural changes, such as
component failures and sudden environmental changes, it
is more appropriate to model it as a Markov jump linear
system (MJS), where the switching behaviour amongst the
different modes of the system is determined by its transition
probability (TP) governed by a finite Markov chain. Many
results related to controller design under the time-invariant
transition probability are now available in the literature (see,
e.g., [1–11] and the references therein). However, the exact
value of the transition probability cannot be easily obtainable.
It is often that only partial information of the transition
probability can be obtained. In this situation, questions on
the stability analysis and controller design (see [12–14]) have
also been addressed. In practice, the environment can be so
complex that the transition probability of the MJS concerned
can only be nonhomogeneous. For example, the delay and
packet loss of a networked control system are distinct among
different working time [15]. Similar phenomena are also
observed in electronic circuits [16] and manpower systems
[17]. For Markov systems with nonhomogeneous transition
probability, some interesting results are now available (see [18,
19]). In [20], a new method for describing the time-varying
transition probability in the statistic sense is proposed. This

approach covers the cases where the transition probabilities
are known either exactly or partially as special cases.

On the other hand, saturation failure is widely encoun-
tered in engineering applications. In the presence of satura-
tion nonlinearity, a linear system will become a highly com-
plex nonlinear system [21]. It is well known that nonlinear
systems do not have, in general, global stability property
[22]. Thus, the problem of attraction domain estimation has
become a fundamentally challenging problem in nonlinear
control theory [23]. For a linear system with saturation, some
results related to attraction domain estimation have been
obtained (see, e.g., [24, 25]). However, it appears that the
estimation of the attraction domain for a saturated Markov
system with nonhomogeneous transition probability has not
been fully investigated.The situationwill becomemuchworse
when there is disturbance to the system, as the behavior of
the system will be significantly degraded by disturbance. The
difficulties mentioned above are the motivation behind this
paper to study the disturbance attraction domain estimation
for discrete-time Markov jump systems with saturation and
subject to truncatedGaussian transition probability. Based on
[20], the aim of this paper is to propose a novel approach to
estimate the optimal domain of attraction which can restrain
the states of system to be within the smallest neighborhood
around the origin under the bounded disturbance.
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The rest of the paper is organized as follows: in Section 2,
the system is defined, Section 3 introduces the concept of
stochastic stability, in Section 4, sufficient conditions for dis-
turbance attraction domain estimation are derived, in Sec-
tion 5, a numerical example is provided to illustrate the
applicability of the results obtained, and Section 6 concludes
the paper.

In the sequel, the notation𝑅
𝑛 stands for an 𝑛-dimensional

Euclidean space; the transpose of the matrix 𝐴 is denoted
by 𝐴

T; 𝐸{⋅} denotes the mathematical statistical expectation
of the stochastic process or vector; 𝜕 is the boundary of a
set; a positive-definite matrix is denoted by 𝑃 > 0; 𝐼 is the
unit matrix with appropriate dimension; and ∗ means the
symmetric term in a symmetric matrix.

2. Problem Statement and Preliminaries

Let (𝑀, 𝐹, 𝑃) be a probability space, where 𝑀, 𝐹, and 𝑃

represent, respectively, the sample space, the 𝜎-algebra of
events, and the probability measure defined on 𝐹. Consider
the following discrete-time Markov jump system:

𝑥
𝑘+1

= 𝐴 (𝑟
𝑘
) 𝑥
𝑘
+ 𝐵 (𝑟

𝑘
) 𝜎 (𝑢
𝑘
) + 𝐸 (𝑟

𝑘
) 𝑤
𝑘
, (1)

where 𝑥
𝑘

∈ 𝑅
𝑛 is the state, 𝑢

𝑘
∈ 𝑅
𝑚 is the input, 𝑤

𝑘
∈

{𝑤
T
𝑘
𝑤
𝑘
≤ 1} is the bounded disturbance of the system, and

𝜎(𝑢
𝑘
) = [𝜎(𝑢

1𝑘
) 𝜎(𝑢
2𝑘
) ⋅ ⋅ ⋅ 𝜎(𝑢

𝑚𝑘
)]
T.

The system is driven by a random process {𝑟
𝑘
, 𝑘 ≥ 0}

which takes values from a finite set Γ = {1, 2, 3, . . . , 𝑠}, where
𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1
= Pr(𝑟

𝑘+1
= 𝑗 | 𝑟

𝑘
= 𝑖, 𝜉

𝑘
) denotes the transition

probability from mode 𝑖 at time 𝑘 to mode 𝑗 at time 𝑘 + 1.
Here, it is assumed that the TP, which is nonhomogeneous,
is approximated by a set of random variables driven by a
truncated Gaussian stochastic process {𝜉

𝑘
, 𝑘 ≥ 0}. The proba-

bility density function (PDF) of 𝜋(𝜉𝑘)
𝑟𝑘𝑟𝑘+1

is given as follows:

𝜋
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1
=

(1/𝜎
𝑟𝑘𝑟𝑘+1

) 𝑓 ((𝜋
(𝜉𝑘)
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) /𝜎
𝑟𝑘𝑟𝑘+1
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𝑟𝑘𝑟𝑘+1

)
,

(2)

where 𝑓(⋅) is the PDF of the standard normal distribution,
𝐹(⋅) is the cumulative density function (CDF) of 𝑓(⋅), and
𝜇
𝑟𝑘𝑟𝑘+1

and 𝜎
2

𝑟𝑘𝑟𝑘+1
are, respectively, the mean and variance of

the Gaussian PDF. More specifically, the TP matrix is given
by

𝜋 =

[
[
[
[
[
[
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, (3)

where 𝑛(𝜇
𝑟𝑘𝑟𝑘+1

, 𝜎
2

𝑟𝑘𝑟𝑘+1
) denotes the PDF of truncated Gaus-

sian TP of 𝑝(𝜋(𝜉𝑘)
𝑟𝑘𝑟𝑘+1

), which is assumed to be known a priori.
It is noted that a larger 𝜎

2 implies a larger degree of
uncertainty related to the TP. In this case, a larger 𝜎2 should

be chosen. Otherwise, a smaller 𝜎
2 should be chosen. The

random variables 𝜋(𝜉𝑘)
𝑟𝑘𝑟𝑘+1

which appeared in the TP matrix are
continuous. Taking the expectation of the random variable
yields
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(4)

Consequently, the desired TP matrix can be obtained as
follows:

Π =

[
[
[
[
[
[
[
[
[
[

[

�̂�
(𝜉𝑘)

11
�̂�
(𝜉𝑘)

12
. . . �̂�
(𝜉𝑘)

1𝑠

�̂�
(𝜉𝑘)

21
�̂�
(𝜉𝑘)

22
. . . �̂�
(𝜉𝑘)

2𝑠

...
... d

...

�̂�
(𝜉𝑘)

𝑠1
�̂�
(𝜉𝑘)

𝑠2
. . . �̂�
(𝜉𝑘)

𝑠𝑠

]
]
]
]
]
]
]
]
]
]

]

, (5)

where ∑𝑠
𝑗
�̂�
(𝜉𝑘)

𝑟𝑘𝑟𝑘+1
= 1, �̂�(𝜉𝑘)

𝑟𝑘𝑟𝑘+1
≥ 0, 1 ≤ 𝑖, and 𝑗 ≤ 𝑠.

To proceed further, we need some preliminaries.

Definition 1. Discrete-time Markov jump system (1) (with
𝑤
𝑘
= 0) is said to be stochastically stable if

lim
T→∞

𝐸{

T
∑

𝑘=0

𝑥
T
𝑘
𝑥
𝑘
| 𝑥
0
, 𝑟
0
} < ∞. (6)

Definition 2. Consider system (1); let ℎ
𝑞𝑖
denote the 𝑞th row

of matrix𝐻
𝑖
. Then

Θ(𝐻
𝑖
) = {𝑥

𝑘
∈ 𝑅
𝑛
:

ℎ
𝑞𝑖
𝑥
𝑘


≤ 1, 𝑞 = 1, 2, . . . , 𝑚} (7)

is a symmetric polyhedron set.

Lemma 3 (see [24]). Given matrices 𝑢
𝑘
∈ 𝑅
𝑚 and V

𝑘
∈ 𝑅
𝑚

for system (1), if |V
𝑘
| < 1, then 𝜎(𝑢

𝑘
) = ∑
2
𝑚

𝑡=1
𝜃
𝑡
(𝑀
𝑡
𝑢
𝑘
+𝑀
−

𝑡
V
𝑘
),

where 0 ≤ 𝜃
𝑡
≤ 1,∑2

𝑚

𝑡=1
𝜃
𝑡
= 1,𝑀

𝑡
, and 𝑡 = 1, . . . , 2

𝑚 are𝑚×𝑚

diagonal matrices whose diagonal elements are either 1 or 0,
and𝑀

−

𝑡
= 𝐼 − 𝑀

𝑡
.

Lemma 4 (see [24]). Given matrices V
𝑘
= 𝐻
𝑖
𝑥
𝑘
for system (1),

if 𝑥
𝑘
∈ Θ(𝐻

𝑖
), that is |V

𝑘
| < 1, then 𝜎(𝐹

𝑖
𝑥
𝑘
) = ∑

2
𝑚

𝑡=1
𝜃
𝑡
(𝑀
𝑡
𝐹
𝑖
+

𝑀
−

𝑡
𝐻
𝑖
)𝑥
𝑘
.

Definition 5. For given symmetric matrices 𝑃
𝑖
> 0, let us

define a mode-dependent ellipsoid invariant set given below:

𝜀 (𝑃
𝑖
, 1) = {𝑥

𝑘
∈ 𝑅
𝑛
: 𝑥

T
𝑘
𝑃
𝑖
𝑥
𝑘
≤ 1} . (8)
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3. Estimation of the Attraction Domain

We first derive the sufficient condition for the estimation of
the attraction domain for the case without disturbance. For
simplicity, we assume that the mode at time instant 𝑘 is 𝑟

𝑘
= 𝑖

and the mode at time instant 𝑘 + 1 is 𝑟
𝑘+1

= 𝑗.

Theorem 6. Consider system (1) with nonhomogeneous TP
matrix (5) under the condition𝑤

𝑘
= 0. Suppose that there exist

a set of symmetric positive definite matrices 𝑃
𝑖
> 0 and 𝐹

𝑖
, 𝐻
𝑖
,

∀𝑖 ∈ Γ, such that

(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))
𝑇

∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

− 𝑃
𝑖
< 0, 𝑡 ∈ [1, 2

𝑚
] ,

(9)

𝜀 (𝑃
𝑖
, 1) ⊂ Θ (𝐻

𝑖
) . (10)

Then the set ∩𝑠
𝑖=1

𝜀(𝑃
𝑖
, 1) is the domain of attraction of the

closed-loop system (1).

Proof. Construct a potential Lyapunov function as

𝑉 (𝑥
𝑘
, 𝑟
𝑘
= 𝑖) = 𝑥

T
𝑘
𝑃
𝑖
𝑥
𝑘

(𝑖 ∈ Γ) . (11)

For system (1), it follows from Lemmas 3 and 4 that

Δ𝑉 (𝑥
𝑘
, 𝑖)

= 𝐸 {𝑉 (𝑥
𝑘+1

, 𝑗)} − 𝑉 (𝑥
𝑘
, 𝑖)

= 𝑥
T
𝑘+1

∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
𝑥
𝑘+1

− 𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘

= 𝑥
T
𝑘
[

[

(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) − 𝑃

𝑖
]

]

𝑥
𝑘

= 𝑥
T
𝑘
Φ
𝑖
(𝑡) 𝑥
𝑘
, 𝑡 ∈ [1, 2

𝑚
] .

(12)

Clearly, condition (9) implies

Δ𝑉 (𝑥
𝑘
, 𝑖) < 0. (13)

Denote 𝛿 = min
𝑡
𝜆min(−Φ𝑖(𝑡)), for all 𝑖 ∈ Γ, where

𝜆min(−Φ𝑖(𝑡)) is the minimal eigenvalue of (−Φ
𝑖
(𝑡)).

Hence,

Δ𝑉 (𝑥
𝑘
, 𝑖) ≤ −𝛿𝑥

T
𝑘
𝑥
𝑘
. (14)

Taking the sum on both sides from 0 to T gives

𝐸{

T
∑

𝑘=0

Δ𝑉 (𝑥
𝑘
, 𝑖)} = 𝐸 {𝑉 (𝑥T+1,T + 1)}

− 𝑉 (𝑥
0
, 𝑟
0
) ≤ −𝛿𝐸{

T
∑

𝑘=0

𝑥
T
𝑘
𝑥
𝑘
} ,

(15)

which implies

lim
T→∞

𝐸{

T
∑

𝑘=0

𝑥
T
𝑘
𝑥
𝑘
} ≤

1

𝛿
𝑉 (𝑥
0
, 𝑟
0
) < ∞. (16)

This completes the proof. ClearlyTheorem 6 implies stochas-
tic stability (see Definition 1).

4. Estimation of Disturbance
Attraction Domain

In this section, we will derive sufficient condition for the
estimation of the attraction domain under bounded distur-
bance. This sufficient condition will ensure that the influence
of disturbance is minimized. To move forward, we assume
that the bounded disturbance satisfies 𝑤T

𝑘
𝑤
𝑘
≤ 1.

Theorem 7. Consider system (1) with nonhomogeneous TP
matrix (5); suppose that there exist symmetric positive definite
matrices 𝑃

𝑖
> 0, and 𝐹

𝑖
,𝐻
𝑖
, for all 𝑖 ∈ Γ, such that

min𝛼, (17)

𝜀 (𝑃
𝑖
, 1) ⊂ 𝛼𝜒

∞
, (18)

(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))
𝑇

∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑖
𝐻
𝑖
))

+
1

1 + 𝜂
(
1 + 𝜂

𝜂
𝜆max (𝐸

𝑇

𝑖
𝑃
𝑗
𝐸
𝑖
) − 1)𝑃

𝑖
< 0,

𝑡 ∈ [1, 2
𝑚
] ,

(19)

ℎ
𝑖𝑞
𝑥

≤ 1, ∀𝑥 ⊂ ∩𝜀 (𝑃

𝑖
, 1) , 𝑖 ∈ Γ, 𝑞 ∈ [1,𝑚] , (20)

where 𝜒
0
is a reference set, 𝑥

0
is an initial state, and 𝛼 > 0 is a

scalar; then the subset ∩𝜏
𝑖=1

𝜀(𝑃
𝑖
, 1) is the disturbance attraction

domain for system (1) which satisfies an optimal disturbance
attenuation performance index 𝛼.

Proof. Consider a candidate Lyapunov function 𝑉(𝑥) =

𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘
. It is required to show that

Δ𝑉
𝑘
= 𝑥

T
𝑘
[

[

(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥)) + 𝐸

𝑖
𝑤
𝑘
)
T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥)) + 𝐸

𝑖
𝑤
𝑘
)]

]

𝑥
𝑘

− 𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘
< 0.

(21)
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Noting that (𝑎 + 𝑏)
T
(𝑎 + 𝑏) ≤ (1 + 𝜂)𝑎

T
𝑎 + (1 + (1/𝜂))𝑏

T
𝑏 and

𝑤
T
𝑘
𝑤
𝑘
≤ 1, it follows that

(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥) + 𝐸

𝑖
𝑤
𝑘
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝜎 (𝐹
𝑖
𝑥) + 𝐸

𝑖
𝑤
𝑘
))

≤ max
𝑡∈[1,2

𝑚
]

𝑥
T
𝑘
(1 + 𝜂) (𝐴

𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) 𝑥
𝑘

+ (1 +
1

𝜂
)𝑤

T
𝑘
𝐸
T
𝑖
∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
𝐸
𝑖
𝑤
𝑘
− 𝑥

T
𝑘
𝑃
𝑖
𝑥
𝑘

≤ max
𝑡∈[1,2

𝑚
]

𝑥
T
𝑘
(1 + 𝜂) (𝐴

𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) 𝑥
𝑘

+ (1 +
1

𝜂
)𝜆max (𝐸

T
𝑖
𝑃
𝑗
𝐸
𝑖
) − 𝑥

T
𝑘
𝑃
𝑖
𝑥
𝑘
.

(22)

To guarantee the attraction domain property for 𝑥
𝑘

∈

∩𝜀(𝑃
𝑖
, 1), it suffices to show that there exists an 𝜂, for all

𝑡 ∈ [1, 2
𝑚
] such that

𝑥
T
𝑘
(1 + 𝜂) (𝐴

𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
))

T

× ∑

𝑗∈Γ

�̂�
𝑖𝑗
𝑃
𝑗
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑡
𝐹
𝑖
+ 𝐷
−

𝑡
𝐻
𝑖
)) 𝑥
𝑘

+ (1 +
1

𝜂
)𝜆max (𝐸

T
𝑖
𝑃
𝑗
𝐸
𝑖
) − 1 < 0.

(23)

Noting that 1 = 𝑥
T
𝑘
𝑃
𝑖
𝑥
𝑘
on 𝜕𝜀(𝑃

𝑖
, 1), (23) is guaranteed by (19).

By (18), the sufficient condition for the optimal disturbance
attenuation performance index 𝛼 is implied. This completes
the proof.

Next, we show how to solve the problem by using LMIs.

Theorem 8. Consider system (1) with nonhomogeneous TP
matrix (5) and let 𝛾 = 𝛼

2 be a scalar; suppose that there exist
symmetric positive definite matrices 𝑄

𝑖
= 𝑃
−1

𝑖
> 0 and 𝑌

𝑖
=

𝐹
𝑖
𝑄
𝑖
, 𝑍
𝑖
= 𝐻
𝑖
𝑄
𝑖
, 𝜂 > 0, and 𝜆 ∈ (0, 𝜂/(1 + 𝜂)), for all 𝑖 ∈ Γ,

such that

min 𝛾, (24)

𝑄
𝑖
− 𝛾 ∗ 𝑅

−1
< 0, (25)

[
[
[
[
[
[
[
[
[
[

[

(
𝜆

𝜂
−

1

1 + 𝜂
)𝑄
𝑖

∗ ∗ ∗

√𝜅1
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑖
𝑌
𝑖
+ 𝐷
−

𝑖
𝑍
𝑖
)) −𝑄

1
∗ ∗

...
... d

...
√𝜅𝑙
𝑖
(𝐴
𝑖
+ 𝐵
𝑖
(𝐷
𝑖
𝑌
𝑖
+ 𝐷
−

𝑖
𝑍
𝑖
)) ∗ ∗ −𝑄

𝑙

]
]
]
]
]
]
]
]
]
]

]

< 0, ∀𝑖 ∈ Γ, 𝑗 ∈ 𝜋
𝑘

𝑗
,

(26)

[
−𝜆 𝐸

𝑇

𝑖

∗ −𝑄
𝑘

] < 0, ∀𝑖 ∈ Γ, 𝑘 ∈ Γ, (27)

[
−1 𝑍

𝑖𝑞

∗ −𝑄
𝑖

] < 0, ∀𝑖 ∈ Γ, 𝑞 ∈ [1,𝑚] , (28)

where 𝜒
0
is a reference set and 𝑥

0
is an initial state; then the

subset ∩𝜏
𝑖=1

𝜀(𝑃
𝑖
, 1) is the disturbance attraction domain for sys-

tem (1) which satisfies an optimal disturbance attenuation
performance index 𝛼.

Proof. Denote 𝛾 = 𝛼
2. Choose an ellipsoid 𝜀(𝑅, 1) as a refer-

ence set. Then condition (26) can be formulated as 𝑅/𝛾 ≤ 𝑃
𝑖
,

which is implied by (25). By applying Schur complement, it is
clear that (18) and (19) follow from (25) and (26), respectively.
Equation (27) implies the existence of 𝜆max. Equation (20) is
equivalent to (28). This completes the proof.

Remark 9. If we choose a polyhedron 𝑥
0
= [𝑥
1

0
, . . . , 𝑥

𝑛

0
]
T (𝑥𝑛
0

is a point) as a reference set inTheorem 8, then condition (22)
is converted into

[
[

[

−
1

𝛼2
∗

𝑥
𝑞

0
−𝑄

]
]

]

< 0, ∀𝑞 ∈ [1, 𝑛] . (29)

5. Illustrative Example

Consider a nonhomogeneous discrete-time jump system
with four modes:

𝐴
1
= [

0.50 −0.30

0.10 0.60
] , 𝐵

1
= [

−0.026

0.247
] ,

𝐸
1
= [

0.0657

0.0582
] , 𝐴

2
= [

0.36 −0.30

0.20 0.50
] ,

𝐵
2
= [

−0.030

0.100
] , 𝐸

2
= [

0.0308

0.0453
] ,

𝐴
3
= [

0.70 −0.25

0.10 0.70
] , 𝐵

3
= [

−0.010

0.320
] ,

𝐸
3
= [

0.0236

0.0292
] , 𝐴

4
= [

0.65 −0.35

0.25 0.65
] ,

𝐵
4
= [

−0.010

0.220
] , 𝐸

4
= [

0.0586

0.0323
] .

(30)

Assume that the PDF matrix to describe the TP matrix in
Table 1 is given by

𝜋
𝑁

=

[
[
[
[
[
[
[
[

[

𝑛 (0.3, 𝜎
2
) 𝑛 (0.2, 𝜎

2
) 𝑛 (0.1, 𝜎

2
) 𝑛 (0.4, 𝜎

2
)

𝑛 (0.3, 𝜎
2
) 𝑛 (0.2, 𝜎

2
) 𝑛 (0.3, 𝜎

2
) 𝑛 (0.2, 𝜎

2
)

𝑛 (0.1, 𝜎
2
) 𝑛 (0.1, 𝜎

2
) 𝑛 (0.5, 𝜎

2
) 𝑛 (0.3, 𝜎

2
)

𝑛 (0.2, 𝜎
2
) 𝑛 (0.2, 𝜎

2
) 𝑛 (0.1, 𝜎

2
) 𝑛 (0.5, 𝜎

2
)

]
]
]
]
]
]
]
]

]

.

(31)

Table 1 shows the obtained TP matrix with 𝜎
2
= 0.01.
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Table 1: Shows the obtained TP matrix with 𝜎
2
= 0.01.

𝜎
2
= 0.01

0.29917 0.19945 0.10248 0.39890
0.29994 0.20006 0.29994 0.20006
0.10495 0.10495 0.49381 0.29629
0.19881 0.19881 0.10559 0.49679

0 0.5

0

0.2

0.4

0.6

−0.5

−0.6

−0.4

−0.2

x
2

x1

Figure 1: Disturbance attraction domain.

ByTheorem 8, the feedback gains are calculated as

𝐹
1
= [2.2177 −3.6435] , 𝐹

2
= [2.7909 −6.7110] ,

𝐹
3
= [3.3680 −3.3769] , 𝐹

4
= [2.9303 −4.9250] .

(32)

Figure 1 shows a state trajectory on the boundary of the dis-
turbance attraction domain under the bounded disturbance
𝑤
𝑘

= 0.5 sin(𝑘). Though the bounded disturbance exists,
the state trajectory is regulated to a small neighbourhood
around the origin.When the disturbance disappears, the state
is driven to the origin as expected (see Figure 2), implying
the stochastic stability. Figure 3 shows a trajectory of mode
evolution. Table 2 shows the optimal disturbance attenuation
index.

6. Conclusions

This paper investigated the design of the disturbance attrac-
tion domain estimation for a class of nonhomogeneous
discrete-time Markov jump systems with saturation and
bounded disturbance. Furthermore, the optimal disturbance
attenuation index is satisfied. The numerical example shows
the applicability of the results obtained as expected. The
results obtained may be extended to the systems with time
delay.
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The sensor nodes in the Wireless Sensor Networks (WSNs) are prone to failures due to many reasons, for example, running out
of battery or harsh environment deployment; therefore, the WSNs are expected to be able to maintain network connectivity and
tolerate certain amount of node failures. By applying fuzzy-logic approach to control the network topology, this paper aims at
improving the network connectivity and fault-tolerant capability in response to node failures, while taking into account that the
control approach has to be localized and energy efficient. Two fuzzy controllers are proposed in this paper: one is Learning-based
Fuzzy-logic Topology Control (LFTC), of which the fuzzy controller is learnt from a training data set; another one is Rules-based
Fuzzy-logic Topology Control (RFTC), of which the fuzzy controller is obtained through designing if-then rules and membership
functions. Both LFTC and RFTC do not rely on location information, and they are localized. Comparing them with other three
representative algorithms (LTRT, List-based, and NONE) through extensive simulations, our two proposed fuzzy controllers have
been proved to be very energy efficient to achieve desired node degree and improve the network connectivity when sensor nodes
run out of battery or are subject to random attacks.

1. Introduction

The advent of Wireless Sensor Networks (WSNs) [1] stim-
ulates a tremendous number of applications, such as forest
monitoring, factory automation, secure installation, and
battlefield surveillance. Unlike other conventional network
devices, the nodes inWSNs aremore likely to be disconnected
from each other. On the one hand, the sensor nodes are
usually battery powered, so they are prone to loss connectivity
due to battery depletion. On the other hand, the sensor
nodes are subject to unpredictable node failures, for example,
deployment in a hostile environment. The WSNs operate
properly only when all nodes are reachable to each other.
Therefore, one of the major concerns when planning WSNs
is to make sure that all nodes in a network are, directly or
indirectly, connected together.

In addition, theWSNs are expected to be able to tolerate a
certain amount of node failures. From the graph theory point
of view, the fault-tolerant problem is a 𝑘-connected network

problem, where 𝑘 indicates that there are at least 𝑘 distinct
paths from one node to any other node. A 𝑘-connected
network is able to be constructed, maintained, or improved
by means of topology control [2–4].

Furthermore, the energy issue is usually taken into
account to make the sensor nodes functional as long as
possible. Any algorithm or control system running in WSNs
nodes is expected to be localized, because the cost of gath-
ering global information is very time consuming and energy
consuming.

In order to study the challenges mentioned above, this
paper aims at developing an energy-efficient adaptive tech-
nique to improve the connectivity by means of adjusting
the communication range under difficult events sensors may
suffer from, such as battery depletion and malicious attacks.
Some computational intelligence algorithms are applied to
WSNs, such as fuzzy-logic, neural networks, and evolutionary
algorithms [5]. The fuzzy-logic control is a very powerful
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technique that helps designers to construct a control system,
regardless of the lack of mathematical models to completely
describe network dynamics. More specifically, by using the
fuzzy-logic controller to adaptively adjust the communica-
tion range of each node, this paper aims at maintaining
desired node degree (namely, the number of neighbors a node
has), thus improving network connectivity and fault-tolerant
capability in response to node failures in WSNs, while at the
same time taking into account that the control approach has
to be localized and energy efficient. In this paper, in the case
that the node degree is characterized by the mathematical
model, the Learning-based Fuzzy-logic Topology Control
(LFTC) is proposed to learn the dynamics to construct a
fuzzy controller; we also propose another fuzzy controller,
named Rules-based Fuzzy-logic Topology Control (RFTC),
which is dependent on a heuristic approach to design the
membership functions and if-then rules. LFTC and RFTC
are both localized, because all information the fuzzy-logic
controllers needed can be obtained from the node itself and
its one-hop neighbor(s).

By comparing LFTC and RFTC with other three algo-
rithms (Local Tree-based Reliable Topology (LTRT) [6], List-
based topology control [7], and NONE) through extensive
simulations, our two proposed fuzzy controllers are proved
to be very energy efficient to improve network connectivity
when node failure occurs (running out of battery and random
attacks). First, due to the close-loop feedback of the control
system, our two proposed approaches are able to trace the
desired node degree as node density changes, while others
are not able to do so; second, the average communication
range, which is proportional to energy consumption, is lower
than other algorithms, implying that our approaches aremore
energy efficient; third, our proposals are totally localized
and the inputs that the fuzzy controller needs are very
easy to obtain; fourth, the simulation results show that our
approaches are able to respond to network dynamics, because
the network is still able to maintain reasonable connectivity
in the presence of random node failures. In short, our
two proposed approaches are able to react to the network
dynamics and outperform other three algorithms.

The main contributions of this paper are summarized as
follows. (1) We have presented two control approaches based
on the fuzzy logic to deal with network connectivity problem
in WSNs. We have first presented the fuzzy controller based
on the training dataset, called Learning-based Fuzzy-logic
Topology Control (LFTC), and then proposed another fuzzy
controller based on designing membership functions and if-
then rules, called Rules-based Fuzzy-logic Topology Control
(RFTC). (2) We have performed extensive simulations to
compare LFTC and RFTC with other algorithms, and also
the comparison between LFTC and RFTC was made. (3)
The simulation results show that our two proposed fuzzy
controllers are proved to be very energy efficient to achieve
desired node degree and improve network connectivity when
the sensor nodes run out of battery and suffer randomattacks.

The rest of this paper is organized as follows. An intro-
duction of related works is provided in Section 2. Section 3
presents our two fuzzy control approaches in detail. In

Section 4, this paper evaluates the proposals by compar-
ing them with other three representative algorithms. The
potential applications of this work are discussed in Section 5.
Section 6 concludes our work.

2. Related Works

The WSNs fault-tolerant and energy problems can be solved
by means of appropriate topology control. For instance,
deploy nodes in specific positions control the number of
nodes deployed in the field or control communication range
or transmission power of each node, and so forth. In a
wireless environment, such as WSNs, adjusting commu-
nication range or transmission power is a very common
approach. From the graph theory point of view, the fault-
tolerant problems are 𝑘-connected network problems. Unfor-
tunately, many of them are proved to be NP-complete or
NP-hard problems even when 𝑘 is very small, which means
that the optimal solutions do not exist. For instance, the
following optimization problems are NP hard: the minimum
number of links required to obtain a 2-connected network
[8], minimizing the power while maintaining 𝑘-connected
network [9], minimizing the number of node placement
for 𝑘-connected network [10], minimizing the number of
relay nodes for 2-connected network [11, 12], and so forth.
Therefore, heuristic algorithms are needed to obtain near-
optimal performance, which is the main goal of this paper.
Some of existing solutions are nonlocalized, so they are very
unlikely to be applied to WSNs due to limited processing
capability of WSNs nodes. Some of other solutions, such as
Local Tree-based Reliable Topology (LTRT) [6] and List-
based topology control [7], are two reprehensive heuristic
localized approaches to achieve desired connectivity. Similar
to LTRT and list-based topology control, our goals are to
propose localized and energy-efficient control algorithms to
manage the communication range, in order to maintain the
network connectivity. Our proposals are evaluated through
computer-based simulation and the simulation scenarios are
relatively realistic, because we considered various network
configurations that may influence the results, for example,
energy dissipation model, undirected links, heterogeneous
network, routing algorithm, random failures, and so forth.

From the graph theory point of view, the conditions of
a network being 𝑘-connected have been studied. The upper
bound of 𝑘 is given by Menger’s theorem [13]: 𝑘 ≤ 2|𝐸|/|𝑉|,
where |𝐸| is the number of links and |𝑉| is the number
of vertices in a graph. The upper bound can be achieved
by constructing the Harary graph. Assuming that all nodes
in a network are randomly and uniformly deployed, the
asymptotical condition that a network is 1-connected with
high probability is the node degree of each node at least
bigger than 0.5193 log 𝑛 as 𝑛 → +∞, where 𝑛 is the total
number of nodes in the network [14]. Once the network is
1-connected with high probability, it is also 𝑘-connected with
high probability [14, 15].

Fuzzy control has been proved to be very effective to
deal with complex nonlinear and time-varying systems, such
as [16] which applies Takagi Sugeno (TS) fuzzy logic for
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Figure 1: Fuzzy-logic control system.

electromagnetic suspension systems. Moreover, the fuzzy
control can integrate with other control techniques; for
example, [17] applies the fuzzy logic system to the sliding
mode control and [18, 19] integrate the fuzzy control with the
proportional integral derivative (PID) technique. Lyapunov
theory is a common approach being used to analyze the
stability of fuzzy controller [20, 21]. Some literatures try to
obtain the optimal controller parameters and analyze the
fuzzy controller’s performance. Reference [22] analyzes the
output feedback controller such that the closed-loop discrete
timeTS fuzzy systemswith time-varying delays are asymptot-
ically stable. Similarly, [23] calculates the asymptotic stability
conditions for the state feedback fuzzy controller. In this
paper, the fuzzy control is applied to address the challenges
in WSNs and the numerical simulations are carried out to
evaluate the proposed approaches.

The fuzzy linguistical input variables can be residual
energy, concentration, and centrality [24]; remaining battery
power, number of neighbors, distance from cluster centroid,
network traffic [25]; residual energy and local distance [26];
distance to base station and residual energy [27]; energy
and traffic load [28]; remaining energy, distance to base
station and node density [29]; consistency, completeness, QoI
from the lower level [30]. The fuzzy outputs could be the
communication range, the competition range to be a cluster
head, or the probability to be a cluster head. In this paper,
the first proposal takes the node degree and the probability
to have that node degree as inputs and the communication
range as fuzzy controller output; in the second approach, we
take the residual energy and the node degree error as inputs
and the incremental of communication range as output.

3. WSNs Topology Control Using Fuzzy Logic

This paper focuses on how to design the fuzzy controller.
Figure 1 shows a typical fuzzy-logic control system. The
“fuzzification” transforms a crisp input variable (e.g., node
degree) into a linguistic variable, for example, high, medium,
and low; the “inference engine” maps the linguistic inputs
onto linguistic outputs based on “if-then” rules; “defuzzifi-
cation” converts the linguistic outputs of inference engine
to crisp variables. Both linguistic input and output are
represented by the membership functions.

Sometimes, a dynamical and distributed network is able
to be characterized bymathematical forms, but itmay happen
that there are no ways to describe a network mathematically.
For the former case, the fuzzy-logic membership functions
and rules can be learnt from those mathematic descriptions;

Training data set

Fuzzy-logic
controller

Sensor CR

ND

NDlost

Prob

Prob0

K ∫eND−
+

−
+

+
+NDref = k

node

Figure 2: Learning-based Fuzzy-logic Topology Control System
(LFTC).

for the latter case, the fuzzy-logic controller could be estab-
lished by a heuristic approach. In this paper, we leverage
both approaches to construct fuzzy-logic controller to control
the communication range of each node, with the aim that
the network maintains desired node degree and improves
the network fault-tolerant capability. Besides, the location
information of sensor nodes is not needed in our fuzzy
controllers, since it is not always available for sensor nodes.

In Section 3.1, we propose a learning-based fuzzy-logic
controller based on neuroadaptive learning technique; in
Section 3.2, a fuzzy-logic controller based on heuristic rules
is proposed. They are both localized controllers, because
all information the fuzzy-logic controllers needed can be
obtained from the node itself and its one-hop neighbor(s).
Throughout this paper, we use following abbreviations.

(i) ND: node degree or number of neighbors a node has.
(ii) NDref : reference ND or desired ND. In this paper,

sometimes we also use 𝑘 to represent NDref .
(iii) NDlost: number of lost neighbor(s).
(iv) 𝑒ND: node degree error 𝑒ND = ND −NDref.
(v) CR: communication range.
(vi) 𝐸: node residual energy.
(vii) BS: base station.

3.1. LFTC: Learning-Based Fuzzy-Logic Topology Control.
Our proposed Learning-based Fuzzy-logic Topology Control
(LFTC) is a localized controller, because all parameters can be
obtained locally by the node itself or one-hop neighbor(s).

3.1.1. Learning-Based Fuzzy-Logic Control System Design.
Figure 2 shows the control system design of LFTC. It is a
PI fuzzy-logic controller. Provided a training dataset, the
fuzzy controller is obtained through neuroadaptive learning
technique.On the one hand, each node can detect the number
of lost neighbor(s) in the network. The fuzzy inputs are
NDref + NDlost and the probability Prob that a node has
NDref + NDlost. On the other hand, Prob is controlled by an
integral controller. The parameter 𝐾 is set to 0.02 if ND ≥

NDref and 0.05 if ND < NDref. Prob0 is 0.8.

3.1.2. Training Dataset. If sensor nodes in WSNs are ran-
domly anduniformly distributed, its node degree distribution
is a Poisson distribution [31].The probability of a node having
𝑁 neighbors is given by (1); therefore the probability that ND
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is bigger than 𝑘 is (2), where 𝑟 is the communication range
and 𝜌 is the node density which is defined as total nodes 𝑛 in
WSNs divided by the area of the deployment field 𝐴; namely,
𝜌 = 𝑛/𝐴. However, in practice the node degree distribution
in WSNs possibly is non-Poisson distribution. For instance,
based on a realistic radio channel fading model, [32] shows
that the degree distribution in WSNs is approximated by a
binomial distribution if the average node degree is low (e.g.,
less than 18). So, we can use (3) to represent the probability
thatND is bigger than 𝑘, where𝑝(𝑟) represents the probability
of two nodes having a link at distance 𝑟, which is given in [32].
In addition, amobilitymodel of sensor nodes can be included
in 𝑝(𝑟) [33]. It must be recalled that NDref = 𝑘 in this paper:

𝑃
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(3)

Equations (2) and (3) can be used to generate training dataset.
The learning process can be performed on this training
dataset afterwards. Define set 𝑘 = {𝑘

1
, 𝑘
2
, . . . , 𝑘

𝑠
}, 𝑟 =

{𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑡
}, and 𝑝 = {𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑤
}, where𝑤 = 𝑠 ⋅ 𝑡. Given

node density 𝜌, according to (2), we have

𝑝
𝑖⋅𝑗

= 𝑓
1
(𝑟
𝑗
, 𝑘
𝑖
) . (4)

Define a 𝑤 × 3 matrix T
𝑤×3

, three elements at row 𝑚 are
formed by (5)

T (𝑚) = [𝑘
𝑖
, 𝑝
𝑖⋅𝑗
, 𝑟
𝑗
] , (5)

where 𝑖, 𝑗 are both integer, 0 < 𝑖 ≤ 𝑡, 0 < 𝑗 ≤ 𝑠, and 𝑚 = 𝑖 ⋅ 𝑗.
Similarly, the training data for binomial distribution can be
obtained from (3).

The matrix T is used as training dataset where the fuzzy-
logic controller can be learnt from. The learning technique
employed in this paper is the adaptive neurofuzzy training
provided by Matlab ANFIS tool. Depending on the network
deployment, the node degree 𝑘 could range from 1 to tens in
order to obtain a wide range training data. Regarding variable
𝑟, it could range from several meters to hundreds meters,
depending on real sensor devices.

The benefit of this approach is that there is no need to
design the membership functions and if-then rules; instead
the membership functions and rules are learnt from the
training dataset.

3.2. RFTC: Rules-Based Fuzzy-Logic Topology Control

3.2.1. Rules-Based Fuzzy-Logic Topology Control System
Design. In this section, we propose another fuzzy logic

controller, called Rules-based Fuzzy-logic Topology Control
(RFTC), because we need to design the if-then rules. Unlike
LFTC, RFTC is shown in Figure 3(a). Here, the fuzzy con-
troller of RFTC is not automatically generated from the train-
ing dataset, and the fuzzy rules andmembership functions are
generated by the heuristic approaches or experiences instead.
The input parameters are different as well. The input variable
probability Prob is replaced by residual energy 𝐸, and 𝑒ND
becomes input. The output is the CR incremental, ΔCR. CR

0

is the initial value of a sensor node, which is random for each
node. This paper leverages “Mamdani” type fuzzy inference
system.

3.2.2. Membership Functions and If-Then Rules. In this paper,
for each input and output, there are three fuzzy sets: high,
medium, and low. Their membership functions are shown in
Figures 3(b), 3(c), and 3(d). Intuitively, if 𝑒ND is high and 𝐸

is high, ΔCR should be low; if 𝑒ND is low, no matter what
𝐸 is, ΔCR should be High, because maintaining the network
connectivity is the top priority.The details of if-then rules are
shown in Table 1.

The design of membership functions and if-then rules
is heuristic. The change of membership functions and if-
then rules has significant impact on the performance. It is
necessary to tune the membership shapes and positions and
change the rules according to different network deployment
strategies and network models.

4. Performance Evaluation

In this section, we evaluate our two fuzzy-logic approaches
with other three localized algorithms by using Matlab. There
are many topology control algorithms/protocols proposed in
the literature. Some of the state-of-the-art topology control
algorithms are Local Tree-based Reliable Topology (LTRT)
[6], Local Minimum Spanning Tree (LMST) [34], and Fault-
tolerant Local Spanning Subgraph (FLSS) [35], which are
similar to each other as they are based on the spanning tree
algorithm. In this paper, we choose LTRT as the represen-
tative algorithm in this category. On the other hand, the
list-based topology control [7] is selected to represent the
algorithm that does not rely on constructing the spanning
tree but utilizes the neighbors’ information. In addition,
we also compare them with the one without any control
approaches or algorithms, which means that the CR is not
changed during the simulation. It is called NONE algorithm
in this paper.

4.1. LTRT: Local Tree-Based Reliable Topology. Local Tree-
based Reliable Topology (LTRT) [6] is a localized algorithm.
Basically, it is a variant of spanning tree algorithm. When
conducting spanning tree algorithm 𝑘 times, the resultant
network is a 𝑘-edge-connected if the original network is at
least 𝑘-edge-connected network. More specifically, it repeat-
edly processes the network 𝑘 times as follows: given a 𝑠-
edge-connected network𝐺(𝑉, 𝐸), where𝑉 is the set of nodes,
𝐸 is the set of links, and 𝑠 ≥ 𝑘. First one of its spanning
tree 𝑇(𝑉, 𝐸

1
) is calculated by a localized algorithm, then all
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Figure 3: Rules-based Fuzzy-logic Topology Control (RFTC).

links in 𝐸
1
from 𝐸 are removed and the resulting network

is denoted as 𝐺(𝑉, 𝐸 − 𝐸
1
). Next time, the same process is

performed on 𝐺(𝑉, 𝐸 − 𝐸
1
). Repeating this process 𝑘 times,

the resultant network will be 𝐺(𝑉, 𝐸−𝐸
1
−𝐸
2
− ⋅ ⋅ ⋅ − 𝐸

𝑘
). The

final 𝑘-edge-connectivity network is formed by combining all
trees together; that is, 𝐺(𝑉, 𝐸

1
+ 𝐸
2
+ ⋅ ⋅ ⋅ + 𝐸

𝑘
). The final CR

of each node is selected from themaximumCR that connects
to its neighbors in 𝐺(𝑉, 𝐸

1
+ 𝐸
2
+ ⋅ ⋅ ⋅ + 𝐸

𝑘
).

The LTRT requires that the original network is at least a
𝑘-edge-connected network, and it requires the location infor-
mation of its neighbors. LTRT needs that each node runs at
itsmaximumCRbefore it starts running the algorithm. LTRT
has been compared with Cone-Based distributed Topology
Control CBTC(𝛼) [36] and Fault-tolerant Local Spanning
Subgraph (FLSS

𝑘
) [35]. FLSS

𝑘
is a near optimal algorithm

with high complexity. The simulation results of LTRT show
that LTRT achieves comparable performance as that of FLSS

𝑘
,

but at a much lower cost.

4.2. List-Based Topology Control. List-based topology control
[7] is a cooperative algorithm. It is called list based because
the change of CR relies on the list of its neighbors. Each
node does not change its CR (increases or decreases) until
its neighbors require its CR to be changed. In other words,
each node is able to ask for its neighbors to change their
CR when it needs them to do so. If a node has more
neighbors than it needs, it will request the closer neighbors to
change their CR, and other neighbors will remain their CR.

Table 1: Fuzzy-logic if-then rules.

𝑒ND
E

High Medium Low
High Low Medium Medium
Medium Medium Medium Low
Low High High High

For instance, if node 𝑢 wants its ND to be 4, it broadcasts
a request message. All nodes within its CR will receive the
request, and they change their CR to reach node 𝑢. If there
are more than 4 nodes that can reach 𝑢, only 4 nodes closer
to 𝑢 finally increase their CR, and other nodes will notmodify
their CR.

The list-based topology control is a localized algorithm,
but it needs the location information of its neighbors as well,
because the length of CR needed is calculated according to
their location information.

4.3. Network Model and Configurations. Before starting the
simulation, we first introduce the network model and config-
urations.

(i) Training dataset can be obtained according to differ-
ent networkmodels. In this paper, we employ the disk
model, which means that CR is modeled as a disk
with radius 𝑟. A link exists between two distinct nodes
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only when they are both in each other’s CR; thus,
all links are undirected. All nodes are randomly and
uniformly deployed in a 100 × 100m2 field; therefore
only (2), rather than (3), is used in the fuzzy-logic
leaning process.

(ii) All nodes in the field are stationary after the deploy-
ment.

(iii) Each node is capable of adjusting its CR ranging from
10m to 30m. In addition, the initial CR of each node
is a random value chosen from [10, 30]m in order to
simulate heterogeneous WSNs in terms of CR.

(iv) There is a special node in the network called base
station (BS) located at the center of the field.

(v) Each node transmits sensor data to BS periodically.
Each node updates its CR according to different
control approaches or algorithms after transmitting
800000 bits packages. It is called one “round” simula-
tion. Note that 800000 bits packages are not necessary
to be transmitted at one time.They can be fragmented
into many small packages.

(vi) The routing algorithm is the shortest distance to BS.
The simulation is terminated when BS no longer
receives packages.

(vii) The energy dissipation model is the same as [27].
Equations (6) and (7) represent power consumed
when a node transmits/receives a 𝐿 bits package
to/from another node at distance 𝑑. Constant 𝐸elec =

50 nJ/bit and 𝜖amp = 100 pJ/bit/m2 are related to
the circuit and antenna design of sensor nodes. Each
node is charged with 1 J energy at the beginning of
simulation. Nodes stop sending or receiving packages
when there is no battery left:

𝐸tx = 𝐿 × 𝐸elec + 𝐿 × 𝜖amp × 𝑑
2
, (6)

𝐸rcv = 𝐿 × 𝐸elec. (7)

(viii) Apart from running out of battery, in order to
simulate random attacks or damage by malicious
people or nodes, a configurable parameter called
failure probability is introduced in the simulation.
Each node experiences identical failure probability at
each round.

4.4. Simulations and Discussions. Simulations are divided
into two parts. In the first part, we only consider the effect
of the topology control approaches or algorithms on the
initial network topology. In other words, we only observe the
topology changes after all nodes are deployed without any
data transmission in the network.Therefore, some configura-
tions in Section 4.3 are not applicable to this simulation part,
such as the energy dissipation model, the routing algorithm,
and the failure model. In the second part, we simulate the
networks with packages being sent at each node. The main
differences between two parts are in the second simulation
part, the energy of each node will be decreasing, and some

of the nodes may run out of battery during the simulations.
Particularly, the relay nodes deplete energy faster. As a result,
the links between nodes are dynamic. Because 𝐸 is one
of the inputs for RFTC, the energy status has an impact
on the controller output. Besides, the failure probability
also influences the connections among nodes. Therefore, the
second part simulation is a more dynamic scenario.

For each part, the deployment area is fixed but the
number of nodes deployed varies from 30 to 75 nodes to
change the node density. Since the deployment is random, 50
different networks are generated for every algorithmwith the
same configurations (e.g., same number of nodes and failure
probability). Obtained results are the average of 50 networks.

4.4.1. Topology Control on Initial Network. Figures 4(a), 4(b),
and 4(c) show the average node degree, which is calculated
by the sum of the node degrees of all nodes divided by the
number of nodes in a network. As mentioned in Section 4.3,
the link between two nodes is undirected. A node connected
by a directed link is not counted as a neighbor. We observe
that our proposed two approaches, LFTC and RFTC, are able
to trace the reference 𝑘 = 2, 3, 4 as the number of nodes
deployed in the field increases. But Figure 4(d) shows that the
network is unable to trace 𝑘 = 5 when the node number is
less than 60. Because the maximum CR is limited, it is less
likely that each node has node degree at least 5 if the network
density is not high enough. On the contrary, other algorithms
are unable to trace the desired 𝑘. LTRT has the highest ND,
because it is the most aggressive algorithm, which needs each
node to run at maximum CR before it starts running LTRT.
Higher average ND is good for the network connectivity but
also introduces higher signal inferences.

It is worth noting that LFTC and RFTC are very close to
each other in Figures 4(a), 4(b), and 4(c), but in Figure 4(d)
LFTC demonstrates better performance at tracing the desired
𝑘 than RFTCwhen the nodes deployed are less than 60. LFTC
manifests better adaptivity than RFTC in response to the
network dynamics. As we mentioned in Section 3.2, RFTC
has to tune the control parameters to adapt the network
dynamics, but the control parameters are the same for RFTC
in the simulations.

As shown in (6), energy consumption is propositional
to the squared distance between a transmitter and a
receiver. Similar to the way of evaluating LTRT [6], we use
average CR (CRavg), average maximum CR (CRmax), and
Energy Expended Ratio (EER) (defined as EER = 100 ×

(CRavg/CRmax)%) to evaluate network energy consumption.
Figures 5, 6, and 7 illustrate the average CR and average
maximum CR, and its EER when 𝑘 = 3, respectively. The
CRavg of LFTC, RFTC, and LTRT decreases as the number of
nodes increases, but the network running list-base algorithm
and NONE, the CRavg does not change to a great extent.They
are expected results because

(1) for LFTC, RFTC, and LTRT, if there are more nodes
deployed, it indicates that the node density becomes
higher. Therefore, the lower CR can obtain desired
𝑘 neighbors. In other words, energy consumption
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(a) 𝑘 = 2
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(b) 𝑘 = 3
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Figure 4: Average node degree with different 𝑘.

is higher when the network is sparse, while energy
consumption is lower when the network is dense,

(2) for the algorithm NONE, because the CR does not
change and the initial CR randomly chosen from
[10, 30]m; therefore its CRavg is always about 20m,

(3) for the list-base algorithm, a node can ask for other
nodes, which are not its neighbors but within its
CR, to increase their CR, but the maximum CR
between any two nodes is limited by maximum CR
between them. For instance, nodes 𝑢 and V have
communication ranges of 15m and 20m, respectively.
The node V may need 𝑢 to increase CR to reach V;
however, themaximumbetween 𝑢 and V is impossible
bigger than maximum between them, that is, 20m.
In other words, the node CR can increase but the
incremental is limited.

As far as the average energy is concerned, we conclude
that the energy consumption of LFTC and RFTC is always
lower than LTRT regardless of the node density, and LFTC
and RFTC outperform list-based and NONE after the num-
ber of nodes higher than 40. LFTC is slightly better than
RFTC. As far as the most power consumption node is taken
into account, as shown in Figure 6, LFTC has the lowest
maximum CR. It indicates that the most power consuming
node running LFTC in a network has the lowest power
consumption than running other algorithms. EER in Figure 7
shows the same trend as Figure 5. We expect that EER is low.
RFTC maintains lowest EER than other algorithms. LFTC is
higher than RFTC due to the maximums being lower than
RFTC, as shown in Figure 6.

In short, the simulations performed in this section only
focus on the network connectivity and corresponding energy
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consumption. The simulation results imply that our two
proposals (LFTC and RFTC) are able to maintain the desired
node degree, which perfectly shows the effectiveness of the
feedback control loops, while the resulting node degree are
higher than expected when using other conventional meth-
ods. On the other hand, from the energy consumption point
of view, our proposalsmanifest lower energy consumption on
the resulting networks than other algorithms.

4.4.2. Topology Control onNetwork with Random Failures. In
this section, we evaluate the network performance when the
nodes send and receive sensor data periodically. Moreover,
we consider not only nodes running out of battery, but also
nodes that are damaged on purpose. The node damage is
modeled by introducing random failures at each round. In
the simulation, there are 60 nodes deployed in the field. Since
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Figure 7: Energy expended ratio (EER) (𝑘 = 3).

each node leaves the network randomly at each round, NDavg
is calculated in a different way. For any node 𝑖 in the network,
let ND at round 𝑗 be denoted as ND(𝑖, 𝑗), and let round(𝑖)
be the number of rounds before node 𝑖 runs out of battery
or is attacked. Average ND of node 𝑖, denoted as NDavg(𝑖), is
calculated by the sum of ND at each round divided by the
number of rounds for node 𝑖, as shown in (8). The NDavg of
a specific network is the average of NDavg(𝑖) for all nodes, as
shown in (9), where 𝑛 is the total number of nodes deployed:

NDavg (𝑖) =
∑

round(𝑖)
𝑗=1

ND (𝑖, 𝑗)

round (𝑖)
, (8)

NDavg =
∑
𝑛

𝑖=1
NDavg (𝑖)

𝑛
. (9)

Figure 8 shows the NDavg with failure probabilities 0%,
4%, 8%, and 12%. First of all, NDavg decreases for all
algorithms, because the failure probability increases. Second,
NDavg of LFTCandRFTCdecreases slower than others (espe-
cially when failure probabilities are 4% and 8%), implying
that our proposed approaches are able to effectively resist
NDavg (or, network connectivity) decreasing as the failure
probability increases. RFTC outperforms LFTC, but both
worse than LTRT.Third, NDavg of list-base andNONE is very
close, while LTRT still has the highest NDavg.

In this section, the simulations are performed on the
more realistic scenarios, where nodes transmitting, receiving,
and routing packages, meanwhile considering that nodes are
experiencing running out of battery and malicious attacks.
The results indicate that the control approaches in our
proposals are still valid. The performance degradation is
slower than other algorithms in the case that random failures
occur.
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5. Potential Applications

In this section, we discuss some potential applications,
including fault-tolerant network topology design, sensor
nodes power management, and routing protocol design.

5.1. Fault-Tolerant Network Topology Design. By applying the
control approaches proposed in this paper, theWSNs are able
to tolerate the desired amount of node failure(s). Literature
[14] proved that the network will be asymptotical 𝑘-connected
with high probability, provided that the node degree of each
node is at least bigger than 0.5193 log 𝑛, where 𝑛 is the total
number of nodes in the network. If a network is 𝑘-connected,
then it means that the network can tolerate at most 𝑘−1 node
failure(s), and the remaining network is still connected. For
example, by configuring the desired node degree to be 6 in our
control systems, our control approaches will automatically
achieve this node degree through adaptively adjusting the
communication range of each node, and the network will be
able to keep connected as long as the number of node failures
is no more than 5.

5.2. Sensor Nodes Power Management. In a real system, the
communication range usually cannot be directly changed;
instead the power transmission is the parameter that can be
modified. The higher power transmission is, the longer com-
munication range is, and also the higher energy consumption
will be. The energy is one of the significant resources that
WSNs nodes need to preserve. In the RFTC proposed in this
paper, the energy is one of the controller inputs.Therefore, by
appropriately defining the membership functions and if-then
rules, the tradeoff between network connectivity and energy-
efficiency can be fulfilled.

5.3. Routing Protocol Design. As the energy consumption
is one of the most critical resources for battery-powered

sensor nodes, an important goal in WSNs design is to
maximize the lifetime of the network by choosing a rout-
ing path which consumes lower energy (such as Energy-
Balanced Routing Protocol (EBRP) [37]), or by using energy
efficient distributed algorithms (e.g., [38]). However, the
routing algorithms/protocols usually do not change the
communication range or power transmission itself, so our
proposals possibly can be integrated with those energy-aware
algorithms/protocols. For instance, EBRP forces packets to
move toward the sink through the dense energy area, so
our control approaches could be employed to balance the
distribution of energy density in order to further extend the
lifetime of the network.

6. Conclusions and Future Works

In order to improve the network connectivity of WSNs
in the presence of node failures, this paper proposed two
localized and energy-efficient approaches, called LFTC and
RFTC, based on the fuzzy logic. As for LFTC, the fuzzy-logic
controller is obtained through the training dataset, while the
fuzzy controller is based on the heuristic if-then rules and
membership functions for RFTC. However, both approaches
can achieve almost the same goals. LFTC and RFTC both
have strengths and weaknesses. The main benefit of LFTC is
that it relies on a mathematical model, so there is no need
to adjust fuzzy controller parameters, but the mathematical
model may be not available or accurate enough for realistic
sensor nodes deployment. In contrast, the control parameters
of RFTC do not depend on the mathematical model, but
the parameters have to be tuned according to specific node
deployment to achieve best performance. It could be not an
easy task, or even not feasible.

Compared LFTC and RFTC with other three algorithms
NONE, LTRT, and list based by extensive simulations, our
two proposals can achieve desired node degree and save
more energy. Furthermore, in the case that random node
failures exist, such as nodes running out of battery or
suffering intentional attacks, LFTC and RFTC show their
capability to resist node failures by adaptively adjusting the
communication range. In our simulations, we employ the
disk model which is an ideal wireless channel. Nonetheless,
our approaches can be extended to more realistic models
as long as the node degree is known, for example, binomial
distribution [32]. The only difference is the way to obtain the
training dataset.

In this paper, all nodes in the network are stationary once
deployed, but it is possible that the nodes in WSNs can be
relocated fromone place to another. In addition, it is desirable
to deploy our fuzzy controllers in real sensor nodes running
in a harsh environment.The mobility and implementation in
real sensor nodes will be considered in our future works.
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While support vector regression is widely used as both a function approximating tool and a residual generator for nonlinear system
fault isolation, a drawback for this method is the freedom in selecting model parameters. Moreover, for samples with discordant
distributing complexities, the selection of reasonable parameters is even impossible. To alleviate this problem we introduce the
method of flexible support vector regression (F-SVR), which is especially suited for modelling complicated sample distributions,
as it is free from parameters selection. Reasonable parameters for F-SVR are automatically generated given a sample distribution.
Lastly, we apply this method in the analysis of the fault isolation of high frequency power supplies, where satisfactory results have
been obtained.

1. Introduction

With the increasing use of complex systems, there has
been great interest in the development of techniques to
fault isolations. Generally, the major approaches for fault
isolation can be divided into two categories, namely, model-
based and data-driven techniques. The fundamental aspect
of a model-based fault isolation is a process model that
runs parallel to the process [1]. With traditional methods
like observers, approximating the function between state
vectors and input/output vectors is successful due to precise
mathematical modelling by the use of filters. While these
methods have successfully modelled linear systems, when
applied to nonlinear systems like chemical processing, precise
devices, and aerodynamic systems, they often fail to construct
a sufficient model because their mechanism models are hard
to be formed. Model-based approaches have advantages in
terms of on-board implementation considerations, but their
reliability may decrease as the nonlinear system complexities
increase [2].

Therefore, data-driven techniques have been introduced
to more accurately construct process models as these

methods are free from the requirement to analytically derive
equations for a given system, shown in Figure 1. One feasible
method is to use the artificial neural network (ANN). ANN
utilizes experience risk minimization (ERM) principle to
construct the process model, where the target function is
numerically approximated by minimizing residuals between
function estimates and outputs of the process data. Appli-
cations of ANN-based fault isolation have been widely
addressed in the literature. For example, SadoughVanini et al.
[2] used the dynamic neural networks to isolate the fault of
a dual spool gas turbine engine. Filippetti et al. [3] applied
fuzzy-NN to the fault isolation of induction motor drives.
However, the learning ability of ANN is dependent on the
number of training samples. It requires massive samples to
ensure the modelling performance. But in most practical
applications, not many of fault samples can be acquired.

More recently, the principle of structure risk minimiza-
tion [4] has been introduced in fault isolation through the
utilization of support vector regression (SVR) [5, 6] as it can
provide more accurate results than using neural networks
in condition of smaller training samples. It was constructed
on the basis of statistics learning theory that provides
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the theoretical proofs of learning from finite samples. Much
has been addressed in the literature where SVR shows
superiorities to ANN in process modeling [7].

However, the performance of SVR-based modelling is
greatly affected by its parameters. Although SVR has been
well studied and many remarkable achievements have been
obtained, the theoretical estimation of regression parameter
remains unsolved in the last decade. There is no general
consensus on the selection of proper parameters, but only
some practical recommendations on this issue. This greatly
increases the difficulty for common operators to master the
SVR-based approach. Moreover, in some complicated cases,
there are even no reasonable parameter settings that could
be found. A rigorous selection of regression parameters
can lead to the overlearning of training samples, while
slack selections can lead to underlearning. There exist no
parameters that yield good trade-off between overlearning
and underlearning.

In this paper we introduce a flexible SVR (F-SVR)
approach [8] to more accurately implement models that
construct different residual generators for fault isolation. By
automatically dividing training samples into several regions,
this method is not only free from parameter selection, but
also able to learn well and to generalize well for complicated
cases.

2. Problem Statement

Support vector regression (SVR) is a process modeling tool
that approximates the function between inputs and outputs:

𝑦 = 𝑓 (𝑥) = 𝑤𝑥 + 𝑏. (1)

Here 𝑥 and 𝑦 represent the input and output vectors,
respectively, 𝑓 is the modeled function,𝑤 is its weight vector,
and 𝑏 is the bias decided by the vector 𝑤.

The SVR-based modelling can be viewed as a process of
finding the optimal weight vector𝑤

0
with a proper parameter

vector 𝛼
0
for a given data set {(𝑥

1
, 𝑦
1
), . . . , (𝑥

𝑛
, 𝑦
𝑛
)}:

(𝛼
0
, 𝑤
0
) = arg min:

𝛼,𝑤

𝑅
𝑆𝑅𝑀

(𝛼, 𝑤)

= arg min:
𝛼,𝑤

Residual + 𝜙 (𝑤)

= arg min:
𝛼,𝑤

∫

𝑇𝑘

𝑇𝑜

𝐿 (𝑦, 𝑓 (𝑥, 𝛼, 𝑤)) 𝑝 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦,

(2)

where 𝐿(𝑦
𝑖
, 𝑓(𝑥
𝑖
, 𝑤, 𝛼)) = 𝐶

𝑖
⋅ |𝑦
𝑖
− (∑
𝑙

𝑖=1
𝛽
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏)|

𝜀
is

the loss function, 𝑝(𝑥, 𝑦) is the unknown joint distribution of
𝑥 and 𝑦, 𝐶

𝑖
is the regularized parameter, 𝜀 is the insensitive

parameter,𝐾(⋅) is the kernel function, 𝜙(𝑤) denotes the gen-
eralization ability for the regression, and 𝛼 = {𝐶, 𝜀, 𝐾(⋅)}. The
optimal weight vector 𝑤

0
could be obtained by Lagrangian

approaches. Thus the core problem for the SVR modeling is
the selection of parameters.

The framework for SVR-based fault isolation is shown
in Figure 2. Different operating models are constructed by
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SVRswith given parameters.The residuals between estimated
outputs and real outputs are generated for fault isolation.

However, the selection of SVR parameters is not easy.
With the fixed regression parameter 𝛼, the drawback of SVR
is the hardness of the trade-off between overlearning and
underlearning.Moreover, in some complicated cases, even no
reasonable parameters could be found. As shown in Figure 2,
due to the different complexities of sample distributions,
the requirements of parameters are discordant. If a rigorous
parameter 𝛼

1
is selected, the regression is overlearning in

region A. In contrast, if a slack parameter 𝛼
2
is selected,

the regression fails to learn in region B (underlearning).
No parameter that can adequately fit all of the cases exists.
Consequently, we advocate using the F-SVR approach in
order to overcome this drawback [8], as the regression
parameter is automatically generated and is variable instead
of fixed (Figure 3).
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3. Fault Isolation Using Flexible Support
Vector Regression (F-SVR)

3.1. The Principle of Flexible Support Vector Regression. We
proposed a parameter-free algorithm for process model-
ing, namely, flexible support vector regression. The F-SVR
attempts to divide the training samples into 𝑘 regions accord-
ing to the distribution complexity, and for the 𝑖th region,
parameter 𝛼

𝑖
is generated. By minimization (3), the function

between 𝑥 and 𝑦 is approximated:

𝑅 (𝑤, 𝛼) = ∬
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With given parameters, (3) can be minimized by solving
a 𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐 𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑖𝑛𝑔 (QP) problem. Supposing the
training samples were divided into two areas, (𝑥
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, and𝛼 = {𝐶, 𝜎, 𝜀} are parameters for the two areas,

the minimization of (3) could be termed as
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Taking the partial derivative for (5), we get
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Make the dual problem for (4):
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As 𝛼 ⋅ 𝛼∗ ≡ 0, (7) could be written with the following form:

min: 1
2
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(9)
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and 𝑒 is the unit vector. Further, the regression could be
written as the QP problem
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where𝐷 = 𝑄 − V, 𝑐 = [𝜀𝑒 + 𝑦, 𝜀𝑒 − 𝑦], and
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(11)

This form of QP problem can be solved by an active set
method [9]. The feasibility for complicated cases that more
regions are divided can similarly be proved.

3.2. Detailed Process of F-SVR Modeling. F-SVR modeling
contains three major steps, shown in Figure 4.

Step 1 (sample divisions). This section shows how 𝑇
𝑖
in (3) is

determined. Given training samples (𝑥
𝑖
, 𝑦
𝑖
)
𝑛
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, formula (12) is

utilized to estimate the distribution complexity
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|). Supposing the training samples have been divided

into 𝑘 areas, formula (13) is implemented to evaluate the
performance of division

𝑆 =
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The samples are divided randomly for several times, and
the division with the smallest 𝑆 value is treated as the best
division:

𝑗
∗
= arg min

𝑗

𝑆
𝑗
, 𝑗 = 1, 2, . . . 𝑚, (14)

where𝑚 is number of times that randomdivision ismade and
𝑛 is the number of training samples. And in this paper, we set
𝑚 = (𝑘 ∗ 𝑛)/10. The 𝑖th region denotes 𝑥 ∈ 𝑇

𝑖
.

Step 2 (setting parameters for each region). Once the best
division 𝑗

∗ is obtained, the 𝐶𝑃 values for all areas 𝐶𝑃
𝑗
∗ =

{𝐶𝑃
𝑗
∗
1
, 𝐶𝑃
𝑗
∗
2
, . . . , 𝐶𝑃

𝑗
∗
𝑘
} can also be obtained. In flexible
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support vector regression approach, the following empirical
formulas are given to set the hyperparameter 𝛼

𝑖
= {𝜀
𝑖
, 𝐶
𝑖
, 𝜎
𝑖
}:

𝛼
𝑖
:

{{{{{{{{{

{{{{{{{{{

{

𝜀
𝑖
=
0.5 ∗ std2 (𝑋

𝑖
)

𝐶𝑃
𝑗
∗
𝑖

𝐶
𝑖
=
1000𝐶𝑃

𝑗
∗
𝑖

∑
𝑘

𝑖=1
𝐶𝑃
𝑗
∗
𝑖

𝜎
𝑖
=

5

𝐶𝑃
𝑗
∗
𝑖

,

(15)

where𝑋
𝑖
= {𝑥 \ 𝑥 ∈ the ith region}.

Remark 1. Theempirical setting of parameters for each region
is referred to in Cherkassky’s work [10] in 2004.

Step 3 (function approximation using selected support vec-
tors). We use the conventional SVR with parameters 𝛼

𝑖
to

extract informative samples for the 𝑖th region. As shown in
Figure 6(a), the red samples are selected as support vectors
(SVs). If 𝑚 samples are selected as SVs for the training set
(𝑥
𝑖
, 𝑦
𝑖
)
𝑛

𝑖=1
, the regression problem 𝑓(𝑥) = ∑

𝑛

𝑖=1
𝛽
𝑖
𝐾(𝑥, 𝑥

𝑖
) + 𝑏
0

can be approximated by the regression problem of the SVs
[8]:

𝑓 (𝑥) =

𝑚

∑

𝑖=1

𝛾
𝑖
𝐾(𝑥, SV

𝑖
) + 𝑏


0
. (16)

Thus, the minimization of (3) can be simplified as

𝑤
∗
= arg min:

𝑤

∫

𝑇𝑘

𝑇𝑜

𝐿 (𝑦, 𝑓 (𝑆𝑉, 𝛼, 𝑤)) 𝑝 (𝑆𝑉, 𝑦) 𝑑
𝑆𝑉
⋅ 𝑑𝑦.

(17)

In (17), rigorous parameters 𝛼 = {0, 1000, 0.01} are set to
ensure the learning ability of regression.This problem can be
solved by using the Lagrangian method in the same way that
is used in conventional SVR (Figure 5).

As is shown in Figure 6(b), F-SVR (unlike conventional
SVR) successfully approximates the distribution function
without overlearning or underlearning. As we mentioned
earlier, F-SVR is free from the issues that can arise in the
manual selection of parameters as all of the parameters are
generated automatically.
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3.3. The Basic Scheme of F-SVR-Based Fault Isolation. Fault
isolation algorithms attempt to reveal which fault is occurring
in the operating system. In our method, we determine which
model of the system is most likely to be accurate by initially
constructing the modes for all faulty statuses and then
calculating the deviations between the real outputs and all
of the model outputs. As is shown in Figure 7, once the best
model has been located, the fault type can then be isolated.

Compared with conventional SVR-based fault isolation,
the most significant contribution of our work is that we have
alleviated the problem of parameter setting. What is required
for F-SVR-based fault isolation are only process samples for
different operating cases.

The detailed process of F-SVR-based fault isolation is as
follows. Given (𝑥

𝑖
, 𝑦
𝑖
)
𝑘

𝑖=1
, 𝑥
𝑖
, 𝑦
𝑖
∈ 𝑅
𝑛 as the training samples

from 𝑘 different operating statuses concluding the normal

status and all faulty statuses, where (𝑥
𝑖
, 𝑦
𝑖
) represents the

training samples for the 𝑖th status, the function𝐺
𝑖
(⋅) between

input vector 𝑥
𝑖
and output vector 𝑦

𝑖
is initially approximated

by the F-SVR method. After the training samples (𝑥, 𝑦)

construct the input/output models for all of the statuses, they
are sent to these models to generate the residuals between
the real outputs and the model outputs, thereby forming the
residual vector:

Residual
𝑖
= 𝑦 − 𝐺

𝑖
(𝑥) , 𝑖 = 1, . . . , 𝑘,

𝑟 =
[
[

[

Residual 1
...

Residual 𝑘

]
]

]𝑘×𝑛

.

(18)

We define a function 𝑅(𝑖) to measure the deviation
between the real output and themodel output of the 𝑖th status

𝑅 (𝑖) = ∑
𝑦 − 𝐺𝑖 (𝑥)

 . (19)

Faults can be isolated by analysis of the residual vector. In
this paper, we simply regard the testing samples belonging to
the 𝑖∗th status:

𝑖
∗
= arg min

𝑖

𝑅 (𝑖) , 𝑖 = 1, . . . , 𝑘. (20)

4. Experiments and Real Applications

4.1. Numerical Experiments. In our first attempt to validate
our method by a numerical experiment, we used a data set
with complicated distributions. White noise (SNR = 30 db)
is added to the analytical equation shown in (21), where
the training set consists of 600 samples extracted from 𝑥 ∈

(−1, 1]. In order to approximate the distribution, both F-SVR
and least-square SVR (LS-SVR) [11] are implemented:

𝑦1 = (𝑥 − 0.5)
2
+ 4 sin (3𝑥2) + 𝑥,

𝑦2 = 4𝑥 (1 − 𝑥) (2 sin (30𝑥 + 24) + 3) ,

𝑡 =
(1 − 𝑥)

2
,

𝑦 = 𝑦1 (1 − 𝑡) + 𝑦2 ∗ 𝑡; 𝑥 ∈ (−1, 1] .

(21)

To provide a fair comparison, the parameters for LS-
SVR were optimized first using a grid search strategy. The
evaluating index for LS-SVR is

𝐹 =
𝑑

𝑁
⋅ √

∑
𝑁

𝑖=1
(𝑦
𝑖
− 𝑦
𝑖
)
2

𝑁 − 1
,

(22)

where 𝑑 is the number of SVs and 𝑦 is the function output of
LS-SVR. A small 𝐹 value implies that the regression produces
generalization and accurate learning. As is shown in Figure 8,
the best parameter set for LS-SVR is {𝛾 = 10, 𝜎2 = 0.2}.

Theperformance of the twomethods is shown in Figure 9.
It is clear in this case that F-SVR is a more accurate method
for modeling data compared to the well-known LS-SVR.
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Figure 10: Process data for different operating cases of HFPS.
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4.2. Fault Isolation for High Frequency Power Supply. The
high frequency power supply (HFPS) is a nonlinear device
that has been widely used in power plants for dedusting
purpose. As its structure is highly complicated, its precise
model is usually hard to be constructed using classical
analytical approaches [12–18]. Thus, data-driven approaches
are utilized for processmodeling and fault isolation.However,
when applied to different power plants, the HFPS yields
very different input/output functions due to the change of
its loads and working environments. This means that there
is no general process model for HFPS in all conditions.

For each HFPS that has been installed, a particular process
model should be constructed. Therefore, for conventional
SVR-based fault isolation, experienced operators are required
to select the modeling parameters at site.

In this section, F-SVR was applied in order to isolate the
fault of the high frequency power supply. Three operating
cases were investigated: normal status, overcurrent fault, and
learning excitation fault. Data for the 3 operating cases of
HFPS was prepared in Figure 10 and an overcurrent fault
sample was used as the input data for testing in Figure 11.

The basic scheme for HFPS fault isolation is designed
in Figure 12. Firstly, process data for each operating case is
acquired; then, F-SVR is implemented to approximate the
unknown function between input (time) and output (the first
primary current) for each operating case. As the models for
all operating cases have been established, the residual vectors
can be generated and then by finding the model with the
smallest residual the fault can be isolated.

In this experiment, F-SVR is implemented to approximate
the functions between the input and the output, namely,
𝐺
1
(𝑥),𝐺

2
(𝑥), and𝐺

3
(𝑥). As shown in Figure 13, the functions

we obtained using F-SVR accurately describe the relationship
between the input and the output of the unknown functions
for the different operating cases without setting parameters.

Since 𝐺
1
(𝑥), 𝐺

2
(𝑥), and 𝐺

3
(𝑥) were already obtained

by the F-SVR method, the residuals could be generated
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Figure 13: Function approximation using F-SVR and LS-SVR.

using (12). The corresponding residuals are recorded in
Table 1. According to Table 1, the testing sample belongs to the
overcurrent fault (𝐺

2
(𝑥) yields the smallest residual). Based

on prior knowledge of the testing sample, the diagnostic
result is consistent and shows the feasibility of our method.

The LS-SVR method [11, 19] is also implemented to give
a comparison. As is shown in Table 1, the LS-SVR method

also makes a correct diagnosis and it has a better ability to
generalize than our method (the number of SVs is smaller).
However, our method yields a smaller value of residuals.
This implies that our method produces a better modeling
accuracy. Most importantly, all parameters are required to be
selected manually in LS-SVR but are selected automatically
in F-SVR.
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Table 1: Diagnostic performance of F-SVR and LS-SVR.

Operating status Residuals (𝑅
𝑖
) Number of SVs (𝑑) Parameters setting

F-SVR LS-SVR F-SVR LS-SVR F-SVR LS-SVR
Normal (𝐺

1
) 15.912 16.231 26 23 Auto Manual

Overcurrent (𝐺
2
) 11.296 14.131 38 28 Auto Manual

Learning excitation (𝐺
3
) 17.104 17.932 23 20 Auto Manual

5. Conclusions

SVR is one of the most efficient tools for fault diagnosis
because it is able to accurately model a function between
the input and the output using process data. However, even
though the SVR approach has been utilized for over a decade,
there is still no consensus within the community on how
to adequately select regression parameters. Given that the
F-SVR method offers an automatic selection for regression
parameters, we chose it to implement the fault isolation for
nonlinear systems. We demonstrated on both a numerical
experiment and the fault isolation for HFPS that F-SVR is
especially suited for cases that yield complicated sample dis-
tributions. This is because this method generates reasonable
parameters for each region by dividing the training samples
into different regions according to the sample distribution
complexity. Based on this work, we hope that F-SVR will
become more widely recognized as a preferred fault isolation
for nonlinear systems.
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Although in electric power systems (EPS) the regulatory level guarantees a bounded error between the reference and the
corresponding system variables, to keep its availability in time, optimizing the system operation is required for operational reasons
such as, economic and/or environmental. In order to do this, there are the following alternative solutions: first, replacing the
regulatory system with an optimized control system or simply adding an optimized supervisory level, without modifying the
regulatory level. However, due to the high cost associated with the modification of regulatory controllers, the industrial sector
accepts more easily the second alternative. In addition, a hierarchical supervisory control system improves the regulatory level
through a new optimal signal support, without any direct intervention in the already installed regulatory control system.This work
presents a secondary frequency control scheme in an electric power system, through a hierarchicalmodel predictive control (MPC).
The regulatory level, corresponding to traditional primary and secondary control, will be maintained. An optimal additive signal is
included, which is generated from aMPC algorithm, in order to optimize the behavior of the traditional secondary control system.

1. Introduction

The growing complexity of the power systems, due to the
increased interconnection, the use of new technologies,
and the need for operating the system based on economic
indicators, has motivated the creation of some tools that
enable the system to operate with a high degree of security
and very close to the limits of stability conditions. The use
of advanced control techniques has been an effective way of
extending the limits of stability and improving the operation
of EPS [1, 2].Model predictive control is one of such advanced
control techniques and is presented below.

1.1. Model Predictive Control. Model predictive control is a
control technique defined as a collection of past and present
information to predict the future behavior of a system,
through the explicit use of a process model. The generation
of the control signal is made through the minimization of an
objective function. Essentially, this control technique is based
on the use of a finite slide horizon control, which involves the
calculation of the control sequence for the whole horizon, but
only the first control signal in the sequence is applied to the

plant, and the process is repeated in the next sampling instant
[3].

MPC is one of the few control techniques that allow
the incorporation of variable constraints in the formulation.
Furthermore, this control strategy is valid for a wide range
of systems, linear and nonlinear, and has had a significant
impact on the industry.

Guaranteeing the stability of the closed loop system is
an essential aspect in the design of a controller. The stability
analysis in the MPC is an aspect that has been evolving
and now is considered as a mature field. The stability of
the MPC controller is guaranteed due to the establishment
of conditions (valid for most of the systems) [4]. These
conditions are based on a formulation of the controller that
includes cost terminal as well as terminal restrictions.

Determination of a more suitable hierarchical structure
to control a power system is a very important task.The use of
a single control system to operate the entire plant, or dividing
the plant in a set of subsystems, and make the individual
control of each one may represent a significant reduction in
electricity costs if the best option is selected. In this paper we
present the control techniques that gave better results in the
problem.
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1.2. Applications of MPC in EPS. One of the most important
applications of MPC in EPS is the voltage control, which
can be defined as operational activities to keep the voltage
within a permissible range into a specific sector, providing
appropriate reactive power flow through the transmission
system, at a particular time, with the objective of maximizing
the active power flow [2]. Some recent MPC algorithm
applications to control voltage can be cited, such as [5], where
a predictive controller is implemented with a mixed logical
dynamical model to control the voltage in a 12 bar network.
Discrete control actions are load shedding, control trans-
former taps, and capacitor connection. A similar work is
made in [6, 7], where a MPC to control the voltage of a 10 bar
system is presented. The implementation includes a terminal
region, which assures the stability of the controller, and
the solution is obtained solving a linear programming prob-
lem. In [8], a MPC approach is used to prevent voltage insta-
bility in the long term. The MPC algorithm is based on a lin-
earized steady state system model, derived from power flow
equations. Simulations have been made in an EPS Nordic-
32 system. In [6], a method for optimal coordination of load
shedding, capacitor switching, and taps changer is presented,
in order to preserve the voltage stability of long-term.
Adynamicmodel is used and a search tree is used as amethod
of solution for the MPC algorithm.

Another type of application of MPC in EPS is the control
of power oscillations, which are variations on the three-phase
power, due to the advance and retreat of the relative angles of
voltage between generators, due to changes in the magnitude
of the loads, faults, and other disturbances in the system
[2].We can cite works as [9], where a new control of generator
excitation is proposed, to assure the stability of an EPS with
multiple generators. The MPC algorithm is implemented
using a DSP to achieve stability in real time with adequate
speed. The simulations show that the interarea oscillation
arising after a large disturbance in a connection line of two
areas can be damped quickly. Besides, simulation shows that
the stability of the MPC for multiple generators has a similar
quality compared with the optimum excitation control using
an automatic voltage regulator (AVR) of high gain in addition
to a finely tuned power system stabilizer (PSS).

The harmonic control is an important issue in EPS too,
due to the fact that it is considered a main indicator of the
service quality. In [10], author argues that the increasing
nonlinear loads generate problems due to the effects of the
harmonic components of currents and voltages in an EPS, for
example, cables overheating transformers and motors, exces-
sive currents in the neutral resonance phenomena between
the circuit elements [11, 12], and considering the capacitor
banks for power factor correction. So, in general, the quality
of the power supply is deteriorated by this distortion in
voltages and currents [13–15]. Regarding the applications of
MPC in harmonic control, we can mention the work in
[16], which presents a modulation method based on the
MPC and the sliding Fourier transform, including a low
switching frequency and less distortion in lower order har-
monics. The results are similar to the algorithm of selective
harmonic mitigation [17]. However, the proposed technique
is computed online and presents an improvement in the

dynamic performances. The method can be applied to any
converter topology with any number of levels in a simple
manner. Results show that a large modulation index can be
used to achieve excellent performance, even in the range of
overmodulation.

Frequency control is defined as the ability of an EPS
to keep the frequency constant after a disturbance, whose
origin is a significant imbalance between generation and load.
The literature related to the implementation of the MPC
algorithm to control frequency of an EPS includes the area
called automatic control of large scale systems. We can cite a
decentralized frequency control presented in [18], using the
MPC algorithm in a multiarea power. The MPC technique
is designed such that the effect of the uncertainty due
to variation of the parameters of the governor and tur-
bine is reduced. Each local area controller is independently
designed, so that the overall stability of the closed loop system
is guaranteed. Model frequency response of EPS multizone is
introduced, and the physical limitations of the governors and
turbines have been considered.Note that in this decentralized
controller the stability of the entire system is not guaranteed.

In [19] a MPC distributed control addressed the problem
of cascading failures, which cause blackouts with high costs.
A cascading failure can be thought of as an alternating
sequence of equipment failures and violations of the dynamic
constraints of the power system. The designed controller is
described as a network of autonomous agents with quick
response to reduce these sequences. Agents work in the elimi-
nation of violations before they can causemore interruptions.
Theymake their decisions with a distributedMPC technique.
Each agent has a set of models, specialized in its location in
the network.The agent uses these models to predict what the
other agents will do and how the network will respond.Then,
each agent optimizes its decisions with respect to these
predictions. A comparison study on the basic data-driven
methods for process monitoring and fault diagnosis is pre-
sented in [20].

One remarkable work is the one in [21], which is the first
establishing the distributed MPC systems stability. Based on
noncooperative targets, this paper proposes a set of MPC
subcontrollers, which transmits the information of the cur-
rent state-entry trajectory to whole neighbors (MPC subcon-
trollers) with which it is interconnected and then competing
subcontrollers have no knowledge of the other cost functions.
From the game theory perspective, the balance of this
strategy, if it exists, is called a noncooperative equilibrium
or Nash equilibrium. The control objectives for each MPC
subcontrol are often in conflict with the objectives the other
MPC subcontrols have; that is, Nash equilibrium is usually
suboptimal Pareto [22]. In addition, recent results on large
scale system have been developed by [23].

Therefore, it is necessary to modify the objective function
of each subcontroller, in order to provide a cooperation
between them,which is achieved replacing in each subcontrol
the noncooperative objective by one thatmeasures the impact
of control actions in the whole system. In this case, a convex
combination of the objectives of the individual subsystems is
used. With this modification, the best performance achiev-
able by controllers is characterized by a Pareto optimal path,
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Figure 1: Primary control block diagram with governor, prime motor, rotating mass, and load.

which represents the optimal trade-off set between their goals
and the goals of other systems with which there is conflict.
Then, it can be proved that the mediator iterations generated
by these MPC algorithms, based on cooperation, are feasible
and the control law state feedback MPC algorithm based
on these mediating iterations is asymptotically stable. As an
application the authors achieve a secondary control of four
areas in an EPS.

In [24], a comparison is made between a centralized,
decentralized, and distributedMPC for anEPS.An important
work has been developed by [25], where a distributed stable
nonlinear dynamic control system is proposed, based on a set
ofMPC controllers that share only updated information of its
neighbors (without predictions of the behavior of neighbors).
Asymptotic stability in an equilibrium point (origin) in the
distributed MPC controller is achieved with the use of so-
called structured Lyapunov function control, applied to the
respective MPC subcontrollers. Authors present an applica-
tion in secondary control to a CIGRE EPS of sevenmachines,
using a distributed predictive control. However, all the
machines were used for this purpose, which is not reasonable
due to economic and technical reasons.

In relation to renewable energy, there are two interesting
works in [26], where an economic dispatch with intermittent
sources is presented and describes an objective function that
penalizes performance indices related to generation costs and
environmental costs. The flexibility of MPC algorithm allows
the use of constraints that limit the speed ramp for entry into
service. The prediction, through a solar power plant model
and turbine unitsmodel, allows dispatching units with slower
speed ramp, with the respective economical savings (the
generating units with faster speed ramp generally has higher
operating costs). The work in [27] also includes an analysis
of frequency stability of an EPS with intermittent sources
(generic name that includes renewable sources).

2. Classic Power System Control

In this sectionwe present classic power system control, which
includes primary and secondary frequency control.

2.1. Primary FrequencyControl. Primary control corresponds
to an integral control action of each unit, due to its speed

governors. This allows limiting frequency deviations from
disturbance in the generation/load balance, in a few seconds
of time response. However, the resulting frequency is not
necessarily the nominal frequency, a result that is achieved
with the secondary control, which is presented in Section 2.2.
The block diagram of the governor, prime motor, rotating
mass, and load is shown in Figure 1, where

Δ𝜔 = 𝜔
𝑟
− 𝜔

0
with 𝜔

𝑟
: real angular speed, and 𝜔

0
:

nominal angular speed;
𝐷: damping constant;
𝐾: constant PI control;
𝑅: statism;
𝑀: 2𝐻 with𝐻 the inertia constant;
Δ𝑌, Δ𝑃

𝑚
, Δ𝑃

𝐿
, Δ𝑃ref, and Δ𝜔 are the variations in

position of the valve, mechanical power, load power,
power reference, and frequency, respectively;
𝑇
𝐶𝐻

, 𝑇
𝐺
= (1/𝐾𝑅) are the time constants of the

turbine and governor, respectively.

Considering a set of 𝑛-machines interconnected by trans-
mission lines [25], the equations that represent the primary
frequency control for the 𝑖th machine are

Δ ̇𝛿
𝑖
= Δ𝜔

𝑖
, (1)

Δ ̇𝜔
𝑖
=
1

𝑀
𝑖

(Δ𝑃
𝑚𝑖
− 𝐷

𝑖
Δ𝜔

𝑖
− Δ𝑃

𝐿 𝑖
− ∑

{𝑗|(𝜍𝑖 ,𝜍𝑗)∈𝜀}

Δ𝑃tie𝑖,𝑗) , (2)

Δ ̇𝑃
𝑚𝑖
=

1

𝑇
𝐶𝐻

(Δ𝑌
𝑖
− Δ𝑃

𝑚𝑖
) , (3)

Δ ̇𝑌
𝑖
=

1

𝑇
𝐺𝑖

(Δ𝑃ref𝑖 − Δ𝑌𝑖 −
1

𝑅
𝑖

Δ𝜔
𝑖
) con 𝑇

𝐺𝑖
=

1

𝐾
𝑖
𝑅
𝑖

.

(4)

We assume that 𝑃tie𝑖,𝑗 is the transmitted power by the
transmission line 𝑖𝑗, where (𝜍

𝑖
, 𝜍

𝑗
) represents the transmission

line between node 𝜍
𝑖
and node 𝜍

𝑗
, belonging to the set of arcs

𝜀 and coupling (5) relating the angles of a load 𝛿
𝑗
, 𝑗 ∈ {𝑗 |
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𝜍
𝑗
∈ 𝑆Load}, with the angles and frequencies of the generators

𝛿
𝑖
, 𝜔

𝑖
, 𝑖 ∈ {𝑖 | 𝜍

𝑖
∈ 𝑆Generator}. Consider

[
[
[
[
[
[
[
[
[

[

𝑀
1
Δ ̇𝜔

1

...
𝑀

𝑁𝑔
Δ ̇𝜔

𝑁𝑔

0

...
0

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[

[

Δ𝑃
𝑚1
− 𝐷

1
Δ𝜔

1
− Δ𝑃

𝐿1

...
Δ𝑃

𝑚𝑁𝑔
− 𝐷

𝑁𝑔
Δ𝜔

𝑁𝑔
− Δ𝑃

𝐿𝑁𝑔

−Δ𝑃
𝐿𝑁𝑔+1

...
−Δ𝑃

𝐿nod

]
]
]
]
]
]
]
]
]
]

]

− [
𝐵
11
𝐵
12

𝐵
21
𝐵
22

]

[
[
[
[
[
[
[
[
[

[

𝛿
1

...
𝛿
𝑁𝑔

𝛿
𝑁𝑔+1

...
𝛿nod

]
]
]
]
]
]
]
]
]

]

,

(5)

where the admittance matrix

𝐵 = [

[

𝐵
11
𝐵
12

𝐵
21
𝐵
22

]

]

(6)

is suitably divided into submatrices 𝐵
11

∈ 𝑀
𝑁𝑔×𝑁𝑔

,
𝐵
12

∈ 𝑀
𝑁𝑔×(nod−𝑁𝑔), 𝐵21 ∈ 𝑀

(nod−𝑁𝑔)×𝑁𝑔, and 𝐵
22

∈

𝑀
(nod−𝑁𝑔)×(nod−𝑁𝑔), with𝑁𝑔 generators and nod nodes.
Eliminating the angles that represent the bar that does not

have generators 𝛿
𝑁𝑔+1

, . . . , 𝛿nod [25],

[
[
[
[
[

[

𝑀
1
Δ ̇𝜔

1

...

𝑀
𝑁𝑔
Δ ̇𝜔

𝑁𝑔

]
]
]
]
]

]

=

[
[
[
[
[
[

[

Δ𝑃
𝑚1
− 𝐷

1
Δ𝜔

1

...

Δ𝑃
𝑚𝑁𝑔

− 𝐷
𝑁𝑔
Δ𝜔

𝑁𝑔

]
]
]
]
]
]

]

− Γ

[
[
[
[
[

[

𝛿
1

...

𝛿
𝑁𝑔

]
]
]
]
]

]

+ Υ

[
[
[
[
[

[

Δ𝑃
𝐿1

...

Δ𝑃
𝐿nod

]
]
]
]
]

]

,

(7)

where

Γ := (𝐵
11
− 𝐵

11
𝐵
−1

22
𝐵
21
) ,

Υ := [−𝐼𝑁𝑔 𝐵
12
𝐵
−1

22
] .

(8)

Then, to represent the continuous dynamic model of EPS
with 𝑁𝑔 generators and nod nodes we define the following
matrices:

𝐴
𝑐
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

1 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 1

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

[

[

Γ/𝑀
𝑖
]

]

−𝐷
1
/𝑀

1
⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ −𝐷
𝑁𝑔
/𝑀

𝑁𝑔

1/𝑀
1
⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 1/𝑀
𝑁𝑔

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

−1/𝑇
𝐶𝐻1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ −1/𝑇
𝐶𝐻𝑁𝑔

1/𝑇
𝐶𝐻1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 1/𝑇
𝐶𝐻𝑁𝑔

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

−1/ (𝑇
𝐺1
𝑅
1
) ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ −1/ (𝑇
𝐺𝑁𝑔
𝑅
𝑁𝑔
)

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

−1/𝑇
𝐺1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ −1/𝑇
𝐺𝑁𝑔

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (9)
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where [Γ/𝑀
𝑖
] ≡ [

Γ11/𝑀1 ⋅⋅⋅ Γ1𝑛/𝑀1

...
...

Γ𝑛1/𝑀𝑛 ⋅⋅⋅ Γ𝑛𝑛/𝑀𝑛

], and

𝐵aux =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

1/𝑇
𝐺1

⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 1/𝑇
𝐺𝑁𝑔

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

[ Υ/𝑀
𝑖 ]

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

0 ⋅ ⋅ ⋅ 0

... d
...

0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (10)

with [Υ/𝑀
𝑖
] ≡ [

Υ11/𝑀1 ⋅⋅⋅ Υ1𝑛/𝑀1

...
...

Υ𝑛1/𝑀𝑛 ⋅⋅⋅ Υ𝑛𝑛/𝑀𝑛

].

Then, the continuous dynamic model can be represented
as

̇𝑥 = 𝐴
𝑐
𝑥 + 𝐵aux𝑢, (11)

with
𝑥 =

[Δ𝛿1 ⋅ ⋅ ⋅ Δ𝛿𝑁𝑔 Δ𝜔1 ⋅ ⋅ ⋅ Δ𝜔𝑁𝑔 Δ𝑃𝑀1
⋅ ⋅ ⋅ Δ𝑃𝑀𝑁𝑔

Δ𝑌1 ⋅ ⋅ ⋅ Δ𝑌𝑁𝑔]


,

𝑢 = [Δ𝑃ref1 ⋅ ⋅ ⋅ Δ𝑃ref𝑁𝑔 Δ𝑃𝐿1
⋅ ⋅ ⋅ Δ𝑃𝐿nod ]



.

(12)

2.2. Secondary Frequency Control. The role of secondary fre-
quency control is to keep or restore the system frequency to its
nominal value, the balance generation/load within a control
area, and scheduled power exchanges with neighboring areas
of control. This control is addressed modifying the set-point
of active power units assigned to secondary control, which
belong to the control area where the imbalance occurs.

The secondary frequency control can bemanually accom-
plished by instructions of the plant operators or automatically
by the automatic generation control. Unlike the primary con-
trol, its action is slow and coordinated, taking into account
characteristics of the units, such as its speed of response
(however for the current job this will not be considered).This
control covers a time from the endof the action of the primary
control to several minutes and should not interfere with the
action of the secondary control.

Now, area error control (ACE) value necessary for the
secondary frequency power control is developed. In Figure 2,
the connection between neighbors areas 𝑖 and 𝑖 + 1 and also
incoming and outgoing power flow are shown. SetsΩ

𝑖
andΨ

𝑖

are defined as follows:

Ω
𝑖
: set of neighbors areas to 𝑖 which inject power;

Ψ
𝑖
: set of neighbors areas to 𝑖 which demand power.

For each area, the steady state dynamic equation depends
on the variation of mechanical power, the incoming net flow,

AreaArea
i i + 1

i + 5

i + 4

i + 3
i + 2

ΔPL𝑖

ΔPtie 𝑖,𝑖+1

Figure 2: Connection between areas.

and the outgoing net flow. Assuming that there is a load
variation Δ𝑃

𝐿 𝑖
in the 𝑖th area

Δ𝑃mech1 + ∑

𝑗∈Ω1

Δ𝑃tie1,𝑗 − ∑

𝑘∈Ψ1

Δ𝑃tie1,𝑘 = Δ𝜔𝐷1
,

...

Δ𝑃mech𝑖 + ∑
𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 − ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 − Δ𝑃𝐿 𝑖 = Δ𝜔𝐷𝑖
,

...

Δ𝑃mech𝑛 + ∑

𝑗∈Ω𝑛

Δ𝑃tie𝑛,𝑗 − ∑

𝑘∈Ψ𝑛

Δ𝑃tie𝑛,𝑘 = Δ𝜔𝐷𝑛

(13)

then for each area frequency power variation ratio is

Δ𝑃mech𝑖 = −
Δ𝜔

𝑖

𝑅
𝑖

, (14)

where𝑅
𝑖
is equivalent statism of 𝑖th area; also𝛽

𝑖
= (1/𝑅

𝑖
)+𝐷

𝑖
.

Summing the equations in (13), then

𝑛

∑

𝑖=1

Δ𝑃mech𝑖 − Δ𝑃𝐿 𝑖 = Δ𝜔
𝑛

∑

𝑖=1

𝐷
𝑖
, (15)

replacing Δ𝑃mech𝑖 and 𝛽𝑖 = (1/𝑅
𝑖
) + 𝐷

𝑖
, implies −Δ𝑃

𝐿 𝑖
=

Δ𝜔∑
𝑛

𝑖=1
𝛽
𝑖
. Then we come to the traditional result of the

frequency variation for the complete system

Δ𝜔 = −
Δ𝑃

𝐿 𝑖

∑
𝑛

𝑖=1
𝛽
𝑖

. (16)
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Now, using the power frequency variation ratio (14) in
(13)

∑

𝑗∈Ω1

Δ𝑃tie1,𝑗 − ∑

𝑘∈Ψ1

Δ𝑃tie1,𝑘 = Δ𝜔𝛽1

...

∑

𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 − ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 − Δ𝑃𝐿 𝑖 = Δ𝜔𝛽𝑖

...

∑

𝑗∈Ω𝑛

Δ𝑃tie𝑛,𝑗 − ∑

𝑘∈Ψ𝑛

Δ𝑃tie𝑛,𝑘 = Δ𝜔𝛽𝑛.

(17)

From equation of the 𝑖th area, (16), we see that the power
variation introduced in this area −Δ𝑃

𝐿 𝑖
= −∑

𝑗∈Ω𝑖
Δ𝑃tie𝑖,𝑗 +

∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 + Δ𝜔𝛽𝑖, which provides a motivation to define
the error areaAEC

𝑖
, should be fed back to the reference power

of the secondary controller frequency of 𝑖th area

ACE
𝑖
= −∑

𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 + ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 + Δ𝜔𝛽𝑖. (18)

Now, as load variation Δ𝑃
𝐿 𝑖
occurs in the 𝑖th area, sum-

ming all equations in (5) except the 𝑖th, where load variation
occurred −∑

𝑗∈Ω𝑖
Δ𝑃tie𝑖,𝑗 +∑𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 = Δ𝜔∑𝑘=1, 𝑘 ̸= 𝑖
𝛽
𝑘
, and

using (16)

−∑

𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 + ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 = −Δ𝑃𝐿 𝑖

∑
𝑛

𝑘=1, 𝑘 ̸= 𝑖
𝛽
𝑘

∑
𝑛

𝑖=1
𝛽
𝑖

. (19)

Therefore in (6) using (7) and (4)

ACE
𝑖
= −Δ𝑃

𝐿 𝑖

∑
𝑛

𝑘=1, 𝑘 ̸= 𝑖
𝛽
𝑘

∑
𝑛

𝑖=1
𝛽
𝑖

− Δ𝑃
𝐿 𝑖

𝛽
𝑖

∑
𝑛

𝑖=1
𝛽
𝑖

= −Δ𝑃
𝐿 𝑖

∑
𝑛

𝑘=1
𝛽
𝑘

∑
𝑛

𝑖=1
𝛽
𝑖

= −Δ𝑃
𝐿 𝑖
.

(20)

Now, summing all equations in (17), except the equation
of any area different from the 𝑖th area where there was load
variation Δ𝑃

𝐿 𝑖
,

−∑

𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 + ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 − Δ𝑃𝐿 𝑖 = Δ𝜔
𝑛

∑

𝑘=1

𝑘 ̸= 𝑖

𝛽
𝑘
. (21)

Using (4)

−∑

𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 + ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 + Δ𝜔
𝑛

∑

𝑖=1

𝛽
𝑖
= Δ𝜔

𝑛

∑

𝑘=1

𝑘 ̸= 𝑖

𝛽
𝑘
,

− ∑

𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 + ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 = −Δ𝜔𝛽𝑖.

(22)

Therefore

ACE
𝑖
= −Δ𝜔𝛽

𝑖
+ Δ𝜔𝛽

𝑖
= 0. (23)

Summarizing,

ACE
1
= 0

...

ACE
𝑖
= −Δ𝑃

𝑖

...

ACE
𝑛
= 0.

(24)

This shows that the selection of error area, as in (18),
guarantees that the area where the power variation occurred
provides the required power, and all this is in steady state.

Summarizing, given an interconnection of 𝑁 control
areas, suppose a disturbance load Δ𝑃

𝑖
appears in the 𝑖th

area. During the transient period, the dynamic phenomena
involve generation of different frequencies in each area and
deviations in the flow of power between them, calculating
each area with its own area control error ACE

𝑖
(18). Then we

defined the error in the net power exchanged Δ𝑃tie𝑖 from all
neighboring areas to the area 𝑖:

Δ𝑃tie𝑖 = −∑
𝑗∈Ω𝑖

Δ𝑃tie𝑖,𝑗 + ∑
𝑘∈Ψ𝑖

Δ𝑃tie𝑖,𝑘 , (25)

and then area control error can be written as

ACE
𝑖
= Δ𝑃tie𝑖 + 𝛽𝑖Δ𝜔. (26)

Finally, the new reference 𝑃ref𝑖 of generator 𝑖 is expressed
by

𝑃ref𝑖 = −𝐾𝑖
∫

𝜏

0

ACE
𝑖
𝑑𝑡. (27)

3. Design of Hierarchical MPC for EPS

In this section we present the design of a frequency hierar-
chical MPC for EPS, including restrictions and optimization
problem.

3.1. Problem Statement. The control strategy proposed in this
paper is based on a hierarchical supervisor level, which deter-
mines the optimal set-point for a given regulatory system.The
supervisor level dynamically optimizes a general objective
function including equality and inequality constraints. Then,
the described problem can be solved analytically with the
predictive control theory and can be solved by numerical
algorithms when working with restrictions [3].

Figure 3 shows how the hierarchical supervisor level
delivery set-point 𝑟 is based on the optimization of the
objective function 𝐽, the trajectory of an external reference
𝑊, controlled variable 𝑦, and manipulated variable 𝑢. The
process is influenced by a nonmeasurable disturbance 𝑝.
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Figure 3: Supervisory control diagram.

3.2. Application of Secondary Control of EPS. The implemen-
tation of MPC control for the hierarchical secondary control
of an EPS is presented in Figure 4.The figure presents an area,
bounded by a dotted line, which represents the linear EPS
model including a primary frequency control. Besides, in the
traditional secondary control, we have included an additive
power signal 𝑃MPC, which provides an optimum correction

to signal of ACE. The correction is optimal because, in the
optimization MPC problem, the objective function strongly
penalizes the frequency variation and includes restrictions,
which represent plant model and traditional secondary con-
troller model.

3.3. Restrictions of EPS Model for the Optimization Problem.
The corresponding restrictions for building optimization
problem for the MPC algorithm are presented below. The
involved variables must behave according to the dynamic
model of the EPS. Then discretizing the model obtained in
(11) we obtain

𝐴 (𝑇
𝑠
) = 𝑒

𝐴𝑐𝑇𝑠 , 𝐵aux (𝑇𝑠) = (𝑒
𝐴𝑐𝑇𝑠 − 𝐼) (𝐴𝑐)

−1
𝐵aux𝑐 ,

(28)

with

𝑇
𝑠
= 1 [s] ,

𝐵aux = [𝐵 𝐵
𝐿] ,

𝑢 (𝑘) = [Δ𝑃ref1 (𝑘) ⋅ ⋅ ⋅ Δ𝑃ref𝑁𝑔 (𝑘)]


,

𝑃
𝐿
(𝑘) = [Δ𝑃𝐿1

(𝑘) ⋅ ⋅ ⋅ Δ𝑃
𝐿nod

(𝑘)]


,

𝑥 (𝑘) = [Δ𝛿1 (𝑘) ⋅ ⋅ ⋅ Δ𝛿𝑁𝑔 (𝑘) Δ𝜔1 (𝑘) ⋅ ⋅ ⋅ Δ𝜔𝑁𝑔 (𝑘) Δ𝑃𝑀1
(𝑘) ⋅ ⋅ ⋅ Δ𝑃

𝑀𝑁𝑔
(𝑘) Δ𝑌

1
(𝑘) ⋅ ⋅ ⋅ Δ𝑌

𝑁𝑔
(𝑘)]



.

(29)

Hence, we have the following discrete model:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐵
𝐿
𝑃
𝐿
(𝑘) . (30)

The group of restrictions to 𝑁 steps of EPS model used
for the corresponding MPC optimization problem is

−𝐵
𝐿
𝑃
𝐿
(𝑘) − 𝐴𝑥 (𝑘) − 𝐵𝑢 (𝑘) = −𝑥 (𝑘 + 1)

−𝐵
𝐿
𝑃
𝐿
(𝑘 + 1) = −𝑥 (𝑘 + 2) + 𝐴𝑥 (𝑘 + 1) + 𝐵𝑢 (𝑘 + 1)

...

− 𝐵
𝐿
𝑃
𝐿
(𝑘 + 𝑁 − 1)

= −𝑥 (𝑘 + 𝑁) + 𝐴𝑥 (𝑘 + 𝑁 − 1) + 𝐵𝑢 (𝑘 + 𝑁 − 1) ,

(31)

where 𝑃
𝐿
model is obtained from a lineal model.

3.4. Constraints That Relate Angles. It is necessary to include
the relationship between the angles of the bars without
generators 𝛿

𝑛𝑔
with the angles of the bars containing the

generators 𝛿
𝑔
.

Given the admittance matrix [ 𝐵11 𝐵12
𝐵21 𝐵22

],

𝐵
11
∈ 𝑀

𝑁𝑔×𝑁𝑔
, 𝐵

12
∈ 𝑀

𝑁𝑔×(nod−𝑁𝑔),

𝐵
21
∈ 𝑀

(nod−𝑁𝑔)×𝑁𝑔, 𝐵
22
∈ 𝑀

(nod−𝑁𝑔)×(nod−𝑁𝑔).
(32)

The group of restrictions to 𝑁 steps that shows that
relationship between the angles can be deduced from (5) as
follows:

−𝐼
𝑛𝑔
𝑃
𝐿𝑛𝑔
(𝑘) − 𝐵

21
𝛿
𝑔
(𝑘) = −𝐵

22
𝛿
𝑛𝑔
(𝑘)

0 = −𝐼
𝑛𝑔
𝑃
𝐿𝑛𝑔
(𝑘 + 1) − 𝐵

21
𝛿
𝑔
(𝑘 + 1) − 𝐵

22
𝛿
𝑛𝑔
(𝑘 + 1)

...

0 = −𝐼
𝑛𝑔
𝑃
𝐿𝑛𝑔
(𝑘 + 𝑁) − 𝐵

21
𝛿
𝑔
(𝑘 + 𝑁) − 𝐵

22
𝛿
𝑛𝑔
(𝑘 + 𝑁) ,

(33)

with

𝐼
𝑛𝑔
∈ 𝑀

(nod−𝑁𝑔)×(nod−𝑁𝑔),

𝑃
𝐿𝑛𝑔
(𝑘) = [Δ𝑃𝐿𝑁𝑔+1

(𝑘) ⋅ ⋅ ⋅ Δ𝑃
𝐿nod

(𝑘)]


,

𝛿
𝑔
(𝑘 + 𝑁) = [Δ𝛿1 (𝑘) ⋅ ⋅ ⋅ Δ𝛿𝑁𝑔 (𝑘)]



,

𝛿
𝑛𝑔
(𝑘 + 𝑁) = [Δ𝛿𝑁𝑔+1 (𝑘) ⋅ ⋅ ⋅ Δ𝛿nod (𝑘)]



.

(34)

3.5. Secondary Control Equations. The constraints that rep-
resent the secondary frequency control can be deduced
applying the Laplace transform to the equation of secondary
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Figure 4: Hierarchical MPC control diagram.

control in (26) including an additive signal power 𝑃MPC𝑖 to
area control error ACE

𝑖
:

𝑃ref𝑖 = −𝐾𝑖

ACE
𝑖
+ 𝑃MPC𝑖
𝑠

, 𝑖 = 1, . . . , 𝐺2, (35)

with 𝐺2 number generators with secondary control.
Using the Tustin triangular approximation, (1/𝑠) =

(𝑇
𝑠
(𝑧+1))/(2(𝑧−1)), where𝑇

𝑠
is the sampling time, we obtain

𝑃ref𝑖 (𝑘)

ACE
𝑖
(𝑘) + 𝑃MPC𝑖 (𝑘)

= −𝐾
𝑖

𝑇
𝑠
(1 + 𝑧

−1
)

2 (1 − 𝑧−1)
𝑃ref𝑖 (𝑘 + 1) − 𝑃ref𝑖 (𝑘)

= −
𝑇
𝑠
𝐾
𝑖

2
ACE

𝑖
(𝑘 + 1) −

𝑇
𝑠
𝐾
𝑖

2
𝑃MPC𝑖 (𝑘 + 1)

−
𝑇
𝑠
𝐾
𝑖

2
ACE

𝑖
(𝑘) −

𝑇
𝑠
𝐾
𝑖

2
𝑃MPC𝑖 (𝑘) .

(36)

Then, we can generate the corresponding secondary
control restrictions for 𝑁 steps. Finally the complete opti-
mization problem is presented.

3.6. Formulation of MPC Optimization. The formulation of
the optimization problem for the frequency MPC of the EPS
is as follows.

Given in (30), the discrete model of the EPS is

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) + 𝐵
𝐿
𝑃
𝐿
(𝑘) . (37)

The frequency control of the EPS by the MPC algorithm
involves solving optimization problem (38) to find the opti-
mal set {𝑢∗(𝑘), . . . , 𝑢∗(𝑘 + 𝑁

𝑝
− 1)} of control actions to 𝑁

𝑝

steps and apply as control action the single signal 𝑢∗(𝑘):

min
{𝑢(𝑘),...,𝑢(𝑘+𝑁𝑝−1)}

𝐽 = 𝑋(𝑘)

𝑄𝑋 (𝑘) + 𝑈(𝑘)


𝑅𝑈 (𝑘) , (38)

subject to the following:

constraints EPS model, (18),
constraints of relationship between 𝛿

𝑛𝑔
with 𝛿

𝑔
, (19),

constraints of secondary control, (22),
constraints of variables,

where

𝑄 ∈ 𝑀
4𝑁𝑝𝑁𝑔×4𝑁𝑝𝑁𝑔

, weights diagonal matrix;

𝑅 ∈ 𝑀
𝑁𝑝𝑁𝑔×𝑁𝑝𝑁𝑔

, weights diagonal matrix.

Consider

𝑋 (𝑘) = [ 𝑥(𝑘)

⋅ ⋅ ⋅ 𝑥 (𝑘 + 𝑁

𝑝
)



] ∈ R
4𝑁𝑝𝑁𝑔 ,

𝑈 (𝑘) = [𝑢(𝑘)

⋅ ⋅ ⋅ 𝑢(𝑘 + 𝑁

𝑝
)


] ∈ R
𝑁𝑝𝑁𝑔 ,

𝑥 (𝑘) = [Δ𝛿1 (𝑘) ⋅ ⋅ ⋅ Δ𝛿𝑁𝑔 (𝑘) Δ𝜔1 (𝑘) ⋅ ⋅ ⋅ Δ𝜔𝑁𝑔 (𝑘) Δ𝑃𝑀1
(𝑘) ⋅ ⋅ ⋅ Δ𝑃

𝑀𝑁𝑔
(𝑘) Δ𝑌

1
(𝑘) ⋅ ⋅ ⋅ Δ𝑌

𝑁𝑔
(𝑘)]



,

𝑢 (𝑘) = [𝑃MPC1 (𝑘) ⋅ ⋅ ⋅ 𝑃MPC𝐺2 (𝑘)]


,

𝑢
∗
(𝑘) = [𝑃MPC1

∗
(𝑘) ⋅ ⋅ ⋅ 𝑃MPC𝐺2

∗
(𝑘)]



.

(39)
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Figure 5: EPS IEEE-39 diagram.

Table 1: Secondary control generator.

Area Generator
1 10
2 3
3 4
4 8

4. Practical Application

As a practical application, a secondary MPC control to EPS
IEEE-39 of 39 bars and 10 generators is developed. The
system is divided into four interconnected areas. In each
area, a generator is designated for the secondary control (see
Table 1).The unifilar diagram of the EPS is shown in Figure 5.
The characteristics of the test system, generators, lines, and
transformers impedances are presented in [1].

4.1. Results. Because the objective of the MPC algorithm is
a quadratic form function and constraints are linear equa-
tions, the solution of the optimization problem presented is
obtained by quadratic programming. In particular, prediction
was performed at 10 steps with computation time of 0.75 [s]
per iteration (using theMatlab programQuadprog), time less
than the sampling interval of 1 [s], which makes feasible the
real-time control.

Figure 6 shows the response of the secondary frequency
MPC controller to an increased load of 10% on bar 18 in
area 1 of EPS IEEE-39. It can be seen, in Figure 6(a), that the
MPC controller, within a reasonable time of 50 [s], achieves
the convergence to zero of the frequency variations of all the
generators.

In Figure 6(b), it can be seen that the generators making
the secondary control (generators 3, 4, 5, and 11) are the ones
that provide the required power (blue line) for satisfaction
load variation, whereas the other generators only contribute
in the initial stage. In Figures 6(c) and 6(d), the contribution
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Figure 6: Response of the secondary frequency MPC controller.

of each generator separately can be seen, the ones that
make secondary control (see Figure 6(c)) and the remaining
generators (see Figure 6(d)). The greatest contribution of the
power is given precisely by generator 3, as can be seen in
Figure 6(c), which made the secondary control in area 1,
where the load variation takes place.

Similar results (Figure 7) were achieved when simulating
over 1500 [s], where the EPSwas subjected to a series of power
variations (Figure 7), not exceeding 15%, in bar 18 in area 1.

Then 𝑃
𝐿
model to (31) is obtained from a lineal model series

of Figure 7.
Note that this work is in a framework of small signal

analysis, implying linear models as an approximation of
the system. However, by the necessity of using a predictive
model of the system and for a more realistic treatment of
the problem, we consider in future models nonlinear load
variation, for example, Takagi and Sugeno or neural models;
details of this type of model can be seen in [28–32].
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In Figure 8(a) we can see how the frequency variation
converges to zero for different power variations. Due to
similarity of results between control techniques, classical and
MPC secondary control, it is not possible to show differences
from the graphic point of view.Then, these differences will be
presented in data table (Tables 2 and 3).

Table 2 shows the values∑1500

𝑗=1
Δ𝜔

𝑖
(𝑗)

2 for each generator
𝑖, using frequency variation Δ𝜔

𝑖
(𝑡) with 𝑖 = 1, . . . , 10, in the

case of applying the traditional secondary control and for the
case of applying the secondaryMPC control to load variation
on bar 18 in area 1 of EPS IEEE-39.

In this case, the average value for the 10 generators using
the traditional secondary control is 2.12% higher than the
average for the corresponding MPC secondary controller,
being a great improvement of the behavior of the systemwhen
using MPC control. Also we have load variation on bar 22
(area 3) and load variation on bar 29 (area 4); results are
presented in Table 3.

Table 3 shows that there is an improvement in each area
at least of 2% higher than the average for the corresponding
MPC secondary controller. Demonstrating the effectiveness
of the control method which is independent of the selected
area (by definition EPS IEEE-39) does not consider loads in
area 2.

Figure 9(a) shows the power reference for generators that
perform secondary control. Figure 9(b) shows the additive
power signal generated by theMPC, to support the secondary
frequency control, which is small; however, its application
achieves improved controller behavior. Figure 9(c) shows
ACE signal, in response to varying load in area 1, also we see
that the generator 10 (responsible for secondary control area
1) is the one that provides the most power between the four
generators with secondary control. In addition, the expected
convergence of (24) fails because the time intervals disposed
for the load signal variation are small for this convergence.

Note that the works referenced in this paper [21, 25]
perform applications in secondary MPC control using all the
EPS machines, which is not reasonable due to economic and
technical reasons, for example, higher cost of communication
for all machines of system, absence of spinning reserve in

a specific generator, and energy cost generator incompatible
with the economic dispatch as secondary frequency con-
troller. In this paper, however, the MPC is applied only in the
machines which have secondary control in the area.

5. Conclusions

A frequency hierarchical supervisory control system is pre-
sented for an EPS, which improves the regulatory level
through a new optimal signal support, keeping fixed the
entire regulatory process system. The frequency control is
applied to an electric power system IEEE-39, where the
regulatory levels corresponding to the primary and sec-
ondary control were maintained, and an additive signal
generated from a MPC algorithm was added to the tradi-
tional secondary control system, in order to optimize their
performance. The results show the feasibility of this solution.
There is an improvement of the system performance when
using MPC control over the use of traditional secondary
control; that is, the average squared frequency variation for
the traditional secondary control was at least 2% higher than
in the case of using the MPC secondary controller.

Note that the works referenced in this paper perform
applications in secondary MPC control using all the EPS
machines, which is not reasonable due to economic and
technical reasons. In this paper, however, the MPC is applied
only in the machines which already have secondary control.
In future works, we will consider other characteristics of
the units, such as their response speed, which will add an
economic component to the analysis.

Finally, considering the measurement of energy quality,
European standard UNE-EN 50160 requires variations in
voltage frequency less than or equal to 1% for 10 seconds in
95% of the week. Then designing a controller that achieves
an improvement at least 2% over the control of traditional
frequency variations is a promising result.
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Figure 8: Secondary frequency MPC controller response.

Table 2: Accumulated squared frequency variation for secondary control.

Secondary control
Generators with secondary control Generators without secondary control

Gen. 10
∗10−4

Gen. 3
∗10−4

Gen. 4
∗10−4

Gen. 8
∗10−4

Gen. 1
∗10−4

Gen. 2
∗10−4

Gen. 5
∗10−4

Gen. 6
∗10−4

Gen. 7
∗10−4

Gen. 9
∗10−4

Traditional 0.905 0.597 0.648 0.605 0.705 0.417 0.315 0.553 0.788 0.970
MPC 0.886 0.583 0.604 0.591 0.700 0.414 0.314 0.551 0.786 0.939
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Figure 9: Power reference, additive MPC power, and ACE for generators performing secondary control.

Table 3: Improvement secondary control.

Place of load variation Secondary control
Improvement secondary MPC versus traditional %

Area bar Traditional mean MPC mean
∗10−4 ∗10−4

1 18 6.503 6.368 2.12
3 22 7.053 6.908 2.06
4 29 7.872 7.707 2.10
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Attitude stability analysis and robust control algorithms for spacecrafts orbiting irregular asteroids are investigated in the presence
of model uncertainties and external disturbances. Rigid spacecraft nonlinear attitude models are considered and detailed attitude
stability analysis of spacecraft subjected to the gravity gradient torque in an irregular central gravity field is included in retrograde
orbits and direct orbits using linearized system model. The robust adaptive backstepping sliding mode control laws are designed
to make the attitude of the spacecrafts stabilized and responded accurately to the expectation in the presence of disturbances and
parametric uncertainties. Numerical simulations are included to illustrate the spacecraft performance obtained using the proposed
control laws.

1. Introduction

SMALL bodies including mainly asteroids and comets are
studied by scientists because of the insight they can give into
the history of the solar system. NASAmissions are as follows:
Galileo to Jupiter via asteroids Gaspra and Ida in 1989, Near
Earth Asteroid Rendezvous (NEAR) Shoemaker to asteroid
433 Eros in 1996 [1, 2], and NASA Flyby Mission Deep Space
1 to asteroid Braille in 1998, Genesis—NASA Discovery Solar
Wind Sample Return Mission in 2001. Hayabusa (Muses-C)
is the Japan Aerospace Exploration Agency Sample Return
Mission to Asteroid 25143 Itokawa [3, 4], and Rosetta is the
ESA Comet Mission, flew by asteroids Steins and Lutetia [5].

While there is an increasing interest in such missions, the
necessity and importance of orbital and attitude dynamics
analyses of the small solar systembodies as the critical success
factors of those missions are rising as well. The oblateness
torque effects can be ignored for studying the attitudemotion
of spacecrafts around planetary bodies, while asteroids and
comets usually have irregular shapes which lead to the
complicated orbital and attitude dynamics in comparison
with approximately spherical bodies such as the Earth. An
asteroid’s irregular shape, mass distribution, and the state of

its rotation (rapid or slow) have significant effects on the
evolution of spacecraft orbit and attitude motion. Scheeres
and his coworkers havemade a large number of contributions
to the study of orbital motion about asteroids [6–9]. These
effects especially may deteriorate the attitude performance
significantly, which lead to unstable attitude motion and
thereby failure of the space mission. Wang and Xu find that
the attitude stability domain is modified significantly due to
the significantly nonspherical shape and rapid rotation of the
asteroid, and attitude stability subjected to the disturbance of
the gravity gradient torque is generalized to a rigid spacecraft
on a stationary orbit around an asteroid [10, 11]. In order to
solve this problem, it is important to understand the attitude
motion of spacecrafts orbiting asteroids by deriving the stabil-
ity conditions and thereupon develop effective control laws to
neutralize the effects of asteroid shape andmass distributions.
Riverin and Misra have proposed the attitude motion of the
spacecraft depending heavily on the shape of the asteroid
and the rotational state [12]. Then Misra and Panchenko
have found the radius for which resonant pitch oscillations,
considering the general three-dimensional attitudemotion in
2006 [13]. Riverin and Misra have examined the spacecraft
pitch motion assuming the spacecraft is in an equatorial orbit
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Figure 1: Coordinate Frames.

but spacecraft attitude control algorithms have not been per-
fectly investigated. Kumar and Shah have set up the general
formulation of the spacecraft equations ofmotion in an equa-
torial eccentric orbit using Lagrangian method and made
some analysis about the stability. Then the control laws for
three-axis attitude control of spacecrafts have been developed
and a closed-form solution of the system has been derived in
[14]. Mahmut et al. have designed Lyapunov-based nonlinear
feedback laws to control the rotational and translational
motion of the spacecraft for an asteroid orbiting spacecraft
in [15]. However, in the above articles about orbiting attitude
motion, external perturbations acting on the spacecraft are
not taken into account and the control laws are not robust.

Backstepping is a systematic and recursive design meth-
odology for nonlinear feedback control. The idea is to select
recursively some appropriate functions of state variables as
pseudocontrol inputs for lower dimension subsystems of the
overall system. Each backstepping stage results in a new pseu-
docontrol design, expressed in terms of the pseudocontrol
designs from preceding design stages. When the procedure
terminates, a feedback design for the true control input is the
result which achieves the original design objective by virtue
of a final Lyapunov function, which is formed by summing
up the Lyapunov functions associated with each individual
design stage. Sliding mode control is a nonlinear robust
control and applicable to solve the tracking of nonlinear
system [16, 17].The adaptive algorithm is adopted to estimate
the external disturbances and uncertain parameters due to
the highly complex environment in real time [18]. Moreover,
owing to the robust control performance of adaptive back-
stepping control and sliding-mode control, many combined
adaptive backstepping and sliding mode control schemes
have appeared. Although good robust control strategies for
uncertain nonlinear system and tracking problems have been

proposed in [19, 20], adaptive backstepping sliding mode
control is also effective and easier for implementation in real
time. In this paper, the performance of spacecrafts orbiting
irregular asteroids with perturbations is overall analysed,
and attitude motion is influenced seriously. Moreover, the
robust adaptive backstepping sliding mode control laws are
proposed to compensate the uncertainties and perturbations
and make the attitude angles decay and reach the null state,
which ensure orbiting motion and space mission.

This paper is organized as follows. In Section 2, gravity
gradient torque of spacecraft orbiting irregular asteroids is
derived and three-dimensional attitude motion equations
of the rigid spacecraft are first examined considering the
perturbations, which is followed by deriving the linearized
system model. In Section 3, the stability analysis about the
spacecraft is presented in retrograde orbits and direct orbits
with the orbital radius. Then in Section 4, effective adaptive
backstepping sliding mode control schemes for a spacecraft
orbiting the asteroid Eros 433 are developed to stabilize the
system. Computer simulations are carried out to illustrate the
effectiveness of the control laws. Conclusions are presented in
Section 5.

2. System Equations of Motion

2.1. Coordinate Frames. At first, the following Coordinate
Frames are set up tomake the problem clear, which are shown
in Figure 1.

(1) Asteroid centered inertial frame ( ⃗𝐼, ⃗𝐽, 𝐾): the origin of
this frame is at the center of mass of the asteroid.

(2) Asteroid-fixed frame ( ⃗𝑖, ⃗𝑗, ⃗𝑘): the origin of this frame
is at the center of mass of the asteroid, the vectors are
aligned along the three centroidal principal axis of the
smallest, the intermediate, and the largest moment
of inertia, respectively. The asteroid rotational state
relates the two frames, the unit vector ⃗𝑘 points in
the same direction as 𝐾. Asteroid-fixed frame ( ⃗𝑖, ⃗𝑗, ⃗𝑘)
is assumed to rotate with constant angular velocity
Ω⃗ = Ω ⋅ 𝐾.

(3) The spacecraft orbital frame ( ⃗𝑜
1
, ⃗𝑜
2
, ⃗𝑜
3
): the origin of

this frame is at the center of mass of the spacecraft,
⃗𝑜
3
points towards the center of mass of the asteroid,
⃗𝑜
1
points towards the transverse direction in the

orbital plane, and ⃗𝑜
2
satisfied the right hand rule. For

equatorial orbits, the orbital frame is obtained from
the inertial frame ( ⃗𝐼, ⃗𝐽, 𝐾) by a single rotation through
an angle equal to the true anomaly 𝜂.

(4) The spacecraft-fixed frame ( ⃗𝑏
1
, ⃗𝑏
2
, ⃗𝑏
3
): alignedwith the

principal axes of the spacecraft, their orientation with
respect to the orbital frame can be defined in terms of
the attitude angles (roll, pitch, and yaw).

The sequence of rotations used here is yaw (𝜆) around ⃗𝑏
1

axis, followed by pitch (𝜃) around ⃗𝑏
2
axis, and then followed

by roll (𝛾) around ⃗𝑏
3
axis.
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2.2. Attitude Kinematics Model. The following assumptions
are made in deriving the equations of motion firstly.

(1) The spacecraft is rigid.
(2) The gravitational attraction of the asteroid is themain

disturbance force acting on the spacecraft, and the
solar radiation and solar gravitation are considered
perturbation force.

(3) The rotation rate of the asteroid is constant.
(4) The orbital motion of the spacecraft is not affected by

attitude dynamics.
(5) Moment of inertias is affected by the irregular gravi-

tational force of small bodies.
(6) Orbital motion of the spacecraft is fully described as

a closed, planar, and periodic orbit.
(7) The asteroid is assumed to be a rotating triaxial

ellipsoid.

In view of the first assumption, the attitudemotion can be
described by Euler’s equations of motion for a rigid body:

𝐼
1
̇𝜔
1
− (𝐼
2
− 𝐼
3
) 𝜔
2
𝜔
3
= 𝑀
𝑦
+𝑀
1
+𝑀
Δ1
,

𝐼
2
̇𝜔
2
− (𝐼
3
− 𝐼
1
) 𝜔
3
𝜔
1
= 𝑀
𝑝
+𝑀
2
+𝑀
Δ2
,

𝐼
3
̇𝜔
3
− (𝐼
1
− 𝐼
2
) 𝜔
1
𝜔
2
= 𝑀
𝑟
+𝑀
3
+𝑀
Δ3
,

(1a)

̇𝜆 = 𝜔
𝑏1
+ tan 𝜃 (𝜔

𝑏2
sin 𝜆 + 𝜔

𝑏3
cos 𝜆) ,

̇𝜃 = 𝜔
𝑏2
cos 𝜆 − 𝜔

𝑏3
sin 𝜆,

̇𝛾 =
1

cos 𝜃
(𝜔
𝑏2
sin 𝜆 + 𝜔

𝑏3
cos 𝜆) ,

(1b)

where 𝐼
1
, 𝐼
2
, 𝐼
3
are the principal moments of inertia of the

spacecraft, 𝜔
1
, 𝜔
2
, 𝜔
3
are the components of the angular

velocity along the principal axes in the spacecraft-fixed frame,
𝜔
𝑏1
, 𝜔
𝑏2
, 𝜔
𝑏3
are the relative angular velocity of the spacecraft

with respect to the orbital frame ( ⃗𝑜
1
, ⃗𝑜
2
, ⃗𝑜
3
) expressed in the

spacecraft-fixed frame, and 𝜔
𝑏1
, 𝜔
𝑏2
, 𝜔
𝑏3
can be calculated by

the coordinate transformation matrix𝑀
𝐵𝑂

from the orbital
frame to the spacecraft-fixed frame:

[𝜔𝑏1 𝜔𝑏2 𝜔𝑏3]
𝑇

= [𝜔1 𝜔2 𝜔3]
𝑇

−𝑀
𝐵𝑂
[0 ̇𝜂 0]

𝑇

. (2a)

𝑀
𝐵𝑂
= [

[

1 0 0

0 cos 𝜆 sin 𝜆
0 − sin 𝜆 cos 𝜆

]

]

[

[

cos 𝜃 0 − sin 𝜃
0 1 0

sin 𝜃 0 cos 𝜃
]

]

× [

[

cos 𝛾 sin 𝛾 0
− sin 𝛾 cos 𝛾 0
0 0 1

]

]

.

(2b)

And𝑀
𝑦
,𝑀
𝑝
, and𝑀

𝑟
are the components of the external

control moment, 𝑀
1
,𝑀
2
,𝑀
3
are the components of the

gravitational field of the asteroid, 𝑀
Δ1
,𝑀
Δ2
,𝑀
Δ3

are the
components of the perturbation force, and ̇𝜂 is the instanta-
neous orbital rate. Therefore, the full nonlinear equations of
the attitudemotion have been obtained by (1a), (1b), (2a), and
(2b).

In view of the fifth assumption, the gravitational field of
the asteroid is the primary and complex effect term which
needs to be discussed in detail.

2.3. Gravity Gradient Torque. The gravitational potential of
any arbitrary primary can be written in spherical harmonic
series [21, 22]:

𝑈 =
𝐺𝑀

𝑅
{1 +

∞

∑

𝑙=2

[𝐶
𝑛0
(
𝑅
𝑒

𝑅
)

𝑙

𝑃
𝑙
(sin𝜑)

+

𝑙

∑

𝑚=1

((
𝑅
𝑒

𝑅
)

𝑙

𝑃
𝑙𝑚
(sin𝜑)

× (𝐶
𝑙𝑚
cos𝑚𝛿

+𝑆
𝑙𝑚
sin𝑚𝛿))]} ,

(3)

where 𝑅 is the distance of an orbiting particle from the center
of mass of the primary and 𝑅

𝑒
is the characteristic length of

the primary, while 𝜑 and 𝛿 are, respectively, the latitude and
longitude of the orbiting particle measured in an asteroid-
fixed frame. The terms 𝑃

𝑙
(sin𝜑) are Legendre polynomials

of degree 𝑙 and order 0, and terms 𝑃
𝑙𝑚
(sin𝜑) are associated

Legendre polynomials of degree 𝑙 and order𝑚.The two kinds
of terms are given as

𝑃
𝑙
(sin𝜑) = 1

2𝑙𝑙

𝑑
𝑙

𝑑(sin𝜑)𝑙
{[(sin𝜑)2 − 1]

𝑙

}

𝑃
𝑙𝑚
(sin𝜑) = [(sin𝜑)2 − 1]

𝑚/2 𝑑
𝑚
𝑃
𝑙
(sin𝜑)

𝑑(sin𝜑)𝑚
.

(4)

The corresponding 𝐶
𝑙𝑚

and 𝑆
𝑙𝑚

are known as harmonic
coefficients. When 𝑚 = 𝑙 ̸= 0, they are called sectorial
harmonic coefficients, and 𝑃

𝑙𝑚
(sin𝜑) = 𝑃

𝑙
(sin𝜑); the cor-

responding 𝐶
𝑙0
are known as zonal harmonic coefficients of

order 0.The coefficients𝐶
𝑙0
specify the oblateness of the aster-

oidwhile𝐶
𝑙𝑚
characterize the ellipticity of the asteroid’s equa-

tor. For the Earth, 𝐶
20

is 𝑂(10−3) and the other coefficients
are𝑂(10−6). However, for some familiar asteroids these coef-
ficients can be as high as 𝑂(10−2). Thus, the irregular shape
of an asteroid can have a much stronger effect on attitude
dynamics. We approximate the small body is a homogeneous
triaxial ellipsoid with axes 𝑎, 𝑏, and 𝑐 in order to simplify the
problem. We can calculate the coefficients as follows.
𝑆
𝑙𝑚
= 0 for all 𝑙 or𝑚,𝐶

𝑙𝑚
= 0 for 𝑙 or𝑚 are odd and while

other conditions

𝐶
𝑙𝑚
=
3

𝑅
𝑒

𝑙

(𝑙/2)! (𝑙 − 𝑚)!

2𝑚 (𝑙 + 3) (𝑙 + 1)!
(2 − 𝛿

0𝑚
)

×

int((𝑙−𝑚)/4)
∑

𝑖=0

((𝑎
2
− 𝑏
2
)
((𝑚+4𝑖)/2)
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× [𝑐
2
− (
1

2
) (𝑎
2
+ 𝑏
2
)]

((𝑙−𝑚−4𝑖)/2)

)

× (16
𝑖
(
𝑙 − 𝑚 − 4𝑖

2
)! (
𝑚 + 2𝑖

2
)!𝑖!)

−1

(5)

𝛿
0𝑚

is Kronecker symbol, and the value is

𝛿
0𝑚
= {
0, 𝑚 = 0

1, 𝑚 = 1.
(6)

For our purposes we have stopped the expansion of (3) to the
second order, so we get the following coefficient:

𝐶
20
=
2𝑐
2
− (𝑎
2
− 𝑏
2
)

10𝑅2
0

, 𝐶
22
=
𝑎
2
− 𝑏
2

20𝑅2
0

. (7)

The gravitational force acting on a particle of mass 𝑑𝑚 at
a distance 𝑅 from the asteroid center of mass, having latitude
𝜑 and longitude 𝛿, is given by

𝑑
⇀
𝐹 = [

𝜕𝑈

𝜕𝑅

⇀
𝑒
𝑅
+

1

𝑅 cos𝜑
𝜕𝑈

𝜕𝛿

⇀
𝑒
𝛿
+
1

2

𝜕𝑈

𝜕𝜑

⇀
𝑒
𝜑
] 𝑑𝑚, (8)

where 𝑈 is given in (3), while ⇀𝑒
𝑅
,
⇀
𝑒
𝜑
,
⇀
𝑒
𝛿
are unit vectors

associated with the spherical coordinate system 𝑅, 𝜑, 𝛿 as
shown in Figure 1. The position vector 𝑅 of the element can
be expressed as

⇀
𝑅 =
⇀
𝑅
𝑐
+
⇀
𝑟 , (9)

where ⇀𝑅
𝑐
is the position vector of the center of mass of the

spacecraft relative to the asteroid center of mass, while⇀𝑟 is
the position vector of the element in the spacecraft frame.We
assume that 𝑅 and 𝑅

𝑐
are much greater than 𝑟. Clearly

𝑅 =


⇀
𝑅
𝑐
+
⇀
𝑟

,

⇀
𝑒
𝑅
=

⇀
𝑅
𝑐
+
⇀
𝑟



⇀
𝑅
𝑐
+
⇀
𝑟


,
⇀
𝑒
𝛿
=
⇀
𝑒
𝑅
×
⇀
𝑒
𝜑
.

(10)

In conclusion, the gravity gradient torque on the space-
craft can then be determined from

𝑑
⇀
𝐹 = 𝑑

⇀
𝐹
𝑅
+ 𝑑
⇀
𝐹
𝛿
+ 𝑑
⇀
𝐹
𝜑
, (11)

𝑀
𝑔
= ∫ 𝑟 × 𝑑𝑓. (12)

Evaluation of this torque involves expansion of the
various powers of |⇀𝑅

𝑐
+
⇀
𝑟 | using the binomial theorem

and neglecting terms involving third and higher powers of
|𝑟|/|𝑅

𝑐
|.

Let 𝑀
𝑔
= [𝑀1 𝑀2 𝑀3] denote the gravity gradient

torque in the spacecraft-fixed frame ( ⃗𝑏
1
, ⃗𝑏
2
, ⃗𝑏
3
) and let 𝐼

denote the inertia matrix for the spacecraft, which is given
as

𝐼 = [

[

𝐼
1

𝐼
2

𝐼
3

]

]

. (13)

The unit vectors ⇀𝑒
𝑅
,
⇀
𝑒
𝜑
,
⇀
𝑒
𝛿
appearing in (8), (10), and

(11) can now be expressed in terms of the yaw, pitch, and roll.
The gravity-gradient torque components 𝑀

𝑖
(𝑖 = 1, 2, 3) in

the spacecraft-fixed frame ( ⃗𝑏
1
, ⃗𝑏
2
, ⃗𝑏
3
) can be written as follows

after some algebra:

𝑀
1
=
𝐺𝑀

𝑅3
𝑐

[ (3 + 5𝛼) (𝐼
3
− 𝐼
2
) cos 𝜆cos2𝜃 sin 𝜆

+ 5𝛽 (−
2

5
𝐼
1
cos 𝜆 sin 𝛾

+ (𝐼
1
− 𝐼
2
+ 𝐼
3
) sin 𝜆cos2𝜃 cos 𝛾)] ,

(14)

𝑀
2
=
𝐺𝑀

𝑅3
𝑐

[ (3 + 5𝛼) (𝐼
3
− 𝐼
1
) cos 𝜆 cos 𝜃 sin 𝜃

+ 5𝛽 (−
2

5
𝐼
2
(sin 𝜆 sin 𝜃 sin 𝛾 − cos 𝜆 cos 𝛾)

+ (𝐼
2
− 𝐼
1
+ 𝐼
3
)

× (sin 𝜆 sin 𝜃 sin 𝛾

+sin2𝜃 cos 𝜆 cos 𝛾)

+ (𝐼
2
− 𝐼
3
+ 𝐼
1
) cos2𝜃 cos 𝜆 cos 𝛾)] ,

(15)

𝑀
3
=
𝐺𝑀

𝑅3
𝑐

[ (3 + 5𝛼) (𝐼
1
− 𝐼
2
) sin 𝜆 cos 𝜃 sin 𝜃

+ 5𝛽 (
2

5
𝐼
3
(sin 𝜆 cos 𝛾 − cos 𝜆 sin 𝜃 sin 𝛾)

+ (𝐼
2
− 𝐼
1
+ 𝐼
3
)

× (cos 𝜆 sin 𝜆 sin 𝛾

−sin2𝜃 sin 𝜆 cos 𝛾)

− (𝐼
1
− 𝐼
2
+ 𝐼
3
)

× cos2𝜃 sin 𝜆 cos 𝛾) ] ,
(16)

where 𝛼, 𝛽 are defined as follows, respectively:

𝛼 = [−
3

2
𝐶
20
+ 9𝐶
22
cos (2𝛿

𝑐
)] (
𝑅
𝑒

𝑅
𝑐

)

2

, (17)

𝛽 = [6𝐶
22
sin (2𝛿

𝑐
)] (
𝑅
𝑒

𝑅
𝑐

)

2

. (18)



Mathematical Problems in Engineering 5

2.4. Three-Dimensional Motion for Equatorial Orbits. Three-
dimensional motion of a spacecraft in an equatorial orbit is
considered, and the attitude motion is small. It is assumed
that the asteroid is rotating with a constant angular velocity
Ω⋅
⇀
𝐾. Assuming the rotating orbit of the spacecraft is circular

orbits, ̇𝜂 = 𝑛, where 𝑛 is constant and stands for the orbital
angular velocity of the spacecraft. Therefore, the longitude of
the center of mass of the spacecraft is then given by

𝛿
𝑐
= (𝑛 ± Ω) 𝑡, (19)

where the plus and minus signs apply for retrograde and
direct orbits, respectively.

Furthermore, for small motion, the angular velocity
components given in (1a), (1b), (2a), and (2b) become

[

[

𝜔
1

𝜔
2

𝜔
3

]

]

= [

[

̇𝜆 − ̇𝜂𝛾

̇𝜃 − ̇𝜂

̇𝛾 + ̇𝜂𝜆

]

]

. (20)

Therefore, a set of linearized equations for small motion
of spacecraft are obtained in (21)–(23) by introducing (14)–
(19) into (1a) and (1b):

̈𝜆+ ̇𝜂 (𝑘
1
− 1) ̇𝛾 + [

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) + ̇𝜂
2
] 𝑘
1
𝜆

− [
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
1
) + ̈𝜂
2
] 𝛾 = 𝑢

𝜆
+ Δ
𝜆

(21)

̈𝜃− ̈𝜂 +
𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) 𝑘
2
𝜃 −
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
2
) = 𝑢
𝜃
+ Δ
𝜃

(22)

̈𝛾+ ̇𝜂 (1 − 𝑘
3
) ̇𝜆 + 𝑘

3
̇𝜂
2
𝛾

− [ ̈𝜂 +
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 − 5𝑘
3
)] 𝜆 = 𝑢

𝛾
+ Δ
𝛾
,

(23)

where 𝑘
1
= (𝐼
2
− 𝐼
3
)/𝐼
1
, 𝑘
2
= (𝐼
1
− 𝐼
3
)/𝐼
2
, 𝑘
3
= (𝐼
2
− 𝐼
1
)/𝐼
3
,

𝑢
𝜆
, 𝑢
𝜃
, 𝑢
𝛾
are control accelerations in three directions, and

Δ
𝜆
, Δ
𝜃
, Δ
𝛾
are perturbation force accelerations consisting of

gravitation higher order terms and solar radiation pressure,
and so forth.Note that the pitchmotion is decoupled from the
roll and yaw motions, and this fact is similar to the case of a
spacecraft orbiting symmetrically mass distributed planetary
bodies.

3. Analysis of Motion for
Orbiting Circular Orbits

3.1. Regular Resonance Analysis andNumerical Results of Pitch
Motion. For circular orbits, ̇𝜂 = 𝑛, ̈𝜂 = 0, 𝐺𝑀/𝑅3

𝑐
= 𝑛
2. For

the understanding of the pitch behavior, let us consider small
motion. Equation (22) then reduces to

̈𝜃+ 𝑛
2
(3 + 5𝛼) 𝑘

2
𝜃 −
1

2
𝑛
2
𝛽 (3 + 5𝑘

2
) = 0. (24)

One can cast (24)which represents a harmonically excited
system with periodic stiffness. If 𝑘

2
is negative, the pitch

Table 1: Simulation parameters.

Simulation parameters Simulation value
Characteristic length of the asteroid 𝑅

𝑒

(km) 9.933

Harmonic coefficients 𝐶
20

−0.0878
Harmonic coefficients 𝐶

22
0.0439

Spacecraft mass distribution
parameters 𝑘

1
, 𝑘
2
, 𝑘
3

1/3, 1/3, 1/3

Asteroid’s gravitational constant
parameter 𝜇 (km3/s2) 876171

Asteroid’s spin rate Ω (rad/s) (2 ∗ 3.14)/(5.27 ∗ 3600)

motion is normally unstable; hence, the case of positive is
considered in this paper.

Since 𝑘
2
< 1, |𝐶

20
| < 0.1, choosing the minus sign

in (19), parametric resonance occurs when the spacecraft is
in a retrograde orbit when the asteroid and orbital angular
velocities are related [14] approximately by

𝑅
𝑐
= (
𝐺𝑀

Ω2
)

1/3

[
𝑗 ∓ (3𝑘

2
)
1/2

𝑗
]

2/3

, 𝑗 = 1, 2, 3, . . . . (25)

Regular resonance takes place when 𝑗 = 2; that is,

𝑅
𝑐
= (
𝐺𝑀

Ω2
)

1/3

[1 ∓
√3𝑘
2

2
]

2/3

. (26)

3.2. Results for the Three-Dimensional Case. Equations (21)–
(23) are quite complex and must be solved numerically with
the initial conditions of roll, pitch, and yaw 𝜆(0) = 0.1 rad,
̇𝜆(0) = 0; 𝜃(0) = 0.1 rad, ̇𝜃(0) = 0; 𝛾(0) = 0.1 rad, ̇𝛾(0) = 0.

Table 1 gives simulation parameters for three-dimen-
sional motion about Eros 433. Figures 2, 3, 4, 5, 6, 7, 8, 9,
and 10 give the three-dimensional motions of a spacecraft
orbiting Eros in equatorial circular retrograde orbits at
𝑅
𝑐
= 48 km, 31 km, 15 km, respectively, without taking into

account perturbation torque.
The pitchmotion is quite regular with amplitude of 0.1 rad

at 𝑅
𝑐
= 48 km with the above initial conditions, and ampli-

tudes of the roll and yawmotions are all steady. When orbital
radius is decrease the three-dimensional motions especially
pitch are irregular, and the irregularity is becoming apparent
when the spacecraft is nearer to the asteroid. Similarly Figures
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, and 22 give the
three-dimensional motions of a spacecraft orbiting Eros in
equatorial circular direct orbits at 𝑅

𝑐
= 50 km, 35 km, 27 km,

26 km, respectively, without taking into account perturbation
torques. The three-dimensional motion has the same trend
with retrograde orbits when the orbital radius are decrease,
but the roll and raw motions become instable when 𝑅

𝑐
=

26 km.
It is observed that irregularities of attitude angles are

more obvious when the spacecraft is nearer to the small
body, which make the vibration amplitude and frequency
of the spacecrafts more strong. We can draw the conclusion
from the simulation results that the irregular gravity-gradient
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= 48 km, 𝑘

2
= 1/3.

torque of the asteroid has the primary and complex effect on
the spacecraft orbiting motion. The spacecraft may get out
of the orbit if external perturbations such as solar radiation
pressure are taken into account. So it is essential to design
the robust control algorithms to compensate the uncertainties
and perturbations and stabilize the attitude angles.

4. Controller Design

In this section, we present adaptive slidingmode control laws
based on backstepping which achieves three-axes stabilized
nadir-pointing attitude. In other words, the control objective
is to align the spacecraft-fixed axes with the orbital reference
axes. The desired attitude angles yaw (𝜆), pitch (𝜃), and roll
(𝛾) are zero.

4.1. Backstepping Control. The basic idea of backstepping
method is decomposition of a complicated nonlinear system,
then designing Lyapunov function and suppositional control
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for the decomposed system. The final control laws are
designed after backing to the overall system.

Regardless of perturbation, suppose (21), (22), and (23)
are

̇𝑥
1
= 𝑥
2
, ̇𝑥

2
= 𝑓 (𝑥

1
, 𝑥
2
) + 𝑏𝑢

𝑥
1
= [𝜆, 𝜃, 𝛾] , 𝑥

2
= [ ̇𝜆, ̇𝜃, ̇𝛾]

𝑓 (𝑥
1
, 𝑥
2
)

= [ ̇𝜂 (𝑘
1
− 1) ̇𝛾 + [

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) + ̇𝜂
2
] 𝑘
1
𝜆

− [
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
1
) + ̈𝜂
2
] 𝛾 − ̈𝜂 +

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) 𝑘
2
𝜃

−
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
2
) ̇𝜂 (1 − 𝑘

3
) ̇𝜆 + 𝑘

3
̇𝜂
2
𝛾

−[ ̈𝜂 +
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 − 5𝑘
3
)] 𝜆] , 𝑏 = [

[

1

1

1

]

]

.

(27)

Define position error 𝑧
1
= 𝑥
1
− 𝑧
𝑑
; 𝑧
𝑑
is the expected

trajectory ̇𝑧
1
= ̇𝑥
1
− ̇𝑧
𝑑
= 𝑥
2
− ̇𝑧
𝑑
.

Assume the virtual control in

𝛼
1
= −𝑐
1
𝑧
1
+ ̇𝑧
𝑑
(𝑐
1
> 0) . (28)

Define 𝑧
2
= 𝑥
2
− 𝛼
1
and Lyapunov function 𝑉

1
= (1/2)𝑧

2

1
, so

(29) is obtained:

𝑉
1
= 𝑧
1
̇𝑧
1
= 𝑧
1
(𝑥
2
− ̇𝑧
𝑑
) = 𝑧
1
(𝑧
2
+ 𝛼
1
− ̇𝑧
𝑑
) . (29)

Introducing (28) into (29), 𝑉
1
= −𝑐
1
𝑧
2

1
+ 𝑧
1
𝑧
2
is obtained.

If 𝑧
2
= 0, then 𝑉

1
≤ 0.
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Define Lyapunov function 𝑉
2
= 𝑉
1
+ (1/2)𝑧

2

2
; then

𝑉
2
= 𝑉
1
+ 𝑧
2
̇𝑧
2

= −𝑐
1
𝑧
2

1
+ 𝑧
1
𝑧
2
+ 𝑧
2
[𝑓 (𝑥
1
, 𝑥
2
) + 𝑏𝑢 + 𝑐

1
̇𝑧
1
− ̈𝑧
𝑑
] .

(30)

The following control laws are obtained in

𝑢 =
1

𝑏
[−𝑓 (𝑥

1
, 𝑥
2
) − 𝑐
2
𝑧
2
− 𝑧
1
− 𝑐
1
̇𝑧
1
+ ̈𝑧
𝑑
] (𝑐
2
> 0) . (31)

Thus, 𝑉
2
= −𝑐
1
𝑧
2

1
− 𝑐
2
𝑧
2

2
≤ 0.

Spacecraft attitude angles pitch, roll, and yaw angles can
reach regular resonance based on control law (31) with the
initial conditions of roll, pitch, and yaw 𝜆(0) = 0.1 rad,
̇𝜆(0) = 0 rad; 𝜃(0) = 0.1 rad, ̇𝜃(0) = 0 rad; 𝛾(0) = 0.1 rad,
̇𝛾(0) = 0 rad. In the case of the simulation parameters

described as Table 1, the desired attitude motion of the
spacecraft can be specified by periodic functions with the
desired amplitudes. The corresponding attitude motions are
determined numerically in Figures 23, 24, and 25. Figures 26,
27, and 28 give the control accelerations of three-dimensional
motions. Backstepping control laws can make roll, pitch, and
yaw track the desired periodic trajectory without external
disturbances when the spacecraft in circular retrograde or
direct orbits. The desired attitude angles of spacecraft are
adopted periodic function as 𝑧𝑑1 = 0.1 ∗ cos(0.0002 ∗ 𝑡) in
the experiments.

From the experimental results in Figures 23, 24, and
25, backstepping control law (31) can guarantee the output
signals stable, tracking the desired attitude of spacecraft
globally and asymptotically without external perturbances.

4.2. Adaptive Backstepping SlidingMode Control. With exter-
nal disturbances and uncertain parameters, adaptive back-
stepping sliding mode control schemes are developed, which
have been applied in uncertain systems [23]. It introduces the
sliding mode control in backstepping design to modify the
last step of backstepping algorithm and simplify the design of
controller.
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Figure 24: Pitch response.

Without loss of generality, suppose (21), (22), and (23) are

̇𝑥
1
= 𝑥
2
, ̇𝑥

2
= 𝑓 (𝑥

1
, 𝑥
2
) + 𝑏𝑢 + 𝐹,

𝑦 = 𝑥
1
,

𝑥
1
= [𝜆, 𝜃, 𝛾] , 𝑥

2
= [ ̇𝜆, ̇𝜃, ̇𝛾] ,

𝑓 (𝑥
1
, 𝑥
2
)

= [ ̇𝜂 (𝑘
1
− 1) ̇𝛾 + [

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) + ̇𝜂
2
] 𝑘
1
𝜆

− [
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
1
) + ̈𝜂
2
] 𝛾 − ̈𝜂 +

𝐺𝑀

𝑅3
𝑐

(3 + 5𝛼) 𝑘
2
𝜃

−
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 + 5𝑘
2
) ̇𝜂 (1 − 𝑘

3
) ̇𝜆 + 𝑘

3
̇𝜂
2
𝛾

− [ ̈𝜂 +
1

2

𝐺𝑀

𝑅3
𝑐

𝛽 (3 − 5𝑘
3
)] 𝜆] , 𝑏 = [

[

1

1

1

]

]

.

(32)

|𝐹| ≤ 𝐹 is the whole external disturbances and uncertain
parameters, and we suppose it changes slowly; that is ̇𝐹 = 0.

To begin with, define the position error 𝑧
1
= 𝑦 − 𝑦

𝑑
; 𝑦
𝑑
is

the expected position:

̇𝑧
1
= ̇𝑦 − ̇𝑦

𝑑
= 𝑥
2
− ̇𝑦
𝑑
. (33)

The stability term is 𝛼
1
= 𝑐
1
𝑧
1
, and 𝑐

1
is positive constant.

Define Lyapunov function to be 𝑉
1
= (1/2)𝑧

2

1
and 𝑧

2
=

̇𝑧
1
+ 𝛼
1
= 𝑥
2
− ̇𝑦
𝑑
+ 𝛼
1

𝑉
1
= 𝑧
1
̇𝑧
1
= 𝑧
1
(𝑥
2
− ̇𝑦
𝑑
) = 𝑧
1
(𝑧
2
− 𝛼
1
) = 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
. (34)

Then, ̇𝑧
2
= ̇𝑥
2
− ̈𝑦
𝑑
+ ̇𝛼
1
= 𝑓(𝑥

1
, 𝑥
2
) + 𝑏𝑢 + 𝐹 − ̈𝑦

𝑑
+ ̇𝛼
1
.

Define Lyapunov function 𝑉
2
= 𝑉
1
+ (1/2)𝜎

2; 𝜎 = 𝑘
1
𝑧
1
+

𝑧
2
(𝑘
1
> 0) is the switching function.
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Figure 25: Yaw response.
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Figure 26: Roll control input.
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Figure 27: Pitch control input.
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Figure 28: Yaw control input.

Taking the derivative of 𝑉
2
(35) is obtained:

𝑉
2
= 𝑉
1
+ 𝜎 ̇𝜎 = 𝑧

1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎 ̇𝜎

= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎 (𝑘

1
̇𝑧
1
+ ̇𝑧
2
)

= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1

+ 𝜎 [𝑘
1
(𝑧
2
− 𝑐
1
𝑧
1
) + 𝑓 (𝑥

1
, 𝑥
2
) + 𝑏𝑢 + 𝐹 − ̈𝑦

𝑑
+ ̇𝛼
1
] .

(35)

The control laws are deduced as follows supposing 𝐹 is
known:

𝑢 = 𝑏
−1
[−𝑘
1
(𝑧
2
− 𝑐
1
𝑧
1
) − 𝑓 (𝑥

1
, 𝑥
2
) − 𝐹 sgn (𝜎)

+ ̈𝑦
𝑑
− ̇𝛼
1
− ℎ (𝜎 + 𝛽 sgn (𝜎)) ] .

(36)

Here ℎ and 𝛽 are all positive constants.
It is not easy to obtain the boundary of external distur-

bances and uncertain parameters due to the highly complex
space environment. The adaptive algorithm is adopted to
estimate the external disturbances and uncertainties 𝐹 in
order to retain from the boundary.

Define Lyapunov function as𝑉
3
= 𝑉
2
+(1/2𝛾)𝐹

2; the error
is 𝐹 = 𝐹∗ −𝐹, and 𝐹 is the estimated value of 𝐹; 𝛾 is a positive
constant. Substituting 𝑉

2
into Equation 𝑉

3
as

𝑉
3
= 𝑉
2
−
1

𝛾
𝐹
̇
�̂�

= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎 [𝑘

1
(𝑧
2
− 𝑐
1
𝑧
1
) + 𝑓 (𝑥

1
, 𝑥
2
)

+𝑏𝑢 + 𝐹 − ̈𝑦
𝑑
+ ̇𝛼
1
] −
1

𝛾
𝐹
̇
�̂�
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= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
+ 𝜎 [𝑘

1
(𝑧
2
− 𝑐
1
𝑧
1
) + 𝑓 (𝑥

1
, 𝑥
2
)

+𝑏𝑢 + 𝐹 − ̈𝑦
𝑑
+ ̇𝛼
1
] −
1

𝛾
𝐹 (
̇
�̂� − 𝛾𝜎) .

(37)

The adaptive controller laws are obtained as

𝑢 = 𝑏
−1
[ − 𝑘
1
(𝑧
2
− 𝑐
1
𝑧
1
) − 𝑓 (𝑥

1
, 𝑥
2
)

−𝐹 + ̈𝑦
𝑑
− ̇𝛼
1
− ℎ (𝜎 + 𝛽 sgn (𝜎))] ,

̇
�̂� = 𝛾𝜎.

(38)

The stability of the controller is proved as follows.
Substituting (38) into (37),

̇𝑉
3
= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
ℎ𝜎
2
− ℎ𝛽 |𝜎| . (39)

Take

𝑄 =
[
[

[

𝑐
1
+ ℎ𝑘
2

1
ℎ𝑘
1
−
1

2

ℎ𝑘
1
−
1

2
ℎ

]
]

]

,

𝑧
𝑇
𝑄𝑧 = [𝑧1 𝑧2]

[
[

[

𝑐
1
+ ℎ𝑘
2

1
ℎ𝑘
1
−
1

2

ℎ𝑘
1
−
1

2
ℎ

]
]

]

[𝑧1 𝑧2]
𝑇

= 𝑐
1
𝑧
1

2
+ ℎ𝑘
2

1
𝑧
2

1
+ 2ℎ𝑘

1
𝑧
1
𝑧
2
− 𝑧
1
𝑧
2
+ ℎ𝑧
2

2

= 𝑐
1
𝑧
2

1
− 𝑧
1
𝑧
2
+ ℎ𝜎
2
.

(40)

Rewriting (39) to

𝑉
3
= 𝑧
1
𝑧
2
− 𝑐
1
𝑧
2

1
− ℎ𝜎
2
− ℎ𝛽 |𝜎| = −𝑧

𝑇
𝑄𝑧 − ℎ𝛽 |𝜎| ≤ 0 (41)

𝑄 is ensured to be a positive definite matrix while ℎ, 𝑐
1
, 𝑘
1
are

appropriate values.
The desired attitude of spacecraft is adopted exponential

function as

𝑧𝑑1 = (0.1 + 0.15 ∗ 𝑛 ∗ 𝑡) ∗ exp (−1.5 ∗ 𝑛 ∗ 𝑡) . (42)

The higher order terms of gravitational potential are
regarded as uncertainties and solar radiation pressures are
regarded as disturbances which are assumed as the following
equation:

𝐹 (𝑡, 𝑥
1
, 𝑥
2
) = [

[

0.02 sin (𝜔𝑡) ⋅ 𝑉
𝑙𝑥

0.02 sin (𝜔𝑡) ⋅ 𝑉
𝑙𝑦

0.02 cos (𝜔𝑡) ⋅ 𝑉
𝑙𝑧

]

]

. (43)

To verify and visualize the efficacy of the developed
control scheme, numerical simulations under external distur-
bances and uncertainties are conducted using (21)-(23) and
control law (38). Parameters related to operating conditions
are also given about Eros 433 in Table 1.
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Figure 29: Roll response.
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Figure 30: Pitch response.

Some experimental results are provided to demonstrate
the effectiveness of the proposed adaptive backstepping
sliding mode control laws. Figures 29, 30, and 31 give
the spacecraft pitch, roll, and yaw attitude angles response
motion around Eros 433. We also can obtain the pitch
controller response as Figure 32. Compared with the attitude
stability analysis in references [10–13], closed-loop controllers
are proposed to make the spacecraft attitude angles tracking
the desired attitude as (42) and reach the null state as time
increases. Moreover, from simulation results one can obtain
the control law neutralizing the effects of asteroid shape and
mass distributions and orbital eccentricity as well as external
disturbances and uncertainties described as (43). The robust
control performance of the proposed adaptive backstepping
sliding-mode control system is obvious than references [14,
15], which ensure stable orbiting motion and space mission.
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5. Conclusions

This paper has focused on the attitude dynamics and effect
control algorithms for spacecraft orbiting rotating asteroids.
Firstly, three-dimensional attitude motion of the spacecraft
is examined considering the perturbation force. Then sta-
bility analysis is presented in retrograde orbits and direct
orbits using linearized system model. It appears that the
nonspherical shape and the rotational state of asteroids can
have important effects on the attitude motion. The adaptive
backstepping slidingmode control laws are designed tomake
the attitude angles decay and reach the null state. Computer
simulations are carried out for the asteroid Eros 433 to
illustrate the effectiveness of the control laws.

Nomenclature

𝑎, 𝑏, 𝑐: Major semiaxes of the asteroid
considered as triaxial ellipsoid

( ⃗𝐼, ⃗𝐽, 𝐾): Asteroid centered inertial frame
( ⃗𝑖, ⃗𝑗, ⃗𝑘): Asteroid-fixed frame
( ⃗𝑜
1
, ⃗𝑜
2
, ⃗𝑜
3
): Spacecraft orbital frame

( ⃗𝑏
1
, ⃗𝑏
2
, ⃗𝑏
3
): Spacecraft-fixed frame

𝐼
1
, 𝐼
2
, 𝐼
3
: Principal moments of inertia of the

spacecraft
𝜔
1
, 𝜔
2
, 𝜔
3
: Components of the angular velocity

along the principal axes in the
spacecraft-fixed frame

𝜔
𝑏1
, 𝜔
𝑏2
, 𝜔
𝑏3
: Relative angular velocity of the

spacecraft with respect to the orbital
frame

𝑀
𝐵𝑂
: Coordinate transformation matrix

from the orbital frame to the
spacecraft-fixed frame

𝑀
𝑦
,𝑀
𝑝
,𝑀
𝑟
: Components of the external control

moment
𝑀
1
,𝑀
2
,𝑀
3
: Components of the gravitational field

of the asteroid
𝑀
Δ1
,𝑀
Δ2
,𝑀
Δ3
: Components of the perturbation
force

̇𝜂: Instantaneous orbital rate
𝑅
𝑒
: Characteristic length of the primary
𝜑, 𝛿: Latitude and longitude of the orbiting

particle measured in an
asteroid-fixed frame

𝑃
𝑙𝑚
(sin𝜑): Legendre polynomials of degree 𝑙 and

order𝑚
𝐶
𝑙𝑚
, 𝑆
𝑙𝑚
: Harmonic coefficients

𝑚: Spacecraft mass
𝑀: Asteroid mass
𝑅
𝑐
: Orbital radius
𝑅: The distance of an orbiting particle

from the center of mass of the
primary

𝜆, 𝜃, 𝛾: Spacecraft yaw, pitch, and roll angles
Ω: Asteroid’s spin rate
𝜌: Density of the asteroid
𝑧𝑑1: Desired attitude angle of spacecraft

𝜇: Asteroid’s gravitational constant
parameter.
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This paper investigates the stabilization problem for a class of nonlinear systems, whose control coefficient is uncertain and varies
continuously in value and sign. The study emphasizes the development of a robust control that consists of a modified Nussbaum
function to tackle the uncertain varying control coefficient. By such a method, the finite-time escape phenomenon has been
prevented when the control coefficient is crossing zero and varying its sign. The proposed control guarantees the asymptotic
stabilization of the system and boundedness of all closed-loop signals. The control performance is illustrated by a numerical
simulation.

1. Introduction

The control design for nonlinear uncertain systems has been
the research focus in the community for decades [1–3]. In
recent years, the problem of uncertain control coefficient
has attracted increasing research interests [4–17].This special
type of uncertainty is vital to control performance, because
the control coefficient represents the systemmotion direction
under any control, and unsuccessful controllers may lead to
positive feedback and instability. Several methods have been
proposed in literature to handle this problem [5, 7, 9, 10].
Among these studies, an adaptive function was proposed
by Nussbaum [9] for linear time-invariant systems to deal
with the uncertain but constant control coefficient. Now, the
Nussbaum function has already become a standard technique
targeting the uncertain control coefficient for both linear
and nonlinear systems [18, 19]. In order to complete more
complicated control tasks, the Nussbaum function has also
been combined with other control techniques, such as robust
control [8, 12], adaptive control [15–17], learning control [6,
11], and backstepping design [8, 15, 16].

However, most previous results only investigate a rel-
atively simple case that the sign of the uncertain control

coefficient is fixed, that is, either positive or negative. It is
because of the fact that the conventional Nussbaum function
requires the control coefficient to be sign-fixed or “bounded
away from zero.” Unfortunately, the general case of sign-
varying uncertain control coefficient has received much less
attention and has not been fully solved yet. Undoubtedly,
this problem is technically more challenging and cannot be
directly handled by the conventional Nussbaum function. In
particular, to design a successful controller, two critical issues
have to be taken into full consideration. First, the sign may
vary very rapidly and be difficult to track. Second, any control
will lose its power when the control coefficient is crossing
zero; that is, singular points of control exist and improper
controllers probably result in finite-time escape phenomenon
[20].

The first attempt in addressing the problem of sign-
varying uncertain control coefficient for a scalar nonlinear
system was reported in [7]. Instead of using the Nussbaum
function, an online estimator of the control coefficient was
used in the robust control design. However, in order to
launch the online estimationmechanism successfully, several
restrictive assumptions are made in their work. For example,
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besides assuming the known bounds of the control coefficient
and its varying speed, it also requires the control coefficient
to be a common term between the unknown dynamics and
the control. These assumptions make their method specific
instead of general, and thus they need to be relaxed.

In this paper, we propose a new Nussbaum function,
which does not require such assumptions of [7] and is able
to track the rapidly varying sign of control coefficient. Then,
a robust controller is designed and then combined with the
proposed Nussbaum function, such that the potential finite-
time escape phenomenon is avoided. By such means, all
closed-loop signals are bounded and asymptotic stabilization
is achieved. The paper is organized as follows. The control
problem is presented in Section 2. Section 3 designs the new
Nussbaum function and the robust controller, followed by the
convergence analysis in Section 4. The illustrative example is
given in Section 5.

2. System Description

In order to highlight the development of the proposed control
approach,wewill only consider the following scalar uncertain
nonlinear system in this paper:

̇𝑥 (𝑡) = 𝑓 (𝑥) + 𝑎 (𝑥, 𝑡) 𝑢, (1)

where 𝑡 ∈ [0, +∞) is the time, 𝑥 ∈ 𝑅 is the state, and 𝑢 ∈ 𝑅 is
the control. 𝑓(𝑥) is an uncertain continuous function, which
denotes the dynamic part of the system and is assumed to be
bounded by a known function 𝜌(𝑥) as follows:

𝑓 (𝑥)
 ≤ 𝜌 (𝑥) , (2)

where 𝜌(𝑥) > 0 is well-defined in the sense that 𝜌(𝑥) is finite
for any finite 𝑥.

𝑎(𝑥, 𝑡) is an uncertain continuous function that denotes
the sign-varying uncertain control coefficient. In this paper,
let the control coefficient 𝑎 consist of two terms as follows:

𝑎 (𝑥, 𝑡) = 𝑏 (𝑥, 𝑡) 𝑠 (𝑥, 𝑡) , (3)

where 𝑏(𝑥, 𝑡) and 𝑠(𝑥, 𝑡) are both unknown continuous
functions and govern, separately, the “amplitude” and “sign”
of 𝑎. Let 𝑏(𝑥, 𝑡) be a bounded positive function satisfying

𝑏 (𝑥, 𝑡) ∈ [𝑏low, 𝑏up] > 0, (4)

where 𝑏low and 𝑏up are unknown positive constants. Without
loss of any generality, let the “sign” function 𝑠(𝑘) be bounded
by 1 as follows:

|𝑠 (𝑥, 𝑡)| ≤ 1. (5)

Thus, we immediately have

|𝑎 (𝑥, 𝑡)| ≤ 𝑏up, (6)

in previous literature [8, 9, 15, 16].
However, in this paper 𝑠(𝑥, 𝑡) is allowed to vary its

value and change its sign. Compared with most previous

results, this study is more comprehensive and technically
challenging.The focus of research will be put on handling the
varying 𝑠(𝑥, 𝑡), which has been barely addressed. Since 𝑠(𝑥, 𝑡)
continuously varies between positive and negative and will
certainly cross zero, let the control singular point be denoted
by the pair (𝑥

𝑖
, 𝑡
𝑖
) ∈ 𝑅 × [0, +∞), 𝑖 = 1, 2, . . ., such that,

𝑠 (𝑥
𝑖
, 𝑡
𝑖
) = 0. (7)

Note that at these points, the system is essentially out of
control for any 𝑢; thus, the dynamics are solely determined
by 𝑓(𝑥). Therefore, in general, the control singular points
are considered to be separately located, so that the control
𝑢 only loses its power at these particular points; otherwise,
finite-escape phenomenon may be produced by 𝑓(𝑥) when 𝑢
remains useless for a period of 𝑠(𝑥, 𝑡) = 0. According to this
consideration, the following assumption is made, which in
fact is quite weak and can be easily satisfied formost common
continuous functions.

Assumption 1. Assume that there always exists an arbitrarily
small positive constant 𝛿, such that one and only one control
singular point locates in the neighborhood |𝑠(𝑥, 𝑡)| ≤ 𝛿, while
|𝑠(𝑥, 𝑡)| ≥ 𝛿 outside these neighborhoods.

In addition, since 𝑓(𝑥) may not stabilize the system at
the origin point 𝑥 = 0, it has to require that the control 𝑢
be effective when 𝑥 = 0, or equivalently, 𝑠(0, 𝑡) is a nonzero
constant instead of a control singular point for any 𝑡. In other
words, 𝑠(𝑥, 𝑡) keeps varying between positive and negative
when 𝑥 ̸= 0 and stops until 𝑥 = 0. To characterize this point,
another assumption is imposed.

Assumption 2. Assume that the derivative of 𝑠(𝑥, 𝑡) can be
written into

𝑑𝑠

𝑑𝑡
= 𝑐 (𝑥, 𝑡) ℎ (𝑥) , (8)

where ℎ(𝑥) is a known function satisfying

ℎ (𝑥) {
̸= 0 when 𝑥 ̸= 0

= 0 when 𝑥 = 0.
(9)

Thus, 𝑑𝑠/𝑑𝑡 = 0 when 𝑥 = 0 for any 𝑡. 𝑐(𝑥, 𝑡) stands for the
“speed” of sign variation and is an unknownbounded positive
function as follows:

𝑐 (𝑥, 𝑡) ∈ [𝑐low, 𝑐up] > 0, (10)

where 𝑐low and 𝑐up are unknown positive constants.

Remark 3. Though 𝑠(0, 𝑡) is a nonzero constant when 𝑥 = 0,
𝑏(0, 𝑡) as well as 𝑎(0, 𝑡) is not necessarily a constant and may
still vary.

Remark 4. Though ℎ(𝑥) needs to be known for control design
in the next section, the other functions, that is, 𝑎(𝑥, 𝑡), 𝑏(𝑥, 𝑡),
𝑠(𝑥, 𝑡), and 𝑐(𝑥, 𝑡), as well as their bounds, that is, 𝑏low, 𝑏up, 𝑐low,
𝑐up, and𝛿, are completely unknown.Therefore, it still provides
us great flexibilities to model the control coefficient and to
admit various kinds of uncertainties.
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Remark 5. As stated before, the focus of this research is
to tackle the continuously varying “sign” function 𝑠(𝑥, 𝑡).
Note that since the unknown function 𝑐(𝑥, 𝑡) could be very
large, 𝑠(𝑥, 𝑡) may vary very rapidly between positive and
negative, which undoubtedly increases the difficulty to track
the varying sign. In addition, because there exist some
control singular points where the system is essentially out of
control, the controller must be carefully designed to avoid the
potential finite-time escape phenomenon.

3. Controller Design

Let us define the Lyapunov function 𝑉(𝑥) such that

𝑉 (𝑥) {
> 0 when 𝑥 ̸= 0

= 0 when 𝑥 = 0,
(11)

𝑑𝑉

𝑑𝑥
≜ 𝐷 (𝑥) = sgn (𝑥) |ℎ (𝑥)|

𝜌 (𝑥)
. (12)

Since |ℎ(𝑥)| ≥ 0 and 𝜌(𝑥) > 0 are known functions,
one can always solve 𝑉(𝑥) by using the differential equation
(12) and 𝑉(0) = 0 as initial condition. By using (12) to
define a Lyapunov function, the information of ℎ(𝑥) can be
introduced into the controller design process; thus, it is able to
avoid the finite-time escape phenomenon at control singular
points as shown later. Consequently, the dynamics of 𝑉(𝑥)
can be expressed as follows:

𝑉 =
𝑑𝑉

𝑑𝑥
̇𝑥 = 𝐷 (𝑥) (𝑓 (𝑥) + 𝑎𝑢) . (13)

Now, design the control 𝑢 as follows:

𝑢 = 𝑔 (𝜃) 𝑧. (14)

Conceptually, 𝑧 is a common robust controller [21] that can
stabilize the system ̇𝑥(𝑡) = 𝑓(𝑥) + 𝑧, that is, the simplified
form of (1) when 𝑎 = 1, and 𝑔(𝜃) is the Nussbaum function
that is used to deal with the uncertain and varying 𝑎.

Rewrite (13) as follows:

𝑉 = 𝐷 (𝑥) (𝑓 (𝑥) + 𝑧) + 𝐷 (𝑥) (𝑎𝑢 − 𝑧) , (15)

and let 𝑧 be given as follows:

𝑧 = −
𝐷 (𝑥) 𝜌

2
(𝑥)

|𝐷 (𝑥)| 𝜌 (𝑥) + 𝑒−𝑡
= −

sgn (𝑥) |ℎ (𝑥)| 𝜌 (𝑥)
|ℎ (𝑥)| + 𝑒−𝑡

. (16)

Then, one can readily have

𝐷 (𝑥) (𝑓 (𝑥) + 𝑧) ≤
𝐷 (𝑥) 𝑓 (𝑥)

 + 𝐷 (𝑥) 𝑧

≤ |𝐷 (𝑥)| 𝜌 (𝑥) − 𝐷 (𝑥)
sgn (𝑥) |ℎ (𝑥)| 𝜌 (𝑥)

|ℎ (𝑥)| + 𝑒−𝑡

= |ℎ (𝑥)| −
ℎ
2
(𝑥)

|ℎ (𝑥)| + 𝑒−𝑡

=
|ℎ (𝑥)| 𝑒

−𝑡

|ℎ (𝑥)| + 𝑒−𝑡
≤ 𝑒
−𝑡
.

(17)

Taking (17) into (15) yields
𝑉 ≤ 𝑒

−𝑡
+ 𝐷 (𝑥) (𝑎𝑢 − 𝑧) = 𝑒

−𝑡
+ (𝑎𝑔 (𝜃) − 1)𝐷 (𝑥) 𝑧. (18)

Now, we will design the Nussbaum function 𝑔(𝜃), which
can adjust its value between positive and negative according
to the control performance index 𝜃. In this paper, 𝜃 is defined
as follows:

̇𝜃 = −𝐷 (𝑥) 𝑧 =
ℎ
2
(𝑥)

|ℎ (𝑥)| + 𝑒−𝑡
, 𝜃
0
= 0. (19)

It readily computes the lower and upper bounds of ̇𝜃 as
follows:

̇𝜃 ∈ [max (0, |ℎ (𝑥)| − 𝑒−𝑡) , |ℎ (𝑥)|] ≥ 0. (20)

Then (18) can be rewritten into
𝑉 ≤ (1 − 𝑎𝑔 (𝜃)) ̇𝜃 + 𝑒

−𝑡
, (21)

and taking integration yields

𝑉
𝑡
≤ ∫

𝑡

0

̇𝜃𝑑𝜏 − ∫

𝑡

0

𝑎𝑔 (𝜃) ̇𝜃𝑑𝜏 + 𝑉
0
+ ∫

𝑡

0

𝑒
−𝜏
𝑑𝜏

≤ 𝜃
𝑡
− ∫

𝜃𝑡

0

𝑎𝑔 (𝜃) 𝑑𝜃 + 𝑉
0
+ 1,

(22)

where 𝑉
𝑡
= 𝑉(𝑡), 𝑉

0
= 𝑉(0), and 𝜃

𝑡
= 𝜃(𝑡).

Conventionally, theNussbaumgain often adopts the form
𝑔(𝜃) = exp(𝜃2) cos(𝜃), exp(𝜃2) sin(𝜃), 𝜃2 cos(𝜃), or 𝜃2 sin(𝜃),
so that 𝑔(𝜃) can swing between positive infinite and negative
infinite according to the control performance index 𝜃. Thus,
it provides a possibility of correcting inappropriate deviation
caused by erroneous previous control. However, the sign-
varying speed of the conventional Nussbaum gain is limited.
For example, each variation of the sign of exp(𝜃2) sin(𝜋𝜃)
needs 𝜃 to increase 1; therefore, it may not be able to track
the rapidly varying 𝑠(𝑘) in this paper. To deal with this, a new
Nussbaum function is proposed as follows:

𝑔 (𝜃) = 2𝜃𝑒
𝜃
2𝜂

sin (𝜋𝜃2) , (23)

where the constant 𝜂 > 1 is a design parameter. Note that 𝜃2
grows nonlinearly, and thus the sign-varying speed of 𝑔(𝜃)
keeps increasing with the increase of 𝜃. Consequently, the
proposed 𝑔(𝜃) varies much faster than those conventional
ones when 𝜃 is sufficiently large.The property of the proposed
𝑔(𝜃) is presented below.

Lemma 6. Suppose that |𝑠(𝑥, 𝑡)| ≥ 𝜀, where 𝜀 is an arbitrary
positive constant that is smaller than 1. If 𝑎𝑔(𝜃) > 0 for 𝜃2 ∈
[⌊Θ
2
⌋ − 1, ⌊Θ

2
⌋] when Θ → ∞, then we have

lim
Θ→∞

sup 1

Θ2
∫

Θ

0

𝑎𝑔 (𝜃) 𝑑𝜃 = +∞, (24)

where ⌊⋅⌋ is the truncation operator; otherwise, if 𝑎𝑔(𝜃) < 0 for
𝜃
2
∈ [⌊Θ

2
⌋ − 1, ⌊Θ

2
⌋] when Θ → ∞, then

lim
Θ→∞

inf 1

Θ2
∫

Θ

0

𝑎𝑔 (𝜃) 𝑑𝜃 = −∞. (25)

The detailed proof of Lemma 6 is given in the Appendix.
The property of 𝑔(𝜃) will be used to derive the asymptotic
convergence in the next section.
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4. Convergence Analysis

Before presenting the main theorem of asymptotic conver-
gence, the following lemma is introduced first.

Lemma 7. If 𝜃
𝑡
is bounded for any 𝑡 ∈ [0, +∞), all closed-

loop signals are bounded; that is, 𝜃
𝑟
and 𝑉

𝑟
are bounded for

𝑟 ∈ [0, 𝑡), and the system is asymptotically stabilized; that is,
𝑥 → 0 when 𝑡 → +∞.

Proof. The proof of Lemma 7 is straightforward. Since |ℎ(𝑥)|
is semipositive, from (19), we have

̇𝜃 =
ℎ
2
(𝑥)

‖ℎ (𝑥)‖ + 𝑒−𝑡
{
> 0 when 𝑥 ̸= 0

= 0 when 𝑥 = 0.
(26)

Clearly, 𝜃 is a semipositive and nondecreasing variable. Thus
the boundedness of 𝜃

𝑡
implies the boundedness of 𝜃

𝑟
for

𝑟 ∈ [0, 𝑡). Then according to (22), since 𝑎, 𝑔(𝜃), and 𝑉
0
are

all bounded, 𝑉
𝑟
is also bounded when 𝜃

𝑟
is bounded. On the

other hand, the boundedness of 𝜃
𝑡
also implies that ̇𝜃 → 0

when 𝑡 → +∞, since ̇𝜃 is continuous and semipositive; or
equivalently, |ℎ(𝑥)| → 0 when 𝑡 → +∞. Then from (9),
we can readily conclude that 𝑥 → 0 when 𝑡 → +∞. This
completes the proof.

Now, the main result is stated below.

Theorem 8. The proposed controller in (14), (16), (20), and
(23) guarantees the boundedness of all closed-loop signals and
is able to drive 𝑥 → 0 when 𝑡 → +∞.

Proof. As shown in Lemma 7, the key of the proof is to show
the boundedness of 𝜃

𝑡
. Because 𝑠(𝑥, 𝑡) may cross zero and

change its sign, we will consider two situations: (1) 𝑠(𝑥, 𝑡) is
crossing zero, and (2) 𝑠(𝑥, 𝑡) is bounded away from zero. Next,
we will prove that 𝜃

𝑡
is bounded under both situations.

Situation 1. 𝑠(𝑥, 𝑡) is crossing zero. Let 𝑠(𝑥
𝑖
, 𝑡
𝑖
) = 0 and consider

a small neighborhood of it; that is, 𝑠(𝑥, 𝑡)| ≤ 𝜀, where 𝜀 =

𝛿/2 is a small positive constant. Since the positive constant 𝛿
in Assumption 1 can be arbitrarily small, it still has only one
control singular point in the neighborhood |𝑠(𝑥, 𝑡)| ≤ 𝜀 =

𝛿/2.Without loss of any generality, consider the situation that
𝑠 varies from negative to positive. Let 𝑠 = −𝜀 at 𝑡

−𝜀
, 𝑠 = 𝜀 at 𝑡

𝜀
,

and 𝑡
−𝜀
< 𝑡
𝑖
< 𝑡
𝜀
. From (8), one can readily yield

𝑠 (𝑥, 𝑡
−𝜀
) = ∫

𝑡−𝜀

0

𝑐 (𝑥, 𝜏) ℎ (𝑥) 𝑑𝜏 + 𝑠
0
= −𝜀, (27)

𝑠 (𝑥, 𝑡
𝜀
) = ∫

𝑡𝜀

0

𝑐 (𝑥, 𝜏) ℎ (𝑥) 𝑑𝜏 + 𝑠
0
= 𝜀. (28)

Consequently, we have

∫

𝑡𝜀

𝑡−𝜀

ℎ (𝑥) 𝑑𝜏 ≤

∫
𝑡𝜀

𝑡−𝜀

𝑐 (𝑥, 𝜏) ℎ (𝑥) 𝑑𝜏

min (𝑐 (𝑥, 𝑡))
≤
𝜀 − 𝑠
0
− (−𝜀 − 𝑠

0
)

𝑐low

=
2𝜀

𝑐low
.

(29)

Note that since 𝑠 varies from negative to positive, 𝑑𝑠/𝑑𝑡 > 0

for 𝜏 ∈ [𝑡
−𝜀
, 𝑡
𝜀
], or equivalently, ℎ(𝑥) > 0 for 𝜏 ∈ [𝑡

−𝜀
, 𝑡
𝜀
].

Then, according to (20), (29) implies that

𝜃
𝑡𝜀
− 𝜃
𝑡−𝜀

≤ ∫

𝑡𝜀

𝑡−𝜀

|ℎ (𝑥)| 𝑑𝜏 = ∫

𝑡𝜀

𝑡−𝜀

ℎ (𝑥) 𝑑𝜏 ≤
2𝜀

𝑐low
. (30)

Since 𝑐low is positive constant, 2𝜀/𝑐low is bounded. Equation
(30) indicates that the increment of 𝜃 for 𝜏 ∈ [𝑡

−𝜀
, 𝑡
𝜀
], or

equivalently, in the neighborhoods of control singular points,
is bounded. Note that (30) also implies that the finite-time
escape phenomenon will not occur in these neighborhoods,
since finite increment of 𝜃 insures finite increment of 𝑉
according to (22).

Situation 2. 𝑠(𝑥, 𝑡) is bounded away from zero. Consider a
continuous interval |𝑠| ≥ 𝜀 between two successive control
singular points. Note that from Assumption 1, the sign of s
will not change and max(|𝑠|) ≥ 𝛿 = 2𝜀 in this interval.
Without loss of any generality, let 𝑠 = 𝜀 at 𝑡

𝜀
and 𝑠 = 𝛿 = 2𝜀

at 𝑡.The boundedness of 𝜃
𝑡
within this interval will be proven

by the contradiction method; that is, we will first assume that
𝜃
𝑡
is unbounded and then derive some contradictions.
Since 𝜃 ≥ 0, if 𝜃

𝑡
is unbounded, we have 𝜃

𝑡
→ +∞. As

𝑉
𝑡
≥ 0, (22) gives

0 ≤ 𝑉
𝑡
≤ 𝜃
𝑡
− ∫

𝜃𝑡

0

𝑎𝑔 (𝜃) 𝑑𝜃 + 𝑉
0
+ 1, (31)

and we further have

1

𝜃2
𝑡

∫

𝜃𝑡

0

𝑎𝑔 (𝜃) 𝑑𝜃 ≤
1

𝜃2
𝑡

+
1

𝜃
𝑡

+
𝑉
0

𝜃2
𝑡

, (32)

which implies that

lim
𝜃𝑡→+∞

1

𝜃2
𝑡

∫

𝜃𝑡

0

𝑎𝑔 (𝜃) 𝑑𝜃 ≤ 0. (33)

Next, we will deduce a result for 𝜃
𝑡
→ +∞ that cont-

radicts (33), separately, for two cases: (a) 𝜃
𝜀
is bounded; (b) 𝜃

𝜀

is unbounded, where 𝜃
𝜀
= 𝜃(𝑡
𝜀
).

(a) 𝜃
𝜀
Is Bounded. Since 𝜃

𝑡
→ +∞, we conclude that the

increment between 𝜃
𝑡
and 𝜃
𝜀
is infinite; that is, 𝜃

𝑡
−𝜃
𝜀
→ +∞.

It implies that 𝑔(𝜃) swings infinite times between positive
and negative for 𝜃 ∈ [𝜃

𝜀
, 𝜃
𝑡
], or equivalently for 𝜏 ∈ [𝑡

𝜀
, 𝑡].

Since the sign of s is fixed for 𝜏 ∈ [𝑡
𝜀
, 𝑡], the sign of 𝑎𝑔(𝜃)

is solely determined by 𝑔(𝜃) for 𝜏 ∈ [𝑡
𝜀
, 𝑡]. Without loss of

any generality, let 𝑎𝑔(𝜃) > 0 for 𝜃2 ∈ [⌊𝜃
2

𝑡
⌋ − 1, ⌊𝜃

2

𝑡
⌋], which

satisfies the condition of Lemma 6. Consequently, according
to (24), we have

lim
𝜃𝑡→+∞

sup 1

𝜃2
𝑡

∫

𝜃𝑡

0

𝑎𝑔 (𝜃) 𝑑𝜃 = +∞. (34)

Clearly (34) contradicts (33), which implies that 𝜃
𝑡
must be

bounded if 𝜃
𝜀
is bounded.

(b) 𝜃
𝜀
Is Unbounded. Since 𝜃 ≥ 0, we have 𝜃

𝜀
→ +∞. Note

that fromAssumption 1, the sign of ℎ(𝑥) is fixed for 𝜏 ∈ [𝑡
𝜀
, 𝑡].
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Without loss of any generality, let ℎ(𝑥) > 0. Similar to (28),
we have

𝑠 (𝑥, 𝑡
𝜀
) = ∫

𝑡𝜀

0

𝑐 (𝑥, 𝜏) ℎ (𝑥) 𝑑𝜏 + 𝑠
0
= 𝜀,

𝑠 (𝑥, 𝑡
𝜎
) = ∫

𝑡𝜎

0

𝑐 (𝑥, 𝜏) ℎ (𝑥) 𝑑𝜏 + 𝑠
0
= 2𝜀.

(35)

Then, similar to (30), we further have

∫

𝑡

𝑡𝜀

ℎ (𝑥) 𝑑𝜏 ≥

∫
𝑡

𝑡𝜀

𝑐 (𝑥, 𝜏) ℎ (𝑥) 𝑑𝜏

max (𝑐 (𝑥, 𝑡))
≥

∫
𝑡

𝑡𝜀

𝑐 (𝑥, 𝜏) ℎ (𝑥) 𝑑𝜏

𝑐up

≥
𝛿 − 𝜀

𝑐up
=

𝜀

𝑐up
,

(36)

which can be simplified as follows:

∫

𝑡

𝑡𝜀

ℎ (𝑥) 𝑑𝜏 ≥ 𝛾, (37)

where 𝛾 ≜ 𝜀/𝑐up is a positive constant since 𝜀 could be an
arbitrarily small positive constant.

Then, we will estimate the increment of 𝜃2
𝑡
− 𝜃
2

𝜀
. Note that

ℎ(𝑥) > 0 for 𝜏 ∈ [𝑡
𝜀
, 𝑡] and then take integration for (20) as

follows:

𝜃
𝑡
− 𝜃
𝜀
= ∫

𝑡

𝑡𝜀

̇𝜃𝑑𝜏 ≥ ∫

𝑡

𝑡𝜀

ℎ (𝑥) − 𝑒
−𝜏
𝑑𝜏

≥ ∫

𝑡

𝑡𝜀

ℎ (𝑥) 𝑑𝜏 − (𝑒
−𝑡𝜀 − 𝑒

−𝑡
) > 𝛾 − 𝑒

−𝑡𝜀 .

(38)

We can always choose a sufficiently large constant 𝑡, such that
for any 𝑡

𝜀
≥ 𝑡, we have

𝑒
−𝑡𝜀 ≤

𝛾

2
. (39)

Thus the increment of 𝜃2
𝑡
− 𝜃
2

𝜀
for 𝑡
𝜀
≥ 𝑡 can be readily

estimated by taking (39) into account as follows:

𝜃
2

𝑡
− 𝜃
2

𝜀
= (𝜃
𝑡
+ 𝜃
𝜀
) (𝜃
𝑡
− 𝜃
𝜀
) > 2𝜃

𝜀
(𝛾 −

𝛾

2
) = 𝜃
𝜀
𝛾. (40)

Again, note that the sign of s is fixed for 𝜏 ∈ [𝑡
𝜀
, 𝑡] and

the sign of 𝑎𝑔(𝜃) is determined by 𝑔(𝜃). Since 𝛾 is a positive
constant and 𝜃

𝜀
is unbounded, with the increase of 𝜃

𝜀
, we will

certainly have

𝜃
2

𝑡
− 𝜃
2

𝜀
> 𝜃
𝜀
𝛾 ≥ 3. (41)

Clearly, (41) implies that 𝑔(𝜃) has completed at least a positive
round and a negative round when 𝜃 increases from 𝜃

𝜀
to 𝜃
𝑡
.

Consequently, the conditions of Lemma 6 have been fulfilled.
Similar to case (a), we could assume that 𝑎𝑔(𝜃) > 0 for 𝜃2 ∈
[⌊𝜃
2

𝑡
⌋−1, ⌊𝜃

2

𝑡
⌋]without loss of any generality.Then according

to (24), we have the same result as (34) as follows:

lim
𝜃𝑡→+∞

sup 1

𝜃2
𝑡

∫

𝜃𝑡

0

𝑎𝑔 (𝜃) 𝑑𝜃 = +∞, (42)

which still contradicts (33).Therefore, 𝜃
𝑡
must be bounded to

avoid any contradiction.
In summary, 𝜃

𝑡
must be bounded for the intervals of |𝑠| ≥

𝜀 from Situation 2 and its increment is also bounded for the
intervals of |𝑠| ≤ 𝜀 from Situation 1. As a result, 𝜃

𝑡
is always

bounded, and thus all closed-loop signals are bounded and
𝑉
𝑡
→ 0 when 𝑡 → +∞. This completes the proof.

Remark 9. Since 𝜃
𝑡
is bounded, ∫𝑡

0
ℎ(𝑥)𝑑𝜏 is also bounded

because

∫

𝑡

0

ℎ (𝑥) 𝑑𝜏 ≤ ∫

𝑡

0

̇𝜃 + 𝑒
−𝜏
𝑑𝜏 ≤ 𝜃

𝑡
+ 1. (43)

On the other hand, (37) indicates that the integral of ℎ(𝑥)
needs to increase at least 𝛾 to trigger a sign variation of
control coefficient. Since 𝛾 is a positive constant, ∫𝑡

0
ℎ(𝑥)𝑑𝜏/𝛾

is also bounded, which essentially implies that the control
coefficient will only undergo finite number of sign variations
in the entire control process.

Remark 10. Theproof of theTheorem is organized as follows.
First, the finite increment of 𝜃 has been proven in Situation 1
and case (a) of Situation 2, separately, at the control singular
points and in the intervals between these points. That is,
these two parts show that a complete sign variation process
corresponds to finite increment of 𝜃. Second, case (b) of
Situation 2 further shows that the control coefficient only has
finite number of sign variations. In such a way, the proof of
finite 𝜃

𝑡
has been completed.

Remark 11. Note that according to Lemma 7, the bounded-
ness of 𝜃

𝑡
for 𝑡 ∈ [0, +∞) also implies that no finite-time

escape phenomenon will occur, even at the control singular
points.

5. Simulation

An example is used to illustrate the performance of the
proposed control. Consider system (1) with the following
setup:

𝑓 (𝑥) = cos (𝑥) 𝑥2,

𝑏 (𝑥, 𝑡) = exp (cos (𝑥) + sin (𝑡)) ,

𝑠 (𝑘) = cos (𝑘) ,

𝑐 (𝑥, 𝑡) = exp (sin (𝑥𝑡)) ,

ℎ (𝑥) = |𝑥| .

(44)

Let the initial state be 𝑥
0
= 2 and the known bounding

function be 𝜌(𝑥) = 𝑥
2
+ 1. Note that only 𝜌(𝑥) and ℎ(𝑥) are

known for controller design. Let the controller in (14), (16),
(20), and (23) be used with the parameter settings 𝜂 = 1.01

and ̇𝜃 = −𝐷(𝑥)𝑧/10. It is shown by Figure 1 that the proposed
controller can drive 𝑥 to 0 asymptotically and Figure 2 shows
the profile of other bounded variables.
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Figure 1: The profiles of 𝑎 and 𝑥.
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6. Conclusion

In this paper, the control problem is studied for a class
of nonlinear uncertain systems with the uncertain control
coefficient, which is allowed to vary continuously between
positive and negative. A new Nussbaum gain is designed and
integrated with robust controller to tackle this problem. By
following the Lyapunov-fashion controller design procedure,
the potential finite-time escape phenomenon is avoided. It is
proven that the proposed control approach yields asymptotic
stability and guarantees the boundedness of the closed-loop
signals.

Appendix

Proof of Lemma 6. For the concise of the proof, we will only
consider the case ofΘ → +∞, while the same results can be
obtained similarly for Θ → −∞. Now define

𝐺
𝑖
= ∫

√𝑖+1

√𝑖

𝑔 (𝜃) 𝑑𝜃, (A.1)

where 𝑖 is a positive integer. Further calculation yields

𝐺
𝑖
= ∫

√𝑖+1

√𝑖

2𝜃𝑒
𝜃
2𝜂

sin (𝜋𝜃2) 𝑑𝜃 = ∫

√𝑖+1

√𝑖

𝑒
𝜃
2𝜂

sin (𝜋𝜃2) 𝑑𝜃2

= ∫

𝑖+1

𝑖

𝑒
𝑤
𝜂

sin (𝜋𝑤) 𝑑𝑤,

(A.2)

where 𝑤 = 𝜃
2. Clearly, 𝐺

𝑖
is positive if 𝑖 is even and negative

if 𝑖 is odd.
Because 𝑤 is positive and 𝜂 > 1, it is readily to show that

(𝑤 + 1)
𝜂
> 𝑤
𝜂
+ 𝜂𝑤
𝜂−1

. (A.3)

Then, according to (A.3), the ratio between 𝐺
𝑖+1

and 𝐺
𝑖
is

𝐺
𝑖+1

𝐺
𝑖

=
∫
𝑖+2

𝑖+1
𝑒
𝑤
𝜂

sin (𝜋𝑤) 𝑑𝑤

∫
𝑖+1

𝑖
𝑒𝑤
𝜂 sin (𝜋𝑤) 𝑑𝑤

=
∫
𝑖+1

𝑖
𝑒
(𝑤+1)

𝜂

sin (𝜋 (𝑤 + 1)) 𝑑𝑤

∫
𝑖+1

𝑖
𝑒𝑤
𝜂 sin (𝜋𝑤) 𝑑𝑤

=
−∫
𝑖+1

𝑖
𝑒
(𝑤+1)

𝜂

sin (𝜋𝑤) 𝑑𝑤

∫
𝑖+1

𝑖
𝑒𝑤
𝜂 sin (𝜋𝑤) 𝑑𝑤

<
−∫
𝑖+1

𝑖
𝑒
𝑤
𝜂
+𝜂𝑤
𝜂−1

sin (𝜋𝑤) 𝑑𝑤

∫
𝑖+1

𝑖
𝑒𝑤
𝜂 sin (𝜋𝑤) 𝑑𝑤

<
−𝑒
𝜂𝑖
𝜂−1

∫
𝑖+1

𝑖
𝑒
𝑤
𝜂

sin (𝜋𝑤) 𝑑𝑤

∫
𝑖+1

𝑖
𝑒𝑤
𝜂 sin (𝜋𝑤) 𝑑𝑤

= −𝑒
𝜂𝑖
𝜂−1

.

(A.4)

Because 𝜂𝑖𝜂−1 > 1 and 𝑒𝜂𝑖
𝜂−1

> 𝑒, it is clear that 𝐺
𝑖
→ ∞

and 𝐺
𝑖+1
/𝐺
𝑖
→ −∞, when 𝑖 → +∞. Let us investigate the

situation of Θ2 being an integer and Θ2 = ⌊Θ
2
⌋ = 𝑖 + 1; that

is, 𝑎𝑔(𝜃) > 0 for 𝜃2 ∈ [𝑖, 𝑖 + 1]. Since 𝜀 ≤ |𝑠(𝑥, 𝑡)| ≤ 1, we have
𝜀𝑏low ≤ |𝑎| ≤ 𝑏up. Then, we will firstly prove (24). Consider
the following:

∫

√𝑖+1

0

𝑎𝑔 (𝜃) 𝑑𝜃 ≥ −∫

√𝑖

0

𝑎𝑔 (𝜃)
 𝑑𝜃 + ∫

√𝑖+1

√𝑖

𝑎𝑔 (𝜃) 𝑑𝜃

≥ −𝑏up ∫
√𝑖

0

𝑔 (𝜃)
 𝑑𝜃 + 𝜀𝑏low ∫

√𝑖+1

√𝑖

𝑎𝑔 (𝜃) 𝑑𝜃

≥ −𝑏up

𝑖−1

∑

𝑙=0

𝐺𝑙
 + 𝜀𝑏low

𝐺𝑖


≥ −𝑏up (𝑖 − 1)
𝐺𝑖−1

 + 𝜀𝑏low𝑒
𝜂𝑖
𝜂−1 𝐺𝑖−1



= (−𝑏up (𝑖 − 1) + 𝜀𝑏low𝑒
𝜂𝑖
𝜂−1

)
𝐺𝑖−1

 .

(A.5)
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Clearly,

1

𝑖 + 1
∫

√𝑖+1

0

𝑎𝑔 (𝜃) 𝑑𝜃 ≥ (−𝑏up
𝑖 − 1

𝑖 + 1
+ 𝜀𝑏low

1

𝑖 + 1
𝑒
𝜂𝑖
𝜂−1

)
𝐺𝑖−1

 .

(A.6)

Because 𝑏low, 𝑏up, and 𝜀 are positive and finite and 𝜂 > 1, when
𝑖 → +∞, we have

lim
𝑖→+∞

(−𝑏up
𝑖 − 1

𝑖 + 1
+ 𝜀𝑏low

1

𝑖 + 1
𝑒
𝜂𝑖
𝜂−1

)
𝐺𝑖−1



= (−𝑏up + 𝜀𝑏low lim
𝑖→+∞

1

𝑖 + 1
𝑒
𝜂𝑖
𝜂−1

)
𝐺𝑖−1

 → +∞.

(A.7)

Consequently, (A.7) implies that

lim
𝑖→+∞

1

𝑖 + 1
∫

√𝑖+1

0

𝑎𝑔 (𝜃) 𝑑𝜃 → +∞, (A.8)

which is the result of (24) since Θ2 = 𝑖 + 1.
Similarly, when |𝑎| ≥ 𝜀𝑏low if 𝑎𝑔(𝜃) < 0 for 𝜃2 ∈ [⌊Θ

2
⌋ −

1, ⌊Θ
2
⌋] with Θ2 = ⌊Θ

2
⌋ = 𝑖 + 1, we can also show that

lim
𝑖→+∞

1

𝑖 + 1
∫

√𝑖+1

0

𝑎𝑔 (𝜃) 𝑑𝜃 → −∞, (A.9)

which is the result of (25). For the case ofΘ → −∞, the same
results can also be obtained by similar procedures. The proof
is complete.
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In this contribution an encryption method using a chaotic oscillator, excited by “n” sinusoidal signals, is presented. The chaotic
oscillator is excited by a sum of “n” sinusoidal signals and a message. The objective is to encrypt such a message using the chaotic
behavior and transmit it, and, as the chaotic system is perturbed by the sinusoidal signal, the transmission security could be
increased due to the effect of such a perturbation. The procedure is based on the regulation theory and consider that the receiver
knows the frequencies of the perturbing signal, with this considerations the algorithm estimates the excitation in such a way that
the receiver can cancel out the perturbation and all the undesirable dynamics in order to produce only the message. In this way we
consider that the security level is increased.

1. Introduction

Since Pecora and Carroll presented their work about chaos
synchronization [1], the investigation on chaos has received
significant attention and the phenomenon has spread to the
application in communications security ([2–4]). The use of
chaotic systems for encoding and decoding is a new method
different from the conventional techniques; see, for example,
the work presented by Cuomo and Oppenheim in which a
voice signal is encrypted by chaos and then is sent by the
communication channel and is retrieved successfully [5].

In recent years, encryption schemes are being studied
and increasing demand exists to develop a safer encryption
system for transmitting data in real time via the Internet,
wireless networks, and other devices ([6, 7]).

The traditional standard encryption algorithm for images
and data (DES) has a disadvantage when handling large
amounts of data [8] and is performed digitally (first on a PC),
and then sends the encrypted signal.

The online encryption in a dynamic system has the
advantage of processing the signal in real time, so the analog
signal (message) is encrypted while being sent.

In recent years some works were presented for the
synchronization ofmaster-slave structure ([9–11]), in the cites
references a perturbation signal was introduced in the slave

system and no perturbation was introduced in the master
system. In different away, in the present work, a perturbation
defined by the combination of the message and a sinusoidal
signal is introduced in the master system.

In this work and algorithm is proposed in order to
encrypt the message using a nonlinear chaotic system; this
message is combined with “𝑛” sinusoidal signals whose
amplitudes, phases, and bias are all unknown.

These signals excite the chaotic oscillator (the master)
in order to encrypt the message more safely in the sense
that the message signal is combined with sinusoidal signals;
this combination increases the harmonics produced by the
chaotic system and then the spectrum of the sending signal
has more frequencies in the bandwidth of the signal.

In the proposed scheme the receiver (the slave) knows the
frequencies to be used and estimates the sinusoidal signals
which perturb themessage and retrieve themessage in exacta
away.

In many other works (see [2–5]) only the message is used
to excite the chaotic dynamical system and then is retrieved
by the receptor. This is the principal difference in this work.

The paper is organized as follows: in Section 2 the
problem is presented, the nonlinear estimator is designed in
Section 3, in Section 4 several examples are shown, andfinally
in Section 5 some conclusions are presented.
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2. Statement of the Problem

In this paper a nonlinear system is proposed, which is excited
by a signal given by the following equation:

𝑝 (𝑡) = 𝐵 +

𝑛

∑

𝑖=1

𝐴
𝑖
sin (𝛼

𝑖
𝑡 + 𝜑
𝑖
) , (1)

where the amplitudes 𝐴
𝑖
̸= 0, the phases 𝜑

𝑖
, and the constant

bias 𝐵 are unknown. In addition to the sinusoidal perturba-
tion (1), an information signal “𝑚(𝑡)” will be added in order
to encrypt this message by the nonlinear dynamical chaotic
system.

It is observed that the signal perturbation 𝑝(𝑡) can be
generated by a linear system

̇𝑤 = 𝑆𝑤 (2)

which is called exosystem [12].
Various types of chaotic systems can be treated under the

impulse of a sinusoidal input signal. In general the chaotic
system to the encryption of the message can be seen in (3),
where 𝑓(𝑥

1
, 𝑥
2
, 𝜂) and 𝛼(𝑥

1
, 𝑥
2
) are nonlinear functions of

the states, 𝑝(𝑡) is the sinusoidal perturbation, and𝑚(𝑡) is the
message to be encrypted:

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= −𝑎
1
𝑥
1
− 𝑎
2
𝑥
2
+ 𝑓 (𝑥

1
, 𝑥
2
, 𝜂) + 𝑚 (𝑡) + 𝑝 (𝑡) ,

̇𝜂 = − 𝑎
3
𝜂 + 𝛼 (𝑥

1
, 𝑥
2
) .

(3)

Having described the chaotic systemmodel in general, we
proceed to select the outputs of the system, which are given
by

𝑦
0
= 𝑥
1
+ 𝑥
2
+ 𝑓 (𝑥

1
, 𝑥
2
, 𝜂) + 𝑚 (𝑡) ,

𝑦
1
= 𝑥
1
.

(4)

Some chaotic oscillators are studied in the following para-
graphs and will be adapted to realize the desired encryption
and take the form (3).

It is proposed that the outputs given by (4) can recover
the message𝑚(𝑡) and the disturbance signal 𝑝(𝑡) as shown in
Figure 1.

If an intruder is capable of obtaining the transmission
signal and can eliminate the chaos, find that the message will
be disturbed by a sinusoidal signal and its harmonics as this
was injected into the chaotic system, so the message is not
decoded and the information will be preserved.

Note. Note that even though two outputs are taken, it is
possible to transmit a single signal, if we perform a frequency
multiplexing to send the two signals into one channel and
they can be recovered later in the receiver.

In what follows some chaotic systems and how they are
processed to take a proper structure are presented.

transmitter
Chaotic

receiver 
Chaotic

Recovered
messageMessage

Unknown
sinusoids signs

Recovered
sinusoids signs

−

−+

+

Figure 1: Estimation of disturbance p(t) and message m(t) in the
chaotic system.

2.1.TheVan der Pol Chaotic System. TheVan der Pol equation
provides an example of a nonlinear oscillator system. The
system can be written as

̈𝑥 − 𝜇 (1 − 𝑥
2
) ̇𝑥 + 𝑥 = 𝑝 + 𝑚; (5)

taking 𝑥
1
= 𝑥 and 𝑥

2
= ̇𝑥, the system takes the form (2):

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= −𝑥
1
+ 𝜇𝑥
2
− 𝜇𝑥
2

1
𝑥
2
+ 𝑝 + 𝑚

(6)

with the following coefficients:

𝑎
1
= 1, 𝑎

2
= −𝜇, 𝑓 (𝑥

1
, 𝑥
2
, 𝜂) = −𝜇𝑥

2

1
𝑥
2
. (7)

2.2. The Duffing Chaotic System. Duffing equation is intro-
duced in 1918 as a nonlinear oscillator model.The equation is
defined as

̈𝑥 + 𝛿 ̇𝑥 − 𝛽𝑥 + 𝑥
3
= 𝑝 + 𝑚; (8)

taking 𝑥
1
= 𝑥 and 𝑥

2
= ̇𝑥, the system takes form (2):

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= 𝛽𝑥
1
− 𝛿𝑥
2
− 𝑥
3

1
+ 𝑝 + 𝑚

(9)

with the following coefficients:

𝑎
1
= −𝛽, 𝑎

2
= 𝛿, 𝑓 (𝑥

1
, 𝑥
2
, 𝜂) = −𝑥

3

1
. (10)

2.3. The Lorenz Chaotic System. This system is known as a
simplified model of multiple physical systems ([13, 14]). This
system is described by

̇𝑥 = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = 𝑐𝑥 − 𝑦 − 𝑥𝑧 +
(𝑚 + 𝑝)

𝑎
,

̇𝑧 = − 𝑏𝑧 + 𝑥𝑦.

(11)
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If we take 𝑥
1
= 𝑥, 𝑥

2
= 𝑎(𝑦 − 𝑥), and 𝜂 = 𝑧, the system

(11) takes the form

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= −𝑎 (1 − 𝑐) 𝑥

1
− (𝑎 + 1) 𝑥

2
− 𝑎𝑥
1
𝜂 + 𝑚 + 𝑝

̇𝜂 = −𝑏𝜂 + 𝑥
1
(
𝑥
2

𝑎
+ 𝑥
1
)

(12)

and then takes the same structure as (2) where the respective
coefficients are

𝑎
1
= 𝑎 (1 − 𝑐) , 𝑎

2
= (𝑎 + 1) , 𝑎

3
= 𝑏,

𝑓 (𝑥
1
, 𝑥
2
, 𝜂) = −𝑎𝑥

1
𝜂, 𝛼 (𝑥

1
, 𝑥
2
) = 𝑥
1
(
𝑥
2

𝑎
+ 𝑥
1
) .

(13)

Note. It is not difficult to see that chaotic systems of Lu, Chen,
and Raylegh can be also put in form (2). Also in some cases
the state 𝜂 does not exist ([11]).

For this class of systems some assumptions are consid-
ered.

Assumption 1. The constants (𝑎
1
, 𝑎
2
, 𝑎
3
) ∈ R, the function

𝑓(𝑥
1,
𝑥
2,
𝜂), and 𝜂 dynamics are known.

Assumption 2. The 𝛼
𝑖
frequencies are known and 𝛼

𝑖
̸=𝛼
𝑗
for

𝑖 ̸= 𝑗.

Assumption 3. The message and the perturbation do not
destroy the chaos.

With this assumption outputs (4) are chaotic and then this
signal has an infinite number of frequencies.

3. Receiver Design

Now in order to recover the transmitted message, a state
estimator for system (3) is proposed. In the estimator the
information is decrypted and separated from the signal
perturbation 𝑝(𝑡).

Consider the next theorem.

Theorem4. Take the outputs signals given by (4) and consider
Assumptions 1 to 3; then the estimator given by

̇�̂�
1
= 𝑥
2
+ 𝑔
1
(𝑦
1
− 𝑦
1
) ,

̇�̂�
2
= − 𝑎

1
𝑥
1
− 𝑎
2
𝑥
2
+ (𝑦
0
− 𝑦
0
) + 𝑔
2
(𝑦
1
− 𝑦
1
) + 𝑝,

̇�̂� = − 𝑎
3
𝜂 + 𝛼 (𝑥

1
, 𝑥
2
) ,

̇̂𝑤 = S𝑤 + 𝐺
0
(y
1
− 𝑦
1
) ,

(14)

with

𝑝 =

𝑛

∑

𝑘=0

𝑤
2𝑘+1

, 𝑆 =

[
[
[
[
[
[

[

𝑆
1

0

0 𝑆
2

⋅ ⋅ ⋅

⋅ ⋅ ⋅

0 0

0 0

...
... d ...

...
0 0

0 0

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑆
𝑛
0

0 0

]
]
]
]
]
]

]

,

𝑆
𝑗
= [

0 𝛼
𝑗

−𝛼
𝑗

0
] , �̂� = 𝑦

0
− 𝑦
0
− 𝑓 (𝑥

1
, 𝑥
2
, 𝜂)

(15)

and outputs

𝑦
0
= 𝑥
1
+ 𝑥
2
,

𝑦
1
= 𝑥
1
,

(16)

where the constants 𝑔
1
, 𝑔
2
, and𝐺

0
are properly selected, is such

that the signals are estimated; it is

𝑥
1
→ 𝑥
1
, 𝑥

2
→ 𝑥
2
, 𝜂 → 𝜂,

𝑝 → 𝑝, �̂� → 𝑚.

(17)

Proof. Consider the error systembetween (3) and (14) and the
exosystem (2):

̇𝑒
1
= 𝑒
2
− 𝑔
1
𝑒
1
,

̇𝑒
2
= − (𝑎

1
+ 1) 𝑒

1
− (𝑎
2
+ 1) 𝑒

2
+

𝑛

∑

𝑘=0

𝑒
𝑤2𝑘+1

− 𝑔
2
𝑒
1
,

̇𝑒
3
= − 𝑎

3
𝑒
3
+ 𝛼 (𝑥

1
, 𝑥
2
) − 𝛼 (𝑥

1
, 𝑥
2
) ,

̇𝑒
𝑤
= 𝑆𝑒
𝑤
− 𝐺
0
𝑒
1
,

(18)

where the errors are defined as
𝑒
1
= 𝑥
1
− 𝑥
1
, 𝑒

2
= 𝑥
2
− 𝑥
2
, 𝑒

3
= 𝜂 − 𝜂,

𝑒
𝑤
= 𝑤 − 𝑤.

(19)

From (16) consider the subsystem

[

[

̇𝑒
1

̇𝑒
2

̇𝑒
𝑤

]

]

= [

[

−𝑔
1

1 0

− (𝑎
1
+ 1 + 𝑔

2
) − (𝑎

2
+ 1) 𝑉

0

−𝐺
0

0 𝑆

]

]

[

[

𝑒
1

𝑒
2

𝑒
𝑤

]

]

,

𝑉
0
= [ 1 0 1 ⋅ ⋅ ⋅ 0 1 ] .

(20)

Then using control theory [15], it is possible to find
constants 𝑔

1
, 𝑔
2
, and 𝐺

0
such that 𝑒

1
→ 0, 𝑒

2
→ 0, and

𝑒
𝑤
→ 0.
For the dynamics of 𝑒

3
, it is observed that the difference

between the nonlinear functions is an input to a stable linear
system and it also tends to zero, so 𝑒

3
also tend to zero.

Then 𝑥
1
→ 𝑥
1
, 𝑥
2
→ 𝑥
2
, 𝜂 → 𝜂, and 𝑝 → 𝑝; for the

message we can write

�̂� = 𝑦
0
− 𝑦
0
− 𝑓 (𝑥

1
, 𝑥
2
, 𝜂)

�̂� = 𝑥
1
+ 𝑥
2
+ 𝑓 (𝑥

1
, 𝑥
2
, 𝜂) + 𝑚 − (𝑥

1
+ 𝑥
2
) − 𝑓 (𝑥

1
, 𝑥
2
, 𝜂)

�̂� = 𝑒
1
+ 𝑒
2
+ 𝑚 + 𝑓 (𝑥

1
, 𝑥
2
, 𝜂) − 𝑓 (𝑥

1
, 𝑥
2
, 𝜂)

(21)

and then �̂� → 𝑚, and the proof is finished.
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Figure 2: Estimation of disturbance on chaotic system. (𝑝(𝑡) =

sin(𝑡) + sin(4𝑡)).
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Figure 3: Lorenz attractor with sinusoidal signal and audio signal.

4. Simulation

4.1. Audio Signals. Consider the Lorenz oscillator given by
equations

̇𝑥 = 𝑎 (𝑦 − 𝑥) ,

̇𝑦 = 𝑐𝑥 − 𝑦 − 𝑥𝑧 +
(𝑚 + 𝑝)

𝑎
,

̇𝑧 = − 𝑏𝑧 + 𝑥𝑦,

(22)

where 𝑚 represents an audio signal from the song Un bel di
vedremo (taken from the operaMadamaButterfly, Act II) and
the disturbance signal with two frequencies is 𝑝(𝑡) = sin(𝑡) +
sin(4𝑡).

Applying (14) with the following parameters 𝑎 = 10, 𝑏 =
28, 𝑐 = 8/3 (these values generate chaotic behavior), and 𝑔

1
=

18; 𝑔
2
= 392; 𝐺

0
= [1085, 441, 904, 707] we can see how the

disturbance 𝑝(𝑡) is estimated in Figure 2.
Figure 3 presents the chaotic behavior of the Lorenz

attractor with the sinusoidal signal and audio signal.
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−2

0
2 Recovered audio

(d)

Figure 4: (a) the original audio signal to be encrypted. ((b), (c)) the
outputs 𝑦

0
and 𝑦

1
, of the encryption system, (d) the original audio

signal recovered by the algorithm.

Figure 4 shows the original audio signal, chaotic signals
(𝑦
0
and 𝑦

1
), and audio recovery. The time axis is scaled. It is

clear how the message is recovered in a very good manner.
In Figure 5, you can see how the recovered audio signal is

the same as the original audio signal.
Figure 6 presents the error signal between the original

audio signal and retrieved message signal. It is possible to see
that the error tends to zero.

It is observed how the message and the perturbation are
retrieved in exact manner, it is, the synchronization is exact
and does not exist an error as other algorithms.

4.2. Digital Images. The method can also be applied to
encrypt and to transmit digital images; for encryption, the
image is modified to be sent in vector form. In this case, the
receiver knows the number of rows and columns.

In this example we use the Duffing chaotic system with
the perturbation given by 𝑝(𝑡) = sin(0.5𝑡):

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= 𝛽𝑥
1
− 𝛿𝑥
2
− 𝑥
3

1
+ 𝑝 + 𝑚,

(23)

with the gain parameters being 𝑔
1
= 20; 𝑔

2
= 100; and 𝐺

0
=

[350.7, 89.3516].
Figure 7 shows the sinusoidal signal estimated in compar-

ison with the original signal.
Figure 8 represents the chaotic behavior of the Duffing

attractor with sinusoidal signal and digital image (the refer-
ence image is Frida Kahlo).
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Figure 5: Original audio signal and recovered signal from the decoder implementation.
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Figure 6: Error signal between the original message and the
message retrieved.

Figure 9 represents the chaotic behavior of the Duffing
attractor with sinusoidal signal and digital image (the refer-
ence image is Chichen-Itzá).

The differences between Figures 8 and 9 are due to
the information of the images being different and therefore
the perturbation changes the chaotic attractor in different
manner; however, both figures show chaotic behavior.

Two examples are shown in Figures 10 and 11. First, image
(a) is the original information and the recovered image.
Second, image (b) is the chaotic signals 𝑦

0
and 𝑦

1
.
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Figure 7: Sinusoidal signal retrieved and original signal.

5. Conclusions

In this contribution we presented a methodology to encrypt
and transmit audio and image signals using chaos and regula-
tion theory. The algorithm consisted in perturbing a chaotic
system with a signal composed of n sinusoidal signals with
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Figure 8: Duffing attractor with sinusoidal signal and digital image
(Frida Kahlo).
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Figure 9: Duffing attractor with sinusoidal signal and digital image
(Chichen-Itzá).

known frequencies andwith a signalmessage.Themain result
is that using a perturbing sinusoidal signal the encryption
level could be increased since the message signal is hidden
not only in the spread spectrum of the chaotic system but also
by the frequencies of the disturbance. This fact is what we
consider an increment on the encryption level and security
on the transmission. We corroborate the encryption using
two examples: transmitting and audio signal and an image; in
both cases the recovery information is the same as the original
message, except in the transition time. In practical terms
this algorithm could be implemented in real time electronic
circuit and also in a DSP or a fast processor since the number
of equations to be solved is small, depending on the chaotic
system and the number of sinusoidal signals used. Finally,
an extension of this work is the encryption with sinusoidal
signals with unknown frequencies, in addition to the problem
of encrypting and transmitting multiple messages.

Original image Recovered image

(a)

Signal y0 Signal y1

(b)

Figure 10: (a) Comparison between the original information and
the recovered image. (b) Chaotic signals 𝑦

0
and 𝑦

1
.

Original image Recovered image

(a)

Signal y0 Signal y1

(b)

Figure 11: (a) Comparison between the original information and the
recovered image. (b) Chaotic signals 𝑦

0
and 𝑦

1
.
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As a critical requirement for spacecraft autonomous control, reconfigurability should be considered in design stage of spacecrafts
by involving effective reconfigurability analysis method in guiding system designs. In this paper, a novel reconfigurability analysis
method is proposed for spacecraft design. First, some basic definitions regarding spacecraft reconfigurability are given. Then,
based on function tree theory, a reconfigurability modeling approach is established to properly describe system’s reconfigurability
characteristics, and corresponding analysis procedure based on minimal cut set and minimal path set is further presented. In
addition, indexes of fault reconfigurable degree and system reconfigurable rate for evaluating reconfigurability are defined, and the
methodology for analyzing system’s week links is also constructed. Finally, the method is verified by a spacecraft attitudemeasuring
system, and the results show that the presented method cannot only implement the quantitative reconfigurability evaluations but
also find the weak links, and therefore provides significant improvements for spacecraft reconfigurability design.

1. Introduction

Nowadays, autonomous control has become a key technology
for increasing spacecraft survival capability.The reason is that
autonomous control, regarding fault detection, identification,
and reconfiguration, will be automatically activated to reduce
the fault effect when faults emerge in a spacecraft. Therefore,
how to increase the ability of fault processing has become a
key issue for autonomous control of spacecraft. However, it
can be concluded bymany recent serious spacecraft incidents
that certain deficiencies exist in their fault diagnosis and
processing procedure. Further analysis reveals that these
deficiencies are caused by reconfigurability lack of spacecraft.
From this viewpoint, excellent reconfigurability has been
becoming more and more critical for autonomous control
to ensure the increasing requirements of spacecraft safety
and reliability. In order to improve spacecraft autonomous
control ability of tolerating faults, reconfigurability should
be considered in design stage of spacecrafts and effective
reconfigurability analysis methodmust be presented to guide
the system design.

As far as the authors know, regarding reconfigurability
design, mass research, aiming at enhancing flexibility about

environment changes and function variations, has been
conducted in computing and manufacturing fields [1, 2].
For spacecraft, although extensive attention to reconfigura-
bility design has been devoted to controller designs after
faults [3–9], or to system function changes [10] to satisfy
other mission requirements, little improvement has been
achieved regarding function recovery of faulty spacecraft
by reconfigurability design. Meanwhile, some scholars have
studied control reconfigurability from the intrinsic and
performance-based perspectives. The intrinsic reconfigura-
bility of LTI systems can be evaluated by the controllability
and observability Gramians [11], or by the smallest second-
order mode which is the smallest eigenvalue of the com-
bination of controllability and observability Gramians [12].
The performance-based control reconfigurability is regarded
as the ability of the considered system to keep/recover
some admissible system performance when certain fault
occurs. Staroswiecki discussed the reconfigurability under
energy limitation constraints in [13]. However, all the studies
mentioned above did not consider system’s components and
configuration, and thus they cannot settle reconfigurability
analysis and design problems for complex systems such as
spacecrafts. Consequently, the critical objective of this study
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is to construct an effective reconfigurability analysis method
based on the function tree theory, which can synthesize
components and reconfiguration strategies of spacecraft and
estimate quantitative evaluation indexes.

The rest of this paper is organized as follows. Section 2
presents some basic definitions, and Section 3 constructs
a reconfigurability modeling and analyzing method. In
Sections 4 and 5, reconfigurability evaluation indexes and
weak link analysis procedure for reconfiguration design are
discussed, respectively. In Section 6, the proposed approach
is illustrated by a practical application regarding spacecraft
attitude measuring system. Some conclusions and relevant
remarks are given in Section 7.

2. Basic Definitions

Siddiqi indicated that different definitions exist in different
fields in [14]. By summing up a series of definitions, he
defined reconfigurable system and reconfigurability as fol-
lows. Reconfigurable system is a system that can reversibly
achieve distinct configurations (or states), through alteration
of system form or function, in order to achieve a desired
outcome within acceptable reconfiguration; while, recon-
figurability is a system architectural property that defines
the ease and extent to which a system is reconfigurable.
Considering spacecraft, reconfiguration is the problem of
replacing the faulty part of the systemby anonfaulty one, so as
to still achieve control objectives, and reconfigurability is the
ability of recovering all the functions or achieving degraded
objectives by reconfiguration when faults appear.

System configuration is one of the basic factors that affect
reconfigurability. Two relevant definitions, reconfiguration
unit (RU) and minimal reconfiguration unit (MRU), should
be explained here. RU is a combination of spacecraft compo-
nents to achieve the anticipant function by reconfiguration
itself or by switching to other RUs when the current RU
fails. MRU is a combination of spacecraft components to
achieve the anticipant function only by switching to other
RUs when the current RU fails. It is the minimal unit in the
reconfiguration analysis.

A novel reconfigurability model is established based on
the function tree theory in this study. Function tree is a tree
diagram whose vertex corresponds to the system function
and whose branches are subfunctions decomposed from
the system function, and its roots are the MRUs. Higher
level functions and lower level functions in a function tree
are connected by AND gates or OR gates. The relationship
between function and MRUs can be clearly explained by
the corresponding function tree. A typical function tree is
illustrated in Figure 1.

In order to evaluate the reconfigurability quantitatively,
definitions including cut set (CS), minimal cut set (MCS),
path set (PS), and minimal path set (MPS) of a function tree
are involved. A CS is a set of MRUs. When all MRUs in a CS
are healthy, the system functions can be achieved. MCS is a
special CS, and, if and only if all MRUs in MCS are in good
condition, the system functions can be achieved. APS is also a
set of MRUs. When all MRUs in a PS fail, the system will lose

System function

Higher level Higher level

Lowest levelLowest level

subfunction 1

subfunction 1 subfunction n

MRU MRU MRU MRU
1 2 k − 1 k

Vertex

Branches

Roots

...
...

· · ·

· · · subfunction m

Figure 1: Function tree schematic diagram.

its function. MPS is a special PS, and, if and only if failure
appears in every MRU in MPS, the system function should
have been lost. Furthermore, theMCS set orMPS set is called
MCS family or MPS family.

3. Reconfigurability Modeling

For reconfigurability evaluating and designing, one first
needs to build an effective reconfigurability model and
establish relationships between reconfigurability and MRUs.
Then, evaluation indexes and weak links of the spacecraft
reconfigurability can be analyzed.

We define a reconfigurability model from viewpoint of
function tree, which is similar to theory of fault tree. The
modeling processes are discussed as below.

Step 1. According to the system function, define the recon-
figuration strategy based on the system observability and
controllability.

For example, consider the LTI deterministic system

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) .

(1)

We adopt the observability criterion and controllability crite-
rion

rank [𝐶 𝐶𝐴 ⋅ ⋅ ⋅ 𝐶𝐴
𝑛−1

]


= 𝑛,

rank [𝐵 𝐵𝐴 ⋅ ⋅ ⋅ 𝐵𝐴
𝑛−1

] = 𝑛

(2)

to confirm the reconfiguration strategy by changing 𝐵 or𝐶 in
the system model and then obtain the component set 𝐶com,
each one of which can perform the system function.

Step 2. If any redundancy is involved in a system component,
decompose it to the functional module. According to the
redundancy relationship between themodules, determine the
MRUs. Furthermore, according to the MRUs functions, the
MRUs function set 𝐹MRU can be obtained. And the elements
in 𝐹MRU are the lowest level function in the function tree.
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Figure 2: Structure decomposition of gyro.
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Figure 3: Function decomposition of gyro.

To get a better understanding, a gyro system is utilized as
an example to illustrate this procedure. A gyro can be decom-
posed to several modules, such as power supply module, data
processing module, I/O module, and gyro sensor module. If
the power supply module is redundant, while others are not,
any single power supply module can be considered as MRU,
and the rest can be treated as MRU. Consequently, 𝐹MRU
of a gyro is {𝑝𝑜𝑤𝑒𝑟 𝑠𝑢𝑝𝑝𝑙𝑦, 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 𝑎𝑛𝑑 𝑑𝑎𝑡𝑎 𝑝𝑟𝑜𝑐𝑒𝑠𝑠}.
Figure 2 shows the decomposition structure.

Step 3. From the system function, decompose higher level
functions into lower level functions (or subfunctions) until
the functions are contained in 𝐹MRU.

Return to the example of gyro. “Angle velocity measure”
is the function of a gyro. It can be decomposed into two
subfunctions, “power supply” and “measure and data process”.
Then the decomposition process can be terminated, because
“power supply” and “measure and data process” belong to
𝐹MRU. The decomposition process is illustrated in Figure 3.

Step 4. Build a function tree by AND gate and OR gate.
The vertex of this function tree is the system function,
the branches are the subfunctions, and the roots are the
MRUs. AND gate and OR gate connect the higher layers and
the lower layers according to the relationship between the
subfunctions.

AND gate and OR gate in function trees are depicted
in Figure 4. The AND gate in Figure 4(a) shows that the
upper level function 𝑌 can only be achieved when all the
subfunctions 𝑥

𝑖
have been realized, 𝑖 = 1, 2, . . . , 𝑛, while for

OR gate in Figure 4(b), it can be concluded that the upper
level function 𝑌 can be realized when any single or multiple
or all subfunctions 𝑥

𝑖
are achieved, 𝑖 = 1, 2, . . . , 𝑛.

Y

x1 x2 xn· · ·

(a) AND gate

Y

x1 x2 xn· · ·

(b) OR gate

Figure 4: AND gate and OR gate.
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Figure 5: Function tree of gyro.

According to the stepsmentioned above, the function tree
of a gyro can be formed, which is shown in Figure 5.

In order to analyze the reconfigurability quantitatively,
the MCS andMPS of function tree should be obtained firstly.

Let C
𝑖
(𝑥
𝑗
) denote the ith MCS for the jth level

function 𝑥
𝑗
, and let C(𝑌) denote the CS family for the upper

level function 𝑌. For AND gate,

C (𝑌) = {C
𝑖
(𝑥
1
) ∪ C
𝑗
(𝑥
2
) ∪ ⋅ ⋅ ⋅ ∪ C

𝑘
(𝑥
𝑛
)} ,

𝑖 ∈ (1, 2, . . . ,
C (𝑥
1
)
) ,

𝑗 ∈ (1, 2, ⋅ ⋅ ⋅ ,
C (𝑥
2
)
) ,

𝑘 ∈ (1, 2, ⋅ ⋅ ⋅ ,
C (𝑥
𝑛
)
) .

(3)

For OR gate,

C (𝑌) = C (𝑥
1
) ∪ C (𝑥

2
) ∪ ⋅ ⋅ ⋅ ∪ C (𝑥

𝑛
) , (4)

where |C(𝑥
𝑖
)|, 𝑖 = 1, 2, . . . , 𝑛, is the cardinal number of C(𝑥

𝑖
),

which indicates MCS number in the MCS family for the
subfunction 𝑥

𝑖
.

Let R
𝑖
(𝑥
𝑗
) be the 𝑖th MPS for the 𝑗th level function 𝑥

𝑗
,

and let R(𝑌) be the PS family of the upper level function 𝑌.
For AND gate,

R (𝑌) = R (𝑥
1
) ∪R (𝑥

2
) ∪ ⋅ ⋅ ⋅ ∪R (𝑥

𝑛
) . (5)

For OR gate,

R (𝑌) = {R
𝑖
(𝑥
1
) ∪ R
𝑗
(𝑥
2
) ∪ ⋅ ⋅ ⋅ ∪ R

𝑘
(𝑥
𝑛
)} ,

𝑖 ∈ (1, 2, . . . ,
R (𝑥
1
)
) ,

𝑗 ∈ (1, 2, . . . ,
R (𝑥
2
)
) ,

𝑘 ∈ (1, 2, . . . ,
R (𝑥
𝑛
)
) ,

(6)
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where|R(𝑥
𝑖
)|, 𝑖 = 1, 2, . . . , 𝑛, is the cardinal number of R(𝑥

𝑖
),

which corresponds to theMPS number of theMPS family for
the subfunction 𝑥

𝑖
.

Although C(𝑌) or R(𝑌) derived by (3) to (6) may not be
MCS family or MPS family, the MCS and MPS are needed
in the upper level function analysis according to (3) to (6).
Consequently, the MCS and MPS of function 𝑌 can be
calculated by the following steps.

Step 1. Initialize Cmin(𝑌) or Rmin(𝑌) to be a null set.

Step 2. ChooseCmin(𝑌) orRmin(𝑌)with a minimum cardinal
number in all sets in C(𝑌) or R(𝑌) and transform it into
Cmin(𝑌) or Rmin(𝑌).

Step 3. Check all remaining sets in C(𝑌) orR(𝑌). If there is a
set containing all the MRUs in Cmin(𝑌) or Rmin(𝑌), delete it
from C(𝑌) or R(𝑌) and go back to Step 2 otherwise.

Step 4. Execute Steps 2 and 3 repeatedly until C(𝑌) or R(𝑌)

turns to a null set. Then elements C
𝑖
(𝑌) or R

𝑖
(𝑌) in Cmin(𝑌)

or Rmin(𝑌) are the expected MCS or MPS.

4. Reconfigurability Evaluation Indexes

Based on the reconfigurability model constructed in the
preceding section, reconfigurability evaluation indexes for
spacecrafts are given as follows.

4.1. Fault Reconfigurable Degree (FRD). FRD describes
whether the system has available resources and methods for
reconfigurations after certain faults as

𝛾 = {
1 fault is reconfigurable
0 fault is unreconfigurable.

(7)

When certain faults emerge, the MCS family should
be activated by deleting all the MCSs including the fault
reconfigurable units. Consider 𝛾 = 0 if the MCS family is
empty; consider 𝛾 = 1 otherwise.

4.2. System Reconfigurable Rate (SRR). SRR indicates the rate
of reconfigurable faults with respect to all faults in the system

𝑟 =
∑
𝑚

𝑖=1
𝑤
𝑖
𝛾
𝑖

∑
𝑚

𝑖=1
𝑤
𝑖

, (8)

where 𝛾
𝑖
is the FRD of the 𝑖th fault 𝑓

𝑖
, 𝑚 is the number

of all the system fault modes, and 𝑤
𝑖
is the weight of fault

𝑓
𝑖
according to its severity and occurrence probability. The

major fault has a bigger weight than aminor one; and the fault
with high occurrence probability has a bigger weight than
the one with low occurrence probability. If the fault severity
can be defined as four levels, as listed in Table 1, and the
occurrence probability can be divided into five levels, as listed
in Table 2, then𝑤

𝑖
can be determined from Table 3. 𝑆 denotes

the fault severity level and 𝑃 indicates the fault occurrence
probability in Table 3.

Table 1: Fault severity level definition.

Level Definition
I System function is lost or service life is shortened seriously.

II System function is degraded seriously or service life is
reduced by 1/4 to 1/2.

III System function is degraded partially or service life is
reduced below 1/4.

IV There is little affection in system function and service life.

Table 2: Fault occurrence probability definition.

Level Definition
A MRU fault probability ≥ 20% × total fault probability

B 20% × total fault probability >MRU fault probability ≥

10% × total fault probability

C 10% × total fault probability >MRU fault probability ≥ 1%
× total fault probability

D 1% × total fault probability >MRU fault probability ≥ 0.1%
× total fault probability

E MRU fault probability < 0.1% × total fault probability

Table 3: 𝑤
𝑖
matrix.

𝑃
𝑆

I II III IV
A 1 1/3 1/7 1/13
B 1/2 1/5 1/9 1/16
C 1/4 1/6 1/11 1/18
D 1/8 1/10 1/14 1/19
E 1/12 1/15 1/17 1/20

5. Weak Link Analysis in
Reconfigurability Design

For better reconfigurability, the reconfiguration weak links
should be improved in the design phase of a spacecraft. Based
on the established configurability model, the following two
indexes are proposed to determine weak links in reconfigu-
ration.

5.1. Importance Degree of MRU (IDMRU). IDMRU denotes
the rate of the number of MCSs that includes the MRU with
respect to the number of all MCSs as

𝐼
𝑀

=
𝑁
𝑀

𝑁
𝑇

, (9)

where 𝐼
𝑀

is the IDMRU of MRU 𝑀, 𝑁
𝑀

is the number of
MCSs that comprise the MRU, and 𝑁

𝑇
is the number of all

MCSs.
For any system, the MRU with maximal IDMRU con-

tributes most in system function realization. Consequently,
necessary redundancy or special reliability design should be
considered for this MRU.

5.2. System Fault Tolerance Degree (SFTD). SFTD represents
the maximal number of failure MRUs that the system can
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tolerate without loss of system functions. SFTD reflects the
system reconfigurability as

𝑇 = min (
R𝑖

) − 1
R𝑖

 ∈ R, 𝑖 = 1, 2, . . . , |R| , (10)

where 𝑇 denotes SFTD, R
𝑖
is the 𝑖th minimal path set of the

function tree, |R
𝑖
| is the cardinal number of R

𝑖
.

In a system, the path set with the minimum number
of MPSs is the weakest link. And for this part, necessary
redundancy or special reliability design should be considered
according to the subfunctions of MRUs in the MPS.

The four indexes proposed above are closely connected
to each other. Let 𝑓

𝑖
be a fault whose corresponding recon-

figurable degree is equal to zero, 𝛾
𝑖
= 0; namely, the corre-

sponding MRU cannot be reconfigured; then the importance
degree 𝐼

𝑀
of the MRU will be equal to one and the system

fault tolerance degree 𝑇 will become zero. Otherwise, if all
fault reconfigurable degrees are one, namely, all theMRU can
be reconfigured, thenwe can conclude that all the importance
degrees will be less than one, the system fault tolerance degree
will be not less than one, and the system reconfigurable rate
will be equal to 100%.

6. Empirical Results

In this section, we focus on the practical performance of
the proposed method. Our experiment is presented for the
reconfigurability analysis of an attitude measuring system in
a spacecraft. The dynamic functions regarding momentum
devices are shown in (11).The spacecraft is considered as rigid
body systems, and the body coordinate system coincides with
the principle axes of inertia as

𝐼
𝑥

̇𝜔
𝑥
− (𝐼
𝑦
− 𝐼
𝑧
) 𝜔
𝑦
𝜔
𝑧
− ℎ
𝑦
𝜔
𝑧
+ ℎ
𝑧
𝜔
𝑦
= −ℎ̇
𝑥
+ 𝑇
𝑥
,

𝐼
𝑦

̇𝜔
𝑦
− (𝐼
𝑧
− 𝐼
𝑥
) 𝜔
𝑧
𝜔
𝑥
− ℎ
𝑧
𝜔
𝑥
+ ℎ
𝑥
𝜔
𝑧
= −ℎ̇
𝑦
+ 𝑇
𝑦
,

𝐼
𝑧

̇𝜔
𝑧
− (𝐼
𝑥
− 𝐼
𝑦
) 𝜔
𝑥
𝜔
𝑦
− ℎ
𝑥
𝜔
𝑦
+ ℎ
𝑦
𝜔
𝑥
= −ℎ̇
𝑧
+ 𝑇
𝑧
,

(11)

where 𝐼
𝑥
, 𝐼
𝑦
and 𝐼
𝑧
are moments of inertia along axes 𝑂𝑥,

𝑂𝑦 and 𝑂𝑧, respectively; 𝜔 = [𝜔
𝑥
, 𝜔
𝑦
, 𝜔
𝑧
]
𝑇 is the angular

velocity vector; h = [ℎ
𝑥
, ℎ
𝑦
, ℎ
𝑧
]
𝑇 is the synthesizing angular

momentum vector of all the momentum devices; T =

[𝑇
𝑥
, 𝑇
𝑦
, 𝑇
𝑧
]
𝑇 is the control torque vector applied on the

spacecraft except for the torque from themomentumdevices.
Therefore, the control torque vector T = [𝑇

𝑥
, 𝑇
𝑦
, 𝑇
𝑧
]
𝑇 in

(11) includes torques from thrusters, other space torques, and
disturbing torques.

If all attitudes vary in a small scale, the dynamic functions
can be simplified as

𝜔
𝑥
= ̇𝜑 − 𝜔

0
𝜓,

𝜔
𝑦
= ̇𝜃 − 𝜔

0
,

𝜔
𝑧
= ̇𝜓 + 𝜔

0
𝜑,

(12)

where 𝜑, 𝜃 and 𝜓 are Euler angles; 𝜔
0
denotes the orbit

angular velocity with which the spacecraft circles around the
center body.

Then, the linearization form of the attitude dynamic
function can be derived based on (11) and (12) as

𝐼
𝑥

̈𝜑 + [(𝐼
𝑦
− 𝐼
𝑧
) 𝜔
2

0
− 𝜔
0
ℎ
𝑦
] 𝜑

+ [(𝐼
𝑦
− 𝐼
𝑧
− 𝐼
𝑥
) 𝜔
0
− ℎ
𝑦
] ̇𝜓

= −ℎ̇
𝑥
+ 𝜔
0
ℎ
𝑧
+ 𝑇
𝑥
,

𝐼
𝑦

̈𝜃 + ℎ
𝑥
( ̇𝜓 + 𝜔

0
𝜑) − ℎ

𝑧
( ̇𝜑 − 𝜔

0
𝜓) = −ℎ̇

𝑦
+ 𝑇
𝑦
,

𝐼
𝑥

̈𝜓 + [(𝐼
𝑦
− 𝐼
𝑥
) 𝜔
2

0
− 𝜔
0
ℎ
𝑦
] 𝜓

− [(𝐼
𝑦
− 𝐼
𝑧
− 𝐼
𝑥
) 𝜔
0
− ℎ
𝑦
] ̇𝜑

= −ℎ̇
𝑧
− 𝜔
0
ℎ
𝑥
+ 𝑇
𝑧
.

(13)

Accordingly, the dynamic function of the spacecraft can
be expressed by a state space form, as shown in (1), with the
following notations:

𝑥 = [𝜑 ̇𝜑 𝜃 ̇𝜃 𝜓 ̇𝜓]
𝑇

,

𝐴 =

[
[
[
[
[
[
[

[

0 1 0 0 0 0

𝑀
21

0 0 0 0 𝑀
26

0 0 0 1 0 0

𝑀
41

𝑀
42

0 0 𝑀
45

𝑀
46

0 0 0 0 0 1

0 𝑀
62

0 0 𝑀
65

0

]
]
]
]
]
]
]

]

,

𝑀
21

= 𝐼
−1

𝑥
[(𝐼
𝑦
− 𝐼
𝑧
) 𝜔
2

0
− 𝜔
0
ℎ
𝑦
] ,

𝑀
26

= 𝐼
−1

𝑥
[(𝐼
𝑦
− 𝐼
𝑧
− 𝐼
𝑥
) 𝜔
0
− ℎ
𝑦
] ,

𝑀
41

= 𝐼
−1

𝑦
ℎ
𝑥
𝜔
0
,

𝑀
42

= −𝐼
−1

𝑦
ℎ
𝑧
,

𝑀
45

= 𝐼
−1

𝑦
ℎ
𝑧
𝜔
0
,

𝑀
46

= 𝐼
−1

𝑦
ℎ
𝑥
,

𝑀
62

= −𝐼
−1

𝑧
[(𝐼
𝑦
− 𝐼
𝑧
− 𝐼
𝑥
) 𝜔
0
− ℎ
𝑦
] ,

𝑀
65

= 𝐼
−1

𝑧
[(𝐼
𝑦
− 𝐼
𝑥
) 𝜔
2

0
− 𝜔
0
ℎ
𝑦
] .

(14)

Matrixes 𝐵 and 𝐶 in (1) can be determined according
to the detailed configuration of the system. For example, a
system, with two infrared earth sensors, three orthogonal
gyros, and one main backup thruster, can be described as

𝑢 (𝑡) = [𝑇𝑥1 𝑇
𝑥2

𝑇
𝑦1

𝑇
𝑦2

𝑇
𝑧1

𝑇
𝑧2]
𝑇

,

𝑦 (𝑡) = [𝜑ℎ1 𝜃
ℎ1

𝜑
ℎ2

𝜃
ℎ2

𝑔
𝑥

𝑔
𝑦

𝑔
𝑧]
𝑇

,
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𝐵 =

[
[
[
[
[
[
[

[

0 0 0 0 0 0

𝐼
−1

𝑥
𝐼
−1

𝑥
0 0 0 0

0 0 0 0 0 0

0 0 𝐼
−1

𝑦
𝐼
−1

𝑦
0 0

0 0 0 0 0 0

0 0 0 0 𝐼
−1

𝑧
𝐼
−1

𝑧

]
]
]
]
]
]
]

]

,

𝐶 =

[
[
[
[
[
[
[
[
[

[

1 0 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 −𝜔
0

0

0 0 0 1 0 0

𝜔
0

0 0 0 0 1

]
]
]
]
]
]
]
]
]

]

.

(15)

Considering a spacecraft system described by (1), when
faults appear, the premise of achieving system reconfigura-
bility is that the remaining of the system is observable and
controllable. The corresponding criterion is given by (2).
According to engineering experience, one can assume that
𝐼
𝑥

̸=𝐼
𝑦

̸=𝐼
𝑧
and 𝜔

0
̸=0. Consider the following.

(1) Only one infrared earth sensor is employed for
attitude determination as

𝐶
1
= [

1 0 0 0 0 0

0 0 1 0 0 0
] , rank

[
[
[
[

[

𝐶
1

𝐶
1
𝐴

...
𝐶
1
𝐴
5

]
]
]
]

]

= 6. (16)

(2) Three gyros are employed for attitude determination
as

𝐶
2
= [

[

0 1 0 0 −𝜔
0

0

0 0 0 1 0 0

𝜔
0

0 0 0 0 1

]

]

, rank
[
[
[
[

[

𝐶
2

𝐶
2
𝐴

...
𝐶
2
𝐴
5

]
]
]
]

]

= 5. (17)

(3) One infrared earth sensor and three gyros are
employed for attitude determination as

𝐶
3
=

[
[
[
[
[

[

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 −𝜔
0

0

0 0 0 1 0 0

𝜔
0

0 0 0 0 1

]
]
]
]
]

]

, rank
[
[
[
[

[

𝐶
3

𝐶
3
𝐴

...
𝐶
3
𝐴
5

]
]
]
]

]

= 6. (18)

From (16) to (18), the attitude can be measured in the
following two ways:

M1: by infrared earth sensors;
M2: by infrared earth sensors and gyros.

In addition, it is assumed that two infrared earth sensors
share one power supply and three gyros share another power
supply; then Table 4 lists the MRUs and their corresponding
subfunctions.

Table 4: MRUs and their corresponding functions.

MRU Functions
Infrared earth sensor power
(ESP)

Power supply for infrared earth
sensor (PS for ES)

Infrared earth sensor 1 (ES1) 𝜑 and 𝜃measure
Infrared earth sensor 2 (ES2) 𝜑 and 𝜃measure

Gyro power (GPower) Power supply for gyros
(PS for gyro)

Gyro 𝑥(𝐺
𝑥
) measure 𝜔

𝑥

Gyro 𝑦 (𝐺
𝑦
) measure 𝜔

𝑦

Gyro 𝑧 (𝐺
𝑧
) measure 𝜔

𝑧

Table 5: Results of reconfigurability analysis.

MRU 𝛾 I
ESPower 0 1

ES1 1 0.5
ES2 1 0.5

GPower 1 0
𝐺
𝑥

1 0
𝐺
𝑦

1 0
𝐺
𝑧

1 0

Figure 6 illustrates the function tree constructed by the
reconfigurability modeling process. The MCS family and the
MPS family could be derived by analyzing the function tree
in Figure 6 as

C = {{ESP,ES1} , {ESP,ES2}} ,

R = {{ESP} , {ES1,ES2}} .
(19)

Thus, reconfigurability indexes can be calculated by (7)
to (10). Table 5 lists the FRD and IDMEU of all the MRUs.
Furthermore, suppose that the severity and occurrence pos-
sibility for all MRUs are the same; then 𝑤

𝑖
= 1, 𝑟 = 6/7, and

𝑇 = 0.
According to the analysis results of IDMRU and SFTD

of all MRUs, the weakest link of this system is the power of
infrared earth sensors. Consequently, it is better to store a
backup in this link.

7. Conclusion

To involve reconfigurability in spacecraft design phase for
potential faults, a novel reconfigurability analysis method is
investigated in this paper. First, on the basis of observability
and controllability, the reconfigurability criterion is given
for spacecraft that is considered as a rigid body system.
Then, the function tree is built formodeling reconfigurability,
and evaluation indexes are proposed. After that, according
to minimal cut set and minimal path set of the function
tree, a quantitative evaluation method for reconfigurability
indexes and an approach for determining system weak links
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Attitude
measure

PS for ES Φ and 𝜃

Φ and 𝜃

measure

measure measure measure measure

measure

ESP

ES1

ES1

ES2

ES2

ESP

PS for ES PS for gyro 𝜔y𝜔x 𝜔z

Gpower

Gyro

M1

M1

M2

Gx Gy Gz

Figure 6: Function tree for attitude determinations.

are summarized. Theoretical research and empirical study
both illustrate the benefit of the constructedmethodology for
spacecraft reconfigurability design on reliability criterions.
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A mathematical model must be established to study the motions of ships in order to control them effectively. An assessment of the
model depends on the accuracy of hydrodynamic parameters. An algorithm for the parameter identification of the coupled pitch
and heave motions in ships is, thus, put forward in this paper. The algorithm proposed is based on particle swarm optimization
(PSO) and the opposition-based learning theory known as opposition-based particle swarm optimization (OPSO). A definition
of the opposition-based learning algorithm is given first of all, with ideas on how to improve this algorithm and its process
being presented next. Secondly, the design of the parameter identification algorithm is put forward, modeling the disturbing force
and disturbing moment of the identification system and the output parameters of the identification system. Then, the problem
involving the hydrodynamic parameters of motions is identified and the coupled pitch and heave motions of a ship described as
an optimization problem with constraints. Finally, the numerical simulations of different sea conditions with unknown parameters
are carried out using the PSO and OPSO algorithms. The simulation results show that the OPSO algorithm is relatively stable in
terms of the hydrodynamic parameters identification of the coupled pitch and heave motions.

1. Introduction

Themodel concerned with the motions of ships describes the
process of movement of the response characteristics of the
control input, and this is the precondition to understanding
the motions of ships. Widely used system identification tech-
niques for hydrodynamic parameters and the hydrodynamic
parameters themselves can be identified by observing the data
relating to the motions of ships. This directly establishes the
mathematical model of the ship’s hydrodynamic parameters
and motions between the state models. Classic identification
algorithms, such as the maximum likelihood identification
method and the prediction error used for parameter esti-
mation are too low in terms of sensitivity and are thus
inadequate as methods used in order to solve true values.
Abkowitz [1] extended the Kalman Filter method to estimate
the hydrodynamic parameters of a ship’smotions. Clarke et al.
[2] identified the nonlinear parameters of the motions of
ships by using an artificial neural network. Haddara used free
attenuation from the free response-signal method to identify

the roll [3, 4] and extended it to the parameter identification
of sway and yaw coupled equations [5] and pitch and heave
coupled equations [6]. Haddara and Xu [7] additionally put
forward a ship’s longitudinal motions state as a Markov chain
process and, in order to simplify the longitudinal motions
equation, they used a neural network for the identification
of a ship’s longitudinal motions parameters. Mahfouz and
Haddara [8] mixed the classic recognition algorithm and
neural network methods, putting forward a hydrodynamic
parameter identification method using RDLRNNT technol-
ogy, a method that appears to be fairly sound.

Bhattacharyya andHaddara [9] used artificial neural net-
works (ANN) and spectral analysis methods to identify the
hydrodynamic derivatives in themathematical model involv-
ing ship and marine vehicle motions. ANN has also some
defects, however, such as bad generalization performance,
easily falling into a local minimum. Luo and Zou [10] applied
support vector machines (SVM) to identify the hydrody-
namic derivatives of Abkowitz’s model from the simulated
free-running model test results and then used the regressive
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Abkowitz model to predict zigzag tests. Zhang and Zou [11]
proposed a novel method of artificial intelligence technology
in the shape of support vector machines in order to estimate
the hydrodynamic coefficients in the mathematical models
of ship maneuvering motions. A comparison between the
predicted hydrodynamic forces and the test results shows that
the identified hydrodynamic mathematical model has a good
generalization performance.

In recent years, with the rapid development of intelligent
algorithms, a number of scholars have used the swarm intel-
ligent algorithm, applying it to hydrodynamic parameters in
order to identify problems related to the motions of ships.
Through the state equation of underwater bodies and obser-
vation equation, Chen et al. [12] has used intelligent recogni-
tion technology for simulation recognition of an underwater
navigation body and has obtained ten hydrodynamic param-
eters. In 2008, Chen et al. [13] proposed a new recogni-
tion algorithm based on intelligence technology. The least-
square criterion together with the Differential Swarm Intel-
ligent (DS) algorithm is employed to identify hydrodynamic
parameters. In 2011, Dai et al. [14, 15] used an improved PSO
algorithm and continuous domain ant colony optimization
algorithm to identify the hydrodynamic parameters of heave
and pitch with satisfactory results. In order to determine a
water diving device parameter test and for the theoretical
calculation of difficult problems, Gao and Li [16] put forward
a method based on the basic artificial bee colony algorithm
and the improved artificial bee colony method used to iden-
tify a potential coefficient method. Experiments show that
the use of artificial colony algorithm identification device
parameters is indeed feasible.

The PSO algorithm was proposed by Kennedy and Eber-
hart in 1995 [17, 18]. In order to overcome the existing prob-
lems in the practical use of the PSO algorithm and improve
the performance of the algorithm, an improved algorithmhas
been put forward by number of scholars [19–26]. Generally
speaking, the improved PSO algorithm strategy currently
includes two aspects, namely, the improvement of the strategy
of the PSO algorithm and its fusion with other algorithms.
The improved PSO algorithm mainly concerns the variation
of the particles, the multipopulation cooperation, and the
design of parameters. These methods can potentially prevent
particle aggregation and conflict, and avoid premature con-
vergence to local optima. PSO algorithms are integrated with
other algorithms, improving the strategy of the PSO. Some
scholars are currently advocating the opposition-based learn-
ing particle swarm optimization algorithm. Wang et al. [21]
have introduced opposition-based learning into the PSO
algorithm, then they proposed opposition-based learning
and the Cauchy mutation PSO algorithm (OPSO), using
opposition-based learning to initialize the group. Omran and
Al-Sharhan [24] have used dynamic shrinkage factors to
generate opposition-based solutions. Shahzad [25] have pre-
sented three kinds of opposition-based PSO algorithm: the
first version of the OPSO algorithm using only opposition-
based learning in order to initialize groups and the second
version (IOPSO) in addition to opposition-based learning
produced the opposition-based particles as a replacement for
the worst particle in the group during each iteration. In the

third version of the algorithm the initialization of opposition-
based learning is removed from IOPSO. Shi and Eberhart
[26] have controlled the velocity of PSO by using opposition-
based learning and proposed the speed clamping PSO algo-
rithm (OVCPSO) based on opposition-based learning, which
achieved good results.

Owing to the limitations of conventional identification
methods in coupled pitch and heavemotions parameter iden-
tification, in this paper, we are proposing to identify ship cou-
pled heave and pitch motions using opposition-based PSO.
In order to achieve this, we have designed a model involv-
ing wave disturbance force and torque disturbance, using
the design methods for an output parameter identification
system, with an opposition-based PSO algorithm for param-
eter identification.

2. Pitch and Heave Motions Model

Thecoupled pitch andheavemotions of a ship in a realistic sea
can be described by two linear second order ordinary coupled
differential equations as follows [7]:

(𝑎
33
+ 𝑚
0
) ̈𝑧 + 𝑏

33
̇𝑧 + 𝑐
33
𝑧 + 𝑎
35
̈𝜃 + 𝑏
35
̇𝜃 + 𝑐
35
𝜃

= 𝐹
𝑅
+ 𝐹
3

𝑎
53
̈𝑧 + 𝑏
53
̇𝑧 + 𝑐
53
𝑧 + (𝐼

5
+ 𝑎
55
) ̈𝜃 + 𝑏

55
̇𝜃 + 𝑐
55
𝜃

= 𝐹
𝑅
𝑋
𝑅
+𝑀
5
,

(1)

where 𝑧 is heave; 𝜃 is pitch; 𝐼
5
is the pitching moment of

inertia; 𝑚
0
is the ship’s mass; 𝐹

𝑅
is the force of the rudder;

𝑋
𝑅
is advanced from the rudder lifting center to the ship’s

center of gravity;𝐹
3
is the disturbance force of heave;𝑀

5
is the

disturbance moment of pitch, 𝑎
33
is the added mass, 𝑎

35
and

𝑎
53
are mass moment; 𝑎

55
is the moment of inertia; 𝑏

33
, 𝑏
35
are

the damping coefficients; 𝑐
33
, 𝑐
35
are the resilience coefficient;

𝑏
53
, 𝑏
55

are the damping moment coefficient; 𝑐
53
, 𝑐
55

are the
righting moment coefficients; and 𝑎

33
, 𝑎
35
, 𝑎
53
, 𝑎
55
, 𝑏
33
, 𝑏
35
,

𝑏
53
, 𝑏
55
, 𝑐
33
, 𝑐
35
, 𝑐
53
, and 𝑐

55
are the hydrodynamic parameters.

Set 𝑥
1
= 𝑧, 𝑥

3
= 𝜃 as the state variables

𝑋 = [𝑥1 𝑥2 𝑥3 𝑥4]
𝑇

= [𝑧 ̇𝑧 𝜃 ̇𝜃]
𝑇

. (2)

The system state equation is then obtained as follows:

𝑋 = 𝐴𝑋 + 𝐵𝑢 + 𝐶𝑊. (3)

Among 𝐴 = 𝐸−1𝐴∗, 𝐵 = 𝐸−1𝐵∗, 𝐶 = 𝐸−1𝐶∗, where

𝐸 = (

1 0 0 0

0 𝑎
33
+ Δ 0 𝑎

35

0 0 1 0

0 𝑎
53

0 𝐼
5
+ 𝑎
55

),
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𝐴
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33
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35
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35
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𝐵 =
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𝐹
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𝑀
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(4)

para = [𝑎
33
, 𝑎
35
, 𝑎
53
, 𝑎
55
, 𝑏
33
, 𝑏
35
, 𝑏
53
, 𝑏
55
, 𝑐
33
, 𝑐
35
, 𝑐
53
, 𝑐
55
] as the

parameters to be identified, 𝑊 is the wave disturbing force
and moment.

3. Opposition-Based Particle
Swarm Optimization

3.1. Particle SwarmOptimizationAlgorithm. PSO learns from
the natural phenomenon of birds looking for food made by
a class of population-based stochastic global optimization
techniques. With respect to birds in flight, in its initial state
every bird is in a random position and flies randomly in all
directions, but as time goes on, these initial random state
birds form a small community, through mutual learning,
mutual tracking, and self-organization, fly at the same speed
in the same direction, and ultimately the entire group gathers
in one place, namely, the food source.

In the PSO algorithm, each individual is called a “parti-
cle,” and each particle represents a potential solution. In con-
tinuous spatial coordinates, the PSO algorithm is described
as follows.

Suppose that the size of the swarm is 𝑁 and the search
space is 𝐷-dimensional, then the position of the 𝑖th particle
is presented as 𝑋

𝑖
= (𝑋

𝑖1
, 𝑋
𝑖2
, . . . , 𝑋

𝑖𝐷
), the velocity of

this particle is presented as 𝑉
𝑖
= (𝑉

𝑖1
, 𝑉
𝑖2
, . . . , 𝑉

𝑖𝐷
), the

𝑇 fitness value of each particle in its current position is
fitness

𝑖
= fitness(𝑋

𝑖
), its corresponding optimal value is

𝑃
𝑖
= (𝑃
𝑖1
, 𝑃
𝑖2
, . . . , 𝑃

𝑖𝐷
) and the population current optimal

experience value is recorded as 𝑃
𝑔
= (𝑃
𝑔1
, 𝑃
𝑔2
, . . . , 𝑃

𝑔𝐷
). Each

particle adjusts its speed dynamically according to the com-
prehensive analysis of both individual and population flying
experience and flies to the best position that it and other
particles have experienced. Each particle updates its speed
and position according to the formula equations:

𝑉
𝑖
(𝑡 + 1) = 𝑤𝑉

𝑖
(𝑡) + 𝑐

1
𝑟
1
(𝑃
𝑖
(𝑡) − 𝑋

𝑖
(𝑡))

+ 𝑐
2
𝑟
2
(𝑃
𝑔
(𝑡) − 𝑋

𝑖
(𝑡)) ,

(5)

𝑋
𝑖
(𝑡 + 1) = 𝑋

𝑖
(𝑡) + 𝑉

𝑖
(𝑡 + 1) , (6)

where 𝑡 is iterative times, 𝑑 = 1, 2 ⋅ ⋅ ⋅ 𝐷. 𝑟
1
, 𝑟
2
are random

numbers between 0 and 1 and 𝐶
1
, 𝐶
2
are nonnegative

constants.This is called the learning factor and each iteration
step is justified accordingly.

3.2. Opposition-Based Learning. Opposition-based learning
was put forward by Professor Tizhoosh [19] in 2005.

He argues that intelligent algorithms are based on a random
guess value concerning the initial population, with each gen-
eration coming close to the solutionwith the optimal solution
or a close approximation of the optimal solution eventually
being found. Thus, the initial guess value greatly influences
the algorithm and, if the random guess value is very close to
the optimal solution, the algorithmmay converge quickly, but
if the value is far away from the solution or is even the reverse,
the algorithm will take much more time. If the current
solution and its opposite are sought simultaneously, a better
solution will be chosen and the efficiency of the algorithm
will be greatly enhanced. According to the theory of prob-
ability, there is a 50% probability that the current solution
is more remote from the optimal solution than its opposite
[20].

Definition 1 (definition of the opposite number). Let 𝑥 ∈ 𝑅
be a real number within a defined interval, where 𝑥 ∈ [𝑎, 𝑏].
The opposite number 𝑥

0
can be defined as

𝑥
0
= 𝑎 + 𝑏 − 𝑥. (7)

Definition 2 (definition of the opposite point). In the high
dimensional space, if 𝑝 = (𝑥

1
, 𝑥
2
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𝐷
) is a set of points

in the 𝐷-dimensional search space where 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
∈ 𝑅,

𝑥
𝑗
∈ [𝑎
𝑗
, 𝑏
𝑗
], then the points in the opposition set 𝑝

𝑜
=

(𝑥
1𝑜
, 𝑥
2𝑜
, . . . , 𝑥

𝐷𝑜
) can be defined as

𝑥
𝑗𝑜
= 𝑎
𝑗
+ 𝑏
𝑗
− 𝑥
𝑗
. (8)

Definition 3 (opposition-based optimization). For a point in
the 𝐷-dimensional space 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝐷
), suppose that

𝑓(𝑋) is the function used to measure the performance of
a candidate solution, according to the opposition theorem,
𝑋
𝑜
= (𝑥
1𝑜
, 𝑥
2𝑜
, . . . , 𝑥

𝐷𝑜
) will be the opposition set for 𝑋 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
), If 𝑓(𝑋

0
) < 𝑓(𝑋), then the set of points 𝑋

can be replaced by𝑋
0
, or else𝑋 is maintained.

3.3. Opposition-Based Particle Swarm Optimization. In PSO,
each particle adjusts its search direction on the basis of the
optimum location of all particles. In the initial stage, the
algorithm converges quickly but slows down later on or even
stops. These particles lose the ability to evolve when the
speed of all the particles approaches zero and the algorithm is
thought to represent convergence. Sometimes the algorithm
does not converge to global extreme values, however, not even
local extreme values. This is because the high aggregate and
deficiency diversity of the particles takes a long time or an
infinite time to skip from the focusing point.

In order to solve this problem, the opposition-based
learning mechanism is introduced into the basic PSO, and
a new random optimization algorithm is constructed, the
opposition-based particle swarm optimization (OPSO) algo-
rithm. In the OPSO algorithm, a variable is set and referred
to as conNum. If the global best fitness is not updated during
a single iteration, then the conNum = conNum + 1, and when
conNum reaches a constant set number setNum, it shows that
there is a high concentration of particles, and the algorithm
cannot find a better solution in the current position and
speed. At this point, opposition-based learning is brought
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%% Initialization
(1) Initialize swarm size N and constant number 𝐶

1
and 𝐶

2
; space dimension𝐷;maximum

(2) Initialize the iteration number for opposition calculation 𝑐𝑜𝑛𝑁𝑢𝑚 = 0, 𝑠𝑒𝑡𝑛𝑢𝑚 = 100;
(3) for 𝑖 = 1: 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑁𝑢𝑚
(4) initialize𝑋

𝑖
randomly with the search range (𝑋min, 𝑋max)

(5) initialize 𝑉
𝑖
randomly with the velocity range (𝑉min, 𝑉max)

(6) End for
(7) Evaluate each particle’s fitness 𝑓

𝑖
= 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋

𝑖
), and the best fitness 𝑃𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒

𝑖
= 𝑓
𝑖

(8) Identify the best particle’s position 𝑃𝑔 and its fitness 𝐺𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒 = min(𝑃𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒
𝑖
); %%Loop

(9) While (𝑡 < 𝑛max)
(10) If 𝑐𝑜𝑛𝑁𝑢𝑚 > 𝑠𝑒𝑡𝑁𝑢𝑚 then
(11) for 𝑖 = 1 to𝑁
(12) Calculate the opposite particle𝑋

0
using (8);

(13) Evaluate fitness in opposite vector𝑓
𝑖𝑜
= 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋

𝑖𝑜
);

(14) end for
(15) Select𝑁 fittest particles𝑁𝑒𝑤𝑓𝑖𝑡𝑛𝑒𝑠𝑠 from 𝐹(𝑓

1
, 𝑓
1
, . . . , 𝑓

𝑁
) and 𝐹

0
(𝑓
1𝑜
, 𝑓
1𝑜
, . . . , 𝑓

𝑁𝑜
) to

(16) create a population of size𝑁;
(17) Else
(18) for 𝑖 = 1 to𝑁
(19) Calculate particle velocity 𝑉

𝑖
(𝑡 + 1) using (5)

(20) update particle position𝑋
𝑖
(𝑡 + 1) using (6)

(21) Evaluate 𝑛𝑒𝑤𝑓𝑖𝑡𝑛𝑒𝑠𝑠
𝑖
= 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑋

𝑖
(𝑡 + 1))

(22) End for
(23) End if
(24) update 𝑃𝑏𝑒𝑠𝑡

𝑖

(25) for 𝑖 = 1 to𝑁
(26) if (𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 < 𝐺𝑏𝑒𝑠𝑡𝑉𝑎𝑙𝑢𝑒)
(27) update 𝐺𝑏𝑒𝑠𝑡
(28) 𝑐𝑜𝑛𝑁𝑢𝑚 = 0;
(29) end if
(30) end for
(31) 𝑐𝑜𝑛𝑁𝑢𝑚 = 𝑐𝑜𝑛𝑁𝑢𝑚 + 1;
(32) end while

Algorithm 1: The process of OPSO.

into play. According to (8) the position-based position 𝑋
𝑜
of

the particle’s current position is produced, the smaller values
𝑁 are selected from𝑋 and𝑋

𝑜
which have 2𝑁 locations and a

new swarm is then formed. If the conNum is less than setNum,
then according to (5) and (6) the particle velocity andposition
are updated. The process of OPSO is shown in Algorithm 1.

4. Design of Pitch and Heave
Parameter Identification

The value of pitch and heave can be measured, so select
state 𝑥

1
and 𝑥

3
in (2) as the measurement state, with the

observation equation as

𝑌 = 𝐻𝑋 + 𝑉, 𝐻 = (
1 0 0 0

0 0 1 0
) , (9)

where 𝑌 is an observation vector and 𝑉 is the two-
dimensional measurement of noise, and this is generally
considered to be white noise.

Before computer simulation, it was necessary to disperse
the state equation and observation equation. This paper does

not consider the steering input but only the wave disturbance
on the ship, with the state equation being formulated as
follows:

𝑋
𝑘+1

= Φ𝑋
𝑘
+ Γ𝑊
𝑘
,

𝑌
𝑘+1

= 𝐻𝑋
𝑘+1

+ 𝑉
𝑘+1
,

(10)

where,Φ = 𝑒𝐴𝑇𝑠 , Γ = ∫𝑇𝑠
0
𝑒
𝐴𝑡
𝑑𝑡𝐶.

In this paper, the single-parameter ITTC spectrum is
chosen for wave disturbance simulation, with the expression
being formulated as follows:

𝑆
𝜁
(𝜔) =

8.1 × 10
−3
𝑔
2

𝜔5
exp( −3.11

ℎ2
1/3
𝜔4
) , (11)

where 𝑔 is the acceleration of gravity,𝑤 is the natural angular
frequency, and ℎ

1/3
is a third significant wave height, for a

level 4 and 5 sea condition, and the ITTC recommended value
is 2.5m and 3.75m, respectively.
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By (10), the observed quantity is the function of 𝑋, para,
namely:

𝑦
𝑖
= 𝑔 (𝑥

𝑖
, para
𝑖
,𝑊
𝑖
) + 𝑉
𝑖
, 𝑖 = 1, 2, . . . , dataNum, (12)

where dataNum is the times of observation, 𝑔(⋅) is the model
output vector, and 𝑦

𝑖
is the observation vector.Theminimum

mean square errors between the observed data and identical
value are setting as follows:

𝐹
𝑗
= sqrt( 1

dataNum

dataNum
∑

𝑖=1

(𝑦
𝑖
− 𝑔 (𝑥

𝑖
, para
𝑖
,𝑊
𝑖
))

2

) ,

𝑗 = 1, 2.

(13)

The hydrodynamic parameters of our requirements
should mean that the two components in (13) obtain their
minimum value simultaneously under constrained condi-
tions (10). We must set different weight coefficients to ensure
that each parameter has the same effect on the objective
function, taking into consideration the different order of
magnitude of pitch and heave. The fitness function is shown
as follows:

Fit = 𝐹
1
+ 𝛼𝐹
2
, (14)

where 𝛼 is the weight coefficient.

5. Experiment Testing and Comparisons

Here the experimental ship’s parameters are as follows: the
hull quality 𝑚 is 442000 kg, the beam 𝐵 is 7.2m, and the
draft is 2.25m. The waterline 𝐿

𝑝𝑝
is 60m. 𝐼

5
= (0.25 ∗

𝐿
𝑃𝑃
), 𝑚
0
= 99450000 (kg⋅m2), 𝑋

𝑅
= 25.8m, and 𝑍

𝑅
=

1.32m. The number of rudder 𝑛 is 2 and the hydrostatic
resilience factor 𝐶

44
is 3370000. For the ship, 𝐶

33
, 𝐶
35
, 𝐶
55
,

and 𝐶
53
are constants and can be obtained by calculating the

structural parameters of the ship.𝑉 is Gaussian white noise𝑉
is Gaussianwhite noise and its covariancematrix can be taken
as so that the accuracy of the sensor can be taken as 𝑄

𝑉𝑉
=

diag [20.3e − 4 2.25e − 6].
A comparative algorithm is the OPSO algorithm pro-

posed in this paper and the PSO-w (PSO with inertia weight
[26]), with the parameters being set as shown in Table 1.

The identification results by PSO and OPSO are shown in
Tables 2, 3, and 4, for level 4 sea condition, speed 18 kn and
course angle 90∘, 135∘, and 180∘, respectively.

As we can see from Table 2 to Table 4, the parameters
of pitch and heave are correctly identified by using the PSO
algorithm, with the OPSO algorithm clearly obtaining better
results than the PSO, especially for level 4 sea condition,
speed 18 kn, and course angle 135∘, and the relative error of
the OPSO is smaller than for the PSO algorithm.

From the identification of the parameters of pitch and
heave motions carried out by using the OPSO algorithm,
we can obtain the mathematical model for pitch and heave
which is constructed according to the identification of the
hydrodynamic parameters.Themodel in which the pitch and

Table 1: Parameters and their range of values used in our proposed
algorithm.

Parameters Value/range
Population size of swarm 100
Acceleration constants 𝑐

1
, 𝑐
2

𝑐
1
= 𝑐
2
= 1.4962

Inertia weight 𝑤 [0.4, 0.9]
Random number 𝑟

1
, 𝑟
2

[0, 1]
Maximum iteration times 𝑛max 1000
Range of velocity 𝑉max (𝑥Max–𝑥Min)/2
setNum for OPSO 100
Sampling dot number dataNum 200

heave for sea condition 4, speed 18 kn, and course angle 90∘,
135∘, and 180∘ is shown in Figures 1, 2, and 3, respectively.
There are three curves in each diagram; the first curve
“—◻—” represents the observed values of the coupled pitch
and heave motions, the second curve “——” represents the
model constructed by PSO-w, and the last curve “—e—”
represents the model output values constructed by OPSO.

It is obvious in these figures that there was an agreement
between the pitch and heave model estimated by the PSO-
w model and observed values for a level 4 sea condition,
ship speed 18 kn, and course angle 90∘ and 180∘, but when
the course angle was 90∘, the results were not accurate.
However, the model estimated by the OPSO algorithm tallies
completely with the observed values.

Tables 5, 6, and 7 and Figures 4, 5, and 6 show similar
results for a level 5 sea condition. It is clear in Tables 5–7
that the parameters identified by the OPSO algorithm are
close to the real ones while those identified by PSO-w are
not, especially the results for level 5 sea condition, ship speed
18 kn, and course angle 90 degrees, as the parameters have
greater relative errors. Because of this, the corresponding
pitch and heave models do not tally with the observed values.
However, for other course angles, both the PSO-w and OPSO
algorithms agree with observed values.

6. Conclusions

The identification of the hydrodynamic parameters of ships
is an important way of obtaining these parameters. In
this paper, we have used OPSO to design the method of
identifying the hydrodynamic parameters of the coupled
pitch and heave motions of ships. This paper introduces
in detail the opposition-basedlearning algorithm and puts
forward an improved idea and process for the opposition-
based algorithm. In addition, this paper introduces the
process involving the hydrodynamic parameter identification
algorithm. Here, we have established wave disturbance as the
model input, with the algorithm’s fitness function being the
output model. The hydrodynamic parameter identification
problem was then converted into a constrained optimization
problem and the OPSO algorithm was used to find the opti-
mal solution. Finally, we made use of computer simulation,
with the simulation results showing that the OPSO algorithm
is relatively stable in terms of identifying the hydrodynamic
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Table 2: Parameter identification of pitch and heave motions for level 4 sea condition, ship speed 18 kn and course angle 90∘.

Parameters Theoretical values PSO-w OPSO
Identification value Relative error Identification value Relative error

𝑎
33

8.045𝐸 + 05 9.446𝐸 + 05 17.42% 8.141𝐸 + 05 1.19%
𝑏
33

9.369𝐸 + 05 7.901𝐸 + 05 15.66% 9.447𝐸 + 05 0.83%
𝑎
35

7.753𝐸 + 06 8.902𝐸 + 06 14.82% 8.037𝐸 + 06 3.66%
𝑏
35

1.159𝐸 + 07 1.480𝐸 + 07 27.72% 1.222𝐸 + 07 5.39%
𝑎
55

2.595𝐸 + 08 2.830𝐸 + 08 9.05% 2.706𝐸 + 08 4.27%
𝑏
55

2.885𝐸 + 08 4.077𝐸 + 08 41.31% 2.892𝐸 + 08 0.26%
𝑎
53

1.479𝐸 + 07 1.777𝐸 + 07 20.17% 1.500𝐸 + 07 1.39%
𝑏
53

3.324𝐸 + 06 2.296𝐸 + 06 30.91% 3.068𝐸 + 06 7.70%

Table 3: Parameter identification of pitch and heave motions for level 4 sea condition, ship speed 18 kn and course angle 135∘.

Parameters Theoretical values PSO-w OPSO
Identification value Relative error Identification value Relative error

𝑎
33

6.311𝐸 + 05 5.569𝐸 + 05 11.77% 6.177𝐸 + 05 2.12%
𝑏
33

8.033𝐸 + 05 7.635𝐸 + 05 4.96% 8.245𝐸 + 05 2.64%
𝑎
35

3.281𝐸 + 06 5.248𝐸 + 06 59.95% 3.057𝐸 + 06 6.84%
𝑏
35

9.429𝐸 + 06 7.879𝐸 + 06 16.44% 9.598𝐸 + 06 1.80%
𝑎
55

1.525𝐸 + 08 1.541𝐸 + 08 1.01% 1.533𝐸 + 08 0.52%
𝑏
55

2.091𝐸 + 08 2.716𝐸 + 08 29.88% 2.115𝐸 + 08 1.14%
𝑎
53

7.865𝐸 + 06 9.509𝐸 + 06 20.90% 7.772𝐸 + 06 1.18%
𝑏
53

2.267𝐸 + 06 1.616𝐸 + 06 28.72% 2.423𝐸 + 06 6.87%

Table 4: Parameter identification of pitch and heave motions for level 4 sea condition, ship speed 18 kn and course angle 180∘.

Parameters Theoretical values PSO-w OPSO
Identification value Relative error Identification value Relative error

𝑎
33

6.101𝐸 + 05 5.815𝐸 + 05 4.69% 6.148𝐸 + 05 0.77%
𝑏
33

7.400𝐸 + 05 7.782𝐸 + 05 −5.16% 7.366𝐸 + 05 0.46%
𝑎
35

2.663𝐸 + 06 2.396𝐸 + 06 10.03% 2.758𝐸 + 06 3.56%
𝑏
35

8.951𝐸 + 06 8.835𝐸 + 06 1.30% 8.873𝐸 + 06 0.87%
𝑎
55

1.377𝐸 + 08 1.348𝐸 + 08 2.14% 1.367𝐸 + 08 0.74%
𝑏
55

1.873𝐸 + 08 1.944𝐸 + 08 −3.79% 1.838𝐸 + 08 1.87%
𝑎
53

6.611𝐸 + 06 6.594𝐸 + 06 0.25% 6.568𝐸 + 06 0.65%
𝑏
53

2.356𝐸 + 06 3.123𝐸 + 06 −32.57% 2.113𝐸 + 06 10.32%

Table 5: Parameter identification for pitch and heave motions for level 5 sea condition, ship speed 18 kn and course angle 90∘.

Parameters Theoretical values PSO-w OPSO
Identification value Relative error Identification value Relative error

𝑎
33

9.375𝐸 + 05 1.178𝐸 + 06 25.64% 9.111𝐸 + 05 2.82%
𝑏
33

9.089𝐸 + 05 8.644𝐸 + 05 4.89% 9.635𝐸 + 05 6.01%
𝑎
35

1.137𝐸 + 07 2.102𝐸 + 07 −84.86% 1.030𝐸 + 07 9.39%
𝑏
35

1.274𝐸 + 07 1.831𝐸 + 07 43.71% 1.295𝐸 + 07 1.65%
𝑎
55

3.613𝐸 + 08 4.017𝐸 + 08 11.19% 3.532𝐸 + 08 2.25%
𝑏
55

3.202𝐸 + 08 4.593𝐸 + 08 43.43% 3.428𝐸 + 08 7.07%
𝑎
53

1.942𝐸 + 07 2.430𝐸 + 07 25.14% 1.964𝐸 + 07 1.11%
𝑏
53

4.641𝐸 + 06 3.829𝐸 + 06 17.50% 5.348𝐸 + 06 −15.24%
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Figure 1: Pitch and heave observed value. Model identified by PSO-w and model identified by OPSO for level 4 sea condition, ship speed
18 kn and course angle 90∘.
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Figure 2: Pitch and heave observed value. Model identified by PSO-w and model identified by OPSO for level 4 sea condition, ship speed
18 kn and course angle 135∘.
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Figure 3: Pitch and heave observed value. Model identified by PSO-w and model identified by OPSO for level 4 sea condition, ship speed
18 kn and course angle 180∘.
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Figure 4: Pitch and heave observed value. Model identified by PSO-w and model identified by OPSO for level 5 sea condition, ship speed
18 kn and course angle 90∘.
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Figure 5: Pitch and heave observed value. Model identified by PSO-w and model identified by OPSO for level 5 sea condition, ship speed
18 kn and course angle 135∘.
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Figure 6: Pitch and heave observed value. Model identified by PSO-w and model identified by OPSO for level 5 sea condition, ship speed
18 kn and course angle 180∘.
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Table 6: Parameter identification of pitch and heave motions for level 5 sea condition, ship speed 18 kn and course angle 135∘.

Parameters Theoretical values PSO-w OPSO
Identification value Relative error Identification value Relative error

𝑎
33

7.202𝐸 + 05 7.515𝐸 + 05 −4.34% 7.106𝐸 + 05 1.34%
𝑏
33

8.553𝐸 + 05 8.283𝐸 + 05 3.15% 8.921𝐸 + 05 4.31%
𝑎
35

5.539𝐸 + 06 5.923𝐸 + 06 −6.93% 5.426𝐸 + 06 2.05%
𝑏
35

1.046𝐸 + 07 9.616𝐸 + 06 8.10% 1.043𝐸 + 07 0.35%
𝑎
55

2.051𝐸 + 08 2.086𝐸 + 08 −1.70% 2.079𝐸 + 08 1.34%
𝑏
55

2.451𝐸 + 08 2.473𝐸 + 08 −0.90% 2.467𝐸 + 08 0.64%
𝑎
53

1.124𝐸 + 07 1.115𝐸 + 07 0.82% 1.167𝐸 + 07 3.85%
𝑏
53

2.876𝐸 + 06 2.297𝐸 + 06 20.13% 2.895𝐸 + 06 0.64%

Table 7: Parameter identification of pitch and heave motions for level 5 sea condition, ship speed 18 kn and course angle 180∘.

Parameters Theoretical values PSO-w OPSO
Identification value Relative error Identification value Relative error

𝑎
33

6.787𝐸 + 05 6.812𝐸 + 05 −0.38% 6.762𝐸 + 05 0.37%
𝑏
33

8.182𝐸 + 05 7.952𝐸 + 05 2.82% 7.939𝐸 + 05 2.97%
𝑎
35

4.428𝐸 + 06 3.406𝐸 + 06 23.09% 4.638𝐸 + 06 4.74%
𝑏
35

9.914𝐸 + 06 9.902𝐸 + 06 0.12% 9.849𝐸 + 06 0.66%
𝑎
55

1.783𝐸 + 08 1.798𝐸 + 08 −0.89% 1.742𝐸 + 08 2.30%
𝑏
55

2.246𝐸 + 08 2.317𝐸 + 08 −3.17% 2.284𝐸 + 08 1.70%
𝑎
53

9.511𝐸 + 06 9.738𝐸 + 06 −2.38% 9.351𝐸 + 06 1.69%
𝑏
53

2.664𝐸 + 06 2.228𝐸 + 06 16.37% 2.974𝐸 + 06 11.62%

parameters connected with the problem of the coupled pitch
and heave motions of ships. In addition, the identified cou-
pled pitch and heave model values and the observed values
are consistent. This method may provide a new solution for
the identification of coupled pitch and heave motions. This
paper has not taken the disturbance of the rudder angle
into consideration, something which the author intends to
research in due course.
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This paper investigates the problem of the stability and stabilization of continuous-time Markovian jump singular systems with
partial information on transition probabilities. A new stability criterion which is necessary and sufficient is obtained for these
systems. Furthermore, sufficient conditions for the state feedback controller design are derived in terms of linearmatrix inequalities.
Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.

1. Introduction

In practice, many dynamical systems cannot be represented
by the class of linear time-invariantmodel since the dynamics
of these systems are randomwith some features, for example,
abrupt changes, breakdowns of components, changes in the
interconnections of subsystems, and so forth. Such class of
dynamical systems can be adequately described by the class
of stochastic hybrid systems. A special class of hybrid systems
referred to as Markovian jump systems (MJS), a class of
multimodel systems in which the transitions among different
modes are governed by a Markov chain, have attracted a lot
of researchers and many problems have been solved, such as
stability, stabilization, and𝐻

∞
control problems; see [1–7].

However, in most of the studies, complete knowledge
of the mode transitions is required as a prerequisite for
analysis and synthesis of MJS. This means that the transition
probabilities of the underlying Markov chain are assumed
to be completely known. However, in practice, incomplete
transition probabilities are often encountered especially if
adequate samples of the transitions are costly or time con-
suming to obtain. So, it is necessary to further consider more
general jump systems with partial information on transition
probabilities. The concept for MJS with partially unknown
transition probabilities is first proposed in [8] and a series of
studies have been carried out [9–12] recently. A new approach
for the analysis and synthesis forMarkov jump linear systems

with incomplete transition descriptions has been proposed
in [12], which can be further used for other analysis and
synthesis issues, such as the stability of Markovian jump
singular systems (MJSS).

A lot of attention has already been focused on robust
stability, robust stabilization, and 𝐻

∞
control problems for

MJSS in recent years, such as the works in [13–17]. However,
to the best of the authors’ knowledge, the necessary and suf-
ficient conditions for the stochastic stability and stabilization
problems of MJSS have not been fully investigated, especially
when the transition probabilities are partially known. The
authors in [15, 16] have, respectively, studied the problems
of stability and stabilization for a class of continuous-time
(discrete-time) singular hybrid systems. New sufficient and
necessary conditions for these singular hybrid systems to
be regular, impulse-free (causal), and stochastically stable
have been proposed in terms of a set of coupled strict
linear matrix inequalities (LMIs). But the case of systems
with partly known transition probabilities still needs to be
considered. In addition to this, it is important to mention
that the derivation of strict LMIs for MJSS with incomplete
transition probabilities renders the synthesis of the state
feedback controllers easier. These problems are important
and challenging in both theory and practice, whichmotivates
us for this study.

In this paper, the problem of the stability and stabiliza-
tion of MJSS with partly known transition probabilities is
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addressed. Inspired by the ideas in [12], which fully unitized
the properties of the transition rate matrix (TRM) and the
convexity of the uncertain domains, we explore a new suffi-
cient and necessary condition in terms of strict linear matrix
inequalities (LMIs) for theMJSS to be regular, impulsive, and
stochastically stable. Then, based on the proposed stability
criterion, the conditions for state feedback controller are
derived. Finally, numerical examples are given to illustrate the
effectiveness of the proposed method.

Compared with the existing works about the stability and
stabilization of Markovian jump systems, the current paper
has the following novel features. First, the current paper deals
with the stability and stabilization problems for MJSS with
partly known transition probabilities, while most literatures
(e.g., [8–12]) focused on those of normal ones that are special
cases of MJSS. Second, the conservatism in the conventional
studies [15] is eliminated by considering the fact that the
unknown elements of each row in TRM exist. Moreover,
the difficulty that the unknown elements contain diagonal
elements is also overcome by introducing a lower bound of
the diagonal element without additional conservatism.

Notation.The notation used in this technical note is standard.
The superscript “𝑇” stands for matrix transposition; R𝑛

denotes the 𝑛 dimensional Euclidean space; Z+ represents
the sets of positive integers, respectively. For the notation
(Ω,F,P),Ω represents the sample space,F is the 𝜎-algebra
of subsets of the sample space, and P is the probability
measure onF. E[⋅] stands for the mathematical expectation.
In addition, in symmetric block matrices or long matrix
expressions, we use ∗ as an ellipsis for the terms that are
introduced by symmetry and diag{𝑋

1
, 𝑋
2
, . . . , 𝑋

𝑁
} stands for

a block-diagonal matrix constituted by 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑁
. The

notation 𝑋 > 0 means 𝑋 is real symmetric positive definite,
and𝑋

𝑖
is adopted to denote𝑋(𝑖) for brevity. 𝐼 and 0 represent,

respectively, identity matrix and zero matrix. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Preliminaries and Problem Formulation

Consider the following continuous-time MJSS with Marko-
vian jump parameters:

𝐸 ̇𝑥 (𝑡) = 𝐴 (𝑟
𝑡
) 𝑥 (𝑡) + 𝐵 (𝑟

𝑡
) 𝑢 (𝑡) , (1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector and 𝑢(𝑡) ∈ R𝑚 is the
control input.Thematrix𝐸 ∈ R𝑛×𝑛 is supposed to be singular
with rank(𝐸) = 𝑟 < 𝑛. The stochastic process {𝑟

𝑡
, 𝑡 ≥ 0}

taking values in a finite set 𝑆 = {1, 2, . . . , 𝑁} is described
by a continuous-time, discrete-state homogeneous Markov
process and has the following mode transition probabilities:

Pr {𝑟
𝑡+ℎ

= 𝑗 | 𝑟
𝑡
= 𝑖} = {

𝜆
𝑖𝑗
ℎ + 𝑜 (ℎ) , if 𝑗 ̸= 𝑖,

1 + 𝜆
𝑖𝑖
ℎ + 𝑜 (ℎ) , if 𝑗 = 𝑖,

(2)

where ℎ > 0, lim
ℎ→0

(𝑜(ℎ)/ℎ) = 0, and 𝜆
𝑖𝑗
≥ 0 (𝑖, 𝑗 ∈ 𝑆, 𝑗 ̸= 𝑖)

denotes the switching rate frommode 𝑖 at time 𝑡 to mode 𝑗 at

time 𝑡 + ℎ, and 𝜆
𝑖𝑖
= −∑

𝑗∈𝑆,𝑗 ̸= 𝑖
𝜆
𝑖𝑗
for all 𝑖 ∈ 𝑆. The TRM is

given by

Λ =

[
[
[
[

[

𝜆
11

𝜆
12

⋅ ⋅ ⋅ 𝜆
1𝑁

𝜆
21

𝜆
22

⋅ ⋅ ⋅ 𝜆
2𝑁

...
... d

...
𝜆
𝑁1

𝜆
𝑁2

⋅ ⋅ ⋅ 𝜆
𝑁𝑁

]
]
]
]

]

. (3)

The set 𝑆 contains 𝑁 modes of system (1) and for 𝑟
𝑡
=

𝑖 ∈ 𝑆, the system matrices of the ith mode are denoted by
𝐴
𝑖
, 𝐵
𝑖
, which are known real-valued constant matrices of

appropriate dimensions that describe the nominal system.
The transition rates described above are considered to

be partially available; that is, some elements in matrix Λ

are unknown. Take system (1) with 4 operation modes for
example; the TRM Λmay be written as

Λ =

[
[
[
[

[

𝜆
11

𝜆
12

�̂�
13

�̂�
14

�̂�
21

�̂�
22

𝜆
23

𝜆
24

�̂�
31

�̂�
32

𝜆
33

𝜆
34

𝜆
41

𝜆
42

�̂�
43

𝜆
44

]
]
]
]

]

, (4)

where “̂⋅” denotes the unknown element.
For ∀𝑖 ∈ 𝑆, we denote

𝑆 = 𝑆
𝑖

K + 𝑆
𝑖

UK,

𝑆
𝑖

K ≜ {𝑗 : 𝜆
𝑖𝑗
is known} , 𝑆

𝑖

UK ≜ {𝑗 : 𝜆
𝑖𝑗
is unknown} .

(5)

If 𝑆𝑖K ̸= 0, 𝑆𝑖K is further described as

𝑆
𝑖

K = {K
𝑖

1
,K
𝑖

2
, . . . ,K

𝑖

𝑚
} , 1 ≤ 𝑚 ≤ 𝑁, (6)

where K𝑖
𝑚

∈ Z+ represents the index of the 𝑚th known
element in the 𝑖th row of matrix Λ. Also, throughout the
technical note, we denote

𝜆
𝑖

K = ∑

𝑗∈𝑆
𝑖

K

𝜆
𝑖𝑗
. (7)

When �̂�
𝑖𝑖
is unknown, it is necessary to provide a lower bound

𝜆
𝑖

𝑑
for it and 𝜆

𝑖

𝑑
≤ −𝜆
𝑖

K.
Now, we introduce the following definition for the

continuous-time MJSS (1) (with 𝑢(𝑡) ≡ 0).

Definition 1 (see [17]).
(i) The continuous-time MJSS in (1) is said to be regular

if, for each 𝑖 ∈ 𝑆, det(𝑠𝐸 − 𝐴
𝑖
) is not identically zero.

(ii) The continuous-time MJSS in (1) is said to be impul-
sive if, for each 𝑖 ∈ 𝑆, deg(det(𝑠𝐸 − 𝐴

𝑖
)) = rank(𝐸).

(iii) The continuous-timeMJSS in (1) is said to be stochas-
tically stable if, for any 𝑥

0
∈ R𝑛 and 𝑟

0
∈ 𝑆, there exists

a scalar𝑀(𝑥
0
, 𝑟
0
) > 0 such that

E{∫

∞

0

‖𝑥 (𝑡)‖
2
| 𝑥
0
, 𝑟
0
} ≤ 𝑀(𝑥

0
, 𝑟
0
) , (8)

where E is the mathematical expectation, and
𝑥(𝑡, 𝑥
0
, 𝑟
0
) denotes the solution to system (1) at time 𝑡

under the initial conditions 𝑥
0
and 𝑟
0
.
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(iv) The continuous-time MJSS in (1) is said to be
stochastically admissible if it is regular, impulsive, and
stochastically stable.

The following lemma is recalled, which will be used in
what follows.

Lemma 2 (see [18]). Let 𝑃 ∈ 𝑅
𝑛×𝑛 be symmetric such that

𝐸
𝑇

𝑅
𝑃𝐸
𝑅

> 0, Φ ∈ 𝑅
𝑛×𝑛, and 𝑆 are nonsingular. Then, 𝑃𝐸 +

𝑆
𝑇
Φ𝑅
𝑇 is nonsingular and its inverse is expressed as

(𝑃𝐸 + 𝑆
𝑇
Φ𝑅
𝑇
)
−1

= 𝑃𝐸
𝑇
+ 𝑅Φ𝑆, (9)

where 𝐸
𝐿
and 𝐸

𝑅
are full column rank with 𝐸 = 𝐸

𝐿
𝐸
𝑇

𝑅
, 𝑅 ∈

𝑅
(𝑛−𝑟)×𝑛, and 𝑆 ∈ 𝑅

𝑛×(𝑛−𝑟) satisfies 𝑅𝐸 = 0 and 𝐸𝑆 = 0,
respectively. 𝑃 is symmetric and 𝑆 is nonsingular such that

𝐸
𝑇

𝐿
𝑃𝐸
𝐿
= (𝐸
𝑇

𝑅
𝑃𝐸
𝑅
)
−1

,

Φ = (𝑅𝑅
𝑇
)
−1

Φ
−1
(𝑆𝑆
𝑇
)
−1

.

(10)

3. Main Results

In this section, we will derive the stochastic stability criteria
for system (1) when the transition probabilities are partially
unknown and design a state-feedback controller and a static
output feedback controller such that the closed-loop system
is stochastically stabilizable. The mode-dependent controller
considered here has the form

𝑢 (𝑡) = 𝐾 (𝑟
𝑡
) 𝑥 (𝑡) , (11)

where 𝐾
𝑖
= 𝐾(𝑟

𝑡
) ∈ 𝑅

𝑚×𝑛
(∀𝑟
𝑡
= 𝑖 ∈ 𝑆) are the controller

gains to be determined.The closed-loop systems obtained by
applying controllers (11) to system (1) are

𝐸 ̇𝑥 (𝑡) = (𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
) 𝑥 (𝑡) . (12)

First, we provide the following lemma which presents a
necessary and sufficient condition for the continuous-time
MJSS with completely known transition probabilities matrix
to be stochastically admissible.

Lemma 3 (see [15]). System (1) with 𝑢(𝑡) = 0 is stochastically
admissible if and only if there exist matrices 𝑃

𝑖
∈ 𝑅
𝑛×𝑛

> 0,
𝑖 ∈ 𝑆, and Φ

𝑖
∈ 𝑅
(𝑛−𝑟)×(𝑛−𝑟), such that the following coupled

LMIs hold for each 𝑖 ∈ 𝑆:

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ ∑

𝑗∈𝑆

𝜆
𝑖𝑗
𝐸
𝑇
𝑃
𝑗
𝐸 < 0.

(13)

Let us first give the stability result for the unforced system
(1) (with 𝑢(𝑡) ≡ 0). The following theorem presents a neces-
sary and sufficient condition on the stochastic admissibility
of the considered system with partially unknown transition
probabilities.

Theorem 4. Consider the unforced system (1) with partially
unknown transition probabilities. The corresponding system
is stochastically admissible if and only if there exist matrices
𝑃
𝑖
∈ R𝑛×𝑛 > 0 and nonsingular symmetric matrices Φ

𝑖
∈

R(𝑛−𝑟)(𝑛−𝑟), such that for each 𝑖 ∈ 𝑆

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 − 𝜆
𝑖

K𝐸
𝑇
𝑃
𝑗
𝐸 < 0,

∀𝑗 ∈ 𝑆
𝑖

UK, 𝑖𝑓 𝑖 ∈ 𝑆
𝑖

K,

(14)

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 + 𝐸
𝑇
(𝜆
𝑖

𝑑
𝑃
𝑖
− 𝜆
𝑖

𝑑
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸 < 0,

∀𝑗 ∈ 𝑆
𝑖

UK, 𝑖𝑓 𝑖 ∈ 𝑆
𝑖

UK,

(15)

whereP𝑖K = ∑
𝑗∈𝑆
𝑖

K
𝜆
𝑖𝑗
𝑃
𝑗
and 𝜆𝑖

𝑑
is a given lower bound for the

unknown diagonal element.

Proof. Consider two cases, 𝑖 ∈ 𝑆
𝑖

K and 𝑖 ∈ 𝑆
𝑖

UK, and note that
system (1) is stochastically stable if and only if (13) holds.

Case 1 (𝑖 ∈ 𝑆
𝑖

K). It should be noted that in this case one has
𝜆
𝑖

K ≤ 0. We only need to consider 𝜆𝑖K < 0 since 𝜆
𝑖

K = 0

means the elements in the 𝑖th row of the TRM are known,
so it is not considered here. Now the left-hand side of (13) in
Lemma 3 can be rewritten as

Θ
𝑖
≜ 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ ∑

𝑗∈𝑆
𝑖

K

𝜆
𝑖𝑗
𝐸
𝑇
𝑃
𝑗
𝐸 + ∑

𝑗∈𝑆
𝑖

UK

�̂�
𝑖𝑗
𝐸
𝑇
𝑃
𝑗
𝐸

= 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 − 𝜆
𝑖

K ∑

𝑗∈𝑆
𝑖

UK

�̂�
𝑖𝑗

−𝜆𝑖
K

𝐸
𝑇
𝑃
𝑗
𝐸,

(16)

where the elements �̂�
𝑖𝑗
, 𝑗 ∈ 𝑆

𝑖

UK are unknown. Since 0 ≤

�̂�
𝑖𝑗
/(−𝜆
𝑖

K) ≤ 1 and ∑
𝑗∈𝑆
𝑖

UK
�̂�
𝑖𝑗
/(−𝜆
𝑖

K) = 1, we know that

Θ
𝑖
= ∑

𝑗∈𝑆
𝑖

UK

�̂�
𝑖𝑗

−𝜆𝑖
K

× [𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+𝐸
𝑇
P
𝑖

K𝐸 − 𝜆
𝑖

K𝐸
𝑇
𝑃
𝑗
𝐸] .

(17)

Therefore, for 0 ≤ �̂�
𝑖𝑗
≤ −𝜆
𝑖

K,Θ
𝑖
< 0 is equivalent to𝐴𝑇

𝑖
(𝑃
𝑖
𝐸+

𝑅
𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇
𝐴
𝑖
+ 𝐸
𝑇P𝑖K𝐸 − 𝜆

𝑖

K𝐸
𝑇
𝑃
𝑗
𝐸 <

0, ∀𝑗 ∈ 𝑆
𝑖

UK, which implies that, in the presence of unknown
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elements �̂�
𝑖𝑗
, the system stochastic admissibility is ensured if

and only if (14) holds.

Case 2 (𝑖 ∈ 𝑆
𝑖

UK). In this case, �̂�
𝑖𝑖
is unknown, 𝜆𝑖K ≥ 0, and

�̂�
𝑖𝑖
≤ −𝜆
𝑖

K.We also only consider �̂�
𝑖𝑖
< −𝜆
𝑖

K since �̂�
𝑖𝑖
= −𝜆
𝑖

K;
then the 𝑖th row of the TRM is completely known.
Now the left-hand side of (15) can be rewritten as

Θ
𝑖
≜ 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 + �̂�
𝑖𝑖
𝐸
𝑇
𝑃
𝑖
𝐸 + ∑

𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
𝐸
𝑇
𝑃
𝑗
𝐸

= 𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖
+ 𝐸
𝑇
P
𝑖

K𝐸

+ 𝐸
𝑇[

[

�̂�
𝑖𝑖
𝑃
𝑖
+ (−�̂�

𝑖𝑖
− 𝜆
𝑖

K) ∑

𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗

−�̂�
𝑖𝑖
− 𝜆𝑖

K

𝑃
𝑗
]

]

𝐸.

(18)

Likewise, since we have 0 ≤ �̂�
𝑖𝑗
/(−�̂�
𝑖𝑖
− 𝜆
𝑖

K) ≤ 1 and
∑
𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗
/(−�̂�
𝑖𝑖
− 𝜆
𝑖

K) = 1, we know that

Θ
𝑖
= ∑

𝑗∈𝑆
𝑖

UK
,𝑗 ̸= 𝑖

�̂�
𝑖𝑗

−�̂�
𝑖𝑖
− 𝜆𝑖

K

[𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)

+ (𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖
+ 𝐸
𝑇
P
𝑖

K𝐸

+ 𝐸
𝑇
(�̂�
𝑖𝑖
𝑃
𝑖
− �̂�
𝑖𝑖
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸]

(19)

which means that Θ
𝑖
< 0 is equivalent to ∀𝑗 ∈ 𝑆UK, 𝑗 ̸= 𝑖,

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 + 𝐸
𝑇
(�̂�
𝑖𝑖
𝑃
𝑖
− �̂�
𝑖𝑖
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸 < 0.

(20)

As �̂�
𝑖𝑖
is lower bounded by 𝜆𝑖

𝑑
, we have

𝜆
𝑖

𝑑
≤ �̂�
𝑖𝑖
< −𝜆
𝑖

K
(21)

which implies that

𝜆
𝑖

𝑑
≤ �̂�
𝑖𝑖
< −𝜆
𝑖

K + 𝜖 (22)

for some 𝜖 < 0 arbitrarily small. Then �̂�
𝑖𝑖
can be further

written as a convex combination

�̂�
𝑖𝑖
= −𝛼𝜆

𝑖

K + 𝛼𝜖 + (1 − 𝛼) 𝜆
𝑖

𝑑
, (23)

where 𝛼 takes value arbitrarily in [0, 1].Thus, (14) holds if and
only if ∀𝑗 ∈ 𝑆

𝑖

UK, 𝑖 ̸= 𝑗,

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 + 𝐸
𝑇
(−𝜆
𝑖

K𝑃
𝑖
+ 𝜖 (𝑃

𝑖
− 𝑃
𝑗
)) 𝐸 < 0,

(24)

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 + 𝐸
𝑇
(𝜆
𝑖

𝑑
𝑃
𝑖
− 𝜆
𝑖

𝑑
𝑃
𝑗
− 𝜆
𝑖

K𝑃
𝑗
) 𝐸 < 0

(25)

simultaneously hold. Since 𝜖 is arbitrarily small, (24) holds if
and only if

𝐴
𝑇

𝑖
(𝑃
𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
) + (𝑃

𝑖
𝐸 + 𝑅

𝑇
Φ
𝑖
𝑆
𝑇
)
𝑇

𝐴
𝑖

+ 𝐸
𝑇
P
𝑖

K𝐸 − 𝜆
𝑖

K𝐸
𝑇
𝑃
𝑖
𝐸 < 0,

(26)

which is the case in (25) when 𝑗 = 𝑖, ∀𝑗 ∈ 𝑆
𝑖

UK. Hence (20) is
equivalent to (15).

Therefore, we can conclude that the unforced system
(1) with unknown elements in the TRM is stochastically
admissible if and only if (14) and (15) hold for 𝑖 ∈ 𝑆

𝑖

K and
𝑖 ∈ 𝑆
𝑖

UK, respectively.

Remark 5. Theorem 4 presents a newnecessary and sufficient
condition of stochastic admissibility criterion for the MJSS
(1).The approach adopted inTheorem 4, which uses the TRM
property (the sumof each row is zero), has extended the result
of Theorem 1 in [12] to the MJSS. Note that the lower bound,
𝜆
𝑖

𝑑
, of 𝜆
𝑖𝑖
is allowed to be arbitrarily negative.

Now let us consider the stabilization problem of system
(1) in the presence of unknown elements in the TRM. The
following theorem presents a condition for the existence of a
mode-dependent stabilizing controller of the form in (11).

Theorem 6. Let 𝜀
𝑖
be given scalars. Consider the closed-loop

system (12) with partially unknown transition probabilities. If
there exist matrices 𝑃

𝑖
∈ R𝑛×𝑛 > 0 and nonsingular matrices

Φ
𝑖
∈ R(𝑛−𝑟)×(𝑛−𝑟), matrices 𝐿

𝑖
∈ R𝑛×𝑚 and𝐻

𝑖
∈ R𝑚×(𝑛−𝑟) such

that, for each 𝑖 ∈ 𝑆, the following LMIs hold:

[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+𝑊
𝑖
+ 𝜆
𝑖𝑖
(𝜀
𝑖
𝐸𝑌
𝑖
+ 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇
− 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇
) 𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0,

∀𝑗 ∈ 𝑆
𝑖

UK, if 𝑖 ∈ 𝑆
𝑖

K

(27)
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[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+𝑊
𝑖
+ 𝜆
𝑖

𝑑
(𝜀
𝑖
𝐸𝑌
𝑖
+ 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇
− 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇
) 𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆𝑖

𝑑
− 𝜆𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0,

∀𝑗 ∈ 𝑆
𝑖

UK, if 𝑖 ∈ 𝑆
𝑖

UK,

(28)

where

𝑌
𝑖
= 𝑃
𝑖
𝐸
𝑇
+ 𝑅Φ
𝑖
𝑆

𝑊
𝑖
= 𝐵
𝑖
(𝐿
𝑖
𝐸
𝑇
+ 𝐻
𝑖
𝑅) + (𝐿

𝑖
𝐸
𝑇
+ 𝐻
𝑖
𝑅)
𝑇

𝐵
𝑇

𝑖

𝐹
𝑖
(𝐸) = [√𝜆

𝑖K1
𝐸
𝑅
, . . . , √𝜆

𝑖K𝑖
𝑚

𝐸
𝑅
]
𝑇

, K
𝑖

𝑚
̸= 𝑖

𝑋
𝑖
(𝑃) = diag {𝐸𝑇

𝑅
𝑃K1

𝐸
𝑅
, . . . , 𝐸

𝑇

𝑅
𝑃K𝑖
𝑚

𝐸
𝑅
} , K

𝑖

𝑚
̸= 𝑖.

(29)

Then there exists amode-dependent stabilizing controller
of the form in (11) such that the closed-loop system is

stochastically admissible. The gain of the stabilizing state
feedback controller is given by

𝐾
𝑖
= (𝐿
𝑖
𝐸
𝑇
+ 𝐻
𝑖
𝑅) (𝑃

𝑖
𝐸
𝑇
+ 𝑅Φ
𝑖
𝑆)
−1

. (30)

Proof. Consider the closed-loop system (12) and replace 𝐴
𝑖

by 𝐴
𝑖
+ 𝐵
𝑖
𝐾
𝑖
in (14) and (15), respectively. Then, if 𝑖 ∈ 𝑆

𝑖

K,
by Schur complement and performing a congruence trans-
formation to (14) by [ 𝑌

𝑇

𝑖
0

0 𝐼
], with 𝑌

𝑖
= (𝑃
𝑖
𝐸 + 𝑆

𝑇
Φ
𝑖
𝑅
𝑇
)
−1

=

𝑃
𝑖
𝐸
𝑇
+ 𝑅Φ
𝑖
𝑆, we can obtain

[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+ 𝐵
𝑖
𝐾
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
+ 𝜆
𝑖𝑖
𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖
𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0. (31)

Let 𝐿
𝑖
= 𝐾
𝑖
𝑃
𝑖
and𝐻

𝑖
= 𝐾
𝑖
𝑆Φ
𝑖
; we have

𝐵
𝑖
𝐾
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐾
𝑇

𝑖
𝐵
𝑇

𝑖
= 𝐵
𝑖
(𝐿
𝑖
𝐸
𝑇
+ 𝐻
𝑖
𝑅)

+ (𝐿
𝑖
𝐸
𝑇
+ 𝐻
𝑖
𝑅)
𝑇

𝐵
𝑇

𝑖
= 𝑊
𝑖
,

𝐾
𝑖
= (𝐿
𝑖
𝐸
𝑇
+ 𝐻
𝑖
𝑅)𝑌
−1

𝑖
= (𝐿
𝑖
𝐸
𝑇
+ 𝐻
𝑖
𝑅) (𝑃

𝑖
𝐸
𝑇
+ 𝑅Φ
𝑖
𝑆)
−1

.

(32)

So (31) becomes

[
[
[

[

𝐴
𝑖
𝑌
𝑖
+ 𝑌
𝑇

𝑖
𝐴
𝑇

𝑖
+𝑊
𝑖
+ 𝜆
𝑖𝑖
𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖

𝑌
𝑇

𝑖
𝐹
𝑇

𝑖
(𝐸) √−𝜆𝑖

K
𝑌
𝑇

𝑖
𝐸
𝑅

∗ −𝑋
𝑖
(𝑃) 0

∗ ∗ −𝐸
𝑇

𝑅
𝑃
𝑗
𝐸
𝑅

]
]
]

]

< 0. (33)

Considering the nonlinear term in the above inequalities,
the following inequalities are introduced. For any scalars 𝜀

𝑖
,

𝑖 ∈ 𝑆, by Lemma 2, the following inequalities hold:

0 ≤ [𝑌
𝑇

𝑖
𝐸
𝑅
− 𝜀
𝑖
𝐸
𝐿
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)] (𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

× [𝑌
𝑇

𝑖
𝐸
𝑅
− 𝜀
𝑖
𝐸
𝐿
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)]
𝑇

= 𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖
− 𝜀
𝑖
𝐸𝑌
𝑖
− 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇
+ 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇
.

(34)

Note that 𝜆
𝑖𝑖
≤ 0; we have

𝜆
𝑖𝑖
𝑌
𝑇

𝑖
𝐸
𝑅
(𝐸
𝑇

𝑅
𝑃
𝑖
𝐸
𝑅
)
−1

𝐸
𝑇

𝑅
𝑌
𝑖

≤ 𝜆
𝑖𝑖
(𝜀
𝑖
𝐸𝑌
𝑖
+ 𝜀
𝑖
𝑌
𝑇

𝑖
𝐸
𝑇
− 𝜀
2

𝑖
𝐸𝑃
𝑖
𝐸
𝑇
) .

(35)

So (33) holds if (27) is fulfilled. In a similar way, if 𝑖 ∈ 𝑆
𝑖

UK,
(28) can be worked out from (15). Therefore, the closed-loop
system is stochastically admissible, and the desired controller
gain is given by (30).

Remark 7. It should be pointed out that if the diagonal
elements in the TRM contain unknown ones, the system
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Table 1

Mode 1 2 3 4
1 −1.2 �̂�

12
�̂�
13

0.6
2 0.3 −0.8 0.1 0.4
3 �̂�

31
�̂�
32

−0.6 0.3
4 �̂�

41
�̂�
42

�̂�
43

−0.9

admissibility, the existence of the admissible controller, and
the controller gains solution will be dependent on 𝜆

𝑖

𝑑
. The

conditions of Theorem 6 are strict LMIs; hence they can be
easily tractable by Matlab LMI toolbox.

4. Examples

Example 1. Consider system (1) with four operation modes
and the following system matrices:

𝐸 = [

[

4 0 0

0 0.8 0

0 0 0

]

]

, 𝐸
𝐿
= [

[

2 0

0 0.4

0 0

]

]

,

𝐸
𝑅
= [

[

2 0

0 2

0 0

]

]

, 𝑅 = [0 0 2] , 𝑆 = [

[

0

0

1

]

]

,

𝐴
1
= [

[

2 −7 1

−5 −2 −1

2 4 −5

]

]

, 𝐴
2
= [

[

5 3 7

7 9 3

2 4 5

]

]

,

𝐴
3
= [

[

2 −5 4

−1 −3 3

4 −6 8

]

]

, 𝐴
4
= [

[

1 4 3

2 4 1

6 1 4

]

]

,

𝐵
1
= [

[

0 6

−7 9

1 0

]

]

, 𝐵
2
= [

[

5 2

0 5

6 0

]

]

,

𝐵
3
= [

[

3 5

0 4

2 0

]

]

, 𝐵
4
= [

[

0 4

7 6

3 0

]

]

.

(36)

The transition rate matrix is given as shown in Table 1.
Let 𝜀
1

= 1.2, 𝜀
2

= −1, 𝜀
3

= −0.2, 𝜀
4

= 2, and �̂�
𝑖𝑗

denote the unknown elements. UsingTheorem 6 and the LMI
control toolbox of Matlab, we obtain the controller gains for
the system as follows:

𝐾
1
= [

3.7123 3.7708 0.0005

2.1986 2.2325 0.0006
] × 10

4
,

𝐾
2
= [

−0.7952 −3.3671 −0.0001

1.1211 4.7407 0.0002
] × 10

4
,

𝐾
3
= [

2.5210 1.2413 −0.0000

0.5945 0.2927 −0.0000
] × 10

5
,

𝐾
4
= [

5.1907 −7.2130 −0.0013

1.7600 −2.4473 0.0008
] × 10

3
.

(37)

Table 2

Mode 1 2 3
1 −1.2 �̂�

12
�̂�
13

2 �̂�
21

�̂�
22

0.4
3 0.3 0.5 −0.8

The closed-loop dynamic responses and theMarkovian chain
are shown in Figure 1 with the initial condition 𝑥(0) =

[0.7, 0.5, −2.3]
𝑇.

Example 2. Consider system (1) with three operation modes
and the following system matrices:

𝐸 = [
2 0

0 0
] , 𝐸

𝐿
= [

2

0
] , 𝐸

𝑅
= [

1

0
] ,

𝑅 = [0 1] , 𝑆 = [
0

2
] , 𝐴

1
= [

1.5 −1.4

0.1 0.2
] ,

𝐴
2
= [

−0.5 −0.3

1 −1.2
] , 𝐴

3
= [

−0.1 0.2

1 1
] ,

𝐵
1
= [

2

0
] , 𝐵

2
= [

−1

−3
] , 𝐵

3
= [

3

−2
] .

(38)

The transition rate matrix is given as shown in Table 2.
Let 𝜀
1

= 1.2, 𝜀
2

= −1, 𝜀
3

= −0.2, 𝜆
2

𝑑
= −1. In the

2nd row of TRM, the diagonal element �̂�
22

is unknown; we
assign its lower bound 𝜆

2

𝑑
a priori with different values (𝜆2

𝑑
∈

(−∞, −0.4]). Using Theorem 6 and LMI control toolbox in
Matlab, the controller gains for the system are given by

𝐾
1
= [−7.6834 0.0014] × 10

5
,

𝐾
2
= [−114.1162 −0.4001] ,

𝐾
3
= [529.6195 0.5013] .

(39)

When 𝜆
2

𝑑
= −2, we obtain the controller gains differently

for the system as follows:

𝐾
1
= [−2.9825 0.0003] × 10

6
,

𝐾
2
= [504.0862 −0.4000] ,

𝐾
3
= [3.0048 0.0005] × 10

3
.

(40)

It is seen from above that the obtained controller gains are
dependent on 𝜆

2

𝑑
. The closed-loop dynamic responses and

the Markovian chain are shown in Figure 2 with the initial
condition 𝑥(0) = [0.7, 2.89]

𝑇 and 𝜆
2

𝑑
= −1.

Remark 8. Notice that, in Example 1, all the diagonal ele-
ments of TRM are known and, in Example 2, there are
unknown diagonal elements in the TRMwhich illustrate that
the controller design is dependent on the lower bound 𝜆

𝑖

𝑑

of the corresponding unknown diagonal element. So they
cannot be solved by the stabilization criterions developed in
[15] which lack considering the case of systems with partly
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Figure 1: System states and Markovian chain.
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Figure 2: System states and Markovian chain.

known transition probabilities. Moreover, here examples are
for MJSS, while the stabilization criterions developed in [12]
which focused on those of normal ones that are special cases
of MJSS.

5. Conclusion

The problems of stability and state feedback control for
continuous-time MJSS with partly known transition prob-
abilities have been studied. A new sufficient and necessary
condition for this class of system to be stochastically admissi-
ble has been proposed in terms of strict LMIs. Furthermore,
sufficient conditions for the state feedback controller are
derived, and numerical examples have also been given to
illustrate the main results. However, the study of stability
and stabilization of continuous-timeMJSSwith partly known
transition probabilities is a basic problem which only serves
as a stepping stone to investigate more complicated systems.
However, time-delay appears commonly in various practi-
cal systems, and researchers have been paying remarkable
attention to the problems of analysis and synthesis for time-
delay systems [18–24].The approaches proposed in this paper
could be further extended to time-delay systems in our future
work. It is expected that the approach can be further used for
other analysis and synthesis issues such as 𝐻

∞
analysis, 𝐻

∞

synthesis, and other applications such as Markov jumping
neural networks with incomplete transition descriptions.
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For the particularity of warfare hybrid dynamic process, a class of warfare hybrid dynamic systems is established based on
Lanchester equation in a (𝑛, 1) battle, where a heterogeneous force of 𝑛 different troop types faces a homogeneous force.This model
can be characterized by the interaction of continuous-time models (governed by Lanchester equation), and discrete event systems
(described by variable tactics). Furthermore, an expository discussion is presented on an optimal variable tactics control problem
for warfare hybrid dynamic system. The optimal control strategies are designed based on dynamic programming and differential
game theory. As an example of the consequences of this optimal control problem, we take the (2, 1) case and solve the optimal
strategies in a (2, 1) case. Simulation results show the feasibility of warfare hybrid systemmodel and the effectiveness of the optimal
control strategies designed.

1. Introduction

In 1914, Lanchester [1] first proposed a mathematical model
to describe and forecast quantitatively the development trend
of battle. Since then, Lanchester equation has been used to
analyze real wars [2–5] and determine tactics for deploying
forces in war game simulations, as they produce reasonably
good predictions. The popularity and wide acceptance of the
Lanchester models are due to their amenability to simple
analysis and the fact that they, by and large, reflect the actual
conflict situation. Undoubtedly, even in the modern high-
tech war, Lanchester equation can still make a comprehensive
assessment and decision-making for a variety of battlefield
factors.

To establish the mathematical model describing warfare
process is the basis for researching quantitatively decision-
making problems in conflicts. So far, warfare system models
based on Lanchester equation have penetrated into many
fields of military problems; the research core mainly focuses
on extending and modifying Lanchester equation. For exam-
ple, in [6], Sha introduced morale parameter based on

the conventional Lanchester equation of casualty rate to set
up mathematic models. In [7, 8], by introducing battlefield
sensing coefficient and information superiority coefficient
to modify the casualty rates of Lanchester equation, the
generalized model for information warfare was proposed. In
[9], considering the relationship between electronic jamming
and operational efficiency, an expanded Lanchester square
law model with variable efficiency factors was established.
In [10, 11], a spatial modeling of Lanchester equations was
conceptualized on the basis of explicit movement dynamics
and balance of forces, ensuring stability and theoretical con-
sistency with the original model. In [12, 13], some extensions
of the Lanchester square law to inhomogeneous forces with
an application to force allocation methodology were studied.
However, all the models above have some limitations in war
game simulations and tactical decision-making application,
especially without regard to the interaction between the dis-
crete event-driven tactics and the continuous force changes
and without revealing better the complex operation mech-
anism, which is more close to the actual warfare dynamic
process.
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In fact, warfare dynamic process is a hybrid dynamic
process, which is characterized by the interaction of contin-
uous time dynamic process (described, e.g., fighting strength
changes) and discrete event dynamic process (described, e.g.,
fighting strength scheduling, variable tactics). Thus, how to
establish warfare hybrid dynamic system model, which inte-
grates the discrete events with continuous time, has become
a problem to be solved urgently. In [14, 15], Xu first proposed
the modeling idea of warfare hybrid dynamic system; the
basic frame and method to solve this kind of problems are
investigated and a series of key technologies are emerged.
Thus, in this paper, we first study the modeling of war-
fare hybrid dynamic system based on Lanchester equation.
Introducing the discrete event variable, which can trigger
the occurrence of variable tactics, the terms concerned with
operational losses within Lanchester equation are modified,
and a new warfare hybrid dynamic system is established.

Optimal control problem of warfare dynamic system has
been an area of considerable research interest and has been
an absolutely necessary tache on using Lanchester equation
to research the tactic decision-making problem. So far, a wide
variety of research achievements on this problem have been
obtained, such as. In [16], Taylor considered a class of optimal
resource allocation problems as a time sequential resource
allocation problem and presented a solution in the optimal
control framework based on Lanchester equation. In [17, 18],
Taylor and Issacc used differential game theory to study
the tactic decision-making problem, respectively. In [19, 20],
Sha and Zeng and Li et al. solved the firepower assignment
problem based on Lanchester equation and differential game
theory, and they also validated, from another aspect, the
principle of concentrating superior firepower in attack. In
[21–25], optimal strategies of force resource complementary
were obtained based on optimal control and differential
game. However, the recent study results are confined to
determine the optimal control problemofwarfare continuous
dynamic process. And there are not the effective theories
and methods to solve the optimal tactic control problem of
discrete event dynamic process. Thus, in this paper, we study
the problem of building the optimal variable tactics control
of warfare hybrid dynamic system based on Lanchester
(𝑛, 1) model [26, 27]. By using dynamic programming and
differential game theory, we present the approach to obtain
the optimal control strategies.

The paper is organized as follows. In Section 2, warfare
hybrid dynamic process description and modeling are stud-
ied. In Section 3, the optimal control strategies of warfare
hybrid dynamic system based on Lanchester (𝑛, 1)model are
given, and the simulation results demonstrate the effective-
ness of proposed optimal control schemes. And finally some
concluding remarks are given in Section 4.

2. Warfare Hybrid Dynamic Process
Description and Modeling

In order to directly understand the basic frame of warfare
hybrid dynamic system, the evolution analysis of warfare
process is given in Figure 1.

Firstly, let 𝑋 denote the attacking force and let 𝑌 denote
the defending force. It is assumed that the attacking force
consists of one type of forces and the defending force consists
of 𝑛 type of forces. Then we can make out that, from
Figure 1, the composition of warfare hybrid dynamic process
can be considered as the following key elements of two;
they are the event-driven tactics and the continuous force
strength changes. The variable tactics evolution process can
be described as follows:

(1) firstly, 𝑌 will concentrate all superior firepower to
attack𝑋 throughout the period of battle. However, at
the time 𝑡

0
,𝑋 decides the initial encounter according

to each original situation;
(2) at the time 𝑡

1
, after surveys, 𝑋 detects the opponent’s

targets and motives and responds with variable tac-
tics, and a new belligerent encounter accordingly is
established;

(3) at the time 𝑡
2
, after fresh surveys, 𝑋 responds with

variable tactics for good and consequently establishes
a new belligerent encounter;

(4) the above-mentioned process continues.

There is no difficulty in deducing the conclusion that
variable tactics of the decision-maker 𝑋 happen at the
discrete moment, which can lead to the changes of the
belligerent encounter and structural changes of the system,
shown in features of discrete event dynamic system.

The warfare process evolution also involves the contin-
uous control of force strengths on both combat units. Based
on decision-maker’s instructions and detected situation, each
combat unit adjusts the control variables with the purpose
of changing the force strengths; however, the warfare task is
certain herein. It falls into a category of continuous control
process with the systematic structure unchanged. Therefore,
warfare dynamic process can be considered as warfare hybrid
dynamic system, which is that force strengths change on
both sides from one continuous system to another via certain
variable tactics (those that change combat encounter), and
every variable tactic happens; the whole system operates
following the later’s rules.

Inspired by [21], we can give some reasonable assump-
tions as follows.

Assumption 1. 𝑋 and 𝑌 have, respectively, one and 𝑛 combat
units, 𝑥

1
(𝑡) and 𝑦

𝑗
(𝑡) (𝑗 = 1, . . . , 𝑛) are the strengths of one

and 𝑗th combat unit on both sides surviving at time 𝑡, and the
original states are 𝑥

1
(0) = 𝑥

10
and 𝑦

𝑗
(0) = 𝑦

𝑗0
.

Assumption 2. Suppose that variable tactics happen at time
𝑡
𝑘
(1 ≤ 𝑘 ≤ ∞), where 𝑡

𝑘
∈ [𝑡
0
, 𝑡
𝑓
], 𝑡
0
≤ ⋅ ⋅ ⋅ ≤ ⋅ ⋅ ⋅ ≤ 𝑡

𝑓
,

and 𝑡
0
is the initial time. 𝑒

𝑠
(𝑠 = 1, . . . , 𝑘, . . .) is the discrete

event variable happening at time 𝑡
𝑠
; then the route of variable

tactics can be described as

𝑟 = ((𝑡
1
, 𝑒
1
) , . . . , (𝑡

𝑠
, 𝑒
𝑠
)) , (1)

where (𝑡
𝑠
, 𝑒
𝑠
) means the occurrence of variable tactics at

time 𝑡
𝑠
.
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Figure 1: Evolution analysis of warfare hybrid dynamic process in a (𝑛, 1) battle.

Motivated by the above discussions, a class of warfare
hybrid dynamic systems based on Lanchester equation can
be established as follows:

̇𝑥
1
(𝑡) = −

𝑛

∑

𝑗=1

𝛼
𝑗1
𝜓
𝑗1𝑒𝑠
𝑦
𝑗
(𝑡) + 𝑢

1
(𝑡) ,

̇𝑦
𝑗
(𝑡) = −𝛽

1𝑗
𝜙
1𝑗𝑒𝑠
𝑥
1
(𝑡) + V

𝑗
(𝑡) ,

(2)

where 𝛽
1𝑗
is the nonnegative attrition coefficient of 𝑥

1
to 𝑦
𝑗

and 𝛼
𝑗1

is the nonnegative attrition coefficient of 𝑦
𝑗
to 𝑥
1
;

𝑢
1
(𝑡) and V

𝑗
(𝑡) are corresponding control input; 𝜓

𝑗1𝑒𝑠
∈ {0, 1}

and 𝜙
1𝑗𝑒𝑠

∈ {0, 1} are corresponding encounter tactics; then
Ψ
𝑒𝑠
and Φ

𝑒𝑠
are variable tactic matrices driven by discrete

events:

Ψ
𝑒𝑠
= [𝜓11𝑒𝑠

𝜓
21𝑒𝑠

⋅ ⋅ ⋅ 𝜓
𝑛1𝑒𝑠
] ; Φ

𝑒𝑠
=

[
[
[
[
[

[

𝜙
11𝑒𝑠

𝜙
12𝑒𝑠

...
𝜙
1𝑛𝑒𝑠

]
]
]
]
]

]

. (3)

From Assumption 2, it is known that the variable tactics
driven by discrete events will satisfy

Ψ
𝑒𝑠−1
× 𝑒
𝑠
→ Ψ

𝑒𝑠

Φ
𝑒𝑠−1
× 𝑒
𝑠
→ Φ

𝑒𝑠
.

(4)

Remark 3. The values of switch variable 𝜓
𝑗1𝑒𝑠

∈ {0, 1} and
𝜙
1𝑗𝑒𝑠

∈ {0, 1} are given according to the encounter relation
between two combat units on both sides:

𝜓
𝑗1𝑒𝑠

= {
0, No encounter between 𝑦

𝑗
and 𝑥

1
,

1, 𝑦
𝑗
encounters 𝑥

1
with all forces,

𝜙
𝑖𝑗𝑒𝑠
= {

0, No encounter between 𝑦
𝑗
and 𝑥

1
,

1, 𝑥
1
encounters 𝑦

𝑗
with all forces.

(5)

Remark 4. Ψ
𝑒𝑠
andΦ

𝑒𝑠
are driven to change by discrete event

𝑒
𝑠
, which therefore affects and changes system (2). If (4) is

tenable, then continuous subsystems of Ψ
𝑒𝑠−1

and Φ
𝑒𝑠−1

are
changed to that ofΨ

𝑒𝑠
andΦ

𝑒𝑠
, which tell that variable tactics

decide the number of continuous subsystems.

FromRemarks 3 and 4, thismodel has a better description
of the interaction of continuous-time models (governed by
Lanchester equations) and of logic rules and discrete event
systems (described, e.g., by variable tactics). And it is known
that the discrete part makes the decision for the whole system
to switch to another set of control rules if conditions are
favorable, and the continuous part as a result works according
to the new rules.
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3. Optimal Control of Warfare Hybrid System
via Lanchester (𝑛,1) Model

3.1. Problem Statement. In this section, the optimal variable
tactics control problem of warfare hybrid dynamic system in
a (𝑛, 1) battle, in which a heterogeneous force of 𝑛 different
troop types faces a homogeneous force, is investigated. With
what is mentioned above, we present some assumptions
which will be used.

Assumption 5. The values of switch variables 𝜓
𝑗1𝑒𝑠

and 𝜙
1𝑗𝑒𝑠

satisfy the following conditions:

𝜓
𝑗1𝑒𝑠

= 1;

𝑛

∑

𝑗=1

𝜙
𝑖𝑗𝑒𝑠
= 1. (6)

Meanwhile, we suppose that the most effective battle stage is
[0, 𝑇], where 𝑇 is the end time of battle, 𝑥

1
(𝑇) and 𝑦

𝑗
(𝑇) are

the residual of strengths on both sides in the terminal time 𝑇,
𝑥
1
(𝑇) ̸=0, and 𝑦

𝑗
(𝑇) ̸=0.

From Assumption 5, the system model is rewritten to be

̇𝑥
1
(𝑡) = −

𝑛

∑

𝑗=1

𝛼
𝑗1
𝑦
𝑗
(𝑡) + 𝑢

1
(𝑡) ,

̇𝑦
𝑗
(𝑡) = −𝛽

1𝑗
𝜙
1𝑗𝑒𝑠
𝑥
1
(𝑡) + V

𝑗
(𝑡) .

(7)

The objective function associated with system (6) is of the
following form:

𝐽 = 𝜂
1
𝑥
1
(𝑇) −

𝑛

∑

𝑗=1

𝜃
𝑗
𝑦
𝑗
(𝑇) , (8)

where 𝜂
1
and 𝜃

𝑗
are the relative operation indices, which is

the weight of the importance of the corresponding units on
both sides. Then, 𝜂

1
𝑥
1
(𝑇) and ∑𝑛

𝑗=1
𝜃
𝑗
𝑦
𝑗
(𝑇) are the residual

of actual strengths on both sides in the terminal time 𝑇.
Now, the optimal variable tactics control problem can be

described as follows.The attacking side𝑋 selects the number
of tactics changes, the time of every variable tactics, and the
sequences of corresponding variable tacticsΦ∗

𝑒𝑠
(𝑠 = 1, . . . , 𝑘)

to maximize the objective function 𝐽.

3.2. SolvingMethod for the Optimal Control Strategies. In this
subsection, we analyze the conditions of the optimal variable
tactics and give a quantitative analysis of the variable tactics
process. Finally, a solving method for the optimal control
strategies is designed.

For the above optimal control problem, we introduce the
adjoint function as follows:

[
𝜆

𝜇
] = (𝜆

1
, 𝜇
1
, . . . , 𝜇

𝑛
)
𝑇 (9)

and construct the Hamilton function to be

𝐻(𝑥, 𝑦, 𝜆, 𝜇, Φ, 𝑡)

= −

𝑛

∑

𝑗=1

(𝜆
1
𝛼
𝑗1
) 𝑦
𝑗
−

𝑛

∑

𝑗=1

𝜇
𝑗
𝛽
1𝑗
𝜙
1𝑗𝑒𝑠
𝑥
1

+ 𝜆
1
𝑢
1
(𝑡) +

𝑛

∑

𝑗=1

𝜇
𝑗
V
𝑗
(𝑡) .

(10)

Then, by using theMinimax principle of differential game, the
necessary conditions about the optimal tactics are that there
exist the corresponding adjoint functions 𝜆∗(𝑡) and 𝑢∗(𝑡),
which satisfy

̇𝜆
1
(𝑡) = −

𝜕𝐻

𝜕𝑥
1

=

𝑛

∑

𝑗=1

𝜇
𝑗
𝛽
𝑖𝑗
𝜙
𝑖𝑗𝑒𝑠
,

𝜆
1
(𝑇) =

𝜕𝐽

𝜕𝑥
1

= 𝜂
1
,

̇𝜇
𝑗
(𝑡) = −

𝜕𝐻

𝜕𝑦
𝑗

= 𝜆
1
𝛼
𝑗1
,

𝜇
𝑗
(𝑇) =

𝜕𝐽

𝜕𝑦
𝑗

= −𝜃
𝑗
.

(11)

From (11), we have

̇𝜆
1
(𝑡) < 0, ̇𝜇

𝑗
(𝑡) > 0,

𝜆
1
(𝑇) > 0, 𝜇

𝑗
(𝑇) < 0.

(12)

Therefore, for any time 𝑡 ∈ [0, 𝑇], it is easy to get

𝜆
1
(𝑡) > 0, 𝜇

𝑗
(𝑡) < 0. (13)

Then, we can obtain that

𝐻(𝑥
∗
, 𝑦
∗
, 𝜆
∗
, 𝜇
∗
, Φ
∗

𝑒𝑠
, 𝑡)

= max
Φ𝑒𝑠

𝐻(𝑥
∗
, 𝑦
∗
, 𝜆
∗
, 𝜇
∗
, Φ
𝑒𝑠
, 𝑡)

= max
Φ𝑒𝑠

(

𝑛

∑

𝑗=1

− 𝜇
∗

𝑗
𝛽
1𝑗
𝜙
1𝑗𝑒𝑠
𝑥
∗

1
) .

(14)

From (14) and 𝑥∗
1
> 0, we know that ∑𝑛

𝑗=1
(−𝜇
∗

𝑗
)𝛽
𝑖𝑗
𝜙
𝑖𝑗𝑒𝑠

is the weighted average of −𝜇∗
𝑗
𝛽
𝑖𝑗
; then the optimal tactics

satisfy

𝜙
∗

𝑖𝑗𝑒𝑠

=
{

{

{

1, max
𝑗

(−𝜇
∗

𝑗
𝛽
1𝑗
) = −𝜇

∗

𝑗
∗𝛽1𝑗∗ ,

0, max
𝑗

(−𝜇
∗

𝑗
𝛽
1𝑗
) ̸= − 𝜇

∗

𝑗
∗𝛽1𝑗∗ .

(15)

Remark 6. Since 𝜇
𝑗
(𝑇) is a continuous function, 𝜇∗

𝑗
(𝑇)𝛽
1𝑗
is

also continuous; thus, the optimal tactic strategy 𝜙∗
𝑖𝑗𝑒𝑠

remains
stable on a period of time; that is, 𝜙∗

𝑖𝑗𝑒𝑠

remains stable at the
time interval [𝑇 − 𝛿, 𝑇].
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Based on the above analysis, we discuss the variable
tactics process about the attacking side 𝑋. And the existence
conditions of variable tactics are investigated in the following
theorem.

Theorem 7. If there exist at least two functions 𝜇
𝑗𝑙
(𝑡)𝛽
1𝑗𝑙

and
𝜇
𝑗𝑔
(𝑡)𝛽
1𝑗𝑔
(𝑙, 𝑔 ∈ {1, . . . , 𝑛} and 𝑗

𝑙
̸=𝑗
𝑔
) at the time interval

[Δ
𝑘
, 𝑇], such that

−𝜇
𝑗𝑙
(𝑡) 𝛽
1𝑗𝑙
< −𝜇
𝑗𝑔
(𝑡) 𝛽
1𝑗𝑔
, (16)

−𝜇
𝑗𝑙
(Δ
𝑘
) 𝛽
1𝑗𝑙
= −𝜇
𝑗𝑔
(Δ
𝑘
) 𝛽
1𝑗𝑔
, (17)

− ̇𝜇
𝑗𝑙
(Δ
𝑘
) 𝛽
1𝑗𝑙
< − ̇𝜇
𝑗𝑔
(Δ
𝑘
) 𝛽
1𝑗𝑔
, (18)

hold, then one obtains that

−𝜇
𝑗𝑙
(𝑡) 𝛽
1𝑗𝑙
> −𝜇
𝑗𝑔
(𝑡) 𝛽
1𝑗𝑔

(19)

at the left neighborhood of 𝑡 = Δ
𝑘
. That is, there exists a

variable tactic for𝑋 at [𝑡, 𝑇] (𝑡 < Δ
𝑘
), andΔ

𝑘
is the minimum

time of tactic change.

Proof. From (15), it is not difficult to show that

𝜙
∗

𝑖𝑗
∗

𝑒𝑠

=
{

{

{

1, max
𝑗

(−𝜇
∗

𝑗
(𝑇) 𝛽
1𝑗
) = −𝜇

∗

𝑗
∗ (𝑇) 𝛽1𝑗∗ ,

0, max
𝑗

(−𝜇
∗

𝑗
(𝑇) 𝛽
1𝑗
) ̸= − 𝜇

∗

𝑗
∗ (𝑇) 𝛽1𝑗∗ .

(20)

So, there exist at least two functions 𝜇
𝑗𝑙
(𝑡)𝛽
1𝑗𝑙

and
𝜇
𝑗𝑔
(𝑡)𝛽
1𝑗𝑔
(𝑗
𝑙
̸=𝑗
𝑔
) at the time interval [Δ

𝑘
, 𝑇], which

satisfy

−𝜇
𝑗𝑙
(𝑡) 𝛽
1𝑗𝑙
< −𝜇
𝑗𝑔
(𝑡) 𝛽
1𝑗𝑔
. (21)

From (18), we have that

lim
𝜀
−
→0

−𝜇
𝑗𝑙
(Δ
𝑘
) 𝛽
1𝑗𝑙
− (−𝜇

𝑗𝑙
(Δ
𝑘
− 𝜀) 𝛽

1𝑗𝑙
)

𝜀

< lim
𝜀
−
→0

−𝜇
𝑗𝑔
(Δ
𝑘
) 𝛽
1𝑗𝑔
− (−𝜇

𝑗𝑔
(Δ
𝑘
− 𝜀) 𝛽

1𝑗𝑔
)

𝜀
.

(22)

Combining the aforementioned inequality with (17) yields

−𝜇
𝑗𝑙
(Δ
𝑘
− 𝜀) 𝛽

1𝑗𝑙
> −𝜇
𝑗𝑔
(Δ
𝑘
− 𝜀) 𝛽

1𝑗𝑔
. (23)

Since the following inequality

−𝜇
𝑗𝑙
(Δ
𝑘
+ 𝜀) 𝛽

𝑖𝑗𝑙
< −𝜇
𝑗𝑔
(Δ
𝑘
+ 𝜀) 𝛽

𝑖𝑗𝑔
(24)

holds at the right neighborhood of 𝑡 = Δ
𝑘
, therefore, there

exists a variable tactic for𝑋 at the time Δ
𝑘
(0 < Δ

𝑘
< 𝑇).

Now, we will investigate that Δ
𝑘
is the minimum time of

tactic change. Firstly, we suppose that Δ
𝑘1
(Δ
𝑘1
< Δ
𝑘
) is the

minimum time of tactic change; then we have

−𝜇
𝑗𝑙
(Δ
𝑘1
+ 𝜀) 𝛽

1𝑗𝑙
< −𝜇
𝑗𝑔
(Δ
𝑘1
+ 𝜀) 𝛽

1𝑗𝑔
,

−𝜇
𝑗𝑙
(Δ
𝑘1
− 𝜀) 𝛽

1𝑗𝑙
> −𝜇
𝑗𝑔
(Δ
𝑘1
− 𝜀) 𝛽

1𝑗𝑔
.

(25)

From (17), (18), and (19), we easily get

−𝜇
𝑗𝑙
(𝑡) 𝛽
1𝑗𝑙
< −𝜇
𝑗𝑔
(𝑡) 𝛽
1𝑗𝑔
, 𝑡 ∈ (Δ

𝑘1
, 𝑇] ; (26)

then there exists the contradiction between (23) and (26).
Thus,Δ

𝑘
is the minimum time of tactic change when it draws

near the termination time 𝑇. The proof is completed.

According toTheorem 7, we give a solving method of the
optimal control strategies.

Step 1. Using 𝜇
𝑗
(𝑇)𝛽
1𝑗
, we solve the optimal tacticsΦ

𝑒𝑘
at the

time interval near the termination time 𝑇. Furthermore, we
seek the minimum time of tactic change Δ

𝑘
, which satisfies

Theorem 7.

Step 2. Using 𝜇
𝑗
(Δ
𝑘
)𝛽
1𝑗
, the optimal tactics Φ

𝑒𝑘−1
are

obtained at the time interval near Δ
𝑘
, and we seek the

minimum time of tactic change Δ
𝑘−1

.

Step 3. The aforementioned process continues. When the
conditions of tactic change cannot hold in the time interval
[0, Δ
1
] near the initial time, the solving process stops.

Step 4. Sorting Δ
1
, . . . , Δ

𝑘
, we obtain that the discrete event

variable 𝑒 = {𝑒
1
, . . . , 𝑒

𝑓
} (0 ≤ 𝑓 < ∞) and the route

of variable tactic 𝑟 = ((𝑡
1
, 𝑒
1
), . . . , (𝑡

𝑓
, 𝑒
𝑓
)), where, 𝑡

𝑓
∈

{Δ
1
, . . . , Δ

𝑘
) is the time of tactic change and 𝑒

𝑓
is a discrete

event.

3.3. Application Example Analysis. As an example of the
consequences of the optimal control problem, we take the
(2, 1) case and solve the optimal strategies in a (2, 1) case.
In this subsection, we consider the warfare dynamic system
model that is described by

̇𝑥
1
= −

2

∑

𝑗=1

𝛼
𝑗1
𝑦
𝑗
+ 𝑢
1
,

̇𝑦
1
= −𝛽
11
𝜙
11𝑒
𝑘

𝑥
1
+ V
1
,

̇𝑦
2
= −𝛽
12
𝜙
12𝑒
𝑘

𝑥
1
+ V
2
,

(27)

where 𝑥
1
(𝑡), 𝑦
1
(𝑡), and 𝑦

2
(𝑡) are the strengths of two oppos-

ing forces surviving at time 𝑡.
The objective function associated with the system (27) is

of the following form:

𝐽 = 𝜂
1
𝑥
1
− 𝜃
1
𝑦
1
− 𝜃
2
𝑦
2
. (28)

The relevant parameters of system are as follows. The initial
force strengths are 𝑥

10
= 100, 𝑦

10
= 30, 𝑦

20
= 30; 𝛼

11
=

9, 𝛼
21
= 1,𝛽

11
= 𝛽
12
= 1 are the nonnegative attrition

coefficients; the battle terminal time is 𝑇 = 0.489; the relative
operation indices are 𝜂

1
= 9, 𝜃

1
= 1, 𝜃

2
= 9, and we choose

that 𝑢
1
= 0, V

1
= V
2
= 0. In the proposed solving algorithm,

we set the initial values 𝑡
0
= 𝑇, 𝜆

1
(𝑇) = 9, 𝜇

1
(𝑇) = −1, and

𝜇
2
(𝑡) = −9 and the step length 𝜅 = 0.001; then we can know

that 𝑡 = 𝑡
0
− 𝜒𝜅, where 𝜒 is the cycle number.
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Figure 2: Strength change curves of each combat unit on both sides.

Solving the optimal control problem by Matlab Toolbox
yields that when 𝜒 = 105, the variable tactics occur, and the
corresponding time is Δ

1
= 0.384; then it is easy to get that

the optimal tactics of𝑋 are

𝜙
11𝑒
𝑘

(𝑡) = 1, 𝜙
12𝑒
𝑘

(𝑡) = 0, 0 < 𝑡 ≤ Δ
1
,

𝜙
11𝑒
𝑘

(𝑡) = 0, 𝜙
12𝑒
𝑘

(𝑡) = 1, Δ
1
< 𝑡 ≤ 𝑇.

(29)

So the discrete event variable is 𝑒
1
= {Φ
𝑒0
, Φ
𝑒1
}, where Φ

𝑒0
=

[ 1
0
]; Φ
𝑒1
= [ 0
1
]. Therefore, the solution of optimal control

problem in a (2, 1) battle can be gotten as follows. 𝑋 has a
variable tactic in Δ

1
= 0.384, and the optimal tactics Φ∗

𝑒𝑠
for

𝑋 satisfy

𝜙
∗

11𝑒0

(𝑡) = 1; 𝜙
∗

12𝑒0

(𝑡) = 0, 0 < 𝑡 ≤ Δ
1
,

𝜙
∗

11𝑒0

(𝑡) = 0; 𝜙
∗

12𝑒1

(𝑡) = 1, Δ
1
≤ 𝑡 ≤ 𝑇.

(30)

And the route of variable tactic 𝑟 = ((0, 𝑒
0
), . . . , (Δ

1
, 𝑒
1
)), and

the optimal value of 𝐽 is 𝐽∗ = 44.152.
Figure 2 shows the change of state trajectories of the

units on both warring sides. It is easy to see that the state
values change in 𝑡 = Δ

1
; meanwhile, the state changes are

nonnegative, and the change of variable tactics always holds
in the time interval [0, 𝑇].

4. Conclusions

In this paper, we established a class of warfare hybrid dynamic
systems based on Lanchester equation in a battle between an
attacker with one type of force and a defender with 𝑛 types
of forces. For the attacking side, an optimal control problem
of warfare hybrid dynamic system in a (𝑛, 1) battle was
investigated. Then the optimum condition and the solving

method about the game problem are given. Simulation results
illustrate the effectiveness of proposed optimal strategies.This
is of great significance in analyzing quantitatively military
actions. However, the proposed warfare hybrid dynamic
model in this paper fails to consider the warfare dynamic
process in a (𝑛,𝑚) battle, in which an attacker has 𝑚 type of
forces and a defender has 𝑛 types of forces.Thus, constructing
a more reasonable model and employing advanced control
techniques to investigate the warfare dynamic game problem
in a (𝑛,𝑚) battle are our future research directions.
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A quadrotor helicopter with uncertain actuator faults, such as loss of effectiveness and lock-in-place, is studied in this paper. An
adaptive fuzzy sliding mode controller based on direct self-repairing control is designed for such nonlinear system to track the
desired output signal, when any actuator of this quadrotor helicopter is loss of effectiveness or stuck at some place. Moreover, using
the Lyapunov stability theory, the stability of the whole system and the convergence of the tracking error can be guaranteed. Finally,
the availability of the proposed method is verified by simulation on 3-DOF hover to ensure that the system performance under
faulty conditions can be quickly recovered to its normal level. And this proposed method is also proved to be better than that of
LQR through simulation.

1. Introduction

Quadrotor helicopter is one kind of electric VTOL. Com-
pared with the conventional rotor helicopter, quadrotor can
generate more lift force and its structure is more compact.
Especially, its four rotors can counteract the reaction torque
mutually, so the propellers against reaction torque are not
needed [1]. Due to these properties, it makes quadrotor
monitor and detect the targets close to the ground so that it
has broader military and civilian prospect.

On the other hand, quadrotor, which is the underactuated
system with 6-DOF and 4 outputs, has the properties of
multivariety, nonlinearity, strong coupling, and sensitivity to
disturbance. Once it has some faults, it may lead to the loss
of performance of flight, even loss of control. Thus, self-
repairing control is born.

Self-repairing control, which utilizes the redundancy
of the control system under normal working condition to
improve the adaptability to the fault of the flight control
system, can avoid catastrophes and make the faulty aircraft
operate safely. Then, self-repairing control consists of the
direct one and the indirect one. Direct self-repairing control
does not need accurate system parameters, while system
parameters and several control strategies are the necessity in
indirect self-repairing control.

As is known to all, attitude control is the key point of the
whole flight control. In addition, the attitude and position
of quadrotor helicopter have the direct coupling. Therefore,
the research on attitude controller with the capability of self-
repairing from fault is imperative.

Recently, research on the flight control of mini quadrotor
helicopter has got some achievements. For instance, Bouab-
dallah from EPFL has developed several control methods,
such as PID, LQR, and Backstepping, based on OS4 [2],
one kind of mini quadrotor helicopter, and realized the
control on attitude during flight. But Altug from University
of Pennsylvania has designed the controller of the quadrotor
helicopter HMX4 [3] based on Backstepping and, moreover,
actualized the autonomous hover control with the help of
vision orientation. Afterwards, vertical takeoff and landing
of quadrotor helicopter based on neural network control
were achieved by J. Dunfied. Then, Wang has focused on the
robust controlmethod based on𝐻

∞
[4], which can guarantee

the tracking performance and noise immunity of quadrotor
helicopter.

However, the existing works on fault diagnosis and fault-
tolerant control of quadrotor helicopter are quite few at
present. A Backstepping fault-tolerant controller for quadro-
tor helicopter system based on the estimation of compound
interference and partial FDI was proposed in [5]. And one
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kind of robust fault detection module with observer based
on model was designed to reconfigure control law in [6]. In
addition, a state estimator for fault detection is proposed in
[7] to reconfigure the structure of controller for quadrotor so
that it can recover some of control performances when a fault
occurs. Yet there is still some weakness in the articles above;
firstly, the models of quadrotor are obviously inaccurate.
Then, the control strategies are somewhat complicated, which
should contain fault identification; thus, it is difficult for
application.

The need for effective and realizable fault-tolerant con-
trol for quadrotor helicopter with uncertain actuator faults
motivates this research. In this paper, we develop an attitude
system for quadrotor based on an adaptive fuzzy slidingmode
tracking control to compensate the actuator fault such as loss
of effectiveness and lock-in-place. The main contributions of
this paper are as follows.

(1) The nonlinear model of quadrotor helicopter is put
forward in detail, while the linear model ignoring
the nonlinear factors such as gyroscopic effect is
inaccurate when designing the fault-tolerant control
system.

(2) An adaptive fuzzy sliding mode controller without
fault identification is designed to track the desired
output signal so that quadrotor can finish its mission
safely even when any actuator of this quadrotor is loss
of effectiveness or stuck at some place.

The rest of this paper is organized as follows. In Sec-
tion 3.2, the stability of the whole system is guaranteed by
Lyapunov stable principle. In Section 4, the proposedmethod
is verified by simulation on 3-DOF hover and also proved to
be better than the LQR method which is often used in the
attitude system of quadrotor. Finally, conclusions follow in
Section 5.

2. Modeling Process

2.1. System Model. The attitude and position of quadrotor
helicopter are operated by the rotor’s rotation rate, without
the auto bank unit. The structure schematic is shown in
Figure 1.

Three attitude angles are controlled in these principles
shown in Figure 2: the roll moment is generated by the
difference between the speed of right and left rotor so that
the roll angle changes. In the same way, the pitch angle is
controlled by the front and back rotor. While the yaw angle
changes, the rotors in the diagonal rotate in the same speed
and the speed of rotors in different diagonal differs.

To limit the complexity of the dynamics modeling, the
following assumptions are adopted [8].

(1) The whole structure is rigid and symmetrical.
(2) Thrust and drag forces are proportional to the square

of propellers speed rotation.
(3) The variable range of attitude angles is small (gener-

ally less than 5∘).

Tb
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Yaw axis

Back motor

Right motor

Front motor

Left motor

y > 0

r > 0
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Figure 1: The structure schematic of quadrotor helicopter.

Under these assumptions, using the Newton-Euler Equa-
tion, the dynamics equations are written in the followingway:

𝑚 ̈𝜉 = 𝐹
𝐿
+ 𝐹
𝐷
+ 𝐺, (1)

𝐽Ω̇ = −Ω × 𝐽Ω + Γ
𝑓
− Γ
𝑎
− Γ
𝑔
, (2)

where 𝜉 = (𝑥, 𝑦, 𝑧) ∈ 𝑅
3 is the position of the centre of

mass with respect to the inertial frame, 𝑚 is the total mass
of this structure, and 𝐽 ∈ 𝑅3×3 is a constant inertia matrix of
quadrotor with respect to the body fixed frame. That is,

𝐽 = (

𝐽
𝜙
0 0

0 𝐽
𝜃
0

0 0 𝐽
𝜓

) , (3)

where 𝐽
𝜙
, 𝐽
𝜃
, and 𝐽

𝜓
represent rotational inertia of the roll

axis, pitch axis, and yaw axis, respectively. Ω represents the
angular velocity of quadrotor expressed in the body fixed
frame such as

Ω = (

1 0 − sin 𝜃
0 cos𝜙 cos 𝜃 sin𝜙
0 − sin𝜙 cos𝜙 cos 𝜃

)(

̇𝜙

̇𝜃

̇𝜑

) , (4)

where 𝜙, 𝜃, and 𝜑 are roll, pitch, and yaw angles, respec-
tively. When the attitude angles are small, Ω = (𝑝, 𝑞, 𝑟) ≈

( ̇𝜙, ̇𝜃, ̇𝜑).
There are some details about all terms in (1) and (2) below.
In (1), firstly, 𝐹

𝐿
represents the total lift generated by the

four rotors and the expression is

𝐹
𝐿
= (

cos𝜙 sin 𝜃 cos𝜓 + sin𝜙 sin𝜓
cos𝜙 sin 𝜃 sin𝜓 − sin𝜙 cos𝜓

cos𝜙 cos 𝜃
) (𝐹
𝑟
+ 𝐹
𝑙
+ 𝐹
𝑓
+ 𝐹
𝑏
) ,

(5)

where 𝐹
𝑟
= 𝐾
𝑝
𝜔
2

𝑟
, 𝐹
𝑙
= 𝐾
𝑝
𝜔
2

𝑙
, 𝐹
𝑓
= 𝐾
𝑝
𝜔
2

𝑓
, and 𝐹

𝑏
= 𝐾
𝑝
𝜔
2

𝑏
,

which are the lift generated by right rotor, left one, front one,
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Figure 2: The attitude control principle of quadrotor helicopter.

and back one, respectively. Then𝐾
𝑝
is the lift coefficient, and

𝜔
𝑟
, 𝜔
𝑙
, 𝜔
𝑓
, and𝜔

𝑏
represent the rotation speed of right rotor,

left one, front one, and back one, respectively.
Secondly, 𝐹

𝐷
, the total drag, can be described by

𝐹
𝐷
= (

−𝐾
𝑓𝑑𝑥

0 0

0 −𝐾
𝑓𝑑𝑦

0

0 0 −𝐾
𝑓𝑑𝑧

) ̇𝜉, (6)

where −𝐾
𝑓𝑑𝑥
, −𝐾
𝑓𝑑𝑦
, and −𝐾

𝑓𝑑𝑧
are the component of drag

coefficient in 𝑥, 𝑦, and 𝑧 axis, respectively.
Then, 𝐺 is the gravity, which is

𝐺 = (

0

0

−𝑚𝑔

) . (7)

In (2), firstly, Γ
𝑓
, the moment of lift, when decomposed

into each axis of the body fixed frame, can be described by

Γ
𝑓
= (

𝑙 (𝐹
𝑟
− 𝐹
𝑙
)

𝑙 (𝐹
𝑓
− 𝐹
𝑏
)

𝐶
𝐷
(𝜔
2

𝑙
+ 𝜔
2

𝑟
− 𝜔
2

𝑏
− 𝜔
2

𝑓
)

) , (8)

where 𝑙 is the distance between the axis of any rotor and the
centre of mass and 𝐶

𝐷
is the coefficient of drag moment.

Secondly, Γ
𝑎

represents the total pneumatic friction
torque, whose expression is

Γ
𝑎
= (

𝐾fax 0 0

0 𝐾fay 0

0 0 𝐾faz

)‖Ω‖
2
, (9)

where𝐾fax, 𝐾fay, and 𝐾faz are the component of pneumatic
friction coefficient in 𝑥, 𝑦, and 𝑧 axis, respectively.

Next, Γ
𝑔
is the resultant moment under gyroscopic effect

and can be defined as

Γ
𝑔
= Ω × 𝐽

𝑟
(

0

0

Ω

) , (10)

where 𝐽
𝑟
is the moment of inertia of the rotor; moreover,Ω =

𝜔
𝑙
+ 𝜔
𝑟
− 𝜔
𝑏
− 𝜔
𝑓
.

In conclusion, the dynamicmodel of quadrotor helicopter
can be written as

̈𝜙 =
1

𝐽
𝜙

[(𝐽
𝜃
− 𝐽
𝜓
) ̇𝜓 ̇𝜃 − 𝐾fax

̇𝜙
2
− 𝐽
𝑟
Ω ̇𝜃 + 𝑙 (𝐹

𝑟
− 𝐹
𝑙
)] ,

̈𝜃 =
1

𝐽
𝜃

[(𝐽
𝜓
− 𝐽
𝜙
) ̇𝜓 ̇𝜙 − 𝐾fay

̇𝜃
2
+ 𝐽
𝑟
Ω ̇𝜙 + 𝑙 (𝐹

𝑓
− 𝐹
𝑏
)] ,

̈𝜓 =
1

𝐽
𝜓

[(𝐽
𝜙
− 𝐽
𝜃
) ̇𝜙 ̇𝜃 − 𝐾faz ̇𝜓

2
+
𝐶
𝐷

𝐾
𝑝

(𝐹
𝑟
+ 𝐹
𝑙
− 𝐹
𝑓
− 𝐹
𝑏
)] ,

(11)

where𝐹
𝑟
, 𝐹
𝑓
, 𝐹
𝑙
, and 𝐹

𝑏
defined previously are the inputs of

this system.
To simplify the representations, we define

(

𝑈
𝜙

𝑈
𝜃

𝑈
𝜓

) = (

1 0 −1 0

0 1 0 −1

𝐶
𝐷

𝐾
𝑃

−
𝐶
𝐷

𝐾
𝑃

𝐶
𝐷

𝐾
𝑃

−
𝐶
𝐷

𝐾
𝑃

)(

𝐹
𝑟

𝐹
𝑓

𝐹
𝑙

𝐹
𝑏

)

= 𝐿(

𝐹
𝑟

𝐹
𝑓

𝐹
𝑙

𝐹
𝑏

).

(12)

Due to the limit of the power of each electromotor, there
exists a maximum rotation speed 𝜔max for each rotor. It is
assumed that each 𝜔max is equal because of the property of
symmetry in the quadrotor helicopter. Therefore, the inputs
meet the following conditions:

−𝐾
𝑝
𝜔
2

max ≤ 𝑈𝜙 ≤ 𝐾𝑝𝜔
2

max,

−𝐾
𝑝
𝜔
2

max ≤ 𝑈𝜃 ≤ 𝐾𝑝𝜔
2

max,

−2𝐶
𝐷
𝜔
2

max ≤ 𝑈𝜓 ≤ 2𝐶𝐷𝜔
2

max.

(13)
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Table 1: Fault mode.

Fault parameter State of system
𝜆
𝑖
= 1, 𝜎

𝑖
= 0 Normal

0 < 𝜆
𝑖
< 1, 𝜎

𝑖
= 0 Loss of effectiveness

𝜆
𝑖
= 0, 𝜎

𝑖
= 1 Lock-in-place

In addition, the dynamic of the DC-electromotor which
drives rotors is shown below:

𝑉 = 𝑅𝐼 + 𝐿
𝑑𝐼

𝑑𝑡
+ 𝐾
𝑒
𝜔,

𝐾
𝑚
𝐼 = 𝐽
𝑟

𝑑𝜔

𝑑𝑡
+ 𝐾
𝑟
𝜔
2
+ 𝐶
𝑠
,

(14)

where 𝑅 is the internal resistance of electromotor and
𝐾
𝑒
, 𝐾
𝑚
, and 𝐾

𝑟
are the electric torque constant, mechanical

torque constant, and load constant torque, respectively.Then,
𝐶
𝑠
denotes the solid friction.
Based on this analysis, let 𝑥 = [𝜙, ̇𝜙, 𝜃, ̇𝜃, 𝜓, ̇𝜓]

𝑇
∈ 𝑅
6,

𝑢 = [𝐹
𝑟
, 𝐹
𝑓
, 𝐹
𝑙
, 𝐹
𝑏
]
𝑇
= [𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
]
𝑇
∈ 𝑅
4 be the state and

the control input vectors, respectively. The state equation of
this system can be written in the following affine nonlinear
representation:

̇𝑥 = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢, (15)

where

𝑓 (𝑥) = (

(

𝑥
2

𝑎
1
𝑥
4
𝑥
6
+ 𝑎
2
𝑥
2

2
+ 𝑎
3
Ω𝑥
4

𝑥
4

𝑎
4
𝑥
2
𝑥
6
+ 𝑎
5
𝑥
2

4
+ 𝑎
6
Ω𝑥
2

𝑥
6

𝑎
7
𝑥
2
𝑥
4
+ 𝑎
8
𝑥
2

6

)

)

,

𝑔 (𝑥) = (

(

0 0 0 0

𝑏
1

0 −𝑏
1

0

0 0 0 0

0 𝑏
2

0 −𝑏
2

0 0 0 0

𝑏
3
−𝑏
3

𝑏
3

−𝑏
3

)

)

(16)

with

𝑎
1
=
𝐽
𝜃
− 𝐽
𝜓

𝐽
𝜙

, 𝑎
2
= −

𝐾fax
𝐽
𝜙

, 𝑎
3
= −

𝐽
𝑟

𝐽
𝜙

,

𝑎
4
=
𝐽
𝜓
− 𝐽
𝜙

𝐽
𝜃

, 𝑎
5
= −

𝐾fay

𝐽
𝜃

, 𝑎
6
=
𝐽
𝑟

𝐽
𝜃

,

𝑎
7
=
𝐽
𝜙
− 𝐽
𝜃

𝐽
𝜓

, 𝑎
8
= −

𝐾faz
𝐽
𝜓

,

𝑏
1
=
𝑙

𝐽
𝜙

, 𝑏
2
=
𝑙

𝐽
𝜃

, 𝑏
3
=

𝐶
𝐷

𝐽
𝜓
𝐾
𝑝

.

(17)

2.2. Actuator Fault Model. According to report of research,
the actuator of the helicopter can be easily damaged. In view
of quadrotor helicopter, when the actuator fault occurs, the
rotation speed of rotors will be abruptly changed so that the
attitude system of quadrotor will vary rapidly or even lose
control.

In this paper, we consider actuator faults including loss of
effectiveness and lock-in-place.When any actuator has failed,
we can denote a general actuator fault model as [9]

𝑢 = 𝜆𝑢 + 𝜎 (𝑢 − 𝜆𝑢) , (18)

where 𝜆 = diag[𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
], ] = []

1
, ]
2
, ]
3
, ]
4
]
𝑇, 𝜎 =

diag[𝜎
1
, 𝜎
2
, 𝜎
3
, 𝜎
4
], and 𝑢 = [𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
]
𝑇. 𝜆
𝑖
denotes the

percentage of the remaining effective part of the correspond-
ing actuator. 𝑢

𝑖
denotes the applied control vector, while

𝜎
𝑖
(𝜎
𝑖
= 0 or 1) is used to describe the lock-in-place fault.

If 𝜆
𝑖
= 1 and 𝜎

𝑖
= 0, no fault occurs in this actuator. When

0 < 𝜆
𝑖
< 1 and 𝜎

𝑖
= 0, the corresponding actuator loses

partial effectiveness. The case of 𝜆
𝑖
= 0, 𝜎

𝑖
= 1 means that

the actuator is stuck at some unknown place where 𝑢
𝑖
is the

constant value. The considered faults can be synthesized by
Table 1.

Inspired from [10], we can define another input vector ] =
[𝑈
𝜙
, 𝑈
𝜃
, 𝑈
𝜓
]
𝑇
∈ 𝑅
3 so that the number of the output which

will be given in the next section is equal to that of the input.
Thus, we design the control vector ] instead of 𝑢.

However, the applied input 𝑢 can be achieved by

𝑢 = 𝐿
−], (19)

where 𝐿− = (𝐿𝑇𝐿)−1𝐿𝑇 is the generalized inverse matrix of 𝐿.
To attain the control objective, we propose to use a

proportional actuator structure as follows [11]:

] = 𝑐]
0
, (20)

where 𝑐 = diag[𝑐
1
, 𝑐
2
, 𝑐
3
] represents the proportional actua-

tion gain matrix and ]
0
= []
01
, ]
02
, ]
03
]
𝑇 is adaptive fuzzy

controller that we proposed.
Using (18), (19), and (20), the system (15) can be described

by

̇𝑥 = 𝑓

(𝑥) + 𝑔


(𝑥) ]
0
, (21)

where 𝑓(𝑥) = 𝑓(𝑥) + 𝑔(𝑥)𝜎𝑢, 𝑔(𝑥) = 𝑔(𝑥)(𝐼 − 𝜎)𝜆𝐿−𝑐.

3. Direct Self-Repairing Control Strategy

The direct adaptive fuzzy control based on sliding mode is
proposed to actualize self-repairing control in this paper.
Adaptive fuzzy slidingmode control combines the advantages
between adaptive fuzzy control and sliding mode control,
which can not only adjust the adaptation law on line when
uncertain function exists but also ensure the robustness of the
considered nonlinear system.

The control block diagram is shown in Figure 3.
We consider the output of this quadrotor helicopter

attitude system as 𝑦 = [𝜙, 𝜃, 𝜓]𝑇 ∈ 𝑅3.
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fault

yd ̇ee+ u y

−

Figure 3:The control block diagram for adaptive fuzzy slidingmode
control.

Then, the dynamic equation of the output can be rewrit-
ten in the following form:

𝑦
(2)
= 𝐹 (𝑥) + 𝐺 (𝑥) ]

0

= [

[

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

]

]

[𝑓

(𝑥) + 𝑔


(𝑥) ]
0
] .

(22)

Our task is to design a robust adaptive fuzzy controller
based on sliding mode. There is no couple between each
output vector, so we can consider the sliding surface in the
state error space as

𝑠 = 𝑒 + 𝑘 ̇𝑒, (23)

where 𝑠 = [𝑠
1
, 𝑠
2
, 𝑠
3
]
𝑇and 𝑘 = diag[𝑘

1
, 𝑘
2
, 𝑘
3
] (𝑘
𝑖
> 0 𝑖 =

1, 2, 3) 𝑒 = [𝑒
1
, 𝑒
2
, 𝑒
3
]
𝑇 with

𝑒
1
(𝑡) = 𝜙

𝑑
− 𝜙,

𝑒
2
(𝑡) = 𝜃

𝑑
− 𝜃,

𝑒
3
(𝑡) = 𝜓

𝑑
− 𝜓

(24)

with the desired output signal denoted by 𝑦
𝑑
= [𝜙
𝑑
, 𝜃
𝑑
, 𝜓
𝑑
]
𝑇.

The time derivative of (23) can be written as
̇𝑠 = 𝛼 − 𝑘 [𝐹 (𝑥) + 𝐺 (𝑥) ]

0
] , (25)

where 𝛼 is given as follows:

𝛼 = [𝑘
1
̈𝜙
𝑑
+ ̇𝑒
1
, 𝑘
2
̈𝜃
𝑑
+ ̇𝑒
2
, 𝑘
3
̈𝜃
𝑑
+ ̇𝑒
3
]
𝑇

. (26)

If the functions 𝐹(𝑥) and 𝐺(𝑥) are known, to achieve the
control objective, one can use the following ideal nonlinear
control law:

]∗
0
= 𝐺
−1
(𝑥) (−𝐹 (𝑥) + 𝑘

−1
𝛼 +

𝑠

𝛾2
) . (27)

Effectively, when we select the control input as ]
0
= ]∗
0
,

(25) simplifies to

̇𝑠 = −𝑘
𝑠

𝛾2
. (28)

Here we design a Lyapunov function as𝑉 = (1/2)𝑠
𝑇
𝑠 ≥ 0.

Then we have 𝑉 = ̇𝑠
𝑇
𝑠 = −(1/𝛾

2
)𝑠
𝑇
𝑘𝑠 ≤ 0, which indicates

that the sliding mode defined can be achieved.
Thus, we can conclude that 𝑠(𝑡) → 0 as 𝑡 → ∞;

therefore, 𝑒(𝑡) converges to zero, and the whole system is
stable.

3.1. Adaptive Fuzzy Control Law. However, when the actua-
tors of quadrotor helicopter have faults, the functions 𝐹(𝑥)
and 𝐺(𝑥) are unknown so that the ideal controller designed
previously cannot be used.

To overcome this problem, we propose to use an adaptive
fuzzy system to approximate this ideal control law. Moreover,
the parameters of this fuzzy controller are updated by the
error between the fuzzy controller and the desired one.

According to the approximation theorem [12], there exists
an optimal input based on fuzzy control approximating
uniformly the ideal control law (27) such that

]
0
= 𝜉 (𝑥) 𝜃. (29)

Then the fuzzy approximation error is

𝜀 = ]∗
0
− ]
0
= ]∗
0
− 𝜉 (𝑥) 𝜃, (30)

where 𝜃 = [𝜃
1
, 𝜃
2
, 𝜃
3
]
𝑇 is an unknown parameter vector

which minimizes the approximation error on a compact set
Ω. And 𝜉(𝑥) = diag[𝜉

1
(𝑥), 𝜉
2
(𝑥), 𝜉
3
(𝑥)] is the matrix of fuzzy

basis function suitably selected.
In this paper, we assume that the fuzzy controller pro-

posed satisfies the universal approximation property over
the compact set Ω, which is assumed to be large enough so
that the state variables remain inside it under closed-loop
control. Therefore, it is reasonable to assume that the fuzzy
approximation error is bounded for all 𝑥 ∈ Ω.

3.2. Parameter Adaptation Law. In the preview, we recall
that the parameter vector 𝜃 is unknown. So the parameter
estimate 𝜃 based on a gradient descent adaptation algorithm
will be developed in this subsection.

To design a suitable adaptation law, our goal is to
minimize the approximation error between ]∗

0
and ]
0
.

Hence, the parameter estimate 𝜃 is obtained according to
the following theorem.

Theorem 1. The adaptive fuzzy control law

]̂
0
= 𝜉 (𝑥) 𝜃 (31)

equipped with the following adaption law:

̇
�̂� = 𝜂𝜉 (𝑥) ( ̇𝑠 + 𝑘

𝑠

𝛾2
) − 𝜂𝜏𝜃, (32)

where 𝜂, 𝜏 are positive constant parameters, guarantees the
stability and the robustness of the system with actuator failures
(18).

Proof. Firstly, the estimate error 𝜃 should be defined by

𝜃 = 𝜃 − 𝜃. (33)

Then, we substitute the proposed control law (31) to (25),
and the derivative of sliding surface changes to be

̇𝑠 = −𝑘
𝑠

𝛾2
+ 𝐺 (𝑥) (]∗

0
− ]̂
0
) = −𝑘

𝑠

𝛾2
+ 𝐺 (𝑥) 𝜀


, (34)
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where 𝜀 = 𝜀+𝜉(𝑥)𝜃, denoted to be the error between desired
input and actual input.

Then, another Lyapunov function is designed by the
following form:

𝑉

=
1

2
𝑠
𝑇
𝑠 +

1

2𝜂
𝜃
𝑇
𝜃. (35)

Obviously,

̇𝑉 = 𝑠
𝑇
̇𝑠 +
1

𝜂
𝜃
𝑇 ̇
�̃� = 𝑠
𝑇
̇𝑠 −
1

𝜂
𝜃
𝑇 ̇
�̂�. (36)

Substituting (32) and (34), we can get

̇𝑉 = −
1

𝛾2
𝑠
𝑇
𝑘𝑠 + 𝑠

𝑇
𝐺 (𝑥) 𝜀


− 𝜃
𝑇
𝜉𝐺 (𝑥) 𝜀


+ 𝜏𝜃
𝑇
𝜃

= −
1

𝛾2
𝑠
𝑇
𝑘𝑠 + 𝑠

𝑇
𝐺 (𝑥) 𝜀


− (𝜉𝜃)

𝑇

𝐺 (𝑥) 𝜀

+ 𝜏𝜃
𝑇
𝜃

= −
1

𝛾2
𝑠
𝑇
𝑘𝑠 + 𝑠

𝑇
𝐺 (𝑥) 𝜀


− 𝜀
𝑇

𝐺 (𝑥) 𝜀

+ 𝜀
𝑇
𝐺 (𝑥) 𝜀


+ 𝜏𝜃
𝑇
𝜃

(37)

using the inequalities

𝜃
𝑇
𝜃 = −

1

2


𝜃


2

−
1

2


𝜃


2

+
1

2


𝜃 + 𝜃



2

≤ −
1

2


𝜃


2

+
1

2
‖𝜃‖
2
,

𝑠
𝑇
𝐺 (𝑥) 𝜀


= −(

1

2
𝜀

+ 𝑠)

𝑇

𝐺 (𝑥) (
1

2
𝜀

+ 𝑠)

+
1

4
𝜀
𝑇

𝐺 (𝑥) 𝜀

+ 𝑠
𝑇
𝐺 (𝑥) 𝑠

≤
1

4
𝜀
𝑇

𝐺 (𝑥) 𝜀

+ 𝑠
𝑇
𝐺 (𝑥) 𝑠,

𝜀
𝑇
𝐺 (𝑥) 𝜀


≤
1

4
𝜀
𝑇

𝐺 (𝑥) 𝜀

+ 𝜀
𝑇
𝐺 (𝑥) 𝜀.

(38)

Equation (37) can be bounded as

̇𝑉 ≤ −
1

𝛾2
𝑠
𝑇
𝑘𝑠 −

𝜏

2


𝜃


2

−
1

2
𝜀
𝑇

𝐺 (𝑥) 𝜀

+ 𝜀
𝑇
𝐺 (𝑥) 𝜀

+ 𝑠
𝑇
𝐺 (𝑥) 𝑠 +

𝜏

2
‖𝜃‖
2
.

(39)

Using the fact that the control gain matrix is positive
definite, so there exists a positive constant 𝛽 such that
𝐺(𝑥) ≤ 𝛽𝐼; then, let another positive constant denote 𝑘

0
=

min{𝑘
1
, 𝑘
2
, 𝑘
3
} so that 𝑘 ≥ 𝑘

0
𝐼; moreover, we select 𝜏 =

2((𝑘
0
/𝛾
2
) − 𝛽) to be positive, and this leads to

̇𝑉 ≤ −
𝜏

2
(𝑠
𝑇
𝑠 + 𝜃
𝑇
𝜃) −

1

2
𝜀
𝑇

𝐺 (𝑥) 𝜀


+ 𝛽𝜀
𝑇
𝜀 +

𝜏

2
‖𝜃‖
2

≤ −
𝜏

2
𝑉

+ 𝛽𝜀
𝑇
𝜀 +

𝜏

2
‖𝜃‖
2
.

(40)

Figure 4: 3-DOF hover experimental platform.

Since the desired parameter vector 𝜃 is a constant vector,
𝜀 is assumed to be bounded. Also we can define a positive
constant bound 𝛽

0
as

𝛽
0
= sup(𝜏

2
‖𝜃‖
2
+ 𝛽𝜀
𝑇
𝜀) . (41)

Then the inequality of ̇𝑉 is simplified to

̇𝑉 ≤ −
𝜏

2
𝑉

+ 𝛽
0
. (42)

By quoting a theorem in [10], we can prove that the
parameter error vector 𝜃 and the tracking error vector 𝑒(𝑡) are
bounded. Furthermore, due to the bound of ̇𝑒(𝑡), we can also
conclude that the state vector 𝑥 is bounded as well.Therefore,
this adaptive fuzzy control system based on sliding mode for
quadrotor helicopter is stable and has good performance of
tracking.

4. Simulation Results

In this paper, we take the 3-DOF hover helicopter shown
in Figure 4 which is produced by Quanser Company as
the research object to simulate the operation of quadrotor
helicopter attitude system. The 3-DOF hover helicopter con-
sists of electric motors, rotors, helicopter body, power-supply
module, encoders (sensors), and so forth. In the existing
software platform, we can design the direct adaptive fuzzy
slidingmode control systemunder the circumstance ofMAT-
LAB REAL-TIME. With the help of Quanser’s supporting
software, the block diagrams of MATLAB Simulink can be
directly encoded into C language which downloads to real-
time simulation system from supporting PIC card through
the parallel port [13]. After that, we can do the simulation
experiment to verify the practicability of the control method
proposed.
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Figure 5: The output response curves with no fault.

According to the user’s guide of Quanser Hover, the
system parameters are given by

𝐾fax = 0.0080, 𝐾fay = 0.0080, 𝐾faz = 0.0091,

𝐽
𝜙
= 0.0552, 𝐽

𝜃
= 0.0552, 𝐽

𝜑
= 0.11,

𝑙 = 0.197, 𝐽
𝑟
= 0.1188, 𝐾

𝑝
= 0.0036, 𝐶

𝐷
= 0.0036.

(43)

Furthermore, to illustrate the superiority of the method
proposed, system dynamic performance under the adaptive
fuzzy sliding mode control will be compared with that under
the LQR method when these three cases occur: normal, the
loss of effectiveness of actuators, and lock-in-place fault.

The design procedure of LQR is shown below.
Firstly, the affine nonlinearmodel of quadrotor helicopter

should be linearized. Next, we can select suitable weight

matrices 𝑄, 𝑅, where 𝑄 = diag([125, 250, 250, 0, 10, 10]),
𝑅 = 0.01 ⋅ diag([1, 1, 1]). The control matrix 𝐾 is achieved
by using LQR commands in MATLAB, which is

𝐾 = [
0 0 158.1139 0 0 41.7939

0 158.1139 0 0 41.7939 0

122.4745 0 0 86.6881 0 0

] .

(44)

Hence, the LQR controller is described by 𝑢 = 𝐾(𝑥−𝑥
𝑑
),

where 𝑥
𝑑
= [𝜙
𝑑
, 0, 𝜃
𝑑
, 0, 𝜑
𝑑
, 0]
𝑇 is the desired state vector.

In all simulation cases, the desired rolling angle, pitching
angle, and yawing angle are selected to be square wave with
the amplitude 2∘and square wave with the amplitudes 2∘and
0
∘, respectively.

Three fuzzy systems in the form of (29) are used to
generate the control signals 𝑢

1
, 𝑢
2
, and 𝑢

3
. Each system

has the input as 𝑧
1
= [𝑒
1
(𝑡), ̇𝑒
1
(𝑡)]
𝑇, 𝑧
2
= [𝑒
2
(𝑡), ̇𝑒
2
(𝑡)]
𝑇,
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Figure 6: The output response curves with the loss of effectiveness in 𝑢
2
.

and 𝑧
3
= [𝑒
3
(𝑡), ̇𝑒
3
(𝑡)]
𝑇, respectively. For each input vari-

able in 𝑧
1
, 𝑧
2
, and 𝑧

3
, sevenGaussianmembership functions

which give 49 fuzzy rules are defined as

𝜇
𝐹1
(𝑧
𝑖𝑗
) = exp(−1

2
(
𝑧
𝑖𝑗
+ 1

0.14
)

2

) ,

𝜇
𝐹2
(𝑧
𝑖𝑗
) = exp(−1

2
(
𝑧
𝑖𝑗
+ 0.67

0.14
)

2

) ,

𝜇
𝐹3
(𝑧
𝑖𝑗
) = exp(−1

2
(
𝑧
𝑖𝑗
+ 0.33

0.14
)

2

) ,

𝜇
𝐹4
(𝑧
𝑖𝑗
) = exp(−1

2
(
𝑧
𝑖𝑗

0.14
)

2

) ,

𝜇
𝐹5
(𝑧
𝑖𝑗
) = exp(−1

2
(
𝑧
𝑖𝑗
− 0.33

0.14
)

2

) ,

𝜇
𝐹6
(𝑧
𝑖𝑗
) = exp(−1

2
(
𝑧
𝑖𝑗
− 0.67

0.14
)

2

) ,

𝜇
𝐹7
(𝑧
𝑖𝑗
) = exp(−1

2
(
𝑧
𝑖𝑗
− 1

0.14
)

2

) ,

(45)

where 𝑖 = 1, 2, 𝑗 = 1, 2.
In addition, the time of simulation and step size are set to

be 30 s and 0.001 s, respectively. The other design parameters
used in this simulation are chosen as follows:

𝑘 = diag [10, 10, 10] , 𝛾 = 1, 𝜏 = 0.001, 𝜂 = 20.

(46)
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Figure 7: The output response curves with the lock-in-place in 𝑢
2
.

(1) When no fault happened in this system, the simula-
tion curves on adaptive fuzzy sliding mode controller
and LQR controller are shown in Figure 5.

From Figure 5, it can be seen that the system can track
the desired output well with the help of both controllers
and has good dynamic performance. However, as for yawing
angle, under the adaptive fuzzy controller based on sliding
mode, the system can track signal almost without error while
LQR controller cannot achieve that, which demonstrates that
the proposed adaptive fuzzy controller has a better tracking
performance than LQR controller when the system is healthy.

(2) We suppose that the system is subject to loss of
effectiveness at 10 s in input 𝑢

2
, and this may lead to

the changes of pitching angle and yawing angle. The
rest of the simulation settings are the same. Thus, we

can get the simulation curves under adaptive fuzzy
sliding mode controller and LQR controller shown in
Figure 6.

Refer to Figure 6; the conclusion is that, when the loss
of effectiveness occurred in 𝑢

2
, the system nearly has no

influence and still tracks the signal very well with the help of
adaptive fuzzy sliding mode controller. But the performance
of LQR controller falls with the obvious tracking errors. So
the superiority of adaptive fuzzy controller is proven again.

(3) Suppose that a lock-in-place fault occurs in 𝑢
2
at 10 s.

The rest of the simulation settings are unchanged.The
simulation curves under adaptive fuzzy sliding mode
controller and LQR controller are given in Figure 7.

We can obtain the same conclusion from Figure 7.
Without the loss of generality, another case is set to

indicate that adaptive fuzzy sliding mode controller still
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Figure 8: The output response curves with the loss of effectiveness in 𝑢
1
.

works and is better than LQR controller when the actuator
fault occurs in other inputs.

(4) We suppose that the system loses effectiveness at 10 s
in input 𝑢

1
. The rest of the simulation settings are

unchanged. Then the simulation curves under both
controllers are given in Figure 8.

Remark. Compared with the related work in [6, 13], the
good features of this paper are in 3 aspects: (1) fault diagnosis
is not needed in the proposed method so that it can be easier
to be applied to the engineering practice; (2) even without
the process of fault diagnosis, the proposed control system
can still deal with a variety of actuator faults such as loss of
effectiveness and lock-in-place; (3) the dynamic performance
of the attitude system based on adaptive fuzzy sliding mode
control when fault occurs is more smooth.

To sum up, when the actuator faults such as loss of
effectiveness and lock-in-place occur in the attitude system of
quadrotor helicopter, under the adaptive fuzzy sliding mode
controller, this system can still track the desired output signal
very well and return to the normal performance very rapidly,
which implies that the whole system has the certain capability
of self-repairing.

5. Conclusion

In this paper, firstly, we built the affine nonlinear model for
the quadrotor helicopter attitude system, which is MIMO.
With the consideration of unknown actuator faults such as
loss of effectiveness and lock-in-place, an adaptive fuzzy
controller based on slidingmode has been proposed to realize
the direct self-repairing control for this attitude system.
Through a series of simulations, it has verified the availability
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of the proposed method which can make the system recover
from the actuator faults and has good tracking performance.
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A robust filtering problem is formulated and investigated for a class of nonlinear systems with correlated noises, packet losses, and
multiplicative noises. The packet losses are assumed to be independent Bernoulli random variables. The multiplicative noises are
described as random variables with bounded variance. Different from the traditional robust filter based on the assumption that the
process noises are uncorrelated with the measurement noises, the objective of the addressed robust filtering problem is to design a
recursive filter such that, for packet losses and multiplicative noises, the state prediction and filtering covariance matrices have the
optimized upper bounds in the case that there are correlated process and measurement noises. Two examples are used to illustrate
the effectiveness of the proposed filter.

1. Introduction

In recent years, the state estimation theory has received
extensive attention in many fields of application, such as
attitude estimation [1], target tracking [2], signal processing
[3], and integrated navigation [4]. State estimation refers
to a methodology that is used for estimating the state of a
time-varying system through noisymeasurements, which are
different from other methods [5–9]. So far, various kinds of
filtering algorithms for state estimation have been presented,
for example, Kalman filter [10], extended Kalman filter (EKF)
[11], unscented Kalman filter (UKF) [12], and so forth. As is
well known, among those filters, Kalman filter is an optimal
solution based on the minimum mean square error rule
for linear systems and EKF is an effective way for softly
nonlinear system to estimate the state by using linearization
techniques. Although EKF is a popular estimating algorithm
in engineering practice, its use must satisfy the following
two assumptions: (1) the system model should be accurate
and (2) the additive noises should be Gaussian and uncorre-
lated. Otherwise, the performance of EKF can be degraded
severely, even unstable. Unfortunately, in real world, the
model uncertainty is an unavoidable and crucial problem for

nonlinear systems. Therefore it is required to develop a more
general filtering algorithm. To this end, the robust filtering
technique has been developed to reduce the unfavorable
effect of model uncertainties by establishing an appropriate
uncertain model in consideration of uncertainties. Up to
now, a lot of literatures on the robust filtering problem
with model uncertainties have been published, such as the
𝐻
∞

filter [13–16], set-valued nonlinear filter [17, 18], mixed
𝐻
2
/𝐻
∞

filter [19, 20], and robust extended Kalman filter
design [21, 22]. In these reports, the robust recursive filter
design has been investigated to be available for handling the
nonlinear filtering problem with model uncertainties. For
instance, a discrete-time robust extended Kalman filter has
been presented for uncertain systems with sum quadratic
constraints in [21]. Due to the influence of the misalignments
of star sensors, by considering the model uncertainties, a
nonlinear robust filter for satellite attitude determination is
developed and verified in [22].

In literature mentioned above, however, only additive
noises are considered for nonlinear systems.Actually, another
important noise called multiplicative noise is often encoun-
tered in many engineering systems, such as attitude estima-
tion systems and airborne synthetic aperture radar systems. It
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is coupled with the state and has an unknown noise variance,
which results in a negative impact on the state estimation.
Hence, the multiplicative noise is usually viewed as a model
uncertainty. Currently, the nonlinear robust filtering problem
with multiplicative noises has been much less researched.
In [23, 24], by utilizing linear matrix inequality approach, a
robust Kalman filter is derived for linear systems. Different
from them, another robust Kalman filter is proposed for
linear systems by finding two Riccati differential equations
and determining the filter parameters in [25]. Then, [26]
extends the work to nonlinear systems. Apart from multi-
plicative noises, signal transmissions in the sensor networks
are often unreliable. For example, sudden sensor failure,
random communication delays, and packet losses appear in
the practical system frequently [27–31]. All these lead to the
measurement mode uncertainty. Accordingly, the filtering
problem with packet losses has stirred considerable research
attention and many research results have been published
recently; see, for example [32–35]. In most literatures, the
packet loss is described as a random variable in the distri-
bution of Bernoulli, which may not be available because of
the existence of the different transmission process inmultiple
sensors. In [36, 37], a diagonal matrix composed of Bernoulli
randomvariables is introduced to themeasurement equation,
which means that individual sensor might have different
missing rates. Meanwhile, it is not difficult to find that the
most existing filtering researches concerning packet losses are
subject to linear systems. However, as we all know, nonlinear-
ity is inevitable in almost all engineering applications, which
will directly degrade the quality of the filtering performance.
For this purpose, a quantized recursive filtering is presented
for a class of nonlinear systems with missing measurements,
multiplicative noises, and quantization effects in [37].Though
missing measurements and multiplicative noises are taken
into consideration at the same time, this work endures the
limitation that the measurement equation must be linear,
which makes that the algorithm in [37] cannot be extended
to solve the general nonlinear filtering problems in the case
that the process and measurement model are all nonlinear.
But note that themultiplicative noise case is just a special case
of the stochastic nonlinearities considered in [36]. Therefore,
an explicit and systematic solution to this problem can be
extended.

In addition, the correlation of additive noises is one of
the key factors to the filtering algorithm. Disturbed by the
complicated environment, the additive noises often show
the characteristic of correlation in the practical application.
Unluckily, the design procedures of all the above filters
for multiplicative noises or packet losses are based on the
assumption that there are uncorrelated additive noises in the
system. In fact, this assumption does not always come into
existence, and the process noise might be correlated with the
measurement noise in real applications. In [38], a modified
UKF for nonlinear systems with correlated additive noises is
proposed.Wang et al. [39] extend thework to develop aGaus-
sian approximation recursive filter framework to deal with
correlated noises. But model uncertainties are not considered
in these works. To the best of the authors’ knowledge, up to
the present, based on the assumption that the process noise is

correlated with the measurement noise, the nonlinear robust
filtering problem with multiplicative noises and packet losses
has not been reported.Therefore, in order to better reflect the
actual situation and consider the complex dynamical systems,
there is a strong desire to develop a robust recursive filter to
handle the robust filtering problem with correlated additive
noises, multiplicative noises, and packet losses.

Motivated by the above discussion, we present a robust
recursive filter for a class of nonlinear systems with correlated
additive noises, multiplicative noises, and packet losses. In
this paper, multiplicative noises are assumed as zero mean
Gaussian white noises and the packet losses are modeled
as independent Bernoulli random variables. Based on the
structure of the extendedKalmanfilterwith correlated noises,
the proposed filter designs an optimal upper bound of the
prediction error and the filtering error covariance matrices,
respectively. The main contributions of the paper are as
follows. (1) In the case that the process noise is correlated
with the measurement noise, a recursive filter framework
is established to deal with the robust filtering problem for
nonlinear systems in the presence of multiplicative noises
and packet losses. (2) The addressed robust recursive filter
problem is new especially when the correlated additive
noises appear in the system. (3) The developed robust filter
is recursive, which is suitable for online applications. The
remainder of the paper is organized as follows. In Section 2,
the problem is formulated. In Section 3, the robust recursive
filter with correlated additive noises, multiplicative noises,
and packet losses is developed. In Section 4, two simulation
examples are employed, and the simulation analysis is given.
In Section 5, some conclusions are drawn.

2. Problem Formulation and Preliminaries

Consider a general class of discrete time-varying systemswith
multiplicative noises, correlated additive noises, and packet
losses:

x
𝑘+1

= 𝑓 (x
𝑘
) +

𝑞

∑

𝑖=1

A𝑠
𝑖𝑘
𝜂
𝑖𝑘
x
𝑘
+ w
𝑘
, (1)

y
𝑘
= Σ
𝑘
ℎ (x
𝑘
) +

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘
𝜉
𝑖𝑘
x
𝑘
+ k
𝑘
, (2)

where x
𝑘

∈ R𝑛 is the state vector, y
𝑘

∈ R𝑚 is the
measurement vector, 𝜂

𝑖𝑘
and 𝜉

𝑖𝑘
are the uncorrelated zero

mean Gaussian multiplicative noises, and A𝑠
𝑖𝑘

and C𝑠
𝑖𝑘

are
known matrices with appropriate dimension. The diagonal
matrix Σ

𝑘
is denoted as Σ

𝑘
= diag{𝜆1

𝑘
, 𝜆
2

𝑘
, . . . , 𝜆

𝑚

𝑘
}, where

𝜆
𝑖

𝑘
(𝑖 = 1, 2, . . . , 𝑚) are independent Bernoulli random

variables. It is assumed that 𝜆𝑖
𝑘
has the probability density

function 𝑝(𝜆
𝑖

𝑘
) on the interval [0, 1] with mean 𝜇

𝑖

𝑘
and

covariance (𝜎𝑖
𝑘
)
2. The process noise w

𝑘
and the measurement
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noise k
𝑘
are correlated zero mean Gaussian white noises,

which satisfies

𝐸 (w
𝑘
) = 0, cov (w

𝑘
,w𝑇
𝑗
) = Q

𝑘
𝛿
𝑘𝑗

𝐸 (k
𝑘
) = 0, cov (k

𝑘
, k𝑇
𝑗
) = R

𝑘
𝛿
𝑘𝑗

cov (w
𝑘
, k𝑇
𝑗
) = S
𝑘
𝛿
𝑘𝑗
.

(3)

The deterministic nonlinear functions 𝑓(x
𝑘
) : R𝑛 → R𝑛

and ℎ(x
𝑘
) : R𝑛 → R𝑚 are known. According to the known

measurement equation, we employ the assumption in [36] as
the following form:

ℎ (x𝑘)
 ≤ 𝑎
1

x𝑘
 + 𝑎
2
, (4)

where 𝑎
1
and 𝑎
2
are the nonnegative scalars.

Because of existing correlated additive noises, for system
(1)-(2), a recursive filter with correlated noises to be designed
is constitutive of the following two steps including the state
prediction and correction:

State prediction:

x̂
𝑘+1|𝑘−1

= 𝑓 (x̂
𝑘|𝑘−1

) , (5)

x̂
𝑘+1|𝑘

= x̂
𝑘+1|𝑘−1

+ L
𝑘
[y
𝑘
− Σ
𝑘
ℎ (x̂
𝑘|𝑘−1

)] , (6)

State correction:

x̂
𝑘+1|𝑘+1

= x̂
𝑘+1|𝑘

+ K
𝑘+1

[y
𝑘+1

− Σ
𝑘+1

ℎ (x̂
𝑘+1|𝑘

)] , (7)

where Σ
𝑘
= 𝐸(Σ

𝑘
) = diag(𝜇1

𝑘
, 𝜇
2

𝑘
, . . . , 𝜇

𝑚

𝑘
); x̂
𝑘|𝑘−1

is the one-
step state prediction at time 𝑘 − 1 with x̂

0|−1
= x̂
0|0
; x̂
𝑘+1|𝑘−1

is the two-step state prediction at time 𝑘 − 1; L
𝑘
and K

𝑘+1
are

the gain parameters to be determined; x̂
𝑘+1|𝑘+1

is the state
estimation at time 𝑘 + 1.

The aim of the paper is to design a recursive filter for
the structures (5)–(7), which make the filtering prediction
and estimation covariance have upper bounds in the presence
of multiplicative noises and packet losses. Suppose that two
positive definite matrices Ξ

𝑘+1|𝑘
and Ξ

𝑘+1|𝑘+1
satisfy

𝐸 [(x
𝑘+1

− x̂
𝑘+1|𝑘

) (x
𝑘+1

− x̂
𝑘+1|𝑘

)
𝑇

] ≤ Ξ
𝑘+1|𝑘

,

𝐸 [(x
𝑘+1

− x̂
𝑘+1|𝑘+1

) (x
𝑘+1

− x̂
𝑘+1|𝑘+1

)
𝑇

] ≤ Ξ
𝑘+1|𝑘+1

.

(8)

The addressed filtering problem is that the designed filter
parameters L

𝑘
andK

𝑘+1
in (5)–(7) shouldminimize the upper

bounds Ξ
𝑘+1|𝑘

and Ξ
𝑘+1|𝑘+1

.

Remark 1. In engineering applications, multiplicative noises
constantly existing in the systems depend on the real state
value, which results in the unknown noise variance. As
discussed in [26], it should be seen as a model uncertainty.
Moreover, the definition (3) shows that the process noise
is correlated with the measurement noise. This requires
employing a new state prediction step in (5)-(6), which is
different from the state prediction of the recursive filter form

in [36, 37]. Meanwhile, the unknown prediction gain L
𝑘
does

not exist in the literature [36, 37], which will lead to the
different estimation results. Subsequently, the packet losses
are described by utilizing the diagonalmatrixΣ

𝑘
in (2), which

indicates that the different sensors have different failure rates.
Since multiplicative noises, correlated additive noises, and
packet losses are taken into account, the system (1)-(2) ismore
generalized to describe the realistic situations in engineering.

3. Design of Robust Recursive Filter

3.1. The Error Covariance Matrix. Denote the two-step pre-
diction error as x̃

𝑘+1|𝑘−1
= x
𝑘+1

− x̂
𝑘+1|𝑘−1

and the one-step
prediction error as x̃

𝑘+1|𝑘
= x
𝑘+1

− x̂
𝑘+1|𝑘

. From (1), (2), (5),
and (6), they can be calculated as

x̃
𝑘+1|𝑘−1

= 𝑓 (x
𝑘
) − 𝑓 (x̂

𝑘|𝑘−1
)

𝑞

∑

𝑖=1

A𝑠
𝑖𝑘
𝜂
𝑖𝑘
x
𝑘
+ w
𝑘
, (9)

x̃
𝑘+1|𝑘

= x̃
𝑘+1|𝑘−1

− L
𝑘
[Σ
𝑘
ℎ (x
𝑘
) +

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘
𝜉
𝑖𝑘
x
𝑘
+ k
𝑘
− Σ
𝑘
ℎ (x̂
𝑘|𝑘−1

)] .

(10)

Thenonlinear functions𝑓(x
𝑘
) and ℎ(x

𝑘
) can be linearized

by utilizing the Taylor series expansion around x̂
𝑘|𝑘−1

:

𝑓 (x
𝑘
) = 𝑓 (x̂

𝑘|𝑘−1
) + A
𝑘
x̃
𝑘|𝑘−1

+ 𝑜 (
x̃𝑘|𝑘−1

) , (11)

ℎ (x
𝑘
) = ℎ (x̂

𝑘|𝑘−1
) + C
𝑘
x̃
𝑘|𝑘−1

+ 𝑜 (
x̃𝑘|𝑘−1

) , (12)

where A
𝑘

= 𝜕𝑓(x
𝑘
)/𝜕x
𝑘
|x𝑘=x̂𝑘|𝑘−1 ; C𝑘 = 𝜕ℎ(x

𝑘
)/𝜕x
𝑘
|x𝑘=x̂𝑘|𝑘−1 ;

𝑜(|x̃
𝑘|𝑘−1

|) and 𝑜(|x̃
𝑘|𝑘−1

|) represent the high-order terms of
the Taylor series expansion. According to the literature [26],
𝑜(|x̃
𝑘|𝑘−1

|) and 𝑜(|x̃
𝑘|𝑘−1

|) can be expressed as

𝑜 (
x̃𝑘|𝑘−1

) = B
𝑘
𝛽
𝑘
E
𝑘
x̃
𝑘|𝑘−1

,

𝑜 (
x̃𝑘|𝑘−1

) = D
𝑘
𝛼
𝑘
E
𝑘
x̃
𝑘|𝑘−1

,

(13)

where B
𝑘
∈ R𝑛×𝑛 andD

𝑘
∈ R𝑚×𝑛 are known scaling matrices,

E
𝑘
∈ R𝑛×𝑛 is a known tuning matrix, and 𝛽

𝑘
∈ R𝑛×𝑛 and

𝛼
𝑘
∈ R𝑛×𝑛 are unknown time-varying matrices accounting

for the linearization errors of the system model that satisfies

𝛽
𝑘
𝛽
𝑇

𝑘
≤ I, 𝛼

𝑘
𝛼
𝑇

𝑘
≤ I. (14)

According to (9), (11), and (13), the two-step prediction
error can be written as

x̃
𝑘+1|𝑘−1

= (A
𝑘
+ B
𝑘
𝛽
𝑘
E
𝑘
) x̃
𝑘|𝑘−1

+

𝑞

∑

𝑖=1

A𝑠
𝑖𝑘
𝜂
𝑖𝑘
x
𝑘
+ w
𝑘
. (15)
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Substituting (12), (13), and (15) into (9), the one-step
prediction error can be determined as

x̃
𝑘+1|𝑘

= (A
𝑘
+ B
𝑘
𝛽
𝑘
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𝑘
) x̃
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(16)

where it is assumed thatH
𝑘
= [B
𝑘

L
𝑘
Σ
𝑘
D
𝑘
], F
𝑘
= [
𝛽
𝑘

0𝑛×𝑛
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and J
𝑘
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I𝑛×𝑛 ] and from (14) we have F

𝑘
F𝑇
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The one-step prediction error covariance can be obtained
as

P
𝑘+1|𝑘

= 𝐸 (x̃
𝑘+1|𝑘

x̃𝑇
𝑘+1|𝑘

)

= [(A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) +H

𝑘
F
𝑘
J
𝑘
E
𝑘
]P
𝑘|𝑘−1

× [(A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) +H
𝑘
F
𝑘
J
𝑘
E
𝑘
]
𝑇

− S
𝑘
L𝑇
𝑘
− L
𝑘
S𝑇
𝑘

+ L
𝑘
[Σ̆
𝑘
∘ 𝐸 (ℎ (x

𝑘
) ℎ
𝑇
(x
𝑘
))

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘
𝐸 (x
𝑘
x𝑇
𝑘
) (C𝑠
𝑖𝑘
)
𝑇
+ R
𝑘
] L𝑇
𝑘

+

𝑞

∑

𝑖=1

A𝑠
𝑖𝑘
𝐸 (x
𝑘
x𝑇
𝑘
) (A𝑠
𝑖𝑘
)
𝑇
+Q
𝑘
,

(17)

where Σ̆
𝑘
= diag{(𝜎1

𝑘
)
2
, (𝜎
2

𝑘
)
2
, . . . , (𝜎

𝑚

𝑘
)
2
}.

Denote the estimation error as

x̃
𝑘+1|𝑘+1

= x
𝑘+1

− x̂
𝑘+1|𝑘+1

. (18)

From (1), (2), and (7), it can be rewritten as

x̃
𝑘+1|𝑘+1

= x̃
𝑘+1|𝑘

− K
𝑘+1

[y
𝑘+1

− Σ
𝑘+1

ℎ (x̂
𝑘+1|𝑘

)]

= x̃
𝑘+1|𝑘

− K
𝑘+1

[Σ
𝑘+1

ℎ (x
𝑘+1

) +

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘+1
𝜉
𝑖𝑘+1

x
𝑘+1

+ k
𝑘+1

−Σ
𝑘+1

ℎ (x̂
𝑘+1|𝑘

) ]

= (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

− K
𝑘+1
Σ
𝑘+1

D
𝑘+1
𝛼
𝑘+1

E
𝑘+1

) x̃
𝑘+1|𝑘

− K
𝑘+1

(

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘+1
𝜉
𝑖𝑘+1

x
𝑘+1

+ k
𝑘+1

)

− K
𝑘+1

(Σ
𝑘+1

− Σ
𝑘+1

) ℎ (x
𝑘+1

) ,

(19)

where C
𝑘+1

= 𝜕ℎ(x
𝑘
)/𝜕x
𝑘
|x𝑘=x̂𝑘+1|𝑘 ; D𝑘+1 is a known problem-

dependent scaling matrix; E
𝑘+1

is a known tuning matrix;
𝛼
𝑘+1

is an unknown time-varying matrix that satisfies

𝛼
𝑘+1
𝛼
𝑇

𝑘+1
≤ I. (20)

Subsequently, in the light of (19), the filtering error
covariance can be expressed as

P
𝑘+1|𝑘+1

= 𝐸 (x̃
𝑘+1|𝑘+1

x̃𝑇
𝑘+1|𝑘+1

)

= (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

− K
𝑘+1
Σ
𝑘+1

D
𝑘+1
𝛼
𝑘+1

E
𝑘+1

)

× P
𝑘+1|𝑘

(I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

− K
𝑘+1
Σ
𝑘+1

D
𝑘+1
𝛼
𝑘+1

E
𝑘+1

)
𝑇

+ K
𝑘+1

[Σ̆
𝑘+1

∘ 𝐸 (ℎ (x
𝑘+1

) ℎ
𝑇
(x
𝑘+1

))

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘+1

𝐸 (x
𝑘+1

x𝑇
𝑘+1

) (C𝑠
𝑖𝑘+1

)
𝑇

+R
𝑘+1

]K𝑇
𝑘+1

.

(21)

Remark 2. Since there are the high-order errors, the matrices
𝛽
𝑘
, 𝛼
𝑘
, and 𝛼

𝑘+1
are unknown, which makes the fact that the

prediction covarianceP
𝑘+1|𝑘

and the filtering error covariance
P
𝑘+1|𝑘+1

from (17) and (21) cannot be computed directly. In
order to complete the design of the filter, an effective way
is to calculate the upper bounds for the P

𝑘+1|𝑘
and P

𝑘+1|𝑘+1

and then design the prediction gain L
𝑘
and the filtering gain

K
𝑘+1

to minimize the upper bounds. Due to the influence
correlated noises and unknown prediction gain L

𝑘
, there is

a striking contrast between the prediction covariance P
𝑘+1|𝑘

in this paper and the counterpart in the literature [36, 37].
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3.2.The Robust Recursive Filter Design. To develop the robust
recursive filter, the following lemmas are given.

Lemma 3 (see [40]). Let A = [𝑎
𝑖𝑗
]
𝑛×𝑛

be a real matrix and let
B = diag(𝑏

1
, 𝑏
2
, . . . , 𝑏

𝑛
) be a diagonal random matrix. Then

𝐸 {BAB𝑇} =
[
[
[
[
[

[

𝐸 {𝑏
2

1
} 𝐸 {𝑏

1
𝑏
2
} ⋅ ⋅ ⋅ 𝐸 {𝑏

1
𝑏
𝑛
}

𝐸 {𝑏
2
𝑏
1
} 𝐸 {𝑏

2

2
} ⋅ ⋅ ⋅ 𝐸 {𝑏

2
𝑏
𝑛
}

...
... d

...
𝐸 {𝑏
𝑛
𝑏
1
} 𝐸 {𝑏

𝑛
𝑏
2
} ⋅ ⋅ ⋅ 𝐸 {𝑏

2

𝑛
}

]
]
]
]
]

]

∘ A, (22)

where ∘ is the Hadamard product.

Lemma 4 (see [41]). Given matrices A, H, E, and F with
compatible dimensions such that FF𝑇 ≤ I, letX be a symmetric
positive definite matrix and let 𝛾 be an arbitrary positive
constant such that

𝛾
−1I − EXE𝑇 > 0. (23)

Then the following matrix inequality holds:

(A +HFE)X(A +HFE)𝑇 ≤ A(X−1 − 𝛾E𝑇E)
−1

A𝑇

+ 𝛾
−1HH𝑇.

(24)

Lemma 5 (see [42]). For 0 ≤ 𝑘 ≤ 𝑛, suppose thatX = X𝑇 > 0,
e
𝑘
(X) = e𝑇

𝑘
(X) ∈ R𝑛×𝑛, and g

𝑘
(X) = g𝑇

𝑘
(X) ∈ R𝑛×𝑛. If there

exists Y ≥ X such that

e
𝑘
(Y) ≥ e

𝑘
(X) ,

g
𝑘
(Y) > e

𝑘
(Y) ,

(25)

then the solutions M
𝑘
and N

𝑘
to the following difference

equations,

M
𝑘+1

= e
𝑘
(M
𝑘
) , N

𝑘+1
= g
𝑘
(N
𝑘
) ,

M
0
= N
0
> 0,

(26)

satisfyM
𝑘
≤ N
𝑘
.

According to these lemmas, the following theorem is
given to obtain the main results of the robust recursive filter.

Theorem 6. Consider the covariance matrices of the one-step
prediction errorand the filtering error in (17) and (21). Assume
that the conditions shown in (14) and (20) come into existence.

Let 𝜆
1
, 𝜆
2
, 𝜀
1
, and 𝜀

2
be positive scalars. If the following two

discrete-time Riccati difference equations,

Ξ
𝑘+1|𝑘

= (A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) (Ξ
−1

𝑘|𝑘−1
− 2𝜆
1
E𝑇
𝑘
E
𝑘
)
−1

(A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
)
𝑇

+ 𝜆
−1

1
(B
𝑘
B𝑇
𝑘
+ L
𝑘
Σ
𝑘
D
𝑘
D𝑇
𝑘
Σ

𝑇

𝑘
L𝑇
𝑘
) +Q

𝑘
− S
𝑘
L𝑇
𝑘
− L
𝑘
S𝑇
𝑘

+ L
𝑘
{Σ̆
𝑘
∘ [2 (𝑎

2

1
tr (Ω
𝑘|𝑘−1

) + 𝑎
2

2
)] I

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘
Ω
𝑘|𝑘−1

(C𝑠
𝑖𝑘
)
𝑇

+ R
𝑘
} L𝑇
𝑘
+

𝑞

∑

𝑖=1

A𝑠
𝑖𝑘
Ω
𝑘|𝑘−1

(A𝑠
𝑖𝑘
)
𝑇

,

(27)

Ξ
𝑘+1|𝑘+1

= (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

) (Ξ
−1

𝑘+1|𝑘
− 𝜆
2
E𝑇
𝑘+1

E
𝑘+1

)
−1

× (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

)
𝑇

+ 𝜆
−1

2
K
𝑘+1
Σ
𝑘+1

D
𝑘+1

D𝑇
𝑘+1
Σ

𝑇

𝑘+1
K𝑇
𝑘+1

+ K
𝑘+1

{Σ̆
𝑘+1

∘ [2 (𝑎
2

1
tr (Δ
𝑘+1|𝑘

) + 𝑎
2

2
)] I

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘+1
Δ
𝑘+1|𝑘

(C𝑠
𝑖𝑘+1

)
𝑇
+ R
𝑘+1

}K𝑇
𝑘+1

(28)

with initial covariance Ξ
0|−1

= Ξ
0|0

> 0 have positive definite
solution, such that for 0 ≤ 𝑘 ≤ 𝑁

𝜆
−1

1
I − J
𝑘
E
𝑘
Ξ
𝑘|𝑘−1

(J
𝑘
E
𝑘
)
𝑇

> 0,

𝜆
−1

2
I − E
𝑘+1
Ξ
𝑘+1|𝑘

E𝑇
𝑘+1

> 0,

(29)

where

Ω
𝑘|𝑘−1

= (1 + 𝜀
1
)Ξ
𝑘|𝑘−1

+ (1 + 𝜀
−1

1
) x̂
𝑘|𝑘−1

x̂𝑇
𝑘|𝑘−1

,

Δ
𝑘+1|𝑘

= (1 + 𝜀
2
)Ξ
𝑘+1|𝑘

+ (1 + 𝜀
−1

2
) x̂
𝑘+1|𝑘

x̂𝑇
𝑘+1|𝑘

,

(30)

then the prediction gain L
𝑘
and the filtering gainK

𝑘+1
are given

by

L
𝑘
= [S
𝑘
− A
𝑘
(Ξ
−1

𝑘|𝑘−1
− 2𝜆
1
E𝑇
𝑘
E
𝑘
)
−1

C𝑇
𝑘
Σ
𝑘
]

× {Σ
𝑘
C
𝑘
(Ξ
−1

𝑘|𝑘−1
− 2𝜆
1
E𝑇
𝑘
E
𝑘
)
−1

C𝑇
𝑘
Σ
𝑘

+ 𝜆
−1

1
Σ
𝑘
D
𝑘
D𝑇
𝑘
Σ

𝑇

𝑘
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+ Σ̆
𝑘
∘ [2 (𝑎

2

1
tr (Ω
𝑘|𝑘−1

) + 𝑎
2

2
)] I

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘
Ω
𝑘|𝑘−1

(C𝑠
𝑖𝑘
)
𝑇

+ R
𝑘
}

−1

,

(31)

K
𝑘+1

= (Ξ
−1

𝑘+1|𝑘
− 𝜆
2
E𝑇
𝑘+1

E
𝑘+1

)
−1

C𝑇
𝑘+1
Σ
𝑘+1

× {Σ

𝑘+1

C
𝑘+1

(Ξ
−1

𝑘+1|𝑘
− 𝜆
2
E𝑇
𝑘+1

E
𝑘+1

)
−1

C𝑇
𝑘+1
Σ
𝑘+1

+ 𝜆
−1

2
Σ
𝑘+1

D
𝑘+1

D𝑇
𝑘+1
Σ

𝑇

𝑘+1
+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘+1
Δ
𝑘+1|𝑘

(C𝑠
𝑖𝑘+1

)
𝑇

+Σ̆
𝑘+1

∘ [2 (𝑎
2

1
tr (Δ
𝑘+1|𝑘

) + 𝑎
2

2
)] I + R

𝑘+1
}

−1

(32)

and the matrices Ξ
𝑘+1|𝑘

and Ξ
𝑘+1|𝑘+1

are upper bounds for
P
𝑘+1|𝑘

and P
𝑘+1|𝑘+1

; that is,

P
𝑘+1|𝑘

≤ Ξ
𝑘+1|𝑘

, P
𝑘+1|𝑘+1

≤ Ξ
𝑘+1|𝑘+1

. (33)

Moreover, the prediction gain L
𝑘
given by (31) minimizes the

upper bound Ξ
𝑘+1|𝑘

and the filtering gain K
𝑘+1

given by (32)
minimizes the upper bound Ξ

𝑘+1|𝑘+1
.

Proof. According to (17) and (21), the prediction covariance
P
𝑘+1|𝑘

and the filtering error covariance P
𝑘+1|𝑘+1

can be
expressed as the functions of P

𝑘|𝑘−1
and P

𝑘+1|𝑘
:

P
𝑘+1|𝑘

= P
𝑘+1|𝑘

(P
𝑘|𝑘−1

) ,

P
𝑘+1|𝑘+1

= P
𝑘+1|𝑘+1

(P
𝑘+1|𝑘

) .

(34)

Assume that 𝜀
1
is a positive scalar. The matrix inequality

can be obtained as

x̃
𝑘|𝑘−1

x̂𝑇
𝑘|𝑘−1

+ x̂
𝑘|𝑘−1

x̃𝑇
𝑘|𝑘−1

≤ 𝜀
1
x̃
𝑘|𝑘−1

x̃𝑇
𝑘|𝑘−1

+ 𝜀
1

−1x̂
𝑘|𝑘−1

x̂𝑇
𝑘|𝑘−1

.

(35)

From (35), we have

𝐸 (x
𝑘
x𝑇
𝑘
) ≤ 𝐸 [(x̃

𝑘|𝑘−1
+ x̂
𝑘|𝑘−1

) (x̃
𝑘|𝑘−1

+ x̂
𝑘|𝑘−1

)
𝑇

]

≤ (1 + 𝜀
1
)P
𝑘|𝑘−1

+ (1 + 𝜀
−1

1
) x̂
𝑘|𝑘−1

x̂𝑇
𝑘|𝑘−1

= Ψ
𝑘|𝑘−1

.

(36)

According to the literature [36], based on (4), we obtain

𝐸 {ℎ (x
𝑘
) ℎ
𝑇
(x
𝑘
)} ≤ 𝐸 {

ℎ (x𝑘)

2

} I ≤ 𝐸 {(𝑎
1

x𝑘
 + 𝑎
2
)
2

} I

≤ (2𝑎
2

1
𝐸 {

x𝑘

2

} + 2𝑎
2

2
) I

= 2 [𝑎
2

1
tr (𝐸 (x

𝑘
x𝑇
𝑘
)) + 𝑎

2

2
] I.

(37)

Substituting (36) into (37), it can be rewritten as

𝐸 {ℎ (x
𝑘
) ℎ
𝑇
(x
𝑘
)} ≤ 2 [𝑎

2

1
tr (Ψ
𝑘|𝑘−1

) + 𝑎
2

2
] I. (38)

Furthermore, inserting (36) and (38) into (17), the one-
step prediction error covariance can be rearranged as

P
𝑘+1|𝑘

≤ [(A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) +H

𝑘
F
𝑘
J
𝑘
E
𝑘
]P
𝑘|𝑘−1

× [(A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) +H
𝑘
F
𝑘
J
𝑘
E
𝑘
]
𝑇

− S
𝑘
L𝑇
𝑘
− L
𝑘
S𝑇
𝑘

+ L
𝑘[ Σ̆𝑘 ∘ 2 [𝑎

2

1
tr (Ψ
𝑘|𝑘−1

) + 𝑎
2

2
] I

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘
Ψ
𝑘|𝑘−1

(C𝑠
𝑖𝑘
)
𝑇
+ R
𝑘
}L𝑇
𝑘

+

𝑞

∑

𝑖=1

A𝑠
𝑖𝑘
Ψ
𝑘|𝑘−1

(A𝑠
𝑖𝑘
)
𝑇

+Q
𝑘
,

(39)

Similar to (36) and (38), let 𝜀
2
be a positive scalar; we have

𝐸 (x
𝑘+1

x𝑇
𝑘+1

) ≤ (1 + 𝜀
2
)P
𝑘+1|𝑘

+ (1 + 𝜀
−1

2
) x̂
𝑘+1|𝑘

x̂𝑇
𝑘+1|𝑘

= Λ
𝑘+1|𝑘

,

𝐸 {ℎ (x
𝑘+1

) ℎ
𝑇
(x
𝑘+1

)} ≤ 2 [𝑎
2

1
tr (Λ
𝑘+1|𝑘

) + 𝑎
2

2
] I.

(40)

Substituting (40) into (21), we have

P
𝑘+1|𝑘+1

= (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

− K
𝑘+1
Σ
𝑘+1

D
𝑘+1
𝛼
𝑘+1

E
𝑘+1

)P
𝑘+1|𝑘

× (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

− K
𝑘+1
Σ
𝑘+1

D
𝑘+1
𝛼
𝑘+1

E
𝑘+1

)
𝑇

+ K
𝑘+1

{Σ̆
𝑘+1

∘ [2 (𝑎
2

1
tr (Λ
𝑘+1|𝑘

) + 𝑎
2

2
)] I

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘+1
Λ
𝑘+1|𝑘

(C𝑠
𝑖𝑘+1

)
𝑇

+ R
𝑘+1

}K𝑇
𝑘+1

.

(41)

From (27) and (28), Ξ
𝑘+1|𝑘

and Ξ
𝑘+1|𝑘+1

can be rewritten
as the functions of Ξ

𝑘|𝑘−1
and Ξ

𝑘+1|𝑘
:

Ξ
𝑘+1|𝑘

= Ξ
𝑘+1|𝑘

(Ξ
𝑘|𝑘−1

) ,

Ξ
𝑘+1|𝑘+1

= Ξ
𝑘+1|𝑘+1

(Ξ
𝑘+1|𝑘

) .

(42)

Assume that there exist 𝜆
1

> 0 and 𝜆
2

> 0. Let the
matrices E

𝑘
and E

𝑘+1
satisfy the inequalities

𝜆
−1

1
I − J
𝑘
E
𝑘
Ξ
𝑘|𝑘−1

(J
𝑘
E
𝑘
)
𝑇
> 0,

𝜆
−1

2
I − E
𝑘+1
Ξ
𝑘+1|𝑘

E𝑇
𝑘+1

> 0.

(43)
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According to Lemma 4, we have

[(A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) +H

𝑘
F
𝑘
J
𝑘
E
𝑘
]Ξ
𝑘|𝑘−1

× [(A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) +H

𝑘
F
𝑘
J
𝑘
E
𝑘
]
𝑇

≤ (A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) (Ξ
−1

𝑘|𝑘−1
− 2𝜆
1
E𝑇
𝑘
E
𝑘
)
−1

× (A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
)
𝑇

+ 𝜆
−1

1
(B
𝑘
B𝑇
𝑘
+ L
𝑘
Σ
𝑘
D
𝑘
D𝑇
𝑘
Σ

𝑇

𝑘
L
𝑇

𝑘
) ,

(I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

− K
𝑘+1
Σ
𝑘+1

D
𝑘+1
𝛼
𝑘+1

E
𝑘+1

)Ξ
𝑘+1|𝑘

× (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

− K
𝑘+1
Σ
𝑘+1

D
𝑘+1
𝛼
𝑘+1

E
𝑘+1

)
𝑇

≤ (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

) (Ξ
−1

𝑘+1|𝑘
− 𝜆
2
E𝑇
𝑘+1

E
𝑘+1

)
−1

× (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

)
𝑇

+ 𝜆
−1

2
K
𝑘+1
Σ
𝑘+1

D
𝑘+1

D𝑇
𝑘+1
Σ

𝑇

𝑘+1
K
𝑇

𝑘+1
.

(44)

Combining (39) and (41)–(44), the condition (25) can be
satisfied in Lemma 5.Thus, according to Lemmas 4 and 5, we
have

P
𝑘+1|𝑘

≤ Ξ
𝑘+1|𝑘

, P
𝑘+1|𝑘+1

≤ Ξ
𝑘+1|𝑘+1

. (45)

To minimize the upper bounds, constructingthe opti-
mized prediction gain L

𝑘
and the filtering gain K

𝑘+1
is to

minimize the upper bounds Ξ
𝑘+1|𝑘

and Ξ
𝑘+1|𝑘+1

; according to
(27) and (28), we have

𝜕 tr (Ξ
𝑘+1|𝑘

)

𝜕L
𝑘

= 2 (A
𝑘
+ L
𝑘
Σ
𝑘
C
𝑘
) (Ξ
−1

𝑘|𝑘−1
− 2𝜆
1
E𝑇
𝑘
E
𝑘
)
−1

× C𝑇
𝑘
Σ
𝑘
− 2S
𝑘

+ 2L
𝑘
{𝜆
−1

1
Σ
𝑘
D
𝑘
D𝑇
𝑘
Σ

𝑇

𝑘

+ Σ̆
𝑘
∘ [2 (𝑎

2

1
tr (Ω
𝑘|𝑘−1

) + 𝑎
2

2
)] I

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘
Ω
𝑘|𝑘−1

(C𝑠
𝑖𝑘
)
𝑇

+ R
𝑘
} = 0,

𝜕 tr (Ξ
𝑘+1|𝑘+1

)

𝜕K
𝑘+1

= −2 (I − K
𝑘+1
Σ
𝑘+1

C
𝑘+1

) (Ξ
−1

𝑘+1|𝑘
− 𝜆
2
E𝑇
𝑘+1

E
𝑘+1

)
−1

× C𝑇
𝑘+1
Σ
𝑘+1

+ 2K
𝑘+1

{𝜆
−1

2
Σ
𝑘+1

D
𝑘+1

D𝑇
𝑘+1
Σ

𝑇

𝑘+1

+ Σ̆
𝑘+1

∘ [2 (𝑎
2

1
tr (Δ
𝑘+1|𝑘

) + 𝑎
2

2
)] I

+

𝑟

∑

𝑖=1

C𝑠
𝑖𝑘+1
Δ
𝑘+1|𝑘

(C𝑠
𝑖𝑘+1

)
𝑇

+ R
𝑘+1

} = 0,

(46)
whereΩ

𝑘|𝑘−1
and Δ

𝑘+1|𝑘
are defined in (30).

Considering (46), the optimized prediction gain L
𝑘
and

the filtering gain K
𝑘+1

can be obtained in (31) and (32). The
proof is completed.

For the sake of clarity, the robust recursive filter is
summarized as follows.

Step 1. Given x̂
𝑘|𝑘−1

and Ξ
𝑘|𝑘−1

and from (31), the prediction
gain L

𝑘
is computed. Using (5) and (31), the one-step state

prediction x̂
𝑘|𝑘−1

and the upper bound Ξ
𝑘+1|𝑘

can be obtained
by (6) and (27).

Step 2. The filtering gain K
𝑘+1

can be given by (32). The state
estimation x̂

𝑘+1|𝑘+1
and the upper boundΞ

𝑘+1|𝑘+1
can be given

by (7) and (28).

Step 3. Repeat Step 1 to update the one-step state prediction
and its upper bound and use Step 2 to obtain the state
estimation.

Remark 7. The robust recursive filter problem is removed by
using Theorem 6 for nonlinear systems with multiplicative
noises, correlated additive noises, and packet losses. Different
from the most existing robust filter literature, the robust
recursive filter design proposed in this paper is based on
the structure including state prediction and state correction
in the presence of the correlated additive noises. Note that
the phenomenon of correlated additive noises, multiplicative
noises, and packet losses arises in the engineering applica-
tions. In order to solve this problem, a robust recursive filter
is derived to find the upper bound of the prediction error
covariance and the filtering error covariance and design the
filter parameters to minimize the upper bounds. It is worth
mentioning that, though the correction terms in (28) and (32)
are similar to the corresponding component in [36], there is a
clear difference between the prediction terms in (27) and (31)
caused by correlated additive noises and the counterpart in
[36, 37], which will directly affect the estimation results. This
distinguishes our work from the work in [36, 37].

4. Simulation

To show the effectiveness of the proposed robust recursive
filter (RRF), it is compared with the finite-horizon extended
Kalman filter (FEKF) in the literature [36] by employing the
following examples.
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Example 8. The discretized maneuvering target tracking
example in [36, 37] is presented including correlated additive
noises, multiplicative noises, and packet losses:

x
𝑘+1

= [
x
1,𝑘+1

x
2,𝑘+1

] = [
0.8x
1,𝑘

+ x
1,𝑘
x
2,𝑘

1.5x
2,𝑘

− x
1,𝑘
x
2,𝑘

]

+ [
0.06 0.08

0.09 0.12
] 𝜂
𝑘
[
x
1,𝑘

x
2,𝑘

] + [
0.01

0.03
]w
𝑘
,

y
𝑘
= Σ
𝑘
× 7.5 sin (x

2,𝑘
) + [0.15 0.2] 𝜉

𝑘
[
x
1,𝑘

x
2,𝑘

] + k
𝑘
,

(47)

where the state x
𝑘

= [x𝑇
1,𝑘

x𝑇
2,𝑘
]
𝑇

represents the position
and velocity of target; 𝜂

𝑘
and 𝜉

𝑘
are independent zero mean

Gaussian white noises with covariance 1; w
𝑘
and k

𝑘
are

correlated zero mean Gaussian noises with Q
𝑘
= 0.05 and

R
𝑘
= 0.05. Let S

𝑘
= 0.02. The mean and covariance of Σ

𝑘
are

determined as 𝜇
𝑘
= 0.9 and (𝜎

𝑘
)
2
= 0.065.

The initial state and covariance are set as x̂
0|0

= [1.8 0.2]
𝑇

and Ξ
0|0

= 20I
2
. Let 𝜀

1
= 0.4, 𝜀

2
= 0.35, 𝜆

1
= 𝜆
2
= 0.002,

D
𝑘
= D
𝑘+1

= [0.1 0.15]
𝑇, E
𝑘
= E
𝑘+1

= 0.01I
2
, and B

𝑘
=

diag{0.1, 0.2}.
To evaluate the performance of the proposed robust

recursive filter, the mean square error (MSE) is employed.
And it can be expressed as

MSE =
1

𝑁

𝑁

∑

𝑘−1

(x
𝑘
− x̂
𝑘|𝑘
)
2

, (48)

where𝑁 is the sample number.
Simulation results are shown in Figures 1–4. FromFigures

1 and 2, it can be seen that, compared with the FEKF in [36],
the proposed robust recursive filter performs better when
the model is correlated with additive noises, multiplicative
noises, and packet losses. Both true position and velocity
are tracked well. This is because the effect of the proposed
algorithm can compensate for the correlated noise, while the
FEKF cannot. Shown in Figures 3 and 4 are the comparisons
of MSE of the estimated states with the corresponding diag-
onal elements of the estimation error covariance. Obviously,
for the proposed algorithm, the MSE of the estimated state is
always lower than the upper bound.This confirms the results
ofTheorem6.Meanwhile, theMSEof the RRF stays below the
MSE of the FEKF, which further illustrates that the proposed
algorithm has higher precision than the FEKF in presence of
correlated additive noises, multiplicative noises, and packet
losses.

Example 9. According to the literature [26], the robust
recursive filter is considered to handle the attitude estima-
tion problem with correlated additive noises, multiplicative
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Figure 1: The trajectory of the actual state x
1
and its estimate.
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Figure 2: The trajectory of the actual state x
2
and its estimate.

noises, and packet losses. The system process models are
expressed as follows:

x
𝑘+1

= [
q
𝑘+1

𝛽
𝑘+1

] = [
I
4×4

+
Δ𝑡

2
Ω (�̃�
𝑘
− 𝛽
𝑘
) 0
4×3

0
3×4

I
3×3

][
q
𝑘

𝛽
𝑘

]

+ [
−
Δ𝑡

2
Ξ (q
𝑘
)

0
3×3

] 𝜂V + [
0
4×1

𝜂
𝑢

]

= 𝑓 (x
𝑘
, �̃�
𝑘
) +

𝑠

∑

𝑖=1

A
𝑖𝑘
𝜂
𝑖𝑘
x
𝑘
+ [

0
4×1

𝜎
𝑢
√Δ𝑡I
3×1

]w
𝑘
,

(49)
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where the state x
𝑘
consisted of the quaternion vector q

𝑘
and

the gyro bias vector 𝛽
𝑘
; �̃�
𝑘
is the gyro measured angular

rate at time 𝑘; Δ𝑡 is the gyros sampling interval; 𝜂V is the
Gaussian white-noise process with zeromean and covariance
𝜎
2

V ; 𝜂𝑢 is the zero mean Gaussian white-noise process with
covariance 𝜎2

𝑢
Δ𝑡; 𝑠 = 3; 𝜂

𝑖𝑘
is the zero mean multiplicative

noise with covariance 1; w
𝑘
is the zero mean Gaussian noise

with covariance 1; [𝜔×] is a cross-product matrix defined by

[𝜔×] = [

[

0 −𝜔
3

𝜔
2

𝜔
3

0 −𝜔
1

−𝜔
2

𝜔
1

0

]

]

, Ω (𝜔) = [
− [𝜔×] 𝜔

−𝜔
𝑇

0
] ;

(50)

A
𝑖𝑘
are known scaling matrices with appropriate dimen-

sion, which can be expressed as

A
𝑖𝑘
= −

Δ𝑡𝜎V

2
[
A1
𝑖𝑘

0
4×3

0
3×4

0
3×3

] , (51)

where

A1
1𝑘

=
[
[
[

[

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

]
]
]

]

, A1
2𝑘

=
[
[
[

[

0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

]
]
]

]

,

A1
3𝑘

=
[
[
[

[

0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0

]
]
]

]

.

(52)

The measurement model can be described as

z
𝑘
=
[
[
[

[

z1
𝑘

z2
𝑘

z3
𝑘

]
]
]

]

= Σ
𝑘
[

[

A (q
𝑘
) ⃗r1

A (q
𝑘
) ⃗r2

A (q
𝑘
) ⃗r3

]

]

+
[
[
[

[

k1
𝑘

k2
𝑘

k3
𝑘

]
]
]

]

= Σ
𝑘
ℎ (x
𝑘
) + 𝜎
𝑠
I
9×1

k
𝑘
,

(53)

where z𝑖
𝑘
(𝑖 = 1, 2, 3) is the measurement vector; A(q

𝑘
) is the

real attitude matrix at time 𝑘; ⃗r𝑖 (𝑖 = 1, 2, 3) is the reference
vector of the star sensors; 𝑖 is the number of star sensors. k𝑖

𝑘

is a zero mean Gaussian white noise with covariance matrix
𝜎
2

𝑠
I
3 × 3

; k
𝑘
is the zero mean Gaussian noise with covariance

1; if q = [𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
]
𝑇
= [𝜌
𝑇
, 𝑞
4
]
𝑇, the attitude matrix can

be written as

A (q) = (𝑞
2

4
− 𝜌
𝑇
𝜌) I
3×3

+ 2𝜌𝜌
𝑇
− 2𝑞
4
[𝜌×] . (54)

The simulation conditions are set as follows: the gyro
sampling interval is Δ𝑡 = 0.25 s; the standard deviation of
gyros’ measurement noise is 𝜎V = 1.45444 × 10

−6 rad/s1/2;
the standard deviation of gyros’ drift noise is 𝜎

𝑢
= 1.3036 ×

10
−9 rad/s3/2; w

𝑘
and k

𝑘
are correlated zero mean Gaussian

noises with Q
𝑘
= 1 and R

𝑘
= 1; let S

𝑘
= 0.5; the standard

deviation of star sensors’ measurement noise is all 𝜎
𝑠
= 18
;

due to using three star sensors, the reference vectors of the
star sensors are ⃗r1 = [1 0 0]

𝑇, ⃗r2 = [0 1 0]
𝑇,and ⃗r3 =

[0 0 1]
𝑇; because of the high precision of the star sensors,

the estimation error is rather small in the attitude estimation
system. Therefore, set B

𝑘
= 0, D

𝑘
= D
𝑘+1

= 0. The random
variables 𝜇𝑖

𝑘
(i = 1, 2, . . . , 9) satisfy the Bernoulli distribution

with Γ
𝑘

= diag{0.8, 0.8, 0.8, 0.9, 0.9, 0.9, 0.95, 0.95, 0.95}; let
𝜀
1
= 𝜀
2
= 0.1 and 𝜆

1
= 𝜆
2
= 0.0001; let C

𝑖𝑘+1
= 0, 𝑎

1
= 1, and

𝑎
2
= 0.05.
The simulated results are shown in Figures 5 and 6.

In Figure 5, blue lines represent the quaternion estimation
errors of the RRF, green dashed lines represent the quaternion
estimation errors of the FEKF, and red dashed lines show the
corresponding diagonal elements of the error covariance of
the RRF. It can be seen clearly that the estimation errors of
the quaternion vector part of the RRF are generally within



10 Mathematical Problems in Engineering

0 100 200 300 400 500 600
−10

0

10

T (s)

q
1

(
)

(a)

−10

0

10

0 100 200 300 400 500 600
T (s)

q
2

(
)

(b)

−10

0

10

0 100 200 300 400 500 600
T (s)

q
3

(
)

(c)

−5

0

5

0 100 200 300 400 500 600
T (s)

q
4

(
)

(d)

Figure 5: The quaternion estimation errors of the proposed filter.
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Figure 6: RMSE of attitude angles in the proposed filter.

the boundaries of the computed covariance, which indi-
cates that the proposed filter can control correlated additive
noises, multiplicative noises, and packet losses. Besides, the
quaternion estimation errors of the RRF are smaller than the
quaternion estimation errors of the FEKF. These show that
the RRF performs better than the FEKF. Furthermore, since
it is very important for attitude estimation to get the angle
information, the estimated quaternion needs to be converted
as the form of Euler angles. In Figure 6, root mean square
error (RMSE) is employed to express the quality of the Euler
angle estimation. For the RRF, the means of RMSE of the
attitude angles are 3.199, 3.125, and 3.195, respectively,
which are lower than the REKF obviously. The reason why
our method has such advantages is that the effects of arising
multiplicative noises, packet losses, and correlated additive
noises are all compensated for without loss of generality.

5. Conclusion

Due to the fact that existing robust filtering algorithms are
difficult in dealing with correlated additive noises, a robust
recursive filter is developed in this paper for nonlinear
systems with consideration of correlated additive noises,
multiplicative noises, and packet losses. The proposed algo-
rithm is designed to minimize the upper bound on the
prediction covariance and the filtering covariance. Simulated
results demonstrate that the proposed filter provides effective
performance for controlling correlated additive noises, mul-
tiplicative noises, and packet losses.
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TheUWBchannel estimation andmultiuser detection problem are investigated.The information symbol and channel parameter are
considered as unknown variables. The multiuser detector and UWB channel estimator are designed jointly. For symbol detection,
the one-step predictor of channel parameter is used and the estimation error is treated as a multiplicative noise; then a Riccati
equation and a Lyapunov equation will be needed. If the transmitted symbols are uncorrelated and identically distributed random
variables with zero mean and unit variance, only a Riccati equation needs to be solved. For UWB channel estimation, the one-step
predictor of information symbol is used and the estimation error is also considered as a multiplicative noise. The solutions to the
above two problems are obtained by solving a couple of Riccati equations together with two Lyapunov equations.

1. Introduction

In the communications literature, a number of different
algorithms have been proposed for channel estimation prob-
lems with accurate models [1–19]. In [1], a subspace-based
estimation algorithm is developed. The algorithms in [2, 3]
are based on the maximum likelihood estimation method.
Due to the performance benefits of the Kalman algorithms,
manyworks have focused on theKalman-filter-based channel
estimation algorithms [13–15]. These algorithms require a
state-space model for the random process to be estimated.

As for the UWB channel, many different types of channel
models have been proposed. In general, the UWB propaga-
tion channel models are characterized by a dense multipath
propagation and the clustering phenomenon and can be clas-
sified as deterministic and statistical [17, 18]. Deterministic
models apply an electromagnetic simulation tool to obtain
exact propagation characteristics for a specified geometry.
Statistical models are normally less complex than the deter-
ministicmodels and can provide sufficiently accurate channel
information. In [20], three channel models were considered,
namely, the Rayleigh tap delay line model, the Δ-K model,
and the Saleh-Valenzuela (S-V) model. The comparisons
showed that the S-V model gives the best fit to the measured

channel characteristics. This double exponential channel
model is commonly used for UWB realistic indoor channel,
and the channel impulse response is given by

H (𝑡) =

𝐿𝑐−1

∑

𝑙𝑐=0

𝐿𝑟−1

∑

𝑙𝑟=0

𝛼
𝑙𝑐,𝑙𝑟
𝛿 (𝑡 − 𝑇

𝑙𝑐
− 𝜏
𝑙𝑐,𝑙𝑟
) , (1)

where

(i) {𝛼
𝑙𝑐 ,𝑙𝑟
} are the multipath gain coefficients, 𝑙

𝑐
refers to

the cluster, and 𝑙
𝑟
refers to the rays in one cluster;

(ii) 𝑇
𝑙𝑐
is the delay of the 𝑙

𝑐
th clusterwhich is defined as the

TOAof the first arrivingmultipath component within
the 𝑙
𝑐
th cluster;

(iii) 𝜏
𝑙𝑐,𝑙𝑟

is the delay of the 𝑙
𝑟
th multipath component

relative to the 𝑙
𝑐
th cluster arrival time 𝑇

𝑙𝑐
.

The clustering channel model relies on two classes of the
parameters, namely, intercluster and intracluster parameters,
which characterize the cluster and multipath component,
respectively. In the above model, {𝐿

𝑐
, 𝑇
𝑙𝑐
} and {𝑇

𝑟
, 𝜏
𝑙𝑐,𝑙𝑟
, 𝛼
𝑙𝑐,𝑙𝑟
}

are classified as the intercluster and intracluster parameters,
respectively. The distributions of the cluster arrive time 𝑇

𝑙𝑐

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 574610, 10 pages
http://dx.doi.org/10.1155/2014/574610

http://dx.doi.org/10.1155/2014/574610


2 Mathematical Problems in Engineering

and the ray arrive time 𝜏
𝑙𝑐,𝑙𝑟

can be given by two Poisson
processes:

𝑝 (𝑇
𝑙𝑐
| 𝑇
𝑙𝑐−1
) = Λ exp [−Λ (𝑇

𝑙𝑐
− 𝑇
𝑙𝑐−1
)] , 𝑙

𝑐
> 0,

𝑝 (𝜏
𝑙𝑐,𝑙𝑟
| 𝜏
𝑙𝑐,𝑙𝑟−1

) = 𝜆 exp [−𝜆 (𝜏
𝑙𝑐,𝑙𝑟
− 𝜏
𝑙𝑐,𝑙𝑟−1

)] , 𝑙
𝑟
> 0,

(2)

where Λ and 𝜆 are mean cluster arrival rate and mean ray
arrival rate, respectively. The channel coefficients are defined
as follows:

𝛼
𝑙𝑐,𝑙𝑟
= 𝑝
𝑙𝑐 ,𝑙𝑟
𝛽
𝑙𝑐 ,𝑙𝑟
, (3)

where 𝑝
𝑙𝑐 ,𝑙𝑟

is equiprobable to ±1 to account for signal
inversion due to reflection; 𝛽

𝑙𝑐 ,𝑙𝑟
correspond to the fading

associated with the 𝑙
𝑐
th ray of the 𝑙

𝑟
th cluster, which can be

modeled as a log-normal distribution:

20 log 10 (𝛽
𝑙𝑐,𝑙𝑟
) ∝ Normal (𝜇

𝑙𝑐 ,𝑙𝑟
, 𝜎
2
) , (4)

where 𝜇
𝑙𝑐 ,𝑙𝑟

is given by

𝜇
𝑙𝑐 ,𝑙𝑟
=
10 ln (Ω

0
) − 10𝑇

𝑙𝑐
/Γ − 10𝜏

𝑙𝑐 ,𝑙𝑟
/𝛾

ln (10)
−
𝜎
2 ln (10)
20

, (5)

whereΩ
0
is themean power of the first path of the first cluster.

The behavior of the averaged power delay profile is

𝐸 [

𝛽
𝑙𝑐,𝑙𝑟



2

] = Ω
0
𝑒
−𝑇𝑙𝑐
/Γ
𝑒
−𝜏𝑙𝑐 ,𝑙𝑟
/𝛾
, (6)

which reflect the exponential decay of each cluster.
With mapping, the above two-dimensional channel

model can be reduced to a one-dimensional channel model:

H (𝑡) =

𝐿

∑

𝑙=0

𝛼
𝑙
𝛿 (𝑡 − 𝜏

𝑙
) , (7)

where 𝑙 = 𝑙
𝑐
𝐿
𝑐
+ 𝑙
𝑟
and 𝐿 = 𝐿

𝑐
𝐿
𝑟
− 1 are the number of the

resolvable multipath components; 𝜏
𝑙
= 𝑇
𝑙𝑐
+ 𝜏
𝑙𝑐,𝑙𝑟

is the delay
of the 𝑙th path relative to the first path; 𝛼𝑙 = 𝛼

𝑙𝑐 ,𝑙𝑟
is the fading

coefficient of path 𝑙.
After mapping, the one-dimensional model can be dealt

with by using some conventional channel estimation algo-
rithm that is used for narrowband systems, such asmaximum
likelihood approach and least mean square approach. In this
paper, we will pursue a Kalman-filter-based approach with
information symbols unknown.

2. UWB System Model

In this paper, we consider a binaryDS-CDMAUWBcommu-
nication systemwith𝐾multiple access users.The transmitted
baseband signal of the 𝑘th user is given by [15, 16]

𝑥
𝑘
(𝑡) = √𝐴

𝑘

∞

∑

𝑛=−∞

𝑏
𝑘
(𝑛) 𝑠
𝑘
(𝑡 − 𝑛𝑇

𝑠
) , (8)

where𝐴
𝑘
is the transmitted bit energy,𝑇

𝑠
is symbol duration,

𝑏
𝑘
(𝑛) is themodulated information symbol of the 𝑘th user and

is chosen randomly from the set {−1, +1}, and 𝑠
𝑘
(𝑡) represents

the transmitted waveform and has the form

𝑠
𝑘
(𝑡) =

𝑁

∑

𝑖=0

𝑐
𝑘
(𝑖) 𝜓 (𝑡 − 𝑖𝑇

𝑐
) , (9)

where 𝑁 is the spreading gain, 𝑐
𝑘
(𝑖) is the spreading code of

the 𝑘th user with period 𝑁, and 𝜓(𝑡) is the real transmitted
monocycle waveform shape in the time interval 0 ≤ 𝑡 ≤ 𝑇

𝑐
,

that is, 𝜓(𝑡) = 0 if 𝑡 ∉ [0, 𝑇
𝑐
], and has energy (1/𝑁).

Note that the channel coefficient 𝛼𝑙 in (7) is fading with
respect to time 𝑡; the channel impulse response for the 𝑘th
user can be described by

H
𝑘
(𝑡) =

𝐿

∑

𝑙=0

𝛼
𝑙

𝑘
(𝑡) 𝛿 (𝑡 − 𝜏

𝑘,𝑙
) , (10)

where 𝜏
𝑘,𝑙

is the time delay for the 𝑙th path of user 𝑘. Then
the received signal component from the 𝑘th user can be
represented as

𝑦
𝑘
(𝑡) = 𝑥

𝑘
(𝑡) ∗H

𝑘
(𝑡)

= √𝐴
𝑘

∞

∑

𝑛=−∞

𝑏
𝑘
(𝑛)

𝑁−1

∑

𝑖=0

𝑐
𝑘
(𝑖)

×

𝐿

∑

𝑗=0

𝛼
𝑙

𝑘
(𝑡) 𝜓 (𝑡 − 𝑛𝑇

𝑠
− 𝑖𝑇
𝑐
− 𝜏
𝑘,𝑗
)

= √𝐴
𝑘

∞

∑

𝑛=−∞

𝑏
𝑘
(𝑛)

×

𝑁−1

∑

𝑖=0

𝑐
𝑘
(𝑖) 𝑔
𝑘
(𝑡, 𝑡 − 𝑛𝑇

𝑠
− 𝑖𝑇
𝑐
) ,

(11)

where ∗ denotes the convolution, and

𝑔
𝑘
(𝑡, 𝜏) ≜

𝐿

∑

𝑗=0

𝛼
𝑙

𝑘
(𝑡) 𝜓 (𝜏 − 𝜏

𝑘,𝑗
) . (12)

The total received signal at the receiver is the superposition
of the signals of the𝐾 users, given by

𝑟 (𝑡) =

𝐾

∑

𝑘=0

𝑦
𝑘
(𝑡) + V (𝑡) , (13)

where V(𝑡) is a white Gaussian noise with zero mean. The
discrete-time signal is generated by sampling the output of a
pulse-matched filter (PMF) at the monocycle rate (as shown
in Figure 1) and given by [13]

𝑦
𝑘
(𝑛𝑁 + 𝑗)

= ∫

𝑛𝑇𝑠+(𝑗+1)𝑇𝑝

𝑛𝑇𝑠+𝑗𝑇𝑝

𝑦
𝑘
(𝑡) 𝜓 (𝑡 − 𝑛𝑇

𝑠
− 𝑗𝑇
𝑝
) 𝑑𝑡
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Figure 1: Received discrete-time signal.

= ∫

𝑛𝑇𝑠+(𝑗+1)𝑇𝑝

𝑛𝑇𝑠+𝑗𝑇𝑝

∞

∑

𝑚=−∞

√𝐴
𝑘
𝑏
𝑘
(𝑚)

×

𝑁𝑐−1

∑

𝑖=0

𝑐
𝑘
(𝑖) 𝑔
𝑘
(𝑡, 𝑡 − 𝑚𝑇

𝑠
− 𝑖𝑇
𝑐
)

× 𝜓 (𝑡 − 𝑛𝑇
𝑠
− 𝑗𝑇
𝑝
) 𝑑𝑡

= √𝐴
𝑘

∞

∑

𝑚=−∞

𝑏
𝑘
(𝑚)

× ∫

𝑇𝑝

0

𝑁𝑐−1

∑

𝑖=0

𝑐
𝑘
(𝑖) 𝑔
𝑘

× (𝑡 + 𝑛𝑇
𝑠
+ 𝑗𝑇
𝑝
, 𝑡 + (𝑛 − 𝑚)𝑇

𝑠

+ (𝑗 − 𝑖𝑁
𝑝
) 𝑇
𝑝
) 𝜓 (𝑡) 𝑑𝑡.

(14)
In this paper the multipath delay {𝜏

𝑘,𝑗
} of the UWB channel

is assumed to be an integral multiple of the monocycle length
𝑇
𝑝
; then the above equation can be rewritten as

𝑦
𝑘
(𝑛𝑁 + 𝑗)

= √𝐴
𝑘

∞

∑

𝑚=−∞

𝑏
𝑘
(𝑚)

× ∫

𝑇𝑝

0

𝑁𝑐−1

∑

𝑖=0

𝑐
𝑘
(𝑖)

×

𝐿

∑

𝑙=0

𝛼
𝑙

𝑘
(𝑡 + 𝑛𝑇

𝑠
+ 𝑗𝑇
𝑝
)

× 𝜓 (𝑡 + (𝑛 − 𝑚)𝑇
𝑠

+ (𝑗 − 𝑖𝑁
𝑝
− 𝑙) 𝑇

𝑐
)

× 𝜓 (𝑡) 𝑑𝑡

= 𝑏
𝑘
(𝑛)

𝐿

∑

𝑙=0

𝑐
𝑘
(⌊
𝑗 − 𝑙

𝑁
𝑝

⌋)

× ∫

𝑇𝑝

0

𝛼
𝑙

𝑘
(𝑡 + 𝑛𝑇

𝑠
+ 𝑗𝑇
𝑝
) 𝑑𝑡

+ 𝑏
𝑘
(𝑛 − 1)

𝐿

∑

𝑙=0

𝑐
𝑘
(⌊
𝑁 + 𝑗 − 𝑙

𝑁
𝑝

⌋)

× ∫

𝑇𝑝

0

𝛼
𝑙

𝑘
(𝑡 + 𝑛𝑇

𝑠
+ 𝑗𝑇
𝑝
) 𝑑𝑡

= 𝑏
𝑘
(𝑛)

𝐿

∑

𝑙=0

𝑐
𝑘
(⌊
𝑗 − 𝑙

𝑁
𝑝

⌋)ℎ
𝑙

𝑘
(𝑛, 𝑗)

+ 𝑏
𝑘
(𝑛 − 1)

𝐿

∑

𝑙=0

𝑐
𝑘
(⌊
𝑁 + 𝑗 − 𝑙

𝑁
𝑝

⌋)ℎ
𝑙

𝑘
(𝑛, 𝑗) ,

(15)

where

ℎ
𝑙

𝑘
(𝑛, 𝑗) = ∫

𝑇𝑝

0

𝛼
𝑙

𝑘
(𝑡 + 𝑛𝑇

𝑠
+ 𝑗𝑇
𝑐
) 𝑑𝑡,

𝑐
𝑘
(𝑖) =

{

{

{

√𝐴
𝑘

𝑁
𝑐
𝑘
(𝑖) , 0 ≤ 𝑖 ≤ 𝑁 − 1;

0, otherwise.

(16)

Further assuming that ℎ𝑙
𝑘
(𝑛, 𝑗) is invariant during a symbol

interval and using ℎ𝑙
𝑘
(𝑛) to denote the channel parameter in

the 𝑛th symbol, then we have

𝑦
𝑘
(𝑛𝑁 + 𝑗) = 𝑏

𝑘
(𝑛)

𝐿

∑

𝑙=0

𝑐
𝑘
(⌊
𝑗 − 𝑙

𝑁
𝑝

⌋)ℎ
𝑙

𝑘
(𝑛)

+ 𝑏
𝑘
(𝑛 − 1)

𝐿

∑

𝑙=0

𝑐
𝑘
(⌊
𝑁 + 𝑗 − 𝑙

𝑁
𝑝

⌋)ℎ
𝑙

𝑘
(𝑛) .

(17)

By collecting𝑁 successive samples, the channel output from
the 𝑘th user at the 𝑛th symbol can be expressed as

y
𝑘
(𝑛) = [𝑦𝑘 (𝑛𝑁) 𝑦𝑘 (𝑛𝑁 + 1) ⋅ ⋅ ⋅ 𝑦𝑘 (𝑛𝑁 + 𝑁 − 1)]

𝑇

= 𝑏
𝑘
(𝑛) 𝐶
0

𝑘
h
𝑘
(𝑛) + 𝑏

𝑘
(𝑛 − 1) 𝐶

1

𝑘
h
𝑘
(𝑛) ,

(18)
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where 𝐶0
𝑘
and 𝐶1

𝑘
are the signature sequence matrices with

dimension𝑁 × (𝐿 + 1) and have the forms

𝐶
0

𝑘
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑐
𝑘
(0) 0 ⋅ ⋅ ⋅ 0

𝑐
𝑘
(⌊

𝑙

𝑁
𝑝

⌋) 𝑐
𝑘
(0) ⋅ ⋅ ⋅ 0

𝑐
𝑘
(⌊

2

𝑁
𝑝

⌋) 𝑐
𝑘
(⌊

1

𝑁
𝑝

⌋) ⋅ ⋅ ⋅ 0

...
... d

...
...

... d
...

𝑐
𝑘
(⌊
𝑁 − 1

𝑁
𝑝

⌋) 𝑐
𝑘
(⌊
𝑁 − 2

𝑁
𝑝

⌋) ⋅ ⋅ ⋅ 𝑐
𝑘
(⌊
𝑁 − 𝐿 − 1

𝑁
𝑝

⌋)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐶
1

𝑘
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 𝑐
𝑘
(⌊
𝑁 − 1

𝑁
𝑝

⌋) ⋅ ⋅ ⋅ 𝑐
𝑘
(⌊
𝑁 − 𝐿

𝑁
𝑝

⌋)

...
... d

...

0 0 ⋅ ⋅ ⋅ 𝑐
𝑘
(⌊
𝑁 − 1

𝑁
𝑝

⌋)

0 0 ⋅ ⋅ ⋅ 0

...
... d

...
0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

(19)

and h
𝑘
(𝑛) is the parameter collection of all multipath compo-

nents

h
𝑘
(𝑛) = [ℎ

0

𝑘
(𝑛) ℎ

1

𝑘
(𝑛) ⋅ ⋅ ⋅ ℎ

𝐿

𝑘
(𝑛)]
𝑇

. (20)

The total received discrete-time signal of all users can be given
by

r (𝑛) = [𝑟 (𝑛𝑁) 𝑟 (𝑛𝑁 + 1) ⋅ ⋅ ⋅ 𝑟 (𝑛𝑁 + 𝑁 − 1)]𝑇

=

𝐾

∑

𝑘=1

y
𝑘
(𝑛) + k (𝑛) ,

(21)

where

k (𝑛) = [V (𝑛𝑁) V (𝑛𝑁 + 1) ⋅ ⋅ ⋅ V (𝑛𝑁 + 𝑁 − 1)]𝑇,

V (𝑛𝑁 + 𝑗) = ∫
𝑛𝑇𝑠+(𝑗+1)𝑇𝑐

𝑛𝑇𝑠+𝑗𝑇𝑐

V (𝑡) 𝜓 (𝑡 − 𝑛𝑇
𝑠
− 𝑗𝑇
𝑐
) 𝑑𝑡.

(22)

Considering that the channel parameters {ℎ𝑙
𝑘
(𝑛)} and the user

information symbols {𝑏
𝑘
(𝑛)} are unknown, in this paper, we

pursue a joint design method for user detection and channel
parameter estimation.

The problems investigated in this paper can be stated as
follows.

Problem I. Given the received signal sequence {r(𝑠)}𝑛
𝑠=0

, with
{h
𝑘
(𝑠), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
not exactly known, find an optimal

symbol detector {�̂�
𝑘
(𝑛 | 𝑛), 𝑘 = 1, . . . , 𝐾} by using a priori

estimate {ĥ
𝑘
(𝑠 | 𝑠 − 1), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
of channel parameter

which is recursively calculated in Problem-II.

Problem II. Given the received signal sequence {r(𝑠)}𝑛
𝑠=0

, with
the information symbol {𝑏

𝑘
(𝑠), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
not exactly

known, find a channel estimator {ĥ
𝑘
(𝑛 | 𝑛), 𝑘 = 1, . . . , 𝐾} by

using a priori estimate {�̂�
𝑘
(𝑠 | 𝑠 − 1), 𝑘 = 1, . . . , 𝐾}

𝑛

𝑠=0
which is

recursively calculated in Problem-I.

Remark 1. In this section, we have adopted a signal model for
DS-CDMAcommunication systems similar to that in [15, 16].
Different from [15], in (7) the information symbol matrix is
unknown which will be detected together with the channel
parameter. In most relevant works, the information symbol
is considered known for channel estimation [14], or channel
parameter is known for user detection [12] and only few
works investigate a joint estimation scheme considering both
of the aforementioned unknown variables [13]. This paper
will propose a Kalman-filter-based joint design method for
multiuser detection and channel estimation.

Remark 2. The above two problems cannot be solved sep-
arately, because the channel parameters and information
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symbols are not exactly known. Different from [13], in
this paper the symbol detector and channel estimator are
designed simultaneously. The solutions of the detector and
channel estimatorwill be obtained via solving coupled Riccati
equations together with two Lyapunov equations.

3. Multiuser Detector

In this section, a first-order state-space model is applied
to symbol detection for the proposed UWB system, where
the channel parameter is not exactly known. Then we can

employ the Kalman filter to estimate all users’ symbols
simultaneously. In view of (7), for multiuser detection the
total received discrete-time signal r(𝑛) can be expressed as

r (𝑛) = [𝑟 (𝑛𝑁) 𝑟 (𝑛𝑁 + 1) ⋅ ⋅ ⋅ 𝑟 (𝑛𝑁 + 𝑁 − 1)]𝑇

=

𝐾

∑

𝑘=1

y
𝑘
(𝑛) + k (𝑛)

= 𝐶𝐻 (𝑛) b (𝑛) + k (𝑛) ,

(23)

where

𝐶 = [𝐶
0

1
𝐶
0

2
⋅ ⋅ ⋅ 𝐶

0

𝐾
𝐶
1

1
𝐶
1

2
⋅ ⋅ ⋅ 𝐶

1

𝐾
] ,

𝐻 (𝑛) = diag {h
1
(𝑛) , h

2
(𝑛) , . . . , h

𝐾
(𝑛) , h

1
(𝑛) , h

2
(𝑛) , ⋅ ⋅ ⋅ , h

𝐾
(𝑛)} ,

b (𝑛) = [𝑏1 (𝑛) 𝑏2 (𝑛) ⋅ ⋅ ⋅ 𝑏𝐾 (𝑛) 𝑏1 (𝑛 − 1) 𝑏2 (𝑛 − 1) ⋅ ⋅ ⋅ 𝑏𝐾 (𝑛 − 1)]
𝑇

.

(24)

Note the symbol vector b(𝑛) defined in (23); the first-order
non-Gaussian Markov transition model is defined as

b (𝑛 + 1) = Φb (𝑛) + w (𝑛) , (25)

where

Φ = [

[

0
𝐾,𝐾

0
𝐾,𝐾

𝐼
𝐾

0
𝐾,𝐾

]

]

,

w (𝑛) = [𝑏1 (𝑛 + 1) ⋅ ⋅ ⋅ 𝑏𝐾(𝑛 + 1) 01,𝐾]
𝑇

,

(26)

where 0
𝑚,𝑛

denotes the 𝑚 × 𝑛 all-zero matrix, and 𝐼
𝑚
is the

𝑚 × 𝑚 identity matrix; the noise vector w(𝑛) is white with
zero mean and covariance matrix

𝑄
𝑤
(𝑛) = 𝐸 {w (𝑛)w𝑇 (𝑛)} . (27)

For the convenience of discussion, we first give the following
definitions.

Definition 3. For a given symbol 𝑛, let 𝜉(𝑛 | 𝑛 − 1) denote
the optimal estimation of 𝜉(𝑛), which is the projection of 𝜉(𝑛)
onto the linear space

L {r (0) ⋅ ⋅ ⋅ r (𝑛 − 1)} . (28)

Definition 4. For multiuser detection with unknown UWB
channel parameters, define

e
𝑏
(𝑛) ≜ r (𝑛) − r̂ (𝑛 | 𝑛 − 1) . (29)

For UWB channel estimation with unknown information
symbols, define

e
ℎ
(𝑛) ≜ r (𝑛) − r̂ (𝑛 | 𝑛 − 1) , (30)

where r̂(𝑛 | 𝑛 − 1) is defined as in Definition 3.

As in the standard Kalman filtering, we define the one-
step prediction error covariance matrix of the information
symbol and channel parameter as

𝑃
𝑏
(𝑛) ≜ 𝐸 {b̃ (𝑛 | 𝑛 − 1) b̃𝑇 (𝑛 | 𝑛 − 1)} ,

𝑃
ℎ
(𝑛) ≜ 𝐸 {h̃ (𝑛 | 𝑛 − 1) h̃𝑇 (𝑛 | 𝑛 − 1)} ,

(31)

where

b̃ (𝑛 | 𝑛 − 1) ≜ b (𝑛) − b̂ (𝑛 | 𝑛 − 1) ,
h̃ (𝑛 | 𝑛 − 1) ≜ h (𝑛) − ĥ (𝑛 | 𝑛 − 1) ,

(32)

where h(𝑛) is the stack of channel parameters of all users

h (𝑛) = [h𝑇
1
(𝑛) h𝑇

2
(𝑛) ⋅ ⋅ ⋅ h𝑇

𝐾
(𝑛)]
𝑇

, (33)

and b̂(𝑛 | 𝑛−1) and ĥ(𝑛 | 𝑛−1) are defined as in Definition 3.
Note that the elements ofUWBchannel parametermatrix

are unknown. In this section, we will use the one-step
prediction �̂�(𝑛 | 𝑛 − 1) instead of 𝐻(𝑛) and consider the
estimation error �̃�(𝑛 | 𝑛 − 1) as a multiplicative noise for
symbol detection. The optimal detector is given according to
the following theorem.

Theorem 5. Consider the discrete-time state-space signal
model (23) and (25); when the channel parameter matrix𝐻(𝑛)
is unknown, the information symbol detector is given by

b̂ (𝑛 | 𝑛) = [𝐼
2𝐾
− 𝐾
𝑏
(𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)] b̂ (𝑛 | 𝑛 − 1)

+ 𝐾
𝑏
(𝑛) r (𝑛) ,

(34)

where �̂�(𝑛 | 𝑛 − 1) is the one-step prediction of UWB channel
parameter obtained from the next section, and 𝐾

𝑏
(𝑛) is the

detector gain matrix

𝐾
𝑏
(𝑛) = 𝑃

𝑏
(𝑛) �̂�
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
𝑏

𝑒
(𝑛)]
−1

, (35)
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where 𝑄𝑏
𝑒
(𝑛) is the covariance matrix of innovation e

𝑏
(𝑛)

𝑄
𝑏

𝑒
(𝑛) = 𝐶�̂� (𝑛 | 𝑛 − 1) 𝑃

𝑏
(𝑛) �̂�
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶([
𝑃
ℎ
(𝑛) 𝑃

ℎ
(𝑛)

𝑃
ℎ
(𝑛) 𝑃

ℎ
(𝑛)
] ∘ [∏

𝑏

(𝑛) ⊗ 𝐼
𝐿+1
])𝐶
𝑇

+ 𝑄V (𝑛) ,

(36)

where ∘ denotes the Hadamard product and ⊗ is the Kronecker
product. Π

𝑏
(𝑛) satisfies the following Lyapunov equation:

∏

𝑏

(𝑛 + 1) = Φ∏

𝑏

(𝑛)Φ
𝑇
+ 𝑄
𝑤
(𝑛) , (37)

where 𝑃
𝑏
(𝑛) is the symbol estimation error covariance matrix

and satisfies the following Riccati equation:

𝑃
𝑏
(𝑛 + 1) = Φ𝑃

𝑏
(𝑛)Φ − Φ𝐾

𝑏
(𝑛) 𝑄
𝑏

𝑒
(𝑛)𝐾
𝑇

𝑏
(𝑛)Φ + 𝑄

𝑤
(𝑛) ,

(38)

where 𝑃
ℎ
(𝑛) is the UWB channel parameter estimation error

covariance matrix which will be calculated recursively in the
next section.The one-step prediction of the information symbol
is given by

b̂ (𝑛 + 1 | 𝑛) = Φb̂ (𝑛 | 𝑛) , (39)

which will be used for channel estimator design.

Proof. From Definition 3 we know that the a priori estimate
r̂(𝑛 | 𝑛 − 1) is the projection of r(𝑛) onto the linear space
L{r(0), . . . , r(𝑛 − 1)} and consider the channel parameter
matrix𝐻(𝑛) as an unknown variable; then we have

r̂ (𝑛 | 𝑛 − 1) = Proj {r (𝑛) | r (0) , . . . , r (𝑛 − 1)}
= 𝐶�̂� (𝑛 | 𝑛 − 1) b̂ (𝑛 | 𝑛 − 1) .

(40)

In view of (7) and Definition 4, we obtain

e
𝑏
(𝑛) = r (𝑛) − r̂ (𝑛 | 𝑛 − 1)

= 𝐶𝐻 (𝑛) b (𝑛) − 𝐶�̂� (𝑛 | 𝑛 − 1) b̂ (𝑛 | 𝑛 − 1) + k (𝑛)

= 𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+ 𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛) .
(41)

It is apparent that e
𝑏
(𝑛) is with zeromean and 𝐸{e

𝑏
(𝑠)e
𝑏
(𝑗)} =

0 if 𝑠 ̸=𝑗. The stochastic process {e
𝑏
(𝑠)}
𝑛

𝑠=0
is termed as

the innovation sequence associated with the received signal
sequence. The covariance matrix of e

𝑏
(𝑛), denoted as 𝑄𝑏

𝑒
(𝑛),

is calculated as follows:

𝑄
𝑏

𝑒
(𝑛) ≜ ⟨e (𝑛) , e (𝑛)⟩
= ⟨𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+ 𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛) ,

𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛)⟩

= 𝐶�̂� (𝑛 | 𝑛 − 1) 𝑃
𝑏
(𝑛) �̂�

𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶⟨�̃� (𝑛 | 𝑛 − 1) b (𝑛) ,

�̃� (𝑛 | 𝑛 − 1) b (𝑛)⟩𝐶𝑇 + 𝑄V (𝑛) ,

(42)

where ⟨, ⟩ denotes the inner product, and

⟨�̃� (𝑛 | 𝑛 − 1) b (𝑛) , �̃� (𝑛 | 𝑛 − 1) b (𝑛)⟩

= 𝐸
{�̃�,b}

{�̃� (𝑛 | 𝑛 − 1) b (𝑛) b𝑇 (𝑛) �̃�𝑇 (𝑛 | 𝑛 − 1)}

= 𝐸
{h̃,𝑏}

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

h̃
1
(𝑛 | 𝑛 − 1) 𝑏

1
(𝑛)

...

h̃
𝐾
(𝑛 | 𝑛 − 1) 𝑏

𝐾
(𝑛)

h̃
1
(𝑛 | 𝑛 − 1) 𝑏

1
(𝑛 − 1)

...

h̃
𝐾
(𝑛 | 𝑛 − 1) 𝑏

𝐾
(𝑛 − 1)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

h̃
1
(𝑛𝑛 − 1) 𝑏

1
(𝑛)

...

h̃
𝐾
(𝑛𝑛 − 1) 𝑏

𝐾
(𝑛)

h̃
1
(𝑛𝑛 − 1) 𝑏

1
(𝑛 − 1)

...

h̃
𝐾
(𝑛𝑛 − 1) 𝑏

𝐾
(𝑛 − 1)

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝑇

}}}}}}}}}}}}}}}

}}}}}}}}}}}}}}}

}

= 𝐸

{h̃,𝑏}
[
𝑀
11
(𝑛) 𝑀

12
(𝑛)

𝑀
𝑇

12
(𝑛) 𝑀

22
(𝑛)
]

= [
𝑃
ℎ
(𝑛) 𝑃

ℎ
(𝑛)

𝑃
ℎ
(𝑛) 𝑃

ℎ
(𝑛)
] ∘ [∏

𝑏

(𝑛) ⊗ 𝐼
𝐿+1
] ,

(43)

where ∘ denotes the Hadamard product and ⊗ is the Kro-
necker product; Π

𝑏
(𝑛) denotes the inner product of symbol

vector b(𝑛), given by

∏

𝑏

(𝑛) ≜ ⟨b (𝑛) , b (𝑛)⟩ , (44)

and satisfies the following Lyapunov equation:

∏

𝑏

(𝑛 + 1) = Φ∏

𝑏

(𝑛 + 1)Φ
𝑇
+ 𝑄
𝑤
(𝑛) , (45)

where 𝑃
ℎ
(𝑛) is the parameter estimation error covariance

matrix which will be calculated recursively in the next
section. In the third step {𝑀

𝑖𝑗
(𝑛), 𝑖, 𝑗 = 1, 2} are as follows:
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𝑀
11
(𝑛) =

[
[
[
[
[
[
[
[

[

h̃
1
𝑏
2

1
(𝑛) h̃𝑇
1

h̃
1
𝑏
1
(𝑛) 𝑏
2
(𝑛) h̃𝑇
2
⋅ ⋅ ⋅ h̃
1
𝑏
1
(𝑛) 𝑏
𝐾
(𝑛) h̃𝑇
𝐾

h̃
2
𝑏
2
(𝑛) 𝑏
1
(𝑛) h̃𝑇
1

h̃
2
𝑏
2

2
(𝑛) h̃𝑇
2

⋅ ⋅ ⋅ h̃
2
𝑏
2
(𝑛) 𝑏
𝐾
(𝑛) h̃𝑇
𝐾

...
... d

...

h̃
𝐾
𝑏
𝐾
(𝑛) 𝑏
1
(𝑛) h̃𝑇
1

h̃
𝐾
𝑏
𝐾
(𝑛) 𝑏
2
(𝑛) h̃𝑇
2
⋅ ⋅ ⋅ h̃

𝐾
𝑏
2

𝐾
(𝑛) h̃𝑇
𝐾

]
]
]
]
]
]
]
]

]

,

𝑀
12
(𝑛) =

[
[
[
[
[
[
[
[

[

h̃
1
𝑏
1
(𝑛) 𝑏
1
(𝑛 − 1) h̃𝑇

1
h̃
1
𝑏
1
(𝑛) 𝑏
2
(𝑛 − 1) h̃𝑇

2
⋅ ⋅ ⋅ h̃

1
𝑏
1
(𝑛) 𝑏
𝐾
(𝑛 − 1) h̃𝑇

𝐾

h̃
2
𝑏
2
(𝑛) 𝑏
1
(𝑛 − 1) h̃𝑇

1
h̃
2
𝑏
2
(𝑛) 𝑏
2
(𝑛 − 1) h̃𝑇

2
⋅ ⋅ ⋅ h̃

2
𝑏
2
(𝑛) 𝑏
𝐾
(𝑛 − 1) h̃𝑇

𝐾

...
... d

...

h̃
𝐾
𝑏
𝐾
(𝑛) 𝑏
1
(𝑛 − 1) h̃𝑇

1
h̃
𝐾
𝑏
𝐾
(𝑛) 𝑏
2
(𝑛 − 1) h̃𝑇

2
⋅ ⋅ ⋅ h̃
𝐾
𝑏
𝐾
(𝑛) 𝑏
𝐾
(𝑛 − 1) h̃𝑇

𝐾

]
]
]
]
]
]
]
]

]

,

𝑀
22
(𝑛) =

[
[
[
[
[
[
[

[

h̃
1
𝑏
2

1
(𝑛 − 1) h̃𝑇

1
h̃
1
𝑏
1
(𝑛 − 1) 𝑏

2
(𝑛 − 1) h̃𝑇

2
⋅ ⋅ ⋅ h̃
1
𝑏
1
(𝑛 − 1) 𝑏

𝐾
(𝑛 − 1) h̃𝑇

𝐾

h̃
2
𝑏
2
(𝑛 − 1) 𝑏

1
(𝑛 − 1) h̃𝑇

1
h̃
2
𝑏
2

2
(𝑛 − 1) h̃𝑇

2
⋅ ⋅ ⋅ h̃
2
𝑏
2
(𝑛 − 1) 𝑏

𝐾
(𝑛 − 1) ĥ𝑇

𝐾

...
... d

...

h̃
𝐾
𝑏
𝐾
(𝑛 − 1) 𝑏

1
(𝑛 − 1) h̃𝑇

1
h̃
𝐾
𝑏
𝐾
(𝑛 − 1) 𝑏

2
(𝑛 − 1) h̃𝑇

2
⋅ ⋅ ⋅ h̃

𝐾
𝑏
2

𝐾
(𝑛 − 1) h̃𝑇

𝐾

]
]
]
]
]
]
]

]

,

(46)

where, for the convenience, {h̃
𝑖
(𝑛 | 𝑛 − 1), 𝑖 = 1, . . . , 𝐾} have

been replaced by {h̃
𝑖
} without confusion. Then substituting

(43) into (42), we can get (36).
In terms of the definition of projection, we know that

b̂ (𝑛 + 1 | 𝑛) = Proj {b (𝑛 + 1) | r (0) , . . . , r (𝑛)} . (47)

From the linear estimation theory, the linear space spanned
by the innovation sequence {e

𝑏
(𝑠)}
𝑛

𝑠=0
contains the same

information as the one spanned by the received signal
sequence {r(𝑠)}𝑛

𝑠=0
; that is,

L {r (0) , . . . , r (𝑛)} =L {e
𝑏
(0) , . . . , e

𝑏
(𝑛)} . (48)

Then the projection in (48) can be rewritten as

b̂ (𝑛 + 1 | 𝑛) = Proj {b (𝑛 + 1) | e
𝑏
(0) , . . . , e

𝑏
(𝑛)}

= Proj {Φb (𝑛) + w (𝑛) | e
𝑏
(0) , . . . , e

𝑏
(𝑛 − 1)}

+ Proj {Φb (𝑛) + w (𝑛) | e
𝑏
(𝑛)}

= Φb̂ (𝑛 | 𝑛 − 1) + Φ𝐾
𝑏
(𝑛) e
𝑏
(𝑛) ,

(49)

where 𝐾
𝑏
(𝑛) is the parameter of the projection of b(𝑛) onto

e
𝑏
(𝑛), which yields the stationary point of the following error

Gramian matrix:

⟨b (𝑛) − 𝐾
𝑏
(𝑛) e
𝑏
(𝑛) , b (𝑛) − 𝐾

𝑏
(𝑛) e
𝑏
(𝑛)⟩ , (50)

and satisfies

𝐾
𝑏
(𝑛) 𝑄
𝑏

𝑒
(𝑛) = ⟨b (𝑛) , 𝑒

𝑏
(𝑛)⟩

= ⟨b (𝑛) , 𝐶�̂� (𝑛 | 𝑛 − 1) b̃ (𝑛 | 𝑛 − 1)

+𝐶�̃� (𝑛 | 𝑛 − 1) b (𝑛) + k (𝑛)⟩

= 𝑃
𝑏
(𝑛) �̂�
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
.

(51)

Thus we have

𝐾
𝑏
(𝑛) = 𝑃

𝑏
(𝑛) �̂�
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
𝑏

𝑒
(𝑛)]
−1

. (52)

In view of (52) and (53), it is apparent that we have

𝑃
𝑏
(𝑛 + 1) + Φ𝐾

𝑏
(𝑛) 𝑄
𝑏

𝑒
(𝑛)𝐾
𝑇

𝑏
(𝑛)Φ = Φ𝑃

𝑏
(𝑛)Φ + 𝑄

𝑤
(𝑛) ,

(53)

which is (38).
In view of (49), the projection in (48) can be further given

by

b̂ (𝑛 + 1 | 𝑛) = Φb̂ (𝑛 | 𝑛 − 1) + Φ𝐾
𝑏
(𝑛) e
𝑏
(𝑛)

= Φ [𝐼
2𝐾
− 𝐾
𝑏
(𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)]

× b̂ (𝑛 | 𝑛 − 1) + Φ𝐾
𝑏
(𝑛) r (𝑛)

= Φb̂ (𝑛 | 𝑛) ,

(54)

where we have defined detector as

b̂ (𝑛 | 𝑛) ≜ [𝐼
2𝐾
− 𝐾
𝑏
(𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)]

× b̂ (𝑛 | 𝑛 − 1) + 𝐾
𝑏
(𝑛) r (𝑛) ,

(55)

which is (34).
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Remark 6. InTheorem 5, the UWB channel estimation error
�̃�(𝑛 | 𝑛 − 1) is considered as a multiplicative noise which
is in matrix form, and the transmitted symbols may be
colored and cross-correlated for different users.Their statistic
characteristics are represented in the Lyapunov equation
in (37). If the transmitted symbols are uncorrelated and
identically distributed random variables with zero mean
and unit variance, then the above result is equivalent to
that proposed in [13] where the channel estimation error is
considered as an additive noise.

Corollary 7. If one assumes the transmitted symbols are
uncorrelated and identically distributed random variables with
zero mean and unit variance, that is, 𝐸{b(𝑛)b𝑇(𝑛)} = 𝐼

2𝐾
, then

the information symbol detector is given by

b̂ (𝑛 | 𝑛) = [𝐼
2𝐾
− 𝐾
𝑏
(𝑛) 𝐶�̂� (𝑛 | 𝑛 − 1)]

× b̂ (𝑛 | 𝑛 − 1) + 𝐾
𝑏
(𝑛) r (𝑛) ,

(56)

where

𝐾
𝑏
(𝑛) = 𝑃

𝑏
(𝑛) �̂�
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
𝑏

𝑒
(𝑛)]
−1

,

𝑄
𝑏

𝑒
(𝑛) = 𝐶�̂� (𝑛 | 𝑛 − 1) 𝑃

𝑏
(𝑛) �̂�
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶([
𝑃
ℎ
(𝑛) 0

0 𝑃
ℎ
(𝑛)
] ∘ [𝐼
2𝐾
⊗ 𝐽
𝐿+1
])𝐶
𝑇

+ 𝑄V (𝑛) ,

𝑃
𝑏
(𝑛 + 1) = Φ𝑃

𝑏
(𝑛)Φ − Φ𝐾

𝑏
(𝑛) 𝑄
𝑏

𝑒
(𝑛)𝐾
𝑇

𝑏
(𝑛)Φ + 𝑄

𝑤
(𝑛) ,

(57)

with 𝐽
𝐿+1

being the all-one matrix with dimension (𝐿+1)×(𝐿+
1) and 𝑄

𝑤
(𝑛) = [

𝐼𝐾 0𝐾,𝐾

0𝐾,𝐾 0𝐾,𝐾
].

Proof. Theproof is straightforward. Note that the transmitted
symbols are uncorrelated and identically distributed random
variables with zeromean and unit variance; thenwe can easily
obtain that Π

𝑏
(𝑛) = 𝐼

2𝐾
and 𝐸

{h̃,𝑏}{𝑀12} = 0. It is apparent
that 𝑄

𝑤
(𝑛) = [

𝐼𝐾 0𝐾,𝐾

0𝐾,𝐾 0𝐾,𝐾
].

4. Channel Estimator

For UWB channel estimation, the received discrete-time
signal in (23) can be reexpressed as

r (𝑛) = [𝑟 (𝑛𝑁) 𝑟 (𝑛𝑁 + 1) ⋅ ⋅ ⋅ 𝑟(𝑛𝑁 + 𝑁 − 1)]𝑇

=

𝐾

∑

𝑘=1

y
𝑘
(𝑛) + k (𝑛)

= 𝐶𝐵 (𝑛) h (𝑛) + k (𝑛) ,

(58)

where 𝐵(𝑛) is the information symbol matrix and is defined
as

𝐵 (𝑛) = [𝐵 (𝑛) 𝐵 (𝑛 − 1)]
𝑇

,

𝐵 (𝑛) = diag {𝑏
1
(𝑛) 𝐼
𝐿+1
, 𝑏
2
(𝑛) 𝐼
𝐿+1
, . . . , 𝑏

𝐾
(𝑛) 𝐼
𝐿+1
} ,

(59)

and h(𝑛) is as shown in (33), which can be modeled by using
a first-order autoregressive (AR) model as

h (𝑛 + 1) = Γh (𝑛) + u (𝑛) , (60)

where u(𝑛) is a white random variable with zero mean and
covariance matrix 𝑄

𝑢
(𝑛), and Γ is the channel correlation

matrix, given by

Γ = diag {𝑎0
1
, . . . , 𝑎

𝐿

1
, . . . , 𝑎

0

𝐾
, . . . , 𝑎

𝐿

𝐾
} , (61)

where the scalar factor {𝑎𝑙
𝑘
, 𝑘 = 1, . . . , 𝐾, 𝑙 = 0, . . . , 𝐿}

denotes the state transition coefficient of the 𝑘th user in the
𝑙th path. The above AR model for the channel parameter is
only an approximation to the actual statistics of these random
processes.

Similar to multiuser detection, for the UWB channel
estimation the symbol matrix is treated as an unknown
variable and uses the one-step prediction 𝐵(𝑛 | 𝑛 − 1) instead
of 𝐵(𝑛) and considers the estimation error 𝐵(𝑛 | 𝑛 − 1) as
a multiplicative noise for channel estimation. The optimal
estimation is given according to the following theorem.

Theorem 8. Consider the discrete-time state-space signal
model (60) and (62); when the information symbolmatrix𝐵(𝑛)
is unknown, the channel estimator is given by

ĥ (𝑛 | 𝑛) = [𝐼
𝐾(𝐿+1)

− 𝐾
ℎ
(𝑛) 𝐶𝐵 (𝑛 | 𝑛 − 1)] ĥ (𝑛 | 𝑛 − 1)

+ 𝐾
ℎ
(𝑛) r (𝑛) ,

(62)

where 𝐵(𝑛 | 𝑛 − 1) is the one-step prediction of information
symbol obtained from the previous section, and 𝐾

ℎ
(𝑛) is the

estimator gain matrix:

𝐾
ℎ
(𝑛) = 𝑃

ℎ
(𝑛) 𝐵
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇
[𝑄
ℎ

𝑒
(𝑛)]
−1

, (63)

where 𝑄ℎ
𝑒
(𝑛) is the covariance matrix of innovation e

ℎ
(𝑛):

𝑄
ℎ

𝑒
(𝑛) = 𝐶𝐵 (𝑛 | 𝑛 − 1) 𝑃

ℎ
(𝑛) 𝐵
𝑇
(𝑛 | 𝑛 − 1) 𝐶

𝑇

+ 𝐶([
Π
ℎ
(𝑛) Π

ℎ
(𝑛)

Π
ℎ
(𝑛) Π

ℎ
(𝑛)
] ∘ [𝑃
𝑏
(𝑛) ⊗ 𝐼

𝐿+1
])𝐶
𝑇

+ 𝑄V (𝑛) ,

(64)

where 𝑃
𝑏
(𝑛) is the information symbol estimation error covari-

ance matrix which is obtained in the previous section, and
Π
ℎ
(𝑛) satisfies the following Lyapunov equation:

∏

ℎ

(𝑛 + 1) = Γ∏

ℎ

(𝑛) Γ
𝑇
+ 𝑄
𝑢
(𝑛) , (65)

where 𝑃
𝑏
(𝑛) is the channel estimation error covariance matrix

and satisfies the following Riccati equation:

𝑃
ℎ
(𝑛 + 1) = Φ𝑃

ℎ
(𝑛)Φ − Γ𝐾

ℎ
(𝑛) 𝑄
ℎ

𝑒
(𝑛)𝐾
𝑇

ℎ
(𝑛) Γ + 𝑄

𝑢
(𝑛) .

(66)

The one-step prediction of the information symbol is given by

ĥ (𝑛 + 1 | 𝑛) = Γĥ (𝑛 | 𝑛) , (67)

which will be used for the design of the user detector.
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Figure 2: The proposed algorithm structure.

Proof. Consider the information symbol matrix 𝐵(𝑛) as an
unknown variable; then we have

r̂ (𝑛 | 𝑛 − 1) = 𝐶𝐵 (𝑛 | 𝑛 − 1) ĥ (𝑛 | 𝑛 − 1) . (68)

In view of (7) and Definition 4, we obtain

e
ℎ
(𝑛) = 𝐶𝐵 (𝑛 | 𝑛 − 1) h̃ (𝑛 | 𝑛 − 1)

+ 𝐶𝐵 (𝑛 | 𝑛 − 1) h (𝑛) + k (𝑛) .
(69)

It is apparent that e
ℎ
(𝑛) is with zeromean and𝐸{e

ℎ
(𝑠)e
ℎ
(𝑗)} =

0 if 𝑠 ̸=𝑗. The covariance matrix of e
ℎ
(𝑛) is denoted as 𝑄ℎ

𝑒
(𝑛).

The following proof of this theorem is very similar to that
of Theorem 5, so we omit it here.

Remark 9. Different from [7, 10], for UWB channel estima-
tion, the users’ symbols are also considered as unknown vari-
ables in this paper. The one-step prediction of symbol matrix
is used, and the estimation error is treated as a multiplicative
noise in matrix form. The detector and channel estimator
are designed jointly and cannot be solved separately. The
algorithm structure is as shown in Figure 2.

5. Conclusions

The information symbol and channel parameter are conside-
red as unknown variables in this paper. The multiuser dete-
ctor and UWB channel estimator are designed jointly. For
symbol detection, the one-step predictor of channel parame-
ter is used and the estimation error is treated as a multiplica-
tive noise; then a Riccati equation and a Lyapunov equation
will be needed. If the transmitted symbols are uncorrelated
and identically distributed random variables with zero mean
and unit variance, only a Riccati equation needs to be solved.
For UWB channel estimation, the one-step predictor of
information symbol is used and the estimation error is also
considered as a multiplicative noise. The solutions to the
above two problems are obtained by solving a couple of
Riccati equations together with two Lyapunov equations.
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Using the sea clutter image from X-Band radar for current retrieval is an effective way of obtaining information on ocean currents.
Traditional methods used for current retrieval have been based on the least squares algorithm, which is not only simple and efficient
but also generally speaking accurate. In order to improve the precision of current retrieval, this paper has, as its goal, the study of the
used radar connected with sea clutter imaging for current retrieval, with the particle swarm optimization (PSO) algorithm being
proposed. This method is achieved by obtaining a three-dimensional image spectrum, taking the high-order dispersion relation
model as the theoretical distribution model of the wave energy points of three-dimensional image spectra, using a forward model
within the PSO framework, and considering the requirements of the order of the model, weights and optimal distribution of the
energy points, and so on in fitness function. Simulation results show that, comparedwith the traditional ILSMmethods, themethod
provided in this paper is more flexible, with a capacity for a high dispersion relationship order, higher precision, and an increased
stability in terms of current inversion.

1. Introduction

Ocean currents are the result of a variety of physical effects
arising from a relatively stable large-scale flow. Ocean cur-
rents have a very close relationship for marine exploration,
marine development, and marine navigation safety. Exist-
ing methods for obtaining the sea surface current include
moored wave buoys, an analysis of stereo images, and
analyses of satellite altimetry data and marine radar images.
Although buoys provide reliable measurements, they are
easily subject to damage and loss. The method for collect-
ing stereo images from synthetic aperture radar is costly
and time-consuming. Furthermore, orbiting satellites cannot
obtain continuous data around a specified zone [1–3]. The
marine radar of current telemetry is an effective means of
obtaining currents. Compared with other methods, it has the
advantages of wide range of detection, high safety, all-day
observation, convenience, and the low price.

Current retrieval based on marine radar related to sea
clutter images is essentially an optimization problem, with
the least squares method (LSM) being used to implement

the current strategy for solving the problem. In 1985, Young
et al. were the first to suggest the use of marine radar sea
clutter imaging for current retrieval [4]. A three-dimensional
fast Fourier transformation (3-D FFT) was used to transform
the time domain of the sea clutter image sequence into the
frequency domain spectra of the three-dimensional image,
and then the LSMwas used for the current retrieval. As far as
the high currents in the dispersion relation of the inversion
effect were concerned, in 2001 Senet and others proposed
a method for current retrieval based on the iterative least
squares method (ILSM) [5], increasing the accuracy of sea
surface stream retrieval, based onmethods put forward in the
literature on the subject [4]. In 2002, in their work concerning
the effect of the three-dimensional image spectrum of the
energy value of each point, Gangeskar proposed a method
of current retrieval based on the three-dimensional image
spectrum weighted least squares and applied the equation
based on the regularization method, thus improving the
precision of current retrieval [6]. In 2010, using the dispersion
relation retrieval current target function, Tang proposed
an iterative method for current estimation based on the
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Figure 1: Schematic diagram illustrating current retrieval.

2000

0

−2000

D
ist

an
ce

 (m
)

20000−2000

Distance (m)

3Δt

2Δt
Δt

NΔt

x

y

t

(a) Schematic diagram of sea clutter sequences

0 32 64 96 128
0

32

64

96

128

X number

Y
nu

m
be

r

3Δt

2Δt

Δt

NΔt

x

y

t

(b) Schematic illustrating rectangular analysis area of the Cartesian
coordinate system

Figure 2: Sea clutter image data for current retrieval.

minimum variance error sequence [7] and emphasized the
effect of overall energy collection on the estimated curve on
the basis of the relevant literature [5]. In 2011, using the three-
dimensional image spectrum to extract information related
to the wave spectrum as accurately as possible in order to
improve the retrieval accuracy of currents, Yuan and others
proposed an iterative method for estimating currents based
on adaptive threshold selection [8] on the basis of the relevant
literature [5].

The least squares strategy, when adopted as the method
for current retrieval, has the advantage of a simple, fast
solution and certainty, but, in the terms of constraint han-
dling, processing complex optimization problems, nonlinear
optimization, and so on, it has obvious shortcomings. In
addition, its objective function is inflexible. In order to rectify
this problem, the PSO algorithm is proposed here as a
model for current retrieval. Using this algorithm, with the
flexible design of this objective function, constraint condi-
tion positive expression, self-organization solving, and other
characteristics for current retrieval, this model for current
retrieval is discussed with a view to assess the observational
data selection, the initial selection, fitness function design,
process of algorithm design, and other related issues in detail.
The numerical simulation results verify the correctness of the
proposed method. It improves the precision and stability of
the current retrieval effectively and provides a new solution
for the modeling method of the current retrieval based on
marine radar.

2. Current Retrieval Fundamentals

The method used for current retrieval based on the marine
X-Band radar related to sea clutter images was proposed
by Young et al. [4] in 1985, using the Fourier transforms
spectrum analysis framework, as illustrated in Figure 1.

2.1. Three-Dimensional Image Spectrum Acquisition. In order
to obtain a radar three-dimensional image spectrum, three-
dimensional fast Fourier transformation (3-D FFT) for sea
clutter images sequence continuously measured by marine
radar is required, to enable us to transform the time and
space domain of radar sea clutter image sequencing into the
frequency domain of a radar image spectrum.

As shown in Figure 2, before the transformation opera-
tion can be performed, a rectangular analysis area from the
sea clutter image sequence must be selected, and, through
filtering and interpolation, the polar coordinates of the
image sequence are transformed into 𝜂(𝑥, 𝑦, 𝑡), namely, the
Cartesian coordinate system connected with grid image
sequencing.

With the grid image sequence 𝜂(𝑥, 𝑦, 𝑡) being used for
the 3-D FFT, the three-dimensional radar image spectrum
𝐹(𝑘
𝑥
, 𝑘
𝑦
, 𝜔) is obtained:

𝐹 (𝑘
𝑥
, 𝑘
𝑦
, 𝜔)

= ∫

𝐿𝑥

0

∫

𝐿𝑦

0

∫

𝑇

0

𝜂 (𝑥, 𝑦, 𝑡) ⋅ 𝑒
−𝑖(𝑘𝑥 ⋅𝑥+𝑘𝑦 ⋅𝑦−𝜔⋅𝑡)𝑑𝑥 𝑑𝑦𝑑𝑡,

(1)
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where 𝐿
𝑥
and 𝐿

𝑦
are the rectangular analysis area, 𝑥 and 𝑦

are the direction of the spatial scale, respectively, and 𝑇 is the
time scale of the image sequence, with 𝑘

𝑥
, 𝑘
𝑦
being the wave

number of 𝑥 and 𝑦, respectively, and 𝜔 the frequency. The
resolutions of wave number and frequency are

𝑑𝑘
𝑥
=
2𝜋

𝐿
𝑥

, 𝑑𝑘
𝑦
=
2𝜋

𝐿
𝑦

, 𝑑𝜔 =
2𝜋

𝑇
. (2)

Considering the symmetry of the Fourier transforms and
in order to eliminate the 180∘ ambiguity problems, 𝜔 > 0 are
the only parts retained. The power spectrum density of the
image is thus obtained:

𝐼 (𝑘
𝑥
, 𝑘
𝑦
, 𝜔) =

1

𝐿
𝑥
𝐿
𝑦
𝑇


𝐹 (𝑘
𝑥
, 𝑘
𝑦
, 𝜔)



2

. (3)

2.2. Relation of Dispersion. Assuming that the waves satisfy
the linear wave theory, homogeneous space, and stable time
of the sea surface current filed in the analysis area, then
when the water depth is greater than or equal to half the
wavelength, a first-order approximation gravity wave will
satisfy the following dispersion relation equation [9–12]:

𝜔
0
(
→

𝑘 ) = √𝑔



→

𝑘


tanh(𝑑



→

𝑘


), (4)

where 𝜔
0
represents the wave frequency of gravity,

→

𝑘 repre-
sents the wave number of the wave, 𝑑 represents depth, and
𝑔 represents the acceleration of gravity.

Considering that the presence of the currents⇀𝑢 will result
in the generation of the Doppler frequency-shift, then the
current⇀𝑢 will be the same aswave number

→

𝑘 and the angular
frequency 𝜔 generating a frequency-shift affecting the image
spectrum 𝐹(𝑘

𝑥
, 𝑘
𝑦
, 𝜔), with the dispersion relation equation

as follows:

𝑆 (
⇀
𝑘) = √𝑔



→

𝑘


tanh(𝑑



→

𝑘


) +

⇀
𝑘 ⋅

⇀
𝑢 . (5)

The surface schematics of dispersion relation in various
cases are shown in Figure 3.

The detection process carried out by the marine radar
found that nonlinear effects are caused by the influence of
sea surface imaging and the relative weakness of the sea
surface waves themselves. The wave energy of the three-
dimensional image spectrum 𝐹(𝑘

𝑥
, 𝑘
𝑦
, 𝜔) of the radar exist

not only in the base (level 0) dispersion relation equation
but also in the higher-order dispersion relation equation,
which is referred to as the high-order wave phenomena. The
high-order dispersion relation equation can be expressed as
follows:

𝜔
𝑝
= (𝑝 + 1)√

𝑔



→

𝑘



𝑝 + 1
⋅ tanh(

𝑑



→

𝑘



𝑝 + 1
)+
→

𝑘 ⋅
→

𝑢 , (6)

where 𝑝 is the order of the dispersion relation and 𝜔
𝑝
is the

frequency of the wave of 𝑝 order.

2.3. The Basic Idea behind Current Retrieval. After 𝑛 sea
clutter images have been measured consecutively by marine
radar using the 3-D FFT, 𝜔 > 0 is the reserved part and the
resulting spectrum of the radar image is the energy point set
𝐼(𝑘
𝑥
, 𝑘
𝑦
, 𝜔) distributed on the spatial grid 𝑘

𝑥
×𝑘
𝑦
×(𝑛/2).The

current retrieval process involves the extraction of the energy
points of the wave spectrum from the energy point collection,
with (6) being used to determine the current ⇀𝑢 , so that all
the energy points of the wave spectrum are distributed in the
parameters ⇀𝑢 of the dispersion relation surface.

3. Current Retrieval Based on the Least
Squares Algorithm

Current retrieval was first proposed by Young et al. in 1985 in
the literature [4] on the subject and was based on the average
weighted least squares. All the energy points in 𝐼(𝑘

𝑥
, 𝑘
𝑦
, 𝜔) of

this method are in line with the 0-order dispersion relation.
For any point (

→

𝑘 , 𝜔), the theory of the frequency of the point
→

𝑘 is calculated by (5). The square of the SSE of the difference
between Δ𝜔 is

SSE = ∑(𝜔 − √𝑔



→

𝑘


tanh(𝑑



→

𝑘


) − 𝑘
𝑥
𝑢
𝑥
− 𝑘
𝑦
𝑢
𝑦
)

2

.

(7)

The principle of LSM is used. The minimum of SSE is
needed to find out the optimal value of 𝑢

𝑥
and 𝑢

𝑦
and can

be obtained as follows:

[
𝑢
𝑥

𝑢
𝑦

] = [

[

∑𝑘
2

𝑥
∑𝑘
𝑥
𝑘
𝑦

∑𝑘
𝑥
𝑘
𝑦

∑𝑘
2

𝑦

]

]

−1

×

[
[
[
[

[

∑(𝜔 − √𝑔



→

𝑘


tanh(𝑑



→

𝑘


)) 𝑘
𝑥

∑(𝜔 − √𝑔



→

𝑘


tanh(𝑑



→

𝑘


)) 𝑘
𝑦

]
]
]
]

]

.

(8)

In 2001, in their consideration of the impact of the higher-
order dispersion relation based on the LSM method, Senet
et al. proposed a current estimation method based on the
Iterative Least Squares Method (ILSM) [5]. First of all, a
larger threshold 𝐶FG is selected, with the observed data
(
→

𝑘 , 𝜔) of spectral energy greater than 𝐶FG being retained
in 𝐼(𝑘

𝑥
, 𝑘
𝑦
, 𝜔) in accordance with the 0-order dispersion

relation of energy points, and the initial estimate currents
→

𝑢
0

are calculated by using (8).Then the dispersion relation order
𝑝 included in the algorithm is determined,

→

𝑢
0
is substituted,

and the corresponding values of
→

𝑘 of the order of theoretical
frequency 𝜔

𝑖
(𝑖 = 0, 1, . . . , 𝑝) are obtained. A threshold

value 𝐶IT, which is much smaller than 𝐶FG, is then selected;
the spectral energy of the energy point that is greater than
𝐶IT is reserved in 𝐼(𝑘

𝑥
, 𝑘
𝑦
, 𝜔), with the observed data (

→

𝑘

, 𝜔

) being obtained. By comparing the distance of 𝜔 and
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Figure 3: Surface schematics of dispersion relation.

𝜔
𝑖
(𝑖 = 0, 1, . . . , 𝑝), the order of the observed data is decided.

In line with the new 0-order dispersion relation of energy

points, current
→

𝑢


0
is calculated by using (8); the above

process is then repeated, with the current being calculated by
iteration.

In 2002, Gangeskar put forward the weighted least
squares method [6] for currents estimation based on the
radar three-dimensional image spectrum considering the
influence of the power spectrum on the basis of the LSM
method. The objective function pulls in the spectral energy
𝐼(𝑘
𝑥
, 𝑘
𝑦
, 𝜔) as shown in (7), so that

SSE = ∑𝐼 ⋅ (𝜔 − √𝑔



→

𝑘


tanh(𝑑



→

𝑘


) − 𝑘
𝑥
𝑢
𝑥
− 𝑘
𝑦
𝑢
𝑦
)

2

.

(9)

The LSM used to obtain the current estimation value is

[
𝑢
𝑥

𝑢
𝑦

] = [

[

∑𝐼𝑘
2

𝑥
∑𝐼𝑘
𝑥
𝑘
𝑦

∑𝐼𝑘
𝑥
𝑘
𝑦

∑𝐼𝑘
2

𝑦

]

]

−1

×

[
[
[
[

[

∑𝐼𝑘
𝑥
(𝜔 − √𝑔



→

𝑘


tanh(𝑑



→

𝑘


))

∑𝐼𝑘
𝑦
(𝜔 − √𝑔



→

𝑘


tanh(𝑑



→

𝑘


))

]
]
]
]

]

.

(10)

In 2010, Tang considered the use of the overall attributes
belonging to the dispersion relation set and,by improving the
objective function in the framework of the ILSM algorithm,
they proposed a current retrieval method of minimum

variance based on error sequence [7]. In this method, the
objective function is written; thus

SSE = ∑(Δ𝜔 − Δ𝜔)
2
, (11)

where Δ𝜔 = 𝜔 − √𝑔|
→

𝑘 | tanh(𝑑|
→

𝑘 |) − 𝑘
𝑥
𝑢
𝑥
− 𝑘
𝑦
𝑢
𝑦
, Δ𝜔 =

(1/(𝑀 ⋅ 𝑁))∑Δ𝜔.

4. Current Retrieval Model Based on PSO

4.1. Observational Data Selection. Current retrieval using
observational data is the point set of energy in the power
spectral density 𝐼(𝑘

𝑥
, 𝑘
𝑦
, 𝜔). These energy points can be

divided into three kinds: the wave energy points of the 0-
order dispersion relation, the wave energy points of the
high-order dispersion relation, and the energy points of the
background noise. The energy points of background noise
must be filtered out before the current retrieval is carried out,
with only the energy points of the wave being retained. As far
as the filtering out of background noise is concerned, three
different methods are discussed below.

(1) Overall Selection. The total number of energy points in
𝐼(𝑘
𝑥
, 𝑘
𝑦
, 𝜔) is used in current retrieval. When background

noise points represent lesser and their energy value are low,
the overall energy of the noise is much less than the overall
wave energy, making the selection of the total number of
energy points simple and effective. When there is a lot of
background noise or the energy value is high, the overall
energy of the noise cannot be ignored, so that this selection
method is effective in terms of current retrieval, and the
ability to adapt to the retrieval method is greater. In addition,
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the selection of all the energy points extends the computation
time of current retrieval.

(2) FixedNumber Selection. Assuming 𝐼(𝑘
𝑥
, 𝑘
𝑦
, 𝜔), the energy

value of the high points corresponds to the wave energy
points, with all the energy points in descending order. This
is followed by the selection of a certain number of higher
energy points to represent current retrieval of observational
data. With this method, the observed data points are more
complex. When the wave is small, the wave energy point is
also less, so that it is only necessary to select a small number
of high energy points. When the waves are large, the number
selected must be increased or the wave energy will not be
calculated.

(3) Selection of Energy Percentage. The maximum energy
value of 𝐼(𝑘

𝑥
, 𝑘
𝑦
, 𝜔) up to a certain percentage is repre-

sentative of the threshold, and all the energy points above
the threshold are retained as the observational data of
current retrieval. This approach assumes that, regardless of
the circumstances, the energy of the noise points is lower.
The highest relative energy value selected as the threshold is
selected.

4.2. Initial Selection. As far as the PSO algorithm is con-
cerned, the location of the information of particles is the
optimization object of the algorithm. In this paper, for
the current retrieval, the particle’s position is the current
component of 𝑢

𝑥
and 𝑢
𝑦
.The particle dimensions should thus

be two-dimensional.
The selection of the initial value of the position and

speed has a bearing on the PSO. As far as the initial value
of the position is concerned, if it is relatively close between
the initial position and the distance of the optimal point,
the initial position of the fitness value of the particle is
high, which is easy to find the optimal solution for particles
quickly, and if it is far between the initial position and the
distance of the optimal point, the algorithm will increase the
optimization time. For the initial value of the speed, if the
initial value of the speed is much big, the particle can jump
over a wide range in the search space and it is easy for these
particles to exceed the permissible range. As far as the initial
value of the speed is small, a particle that only moves within a
small area is not conducive to global optimization. Generally,
the initial value of position and speed of the actual solution
are randomly selected within the permissible range.

In order to speed up the current retrieval and shorten the
time of optimization as much as possible, the calculation of
the value of the algorithm using the formula specified in (10)
as the benchmark positions 𝑢

𝑥
and 𝑢

𝑦
, as the initial position

of the particle, is chosen as follows:

𝑢
𝑥𝑖
= 𝑢
𝑥
+

𝑢𝑥


2
𝑁 (0, 1) ,

𝑢
𝑦𝑖
= 𝑢
𝑦
+


𝑢
𝑦



2
𝑁 (0, 1) .

(12)

Due to the fact that the selection of the initial position has
a particular directional meaning, the initial speed value can
also be appropriately small selected.

4.3. Fitness Function. In the process of current retrieval, a
PSO algorithm with an adaptive value function evaluates the
advantages and disadvantages of the position (current com-
ponent) of each particle. The design of the fitness function is,
therefore, particularly important. In this paper, the algorithm
fitness function design is defined as follows:

Fit
𝑘
(𝑢
𝑥
, 𝑢
𝑦
)

= ∑𝐴 ⋅min
𝑝



𝜔 − (𝑝 + 1)√

𝑔



→

𝑘



𝑝 + 1
⋅ tanh(

𝑑



→

𝑘



𝑝 + 1
)

− 𝑘
𝑥
𝑢
𝑥
− 𝑘
𝑦
𝑢
𝑦



𝑛

,

(13)

where 𝐴 is weight, 𝑝 is the order of the dispersion relation
when the fitness value is taken into account, and 𝑛 is the
order of the deviation. The weight of 𝐴 can be selected as
any number greater than 0, for example, 1 or 𝐼(𝑘

𝑥
, 𝑘
𝑦
, 𝜔). The

dispersion relation order 𝑝 is associated with actual high-
order effects, with generally 2-order being taken as the highest
order.The deviation order 𝑛 is able to adjust the deviation and
weight 𝐴 for the influence of the fitness function.

Let us assume that the weight 𝐴 of each observational
data point (𝑘

𝑥
, 𝑘
𝑦
, 𝜔) is given and remains unchanged. When

𝑛 = 1, the deviation order is able truly to reflect the deviation
value effect on the fitness function; when 𝑛 > 1, it is
equivalent to amplifying the effects of the deviation value on
fitness function as well as being equivalent to weakening the
role of weight 𝐴. When 𝑛 → ∞, it is equivalent to the
weight 𝐴 = 1, so that all the retrieval results relative to the
observed data points are evenly distributed in the vicinity
of the surface dispersion relation. When 0 < 𝑛 < 1, it is
equivalent to weakening the image of the deviation on the
fitness function and to strengthening the role of the weight𝐴.
When 𝑛 → 0, it is equivalent to the role of the point with the
greatest weight being magnified infinitely, so that the results
of the current retrieval make the observational data points
of the larger weights distribute evenly close to the surface of
dispersion relation.

As far as the method of current retrieval is concerned, in
the framework based on the LSM, the deviation coefficient
of the objective function SSE is 2, which is equivalent to
weakening the role of the weights.

4.4. Algorithmic Process. The process based on the current
retrieval of PSO used in this paper is shown in Figure 4.

Step 1 (initialization). Set the learning factors 𝑐
1
, 𝑐
2
, the inertia

weight 𝑤, the initial position of the particle (currents), and
the speed.
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Figure 4: The algorithmic process.

Step 2. The fitness function is used to assess the current
position of each particle to obtain the fitness value of the
current position of each particle.

Step 3. The current position fitness value of each particle and
the individual extreme pbest are compared and, if it is better,
the fitness value is then used with the current position fitness
value to update the individual extreme pbest and record the
current position.

Step 4. The individual extreme value pbest of each particle is
compared with the group’s global extreme value gbest. If it is
better, gbest is updated, and the best position recorded.

Step 5. If the termination condition is deemed to have been
satisfied, then the global extremum gbest and its corre-
sponding global positions are output; otherwise, the speed
and position of the particle are updated, and “Step 2” is
implemented.

5. Simulation Analyses

5.1. Simulation Based on Three-Dimensional Image Spectrum.
Current retrieval essentially uses the energy points of a three-
dimensional image spectrum as observed data, according to
the dispersion relation for optimal estimation. The method

used for the dispersion relation used to simulate a three-
dimensional image spectrum is outlined as follows.

(1) Three-Dimensional Image Spectrum Simulation. It is very
difficult to acquire a large number of sea clutter image
sequences from marine radar and their corresponding true
value. A point on a three-dimensional radar image spectrum
imitatively generated based on a dispersion relation equation
is proposed in this paper, and simulation experiments of
current retrieval precision are carried out using the image
spectrum.

Based on the previous analysis, we already know that
the energy points of the three-dimensional image spectrum
can be divided into two categories in line with the wave
energy points of a dispersion relation and do not meet the
noise energy points of the dispersion relation. These two
types of energy points are therefore sufficient when the three-
dimensional image spectrum is generated in the simulation.
This simulation takes place for a three-dimensional image
spectrum according to the following principles.

Principle 1. The dispersion relation only considers
three times of the 0-order, 1-order, and 2-order.

Principle 2.The dispersion relation of energy points of
the 0-order is 1, 1-order is 0.2, and 2-order is 0.04.
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Table 1: Operating parameters of PSO algorithm.

𝑚 𝑐
1

𝑐
2

𝑤ini 𝑤end 𝑇max

10 2.05 2.05 0.9 0.4 100

Principle 3.The energy point standard for background
noise is 0.01, the number ofwave energy points is 20%,
and the location is set at random.

The simulation process of the three-dimensional image
spectrum is shown in Figure 5.

The formula of each energy value during the simulation
of energy points of three-dimensional image spectrum is as
follows:

𝐸 (𝑘
𝑥
, 𝑘
𝑦
, 𝜔) = 𝐸 +

𝐸

2
𝑁 (0, 1) , (14)

where 𝐸(𝑘
𝑥
, 𝑘
𝑦
, 𝜔) is the energy value of the point and 𝐸 is

energy reference value.

(2) Adaptive Ability of Dispersion Relation Order Simula-
tion. The three-dimensional images spectrum is generated
considering 0-order and 1-order of dispersion relation by
using the abovemethod.Within the three-dimensional image
spectrum, the current speed changes from 0m/s to 6m/s,
while the current direction changes from 0 to 2𝜋; then the
current speed changes from 6m/s to 0m/s, while the current
direction changes from 0 back to 2𝜋 again. 32 groups of
corresponding data points are generated.

Both the ILSM method and the method proposed here
(using the PSO representation) are used for current retrieval.
Among the three cases of the highest order 0, 1, and 2 of
dispersion relations are, respectively, taken into consideration
using the ILSM method, and, in this paper, 2-order is only
considered as being the highest order. The solutions of wave
power point distribution on the different orders of dispersion
in three-dimensional image spectrumare counted in different
simulation experiments.

150 maximum energy points from the three-dimensional
image spectrum are selected as the observed data on which
to carry out the simulation experiments. If the difference of
current speed is continuous less than 0.1 two times, the ILSM
method will be stopped. When the current speed of optimal
particles remains unchanged for consecutive 10 times, the
PSO method will be stopped. In the PSO algorithm, 𝑋max

𝑑
is

taken as 5,𝑉max
𝑑

is taken as 2, and the deviation order 𝑛 is 1 in
the fitness function, with the empirical parameters given in
[13] being used for the other parameters. The specific values
are shown in Table 1.

Different simulation results are given in Table 2.Thewave
energy points of the three-dimensional image spectrumat the
different orders of dispersion relation are distributed over the
surface.

Table 2 shows that, although the three-dimensional image
imitatively generated just contains 0-order and 1-order, some
points are still attributed to the second-order dispersion
relation when ILSMmethod considers the highest order two.
In other words, in terms of the relation of dispersion order,

the initial image spectrum is generated.

calculate the frequency points based on the
dispersion relation theory

Generate the point of energy value

If all the points are generated?

No

Waves in the nonenergy points generate
background noise points at random

Yes

ux , uy , and other parameters are given, and

Each point of energy value is set 0

According to the parameters kx , ky , and p,

Figure 5: Simulation chart representing three-dimensional image
spectrum.

the ILSM does not have the adaptive capacity. From the
simulation results of the PSO, although the highest order
of dispersion relation takes into account the second-order,
the method has the adaptive ability for the order and it can
identify the three-dimensional image spectrum that does not
contain two order data points for the dispersion relation.

It is apparent that, when ILSM is used for current
retrieval, the requested dispersion relation order should
correspond to the actual dispersion relation order contained
in three-dimensional image spectrum, while the order is not
necessary correspondent in the PSO for the current retrieval,
so that only the highest dispersion relation order needs to be
set.

(3) Simulation of Precision for Current Retrieval. In this
simulation, ILSM and PSO are used to simulate a three-
dimensional image spectrum for current retrieval by calcu-
lating the variance of current speed and current direction
and evaluating the precision of the current retrieval in the
two methods. The simulation methods and parameters are
selected as above; the main difference is only in the following
two aspects.

(a) The simulation of the three-dimensional image spec-
trum is taken into 2-order, with the ILSM and PSO
methods also being taken into a 2-order situation.

(b) The PSO method is random. In order to evaluate the
method as accurately as possible, it is necessary to
count it 10 times. The mean of the 10 results and
the results of 10 times for the optimum value of the
standard of current speed are used to calculate the
variance.

The simulation curve representing the simulation and
variance of current retrieval are given in Figure 6 and Table 3,
respectively.
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(b) Optimal value of results using the PSO method for 10 times, based on the standard of current speed

Figure 6: Simulation experiment results of current retrieval precision based on simulated three-dimensional image spectrum.

The results of the simulation show that, compared with
the current retrieval results obtained by the ILSMmethod, the
PSOmethod obtains better results, especially at current speed
parameters. When the current speed is greater than 4m per
second, the current retrieval precision using PSO is obviously
superior to the ILSM.

5.2. Simulation Based on Imitation Sea Clutter Images. The
imitative radar sea clutter image sequence derived from
literature [14] is provided in this section as the simulation
radar data. In the process of generating imitative radar
sea clutter image sequences, the method of adding current
information is the same as in Section 5.1, generating 32 sets
of files of sea clutter image sequences.

Due to the fact that the dispersion relationship in the
three-dimensional image spectra is unknown, corresponding

to simulation-generated radar sea clutter images, 0-order,
1-order, and 2-order are taken into account in the ILSM
method, with only 2-order being taken into account in the
PSO method. Simulation parameter selection and methods
are consistent with Section 5.1. The simulation curve and
current retrieval variance are given in Figure 7 and Table 4.
The ILSM results are given in Figure 7 in which the case of
0-order is considered.

The simulation results show that PSO method obtains a
higher degree of precision than the ILSM method for curve
retrieval of simulative radar sea clutter images.

5.3. Simulation Experiment Based on Real Sea Clutter Images.
In the simulation experiment, real data from a radar sea
clutter image sequence measured in Pingtan, Fujian, Haitan
Island, China, on October 23, 2010, were used.
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(a) Means of the results using PSO method for 10 times

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

Data point

Cu
rr

en
t s

pe
ed

 (m
/s

)

ILSM
PSO
True

ILSM
PSO
True

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

Data point

Cu
rr

en
t d

ire
ct

io
n 

(r
ad

)

(b) Optimal value of results using the PSO method for 10 times based on the standard of current speed

Figure 7: Results of simulation experimental of current retrieval precision based on imitation sea clutter images.

Table 2: Distributive point statistics on curve of different orders of dispersion relation.

Method for estimated current Order of dispersion relation Total number of distribution points
ILSM

0-order only considered 0-order 5473

1-order the highest consideration 0-order 5201
1-order 272

2-order the highest consideration
0-order 5201
1-order 233
2-order 39

PSO (2-order the highest consideration)
0-order 5139
1-order 334
2-order 0
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Figure 8: Continued.
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(d) All energy points selected

Figure 8: Simulation results of different data selection method.

Table 3: The variance of current retrieval based on a simulated three-dimensional image.

Method Current speed variance Current direction variance
ILSM 2.3651 2.2066
PSO (mean) 0.0470 1.3481
PSO (optimal value) 0.0025 1.4861

(1) Design of Evaluation Indicators. Generally speaking, the
current retrieval method is assessed by comparing the error
between current retrieval results and the true value. However,
due to the fact that the true value of the corresponding region
and currents could not be obtained from the real sea clutter
image sequence from radar in the simulation experiment, the
algorithms could not be properly assessed.

Consider that, for certain area current filed, its speed and
directional values within the space range are uniform with
small changes occurring over time. That is to say, the current
changes occurring at adjacent times were small. In view of
this, the mean of the differences in the continuous current
retrieval results was taken as the performance evaluation
indicator of the current retrieval.The calculations were made
according to

𝑒 =
1

𝑛 − 1

𝑛−1

∑

𝑖=1

𝑢𝑖+1 − 𝑢𝑖
 . (15)

(2) Simulated Comparison of Dispersion Relationship Order
Based on the Method of LSM. The ILSMmethod only consid-
ering three solutions of 0-order, 1-order of the highest order,
and 2-order of the highest order is used for this simulation to
carry out the current retrieval.The different situations related
to current retrieval performance indicators are compared in
order to determine the image sequence for the real sea clutter
data from radar. The ILSMmethod should be considered the
highest dispersion relationship order.

The simulated parameter selection is consistent with
Section 5.1. Table 5 provides the evaluation indicator for the
simulation experiment.

The ILSMmethod can obtain the best current estimation
results which are shown in current speed indicators in
Table 5, only considering the 0-order dispersion relationship.
The ILSMmethod is sometimes the same as the LSMmethod
when the simulation using real radar sea clutter images
sequence data contains only 0-order dispersion relationships.

(3) Observable Data Selection Method Simulation Compari-
son. Simulation experiments performed on the three obser-
vational data selection methods discussed in Section 4.1 are
carried out in order to evaluate the performance of the LSM
and PSO methods using a different selected strategy for
the observational data. The simulation curve and evaluation
indicators are given in Figure 8 and Table 6.

Simulation results show that, as the selected data points
increase, the current retrieval results using the PSO method
are improved in terms of the polymerization and stability of
the data in question. When all the data points are selected,
the current retrieval is not affected by noise points, but better
results are obtained. As far as the LSM method is concerned,
the stability of the current retrieval results is best when
1000 points are selected. When 150 data points and higher
1% of maximum energy value are selected, current retrieval
results deteriorate slightly and when all energy points are
selected, current retrieval results deviate markedly from the
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Table 4: Inversion variance based on simulation sea clutter images.

Method Current speed variance Current direction variance
ILSM (0-order) 1.2745 2.0465
ILSM (1-order) 1.0989 2.0656
ILSM (2-order) 1.0648 2.0656
PSO (average) 0.9972 1.8284
PSO (optimal value) 0.8553 1.9255

Table 5: ILSM method evaluation indicators of different orders.

Method Current speed indicators Current direction indicators
ILSM (0-order) 0.0937 0.8708
ILSM (1-order) 0.1139 0.6960
ILSM (2-order) 0.1165 0.6918

true value, although an increased stability can be obtained. If
we compare the PSO and LSM methods, the PSO method is
slightly less stable than the LSMmethod when 150 points are
selected, while the performance of the PSO method is better
in the other cases.

(4) Initial Value Method Simulation Comparison. Simulation
is carried out using the different initial values selected for
the PSO method and discussed in Section 4.2. The initial
value is selected using the random initialization method
and the algorithm initial current speed being randomly
selected with the range [−3, 3]. When the initial current
speed is selected for the LSM initialization method, the
initial current speed is shown in (12). Simulation data
points are selected according to the percentage of energy.
Selection parameters are consistent with Section 5.1. Evalu-
ation indicators of the simulation experiment are given in
Table 7.

Evaluation indicators show that the stability of current
retrieval is consistent in the two strategies with speed opti-
mization showing that the strategy for the initial value of the
LSM results is faster and the number of algorithm iterations
is less.

(5)DeviationOrder SelectionMethod SimulationComparison.
The simulation experiments are carried out using different
fitness function deviation orders to evaluate the stability of
the PSO method in different deviation orders. The current
retrieval is simulated when 𝑛 is 2, 1, and 0.5, respectively.
The selected parameters are consistent with Section 5.1. The
simulation curve and evaluation indicators are given in
Figure 9 and Table 8.

The simulation results show that, when deviation order
value is small, the current order ismore stable.That is to say, it
can be beneficial to the stability of the current retrieval when
there is a focus on the three-dimensional image spectrum
related to large energy points.

6. Conclusion

This paper had, as its goal, an improvement in the accuracy
of current retrieval methods, with a study concerning radar
related to sea clutter images used for current retrieval. The
principle of current retrieval and methods used for current
retrieval based on the least squares algorithm were intro-
duced in this paper with the PSO algorithm being proposed
as a viable method for current retrieval. Observational data
and the selection strategy of the position of initial particles
constituted its main focus, with the fitness function of the
design, taking into account the impact of a higher dispersion
relationship order andproviding the framework for execution
of the algorithms. Simulation experiments were based on
three cases related to the three-dimensional image spectrum,
sea clutter images analog, and real sea clutter in order to
verify several aspects of the algorithms under investiga-
tion, namely, the adaptive capacity of the order of higher-
order dispersion relations, the observational data selection
method, the particle initialization selectionmethod, the order
bias selection method, and the current retrieval accuracy
performance. Simulation results show that, compared with
the traditional ILSM methods, the method provided in this
paper is more flexible, with a capacity for high dispersion
relationship order, higher precision, and an increased stability
in terms of current inversion.
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Figure 9: Simulation results of different deviation order value.
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Table 6: Evaluation indicators of different observational data selection methods.

Method Current speed indicators Current director indicators
LSM 150 points of maximum energy are selected 0.0937 0.8708
PSO 0.2002 0.5269
LSM 1000 points of maximum energy are selected 0.0887 0.6025
PSO 0.0875 0.3556
LSM Points higher than 1% of the maximum energy are selected 0.0947 0.2957
PSO 0.0840 0.1908
LSM All points 0.0284 0.2289
PSO 0.0662 0.2466

Table 7: Evaluation indicators of different initial data selection methods.

Method Current speed indicators Current direction indicators 𝑇min 𝑇max 𝑇avg

PSO (initialization at random) 0.0842 0.1564 11 100 33.4
PSO (initial results reference LSM) 0.0840 0.1908 11 100 27.5

Table 8: Evaluation indicators of different deviation order values.

Method Current speed indicators Current director indicators
PSO (𝑛 = 2) 0.1864 0.2521
PSO (𝑛 = 1) 0.0840 0.1908
PSO (𝑛 = 0.5) 0.0750 0.1614
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To rely on joint active disturbance rejection control (ADRC) and repetitive control (RC), in this paper, a compound control law for
active power filter (APF) current control system is proposed. According to the theory of ADRC, the uncertainties in the model and
from the circumstance outside are considered as the unknown disturbance to the system.The extended state observer can evaluate
the unknown disturbance. Next, RC is introduced into current loop to improve the steady characteristics. The ADRC is used to get
a good dynamic performance, and RC is used to get a good static performance. A good simulation result is got through choosing
and changing the parameters, and the feasibility, adaptability, and robustness of the control are testified by this result.

1. Introduction

Theproliferation of nonlinear loads caused bymore andmore
modem electronic equipments results in deterioration of
power quality in power transmission or distribution systems.
Harmonic, reactive, negative sequence and flickers are the
reasons of various undesirable phenomena in the operation of
power system. In order to solve these problems, the concept
of active power filter (APF) was presented. Active power
filters, which compensate harmonic and reactive current
component for the power supplies, can improve the power
qualities and enhance the reliabilities and stabilities on power
utility [1–3]. In recent 30 years from APF presented, the
continual innovation of control strategies mainly impels the
APF techniques to be developed rapidly [4–7].

Active disturbance rejection control (ADRC) is a robust
control method that is based on extension of the system
model with an additional and fictitious state variable, rep-
resenting everything that the user does not include in the
mathematical description of the plant [8–11]. Different from
other disturbances and states estimation [12–15], this virtual
state (sum of internal and external disturbances, usually
denoted as a “total disturbance”) is estimated online with

a state observer and used in the control signal in order to
decouple the system from the actual perturbation acting on
the plant. This disturbance rejection feature allows user to
treat the considered system with a simpler model, since the
negative effects of modeling uncertainty are compensated in
real time. As a result, the operator does not need a precise
analytical description of the system, as one can assume the
unknown parts of dynamics as the internal disturbance in
the plant. Robustness and the adaptive ability of this method
make it an interesting solution in scenarios where the full
knowledge of the system is not available.

Repetitive control is a control method developed by a
group of Japanese scholars in 1980s. It is based on the Internal
Model Principle and used specifically in dealingwith periodic
signals, for example, tracking periodic reference or rejecting
periodic disturbances.The repetitive control system has been
proven to be a very effective and practical method dealing
with periodic signals [15–18]. Repetitive control has some
similarities with iterative learning control.

This paper addresses the electric current tracking control
problem for shunt APF. The control law is joint ADRC and
RC which can deal with the static and dynamic performance.
The rest of this paper is organized as follows. In Section 2,
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Figure 1: Block diagram of the ADRC.

a brief description of the ADRC is presented. In Section 3,
main results of ADRC + RC control technique are developed.
In Section 4, simulation results are presented to show the
effectiveness of the proposed control technique. Finally, some
conclusions are made in Section 5.

2. Active Disturbance Rejection Control

InADRC, the tracking differentiator (TD) is used to deal with
the reference input and the extended state observer (ESO) is
used to deal with the output of controlled system. Then the
ADRC control law can be selected through the appropriate
nonlinear combination of state errors. The general structure
of ADRC is shown in Figure 1. In Figure 1 of ADRC, the
transient profile generator is used to obtain each order
derivative ̇𝑦

∗
(𝑡), ̈𝑦
∗
(𝑡), . . . , 𝑦

𝑛

∗
(𝑡) of reference trajectory 𝑦

∗
(𝑡).

Next, brief description of ADRC is given as follows.
Consider a class SISO nonlinear system as

𝑦
𝑛

= 𝑓 (𝑦, ̇𝑦, . . . , 𝑦
(𝑛−1)

, 𝑡) + 𝑏𝑢 (𝑡) + 𝑑 (𝑡) . (1)

Equation (1) also can be described as

̇𝑥
1

= 𝑥
2

...

𝑥
𝑛−1

= 𝑥
𝑛

̇𝑥
𝑛

= 𝑓 (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑡) + 𝑏𝑢 (𝑡) + 𝑑 (𝑡)

𝑦 = 𝑥
1
,

(2)

where 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑡) is unknown function, 𝑑(𝑡) is

unknown disturbance, and 𝑢(𝑡) is control input.
Construct the following ESO for nonlinear systems (2):

̇𝑧
1

= 𝑧
2

− 𝑔
1

(𝑧
1

− 𝑦)

...

̇𝑧
𝑛

= 𝑧
𝑛+1

− 𝑔
𝑛

(𝑧
1

− 𝑦) + 𝑏𝑢 (𝑡)

̇𝑧
𝑛+1

= − 𝑔
𝑛+1

(𝑧
1

− 𝑦) .

(3)

Let 𝑎(𝑡) = 𝑓(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑡) + 𝑑(𝑡), so we can obtain

the following conclusion:

𝑧
1

→ 𝑥
1
, 𝑧
2

→ 𝑥
2
, . . . , 𝑧

𝑛
→ 𝑥
𝑛
, 𝑧
𝑛+1

→ 𝑎 (4)

through selecting appropriate nonlinear function 𝑔
1
, 𝑔
2
, . . . ,

𝑔
𝑛+1

. Defining that 𝑎(𝑡) is the estimation value of 𝑎(𝑡), we can
obtain 𝑧

𝑛+1
= 𝑎(𝑡).

From the above brief description of ESO, it can be seen
that ESO can be used to estimate the states and the sum of
model uncertainty𝑓(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛−1
, 𝑡) and disturbance 𝑑(𝑡).

So, ESO is such a link, which uses the output 𝑦(𝑡) of plant to
get each order derivative signal 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
and estimation

value of disturbance.
Using 𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑛
from ESO and ̇𝑦

∗
(𝑡), ̈𝑦
∗
(𝑡), . . . , 𝑦

𝑛

∗
(𝑡)

from TD, we get the state errors as

𝜀
𝑖
= 𝑦
𝑖

∗
(𝑡) − 𝑧

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (5)

So the following nonlinear combination can be gotten by
state errors (5):

𝑢
0

(𝑡) = 𝑘
1
fal (𝜀
1
, 𝛼, 𝛿) + ⋅ ⋅ ⋅ + 𝑘

𝑛
fal (𝜀
𝑛
, 𝛼, 𝛿) , (6)

where 𝑘
𝑖
, 𝛼, and 𝛿 are adjustable parameters. And nonlinear

function fal is defined as follows:

fal (𝜀
𝑖
, 𝛼, 𝛿) =

{{

{{

{

𝜀𝑖

𝛼 sgn (𝜀

𝑖
)

𝜀𝑖
 > 𝛿

𝜀
𝑖

𝛿1−𝛼
𝜀𝑖

 ≤ 𝛿.

(7)

Using the nonlinear state errors feedback (6) and estima-
tion value 𝑎(𝑡), the ADRC law can be given by

𝑢 (𝑡) =
𝑢
0

(𝑡) − 𝑎 (𝑡)

𝑏
, 𝑖 = 1, 2, . . . , 𝑛. (8)

3. Main Results

Shunt APF circuit schematic is shown in Figure 2; the upper
and lower arm of the shunt APF can be considered as
ideal switch from the APF working principle. The equivalent
circuit of APF is shown in Figure 3. Since the switching
operation can control voltage size of the AC side. So shunt
APF can be considered as a controllable voltage source
and a parallel impedance in the circuit, and to compensate
harmonic current and reactive current can be achieved.

So we can obtain the model of shunt APF as follows:

𝐿
𝑑𝑖
𝑐

𝑑𝑡
= 𝑢
𝑖
− 𝑅𝑖
𝑐

− 𝑢
𝑐
. (9)
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Figure 2: Block diagram of shunt APF.
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Figure 3: Equivalent circuit of shunt APF.

Define PWM as a proportional part, namely, 𝑢
𝑐

= 𝑢𝑉
𝑐
,

where 𝑢 is modulation amount. Let 𝑢 be the control input of
system. 𝑉

𝑐
is voltage of DC side. For the supply current, we

know

𝑖
𝑠

= 𝑖
𝑐

+ 𝑖
𝐿
. (10)

Substituting (10) into (9), we have

(𝐿 + 𝐿
𝑠
)

𝑑𝑖
𝑠

𝑑𝑡
= − (𝑅 + 𝑅

𝑠
) 𝑖
𝑠

− 𝑢𝑉
𝑐

+ 𝑢
𝑠

+ 𝑅𝑖
𝐿

+ 𝐿
𝑑𝑖
𝐿

𝑑𝑡
. (11)

Designed system controller can be considered by a DC
voltage outer-loop control and an inner-loop current control.
Since the response speed of inner-loop is much faster than
the DC voltage outer-loop, it can be considered that DC
voltage is constant when the inner current controls. Ignore
the impedance of the power line; we let 𝑑(𝑡) = 𝑢

𝑠
+ 𝑅𝑖
𝐿

+

𝐿(𝑑𝑖
𝐿
/𝑑𝑡); system (11) can be written as

(𝐿 + 𝐿
𝑠
)

𝑑𝑖
𝑠

𝑑𝑡
= − (𝑅 + 𝑅

𝑠
) 𝑖
𝑠

− 𝑢𝑉
𝑐

+ 𝑑 (𝑡) . (12)

The APF is a first-order system. ADRC does not need to
detect the load current and supply voltage and only uses them
as unknown disturbances. A PI controller is used to control
the outer-loop DC voltage, which is order to obtain a given
current value 𝑖

∗

𝑠
(𝑡). 𝑖
∗

𝑠
(𝑡) can be seen as the reference input

𝑦
∗
(𝑡) of ADRC. The control objective is to make the supply

current 𝑖
𝑠
able to track the given current value 𝑖

∗

𝑠
(𝑡) through

controlling the modulation amount 𝑢 of PWM. Set an order
TD output as

̇𝑧
1,1

= −𝑘
0
fal ((𝑧

1,1
− 𝑖
∗

𝑠
(𝑡)) , 𝛼

0
, 𝛿
0
) , (13)

where 𝑘
0
, 𝛼
0
, and 𝛿

0
are selected parameters. Construct of the

following formula ESO:

̇𝑧
1

= 𝑧
2

− 𝑘
11
fal ((𝑧

1
− 𝑖
∗

𝑠
(𝑡)) , 𝛼

1
, 𝛿
1
) − 𝑉
𝑐
𝑢 (𝑡) ,

̇𝑧
2

= −𝑘
12
fal ((𝑧

1
− 𝑖
∗

𝑠
(𝑡)) , 𝛼

1
, 𝛿
1
) ,

(14)

where 𝑘
11
, 𝑘
12
, 𝛼
1
, and 𝛿

1
are selected parameters. So we can

obtain the ADRC law as

𝑢
0

(𝑡) = 𝑘
2
fal ((𝑖∗
𝑠

(𝑡) − 𝑧
1
) , 𝛼
2
, 𝛿
2
) ,

𝑢 (𝑡) =
𝑢
0

(𝑡) − ̇𝑧
2

𝑉
𝑐

,

(15)

where 𝑘
2
, 𝛼
2
, and 𝛿

2
are also selected parameters. All selected

parameters of ADRC controller must try to get in simulation.
RC is mainly used in continuous processes for tracking

or rejecting periodic exogenous signals. In most cases, the
period of the exogenous signal is known. The internal model
principle is the theoretical foundation of RC. According to
internal model principle, to track or reject a certain signal
without steady-state error, the signal can be regarded as the
output of an autonomous generator that is inside the control
system.

Although RC system can still get a good static perfor-
mance, it cannot get a good dynamic performance of the
system. RC is usually used to meet up with other control
strategies. Actually, RC is only used to restrain the tracking
error. But ADRC can improve the rapid response of the
system. After being coupled with the repetitive controller,
controller can detect the tracking error and accumulate a
correction on the basis of the original command to reduce
the error. Repetitive controller can be seen as an embedded
component, so this system is called embedded repetitive
control system (ERCS). Figure 4 is a block diagram of a
parallel ADRC with RC. Next, how to select the controller
parameters of RC is shown as follows.

(1) Cycle delay factor N: 𝑁 is sampled beat number of
sinusoidal cycle and can be described as fundamental
frequency 𝑓

𝑠
and the switching frequency 𝑓

𝑐
.

(2) Compensation link 𝑄(𝑧): 𝑄(𝑧) characterizes the
steady precision of repetitive controller. In general,
𝑄(𝑧) is a constant. When 𝑄(𝑧) = 1, the open-loop
gain of system is infinite, and steady-state error is
zero. But this may likely cause system instability. So
we usually select a constant that is less than but close
to 1. 𝑄(𝑧) is also preferably chosen zero phase low
pass filter.

(3) Compensation link 𝑆(𝑧) of plant: 𝑆(𝑧) is used to
reform the controlled plant. After reformation, the
amplitude-frequency characteristics of the plant has
zero gain in the low frequency band. Generally, the
series correction part 𝑆

1
(𝑧) is first selected to correct

the low-frequency gain of controlled plant. Then, in
order to improve system stability, the second-order
low-pass filter is selected to attenuate high frequency
gain.

(4) Phase compensation factor 𝑘: the aim of phase com-
pensation factor 𝑘 is to compensate phase lag for
reformed controlled plant in the low frequency.

(5) Repetitive controller gain 𝐾
𝑟
: 𝐾
𝑟
is used to ensure the

stability of the system in the high frequency band.The
smaller 𝐾

𝑟
can cause the better stability, but the speed

of convergence will become slow and the steady-state
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Figure 4: Block diagram of a parallel ADRC with RC for shunt APF.
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Figure 5: Load electric current.

error will increase. In general,𝐾
𝑟
is chosen to be close

to 1 as possible under maintaining the well stability of
the RC.

4. Simulation Results

In this section, we use Matlab/Simulink for testing and
verifying the proposed APF control method. The parameters
of chosen APF are 𝐿 = 1H, 𝑅 = 8 Ω, 𝑇 = 100 𝜇s, and
𝑓
𝑐

= 10 kHz. The ADRC controller parameters are designed
as 𝛼
0

= 2, 𝛼
1

= 0.5, 𝛼
0

= 1, 𝛿
0

= 0.00001, 𝛿
1

= 0.001,
𝛿
0

= 0.00001, 𝑘
0

= 8000, 𝑘
11

= 10000, 𝑘
12

= 50000, and
𝑘
2

= 500. The RC controller parameters are designed as 𝑁 =

200, 𝑆
1
(𝑧) = (𝑧 − 0995)/[0.1248(𝑧 − 06)], 𝑆

2
(𝑧) = (0.0675𝑧

2
+

01349𝑧 + 00675)/(𝑧
2

− 1143𝑧 + 0.4128), 𝑄(𝑧) = 0.97, 𝑘 = 3,
and 𝐾

𝑟
= 𝑂.8. First, we consider the 150Hz sine wave for

load. Figures 5 and 6 show the load electric current which is
third harmonic and the output current 𝑖(𝑡) of controlled APF.
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Figure 6: Reference current 𝑖
∗
(𝑡) and output current 𝑖(𝑡) of con-

trolled APF.

Figure 7 shows the total harmonic distortion (THD) analysis
for grid current. It can be seen that the proposed control
method of the APF can better restrain harmonic of grid. The
value of TDH can achieve 0.26%.

First, we consider the 200Hz square wave signal for load.
Figures 8 and 9 show the load electric current which is
fourth harmonic and the output current 𝑖(𝑡) of controlled
APF. Figure 10 shows the total harmonic distortion (THD)
analysis for grid current. It can be seen that the proposed
control method of the APF can better restrain harmonic of
grid. The value of TDH can achieve 3.88%.

In simulation process, we do not correct the controller
parameters, just change the distortion form of load; the
simulation results are provided to show that the proposed
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control algorithm of APF has a very reliable robustness and
adaptability for the different distortion forms.

5. Conclusions

Since the switch voltage drops, the drive circuit delay differs
and dead zones are affected, there are a large number of
low-order harmonics in the output current of a single-phase
grid-connected APF. The traditional PI controller exists the
capacity deficiencies in the harmonic suppression, and unable
realizes the static error tracking for the sine command
current. It can effectively improve the grid current waveform
through ADRC + RC controller. In this paper, we give the
composite control law design method for single-phase grid
connected APF current loop. Theory and simulation are
provided to show that the proposed control algorithm has
a very reliable tracking ability and satisfactory robustness to
different harmonics of the load.
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A reliable nonlinear dynamic model of the quadrotor is presented. The nonlinear dynamic model includes actuator dynamic and
aerodynamic effect. Since the rotors run near a constant hovering speed, the dynamic model is simplified at hovering operating
point. Based on the simplified nonlinear dynamic model, the PID controllers with feedback linearization and feedforward control
are proposed using the backstepping method.These controllers are used to control both the attitude and position of the quadrotor.
A fully custom quadrotor is developed to verify the correctness of the dynamic model and control algorithms. The attitude of the
quadrotor is measured by inertia measurement unit (IMU).The position of the quadrotor in a GPS-denied environment, especially
indoor environment, is estimated from the downward camera and ultrasonic sensormeasurements.The validity and effectiveness of
the proposed dynamicmodel and control algorithms are demonstrated by experimental results. It is shown that the vehicle achieves
robust vision-based hovering and moving target tracking control.

1. Introduction

As an emerging platform for unmanned aerial vehicle (UAV)
research, the quadrotor has recently gained most attention
from the community. With some specific capabilities, such as
vertical take-off and landing (VTOL), hovering, fly alone or
in team, autonomously fly, it has been envisaged for a wide
of applications including military reconnaissance, search and
rescue, meteorological survey, environmental monitoring,
and wireless mobile senor networks [1]. The quadrotor has
several advantages compared to other rotorcrafts. First, the
quadrotor does not require swash plate and mechanical
linkages as it equips fixed pitch propellers and uses speed
variation for vehicle control.Thismakes itmore convenient to
design, manufacture, maintain, and recover from incidents.
Second, its propellers are smaller in diameter relative to
the airframe size and can be enclosed within a frame. This
makes it safer and brings more benefit for indoor flight and
in obstacle-dense environments. In addition, the quadrotor
has greater thrust-weight ratio and thus better maneuver
performance. All these advantages promote the development
of a number of commercial and research quadrotor platforms
[2–5].

Although the quadrotor has a series of advantages, it is an
absolutely unstable and underactuated dynamic system with
sophisticated nonlinearity and strong coupling. Moreover, it
is easily affected by near-surface airstream. Because of these
difficulties, the intensive study on dynamical modeling, anal-
ysis, and advanced control of quadrotor needs to be done to
improve the flight quality. In particular, the actuator dynamic
and aerodynamic effects must be investigated to establish a
reliable dynamic model of quadrotor. Control method deal-
ing with the nonlinearity and coupling property of quadrotor
has to be proposed for precise flight control. Bouabdallah and
Siegwart mentioned the importance of actuator dynamic and
analyzed forces andmoments caused by aerodynamic effects.
But they simplified the dynamic model and omitted those
effects [6]. Huang et al. researched two important aerody-
namic effects and presented control techniques compensating
for them accordingly. However, only the altitude controller
was designed based on nonlinear method [7]. Minh and
Ha linearized the nonlinear dynamic model about a trim in
hover and applied the LQG method to stabilize the quadro-
tor with vision-based pose estimation. Nevertheless, only
simulation results were displayed [8]. A variety of control
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algorithms have been attempted to handle the nonlinearity
and coupling property, such as neural networks control [9],
integral predictive/nonlinear 𝐻

∞
control [10], sliding mode

control [11, 12], and fuzzy tracking control [13]. Although
simulation results demonstrated effectiveness of those control
algorithms, most of them were developed based on dynamic
model without the actuator dynamic and aerodynamic effect.
Besides, the stochasticmethod and fault detection algorithms
are investigated [14–18], whereas those methods are difficult
to be implemented in the real system. As the quadrotor is
a cascade system, it is proven that the backstepping control
method has an excellent performance [19]. Recently, interests
in the quadrotor research have transferred to autonomous
flight. While the success of laser-based autonomous indoor
flight [20–22] has made a huge impact on the development
of quadrotor, the vision-based autonomous indoor flight [23]
is an immediate area of research focus. Moreover, hetero-
geneous multiagent problems such as UAV and unmanned
ground vehicle (UGV) indoor/outdoor coordination control
are expected to be the next technical breakthrough. Based
on the research actuality and trend on quadrotor, this paper
studies the quadrotor dynamic modeling and indoor target
tracking control method. These research results will build
foundations for precise flight control and heterogeneous
multiagent study.

The main contributions of this paper are the following.
First, a reliable nonlinear dynamic model is presented based
on the analysis of actuator dynamic, aerodynamic effect, and
rigid body dynamic. The gyroscope effect of the rotors is
considered by dividing the quadrotor into body part and rotor
part. It makes the dynamicmodel more reliable to take actua-
tor dynamic and aerodynamic effect into account. Second, the
PID controllers with feedback linearization and feedforward
control are proposed to control both the attitude and position
of the quadrotor. The dynamic model is explicitly expressed
as a cascade system of three subsystems to be suitable for
the backsteppingmethod.The control algorithms are realized
on a fully custom quadrotor and vision-based autonomous
indoor moving target tracking flight is achieved.

This paper is structured as follows. In Section 2, we first
analyze the actuator dynamic and aerodynamic effect. The
actuator dynamic is the derivation of the Kirchhoff laws
and the law of rotation. The aerodynamic effect is mainly
about blade flapping which has a significant effect on attitude
tracking control.Then, a reliable nonlinear dynamic model is
addressed using Newton-Euler method. The dynamic model
is a combination of actuator dynamic, aerodynamic effect,
and rigid body dynamic. In Section 3, a general PID controller
with feedforward control is proposed. Then, based on the
simplified nonlinear dynamic model, decoupling nonlinear
control laws are presented using feedback linearization and
the backstepping control strategy is applied to the position
control. Section 4 describes the system design of our fully
customquadrotor and discusses the experimental results.The
fully customquadrotor is equippedwith an IMU, a downward
camera, and a downward ultrasonic sensor. Full control
experiments are executed in the order of attitude control,
altitude control, hovering control, and tracking control. At
last, we outline the conclusion in Section 5.
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Figure 1: Body-fixed frame and Earth-fixed frame.

2. Mathematical Modeling

Most researchers used to regard the whole quadrotor as a
rigid model [24], neglecting the propeller gyroscope effect
and aerodynamic effect. Moreover, models containing actu-
ator dynamic are rarely investigated. However, studies show
that aerodynamic effect is obvious even with moderate speed
[7] and that actuator dynamic has a strong influence on the
attitude stabilization [6]. Thus, a detailed analysis of those
effects is necessary.

The coordinate system is defined in Figure 1.𝐸 is an earth-
fixed frame and 𝐵 is a body-fixed frame. The body fixed
coordinates origin locates at the center of gravity (CoG) of
the quadrotor. ℎ is the distance between propeller plane and
CoG.

2.1. Actuator Dynamic. Actuator dynamic describes the rela-
tionship between rotor speed and actuator voltage. The latter
is our real control input. Basically, the actuator response
speed is most interested by designers. Based on Kirchhoff
laws and the law of rotation, the simplified actuator dynamic
model is [25]

Ω̇
𝑖
= −

1

𝜏
Ω
𝑖
+
𝑘
Ω

𝜏
𝑢
𝑖
, (1)

where Ω
𝑖
, 𝜏, and 𝐾

Ω
represent the speed of actuator 𝑖, delay

coefficient, and gain coefficient, respectively.
Actuator delay is curial especially when the attitude

control loop runs at a low frequency.

2.2. Aerodynamic Effect. Aerodynamic effect dramatically
increases with the variation from equilibrium state. Some
literatures show excellent performance on a test bench [11].
Whereas, the attitude control result without the test bench is
worse than the attitude control result on the test bench. This
is because the aerodynamic effect occurs when flight without
the test bench. Aerodynamic effect is mainly caused by blade
flapping, as shown in Figure 2.

During forward flight, the advancing blade has a higher
velocity relative to the free stream and the retreating blade
sees a lower effective airspeed. This brings imbalance of lift
and results in the propeller plane deflecting from position 1
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Figure 2: Motor 1 is the front of the quadrotor; speed-up motor 3
and speed-down motor 1 will result in forward flight.

to position 2. The deflection angle 𝛼
𝑥
is proportional to the

velocity in body 𝑥-axis V𝑏
𝑥
:

𝛼
𝑥
= 𝑘
𝛼
V𝑏
𝑥
. (2)

The deflection of the propeller plane causes an extra
moment on the 𝑦-axis [7]:

𝑀
𝑏𝑓,𝑦

= 4 (𝑘
𝛽
𝛼
𝑥
+ 𝑇ℎ sin𝛼

𝑥
) ≈ 4 (𝑘

𝛽
𝛼
𝑥
+ 𝑇ℎ𝛼

𝑥
) , (3)

where 𝑇 is the total thrust and 𝑘
𝛼
and 𝑘

𝛽
are experimentally

measured constants.The blade flapping effect on the 𝑥-axis is
the same.

Air friction is relative to the velocity of quadrotor and can
be expressed as

𝑓 = −
1

2
𝐶𝐴
𝑐
𝜌V |V| , (4)

where 𝐶, 𝐴
𝑐
, 𝜌, and V represent damping coefficient, active

area, air density, and relative speed, respectively.
Theoretical and experimental results demonstrate that

aerodynamic effect is not trivial even with moderate speed
and will be crucially important in aerobatic flight.

2.3. Nonlinear Dynamic Model. We separate the quadrotor
into two portions, the body part and the rotor part. The body
part includes the frame structure and equipments. The rotor
part includes motors and propellers. Manifestly, the relative
position between the rotor part and the body part varies as the
rotor spins. Hence we cannot assume the whole quadrotor as
a rigid body. The mathematical model is based on following
assumptions.

(1) The body part and rotor part are rigid, respectively.
(2) The quadrotor is symmetric.
(3) Thrust and drag are proportional to the square of

propeller’s speed.
(4) Actuator dynamic is identical.
(5) The center of gravity (CoG) coincides with the body

fixed coordinates origin.

Apply Newton-Euler equation to body part:

𝐹
𝐸
= 𝑚 ̈𝑋

𝐸
,

𝑀
𝐵
= 𝐼
𝑏
̇𝜔
𝐵
+ 𝜔
𝐵
× 𝐼
𝑏
𝜔
𝐵
,

(5)

where 𝐹𝐸 is the total force and 𝑋
𝐸 is the position of the

quadrotor expressed in earth-fixed frame 𝐸. 𝑀𝐵 is the total
moment expressed in body-fixed frame 𝐵. 𝐼

𝑏
is the rotational

inertia of the body part. 𝜔𝐵 = [𝑝 𝑞 𝑟]
𝑇 is the angular speed

expressed in body-fixed frame.
Here we employ the Euler angle representation of orien-

tation. We consequently rotate about 𝑍 − 𝑋 − 𝑌 axes by yaw
angle 𝜓, roll angle 𝜙. and pitch angle 𝜃.

Let 𝜂 = [𝜙 𝜃 𝜓]
𝑇; the relationship between ̇𝜂 and 𝜔𝐵 is

̇𝜂 =

[
[
[
[
[
[
[
[

[

c𝜃 0 𝑠𝜃

𝑠𝜙𝑠𝜃

𝑐𝜙
1

−𝑠𝜙𝑐𝜃

𝑐𝜙

−𝑠𝜃

𝑐𝜙
0

𝑐𝜃

𝑐𝜙

]
]
]
]
]
]
]
]

]

𝜔
𝐵
, (6)

where s(⋅) and 𝑐(⋅) represent sin(⋅) and cos(⋅), respectively.
According to the third assumption, rotor thrust 𝑇 and

drag 𝑄 are

𝑇 =

4

∑

𝑖=1

𝑇
𝑖
= 𝑘
𝑇
Ω
2

𝑖
,

𝑄 =

4

∑

𝑖=1

𝑄
𝑖
= 𝑘
𝑄
Ω
2

𝑖
.

(7)

Utilizing the analysis of aerodynamic effect, the total force
and moment on the body part are

𝐹
𝐸
=
[
[
[

[

𝐹
𝑧

𝐹
𝑥

𝐹
𝑦

]
]
]

]

=

[
[
[
[
[
[
[
[

[

𝑚𝑔 − (c𝜓𝑐𝜙) 𝑇𝑐𝛼
𝑥
𝑐𝛼
𝑦

(𝑠𝜓𝑠𝜙 + 𝑐𝜓𝑠𝜃𝑐𝜙) 𝑇𝑐𝛼
𝑥
𝑐𝛼
𝑦
−
1

2
𝐶
𝑥
𝐴
𝑐
𝜌 ̇𝑥 |𝑥|

(−𝑐𝜓𝑠𝜙 + 𝑠𝜓𝑠𝜃𝑐𝜙) 𝑇𝑐𝛼
𝑥
𝑐𝛼
𝑦
−
1

2
𝐶
𝑥
𝐴
𝑐
𝜌 ̇𝑦

𝑦


]
]
]
]
]
]
]
]

]

,
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𝑀
𝐵
= [

[

𝑀
𝑥

𝑀
𝑦

𝑀
𝑧

]

]

=
[
[
[

[

𝐽
𝑟
𝑞Ω
𝑟
+ 𝑙 (𝑇
4
− 𝑇
2
) + 𝑀

𝑏𝑓,𝑥

𝐽
𝑟
𝑝Ω
𝑟
+ 𝑙 (𝑇
1
− 𝑇
3
) + 𝑀

𝑏𝑓,𝑦

𝑄 + 𝑙 (𝑇
2
− 𝑇
4
) 𝑠𝛼
𝑦
+ 𝑙 (𝑇
3
− 𝑇
1
) 𝑠𝛼
𝑥

]
]
]

]

≈
[
[
[

[

𝐽
𝑟
𝑞Ω
𝑟
+ 𝑙 (𝑇
4
− 𝑇
2
) + 𝑀

𝑏𝑓,𝑥

𝐽
𝑟
𝑝Ω
𝑟
+ 𝑙 (𝑇
1
− 𝑇
3
) + 𝑀

𝑏𝑓,𝑦

𝑄 + 𝑙 (𝑇
2
− 𝑇
4
) 𝛼
𝑦
+ 𝑙 (𝑇
3
− 𝑇
1
) 𝛼
𝑥

]
]
]

]

,

(8)

where 𝐽
𝑟
is rotational inertia of the rotor part and Ω

𝑟
=

Ω
1
− Ω
2
+ Ω
3
− Ω
4
is the sum of rotor speed. Note that the

moment for the rotor angular acceleration 𝐽
𝑟
Ω̇
𝑟
is produced

by electromagnetic force and unrelated to the body part.
Based on the second assumption, 𝐼

𝑖𝑗
= 0, 𝑖 ̸=𝑗; 𝑖, 𝑗 ∈ {𝑥 𝑦 𝑧}

and 𝐼
𝑥𝑥

= 𝐼
𝑦𝑦
. We regard the body part as controlled

object and by integrating the body part dynamic and actuator
dynamic we can reach the global nonlinear dynamic model.
Here we simplify the nonlinear dynamic model about the
hovering operating point. Ω

ℎ
is the speed of rotor at the

hovering operating point

Ω
ℎ
= √

𝑚𝑔

4𝑘
𝑇

. (9)

Let

ΔΩ
𝜙
= Ω
4
− Ω
2
, ΔΩ

𝜃
= Ω
1
− Ω
3
,

ΔΩ
𝜓
= Ω
1
− Ω
2
+ Ω
3
− Ω
4
, 𝜆 =

ΔΩ
𝑇

4Ω
ℎ

,

ΔΩ
𝑇
= Ω
1
− Ω
ℎ
+ Ω
2
− Ω
ℎ
+ Ω
3
− Ω
ℎ
+ Ω
4
− Ω
ℎ
,

𝑈
2
= [𝑢1 𝑢2 𝑢3 𝑢4]

𝑇

,

𝑈
1
= 𝑋
2
= [ΔΩ𝜙 ΔΩ

𝜃
ΔΩ
𝜓
ΔΩ
𝑇]
𝑇

,

𝑋
1
= [𝜙 𝑝 𝜃 𝑞 𝜓 𝑟 𝑧 ̇𝑧 𝑥 ̇𝑥 𝑦 ̇𝑦]

𝑇

.

(10)

Hence

𝑋
2
= 𝑓 (𝑋

2
, 𝑈
2
)

=

[
[
[
[
[
[
[
[
[

[

−1

𝜏
0 0 0

0
−1

𝜏
0 0

0 0
−1

𝜏
0

0 0 0 −
𝜆 + 1

𝜆𝜏

]
]
]
]
]
]
]
]
]

]

[
[
[

[

ΔΩ
𝜙

ΔΩ
𝜃

ΔΩ
𝜓

ΔΩ
𝑇

]
]
]

]

+

[
[
[
[
[
[
[
[
[

[

0 −
𝑘
Ω

𝜏
0

𝑘
Ω

𝜏
𝑘
Ω

𝜏
0 −

𝑘
Ω

𝜏
0

𝑘
Ω

𝜏
−
𝑘
Ω

𝜏

𝑘
Ω

𝜏
−
𝑘
Ω

𝜏
𝑘
Ω

𝜏

𝑘
Ω

𝜏

𝑘
Ω

𝜏

𝑘
Ω

𝜏

]
]
]
]
]
]
]
]
]

]

[
[
[

[

𝑢
1

𝑢
2

𝑢
3

𝑢
4

]
]
]

]

,

(11)

𝑋
1
= 𝑓 (𝑋

1
, 𝑈
1
) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑝𝑐𝜃 + 𝑟𝑠𝜃

[(𝐼
𝑦𝑦
− 𝐼
𝑧𝑧
) 𝑞𝑟 + 𝐽

𝑟
𝑞ΔΩ
𝜓
+ 2𝑙𝑘
𝑇
Ω
ℎ
ΔΩ
𝜙
+ 𝑘
𝛼
𝑘
𝛽
̇𝑥 + 𝑇ℎ𝑘

𝛼
̇𝑥]

𝐼
𝑥𝑥

(𝑝𝑠𝜙𝑠𝜃 + 𝑞𝑐𝜙 − 𝑟𝑠𝜙𝑐𝜃)

𝑐𝜙

[(𝐼
𝑧𝑧
− 𝐼
𝑥𝑥
) 𝑝𝑟 + 𝐽

𝑟
𝑝ΔΩ
𝜓
+ 2𝑙𝑘
𝑇
Ω
ℎ
ΔΩ
𝜃
+ 𝑘
𝛼
𝑘
𝛽
̇𝑦 + 𝑇ℎ𝑘

𝛼
̇𝑦]

𝐼
𝑦𝑦

(𝑟𝑐𝜃 − 𝑝𝑠𝜃)

𝑐𝜙

2 [𝑘
𝑄
Ω
ℎ
ΔΩ
𝜓
+ 𝑙𝑘
𝛼
𝑘
𝑇
(ΔΩ
𝜙
̇𝑥 − ΔΩ

𝜃
̇𝑦)]

𝐼
𝑧𝑧

̇𝑧

𝑚𝑔 − 2𝑘
𝑇
Ω
ℎ
𝑐𝜙𝑐𝜓ΔΩ

𝑇
𝑐 (𝑘
𝛼
̇𝑥) 𝑐 (𝑘
𝛼
̇𝑦)

̇𝑥

2𝑘
𝑇
Ω
ℎ
(𝑠𝜙𝑠𝜓 + 𝑠𝜃𝑐𝜙𝑐𝜓) ΔΩ

𝑇
𝑐 (𝑘
𝛼
̇𝑥) 𝑐 (𝑘
𝛼
̇𝑦) −

1

2
𝐶
𝑥
𝐴
𝑐
𝜌 ̇𝑥 | ̇𝑥|

̇𝑦

2𝑘
𝑇
Ω
ℎ
(−𝑠𝜙𝑐𝜓 + 𝑠𝜃𝑐𝜙𝑠𝜓) ΔΩ

𝑇
𝑐 (𝑘
𝛼
̇𝑥) 𝑐 (𝑘
𝛼
̇𝑦) −

1

2
𝐶
𝑦
𝐴
𝑐
𝜌 ̇𝑦

 ̇𝑦


]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (12)
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Figure 3: Backstepping control scheme.

Figure 4: Off-board process of the image.

3. Control Implementation

First, we define a general PID controller with feedforward
control

PID (𝜁) = 𝐾
𝑝
(𝜁
𝑑
− 𝜁) + 𝑘

𝑑
( ̇𝜁
𝑑
− ̇𝜁) + 𝑘I ∫ (𝜁

𝑑
− 𝜁) 𝑑𝑡 + ̈𝜁

𝑑
,

(13)

in which ̈𝜁
𝑑 is the feedforward part.

Then we apply feedback linearization to design the
attitude and position controllers. Finally, we describe the
backstepping control scheme.

3.1. Position Controllers. The outputs of the position con-
trollers are 𝜃,𝜙,ΔΩ

𝑇
. During the hovering and tracking flight,

𝜓 = 0; thus, we choose the control law as

s𝜃 =
PID (𝑥) + 𝐶

𝑥
𝐴
𝑐
𝜌 ̇𝑥 | ̇𝑥| /2

2𝑘
𝑇
Ω
ℎ
ΔΩ
𝑇
𝑐 (𝑘
𝛼
̇𝑥) 𝑐 (𝑘
𝛽
̇𝑦)
,

𝑠𝜙 =
PID (𝑦) + 𝐶

𝑦
𝐴
𝑐
𝜌 ̇𝑦

 ̇𝑦
 /2

−2𝑘
𝑇
Ω
ℎ
𝑐𝜃ΔΩ

𝑇
𝑐 (𝑘
𝛼
̇𝑥) 𝑐 (𝑘
𝛽
̇𝑦)
,

ΔΩ
𝑇
=

𝑚𝑔 − PID (𝑧)

2𝑘
𝑇
Ω
ℎ
𝑐𝜙𝑐𝜃𝑐 (𝑘

𝛼
̇𝑥) 𝑐 (𝑘
𝛽
̇𝑦)
.

(14)

Substituting (14) into (12), we get

̈𝑥 = PID (𝑥) ,

̈𝑦 = PID (𝑦) ,

̈𝑧 = PID (𝑧) .

(15)

This guarantees asymptotic stability and has robustness to
some uncertainties. Solving (14), we get the decoupling form:

𝜃 = − arctan

×((PID (𝑥) +
𝐶
𝑥
𝐴
𝑐
𝜌 ̇𝑥 | ̇𝑥|

2
)

×([

[

(PID (𝑧) − 𝑚𝑔)
2

+(PID (𝑦) +
𝐶
𝑦
𝐴
𝑐
𝜌 ̇𝑦

 ̇𝑦


2
)

2

]

]

1/2

)

−1

),

𝜙 = arctan(
PID (𝑦) + 𝐶

𝑦
𝐴
𝑐
𝜌 ̇𝑦

 ̇𝑦
 /2

PID (𝑧) − 𝑚𝑔
) ,

ΔΩ
𝑇

= (𝑚𝑔 − PID (𝑧))
3

× (2𝑘
𝑇
Ω
ℎ
𝑐 (𝑘
𝛼
̇𝑥) 𝑐 (𝑘
𝛼
̇𝑦)

× [

[

(PID (𝑧) − 𝑚𝑔)
2

+(PID (𝑦) +
𝐶
𝑦
𝐴
𝑐
𝜌 ̇𝑦

 ̇𝑦


2
)

2

]

]

) .

−1

(16)
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(a) (b)

Figure 5: A fully custom quadrotor and autonomous moving target tracking.

Figure 6: The HIL simulation: manually change the quadrotor, the 3D model changes, and the curves show the outputs of the controllers.

3.2. Attitude Controllers. The outputs of the position con-
trollers are the inputs of the attitude controllers. The outputs
of the attitude controllers are ΔΩ

𝜙
, ΔΩ
𝜃
, and ΔΩ

𝜓
. Utilizing

the similar design method, we choose the control law as

ΔΩ
𝜙
=

1

2𝑙𝑘
𝑇
Ω
ℎ

× {[⋅]𝜙 −
𝐽
𝑟
𝑞Ω
ℎ

2𝑘
𝑄
Ω2
ℎ
+ 𝑘
𝛼
𝐽
𝑟
(𝑝 ̇𝑦 − 𝑞 ̇𝑥)

×(PID (𝜓) 𝐼
𝑧𝑧
−
𝑘
𝛼
̇𝑥[⋅]𝜙

Ω
ℎ

+
𝑘
𝛼
̇𝑦[⋅]𝜃

Ω
ℎ

)} ,

ΔΩ
𝜃
=

1

2𝑙𝑘
𝑇
Ω
ℎ

× {[⋅]𝜃 −
𝐽
𝑟
𝑞Ω
ℎ

2𝑘
𝑄
Ω2
ℎ
+ 𝑘
𝛼
𝐽
𝑟
(𝑝 ̇𝑦 − 𝑞 ̇𝑥)

×(PID (𝜓) 𝐼
𝑧𝑧
−
𝑘
𝛼
̇𝑥[⋅]𝜙

Ω
ℎ

+
𝑘
𝛼
̇𝑦[⋅]𝜃

Ω
ℎ

)} ,

ΔΩ
𝜓
=

Ω
ℎ

2𝑘
𝑄
Ω2
ℎ
+ 𝑘
𝛼
𝐽
𝑟
(𝑝 ̇𝑦 − 𝑞 ̇𝑥)

× {PID (𝜓) 𝐼
𝑧𝑧
−
𝑘
𝛼
̇𝑥

Ω
ℎ

[⋅]𝜙 +
𝑘
𝛼
̇𝑦

Ω
ℎ

[⋅]𝜃} ,

[⋅]
𝜙
= PID (𝜙) 𝐼

𝑥𝑥
− 𝑘
𝛼
𝑘
𝛽
̇𝑥 − 𝑇ℎ𝑘

𝛼
̇𝑥 − (𝐼
𝑦𝑦
− 𝐼
𝑧𝑧
) 𝑞𝑟,

[⋅]𝜃 = PID (𝜃) 𝐼
𝑦𝑦
− 𝑘
𝛼
𝑘
𝛽
̇𝑦 − 𝑇ℎ𝑘

𝛼
̇𝑦 − (𝐼
𝑦𝑦
− 𝐼
𝑧𝑧
) 𝑝𝑟.

(17)

3.3. Backstepping Control Algorithms. The outputs of attitude
controllers are the inputs of the actuator controllers. The
outputs of the actuator controllers are𝑈

2
= [𝑢1 𝑢2 𝑢3 𝑢4]

𝑇.
Considering the relationship between position controllers,
attitude controllers, and actuator controllers, we proposed the
backstepping control scheme shown in Figure 3.

4. Verification and Results

The nonlinear dynamic model and control algorithms are
verified on a fully custom quadrotor. First, the design
and manufacture of our fully custom quadrotor is briefly
described. Then, results of different experiments are dis-
cussed consequently.

4.1. Verification. We developed a fully custom quadrotor
using the optimal design algorithm, shown in Figure 4. The
frame is made from carbon fiber composite (CFC), and
the structure is designed with CATIA v5. The inherent fre-
quency of the frame is more than 100Hz while the vibration
frequency caused by actuators is about 60Hz. This avoids
resonance and reduces the accelerometermeasurement noise.
The downward camera and ultrasonic sensor are utilized to
obtain the physical position, running at 25Hz and 10Hz,
respectively. The image is off-board processed as shown in
Figure 4. Furthermore, there is a remote control UGV with
a colored mark, playing the role as a moving target, Figure 5.
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Figure 7: Attitude control results.
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The parameters of the rigid body dynamic are calculated
during the design process. The parameters of the aerody-
namic effect are estimated by empirical model and data
fitting. The actuator dynamic is obtained by system identifi-
cation. The parameters used in the verification experiments
are listed in Table 1.

4.2. Experiment Results. The hardware in loop (HIL) simu-
lation is executed before flight experiment. Manually change
the pitch angle, roll angle, and yaw angle of the quadrotor;
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Figure 9: Hovering control results.

the speed command of each motor changes, respectively.
Manually change the altitude of the quadrotor; the throttle
command for four motors changes. Manually change the
position of the quadrotor; the attitude commands change.
The simulation results verify the correctness of the dynamic
model and control algorithms. The HIL simulation is shown
in Figure 6.

Attitude control, altitude control, hovering control, and
moving target tracking control experiments are consequently
performed. As shown in Figure 7, the pitch and roll control
error is less than 2 degrees while yaw control error is less
than 5 degrees. Altitude control experiment is executed with
a switch.The quadrotor takes off manually and then switches
to autoaltitude control. From Figure 8 we can know that the
altitude control error is less than 5 cm. Hovering and moving
target tracking control experiments are conducted with a
switch too. As shown in Figures 9 and 10, both the hovering
control and tracking control errors are less than 10 cm.

5. Conclusions and Future Works

We aim at precise modeling, analysis, and control of a sophis-
ticated nonlinear system. This paper presented the newest
research on quadrotor of our project. First, we analyzed the
actuator dynamic and aerodynamic effect of the quadrotor.
Then, we established a reliable nonlinear dynamic model of
the quadrotor. As the backstepping control algorithm is well
fit for the cascaded structured systems such as the quadrotor,
we designed a series of PID controllers with feedforward
control and feedback linearization using the backstepping
method. Real experiments were executed and the effective-
ness of the proposed dynamic model and control method is
demonstrated by the experimental result. The future works
include two directions. Firstly, the quaternion representation
of orientation needs to be employed since the Euler angle
representation is subject to problematic singularities. The
global stable controllers are expected to be proposed based on
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Figure 10: Moving target tracking control results.

Table 1: Parameters used in the verification experiments.

Parameter Description Value Units
𝑔 Gravity 9.81 m/s2

𝑚 Mass 1.17 kg
𝑙 Distance between CoG and motor 0.25 m
ℎ Distance between CoG and propeller plane 0.05 m
𝐼
𝑥𝑥

Roll inertia 1.27 × 10
−2 kg⋅m2

𝐼
𝑦𝑦

Pitch inertia 1.27 × 10
−2 kg⋅m2

𝐼
𝑧𝑧

Yaw inertia 2.29 × 10
−2 kg⋅m2

𝐽
𝑟

Rotor inertia 3.8 × 10
−5 kg⋅m2

𝑘
𝑇

Thrust coefficient 2.1 × 10
−5 N⋅s2

𝑘
𝑄

Drag coefficient 1.2 × 10
−6 N⋅s2

𝜏 Motor time constant 0.09 s
𝑘
𝛼

Velocity to angle constant 6.1 × 10
−3 rad⋅s/m

𝑘
𝛽

Angle to moment constant 6.1 × 10
−3 N⋅m/rad

𝐴
𝑐

Active area 0.25 m2

𝜌 Air density 1.205 kg/m3

𝐶 Damping coefficient 0.09

the quaternion representation. Secondly, more efforts need to
be done to promote the moving target tracking system more
like a heterogeneous multiagent system. Problems within
heterogeneous multiagent system are expected to be the next
technical breakthrough.
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The recursive estimation problem is studied for a class of uncertain dynamical systems with different delay rates sensor network and
autocorrelated process noises. The process noises are assumed to be autocorrelated across time and the autocorrelation property
is described by the covariances between different time instants. The system model under consideration is subject to multiplicative
noises or stochastic uncertainties. The sensor delay phenomenon occurs in a random way and each sensor in the sensor network
has an individual delay rate which is characterized by a binary switching sequence obeying a conditional probability distribution.
By using the orthogonal projection theorem and an innovation analysis approach, the desired recursive robust estimators including
recursive robust filter, predictor, and smoother are obtained. Simulation results are provided to demonstrate the effectiveness of the
proposed approaches.

1. Introduction

The Kalman filter is very popular for estimating the system
states of a class of linear systems which are characterized by
state-space models. Since its inception in the early 1960s, it
has played an important role in the research fields of target
tracking, communication, control engineering, and signal
processing. An implied assumption of traditional Kalman
filter is that the system model and measurement model
are exactly known. Unfortunately, this assumption does not
always hold due to the constrained knowledge and the
variation of the system and environment. When the system
model and measurement model under consideration are
not exactly known, the performance of traditional Kalman
filter can deteriorate appreciably [1–3]. Therefore, in the past
decades, the recursive robust state-space estimation problem
has become a hot topic of the estimation theory. There
are many different ways to describe the model uncertainty.
Multiplicative noise is an important stochastic uncertainty
which is commonly encountered in aerospace systems [4],
communication systems [5], and image processing systems
[6, 7]. Different from the additive noise, the second-order
statistics of the multiplicative noise are usually unknown and

this property leads to more difficulties in the research. Up to
now, there are several solutions to treat with the estimation
and control problems for systems with multiplicative noises,
including linearmatrix inequality approach [8], Riccati equa-
tion approach [9, 10], and game-theoretic method [11], to
name just a few.

In traditional state estimation theory, the process noises
are usually assumed to be Gaussian and uncorrelated with
each other. However, this assumption is not always realistic,
correlated noises are commonly encountered in practical
applications. For example, in a target tracking system, the
system state is usually consecutive (i.e., the system state at
time k is correlatedwith its neighbors); thus,when the process
noises are dependent on the system state, the process noises
are usually autocorrelated across time. So far, there have been
several approaches to deal with the estimation problem for
systems with correlated noises [12–16]. The optimal Kalman
filtering fusion problem for dynamic systems with cross-
correlated measurement noises has been dealt with in [13–
15]. In [16], the state estimation for discrete-time systems
with cross-correlated noises has been treated based on an
optimal weighted matrix sequence, where the process noises
and measurement noises are cross correlated. It should be
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pointed out that the estimatorsmentioned previously are only
suited for the correlated noises at the same time instant. In
[17, 18], a Kalman-type recursive filter has been proposed
for dynamic systems with finite-step autocorrelated process
noises, where the autocorrelation property is described by
the covariances between different time instants. The filtering
problem with finite-step cross-correlated process noises and
measurement noises has been investigated in [19]. In [20], the
optimal robust nonfragile Kalman-type recursive filter has
been designed for a class of uncertain systems with finite-step
autocorrelated noises.

On another research frontier, with the development
of network technologies, the sensor network has attracted
increasing attention from many researchers in different
fields due to their wide scope applications in surveillance,
environment monitoring, information collection, wireless
networks, robotics, and so on. In the sensor network, the
network-induced time-delay or/and packet dropouts cannot
be avoided due to limited single-sensor energy and commu-
nication capability and these have brought us new challenges
in the design of the desired state estimators. The binary
switching sequence is a popular way to describe the network-
induced time-delay or/and packet dropouts since the time-
delay or/and packet dropouts in the sensor network are
inherently random [21–24]. The least-mean-square filtering
problem for one-step random sampling delay has been
studied in [25, 26]. Unfortunately, the filters designed in [25,
26] are suboptimal since a colored noise due to augmentation
has been treated as a white noise. The filtering problem
for systems with random measurement delays and multiple
packet dropouts has also been discussed in [24]. In [27], the
problemof robust filtering for uncertain systemswithmissing
measurements and finite-step correlated process noises has
been investigated. It should be noted that, in all the afore-
mentioned literature, sensors involved in the sensor network
have the same delay characteristics. Recently, Hounkpevi and
Yaz [28, 29] present minimum variance state estimators for
multiple sensorswith different delay or failure rates.The least-
square filtering problem for systems with one- or two-step
random delay has been studied in [30], where the algorithms
are derived without requiring the knowledge of the state
space model but only the means and covariance functions
of the processes involved in the observation equations. The
optimal unbiased filtering problem for uncertain systems
with different delay rates sensor network and autocorrelated
process noises has also been discussed in [31]. However, the
estimator obtained in [31] is nonrecursive and a colored noise
due to augmentation has been treated as white noise. Up
to now, to the best of the authors’ knowledge, the recursive
robust estimation problem has not yet been addressed for
uncertain systems with different delay rates sensor network
and autocorrelated noises, and this situation motivates our
current study.

Motivated by the above analysis, in this paper, we aim
to investigate the recursive robust estimation problem for
uncertain systems with different delay rates sensor network
and autocorrelated noises. The system model and mea-
surement model under consideration are both subject to
stochastic uncertainties or multiplicative noises. Different

sensors in the sensor network have different delay rates
and different delay rates are described by different binary
switching sequences. The process noises are assumed to
be one-step autocorrelated across time and the autocor-
relation property is described by the covariances between
different time instants. Based on an innovation analysis
approach (IAA) and the orthogonal projection theorem
(OPT), recursive robust estimators including filter, predictor,
and smoother are obtained. This paper extends the results in
[31], in two directions: (1) the autocorrelated measurement
noise due to augmentation leads to more difficulties in the
design of the recursive robust estimators; however, in [31],
the measurement noise is treated as a white noise; and (2) the
filter obtained in [31] is actually a nonrecursive filter; however,
in our current work, we do not only derive a recursive
robust filter, but also derive a recursive robust predictor and
a recursive robust smoother. Also, the current paper differs
from [28, 30] for the model uncertainties considered and for
the autocorrelated process noises considered to derive the
desired recursive robust estimators.

The remainder of the paper is organized as follows. In
Section 2, the recursive robust estimation problem is for-
mulated for a class of uncertain systems with autocorrelated
noises and different delay rates sensor network.The recursive
robust estimators including filter, predictor, and smoother are
derived in Section 3. In Section 4, a simulation example is
provided to illustrate the usefulness of the theory developed
in this paper. We end the paper with some concluding
remarks in Section 5.

Notation 1. The notation used in the paper is fairly standard.
The superscript “𝑇” stands for matrix transposition, the
notation R𝑛 denotes the 𝑛-dimensional Euclidean space, the
notation R𝑚×𝑛 is the set of all real matrices of dimension
𝑚 × 𝑛, and 𝐼 and 0 represent the identity matrix and zero
matrix, respectively. The notation 𝑃 > 0 means that 𝑃 is
real symmetric and positive definite, and diag(⋅ ⋅ ⋅ ) stands for
block-diagonal matrix. The notation 𝛿

𝑘−𝑗
is the Kronecker

delta function, which is equal to unity for 𝑘 = 𝑗 and zero for
𝑘 ̸= 𝑗. In addition,E{𝑥}meansmathematical expectation of 𝑥
and Prob{⋅} represents the occurrence probability of the event
“⋅”. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations.

2. Problem Formulation

Consider the following system model and measurement
model:

̆𝑥
𝑘+1

= ( ̆𝐴
𝑘
+ ̆𝐴
𝑠,𝑘
𝜇
𝑘
) ̆𝑥
𝑘
+ ̆𝐵
𝑘
𝜔
𝑘
,

̆𝑦
𝑖

𝑘
= ( ̆𝐶
𝑖

𝑘
+ ̆𝐶
𝑖

𝑠,𝑘
𝜂
𝑖

𝑘
) ̆𝑥
𝑘
+ ̆V𝑖
𝑘
,

𝑦
𝑖

𝑘
= (1 − 𝜆

𝑖

𝑘
) ̆𝑦
𝑖

𝑘
+ 𝜆
𝑖

𝑘
̆𝑦
𝑖

𝑘−1
, 𝑖 = 1, 2, . . . , 𝑁,

(1)

where ̆𝑥
𝑘
∈ R𝑛 is the state to be estimated, the vector ̆𝑦

𝑖

𝑘
∈

R is the actual output vector of the 𝑖th sensor, the vector
𝑦
𝑖

𝑘
∈ R is the measured output vector of the 𝑖th sensor, the

vector 𝜔
𝑘
∈ R𝑚 is the process noise, the vectors 𝜇

𝑘
∈ R
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and 𝜂
𝑖

𝑘
∈ R are multiplicative noises, the vector ̆V𝑖

𝑘
∈ R is

the measurement noise of the 𝑖th sensor, the matrices ̆𝐴
𝑘
,

̆𝐴
𝑠,𝑘
, ̆𝐵
𝑘
, ̆𝐶
𝑖

𝑘
, and ̆𝐶

𝑖

𝑠,𝑘
are known real time-varyingmatrices of

appropriate dimensions, and the variable𝜆𝑖
𝑘
∈ R is amutually

uncorrelated binary switching sequence (and uncorrelated
with other random variables) taking values on 1 and 0 with

Prob {𝜆𝑖
𝑘
= 1} = E {𝜆

𝑖

𝑘
} = 𝛽
𝑖

𝑘
,

Prob {𝜆𝑖
𝑘
= 0} = 1 −E {𝜆

𝑖

𝑘
} = 1 − 𝛽

𝑖

𝑘
.

(2)

Remark 1. The measurement model (1) is a popular way to
model the random sensor delay. It can be seen that if 𝜆𝑖

𝑘
= 1

then 𝑦𝑖
𝑘
= ̆𝑦
𝑖

𝑘−1
which means that the measurement of the 𝑖th

sensor is delayed; if 𝜆𝑖
𝑘
= 0, then 𝑦

𝑖

𝑘
= ̆𝑦
𝑖

𝑘
; that is to say, the

measurement of the 𝑖th sensor is up to date.

Thenoise signals𝜇
𝑘
, ̆V𝑖
𝑘
, and 𝜂𝑖

𝑘
are all zero-meanGaussian

white noises. They, together with the initial state ̆𝑥
0
and the

process noise 𝜔
𝑘
, have the following statistical properties:

E { ̆𝑥
0
} = ̆𝑥
0
, E {( ̆𝑥

0
− ̆𝑥
0
) ( ̆𝑥
0
− ̆𝑥
0
)
𝑇

} = ̆𝑃
0
,

E
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𝛿
𝑖−𝑗

0

0 0 0 0 𝑋
0

]
]
]
]
]

]

,

(3)

where 𝑌
𝑘,𝑙
= 𝑄
𝑘
𝛿
𝑘−𝑙

+ 𝑄
𝑘,𝑙
𝛿
𝑘−𝑙−1

+ 𝑄
𝑘,𝑙
𝛿
𝑘−𝑙+1

,𝑋
0
= ̆𝑃
0
+ ̆𝑥
0
̆𝑥
𝑇

0
.

By defining

𝑥
𝑘
= [

̆𝑥
𝑘

̆𝑥
𝑘−1

] , 𝐴
𝑘
= [

̆𝐴
𝑘
0

𝐼 0
] ,

𝐴
𝑠,𝑘

= [
̆𝐴
𝑠,𝑘

0

0 0
] , 𝐵

𝑘
= [

̆𝐵
𝑘

0
] ,

𝑉
𝑘
= [

̆V
𝑘

̆V
𝑘−1

] , 𝑅
𝑘
= [

̆𝑅
𝑘

0

0 ̆𝑅
𝑘−1

] ,

𝑅
𝑘,𝑘−1

= [
0 0

̆𝑅
𝑘−1

0
] , 𝑅

𝑘,𝑘+1
= [

0 ̆𝑅
𝑘

0 0
] ,

𝑦
𝑘
= [(𝑦

1

𝑘
)
𝑇

⋅ ⋅ ⋅ (𝑦
𝑁

𝑘
)
𝑇

]
𝑇

,

𝐷
𝑘
= [(𝐼 − 𝐽𝑘) 𝐽

𝑘] ,

𝐶
𝑘
= [(𝐼 − 𝐽

𝑘
) ̆𝐶
𝑘
𝐽
𝑘
̆𝐶
𝑘−1

] ,

𝐶
𝑠,𝑘

= [(𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
𝜂
𝑘
𝐽
𝑘
̆𝐶
𝑠,𝑘−1

𝜂
𝑘−1

] ,

(4)

where

̆𝐶
𝑘
= [( ̆𝐶

1

𝑘
)
𝑇

⋅ ⋅ ⋅ ( ̆𝐶
𝑁

𝑘
)
𝑇

]
𝑇

,

̆V
𝑘
= [( ̆V1
𝑘
)
𝑇

⋅ ⋅ ⋅ ( ̆V𝑁
𝑘
)
𝑇

]
𝑇

,

𝐽
𝑘
= diag (𝜆1

𝑘
, . . . , 𝜆

𝑁

𝑘
) ,

𝜂
𝑘
= diag (𝜂1

𝑘
, . . . , 𝜂

𝑁

𝑘
) , ̆𝐶

𝑠,𝑘
= [( ̆𝐶

1

𝑠,𝑘
)
𝑇

⋅ ⋅ ⋅ ( ̆𝐶
𝑁

𝑠,𝑘
)
𝑇

]
𝑇

,

̆𝑅
𝑘
= diag ( ̆𝑅

1

𝑘
, . . . , ̆𝑅

𝑁

𝑘
) ,

(5)

a compact representation of (1) can be expressed as follows:

𝑥
𝑘+1

= (𝐴
𝑘
+ 𝐴
𝑠,𝑘
𝜇
𝑘
) 𝑥
𝑘
+ 𝐵
𝑘
𝜔
𝑘
, (6)

𝑦
𝑘
= 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘
, (7)

where 𝑉
𝑘
is the measurement noise of the newly obtained

auxiliary system (6) and (7). It follows readily from (4) that
𝑉
𝑘
has the statistic properties as follows:

E {𝑉
𝑘
} = 0,

E {𝑉
𝑘
𝑉
𝑇

𝑡
} = 𝑅
𝑘
𝛿
𝑘−𝑡

+ 𝑅
𝑘,𝑘−1

𝛿
𝑘−𝑡−1

+ 𝑅
𝑘,𝑘+1

𝛿
𝑘−𝑡+1

.

(8)

Remark 2. It can be seen from (3) and (8) that the process
noise 𝜔

𝑘
and the measurement noise 𝑉

𝑘
are both one-step

autocorrelated across time. For example, the process noise at
time 𝑘 is correlated with the process noises at times 𝑘 − 1

and 𝑘 + 1 with covariances 𝑄
𝑘,𝑘−1

and 𝑄
𝑘,𝑘+1

, respectively.
The measurement noise at time 𝑘 is correlated with the
measurement noises at times 𝑘−1 and 𝑘+1with covariances
𝑅
𝑘,𝑘−1

and 𝑅
𝑘,𝑘+1

, respectively.

Remark 3. Observe that the system model and measurement
model of system (6) and (7) are both subject to stochastic
uncertainties and 𝐶

𝑘
, 𝐶
𝑠,𝑘
, and 𝐷

𝑘
involve the stochastic

variable 𝜆𝑖
𝑘
. Thus, system (6) and (7) is actually a stochastic

uncertain system. On the other hand, the process noise 𝜔
𝑘

and the measurement noise 𝑉
𝑘
are both one-step autocorre-

lated across time. Therefore, the traditional recursive robust
estimation approaches may not satisfy the performance
requirements here.
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Remark 4. A seemingly natural way of handling the auto-
correlated noises is the augmentation of the system states.
However, such a state augmentation approach gives rise to
significant increase in the system dimension, which would
inevitably lead to computational burden. In addition, in
the state augmentation method, the noises are treated as
components of the auxiliary system state, generally, it is
difficult for an estimator to track noise signals, and this will
affect the estimation of other components of the auxiliary
system state. Without resorting to state augmentation, in our
current work, we treat system (6) and (7) directly by using an
IAA and the OPT.

3. The Main Results

For convenience of later development, let us introduce the
following lemmas, which are very useful in establishing our
main results.

Lemma5. For stochastic matrices 𝐽
𝑘
,𝐶
𝑘
,𝐷
𝑘
, and𝐶

𝑠,𝑘
, one has

the following results:

𝐽
𝑘
= E {𝐽

𝑘
} = diag (𝛽1

𝑘
, . . . , 𝛽

𝑁

𝑘
) , 𝐽

𝑘
= 𝐽
𝑘
− 𝐽
𝑘
,

Σ
𝑘
= E {𝐽

𝑘
𝐽
𝑇

𝑘
} = diag ((1 − 𝛽1

𝑘
) 𝛽
1

𝑘
, . . . , (1 − 𝛽

𝑁

𝑘
) 𝛽
𝑁

𝑘
) ,

𝐶
𝑘
= E {𝐶

𝑘
} = [(𝐼 − 𝐽

𝑘
) ̆𝐶
𝑘
𝐽
𝑘
̆𝐶
𝑘−1

] ,

𝐶
𝑘
= 𝐶
𝑘
− 𝐶
𝑘
= (𝐽
𝑘
− 𝐽
𝑘
) [− ̆𝐶

𝑘
̆𝐶
𝑘−1

] = 𝐽
𝑘
𝐶
𝑒,𝑘
,

𝐷
𝑘
= E {𝐷

𝑘
} = [(𝐼 − 𝐽

𝑘
) 𝐽
𝑘
] ,

𝐷
𝑘
= 𝐷
𝑘
− 𝐷
𝑘
= (𝐽
𝑘
− 𝐽
𝑘
) [−𝐼 𝐼] = 𝐽

𝑘
𝐷
𝑒,𝑘
,

𝐶
𝑒,𝑘

= [− ̆𝐶
𝑘

̆𝐶
𝑘−1

] , 𝐷
𝑒,𝑘

= [−𝐼 𝐼] ,

E {𝐽
𝑘
} = E {𝐶

𝑘
} = E {𝐷

𝑘
} = E {𝐶

𝑠,𝑘
} = 0.

(9)

Proof. Lemma 5 follows directly from (2), (4), and (5) and the
fact that 𝜂

𝑘
is zero mean.

Lemma 6. For system state 𝑥
𝑘
and the process noise 𝜔

𝑘
, one

has the following result:

E {𝑥
𝑘
𝜔
𝑇

𝑘
} = 𝐵
𝑘−1

𝑄
𝑘−1,𝑘

. (10)

Proof. Lemma 6 follows directly from (3) and (6).

Lemma 7. The state covariance matrix𝑋
𝑘
= E{𝑥

𝑘
𝑥
𝑇

𝑘
} has the

following recursion:

𝑋
𝑘+1

= 𝐴
𝑘
𝑋
𝑘
𝐴
𝑇

𝑘
+ 𝐴
𝑘
𝐵
𝑘−1

𝑄
𝑘−1,𝑘

𝐵
𝑇

𝑘
+ 𝐴
𝑠,𝑘
𝑋
𝑘
𝐴
𝑇

𝑠,𝑘

+ 𝐵
𝑘
𝑄
𝑘,𝑘−1

𝐵
𝑇

𝑘−1
𝐴
𝑇

𝑘
+ 𝐵
𝑘
𝑄
𝑘
𝐵
𝑇

𝑘
.

(11)

Proof. Lemma 7 follows directly from (3), (6), and Lemma 6.

Furthermore, defining 𝑋
𝑘+1

= E{ ̆𝑥
𝑘+1

̆𝑥
𝑇

𝑘+1
} and 𝑋

𝑘+1,𝑘
=

E{ ̆𝑥
𝑘+1

̆𝑥
𝑇

𝑘
}, one has from (4) and Lemma 7 the following:

𝑋
𝑘+1

= ̆𝐴
𝑘
𝑋
𝑘
̆𝐴
𝑇

𝑘
+ ̆𝐴
𝑘
̆𝐵
𝑘−1

𝑄
𝑘−1,𝑘

̆𝐵
𝑇

𝑘
+ ̆𝐴
𝑠,𝑘
𝑋
𝑘
̆𝐴
𝑇

𝑠,𝑘

+ ̆𝐵
𝑘
𝑄
𝑘,𝑘−1

̆𝐵
𝑇

𝑘−1
̆𝐴
𝑇

𝑘
+ ̆𝐵
𝑘
𝑄
𝑘
̆𝐵
𝑇

𝑘
,

𝑋
𝑘+1,𝑘

= 𝐴
𝑘
𝑋
𝑘
+ ̆𝐵
𝑘
𝑄
𝑘,𝑘−1

̆𝐵
𝑇

𝑘−1
.

(12)

Lemma 8 (see [32]). If 𝐴 ∈ R𝑝×𝑝 is a real matrix and 𝐵 =

diag(𝑏
1
, . . . , 𝑏

𝑝
) is a diagonal stochastic matrix, then

E {BAB 𝑇} =
[
[
[

[

E {𝑏
2

1
} ⋅ ⋅ ⋅ E {𝑏

1
𝑏
𝑝
}

... ⋅ ⋅ ⋅
...

E {𝑏
𝑝
𝑏
1
} ⋅ ⋅ ⋅ E {𝑏

2

𝑝
}

]
]
]

]

⊗ 𝐴, (13)

where ⊗ is the Hadamard product (this product is defined as
[𝐴 ⊗ 𝐵]

𝑖,𝑗
= 𝐴
𝑖,𝑗
⋅ 𝐵
𝑖,𝑗
).

3.1. Recursive Robust Filter

Theorem 9. For the addressed system (6) and (7), one has the
following recursive robust filter:

𝑥
𝑘|𝑘−1

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

(14)

𝑃
𝑘|𝑘−1

= 𝐴
𝑘−1

𝑃
𝑘−1|𝑘−1

𝐴
𝑇

𝑘−1
+ 𝐵
𝑘−1

𝑄
𝑘−1

𝐵
𝑇

𝑘−1

+ 𝐴
𝑠,𝑘−1

𝑋
𝑘−1

𝐴
𝑇

𝑠,𝑘−1

+ 𝐴
𝑘−1

(𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

− ϝ
𝑘−1,𝑘−1

× Π
−1

𝑘−1
𝐶
𝑘−1

𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

) 𝐵
𝑇

𝑘−1

+ 𝐵
𝑘−1

(𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

− ϝ
𝑘−1,𝑘−1

× Π
−1

𝑘−1
𝐶
𝑘−1

𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

)
𝑇

𝐴
𝑇

𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝐶
𝑘−1

𝐵
𝑘−2

× 𝑄
𝑇

𝑘−1,𝑘−2
𝐵
𝑇

𝑘−1
,

(15)

𝜀
𝑘
= 𝑦
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

, (16)

ϝ
𝑘,𝑘

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘

− (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘
,

(17)
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Π
𝑘
= 𝐶
𝑘
𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
− 𝐶
𝑘

× [ (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

]𝐷
𝑇

𝑘
+ Σ
𝑘
⊗ (𝐶
𝑒,𝑘
𝑋
𝑘
𝐶
𝑇

𝑒,𝑘
)

+ (𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
𝑋
𝑘
𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽

𝑘
)
𝑇

+ Σ
𝑘
⊗ ( ̆𝐶
𝑠,𝑘
𝑋
𝑘
𝐶
𝑇

𝑠,𝑘
)

+ 𝐽
𝑘
̆𝐶
𝑠,𝑘−1

𝑋
𝑘−1

̆𝐶
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
+ Σ
𝑘
⊗ ( ̆𝐶
𝑠,𝑘−1

𝑋
𝑘−1

𝐶
𝑇

𝑠,𝑘−1
)

− 𝐷
𝑘
[ (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

]
𝑇

𝐶
𝑇

𝑘
+ 𝐷
𝑘
𝑅
𝑘
𝐷
𝑇

𝑘

+ Σ
𝑘
⊗ (𝐷
𝑒,𝑘
𝑅
𝑘
𝐷
𝑇

𝑒,𝑘
) − 𝐷

𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑇

𝑘,𝑘−1
𝐷
𝑇

𝑘
,

(18)

𝑥
𝑘|𝑘

= 𝑥
𝑘|𝑘−1

+ ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘
,

𝑃
𝑘|𝑘

= 𝑃
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
,

(19)

where 𝜀
𝑘
is the innovation with covariance Π

𝑘
, the matrix ϝ

𝑘,𝑘

is the covariance between 𝑥
𝑘
and 𝜀
𝑘
, the vectors 𝑥

𝑘|𝑘
and 𝑥

𝑘|𝑘−1

are the filter and one-step predictor, and the matrices 𝑃
𝑘|𝑘

and
𝑃
𝑘|𝑘−1

are the filter error covariance and one-step prediction

error covariance. The initial values are 𝑥
0|0

= [ ̆𝑥
𝑇

0
0]

𝑇

, 𝑃
0|0

=

diag( ̆𝑃
0
, 0), and 𝜀

1
= 𝑦
1
− 𝐶
1
𝑥
1|0
.

Proof. Please see Appendix A.

Remark 10. In the traditional recursive estimation problem,
the innovation is calculated as 𝜀

𝑘
= 𝑦
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

. However,
due to possible sensor delay which occurs in a random way,
this is not true for the problem at hand; thus, we have to
recalculate the innovation as in (16). Furthermore, it can be
seen that the second term on the right-hand side of (14), the
last four terms on the right-hand side of (15), the second
term of the right-hand side of (17), and the last ten terms on
the right-hand side of (18) are caused by the random delays,
the stochastic uncertainties, and autocorrelated noises.These
terms constitute the main differences between our work and
the traditional Kalman filter.

Next, we will derive the recursive robust predictor and
recursive robust smoother based onTheorem 9.

3.2. Recursive Robust Predictor

Theorem 11. For the addressed system (6) and (7), one has the
following 𝐿-step (𝐿 ≥ 2) recursive robust predictor:

𝑥
𝑘+𝐿|𝑘

= 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

,

𝑃
𝑘+𝐿|𝑘

= 𝐴
𝑘+𝐿−1

𝑃
𝑘+𝐿−1|𝑘

𝐴
𝑇

𝑘+𝐿−1

+ 𝐴
𝑘+𝐿−1

𝐵
𝑘+𝐿−2

𝑄
𝑘+𝐿−2,𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
+ 𝐴
𝑠,𝑘+𝐿−1

× 𝑋
𝑘+𝐿−1

𝐴
𝑇

𝑠,𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1,𝑘+𝐿−2

× 𝐵
𝑇

𝑘+𝐿−2
𝐴
𝑇

𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
,

(20)

where the initial values 𝑥
𝑘+1|𝑘

and 𝑃
𝑘+1|𝑘

can be calculated as
in Theorem 9.

Proof. Please see Appendix B.

3.3. Recursive Smoother

Theorem 12. For the addressed system (6) and (7), one has the
following robust recursive 𝐿-step (𝐿 > 0) fixed-lag smoother:

𝑥
𝑘|𝑘+𝐿

= 𝑥
𝑘|𝑘+𝐿−1

+ ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

,

ϝ
𝑘,𝑘+𝐿

= Ψ
𝑘+𝐿

𝐶
𝑇

𝑘+𝐿
− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1

× 𝐷
𝑘+𝐿−1

𝑅
𝑇

𝑘+𝐿,𝑘+𝐿−1
𝐷
𝑇

𝑘+𝐿
,

Ψ
𝑘+1

= 𝑃
𝑘|𝑘−1

𝐴
𝑇

𝑘
− ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
𝐴
𝑇

𝑘
+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘

𝐵
𝑇

𝑘

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝐶
𝑘
𝐵
𝑘−1

𝑄
𝑇

𝑘,𝑘−1
𝐵
𝑇

𝑘
,

Ψ
𝑘+𝐿

= Ψ
𝑘+𝐿−1

𝐴
𝑇

𝑘+𝐿−1
− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1
ϝ
𝑘+𝐿−1,𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿−1

Π
−1

𝑘+𝐿−1
𝐶
𝑘+𝐿−1

𝐵
𝑘+𝐿−2

× 𝑄
𝑇

𝑘+𝐿−1,𝑘+𝐿−2
𝐵
𝑇

𝑘+𝐿−1
, (𝐿 > 1) ,

𝑃
𝑘|𝑘+𝐿

= 𝑃
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
ϝ
𝑇

𝑘,𝑘+𝐿
,

(21)

where the initial values 𝑥
𝑘|𝑘
, 𝑃
𝑘|𝑘
, and ϝ

𝑘,𝑘
are supplied by

Theorem 9.

Proof. Please see Appendix C.

4. An Illustrative Example

Consider the following uncertain system with different delay
rates sensor network and autocorrelated process noises:

̆𝑥
𝑘+1

= ([
0.95 0.1

0 0.95
] + [

0.1 0

0 0.1
] 𝜇
𝑘
) ̆𝑥
𝑘
+ [

0.3

0.1
] 𝜔
𝑘
, (22)

𝜔
𝑘
= 𝜁
𝑘
+ 𝜁
𝑘−1

, (23)

̆𝑦
𝑖

𝑘
= ( ̆𝐶
𝑖

𝑘
+ ̆𝐶
𝑖

𝑘,𝑠
𝜂
𝑖

𝑘
) ̆𝑥
𝑘
+ ̆V𝑖
𝑘
, 𝑖 = 1, 2, (24)

𝑦
𝑖

𝑘
= (1 − 𝜆

𝑖

𝑘
) ̆𝑦
𝑖

𝑘
+ 𝜆
𝑖

𝑘
̆𝑦
𝑖

𝑘−1
, 𝑖 = 1, 2, (25)

where ̆𝑥
𝑘
∈ R2 is the state to be estimated.The vectors 𝜁

𝑘
∈ R,

𝜇
𝑘
∈ R, 𝜂𝑖

𝑘
∈ R, and V𝑖

𝑘
∈ R, 𝑖 = 1, 2 are zero-mean Gaussian

white noises with covariances 0.5, 1, 1, and 1, respectively.
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Figure 1: MSE1 filter, predictor, and smoother.

Without loss of generality, the process noise 𝜔
𝑘
is chosen to

be as defined in (23).
In the simulation, the initial value ̆𝑥

0
has mean E{ ̆𝑥

0
} =

̆𝑥
𝑇

0
= [100 10]

𝑇 and covariance ̆𝑃
0

= diag(20, 1). The
variables 𝜆𝑖

𝑘
∈ R, 𝑖 = 1, 2 are binary switching sequences

taking values on 1 with Prob{𝜆1
𝑘
= 1} = E{𝜆1

𝑘
} = 𝛽

1

𝑘
= 0.15

and Prob{𝜆2
𝑘
= 1} = E{𝜆2

𝑘
} = 𝛽

2

𝑘
= 0.25, respectively,

and the matrices are set as ̆𝐶
1

𝑘
= [0 1], ̆𝐶

2

𝑘
= [1 0],

̆𝐶
1

𝑘,𝑠
= [0 0.1], and ̆𝐶

2

𝑘,𝑠
= [0.1 0]. The newly obtained

recursive robust estimators and the filter of Zeng et al. [31]
are compared in the simulation. Let MSE1 denotes the mean-
square error for estimation of the first component of ̆𝑥

𝑘
;

that is, (1/𝐾)∑𝐾
𝑘=1

{[1 0]( ̆𝑥
𝑘
− ̂̆𝑥
𝑘|𝑘
)}, where 𝐾 is the number

of the samples. Similarly, MSE2 denotes the mean-square
error for estimation of the second component of ̆𝑥

𝑘
; that is,

(1/𝐾)∑
𝐾

𝑘=1
{[0 1]( ̆𝑥

𝑘
− ̂̆𝑥
𝑘|𝑘
)}.

From Figures 1 and 2, we can see that the smoother
has the best performance and the predictor has the worst
performance. This is due to the fact that smoother uses the
most measurement information and the predictor uses the
least measurement information.

From Figures 3 and 4, we can see that the filter developed
in this work has better performance than the filter of Zeng
et al. [31]. This is due to the fact that the autocorrelated
measurement noise 𝑉

𝑘
was treated as zero-mean Gaussian

white noise in the filter of Zeng et al. [31].

5. Conclusions

In this paper, we have studied the recursive robust estimation
problem for a class of uncertain systems with autocorrelated
process noises and different delay rates sensor network. The
system model and measurement model are both subject
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Figure 2: MSE2 filter, predictor, and smoother.
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Figure 3: MSE1 filter of this work and Zeng et al. [31].

to stochastic uncertainties. The process noises are one-step
autocorrelated across time. Each sensor in the sensor network
has a different delay rate and the delay rate has been described
by an individual binary switching sequence obeying a con-
ditional probability distributed. Based on an IAA and the
OPT, recursive robust estimators including filter, predictor,
and smoother have been obtained. Simulation results have
indicated that the smoother has the best performance and the
predictor has the worst performance, and the filter obtained
in this work has better performance than the filter of Zeng et
al. [31].
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Figure 4: MSE2 filter of this work and Zeng et al. [31].

Appendices

A. The Proof of Theorem 9

Proof. Using the OPT, the one-step measurement prediction
𝑦
𝑘|𝑘−1

can be calculated as follows:

𝑦
𝑘|𝑘−1

=

𝑘−1

∑

𝑖=1

E {𝑦
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘−1

∑

𝑖=1

E {𝐶
𝑘
𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
+

𝑘−1

∑

𝑖=1

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

= 𝐶
𝑘
𝑥
𝑘|𝑘−1

+

𝑘−1

∑

𝑖=1

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
.

(A.1)

Taking into account the fact that 𝑉
𝑘
is one-step autocorre-

lated, we have from (4), (8), and (9) the following:

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑖
} = 0, 𝑖 ≤ 𝑘 − 2,

E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑘−1
} = E {𝐷

𝑘
𝑉
𝑘
(𝑦
𝑘−1

− 𝑦
𝑘−1|𝑘−2

)
𝑇

}

= E {𝐷
𝑘
𝑉
𝑘
𝑉
𝑇

𝑘−1
𝐷
𝑇

𝑘−1
}

= 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
.

(A.2)

Substituting (A.2) into (A.1), we have

𝑦
𝑘|𝑘−1

= 𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

. (A.3)

Therefore, the innovation 𝜀
𝑘
can be calculated as follows:

𝜀
𝑘
= 𝑦
𝑘
− 𝑦
𝑘|𝑘−1

= 𝑦
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

= (𝐶
𝑘
+ 𝐶
𝑘
) 𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘
− 𝐶
𝑘
𝑥
𝑘|𝑘−1

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

= 𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

(A.4)

where 𝑥
𝑘|𝑘−1

= 𝑥
𝑘
− 𝑥
𝑘|𝑘−1

.
Again, according to the OPT, the state prediction 𝑥

𝑘|𝑘−1

can be obtained as follows:

𝑥
𝑘|𝑘−1

=

𝑘−1

∑

𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
,

=

𝑘−1

∑

𝑖=1

E { (𝐴
𝑘−1

𝑥
𝑘−1

+ 𝐴
𝑠,𝑘−1

𝜇
𝑘−1

𝑥
𝑘−1

+𝐵
𝑘−1

𝜔
𝑘−1

) 𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐵
𝑘−1

𝑘−1

∑

𝑖=1

E {𝜔
𝑘−1

𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
.

(A.5)

Taking (3) into consideration, the expectationE{𝜔
𝑘−1

𝜀
𝑇

𝑖
} can

be calculated as follows:

E {𝜔
𝑘−1

𝜀
𝑇

𝑖
} = 0, 𝑖 ≤ 𝑘 − 2,

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
} = E {𝜔

𝑘−1
(𝑦
𝑘−1

− 𝑦
𝑘−1|𝑘−2

)
𝑇

}

= E {𝜔
𝑘−1

𝑥
𝑇

𝑘−1
𝐶
𝑇

𝑘−1
} ,

= E {𝜔
𝑘−1

(𝐴
𝑘−2

𝑥
𝑘−2

+ 𝐴
𝑠,𝑘−2

𝜇
𝑘−2

𝑥
𝑘−2

+𝐵
𝑘−2

𝜔
𝑘−2

)
𝑇

} 𝐶
𝑇

𝑘−1

= 𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
.

(A.6)

Substituting (A.6) into (A.5), we have

𝑥
𝑘|𝑘−1

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

× 𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

.

(A.7)
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Therefore, the one-step prediction error 𝑥
𝑘|𝑘−1

can be calcu-
lated as follows:

𝑥
𝑘|𝑘−1

= 𝑥
𝑘
− 𝑥
𝑘|𝑘−1

= (𝐴
𝑘−1

+ 𝐴
𝑠,𝑘−1

𝜇
𝑘−1

) 𝑥
𝑘−1

+ 𝐵
𝑘−1

𝜔
𝑘−1

− 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

= 𝐴
𝑘−1

𝑥
𝑘−1|𝑘−1

+ 𝐴
𝑠,𝑘−1

𝜇
𝑘−1

𝑥
𝑘−1

+ 𝐵
𝑘−1

𝜔
𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

,

(A.8)

where 𝑥
𝑘−1|𝑘−1

is the filter error at time instant 𝑘 − 1. Taking
into account the fact that 𝜔

𝑘
is one-step autocorrelated across

time and 𝜇
𝑘
is uncorrelated with other signals, the one-

step prediction error covariance 𝑃
𝑘|𝑘−1

can be calculated as
follows:
𝑃
𝑘|𝑘−1

= E {𝑥
𝑘|𝑘−1

𝑥
𝑇

𝑘|𝑘−1
}

= 𝐴
𝑘−1

𝑃
𝑘−1|𝑘−1

𝐴
𝑇

𝑘−1
+ 𝐴
𝑘−1

E {𝑥
𝑘−1|𝑘−1

𝜔
𝑇

𝑘−1
} 𝐵
𝑇

𝑘−1

+ 𝐴
𝑠,𝑘−1

𝑋
𝑘−1

𝐴
𝑇

𝑠,𝑘−1
+ 𝐵
𝑘−1

E {𝜔
𝑘−1

𝑥
𝑇

𝑘−1|𝑘−1
}𝐴
𝑇

𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1

𝐵
𝑇

𝑘−1
− 𝐵
𝑘−1

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1
𝐶
𝑘−1

× 𝐵
𝑘−2

𝑄
𝑇

𝑘−1|𝑘−2
𝐵
𝑇

𝑘−1

− 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
E {𝜀
𝑘−1

𝜔
𝑇

𝑘−1
} 𝐵
𝑇

𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
Π
−1

𝑘−1
𝐶
𝑘−1

× 𝐵
𝑘−2

𝑄
𝑇

𝑘−1|𝑘−2
𝐵
𝑇

𝑘−1
,

(A.9)

where the expectation E{𝜔
𝑘−1

𝜀
𝑇

𝑘−1
} can be calculated as in

(A.6) and expectation E{𝑥
𝑘−1|𝑘−1

𝜔
𝑇

𝑘−1
} can be obtained as

follows:
E {𝑥
𝑘−1|𝑘−1

𝜔
𝑇

𝑘−1
} = E {𝑥

𝑘−1
𝜔
𝑇

𝑘−1
} −E {𝑥

𝑘−1|𝑘−1
𝜔
𝑇

𝑘−1
}

= 𝐵
𝑘−2

E {𝜔
𝑘−2

𝜔
𝑇

𝑘−1
}

−E{(

𝑘−1

∑

𝑖=1

E {𝑥
𝑘−1

𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
)𝜔
𝑇

𝑘−1
}

= 𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

−E {𝑥
𝑘−1

𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1

×E {𝜀
𝑘−1

𝜔
𝑇

𝑘−1
}

= 𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

− ϝ
𝑘−1,𝑘−1

Π
−1

𝑘−1
𝐶
𝑘−1

× 𝐵
𝑘−2

𝑄
𝑘−2,𝑘−1

,

(A.10)

where the third equality in (A.10) holds since 𝜔
𝑘
is one-

step autocorrelated across time. Substituting (A.10) into (A.9)
yields (15).

Noting the fact that 𝑥
𝑘|𝑘−1

is orthogonal to 𝑥
𝑘|𝑘−1

, we have
from (9) and (A.4) the following:

ϝ
𝑘,𝑘

= E {𝑥
𝑘
𝜀
𝑇

𝑘
}

= E {𝑥
𝑘
(𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

−𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

)
𝑇

}

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
−E {𝑥

𝑘
𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
− (𝐴
𝑘−1

E {𝑥
𝑘−1

𝜀
𝑇

𝑘−1
} + 𝐵
𝑘−1

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
})

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘

= 𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
− (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+ 𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

× 𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘
.

(A.11)

It implies from (9), (A.4), and Lemmas 5 and 8 that the
expectation Π

𝑘
can be obtained as follows:

Π
𝑘
= E {𝜀

𝑘
𝜀
𝑇

𝑘
}

= E { (𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

−𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

)

× (𝐶
𝑘
𝑥
𝑘|𝑘−1

+ 𝐶
𝑘
𝑥
𝑘
+ 𝐶
𝑠,𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑉
𝑘

−𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝜀
𝑘−1

)
𝑇

}

= 𝐶
𝑘
𝑃
𝑘|𝑘−1

𝐶
𝑇

𝑘
+ 𝐶
𝑘
E {𝑥
𝑘|𝑘−1

𝑉
𝑇

𝑘
}𝐷
𝑇

𝑘

+E {𝐶
𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑘
} +E {𝐶

𝑠,𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑠,𝑘
}

+ 𝐷
𝑘
E {𝑉
𝑘
𝑥
𝑇

𝑘|𝑘−1
} 𝐶
𝑇

𝑘
+E {𝐷

𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

−E {𝐷
𝑘
𝑉
𝑘
𝜀
𝑇

𝑘−1
}Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑇

𝑘,𝑘−1
𝐷
𝑇

𝑘

− 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
E {𝜀
𝑘−1

𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

+ 𝐷
𝑘
𝑅
𝑘,𝑘−1

𝐷
𝑇

𝑘−1
Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑇

𝑘,𝑘−1
𝐷
𝑇

𝑘
,

(A.12)

where the remaining expectations can be obtained as follows:

E {𝑥
𝑘|𝑘−1

𝑉
𝑇

𝑘
}

= E {𝑥
𝑘
𝑉
𝑇

𝑘
} −E {𝑥

𝑘|𝑘−1
𝑉
𝑇

𝑘
}

= 0 −E{(

𝑘−1

∑

𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
)𝑉
𝑇

𝑘
}
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= −E {𝑥
𝑘
𝜀
𝑇

𝑘−1
}Π
−1

𝑖
E {𝜀
𝑘−1

𝑉
𝑇

𝑘
}

= − (𝐴
𝑘−1

E {𝑥
𝑘−1

𝜀
𝑇

𝑘−1
}

+𝐵
𝑘−1

E {𝜔
𝑘−1

𝜀
𝑇

𝑘−1
})

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

= − (𝐴
𝑘−1

ϝ
𝑘−1,𝑘−1

+𝐵
𝑘−1

𝑄
𝑘−1,𝑘−2

𝐵
𝑇

𝑘−2
𝐶
𝑇

𝑘−1
)

× Π
−1

𝑘−1
𝐷
𝑘−1

𝑅
𝑘−1,𝑘

,

E {𝐶
𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑘
}

= E {𝐽
𝑘
𝐶
𝑒,𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑒,𝑘
𝐽
𝑇

𝑘
}

= Σ
𝑘
⊗ (𝐶
𝑒,𝑘
𝑋
𝑘
𝐶
𝑇

𝑒,𝑘
) ,

E {𝐶
𝑠,𝑘
𝑥
𝑘
𝑥
𝑇

𝑘
𝐶
𝑇

𝑠,𝑘
}

= E{ [(𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
𝜂
𝑘
𝐽
𝑘
̆𝐶
𝑠,𝑘−1

𝜂
𝑘−1

]

× [

[

̆𝑥
𝑘
̆𝑥
𝑇

𝑘
̆𝑥
𝑘
̆𝑥
𝑇

𝑘−1

̆𝑥
𝑘−1

̆𝑥
𝑇

𝑘
̆𝑥
𝑘−1

̆𝑥
𝑇

𝑘−1

]

]

×[(𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
𝜂
𝑘

𝐽
𝑘
̆𝐶
𝑠,𝑘−1

𝜂
𝑘−1

]
𝑇

}

= E { (𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
E {𝜂
𝑘
̆𝑥
𝑘
̆𝑥
𝑇

𝑘
𝜂
𝑇

𝑘
}

× 𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽
𝑘
)
𝑇

}

+E {(𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
E {𝜂
𝑘
}𝑋
𝑘,𝑘−1

× E {𝜂
𝑇

𝑘−1
} ̆𝐶
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
}

+E {𝐽
𝑘
̆𝐶
𝑠,𝑘−1

E {𝜂
𝑘−1

}𝑋
𝑘−1,𝑘

E{𝜂
𝑘
}
𝑇

× ̆𝐶
𝑇

𝑠,𝑘
(1 − 𝐽

𝑘
)
𝑇

}

+E {𝐽
𝑘
̆𝐶
𝑠,𝑘−1

E {𝜂
𝑘−1

̆𝑥
𝑘−1

̆𝑥
𝑇

𝑘−1
𝜂
𝑇

𝑘−1
}

× ̆𝐶
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
}

= E {(𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
𝑋
𝑘
𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽
𝑘
)
𝑇

}

+E {𝐽
𝑘
̆𝐶
𝑠,𝑘−1

𝑋
𝑘−1

̆𝐶
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘
}

= E { [(𝐼 − 𝐽
𝑘
) − 𝐽
𝑘
] ̆𝐶
𝑠,𝑘
𝑋
𝑘
𝐶
𝑇

𝑠,𝑘

× [(𝐼 − 𝐽
𝑘
) − 𝐽
𝑘
]
𝑇

}

+E { (𝐽
𝑘
+ 𝐽
𝑘
) ̆𝐶
𝑠,𝑘−1

𝑋
𝑘−1

× ̆𝐶
𝑇

𝑠,𝑘−1
(𝐽
𝑘
+ 𝐽
𝑘
)
𝑇

}

= (𝐼 − 𝐽
𝑘
) ̆𝐶
𝑠,𝑘
𝑋
𝑘
𝐶
𝑇

𝑠,𝑘
(𝐼 − 𝐽

𝑘
)
𝑇

+ Σ
𝑘
⊗ ( ̆𝐶
𝑠,𝑘
𝑋
𝑘
𝐶
𝑇

𝑠,𝑘
)

+ 𝐽
𝑘
̆𝐶
𝑠,𝑘−1

𝑋
𝑘−1

̆𝐶
𝑇

𝑠,𝑘−1
𝐽
𝑇

𝑘

+ Σ
𝑘
⊗ ( ̆𝐶
𝑠,𝑘−1

𝑋
𝑘−1

𝐶
𝑇

𝑠,𝑘−1
) ,

E {𝐷
𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

= E {(𝐷
𝑘
+ 𝐷
𝑘
)𝑉
𝑘
𝑉
𝑇

𝑘
(𝐷
𝑘
+ 𝐷
𝑘
)
𝑇

}

= E {𝐷
𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑘
}

+E {𝐽
𝑘
𝐷
𝑒,𝑘
𝑉
𝑘
𝑉
𝑇

𝑘
𝐷
𝑇

𝑒,𝑘
𝐽
𝑇

𝑘
}

= 𝐷
𝑘
𝑅
𝑘
𝐷
𝑇

𝑘
+ Σ
𝑘
⊗ (𝐷
𝑒,𝑘
𝑅
𝑘
𝐷
𝑇

𝑒,𝑘
) ,

(A.13)

where Lemmas 5–8 have been used. Substituting (A.13) into
(A.12) yields to (18).

Again, by using the OPT, the state estimation 𝑥
𝑘|𝑘

can be
calculated as follows:

𝑥
𝑘|𝑘

=

𝑘

∑

𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘−1

∑

𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
+E {𝑥

𝑘
𝜀
𝑇

𝑘
}Π
−1

𝑘
𝜀
𝑘

= 𝑥
𝑘|𝑘−1

+ ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘
.

(A.14)

Therefore, the estimation error 𝑥
𝑘|𝑘

can be obtained as
follows:

𝑥
𝑘|𝑘

= 𝑥
𝑘
− 𝑥
𝑘|𝑘

= 𝑥
𝑘
− 𝑥
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘

= 𝑥
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
𝜀
𝑘
.

(A.15)

From (A.15), the estimation error covariance 𝑃
𝑘|𝑘

can be
calculated as follows:

𝑃
𝑘|𝑘

= E {𝑥
𝑘|𝑘
𝑥
𝑇

𝑘|𝑘
}

= 𝑃
𝑘|𝑘−1

−E {𝑥
𝑘|𝑘−1

𝜀
𝑇

𝑘
}Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘

− ϝ
𝑘,𝑘
Π
−1

𝑘
E {𝜀
𝑘
𝑥
𝑇

𝑘|𝑘−1
} + ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
,

(A.16)
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where the remaining expectation E{𝑥
𝑘|𝑘−1

𝜀
𝑇

𝑘
} can be calcu-

lated as follows:

E {𝑥
𝑘|𝑘−1

𝜀
𝑇

𝑘
} = E {𝑥

𝑘
𝜀
𝑇

𝑘
} −E {𝑥

𝑘|𝑘−1
𝜀
𝑇

𝑘
}

= ϝ
𝑘,𝑘

−E{

𝑘−1

∑

𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
𝜀
𝑇

𝑘
}

= ϝ
𝑘,𝑘
.

(A.17)

Substituting (A.17) into (A.16), we have

𝑃
𝑘|𝑘

= 𝑃
𝑘|𝑘−1

− ϝ
𝑘,𝑘
Π
−1

𝑘
ϝ
𝑇

𝑘,𝑘
, (A.18)

which completes the proof of Theorem 9.

B. The Proof of Theorem 11

Proof. Taking into account the fact that the process noise 𝜔
𝑘

is one-step autocorrelated across time, the 𝐿-step prediction
𝑥
𝑘+𝐿|𝑘

can be calculated as follows:

𝑥
𝑘+𝐿|𝑘

=

𝑘

∑

𝑖=1

E {𝑥
𝑘+𝐿

𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘

∑

𝑖=1

E { [(𝐴
𝑘+𝐿−1

+ 𝐴
𝑠,𝑘+𝐿−1

𝜇
𝑘+𝐿−1

) 𝑥
𝑘+𝐿−1

+𝐵
𝑘+𝐿−1

𝜔
𝑘+𝐿−1

] 𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

= 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

.

(B.1)

Therefore, the 𝐿-step prediction error 𝑥
𝑘+𝐿|𝑘

can be obtained
as follows:

𝑥
𝑘+𝐿|𝑘

= 𝑥
𝑘+𝐿

− 𝑥
𝑘+𝐿|𝑘

= (𝐴
𝑘+𝐿−1

+ 𝐴
𝑠,𝑘+𝐿−1

𝜇
𝑘+𝐿−1

) 𝑥
𝑘+𝐿−1

+ 𝐵
𝑘+𝐿−1

𝜔
𝑘+𝐿−1

− 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

= 𝐴
𝑘+𝐿−1

𝑥
𝑘+𝐿−1|𝑘

+ 𝐴
𝑠,𝑘+𝐿−1

𝜇
𝑘+𝐿−1

𝑥
𝑘+𝐿−1

+ 𝐵
𝑘+𝐿−1

𝜔
𝑘+𝐿−1

.

(B.2)

Thus, the 𝐿-step prediction error covariance 𝑃
𝑘+𝐿−1|𝑘

can be
calculated as follows:

𝑃
𝑘+𝐿|𝑘

= E {𝑥
𝑘+𝐿|𝑘

𝑥
𝑇

𝑘+𝐿|𝑘
}

= 𝐴
𝑘+𝐿−1

𝑃
𝑘+𝐿−1|𝑘

𝐴
𝑇

𝑘+𝐿−1
+ 𝐴
𝑘+𝐿−1

×E {𝑥
𝑘+𝐿−1|𝑘

𝜔
𝑇

𝑘+𝐿−1
} 𝐵
𝑇

𝑘+𝐿−1
+ 𝐴
𝑠,𝑘+𝐿−1

× 𝑋
𝑘+𝐿−1

𝐴
𝑇

𝑠,𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

E {𝜔
𝑘+𝐿−1

𝑥
𝑇

𝑘+𝐿−1|𝑘
}

× 𝐴
𝑇

𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1

= 𝐴
𝑘+𝐿−1

𝑃
𝑘+𝐿−1|𝑘

𝐴
𝑇

𝑘+𝐿−1

+ 𝐴
𝑘+𝐿−1

𝐵
𝑘+𝐿−2

𝑄
𝑘+𝐿−2,𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
+ 𝐴
𝑠,𝑘+𝐿−1

× 𝑋
𝑘+𝐿−1

𝐴
𝑇

𝑠,𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1,𝑘+𝐿−2

× 𝐵
𝑇

𝑘+𝐿−2
𝐴
𝑇

𝑘+𝐿−1
+ 𝐵
𝑘+𝐿−1

𝑄
𝑘+𝐿−1

𝐵
𝑇

𝑘+𝐿−1
,

(B.3)

which completes the proof of Theorem 11.

C. The Proof of Theorem 12

Proof. According to the OPT, the 𝐿-step fixed-lag smoother
𝑥
𝑘|𝑘+𝐿

can be calculated as follows:

𝑥
𝑘|𝑘+𝐿

=

𝑘+𝐿

∑

𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖

=

𝑘+𝐿−1

∑

𝑖=1

E {𝑥
𝑘
𝜀
𝑇

𝑖
}Π
−1

𝑖
𝜀
𝑖
+E {𝑥

𝑘
𝜀
𝑇

𝑘+𝐿
}Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

= 𝑥
𝑘|𝑘+𝐿−1

+ ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

,

(C.1)

where ϝ
𝑘,𝑘+𝐿

can be calculated as follows:

ϝ
𝑘,𝑘+𝐿

= E {𝑥
𝑘
𝜀
𝑇

𝑘+𝐿
}

= E {𝑥
𝑘
(𝐶
𝑘+𝐿

𝑥
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+ 𝐶
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}
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𝑥
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}
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𝐶
𝑇
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(C.2)

where the third equality holds since𝐶
𝑘+𝐿

,𝐶
𝑠,𝑘+𝐿

, and𝑉
𝑘+𝐿

are
zero-mean stochastic matrices and they are all uncorrelated
with 𝑥

𝑘
. From (A.8) the expectation Ψ

𝑘+𝐿
= E{𝑥

𝑘
𝑥
𝑇

𝑘+𝐿|𝑘+𝐿−1
}

can be obtained as follows:

Ψ
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= E {𝑥
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(C.3)

Similarly, when 𝐿 ≥ 2, the expectationΨ
𝑘+𝐿

can be calculated
as follows:

Ψ
𝑘+𝐿

= Ψ
𝑘+𝐿−1

𝐴
𝑇

𝑘+𝐿−1
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(C.4)

From (6) and (C.1), the smoother error can be obtained as
follows:

𝑥
𝑘|𝑘+𝐿

= 𝑥
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− 𝑥
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

= 𝑥
𝑘|𝑘+𝐿−1

− ϝ
𝑘,𝑘+𝐿

Π
−1

𝑘+𝐿
𝜀
𝑘+𝐿

.

(C.5)

Therefore, the smoother error covariance can be obtained as
follows:

𝑃
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(C.6)

which completes the proof of Theorem 12.
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and J. D. Jiménez-López, “Least-squares linear filtering using
observations coming from multiple sensors with one- or two-
step random delay,” Signal Processing, vol. 89, no. 10, pp. 2045–
2052, 2009.

[31] M. Zeng, J. Feng, and Z. Yu, “Optimal unbiased estimation
for uncertain systems with different delay rates sensor network
and autocorrelated process noises,” in Proceedings of the Chinese
Control and Decision Conference (CCDC ’11), pp. 3014–3018,
Mianyang, China, May 2011.

[32] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis,
Cambridge University Press, New York, NY, USA, 1991.



Research Article
Frequency Weighted Model Order Reduction Technique and
Error Bounds for Discrete Time Systems

Muhammad Imran,1 Abdul Ghafoor,1 and Victor Sreeram2

1 Military College of Signals, National University of Sciences and Technology (NUST), Islamabad, Pakistan
2 School of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, WA 6009, Australia

Correspondence should be addressed to Abdul Ghafoor; abdulghafoor-mcs@nust.edu.pk

Received 15 December 2013; Revised 10 February 2014; Accepted 11 February 2014; Published 18 March 2014

Academic Editor: Xiaojie Su

Copyright © 2014 Muhammad Imran et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Model reduction is a process of approximating higher order original models by comparatively lower order models with reasonable
accuracy in order to provide ease in design, modeling and simulation for large complex systems. Generally, model reduction
techniques approximate the higher order systems for whole frequency range. However, certain applications (like controller
reduction) require frequency weighted approximation, which introduce the concept of using frequency weights inmodel reduction
techniques. Limitations of some existing frequency weighted model reduction techniques include lack of stability of reduced order
models (for two sided weighting case) and frequency response error bounds. A new frequency weighted technique for balanced
model reduction for discrete time systems is proposed. The proposed technique guarantees stable reduced order models even for
the case when two sided weightings are present. Efficient technique for frequency weighted Gramians is also proposed. Results are
compared with other existing frequency weighted model reduction techniques for discrete time systems. Moreover, the proposed
technique yields frequency response error bounds.

1. Introduction

Model reduction has played a significant role in modern
control system design and caught a lot of attention in the
last few decades [1–5]. It is desirable that reduced order
model preserves the fundamental properties of original
system like stability, passivity, and so forth. Moreover, the
approximation error between original and reduced order
system is required to be small. Balanced truncation [6] is
prominent model reduction scheme, which not only ensures
stability of reduced order systems but also provides frequency
response a priori error bounds. Other schemes like Hankel
norm approximation [7], Pade approximation [8], Krylov
technique [9, 10], linear matrix inequality (LMI) technique
[11, 12], and so forth, are also useful for model reduction.
Hankel norm approximation has complex implementation
and does not preserve steady state [13]. Pade and Krylov
approximation sometimes provide unstable reduced order
models and there exist no global error bounds [14, 15].
LMI technique is based on mathematical iterative methods
(i.e., convex optimization and bisection algorithm); therefore,

much computational power is consumed [16]. However, LMI
technique has been applied on various model reduction
problems for different types of systems (including time delay
[17], discrete state delay [18, 19], switched hybrid [20], and
nonlinear stochastic [21]). Applications of model reduction
are not only restricted to control engineering but also find
utility inmedical [22] and text summarization [23] areas, and
so forth. Most model reduction algorithms tend to minimize
the reduction error over the whole frequency range; however
there are certain situations (like controller reduction [24]),
wherein the approximation error is more critical over a
certain band of frequencies.

Enns [25] has enhanced the balanced truncation [6] to
incorporate frequency weights for model reduction of higher
order systems. This technique can work with input, output,
and two sided weightings. However, in two sided weighting
case, this technique may give unstable reduced order models
[26]. To circumvent instability issue in the presence of two
sided weightings, many techniques appear in the literature
(including Lin and Chiu [27], Wang et al. [28], Varga and
Anderson [29], Ghafoor and Sreeram [30], etc.).
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In Lin and Chiu [27] technique weightings are strictly
proper. It was improved to include more general proper
weightings in [26]. Varga andAnderson [29] technique yields
proper model for strictly proper systems also. Ghafoor and
Sreeram [30] technique is a parameterized technique. Wang
et al.’s technique is relatively useful, since other techniques
[27, 29] are not applicable for controller order reduction.
Moreover, Wang et al.’s technique yields easily computable
expression for a priori error bounds.

Various partial fraction based techniques appear in the
literature [31–35] that works for continuous as well as discrete
time systems. Unfortunately, most of these techniques yield
large frequency response error [30] as compared to Enns
technique. However, [35] incorporates free parameters to
reduce the approximation error.

Most frequently, frequency weighted model reduction
problem is treated in continuous time; however, there are few
papers (like [36–38]) which deal with this problem explicitly
in discrete time. Sahlan et al.’s [36] technique (discrete time
version of [31]) is a modified version of Lin and Chiu [27]
technique. Campbell et al.’s [37] technique is discrete time
counterpart of Wang et al.’s [28] technique, which not only
provides stability for two sided case but also gives easily
computable error bounds. Campbell et al.’s [37] technique
involves taking absolute values of eigenvalues. This may
introduce a large change to the system and hence a larger
error if it contains some negative eigenvalues. Varga and
Anderson’s [38] tend to minimize the distance between Enns
and Campbell et al.’s techniques Gramians by eliminating
negative eigenvalues.

In this work, a technique is developed for frequency
weighted balanced model order reduction for discrete time
systems. The large change in eigenvalues is avoided by
yielding similar effect on all eigenvalues. The stability is
guaranteed even for double sided weighting. The proposed
technique provides comparable frequency response error and
yields easily computable a priori error bounds. Numerical
examples are given to show the usefulness and comparison
of proposed technique with the existing frequency weighted
balanced reduction techniques.

2. Preliminaries

In this section we review some of the existing frequency
weighted model reduction techniques for discrete time sys-
tems which include Enns [25], Campbell et al.’s [37], and
Varga and Anderson’s [38].

Consider a stable full order original system with transfer
function 𝐻(𝑧) = 𝐶(𝑧𝐼 − 𝐴)

−1
𝐵 + 𝐷, a stable input weighting

system with input transfer function𝑉
𝑖
(𝑧) = 𝐶

𝑖
(𝑧𝐼−𝐴

𝑖
)
−1

𝐵
𝑖
+

𝐷
𝑖
, and a stable output weighting system with output transfer

function 𝑊
𝑜
(𝑧) = 𝐶

𝑜
(𝑧𝐼 − 𝐴

𝑜
)
−1

𝐵
𝑜
+ 𝐷
𝑜
; the augmented

systems are given by

𝐻(𝑧)𝑉
𝑖
(𝑧) = 𝐶

𝑑𝑖
(𝑧𝐼 − 𝐴

𝑑𝑖
)
−1

𝐵
𝑑𝑖

+ 𝐷
𝑑𝑖
,

𝑊
𝑜
(𝑧)𝐻 (𝑧) = 𝐶

𝑑𝑜
(𝑧𝐼 − 𝐴
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)
−1

𝐵
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+ 𝐷
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,

(1)

where

[
𝐴
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𝐵
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𝐶
𝑑𝑖

𝐷
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(2)

Let the Gramians
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12

𝑄
12

𝑄
𝑒𝑛

] (3)

satisfy the following Lyapunov equations:

𝐴
𝑑𝑖
𝑃
𝑑𝑖
𝐴
𝑇

𝑑𝑖
− 𝑃
𝑑𝑖

+ 𝐵
𝑑𝑖
𝐵
𝑇

𝑑𝑖
= 0, (4)

𝐴
𝑇

𝑑𝑜
𝑄
𝑑𝑜

𝐴
𝑑𝑜

− 𝑄
𝑑𝑜

+ 𝐶
𝑇

𝑑𝑜
𝐶
𝑑𝑜

= 0. (5)

Expanding the (1,1) and (2,2) blocks of above equations,
we get

𝐴𝑃
𝑒𝑛
𝐴
𝑇
− 𝑃
𝑒𝑛

+ 𝑋
𝑒𝑛

= 0,

𝐴
𝑇
𝑄
𝑒𝑛
𝐴 − 𝑄

𝑒𝑛
+ 𝑌
𝑒𝑛

= 0,

(6)

where

𝑋
𝑒𝑛

= 𝐴𝑃
12
𝐶
𝑇

𝑖
𝐵
𝑇
+ 𝐵𝐶
𝑖
𝑃
𝑇

12
𝐴
𝑇
+ 𝐵𝐶
𝑖
𝑃
𝑉
𝐶
𝑇

𝑖
𝐵
𝑇
+ 𝐵𝐷
𝑖
𝐷
𝑇

𝑖
𝐵
𝑇
,

𝑌
𝑒𝑛

= 𝐶
𝑇
𝐵
𝑇

𝑜
𝑄
𝑇

12
𝐴 + 𝐴

𝑇
𝑄
12
𝐵
𝑜
𝐶

+ 𝐶
𝑇
𝐵
𝑇

𝑜
𝑄
𝑊
𝐵
𝑜
𝐶 + 𝐶

𝑇
𝐷
𝑇

𝑜
𝐷
𝑜
𝐶.

(7)

2.1. Enns Technique [25]. Let 𝑇 be contragredient matrix
obtained as

𝑇
𝑇
𝑄
𝑒𝑛
𝑇 = 𝑇

−1
𝑃
𝑒𝑛
𝑇
−𝑇

= diag {𝜎
1
, 𝜎
2
, 𝜎
3
, . . . , 𝜎

𝑛
} , (8)

where 𝜎
𝑗

≥ 𝜎
𝑗+1

, 𝑗 = 1, 2, 3, . . . , 𝑛 − 1 and 𝜎
𝑙

> 𝜎
𝑙+1

. By
transforming and then partitioning the original system, we
have

𝐴 = 𝑇
−1

𝐴𝑇 = [
𝐴
11

𝐴
12

𝐴
21

𝐴
22

] , 𝐵 = 𝑇
−1

𝐵 = [
𝐵
1

𝐵
2

] ,

𝐶 = 𝐶𝑇 = [𝐶1 𝐶
2] , 𝐷 = 𝐷,

(9)

where 𝐴
11

∈ 𝑅
𝑙×𝑙. The reduced order system is obtained as

follows: 𝐻
𝑙
(𝑧) = 𝐶

1
(𝑧𝐼 − 𝐴

11
)
−1

𝐵
1
+ 𝐷.

Remark 1. It is not guaranteed to ensure that 𝑋
𝑒𝑛

≥ 0 and
𝑌
𝑒𝑛

≥ 0; the reduced order models obtained using Enns
technique may not remain stable for both sided weightings.
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2.2. Campbell et al.’s Technique [37]. Campbell et al.’s [37]
(a discrete time version of [28]) guarantees the positive
semidefiniteness of symmetricmatrices𝑋

𝑒𝑛
and𝑌
𝑒𝑛
to ensure

stability. Let the new controllability𝑃
𝐶𝑆

and observability𝑄
𝐶𝑆

Gramians, respectively, be calculated by solving the following
Lyapunov equations:

𝐴𝑃
𝐶𝑆

𝐴
𝑇
− 𝑃
𝐶𝑆

+ 𝐵
𝐶𝑆

𝐵
𝑇

𝐶𝑆
= 0,

𝐴
𝑇
𝑄
𝐶𝑆

𝐴 + 𝑄
𝐶𝑆

+ 𝐶
𝑇

𝐶𝑆
𝐶
𝐶𝑆

= 0.

(10)

which are used to obtain contragredient matrix 𝑇 as

𝑇
𝑇
𝑄
𝐶𝑆

𝑇 = 𝑇
−1

𝑃
𝐶𝑆

𝑇
−𝑇

= Σ, (11)

where Σ = diag{𝜎
1
, 𝜎
2
, 𝜎
3
, . . . , 𝜎

𝑛
} and 𝜎

𝑗
≥ 𝜎
𝑗+1

, 𝑗 =

1, 2, 3, . . . , 𝑛 − 1 and 𝜎
𝑙

> 𝜎
𝑙+1

. The fictitious input 𝐵
𝐶𝑆

and output 𝐶
𝐶𝑆

matrices shown in the above Lyapunov
equations are defined as 𝐵

𝐶𝑆
= 𝑈
𝐶𝑆

|𝑆
𝐶𝑆

|
1/2 and 𝐶

𝐶𝑆
=

|𝑅
𝐶𝑆

|
1/2

𝑉
𝑇

𝐶𝑆
, respectively. Since the expressions𝑈

𝐶𝑆
, 𝑆
𝐶𝑆
, 𝑉
𝐶𝑆
,

and 𝑅
𝐶𝑆

are calculated by orthogonal eigen decomposition
𝑋
𝑒𝑛

= 𝑈
𝐶𝑆

𝑆
𝐶𝑆

𝑈
𝑇

𝐶𝑆
and 𝑌

𝑒𝑛
= 𝑉
𝐶𝑆

𝑅
𝐶𝑆

𝑉
𝑇

𝐶𝑆
, where 𝑆

𝐶𝑆
=

diag(𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
), 𝑅
𝐶𝑆

= diag(𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
), |𝑠
1
| ≥ |𝑠

2
| ≥

⋅ ⋅ ⋅ ≥ |𝑠
𝑛
| ≥ 0 and |𝑟

1
| ≥ |𝑟

2
| ≥ ⋅ ⋅ ⋅ ≥ |𝑟

𝑛
| ≥ 0. The

reduced order systems are calculated by transforming and
then partitioning the original system.

Remark 2. The stability of reduced order models in the
presence of both input and output weightings is guaranteed
and the following error bound holds [37]

𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻
𝑙
(𝑧)) 𝑉

𝑖
(𝑧)

∞

≤ 2
𝑊𝑜 (𝑧) 𝐿𝐶𝑆

∞
𝐾𝐶𝑆𝑉𝑖 (𝑧)

∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗
,

(12)

where

𝐿
𝐶𝑆

= 𝐶𝑉
𝐶𝑆

diag (
𝑟1


−1/2

,
𝑟2


−1/2

, . . . ,
𝑟𝑙𝑖


−1/2

, 0, . . . , 0) ,

𝐾
𝐶𝑆

= diag (
𝑠1


−1/2

,
𝑠2


−1/2

, . . . ,
𝑠𝑘𝑜


−1/2

, 0, . . . , 0)𝑈
𝑇

𝐶𝑆
𝐵.

(13)

𝑙𝑖 = rank[𝑋
𝑒𝑛
] and 𝑘𝑜 = rank[𝑌

𝑒𝑛
].

2.3. Varga and Anderson’s Technique [38]. Note that the
Gramians satisfy 𝑃

𝑒𝑛
≤ 𝑃
𝐶𝑆

and 𝑄
𝑒𝑛

≤ 𝑄
𝐶𝑆
. For minimizing

the distances between the Gramians, 𝑃
𝑒𝑛

−𝑃
𝐶𝑆

and𝑄
𝑒𝑛

−𝑄
𝐶𝑆
,

Varga and Anderson proposed the following technique.
Let new controllability and observability Gramians 𝑃

𝑉𝑑

and 𝑄
𝑉𝑑
, respectively, be calculated as the solutions to

Lyapunov equations

𝐴𝑃
𝑉𝑑

𝐴
𝑇
− 𝑃
𝑉𝑑

+ 𝐵
𝑉𝑑

𝐵
𝑇

𝑉𝑑
= 0,

𝐴
𝑇
𝑄
𝑉𝑑

𝐴 − 𝑄
𝑉𝑑

+ 𝐶
𝑇

𝑉𝑑
𝐶
𝑉𝑑

= 0

(14)

which are used obtain contragredient matrix 𝑇 as

𝑇
𝑇
𝑄
𝑉𝑑

𝑇 = 𝑇
−1

𝑃
𝑉𝑑

𝑇
−𝑇

= Σ, (15)

where Σ = diag{𝜎
1
, 𝜎
2
, 𝜎
3
, . . . , 𝜎

𝑛
}, and 𝜎

𝑗
≥ 𝜎
𝑗+1

, 𝑗 =

1, 2, . . . , 𝑛 − 1, 𝜎
𝑙

> 𝜎
𝑙+1

. The new fictitious input 𝐵
𝑉𝑑

and
output 𝐶

𝑉𝑑
matrices in the above Lyapunov equations are

defined as 𝐵
𝑉𝑑

= 𝑈
𝑉𝑑1

𝑆
1/2

𝑉𝑑1
and 𝐶

𝑉𝑑
= 𝑅
1/2

𝑉𝑑1
𝑉
𝑇

𝑉𝑑1
, respectively.

The terms𝑈
𝑉𝑑1

, 𝑆
𝑉𝑑1

, 𝑉
𝑉𝑑1

, and 𝑅
𝑉𝑑1

are calculated from the
orthogonal eigen decomposition of symmetric matrices

𝑋
𝑒𝑛

= [𝑈𝑉𝑑1
𝑈
𝑉𝑑2

] [
𝑆
𝑉𝑑1

0

0 𝑆
𝑉𝑑2

][
𝑈
𝑇

𝑉𝑑1

𝑈
𝑇

𝑉𝑑2

] ,

𝑌
𝑒𝑛

= [𝑉𝑉𝑑1
𝑉
𝑉𝑑2

] [
𝑅
𝑉𝑑1

0

0 𝑅
𝑉𝑑2

][
𝑉
𝑇

𝑉𝑑1

𝑉
𝑇

𝑉𝑑2

] ,

(16)

where [
𝑆𝑉𝑑1
0

0 𝑆𝑉𝑑2

] = diag{𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
}, [ 𝑅𝑉𝑑1 0
0 𝑅𝑉𝑑2

] =

diag{𝑟
1
, 𝑟
2
, 𝑟
3
, . . . , 𝑟

𝑛
}, 𝑠
1

≥ 𝑠
2

≥ 𝑠
3

≥ ⋅ ⋅ ⋅ ≥ 𝑠
𝑛
, 𝑟
1

≥

𝑟
2

≥ 𝑟
3

≥ ⋅ ⋅ ⋅ ≥ 𝑟
𝑛
, 𝑆
𝑉𝑑1

= diag{𝑠
1
, 𝑠
2
, 𝑠
3
, . . . , 𝑠

𝑘
}, 𝑅
𝑉𝑑1

=

diag{𝑟
1
, 𝑟
2
, 𝑟
3
, . . . , 𝑟

𝑘
}, 𝑠
1

≥ 𝑠
2

≥ 𝑠
3

≥ ⋅ ⋅ ⋅ ≥ 𝑠
𝑘

≥ 0, 𝑟
1

≥

𝑟
2
≥ 𝑟
3
≥ ⋅ ⋅ ⋅ ≥ 𝑟

𝑘
≥ 0.

The reduced order systems are calculated by transforming
and then partitioning the original system.

Remark 3. The stability of the reduced system is guaranteed
and the following error bound holds [38]

𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻
𝑙
(𝑧)) 𝑉

𝑖
(𝑧)

∞

≤ 2
𝑊𝑜 (𝑧) 𝐿𝑉𝑑

∞
𝐾𝑉𝑑𝑉𝑖 (𝑧)

∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗
,

(17)

where 𝐿
𝑉𝑑

= 𝐶𝑉
𝑉𝑑1

𝑅
−1/2

𝑉𝑑1
and 𝐾

𝑉𝑑
= 𝑆
−1/2

𝑉𝑑1
𝑈
𝑇

𝑉𝑑1
𝐵.

3. Main Results

In Campbell et al.’s [37] technique, the symmetric matrices
𝑋
𝑒𝑛
and 𝑌

𝑒𝑛
are guaranteed positive/semipositive definite by

taking the square root of absolute values of the eigenvalues
obtained by eigen decomposition of symmetric matrices
𝑋
𝑒𝑛

and 𝑌
𝑒𝑛
. This may lead to a large change in some

eigenvalues and may not affect other eigenvalues. Although
in Varga and Anderson’s [38] technique, this large change
was slightly improved by eliminating negative eigenvalues,
but the problem persists with the other eigenvalues. In the
following, a new technique is proposed in which a similar
effect on all eigenvalues of indefinite matrices 𝑋

𝑒𝑛
and 𝑌

𝑒𝑛

guarantees stability, error bound, and improved frequency
response error.

3.1. Proposed Technique. Let a new controllability 𝑃
𝐼𝐺

and
observability 𝑄

𝐼𝐺
Gramians, respectively, be calculated by

solving the following Lyapunov equations:

𝐴𝑃
𝐼𝐺

𝐴
𝑇
− 𝑃
𝐼𝐺

+ 𝐵
𝐼𝐺

𝐵
𝑇

𝐼𝐺
= 0, (18)

𝐴
𝑇
𝑄
𝐼𝐺

𝐴 − 𝑄
𝐼𝐺

+ 𝐶
𝑇

𝐼𝐺
𝐶
𝐼𝐺

= 0. (19)
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Thematrices 𝐵
𝐼𝐺

and𝐶
𝐼𝐺

are the new fictitious input and
output matrices, respectively, and are defined as

𝐵
𝐼𝐺

= {
𝑈
𝐼𝐺

(𝑆
𝐼𝐺

− 𝑠
𝑛
𝐼)
1/2 for 𝑠

𝑛
< 0

𝑈
𝐼𝐺

𝑆
1/2

𝐼𝐺
for 𝑠
𝑛
≥ 0,

𝐶
𝐼𝐺

= {
(𝑅
𝐼𝐺

− 𝑟
𝑛
𝐼)
1/2

𝑉
𝑇

𝐼𝐺
for 𝑟
𝑛
< 0

𝑅
1/2

𝐼𝐺
𝑉
𝑇

𝐼𝐺
for 𝑟
𝑛
≥ 0.

(20)

The terms 𝑈
𝐼𝐺
, 𝑆
𝐼𝐺
, 𝑉
𝐼𝐺
, and 𝑅

𝐼𝐺
are calculated by

the orthogonal eigen decomposition of symmetric matrices
𝑋
𝑒𝑛

= 𝑈
𝐼𝐺

𝑆
𝐼𝐺

𝑈
𝑇

𝐼𝐺
and 𝑌

𝑒𝑛
= 𝑉
𝐼𝐺

𝑅
𝐼𝐺

𝑉
𝑇

𝐼𝐺
, where 𝑆

𝐼𝐺
=

diag(𝑠
1
, 𝑠
2
, 𝑠
3
, . . . , 𝑠

𝑛
), 𝑅
𝐼𝐺

= diag(𝑟
1
, 𝑟
2
, 𝑟
3
, . . . , 𝑟

𝑛
), 𝑠
1

≥ 𝑠
2

≥

⋅ ⋅ ⋅ ≥ 𝑠
𝑛
, and 𝑟

1
≥ 𝑟
2
≥ ⋅ ⋅ ⋅ ≥ 𝑟

𝑛
.

Let a contragradient transformationmatrix𝑇 be obtained
as

𝑇
𝑇
𝑄
𝐼𝐺

𝑇 = 𝑇
−1

𝑃
𝐼𝐺

𝑇
−𝑇

= Σ, (21)

where Σ = diag{𝜎
1
, 𝜎
2
, 𝜎
3
, . . . , 𝜎

𝑛
}, and 𝜎

𝑗
≥ 𝜎
𝑗+1

, 𝑗 =

1, 2, . . . , 𝑛 − 1, 𝜎
𝑙

> 𝜎
𝑙+1

. The reduced order system is
calculated by transforming and partitioning the original
system.

Remark 4. Since 𝑋
𝑒𝑛

≤ 𝐵
𝐼𝐺

𝐵
𝑇

𝐼𝐺
≥ 0, 𝑌

𝑒𝑛
≤ 𝐶
𝑇

𝐼𝐺
𝐶
𝐼𝐺

≥ 0,
𝑃
𝐼𝐺

> 0 and𝑄
𝐼𝐺

> 0, therefore, the realization (𝐴, 𝐵
𝐼𝐺𝑆

, 𝐶
𝐼𝐺𝑆

)

is minimal. Moreover, the reduced order models are stable.

Theorem 5. The following error bound for the proposed tech-
nique holds if the rank conditions rank [𝐵𝐼𝐺 𝐵] = rank[𝐵

𝐼𝐺
]

and rank [
𝐶𝐼𝐺

𝐶
] = rank[𝐶

𝐼𝐺
] (which follows from [2, 28, 29,

38]) are satisfied

(𝑖)
𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙
(𝑧)) 𝑉

𝑖
(𝑧)

∞

≤ 2
𝑊𝑜(𝑧)𝐿𝐼𝐺

∞
𝐾𝐼𝐺𝑉𝑖(𝑧)

∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

(𝑖𝑖)
(𝐻 (𝑧) − 𝐻

𝑙
(𝑧)) 𝑉

𝑖
(𝑧)

∞ ≤ 2
𝐾𝐼𝐺𝑉𝑖 (𝑧)

∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗

(𝑖𝑖𝑖)
𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙
(𝑧))

∞

≤ 2
𝑊𝑜 (𝑧) 𝐿𝐼𝐺

∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗
,

(22)

where

𝐿
𝐼𝐺

= {
𝐶𝑉(𝑅

𝐼𝐺
− 𝑟
𝑛
𝐼)
−1/2 for 𝑟

𝑛
< 0

𝐶𝑉𝑅
−1/2

𝐼𝐺
for 𝑟
𝑛
≥ 0,

𝐾
𝐼𝐺

= {
(𝑆
𝐼𝐺

− 𝑠
𝑛
𝐼)
−1/2

𝑈
𝑇
𝐵 for 𝑠

𝑛
< 0

𝑆
−1/2

𝐼𝐺
𝑈
𝑇
𝐵 for 𝑠

𝑛
≥ 0.

(23)

Proof. We show proof of (i) (whereas (ii) and (iii) are special
cases of (i)). Since the rank conditions rank [𝐵𝐼𝐺 𝐵] =

rank[𝐵
𝐼𝐺

] and rank [
𝐶𝐼𝐺

𝐶
] = rank[𝐶

𝐼𝐺
] are satisfied,

the relationships 𝐵 = 𝐵
𝐼𝐺

𝐾
𝐼𝐺

and 𝐶 = 𝐿
𝐼𝐺

𝐶
𝐼𝐺

hold. By
partitioning 𝐵

𝐼𝐺
= [
𝐵𝐼𝐺1

𝐵𝐼𝐺2

], 𝐶
𝐼𝐺

= [𝐶𝐼𝐺1
𝐶
𝐼𝐺2

] and then
substituting 𝐵

1
= 𝐵
𝐼𝐺1

𝐾
𝐼𝐺
, 𝐶
1
= 𝐿
𝐼𝐺

𝐶
𝐼𝐺1

, respectively, yields
𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙
(𝑧)) 𝑉

𝑖
(𝑧)

∞

=

𝑊
𝑜
(𝑧) (𝐶(𝑧𝐼 − 𝐴)

−1
𝐵 − 𝐶

1
(𝑧𝐼 − 𝐴

11
)
−1

𝐵
1
)𝑉
𝑖
(𝑧)

∞

=

𝑊
𝑜
(𝑧) (𝐿

𝐼𝐺
𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

𝐾
𝐼𝐺

−𝐿
𝐼𝐺

𝐶
𝐼𝐺1

(𝑧𝐼 − 𝐴
11
)
−1

𝐵
𝐼𝐺1

𝐾
𝐼𝐺

)𝑉
𝑖
(𝑧)

∞

=

𝑊
𝑜
(𝑧) 𝐿
𝐼𝐺

(𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

−𝐶
𝐼𝐺1

(𝑧𝐼 − 𝐴
11
)
−1

𝐵
𝐼𝐺1

)𝐾
𝐼𝐺

𝑉
𝑖
(𝑧)

∞

=
𝑊𝑜 (𝑧) 𝐿𝐼𝐺

∞

×

(𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

− 𝐶
𝐼𝐺1

(𝑧𝐼 − 𝐴
11
)
−1

𝐵
𝐼𝐺1

)
∞

×
𝐾𝐼𝐺𝑉𝑖 (𝑧)

∞.

(24)

If {𝐴
11
, 𝐵
𝐼𝐺1

, 𝐶
𝐼𝐺1

} is reduced order model obtained by
partitioning a balanced realization {𝐴, 𝐵

𝐼𝐺
, 𝐶
𝐼𝐺

}, we have
[7, 39]


(𝐶
𝐼𝐺

(𝑧𝐼 − 𝐴)
−1

𝐵
𝐼𝐺

− 𝐶
𝐼𝐺1

(𝑧𝐼 − 𝐴
11
)
−1

𝐵
𝐼𝐺1

)
∞

≤ 2

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗
.

(25)

Therefore,
𝑊𝑜 (𝑧) (𝐻 (𝑧) − 𝐻

𝑙
(𝑧)) 𝑉

𝑖
(𝑧)

∞

≤ 2
𝑊𝑜 (𝑧) 𝐿𝐼𝐺

∞
𝐾𝐼𝐺𝑉𝑖 (𝑧)

∞

𝑛

∑

𝑗=𝑙+1

𝜎
𝑗
.

(26)

Remark 6. For the case when symmetric matrices 𝑋
𝑒𝑛

≥

0 and 𝑌
𝑒𝑛

≥ 0, then 𝑃
𝑒𝑛

= 𝑃
𝐶𝑆

= 𝑃
𝑉𝑑

= 𝑃
𝐼𝐺

and
𝑄
𝑒𝑛

= 𝑄
𝐶𝑆

= 𝑄
𝑉𝑑

= 𝑄
𝐼𝐺
. However, when matrices 𝑋

𝑒𝑛

and 𝑌
𝑒𝑛

are indefinite, then 𝑃
𝑒𝑛

< 𝑃
𝐼𝐺

and 𝑄
𝑒𝑛

< 𝑄
𝐼𝐺
.

Moreover, frequency weighted Hankel singular values satisfy
(𝜆
𝑗
[𝑃
𝑒𝑛
𝑄
𝑒𝑛
])
1/2

≤ (𝜆
𝑗
[𝑃
𝐼𝐺

𝑄
𝐼𝐺

])
1/2.

Remark 7. For the case when input𝑉
𝑖
(𝑧)weights are co-inner

and output 𝑊
𝑜
(𝑧) weights are inner [40], then 𝑃 = 𝑃

𝑒𝑛
=

𝑃
𝐶𝑆

= 𝑃
𝑉𝑑

= 𝑃
𝐼𝐺

and 𝑄 = 𝑄
𝑒𝑛

= 𝑄
𝐶𝑆

= 𝑄
𝑉𝑑

= 𝑄
𝐼𝐺
, where 𝑃

and 𝑄 are unweighted Gramians defined as

𝐴𝑃𝐴
𝑇
− 𝑃 + 𝐵𝐵

𝑇
= 0,

𝐴
𝑇
𝑄𝐴 − 𝑄 + 𝐶

𝑇
𝐶 = 0.

(27)

Remark 8. For the case when the symmetricmatrices𝑋
𝑒𝑛

≥ 0

and 𝑌
𝑒𝑛

≥ 0, the reduced order models obtained using Enns
[25], Campbell et al.’s [37], Varga and Anderson’s [38], and
proposed technique are same.
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3.2. Computational Aspects. The frequency weighted bal-
anced truncation model reduction techniques balance the
original system and then truncate the balanced realization
to get the desired reduced order system. The balancing pro-
cedure involves computation of transformation matrix from
controllability and observability Gramians. Sometimes these
matrices become numerically low rank especially in large
scale systems (possibly) due to rapid decay of their eigen-
values [3]. Due to this reason, balancing procedure becomes
inefficient. Accuracy enhancing techniques for different fre-
quency weighted model reduction techniques appear in
[4, 29].

For unweighted case, Hammarling’s technique [41] is
used to obtained Cholesky factors of Gramian matrices from
original system realization without actually computing con-
trollability and observability Gramian matrices, respectively.

In frequencyweighted techniques, Cholesky factors of the
Gramian matrices are obtained from the augmented system
realizations. Let 𝑆 and 𝑅 be the Cholesky factors of the aug-
mented system Gramians matrices 𝑃

𝑏𝑖
and𝑄

𝑏𝑜
of (4) and (5),

respectively,

𝑃
𝑏𝑖

= 𝑆 𝑆
𝑇

= [
𝑆
11

𝑆
12

0 𝑆
22

][

[

𝑆
𝑇

11
0

𝑆
𝑇

12
𝑆
𝑇

22

]

]

= [

[

𝑆
11
𝑆
𝑇

11
+ 𝑆
12
𝑆
𝑇

12
𝑆
12
𝑆
𝑇

22

𝑆
22
𝑆
𝑇

12
𝑆
22
𝑆
𝑇

22

]

]

= [

[

𝑃
𝑒𝑛

𝑃
12

𝑃
𝑇

12
𝑃
𝑉

]

]

,

𝑄
𝑏𝑜

= 𝑅
𝑇

𝑅 = [

[

𝑅
𝑇

11
0

𝑅
𝑇

12
𝑅
𝑇

22

]

]

[

[

𝑅
11

𝑅
12

0 𝑅
22

]

]

= [

[

𝑅
𝑇

11
𝑅
11

𝑅
𝑇

11
𝑅
12

𝑅
𝑇

12
𝑅
11

𝑅
𝑇

22
𝑅
22

+ 𝑅
𝑇

12
𝑅
12

]

]

= [
𝑄
𝑊

𝑄
𝑇

12

𝑄
12

𝑄
𝑒𝑛

] .

(28)

By making use of Cholesky factors 𝑆 and 𝑅 calculated
above, the Cholesky factors corresponding to Gramians in
frequency weighted model reduction techniques like Enns
[25], Campbell et al.’s [37], Varga and Anderson’s [38], and
proposed technique can be obtained as follows:

(1) Enns Technique.The Cholesky factors 𝑆
𝑒𝑛

= [𝑆11 𝑆
12] and

𝑅
𝑒𝑛

= [
𝑅12

𝑅22
] satisfy [29]

𝑃
𝑒𝑛

= 𝑆
𝑒𝑛
𝑆
𝑇

𝑒𝑛
= 𝑆
11
𝑆
𝑇

11
+ 𝑆
12
𝑆
𝑇

12
= [𝑆11 𝑆

12]
[

[

𝑆
𝑇

11

𝑆
𝑇

22

]

]

,

𝑄
𝑒𝑛

= 𝑅
𝑇

𝑒𝑛
𝑅
𝑒𝑛

= 𝑅
𝑇

22
𝑅
22

+ 𝑅
𝑇

12
𝑅
12

= [𝑅
𝑇

22
𝑅
𝑇

12
] [

𝑅
22

𝑅
12

] .

(29)

(2) Campbell et al.’s Technique. The Cholesky factors 𝑆
𝐶𝑆

and
𝑅
𝐶𝑆

satisfy 𝑃
𝐶𝑆

= 𝑆
𝐶𝑆

𝑆
𝑇

𝐶𝑆
and 𝑄

𝐶𝑆
= 𝑅
𝑇

𝐶𝑆
𝑅
𝐶𝑆

[4].

(3) Varga and Anderson’s Technique.TheCholesky factors 𝑆
𝑉𝑑

and 𝑅
𝑉𝑑

satisfy 𝑃
𝑉𝑑

= 𝑆
𝑉𝑑

𝑆
𝑇

𝑉𝑑
and 𝑄

𝑉𝑑
= 𝑅
𝑇

𝑉𝑑
𝑅
𝑉𝑑

[4].

(4) Proposed Technique. The Cholesky factors 𝑆
𝐼𝐺

and 𝑅
𝐼𝐺

satisfy 𝑃
𝐼𝐺

= 𝑆
𝐼𝐺

𝑆
𝑇

𝐼𝐺
and 𝑄

𝐼𝐺
= 𝑅
𝑇

𝐼𝐺
𝑅
𝐼𝐺
.

In the following we establish a relationship between
Cholesky factors of Gramian matrices used in Enns and pro-
posed techniques. Equations (18) and (19) can be expressed
as

𝐴 (𝑃
𝑒𝑛

+ 𝑃
𝑎𝑑

) 𝐴
𝑇
− (𝑃
𝑒𝑛

+ 𝑃
𝑎𝑑

)

+ (𝑋
𝑒𝑛

− 𝑠
𝑛
𝐼) = 0, for 𝑠

𝑛
< 0,

𝐴𝑃
𝑒𝑛
𝐴
𝑇
− 𝑃
𝑒𝑛

+ 𝑋
𝑒𝑛

= 0, for 𝑠
𝑛
≥ 0,

𝐴
𝑇
(𝑄
𝑒𝑛

+ 𝑄
𝑎𝑑

) 𝐴 − (𝑄
𝑒𝑛

+ 𝑄
𝑎𝑑

)

+ (𝑌
𝑒𝑛

− 𝑟
𝑛
𝐼) = 0, for 𝑟

𝑛
< 0,

𝐴
𝑇
𝑄
𝑒𝑛
𝐴 − 𝑄

𝑒𝑛
+ 𝑌
𝑒𝑛

= 0, for 𝑟
𝑛
≥ 0,

𝐴𝑃
𝑎𝑑

𝐴
𝑇
− 𝑃
𝑎𝑑

− 𝑠
𝑛
𝐼 = 0, for 𝑠

𝑛
< 0,

𝐴
𝑇
𝑄
𝑎𝑑

𝐴 − 𝑄
𝑎𝑑

− 𝑟
𝑛
𝐼 = 0, for 𝑟

𝑛
< 0.

(30)

Since

𝑋
𝐼𝐺

= 𝑈(𝑆 − 𝑠
𝑛
𝐼)
1/2

(𝑆 − 𝑠
𝑛
𝐼)
1/2

𝑈
𝑇

= 𝑋
𝑒𝑛

− 𝑠
𝑛
𝐼, for 𝑠

𝑛
< 0,

𝑋
𝐼𝐺

= 𝑈(𝑆)
1/2

(𝑆)
1/2

𝑈
𝑇

= 𝑋
𝑒𝑛
, for 𝑠

𝑛
≥ 0,

𝑌
𝐼𝐺

= 𝑉
𝑇
(𝑅 − 𝑟

𝑛
𝐼)
1/2

(𝑅 − 𝑟
𝑛
𝐼)
1/2

𝑉 = 𝑌
𝑒𝑛

− 𝑟
𝑛
𝐼, for 𝑟

𝑛
< 0

𝑌
𝐼𝐺

= 𝑉
𝑇
(𝑅)
1/2

(𝑅)
1/2

𝑉 = 𝑌
𝑒𝑛
, for 𝑟

𝑛
≥ 0.

(31)

By using Hammarling technique to calculate Cholesky
factors of Gramians 𝑃

𝑎𝑑
and 𝑄

𝑎𝑑
from realization

{𝐴,√−𝑠
𝑛
𝐼, √−𝑟

𝑛
𝐼, 𝐷}, we can write 𝑃

𝑎𝑑
= 𝑆
𝑎𝑑

𝑆
𝑇

𝑎𝑑
and

𝑄
𝑎𝑑

= 𝑅
𝑇

𝑎𝑑
𝑅
𝑎𝑑
. Therefore, frequency weighted controllability

𝑃
𝐼𝐺

(18) and observability 𝑄
𝐼𝐺

(19) Gramians can be
expressed as

𝑃
𝐼𝐺

= 𝑆
𝐼𝐺

𝑆
𝑇

𝐼𝐺
= 𝑃
𝑒𝑛

+ 𝑃
𝑎𝑑

= 𝑆
11
𝑆
𝑇

11
+ 𝑆
12
𝑆
𝑇

12
+ 𝑆
𝑎𝑑

𝑆
𝑇

𝑎𝑑

= [𝑆11 𝑆
12

𝑆
𝑎𝑑]

[
[
[
[
[

[

𝑆
𝑇

11

𝑆
𝑇

12

𝑆
𝑇

𝑎𝑑

]
]
]
]
]

]

,

(32)
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Table 1: Frequency weighted errors and error bounds comparison for reduced order models.

Weighting Order Enns technique [25]
Campbell et al.’s technique [37] Varga and Anderson’s technique [38] Proposed technique
Error Error bound Error Error bound Error Error bound

Two sided

1 21.1254 20.5953 1634.2 21.6491 725.7718 15.6065 2549.0
2 31.9647 32.8319 978.34 32.8863 433.8123 18.4571 1623.9
3 35.0441 32.3860 590.48 33.9063 255.7017 26.1274 998.92
4 28.7611 31.4710 236.41 30.4331 102.7518 30.7929 427.13
5 12.7538 29.5760 117.81 12.7660 50.4647 25.6547 203.36

Input

1 7.0257 7.1275 145.811 7.2356 92.6748 7.0140 242.5983
2 10.4643 10.7354 87.9789 10.7694 55.8603 10.6714 149.7017
3 11.2055 10.3852 53.0816 10.8477 32.9346 9.9857 90.8656
4 8.9654 10.0342 21.8067 9.6079 13.5877 8.4277 41.1182
5 2.4435 3.1720 10.4718 2.8446 6.3761 3.2061 16.5445

𝑄
𝐼𝐺

= 𝑅
𝑇

𝐼𝐺
𝑅
𝐼𝐺

= 𝑄
𝑒𝑛

+ 𝑄
𝑎𝑑

= 𝑅
𝑇

22
𝑅
22

+ 𝑅
𝑇

12
𝑅
12

+ 𝑅
𝑇

𝑎𝑑
𝑅
𝑎𝑑

= [𝑅
𝑇

22
𝑅
𝑇

12
𝑅
𝑇

𝑎𝑑
]
[
[

[

𝑅
22

𝑅
12

𝑅
𝑎𝑑

]
]

]

.

(33)

Remark 9. Note that, Cholesky factors for Enns and proposed
technique are computed directly from augmented system
realization using Hammarling technique without calculating
augmented system realization Gramian matrices 𝑃

𝑏𝑖
and𝑄

𝑏𝑜
.

4. Illustrative Examples

In this section, using numerical illustrative examples we show
the usefulness of the proposed technique in comparison
with existing frequency weighted balanced model reduction
techniques for discrete time systems. Note that, proposed
work deals with frequency weighted model reduction prob-
lem for discrete time systems, therefore, comparison is done
with existing frequency weighted balanced model reduction
techniques only.

Example 1. Consider (example C appeared in [26]) a 4th
order stable discrete time system

𝐻(𝑧) =
𝑧
3

𝑧4 + 1.1𝑧3 − 0.01𝑧2 − 0.275𝑧 − 0.06
(34)

with the following weightings

𝑉
𝑖
(𝑧) = 𝑊

𝑜
(𝑧) =

𝑧 + 0.9

𝑧 + 0.1
. (35)

The first order reduced model obtained by Enns [25]
technique is unstable while reduced order model obtained by
Campbell et al.’s, Varga and Anderson’s,and proposed tech-
niques is stable yielding frequency response errors 112.9338,
100.8739, and 94.116, respectively. Note that, proposed tech-
nique provides stability with relatively lower error when
compared to other techniques.

Example 2. Consider a 6th order stable low pass digital ellip-
tic filter with 0.2 dB of peak-to-peak ripple and a minimum
stopband attenuation of 20 dB represented by

𝐻(𝑧) = (0.1054𝑧
6
− 0.1944𝑧

5
+ 0.1187𝑧

4

−0.1187𝑧
2
+ 0.1944𝑧 − 0.1054)

× (𝑧
6
− 2.9621𝑧

5
+ 4.8325𝑧

4
− 4.9819𝑧

3

+ 3.5245𝑧
2
− 1.5262𝑧 + 0.3657)

−1

(36)

with the following input and output weightings, respectively,

𝑉
𝑖
(𝑧) =

𝑧
3
+ 3.0081𝑧

2
+ 1.9944𝑧 + 1.0325

𝑧3 + 0.2𝑧2 + 0.75𝑧 + 0.2

𝑊
𝑜
(𝑧) =

𝑧
3
+ 2.97𝑧

2
+ 2.9403𝑧 + 0.9703

𝑧3 + 1.1619𝑧2 + 0.6959𝑧 + 0.1378
.

(37)

Table 1 gives the comparison of error and error bounds
for reduced order systems obtained by Enns, Campbell et
al.’s, Varga and Anderson’s, and proposed techniques for the
input and two sided weighting cases. Note that, the proposed
technique mostly yields lower error as compared to other
techniques.

Example 3. Consider a 4th order stable discrete time system
[42]

𝐻(𝑧) =
10
−3

(3.315𝑧
3
− 4.9695𝑧

2
+ 2.1668𝑧 − 0.24002)

𝑧4 − 3.7035𝑧3 + 5.1957𝑧2 − 3.2718𝑧 + 0.77986

(38)

with the following input weighting:

𝑉
𝑖
(𝑧) =

𝑧
2
− 0.1𝑧 − 0.05

𝑧2 − 0.9𝑧 + 0.75
. (39)

Table 2 gives the comparison of error and error bounds
for reduced order systems obtained by Enns, Campbell et al.’s
Varga and Anderson’s and proposed techniques for the input
weighting case. Note that, the proposed technique compares
well and yields relatively lower error as compared to other
techniques.
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Table 2: Frequency weighted errors and error bounds comparison for reduced order models.

Weighting Order Enns technique [25]
Campbell et al.’s technique [37] Varga and Anderson’s technique [38] Proposed technique
Error Error bound Error Error bound Error Error bound

Input
1 0.0216 0.0245 0.6024 0.0241 0.3321 0.0240 0.6783
2 0.0021 0.0027 0.2582 0.0026 0.1403 0.0025 0.2853
3 0.0015 0.0025 0.0453 0.0023 0.0247 0.0021 0.0508

Table 3: Frequency weighted errors and error bounds comparison for reduced order models.

Weighting Order Enns technique [25]
Campbell et al.’s technique [37] Varga and Anderson’s technique [38] Proposed technique
Error Error bound Error Error bound Error Error bound

Output
1 1.7905 1.7898 8.2727 1.7900 5.6369 1.7867 6.2509
2 0.8967 0.8126 2.9832 0.8520 1.9243 0.7296 2.5083
3 0.5098 0.4868 1.4488 0.4979 0.9219 0.4740 0.9543

Example 4. Consider a 4th order stable low pass digital
Chebychev type 1 filter with 0.1 dB of peak-to-peak ripples in
the passband represented by

𝐻(𝑧) =
0.49𝑧
4
− 0.9799𝑧

2
+ 0.49

𝑧4 − 0.2893𝑧3 − 0.6629𝑧2 + 0.0246𝑧 + 0.2904

(40)

with the following output weighting:

𝑊
𝑜
(𝑧) =

𝑧 − 0.2

𝑧2 − 0.4𝑧 + 0.5
. (41)

Table 3 gives the comparison of error and error bounds
for reduced order systems obtained by Enns, Campbell et al.’s
Varga and Anderson’s and proposed techniques for output
weighting. Note that, the proposed technique compares
well and yields relatively lower error as compared to other
techniques.

5. Conclusion

A new frequency weighted technique for model reduction of
discrete time systems is explored. The reduced order models
obtained in the presence of input, output, and two sided
weightings are stable. A comparison with existing schemes
shows that proposed technique provides comparable results
(mostly produces lower error) for reduced order models.
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This paper is concerned with the problem of gain-scheduledH
2
controller synthesis for continuous-time linear parameter-varying

systems. In this problem, the system matrices in the state-space form are polytopic and patameterized and the admissible values of
the parameters are assumed to be measurable on-line in a polytope space. By employing a basis-parameter-dependent Lyapunov
function and introducing some slack variables to thewell-established performance conditions, sufficient conditions for the existence
of the desired gain-scheduledH

2
state feedback and dynamic output feedback controllers are established in terms of parameterized

linear matrix inequalities. Based on the polytopic characteristic of the dependent parameters and a convexification method,
the corresponding controller synthesis problem is then cast into finite-dimensional convex optimization problem which can be
efficiently solved by using standard numerical softwares. Numerical examples are given to illustrate the effectiveness and advantage
of the proposed methods.

1. Introduction

It is well known that linear parameter-varying (LPV) systems
are a class of linear systems whose state-space matrices
depend on a set of time-varying parameters which are not
known in advance but can be measured or estimated upon
operation of the systems. Gain-scheduled control strate-
gies for LPV systems have been studied intensively in the
last two decades and significant progress has been made
in this area (see, e.g., [1–27]). There are many examples
of parameter-dependent systems in practice, such as in
aeronautics, aerospace, mechanics, and industrial processes
(see, e.g., [2, 4, 12–14, 26]). This has motivated extensive
studying of the gain-scheduled analysis and controller syn-
thesis methods for various LPV systems from many aspects,
including continuous-time and discrete-time systems, state-
space formula and linear fractional transformation represen-
tation, affine-type and polytopic systems, state feedback and
output feedback controllers, quadratic Lyapunov function-
based and parameter-dependent Lyapunov function-based
methods, and robustH

2
andH

∞
control performances.

In most of the existing work, the gain-scheduled LPV
control synthesis problems are performed through semidef-
inite programming and especially linear matrix inequality
(LMI) techniques [2, 5–8, 10, 15–17, 19, 26].This is duemainly
to the fact that a number of methods of gain-scheduled
control design for LPV systems proposed in the literature are
based on small-gain approach (see, e.g., [1–4, 17]) or on the
notions of quadratic Lyapunov function (see, e.g., [1, 7, 28]).
The advantage of small-gain approach and quadratic Lya-
punov function-basedmethods is that the associated compu-
tation is relatively straightforward (e.g., standard numerical
software, LMIControl Toolbox [29]). However, the drawback
of these methods is in that a single parameter-independent
Lyapunov function must be used to guarantee both stability
and control performance for all parameter values, and it can
produce conservative results (see, e.g., [5, 10, 15, 26]). For
the sake of reducing the abovementioned conservativeness,
several control methods have been developed in the past
decade, such as gain-scheduled H

2
and H

∞
control based

on parameter-dependent Lyapunov function (PDLF)method
(see, e.g., [4, 5, 9, 10, 15, 18–21, 26–28, 30]). Until now,
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some researches have been carried out on H
2
performance

synthesis problems for continuous-time LPV systems (see,
e.g., [9, 10, 26]). In [9, 10], de Souza et al. presented two novel
state feedbackH

2
controllers for affine LPV systems based on

quadratic PDLF frameworks. Also, Xie recently developed a
gain-scheduledH

2
state feedback for polytopic LPV systems

with new LMI formulation by introducing additional slack
variables [24, 26, 27]. Despite the recent development of
gain-scheduledH

2
analysis and controller synthesis for LPV

systems, the issue associated with gain-scheduledH
2
control

via PDLF is not well documented so far, even in the case of
state feedback.

From the above analysis, it is clear that the gain-scheduled
H
2
control problem for LPV systems has not been studied

thoroughly, and this leads to the first objective of this paper
for reducing the conservativeness of the existing state feed-
back controller.The second objective of this paper is to realize
the dynamic output feedback control design for continuous-
time polytopic LPV systems. It has to be stressed that the
determination of a dynamic output feedback controller for
polytopic LPV systems is indeed a difficult problem. The
dynamic output feedback control is more flexible than static
output feedback since additional dynamics of the controller
are introduced [18–24]. Both are new contributions to the
existing literature. To begin with, the result of gain-scheduled
H
2
analysis in [26] is introduced with some explanations. To

reduce the conservativeness of the state feedback controller
synthesis, an improved sufficient condition for the existence
of desired gain-scheduled H

2
state feedback controller is

obtained in terms of parameterized linear matrix inequalities
(PLMIs). Furthermore, based on polytopic characteristic of
the parameter-dependent system, the corresponding con-
troller synthesis problem is cast into a finite-dimensional
convex optimization problem by a convexification method.

Considering the commonly encountered case in practice
that the full state variables are unavailable for state feedback
control design, we make further research on the gain-
scheduledH

2
dynamic output feedback controller synthesis.

Inspired by the work of the basis-PDLF approach proposed
in [20, 21, 31, 32], some auxiliary slack matrix variables are
introduced in the process of expressing the relationships
among the terms of the system equation. A sufficient condi-
tion for the existence of desired gain-scheduledH

2
dynamic

output feedback controller is initially obtained by PLMIs.
Such a sufficient condition can guarantee that the closed-
loop system is exponentially stable and has a prescribed
H
2
disturbance attenuation performance. Similar to the case

of state feedback control design, the new convexification
method is introduced to derive a finite-dimensional PLMI
condition for the dynamic output feedback controller syn-
thesis, which can be efficiently solved by using standard
numerical software. Finally, simulation results of an example
in a gain-scheduled H

2
state feedback control indicate that

our approach can generate less conservativeness than the
existing results. The effectiveness of the proposed dynamic
output feedback controller is verified by the other numerical
example. It should be noticed that H

2
performance in this

paper can be used to capture both the response to stationary
noise and the transient response of the closed-loop system.

Different from the Lyapunov-based robustH
2
performance,

other methods lean too heavily on robustness and sacrifice
an adequate view of performance. For example, robust H

∞

method treats disturbances or commands as being the worst
in a very broad class which is often unrealistic.

The rest of this paper is organized as follows.The problem
formulation and some preliminary results are presented in
the next section. Section 3 gives our main results of gain-
scheduled H

2
state feedback and dynamic output feedback

control design, respectively. Two numerical examples are
given in Section 4 and we conclude this paper in Section 5.
Notations. We use the following notations throughout this
paper.The superscript “𝑇” stands formatrix transposition,R𝑛
denotes the 𝑛-dimensional Euclidean space, and the notation
𝑃 > 0 (≥0) means that 𝑃 is real symmetrical and positive
definite (semidefinite). Tr(⋅) denotes the matrix trace, and
Her{𝐴} stands for𝐴+𝐴

𝑇. In symmetric blockmatrices or long
matrix expressions, we use an asterisk (∗) to represent a term
that is induced by symmetry, and diag{⋅ ⋅ ⋅ } stands for a block-
diagonal matrix. In addition, I and 0 denote identity matrix
and zero matrix, respectively. Matrices, if their dimensions
are not explicitly stated, are assumed to be compatible for
algebraic operations.

2. Problem Description and Preliminaries

2.1. Problem Description. Consider the following class of
continuous-time LPV systems:

S : ̇𝑥 (𝑡) = 𝐴 (𝜃 (𝑡)) 𝑥 (𝑡)

+ 𝐵
1
(𝜃 (𝑡)) 𝑤 (𝑡) + 𝐵

2
(𝜃 (𝑡)) 𝑢 (𝑡) ,

𝑧 (𝑡) = 𝐶
1
(𝜃 (𝑡)) 𝑥 (𝑡) + 𝐷

1
(𝜃 (𝑡)) 𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶
2
(𝜃 (𝑡)) 𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 is the state vector, 𝑦(𝑡) ∈ R𝑚 is the
measured output, 𝑧(𝑡) ∈ R𝑝 is the controlled output,
𝑢(𝑡) ∈ R𝑞 is the control input, and 𝑤(𝑡) ∈ R𝑙 is the
disturbance input. All the system matrices have compatible
dimensions. The system matrices 𝐴(𝜃), 𝐵

1
(𝜃), 𝐵

2
(𝜃), 𝐶

1
(𝜃),

𝐷
1
(𝜃), and 𝐶

2
(𝜃) are parameter-dependent matrices with

respect to the time-varying scheduling parameter 𝜃(𝑡) =

[𝜃
1
(𝑡), 𝜃
2
(𝑡), . . . , 𝜃

𝑟
(𝑡)]
𝑇

∈ R𝑟. Similar to the previous gain-
scheduledH

2
control problems for LPV systems [10, 26], the

following assumptions are given.

Assumption 1. The state-space matrices 𝐴(𝜃), 𝐵
1
(𝜃), 𝐵

2
(𝜃),

𝐶
1
(𝜃), 𝐷

1
(𝜃), and 𝐶

2
(𝜃) are continuous and bounded func-

tions and depend affinely on 𝜃(𝑡).

Assumption 2. The parameter values of vector 𝜃(𝑡) are not
known in advance but are measurable in real time. In
addition, the parameter 𝜃(𝑡) is limited to a given convex
bounded polyhedral domainP described by𝑁 vertices as

𝜃 (𝑡) ∈ P ≜ Co {𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁
}
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= {

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑡) 𝜔
𝑖
: 𝛼
𝑖
(𝑡) ⩾ 0,

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑡) = 1,𝑁 = 2

𝑟
} ,

(2)

and the rate of variation ̇𝜃(𝑡) is well defined over the time
horizon and varies in a polytopeV as

̇𝜃 (𝑡) ∈ V ≜ Co {]
1
, ]
2
, . . . , ]

𝑁
}

= {

𝑁

∑

𝑘=1

𝛽
𝑘
(𝑡) ]
𝑘
: 𝛽
𝑘
(𝑡) ⩾ 0,

𝑁

∑

𝑘=1

𝛽
𝑘
(𝑡) = 1,𝑁 = 2

𝑟
} .

(3)

Given the above sets P and V, we define the parameter
setFV

P described by𝑁 vertices as

F
V
P ≜ {𝜃 (𝑡) ∈ C

1
(R
+
,R
𝑁
) : 𝜃 (𝑡) ∈ P, ̇𝜃 (𝑡) ∈ V, ∀𝑡 ⩾ 0} .

(4)

Moreover, the LPV system S in (1) is called polytopic, when
it ranges in a matrix polytope, that is, the LPV system (1) can
be expressed as

Ω (𝜃) ≜ (𝐴 (𝜃) , 𝐵
1
(𝜃) , 𝐵

2
(𝜃) , 𝐶

1
(𝜃) , 𝐷

1
(𝜃) , 𝐶

2
(𝜃)) ∈ R,

(5)

where 𝜃(𝑡) ∈ FV
P and R is also a given convex bounded

polyhedral domain described by𝑁 vertices:

R ≜ {

𝑁

∑

𝑘=1

𝛼
𝑖
(𝑡) Ω
𝑖
: 𝛼
𝑖
(𝑡) ⩾ 0,

𝑁

∑

𝑖=1

𝛼
𝑖
(𝑡) = 1,𝑁 = 2

𝑟
} . (6)

Here, we are interested in designing both gain-scheduled
H
2
state feedback controller and dynamic output feedback

controller for the system S described by (1). Therefore, two
gain-scheduled H

2
control laws are described by KSF and

KDOF, respectively, as follows:

KSF : 𝑢 (𝑡) = 𝐾 (𝜃) 𝑥 (𝑡) , (7)

KDOF : ̇𝑥
𝐾
(𝑡) = 𝐴

𝐾
(𝜃) 𝑥
𝐾
(𝑡) + 𝐵

𝐾
(𝜃) 𝑦 (𝑡) ,

𝑢 (𝑡) = 𝐶
𝐾
(𝜃) 𝑥
𝐾
(𝑡) + 𝐷

𝐾
(𝜃) 𝑦 (𝑡) ,

(8)

where 𝑥
𝐾
(𝑡) ∈ R𝑛 is controller state vector and 𝐾(𝜃) and

(𝐴
𝐾
(𝜃), 𝐵
𝐾
(𝜃), 𝐶

𝐾
(𝜃), 𝐷

𝐾
(𝜃)) are appropriately dimensioned

LPV controller matrices to be determined.
Substituting the state-feedback control lawKSF into (1),

the closed-loop system can be obtained as

CSF : ̇𝑥 (𝑡) = 𝐴cl (𝜃) 𝑥 (𝑡) + 𝐵cl (𝜃) 𝑤 (𝑡)

𝑧 (𝑡) = 𝐶cl (𝜃) 𝑥 (𝑡) ,

(9)

where

𝐴cl (𝜃) = 𝐴 (𝜃) + 𝐵
2
(𝜃)𝐾 (𝜃) ,

𝐵cl (𝜃) = 𝐵
1
(𝜃) ,

𝐶cl (𝜃) = 𝐶
1
(𝜃) + 𝐷

1
(𝜃)𝐾 (𝜃) .

(10)

Augmenting the model of S to include the state of the
gain-scheduled dynamic output feedback controlKDOF, we
obtain the closed-loop LPV systemCDOF:

CDOF : ̇𝑥cl (𝑡) = 𝐴cl (𝜃) 𝑥cl (𝑡) + 𝐵cl (𝜃) 𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶cl (𝜃) 𝑥cl (𝑡) ,
(11)

where 𝑥cl(𝑡) = [𝑥
𝑇
(𝑡), 𝑥
𝑇

𝐾
(𝑡)]
𝑇and

𝐴cl (𝜃) = [
𝐴 (𝜃) + 𝐵

2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃) 𝐵

2
(𝜃) 𝐶
𝐾
(𝜃)

𝐵
𝐾
(𝜃) 𝐶
2
(𝜃) 𝐴

𝐾
(𝜃)

] ,

𝐵cl (𝜃) = [
𝐵
1

(𝜃)

0 ] ,

𝐶cl (𝜃) = [𝐶
1
(𝜃) + 𝐷

1
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃)𝐷
1
(𝜃) 𝐶
𝐾
(𝜃)] .

(12)

Then, the problems of gain-scheduledH
2
control design for

LPV systems can be expressed as follows.
Gain-Scheduled H

2
Controller Synthesis Problem. Given the

polytopic LPV system S in (1), our concerned problem is to
determine the gain-scheduled state feedback controllerKSF

in (7) and dynamic output feedback controllerKDOF in (8),
such that both the closed-loop LPV systemsCSF andCDOF

in (9) and (11) are exponentially stable for all (𝜃, ̇𝜃) ∈ FV
P, and

𝑧(𝑡) reaches the desired controlled output in the sense of the
H
2
performance with respect to the disturbance input 𝑤(𝑡).

2.2. Preliminaries. In order to solve the gain-scheduled H
2

control design problem, we present some preliminary results
for later use.

First, we introduce the notion of H
2
norm for LPV

systems borrowed from linear time-varying (LTV) systems
(see [9, 33] for details). In this paper we use the stationary
white noise approach and the average output variance to
define the H

2
norm. This kind of H

2
norm can be used to

capture both the transient response of the system and the
response to stationary noise. Furthermore, it has also been
proven to be the most appropriate for the Lyapunov-based
H
2
performance analysis and control design methods that

will be developed in this paper [9, 10].

Definition 3 (see [10]). Let the closed-loop LPV system C in
(9) or (11) be exponentially stable. TheH

2
norm of systemC

can be defined as

‖C‖
2

2
= lim
ℎ→∞

E{
1

ℎ
∫

ℎ

0

𝑧
𝑇
(𝑡) 𝑧 (𝑡) 𝑑𝑡} (13)

when 𝑥cl(0) = 0 and 𝑤(𝑡) is a stationary zero-mean white
process with an identity power spectrum density matrix,
where 𝐸{⋅} denotes the mathematical expectation.

From the above definition,H
2
norm performance can be

regarded as an index or criterion assessing the elimination
of the disturbance or noise. It is clear that the optimal H

2

attenuation levels by the latest approaches are less conser-
vative than that by the approach in the existing literature,
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and the improvement on conservativeness of the optimal
H
2
attenuation level is more apparent [9, 10, 33]. Based on

Definition 3, we introduce an important result based on the
conclusion in [26] using a PDLF, which is a preliminary
result for solving the gain-scheduledH

2
controller synthesis

problem in this paper.

Lemma 4 (see [26]). Given a scalar 𝛾 > 0, the closed-
loop system C in (9) or (11) is exponentially stable with the
prescribed performance index ‖C‖

2
< 𝛾 if there exist matrices

𝑃(𝜃) > 0, Π(𝜃) > 0, and𝑊(𝜃) and a sufficiently small positive
scalar 𝜀 > 0 satisfying

Tr (Π (𝜃)) < 𝛾, (14)

[
𝑊 (𝜃) + 𝑊

𝑇
(𝜃) − 𝑃 (𝜃) 𝑊

𝑇
(𝜃) 𝐶
𝑇

cl (𝜃)
∗ Π (𝜃)

] > 0, (15)

[

[

Θ
1

Θ
2

𝐵cl (𝜃)

∗ −𝜀 (𝑊 (𝜃) + 𝑊
T
(𝜃)) 0

∗ ∗ −I
]

]

< 0, (16)

where

Θ
1
≜ 𝐴cl (𝜃)𝑊 (𝜃) + 𝑊

T
(𝜃) 𝐴

T
cl (𝜃) +

𝑑𝑃 (𝜃)

𝑑𝑡
,

Θ
2
≜ 𝑃 (𝜃) − 𝑊

T
(𝜃) + 𝜀𝐴cl (𝜃)𝑊 (𝜃) .

(17)

Remark 5. Note that there exists a term𝑑𝑃(𝜃)/𝑑𝑡 in condition
(16) which cannot be implemented since it is not convex in
the parameter 𝜃(𝑡). However, for the polytopic LPV system
(1), we can solve this difficulty by using the following method
from [11, 26]. Choose the parameter-dependent matrix 𝑃(𝜃)

as

𝑃 (𝜃) =

𝑁

∑

𝑖=1

𝜃
𝑖
(𝑡) 𝑃
𝑖
, (𝜃, ̇𝜃) ∈ F

V
P. (18)

Based on this expression, its time derivation can be derived
as

𝑑𝑃 (𝜃)

𝑑𝑡
= ̇𝜃
1
(𝑡) 𝑃
1
+ ̇𝜃
2
(𝑡) 𝑃
2
+ ⋅ ⋅ ⋅ + ̇𝜃

𝑁
(𝑡) 𝑃
𝑁

= 𝑃 ( ̇𝜃) .

(19)

From Assumption 2, we have

𝑑𝑃 (𝜃)

𝑑𝑡
= 𝑃 ( ̇𝜃) =

𝑁

∑

𝑘=1

𝛽
𝑘
(𝑡) 𝑃
𝑡
(]
𝑘
) , (20)

and then 𝑑𝑃(𝜃)/𝑑𝑡 in condition (16) can be substituted by
convex parameter-dependent matrix 𝑃

𝑡
(𝜃).

It can be seen from Lemma 4 that, by introducing an
extra matrix variable 𝑊(𝜃), the LMIs (14)–(16) provide a
decoupling between Lyapunov function matrix and system
matrices andwill be useful for a gain-scheduledH

2
controller

synthesis for LPV systems. In addition, it has been shown,
both theoretically and numerically, that the parameter-
dependent approach is less conservative than the results in

the quadratic framework, where a common Lyapunovmatrix
is used for the entire uncertainty domain [26]. However, we
have to mention that the result developed in [26] is also
conservative due to the imposition of 𝑊(𝜃) ≡ 𝑊 when
the result is used to synthesise a gain-scheduled H

2
state

feedback controller. The reason is that the introduced slack
matrix 𝑊(𝜃) has been involved in the products with system
matrices.

Then, there is a natural question: whether the conser-
vativeness could be further reduced if we adopt different
approaches other than the imposition of parameter indepen-
dence as described above in the process of controller synthe-
sis? The answer is affirmative. For state feedback controller
synthesis, a possible alternative is the introduction of a new
approach in [31] that helps to cast the infinite-dimensional
LMI condition into finite-dimensional one. In the case of
dynamic output feedback controller synthesis, a possible
alternative is the introductions of structural block matrices
and basis-parameter-dependent Lyapunov function [20, 21].
To the best of the authors’ knowledge, these approaches have
not been investigated for gain-scheduledH

2
control problem

of LPV systems so far. In the following, we will present
some methods to solve both the state feedback and dynamic
output feedback controller syntheses for the gain-scheduled
H
2
control of LPV systems.

3. Gain-Scheduled H
2

Control Design

To reduce the conservativeness of state feedback controller
synthesis mentioned above, we present a new sufficient
condition for the existence of desiredH

2
state feedback con-

troller in terms of finite-dimensional PLMIs. In order to solve
the gain-scheduled H

2
dynamic output feedback controller

syntheses, a decoupling technique and a convexification
method are introduced to obtain some sufficient conditions
for the existence of the desired controller. The following two
parts present the main results of gain-scheduled H

2
state

feedback and dynamic output feedback controller syntheses,
respectively.

3.1. State Feedback Control Design

Theorem 6. Consider the system S in (1). Given a scalar
𝛾 > 0 and a sufficiently small positive scalar 𝜀 > 0, there
exists a gain-scheduled H

2
state feedback controller KSF in

the form of (7) such that the resulting closed-loop systemCSF

in (9) is exponentially stable with a prescribedH
2
disturbance

attenuation level 𝛾 if there exist matrices Π(𝜃) > 0, 𝑃(𝜃) > 0,
𝑃
𝑡
(𝜃) > 0,𝑊(𝜃), and𝑀(𝜃) satisfying

Tr (Π (𝜃)) < 𝛾, (21)

Φ (𝜃) ≜ [
Δ
1

Δ
2

∗ Π (𝜃)
] > 0, (22)

Ψ (𝜃) ≜ [

[

Δ
3

Δ
4

𝐵
1
(𝜃)

∗ −𝜀𝑊 (𝜃) − 𝜀𝑊
𝑇
(𝜃) 0

∗ ∗ −I
]

]

< 0, (23)
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where

Δ
1
≜ 𝑊(𝜃) + 𝑊

𝑇
(𝜃) − 𝑃 (𝜃) ,

Δ
2
≜ 𝑊
𝑇
(𝜃) 𝐶
𝑇

1
(𝜃) + 𝑀

𝑇
(𝜃)𝐷
𝑇

1
(𝜃) ,

Δ
3
≜ Her {𝐴 (𝜃)𝑊 (𝜃) + 𝐵

2
(𝜃)𝑀 (𝜃)} + 𝑃

𝑡
(𝜃) ,

Δ
4
≜ 𝑃 (𝜃) − 𝑊

𝑇
(𝜃) + 𝜀𝐴 (𝜃)𝑊 (𝜃) + 𝜀𝐵

2
(𝜃)𝑀 (𝜃) .

(24)

In this case, a desired gain-scheduled H
2
state feedback gain

𝐾(𝜃) is given by

𝐾 (𝜃) = 𝑀 (𝜃)𝑊
−1

(𝜃) . (25)

Proof. Define 𝑀(𝜃) ≜ 𝐾(𝜃)𝑊(𝜃). With (9) and (10), the
results can be derived easily from Lemma 4.

Note that the matrix variables 𝑊(𝜃) and 𝑀(𝜃) in
Theorem 6 are dependent on time-varying parameter 𝜃(𝑡)

and are not assumed to be constant matrices, which makes
the new state feedback controller design conditions (21)–(23)
less conservative than the results in [26]. However, the LMI
conditions (21)–(23) in Theorem 6 cannot be implemented
since they are not convex in the parameter 𝜃(𝑡). To solve
this problem, we will introduce a new technique that helps
convexify the matrix inequalities in Theorem 6 based on the
polytopic characteristic of the dependent parameters. Then,
we have the main result in the following theorem.

Theorem 7. Consider the systemS in (1). Given a scalar 𝛾 > 0

and a sufficiently small positive scalar 𝜀 > 0, an admissible
gain-scheduled H

2
state feedback controller in the form of

KSF in (7) exists if there exist matrices Π
𝑖
> 0, 𝑃

𝑖
> 0,

𝑃
𝑡𝑘

> 0,𝑊
𝑖
, and𝑀

𝑖
satisfying

Tr (Π
𝑖
) < 𝛾, 𝑖 = 1, . . . , 𝑁, (26)

Φ
𝑖𝑗
+ Φ
𝑗𝑖
− Λ
𝑖𝑗
− Λ
𝑇

𝑖𝑗
⩾ 0, 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁, (27)

Ψ
𝑖𝑗𝑘

+ Ψ
𝑗𝑖𝑘

− Υ
𝑖𝑗𝑘

− Υ
𝑇

𝑖𝑗𝑘
⩽ 0,

1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁, 𝑘 = 1, . . . , 𝑁,

(28)

Λ ≜

[
[
[
[

[

Φ
11

Λ
12

⋅ ⋅ ⋅ Λ
1𝑁

∗ Φ
22

⋅ ⋅ ⋅ Λ
2𝑁

∗ ∗ d
...

∗ ∗ ∗ Φ
𝑁𝑁

]
]
]
]

]

> 0, (29)

Υ ≜

[
[
[
[

[

Ψ
11𝑘

Υ
12𝑘

⋅ ⋅ ⋅ Υ
1𝑁𝑘

∗ Ψ
22𝑘

⋅ ⋅ ⋅ Υ
2𝑁𝑘

∗ ∗ d
...

∗ ∗ ∗ Ψ
𝑁𝑁𝑘

]
]
]
]

]

< 0, (30)

where

Φ
𝑖𝑗
≜ [

𝑊
𝑖
+ 𝑊
𝑇

𝑖
− 𝑃
𝑖
𝑊
𝑇

𝑖
𝐶
𝑇

1𝑗
+ 𝑀
𝑇

𝑖
𝐷
𝑇

1𝑗

∗ Π
𝑖

] ,

Ψ
𝑖𝑗𝑘

≜ [

[

L
1

L
2

𝐵
1𝑗

∗ −𝜀𝑊
𝑖
− 𝜀𝑊
𝑇

𝑖
0

∗ ∗ −I
]

]

,

L
1
≜ Her {𝐴

𝑗
𝑊
𝑖
+ 𝐵
2𝑗
𝑀
𝑖
} + 𝑃
𝑡𝑘
,

L
2
≜ 𝑃
𝑖
− 𝑊
𝑇

𝑖
+ 𝜀𝐴
𝑗
𝑊
𝑖
+ 𝜀𝐵
2𝑗
𝑀
𝑖
.

(31)

Moreover, under the above conditions, the admissible gain-
scheduledH

2
state feedback gain 𝐾(𝜃) is given by

𝐾 (𝜃) = (

𝑁

∑

𝑖=1

𝛼
𝑖
𝑀
𝑖
)(

𝑁

∑

𝑖=1

𝛼
𝑖
𝑊
𝑖
)

−1

. (32)

Proof. From Theorem 6, an admissible gain-scheduled H
2

state feedback controller in the form of KSF in (7) exists if
there exist matrices Π(𝜃) > 0, 𝑃(𝜃) > 0, 𝑃

𝑡
(𝜃) > 0, 𝑊(𝜃),

and 𝑀(𝜃) satisfying (21)–(23). Now, assume that the above
matrix functions are of the following forms:

Π (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
Π
𝑖
, 𝑊 (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑊
𝑖
,

𝑃 (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑃
𝑖
, 𝑃

𝑡
(𝜃) =

𝑁

∑

𝑘=1

𝛽
𝑘
𝑃
𝑡𝑘
,

𝑀 (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑀
𝑖
.

(33)

Then, with (33), we rewriteΦ(𝜃) and Ψ(𝜃) in (22)-(23) as

Φ (𝜃) =

𝑁

∑

𝑗=1

𝑁

∑

𝑖=1

𝛼
𝑖
𝛼
𝑗
Φ
𝑖𝑗

=

𝑁

∑

𝑖=1

𝛼
2

𝑖
Φ
𝑖𝑖
+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Φ
𝑖𝑗
+ Φ
𝑗𝑖
) ,

Ψ (𝜃) =

𝑁

∑

𝑘=1

𝑁

∑

𝑗=1

𝑁

∑

𝑖=1

𝛼
𝑖
𝛼
𝑗
𝛽
𝑘
Φ
𝑖𝑗𝑘

=

𝑁

∑

𝑘=1

𝛽
𝑘
(

𝑁

∑

𝑖=1

𝛼
2

𝑖
Ψ
𝑖𝑖𝑘

+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Ψ
𝑖𝑗𝑘

+ Ψ
𝑗𝑖𝑘

)) .

(34)

On the other hand, (27)-(28) are equivalent to

Φ
𝑖𝑗
+ Φ
𝑗𝑖
⩾ Λ
𝑖𝑗
+ Λ
𝑇

𝑖𝑗
, 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁,

Ψ
𝑖𝑗𝑘

+ Ψ
𝑗𝑖𝑘

⩽ Υ
𝑖𝑗𝑘

+ Υ
𝑇

𝑖𝑗𝑘
,

1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁, 𝑘 = 1, . . . , 𝑁.

(35)
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Then, from (34)–(35), we have

Φ (𝜃) ⩾

𝑁

∑

𝑖=1

𝛼
2

𝑖
Φ
𝑖𝑖

+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Λ
𝑖𝑗
+ Λ
𝑇

𝑖𝑗
) = 𝜂
𝑇
Λ𝜂,

Ψ (𝜃) ⩽

𝑁

∑

𝑘=1

𝛽
𝑘
(

𝑁

∑

𝑖=1

𝛼
2

𝑖
Ψ
𝑖𝑖𝑘

+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Υ
𝑖𝑗𝑘

+ Υ
𝑇

𝑖𝑗𝑘
))

= 𝜂
𝑇
Υ𝜂,

(36)

where 𝜂 ≜ [𝛼
1
𝐼, 𝛼
2
𝐼, . . . , 𝛼

𝑁
𝐼]
𝑇. Inequalities (29)-(30) guar-

antee Φ(𝜃) > 0 and Ψ(𝜃) < 0, respectively. As to (26), since
Π(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
Π
𝑖
and Tr(Π(𝜃)) = ∑

𝑁

𝑖=1
𝛼
𝑖
Tr(Π
𝑖
), if (26) is

satisfied, we can get (21). By substituting the matrices defined
in (33) into (25), we readily obtain (32), and the proof is
completed.

Remark 8. From the proof of Theorems 6 and 7, it can be
seen that in the process of solving the gain-scheduled H

2

state feedback control problem, we actually define parameter-
dependent Lyapunov function-based matrix for H

2
perfor-

mance objective. In other words, 𝑃(𝜃) takes the form of
𝑃(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
𝑃
𝑖
. The gain-scheduled H

2
state feedback

control design for continuous-time LPV systems has been
investigated in [26], where parameter-dependent idea is
realized at the expense of setting an additional slack variable
to be constant for each vertex of the polytope. Notably, in
Theorem 7, we do not set any matrix variable to be constant
for the whole polytope domain.Therefore,Theorem 7 has the
potential to yield less conservative results in the applications
of gain-scheduledH

2
state feedback controller synthesis.

Remark 9. The idea behind Theorem 7 is to use convex
combinations of vertex matrices in the form of (33) to
substitute the matrix functions inTheorem 6. By introducing
these matrices and by means of the convexification method
used in the proof of Theorem 7, the infinite-dimensional
nonlinear matrix inequality conditions in Theorem 6 are
cast into finite-dimensional PLMIs conditions, which depend
only on the vertex matrices of the polytope R. Therefore,
these PLMIs conditions can be readily checked by using
standard numerical software [29]. Note that the conditions in
Theorem 7 are PLMIs for prescribed scalar 𝜀 not only over the
matrix variables but also over the scalar 𝛾. This implies that
theH

2
performance index 𝛾 can be included as optimization

variable to obtain a reduction of the attenuation level bound.
As in [26, 31], it is usually desired to design H

2
controller

with minimized performance 𝛾∗, which can be readily found
by solving the following convex optimization problem:

Minimize 𝛾

subject to (26) – (30) for given scalar 𝜀.

(37)

3.2. Dynamic Output Feedback Control Design

Theorem 10. Consider the system S in (1). Given a scalar
𝛾 > 0 and a sufficiently small positive scalar 𝜀 > 0, there exists a
gain-scheduledH

2
dynamic output feedback controllerKDOF

in the form of (8) such that the resulting closed-loop system
CDOF in (11) is exponentially stable with a prescribed H

2

disturbance attenuation level 𝛾 if there exist matricesΠ(𝜃) > 0,
�̃�(𝜃) ≜ [

�̃�1(𝜃) �̃�2(𝜃)

∗ �̃�3(𝜃)
] > 0, �̃�

𝑡
(𝜃) ≜ [

�̃�𝑡1(𝜃) �̃�𝑡2(𝜃)

∗ �̃�𝑡3(𝜃)
] > 0, 𝑅(𝜃), 𝑆(𝜃),

𝑇(𝜃), 𝐴
𝐾
(𝜃), 𝐵

𝐾
(𝜃), 𝐶

𝐾
(𝜃), and 𝐷

𝐾
(𝜃) satisfying

Tr (Π (𝜃)) < 𝛾, (38)

Φ (𝜃) ≜ [

[

Γ
1

Γ
2

Γ
3

∗ Γ
4

Γ
5

∗ ∗ Π (𝜃)

]

]

> 0, (39)

Ψ (𝜃) ≜

[
[
[
[
[

[

Ξ
1

Ξ
2

Ξ
3

Ξ
4

𝐵
1
(𝜃)

∗ Ξ
5

Ξ
6

Ξ
7

𝑆
𝑇
(𝜃) 𝐵
1
(𝜃)

∗ ∗ Ξ
8

Ξ
9

0
∗ ∗ ∗ Ξ

10
0

∗ ∗ ∗ ∗ −I

]
]
]
]
]

]

< 0, (40)

where

Γ
1
≜ 𝑅 (𝜃) + 𝑅

𝑇
(𝜃) − �̃�

1
(𝜃) ,

Γ
2
≜ I + 𝑇 (𝜃) − �̃�

2
(𝜃) ,

Γ
3
≜ 𝑅
𝑇
(𝜃) 𝐶
𝑇

1
(𝜃) + 𝐶

𝑇

𝐾
(𝜃)𝐷
𝑇

1
(𝜃) ,

Γ
4
≜ 𝑆 (𝜃) + 𝑆

𝑇
(𝜃) − �̃�

3
(𝜃) ,

Γ
5
≜ 𝐶
𝑇

1
(𝜃) + 𝐶

𝑇

2
(𝜃)𝐷
𝑇

𝐾
(𝜃)𝐷
𝑇

1
(𝜃) ,

Ξ
1
≜ Her {𝐴 (𝜃) 𝑅 (𝜃) + 𝐵

2
(𝜃) 𝐶
𝐾
(𝜃)} + �̃�

𝑡1
(𝜃) ,

Ξ
2
≜ 𝐴 (𝜃) + 𝐵

2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃) + 𝐴

𝑇

𝐾
(𝜃) + �̃�

𝑡2
(𝜃) ,

Ξ
3
≜ �̃�
1
(𝜃) − 𝑅

𝑇
(𝜃) + 𝜀𝐴 (𝜃) 𝑅 (𝜃) + 𝜀𝐵

2
(𝜃) 𝐶
𝐾
(𝜃) ,

Ξ
4
≜ �̃�
2
(𝜃) − 𝑇 (𝜃) + 𝜀𝐴 (𝜃) + 𝜀𝐵

2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃) ,

Ξ
5
≜ Her {𝑆𝑇 (𝜃) 𝐴 (𝜃) + 𝐵

𝐾
(𝜃) 𝐶
2
(𝜃)} + �̃�

𝑡3
(𝜃) ,

Ξ
6
≜ �̃�
𝑇

2
(𝜃) − I + 𝜀𝐴

𝐾
(𝜃) ,

Ξ
7
≜ �̃�
3
(𝜃) − 𝑆 + 𝜀𝑆

T
(𝜃) 𝐴 (𝜃) + 𝜀𝐵

𝐾
(𝜃) 𝐶
2
(𝜃) ,

Ξ
8
≜ −𝜀𝑅 (𝜃) − 𝜀𝑅

𝑇
(𝜃) ,

Ξ
9
≜ −𝜀I − 𝜀𝑇 (𝜃) ,

Ξ
10

≜ −𝜀𝑆 (𝜃) − 𝜀𝑆
𝑇
(𝜃) .

(41)

In this case, a desired gain-scheduled H
2
dynamic output

feedback controller KDOF in the form of (8) can be obtained
by solving the following equations:

𝐴
𝐾
(𝜃) = 𝑆

𝑇
(𝜃) 𝐴 (𝜃) 𝑅 (𝜃) + 𝐺

𝑇
(𝜃) 𝐴
𝐾
(𝜃) 𝐹 (𝜃)

+ 𝐺
𝑇
(𝜃) 𝐵
𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅 (𝜃)
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+ 𝑆
𝑇
(𝜃) 𝐵
2
(𝜃) 𝐶
𝐾
(𝜃) 𝐹 (𝜃)

+ 𝑆
𝑇
(𝜃) 𝐵
2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅 (𝜃) ,

𝐵
𝐾
(𝜃) = 𝐺

𝑇
(𝜃) 𝐵
𝐾
(𝜃) + 𝑆

𝑇
(𝜃) 𝐵
2
(𝜃)𝐷
𝐾
(𝜃) ,

𝐶
𝐾
(𝜃) = 𝐶

𝐾
(𝜃) 𝐹 (𝜃) + 𝐷

𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅 (𝜃) ,

𝐷
𝐾
(𝜃) = 𝐷

𝐾
(𝜃) ,

(42)

where 𝐹(𝜃) and 𝐺(𝜃) can be obtained by taking any full-rank
factorization of 𝐹𝑇(𝜃)𝐺(𝜃) = 𝑇(𝜃) − 𝑅

𝑇
(𝜃)𝑆(𝜃).

Proof. It can be seen from Lemma 4 that the matrix 𝑊(𝜃) is
nonsingular if (15) holds since𝑊(𝜃) +𝑊

𝑇
(𝜃) − 𝑃(𝜃) > 0 and

𝑃(𝜃) > 0. For notational simplicity, we denote𝑉(𝜃) ≜ 𝑊
−1
(𝜃)

in the following. Then 𝑊(𝜃) and 𝑉(𝜃) can be partitioned as
follows:

𝑊(𝜃) ≜ [
𝑊
1
(𝜃) 𝑊

2
(𝜃)

𝑊
4
(𝜃) 𝑊

3
(𝜃)

] ,

𝑉 (𝜃) ≜ 𝑊
−1

(𝜃) = [
𝑉
1
(𝜃) 𝑉

2
(𝜃)

𝑉
4
(𝜃) 𝑉

3
(𝜃)

] .

(43)

Without loss of generality, we assume that 𝑊
4
(𝜃) and 𝑉

4
(𝜃)

are nonsingular (if not, 𝑊
4
(𝜃) and 𝑉

4
(𝜃) may be perturbed,

respectively, by matrices Δ𝑊
4
(𝜃) and Δ𝑉

4
(𝜃)with sufficiently

small norms such that 𝑊
4
(𝜃) + Δ𝑊

4
(𝜃) and 𝑉

4
(𝜃) + Δ𝑉

4
(𝜃)

are nonsingular and satisfy (15)). Then we can define the
following nonsingular matrices:

J
𝑊

(𝜃) ≜ [
𝑊
1
(𝜃) I

𝑊
4
(𝜃) 0] , J

𝑉
(𝜃) ≜ [

I 𝑉
1
(𝜃)

0 𝑉
4
(𝜃)

] . (44)

Note that

𝑊(𝜃)J
𝑉
(𝜃) = J

𝑊
(𝜃) , 𝑉 (𝜃)J

𝑊
(𝜃) = J

𝑉
(𝜃) ,

𝑊
1
(𝜃) 𝑉
1
(𝜃) + 𝑊

2
(𝜃) 𝑉
4
(𝜃) = I.

(45)

Performing congruence transformations to (15) and (16) by
matrices diag{J

𝑉
(𝜃), I} and diag{J

𝑉
(𝜃),J

𝑉
(𝜃), I}, respec-

tively, we have

[
Her {J𝑇

𝑉
(𝜃)J
𝑊

(𝜃)} − �̃� (𝜃) J𝑇
𝑊

(𝜃) 𝐶
𝑇

cl (𝜃)

∗ Π (𝜃)
] > 0, (46)

[

[

Δ
1

Δ
2
J𝑇
𝑉
(𝜃) 𝐵cl (𝜃)

∗ Δ
3

0
∗ ∗ −I

]

]

< 0, (47)

where

Δ
1
≜ Her {Φ (𝜃)} + �̃�

𝑡
(𝜃) ,

Δ
2
≜ �̃� (𝜃) −J

𝑇

𝑊
(𝜃)J
𝑉
(𝜃) + 𝜀Φ

1
(𝜃) ,

Δ
3
≜ −𝜀Her {J𝑇

𝑉
(𝜃)J
𝑊

(𝜃)} ,

Φ (𝜃) ≜ J
𝑇

𝑉
(𝜃) 𝐴cl (𝜃)J𝑊 (𝜃) ,

�̃� (𝜃) ≜ [
�̃�
1
(𝜃) �̃�

2
(𝜃)

∗ �̃�
3
(𝜃)

] = J
𝑇

𝑉
(𝜃) 𝑃 (𝜃)J

𝑉
(𝜃) > 0,

�̃�
𝑡
(𝜃) ≜ [

�̃�
𝑡1
(𝜃) �̃�

𝑡2
(𝜃)

∗ �̃�
𝑡3
(𝜃)

] = J
𝑇

𝑉
(𝜃) 𝑃
𝑡
(𝜃)J
𝑉
(𝜃) > 0.

(48)

Define the following matrices:

𝑅 (𝜃) ≜ 𝑊
1
(𝜃) , 𝑆 (𝜃) ≜ 𝑉

1
(𝜃) ,

𝑇 (𝜃) ≜ 𝑊
𝑇

1
(𝜃) 𝑉
1
(𝜃) + 𝑊

𝑇

4
(𝜃) 𝑉
4
(𝜃) ,

(49)

𝐴
𝐾
(𝜃) ≜ 𝑉

𝑇

1
(𝜃) 𝐴 (𝜃)𝑊

1
(𝜃) + 𝑉

𝑇

4
(𝜃) 𝐴
𝐾
(𝜃)𝑊
4
(𝜃)

+ 𝑉
𝑇

4
(𝜃) 𝐵
𝐾
(𝜃) 𝐶
2
(𝜃)𝑊
1
(𝜃)

+ 𝑉
𝑇

1
(𝜃) 𝐵
2
(𝜃) 𝐶
𝐾
(𝜃)𝑊
4
(𝜃)

+ 𝑉
𝑇

1
(𝜃) 𝐵
2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃)𝑊
1
(𝜃) ,

𝐵
𝐾
(𝜃) ≜ 𝑉

𝑇

4
(𝜃) 𝐵
𝐾
(𝜃) + 𝑉

𝑇

1
(𝜃) 𝐵
2
(𝜃)𝐷
𝐾
(𝜃) ,

𝐶
𝐾
(𝜃) ≜ 𝐶

𝐾
(𝜃)𝑊
4
(𝜃) + 𝐷

𝐾
(𝜃) 𝐶
2
(𝜃)𝑊
1
(𝜃) ,

𝐷
𝐾
(𝜃) ≜ 𝐷

𝐾
(𝜃) .

(50)

Then, substituting (12) into (46) and (47) and considering
(44) and

J
𝑇

𝑉
(𝜃)J
𝑊

(𝜃) = [
𝑅 (𝜃) I
𝑇
𝑇
(𝜃) 𝑆

𝑇
(𝜃)

] ,

J
𝑇

𝑉
(𝜃) 𝐴cl (𝜃)J𝑊 (𝜃) = [

A
1

A
2

𝐴
𝐾
(𝜃) A

3

] ,

J
𝑇

𝑉
(𝜃) 𝐵cl (𝜃) = [

𝐵
1
(𝜃)

𝑆
𝑇
(𝜃) 𝐵
1
(𝜃)

] ,

J
𝑇

𝑊
(𝜃) 𝐶
𝑇

cl (𝜃) = [
𝑅
𝑇
(𝜃) 𝐶
𝑇

1
(𝜃) + 𝐶

𝑇

𝐾
(𝜃)𝐷
𝑇

1
(𝜃)

𝐶
𝑇

1
(𝜃) + 𝐶

𝑇

2
(𝜃)𝐷
𝑇

𝐾
(𝜃)𝐷
𝑇

1
(𝜃)

] ,

(51)

where

A
1
≜ 𝐴 (𝜃) 𝑅 (𝜃) + 𝐵

2
(𝜃) C̃
𝐾
(𝜃) ,

A
2
≜ 𝐴 (𝜃) + 𝐵

2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃) ,

A
3
≜ 𝑆
𝑇
(𝜃) 𝐴 (𝜃) + 𝐵

𝐾
(𝜃) 𝐶
2
(𝜃) ,

(52)

we obtain that (39) and (40) hold.
Define the following matrices:

𝐹 (𝜃) ≜ 𝑊
4
(𝜃) , 𝐺 (𝜃) ≜ 𝑉

4
(𝜃) . (53)
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It is noted that

𝐹
𝑇
(𝜃) 𝐺 (𝜃) = 𝑇 (𝜃) − 𝑅

𝑇
(𝜃) 𝑆 (𝜃) . (54)

Finally, from (50), (47), and (54), (10) holds. This completes
the proof.

Remark 11. Theorem 10 casts the nonlinear matrix inequality
condition of dynamic output feedback control design based
on Lemma 4 into an LMI condition by using linearization
procedures. Based on these procedures, the desired LPV
controllers can be constructed by using the obtained matrix
functions Π(𝜃), �̃�(𝜃), �̃�

𝑡
(𝜃), 𝑅(𝜃), 𝑆(𝜃), 𝑇(𝜃), 𝐴

𝐾
(𝜃), 𝐵

𝐾
(𝜃),

𝐶
𝐾
(𝜃), and 𝐷

𝐾
(𝜃). However, these LMI conditions of test-

ing the feasibility in Theorem 10 are infinite-dimensional
constraints in terms of the parameter 𝜃(𝑡). Therefore, these
conditions still cannot be implemented since they are not
convex in the parameter 𝜃(𝑡). It is noted that if we set Π(𝜃) ≡

Π, �̃�(𝜃) ≡ �̃�, �̃�
𝑡
(𝜃) ≡ �̃�

𝑡
, 𝑅(𝜃) ≡ 𝑅, 𝑆(𝜃) ≡ 𝑆, 𝑇(𝜃) ≡ 𝑇,

𝐴
𝐾
(𝜃) ≡ 𝐴

𝐾
, 𝐵
𝐾
(𝜃) ≡ 𝐵

𝐾
,𝐶
𝐾
(𝜃) ≡ 𝐶

𝐾
, and𝐷

𝐾
(𝜃) ≡ 𝐷

𝐾
, we

will readily obtain a new gain-scheduledH
2
output feedback

control result in a quadratic framework. Then, we can obtain
the following corollary based onTheorem 10 immediately.

Corollary 12. Consider the system S in (1). Given a scalar
𝛾 > 0 and a sufficiently small positive scalar 𝜀 > 0, then there
exists a gain-scheduledH

2
dynamic output feedback controller

KDOF in the form of (8) such that the resulting closed-loop
system CDOF in (11) is exponentially stable with a prescribed
H
2
disturbance attenuation level 𝛾 if there exist matrices Π >

0, �̃� ≜ [
�̃�1 �̃�2

∗ �̃�3

] > 0, �̃�
𝑡
≜ [
�̃�𝑡1 �̃�𝑡2

∗ �̃�𝑡3

] > 0, 𝑅, 𝑆, 𝑇, 𝐴
𝐾
, 𝐵
𝐾
, 𝐶
𝐾
,

and 𝐷
𝐾
satisfying

Tr (Π) < 𝛾,

Φ
𝑖
≜ [

[

Γ
1

Γ
2

Γ
3

∗ Γ
4

Γ
5

∗ ∗ Π

]

]

> 0, 𝑖 = 1, . . . , 𝑁,

Ψ
𝑖
≜

[
[
[
[
[

[

Ξ
1

Ξ
2

Ξ
3

Ξ
4

𝐵
1𝑖

∗ Ξ
5

Ξ
6

Ξ
7

𝑆
𝑇
𝐵
1𝑖

∗ ∗ Ξ
8

Ξ
9

0
∗ ∗ ∗ Ξ

10
0

∗ ∗ ∗ ∗ −I

]
]
]
]
]

]

< 0, 𝑖 = 1, . . . , 𝑁,

(55)

where

Γ
1
≜ 𝑅 + 𝑅

𝑇
− �̃�
1
,

Γ
2
≜ I + 𝑇 − �̃�

2
,

Γ
3
≜ 𝑅
𝑇
𝐶
𝑇

1𝑖
+ 𝐶
𝑇

𝐾
𝐷
𝑇

1𝑖
,

Γ
4
≜ 𝑆 + 𝑆

𝑇
− �̃�
3
,

Γ
5
≜ 𝐶
𝑇

1𝑖
+ 𝐶
𝑇

2𝑖
𝐷
𝑇

𝐾
𝐷
𝑇

1𝑖
,

Ξ
1
≜ Her {𝐴

𝑖
𝑅 + 𝐵

2𝑖
𝐶
𝐾
} + �̃�
𝑡1
,

Ξ
2
≜ 𝐴
𝑖
+ 𝐵
2𝑖
𝐷
𝐾
𝐶
2𝑖
+ 𝐴
𝑇

𝐾
+ �̃�
𝑡2
,

Ξ
3
≜ �̃�
1
− 𝑅
𝑇
+ 𝜀𝐴
𝑖
𝑅 + 𝜀𝐵

2𝑖
𝐶
𝐾
,

Ξ
4
≜ �̃�
2
− 𝑇 + 𝜀𝐴

𝑖
+ 𝜀𝐵
2𝑖
𝐷
𝐾
𝐶
2𝑖
,

Ξ
5
≜ Her {𝑆𝑇𝐴

𝑖
+ 𝐵
𝐾
𝐶
2𝑖
} + �̃�
𝑡3
,

Ξ
6
≜ �̃�
𝑇

2
− I + 𝜀𝐴

𝐾
,

Ξ
7
≜ �̃�
3
− 𝑆 + 𝜀𝑆

𝑇
𝐴
𝑖
+ 𝜀𝐵
𝐾
𝐶
2𝑖
,

Ξ
8
≜ −𝜀𝑅 − 𝜀𝑅

𝑇
,

Ξ
9
≜ −𝜀I − 𝜀𝑇,

Ξ
10

≜ −𝜀𝑆 − 𝜀𝑆
𝑇
.

(56)

In this case, a desired gain-scheduled H
2
dynamic output

feedback controller KDOF in the form of (8) can be obtained
by solving the following equations:

𝐴
𝐾
= 𝑆
𝑇
𝐴 (𝜃) 𝑅 + 𝐺

𝑇
𝐴
𝐾
(𝜃) 𝐹

+ 𝐺
𝑇
𝐵
𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅 + 𝑆

𝑇
𝐵
2
(𝜃) 𝐶
𝐾
(𝜃) 𝐹

+ 𝑆
𝑇
𝐵
2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅,

𝐵
𝐾
= 𝐺
𝑇
𝐵
𝐾
(𝜃) + 𝑆

𝑇
𝐵
2
(𝜃)𝐷
𝐾
(𝜃) ,

𝐶
𝐾
= 𝐶
𝐾
(𝜃) 𝐹 + 𝐷

𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅,

𝐷
𝐾
= 𝐷
𝐾
(𝜃) ,

(57)

where 𝐹 and 𝐺 can be obtained by taking any full-rank
factorization of 𝐹T

𝐺 = 𝑇 − 𝑅
T
𝑆.

Although Corollary 12 gives a finite-dimensional LMI
approach to design a gain-scheduled H

2
dynamic output

feedback controller KDOF in the form of (8), all vertices of
the polytope share a common Lyapunov function, whichmay
lead to the conservative result. In order to reduce the conser-
vativeness and derive a solvable condition, we develop a new
PLMI condition in the following. Similar to the introduction
of the convexification method used in Theorem 7, a finite-
dimensional PLMI condition that depends on the vertices
of the polytope R is presented in the following theorem,
which can be efficiently solved by using standard numerical
software.

Theorem13. Consider the systemS in (1). Given a scalar 𝛾 > 0

and a sufficiently small positive scalar 𝜀 > 0, then an admissible
gain-scheduled H

2
dynamic output feedback controller in the

form ofKDOF in (8) exists if there exist matrices Π
𝑖
> 0, �̃�

𝑖
≜

[
�̃�1𝑖 �̃�2𝑖

∗ �̃�3𝑖

] > 0, �̃�
𝑡𝑘

≜ [
�̃�𝑡1𝑘 �̃�𝑡2𝑘

∗ �̃�𝑡3𝑘

] > 0, 𝑅
𝑖
, 𝑆
𝑖
, 𝑇
𝑖
, 𝐴
𝐾𝑖
, 𝐵
𝐾𝑖
, 𝐶
𝐾𝑖
,

𝐷
𝐾𝑖
, Λ
𝑖𝑗
, and Υ

𝑖𝑗𝑘
satisfying

Tr (Π
𝑖
) < 𝛾, 𝑖 = 1, . . . , 𝑁, (58)
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Φ
𝑖𝑗
+ Φ
𝑗𝑖
− Λ
𝑖𝑗
− Λ
𝑇

𝑖𝑗
⩾ 0, 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁, (59)

Ψ
𝑖𝑗𝑘

+ Ψ
𝑗𝑖𝑘

− Υ
𝑖𝑗𝑘

− Υ
𝑇

𝑖𝑗𝑘
⩽ 0,

1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁, 𝑘 = 1, . . . , 𝑁,

(60)

Λ ≜

[
[
[
[

[

Φ
11

Λ
12

⋅ ⋅ ⋅ Λ
1𝑁

∗ Φ
22

⋅ ⋅ ⋅ Λ
2𝑁

∗ ∗ d
...

∗ ∗ ∗ Φ
𝑁𝑁

]
]
]
]

]

> 0, (61)

Υ ≜

[
[
[
[

[

Ψ
11𝑘

Υ
12𝑘

⋅ ⋅ ⋅ Υ
1𝑁𝑘

∗ Ψ
22𝑘

⋅ ⋅ ⋅ Υ
2𝑁𝑘

∗ ∗ d
...

∗ ∗ ∗ Ψ
𝑁𝑁𝑘

]
]
]
]

]

< 0, (62)

where

Φ
𝑖𝑗
≜ [

[

𝑅
𝑖
+ 𝑅
𝑇

𝑖
− �̃�
1𝑖

I + 𝑇
𝑖
− �̃�
2𝑖

Θ
1

∗ 𝑆
𝑖
+ 𝑆
𝑇

𝑖
− �̃�
3𝑖

Θ
2

∗ ∗ Π
𝑖

]

]

,

Ψ
𝑖𝑗𝑘

≜

[
[
[
[
[

[

Σ
1

Σ
2

Σ
3

Σ
4

𝐵
1𝑗

∗ Σ
5

Σ
6

Σ
7

𝑆
𝑇

𝑖
𝐵
1𝑗

∗ ∗ Σ
8

Σ
9

0
∗ ∗ ∗ Σ

10
0

∗ ∗ ∗ ∗ −I

]
]
]
]
]

]

,

Θ
1
≜ 𝑅
𝑇

𝑖
𝐶
𝑇

1𝑗
+ 𝐶
𝑇

𝐾𝑖
𝐷
𝑇

1𝑗
,

Θ
2
≜ 𝐶
𝑇

1𝑗
+ 𝐶
𝑇

2𝑗
𝐷
𝑇

𝐾𝑖
𝐷
𝑇

1𝑗
,

Σ
1
≜ Her {𝐴

𝑗
𝑅
𝑖
+ 𝐵
2𝑗
𝐶
𝐾𝑖
} + �̃�
𝑡1𝑘

,

Σ
2
≜ 𝐴 j + 𝐵

2𝑗
𝐷
𝐾𝑖
𝐶
2𝑗

+ 𝐴
T
𝐾𝑖

+ �̃�
𝑡2𝑘

,

Σ
3
≜ �̃�
1𝑖
− 𝑅

T
𝑖
+ 𝜀𝐴
𝑗
𝑅
𝑖
+ 𝜀𝐵
2𝑗
𝐶
𝐾𝑖
,

Σ
4
≜ �̃�
2𝑖
− 𝑇
𝑖
+ 𝜀𝐴
𝑗
+ 𝜀𝐵
2𝑗
𝐷
𝐾𝑖
𝐶
2𝑗
,

Σ
5
≜ Her {𝑆𝑇

𝑖
𝐴
𝑗
+ 𝐵
𝐾𝑖
𝐶
2𝑗
} + �̃�
𝑡3𝑘

,

Σ
6
≜ �̃�
𝑇

2𝑖
− I + 𝜀𝐴

𝐾𝑖
,

Σ
7
≜ �̃�
3𝑖
− 𝑆
𝑇

𝑖
+ 𝜀𝑆
𝑇

𝑖
𝐴
𝑗
+ 𝜀𝐵
𝐾𝑖
𝐶
2𝑗
,

Σ
8
≜ −𝜀𝑅

𝑖
− 𝜀𝑅
𝑇

𝑖
,

Σ
9
≜ −𝜀I − 𝜀𝑇

𝑖
,

Σ
10

≜ −𝜀𝑆
𝑖
− 𝜀𝑆
𝑇

𝑖
.

(63)

Moreover, under the above conditions, the matrix functions
for an admissible gain-scheduledH

2
dynamic output feedback

controller KDOF in (8) are given by solving the following
equations:

𝐴
𝐾
(𝜃) = 𝑆

𝑇
(𝜃) 𝐴 (𝜃) 𝑅 (𝜃) + 𝐺

𝑇
(𝜃) 𝐴
𝐾
(𝜃) 𝐹 (𝜃)

+ 𝐺
𝑇
(𝜃) 𝐵
𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅 (𝜃)

+ 𝑆
𝑇
(𝜃) 𝐵
2
(𝜃) 𝐶
𝐾
(𝜃) 𝐹 (𝜃)

+ 𝑆
𝑇
(𝜃) 𝐵
2
(𝜃)𝐷
𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅 (𝜃) ,

𝐵
𝐾
(𝜃) = 𝐺

𝑇
(𝜃) 𝐵
𝐾
(𝜃) + 𝑆

𝑇
(𝜃) 𝐵
2
(𝜃)𝐷
𝐾
(𝜃) ,

𝐶
𝐾
(𝜃) = 𝐶

𝐾
(𝜃) 𝐹 (𝜃) + 𝐷

𝐾
(𝜃) 𝐶
2
(𝜃) 𝑅 (𝜃) ,

𝐷
𝐾
(𝜃) = 𝐷

𝐾
(𝜃) ,

(64)

where 𝑅(𝜃) = ∑
𝑁

𝑖=1
𝛼
𝑖
𝑅
𝑖
, 𝑆(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
𝑆
𝑖
, 𝑇(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
𝑇
𝑖
,

𝐴
𝐾
(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
𝐴
𝐾𝑖
, 𝐵
𝐾
(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
𝐵
𝐾𝑖
, 𝐶
𝐾
(𝜃) =

∑
𝑁

𝑖=1
𝛼
𝑖
𝐶
𝐾𝑖
, 𝐷
𝐾
(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
𝐷
𝐾𝑖
, and 𝐹(𝜃) and 𝐺(𝜃) can be

obtained by taking any full-rank factorization 𝐹
𝑇
(𝜃)𝐺(𝜃) =

𝑇(𝜃) − 𝑅
𝑇
(𝜃)𝑆(𝜃).

Proof. From Theorem 10, an admissible gain-scheduled H
2

output feedback controller in the form ofKDOF in (8) exists
if there exist matrices Π(𝜃) > 0, �̃�(𝜃) > 0, �̃�

𝑡
(𝜃) > 0,

𝑅(𝜃), 𝑆(𝜃),𝑇(𝜃),𝐴
𝐾
(𝜃),𝐵
𝐾
(𝜃),𝐶

𝐾
(𝜃), and𝐷

𝐾
(𝜃) and a scalar

𝜀 > 0 satisfying (38)–(40). Now, assume that the abovematrix
functions are of the following form:

�̃� (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
�̃�
𝑖
=

𝑁

∑

𝑖=1

𝛼
𝑖
[
�̃�
1𝑖

�̃�
2𝑖

∗ �̃�
3𝑖

] ,

�̃�
𝑡
(𝜃) =

𝑁

∑

𝑘=1

𝛽
𝑘
�̃�
𝑡𝑘

=

𝑁

∑

𝑘=1

𝛽
𝑘
[
�̃�
𝑡1𝑘

�̃�
𝑡2𝑘

∗ �̃�
𝑡3𝑘

] ,

Π (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
Π
𝑖
, 𝑅 (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑅
𝑖
,

𝑆 (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑆
𝑖
, 𝑇 (𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝑇
𝑖
,

𝐴
𝐾
(𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝐴
𝐾𝑖
, 𝐵

𝐾
(𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝐵
𝐾𝑖
,

𝐶
𝐾
(𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝐶
𝐾𝑖
, 𝐷

𝐾
(𝜃) =

𝑁

∑

𝑖=1

𝛼
𝑖
𝐷
𝐾𝑖
.

(65)

Then, with (65), we rewrite Φ(𝜃) and Ψ(𝜃) in (39)-(40) as

Φ (𝜃) =

𝑁

∑

𝑗=1

𝑁

∑

𝑖=1

𝛼
𝑖
𝛼
𝑗
Φ
𝑖𝑗

=

𝑁

∑

𝑖=1

𝛼
2

𝑖
Φ
𝑖𝑖
+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Φ
𝑖𝑗
+ Φ
𝑗𝑖
) ,

Ψ (𝜃)

=

𝑁

∑

𝑘=1

𝑁

∑

𝑗=1

𝑁

∑

𝑖=1

𝛼
𝑖
𝛼
𝑗
𝛽
𝑘
Φ
𝑖𝑗𝑘
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=

𝑁

∑

𝑘=1

𝛽
𝑘
(

𝑁

∑

𝑖=1

𝛼
2

𝑖
Ψ
𝑖𝑖𝑘

+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Ψ
𝑖𝑗𝑘

+ Ψ
𝑗𝑖𝑘

)) .

(66)

On the other hand, (59)-(60) are equivalent to

Φ
𝑖𝑗
+ Φ
𝑗𝑖
⩾ Λ
𝑖𝑗
+ Λ
𝑇

𝑖𝑗
,

Ψ
𝑖𝑗𝑘

+ Ψ
𝑗𝑖𝑘

⩽ Υ
𝑖𝑗𝑘

+ Υ
𝑇

𝑖𝑗𝑘
,

(67)

where 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑁 and 𝑘 = 1, . . . , 𝑁. Then, from (66)-(67),
we have

Φ (𝜃) ⩾

𝑁

∑

𝑖=1

𝛼
2

𝑖
Φ
𝑖𝑖
+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Λ
𝑖𝑗
+ Λ
𝑇

𝑖𝑗
) = 𝜂
𝑇
Λ𝜂,

Ψ (𝜃) ⩽

𝑁

∑

𝑘=1

𝛽
𝑘
(

𝑁

∑

𝑖=1

𝛼
2

𝑖
Ψ
𝑖𝑖𝑘

+

𝑁−1

∑

𝑖=1

𝑁

∑

𝑗=𝑖+1

𝛼
𝑖
𝛼
𝑗
(Υ
𝑖𝑗𝑘

+ Υ
𝑇

𝑖𝑗𝑘
))

= 𝜂
𝑇
Υ𝜂,

(68)

where 𝜂 ≜ [𝛼
1
𝐼, 𝛼
2
𝐼, . . . , 𝛼

𝑁
𝐼]
𝑇. Inequalities (61)-(62) guar-

antee Φ(𝜃) > 0 and Ψ(𝜃) < 0, respectively. As to (58),
since Π(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
Π
𝑖
and Tr(Π(𝜃)) = ∑

𝑁

𝑖=1
𝛼
𝑖
Tr(Π
𝑖
), if

(58) satisfies, we can get (38). By substituting the matrices
defined in (65) into (10), we readily obtain (13), and the proof
is completed.

Remark 14. From the proof ofTheorem 13, it can be seen that
the Lyapunov function-based matrix for H

2
performance

objective is also parameter dependent; that is, 𝑃(𝜃) takes the
form of 𝑃(𝜃) = ∑

𝑁

𝑖=1
𝛼
𝑖
𝑃
𝑖
. Notably, here in Theorem 13, we

do not set any matrix variable to be constant for the whole
polytope domain, and therefore,Theorem 13 has the potential
to yield less conservative results in the applications of gain-
scheduled H

2
LPV control design than the ones presented

in Corollary 12. Similar to the case of state feedback control
design, the gain-scheduled H

2
dynamic output feedback

controller synthesis problem can be also cast into a finite-
dimensional convex optimization problem as follows:

Minimize 𝛾

subject to (58) – (62) for given scalar 𝜀.

(69)

Remark 15. From the results in the existing literature, it is
known that the definition of quadratic Lyapunov function
is simple, and the computation cost in the design procedure
is low. However, the common quadratic Lyapunov functions
tend to be conservative and might not exist for some highly
nonlinear systems. To reduce the conservatism and to estab-
lish well-performance condition, parameter-dependent Lya-
punov functions and new slack variables have been adopted
in this paper. It can be seen that the quadratic Lyapunov
function is a special case of PDLF. Thus, the proposed
method in this paper is more general and less conservative.

Meanwhile, the PDLF-based approach also has some dis-
advantages: the design procedures become more complex,
and the computational requirement is usually demanding.
The number of PLMIs conditions in Theorems 7 and 13
increases rapidly with the number of system dimensions.
Thus, a computational problem might arise for high-order
systems. One effective way to solve this problem is to try to
reduce the number of variables with the tradeoff between
computational burden and conservativeness. For example,
Theorem 13 can be replaced by Corollary 12 with increasing
the conservativeness and decreasing computational burden.

4. Illustrative Example

In this section, we use Example 1 to show the less conserva-
tiveness of the result developed in Theorem 7. Example 2 is
provided to show the effectiveness of the gain-scheduledH

2

dynamic output feedback controller proposed inTheorem 13.

Example 1. Consider the following numerical example bor-
rowed from [26, 29]. The problem is to control the yaw
angles of a satellite system. The satellite system consisting of
two rigid bodies joined by a flexible link has the state-space
representation as follows:

̇𝑥 =
[
[
[

[

0 0 1 0

0 0 0 1

−𝑘 𝑘 −𝑓 𝑓

𝑘 −𝑘 𝑓 −𝑓

]
]
]

]

𝑥 +
[
[
[

[

0

0

0

1

]
]
]

]

𝑤 +
[
[
[

[

0

0

1

0

]
]
]

]

𝑢,

𝑧 = [
0 1 0 0

0 0 0 0
] 𝑥 + [

0

0.01
] 𝑢,

(70)

where 𝑥 = [𝜃
1

𝜃
2

̇𝜃
1

̇𝜃
2
]
𝑇

and 𝑘 and 𝑓 are torque
constant and viscous damping, and they vary in the following
uncertainty ranges: 𝑘 ∈ [0.09 0.4]; 𝑓 ∈ [0.0038 0.04].

For this system, our purpose is to design a gain-scheduled
H
2
state feedback control𝑢(𝑡) in the formof (7), such that the

closed-loop system is exponentially stable with a minimized
H
2
disturbance attenuation level 𝛾.
Define

𝑥 ≜
0.4 − 𝑘 (𝑡)

0.4 − 0.09
, 𝑦 ≜

𝑓 (𝑡) − 0.0038

0.04 − 0.0038
,

𝛼
1
(𝑡) = 𝑥𝑦, 𝛼

2
(𝑡) = (1 − 𝑥) 𝑦,

𝛼
3
(𝑡) = 𝑥 (1 − 𝑦) , 𝛼

4
(𝑡) = (1 − 𝑥) (1 − 𝑦) .

(71)

It is easy to check that 𝛼
𝑖
(𝑡), 𝑖 = 1, . . . , 4, are convex

coordinates, since they satisfy 0 ⩽ 𝛼
𝑖
(𝑡) ⩽ 1 and ∑

4

𝑖=1
𝛼
𝑖
(𝑡) =

1. It should be noted that the choice of scalar 𝜀 is important to
converge tominimumH

2
performance [26]. In this example,

the value of minimum guaranteed H
2
performance 𝛾

∗ is
1.0883 with fixed 𝜀 = 0.11 and 1.4156 with fixed 𝜀 = 0.5

by the method in [26], and 0.8892 with fixed 𝜀 = 0.11 and
1.0531 with fixed 𝜀 = 0.5 by using Theorem 7. Table 1 shows
the minimumH

2
performance and the numbers of decision

variables when different methods are used. It is clearly shown
in Table 1 that the guaranteed performance obtained by our



Mathematical Problems in Engineering 11

Table 1: MinimumH
2
performance for different cases.

𝜀 0.11 0.5
Method [26] Theorem 7 [26] Theorem 7
𝛾
∗ 1.0883 0.8892 1.4156 1.0531

Complexity 14 257 14 257

approach is much better than that obtained by the method
in [26], which indicates the less conservativeness of the
controller design result developed in this paper, even though
this procedure increases some numerical complexity. From
Table 1, we can also see that the smaller the value of 𝜀, the
better the value of 𝛾∗. Although the computational complex-
ity of Theorem 7 for this example is relatively more than the
approach in [26], the reduced conservatism is significant.
With the rapid development of computer technology and
computational method, the computational burden problem
may be solved.

Example 2. Consider a continuous-time LPV systemS in (1)
with the following matrix functions:

𝐴 (𝜃) = [

[

1.5 + 0.5𝜃 3 𝜃

−2.2 + 𝜃 −1.8 + 0.5𝜃 0.2𝜃

0.1 0.5 −𝜃

]

]

,

𝐵
1
(𝜃) = [

[

0.2

0.02

0.1

]

]

, 𝐵
2
(𝜃) = [

[

2𝜃

0.1 + 𝜃

0.2

]

]

,

𝐶
1
(𝜃) = [

1 1 0

0 0 1
] , 𝐷

1
(𝜃) = [

−1

1
] ,

𝐶
2
(𝜃) = [

0 1 0

1 0 1
] ,

(72)

where 𝜃(𝑡) = sin(0.2𝑡) is a time-varying parameter, |𝜃(𝑡)| ⩽

1, and | ̇𝜃(𝑡)| ⩽ 0.2. Let the exogenous disturbance input 𝑤(𝑡)

be

𝑤 (𝑡) = exp (−𝑡) sin (0.5𝑡) , 𝑡 ⩾ 0. (73)

It can be checked that the above system with 𝑢(𝑡) = 0

is unstable, and the states of open-loop system are shown
in Figure 1 with the initial condition given by 𝑥(0) =

[−0.1 −0.1 0.1]
𝑇.Therefore, our purpose is to design a gain-

scheduled H
2
dynamic output feedback control 𝑢(𝑡) in the

form of (8), such that the closed-loop system is exponentially
stable with a minimizedH

2
disturbance attenuation level 𝛾.

To solve the synthesis problem, we transform system (72)
into the polytopic form. The system matrices 𝐴(𝜃) and 𝐵

2
(𝜃)

of LPV system (72) can be expressed as

𝐴 (𝜃) =

2

∑

𝑖=1

𝛼
𝑖
𝐴
𝑖
, 𝐵 (𝜃) =

2

∑

𝑖=1

𝛼
𝑖
𝐵
𝑖
, (74)
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Figure 1: States of the open-loop system.

where

𝐴
1
= [

[

1 3 −1

−3.2 −2.3 −0.2

0.1 0.5 1

]

]

, 𝐵
21

= [

[

−2

−0.9

0.2

]

]

,

𝐴
2
= [

[

2 3 1

−1.2 −1.3 0.2

0.1 0.5 −1

]

]

, 𝐵
22

= [

[

2

1.1

0.2

]

]

(75)

with

𝛼
1
(𝑡) =

𝜃max − 𝜃

𝜃max − 𝜃min
, 𝛼

2
(𝑡) =

𝜃 − 𝜃min
𝜃max − 𝜃min

. (76)

It is easy to check that 𝛼
𝑖
(𝑡), 𝑖 = 1, 2, are convex coordinates,

since they satisfy 0 ≤ 𝛼
1
(𝑡) ≤ 1, 0 ≤ 𝛼

2
(𝑡) ≤ 1, and 𝛼

1
(𝑡) +

𝛼
2
(𝑡) = 1. In this example, we set 𝜀 = 0.5. Using Corollary 12,

it is found that the LMIs (55) are infeasible. However, using
Theorem 13 and solving the LMIs (58)–(62) by using the
same standard LMI-Toolbox in theMatlab environment [29],
we obtain that the LMIs constraints (58)–(62) are feasible.
Furthermore, by solving the convex optimization problem of
(69) in Remark 14, we obtain that the minimum achievable
noise attenuation level for the gain-scheduled H

2
dynamic

output feedback control problem is 𝛾
∗

= 0.5806 and the
corresponding matrices are as follows:

𝑅
1
= [

[

0.1096 0.0090 0.0292

−0.1255 0.1156 −0.0502

0.0289 0.0046 0.0101

]

]

,

𝑅
2
= [

[

0.1469 −0.0229 0.0384

−0.1468 0.1029 0.0219

0.0045 0.0141 0.0324

]

]

,
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𝑆
1
= 10
5
× [

[

1.9878 −0.7346 −3.8287

3.8991 8.3985 −9.4741

−4.7517 −0.2094 9.5476

]

]

,

𝑆
2
= 10
6
× [

[

0.2857 −0.1633 −0.5386

0.2507 0.9838 −0.6979

−0.6214 0.1299 1.2169

]

]

,

𝑇
1
= [

[

−1.8487 −1.8817 3.3794

4.9104 3.5711 −7.6522

−0.4836 −0.8968 1.0365

]

]

,

𝑇
2
= [

[

1.8140 0.0634 −1.0335

−2.0647 −0.4457 3.1531

0.3720 0.8677 0.3924

]

]

,

𝐴
𝐾1

= [

[

−6.4403 −7.0131 −2.0779

−3.5879 −4.9302 −0.1886

11.6185 11.0381 2.1956

]

]

,

𝐴
𝐾2

= [

[

−0.7134 2.3105 −3.0523

−0.8594 0.6710 −3.0487

−3.4059 −6.9564 1.4208

]

]

,

𝐵
𝐾1

= 10
6
× [

[

0.8267 0.9623

0.3636 2.0002

−1.7249 −2.3245

]

]

,

𝐵
𝐾2

= 10
6
× [

[

−0.0142 −0.4723

0.1378 1.1325

−0.0000 0.7169

]

]

,

𝐶
𝐾1

= [−0.0118 −0.0185 −0.0224] ,

𝐶
𝐾2

= [−0.0082 −0.0355 −0.0344] ,

𝐷
𝐾1

= [−1.3604 −1.3838] ,

𝐷
𝐾2

= [−0.3560 −0.5457] .

(77)

Setting 𝐹(𝜃) = 𝐼
3
, we obtain 𝐺(𝜃) = 𝑇(𝜃) − 𝑅

𝑇
(𝜃)𝑆(𝜃) by

the process of proof in Theorem 10. Therefore, from (13) and
Theorem 13, the matrices (𝐴

𝐾
(𝜃), 𝐵
𝐾
(𝜃), 𝐶

𝐾
(𝜃), 𝐷

𝐾
(𝜃)) for

the desired H
2
dynamic output feedback controller KDOF

in (8) can be obtained by the Matlab symbolic computation.
Figures 2 and 3 give the state responses of the closed-

loop systemCDOF and the dynamic output feedback control
system KDOF, respectively. The control input 𝑢 in (8) is
shown in Figure 4. From the above results, we can conclude
that the desired stability of the closed-loop system is verified.

Based on the results of disturbance attenuation in
Example 1 and the characteristic curves of Figures 2–4 in
Example 2, it is shown that H

2
performance can be used

to capture both the response to stationary noise and the
transient response of the closed-loop system.

5. Conclusions

In this paper, the problems of gain-scheduled H
2
controller

designs for continuous-time polytopic LPV systems have
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Figure 2: States of the closed-loop system.
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Figure 3: Controller states ofDOF system.

been addressed. Based on a basis-dependent Lyapunov func-
tion and the introduction of some auxiliary slack variables,
sufficient conditions for both state feedback and dynamic
output feedback controller synthesis problems have been
established in terms of PLMIs, which guarantee the exponen-
tial stability and a prescribed H

2
performance level of the

closed-loop system over the given polytope. Moreover, the
controller design problems have been cast into a convex opti-
mization problem on the basis of the polytopic characteristic
of the dependent parameters and the convexificationmethod,
which can be readily solved via standard LMI Toolbox.
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Figure 4: Control input.

Numerical examples have been provided to illustrate the
effectiveness and advantage of the proposed design methods.

Several works may be needed in the future to improve
the current results. First of all, in this paper, sufficient con-
ditions for both state feedback and dynamic output feedback
controller synthesis problems have been established in terms
of PLMIs. With the increasing number of system dimension,
how to solve these complicated PLMIs conditions quickly
and efficiently is a good problem which should be further
studied. Second, the developed results are expected to extend
to the domain of practical application, such as designing the
stabilized controller for the flight control system with good
performances.
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Driver characteristics have been the research focus for automotive control. Study on identification of driver characteristics is
provided in this paper in terms of its relevant research directions and key technologies involved. This paper discusses the driver
characteristics based on driver’s operation behavior, or the driver behavior characteristics. Following the presentation of the
fundamental of the driver behavior characteristics, the key technologies of the driver behavior characteristics are reviewed in detail,
including classification and identificationmethods of the driver behavior characteristics, experimental design and data acquisition,
and model adaptation. Moreover, this paper discusses applications of the identification of the driver behavior characteristics which
has been applied to the intelligent driver advisory system, the driver safetywarning system, and the vehicle dynamics control system.
At last, some ideas about the future work are concluded.

1. Introduction

In the driver-vehicle-road closed-loop system, the driver
plays the role of not only the controller, but also the major
evaluator of the quality of the vehicle path-following. Due to
variant of driving experiences, emotions, driving preferences,
and so on between drivers, the driver becomes the weakest
part in the driver-vehicle-road closed-loop system. And
different drivers display distinct behaviors; that is to say,
every driver has his/her unique driving characteristic (also
referred to as driving style). To improve the performance of
the driver-vehicle-road closed-loop system, research on the
driver characteristics includes (1) driver characteristics iden-
tification based on head movement and facial features, such
as the eyemovement recognition, which identifies the driver’s
driving status (fatigue/drunk/drowsy/distracted driving) and
warns the driver in order to improve the active safety per-
formance [1–3]; (2) physiological-based and psychological-
based driver characteristics identification, which enhances
the human-machine interactive performance and/or improve
the driver’s operation comfort [4–7]; (3) driver characteristics
identification based on driver’s operation behavior, which
detects abnormal driving behavior and then alarm the driver,

design control method for driving comfort, and/or design
the human-centered driving assistance systems [8–11]; and
(4) the research on the driver characteristics based on
dynamics simulations of the driver-vehicle-road closed-loop
system, which is aimed at the optimal design on dynamic
performance of the closed-loop system [12–16].

This paper focuses on the identification of driver char-
acteristics based on driver’s operation behavior, namely,
the identification of driver behavior characteristics. In the
current research, the identification is generally realized based
on the measured real-time driver behavior and vehicle states,
or by monitoring driver’s head movements and/or facial
expressions. It is believed that on the completion of the identi-
fication of driver behavior characteristics, the following task
can be performed: (1) the vehicle would follow the current
driver’s operation, trigger the appropriate driving assistant
device, in order to achieve smooth transition of the semi-
autonomous human-machine control modes, and to realize
coordination of driver’s operation and automatic control [17];
(2) the parameters of electronic control system would be
automatically modified [18], or appropriate characteristics of
the ideal reference models established are chosen to achieve
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the ideal dynamic response of the vehicle, driver adaptive
control, and personalized driving [19, 20]; (3) the systems that
real-time monitor and assess the driver’s driving behaviors
and driving status (fatigue/drunk/drowsy/distracted driving)
can early detect possible operating errors and warn the
driver to avoid traffic accidents in visual, auditory, or tactile
approaches [8, 21]. Since identification of the driver behavior
characteristics is of great importance to improve automotive
active safety and to achieve intelligent driving, more and
more researchers have been committed to studying the
related fields, mainly Ford [12, 13, 18, 22, 23], Nissan Institute
[17, 24, 25], Columbia University [8], Vienna University
of Technology [26], Nagoya University [27–32], Tsinghua
University [10, 33–36], Jilin University [20, 37–40], and
Chinese University of Hong Kong [41].

This paper is organized as follows: Section 2 intro-
duces the fundamental of the driver behavior characteristics.
Section 3 reviews key technologies about driver characteris-
tics identification. In Section 4, applications of the identifi-
cation of the driver behavior characteristics are introduced.
Conclusions are drawn in Section 5 and future research work
is suggested.

2. The Driver Behavior Characteristics

In driving a vehicle, the driver makes his/her driving inten-
tions and selects a series of operation behaviors that are
most suitable for the current driving conditions. Even very
simple driving intentions (long-term driving intention) can
be subdivided into a series of simpler driving operation
behaviors (short-term driving behavior); that is, the driving
intention is achieved by a series of driving behaviors [37]. It
is widely accepted that the driving behaviors vary between
drivers according to their ages, genders, ethnicities, driving
experiences, emotions, and so forth [17, 42–44]. Even for
the same driver, driving behavior may alter from situation to
situation [27], which can be attributed to the driver behavior
characteristics. Wahab et al. [45] believe that the differences
of each driver in the driver characteristics are due to the
way drivers’ subconscious mind works and responds, and the
conversion from subconscious to consciousmindswould also
generate unique responds on how the brains work.

There are a lot of literature investigating the uniqueness
of driving behaviors in vehicles and the possibility to use it
for identifying the driver characteristics, with the objectives
to achieve safer and personalized driving, to detect driver’s
abnormal operation and then alarm, to realize integration
between the driver and the electronic control systems, or to
build identification models of the driver behavior character-
istics [22, 28, 46–53]. For example, data collected by a set
of vehicle sensors can be processed by certain recognition
methods to recognize a series of driving maneuvers, and the
parameters of these driving maneuvers could be extracted
and used to classify driver characteristics or evaluate driver’s
abilities [47]. Figure 1 gives the structure of neural net pat-
tern recognition for classifying driving behavior during car-
following condition. Closing-in is referred to the following
vehicle close to the leading vehicle, and falling-behind is
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classifer 

of driving 
behavior

Closing-in rapidly

Closing-in
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Rangerate
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Figure 1: Model by MacAdam et al., adopted from [48].
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Figure 2: Overall framework of the IVDR system, adopted from
[50].

referred to the leading vehicle away from the following
vehicle.

Somemonitoring and analysis systems are also developed
and available to research driving behaviors and finally driver
behavior characteristics are obtained. Tomer Toledo develops
the in-vehicle data recorder (IVDR) system [49, 50] to
monitor and analyze driving behaviors, as shown in Figure 2.
It can be seen from the figure that this system can identify
various maneuvers that occur in the measurements, and the
results can be used to evaluate risk indices that show the safety
on the overall trip and to classify the drivers’ characteristics.
Some other relevant reviews can be found in [51, 52].

3. Key Technologies for Identification of
Driver Behavior Characteristics

According to previous studies, identification of the driver
behavior characteristics is modeled based on certain pattern
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recognition methods by use of simulation or field test data.
Therefore, the selection of pattern recognition methods,
experimental design, and data acquisition are of great impor-
tance to build identification models of the driver behavior
characteristics. In general, the driver behavior characteristics
need to be classified before identified.

3.1. Classification of Driver Behavior Characteristics. Fuzzy
control theory and K-means algorithm are generally used to
cluster the feature parameters that reflect the driver behavior
characteristics, in order to achieve classification of the driver
behavior characteristics. To reach a feasible classification of
the driver behavior characteristics, it is necessary to take
the following aspects into consideration [33]. First, it is
essential to select feasible metrics which can describe the
driver characteristics. It should be noted that the metrics that
represent the driver characteristics are chosen on purpose
so that they can be expressed by use of the defined and
measurable parameters. Second, the classification results are
directly affected by the clusteringmethod selected. For exam-
ple, being a kind of learning method without surveillance,
the K-means clustering algorithm has rapid convergence
speed and concise structure; however, measurement errors
and uncertainties are ignored. Third, the sample size of
the parameters affects the clustering results. In general, an
increase in the amount of data (or number of drivers) would
improve the accuracy of the classification.

Lu et al. propose that the driving behaviors can be
divided into four categories with respect to the handling
limit conditions (conditions beyond the limits of tire adhe-
sion): cautious, average, expert, and reckless [12]. A cautious
driver is interpreted as someone who usually drives without
frequent aggressive maneuvers, for example, rapid steering,
high speed, and quickly stepping on the pedal. An average
driver features driving a car with a higher level of handling
risk factor (HRF, the parameter that evaluates how a driving
condition is close to the handling limit) than a cautious
driver does. An expert driver is defined as who can control
the vehicle under a rather high level of HRF for a long
duration and will not have the vehicle exceed the handling
limit. A driver is considered as reckless if he/she behaves
careless and unpredictable during his/her driving tour. Since
these driving behaviors cannot be well defined, fuzzy control
method is used to identify the four categories of drivers
above, as shown in Figure 3. Besides, the author also uses
zero-speed-gap velocity Vzsg for steady-state car-following to
classify driving behaviors into three types—normal, cautious,
and aggressive [23]. Similarly, the drivers are characterized by
use of response time and the damping ratio for transient car-
following, which is treated as a 2nd order system.

Raz et al. present a system for analyzing and evaluating
the performance and attitude of a motor vehicle driver [47].
In this work, factor 𝑔, on the interval [0, 1], represents the
weights of available maneuvers (safely executed maneuver
and dangerously executed maneuver), and the combination
of the two maneuvers is compared against current maneuver
to find the closest value of 𝑔 for reproducing the original
maneuver, as shown in Figure 4. Thus, 𝑔 represents the
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Figure 3: Membership functions characterizing the four driver
categories based on the handling risk factor, adopted from [12].
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Figure 4: A conceptual block diagram of an arrangement for
assessing driver attitude, adopted from [47].

driver’s attitude for the current maneuver, and fuzzy logic
method combined with statistical method is used to classify
the driving maneuvers, in terms of the value of 𝑔. In [54, 55],
a consolidated fuzzy clustering algorithm is developed and
implemented to classify different car-following conditions
including stable following, acceleration, approaching, brak-
ing, and opening using the pretreated data.

A common disadvantage of fuzzy-algorithm-based is that
the thresholds are solely defined by the a priori knowledge
of modelers, possibly with bias. A consolidated method,
which can calibrate some psychological thresholds based
on properties in real data, has not been developed ever
[56]. One possible approach to solving the above-mentioned
problem is to use supervised classification methods [57], for
example, Bayesian classification, but it requires detailed a
priori knowledge (e.g., probability distributions of certain
variables) in different maneuvers.
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Figure 5: The structure of driver classifier based on Back Propagation neural network (BPNN), adopted from [35].

K-means clustering algorithm, also known as ISODATA
(Iterative Self-Organizing Data Analysis Techniques Algo-
rithm) [58], is a widely used unsupervised clustering algo-
rithm, which can classify multidimensional data into differ-
ent groups on the basis of certain dissimilarity measures.
Wang et al. use the efficient K-means clustering algorithm
to classify the determinants of longitudinal driving behavior,
which is acquired from 11 systems and control-related param-
eters, with the indicated opposite extreme values: aggressive
versus prudent, unstable versus stable, risk prone versus
risk infrequent, nonskillful versus skillful [33]. Specifically,
according to the data sequence with car-following condition,
the time to collision (TTC) data of the driver releasing the
accelerator pedal and starting braking are extracted and
utilized to classify drivers into three categories by clustering
analysis method, namely, cautious, normal and aggressive
[34].

Besides, driver classifier is designed by Zhang based on
neural network [35]. In this work, the author presents that
driver behavior inputs are obtained through the human-
machine interface, and the system automatically classifies the
driver to achieve self-learning and the parameters automati-
cally match for driver’s abnormal behavior characteristic, as
shown in Figure 5. In addition, Quintero et al. propose the
driving behaviors classifier based on the existing intelligent
driving diagnosis system, classifying drivers into two types,
aggressive and moderate [8]. Furthermore, Ishibashi et al.
develop “Driving Style Questionnaire” (DSQ) to characterize
drivers [59].

3.2. Methods of Building Identification Models of Driver
Behavior Characteristics. Identification of driver behavior
characteristics is a pattern recognition process. Since driver
behavior characteristics differ in different road surfaces,
driving maneuvers, driver profiles, and vehicle dynamics
[60], some requirements to the selected modeling methods
are necessary: (1) offer a robust processing, that is, with the
abilities to detect, approximate, and classify, and with a high
reject ratio for the noise and (2) work based on learned
cases. The existing attempts to model the driver behavior
characteristics are dominated by models that are inspired
by neural network (NN) [8, 36, 45, 61–64], Hidden Markov
Model (HMM) [17, 24, 25, 38–41, 65–67], fuzzy control theory

[12, 18, 23, 68, 69], Gaussian Mixture Model (GMM) [28–
32, 70], and othermodels [17, 21, 71–74]. In the following para-
graphs, the work exemplified will be reviewed in some detail.

3.2.1. Neural Network (NN) Model. The motivation of using
an NN approach to behavior identification stems from the
desire to conduct efficient searches of various types of driving
behaviors located within relatively large amounts of stored
time history data. The precision of feature parameters is
crucial to the accuracy of NN. If feature parameters of
different types are similar or overlapped, the model may
not be capable of obtaining demanded accuracy. The pattern
recognition ability of certain NN architectures is well known
and lends itself well to this type of task [8, 36, 45, 61–64].

Through implementing and testing two artificial neural
network (ANN) topologies: Back Propagation (BP) and
Learning Vector Quantization (LVQ) [8], Quintero et al.
take advantage of BP to build driver identification model.
Besides, the author finds that topology of feed-forward neural
network (FFNN) algorithms trained with BP is expert in
designing intelligent diagnostic systems and is able to offer
a strong learning ability, even with considerably less training
samples [63]. The cerebellar model articulation controller
(CMAC), developed by Albus, is one of NN architecture and
has the advantages of fast learning and a high convergence
rate [64]. Thus Wahab et al. propose the use of CMAC to
model each driver’s behaviors [45].

3.2.2. Hidden Markov Model (HMM). HMM is fundamen-
tally a statistical model. Since the construction of such a
model involves assuming a Markov process, it has the ability
to determine the hidden states from the observable states of
certain systems [75]. An HMM is capable of capturing the
dynamicmovement of a time series (series arrayed in chrono-
logical order), and the states of HMM can be hierarchically
organized to describe both short-term and long-term driving
behaviors. For example, in the case of driving a vehicle,
the long-term driving behaviors represent driving intentions
(e.g., accelerating/turning/following/changing lane), while
the short-term driving behaviors represent driver’s operation
behaviors, for example, hitting the steering wheel and press-
ing the gas pedal [24].
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Table 1: Rules for driving behavior characterization.

If gap time
is

If accelerator
pedal rate STD

is

If brake
pedal rate STD

is

Then driver
index is

Low Low Low
Less

aggressive

High Low Low Cautious

Low High Low Aggressive

Low Low High Aggressive

Low High High Aggressive

High High High
Less

aggressive

High Low High Cautious

High High Low Less
aggressive

Takano et al. propose a hierarchical model with one
HMM characterizing the short-term driving behaviors in the
lower layer, and the other HMM characterizing the long-
term driving behaviors which are represented in the HMM
space [25]. This structure makes the vehicles intelligent by
storing the knowledge of driving behaviors as the symbols
of driving intention through observing the driving behavior
given by expert drivers. Baum-Welch algorithm (a maximum
likelihood estimation method) which trains parameters of
HMMs is applied to optimize threeHMMs—driving straight,
normal steering, and emergency steering [38, 39]. In addition,
the model [40] based on the combination of HMM and NN
model is presented, which can achieve the driving intention
recognition and the driving behavior prediction. In [67],
driver behaviors are modeled by using HMM in two alterna-
tive ways. Using the measured data of driving behaviors, an
HMMconsisting of three recognition categories—emergency
lane change (LCE), ordinary lane change (LCN), and lane
keeping (LKN)—is developed [17].

3.2.3. Fuzzy Control Theory. For the pattern recognition
systems whose parameters’ range is difficult to determine
but can be divided according to the a priori knowledge or
commonsense, fuzzy control theory is available to model it.

Lu et al. [12] use fuzzy subsets to category drivers by
introducing the HRF (see Figure 3). First degree of member-
ship is calculated to each of the four categories (i.e., cautious,
average, expert, and reckless) for each event of a specific
driver; then a probabilistic method is used to calculate the
possibilities that are generated by multiple events and to
aggregate the overall possibilities in order to characterize the
driver.

Lu also proposes a driver-in-the-loop system (see
Figure 6) and uses three methods to characterize driver’s
driving behaviors or control structure in real time. Table 1
illustrates fuzzy rules of a Takagi-Sugeno model to realize
semistructured driving behavior characterization. In addi-
tion, an evolving Takagi-Sugeno fuzzy model is presented for

capturing the evolving characteristics of driving behaviors
[23].

3.2.4. Gaussian Mixture Model (GMM). GMM is a paramet-
ric approach to density estimation [76]. GMM is known for
its ability to generate arbitrarily shaped densities, and it has
experienced extensive use in pattern recognition, such as
speech recognition and speaker recognition. Miyajima et al.
has been working on modeling driving behavior based on
GMM and written several related papers [27–32].

In [29], GMM is applied to identify drivers in the case of
car-following condition, with the accuracy of 76.8% by field
test data. In [30], driving patterns of each driver are modeled
based on GMM. In this work, the GMM is trained as a joint
probability distribution of following distance, velocity, pedal
position signals, and their dynamics. Experiments conducted
using a driving simulator show that car-following conditions
reproduced by the GMMs for three different driversmaintain
these drivers’ individual driving styles.

In addition, by comparing the performance of present
driver-behavior models for car-following condition based on
GMM and based on piecewise auto regressive exogenous
(PWARX) algorithms, Miyajima et al. find that the PWARX-
based model takes slightly advantage over the GMM-based
model for all cases [29]. Furthermore, the literature [31]
certifies that the GMM-based model performs better when
the measured parameters of diving behaviors are used, but
under such circumstance the model becomes more sensitive
to the approximation errors of the input parameters as in
the recursive prediction. The literature also confirms that
the PWARX-based model performs better than the GMM-
based model at the long-term prediction but not at the
short-term prediction. This is because of the feature of the
PWARX; namely, it captures the relationship among the
driving behaviors at long-time duration, finally makes the
PWARX-based model more generalized, and sets abound to
the prediction errors.

3.2.5. Other Models. Apart from the aforementioned meth-
ods, there are other ways to represent a driver’s behavior.
Bifulco et al. analyze and compare the performance of linear,
polynomial, and FFNN approach tomodel driving behaviors,
proposes that a linearmodel is not actually overperformed by
more complicated approaches and that it is worth adopting
in light of its great simplicity [72, 73]. Adaptive Network
based Fuzzy Inference System (ANFIS) [74] draws the pre-
dominance of NN and fuzzy control efficiently and has high
learning efficiency, high training efficiency, and goodnetwork
generalization capability. The hybrid driver model [71] is
able to reproduce the driving behaviors of different driver
characteristics, so it can adapt to various types of drivers (e.g.,
good, novice, and fast).

3.2.6. Summary. It is increasingly recognized that intelligent
and personalized vehicle systems are developed based on
certain intelligent algorithms to which have a knowledge
base. Such systems could process the received sensory data
not only quantitatively but also qualitatively, for example,
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Figure 6: Cognitive (solid line) and subjective (broken line) flow of information in a driver-vehicle system, adopted from [18].

interpret the driving behavior data, then compare it with
the stored data in the behavior base, in some case add this
new driving behavior data to the behavior base, and finally
identify the driver behavior characteristics. Several methods
of building identification models of the driver behavior
characteristics have been introduced above. Eachmethod has
its own pros and cons, as shown in Table 2.

3.3. Experimental Design and Data Acquisition. In general,
during the design of experiment, it is necessary to con-
sider experimental participants, experimental vehicles, test
maneuvers, and data acquisition. In particular, for building
identification models of the driver behavior characteristics,
the above aspects should be carefully determined.

3.3.1. Experimental Participants. First, experimental partic-
ipants must have their own driving licenses. In addition,
the number of the selected drivers should be large enough
to cover all possible drivers’ characteristics researched.
For example, four driver characteristics—cautious, average,
expert, and reckless—are described in [12], so the drivers
with these driving styles should be chosen as experimental
participants. It should be noted that even for the same driver,
driver characteristic may alter from situation to situation, for
example, fatigue, drunk, and drowsy. Therefore, experiment
participants should participate in experiments under not
overly tension and fatigue status.

3.3.2. Experimental Test. In order to obtain a diverse range
of driver characteristics, a large number of experiments
on vehicles with different dynamics and on different roads
should be conducted.This is believed to be one of the reasons
that the driving simulator experiment is used instead of field
test. In [8], the Racer Simulator (created by Ruud van Gaal)
is used to conduct experiments in Figure 7. Other relevant
reviews include [79, 80].

In addition to the driving simulator, the instrumented
vehicles have been developed to conduct experiments [67,
70, 81]. The UTDrive Vehicle converted from a Toyota
RAV4 (see Figure 8) is used to collect data from real-road
experiments. Additionally, a data collection vehicle, which is
called TOYOTA REGIUS [81], has been specially designed

Figure 7: Driving platform for simulated experiments, adopted
from [8].

for data collection in the Center for Integrated Acoustic
Information Research (CIAIR) project.

3.3.3. Test Maneuvers. Driver behavior characteristics can
be subdivided into steering characteristic, acceleration char-
acteristic, and braking characteristic. In order to have full
access to the driver behavior characteristics, it is necessary
to design experiments with all test maneuvers in connection
with certain characteristic. For the steering characteristic,
the test track should be designed to one with a variety of
bend radiuses, as shown in Figure 9. For the acceleration
characteristic and the braking characteristic, most existing
references [18, 29, 30, 82, 83] are available with optional car-
following maneuvers.

Especially, when conducting driving simulator exper-
iments, using computer-generated time history curve of
certain variables about testmaneuvers to design experiments,
is easier to achieve all test maneuvers. Figure 10 gives two
velocity patterns of the lead vehicle which are used. The
upper velocity pattern is recorded in an express way driving
scenario in the driving simulator, and the lower pattern is
an artificial velocity pattern by use of software aimed at
obtaining all velocity ranges. Obviously, the test maneuver
generated by computer is more comprehensive than that by
driving simulator.

3.3.4. Data Acquisition

(1) Feature Parameters Chosen. Since identification of driver
behavior characteristics is a pattern recognition process, it
can be modeled based on pattern recognition methods by
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Table 2: Features of the four methods of building identification models.

Identification
methods NN HMM Fuzzy control theory GMM

Algorithm features

To identify various types of
driving behaviors located
within relatively large
amounts of stored time
history data. The quality of
feature parameters is
crucial to the accuracy of
NN.

To describe the statistical
properties of stochastic
processes and to identify
inherent invisible states
through external
observation sequence.

To formulate fuzzy rules
based on previous
experience and then design
model performance in
accordance with the
expectations of the
designer.

A parametric approach to
density estimation is able to
generate arbitrarily shaped
densities.

Model accuracy Very high Very high High High

Real-time
performance Fair [37] Very good [37] Fair [77]

The traditional GMM is
poor, and the advanced
GMM is good [78].

Model adaptive — — —

Using the maximum a
posteriori (MAP) or
Bayesian adaptive
algorithm to adjust
parameters of GMM,
personalized driver
behavior model will be
obtained.

Disadvantages

There is not a unified
feasible method to adjust
parameters (e.g., the
number of NN layers) but
generally subjective
adjustments based on the
simulation results of the
models; training time is
long.

HMM is not suitable for
long-term forecasting
system and requires
artificial hypothesis for the
sequence distribution of the
current states.

Since its fuzzy rules are
formulated based on a
priori knowledge, the
simulation results may
deviate from the actual
values.

GMM cannot obtain more
efficient modeling of the
time series of feature
vectors than other methods
do.

Applications

NN is suitable for pattern
recognition that is easy to
access to acquire the feature
parameters, such as music
recognition and speech
recognition.

HMM is suitable for
pattern recognition with
strong time series data,
such as driver’s intention
recognition and speech
recognition.

Fuzzy control theory is
suitable for pattern
recognition whose
parameter range is difficult
to determine.

GMM is expert in
identifying short-term
driving behaviors but not in
long-term driving
behaviors. If combined
with PWARX, the model
can have a good
performance both in the
short- and long-term
driving behaviors.

using feature parameters of the drivers’ driving behaviors.
Therefore, the parameters must be selected in a way that
it is relevant to a human driver’s characteristics, and the
number of feature parameters is crucial to the accuracy of the
identification models of the driver behavior characteristics.
Particularly in practice when the amount of individual
driving data used to establish the identification models is
relatively smaller than that of the development data, the
models obtained from such sparse data may not be able
to represent the driver behavior characteristics in a typical
manner [27]. In general, the data includes driver’s maneuvers
and vehicle states information, such as vehicle speed, yaw
rate, lateral and longitudinal accelerations, steering angle,
steering angle velocity, brake pedal position and its derivative,
acceleration pedal position and its derivative, and others
relative to a certain test maneuver.

Through a large number of tests and analysis, the rules
selecting feature parameters are summarized. Wakita et al.
[84] find that the nonparametric models take advantage
over the parametric models and explains that the driver’s
operation behaviors are better than both adhesion conditions
and vehicle states information. According to previous work
[85], the gas and brake pedal signals chosen as the modeling
data are adopted to build identification model, with best
computational efficiency and high identification accuracy.
However, the experimental results also show higher accuracy
of driver identification when the modeling data is combined
with the derivative of the gas and brake pedal signals (e.g., rate
of the gas pedal), instead of the original gas and brake pedal
signals collected [45]. Compared with raw driving signals,
frequency responses calculated by spectral analysis of driving
behaviors could better capture the individualities in driving
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Figure 8: UTDrive data collection vehicle, adopted from [67].
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Figure 9:The test track for the steering characteristic, derived from
the test maneuvers of CarSim.

behaviors and could receive better performance in identifying
the drivers [81].

(2) Data Processing. Data would generally be filtered, con-
verted, grouped, and so forth. In addition, different pattern
recognition methods have different requirements to data.
With regard to NN, in order to build the intelligent driver
behaviormodels and to learn different drivers’ characteristics,
input data to NN should be representative parameters of
driver behaviors under different maneuvers. The following
statistical measures of central tendency may be used: range,
media, standard deviation, variance, and mean absolute
deviation [8].While for PWARXmodel, the input and output
parameters are first clustered and categorized into different
driving modes [31].

3.4. Model Adaptation. The identification models of driver
behavior characteristics mentioned above are static mod-
els. Overall, the prediction performance of these models
decreases as the driving maneuvers change from the simula-
tion scenarios with controlled environment to the real-world
driving environments under diverse uncontrolled factors
[27]. In the real-world driving environments, the profiles and
driving intentions are unknown; the driver may not behave
exactly as the identification models represent, which results
in bias of the models. In addition, the inaccuracy of signals
collected from the sensory systems should be taken into
account. Therefore, to solve these problems and to develop
a more reliable model, model adaptation has been presented
and regarded as one of the foremost solutions.

In general, the main objectives of model adaptation are
to cope with (1) relatively small amount of observed driving
data of individual driver, (2) individual driving style or
characteristic that differs from the designed average style, and
(3) mismatch of driving maneuvers between development
and usage stages.

Angkititrakul et al. propose a method to execute driver-
model adaptation [31]. The universal driver-behavior models
are first built by use of driving data of several drivers based
on certain identification method (e.g., HMM). The universal
driver-behavior models represent average/common driver
characteristics shared by these drivers. The author takes
further measures to adjust the parameters of the universal
driver-behavior models in the following two scenarios: (1)
driver adaptation: the driving data of each driver are used
to adjust the universal driver-behavior model to build the
adapted driver models, namely, driver-dependent or person-
alized driver models. (2) On-line adaptation: the driving data
at the beginning of each driving event (e.g., car-following
condition) are used to adjust the universal driver-behavior
model and subsequently the on-line adapted driver model
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Figure 10: Velocity patterns of lead vehicle, adopted from [30].

is utilized to represent driving behaviors for the rest of that
driving event.

4. Applications in Identification
of Driver Behavior Characteristics
for Automotive Control

4.1. Intelligent Driver Advisory System. The main objective
of the state-of-the-art vehicle electronic control systems is
to improve vehicle performance by identifying driver inten-
tions/characteristics and controlling the vehicle to realize
the driving intentions safely, robustly, and smoothly. The
performance of electronic control systems can be significantly
improved when the driver and the electronic control systems
could cooperate with each other to pursue the same hazard
avoidance goal and to maximize the accident avoidance
capability of the driver-in-the-loop vehicle as a system.

Lu develops a driver advisory system based on the driver
characteristics that can warn the drivers of driving conditions
when the vehicle approaches to its limit, which is a part of a
cluster of warning functions defined as an Intelligent Personal
Minder (IPM) system. Figure 11 depicts the interaction of the
IPM system with the other subsystems and functions. The
electronic control system follows the driver intentions and
the driver responds to the advisory information from the
electronic control system to modify his/her operation inputs
(e.g., rising braking pedal, increasing steering wheel angle,
etc.). In this way a seamless coordination between the driver
and the electronic control system could be realized and it is
likely to minimize the effect of the potential safety hazards
resulted from driver’s operation errors.

4.2. Driver Safety Warning System. Introducing the driver
behavior characteristics to design the driver safety warning
system, the redundancy alarm rate can be reduced and the
negative interference on the driver will be improved. Wang
et al. present vehicle collision warning/avoidance algorithms
based on the driver behavior characteristics [34, 86]. By
changing parameters, the algorithms can better adapt to the
behavior of different drivers. Take the longitudinal driving
maneuver for example, the different level safe thresholds,
warning rules, and warning logic are determined using time
headway (THW) and time to collision (TTC).

Kentaro Ogchi et al. invent a system for predicting driver
behavior and generating control and/or warning signals. As
shown in Figure 12, the driver predictor is comprised of

an initialization module, an updating module, a transfer
module, a hierarchical temporal memory (HTM), and a pre-
diction retrieval module.The initialization module processes
the data from the database and uses it to create initial states
or definitions for different driver behaviors in the HTM.
After the updating module identifies the driver, the HTM
is adjusted to match the driver of the vehicle. The transfer
module standardizes the format of real-time data and inputs
it to the HTM. In accordance with the information of the
initialization module, the updating module and the transfer
module, the HTM uses a hierarchical temporal memory
construct to predict vehicle states. Then the prediction
retrieval module queries the HTM to generate warning
control signals to alert the driver of potentially dangerous
conditions, to generate collision control signals to prevent or
avoid collisions, and to generate acceleration control signals
for the adaptive cruise control.

The functional view of the HTM is shown in Figure 13.
The HTM consists of long-term storage, intermediate-term
storage, short-term storage, an intermediate-to-long-term
(ILT) converter and a short-to-intermediate-term (SIT) con-
verter. The HTM has a memory mechanism with a hierar-
chical structure of temporal memory based on the memory
mechanism of the human brain. The information stored in
the three storages of the HTM, respectively, represents a
current state of the vehicle and other vehicles surrounding
it, that is, the short-term storage stores short paths of vehicle
action, the intermediate-term storage stores trajectory types,
and the long-term storage stores behavior types.

The prediction retrieval module is made up of a storage
for driver preferences, a training module, a warning control
module, a collision control module, and acceleration control
module, as shown in Figure 14. Each of these modules
accesses and retrieves data from the HTM. The storage
for driver preferences contains sample sets of preferences
for different kinds of drivers. Typical preferences stored in
the storage for driver preferences include the types and
levels of settings for warning control, collision control, and
acceleration control. The training module is used to train the
warning control module, the collision control module, and
the acceleration control module.

4.3. Vehicle Dynamics Control System. X-by-wire control
technology comprises steer-by-wire, brake-by-wire, drive-
by-wire, and suspension-by-wire (active suspensions) sub-
systems and has higher accurate and more complex control
algorithms than traditional automotive control systems do.
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Introducing the intelligent control algorithm to identify
driver’s intention and driver characteristics, the perfor-
mance of the driver-vehicle-road closed-loop system will be
enhanced, and finally different driving characteristics and
personalized ideal vehicle dynamics characteristics will be
realized, that is, converting from “driver adapts to car” to “car
adapts to driver” [19, 20].

The x-by-wire vehicle’s controller controls the actuators
according to the driver’s operation signals, and the vehicle

reference models in the controller provide control objectives
for the x-by-wire vehicle according to the driver operation
signals and vehicle states information. The vehicle reference
models play a very important role for controlling the x-by-
wire vehicle. In order to realize different driving characteris-
tics of the x-by-wire vehicle, we present the control principle
of “car adapts to driver” x-by-wire vehicle’s ideal dynamics
characteristics (see Figure 15).Thedotted area is an integrated
controller of the x-by-wire vehicle, which exports steering
angles, driving, and braking torques of four wheels. The dash
dot area shows the identification system of driver (behavior)
characteristics. Initially the vehicle uses the original vehicle
reference model before the identification system of driver
characteristics identifies the driver’s characteristics based on
the driver’s operation signals and vehicle states; thereafter the
vehicle reference model is switched to matching characteris-
tic of the ideal reference models, which can control actuators
of the x-by-wire vehicle through the integrated controller and
the optimal distribution of tire forces, and finally realizes
the personalized ideal dynamics outputs for the x-by-wire
vehicle.

The identification system of driver characteristics
includes the driver characteristics identification models and
the ideal reference models. According to driver’s operation
behaviors, the driver characteristics can be decomposed
into steering characteristic, acceleration characteristic, and
braking characteristic; correspondingly the identification
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system is divided into three subsystems, which are the
steering module, the acceleration module, and the braking
module, as shown in Figure 16. Each module, respectively,
identifies the driver’s each characteristic; for example,
steering characteristic is cautious, acceleration characteristic
is average, and braking characteristic is reckless; then
the corresponding ideal dynamics reference models—
cautious steering, average acceleration, and reckless braking
reference model—are automatically matched. Driver’s final
ideal dynamics reference models consist of the steering,
acceleration, and braking models matched and, respectively,
provide reference outputs (e.g., yaw rate, sideslip angle,
acceleration, and deceleration) to integrated controller for
the x-by-wire vehicle. The identification models are built
based on NN or HMM considering these two intelligent
algorithms’ advantages mentioned above.

5. Conclusion

Identification and applications of the driver characteristics
for automotive control are widely ranging and informative.
In the present work, the fundamental of driver behavior
characteristics is introduced; the intrinsic link among the
driving behavior, the driving intention, and the driver behav-
ior characteristics is explained; the whole process during
establishing the identification models of the driver behav-
ior characteristics is summarized and analyzed in detail,
including driver characteristics classification, identification
methods, experimental design and data acquisition, and
model adaptation. On this basis, applications of the driver
characteristics for automotive control have been introduced
on three aspects, namely, the intelligent driver advisory
system, the driver safety warning system, and the vehicle
dynamics control system.
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The driver is a complex and uncertain individual, which
might exhibit different driving characteristics in different
driving situations (fatigue/drunk/drowsy/distracted driving).
In addition, different road adhesion, traffic conditions, and
weather conditions will also impact driver characteristics.
Therefore, extensive experiments are required to be con-
ducted on potential user groups (the groups with the driver
characteristics being studied) for the purpose of establishing
a comprehensive human driving behavior library for greater
precision and wider applications. It will be necessary to
ensure robustness of the models in actual driving situations,
in addition to improving recognition performance by resolv-
ing the aforementioned issues. On-line adaptation of the
driver behavior characteristics is considered as one of the
foremost solutions. In fact the driver behavior characteristics
can be influenced and reaccustomed through learning, so
it is of great importance to build online adaptive models
of the driver behavior characteristics by using online field
test data to revise the parameters of the established models,
instead of the static models. In addition, there may exist
some cross correlations among the classifications of driver
behavior characteristics, which is a topic that deserves further
study. Since the existing classifications are very rough, the
classification should be further refined, and the ultimate goal
is to acquire the driver’s personal preference feature.

Driver characteristics have been used to identify driver, to
detect driver’s abnormal behaviors, to design driver assistance
systemswhich adapt to individual driver, to establish different
types of driver models to intelligently assist individual driver,
and so forth. Designing ideal dynamics reference models
adaptation to driver characteristics for the x-by-wire vehicles,
then making it realize that “driver adapts to car” changes

to “car adapts to driver”, and finally achieving personalized
driving are a very interesting and promising application of
the driver characteristics for automotive control.With further
research, applications of the driver characteristics will be
broadened in the future.
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This paper presented an inverse optimal neural controller with speed gradient (SG) for discrete-time unknown nonlinear systems
in the presence of external disturbances and parameter uncertainties, for a power electric systemwith different types of faults in the
transmission lines including load variations. It is based on a discrete-time recurrent high order neural network (RHONN) trained
with an extended Kalman filter (EKF) based algorithm. It is well known that electric power grids are considered as complex systems
due to their interconections and number of state variables; then, in this paper, a reduced neural model for synchronous machine is
proposed for the stabilization of nine bus system in the presence of a fault in three different cases in the lines of transmission.

1. Introduction

Many physical systems, such as electric power grids, com-
puter and communication networks, networked dynamical
systems, transportation systems, and many others, are com-
plex large-scale interconnected systems [1]. To control such
large scale systems, centralized control schemes are proposed
in the literature assuming available global information for
the overall system. Another problem in complex large-scale
interconnected systems is the effect of delays that typically
are unknown and time-variable [2, 3]. While using control
centralization has theoretical advantages, it is very diffi-
cult for a complex large-scale system with interconnections
due to technical and economic reasons [4]. Furthermore,
centralized control designs are dependent upon the system
structure and cannot handle structural changes. If subsystems
are added or removed, the controller for the overall system
should be redesigned. Therefore decentralized control for
interconnected power systems has also attracted considerable
attention of researchers in the field of complex and large-
scale systems like multiarea interconnected power systems.
Besides, due to physical configuration and high dimen-
sionality of interconnected systems, centralized control is
neither economically feasible nor even necessary. These facts

motivate the design of decentralized controllers, using only
local information while guaranteeing stability for the whole
system [1].

The main issue in this paper is the analysis of a fault in
the electric power system in different lines of transmission,
the recurrent high order neural networks (RHONN) allow
the identification of nonlinear systems, and then the RHONN
model can be used for the controller design. Recently, some
works have been published about synchronous generators
in which reduced models have been proposed, such models
are able to reproduce full order dynamics for synchronous
generators [1, 5]. The system under study consists of three
synchronous generators interconnected (nine bus system)
and there are cases of study of power electric system, where
a three-phase fault is introduced at the end of the line 7 [6];
in this paper, the analysis for the system is focused in other
lines, at the end of buses 8 and 9, the fault is proposed and
tested via simulation and the purpose is the production and
distribution of a reliable and robust electric energy.

On the other hand, a model in discrete time has been
proposed [7], in which a recurrent high order neural network
has been incorporated to implement a control law as this
reduced model allows the stabilization through the inverse
optimal control law SG. In this work, a neural model of
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the multimachine system is proposed, which results useful,
because it is focused in the variable states that are more rel-
evant for this paper: position, velocity, and voltage rotor [7];
further, the control law is implemented for the power electric
system that consists of three interconnected synchronous
generators. A solution is proposed for the destabilization
problem of multimachine power electric system in the pres-
ence of a fault in one of its lines of transmission that occurs
at 10 seconds of simulation. A system identification of the
complete multimachine power electric system model (nine
bus system) is presented through a neural reducedmodel and
this allows the design of a neural inverse optimal SG control
law. Finally the results obtained are shown, in which it can be
seen that the control law stabilizes the system in presence of
the fault in the three cases of fault that are presented.

In literature, there are works that report the parameter
identification for synchronousmachines for full ordermodels
[5] as well as for reduced order ones [8]; however, these
models are for nominal condition; that is, they do not
consider fault scenarios; in [1], a reduced order neural model
is considered; however, it is developed for continuous time;
nevertheless, the need to real-time implementations makes
necessary the use of digital models, besides, in [9], has
been developed a discrete-time neural controller, which is
proposed for a single machine system. Then, the paper main
contributions can be stated as follows: first a RHONN is
used to establish a discrete-time reduced order mathematical
model for amultimachine power electric systemmodel.Then
this neural model is used to synthesize an inverse optimal
SG control law to stabilize the system and, finally, three fault
scenarios are considered in order to illustrate the applicability
of the proposed scheme.

2. Mathematical Preliminaries

2.1. Discrete-Time High Order Neural Networks. The use
of multilayer neural networks is well known for pattern
recognition and for static systems modelling. The NN is
trained to learn an input-output map. Theoretical works
have proven that, even with just one hidden layer, a NN
can uniformly approximate any continuous function over a
compact domain, provided that the NN has a sufficient num-
ber of synaptic connections [10]. To implement the neural
network (NN) design, a RHONN is used [7] and this model
turns out to be very flexible because it allows incorporating
priory information to the model:

𝑥
𝑖
(𝑘 + 1) = 𝜔

𝑇

𝑖
𝑧
𝑖
(𝑥
𝑖
(𝑘) , 𝑢 (𝑘)) , 𝑖 = 1, . . . , 𝑛, (1)

where 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛) is the state of the 𝑖th neuron and

𝜔
𝑖
(𝑖 = 1, 2 . . . , 𝑛) is the respective online adapted weight

vector. Now we define the vector:

𝑧
𝑖
(𝑥
𝑖
(𝑘) , 𝑢 (𝑘)) =

[
[
[
[

[

𝑧
𝑖1

𝑧
𝑖2

...
𝑧
𝑖𝐿𝑖

]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[

[

∏

𝑗∈𝐼1

𝜉
𝑑𝑖𝑗(1)

𝑖𝑗

∏

𝑗∈𝐼2

𝜉
𝑑𝑖𝑗(2)

𝑖𝑗

...
∏

𝑗∈𝐼𝐿𝑖

𝜉
𝑑𝑖𝑗(𝐿 𝑖)

𝑖𝑗

]
]
]
]
]
]
]
]
]
]
]

]

. (2)

𝐿
𝑖
is the respective number of high-order connections,

{𝐼
1
, 𝐼
2
, . . . , 𝐼

𝐿 𝑖
} is a collection of nonordered subsets of

{1, 2, . . . , 𝑛+𝑚}, 𝑛 is the state dimension, and 𝑚 is the number
of external inputs, with 𝑑

𝑖
(𝑘) being nonnegative integers and

𝜉
𝑖
defined as follows:

𝜉
𝑖
=

[
[
[
[
[
[
[
[
[

[

𝜉
𝑖1

...
𝜉
𝑖𝑛

𝜉
𝑖𝑛+1

...
𝜉
𝑖𝑛+𝑚

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

𝑆 (𝑥
1
)

...
𝑆 (𝑥
𝑛
)

𝑢
1

...
𝑆 (𝑢
𝑚
)

]
]
]
]
]
]
]
]
]

]

. (3)

𝑢 = [𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
]
𝑇 is the input vector to the neural network

and 𝑆(∙) is defined by

𝑆 (𝜍) =
1

1 + exp (−𝛽𝜍)
, 𝛽 > 0, (4)

where 𝜍 is any real value variable.

2.2.The EKF Training Algorithm. The best well-known train-
ing approach for recurrent neural networks (RNN) is the
backpropagation through time learning [11]. However, it is a
first order gradient descent method and hence its learning
speed could be very slow [12]. Recently, Extended Kalman
Filter (EKF) based algorithms have been introduced to train
neural networks [7, 9, 13, 14]. With the EKF based algorithm,
the learning convergence is improved [14]. The EKF training
of neural networks, both feedforward and recurrent ones,
has proven to be reliable and practical for many applications
over the past years [14]. It is known that Kalman filtering
(KF) estimates the state of a linear system with additive
state and output white noises [15, 16]. For KF-based neural
network training, the networkweights become the states to be
estimated. In this case, the error between the neural network
output and the measured plant output can be considered as
additive white noise. Due to the fact that the neural network
mapping is nonlinear, an EKF-type is required (see [17] and
references therein). The training goal is to find the optimal
weight values whichminimize the prediction error.The EKF-
based training algorithm is described by [15]:

𝐾
𝑖
(𝑘) = 𝜌

𝑖
(𝑘)𝐻
𝑖
(𝑘)𝑀

−1

𝑖
(𝑘)

𝜔
𝑖
(𝑘 + 1) = 𝜔

𝑖
(𝑘) + 𝜂

𝑖
𝐾
𝑖
(𝑘) 𝑒
𝑖
(𝑘)

𝜌
𝑖
(𝑘 + 1) = 𝜌

𝑖
(𝑘) − 𝐾

𝑖
(𝑘)𝐻
𝑇

𝑖
(𝑘) 𝜌
𝑖
(𝑘) + 𝜙

𝑖
(𝑘)

(5)

with

𝑀
𝑖
(𝑘) = [𝜏

𝑖
(𝑘) + 𝐻

𝑇

𝑖
(𝑘) 𝜌
𝑖
(𝑘)𝐻
𝑖
(𝑘)]
−1

𝑒
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

𝑖
(𝑘) ,

(6)

where 𝜌
𝑖
∈ R𝐿 𝑖×𝐿 𝑖 is the prediction error associated covari-

ance matrix, 𝜔
𝑖
∈ R𝐿 𝑖 is the weight (state) vector, 𝑥

𝑖
∈ R

is the 𝑖th plant state component, 𝑥
𝑖
∈ R is the 𝑖th neural
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state component, 𝜂
𝑖
is a design parameter, 𝐾

𝑖
∈ R𝐿 𝑖×𝑚 is the

Kalman gain matrix, 𝜙
𝑖
∈ R𝐿 𝑖×𝐿 𝑖 is the state noise associated

covariance matrix, 𝜏
𝑖
∈ R𝑚×𝑚 is the measurement noise

associated covariance matrix, and 𝐻
𝑖𝑗
∈ R𝐿 𝑖×𝑚 is a matrix,

forwhich each entry (𝐻
𝑖𝑗
) is the derivative of one of the neural

network output, (𝑥
𝑖𝑗
), with respect to one neural network

weight, (𝜔
𝑖𝑗
), as follows:

𝐻
𝑖𝑗
(𝑘) = [

𝜕𝑥
𝑖
(𝑘)

𝜕𝜔
𝑖𝑗
(𝑘)

]

𝜔𝑖(𝑘)=�̂�𝑖(𝑘+1)

𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐿
𝑖
.

(7)

Usually 𝜌
𝑖
, 𝜙
𝑖
, and 𝜏

𝑖
, are initialized as diagonal matrices, with

entries 𝜌
𝑖
(0), 𝜙
𝑖
(0), and 𝜏

𝑖
(0), respectively.

3. Controller Design

Optimal control is related to finding a control law for a given
system such that a performance criterion is minimized. This
criterion is usually formulated as a cost functional, which
is a function of the state and control variables. The optimal
control problem can be solved using Pontryagin’s maximum
principle (a necessary condition) [18] and the method of
dynamic programming developed by Bellman [19, 20], which
can lead to a nonlinear partial differential equation called
the Hamilton-Jacobi-Bellman (HJB) equation (a sufficient
condition); nevertheless, solving the HJB equation is not a
feasible task [21, 22].

3.1. Inverse Optimal Control via CLF. In this paper, the
inverse optimal control and its solution by proposing a
quadratic control Lyapunov function (CLF) are used [23]
and the CLF depends on a fixed parameter in order to
satisfy stability and optimality condition. A posteriori, the
speed gradient algorithm is established to compute this CLF
parameter and it is used to solve the inverse optimal control
problem. Motivated by the favorable stability margins of
optimal control systems, a stabilizing feedback control law is
proposed, which will be optimal with respect to a meaningful
cost functional. At the same time, it is desirable to avoid the
difficult task of solving the HJB partial differential equation.
In the inverse optimal control problem, a candidate CLF is
used to construct an optimal control law directly without
solving the associated HJB equation [24]. Inverse optimality
is selected, because it avoids solving the HJB partial differen-
tial equations and still allows obtaining Kalman-type stability
margins [21].

In contrast to the inverse optimal control via passivity
approach, in which a storage function is used as a candidate
CLF and the inverse optimal control law is selected as the
output feedback, for the inverse optimal control via CLF, the
control law is obtained as a result of solving the Bellman
equation.Then, a candidate CLF for the obtained control law
is proposed such that it stabilizes the system and a posteriori
a meaningful cost functional is minimized.

In this paper, a quadratic candidate CLF is used to syn-
thesize the inverse optimal control law. The following

assumptions and definitions allow the inverse optimal control
solution via the CLF approach.

The full state of system

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘)) + 𝑔 (𝑥 (𝑘)) 𝑢 (𝑘) (8)

is measurable.

Definition 1 (inverse optimal control law). Let us define the
control law [23]

𝑢 (𝑘) = −
1

2
𝑅
−1
(𝑥 (𝑘)) 𝑔

𝑇
(𝑥 (𝑘))

𝜕𝑉 (𝑥 (𝑘 + 1))

𝜕𝑥 (𝑘 + 1)
(9)

to be inverse optimal (globally) stabilizing if

(1) it achieves (global) asymptotic stability of 𝑥 = 0 for
system (8);

(2) 𝑉(𝑥(𝑘)) is (radially unbounded) positive definite
function such that inequality

𝑉 := 𝑉 (𝑥 (𝑘 + 1)) − 𝑉 (𝑥 (𝑘)) + 𝑢(𝑘)
𝑇
𝑅 (𝑥 (𝑘)) 𝑢 (𝑘) ≤ 0

(10)

is satisfied. When 𝑙(𝑥(𝑘) := 𝑉 ≥ 0, is selected; then
𝑉(𝑥(𝑘)) is a solution for the HJB equation

𝑙 (𝑥 (𝑘) + 𝑉 (𝑥 (𝑘 + 1)) − 𝑉 (𝑘))

+
1

4
𝑉
𝑇∗
𝑅
−1
(𝑥 (𝑘)) 𝑔

𝑇
(𝑥 (𝑘)) 𝑉

∗
= 0,

(11)

where

𝑉
𝑇∗

=
𝜕𝑉
𝑇
(𝑥 (𝑘 + 1))

𝜕𝑥 (𝑘 + 1)
, 𝑉

∗
=
𝜕𝑉 (𝑥 (𝑘 + 1))

𝜕𝑥 (𝑘 + 1)
. (12)

It is possible to establish the main conceptual differences
between optimal control and inverse optimal control as
follows.

(i) For optimal control, the meaningful cost indexes
𝑙(𝑥(𝑘)) ≥ 0 and 𝑅(𝑥(𝑘)) > 0 are given a priory;
then, they are used to calculate 𝑢(𝑥(𝑘)) and 𝑉(𝑥(𝑘))

by means of HJB equation solution.
(ii) For inverse optimal control, a candidate CLF𝑉(𝑥(𝑘))

and the meaningful cost index 𝑅(𝑥(𝑘)) are given a
priory, and then these functions are used to calculate
the inverse control law 𝑢(𝑘) and the meaningful cost
index (𝑥(𝑘)), defined as 𝑙(𝑥(𝑘)) := −𝑉(𝑥(𝑘)).

As established in Definition 1, the inverse optimal control
problem is based on the knowledge of 𝑉(𝑥(𝑘)). Thus, it
is proposed as a CLF 𝑉(𝑥(𝑘)), such that (1) and (2) are
guaranteed. That is, instead of solving (11) for 𝑉(𝑥(𝑘)), it is
proposed a control Lyapunov function 𝑉(𝑥(𝑘)) as

𝑉 (𝑥 (𝑘)) =
1

2
𝑥
𝑇
(𝑘) 𝑃𝑥 (𝑘) (13)

for control law (9), in order to ensure stability of the
equilibrium point 𝑥(𝑘) = 0 of system (8), which will be
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achieved by defining an appropriate matrix 𝑃. Moreover, it
will be established that control law (9) with (13), which is
referred to as the inverse optimal control law, optimizes a
meaningful cost functional of the form:

𝐽 (𝑥 (𝑘)) =

∞

∑

0

(𝑙 (𝑥 (𝑘)) + 𝑢
𝑇
(𝑘) 𝑅 (𝑥 (𝑘)) 𝑢 (𝑘)) . (14)

Consequently, by considering 𝑉(𝑥(𝑘)) as in (13), the
control law takes the following form:

𝛼 (𝑥 (𝑘)) := 𝑢 (𝑘) = −
1

2
(𝑅 (𝑥 (𝑘)) + 𝑃

2
(𝑥 (𝑘)))

−1

𝑃
1
(𝑥 (𝑘)) ,

(15)

where 𝑃
1
(𝑥(𝑘)) = 𝑔

𝑇
(𝑥(𝑘))𝑃𝑓(𝑥(𝑘)) and 𝑃

2
(𝑥(𝑘)) = (1/2)𝑔

𝑇

(𝑥(𝑘))𝑃𝑔(𝑥(𝑘)). It is worth pointing out that𝑃 and𝑅(𝑥(𝑘)) are
positive definite and symmetric matrices; thus, the existence
of the inverse in (15) is ensured.

3.2. Speed-Gradient SG Algorithm. Given that (15) 𝑃 is rede-
fined as 𝑃(𝑘) where 𝑃

1
(𝑥(𝑘)) = 𝑔

𝑇
(𝑥(𝑘))𝑃(𝑘)𝑓(𝑥(𝑘)) and

𝑃
2
(𝑥(𝑘)) = (1/2)𝑔

𝑇
(𝑥(𝑘))𝑃(𝑘)𝑔(𝑥(𝑘)), this will allow us to

compute a time variant value in time for 𝑃(𝑘), which ensures
stability to the system (8) by means of the algorithm SG.

In [25] a discrete-time application of the SG algorithm
is formulated to find a control law 𝑢(𝑘) which ensures the
control goal:

𝑄 (𝑥 (𝑘 + 1)) ≤ Δ, for 𝑘 ≥ 𝑘
∗
, (16)

where 𝑄 is a control goal function, a constant Δ > 0, and
𝑘
∗
∈ Z+ is the time at which the control goal is achieved. 𝑄

ensures stability if it is a positive definite function.
Based on the SG application proposed in [25], the control

law given by (15) is considered, with Δ in (16) a state depend-
ent function Δ(𝑥(𝑘)).

Consider the control law redefined for the speed gradient
algorithm which at every time depends on the matrix 𝑃(𝑘).
Let us define the matrix 𝑃(𝑘) at every time 𝑘 as

𝑃 (𝑘) = 𝑝 (𝑘) 𝑃

, (17)

where 𝑃 = 𝑃
𝑇

> 0 is a given constant matrix and 𝑝(𝑘) is
a scalar parameter to be adjusted by the SG algorithm. Then
the control law is transformed as follows:

𝑢 (𝑘) = −
𝑝 (𝑘)

2
(𝑅 (𝑥 (𝑘)) +

𝑝 (𝑘)

2
𝑃
∗

1
)

−1

𝑃
∗

2
, (18)

where

𝑃
∗

1
= 𝑔
𝑇
(𝑥 (𝑘)) 𝑃


𝑔 (𝑥 (𝑘)) , 𝑃

∗

2
=𝑔
𝑇
(𝑥 (𝑘)) 𝑃


𝑓 (𝑥 (𝑘)) .

(19)

The SG algorithm is now reformulated for the inverse optimal
control problem.

Definition 2 (SG goal function). Consider a time-varying
parameter 𝑝(𝑘) ∈ P ⊂ R+ with 𝑝(𝑘) > 0 for all 𝑘, and P

is the set of admissible values for 𝑝(𝑘) [23]. A nonnegative
function 𝑄 : R𝑛 ×R → R of the form

𝑄 (𝑥 (𝑘) , 𝑝 (𝑘)) = 𝑉SG (𝑥 (𝑘 + 1)) , (20)

where𝑉SG(𝑥(𝑘+1)) = −(1/2)𝑥
𝑇
(𝑘+1)𝑃


𝑥(𝑘+1)with 𝑥(𝑘+1)

as defined in (8), is referred to as SG goal function for system
(8), with 𝑄(𝑘(𝑝)) := 𝑄(𝑥(𝑘), 𝑝(𝑘)).

Definition 3 (SG control goal). Consider a constant 𝑝∗ ∈ P.
The SG control goal for system (8) with (18) is defined as
finding 𝑝(𝑘), so that the SG goal function 𝑄(𝑘(𝑝)) [23], as
in (20), fulfills

𝑄 (𝑘 (𝑝)) ≤ Δ (𝑥 (𝑘)) , for 𝑘 ≥ 𝑘
∗
, (21)

where

Δ (𝑥 (𝑘)) = 𝑉SG (𝑥 (𝑘)) −
1

𝑝 (𝑘)
𝑢
𝑇
(𝑘) 𝑅 (𝑥 (𝑘)) 𝑢 (𝑘) (22)

with 𝑉SG(𝑥(𝑘)) = −(1/2)𝑥
𝑇
(𝑘)𝑃

𝑥(𝑘) and 𝑢(𝑘) as defined in

(18); 𝑘∗ ∈ 𝑍
+ is the time at which the SG control goal is

achieved.

Solution 𝑝(𝑘) must guarantee that 𝑉SG(𝑥(𝑘)) >

(1/𝑝(𝑘))𝑢
𝑇
(𝑘)𝑅(𝑥(𝑘))𝑢(𝑘) in order to obtain a positive

definite function Δ(𝑥(𝑘)).
To conclude, the SG algorithm is used to calculate 𝑝(𝑘) in

order to achieve the SG control goal defined above.

Proposition 4. Consider a discrete-time nonlinear system of
the form (8)with (18) as input [23]. Let𝑄 be a SG goal function
as defined in (2) and denoted by 𝑄(𝑘(𝑝)). Let 𝑝, 𝑝∗ ∈ P be
positive constant values and let Δ(𝑥(𝑘)) be a positive definite
function withΔ(0) = 0 and let 𝜖∗ be a sufficiently small positive
constant. Assume the following.

(i) There exist 𝑝∗ and 𝜖∗ such that

𝑄 (𝑘 (𝑝
∗
)) ≤ 𝜖

∗
≪ Δ (𝑥 (𝑘)) ,

1 − 𝜖
∗

Δ (𝑥 (𝑘))
≈ 1.

(23)

(ii) For all 𝑝(𝑘) ∈ P,

(𝑝
∗
− 𝑃 (𝑘))

𝑇

∇ (𝑝)𝑄 (𝑘 (𝑝)) ≤ 𝜖
∗
− Δ (𝑥 (𝑘)) < 0, (24)

where ∇(𝑝)𝑄(𝑘(𝑝)) denotes the gradient of 𝑄(𝑘(𝑝)
with respect to 𝑝(𝑘). Then, for any initial condition
𝑝(0) > 0, there exists a 𝑘∗ ∈ R+ such that the SG con-
trol goal (16) is achieved by means of the following
dynamic variation of parameter 𝑝(𝑘):

𝑝 (𝑘 + 1) = 𝑝 (𝑘) − 𝛾
𝑑(𝑘)

∇ (𝑝)𝑄 (𝑘 (𝑝)) (25)

with

𝛾
𝑑(𝑘)

= 𝛾
𝑐
𝛿 (𝑘)

∇ (𝑝)𝑄 (𝑘 (𝑝))

−2

0 < 𝛾
𝑐
≤ 2Δ (𝑥 (𝑘)) ,

𝛿 (𝑘) = {
1 𝑓𝑜𝑟 𝑄 (𝑝 (𝑘)) > Δ (𝑥 (𝑘))

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(26)
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Finally, for 𝑘 ≥ 𝑘
∗, 𝑝(𝑘) becomes a constant value denoted by

𝑝 and the SG algorithm is completed.

With𝑄(𝑝(𝑘)) as defined in (20), the dynamic variation of
parameter 𝑝(𝑘) in (25) results in

𝑝 (𝑘 + 1) = 𝑝 (𝑘) + Θ
∗
, (27)

where

Θ
∗
= 8𝛾
𝑑(𝑘)

×
𝑓
𝑇
(𝑥 (𝑘)) 𝑃


𝑔 (𝑥 (𝑘)) 𝑅(𝑥 (𝑘))

2
𝑔
𝑇
(𝑥 (𝑘)) 𝑓 (𝑥 (𝑘))

(2𝑅 (𝑥 (𝑘)) + 𝑝 (𝑘) 𝑔𝑇 (𝑥 (𝑘)) 𝑃𝑔 (𝑥 (𝑘)))
3

(28)

which is positive for all time 𝑘 if 𝑝(0) > 0. Therefore
positiveness for 𝑝(𝑘) is ensured and requirement 𝑃(𝑘) =

𝑃
𝑇
(𝑘) > 0 para 𝑉(𝑥(𝑘)) = (1/2)𝑥

𝑇
(𝑘)𝑃(𝑘)𝑥(𝑘) with 𝑃(𝑘) =

𝑃
𝑇
(𝑘) > 0 is guaranteed. When SG control goal (21) is

achieved, then 𝑝(𝑘) = 𝑝 for 𝑘 ≥ 𝑘
∗. Thus, matrix 𝑃(𝑘) in (18)

is considered constant and 𝑃(𝑘) = 𝑃 where 𝑃 is computed
as 𝑃 = 𝑝𝑃

, with 𝑃
 a design positive definite matrix. Under

these constraints, we obtain

𝛼 (𝑥 (𝑘)) := 𝑢 (𝑘) = −
1

2
(𝑅 (𝑥 (𝑘)) + 𝑃

2
(𝑥 (𝑘)))

−1

𝑃
1
(𝑥 (𝑘)) ,

(29)

where 𝑃
1
(𝑥(𝑘)) = 𝑔

𝑇
(𝑥(𝑘))𝑃𝑓(𝑥(𝑘)) and 𝑃

2
(𝑥(𝑘)) =

(1/2)𝑔
𝑇
(𝑥(𝑘))𝑃𝑔(𝑥(𝑘)).

3.3. Tracking Reference. In the case of tracking reference, the
control law is defined as follows [23]:

𝑢 (𝑘) = −
1

2
(𝑅 (𝑥 (𝑘)) + 𝑃

2
(𝑥 (𝑘)))

−1

𝑃
1
(𝑥 (𝑘)) , (30)

where 𝑃
1
(𝑥(𝑘)) = 𝑔

𝑇
(𝑥(𝑘))𝑃𝑓(𝑥(𝑘) − 𝑥ref(𝑘 + 1)) and

𝑃
2
(𝑥(𝑘)) = (1/2)𝑔

𝑇
(𝑥(𝑘))𝑃𝑔(𝑥(𝑘)).

4. Multimachine Power System Control

4.1. Multimachine Power System Complete Model. In this
work, the proposed decentralized identification and control
scheme is tested with the Western System Coordinating
Council (WSCC) 3-machine, 9-bus system [6, 26]. The
differential and algebraic equations which represent the 𝑖th
generator dynamics and power flow constraints respectively
[1, 6] are given by
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where 𝑥
1
is the power angle of the 𝑖th generator in rad, 𝑥

2

is the rotating speed of the 𝑖th generator in rad/s, 𝑥
3
is the

𝑞-axis internal voltage of the 𝑖th generator in p.u., 𝑥
4
is the 𝑑-

axis internal voltage of the 𝑖th generator in p.u., 𝑥
5
is the 1𝑑-

axis flux linkage of the 𝑖th generator in p.u., 𝑥
6
is the 2𝑞-axis

flux linkage of the 𝑖th generator in p.u., 𝐸
𝑓𝑑𝑖

is the excitation
control input, and 𝜓

𝑑𝑖
and 𝜓

𝑞𝑖
are the 𝑑-axis flux linkage and

𝑞-axis flux linkage of the 𝑖th generator in p.u., respectively;𝜔
𝑠

is the synchronous rotor speed in rad/s, 𝐼
𝑑𝑖
and 𝐼
𝑞𝑖
are the 𝑑-

axis and 𝑞-axis currents of the 𝑖th generator in p.u., and 𝐸


𝑑𝑖

is the transient voltage in d-axis of the 𝑖th generator. Besides,
(4.1) is complemented with
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(32)

being parameters for each synchronous generator. It is impor-
tant to consider that each machine model considered is a flux
decay model (one axis model) given in [1, 6]; exciters and
governors are not included in this model [1, 8].

4.2. Reduced Neural Model of Multimachine Power System.
The model mentioned above [1] is in continuous time and
due to this fact, we proceed to discretize the states using Euler
methodology;with the state variables discretized, the reduced
neural model is proposed [7] as follows:
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where 𝑥
𝑖
estimates 𝑥

𝑖
(𝑖 = 1, 2, 3). Given the neural reduced

model, the inverse optimal SG control law is applied to the
reduced neural model to each synchronous generator, that is,
in a decentralized way. Thus, the control law is established
from (30) where the matrix 𝑃 is given for different values for
each fault as follows: in the case of the fault at the end of bus
7 (100 × 𝐼, 5 × 𝐼, 20 × 𝐼), in the case of the fault at the end of
bus 8 (80 × 𝐼, 5 × 𝐼, 700 × 𝐼), and in the case of the fault at the
end of bus 9 (100 × 𝐼, 5 × 𝐼, 10 × 𝐼) for generators 1, 2, and 3
respectively, where 𝐼 is an identity matrix of 3 × 3.

From (33) (𝑥(𝑘)), 𝑓(𝑥(𝑘)), the control law for the neural
network is defined as

𝑔 (𝑥 (𝑘)) = [
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0

𝜔
34
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]
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3
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]

]

.

(35)

It is important to note, that [5] proves that low-order
models are well-suited for stability analysis and feedback
control design for industrial power generators. Moreover, the
use of neural networks allowsmodelling system interconnec-
tions using only local information, as well as not modeled
dynamics for the reduced model [1].

5. Preliminary Calculations for Faults

For the design of the fault, a system data preparation is
required and the following preliminary calculations are taken
from [6],considering the parameters of the generators given
in Tables 7 and 8.

(1) All system data are converted to a common base; a
system base of 100MVA is frequently used.

(2) The loads are converted to equivalent impedances
or admittances. The needed data for this step are
obtained from the load-flow study. Thus if a certain
load bus has a voltage 𝑉

𝐿
, power 𝑃

𝐿
, reactive power

𝑄
𝐿
, and current flowing into a load admittance 𝑌
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(36)

The equivalent shunt admittance at that bus is given
by

𝑌
𝐿
=

𝑃
𝐿

𝑉2
𝐿

− 𝑗(
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) . (37)

(3) The internal voltages of the generators 𝐸
𝑖
∠𝛿
𝑖0
are cal-

culated from the load-flow data.These internal angles
may be computed from the pretransient terminal
voltages 𝑉∠𝛼 as follows. Let the terminal voltage be
used temporarily as a reference, as shown in Figure 1.
If 𝐼 = 𝐼

1
+ 𝑗𝐼
2
, then, from the relation 𝑃 + 𝑗𝑄 = 𝑉 𝐼

∗
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Figure 1: Generator representation for computing 𝛿
0
.

it is possible to obtain 𝐼
1
+ 𝑗𝐼
2
= (𝑃 − 𝑗𝑄)/𝑉. Since

𝐸∠𝛿

= 𝑉 + 𝑗𝑥



𝑑
𝐼, then
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= (𝑉 +
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𝑑
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) + 𝑗(

𝑃𝑥


𝑑
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) . (38)

The initial generator angle 𝛿
0
is then obtained by

adding the pretransient voltage angle 𝛼 to 𝛿, or

𝛿
𝑜
= 𝛿

+ 𝛼. (39)

(4) The𝑌matrix for each network condition is calculated.
The following steps are usually needed.

(a) The equivalent load impedances (or admit-
tances) are connected between the load buses
and the reference node; additional nodes are
provided for the internal generator voltages
(nodes 1, 2, . . . , 𝑛 in Figure 2) and the appropri-
ate values of 𝑥

𝑑
are connected between these

nodes and the generator terminal nodes. Also,
simulation of the fault impedance is added as
required, and the admittance matrix is deter-
mined for each switching condition.

(b) All impedance elements are converted to admit-
tances.

(c) Elements of the 𝑌 matrix are identified as
follows:𝑌

𝑖𝑗
is the sumof all the admittances con-

nected to node 𝑖, and 𝑌
𝑖𝑗
is the negative of the

admittance between node 𝑖 and node 𝑗.

(5) Finally, all the nodes except for the internal generator
nodes are eliminated and obtain the 𝑌matrix for the
reduced network. The reduction can be achieved by
matrix operation recalling all the nodes that have zero
injection currents except for the internal generator
nodes. This property is used to obtain the network
reduction as shown below. Let

𝐼 = 𝑌𝑉, (40)

where

𝐼 = [
𝐼
𝑛

0
] . (41)
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Figure 2: Representation of a multimachine system (classical model).
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Figure 3: Nine bus system.

Now the matrices 𝑌 and 𝑉 are partitioned accordingly to
get

[
𝐼
𝑛

0
] = [
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𝑛𝑛
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] [
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𝑛

𝑉
𝑟

] , (42)

where the subscript 𝑛 is used to denote generator nodes and
the subscript 𝑟 is used for the remaining nodes. Thus for the

network in Figure 2, 𝑉
𝑛
∈ R𝑛×1 and 𝑉 ∈ R𝑟×1. Expanding

(42),

𝐼
𝑛
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from which we eliminate 𝑉
𝑟
to find
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. (44)
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Figure 4: Generator 1 response with a fault at bus 7.
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Figure 5: Generator 2 response with a fault at bus 7.

Thematrix (𝑌
𝑛𝑛
𝑉
𝑛
−𝑌
𝑛𝑟
𝑌
−1

𝑟𝑟
𝑌
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) is the desired reduced matrix

𝑌 ∈ R𝑛×𝑛, where 𝑛 is the number of the generators. The
network reduction illustrated by (43)-(44) is a convenient
analytical technique that can be used only when the loads
are treated as constant impedances. If the loads are not
considered to be constant impedances, the identity of the load
buses must be retained. Network reduction can be applied
only to those nodes that have zero injection current.

Once the preliminaries calculations are made to obtain
the 𝑌 matrix for each fault in the correspondent bus, the
network reduction for each fault is applied. For the first
case of the analysis, the fault occurs at bus 7 and then the
correspondent 𝑌matrix is obtained as shown in Tables 9, 10,
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Figure 6: Generator 3 response with a fault at bus 7.
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Figure 7: Generator 1 response with a fault at bus 8.

and 11 included at the Appendix.Then the network reduction
of 𝑌matrix is applied and is defined as in Table 1.

For the second case of the analysis, the fault occurs at
bus 8 and then the correspondent 𝑌 matrix is obtained as
shown in Tables 12, 13, and 14 included at the Appendix after
the network reduction of 𝑌 matrix is realized to obtain the
reduced networks defined as in Table 2.

For the third case of the analysis, the fault occurs at
bus 9 and then the correspondent 𝑌 matrix is obtained as
shown in Tables 15, 16 and 17 included at the Appendix after
the network reduction of 𝑌 matrix is realized to obtain the
reduced networks defined as in Table 3.
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Table 1: Reduced 𝑌Matrices at bus 7.

Type of network Node 1 2 3

Pre-fault
1 0.846 − 𝑗2.988 0.287 + 𝑗1.513 0.210 + 𝑗1.226

2 0.287 + 𝑗1.513 0.420 − 𝑗2.724 0.213 + 𝑗1.088

3 0.210 + 𝑗1.226 0.213 + 𝑗1.088 0.277 − 𝑗2.368

Faulted
1 0.657 − 𝑗3.816 0.000 + 𝑗0.000 0.070 + 𝑗0.631

2 0.000 + 𝑗0.000 0.000 − 𝑗5.486 0.000 + 𝑗0.000

3 0.070 + 𝑗0.631 0.000 − 𝑗0.000 0.174 − 𝑗2.796

Fault cleared
1 1.181 − 𝑗2.229 0.138 + 𝑗0.726 0.191 + 𝑗1.079

2 0.138 + 𝑗0.726 0.389 − 𝑗1.953 0.199 + 𝑗1.229

3 0.191 + 𝑗1.079 0.199 + 𝑗1.229 0.273 − 𝑗2.342

Table 2: Reduced 𝑌Matrices at bus 8.

Type of network Node 1 2 3

Pre-fault
1 0.938 − 𝑗2.798 0.325 + 𝑗1.588 0.251 + 𝑗1.315

2 0.325 + 𝑗1.588 0.436 − 𝑗2.694 0.230 + 𝑗1.123

3 0.251 + 𝑗1.315 0.230 + 𝑗1.123 0.296 − 𝑗2.325

Faulted
1 0.736 − 𝑗3.569 0.082 + 𝑗0.535 0.063 + 𝑗0.534

2 0.082 + 𝑗0.535 0.146 − 𝑗4.128 0.006 + 𝑗0.058

3 0.063 + 𝑗0.534 0.006 + 𝑗0.058 0.122 − 𝑗3.115

Fault cleared
1 0.850 − 𝑗3.252 0.334 + 𝑗1.346 0.075 + 𝑗0.569

2 0.334 + 𝑗1.346 0.687 − 𝑗2.061 0.032 + 𝑗0.148

3 0.075 + 𝑗0.569 0.032 + 𝑗0.148 0.124 − 𝑗3.111
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Figure 8: Generator 2 response with a fault at bus 8.

6. Fault Simulation

The power electric system used in this paper is presented in
Figure 3. It corresponds to the nine bus system. Figure 3 also
includes the bus interconnection and the related parameters
in the transmission lines. Data for simulation is given in
Tables 7 and 8, respectively [6], where the modeling of the

0 5 10 15 20 25 30

Time (s)

0 5 10 15 20 25 30

Time (s)

0 5 10 15 20 25 30

Time (s)

0

0.5

1

1.5

360

380

400

0.8

1

1.2

x
3

(v
ol

ts)
x
2

(r
ad

/s
)

x
1

(r
ad

)

Figure 9: Generator 3 response with a fault at bus 8.

system is explained and the related parameters for each
synchronous generator are described.

In this paper, the 18 state variables related to 3 syn-
chronous generators are stabilized, using the neural reduced
model [7], reaching stabilization for the system with the fault
in three different lines of transmission, for simulation the
sample time is fitted to 0.005ms.
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Table 3: Reduced 𝑌Matrices at bus 9.

Type of network Node 1 2 3

Pre-fault
1 0.938 − 𝑗2.798 0.325 + 𝑗1.588 0.251 + 𝑗1.315

2 0.325 + 𝑗1.588 0.436 − 𝑗2.694 0.230 + 𝑗1.123

3 0.251 + 𝑗1.315 0.230 + 𝑗1.123 0.296 − 𝑗2.325

Faulted
1 0.727 − 𝑗3.735 0.135 + 𝑗0.787 −0.004 + 𝑗0.001

2 0.135 + 𝑗0.787 0.263 − 𝑗3.377 −0.002 + 𝑗0.000

3 −0.004 + 𝑗0.001 −0.002 + 𝑗0.000 −0.010 − 𝑗4.168

Fault cleared
1 1.271 − 𝑗1.980 0.290 + 𝑗1.247 0.102 + 𝑗0.344

2 0.290 + 𝑗1.247 0.380 − 𝑗2.957 0.149 + 𝑗0.702

3 0.102 + 𝑗0.344 0.149 + 𝑗0.702 0.209 − 𝑗2.853
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Figure 10: Generator 1 response with a fault at bus 9.
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Figure 11: Generator 2 response with a fault at bus 9.
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Figure 12: Generator 3 response with a fault at bus 9.

Table 4: Admittance loads.

Load Admittance
𝐴 𝑦

𝐿5
= 1.2610 − 𝑗0.5044

𝐵 𝑦
𝐿6

= 0.8777 − 𝑗0.2926

𝐶 𝑦
𝐿8

= 0.9690 − 𝑗0.3391

Table 5: Initial conditions of the generators.

Initial conditions Generator 1 Generator 2 Generator 3
𝑥
01

0.0396 0.3444 0.23
𝑥
02

377 377 377
𝑥
03

1.056 1.0502 1.0170
𝑥
04

0 0.622 0.624
𝑥
05

1.0478 0.7007 0.7078
𝑥
06

−0.0425 −0.7568 −0.7328

There are three cases contemplated in the system simula-
tion.

(1) The fault occurs near bus 7 at the end of the lines
5–7. Results are depicted in Figure 4 for generator 1,
Figure 5 for generator 2, and Figure 6 for generator 3.
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Table 6: References for the system.

References Generator 1 Generator 2 Generator 3
𝑥
1ref 0.0396 0.3444 0.23

𝑥
2ref 377 377 377

𝑥
3ref 0.5 1.0502 1.0170

(2) The fault occurs near bus 8 at the end of the lines
8-9. Results are depicted in Figure 7 for generator 1,
Figure 8 for generator 2, and Figure 9 for generator 3.

(3) The fault occurs near bus 9 at the end of the lines 6–
9. Results are depicted in Figure 10 for generator 1,
Figure 11 for generator 2, and Figure 12 for generator
3.

For the cases above mentioned, the fault is incepted at 10
seconds of simulation and then it is possible to see that the
system has a prefault state (before 10 seconds), a fault state
(at 10 seconds), and a postfault state (after 10 seconds). The
admittances for the loads are given in p.u. in Table 4.

The initial conditions for the system are given in Table 5.
It is important to note that initial conditions of the

generators are defined by their respective parameters [1];
however, in order to test the NN approximation capabilities,
it is common to use signals that can represent a wide range of
frequencies; then, it is possible that plant signals can exhibit
a high frequency behavior [10].

The control goal is to stabilize the power electric system
and this is why the references given for each state variable of
the neural reduced model for the multimachine system are
proposed as in Table 6.

7. Conclusions

In this paper a SG discrete-time inverse optimal controller is
synthesized for a reduced order neural model to stabilize a
multimachine power electric system in the presence of a fault
at line 7, at line 8, and at line 9; from simulation results, it
can be seen that the proposed controller allows stabilizing the
state in an efficient way in the three different cases, allowing
the system stabilization after the fault occurs. As future work
authors are considering the stability analysis including the
neural decentralized controller, besides the analysis of control
delay for closed loop system.

Appendix

In this appendix, parameters used for simulations are pre-
sented. Tables 7 and 8 show the parameters for generators and
transmission lines, respectively. Tables 9, 10 and 11 display the
𝑌matrix of network with fault near to bus 7 for prefault, fault,
and fault cleared conditions. Tables 12, 13 and 14 show the 𝑌
matrix of network with fault near to bus 8 for prefault, fault,
and fault cleared conditions. Tables 15, 16 and 17 present the𝑌

Table 7: Parameters of the generators.

Parameter Generator 1 Generator 2 Generator 3
𝐻 (sec) 23.6400 6.4000 3.0100
𝑇
𝑚
(pu) 0.7160 1.6300 0.8500

𝑇


𝑑0
(sec) 8.9600 6.0000 5.8900

𝑇


𝑑0
(sec) 0.2000 0.3000 0.4000

𝑇


𝑞0
(sec) 0.3100 0.5350 0.6000

𝑇


𝑞0
(sec) 0.2000 0.3000 0.4000

𝑋
𝑑
(pu) 0.1460 0.8958 1.3125

𝑋


𝑑
(pu) 0.0608 0.1198 0.1813

𝑋


𝑑
(pu) 0.0200 0.0500 0.0800

𝑋
𝑞
(pu) 0.0969 0.8645 1.2578

𝑋


𝑞
(pu) 0.0969 0.1969 0.2500

𝑋


𝑞
(pu) 0.0200 0.500 0.0800

𝑋
𝑙𝑠
(pu) 0.0336 0.0521 0.0742

Table 8: Parameters of the transmission lines.

Bus 𝑖 Bus 𝑗 𝑅
𝑖𝑗

𝑋
𝑖𝑗

𝐺
𝑖𝑗

𝐵
𝑖𝑗

1 4 0.000 0.1184 0.000 −8.4459
2 7 0.000 0.1823 0.000 −5.4855
3 9 0.000 0.2399 0.000 −4.1684
4 5 0.0100 0.0850 1.3652 −11.6041
4 6 0.0170 0.0920 1.9522 −10.5107
5 7 0.0320 0.1610 1.1876 −5.9751
6 9 0.0390 0.1700 1.2820 −5.5882
7 8 0.0085 0.0720 1.6171 −9.7843
8 9 0.0119 0.1008 1.1551 −9.7843
5 0 0.000 0.000 1.2610 −0.2634
6 0 0.000 0.000 0.8777 −0.0346
8 0 0.000 0.000 0.9690 −1.1601
4 0 0.000 0.000 0.000 0.1670
7 0 0.000 0.000 0.000 0.2275
9 0 0.000 0.000 0.000 0.2835

matrix of network with fault near to bus 9 for prefault, fault,
and fault cleared conditions.
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A new intelligent model to simulate evacuation behavior in ships called neighborhood particle swarm optimization is proposed.
This model determines the rules of behavior and velocity updating formulas to solve staff conflicts. The individuals in evacuation
are taken as particles in PSO and update their behaviors by individual attributes, neighborhood attributes, and social attributes.
Putting the degree of freedommovement of ships into environment factor and using the real Ro-Ro ship information and IMO test
scenarios to simulate the evacuation process, the model in this paper can truly simulate the behavior of persons in emergency and
provide a new idea to design excellent evacuation model.

1. Introduction

In recent ten years, with the rapid development of ship-
building industry, the number of high speed and high load
of ship has increased sharply. It brings us convenience and
wealth and meanwhile increases the frequency of marine
perils.Therefore, a security system which can ensure all ship-
board personnel evacuation needs to be established urgently.
The security system should be matched with set routes,
procedures, effective decision support and management,
rescue apparatus, and so forth. An optimized design scheme
should be considered in ship design, which can enhance
passengers’ evacuation performance. Even in the situation of
safety sailing measure failures, available people assembly and
evacuation can also be considered as the final safety shelter
to avoid the disaster and the economic loss. Thus, the design
of efficient evacuation model has become one of the hottest
research areas focusing on ship industry.

In the personnel evacuation progress, dynamic program-
ming for behavior of personnel is needed. With the wide use
of evacuation model, more and more research institutions
have been dedicated to exploit it. The majority of evacuation
models adopt implicit actions, based on function program-
ming, rule-based behavior, or basic behavior of intelligent
agent to express evacuation behavior. During the evacuation

progress, Helbing’s social forcemodel [1] is a typical represen-
tation of function programming. Using differential equation
to describe the behavior of personnel is too complex to fit
large-scale personnel evacuation. Cellular automaton model
[2] is a regular basic model, which possesses a good simula-
tion effect but lacks theoretical foundation. Briefly speaking,
describing the behavior of personnel in reality by means of
several rules is obviously lack of authority. Agent’s [3]model is
the representation of intelligent agent technology. Izquierdo
et al. put forward the idea of applying particle swarm
optimization algorithm to simulate human behavior [4]; this
algorithm is adopted to large-scale personnel evacuation yet
described roughly. Based on above ideas Zheng et al. improve
the rules of behavior using the particle swarm optimization
algorithm to simulate the process of evacuation [5], while
the simulation results lack persuasion because the freedom
movement of ship is not taken into consideration. There are
many domestic scholars doing research on the passengers’
evacuation under the marine environment [6, 7]. In this
paper, on the basis of using the particle swarm optimization
algorithm to simulate the process of passengers’ evacuation,
we improve the simulation system of algorithm and present
the simulation method based on the neighborhood particle
swarm optimization algorithm. In the meantime we present
the update rules of passengers’ velocity, the solutions of staff
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conflicts, and take the freedom movement of ship as one of
the environment factors.Themodel in this paper can simulate
the process of passengers’ evacuation under the condition of
ship’s freedom movement, and the simulation results show
that the algorithm has a high practicability, which provides
the ideas for the design of evacuation models with high
efficiency and extreme stability.

2. Particle Swarm Optimization

The particle in PSO personnel evacuation model can be
described as follows: for the 𝑖th particle, we consider the
candidate solutions of particle swarm optimization algorithm
for personnel microscopic evacuation problems as points of
space. Even though the solution space can be N-dimensional
in the application of particle swarm optimization algorithm,
while simulating the process of personnel evacuation, we only
need two-dimensional space or three-dimensional space.
In the whole particle movement process of particle, the
attributes of the 𝑖th particle can be described by the following
three variables:

The current position:

𝑋
𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑁
) . (1)

The best evacuation individual location reached in the
past:

𝑃
𝑖
= (𝑃
𝑖1
, 𝑃
𝑖2
, . . . , 𝑃

𝑖𝑁
) . (2)

The current velocity of the individual:

𝑉
𝑖
= (V
𝑖1
, V
𝑖2
, . . . , V

𝑖𝑁
) . (3)

In the application of standard particle swarm optimiza-
tion algorithm to simulate the personnel evacuation, the best
positions of particles are updated in each iteration. The best
position of particles in the whole group is crucial in the
searching process; 𝑃

𝑖
represents the best position of each

particle. In each iteration, the particles not only learn from the
global best position but also learn from the best position of
their own.The combination of individual attributes and social
attributes for a particle has significant effect on the problems
of simulating the personnel evacuation. In the process of
simulating the personnel evacuation, the update of particle’s
velocity and position can be represented by the following
formula:

𝑋
𝑖+1
= 𝑋
𝑖
+ 𝑉
𝑖+1
, (4)

𝑉
𝑖+1
= 𝑤 ⋅ 𝑉

𝑖
+ 𝑐
1
⋅ rand () (𝑃

𝑖
− 𝑋
𝑖
) + 𝑐
2
⋅ rand () (𝑃

𝑔
− 𝑋
𝑖
) .

(5)

From the updating formula (5), we can see that the parti-
cles obey the inertia of their own firstly to retain part of their
own attributes𝑤⋅𝑉

𝑖
and then update their behavior according

to the best cognitive ability of the environment of their own
𝑃
𝑖
; the social cognitive ability of particle movement 𝑃

𝑔
is

the global best position [8, 9]. This mechanism optimization
reflects people’s actual behavior reasonably.

In the optimization process, particles update their posi-
tion in each iteration until they reach a special region [10]. In
the personnel microscopic evacuation problems described in
this paper, the best position of the individual is the safety exit
of evacuation. The safety exit can be a single outlet and can
also be the selection ofmultiple exports.When the individual
reaches an evacuation exit, we consider that the evacuation
individual has found the optimal position, at the same time
the current individual withdraws the evacuation sequence,
and we record its trajectory and evacuation time. When
all the evacuation individuals evacuate safely through the
evacuation exit and one process of evacuation has finished,
then we record the time of evacuation and the scheme of
evacuation.

2.1. Neighborhood Particle Swarm Optimization. Basic parti-
cle swarm optimization algorithm has a significant effect on
solving the problems about single door evacuation because
the targets of all the particles are consistent, moving towards
the same evacuation exit [4]. However, when it comes to
the complex problems about network, the environment is
abstract and there are more than one evacuation exit. In the
basic particle swarm optimization algorithm, the particles
determine the next position merely according to the individ-
ual cognition and social behavior that will cause the problem
of all the particles moving toward the best global position.
Those problems will lead to large-scale congestion and staff
conflicts, which is contrary to the actual evacuation. The
behaviors of individuals in actual evacuation mainly depend
on the individual cognitive ability for the environment,
social behavior, and the behavior of their neighborhood.
Therefore, in this paper we will use the improved particle
swarm optimization algorithm that contains the neighbor-
hood learning factor to simulate the evacuation, which is
out of the limitation of the simple network environment and
suitable for the complex evacuation.

In neighborhood particle swarm optimization algorithm,
the particles update their velocity and position according to
individual behavior, the behavior of the whole group, and
the best individual experience in the neighborhood. In the
process of evacuation, the neighborhood of a particle is the
channel node area which is connected with the position of
current particle. Putting the neighborhood learning mech-
anism into the PSO algorithm not only can simulate the
herd behavior of the crowd in the process of evacuation
successfully, but also can effectively avoid the problem of
all the particles moving toward the local optimal point
which could lead to large-scale staff conflicts and congestion.
According to the above idea, wemodify the velocity updating
formula of particle swarm as follows:

𝑉
𝑖+1
= 𝑤𝑉
𝑖
+ 𝑐
1
rand () (𝑃best − 𝑋𝑖) + 𝑐2rand () (𝐺best − 𝑋𝑖)

+ 𝑐
3
rand () (𝑁best − 𝑋𝑖) ,

(6)

𝑋
𝑖+1
= 𝑋
𝑖
+ 𝑉
𝑖+1
. (7)

𝑐
1
, 𝑐
2
are learning factors in standard particle swarm

optimization algorithm, while 𝑐
3
is neighborhood learning
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factor. 𝑋
𝑖
is the current position of particles. 𝑃best is the best

location of particles reached in the past, 𝐺best is the global
best position of the particle swarm, and 𝑁best is the best
position of the neighborhood of the particle. The application
of neighborhood particle swarm optimization algorithm can
simulate the behavior of staff conflicts effectively and can
solve the problems on the behavior of staff congestion in
some extent. In this paper, we consider the circle with the
diameter of 0.6 meters as the individual in evacuation, and
the neighborhood is the circular area with the evacuation
individual as its center and diameter of 2 meters.

2.2. Behavior Process. Firstly, formula (5) presents how the
current particle can determine themovement at nextmoment
through the calculation, and then we will judge the feasibility
of themovement through the social attributes of populations.
If themovement exceeds the environment, it will be restricted
and even canceled. The parameter 𝑤 in formula (5) is

𝑤 = 0.5 +
1

2 ∗ (ln (𝑘) + 1)
. (8)

This setting for𝑤 is according to [11], and 𝑘 is the iterative
number. As the iteration proceeds, 𝑤 decreases from 1 to 0.5.
This can ensure the global convergence of particles. At the
beginning of iteration, the great change of the speed variation
can ensure that particles moved to the best position quickly.
The change of particles’ velocity decreases, with the iteration
number increasing, which ensures stronger local convergence
when particles arrive at the optimal point.Then 𝑐

1
= 3, 𝑐
2
= 2,

and 𝑐
3
= 3.

Apart from inertia factors, calculation of personnel’s
velocity is contained by the following factor: environmental
layout, individual, and society-related factor. We mainly
consider two aspects in evacuation. The first is the choice
of exits. In the space of multiple exits, people choose
exit generally depending on individuals’ ability to perceive
information from environment. The second is the queuing
phenomenon caused by human-following behavior. In the
passenger evacuation progress, congestion occurs frequently.

3. Velocity Updating Rules

In the process of actual evacuation, the velocity of people’s
movement will not increase unlimitedly, whereas the velocity
will distribute in a fixed interval. Therefore, the velocity
definitely has the upper limit in the PSO model; namely,
𝑉
𝑖
≤ 𝑉max. From another perspective, the crowd density of

passengers’ current space has effect on the moving speed of
passengers. According to IMO determination of personnel’s
speed, this paper takes 1.2m/s as the moving speed of
personnel in normal circumstance, and themoving speedwill
decrease when the crowd density increases. The maximum
moving velocity of passengers can be described by the
following formula [5]:

𝑉max = {
1.2m/s 𝜌 ≤ 20
0.9m/s 𝜌 > 20.

(9)

B

A

C
D

Figure 1: Schematic diagram of the staff conflicts.

𝜌 is defined as the particle’s density for the current posi-
tion; it is the number of people in the circular neighborhood
which takes the current particle as center and radius of 2
meters.The individuals in evacuation are taken as circles with
the diameter of 0.6meters. Every particle forms a circular area
in which simulates the staff conflicts and updates the velocity.
The density of particles changes greatly in different time and
different locations. Within the process of evacuation, the
positions of passengers and the number of particles around
change constantly.

In the evacuation process of particles, each particle has
its own unique occupy space that other particles are unable
to invade. The occupy space of particles will decrease when
the density of particles increases. We use 𝐷 to represent the
diameter of particle’s occupy space. The relationship between
𝐷 and the density of particles can be assumed as follows:

𝐷 =

{{

{{

{

0.6m 𝜌 < 12
0.4m 12 ≤ 𝜌 ≤ 20
0.3m 𝜌 > 20.

(10)

Conflicts among the passengers will still exist even
though in the application of ideal evacuation process. If a
particle’s updating position has been occupied by others, the
particlewill produce a newvelocity to avoid staff conflicts (see
Figure 1).

Particle A updates its position during the process of
evacuation, and its updating position is D, while D has a
confliction of physical location with B.Therefore, the particle
A should create a new velocity tomake itself move to position
C so as to avoid the conflicts with B.

4. Passengers’ Evacuation Based on PSO Model

Simulating the process of evacuation with particle swarm
optimization algorithm can obtain the behavior characteris-
tics of many individuals successfully. It considers not only the
perception ability of individuals on the environment, but also
the social attributes of groups in the process of evacuation to
make the simulation results more suitable to the real process.

In the process of evacuation, various behaviors of per-
sonnel will have an effect on the evacuation velocity of
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individuals, for instance, aggregation behavior, individuals
in evacuation move towards to the center of population or
move towards to the position with fewer people; people
will maintain a certain distance between each other, which
means a person will have the same velocity with other
persons who are nearby, people will obey the evacuation
signal, and so forth. A person’s individual property such
as age, gender, and health status will have effects on their
walking speed. An excellent simulation model can reflect
the influence of personnel’s psychological factors such as
pain, fear, and negative emotions. People’s cognition degree of
sound, environment, and facilities will have influences on the
process of evacuation. We can establish the comprehensive
consideration of the above situation with the application of
the fuzzy comprehensive evaluation. Simultaneously, it will
have great influence on the evacuation behavior of population
if passengers’ psychological effects are considered too much.
We suppose that the passengers have slight psychological
effects in the research process so that they will not lose
the behavior of evacuation because of panic caused by
emergencies.

For the selection of evaluation function, it is expressed as
the distance between the person and the nearest evacuation
exit to him or her. 𝑋 is the position of current particle and 𝐸
is the collection of evacuation exit:

𝐹 (𝑋) = 𝑑 (𝑋, 𝐸) = min {𝑑 (𝑋, 𝑒) , 𝑒 ∈ 𝐸} . (11)

Function 𝐹 is obviously a nonlinear function in most
conditions. The procedures of applying the PSO model to
solve the problems of passengers’ evacuation can be described
as follows.

Step 1. Set the number of particles (the summation of individ-
uals in evacuation). Distribute the initial position randomly.
Set the number and the positions of evacuation exits.

Step 2. Set the value of inertia factor 𝑤, learning factors 𝑐
1

and 𝑐
2
, and neighborhood learning factor 𝑐

3
. Record all the

particles’ in current position and velocity.

Step 3. Calculate the value of fitness function for all the
particles. If the distance between a particle and a safety exit
is 0, then the current particle evacuates successfully and this
particle is no longer retained in the following process of
evacuation. Record the particles whose distance to the safety
exits is more than 0.

Step 4. Update particles’ velocity according to formula (6);
judge whether the condition of the velocity’s upper limit is
satisfied. If it is satisfied, update the velocity as usual; if it is not
satisfied, the velocity’s upper limit is assigned to the current
particle.

Step 5. Judge whether the particles’ conflicts exist; namely,
whether the movement direction of current particle has been
occupied. If it is not occupied, update the position as usual; if
it is occupied, generate the velocity increment randomly and
update the position.

Step 6. Judge if all the particles have been reached to the
safety exits: if it is satisfied, go to Step 7; else go to Step 3.

Step 7. When the process of evacuation is finished, output the
evacuation time and the dynamic graph of evacuation.

The algorithm will finish if the individuals in evacuation
have evacuated successfully, and then output the evacuation
time.

5. Simulations

In the following context, we will discuss the effectiveness of
the PSO evacuation model proposed in this paper through
the numerical experiment. Firstly, we set the parameters
of neighborhood particle swarm optimization algorithm to
simulate the problem of evacuation,𝑤 = 0.5+0.5/[ln(𝑘)+1],
𝑤 varies from 1.0 to 0.5, and 𝑐

1
= 3, 𝑐

2
= 2, and 𝑐

3
= 3. The

iteration step 𝑇 = 0.5 [12].
This research selects a cabin with the 2 meters wide door

as the research object to simulate the process of microscopic
passengers’ evacuation by the software of Visual Studio 2010.

Figure 2 shows that individuals in evacuation distribute
randomly in the evacuation space at the beginning of evac-
uation. The individuals that are close to the safety exits of
evacuation can find the evacuation plan quickly, and the
individuals that are far from the safety exits of evacuation can
also find the direction of evacuation fleetly.With the learning
strategy of particle swarm, the individuals in evacuation can
make quick and effective evacuation judgments in order to
find the best evacuation routes which are suitable to their
current locations.

5.1. The Influence of Doors’ Dimension for the Process of
Evacuation. Different sizes of the door have quite different
evacuation capacities. Obviously, the larger size can get the
well effect of evacuation. But in the period of ship design,
the size of doors cannot be randomly designed due to the
limitation of space and size of ship. Hence, the most appro-
priate size for doors needs to be designed under limitation
of surroundings and conditions to improve the evacuation
capacity to the ultimate extreme. The influence of doors’
dimension for the process of evacuation is shown in Figures
3 and 4.

By fixing the number of escaping people at 200 as initial
value, Figure 3 shows the changing curve of egress time of 200
peoplewith the size of the door increasing. From the figurewe
can see obviously that, with the size of the door increasing, the
evacuation time is effectively reduced.When the size is larger
than 4 meters, it has little effect on the evacuation time. It
shows that, in this condition, the size of the door has lower
influence on the evacuation time, and there exists the best
threshold for the size.

For different sizes of the door, with the number of people
increasing, the changing curve of the evacuation time is
shown in Figure 4. When the door width is set to 2, 3,
4, and 6 meters, respectively, the evacuation time signifi-
cantly increases with the number of peopleincreasing. When
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Figure 2: The distribution of the evacuation of people in different time.
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Figure 3: Effect of the door size on evacuation time.

the door width is set to 4 or 6 meters, the difference of the
evacuation time is small. But when setting the dimension for
2 or 3 meters, the difference is huge. The evacuation time for
2 meters is nearly 1.5 times longer than 6 meters of the doors’
dimension. However when the doors’ dimension is over
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Figure 4: Effect of door size and number of people on evacuation
time.

4 meters, the difference was not significant.This is verified by
Figure 3. In the premise of the suitable designing dimensions
of the ship, there exists the best dimension for evacuation.
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Figure 5: The time influences of the ship’s heel and trim.

If the doors’ dimension is fixed, the evacuation time obviously
increases with the increasing number of people.

5.2.The Influences of the Ship’s Heel and Trim. An experiment
is conducted to test the time influences of the ship’s degree of
freedom. It is conducted under the condition that the angle
of ship’s heel changes from 0 to 35 degrees and the angle
of ship’s trim changes from −20 to 20 degrees. The number
of passengers is fixed as 200 as well. Figure 5 reflects the
influences of the ship’s DOF (degree of freedom) movement
on passengers’ evacuation time. Figure 5(a) is in the condition
of ship’s heel. When the angle of ship’s heel changes from 0 to
15 degrees, the effect on passengers’ behavior of evacuation
is very little. However, the influence is enhanced gradually
when the angle of ship’s heel is more than 20 degrees, and
when it turns to more than 30 degrees, the evacuation time
of the whole 200 persons is 3–6 times of that in steady state.
The above fact proves that it is not of any significance without
the consideration of ship’s movement in the simulation of
passengers’ evacuation process.

Figure 5(b) exhibits the influences of the ship’s trim
on passengers’ evacuation time. When the angle of ship’s
trim changes from −15 to 15 degrees, it has fewer effect on
passengers’ evacuation time, while when the angle of ship’s
trim increases to 20 degrees, it has a tremendous impact
on individuals in evacuation. The angle of ship’s trim can
also be interpreted as the angle of lateral inclination. With
the increasing of trim’s angle, the left-right force among the
persons increases, which will greatly hinder the movement
of passengers; the conflicts among the individuals and the
congestion caused from the conflicts are increased obviously.
However, in the condition of ship’s heel, it is the pre-post
force that increases, the influence of pre-post force caused
by ship’s heel will be significant when the crowd density is
high in evacuation. If the distribution of individuals is not

intensive, the force caused by ship’s heel will have a slight
effect on the populationmovement, but it will seriously affect
the behavior of individuals in evacuation. The increasing of
the heel’s angle and the inclination of walking plane will
increase the difficulty for the individuals in evacuation greatly
when they are walking and at the same time it depends on the
individual differences in ability. It willmake thewhole process
of evacuation more difficult when the angle of ship’s heel and
trim increases.Thus, ship’s heel and trim are the main factors
that influence people’s behavior in evacuation.

5.3. The Process of Simulating the Evacuation System with
Multiple Doors. Also in the evacuation space of 25 × 25m,
four evacuation exits are settled in the evacuation space. In
the designation of ships, the size of the door is restricted, so in
order tomatch the actual situation, thewidth of the door is set
to 2 meters. The initial distribution of persons is random and
the crowd is divided into three parts, the youth, the elderly,
and the children. Meanwhile, all of them are given different
walking speed and initial speed. The red circles represent
the elderly, purple circles represent the children, and yellow
circles represent the youth. The distributions of the crowd
at 0 s, 40 s, 80 s, and 120 s can be seen from Figure 6; the
results of simulation clearly show the aggregation behavior of
adults and children, as well as thewalking condition of elderly
people.

The results can be seen from Figure 6 that the algorithm
of PSO model is still remarkable on the evacuation system
with multiples doors. The initial distribution of persons
in the space is random. But with the evacuation process
continuing, the passengers find their own evacuation direc-
tions immediately. The behavior of group is significant and
the staff conflicts are lower in the process of evacuation.
Figure 7 shows the curve of passengers’ evacuation time
under the condition of four doors with the increasing number
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Figure 6: The distributions of the persons in the case of four doors.
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Figure 7:The relationship between evacuation time and the number
of passengers.

of passengers, and the results reflect that the evacuation
time increases significantly when the number of passengers
increases.

We explore the influence of the ship’s DOFmovement for
the conditions of four doors with the fixed 200 passengers.
The angle of ship’s heel is set to change from 0 degrees to
35 degrees and the angle of ship’s trim changes from −20
degrees to 20 degrees. Figure 8 shows the effects of ship’s
DOF movement on the evacuation time. The curve shape
of evacuation time in the condition of four doors is roughly
equal to that of single door. But the whole evacuation time
decreases because the evacuation space is larger, and the staff
conflicts are lower in the condition of four doors. Meanwhile,
themore the evacuation exits are, the stronger the evacuation
capacity of the cabin is. If we only take the evacuation ability
of a cabin into consideration, the evacuation time should be
a quarter of that in the condition of single door. However, the
actual situation is not the same as what we have mentioned
above. It is because the personnel microscopic behavior
simulation algorithm based on the PSO model takes the
individuals’ movement into consideration. The congestion,
conflicts, and queuing phenomenon of persons will increase
the whole evacuation time, so that it will make the simulation
results more realistic.

5.4. IMO Test 8: The Simulation Test of Personnel Convection.
In the process of passengers’ evacuation in marine environ-
ment, the phenomenon of personnel convection is always
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Figure 8: The time influences of the ship’s heel and trim in the case of four doors.
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Figure 9: Simulation environment of test 8.

accompanied by the evacuation process, and it is one of
the main factors affecting personnel behavior. Then we will
simulate the scene of IMO convection test with the PSO
evacuation model. The scenes of convection test regulated
by IMO are as follows: two evacuation groups are arranged
in the adjacent compartments, respectively, and there is a
passage which connects the two compartments. People in
room 1 need to move to room 2, and people in room 2 need
to move to room 1.The initial number of individuals in room
1 is 100 [13], and the characteristics of the individuals are
30–50-year-old evacuation persons. The passage is 10 meters
long and 2 meters wide. The phenomenon of convection
occurs in a large range when passengers in room 2 are trying
to move to room 1, and the initial number of individuals
in room 2 is set, respectively, as 0, 10, 50, and 100 (see
Figure 9). The results of simulation are shown in Table 1;
the evacuation time significantly increases when the number
of the convective population increases. Figure 10 shows the
process of evacuation as the time goes by under the condition
when the number of convection population is 100.

The experiment results reflect the fact that the evacuation
time will increase greatly when the number of individuals

Table 1: The contrast of PSO and EVI.

Parameters Evacuation time (s)
Convection passengers PSO EVI
0 83.7 88.9
10 92.6 125.6
50 136.9 229.1
100 215.1 327.9

in evacuation in room 2 increases. In the meanwhile, in the
process of evacuation, the personnel convection is largely
reduced because of the attributes of social learning of PSO
model.We can see fromTable 1 that the research results in this
paper are significantly enhanced [14] compared with other
similar researches, and the whole evacuation time has greatly
improved.

6. Conclusions

This paper mainly studies how to simulate the process of
passengers’ evacuation under the circumstance of emergency
evacuation and establishes the simulation model of the
passengers based on the neighborhood particle swarm opti-
mization algorithm. In this paper, we consider the particles in
the swarm as the individuals in evacuation, and the behaviors
of the particles are directed by their own learning abilities, the
perception abilities of environment, and the social attributes,
which can simulate the real process of evacuation.We use the
scene of IMO convection test as well as the real data of a ship
to test the properties of the model presented in this paper.
The simulation results show that the model of passengers’
behavior based on PSO algorithm is very effective and has a
strong promotional value, and it provides ideas for designing
a stable and efficient evacuation behavior model.
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This paper puts forward an energy flow chart analysis method for a range-extended electric bus. This method uses dissipation
and cycle energy, recycle efficiency, and fuel-traction efficiency as evaluation indexes. In powertrain energy efficiency analysis, the
range-extended electric bus is developed by Tsinghua University, the driving cycle based on that of Harbin, a northern Chinese
city.The CD-CS and blended methods are applied in energy management strategies. Analysis results show with average daily range
of 200 km, auxiliary power of 10 kW, CD-CS strategy, recycle ability and fuel-traction efficiency are higher. The input-recycled
efficiency using the blended strategy is 24.73% higher than CD-CS strategy, while the output-recycled efficiency when using the
blended strategy is 7.83% lower than CD-CS strategy.

1. Introduction

Compared with conventional fuel vehicles, application of
electric vehicle decreases the dependency on petroleum
and has the advantages of high energy efficiency and low
environmental impact [1–3]. For a pure electric bus, the cost
of a battery pack that can meet the driving range is too high;
meanwhile, vehicle weight is too large for adding a large
battery pack. A range-extended electric vehicle is regarded as
one of the most suitable solutions for powertrain schemes,
because of the maximum utility of the electric drive and the
minimum capacity requirement of battery packs.

The main powertrain configurations of range-extended
electric vehicles are series plug-in hybrid electric vehicles
[4] and the Chevrolet Volt, produced by General Motors
Corporation (GM) [5]. This paper will analyze a series plug-
in hybrid electric bus.

In the studies of energy efficiency and fuel economy
of range-extended electric vehicles, vehicle performance is
analyzed on the basis of energy consumption and greenhouse
gas emissions on the well-to-wheel and tank-to-wheel paths
[6, 7]. Well-to-wheel fuel economy and greenhouse gas emis-
sions data were obtained using the greenhouse gases, regu-
lated emissions, and energy use in transportation (GREET)

software model. The tank-to-wheel process is characterized
by the recuperation and fuel-traction efficiencies, which are
quantified and compared for two optimization-based energy
management strategies.

The improvement of fuel economy for a range-extended
electric vehicle can be realized by matching powertrain parts
and a model selection method [8–12]. An optimal gen-set
operating line method can minimize fuel consumption at a
set level of electric output power. Series hybrid vehicles with
direct injected stratified charge (DISC) rotary engines are
proven to be more efficient in pure electric mode in terms of
energy consumption and greenhouse gases (GHG) emissions
than in vehicles with reciprocating engines.

Energy efficiency and fuel economy of range-extend
electric vehicles can be improved by studying energy man-
agement strategy [13–16]. Researchers use dynamic program-
ming strategies and equivalent consumption minimization
strategies as well as Pontryagin’s minimum principle strategy
to analyze energy efficiency and fuel economy of range-
extended electric vehicles, and results show that optimized
energy management strategy can improve energy efficiency
and fuel economy to a certain extent.

In conclusion, current studies on configuration analysis
and energy management strategy on range-extended electric
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Figure 1: Powertrain configuration of the range-extended electric bus.

vehiclesmainly focus on passenger vehicles, but work is rarely
conducted into range-extended electric buses. Reference [17]
asserts that a driving cycle significantly influences the energy
efficiency and fuel economy of the vehicle. It proposes
that construction and optimization of energy management
strategy should consider different driving cycles. A system of
energy efficiency analysis based on a certain driving cycle is
the foundation of an optimal control strategy.

This paper focuses on the application requirements of the
range-extended electric bus developed by Tsinghua Univer-
sity in Harbin and establishes the powertrain model of the
bus based on the construction of the Harbin driving cycle. It
examines the energy efficiency of the range-extended electric
bus with two different energymanagement strategies (CD-CS
and blended) and proposes improvementmethods for energy
efficiency.

2. Configuration and Principle of the
Range-Extended Electric Bus

The range-extended electric vehicle lies between the plug-
in hybrid electric vehicle and pure electric vehicle. Com-
pared with a pure electric vehicle, a range-extended electric
vehicle is supplemented with an onboard power generation
system (range-extender) [18, 19].The range-extender consists
of engine, generator, and rectifier. The engine continually
charges the power battery, so the driving range can be greatly
increased to the level of a conventional internal combustion
engine vehicle. The engine and power battery of a range-
extended electric bus can be optimized at the same time. The
working area of the engine can be optimized according to the
driving cycle and the engine efficiency can be improved. The
engine can operate with low pollution and fuel consumption.
As for the battery, working condition of the power battery can
also be optimized. If the power battery can continually work
in good condition without overcharging or overdischarging,
battery life can be extended. Braking energy can be recycled
and energy consumption is decreased. The range-extender

solves the problems of the energy consumption of air-
conditioning, lighting, heating, and other electric auxiliaries,
making the range-extended electric bus the most suitable
solution for city buses.

A typical range-extended electric powertrain is shown
in Figure 1. In a range-extended electric vehicle, wheels are
driven directly by an electric motor. The motor draws energy
from a battery pack and drives in pure electric mode when
battery energy is available. Once the battery has been mostly
depleted, the motor draws power from the range-extender,
composed of an internal combustion engine and generator, in
conjunction with a battery. Range-extended electric vehicles
are designed with a predetermined all-electric range (AER).
The AER represents the distance that the vehicle can travel
using the energy stored in its battery only, without the engine
and generator. Vehicles with a higher AER must have larger,
heavier, and more expensive battery systems. The range-
extended electric powertrain configuration is one of the most
attractive applications for the diesel engine.

We can see the powertrain configuration of the range-
extended electric bus discussed in this paper; the energy
flow conditions of different driving modes are analyzed, as
is shown in Figure 2. There are three driving modes: pure
electric drive mode, range-extended mode, and regenerative
brake mode.

Pure electric drivemode is shown in Figure 2(a). If SOC is
high, the powertrain begins pure electric mode, whereby the
engine stops and the motor will be driven by a power battery.
Cheaper electric energy from the power grid is fully utilized.
Fuel consumption and pollution are reduced in this mode. If
SOC decreases to the set starting value, the range-extender
begins and the powertrain works in range-extended mode.

Powertrain working in range-extended is shown in
Figure 2(b). To increase driving range, if SOCdecreases to the
set starting value, the range-extender starts to generate power,
reducing the rate of electricity loss and ensuring the motor
can work to drive the bus.This mode can be divided into two
kinds. One, if the output power of range-extender is lower
than the motor required power, the lacking electric energy is
provided by battery; the battery discharges. Two, if the output
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Figure 2: Driving modes of the range-extended electric bus.
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Figure 3: The range-extended electric bus developed by Tsinghua
University.

power of the range-extender is higher than the required
motor power, the redundant electric energy is reserved in
battery, charging the battery. The output power of the range-
extender is not directly influenced by the driving conditions
and can be optimized in the high efficiency working areas of
the engine and motor.

If the bus is braking, the motor can work in regenerative
brake mode, as is shown in Figure 2(c). The motor provides
braking torque for the vehicle wheels, and braking energy
is transferred into electric energy reserved in the battery.
Braking energy is not transferred into heat and lost; it is
recycled.

For an individual axle drive bus, only wheels driven by the
motor can recycle braking energy. Other wheels are stopped
by mechanical braking. Braking energy is partly recycled and
mechanical braking is also used on driven wheels for safety.

The range-extended electric bus analyzed in this paper
is developed by Tsinghua University, shown in Figure 3.
The powertrain is designed based on matching powertrain
parts and model selection found in [20]. The generator is a
permanent magnet generator and the traction motor is an
asynchronous motor. Key parameters of the powertrain are
listed in Table 1.

3. System Modeling of the Range-Extended
Electric Bus

To analyze energy efficiency and fuel economy of the range-
extended electric bus, system models based on benchmarks
and modeling lines of [21–24] are built. The basic model of
the range-extended electric system can be divided into four
modules: range-extender module, traction motor module,
power battery module, and the vehicle longitudinal dynam-
ics module. Considering the high complexity of a diesel
engine, permanent magnet synchronous generator, and the
rectifier and driving motor, relevant components are tested
by benchmarks and the characteristics MAP are determined
according to the test results. Then, the simulation models
are built based on the MAP, which replaces the complex
mathematical description, reduces modeling complexity, and
therefore improves model credibility.

Table 1: Powertrain parameters of range-extended electric bus.

Vehicle

Size (length × width ×

height)/mm 11980 × 2550 × 3200

Vehicle mass/kg 13000
Rated passengers 78
Windward area/m2 7.5

Air resistance coefficient
𝐶
𝐷

0.75

Rolling resistance
coefficient 𝑓 0.0076 + 0.00056𝑢

𝑎

Rolling radius 𝑟/m 0.512
Speed ratio of main reducer

𝑖
0

6.2

Speed ratio of transmission
𝑖
𝑔

2.34

Motor

Continuous power/kW 100
Peak power/kW 180

Maximum torque/N⋅m 860
Maximum speed/r/min 4500
Operating voltage/V 300∼450

Engine Displacement/L 1.9
Power/kW 82/4000 r/min

Generator Rated power/kW 50
Rated torque/N⋅m 220

Power Battery Capacity 180Ah
Operating voltage/V 350∼460

3.1. Range-Extender. The range-extender includes a diesel
engine, a permanent magnet synchronous generator, and
rectifier. System features can be described by the following
equations:

𝑛eng = 𝑛
𝑟

1

𝜏
𝑒
𝑠 + 1

,

𝑇eng = 𝑓
1
(𝛼, 𝑛eng) ,

𝐶eng = 𝑓
2
(𝑛eng, 𝑇eng) ,

𝜂gr = 𝑓
3
(𝑛eng, 𝜆) ⋅ 𝜂𝑟,

(1)

where 𝑓
1
is the accelerator characteristic MAP of the engine,

𝑓
2
is fuel consumption characteristic MAP of the engine,

𝑓
3
is the generator efficiency MAP, 𝑛

𝑟
is the engine’s target

speed, 𝜁
𝑒
is a time constant, 𝛼 is the accelerator signal, 𝑛eng is

the engine’s actual speed, 𝑇eng is the engine torque, 𝜆 is the
generator loading rate, 𝜂

𝑟
is the rectifier efficiency, 𝐶eng is the

engine’s instantaneous fuel consumption, and 𝜂gr is the total
rate of the generator and rectifier.

3.2. Traction Motor. The traction motor module includes the
motor and motor controller.Themotor model consists of the
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steady state efficiency characteristic MAP and a first-order
process:

𝜂
𝑚
= 𝑓
𝑚1

(𝑛
𝑚
, 𝑇
𝑚
) ,

𝑇
𝑚
= min (𝑇

𝑟
, 𝑇max) ⋅

1

𝜏
𝑚
𝑠 + 1

,

𝑇max = 𝑓
𝑚2

(𝑛
𝑚
) ,

(2)

where 𝜂
𝑚
is the motor’s electric efficiency, 𝑛

𝑚
is the motor’s

rotational speed, 𝜁
𝑚

is a time constant, and 𝑇
𝑚
, 𝑇
𝑟
, and

𝑇max are the motor’s actual torque, target torque, and torque
capacity, respectively. The function 𝑓

𝑚1
denotes the motor’s

efficiency MAP, and 𝑓
𝑚2

denotes the motor’s maximum
output torque characteristic MAP.

3.3. Power Battery. Thepower batterymodel is built based on
the𝑅intmodel, which is equivalent to a variable voltage source
and a variable resistance in series. According to the battery
internal resistance equivalent circuit, the following equation
can be established:

𝑈oc = 𝐸 (SOC, 𝑇) − 𝐼 ⋅ 𝑅 (SOC, 𝑇) , (3)

where SOC is the state of charge of the battery, 𝑇 is the
temperature, and 𝐼 is the battery current. 𝐸 stands for the
open circuit voltage of the battery, which is a function of SOC,
𝑇 is determined by the test, and 𝑅 is the internal resistance of
the battery.

In this model, the battery’s SOC state uses ampere-hour
integral method to estimate [25]. That is, when the vehicle is

in operation, it will use SOC as SOCint and at 𝑡moment it will
use SOC formula (4) to decide the following:

SOC = SOCint −
1

𝑄
𝑏

∫

𝑡

𝑡0

𝜂bat𝐼bat𝑑𝑡, (4)

where 𝑄
𝑏
is rated capacity, 𝜂bat is the battery’s columbic

capacity, and 𝐼bat is its charging and discharging current.

3.4. Vehicle Longitudinal Dynamics. The road load character-
istic is assumed to be ideal in simulation, that is, zero air speed
and good adhesion. As the vehicle is traveling on the road,
traction motor needs to overcome driving resistance (𝐹

𝑡
),

rolling resistance (𝐹
𝑓
), air resistance (𝐹

𝑤
), slope resistance

(𝐹
𝑖
), and acceleration resistance (𝐹

𝑗
). Consider

𝐹
𝑡
= 𝐹
𝑓
+ 𝐹
𝑤
+ 𝐹
𝑖
+ 𝐹
𝑗
,

𝐹
𝑓
= 𝑓𝑚𝑔 cos (𝑎 tan 𝑖) ,

𝐹
𝑤
=
1

2
𝐶
𝑑
𝐴𝜌𝑢
2

𝑎
,

𝐹
𝑖
= 𝑚𝑔 sin (𝑎 tan 𝑖) ,

𝐹
𝑗
= 0.28𝛿𝑚

𝑑𝑢
𝑎

𝑑𝑡
,

𝐹
𝑡
=
3.6𝜂
𝑇
𝑃motor
𝑢
𝑎

,

(5)

where 𝑓 is the rolling resistance coefficient, 𝑚 is the vehicle
mass, 𝑔 is the acceleration of gravity, 𝑖 is the road slope, 𝐶

𝑑
is

the coefficient of air resistance, 𝐴 is the windward area, 𝜌
is the air density, 𝑢

𝑎
is the motor speed, 𝛿 is the correction

coefficient of rotatingmass, 𝜂
𝑇
is the overall efficiency of drive

system, and 𝑃motor is the output power of the traction motor.
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Figure 5: Energy flow chart in energy efficiency analysis.

4. Energy Efficiency Analysis Using Energy
Flow Chart

According to the energy efficiency analysis method of plug-
in hybrid electric powertrain in [7], energy efficiency analysis
can be divided into the following three parts.

4.1. Dissipation and Cycle Energy. Traction power is used
to drive the wheels and vehicle auxiliaries; the calculation
equation is as follows:

𝑃 (𝑡) = 𝑃ae (𝑡) + 𝑃rol (𝑡) + 𝑃au (𝑡) + 𝑃ac (𝑡) + 𝑃gr (𝑡) , (6)

where 𝑃ae(𝑡) = 𝜌air𝐴𝑓𝑐𝑑V
3
(𝑡)/2 is the power to overcome

air resistance, 𝜌air is the air density, 𝐴
𝑓
is the frontal area,

𝑐
𝑑
is the air resistance coefficient, V is the vehicle speed,

𝑃rol(𝑡) = (𝑚V +𝑚𝑝)𝑔𝑐𝑟 cos(𝛼(𝑡))V(𝑡) is the power to overcome
rolling resistance, 𝑃ac(𝑡) = (𝑚V + 𝑚

𝑝
)V(𝑡)V(𝑡)(𝑑V(𝑡)/𝑑𝑡)

is the acceleration/deceleration power, 𝑃gr(𝑡) = (𝑚V +

𝑚
𝑝
)𝑔 sin(𝛼(𝑡))V(𝑡) is the up/down hill power, V is the vehicle

speed, 𝛼 is the road gradient, 𝑚
𝑝

is the battery mass,
and 𝑃au(𝑡) is the auxiliaries power, including air condition,
battery heat management system, heating (seat heating and
windshield heating), lighting, control system, and braking
steer consumption. The average power of the auxiliaries is
10 kW [26], assuming air-conditioning is working.
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Figure 7: Harbin city driving cycle.

𝑃(𝑡) can be divided into two parts: one is the dissipated
power 𝑃dis(𝑡) = 𝑃ae(𝑡) + 𝑃rol(𝑡) + 𝑃au(𝑡) and the other is
conserved power 𝑃cons(𝑡) = 𝑃ac(𝑡) + 𝑃gr(𝑡). As the initial and
final altitude and speed are the same in a whole driving cycle,
the reserved power is zero. If braking energy can be fully
recycled, required traction energy 𝐸trac should be the same
as the dissipated energy 𝐸dis

𝐸trac = ∫

𝑡𝑓

𝑡0

𝑃 (𝑡) 𝑑𝑡 = ∫

𝑡𝑓

𝑡0

𝑃dis (𝑡) 𝑑𝑡 = 𝐸dis, (7)

where 𝑡
0
and 𝑡
𝑓
are initial and final time. If there is no barking

energy recycled,

𝐸trac = ∫
𝑃(𝑡)>0

𝑃 (𝑡) 𝑑𝑡

= ∫

𝑡𝑓

𝑡0

𝑃dis (𝑡) 𝑑𝑡 + ∫
𝑃(𝑡)<0

(−𝑃 (𝑡)) 𝑑𝑡

= 𝐸dis + ∫
𝑃(𝑡)<0

(−𝑃 (𝑡)) 𝑑𝑡,

(8)

where ∫
𝑃(𝑡)<0

(−𝑃(𝑡))𝑑𝑡 represents the cycle energy 𝐸cir, which
is the temporal vehicle cycle energy in the form of kinetic
or potential energy and ultimately dissipated during friction

braking.Therefore, (8) for vehicle without energy recycle can
be calculated as

𝐸trac = 𝐸dis + 𝐸cir. (9)

In actual driving, energy balance equation can be calcu-
lated as

𝐸trac = 𝐸dis + 𝐸cir − 𝐸rec, (10)

where𝐸rec is the recycled net energy that is usable for traction.
According to (7) and (10), it can be found that 𝐸rec = 𝐸cir.

4.2. Recycle Efficiency of Barking Energy. Recycle efficiency is
defined as

𝜂rec =
𝐸rec
𝐸cir

. (11)

As 𝐸cir can be easily obtained in driving cycle, the key
mission is to calculate 𝐸rec. Recycle energy consists of two
flow methods: input and output. As is shown in Figure 4,
recycle ability is determined by energy dissipation, motor
torque, current of power battery, and threshold charge value.

Time set 𝑆 is defined as

𝑆 = {𝑡 | 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] , 𝑃 (𝑡) − 𝑃au (𝑡) < 0, 𝑃

𝑏
(𝑡) < 0} , (12)

where 𝑃au is physical load in converter. 𝐸𝑤, in is absolute input
energy during 𝑆 and is calculated by

𝐸
𝑤,in = ∫

𝑆

𝑃 (𝑡) − 𝑃au (𝑡)
 𝑑𝑡. (13)

The energy reserved in battery is

𝐸
𝑏, in = ∫

𝑆


𝑃
𝑏
(𝑡) + 𝐼(𝑡)

2
𝑅𝑛
𝑐


𝑑𝑡. (14)

The energy loss is

𝐸loss, in = 𝐸
𝑤, in − 𝐸

𝑏, in − ∫
𝑆

𝑃au (𝑡) 𝑑𝑡. (15)
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Figure 8: The SOC curve with the two different energy management strategies.

The cycle-average wheel to battery energy efficiency is

𝜂wb, in = 1 −
𝐸loss, in

𝐸
𝑤, in

. (16)

The recycle energy reserved in battery is

𝐸rec, in = 𝐸cir𝜂wb, in𝜂cir, 𝑤, (17)

where 𝜂cir, 𝑤 is the ratio between 𝐸
𝑤
and 𝐸cir.

Time set𝐷 is defined as

𝐷 = {𝑡 | 𝑡 ∈ [𝑡
0
, 𝑡
𝑓
] , 𝑃 (𝑡) − 𝑃au (𝑡) ≥ 0, 𝑃

𝑏
(𝑡) ≥ 0} . (18)

The associated motor energy loss in propelling is

𝐸loss, 𝑚 = ∫
𝐷

𝑃loss, 𝑚 (𝑡) 𝑑𝑡. (19)

The average motor efficiency is

𝜂
𝑚, out = 1 −

𝐸loss, 𝑚𝑑

∫
𝐷
𝑃
𝑏
(𝑡) 𝜂con + 𝑃apu (𝑡) 𝜂con − 𝑃au (𝑡) 𝑑𝑡

. (20)

The battery energy loss during time𝐷 is

𝐸loss, 𝑏 = ∫
𝐷

𝐼(𝑡)
2
𝑅𝑛
𝑐
𝑑𝑡. (21)

The battery efficiency in output way is

𝜂
𝑏,out = 1 −

𝐸loss, 𝑏𝑑

∫
𝐷
𝑃
𝑏
(𝑡) + 𝐼(𝑡)

2
𝑅𝑛
𝑏
𝑑𝑡

. (22)

The cycle-average battery to wheel energy efficiency is

𝜂bw, out = 𝜂
𝑏, out𝜂con𝜂𝑚, out𝜂𝑓𝑑𝜂𝑏,𝑚, (23)

where 𝜂
𝑏,𝑚

is the ratio between the power that battery
provides to the motor and the power emitted by battery.
According to (16) and (23), the recycle energy for traction is

𝐸rec = 𝐸rec, in𝜂bw, out. (24)

The cycle-average recycle efficiency is

𝜂rec =
𝐸rec
𝐸cir

= 𝜂cir,𝑤𝜂wb, in𝜂bw, out. (25)

4.3. Fuel-Traction Efficiency. Fuel-traction efficiency is def-
ined as

𝜂ft =
𝐸trac
𝐸ef

=
𝐸dis + (1 − 𝜂rec) 𝐸cir

𝐸ef
, (26)

where𝐸ef is the equal fuel energy, the average consumption of
the sum of diesel, and electric energy. 𝜂ft is the cycle-average
conversion efficiency from the total consumed energy to the
mechanical energy at the wheels and the electrical energy for
the auxiliaries. Based on the initial and final SOC, 𝐸ef can be
divided into diesel energy and electric energy.

An energy flow chart can clearly show the direction of
energy flow, showing the sizes of losses from each individual
part. It is one of the most effective methods for analyzing
flow in the context of system performance. Referring to the
analysis method in [27], this paper puts forward a powertrain
energy analysis method with energy flow chart for range-
extended electric bus. The powertrain energy flow chart is
shown in Figure 5.

5. Analysis Example with the Driving
Cycle of Harbin City

To provide a credible reference for the match and control
of the range-extended electric bus, energy efficiency analysis
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Figure 9: Energy flow chart with CD-CS strategy.

should be carried out within a driving cycle. Based on the
authors’ location, the Harbin city driving cycle has been
chosen for this paper, and the construction process is shown
in Figure 6.

The constructed Harbin city driving cycle is shown in
Figure 7; acceleration and deceleration are frequent. The
maximum acceleration is 1.94m/s2, the idle proportion is
22.3%, themaximum speed is 50 km/h, and the average speed
is 14.5 km/h.

The analysis processmainly compares theCD-CS strategy
with the switching controlmethod on the range-extender and
blended strategy with power following controlmethod on the
range-extender. According to the research, the daily average
range for Harbin city bus line 101 is 150–180 km, the initial
SOC is 100%, and the auxiliaries’ power is 10 kW. SOC curves
with the two different driving cycles are shown in Figure 8.

Figure 9 shows the energy flow chart with CD-CS strat-
egy, and Figure 10 shows the energy flow chart with blended
strategy.

Based on Figure 5, the input and output recycle efficien-
cies can be obtained, as is shown in Figure 11. The input-
recycled efficiency of the blended strategy is 24.73% higher
than that of CD-CS strategy. The output-recycled efficiency
of the blended strategy is 7.83% lower than that of the CD-CS
strategy.

Figure 12 consists of recycle efficiency, fuel-traction effi-
ciency, and energy consumptionwith the twodifferent energy
management strategies. As is shown in Figure 12(a), the
recycle efficiency is 36.80% with CD-CS strategy and 51.32%
with blended strategy.With CD-CS strategy, the fuel-traction
efficiency is 38.91%, but, with blended strategy, it is 33.26%.
The fuel-traction efficiency is limited by engine efficiency and
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is also influenced by other electric and mechanical losses,
such as the battery, power converter, and motor and drive
system. Energy consumption is 664.43 kWh with the CD-
CS strategy and 47.87 kWh lower than that with the blended
strategy. The CD-CS strategy has a better recycle ability and
fuel-traction efficiency. It is worth noting that the yearly range
of one bus inHarbin is nearly 70000 km, and the energy saved
with the CD-CS strategy would be considerable.

6. Conclusions

For a range-extended electric bus developed by Tsinghua
University, this paper analyzes the energy efficiency with
two different energy management strategies (CD-CS and
blended) using an energy flow chart method. Harbin city
driving cycle is taken for analysis. The recycle efficiency and
fuel-traction efficiency are evaluation indexes.

Analysis results from the energy flow chart show that
the energy loss mainly occurs at the engine. Engine energy
loss reaches 187.59% of the whole driving energy using the
CD-CS strategy and 209.47% with the blended strategy. As
the CD-CS strategy uses a thermostat control method, its
charging loss is 3.85% of total driving energy, while the
blended strategy only has a 2% charging loss. Of these
two energy management strategies, the CD-CS strategy can
effectively reduce the engine loss but has a higher charging
loss compared with the blended strategy.

Energy efficiency results show that over the Harbin city
driving cycle, the input-recycled efficiency of the blended
strategy is 24.73% higher than that of the CD-CS strategy
and that the output-recycled efficiency of the blended strategy
is 7.83% lower than that of the CD-CS strategy. With the
CD-CS strategy, the recycle efficiency is 36.80%, but, with
blended strategy, it is 51.32%. Using the CD-CS strategy, the
fuel-traction efficiency is 38.91%, but, with blended strategy,
it is 33.26%. In comparison of the two nonoptimized energy
management strategies, powertrain energy efficiency is better

with CD-CS than with blended strategy. We suggest that a
CD-CS energy management strategy is more appropriate for
the driving conditions on urban Harbin roads.
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Harmony search algorithm (HS) is a new metaheuristic algorithm which is inspired by a process involving musical improvisation.
HS is a stochastic optimization technique that is similar to genetic algorithms (GAs) and particle swarm optimizers (PSOs). It has
been widely applied in order to solve many complex optimization problems, including continuous and discrete problems, such
as structure design, and function optimization. A cooperative harmony search algorithm (CHS) is developed in this paper, with
cooperative behavior being employed as a significant improvement to the performance of the original algorithm. Standard HS just
uses one harmony memory and all the variables of the object function are improvised within the harmony memory, while the
proposed algorithm CHS uses multiple harmony memories, so that each harmony memory can optimize different components of
the solution vector. The CHS was then applied to function optimization problems. The results of the experiment show that CHS
is capable of finding better solutions when compared to HS and a number of other algorithms, especially in high-dimensional
problems.

1. Introduction

Optimization is a very ancient problem which has been re-
searched by numerous mathematicians since time immemo-
rial, including Newton, Gauss, and John von Neumann.
They developed numerous mathematical theories and meth-
ods that made a considerable contribution to optimization.
However, almost all mathematical methods require first-
order derivatives or second-order derivatives, or even higher
derivatives. When the object function is not too complex,
we can compute its derivatives easily, but unfortunately most
object functions in the real world are so complex that we
cannot compute the derivatives, and even worse, they may
have no derivatives at all. In this case, it is very difficult to
implement mathematical methods.

What should we do, then, to solve complex, nonlinear,
nondifferentiable, and multimodal problems? We can per-
haps learn from the nature. Many natural phenomena as well
as the activities of animals provide us with inspiration and we
are able to imitate these phenomena or activities in order to

solve complex problems. Over the last four decades, a large
number of methods inspired by nature have been developed
in order to solve very complex optimization problems [1],
and these were called metaheuristic algorithms. All these
metaheuristic algorithms imitate natural phenomena, such
as evolutionary algorithms (EAs), which include genetic
algorithms (GAs) [2], evolutionary programming (EP) [3],
and evolution strategy (ES) [4], all of which simulate bio-
logical evolution. PSO and ant colony optimization (ACO),
for instance, mimic the foraging behavior of animals [5, 6],
and simulated annealing (SA) simulates physical anneal-
ing process [7]. As a metaheuristic algorithm, HS is no
exception, it is inspired by the improvisation process of
musical performers [8]. Although the algorithms mentioned
above imitate different phenomena, they have some common
factors: (1) they all have a random process; (2) the solutions
that they show us are just approximate results; (3) they all
suffer from the “curse of dimensionality” [9], meaning that
the search spacewill increase exponentially when the number
of the dimensions increases. The probabilities of finding the
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optimality region will thus decrease. One way of overcoming
this drawback is to partition higher dimensional search space
into lower dimensional subspaces.

Potter andDe Jong [10, 11] have proposed a general frame-
work for cooperative coevolutionary algorithms and then
they applied the method to the GA (CCGA). They suggested
that the higher dimensional solution vectors should be split
into smaller vectors, with each vector just being a part of
a complete solution, so that they must cooperate with each
other to constitute a potential solution. In this paper, we
apply Potter and De Jong’s cooperative method to the HS to
enhance the performance of standard HS.

The rest of this paper is organized as follows. Section 2
presents an overview of the standard HS and some other
improved HS algorithms and Section 3 demonstrates the
convergence of HS and explains why the improved HS
performs better than the standard HS. In Section 4, the
cooperative method is briefly introduced, and then the
proposed CHS algorithm is elaborated. Section 5 describes
the benchmark functions used to test the new algorithm and
the experimental results can be found in Section 6. Finally,
the conclusions are given in Section 7.

2. Harmony Search Algorithms

The HS algorithm, originally conceived by Geem et al. in
2001 [8], was inspired by musical improvisation. There are
always three ways open to a musician [12], when he or she
is improvising. The first is when he or she plays a piece of
music that he or she remembers exactly; the second is when
a musician plays something that is similar to what he or she
remembers exactly, the musician possibly being engaged in
improvisation based on the original harmony by adjusting
the pitch slightly. The last one involves a composition that
is new. The process employed by the musicians in order
to find the best harmony is likely to be the process of
optimization. In fact, the HS algorithm mimics the process
used to solve optimization problems, with this algorithm
being widely applied in order to solve optimization problems,
includingwater network design [13, 14], PID controller design
[15], Cluster analysis, and function optimization [16, 17].
Several approaches have been taken in order to improve the
performance of the standardHS, some of which are discussed
in the following subsections.

2.1. The Standard HS (SHS). When we use an algorithm to
solve problems, firstly we must know what the problems
are. Assuming that there is an unconstrained optimization
problem which can be described as follows:

min 𝑓 (𝑋)

s.t. 𝐿𝑥
𝑖
≤ 𝑥
𝑖
≤ 𝑈𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

(1)

where𝑓(𝑋) is the object function,𝑋 is the set of each decision
variable, 𝑥

𝑖
is the 𝑖th decision variable, 𝐿𝑥

𝑖
and 𝑈𝑥

𝑖
are the

lower and upper bounds of the 𝑖th decision variable, and 𝑛 is
the number of decision variables. To apply SHS to solve the

optimization problem mentioned above, five steps should be
taken [1] as follows.

Step 1. Initialize the problem algorithm parameters. The
problem parameters like 𝑛, 𝐿𝑥

𝑖
, 𝑈𝑥
𝑖
should be initialized

in this step. In addition, four algorithm parameters should
be initialized, including harmony memory size (HMS), har-
monymemory considering rate (HMCR), pitch adjusting rate
(PAR), and themaximumnumber of improvisation (𝑇max), or
stopping criterion.

Step 2. Initialize the harmony memory.The SHS is similar to
GAs. GAs are population based optimization algorithms, but
the “population” in SHS is referred to as harmony memory
(HM), which is composed of solution vectors. The structure
of HM is as follows:

HM =

[
[
[
[
[
[

[

𝑥
1

1
𝑥
1

2
⋅ ⋅ ⋅ 𝑥

1

𝑛

𝑥
2

1
𝑥
2

1
⋅ ⋅ ⋅ 𝑥

2

𝑛

...
... d

...

𝑥
HMS
1

𝑥
HMS
2

⋅ ⋅ ⋅ 𝑥
HMS
𝑛

]
]
]
]
]
]

]

, (2)

where 𝑥𝑖
𝑗
is the 𝑗th decision variable of the 𝑖th solution vector.

Generally, we initialize the HM randomly. For 𝑥𝑖
𝑗
, it can be

generated by using the following equation:

𝑥
𝑖

𝑗
= 𝐿𝑥
𝑗
+ (𝑈𝑥

𝑗
− 𝐿𝑥
𝑗
) × rand ( ) , (3)

where rand( ) is a random number between 0 and 1.

Step 3. Improvise a new harmony.This step is the core step of
SHS. A new harmony vector 𝑋new

= (𝑥
new
1

, 𝑥
new
2

, . . . , 𝑥
new
𝑛

)

is improvised according to these three rules: (1) harmony
memory consideration; (2) pitch adjustment; (3) randomiza-
tion. The probabilities of harmony consideration and pitch
adjustment are dependent on HMCR and PAR. For instance,
the 𝑖th variable 𝑥

new
𝑖

of the new harmony vector can be
improvised as follows:

𝑥
new
𝑖

= 𝑥
new
𝑖

∈ {𝑥
1

𝑖
, 𝑥
2

𝑖
, . . . , 𝑥

HMS
𝑖

} , (4)

𝑥
new
𝑖

= 𝐿𝑥
𝑗
+ (𝑈𝑥

𝑖
− 𝐿𝑥
𝑖
) × rand ( ) . (5)

In fact, before the variable is generated, we should gener-
ate a random number 𝑟

1
between 0 and 1, then we compare

𝑟
1
with HMCR, if 𝑟

1
≤ HMCR; (4) is used to improvise the

variable; otherwise, the variable will be improvised by using
(5). For example, if HMCR = 0.95, then the HS algorithm
will choose a decision variable from the HM with a 95%
probability. And if the variable is chosen from the HM, then
it will be adjusted with probability PAR as follows:

𝑥
new
𝑖

= 𝑥
new
𝑖

± bw × rand ( ) with probability PAR, (6)

where bw is an arbitrary distance bandwidth and rand( ) is a
random number between 0 and 1.

Step 4. Update the HM. If the new improvised harmony
vector is better than the worst harmony vector in the HM in
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Initialize parameters and HM
while 𝑡 < 𝑇max do

For 𝑖 = 1 to 𝑛 do
if rand() ≤ HMCR then
𝑥
new
𝑖

= 𝑥
𝑗

𝑖
, where 𝑗 ∼ 𝑈(1, 2, . . . ,HMS)

if rand() ≤ PAR then
𝑥
new
𝑖

= 𝑥
new
𝑖

± bw × rand()
end if

else
𝑥
new
𝑖

= 𝐿𝑥
𝑗
+ (𝑈𝑥

𝑖
− 𝐿𝑥
𝑖
) × rand()

end if
end for
Update HM

end while

Pseudocode 1: Pseudocode for the SHS algorithm.

terms of the object function value, the worst harmony in the
HM is superseded by the new harmony vector.

Step 5. Check stopping criterion. If the stopping criterion is
satisfied, the iteration is terminated. If not, Steps 3 and 4 are
repeated.

The pseudocode of SHS is shown in Pseudocode 1.

2.2. Improved HSs. The SHS algorithm was introduced in the
last subsection, and in this subsection several improved HSs
are introduced. PAR and bw are two important parameters of
HS, deciding the accuracy of the solution. As the number of
iteration increases, theHMbecomes better and the solution is
closer to the global optimal position.We should use a smaller
bw to adjust the pitches, and this adjustment should be with a
higher probability, but all parameters are fixedwithin the SHS
algorithm, meaning that they cannot change. If we choose a
low PAR and a narrow bw, the SHS will converge slowly, but
on the other hand, if we choose a very high PAR and a wide
bw, the SHS will converge fast, although the solution may
scatter around some potential optimals as a random search.
A dynamic adjustment strategy for parameters, especially for
PAR and bw, is therefore very necessary.

A dynamic adjustment strategy for PAR and bw was
proposed by Mahdavi et al. in 2007 [18]. They suggested
that PAR should increase linearly and bw should index
decrease.They can change with generation number as shown
in Figure 1 by using the following equations:

PAR (𝑡) = PARmin +
PARmax − PARmin

𝑇max
× 𝑡,

bw (𝑡) = bwmax × exp(
ln (bwmin/bwmax)

𝑇max
× 𝑡) ,

(7)

where PAR(𝑡) and bw(𝑡) are the pitch adjusting rate and
bandwidth for each generation, PARmin and bwmin are the
minimum pitch adjusting rate and bandwidth, PARmax and
bwmax are the maximum pitch adjusting rate and bandwidth,
and 𝑡 is the generation number. The drawback of the IHS

is that we have to specify the PARmin, PARmax, bwmin, and
bwmax, which is essentially very difficult, and we are unable
to guess without experience.

The IHS algorithm merely changes the parameters
dynamically, while some other improved HSs are capable of
changing the search strategy of SHS, such as the global best
HS (GHS) proposed by Omran and Mahdavi [19]. The GHS
is inspired by the concept of swarm intelligence as proposed
in PSO. In PSO, the position of each particle presents a
candidate solution, so that, when a particle flies through the
search space, the position of the particle is influenced by the
best position itself has visited so far and the position of the
best particle among the swarm, in otherwords, there are some
similarities between the newposition and the best position. In
GHS, the new harmony vector can mimic the best harmony
in the HM.The difference between GHS and SHS is the pitch
adjustment strategy, with the variable being adjusted in SHS
using (6), while in GHS it is adjusted using the following
equation:

𝑥
new
𝑖

= 𝑥
best
𝑘

with probability PAR, (8)

where best is the index of the best harmony in the HM and
𝑘 ∼ 𝑈(1, 𝑛).

The results of the experiment show that these two
improved harmony search algorithms can find better solu-
tions when compared with SHS.

3. Convergence of HS Algorithm

As a metaheuristic algorithm, HS is capable of finding local
optima and the global optimum, but why can it converge
on local or global optima, and which operator or parameter
may have effects on the speed of convergence? All of these
problems are unsolved. In this section, we endeavor to solve
the problems.

As we noted in the last section, HS has an operator
referred to as “HMupdating,” the fourth step of HS.This is an
indispensable step for HS, because this operator guarantees
the convergence of HS, without it HS may not find even a
localminimum. In order to explain this, some definitions and
theorems are necessary.

Definition 1 (monotone sequences). A sequence {𝑥
𝑛
} is said

to be monotonically increasing provided that

𝑥
𝑛+1

≥ 𝑥
𝑛 (9)

for every natural number 𝑛.
A sequence {𝑥

𝑛
} is said to be monotonically decreasing

provided that

𝑥
𝑛+1

≤ 𝑥
𝑛 (10)

for every natural number 𝑛.
A sequence {𝑥

𝑛
} is called monotone if it is either mono-

tonically increasing or monotonically decreasing.

Theorem 2 (the monotone convergence theorem). A mono-
tone sequence converges if and only if it is bounded.
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Generation number

PA
R

(a)

Generation number

bw

(b)

Figure 1: Variation of PAR and bw versus generation number.

Proof. Firstly, let us suppose that the sequence {𝑥
𝑛
} is a

monotonically increasing sequence. Then we can define 𝑆 =
{𝑥
𝑛
| 𝑛 ∈ N}, assuming that 𝑆 is bounded above. According

to the Completeness Axiom, 𝑆 has a least upper bound, we can
call it 𝑥. We claim that the sequence {𝑥

𝑛
} converges to 𝑥. To

claim this, wemust prove that for all integers, 𝑛 ≥ 𝑁 and 𝜖 > 0
provided that

𝑥𝑛 − 𝑥
 < 𝜖, (11)

that is,

𝑥 − 𝜖 < 𝑥
𝑛
< 𝑥 + 𝜖 ∀ integers 𝑛 ≥ 𝑁. (12)

Since 𝑥 is the least upper bound for the set 𝑆, so

𝑥
𝑛
≤ 𝑥 < 𝑥 + 𝜖 ∀ integers 𝑛 ≥ 𝑁. (13)

Furthermore, 𝑥 − 𝜖 is not an upper bound for set 𝑆, so
there must be a natural number𝑁 such that 𝑥−𝜖 < 𝑥

𝑁
, since

the sequence is monotonically increasing, so

𝑥 − 𝜖 < 𝑥
𝑁
≤ 𝑥
𝑛

∀ integers 𝑛 ≥ 𝑁. (14)

We have now proved that a monotonically increasing
sequence must converge to its least upper bound and, in the
same way, we can also claim that a monotonically decreasing
sequence must converge to its greatest lower bound.

To return to the HS algorithmmentioned in the previous
section: when HS finds a solution which is better than the
worst harmony in the current HM, then the operator “HM
updating” is implemented, which means that for the current
iteration, the algorithm finds a solution that is not worse than
the one that was found by the algorithm in the last iteration.
Suppose that the problem to be solved is the minimum
problem described as (1), the current solution offered is 𝑥

𝑛+1

and the last found solution is 𝑥
𝑛
, then we have 𝑥

𝑛+1
≤ 𝑥
𝑛
, and

if we let the best solution in HM for each iteration constitute
a sequence 𝑆 = {𝑥

𝑛
| 𝑛 ∈ 𝑁}, the sequence must be a

monotonically decreasing sequence as in Definition 1, and as
we have proved, if the sequence has a greatest lower bound,
the sequence must converge to the greatest lower bound.

In fact, for a continuous function, suppose that the
function is named 𝑓(𝑋), and if 𝑋 ∈ [𝑎, 𝑏]

𝑛, where 𝑛 is the
dimension of 𝑋, then there must be a number 𝑓(𝑋

1
) and a

number 𝑓(𝑋
2
) (assuming that 𝑓(𝑋

1
) ≤ 𝑓(𝑋

2
)) satisfying the

following inequality:

𝑓 (𝑋
1
) ≤ 𝑓 (𝑋) ≤ 𝑓 (𝑋

2
) . (15)

So in the case that the object function𝑓(𝑋) is continuous
and𝑥
𝑖
∈ [𝑎
𝑖
, 𝑏
𝑖
], where 𝑖 = 1, 2, . . . , 𝑛 and𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
),

then the sequence {𝑓
𝑘
}which is composed of the best solution

𝑓
𝑘
in the HM for the 𝑘th iteration is bounded and 𝑓(𝑋

1
) <

𝑓
𝑘
< 𝑓(𝑋

2
), as we have mentioned above for a minimum

problem, the sequence {𝑓
𝑘
} is monotonically decreasing, so

{𝑓
𝑘
}must converge.
We have explained that HS must converge, but can it

converge to 𝑓(𝑋
1
)? In fact, 𝑓(𝑋

1
) is the global optimum of

the object function. FromTheorem 2, we know that if 𝑓(𝑋
1
)

is the greatest lower bound, {𝑓
𝑘
}must converge to𝑓(𝑋

1
).The

problem iswhether𝑓(𝑋
1
) is the greatest lower bound for {𝑓

𝑘
}.

This is, in fact, difficult to solve. HS is a stochastic algorithm
and for each iteration, the best solution in HM is random
so that it is not a fixed predictable number, but we are able
to calculate the probability that the HM is updated with. An
example would be as follows: suppose that the object function
is a minimum problem, the expression is 𝑓(𝑥) = 𝑥

2 which
has only one dimension, and 𝑥 ∈ [𝑥

𝐿
, 𝑥
𝑈
], and HMS = 1,

for the 𝑘th iteration, the best solution is 𝑓(𝑥
𝑘
) (suppose that

𝑥
𝑘
> 0), so the HM is updated with probability HMCR ×

PAR× 0.5 + (1 −HMCR) × (𝑥
𝑘
/(𝑥
𝑈
− 𝑥
𝐿
)) when 2𝑥

𝑘
> bw or

HMCR×PAR×0.5×(2𝑥
𝑘
/bw)+(1−HMCR)×(𝑥

𝑘
/(𝑥
𝑈
−𝑥
𝐿
))

when 2𝑥
𝑘
≤ bw. The higher the probability is, the more

quickly the HM is updated. From the expression, it is clear
that the probability decreases by 𝑥

𝑘
, so that as the iteration

number increases, the probability decreases sharply, and the
convergence curve becomes flatter.
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Initialize parameters of algorithm
for each subpopulation do

Initialize all the subpoputions randomly
Evaluate the fitness of each individual

end for
while termination condition is false do

for each subpopulation do
Using GA operators to generate offsprings
Evaluate the fitness of each off spring

end for
end while

Pseudocode 2: Pseudocode for the CCGA.

This might also explain why IHS performs better than
SHS. The two parameters PAR and bw are very important
for HS. In SHS, the two parameters are fixed while in IHS,
PAR increases linearly and the bw index decreases, so that,
from the expression of the HM updated probability, we can
see that this is very reasonable, owing to the fact that this
strategy is capable of making the probability decrease slowly,
with IHS generally performing better. The results of this
experiment are demonstrated in Section 6.

4. CHS Algorithm

4.1. A Brief Overview of Cooperative Method. The natural
world is a very complex system, and evolution is one element
within it. EAs imitate the evolution of species, but they are
just a simple simulation and almost all EAs just mimic the
evolution of one species. There are a large number of species
on the earth, with some of them being closely associated
[20]. In order to survive, different individuals from different
species or the same species may compete or cooperate with
each other. Cooperative coevolutionary algorithms just act
as models of symbiotic coevolution. The individuals are
from different species or subpopulations, and they have
to cooperate with some others. The difficulty involved in
cooperative coevolutationary algorithms is how to split the
fitness that is achieved by collective effort definitively [21, 22].

Potter and De Jong applied the method to GA, com-
ing up with CCGA. They evolved the solutions in differ-
ent subpopulations, and each subpopulation has just one
dimension of the solution vector. The pseudocode for the
CCGA is given in Pseudocode 2. The initial fitness of each
subpopulation member is computed by combining it with a
random individual from each of the other subpopulations
and then using the object function to evaluate the complete
solution. After initializing, one individual of a subpopulation
cooperates only with the best individual from each of the
other subpopulations.

Potter and De Jong also found that the cooperative
approach does not perform well when problem parameters
are strongly interdependent, due to the greediness of the
credit assignment approach [11]. To reduce greediness, Potter
and De Jong suggested that random collaboration should be
used to generate a complete solution. An individual from

Initialize the parameters
Divide the 𝑛 decision variables into𝑚 groups
for each HM do

Initialize HM randomly
end for
while termination condition is false do

calculate PAR and bw by using
Equation (7)
for each HM do

generate a new harmony
evaluate the new harmony

end for
end while

Pseudocode 3: Pseudocode for the CHS algorithm.

one subpopulation can collaborate with the best individual
of each of the other subpopulations and then constitute one
complete solution, or the individual can cooperate with one
individual of each of the other subpopulations randomly and
then generate another solution. The fitness of the individual
is equal to the better fitness between the two solutions.

4.2. The CHS. In the CHS algorithm, to reduce the complex-
ity, we use 𝑚 (𝑚 ≤ 𝑛) HMs instead of 𝑛 HMs, where 𝑛 is the
number of decision variables. The pseudocode for CHS algo-
rithm is shown in Pseudocode 3. Each HMmay thus contain
more than one decision variables, so that, for each HM, we
can use the HS operators including harmony consideration
and pitch adjustment to generate a new harmony vector, but
the vector is just a part of a complete solution vector, and
it must collaborate with harmony vectors from every other
HM, and as we have mentioned above, when initializing
HMs, the cooperation is random. When calculating a new
harmony vector which is improvised by using HS operators,
it cooperates only with the best ones of each HM. This is
similar to several musicians working together to find the best
harmony, with each musician being in charge of a part of the
whole symphony, assuming that all of them are selfless.When
they work together, each one shares the best harmony that
he or she has found by himself or herself. In our daily life,
teamwork is very universal, and generally it is more effective
than work being carried out alone.

We should ask why it brings better solutions when using
cooperativemethod.There are fewmathematical foundations
for themethod, but this can be explained by using an example.
HM updating is very important for the HS algorithm, when
the HM is updated, it indicates that a better solution may
be found. If the HM is updated with a higher probability
or in other words, the algorithm has a higher probability of
finding better solutions, it will converge faster. For instance,
suppose that the object function is min𝑓(𝑥, 𝑦) = 𝑥

2
+ 𝑦
2,

it has two decision variables 𝑥 and 𝑦, and 𝑥 ∈ [𝑥min, 𝑥max],
𝑦 ∈ [𝑦min, 𝑦max]. It is quite obvious that the origin is the
global optimum. Assume that the worst solution vector in the
initial HM is (𝑥

0
, 𝑦
0
), which is called point 𝐴 and is shown

in Figure 2. If we use the CHS algorithm, two HMs will be
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Figure 2: Diagram illustrating the advantage of CHS algorithm.

used, one HM (HM
1
) representing 𝑥 and another (HM

2
)

representing 𝑦. In one cycle, the HMs are used one by one
and when HM

1
is used to generate a new harmony vector,

this new vector must cooperate with the best one in HM
2
in

order to constitute a complete solution vector, meaning that
𝑦 is fixed when the algorithm searches in the subspace 𝑥, and
it is the same for 𝑦.

When 𝑦 is fixed, the CHS algorithm is able to find a
better solution with probability 𝑑

2
/𝐿
2
, and when 𝑥 is fixed,

the probability is 𝑑
1
/𝐿
1
, so after one cycle, the CHS algorithm

has the 𝑃CHS probability of updating the HM, where 𝑃CHS =
𝑑
1
/𝐿
1
+ 𝑑
2
/𝐿
2
, but for SHS algorithm, if the HM is updated,

the algorithm must find a solution which is located in the
circular region, so the HM is updated with probability 𝑃SHS,
where 𝑃SHS = 𝜋𝑅

2
/𝐿
1
𝐿
2
. Also, 𝑃CHS = 𝑑

1
/𝐿
1
+ 𝑑
2
/𝐿
2
=

(𝑑
2
𝐿
1
+𝑑
1
𝐿
2
)/𝐿
1
𝐿
2
, because of 𝑑

2
𝐿
1
+𝑑
1
𝐿
2
> 𝑑
2

2
+𝑑
2

1
> 𝜋𝑅
2,

so 𝑃CHS > 𝑃SHS, which means that the CHS algorithm has a
higher probability of updating HM than the SHS algorithm,
meaning that the CHS is able to find better solutions than the
SHS algorithm.

The cooperativemethod also has disadvantages, however,
with one being that the CHS algorithm is easier to trap in
a local minimum. This phenomenon is shown in Figure 3,
in which point 𝐴 is a local minimum point and point 𝑂 or
the origin is the global minimum point; the area where 𝐴 is
located in is local minimum area and the global minimum
region is where 𝑂 is located. If the algorithm is trapped in
point 𝐴, when we use the CHS algorithm in every iteration,
only one subspace is searched. Assuming that 𝑦 is fixed and 𝑥
is searched, irrespective of the value of 𝑥, the CHS algorithm
has no way of reaching the global minimum region, and it
is the same for 𝑦. In this case, the CHS algorithm will never
escape from the local minimum. For the SHS algorithm,
however, it is possible to reach the global minimum area,
although the probability is low.

y

x

A

O

Figure 3: Diagram illustrating the disadvantage of CHS algorithm.

5. Experimental Setup

5.1. Benchmark Functions. Ten benchmark functions (five
unrotated and five rotated) have been chosen to test the
performance of the CHS algorithm, and SHS, his, and GHS
algorithms are also tested for the sake of comparison. The
unrotated functions are as follows.

The Quadric function is

𝑓
1
(𝑋) =

𝑛

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

, (16)

where 𝑛 = 30, 𝑋 ∈ [−100, 100]
30. This function is a non-

separable unimodal function, with the globalminimumpoint
being𝑋∗ = (0, 0, . . . , 0).

Ackley’s function is

𝑓
2
(𝑋) = −20 exp(−0.2√ 1

𝑛

𝑛

∑

𝑖=1

𝑥2
𝑖
) + 20

− exp(1
𝑛

𝑛

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 𝑒,

(17)

where 𝑛 = 30, 𝑋 ∈ [−30, 30]
30. Ackley’s function is a

separable multimodal function, with the global optimum
being𝑋∗ = (0, 0, . . . , 0).

The Generalized Rastrigin function is

𝑓
3
(𝑋) =

𝑛

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) , (18)

where 𝑛 = 30, 𝑋 ∈ [−5.12, 5.12]
30. The Rastrigin function

is a separable multimodal function, with the global optimum
being𝑋∗ = (0, 0, . . . , 0).

The Generalized Griewank function is

𝑓
4
(𝑋) =

1

4000

𝑛

∑

𝑖=1

𝑥
2

𝑖
−

𝑛

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖
) + 1, (19)
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where 𝑛 = 30, 𝑋 ∈ [−600, 600]
30. This function is a very

complex, nonlinear, separable, and multimodal function and
is very difficult for optimization algorithms. The global
optimum is𝑋∗ = (0, 0, . . . , 0).

Rosenbrock’s function (or Banana-valley function) is

𝑓
5
(𝑋) =

𝑛−1

∑

𝑖=1

(100(𝑥
2

𝑖
− 𝑥
𝑖+1
)
2

+ (1 − 𝑥
𝑖
)
2

) , (20)

where 𝑛 = 30,𝑋 ∈ [−2.048, 2.048]
30. Rosenbrock’s function is

a naturally nonseparable function, the global optimum being
𝑋
∗
= (1, 1, . . . , 1)which is located in a narrow valley; it is very

hard for algorithms to find the correct direction and reach to
the global minimum area.

The parameters of rotated functions are the same as
unrotated functions and all the orthogonalmatrices are fixed,
meaning that all functions are rotated at a fixed angle.

5.2. Configuration of Algorithms. The iteration number of
each experiment is 3 × 10

4, with all the experiments being
ran independently 30 times.The results reported are averages,
and the best solutions have been calculated from all 30 runs.
The parameters of the algorithms are as follows.

(i) Parameters of the SHS algorithm: HMS = 30 and
HMCR = 0.95. This was suggested by Yang [12].
PAR = 0.3 and bw = 0.01. The values of the last two
parameters (PAR, bw) were suggested by Omran and
Mahdavi [19].

(ii) Parameters of the IHS algorithm: HMS = 30 and
HMCR = 0.95, with PAR increasing linearly over
time (by using (7)), and PARmin = 0.01, PARmax =

0.99 which were suggested by Omran and Mahdavi
[19]. bw decreases by using (6), and bwmin = 1𝑒

−005,
bwmax = 5.

(iii) Parameters of the GHS algorithm: HMS = 30,
HMCR = 0.95, PARmin = 0.01, and PARmax = 0.99.

(iv) Parameters of the CHS algorithm: HMS = 30,
HMCR = 0.95, PARmin = 0.01, PARmax = 0.99,
bwmin = 1𝑒

−005, bwmax = 5, and the number of groups
𝑚 = 6, 10, 15, 30.

6. Results

This section shows the experimental results gathered by
allowing all of the methods tested to run for a fixed number
of function evaluations, that is, 3 × 10

4. All the results are
shown in Table 1 to Table 10, for each table, the first column
represents the algorithms used, the second lists the mean
error and 95% confidence interval after 3×104 times iteration,
and the third lists the best solution found by the algorithm
after 30 runs. We should not forget that all the functions have
a minimum function value of 0.

Table 1 shows the experimental results of the unrotated
Quadric function; this is a nonseparable function, and it is
hard to optimize for HS algorithms, but GHS is better able
to solve the problem during the 30 runs; CHS

30
also finds a

Table 1: Results of unrotated Quadric function.

Algorithm Mean Best
SHS 5.46𝑒 + 003 ± 5.97𝑒 + 002 2.38𝑒 + 003

IHS 5.87𝑒 + 003 ± 7.37𝑒 + 002 1.67𝑒 + 003

GHS 2.55𝑒 + 003 ± 2.11𝑒 + 003 3.64𝑒 + 000

CHS6 1.91𝑒 + 003 ± 2.61𝑒 + 001 5.53𝑒 + 002

CHS10 2.05𝑒 + 003 ± 3.82𝑒 + 002 9.13𝑒 + 002

CHS15 2.29𝑒 + 003 ± 6.42𝑒 + 002 3.97𝑒 + 002

CHS30 1.24𝑒 + 003 ± 4.95𝑒 + 002 6.36𝑒 + 001

Table 2: Results of rotated Quadric function.

Algorithm Mean Best
SHS 8.09𝑒 + 002 ± 3.04𝑒 + 002 9.72𝑒 + 002

IHS 1.09𝑒 + 003 ± 4.35𝑒 + 002 1.05𝑒 + 002

GHS 8.99𝑒 + 002 ± 6.22𝑒 + 002 7.78𝑒 − 002

CHS6 1.78𝑒 + 002 ± 1.16𝑒 + 002 6.24𝑒 − 008

CHS10 1.61𝑒 + 002 ± 1.84𝑒 + 002 2.39𝑒 − 010

CHS15 7.24𝑒 + 001 ± 5.43𝑒 + 001 3.81𝑒 − 011

CHS30 4.33𝑒 + 000 ± 8.31𝑒 + 000 1.04𝑒 − 011

Table 3: Results of unrotated Ackley’s function.

Algorithm Mean Best
SHS 5.54𝑒 − 001 ± 1.16𝑒 − 001 2.96𝑒 − 002

IHS 1.08𝑒 − 002 ± 1.76𝑒 − 002 3.90𝑒 − 005

GHS 1.78𝑒 − 002 ± 5.05𝑒 − 003 5.78𝑒 − 006

CHS6 8.96𝑒 − 006 ± 1.79𝑒 − 007 7.29𝑒 − 006

CHS10 4.86𝑒 − 006 ± 1.31𝑒 − 007 4.01𝑒 − 006

CHS15 1.40𝑒 − 006 ± 4.58𝑒 − 008 1.18𝑒 − 006

CHS30 7.06𝑒 − 008 ± 3.57𝑒 − 009 5.18𝑒 − 008

Table 4: Results of rotated Ackley’s function.

Algorithm Mean Best
SHS 3.95𝑒 + 000 ± 2.37𝑒 − 001 2.62𝑒 + 000

IHS 1.72𝑒 − 003 ± 3.22𝑒 − 003 4.02𝑒 − 005

GHS 3.48𝑒 − 001 ± 2.16𝑒 − 001 6.64𝑒 − 005

CHS6 3.54𝑒 + 000 ± 3.54𝑒 − 001 1.50𝑒 + 000

CHS10 5.33𝑒 + 000 ± 6.98𝑒 − 001 3.03𝑒 + 000

CHS15 7.15𝑒 + 000 ± 9.90𝑒 − 001 2.41𝑒 + 000

CHS30 6.86𝑒 + 000 ± 1.07𝑒 + 000 3.57𝑒 + 000

Table 5: Results of unrotated Rastrigin function.

Algorithm Mean Best
SHS 4.39𝑒 − 001 ± 1.65𝑒 − 001 2.96𝑒 − 002

IHS 1.44𝑒 + 000 ± 3.12𝑒 − 001 2.31𝑒 − 002

GHS 2.20𝑒 − 003 ± 1.28𝑒 − 003 4.41𝑒 − 007

CHS6 3.01𝑒 − 008 ± 1.31𝑒 − 009 2.14𝑒 − 008

CHS10 8.88𝑒 − 009 ± 4.35𝑒 − 010 6.14𝑒 − 009

CHS15 7.59𝑒 − 010 ± 6.88𝑒 − 011 4.63𝑒 − 010

CHS30 1.69𝑒 − 012 ± 2.22𝑒 − 013 7.99𝑒 − 013

satisfying solution. Table 2 shows the experimental results of
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Table 6: Results of rotated Rastrigin function.

Algorithm Mean Best
SHS 1.92𝑒 + 002 ± 2.99𝑒 + 000 1.77𝑒 + 002

IHS 1.92𝑒 + 002 ± 2.85𝑒 + 000 1.73𝑒 + 002

GHS 1.86𝑒 + 002 ± 3.81𝑒 + 000 1.65𝑒 + 002

CHS6 8.22𝑒 + 001 ± 8.38𝑒 + 000 4.38𝑒 + 001

CHS10 1.09𝑒 + 002 ± 1.38𝑒 + 001 4.28𝑒 + 001

CHS15 1.37𝑒 + 002 ± 1.14𝑒 + 001 8.86𝑒 + 001

CHS30 1.71𝑒 + 002 ± 1.38𝑒 + 001 6.96𝑒 + 001

Table 7: Results of unrotated Griewangk function.

Algorithm Mean Best
SHS 1.06𝑒 + 000 ± 7.92𝑒 − 003 1.02𝑒 + 000

IHS 1.05𝑒 + 000 ± 5.35𝑒 − 003 1.02𝑒 + 000

GHS 3.52𝑒 − 002 ± 2.78𝑒 − 002 3.31𝑒 − 006

CHS6 5.02𝑒 − 002 ± 9.63𝑒 − 003 6.61𝑒 − 012

CHS10 7.06𝑒 − 002 ± 2.14𝑒 − 002 1.82𝑒 − 012

CHS15 7.79𝑒 − 002 ± 1.49𝑒 − 002 9.86𝑒 − 003

CHS30 7.07𝑒 − 002 ± 2.03𝑒 − 002 1.72𝑒 − 002

Table 8: Results of rotated Griewangk function.

Algorithm Mean Best
SHS 1.06𝑒 + 000 ± 8.65𝑒 − 003 1.03𝑒 + 000

IHS 1.05𝑒 + 000 ± 6.78𝑒 − 003 1.00𝑒 + 000

GHS 4.79𝑒 − 001 ± 7.81𝑒 − 002 1.36𝑒 − 004

CHS6 9.61𝑒 − 003 ± 3.90𝑒 − 003 4.96𝑒 − 012

CHS10 1.50𝑒 − 002 ± 5.09𝑒 − 003 2.04𝑒 − 012

CHS15 1.22𝑒 − 002 ± 5.19𝑒 − 003 2.53𝑒 − 013

CHS30 1.09𝑒 − 002 ± 5.78𝑒 − 003 8.00𝑒 − 016

Table 9: Results of unrotated Rosenbrock function.

Algorithm Mean Best
SHS 5.54𝑒 + 001 ± 7.88𝑒 + 000 3.85𝑒 + 000

IHS 4.92𝑒 + 001 ± 9.34𝑒 + 000 1.32𝑒 + 001

GHS 6.89𝑒 + 001 ± 1.63𝑒 + 001 2.67𝑒 + 001

CHS6 3.16𝑒 + 001 ± 6.67𝑒 + 000 1.18𝑒 − 002

CHS10 3.57𝑒 + 001 ± 8.76𝑒 + 000 2.36𝑒 + 000

CHS15 2.77𝑒 + 001 ± 7.78𝑒 + 000 4.49𝑒 + 000

CHS30 1.51𝑒 + 001 ± 2.20𝑒 + 000 1.53𝑒 − 003

Table 10: Results of rotated Rosenbrock function.

Algorithm Mean Best
SHS 2.81𝑒 + 001 ± 3.80𝑒 − 001 2.58𝑒 + 001

IHS 2.80𝑒 + 001 ± 3.40𝑒 − 001 2.61𝑒 + 001

GHS 2.91𝑒 + 001 ± 9.03𝑒 − 001 2.78𝑒 + 001

CHS6 2.99𝑒 + 001 ± 5.48𝑒 + 000 2.11𝑒 + 001

CHS10 2.55𝑒 + 001 ± 4.57𝑒 + 000 1.64𝑒 + 001

CHS15 2.24𝑒 + 001 ± 1.45𝑒 + 000 1.67𝑒 + 001

CHS30 1.89𝑒 + 001 ± 1.18𝑒 + 000 1.63𝑒 + 001

the rotated Quadric function. The results are very different
from those shown in Table 1.

The results of the experiment show that the rotated
Quadric function is more easily optimized by HS algorithms
and that the CHS can always find more satisfying solutions
than other HS algorithms. As the number of groups 𝑚

increases, the solution becomes better and better, but at the
same time, the algorithm becomes more and more complex.
Figure 4 shows the best function value profile of each
algorithm both for unrotated and rotated Quadric functions.
This figure is a more visual representation. It shows the
best results among 30 independent runs for each algorithm.
From Figure 4, we can deduce that in unrotated cases, all the
algorithms converge very sharply, while in rotated cases, the
solutions found by CHS are better.

The results of Ackley’s function are very interesting and
very different from the results of the Quadric function.
Table 3 shows the experimental results of unrotated Ack-
ley’s function; this is a multimodal function and is easily
optimized by HS algorithms. Almost all the algorithms are
capable of finding a satisfactory solution, but among the
tested algorithms, CHS performs better with both the mean
and the best results than the other algorithms, and the higher
𝑚 is, the better the solution is. However, in terms of the
rotated Ackley’s function, CHS does not perform as well as
it is illustrated in Table 4. In terms of the rotated Ackley’s
function, IHS and GHS perform better, especially the IHS
algorithm. This can be deduced from Figure 5. When the
search space is rotated, all the algorithms perform worse,
especially CHS, the performance of which is as bad as SHS.
GHS converges very fast to a local optimum, although it is
capable of finding a better solution. This is because GHS
resembles the standardPSO,which is not good at dealingwith
multimodal problems.

The Rastrigin function is also a multimodal function
with many local optima. In an unrotated case, CHS performs
relatively well, especially CHS

30
. It is the performance leader,

as shown in Table 5. The results of the experiment are very
similar to those observed with unrotated Ackley’s function:
the higher𝑚 is, the better the solution found by CHS will be.
In the rotated case, however, none of the algorithms performs
so well, as shown in Table 6. For CHS, with the increase of𝑚,
themean of the solutions becomes worse, which is the reverse
of the unrotated case. Figure 6 shows the best function value
profile. From Figure 6(a), we can find that, generally, CHS
converges, offering a better solution faster, while Figure 6(b)
shows a very different result.

Tables 7 and 8 show the results of the Griewank function,
which is a nonlinear multimodal and complex function. In
unrotated cases, CHS performs better than both SHS and
IHS, but not so well as GHS. Furthermore, when𝑚 increases,
the performance of CHS is very similar. This is very different
from the results of unrotated Ackley’s function and unrotated
Rastrigin function, which are shown from Table 3 to Table 6.
In rotated cases, the mean for each algorithm is very similar,
but the best solutions for each algorithm are distinct from
each other, as shown in Table 8. We might also observe that
the higher𝑚 is, the better the solution found byCHS. Figure 7
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Figure 4: Quadric (𝑓
1
) best function value profile. (a) Unrotated Quadric best function value profile. (b) Rotated Quadric best function value

profile.
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5
) best function value profile. (a) Unrotated Rosenbrock best function value profile. (b) Rotated Rosenbrock best

function value profile.

shows the best function value profile for each algorithm.
For both the unrotated Griewank function and the rotated
Griewank function, SHS and IHS trap in a local optimum
easily, but GHS is capable of finding a better solution.

The results of the Rosenbrock function are shown in
Tables 9 and 10. The global optimum of the Rosenbrock
function is located in a narrow valley so that it is very difficult
for the algorithms to find the correct direction in order to
reach the global region, and thus, none of the algorithms is
satisfactory, especially in rotated cases. This is shown more
visually in Figure 8.

In this section, we have examined the results of the
experiments and from these results, it has been possible to
deduce that CHS is capable of solving all the problems that
can be solved by SHS. In most cases, the results found by
CHS are better than those found by the SHS algorithm or
the IHS algorithm.We should, however, bear inmind the “no
free lunch” theory, which acts as a reminder that no algorithm
is capable of performing satisfactorily for all problems. Each
algorithm, thus, has its own advantages and, as a result, is able
to deal with one kind of problem only.

7. Conclusions

A cooperative harmony search algorithm has been presented
in this paper, and as the results have shown, this cooperative
approach constitutes a very real improvement in terms of
the performance of SHS. This is especially so regarding
the quality of the solutions, and in most cases, the higher
the number of groups 𝑚, the better the solution. CHS can
furthermore be applied as a solution to all the same problems

as the SHS algorithm, so that, when the dimensionality of the
problem increases, the performance of the CHS algorithm is
significantly better.

Despite the fact that the CHS algorithm has numer-
ous advantages, there are also some shortcomings. As we
mentioned in Section 4, the CHS algorithm may be more
easily trapped in a local optimum. As the CHS algorithm is
not an answer to every problem, we must ask ourselves the
question of when exactly it is that the CHS algorithm can
perform better and which kinds of problems can be solved
satisfactorily by the CHS algorithm. This is a problem that
should be solved urgently. Another unsolved problem is why
the cooperative method is actually better. We explained this
in Section 4 by means of examples, but the experiment still
requires mathematical analysis and proof.

Another aspect to which attention should be paid is the
mathematical analysis of the HS algorithm. Although we
have proved that the SHS algorithm must converge, can it in
fact converge to the global optimum or to a local optimum?
In addition, it is not clear that what the influences the
parameters have on HS algorithm are, as all the parameters
used here have been suggested by other scholars or selected
by experience. If someone were to provide a mathematical
analysis for the parameters, it would be very helpful for the
future development of the HS algorithm.
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This paper investigates the multipulse heteroclinic bifurcations and chaotic dynamics of a laminated composite piezoelectric
rectangular plate by using an extended Melnikov method in the resonant case. According to the von Karman type equations,
Reddy’s third-order shear deformation plate theory, andHamilton’s principle, the equations of motion are derived for the laminated
composite piezoelectric rectangular plate with combined parametric excitations and transverse excitation. The method of multiple
scales and Galerkin’s approach are applied to the partial differential governing equation. Then, the four-dimensional averaged
equation is obtained for the case of 1 : 3 internal resonance and primary parametric resonance. The extended Melnikov method is
used to study the Shilnikov typemultipulse heteroclinic bifurcations and chaotic dynamics of the laminated composite piezoelectric
rectangular plate. The necessary conditions of the existence for the Shilnikov type multipulse chaotic dynamics are analytically
obtained. From the investigation, the geometric structure of the multipulse orbits is described in the four-dimensional phase
space. Numerical simulations show that the Shilnikov type multipulse chaotic motions can occur. To sum up, both theoretical
and numerical studies suggest that chaos for the Smale horseshoe sense in motion exists for the laminated composite piezoelectric
rectangular plate.

1. Introduction

The need for high-speed, light-weight, and energy-saving
structures in the aerospace and aviation industry has led
to the composite materials instead of traditional materi-
als. Additional requirements for multifunctionality, active
vibration, shape control, vibration suppression, and acoustic
control have made the development of smart and intelligent
structures. A piezoelectric composite laminate is composed
of piezoelectric layers which are embedded in laminated
composite structures or are boned on the surface of struc-
tures.The direct and converse piezoelectric effects are used to
suppress the transient vibration and to control the deforma-
tion, shape, and buckling of the structures. Such lightweight
flexible structures generate large deformations, geometrical
nonlinearity, and structural instability when piezoelectric
composite laminates are subjected to the coupling between
the mechanical and electrical loads. Therefore, it is neces-
sary to study geometrically nonlinear effects on dynamic
characteristics of structures in order to accurately design

and effectively control vibrations of piezoelectric composite
laminate structures. It is very important to investigate the
large amplitude nonlinear vibrations of smart structures with
piezoelectric materials in order to achieve and predict the
desired performance of the systems.

Recently, the studies on dynamics of composite structures
with piezoelectric materials have made some progress. Tzou
et al. [1] used spatially distributed orthogonal piezoelectric
actuators to perform the distributed structural control of
elastic shell. They utilized a gain factor and a spatially dis-
tributed mode actuator function to describe modal feedback
functions. Purekar et al. [2] presented phased array filters
with piezoelectric sensors to detect damage in isotropic
plates and adopted wave propagation to describe plate
dynamics. Ishihara and Noda [3] took into account the
effect of transverse shear to analyze the dynamic behavior
of the laminate composed of fiber-reinforced laminae and
piezoelectric layers constituting a symmetric cross-ply lam-
inate rectangular plate with simply supported edges. Oh [4]
considered snap-through thermopiezo-elastic behaviors to
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examine the buckling bifurcation and sling-shot buckling of
active piezo-laminated plates. Lee et al. [5] employed third-
order shear deformation theory and nonlinear finite element
to canvass deflection suppression characteristics of laminated
composite shell structures with smart material laminae.
Panda andRay [6] exploited the first-order shear deformation
theory and the three-dimensional finite element method to
delve into the open-loop and closed-loop nonlinear dynamics
of functionally graded plates with the piezoelectric fiber-
reinforced composite material under the thermal environ-
ment. Dumir et al. [7] used the extendedHamilton’s principle
to derive the coupled nonlinear equations of motion and the
boundary conditions for buckling and vibration of symmet-
rically laminated hybrid angle-ply piezoelectric panels under
in-plane electrothermomechanical loading. Yao and Zhang
[8] employed the third-order shear deformation plate theory
to explore the bifurcations and chaotic dynamics of the four-
edge simply supported laminated composite piezoelectric
rectangular plate in the case of the 1 : 2 internal resonances.

The global bifurcations and chaotic dynamics of high-
dimensional nonlinear systems have been at the forefront
of nonlinear dynamics for the past two decades. There are
two ways of solutions on Shilnikov type chaotic dynamics of
high-dimensional nonlinear systems. One is Shilnikov type
single-pulse chaotic dynamics and the other is Shilnikov
type multipulse chaotic dynamics. Most researchers focused
on Shilnikov type single-pulse chaotic dynamics of high-
dimensional nonlinear systems. Much research in this field
has concentrated on Shilnikov type single-pulse chaotic
dynamics of thin plate structures. Feng and Sethna [9]
utilized the global perturbation method to study the global
bifurcations and chaotic dynamics of the thin plate under
parametric excitation and obtained the conditions in which
the Shilnikov type homoclinic orbits and chaos can occur.
Tien et al. [10] applied the Melnikov method to investigate
the global bifurcation and chaos for the Smale horseshoe
sense of a two-degree-of-freedom shallow arch subjected
to simple harmonic excitation for the case of 1 : 2 internal
resonance. Malhotra and Sri Namachchivaya [11] employed
the averaging method and Melnikov technique to canvass
the local, global bifurcations and chaotic motions of a two-
degree-of-freedom shallow arch subjected to simple har-
monic excitation for the case of 1 : 1 internal resonance. The
global bifurcations and chaotic dynamics were investigated
by Zhang [12] for the simply supported rectangular thin
plates subjected to the parametrical-external excitation and
the parametrical excitation. Yeo and Lee [13] made use of
the global perturbation technique to examine the global
dynamics of an imperfect circular plate for the case of
1 : 1 internal resonance and obtained the criteria for chaotic
motions of homoclinic orbits and heteroclinic orbits. Yu and
Chen [14] adopted the global perturbationmethod to explore
the global bifurcations of a simply supported rectangular
metallic plate subjected to a transverse harmonic excitation
for the case of 1 : 1 internal resonance.

While most of studies are on the Shilnikov type
single-pulse global bifurcations and chaotic dynamics of
high-dimensional nonlinear systems, there are researchers
investigating the Shilnikov type multipulse homoclinic and

heteroclinic bifurcations and chaotic dynamics. So far, there
are two theories of the Shilnikov type multipulse chaotic
dynamics. One is the extended Melnikov method and the
other theory is the energy phase method. Much achievement
is made in the former theory of high-dimensional nonlinear
systems. In 1996, Kovačič and Wettergren [15] used a modi-
fiedMelnikovmethod to investigate the existence of the mul-
tipulse jumping of homoclinic orbits and chaotic dynamics
in resonantly forced coupled pendula. Furthermore, Kaper
and Kovačič [16] studied the existence of several classes of
the multibump orbits homoclinic to resonance bands for
completely integral Hamiltonian systems subjected to small
amplitude Hamiltonian and damped perturbations. Camassa
et al. [17] presented a new Melnikov method which is called
the extended Melnikov method to explore the multipulse
jumping of homoclinic and heteroclinic orbits in a class of
perturbed Hamiltonian systems. Until recently, Zhang and
Yao [18] introduced the extended Melnikov method to the
engineering field. They came up with a simplification of the
extended Melnikov method in the resonant case and utilized
it to analyze the Shilnikov type multipulse homoclinic bifur-
cations and chaotic dynamics for the nonlinear nonplanar
oscillations of the cantilever beam.

The study on the second theory of the Shilnikov typemul-
tipulse chaotic dynamics was stated by Haller and Wiggins
[19]. They presented the energy phase method to investigate
the existence of the multipulse jumping homoclinic and
heteroclinic orbits in perturbed Hamiltonian systems. Up
to now, few researchers have made use of the energy phase
method to study the Shilnikov type multipulse homoclinic
and heteroclinic bifurcations and chaotic dynamics of high-
dimensional nonlinear systems in engineering applications.
Malhotra et al. [20] used the energy-phase method to inves-
tigate multipulse homoclinic orbits and chaotic dynamics for
the motion of flexible spinning discs. Yu and Chen [21] made
use of the energy-phase method to examine the Shilnikov
type multipulse homoclinic orbits of a harmonically excited
circular plate.

This paper focuses on the Shilnikov typemultipulse orbits
and chaotic dynamics for a simply supported laminated
composite piezoelectric rectangular plate under combined
parametric excitations and transverse load. Based on the
von Karman type equations and Reddy’s third-order shear
deformation plate theory, Hamilton’s principle is employed
to obtain the governing nonlinear equations of the lami-
nated composite piezoelectric rectangular plate with com-
bined parametric excitation and transverse load. We apply
Galerkin’s approach and the method of multiple scales to the
partial differential governing equations to obtain the four-
dimensional averaged equation for the case of 1 : 3 internal
resonance and primary parametric resonance. From the
averaged equation, the theory of normal form is used to
find the explicit formulas of normal form. We study the
heteroclinic bifurcations of the unperturbed system and the
characteristic of the hyperbolic dynamics of the dissipative
system, respectively. Finally, we employ the extended Mel-
nikov method to analyze the Shilnikov type multipulse orbits
and chaotic dynamics in the laminated composite piezoelec-
tric plate. In this paper, the extended Melnikov function
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Figure 1: The model of a laminated composite piezoelectric rectangular plate is given.

can be simplified in the resonant case and does not depend
on the perturbation parameter. We have used the extended
Melnikovmethod to investigate heteroclinic bifurcations and
multipulse chaotic dynamics of the laminated composite
piezoelectric plate under the case of 1 : 3 internal resonances.
The analysis indicates that there exist the Shilnikov type
multipulse jumping orbits in the perturbed phase space for
the averaged equations. We present the geometric structure
of the multipulse orbits in the four-dimensional phase space.
The results from numerical simulation also show that the
chaotic motion can occur in the motion of the laminated
composite piezoelectric plate, which verifies the analytical
prediction. The Shilnikov type multipulse orbits are discov-
ered from the results of numerical simulation. In summary,
both theoretical and numerical studies demonstrate that
chaos for the Smale horseshoe sense in themotion exists.This
paper demonstrates how to employ the extended Melnikov
method to analyze the Shilnikov type multipulse heteroclinic
bifurcations and chaotic dynamics of high-dimensional non-
linear systems in engineering applications.

The laminated composite piezoelectric rectangular plates
are widely applied in space stations, satellite solar panels,
sensors, and actuators for the active control of structures
and so on. In this paper, we have investigated the multipulse
global bifurcations and chaotic dynamics of a laminated com-
posite piezoelectric rectangular plate by using an extended
Melnikov method and numerical simulations in detail. We
have understood nonlinear vibration characteristics of a
laminated composite piezoelectric rectangular plate. Our
theoretical results can be used to solve some engineering
problems. Since these smart structures are generally light
weight and relatively large structural flexibility, laminated
composite piezoelectric rectangular plates can induce large
vibration deformation during the rapid deployment. In order
to eliminate or suppress large vibration and chaotic motion,
theoretical results can help optimize the design of the
structural parameters of laminated composite piezoelectric
rectangular plates. Therefore, the theoretical studies on the
multipulse global bifurcations and chaotic dynamics of lam-
inated composite piezoelectric rectangular plates play a very

important role in applications in aerospace and mechanical
engineering.

2. Equations of Motion and
Perturbation Analysis

We consider a four-edge simply supported laminated com-
posite piezoelectric rectangular plate, where the length, the
width, and the thickness are denoted by 𝑎, 𝑏, and ℎ, respec-
tively. The laminated composite piezoelectric rectangular
plate is subjected to in-plane excitation, transverse excita-
tion, and piezoelectric excitation, as shown in Figure 1. We
consider the laminated composite piezoelectric rectangular
plate as regular symmetric cross-ply laminates with 𝑛 layers
with respect to principal material coordinates alternatively
oriented at 0∘ and 90∘ to the laminated coordinate axes. Some
of layers are made of the piezoelectric materials as actuators,
and the other layers are made of fiber-reinforced composite
materials. It is assumed that different layers of the symmetric
cross-ply composite laminated piezoelectric rectangular plate
are perfectly clung to each other, and piezoelectric actuator
layers are embedded in the plate. The fiber direction of
odd-numbered layers is the 𝑥-direction of the laminate. The
fiber direction of even-numbered layers is the 𝑦-direction
of the laminate. Simply supported plate with immovable
edges satisfies the symmetry requirement that eliminates
the coupling between bending and extension. However, the
displacement of 𝑥 is free to move at the edge of 𝑦 = 0, and
the displacement of 𝑦 is free to move at the edge of 𝑥 = 0.
Therefore, the membrane stress is smaller and there exists the
coupling between bending and extension. A Cartesian coor-
dinate system 𝑂𝑥𝑦𝑧 is located in the middle surface of the
composite laminated piezoelectric rectangular plate. Assume
that (𝑤, V, 𝑢) and (𝑤

0
, V
0
, 𝑢
0
) describe the displacements of

an arbitrary point and a point in the middle surface of the
composite laminated piezoelectric rectangular plate in the
𝑥, 𝑦, and 𝑧 directions, respectively. It is also assumed that
in-plane excitations of the composite laminated piezoelectric
rectangular plate are loaded along the 𝑦-direction at 𝑥 = 0
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and the 𝑥-direction at 𝑦 = 0 with the form of 𝑞
0
+ 𝑞
𝑥
cosΩ
1
𝑡

and 𝑞
1
+𝑞
𝑦
cosΩ
2
𝑡, respectively. Transverse excitation loaded

to the composite laminated piezoelectric rectangular plate is
expressed as 𝑞 = 𝑞

3
cosΩ
3
𝑡.The dynamic electrical loading is

represented by 𝐸
𝑧
= 𝐸
𝑧
cosΩ
4
𝑡.

Considering Reddy’s third-order shear deformation
description of the displacement field, we have

𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢
0
(𝑥, 𝑦, 𝑡) + 𝑧𝜙

𝑥
(𝑥, 𝑦, 𝑡)

− 𝑧
3 4

3ℎ2
(𝜙
𝑥
+

𝜕𝑤
0

𝜕𝑥
) ,

(1a)

V (𝑥, 𝑦, 𝑧, 𝑡) = V
0
(𝑥, 𝑦, 𝑡) + 𝑧𝜙

𝑦
(𝑥, 𝑦, 𝑡)

− 𝑧
3 4

3ℎ2
(𝜙
𝑦
+

𝜕𝑤
0

𝜕𝑦
) ,

(1b)

𝑤 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤
0
(𝑥, 𝑦, 𝑡) , (1c)

where (𝑢
0
, V
0
, 𝑤
0
) are the deflection of a point on the middle

surface, (𝑢, V, 𝑤) are the displacement components along the
(𝑥, 𝑦, 𝑧) coordinate directions, and 𝜙

𝑥
and 𝜙

𝑦
represent the

rotation components of normal to the middle surface about
the 𝑦 and 𝑥 axes, respectively.

The nonlinear strain-displacement relations are assumed
to have the following form:

𝜀
𝑥𝑥
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1

2
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2
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(
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+
𝜕𝑤

𝜕𝑦
) ,

𝜀
𝑧𝑧

=
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(2)

Stress constitutive relations are presented as follows:

𝜎
𝑖𝑗
= 𝜎
𝑠

𝑖𝑗𝑘𝑙
𝜀
𝑘𝑙
− 𝑒
𝑖𝑗𝑘
𝐸
𝑘
, (𝑖, 𝑗, 𝑘, 𝑙 = 𝑥, 𝑦, 𝑧) , (3)

where𝜎
𝑖𝑗
and 𝜀
𝑘𝑙
denote themechanical stresses and strains in

extended vector notation, 𝜎𝑠
𝑖𝑗𝑘𝑙

represents the elastic stiffness
tensor, 𝐸

𝑘
stands for the electric field vector, and 𝑒

𝑖𝑗
is the

piezoelectric tensor.
According to Hamilton’s principle, the nonlinear gov-

erning equations of motion in terms of generalized dis-
placements (𝑢

0
, V
0
, 𝑤
0
, 𝜙
𝑥
, 𝜙
𝑦
) for the composite laminated

piezoelectric rectangular plate are given in the previous
studies as follows [8]:
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0

𝜕𝑥2
+ 𝐴
66

𝜕𝑤
0

𝜕𝑥

𝜕
2
𝑤
0

𝜕𝑦2

+ (𝐴
12

+ 𝐴
66
)
𝜕𝑤
0

𝜕𝑦

𝜕
2
𝑤
0

𝜕𝑥𝜕𝑦

= 𝐼
0
̈𝑢
0
+ 𝐽
1

̈𝜙
𝑥
− 𝑐
1
𝐼
3

𝜕 ̈𝑤
0

𝜕𝑥
,

(4a)

𝐴
66

𝜕
2V
0

𝜕𝑥2
+ 𝐴
22

𝜕
2V
0

𝜕𝑦2
+ (𝐴
21

+ 𝐴
66
)
𝜕
2
𝑢
0

𝜕𝑥𝜕𝑦

+ 𝐴
66

𝜕𝑤
0

𝜕𝑦

𝜕
2
𝑤
0

𝜕𝑥2
+ 𝐴
22

𝜕𝑤
0

𝜕𝑦

𝜕
2
𝑤
0

𝜕𝑦2

+ (𝐴
21

+ 𝐴
66
)
𝜕𝑤
0

𝜕𝑥

𝜕
2
𝑤
0

𝜕𝑥𝜕𝑦

= 𝐼
0
̈V
0
+ 𝐽
1

̈𝜙
𝑦
− 𝑐
1
𝐼
3

𝜕 ̈𝑤
0

𝜕𝑦
,

(4b)

𝐴
66

𝜕𝑤
0

𝜕𝑥

𝜕
2
𝑢
0

𝜕𝑦2
− 𝐻
22
𝑐
2

1

𝜕
4
𝑤
0

𝜕𝑦4

+ 𝑐
1
(2𝐹
66

+ 𝐹
12

− 2𝐻
66
𝑐
1
− 𝐻
12
𝑐
1
)

𝜕
3
𝜙
𝑦

𝜕𝑦𝜕𝑥2

+ 𝑐
1
(𝐹
22

− 𝐻
22
𝑐
1
)
𝜕
3
𝜙
𝑦

𝜕𝑦3
− 𝐻
11
𝑐
2

1

𝜕
4
𝑤
0

𝜕𝑥4

+ 𝐴
11

𝜕𝑤
0

𝜕𝑥

𝜕
2
𝑢
0

𝜕𝑥2
+ (𝐹
44
𝑐
2

2
− 2𝐷
44
𝑐
2
+ 𝐴
44
)
𝜕𝜙
𝑦

𝜕𝑦

+ 𝑐
1
(𝐹
21

+ 2𝐹
66

− 𝐻
21
𝑐
1
− 2𝐻
66
𝑐
1
)

𝜕
3
𝜙
𝑥

𝜕𝑦2𝜕𝑥

− 𝑐
2

1
(𝐻
21

+ 4𝐻
66

+ 𝐻
12
)

𝜕
4
𝑤
0

𝜕𝑦2𝜕𝑥2

+ (𝐴
44

− 𝑁
𝑃

𝑦
cos (Ω

4
𝑡) + 𝐹

44
𝑐
2

2
− 2𝐷
44
𝑐
2
)
𝜕
2
𝑤
0

𝜕𝑦2

−
𝜕𝑁
𝑃

𝑦

𝜕𝑦
cos (Ω

2
𝑡)

𝜕𝑤
0

𝜕𝑦
+ (𝐴
21

+ 4𝐴
66

+ 𝐴
12
)

×
𝜕𝑤
0

𝜕𝑥

𝜕𝑤
0

𝜕𝑦

𝜕
2
𝑤
0

𝜕𝑦𝜕𝑥
+ 𝑐
1
(𝐹
11

− 𝐻
11
𝑐
1
)
𝜕
3
𝜙
𝑥

𝜕𝑥3

+ (𝐴
21

+ 𝐴
66
)
𝜕𝑤
0

𝜕𝑦

𝜕
2
𝑢
0

𝜕𝑦𝜕𝑥
+ 𝐴
21

𝜕𝑢
0

𝜕𝑥

𝜕
2
𝑤
0

𝜕𝑦2

× 𝐴
66

𝜕𝑤
0

𝜕𝑦

𝜕
2V
0

𝜕𝑥2
+ 𝐴
22

𝜕𝑤
0

𝜕𝑦

𝜕
2V
0

𝜕𝑦2
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+
1

2
(𝐴
12

+ 2𝐴
66
) (

𝜕𝑤
0

𝜕𝑦
)

2
𝜕
2
𝑤
0

𝜕𝑥2
+ 𝐴
22

𝜕
2
𝑤
0

𝜕𝑦2

𝜕V
0

𝜕𝑦

+ (𝐴
12

+ 𝐴
66
)
𝜕𝑤
0

𝜕𝑥

𝜕
2V
0

𝜕𝑦𝜕𝑥
+

1

2
(𝐴
21

+ 2𝐴
66
)
𝜕
2
𝑤
0

𝜕𝑦2

× (
𝜕𝑤
0

𝜕𝑥
)

2

+
3

2
𝐴
11
(
𝜕𝑤
0

𝜕𝑥
)

2
𝜕
2
𝑤
0

𝜕𝑥2
+ 𝐴
11

𝜕
2
𝑤
0

𝜕𝑥2

𝜕𝑢
0

𝜕𝑥

+ 𝐴
12

𝜕
2
𝑤
0

𝜕𝑥2

𝜕V
0

𝜕𝑦
+ 2𝐴
66

𝜕
2
𝑤
0

𝜕𝑦𝜕𝑥

𝜕V
0

𝜕𝑥

+ 2𝐴
66

𝜕
2
𝑤
0

𝜕𝑦𝜕𝑥

𝜕𝑢
0

𝜕𝑦
+

3

2
𝐴
22
(
𝜕𝑤
0

𝜕𝑦
)

2
𝜕
2
𝑤
0

𝜕𝑦2

+ (𝐴
55

+ 𝑞
𝑥
cos (Ω

1
𝑡) − 𝑁

𝑃

𝑥
cos (Ω

4
𝑡)

+ 𝐹
55
𝑐
2

2
− 2𝐷
55
𝑐
2
)
𝜕
2
𝑤
0

𝜕𝑥2
−

𝜕𝑁
𝑃

𝑥

𝜕𝑥
cos (Ω

3
𝑡)

𝜕𝑤

𝜕𝑥

+ (𝐹
55
𝑐
2

2
− 2𝐷
55
𝑐
2
+ 𝐴
55
)
𝜕𝜙
𝑥

𝜕𝑥

− 𝑞 cos (Ω
3
𝑡) + 𝑘𝑓

𝜕𝑤
0

𝜕𝑡

= 𝐼
0

̈𝑤
0
− 𝑐
2

1
𝐼
6
(
𝜕
2

̈𝑤
0

𝜕𝑥2
+

𝜕
2

̈𝑤
0

𝜕𝑦2
)

+ 𝑐
1
𝐼
3
(
𝜕 ̈𝑢
0

𝜕𝑥
+

𝜕 ̈V
0

𝜕𝑦
) + 𝑐
1
𝐽
4
(
𝜕 ̈𝜙
𝑥

𝜕𝑥
+

𝜕 ̈𝜙
𝑦

𝜕𝑦
) ,

(4c)

(𝐷
11

− 2𝐹
11
𝑐
1
+ 𝐻
11
𝑐
2

1
)
𝜕
2
𝜙
𝑥

𝜕𝑥2
+ (𝐷
66

− 2𝐹
66
𝑐
1
+ 𝐻
66
𝑐
2

1
)
𝜕
2
𝜙
𝑥

𝜕𝑦2

− 𝑐
1
(𝐹
11

− 𝐻
11
𝑐
1
)
𝜕
3
𝑤
0

𝜕𝑥3

− (𝐹
55
𝑐
2

2
− 2𝐷
55
𝑐
2
+ 𝐴
55
)
𝜕𝑤
0

𝜕𝑥

+ (𝐷
12

+ 𝐷
66

+ 𝐻
66
𝑐
2

1
− 2𝐹
66
𝑐
1
+ 𝐻
12
𝑐
2

1
− 2𝐹
12
𝑐
1
)

×
𝜕
2
𝜙
𝑦

𝜕𝑦𝜕𝑥
− 𝑐
1
(2𝐹
66

+ 𝐹
12

− 2𝐻
66
𝑐
1
− 𝐻
12
𝑐
1
)

×
𝜕
3
𝑤
0

𝜕𝑦2𝜕𝑥
+ (2𝐷

55
𝑐
2
− 𝐴
55

− 𝐹
55
𝑐
2

2
) 𝜙
𝑥

= 𝐽
1
̈𝑢
0
+ 𝐾
2

̈𝜙
𝑥
− 𝑐
1
𝐽
4

𝜕 ̈𝑤
0

𝜕𝑥
,

(4d)

(𝐷
66

− 2𝐹
66
𝑐
1
+ 𝐻
66
𝑐
2

1
)
𝜕
2
𝜙
𝑦

𝜕𝑥2

− 𝑐
1
(𝐹
21

+ 2𝐹
66

− 𝐻
21
𝑐
1
− 2𝐻
66
𝑐
1
)
𝜕
3
𝑤
0

𝜕𝑦𝜕𝑥2

+ (𝐻
21
𝑐
2

1
+ 𝐷
66

+ 𝐷
21

− 2𝐹
21
𝑐
1
+ 𝐻
66
𝑐
2

1
− 2𝐹
66
𝑐
1
)

×
𝜕
2
𝜙
𝑥

𝜕𝑦𝜕𝑥
+ (𝐻
22
𝑐
2

1
+ 𝐷
22

− 2𝐹
22
𝑐
1
)
𝜕
2
𝜙
𝑦

𝜕𝑦2

− 𝑐
1
(𝐹
22

− 𝐻
22
𝑐
1
)
𝜕
3
𝑤
0

𝜕𝑦3
− (𝐹
44
𝑐
2

2
− 2𝐷
44
𝑐
2
+ 𝐴
44
)

×
𝜕𝑤
0

𝜕𝑦
+ (2𝐷

44
𝑐
2
− 𝐹
44
𝑐
2

2
− 𝐴
44
) 𝜙
𝑦

= 𝐽
1
̈V
0
+ 𝐾
2

̈𝜙
𝑦
− 𝑐
1
𝐽
4

𝜕 ̈𝑤
0

𝜕𝑦
.

(4e)

The simply supported boundary conditions of the com-
posite laminated piezoelectric rectangular plate can be repre-
sented as follows [8, 22]:

𝑥 = 0: 𝑤 = 0, 𝜙
𝑦
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑥𝑥
= 0,

(5a)

𝑥 = 𝑎: 𝑤 = 0, 𝜙
𝑦
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑥𝑥
= 0,

(5b)

𝑦 = 0: 𝑤 = 0, 𝜙
𝑥
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑦𝑦
= 0,

(5c)

𝑦 = 𝑏: 𝑤 = 0, 𝜙
𝑥
= 0, 𝑁

𝑥𝑦
= 0, 𝑀

𝑦𝑦
= 0,

(5d)

∫

ℎ

0

𝑁
𝑥𝑥

𝑥=0𝑑𝑧 = −∫

ℎ

0

(𝑞
0
+ 𝑞
𝑥
cosΩ
1
𝑡) 𝑑𝑧, (5e)

∫

ℎ

0

𝑁
𝑦𝑦

𝑦=0
𝑑𝑧 = −∫

ℎ

0

(𝑞
1
+ 𝑞
𝑦
cosΩ
2
𝑡) 𝑑𝑧. (5f)

The boundary condition (5f) includes the influence of the
in-plane load. We consider complicated nonlinear dynamics
of the composite laminated piezoelectric rectangular plate in
the first two modes of 𝑢

0
, V
0
, 𝑤
0
, 𝜙
𝑥
, and 𝜙

𝑦
. It is desirable

that we select an appropriate mode function to satisfy the
boundary condition.Thus, we can rewrite 𝑢

0
, V
0
, 𝑤
0
, 𝜙
𝑥
, and

𝜙
𝑦
in the following forms:

𝑢
0
= 𝑢
01
(𝑡) cos 𝜋𝑥

2𝑎
cos

𝜋𝑦

2𝑏
+ 𝑢
02
(𝑡) cos 3𝜋𝑥

2𝑎
cos

𝜋𝑦

2𝑏
, (6a)

V
0
= V
1
(𝑡) cos

𝜋𝑦

2𝑏
cos 𝜋𝑥

2𝑎
+ V
2
(𝑡) cos

𝜋𝑦

2𝑏
cos 3𝜋𝑥

2𝑎
, (6b)

𝑤
0
= 𝑤
1
(𝑡) sin 𝜋𝑥

𝑎
sin

𝜋𝑦

𝑏
+ 𝑤
2
(𝑡) sin 3𝜋𝑥

𝑎
sin

𝜋𝑦

𝑏
, (6c)

𝜙
𝑥
= 𝜙
1
(𝑡) cos 𝜋𝑥

𝑎
sin

𝜋𝑦

𝑏
+ 𝜙
2
(𝑡) cos 3𝜋𝑥

𝑎
sin

𝜋𝑦

𝑏
, (6d)

𝜙
𝑦
= 𝜙
3
(𝑡) cos

𝜋𝑦

𝑏
sin 𝜋𝑥

𝑎
+ 𝜙
4
(𝑡) cos

𝜋𝑦

𝑏
sin 3𝜋𝑥

𝑎
. (6e)

Bymeans of the Galerkin method, substituting (6a), (6b),
(6c), (6d), (6e) into (4a), (4b), (4c), (4d), (4e), integrating,
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and neglecting all inertia terms in (4a), (4b), (4d), and (4e),
we obtain the expressions of 𝑢

01
, 𝑢
02
, V
1
, V
2
, 𝜙
1
, 𝜙
2
, 𝜙
3
, and

𝜙
4
via 𝑤
1
and 𝑤

2
as follows:

𝑢
01

= 𝑘
1
𝑤
2

1
+ 𝑘
2
𝑤
2

2
+ 𝑘
3
𝑤
1
𝑤
2
, (7a)

𝑢
02

= 𝑘
4
𝑤
2

1
+ 𝑘
5
𝑤
2

2
+ 𝑘
6
𝑤
1
𝑤
2
, (7b)

V
1
= 𝑘
7
𝑤
2

1
+ 𝑘
8
𝑤
2

2
+ 𝑘
9
𝑤
1
𝑤
2
, (7c)

V
2
= 𝑘
10
𝑤
2

1
+ 𝑘
11
𝑤
2

2
+ 𝑘
12
𝑤
1
𝑤
2
, (7d)

𝜙
1
= 𝑘
19
𝑤
1
, 𝜙

2
= 𝑘
20
𝑤
2
, (7e)

𝜙
3
= 𝑘
21
𝑤
1
, 𝜙

4
= 𝑘
22
𝑤
2
, (7f)

where the coefficients presented in (7a), (7b), (7c), (7d), (7e),
(7f) can be found in the previous studies [8].

In order to obtain the dimensionless governing equations
of motion, we introduce the transformations of the variables
and parameters

𝑢 =
𝑢
0

𝑎
, V =

V
0

𝑏
, 𝑤 =

𝑤
0

ℎ
,

𝜙
𝑥
= 𝜙
𝑥
, 𝜙

𝑦
= 𝜙
𝑦
, 𝑥 =

𝑥

𝑎
, 𝑦 =

𝑦

𝑏
,

𝑞 =
𝑏
2

𝐸ℎ3
𝑞, 𝑞

𝑥
=

𝑏
2

𝐸ℎ3
𝑞
𝑥
, 𝑞

𝑦
=

𝑏
2

𝐸ℎ3
𝑞
𝑦
,

𝑡 = 𝜋
2
(

𝐸

𝑎𝑏𝜌
)

1/2

𝑡, Ω
𝑖
=

1

𝜋2
(
𝑎𝑏𝜌

𝐸
)

1/2

Ω
𝑖

(𝑖 = 1, 2) ,

𝐴
𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ2
𝐴
𝑖𝑗
, 𝐵

𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ3
𝐵
𝑖𝑗
,

𝐷
𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ4
𝐷
𝑖𝑗
, 𝐸

𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ5
𝐸
𝑖𝑗
,

𝐹
𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ6
𝐹
𝑖𝑗
, 𝐻

𝑖𝑗
=

(𝑎𝑏)
1/2

𝐸ℎ8
𝐻
𝑖𝑗
,

𝐼
𝑖
=

1

(𝑎𝑏)
(𝑖+1)/2

𝜌
𝐼
𝑖
.

(8)

For simplicity, we drop the overbar in the following
analysis. Substituting (5a), (5b), (5c), (5d), (5e), (5f)–(8) into
(4c) and applying the Galerkin procedure, we obtain the
governing equations of motion of the composite laminated
piezoelectric rectangular plate for the dimensionless as fol-
lows:

̈𝑤
1
+ 𝜇
1

̇𝑤
1
+ 𝜔
2

1
𝑤
1

+ (𝑎
2
cosΩ
1
𝑡 + 𝑎
3
cosΩ
2
𝑡 − 𝑎
4
cosΩ
4
𝑡) 𝑤
1

+ 𝑎
5
𝑤
2

1
𝑤
2
+ 𝑎
6
𝑤
2

2
𝑤
1
+ 𝑎
7
𝑤
3

1
+ 𝑎
8
𝑤
3

2
= 𝑓
1
cosΩ
3
𝑡,

(9a)

̈𝑤
2
+ 𝜇
2

̇𝑤
2
+ 𝜔
2

2
𝑤
2

+ (𝑏
2
cosΩ
1
𝑡 + 𝑏
3
cosΩ
2
𝑡 + 𝑏
4
cosΩ
4
𝑡) 𝑤
2

+ 𝑏
5
𝑤
2

2
𝑤
1
+ 𝑏
6
𝑤
2

1
𝑤
2
+ 𝑏
7
𝑤
3

2
+ 𝑏
8
𝑤
3

1
= 𝑓
2
cosΩ
3
𝑡,

(9b)

where the coefficients presented in (9a), (9b) are given in the
previous studies [8].

The above equations include the cubic terms, in-plane
excitation, transverse excitation, and piezoelectric excitation.
Equation (9a), (9b) can describe the nonlinear transverse
oscillations of the composite laminated piezoelectric rectan-
gular plate. We only study the case of primary parametric
resonance and 1 : 3 internal resonances. In this resonant case,
there are the following resonant relations:

𝜔
2

1
=

𝜔
2

9
+ 𝜀𝜎
1
, 𝜔

2

2
= 𝜔
2
+ 𝜀𝜎
2
,

Ω
3
= 𝜔, Ω

1
= Ω
2
= Ω
4
=

2𝜔

3
,

𝜔
2
≈ 3𝜔
1
,

(10)

where 𝜎
1
and 𝜎

2
are two detuning parameters.

The method of multiple scales [23] is employed to (9a),
(9b) to find the uniform solutions in the following form:

𝑤
1
(𝑡, 𝜀) = 𝑥

10
(𝑇
0
, 𝑇
1
) + 𝜀𝑥

11
(𝑇
0
, 𝑇
1
) + ⋅ ⋅ ⋅ , (11a)

𝑤
2
(𝑡, 𝜀) = 𝑥

20
(𝑇
0
, 𝑇
1
) + 𝜀𝑥

21
(𝑇
0
, 𝑇
1
) + ⋅ ⋅ ⋅ , (11b)

where 𝑇
0
= 𝑡, 𝑇
1
= 𝜀𝑡.

Substituting (10) and (11a), (11b) into (9a), (9b) and
balancing the coefficients of corresponding powers of 𝜀 on
the left-hand and right-hand sides of equations, the four-
dimensional averaged equations in the Cartesian form are
obtained as follows:

̇𝑥
1
= −

1

2
𝜇
1
𝑥
1
−

1

2
𝜎
1
𝑥
2
+

1

4
(𝑎
2
+ 𝑎
3
− 𝑎
4
) 𝑥
2

−
3

2
𝑎
7
𝑥
2
(𝑥
2

1
+ 𝑥
2

2
) −

1

2
𝑎
5
𝑥
4
(𝑥
2

1
− 𝑥
2

2
)

− 𝑎
6
𝑥
2
(𝑥
2

3
+ 𝑥
2

4
) + 𝑎
5
𝑥
1
𝑥
2
𝑥
3
,

(12a)

̇𝑥
2
= −

1

2
𝜇
1
𝑥
2
+

1

2
𝜎
1
𝑥
1
+

1

4
(𝑎
2
+ 𝑎
3
− 𝑎
4
) 𝑥
1

+
3

2
𝑎
7
𝑥
1
(𝑥
2

1
+ 𝑥
2

2
) +

1

2
𝑎
5
𝑥
3
(𝑥
2

1
− 𝑥
2

2
)

+ 𝑎
6
𝑥
1
(𝑥
2

3
+ 𝑥
2

4
) + 𝑎
5
𝑥
1
𝑥
2
𝑥
4
,

(12b)

̇𝑥
3
= −

1

2
𝜇
2
𝑥
3
−

1

6
𝜎
2
𝑥
4
−

1

3
𝑏
6
𝑥
4
(𝑥
2

1
+ 𝑥
2

2
)

−
1

2
𝑏
7
𝑥
4
(𝑥
2

3
+ 𝑥
2

4
) −

1

6
𝑏
8
𝑥
2
(3𝑥
2

1
− 𝑥
2

2
) ,

(12c)
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̇𝑥
4
= −

1

2
𝜇
2
𝑥
4
+

1

6
𝜎
2
𝑥
3
+

1

3
𝑏
6
𝑥
3
(𝑥
2

1
+ 𝑥
2

2
)

+
1

2
𝑏
7
𝑥
3
(𝑥
2

3
+ 𝑥
2

4
) +

1

6
𝑏
8
𝑥
1
(𝑥
2

1
− 3𝑥
2

2
) −

1

12
𝑓
2
.

(12d)

3. Computation of Normal Form

In order to assist the analysis of the Shilnikov type multipulse
orbits and chaotic dynamics of the laminated composite
piezoelectric rectangular plate, it is necessary to reduce the
averaged equation (12a), (12b), (12c), (12d) to a simpler
normal form. It is found that there are 𝑍

2
⊕ 𝑍
2
and 𝐷

4

symmetries in the averaged equation (12a), (12b), (12c), (12d)
without the parameters. Therefore, these symmetries are also
held in normal form.

We take into account the excitation amplitude 𝑓
2
as a

perturbation parameter. Amplitude 𝑓
2
can be considered as

an unfolding parameter when the Shilnikov type multipulse
orbits are investigated. Obviously, when we do not consider
the perturbation parameter, (12a), (12b), (12c), (12d) become

̇𝑥
1
= −

1

2
𝜇
1
𝑥
1
+ (𝑓
0
−

1

2
𝜎
1
)𝑥
2
−

3

2
𝑎
7
𝑥
2
(𝑥
2

1
+ 𝑥
2

2
)

−
1

2
𝑎
5
𝑥
4
(𝑥
2

1
− 𝑥
2

2
)

− 𝑎
6
𝑥
2
(𝑥
2

3
+ 𝑥
2

4
) + 𝑎
5
𝑥
1
𝑥
2
𝑥
3
,

(13a)

̇𝑥
2
= −

1

2
𝜇
1
𝑥
2
+ (𝑓
0
+

1

2
𝜎
1
)𝑥
1
+

3

2
𝑎
7
𝑥
1
(𝑥
2

1
+ 𝑥
2

2
)

+
1

2
𝑎
5
𝑥
3
(𝑥
2

1
− 𝑥
2

2
)

+ 𝑎
6
𝑥
1
(𝑥
2

3
+ 𝑥
2

4
) + 𝑎
5
𝑥
1
𝑥
2
𝑥
4
,

(13b)

̇𝑥
3
= −

1

2
𝜇
2
𝑥
3
−

1

6
𝜎
2
𝑥
4
−

1

3
𝑏
6
𝑥
4
(𝑥
2

1
+ 𝑥
2

2
)

−
1

2
𝑏
7
𝑥
4
(𝑥
2

3
+ 𝑥
2

4
) −

1

6
𝑏
8
𝑥
2
(3𝑥
2

1
− 𝑥
2

2
) ,

(13c)

̇𝑥
4
= −

1

2
𝜇
2
𝑥
4
+

1

6
𝜎
2
𝑥
3
+

1

3
𝑏
6
𝑥
3
(𝑥
2

1
+ 𝑥
2

2
)

+
1

2
𝑏
7
𝑥
3
(𝑥
2

3
+ 𝑥
2

4
) +

1

6
𝑏
8
𝑥
1
(𝑥
2

1
− 3𝑥
2

2
) ,

(13d)

where 𝑓
0
= (1/4)(𝑎

2
+ 𝑎
3
− 𝑎
4
).

Executing the Maple program given by Zhang et al. [24],
the nonlinear transformation used here is given as follows:

𝑥
1
= 𝑦
1
−

1

4
𝑎
7
𝑦
3

1
+

3𝑎
5
(𝜎
2
− 6)

𝜎2
2

𝑦
2

1
𝑦
3
− 𝑎
6
𝑦
1
𝑦
2

3

− 𝑎
6
𝑦
1
𝑦
2

4
−

3𝑎
5
(𝜎
3

2
− 18𝜎

2

2
+ 216𝜎

2
− 1296)

𝜎4
2

𝑦
2

2
𝑦
3

+
𝑎
5
(6𝜎
2

2
− 72𝜎

2
+ 432)

𝜎3
2

𝑦
1
𝑦
2
𝑦
4
,

(14a)

𝑥
2
= 𝑦
2
+

3

2
𝑎
7
𝑦
3

2
+

3

4
𝑎
7
𝑦
2

1
𝑦
2
+

3𝑎
5

𝜎
2

𝑦
2

1
𝑦
4

−
3𝑎
5
(𝜎
2

2
− 12𝜎

2
+ 72)

𝜎3
2

𝑦
2

2
𝑦
4
−

6𝑎
5
(𝜎
2
− 6)

𝜎2
2

𝑦
1
𝑦
2
𝑦
3
,

(14b)

𝑥
3
= 𝑦
3
−

𝑏
8

𝜎
2

𝑦
3

1
+

3𝑏
8
(𝜎
2

2
− 12𝜎

2
+ 72)

𝜎3
2

𝑦
1
𝑦
2

2
−

1

3
𝑏
6
𝑦
1
𝑦
2
𝑦
4
,

(14c)

𝑥
4
= 𝑦
4
+

𝑏
8
(𝜎
3

2
− 18𝜎

2

2
+ 216𝜎

2
− 1296)

𝜎4
2

𝑦
3

2

−
3𝑏
8
(𝜎
2
− 6)

𝜎2
2

𝑦
2

1
𝑦
2
+

1

3
𝑏
6
𝑦
1
𝑦
2
𝑦
3
.

(14d)

Substituting (14a), (14b), (14c), (14d) into (13a), (13b),
(13c), (13d) yields a simpler 3rd-order normal form with the
parameters for averaged equation (12a), (12b), (12c), (12d) as
follows:

̇𝑦
1
= −𝜇
1
𝑦
1
+ (1 − 𝜎

1
) 𝑦
2
, (15a)

̇𝑦
2
= 𝜎
1
𝑦
1
− 𝜇
1
𝑦
2
+ 𝑎
6
𝑦
1
(𝑦
2

3
+ 𝑦
2

4
) +

3

2
𝑎
7
𝑦
3

1
, (15b)

̇𝑦
3
= −𝜇
2
𝑦
3
− 𝜎
2
𝑦
4
−

1

3
𝑏
6
𝑦
2

1
𝑦
4
−

1

2
𝑏
7
𝑦
4
(𝑦
2

3
+ 𝑦
2

4
) , (15c)

̇𝑦
4
= 𝜎
2
𝑦
3
− 𝜇
2
𝑦
4
+

1

3
𝑏
6
𝑦
2

1
𝑦
3
+

1

2
𝑏
7
𝑦
3
(𝑦
2

3
+ 𝑦
2

4
) − 𝑓
2
,

(15d)

where the coefficients are 𝜇
1
= (1/2)𝜇

1
, 𝜇
2
= (1/2)𝜇

2
, 𝜎
2
=

(1/6)𝜎
2
, and 𝑓

2
= (1/12)𝑓

2
, respectively.

Further, let

𝑦
3
= 𝐼 cos 𝛾, 𝑦

4
= 𝐼 sin 𝛾. (16)

Substituting (16) into (15a), (15b), (15c), (15d) yields

̇𝑦
1
= −𝜇
1
𝑦
1
+ (1 − 𝜎

1
) 𝑦
2
, (17a)

̇𝑦
2
= 𝜎
1
𝑦
1
− 𝜇
1
𝑦
2
+ 𝑎
6
𝑦
1
𝐼
2
+

3

2
𝑎
7
𝑦
3

1
, (17b)

̇𝐼 = −𝜇
2
𝐼 − 𝑓
2
sin 𝛾, (17c)

𝐼 ̇𝛾 = 𝜎
2
𝐼 +

1

3
𝑏
6
𝑦
2

1
𝐼 +

1

2
𝑏
7
𝐼
3
− 𝑓
2
cos 𝛾. (17d)

In order to get the unfolding of (17a), (17b), (17c), (17d) a
linear transformation is introduced:

[
𝑦
1

𝑦
2

] = √3

√
𝑎6



√
𝑏6



[
1 − 𝜎
1

0

𝜇
1

1
] [

𝑢
1

𝑢
2

] . (18)
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Substituting (18) into (17a), (17b), (17c), (17d) and can-
celing nonlinear terms including the parameter 𝜎

1
yield the

unfolding as follows:

̇𝑢
1
= 𝑢
2
, (19a)

̇𝑢
2
= −𝜇𝑢

1
− 𝜇
3
𝑢
2
+ 𝜂
1
𝑢
3

1
+ 𝑎
6
𝑢
1
𝐼
2
, (19b)

̇𝐼 = −𝜇
2
𝐼 − 𝑓
2
sin 𝛾, (19c)

𝐼 ̇𝛾 = 𝜎
2
𝐼 + 𝑎
6
𝑢
2

1
𝐼 + 𝛼
2
𝐼
3
− 𝑓
2
cos 𝛾, (19d)

where 𝜇 = 𝜇
2

1
− 𝜎
1
(1 − 𝜎

1
), 𝜇
3
= 2𝜇
1
, 𝜂
1
= 9𝑎
6
𝑎
7
/2𝑏
6
and

𝛼
2
= (1/2)𝑏

7
.

The scale transformations to be introduced into (19a),
(19b), (19c), (19d) are

𝜇
2
→ 𝜀𝜇

2
, 𝜇

3
→ 𝜀𝜇

3
, 𝑓

2
→ 𝜀𝑓

2
,

𝜂
1
→ 𝜂
1
, 𝛼

2
→ 𝛼
2
, 𝑎

6
→ 𝑎
6
.

(20)

Then, normal form (19a), (19b), (19c), (19d) can be
rewritten in the form with the perturbations

̇𝑢
1
=

𝜕𝐻

𝜕𝑢
2

+ 𝜀𝑔
𝑢1 = 𝑢

2
, (21a)

̇𝑢
2
= −

𝜕𝐻

𝜕𝑢
1

+ 𝜀𝑔
𝑢2 = −𝜇𝑢

1
+ 𝜂
1
𝑢
3

1
+ 𝑎
6
𝑢
1
𝐼
2
− 𝜀𝜇
3
𝑢
2
, (21b)

̇𝐼 =
𝜕𝐻

𝜕𝛾
+ 𝜀𝑔
𝐼
= −𝜀𝜇

2
𝐼 − 𝜀𝑓

2
sin 𝛾, (21c)

𝐼 ̇𝛾 = −
𝜕𝐻

𝜕𝐼
+ 𝜀𝑔
𝛾
= 𝜎
2
𝐼 + 𝛼
2
𝐼
3
+ 𝑎
6
𝐼𝑢
2

1
− 𝜀𝑓
2
cos 𝛾, (21d)

where the Hamiltonian function𝐻 is of the form

𝐻(𝑢
1
, 𝑢
2
, 𝐼, 𝛾) =

1

2
𝑢
2

2
+

1

2
𝜇𝑢
2

1
−

1

4
𝜂
1
𝑢
4

1

−
1

2
𝑎
6
𝐼
2
𝑢
2

1
−

1

2
𝜎
2
𝐼
2
−

1

4
𝛼
2
𝐼
4
,

(22)

and 𝑔
𝑢1 , 𝑔𝑢2 , 𝑔𝐼, and 𝑔

𝛾 are the perturbation terms induced
by the dissipative effects

𝑔
𝑢1 = 0, 𝑔

𝑢2 = −𝜇
3
𝑢
2
,

𝑔
𝐼
= −𝜇
2
𝐼 − 𝑓
2
sin 𝛾, 𝑔

𝛾
= −𝑓
2
cos 𝛾.

(23)

4. Heteroclinic Bifurcations of
Unperturbed System

In this section, we focus on studying the nonlinear dynamics
characteristic of the unperturbed system. When 𝜀 = 0, it
can be known that system from (21a), (21b), (21c), (21d) is
an uncoupled two-degree-of-freedom nonlinear system. The
variable 𝐼 appears in the subspace (𝑢

1
, 𝑢
2
) of (21a), (21b),

(21c), (21d) as a parameter since ̇𝐼 = 0. Consider the first two
decoupled equations of (21a), (21b), (21c), (21d),

̇𝑢
1
= 𝑢
2
, (24a)

̇𝑢
2
= −𝜇𝑢

1
+ 𝜂
1
𝑢
3

1
+ 𝑎
6
𝑢
1
𝐼
2
. (24b)

Since 𝜂
1

> 0, (24a), (24b) can exhibit the heteroclinic
bifurcations. It is obvious from (24a), (24b) that when 𝜇 −

𝑎
6
𝐼
2
< 0, the only solution to (24a), (24b) is the trivial zero

solution, (𝑢
1
, 𝑢
2
) = (0, 0), which is the saddle point. On the

curve defined by 𝜇 = 𝑎
6
𝐼
2, that is,

𝐼
1,2

= ±[
𝜇
2

1
− 𝜎
1
(1 − 𝜎

1
)

𝑎
6

]

1/2

, (25)

the trivial zero solution bifurcates into three solutions
through a pitchfork bifurcation, which are given by 𝑞

0
= (0, 0)

and 𝑞
±
(𝐼) = (𝐵, 0), respectively, where

𝐵 = ±{
1

𝜂
1

[𝜇
2

1
− 𝜎
1
(1 − 𝜎

1
) − 𝑎
6
𝐼
2
]}

1/2

. (26)

From the Jacobian matrix evaluated at the nonzero
solutions, it can be found that the singular point 𝑞

0
is the

center point and the singular points 𝑞
±
(𝐼) are saddle points. It

is observed that 𝐼 and 𝛾 actually represent the amplitude and
phase of vibrations. Therefore, we assume that 𝐼 ≥ 0 and (25)
becomes

𝐼
1
= 0, 𝐼

2
= [

𝜇
2

1
− 𝜎
1
(1 − 𝜎

1
)

𝑎
6

]

1/2

, (27)

such that for all 𝐼 ∈ [𝐼
1
, 𝐼
2
], (24a), (24b) have two hyperbolic

saddle points, 𝑞
±
(𝐼), which are connected by a pair of

heteroclinic orbits, 𝑢ℎ
±
(𝑇
1
, 𝐼); that is, lim

𝑇1→±∞
𝑢
ℎ

±
(𝑇
1
, 𝐼) =

𝑞
±
(𝐼). Thus, in the full four-dimensional phase space, the set

defined by

𝑀 = {(𝑢, 𝐼, 𝛾) | 𝑢 = 𝑞
±
(𝐼) , 𝐼
1
< 𝐼 < 𝐼

2
, 0 ≤ 𝛾 < 2𝜋} (28)

is a two-dimensional invariant manifold.
From the results obtained by Feng et al. [9–11], it is

known that two-dimensional invariant manifold 𝑀 is nor-
mally hyperbolic. The two-dimensional normally hyperbolic
invariant manifold 𝑀 has the three-dimensional stable and
unstable manifolds represented as 𝑊

𝑠
(𝑀) and 𝑊

𝑢
(𝑀),

respectively. The existence of the heteroclinic orbit of (24a),
(24b) to 𝑞

±
(𝐼) = (𝐵, 0) indicates that 𝑊𝑠(𝑀) and 𝑊

𝑢
(𝑀)

intersect nontransversally along a three-dimensional mani-
fold denoted by Γ, which can be written as

Γ = { (𝑢, 𝐼, 𝛾) | 𝑢 = 𝑢
ℎ

±
(𝑇
1
, 𝐼) , 𝐼
1
< 𝐼 < 𝐼

2
,

𝛾 = ∫

𝑇1

0

𝐷
𝐼
𝐻(𝑢
ℎ

±
(𝑇
1
, 𝐼) , 𝐼) 𝑑𝑠 + 𝛾

0
} .

(29)

We analyze the dynamics of the unperturbed system of
(21a), (21b), (21c), (21d) restricted to 𝑀. Considering the
unperturbed system of (21a), (21b), (21c), (21d) restricted to
𝑀 yields

̇𝐼 = 0, (30a)

𝐼 ̇𝛾 = 𝐷
𝐼
𝐻(𝑞
±
(𝐼) , 𝐼) , 𝐼

1
< 𝐼 < 𝐼

2
, (30b)
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where

𝐷
𝐼
𝐻(𝑞
±
(𝐼) , 𝐼) = −

𝜕𝐻 (𝑞
±
(𝐼) , 𝐼)

𝜕𝐼
= 𝜎
2
𝐼 + 𝛼
2
𝐼
3
+ 𝑎
6
𝐼𝑢
2

1
.

(31)

From the results obtained by Feng et al. [9–11], it is known
that if 𝐷

𝐼
𝐻(𝑞
±
(𝐼), 𝐼) ̸=0, 𝐼 = constant is called a periodic

orbit, and if 𝐷
𝐼
𝐻(𝑞
±
, 𝐼) = 0, 𝐼 = constant is known as a

circle of the singular points. Any value of 𝐼 ∈ [𝐼
1
, 𝐼
2
] at which

𝐷
𝐼
𝐻(𝑞
±
, 𝐼) = 0 is a resonant value 𝐼 and these singular points

are resonant singular points. We denote a resonant value by
𝐼
𝑟
such that

𝐷
𝐼
𝐻(𝑞
±
, 𝐼) = 𝜎

2
𝐼
𝑟
+ 𝛼
2
𝐼
3

𝑟
+ 𝑎
6
𝐼
𝑟
𝑢
2

1
= 0. (32)

Then, we obtain

𝐼
𝑟
= ±{

𝜎
2
𝜂
1
+ 𝑎
6
[𝜇
2

1
− 𝜎
1
(1 − 𝜎

1
)]

𝑎2
6
− 𝛼
2
𝜂
1

}

1/2

. (33)

The geometric structure of the stable and unstable mani-
folds of 𝑀 in the full four-dimensional phase space for the
unperturbed system of (21a), (21b), (21c), (21d) is given in
Figure 2. Since 𝛾 represents the phase of the oscillations,when
𝐼 = 𝐼
𝑟
, the phase shift Δ𝛾 of oscillations is defined by

Δ𝛾 = 𝛾 (+∞, 𝐼
𝑟
) − 𝛾 (−∞, 𝐼

𝑟
) . (34)

The physical interpretation of the phase shift is the phase
difference between the two end points of the orbit. In the
subspace (𝑢

1
, 𝑢
2
), there exists a pair of heteroclinic orbits

connecting to saddle points. Therefore, the homoclinic orbit
in the subspace (𝐼, 𝛾) is, in fact, a heteroclinic connecting in
the full four-dimensional space (𝑢

1
, 𝑢
2
, 𝐼, 𝛾). The phase shift

denotes the difference of the value 𝛾 when a trajectory leaves
and returns to the basin of attraction of 𝑀. We will use the
phase shift in subsequent analysis to obtain the condition for
the existence of the Shilnikov typemultipulse orbit.Thephase
shift will be calculated later in the heteroclinic orbit analysis.

We consider the heteroclinic orbits of (24a), (24b). Let
𝜀
1
= 𝜇 − 𝑎

6
𝐼
2 and 𝜇

3
= 𝜀
2
, (24a), (24b) can be rewritten as

̇𝑢
1
= 𝑢
2
, (35a)

̇𝑢
2
= −𝜀
1
𝑢
1
+ 𝜂
1
𝑢
3

1
− 𝜀𝜀
2
𝑢
2
. (35b)

Set 𝜀 = 0; (35a), (35b) is a system with the Hamiltonian
function

𝐻(𝑢
1
, 𝑢
2
) =

1

2
𝑢
2

2
+

1

2
𝜀
1
𝑢
2

1
−

1

4
𝜂
1
𝑢
4

1
. (36)

When 𝐻 = 0, there is a heteroclinic loop Γ
0 which

consists of the two hyperbolic saddle points 𝑞
±
(𝐼) and a pair

of heteroclinic orbits 𝑢
±
(𝑇
1
). In order to calculate the phase

shift and the extended Melnikov function, it is necessary to

obtain the equations of a pair of heteroclinic orbits, which are
given as follows:

𝑢
1
(𝑇
1
) = ±√

𝜀
1

𝜂
1

tanh(
√2𝜀
1

2
𝑇
1
) , (37a)

𝑢
2
(𝑇
1
) = ±

𝜀
1

√2𝜂
1

sech2 (
√2𝜀
1

2
𝑇
1
) . (37b)

We turn our attention to the computation of the phase
shift. Substituting the first equation of (37a), (37b) into the
fourth equation of the unperturbed system of (21a), (21b),
(21c), (21d) and integrating yield

𝛾 (𝑇
1
) = 𝜔
𝑟
𝑇
1
−

𝑎
6
√2𝜀
1

𝜂
1

tanh(
√2𝜀
1

2
𝑇
1
) + 𝛾
0
, (38)

where 𝜔
𝑟
= 𝜎
2
+ 𝛼
2
𝐼
2
+ 𝑎
6
𝜀
1
/𝜂
1
.

At 𝐼 = 𝐼
𝑟
, there is 𝜔

𝑟
≡ 0. Therefore, the phase shift may

be expressed as

Δ𝛾 = [−
2𝑎
6
√2𝜀
1

𝜂
1

]

𝐼=𝐼𝑟

= −
2𝑎
6

𝜂
1

√2 [𝜇
2

1
− 𝜎
1
(1 − 𝜎

1
) − 𝑎
6
𝐼2
𝑟
].

(39)

5. Existence of Multipulse Orbits

After obtaining detailed information on the nonlinear
dynamic characteristics of the subspace (𝑢

1
, 𝑢
2
) for the

unperturbed system from (21a), (21b), (21c), (21d), the next
step is to examine the effects of small perturbation terms (0 <

𝜀 ≪ 1) on the unperturbed system from (21a), (21b), (21c),
(21d). The extended Melnikov method developed by Kovačič
et al. [15–17] is utilized to discover the existence of the multi-
pulse orbits and chaotic dynamics of the nonlinear vibration
for the laminated composite piezoelectric rectangular plate.
We start by studying the influence of such small perturbations
on themanifold𝑀.The objective of the research is to identify
the parameter regions where the existence of the multipulse
orbits is possible in the perturbed phase space. The main aim
is to verify whether these parameters satisfy the transversality
condition of multipulse chaotic dynamics. It will be shown
that thesemultipulse orbits can occur in theHamilton system
with dissipative perturbations if the parameters meet the
transversality condition. The existence of such multipulse
orbits provides a robust mechanism for the existence of
the complicated dynamics in the perturbed system. In this
section, the emphasis is put on the application aspects of the
extended Melnikov method to (21a), (21b), (21c), (21d).

5.1. Dissipative Perturbations of the Homoclinic Loop. We
analyze dynamics of the perturbed system and the influence
of small perturbations on 𝑀. Based on the analysis by
Kovačič et al. [15–17], we know that 𝑀 along with its stable
and unstable manifolds is invariant under small, sufficiently
differentiable perturbations. It is noticed that 𝑞

±
(𝐼) in (24a),
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I

𝛾

×

u2

u1

(a)

0 𝛾
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Figure 2: The geometric structure of manifolds𝑀,𝑊𝑠(𝑀), and𝑊
𝑢
(𝑀) is given in the full four-dimensional phase space.

(24b) maintains the characteristic of the hyperbolic singular
point under small perturbations, in particular, 𝑀 → 𝑀

𝜀
.

Therefore, we obtain

𝑀 = 𝑀
𝜀
= {(𝑢, 𝐼, 𝛾) | 𝑢 = 𝑞

±
(𝐼) , 𝐼
1
< 𝐼 < 𝐼

2
, 0 ≤ 𝛾 < 2𝜋} .

(40)

Considering the last two equations of (21a), (21b), (21c),
(21d) yields

̇𝐼 = −𝜇
2
𝐼 − 𝑓
2
sin 𝛾, (41a)

̇𝛾 = 𝜎
2
+ 𝛼
2
𝐼
2
+ 𝑎
6
𝑢
2

1
−

𝑓
2
cos 𝛾
𝐼

. (41b)

It is known from the above analysis that the last two equations
of (21a), (21b), (21c), (21d) are of a pair of pure imaginary
eigenvalues. Therefore, the resonance can occur in (41a),
(41b). Also introduce the scale transformations

𝜇
2
→ 𝜀𝜇

2
, 𝐼 = 𝐼

𝑟
+ √𝜀ℎ,

𝑓
2
→ 𝜀𝑓

2
, 𝑇

1
→

𝑇
1

√𝜀
.

(42)

Substituting the above transformations into (41a), (41b)
yields

ℎ̇ = −𝜇
2
𝐼
𝑟
− 𝑓
2
sin 𝛾 − √𝜀𝜇

2
ℎ, (43a)

̇𝛾 = −
2𝛿

𝜂
1

𝐼
𝑟
ℎ − √𝜀(

𝛿

𝜂
1

ℎ
2
+

𝑓
2

𝐼
𝑟

cos 𝛾) , (43b)

where 𝛿 = 𝑎
2

6
− 𝛼
2
𝜂
1
.

When 𝜀 = 0, (43a), (43b) become

ℎ̇ = −𝜇
2
𝐼
𝑟
− 𝑓
2
sin 𝛾, (44a)

̇𝛾 = −
2𝛿

𝜂
1

𝐼
𝑟
ℎ. (44b)

The unperturbed system from (44a), (44b) is a Hamilton
system with the function

�̂�
𝐷
(ℎ, 𝛾) = −𝜇

2
𝐼
𝑟
𝛾 + 𝑓
2
cos 𝛾 +

𝛿

𝜂
1

𝐼
𝑟
ℎ
2
. (45)

The singular points of (44a), (44b) are given as

𝑃
0
= (0, 𝛾

𝑐
) = (0, − arcsin(

𝜇
2
𝐼
𝑟

𝑓
2

)) ,

𝑄
0
= (0, 𝛾

𝑠
) = (0, 𝜋 + arcsin(

𝜇
2
𝐼
𝑟

𝑓
2

)) .

(46)

Based on the characteristic equations evaluated at the two
singular points𝑃

0
and𝑄

0
, we can know the stabilities of these

singular points. Therefore, it is known that the singular point
𝑃
0
is a center point.The singular point𝑄

0
is a saddle which is

connected to itself by a homoclinic orbit. The phase portrait
of system for (44a), (44b) is shown in Figure 3(a).

It is found that for the sufficiently small parameter 𝜀,
the singular point 𝑄

0
remains a hyperbolic singular point

𝑄
𝜀
of the saddle stability type. For small perturbations, the

singular point 𝑃
0
becomes a hyperbolic sink 𝑃

𝜀
. The phase

portrait of the perturbed system from (43a), (43b) is depicted
in Figure 3(b).

Using the function (45), at ℎ = 0, and substituting 𝛾
𝑠
in

(46) into (45), the estimate of the basin of the attractor for
𝛾min is obtained as

𝛾min −
𝑓
2

𝜇
2
𝐼
𝑟

cos 𝛾min = 𝜋 + arcsin
𝜇
2
𝐼
𝑟

𝑓
2

+

√𝑓
2

2
− 𝜇
2

2
𝐼2
𝑟

𝜇
2
𝐼
𝑟

. (47)

Define an annulus 𝐴
𝜀
near 𝐼 = 𝐼

𝑟
as

𝐴
𝜀
= {(𝑢
1
, 𝑢
2
, 𝐼, 𝛾) | 𝑢

1
= 𝐵, 𝑢

2
= 0,

𝐼 − 𝐼
𝑟

 <
√𝜀𝐶, 𝛾 ∈ 𝑇

𝐿
} ,

(48)

where 𝐶 is a constant and is sufficiently large so that the
unperturbed orbit is enclosed within the annulus.

It is noticed that the three-dimensional stable and unsta-
ble manifolds of 𝐴

𝜀
, denoted as𝑊𝑠(𝐴

𝜀
) and𝑊

𝑢
(𝐴
𝜀
), are the

subsets of the manifolds 𝑊𝑠(𝑀
𝜀
) and 𝑊

𝑢
(𝑀
𝜀
), respectively.

We will indicate that for the perturbed system, the saddle
focus 𝑃

𝜀
on 𝐴
𝜀
has the multipulse orbits which come out

of the annulus 𝐴
𝜀
and can return to the annulus in the full

four-dimensional space.These orbits, which are asymptotic to
some invariant manifolds in the slow manifold𝑀

𝜀
, leave and
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Figure 3: Dynamics on the normally hyperbolic manifold is described; (a) the unperturbed case; (b) the perturbed case.

enter a small neighborhood of 𝑀
𝜀
multiple times and finally

return and approach an invariant set in𝑀
𝜀
asymptotically, as

shown in Figure 4. In Figure 4, this is an example of the three-
pulse jumping orbit which depicts the formation mechanism
of the multipulse orbits.

5.2. The 𝑘-Pulse Melnikov Function. Most researchers fo-
cused on Shilnikov type single-pulse chaotic dynamics of
the high-dimensional nonlinear systems from the thin plate
structures in the past. There exist multipulse chaotic dynam-
ics in the practical engineering systems. The extended Mel-
nikov method is a kind of theory which can be used to inves-
tigate the multipulse jumping orbits in the high-dimensional
nonlinear systems. Since the theory on multipulse chaotic
dynamics is very esoteric and abstract, it is difficult to be
extended to solve the engineering problems. Up to now,
few researchers have made use of the extended Melnikov
method to study the Shilnikov type multipulse homoclinic
and heteroclinic bifurcations and chaotic dynamics of high-
dimensional nonlinear systems in engineering applications.

The extended Melnikov method was first presented by
Kovačič et al. [15–17], which is an extension of the global per-
turbation method developed by Feng et al. [9–11]. Camassa
et al. [17] gave the detailed procedure of mathematical proof
on the extended Melnikov method, which unifies several
disjoint perturbation theoretical methods. This method can
be also utilized to detect the Shilnikov typemultipulse homo-
clinic or heteroclinic orbits to the slow manifolds of four-
dimensional, near-integrable Hamilton systems or higher-
dimensional, nonlinear systems. The extended Melnikov
function is different from the usual Melnikov function and
describes slow dynamics of the multipulse orbits on the
hyperbolic manifold.

The key of the extended Melnikov method is how to
calculate the extended Melnikov method.The extended Mel-
nikov function is computed by a recursion procedure from
the usual 1-pulseMelnikov function and depends on the small
perturbation parameter 𝜀 through a logarithmic function
which calculates the asymptotic in the particularly delicate
small 𝜀 limit. In this paper, the extended Melnikov function

𝛾

|u|

h

𝛾c 𝛾c + 3Δ𝛾

p𝜀
qc

Figure 4: The Shilnikov type three-pulse orbits are obtained.

can be simplified in the resonant case and does not depend
on the perturbation parameter. We have used the extended
Melnikovmethod to investigate heteroclinic bifurcations and
multipulse chaotic dynamics of the laminated composite
piezoelectric rectangular plate.

We use the extended Melnikov method described by
Kovačič et al. [15–17] to find the Shilnikov type multipulse
orbits for nonlinear vibration for the laminated composite
piezoelectric rectangular plate. We search for the multipulse
excursions to find the nondegenerate zeroes of the extended
Melnikov function𝑀

𝑘
(𝜀, 𝐼, 𝛾

0
, 𝜇
2
) with the certain combina-

tion of parameters 𝜀, 𝐼, 𝛾
0
, and 𝜇

2
, which we name the 𝑘-pulse

Melnikov function.
It is important to obtain the detailed expression of the 𝑘-

pulse Melnikov function. We compute the 1-pulse Melnikov
function based on the formula obtained by Kovačič et al.
[15–17] at the resonant case 𝐼 = 𝐼

𝑟
. The 1-pulse Melnikov

function 𝑀
1
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) coincides with the standard Mel-

nikov function 𝑀(𝐼
𝑟
, 𝛾
0
, 𝜇
2
). The 1-pulse Melnikov function

𝑀(𝐼
𝑟
, 𝛾
0
, 𝜇
2
) on both heteroclinic manifolds 𝑊

𝑠
(𝑀) and

𝑊
𝑢
(𝑀) is given as follows:

𝑀(𝐼
𝑟
, 𝛾
0
, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= ∫

+∞

−∞

⟨n (𝑝
ℎ
(𝑡)) , g (𝑝ℎ (𝑡) , 𝜇

2
, 0)⟩ 𝑑𝑇

1
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= ∫

+∞

−∞

(
𝜕𝐻

𝜕𝑢
1

𝑔
𝑢1 +

𝜕𝐻

𝜕𝑢
2

𝑔
𝑢2 +

𝜕𝐻

𝜕𝐼
𝑔
𝐼
+

𝜕𝐻

𝜕𝛾
𝑔
𝛾
)𝑑𝑇
1

= −
2√2𝜇

3

3𝜂
1

𝜀
3/2

1
− 2√2𝑎

6
𝜇
2
𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

− 𝑓
2
𝐼
𝑟
[cos(𝛾

0
− 𝑎
6

√2𝜀
1

𝜂
1

) − cos(𝛾
0
+ 𝑎
6

√2𝜀
1

𝜂
1

)] .

(49)

Based on the results given by Kovačič et al. [15–
17], it is known that the 𝑘-pulse Melnikov function
𝑀
𝑘
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) (𝑘 = 1, 2, . . .) is defined as

𝑀
𝑘
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
)

=

𝑘−1

∑

𝑗=0

𝑀(𝐼
𝑟
, 𝑗Δ𝛾 (𝐼

𝑟
) + Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) + 𝛾
0
, 𝜇
2
) ,

(50)

where

Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) =

Ω (𝑥
0
(𝐼
𝑟
) , 𝐼
𝑟
)

𝜆 (𝐼
𝑟
)

𝑗

∑

𝑟=1

log


𝜍 (𝐼
𝑟
)

𝜀𝑀
𝑟
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
)



,

(51)

for 𝑗 = 1, . . . , 𝑘 − 1 and Γ
0
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) = 0.

It is noticed that the angle function Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) is

the complex formula where 𝑀
𝑘
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) appears as the

argument of a logarithm. When resonance occurs, the
periodic orbit corresponding to the value 𝐼

𝑟
degenerates

into a circle of equilibria. Under this case, there exists
Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) = 0, (𝑗 = 0, 1, . . . , 𝑘 − 1). Based on the

expression obtained by Kovačič et al. [15–17], the 𝑘-pulse
Melnikov function can be written as follows:

𝑀
𝑘
(𝐼
𝑟
, 𝛾
0
, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
)

=

𝑘−1

∑

𝑗=0

𝑀(𝐼
𝑟
, 𝛾
0
+ 𝑗Δ𝛾 (𝐼

𝑟
) , 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= −𝑓
2
𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

)]

−
2√2𝜇

3

3𝜂
1

𝜀
3/2

1
− 2√2𝑎

6
𝜇
2
𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

− 𝑓
2
𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

−
2𝑎
6
√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

−
2𝑎
6
√2𝜀
1

𝜂
1

)]

−
2√2𝜇

3

3𝜂
1

𝜀
3/2

1
− 2√2𝑎

6
𝜇
2
𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

+ ⋅ ⋅ ⋅

− 𝑓
2
𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

− 2 (𝑘 − 1) 𝑎
6

√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

− 2 (𝑘 − 1)
𝑎
6
√2𝜀
1

𝜂
1

)]

−
2√2𝜇

3

3𝜂
1

𝜀
3/2

1
− 2√2𝑎

6
𝜇
2
𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

= −𝑓
2
𝐼
𝑟
[cos(𝛾

0
−

𝑎
6
√2𝜀
1

𝜂
1

− 2 (𝑘 − 1)
𝑎
6
√2𝜀
1

𝜂
1

)

− cos(𝛾
0
+

𝑎
6
√2𝜀
1

𝜂
1

)]

−
2√2𝑘𝜇

3

3𝜂
1

𝜀
3/2

1
− 2√2𝑘𝑎

6
𝜇
2
𝐼
2

𝑟

𝜀
1/2

1

𝜂
1

.

(52)

If we set Δ𝛾 = −2𝑎
6
(√2𝜀
1
/𝜂
1
) and 𝛾

𝑘−1
= 𝛾
0
+ (𝑘 −

1)(Δ𝛾/2), (52) can be rewritten as follows:

𝑀
𝑘
(𝐼
𝑟
, 𝛾
0
, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= 𝑀
𝑘
(𝐼
𝑟
, 𝛾
𝑘−1

− (𝑘 − 1)
Δ𝛾

2
, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
)

= −𝑓
2
𝐼
𝑟
[cos(𝛾

𝑘−1
+

1

2
𝑘Δ𝛾)

− cos(𝛾
𝑘−1

−
1

2
𝑘Δ𝛾)]

+
𝑘𝜇
3
𝜀
1

3𝑎
6

Δ𝛾 + 𝜇
2
𝐼
2

𝑟
(𝑘Δ𝛾)

= 2𝑓
2
𝐼
𝑟
sin 𝛾
𝑘−1

sin(
1

2
𝑘Δ𝛾)

+
𝜇
3
𝜀
1

3𝑎
6

(𝑘Δ𝛾) + 𝜇
2
𝐼
2

𝑟
(𝑘Δ𝛾) .

(53)

Based on Proposition 3.1 given by Kovačič et al. [15–17],
the nonfolding condition is always satisfied in the resonant
case. We obtain the following two conditions:



(1/2) 𝑘Δ𝛾

sin ((1/2) 𝑘Δ𝛾)

(𝜇
3
𝜀
1
+ 3𝑎
6
𝜇
2
𝐼
2

𝑟
)

3𝑎
6
𝑓
2
𝐼
𝑟



< 1,

1

2
𝑘Δ𝛾 ̸=𝑛𝜋, 𝑛 = 0, ±1, ±2, . . . .

(54)

The main aim of the following analysis focuses on
identifying simple zeroes of the 𝑘-pulse Melnikov function.
Define a set that contains all such simple zeroes to be

𝑍
𝑛

−
= {(𝐼
𝑟
, 𝛾
𝑘−1

, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
) | 𝑀
𝑘
= 0,𝐷

𝛾0
𝑀
𝑘

̸=0} . (55)
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The 𝑘-pulse Melnikov function has two simple zeroes in the
interval 𝛾

𝑘−1
∈ [0, 𝜋]

𝛾
𝑘−1,1

= − arcsin
(1/2) 𝑘Δ𝛾

sin ((1/2) 𝑘Δ𝛾)

(𝜇
3
𝜀
1
+ 3𝑎
6
𝜇
2
𝐼
2

𝑟
)

(3𝑎
6
𝑓
2
𝐼
𝑟
)

,

𝛾
𝑘−1,2

= 𝜋 − 𝛾
𝑘−1,1

.

(56)

5.3. Geometric Structure of Multipulse Orbits. Based on the
aforementioned analysis, we obtain the following conclu-
sions. When the parameters of 𝑘, 𝜇

3
, 𝜀
1
, 𝜇
2
, 𝑎
6
, and 𝑓

2

satisfy condition (54), the 𝑘-pulse Melnikov function (53)
has simple zeroes at 𝛾

𝑘−1
= 𝛾
𝑘−1,1

and 𝛾
𝑘−1

= 𝛾
𝑘−1,2

=

𝜋 − 𝛾
𝑘−1,1

. For 𝑖 = 1 or 𝑖 = 2, when the 𝑗-pulse Melnikov
function 𝑀

𝑗
(𝐼
𝑟
, 𝛾
0,𝑖
, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
) has no simple zeroes, the

stable and unstable manifolds𝑊𝑠(𝑀
𝜀
) and𝑊

𝑢
(𝑀
𝜀
) intersect

transversely along a symmetric pair of the two-dimensional,
𝑘-pulse surfaces ∑

𝜇
2
,𝜂1,𝑎6,𝜀1

±,𝜀
(𝛾
𝑘−1,𝑖

). This signifies that the
presence of the Shilnikov type 𝑛-pulse orbits leads to chaotic
dynamics in the sense of the Smale horseshoes for the
nonlinear motion for the laminated composite piezoelectric
rectangular plate. In the phase space of the unperturbed
system from (21a), (21b), (21c), (21d), this symmetric pair of
the two-dimensional, 𝑘-pulse surfaces breaks down smoothly
onto a pair of limiting 𝑘-pulse surfaces, ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1

±,0
(𝛾
𝑘−1,𝑖

),
parametrized by (37a), (37b), and (38) with 𝐼 = 𝐼

𝑟
, 𝛾
0

=

𝛾
𝑘−1,𝑖

− (𝑘 − 1)(Δ𝛾/2) + 𝑗Δ𝛾, and an arbitrary ℎ. The sign in
(49) is determined by the sign of the corresponding 𝑗-pulse
Melnikov function𝑀

𝑗
(𝐼
𝑟
, 𝛾
0,𝑖
, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
).

From the discussion given by Kovačič et al. [15–17], it
is easily found that for 𝛾

0,𝑖
= 𝛾
𝑘−1,𝑖

− (𝑘 − 1)(Δ𝛾/2) + 𝑗Δ𝛾

(𝑖 = 1 or 𝑖 = 2), the values of the 𝑗-pulse Melnikov
functions 𝑀

𝑗
(𝐼
𝑟
, 𝛾
0,𝑖
, 𝜇
2
, 𝜂
1
, 𝑎
6
, 𝜀
1
) are not zero for all 𝑗 =

1, . . . , 𝑘 − 1, and all 𝑗 have the same sign. It is known
that this sign is negative for 𝛾

0,1
and positive for 𝛾

0,2
.

Therefore, the 𝑘-pulse heteroclinic surfaces ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1
±,𝜀

(𝛾
𝑘−1,1

)

and ∑
𝜇
2
,𝜂1,𝑎6 ,𝜀1

±,𝜀
(𝛾
𝑘−1,2

) indeed exist, and the limiting 𝑘-pulse
surfaces ∑

𝜇
2
,𝜂1,𝑎6 ,𝜀1

±,0
(𝛾
𝑘−1,1

) and ∑
𝜇
2
,𝜂1,𝑎6,𝜀1

±,0
(𝛾
𝑘−1,2

) also exist
when 𝜀 = 0. Since the regions enclosed by the stable and
unstable heteroclinic manifolds𝑊𝑠(𝑀) and𝑊

𝑢
(𝑀) are both

convex, and the normal vector

n = ((−𝜇𝑢
1
+ 𝜂
1
𝑢
3

1
+ 𝑎
6
𝐼
2
𝑢
1
) , −𝑢
2
, 0, 0) (57)

is known to point out of these manifolds, it demonstrates
that the orbits forming each of the surfaces ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1

±,0
(𝛾
𝑘−1,1

)

are parametrized by (37a), (37b), and (38) with the alter-
nating signs, and the orbits forming each of the surfaces
∑
𝜇
2
,𝜂1,𝑎6 ,𝜀1

±,0
(𝛾
𝑘−1,2

) are parametrized by (37a), (37b), and (38)
with the same signs.

For the parameter 𝜇
2
= 𝜇, there exist𝑁−1 orbit segments

𝑂
𝑖
(𝜇) (𝑖 = 2, . . . , 𝑁) on the annulus𝑀, where the end points

of the segments 𝑂
𝑖
(𝜇) are 𝑑

𝑖
(𝜇) and 𝑐

𝑖
(𝜇), respectively. The

trajectories of (44a), (44b) on the segments𝑂
𝑖
(𝜇) travel from

the end points 𝑑
𝑖
(𝜇) to 𝑐

𝑖
(𝜇) in forward time. Therefore, the

end points 𝑑
𝑖
(𝜇) and 𝑐

𝑖
(𝜇) are, respectively, referred to as

the departure and landing points of the heteroclinic jumping
Γ
𝑖
. In addition, the line 𝛾 = 𝛾

0,𝑖
(𝐼
𝑟
, 𝜇) − Δ𝛾

−
(𝐼
𝑟
) transversely

intersects the segments 𝑂
𝑖
(𝜇) at the end point 𝑐

𝑖
(𝜇) for 𝑖 =

2, . . . , 𝑁, while the line 𝛾 = 𝛾
0,𝑖
(𝐼
𝑟
, 𝜇) + Δ𝛾

+
(𝐼
𝑟
) transversely

intersects the segments𝑂
𝑖+1

(𝜇) at the end point 𝑑
𝑖+1

(𝜇)when
𝑖 = 1, . . . , 𝑁 − 1. For all 𝑖 = 2, . . . , 𝑁 − 1, the difference in
the coordinates ℎ of two end points 𝑐

𝑖
(𝜇) and 𝑑

𝑖+1
(𝜇) is zero,

namely,

ℎ (𝑐
𝑖
(𝜇)) − ℎ (𝑑

𝑖+1
(𝜇)) = 0. (58)

For each 𝑖 = 2, . . . , 𝑁 − 1, one of the heteroclinic orbits
represented by Γ

𝑖
and contained in the limiting surfaces

∑
𝜇
2
,𝜂1,𝑎6 ,𝜀1

0
(𝛾
0,𝑖
) at the value 𝜇 = 𝜇, connects two intersection

points 𝑐
𝑖
(𝜇) and 𝑑

𝑖+1
(𝜇). Therefore, a heteroclinic orbit Γ

1

on the limiting surfaces ∑𝜇2 ,𝜂1,𝑎6 ,𝜀1
0

(𝛾
0,1
) connects the certain

point 𝑐
1
(𝜇) on the annulus 𝑀 to the end point 𝑑

2
(𝜇) on the

segment 𝑂
2
(𝜇). It is also known that a heteroclinic orbit Γ

𝑁

on the limiting surfaces ∑
𝜇
2
,𝜂1,𝑎6 ,𝜀1

0
(𝛾
0,𝑁

) connects the end
point 𝑐

𝑁
(𝜇) on the segments 𝑂

𝑁
(𝜇) to the certain point

𝑑
𝑁+1

(𝜇) on the annulus𝑀. According to the study of Kovačič
et al. [15–17], there exists an 𝑛-bump singular transition
orbit or a modified 𝑁-bump singular transition orbit. The
3-bump jumping orbit depicted in Figure 5 consists of the
heteroclinic orbits Γ

𝑖
( 𝑖 = 1, 2, 3) on the limiting surfaces

∑
𝜇
2
,𝜂1,𝑎6 ,𝜀1

0
(𝛾
0,𝑖
) (𝑖 = 1, 2, 3) at the parameter 𝜇 = 𝜇 and the

orbit segments 𝑂
1
(𝜇) and 𝑂

2
(𝜇) of (44a), (44b). It is known

from the above analysis that the orbit segments 𝑂
𝑖
(𝜇) (𝑖 =

2, . . . , 𝑁) intersect transversely with the lines 𝛾 = 𝛾
0,𝑖
(𝐼
𝑟
, 𝜇) +

Δ𝛾
+
(𝐼
𝑟
) and 𝛾 = 𝛾

0,𝑖
(𝐼
𝑟
, 𝜇) − Δ𝛾

−
(𝐼
𝑟
).

The 2-bump singular surface shown in Figure 6 is com-
posed of two single-pulse singular intersection surfaces
∑
𝜇
2
,𝜂1,𝑎6 ,𝜀1

0
(𝛾
𝑘−1,1

) and∑
𝜇
2
,𝜂1,𝑎6 ,𝜀1

0
(𝛾
𝑘−1,2

).This surface connects
the singular points of (44a), (44b) that lie on the line 𝛾 = 𝛾

0,1
−

Δ𝛾
− to those of (44a), (44b) that lie on the line 𝛾 = 𝛾

0,1
−Δ𝛾
+

on the annulus𝑀.
We obtain a countable infinity of the singular heteroclinic

jumping orbits as follows. Each orbit starts along one branch
of the manifold 𝑊(𝑄

0
) of the saddle 𝑄

0
on the annulus 𝑀.

Then, the singular heteroclinic jumping orbit departs from
the annulus 𝑀, goes along one of the singular 𝑘-pulse orbits
Γ
𝑘
, and lands back at a point on the separatrix that connects

the saddle𝑄
0
to itself on the annulus𝑀. After traveling along

the separatrix for a while, the singular heteroclinic jumping
orbit takes off again along the singular 𝑙-pulse orbit Γ

𝑙
and

continues such process. Eventually, the singular heteroclinic
jumping orbit lands back on the separatrix.

Therefore, it is concluded that the multipulse orbits of
(21a), (21b), (21c), (21d) consist of several portions of the slow
time scale on the hyperbolic manifold𝑀

𝜀
andmany fast time

scale heteroclinic pulses leaving from the manifold 𝑀
𝜀
, and

these multipulse heteroclinic orbits form a consecutive and
recurrence process.

6. Numerical Results of Chaotic Motions

Based on the above qualitative analysis for the multipulse
orbits and chaotic dynamics of the laminated composite
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Figure 5: The 3-bump orbit with the single-pulse is depicted.

piezoelectric rectangular plate, the conditions of the chaotic
motion under the sense of the Smale horses are obtained.The
heteroclinic bifurcations of (12a), (12b), (12c), (12d) appear
when 𝜂

1
> 0. Therefore, the above theoretical analysis

is focused on the situation which there exist heteroclinic
bifurcations in (12a), (12b), (12c), (12d). The parameter 𝜂

1

is the combination of the parameters 𝑎
6
, 𝑎
7
, and 𝑏

6
, where

𝜂
1

= (9𝑎
6
𝑎
7
)/2𝑏
6
. In this section, we have only performed

numerical simulations of the multipulse chaotic motions
of the laminated composite piezoelectric rectangular plate
under heteroclinic bifurcations in order to further verify the
theoretical analysis. Consequently, the parameters 𝑎

6
, 𝑎
7
, and

𝑏
6
are chosen to satisfy 𝜂

1
> 0.

We choose the averaged equation (12a), (12b), (12c), (12d)
to conduct numerical simulations. A numerical approach
through the computer software Matlab is utilized to explore
the existence of the Shilnikov type multipulse chaotic
motions in the laminated composite piezoelectric rectangular
plate. Based on the above qualitative analysis, it is found that
the damping coefficients 𝜇

1
, 𝜇
2
and transverse excitation 𝑓

2

play an important role in the multipulse chaotic motions
of the laminated composite piezoelectric rectangular plate.
In addition, the parameters 𝑎

2
and 𝑎

3
are related to the in-

plane excitation in the𝑥-direction and the in-plane excitation
in the 𝑦-direction, respectively. The parameter 𝑎

4
is the

piezoelectric excitation which reflects the characteristics of
the piezoelectric material. Hence, the parameters 𝜇

1
, 𝑎
2
, 𝑎
4
,

and 𝑓
2
are selected as the controlling parameters to discover

the law for complicated nonlinear dynamics of the laminated
composite piezoelectric rectangular plate.

We begin to draw bifurcation diagrams of the parameters
𝑓
2
, 𝜇
1
, 𝑎
2
, and 𝑎

4
. Bifurcation diagrams describe the vibration

law of the modal displacements 𝑥
1
and 𝑥

3
, respectively, when

the parameters 𝑓
2
, 𝜇
1
, 𝑎
2
, and 𝑎

4
change in a certain region.

We draw bifurcation diagrams according to the rules of the
Runge-Kutta algorithm and the Poincaré map theory. For the
periodic motions, Poincaré map is of several separate points.
For a chaotic motion, the Poincaré map consists of a number
of points on the limited Poincaré section.Therefore, it can be
observed that chaotic motion and periodic motion of nonlin-
ear systemappear frombifurcation diagrams.The chaotic and

𝛾

|u|
h

M

Γ
∑ (𝛾0,1 , 𝛾0,2)

𝛾0,2 + Δ𝛾+ 𝛾0,1 + Δ𝛾+

𝛾0,2 − Δ𝛾− 𝛾0,1 − Δ𝛾−

Figure 6: The 2-pulse singular surfaces ∑(𝛾
0,1
, 𝛾
0,2
) are depicted.

periodic responses can be identified by several conventional
criteria such as phase portraits and Poincaré map. Based
on the response law of bifurcation diagrams, phase portraits
and Poincaré map are utilized to further verify the existence
of the chaotic motions and the periodic motions. In order
to compare the influence of these parameters 𝑓

2
, 𝜇
1
, 𝑎
2
,

and 𝑎
4
on nonlinear vibration in the laminated composite

piezoelectric rectangular plate, we choose the same initial
conditions to carry out numerical simulation.

Figure 7 illustrates the bifurcation diagram of the lam-
inated composite piezoelectric rectangular plate when the
excitation 𝑓

2
varies in the interval 𝑓

2
= 2 ∼ 200.

Other parameters and initial conditions are chosen as 𝜎
1
=

1.83, 𝜎
2

= 1.97, 𝜇
1

= 0.2, 𝜇
2

= 0.2, 𝑎
2

= 23.0, 𝑎
3

=

12.0, 𝑎
4
= 13.0, 𝑎

5
= −1.01, 𝑎

6
= −2.03, 𝑎

7
= −2.05, 𝑏

6
=

4.07, 𝑏
7
= −3.08, 𝑏

8
= 1.09, 𝑥

10
= −0.01, 𝑥

20
= −0.05, 𝑥

30
=

−0.01, 𝑥
40

= −0.01. Figures 7(a) and 7(b) represent the
bifurcation diagram on the plane (𝑥

1
, 𝑓
2
) and (𝑥

3
, 𝑓
2
), respec-

tively. It is observed from Figure 7 that the excitation 𝑓
2

is an important parameter that influences on the nonlinear
dynamic responses of the laminated composite piezoelectric
rectangular plate. Figure 7 shows that the chaotic motion
of the laminated composite piezoelectric rectangular plate
appears first, followed by a periodic motion of that. With the
increase of excitation 𝑓

2
, Figure 7 presents the following law:

chaotic motion→multi-period motion.
We study the impact of the damping parameter on the

nonlinear dynamic responses of the laminated composite
piezoelectric rectangular plate. Figure 8 is the bifurcation
diagramof the laminated composite piezoelectric rectangular
plate with the damping coefficient 𝜇

1
. The figure demon-

strates that system is beginning to enter into the region of
the chaoticmotion then appears the periodicmotionwindow
and finally comes into the region of the chaotic motion again
as the damping coefficient 𝜇

1
varies in the interval 𝜇

1
=

0.01 ∼ 0.7. Other parameters and initial conditions are the
same as those in Figure 7 when excitation is chosen as 𝑓

2
=

82.7. Figures 8(a) and 8(b) describe the nonlinear motion of
the laminated composite piezoelectric rectangular plate on
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Figure 7: The bifurcation diagram is obtained for the excitation 𝑓
2

= 2∼200, and initial conditions 𝑥
10

= −0.01, 𝑥
20

= −0.05, 𝑥
30

=

−0.01, 𝑥
40

= −0.01; (a) the bifurcation diagram on the plane (𝑥
1
, 𝑓
2
); (b) the bifurcation diagram on the plane (𝑥

3
, 𝑓
2
).
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Figure 8: The bifurcation diagram is obtained for the damping coefficient 𝜇
1
= 0.01∼0.7, the excitation 𝑓

2
= 82.7, and initial conditions

𝑥
10

= −0.01, 𝑥
20

= −0.05, 𝑥
30

= −0.01, 𝑥
40

= −0.01; (a) the bifurcation diagram on the plane (𝑥
1
, 𝜇
1
); (b) the bifurcation diagram on the

plane (𝑥
3
, 𝜇
1
).

the planes (𝑥
1
, 𝜇
1
) and (𝑥

3
, 𝜇
1
), respectively, as well as the

impact of the damping coefficient 𝜇
1
on the system.

Figure 9 portraysthe bifurcation diagram for the lami-
nated composite piezoelectric rectangular plate when the in-
plane excitation 𝑎

2
in the 𝑥-direction varies in the interval

𝑎
2
= 2∼65. Other parameters and initial conditions remain

the same as those in Figure 8 when the damping coefficient
𝜇
1
is selected as 𝜇

1
= 0.2. Figures 9(a) and 9(b) display

the bifurcation diagram on the plane (𝑥
1
, 𝑎
2
) and (𝑥

3
, 𝑎
2
),

respectively. Figure 9 presents that the beginning movement
of the system is the periodic motion; then the system appears
the chaotic motion. With the increase of the excitation
𝑎
2
, Figure 9 shows the following evolution law: periodic

motion→ chaotic motion.

Figure 10 indicates the bifurcation diagram for the lam-
inated composite piezoelectric rectangular plate when the
piezoelectric excitation 𝑎

4
varies from 𝑎

4
= 2 to 𝑎

4
= 120.

Other parameters and initial conditions remain the same
as those in Figure 9 when the in-plane excitation 𝑎

2
is

chosen as 𝑎
2

= 23. Figures 10(a) and 10(b) demonstrate
the bifurcation diagram on the planes (𝑥

1
, 𝑎
4
) and (𝑥

3
, 𝑎
4
),

respectively. It is observed from Figure 10 that the piezoelec-
tric excitation 𝑎

4
has a significant influence on the compli-

cated nonlinear dynamic behaviors of the laminated com-
posite piezoelectric rectangular plate. As the piezoelectric
excitation 𝑎

4
increases, Figure 10 reveals the following

law: chaotic motion→multiperiod motion→ one-period
motion→multiperiod motion→ chaotic motion.
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Figure 9: The bifurcation diagram is obtained for the in-plane excitation 𝑎
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Figure 10: The bifurcation diagram is obtained for the piezoelectric excitation 𝑎
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3
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4
).

Based on the above bifurcation diagram, the excitations
𝑓
2
, 𝑎
2
, 𝑎
4
, and the damping coefficient 𝜇

1
are selected as

specific values in order to find themultipulse chaoticmotions
of the laminated composite piezoelectric rectangular plate.
Figure 11 indicates existence of themultipulse chaotic motion
of the laminated composite piezoelectric rectangular plate
when the excitation 𝑓

2
is 82.7. In this case, the chosen

parameters and initial conditions are the same as those in
Figure 7. Figures 11(a) and 11(b) are the three-dimensional
phase portrait in the space (𝑥

1
, 𝑥
2
, 𝑥
3
) and the Poincaré

map on the plane (𝑥
1
, 𝑥
2
), respectively. Figure 11 shows that

the excitation 𝑓
2
has a noticeable effect on the existence of

the multipulse chaotic motions on the laminated composite
piezoelectric rectangular plate.

Besides the excitations 𝑓
2
, 𝑎
2
, 𝑎
4
and the damping coef-

ficient 𝜇
1
, the multipulse chaotic motions of the laminated

composite piezoelectric rectangular plate also depend on
other parameters. Figure 12 is obtained when the parameters
and initial conditions are chosen as 𝜎

1
= 14.37, 𝜎

2
=

11.42, 𝜇
1
= 0.2, 𝜇

2
= 0.2, 𝑎

2
= 30.0, 𝑎

3
= 75.0, 𝑎

4
= 45.0,

𝑎
5

= −11.66, 𝑎
6

= 12.27, 𝑓
2

= 122.7, 𝑎
7

= −2.68, 𝑏
6

=

−2.2, 𝑏
7

= −9.69, 𝑏
8

= −22.32, 𝑥
10

= −1.08, 𝑥
20

= 0.5,
𝑥
30

= −0.01, 𝑥
40

= 9.16. Comparing with Figures 11
and 12, it is found that there are differences in the phase
portrait and the Poincaré map, respectively. From the
three-dimensional phase portrait in Figure 12, we can see that
there exists obvious multipulse jumping phenomenon. The
three-dimensional phase portrait is composed of the four
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Figure 12: The multipulse chaotic motion is obtained when 𝜎
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regions.The different regions are connected by themultipulse
orbits.

In the following numerical simulations, several differ-
ent sets of parameters and initial conditions are given
in order to investigate the different shapes of the multi-
pulse chaotic motion. Figure 13 demonstrates the multipulse
chaotic response in the laminated composite piezoelectric
rectangular plate for 𝑓

2
= 92.38. Some parameters and

initial conditions are chosen as 𝜎
1
= 3.61, 𝜎

2
= 3.13, 𝑎

5
=

−15.01, 𝑏
8

= 4.09, 𝑥
10

= −0.01, 𝑥
20

= −0.09, 𝑥
30

=

−0.05, 𝑥
40

= −0.05. In this case, other parameters are the
same as those in Figure 7. From Figure 13, we can see that
there is another shape for the multipulse chaotic motion. It
is found that the shapes of these two phenomena depicted in
Figures 12 and 13 are completely different. From the three-
dimensional phase portrait in Figure 13, it is found that
multipulse jumping phenomenon is more prominent.

7. Conclusions

In this paper, the nonlinear vibrations of the laminated com-
posite piezoelectric rectangular plate are studied by applying
the theories of the global bifurcations and chaotic dynamics
for high-dimensional nonlinear systems. The multipulse
heteroclinic orbits and chaotic dynamics are investigated
using the extended Melnikov method for the case where the
averaged equations have one nonsemisimple double zero and
a pair of pure imaginary eigenvalues.The extendedMelnikov
method can be applied to study the Shilnikov typemultipulse
heteroclinic bifurcations and chaotic dynamics of high-
dimensional nonlinear systems in engineering applications.
Analysis of themultipulse heteroclinic orbits in the laminated
composite piezoelectric rectangular plate demonstrates that
such an analysis is a typical singular perturbation problem
in which there are two different time scales. Dynamics on
the hyperbolic manifold 𝑀

𝜀
are of the slow time scale and
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Figure 13: The multipulse chaotic motion is obtained when 𝜎
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= −0.09, 𝑥
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= −0.05; (a) the phase portrait in

the three-dimensional space (𝑥
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3
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).

the multipulse jumping orbits taking off from this manifold
are of the fast time scale. It is shown that the transfer of
energy between the two different modes occurs through
the multipulse jumping orbits. The studies have led to the
following conclusions.

(1) There exist the Shilnikov type multipulse chaotic
motions in nonlinear vibration of the laminated composite
piezoelectric rectangular plate. The geometric interpretation
of the 𝑘-pulse Melnikov function is a signed distance mea-
sured along the normal to a heteroclinic manifold, which
gives the more delicate local estimates near the hyperbolic
manifold. In the resonant case, the 𝑘-pulse extended Mel-
nikov function 𝑀

𝑘
(𝜀, 𝐼, 𝛾

0
, 𝜇
2
) does not depend on the small

perturbation parameter 0 < 𝜀 ≪ 1, and the nonfolding condi-
tion is automatically satisfied, resulting in the angle function
Γ
𝑗
(𝜀, 𝐼
𝑟
, 𝛾
0
, 𝜇
2
) (𝑗 = 0, 1, . . . , 𝑘 − 1) being zero. Therefore, the

computing procedure of the extendedMelnikov function can
be simplified.

(2) In order to verify the theoretical predictions, numer-
ical simulation is used to examine the bifurcations and
chaotic motions of the laminated composite piezoelectric
rectangular plate. Several types of the bifurcation diagrams
are obtained when the transverse excitation 𝑓

2
, the in-plane

excitation 𝑎
2
, the piezoelectric excitation 𝑎

4
, and the damping

coefficient 𝜇
1
are chosen as several different kinds of control

parameters. Based on the bifurcation diagrams, the nonlinear
complicated dynamic behavior of the laminated composite
piezoelectric rectangular plate is controlled by varying the
excitations 𝑓

2
, 𝑎
2
, 𝑎
4
and the damping coefficient 𝜇

1
, respec-

tively. Therefore, the excitations 𝑓
2
, 𝑎
2
, 𝑎
4
and the damping

coefficient 𝜇
1
have important influence on the nonlinear

dynamics responses of the laminated composite piezoelectric
rectangular plate.

(3) There exist different shapes of the chaotic motions
in the nonlinear oscillations of the laminated composite
piezoelectric rectangular plate under different excitations,
parameters, and initial conditions. It is found from numerical

simulations that the shapes of the chaotic motions are com-
pletely different. From the three-dimensional phase portraits
in Figures 12 and 13, it is found that there exist obvious
multipulse jumping phenomena. Therefore, parameters and
initial conditions impact the shapes of the multipulse chaotic
motions.

(4)There existmultipulse chaoticmotions in the averaged
equations. It is well known that the multipulse chaotic
motions in the averaged equations can lead to the multi-
pulse amplitude modulated chaotic vibrations in the original
system under certain conditions. Therefore, the multipulse
amplitudemodulated chaoticmotions occur in the laminated
composite piezoelectric rectangular plate.

In summary, both theoretical and numerical studies
suggest that chaos for the Smale horseshoe sense in nonlinear
motion of the simply supported laminated composite piezo-
electric rectangular plate exists.
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[16] T. J. Kaper and G. Kovačič, “Multi-bump orbits homoclinic to
resonance bands,” Transactions of the American Mathematical
Society, vol. 348, no. 10, pp. 3835–3887, 1996.
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Chaotic maps play an important role in improving evolutionary algorithms (EAs) for avoiding the local optima and speeding up
the convergence. However, different chaotic maps in different phases have different effects on EAs.This paper focuses on exploring
the effects of chaotic maps and giving comprehensive guidance for improving multiobjective evolutionary algorithms (MOEAs)
by series of experiments. NSGA-II algorithm, a representative of MOEAs using the nondominated sorting and elitist strategy,
is taken as the framework to study the effect of chaotic maps. Ten chaotic maps are applied in MOEAs in three phases, that is,
initial population, crossover, and mutation operator. Multiobjective problems (MOPs) adopted are ZDT series problems to show
the generality. Since the scale of some sequences generated by chaotic maps is changed to fit for MOPs, the correctness of scaling
transformation of chaotic sequences is proved bymeasuring the largest Lyapunov exponent.The convergencemetric 𝛾 and diversity
metricΔ are chosen to evaluate the performance of new algorithms with chaos.The results of experiments demonstrate that chaotic
maps can improve the performance of MOEAs, especially in solving problems with convex and piecewise Pareto front. In addition,
cat map has the best performance in solving problems with local optima.

1. Introduction

Multiobjective evolutionary algorithms have attracted wides-
pread attention and have been applied successfully in many
areas, such as test task scheduling problem (TTSP) [1],
reservoir operation [2], proportional integral and derivative
(PID) controller [3], and distribution feeder reconfiguration
(DFR) [4]. One key challenge in multiobjective evolutionary
algorithms is the problem of resolving local optima and
the speed of convergence. There are different solutions for
improving evolutionary algorithms. Some approaches have
been devoted to propose new algorithms, such as MOEA/D
[5], SPEA-2 [6], and NSGA-II [7]. Other researchers have
proposed a variety of hybrid algorithms, which combined
the advantages of two different methods. For example, a new
hybrid evolutionary algorithm (EA) based on the combina-
tion of the honey bee mating optimization (HBMO) and the
discrete particle swarm optimization (DPSO), called DPSO-
HBMO, is applied to solve the multiobjective distribution

feeder reconfiguration (DFR) problem [4]. Another approach
has focused on modifying original algorithms. For example,
new particle swarm optimization (PSO) methods were pro-
posed by using chaotic maps for parameter adaptation [8].
The results showed that chaos embedded PSO can improve
the quality of results in some optimization problems. Chaos
variables are loaded into the variable colony of the immune
algorithm in the immune evolutionary algorithm, and the
experimental results indicate that the new immune evolu-
tionary algorithm improves the convergence performance
and search efficiency [9]. Due to the characteristics such as
randomness, regularity, ergodicity, and initial value sensitiv-
eness, chaos has been widely applied in the original evolutio-
nary algorithms to improve the performance.

Recently researches have been done to the chaos embed in
evolutionary algorithms. For example, Alatas et al. [8] applied
seven chaotic maps to generate seven new chaotic artificial
bee colony algorithms. Three phases were adopted in gen-
erating these algorithms to solve three different benchmark
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single objective problems. Results showed that thesemethods
have somewhat improved the solution quality. Tavazoei and
Haeri [10] introduced ten chaotic maps in weighted gradient
direction to solve two test functions. Results showed that
none of these maps transcends other maps for all of the prob-
lems and desired criteria. Those researches demonstrated
that chaotic sequences replacing the random parameters in
three phases, including initial population, crossover operator,
and mutation operator, can improve the performance of
evolutionary algorithms. However, questions remain that for
a given MOP, which chaotic map should be chosen in order
to achieve the best performance. It is also not clean what
kinds of combination of chaotic maps used in a particular
phase have the best property. Therefore, it is difficult to
give comprehensive guidance to improve the performance of
evolutionary algorithms.

In addition, from the problems solved by COA, it can
be seen that single objective optimization problems are the
focus. Comparisons of different chaotic maps in improving
the effects of COAs for solving single objective problems are
common, but it is rare in solving multiobjective optimization
problems (MOPs). Yu et al. [11] revealed that COA is not
effective for solvingMOPs, whereas the experiments inAlatas
and Akin [12] showed the opposite. The results on these
foregoing researches demonstrate that COAs are successful
and competitive for solving single objective optimization
problem, but effects of COAs on solving MOPs are not
consistent.

In summary, although there have been many researches
about the chaos and its application in COAs, the effects
of different chaotic maps used in different phases on the
performance of evolutionary algorithms have not yet been
fully evaluated, especially for the multiobjective evolutionary
algorithms.

In this paper, we explore the relationships of chaotic
maps and phases on improving multiobjective evolutionary
algorithms by a series of experiments. We will answer the
question whether chaotic maps are suitable to improve the
evolutionary algorithms in solvingMOPs.We also investigate
which phase should be chosen when one chaotic map is used
to improve a multiobjective evolutionary algorithm.

In this research, NSGA-II is chosen as the main opti-
mization algorithm, because it captures the core ideas and
characteristics of MOEAs with the properties of a fast
nondominated sorting procedure, an elitist strategy, a param-
eterless approach, and a simple yet efficient constraint-
handling method [7]. Despite these good aspects of NSGA-
II for solving MOPs, it may be entrapped into local optimal
solutions. Thus, the properties of chaos can help to improve
the performance of NSGA-II.

In order to reflect the diversity of chaotic maps, ten
chaotic maps that have been widely used in pioneering
researches are studied in this paper. They are circle map,
cubic map, Gauss map, ICMIC map, logistic map, sinusoidal
map, tent map, Baker’s map, cat map, and Zaslavskii map.
Each chaotic map has its own property and has its own effect
on improving the performance of evolutionary algorithms.
For example, logistic map has Chebyshev-type distribution
but not uniform distribution. As a result, it is necessary for
optimal solution to go through multiple iterations.

Similar to past researches, chaotic maps are used in three
common phases in evolutionary algorithms in experiments,
that is, chaotic sequences for initial population, chaotic
sequences for crossover operator, and chaotic sequences for
mutation operator.

Five benchmark MOPs including ZDT1, ZDT2, ZDT3,
ZDT4, and ZDT6 [7] are chosen as test problems. These
MOPs have different characteristics and can reflect the
property of evolutionary algorithms from different aspects.
For example, we can use problem ZDT4 to evaluate the
performance of evolutionary algorithms for resolving local
optimal, because ZDT4 has different local Pareto-optimal
solutions in the search space.

In addition, ranges of chaotic maps are not always fit
for test problems. Scaling transformation is needed to apply
chaotic sequences. For example, Coelho and Mariani [13]
adopted Zaslavskii’s map by changing its range to (0, 1) and
Alatas [12, 14, 15] took a similar approach. The problem is
whether the chaotic sequences through scaling transforma-
tion still maintain the properties of chaos. In this paper, the
correctness of scaling transformation of chaotic sequences is
proved by measuring the largest Lyapunov exponent.

Finally, the criteria of convergence and distribution pro-
posed by Deb et al. [7] are adopted in this paper to evaluate
the effects of the combinations of phases and chaotic maps on
improving the performance of multiobjective evolutionary
algorithms. One is metric 𝛾, which measures the extent of
convergence to a known set of Pareto-optimal solutions.
The other is metric Δ, which measures the extent of spread
achieved among the obtained solutions.

From the results of experiments, it can be seen that
NSGA-II embedded with chaotic maps in most cases get
better results with regard to themetrics 𝛾 andΔ.The effects of
using chaotic maps depend on which chaotic map is selected
and inwhich phase it is used. In particular, chaos can improve
the ability of NSGA-II in solving ZDT3 and ZDT6, which are
difficult for the original NSGA-II algorithm. Besides, cat map
is good at solving problems with local optima, such as ZDT4.

The rest of paper is organized as follows. Section 2 gives
a summary of related work on applying chaos to improve
evolutionary algorithms. Section 3 shows the phases in which
chaos can be embedded in evolutionary algorithms. Section 4
defines ten chaotic maps which are embedded in NSGA-II in
the experiments. Section 5 proves that the chaotic sequences
through scaling transformation still hold the properties of
chaos. Section 6 describes the test problems and metrics
used in the experiments. Section 7 presents the performance
results of the experiments. Section 8 concludes the paper.

2. Related Work

Applying chaotic maps to improve evolutionary algorithms
has been studied for a while.There are two different strategies
to apply the chaotic maps in the evolutionary algorithms.

One is to use chaotic sequences generated by chaotic
maps to replace the random parameters needed by evolution-
ary algorithms. Coelho [16] proposed a quantum-behaved
particle swarm optimization (QPSO). Random sequences
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of mutation operator in QPSO were replaced with chaotic
sequences based on Zaslavskii map.The results demonstrated
that it is a powerful strategy to diversify the population and
improve the performance in preventing premature conver-
gence to local minima. Dos Coelho and Alotto considered
the chaotic crossover operator using the Zaslavskii map to
solve multiobjective optimization problems [17]. Zhang et al.
[18] proposed three chaotic sequences based multiobjec-
tive differential evolution (CS-MODE) to solve short-term
hydrothermal optimal scheduling with economic emission
(SHOSEE). In themodifiedmutation operator, chaotic theory
is used to increase the population diversity, and some adap-
tive tuning parameters are produced by chaotic mappings to
control the evolution.

The other strategy is to use the chaos optimization as an
operator. For example, Alatas [14] applied chaotic search in
case that a solution does not obtain improvements in artificial
bee colony (ABC) algorithm. The results showed that the
strategy has better performance than that of ABC algorithm.
Wang and Zhang [19] employed chaos analogously. When
the value of objective function had no improvement in
continuous iterations, one chaotic system was applied to
reinitialize half of the population. It replaced the worst half
part of the population in order to jump out of the local
optimum, whereas the best half part is kept unchanged.

Since evolutionary algorithms have sensitive dependence
on their initial condition and parameters, the improvements
on these parameters can have a good effect. That may be one
of the reasons that the first strategy is widely adopted. In the
first strategy, it is necessary to consider the phases of replacing
random sequences with chaotic sequences and the different
chaotic maps adopted.

For the phases of the evolutionary algorithms, Caponetto
et al. [20] introduced chaotic sequences instead of random
ones during all the phases of the evolution process. Results
showed that the behaviors of all operators were influenced by
chaotic sequences. Alatas [15], Ahmadi andMojallali [21], and
Ma [22] focused on random parameters in initial population.
Coelho [16] and Zhang et al. [18] did their research on
mutation operator. However, which phase is the best choice
was not discussed.

To study the performance of different chaotic maps,
some researchers give the comparisons of different chaotic
maps solving both single objective optimization problems
and MOPs. Talatahari et al. [23] proposed a novel chaotic
improved imperialist competitive algorithm (CICA) for
global optimization. Seven chaotic maps were utilized to
improve the movement step of the algorithm, and the
logistic and sinusoidal maps were found as the best choices.
Caponetto et al. [20] proposed an experimental analysis
on the convergence of evolutionary algorithms. Six chaotic
maps, four phases, and single-objective statistical tests
showed an improvement of evolutionary algorithms when
chaotic sequences were used instead of random processes. Lu
et al. [1] proposed a chaotic nondominated sorting genetic
algorithm (CNSGA) to solve the automatic test task schedul-
ing problem (TTSP). According to the different capabilities
of the logistic and the cat chaotic operators, the CNSGA
approach using the cat population initialization, the cat or

logistic crossover operator, and the logisticmutation operator
performs well and is very suitable for solving the TTSP. The
comparisons of the performance of chaotic maps in these
researches are based on solving one specific problem, so the
results cannot be generalized to offer guidance on how to
choose a chaotic map for solving other problems. Further-
more, most researches focus on single objective problems.

In contrast, this paper performs extensive experiments
on genetic multiobjective evolutionary algorithms embed-
ded with chaotic sequences. It focuses on exploring the
relationships of phases and chaotic maps on improving
multiobjective evolutionary algorithms. As mentioned above
ten chaoticmaps and three phases of evolutionary algorithms
are considered. Five general benchmark problems are used to
demonstrate that the conclusions can be generalized. Finally
the guidance is presented to help researchers choose the suit-
able chaotic map and phases in multiobjective evolutionary
algorithms for different MOPs.

3. Phases in Chaos Embedded
Evolutionary Algorithms

With the ergodic property, chaos is adopted to enrich the
searching behavior and to avoid solutions being trapped into
local optimum in optimization problems. In this section
three key phases in evolutionary algorithms, initialization,
crossover, and mutation, are chosen to be embedded with
chaos. Those three phases are described as follows.

3.1. Initialization. Initial population is the starting point
of iterations. Ergodicity and diversity of initial population
are very important for making sure that the individuals in
the population spread in the search spaces uniformly as
far as possible. In this case, initial population is generated
by chaotic maps which can form a feasible solution space
with good distribution by the properties of randomicity and
ergodicity of chaos. Chaotic sequences can guarantee the
diversity of the initial population, speed up its convergence,
and enhance global search capability.

More specifically, a chaotic map, such as logistic map
or cat map, is adopted instead of random population ini-
tialization of evolutionary algorithms. In the experiments of
multiobjective evolutionary algorithms with chaos, the initial
population is generated by chaos maps. For example, one of
the individuals can be denoted by 𝑥

𝑠
= {𝑥
1

𝑠
, 𝑥
2

𝑠
, . . . 𝑥
𝑖

𝑠
, . . . 𝑥
𝑛

𝑠
},

𝑠 = 1, 2, . . . 𝑁, 𝑖 = 1, 2, . . . 𝑁. For the logistic map
initialization, 𝑥𝑖+1

𝑠
= 4𝑥
𝑖

𝑠
(1 − 𝑥

𝑖

𝑠
).

3.2. Crossover Operator. Crossover operator is most impor-
tant for evolutionary algorithms. Most of the offsprings are
generated through the crossover operator. It has a great influ-
ence on the convergence speed. A good crossover operator
may prevent premature convergence. Ergodicity of chaos
helps search all the solutions, avoid solutions from falling into
local optimum, and gain the global optimum.

There are many different crossover operators, such as
simulated binary crossover operator [7] in NSGA-II algo-
rithmandmultiparent arithmetic crossover operator. Chaotic
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sequences substitute random parameters in the crossover
operators. Chaotic sequences do not change the randomness
of the parameter but display better randomness and therefore
enhance the global performance of evolutionary algorithms.

In this paper, simulated binary crossover (SBX) opera-
tor is adopted in the experiment. According to SBX, two
child individuals 𝑥

𝑐1
= {𝑥

1

𝑐1
, . . . , 𝑥

𝑖

𝑐1
, . . . , 𝑥

𝑛

𝑐1
} and 𝑥

𝑐2
=

{𝑥
1

𝑐2
, . . . , 𝑥

𝑖

𝑐2
, . . . , 𝑥

𝑛

𝑐2
} are generated by a pair of parents 𝑥

𝑝1
=

{𝑥
1

𝑝1
, . . . , 𝑥

𝑖

𝑝1
, . . . , 𝑥

𝑛

𝑝1
} and 𝑥

𝑝2
= {𝑥
1

𝑝2
, . . . , 𝑥

𝑖

𝑝2
, . . . , 𝑥

𝑛

𝑝2
} as

follows:

𝑥
𝑖

𝑐1
=
1

2
[(1 − 𝛽) 𝑥

𝑖

𝑝1
+ (1 + 𝛽) 𝑥

𝑖

𝑝2
] ,

𝑥
𝑖

𝑐2
=
1

2
[(1 + 𝛽) 𝑥

𝑖

𝑝1
+ (1 − 𝛽) 𝑥

𝑖

𝑝2
] ,

(1)

and 𝛽 is generated in the following manner:

𝛽 =

{{

{{

{

(2𝑢)
1/(𝜂𝑐+1), if 𝑢 ≤ 0.5,

(
1

2 (1 − 𝑢)
)

1/(𝜂𝑐+1)

, others,
(2)

where 𝑢 is a random number in the range [0, 1]. 𝜂
𝑐
is the

distribution index for the crossover operator.
Since𝑢 is a randomnumber,𝑢 can be generated by chaotic

maps. For instance, if the chaotic map is a logistic map and in
the 𝑖th iteration 𝑢 = 𝑢

𝑖
, then in the (𝑖 + 1)th iteration, 𝑢

𝑠
=

𝑢
𝑖+1
= 4 × 𝑢

𝑖
(1 − 𝑢

𝑖
).

3.3. Mutation Operator. Mutation operator is indispensable
in the process of evolutionary algorithms. This mechanism
avoids solutions from falling into local optimum and guar-
antees more possibilities of obtaining global optimum. The
properties of chaos, like randomness and sensitivity to initial
conditions, contribute to preventing solutions from being
trapped into local optimum.

Random parameters in mutation operators, for instance,
polynomial variation, are replaced by chaotic sequences. For
a solution 𝑥

𝑠
, the polynomial mutation is described as

𝑥
∗

𝑠
= 𝑥
𝑠
+ (𝑥
𝑢

𝑠
− 𝑥
𝑙

𝑠
) × 𝛿
𝑠
, (3)

where 𝑥𝑢
𝑠
and 𝑥𝑙

𝑠
are the upper and lower bounds of 𝑥

𝑠
, and

𝛿
𝑠
= {
(2𝑢
𝑠
)
1/(𝜂𝑚+1)

− 1, if 𝑢
𝑠
< 0.5,

1 − (2 × (1 − 𝑢
𝑠
))
1/(𝜂𝑚+1)

, others,
(4)

where 𝑢
𝑠
is a random number ranging from 0 to 1. 𝜂

𝑚
is the

distribution index for the mutation operator.
The phase for mutation is that 𝑢

𝑠
is calculated by chaotic

maps in iterations. For example, if the chaotic map is logistic
map, and in the 𝑖th iteration 𝑢

𝑠
= 𝑢
𝑖
, then in the (𝑖 + 1)th

iteration, 𝑢
𝑠
= 𝑢
𝑖+1
= 4 × 𝑢

𝑖
(1 − 𝑢

𝑖
).

As a representative of MOEAs, the framework of NSGA-
II algorithm is adopted in the experiments. In order to
eliminate the effect of NSGA-II algorithm, other two different
mutation operators, that is, Gauss mutation and Cauchy
mutation, are chosen to replace polynomial variation.

3.3.1. Gauss Mutation. If random variable 𝑋 has the proba-
bility density function:

𝑝 (𝑥) =
1

√2𝜋𝜎
𝑒
−((𝑥−𝜇)

2
/2𝜎
2
)
, −∞ < 𝑥 < +∞, (5)

then𝑋 obeys Gauss normal distribution with the parameters
𝜇, 𝜎; that is,𝑋 ∼ 𝑁(𝜇, 𝜎2).

Gaussmutationmeans that the randomnumbers obeying
gauss distribution substitute 𝛿

𝑠
in polynomial mutation; that

is, 𝛿
𝑠
∼ 𝑁(𝜇, 𝜎

2
).

3.3.2. Cauchy Mutation. The probability density function of
Cauchy distribution concentrated near the origin. It is defined
as

𝑓 (𝑥) =
1

𝜋

𝑡

𝑡2 + 𝑥2
, −∞ < 𝑥 < +∞, 𝑡 > 0. (6)

It is similar to Gauss probability density function. The
difference is that the value of Cauchy distribution is lower
than the value of Gauss distribution in the vertical direction,
and Cauchy distribution is closer to the horizontal axis in
the horizontal direction. Cauchy mutation means that the
random numbers obeying Cauchy distribution substitute 𝛿

𝑠

in polynomial mutation.

4. Chaotic Maps

Chaotic maps generate chaotic sequences in the process
of evolutionary algorithms. Ten chaotic maps including
both one-dimensional maps and two-dimensional maps are
introduced in this section. They will be used to improve the
performance of MOP algorithms.

4.1. One-Dimensional Maps

(1) Circle Map. Circle map is a member of a family of
dynamical systems on the circle first defined by Andrey
Kolmogorov. He proposed this family as a simplified model
for driven mechanical rotors specifically, a free-spinning
wheel weakly coupled by a spring to a motor. The circle
map equations also describe a simplified model of the phase-
locked loop in electronics. The circle map [24] is given by
iterating the map:

𝑥
𝑘+1
= {𝑥
𝑘
+ 𝑏 − (

𝑎

2𝜋
) sin (2𝜋𝑥

𝑘
)} mod (1) , (7)

with 𝑎 = 0.5 and 𝑏 = 0.2; it generates chaotic sequence in
(0, 1).

(2) Cubic Map. Cubic map is one of the most commonly used
maps in generating chaotic sequences in various applications.
This map is formally defined by the following equation [25]:

𝑥
𝑘+1
= 𝜌𝑥
𝑘
(1 − 𝑥

2

𝑘
) , 𝑥

𝑘
∈ (0, 1) . (8)

Cubic map generates chaotic sequences in (0, 1) with 𝜌 =
2.59.
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(3) Gauss Map. Gauss map is also one of the well-known and
commonly employed maps in generating chaotic sequences
[26] as follows:

𝑥
𝑘+1
=
{

{

{

0, 𝑥
𝑘
= 0,

1

𝑥
𝑘

mod (1) , otherwise. (9)

This map also generates chaotic sequences in (0, 1).

(4) ICMIC Map. The iterative chaotic map with infinite
collapses (ICMIC) [27] is defined by the following equation:

𝑥
𝑘+1
= sin( 𝑎

𝑥
𝑘

) , 𝑎 ∈ (0,∞) , 𝑥
𝑘
∈ (−1, 1) . (10)

The parameter “𝑎” is an adjustable parameter. This paper
chooses 𝑎 = 2. Because the range of𝑥

𝑘
is not (0, 1), the chaotic

sequences need to be transformed to change the range.

(5) LogisticMap. As awell-known chaoticmap, logisticmap is
one of the simplest maps and was introduced by May in 2004
[28]. It is often cited as an example of how complex behavior
can arise from a very simple nonlinear dynamical equation.
Logistic map generates chaotic sequences in (0, 1). This map
is formally defined by the following equation:

𝑥
𝑘+1
= 𝑎𝑥
𝑘
(1 − 𝑥

𝑘
) . (11)

Parameter 𝑎 is set to 4 in the simulation.

(6) Sinusoidal Iterator.The sinusoidal iterator [29] is formally
defined by the following equation:

𝑥
𝑘+1
= 𝑎𝑥
2

𝑘
sin (𝜋𝑥

𝑘
) , 𝑥

𝑘
∈ (0, 1) . (12)

In this paper the simplified equation is used in the following
iteration:

𝑥
𝑘+1
= sin (𝜋𝑥

𝑘
) , 𝑥

𝑘
∈ (0, 1) . (13)

(7) Tent Map. Tent chaotic map is very similar to the logistic
map, which displays specific chaotic effects [30]. This map is
defined by the following equation:

𝑥
𝑘+1
= {
2𝑥
𝑘
, 𝑥

𝑘
< 0.5,

2 (1 − 𝑥
𝑘
) , 𝑥

𝑘
≥ 0.5,

(14)

where 𝑥
𝑘
is ranging from 0 to 1.

Tent map generates chaotic sequences in (0, 1).

4.2. Two-Dimensional Maps

(1) Baker’s Map. The Baker map [31] is described by the
following formulas:

𝐵 (𝑥, 𝑦) =
{

{

{

(2𝑥, 2𝑦) , for 0 ≤ 𝑥 < 0.5,
(2 − 2𝑥, 1 −

𝑦

2
) , for 0.5 ≤ 𝑥 < 1.

(15)

In the following simulations, one dimension of Baker’s
map, which is similar to tent map, is adopted. The equation
is defined by

𝑥
𝑘+1
= {
2𝑥
𝑘
, for 0 ≤ 𝑥

𝑘
< 0.5,

2 − 2𝑥
𝑘
, for 0.5 ≤ 𝑥

𝑘
< 1.

(16)

This map generates chaotic sequences in (0, 1).

(2) Arnold’s Cat Map. Arnold’s cat map is named after
Vladimir Arnold, who demonstrated its effects in the 1960s
using an image of a cat. It is represented by [32]

𝑥
𝑘+1
= 𝑥
𝑘
+ 𝑦
𝑘
mod (1) ,

𝑦
𝑘+1
= 𝑥
𝑘
+ 2𝑦
𝑘
mod (1) .

(17)

It is obvious that the sequences 𝑥
𝑘
∈ (0, 1) and 𝑦

𝑘
∈ (0, 1).

(3) Zaslavskii Map. Zaslavskii map [33] is an interesting
dynamic system with chaotic behavior. The discretized equa-
tion is given by

𝑥
𝑘+1
= (𝑥
𝑘
+ V + 𝑎𝑦

𝑘+1
) mod (1) ,

𝑦
𝑘+1
= cos (2𝜋𝑥

𝑘
) + 𝑒
−𝑟
𝑦
𝑘
.

(18)

The Zaslavskii map shows a strange attractor with the
largest Lyapunov exponent for V = 400, 𝑟 = 3, and
𝑎 = 12.6695. In this case, it can be calculated that 𝑦

𝑘+1
∈

[−1.0512, 1.0512]. Only one dimension is chosen in the
following simulation. Since the scale of 𝑦

𝑘+1
is not [0, 1], the

chaotic sequences generated need scale transformation.

5. Chaotic Properties of Sequences Generated
by Scale Transformation

Asmentioned in the previous sections, the scale of sequences
generated by chaotic maps is not always fit for the problems
to be solved. Some sequences have to change their scale, and
some sequences are generated by one dimension of a two-
dimension chaoticmap. Hence, it is necessary to demonstrate
the chaotic properties of sequences after these changes.

Detecting the presence of chaos in a dynamical system is
usually solved by measuring the largest Lyapunov exponent
which describes quantitatively the speed of index divergence
or convergence between the adjacent phase space orbits. A
positive largest Lyapunov exponent indicates chaos. Since
the chaotic sequences adopted in this paper are discrete, the
Lyapunov exponent of discrete series can be calculated by
small data sets arithmetic [34]. This method makes full use
of all the data, obtains higher accuracy, and has stronger
robustness for the amount of data, the embedding dimension,
and the time delay.

5.1. Small Data Sets Arithmetic. The reconstructed trajectory,
𝑋, can be expressed as a matrix where each row is a phase-
space vector; that is,

𝑋 = (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑀
)
𝑇

, (19)
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where 𝑋
𝑖
is the state of the system at discrete time 𝑖. For an

𝑁-point time series, {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
}, each𝑋

𝑖
is given by

𝑋
𝑖
= (𝑥
𝑖
, 𝑥
𝑖+𝐽
, . . . , 𝑥

𝑖+(𝑚−1)𝐽
) , (20)

where 𝐽 is the lag or reconstruction delay, and 𝑚 is the
embedding dimension. Thus,𝑋 is an𝑀×𝑚matrix, and the
constants𝑚,𝑀, 𝐽, and𝑁 are related as

𝑀 = 𝑁 − (𝑚 − 1) 𝐽. (21)
After reconstructing the dynamics, the algorithm locates the
nearest neighbor of each point on the trajectory. The nearest
neighbor 𝑋

𝑗
, where 𝑗 ∈ {1, 2, . . .𝑀}, is found by searching

for the point that minimizes the distance to the particular
reference point𝑋

𝑗
. This is expressed as

𝑑
𝑗
(0) = min

𝑋
𝑗


𝑋
𝑗
− 𝑋
𝑗


, (22)

where 𝑑
𝑗
(0) is the initial distance from the 𝑗th point to its

nearest neighbor, and ‖‖ denotes the Euclidean norm. We
impose an additional constraint that the nearest neighbors
have a temporal separation greater than the mean period of
the time series:


𝑗 − 𝑗

> 𝑝, (23)

where 𝑝 is the mean period of time series. 𝑝 can be estimated
by the reciprocal of the mean frequency of the power
spectrum. This allows us to consider each pair of neighbors
as nearby initial conditions for different trajectories. The
largest Lyapunov exponent is estimated as the mean rate of
separation of the nearest neighbors.

For each reference point𝑋
𝑗
, 𝑑
𝑗
(𝑖) is the distance between

the 𝑗th pair of nearest neighbors after 𝑖 discrete time:

𝑑
𝑗
(𝑖) =


𝑋
𝑗+𝑖
− 𝑋
𝑗+𝑖


, 𝑖 = 1, 2, . . . ,min (𝑀 − 𝑗,𝑀 − 𝑗) .

(24)
Assume that reference point 𝑋

𝑗
and its nearest neighbor

𝑋
𝑗
have index divergence rate 𝜆

1
; then

𝑑
𝑗
(𝑖) = 𝐶

𝑗
𝑒
𝜆1(𝑖⋅Δ𝑡), 𝐶

𝑗
= 𝑑
𝑗
(0) , (25)

where 𝐶
𝑗
is the initial separation. By taking the logarithm of

both sides of (25) we get
ln 𝑑
𝑗
(𝑖) ≈ ln𝐶

𝑗
+ 𝜆
1
(𝑖 ⋅ Δ𝑡) . (26)

Equation (26) represents a set of approximately parallel lines
(for 𝑗 = 1, 2, . . . ,𝑀), each with a slope 𝑠 roughly proportional
to 𝜆
1
. The largest Lyapunov exponent is easily and accurately

calculated using a least square fit to the “average” line defined
by

𝑦 (𝑖) =
1

Δ𝑡
⟨ln 𝑑
𝑗
(𝑖)⟩ , (27)

where ⟨ ⟩ denotes the average over all values of 𝑗. So

𝑦 (𝑖) =
1

𝑞Δ𝑡

𝑞

∑

𝑗=1

ln 𝑑
𝑗
(𝑖) , (28)

where 𝑞 is the number of 𝑑
𝑗
(𝑖) with 𝑑

𝑗
(𝑖) ̸=0.

Choose a linear area of the curve 𝑦(𝑖) ∼ 𝑖, and apply the
least square method to get the regression straight line. Then
the slope of the regression straight line is the largest Lyapunov
exponent 𝜆

1
.

5.2. The Lyapunov Exponent of Sequences. In the calculation
process, the embedding dimension 𝑚 is calculated through
the method of false nearest neighbors (FNN). For the time
delay 𝐽, a good approximation of 𝐽 is equal to the number
lagging where the autocorrelation function drops to 1 − 1/𝑒
of its initial value.

Since different test problems have different ranges,
chaotic sequences need to be changed to different scales.
Two kinds of sequences used in experiments need to be
investigated: sequences with scales changed and sequences
generated by one dimension of a two-dimension chaoticmap.

5.2.1. Sequences with Scales Changed. Since the sequence 𝑥
1

to 𝑥
100

generated by ICMIC is not in (0, 1), the new sequence
𝑦
1
to 𝑦
100

has to be generated by the following function:

𝑦
𝑖
=
1

2
(𝑥
𝑖
+ 1) , 𝑖 ∈ [1, 100] . (29)

The sequence 𝑦
1
to 𝑦
100

is in the range of (0, 1). The Lya-
punov exponent of the new sequence is calculated through
small data sets arithmetic. The average Lyapunov exponent
of 10 runs is 0.0744. Since it is a positive number, the new
sequence 𝑦

1
to 𝑦
100

conforms to the chaotic nature.

5.2.2. Sequences Generated by One Dimension of a Two-
Dimension ChaoticMap. For the Zaslavskii map, one dimen-
sion𝑦

𝑘
is chosen in the following simulation.The sequence𝑦

1

to 𝑦
100

is generated by 100 iterations through Zaslavskii map.
The new sequence 𝑧

1
to 𝑧
100

is generated by the following
function:

𝑧
𝑖
=
(𝑦
𝑖
+ 1.0513)

2.1026
, 𝑖 ∈ [1, 100] . (30)

Then the sequence 𝑧
1
to 𝑧
100

is in (0, 1). By a similar
processing with ICMIC, the average Lyapunov exponent is
0.00194. Then the new sequence 𝑧

1
to 𝑧
100

conforms to the
chaotic nature.

6. Test Problem and Performance Measures

6.1. Test Problems. Two-objective optimization problems are
chosen to test and measure the performance improvement
of the evolutionary algorithms using chaotic maps in three
phases. We use well-defined benchmark functions as objec-
tive functions. Their properties are shown in Table 1.

6.2. Performance Measures. Two criteria are used to evaluate
the performance of multiobjective optimization: (1) conver-
gence to the Pareto-optimal set and (2) maintenance of diver-
sity in solutions of the Pareto-optimal set [7]. Twometrics are
adopted to evaluate the effects of the combinations of phases
and chaotic maps.

The first metric 𝛾 measures the extent of convergence to
a known set of Pareto-optimal solutions. It is defined as

𝛾 =
1

𝑁

𝑁

∑

𝑖=1

𝑑
𝑖
, (31)
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Table 1: Test problems.

Problem 𝑛 Variable bounds Objective functions Optimal solutions

ZDT1 30 [0, 1]
𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − √𝑥

1
/𝑔(𝑥)]

𝑔(𝑥) = 1 + (9 (∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1))

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT2 30 [0, 1]
𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − (𝑥

1
/𝑔(𝑥))

2
]

𝑔(𝑥) = 1 + (9 (∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1))

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT3 30 [0, 1]
𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − √𝑥

1
/𝑔(𝑥) − (𝑥

1
/𝑔(𝑥)) sin(10𝜋𝑥

1
)]

𝑔(𝑥) = 1 + (9 (∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1))

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT4 10
𝑥
1
∈ [0, 1]

𝑥
𝑖
∈ [−5, 5],

𝑖 = 2, . . . , 𝑛

𝑓
1
(𝑥) = 𝑥

1

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − √𝑥

1
/𝑔(𝑥)]

𝑔(𝑥) = 1 + (10(𝑛 − 1) + ∑
𝑛

𝑖=2
[𝑥
2

𝑖
− 10 cos(4𝜋𝑥

𝑖
)])

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

ZDT6 10 [0, 1]
𝑓
1
(𝑥) = 1 − exp(−4𝑥

1
)sin6(6𝜋𝑥

1
)

𝑓
2
(𝑥) = 𝑔(𝑥)[1 − (𝑓

1
(𝑥)/𝑔(𝑥))

2
]

𝑔(𝑥) = 1 + (9[(∑
𝑛

𝑖=2
𝑥
𝑖
) /(𝑛 − 1)]

0.25

)

𝑥
1
∈ [0, 1]

𝑥
𝑖
= 0,

𝑖 = 2, . . . , 𝑛

where 𝑑
𝑖
is the minimum Euclidean distance of every

obtained solution to the Pareto-optimal front. The smaller
the value of this metric is, the nearer the convergence toward
Pareto-front is.

The other metric Δ measures the extent of spread
achieved among the obtained solutions. The metric Δ is
defined by

Δ =
𝑑
𝑓
+ 𝑑
𝑙
+ ∑
𝑁−1

𝑖=1


𝑑
𝑖
− 𝑑


𝑑
𝑓
+ 𝑑
𝑙
+ (𝑁 − 1) 𝑑

. (32)

The parameter 𝑑
𝑖
is the Euclidean distance between consecu-

tive solutions in the obtained nondominated set of solutions.
Theparameters𝑑

𝑙
and𝑑
𝑓
are the Euclidean distances between

the extreme solutions and the boundary solutions of the
obtained nondominated set. The parameter 𝑑 is the average
of all distances 𝑑

𝑖
, 𝑖 = 1, 2, . . . , 𝑁 − 1, assuming that there are

𝑁 solutions on the best nondominated front.

7. Experiments and Results

To explore the relationship of phases and chaotic maps
to solve MOPs, NSGA-II algorithm is chosen as the main
framework.The ten chaotic maps mentioned in Section 4 are
embedded in three different phases in the original NSGA-
II algorithm. Each time only one parameter is modified.
For example, if initial population is generated by chaotic
map, the crossover and mutation operator are not changed.
Similarly, if crossover operator is modified by a chaotic
map, the initial population and mutation operator are not
changed. The solutions, generated by the chaos embedded
NSGA-II algorithm, are evaluated by two metrics: 𝛾 and Δ.
For reader’s convenience, the new algorithms with different
combinations of chaotic maps and phases are named as
“cns [chaotic map] [phase],” and the results of different
algorithms on test problems are named as “cns [chaotic
map] [phase] [test problem].” In addition, “i” represents the

phase for initial population, “c” represents the phase for
crossover operator, and “m” represents the phase formutation
operator. For example, the results through modified initial
population by logistic map solving ZDT1 problem are named
as “cns logistic i zdt1.”

Each combination of one chaotic map and one phase
needs one experiment. In this research, 10 chaotic maps with
3 different phases based on 2 metrics solving 5 test problems
need 150 basic experiments and obtain 300 results. Each
experiment obtains a Pareto front.The values of convergence
metric 𝛾 and the diversity metric Δ are also calculated.

In order to compare with the results of original NSGA-II
algorithm, we focused on the difference of the 𝛾 and Δ values
of the original NSGA-II algorithm and the new algorithm.
For example, the 𝛾 of results of “cns sinusoidal i zdt1”
is named as “cns sinusoidal i zdt1 gama,” and the 𝛾 of
results of NSGA-II solving ZDT1 problem is named
as “ns zdt1 gama.” Then the difference is named as
“ns zdt1 gama—cns sinusoidal i zdt1 gama.” When the
processes of algorithms get to convergence, the difference is
very small. The properties of convergence and diversity in
the process of iterations need to be taken into account, so
the 𝛾 values of each generation in the iterations are recorded
and the differences of 𝛾 of each generation are obtained. This
process also applies to Δ.

Some main parameters in the process of NSGA-II algo-
rithm are introduced in the following paragraphs. Then the
results of experiments are shown and analyzed.

7.1.TheMainParameters. Themainparameters in the process
of NSGA-II algorithm are presented in this section. Choosing
an appropriate representation of a chromosome is very
important for solving problems. Real numbers are chosen
to represent the genes. One chromosome represents one
individual. The initial population has 100 individuals, and
each chromosome has a certain number of genes which
are represented by a real number. Each individual of the
initial population is generated randomly with the range
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Table 2: Parameters in the process of algorithms.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
𝑛iter 250
𝑛pop 100
𝑛var 30 30 30 10 10
𝑝
𝑐

0.9
𝑝
𝑚

1/30 1/30 1/30 1/10 1/10

based on the test problems. The iteration will not terminate
until the number of iterations gets to 250. For the process
of NSGA-II algorithm, a parent population is selected by
tournament selection depending on the nondominated rank
and the crowed-comparison operator. Then the new popula-
tion is generated by crossover and mutation operators. The
crossover operation is executed with the probability of 𝑝

𝑐
=

0.9. The probability of mutation 𝑝
𝑚
is equal to the reciprocal

of 𝑛var, which is the dimension number of a chromosome; that
is, 𝑝
𝑚
= 1/𝑛var.

Those parameters are summarized in Table 2. In the
table, 𝑛iter is the number of iterations, 𝑛pop is the scale
of the population, 𝑛var is the number of dimensions of a
chromosome, and𝑝

𝑐
and𝑝
𝑚
are the probabilities of crossover

and mutation operations.

7.2. Convergence Performance. It is known that the 𝛾 differ-
ence is used to evaluate the performance of the chaotic maps
in different phases inmultiobjective evolutionary algorithms.
An example is chosen for further explanation in detail. As in
Figure 1, the graph shows the results of solving ZDT1 prob-
lems with Baker’s map in crossover operator in NSGA-II.The
differences of 𝛾 between the experiment “cns baker c zdt1”
and the experiment “ns zdt1” in the 250 iterations are given.
As seen from the figure, the black line is above the red line
which represents 0, so the new algorithm “cns bakers c” is
better thanNSGA-II algorithm in solvingZDT1 problemwith
regard to the convergence metric.

The 𝛾 results of all the experiments are given similar to
Figure 1. Since it is difficult to show so many graphs in this
paper, the results of three typical problems are chosen, that
is, ZDT1, which is a simple convex problem, ZDT3, whose
Pareto front is piecewise, and ZDT4, which has local optima.
The graphs in Figures 2, 3, and 4 provide a comparison of the
performance of solving different MOPs with chaotic maps in
initial population. ZDT4 is chosen to show the performance
of chaotic maps in different phases on solving the sameMOP,
as shown in Figures 4, 5, and 6. Each subgraph is labeled with
the name of the chaotic map used.

In order to quantify the effect of chaotic maps and phases
with regard to the metric 𝛾, the average of 𝛾 difference in 250
generations is calculated to represent the effect of the new
algorithms.

Since the order of magnitude of 𝛾 is not the same,
the comparison of these 𝛾 values is not convenient. The
normalized values are obtained by dividing the 𝛾 values by
themaximumof the absolute values of the 𝛾 based on one test
problem. The results of normalization are shown in Table 3.
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Figure 1: Performance of Baker’s maps in crossover operator in
solving ZDT1.

Table 3 can be presented in a more intuitive way. If 𝛾 ≥
0.3, the numerical value of 𝛾 is replaced by “++.” Similarly,
“+” represents 0.1 ≤ 𝛾 < 0.3, “0” represents −0.1 ≤ 𝛾 <
0.1, “−” represents −0.3 ≤ 𝛾 < −0.1, and “−−” represents
𝛾 < −0.3. Therefore “++” means that the effect of the new
algorithm with chaotic maps is much better, whereas “−−” is
much worse. Table 4 shows the results.

As shown in Table 4, most of the combinations of chaotic
maps and phases have a positive effect on improving the per-
formance of NSGA-II algorithm. The effect of some chaotic
maps is very good, especially in some particular phases. For
example, Baker’s map in crossover operator, Gauss map in
crossover operator and initial population, ICMIC map in
initial population, sinusoidal map in initial population, tent
map in crossover operation, and Zaslavskii map in initial
population have very good effect.

Since ZDT4 problem has 219 or 7.94×1011 different local
Pareto-optimal fronts in the search space, the solutions easily
get entrapped into local optimum. As seen from Table 4,
chaotic maps used for crossover and mutation operator have
significant improvement on evolutionary algorithms solving
ZDT4 problem; especially cat map has the best performance
in tenmaps. Circle map and cubicmap have less contribution
in solving those MOPs. The distribution of cat map is
relatively uniform. It is probably the reason for the good
performance in solving problems with local optima.

The original NSGA-II algorithm is not good at solving
ZDT3 and ZDT6 problems, because Pareto-optimal front of
ZDT3 is disconnected and solutions of ZDT6 are nonuni-
formly spaced. However, it can be seen in Table 4 that chaotic
maps can improve NSGA-II especially in crossover operation
and initial population in solving ZDT3 and ZDT6 problem.

In order to eliminate the special effect of the NSGA-
II algorithm, the polynomial mutation operator in NSGA-
II is changed by the Gauss mutation and Cauchy mutation
operators. Four typical chaotic maps, which include two
chaotic maps with best performance and two chaotic maps
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Figure 2: Performance of chaotic maps in initial population in solving ZDT1.
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Figure 3: Performance of chaotic maps in initial population in solving ZDT3.
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Figure 4: Performance of chaotic maps in initial population in solving ZDT4.
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Figure 5: Performance of chaotic maps in crossover operator in solving ZDT4.
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Table 3: The normalized results of 𝛾.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i m c i m c i m c i m c i m

Baker 0.617 0.080 0.049 0.682 0.149 0.094 0.668 0.109 0.003 0.220 −0.040 0.167 0.567 0.105 −0.090
Cat −0.060 0.076 0.101 0.013 0.084 0.024 −0.007 0.090 0.174 0.191 0.109 0.158 −0.028 0.022 −0.096
Circle −0.142 −0.040 −0.016 0.013 −0.121 −0.007 −0.153 0.028 −0.016 0.151 −0.069 0.098 −0.176 −0.072 −0.002
Cubic −0.544 0.064 −0.025 −0.626 −0.041 0.006 −0.334 −0.049 0.077 0.032 −0.781 0.071 −0.288 0.040 0.008
Gauss 0.307 0.513 0.089 0.306 0.507 0.070 0.454 0.585 0.037 0.159 0.005 0.191 0.114 −0.010 0.132
ICMIC −0.415 0.558 0.132 −0.280 0.609 0.144 −0.295 0.510 0.004 0.003 −0.380 0.088 −0.162 0.252 0.163
Logistic 0.070 0.242 0.189 0.072 0.204 −0.031 0.012 0.158 0.127 0.017 −0.819 0.183 0.152 0.129 0.132
Sinusoidal 0.077 1 0.616 0.121 1 0.742 0.169 1 0.734 −0.091 −1 −0.138 0.148 0.688 1
Tent 0.655 0.177 0.062 0.704 0.103 −0.005 0.731 0.043 −0.088 0.190 −0.008 −0.058 0.569 0.124 −0.003
Zaslavskii −0.051 0.462 0.032 −0.150 0.518 0.064 −0.086 0.499 0.110 −0.103 −0.339 0.108 −0.060 0.174 0.183

Table 4: The visualized results of 𝛾.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i m c i m c i m c i m c i m

Baker ++ 0 0 ++ + 0 ++ + 0 + 0 + ++ + 0
Cat 0 0 + 0 0 0 0 0 + + + + 0 0 0
Circle − 0 0 0 − 0 − 0 0 + 0 0 − 0 0
Cubic — 0 0 — 0 0 — 0 0 0 — 0 − 0 0
Gauss ++ ++ 0 ++ ++ 0 ++ ++ 0 + 0 + + 0 +
ICMIC — ++ + − ++ + − ++ 0 0 — 0 − + +
Logistic 0 + + 0 + 0 0 + + 0 — + + + +
Sinusoidal 0 ++ ++ + ++ ++ + ++ ++ 0 — − + ++ ++
Tent ++ + 0 ++ + 0 ++ 0 0 + 0 0 ++ + 0
Zaslavskii 0 ++ 0 − ++ 0 0 ++ + − — + 0 + +

Table 5: Results of Gauss mutation.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i c i c i c i c i

Circle −0.4886 −0.0170 1.9394 −0.3130 0.0971 −0.4370 185.6683 75.0688 2.8693 −0.5529
Cubic −2.4674 −0.0589 −6.2676 −0.0630 −2.5351 −1.2051 49.1193 −448.985 −2.3071 5.7609
Sinusoidal 1.0277 6.0982 0.4343 9.4173 −0.0396 4.5810 −106.768 −525.536 5.84566 28.5351
Tent 3.5035 0.6784 5.9502 1.1086 1.8616 0.0623 −272.428 101.4576 15.0061 11.2005

Table 6: Results of Cauchy mutation.

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
c i c i c i c i c i

Circle 1.3978 0.5012 1.3997 0.7723 0.7187 0.4043 135.4511 −136.938 0.1105 −2.6454
Cubic −2.6201 −0.4932 −4.2148 −0.5317 −2.4831 −0.7487 −77.1621 −456.939 −5.7560 5.4533
Sinusoidal 0.1470 4.6977 0.8327 8.2820 0.3179 4.5376 −202.995 −468.243 6.5462 23.8545
Tent 2.7613 0.3380 5.2687 0.9699 2.6813 −0.1916 −283.172 57.9606 12.7523 5.2806

with worst performance, are chosen to be used in the
experiments. These chaotic maps are circle map, cubic map,
sinusoidal map, and tent map. The values of 𝛾 differences are
shown in Tables 5 and 6. As seen from Tables 5 and 6, the
performance of sinusoidal map and tent map is better than
the performance of circlemap and cubicmap. Sinusoidalmap
in initial population is better than that in crossover operation,
and tent map in crossover operation is better than that in
initial population. This means the rules of combinations of

chaotic maps and phases in solving MOPs are almost the
same as in the previous observations. So the rules based on
the framework of NSGA-II algorithm are applicable to other
MOEAs.

In general, Baker’s map with a phase for crossover oper-
ator, sinusoidal map with phases for initial population and
mutation operator, and tent map with a phase for crossover
operator could be the best choice for improving evolutionary
algorithms for MOPs without local optimum. For problems
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Figure 6: Performance of chaotic maps in mutation operator in solving ZDT4.
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Figure 7: Performance of chaotic maps in crossover operator in solving ZDT1 with metric Δ.



Mathematical Problems in Engineering 13

Ta
bl
e
7:
Th

ea
ve
ra
ge

re
su
lts

of
Δ
.

ZD
T1

ZD
T2

ZD
T3

ZD
T4

ZD
T6

c
i

m
c

i
m

c
i

m
c

i
m

c
i

m
Ba

ke
r

−
0.
03
37

−
0.
00
26

0.
00
15

0.
02
26

0.
03
10

0.
00
24

−
0.
00

96
0.
00

69
0.
00

06
−
0.
06

03
0.
03
43

−
0.
05
13

0.
01
25

0.
00
24

−
0.
00
15

Ca
t

0.
00

05
0.
00
17

0.
00

42
0.
02
34

−
0.
10
21

−
0.
01
45

−
0.
00
19

−
0.
00
52

0.
00

06
0.
02
77

−
0.
00

90
−
0.
01
48

−
0.
00

01
−
0.
00

02
−
0.
00

68
Ci
rc
le

−
0.
03
25

−
0.
00
35

−
0.
00

64
−
0.
20
19

−
0.
06
32

−
0.
14
10

−
0.
00
52

−
0.
00

65
0.
00
10

−
0.
02
55

−
0.
02
59

−
0.
01
36

0.
00
31

−
0.
00
20

0.
00

64
Cu

bi
c

−
0.
00

47
0.
01
21

−
0.
00
22

−
0.
04
39

−
0.
01
48

0.
03
61

0.
00

00
−
0.
00

06
0.
00
31

−
0.
00
52

−
0.
02
79

0.
02
38

−
0.
01
70

0.
00
54

−
0.
00
17

G
au
ss

0.
01
21

0.
00
75

−
0.
01
80

−
0.
10
75

0.
03
29

−
0.
07
11

−
0.
00
24

−
0.
00
32

0.
00
19

0.
03
30

−
0.
02
14

0.
01
55

0.
01
80

0.
00

03
0.
00

64
IC
M
IC

0.
00
81

0.
00

92
0.
00

02
−
0.
07
34

−
0.
08
50

−
0.
09
17

−
0.
00
36

0.
00

08
−
0.
00
54

−
0.
03
56

−
0.
04
97

0.
02
38

0.
01
23

0.
00

01
0.
00
85

Lo
gi
sti
c

−
0.
01
18

0.
00
76

0.
00
75

−
0.
19
35

0.
02
39

0.
05
09

−
0.
00
84

−
0.
00
14

0.
00
80

0.
02
75

−
0.
01
00

−
0.
02
32

−
0.
00

69
0.
00
20

0.
00
77

Si
nu

so
id
al

0.
01
49

0.
00

69
−
0.
05
64

−
0.
17
50

−
0.
00

67
−
0.
29
02

−
0.
00
14

0.
00
29

−
0.
02
86

−
0.
03
90

−
0.
01
64

−
0.
19
45

0.
01
29

0.
00
88

−
0.
04

88
Te
nt

−
0.
03
50

0.
00

93
0.
00
16

0.
02
15

−
0.
01
73

−
0.
02
61

−
0.
00
59

−
0.
01
68

0.
00
71

−
0.
07
61

−
0.
01
39

0.
00
75

0.
01
25

0.
00
28

−
0.
00

02
Za

sla
vs
ki
i

0.
02
30
7

0.
00
56

−
0.
00
14

−
0.
02
92

−
0.
01
89

−
0.
00
13

0.
00

99
0.
00

40
−
0.
00
37

0.
02
01

−
0.
00
56

0.
00

90
0.
00
38

0.
00
27

0.
00
84



14 Mathematical Problems in Engineering

Table 8: Statistical data for combinations of chaotic maps and phases on different problems.

Threshold ZDT1 ZDT2 ZDT3 ZDT4 ZDT6
0 18 9 15 10 20
0.001 16 9 9 10 18
0.002 13 9 7 10 18
0.003 13 8 6 10 14
0.004 13 8 5 10 12
0.005 12 8 4 10 12
0.006 11 8 4 10 11
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Figure 8: Performance of Baker’s maps in crossover operator in
solving ZDT1 with metric Δ.

with local optimum, cat map has good performance on
improving evolutionary algorithms.

7.3. Diversity Performance. Similar to the convergencemetric
𝛾, the differences of the diversity metricΔ between the results
of the new algorithm with chaotic maps and the original
NSGA-II algorithm are used to measure the performance.
Figure 7 shows the performance of chaotic maps in crossover
operator in solving ZDT1 with metric Δ. Each subgraph
shows the effect of one chaotic map. To be seen more clearly,
the first subgraph in Figure 7 is shown in Figure 8.

As seen fromFigures 7 and 8, theΔ difference is not stable
in 250 generations. The average values of Δ difference in 250
generations are calculated to represent the effect of the new
algorithms. For brevity, the rest of results are not shown in
graphs but in Table 7.

As seen from Table 7, the Δ values have little difference.
We count the number of combinations of chaotic maps and
phases for solving one problem in different threshold values.
For example, there are 18 combinations whose values of Δ are
greater than zero. Based on the number of the combinations
of chaotic maps and phases in different threshold values, the
values of diversity metric Δ are summarized in Table 8.

In Table 8 the rank of the number of Δ in different
threshold values is ZDT1 > ZDT6 > ZDT4 > ZDT2 >

ZDT3, especially for larger threshold. ZDT1 problem, which
is a convex function and has no local optima, is a relatively
easy problem. Chaotic maps bring the biggest improve-
ments on solving ZDT1. Though the solutions of ZDT6 are
nonuniformly spaced, chaotic maps can find better spread of
solutions. While ZDT4 problem is a complex problem and
the solutions are easily trapped into local optima, chaotic
maps can improve the distribution of the solutions. ZDT2
problem is a convex function, and the solutions sometimes
fall into the local optimum.The effects of chaoticmaps can be
generalized.The Pareto front of ZDT3 problem is segmented,
so the Δ value of ZDT3 is larger and the ranking of ZDT3 is
lower. It is our observation that Δ is not fit for evaluating the
solutions to problems which are disconnected.

Based on the diversity metric Δ, chaotic maps have
the best improvement on solving convex problems without
local optima and have better effect on solving problems
which have nonuniform solutions. For problems with local
minimum, chaotic maps embedded algorithms can improve
the performance with regard to metric Δ.

A short summary can be given according to the above
experiments. First, chaotic maps can improve the perfor-
mance of MOEAs, but the results showed that no one chaotic
map outperforms other maps for all of the problems. The
results in this paper give some guidance on how to choose a
chaotic map and a phase in MOEAs. Second, an interesting
discovery is that cat map has best performance on solving
problems with local optima. Uniformity of cat map may be
one of the reasons for the good performance of solving ZDT4.

8. Conclusion

The focus of this paper is to explore the relationships of
chaotic maps and phases in MOEAs in solving MOPs. The
main framework of algorithms in experiments is the NSGA-
II algorithm. The combinations of ten chaotic maps and
three phases are chosen in the experiments. Two metrics,
convergence metric 𝛾 and diversity metric Δ, are used to
evaluate the convergence and diversity properties of the
algorithms with chaotic maps. The test problems are ZDT
series which were all MOPs. The ergodicity and initial value
sensitivity of chaotic maps can help evolutionary algorithms
avoid solutions from falling into local optimal and get better
convergence. In the experimental results, almost all chaotic
maps have good effects on improving the performance of
evolutionary algorithms to solveMOPs without local optima.
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Cat map has best performance on solving problems with
local optimum. This work gives insight on choosing chaotic
maps and phases for different problems. Our future work
will perform further experiments with more chaotic maps on
other MOEAs and formulate the theory analysis.

Conflict of Interests

The authors declare that there is no conflict of interests regar-
ding the publication of this paper.

Acknowledgment

This research is supported by the National Natural Science
Foundation of China under Grant no. 61101153 and Prof. Qiu
is supported by NSF CNS 1359557.

References

[1] H. Lu, R. Y. Niu, J. Liu, and Z. Zhu, “A chaotic non-dominated
sorting genetic algorithm for the multi-objective automatic test
task scheduling problem,” Applied Soft Computing, vol. 13, pp.
2790–2802, 2013.

[2] J. A. Adeyemo, “Reservoir operation using multi-objective evo-
lutionary algorithms-a review,” Asian Journal of Scientific Res-
earch, vol. 4, no. 1, pp. 16–27, 2011.

[3] H. Hu, L. Xu, R. Wei, and B. Zhu, “Multi-objective control
optimization for greenhouse environment using evolutionary
algorithms,” Sensors, vol. 11, no. 6, pp. 5792–5807, 2011.

[4] T. Niknam, “An efficient hybrid evolutionary algorithm based
on PSO andHBMOalgorithms formulti-objectiveDistribution
Feeder Reconfiguration,” Energy Conversion and Management,
vol. 50, no. 8, pp. 2074–2082, 2009.

[5] Q. Zhang and H. Li, “MOEA/D: a multiobjective evolutionary
algorithm based on decomposition,” IEEE Transactions on
Evolutionary Computation, vol. 11, no. 6, pp. 712–731, 2007.

[6] E. Zitzler, M. Laumanns, L. Thiele et al., SPEA2: Improving the
Strength Pareto Evolutionary Algorithm, Eidgenössische Techn-
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Many tracking applications need to deal with the randomly sampled measurements, for which the traditional recursive estimation
method may fail. Moreover, getting the accurate dynamic model of the target becomes more difficult. Therefore, it is necessary
to update the dynamic model with the real-time information of the tracking system. This paper provides a solution for the target
tracking system with randomly sampling measurement. Here, the irregular sampling interval is transformed to a time-varying
parameter by calculating the matrix exponential, and the dynamic parameter is estimated by the online estimated state with Yule-
Walker method, which is called the closed-loop estimation. The convergence condition of the closed-loop estimation is proved.
Simulations and experiments show that the closed-loop estimation method can obtain good estimation performance, even with
very high irregular rate of sampling interval, and the developed model has a strong advantage for the long trajectory tracking
comparing the other models.

1. Introduction

Target tracking is the most important preliminary step for
many higher-level analysis applications. Nowadays, some
new sensors have been used in the tracking systems, such
as the radio frequency identification (RFID) readers. The
RFID stores and retrieves data through the electromagnetic
transmission to an RF compatible integrated circuit. Once
the tag gets close to the readers, the distance between the
readers and tags can be got and sent to the data processing
center. The measurements of RFID are randomly sampled [1]
because of the data-driven measurement mechanisms. Data-
driven approach has been used in many applications [2], and
the irregular sampling is one of the important issues in this
approach.

In general, the video tracking system has to extract the
visual information at each frame [3], which costs much
computing amount. In [4], the target is tracked by some
selected frames to reduce the calculation cost and achieve
the real-time tracking, which also results in the randomly
sampled tracking problem. If the output measurements are
obtained at a set of irregular sampling times, the traditional

recursive estimation from 𝐾 to 𝐾 + 1 may fail in general
[5]. Both the model and the estimation method should be
reconsidered.

Reference [6] transformed the randomly sampled mea-
surement tracking to some time-varying parameters and used
the current model to describe the processing model [7–11],
which assumes a priori probability density of the acceleration
as Rayleigh density. Due to the randomly sampled measure-
ment, this assumption is no longer satisfied.

Except the current model, there were several other
models used in the tracking, such as constant-velocity (CV)
model, constant acceleration model (CA), and Singer model
(zero mean first-order Markov model) [12, 13]. The CV
models [1] emphasize that the accelerations are small. In
maneuvering target tracking, the inclusion of acceleration
in the state vector would degrade tracking performance.
The main attractive feature of this model is its simplicity.
It is sometimes used in the maneuvering target tracking
techniques, such as the so-called noise-level adjustment,
when the maneuver is quite small or random. It is also simply
referred to as the CA model or more precisely the nearly
CA model. The Singer model regards the target acceleration
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as a first-order semi-Markov process with zero mean, which
is in essence a priori model since it does not use online
information on the target maneuver. Again because of the
irregular sampling time, the priori model does not meet the
actual dynamic model of the target.

The approach to update the system model online has
attracted great interest of the researchers. For example, the
interacting multiple model (IMM) [14, 15] method considers
the change of the system dynamics as aMarkovian parameter,
whose transition probability is set based on the online
estimation and then fusions several models for the tracking,
while IMM suffers heavy computational burden on condition
that the maneuvering target has complex motion. Moreover,
the complex movement can also lead to frequent switch
between different models, which can cause the tracking
performance to decline. Another model [16, 17] estimated
the state of a power system, where the bus voltages are
transformed to a system parameter. But the works of this
closed-loop estimation have not yet been involved in the
randomly sampled tracking system.

This paper will develop a joint state-and-parameter esti-
mation method for the target tracking system with randomly
sampled measurements, where the estimation problem is
reformulated as two loosely coupled linear subproblems.
This paper is organized as follows. Section 2 derives the
system dynamic model under the random sampling time
and gives the estimation method based on Kalman filter.
The convergence of the algorithm is proved in Section 3.
The simulations and experiments are provided in Section 4.
Finally, some concluding remarks are given in Section 5.

2. System Model and Closed-Loop Estimation
Method

We begin with the continuous dynamic model of the moving
target. Let 𝑥, ̇𝑥, and ̈𝑥 be the target location, velocity,
and acceleration along a generic direction, and the state is
expressed as 𝑥 = [𝑥, ̇𝑥, ̈𝑥]

𝑇. Assume the nonzero mean
acceleration satisfies ̈𝑥(𝑡) = 𝑎(𝑡) + 𝑎(𝑡), where 𝑎(𝑡) is the
mean of acceleration in the interval [0 𝑡] and 𝑎(𝑡) is a zero
mean first-order stationaryMarkov process with variance 𝛿2

𝑎
.

We have ̇𝑎(𝑡) = −𝛼𝑎(𝑡) + 𝑤(𝑡); 𝛼 is maneuver frequency
and 𝑤(𝑡) is zero mean processing white noise with variance
𝛿
2

𝑤
= 2𝛼𝛿

2

𝑎
. The parameter 𝛼 = 1/𝜏 is the reciprocal of the

maneuver time constant 𝜏 and thus depends on how long
the maneuver lasts. For example, for an aircraft 𝜏 ≈ 60 s for
a lazy turn and 𝜏 ≈ 10–20 s for an evasive maneuver. The
parameter 𝛿2

𝑎
= 𝐸[𝑎

2
(𝑡)] is the “instantaneous variance” of

the acceleration.
Then, we can obtain the acceleration satisfying ̇̈𝑥(𝑡) =

−𝛼 ̈𝑥(𝑡) + 𝛼𝑎(𝑡) +𝑤(𝑡) and the following state-space represen-
tation of the continuous time model can be obtained:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝑈𝑎 (𝑡) + 𝐵𝑤 (𝑡) , (1)

where

𝐴 = [

[

0 1 0

0 0 1

0 0 −𝛼

]

]

, 𝑈 = [

[

0

0

𝛼

]

]

, 𝐵 = [

[

0

0

1

]

]

, (2)

and𝑤(𝑡) is process noise with the covariance matrix given by
𝑤(𝑡) ∼ 𝑁(0, 2𝛼𝛿

2

𝑎
). Assume themeasurement data is obtained

at the sampling time 𝑡
𝑖
and the measurement equation is as

follows:

𝑧 (𝑡
𝑖
) = 𝐻 (𝑡

𝑖
) 𝑥 (𝑡
𝑖
) + V (𝑡

𝑖
) , 𝑖 = 0, 1, 2, . . . , (3)

where𝐻(𝑡
𝑖
) is measurement matrix and V(𝑡

𝑖
) is measurement

noise with the known variance 𝑅; that is, V(𝑡
𝑖
) ∼ 𝑁(0, 𝑅).

2.1. Model Discretization. We can get the following by the
differential equation (1):

𝑥 (𝑡) = 𝑒
𝐴(𝑡−𝑡0)𝑥 (𝑡

0
) + ∫

𝑡

𝑡0

𝑒
𝐴(𝑡−𝜆)

𝑈𝑎 (𝜆) 𝑑𝜆

+ ∫

𝑡

𝑡0

𝑒
𝐴(𝑡−𝜆)

𝐵𝑤 (𝜆) 𝑑𝜆.

(4)

We can see that for any known integration interval [𝑡
0
, 𝑡],

𝑥(𝑡) can be gotten at any time 𝑡 if the initial state 𝑥(𝑡
0
), the

parameters 𝐴, 𝑈, 𝐵, 𝑎(𝑡), and 𝑤(𝑡) in [𝑡
0
, 𝑡] are known.

Consider the time interval from 𝑡
𝑖−1

to 𝑡
𝑖
and assume

𝑎 (𝜆) = 𝑎 (𝑡
𝑖−1
) , 𝑤 (𝜆) = 𝑤 (𝑡

𝑖−1
) ,

𝜆 ∈ [𝑡𝑖−1 𝑡𝑖] ;

(5)

we can have

∫

𝑡𝑖

𝑡𝑖−1

𝑒
𝐴(𝑡𝑖−𝜆)𝑈𝑎 (𝜆) 𝑑𝜆 = ∫

𝑡𝑖

𝑡𝑖−1

𝑒
𝐴(𝑡𝑖−𝜆)𝑈𝑑𝜆𝑎 (𝑡

𝑖−1
)

∫

𝑡𝑖

𝑡𝑖−1

𝑒
𝐴(𝑡𝑖−𝜆)𝐵𝑤 (𝜆) 𝑑𝜆 = ∫

𝑡𝑖

𝑡𝑖−1

𝑒
𝐴(𝑡𝑖−𝜆)𝐵𝑑𝜆𝑤 (𝑡

𝑖−1
) .

(6)

Set th
𝑖
= 𝑡
𝑖
− 𝑡
𝑖−1

; we have the system matrix as
𝐴
𝑑
(𝑡
𝑖−1
) = 𝑒

𝐴th𝑖 , 𝑈
𝑑
(𝑡
𝑖−1
) = ∫

𝑡𝑖

𝑡𝑖−1

𝑒
𝐴(𝑡𝑖−𝜆)𝑈𝑑𝜆 and the

noise 𝑤
𝑑
(𝑡
𝑖−1
) = ∫

𝑡𝑖

𝑡𝑖−1

𝑒
𝐴(𝑡𝑖−𝜆)𝐵𝑑𝜆𝑤(𝑡

𝑖−1
) with the covariance

𝑄
𝑑
(𝑡
𝑖−1
) = 𝐸[𝑤

𝑑
(𝑡
𝑖−1
)𝑤
𝑇

𝑑
(𝑡
𝑖−1
)].

Because the process matrix 𝐴 in (2) is not a full-rank
matrix, we cannot calculate the matrix exponential 𝑒𝐴th𝑖 by
the Lagrange-Hermite interpolation. Here, we use Laplace
transform and have

(𝑠𝐼 − 𝐴)
−1
= [

[

𝑠 −1 0

0 𝑠 −1

0 0 𝑠 + 𝛼

]

]

−1

=

[
[
[
[
[
[
[

[

1

𝑠

1

𝑠2

1

𝑠2 (𝑠 + 𝛼)

0
1

𝑠

1

𝑠 (𝑠 + 𝛼)

0 0
1

𝑠 + 𝛼

]
]
]
]
]
]
]

]

.

(7)
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The matrix exponential 𝑒𝐴th𝑖 can be gotten by the inverse
Laplace transform as

𝐴
𝑑
(𝑡
𝑖−1
) =

[
[
[
[
[
[
[

[

1 th
𝑖

𝛼th
𝑖
− 1 + 𝑒

−𝛼th𝑖

𝛼2

0 1
1 − 𝑒
−𝛼th𝑖

𝛼

0 0 𝑒
−𝛼th𝑖

]
]
]
]
]
]
]

]

(8)

and by the similar approach, we can get the system parameter

𝑈
𝑑
(𝑡
𝑖−1
) =

[
[
[
[
[
[
[

[

1

𝛼
(−th
𝑖
+
𝛼 ⋅ th2
𝑖

2
+
1 − 𝑒
−𝛼⋅th𝑖

𝛼
)

th
𝑖
−
1 − 𝑒
−𝛼⋅th𝑖

𝛼

1 − 𝑒
−𝛼⋅th𝑖

]
]
]
]
]
]
]

]

(9)

and the variance of 𝑤
𝑑
(𝑡
𝑖−1
) as

𝑄
𝑑
(𝑡
𝑖−1
) = 𝐸 [𝑤

𝑑
(𝑡
𝑖−1
) 𝑤
𝑇

𝑑
(𝑡
𝑖−1
)]

= 2𝛼𝛿
2

𝛼
[

[

𝑞
11
𝑞
12
𝑞
13

𝑞
12
𝑞
22
𝑞
23

𝑞
13
𝑞
23
𝑞
33

]

]

(10)

with the parameters described as

𝑞
11
=

1

2𝛼5
[1 − 𝑒

−2𝛼⋅th𝑖 + 2𝛼 ⋅ th
𝑖

+
2𝛼
3th3
𝑖

3
− 2𝛼
2th2
𝑖
− 4𝛼 ⋅ th

𝑖
𝑒
−𝛼⋅th𝑖]

𝑞
12
=

1

2𝛼4
[𝑒
−2𝛼⋅th𝑖 + 1 − 2𝑒

−𝛼⋅th𝑖

+2𝛼 ⋅ th
𝑖
𝑒
−𝛼⋅th𝑖 − 2𝛼 ⋅ th

𝑖
+ 𝛼
2th2
𝑖
]

𝑞
13
=

1

2𝛼3
[1 − 𝑒

−2𝛼⋅th𝑖 − 2𝛼 ⋅ th
𝑖
𝑒
−𝛼⋅th𝑖]

𝑞
22
=

1

2𝛼3
[4𝑒
−𝛼⋅th𝑖 − 3 − 𝑒

−2𝛼⋅th𝑖 + 2𝛼 ⋅ th
𝑖
]

𝑞
23
=

1

2𝛼2
[𝑒
−2𝛼⋅th𝑖 + 1 − 2𝛼 ⋅ th

𝑖
]

𝑞
33
=
1

2𝛼
[1 − 𝑒

−2𝛼⋅th𝑖] .

(11)

Then,we get the discrete state-spacemodel of the tracking
system as

𝑥 (𝑡
𝑖
) = 𝐴

𝑑
(𝑡
𝑖−1
) 𝑥 (𝑡
𝑖−1
) + 𝑈
𝑑
(𝑡
𝑖−1
) 𝑎 (𝑡
𝑖−1
) + 𝑤
𝑑
(𝑡
𝑖−1
)

𝑧 (𝑡
𝑖
) = 𝐻 (𝑡

𝑖
) 𝑥 (𝑡
𝑖
) + V (𝑡

𝑖
) ,

(12)

where 𝑥 = [𝑥, ̇𝑥, ̈𝑥]
𝑇 is the state of the system to be

estimated and whose initial mean and covariance are known
as 𝑥
0
and 𝑃

0
, 𝑤
𝑑
(𝑡
𝑖
) and V(𝑡

𝑖
) are white noise with zero

mean and independent of the initial state 𝑥
0
, 𝑧(𝑡
𝑖
) is the

measurement vector, 𝐻(𝑡
𝑖
) is measurement matrices, and

V(𝑡
𝑖
) ismeasurement noise with known variance𝑅. Until now,

the irregular sampling is turned to the varying-parameter
system. We can see the same sampling interval is just a
particular case of the random sampling problem. Therefore,
themodel of the randomly sampling tracking is a general one.

2.2. System Parameters Estimation. Here, we assume the
maneuver frequency 𝛼 and the variance of the acceleration
𝛿
2

𝑎
are not constant but variable and expressed as 𝛼

𝑖
and 𝛿2

𝑎𝑖
.

From the processing model of (12), we have the discrete time
equation of the acceleration as

̈𝑥 (𝑡
𝑖
) = 𝛽
𝑖
̈𝑥 (𝑡
𝑖−1
) + (1 − 𝛽

𝑖
) 𝑎 (𝑡
𝑖−1
) + 𝑤
𝑎
(𝑡
𝑖−1
) , (13)

where 𝛽
𝑖
= 𝑒
−𝛼𝑖th𝑖 and 𝑤𝑎(𝑡

𝑖−1
) is a zero mean white noise

sequence with the variance

𝛿
2

𝑎𝑤𝑖
= 𝛿
2

𝑎𝑖
(1 − 𝛽

2

𝑖
) . (14)

𝛼
𝑖
is the maneuver frequency at the sampling time 𝑡

𝑖
. 𝑎(𝑡
𝑖−1
)

is the mean of one interval, so we have 𝑎(𝑡
𝑖
) = 𝑎(𝑡

𝑖−1
). Set

𝑎(𝑡
𝑖
) = ̈𝑥(𝑡

𝑖
) − 𝑎(𝑡

𝑖
); then we can obtain

𝑎 (𝑡
𝑖
) = 𝛽
𝑖
𝑎 (𝑡
𝑖−1
) + 𝑤
𝑎
(𝑡
𝑖−1
) . (15)

Consider the estimation of acceleration 𝑎(𝑡
𝑖
) is a random

process; we have

𝑎 (𝑡
𝑖−1
) =

1

𝑖

𝑖−1

∑

𝑖=0

̂̈𝑥 (𝑡
𝑖
) , (16)

where 𝑖 is the number of data. For a first-order stationary
Markov process (15), we have the statistics relation between
the autocorrelation functions 𝑟(0), 𝑟(1)with the parameters𝛽

𝑖

and 𝛿2
𝑎𝑤𝑖

by the Yule-Walker method [18]

𝑟
𝑖
(0) =

1

𝑖

𝑖−1

∑

𝑖=0

𝑎 (𝑡
𝑖
) 𝑎 (𝑡
𝑖
)

𝑟
𝑖
(1) =

1

𝑖

𝑖−1

∑

𝑖=1

𝑎 (𝑡
𝑖
) 𝑎 (𝑡
𝑖−1
)

𝛽
𝑖
=
𝑟
𝑖
(1)

𝑟
𝑖
(0)

𝛿
2

𝑎𝑤𝑖
= 𝑟
𝑖
(0) − 𝛽

𝑖
𝑟
𝑖
(1) .

(17)

Next, we can get 𝛼
𝑖
and 𝛿2

𝑎𝑖
by 𝛿2
𝑎𝑖
= 𝛿
2

𝑎𝑤𝑖
/(1 − 𝛽

2

𝑖
), 𝛼
𝑖
=

ln𝛽
𝑖
/ − th

𝑖
, and then get the system parameters 𝐴

𝑑
(𝑡
𝑖−1
),

𝑈
𝑑
(𝑡
𝑖−1
), and 𝑄

𝑑
(𝑡
𝑖−1
) in process function (12).

2.3. Algorithm Summary. Now we summarize the closed-
loop estimation algorithm for the randomly sampled mea-
surements as follows.
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(1) Initialization (𝑖 = 0). Consider

𝑥 (𝑡
0
| 𝑡
0
) = 𝑥
0
,

𝑃 (𝑡
0
| 𝑡
0
) = 𝑃
0
, 𝛼
0
, 𝛿
2

𝑎0
, 𝑎 (𝑡
0
) ,

𝑟
0
(𝑡
0
) = ̈𝑥
0
⋅ ̈𝑥
0
, 𝑟

0
(𝑡
1
) = ̈𝑥
0
.

(18)

(2) Recursion (𝑖 := 𝑖 + 1)

(a) System update: set th
𝑖
= 𝑡
𝑖
− 𝑡
𝑖−1

and the system
parameter as

𝐴
𝑑
(𝑡
𝑖−1
) =

[
[
[
[
[
[
[

[

1 th
𝑖

𝛼
𝑖
th
𝑖
− 1 + 𝑒

−𝛼𝑖th𝑖

𝛼2
𝑖

0 1
1 − 𝑒
−𝛼𝑖th𝑖

𝛼
𝑖

0 0 𝑒
−𝛼𝑖th𝑖

]
]
]
]
]
]
]

]

(19)

�̂�
𝑑
(𝑡
𝑖−1
) =

[
[
[
[
[
[
[

[

1

𝛼
𝑖

(−th
𝑖
+
𝛼
𝑖
⋅ th2
𝑖

2
+
1 − 𝑒
−𝛼𝑖 ⋅th𝑖

𝛼
𝑖

)

th
𝑖
−
1 − 𝑒
−𝛼𝑖 ⋅th𝑖

𝛼
𝑖

1 − 𝑒
−𝛼𝑖 ⋅th𝑖

]
]
]
]
]
]
]

]

(20)

and the variance of the 𝑤
𝑑
(𝑡
𝑖−1
) as

𝑄
𝑑
(𝑡
𝑖−1
) = 𝐸 [𝑤

𝑑
(𝑡
𝑖−1
) 𝑤
𝑇

𝑑
(𝑡
𝑖−1
)]

= 2𝛼
𝑖
𝛿
2

𝛼𝑖
[

[

𝑞
11
𝑞
12
𝑞
13

𝑞
12
𝑞
22
𝑞
23

𝑞
13
𝑞
23
𝑞
33

]

]

(21)

with parameters described as

𝑞
11
=

1

2𝛼5
𝑖

[1 − 𝑒
−2𝛼𝑖 ⋅th𝑖 + 2𝛼

𝑖
⋅ th
𝑖

+
2𝛼
3

𝑖
th3
𝑖

3
− 2𝛼
2

𝑖
th2
𝑖
− 4𝛼
𝑖
⋅ th
𝑖
𝑒
−𝛼⋅th𝑖]

𝑞
12
=

1

2𝛼4
𝑖

[𝑒
−2𝛼𝑖 ⋅th𝑖 + 1 − 2𝑒

−𝛼𝑖 ⋅th𝑖

+2𝛼
𝑖
⋅ th
𝑖
𝑒
−𝛼𝑖 ⋅th𝑖 − 2𝛼

𝑖
⋅ th
𝑖
+ 𝛼
2

𝑖
th2
𝑖
]

𝑞
13
=

1

2𝛼3
𝑖

[1 − 𝑒
−2𝛼𝑖 ⋅th𝑖 − 2𝛼

𝑖
⋅ th
𝑖
𝑒
−𝛼𝑖 ⋅th𝑖]

𝑞
22
=

1

2𝛼3
𝑖

[4𝑒
−𝛼𝑖 ⋅th𝑖 − 3 − 𝑒

−2𝛼𝑖 ⋅th𝑖 + 2𝛼
𝑖
⋅ th
𝑖
]

𝑞
23
=

1

2𝛼2
𝑖

[𝑒
−2𝛼𝑖 ⋅th𝑖 + 1 − 2𝛼

𝑖
⋅ th
𝑖
]

𝑞
33
=

1

2𝛼
𝑖

[1 − 𝑒
−2𝛼𝑖 ⋅th𝑖] .

(22)

(b) State prediction: consider

𝑥 (𝑡
𝑖
| 𝑡
𝑖−1
)

= 𝐴
𝑑
(𝑡
𝑖−1
) 𝑥 (𝑡
𝑖−1
| 𝑡
𝑖−1
) + �̂�
𝑑
(𝑡
𝑖−1
) 𝑎 (𝑡
𝑖−1
)

𝑃 (𝑡
𝑖
| 𝑡
𝑖−1
)

= 𝐴
𝑑
(𝑡
𝑖−1
) 𝑃 (𝑡
𝑖−1
| 𝑡
𝑖−1
) 𝐴
𝑇

𝑑
(𝑡
𝑖−1
) + 𝑄
𝑑
(𝑡
𝑖−1
) .

(23)

(c) State update: consider

𝑥 (𝑡
𝑖
| 𝑡
𝑖
)

= 𝑥 (𝑡
𝑖
| 𝑡
𝑖−1
) + 𝐾 (𝑡

𝑖
) [𝑧 (𝑡

𝑖
) − 𝐻 (𝑡

𝑖
) 𝑥 (𝑡
𝑖
| 𝑡
𝑖−1
)]

(24)

𝐾(𝑡
𝑖
)

= 𝑃 (𝑡
𝑖
| 𝑡
𝑖−1
)𝐻
𝑇
(𝑡
𝑖
)

× [𝐻 (𝑡
𝑖
) 𝑃 (𝑡
𝑖
| 𝑡
𝑖−1
)𝐻
𝑇
(𝑡
𝑖
) + 𝑅 (𝑡

𝑖
)]
−1

(25)

𝑃 (𝑡
𝑖
| 𝑡
𝑖
) = [𝐼 − 𝐾 (𝑡

𝑖
)𝐻 (𝑡

𝑖
)] 𝑃 (𝑡

𝑖
| 𝑡
𝑖−1
) . (26)

(d) Parameter adaptation: the mean of the acceleration

𝑎 (𝑡
𝑖−1
) =

1

𝑖

𝑖−1

∑

𝑖=0

̂̈𝑥 (𝑡
𝑖
| 𝑡
𝑖
) . (27)

When 𝑖 ≤ 𝐾
0
, the maneuver frequency 𝛼

𝑖
is set to 𝛼

0
and

the covariance of the noise 𝛿2
𝑎𝑖
is gotten by the following:

𝛿
2

𝛼𝑖
=

{{{{

{{{{

{

4 − 𝜋

𝜋
[𝑎
𝑀
− ̂̈𝑥 (𝑡

𝑖
| 𝑡
𝑖
)]
2

when ̂̈𝑥 (𝑡
𝑖
| 𝑡
𝑖
) > 0

4 − 𝜋

𝜋
[̂̈𝑥 (𝑡
𝑖
| 𝑡
𝑖
) − 𝑎
−𝑀
]
2

when ̂̈𝑥 (𝑡
𝑖
| 𝑡
𝑖
) < 0

a small positive constant when ̂̈𝑥 (𝑡
𝑖
| 𝑡
𝑖
) = 0.

(28)

When 𝑖 > 𝐾
0
, the parameter is updated by the following

𝑎 (𝑡
𝑖
) = ̂̈𝑥 (𝑡

𝑖
| 𝑡
𝑖
) − 𝑎 (𝑡

𝑖
) (29)

𝑟
𝑖
(1) = 𝑟

𝑖−1
(1) +

1

𝑖
[𝑎 (𝑡
𝑖
) 𝑎 (𝑡
𝑖−1
) − 𝑟
𝑖−1
(1)] (30)

𝑟
𝑖
(0) = 𝑟

𝑖−1
(0) +

1

𝑖
[𝑎 (𝑡
𝑖
) 𝑎 (𝑡
𝑖
) − 𝑟
𝑖−1
(0)] (31)

𝛽
𝑖
=
𝑟
𝑖
(1)

𝑟
𝑖
(0)

𝛿
2

𝑎𝑤𝑖
= 𝑟
𝑖
(0) − 𝛽

𝑖
𝑟
𝑖
(1) (32)

𝛿
2

𝑎𝑖
=

𝛿
2

𝑎𝑤𝑖

1 − 𝛽2
𝑖

𝛼
𝑖
=
ln𝛽
𝑖

−th
𝑖

. (33)

The irregular sampling time 𝑡
𝑖−1

, 𝑡
𝑖
and the interval th

𝑖

reflect in the time-varying parameters of the system, so
we can conclude that the Kalman filter shown in (23)–(33)
based on system (12) with system parameters (19)–(22) can
obtain the same estimation performance as regular sampling
Kalman filter.
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Figure 1: The video with simple background and one target.
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Figure 2: The measurement of maneuvering target got from the
video.

3. Proof of the Convergence

Based on the closed-loop estimation algorithm (18)–(33),
we can see that the parameter used to estimate state is an
estimated one and similarly the estimated states to calculate
parameters 𝛼

𝑖
and 𝛿2
𝑎𝑖
have estimation errors too.Therefore, it

is important to guarantee the convergence of the estimation
of the states and parameters.

From (27), (29), and (33), we know if the estimation ̂̈𝑥(𝑡
𝑖
|

𝑡
𝑖
) increased suddenly, 𝑎(𝑡

𝑖
) will increase greatly because the

mean changes less than ̂̈𝑥(𝑡
𝑖
| 𝑡
𝑖
), and 𝛿2

𝑎𝑤𝑖
becomes large too.

Then, a very large positive 𝛿2
𝑎𝑖
will be obtained, and𝑄

𝑑
(𝑡
𝑖
)will

also contain a large number of elements (here, we call it a big
matrix). From the Riccati equation of Kalman filter

𝑃 (𝑡
𝑖+1
| 𝑡
𝑖
)

= 𝐴
𝑑
(𝑡
𝑖
) {𝑃 (𝑡

𝑖
| 𝑡
𝑖−1
) − 𝑃 (𝑡

𝑖
| 𝑡
𝑖−1
)𝐻
𝑇
(𝑡
𝑖
)

× [𝐻 (𝑡
𝑖
) 𝑃 (𝑡
𝑖
| 𝑡
𝑖−1
)𝐻
𝑇
(𝑡
𝑖
) + 𝑅 (𝑡

𝑖
)]
−1

× 𝐻 (𝑡
𝑖
) 𝑃 (𝑡
𝑖
| 𝑡
𝑖−1
) } 𝐴
𝑇

𝑑
(𝑡
𝑖
) + 𝑄
𝑑
(𝑡
𝑖
) ,

(34)

we find that 𝑃(𝑡
𝑖+1

| 𝑡
𝑖
) will be a big matrix if 𝑄

𝑑
(𝑡
𝑖
) is a

big one, and𝐾(𝑡
𝑖+1
) will increase greatly. As a result, the esti-
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Figure 3: The real trajectory and the estimation trajectory.

mation state 𝑥(𝑡
𝑖
| 𝑡
𝑖
) = 𝑥(𝑡

𝑖
| 𝑡
𝑖−1
) + 𝐾(𝑡

𝑖
)[𝑧(𝑡
𝑖
) − 𝐻(𝑡

𝑖
)𝑥(𝑡
𝑖
|

𝑡
𝑖−1
)] will be a big matrix too. This trend results in positive

feedback loops, whichmeans 𝑥(𝑡
𝑖
| 𝑡
𝑖
)will become larger and

larger, and finally, divergence. We give the following theorem
to guarantee the algorithm convergence.

Theorem 1. The estimation 𝑥(𝑡
𝑖+1

| 𝑡
𝑖+1
) is bounded if the

variance of the target acceleration 𝛿2
𝑎𝑖
has an upper bound; that

is, there is a positive 𝛿2
0
satisfying 𝛿2

𝑎𝑖
≤ 𝛿
2

0
.

Proof. We firstly consider maneuvering frequency 𝛼
𝑖
. From

(19), (21), and (22), we know if𝛼
𝑖
→ 0 and 𝛿2

𝑎𝑖
≤ 𝛿
2

0
, the target

has the constant acceleration maneuvering, and the system
model is the constant acceleration model with the parameter
as follows

𝐴
𝑑
(𝑡
𝑖−1
) → 𝐴

𝑑
(𝑡
𝑖−1
) =

[
[
[
[
[
[

[

1 th
𝑖

th2
𝑖

2

0 1 th
𝑖

0 0 1

]
]
]
]
]
]

]

𝑄
𝑑
(𝑡
𝑖−1
) → 𝑄

𝑑
(𝑡
𝑖−1
) = 𝛿
2

𝛼𝑖

[
[
[
[
[
[
[
[
[

[

th5
𝑖

20

th4
𝑖

8

th3
𝑖

6

th4
𝑖

8

th3
𝑖

3

th2
𝑖

2

th3
𝑖

6

th2
𝑖

2
th
𝑖

]
]
]
]
]
]
]
]
]

]

.

(35)

If 𝛼
𝑖
→ ∞ and 𝛿

2

𝑎𝑖
≤ 𝛿
2

0
, we can get the system

parameter matrix such as 𝐴
𝑑
(𝑡
𝑖−1
) → 𝐴

𝑑
(𝑡
𝑖−1
) = [

1 th𝑖 0
0 1 0

0 0 1

]

and 𝑄
𝑑
(𝑡
𝑖−1
) → 𝑄

𝑑
(𝑡
𝑖−1
) = 𝛿

2

𝛼𝑖
[
0 0 0

0 0 0

0 0 1

]. Therefore, we can
see that 𝐴

𝑑
(𝑡
𝑖−1
) and 𝑄

𝑑
(𝑡
𝑖−1
) are the monotonic matrix with

finite value elements.
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Figure 4: The estimations of horizontal and longitudinal axis.
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Figure 5: The location estimation errors.

Then, we consider the solution of Riccati equation (34)
on the condition that the system parametermatrix has errors,
such as𝐴

𝑑
= 𝐴
𝑑
+Δ𝐴
𝑑
and𝑄

𝑑
= 𝑄
𝑑
+Δ𝑄
𝑑
, where𝐴

𝑑
and𝑄

𝑑

are the actual system parameters and Δ𝐴
𝑑
and Δ𝑄

𝑑
are the

errors of the system parameter. Unlike the research about the
uncertainty system, here we do not know the actual system
matrices 𝐴

𝑑
and 𝑄

𝑑
, but we can know the upper bound of

the system parameters 𝐴
𝑑
(𝑡
𝑖−1
) and 𝑄

𝑑
(𝑡
𝑖−1
), when 𝛿2

𝑎𝑖
≤ 𝛿
2

0
,

such as

𝐴upper (𝑡𝑖−1) = 𝐴𝑑 (𝑡𝑖−1) =

[
[
[
[
[
[

[

1 th
𝑖

th2
𝑖

2

0 1 th
𝑖

0 0 1

]
]
]
]
]
]

]

,

𝑄upper (𝑡𝑖−1) = 𝛿
2

0

[
[
[
[
[
[
[
[
[

[

th5
𝑖

20

th4
𝑖

8

th3
𝑖

6

th4
𝑖

8

th3
𝑖

3

th2
𝑖

2

th3
𝑖

6

th2
𝑖

2
th
𝑖

]
]
]
]
]
]
]
]
]

]

.

(36)

The perturbed discrete algebraic Riccati equation is as
follows:

𝑃 = 𝐴
𝑑
(𝑡
𝑖
) 𝑃𝐴
𝑇

𝑑
(𝑡
𝑖
)

− 𝐴
𝑑
(𝑡
𝑖
) 𝑃𝐻
𝑇
(𝑡
𝑖
) [𝐻 (𝑡

𝑖
) 𝑃𝐻
𝑇
(𝑡
𝑖
) + 𝑅 (𝑡

𝑖
)]
−1

× 𝐻 (𝑡
𝑖
) 𝑃𝐴
𝑇

𝑑
(𝑡
𝑖
) + 𝑄
𝑑
(𝑡
𝑖
) .

(37)

We know that (37) is equal to

𝑃 = 𝐴
𝑑
(𝑡
𝑖
) (𝑃
−1
+ 𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
−1

× 𝐴
𝑇

𝑑
(𝑡
𝑖
) + 𝑄
𝑑
(𝑡
𝑖
) .

(38)

Then, for any vector 𝑠, we have

𝑠
𝑇
𝑃𝑠

= 𝑠
𝑇
[𝐴
𝑑
(𝑡
𝑖
) (𝑃
−1
+ 𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
−1

× 𝐴
𝑇

𝑑
(𝑡
𝑖
) + 𝑄
𝑑
(𝑡
𝑖
) ] 𝑠

≤ 𝜆
1
(𝑃
−1
+ 𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
−1

𝑠
𝑇
𝐴
𝑑
(𝑡
𝑖
) 𝐴
𝑇

𝑑
(𝑡
𝑖
) 𝑠

+ 𝑠
𝑇
𝑄
𝑑
(𝑡
𝑖
) 𝑠,

(39)
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where 𝜆
1
(𝑋) is the maximum eigenvalue. By the relation of

vector eigenvalue 𝜆
𝑚
(𝑋
−1
) = 𝜆

−1

𝑀−𝑚+1
(𝑋), where 𝜆

1
(𝑋) ≥

𝜆
2
(𝑋) ≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑀
(𝑋), we have

𝑠
𝑇
𝑃𝑠 ≤

𝑠
𝑇
𝐴
𝑑
(𝑡
𝑖
) 𝐴
𝑇

𝑑
(𝑡
𝑖
) 𝑠

𝜆
𝑀
(𝑃−1 + 𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
+ 𝑠
𝑇
𝑄
𝑑
(𝑡
𝑖
) 𝑠. (40)

That is,

𝑃 ≤
𝐴
𝑑
(𝑡
𝑖
) 𝐴
𝑇

𝑑
(𝑡
𝑖
)

𝜆
𝑀
(𝑃−1 + 𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
+ 𝑄
𝑑
(𝑡
𝑖
) . (41)

We have

𝜆
𝑀
(𝑃
−1
+ 𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))

≥
1

𝜆
1
(𝑃)

+ 𝜆
𝑀
(𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
)) .

(42)

Then, by (41) and (42), we have

𝑃 ≤
𝐴
𝑑
(𝑡
𝑖
) 𝐴
𝑇

𝑑
(𝑡
𝑖
)

(1/𝜆
1
(𝑃)) + 𝜆

𝑀
(𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
+ 𝑄
𝑑
(𝑡
𝑖
)

=
𝜆
1
(𝑃)𝐴

𝑑
(𝑡
𝑖
) 𝐴
𝑇

𝑑
(𝑡
𝑖
)

1 + 𝜆
1
(𝑃) 𝜆
𝑀
(𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
+ 𝑄
𝑑
(𝑡
𝑖
)

≤
𝜆
1
(𝑃)𝐴upper (𝑡𝑖) 𝐴

𝑇

upper (𝑡𝑖)

1 + 𝜆
1
(𝑃) 𝜆
𝑀
(𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))
+ 𝑄upper (𝑡𝑖) .

(43)

Next, by the relation ofHermitematrix and its eigenvalue,
we have

𝜆
1
(𝑃) ≤

𝜆
1
(𝑃) 𝜆
1
(𝐴upper (𝑡𝑖) 𝐴

𝑇

upper (𝑡𝑖))

1 + 𝜆
1
(𝑃) 𝜆
𝑀
(𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))

+ 𝜆
1
(𝑄upper (𝑡𝑖)) .

(44)

Then, we have

𝜆
2

1
(𝑃) 𝜆
𝑀
(𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))

+ 𝜆
1
(𝑃) [1 − 𝜆

1
(𝐴upper (𝑡𝑖) 𝐴

𝑇

upper (𝑡𝑖))

−𝜆
𝑀
(𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
)) 𝜆
1
(𝑄upper (𝑡𝑖))]

− 𝜆
1
(𝑄upper (𝑡𝑖)) ≤ 0.

(45)

Assume that 𝜆
𝑀
(𝐻
𝑇
(𝑡
𝑖
)𝑅(𝑡
𝑖
)𝐻(𝑡
𝑖
)) > 0 and set

1 − 𝜆
1
(𝐴upper (𝑡𝑖) 𝐴

𝑇

upper (𝑡𝑖))

− 𝜆
𝑀
(𝐻
𝑇
(𝑡
𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
)) 𝜆
1
(𝑄upper (𝑡𝑖)) = 𝑝1.

(46)

We have the following solution of (45):

𝜆
1
(𝑃)

≤

−𝑝
1
+ √𝑝2
1
+ 4𝜆
𝑀
(𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
)) 𝜆
1
(𝑄upper (𝑡𝑖))

2𝜆
𝑀
(𝐻𝑇 (𝑡

𝑖
) 𝑅 (𝑡
𝑖
)𝐻 (𝑡

𝑖
))

.

(47)

Therefore, we can conclude that themaximum eigenvalue
of estimation covariance𝑃has the upper bound shown as (47)
if 𝛿2
𝑎𝑖
≤ 𝛿
2

0
.

If one step predictive covariance is bounded,
that is, |𝑃(𝑡

𝑖
| 𝑡
𝑖−1
)| ≤ 𝑃

0
, then we know 𝑃(𝑡

𝑖+1
| 𝑡
𝑖
)

must be bounded by (47) with the fact that |𝑄
𝑑
(𝑡
𝑖
)| ≤ 𝑄

0
.

And based on (25), we know 𝐾(𝑡
𝑖+1
) must be a bounded

matrix and 𝑥(𝑡
𝑖+1
| 𝑡
𝑖+1
)must be bounded too.

4. Simulations and Experiments

4.1. The Estimation by Different Extraction Rate and Irregular
Rate. The method here is applied to a two-dimensional
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Figure 7: The tracking results for videos.
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Figure 8: RMSE
2D under different EXrate and IRrate.

Figure 9:The tracking results in number 1, 27, 40, 65, 74, 97, 128, 129,
158, 181, 189, and 226 frames.

planar video tracking. Here, as a tracking problem, we just
use the simple background and one target. The video gotten
by the Image Capture Test Bed is shown in Figure 1.

We control the car maneuvering on the test bed and catch
the images of target movement by a stationary camera. For
every image of the video, the target is extracted based on the
color and then we get the measurement data of maneuvering
target on the Image Capture Test Bed like Figure 2.

We know that the camera catches the image under the
same interval, and that will produce large amounts of image
data. If we can use some of images in the video for tracking,
the image storage and computation cost will greatly reduce.
But “using some of images” means that the measurements

no longer have the same sampling interval. Here, define the
Extraction Rate as

EXrate

=
extracted number of images from the video

total number of images in the video
× 100%

(48)

to describe the image compression rate. And define the
Irregular Rate to measure the sampling interval as

IRrate =
∑
𝑁

𝑖=1


th
𝑖
− ∑
𝑁

𝑖=1
th
𝑖



𝑁
. (49)

The state for the target in the 2D space is 𝑥(𝑘) =

[𝑥(𝑘) ̇𝑥(𝑘) ̈𝑥(𝑘) 𝑦(𝑘) ̇𝑦(𝑘) ̈𝑦(𝑘)]. The initial state esti-
mate 𝑥

0
and covariance 𝑃

0
are assumed to be 𝑥

0
=

[𝑥(0) 0 0 𝑦(0) 0 0]
𝑇 and 𝑃

0
= diag(10, 10, 10, 10, 10, 10).

We extract 243 images from a video with 491 images
where EXrate = 49.49% and IRrate = 0.1043 and by the
algorithm developed with the initial parameters 𝛼

0
= 1/20,

𝛿
2

𝑎0
= 10, 𝑎

0
= 0, 𝛼

𝑀
= 3, 𝐾

0
= 3, we get the

estimation of trajectory with estimation covariance 10.0881
along the horizontal axis and 8.1660 along the vertical axis,
shown in Figure 3. The estimation trajectories of horizontal
and longitudinal axis is shown in Figure 4 and the estimation
error are shown in Figure 5.

To illustrate how the irregular rate affects estimation
performance, the algorithm is used to estimate the target
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Table 1: The different irregular rate for 10 cases.

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10
0.01 0.06 0.08 0.09 0.10 0.13 0.14 0.14 0.18 0.19

trajectory under different Irregular Rate (shown in Table 1)
with the same Extraction Rate, EXrate = 49.86%. The
RMSE position is defined as RMSE

2D = √RMSE2
𝐻
+ RMSE2

𝐿
,

where RMSE
𝐻
and RMSE

𝐿
are the root-mean square errors

(RMSE) of position for horizontal and longitudinal axis,
respectively. The relation between RMSE

2D and IRrate is
shown in Figure 6. We can see that the Irregular Rate
affects the estimation performance very little. The Irregular
Rate changes 21 times almost from 0.0088 in Case 1 to
0.1928 in Case 10, but RMSE

2D is about 14 for all IRrate.
We can conclude that IRrate does not affect the tracking
performance, when with the same EXrate.

4.2. The Performance with Different Models. Next, we com-
pare the model developed here with other dynamics model,
such as CV model [12], CA model [12], Singer model [13],
current model [8], and IMM [14]. We set the process noise
covariance as 𝑄 = 1 for the CV and CA model and 𝜎2

𝑤
= 1

and 𝛼 = 1/20 for Singer model. Because the current model is
very sensitive to the priori parameters, we give several system
parameters such as 𝛼 = 1/30, 𝛼max = 3 (current model I), 𝛼 =
1/20, 𝛼max = 30 (current model II), and 𝛼 = 1/20, 𝛼max = 3
(current model III). After 100 Monte Carlo simulation runs,
RMSE

2D are calculated. For different trajectory with different
EXrate and IRrate, the estimation results are shown in Figures
7(a)–7(f), where in order to show clearly, we use the black
“O” to describe the actual trajectory at the sampling time in
Figures 7(e) and 7(f).

Table 2 and Figure 8 show RMSE
2D under the different

IRrate and EXrate.We can see that themodel here can get the
better estimation performance than CV, CA, Singer model,
currentmodel, and IMM for almost all EXrate and IRrate.We
also note that the currentmodel needs the right parameter, or
else the performance will become worse.

We note that in Figure 7(f), the tracking error of the
developed model is larger than current models II, III, and
IMM, even CA. We find that there is a big estimation error
at 5th second. The reason is that there are not enough data
gotten to update the parameter at 𝐾

0
= 4. Therefore, the

estimation error is bigger. But we also note that the estimation
error declined quickly, so the developed model has a strong
advantage for the long trajectory tracking comparing the
other models.

Another fact we also noticed is that though IRrate almost
does not affect the tracking performance, it is obvious that
low EXrate can decline the tracking performance. This is
because the lower EXrate means less measured data gotten
and less useful information that can be provided; therefore,
the estimate is more inaccurate.

As to the sampling interval th
𝑖
, the lower EXrate means

larger th
𝑖
. If the sampling interval th

𝑖
is large enough to break

Shannon Sampling Theorem, the estimation performance
will decline.

4.3. The Estimation of Video Target. At last, we use the
developed method to track a target in real scene. In order
to decrease the calculation cost, we select some frames from
the video according to the characteristics of the movement.
That is, if we find that the target is stationary or moves slowly,
then we discard these frames. We use a threshold to test
whether a target makes a big maneuver or not. Obviously, a
large threshold canmake the calculation cost lower, but lower
EXrate will make the performance decrease too.

So the threshold should be carefully selected to balance
the calculation cost and performance. Here, we select 95
frames from 245 frames; EXrate and IRrate are 38.77% and
0.1367, respectively. Figure 9 gives the tracking results of
number 1, 27, 40, 65, 74, 97, 128, 129, 158, 181, 189, and
226 frames in the video. The estimation of target is marked
by “black” dot. The estimation covariance of RMSE

2D as
1.034mm is obtained (the tracking area is 300 ∗ 300mm2).

5. Conclusions

The main contribution of this paper is to model the real-
time system dynamics at the random sampling points. (1)
By calculating the matrix exponential with inverse Laplace
transform, the irregular sampling interval is transformed to
time-varying parameters matrix of the system. (2) Based on
the statistics relation between the autocorrelation function
and the covariance ofMarkov random processing, the system
model with online parameter is developed.The proof and the
experimental results show that the developedmethod can get
good tracking performance.

As an example, the developed method is used for the
video tracking problem. According to the motion character-
istics of the target, some frames are selected for the tracking
purpose.The tracking results show that good tracking perfor-
mance is obtained by a smaller amount of calculation.
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ALINEA is a simple, efficient, and easily implemented ramp metering strategy. Virtual reference feedback tuning (VRFT) is
most suitable for many practical systems since it is a “one-shot” data-driven control design methodology. This paper presents an
application of VRFT to a ramp metering problem of freeway traffic system. When there is not enough prior knowledge of the
controlled system to select a proper parameter of ALINEA, the VRFT approach is used to optimize the ALINEA’s parameter by
only using a batch of input and output data collected from the freeway traffic system. The extensive simulations are built on both
the macroscopic MATLAB platform and the microscopic PARAMICS platform to show the effectiveness and applicability of the
proposed data-driven controller tuning approach.

1. Introduction

Freeway traffic control has become an important area in
the field of traffic engineering and intelligent transportation
systems due to the rapid expansion in worldwide develop-
ment of freeway infrastructure and traffic demand.The frequ-
ent occurrence of congestions on freeway during rush hours,
which may be caused by traffic demand being greater than
capacity, traffic accidents, road works or weather, and so
forth, leads to travel time delay, inefficient utilization of the
freeway infrastructure, and decreasing traffic safety. Thus,
freeway traffic control methods should be developed to pre-
vent traffic jam and utilize the freeway infrastructure effici-
ently. In general, there are three typical freeway traffic con-
trol methods, ramp metering, mainline speed control, and
corridor control.

Among these methods, ramp metering is the most pop-
ular one [1, 2]. Ramp metering is implemented by means
of traffic lights, which is used to meter the number of
entering vehicles and prevent traffic volume from exceeding
freeway capacity. Ramp metering, when properly applied,
is an effective way to ease freeway congestion and improve
the efficiency of freeway utilization. From the viewpoint of

system control, it is a typical set-point problem andnumerous
model based control methods have been exploited, such as
numerical methods [1, 3], linearization method [4], one-step
ahead prediction, and multiple prediction adaptive control
[5]. However, as the freeway traffic system is expanded to
be larger and larger, its accurate mathematical model may
be difficult to be built. Therefore, it is desirable to develop
a control method that is less dependent on the model
accuracy.

In the field of control theory, several control methods
for systems with exogenous disturbances and/or model
uncertainties have been explored extensively. In [6], a new
model transformation of discrete-time fuzzy systems with
time-varying delays is analyzed and applied to dynamic
output feedback controller design. In [7], a dissipativity based
sliding mode control (SMC) is proposed for continuous-
time switched stochastic systems with an external distur-
bance/ uncertainty. In [8], a sliding mode control (SMC)
is proposed for Markovian jump singular time-delay sys-
tems. In [9], a stable robust model predictive controller
with hard input constraints is designed for a multivari-
able system whose model is inaccurate. In [10], a fuzzy
sliding model control method is presented for a class of
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nonlinear systems with structured and unstructured uncer-
tainties. Although the robust performance to disturbances
can be achieved with these control methods, the nominal
model or system structure is still required for the controller
design.

More recently, several data-driven control methods,
which focus on designing controller merely using measured
input and output data of a plant, are found in the data-
driven control field, such as PID control [11], model-free
adaptive control [12–14], iterative learning control [15–19],
unfalsified control [20], virtual reference feedback tuning
[21–24], and iterative feedback tuning [25–27]. Note that
ALINEA—a simple, efficient, and easily implemented ramp
metering strategy—is a typical PI-type feedback regulator
based on mainstream measurements of occupancy down-
streamof the ramp [28, 29]. Apparently, it is also a data-driven
control strategy in nature without including any modeling
information of the freeway system, but only depending on
the input and output measurements. However, it is worth
pointing out that successful implementation of ALINEA
depends on four parameters [30]: the update cycle and the
feedback gain of ALINEA controller, the feedback gain, the
location, and the predefined optimal occupancy of freeway
downstream of the merge. In fact, it is difficult to select
an optimal feedback gain by trial-and-error method for a
practical freeway traffic system if there is not enough prior
knowledge of the controlled system.

In [30], an iterative feedback tuning (IFT) method is pro-
posed to optimize the parameter of the ALINEA controller.
The parameter of ALINEA controller is tuned iteratively only
by using the input and output (I/O) data without any infor-
mation of the plant model. However, IFT requires many
experiments on the plant for data collection and suffers
from local minima problems if it is not suitably initialized
[24]. In contrast, VRFT [21–24] is a “one-shot” data-driven
controller tuning method: one collects a batch of data from
the plant and the procedure returns a controller, without
requiring iterations and/or further accesses to the plant for
experiments. VRFT formulates the controller tuning problem
as a controller parameter identification problem by intro-
ducing virtual reference signal. VRFT is suitable for many
practical applications since the minimization is conducted in
one shot.

In this paper, VRFT method is applied to optimize the
parameter of the ALINEA controller in the presence of the
modeling uncertainties and exogenous disturbances, as an
alternative to the difficult task of fine-tuningALINEA in real-
world testing. The ALINEA’s parameter is tuned directly by
using the measured input and output (I/O) data without any
prior knowledge of the freeway traffic system. The effective-
ness of the proposed data-driven controller tuning method
is verified by simulations built on macroscopic MALAB and
microscopic PARAMICS platforms.

Thepaper is organized as follows. Section 2 is the problem
formulation, where a discretized macroscopic traffic mode is
introduced. Section 3 describesVRFT approach forALINEA.
Simulation results withMATLAB and PARAMICS platforms
are provided in Section 4. Finally, Section 5 concludes this
paper.

L1 Li LN

q0 𝜌1�1 𝜌i�i 𝜌N�N
q1 qi qi qN qN

s1 si sNr1 ri rN

· · · · · ·

Figure 1: A freeway segment subdivided into sections.

2. Problem Formulation

2.1. Macroscopic Traffic Model. The space and time dis-
cretized traffic flow model used in this section was proposed
by Papageorgiou in 1989. It divides a freeway into several
segments, and each segment contains one on-ramp and one
off-ramp only, as shown in Figure 1.

The mathematical formulation of discretized traffic flow
model is given as follows:
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where 𝑇 is the sample time interval in hour. 𝑘 is the 𝑘th time
interval, 𝑖 ∈ {1, . . . , 𝑁} is the 𝑖th section of a freeway, and𝑁 is
the total section number.Model variables are listed as follows:

𝜌
𝑖
(𝑘): density in section 𝑖 at time 𝑘𝑇 (veh/lane/km);

V
𝑖
(𝑘): spacemean speed in section 𝑖 at time 𝑘𝑇 (km/h);
𝑞
𝑖
(𝑘): trafficflow leaving section 𝑖 and entering section
𝑖 + 1 at time 𝑘𝑇 (veh/h);
𝑟
𝑖
(𝑘): on-ramp traffic volume for section 𝑖 at time 𝑘𝑇

(veh/h);
𝑠
𝑖
(𝑘): off-ramp traffic volume for section 𝑖 at time

kT (veh/h), which is regarded as an unknown distur-
bance;
𝐿
𝑖
: length of freeway in section 𝑖 (km);

Vfree (km/h) and 𝜌jam (veh/lane/km): the free speed
and the maximum possible density per lane, respec-
tively. They are two important parameters in traffic
flow model, since their accuracy affects the accuracy
of traffic flow model;
𝜏, 𝛾, 𝜅, 𝑙, and 𝑚: constant parameters which reflect
particular characteristics of a given traffic system and
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depend upon the freeway geometry, vehicle charac-
teristics, drivers’ behaviors, and so forth.

Equations (1)–(4) constitute the macroscopic traffic
model. Equation (1) is thewell-known conservation equation,
(2) is the flow equation, (3) is the empirical dynamic speed
equation, and (4) represents the density-dependent equilib-
rium speed.

2.2. Boundary Conditions. We assume that the traffic flow
rate entering section 1 during the time period 𝑘𝑇 and (𝑘+1)𝑇
is 𝑞
0
(𝑘) and the mean speed of the traffic entering section 1 is

equal to the mean speed of section 1; that is, V
0
(𝑘) = V

1
(𝑘).

We also assume that the mean speed and traffic density of
the traffic exiting section𝑁 + 1 are equal to those of section
𝑁; that is, V

𝑁+1
(𝑘) = V

𝑁
(𝑘), 𝜌

𝑁+1
(𝑘) = 𝜌

𝑁
(𝑘). Boundary

conditions can be summarized as follows:
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(5)

2.3. Control Objective. For the traffic system, the control
objective is to seek an appropriate on-ramp traffic volume
𝑟
𝑖
(𝑘) such that the traffic density 𝜌

𝑖
(𝑘) tracks the desired

traffic density 𝜌
𝑑
. It is worth to point out that the off-

ramp traffic volume 𝑠
𝑖
(𝑘) is an uncontrollable variable and

is regarded as exogenous disturbance here. Obviously, even
though the freeway model is known, it is difficult to design a
proper control law using the traditional model-based control
approaches such as optimal control and adaptive control
because of the strong nonlinearity and uncertainties in the
freeway traffic flow model.

For the simplicity of formulation, the section index 𝑖 is
omitted in the following equations.

3. Virtual Reference Feedback Tuning for
ALINEA Controller

3.1. ALINEA Controller. Reactive ramp metering strategies
are employed at a tactical level, that is, in the aim of keeping
the freeway traffic conditions close to prespecified set values,
based on real-time measurements. The occupancy strategy
is based on the same philosophy as the demand-capacity
strategy, but it relies on occupancy-based estimation of the
freeway flow measurement upstream of the ramp, which
may, under certain conditions, reduce the corresponding
implementation cost. Since the concept of occupancy and
traffic density is similar and has a linear proportion between
them, in this paper, we use the traffic density instead of the
occupancy to design the ALINEA controller as follows [30]:

𝑟 (𝑘) = 𝑟 (𝑘 − 1) + Θ [𝜌
𝑑
− 𝜌 (𝑘)] , (6)

where 𝜌
𝑑
is the desired traffic density and Θ is the feedback

gain of ALINEA controller.

r de 𝜌
C P

𝜌d

−

Figure 2: The closed-loop freeway traffic system.

3.2. VRFT Approach. Consider the freeway traffic system.
As shown in Figure 2, it is a classical one-degree-of-freedom
control system, where 𝑃 is the freeway traffic system and
C is the ALINEA controller. 𝜌

𝑑
, 𝜌, 𝑟, 𝑑, and 𝑒 are the refe-

rence traffic density, the traffic density, the ramp metering
volume, disturbance, and the difference between 𝜌

𝑑
and 𝜌,

respectively. The closed-loop freeway traffic system is
described as

𝜌 (𝑘) = 𝑃 (𝑧) 𝑟 (𝑘) ,

𝑟 (𝑘) = C (𝑧, Θ) (𝜌
𝑑
− 𝜌 (𝑘)) ,

(7)

where 𝑧 is the one-step ahead shift operator and Θ is the
controller parameter.

The transfer function of the closed-loop system can be
rewritten as

𝑃 (𝑧)C (𝑧, Θ)
1 + 𝑃 (𝑧)C (𝑧, Θ)

. (8)

For an unknown freeway traffic system 𝑃(𝑧), the control
objective is to find an optimal controller parameter Θopt by
using a batch of the measured input/output data so that
the freeway traffic system behavior approximates as much as
possible to that of a given invertible reference model𝑀(𝑧),
where 𝑧 is the one-step ahead shift operator [21–24].This can
be achieved by minimizing the following model-reference
criterion:

𝐽 (Θ) =


(
𝑃 (𝑧)C (𝑧, Θ)
1 + 𝑃 (𝑧)C (𝑧, Θ)

−𝑀 (𝑧))𝑊 (𝑧)

2

2

, (9)

where𝑊(𝑧) is a weighting function.
It is difficult to calculate the derivative of the criterion

(9) with respect to controller parameter Θ if the freeway
traffic system 𝑃(𝑧) is unknown. To address this issue, one can
introduce a virtual reference density signal 𝜌vir(𝑘) such that

𝜌 (𝑘) = 𝑀 (𝑧) 𝜌vir (𝑘) , (10)

where 𝜌vir(𝑘) does not exist in reality and was not used in the
generation of 𝜌(𝑘).

Since 𝑀(𝑧) is a given invertible reference model, (10) is
rewritten as

𝜌vir (𝑘) = 𝑀(𝑧)
−1
𝜌 (𝑘) , (11)

where𝑀(𝑧)−1 is the inversion of𝑀(𝑧).
Equation (10) implies that 𝜌(𝑘) is the desired density

of the freeway system if the reference density signal is set
as 𝜌vir(𝑘) and the corresponding virtual tracking error is
𝑒vir(𝑘) = 𝜌vir(𝑘) − 𝜌(𝑘). On the other hand, even though the
freeway system is unknown, when the freeway traffic system
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Table 1: Initial values and parameters associated with the traffic model [18, 19].

Section 1 2 3 4 5 6 7 8 9 10 11 12
𝜌
𝑖
(0) 30 30 30 30 30 30 30 30 30 30 30 30

V
𝑖
(0) 50 50 50 50 50 50 50 50 50 50 50 50

Parameters Vfree 𝜌jam 𝑙 𝑚 𝜅 𝜏 𝑇 𝛾 𝑞
0
(𝑘) 𝑟

𝑖
(0) 𝛼

80 km/h 80 veh/lane/km 1.8 1.7 13 veh/km 0.01 h 0.00417 h 35 km2/h 1500 veh/h 0 veh/h 0.95

is fed by 𝑟(𝑘) (the actually measured rampmetering volume),
it generates 𝜌(𝑘) (the correspondingmeasured output signal).
Thus, if the reference signal is set to be the virtual reference
density signal 𝜌vir(𝑘) and the corresponding virtual tracking
error is 𝑒vir(𝑘), a good controller must generate the ramp
metering signal 𝑟(𝑘). Since both the signals 𝑒vir(𝑘) and 𝑟(𝑘)
are available, the control objective (9) can be transformed into
the following standard identification problem:

𝐽VRFT (Θ) =
𝐿 (𝑧) (C (𝑧, Θ) 𝑒vir − 𝑟)


2

, (12)

where 𝐿(𝑧) is a suitable filter.

Remark 1. For a practical control problem, the “ideal con-
troller” is usually a complex nonlinear system and it does not
belong to the given controller class. In [24], the filter 𝐿(𝑧) is
introduced to deal with this problem. Minimizing 𝐽VRFT(Θ)
with the filter will generate a “nearly minimizer” of 𝐽(Θ). It is
proved thatminimizing 𝐽VRFT(Θ) is equivalent tominimizing
the second-order expansion of 𝐽(Θ) in a constrained sense.

The procedure of VRFT for ALINEA controller is sum-
marized as follows:

(1) collect a batch of input/output data collected from
the plant, expressed as {(𝑟(𝑘), 𝜌(𝑘))

𝑘=1:𝑁
}, where 𝑁

denotes the number of the input/output data pairs;
(2) calculate the virtual reference density signal
{(𝜌vir(𝑘))𝑘=1:𝑁} for a given invertible 𝑀(𝑧) and
the measured density signal {𝜌(𝑘)

𝑘=1:𝑁
} according to

(11);
(3) calculate the virtual error signal {(𝑒vir(𝑘))𝑘=1:𝑁} acco-

rding to the following equation:

𝑒vir (𝑘) = 𝜌vir (𝑘) − 𝜌 (𝑘) ; (13)

(4) filter the signals 𝑒vir(𝑘) and 𝑟(𝑘) with a suitable filter
𝐿(𝑧), obtaining 𝑒

𝐿
(𝑘) = 𝐿(𝑧)𝑒vir(𝑘) and 𝑟𝐿(𝑘) =

𝐿(𝑧)𝑟(𝑘);
(5) estimate the controller parameter

Θ̂opt = argmin
Θ

𝐽
𝑁

VRFT (Θ) , (14)

where

𝐽
𝑁

VRFT (Θ) =
1

𝑁

𝑁

∑

𝑖=1

(𝑟
𝐿
(𝑖) − C (𝑧, Θ) 𝑒

𝐿
(𝑖))
2

. (15)

Remark 2. As suggested in [24], the filter can be designed as
follows:

𝐿 (𝑧) = (1 −𝑀 (𝑧) 𝑧
−1
) (
𝜕𝑃 (𝑧)

𝜕𝑢

𝑢
) , (16)

where 𝜕𝑃(𝑧)/𝜕𝑢|
𝑢
is linear and time varying and it can be

estimated, for example, via forgetting factor identification
techniques.

4. Illustrative Examples

MATLAB and PARAMICS are widely used in the area of
trafficmanagement and academic research for evaluation and
validation. In this section, in order to evaluate the proposed
VRFT-tuned ALINEA, two simulations are carried out on
MATLAB and PARAMICS platforms, respectively, where
the macroscopic traffic flow model (1)–(4) is simulated on
MATLAB platform, and the microscopic traffic flow model
is simulated on PARAMICS platform. Both simulations show
the effectiveness of the proposed VRFT-tuned ALINEA.

4.1. Performance Evaluation with MATLAB Platform

4.1.1. Network Configuration. Consider a long segment of
freeway that is divided uniformly into 12 sections.The length
of each section is 0.5 km. The initial traffic volume entering
section 1 is 1500 veh/h. The desired density is 𝜌

𝑑
(𝑡) =

30 veh/lane/km. The initial density and mean speed of each
section are shown in Table 1 and the parameters used in the
macroscopic traffic model are also listed in Table 1.

There exist an on-ramp with known traffic demands in
section 3 and an off-ramp with unknown exiting traffic flow
in section 8. The traffic demand pattern (on-ramp) and the
outflow pattern (off-ramp) are shown in Figure 3. They were
chosen to simulate a traffic scenario during rush hour. Note
that the queuing demands actually impose a constraint on the
control inputs of rampmetering; that is, the on-ramp volumes
cannot exceed the current demands plus the existing waiting
queues at on-ramp 3 at time 𝑘; thus

𝑟
3
(𝑘) ≤ 𝑑

3
(𝑘) + 𝑙

3
(𝑘) , (17)

where 𝑙
3
(𝑘) denotes the length (in vehicles) of a possibly

existing waiting queue at time 𝑘 at 3rd on-ramp and 𝑑
3
(𝑡) is

the demand flow at time 𝑘 at 3rd on-ramp (veh/h).
On the other hand, the waiting queue is the accumulation

of the difference between the demand and actual on-ramp;
that is,

𝑙
3
(𝑘 + 1) = 𝑙

3
(𝑘) + 𝑇 (𝑑

3
(𝑘) − 𝑟

3
(𝑘)) . (18)
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Figure 3: Traffic demand in on-ramp 3 and exiting flow of off-ramp
8.
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Figure 4: The open-loop I/O signals measured on the system.

4.1.2. Simulation and Results. Using the VRFT method pre-
sented in Section 3, the ALINEA controller can be straightfo-
rwardly designed using the I/O data measured on the free-
way traffic system. Specifically, the control input signal used
for open-loop excitation is a pseudorandom binary sequence
signal sampled at 15 seconds. The length of the data vector
is 256 (corresponding to 1.068 hour of data acquisition). The
I/O signals measured on the system are displayed in Figure 4.
According to the characteristics of themeasured input signal,
the filter for VRFT method is simply set to be 𝐿(𝑧) = 1.

The VRFT toolbox for MATLAB 6 Release 13 [31] is used
to tune the controller parameter Θ. For a given first-order
reference model𝑀(𝑧) = 0.9𝑧−1/(1 − 0.1𝑧−1), a filter 𝐿(𝑧) =
1, a weighting function 𝑊(𝑧) = 1, and a batch of mea-
sured input and output data, VRFT toolbox gives the opti-
mal feedback gain Θopt = 50.75.
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Figure 5: Control performance of VRFT-tuned ALINEA.

The control performance of ALINEA controller with
feedback gain Θopt = 50.75 is quite well despite the
unknown disturbance in off-ramp 8, as shown in Figure 5,
where Figure 5(a) shows the density profile in section 3 and
Figure 5(b) shows the entering flow in on-ramp 3. The sim-
ulation results illustrate that a proper ALINEA’s parameter is
obtained by using the VRFT method presented in this paper.

4.2. Performance Evaluation in PARAMICS Platform. Exist-
ing microscopic traffic simulation platforms have distin-
guished features, and the fundamental model is commonly
the car following model, which makes simulations very
similar to each other. In this paper, we adopt PARAMICS
simulation platform, which is widely used in the area of
trafficmanagement and academic research for evaluation and
validation.

4.2.1. Freeway Network. A single lane freeway link with 14
mainline sections, 1 on-ramp, and 1 off-ramp is considered.
The on-ramp used to implement metering or flow control
is connected to section 3 at the beginning and the off-ramp
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Figure 6: Freeway simulation model.

Table 2: PARAMICS O-D table.

Zone 1 Zone 2 Zone 3 Zone 4 Total
Zone 1 0 0 250 1250 1500
Zone 2 0 0 50 250 300
Zone 3 0 0 0 0 0
Zone 4 0 0 0 0 0
Total 0 0 300 1500 1800

is connected to section 8 at the end. As shown in Figure 6,
vehicles enter into the network from two defined zones, Zone
1 andZone 2, at the beginning of the freewaymainline andon-
ramp section, respectively, and will have their destinations to
be either Zone 3 or Zone 4, defined at the end of off-ramp and
the mainline.

In Table 2, Zone 1 and Zone 2 are used for origins to
release vehicles into the network, and meanwhile Zone 3 and
Zone 4 are used as destination for these vehicles. In the table,
the number specified is the total number of vehicles expected
to make a trip starting from the zone corresponding to the
row to the zone corresponding to the column.The release rate
in PARAMICS of traffic flow is specified in profile files. The
duration time is divided uniformly into time intervals and a
specified percentage of vehicles from the total demand are
expected to be released from each origin zone during each
time interval; additionally the release probability is subject to
randomprocess. In this paper the time interval length is set to
be 3 minutes which divides the simulation duration of 1 hour
into 20 intervals.

4.2.2. Network Configuration. The key parameters for traffic
model and simulation are provided in Table 3. In Table 3,
duration is the length of the simulation; time step is the
number of discrete simulation intervals that are simulated
per second; demand factor specifies the dynamic demand
for the current simulation ranging from 0 to 200% of the
current global demand; orientation specifies the side of the
carriageway that vehicles travel upon (right-/left-hand drive);
units specify the unit convention for display in PARAMICS
(USA/UK/Metric); control time step specifies the length of
time interval for updating of control signal. The rest of
parameters are commonly used parameters in the field of
control; therefore further explanations are omitted.

4.2.3. Simulation and Results. As for a realistic implemen-
tation in the PARAMICS microscopic simulation platform
where metered vehicles can only be integer numbers, so a
revised ALINEA law of (6) is given as follows:

𝑟 (𝑘) = 𝑟 (𝑘 − 1) + INT (Θ (𝜌
𝑑
− 𝜌 (𝑘))) , (19)

where the desired density 𝜌
𝑑
is set to be 30 veh/lane/km.

Table 3: Parameters for simulation.

Duration (HH:MM:SS) 1:00:00
Time step (second) 2
Control time step (second) 30
Demand factor (%) 100
Section length (m) 500
Orientation Left-hand drive
Units Metric units
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Figure 7: The open-loop I/O signals measured on the system.

The control input signal used for open-loop excitation is a
pseudorandom binary sequence signal sampled at 30 sec.The
length of the data vector is 100 (corresponding to 50min of
data acquisition).The I/O signals measured on the system are
displayed in Figure 7. According to the characteristics of the
measured input signal, the filter for VRFT method is set to
be 𝐿(𝑧) = (0.9𝑧−1 − 1.1006𝑧−2 + 0.089625𝑧−3 − 0.19983𝑧−4 +
0.10872𝑧

−5
+ 0.2021𝑧

−6
)/(1 − 0.2𝑧

−1
+ 0.01𝑧

−2
). For a given

first-order reference model 𝑀(𝑧) = 0.9𝑧−1/(1 − 0.1𝑧−1), a
weighting function𝑊(𝑧) = 1, and a batch of measured input
and output data, VRFT toolbox gives the optimal feedback
gainΘopt = 44.95. The simulation result is shown in Figure 8.
It is clear that the density tracking performance using the
VRFT-tuned ALINEA is satisfactory.

To further evaluate the controller’s performance, we
define average absolute difference between density and desi-
red density as the performance index:

𝐽 =

∑
𝑘=𝑇2

𝑘=𝑇1

𝜌𝑑 − 𝜌 (𝑘)


𝑇
2
− 𝑇
1

, (20)

where 𝑇
1
= 20 and 𝑇

1
= 120 are the beginning and ending

time instances that decide the traffic period for evaluation.
The final performance index is 𝐽 = 1.5357.
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Figure 8: Mainline density resulting from VRFT-tuned ALINEA.

5. Conclusion

In this paper, a “one-shot” data-driven controller tuning
method, VRFT, is applied to tune the parameters in ALINEA
controller. It can easily find an optimal feedback gain. The
main feature of VRFT is that the method aims at minimizing
a cost function by using a batch of input and output data
collected from the controlled plant. ALINEA controller tuned
by using VRFT method is evaluated on macroscopic MAT-
LAB and microscopic PARAMICS platforms, respectively.
The simulation results show the effectiveness of the data-
driven tuning approach. It is noted that the parameters, such
as the vehicle characteristics, drivers’ behaviors, are time
varying naturally in the practical traffic network. Therefore,
the extension of the VRFT method to time-varying freeway
systems will be explored in our future work. Other effective
controlmethods [6–10] to deal with largemodel uncertainties
and exogenous disturbanceswill also be explored furtherwith
applications in freeway traffic systems.
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Dynamicmodels of a single-shaft parallel hybrid electric vehicle (HEV) equipped with automatedmechanical transmission (AMT)
were described in different working stages during a gear shifting process without disengaging clutch. Parameters affecting the gear
shifting time, components life, and gear shifting jerk in different transient states during a gear shifting process were deeply analyzed.
The mathematical models considering the detailed synchronizer working process which can explain the gear shifting failure, long
time gear shifting, and frequent synchronizer failure phenomenon in HEV were derived. Dynamic coordinated control strategy
of the engine, motor, and actuators in different transient states considering the detailed working stages of synchronizer in a gear
shifting process of a HEV is for the first time innovatively proposed according to the state of art references. Bench test and real road
test results show that the proposed control strategy can improve the gear shifting quality in all its evaluation indexes significantly.

1. Introduction

Auto gearshift can help to improve the driving comfort,
reduce the friction of clutch and synchronizer, and achieve
a better handling of driving even in a complex environment.
For instance, drivers having little driving experience may
have a bad driving performance or a dangerous accident
due to their unskilled operating in a manual gear shifting
process [1]. Compared with other common automatic shift
technologies, including AT, CVT, and DCT, AMT has lower
cost and higher transmission efficiency. Furthermore, it can
undertake modification on the traditional transmissions.
Therefore, it is used more widely in passenger cars, especially
in the hybrid and pure electric vehicles [2].

The main concern of this paper is a single-shaft parallel
hybrid electric vehicle equipped with AMT. The structure
diagram of the HEV powertrain adopted in this paper is
shown in Figure 1. The system is composed of a diesel engine
(172 kW), a permanent magnetic motor (PMSM 75 kW), a
clutch, and a 5-speed automated mechanical gearbox. To
obtain a smooth, quick, and successful gearshift, the engine,

motor, and actuator of the gearbox should be coordinately,
controlled very well.

Most of the gearshift control strategies in traditional
vehicles equipped with AMT disengage the clutch during
a gear shifting process [3–5], which can introduce long-
time power interruption and friction of the clutch. A few
researchers proposed gearshift control strategies without
disengaging the clutch using active engine control [6, 7],
but the conditions have not been significantly improved due
to the slow response of engine. The introduction of driving
motor on the HEV gives chance to achieve a fast and smooth
gearshift by its active control due to its good response [8–
10].

2. Gear Shifting Process without Disengaging
Clutch in the Hybrid Electric Vehicle

The gear shifting process is shown as in Figure 2. Typical
gear shifting process without disengaging clutch in a parallel
hybrid electric vehicle can be divided into the following

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 985652, 12 pages
http://dx.doi.org/10.1155/2014/985652

http://dx.doi.org/10.1155/2014/985652


2 Mathematical Problems in Engineering

Table 1: Parameters of the researched HEV.
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Figure 1: Configuration of the researched single-shaft parallel hy-
brid electric vehicle.

detailed stages: A unload of the power sources before a
gearshift, B switch to neutral gear, C active speed synchro-
nization by the motor,D mechanical speed synchronization
by the synchronizer, E selection and engagement the new
gears andF torque recovery.

The control in stage A is mainly aimed at reducing the
transmitted torque between the engaged gears close to zero,
which means that the power sources are not output driving
torque and at themeantime are not driven by the output shaft.
Several problems will come out when trying to disengage the
gears transmitting large torque as follows.

(a) It is difficult to disengage the gears or damage the
teeth surface of the gears due to the contact pressure
between the meshing teeth.

(b) It introduces torsional vibration of the output shaft
and affects the comfort of the vehicle due to the step
change of torque.

(c) It increases the difficulty of active synchronization
due to the introduced vibration of output shaft speed.

A gearshift when incompletely unloaded is shown in
Figure 3. The main control difficulty in stage A is that
there is no sensor to measure the transmission torque
between the meshing teeth, so it is easy to unload the power
sources incompletely or excessively and introduce reverse
torque exerted to the input shaft.This phenomenon becomes
more frequent when the driver needs a snap acceleration
or a quick slowdown; it seriously affects the gear shifting
quality.

Stag C is the active speed synchronization period; it
needs to adjust the speed of the input shaft to a desired speed
quickly without overshoot and oscillation; the response of
active speed synchronization driven by the PMSM is much
faster than that driven by engine [11].

In real driving cycles, stages D and E which were con-
duct at the same timewere also crucial to obtain a high quality

gear shifting process. These two stages in HEV are quite
different from those in the traditional vehicles. Rotational
inertia of input components of the gearbox in a gearshift
without disengaging clutch on a HEV is about 30 times larger
than that of those on a traditional vehicle in a gearshift with
disengaging clutch, and there is at least a fivefold friction
torque increase which can be seen from Table 1.

We also found that there were frequent phenomena
of gear engaging failure or long time gear engaging after
synchronization, especially when the road condition changed
or there was a braking. The synchronizer wear was serious
and the obtained gearshift quality was quite poor. To the
best of our knowledge, there is no relative research on this
problem.

3. Evaluation Indexes of Gear Shifting Quality

3.1. The Gear Shifting Time. The gear shifting time of the
single-shaft parallel hybrid electric vehicle includes the
unload time 𝑡unload, time of disengaging the gear 𝑡diseng,
time of active synchronization 𝑡PMSM, time of mechanical
synchronization and gear engaging 𝑡eng, and time of torque
recovery 𝑡recv. The gear shifting time will affect the dynamics
and comfort performance of the HEV.

𝑡shift = 𝑡unload + 𝑡diseng + 𝑡PMSM + 𝑡eng + 𝑡recv. (1)

3.2.The FrictionWork. The friction work can reflect the wear
of the friction pair; it is an important index of durability. The
smaller the friction work is the longer the life of synchronizer
can be obtained.

The friction work 𝐿 is given as

𝐿 = ∫

𝑡𝑠

0

𝑇
𝑠



𝜔
𝑜
−
𝜔
𝑖

𝑖
𝑔



𝑑𝑡, (2)

where 𝑡
𝑠
is the friction time,𝑇

𝑠
is the friction torque,𝜔

𝑖
,𝜔
𝑜
are

the angular speed of input part and output part of the friction
pairs, respectively [12].

3.3.The Gear Shifting Jerk. The jerk is derivative of longitudi-
nal acceleration; it can reflect the oscillation of driving torque
and can be expressed as

𝑗 =
𝑑
2V
𝑑𝑡2

=
𝑟

𝑖
0

𝑑
2
𝜔
𝑜

𝑑𝑡2
, (3)

where 𝑡 is time, V is the vehicle speed, 𝑖
0
is the gear ratio of the

main retarder, and 𝑟 is the radius of the driving wheel.
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Figure 2: Gear shifting process without disengaging clutch of the HEV.

To calculate the jerk equation (3) can be discretized as

𝑗 (𝑛) =
𝑟

𝑖
0

(𝜔
𝑛+2

− 𝜔
𝑛+1
) − (𝜔

𝑛+1
− 𝜔
𝑛
)

Δ𝑡2

=
2𝜋𝑟

60𝑖
0

(𝑛
𝑛+2

− 𝑛
𝑛+1
) − (𝑛

𝑛+1
− 𝑛
𝑛
)

Δ𝑡2
,

(4)

where 𝑛 is the angular speed of the output shaft. The ride
comfort of the vehicle becomes worse than the increase of the
jerk. For the quantitative criteria of jerk, the recommended
value of Germany is |𝑗| ≤ 10m/s3, the one of former Soviet
union is: |𝑗| ≤ 31.36m/s3, and the one of China is |𝑗| ≤
17.64m/s3 [13].

4. Power Transmission System Modeling

The sketch of power transmission system for the researched
single-shaft parallel hybrid electric vehicle is shown in
Figure 4. It should be able to find out the main factors
affecting the gear shifting quality in stages A, D, and E.
The rotational inertia of clutch is equaled to the permanent
magnet synchronous motor due to the fact that there is no
clutch disengaging in the gear shifting process. To analyze
the torsional vibration of shafts between the driving motor
and engine, the torsion between gearbox and final drive
is taken into account. The torsion inside the gearbox is
ignored.

When the system is in a certain gear, the differential equa-
tions are

(𝑇
𝑒
+ 𝑇
𝑚
− 𝑇
𝑒𝑚
− 𝑇
𝑓
) 𝑖
𝑔
− 𝑇
𝑜𝑤
−
𝑇
𝑟

𝑖
𝑜

= (𝐽
𝑒
̇𝜔
𝑒
+ 𝐽
𝑚+𝑐

̇𝜔
𝑚
+ 𝐽
𝑖
̇𝜔
𝑖
) 𝑖
𝑔
+ 𝐽
𝑜
̇𝜔
𝑜
+ 𝐽
𝑤
̇𝜔
𝑤
.

(5)

When the system is in neutral gear, the differential equa-
tions are

𝑇
𝑒
+ 𝑇
𝑚
− 𝑇
𝑒𝑚
− 𝑇
𝑓
= 𝐽
𝑒
̇𝜔
𝑒
+ 𝐽
𝑚+𝑐

̇𝜔
𝑚
+ 𝐽
𝑖
̇𝜔
𝑖
,

−𝑇
𝑜𝑤
−
𝑇
𝑟

𝑖
𝑜

= 𝐽
𝑜
̇𝜔
𝑜
+ 𝐽
𝑤
̇𝜔
𝑤
.

(6)

When the system transforms from neutral gear to a cer-
tain gear, the differential equations are

𝑇
𝑒
+ 𝑇
𝑚
− 𝑇
𝑒𝑚
− 𝑇
𝑓
−
𝑇
𝑠

𝑖
𝑔

= 𝐽
𝑒
̇𝜔
𝑒
+ 𝐽
𝑚+𝑐

̇𝜔
𝑚
+ 𝐽
𝑖
̇𝜔
𝑖
,

𝑇
𝑠
− 𝑇
𝑜V −

𝑇
𝑟

𝑖
𝑜

= 𝐽
𝑜
̇𝜔
𝑜
+ 𝐽
𝑤
̇𝜔
𝑤
,

(7)

where

𝑇
𝑒𝑚
= 𝑘
𝑒𝑚
(𝜃
𝑒
− 𝜃
𝑚
) + 𝑐 (𝜔

𝑒
− 𝜔
𝑚
) ,

𝑇
𝑜V = 𝑘𝑜V (𝜃𝑜 − 𝜃V) + 𝑐 (𝜔𝑜 − 𝜔V) ,

̇𝜃
𝑥
= 𝜔
𝑥
, 𝑥 = (𝑒, 𝑚, 𝑜, V) ,

𝑇
𝑟

𝑟
𝑤

= 𝐺 (𝑓road cos 𝜃 + sin 𝜃) +
𝐶
𝐷
𝐴V2
𝑎

21.15
,

(8)
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Figure 4: Sketch of the power transmission system.

where 𝑇
𝑒
is the output torque of engine, 𝑇

𝑚
is the output

torque of driven motor, 𝑇
𝑒𝑚

is the viscoelastic torque of
the shaft between motor and engine, 𝑇

𝑓
is the rotating

friction torque of transmission input side (including the
friction torque of engine, motor, and input shaft) when the
clutch is engaged, 𝑇

𝑜V is the rotating friction torque between
transmission output shaft and final drive, 𝑇

𝑟
is the resisting

torque of road, 𝑇
𝑠
is the friction torque of synchronizer,

𝑟
𝑤
is the radius of wheel, 𝑖

𝑔
is the transmission ratio, 𝑖

𝑜
is
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Figure 5: Engine MAP.

the final drive ratio, 𝜔
𝑒
is the engine speed, 𝜔

𝑚
is the motor

speed, 𝜔
𝑖
is the transmission input shaft speed, 𝜔

𝑜
is the

transmission output shaft speed, 𝜃
𝑒
is the engine rotation

angle, 𝜃
𝑚

is the motor rotation angle, 𝜃
𝑜
is the rotation

angle of transmission output shaft, 𝜃V is the rotation angle
of final drive, 𝐺 is the vehicle gravity, 𝑓road is the rolling
resistance coefficient, 𝜃 is the road slope angle, 𝐶

𝐷
is the air

resistance coefficient,𝐴 is the face area (m2), V
𝑎
is the relative

velocity (km/h), which represents wind-free velocity, 𝐽
𝑖
is the

equivalent rotational inertia of first-speed gear and second-
speed gear in transmission which is converted to the input
end of synchronizer, 𝐽

𝑒+𝑐
is the equivalent rotational inertia

of engine crankshaft and clutch pressure plate, and 𝐽
𝑚+𝑐

is
the equivalent rotational inertia of motor and driven part of
clutch.

5. Components Modeling

There are two working states of the transmission, in a certain
gear or in neutral gear. When it is in neutral gear, 𝑇

𝑠
= 0.

This paper focuses on the research of the switching process
between states 1 and 2. It involves the dynamic process of each
component.

5.1. Engine Modeling. The engine torque 𝑇
𝑒
can be obtained

from the engine MAP as follows:

𝑇
𝑒
= 𝑓 (𝛼

𝑒
, 𝑛
𝑒
) , (9)

where 𝛼
𝑒
is the engine throttle opening and 𝑛

𝑒
is the engine

speed. The engine MAP is shown in Figure 5.

5.2. PMSM Modeling. The transient value of three-phase
voltage and current of the motor can be ignored because
the time constant of motor torque is generally very small,
so the driving motor model can be simplified. Considering
the demand torque 𝑇

𝑚,req, the maximum allowable drive and
brake torque of motor with current rotating speed 𝑇

𝑚,dis and
𝑇
𝑚,chg, and the maximum allowable torque of motor when
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the power battery discharges and recharges 𝑇
𝑏,dis and 𝑇𝑏,chg,

the motor torque can be represented as

𝑇
𝑚
= {

max (𝑇
𝑚,req, 𝑇𝑚,dis, 𝑇𝑏,dis) when 𝑇

𝑚,req > 0,

max (𝑇
𝑚,req, 𝑇𝑚,chg, 𝑇𝑏,chg) when 𝑇

𝑚,req < 0.

(10)

The motor MAP is shown in Figure 6.

5.3. Gear Shifting Actuator Modeling. The gear shifting actu-
ator is driven by brushless DC motor (BLDCM). In a gear
shifting process, parameters including the displacement of
actuator and gear shifting force should be under control. The
displacement should be tuned to a certain position rapidly
and accurately. The output force of the BLDCM also should
be accurately controlled.

The mathematical model and torque characteristics of
BLDCM can be analyzed with the mode of 3-phase 6-state.
At any moment, only two phases work and the remaining
one shuts down. The motor adopts Y connection with non-
salient pole. Based on the physical structure, we assume that
the three phases of stator are completely symmetrical, the air-
gapmagnetic field produced by rotor is square wave, the back
electromotive force of 3-phase winding is trapezoidal wave,
the armature reaction of stator winding and eddy current loss
are ignored, and the magnetic circuit is not saturated. So the
balance equation of the 3-phase stator voltage is given as

𝑢
𝑘
=𝑅
𝑠
𝑖
𝑘
+ 𝑒
𝑘
+ (𝐿
𝑠
− 𝐿
𝑚
)
𝑑𝑖
𝑘

𝑑𝑡
, 𝑘 = 𝑎, 𝑏, 𝑐. (11)

Leaving out the mechanical loss of rotor and assuming
the electromagnetic power can totally translate to the kinetic
energy of rotor, the electromagnetic torque of motor is

𝑇eg =
(𝑒
𝑎
𝑖
𝑎
+ 𝑒
𝑏
𝑖
𝑏
+ 𝑒
𝑐
𝑖
𝑐
)

𝜔mech
. (12)

The kinetic equation of BLDCM is

𝑇eg = 𝐽
𝑑𝜔
𝑚

𝑑𝑡
+ 𝑇
𝐿
+ 𝐵𝜔mech. (13)

The speed of BLDCM 𝑛 can be represented as

𝑛 =
60𝜔mech
2𝜋

. (14)

The axial force acting on shift sleeve𝐹
𝑥
can be represented

as

𝐹
𝑥
= 𝑇eg𝑖𝑚𝜂𝑚, (15)

where 𝑖
𝑎
, 𝑖
𝑏
, 𝑖
𝑐
are phase currents, 𝑢

𝑎
, 𝑢
𝑏
, 𝑢
𝑐
are phase voltages,

𝑅
𝑠
is the phase resistance of stator, 𝑒

𝑎
, 𝑒
𝑏
, 𝑒
𝑐
are phase

potential, 𝐿
𝑠
is the self-inductance of stator phase, 𝐿

𝑚
is the

mutual-inductor of stator phases, 𝑇
𝐿
is the load torque of

motor,𝐵 is the damping coefficient,𝜔mech is the angular speed
of rotor, 𝐽 is the rotational inertia of motor, 𝑖

𝑚
is the speed

ratio between motor and sleeve operating mechanism, and
𝜂
𝑚

is the mechanical efficiency between motor and sleeve
operating mechanism.

5.4. Synchronizer Modeling. Synchronizer is one of the most
important parts of transmission. The working process of
synchronizer directly affects the gear shifting quality [14].
To derive the optimal coordinated control strategy of each
part, the operating process of synchronizer is divided into five
stages.

5.4.1. First Free Fly. This stage actually includes two pro-
cesses. First, the sleeve moves forward axially without resis-
tance and pushes the synchro ring to the target gear. The
resistance axial force is very small in this stage. Second, the
force transfers from sleeve to the sliders, then to the cone
surfaces of synchro ring. The spring of slider here is used to
keep the balance. When the force transferred increases to a
certain extent, the limiting mechanism will lose its balance.
So the sliders are pushed into grooves of the synchro hub
by the radial pressure, and the sleeve can continue sliding
forward. Then the spline teeth of sleeve is contacted to the
spline teeth of synchro ring, and the axial force transfers from
sleeve to the synchro ring.The schematic diagramof this stage
is shown as Figure 7.

The kinetic equation is

𝐹
𝑥
− 𝐹
𝑓
− 𝐹
𝑟
= 𝑚
𝑠
̇𝑎
𝑠
, (16)

where𝑚
𝑠
is the mass of sleeve, ̇𝑎

𝑠
is the acceleration of sleeve,

𝐹
𝑓
is the sliding resistance when sleeve moves, and 𝐹

𝑟
is the

force acted on sleeve from limiting mechanism.

5.4.2. Angular Velocity Synchronization. The sleeve stops
sliding, and its axial velocity becomes zero. The friction
between mesh teeth of sleeve and mesh teeth of synchro ring
starts to increase while the kinetic energy of sleeve and the
target gear begin to decrease. The angular velocity difference
between them decreases gradually to zero. The schematic
diagram of this stage is shown in Figure 8.
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In the sleeve deceleration stage one has

𝐹
𝑗
𝑡 = 𝑚

𝑠
V
𝑠
, (17)

where 𝐹
𝑗
is the impact force acted on meshing teeth of

synchro ring from sleeve, 𝑡 is the sleeve deceleration time, and
V
𝑠
is the axial velocity of sleeve under the shifting force.
In the sliding friction stage one has

𝑇
𝑠
= 𝐹
𝑥
∗ 𝑓 ∗

𝑟

sin𝛼
,

𝑃
𝑠
= 𝑇
𝑠



𝜔
𝑜
−
𝜔
𝑖

𝑖
𝑔



,

(18)

where 𝐹
𝑥
is the axial force of sleeve, 𝑓 is the friction

coefficient, 𝑟 is the mean effective cone radius, 𝛼 is half of the
cone angle, and 𝑃

𝑠
is the friction power.

5.4.3. Turning the Synchro Ring. When the two parts of syn-
chronizer have been synchronized, the driving part rotates
under the action of the sleeve teeth (the driven part connects
rigidly to the vehicle body, so it cannot be turned). A low
angular velocity differential between sleeve and synchro ring
occurs with the turning of synchro ring. Then the synchro-
nization is broken up and the locking state of synchro ring

Mesh tooth of
synchro ring

Mesh tooth
of sleeve

Figure 9: Turning the synchro ring.

disappears. The schematic diagram of this stage is shown in
Figure 9.

Before the turning one has

𝜔
𝑟0
= 𝜔
𝑜
. (19)

During the turning process one has

𝐹
𝑥

1 − 𝜇 tan𝛽
𝜇 + tan𝛽

𝑟
𝑠
− 𝑇loss − 𝑇𝑖𝑖𝑔 − 𝑇𝑓 = 𝐽𝑟 ̇𝜔𝑟, (20)

𝐽
𝑟
= 𝐽
𝑒+𝑐
+ 𝐽
𝑚+𝑐

+ 𝐽
𝑖
, (21)

𝜔
𝑟1
= 𝜔
𝑟0
+ ̇𝜔
𝑟
𝑡, (22)

𝜔
𝑟1

̸=𝜔
𝑜
, (23)

where 𝜔
𝑟0
is the initial angular speed of synchronizer driving

part before rotation, 𝜔
𝑜
is the speed of output shaft, 𝜔

𝑟1
is the

input speed after rotation, 𝛽 is the angle of roof shape at the
interlock gearing, 𝜇 is the friction coefficient at roof-shaped
edge, 𝑟

𝑠
is the mean effective radius on interlock gearing,

𝑇loss is the moment of losses, 𝑇
𝑖
is the input torque, 𝐽

𝑟
is the

equivalent inertia to the synchronizer input end, and ̇𝜔
𝑟
is the

angular acceleration of synchronizer input part.

5.4.4. Turning the Target Gear. This stage starts from the
separation of synchro ring and cone surface of the target gear.
The driving part of the synchronizer including the synchro
ring rotates under the action of the sleeve teeth. It ends at
the beginning of eventual slide.The schematic diagramof this
stage is shown in Figure 10.

During this stage one has

𝐹
𝑥

1 − 𝜇 tan𝛽
𝜇 + tan𝛽

𝑟
𝑠
− 𝑇loss − 𝑇𝑖𝑖𝑔 − 𝑇𝑓 = (𝐽𝑟 + 𝐽𝑠) ̇𝜔

𝑟
,

𝜔
𝑟2
= 𝜔
𝑟1
+ ̇𝜔
𝑟
𝑡,

(24)

where 𝐽
𝑠
is the rotational inertia of synchro ring.

5.4.5. Final Free Fly. The sleeve engages with the target
gear under the action of the gear shifting force. The kinetic
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equation is similar to the first stage. The schematic diagram
of this stage is shown in Figure 11. Consider

𝐹
𝑥
− 𝐹
𝑓
− 𝐹
𝑟
= 𝑚
𝑠
̇𝑎
𝑠
,

𝐹
𝑓
=
𝜇
𝑔
𝑇
𝑖
𝑖
𝑔

𝑟
𝑠

,

(25)

where 𝜇
𝑔
is the axial dynamic friction coefficient between

sleeve and spline teeth of constant mesh gear and 𝑇
𝑖
is

the transferred torque. We can get the conclusion from the
derived kinetic equations that in the gear shifting process
without disengaging clutch for a parallel hybrid vehicle
equipped with AMT, the inertia of input shaft, the speed
control precision of driving motor, and the input torque
of transmission can directly affect the synchronization time
and friction work. The control of shifting force is also very
important. An ideal control of each component in each stage
can improve the quality of gear shifting and increase the life
of synchronizer.

6. Coordinated Control of Each Component in
Each Stage of a Gear Shifting Process

6.1. Switch to Neutral Gear. The necessary condition of
switching to neutral gear is

𝐹
𝑥
> 𝐹
𝑓
=
𝜇
𝑔
𝑇
𝑖
𝑖
𝑔

𝑟
𝑠

, (26)

where the input torque of the power sources is

𝑇
𝑖
= 𝑇
𝑒
+ 𝑇
𝑚
− 𝑇
𝑓
− 𝑇
𝑒𝑚
. (27)

Obviously, the reasonable control of gear shifting force
and the input torque is the precondition to disengage the
gears smoothly. And the basic rules are to increase the gear
shifting force 𝐹

𝑥
and decrease the input torque 𝑇

𝑖
.

But the force to disengage the gears cannot increase
infinitely, and the exceeding force might damage the surface
of meshing teeth; therefore, it should be controlled within the
stipulated limit.The key to disengage the gears smoothly is to
control the input torque close to zero. In order to realize this
control, wemeasured and got the input torque characteristics
curve of the power sources as well as the friction torque
characteristics curve of the driving part, then established the
actual net output of torque model.

In this paper, we control the engine torque to zero and the
friction torque of the input part of the system is compensated
by the electrical motor to achieve a zero net output torque of
the power system; the control law is represented as

𝑇
𝑖
= 𝑓 (𝛼

𝑒
, 𝑇
𝑚
, 𝜔
𝑖
) . (28)

Another problem is the coordinated torque control of the
two power sources during the unloading phase. The control
parameters during the unloading phase involved the engine
throttle opening𝛼

𝑒
andmotor torque𝑇

𝑚
. Firstly, the torque𝑇

𝑖

should be adjusted linearly instead of step change. Secondly,
the gear shifting time should be as short as possible. Finally,
the input torque 𝑇

𝑖
should be controlled close to zero.

The engine throttle opening is controlled linearly to zero
without step change. The step change might cause the shaft
torsional vibration between the engine and the drivingmotor;
it also might influence the driving motor.

Bench test showed that if the unloading time of the
engine is 0.8 s when the initial throttle opening is 100%,
the shaft torsional vibration between the engine and motor
can be negligible. When the hybrid power system starts to
unload linearly from the maximum torque 1200Nm and the
unload speed is 15Nm/10ms, the shaft torsional vibration of
the transmission system can be negligible as well. So 0.8s
is the maximum unloading time. The PMSM can respond
much faster than engine; it can be controlled to compensate
the resistance torque and adjust the input torque 𝑇

𝑖
to zero

linearly during the process of the engine unloading.
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Figure 12: The diagram block of gearshift BLDCM controller.

The target throttle opening during the phase of engine
unloading is

𝛼
𝑖+1
= 𝛼
𝑖
− 1 (𝑖min = 1, 𝑖max = 𝛼𝑒init)

if (𝛼
𝑖
< 1) 𝛼

𝑖
= 0,

(29)

where 𝛼
𝑖
is the throttle opening percentage of the CAN

protocol, its physical values range from 0 to 100, and its
resolution is 0.1 and 𝑖max is the total unload steps equal to
the initial physical values of 𝛼

𝑖
before unloading. The time

interval between 𝛼
𝑖+1

and 𝛼
𝑖
is 10ms, which is transmitted to

the engine control unit (ECU) by transmission control unit
(TCU) via CAN bus.

Without considering the effect of temperature, the rela-
tionship between friction torque and rotation speed of input
shaft when the clutch is engaged can be given as

𝑇
𝑓
= 𝑓 (𝑛

𝑖
) . (30)

The target control torque of the motor is

𝑇
𝑚
(𝑖 + 1) = 𝑇

𝑚init
+
(𝑇
𝑓
− 𝑇
𝑚init

)

𝑖max
, (31)

where 𝑖max is the total unload step and its value is equal to the
initial physical value of 𝛼

𝑖
before unloading.

When 𝑇
𝑖
∈ (−15Nm, 15Nm), the BLDCM can start

to drive the gearshift actuator to disengage the gears. To
get an accurate control position of the gearshift actuator
and a smooth gearshift, the displacement of the actuator is
chosen as feedback of the BLDCM control. The closed loop
proportional-derivative (PD) control is chosen as the control
strategy of gear selecting and shifting motor; the relationship
between input 𝑒(𝑡) and output𝑢(𝑡) after discretization is given
as

𝑢 (𝑘) = 𝐾
𝑝
𝑒 (𝑘) + 𝐾

𝑑 [𝑒 (𝑘) − 𝑒 (𝑘 − 1)] , (32)

where𝐾
𝑑
,𝐾
𝑝
are the differential coefficient and proportional

coefficient of the controller, respectively; 𝑒(𝑘) is the deviation
of current detecting position and the desired position; 𝑢(𝑘) is
the output value of the controller after 𝑘 times sampling and
calculating. The diagram block gearshift BLDCM controller
is shown in Figure 12.

6.2. Switch to a Certain Gear

6.2.1. Active Speed Synchronous Control Driving by PMSM. In
this stage, the gearbox is in neutral gear, the driving motor
is controlled in speed control mode, and its speed should be
adjusted to

𝑛
𝑚aim

= 𝑛
𝑜
⋅ 𝑖
𝑔
. (33)

When 𝑛
𝑚
∈ (𝑛
𝑚aim

− 20, 𝑛
𝑚aim

+ 20), the system starts
to execute the next action. In addition, to reduce the entire
gear shifting time further, the gear selecting actuator can
be simultaneously controlled during the process of speed
adjusting.

6.2.2. Mechanical Synchronization and Gear Engaging Process.
ThePMSM should be controlled to follow the speed of output
shaft, after the active speed synchronous control, the gearshift
actuator starts to engage the target gears.

(1) First Free Fly. This stage should be finished quickly and
need a larger gear shifting force, but the force cannot be
infinitely increased because excessive shift force may cause
large impact force 𝐹

𝑗
, and reduce the life of synchro ring and

sleeve.

(2) Angular Velocity Synchronization. In this stage, the
BLDCM torque is directly controlled to an allowedmaximum
value to finish the mechanical synchronization process as
soon as possible.The drivingmotor is still controlled in speed
mode following the speed of output shaft in this stage, which
could eliminate the rotation speed difference caused by the
road condition or braking action timely; it can help to reduce
the sliding friction work and the synchronization time.

(3)Turning the Synchro Ring. The control of this phase is the
key to engage the gears successfully and quickly; we can
know from (20) that to turn the synchro ring and unlock
the synchronizer, the gearshift torque should overcome the
torque loss 𝑇loss, the input torque of power sources 𝑇𝑖𝑖𝑔, and
the friction torque of transmission input side 𝑇

𝑓
.

Real road test also confirmed that it was difficult to
overcome the resistance torque 𝑇

𝑖
(approximately 100Nm)

depending on the gearshift torque which is limited using a
fixed threshold. The target gears cannot be engaged for quite
a long time after finishing the rotation speed synchronization
process. However, it is obvious that the input torque of power
sources 𝑇

𝑖
𝑖
𝑔
is also controllable in this stage. The engine is

working in the idle state now, which can be considered as the
load of transmission system. The driving motor is in control
phase of following the speed of output shaft. Based on this
point of view we proposed a control method called “actively
unlock the synchronizer control” after finishing the speed
synchronization.

The specific control method is to control the driving
motor has a jagged speed fluctuation ranging from−10 rpm to
10 rpmafter themechanical synchronization,which canmake
the sleeve teeth wriggle between teeth of synchro ring, so the
synchro ring can be turned with the help of active control of
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PMSM and gear shifting force. The basic principle is shown
in Figure 13.

(4) Turning the Target Gear. This stage is almost the same as
the last one except that the synchro ring is unlocked. The
actual wriggled components are still in the sleeve side; the
control algorithm can be learned from the previous stage.

(5) Final Free Fly. In this stage, the gear shift actuator is
controlled to the desired position and the engaging process
is finished.

6.3. Torque Recovering. After a successful gear shifting, the
torque of the engine and driving motor should be controlled
to the desired value of the driver separately without large
torsional vibration and long time power interrupt. The
control algorithm is shown in Figure 14.

7. Bench Test and Road Test

The block diagram of the overall gear shifting control algo-
rithm for a single-shaft parallel HEV equipped with AMT
without disengaging clutch is shown in Figure 15.

In the bench the eddy current dynamometer works in
the load following mode that can simulate the actual driving
test cycle conditions. The monitor system of dynamometer
can display the output torque of power sources in real time,
and it can detect the jerk of output shaft when engagement
or disengagement happens. The main purpose of the bench
test is to verify and modify the control strategy. Figure 16 is a
picture of the test bench.

After plenty of bench test, 1000 kilometers real road test
with a real HEVwas conducted. Figure 17 shows the test HEV.

Figure 18 represents some exemplary curves of gear
shifting process in road test. when stage A is the unload
stage, the engine is unloading exactly tomaintain its idle state,
and the driving motor is unloading to the torque that can
just overcome the friction torque of the power input side; this
stage costs about 0.3 s. Then, the gears are disengaged within
0.2 s. In stage C, the driving motor is controlled in speed
mode to finish the active synchronization process which costs
about 0.4 s. In stage D, the target gears are successfully and
quickly engagedwith the small speed oscillation driven by the
motor after the mechanical synchronization; this stage costs
about 0.2 s. The whole gear shifting process costs about 1 s.

Figure 19 shows that the torque of engine and driving
motor transits to the driver’s desired torque smoothly when
the demand torque is recovering after a gearshift. And this
stage costs about 0.5 s.

8. Conclusions

In this paper, mathematical models of every component
for a HEV are described, derivation and analysis of the
gear shifting dynamics model in every working process of
the synchronizer is also given. Innovative control strategies
including dynamic coordinated control in powertrain unload
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Figure 13: The algorithm to unlock the synchronizer actively.
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Table 2: The statistical data of evaluation indexes in road test.

Stage 1 2 3 1 2 3 1 2 3
Input shaft speed (r/min) 1560 — 907 1049 — 799 1675 — 1279
Maximum jerk (m/s3) 11.5 — 5 12.3 — 5.4 9 — 5.4
Stage time (ms) 329 488 549 368 414 560 366 480 569
Total time (ms) 1353 1321 1412

Y

Y

N

N

N

N

N

Y

Y

N

Y

Y

Start

Shift
schedule

Gearshift?

Unload
control

|Ti| < 10

Disengage the
gears

Active
synchronization

|ReqNm − Nm| < 10

|ReqNm − Nm| < 10

Engage the
new gears

Engage?

Engage?

Synchro ring
unlock control

Torque recovery
control

Gearshift fnish

Figure 15: Gear shifting control algorithm for a single-shaft parallel
HEW without disengaging clutch.

Figure 16: The test bench.

Figure 17: The test HEV.

process and active unlock control of the synchronizer on a
HEV are proposed.

By the dynamic coordinated control of the engine, motor
and actuators in unloading process, the net input torque
of the gearbox can be controlled more closely to zero, and
it is easy to disengage the gears smoothly and quickly. By
the dynamic coordinated control of the engine, motor, and
actuators in every working stage of the synchronizer during
a gear shifting process, the gears can be controlled to engage
more quickly and successfully with less friction.

According to the statistical data of the evaluation indexes
in Table 2, the whole gear shifting time is controlled within
1.5 s. And the time consuming for stage 1 (disengaging the
gears) and stage 2 (recovering the torque) takes about 50%
of the whole gear shifting time, which is determined by the
gearshift points and the driver’s demand of torque.The power
interrupt time is controlled within 0.5 s and the dynamic
property of the HEV is ensured. The jerk of gear shifting
without disengaging clutch is controlled within 15m/s3 and
the ride comfort of the HEV is ensured.
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Figure 18: Experiment curves of a gear shifting process.

The proposed gear shifting control strategy can also be
applied into other kinds of pure electric or hybrid electric
vehicles with similar gear box to significantly improve the
gear shifting quality in all its evaluation indexes. Control
strategy using more advanced control technologies [15, 16]
will be proposed to improve the gear shifting quality further
in the near future.
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A two-layer robust control scheme is proposed to get a better response ability for emergency maneuvers of helicopter. Note that the
power used in ascending flight is the main coupling between helicopter and its turboshaft engines; therefore vertical flight control
is separated from conventional helicopter control loops and combined with fuel flow and turbine bleeding to new control loops
denoted as an inner layer, whereas the mission level flight control is as the out layer. A conclusion in global asymptotically tracking
for devising this new scheme is firstly derived from aGeneralizedGronwall-Bellman approach.Due to this integrated designing, not
only is the helicopter better controlled, but alsomuch better power rapid tracking is realized for engines. Simulations are conducted
to validate the new scheme in emergent ascending and descending flights, and the results illustrate that the response time of the
closed-loop system is dramatically reduced when compared to the traditional one. Moreover, the presented system also has better
dynamic performance under inferences.

1. Introduction

Since modern aircrafts are highly coupled with their engines,
the propulsion system has to be integrated with the flight
control system. With the recent development of computer
control system, it is a feasible deal with the control problem
on modern aircrafts such as STOVL (short taking-off and
vertical landing) vehicles [1–3] and helicopters by integrating
flight and propulsion systems. Recently, the concept of IFPC
(Integrated Flight and Propulsion Control design) has drawn
tremendously attention by NASA (National Aeronautics and
Space Administration) Glenn research center in developing
an autonomous flight/prolusion system [4, 5]. In helicopter
design, the coupling between controllability and propulsion
system is mainly from torque variations, which is predomi-
nately resulted from the direct mechanical linkages between
helicopter and its onboard engine. If the propulsion system
cannot rapidly counteract these torque variations from the
helicopter, the considerably varying rotor speed will have
a dramatical effect on the responsiveness of helicopters

[6–10]. Such circumstance requires a carefully consideration
in control system design.

The IFPC problem is an extremely extensive concept in
both conventional fixed wing aircrafts and helicopters. The
present research will specifically focus on emergency state
control. Supported by the famous projects of IHPTET (Inte-
grated High Performance Turbine Engine Technology) and
VAATE (Versatile Affordable Advanced Turbine Engines),
numerous researches, which focused on fast response control
under some emergent conditions, had been initialed by
NASA. For emergent conditions such as post-stall flight
and forced landing caused by control surfaces failure, the
effective control variable (thrust or torque) is individually
supplied by engines [11–13]. In order to guarantee a safe
landing or correcting angular regulation for aircrafts, the
engines have to be operated in an unusual way to enlarge the
thrust and response rate. Helicopters and their engines can
also encounter the similar conditions, which requires a fast
response ability [14, 15]. In 1990s, the Advanced Propulsion
System Engine Control (APSEC) project [16] applied a novel
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control method by using fuel flow and compressor guided
vanes to regulate the engine’s output power, which resulted
in a considerable improvement in the agility of helicopters.
In the earlier years of this century, for enhancing static and
dynamic performance of the integrated system, American
armies led an integrated helicopter/engine control program
in which a Sikorsky Black Hawk helicopter was selected as
the platform [6]. In this program, on the basis of compressor
guided vanes regulation with a look-up table, it also showed
more feasible to gain a faster response capability in combat
modes. Certainly, these air fluid control based approaches
have small negative influence on the compressor stall margin.
Otherwise, another way by turbine bleeding can also be
utilized to devise a fast response control reported in [14],
in which an integrated control scheme, implemented by fuel
flow, turbine bleeding, and rotor control angles, is developed
by aid of LQR (Linear Quadratic Regulator) method. How-
ever, such method described does not provide how to realize
asymptotically tracking and has not been fully validated over
the entire envelop.

In this paper a novel two-layer method is proposed for
helicopter’s emergent control, so as to promote performance
in maneuver ability. This method is an improved one from
that reported in [17], where only bounded stability for a
Generalized Gronwall-Bellman Lemma approach is investi-
gated for aero engines. Whereas, a conclusion concerning
asymptotically tracking is further proposed in our paper.
Meanwhile, an UH-60 helicopter with an onboard T700
engine model is employed as the simulation platform. The
proposed strategy is verified in terms of robustness in the
whole envelope.

The paper is organized as follows. Section 2 discusses the
simulation platform of an integrated helicopter and engine
system, which is needed in verifying the proposed control

scheme. In Section 3, the design method is introduced for
emergency flight state. Finally, Section 4 demonstrates the
validations by two cases for the new two-layer emergency
state control law. For convenience, variables and their anno-
tation are listed in Nomenclature section.

2. Simulation Platform

In order to verify the proposed control law, a detailed
helicopter/engines system model is required. On the basis of
the data and modeling approaches provided and validated
in [18–20], an UH-60/T700 system model was built, and for
more details about this model one can refer to [21, 22]. The
model consists of three major parts: main rotor, air frame,
and engine models, as can be seen in Figure 1. The earth,
airframe and rotor hub fixed coordinate systems are denoted
as E-Frame, A-Frame, and H-Frame, respectively.

2.1. Main Rotor Model. The main rotor of UH-60 helicopter
is a single rotor type and can be modelled throughout blade
element theory.The relative lift and drag coefficients for blade
segments are provided with verified wind tunnel test data
[19, 20]. Through this model, the flapping and lag dynamics,
which are the main motions of the main rotor, can be
simulated accurately. Furthermore, all themoment and thrust
of the rotor, which are responsible for helicoptermotions, can
also be instantaneously calculated.

2.2. Airframe Model. The airframe is composed by fuselage,
horizontal tail, vertical tail, and tail rotor (see Figure 1).
The fuselage is modeled on the basis of wind tunnel test
data in wide ranges for high angles of attack and sideslip.
The horizontal and vertical tail, are treated as aerodynamic
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disks with lift and drag coefficients from look-up tables as
a function of attack angles. And the tail rotor model is
numerically represented by linearized Bailey theory. For the
common case where only the 6 rigid body degrees of freedom

are taken into account, the dynamics of helicopter can be
expressed as

Ẋ
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= 𝑓 (X

𝐻
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T = [
[

cos𝜓 cos 𝜃 cos𝜓 sin 𝜃 sin𝜙 − sin𝜓 cos𝜙 cos𝜓 sin 𝜃 cos𝜙 + sin𝜓 sin𝜙
sin𝜓 cos 𝜃 sin𝜓 sin 𝜃 sin𝜙 + cos𝜓 cos𝜙 sin𝜓 sin 𝜃 cos𝜙 − cos𝜓 sin𝜙
− sin 𝜃 cos 𝜃 sin𝜙 cos 𝜃 cos𝜙

]

]

,

(2)

where X
𝐻

= [𝑉𝑥 𝑉
𝑦
𝑉
𝑧
𝑝 𝑞 𝑟 𝜑 𝜃 𝜓]

𝑇, U
𝐻

=

[𝜃0 𝐴1𝑐
𝐵
1𝑠
𝜃
𝑡]
𝑇 are defined as state and control vector

accordingly. Obviously, the dynamic system (1) can be tem-
porally solved by some integralmethods such as Runge-Kutta
algorithm. Key parameters for airframe dynamics are given
in Table 1.

2.3. Engine Model. T700 engines can supply power to the
helicopter for various flights. The engine (see Figure 2) is
a two-shaft type consisting of axis compressor, centrifugal
compressor, combustion chamber, gas turbine, power tur-
bine, and exhaust nozzle. The engine dynamics are described

Table 1: Modeling parameters for airframe motion.

Parameter Value
𝐼
𝑋

6316.8 kgm2

𝐼
𝑌

52216.0 kgm2

𝐼
𝑍

49889.0 kgm2

𝐼
𝑋𝑍

2551.7 kgm2

𝐺 73961.0N

through component level method addressed in [23]. The
dynamics of the engine can be formulated as

Ẋ
𝐸
= 𝑓 (X,U

𝐸
) , (3)



4 Mathematical Problems in Engineering

Compressor
Combustion

chamber
Gas

turbine
Power
turbine

1 2 3 4 44 45 5

Power
output shaft

0

NozzleInlet

Np

Qp

Figure 2: T700 engine structure.

where the detailed expression is

𝑁
𝑝
=
(𝜋/30)

2
(𝑃𝑊out − 𝑃𝑊𝑝

)

(𝐽
𝑝
⋅ 𝑁

𝑝
)

,

𝑁
𝑔
=
(𝜋/30)

2
(𝑃𝑊

𝑔
− 𝑃𝑊

𝑐
)

(𝐽
𝑔
⋅ 𝑁

𝑔
)

,

̇𝑃
4
=

𝑘
4
𝑅𝑇

4

𝑉
𝑔
(𝑚

𝑎3
+𝑊

𝑓
− 𝑚

𝑔4
)
,

̇𝑃
45
=

𝑘
45
𝑅𝑇

45

𝑉
𝑝
(𝑚

𝑔4
− 𝑚

𝑔45
−𝑊

𝑔out
)
,

̇𝑃
5
=

𝑘
5
𝑅𝑇

5

𝑉nz (𝑚𝑔45
− 𝑚

𝑔5
)
,

(4)

where X
𝐸
= [𝑁𝑔

𝑁
𝑝
𝑃
4
𝑃
45
𝑃
5]
𝑇, U

𝐸
= [𝜃0 𝑊𝑓

𝑊
𝑔out]

𝑇

are defined as state and control vector of engine, respectively.
R represents gas constant scalar, and 𝑘

4
, 𝑘

45
, and 𝑘

5
are

denoted as relative adiabatic exponents in different position
along the engine flow path. Key modeling parameters for
engine dynamics are presented in Table 2.

3. Design for Fast Response Control Law in
Emergence Flight

For emergent flight normally with a low forward velocity,
in which most of power demand comes from vertical flight
channel, thus it is possible and necessary to have the vertical
flight integrated with engine control loop. In the inner layer
of our novel scheme, it can be expressed as an integrated

Table 2: Modeling parameters for engine dynamics.

Parameter Value
𝐽
𝑝

0.064 kgm2

𝐽
𝑔

0.085 kgm2

Inner layer
controller

Out layer
controller

Vxcmd
Vycmd
𝜓cmd

−

− A1c B1s 𝜃t

𝜃0
Npcmd
Ngcmd

Wf Wgout

Vz

QH
NR

Np

Ng

Vz

Vx

Vy

𝜓

Vzcmd Turboshaft
engine model

Helicopter
model

Figure 3: Structure of the two-layer control for integrated heli-
copter/engine system.

helicopter vertical flight/turboshaft controller, which is a 3-3
input and output structure, depicted in Figure 3. The control
laws for other flight channels, like forward, sideward, and
turn flight, are integrated as out layer control loop.

Obviously, the new scheme is devised differently from
the traditional way in which control systems for engines and
helicopter are often designed separately. Aiming atweakening
the complex dynamic couplings the dynamics of engines
and helicopter are taken into account as an integrated one,
guaranteeing more feasible and applicable controllers.
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Note that this new control must embody some necessary
aspects in a maneuver flight as (1) the power demand of
flight reflected by vertical velocity; (2) stability for power
transmission guaranteed by keeping power turbine speed
constant; (3) fast regulation of gas turbine speed to get a
rapid power supply of engines. Considering a much better
robustness and adaptive capability for the whole envelope,
a novel control law for nonlinear plants is proposed and
the followed structure is chosen to design the fast response
controller for the integrated helicopter and engine system
(see Figure 3).

3.1. Principle of the Proposed Multivariable Robust Control
Law. The followed formulations can be employed to describe
a nonlinear dynamic model for a helicopter or its engine
working in a wider envelop as

̇x = Ax + G
1
(x) + B1u + B2w,

y = Cx + G
2
(x) +D1u +D11w,

(5)

where x, y, u, and w are denoted as the state, output, control,
and disturbance vectors, respectively, and A, B

1
, C, D

1
,

B
2
, and D

11
are the system matrices relatively. G

1
(x) and

G
2
(x) are defined as nonlinear error functions between the

nonlinear plant and its simplified linear one.
The control aim is that system output y is capable of

asymptotically tracking the command signal cmd such that

lim
t→∞

‖e‖ = lim
t→∞

cmd − y = 0, (6)

where e = cmd − y is defined as output error.
Furthermore, if using x = [

x
∫
𝑡

0
e𝑑𝜏 ] as an argument vector

and providing that cmd is a set point command, system (5) is
reformulated as

̇x = Ax + G
1
(x) + B1u + B2w + B3w̃,

z1 = y = C1x + G
2
(x) +D1u +D11w,

z2 = C2x +D2u,

(7)

where G
1
(x) = [ G1(x)

−G2(x) ], G2
(x) = G

2
(x), u = u, w = w, y = y,

A = [ A 0
−C 0 ], B1 = [

B1
−D1

], B2 = [
B2
−D11

],C1 = [C 0],D1 = D1,
andD11 = D11.

Assuming that a feedback control law is given as u =

Kx, a theorem for convergent performance about tracking
problems can be gotten as follows.

Theorem 1. If the following conditions are held as

(A) there exists an integer 𝑞 ≥ 1 such that ‖G
1
(x)‖ =

‖ [
G1(x)
G2(x) ] ‖ ≤ 𝛾‖x‖

𝑞,

(B) all the eigenvalues of A + B
1
K
1
have a strictly negative

real part,
(C) the initial state x

0
satisfies ‖x

0
‖
𝑞−1

< |𝜆|/𝛾𝑀
𝑞, where

the constants 𝑀 > 0 and 𝜆 < 0 are determined by
‖𝑒

A+BK
‖ < 𝑀𝑒

𝜆𝑡, ∀𝑡 > 0.

Then, a globally convergent tracking of limt→∞
‖cmd − y‖ =

limt→∞
‖e‖ = 0 will be realized.

Proof. Based on the Generalized Gronwall-Bellman lemma
from [17], if the above three conditions (A)–(C) were all held
for system (7), the state x = [

x
∫
𝑡

0
e𝑑𝜏 ] is bounded by

‖x‖ <
𝑀
𝑥0
 𝑒

𝜆𝑡

(1 − 𝛾𝑀𝑞𝑥0

𝑞−1

/ |𝜆|)
1/(𝑞−1)

. (8)

Fortunately for general engines and helicopters [17],
condition (A) is held such that there exists an integer 𝑞 ≥ 1
such that ‖G

1
(x)‖ = ‖ [ G1(x)

G2(x) ] ‖ ≤ 𝛾‖x‖
𝑞.

Condition (B) can be satisfied by some feedback control
designmethods; here Lemma 2 in the following is introduced
to meet this condition.

For helicopters and engines, due to some physical con-
straints as speed up and burn out limits condition (C) also
can be easily checked such that ‖x

0
‖
𝑞−1

< |𝜆|/𝛾𝑀
𝑞.

Hence ‖ ∫𝑡
0
e𝑑𝜏‖ < +∞, we also know a fact that 𝑒 ∈ 𝐿

2

from Lemma 2. Based on the famous Barbalat’s Lemma [24]
a finite limit can be gotten as

lim
t→∞

‖e‖ = lim
t→∞

cmd − y = 0. (9)

As discussed in Theorem 1, the following lemma is used
tomeet condition (3) and get the proper feedback control law.

Thus, consider the linear dynamic part for system (5) as

̇x = Ax + B1u + B2w,

y = Cx +D1u +D11w,
(10)

̇x = Ax + B1u + B2w,

z1 = y = C1x +D1u +D11w.
(11)

In order to evaluate a controllable output, a new virtual
output is defined as

z2 = C2x +D2u, C2 = (
Λ
1/2

0 ) , D2 = (
0

R1/2) ,

(12)

where two weighted matrices are ΛT = Λ > 0 and RT
= R >

0.
For the augmented system (11), a 𝐻

2
/𝐻

∞
robust control

method [25–27] can be applied to get the state feedback
controller K, which yields the transfer function matrix from
w to 𝑧

1
as ‖Twz1‖∞ < 𝛾. Moreover, let the quadratic

performance index J = ∫∞
0
(xTΛx + uTRu)dt be as small as

possible.
The object of the above problem can be solved by

Lemma 2. For further analysis, the system (11) can be con-
verted into the form as

̇x = Ax + B1u + B2w + B3w̃,

z1 = C1x +D1u +D11w,

z2 = C2x +D2u,

(13)
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where w̃ stands for a virtual disturbance, ‖w̃‖
2
< 𝛾w ∈

𝑅
+ holds, and B3 is a proper dimensional matrix yielding

mathematical solution for this problem. To proceed, a lemma
about system (10) is introduced here.

Lemma 2. For system (13) and a specific scalar 𝛾
1
> 0,

provided that the followed Linear Inequality Matrices are held,
min 𝛾

2
,

[
[

[

AX + B
1
W + (AX + B

1
W)

T
B
2
(C

1
X +D

1
W)

T

BT
2

−𝛾
1
I DT

11

C
1
X +D

1
W D

11
−𝛾

1
I

]
]

]

< 0,

AX + B
1
W + (AX + B

1
W)

T
+ B

3
BT
3
< 0,

[
−Z C2X +D2W

(C2X +D2W)
T

−X
] < 0,

Trace (Z) < 𝛾
2
.

(14)

Moreover, if there are optimal solutions of X, Z, andW for
the above LMIs problem, u = Kx = W(X)−1x is the 𝐻

2
/𝐻

∞

controller for system (5).
Furthermore, an equivalent form called quasi-PID (Pro-

portional Integration Difference) is often used as (see [28])

u = KXx + Ke ∫
t

0
ed𝜏. (15)

Proof.
(a) The first LMI in expression (14) guarantees the per-

formance index𝐻
∞

yield ‖Twz1‖∞ < 𝛾
1
.

(b) Due to

J = ∫
∞

0
(x(t)TΛx (t) + u(t)TRu (t)) dt

= ∫

∞

0
z
2
(t)Tz

2
(t) dt = z2 (t)

2.

(16)

Assuming that sensitive function of closed-loop for sys-
tem (11) is T

𝑤𝑧2
(𝑠), the flowed inequality can be deduced as

z2
2 =


Tz2w̃w̃

2
<

Tz2w̃

2
⋅ ‖w̃‖2 < 𝛾𝑤 ⋅ ‖w̃‖2, (17)

and this says that z2 ∈ 𝐿2.
And a further deduction can be gotten as

x, y, e, u ∈ 𝐿
2
. (18)

Thus, the control problem for system (10) can be trans-
ferred into a𝐻

2
/𝐻

∞
optimization problem as follows:

min 𝛾
2
,


T
𝑧2𝑤

2
< 𝛾

2
.

(19)

Therefore, combined with the conclusions in (a) and (b),
the proof for Lemma 2 is completed.

3.2. Two-Layer Robust Control Law for Helicopter’s Emergency
State. As presented above, for helicopters, a feasible design
approach is integrated airframe and engine system control
method, so the coupling between them should bewell treated.
In particular, in the emergency state, we propose a two-layer
control law, in which the outer layer is designed for flight
control and the inner layer is for engine fast response control.
Thekey problem, orway to dealwith couplings, is that vertical
control input is calculated in the inner layer. The reason is
that the engine has themost influence on the vertical channel,
when extra control power, like turbine bleeding, is added in
emergency state. The design steps are as follows.

(a) For helicopter, the out layer or flight control system,
which is a four-loop control, including forward, sideward,
climbing, and yaw flight, can be acquired based onTheorem 1
as

U
𝐻
=
[
[
[

[

𝑢
𝐻1

𝑢
𝐻2

𝑢
𝐻3

𝑢
𝐻4

]
]
]

]

=
[
[
[

[

𝜃
0

𝐴
1𝑠

𝐵
1𝑐

𝜃
𝑡

]
]
]

]

= K
𝐻𝑋

X
𝐻
+ K

𝐻𝑒
∫

t

0
e
𝐻
d𝜏.

(20)

(b) For engines, the inner layer control also can be
designed by Theorem 1. As discussed in the front sections,
this new scheme is a control structure in which fuel flow
incorporates with turbine bleeding and rotor collective con-
trol to track the demand power from helicopter rapidly. The
scheme is expressed as

U
𝐸
= [

[

𝑢
𝐸1

𝑢
𝐸2

𝑢
𝐸3

]

]

= [

[

𝜃


0

𝑊
𝑓

𝑊
𝑔out

]

]

= K
𝐸𝑥
X
𝐸
+ K

𝐸𝑒
∫

t

0
e
𝐸
d𝜏.

(21)

(c) Now, it is easy to find that both (15) and (20) have the
main rotor collective input. Since the main coupling item is
𝑉
𝑍
channel, we choose the control input 𝜃

0
in (20) as the final

controller’s output. So the two-layer control law turns into the
form

U
𝐻
=
[
[
[

[

𝑢
𝐸1

𝑢
𝐻2

𝑢
𝐻3

𝑢
𝐻4

]
]
]

]

=
[
[
[

[

𝜃


0

𝐴
1𝑠

𝐵
1𝑐

𝜃
𝑡

]
]
]

]

,

U
𝐸
= [
𝑢
𝐸2

𝑢
𝐸3

] = [
𝑊
𝑓

𝑊
𝑔out

] .

(22)

Remark 3. For out layer or flight control, it means imposing
an extra disturbance on system input for replacing input 𝑢

𝐻1

by𝑢
𝐸1
.Therefore, provided that the closed-loop for helicopter

has margin in terms of antidisturbance, it would still keep
static and dynamic performance to some extent. Certainly
this layer is designed based on Theorem 1, such that good
robustness and anti-disturbance ability.
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For inner layer or engine control loops, a similar con-
clusion may be drawn in terms of robustness and anti-
disturbance ability. In this case, the demanding power vari-
ations, not only decided by vertical climbing but also forward
and sideslip flight, can be looked at as an additional system
disturbance.Of course, due to its robust design the inner layer
can also tolerate this kind of disturbance in this situation.

3.3. Out Layer Control in Emergency Flight. The out layer or
flight control system for UH-60 helicopter is implemented in
this section, and the system state, control input, and system
output are introduced, respectively, as follows:

state vector for helicopter is x
𝐻

=
[𝑉𝑥 𝑉

𝑦
𝑉
𝑧
𝑝 𝑞 𝑟 𝜙 𝜓 𝜃]

𝑇,

control input vector is U
𝐻
= [𝜃0 𝐴1𝑐

𝐵
1𝑠
𝜃
𝑡]
𝑇,

output vector is y
𝐻
= [𝑉𝑥 𝑉

𝑦
𝑉
𝑧
𝜓]

𝑇,

command signal is cmd
𝐻

=
[𝑉𝑥cmd 𝑉

𝑦cmd 𝑉
𝑧cmd 𝜓cmd]

𝑇,

output error vector is e
𝐻
= cmd

𝐻
− y

𝐻
,

disturbance is 𝑤
𝐻
= Ω

𝑅
.

In the hover flight state as 𝐻 = 0m and 𝑉
𝑥
= 𝑉

𝑦
=

𝑉
𝑧
= 0m/s, system matrices for the helicopter can be easily

identified by perturbation methods [29] as follows:

A
𝐻1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−0.009920 0.000789 0.019326 −0.259361 5.508862

−0.006006 −0.074958 −0.012146 −5.614851 −0.242581

0.015424 −0.009135 −0.377051 −0.249239 0.415087

−0.022955 −0.168659 −0.030995 −4.149794 0.419433

−0.000618 0.004887 0.019240 −0.032284 −0.601711

0.001020 0.022554 0.018359 −0.121840 −0.091497

0.000000 0.000000 0.000000 1.000000 0.000000

0.000000 0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000 1.000000

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

A
𝐻2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.189433 0.000000 0.000000 −9.766719

−0.188853 9.766719 0.000000 0.031043

−0.061903 0.455786 0.000000 −0.665203

0.157180 0.000000 0.000000 0.000000

−0.074104 0.000000 0.000000 0.000000

−0.307293 0.000000 0.000000 0.000000

0.068109 0.000000 0.000000 0.000000

1.002317 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

A
𝐻
= [A𝐻1

A
𝐻2] ,

B
𝐻1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.112449 −0.019934 0.191121 −0.000000

−0.033941 0.197670 0.022143 0.063477

−1.628770 0.002718 0.004722 −0.023100

−0.166929 1.076946 0.190533 0.146018

0.067651 0.025108 −0.139675 −0.031818

0.227011 0.015675 0.001580 −0.091496

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

0.000000 0.000000 0.000000 0.000000

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

B
𝐻2
= [−0.017279 0.005176 0.266392 0.015865 −0.011623 −0.007481 0.0 0.0 0.0]

𝑇

,

C
𝐻
= [

[

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0

]

]

, D
𝐻1
= O

3×3
, D

𝐻11
= O

3×1
.

(23)
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By trial and error, the weighted matrices are chosen as

Λ = diag ([1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 1.5]) ,

R = diag ([1.0 1.0 1.0 1.5]) .

(24)

And the scalar 𝛾
1
= 40. Using the method described in Section 3.1, the controller

gains are solved as follows:

K
𝐻𝑥
=
[
[
[

[

−0.4504 −0.0772 −1.0713 −0.0865 0.7182 1.9362 −1.1411 1.7660 6.5718

−0.5341 2.2872 0.1233 2.5210 2.1920 2.4541 27.8091 1.1174 7.7398

2.9540 0.3435 0.0242 0.3770 −12.6501 1.8986 4.8150 0.7553 −42.5235

0.2852 0.1526 −0.8469 0.2251 −0.8352 −6.3462 1.1669 −4.0489 −4.0343

]
]
]

]

,

K
𝐻𝑒
=
[
[
[

[

0.1086 0.0488 0.8277 −0.5784

0.1567 −0.9179 −0.0592 −0.2213

−0.9243 −0.1294 0.0392 −0.2139

−0.0790 −0.1598 0.3741 0.8449

]
]
]

]

.

(25)

Thus, the out layer control law for the integrated heli-
copter and engine system is expressed as

U
𝐻
= K

𝐻𝑥
x
𝐻
+ K

𝐻𝑒
∫

t

0
e
𝐻
d𝜏. (26)

3.4. Design for Inner Loop Control in Emergency Flight. For
the integrated helicopter and engine system, the system state,
control input, and system output are introduced, respectively,
as follows:

state vector is x
𝐸
= [𝑉𝑧 𝑁

𝑝
𝑁
𝑔]
𝑇,

control input vector is U
𝐸
= [𝜃



0
𝑊
𝑓
𝑊
𝑔out
]
𝑇

,

output vector is y
𝐸
= [𝑉𝑧 𝑁

𝑝
𝑁
𝑔]
𝑇,

command signal is cmd
𝐸
= [𝑉𝑧cmd 𝑁

𝑝cmd 𝑁
𝑔cmd]

𝑇,

output error vector is e
𝐸
= cmd

𝐸
− y

𝐸
,

disturbance is 𝑤 = 𝑄
𝐻
.

In the relative engine state (𝑁
𝑝
= 100%, 𝑁

𝑔
= 88.6%) for

the above hover state, system matrices can also be fitted by
small perturbation method [30] as

A
𝐸
= [

[

−0.239124 −0.254130 −0.270133

2.691120 −0.165848 −0.468932

−0.012819 −0.002656 −1.693173

]

]

,

B
𝐸1
= [

[

−0.256693 −0.016399 −0.038242

−0.228991 −0.546528 −0.492449

−0.001338 −0.269171 −0.107159

]

]

,

B
𝐸2
= [−0.017279 −0.011623 −0.007481]

𝑇

,

C
𝐸
= I

3×3
, D

𝐸1
= O

3×3
, D

𝐸11
= O

3×1
.

(27)

By trial and error, the weighted matrices are chosen as

Λ = diag ([1.0 0.9 0.76 0.8 0.45 0.76]) ,

R = diag ([1.1 0.9 1.2]) .

(28)

And the scalar 𝛾
1
= 40.

Also, using the design method described in Section 3.1,
we can acquire the following controller gains:

K
𝐸𝑒
= [

[

0.7257 0.6687 −0.1614

0.3082 −0.5263 −0.7918

−0.6150 0.5253 −0.5880

]

]

,

K
𝐸𝑥
= [

[

−2.6069 −0.5658 −0.0655

0.7030 0.8282 0.3956

−0.5780 −0.9703 0.5477

]

]

.

(29)

Thus, the inner controller for the integrated helicopter
and engine system is expressed as

U
𝐸
= K

𝐸𝑥
x
𝐸
+ K

𝐸𝑒
∫

t

0
e
𝐸
d𝜏. (30)

3.5. Two-Layer Control Law for Integrated UH-60/T700
Engine System. Based on the description in Section 3.2,
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Figure 4: Cascade PID control for engines.

the two-layer control law for the integrated UH-60/T700
engine system is followed by

U
𝐻
=
[
[
[

[

𝑢
𝐸1

𝑢
𝐻2

𝑢
𝐻3

𝑢
𝐻4

]
]
]

]

=
[
[
[

[

𝜃


0

𝐴
1𝑠

𝐵
1𝑐

𝜃
𝑡

]
]
]

]

,

U
𝐸
= [
𝑢
𝐸2

𝑢
𝐸3

] = [
𝑊
𝑓

𝑊
𝑔out

] .

(31)

4. Validations and Discussions

To validate the feasibility of the proposed control law, some
rapid ascent and descent flight tasks are simulated and
compared with the conventional cascade PID control. For
simplicity, the novel two-layer emergent integrated system
control is labeled in short as TLESC here. Figure 4 depicts the
block diagram of the conventional PID method.

The cascade PID control law is formulated as

𝑊
𝑓
= 𝑘

𝑝2
𝑒
2
+ 𝑘

𝑖2
∫

𝑡

0

𝑒
2
𝑑𝑡 + 𝑘

𝜃0

𝑑𝜃
0

𝑑𝑡
,

𝑒
1
= 𝑁

𝑝cmd − 𝑁𝑝
, 𝑒

2
= 𝑁

𝑔cmd − 𝑁𝑔
,

𝑁
𝑔cmd = 𝑘𝑝1𝑒1 + 𝑘𝑑1

𝑑𝑒
1

𝑑𝑡
,

(32)

where 𝑘
𝑝1
, 𝑘
𝑖1

are the relative parameters for outer loop,
𝑘
𝑝2
, 𝑘
𝑖2
are the parameters for inner loop, 𝑒

1
, 𝑒
2
are denoted

as errors for the two feedback loops, and𝐾
𝜃0
is collective feed

forward gain. And all the parameters for the PID control are
well modulated and verified over the entire envelope.

Two testing cases are demonstrated as follows.

4.1. The First Testing Case. In this simulation case, the
helicopter is initialed from a hover state with a low height
H = 100m and low forward velocity 𝑉

𝑥
= 8m/s, and the

relative engine states are power turbine speed 𝑁
𝑝
= 100%

and gas turbine speed 𝑁
𝑔
= 87.88%. At 𝑡 = 0 sec, a

rapid climbing task (or bop up) began, and the command
signals for the inner layer are preset as 𝑉

𝑧cmd = 4m/s,
𝑁
𝑝cmd = 100%, and 𝑁

𝑔cmd = 92.88%. For the purpose of
clarifying more clearly, all the parameters related to inner
layer control are presented as deviations using a notation 𝛿.
Then, conditions in Theorem 1 should be firstly checked. For
inner layer or engine control, the parameters in condition (A)

are modulated as 𝛾
𝐸
= 0.25, 𝑞

𝐸
= 2. Next, condition (B) is

easily qualified by the above control law, and𝑀
𝐸
= 1, 𝜆

𝐸
=

𝜆min(A𝐸
+ B

𝐸
K
𝐸
) = −1.7257 would be gotten based on the

formulation ‖𝑒A𝐸+B𝐸K𝐸‖ < 𝑀
𝐸
𝑒
𝜆𝐸𝑡. There upon for initial

condition can be quantified as follows:

x0
 <

𝜆𝐸


𝛾
𝐸
𝑀

𝐸

𝑞𝐸
=
1.72

0.25
= 6.88. (33)

Figures 5(a), 5(b), and 5(c) depict that the tracking
responses of the three channels of ascending velocity 𝑉

𝑧
,

power turbine speed 𝑁
𝑝
, and gas turbine speed 𝑁

𝑔
, and

the initial states for them satisfy the formulation ‖x
0
‖
𝑞𝐸−1 <

|𝜆
𝐸
|/𝛾

𝐸
𝑀

𝐸

𝑞𝐸 . So conditions of Theorem 1 for this case are
fulfilled. Time histories of control inputs are displayed in
Figures 5(d), 5(e), and 5(f), respectively, which are rotor
collective angle 𝜃

0
, fuel flow 𝑊

𝑓
, and turbine bleeding gas

flow 𝑊
𝑔out. As can be seen clearly from these figures, when

the proposed method is utilized to execute the flight task,
it takes about 2.0 seconds for the helicopter to track the
command signals asymptotically. Otherwise when using the
PID method, the transient time of this process is about
10.0 seconds. Therefore, the TLESC enhances greatly the
dynamic performance in the climbing task and significantly
reduces the tracking time. Figures 5(g), 5(h), and 5(i) give
the time histories of power supplying to helicopter 𝐻

𝑃𝑃
,

total temperature of gas turbine outlet 𝑇
45
, and stall margin

of compressor SM
𝐶
. 𝐻

𝑃𝑃
changes are explanations for the

convergent time to track command signals, and faster 𝐻
𝑃𝑃

changes means faster response to helicopter flight variations.
In the transient process, the gas turbine outlet temperature
(less than 1000K) and stall margin (more than 10%) are both
in permit ranges. In Figure 5(g), it is shown that turbine
bleeding can significantly influence the change rate of output
power and bring a rapid change of 𝑇

45
(see Figure 5(h)).

Furthermore, an interesting phenomenon can be observed
in Figure 5(i); that is, when using this new method SM

𝐶
has

an increasing trend in the whole process due to a reduction
of total pressure in gas turbine outlet. Obviously, Figure 5(b)
indicates that when the TLESC law is used, not only is the
response time significantly reduced but also the𝑁

𝑝
variation

in transient process is reduced from 1.87% under PID to
0.46%. Therefore the antidisturbance capability of closed-
loop system is much more improved by the TLESC law. For
the out layer or flight control, the simulation results are also
provided here.

Similarly, for out layer or flight control the parameters in
condition (A) aremodulated as 𝛾

𝐻
= 0.9, 𝑞

𝐻
= 2. Next,𝑀

𝐻
=

1, 𝜆
𝐻
= 𝜆min(A𝐻

+ B
𝐻
K
𝐻
) = −4.4776 would be acquired

based on the formulation ‖𝑒A+BK‖ < 𝑀𝑒𝜆𝑡. Thus, the initial
state condition of ‖x

0
‖
𝑞𝐻−1 < |𝜆

𝐻
|/𝛾

𝐻
𝑀

𝐻

𝑞𝐻 can be quantified
as follows:

x0
 <

𝜆𝐻


𝛾
𝐻
𝑀

𝐻

𝑞𝐻
=
4.4776

0.9
= 4.975. (34)

Figures 5(k), 5(l), 5(m), 5(n), and 5(o) depict time changes
of forward flight velocity 𝑉

𝑥
, sideward flight velocity 𝑉

𝑦
, yaw

angle 𝜓, lateral cyclic pitch 𝐴
1𝑐
, longitudinal cyclic pitch 𝐵

1𝑠
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Figure 5: Continued.
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Figure 5: Simulation results for helicopter rapid climbing.

and tail rotor collective angle 𝜃
𝑡
. It can be found that all the

states of flight control are within the range of ‖x
0
‖ < 4.975.

4.2.The Second Case. In order to verify the robustness of this
new TLESC method over the entire envelope, another rapid
descent flight demonstration (Figure 6) is also conducted,
which is triggered from a hover state of 𝐻 = 400m, 𝑉

𝑥
=

45m/s, and 𝑉
𝑧
= 0m/s, and the relative engine states are

𝑁
𝑔
= 82.17% and 𝑁

𝑝
= 100%. Depicted in Figure 6, when

at 𝑡 = 0 s the command signals are preset as 𝑉
𝑧cmd = −3m/s,

𝑁
𝑝cmd = 100%, and𝑁

𝑔cmd = 80.17%.
The tracking responses of 𝑉

𝑧
, 𝑁

𝑔
, and 𝑁

𝑝
are shown in

Figures 6(a), 6(b), and 6(c), whereas the time histories of
control variables are demonstrated in Figures 6(d), 6(e), and
6(f), respectively. As can be seen clearly from these results,
for the closed-loop system based on the new control law,
the convergent time for tracking 𝑉

𝑧cmd is about 1.6 seconds.
On the contrary, when using the conventional PID control,
the tracking time is about 18.2 seconds, much slower than
the previous one. Thus the closed system constructed by
TLESC control has better asymptotically tracking perfor-
mance. Moreover, Figure 6(b) shows a slight smaller droop
of 𝑁

𝑝
under the TLESC method than PID. Furthermore, as

can be seen from Figure 6(g), the TLESC control is capable
of regulating output power more rapidly, which enhances the
engine response to helicopter. Figure 6(i) presents a similar
increasing trend in SM

𝐶
as happened in the first simulation

case, and the mechanism is the same as analyzed in Figure 6.
For the out layer or flight control loops, the simulation results
are also provided.

4.3. Discussions. Turbine bleeding is added as an extra con-
trol parameter in the new control scheme; thereby it has the
potential to regulate output power of engine in mechanism.
Next, by the aid of the proposed control method, the TLESC
method, incorporating with turbine bleeding, fuel flow, and
rotor collective control, is developed to reach the control
object of faster response for engines.

Of course, this rapid control for power demand also
brings some negative effects especially in other flight

channels. As discussed in Section 3.2, the two-layer control
significantly reduces the response time in vertical channel,
while it also adds extra disturbance to other flight channels as
shown in Figures 5 and 6. Nevertheless, the most significant
consideration in emergency state is the rapid escaping
motion, when the helicopter is close to or fleeing away some
obstacle in vertical orientation. Hence, the negative influence
can be omitted to a great extent due to the profit in response
time.

5. Conclusions

A two-layer robust control law, augmented by turbine bleed-
ing, is proposed to implement a feasible emergency state con-
trol for an integrated helicopter flight/engine system. Based
on the integrated Hawk helicopter/T700 engines model,
necessary applications are provided for the integrated system
undergoing rapid climbing and decent tasks, in order to verify
the feasibility and robustness of this new control method
for nonlinear plants. Moreover, the simulation results are
compared to conventional control laws. Simulation results
show that the closed-loop system, designed by this proposed
control law, has better dynamic and static performance in
wider envelope and can asymptotically track the command
signals more rapidly.

Nomenclature

𝑊
𝑓
: Main fuel flow (kg/s)

𝑋SUM, 𝑌SUM, 𝑍SUM: Summed forces for all components
of helicopter with respect to
A-Frame (N)

𝑊
𝑔out

: Turbine bleeding gas flow ratio (–)
𝐿SUM,𝑀SUM,𝑁SUM: Summed moments for all

components of helicopter with
respect to A-Frame (N⋅m)

𝑁
𝑔
,𝑁

𝑝
,𝑁

𝑅
: Revolution speed of gas turbine,

power turbine, and rotor (r/min or
% for simplicity)

𝐼
𝑋
, 𝐼
𝑌
, 𝐼
𝑍
: Moment of inertia about X, Y, and Z

axis with respect to A-Frame (kg⋅m2)
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Figure 6: Continued.
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Figure 6: Simulation results for helicopter rapid decent.

𝑃
44
, 𝑃

45
, 𝑃

5
: total pressure of gas turbine

outlet, power turbine outlet,
and nozzle outlet (Pa)

𝐼
𝑥𝑍
: Moment of inertia product

about the crossing axis with
respect to A-Frame (kg⋅m2)

𝑉
𝑔
, 𝑉

𝑝
𝑉nz: typical volumes of gas tur-

bine, power turbine, and noz-
zle (m3)

𝐺: weight of helicopter (N)
𝑇
44
, 𝑇

45
, 𝑇

5
: Gas total temperature in gas

turbine outlet, power turbine
outlet, and nozzle outlet (K)

𝑔: gravity constant (9.8m/s2)
𝑃𝑊out, 𝑃𝑊𝑝

, 𝑃𝑊
𝑔
, 𝑃𝑊

𝑐
: Power needed by helicopter,
power supplied from power
turbine, power supplied from
gas turbine, and that needed
for compressor (kw)

Ψ, 𝜙, Θ: Yaw angle, roll angle, and pitch
angle of helicopter (∘)

𝑚
𝑔44

,𝑚
𝑔45

,𝑚
𝑔5
,𝑚

𝑎3
: Gas flow in gas turbine outlet,

power turbine outlet, nozzle
outlet, and compressor outlet
air flow (kg/s)

𝜃
0
, 𝐴

1𝑐
, 𝐵

1𝑠
, 𝜃

𝑡
: Rotor collective angle, lateral

cyclic pitch, and longitudinal
cyclic pitch (∘)

𝐻: Flight altitude
𝐽
𝑅
: Moment of inertia of rotor

(kg⋅m2)
𝐽
𝑝
, 𝐽
𝑔
: Power turbine moment of ini-

tial, power turbine moment of
initial (kg⋅m2)

𝐽GB: Moment of inertia of gearbox
(kg⋅m2)

SM
𝐶
: Stall margin of compressor

𝐽TL: Moment of inertia of tail rotor
(kg⋅m2)

𝑄
𝑝
: Output torque of power tur-

bine (N⋅m)

𝐽
𝐸
: Moment of inertia of engine

(kg⋅m2)
𝑄
𝐻
: Torque of helicopter (N⋅m)

𝐽acc: Moment of inertia of other
accessories (kg⋅m2)

E-Frame: An earth fixed coordinate
system

Ω
𝑅
: Rotor speed (rad/s)

𝑋
𝐸
, 𝑌

𝐸
, 𝑍

𝐸
: X axis, Y axis, and Z axis in E-

Frame
Ω
𝐸
: Engine speed (rad/s)

A-Frame: An airframe fixed coordinate
system

ΩGB: Gearbox output shaft speed
(rad/s)

X, Y, Z: X axis, Y axis, and Z axis in A-
Frame

ΩTR: Tail rotor speed (rad/s)
H-Frame: A rotor hub fixed coordinate

system
Cmd: Command signal
𝑋
𝐻
, 𝑌

𝐻
, 𝑍

𝐻
: X axis, Y axis, and Z axis in H-

Frame
Subscript H: Helicopter
𝑉
𝑥
, 𝑉

𝑦
, 𝑉

𝑧
: Velocities with respect to E-

Frame (m/s)
Subscript E: Engine
𝑢, V, 𝑤: Velocities with respect to A-

Frame (m/s)
Subscript 1, 2, 3, 4, 44, 45, 5: engine inlet, compressor inlet,

combustion chamber inlet, gas
turbine inlet, gas turbine out-
let, power turbine outlet, and
exhaust nozzle outlet

𝑝, 𝑞, 𝑟: Angular rate about X-axis, Y-
axis, andZ-axiswith respect to
A-Frame (rad/s).
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In recent years, modeling and recognizing driver behavior have become crucial to understanding intelligence transport systems,
human-vehicle systems, and intelligent vehicle systems. A wide range of both mathematical identification methods and modeling
methods of driver behavior are presented from the control point of view in this paper based on the driving data, such as the
brake/throttle pedal position and the steering wheel angle, among others. Subsequently, the driver’s characteristics derived from
the driver model are embedded into the advanced driver assistance systems, and the evaluation and verification of vehicle systems
based on the driver model are described.

1. Introduction

Modeling and recognizing human driving behavior have
been of interest to researchers frommany different disciplines
like psychology, physiology, and ergonomics for more than
half a century. Great progress has been made from the
numerous specific studies on the various aspects of human
physiology and psychology by capturing biological data.
Drivermodel research has beenmade from the perspective of
vehicle dynamics application [1] and human factors. Output
parameters of driver models are usually steering wheel
angle/torque, acceleration or brake pedal position/pressure,
and the gear shift position. Driver model can be applied to
(1) vehicle dynamics [1] including vehicle component design,
vehicle dynamics analysis, overall vehicle stability analysis,
and design of onboard controls; (2) intelligent transport
systems (ITS) [2–4] including simulation of traffic flow based
on the control theorymodels of driver behavior andmodeling
driver’s risk taking behavior (3) driverless vehicle systems
[5, 6]. This paper aims to present the methods of recognizing
driver’s characteristics or modeling driver’s driving behav-
ior/skill/state from the perspective of driving data in detail,
such as vehicle velocity/acceleration, throttle/brake position,
and lateral acceleration.

It is commonly known that driving a car is a complex
and dynamic task requiring drivers not only tomake accurate
perceptions and cognitions about information pertaining to
the driver’s own driving skill, driver state, vehicle perfor-
mance, and traffic, but also to process all these information
at a high rate of speed. Hence, Liu and Salvucci [7] have
pointed out that driver models should take into account the
characteristics of both high-level cognitive processing and
low-level operation controlling.

Modeling human driving behavior and recognizing
driver characteristics are necessary to relieve the driver’s
workload and improve the reliability and amenity of active
vehicle safety systems, for example, collision detection and
avoidance systems, and road departure warning systems.
However, these active safety systems were designed based
on an average of driver performance and rarely takes the
individual driver’s characteristics into consideration. Thus,
even though average drivers can benefit from these systems,
individual or special groups of drivers such as novices or
the elderly might not be able to take advantage of them
as effectively. If the characteristics of driver behavior can
be accurately recognized and applied to dynamic vehicle
systems, the vehicle might be personalized and therefore
made intelligent.
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Recognizing driver characteristics is by itself not a simple
task with the other requirements of active vehicle safety and
comfort of vehicle adding to the complexity. Many active
safety systems, such as the automatic braking system (ABS),
lane departure warning system, acceleration slip regulation
(ASR), and various human-friendly vehicle control systems
like adaptive cruise control system, lane-keeping assistant
system, have been invented over the years. Information about
the driver’s driving skill can be used to adapt vehicle control
parameters to facilitate the specific driver’s needs in terms
of vehicle performance and active safety [8]. According to
the different objectives set by the various tasks which can
be regarded as these actions performed with the help of
those functions such as steering, speed control, gear shifting,
interpreting the road ahead, and navigation, driving skill
can be defined in many ways [9, 10]. Different tasks require
different driving skills. To win a race, excellent driving skills
are required. On the other hand, to drive a car from point A
to B, the driver only needs to obey traffic rules with minimal
skills involved.

Generally speaking, modeling and recognizing the driver
behavior or driving skill/state can be classified into four steps.

(i) Modeling Driver Behavior. The model structure can be
established and parameters of the driver model can be
identified based on human driving behavior, which might be
classified roughly into three cases: parameter identification,
nonparameter identification, and semiparameter identifica-
tion.

(ii) Recognizing the Characteristics of Driver Behavior. After
driver model has been determined, the driver behavior or
driver’s driving skill should be characterized. Here, many
driving tasks or situations (such as car following, lane change,
collision avoidance, etc.) are described with numerous math-
ematical methods adopted.

(iii) Evaluating and Verifying Based on the Driver Model.
The objectives of identification followed by the modeling
of driver behavior are meant to improve the performance
of vehicle dynamics and to design more intelligent driver
systems. Therefore, the efficiency of the driver model needs
to be evaluated and verified, especially in the field of handling
quality and driver assistance systems.

(iv) Embedding Driver Characteristics into the Advanced
Vehicle Systems. Producing more intelligent vehicle-driver
systems is always the engineer’s ultimate goal during the
design process. Consequently, driver assistance systems that
can timely and accurately detect andpredict the driver’s atten-
tion and seamlessly integrate with the driver’s characteristics
are crucial.

Based on this, the following sections have been arranged
in the order of the aforementioned points.

2. Identification of Driver Model

Human driving behavior is extremely complex and con-
tains the human characteristics of nonlinearity, uncertainty,

randomness, and so forth. Recently, a large number of articles
about modeling driver behavior or recognizing driver model
have been published [11–13] from the control point of view.
Driver modeling is the simplification of the human driver
with logical graphic and equation and so forth and can
represent the basic characteristics of human driver like time
delay and physical characteristics. Generally speaking, the
goal of the driver model is to accurately imitate the driver
while accomplishing some assigned tasks, which include
two basic parts: longitudinal control (e.g., speed) and lateral
control (e.g., steering angle).

The driver model has uncertainty and nonlinear char-
acteristics, but when it comes to certain driving tasks like
car following, the structures of the driver model can be
determined. According to the certainty and uncertainty of the
driver’s model structure, the identification methods can be
roughly categorized into three aspects from the perspective of
pattern identification: parameter identification, nonparame-
ter identification, and semiparameter identification.

2.1. Parameter Identification. During driving, car-following
behavior is not uncommon. For example, when a driver is
driving a car during rush hour on a highway, the driver may
attempt to adjust the vehicle’s velocity and its distance by a
compromise between the urge to minimize trip duration and
to maximize safety. Therefore, car-following models need to
be developed in order to enhance traffic safety, and a great
deal of car-following models (i.e., Gazis Herman Rothery
(GHR) model, safety distance or collision avoidance models
(CA), linear (Helly) models, psychophysical or action point
models (AP), and fuzzy logic-based models) are presented
and discussed in detail in [14]. However, the question of how
to recognize the parameters of these driver models from the
perspective of system identification under the condition that
their structures have been established still remains open.

After one model structure has been prescribed, that is,
the model can be shown by a function, and the number of
parameters might be finite and fixed, then, the parameter
identification techniques can be used to figure out the param-
eters of the model based on the experiment or simulation
data. To address the issue of uncertainty in the driver model
structure, Chen and Ulsoy [15–17] have conducted many
studies in relation to (driver) model uncertainty including
structured uncertainty (e.g., parametric uncertainty) and
unstructured uncertainty (e.g., additive uncertainty due to
unmodeled dynamics). In [16], while considering the uncer-
tainty both within individual driver and across different
drivers, the uncertainty modeling of driver steering control
behavior is addressed, and the driver model is treated as a
black box, wherein the input and output are lateral deviation
from the centerline of the road (𝑦dev) and the steering
wheel angle (𝛿), respectively. Chen and Ulsoy pointed out
that the driver model structure considers the uncertainty
characteristics, but model selection is dependent on the real
driver behavior and the examination of experiment data
[15], thus allowing some unstructured or uncertain aspect of
driver behavior to be replaced by specific structuralization
elements [18] as follows.
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(i) Permissibility or Admissibility. It can also be called the
complacency component of driver behavior [15, 19]. One
example is the driver keeping his steering command constant
when the required change in steering angle is small. This
characteristic is illustrated by Figure 1(a).

(ii) Physical Limitations. Most information collected depends
on the vision, vestibular, tactile, and auditory perceptions
of the driver. However, by reason of human limitations
(Figure 1(b)), the driver might be insensitive to some subtle
changes. For instance, the driver may be unable to perceive
changes in speed when the linear acceleration of the vehicle
is lower than 0.005 g [18].

(iii) Transport Time Delay. There is a possibility of response
time being different between individuals; for example, aged
drivers might spend more time to brake or steer the wheel
than younger drivers. The delayed in obtaining the informa-
tion before starting to action can be replaced by Figure 1(c).

In [13], two new mathematical models (i.e., an optimal
controller model and the “look-ahead model”) of driver
behavior in a single-lane car following situations were
developed and identified using the Fletcher-Powell-Davidon
(FPD) algorithm by Burnham et al. in 1974.

In many studies of parameter identification or driver
behavior modeling, the ARM [19–21], NARMAX [15], and
ARMAX [17] methods are usually selected to establish driver
model structures to determine the parameters of the pre-
scribed driver model by using experiment or simulation data.

In [22], to design an ACC controller suitable for driver
behavior characteristics, three drivers’ longitudinal behav-
ior models including linear regression models, state-space
models using subspace-based identification, and behavioral
models are identified and implemented by using the collected
data with the inputs being the space headway and velocity
and its differential, the outputs being throttle angle and brake
pressure.

In [23], to develop a driver model of curve driving,
both the driver’s steering control law (Figure 2(a)) and the
vehicle-driver model (Figure 2(b)) are presented, wherein
three parameters are used for characterizing the driver
behaviors, namely, aim point distance 𝐿

𝑎
, response delay 𝑇

𝑘
,

and steering angle W. With the aim of recognizing the
parameters of driver model, two targets are prescribed: (1)
to decrease the lateral deviation between the actual vehicle
position and the driver’s desired path as much as possible,
and (2) to enable the path realized by the driver-vehicle
model to be as similar as possible to the path realized by a
real driver. With the aforementioned targets in mind, two
simulative scenarios have been designed: the double-lane
change maneuver (designed by the Standard No. ISO/TR
3888: 1975) and the driving reaction to wind gust. From the
paper, we know that the driver model can be identified and
this method can be used to research and evaluate the stability
of the driver-vehicle systems, as well as make a combination
between the vehicle dynamics properties and the individual
driver characteristics. Similar to [23], to describe driver
behaviormore accurately and to simplify drivermodels, Saleh

et al. [24] developed a cybernetic drivermodel of lane keeping
from the control point of view by adopting the visual, haptic,
and kinaesthetic perception and neuromuscular dynamics.
The inputs of the driver model are near/far angles, steering
angle, and steering force feedback, with the output being
steering wheel torque. Subsequently, the driver model can
be presented by the state-space structure using the following
equation with 𝜏

𝑝
being the input delay:

̇𝑥 (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡 − 𝜏
𝑝
) , 𝑥 (𝑡

0
) = 𝑥
0
,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷𝑢 (𝑡) .

(1)

The newly developed cybernetic drivermodel of lane keeping
is simpler and can be easily embedded into the driver
assistance system.

However, due to the complexity and uncertainty of
driving situations, structures of driver model and targets of
driver’s choice might vary. Thus, with the aim of building
a driver model applicable to a wide range of situations,
further research about driver model, advanced mathematical
methods, and advanced control theory could be done. For
example, more nonlinear mathematical models can be used
for characterizing the nonlinear driving behavior.

2.2. Nonparameter Identification. If parts of the driver model
structures are uncertain and unstructured and cannot be
replaced by the abovementioned elements, then these parts
should be treated as a black box and identified by using
the nonparametric system identification techniques, such as
frequency response analysis (FRS) [25], spectral analysis, and
estimating the disturbance spectrum.

In the case of nonparameter identification, the Fourier
CoefficientMethod (FCM) [8, 26] has been used to recognize
driver behavior and driving skill.

With the purpose of characterizing and recognizing
a driver’s limit-maneuver handling behavior, the discrete
fourier transform coefficients (DFTC) of steering wheel angle
are treated as the discriminant features in [8], and theN-point
DFTC of steering wheel angle is given as

𝑋
𝑘
=

𝑁−1

∑

𝑛=0

𝑥
𝑖
𝑒
(−𝑗(2𝜋𝑖/𝑁)𝑘𝑛)

, 𝑘 = 0, 1, 2 . . . , 𝑁 − 1. (2)

In [25], to recognize the parameters of a multiloop car-
following model structure (Figure 3) that has only one direct
forcing function, the driver transfer function can be identified
by using frequency domain identification (FDI) methods.

𝑈(𝜔) and 𝑉(𝜔) are relative velocity and acceleration
pedal position, respectively, and can be collected during
the experiment. The transfer function 𝐻

𝑙

𝑑
of a driver’s car-

following behavior can be identified by the spectral analysis
techniques:

�̂�
𝑙

𝑑
(𝜔) = −

𝑆
𝑑𝑢

(𝜔)

𝑆
𝑑V (𝜔)

. (3)

To find a realistic control theoretic visual driver model of
curve driving, the model structure should make the model
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Figure 1: The structuralization elements of driver characteristics: (a) the permissibility, (b) the limitations, and (c) the transport time delay
[15, 18].
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Figure 2:The diagram representing driver-vehicle steering control systems: (a) driver’s steering control law, and (b) the vehicle-driver model
[23].

parameters to be identified and estimated as accurately as
possible. In [26], many models were evaluated and simulated
and, if possible, frequency response function was identified
using two system identification methods, namely, FCM and
ARMAX method.

A car-following model was developed and identified
by Wakita et al. [27, 28] using collected driver’s behavior
signals such as the positions of throttle/brake pedal and
vehicle velocity collected via the driving simulator, as well
as two different identification models and features. One
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Figure 3: The modified driver model suitable for FDI with only one forcing function 𝐷(𝜔) [25].

is the stimulus-response model (physical dynamic model)
assuming that individual driver’s personality can be directly
characterized by using model parameters; the other is the
nonparametric model based on the statistical pattern tech-
niques. Comparing the parametric models with the non-
parametric models, the results show that (1) nonparametric
models are better than the parametric models, (2) driver’s
signals (e.g., gas pedal pressure, brake pedal pressure, and
steering angle) are more efficient than the environment and
vehicle signals (e.g., velocity, acceleration, and engine speed).
The nonparametric model shows promising result in [28].

Based on Wakita’s conclusions, a nonparametric model
with a Gaussian mixture model (GMM) was developed and
identified by Miyajima et al. [29], based on the cepstral
features of individual driver by using the spectral analysis
of driving signals like gas and brake pedal pressures. In this
model, the GMM is used to characterize the distributions of
features vectors of cepstral coefficient of each driver with the
expectation maximization algorithm adopted to estimate the
parameters.

It is well known that driving situations (e.g., traffic factors
and driver state) are not invariable when driving. For this
reason, the driver’s model structures and parameters cannot
be prescribed. To characterize driving behavior in the case of
steady-state and transient car following, a new nonparameter
identification model combining the conditional evolving
theorywith the probabilisticmodel is developed by Filev et al.
[30].

2.3. Semiparameter Identification. Although parameter and
nonparameter identification methods have their own merits
of identifying different systems as well as having their own
operation range. For instance, the formermethodmight have
less stringent input or output requirements, but it needs to
select a set of candidate driver models which require a known
forcing function; however, the latter method suitable for the
nonparameter model and black-box model only takes into
account the relation between input and output, but ignores
the inner state-variables.

To overcome the disadvantages and inherit the merits of
both of them, a concept called semiparameter identification
is proposed in this part. For example, the nonparameter
and parameter identification method are combined together
[25] to realize the objective that using only one forcing
function to recognize the multiloop model. This method
can be treated as semiparameter identification for the entire
system identification.

The flow diagram of driver’s model identification includ-
ing parameter identification, nonparameter identifications,
and semiparameter identification can be illustrated by
Figure 4.

As seen from the above mentioned cases, any type of
driver behavior can be modeled and identified using the
parameter or/and nonparameter identification techniques,
and most of them are based on the linear invariable and
offline model. In [11], a real-time identification method of
driver’s steering manipulation model has been proposed
and validated by using driving simulator experiments and
the actual driving tests. To exploit the vehicle sensors utter
mostly, the yaw rate, the steering angle, and vehicle’s velocity
are used as collected data, because these sensors have already
been installed in a production vehicle.

From the perspective of lateral driving, to control the
parameters of steering and lane-keeping behavior effectively,
as well as to distinguish the variations in driving perfor-
mance, in [12], this paper investigates the abilities of two com-
mon driver models. One model is based on the human driver
visual perception with the input being the deviation angles
between vehicle heading and the directions of experimentally
determined preview two-points; the other is based on the
lane-keeping task with adopted the vehicle lateral deviations
and steering wheel angle as input and output, respectively.
The preview point model and the lateral offset model can
be denoted by 𝐺lat(𝑞, 𝜃) and 𝐺pre(𝑞, 𝜃), respectively, where
𝐺lat(𝑞, 𝜃) and 𝐺pre(𝑞, 𝜃) can be described as a second-order
rational functions of 𝑞 and 𝜃:

𝐺 (𝑞, 𝜃) =
𝐵 (𝑞, 𝜃)

𝐴 (𝑞, 𝜃)
=

𝑏
1
𝑞
−1

+ 𝑏
2
𝑞
−2

1 + 𝑎
1
𝑞−1 + 𝑎

2
𝑞−2

. (4)

With identification and validation of the two models,
Hermannstädter and Yang [12] have made final conclusions
that the output error models is superior to the ARXmodel in
simulation, but this method cannot distinguish the induced
driver behavior distinctly. The author pointed out that there
might be two reasons resulting in this. On one hand, the
second-order model is too simple to correctly describe the
characteristics of driver behavior; on the other hand, the
uncertainty or unstructured factors (e.g., the signal noise and
the nonlinear elements of driver) might make great influence
on fidelity and accuracy of the driver model. Therefore,
the advanced mathematical methods, such as the stochastic,
nonlinear, and fuzzy theories, should be taken into account
to develop driver model more accurately.



6 Mathematical Problems in Engineering

Identification of driver
model

Whether
the driver model
structure can be

prescribed?

Nonparameter
identification

No

No

Yes

Yes

Parameter identification 

End

Verification

Modify

Whether to meet
the need?

structure 

Driver model

Driver model

parameter 

Figure 4: The flow diagram of driver model identification.

3. Identification of Driver Behavior and Skill

Lots of vehicle dynamic systems and vehicle control systems
are designed by engineers, and they generally put their
emphasis and interest on the vehicle itself. Recently, high-
performance vehicle cannot meet the needs of customers
who require more human-friendly vehicle. Thus, human
driving skill and characteristics need to be embedded into the
vehicle dynamic systems to improve the vehicle’s drivability,
maneuverability, and fuel economy.

Characterizing driver behavior and skill exactly is crucial
to simulating driver behavior and optimizing driver-vehicle-
environment systems. In order to recognize the charac-
teristics of driver behavior and skill, numerous advanced
approaches had been applied, as well as more advanced
information collecting and processing technology have been
introduced into modeling and recognition of driver behavior
and skill. In [31], the computer-aided tools including the
instrumented vehicles (IVs) and driving simulators (DSs).
have been developed.

Humandriving characteristics are presented byMacadam
[18] from the control perspective in terms of human behavior
activities, such as driver distraction, side-tasking, and driver

impairments.The author pointed out that humans encompass
the characteristics of nonlinearity, time delay, and limitation.
Some physical limitations are presented in the realm of
human factors by Macadam as followed.

(i) Human Time Delay and Threshold Limitations. Humans
can be treated as a nonlinear systemwith time delay and sense
limitations. Time delay consists of dead time resulting from
the information processing in the central nervous system and
the lag due to the nature of the muscular system, which are
different for individual drivers.

(ii) Visual Characteristics. Vision system could not capture the
velocity and position information accurately due to the jump-
like saccadic response of the eyeball.

(iii) Motion Influences. Due to the influence of vestibular,
experience and/or skill level may also play a crucial role in
a human-vehicle system.

(iv) Auditory Information. Auditory informationmay bemore
useful under high workload conditions, and in general it can
be treated as redundant information.

(v) Tactile and Haptic Information. Tactile and haptic infor-
mation (e.g., steering wheel torque, the pedals position) con-
veyed through the steering wheel and throttle or acceleration
pedals, but the fidelity of the information has threshold
limitations.

Based on the assumption that a driver remains in control
most of the time, a method to characterize and evaluate the
specified driving skill was developed on the basis of path
tracking driving skill by Erséus [9] in driving simulator tests.
In these tests, four scenarios are designed as follows.

(i) Curved Cone Track Scenario. According to [32–34], we
know that road width and curve radius have great influence
on driver’s speeds choice that can be treated as driver
characteristics. The goal of this scenario was to investigate
driver behavior with a focus on the variation of different
driver’s ability to steer the vehicle, that is, path tracking skill.

(ii) Avoidance Maneuver Scenario. This scenario was used
to evaluate the relationship between driver skill and many
objective vehicle parameters measured in the moving base
simulator at VTI.

(iii) Driver Response Scenario.This scenario was designed and
evaluated for the investigation of driver-vehicle characteris-
ticswhen following amovable reference line, that is, line jump
scenario.

(iv) Curving Road Scenario. Curving road scenario was de-
signed in order to evaluate objective parameters of driver’s
driving skill when he or she drives on a normal curving road.

Erséus thought that there are some limitations in [9].
(1) This research just focused on the path tracking driving
skill of drivers holding a Swedish driving license. (2) All the
results are concluded based on the research about behavior
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characteristics of the group, not the individual driver. (3)The
scenarios designed are too few to demonstrate that whether
tracking driving skill is the same with other driving skills or
not.Thus, it is necessary tomake further research about other
types and characteristics of individual/group driver’s driving
skill in the same scenario, but different scenario parameters.

Angkititrakul et al. [35] developed a stochastic driver-
behavior model that can characterize individual driver better
than universal models in both short-term and long-term
predictions by using the observed driving data based on
Gaussian mixture model (GMM). Nevertheless, there are
some disadvantages with the GMM, mass data should be
collected and processed in-time in order to establish indi-
vidual driver models more accurately. Then, to recognize
individual and general driver’s characteristics, Angkititrakul
et al. [36] presented an improved driver-behavior model
which involved both of them, and the patterns of individual
and general driver styles are modeled by using Dirichlet
process mixture model (DPM) and GMM, respectively. The
result shows that the integrated model can better represent
both observed and unobserved individual driver’s behaviors.

It is commonly known that driving behavior/skill/styles
are influenced by numerous factors, such as the driver’s
physiology/psychology, driving environment, and traffic con-
ditions. The precise-driver model should take these factors
into consideration, but it is not practical to collect and
process so much data in-time. In addition, driver’s model
structures and parameters are uncertain in most common
conditions. Therefore, a stochastic evolving real-time iden-
tification method was introduced in [30], and a new driver
model was developed under the steady-state and transient
car-following situation. The results show that this driver
model is able to characterize driver’s dynamic behaviors
effectively in the uncertain driving situations.

Lin et al. [37] propose key parameters in a dynamic driver
model to characterize driving skill. The general overview of
[37] is illustrated in Figure 5. In this approach, the driver
model is dynamic so as to mimic human driver outputs, and
using an extensive set of driver model parameters the driver
skill level is categorized into three levels: lower, typical, and
expert. This model-based approach depends heavily on the
validity and fidelity of the mathematical driver model.

In [8], Zhang et al. compared the utility of various
pattern-recognition algorithms, including multilayer per-
ception artificial neural networks (MLP-ANNs), decision
tree, and support vector machines (SVMs), based on the
coefficients of the discrete Fourier transform (DFT) of the
sensor information (e.g., steeringwheel angle, yaw, and lateral
acceleration) getting from the driving simulator. The experi-
ment results show that the DFT coefficients of the steering
wheel angle not only can be applicable to discriminating
the expert drivers from typical or low-skilled drivers, but
also could be used as the discriminant features. Zhang et al.
addressed this problem in their proposed pattern-recognition
approach [8] for driving skill characterization.This approach
is based on the theory that there are strong correlations
between the driver’s behavior and vehicle response. In this
approach (Figure 6), the driver-modeling step is skipped
and the relationship between driver’s overt behavior and

the driver’s driving skill is directly build. While both of these
proposed an approach for driving skill characterization in
different driving courses based on the driving simulator, it
is hard to explain which course parameters (e.g., the course
curve radius) could characterize driver’s driving skill best.

In [19], a recognition method of steering behavior (e.g.,
lane keeping, lane changing) was presented and a new
arithmeticwas developed to improve the awareness of driving
safety by using sequential labeling method based on boosting
framework. To develop a discrimination model of lane
change behavior recognition algorithm (boosting algorithm),
four features are focused on: velocity, steeringwheeling angle,
moving variance, and moving standard deviation. One main
result of these experiment data is that the threshold values of
lane keeping and lane change behavior are different depend-
ing on the vehicle’s velocity even if the moving standard
deviation of steering wheel angle is the same value.

In [20], Pilutti and Ulsoy presented an online identifica-
tion approach of driver state that is a desirable element of
many proposed active safety systems. In this approach, an
ARX model is allowed to describe the relationship between
vehicle lateral position (𝑦) and steering wheel angular posi-
tion (𝛿) based on driving lane-keeping task. In the model, 𝑦
and 𝛿 are the input and output, respectively, with an ARX
structure as the candidate model structure:

𝐴 (𝑞) 𝑦 (𝑡) = 𝐵 (𝑞) 𝑢 (𝑡 − 𝑛𝑘) , (5)

where 𝑦(𝑡) is the driver model steering position output (𝛿),
and 𝑢(𝑡 − 𝑛𝑘) is the delayed driver model input. Then, in [38,
39], the approach was applicable to collecting data from 12
2-h highway driving runs conducted in a full-vehicle driving
simulator. In particular, in [38], the authors pointed out that
there were five aspects of shortages in this approach: model
structure inadequacy, nonlinear effects, poor model fits,
trends masked by variations in parameters, and alternative
approach.

Driver behavior encompasses the characteristics of dy-
namic, randomness, and nonlinearity, as well as obeying cer-
tain distribution. The complex mapping from sensory input
to driver’s action output might be strongly nonlinearity in
nature; hence, the traditional control methods like PID con-
trol are unable to simulate human-driver-vehicle system actu-
ally. To overcome this problem and to improve the validity
andfidelity of drivermodel,most of stochastic, nonlinear, and
fuzzy theories (e.g., Hidden Markov Model system (HMMs),
Hierarchical Hidden Markov Model (HHMM), autoregres-
sive HMM (AR-HMM), nonlinear regression models, and
the neural networks and fuzzy systems) have been used to
recognize and predict driver behavior (see [40–45]).

Rich in mathematical structure, HMMs are powerful
parametricmodelswhich have been applied extensively in the
area of stochastic signal processing. To overcome (1) dynamic
and/or (2) stochastic of driver model in nature, Pentland and
Andrew [43], Nechyba and Xu [44] propose a driver model
using HMM, and then the fidelity of the driver model is
verified.

Drivers collect information of the vehicle or environment
such as vehicle position, road profile, and pedestrians mainly
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Figure 5: Model-based approach for driver skill characterization
[37].

via visual system during driving. Macadam [18] has shown
that vision ranks the top among the primary sensory (vision,
vestibular and kinesthetic, tactile, and auditory) channels
used in driving environment. With the visual information
as a key consideration, Liu and Salvucci [7] described the
application of Markov Dynamic Models (MDMs) in the field
of modeling and prediction of driver behavior based on the
assumption that driver’s visual scanning behavior can be
treated as another source of driver’s state information.

As stated by aforementioned driver characteristics, it is
obvious that driver-vehicle systems have the same charac-
teristics as humans in nature. In recent years, the vehicles
installed active safety systems are not uncommon in mod-
ern car, but most of them are designed by engineers who
rarely take into account the human factor during the design
process. Thus, modeling human-vehicle systems allowing for
clarifying the relation between driver and driver assistance
systems can facilitate the operating mode transitions. Kuge
et al. [45] have proposed a recognition method of driver
behavior by adopting HMMs to characterize and detect driv-
ing maneuvers, and then it was applied to the framework of a
driver’s behavior cognitive model. The authors put emphasis
on information processing models of human drivers with
using them to detect and recognizemodel-basedHMMs.This
paper demonstrates that (1) HMMs can be used to recognize
the frame of driver model based on driver’s lane change
behavior; (2) an active vehicle safety system embedded with
driver model can be developed. Although HMMs have some
advantages of both recognizing certain driver behavior and
mapping the relation between driver behavior/state/skill and
vehicle responses (e.g., yaw, yaw rate, vehicle velocity, and
acceleration), some questions still remain open as to its
validity of general application in research.

Sekizawa et al. [21] pointed out that stochastic andnonlin-
ear characteristics of the human driver could be expressed as
much as possible by the abovementioned models, but there
are two shortages in them. (1) The aforementioned models
are often too complicated to recognize model parameters

Environment

VehicleDriver

Driver model

Driver model
parameters

Driver skill level

Figure 6: Pattern-recognition approach.

rapidly and accurately, and (2) this, in return, makes it
impossible to understand the physical behavior; it is often
found that a driver appropriately switches between certain
simple primitive skills instead of adopting a complex nonlin-
ear control law. To formally address these shortages, in [21],
modeling and recognition of driver behavior were developed
based on a stochastic switched autoregressive exogenous (SS-
ARX) model (Figure 7). The SS-ARX model is applied to
characterizing driver’s collision avoidance behavior at the
instance when the preceding vehicle is brought to a sudden
halt and the examinee is looking away from the road.

With the aim to simulate driver’s collision avoidance
behavior, three kinds of driving information, such as range
between cars, range rate, and lateral displacement between
cars, are collected, and the output value is also specified
as steering amount. This experiment result shows that each
driver’s characteristic is unique; in particular, large variations
are observed between driver behaviors with respect to the
lateral displacement between cars and steering profiles.

Compared to the HMM or neural network model
(NNM), the SS-ARXmodel has some advantages over both of
them. First, the SS-ARX model can provide the information
with extraction of driving primitives, but the HMM cannot.
Second, when it comes to the discrete modes, the SS-ARX
may show unique advantages over the standardHMM.Third,
NNM can obtain the parameters of driver characteristics;
however, the significance of them is not clear. Therefore
the SS-ARX model can present the part from the control
perspective with the switched controlled mechanism.

Since the piecewise polynomial (PWP) model or piece-
wise linear (PWL) model [46] includes both continuous
behavior given by polynomials and discrete logical condi-
tions, it can be regarded as a class of hybrid dynamical system
(HDS). Amodeling strategy of humandriving behavior based
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Figure 7: The SS-ARX model (three modes) [21].

on the controller switching model with focus on driver’s
collision avoidance maneuver was presented by Kim et al.
[47, 48]. This model was expressed by PWP or PWL model,
and the driving data (acceleration, braking, steering, etc.)
are collected by using a three-dimensional driving simulator
(3D-DS) based on CAVE. In this model, the driver’s collision
avoidance maneuvers are divided into four piecewise modes:
the first period of avoidance, the second period of avoidance,
the first period of recovery, and the second period of recov-
ery. Subsequently, the parameters of every piecewise mode
were identified using the mixed integer linear programming
(MILP) techniques.

In [49], Michon held that driver model tasks should
probably best be further classified into three hierarchies of
skill from the driver’s control perspective.

(1) Strategical (Planning) Level. This level can be treated
as decision-making level from long-term perspective, such
as the choice of trips goals, route, and driving model. For
instance, taking cosiness and fuel-saving into consideration,
drivers will choose to drive on roads in good traffic condi-
tions.

(2) Tactical (Maneuvering) Level. In this level, the controlled
action patterns, such as obstacle avoidance and overtaking,
should be considered, and this level only takes up a few
seconds.

(3) Operational (Control) Level. This level is defined from
the point of view of control including steering, braking, and
accelerating control. The automatic action patterns can be
derived from this level.

Based on the three levels, a hybrid dynamical system
(HDS) [50] with two parts (i.e., decisionmaking andmotion-
control) included was proposed and designed by Kiencke
et al. in 1998. The HDS can be illustrated by Figure 8, which
consists of (continuous) primitive and (discrete) switching
driving operations [51, 52]. Since the HDS was proposed,
most researches of HDS (see, [47, 53–60]) have been made.
In [51], a driving behavior model was developed based on the
HDS, and a piecewise ARX (PWARX) model was established
using driver’s sensory information (e.g., the range between
vehicles, range rate, and time derivative of the area of the back
of the preceding vehicle) and the output of driver behavior,
such as pedal operation. The parameters appearing in the
primitive (continuous) and switching (discrete) operations
can precisely be identified by using the PWARX model,
allowing for the developed model to be used to design the
advanced driver assistance systems that can switch between
multimodels [53] in the HDS. However, the PWARX model
cannot distinguish the overlapping modes explicitly, which is
the first step to recognize driver model.

To address the issue mentioned in [51], Okuda et al.
[61] have proposed a probability-weighted ARX (PrWARX)
model, wherein the probabilistic weighting was given a
crucial consideration. The difference between PWARX and
PrWARX is that the deterministic partition in the PWARX
model is replaced by softmax function:

𝑃
𝑖
=

𝑒
𝜂
𝑇

𝑗
⋅𝜑𝑘

∑
𝑠

𝑗=1
𝑒
𝜂
𝑇

𝑗
⋅𝜑𝑘

, 𝜂
𝑠
= 0, (6)

where 𝜂
𝑖
, 𝑖 = 1, 2 . . . , 𝑠−1 is used to represent the probabilistic

partition between regions corresponding to each mode. By
introducing the probability-weighted concept, the decision
entropy can be defined and applied to describe the vagueness
in the switching operation, as well as being used as a
verification index of the model.

In [62], an approach to recognize driver’s driving manip-
ulation skill is presented based on the HDS model. Differ-
ent from the previous ones, HDS is treated as a hinging
hyperplane autoregressive exogenous (HHARX) model in
which each continuous submodel deals with its related
manipulation model, and meanwhile, discrete model can
switch between all submodels. Then, the parameters of HDS
were identified by using a mixed-integer linear programming
(MILP)method. Lastly, the identificationmodel is embedded
into a microcontroller to design an automatic driving system
[63] with real-time image collection and processing.

Generally speaking, driving can be considered as a
dynamic behavior, and the parameters of driver model might
change with driving conditions and driver’s psychologi-
cal/physiological state. Hsiao [64] thought that the previous
methods, such as ARX, ARMAX, and HMM, are mostly
based on the linear time invariant (LTI) system, which can
only be an approximation of driver behavior for a short
time. Therefore, the LTI system may not recognize the time-
variant parameters precisely. In response to this issue, a
time-varying system identificationmethod (i.e., time-varying
ARX) has been developed by Tesheng Hsiao using maximum
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a posteriori estimation, and the model can be described as in
the following equation:

𝑦 (𝑘) = −

𝑛𝑎

∑

𝑖=1

𝑎
𝑖
(𝑘) 𝑦 (𝑘 − 𝑖) +

𝑛𝑏

∑

𝑗=0

𝑏
𝑗
(𝑘) 𝑢 (𝑘 − 𝑗 − 𝑛

𝑘
) + 𝜀 (𝑘) ,

(7)

where 𝑦(𝑘) and 𝑢(𝑘) are output and input sequences, respec-
tively, 𝜀(𝑘) is the process noise, and 𝑎

𝑖
(𝑘), 𝑏

𝑖
(𝑘) are the system

parameters required to be identified.
HDS can clearly describe driver model or driving task,

and one of its crucial issues is how to recognize the distinct
state of driving operation from driver behavior and to
determine the number of the state. In [51], the hierarchical
clustering method was applicable to estimating the number
of state, and then a stochastic piecewise affine (PWA) model
was developed by Okamoto et al. [52].

4. Evaluation and Verification Based on
Driver Model

This section addresses the evaluation and verification of vehi-
cle handling qualities and advanced driver assistance systems
based on the driver model from the control perspective.

4.1. Handling Qualities Evaluation. The concept of handling
quality is first explained via the field of aerospace engineering
[65] and is later applied to land vehicle design and evaluation.
Harper [65] discusses the assessment of handling quality
characteristics since handling quality deals with more than
one element. Accordingly, an airplane and its pilot were
represented in order to assess handling quality. In the case
of driving a car, the car and its driver are incorporated into
the system in the same manner. Therefore, when evaluat-
ing the handling quality, the driver should be taken into
consideration. Conventionally, handling quality evaluation
can be classified into objective handling quality evaluation
and subjective handling quality evaluation which is made by
observing the dynamic characteristics of the automobile and
driver, respectively. A subjectivemethod based on the driver’s

comments can be used to evaluate the handling quality
in a relatively precise way, but this method requires many
actual driving tests that include every design parameter. Fur-
thermore, these evaluations might differ between different
test drivers. Especially while evaluating each driver’s limit-
maneuver handling behavior, this is very dangerous for the
test-takers.

Since the 1990s, researchers began studying driver steer-
ing dynamics models that could replace test drivers. In
[66], a control theoretic model of driver steering dynam-
ics is developed and demonstrated to be able to produce
driver/vehicle steering responses and compares favorably
with those obtained from driver simulations. Using the
theoretical model of driver steering dynamics, engineers who
may not be experts in manual control are enabled to evaluate
handling or maneuverability.

Driving style, behavior, and skill might vary for different
drivers causing evaluation criteria to be diverse and in turn
sharply reduce confidence of the handling quality indexes.
Therefore, it is imperative to define driver characteristics as
a criterion for handling objective evaluation. Reference [67]
states that a parametric driver model for ISO lane change
simulation was developed using the decreasing parameters
dispersion method by Carlol et al.

Similar to [67], while making a subjective evaluation of
handling quality, a multiloop structure of closed-loop driver-
vehicle systems including a multi-input driver model was
developed by Horiuchi et al. [68]. In this driver model, the
inputs are the lateral position error 𝑦

𝑒
and the yaw angle 𝜑,

with output being the steering angle 𝛿. To characterize driver
dynamics accurately, the three essential factors of time lag
𝑒
−𝜏𝑠

/(𝑇
1
𝑠 + 1), predictive action (𝑇

𝐿
𝑠 + 1), and proportional

action 𝐾 have been taken into consideration. The driver
model can be described by the following equation:

𝛿 = 𝑦
𝑒
[𝐾
𝑦
(𝑇
𝐿𝑦
𝑠) + 1] − 𝜓[𝐾

𝜓
(𝑇
𝐿𝜓
𝑠 + 1)

𝑒
−𝜏𝑠

𝑇
1
𝑠 + 1

] . (8)

Subsequently, an analytical approach to subjectively rate
handling quality of actively controlled vehicles is discussed
and applied to the evaluation of the handling quality of four-
wheel steering vehicles. Here, the three principle factors of
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the objective function, that is, the task performance 𝐽
1
, the

driver’s mental workload 𝐽
2
, and his or her physical workload

𝐽
3
, are considered. The results show that this method not

only can be applicable to the prediction of the subjective
evaluation of handling quality, but is also able to characterize
driver-vehicle systems.

By analyzing the driver’s characteristics and incorporat-
ing them into the closed-loop road-vehicle-driver test system
(Figure 9), a cost function of the handling quality that can
be used to estimate the handling quality analytically from
the vehicle’s dynamics is constructed [69]. Three crucial
characteristics of driver handling are obtained with the
driver-in-the-loop systembyMiura et al. and are (1) the driver
model’s response to the yaw rate has a strong connection
with the evaluation of handling quality, (2) different road
conditions such as road radius and profile, could result in the
drivers having different frequency responses, and (3) there are
no notable differences in how each driver operates between
driver and vehicle dynamics even though automobile dynam-
ics are different. Based on the aforementioned characteristics,
a benchmark driver model has been built and is applied
to the handling quality rates in the absence of the driving
experiment.

This approach uses two driver models (i.e., transfer
function, 𝐻

1
(𝑠), 𝐻

2
(𝑠)) to represent the human control with

the inputs 𝑒
𝑦
and 𝑒
𝑟
and the outputs 𝛿

𝑓1
and 𝛿
𝑓2
. In Figure 9,

𝐻
1
(𝑠) and 𝐻

2
(𝑠) are the steering responses to the lateral

displacement𝑦 and yaw rate 𝑟, respectively. Correspondingly,
𝑒
𝑦
, 𝑒
𝑟
are the deviations between the reference value and the

actual value; 𝑃(𝑠) is the transfer function of a simple four-
wheel nonlinear passenger automobile model applied as a
vehicle model.

Because drivers can adapt themselves to the handling
characteristics of the vehicle during a drivingmaneuver, their
steering behavior reflects the vehicle’s handling characteris-
tics and plays an important role in the evaluation of handling
quality. In [70], an approach to evaluate vehicle-handling
quality based on steering characteristics is presented; wherein
the steering characteristics were identified by a simple driver
model using the relationship between the time histories of
steering behavior and vehicle motion during lane change.
The study presented a closed-loop driver-vehicle system
(Figure 10), with𝐻(𝑠) and𝑃(𝑠) representing the driver model
and the vehicle model correspondingly. A resulting transfer
function of steering angle to lateral position error during
a lane change is used as the driver model 𝐻(𝑠) with the
deviation of lateral displacement Δ𝑦 = 𝑦

0
− 𝑦 as the input

and the steering angle 𝛿
ℎ
as the output and can be described

as

𝐻(𝑠) = 𝐺
ℎ

1 + 𝜏
ℎ
𝑠

1 + 𝑇
ℎ
𝑠
, (9)

where the driver steering parameters 𝐺
ℎ
, 𝜏
ℎ
, and 𝑇

ℎ
are

steady-state gain, the derivative term of differential control,
and the time constant of the first-order lag, respectively.

4.2. Evaluation and Verification of Driver Assistance Systems.
Similar to the evaluation of handling quality, it is necessary
to evaluate and verify the DAS with the human driver in

the closed loop. Reference [71] presents two newly developed
driver models, which are applied to evaluating the impact of
ACC vehicles on traffic flow and the effect of a vehicle stability
control (VSC) systemon possible vehicle roll prevention.One
of driver models is the modified Gipps model which is used
for evaluating the ACC, whereas the othermodel is applied to
the evaluation of active safety systems based on the adaptive
plant inversion concept. In its accompanying paper [72], a
longitudinal human driver model (i.e., the modified Gipps
model) used for performance evaluation of the ACC system
on highway traffic from the microscopic and macroscopic
traffic perspective was developed and simulated by Lee and
Peng.

The majority of DASs can release drivers from some
secondary tasks during driving and improve on safety, com-
fort, and performance. Notwithstanding, the driver might be
confused, annoyed, and distracted, if he or she is sensitive
to the monitoring and the excessive detection or frequent
warning of DASs. For this reason, a driver model used to
evaluate DSAs that can precisely mimic human driving is
required so as to consider mistakes committed by human
drivers. To achieve this, in [73, 74], an errorable driver model
(Figure 11) was developed to evaluate both the collisionwarn-
ing and collision avoidance algorithms. The errorable driver
model can generate both nominal (error-free) and devious
(with error) behavior like in humans. Three common driver
mistakes, namely, human perceptual limitations, distractions,
and time delay were considered in establishing this errorable
driver model.

Numerous driver models can be applied to the vehicle
design process and to the evaluation or verification of active
safety systems. Most of them are designed with the average
(general) or atypical driver in mind and thus are unable to
represent individual characteristics. This is illustrated by the
fact that the DASs assessed by the universal driver model
and its results show that the DASs are suited most for the
common driver, but not the individual. In the case of an
anxious and impulsive driver, the DASs might give warnings
too frequently resulting in the driver getting bored with
the DASs and accordingly decrease his or her situational
awareness, comfort, and safety and ultimately increase the
driver’s workload. Hence, a driver model that can effectively
characterize individual driving behavior, skill, and styles
should be further developed and applied to the evaluation
and verification of active safety systems.

5. The Advanced Vehicle System Embedded
with Driver Characteristics

The ideas previously discussed show that recognizing the
characteristics of driver’s driving behavior/skill/state are vital
to the drivers’ safety, vehicle design, fuel efficiency, and
vehicle ergonomics. Driving is a complex task which should
be executed with several nonlinear subsystems such as the
human driver, surrounding vehicles, driving environment,
and electronic control systems. It is widely known that a
normal/experienced driver can adapt to different vehicle
systems and/or driving environments in a short period of
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time by adjusting his or her nerve (neuromuscular) units.The
human driver can develop an optimal route by taking into
account long or short periods and change the throttle/brake
position and steering wheel angle according to the collected
real-time information and instantaneously adjust the vehicle’s
position or velocity and decrease the deviation between
reality and expectation. In other words, after perceiving and
processing the driving situation, the driver can select process
control rules suitable for the situation that allow him or her
to manipulate the vehicle’s controls in a manner that satisfies
the driver’s control objectives even in different scenarios.

Most research on how drivers adjust various dynamic
vehicle systems to adapt with their driving environments was
conducted from the standpoint of psychology andphysiology.
To lighten the workload of drivers and in turn reduce the
occurrences of traffic accidents, the idea of assisting drivers
on the road was proposed for which the various driver assis-
tance systems were subsequently developed. Even though the
DAS can alleviate the driver’s workload, there is still a chance
of it having a negative effect on the driver-vehicle systems
due to the disharmony or adverse interactions between the
driver and the assistance systems under certain conditions;
in conventional car systems, most of the DASs are electronic
control systems with invariant design parameters. As it is not
hard to imagine a novice driver benefitting more from the
early intervention of a power-assisted steering system than an
experienced driver [8], the intelligent driving assistance sys-
tem (IDAS) or the advanced driver assistance system (ADAS)
was developed. In the IDAS or ADAS, driver characteristics
are embedded into both the longitudinal control and lateral
control. In [75], Fancher et al. researched on driver-vehicle
coordination before proposing the human-centered vehicle

system concept which has resulted in many similar theories
and models following soon after.

5.1. Longitudinal Control Based on Driver Characteristics.
With the rapid development of vehicle and traffic technol-
ogy, car following has become the most prominent driving
task, especially while driving on highways or urban roads
during rush hour, with the aim of maintaining a safe and
comfortable car-following state for the purposes ofmitigating
the workload of drivers, reducing the occurrences of traffic
accidents, and increasing traffic flow rate. Several DASs have
been developed based on driver characteristics from the
control perspective such as the adaptive cruise control (ACC),
stop and go (S&G), and forward collision warning/avoidance
(FCW/FCA).

Vadeby [76] has studied relative collision safety models
together with driver characteristics for ten years. The change
in consumer demand is reflected in the main design objec-
tives shifting from power and performance to safety, comfort,
and intelligence. Accordingly, researchers have focused more
on human characteristics and designed “human-centered”
automation or operations that account for the driver’s
expectations and automation goals. Despite being a sound
theory, it is still difficult to describe driving behavior to
arrive at a unique optimal multiattribute method for solving
problems including designing a “human-centered” controller
with these multiple attributes in mind. To address the issue,
Goodrich and Boer [77] developed a systematic method that
uses a multiattribute breakdown of human and automation
goals which has been subsequently applied to the design of
human-centered collision and accident avoidance systems
(CAAS).

Similar to [78], the human-centeredDASs includingACC
and FCW were also presented by Fancher et al. [75]. To
be human centered, DASs need to take vehicle dynamics
into account and match them with the driver’s physio-
logical, psychological, and other attributes. Various aspects
of human-centered DASs were also discussed, namely, the
looming effect, ruler-based and skill-based behavior, the
utilization of desired dynamics in controlling the driving
process, and braking rules or collision-warning rulers. After
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Figure 11: The diagram of the errorable driver model [73, 74].

which, the collected field-test data and on-road data were
used to evaluate and verify the human-centered DASs. This
paper makes great progress in explaining when and why a
driver makes a braking action. The author also points out
that answering the following basic questions about braking
might facilitate the development of human-centered DASs.
(1) When should braking occur or not occur? (2) What is the
control objective when driving? (3) How do drivers do it?

In [78, 80], to develop and verify a new automatic
advanced vehicle system integrated with human driver
characteristics, an instrumented vehicle test bed called the
Laboratory for Intelligent and Safe Automobiles-Q45 (LISA-
Q) was designed, after which, a collaborative approach for
developing human-centered DAS (e.g., ACC) was proposed
by McCall et al.

Though longitudinal control systems (ACC, FCW, etc.)
can be designed with driver characteristics taken into
account, some issues still exist. For example, owing to the
finite number of techniques and the incompatibility of sub-
systems, excessive, inaccurate, or contradictory information
might be transmitted, causing advanced vehicle systems to
disturb, distract, or even overwhelm the driver. In [81], Zheng
and McDonald raised the question on whether “drivers’
expectations can bematched”.They rightly pointed out that at
present, no existing ACC system can deal with the full range
of complex traffic situations in practice and that humans
should act only as a “monitor” in ACC equipped driver-
vehicle systems. When a driver’s expectations are breached,
for instance, he or she will make interferential actions
between his or her intentions and the ACC’s capability. The
best DAS system is not the one most capable of following
traffic but the system that considers both comfort and safety
characteristics the most. In order to improve the compati-
bility between ACC performance and driver’s expectations,
a large number of situations have been tested by changing
variables systematically such as the parameters of the ACC
algorithms, traffic scenarios, and time-headway settings. The
results reveal that an appropriate ACC setting capable of
meeting a driver’s expectations can be found and that the
ACC setting most adept in a range of traffic conditions may
not necessarily be the most user-friendly.

Road conditions such as road profile and road fric-
tion coefficient might have great influence on the driver’s
characteristics and the driver-vehicle systems. To deal with
the problem of rear-end crashes of moving and parked
vehicles, Nakaoka et al. [82] conducted further research
on forward collision warning systems (FCWs) that took
into account road conditions (dry and wet) and individual
driver characteristics. Time to collision (TTC) is usually used
to evaluate the severity of a forward collision as the host
vehicle approaches another vehicle from the front and can be
calculated by

TTC =
𝑋
𝑙
− 𝑋
𝑓

𝑉
𝑙
− 𝑉
𝑓

, (10)

where 𝑋
𝑙
and 𝑋

𝑓
are the positions and 𝑉

𝑙
and 𝑉

𝑓
are the

velocities of the leading and host vehicles, respectively. The
formula states that the TTC is related to both the host and
leading vehicles; therefore, using it to characterize individual
drivers may be unreasonable. In [82], the timing of a driver’s
braking reaction time is used as a proxy for hazardous level
instead of the traditional TTC.

Most driver behavior models applied to the automobile
are limited to the single driving task, such as lane keeping and
car following. In [79], in order to integrate individual driver
characteristics into driver assistance, the state transition fea-
ture for individuals are taken into account, more specifically,
the five categories involved in longitudinal driving situations
of car following, braking, free following, decelerating, and
stopping. Longitudinal vehicle dynamics driving data such
as acceleration and braking was collected. By classifying the
longitudinal driving situations into five parts and adopting
the boosting sequential labeling method, the framework
for driver-vehicle-environment (Figure 12) can be modeled
allowing for the characterization of the driver state, followed
by the design of advanced and personalized driver assistance
systems.

Reference [83] describes a longitudinal driver model
designed to embed individual driver characteristics into an
advanced driver assistance system that is mainly applied to
simulating throttle and braking operations. In this driver
model, a genericmodel is developed based on the driving data
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Figure 12: State flow diagram of the driver model with longitudinal driver-vehicle dynamics [79].

(e.g., the longitudinal velocity, acceleration, throttle/braking
pedal pressure, and relative distance/velocity) collected under
real traffic conditions. Time headway (THW) and time to
collision (TTC)were then selected to analyze the longitudinal
driving behavior. Subsequently, the parameters of the driver
model were determined and identified in-time by using
the recursive least-square (RLS) self-learning algorithm with
a forgetting factor. Finally, an advanced automatic control
systems (Figure 13) embedded with driver characteristics was
designed and verified.

5.2. Lateral Control Based on Driver Characteristics. This
subsection discusses lateral control systems based on driver
characteristics.When the host vehicle is executing a following
or tracking task on the straight way, the longitudinal control
can be treated as the primary action to ensure that the
distance between the host vehicle and the leading vehicle is
safe enough. However, lateral control should be given great
consideration in the following scenarios.

(1) The First Case Is Curve Driving. Before driving onto a
curved road from a straight path or from one curved path
to another, the driver usually decreases the vehicle’s velocity
before steering the wheel to track the curve road.

(2) The Second Is Lane Change. For instance, when a driver
wants to overtake on the highway, lateral control is a vital for
guaranteeing the host vehicle’s safety in traffic flow.

(3) The Third Situation Is the Avoidance of Collisions. If the
leading vehicle makes abrupt stop or if a person suddenly
appears in front of a fast moving vehicle, the driver will
most likely initiate some form of action to prevent a collision
from happening, be it quickly steering the vehicle away or
slamming on the brakes.

As seen from the abovementioned cases, steering wheel
control is crucial for keeping the driver safe. In order to
improve road tracking performance and relieve a driver’s
workload, the electric power steering (EPS) embedded
with driver’s characteristics has been designed. In [84, 85],

the steering assistance systems (Figure 14) for driver char-
acteristics are presented with two controllers (guidance and
steering) designed based on the gain scheduled control
theory by Fujiwara and Adachi.

In the steering assistance systems, Δ𝐷 depicts driver
characteristics. The steering wheel angle 𝜃

𝑆
and the vehicle’s

steering torque 𝑇
𝑆
are considered as the characteristics of a

driver’s operation.
Driving an automobile can be considered as a closed-loop

control task executed by the human driver [1]. By modeling
and recognizing driver behavior based on driving data, the
characteristics of human driving behavior/skill/state can be
used for the advanced controller design of vehicle dynamics
systems embedded with the driver’s characteristics [79, 83–
85].However, humandriving behavior encompasses the char-
acteristics of randomness and uncertainty; hence, traditional
feedback control systems based on driver characteristics
may not completely represent the driver-vehicle system. To
accurately simulate the driver-vehicle systems as well as aid
in the development of more advanced driver-vehicle control
systems, other methods of advanced controller design might
be adopted, such as the robust static output feedback control
(SOF) [86],𝐻

∞
step tracking control [87], robust𝐻

∞
sliding-

mode control (SMC) [88], and the networked predictive
control [89].

When driving from one curve onto another especially
at high speeds, the vehicle might reach its handling limit
and could lead to a rollover accident. With vehicle stability
control as a key consideration, an intelligent personal minder
(IPM) system (Figure 15) has been developed [90]. This
vehicle control system contains an IPM system that is able to
provide timely and clear advisory information to the driver.
When certain parameter values of the vehicle are close to the
vehicle’s handling limit or the defining relative handling limit
margin ℎenv = min{ℎOS, ℎUS, ℎTCS, ℎABS, ℎSSRA}, the IPM will
provide a timely warning to the driver, where ℎOS and ℎUS
are vehicle’s yaw handling limit margin during oversteer and
understeer situation respectively, ℎTCS and ℎABS are the ABS
and tracking handling limitmargins, respectively, andℎSSRA is
the vehicle’s sideslip handling limit margin. According to the
ℎenv, a driver’s adaptive styles in handling the vehicle under
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various driving conditions can be characterized in real-time
with the control parameters adjusted correspondingly to the
different driving styles; notwithstanding, this method should
only be applied to long term rather than short term advisory.
As driving skills can be used as a short term reference for
adjusting the parameters of the DAS or ESC, it needs to be
defined.

Similar to [91], for the purpose of improving the elec-
tronic system’s intelligence and flexibility thus allowing it
to better recognize the driver’s expectations or intentions,
three modes to characterize the driver’s behavior or styles
(aggressive and cautious behavior) were discussed based on
the driver-in-the-loop system (Figure 16) established by Filev
et al. [91].

(i) Characterizing Unstructured Driver Behavior. From the
long-term perspective, longitudinal vehicle control might be
primarily affected by the driver’s behavior or driving styles,
but not the vehicle dynamics response. It is usually con-
ditionally applied to the unconstrained driver by detecting
the brake pedal position or the rate change followed by
making the corresponding adjustments to the variables of
the vehicle; this is positive to the vehicle’s fuel efficiency
and acceleration performance. Statistical mathematics and
probability theory are usually adopted in the process of
characterizing unstructured driver behavior.

(ii) Characterizing Semistructured Driver Behavior. In this
method, part signals of the electronic control systems can be

used as the feedback information with the driving task being
constrained, for example, car following, double lane change,
and collision avoidance. The fuzzy control theory might be
used in the course of recognizing driver behavior.

(iii) Characterizing Structured Driver Behavior. In order to
fully utilize the vehicle’s dynamic feedback information from
the control theory point of view, the driving task should
be described in more detail with the driver treated as a
controller in the driver-in-the-loop system. To elaborate, the
demanded safety distance between the host vehicle and the
leading vehicle, the relative velocity of vehicles, and the TTC
for car following might be used as the controller inputs.
Since the driver models are structured under some fixed
driving conditions, the classical control theory methods can
be applied to themodeling or recognition driver behavior and
skills.

Although numerousmathematicalmethods and concepts
can be used to establish drivermodel to seamlessly coordinate
driver and the electronic control system (ESC, DAS, ACC,
IPM, etc.), further research needs to be made as there are still
some issues left unaddressed.

(1) A Systemwith LowerOrder andHigher Accuracy. To design
more intelligent and human-friendly vehicle’s dynamic sys-
tems embedded with driver characteristics, driver mod-
el structures with greater accuracy but at the same time
minimalistic and capable of both high-level cognitive pro-
cessing and low-level operative control should be developed.
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(2) Traffic Factors Should Be Considered. The various research
studies we have discussed in this paper were only of human-
vehicle interaction/cooperation and did not consider driving
environment.When a driver is driving, the driver, the vehicle,
and traffic factors can be treated as a closed-loop system, in
which the traffic factors (e.g., weather condition, pedestrian
behavior, the traffic light, and road conditions) have great
influence on a driver’s behavior. Therefore, we recommend
that the relationships of vehicle to vehicle (V2V), vehicle to
infrastructure (V2I), and vehicle to the external environment
(V2E) to also be explored and studied further.

(3) Seamless Coordination between Vehicle and Driver Char-
acteristics. The intelligence, reliability, and comfort provided
by the seamless coordination between vehicle and driver
characteristics can be improved on by introducing advanced
mathematical methods, control theories, and system iden-
tification methods into the modeling and recognition of
driver behavior and skills. Even though the concepts of
“human-centered” and “driver-aware” vehicle systems have
been proposed, the advanced ESC might impede on the
driver’s expectations and control due to inaccurate system
identification as well as the influence of unstructured uncer-
tainty models (e.g., additional uncertainty due to unmodeled
dynamics).

6. Conclusions

The reviewed articles reveal a wide range of mathematical
methods of modeling and recognition of driver charac-
teristics which can be used to improve vehicle’s dynamics
performance, decrease driver’s workload, and develop more
intelligent driver assistance systems. Modeling and recog-
nition of driver behavior/skill/state have great important
significance in many fields, such as active safety systems,
intelligence transport systems, and smart car systems. Most
of the researches proposed in this paper have their focus on
driver assistance systems and active safety systems, and their
goals can be classified roughly as follows: (1) to put driver
model in simulators with aim to evaluate and verify driver
assistance systems; (2) to put driver model in simulators
in order to recognize driver’s driving behavior/skill/state in
certain task (e.g., lane change, collision avoidance, and haste
braking); (3) to be concern on about whether the human
driver can fit to the vehicle systems or not by modeling and
analyzing driver behavior; (4) to characterize driver’s driving
skill/state/styles with driver model.

This paper shows that numerous driver models have
been developed from different perspectives by using various
identification methods, and the characteristic parameters
of driver’s driving behavior/skill/state are not the same for
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different driving tasks and situations. Some methods may
seem to bemore efficient than others for certain driving tasks
and situations described in this paper, but these methods
might be not the best for other driving tasks. Therefore,
some issues still exist, for example, which parameters and
driving situations aremore sensitive to driver’s driving behav-
ior/skill/state, that is, how to characterize the human driver
more exactly, easily, and quickly?Hence, further researchmay
be conducted as in the following aspects.

(1) The driver model which can accurately describe all
the individual driver’s behaviors for different driving
tasks and situations should be developed.

(2) The advanced mathematical methods which can pre-
cisely and quickly characterize driver behavior and
skill may be introduced and developed.

(3) The advanced control theory should be seamlessly
coordinated with driver characteristics.

In addition, driver’s psychological and physiological fac-
tors which are rarely discussed in this paper are crucial to
driver models; hence, more and more researchers may show
interests in modeling and recognition of driver behavior in
the future.
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The nonlinear vibrations of cable in a multispan cable-stayed bridge subjected to transverse excitation are investigated. The MECS
(multielements cable system) model, where multielements per cable stay are used, is built up and used to analyze the model
properties of the multispan cable-stayed bridges. Then, a simplified two-degrees-of-freedom (2-DOFs) model, where the tower
or the deck is reduced to a beam, is proposed to analyze the nonlinear dynamic behaviors of the beam and cable. The results of
MECS model analysis show that the main tower in the multispan cable-stayed bridge is prone to the transverse vibration, and the
local vibration of cables only has a little impact on the frequency values of the global modes.The results of simplifiedmodel analysis
show that the energy can be transformed between the modes of the beam and cable when the nature frequencies of them are very
close. On the other hand, with the transverse excitation changing, the cable can exhibit richer quasi-periodic or chaotic motions
due to the nonlinear terms caused by the coupled mode between the beam and cable.

1. Introduction

Recently, as use of multispan cable-stayed bridges increases
continuously, the real local vibration features of inclined
cables and coupled oscillation characteristics between the
cable and the bridge is becoming a new topic in the design
process.The stabilization of the central towers under extreme
wind or seismic vibration is a key issue, since they cannot be
anchored to an outer fixed support. One solution is to use
the stabilizing cables which run from the top of the central
towers to a location on the deck near the side towers, such
as the Ting-Kau Bridge in Hong Kong. Another solution is
to increase the stiffness of the central towers itself, and most
multispan cable-stayed bridges adopt this way, such as the
Maracaibo Bridge in Venezuela, the Millau Bridge in France,
the Mezcala Bridge in Mexico, the Dong-Ting Lake Bridge,
the Yi-Ling Bridge, and the Bin-Zhou Bridge in China.

Ni et al. [1] investigated the effect of stabilizing
cables on the seismic response of Ting Kau Bridge based on

a validated 3D finite-element model. He et al. [2] investigated
the influences of cable local modes and stabilizing cables
for the Dong-Ting Lake Bridge on seismic excitation. Liu
[3] investigated the seismic performance of rigid system,
floating system, and passive energy dissipation system
for the Bin-Zhou Bridge under two different earthquake
records. In order to evaluate the stability of the main towers
of Millau Bridge, Okamoto and Nakamura [4] proposed
a new hybrid high tower and investigated their static and
seismic behaviors. Most of the above studies focused on the
stabilization of central towers, and little attention has been
devoted to investigating the effects of cable vibration on the
properties of tower or deck under transverse excitation.

On the other hand, all the above researchers used the
finite-element (FE) model to investigate the stabilization of
towers by taking the specific project as a paradigm. From
the perspective of the coupled vibration between cable and
tower (or deck), Fujino et al. [5] presented a 3-DOFs ana-
lytical model to investigate the auto-parametric interaction
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behavior of cable and beam structure, the case which under
a random excitation is firstly studied by Xia et al. [6, 7].
The results show that the horizontal motions of the cable
and beam are excited due to the autoparametric nonlinear
coupling behavior under some cases. Caetano et al. [8, 9]
studied the dynamic interactions between the cable and deck
or tower in cable-stayed bridges by physical modelling and
experimental testing. Georgakis and Taylor [10, 11] presented
an alternative cable-deck model to investigate the nonlinear
dynamics of an inclined cable which both induced by sinu-
soidal and stochastic support excitations.The different cable-
deck interactions of the Guadiana Bridge under environmen-
tal excitations were investigated by Caetano et al. [12], using
the vibration data acquisitions and a refined finite element
model. However, few studies focus on the nonlinear vibration
of the cable-tower (or beam) coupled system subjected to
transverse excitation.

The objective of this paper is to study the nonlinear vibra-
tions of cable in a multispan cable-stayed bridge subjected
to transverse excitation. Taking the Bin-Zhou cable-stayed
bridge (BZB) as a paradigm, the MECS model, where multi-
elements per cable stay are used, is firstly built up and used to
investigate the effects of the cable’s vibration on the properties
of the BZB. Then, the possibility of the transverse resonance
between the local model (cable) and global model (tower or
deck) is analyzed. Based on the results of the above studies,
a simplified 2-DOFs model, where the tower or the deck is
reduced to a tower (or beam), is proposed to analyze the
nonlinear coupled vibration of the cable and tower (or beam).
The coupled relationship is completely from the dynamic
interactions between the cable and tower (or beam). After
that, the equations of motion are solved by using Galerkin’s
method for the spatial problems and the method of multiple
time scales for temporal problems.The stability of the steady-
state solution is examined. Finally, the nonlinear behavior
of the cable and tower (or beam) is analyzed by using the
time histories, phase portraits, and Poincare maps with the
transverse excitation changing.

2. Vibration Properties of the Multispan
Cable-Stayed Bridge

2.1. Outline of the Bin-Zhou Cable-Stayed Bridge. The BZB,
as shown in Figure 1, is a three-tower cable-stayed bridge
with two main spans of 300m and two-side spans of 84m
each. The bridge deck is separated into two carriageways
with a width of 13.75m each. There are two minor towers
with heights of 75.78m in both sides and a main tower with
a height of 125.28m in the center. It has a unique feature
that there is no horizontal component connecting the towers.
The carriageways consist of two longitudinal pre-stressed
concrete box girders with a length of 767.1m and a height
of 3m. Along the deck edges, there are cross-girders at 7m
and 6m intervals for the main span and two side spans,
respectively. The locations of cables are consistent with the
cross-girders. The bridge deck is fixed at main towers, but
linked at the minor towers and two end abutments.There are
200 main stay cables anchored to the towers with intervals of

2m (partial 2.5m). Shown as Figure 1, from left to right the
cables anchored to the left minor tower, the main tower and
the right minor tower are named as A1∼A12, N1∼N26 and
J1∼J12 respectively.

The 3-D FE model of the BZB is established in ANSYS,
as shown in Figure 2. The bridge members, girders, towers,
and deck are simulated by spatial beam or shell elements with
six DOFs at each node, respectively. In order to reflect the
influence of cable vibration, the cables are simulated by spatial
spar elementswith 3-DOFs at each node; each cable is divided
by a length of 6m. As a result, the FE model involves 7696
nodes and 7514 elements.

2.2. ModalAnalysis. Based on the aforementioned criterions,
the natural vibration frequencies and global modes are
examined by using OECS (one-element cable system) and
MECS models. The frequencies and mode shapes of the first
10 modes of OECS model and the first 300 modes of MESC
model are computed. Among the latter ones, the maximum
frequency is up to 1.598Hz, and over 85% of modes are pure
cable local vibration modes. This property is similar to the
Ting Kau Bridge [1, 13].

According to the same global mode shapes, Table 1 shows
a comparison of the natural frequencies of the OECS and
MESC models. From Table 1, the first mode of the BZB is
predominantly vertical bending, which differs from most of
the cable-stayed bridges. This phenomenon can be attributed
to the semifloating system adopted in the BZB.The vibration
frequencies of the first 10 global modes of MECS model
have minor difference to the OECS model and have a max
difference of 3.24% in 5th mode and −0.476% in 2nd mode.
Moreover, the increase in frequencies is related to the deck
and the decrease is related to the towers. These results differ
from the conclusion given by Wang et al. [14]. The tower
modes also have a larger proportion in the first 10 global
modes of the BZB, andmost of them are the lateral vibrations,
as seen in Figure 3. Itmay be explained by the fact that the lack
of the horizontal component between the towers makes the
overall performance of the BZB very poor in the transversal
direction. Compared to the OECSmodel, as seen in Figure 3,
theMECSmodel can offer all the vibrationmodes of the BZB
including the global coupled modes and the local modes of
cable stays.

2.3. Possibility of the Transverse Resonance between the Local
Model and Global Model. Table 2 shows the relationship
between the natural frequencies of the global modes and
part of the cables in the BZB. It is seen that the transverse
coupled vibration between the tower and cable due to the 1 : 2
or 1 : 1 internal resonance mechanism are possibly to occur.
For example, the natural frequencies of cables N23, N24, N25,
N26, and N13, N14, N15 are in the one times or two times
vicinity of the natural frequency of the 2nd lateral bending
mode, respectively. On the other hand, the minor tower and
cables also occur the transverse coupled vibration, such as the
7th, 8th, 9th, and 10th lateral bendingmodes for the cables A9
and J8.
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Figure 1: View of the Bin-Zhou Bridge (cm).

3. Simplified Model

3.1. Equations of Motion. In this section, the coupled vibra-
tions between the cable and tower of the BZB under
transverse excitation have been investigated by a simplified

2-DOFs model, in which the tower is reduced to a beam.The
simplifiedmodel consists of a beam and a cable, each of them
fixed at one end and attached to the other end as considered in
Figure 4.The beam is considered as an Euler-Bernoulli beam
and the cable is simulated ignoring the bending, torsional,
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Figure 2: FE model of the Bin-Zhou Bridge.

(a) The 2nd-order mode shape (b) The 42th-order mode shape

(c) The 57th-order mode shape (d) The 69th-order mode shape

Figure 3: The lateral mode shapes of the MESC model.

Table 1: Comparison of natural frequencies for the first ten global modes.

Mode order OESC (Hz) MESC (Hz) Structural component Description (MESC)
1 0.2725 0.2756 Deck Antisymmetric vertical bending
2 0.2939 0.2925 Main Tower Lateral bending
3 0.2961 0.2947 Main Tower Longitudinal bending
4 0.4429 0.4470 Deck Torsional bending
5 0.5424 0.5600 Deck Symmetric vertical bending
6 (41) 0.6592 0.6686 Deck Antisymmetric vertical bending
7 (42) 0.6737 0.6714 Minor tower 1, 2 Lateral + longitudinal bending
8 (56) 0.6748 0.6728 Minor tower 1, 2 Longitudinal bending
9 (57) 0.6996 0.6972 Minor tower 1, 2 Lateral bending
10 (69) 0.6996 0.6972 Minor tower 1, 2 Longitudinal + lateral bending
Note. The numbers in brackets are the mode order of the MESC model.
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Table 2: Cables which may take place of the transverse coupled vibration between the global mode and cable.

Mode number (OECS) Natural frequency (Hz) Cable number Natural frequency (Hz) Ratio

2nd 0.2939

N23 0.313 0.939 (1 : 1)
N24 0.310 0.948 (1 : 1)
N25 0.289 1.017 (1 : 1)
N26 0.271 1.085 (1 : 1)
N13 0.648 0.454 (1 : 2)
N14 0.554 0.531 (1 : 2)
N15 0.536 0.548 (1 : 2)

7th, 8th 0.6737 A9 1.392 0.484 (1 : 2)
J8 1.373 0.491 (1 : 2)

9th, 10th 0.6996 A9 1.392 0.503 (1 : 2)
J8 1.373 0.510 (1 : 2)

and shear rigidities behavior. In addition, the beam and cable
are assumed to be homogeneous and oscillate transversely
only in outplane.

Considering the previous assumptions, the equations of
motion for the simplified model are obtained by using the
extended Hamilton principle:
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where the symbols 𝑚
𝑏
and 𝑚

𝑐
are the mass per unit length

of the beam and cable, respectively; 𝐼
𝑏
and 𝐼
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are the lengths

of the beam and cable, respectively; 𝐸
𝑏
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the bending and axial stiffness of the beam and cable,

respectively; 𝐸
𝑏
, 𝐸
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are the Young’s modulus of the material;

𝐼
𝑏
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are the moment of area and cross-sectional area,

respectively; 𝑁 is the axial compressive load; 𝐻 is the initial
tension of the cable; 𝜉

𝑏
and 𝜉
𝑐
are the damping coefficient of

the beam and cable, respectively; Ω
𝑏
, Ω
𝑐
, 𝑃
𝑏
, and 𝑃

𝑐
are the

frequency and amplitude of the transverse loads, respectively;
𝑤
𝑏
is the beam transverse displacement at location 𝑥

𝑏
; and𝑤

𝑐

is the transverse displacement of the cable at location 𝑥
𝑐
. The

overdot indicates the differentiation with respect to the time
𝑡; the prime indicates the differentiation with respect to the
coordinate 𝑥.

The associated geometric and relevant mechanical
boundary conditions of the beam and cable are, respectively,
written as

𝑤
𝑏
(0, 𝑡) = 𝑤

𝑐
(0, 𝑡) , 𝑤

𝑏
(𝑙
𝑏
, 𝑡) = 0, 𝑤

𝑐
(𝑙
𝑐
, 𝑡) = 0,

𝑤


𝑏
(𝑙
𝑏
, 𝑡) = 0, 𝑤



𝑏
(0, 𝑡) = 0,

𝐸
𝑏
𝐼
𝑏
𝑤


𝑏
(0, 𝑡) = 𝜆𝑤

𝑏
(0, 𝑡) ,

(3)
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where the 𝜆 = 𝐸
𝑐
𝐴
𝑐
/𝑙
𝑐
denotes the out-of-plane supported

stiffness of the beam caused by the cable.
For convenience, a set of new variables and parameters

are defined as

𝜏 = 𝜔𝑡, 𝑥
𝑐
=
𝑥
𝑐

𝑙
𝑐

, 𝑥
𝑏
=
𝑥
𝑏

𝑙
𝑏

, 𝑤
𝑐
=
𝑤
𝑐

𝑙
𝑐

,

𝑤
𝑏
=
𝑤
𝑏

𝑙
𝑏

, 𝜉
𝑏
=

𝜉
𝑏

𝑚
𝑏
𝜔
, 𝜉

𝑐
=

𝜉
𝑐

𝑚
𝑐
𝜔
,

𝑃
𝑏
=

𝑃
𝑏

𝑚
𝑏
𝑙
𝑏
𝜔2
, 𝑃

𝑐
=

𝑃
𝑐

𝑚
𝑐
𝑙
𝑐
𝜔2
, 𝜌 =

𝑚
𝑐

𝑚
𝑏

,

𝜇 =
𝐸
𝑐
𝐴
𝑐

𝐻
, 𝜒 =

𝐸
𝑏
𝐼
𝑏

𝑙2
𝑏
𝐸
𝑐
𝐴
𝑐

,

𝛽
4

𝑏
=
𝜔
2
𝑚
𝑏
𝑙
4

𝑏

𝐸
𝑏
𝐼
𝑏

, 𝛽
2

𝑐
=
𝜔
2
𝑚
𝑐
𝑙
2

𝑐

𝐻
,

(4)

where 𝜔 is the natural frequency of the simplified model out-
plane. In the nondimensional form, (1a)–(3) become

̈𝑤
𝑏
+ 𝜉
𝑏
̇𝑤
𝑏
+

1

𝛽4
𝑏

𝑤


𝑏
+

𝜌𝑤


𝑏

𝛽2
𝑐
sin (𝜃)

+
𝜌𝜇𝑒 (𝑡)

𝛽2
𝑐
sin (𝜃)

𝑤


𝑏

= 𝑃
𝑏
cos (Ω

𝑏
𝑡) ,

(5a)

̈𝑤
𝑐
+ 𝜉
𝑐
̇𝑤
𝑐
−

1

𝛽2
𝑐

𝑤


𝑐
−
𝜇𝑒 (𝑡)

𝛽2
𝑐

𝑤


𝑐
= 𝑃
𝑐
cos (Ω

𝑐
𝑡) , (5b)

𝑒 (𝑡) = ∫

1

0

1

2
𝑤
2

𝑐
𝑑𝑥,

𝑤
𝑏
(0, 𝑡) sin (𝜃) = 𝑤

𝑐
(0, 𝑡) , 𝑤

𝑏
(1, 𝑡) = 0,

𝑤
𝑐
(1, 𝑡) = 0, 𝑤



𝑏
(1, 𝑡) = 0, 𝑤



𝑏
(0, 𝑡) = 0,

𝜒𝑤


𝑏
(0, 𝑡) = (

1

𝜇
+ 𝑒 (𝑡))𝑤



𝑐
(0) .

(6)

In this paper, only the first-order modes of the beam
and cable are considered. Therefore, based on the research
[15, 16], the transverse displacements𝑤

𝑏
(𝑥, 𝑡) and𝑤

𝑐
(𝑥, 𝑡) are

approximated by the transverse modes of the first order as
follows:

𝑤
𝑏
(𝑥, 𝑡) = 𝜓

1
(𝑥) 𝑝
1
(𝑡) , (7a)

𝑤
𝑐
(𝑥, 𝑡) = 𝜓

1
(𝑥) 𝑝
1
(𝑡) sin (𝜃) + 𝜓

2
(𝑥) 𝑝
2
(𝑡) , (7b)

where 𝜑
1
(𝑥) and 𝜑

2
(𝑥) are the mode shapes of the beam and

cable, respectively. Both of them have the following form:

𝜓
1
(𝑥) = 𝐴

1
sin (𝛽

𝑏
𝑥) + 𝐴

2
cos (𝛽

𝑏
𝑥)

+ 𝐴
3
sinh (𝛽

𝑏
𝑥) + 𝐴

4
cosh (𝛽

𝑏
𝑥) ,

(8a)

𝜓
2
(𝑥) = sin (𝜋𝑥) . (8b)

Using the Galerkin approach, substituting (7a) and (7b)
into (5a) and (5b), the nonlinear governing equations of

motion with 2-DOFs for the simplified model are obtained
as follows:

̈𝑝
1
(𝑡) + 𝜉

1
̇𝑝
1
(𝑡) + 𝑎

1
𝑝
1
(𝑡) + 𝑎

122
𝑝
1
(𝑡) 𝑝
2
(𝑡)
2

+ 𝑎
112
𝑝
1
(𝑡)
2
𝑝
2
(𝑡) + 𝑎

111
𝑝
1
(𝑡)
3
= 𝑓
𝑏
cos (Ω

𝑏
𝑡) ,

(9a)

̈𝑝
2
(𝑡) + 𝜉

2
̇𝑝
2
(𝑡) + 𝑑

1
̈𝑝
1
(𝑡) + 𝑑

2
̇𝑝
1
(𝑡) + 𝑏

2
𝑝
2
(𝑡)

+ 𝑏
112
𝑝
1
(𝑡)
2
𝑝
2
(𝑡) + 𝑏

122
𝑝
1
(𝑡) 𝑝
2
(𝑡)
2
+ 𝑏
222
𝑝
2
(𝑡)
3

+ 𝑏
1
𝑝
1
(𝑡) + 𝑏

111
𝑝
1
(𝑡)
3
= 𝑓
𝑐
cos (Ω

𝑐
𝑡) ,

(9b)

𝑒 (𝑡) =
1

2
𝑝
2
(𝑡)
2
𝐼
4
+ 𝑝
1
(𝑡) 𝑝
2
(𝑡) sin (𝜃) 𝐼

5

+
1

2
𝑝
1
(𝑡)
2 sin (𝜃)2𝐼

6
,

(10)

where 𝑓
𝑏
and 𝑓
𝑐
are the amplitude of the harmonic functions

and 𝑎
𝑖
, 𝑏
𝑖
, 𝑑
𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, 𝑎
𝑖𝑗𝑘
, and 𝑏

𝑖𝑗𝑘
are the Galerkin coefficients

of the simplified model, respectively. All the coefficients are
defined in the Appendix.

3.2. Perturbation Analysis. The multiple scales perturbation
method [17] is applied to (9a) and (9b) to obtain an approx-
imation solution of the model. To make the nonlinear terms
weak, one can substitute 𝑎

𝑖𝑗𝑘
, 𝑏
𝑖𝑗𝑘
, and 𝑐

𝑖𝑗𝑘
with 𝜀𝑎

𝑖𝑗𝑘
, 𝜀𝑏
𝑖𝑗𝑘
, and

𝜀𝑐
𝑖𝑗𝑘
. Then, (9a) and (9b) can be rewritten as

̈𝑝
1
(𝑡) + 𝜀𝜉

1
̇𝑝
1
(𝑡) + 𝜔

2

1
𝑝
1
(𝑡) + 𝜀𝑎

122
𝑝
1
(𝑡) 𝑝
2
(𝑡)
2

+ 𝜀𝑎
112
𝑝
1
(𝑡)
2
𝑝
2
(𝑡) + 𝜀𝑎

111
𝑝
1
(𝑡)
3

− 𝜀𝑓
𝑏
cos (Ω

𝑏
𝑡) = 0,

(11a)

̈𝑝
2
(𝑡) + 𝜀𝜉

2
̇𝑝
2
(𝑡) + 𝜀𝑑

1
̈𝑝
1
(𝑡) + 𝜀𝑑

2
̇𝑝
1
(𝑡) + 𝜔

2

2
𝑝
2
(𝑡)

+ 𝜀𝑏
112
𝑝
1
(𝑡)
2
𝑝
2
(𝑡) + 𝜀𝑏

122
𝑝
1
(𝑡) 𝑝
2
(𝑡)
2

+ 𝜀𝑏
222
𝑝
2
(𝑡)
3
+ 𝜀𝑏
1
𝑝
1
(𝑡) + 𝜀𝑏

111
𝑝
1
(𝑡)
3
= 0.

(11b)

Considering the fact there is 1 : 1 internal resonance
between themodes of the beam and cable, primary resonance
for the beam and autoparametric resonance for the cable,
simultaneously, therefore, the resonant relations are repre-
sented as

Ω = 𝜔
1
+ 𝜀𝜎
1
, 𝜔

2
= 𝜔
1
. (12)

Assuming the first-order approximation solution of (11a)
and (11b) in the form

𝑝
1
(𝑡) = 𝑝

10
(𝑇
0
, 𝑇
1
) + 𝜀𝑝

11
(𝑇
0
, 𝑇
1
) , (13a)

𝑝
2
(𝑡) = 𝑝

20
(𝑇
0
, 𝑇
1
) + 𝜀𝑝

21
(𝑇
0
, 𝑇
1
) , (13b)

the time derivatives become
𝑑

𝑑𝑡
=

𝜕

𝜕𝑇
0

𝜕𝑇
0

𝜕𝑡
+

𝜕

𝜕𝑇
1

𝜕𝑇
1

𝜕𝑡
+ ⋅ ⋅ ⋅ = 𝐷

0
+ 𝜀𝐷
1
+ ⋅ ⋅ ⋅ , (14a)

𝑑
2

𝑑𝑡2
= (𝐷
0
+ 𝜀𝐷
1
+ ⋅ ⋅ ⋅ )

2

= 𝐷
2

0
+ 2𝜀𝐷

0
𝐷
1
+ ⋅ ⋅ ⋅ , (14b)
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where 𝑇
𝑛
= 𝜀
𝑛
𝑡 (𝑛 = 0, 1) are the fast and slow time scales,

respectively.
Substituting (13a), (13b), (14a), and (14b) into (11a) and

(11b) and equating the powers of 𝜀

𝐷
1,1
(𝑝
10
) + 𝜔
2

1
𝑝
10
= 0, (15a)

𝐷
1,1
(𝑝
20
) + 𝜔
2

2
𝑝
20
= 0, (15b)

𝐷
1,1
(𝑝
11
) + 𝜔
2

1
𝑝
11
+ 𝑎
112
𝑝
2

10
𝑝
20
+ 2𝐷
1,2
(𝑝
10
)

+ 𝜉
1
𝐷
1
(𝑝
10
) + 𝑎
122
𝑝
10
𝑝
2

20
+ 𝑎
111
𝑝
3

10

− cos (Ω𝑡) 𝑓
𝑏
= 0,

(16a)

𝐷
1,1
(𝑝
21
) + 𝜔
2

2
𝑝
21
+ 2𝐷
1,2
(𝑝
20
) + 𝜉
2
𝐷
1
(𝑝
20
)

+ 𝑏
112
𝑝
2

10
𝑝
20
+ 𝑏
122
𝑝
10
𝑝
2

20
+ 𝑏
111
𝑝
3

10

+ 𝑑
1
𝐷
1,1
(𝑝
10
) + 𝑑
2
𝐷
1
(𝑝
10
)

+ 𝑏
1
𝑝
10
+ 𝑏
222
𝑝
3

20
= 0.

(16b)

The general solution of (15a) and (15b) can be expressed
in the form

𝑝
10
= 𝐴
1
(𝑇
1
) exp (𝜔

1
𝑇
0
) + 𝐴
1
(𝑇
1
) exp (−𝜔

1
𝑇
0
) , (17a)

𝑝
20
= 𝐴
2
(𝑇
1
) exp (𝜔

2
𝑇
0
) + 𝐴
2
(𝑇
1
) exp (−𝜔

2
𝑇
0
) , (17b)

where 𝐴
1
and 𝐴

2
are complex functions and 𝐴

1
and𝐴

2

denote complex conjugate terms, respectively.
Substituting (17a) and (17b) and (12), into (16a) and (16b)

and setting the coefficients of the secular terms to zero yield
the solvability conditions as

2𝐼𝐷
1
(𝐴
1
) 𝜔
1
+ 𝑎
112
𝐴
2
𝐴
2

1
+ 𝑎
122
𝐴
1
𝐴
2

2
+ 3𝑎
111
𝐴
1
𝐴
2

1

−
1

2
𝑓
𝑏
exp (𝐼𝑇

0
𝜀𝜎
1
) + 2𝑎

112
𝐴
1
𝐴
1
𝐴
2

+ 𝐼𝜉
1
𝜔
1
𝐴
1
+ 2𝑎
122
𝐴
1
𝐴
2
𝐴
2
= 0,

(18a)

𝐼𝐷
2
𝜔
1
𝐴
1
+ 2𝑏
122
𝐴
1
𝐴
2
𝐴
2
+ 2𝐼𝐷

2
(𝐴
2
) 𝜔
1
+ 𝑏
112
𝐴
2

1
𝐴
2

+ 𝑏
1
𝐴
1
+ 𝐼𝜉
2
𝜔
1
𝐴
2
+ 2𝑏
112
𝐴
1
𝐴
1
𝐴
2

+ 𝑏
122
𝐴
1
𝐴
2

2
+ 3𝑏
222
𝐴
2

2
𝐴
2

+ 3𝑏
111
𝐴
2

1
𝐴
1
− 𝑑
1
𝜔
2

1
𝐴
1
= 0.

(18b)

Let

𝐴
𝑘
=
1

2
(𝑥
𝑘
+ 𝑖𝑦
𝑘
) (𝑘 = 1, 2) . (19)

Substituting (19) into (18a) and (18b) and then separating
the real and imaginary parts, the modulation equations
obtained in the Cartesian form are as follows:

𝑑

𝑑𝑡
𝑥
1
(𝑡) = −

3𝑦
3

1
+ 3𝑦
1
𝑥
2

1

8𝜔
1

𝑎
111

+

(𝑥
1
𝑥
2
− 3𝑦
1
𝑦
2
)√𝑥2
1
+ 𝑦2
1

8𝜔
1

𝑎
112

+
(2𝑥
1
𝑥
2
𝑦
2
− 𝑦
1
𝑥
2

2
− 3𝑦
1
𝑦
2

2
)

8𝜔
1

𝑎
122

+
𝑓
𝑏
+ 2𝑦
1
𝜎
1
𝜔
1
− 𝑥
1
𝜉
1
𝜔
1

2𝜔
1

,

(20a)

𝑑

𝑑𝑡
𝑦
1
(𝑡) = −

3𝑥
3

1
+ 3𝑥
1
𝑦
2

1

8𝜔
1

𝑎
111

+

(𝑦
1
𝑥
2
+ 3𝑥
1
𝑦
2
)√𝑥2
1
+ 𝑦2
1

8𝜔
1

𝑎
112

+
(2𝑦
1
𝑥
2
𝑦
2
+ 𝑥
1
𝑥
2

2
+ 3𝑥
1
𝑦
2

2
)

8𝜔
1

𝑎
122

+
−2𝑥
1
𝜎
1
𝜔
1
− 𝑦
1
𝜉
1
𝜔
1

2𝜔
1

,

(20b)

𝑑

𝑑𝑡
𝑥
1
(𝑡) = −

(3𝑦
2

1
+ 3𝑥
2

1
)√𝑥2
1
+ 𝑦2
1

8𝜔
1

𝑏
111

−
(3𝑥
2

1
𝑦
2
+ 3𝑦
2

1
𝑦
2
)

8𝜔
1

𝑏
112

−

(𝑥
2

2
+ 3𝑦
2

2
)√𝑥2
1
+ 𝑦2
1

8𝜔
1

𝑏
122

−
3𝑥
2

2
𝑦
2
+ 3𝑦
3

2

8𝜔
1

𝑏
222

−

(𝑏
1
− 𝑑
1
𝜔
2

1
)√𝑥2
1
+ 𝑦2
1
+ 𝑥
2
𝜉
2
𝜔
1
− 2𝑦
2
𝜎
1
𝜔
1

2𝜔
1

−
𝑦
2

𝑥2
1
+ 𝑦2
1

(𝑥
1

𝑑

𝑑𝑡
𝑦
1
(𝑡) + 𝑦

1

𝑑

𝑑𝑡
𝑥
1
(𝑡)) ,

(20c)

𝑑

𝑑𝑡
𝑦
1
(𝑡) =

(𝑥
2

1
𝑥
2
+ 𝑦
2

1
𝑥
2
)

8𝜔
1

𝑏
112

+

𝑥
2
𝑦
2
√𝑥2
1
+ 𝑦2
1

4𝜔
1

𝑏
122

+
3𝑥
2
𝑦
2

2
+ 3𝑥
3

2

8𝜔
1

𝑏
222

−

𝑑
2
𝜔
1
√𝑥2
1
+ 𝑦2
1
+ 𝑦
2
𝜉
2
𝜔
1
+ 2𝑥
2
𝜎
1
𝜔
1

2𝜔
1

+
𝑥
2

𝑥2
1
+ 𝑦2
1

(𝑥
1

𝑑

𝑑𝑡
𝑦
1
(𝑡) + 𝑦

1

𝑑

𝑑𝑡
𝑥
1
(𝑡)) .

(20d)
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It is seen that the (20a), (20b), (20c), and (20d) describe
a nonlinear dynamic system, indicating that the transverse
vibrations of the cable and tower are nonlinear, even though
the beam model considered is linear and neglects the cable’s
sag effect.The nonlinear terms are only caused by the coupled
behaviors between the modes of the beam and cable. It can
be demonstrated that the simplified model shows the chaotic
motion and period motion with the perturbation force 𝑓

𝑏

changing.

3.3. Numerical Results andDiscussion. In fact, there aremany
internal resonance forms between the modes of a beam and
a cable when they act as an overall structure, such as two-
to-one, one-to-one, and one-to-two. This study only focuses
on the nonlinear vibrations of the simplified model in the
one-to-one internal resonance case, taking into consideration
the primary resonance to the beam. The parameters of the
simplified model are selected as follows: 𝑚

𝑐
= 67.37 kg/m,

𝐸
𝑐
= 2.10𝑒11N/m2, 𝐴

𝑐
= 8.58𝑒 − 3m2, 𝑙

𝑐
= 152.70m,

𝐻 = 609.00 kN, 𝑚
𝑏
= 1.34𝑒5 kg/m, 𝑙

𝑏
= 76.81m, 𝜃 = 30.20

∘,
and 𝐸

𝑏
𝐼
𝑏

= 8.29𝑒11N⋅m2. Therefore, the nondimension
parameters are calculated as follows: 𝜌 = 0.001, 𝜒 = 0.068,
𝜇 = 2959.3, 𝜉

1
= 0.02, 𝜉

2
= 0.001, and 𝑓

𝑐
= 0. The amplitude

of the beam (𝑓
𝑏
) is chosen as a controlling parameter. The

time histories, phase portraits, and Poincare maps are plotted
to analyze the nonlinear dynamical motion of the simplified
model. From the numerical simulations, the couplingmotion
between the beam and cable can be clearly found.

Figure 5 shows the nonlinear behavior of the simplified
model at the force amplitude, 𝑓

𝑏
= 0.005, involving time

histories, phase portraits, and Poincare maps. As seen in
Figures 5(a) and 5(b), the amplitude history of the beam
varies with a particular period, while the cable is disorders
and withmany subharmonics. However, there are still energy
transformation occurred. In order to identify the characteris-
tic of these motions in the time histories, the phase portraits
have been calculated. As seen in Figures 5(c) and 5(d), the
phase portraits of the beam and cable exhibit periodicity
and nonperiodicity, respectively, which are consistent with
the description in Figures 5(a) and 5(b). Since the phase
portraits cannot provide enough information to determine
the onset for chaoticmotion, they only are used to distinguish
whether the model is periodic or non-periodic. Therefore,
the Poincare maps have been further calculated. As seen in
Figure 5(e), the Poincare map of the beam exhibits many
irregular points, confirming that the motion is chaos. On
the other hand, Figure 5(f) exhibits that the return points in
the Poincare map form a closed curve. Generally, this shape
indicates that this motion is periodic [18]. However, since the
motion of the simplified model is coupled, the beam’s motion
takes on chaos characteristic, and the motion of the cable can
be confirmed as chaos motion.

Figure 6 shows the nonlinear behavior of the simplified
model at the force amplitude, 𝑓

𝑏
= 0.01. As shown in Figures

6(a) and 6(b), the varying amplitudes of time history of beam
and cable exhibit particular period while the cable has a few
subharmonics. The phenomenon of energy transformation
between them can be clearly found. As seen in Figures 6(c)

and 6(d), the phase portraits of the beam and cable both
exhibit periodicity and are further confirmed by Figures 6(e)
and 6(f). These phenomena indicate that the motions of the
beam and cable are both quasi-periodic.

When the forcing amplitude is increased to 𝑓
𝑏
= 0.1,

the nonlinear behavior of the simplified model changes
to chaotic motions, as shown in Figure 7. The Poincare
maps given in Figures 7(e) and 7(f) demonstrate clearly
that chaotic motions exist in the simplified model again. It
can be observed that the time-histories and phase portraits
represented by Figures 7(a), 7(b), 7(c), and 7(d) are very
similar to that of Figure 6; only the complexity of these
graphics increased. On the other hand, compared to Figures
5(a), 6(a), and 7(a), the soften phenomenon in the simplified
model tends to be more apparent with the force amplitude
(𝑓
𝑏
) increasing.

4. Conclusions

The frequency values of the Bin-Zhou cable-stayed bridge
(BZB) influenced by the cable vibration have been inves-
tigated by two FE models in this study. One is the OECS
model in which one single element per cable stay is used and
the other is MECS model, where multi-elements per cable
stay are used. The nonlinear behaviors of the cable vibration
of BZB have also been examined by a simplified model,
where the tower is simplified as a beam. The motions of the
simplifiedmodel are utilized byGalerkin’smethod to truncate
a two DOFs nonlinear coupled model. Based on above
numerical experiments, some conclusions are summarized as
follows.

(1) The local vibration of the cables only has a small
impact on the frequency values of the BZB but
increase for the deck and decrease for the towers.

(2) The results from themodal analysis also show that the
modes of the towers are main component of the BZB
in the first 10 modes, and most of them are the lateral
vibrations. Compared to the OESCmodel, the MECS
model not only offers global modes of the bridge, but
also exhibits the local vibration of the cables.

(3) The results from the simplified model analysis show
that the coupled system exhibits quasi-periodic and
chaotic motion with the forcing amplitude changing,
even though the beam model is linear and the cable
model neglects the cable’s sag effect. The simplified
model also exhibits soften behavior with the forcing
amplitude increasing.

(4) The energy transform can be found due to the 1 : 1
internal resonant between themodes of the beam and
cable.
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Characterized by small volume, low cost, and low power, MEMS inertial sensors are widely concerned and applied in navigation
research, environmental monitoring, military, and so on. Notably in indoor and pedestrian navigation, its easily portable feature
seems particularly indispensable and important. However, MEMS inertial sensor has inborn low precision and is impressionable
and sometimes goes against accurate navigation or even becomes seriously unstablewhenworking for a period of time and the initial
alignment and calibration are invalid. A thought of adaptive neuro fuzzy inference system (ANFIS) is relied on, and an assistive
control modulated method is presented in this paper, which is newly designed to improve the inertial sensor performance by black
box control and inference. The repeatability and long-time tendency of the MEMS sensors are tested and analyzed by ALLAN
method. The parameters of ANFIS models are trained using reasonable fuzzy control strategy, with high-precision navigation
system for reference as well as MEMS sensor property. The MEMS error nonlinearity is measured and modulated through the
peculiarity of the fuzzy control convergence, to enhance the MEMS function and the whole MEMS system property. Performance
of the proposed model has been experimentally verified using low-cost MEMS inertial sensors, and the MEMS output error is
well compensated. The test results indicate that ANFIS system trained by high-precision navigation system can efficiently provide
corrections to MEMS output and meet the requirement on navigation performance.

1. Introduction

Characterized by small volume, low cost, and low power,
MEMS inertial sensors are widely concerned and applied to
navigation research, environmental monitoring, military and
so on. Notably in unmanned air systems, its easily portable
feature seems particularly indispensable and important.

However, MEMS inertial sensor HAS inborn low preci-
sion, and impressionable. It sometimes goes against accurate
navigation or even becomes seriously unstable when working
for a period of time, and more worse the initial alignment
and calibration are invalid. According to this, many scholars
use the Kalman filter method to compensate and correct the
MEMS error. By this way, theMEMS systemperformance can
be improved, but its effect is not good, as discussed in [1, 2].

A thought of adaptive neurofuzzy inference system
(ANFIS) is relied on. Compared with fuzzy inference sys-
tem and artificial neural network, as discussed in [3–6],

adaptive neurofuzzy inference system (ANFIS) not only has
advantages of the two methods but also makes up for their
shortcomings. On one hand, it has effective self-learning
mechanism and achieves self-learning function. On the other
hand, it has a variety of neural networks, optimizes the con-
trol rules, and expresses the reasoning-function like human
brain. It makes the system develop towards adaptive, self-
organizing and self-learning, as discussed in [7–11].

As Integrated avionics system for vehicle is composed
of different kinds of sensors to change the separated state,
and achieve complementary, mutual backup and integrated
usage information, where the system includesMEMS inertial
measurement unit (MEMS-IMU) and high-precision IMU.
According to this, ANFIS is newly designed to use reference
IMU to improve MEMS-IMU performance by black box
control and inference. The MEMS sensor error is measured
and modulated through the peculiarity of the fuzzy control
convergence, to enhance the MEMS function and the whole
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MEMS system property. Performance of the proposed model
is experimentally verified using low-cost MEMS inertial
sensors, to meet the requirement on navigation performance.

2. Analysis of MEMS-IMU Property

2.1. Error Modelling of MEMS Inertial Sensor. As to error of
MEMS-IMU outputs, constant error, scale factor error and
installation error, are considered as the main composition of
the IMU error. What is more, random error is also inevitable
and impacts the output accuracy. According to this, and
ignoring more than one-order small amount, the acceler-
ometer model is built as follows, as discussed by the author
in [12]:

𝑎
𝑚
= (𝐼 + 𝐾

𝑎
) (𝐼 + 𝜃

𝑎
) 𝑎 + 𝜀

𝑎
+ ∇𝑎

≈ (𝐼 + 𝐾
𝑎
+ 𝜃
𝑎
) 𝑎 + 𝜀

𝑎
+ ∇𝑎.

(1)

Then, the accelerometer error model is

Δ𝑎 = ∇𝑎 + 𝐾
𝑎
𝑎 + 𝜃
𝑎
𝑎 + 𝜀
𝑎
. (2)

In calibration, the random error 𝜀
𝑎
is mainly affected by

temperature. So 𝜀
𝑎
may be expressed as

𝜀
𝑎
= 𝜀
𝑎𝑇
+ 𝜀
𝑎𝑎

= 𝑎
𝑎𝑇
∗ Δ𝑇 + 𝑏
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∗ (Δ𝑇)

2
+ 𝑐
𝑎𝑇
∗ (Δ𝑇)

3
+ 𝜀
𝑎𝑎
.

(3)

Similarly, the gyroerror model is

Δ𝜔 = ∇𝜔 + 𝐾
𝜔
𝜔 + 𝜃
𝜔
𝜔 + 𝜀
𝜔
. (4)

And, the 𝜀
𝜔
is expressed as

𝜀
𝜔
= 𝜀
𝜔𝑇
+ 𝜀
𝜔𝜔

= 𝑎
𝜔𝑇
∗ Δ𝑇 + 𝑏

𝜔𝑇
∗ (Δ𝑇)

2
+ 𝑐
𝜔𝑇
∗ (Δ𝑇)

3
+ 𝜀
𝜔𝜔
,

(5)

where Δ𝜔 and Δ𝑎 are IMU error; ∇𝜔 and ∇𝑎 are IMU
constant drift;𝐾

𝜔
and𝐾

𝑎
are the scale factor error matrix; 𝜃

𝜔

and 𝜃
𝑎
are the alignmentmatrix;Δ𝑇 is temperature variation;

𝑎
𝜔𝑇
, 𝑏
𝜔𝑇
, and 𝑐

𝜔𝑇
are the gyroerror coefficients affected by

temperature; 𝑎
𝑎𝑇
, 𝑏
𝑎𝑇
, and 𝑐

𝑎𝑇
are the accelerometer error

coefficients affected by temperature; 𝜀
𝜔𝜔

and 𝜀
𝑎𝑎

are the
random error.

2.2. Experimental Analysis and Compensation of MEMS
Inertial Sensor. Theprinciple of rotating SINS is elaborated as
follows. At the beginning, the rotating coordinate (𝑠) is coin-
cident with the body coordinate (𝑏), and 𝑜𝑥

𝑠
represents the

real 𝑥-axis of gyro- and accelerometer; 𝑜𝑦
𝑠
represents the real

𝑦-axis of gyro-, and accelerometer; 𝑜𝑧
𝑠
is coincident with the

𝑧-axis of 𝑏 coordinate and vertical with 𝑜𝑥
𝑠
, 𝑜𝑦
𝑠
. The effective

IMU outputs are received from the real IMU outputs in the
process of coordinate conversion. The rotating angle is

𝛼 = Ω ⋅ 𝑡. (6)

The coordinate transformation matrix from 𝑠 to 𝑏 is

𝐶
𝑏

𝑠
= [

[

cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0

0 0 1

]

]

= [

[

cos (Ω𝑡) − sin (Ω𝑡) 0
sin (Ω𝑡) cos (Ω𝑡) 0
0 0 1

]

]

.

(7)

Then, the gyroerror is

Δ𝜔
𝑏
= 𝐶
𝑏

𝑠
Δ𝜔
𝑠
= 𝐶
𝑏

𝑠
(∇𝜔 + 𝐾

𝜔
𝜔 + 𝜃
𝜔
𝜔 + 𝜀
𝜔
)

= 𝐶
𝑏

𝑠
([

[

∇𝜔
𝑥

∇𝜔
𝑦

∇𝜔
𝑧

]

]

+ [

[

𝐾
𝜔𝑥

𝐾
𝜔𝑦

𝐾
𝜔𝑧

]

]

[

[

𝜔
𝑥

𝜔
𝑦

𝜔
𝑧

]

]

+ [

[

𝜃
𝜔𝑥𝑧

−𝜃
𝜔𝑥𝑦

−𝜃
𝜔𝑦𝑧

𝜃
𝜔𝑦𝑥

𝜃
𝜔𝑧𝑦

−𝜃
𝜔𝑧𝑧

]

]

[

[

𝜔
𝑥

𝜔
𝑦

𝜔
𝑧

]

]

+ 𝜀
𝜔
) .

(8)

Through analysis item by item,

𝐶
𝑏

𝑠
∇𝜔 = [

[

cos (Ω𝑡) − sin (Ω𝑡) 0
sin (Ω𝑡) cos (Ω𝑡) 0
0 0 1

]

]

[

[

∇𝜔
𝑥

∇𝜔
𝑦

∇𝜔
𝑧

]

]

= [

[

∇𝜔
𝑥
cos (Ω𝑡) − ∇𝜔

𝑦
sin (Ω𝑡)

∇𝜔
𝑥
sin (Ω𝑡) + ∇𝜔

𝑦
cos (Ω𝑡)

∇𝜔
𝑧

]

]

.

(9)

In (9), it is indicated that such constant errors as ∇𝜔
𝑥
, ∇𝜔
𝑦
,

and ∇𝜔
𝑧
may be modulated by periodic rotation, and the

error impact will be smaller.
However, as to error coefficients 𝐾

𝜔
and 𝜃

𝜔
, the impact

may be partly modulated. The 𝑥-axis error caused by𝐾
𝜔
and

𝜃
𝜔
in 𝑏 coordinate is

𝐶
𝑏

𝑠
(𝐾
𝜔
𝜔 + 𝜃
𝜔
𝜔) = 𝐶

𝑏

𝑠
([

[

𝐾
𝜔𝑥

𝐾
𝜔𝑦

𝐾
𝜔𝑧

]

]

[

[

𝜔
𝑥

𝜔
𝑦

𝜔
𝑧

]

]

+ [

[

𝜃
𝜔𝑥𝑧

−𝜃
𝜔𝑥𝑦

−𝜃
𝜔𝑦𝑧

𝜃
𝜔𝑦𝑥

𝜃
𝜔𝑧𝑦

−𝜃
𝜔𝑧𝑧

]

]

[

[

𝜔
𝑥

𝜔
𝑦

𝜔
𝑧

]

]

)

= [

[

cos (Ω𝑡) − sin (Ω𝑡) 0
sin (Ω𝑡) cos (Ω𝑡) 0
0 0 1

]

]

× [

[

𝐾
𝜔𝑥
𝜔
𝑥
+ 𝜃
𝜔𝑥𝑧
𝜔
𝑦
− 𝜃
𝜔𝑥𝑦
𝜔
𝑧

−𝜃
𝜔𝑦𝑧
𝜔
𝑥
+ 𝐾
𝜔𝑦
𝜔
𝑦
+ 𝜃
𝜔𝑦𝑥
𝜔
𝑧

𝜃
𝜔𝑧𝑦
𝜔
𝑥
− 𝜃
𝜔𝑧𝑧
𝜔
𝑦
+ 𝐾
𝜔𝑧
𝜔
𝑧

]

]

.

(10)

Set𝐾
𝜔𝑥
𝜔
𝑥
+𝜃
𝜔𝑥𝑧
𝜔
𝑦
−𝜃
𝜔𝑥𝑦
𝜔
𝑧
as an example; if𝐾

𝜔𝑥
𝜔
𝑥
+𝜃
𝜔𝑥𝑧
𝜔
𝑦
−

𝜃
𝜔𝑥𝑦
𝜔
𝑧
can be expressed as 𝑎 + 𝑓(𝑥

𝑖
), 𝑖 = 1, 2, 3, the error

impact caused by 𝑎may be modulated to zero, where a is the
inductive constant and 𝑓(𝑥

𝑖
), 𝑖 = 1, 2, 3 is the variable part.
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Table 1: Means and deviation of MEMS gyro- and accelerometer.

𝑥-gyro (∘/s) 𝑦-gyro (∘/s) 𝑧-gyro (∘/s) 𝑥-acce (m/s/s) 𝑦-acce (m/s/s) 𝑧-acce (m/s/s)
MEMS-IMU raw data

Mean 4.25 9.86 9.71 0.193 0.211 0.205
Standard deviation 0.35 0.55 0.51 0.038 0.036 0.053

MEMS-IMU equivalent data
Mean −0.106 −0.019 10.012 0.013 0.002 0.074
Standard deviation 7.903 7.969 4.063 0.281 0.194 0.099
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Figure 1: Gyro output changed with temperature.

The accelerometer error is

Δ𝑓
𝑏
= 𝐶
𝑏

𝑠
Δ𝑓
𝑠
= 𝐶
𝑏

𝑠
(∇𝑓 + 𝐾

𝑓
𝑓 + 𝜃
𝑓
𝑓 + 𝜀
𝑓
) . (11)

The error analysis and modulation are similar to those of
gyros.

It is clearly shown from MEMS-IMU raw data in Table 1
that means and deviations of MEMS-IMU are bigger than
those of normal situations. Through rotation modulation,
mean data indicates that nonstochastic errors ofMEMS-IMU
are effectively and quickly improved when calculating nav-
igation parameters. However, due to rotation movement by
cosine function, the standard deviation is bigger than that of
law data.

Moreover, the MEMS outputs are easily affected by envi-
ronment. Generally, the temperature in use is −40 to 70∘C,
and the internal structure of MEMS device may change
under different temperature conditions. In such situation, the
measured capacitance output of the inertial sensor is deviated
from the normal value, and the output of the inertial sensor
is inevitably composed of real value and error. Figures 1 and 2
are separately curves of gyro- and accelerometer values
changed with temperature.

As the MEMS performance is unstable, the calibration
is not always effective due to its temperature impact. When
there is 5∘ temperature rise, the output will be 10% changed
according to the raw data at room temperature.

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

Ac
ce

le
ro

m
et

er
 o

ut
pu

t (
m

/s
/s

)

10 15 20 25 30
Temperature (∘C)

Figure 2: Accelerometer output changed with temperature.

3. ANFIS Identification and Compensation
Program for MEMS-IMU

3.1. ANFIS Structure. ANFIS is a class of adaptive networks,
and it makes the integration of the advantages of neural
network and fuzzy inference system. Detailed mathematical
progress of ANFIS is as follows. Firstly, it maps the input data
by adjusting the shape and parameters of the membership
function. Secondly, it remaps the data from the input space to
the output space by the membership function of the output
variables. During this process, the least squares algorithm
is used to adjust ANFIS conclusion parameters, and the
gradient descent algorithm is used to adjust ANFIS premise
parameters, where the channel for adjusting conclusion
parameters is called forward channel and the channel for
adjusting the premise parameters is called backward channel,
as discussed in [13–16].

In ANFIS structure, as to two input parameters 𝑥, 𝑢 and
one output 𝑦, together with first-order Sugeno fuzzy model,
there are two if-then fuzzy rules as follows

The equivalent ANFIS structure is as shown in Figure 3.
In the first layer, each knot is an adaptive knot with

function. For example,

𝑂
1,𝑖
= 𝐴
𝑖
(𝑥) , 𝑖 = 1, 2, (12)

where 𝑥 is input of knot 𝐼 and𝐴 is the relevant fuzzy language
identification.
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Figure 3: Equivalent ANFIS structure.

In the second layer, each knot is a fixed knot identified
by ∏. The output is the product of all input signals and
represents the firing strength of a rule as

𝑂
2,𝑖
= 𝐴
𝑖
(𝑥) . . . . (13)

In the third layer, the ratio of firing strength for rule 𝑖 and
the whole firing strength for all the rules is calculated, which
means that the firing strength of each rule is normalized as

𝑂
3,𝑖
= 𝜔 =

𝜔
𝑖

∑𝜔
. (14)

In the fourth layer, each knot has its own consequent node
and output. The 𝑖th knot is an adaptive knot with function

𝑂
4,𝑖
= 𝜔
𝑖
𝑓
𝑖
= 𝜔
𝑖
(𝑝
𝑖
𝑥 + 𝑞
𝑖
𝑦 + 𝑟
𝑖
) , (15)

where 𝜔
𝑖
is normalized motive force transformed from layer

3 and 𝑝1, 𝑞1, 𝑟1 are parameters. The parameters in this layer
are called conclusion parameters.

In the fifth layer, each knot is a fixed knot identified with
∑, and it calculates the output sum by all the signals

𝑂
5,𝑖
= ∑𝜔

𝑖
𝑓
𝑖
=
∑𝜔
𝑖
𝑓
𝑖

∑𝜔
𝑖

. (16)

When ANFIS is trained by reduplicative iteration, the pend-
ing characteristic parameters are adjusted dynamically to
make sure the accuracy identified by ANFIS meets the
requirement.The premise parameters and conclusion param-
eters are received, so that the ANFIS system is determined, as
discussed in [17–19].

3.2. ANFIS System Training. As to inputs of ANFIS, the out-
puts of MEMS-IMU and standard IMU are segmented into
different training data spaces. The initial structure of ANFIS
is preset with 5 layers, and ANFIS uses the rule firing strength
𝜔
𝑗
(𝑗 = 1, . . . ,𝑀(𝐾)) as a criterion for each rule, where𝑀(𝑘)

is the number of clusters at 𝐾. At time 𝐾, the separate input
training data is 𝑥

𝑖
(𝑖 = 1, . . . , 𝑛), and 𝑛 is the numbers of

inputs.
If 𝜔
𝑗
(𝑥
𝑖
) ≤ 𝛼th, the rule is updated into a new one, and

�̃� = 𝑀(𝑘) + 1. Random 𝛼th ∈ (0.1, 0.5) is a preset threshold,

it values 𝜔
𝑗
and provides reference for new cluster generated

in ANFIS. If 𝛼th is smaller, the number of clusters is larger,
and the fuzzy system is more complicated.

When �̃� is updated, it means that new cluster is gener-
ated, and needs to rebuild fuzzy system. The selected cluster
centre may be set a bigger weight coefficient. This progress is
repeatedly taken with inputs data, until the ANFIS meets the
accuracy requirements.

ANFIS’s parameters include premise parameters and
consequent parameters. They are updated based on gradient
descent learning algorithm. When the premise parameters
are fixed, the least squares algorithm is applied to calculate
the consequent data.

This is the whole progress of ANFIS(i) generation. In
order to speed up the ANFIS progress and enhance the preci-
sion, all the data are separated into different parts for training
and checking. The prior ANFIS structure is valued by the
checking data and set as premise structure for next system
generation, up to the expected modulated effect. The pro-
posed ANFIS training process is shown as in Figure 4.

3.3. MEMS-IMU Error Compensation Based ANFIS. In inte-
grated avionics system for vehicle, synthesis of multiple
sensors is a trend; different kinds of sensors may change the
separated state and achieve complementary, mutual-backup
and integrated usage information provided by each sensor.
Through integrated control andmanagement ofmultisensors,
the sensor system may have higher performance level than
that of any single sensor.

Generally, as a backup system, MEMS inertial navigation
system has low performance by comparison. In order to
improve it, high-precision INS output is applied to help
correcting MEMS-IMU outputs by ANFIS method. High-
precision INS outputs are set as standard information and
separated into different spaces together with MEMS-IMU
outputs. The different data spaces are divided into training
parts and checking parts. The 3D outputs of MEMS gyros
and accelerometers are trained objects and inputs of ANFIS.
ANFIS works in update mode; the structure is built, valued,
and screened continuously, until the optimal structure meets
accuracy demands.TheANFIS building program forMEMS-
IMU is shown as in Figure 5.

When standard IMU outputs are lacked, ANFIS structure
switches to the correction mode. The identified and trained
error corrector byANFIS is applied tomodify the lawMEMS-
IMU output and help provide higher-precision MEMS-IMU
outputs.

4. Experiment and Analysis

The MEMS-IMU used in this paper is MPU6050. The
MEMS gyro drift is 4.25(∘/s), and random is 0.35(∘/s); MEMS
accelerometer bias is 0.193m/s/s, and random is 0.038m/s/s.
The output frequency ofMEMS-IMU is 50Hz. As to standard
IMU, the gyro drift is 0.003(∘/s), and random is 0.003(∘/s); the
accelerometer bias is 0.043m/s/s, random is 0.017m/s/s, and
the output frequency is 50Hz too.
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Table 2: Bias of IMU data.

𝑥-gyro 𝑦-gyro 𝑧-gyro 𝑥-acce 𝑦-acce 𝑧-acce
MEMS-IMU data 4.251 −9.86 −9.71 0.193 0.211 0.187
Standard IMU data 0.001 −0.003 0.002 −0.043 0.014 0.026
Modified IIMU data 0.001 −0.003 0.002 −0.043 0.015 0.027

Table 3: Random of IMU data.

𝑥-gyro 𝑦-gyro 𝑧-gyro 𝑥-acce 𝑦-acce 𝑧-acce
MEMS-IMU data 0.352 0.553 0.516 0.038 0.036 0.053
Standard IMU data 0.003 0.003 0.004 0.065 0.046 0.017
Modified IIMU data 0.002 0.041 0.003 0.121 0.027 0.012

In order to testify the effectiveness of ANFIS modulation
for MEMS-IMU performance under the auxiliary of high-
precision standard IMU, both MEMS-IMU and standard
IMU start simultaneously; then corresponding data is sent
for training and testing. From Figures 6, 7, and 8, it is clear
thatMEMS-IMUdata is modified, and the precision is highly
improved. Tables 2 and 3 show the specific improved level
of IMU data by drift and random quantity. Simultaneously,
compared with random of each standard gyro, that of tested
gyro in Table 2 also indicates that the tested data will be
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Figure 6: Comparison of each 𝑥-gyro data.

modified towards the standard data, and not only that, but
also stability and smoothness of the modified data will be
better than those of standard data. Where, blue line with ring
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Figure 8: Comparison of each 𝑧-gyro data.

represents modified MEMS-IMU data by ANFIS, red line
represents MEMS-IMU data to be tested, and black line with
star represents standard IMU data with high precision.

To be sure, the effect ofmodified accelerometer data is not
as good as that of gyro, just because the standard accelerome-
ter precision is not so high, and the modified effect has noth-
ing to do with ANFIS structure. In other words, the perfor-
mance level of standard datamay be one of themain influence
factors to decide the performance level of the modified data.

5. Conclusions

MEMS-IMU is characterized by its small size, low cost,
and easy integration, so it has a wild range of applications.

However, low precision is a stumbling block toMEMS sensor,
and sometimes it cannotmeet the performance requirements.
Nowadays, integrated avionics system for vehicle composes
different kinds of sensors to change the separated state and
achieve complementary, mutual backup and integrated usage
information provided by each sensor. So, high-accuracy IMU
may be selected to modify MEMS-IMU performance by
high-level outputs.

ANFIS system combines the advantages of neural net-
work and fuzzy control methods, and it is suitable for con-
trolling objects with characters of fuzziness, uncertainty,
nonlinearity, and time varying. As to MEMS-IMU property,
ANFIS reference program is improved, the reference struc-
ture is continuously built for goodmodification performance,
andMEMS-IMUperformance is corrected.The experimental
results show that ANFIS structure is much closer to the
accurate model by multiple establishments, andMEMS-IMU
outputs are high-level corrected by rules. Simultaneously, the
MEMS-IMU performance is of smoothness by ANFIS mod-
ulation. In a word, the updated ANFIS program proposed in
this paper is helpful to modify and improve the MEMS-IMU
property and is a great reference to enhance MEMS sensor
performance.
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The nonlinear dynamics of themanipulator systemwhich is controlled to achieve the synchronizationmotions is investigated in the
paper. Firstly, the control strategies and modeling approaches of the manipulator system are given, in which the synchronization
goal is defined by both synchronization errors and its derivatives. The synchronization controllers applied on the manipulator
system include neuron synchronization controller, improved OPCL synchronization controller, and MRAC-PD synchronization
controller.Then, an improved adaptive synchronized control strategy is proposed in order to estimate online the unknown structure
parameters and state variables of the manipulator system and to realize the needed synchronous compensation. Furthermore, a
robust adaptive synchronization controller is also researched to guarantee the dynamic stability of the system. Finally, the stability
of motion synchronizations of the manipulator system possessing nonlinear component is discussed, together with the effect of
control parameters and joint friction and others. Some typical motions such as motion bifurcations and the loss of synchronization
of it are obtained and illustrated as periodic, multiperiodic, and/or chaotic motion patterns.

1. Introduction

A manipulator system can be viewed as a highly nonlinear,
strong coupling, time-varying, and multivariable dynamic
one. In some particular sites, synchronization motions are
needed for the manipulator system to achieve expected
tasks. The synchronization control strategies applied to the
manipulator systemare important to be reasonablly designed.
So, the nonlinear dynamics of the controlled manipulator
system in synchronization should be discovered specifically.
The main purpose of the nonlinear dynamic research on
manipulator system under synchronization control is to
design a synchronous controller which can guarantee the
synchronous stable characteristic.The controller shouldmeet
the requirement of trajectory tracking control accuracy. One
of the special advantages of synchronization control is that it
can keep the specified kinematics relationship ofmanipulator
system in an easy way.

Controlled synchronization of manipulator system is
also valuable in the mechanical research and engineering
applications. Different from the traditional synergic control

(i.e., coordination control associated with robot task assign-
ment) and the coordinated control (i.e., force and position
compliance control of robot), the controlled synchronization
focuses on inertial characteristics, motion stiffness, and the
rigid-flexible coupling characteristics of the manipulator
system. The most important is to understand the dynamic
behavior of the controlled system in synchronization. The
synchronous control also needs to explore the synchronous
tragedy and its stability and robustness when the manip-
ulator system is different; in particular some nonlinearity
and/or rigid-flexible coupling effort are concerned. Both
the trajectory tracking error and synchronization error of
manipulator system would converge to zero when using a
controlled synchronization method, which is also useful to
optimize the transient process of robot motion trajectory.
More complicated motion patterns can be realized when
using synchronization control, no matter the same or differ-
ent structure, rigid or flexible links or joints of a manipulator
system. In practices, the synchronization control strategies
are also adopted to maintain more regular motions of the
multiple industrial robots (such as for assembling, spraying,
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transporting, welding, etc.) and improve their trajectory
tracking accuracies.

Nowadays, nonlinear dynamics of controlled synchro-
nization of manipulator system is one of the important
interests in the fields of machinery dynamics and nonlinear
sciences [1–6]. The theory of self-synchronization, namely,
vibration synchronization, was thoroughly and systematically
studied by many researchers including Blekhman [2] and
Wen et al. [7]. Self-synchronizations are used widely in
designing vibratory machines and bring people remark-
able economic benefits. Study on controlled synchronization
and generalized synchronization of mechanical systems was
extended during the past decades [7, 8]. Recently, the theory
of controlled synchronization is used to improve the control
ability and control accuracy for many complicated mechani-
cal systems, such as multiaxis machining tools, multirobotic
coordination, and trajectory tracking of robots. Some rep-
resentative achievements include the following. Koren [9]
proposed a controlled synchronization strategy of a multiaxis
machining tool where the cross-coupling control is used to
achieve the multiaxis tracking synchronization and the syn-
chronization errors are used to define the coordination ability
of the machine. The research group leading by Rodriguez-
Angeles and Nijmeijer [10] and Nijmeijer [11, 12] carried out
external synchronization and internal synchronous controls
of multirobot systems by using feedback controls. They
proposed two new adaptive synchronization controlmethods
to achieve the P-R-R planar parallel manipulators with
uncertain parameters to guarantee the required trajectory
tracking accuracy. Until now, many control strategies were
also explored to achieve synchronizations of mechanical
systems [13–20], including the controlled synchronization
of speed of electromechanical systems consisting of double
motors ormultimotor running in a constant velocity ratio [7].

In addition, controlled synchronization of manipulators
is critical in theoretical and engineering fields of mechanical
system. The involved theoretical and technological results
enclose the synchronous mechanisms, synchronization con-
trol strategies, chaotic synchronization controls, and so on.
Many improved controlled synchronization methods are
developed these years [21, 22]. With the deepening study
of nonlinear behaviors in many control domains [23], the
nonlinear behavior of the manipulator due to the strong cou-
pling has attractedmore andmore interest. For the controlled
synchronization of manipulator system, the authors achieved
many tasks including the nonlinear dynamic modeling, con-
trol strategies and nonlinear behavior of the controlled syn-
chronization of manipulator systems, to satisfy the dynamic
design and vibration suppression of manipulators [24–28].

The main contents of the paper mainly focus on the
comparison of the controllers based on the early works
and further describe the nonlinear behavior of the manip-
ulator under controlling. In Section 2, modeling meth-
ods of the nonlinear dynamics of manipulator system
are introduced. Some new synchronized control strategies
are proposed, including neuron synchronization controller,
improved OPCL synchronization controller, and MRAC-
PD synchronization controller. Then, in Section 3, dynamic
stability of the controlled synchronization of manipulator

Table 1: Structure parameter values of the 2-DOF master manipu-
lator.

Link 𝑖 𝐼
𝑧𝑧
(kgm2) 𝑚

𝑖
(kg) 𝐿

𝑐𝑖
(m) 𝐿

𝑖
(m)

1 0.083 1 0.5 1
2 0.33 1 1 2

Table 2: Structure parameter values of the 3-DOF master manipu-
lator.

Link 𝑖 𝐼
𝑧𝑧
(kgm2) 𝑚

𝑖
(kg) 𝐿

𝑐𝑖
(m) 𝐿

𝑖
(m)

0 — — — 0.09
1 0.05 1.738 0.072 0.144
2 0.05 1.738 0.072 0.144
3 0.12 2.529 0.098 0.241

system and the dynamic stability of robust adaptive synchro-
nized controller are discussed where the unknown construc-
tor parameters, loading variables, and external disturbance
of the manipulators are involved. In Section 4, the influences
of the control parameters and joint friction on the nonlinear
behavior of the synchronized system are described, and
the typical processes of the bifurcation and the loss of
synchronism are also illustrated. Finally, some conclusions
are given in Section 5.

2. Dynamic Models of Manipulator System and
Synchronization Control Methods

Two planar manipulators are shown in Figure 1, and the
corresponding parameters are shown in Tables 1 and 2,
respectively. Based on Newton-Euler formula, their dynamic
equations are derived as follows:

F𝑖−1
𝑖

= F𝑖+1
𝑖

+ 𝑚
𝑖
̇k
𝑐𝑖
− 𝑚
𝑖
g

M𝑖−1
𝑖

= M𝑖+1
𝑖

− r
𝑖,𝑐𝑖

× F𝑖+1
𝑖

+ r
𝑖−1,𝑐𝑖

× F𝑖−1
𝑖

+ I
𝑖

̇𝜔
𝑖
+ 𝜔
𝑖
× I
𝑖
𝜔
𝑖
,

(1)

where F𝑖−1
𝑖

is the force of link 𝑖 + 1 on link 𝑖,𝑚
𝑖
is the mass of

link 𝑖, g is the gravity vector, M𝑖−1
𝑖

is the torque of link 𝑖 + 1

on link 𝑖, r
𝑖−1,𝑐𝑖

is the vector from the coordinate origin 𝑜
𝑖−1

adhering to joint 𝑖 to the center of mass 𝑐
𝑖
, I
𝑖
is the moment of

inertia of link 𝑖 on mass center 𝑐
𝑖
.

Assume that the velocity of 𝑐
𝑖
is k
𝑐𝑖
, where 𝑐

𝑖
is the center

of mass of link 𝑖, and the acceleration of 𝑐
𝑖
is ̇k
𝑐𝑖
. The link 𝑖

rotates freely around 𝑐
𝑖
with angular velocity 𝜔

𝑖
and angular

acceleration ̇𝜔
𝑖
.

Define q as the joint variable, where q = {𝜃1 𝜃
2}
𝑇

for the 2-DOF manipulator and q = {𝜃1 𝜃
2

𝜃
3}
𝑇 for the

3-DOF manipulator. The differential equation of motion of
the manipulator is established including joint friction f( ̇q)
and joint rigid𝐾 as follows:

M (q) ̈q + C (q, ̇q) ̇q + g (q) = 𝜏 − f ( ̇q) − 𝐾 (q − q
0
) , (2)
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Figure 1: Schematic of 2 planar manipulators.
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Figure 2:The configuration of controlled synchronization manipu-
lators.

where the inertial force is determined by acceleration and
Coriolis force, centrifugal force, and gravity load are also
involved in it.

The above theory is applied in the synchronization of
planar manipulators as a prototype, in which the master
manipulator has the same topologicalmechanismwith that of
the slave one.The synchronization control schematic diagram
for the master-slave manipulators is shown in Figure 2.

A general dynamic equation of master-slave manipulator
is addressed as follows. The master system is

̇𝑦 = f (𝑦) . (3)

And the slave system is

̇𝑥 = g (𝑥) + u (x, y) , (4)

where the synchronization controller is u(x, y):

u (x, y) = −g (x) + f (y) + h (x, y) . (5)

The designing goal of synchronization controller is that
the synchronization error of manipulators and its derivative
will converge to be zero; that is, e(𝑡) → 0 and ̇e(𝑡) → 0when
𝑡 → ∞. Then, the derivative of synchronization error is

̇e = ̇x − ̇y = g (x) + u (x, y) − f (y) = h (x, y) . (6)

According to the Lyapunov stability theory, several new
type synchronization controllers can be proposed based on
the feedback control strategy as introduced as follows.

2.1. Neural Synchronization Controller. For the neural syn-
chronization controller which consisted of two reciprocal
inhibition neurons, its state equations are given as follows:

𝛿
1

̇𝑦
1
= 𝑐 − 𝑦

1
− 𝑏V
1
− 𝑎𝑥
2
−max (0, 𝑢) 𝛿

2
̇V
1
= 𝑥
1
− V
1
,

𝛿
1

̇𝑦
2
= 𝑐 − 𝑦

2
− 𝑏V
2
− 𝑎𝑥
1
−max (0, −𝑢) 𝛿

2
̇V
2
= 𝑥
2
− V
2
,

𝑥
1
= max (0, 𝑦

1
) 𝑥

2
= max (0, 𝑦

2
) 𝑥out = 𝑥

1
− 𝑥
2
,

(7)

where 𝛿
1
and 𝛿

2
are two time constants, 𝑎 and 𝑏 are the

weights of mutual inhibition and self-inhibition, respectively,
𝑐 is the excitatory tonic input, 𝑦

1
and 𝑦

2
are the membrane

potential, V
1
and V
2
are the self-inhibition, and 𝑢 and 𝑥out are

the input and output of control system, respectively.
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Figure 3: The motion behavior of small regular swing of a 2-link manipulator.

Apply the controller on the 2-DOF manipulator in
Figure 1(a). When the two links begin to swing, the first
link gets energy from the second link by using the neural
synchronization controller. The whole system will come into
rhythmic swing state under well-tuned controller parameter
of 𝜃
2
, which is shown in Figure 3.

2.2. Improved OPCL (Open-Plus-Close-Loop) Synchronization
Controller. An improved OPCL controller is designed to
achieve synchronization motions based on chaos control
method which consists of an amplifier and a limiter. This
controlmethod is proved to be asymptotically stable based on
the Lyapunov theory given suitable control parameters. The
controlled synchronizations of both the small swing and giant
rotating motions of a 2-link manipulator are achieved based
on the proposed improved OPCL controller. The controlled
system is linearized in the neighborhood of the goal value via
Taylor expansion as follows:

̈q
𝑠
= F (q

𝑠
, ̇q
𝑠
, 𝑡) = F (q

𝑚
− e, ̇q
𝑚

− ̇e, 𝑡)

= F (q
𝑚
, ̇q
𝑚
, 𝑡) − (

𝜕F (q
𝑚
, ̇q
𝑚
, 𝑡)

𝜕q
𝑚

) e

− (
𝜕F (q
𝑚
, ̇q
𝑚
, 𝑡)

𝜕 ̇q
𝑚

) ̇e + 𝑜
2
(q
𝑚
, ̇q
𝑚
)

= F (q
𝑚
, ̇q
𝑚
, 𝑡) + Jq𝑚e + J ̇q𝑚 ̇e + 𝑜

2
(q
𝑚
, ̇q
𝑚
) ,

(8)

where Jq𝑚 and J ̇q𝑚 are Jacobian matrices of F(q
𝑚
, ̇q
𝑚
, 𝑡),

with respect to q
𝑚
, ̇q
𝑚
, respectively. The improved OPCL

controller for the system is designed as
U = ̈q

𝑠
− F (q

𝑚
, ̇q
𝑚
, 𝑡) − Jq𝑚e − J ̇q𝑚 ̇e + 𝐴 ̇e + 𝐵e, (9)

where the term of ̈q
𝑠
− F(q
𝑚
, ̇q
𝑚
, 𝑡) is the open-loop part and

the term of −Jq𝑚e − J ̇q𝑚 ̇e + 𝐴 ̇e + 𝐵e is the closed-loop part.
The coefficient matrices of 𝐴 and 𝐵 are diagonal.

2.3. MARC-PD Synchronization Controller Based on PD
Gains. In order to achieve the controlled synchronization
(either ender motion or trajectory tracing synchronization)
of manipulator system which moves in high speed together
with changing loads, an improved model reference adaption
control with PD gain (viz. MRAC-PD controller) is proposed
to realize the desired motion, namely, synchronization.

After its global stability of the synchronization based on
MRAC-PDmethod is proved, the effects due to the variation
of control parameters have been investigated by numerical
simulations.

For example, an improved MARC-PD controller is
applied on a two-linkmanipulator to obtain the synchroniza-
tion motions including small swing and giant rotation.

The principle of synchronization of ender trajectory trac-
ing based on MRAC-PD controller is introduced as follows.

Themodel of controlled manipulator system is defined as

̈q
𝑠
+M−1
𝑠

(q
𝑠
)C
𝑠
(q
𝑠
, ̇q
𝑠
) ̇q
𝑠
+M−1
𝑠

(q
𝑠
) g
𝑠
(q
𝑠
) = M−1

𝑠
(q
𝑠
) 𝜏
𝑠
.

(10)
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Figure 4: The synchronous motion patterns of small swing of 2-link manipulator using MRAC-PD.

The synchronous error is defined as

e = q
𝑚

− q
𝑠 (11)

and the dynamics equation of it is deduced as

̈e + 2𝜍𝜔
𝑛

̇e + 𝜔
𝑛
e = 𝜔
2

𝑛
q
𝑚

−M−1
𝑠

(q
𝑠
) 𝜏
𝑠

+ (M−1
𝑠

(q
𝑠
)C
𝑠
(q
𝑠
, ̇q
𝑠
) − 2𝜍𝜔

𝑛
) ̇q
𝑠

+M−1
𝑠

(q
𝑠
) g
𝑠
(q
𝑠
) − 𝜔
2

𝑛
q
𝑠
.

(12)

Assuming the state vector of errors 𝜀 = [e, ̇e]𝑇, the
differential equation of it can be deduced as

̇𝜀 = A𝜀 − [
0

M−1
𝑠

(q
𝑠
)
] 𝜏
𝑠
+ [

0

Δ
] , (13)

where Δ is the model error.
It is known that, if the real parts of the eigenvalue of

the coefficient matrix A are negative, the synchronous error
shown in (12) is proved to be zero in asymptotic stability.

The control item 𝑒 according to the PD gain is defined as

𝑒 = 𝑝
1
𝑒 + 𝑝
2

̇𝑒. (14)

Taking the stability of Lyapunov function of the con-
trolled system into account, the MRAC-PD controller is
defined as follows:

𝜏
𝑠
= 𝑘
0
𝑞
𝑚
(𝑡) + 𝑘

1
𝑞
𝑠
(𝑡) + 𝑘

2
̇𝑞
𝑠
(𝑡) , (15)

where the coefficients are defined as follows: ̇𝑘
0
= 𝜆
0
𝑒𝑞
𝑚
(𝑡),

̇𝑘
1
= 𝜆
1
𝑒𝑞
𝑠
(𝑡), and ̇𝑘

2
= 𝜆
2
𝑒𝑞
𝑠
(𝑡).

Apply the controller on the 2-DOF manipulator in
Figure 1(a). The results are shown in Figure 4, where the
phase space trajectories of 𝑞

𝑠1
, 𝑞
𝑠2

indicate the obtained
unchangeable patterns during the motion synchronizations
of small swing.

3. Dynamics Stability of Controlled
Synchronization of Manipulator under
Complicated Conditions

In order to eliminate the effectiveness by uncertainty struc-
ture parameters, friction compensation, unknown load, and
flexible joint, the on-time estimation method of structure
parameters and state variables of manipulator is built to
achieve the synchronization of manipulator system. That is,
the stability of controlled synchronization of manipulator
for the casings of disturbance, uncertainty parameter, and
unknown structure is improved as enhancing the robust
function of synchronization controller.

3.1. Dynamics of Controlled Synchronization of Manipulator
System Based on Estimation of Structure Parameters. Under
the condition of structure parameters of the slave manip-
ulator in a master-slave system being unknown, the exact
expression of g(x) should be estimated in the process of
synchronization control. In this case, the synchronization
controller u(x,y) is defined as the following three terms:

u (x, y) = −ĝ (x) + f (y) + h (x, y) , (16)

where ĝ(x) is the estimator of g(𝑥), f(y) is themaster function,
and h(x, y) is a special control term.

In order to obtain ĝ(x), some assumptions are used and
ĝ(x) is expressed linearly as follows:

ĝ (x) = M̂ (x) + X (𝑥) N̂ + Cconst, (17)

where M̂(x) is the estimation of nonlinear item, N̂ is the
estimator of the linear term containing unknown structure
parameters,X(𝑥) is the linear term containing state variables,
and C is a constant.
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Then, the synchronization error is rewritten as follows:

g̃ (x) = ĝ (x) − g (x)

= (M̂ (x) −M (x)) + X (𝑥) (N̂ (x) − N (x))

= M̃ (x) + X (x) Ñ (x) ,

(18)

where g̃(x) is the estimation error of g(x), M̃(x) is the
estimation error of nonlinear item, and Ñ(x) is the estimation
error of linear item affected by the system parameter.

In particular, when nonlinear itemM(x) = 0, then

g̃ (x) = X (x) Ñ (x) . (19)

So the synchronization error equation is defined as

̇e = ̇x − ̇y = g (x) + u (x,y) − f (y)

= g (x) − ĝ (x) + h (x,y)

= −g̃ (x) + h (x,y) = −X (x) Ñ (x) + h (x,y) .

(20)

Considering the contribution of the estimation error g̃(x),
the adaptive law according to the Lyapunov stability theory is
defined as follows:

𝑑N̂
𝑑𝑡

= −X𝑇e. (21)

If needed, some reasonable synchronization controllers
can also be designed to realize the stable controlled syn-
chronization under the situations of both the linear and the
nonlinear coupling parameters being unknown.

The above theory is applied in the synchronization of
two 3-DOF planar manipulators in Figure 1(b). Each joint
of the slave will trace the corresponding joint trajectory of
the master in a synchronization way. The synchronization
control schematic diagram for the master-slave manipulators
is shown as follows.

According to the characteristics of (2), the dynamic
equation can be linearized and the adaptive method can
guarantee the synchronization stability of the system with
unknown slave parameters. Then, (2) can be rewritten as

M
𝑠
(q
𝑠
) ̈q
𝑚

+ C
𝑠
(q
𝑠
, ̇q
𝑠
) ̇q
𝑚

+ g
𝑠
(q
𝑠
) = Φ (q

𝑠
, ̇q
𝑠
, ̇q
𝑚
, ̈q
𝑚
)P,
(22)

where P ∈ 𝑅
17×1

, Φ(q
𝑠
, ̇q
𝑠
, ̇q
𝑚
, ̈q
𝑚
) ∈ 𝑅

3×17
. P is a

vector which contains all the constant parameters besides
the angular information at each joint, and Φ(q

𝑠
, ̇q
𝑠
, ̇q
𝑚
, ̈q
𝑚
)

does not contain any inertial characteristics and constant
parameters of the manipulator.

Let ̇q
𝑟

= ̇q
𝑚

− 𝑟e and ̇e
𝑟

= ̇e + 𝑟e (𝑟 > 0), and at last
the novel controller for synchronization of the master-slave
manipulators corresponding to (19) and (21) can be written
as follows:

𝜏
𝑠
= Φ (q

𝑠
, ̇q
𝑠
, ̇q
𝑟
, ̈q
𝑟
) P̂ − K

𝑝
e − KV ̇e (23)

̇P̂ = −AΦ(q
𝑠
, ̇q
𝑠
, ̇q
𝑟
, ̈q
𝑟
)
𝑇

̇e
𝑟
, (24)
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Figure 5: Ender trajectories of the master-slave manipulators.

where P̂ is the estimation of the parameter vector P, and it
is continuously adjusting according to the synchronization
error. Through the adaptive law in (24), the adaptive con-
troller can effectively control the manipulator.

The simulation results of the synchronization of two 3-
DOF planar manipulators based on the proposed control
method are plotted in Figure 5.

3.2. Dynamics Stability of Manipulator Based on Robust
Self-Adaptive Synchronization Control. Considering the un-
known model error and possible disturbance, the dynamic
equation of a manipulator is defined as

𝜏 = M (q) ̈q + C (q, ̇q) ̇q + g (q) + Δ (q, ̇q) , (25)

where Δ(q, ̇q) is the model error. A robust controller of
synchronous trajectory tracing is designed to guarantee the
tracing error which is defined as 𝑒(𝑡) = 𝑞(𝑡) − 𝑞

𝑑
(𝑡) to be

asymptotically limited when the model error is limited or to
be asymptotically zero if the model error is zero.

Given an auxiliary signal, 𝑠 = ̇𝑒 + 𝛿𝑒 , and that 𝛿 > 0

is a stability constant, the error equation of the controlled
synchronization system is derived as follows:

M (q) ̇s = −C (q, ̇q) 𝑠 + 𝜙 − Δ (q, ̇q) + u. (26)

The robust condition of a synchronization controller is
that the positive definite function 𝜌(𝑒, ̇𝑒) must be defined for
any Δ(𝑞, ̇𝑞) to meet the following inequality constraint:

Δ (𝑞, ̇𝑞)
 ≤ 𝜌 (𝑒, ̇𝑒) . (27)

The proposed synchronization controller consists of two
parts: one is the feed forward controller and the other is the
feedback controller; they are as follows:

𝑢
1
= −K𝑠 − 𝜙, 𝑢

2
= −V, (28)

where K is a positive feed forward coefficient, 𝜙 = M(𝑞)𝛿 ̇𝑒 +

C(𝑞, ̇𝑞)𝛿𝑒, and V = 𝑠𝜌
2
(𝑒, ̇𝑒)/(‖𝑠‖𝜌(𝑒, ̇𝑒) + 𝜀) in which 𝜀 > 0 is

a definite constant.
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Figure 6: Poincare maps of the joint motions of 2-link manipulator under different OPCL control parameters.

4. Nonlinear Dynamic Behavior
of the Controlled Synchronous
Manipulator System

From the viewpoint of the theories of nonlinear dynamics,
bifurcations, and chaos, bifurcations and possible chaos
could appear in the controlled synchronization processes of
the manipulator system. The possible motion patterns of it
include single periodic, multiple periodic, quasiperiodic, and
chaotic. While the motion patterns and also the dynamic
characteristics of manipulator under different synchroniza-
tion controls will be greatly affected by the unavoidable joint
frictions and especially designed control parameters.

4.1. ComplicatedMotions of a 2-LinkManipulator underOPCL
Synchronization Control. Changing of control parameters
can affect the synchronization motions such as small swing
and giant rotating of a 2-link manipulator under OPCL
control greatly and induce different motions of single peri-
odic, multiple periodic, quasiperiodic, and chaotic ones. The
transition processes of the two kinds of synchronization
motions are also determined by the OPCL parameters.

Assume that the structure parameter values of the 2-link
manipulator in Figure 1(a) are unchangeable, and the two
joint angular trajectories are expected as harmonic ones; the
obtained Poincaremap of the joint angles is shown in Figure 6
when the feed forward coefficients of A and B change. For
the chaotic case, the calculated Lyapunov exponents of the
two joint angles are positive; that is, the biggest Lyapunov
exponents of them are 0.5496 and 0.1431, respectively.

4.2. Nonlinear Behavior of a Controlled Synchronous Manip-
ulator considering Joint Friction. The unavoidable joint fric-
tions will greatly affect the synchronization of the 2-link
manipulator underOPCL control. Based on the Stribeck force
model of joint friction, the influences of the viscous friction
coefficient, static friction force, and Coulomb friction force
on the synchronization motions of the 2-link manipulator
under OPCL control are compared. The possible motions of
it can be single periodic, multiple periodic, quasiperiodic,
and chaotic if the joint viscous frictions are changed. Just

0 2 4

0

2

4

6

8

The value of f�

𝜃 2(
rad
)

−2

Figure 7: Bifurcations of joint angular motion along viscous
frictions.

as shown in Figure 7, the joint angular motion bifurcation
happens along the viscous friction changing from 0 to 4.15.

When the value of viscous friction is constant, the static
friction and Coulomb friction will also affect the motions
of manipulator too. Letting viscous friction 𝑓V = 4.1,
different static friction coefficients of joint angular lead
to quasiperiodic and chaotic motions of the manipulator,
respectively, as shown in Figure 8.

5. Conclusions

The nonlinear dynamics of the manipulator system which is
controlled to achieve synchronizationmotions is investigated
in the paper. Firstly, the modeling approach of manipulator
together with the corresponding synchronization control
strategies is stated in detail. The dynamic phenomena of
swingmotions of a two-linkmanipulator controlled by a neu-
ral controller have been described thoroughly. The motion
characteristics of two kinds of synchronization motions are
simulated. An improved OPCL control method is proposed
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Figure 8: Joint angular motions with different viscous frictions.

to achieve synchronization motions of both small swing
and giant rotating for a two-link manipulator too. MRAC-
PD synchronization controller is proposed to achieve more
accurate trajectory tracing and synchronous motions for
3-DOF manipulator system under the conditions of high
operating speed and unknown structure parameters.

The dynamic stability of controlled synchronization of
manipulator system is also explained. An estimation based
synchronization control method of manipulator system is
investigated to eliminate the influences of unknown structure
parameters, joint friction, and unknown load. The new
synchronization method can improve the robustness of the
manipulator system.The controlled synchronization stability
is also improved even in case of disturbance, uncertainty
parameter, and unknown structure.

Some complicated nonlinear behavior of the controlled
synchronizations of manipulator is investigated including
multiperiodic motions and bifurcation. Along the changing
of the control parameters, viscous friction and static friction,
the synchronous manipulator can present single-periodic,
multiperiodic, quasiperiodic, and chaotic motions.
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We consider bimodal linear control systems consisting of two subsystems acting on each side of a given hyperplane, assuming
continuity along it. For a differentiable family of planar bimodal linear control systems, we obtain its stratification diagram and,
if controllability holds for each value of the parameters, we construct a differentiable family of feedbacks which stabilizes both
subsystems for each value of the parameters.

1. Introduction

Piecewise linear control systems (in particular, the bimodal
ones: see, for example, [1–3]) have attracted the interest of
the researchers in recent years, as a special class of switched
systems (see, e.g., [4–6]), by their wide range of applications,
as well as by the possible theoretical approaches, even in the
planar case (see, e.g., [7]).

Bimodal linear control systems (BLCS) consist of two
subsystems acting on each side of a given hyperplane,
assuming continuity along the separating hyperplane. These
systems present a complex dynamical behaviour, even for low
dimensions, as has been shown in several works. For example,
in [8], it is proved that a planar bimodal linear system is
stable if each subsystem is stable, but this does not hold for a
bimodal linear systemwith three-state variables. On the other
hand, since typically the number of state variables of systems
describing elementary circuits is two or three (see [9]), we
devote a special attention to the planar case. Here we tackle
two problems concerning parameterized families of planar
BLCS.

Firstly, obtaining of its stratification diagram with regard
to the natural equivalence relation is defined by change of
basis in the state space (which preserve the hyperplanes
parallel to the separating one). Previously, it is necessary to
list the possible equivalence classes and to obtain a complete
set of classifying invariant parameters (Theorem 6).

By the way, Arnold’s theory allows us to restrict this study
to the so-called “miniversal” deformation families. Indeed,
the equivalence classes are just the orbits of a certain group
action, so that they are differentiable manifolds and Arnold’s
machinery is applicable. Moreover we remark that by joining
the orbits according to the discrete classifying invariants one
obtains differentiable “strata” (each one formed by the union
of classes differing only on continuous classifying invariants).
We list the dimension of each orbit and the corresponding
strata (Proposition 7). As an application of the previous
results, we present the unobservable bifurcation diagram of
a miniversal deformation (Example 10).

Secondly we consider parameterized families of control-
lable BLCS. It is known (see [3]) that for each value of the
parameter there is a feedback which stabilizes the corre-
sponding system. Thus, we lead to the quite general question
of whether pointwise solvability implies the existence of a
nicely parameterized solution [10].This parameterized family
of pointwise stabilizers may not be differentiable (not even
continuous). Our results allow constructing a differentiable
family of feedbacks which stabilizes the corresponding sys-
tem for each value of the parameter (Theorem 15).

We point out that when dealing with parameterized
families of BLCS, the nongeneric case of unobservable ones
appears in a natural way. See, for example, the circuit
modeling the Fitzghugh-Nagumo equations in [9], where the
unobservable case appears if 𝑅

3
= 𝑅
4
.
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Finally, notice that, as in previous works concerning
single control systems, we will use geometrical techniques:
reducing bases, stratifications, and miniversal deformations
In this sense, we expect that the geometrical approach in [11]
could be translated to BLCS in the future.

Throughout the paper, R will denote the set of real
numbers and 𝑀

𝑛×𝑚
(R) the set of matrices having 𝑛 rows and

𝑚 columns and entries inR (in the case where 𝑛 = 𝑚, we will
simply write 𝑀

𝑛
(R)).

2. Planar Bimodal Linear Control Systems

Let us consider a bimodal linear control system (BLCS) given
by

̇𝑥 (𝑡) = 𝐴
1
𝑥 (𝑡) + 𝐵

1
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,
if 𝑦 (𝑡) ≤ 0,

̇𝑥 (𝑡) = 𝐴
2
𝑥 (𝑡) + 𝐵

2
𝑢 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) ,
if 𝑦 (𝑡) ≥ 0,

(1)

where 𝐴
1
, 𝐴
2

∈ 𝑀
𝑛
(R); 𝐵

1
, 𝐵
2

∈ 𝑀
𝑛×1

(R); 𝐶 ∈ 𝑀
1×𝑛

(R).
One assumes that the dynamics is continuous along the
separating hyperplane 𝐻 = {𝑥 ∈ R𝑛 : 𝐶𝑥 = 0}; that is to
say, both subsystems coincide for 𝑦(𝑡) = 0.

By means of a linear change in the state variable 𝑥(𝑡), one
can consider 𝐶 = (1 0 ⋅ ⋅ ⋅ 0) ∈ 𝑀

1×𝑛
(R). Hence 𝐻 = {𝑥 ∈

R𝑛 : 𝑥
1

= 0} and continuity along 𝐻 is equivalent to

𝐵
2

= 𝐵
1
, 𝐴

2
𝑒
𝑖
= 𝐴
1
𝑒
𝑖
, 2 ≤ 𝑖 ≤ 𝑛. (2)

We will write from now on 𝐵 = 𝐵
1

= 𝐵
2
.

Definition 1. In the above conditions, one says that the triple
of matrices (𝐴

1
, 𝐴
2
, 𝐵) defines a bimodal linear control

system (BLCS). Throughout the paper, X will denote the set
of these triples:

X = {(𝐴
1
, 𝐴
2
, 𝐵) ∈ 𝑀

𝑛
(R) × 𝑀

𝑛
(R)

×𝑀
𝑛×1

(R)
 𝐴
2
𝑒
𝑖
= 𝐴
1
𝑒
𝑖
, 2 ≤ 𝑖 ≤ 𝑛}

(3)

which is obviously a (𝑛
2

+ 2𝑛)-differentiable manifold.
The system is called observable if

rank(

𝐶

𝐶𝐴
𝑖

⋅ ⋅ ⋅

𝐶𝐴
𝑛−1

𝑖

) = 𝑛, 𝑖 = 1, 2. (4)

A natural goal is simplifying the matrices 𝐴
1
, 𝐴
2
, and

𝐵 by means of changes in the variables 𝑥(𝑡) which preserve
the qualitative behavior of the system. So, one considers
linear changes in the state variables space preserving the
hyperplanes 𝑥

1
(𝑡) = 𝑘.

Definition 2. One calls admissible basis changes those given
by the matrices

S := {𝑆 ∈ 𝐺𝑙
𝑛

(R)
 𝑆 = (

1 0

𝑈 𝑇
) ,

𝑇 ∈ 𝐺𝑙
𝑛−1

(R) , 𝑈 ∈ 𝑀
𝑛×1

(R) } .

(5)

Then, (𝐴
1
, 𝐴
2
, 𝐵), (𝐴



1
, 𝐴


2
, 𝐵

) ∈ X are said to be

equivalent if there exists a matrix 𝑆 ∈ S (represent-
ing an admissible basis change) such that (𝐴



1
, 𝐴


2
, 𝐵

) =

(𝑆
−1

𝐴
1
𝑆, 𝑆
−1

𝐴
2
𝑆, 𝑆
−1

𝐵).

Notice that the matrix 𝐶 is not involved in this definition
since 𝐶𝑆 = 𝐶 for any 𝑆 ∈ S.

When considering canonical forms, it is necessary that
the coefficients appearing in them as well as the conditions
used to distinguish the different types do not depend on
the admissible basis which one considers; that is to say, they
are preserved under admissible basis changes 𝑆 ∈ S. It is
wellknown that tr𝐴

1
, tr𝐴
2
, det𝐴

1
, and det𝐴

2
are invariant

under any basis change 𝑆 ∈ 𝐺𝑙
𝑛
(R). We focus on the

additional invariants when only admissible basis changes 𝑆 ∈

S are considered.

Definition 3. A real number (resp., a property) associated
with a triple (𝐴

1
, 𝐴
2
, 𝐵) is calledS-invariant if it is preserved

by admissible basis changes; that is to say, it has the same
value (resp., it is also true) for any other triple (𝐴



1
, 𝐴


2
, 𝐵

) S-

equivalent to the given one.

For example, it is obvious that they are 𝑆-invariant: the
top coefficient 𝑏

1
in 𝐵, the matrix 𝐶, and the condition of

(𝐴
1
, 𝐴
2
, 𝐵) being observable.

We introduce anotherS-invariant that will be used under
additional hypotheses.

Definition 4. Given a triple

𝐴
1

= (
𝑎
1

𝑎
3

𝑎
2

𝑎
4

) , 𝐴
2

= (
𝛾
1

𝑎
3

𝛾
2

𝑎
4

) , 𝐵 = (
𝑏
1

𝑏
2

) (6)

one writes

Δ
0

= det(
𝑎
3

𝑏
1

𝑎
4

𝑏
2

) = 𝑎
3
𝑏
2

− 𝑎
4
𝑏
1
,

Δ
12

= 𝑎
2

(𝑎
4

− 𝛾
1
) − 𝛾
2

(𝑎
4

− 𝑎
1
) ,

Δ
1

= 𝑏
1
𝑎
2

+ (𝑎
4

− 𝑎
1
) 𝑏
2
,

Δ
2

= 𝑏
1
𝛾
2

+ (𝑎
4

− 𝛾
1
) 𝑏
2
.

(7)

Lemma 5. The above triple is unobservable if and only if 𝑎
3

=

0. In this case one has

(1) det(( 𝑎1−𝛾1𝑎2−𝛾2 ) |𝐴
𝑖
(
𝑎1−𝛾1
𝑎2−𝛾2

)) = (𝑎
1

− 𝛾
1
)Δ
12
, 𝑖 = 1, 2,

det(𝐵|𝐴
𝑖
𝐵) = 𝑏

1
Δ
𝑖
, 𝑖 = 1, 2;
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(2) the action of 𝑆 ∈ S transforms Δ
1
, Δ
2
, and Δ

12
,

respectively, into

1

det 𝑆
Δ
1
,

1

det 𝑆
Δ
2
,

1

det 𝑆
Δ
12

. (8)

In particular, it is S-invariant the sign (positive, nega-
tive, or zero):

sign (Δ
1
Δ
2
) . (9)

Proof. Clearly,

(
𝐶

𝐶𝐴
1

) = (
1 0

𝑎
1

𝑎
3

) , (
𝐶

𝐶𝐴
2

) = (
1 0

𝛾
1

𝑎
3

) (∗)

do not have maximal rank when 𝑎
3

= 0. Then

(1) it is a straightforward computation;
(2) if 𝑎

3
= 0, then 𝑎

1
and 𝛾
1
are eigenvalues of 𝐴

1
and 𝐴

2
.

The action of 𝑆 transforms the matrices in (∗) into their
left product by 𝑆

−1.

Theorem 6. With the above notation:

(1) Table 1 summarizes some S-invariant numbers and
properties, as well as the hypotheses for each one;

(2) Table 2 lists the possible canonical forms and the
classification criteria.

Proof. (i) Concerning Table 1

(1) the S-action on 𝐴
1
and 𝐵 can be formulated as

𝑆
−1

(𝐴
1
, 𝐵) (

𝑆 | 0

0 | 1
)

= (
1 0

𝑢 𝑡
)

−1

(
𝑎
1

𝑎
3

𝑏
1

𝑎
2

𝑎
4

𝑏
2

) (

1 0 0

𝑢 𝑡 0

0 0 1

)

= (
∗

∗


(

1 0

𝑢 𝑡
)

−1

(
𝑎
3

𝑏
1

𝑎
4

𝑏
2

) (
𝑡 0

0 1
)) .

(10)

Therefore, Δ
0
is S-invariant:

det((
1 0

𝑢 𝑡
)

−1

(
𝑎
3

𝑏
1

𝑎
4

𝑏
2

) (
𝑡 0

0 1
)) = det(

𝑎
3

𝑏
1

𝑎
4

𝑏
2

) . (11)

We have seen that 𝑎
3

̸= 0 if and only if

rank(
𝐶

𝐶𝐴
𝑖

) = 2, 𝑖 = 1, 2, (12)

which is S-invariant.

(2) If 𝑏
1

= 0, then

𝑆
−1

(
0

𝑏
2

) =
1

𝑡
(

𝑡 0

−𝑢 1
) (

0

𝑏
2

) =
1

𝑡
(

0

𝑏
2

) . (13)

(3) If 𝑎
3

= 0, then 𝑎
1
, 𝑎
4
, and 𝛾

1
are the eigenvalues of 𝐴

1

and 𝐴
2
. Then

Ker (𝐴
1

− 𝑎
1
𝐼) = Ker (𝐴

2
− 𝛾
1
𝐼) (14)

if and only if

rank(
𝑎
2

𝑎
4

− 𝑎
1

𝛾
2

𝑎
4

− 𝛾
1

) = 1 (15)

or, equivalently,

0 = det(
𝑎
2

𝑎
4

− 𝑎
1

𝛾
2

𝑎
4

− 𝛾
1

) = Δ
12

. (16)

In a similar way, Δ
1

= 0 if and only if

(
𝑏
1

𝑏
2

) ∈ Ker (𝐴
1

− 𝑎
1
𝐼) (17)

and Δ
2

= 0 if and only if

(
𝑏
1

𝑏
2

) ∈ Ker (𝐴
2

− 𝛾
1
𝐼) . (18)

(3) This case follows from (3) and the above lemma.
(4) Clearly, if 𝑎

3
= 0 and 𝑎

1
= 𝑎
4
, then 𝑎

2
= 0 if and only

if 𝐴
1
diagonalizes.

(4) Analogously than (4) for 𝛾
2

= 0.
(5) Returning to the formulation in (1):

(
1 0

𝑢 𝑡
)

−1

(
𝑎
1

0 0

𝑎
2

𝑎
1

𝑏
2

) (

1 0 0

𝑢 𝑡 0

0 0 1

) = (

𝑎
1

0 0

𝑎
2

𝑡
𝑎
1

𝑏
2

𝑡

) . (19)

(5) Analogously than (5) for 𝛾
1

= 𝑎
4
.

(ii) This case follows from [12], bearing in mind the S-
invariants in (i).

3. Stratification Diagrams

In the previous section we have partitioned the set of BLCS
into equivalence classes, characterized by the reduced forms
in Theorem 6. In order to study, for example, the changes
when aBLCS is perturbed, somenatural questions arise about
the geometric structure of this equivalence partition. We will
see in a moment that each equivalence class is a manifold,
as well as the “strata” obtained by joining the classes that
differ only in the continuous classification parameters. Their
dimensions are listed in Proposition 7.

Concerning perturbations, small changes in the coeffi-
cients of the matrices defining the system may give rise to
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Table 1: S-Invariant numbers.

Hypotheses Numbers Properties
(1) Δ

0
, 𝑏
1

𝑎
3

= 0

(2) 𝑏
1

= 0 𝑏
2

= 0

(3) 𝑎
3

= 0 𝑎
1
, 𝛾
1
, 𝑎
4

Δ
12

= 0, Δ
1

= 0, Δ
2

= 0

(3) 𝑎
3

= 0, Δ
12

̸= 0 Δ
1
/Δ
12

, Δ
2
/Δ
12

(4) 𝑎
3

= 0, 𝑎
1

= 𝑎
4

𝑎
2

= 0

(4) 𝑎
3

= 0, 𝛾
1

= 𝑎
4

𝛾
2

= 0

(5) 𝑏
1

= 0, 𝑎
3

= 0, 𝑎
1

= 𝑎
4

𝑏
2
/𝑎
2

(5) 𝑏
1

= 0, 𝑎
3

= 0, 𝛾
1

= 𝑎
4

𝑏
2
/𝛾
2

Table 2: Canonical forms.

Label Classification criteria Canonical forms

CF1 𝑎
3

̸= 0 (
tr𝐴
1

1

− det𝐴
1

0
) , (

tr𝐴
2

1

− det𝐴
2

0
) , (

𝑏
1

Δ
0

)

CF2 𝑎
3

= 0, 𝑎
1

̸= 𝑎
4
, 𝛾
1

̸= 𝑎
4
, Δ
12

̸= 0 (
𝑎
1

0

0 𝑎
4

) , (
𝛾
1

0

1 𝑎
4

) , (
𝑏
1

−Δ
1
/Δ
12

)

CF3 𝑎
3

= 0, 𝑎
1

̸= 𝑎
4
, 𝛾
1

̸= 𝑎
4
, Δ
12

= 0, Δ
1

̸= 0 (
𝑎
1

0

0 𝑎
4

) , (
𝛾
1

0

0 𝑎
4

) , (
𝑏
1

1
)

CF4 𝑎
3

= 0, 𝑎
1

̸= 𝑎
4
, 𝛾
1

̸= 𝑎
4
, Δ
12

= 0, Δ
1

= 0 (
𝑎
1

0

0 𝑎
4

) , (
𝛾
1

0

0 𝑎
4

) , (
𝑏
1

0
)

CF5 𝑎
3

= 0, 𝑎
1

= 𝑎
4
, 𝛾
1

̸= 𝑎
4
, 𝑎
2

̸= 0 (
𝑎
4

0

1 𝑎
4

) , (
𝛾
1

0

0 𝑎
4

) , (
𝑏
1

Δ
2
/Δ
12

)

CF5 𝑎
3

= 0, 𝑎
1

̸= 𝑎
4
, 𝛾
1

= 𝑎
4
, 𝛾
2

̸= 0 (
𝑎
1

0

0 𝑎
4

) , (
𝑎
4

0

1 𝑎
4

) , (
𝑏
1

−Δ
1
/Δ
12

)

CF6 𝑎
3

= 0, 𝑎
1

= 𝑎
4
, 𝛾
1

̸= 𝑎
4
, 𝑎
2

= 0, Δ
2

̸= 0 (
𝑎
4

0

0 𝑎
4

) , (
𝛾
1

0

0 𝑎
4

) , (
𝑏
1

1
)

CF6 𝑎
3

= 0, 𝑎
1

̸= 𝑎
4
, 𝛾
1

= 𝑎
4
, 𝛾
2

= 0, Δ
1

̸= 0 (
𝑎
1

0

0 𝑎
4

) , (
𝑎
4

0

0 𝑎
4

) , (
𝑏
1

1
)

CF7 𝑎
3

= 0, 𝑎
1

= 𝑎
4
, 𝛾
1

̸= 𝑎
4
, 𝑎
2

= 0, Δ
2

= 0 (
𝑎
4

0

0 𝑎
4

) , (
𝛾
1

0

0 𝑎
4

) , (
𝑏
1

0
)

CF7 𝑎
3

= 0, 𝑎
1

̸= 𝑎
4
, 𝛾
1

= 𝑎
4
, 𝛾
2

= 0, Δ
1

= 0 (
𝑎
1

0

0 𝑎
4

) , (
𝑎
4

0

0 𝑎
4

) , (
𝑏
1

0
)

CF8 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

̸= 0, 𝛾
2

̸= 0, 𝑏
1

̸= 0 (
𝑎
4

0

1 𝑎
4

) , (
𝑎
4

0

𝛾
2
/𝑎
2

𝑎
4

) , (
𝑏
1

0
)

CF9 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

̸= 0, 𝛾
2

̸= 0, 𝑏
1

= 0 (
𝑎
4

0

1 𝑎
4

) , (
𝑎
4

0

𝛾
2
/𝑎
2

𝑎
4

) , (
0

𝑏
2
/𝑎
2

)

CF10 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

̸= 0, 𝛾
2

= 0, 𝑏
1

̸= 0 (
𝑎
4

0

1 𝑎
4

) , (
𝑎
4

0

0 𝑎
4

) , (
𝑏
1

0
)

CF10 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

= 0, 𝛾
2

̸= 0, 𝑏
1

̸= 0 (
𝑎
4

0

0 𝑎
4

) , (
𝑎
4

0

1 𝑎
4

) , (
𝑏
1

0
)

CF11 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

̸= 0, 𝛾
2

= 0, 𝑏
1

= 0 (
𝑎
4

0

1 𝑎
4

) , (
𝑎
4

0

0 𝑎
4

) , (
0

𝑏
2
/𝑎
2

)

CF11 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

= 0, 𝛾
2

̸= 0, 𝑏
1

= 0 (
𝑎
4

0

0 𝑎
4

) , (
𝑎
4

0

1 𝑎
4

) , (
0

𝑏
2
/𝛾
2

)

CF12 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

= 0, 𝛾
2

= 0, 𝑏
1

̸= 0 (
𝑎
4

0

0 𝑎
4

) , (
𝑎
4

0

0 𝑎
4

) , (
𝑏
1

0
)

CF13 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

= 0, 𝛾
2

= 0, 𝑏
1

= 0, 𝑏
2

̸= 0 (
𝑎
4

0

0 𝑎
4

) , (
𝑎
4

0

0 𝑎
4

) , (
0

1
)

CF14 𝑎
3

= 0, 𝑎
1

= 𝑎
4

= 𝛾
1
, 𝑎
2

= 0, 𝛾
2

= 0, 𝑏
1

= 0, 𝑏
2

= 0 (
𝑎
4

0

0 𝑎
4

) , (
𝑎
4

0

0 𝑎
4

) , (
0

0
)
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Table 3: Dimension of orbits and strata for each case in Table 2.

Canonical form Dimension of
the orbit

Dimension of
the stratum

CF1 2 8
CF2 2 7
CF3 2 6
CF4 1 5
CF5, CF5 2 6
CF6, CF6 2 5
CF7, CF7 1 4
CF8 2 5
CF9 1 4
CF10, CF10 2 4
CF11, CF11 1 3
CF12 1 3
CF13 1 2
CF14 0 1

nonequivalent systems.Then in order to explain the behavior
of the system under small perturbations, it is necessary
to know the nearby equivalence classes. The “stratification
diagram” (“bifurcation diagram” in Arnold’s terminology)
of a parameterized family of systems is the partition of the
parameter space according to the equivalence class. Arnold’s
theory [13] shows that they are induced by the ones of the
so-called versal deformations. In particular, the miniversal
deformations are the simplest parameterized families which
provide all the information about which equivalence classes
are near a given one, that is to say, which canonical forms
appear when the given one is perturbed.

The starting point is that the above equivalence classes are
actually the orbits with regard to the action of the Lie group
S on the differentiable manifoldX:

𝛼 : S × X → X (20)

defined by

𝛼 (𝑆,X) = (𝑆
−1

𝐴
1
𝑆, 𝑆
−1

𝐴
2
𝑆, 𝑆
−1

𝐵) . (21)

Given any triple of matrices (𝐴
1
, 𝐴
2
, 𝐵) ∈ X, we will denote

by O(𝐴
1
, 𝐴
2
, 𝐵) its orbit (or equivalence class).

As an application of the closed orbit lemma (see [14]), we
deduce that equivalence classes are differentiable manifolds.
Namely, any equivalence class is a locally closed differentiable
submanifold ofX and its boundary is a union of equivalence
classes or orbits of strictly lower dimension. In particular,
equivalence classes or orbits of minimal dimension are
closed.

Moreover, orbits having the same discrete classification
parameters (but differing in the continuous ones) can be
joined in a finite number of “strata” which in our case are as
well differentiable manifolds (see [12]). For the commodity of
the reader we adapt the results there.

Proposition 7. Table 3 lists the dimensions of the orbits (i.e.,
the equivalence classes) and the corresponding strata (i.e., the

union of the orbits of the same type when the parameters
appearing in the canonical form vary).

To illustrate the above considerations and as an applica-
tion of the results in Section 2, we will present (see Figure 1)
the unobservable bifurcation diagram of the miniversal
deformation of a system of type CF10. The main definitions
and results about deformations and versality can be found in
[13, 15]. Herewe rewrite themdown, adapted to our particular
case.

Definition 8. A deformation of (𝐴
1
, 𝐴
2
, 𝐵) ∈ X is a differen-

tiable map 𝜑 : 𝑈 → X, with 𝑈 an open neighbourhood of
the origin R𝑑, such that 𝜑(0) = (𝐴

1
, 𝐴
2
, 𝐵).

A deformation 𝜑 : 𝑈 → X of (𝐴
1
, 𝐴
2
, 𝐵) is called

versal at 0 if, for any other deformation of (𝐴
1
, 𝐴
2
, 𝐵), 𝜓 :

𝑉 → X, there exists a neighbourhood 𝑉


⊆ 𝑉 with 0 ∈ 𝑉
,

a differentiable map 𝛾 : 𝑉


→ 𝑈 with 𝛾(0) = 0, and a
deformation of the identity 𝐼 ∈ S, 𝜃 : 𝑉


→ S, such that

𝜓(𝜇) = 𝛼(𝜃(𝜇), 𝜑(𝛾(𝜇))) for all 𝜇 ∈ 𝑉
.

A versal deformation with minimal number of parame-
ters 𝑑 is calledminiversal deformation.

A miniversal deformation can be obtained from the
normal space to the orbit with regard to some scalar product.

Proposition 9 (see [16]). We consider the following scalar
product inX:

⟨(𝐴
1
, 𝐴
2
, 𝐵) , (𝐴



1
, 𝐴


2
, 𝐵

)⟩

= tr (𝐴
𝑡

1
𝐴


1
) + tr (𝐴

𝑡

2
𝐴


2
) + tr (𝐵

𝑡
𝐵

) .

(22)

(i) Thenormal space to the orbit of (𝐴
1
, 𝐴
2
, 𝐵) at (𝐴

1
, 𝐴
2
,

𝐵)𝑁
(𝐴1 ,𝐴2,𝐵)

O(𝐴
1
, 𝐴
2
, 𝐵) ∩ X is the vector subspace

consisting of triples (𝑋
1
, 𝑋
2
, 𝑌) ∈ X such that

𝐴
1
𝑋
𝑡

1
− 𝑋
𝑡

1
𝐴
1

+ 𝐴
2
𝑋
𝑡

2
− 𝑋
𝑡

2
𝐴
2

− 𝐵𝑌
𝑡

∈ A, (23)

where A is the set

A = {𝑀 = (𝑚
𝑗

𝑖
)

𝑚
𝑗

𝑖
= 0, 2 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑛} . (24)

(ii) Then the mapping

R
𝑑

→ X

(𝜂
1
, . . . , 𝜂

𝑑
) → (𝐴

1
, 𝐴
2
, 𝐵) + 𝜂

1
𝑉
1

+ ⋅ ⋅ ⋅ + 𝜂
𝑑
𝑉
𝑑
,

(25)

where {𝑉
1
, . . . , 𝑉

𝑑
} is any basis of the vector space

𝑁
(𝐴1 ,𝐴2,𝐵)

O(𝐴
1
, 𝐴
2
, 𝐵), is a miniversal deformation of

(𝐴
1
, 𝐴
2
, 𝐵).

Normal spaces of two equivalent triples can be obtained
one from the other. Thus, it is always possible to restrict
ourselves to the case where the triple is in its canonical form.

Here, as an application of the previous results, we present
the unobservable bifurcation diagram of a miniversal defor-
mation: Figure 1 shows the geometrical configuration of the
unobservable strata near a given system of type CF10.
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Example 10. Consider a bimodal linear dynamical system of
type CF10 whose canonical form is

𝐴
1

= (
𝑎
4

0

0 𝑎
4

) , 𝐴
2

= (
𝑎
4

0

1 𝑎
4

) , 𝐵 = (
𝑏
1

0
) . (26)

Then, 𝑁
(𝐴1 ,𝐴2,𝐵)

O(𝐴
1
, 𝐴
2
, 𝐵) ∩ X is the vector subspace

consisting of triples (𝑋
1
, 𝑋
2
, 𝑌) ∈ X

𝑋
1

= (
𝑥
1

𝑥
3

𝑥
2

𝑥
4

) , 𝑋
2

= (
𝑥
5

𝑥
3

𝑥
6

𝑥
4

) , 𝑌 = (
𝑦
1

𝑦
2

) (27)

such that

𝑥
6

= 0

𝑎
4
𝑥
5

+ 𝑏
1
𝑦
2

= 0.
(28)

Moreover, parameter 𝑥
3
must be zero to avoid observable

perturbations and parameters 𝑥
4
, 𝑦
1
give orbits in the initial

stratum.
Then the unobservable perturbations in the normal space

to the stratum of (𝐴
1
, 𝐴
2
, 𝐵) are parameterized by

𝜑 (𝑥
1
, 𝑥
2
, 𝑥
5
)

= ((
𝑎
4

+ 𝑥
1

0

𝑥
2

𝑎
4

) , (
𝑎
4

+ 𝑥
5

0

1 𝑎
4

) , (

𝑏
1

−
𝑎
4

𝑏
1

𝑥
5

)) .

(29)

We denote by 𝐸
𝑖
the set of all triples of matrices having

canonical form of type (CFi), 𝑖 = 1, . . . , 14.
Clearly, if only𝑥

1
(resp.,𝑥

2
) is nonzero, it lies in𝐸5

 (resp.,
𝐸8). But for only 𝑥

5
, the strata 𝐸6 and 𝐸7 are possible in

principle, depending on the value of Δ
2
. In our case

Δ
2

= 𝑏
1
𝛾
2

+ (𝑎
4

− 𝛾
1
) 𝑏
2

= 𝑏
1

+ (−𝑥
5
) (−

𝑎
4

𝑏
1

𝑥
5
)

=
1

𝑏
1

(𝑏
2

1
+ 𝑎
4
𝑥
2

5
) .

(30)

Hence, it belongs to 𝐸7 for 𝑥
2

5
= −𝑏

2

1
/𝑎
4
, and to 𝐸6

otherwise.
In a similar way, if 𝑥

1
, 𝑥
5

̸= 0 only 𝐸2, 𝐸3, and 𝐸4 are
possible. We have Δ

0
= −𝑥
2
𝑥
5

+ 𝑥
1
. Hence, 𝑥

2
= 0 implies

Δ
0

̸= 0, which corresponds to 𝐸2. If 𝑥
2

̸= 0, it gives again 𝐸2
except on the hyperbolic paraboloid 𝑥

1
= 𝑥
2
𝑥
5
. When it

happens,

Δ
1

= 𝑏
1
𝑥
2

+ 𝑥
1

𝑎
4

𝑏
1

𝑥
5

=
𝑥
2

𝑏
1

(𝑏
2

1
+ 𝑎
4
𝑥
2

5
) . (31)

Hence, it lies in 𝐸4 for 𝑥
2

5
= −𝑏
2

1
/𝑎
4
, and in 𝐸3 otherwise.

Finally, it is straightforward that one obtains 𝐸5 for 𝑥
1

=

0, 𝑥
2
, 𝑥
5

̸= 0, and 𝐸5 for 𝑥
5

= 0, 𝑥
1
, 𝑥
2

̸= 0. In summary (see
Figure 1),

(i) if 𝑥
2
, 𝑥
5

= 0, 𝑥
1

̸= 0, then 𝜑(𝑥
1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸5

;
(ii) if 𝑥

1
, 𝑥
5

= 0, 𝑥
2

̸= 0, then 𝜑(𝑥
1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸8;

X1

X2

X5

5

5

10

2

2

3

5

8

4

7

6

Figure 1: Stratification diagram.

(iii) if 𝑥
1
, 𝑥
2

= 0, 𝑥2
5

= −𝑏
2

1
/𝑎
4
, then 𝜑(𝑥

1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸7;

(iv) if 𝑥
1
, 𝑥
2

= 0, 𝑥
5

̸= 0, 𝑥2
5

̸= − 𝑏
2

1
/𝑎
4
, then 𝜑(𝑥

1
, 𝑥
2
, 𝑥
5
) ∈

𝐸6;

(v) if 𝑥
5

= 0, 𝑥
1
, 𝑥
2

̸= 0, then 𝜑(𝑥
1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸5

;

(vi) if 𝑥
2

= 0, 𝑥
1
, 𝑥
5

̸= 0, then 𝜑(𝑥
1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸2;

(vii) if 𝑥
1

= 0, 𝑥
2
, 𝑥
5

̸= 0, then 𝜑(𝑥
1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸5;

(viii) if 𝑥
1
, 𝑥
2
, 𝑥
5

̸= 0, 𝑥
1

= 𝑥
2
𝑥
5
, 𝑥
2

5
= −𝑏

2

1
/𝑎
4
, then

𝜑(𝑥
1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸4;

(ix) if 𝑥
1
, 𝑥
2
, 𝑥
5

̸= 0, 𝑥
1

= 𝑥
2
𝑥
5
, 𝑥
2

5
̸= − 𝑏
2

1
/𝑎
4
, then

𝜑(𝑥
1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸3;

(x) if 𝑥
1
, 𝑥
2
, 𝑥
5

̸= 0, 𝑥
1

̸= 𝑥
2
𝑥
5
, then 𝜑(𝑥

1
, 𝑥
2
, 𝑥
5
) ∈ 𝐸2.

4. Controllability and Families of Stabilizers

We have seen that in a differentiable family of BLCS different
equivalence classes can appear for different values of the
parameters. Let us see that, however, some global treatments
are possible. Indeed, we will prove that a differentiable family
of stabilizers exists if each BLCS in the given family is
controllable.

Thenotion of controllability of a single system is extended
to bimodal ones in a natural way.

Definition 11. A BLCS is (completely) controllable if for any
pair of states (𝑥

0
, 𝑥
𝑓
) there exists a locally integrable input

𝑢 such that the solution 𝑥
𝑥0,𝑢 passes through 𝑥

𝑓
; that is,

𝑥
𝑥0 ,𝑢(𝑇) = 𝑥

𝑓
for some 𝑇 > 0.
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A well-known remarkable fact is that a single linear
system ̇𝑥 = 𝐴𝑥 + 𝐵𝑢 is controllable if and only if its “control-
lability matrix” (𝐵 𝐴𝐵 ⋅ ⋅ ⋅ 𝐴

𝑛−1
𝐵) has maximal rank. For

planar BLCS we recall the characterization of controllability
of planar BLCS obtained in [1] for observable systems and
generalized in [17] to unobservable ones.

Proposition 12. Let one consider a planar BLCS defined by
(𝐴
1
, 𝐴
2
, 𝐵). One writes 𝐶

1
, 𝐶
2
the controllability matrices of

both subsystems

𝐶
1

= (𝐵 𝐴
1
𝐵) , 𝐶

2
= (𝐵 𝐴

2
𝐵) . (32)

Then, it is controllable if and only if

det𝐶
1
det𝐶
2

> 0. (33)

Remark 13. (1) Notice that, in particular, both subsystems
must be controllable, but it is not a sufficient condition.

(2) Whereas for single systems the subset of controllable
ones is open and dense, the above proposition shows that it
is not for BLCS systems: controllability is an open, but not
generic, property.

If the control function is a so-called “feedback” of the
type 𝑢(𝑡) = 𝑓(𝑥(𝑡)), one obtains a new dynamical system
(“in closed loop”). For single linear systems ̇𝑥 = 𝐴𝑥 + 𝐵𝑢,
a feedback 𝑢 = 𝐹𝑥 gives ̇𝑥 = (𝐴 + 𝐵𝐹)𝑥. A remarkable fact
is that it is stable for some suitable 𝐹, provided that the initial
control system is controllable.

As a natural generalization, in [3] any controllable BLCS
is proved to be feedback stabilizable. Hence, if a differen-
tiable parameterized family (𝐴

1
(𝑠), 𝐴

2
(𝑠), 𝐵(𝑠)) is pointwise

controllable (observable or not), then it is also pointwise
stabilizable; that is to say, for any 𝑠 ∈ R there is a common
feedback 𝐹(𝑠) such that both closed-loop systems 𝐴

1
(𝑠) +

𝐵(𝑠)𝐹(𝑠), 𝐴
2
(𝑠) + 𝐵(𝑠)𝐹(𝑠) are stable. However, the family

𝐹(𝑠)may not be differentiable (not even continuous). Here we
prove that differentiable families of stabilizer feedbacks exist
for 𝑛 = 2.

As we have pointed out in the Introduction, the unob-
servable case appears generically in parameterized families of
bimodal systems. A typical case is considered in the following
example. As an application of the above proposition, we
characterize when this family is pointwise controllable.

Example 14. Let us consider the parameterized family of
planar BLCS

𝐴
1

(𝑠) = (
𝑎
1

𝑠

𝑎
2

𝑎
4

) , 𝐴
2

(𝑠) = (
𝛾
1

𝑠

𝛾
2

𝑎
4

) , 𝐵 = (
𝑏
1

𝑏
2

) ,

(34)

where 𝑠 ∈ R. Obviously, the systems defined by thesematrices
are observable except for 𝑠 = 0. Let us see that the family is
pointwise controllable (i.e., for any 𝑠 ∈ R the corresponding
system is controllable) if and only if 𝑏

1
̸= 0 and

(i) 𝑎
2
𝛾
2

> 0, if 𝑏
2

= 0,

(ii) det (
𝑎1 𝑏1

𝑎2 𝑏2
) = det (

𝛾1 𝑏1

𝛾2 𝑏2
), otherwise.

From Proposition 12, for any 𝑠 ∈ R (including the case
where 𝑠 = 0) the corresponding system is controllable if and
only if

(𝑏
2

1
𝑎
2

+ 𝑏
1
𝑏
2
𝑎
4

− 𝑏
1
𝑏
2
𝑎
1

− 𝑏
2

2
𝑠)

× (𝑏
2

1
𝛾
2

+ 𝑏
1
𝑏
2
𝑎
4

− 𝑏
1
𝑏
2
𝛾
1

− 𝑏
2

2
𝑠) > 0.

(35)

In particular 𝑏
1

̸= 0 (it suffices to take 𝑠 = 0).
If 𝑏
2

= 0, the above inequality is

(𝑏
2

1
𝑎
2
) (𝑏
2

1
𝛾
2
) > 0 (36)

that is to say,

𝑎
2
𝛾
2

> 0. (37)

Assume now 𝑏
2

̸= 0. In general, two polynomials of degree 1

have the same sign at any point if and only if they have the
same root and the slopes have the same sign. In our case both
slopes are −𝑏

2

2
, so that the above inequality holds if and only

if
𝑏
2

1
𝑎
2

+ 𝑏
1
𝑏
2
𝑎
4

− 𝑏
1
𝑏
2
𝑎
1

𝑏2
2

=
𝑏
2

1
𝛾
2

+ 𝑏
1
𝑏
2
𝑎
4

− 𝑏
1
𝑏
2
𝛾
1

𝑏2
2

(38)

which is equivalent (recall 𝑏
1

̸= 0) to

𝑏
1
𝑎
2

− 𝑏
2
𝑎
1

= 𝑏
1
𝛾
2

− 𝑏
2
𝛾
1
. (39)

Finally, we prove the existence of differentiable families
of stabilizers for differentiable families of planar controllable
bimodal systems.

Theorem 15. Let

(𝐴
1

(𝑠) , 𝐴
2

(𝑠) , 𝐵 (𝑠)) , 𝑠 ∈ R (40)

be a differentiable family of planar BLCS. If it is pointwise
controllable, then there is a differentiable family of feedbacks
𝐹(𝑠), 𝑠 ∈ R, such that

𝐴
1

(𝑠) + 𝐵 (𝑠) 𝐹 (𝑠) , 𝐴
2

(𝑠) + 𝐵 (𝑠) 𝐹 (𝑠) (41)

are stable for any 𝑠 ∈ R.
More explicitly, if

𝐴
1

(𝑠) = (
𝑎
1

𝑎
3

𝑎
2

𝑎
4

) , 𝐴
2

(𝑠) = (
𝛾
1

𝑎
3

𝛾
2

𝑎
4

) ,

𝐵 (𝑠) = (
𝑏
1

𝑏
2

) ,

𝐶
1

= (𝐵 (𝑠) 𝐴
1

(𝑠) 𝐵 (𝑠)) , 𝐶
2

= (𝐵 (𝑠) 𝐴
2

(𝑠) 𝐵 (𝑠)) ,

(42)

where all the coefficients are assumed to be differentiably
depending on 𝑠 ∈ R, one can take

𝐹 = (𝑓1 𝑓
2)

= (𝑥 𝑦)
1

det𝐶
1

(
det(

𝑏
1

𝑎
1

𝑏
2

𝑎
2

) det(
𝑏
1

𝑎
3

𝑏
2

𝑎
4

)

−𝑏
2

−𝑏
1

)

(43)
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with
𝑥 < −tr𝐴

1
, −tr𝐴

2
,

𝑦 < det𝐴
1
,

𝑦 < − det(
𝑏
1

𝛾
1

− 𝑎
1

𝑏
2

𝛾
2

− 𝑎
2

) det(
𝑏
1

𝑎
3

𝑏
2

𝑎
4

)
1

det𝐶
2

𝑥

+ det𝐴
2

det𝐶
1

det𝐶
2

.

(44)

Proof. By hypothesis, we assume

det𝐶
1
det𝐶
2

> 0 (45)

for any 𝑠 ∈ R.
We look for 𝐹(𝑠) = (𝑓

1
𝑓
2
) where again we assume the

coefficients depending on 𝑠 ∈ R, such that the eigenvalues of

(
𝑎
1

+ 𝑏
1
𝑓
1

𝑎
3

+ 𝑏
1
𝑓
2

𝑎
2

+ 𝑏
2
𝑓
1

𝑎
4

+ 𝑏
2
𝑓
2

) , (
𝛾
1

+ 𝑏
1
𝑓
1

𝑎
3

+ 𝑏
1
𝑓
2

𝛾
2

+ 𝑏
2
𝑓
1

𝑎
4

+ 𝑏
2
𝑓
2

) (46)

have negative real part for any 𝑠 ∈ R or, equivalently, the
matrices have negative trace and positive determinant; that
is to say,

𝑏
1
𝑓
1

+ 𝑏
2
𝑓
2

< −𝑎
1

− 𝑎
4
,

𝑏
1
𝑓
1

+ 𝑏
2
𝑓
2

< −𝛾
1

− 𝑎
4
,

𝑓
1

(𝑎
3
𝑏
2

− 𝑎
4
𝑏
1
) + 𝑓
2

(𝑎
2
𝑏
1

− 𝑎
1
𝑏
2
) < 𝑎
1
𝑎
4

− 𝑎
2
𝑎
3
,

𝑓
1

(𝑎
3
𝑏
2

− 𝑎
4
𝑏
1
) + 𝑓
2

(𝛾
2
𝑏
1

− 𝛾
1
𝑏
2
) < 𝛾
1
𝑎
4

− 𝛾
2
𝑎
3
.

(47)

We change the variables (𝑓
1
, 𝑓
2
) by (𝑥, 𝑦) defined by

𝑥 = 𝑏
1
𝑓
1

+ 𝑏
2
𝑓
2
,

𝑦 = (𝑏
2
𝑎
3

− 𝑏
1
𝑎
4
) 𝑓
1

+ (𝑏
1
𝑎
2

− 𝑏
2
𝑎
1
) 𝑓
2
,

(48)

which is a change of variables, because (by hypothesis)

det(
𝑏
1

𝑏
2
𝑎
3

− 𝑏
1
𝑎
4

𝑏
2

𝑏
1
𝑎
2

− 𝑏
2
𝑎
1

) = det𝐶
1

̸= 0. (49)

Then

(𝑓1 𝑓
2) = (𝑥 𝑦)

1

det𝐶
1

(
det(

𝑏
1

𝑎
1

𝑏
2

𝑎
2

) det(
𝑏
1

𝑎
3

𝑏
2

𝑎
4

)

−𝑏
2

−𝑏
1

) .

(50)

With this change of variables, the desired inequalities become

𝑥 < −𝑎
1

− 𝑎
4

= − tr𝐴
1
,

𝑥 < −𝛾
1

− 𝑎
4

= − tr𝐴
2
,

𝑦 < 𝑎
1
𝑎
4

− 𝑎
2
𝑎
3

= det𝐴
1
,

(𝑎
3
𝑏
2

− 𝑎
4
𝑏
1
)

(𝑏
1
𝑎
2

− 𝑏
2
𝑎
1
) 𝑥 − 𝑏

2
𝑦

det𝐶
1

− (𝛾
2
𝑏
1

− 𝛾
1
𝑏
2
)

(𝑏
2
𝑎
3

− 𝑏
1
𝑎
4
) 𝑥 − 𝑏

1
𝑦

det𝐶
1

< 𝛾
1
𝑎
4

− 𝛾
2
𝑎
3
.

(51)

It is straightforward that the last inequality can be rewritten:

det(
𝑏
1

𝛾
1

− 𝑎
1

𝑏
2

𝛾
2

− 𝑎
2

) det(
𝑏
1

𝑎
3

𝑏
2

𝑎
4

)
1

det𝐶
1

𝑥 + 𝑦
det𝐶
2

det𝐶
1

< det𝐴
2
.

(52)

Example 16. For the family in Example 14,when 𝑏
1

̸= 0, 𝑏
2

= 0,
𝑎
2
𝛾
2

> 0, differentiable families of feedbacks are given by

(𝑓1 𝑓
2) = (𝑥 𝑦)

1

𝑏
1
𝑎
2

(
𝑎
2

−𝑎
4

0 −1
) ,

𝑥 < −𝑎
1

− 𝑎
4
, −𝛾
1

− 𝑎
4
,

𝑦 < 𝑎
1
𝑎
4

− 𝑎
2
𝑠,

𝑦 < (
𝑎
2

𝛾
2

− 1) 𝑎
4
𝑥 +

𝑎
2

𝛾
2

𝛾
1
𝑎
4

− 𝑎
2
𝑠.

(53)

For example,

𝑥 = min {−𝑎
1

− 𝑎
4
, −𝛾
1

− 𝑎
4
} − 1 ≡ 𝛼,

𝑦 = 𝛽 −
𝑎
2

2

4
𝑠
2
,

𝛽 = min{𝑎
1
𝑎
4
, (

𝑎
2

𝛾
2

− 1) 𝑎
4
𝛼 +

𝑎
2

𝛾
2

𝛾
1
𝑎
4
} − 1.

(54)

That is,

𝐹 (𝑠) = (
𝛼

𝑏
1

−
𝑎
4
𝛼

𝑏
1
𝑎
2

−
𝛽

𝑏
1
𝑎
2

+
𝑎
2

4𝑏
1

𝑠
2
) . (55)

5. Conclusion

In this work we consider planar bimodal linear control
systems (BLCS) consisting of two subsystems acting on each
side of a given hyperplane, assuming continuity along it.
The set of BLCS is partitioned into equivalence classes by
reducing each triple of matrices by means of a suitable
change of basis. For a differentiable family of such systems
(for example, perturbations of a given one) we study its
stratification diagram, that is to say, the different equivalence
types appearing for different values of the parameters. On
the other hand, in spite of these different classes (even
nonobservable ones), if pointwise controllability holds, we
construct a differentiable family of feedbacks which stabilizes
both subsystems for each value of the parameters.

Some extensions of this work could be the application
of the same techniques to tackle the case of piecewise linear
control systems composed of a different partition of the state
space, for example, the ones composed of three regions,
with the same subsystem acting on the outer ones (see, for
example, [9]). Another possible work would be the extension
to bimodal linear systems with three-state variables, starting
from our results in [17].
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A recursive subspace identification algorithm for autonomous underwater vehicles (AUVs) is proposed in this paper. Due to
the advantages at handling nonlinearities and couplings, the AUV model investigated here is for the first time constructed as a
Hammersteinmodelwith nonlinear feedback in the linear part. To better take the environment and sensor noises into consideration,
the identification problem is concerned as an errors-in-variables (EIV) one which means that the identification procedure is
under general noise assumption. In order to make the algorithm recursively, propagator method (PM) based subspace approach
is extended into EIV framework to form the recursive identification method called PM-EIV algorithm. With several identification
experiments carried out by the AUV simulation platform, the proposed algorithm demonstrates its effectiveness and feasibility.

1. Introduction

In recent years, autonomous underwater vehicles (AUVs)
have attracted increasing attentions due to their remarkable
features such as high agility, excellent convenience and low
cost in applications of underwater explorations and develop-
ments. However, contradictions lay between more and more
complicated missions for AUV and the control and naviga-
tion systems that are not accurate enough. System identifi-
cation methods have provided an alternative way other than
traditional expensive instruments dependent approaches to
improve the abilities of autonomous systems in various
aspects [1–5]. As a result, a variety of researches have been put
forward to identify the ordinary differential model of AUVs
for model based control and navigation. Rentschler and
coworkers [1] have demonstrated an iterative procedure to
revise the model and controller of Odyssey III AUV to
obtain better flight performances. Nonlinear observers based
identification algorithmwith slidingmode observer and EKF
is also proposed for designation of nonlinear controller in [2].
For a more robust navigation system in case of sensor fault,
Hegrenaes and Hallingstad [3] have used least squares algo-
rithm to estimate both sea current disturbances and model

parameters of the HUGIN 4500 AUV. However, due to the
complexity of AUV system, many nonlinearities and coupled
terms exist in ordinary differential equations that make the
identification of whole pack of hydrodynamic coefficients
quite complicated and time consuming. As a consequence,
AUVdifferential model usually need to be simplified through
eliminations of nonlinear and coupled terms before identifi-
cation process. For example, in the research of Tiano et al. [6],
a set of decoupled AUV models concerning different degree
of freedom were set up and the yaw dynamics of the Ham-
merhead AUV was identified according to observer Kalman
filter identification (OKID) method. However, nonlinearities
and couplings are two significant features being researched in
the area of AUV, so as it is said in [6], construction of MIMO
coupled AUV model is a rather important and challenging
modeling issue.

In this paper, compared with the traditional differential
equation used in AUV modeling, a Hammerstein model
which consists of a static nonlinear part and a dynamic linear
one is adopted in order to deal with nonlinear and linear
property of AUV system separately. Due to the particular
characteristics of AUV system, the Hammerstein model has
to be modified with a static nonlinear feedback part added
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on the linear part. As illustrated in Figure 1, one remarkable
benefit of Hammerstein system is that it possesses advantages
of linear MIMO system and can approximate nonlinear and
coupled terms of AUV to a large extent at the same time.
To the best of the authors’ acknowledge, this is the first
time that Hammerstein model is applied in the area of AUV
modeling. Because of the conveniences brought by Hammer-
stein system, extensive attentions has been paid to obtain
system parameters from input/output data. Cai and Bai [7]
proposed a method to make the identification of parametric
Hammerstein system a linear problem through regarding
the average squared error cost function as the inner prod-
uct between the true but unknown parameter vector and
its estimations. But this method was discussed under the
assumption that Hammerstein system only consists of single
input and single output. As to MIMO Hammerstein system
identification, a nonparametric algorithmbased on stochastic
approximation approach is proposed in [8]. However, nonlin-
ear MIMO Hammerstein identification problem concerned
in this paper is still challenging.

One group of widely studiedMIMO system identification
algorithms for Hammerstein system is subspace identifi-
cation methods [9], which mainly include three different
branches: numerical algorithms for state-space subspace sys-
tem identification (N4SID), MIMO output-error state-space
model identification (MOESP) and canonical variate analy-
sis (CVA). Compared with other identification algorithms,
subspace identification methods are more attractive due to
several advantages [10]. For example, subspace identification
methods can circumvent the complicated parameterization
procedure forMIMOsystemof prediction errormethods [11].
What ismore, subspace identificationmethods do not require
nonlinear searches in the parameter space based on com-
putational tools such as QR factorization and singular value
decomposition (SVD) [12]. Since the Hammerstein AUV
model is a parametric onewithmultiinputs andmultioutputs,
MIMO MOESP algorithm is adopted as the theoretical basis
for further investigation in this paper.

In addition, instead of regarding the identification proce-
dure in ideal situations, practical engineering circumstances
need to be taken into consideration. A widely studied one
is that the general noise assumption has to be made which
means “the measured input is corrupted by a white measure-
ment noise while the measured output is corrupted by the
sum of a white measurement noise and a term due to a white
process noise” [13]. Another practical situation which need to
be considered is that different oceanic environment may lead
to different hydrodynamic coefficients in which case off-line
identification results of Hammerstein AUV model will bring
errors to control and navigation systems [14]. Besides, it
is often the case that the structure of AUV usually has
to be modified mildly in order to fulfill various tasks in
practice. Therefore, recursive identification methods which
can adjustmodel parameters online become rather significant
and attractive in applications of such as adaptive control,
model-aided navigation and so on.

As a result, in order to fulfill the situations concerned
above, the identification of Hammerstein AUV model is
regarded as an errors-in-variables (EIV) problem in this
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Figure 1: Hammerstein AUVModel.

paper and we are going to make the MOESP method recur-
sively under EIV framework so, as to carry out recursive iden-
tification algorithm for the Hammerstein AUV model. One
major obstacle in recursive subspace identification is the
increasing computational complexity of SVD [15, 16]. In
previous studies, projection approximation subspace tracking
(PAST) algorithm designed by Yang [17] was widely used to
update the SVD. However, approximation in the algorithm
will bring slight difference between identified model and the
original one. In addition, IV-PAST algorithm [18] and gradi-
ent type subspace tracking method [19] are also developed to
estimate the signal subspace. In [20], an instrumental variable
propagator method (IVPM) based recursive identification
algorithmwas proposed.Nevertheless, the paper only studied
the method within past input (PI)/past output (PO) MOESP
framework. So in this paper, combining with Hammerstein
AUV identification problem described above, IVPMmethod
is extended into EIV framework and the PM-EIV algorithm
for recursive subspace identification of errors-in-variables
problem is derived. Compared with previous algorithms
mentioned, the PM-EIV algorithm is more suitable to handle
the MIMO AUV Hammerstein model identification prob-
lems under errors-in-variables framework recursively. As a
matter of fact, since the Hammerstein model constructed can
be viewed as a generalized one for mechanical systems, the
proposed PM-EIV can be extended to identification of other
systems as well.

The remainder of this paper is organized as follows. In
Section 2, a Hammerstein AUV model with nonlinear feed-
back is formed with proper transformation from an ordinary
differential one. Then the linearization process of nonlinear
part is presented. In Section 3, the MOESP identification
method is described with no consideration about the system
noise. After that, a recursive subspacemethod called PM-EIV
is derived under the general noise assumption. Identification
and validation of theHammersteinAUVmodel are presented
in Section 4. At last, conclusions are made in Section 5.

Some notations used in this paper are followed. The
superscript (⋅)𝑇 denotes the transposition operator. 𝐸(⋅) is the
expectation operator. R𝑚×𝑛 represents the set of 𝑚 × 𝑛 real
matrices.𝑀⊥ is the orthogonal complement of𝑀.

2. AUV Modeling

In this section, a Hammerstein AUV model is formed after
introducing the ordinary differential one. Then in order to
make the Hammerstein AUV model suitable for subspace
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identification method, linearization of the nonlinear part is
brought out.

2.1. Hammerstein AUV Model. According to [21], a coupled
nonlinear ordinary differential model for AUV based on
Newtonian mechanics can be described as the following
equation:

𝑀 ̇] + 𝐶 (]) ] + 𝐷 (]) ] = 𝜏, (1)

where ] ∈ R6 represents the state vector of AUV,𝑀 ∈ R6 × 6
consists of inertia matrix and add mass matrix,𝐷(]) ∈ R6 × 6
is the linear and quadratic damping matrix, 𝐶(]) ∈ R6 × 6
is the coriolis and centripetal matrix, 𝜏 ∈ R6 represents the
forces and moments acted on the vehicle.

The coupled and nonlinear terms inmatrix𝐷(]) and𝐶(])
make the identification process quite complicated and time
consuming. To obtain Hammerstein model of AUV, simpli-
fications and transformations have to be made. First, some
coupled terms with little influences are eliminated. Second,
the nonlinear terms are separated from the system and
the system is divided into static nonlinear input part and
nonlinear feedback part. Then, remaining nonlinear and
coupled terms constitute the nonlinear feedback part. At last,
the remaining part of the model can be described as a linear
MIMO state-space model. After those steps, a Hammerstein
AUV model with nonlinear feedback part can be formed as
in Figure 1. 𝑑(𝑘), 𝜐(𝑘), and 𝜔(𝑘) are process noise, input mea-
surement noise, and output measurement noise respectively.

According to the system structure above, define the
nonlinear input function as 𝑓(⋅), nonlinear feedback as
𝑔(⋅), so discrete time MIMO state-space equations can be
constructed as below.

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵
1
𝑓 (𝑢 (𝑘)) + 𝐵

2
𝑔 (𝑦 (𝑘)) + 𝑑 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝐷
1
𝑓 (𝑢 (𝑘)) + 𝐷

2
𝑔 (𝑦 (𝑘)) ,

𝑦 (𝑘) = 𝑦 (𝑘) + 𝜔 (𝑘) ,

�̃� (𝑘) = 𝑢 (𝑘) + 𝜐 (𝑘) ,

(2)

where 𝑥(𝑘) ∈ 𝑅6 represent the system states, 𝑢(𝑘) ∈ 𝑅3 are the
system inputs including thruster revolution, rudder deflec-
tion, and elevator deflection, 𝑦(𝑘) ∈ 𝑅6 is output vector, con-
sists of 𝑢, V, 𝑤, 𝑝, 𝑞, 𝑟 that represents the surge velocity, sway
velocity, heave velocity, roll rate, pitch rate, yaw rate respec-
tively. 𝐴, 𝐵

1
, 𝐵
2
, 𝐶, 𝐷

1
, and 𝐷

2
are the corresponding linear

subsystem matrices with appropriate dimensions. �̃�(𝑘), 𝑦(𝑘)
are corrupted system inputs and outputs.

Many identification methods have focused on handling
output measurement noise and process noise. In fact, input
measurement noise is inevitable in any engineering processes
including practical identification experiments. So in this
paper, 𝑑(𝑘), 𝜐(𝑘), and 𝜔(𝑘) are considered under the general
noise assumption.

2.2. Linearization of AUV Model. According to the
Section 2.1, AUV model can be described as Hammerstein
one with nonlinear feedback. In order to identify the

parameters of corresponding matrices, nonlinearity in
the equations needs to be linearly parameterized so that
recursive subspace identification methods can be applied.
One traditional approach to approximate nonlinearity of
the system is linear combination of basic functions. In
Lovera [12], Tchebiceff polynomials are chosen to linearize
nonlinearities. However, as the system studied in this paper
contains nonlinear feedback part, Tchebiceff polynomials
approximation of 𝑔(⋅) will influence the identifiability
of system matrix. So in this paper, truncated Fourier
series described in Luo and Leonessa [22], also known as
trigonometric polynomials are adopted to linearize the
nonlinear functions 𝑓(⋅) and 𝑔(⋅). Define the basic function
as follows:

𝜑
𝑘
(𝑥) = 1, 𝑘 = 0,

𝜑
𝑘
(𝑥) = [cos(

𝑘𝜋 (𝑥 − 𝑥
𝑚
)

𝑥
𝑑

) sin(
𝑘𝜋 (𝑥 − 𝑥

𝑚
)

𝑥
𝑑

)]

𝑇

,

𝑘 ≥ 1.

(3)

Then nonlinear function can be approximated by follow-
ing equation:

𝐹 (𝑥) = 𝑤
𝑜
+

𝑁

∑

𝑖=1

𝑤
𝑖
𝜑
𝑖
(𝑥) , (4)

where 𝑥
𝑚

= (𝑥max + 𝑥min)/2, 𝑥𝑑 = (𝑥max − 𝑥min)/2, and
𝑤
𝑖
= [𝑤𝑖 cos 𝑤

𝑖 sin]. Since the Hammerstein AUV model is
MIMO, define Φ(𝑥) = [𝜑

𝑇

0
(𝑥) 𝜑

𝑇

1
(𝑥) ⋅ ⋅ ⋅ 𝜑

𝑇

𝑁
(𝑥)]
𝑇

, 𝑊 =

[𝑤0 𝑤1 ⋅ ⋅ ⋅ 𝑤𝑁]; then 𝑓(⋅), 𝑔(⋅) can be expressed as:

𝑓 (𝑢) = [𝑊
𝑇

𝑢1
𝑊
𝑇

𝑢2
⋅ ⋅ ⋅ 𝑊

𝑇

𝑢𝑟
]
𝑇

⋅ [Φ
𝑇
(𝑢
1
) Φ
𝑇
(𝑢
2
) ⋅ ⋅ ⋅ Φ

𝑇
(𝑢
𝑚
)]
𝑇

,

𝑔 (𝑦) = [𝑊
𝑇

𝑦1
𝑊
𝑇

𝑦2
⋅ ⋅ ⋅ 𝑊

𝑇

𝑦𝑠
]
𝑇

⋅ [Φ
𝑇
(𝑦
1
) Φ
𝑇
(𝑦
2
) ⋅ ⋅ ⋅ Φ

𝑇
(𝑦
𝑙
)]
𝑇

,

(5)

where 𝑚 = 3, 𝑙 = 6, and corresponding coefficient vector
𝑊
𝑢𝑖

∈ 𝑅
1 × 3(2𝑁+1) and 𝑊

𝑦𝑖
∈ 𝑅
1 × 6(2𝑁+1). A simplified

expression for nonlinear part can be presented as follows:

𝑓 (𝑢) = 𝐾𝜉 (𝑢) ,

𝑔 (𝑦) = 𝑃𝜁 (𝑦) ,

(6)

with definitions that
𝜉(𝑢)

Δ

= [Φ
𝑇
(𝑢
1
) Φ
𝑇
(𝑢
2
) ⋅ ⋅ ⋅ Φ

𝑇
(𝑢
𝑚
)]
𝑇

, 𝐾
Δ

=

[𝑊
𝑇

𝑢1
𝑊
𝑇

𝑢2
⋅ ⋅ ⋅ 𝑊

𝑇

𝑢𝑟
]
𝑇

. The equation for 𝑔(𝑦) can also
be formed in a similar principle. Then a new state-space
model with no nonlinearity can be described as follow:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) +𝑀
1
𝜉 (𝑢 (𝑘)) + 𝑀

2
𝜁 (𝑦 (𝑘)) + 𝑑 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝑁
1
𝜉 (𝑢 (𝑘)) + 𝑁

2
𝜁 (𝑦 (𝑘)) ,

(7)



4 Mathematical Problems in Engineering

where 𝑀
1

= 𝐵
1
𝐾 ∈ 𝑅

𝑛×3(2𝑁+1), 𝑀
2

= 𝐵
2
𝑃 ∈

𝑅
𝑛×6(2𝑁+1), 𝑁

1
= 𝐷
1
𝐾 ∈ 𝑅

𝑙×3(2𝑁+1), and 𝑁
2
= 𝐷
2
𝑃 ∈

𝑅
𝑙×6(2𝑁+1) represent new coefficients matrices, 𝜉(𝑢(𝑘)) ∈

𝑅
3(2𝑁+1)×1, 𝜁(𝑦(𝑘)) ∈ 𝑅

6(2𝑁+1)×1, respectively represent the
input vector and the feedback vector. Further, define 𝑀 =

[𝑀1 𝑀2], 𝑁 = [𝑁1 𝑁2], 𝑒(𝑘) = [𝜉
𝑇
(𝑢(𝑘)) 𝜁

𝑇
(𝑦(𝑘))]

𝑇

as
the system matrix and input vector and the Hammerstein
AUV model can be presented in classical form:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝑀𝑒 (𝑘) + 𝑑 (𝑘) ,

𝑦 (𝑘) = 𝐶𝑥 (𝑘) + 𝑁𝑒 (𝑘) .

(8)

By now, a Hammerstein AUV model is established and
has been linearized based on trigonometric polynomials with
a description as in (8) being obtained. In the following
section, a recursive subspace method to identify the system
under EIV frame will be derived.

3. Recursive Subspace Identification Method

In this section, the PM-EIV subspace identification method
for the Hammerstein AUVmodel will be proposed. To better
illustrate themethod, theMOESP algorithm have to be intro-
duced first to lay the foundation so that the PM-EIV method
can be derived. Before that, several assumptions have to be
made.

Assumption 1. The difference between the nonlinear func-
tions 𝑓(⋅), 𝑔(⋅) and their linear approximations respectively,
can be neglected.

Assumption 2. Persistent exciting condition is satisfied
according to the definition from Ljung [23].

Assumption 3. The system noise sequences 𝑑(𝑘), 𝜐(𝑘), and
𝜔(𝑘) are white noises independent from each other.

3.1. MOESP Identification Method. The fundamental feature
of MOESP method is to estimate the extended observer
matrix of the system based on input/output data.Then system
matrices can be obtained through applying least-squares
algorithms. To give a brief introduction of MOESP method,
system noises are assumed to be zero in this section, that is
𝑑(𝑘) ≡ 0, 𝜐(𝑘) ≡ 0 and 𝜔(𝑘) ≡ 0. According to Verhaegen
[24], The following equations need to be formed firstly.

𝑌
𝑗,𝑖,𝑁

= Γ
𝑖
𝑋
𝑗,𝑁

+ 𝐻
𝑖
𝐸
𝑗,𝑖,𝑁 (9)

with definitions of 𝑌
𝑗,𝑖,𝑁

, 𝑋
𝑗,𝑁

, and 𝐸
𝑗,𝑖,𝑁

as follows:

𝑌
𝑗,𝑖,𝑁

=
[
[

[

𝑦
𝑗

⋅ ⋅ ⋅ 𝑦
𝑗+𝑁−1

... d
...

𝑦
𝑗+𝑖−1

⋅ ⋅ ⋅ 𝑦
𝑗+𝑁+𝑖−2

]
]

]

,

𝐸
𝑗,𝑖,𝑁

=
[
[

[

𝑒
𝑗

⋅ ⋅ ⋅ 𝑒
𝑗+𝑁−1

... d
...

𝑒
𝑗+𝑖−1

⋅ ⋅ ⋅ 𝑒
𝑗+𝑁+𝑖−2

]
]

]

,

𝑋
𝑗,𝑁

= [𝑥𝑗 𝑥𝑗+1 ⋅ ⋅ ⋅ 𝑥𝑗+𝑁−1] .

(10)

Therefore, extended observermatrix Γ
𝑖
and low triangular

block Toeplitz matrix𝐻
𝑖
have the following structures:

Γ
𝑖
= [𝐶
𝑇
(𝐶𝐴)
𝑇
⋅ ⋅ ⋅ (𝐶𝐴

𝑖−1
)
𝑇
]
𝑇

,

𝐻
𝑖
=

[
[
[
[

[

𝑁 0 ⋅ ⋅ ⋅ 0

𝐶𝑀 𝑁 ⋅ ⋅ ⋅ 0

...
... d

...
𝐶𝐴
𝑖−2
𝑀 𝐶𝐴

𝑖−3
𝑀 ⋅ ⋅ ⋅ 𝑁

]
]
]
]

]

.

(11)

Input/output data matrix is formed and factorized by RQ
factorization. The following equation can be acquired:

[
𝐸
𝑗,𝑖,𝑁

𝑌
𝑗,𝑖,𝑁

] = [
𝑅
11

0

𝑅
21

𝑅
22

] [
𝑄
1

𝑄
2

] . (12)

Combining (12) with (9), we can obtain that:

Γ
𝑖
𝑋
𝑗,𝑁

= [𝑅21 − 𝐻𝑖𝑅11 𝑅22] [
𝑄
1

𝑄
2

] . (13)

It can be derived that the column space of Γ
𝑖
and the

column space of 𝑅
22
are equal. After carrying out SVD of 𝑅

22

as in (14), columns of 𝑈
𝑛
can be regarded as a basis for Γ

𝑖
:

𝑅
22
= [𝑈
𝑛
𝑈
⊥

𝑛
] [
𝑆
1

0

𝑜 𝑆
2

] [
𝑉
𝑇

𝑛

(𝑉
⊥

𝑛
)
𝑇] . (14)

Based on the definition of extended observer matrix Γ
𝑖
,

transformed system matrices 𝐴
𝑇
, 𝐶
𝑇
can be easily calculated

with 𝑈
𝑛
:

𝑈
(1)

𝑛
𝐴
𝑇
= 𝑈
(2)

𝑛
,

𝐶
𝑇
= 𝑈
𝑛
(1 : 𝑙, :) .

(15)

And𝑀
𝑇
,𝑁 can be acquired by least-squares solutions for.

(𝑈
⊥

𝑛
)
𝑇

𝐻
𝑖
− (𝑈
⊥

𝑛
)
𝑇

𝑅
21
𝑅
−1

11
= 0. (16)

3.2. Errors-in-Variables Problem. Because the identification
problem of the Hammerstein AUV model is an EIV one,
a more practical subspace identification method handling
EIV problem is introduced in this section which takes
disturbances 𝑑(𝑘), 𝜐(𝑘), 𝜔(𝑘) into consideration based on the
basic MOESP algorithm above. In this case, (9) needs to be
modified as:

�̃�
𝑗,𝑖,𝑁

= Γ
𝑖
𝑋
𝑗,𝑁

+ 𝐻
𝑖
𝐸
𝑗,𝑖,𝑁

− 𝐻
𝑖
𝑉


𝑗,𝑖,𝑁
+ 𝐺
𝑖
𝑃
𝑗,𝑖,𝑁

+𝑊
𝑗,𝑖,𝑁

,

(17)
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where 𝑃
𝑗,𝑖,𝑁

, 𝑊
𝑗,𝑖,𝑁

are block Hankel matrices of noises 𝑑(𝑘)
and 𝜔(𝑘). 𝐺

𝑖
is defined as:

𝐺
𝑖
=

[
[
[
[

[

0 0 ⋅ ⋅ ⋅ 0

𝐶 0 ⋅ ⋅ ⋅ 0

...
... d

...
𝐶𝐴
𝑖−2

𝐶𝐴
𝑖−3

⋅ ⋅ ⋅ 0

]
]
]
]

]

. (18)

Notice that 𝑉
𝑗,𝑖,𝑁

is not only made of 𝜐(𝑘), output mea-
surement noise 𝜔(𝑘) is also involved due to the linearization
of nonlinear feedback part.This brings the closed-loop prob-
lem into the identification process. One significant obsta-
cle resulting from closed-loop situation is the interference
between input signals and output measurement noise which
violates the following equation.

𝐸 [𝑢
𝑘
𝑤
𝑇

𝑗
] = 0 for (𝑗 < 𝑘) . (19)

It means that input signals are no longer unrelated to the
past noises. However, problems studied in this paper only
need the condition that future noise is unrelated to past input.
That is:

𝐸 [𝑢
𝑘
𝑤
𝑇

𝑗
] = 0 for (𝑗 ≥ 𝑘) . (20)

So, in order to eliminate the influence from the noises,
instrumental variables can still be formed as past input and
output signals. Then following relation can be obtained:

�̃�
𝑖+1,𝑖,𝑁

[𝐸
𝑇

1,𝑖,𝑁
�̃�
𝑇

1,𝑖,𝑁
]

= Γ
𝑖
𝑋
𝑖+1,𝑁

[𝐸
𝑇

1,𝑖,𝑁
�̃�
𝑇

1,𝑖,𝑁
]

+ 𝐻
𝑖
𝐸
𝑖+1,𝑖,𝑁

[𝐸
𝑇

1,𝑖,𝑁
�̃�
𝑇

1,𝑖,𝑁
] ,

(21)

[
𝐸
𝑖+1,𝑖,𝑁

𝐸
𝑇

1,𝑖,𝑁
𝐸
𝑖+1,𝑖,𝑁

�̃�
𝑇

1,𝑖,𝑁

�̃�
𝑖+1,𝑖,𝑁

𝐸
𝑇

1,𝑖,𝑁
�̃�
𝑖+1,𝑖,𝑁

�̃�
𝑇

1,𝑖,𝑁

]

= [
𝑅
11
(𝑡) 0

𝑅
21
(𝑡) 𝑅

22
(𝑡)
] [

𝑄
1
(𝑡)

𝑄
2
(𝑡)
] .

(22)

According to Theorem 3 of Chou and Verhaegen [13],
the column space of Γ

𝑖
can be consistently estimated from

𝑅
22
. 𝐴
𝑇
, 𝑀
𝑇
, 𝐶
𝑇
, and 𝑁 can be acquired based on OE PIV

algorithm. To save the space, more details can be found in
[13].

3.3. PM-EIV Subspace Identification. In the above sections,
subspace identification method for AUV Hammerstein sys-
tem has been developed under general noise assumption. As
mentioned in Section 1, recursive method for AUV identifi-
cation can be much more suitable due to the properties of
oceanic environment and tasks. So in this section, identifi-
cation method will be modified recursively. One of the key
problems handled in recursive identification is the recursive
update of SVD process in order to reduce the computational
burden which comes with increasing input/output data. In
[20], propagator method used in array signal processing
area is introduced for recursive subspace identification under

PI/POMOESP schemes. Considering about the EIV problem
in the identification of AUV model, propagator method will
be extended into EIV framework in this paper for the first
time and the resulting algorithm will be called PM-EIV
subspace identification method. An important step in PM
subspacemethod is the calculation of observer vector, defined
as.

𝑧
𝑖
(𝑡 + 1) = 𝑦

𝑖
(𝑡 + 1) − 𝐻

𝑖
(𝑡 + 1) 𝑒

𝑖
(𝑡 + 1) , (23)

where 𝑡 = 𝑗 + 𝑁 − 1; 𝑦
𝑖
(𝑡 + 1), 𝑒

𝑖
(𝑡 + 1) are new updated

output/input data vectors respectively.

3.3.1. Update of Observer Vector 𝑧
𝑖
in EIV Framework. In this

section, RQ factorization method is adopted for updating of
observe vector. Based on (22) in Section 3.2, update of the
data matrix can be expressed as follows:

[
𝐸
𝑖+1,𝑖,𝑁+1

𝐸
𝑇

1,𝑖,𝑁+1
𝐸
𝑖+1,𝑖,𝑁+1

�̃�
𝑇

1,𝑖,𝑁+1

�̃�
𝑖+1,𝑖,𝑁+1

𝐸
𝑇

1,𝑖,𝑁+1
�̃�
𝑖+1,𝑖,𝑁+1

�̃�
𝑇

1,𝑖,𝑁+1

]

= [
𝑅
11
(𝑡 + 1) 0

𝑅
21
(𝑡 + 1) 𝑅

22
(𝑡 + 1)

] [
𝑄
1
(𝑡 + 1)

𝑄
2
(𝑡 + 1)

] ,

(24)

where 𝐸
𝑖+1,𝑖,𝑁+1

= [𝐸
𝑖+1,𝑖,𝑁

𝑒
𝑖
(𝑡 + 1)], 𝐸1,𝑖,𝑁+1, and �̃�𝑖+1,𝑖,𝑁+1,

�̃�
1,𝑖,𝑁+1

are formed in similar manner. A transformation of
(24) is as follows:

[
𝐸
𝑖+1,𝑖,𝑁

𝑒
𝑖
(𝑡 + 1)

�̃�
𝑖+1,𝑖,𝑁

𝑦
𝑖
(𝑡 + 1)

] [
𝐸
𝑇

1,𝑖,𝑁
�̃�
𝑇

1,𝑖,𝑁

𝑒
𝑖
(𝑁 + 1)

𝑇
𝑦
𝑖
(𝑁 + 1)

𝑇
]

= [
𝑅
11
(𝑡) 0 𝑒

𝑖
(𝑡 + 1) 𝜙 (𝑁 + 1)

𝑅
21
(𝑡) 𝑅

22
(𝑡) 𝑦
𝑖
(𝑡 + 1) 𝜙 (𝑁 + 1)

][

[

𝑄
1
(𝑡)

𝑄
2
(𝑡)

𝐼

]

]

,

(25)

where 𝜙(𝑁 + 1) = [𝑒
𝑖
(𝑁 + 1)

𝑇
𝑦
𝑖
(𝑁 + 1)

𝑇
] denotes the

update instrumental variables.
Then, given rotation can be implemented to eliminate the

𝑒
𝑖
(𝑡 + 1)𝜙(𝑁 + 1) in the above equation in order to make a

lower triangle form.

[
𝑅
11
(𝑡) 0 𝑒

𝑖
(𝑡 + 1) 𝜙 (𝑁 + 1)

𝑅
21
(𝑡) 𝑅

22
(𝑡) 𝑦
𝑖
(𝑡 + 1) 𝜙 (𝑁 + 1)

]Giv (𝑡 + 1)

= [
𝑅
11
(𝑡 + 1) 0 0

𝑅
21
(𝑡 + 1) 𝑅

22
(𝑡) �̂�
𝑖
(𝑡 + 1)

] .

(26)

So, the following relation can be obtained:

𝑅
22
(𝑡 + 1) 𝑅

22
(𝑡 + 1)

𝑇
= 𝑅
22
(𝑡) 𝑅
22
(𝑡)
𝑇
+ �̂�
𝑖
(𝑡 + 1) �̂�

𝑇

𝑖
(𝑡 + 1) .

(27)

In addition, the following equation holds:

𝑅
22
(𝑡 + 1)𝑄

2
(𝑡 + 1)

= (�̃�
𝑖+1,𝑖,𝑁+1

− �̂�
𝑖
𝐸
𝑖+1,𝑖,𝑁+1

) [𝐸
𝑇

1,𝑖,𝑁+1
�̃�
𝑇

1,𝑖,𝑁+1
]

= 𝑅
22
(𝑡) 𝑄
2
(𝑡) + 𝑧

𝑖
(𝑡 + 1) [𝑒

𝑖
(𝑁 + 1)

𝑇
𝑦
𝑖
(𝑁 + 1)

𝑇
] .

(28)
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Combining (27) and (28), relation between 𝑧
𝑖
(𝑡 + 1) and

�̂�
𝑖
(𝑡 + 1) can be found:

�̂�
𝑖
(𝑡 + 1) �̂�

𝑖
(𝑡 + 1)

𝑇

= 𝑅
22
(𝑡) 𝑄
2
(𝑡) 𝜙(𝑁 + 1)

𝑇
𝑧
𝑖
(𝑡 + 1)

𝑇

+ 𝑧
𝑖
(𝑡 + 1) 𝜙 (𝑁 + 1) (𝑅

22
(𝑡) 𝑄
2
(𝑡))
𝑇

+ 𝑧
𝑖
(𝑡 + 1) 𝜙 (𝑁 + 1) 𝜙(𝑁 + 1)

𝑇
𝑧
𝑖
(𝑡 + 1)

𝑇
.

(29)

Assuming there is a matrix𝐾(𝑡+1) satisfies the following
equation:

𝐾 (𝑡 + 1)𝐾(𝑡 + 1)
𝑇
= �̂�
𝑖
(𝑡 + 1) �̂�

𝑖
(𝑡 + 1)

𝑇
+ 𝑅
22
(𝑡) 𝑅
22
(𝑡)
𝑇
.

(30)

Then observer vector 𝑧
𝑖
can be updated according to (31):

𝑧
𝑖
(𝑡 + 1) [𝑒

𝑇

𝑖
(𝑁 + 1) 𝑦

𝑇

𝑖
(𝑁 + 1)]

= (𝐾 (𝑡 + 1) − 𝑅
22
(𝑡) 𝑄
2
(𝑡)) ,

𝑧
𝑖
(𝑡 + 1) = 𝐾

−1

𝜙
(𝐾 (𝑡 + 1) − 𝑅

22
(𝑡) 𝑄
2
(𝑡)) 𝜙
𝑇

𝑁
,

(31)

where 𝐾
𝜙
= 𝜙
𝑁
𝜙
𝑇

𝑁
is the coefficient related to instrumental

variables, andnotice that𝐾(𝑡+1) is not necessary to be square.

3.3.2. Estimation of Observer Matrix Γ
𝑖
. Since the observer

vector 𝑧
𝑖
can be obtained in EIV scheme. Then, extended

observer matrix Γ
𝑖
can be found through propagator method.

Observer matrix Γ
𝑖
can be expressed in the following form.

Γ
𝑖
= [

Γ
𝑖1

Γ
𝑖2

] = [
𝐼

𝑃
𝑇

𝑚

] Γ
𝑖1
= 𝑄
𝑠
Γ
𝑖1
. (32)

Since the matrix Γ
𝑖1
∈ R𝑛×𝑛 has full rank, column space of

Γ
𝑖
equals that of 𝑄

𝑠
. Combining with (23), observer vector 𝑧

𝑖

can be divided as:

𝑧
𝑖
(𝑡 + 1) = 𝑄

𝑠
Γ
𝑖1
𝑥 (𝑡 + 1) + 𝑏

𝑖
(𝑡 + 1) = [

𝑧
𝑖1
(𝑡 + 1)

𝑧
𝑖2
(𝑡 + 1)

] . (33)

Without consideration of noise term 𝑏
𝑖
(𝑡 + 1), it can

be easily established that 𝑧
𝑖2

= 𝑃
𝑇

𝑚
𝑧
𝑖1
. Then the 𝑃

𝑇

𝑚
can

be solved with least-squares methods. However, existence of
noise termwill lead to a biased estimation of𝑃𝑇

𝑚
. So the IVPM

algorithm proposed by Mercere [20] is adopted to estimate
𝑃
𝑇

𝑚
. A suitable variable 𝛾 ∈ 𝑅

𝑛×1 needs to be found with no
correlation with system noises. According to Section 3.2, past
system input date may satisfy the condition.
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Figure 2: Information flow of AUV simulation platform.

Finally, recursive estimation of 𝑃𝑇
𝑚
can be acquired in the

following RLS form:

𝐾
𝑝
(𝑡 + 1)

= 𝛾
𝑇
(𝑡 + 1) 𝑅 (𝑡) (1 + 𝛾

𝑇
(𝑡 + 1) 𝑅 (𝑡) 𝑧

𝑖1
(𝑡 + 1))

−1

,

𝑃
𝑇

𝑚
(𝑡 + 1)

= 𝑃
𝑇

𝑚
(𝑡) + [𝑧

𝑖2
(𝑡 + 1) − 𝑃

𝑇

𝑚
(𝑡) 𝑧
𝑖1
(𝑡 + 1)]𝐾

𝑝
(𝑡 + 1) ,

𝑅 (𝑡 + 1) = 𝑅 (𝑡) − 𝑅 (𝑡) 𝑧
𝑖1
(𝑡 + 1)𝐾

𝑝
(𝑡 + 1) ,

(34)

where 𝑅(𝑡) = 𝐸[𝑧
𝑖1
(𝑡)𝛾
𝑇
(𝑡)]
−1.

With the estimation of observer matrix Γ
𝑖
, algorithms

mentioned in Section 3.2 can be applied here to estimate the
system matrices 𝐴

𝑇
, 𝑀
𝑇
, 𝐶
𝑇
, and 𝑁. Therefore, propagator

based subspace identification method in errors-in-variables
scheme (PM-EIV) is derived. Based on the IVPM method,
the algorithm is more suitable for the identification of
Hammerstein AUV model proposed in Section 2. In the fol-
lowing, the identification algorithm will be verified through
experiments carried out by the AUV simulation platform.

4. Simulations and Results

In this section, simulation experiments are carried out to
evaluate the performance of the PM-EIV algorithm proposed
in this paper through identifying the Hammerstein AUV
model based on data from the AUV simulation platform
shown as in Figures 2-3. After a brief introduction of theAUV
simulation platform, two typical identification cases are
investigated. One is the identification of AUV model based
on the MOESP method without consideration of noise. The
other one is the verification of PM-EIV algorithm under
general noise assumption. Finally, to be more practical,
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Surface interface computer Motion control computer Mission control computer

Ethernet

AUV model Control surface model Thruster model

3D simulation computerModel computer

Figure 3: AUV simulation platform.

model identification based on data from a closed-loop path
following simulation experiment is performed.

4.1. AUV Simulation Platform. The basic structure of AUV
simulation platform is depicted as in Figure 3.The whole sys-
tem is connected through Ethernet and responsibilities of five
main components are introduced here.

(C1) Surface Interface Computer (SIC). Surface interface soft-
ware is running on SIC which is in charge of deploying mis-
sions for AUV and monitoring the states of the system. The
software also allows for manual intervention in case of
emergency.

(C2) Mission Control Computer (MiC). Mission Management
software developed in QNX real-time system is the core of
MiC. MiC is mainly responsible for path plan according to
missions from SIC and fault diagnosis of the system.

(C3) Motion Control Computer (MoC). Motion control soft-
ware running on MoC aims at controlling the states such as
heading, speed and depth of AUV based on the preplanned
paths from MiC. In field experiments, MoC is also in charge
of navigation of the system.

(C4) Model Computer (MC). MC is the host for mathematic
models of AUV, thruster and control surface.Themathematic
AUV model is a validated model with full coefficients
obtained from water-tank experiments.

(C5) 3D Simulation Computer (3DC). 3DC provides an
approach for visual simulation relied on vir-tual reality tech-
nology. Vega Prime is used to construct the virtual oceanic
environment and AUV model is developed in Multigen
Creator.

A more detailed process flow is described in Figure 2.

4.2. Case 1: Identification without Consideration of Noise. In
an ideal situation, process noise and measurement noises can
be ignored, so that the ordinary MOESP algorithm can be
applied to identify theHammersteinAUVmodel described as
in Figure 1.This case aims at testifying the reasonability of the
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Figure 4: Prediction of surge speed.

Hammersteinmodel for anAUVsystem.All system input sig-
nals are chosen as sinusoid curves with different amplitudes
and periods and the value of 𝑁 in (4) is set to be 4. System
identification results based on O-MOESP algorithm can be
obtained. Figures 4, 5, and 6 shows the prediction errors
between the outputs of the identified model and the original
outputs.Three main system outputs surge velocity, pitch rate,
and yaw rate, that play important roles in control and naviga-
tion of underactuated AUV which are considered here. From
Figures 4–6, it can be concluded that even though iden-
tification errors exist, Hammerstein model constructed in
Section 2 can act as a suitable structure for AUV dynamics.

4.3. Case 2: Identification under EIV Framework. In this case,
general noises are added on the model computer in the AUV
simulation platform. So the identification problem becomes
an EIV one which can be solved recursively by the PM-EIV
algorithm proposed in this paper. System inputs of the simu-
lation platform are still sinusoid curves and the value of𝑁 is
chosen to be 6. Since the PM-EIValgorithm is a recursive one,
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Figure 6: Prediction of pitch rate.

a relative small amount of data is used to acquire an initial
value of the model at the beginning. Identification results are
shown in Figures 7, 8, and 9. Based on the Figures 7–9, it is
reliable to conclude that the PM-EIV algorithm is effective
and feasible in identifying the Hammerstein AUV model
under general noise assumption.

Remark. Through the above two different identification cases
under different situations, it has been approved that Ham-
mersteinmodel proposed in Section 2 is capable of represent-
ing the AUVdynamic system and the PM-EIVmethod is able
to identify theHammersteinmodel recursively under general
noise assumption. It is also interesting to notice that steady
state prediction errors in Case 2 are decreased comparison
with those in Case 1, it is also interesting to notice that steady
state prediction errors in Case 2 are decreased comparing
with those in Case 1 due to the increase of𝑁 adopted.
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Figure 7: Prediction of surge speed.
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Figure 10: Simulation results: (a) horizontal projection of the trajectory; (b) 3D trajectory of AUV.
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4.4. Identification from Closed-Loop Simulation. In the above
simulations, AUV model is identified using data from open
loop control of surge speed, heading and yaw. However, in
practical applications, data for model identification is usually
collected from field experiments with close loop control for
specific preplanned paths. So in this section, AUV identifica-
tion process is carried out based on data from a closed-loop
simulation experiment. To be more pellucid, the feasibility
of PM-EIV algorithm is not illustrated by predicting the
surge speed, pitch rate and yaw rate, but shown by predicting
the trajectory of AUV in the test. Figures 10 and 11 are the
simulation results from the AUV simulation platform. The
preplanned path is a circle with an origin at (500, 500)m
and radius of 300m.The depth command is 10m. Simulation
results have shown that AUV can follow the preplanned circle
very well and the diving process is stable and fast.

Then identification of the Hammerstein AUV model is
based on the inputs/outputs of this experiment. Noises are
also considered. Figure 11 has shown the identification result

in a different point of view. It can be seen that prediction
error between the identified model of AUV and the actual
trajectory of AUV is large at the beginning because the
recursive identification procedure needs time to converge.
Therefore, a position calibration operation is carried out
when the identification results have converged at simulation
time 350 s.TheCali-Point in Figure 11 is where the calibration
is implemented.The green line indicates the distance between
Cali-Point and expected point. After the calibration, the
trajectory of the identified Hammerstein AUV model can
follow the trajectory of AUV with satisfying accuracy.

5. Conclusions

In this paper, a recursive subspace identification algorithm
PM-EIV is derived under general noise assumption. subspace
identification algorithm based on propagator method is
extended into EIV framework is extended into EIV frame-
work. In order to implement the method on identification
of AUV model with consideration about nonlinearities and
couplings at the same time, a Hammerstein AUV model is
constructed for the first time. Three simulation experiments
under different conditions are carried out to verify the
feasibility of the model and the effectiveness of the proposed
algorithm.

In the future study, system noises will not be restricted to
white noise and noise models related with oceanic environ-
ment and sensors will be introduced to make the algorithm
more practical.
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[9] J. P. Noël, S. Marchesiello, and G. Kerschen, “Subspace-based
identification of a nonlinear spacecraft in the time and fre-
quency domains.,” Mechanical Systems and Signal Processing,
vol. 43, no. 1-2, pp. 217–236, 2013.

[10] S. J. Qin, “An overview of subspace identification,”Computers &
Chemical Engineering, vol. 30, no. 10–12, pp. 1502–1513, 2006.

[11] W. Lin, S. J. Qin, and L. Ljung, “On consistency of closed-
loop subspace identification with innovation estimation,” in
Proceedings of the 43rd IEEEConference onDecision and Control
(CDC ’04), vol. 2, pp. 2195–2200, Nassau, Bahamas, December
2004.

[12] M. Lovera, T. Gustafsson, and M. Verhaegen, “Recursive sub-
space identification of linear and non-linearWiener state-space
models,” Automatica, vol. 36, no. 11, pp. 1639–1650, 2000.

[13] C. T. Chou and M. Verhaegen, “Subspace algorithms for
the identification of multivariable dynamic errors-in-variables
models,” Automatica, vol. 33, no. 10, pp. 1857–1869, 1997.

[14] Z. Yan, D.Wu, J. Zhou, andW. Zhang, “Recursive identification
of autonomous underwater vehicle for emergency navigation,”
in Proceedings of the Oceans, pp. 1–6, IEEE, Hampton Roads, Va,
USA, 2012.

[15] A. Alenany and H. Shang, “Recursive subspace identification
with prior information using the constrained least squares
approach,” Computers & Chemical Engineering, vol. 54, pp. 174–
180, 2013.

[16] A. Akhenak, Deviella, L. Bako et al., “Online fault diagnosis
using recursive subspace identification: application to a dam-
gallery open channel system,” Control Engineering Practice, vol.
21, no. 6, pp. 791–806, 2013.

[17] B. Yang, “Projection approximation subspace tracking,” IEEE
Transactions on Signal Processing, vol. 43, no. 1, pp. 95–107, 1995.

[18] T. Gustafsson, “Instrumental variable subspace tracking using
projection approximation,” IEEETransactions on Signal Process-
ing, vol. 46, no. 3, pp. 669–681, 1998.

[19] H. Oku and H. Kimura, “Recursive 4SID algorithms using
gradient type subspace tracking,” Automatica, vol. 38, no. 6, pp.
1035–1043, 2002.

[20] G. Mercère, L. Bako, and S. Lecœuche, “Propagator-based
methods for recursive subspace model identification,” Signal
Processing, vol. 88, no. 3, pp. 468–491, 2008.

[21] T. I. Fossen,Guidance and Control of Ocean Vehicles, JohnWiley
& Sons, New York, NY, USA, 1994.

[22] D. Luo andA. Leonessa, “Identification ofMIMOHammerstein
systems with non-linear feedback,” IMA Journal of Mathemati-
cal Control and Information, vol. 25, no. 3, pp. 367–392, 2008.

[23] L. Ljung, System Identification: Theory for Users, Prentice Hall,
Upper Saddle River, NJ, USA, 1987.

[24] M.Verhaegen andP.Dewilde, “Subspacemodel identification—
part 1.The output-error state-spacemodel identification class of
algorithms,” International Journal of Control, vol. 56, no. 5, pp.
1187–1210, 1992.



Research Article
Formation Control of Second-Order Multiagent Systems with
Time-Varying Delays

Hong Xia, Ting-Zhu Huang, Jin-Liang Shao, and Jun-Yan Yu

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Correspondence should be addressed to Hong Xia; xiahong@uestc.edu.cn

Received 7 October 2013; Revised 16 December 2013; Accepted 16 December 2013; Published 8 January 2014

Academic Editor: Xiaojie Su

Copyright © 2014 Hong Xia et al.This is an open access article distributed under theCreative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A formation control problem for second-order multiagent systems with time-varying delays is considered. First, a leader-following
consensus protocol is proposed for theoretical preparation.With the help of Lyapunov-Krasovskii functional, a sufficient condition
under this protocol is derived for stability of the multiagent systems.Then, the protocol is extended to the formation control based
on a multiple leaders’ architecture. It is shown that the agents will attain the expected formation. Finally, some simulations are
provided to demonstrate the effectiveness of our theoretical results.

1. Introduction

Recent years have witnessed a rapidly growing interest in
coordinated control of multiagent systems due to its broad
applications in various disciplines [1–12]. As one of the impor-
tant topics in this field, formation control has attracted great
attention. Generally speaking, the main objective in forma-
tion control is to design appropriate protocol and algorithm
such that the agents can achieve and preserve a predefined
geometrical shape, such as a chain or a wedge. Potential
applications of formation control include lots of cooperative
tasks such as surveillance, exploration, search and rescue,
transporting large objects, and control of arrays of satellites.

In the literature, researchers have proposed numerous
approaches for the multiagent systems to achieve the antici-
pated formation, roughly categorized as behavior-based strat-
egy [13], virtual structure method [14], and leader-following
approach [15–21], to name a few. For instance, Xiao et al. [16]
developed a formation framework of multiple leaders and
applied a class of nonlinear consensus protocols to the forma-
tion control. Under the proposed framework, all the agents in
the first-order systems could reach the expected formation.
An adaptive formation control approach, in the absence of
the velocity information of the leader, was proposed in [17].
Besides, the authors in [18] investigated the leader-following

formation control problems for nonlinear systems under
fixed and switching topologies. The above works, however,
did not take into account the effects of time delays.

Owing to the finite speed of information transmission
and processing, time delays are inevitable in multiagent
systems. In particular, one type of time delays is commu-
nication delays, whose effects on multiagent systems have
been addressed by many researchers [3–9]. For formation
control with time delays, Luo et al. [19] gave a sufficient
condition of formation control ofmultiagent systems by using
Lyapunov stability theory. Also, Rezaee and Abdollahi [20]
provided amotion synchronization strategy with time delays.
Note that the time delays in both papers were assumed to
be constant. In reality, it is more practical when the time-
varying delays are accounted for. Lu et al. [21] studied the
formation control of second-order multiagent systems with
time-varying delays, where the time delays existed only in the
transmission of position information between neighbors. For
second-ordermultiagent systems, it is worthwhile tomention
that the information exchanged between neighbors may
include velocity information as well as position information.

Motivated by the above analysis, we consider a leader-
following formation control problem for second-order mul-
tiagent systems, with time-varying delays existing in the
transmission of both velocity andposition.Here,we adopt the
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formation framework proposed in [16]. More specifically, the
formation information is divided into two parts: the global
one and the local one, where the former determines the geo-
metric pattern of the desired formation and the latter decides
the relative information of agents with respect to their neigh-
bors. Only a small number of agents called leaders have access
to the global information, and the other agents called follow-
ers regulate their states according to the local information.

An outline of this paper is as follows. Section 2 provides
some preliminary notions of graph theory and formulates the
formation control problem. By utilizing Lyapunov-Krasovskii
functional, Section 3 presents the main results under the
proposed control protocol. Then several simulations are
illustrated in Section 4. Finally, the conclusion is drawn in
Section 5.

The following notations will be used throughout this
paper. Given a matrix, the superscripts “𝑇” and “−1” stand
for its transposition and inverse, respectively; Λ(⋅) and ‖ ⋅ ‖

denote the set of all eigenvalues and the spectral norm of
the matrix, respectively. Let 𝐼

𝑛
be an 𝑛 × 𝑛 identity matrix,

1
𝑛

= [1 ⋅ ⋅ ⋅ 1]
𝑇

∈ R𝑛, and 0
𝑛×𝑛

represents an 𝑛×𝑛 zero matrix.
And diag{𝑏

1
, . . . , 𝑏

𝑛
} denotes a diagonal matrix with diagonal

elements being 𝑏
1
, . . . , 𝑏

𝑛
. For a complex number 𝜇 ∈ C,

Re(𝜇), Im(𝜇), and |𝜇| are its real part, imaginary part, and
modulus, respectively. ⊗ denotes the Kronecker product.

2. Preliminaries and Problem Formulation

Let G = (V,E, 𝐴) be a weighted directed graph with the
set of nodes V = {V

1
, V
2
, . . . , V

𝑛
}, set of edges E ⊆ V × V,

and a weighted adjacency matrix 𝐴 = [𝑎
𝑖𝑗
] with nonnegative

elements 𝑎
𝑖𝑗
. The node indexes belong to a finite index set

I = {1, 2, . . . , 𝑛}. An edge in E is denoted by 𝑒
𝑗𝑖

= (V
𝑗
, V
𝑖
),

where 𝑒
𝑗𝑖

∈ E if and only if 𝑎
𝑖𝑗

̸= 0. In this case, we say node 𝑗

is a neighbor of node 𝑖 and denote the neighbors of node 𝑖 by
N
𝑖
= {𝑗 ∈ V : (V

𝑗
, V
𝑖
) ∈ E}. Moreover, we assume 𝑎

𝑖𝑖
= 0 for

all 𝑖 ∈ V. Let the Laplacianmatrix 𝐿 = [𝑙
𝑖𝑗
] ∈ R𝑛×𝑛 associated

with 𝐴 be defined as 𝑙
𝑖𝑖

= ∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
𝑎
𝑖𝑗
and 𝑙
𝑖𝑗

= −𝑎
𝑖𝑗
.

A directed path in directed graph G from V
𝑖1
to V
𝑖𝑘
is a

sequence of edges of the form (V
𝑖1
, V
𝑖2
), (V
𝑖2
, V
𝑖3
), . . . , (V

𝑖𝑘−1
, V
𝑖𝑘
),

where V
𝑖𝑗

∈ V for 𝑗 = 1, 2, . . . , 𝑘. A directed graph is called
strongly connected if any two distinct nodes of the graph can
be connected via a directed path that follows the edges of
the graph. A directed tree is a directed graph, where every
node, except one special node without any parent, which is
called the root, has exactly one parent, and the root can be
connected to any other nodes through paths. A spanning tree
of a digraph is a directed tree formed by graph edges that
connect all the nodes of the graph.

For the 𝑛-agent system considered in this paper, suppose
that there are 𝑚 (𝑚 ≤ 𝑛) leaders and 𝑛 − 𝑚 followers. For
convenience, we use R = {1, 2, . . . , 𝑚} and F = {𝑚 +

1,𝑚 + 2, . . . , 𝑛} to denote, respectively, the leader set and the
follower set. Further, the interaction topology among agents
is modeled by a direct graphG.

The dynamics of the 𝑛 autonomous agents are given by

̇𝑥
𝑖
= V
𝑖
, ̇V
𝑖
= 𝑢
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (1)

where 𝑥
𝑖
, V
𝑖
, 𝑢
𝑖
∈ R𝑝 denote the position, velocity and control

input of agent 𝑖, respectively.
Using the formation framework in [16], the formation

information is divided into two independent parts: the
global one and the local one. The global information,
which determines the geometric pattern of the expected
formation, is represented by a time-dependent column
vector 𝐹 = [𝑓

𝑇

1
, 𝑓
𝑇

2
, . . . , 𝑓

𝑇

𝑚
]
𝑇

∈ R2𝑚𝑝 with 𝑓
𝑖
= [𝑓
𝑥
𝑇

𝑖
, 𝑓

V𝑇
𝑖

]
𝑇

∈

R2𝑝 (𝑖 ∈ R). The local formation information is
denoted by a time-independent nonnegative matrix
𝑊 = [𝑊

𝑇

𝑚+1
, . . . ,𝑊

𝑇

𝑛
]
𝑇

∈ R(𝑛−𝑚)×𝑚 with unit entry sum for
each row 𝑊

𝑖
= (𝑤
1

𝑖
, . . . , 𝑤

𝑚

𝑖
) ∈ R1×𝑚 (𝑖 ∈ F).

Denote 𝑥
R

= (𝑥
𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑚
)
𝑇 and VR = (V𝑇

1
, V𝑇
2
, . . . ,

V𝑇
𝑚
)
𝑇; we have the following.

Definition 1. We say that system (1) solves the forma-
tion problem if there exists a R2𝑝-valued function 𝑓

𝑐
=

[𝑓
𝑥

𝑐
(𝑡)
𝑇
, 𝑓

V
𝑐
(𝑡)
𝑇
] with 𝑓

𝑥

𝑐
(𝑡) ∈ R𝑝, 𝑓V

𝑐
(𝑡) ∈ R𝑝, and ̇𝑓

𝑥

𝑐
(𝑡) =

𝑓
V
𝑐
(𝑡) such that 𝑥

𝑖
→ 𝑓
𝑥

𝑖
(𝑡) + 𝑓

𝑥

𝑐
(𝑡), V
𝑖

→ 𝑓
V
𝑖
(𝑡) + 𝑓

V
𝑐
(𝑡) for

𝑖 ∈ R and 𝑥
𝑖

→ (𝑊
𝑖
⊗ 𝐼
𝑝
)𝑥

R, V
𝑖

→ (𝑊
𝑖
⊗ 𝐼
𝑝
)VR for 𝑖 ∈ F as

𝑡 → ∞. In particular, the formation problem is called a time-
invariant formation (TIF) problem, a time-varying formation
(TVF) problem, and a time-varying formation for trajectory
tracking (TVFT) problem if ̇𝑓

𝑥

𝑖
= ̇𝑓
𝑥

𝑐
= 𝑓

V
𝑖

= 𝑓
V
𝑐

= 0,
̇𝑓
𝑥

𝑖
= 𝑓

V
𝑖

̸= 0 with ̇𝑓
𝑥

𝑐
= 𝑓

V
𝑐

= 0 and ̇𝑓
𝑥

𝑖
= 𝑓

V
𝑖

̸= 0 with
̇𝑓
𝑥

𝑐
= 𝑓

V
𝑐

̸= 0, respectively.

The column vector 𝑓
𝑐
(𝑡), which specifies the state of the

formation and may be dependent on initial states or may be
an external input, used to guide the group of agents to track
a prescribed trajectory. The vector 𝐹 defines the basic frame
of the anticipated formation formed by the leaders, and the
nonnegative matrix 𝑊 specifies the local-state restrictions of
followers with respect to their leader neighbors. Since each
row entry sum of 𝑊 equals 1, the followers should lie in the
convex region covered by the leaders.

3. Main Results

3.1. Leader-Following Consensus. For the better understand-
ing of the formation control problem, we first consider a
leader-following consensus problem. The multiagent sys-
tems solve a leader-following consensus asymptotically if
lim
𝑡→∞

‖𝑥
𝑖
− 𝑓
𝑥

0
‖ = 0 and lim

𝑡→∞
‖V
𝑖
− 𝑓

V
0
‖ = 0 for all 𝑖 =

1, 2, . . . , 𝑛. Under this circumstance, all the agents can obtain
the acceleration ̇𝑓

V
0
, but only the root agent can obtain the

difference between its state and the formation information,
and hence it can pin the other leaders to attain the anticipated
formation. Define a matrix 𝐵 ∈ R𝑛×𝑛 as 𝐵 = diag{𝑏

1
, . . . , 𝑏

𝑛
},

where 𝑏
𝑖
> 0 if the interaction topologyG has a spanning tree

rooted at 𝑖, 1 ≤ 𝑖 ≤ 𝑛 and 𝑏
𝑖
= 0 otherwise.

The time-varying delay 𝜏(𝑡) is the time delay for infor-
mation communicated between agents at time 𝑡. Owing to
the communication time delays, each agent cannot instantly
get the information from others. With time-varying delays
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existing in the transmission of both velocity and position, we
now provide the following consensus protocol:

𝑢
𝑖
(𝑡)

= ̇𝑓
V
0

+ ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
[(𝑥
𝑗
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+𝑘 (V
𝑗
(𝑡 − 𝜏 (𝑡)) − V

𝑖
(𝑡 − 𝜏 (𝑡)))]

+ 𝑏
𝑖
[(𝑓
𝑥

0
(𝑡 − 𝜏 (𝑡)) − 𝑥

𝑖
(𝑡 − 𝜏 (𝑡)))

+𝑘 (𝑓
V
0
(𝑡 − 𝜏 (𝑡)) − V

𝑖
(𝑡 − 𝜏 (𝑡)))] ,

𝑖 = 1, 2, . . . , 𝑛,

(2)

where the control parameter 𝑘 > 0, 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

is the
adjacency matrix corresponding to the graph G, 𝑏

𝑖
> 0 if

the interaction topology G has a spanning tree rooted at 𝑖

and 𝑏
𝑖

= 0 otherwise, and the time-varying delay 𝜏(𝑡) is a
continuously differentiable function with

𝜏 (𝑡) < 𝑑
1
, ̇𝜏 (𝑡) ≤ 𝑑

2
< 1. (3)

Denote 𝑥 = (𝑥
𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑛
)
𝑇, V = (V𝑇

1
, V𝑇
2
, . . . , V𝑇

𝑛
)
𝑇; then,

system (1) with protocol (2) can be written in a matrix form:

̇𝑥 = V,

̇V = ̇𝑓
V
0
1
𝑛
− (𝐿 + 𝐵) ⊗ 𝐼

𝑝
𝑥 (𝑡 − 𝜏)

− 𝑘 (𝐿 + 𝐵) ⊗ 𝐼
𝑝
V (𝑡 − 𝜏)

+ 𝐵 [𝑓
𝑥

0
(𝑡 − 𝜏) ⋅ 1

𝑛
+ 𝑘𝑓

V
0
(𝑡 − 𝜏) ⋅ 1

𝑛
] ,

(4)

where 𝐿 is the Laplacian matrix associated with G, 𝐵 =

diag{𝑏
1
, . . . , 𝑏

𝑛
}, 𝑏
𝑖

> 0 if the interaction topology G has a
spanning tree rooted at 𝑖 and 𝑏

𝑖
= 0 otherwise.

Let 𝑥 = 𝑥 − 𝑓
𝑥

0
1
𝑛
, V = V − 𝑓

V
0
1
𝑛
; then, (4) can be rewritten

as
̇𝑥 = V,

̇V = − (𝐿 + 𝐵) ⊗ 𝐼
𝑝
𝑥 (𝑡 − 𝜏) − 𝑘 (𝐿 + 𝐵) ⊗ 𝐼

𝑝
V (𝑡 − 𝜏) .

(5)

Taking 𝜀 = (𝑥
𝑇
, V𝑇)𝑇, (5) can be equally expressed as

̇𝜀 = 𝑌𝜀 (𝑡) + 𝑍𝜀 (𝑡 − 𝜏) , (6)

where

𝑌 = (
0
𝑛×𝑛

𝐼
𝑛

0
𝑛×𝑛

0
𝑛×𝑛

) ⊗ 𝐼
𝑝
,

𝑍 = (
0
𝑛×𝑛

0
𝑛×𝑛

−𝐻 −𝑘𝐻
) ⊗ 𝐼
𝑝
,

𝐻 = 𝐿 + 𝐵.

(7)

To proceed further, we need the following lemmas.

Lemma 2 (see [22]). Given a complex-coefficient polynomial

𝑟 (𝑧) = 𝑧
2
+ (𝑎 + 𝑖𝑏) 𝑧 + 𝑐 + 𝑖𝑑, (8)

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ R, 𝑟(𝑧) is Hurwitz stable if and only if 𝑎 > 0

and 𝑎𝑏𝑑 + 𝑎
2
𝑐 − 𝑑
2
> 0.

Lemma 3. The matrix 𝐹 = 𝑌 + 𝑍 = (
0𝑛×𝑛 𝐼𝑛

−𝐻 −𝑘𝐻
) ⊗ 𝐼
𝑝
is

Hurwitz stable if and only if 𝐻 is positive stable and 𝑘 >

max
𝜆∈Λ(𝐻)

(| Im(𝜆)|/(√|Re(𝜆)| ⋅ |𝜆|)).

Proof. Let 𝑧 be an eigenvalue of 𝐹. Then one has

det (𝑧𝐼
2𝑛𝑝

− 𝐹) = det([
𝑧𝐼
𝑛

−𝐼
𝑛

𝐻 𝑧𝐼
𝑛
+ 𝑘𝐻

] ⊗ 𝐼
𝑝
)

= det ((𝑧 (𝑧𝐼
𝑛
+ 𝑘𝐻) + 𝐻) ⊗ 𝐼

𝑝
)

=

𝑛

∏

𝑖=1

(𝑧
2
+ 𝑘𝜆
𝑖
𝑧 + 𝜆
𝑖
)
𝑝

.

(9)

Clearly, the Hurwitz stability of matrix 𝐹 is equivalent to that
of the polynomial: 𝑟(𝑧) = 𝑧

2
+ 𝑘𝜆
𝑖
𝑧 + 𝜆
𝑖
, where 𝜆

𝑖
= Re(𝜆

𝑖
) +

𝑖 Im(𝜆
𝑖
) is the 𝑖th eigenvalue of 𝐻. It follows from Lemma 2

that 𝑟(𝑧) is Hurwitz stable if and only if Re(𝜆
𝑖
) > 0 and 𝑘 >

| Im(𝜆
𝑖
)|/(√|Re(𝜆

𝑖
)| ⋅ |𝜆
𝑖
|), 𝜆
𝑖
∈ Λ(𝐻).

Lemma 4 (see [4]). The matrix 𝐻 = 𝐿 + 𝐵 is positive stable if
G has a spanning tree.

Now we give the main result of this subsection.

Theorem 5. For system (6), take

𝑘 > 𝑘
0
= max
𝜆∈Λ(𝐻)

|Im (𝜆)|

√|Re (𝜆)| ⋅ |𝜆|
(10)

and suppose that

0 < 𝜏 < 𝜏
0
=

1

2
𝑍
𝑇𝑍

 / (1 − 𝑑
2
) +

2𝑌
𝑇𝑌 + 𝑃𝑍𝑍𝑇𝑃



. (11)

Then, the consensus is reached asymptotically if the graph G
has a spanning tree.

Proof. SinceG has a spanning tree, 𝐻 is positive stable based
on Lemma 4. It follows from Lemma 3 that 𝐹 is Hurwitz
stable. Therefore, there exists a positive definite matrix 𝑃 ∈

R2𝑛𝑝×2𝑛𝑝 such that

𝑃𝐹 + 𝐹
𝑇
𝑃 = −𝐼

2𝑛𝑝
. (12)

To analyze the convergence of system (6), we define a
Lyapunov-Krasovskii functional

𝑉 (𝜀) = 𝜀
𝑇
(𝑡) 𝑃𝜀 (𝑡) + ∫

𝑇

𝑡−𝜏

𝜀
𝑇
(𝑡) 𝑆𝜀 (𝑡) 𝑑𝑠

+ ∫

0

−𝜏

∫

𝑡

𝑡+𝜃

̇𝜀
𝑇
(𝑠) 𝑅 ̇𝜀 (𝑠) 𝑑𝑠 𝑑𝜃,

(13)

where 𝑆 = 𝛽𝐼
2𝑛𝑝

and 𝑅 = 𝐼
2𝑛𝑝

.
Calculating 𝑉(𝜀) along the solution of (6), we have

𝑉 (𝜀) = 𝜀
𝑇
(𝑡) (𝑌

𝑇
𝑃 + 𝑃𝑌) 𝜀 (𝑡) + 2𝜀

𝑇
(𝑡) 𝑃𝑍𝜀 (𝑡 − 𝜏)

+ 𝜀
𝑇
(𝑡) 𝛽𝜀 (𝑡) − 𝛽 (1 − ̇𝜏) 𝜀

𝑇
(𝑡 − 𝜏) 𝜀 (𝑡 − 𝜏)

− ∫

𝑡

𝑡−𝜏

̇𝜀
𝑇
(𝜃) ̇𝜀 (𝜃) 𝑑𝜃 + 𝜏 ̇𝜀

𝑇
(𝑡) ̇𝜀 (𝑡) .

(14)
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Due to the fact that 𝜀(𝑡 − 𝜏) = 𝜀(𝑡) − ∫
𝑡

𝑡−𝜏
̇𝜀(𝑠)𝑑𝑠 and

2𝑎
𝑇
𝑏 ≤ 𝑎

𝑇
Ψ
−1

𝑎 + 𝑏
𝑇
Ψ𝑏 holds for any appropriate positive

definite matrix Ψ, we can obtain that

2𝜀
𝑇
(𝑡) 𝑃𝑍𝜀 (𝑡 − 𝜏)

= 𝜀
𝑇
(𝑡) (𝑍

𝑇
𝑃 + 𝑃𝑍) 𝜀 (𝑡) + 2∫

𝑡

𝑡−𝜏

(−𝑍
𝑇
𝑃𝜀 (𝑡))

𝑇

̇𝜀 (𝑠) 𝑑𝑠

≤ 𝜀
𝑇
(𝑡) (𝑍

𝑇
𝑃 + 𝑃𝑍) 𝜀 (𝑡) + 𝜏𝜀

𝑇
(𝑡) 𝑃𝑍𝑍

𝑇
𝑃𝜀 (𝑡)

+ ∫

𝑡

𝑡−𝜏

̇𝜀
𝑇
(𝑠) ̇𝜀 (𝑠) 𝑑𝑠.

(15)

Similarly,

𝜏 ̇𝜀
𝑇
(𝑡) ̇𝜀 (𝑡) = 𝜏[𝑌𝜀 (𝑡) + 𝑍𝜀 (𝑡 − 𝜏)]

𝑇
[𝑌𝜀 (𝑡) + 𝑍𝜀 (𝑡 − 𝜏)]

= 𝜏 [𝜀
𝑇
(𝑡) 𝑌
𝑇
𝑌𝜀 (𝑡) + 𝜀

𝑇
(𝑡 − 𝜏) 𝑍

𝑇
𝑍𝜀 (𝑡 − 𝜏)]

+ 𝜀
𝑇
(𝑡) 𝑌
𝑇
𝑍𝜀 (𝑡 − 𝜏) + 𝜀

𝑇
(𝑡 − 𝜏) 𝑍

𝑇
𝑌𝜀 (𝑡)

≤ 2𝜏 [𝜀
𝑇
(𝑡) 𝑌
𝑇
𝑌𝜀 (𝑡) + 𝜀

𝑇
(𝑡 − 𝜏) 𝑍

𝑇
𝑍𝜀 (𝑡 − 𝜏)] .

(16)

Substituting (15) and (16) into (14) leads to

𝑉 (𝜀) ≤ 𝜀
𝑇
(𝑡) [− (𝑃𝐹 + 𝐹

𝑇
𝑃) + 𝛽𝐼

2𝑛𝑝

+𝜏 (2𝑌
𝑇
𝑌 + 𝑃𝑍𝑍

𝑇
𝑃) ] 𝜀 (𝑡)

+ 𝜀
𝑇
(𝑡 − 𝜏) [− (1 − ̇𝜏) 𝛽𝐼

2𝑛𝑝
+ 2𝜏𝑍

𝑇
𝑍] 𝜀 (𝑡 − 𝜏)

≤ 𝜀
𝑇
(𝑡) (−1 + 𝛽 + 𝜏


2𝑌
𝑇
𝑌 + 𝑃𝑍𝑍

𝑇
𝑃

) 𝜀 (𝑡)

+ 𝜀
𝑇
(𝑡 − 𝜏) [− (1 − 𝑑

2
) 𝛽 + 2𝜏


𝑍
𝑇
𝑍


] 𝜀 (𝑡 − 𝜏) .

(17)

Consequently, a sufficient condition for 𝑉(𝜀) < 0 is

−1 + 𝛽 + 𝜏

2𝑌
𝑇
𝑌 + 𝑃𝑍𝑍

𝑇
𝑃


< 0,

− (1 − 𝑑
2
) 𝛽 + 2𝜏


𝑍
𝑇
𝑍


< 0.

(18)

From (18), we can obtain that

𝜏 < 𝜏
0
=

1

2
𝑍
𝑇𝑍

 / (1 − 𝑑
2
) +

2𝑌
𝑇𝑌 + 𝑃𝑍𝑍𝑇𝑃



. (19)

Therefore, by Lyapunov-Krasovskii Theorem (see [23]), the
error system (6) is uniformly asymptotically stable. Namely,
the consensus is reached asymptotically.

Remark 6. It can be seen that many zoom techniques are
applied during the derivation of 𝜏

0
, which result in a conser-

vative estimation of 𝜏
0
.

3.2. Time-Varying Formation for Trajectory Tracking. In this
subsection, we consider the case that the agents form a
time-varying formation as they track the desired trajectory.
More specifically, the desired trajectory of the formation,
represented by 𝑓

𝑐
= [𝑓

𝑥

𝑐
(𝑡)
𝑇
, 𝑓

V
𝑐
(𝑡)
𝑇
], is assumed to be

determined by the following equation:

̇𝑓
𝑥

𝑐
= 𝑓

V
𝑐

= 𝑔 (𝑡, 𝑓
𝑥

𝑐
) . (20)

Also make the following assumptions about the multiagent
system:

(A1) the local interaction topology of the leaders has a
spanning tree, and the leaders’ dynamic is unaffected
by the followers;

(A2) the root agent in the local interaction topology of the
leaders is able to access the reference trajectory;

(A3) in addition to the local information from their
neighbors, the leaders can also obtain the global
information 𝐹;

(A4) in addition to the local information from their fol-
lower neighbors, each follower can also get the local
formation 𝑊 directly or indirectly from the leaders.

Using the following control protocol:

̇𝑥
𝑖
= V
𝑖
, 𝑖 = 1, 2, . . . , 𝑛,

̇V
𝑖
= ̇𝑓

V
𝑖

+ ̇𝑔 (𝑡, 𝑓
𝑥

𝑐
)

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
{[(𝑥
𝑗
(𝑡 − 𝜏) − 𝑓

𝑥

𝑗
(𝑡 − 𝜏))

− (𝑥
𝑖
(𝑡 − 𝜏) − 𝑓

𝑥

𝑖
(𝑡 − 𝜏)) ]

+ 𝑘 [(V
𝑗
(𝑡 − 𝜏) − 𝑓

V
𝑗
(𝑡 − 𝜏))

− (V
𝑖
(𝑡 − 𝜏) − 𝑓

V
𝑖
(𝑡 − 𝜏)) ]}

− 𝑏
𝑖
[(𝑥
𝑖
(𝑡 − 𝜏) − 𝑓

𝑥

𝑖
(𝑡 − 𝜏) − 𝑓

𝑥

𝑐
(𝑡 − 𝜏))

+𝑘 (V
𝑖
(𝑡 − 𝜏) − 𝑓

V
𝑖
(𝑡 − 𝜏) − 𝑔 (𝑡 − 𝜏))] ,

𝑖 ∈ R,

̇V
𝑖
=

𝑚

∑

𝑘=1

𝑤
𝑘

𝑖
̇V
𝑘

+

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
{[(𝑥

𝑗
(𝑡 − 𝜏) −

𝑚

∑

𝑘=1

𝑤
𝑘

𝑗
𝑥
𝑘
(𝑡 − 𝜏))

−(𝑥
𝑖
(𝑡 − 𝜏) −

𝑚

∑

𝑘=1

𝑤
𝑘

𝑖
𝑥
𝑘
(𝑡 − 𝜏))]

+ 𝑘[(V
𝑗
(𝑡 − 𝜏) −

𝑚

∑

𝑘=1

𝑤
𝑘

𝑗
V
𝑘
(𝑡 − 𝜏))

−(V
𝑖
(𝑡 − 𝜏) −

𝑚

∑

𝑘=1

𝑤
𝑘

𝑖
V
𝑘
(𝑡 − 𝜏))]}
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− 𝑏
𝑖
[(𝑥
𝑖
(𝑡 − 𝜏) −

𝑚

∑

𝑘=1

𝑤
𝑘

𝑖
𝑥
𝑘
(𝑡 − 𝜏))

+𝑘(V
𝑖
(𝑡 − 𝜏) −

𝑚

∑

𝑘=1

𝑤
𝑘

𝑖
V
𝑘
(𝑡 − 𝜏))] ,

𝑖 ∈ F,

(21)

where 𝑘 > 0,𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

is the adjacencymatrix correspond-
ing to the graphG, and 𝑏

𝑖
> 0 if there is a spanning tree rooted

at 𝑖 in the graphG and 𝑏
𝑖
= 0 otherwise, we have the following

result.

Theorem 7. Suppose that the graph G has a spanning tree.
Take

𝑘 > 𝑘
0
= max
𝜆∈Λ(𝐻)

|Im (𝜆)|

√|Re (𝜆)| ⋅ |𝜆|
,

0 < 𝜏 < 𝜏
0
=

1

2
𝑍
𝑇𝑍

 / (1 − 𝑑
2
) +

2𝑌
𝑇𝑌 + 𝑃𝑍𝑍𝑇𝑃



.

(22)

With protocol (21), the multiagent systems attain a time-
varying formation for trajectory tracking (TVFT) under
assumptions (A1)–(A4).

Proof. Let 𝑥
𝑖
= 𝑥
𝑖
− 𝑓
𝑥

𝑖
− 𝑓
𝑥

𝑐
, Ṽ
𝑖
= V
𝑖
− 𝑓

V
𝑖
− 𝑔(𝑡, 𝑓

𝑥

𝑐
) for 𝑖 ∈ R,

and 𝑥
𝑖
= 𝑥
𝑖
− ∑
𝑚

𝑘=1
𝑤
𝑘

𝑖
𝑥
𝑘
, Ṽ
𝑖
= V
𝑖
− ∑
𝑚

𝑘=1
𝑤
𝑘

𝑖
V
𝑘
for 𝑖 ∈ F. Then

we can rewrite protocol (21) as

̇�̃�
𝑖
= Ṽ
𝑖
,

̇Ṽ
𝑖
=

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
[(𝑥
𝑗
(𝑡 − 𝜏) − 𝑥

𝑖
(𝑡 − 𝜏))

+𝑘 (Ṽ
𝑗
(𝑡 − 𝜏) − Ṽ

𝑖
(𝑡 − 𝜏))]

− 𝑏
𝑖
(𝑥
𝑖
(𝑡 − 𝜏) + 𝑘Ṽ

𝑖
(𝑡 − 𝜏)) , 𝑖 = 1, 2, . . . , 𝑛.

(23)

Denote 𝑥 = (𝑥
𝑇

1
, 𝑥
𝑇

2
, . . . , 𝑥

𝑇

𝑛
) and Ṽ = (Ṽ𝑇

1
, Ṽ𝑇
2
, . . . , Ṽ𝑇

𝑛
); (23) can

be expressed in a matrix form:

̇�̃� = Ṽ,

̇Ṽ = − (𝐿 + 𝐵) ⊗ 𝐼
𝑝
𝑥 (𝑡 − 𝜏) − 𝑘 (𝐿 + 𝐵) ⊗ 𝐼

𝑝
Ṽ (𝑡 − 𝜏) .

(24)

It follows from Theorem 5 that 𝑥
𝑖
and Ṽ

𝑖
converge to zero

asymptotically, and equally, 𝑥
𝑖

→ 𝑓
𝑥

𝑖
+ 𝑓
𝑥

𝑐
, V
𝑖

→ 𝑓
V
𝑖

+ 𝑓
V
𝑐

for 𝑖 ∈ R and 𝑥
𝑖

→ (𝑊
𝑖
⊗ 𝐼
𝑝
)𝑥

R, V
𝑖

→ (𝑊
𝑖
⊗ 𝐼
𝑝
)VR for

𝑖 ∈ F as 𝑡 → ∞.
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Figure 1: The interaction topology.
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Figure 2: The trajectories of some agents in TIF.

Remark 8. Obviously,Theorem 7 still holds if ̇𝑓
𝑥

𝑖
= 𝑓

V
𝑖

= 0, or
̇𝑓
𝑥

𝑖
= 𝑓

V
𝑖

̸= 0 and ̇𝑓
𝑥

𝑐
= 𝑓

V
𝑐

= 𝑔(𝑡, 𝑓
𝑥

𝑐
) = 0. In the form case, the

multiagent systems attain a time-invariant formation (TIF).
In the latter case, themultiagent systems attain a time-varying
formation.

4. Simulations

In this section, to illustrate our theoretical results derived in
the above section, we will provide several examples. Consider
a multiagent system consisting of 25 agents moving in a plane
(i.e., 𝑝 = 2), with the direct interaction topology described in
Figure 1. The expected formation is a hexagram. Assume that
the first 7 agents are leaders with the spanning tree rooted at
agent 7. For simplicity, let 𝑎

𝑖𝑗
= 1 if agent 𝑗 is a neighbor of

agent 𝑖 and 𝑎
𝑖𝑗

= 0 otherwise. With simple calculations, we
can obtain that 𝑘

0
= 0 and 𝜏

0
= 0.007. Take 𝑘 = 2, 𝜏 =

0.0065| cos 𝑡|, and 𝑑
2
= 0.05.
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Figure 3: The formation states of agents in TVFT.

Consider

𝑓
𝑥

𝑖
= 𝑅
𝑖
(𝑡)(

cos(𝜋

2
+

2 (𝑖 − 1)

3
𝜋)

sin(
𝜋

2
+

2 (𝑖 − 1)

3
𝜋)

) , 𝑖 = 1, 2, . . . , 6,

𝑅
𝑖
(𝑡) ≡ 5 (TIF) ,

𝑓
𝑥

𝑖
= (0, 0)

𝑇
, 𝑖 = 7,

̇𝑓
𝑥

𝑖
= 𝑓

V
𝑖
, 𝑖 = 1, 2, . . . , 25,

𝑓
𝑥

𝑐
= 4(

sin 3𝑡

sin 3𝑡
) , 𝑓

V
𝑐

= ̇𝑓
𝑥

𝑐
,

𝑅
𝑖
(𝑡) = 6 sin 𝑡 (TVFT) ,

𝑤
1

24
= 𝑤
6

24
= 𝑤
7

24
= 𝑤
𝑖−1

3𝑖
= 𝑤
𝑖−2

3𝑖
= 𝑤
7

3𝑖
=

1

3
,

𝑖 = 3, 4, . . . , 7,

𝑤
1

8
= 𝑤
1

25
= 𝑤
𝑖−1

3𝑖+1
= 𝑤
𝑖−1

3𝑖+2
=

2

3
, 𝑖 = 3, 4, . . . , 7,

𝑤
𝑖−2

3𝑖+1
= 𝑤
𝑖

3𝑖+2
= 𝑤
7

3𝑖−1
= 𝑤
7

3𝑖+1
=

1

6
, 𝑖 = 3, 4, . . . , 6,

𝑤
2

8
= 𝑤
𝑖−2

3𝑖+1
= 𝑤
7

3𝑖−1
= 𝑤
7

3𝑖+1
=

1

6
, 𝑖 = 7, 8,

𝑤
𝑗

𝑖
= 0, otherwise.

(25)

Figure 2 shows the trajectories of some agents in time-
invariant formation (TIF), where the initial states of the
agents are randomly generated in a given bounded region.
From Figure 2, we can see that the agents attain the vertexes
of a hexagram. In other words, the expected time-invariant
formation is reached. For the trajectory tracking formation,
Figure 3 illustrates the formation states of agents. Since the
expected trajectory of the formation 𝑓

𝑥

𝑐
satisfies the equation

in (25), the formation in Figure 3 changes with time as it
moves along a sinusoidal curve. Furthermore, the position
and velocity errors of agents in TVFT with time delays
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Figure 4: The position errors of agents in TVFT.

existing only in the transmission of position are shown in
Figures 4(a) and 5(a), respectively, and the position and
velocity errors of agents in TVFT with time delays existing
in the transmission of both position and velocity are shown
in Figures 4(b) and 5(b), respectively. It can be seen that all of
the errors converge to zero ultimately, while the errors in the
latter figures converge to zero faster than those in the former
figures.

5. Conclusion

This paper investigates the formation control problem for
second-order multiagent systems with time-varying delays.
We first consider a leader-following consensus problem. By
employing Lyapunov-Krasovskii functional, we prove that
the multiagent systems can reach consensus. Then, under a
special multiple leaders’ framework, we apply the protocol to
the formation control, andderive a sufficient condition for the
system to achieve prescribed formation. Moreover, several
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Figure 5: The velocity errors of agents in TVFT.

numerical simulations are shown to verify the theoretical
analysis.
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This paper presents a comprehensive procedure to calculate steady dynamic response and generated noise radiation from a gear
reducer. In this process, the dynamic model of the cylindrical gear transmission system is built in consideration of the time-
varying mesh stiffness, gear errors, and bearing supporting, while the data of dynamic bearing force is obtained through solving
the model. Furthermore, taking the data of bearing force as the excitation, the gearbox vibrations and noise radiation are calculated
by numerical simulation, and then the time history of node dynamic response, noise spectrum, and resonance frequency range of
the gearbox are obtained. At last, the gearbox panel acoustic contribution at the resonance frequency range is calculated. According
to the conclusions of the gearbox panel acoustic contribution analyses and the mode shapes, two gearbox stiffness improving plans
is researched. By contrastive analysis of gearbox noise radiation, the effectiveness of the improving plans are verified. The study
provides useful theoretical guideline to the gearbox design.

1. Introduction

Withmany advantages, that is, high efficiency, tight structure,
stable speed ratio, and so forth, gear train has been widely
used in many industrial fields. When the gear reducer is
running, the gearbox vibration is generated, due to the effect
of the gear pair dynamic mesh force, which not only affects
the stability of the transmission system but also generates
noise. In addition, excessive noise produced by a reducer
causes crew fatigue, strained communication, and possible
hearing damage. In order to ensure a quiet, smooth, and
safe operation of a gear transmission system, it is necessary
to understand mechanisms of the dynamic response and
the noise radiation of the gear reducer; meanwhile, their
reduction is highly desired.

With increasing demand for quieter gear systems, a large
amount of work was reported in the literatures on analyzing
the vibration and noise of the gearbox. Abbes et al. built the
gearbox vibroacoustic system by using a three-dimensional
finite-element (FE) approach, and the acoustic response of
the system was evaluated [1]. Velex andMaatar computed the
dynamic responses to mesh stiffness variations for numerical
gears [2]. Their results showed the impact of mesh stiffness

variation on dynamic response and tooth loads. Dion et al.
developed an experimental and numerical study of dynamic
phenomena involving gear impacts with one loose gear inside
an automotive gearbox [3]. Barthod et al. dealt with the
rattle noise, caused by the fluctuation of the engine torque
under special conditions, which could causemultiple impacts
inside the gearbox [4]. Kato et al. simulated the vibration
and noise radiation of a single-stage gearbox by combining
finite-element (FE) vibration analysis with boundary element
noise analysis [5].The results of this analysis were well agreed
with the corresponding measured data. Spur and helical
gears were tested in the NASA gear-noise rig to compare
the noise produced by different gear designs [6]. The useful
conclusions about the effect of the gear design parameters
on gearbox radiated noise were got. Choy et al. presented
method to predict both the vibration and noise generated by a
gear transmission system under normal operation conditions
[7], and the application of the method is demonstrated by
comparing the numerical and experimental results for the
gear noise test rig. Yanyan and Zhen confirmed that the gear
pair is the main excitation of the gear reducer and reduced
the gearbox noise through matching the precision grade
and stiffness of the gears [8]. Kahraman and Blankenship
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investigated contact ratio effects experimentally using a back-
to-back gearbox rig. The dynamic transmission error (DTE)
amplitudes of spur gear pairs with varying contact ratios were
measured. The measurements were performed for excitation
at and around the torsional natural frequency of the gear pair.
The gear mesh frequency was used as a form of torsional
excitation, with the limitation that excitation is dependent
on rotational speed [9]. Kostić and Ognjanović found that
the noise emission of gear units (gearboxes) depends both
on the disturbances (gear meshing, bearing operation, etc.)
and on the insulating capabilities and modal behavior of
the housing. Natural vibrations of the housing walls can be
prevented or intensified depending on design parameters
[10]. Tuma reviews practical techniques and procedures
employed to quiet gearboxes and transmission units [11].
With the complexity of the gearbox structure and the gear
excitation, excessive simplification has been made in most
of the previous research; meanwhile no effective method to
reducing vibration and noise is found.

In this study, we present a comprehensive procedure
to predict the noise radiation of the gear reducer. In the
procedure, the 4-DOF dynamic model is built, and then
taking the bearing force as the excitation, vibrations and
noise radiation of the gearbox are researched. According to
the results of the panel acoustic contribution analysis on
the resonant frequency band of the gearbox and the mode
shapes, effective methods to reducing vibration and noise are
suggested.

2. Analysis Procedure of Noise Radiating

Gear errors and fluctuations in mesh stiffness can cause
excitation during gear meshing; this excitation propagates
from the gear shafts to the bearing and excites the gearbox
and generations reducer noise which is radiated from the
surface of the gearbox. In order to concern about both gear
transmission system dynamic characteristics and gearbox
dynamic characteristics, an excellent prediction method of
gearbox noise radiation is proposed.

As illustrated in Figure 1, the developed method consists
of three separate steps: dynamic bearing force calculation
by solving the gear transmission system dynamic model,
gearbox vibration analysis by using finite element method
(FEM), and boundary element analysis (BEA) of the sound
field. In thismethod, a commercial software, LMS.Virtual.lab,
is used to analyze the sound radiation for the gear reducer.
The input data are fundamental performance parameters
of the gear reducer, which consist of the gearbox shape,
material, gear error, bearing stiffness, and so on. The output
data are vibrations and noise analysis results, which consist
of dynamic responses, frequency spectrum for noise, panel
acoustic contribution, and so on. The low-noise gearbox
is designed according to the conclusion of panel acoustic
contribution and gearbox dynamic characteristics.

3. Gearbox Excitation Calculation

In a power transmission gear system, the gear pair assembly
remains one of the major noise and vibration sources in

Table 1: The gear system parameters.

Power
(Kw)

Gear
ratio

Module
(mm)

Pressure
angle (deg)

Face width
(mm)

Rotational
speed (r/min)

10 20/80 3.0 20 60 1000

the system. The vibrations of the gear transmission system
are generated due to the fluctuation of the dynamic meshing
force, which is affected by the time-varyingmesh stiffness and
errors.

3.1. Gear Time-Varying Mesh Stiffness. The gear system pa-
rameters are given in Table 1. The variation of the mesh stiff-
ness for the gear pair is obtained by using static finite element
analysis, in which FEM Contact Algorithm is adopted.

The FE-model of the gear pair and boundary conditions is
shown in Figure 2. During the calculation of the time-varying
mesh stiffness, the driven gear is fixed, the torque𝑇 is applied
on the driving gear, and contact constraint is applied between
the engaged tooth of the driving gear and the driven gear.

As a result of the toothHertzian contact deformations and
tooth bending deformations, the driving gear will revolved a
small angle 𝜃 on its centre. The small angle 𝜃 is obtained by
solving the gear pair FE-model; then the total deformation of
the meshing line is defined as

𝑢 = 𝜃 ⋅ 𝑅
𝑏
, (1)

where 𝑅
𝑏
is the base radius of the driving gear.

So the mesh stiffness at this position is represented by the
equation

𝐾 =
𝑇

(𝑅
𝑏
𝑢)

, (2)

where 𝑇 is the torque.
Since the gear rotation is continuous, the gear meshing

stiffness is periodic at the mesh frequency, a complete mesh
cycle is divided into several steps, and the rotatory angle
and position of the gears at every step can be calculated
according to gear mesh theory. Then the calculation of the
mesh stiffness is repeated at every gear engaging position.
The time-varying mesh stiffness function is formed by cubic
spline interpolation, as shown in Figure 3(a). As the number
of tooth pairs in contact changes, abrupt changes in the gear
pair stiffness occur (the mesh of spur gears with two tooth
pairs in contact is roughly twice as stiff as when one tooth
pair is in contact).

3.2. Gear Errors. Vibrations of gear pairs are largely affected
by the amplitude and phase of deviations of the tooth
profile from the true involute one, which is induced by gear
manufacturing and installing errors. Meanwhile, with the
effect of the gear errors on the instantaneous contact ratio,
the collision and impact occur while the gear pair is running
[12]. As a result, gear errors must be included in the gear
transmission system model. Generally, the deviations are
assumed to be small enough so that tooth contacts remain on
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Figure 1: Analysis procedure of gear reducer noise radiation.
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Figure 2: Gear pair finite element model.

the theoretical line of action [2]. Error function, representing
the sum of pitch, profile, pressure angle, and run out errors, is
supposed as displacement excitations along the tooth profile
as a sine wave in the model. The harmonic function is
used to simulate the gear error variation which is shown in
Figure 3(b). The error function is written as

𝑒 (𝑡) = 𝑒
𝑟
sin(

𝑤𝑡

𝑇
𝑚

+ 𝜙) , (3)

where 𝑒
𝑟
is error amplitude, 𝑇

𝑚
is the mesh cycle, 𝑤 is the

angular velocity of the driving gear, and 𝜙 is the phase angle.

3.3. Gear Transmission Systems Dynamics Model. The pro-
posed dynamic model of the gear pair is shown in Figure 4,
which represents the driving gear (subscript 𝑝) meshing with
driven gear (subscript 𝑔). The following assumptions are
made in the model formulation.

(a) The deflection of the shaft is neglected, because the
span of the bearings is little.

(b) Shaft mass and inertia are lumped at the gears.
(c) The bodies representing the two gear bodies are

assumed to be rigid disks [13].
(d) The gear-shaft connections were assumed to be rigid,

ignoring the stiffness of the connections and any
consequent relative torsional motion between the
shaft and gear hub.

(e) Gear pairs mesh flexibility and other parts flexibility
are included in the form of a linear spring. The gear
mesh stiffness is time variant; the support stiffness is
constant.

Namely,𝐾
𝑝𝑦

and𝐾
𝑔𝑦

denote bearing stiffness of the driv-
ing gear and driven gear and 𝐾

𝑚
denotes time-varying mesh

stiffness. The angular displacements 𝜃
𝑝
and 𝜃
𝑔
of the driving

gear and the driven gear are in the reversed direction; in the
same time, the transverse displacements 𝑌

𝑝
and 𝑌

𝑔
in the

direction of meshing line are considered.
The angular displacements and the transverse displace-

ments of the gears will affect meshing state of the gear
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Figure 3: The transmission system excitation.

pair, so the displacement is transformed to action line. The
displacement on the action line is written as

𝑦
𝑝
= 𝑅
𝑝
𝜃
𝑝
− 𝑦
𝑝
, 𝑦

𝑔
= 𝑦
𝑔
− 𝑅
𝑔
𝜃
𝑔
, (4)

where 𝑅
𝑝
is the base circle radius of the driving gear and 𝑅

𝑔

is the base circle radius of the driven gear.
The mesh force and damping force of the gear pairs are

written as

𝐹
𝑘
= 𝑘
𝑚
(𝑦
𝑝
+ 𝑦
𝑔
− 𝑒) = 𝑘

𝑚
(𝑅
𝑝
𝜃
𝑝
− 𝑦
𝑝
+ 𝑦
𝑔
− 𝑅
𝑔
𝜃
𝑔
− 𝑒) ,

𝐹
𝑐
= 𝑐
𝑚
( ̇𝑦
𝑝
+ ̇𝑦
𝑔
− 𝑒) = 𝑐

𝑚
(𝑅
𝑝

̇𝜃
𝑝
− ̇𝑦
𝑝
+ ̇𝑦
𝑔
− 𝑅
𝑔

̇𝜃
𝑔
− ̇𝑒) ,

(5)

where 𝑒 is the gear error, 𝑅
𝑝
is the base circle radius of

the driving gear, 𝑅
𝑔
is the base circle radius of the driven

gear, and 𝑐
𝑚
is mesh damping coefficient of gear pair 𝑐

𝑚
=

2𝜉√𝑘
𝑚
/(1/𝑚

𝑝
+ 1/𝑚

𝑔
), 𝑚
𝑝
is the mass of the driving gear

and 𝑚
𝑔
is mass driven gear of the driven gear. The range of

the damping ratio 𝜉 is 0.03 ∼ 0.1.
Therefore, dynamic mesh force 𝐹

𝑝𝑔
is defined as

𝐹
𝑝𝑔

= 𝐹
𝑘
+ 𝐹
𝑐
. (6)

Similarly, supporting spring force (bearing force) is defined
as

𝐹
𝑝𝑦

= 𝑘
𝑝𝑦

𝑦
𝑝
, 𝐹

𝑔𝑦
= 𝑘
𝑔𝑦

𝑦
𝑔
. (7)

According to the Newtonmechanics law, the following differ-
ential equations of the gear system are set up, which contains

Y 

X
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e 
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kpy

wp

Op
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km cm
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Figure 4: The dynamic model of the system.

the effects of time-varyingmesh stiffness and error excitation.
Total number of degree of freedom for the model is 4:

𝑚
𝑝

̈𝑦
𝑝
+ 𝑐
𝑝𝑦

̇𝑦
𝑝
+ 𝑘
𝑝𝑦

𝑦
𝑝
= 𝐹
𝑝𝑔

,

𝐼
𝑝

̈𝜃
𝑝
= 𝑇
𝑝
− 𝐹
𝑝𝑔

𝑅
𝑝
,

𝑚
𝑔

̈𝑦
𝑔
+ 𝑐
𝑔𝑦

̇𝑦
𝑔
+ 𝑘
𝑔𝑦

𝑦
𝑔
= −𝐹
𝑝𝑔

,

𝐼
𝑔

̈𝜃
𝑔
= 𝑇
𝑔
− 𝐹
𝑝𝑔

𝑅
𝑔
.

(8)

Here, 𝑇
𝑝
is the input torque. 𝑇

𝑔
is the load torque. 𝐼

𝑝
is the

rotational inertia of driving gear. 𝐼
𝑔
is the rotational inertia of

driven gear.
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Equation (6) in conjunction with (8) yields 4 coupled
homogeneous ordinary differential equations in the form

𝑚
𝑝

̈𝑦
𝑝
+ 𝑐
𝑝𝑦

̇𝑦
𝑝
+ 𝑘
𝑝𝑦

𝑦
𝑝

= 𝑐
𝑚
(𝑅
𝑝

̇𝜃
𝑝
− ̇𝑦
𝑝
+ ̇𝑦
𝑔
− 𝑅
𝑔

̇𝜃
𝑔
− ̇𝑒)

+ 𝑘
𝑚
(𝑅
𝑝
𝜃
𝑝
− 𝑦
𝑝
+ 𝑦
𝑔
− 𝑅
𝑔
𝜃
𝑔
− 𝑒) ,

𝐼
𝑝

̈𝜃
𝑝
= − [𝑐

𝑚
(𝑅
𝑝

̇𝜃
𝑝
− ̇𝑦
𝑝
+ ̇𝑦
𝑔
− 𝑅
𝑔

̇𝜃
𝑔
− ̇𝑒)

+𝑘
𝑚
(𝑅
𝑝
𝜃
𝑝
− 𝑦
𝑝
+ 𝑦
𝑔
− 𝑅
𝑔
𝜃
𝑔
− 𝑒)] 𝑅

𝑝
+ 𝑇
𝑝
,

𝑚
𝑔

̈𝑦
𝑔
+ 𝑐
𝑔𝑦

̇𝑦
𝑔
+ 𝑘
𝑔𝑦

𝑦
𝑔

= −𝑐
𝑚
(𝑅
𝑝

̇𝜃
𝑝
− ̇𝑦
𝑝
+ ̇𝑦
𝑔
− 𝑅
𝑔

̇𝜃
𝑔
− ̇𝑒)

− 𝑘
𝑚
(𝑅
𝑝
𝜃
𝑝
− 𝑦
𝑝
+ 𝑦
𝑔
− 𝑅
𝑔
𝜃
𝑔
− 𝑒) ,

𝐼
𝑔

̈𝜃
𝑔
= [𝑐
𝑚
(𝑅
𝑝

̇𝜃
𝑝
− ̇𝑦
𝑝
+ ̇𝑦
𝑔
− 𝑅
𝑔

̇𝜃
𝑔
− ̇𝑒)

+𝑘
𝑚
(𝑅
𝑝
𝜃
𝑝
− 𝑦
𝑝
+ 𝑦
𝑔
− 𝑅
𝑔
𝜃
𝑔
− 𝑒)] 𝑅

𝑔
+ 𝑇
𝑔
.

(9)

In the mathematical model, the angular displacements
𝜃
𝑝
and 𝜃

𝑔
are independent variables. In order to solve the

equations, the angular displacements should be transformed
into an independent variable.Therefore, transmission error is
lead into the model, defined 𝑦

𝑝𝑔
= 𝑅
𝑝
𝜃
𝑝
− 𝑅
𝑔
𝜃
𝑔
; then rigid

body displacement is removed; the model can be written as

𝑚
𝑝

̈𝑦
𝑝
+ 𝑐
𝑝𝑦

̇𝑦
𝑝
− 𝑐
𝑚
( ̇𝑦
𝑝𝑔

− ̇𝑦
𝑝
+ ̇𝑦
𝑔
) + 𝑘
𝑝𝑦

𝑦
𝑝

− 𝑘
𝑚
(𝑦
𝑝𝑔

− 𝑦
𝑝
+ 𝑦
𝑔
) = −𝑐

𝑚
̇𝑒 − 𝑘
𝑚
𝑒,

𝑚
𝑔

̈𝑦
𝑔
+ 𝑐
𝑔𝑦

̇𝑦
𝑔
+ 𝑐
𝑚
( ̇𝑦
𝑝𝑔

− ̇𝑦
𝑝
+ ̇𝑦
𝑔
) + 𝑘
𝑔𝑦

𝑦
𝑔

+ 𝑘
𝑚
(𝑦
𝑝𝑔

− 𝑦
𝑝
+ 𝑦
𝑔
) = 𝑐
𝑚

̇𝑒 + 𝑘
𝑚
𝑒,

𝑚
𝑔𝑝

̈𝑦
𝑝𝑔

+ 𝑐
𝑚
( ̇𝑦
𝑝𝑔

− ̇𝑦
𝑝
+ ̇𝑦
𝑔
) + 𝑘
𝑚
(𝑦
𝑝𝑔

− 𝑦
𝑝
+ 𝑦
𝑔
)

= 𝑐
𝑚

̇𝑒 + 𝑘
𝑚
𝑒 −

𝐹
𝑔
𝑚
𝑝𝑔

𝑚
𝑔

+
𝐹
𝑝
𝑚
𝑝𝑔

𝑚
𝑝

,

(10)

where 𝑚
𝑝𝑔

is equivalent mass of the gear pair, 𝑚
𝑝𝑔

= 𝑚
𝑝
𝑚
𝑔
/

(𝑚
𝑝
+ 𝑚
𝑔
), 𝑚
𝑝
= 𝐼
𝑝
/𝑅
2

𝑝
, 𝑚
𝑔
= 𝐼
𝑔
/𝑅
2

𝑔
, 𝐹
𝑝
= 𝑇
𝑝
/𝑅
𝑝
, and 𝐹

𝑔
=

𝑇
𝑔
/𝑅
𝑔
.

The equation of motion is given in the matrix form as

[𝑀] {𝑋} + [𝐶] {𝑋} + 𝐾 (𝑡) {𝑋} = {𝑃 (𝑡)} , (11)

where𝑀 is the mass matrix, 𝐶 is the damping matrix,𝐾(𝑡) is
the stiffness matrix, 𝑋 is the vector of the displacement, and
𝑃(𝑡) is the vector of the load. The mass matrix, the damping

matrix, the stiffness matrix, and load vector are given,
respectively, as

[𝑀] = [

[

𝑚
𝑝

0

𝑚
𝑔

0

𝑚
𝑝𝑔

]

]

,

[𝐶] =

[
[
[
[

[

𝑐
𝑝𝑦

+ 𝑐
𝑚

−𝑐
𝑚

−𝑐
𝑚

−𝑐
𝑚

𝑐
𝑔𝑦

+ 𝑐
𝑚

𝑐
𝑚

𝑐
𝑚

−𝑐
𝑚

−𝑐
𝑚

]
]
]
]

]

,

[𝐾] =

[
[
[
[

[

𝑘
𝑝𝑦

+ 𝑘
𝑚

−𝑘
𝑚

−𝑘
𝑚

−𝑘
𝑚

𝑘
𝑔𝑦

+ 𝑘
𝑚

𝑘
𝑚

𝑘
𝑚

−𝑘
𝑚

−𝑘
𝑚

]
]
]
]

]

,

{𝑃} =

{{{{{

{{{{{

{

−𝑐
𝑚

̇𝑒 − 𝑘
𝑚
𝑒

𝑐
𝑚

̇𝑒 + 𝑘
𝑚
𝑒

−𝑐
𝑚

̇𝑒 − 𝑘
𝑚
𝑒 +

𝐹
𝑔
𝑚
𝑝𝑔

𝑚
𝑔

−
𝐹
𝑝
𝑚
𝑝𝑔

𝑚
𝑝

}}}}}

}}}}}

}

.

(12)

3.4. Dynamic Bearing Force. Equation (11) is solved by
using the Newmark time integration method. The Newmark
method is a generalization of the linear acceleration method
[14]. This latter method assumes that the acceleration varies
linearly within the interval (𝑡 + Δ𝑡). This give

{ ̈𝑥
𝑛
} = { ̈𝑥

𝑡
} +

1

Δ𝑡
({ ̈𝑥
𝑡+Δ𝑡

} − { ̈𝑥
𝑡
}) ,

{ ̇𝑥
𝑡+Δ𝑡

} = { ̇𝑥
𝑡
} + [(1 − 𝛿) { ̇𝑥

𝑡
} + 𝛿 {𝑥

𝑡+Δ𝑡
}] Δ𝑡,

{𝑥
𝑡+Δ𝑡

} = {𝑥
𝑡
} + { ̇𝑥

𝑡
} Δ𝑡 + [(

1

2
− 𝛽) { ̈𝑥

𝑡
} + 𝛽 {𝑥

𝑡+Δ𝑡
}] Δ𝑡
2
.

(13)

The response at time 𝑡 + Δ𝑡 is obtained by evaluating the
equation of motion at time 𝑡 + Δ𝑡. The Newmark method is,
therefore, an implicit method.

TheNewmark method is unconditionally stable provided

𝛿 ≥ 0.5, 𝛽 ≥
1

4
(𝛿 + 0.5)

2
. (14)

One can find that 𝛿 ≥ 0.5 and 𝛽 = 0.5 lead to acceptable
results for most of problems, 𝛿 ≥ 0.5 and 𝛽 = 0.5 are always
used in this paper for simplification.

The dynamic bearing force is shown in Figure 5. Dynamic
bearing force presents periodic fluctuations and the major
components at 4 times, 5 times, and 6 times the mesh
frequency (333Hz).

4. Analysis of Gearbox Vibration and
Noise Radiaton

4.1. Gearbox FE-Model. The gear reducer model is shown in
Figure 6. In order to predict the noise of the transmission
system during operation, vibration of the gearbox must
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Figure 5: The dynamic bearing force.

be accurately computed. The finite element model of the
realistic character gearbox is built up by using the commercial
software ANSYS and shown in Figure 7.Themodel consisted
of 146238 elements and 38634 nodes. The material of the
gearbox is cast steel, whose elastic modulus 𝐸 = 207GPa,
Poisson ratio 𝜐 = 0.3, and density 𝜌 = 7800Kg/m3. The
bolt holes in the bottom of the gearbox are fixed, due to the
gearbox connected with the base through the holes. For the
convenience of dynamic load applying, a node is created in
the center of the bearing bore; then the center node is coupled
with the node on the inside surface of the bearing bore and
the dynamic load is applied.

4.2. Gearbox Vibration Modal Analysis. The Lanczos method
is used in the modal analysis of the gearbox. Eight modes
in the frequency range 0 to 3000Hz, shown in Figure 8,
are chosen to represent the vibration of the gearbox. The
vibration of the bottom half gearbox is not as intense as the
upper half, because there are bolt constraints and the support
of the stiffeners on the bottom of the gearbox.

4.3. Studies of Gearbox Dynamic Response. During the pro-
cess of dynamic response solution, the dynamic load which

310

370

190

Figure 6: The gear box three-dimensional model.

X Y
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X

Sample node 

Fixed 

Sound field 
R = 1m

Figure 7: The gear box FE-model.

is acted on the bearing should be transformed into discrete
impact load; then structure response is computed under the
impact load step by step, until it achieves steady state.

For the modal superposition method is used in the
dynamic response calculation; all the modes which are influ-
ential to dynamic response should be calculated; otherwise
the result will not be accurate due to the absence of modes.
Nearly 200 vibrational modes are used in the calculation; the
maximum natural frequency is 20000Hz.

Figure 9 is the time domain dynamic response signal and
corresponding frequency spectra of the signal for the node on
the gearbox top surface. Figure 9(a) shows the node dynamic
response (displacement) at operating speed of 1000 rpm.Note
that the largest amplitude of the response is 1.6 𝜇m.

Figure 9(b) shows the frequency components of the res-
ponse. The major vibration components occur at 3 times, 4
times, and 5 times the mesh frequency (333Hz). The very
large amplitude in the frequency components at the range of
1550Hz ∼ 1700Hz is due to the fact that the gearbox forth
natural frequency is near the 5 times (1650Hz) the mesh
frequency, and the mode shape is twisting of the upper
half of the gearbox. The fundamental and the 2 times mesh
frequency component are substantially smaller due to the lack
of any gearbox natural frequencies near 333Hz and 666Hz.
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Figure 9: The gear box dynamic response.

4.4. Gearbox Frequency Spectrum for Noise. The frequency
responses corresponding to the calculated vibration velocities
of the surface of the gearbox are inputted into the BEM
to analyze the distribution of sound-pressure levels around
the gearbox. In order to ensure that the vibration data
transmission is correct, both the BE-model and FE-model are
meshed in the same way, where the nodes of the two models
are mutually corresponding.

Hemispherical sound field is defined outside of the gear-
box and is shown in Figure 6. Three representative field
points are selected in the sound field; they are located at
the top of the gearbox (field point a) and the left and right
sides of the gearbox (field points b and c). The frequency
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Figure 10: The frequency spectrum for noise.

response of sound pressure level is shown in Figure 10.
The noise of the field point at top gearbox is lower than
right and left side, due to the fact that most of the mode
shapes are swing or torsional vibrations that make normal
vibration of the gearbox side plate more violent than top
surface. The amplitudes and general shapes of the curves b
and c are similar; the frequency components of considerable
magnitudes are observed at the mesh frequency of 333Hz
and doubling frequency with three very large components at
the 2 times mesh frequency, 4 times mesh frequency, and 5
times mesh frequency; the largest peak value is 50 dB. When
the frequency of excitation is larger than 1665Hz, the sound
pressure level is decreased as the frequency increases.
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5. The Effect of Rotation Speed on
the Vibration and Noise

With change of the rotational speed, not only the gear pair
meshing state will change, but also the frequency of the
various harmonics will change at the same time. In order to
research the effect of the rotation speed, the dynamic bearing
force, gearbox vibration, and noise radiation are calculated
when the rotation speed is within the range of 500 r/min and
3000 r/min.

5.1. The Effect of Rotation Speed on the Gearbox Dynamic
Response. Increasing the input speed steadily from 500 r/min
to 3000 r/min, a family of vibration and noise spectrum is
obtained. Thus, two waterfall diagrams have been created, as
shown in Figure 11 (𝑓

𝑔
denotes mesh frequency; 𝑓

𝑏2
and 𝑓

𝑏4

denote the second and forth nature frequency of the gearbox).
The spectral map illustrates how the various harmonics

fall along radial lines and can, thus, be separated from

View hole lid 

Roof panel 

Side plates of the upper half 
of the gearbox 

Bearing cover 

Front and rear 
panels 

Right side 

The front  

Left side 

The back 

Side plates of the bottom 
half of the gearbox 

Figure 13:The gear box panel definition.Viewhole lid (1); roof panel
(2); side plates of the upper half of the gearbox (3, 4); bearing cover
(5, 6, 7, and 8); side plates of the bottom half of the gearbox (9, 10, 11,
12, 13, and 14); front and rear panels (15, 16).

the constant frequency components due to excessive ampli-
fication by a structural resonance. The excitation consists
of harmonic components whose frequency is a multiple of
the corresponding gear’s rotational speed, so the major com-
ponents of response fall along radial lines. Meanwhile, the
gearbox produces violent vibration near 1664Hz in different
rotational speed, since the 2 times the mesh frequency in
2500 r/min, 3 times the mesh frequency in 1600 r/min, 4
times the mesh frequency in 1250 r/min, and 5 times the
mesh frequency in 1000 r/min are equal to the fourth natural
frequency; the samephenomenonoccurs near the second and
third natural frequency. So it means that the second, third,
and fourth natural frequency are sensitive to the dynamic
bearing force.

5.2. The Effect of Rotation Speed on the Gearbox Noise
Radiation. The gearbox noise spectral map in dB is shown
in Figure 12. Note that the frequency components of the
gearbox noise spectrum are not intense at low speed, as
the rotational speed increases, and noise radiation was
gradually strengthened. The distribution of sound pressure
and dynamic response are consistent under various speeds;
the resonant frequency band is produced at the range of
670Hz, 1300–1700Hz, and 3000–4000Hz, which are near the
gearbox natural frequency. So in order to reduce the gearbox
vibration and noise radiation, the vibration at the resonant
frequency band should be reduced during the gearbox design
stage.

6. Gearbox Improvement

6.1. Gearbox Panel Acoustic Contribution. The vibration and
noise of the gearbox are sensitive to the shape and structure
of its housing. It is necessary to determine the noise contri-
bution of each panel in the resonance region, which provide
forceful basis as the gearbox structure is improved.

In order to quantify the noise proportion of each plate to
the whole structure, we introduce the concept of panel acous-
tic contribution coefficient, which is the ratio of the noise
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Figure 14: The gear box panel contribution.
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Figure 15: Improved gearbox.

pressure produced by vibration of the panels to the overall
noise pressure:

𝐷
𝑒
= 𝑅
𝑒

𝑃
𝑒
𝑃
∗

|𝑃|
2
, (15)

where 𝑃
∗ is the conjugate complex number of the sound

pressure for the point and 𝑅 is its real part.
If the phase difference between the panel sound pressure

and the overall sound pressure is less than 90∘, the overall
sound pressure will increase with the raise of the panel
vibration velocity, and the contribution coefficient is defined
as positive; otherwise, it is negative. The radiating noise can
be reduced effectively if vibration of the panelswhose acoustic
contributions are positive and values are large can be reduced.

Each closed surface of the gearbox is defined as a panel,
and the part whose radiation area is too small is neglected,
such as the area of corner cutting. The whole gearbox outer
surface is divided into 16 panels, as shown in Figure 13.

The panel acoustic contribution coefficient is shown in
Figure 14, noted that the contributions of the roof panel and
the front and rear panels are greater than other panels when
the excitation frequency is 1665Hz. When the excitation
frequency is 667Hz, the contributions of the roof and side
plates of the upper half of the gearbox are bigger. Further
analysis indicates that the noise ismainly caused by the panels
of the upper half of the gearbox. Reducing vibrant intensity of

Table 2: The gear box natural frequencies (Hz).

Mode steps Original model Plan 1 Plan 2
1st 716.5 791.2 770.7
2nd 1518.8 1684.4 1631.8
3rd 1682.3 1847.2 1800.1
4th 1843.7 2138.1 2001.4
5th 2459 2887 2765.3
6th 2881.6 3178.4 3010.8
7th 2887.3 3431.6 3259.4
8th 3043.9 3434.3 3276.9

the panels 2, 3, 4, 15, and 16 is important to noise control of
the gear reducer.

6.2. Gearbox Improvement. In order to reduce the intensity
of vibration of the upper half of the gearbox and make the
gearbox natural frequency avoid the 2 times and 5 times the
mesh frequency, two low-noise design plans are proposed.
The first plan increases the thickness of the side plates of
the bottom half of the gearbox with 4mm. Another one, the
gearbox stiffness was strengthened by using ribs on the side
plates, as Figure 15 shown.The natural frequency is shown in
Table 2.
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The frequency-noise spectra of the gearbox pre- and
postimprovement are shown in Figure 16, where curves a, b,
and c represent the distribution of sound pressure level for
the original model and the improved models, respectively.
As can be seen, the differences in mesh frequency doubling
are considerable. The noise of improved gearbox is reduced
obviously when the extinction frequency is below 1700Hz.
The sound pressure level is reduced about 12 dB at 665Hz and
about 9 dB at 1332Hz in magnitude.

With comparative analysis of the two low-noise design
plans, the effect of increasing gearbox thickness and ribs on
reducing noise and vibration is almost the same, but plan 1
will increase more weight and take upmore interior room, so
it is more realizable to provide stiffening ribs on the gearbox.

7. Conclusions and Summary

A procedure for predicting the vibration and noise of gear
reducer is developed, in which both gear transmission system
dynamic characteristics and gearbox dynamic characteristics
are considered. The dynamic bearing force is taken as the
excitation; the gearbox vibrations and noise radiating are
calculated by using FEM/BEM.The resonant frequency band
of the gearbox is obtained. Then the low-noise gearbox was
designed based on the result of modal analysis and acoustic
panel contribution analysis. It is available to reduce the noise
radiation of the gearbox through increasing the structural
stiffness of the gearbox and reducing the vibration of the
panels whose acoustic contribution coefficients are positive
and values are large.
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The tire mechanical characteristics under combined cornering and braking/driving situations have significant effects on vehicle
directional controls. The objective of this paper is to present an analytical tire model with flexible carcass for combined slip
situations, which can describe tire behavior well and can also be used for studying vehicle dynamics. The tire forces and
moments come mainly from the shear stress and sliding friction at the tread-road interface. In order to describe complicated tire
characteristics and tire-road friction, some key factors are considered in this model: arbitrary pressure distribution; translational,
bending, and twisting compliance of the carcass; dynamic friction coefficient; anisotropic stiffness properties. The analytical tire
model can describe tire forces and moments accurately under combined slip conditions. Some important properties induced
by flexible carcass can also be reflected. The structural parameters of a tire can be identified from tire measurements and the
computational results using the analytical model show good agreement with test data.

1. Introduction

Tires are the only components of a road vehicle to directly
contact with the road surface, and the forces and moments
generated in the contact patch have significant effects on
the vehicle performance [1–4]. Hence a huge number of tire
models have been proposed for use in calculating the forces
and moments at the tire-road interface [5–13].

The empirical models are often employed for the vehicle
simulation and control, which rely basically on curve-fitted
experimental data and can provide a good representation
of experimental data for longitudinal force, lateral force,
and aligning moment. However, empirical models would
become quite complicated without theoretical support while
considering all kinds of operating variables, such as slip angle,
inclination angle, slip ratio, vertical load, inflation pressure,
road friction, and rolling speed.The analytical models, which
usually include carcass model (beam, string or rigid) with
elastic tread elements, such as Brush model, Fiala model and
Stringmodel, establish the relationship between tire structure

parameters and tire behavior [3]. So it can be employed to
derive some useful qualitative conclusions for understanding
tire properties, but most of these models are either relatively
simple or more complicated, which limit their practical use.
In this paper, we do not see the carcass as an actual beam
or string, and the carcass deformation is described with
relatively simple and general forms, composed by trans-
lational, bending, and twisting deformations. Besides, the
arbitrary pressure distribution, dynamic friction coefficient,
and anisotropic stiffness properties are also considered.
Consequently, the analytical model would become more
suitable for application and also appropriate for analyzing tire
properties in detail.

In this paper, the key factors for developing the analytical
tire model are firstly discussed; then, considering all these
factors, the analytical tire model with flexible carcass for
combined slips is introduced. By employing themodel, effects
of carcass compliance on tire properties are discussed, which
are valuable for understanding tire properties; at the end, the
analytical model is validated by test data.
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Figure 1: Tire axis system.

2. Tire Axis System and Slip Ratios

The tire axis system is shown in Figure 1. The positive
direction of the 𝑋-axis and the 𝑌-axis is coincident with tire
revolution direction (not wheel traveling direction); the 𝑍-
axis is perpendicular to road plane and upward. The wheel
traveling speed is denoted as 𝑉, 𝛼 is the slip angle, and
𝛾 is inclination angle. The figure shows all the forces and
moments associated with a wheel.

The longitudinal and lateral slip ratios are defined in the
unified form [11]

𝑆
𝑥
=
−𝑉
𝑠𝑥

Ω𝑅
𝑒

= −
𝑉 cos𝛼 − Ω𝑅

𝑒

Ω𝑅
𝑒

𝑆
𝑥
∈ (−∞, +∞) ,

𝑆
𝑦
=
−𝑉
𝑠𝑦

Ω𝑅
𝑒

= −
𝑉 sin𝛼
Ω𝑅
𝑒

𝑆
𝑦
∈ (−∞, +∞) ,

(1)

whereΩ is the angular speed, 𝑅
𝑒
is the effective rolling radius

and𝑉
𝑠𝑥
and𝑉

𝑠𝑦
are the longitudinal and lateral sliding speeds

of tire with respect to road surface.
Usually, the longitudinal slip ratio used in tire force test is

defined as

𝜅 =
−𝑉
𝑠𝑥

𝑉 cos𝛼
. (2)

The relationship between 𝑆
𝑥
and 𝜅 can be obtained easily:

𝑆
𝑥
=

𝜅

1 + 𝜅
. (3)

3. Key Factors for Analytical Tire Model

3.1. Arbitrary Pressure Distribution. Contact pressure distri-
bution over contact patch strongly influences tire behaviors.
Here, the contact patch is assumed to be rectangular in
shape, and the contact pressure distribution is assumed
to be uniform in lateral direction and of arbitrary form
in circumferential direction to represent different kinds of
pressure distributions.

The contact pressure 𝑞
𝑧
along the contact patch length 2𝑎

is expressed as an arbitrary form as

𝑞
𝑧
(𝑥) =

𝐹
𝑧

2𝑎
⋅ 𝜂 (𝑢) , (4)

where 𝐹
𝑧
is the tire vertical load; 𝑢 = 𝑥/𝑎 is the relative

coordinate. 𝜂(𝑢) is the normalized pressure distribution
function and is expressed as

𝜂 (𝑢) = 𝐴 ⋅ (1 − 𝑢
2𝑛
) ⋅ (1 + 𝜆 ⋅ 𝑢

2𝑛
) ⋅ (1 − 𝐵 ⋅ 𝑢)

𝐴 =
(2𝑛 + 1) (4𝑛 + 1)

2𝑛 (4𝑛 + 1 + 𝜆)
,

𝐵 = −
3 (2𝑛 + 3) (4𝑛 + 3) (4𝑛 + 1 + 𝜆)

(2𝑛 + 1) (4𝑛 + 1) (4𝑛 + 3 + 3𝜆)
⋅
Δ

𝑎
,

(5)

where 𝑛, 𝜆, and Δ are the parameters which determine the
shape of pressure distribution. With these three parameters,
(5) can be employed to express arbitrary pressure distribution
over contact patch, as shown in Figure 2.

3.2. Carcass Structure Parameters. The deformation of car-
cass has an important effect on the tire properties under
combined slip conditions. In this paper, three tire carcass
stiffness parameters for tire lateral carcass deformation are
introduced, that is, tire carcass lateral translation stiffness𝐾

𝑐𝑦
,

carcass bending stiffness 𝐾
𝑐𝑏
, and carcass twisting stiffness

𝑁
𝜃
. So, the carcass deformation includes lateral translating

part 𝑦
𝑐0
, bending part 𝑦

𝑐𝑏
, and twisting part 𝑦

𝜃
, as shown in

Figure 3. The carcass longitudinal deformation is assumed to
include longitudinal translating part 𝑥

𝑐0
, and the longitudinal

translation stiffness is𝐾
𝑐𝑥
.

The lateral translating deformation of carcass can be
calculated as

𝑦
𝑐0
=

𝐹
𝑦

𝐾
𝑐𝑦0

, (6)

where 𝐾
𝑐𝑦
is the lateral translation stiffness of carcass; 𝐹

𝑦
is

the lateral force.
The lateral bending deformation of carcass can be calcu-

lated as

𝑦
𝑐𝑏
(𝑥) =

𝐹
𝑦

𝐾
𝑐𝑏

⋅ 𝜉 (
𝑥

𝑎
) , (7)

where 𝐾
𝑐𝑏

is the carcass bending stiffness; 𝜉(𝑥/𝑎) is the
general function of carcass bending deformation.

The zero-order moment and first-order moment of 𝜉(𝑢)
are expressed as

𝐷
0
(𝑢) = ∫

1

𝑢

𝜉 (𝑢) 𝑑𝑢,

𝐷
1
(𝑢) = ∫

1

𝑢

𝑢 ⋅ 𝜉 (𝑢) 𝑑𝑢.

(8)

The twisting deformation of carcass is calculated by

𝑦
𝜃
(𝑥) = 𝜃 ⋅ 𝑥,

𝜃 =
𝑀
𝑧

𝑁
𝜃

,

(9)
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Figure 3: Tire lateral carcass deformation.

where 𝜃 is the carcass twisting angle;𝑁
𝜃
is the carcass twisting

stiffness;𝑀
𝑧
is the aligning moment.

The longitudinal translating deformation of carcass is
expressed as

𝑥
𝑐0
=

𝐹
𝑥

𝐾
𝑐𝑥0

, (10)

where𝐾
𝑐𝑥0

is the longitudinal translation stiffness of carcass;
𝐹
𝑥
is the longitudinal force.

3.3. Dynamic Friction Coefficient. Friction coefficient used in
the analytical tire model is the dynamic friction coefficient,
which considers the significant influence of slip speed. The
expression is as follows [14]:

𝜇
𝑑

= 𝜇
𝑠
+ (𝜇
𝑚
− 𝜇
𝑠
)

⋅ exp(−𝜇2
ℎ
⋅ log2 (



𝑉
𝑠

𝑉
𝑠𝑚


+𝑁 ⋅ exp(−



𝑉
𝑠

𝑉
𝑠𝑚


))) ,

(11)

where 𝜇
0
, 𝜇
𝑠
, 𝜇
ℎ
, and 𝑉

𝑠𝑚
are friction characteristic param-

eters; 𝑁 (usually 𝑁 = 0.8) is a factor to make the friction
coefficient increase slightly around the origin; 𝑉

𝑠
is the slip

speed between the road and tire.

3.4. Anisotropic Stiffness Properties. Theanisotropy of tire slip
stiffness will arouse the difference of tire shear stress direction
in adhesion region and sliding region, which are expressed as
[15]

adhesion : 𝜃ad = arctan(
(𝐾
𝑦
𝑆
𝑦
)

(𝐾
𝑥
𝑆
𝑥
)
) ,

sliding : 𝜃
𝑠
= arctan(

𝑆
𝑦

𝑆
𝑥

) ,

(12)

where 𝐾
𝑥
and 𝐾

𝑦
represent the longitudinal slip and corner-

ing stiffness, respectively.

4. Analytical Tire Forces and Moments Model

4.1. Tire Forces and Moments without Sliding. In order to
obtain the shear force in the contact patch, the deformations
of the tread and carcass along the 𝑋 and 𝑌 axes must be
known firstly. The longitudinal and lateral deformations of
the tread and carcass, under combined slip condition, are
shown in Figure 4. In this figure, XOY is a coordinate system
before the carcass is deformed, and xoy is a relative coordinate
system for describing the tread deformation and bending
and twisting deformation of carcass. 𝑥

𝑐0
and 𝑦

𝑐0
are the

longitudinal and lateral translating deformation of carcass.
“ABC” is the contact line of the contact patch under combined
slip condition. 𝑉 is the wheel traveling speed; 𝛼 is the slip
angle and 𝜃 is the carcass twisting angle. In general case, the
whole length of contact patch, 2𝑎, is divided into two parts,
the adhesion region “AB” and the sliding region “BC,” by the
initial sliding point “B.”
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Figure 4: Deformation of carcass and tread element under combined slip condition.

𝑃
𝑐
𝑃
𝑡
in the figure represents the tread element after rolling

for a period of time 𝑡. The upper point of tread element, 𝑃
𝑐
, is

attached to the belt of tire. Its coordinate could be written as

𝑥
𝑝𝑐
= 𝑥,

𝑦
𝑝𝑐
= 𝑦
𝜃
(𝑥) + 𝑦

𝑐𝑏
(𝑥) .

(13)

The lower point of tread element, 𝑃
𝑡
, is contacted with the

ground. Its coordinate could be written as

𝑥
𝑝𝑡
= 𝑥 − (𝑉𝑡 cos𝛼 − 𝑉

𝑟
𝑡) = 𝑥 + (𝑎 − 𝑥) 𝑆

𝑥
,

𝑦
𝑝𝑡
= −𝑉𝑡 sin𝛼 + 𝑎𝜃 = 𝑎𝜃 + (𝑎 − 𝑥) 𝑆

𝑦
.

(14)

Therefore, the longitudinal and lateral deformations of tread
element is

Δ𝑥 = 𝑥
𝑝𝑡
− 𝑥
𝑝𝑐
= (𝑎 − 𝑥) 𝑆

𝑥
,

Δ𝑦 = 𝑦
𝑝𝑡
− 𝑦
𝑝𝑐
= (𝑎 − 𝑥) (

𝑀
𝑧

𝑁
𝜃

+ 𝑆
𝑦
) −

𝐹
𝑦

𝐾
𝑐𝑏

𝜉 (
𝑥

𝑎
) .

(15)

The main source of anisotropy is due to different tire struc-
tural flexibility in lateral and longitudinal direction, whereas
tread anisotropy is present but comparatively small. In this
paper, the stiffness of tread, denoted as 𝑘

𝑡
, is considered to

be isotropic. The shear stresses of tread element in 𝑋 and 𝑌
directions can be expressed as

𝑞
𝑥
= 𝑘
𝑡
⋅ Δ𝑥 = 𝑘

𝑡
⋅ (𝑎 − 𝑥) 𝑆

𝑥
,

𝑞
𝑦
= 𝑘
𝑡
⋅ Δ𝑦 = 𝑘

𝑡
⋅ [(𝑎 − 𝑥) (

𝑀
𝑧

𝑁
𝜃

+ 𝑆
𝑦
) −

𝐹
𝑦

𝐾
𝑐𝑏

𝜉 (
𝑥

𝑎
)] .

(16)

The shear force in the directions𝑋 and 𝑌 can be determined
as follows:

𝐹
𝑥
= ∫

𝑎

−𝑎

𝑞
𝑥
𝑑𝑥,

𝐹
𝑦
= ∫

𝑎

−𝑎

𝑞
𝑦
𝑑𝑥,

𝑀
𝑧
= −∫

𝑎

−𝑎

𝑞
𝑥
⋅ 𝑦
𝑝𝑐
𝑑𝑥 + ∫

𝑎

−𝑎

𝑞
𝑦
⋅ 𝑥
𝑝𝑐
𝑑𝑥 − 𝐹

𝑥
⋅ 𝑦
𝑐0
+ 𝐹
𝑦
⋅ 𝑥
𝑐0
.

(17)

Considering the previous equations (6)∼(10), (13), and (16),
the forces and moments could be written as

𝐹
𝑥
= 2𝑎
2
𝑘
𝑡
𝑆
𝑥
,

𝐹
𝑦
=
3

𝑎
𝜀
𝜃
𝑀
𝑧
+ 2𝑎
2
𝑘
𝑡
𝑆
𝑦
− 𝜀
𝑏
𝐹
𝑦
,

𝑀
𝑧
= − 𝑎𝜀

𝑏
𝑆
𝑥
𝐹
𝑦
+ 𝜀
𝜃
𝑆
𝑥
𝑀
𝑧
+
1

2
𝑎𝜀
𝑏
𝑆
𝑥
𝐹
𝑦
𝐷
1
(−1) − 𝜀

𝜃
𝑀
𝑧

−
2

3
𝑎
3
𝑘
𝑡
𝑆
𝑦
−
1

2
𝑎𝜀
𝑏
𝐹
𝑦
𝐷
1
(−1) + (

1

𝐾
𝑐𝑥0

−
1

𝐾
𝑐𝑦0

)𝐹
𝑥
𝐹
𝑦
,

(18)

where the bending characteristic ratio and twisting charac-
teristic ratio have been introduced and defined by

𝜀
𝑏
=
2𝑎𝑘
𝑡

𝐾
𝑐𝑏

,

𝜀
𝜃
=
2

3

𝑎
3
𝑘
𝑡

𝑁
𝜃

.

(19)
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Solving (18) to obtain the explicit expression of 𝐹
𝑦
and 𝑀

𝑧
,

(18) becomes

𝐹
𝑥
= 𝐾
𝑥
𝑆
𝑥
,

𝐹
𝑦
= 𝐾
𝑦
𝑆
𝑦
,

𝑀
𝑧
= 𝐾
𝑚
𝑆
𝑦
,

(20)

with

𝐾
𝑥
= 2𝑎
2
𝑘
𝑡
,

𝐾
𝑦
=

𝑎 (1 + 𝜀
𝜃
− 𝜀
𝜃
𝑆
𝑥
)𝐾
𝑦0
− 3𝜀
𝜃
𝐾
𝑚0

𝑎 (1 + 𝜀
𝑏
) (1 + 𝜀

𝜃
− 𝜀
𝜃
𝑆
𝑥
) + 3𝑎𝜀

𝑏
𝜀
𝜃
𝑆
𝑥
− 3𝜀
𝜃
𝑐𝐹
𝑥

,

𝐾
𝑚
=

𝑎

3𝜀
𝜃

[(1 + 𝜀
𝑏
)𝐾
𝑦
− 𝐾
𝑦0
] ,

(21)

where𝐾
𝑥
is the longitudinal slip stiffness,𝐾

𝑦
is the cornering

stiffness, and𝐾
𝑚
is the aligning stiffness with flexible carcass.

𝐾
𝑦0
and𝐾

𝑚0
are the cornering stiffness and aligning stiffness,

respectively, when the carcass is assumed to be rigid, which
are expressed as

𝐾
𝑦0
= 2𝑎
2
𝑘
𝑡
, 𝐾

𝑚0
=
2

3
𝑎
3
𝑘
𝑡
, (22)

where 𝑐 in (21) is the translating compliance coefficient that
is defined by

𝑐 =
1

𝐾
𝑐𝑥0

−
1

𝐾
𝑐𝑦0

. (23)

4.2. Tire Forces and Moments in General Case with Sliding
Region. Considering that the sliding region might exist, the
shear force in this area should be expressed as 𝑞(𝑥) = 𝜇𝑞

𝑧
(𝑥),

based on which the coordinate of initial sliding point, 𝑥 = 𝑥
𝑐
,

or the relative coordinate 𝑢
𝑐
= 𝑥
𝑐
/𝑎, can be solved. The

coordinate of initial sliding point will satisfy the following
equation:

𝑞 = √𝑞2
𝑥
+ 𝑞2
𝑦
=
𝜇𝐹
𝑧

2𝑎
⋅ 𝜂 (𝑢
𝑐
) . (24)

Integrating through both adhesion and sliding regions, the
tire forces and moments can be derived as

𝐹
𝑥
= ∫

𝑎

𝑥𝑐

𝑘
𝑡
⋅ Δ𝑥𝑑𝑥 + ∫

𝑥𝑐

−𝑎

𝜇𝐹
𝑧

2𝑎
⋅ 𝜂 (

𝑥

𝑎
) ⋅ 𝜃
𝑠𝑥
𝑑𝑥,

𝐹
𝑦
= ∫

𝑎

𝑥𝑐

𝑘
𝑡
⋅ Δ𝑦𝑑𝑥 + ∫

𝑥𝑐

−𝑎

𝜇𝐹
𝑧

2𝑎
⋅ 𝜂 (

𝑥

𝑎
) ⋅ 𝜃
𝑠𝑦
𝑑𝑥,

𝑀
𝑧
= − ∫

𝑎

𝑥𝑐

𝑘
𝑡
⋅ Δ𝑥 ⋅ 𝑦

𝑝𝑐
𝑑𝑥 + ∫

𝑎

𝑥𝑐

𝑘
𝑡
⋅ Δ𝑦 ⋅ 𝑥

𝑝𝑐
𝑑𝑥

− ∫

𝑥𝑐

−𝑎

𝜇𝐹
𝑧

2𝑎
⋅ 𝜂 (

𝑥

𝑎
) ⋅ 𝜃
𝑠𝑥
⋅ 𝑦
𝑝𝑐
𝑑𝑥

+ ∫

𝑥𝑐

−𝑎

𝜇𝐹
𝑧

2𝑎
⋅ 𝜂 (

𝑥

𝑎
) ⋅ 𝜃
𝑠𝑦
⋅ 𝑥
𝑝𝑐
𝑑𝑥

− 𝐹
𝑥
⋅ 𝑦
𝑐0
+ 𝐹
𝑦
⋅ 𝑥
𝑐0
,

(25)

where 𝜃
𝑠𝑥
and 𝜃
𝑠𝑦
are, respectively, the longitudinal and lateral

components of shear stress direction 𝜃
𝑠
in sliding region.

Substituted with (6)∼(12), (13), and (15), (25) becomes

𝐹
𝑥
= 𝐵
6
⋅ 𝐾
𝑥
𝑆
𝑥
+ 𝐵
3
⋅ 𝜇𝐹
𝑧
𝜃
𝑠𝑥
,

𝐹
𝑦
= [(𝑃

1
𝐵
6
⋅ 𝐾
𝑦0
+ 𝑃
4
𝐵
7
⋅ 𝐾
𝑚0
) 𝑆
𝑦

+ (𝑃
1
𝐵
3
+ 𝑃
4
𝐵
4
𝑎) 𝜇𝐹
𝑧
𝜃
𝑠𝑦
]

× (𝑃
2
𝑃
4
+ 𝑃
1
𝑃
3
)
−1

,

𝑀
𝑧
= [(−𝑃

2
𝐵
6
⋅ 𝐾
𝑦0
+ 𝑃
3
𝐵
7
⋅ 𝐾
𝑚0
) 𝑆
𝑦

+ (−𝑃
2
𝐵
3
+ 𝑃
3
𝐵
4
𝑎) 𝜇𝐹
𝑧
𝜃
𝑠𝑦
]

× (𝑃
2
𝑃
4
+ 𝑃
1
𝑃
3
)
−1

,

(26)

with

𝐵
1
=
1

2
𝜀
𝑏
𝐷
0
(𝑢
𝑐
) , 𝐵

2
=
1

2
𝜀
𝑏
𝐷
1
(𝑢
𝑐
) ,

𝐵
3
=
1

2
𝑚
0
(𝑢
𝑐
) ,

𝐵
4
=
1

2
𝑚
1
(𝑢
𝑐
) , 𝐵

5
=
1

2
𝑚
𝐷
(𝑢
𝑐
) ,

𝐵
6
=
(1 − 𝑢

𝑐
)
2

4
, 𝐵

7
=
1

4
(1 − 3𝑢

2

𝑐
+ 2𝑢
3

𝑐
) ,

𝑃
1
= 1 − 𝐵

7
𝜀
𝜃
+ 𝐵
7
𝜀
𝜃
𝑆
𝑥
+ 𝐵
4
𝜇𝐹
𝑧
𝜃
𝑠𝑥
𝑎
1

𝑁
𝜃

,

𝑃
2
= (𝐵
2
+ 𝐵
1
𝑆
𝑥
− 𝐵
2
𝑆
𝑥
) 𝑎 + 𝐵

5
𝜇𝐹
𝑧
𝜃
𝑠𝑥

1

𝐾
𝑐𝑏

− 𝑐𝐹
𝑥
,

𝑃
3
= 1 + 𝐵

1
, 𝑃

4
=
3

𝑎
𝐵
6
𝜀
𝜃
,

(27)

where𝑚
0
(𝑢
𝑐
),𝑚
1
(𝑢
𝑐
), and𝑚

𝐷
(𝑢
𝑐
) are defined by

𝑚
0
(𝑢
𝑐
) = ∫

𝑢𝑐

−1

𝜂 (𝑢) 𝑑𝑢, 𝑚
1
(𝑢
𝑐
) = ∫

𝑢𝑐

−1

𝑢𝜂 (𝑢) 𝑑𝑢,

𝑚
𝐷
(𝑢
𝑐
) = ∫

𝑢𝑐

−1

𝜉 (𝑢) 𝜂 (𝑢) 𝑑𝑢.

(28)

5. Simulation Analysis and
Experiment Validation

According to the analytical tire model, the tire forces and
moments under combined slip conditions can be simulated
and the effects of carcass structure parameters can be ana-
lyzed. Furthermore, the analytical tire model can also be
used in vehicle dynamics simulation by identifying themodel
parameters with test data.
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Figure 5: Variation of cornering stiffness under combined slip
condition.

5.1. Effect of Carcass Flexible on Tire Cornering Stiffness
under Combined Slip Condition. First of all, the cornering
stiffness under pure side slip condition could be calculated
by assuming 𝑆

𝑥
= 0 in (21),

𝐾
𝑦pure = 𝐾

𝑦0
⋅

1

(1 + 𝜀
𝑏
) (1 + 𝜀

𝜃
)
. (29)

It can be seen that the bending characteristic ratio 𝜀
𝑏
and the

twisting characteristic ratio 𝜀
𝜃
have important influence on

cornering stiffness.With the increase of 𝜀
𝑏
or 𝜀
𝜃
, the cornering

stiffness will decrease obviously.
Then, the variation of cornering stiffness under combined

slip condition is also our concern, which often has important
influence on tire characteristics. Divided by 𝐾

𝑦pure, the
normalized cornering stiffness could be derived as

𝐾
𝑦

𝐾
𝑦pure

=
(1 − 𝜀

𝜃
𝑆
𝑥
) (1 + 𝜀

𝑏
) (1 + 𝜀

𝜃
)

(1 + 𝜀
𝑏
) (1 + 𝜀

𝜃
− 𝜀
𝜃
𝑆
𝑥
) + 3𝜀

𝑏
𝜀
𝜃
𝑆
𝑥
− (3/𝑎) ⋅ 𝜀

𝜃
𝑐𝐹
𝑥

.

(30)

It can be seen that the normalized cornering stiffness is
a function of 𝑆

𝑥
, which means that the longitudinal slip

ratio (or longitudinal force) will have influence on the tire
cornering stiffness. Figure 5 shows the relationship between
the normalized cornering stiffness and longitudinal slip ratio.
It indicates that the cornering stiffness will increase with the
action of braking force does not and decrease when acting
driving force.

5.2. Effect of Carcass Compliance on Aligning Moment under
Combined Slip Condition. Thecarcass translating compliance
has a significant influence on aligning moment for a braked
or driven wheel. In Figure 6, 𝑐 is the translating compliance
coefficient defined in (23). As shown in Figure 6, the curve
becomes more and more asymmetric when 𝑐 increases
(absolute value) and𝑀

𝑧
changes its sign in the braking half of
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Figure 6: Influence of carcass compliance on aligning moment
under combined slip condition.
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the diagram. These phenomena correspond reasonably well
with the experimental results given in the previous scholars’
researches [2].

5.3. Simulation Results of Tire Forces and Moments under
Combined Slip Condition. In this part, a number of example
results of using the analytical tire model have been presented,
as shown in Figures 7–11. Some important characteristics
have been reflected.

(1) Dynamic friction coefficient: Figure 7 shows the lon-
gitudinal force under combined slip conditions. With
the increase of slip angle 𝛼, the longitudinal force
will decrease because of the limitation of friction
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force between the tire and the road. More important,
because we adopt the dynamic friction coefficient as
shown in (11), the sliding velocity dependent friction
coefficient can be seen obviously in Figure 7.

(2) The variation of cornering stiffness: Figure 8 shows
the lateral force for combined slip and Figure 9 shows
the 𝐹
𝑦
-𝐹
𝑥
characteristics, which indicate the decrease

of lateral force with the increase of longitudinal slip
ratio. Besides, it can be seen that the lateral force
has an increase to some extent when the wheel is
braked slightly, which is mainly due to the increase
of cornering stiffness.

(3) The asymmetry of aligning moment: Figure 10 shows
the aligning moment for combined slip. It is obvious
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that the curve is asymmetric and𝑀
𝑧
changes its sign

in the braking half of the diagram.
(4) Anisotropic stiffness properties: the anisotropy of tire

slip stiffness will cause the variation of resultant force
direction under different combined slip conditions.
Figure 11 shows the relationship between the resultant
force direction and the slip direction. It can be seen
that the resultant force direction changes gradually
from adhesion direction to slip direction, which is
reasonably and coincides with the test data provided
in [15].

Some simulated results using the Brush model are shown
in Figures 12 and 13. Figure 12 is the 𝐹

𝑦
-𝐹
𝑥
characteristics

with different slip angles under combined slip conditions, and
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Figure 13 shows the 𝑀
𝑧
-𝐹
𝑥
characteristics. Comparing the

results of analytical tire model with flexible carcass proposed
in this paper, it is obvious that the Brush model have the
capacity to express the declining friction coefficient and
the influence of carcass flexibility, which will lead to severe
deviation for tire characteristics, especially for the aligning
moments. The dynamic friction coefficient will cause the
curve of 𝐹

𝑦
-𝐹
𝑥
characteristics to turn inward, as shown in

Figure 9. The flexible carcass will make the curve of 𝑀
𝑧
-𝐹
𝑥

characteristics asymmetric, as shown in Figure 10.

5.4. Experiment Validation. Test data for the P245/65R17
specification at different slip angles are used to validate the
analytical tire model. Figure 14 shows the tire shear forces
under combined slip conditions. The vertical load is 4000N

Test data
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Figure 14: The comparison between the analytical tire model and
test data.

and both the longitudinal and lateral forces are tested when
the tire is rolling under combined tire cornering and braking
conditions. From Figure 14, it can be seen that the analytical
tire model can describe the tire characteristics accurately
under combined slip conditions.

6. Conclusions

This paper presented an analytical tire model with flexible
carcass for combined slips. With employing the model, the
effects of carcass structure parameters on tire properties are
discussed. The simulation results and experiment validation
of longitudinal forces, lateral forces, and aligning moments
under combined slip conditions are also provided. Some
conclusions are summarized as follows.

Firstly, arbitrary pressure distribution, translational,
bending, and twisting compliance of the carcass, dynamic
friction coefficient, and anisotropic stiffness properties are
the key factors for developing the analytical tire model.

Secondly, the carcass compliance has a great influence
on tire cornering stiffness. With the increase of bending
characteristic ratio 𝜀

𝑏
or twisting characteristic ratio 𝜀

𝜃
, the

cornering stiffness will decrease obviously. Moreover, the
cornering stiffness is also influenced by the braking force or
driving force and thus leads to the increase of lateral force
when tire has a slight braking.

Thirdly, the carcass translating compliance has a signifi-
cant influence on aligningmoment under combined slip con-
ditions.The curve of𝑀

𝑧
becomesmore andmore asymmetric

when translating compliance coefficient 𝑐 increases (absolute
value) and 𝑀

𝑧
changes its sign in the braking half of the

diagram.
Fourthly, the dynamic friction coefficient can express the

friction delay with sliding velocity effectively; the anisotropic
stiffness properties can express the resultant force direction
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reasonably, which changes gradually from adhesion direction
to slip direction.

Finally, considering all these key factors, the analytical
tire model is capable of describing all kinds of tire properties
reasonably and accurately. The model parameters can also
be identified from tire measurements and the computational
results using the analytical model show good agreement with
test data.
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This paper is concernedwith an integral terminal slidingmode tracking control for a class of uncertain nonaffine nonlinear systems.
Firstly, the nonaffine nonlinear systems is approximated to facilitate the desired control design via a novel dynamic modeling
technique. Next, for the unmeasured disturbance of nonlinear systems, integral terminal sliding mode disturbance observer is
presented.The developed disturbance observer can guarantee the disturbance approximation error to converge to zero in the finite
time. Subsequently, based on approximated nonlinear model and the designed disturbance observer, the integral terminal sliding
mode tracking control is presented for nonaffine nonlinear systems with uncertainty. Different from traditional terminal sliding-
mode control, this paper accomplishes finite convergence time for nonaffine nonlinear systems and avoids the singular problem in
the controller design. Furthermore, the control system is forced to start on the terminal sliding hyperplane, so that the reaching time
of the sliding modes is eliminated. Finally, two numerical simulation results are given to illustrate the effectiveness of the proposed
method.

1. Introduction

In recent years, there has been significant progress in the
area of designing controllers for nonlinear systems [1–10].
Most of the controllers developed in this context have the
common assumption that the system to be controlled is
affine; that is, the plant is linear according to the input
variables, and the nonlinearities are linearly parameterized
by unknown parameters. However, developing a systematic
synthesis method for nonaffine nonlinear systems is still a
challenging problem for now.

Sliding-mode control (SMC) is a well-known efficient
control scheme which has been widely applied for both
linear and nonlinear systems [8, 10–16]. This control is
also considered as an effective approach for control of the
systems with uncertainties. However, the main disadvantage
of SMC scheme is that the system states cannot reach the
equilibrium point in finite time. So a new control scheme
called terminal sliding-mode control (TSMC) is proposed to
overcome this drawback utilizing nonlinear sliding surface.
Nonlinear switching hyperplanes in TSMC can improve
the transient performance substantially. Besides, compared

with the conventional SMC with linear sliding manifold,
TSMC offers some superior properties such as faster, finite
time convergence and higher control precision. However,
there exists an intrinsic singular problem in TSMC due to
using fractional power functions as the sliding hyperplane
[17–23]. Thus, overcoming the singular problem becomes a
considerable topic for TSMC. Unfortunately, most of non-
singular TSMC methods [22, 23] are available only for affine
nonlinear systems, especially robotic manipulators received
the most attention. Nevertheless, these nonsingular TSMC
schemes lack strict theoretical analysis and are only suitable
for affine nonlinear systems. It is a worthwhile note that only
a few researches discuss the control of nonaffine nonlinear
systems even if allowing singularity in the TSMC. Therefore,
nonsingular TSMC of nonaffine nonlinear systems needs to
be investigated by a new technique.

The uncertainty is inherent in practical systems. Design-
ing controller capability of handing uncertainty is of practical
interest and is academically challenging. Neural networks
(NNs) have been proposed recently as an adaptive con-
troller for nonlinear systems. By the use of their universal
approximation capability, the adaptive controller based on
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neural networks can be designed without significant prior
knowledge of the system dynamics [24–28]. Although it
is widely accepted that the parameterized neural network
is capable of approximating linear or nonlinear mapping
by adequately choosing network structures and training
methods, a challenging problem for designers is to select an
appropriate structure for balancing the number of rules and
the approximation accuracy. If the network size is chosen too
small, it is impossible to assure the approximation to converge
to an acceptable level due to the limited nodes. On the other
hand, if overdetermined nodes are given, the computational
burden is huge and thewaste of computation resource implies
its impracticality for real-world applications.

Based on the above works, this paper is to develop an
integral terminal sliding mode control approach for a class
of nonaffine nonlinear systems with uncertainty, parameters
perturbation, and external disturbances. The organization
of this paper is as follows. Following the introduction, the
problem formulation is described briefly, some assumptions
which will play a basic role in our analysis are introduced
in Section 2. To facilitate the desired control design, a
novel dynamic modeling technique has been proposed for
the nonaffine nonlinear systems in Section 3. The integral
terminal sliding mode disturbance observer is presented in
Section 4. Section 5 proposes integral terminal sliding mode
control based on disturbance observer, and then integral
terminal sliding mode control is designed for uncertain non-
linear systems with control singularity. Simulation studies
are shown in Section 6 to demonstrate the effectiveness of
our proposed approaches. Finally, conclusions are drawn in
Section 7.

2. Problem Formulation

Consider a class of uncertain nonaffine nonlinear systems
that can be expressed in the following form:

̇𝑥 (𝑡) = 𝑓
1
(𝑥 (𝑡) , 𝑢 (𝑡)) + Δ𝑓

1
(𝑥 (𝑡) , 𝑢 (𝑡)) + 𝑑 (𝑡) ,

𝑦 (𝑡) = 𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) = [𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡)] ∈ R𝑛 is the state vector of

the system in the normal form which is assumed available
for measurement, 𝑦(𝑡) ∈ R𝑛 is the output vector, 𝑢(𝑡) ∈ R𝑛

is control input vector, and 𝑓
1
(𝑥(𝑡), 𝑢(𝑡)) ∈ R𝑛 is known

smooth vector fields. Δ𝑓
1
(𝑥(𝑡), 𝑢(𝑡)) is assumed to be contin-

uous of 𝑥(𝑡) denoting the the system uncertainty, which con-
tains structural and modeling error. 𝑑(𝑡) ∈ R𝑛 is external
disturbance.

After combining the uncertainty and disturbance
together, the nonlinear system (1) can be rewritten as

̇𝑥 (𝑡) = 𝑓
1
(𝑥 (𝑡) , 𝑢 (𝑡)) + 𝐷 (𝑥 (𝑡) , 𝑢 (𝑡) , 𝑡) ,

𝑦 (𝑡) = 𝑥 (𝑡) ,

(2)

where 𝐷(𝑥, 𝑢, 𝑡) = Δ𝑓
1
(𝑥(𝑡), 𝑢(𝑡)) + 𝑑(𝑡) is called compound

disturbance.
To achieve the proposed control objective, the following

assumptions are required.

Assumption 1. There exist known positive constants ̌𝜖 such
that for all 𝑡 ∈ 𝑅

+, ‖𝐷(𝑥, 𝑢, 𝑡)‖ ⩽ ̌𝜖.

Assumption 2. Consider ‖Δ𝑢‖ ∈ [0, 𝛿] and 0 ⩽ ‖𝜕𝑓/𝜕𝑢‖ ⩽ ̌𝛿,
where 𝛿 and ̌𝛿 are two finite positive constants.

Remark 3. In many actual process control systems and flight
control systems, ‖Δ𝑢(𝑡)‖ ∈ [0, 𝛿] is a physical restriction
of many practical systems because their states and outputs
(actuators) cannot change too fast because of system “inertia.”
So, Assumption 2 is reasonable.

In this paper, the control objective is to design the
disturbance-observer-based integral terminal sliding mode
tracking control and make the system output follow a given
desired output of the nonlinear system in the presence
of uncertainty and external disturbance. For the desired
tracking signal 𝑦

𝑑
, the proposed integral terminal sliding

mode control must ensure that all closed-loop signals are
convergent in the finite time.

3. Novel Nonaffine Nonlinear Approximation

The problem of controlling the plants characterized by mod-
els that are nonaffine in the control input vector is a difficult
one. Especially for the tracking control, the liberalization
may result in the design of sufficiently accurate controllers
in the case of stabilization around the operating point, in the
case of tracking of desired trajectories the problem becomes
much more difficult, because the linearized model is time-
varying. Hence, there is a clear need for the development of
systematic control design techniques for nonlinear models
that are nonaffine in 𝑢 and that are suitable for the case of
tracking of desired trajectories.

For the nonaffine nonlinear model (2), the Taylor expan-
sion of the nonlinear function 𝑓

1
(𝑥(𝑡), 𝑢(𝑡)) with respect

to 𝑢(𝑡) around 𝑢(𝑡 − 𝜏) can result in

̇𝑥 = 𝑓
1
(𝑥, 𝑢 (𝑡 − 𝜏)) + 𝑔 (𝑥, 𝑢 (𝑡 − 𝜏)) Δ𝑢 + 𝑂 (⋅) + 𝐷, (3)

where Δ𝑢 = 𝑢 − 𝑢(𝑡 − 𝜏), 𝑔(𝑥, 𝑢(𝑡 − 𝜏)) =

(𝜕𝑓
1
(𝑥, 𝑢)/𝜕𝑢)|

𝑢=𝑢(𝑡−𝜏)
, and the remainder 𝑂(⋅) =

[Δ𝑢]
𝑇
𝑓
𝑑𝑑
Δ𝑢/2 is bounded by

‖𝑂 (⋅)‖ ⩽
𝑟
𝑝‖Δ𝑢‖

2

2

, (4)

where 𝑓
𝑑𝑑

= (𝜕
2
𝑓
1
(𝑥, 𝑢)/𝜕

2
𝑢)|
𝑢=𝜁

and 𝜁 is a point between
𝑢 and 𝑢(𝑡 − 𝜏). Let 0 ≤ ‖𝑓

𝑑𝑑
‖ ≤ 𝑟

𝑝
with 𝑟

𝑝
as a finite

positive number. The parameter 𝜏 > 0 is the updating input.
It may be chosen as the sampling-time in a sampled-data
control system or as an integermultiple of the sampling-time.
A better choice of the parameter 𝜏 is the sampling because a
larger 𝜏 may lead to an inaccurate approximation when the
system function 𝑓

1
(𝑥, 𝑢) varies quickly.

Equation (3) can be representation as the following form:

̇𝑥 = 𝑓 (𝑥, 𝑢 (𝑡 − 𝜏)) + 𝑔 (𝑥, 𝑢 (𝑡 − 𝜏)) 𝑢 + 𝑂 (⋅) + 𝐷 (𝑥, 𝑢, 𝑡) ,

(5)
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where 𝑓(𝑥, 𝑢(𝑡 − 𝜏)) = 𝑓
1
(𝑥, 𝑢(𝑡 − 𝜏)) −𝑓

𝑑
(𝑥, 𝑢(𝑡 − 𝜏))𝑢(𝑡 − 𝜏).

Convenient for the following statements, 𝑢(𝑡 − 𝜏) is defined
as 𝜐(𝑡); then (3) can be described as follows:

̇𝑥 = 𝑓 (𝑥, 𝜐) + 𝑔 (𝑥, 𝜐) 𝑢 + 𝑂 (⋅) + 𝐷 (𝑥, 𝑢, 𝑡) . (6)

Remark 4. In Assumption 2, ‖Δ𝑢‖ should not be too large
in order to limit the approximation error of model (3)
for a computed 𝑢(𝑡). Therefore, to approximation accuracy,
Assumption 2 must be satisfied. The significance of the
Assumption 2 has been explained in Remark 3.

Remark 5. The traditional model simplification method does
not global. It can be seen that (6) is a time-varying simplified
model. The method which is proposed in this subsection
can achieve the global approximation for nonlinear systems
(2). So the proposed simplified model method can effectively
solve the tracking control problem using affine nonlinear
control strategy, such as sliding mode control, output-
feedback control, and backstepping control.

Remark 6. By (3) and Assumption 2, it can be seen that
𝑢(𝑡 − 𝜏) should be around the input 𝑢. If the time-delay
𝜏 is selected too large, the precision of approximation of
simplified model will be reduced. So the selection of 𝜏 often
requires experience.Theoretically, the smaller the 𝜏 the better
precision of global approximation, the best precision of global
approximation if 𝜏 = 0. But 𝑢 is control law to be solved, so it
is unable to be realized. In order to obtain exact time-varying
trim point, here, further improvement of above proposed
method is given as follows. Considering lag property of the
filtering as

̇𝜐 = −𝑘
𝜁
𝜐 + 𝑘
𝜁
𝑢, (7)

then lim
𝜆→∞

𝜐 = 𝑢. This is a very good solution to the
problem that 𝑢(𝑡 − 𝜏) may not be around 𝑢. Here, 𝑘

𝜁
→

∞ is only a rigorous expression for mathematics meanings,
in general, 𝑘

𝜁
∈ [5, 50]. The filter (7) is not unique. The

filtering 𝜐 can be completely replaced by other filtering
equation, such as higher-order differentiator [30] and integral
filter [31].

4. Sign Integral Terminal Sliding Mode
Disturbance Observer

In this section, the design process of the sign integral terminal
sliding mode disturbance observer will be given. Firstly, the
following auxiliary sign integral terminal slidingmode vector
𝑠
𝑧
is introduced:

𝑠
𝑧
= 𝑒
𝑧
+ 𝜗𝑒
𝑧𝑖
, (8)

where 𝜗 > 0 is a design parameter, 𝑒
𝑧
= 𝑥−𝑧 = [𝑒

𝑧1
, . . . , 𝑒

𝑧𝑛
]
𝑇

is auxiliary error, 𝑧 and 𝑒
𝑧𝑖
are given by

̇𝑧 = 𝑓
1
(𝑥, 𝑢) + 𝐷, (9)

̇𝑒
𝑧𝑖
= sign (𝑒

𝑧
) , (10)

where 𝑒
𝑧𝑖
is the integration of sign(𝑒

𝑧
) and has the

initial value −𝑒
𝑧
(0)/𝜗; and sign(𝑒

𝑧𝑖
) = [sign(𝑒

𝑧1
), . . . ,

sign(𝑒
𝑧𝑛
)]
𝑇 for 𝑒

𝑧𝑖
(𝑖 = 1, . . . , 𝑛) being the 𝑖th element of the

auxiliary error vector 𝑒
𝑧
.

If 𝑠
𝑧
(𝑡) can keep at zero, such that 𝑒

𝑧
(𝑡) = −𝜗𝑒

𝑧𝑖
(𝑡), then

dynamics (10) will be

̇𝑒
𝑧𝑖
(𝑡) = sign (𝑒

𝑧
) (𝑡) . (11)

Therefore, 𝑒
𝑧𝑖
(𝑡) will converge to zero in the finite time 𝑇

𝑓
:

𝑇
𝑓
=

𝑒𝑧 (0)


𝜗
. (12)

Note that when the auxiliary sign integral terminal sliding
vector 𝑠

𝑧
satisfies 𝑠

𝑧
(𝑡) = 0, the convergence of the 𝑒

𝑧
(𝑡) is

accomplished in the same time finite time (12) due to the fact
that 𝑒
𝑧
(𝑡) = −𝜗𝑒

𝑧𝑖
(𝑡).

Next, to keep the system on the sign integral terminal
sliding surface 𝑠

𝑧
(𝑡) = 0, the sliding mode disturbance

estimate𝐷 will be set to

𝐷 = 𝑘
𝑧
𝑠
𝑧
+ 𝜅 sign (𝑠

𝑧
) + 𝜗 sign (𝑒

𝑧
) , (13)

where 𝑘
𝑧
> 0 and 𝜅 > ̌𝜖 > 0 are design parameters.

Theorem 7. Considering the uncertain nonaffine nonlinear
system (1) and supposing thatAssumption 1 is available, the sign
integral terminal slidingmode observer is designed according to
(8)–(13). Then, auxiliary errors 𝑒z(𝑡) and 𝑒𝑧𝑖(𝑡) are guaranteed
with finite-time convergence stability.

Proof. Based on (8)–(13), the sign integral terminal sliding
mode dynamic equation (8) also can be expressed by

̇𝑠
𝑧
= ̇𝑥 − ̇𝑧 + 𝜗 ̇𝑒

𝑧𝑖

= 𝑓
1
(𝑥, 𝑢) + 𝐷 − 𝑓

1
(𝑥, 𝑢) − 𝐷 − 𝜗 sign (𝑒

𝑧
) + 𝜗 ̇𝑒

𝑧𝑖

= 𝐷 − 𝑘
𝑧
𝑠
𝑧
− 𝜅 sign (𝑠

𝑧
) .

(14)

Choose the Lyapunov function candidate:

𝑉
𝑠
=
1

2
𝑠
𝑇

𝑧
𝑠
𝑧
. (15)

The time derivative of𝑉
𝑠
along the trajectories of the equation

in (14) is

𝑉
𝑠
= 𝑠
𝑇

𝑧
̇𝑠
𝑧
= 𝑠
𝑇

𝑧
(𝐷 − 𝑘

𝑧
𝑠
𝑧
− 𝜅 sign (𝑠

𝑧
))

⩽ −𝑘
𝑧
𝑠
𝑇

𝑧
𝑠
𝑧
+
𝑠𝑧

 ̌𝜖 − 𝜅𝑠
𝑇

𝑧
sign (𝑠

𝑧
) .

(16)

Under Assumption 1, considering design parameter 𝜅 > ̌𝜖,
that is, 𝜅 > ‖𝐷‖, (16) can be modified as

𝑉
𝑠
⩽ −𝑘
𝑧
𝑠
𝑇

𝑧
𝑠
𝑧
= −2𝑘

𝑧
𝑉
𝑠
. (17)

From (17), we can get the conclusion that if 𝑠
𝑧

̸=0, then𝑉
𝑠
< 0

is true.Thus, the auxiliary sliding vector 𝑠
𝑧
of the sign integral

terminal sliding mode disturbance observer is always kept
on the surface 𝑠

𝑧
(𝑡) = 0. At the result, the auxiliary errors

𝑒
𝑧
(𝑡) and 𝑒

𝑧𝑖
(𝑡) are guaranteed with finite-time convergence

stability. This ends the proof.
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Remark 8. Comparing with the existing results [14], the
proposed sign integral terminal sliding mode disturbance
observer can guarantee the disturbance estimate error to
converge to zero in the finite time. In addition, the advantages
of proposed sign integral terminal sliding mode will be
explained in Remarks 11 and 12.
Remark 9. It is worth noting that the known upper boundary
of the dynamic error is required in the design of distur-
bance observer. However, upper boundary ̌𝜖 is difficult to
be obtained in practice. So, the adaptive gain 𝜅 in (13) is
considered. There are many research results on adaptive gain
[16]. For simple convenience, the detail is omitted.

5. Fractional Integral Terminal Sliding
Mode Control

In this section, we develop the tracking control scheme
for the case where all states are available using fractional
integral terminal sliding mode control approach. Before the
discussion, the tracking error is defined as 𝑒(𝑡) = 𝑦(𝑡) −

𝑦
𝑑
(𝑡). Instead of using a linear sliding function, we introduce

fractional integral terminal sliding mode below. First, the
fractional integral terminal sliding mode function is defined
as follows:

𝑠 (𝑡) = 𝑒 (𝑡) + ̆𝛼𝑒
𝐼
(𝑡) ,

̇𝑒
𝐼
(𝑡) = 𝑒

𝑞/𝑝
(𝑡) ,

(18)

where ̆𝛼 > 0; 𝑞 and 𝑝 are positive odd integers with 𝑝 > 𝑞;
𝑒
𝐼

= ∫
𝑡

0
𝑒
𝑞/𝑝

(𝜏)𝑑𝜏 is the integration of the 𝑞/𝑝-fractional
power of the tracking error 𝑒 with the initial value −𝑒(0)/ ̆𝛼;
the nonlinear 𝑒

𝑞/𝑝 is obtained by the operation 𝑒
𝑞/𝑝

0
=

[𝑒
𝑞/𝑝

1
sign(𝑒

1
), . . . , 𝑒

𝑞/𝑝

𝑛
sign(𝑒

𝑛
)]
𝑇.

If the surface 𝑠(𝑡) = 0, based on definition (18), the
fractional integral terminal sliding mode function can be
expressed in the form

𝑠 (𝑡) = 𝑒 (𝑡) + ̆𝛼∫

𝑡

0

𝑒
𝑞/𝑝

(𝜏) 𝑑𝜏. (19)

At the same time, the integrator 𝑒
𝐼
(𝑡) can be modified as

̇𝑒
𝐼
= − ̆𝛼
𝑞/𝑝

𝑒
𝑞/𝑝

𝐼
(𝑡) . (20)

From solving the error dynamic equation (20), the con-
vergence time of 𝑒

𝐼
is obtained as follows:

𝑇
𝑓
=

𝑒𝐼

1−𝑞/𝑝

̆𝛼𝑞/𝑝 (1 − 𝑞/𝑝)
=
‖𝑒 (0)‖

1−𝑞/𝑝

̆𝛼 (1 − 𝑞/𝑝)
. (21)

Meanwhile, the time spent for the convergence of the tracking
error 𝑒(𝑡) is also 𝑇

𝑓
.

Next, to keep the system on the integral terminal sliding
surface 𝑠(𝑡) = 0, we need to design control input vector 𝑢 for
the system (2). Considering the time-varying simplified
model (6), we modify the time derivative of 𝑠(𝑡) along the
dynamics (6) as

̇𝑠 (𝑡) = ̇𝑒 + ̆𝛼𝑒
𝐼
= 𝑓 + 𝑔𝑢 + 𝑂 (⋅) + 𝐷 − ̇𝑦

𝑑
+ ̆𝛼 ̇𝑒
𝐼
, (22)

where 𝑓, 𝑔, and 𝑂(⋅) are defined in Section 3.

According to Assumption 2, we will first consider the
case when the control gain is nonsingular; that is, |𝑔| ̸=0.
Following that, our focus will be on the control design in the
case when the control gain is singular; that is, |𝑔| = 0.

5.1. Case of Nonsingular Control Gain. In this subsection, we
assume that |𝑔| ̸=0 for the nonaffine nonlinear systems (2)
with simplified model (6). Then, we consider the following
the control vector 𝑢 as

𝑢 = 𝑔
−1
(−𝑘𝑠 − 𝑓 − 𝐷 − ̆𝛼 ̇𝑒

𝐼
+ ̇𝑦
𝑑
− 𝑟
𝑠
) , (23)

where 𝑘 > 0 is a design parameter; 𝐷 is defined in (13); to
restrain the dynamic error𝑂(⋅) from (6), the robust term 𝑟

𝑠
is

designed as

𝑟
𝑠
=

{{

{{

{

𝜍𝑠

‖𝑠‖
, ‖𝑠‖ ̸=0,

0, 𝑠 = 0,

(24)

where 𝜍 > ‖𝑂(⋅)‖ is a design constant.
The above design procedure of the terminal sliding mode

control can be summarized in the following theorem, which
contains the results for disturbance-observer-based terminal
sliding mode tracking control of uncertain nonaffine systems
with external disturbance.

Theorem 10. Considering the uncertain nonaffine system (1)
with the external disturbance and assuming that Assumptions
1 and 2 are available, nonaffine nonlinear approximation is
given as (6) and the terminal slidingmode disturbance observer
is designed as (8)–(13). If the proposed terminal sliding mode
tracking control and the robust term are chosen as (23) and
(24), then all signals of the closed-loop system are convergent
in the finite time (21).

Proof. Choose the Lyapunov function candidate:

𝑉 =
1

2
𝑠
𝑇
𝑠. (25)

Under Assumption 2, substituting (23) and (24) into (22), the
time derivative of 𝑉 along the trajectories of (22) is

𝑉 = 𝑠
𝑇
̇𝑠 = 𝑠
𝑇
(𝑓 + 𝑔𝑢 + 𝐷 + 𝑂 (⋅) − ̇𝑦

𝑑
+ ̆𝛼 ̇𝑒
𝐼
)

= 𝑠
𝑇
(𝑓 − 𝑘𝑠 − 𝑓 − 𝐷 − ̆𝛼 ̇𝑒

𝐼
+ ̇𝑦
𝑑

−𝑟
𝑠
+ 𝐷 + 𝑂 (⋅) − ̇𝑦

𝑑
+ ̆𝛼 ̇𝑒
𝐼
)

⩽ −𝑘𝑠
𝑇s + ‖𝑠‖ ‖𝑂 (⋅)‖ − 𝜍 ‖𝑠‖

⩽ −𝑘𝑠
𝑇
𝑠 = −2𝑘𝑉.

(26)

Since 𝑠(0) = 0 and (26), the system is always kept on the
fractional integral terminal sliding surface 𝑠(0) = 0. As a
result, the tracking error 𝑒

𝐼
(𝑡) and error 𝑒(𝑡) converge to zero

in finite time (21). This concludes the proof.
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Remark 11. The characteristics of the proposed fractional
integral terminal slidingmode control including (1) the finite
convergence time can be easily adjusted according to (21);
(2) the singular problem does not occur on the control law
in contrast to traditional TSMC; (3) the system starts on the
sliding mode surface 𝑠 = 0; that is, fast response is obtained.

Remark 12. Aside from the characteristics in Remark 11, the
convergence time of the fractional integral terminal sliding
mode control is calculable and analyzable in contrast to the
high-order SMC. In comparison, the dynamic SMC only
assures asymptotic stability.

Remark 13. In order to reduce chattering which is caused by
discontinuous sign function, 𝜍𝑠/‖𝑠‖ in robust term (24) can
be replaced by the continuous function 𝑟

𝑠
defined by

𝑟
𝑠
=

𝜍𝑠

‖𝑠‖ + 𝜖
(27)

with 𝜖 = 𝜖
0
+𝜖
1
‖𝑒‖, where 𝜖

0
and 𝜖
1
are two positive constants.

5.2. Case of Singular Control Gain. In Section 5.1, we assume
that |𝑔(𝑥)| ̸=0 for the simplified model (6). However, there
exists the feasibility of |𝑔(𝑥)| = 0 at a moment in the
practical system which leads to the control singularity. Thus,
we propose the fractional integral terminal sliding mode
control for the simplified model (6) with control singularity
case in this subsection. Considering the control singularity,
the control input vector 𝑢 is given by

𝑢 = 𝑔 (𝑥, 𝜐) (𝑔
𝑇
(𝑥, 𝜐) 𝑔 (𝑥, 𝜐) + 𝜆)

−1

̌𝑢, (28)

where 𝜆 > 0 is a design constant and ̌𝑢 will be given later.
It is clear that

𝑔
𝑇
(𝑥, 𝜐) 𝑔 (𝑥, 𝜐) (𝑔

𝑇
(𝑥, 𝜐) 𝑔 (𝑥, 𝜐) + 𝜆)

−1

= 1 − 𝜆(𝑔
𝑇
(𝑥, 𝜐) 𝑔 (𝑥, 𝜐) + 𝜆)

−1

.

(29)

Substituting (28) and (29) into (6), we obtain

̇𝑥 = 𝑓 (𝑥, 𝜐) + ̌𝑢 + 𝐷 − (𝑔
𝑇
(𝑥, 𝜐) 𝑔 (𝑥, 𝜐) + 𝜆)

−1

̌𝑢 + 𝑂 (⋅) .

(30)

According to (30), the compound disturbance can be modi-
fied as

𝐷 = 𝐷 − (𝑔
𝑇
(𝑥, 𝜐) 𝑔 (𝑥, 𝜐) + 𝜆)

−1

̌𝑢 + 𝑂 (⋅) . (31)

Due to the unknown compound disturbance 𝐷, the sign
integral terminal sliding mode disturbance observer needs to
be developed to estimate it.Thus, the similar auxiliary sliding
mode is expressed:

𝑠
𝑧
= 𝑒
𝑧
+ 𝑎
0
𝑒
𝑧𝑖
, (32)

̇𝑧 = 𝑓 + ̌𝑢 +
̂
𝐷, (33)

̇𝑒
𝑧𝑖
= sign (𝑒

𝑧𝑖
) , (34)

where 𝑠
𝑧
, 𝑒
𝑧
, 𝑒
𝑧𝑖
, and 𝑧 are defined in Section 4. Based on

(32)–(34), the sign integral terminal sliding mode distur-
bance estimate ̂𝐷 is given by

̂
𝐷 = 𝑘

𝑧
𝑠
𝑧
+ 𝜅 sign (𝑠

𝑧
) + 𝜗 sign (𝑒

𝑧
) , (35)

where ̂𝐷 is the estimate of compound disturbance𝐷.
Based on the sign integral terminal sliding mode distur-

bance observer, the fractional integral terminal sliding mode
tracking control is designed as

̌𝑢 = −𝑘𝑠 − 𝑓 −
̂
𝐷 − ̆𝛼𝑒

𝑞/𝑝
+ ̇𝑦
𝑑
, (36)

where the parameters 𝑘, ̆𝛼, 𝑞, and 𝑝 are defined in (23) and
(18), respectively.

The above design procedure and analysis can be summa-
rized in the following theorem, which contains the results for
the simplified model (6) with the control singularity case.

Theorem 14. Considering the uncertain nonaffine system (1)
with the external disturbance and supposing thatAssumptions 1
and 2 are available, nonaffine nonlinear approximation is given
as (6) and the sign integral terminal sliding mode disturbance
observer is designed as (32)–(35). If the proposed fractional
integral terminal sliding mode control law is chosen as (36),
then sliding mode surface will always keep at 𝑠(𝑡) = 0.

Proof. Considering the time-varying simplified model (6)
with singular control gain, we modify the time derivative of
𝑠(𝑡) along the dynamics (30) as

̇𝑠 (𝑡) = ̇𝑒 + ̆𝛼𝑒
𝐼
= 𝑓 + 𝑔𝑢 + 𝑂 (⋅) + 𝐷 − ̇𝑦

𝑑
+ ̆𝛼 ̇𝑒
𝐼
. (37)

Choose the Lyapunov function candidate:

𝑉 =
1

2
𝑠
𝑇
𝑠. (38)

Substituting (36) into (37), the time derivative of 𝑉 along the
trajectories of the equation in (37) is

𝑉 = 𝑠
𝑇
̇𝑠 = 𝑠
𝑇
(𝑓 + ̆𝑢 + 𝐷 − ̇𝑦

𝑑
+ ̆𝛼 ̇𝑒
𝐼
)

= 𝑠
𝑇
(𝑓 − 𝑘𝑠 − 𝑓 − 𝑘

𝑧
𝑠
𝑧
−
̂
𝐷

− ̆𝛼𝑒
𝑞/𝑝

+ ̇𝑦
𝑑
+ 𝐷 − ̇𝑦

𝑑
+ ̆𝛼 ̇𝑒
𝐼
)

⩽ −𝑘𝑠
𝑇
𝑠 = −2𝑘𝑉.

(39)

According to 𝑠(0) = 0 and (39), we can know that the system is
always kept on the fractional integral terminal sliding surface
𝑠(0) = 0. So, the tracking error 𝑒

𝐼
(𝑡) and error 𝑒(𝑡) converge

to the equilibrium point in the finite time (21).This concludes
the proof.
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Figure 1: State response by the proposed approximation.
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Figure 2: State response using the approach developed in [29].

Remark 15. From (31), the integrated effect of control singu-
larity is treated as a part of the external disturbance which is
approximated using the sign integral terminal sliding mode
disturbance observer (33)–(35). Although the uncertain non-
linear system (1) has the feasibility of control singularity,
Lyapunov analysis shows that the system is asymptotically

convergent in the finite time under the proposed disturbance-
observer-based fractional integral terminal sliding mode
control. In general, the design parameter 𝑘

𝑧
should be cho-

sen as a large positive constant to guarantee the design
requirement of the proposed sliding mode disturbance
observer.
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Figure 3: States 𝑉, 𝜒, and 𝛾 follow desired command 𝑉
𝑑
, 𝜒
𝑑
, and 𝛾

𝑑
for near space vehicle system with coordinated turn.

6. Simulation Results

6.1. Simulation Example for Duffing-Holmes System. To verify
the validity of the proposed nonaffine nonlinear approxima-
tion in Section 3, consider Duffing-Holmes system

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= −𝑝
1
𝑥
1
− 𝑝
2
𝑥
2
− 𝑥
3

1
+ ℎ (𝑥

2
, 𝑢) ,

(40)

where𝑝
1
= 0.2 sin(10𝑡);𝑝

2
= 0.2(1+cos(5𝑡)); ℎ(𝑥

2
, 𝑢) = 𝑢

3 +
(2 + cos(𝑥

2
))𝑢 is a nonaffine control term.

The initial conditions are chosen as [𝑥
1
(0), 𝑥
2
(0)]
𝑇
= 0,

and the simulation time is chosen as 𝑡 = 30 s. we define con-
trol input value 𝑢 as

𝑢 (𝑡) = {
0.1 sin (2𝑡) , 𝑡 ⩽ 7,

sin (2𝑡) , 7 < 𝑡 ⩽ 30.
(41)

As compared with the existing approximate method, we
adopt the method of [29] at the local working point 𝑢 = 0

for nonaffine nonlinear systems (2). Then, we get the affine
nonlinear approximation as follows:

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= −𝑝
1
𝑥
1
− 𝑝
2
𝑥
2
− 𝑥
3

1
+ (2 + cos (𝑥

2
)) 𝑢.

(42)
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By using the proposed approximation method in Section 3,
the affine nonlinear approximation is

̇𝑥
1
= 𝑥
2
,

̇𝑥
2
= −𝑝
1
𝑥
1
− 𝑝
2
𝑥
2
− 𝑥
3

1
− 2𝜁
3
+ 3𝜁
2
𝑢 + (2 + cos (𝑥

2
)) 𝑢,

̇𝜁 = −𝑘
𝜁
𝜁 + 𝑘
𝜁
𝑢, 𝜁 (0) = 0.

(43)

The designed constant in (43) is chosen as 𝑘
𝜁

= 100.
Simulation results are shown in Figures 1 and 2, respectively.

From Figures 1 and 2, it is observed that two methods
have the same approximation during working point 𝑢 = 0.
On the other hand, when the working point stay away from
𝑢 = 0, changes.Therefore, from the global approximation, the
proposed method is better than the method of [29].

6.2. Simulation Example for 6DOFNear SpaceVehicle Dynam-
ics with Coordinated Turn. To verify the validity of the frac-
tional integral terminal sliding mode control, the differential
equations governing the near space vehicle (NSV) dynamics
with coordinated turn are given by

̇𝑥 = 𝑉 cos 𝛾 cos𝜒, (44)

̇𝑦 = 𝑉 cos 𝛾 sin𝜒, (45)

̇𝑧 = 𝑉 sin 𝛾, (46)

𝑝𝑡𝑉 = 𝑓V =
1

𝑀
(𝑇 cos𝛼 − 𝐷 −𝑀𝑔 sin 𝛾) , (47)

̇𝜒 = 𝑓
𝜒
=

1

𝑀𝑉 cos 𝛾
(𝐿 sin 𝜇 + 𝑌 cos 𝜇 + 𝑇 sin 𝜇 sin𝛼) ,

(48)

̇𝛾 = 𝑓
𝛾
=

1

𝑀𝑉
(𝐿 cos 𝜇 − 𝑌 sin 𝜇

−𝑀𝑔 cos 𝛾 + 𝑇 cos 𝜇 sin𝛼) ,
(49)

where the three position variables (𝑥,𝑦,𝑧) in the inertial
frame, airspeed (𝑉), fight path angle (𝛾), and flight path
heading (𝜒) are the six state variables; thrust (𝑇), attack angle
(𝛼), and roll angle (𝜇) are the control variables; the drag
force (𝐷), lift force (𝐿), and lateral force (𝑌) are expressed as
follows:

𝐷 = 𝑞𝑆𝐶
𝐷
, 𝐿 = 𝑞𝑆𝐶

𝐿
, 𝑌 = 𝑞𝑆𝐶

𝑌
, (50)

where 𝑞 = 0.5𝜌𝑉
2 is dynamic pressure, 𝑆 is reference area,

𝐶
𝐷
= 𝐶
𝐷𝛼

+𝐶
𝐷𝛿𝑒

𝛿
𝑒
+𝐶
𝐷𝛿𝑎

𝛿
𝑎
+𝐶
𝐷𝛿𝑟

𝛿
𝑟
+𝐶
𝐷𝛿𝑐

𝛿
𝑐
, 𝐶
𝐿
= 𝐶
𝐿𝛼

+

𝐶
𝐿𝛿𝑒

𝛿
𝑒
+𝐶
𝐿𝛿𝑎

𝛿
𝑎
+𝐶
𝐿𝛿𝑐

𝛿
𝑐
, and 𝐶

𝑌
= 𝐶
𝑌𝛽
𝛽+𝐶
𝑌𝛿𝑒

𝛿
𝑒
+𝐶
𝑌𝛿𝛼

𝛿
𝛼
+

𝐶
𝑌𝛿𝑟

𝛿
𝑟
. In this paper, we will assume that the parameters𝐶

𝐷𝛼
,

𝐶
𝐷𝛿𝑒

, 𝐶
𝐷𝛿𝑎

, 𝐶
𝐷𝛿𝑟

,𝐶
𝐷𝛿𝑐

𝛿
𝑐
, 𝐶
𝐿𝛼
, 𝐶
𝐿𝛿𝑒

, 𝐶
𝐿𝛿𝑎

, 𝐶
𝐿𝛿𝑐

, 𝐶
𝑌𝛽
,𝐶
𝑌𝛿𝑒

,
𝐶
𝑌𝛿𝛼

, and 𝐶
𝑌𝛿𝑟

are uncertain, while the description of the
variables are shown in [32].

In this paper, wewill focus on themodel of rate dynamics,
that is, (47)–(49). So, to put the above equations in the
form of (1), we define 𝑥 = [𝑥

1
, 𝑥
2
, 𝑥
3
]
𝑇

= [𝑉, 𝜒, 𝛾]
𝑇, 𝑢 =

[𝑢
1
, 𝑢
2
, 𝑢
3
]
𝑇
= [𝑇, 𝛼, 𝜇]

𝑇. Hence the rate equations become

̇𝑥 = 𝑓 (𝑥, 𝑢) , (51)

where 𝑓 = [𝑓V, 𝑓𝜒, 𝑓𝛾]
𝑇 is defined in (47)–(49). By using the

proposed approximated model in Section 3, we have

̇𝑥 = 𝑓 + 𝑔𝑢
𝜁
+ 𝑂 (⋅) , (52)

𝑢
𝜁
= −𝑘
𝜁
𝑢
𝜁
+ 𝑘
𝜁
𝑢, 𝑢

𝜁
(0) = 0, (53)

where 𝑓 = ̆𝑓(𝑥, 𝑢
𝜁
) − 𝑔
𝑝
𝑢
𝜁
, 𝑢
𝜁
= [𝑢
𝜁1
, 𝑢
𝜁2
, 𝑢
𝜁3
]
𝑇, 𝑘
𝜁
is s

design parameter, ̆𝑓(𝑥, 𝑢
𝜁
) = [ ̆𝑓V,

̆𝑓
𝜒
, ̆𝑓
𝛾
], ̆𝑓V, ̆𝑓

𝜒
, ̆𝑓
𝛾
, and 𝑔

𝑝

are expressed as

̆𝑓V =
1

𝑀
(𝑢
𝜁1
cos𝑥
2
− 𝐷 −𝑀𝑔 sin𝑥

3
) ,

̆𝑓
𝜒
=

1

𝑀𝑥
1
cos𝑥
3

(𝐿 sin 𝑢
𝜁3
+ 𝑌 cos 𝑢

𝜁3
+ 𝑇 sin 𝑢

𝜁3
sin 𝑢
𝜁2
) ,

̆𝑓
𝛾
=

1

𝑀𝑥
1

(𝐿 cos 𝑢
𝜁3
− 𝑌 sin 𝑢

𝜁3
−𝑀𝑔 cos𝑥

3
+ 𝑢
𝜁1
cos 𝑢
𝜁3
sin 𝑢
𝜁2
) ,

𝑔
𝑝
=

[
[
[
[
[
[
[
[
[
[

[

cos 𝑢
𝜁2

𝑀
−
𝑢
𝜁1
sin 𝑢
𝜁2

𝑀
0

1

𝑀𝑢
𝜁1
cos𝑥
3

sin 𝑢
𝜁2
sin 𝑢
𝜁3

1
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𝜁1
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]
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]

]

.

(54)
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Figure 4: Control input for near space vehicle system with coordinated turn.

The initial state conditions are arbitrarily chosen as 𝑀 =

136080Kg, 𝑉(0) = 3000m/s, 𝜒(0) = 𝛾(0) = 0 deg, 𝑇(0) =
240KN, 𝛼(0) = 1 deg, and 𝜇(0) = 0 deg.

The desired command is considered as 𝑉
𝑑
= 3000m/s,

𝜒
𝑑

= 8 deg, and 𝛾
𝑑

= 0 deg. In order to ensure the
smoothness of airspeed change, we choose the filter as (7),
in which the parameter is chosen as 𝑘

𝜁
= 0.03.

To estimate the uncertainty, we apply integral terminal
sliding mode disturbance observer in Section 4 and set the
parameters as 𝑘

𝑧
= 5, 𝜗 = 2, and 𝜅 = 0.5. Furthermore,

to demonstrate the effectiveness of the proposed integral
terminal sliding mode control, the design parameters are
chosen as ̆𝛼 = 1.5, 𝑝 = 5, 𝑞 = 3, 𝑘 = 2, and 𝜍 = 0.3. The
tracking results are shown in Figures 3 and 4. Although, there
exists uncertain in the system, the tracking performance is
still satisfactory and tracking error converges to zero quickly.

From these simulation results of two cases, we can obtain
that the proposed method is valid. And the developed sign
integral terminal sliding mode disturbance observer can
modify the control performance of the fractional integral
terminal sliding mode control.

7. Conclusions

In this paper, the disturbance-observer-based terminal slid-
ing mode tracking control has been proposed for a class of
uncertain nonaffine nonlinear systems. To design tracking
controller, an on-line approximation has been proposed for a
class of nonaffine nonlinear systems. To improve the ability of
the disturbance attenuation and system performance robust-
ness, the sign integral terminal sliding mode disturbance
observer has been developed to approximate the system
disturbance in the finite time. Based on the output of the dis-
turbance observer, the disturbance-observer-based fractional
integral terminal sliding mode tracking control has been
presented for the uncertain nonlinear system with the time-
varying external disturbance. By innovating the fractional
error integration, finite-time convergence of tracking errors
and integral errors is achieved without singular problem.
Furthermore, the finite convergence time is easily calculated
in contrast to the traditional high-order slidingmode control.
The stability of the closed-loop system has been proved using
rigorous Lyapunov analysis. Finally, simulation results have
been used to illustrate the effectiveness of the proposed robust
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terminal sliding mode tracking control scheme. In addition,
based on the proposed approach, how to relax Assumption 1
is our future works. At the same time, fault-tolerant control
for a class of nonaffine nonlinear systems is also our future
works.
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A multidegree-of-freedom coupling dynamic model, which contains a joint cutterhead, an inner ring gear, a support shield body,
and pinions, is established, considering the external stochastic excitations, time-varying meshing stiffness, transmission errors,
clearance, and so forth. Based on the parameters of an actual project and the strong impact of external excitations, the modal
properties and dynamic responses are analyzed, and the cutterhead joint surface loads are obtained and treated by rain flow
count. Numerical results indicate that the low natural frequencies are 57Hz and 61Hz, and natural vibration modes are pinions-
motors rotational mode and translational-overturning coupled mode of cutterhead with inner ring gear correspondingly. Besides,
the axial and radial amplitude of dynamic responses are 0.55mm and 0.25mm, respectively. The frequencies of radial, torsional,
and overturning vibrations are predominantly concentrated in 112Hz and 120Hz, which indicates that the vibration responses
of cutterhead are mainly affected by the external excitations. Finally, as the rain-flow counting results have shown, the standard
deviation of the cutterhead joint surface loads in each direction increases by 12–15 times, compared with that of the external
excitations; therefore inertia effect should be considered in cutterhead design.The proposed research lays a foundation for dynamic
performance optimization and fatigue crack growth life assessment of cutterhead structure.

1. Introduction

As a key component of the full face rock tunnel boring
machine (TBM), the cutterhead plays the functions of crush-
ing rock, stabilizing excavated opening, and so on, which
affects the boring performance and efficiency of the whole
machine [1]. Due to complicated geological conditions and
variable tunneling parameters, cutterhead endures multi-
point random impact loads, in many projects, for example,
the Qinling tunnel, Dahuofang tunnel, and Zhongtianshan
tunnel [2–4]. As a result, some engineering faultsmay appear,
such as severe vibration, abnormal wears of cutting tools,
cracking of cutterhead panel, and the seal failure of main
bearing, which put forward high design requirements for
structural strength, reliability, and fatigue life of cutterhead.
Therefore, aiming at absorbance of dynamic impact loads,
high reliability, high fatigue life, and superior static and
dynamic characteristics, the research on coupled nonlinearity
dynamical characteristics of TBM cutterhead system with

random impact loads provides an important theoretical value
and practical significance.

For a long time, a great number of studies about the
TBMcutterhead systemdesign have been carried out. Samuel
and Seow [5] studied the variations of cutter forces during
field testing, and the instantaneous forces are compared to
global machine performance. Zhang et al. [6] proposed the
testing methods using the results, which are obtained in the
measured cutter forces on a boring machine during field
boring in a hard rock laboratory. According to Rostami [7],
the distribution of cutters is critical to balance performance
of cutterhead, and the methods of cutterhead system design
for the hard rock TBM were studied based on different
performance factors. A model of the specific energy [8, 9]
was created for evaluating the energy consumption of tunnel
machine. Then the model was conducted using the testing
data from a subway project, so as to provide optimal ranges of
the cutting depth per revolution. Furthermore, Xia et al. [10,
11] used the discrete elementmethod to study the influence of
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cutterhead performance under various geological conditions
and cutter spaces, and the results were compared with a
cutting test. Similar works present as follows. Sun et al. [12–
15] studied the simulation process of rock fragmentation
with multicutters and space design. Moreover, based on
the genetic algorithm and collaborative evolutionary, the
method of disc cutters’ plane layout design was proposed,
as well as the optimal design for master parameter of
cutterhead structure and support ribs were processed. In
addition, a theoretical dynamic model of shield TBM has
been established by Zhang [16], considering the interactions
among the redundantly driven revolving system, hydraulic
propulsion system, shield body, and geologic condition, to
study the dynamic characteristics of revolving system under
comprehensive geological conditions. Some related literature
on multidegree-of-freedom coupling dynamic model have
been published recently. Sakanushi et al. [17] and Yamada
et al. [18] proposed the control characteristics and a design
procedure of a two-degree-of-freedom simple repetitive con-
trol system which can specify the input-output characteristic
and the disturbance attenuation characteristic separately, and
a numerical example and an application in motors were
presented to illustrate the effectiveness, which showed that
the control system was expected to be used in practical
applications. A six-degree-of-freedom fully-coupled plant
model used in underwater vehicles was reported in [19], and
the comparative experimental evaluations were estimated
experimentally from data obtained in free-motion vehicle
trials, which might be able to predict the performance of
underwater vehicles.

Asmentioned above, scholars have studied rock fragmen-
tation mechanism, force models of disc cutters, stochastic
loads of excavation, and disc cutters’ plane layout about the
TBM cutterhead system, by using the methods of similar
model experiment, numerical simulation, and field test. In
addition, many design methods and research achievements
aboutmultidegree-of-freedom coupling dynamicmodel have
been obtained, which are of valuable reference to our study.
However, the problem of vibration in split type of cutterhead
with heavy random loads has not been previously performed.
Moreover, the dynamic model in [16] did not consider the
radial freedom of the cutterhead because of the small loads
in the shield TBM system, which cannot be employed in
the hard rock TBM system. The design methods in TBM
cutterheadwere presented in [12–15] to optimize the structure
parameter, but the cutters’ loads were static nominal load,
ignoring the dynamic characteristic. These former models
about cutterhead system may not be close to the actual
conditions. Therefore, for the first time, this paper studies
the dynamic characteristics of split-cutterhead system with
multidegree-of-freedom coupling, comprehensively consid-
ering the time-varying external excitations, time-varying
meshing stiffness, transmission errors, clearance, and bearing
stiffness. Compared with conventional design methods and
models, the proposed research is more effective to solve the
complex project problems, which provides an effective foun-
dation for dynamic performance optimization and fatigue
crack propagation life assessment of cutterhead structure.

1

2

3

4

5

6

Z

Y

X

Figure 1: Components of TBM cutterhead system. 1: Cutterhead
piece. 2: Main bearing. 3: Pinion. 4: Coupling. 5: Motor. 6: Reducer.

Cutterhead piece

Cutterhead center 
block

Figure 2: The structure of TBM split cutterhead.

2. The Split-Cutterhead System of
Coupled Dynamics Model Influenced by
Complicated Factors

In the TBM cutterhead system, the multiple pinions are
driven by variable-frequency motors via planetary gear
reducers and couplings. Then, the pinions drive an inner
ring gear clockwise by redundant control, and the inner
ring gear and flange are fixed with bolts, so as to drive
the cutterhead. The TBM cutterhead system with various
components is shown in Figure 1; here, we just present only
one motor driving system. Meanwhile, the structure of TBM
split-cutterhead is shown in Figure 2.

In this paper, a dynamic mathematic model of TBM
cutterhead system is established by using lumped-parameter
method, which is shown in Figure 3, where 𝑘

𝑚𝑝𝑄
and 𝑘

𝑟𝐿𝑄

are the torsional stiffness of gear shaft connections and
cutterhead shaft connection, respectively, 𝑘

𝑒𝑞𝑦
, 𝑘
𝑒𝑞𝐿

, 𝑘
𝑒𝑞𝑟
,

𝑘
𝑒𝑞𝑧

, 𝑘
𝑒𝑞𝑑

, and 𝑘
𝑒𝑞𝑑𝑧

are the equivalent radial stiffness and
axial stiffness of cutterhead, inner ring gear, and support
shield body, respectively, 𝑘

𝑒𝑞𝑝
and 𝑘

(𝑡)
are the support

equivalent stiffness of pinions and time-varying meshing
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(c) Internal meshing dynamic model of cutterhead system

Figure 3: Multidegree-of-freedom coupling dynamic model of TBM cutterhead system.

stiffness between inner ring gear and pinions, respectively,
and 𝑘

𝐿𝜁𝑖
, 𝑘
𝐿𝜂𝑖

, and 𝑘
𝐿𝑖
are the equivalent tangential stiffness,

radial stiffness, and axial stiffness of each cutterhead piece,
respectively.𝐶

𝑥𝑥𝑥
(𝑥𝑥𝑥 denotes the subscript) is the damping

coefficient of corresponding stiffness.𝑇
𝑝𝑖
,𝑇
𝐿
, 𝐹
𝑋
, 𝐹
𝑌
, 𝐹
𝐿
,𝑀
𝑋
,

and 𝐹
𝐿𝑖
represent the input torque, load torque, lateral force,

longitudinal force, and axial thrust, transverse overturning
moment of cutterhead center block, as well as axial force
of each cutterhead piece, respectively. The backlash between
the inner ring gear and each pinion is expressed by 𝑏

𝑝
and

meshing errors are expressed by 𝜀. Besides, 𝑟
𝑏𝑟

and 𝑟
𝑏𝑝
,

respectively, denote the base circle radius of inner ring gear
and pinions.

In the dynamic model of cutterhead system above-
mentioned, the moving coordinate systems are used for con-
venient modeling.The coordinates are illustrated in Figure 3,
where𝑋, 𝑌, and 𝑍, respectively, denote horizontal direction,
vertical direction, and tunneling direction, and cutterhead,
inner ring gear and support shield body are in this coordinate.
Additionally, 𝜁 and 𝜂 are the radial and tangential directions

of cutterhead pieces, which are rotatingwith cutterhead.Also,
𝐻
𝑝
and𝑉

𝑝
are the radial and tangential directions of pinions.

We use various subscripts for the purpose of distinguishing
conveniently. The cutterhead pieces are specified by the
subscript of 𝑖, and cutterhead center block, inner ring gear,
and support shield body are 𝐿, 𝑟, and 𝑑, respectively, while
pinions and motors are 𝑝 and𝑚.

The system in Figure 3 has (27 + 4𝑁) degree of free-
doms, where 𝑁 is the number of pinions. The generalized
vibration displacement is 𝑋 = (𝜁

𝑖
, 𝜂
𝑖
, 𝑍
𝑖
, 𝑋
𝐿
, 𝑌
𝐿
, 𝑍
𝐿
, 𝜃
𝐿𝑥
, 𝜃
𝐿𝑦
,

𝜃
𝐿
, 𝑋
𝑟
, 𝑌
𝑟
, 𝑍
𝑟
, 𝜃
𝑥
, 𝜃
𝑦
, 𝜃
𝑟
, 𝑋
𝑑
, 𝑌
𝑑
, 𝑍
𝑑
, 𝐻
𝑝𝑗
, 𝑉
𝑝𝑗
, 𝜃
𝑝𝑗
, 𝜃
𝑚𝑗
)
𝑇, where

𝜁
𝑖
, 𝜂
𝑖
, and 𝑍

𝑖
are the translational vibration displacements of

each cutterhead piece. 𝑋
𝐿
, 𝑌
𝐿
, and 𝑍

𝐿
are the translational

vibration displacements, 𝜃
𝐿𝑥

and 𝜃
𝐿𝑦

are the bending vibra-
tion displacements around 𝑋 and 𝑌 directions, and 𝜃

𝐿
is the

torsional vibration displacement in center block. 𝑋
𝑟
, 𝑌
𝑟
, 𝑍
𝑟
,

𝜃
𝑥
, 𝜃
𝑦
, and 𝜃

𝑟
are corresponding vibration displacements of

the inner ring gear.𝑋
𝑑
,𝑌
𝑑
, and𝑍

𝑑
are the translational vibra-

tion displacements of the support shield body. 𝐻
𝑝𝑗

and 𝑉
𝑝𝑗

are the transverse and longitudinal vibration displacements
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of the mass center of each pinion, respectively. 𝜃
𝑝𝑗

is the
torsional vibration displacements of each pinion and 𝜃

𝑚𝑗
is

the torsional vibration displacements of each motor.
Because of the low speed of cutterhead, Coriolis acceler-

ations and centripetal accelerations are ignored in published
models. The differential equations of each component are as
follows, based on the Lagrange’s equation.

(1) For motors,

𝐼
𝑚𝑗

̈𝜃
𝑚𝑗
+ 𝐶
𝑚𝑝𝑄

( ̇𝜃
𝑚𝑗
− ̇𝜃
𝑝𝑗
) + 𝑘
𝑚𝑝𝑄

(𝜃
𝑚𝑗
− 𝜃
𝑝𝑗
) = 𝑇
𝑝𝑗
. (1)

(2) For pinions,

𝐼
𝑝𝑗

̈𝜃
𝑝𝑗
+ (𝐹
𝑝𝑟𝑗

+ 𝐷
𝑝𝑟𝑗
) 𝑟
𝑏𝑝
+ 𝐶
𝑚𝑝𝑄

( ̇𝜃
𝑝𝑗
− ̇𝜃
𝑚𝑗
)

+ 𝑘
𝑚𝑝𝑄

(𝜃
𝑝𝑗
− 𝜃
𝑚𝑗
) = 0,

𝑚
𝑝𝑗
𝐻
𝑝𝑗
+ (𝐹
𝑝𝑟𝑗

+ 𝐷
𝑝𝑟𝑗
) cos𝛼 + 𝐶

𝑒𝑞𝑝𝑗
𝐻
𝑝𝑗
+ 𝑘
𝑒𝑞𝑝𝑗

𝐻
𝑝𝑗
= 0,

𝑚
𝑝𝑗
𝑉
𝑝𝑗
+ (𝐹
𝑝𝑟𝑗

+ 𝐷
𝑝𝑟𝑗
) sin𝛼 + 𝐶

𝑒𝑞𝑝𝑗
𝑉
𝑝𝑗
+ 𝑘
𝑒𝑞𝑝𝑗

𝑉
𝑝𝑗
= 0.

(2)

Thus, 𝑥
𝑝𝑟𝑗

is the relative dynamic displacement between
each pinion and the inner gear ring along with the internal
meshing line is expressed as

𝑥
𝑝𝑟𝑗

= 𝑟
𝑏𝑝
𝜃
𝑝𝑗
− 𝑟
𝑏𝑟
𝜃
𝑟
+ 𝑉
𝑝𝑗
sin𝛼 + 𝐻

𝑝𝑗
cos𝛼

+ 𝑋
𝑟
sin (𝛼 + 𝜑

𝑗
) − 𝑌
𝑟
cos (𝛼 + 𝜑

𝑗
) − 𝜀
𝑝𝑟𝑗

(𝑡) ,

(3)

where 𝜀
𝑝𝑟𝑗
(𝑡) (𝑗 = 1 − 𝑁) is the system error excitations,

shown in part 2, 𝛼 is meshing angle, and 𝜑
𝑗
is the azimuth

angle of each pinion, shown in Figure 2(c).
Then, the dynamic meshing loads can be calculated as

𝐹
𝑝𝑟𝑗

= 𝑘
𝑝𝑟𝑗

(𝑡) ⋅ 𝑓 (𝑥
𝑝𝑟𝑗
, 𝑏
𝑝𝑟𝑗
) , (4)

where 𝑏
𝑝𝑟𝑗

is half of the backlash among inner ring gear and
pinions, 𝑘

𝑝𝑟𝑗
(𝑡) is time-varying meshing stiffness, and 𝑓(𝑥, 𝑏)

is the nonlinear function, which can be expressed as

𝑓 (𝑥, 𝑏) =

{{

{{

{

𝑥 − 𝑏, 𝑥 > 𝑏,

0, −𝑏 ≤ 𝑥 ≤ 𝑏,

𝑥 + 𝑏, 𝑥 < −𝑏.

(5)

Similarly, the forces of meshing damping are expressed as

𝐷
𝑝𝑟𝑗

= 𝐶
𝑝𝑟𝑗

⋅ ̇𝑥
𝑝𝑟𝑗
. (6)

(3) For inner ring gear

𝑚
𝑟
𝑋
𝑟
+

𝑁

∑

𝑗=1

(𝐹
𝑝𝑟𝑗

+ 𝐷
𝑝𝑟𝑗
) sin (𝜑

𝑗
+ 𝛼) + 𝐶

𝑒𝑞𝑟
(𝑋
𝑟
− 𝑋
𝑑
)

+ 𝐶
𝑒𝑞𝑥

(𝑋
𝑟
− 𝑋
𝐿
) + 𝑘
𝑒𝑞𝑟
(𝑋
𝑟
− 𝑋
𝑑
)

+ 𝑘
𝑒𝑞𝑥

(𝑋
𝑟
− 𝑋
𝐿
) = 0,

𝑚
𝑟
̈𝑌
𝑟
−

𝑁

∑

𝑗=1

(𝐹
𝑝𝑟𝑗

+ 𝐷
𝑝𝑟𝑗
) cos (𝜑

𝑗
+ 𝛼) + 𝐶

𝑒𝑞𝑟
( ̇𝑌
𝑟
− ̇𝑌
𝑑
)

+ 𝐶
𝑒𝑞𝑦

( ̇𝑌
𝑟
− ̇𝑌
𝐿
) + 𝑘
𝑒𝑞𝑟
(𝑌
𝑟
− 𝑌
𝑑
)

+ 𝑘
𝑒𝑞𝑦

(𝑌
𝑟
− 𝑌
𝐿
) = 0,

𝑚
𝑟
̈𝑍
𝑟
+

4

∑

𝑖=1

[𝐶
𝑒𝑞𝐿𝑖

( ̇𝑍
𝑟𝑖
− ̇𝑍
𝐿𝑖
) + 𝐶
𝑒𝑞𝑧𝑖

( ̇𝑍
𝑟𝑖
− ̇𝑍
𝑑
)

+ 𝑘
𝑒𝑞𝐿𝑖

(𝑍
𝑟𝑖
− 𝑍
𝐿𝑖
) + 𝑘
𝑒𝑞𝑧𝑖

(𝑍
𝑟𝑖
− 𝑍
𝑑
)] = 0,

𝐼
𝑟𝑥

̈𝜃
𝑥
+ 𝑟
𝑟
[𝐶
𝑒𝑞𝐿1

( ̇𝑍
𝑟1
− ̇𝑍
𝐿1
) − 𝐶
𝑒𝑞𝐿3

( ̇𝑍
𝑟3
− ̇𝑍
𝐿3
)

+ 𝐶
𝑒𝑞𝑧1

( ̇𝑍
𝑟1
− ̇𝑍
𝑑
) − 𝐶
𝑒𝑞𝑧3

( ̇𝑍
𝑟3
− ̇𝑍
𝑑
)]

+ 𝑟
𝑟
[𝑘
𝑒𝑞𝐿1

(𝑍
𝑟1
− 𝑍
𝐿1
) − 𝑘
𝑒𝑞𝐿3

(𝑍
𝑟3
− 𝑍
𝐿3
)

+ 𝑘
𝑒𝑞𝑧1

(𝑍
𝑟1
− 𝑍
𝑑
) − 𝑘
𝑒𝑞𝑧3

(𝑍
𝑟3
− 𝑍
𝑑
)] = 0,

𝐼
𝑟𝑦

̈𝜃
𝑦
+ 𝑟
𝑟
[𝐶
𝑒𝑞𝐿2

( ̇𝑍
𝑟2
− ̇𝑍
𝐿3
) − 𝐶
𝑒𝑞𝐿4

( ̇𝑍
𝑟4
− ̇𝑍
𝐿4
)

+ 𝐶
𝑒𝑞𝑧2

( ̇𝑍
𝑟2
− ̇𝑍
𝑑
) − 𝐶
𝑒𝑞𝑧4

( ̇𝑍
𝑟4
− ̇𝑍
𝑑
)]

+ 𝑟
𝑟
[𝑘
𝑒𝑞𝐿2

(𝑍
𝑟2
− 𝑍
𝐿2
) − 𝑘
𝑒𝑞𝐿4

(𝑍
𝑟4
− 𝑍
𝐿4
)

+ 𝑘
𝑒𝑞𝑧2

(𝑍
𝑟2
− 𝑍
𝑑
) − 𝑘
𝑒𝑞𝑧4

(𝑍
𝑟4
− 𝑍
𝑑
)] = 0,

𝐼
𝑟
̈𝜃
𝑟
−

𝑁

∑

𝑗=1

(𝐹
𝑝𝑟𝑗

+ 𝐷
𝑝𝑟𝑗
) 𝑟
𝑏𝑟
+ 𝐶
𝑟𝐿𝑄

( ̇𝜃
𝑟
− ̇𝜃
𝐿
)

+ 𝑘
𝑟𝐿𝑄

(𝜃
𝑟
− 𝜃
𝐿
) = 0.

(7)

(4) For cutterhead center block:

𝑚
𝐿
𝑋
𝐿
−

4

∑

𝑖=1

[(𝑘
𝐿𝜁𝑖
𝛿
1𝜁𝑖
+ 𝐶
𝐿𝜁𝑖

̇𝛿
𝐿𝜁𝑖
) sin (𝜔𝑡 + 𝜑

𝑖
)

+ (𝑘
𝐿𝜂𝑖
𝛿
𝐿𝜂𝑖

+ 𝐶
𝐿𝜂𝑖

̇𝛿
𝐿𝜂𝑖
) cos (𝜔𝑡 + 𝜑

𝑖
)]

+ 𝐶
𝑒𝑞𝑥

(𝑋
𝐿
− 𝑋
𝑟
) + 𝑘
𝑒𝑞𝑥

(𝑋
𝐿
− 𝑋
𝑟
) = 𝐹
𝑋
,

𝑚
𝐿
̈𝑌
𝐿
+

4

∑

𝑖=1

[(𝑘
𝐿𝜁𝑖
𝛿
1𝜁𝑖
+ 𝐶
𝐿𝜁𝑖

̇𝛿
1𝜁𝑖
) cos (𝜔𝑡 + 𝜑

𝑖
)

− (𝑘
𝐿𝜂𝑖
𝛿
1𝜂𝑖

+ 𝐶
𝐿𝜂𝑖

̇𝛿
1𝜂𝑖
) sin (𝜔𝑡 + 𝜑

𝑖
)]

+ 𝐶
𝑒𝑞𝑦

( ̇𝑌
𝐿
− ̇𝑌
𝑟
) + 𝑘
𝑒𝑞𝑦

(𝑌
𝐿
− 𝑌
𝑟
) = 𝐹
𝑌
,

𝑚
𝐿
̈𝑍
𝐿
+

4

∑

𝑖=1

[𝐶
𝐿𝑖
( ̇𝑍
𝐿𝑖
− ̇𝑍
𝑖
) + 𝑘
𝐿𝑖
(𝑍
𝐿𝑖
− 𝑍
𝑖
)

+ 𝐶
𝑒𝑞𝐿𝑖

( ̇𝑍
𝐿𝑖
− ̇𝑍
𝑟𝑖
) + 𝑘
𝑒𝑞𝐿𝑖

(𝑍
𝐿𝑖
− 𝑍
𝑟𝑖
)] = 𝐹

𝐿
,

𝐼
𝐿𝑥

̈𝜃
𝐿𝑥
+ 𝑎
𝐿
[𝐶
𝐿1
( ̇𝑍
𝐿1
− ̇𝑍
1
) − 𝐶
𝐿3
( ̇𝑍
𝐿3
− ̇𝑍
3
)

+ 𝑘
𝐿1
(𝑍
𝐿1
− 𝑍
1
) − 𝑘
𝐿3
(𝑍
𝐿3
− 𝑍
3
)]
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+ 𝑟
𝑟
[𝐶
𝑒𝑞𝐿1

( ̇𝑍
𝐿1
− ̇𝑍
𝑟1
) − 𝐶
𝑒𝑞𝐿3

( ̇𝑍
𝐿3
− ̇𝑍
𝑟3
)

+ 𝑘
𝑒𝑞𝐿1

(𝑍
𝐿1
− 𝑍
𝑟1
) − 𝑘
𝑒𝑞𝐿3

(𝑍
𝐿3
− 𝑍
𝑟3
)] = 𝑀

𝑋
,

𝐼
𝐿𝑦

̈𝜃
𝐿𝑦
+ 𝑎
𝐿
[𝐶
𝐿2
( ̇𝑍
𝐿2
− ̇𝑍
2
) − 𝐶
𝐿4
( ̇𝑍
𝐿4
− ̇𝑍
4
)

+ 𝑘
𝐿2
(𝑍
𝐿2
− 𝑍
2
) − 𝑘
𝐿4
(𝑍
𝐿4
− 𝑍
4
)]

+ 𝑟
𝑟
[𝐶
𝑒𝑞𝐿2

( ̇𝑍
𝐿2
− ̇𝑍
𝑟2
) − 𝐶
𝑒𝑞𝐿4

( ̇𝑍
𝐿4
− ̇𝑍
𝑟4
)

+ 𝑘
𝑒𝑞𝐿2

(𝑍
𝐿2
− 𝑍
𝑟2
) − 𝑘
𝑒𝑞𝐿4

(𝑍
𝐿4
− 𝑍
𝑟4
)] = 𝑀

𝑌
,

𝐼
𝐿
̈𝜃
𝐿
+ 𝐶
𝑟𝐿𝑄

( ̇𝜃
𝐿
− ̇𝜃
𝑟
) + 𝑘
𝑟𝐿𝑄

(𝜃
𝐿
− 𝜃
𝑟
) = −𝑇

𝐿
.

(8)

(5) For support shield body,

𝑚
𝑑
𝑋
𝑑
+ 𝐶
𝑒𝑞𝑟
(𝑋
𝑑
− 𝑋
𝑟
) + 𝐶
𝑒𝑞𝑑
𝑋
𝑑

+ 𝑘
𝑒𝑞𝑟
(𝑋
𝑑
− 𝑋
𝑟
) + 𝑘
𝑒𝑞𝑑
𝑋
𝑑
= 0,

𝑚
𝑑
̈𝑌
𝑑
+ 𝐶
𝑒𝑞𝑟
( ̇𝑌
𝑑
− ̇𝑌
𝑟
) + 𝐶
𝑒𝑞𝑑

̇𝑌
𝑑

+ 𝑘
𝑒𝑞𝑟
(𝑌
𝑑
− 𝑌
𝑟
) + 𝑘
𝑒𝑞𝑑
𝑌
𝑑
= 0,

𝑚
𝑑
̈𝑍
𝑑
+ 𝐶
𝑒𝑞𝑧1

( ̇𝑍
𝑑
− ̇𝑍
𝑟1
) + 𝐶
𝑒𝑞𝑧2

( ̇𝑍
𝑑
− ̇𝑍
𝑟2
)

+ 𝐶
𝑒𝑞𝑧3

( ̇𝑍
𝑑
− ̇𝑍
𝑟3
) + 𝐶
𝑒𝑞𝑧4

( ̇𝑍
𝑑
− ̇𝑍
𝑟4
)

+ 𝐶
𝑒𝑞𝑑𝑧

̇𝑍
𝑑
+ 𝑘
𝑒𝑞𝑧1

(𝑍
𝑑
− 𝑍
𝑟1
)

+ 𝑘
𝑒𝑞𝑧2

(𝑍
𝑑
− 𝑍
𝑟2
) + 𝑘
𝑒𝑞𝑧3

(𝑍
𝑑
− 𝑍
𝑟3
)

+ 𝑘
𝑒𝑞𝑧4

(𝑍
𝑑
− 𝑍
𝑟4
) + 𝑘
𝑒𝑞𝑑𝑧

𝑍
𝑑
= 0.

(9)

(6) For cutterhead pieces,

𝑚
𝑖
̈𝜁
𝑖
+ 𝑘
𝐿𝜁𝑖
𝛿
𝐿𝜁𝑖

+ 𝐶
𝐿𝜁𝑖

̇𝛿
𝐿𝜁𝑖

= 𝐹
𝜁𝑖
,

𝑚
𝑖
̈𝜂
𝑖
+ 𝑘
𝐿𝜂𝑖
𝛿
𝐿𝜂𝑖

+ 𝐶
𝐿𝜂𝑖

̇𝛿
𝐿𝜂𝑖

= 𝐹
𝜂𝑖
,

𝑚
𝑖
̈𝑍
𝑖
+ 𝑘
𝐿𝑖
(𝑍
𝑖
− 𝑍
𝐿𝑖
) + 𝐶
𝐿𝑖
( ̇𝑍
𝑖
− ̇𝑍
𝐿𝑖
) = 𝐹
𝐿𝑖
,

(10)

where 𝐹
𝜁𝑖
, 𝐹
𝜂𝑖
, and 𝐹

𝐿𝑖
are the tangential force, normal force,

and axial force of each cutterhead piece, respectively.
The 𝛿
𝐿𝜁𝑖

and 𝛿
𝐿𝜂𝑖

(𝑖 = 1–4) in (10) are the tangential and
radial relative deformations between each cutterhead piece
and central block, expressed as follows:

𝛿
𝐿𝜁𝑖

= 𝜁
𝑖
− 𝑋
𝐿
sin𝜑
𝑖
+ 𝑌
𝐿
cos𝜑
𝑖
,

𝛿
𝐿𝜂𝑖

= 𝜂
𝑖
− 𝑋
𝐿
cos𝜑
𝑖
− 𝑌
𝐿
sin𝜑
𝑖
,

(11)

where 𝜑
𝑖
is the azimuth angle of each cutterhead piece and

four pieces are evenly distributed, 𝜑
𝑖
= 𝜋(𝑖 − 1)/2 (𝑖 = 1–4).

As discussed above, assembling the system equations in
matrix form yields

𝑀 ̈𝑋 + 𝐶 ̇𝑋 + 𝐾𝑋 = 𝐹, (12)

where𝑀 is the mass matrix, 𝐶 and𝐾, respectively, represent
the damping matrix and stiffness matrix, and 𝐹 is the
incentive force vector.

3. Dynamic Excitations of TBM
Cutterhead System

There are two types of excitations in the dynamic model,
which are external and internal excitations, influencing the
dynamic characteristics of the cutterhead system. The exter-
nal excitations depend on the time variability of the param-
eters of disc cutters’ layout, geological conditions, tunneling
parameters, and so forth. Meanwhile, the internal excitations
are affected by the time-varying meshing stiffness, compre-
hensive accumulated errors, bearing stiffness, and so on.

3.1. External Excitations of TBM Cutterhead System. A 3D
simulation model with multicutters is established, under
typical geological conditions, based on the procedure of LS-
DYNA, due to complicated geological environments. Then,
the dynamic loads between disc cutters and surrounding rock
are obtained and modified reference to the field data [5, 6].
Consequently, the total loads of the TBM cutterhead system
are calculated by summing the individual force contributions
of each cutter, which can be provided to external excitations
of the dynamic model.

Theoretically speaking, the disc cutters suffer normal
forces 𝐹V, tangential forces 𝐹𝑟, and side forces 𝐹

𝑠
when the

cutterhead turns, as shown in Figure 4, where 𝜌 is the radius
from the center of the cutterhead, 𝜃 is the position angle of
the cutter, and 𝛽 is the tilt angle of the gauge cutter. For
the convenience of loads calculation, the assumptions are
formulated as follows.

(i) The total loads of cutterhead equal to the resultant
force of each disc cutter, ignoring the losses in transfer
process.

(ii) Considering the complexity of actual rock breaking
loads, the mean normal force is equal to nominal
load of the disc cutter, and it is 0.15 times the mean
tangential force and 0.1 times the mean side force
[5, 6].

Deduced the relationship between the loads of cutterhead
and cutters, the formulae of loads in each cutterhead piece are
presented by the following expressions.

(1) Axial Forces. The axial forces are equal to the resultant
force in 𝑍 direction of each cutter, which can be expressed
as

𝐹
𝐿
=

𝑛

∑

𝑖=1

𝐹V𝑖 +

𝑚

∑

𝑗=1

𝐹V𝑗 +

𝑝

∑

𝑘=1

(𝐹V𝑘 cos𝛽𝑘 + 𝐹𝑠𝑘 sin𝛽𝑘) , (13)

where𝐹V𝑡 (𝑡 = 𝑖, 𝑗, 𝑘) are the normal force of the center cutter,
normal cutter, and gauge cutter, respectively, 𝐹

𝑠𝑘
is the side

force of the 𝑘th gauge cutter, 𝑛, 𝑚, and 𝑝 are the number of
the center cutter, normal cutter, and gauge cutter, respectively,
and 𝛽

𝑘
is the tilt angle of the 𝑘th gauge cutter.
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Figure 4: Forces acting on a normal cutter and a gauge cutter [14].

Also, 𝐹
𝐿𝑖

can be calculated by (13), just with different
number of disc cutters.

(2) Radial Forces. The radial forces can be decomposed into
lateral force 𝐹

𝑋
and longitudinal force 𝐹

𝑌
as

𝐹
𝑋
= 𝐹V𝑥Σ + 𝐹𝑟𝑥Σ + 𝐹𝑠𝑥Σ,

𝐹
𝑌
= 𝐹V𝑦Σ + 𝐹𝑟𝑦Σ + 𝐹𝑠𝑦Σ,

(14)

where 𝐹V𝑥Σ, 𝐹𝑟𝑥Σ, and 𝐹𝑠𝑥Σ, respectively, represent the resul-
tant force of normal forces, tangential forces, and side forces
in𝑋 direction, and the resultant forces in𝑌direction are𝐹V𝑦Σ,
𝐹
𝑟𝑦Σ

, and 𝐹
𝑠𝑦Σ

, correspondingly.
In the same way, 𝐹

𝜁𝑖
and 𝐹

𝜂𝑖
are calculated by (14).

(3) Overturning Moments. Similarly, the overturning mo-
ments can also be decomposed into two directions, which
load on the central block. Consider

𝑀
𝑋
=

𝑛

∑

𝑖=1

𝐹V𝑖𝑙𝑖𝑥 +

𝑚

∑

𝑗=1

𝐹V𝑗𝑙𝑗𝑥,

𝑀
𝑌
=

𝑛

∑

𝑖=1

𝐹V𝑖𝑙𝑖𝑦 +

𝑚

∑

𝑗=1

𝐹V𝑗𝑙𝑗𝑦,

(15)

where 𝑙
𝑡𝑥
and 𝑙
𝑡𝑦
(𝑡 = 𝑖, 𝑗) represent the distance to 𝑋 and 𝑌

axis of the 𝑡th cutter.

(4) Torques. The load torque is generated by the tangential
forces, which is equal to the resultant torque of each tangen-
tial force around 𝑍 axial. Consider

𝑇
𝐿
=

𝑛

∑

𝑖=1

𝐹
𝑟𝑖
𝜌
𝑖
+

𝑚

∑

𝑗=1

𝐹
𝑟𝑗
𝜌
𝑗
+

𝑝

∑

𝑘=1

𝐹
𝑟𝑘
𝜌
𝑘
. (16)

The input torque𝑇
𝑝𝑖
is equal to 1/𝑁 times the load torque

without considering power loss.

3.2. Internal Excitations of TBM Cutterhead System
3.2.1. Time-Varying Meshing Stiffness of Gear Pairs. For spur
gears, the meshing stiffness shows obvious nature of the step

period, which will change suddenly when the coincidence
degree is not an integer, leading to the generation of the
dynamic excitation force [20]. According toGB3480-1997, the
peak and the average of meshing stiffness can be obtained.
Then, the meshing stiffness variation can be modeled by a
series of square wave functions. Finally, it is expanded in
Fourier series without higher-order terms as follows:

𝑘 (𝑡) = 𝑘
𝑚
+

𝑛

∑

𝑖=1

[𝑘
𝑝𝑖
sin (𝑖𝜔𝑡) + 𝑘

𝑐𝑖
cos (𝑖𝜔𝑡)] , (17)

where 𝜔 is meshing frequency, 𝑛 is the harmonic number of
the meshing stiffness, 𝑘

𝑚
is mean meshing stiffness, and 𝑘

𝑝𝑖

and 𝑘
𝑐𝑖
represent the amplitude of the 𝑖th order sinusoidal and

cosine magnitude, respectively.

3.2.2. Error Excitations of System. The error excitations can
be modeled by harmonic functions [21]. The main errors
considered in this study are as follows: manufacturing error
𝐸
𝑟
, installation error 𝐴

𝑟
, tooth thickness deviation 𝜀

𝑟
, and

profile error 𝛿
𝑟
in the inner ring gear, with the corresponding

parameters in the pinions 𝐴
𝑝𝑗
, 𝜀
𝑝𝑗
, and 𝛿

𝑝𝑗
, as well as the

eccentric error 𝐸
𝑝𝑗
. Accordingly, the equivalent accumulated

error caused by the aforementioned errors, along with the
internal meshing line takes the form

𝜀
𝑝𝑟𝑗

(𝑡) = 𝐸
𝑟
sin (𝜔

𝑟
𝑡 + 𝛼 + 𝜑

𝑗
− 𝛽
𝑟
) + 𝐴

𝑟
sin (𝛼 + 𝜑

𝑗
− 𝛾
𝑟
)

+ 𝐸
𝑝𝑗
sin (𝜔

𝑝
𝑡 + 𝛼 − 𝛽

𝑝𝑖
) + 𝐴

𝑝𝑗
sin (𝛼 − 𝛾

𝑝𝑗
)

+ 𝜀
𝑟
+ 𝜀
𝑝𝑗
+ 𝜎
𝑟
+ 𝜎
𝑝𝑗

(𝑗 = 1–8) ,
(18)

where 𝛼 is meshing angle, 𝛽 and 𝛾 are the phase angles of
errors, and𝜔

𝑝
and𝜔

𝑟
represent the angular velocity of pinion

and ring gear, respectively.

3.2.3. Support Equivalent Stiffness of Pinions. Each pinion
bears the radial load, so the support equivalent stiffness is
calculated by the following empirical formula [22]:

𝐾
𝑟
= 0.34 × 10

4
𝐹
0.1

𝑟
𝑍
0.9
𝑙
0.8
(cos𝛽)1.9, (19)
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where 𝐹
𝑟
is radial load, 𝑍 is the number of rollers, 𝑙 is the

effective contact length of rollers, and 𝛽 is the contact angle
of rollers.

3.2.4. Torsional Stiffness of Shaft Connections. According
to Mechanics of Materials, the torsional stiffness of shaft
connections can be expressed as

𝑘
𝑄
=
𝐺𝐼
𝑝

𝐿
, (20)

where 𝐼
𝑝
is the polar moment of inertia, 𝐺 is shear modulus,

and 𝐿 is the equivalent length of shaft connections.

3.2.5. Stiffness of the Main Bearing. Since the positive thrust
rollers and negative thrust rollers belong to radial-thrust
bearing, the axial stiffness is defined as [23]

𝐹
𝑎
= 𝐾
𝑛
𝑍(sinΨ)𝑛+1𝛿𝑛

𝑎
,

𝐾
𝑎
=
𝑑𝐹
𝑎

𝑑𝛿
𝑎

= 𝑛𝐾
𝑛
𝑍(sinΨ)𝑛+1𝛿𝑛−1

𝑎
,

𝐾
𝑛
= 2.89 × 10

4
𝑙
0.82

𝑒
𝐷
0.11

𝑤
,

(21)

where 𝐹
𝑎
is the axial load of the bearing, 𝑛 is equal to 1.11

about the roller bearing, 𝐾
𝑛
is stiffness coefficient, 𝑍 is the

number of rollers, Ψ is the contact angle of rollers, 𝛿
𝑎
is the

axial displacement of the bearing, 𝑙
𝑒
is the effective contact

length of rollers, and𝐷
𝑤
is the effective diameter of rollers.

3.2.6. Meshing Damping Coefficient. The meshing damping
coefficient is calculated by the following empirical formula
[20]:

𝐶
𝑝𝑟
= 2𝜍√

𝑘 (𝑡)𝑚
1
𝑚
2

(𝑚
1
+ 𝑚
2
)
, (22)

where 𝜍 is meshing damping ratio, which is equal to 0.03–0.17,
with the value of 0.03 in this study.

3.2.7. Torsional Damping Coefficient of Shaft Connections.
The torsional damping coefficient of shaft connections is
expressed as [20]

𝐶
𝑄
= 2𝜉
𝑄√

𝑘
𝑄
𝐼
𝑚
𝐼
𝑝

(𝐼
𝑚
+ 𝐼
𝑝
)
, (23)

where 𝜉
𝑄
is torsional damping ratio, which is equal to 0.005–

0.075, with the value of 0.005 in this study.

3.2.8. Other Stiffness and Damping Coefficient. The stiffness
of other components, such as cutterhead and support shield
body, is calculated by using the finite elementmethod (FEM).
And the damping coefficient is calculated by the following
formula [24]:

𝑐 = 2𝜉√𝑚
𝑒
𝑘
𝑒
, (24)

where 𝜉 is damping ratio, which is equal to 0.02–0.05, when
the steel is in elastic stage, with the value of 0.02 in this study,
and 𝑚

𝑒
and 𝑘

𝑒
is equivalent mass and equivalent stiffness,

respectively.

4. Solution of the Dynamic Model

There are not good theoretical methods for solving the
dynamic equation (12), because of the characteristics of mul-
tifactor coupling, strong nonlinear, time-varying, and ran-
domness of the parameters. Thus, an interpolating algorithm
of scattered data is presented, using the fourth-order Runge-
Kutta integration method, to solve the dynamic system with
an approximate solution. A flowchart of the solution is shown
in Figure 5.

5. Engineering Project Example

Taking the cutterhead system of the hard rock TBM of a
water tunnel project as a background, an application instance
is presented. The relative parameters are as follows: (1)
cutterhead geometry: the cutterhead diameter 𝐷 = 8.53m,
the mass of cutterhead𝑀 = 200 t, the cutter penetration 𝑃 =

10mm, the center cutter number 𝑛 = 4, the normal cutter
number 𝑚 = 34, the gauge cutter number 𝑝 = 12, and the
disc cutters’ plane layout is shown in Figure 6; (2) parameters
of the driving system: the driving power 𝑊 = 3440 kW, the
angular velocity of cutterhead 𝜔 = 5.6 r/min = 0.5861 rad/s,
the number of pinions𝑁 = 8, the tooth number of inner ring
gear 𝑍

𝑟
= 174, the tooth number of each pinion 𝑍

𝑝
= 14, the

module 𝑚 = 22, and the error excitations can be obtained
according to Mechanical Design Handbook [24]; (3) rock
physical properties: the typical rock is mainly granite gneiss
geology, and for detailed mechanical parameters see [12].

5.1. Calculation of External Excitations. Based on the field
data [5, 6] and simulation’s loads of rock breaking under the
action ofmulticutters, combinedwith the above assumptions,
the load-time histories of three types of cutters (center
cutters, normal cutters, and gauge cutters) can be obtained,
partially shown in Figure 7.

As can be seen in Figure 7, the loads of cutters composed
of a series of impact loads show obvious nature of the step
period and increase with the cutting depth of cutters in a
cycle of rock breaking, which is identical with the engineering
experience.

According to formulas (13)–(16), we can obtain the
external excitations of cutterhead system, using Fast
Fourier Transform (FFT) algorithm to generate the spectral
responses. Due to space limitation, this paper only presents
the frequency responses of radial force, axial force, and
torque in center block, as shown in Figure 8.

Figure 8 shows that there are lots of frequency compo-
nents in the spectral responses, mainly in 0–10Hz, which is
in agreement with the conclusion in [5, 6]. Moreover, the
remaining energy is concentrated in these typical frequency
ranges, such as 100–120Hz, 230–260Hz, 340–390Hz, and
680–700Hz.
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Figure 6: Layout of cutters.

5.2. Analysis of Modal Properties. The free vibration of the
linear, time-invariant representation is considered, ignoring
the damping coefficient and external excitations in formula
(12). Since there is 59 degrees of freedom in the dynamic
system, we can obtain 59 natural frequencies and mode

Table 1: Natural frequencies and vibration of the cutterhead system.

Vibration modes Natural frequencies/Hz
Rigid mode 𝑓

1
= 0

Rotational vibration of pinions
and motors 𝑓

2−9
= 57

Translational and overturning
coupled vibration of cutterhead
and inner ring gear

𝑓
10
= 61, 𝑓

11
= 70,

𝑓
12
= 114, 𝑓

13,14
= 120,

𝑓
15
= 124

shapes, and the lowest fifteen natural frequencies are listed
in Table 1.

The vibrationmodes with normalization are illustrated in
Figure 9, where the freedom number 1–59 is the correspond-
ing degree of freedom, respectively.

The main conclusions obtained through Table 1 and
Figure 9 are as follows.

(1) The first natural vibration mode is rigid mode, with
the rigid motion of inelastic deformation, which
keeps the constant transmission ratio to each rota-
tional part.



10 Mathematical Problems in Engineering

0 1 2 3 4 5 6 7 8 9 10
240
245
250
255
260
265
270
275
280
285

Time (s)

Ve
rt

ic
al

 fo
rc

e (
kN

)

(a) Normal forces of center cutters

280

300

320

340

360

380

400

420

Ve
rt

ic
al

 fo
rc

e (
kN

)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

(b) Normal forces of normal cutters

20

25

30

35

40

45

50

Si
de

 fo
rc

e (
kN

)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

(c) Side forces of normal cutters

0 1 2 3 4 5 6 7 8 9 10
295
300
305
310
315
320
325
330
335
340
345

Time (s)

Ve
rt

ic
al

 fo
rc

e (
kN

)

(d) Normal forces of gauge cutters

0

5

10

15

20

Si
de

 fo
rc

e (
kN

)

0 1 2 3 4 5 6 7 8 9 10
Time (s)

−15

−5

−10

(e) Side forces of gauge cutters

Figure 7: Loads time history of cutters.

(2) The amplitudes of free vibration are mainly in the
middle order modes, and the low and high order
modes are relatively smaller.

(3) The lowest fifteen natural vibration modes are mainly
rotational vibration of pinions and motors and trans-
lational and overturning coupled vibration around
arbitrary axis of cutterhead and inner ring gear, which
is consistent with the engineering example in [25]. In
addition, the low natural frequencies are 57Hz and
61Hz, which are greater than the rotation frequency
of pinions (1.16Hz) andmeshing frequency (16.24Hz)
of internal excitations. Nevertheless, the resonance
of the cutterhead system may be inevitable with the

current parameters, due to the wide frequency of
external excitations.

5.3. Dynamic Responses and Analysis. With the first 2 s of
external excitations, we can obtain the dynamic responses of
cutterhead, as shown in Figures 10 and 11.

From the dynamic results, Figure 10 can draw the follow-
ing conclusions.

(1) The vibration amplitudes of cutterhead pieces in each
direction are less than 1mm, which shows that the
stiffness of cutterhead system is relatively high to
resist the impact of external excitations.
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(2) The vibration in each direction is similar to the
variation of external excitations, which is influenced
greatly.

(3) The magnitude of amplitude in each cutterhead piece
is identical, where the axial vibration is maximal, with
the amplitude being up to about 0.55mm. And the
maximum amplitude of radial direction is close to
0.25mm. It is shown that although the radial force is

much less than axial force, the radial stiffness is also
relatively lower, which can explain the cause of iden-
tical magnitude in each direction. However, the radial
vibrations have stronger influence on the cutterhead
driving system, which may cause some engineering
problems, such as seal failure and abnormal wears of
the bearing raceway.

Similar conclusions may be obtained from Figure 11 as
follows.

(1) The vibration regularity of center block is consis-
tent with cutterhead pieces, and the amplitude in
each direction is slightly smaller, with the maximum
amplitude of 0.48mm in axial direction and 0.2mm
in radial directions. These responses of translational
vibration provide input conditions for calculating the
joint surface loads of cutterhead.

(2) The maximum angular amplitude around 𝑋 and 𝑌

axes is about 0.016mrad, while the torsional ampli-
tude around 𝑍 axis is about 0.065mrad, which has a
great effect on cutters’ wear and weld of cutterhead
support ribs, and it may cause abnormal wears of
the disc cutters, weld cracking, and other engineering
problems.



12 Mathematical Problems in Engineering

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.05

0.1

0.15

Time (s)

D
isp

la
ce

m
en

t (
m

m
)

−0.2

−0.1

−0.05

−0.15

(a) Displacement in 𝜁 direction

0

0.05

0.1

0.15

D
isp

la
ce

m
en

t (
m

m
)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (s)

−0.2

−0.1

−0.05

−0.15

(b) Displacement in 𝜂 direction

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (s)

D
isp

la
ce

m
en

t (
m

m
)

−0.1

(c) Displacement in 𝑍 direction

Figure 10: Dynamic responses of cutterhead pieces.

The comparison of Figure 10 with Figure 11 shows that the
translational vibration responses between cutterhead pieces
and center block are analogous, and the amplitudes are
almost the same. The reason is that each cutterhead piece is
attached to the center block, and the connection stiffness is
relatively large compared to the external excitations. That is,
each cutterhead piece vibrates with the center block, which
illustrates that the amplitude of each cutterhead piece is
slightly larger than that of the center block. The translational
responses of Figures 10 and 11 certificate this regularity.

Thus, as the results mentioned above, it is illustrated that
the proposed model and method are effective and correct.

The dynamic responses of cutterhead system are not only
related to the time domain but also affected by the frequency;
thereby the Fast Fourier Transform (FFT) algorithm is used
to generate the frequency responses, as shown in Figures 12
and 13.

As may be seen from the spectral analysis in Figures 12
and 13, the following can be found.

(1) Under the influence of time-varying internal and
external excitations, the main frequencies of dynamic
responses are as follows: 100–120Hz, 224Hz, 236Hz,

390Hz, and 693Hz, which are consistent with exter-
nal excitations. It is indicated that the vibration type
of cutterhead belongs to forced vibration; in other
words, the dynamic responses are influenced by the
external excitations more greatly.

(2) The frequencies of radial, torsional, and overturning
vibrations are concentrated in 112Hz and 120Hz,
which are in good agreement with the natural fre-
quencies of the translational and overturning coupled
vibration mode (listed in Table 1). It is suggested
that the two frequencies should be mainly considered
when cutterhead structure is designed and the boring
parameters are matched, avoiding the resonance phe-
nomenon due to the unreasonable selection of system
parameters.

The comparison of frequency responses with the natural
frequencies and external excitations shows that the frequen-
cies are basically identical, which can further demonstrate the
effectiveness of the proposed model and method.

Substituting the dynamic responses of cutterhead into
(11), one can obtain tangential and radial relative defor-
mations between each cutterhead piece and central block.
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Figure 11: Dynamic responses of the cutterhead center block.

Multiplying the corresponding equivalent support stiffness,
the loads of cutterhead joint surface are gained, and, using the
rain flowmethod, one can obtain the load range distributions,
and the results are shown in Figure 14.

From the above-mentioned results, the distribution types
and characteristic values can be estimated and tested by 𝐾-𝑆
test. It is observed that the cutterhead joint surface loads
approximately obey normal distribution, and the distribution
parameters are listed in Table 2.

From the data in Figure 14 and Table 2, the following
conclusions can be drawn.

(1) The cutterhead joint surface loads change rapidlywith
a considerable discrete degree, under the influence of
complex factors.

(2) The mean of joint surface loads are highly consis-
tent with the external excitations (minus represents
the direction), while the standard deviation in each
direction increases by 12–15 times. It is indicated that
the obtained simulation results are correct from the
results of mean joint surface loads, and the inertial
effect should be considered for the structure design
of cutterhead, combined with dynamic analysis.
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Figure 12: Frequency responses of the cutterhead pieces.

Table 2: Distribution statistics of the cutterhead joint surface loads.

Joint surface loads External excitations
Mean/kN Standard deviation/kN Mean/kN Standard deviation/kN

Tangential −139.69 93.25 139.66 7.40
Normal −106.27 130.03 106.32 11.04
Axial 1410.55 915.48 1410.55 60.00

These simulation results can provide boundary con-
ditions for dynamic performance optimization and
crack propagation of the cutterhead structure.

6. Conclusions

In this paper, a multidegree-of-freedom coupling dynamic
model is presented for the TBM cutterhead system. Based
on the parameters of an actual project and the cutters’ forces,
the structured modal properties and dynamic responses are
analyzed. The main results are summarized as follows.

(1) The lowest fifteen natural vibration modes of the cut-
terhead system are classified as rigid mode, rotational

vibration modes of pinions and motors, and trans-
lational and overturning coupled vibration modes
of cutterhead and inner ring gear, and the corre-
sponding natural frequency is 57Hz and 61Hz, which
is greater than rotation frequency of pinions and
meshing frequency of internal excitations. However,
the resonance of the cutterhead system may be
inevitable due to the overlap frequencies between
natural frequencies and external excitations.

(2) The vibration responses of cutterhead are similar to
the variation of external excitations, with the iden-
tical magnitude of amplitude in each translational
direction,where the axial amplitude is about 0.55mm,
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Figure 13: Frequency responses of the cutterhead center block.

the radial amplitude is close to 0.25mm, the angular
amplitude around 𝑋 and 𝑌 axes is about 0.016mrad,
and the torsional amplitude is almost 0.065mrad.
The results may provide reference for the design of
cutterhead driving system and weld strength check of
support ribs.

(3) The frequencies of dynamic responses are predom-
inantly concentrated in 100–120Hz, 224Hz, 236Hz,
390Hz, and 693Hz. And it is suggested that the two
frequencies of 112Hz and 120Hz should be avoided,
while carrying out the structural design of cutterhead
and matching the boring parameters.

(4) Considering the influence of internal and external
excitations, it is shown that the cutterhead joint
surface loads change rapidly with large amplitudes, as

well as complex nonlinear characteristics. As the rain
flow results have shown, the standard deviation in
each direction increases by 12–15 times. It is indicated
that the amplification effect of dynamic loads should
be mainly considered in cutterhead structural design,
so as to lay a foundation for dynamic optimization
and fatigue life assessment of the cutterhead structure.

There are some further topics that should be studied,
although we have obtained many effective results about
TBM cutterhead system. In the next stage, we will study
the parameter influence laws about dynamic characteristics,
estimate the fatigue life of the cutterhead based on the joint
surface loads, and carry out the field test and vibration
experiment in the near further.
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Figure 14: Time-varying histories and statistics results of the cutterhead joint surface loads.
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A novel scheme of high stability engine control (HISTEC) on the basis of an improved linear quadratic regulator (ILQR), called
direct surgemargin control, is derived for super-maneuver flights. Direct surgemargin control, which is different from conventional
control scheme, puts surge margin into the engine closed-loop system and takes surge margin as controlled variable directly.
In this way, direct surge margin control can exploit potential performance of engine more effectively with a decrease of engine
stability margin which usually happened in super-maneuver flights. For conquering the difficulty that aeroengine surge margin is
undetectable, an approach based on improved support vector regression (SVR) machine is proposed to construct a surge margin
prediction model. The surge margin modeling contains two parts: a baseline model under no inlet distortion states and the
calculation for surge margin loss under supermaneuvering flight conditions. The previous one is developed using neural network
method, the inputs of which are selected by a weighted feature selection algorithm. Considering the hysteresis between pilot input
and angle of attack output, an online scrolling window least square support vector regression (LSSVR)method is employed to firstly
estimate inlet distortion index and further compute surge margin loss via some empirical look-up tables.

1. Introduction

To begin with, we will provide a brief background on high
stability control for aeroengines, which is an aerodynamic
concept different from the stability concept in control theory
and an unstable state means that the fan or compressor of
an engine goes into a surge state. Super-maneuverability is
one of the essential techniques of modern fighters. Yet, in
a post-stall state, when engines work under the conditions
of high angle of attack, the inlet distortion becomes severe,
leading to unstable operations such as weakened engine
performance, reduced steady operating surge margin, and
even surge in serious conditions. For this issue, national
aeronautics and space administration (NASA) initialed and
led a famous high stability engine control (HISTEC) research
project in 1993, in which an engine stability control in super-
maneuver flights was highlighted, and the main idea is that
the pressure ratio of an F-100 turbofan engine could be
adaptively controlled to regulate cooperating working point

or the surge margin of its fan and compressor when an
F-15 ACTIVE (advanced control technology for integrated
vehicles) aircraft entered into super-maneuver states. Thus,
sufficient stability margin of engines can be ensured in super
maneuver state [1–3]. Similarly, Wang et al. [4, 5] proposed
an engine stability control law through the recovery of surge
margin by compensating losses of the fan pressure ratio when
a severe inlet distortion occurs.The literatures [6, 7] reported
a direct surge margin control, in which a baseline and its loss
for surge margin in severe distorted states need to compute,
but the calculation for the baseline just employs a simpler
definition that related to the fan pressure ratio; as a result it is
impossible to reflect the influence in air flow. Although these
above two schemes are able to ensure the engine stability,
since the surge margin cannot be measured directly, it may
be enlarged a lot in the maneuver process for the engine
potential not to be fully exploited, resulting in much smaller
engine thrust which cannot help the aircraft to accomplish
the fast and right modulations in angular position.
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Around this interesting topic of aeroengine stability
control, a lot of articles, which concerns active component
control, have been reported [8–12]. In recent years, an
approach of more realistic active stall/surge control has been
proposed as an effective approach to realize high stability
control [13–15]. This technology mainly takes advantage of
the flow characteristics which is denoted as stall inception
in high frequency phase of compressor and implements a
specific mathematical model between pressure correlation
and surge margin. Thus, when the engine enters into a
severe distortion state, some emergency fuel control with
high frequency can be applied to the engine system so that
the temperature and pressure of the combustor will drop
quickly; therefore the stall margin will be restored to the safe
area. Essentially, this control approach is within the scope of
limit protection control near the surge border, the defections
of which are still found in a worse coordination with the
main control loop, as well as an insufficient exploration in
performance potentials.

Obviously, those above methods have a comment promi-
nent drawback which is that surge margin cannot be mea-
sured directly or be estimated accurately. Therefore, if the
real-time accurate prediction of engine surge margin could
be achieved, it can be used as the direct virtual parameter
for accurate control, so that a fixed surge margin or a
certain distance, between the cooperating work line and
the surge border line in the compressor, can be always
kept in super-maneuver flights. If this imagination could be
realized, engines might sustain a more efficient and stable
operation in super maneuver states. Near recently from a
NASA report [16], it is right an expected solution to engine
high stability control to apply some nonlinear methods like
artificial mapping and compound kalman filter [17].

As said above, the establishment of engine surge margin
prediction model has always been a challenge in the field
of surge control. Our research is carried out on a two-
spool mixing exhaust turbofan engine with afterburning,
the power of which lies in the same class of F-100 engine.
First, through a novel feature selection algorithm, the most
suitable measurable variables with the strongest correlation
with surge margin are selected as inputs of a surge margin
baseline model. Furthermore, based on a BP neural network,
a surge margin baseline model is set up, which is able to
predict the surge margin in undistorted states. In addition,
an online scrolling window LSSVR model (OSW-LSSVR),
which has a time series of the angle of attack and relative
rudder angles as its inputs, is proposed and designed for the
real-time prediction of inlet distortion index in distortion
states. Due to a definite relationship between inlet distortion
index and surge margin loss, the surge margin loss can be
estimated using the OSW-LSSVRmodel. Ultimately, with the
combination of the output of surge margin baseline model
and the loss in distortion states, the surge margin under
engine inlet distortion states can be accurately estimated. As
for the design of high stability engine control, an improved
linear quadratic regulation (ILQR) robust control is chosen
here due to its good robustness for adapting a large variation
in engine power states and envelope points [18].

2. Main Idea for Direct Surge Margin Control

2.1. A Novel Direct Surge Margin Control. An integrated
aircraft and engine dynamic model depicted in Figure 1
is introduced to implement some necessary validations [6,
7]. This comprehensive model is composed by a dynamic
aircraft model and its flight controller, a component-level
turbofan engine model and its controller which will be
designed as the proposed controller, and a conventional one
for comparisons. For the aircraft model, the dynamics in
longitudinal plane is only employed for simplicity, which can
simulate level flight, climbing, accelerating, descending and
super maneuver tasks. For the engine model, 𝐴

8
and𝑊fb are

selected as the control parameter, whereas 𝑆mf and𝑁𝑐
are the

relative controlled variables. Therefore, the engine command
𝑟 includes the references value of 𝑆mf and 𝑁

𝑐
, and 𝑒 is a

deviation vector with respect to command signal. A data set
about the relationship between 𝛼 and DC

60
that is a type of

distortion index are originated from flight test data of a F/A-
18A aircraft in the Flight Research Center in NASA Dryden
[19]. As discussed above, if the surge margin for an engine
can be predicted accurately, a direct engine surge margin
control, or a high stability engine control, easily can be further
realized. In our research, a novel scheme is proposed (see
Figure 1), where 𝑘 represents the current moment and St is
a sequential engine state values. The main idea is as follows.

(a) Considering the hysteresis between pilot input and
rudder output, the current manipulations will affect
the outputs in 𝑑-step time delay (or 𝜏 seconds in
continuous sense) and the prediction for 𝛼 is very
important in a super maneuver task in which 𝛼

changes very violently [1–3] to have a great impact
on the surge margin. Therefore, two parameters are
needed to control this high stability control scheme.
One is 𝑆mf(𝑘 +𝑑), that is a predicted surge margin 𝑆mf
at the 𝑑-step ahead time, to adapt the variation in 𝑆mf
due to the changes in 𝛼. The other need to control is
𝑁
𝑐
which regulates the power of the engine to supply

enough thrust 𝐹.
(b) Sowhen a supermaneuver of the fighter is carried out,

how to estimate 𝑆mf(𝑘 + 𝑑) is a core problem in this
scheme. For calculating 𝑆mf(𝑘 + 𝑑), a time series of
angle of𝛼 and the elevator 𝛿

𝑧
are taken as inputs of the

angle of attack prediction model to predict the 𝑑-step
ahead value �̃�(𝑘 + 𝑑). Necessary engine state values
in St series are obtained through the relative sensors
to mapping the baseline value of 𝑆mf. After that, the
�̃�(𝑘 + 𝑑) and St sequence are gathered as the inputs of
fan surge margin prediction model; consequently the
predicted surge margin 𝑆mf(𝑘 + 𝑑) would be gotten
in real time. For showing clearly, an equivalent pilot
input delay system is labeled with a dotted rectangle
in Figure 1.

Remark 1. In our research, the simulation step is preset as
20ms; so 𝑑 = 𝜏/0.02 = 0.5/0.02 = 25 is predefined here
based on [1–3].
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Figure 1: Structure for direct engine surge margin control.

2.2. Necessity to Estimate Surge Margin. For a turbofan
engine, a parameter or a concept is defined as surge margin
to show a physical meaning of a relative distance from the
cooperate working point to the surge border (see Figure 2),
and the following equation is generally used to represent the
surge margin of a fan, and similar for a compressor [20]:

𝑆
𝑚
=
𝜋
𝑠
/𝑊cor,𝑠 − 𝜋

𝑜
/𝑊cor,𝑜

𝜋
𝑜
/𝑊cor,𝑜

=
𝜋
𝑠

𝜋
𝑜

⋅
𝑊cor,𝑜

𝑊cor,𝑠
− 1. (1)

When engine inlet distortions happen due to high attack
angle states, the surge border of the engine will be shifted
down or the operation line will be shifted up, leading to a
surge margin loss. Take the example of the shifting-down of
surge border, and we have:

Δ𝑆
𝑚
= 𝑆

𝑚
− 𝑆

𝑚

=
𝜋
𝑠
/𝑊cor,𝑠 − 𝜋

𝑜
/𝑊cor,𝑜

𝜋
𝑜
/𝑊cor,𝑜

−
𝜋
𝑙
/𝑊cor,𝑠 − 𝜋

𝑜
/𝑊cor,𝑜

𝜋
𝑜
/𝑊cor,𝑜

=
𝜋
𝑠
/𝑊cor,𝑠 − 𝜋

1
/𝑊cor,𝑙

𝜋
𝑜
/𝑊cor,𝑜

,

(2)

where Δ𝑆
𝑚
shows surge margin loss and 𝑆

𝑚
represents the

surge margin when entering distortion; the subscript 1 shows
the lowered stable boundary value.

As can be seen from the above equations, 𝑆
𝑚
and Δ𝑆

𝑚
are

parameters that cannot be measured. Under distorted states,
if the undistorted 𝑆

𝑚
and the surge margin loss Δ𝑆

𝑚
might

be accurately predicted, the distorted surge margin 𝑆
𝑚
will be

expressed as

𝑆
𝑚
= 𝑆

𝑚
− Δ𝑆

𝑚
. (3)

For calculating Δ𝑆
𝑚
, an indirect parameter, called pres-

sure ratio loss of the cooperating work point, is usually
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Figure 2: Surge margin change in a fan characteristic map.

utilized according to the [21, 22]. Due to the shifting down
of the boundary line, the pressure ratio loss Δ𝑃rs is expressed
as

Δ𝑃rs =
𝜋
𝑠
/𝑊cor,𝑠 − 𝜋

1
/𝑊cor,𝑙

𝜋
𝑠
/𝑊cor,𝑠

. (4)

With the combination of (1) and (2) and the definition of
Δ𝑃rs, the surge margin loss is easily expressed as

Δ𝑆
𝑚
=
𝜋
𝑠
/𝑊cor,𝑠 − 𝜋

1
/𝑊cor,𝑙

𝜋
𝑜
/𝑊cor,𝑜

=
𝜋
𝑠
/𝑊cor,𝑠 − 𝜋

1
/𝑊cor,𝑙

𝜋
𝑠
/𝑊cor,𝑠

𝜋
𝑠
/𝑊cor,𝑠

𝜋
𝑜
/𝑊cor,𝑜

= Δ𝑃rs (1 + 𝑆
𝑚
) .

(5)

2.3. Surge Margin Prediction Model. Based on the current
and historical information of input parameters, dynamic
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Figure 3: Engine surge margin modeling in distortion states.

solutions for the baseline value 𝑆
𝑚
and the loss value Δ𝑆

𝑚

can be acquired or estimated by a novel engine surge margin
model for super-maneuver flight, which consists of a surge
margin baseline model and surge margin loss model. The
modeling process is shown in Figure 3 and described as
follows.

2.3.1. Surge Margin Baseline Model. In the range of super-
maneuver flight envelope (height of 3∼7 km, march number
of 0.3∼0.7), a surge margin baseline model based on a BP
neural network, which is under no inlet distortion of the
fighter, is trained to predict surge margin baseline value.
Consider a lot of and redundant measurable parameters
correlated with surge margin, a feature selection algorithm,
for choosing adaptable engine sensors to estimate surge
margin, is proposed by a weighted LSSVR method. With a
contribution criterion of each parameter to surge margin, a
group of most related and affordable parameters are selected
as the model inputs.

2.3.2. Surge Margin Modeling in Distortion States. On the
basis of surgemargin baselinemodel, surgemarginmodeling
in distortion states can be implemented in the following steps.

First, an online scrolling window LSSVR model (OSW-
LSSVR) is proposed to predict the𝑑-step ahead value �̃�(𝑘+𝑑).
TheOSW-LSSVRmodel is capable of updating the prediction
model based on the time series of angle of attack and elevators
to adapt significant changes in power states and the extensive
envelope range.

Second, the predicted �̃�(𝑘 + 𝑑) is used to identify DC
60
at

the 𝑑 steps aheadmoment [21], and a certain relationship [19,
22], some empirical curves or look-up tables, between DC

60

and the pressure ratio lossΔ𝑃rs, is employed to get the relative
value at the 𝑑 steps ahead moment. It follows that

DC̃
60
(𝑘 + 𝑑) = DC

60
(𝑀

𝑎
, �̃� (𝑘 + 𝑑)) , (6)

Δ�̃�rs (𝑘 + 𝑑) = (DC̃
60
(𝑘 + 𝑑)) . (7)

Next, from (5) engine surge margin loss at 𝑘 + 𝑑moment
is estimated as

Δ𝑆
𝑚
(𝑘 + 𝑑) ≈ Δ�̃�rs (𝑘 + 𝑑) (1 + 𝑆

𝑚
(𝑘)) . (8)

Finally, the surge margin in distortion states at 𝑘 + 𝑑

moment can be obtained as

𝑆
𝑚
(𝑘 + 𝑑) = 𝑆

𝑚
(𝑘) − Δ𝑆

𝑚
(𝑘 + 𝑑) . (9)

Remark 2. 𝑆
𝑚
(𝑘) is used to calculate Δ𝑆

𝑚
(𝑘 + 𝑑) in (8) if 𝑑

steps are too short for phugoid dynamics in flight motions to
influence the 𝑆

𝑚
baselinemodel.Thedetailed designation and

validation for surge margin baseline model, angle of attack
prediction model and direct engine surge margin control are,
respectively, clarified as follows.

3. How to Set Up a Surge Margin
Baseline Model

As discussed above, the surge margin baseline modeling
should firstly identify the model inputs. Based on the LSSVR
algorithm [23, 24], a weighted feature selection algorithm is
proposed so as to screen a group of most valuable parameters
that can be measured as inputs of the baseline model. Then,
a neural network with nonlinear mapping capability is used
for the surge margin baseline model design. Three parts,
containing the preliminary LSSVR algorithm, surge margin
feature selection and baseline model, are deduced and stated
respectively as follows.

3.1. LSSVR Algorithm. To solve a nonlinear regression prob-
lem for a training data set {(x

𝑖
, 𝑦

𝑖
)}
𝑖=1,...,𝑀

, where x
𝑖
∈ 𝑅

𝑚 is
the input with 𝑚-dimension and y

𝑖
∈ 𝑅 is its corresponding

output.
A least square support vector regression (LSSVR) for

this training data set can be transformed to an optimization
problem as

minw,𝑒𝑖
𝐽 (w, 𝑒

𝑖
) =

1

2
w𝑇w +

𝛾

2

𝑀

∑
𝑖=1

𝑒
2

𝑖

s.t. 𝑦
𝑖
= w𝑇

𝜑 (x
𝑖
) + 𝑏 + 𝑒

𝑖
, 𝑖 = 1, . . . ,𝑀,

(10)

where w represents the model complexity, 𝑏 is the offset, e =

[𝑒
1
, 𝑒

2
, . . . , 𝑒

𝑀
] represents prediction residual vector, 𝛾 ∈ 𝑅

+

is a regularization parameter, and 𝜑(⋅) is a nonlinear mapping
which can transform the input data into a high-dimensional
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Table 1: Effects by feature selection for fan surge margin model.

Order 1 2 3 4 5 Others
Sensors 𝑁

𝑓
𝑊fb 𝑇

22
𝑃
3

𝑃
2

⋅ ⋅ ⋅

Υ(𝑖) 9.2179 1.5517 1.5298 1.1396 1.1178 ⋅ ⋅ ⋅

feature space. In order to solve the above problem, a Lagrange
function without constraints can be constructed as

𝐿 (w, 𝑏, 𝑒
𝑖
, 𝛼

𝑖
) = 𝐽 −

𝑀

∑

𝑖=1

𝛼
𝑖
{w𝑇

𝜑 (x
𝑖
) + 𝑏 + 𝑒

𝑖
− 𝑦

𝑖
} , (11)

where 𝛼
𝑖
is Lagrange multiplier.

ThroughKarush-Kuhn-Tucker (KKT) derivation, aWolfe
dual optimization problem for (10) can be expressed as

min
𝑏,𝛼𝑖

{

{

{

𝐿 (𝑏, 𝛼
𝑖
) = [

[

1

2

𝑀

∑

𝑖,𝑗=1

𝛼
𝑖
𝛼
𝑗
𝑘 (x

𝑖
, x

𝑗
) +

1

2𝛾

𝑀

∑

𝑖=1

𝛼
2

𝑖

−

𝑀

∑

𝑖=1

𝛼
𝑖
𝑦
𝑖
+ 𝑏

𝑀

∑

𝑖=1

𝛼
𝑖
]

]

}

}

}

,

(12)

where 𝑘(𝑥
𝑖
, 𝑥

𝑗
) is a kernel function chosen as exp{−‖𝑥

𝑖
−

𝑥
𝑗
‖
2
/2]2}.
After that, (12) can be reformulated for convenience:

min{𝐿 (𝑏,𝛼) = [
1

2
[𝛼

𝑇
𝑏] [

K 1
1𝑇 0

] [
𝛼

𝑏
] − [𝛼

𝑇
𝑏] [

Y
0
]]} .

(13)

Then the optimal solution for (14) is easily obtained as

[
𝛼
∗

𝑏
∗] = [

K 1
1𝑇 0

]

−1

[
Y
0
] = R [

Y
0
] , (14)

where Y = [𝑦
1
, 𝑦

2
, . . . , 𝑦

𝑀
]
𝑇, 𝛼 = [𝛼

1
, 𝛼

2
, . . . , 𝛼

𝑀
]
𝑇, 1 =

[1
1
, 1

2
, . . . , 1

𝑀
]
𝑇, and K is the kernel matrix in which

K
𝑖𝑗
= 𝑘 (𝑥

𝑖
, 𝑥

𝑗
) +

𝛿
𝑖𝑗

𝛾
= 𝜑

𝑇
(𝑥

𝑖
) 𝜑 (𝑥

𝑗
)

with 𝛿
𝑖𝑗
= {

1, 𝑖 = 𝑗

0, 𝑖 ̸=𝑗.

(15)

After obtaining the solution 𝛼 and 𝑏 by (14), for any new
testing sample x ∈ 𝑅

𝑚, a regression or a predictor for x is
gotten as

𝑓 (x) =
𝑀

∑

𝑖=1

𝛼
∗

𝑖
𝑘 (x

𝑖
, x) + 𝑏

∗
. (16)

3.2. Feature Selection for Different Sensors. An aeroengine
is not allowable to install too many sensors; otherwise it
will degrade overall performance and increase computational
complexity of the control systems.Therefore, a problemmust

be solved before setting up a surge margin baseline model;
that is, which measurable variables will be selected as input
variables for themodel. In this section, an improved criterion
for ranking variables is induced below [25, 26].

Considering that each measurable component in x has
different affordable fractions such as maintainability and
price for variant sensors, a weighted matrix is necessary to
be introduced here to quantify the influence of the affordable
aspects for each parameter. Therefore, every sample or input
should be transformed into the following expression:

x = Λx, (17)

whereΛ = Λ
𝑇
> 0 is defined as an affordable weightedmatrix

and proper dimension, and the problem (16) is changed as
follows:

min{𝐿 (𝑏,𝛼) = [
1

2
[𝛼

𝑇
𝑏] [

K 1
1𝑇 0

] [
𝛼

𝑏
] − [𝛼

𝑇
𝑏] [

Y
0
]]} ,

(18)

where K is a weighted kernel matrix in which

K

𝑖𝑗
= 𝑘 (𝑥



𝑖
, 𝑥



𝑗
) +

𝛿
𝑖𝑗

𝛾
with 𝛿

𝑖𝑗
= {

1, 𝑖 = 𝑗

0, 𝑖 ̸=𝑗.
(19)

So from (14), the optimal value 𝐿∗ of (17) is easily gotten
as

𝐿
∗
= −

1

2
[Y𝑇

0] [
K 1
1𝑇 0

]

−1

[
Y
0
]

= −
1

2
[Y𝑇

0] [
𝛼
∗

𝑏
∗] = −

1

2
Y𝑇
𝛼
∗
.

(20)

In the calculation process, if the optimal value of 𝐿, 𝐿∗ is
obtained, the surge margin prediction has the best precision.
If the 𝑖th variable is removed,𝐿∗(𝑖) = −1/2Y𝑇

𝛼(𝑖), where𝛼(𝑖)
is the solution of (18) without the 𝑖th input variable. Thus, a
criterion for ranking variables can be put forward:

Υ (𝑖) =
𝐿
∗

𝐿∗
=
Y𝑇
𝛼
∗
(𝑖)

Y𝑇
𝛼
∗

. (21)

If the value of Υ(𝑖) is smaller than the value of Υ(𝑗) (𝑗 ̸= 𝑖),
the 𝑖th variable is considered to make less contribution to the
optimal value 𝐿∗ than the 𝑗th variable. As for the aeroengine,
there are more than 20measurable variables for the selection.
Then, each Υ(𝑖) for different sensors should be computed
based on (21), so all the variables can be ranked and some
of them might be selected as the most contributors to surge
margin baseline model. At last, the inputs St of 𝑆mf baseline
model are chosen as 𝑁

𝑓
, 𝑊fb, 𝑇22, 𝑃2, and 𝑃

3
in Table 1, and

the ones of 𝑆mc baseline model are𝑁
𝑐
, 𝑇

3
, 𝜋

𝑐
,𝑇
22
, and 𝑃

3
(see

Table 2).
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Table 2: Effects by feature selection for compressor surge margin model.

Order 1 2 3 4 5 Others
Sensors 𝑁

𝑐
𝑇
3

𝜋
𝑐

𝑇
22

𝑃
3

⋅ ⋅ ⋅

Υ(𝑖) 12.3796 2.1351 1.4773 1.3526 1.2584 ⋅ ⋅ ⋅

Input layer Hidden layer Output layer

···

···

···
[Sm(k)]

Nf(k), Nf(k − 1), Nf(k − 2)

T22(k), T22(k − 1), T22(k − 2),

P2(k), P2(k − 1), P2(k − 2),

P3(k), P3(k − 1), P3(k − 2)

Wfb (k), Wfb (k − 1), Wfb (k − 2),

H(q)

Y(r)

)

X(p)

H(1)

H(2)

H(3)

H(4)

H(5)

X(1)

X(2)

X(3)

Y(1)

Y(2)

Y(3)

NN(·)

Figure 4: The topological structure for BP model.

3.3. 𝑆
𝑚
Baseline Model. After the determination for the input

parameters of the surge margin baseline model, a three-
layer BP neural network [27, 28], shown in Figure 4, can
be employed for the model designing, and its mathematical
expression is

Y = NN (X) . (22)

Figure 4 shows the topological structure of the three-layer
BP neural network, inwhich there are𝑝 input points for input
layer, 𝑞 hidden points for hidden layer, and 𝑟 out layer points.
𝑤
𝑖𝑗
is denoted as connecting weighted coefficient between

input and hidden layers, and 𝑤
𝑗𝑘

denoted as connecting
weighted coefficient between the input and hidden layers. BP
model can be described as follows.

For the hidden layer, the followed equations can be
acquired for the 𝑗th point:

𝐻(𝑗) = 𝑓
𝐻
(net

𝑗
) , net

𝑗
=

𝑝

∑

𝑖=1

𝑤
𝑖𝑗
𝑋(𝑖) , (23)

where 𝑓
𝐻
(⋅) is denoted as an excitation function for hidden

layer, 𝑖 = 1 to 𝑝 and 𝑗 = 1 to 𝑞.
And for the output layer, the following expressions can

also be gotten for the𝑚th point:

net
𝑚
=

𝑞

∑

𝑗=1

𝑤
𝑗𝑚
𝐻(𝑗) , 𝑌 (𝑚) = 𝑔

𝑂
(net

𝑚
) , (24)

where 𝑔
𝑂
(⋅) is denoted as an excitation function for output

layer and𝑚 = 1 to 𝑟. 𝑓(⋅) and 𝑔(⋅) are both chosen as sigmoid
functions.

If an evaluation function is defined as 𝐸 =

1/2∑
𝑟

𝑚=1
(𝑑(𝑚) − 𝑌(𝑚))

2, where 𝑑(𝑚) is an expected
output for the network, the adjusting rule for those weighted
coefficients is deduced as follows:

Δ𝑤
𝑗𝑘
= −𝜂

𝜕𝐸

𝜕𝑤
𝑗𝑘

, Δ𝑤
𝑖𝑗
= −𝜂

𝜕𝐸

𝜕𝑤
𝑖𝑗

, (25)

where the scalar 𝜂 > 0 is a factor about convergent rate. For
more details about BP algorithm, one can refer to [26].

Overfitting often faces designers of intelligent identifi-
cation methods like neural network, and it means that a
more complex structure does not mean a more accurate
mapping for all the inputs. So, the number of middle layer
neurons needs to modulate with care to acquire the better
choice, when the number of middle layer neurons in the 𝑆mf
model is adjusted as 8, 14, and 16, and the relative test error
is calculated as 7.58e−3, 6.38e−3, and 6.68e−3 separately in
Figure 5. Similarly, the number in the 𝑆mc model ismodulated
as 7, 12, and 13, and the relative test error is 6.73e−4, 5.69e−4,
and 5.79e−4, respectively (see Figure 6). So we choose 14 as
the best number of middle layer neurons for the 𝑆mf model,
and 12 for the 𝑆mc model.

Figure 7 presents a comparison between the predicted
and real 𝑆mf and 𝑆mc in Matlab environment. The relative
testing errors are within 5% and 1%, respectively, indicating
surge margin models have satisfactory prediction precision.
Moreover, for testing the accuracy and real-time ability in
VC++ environmentwhich is our destination simulation envi-
ronment, Figure 8 illustrates the simulation results between
the outputs from real nonlinear plant and its prediction
model for comparisons, and these results discover that the
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Figure 5: Precision test of different middle layer neurons of surge margin model.
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Figure 6: Precision test of different middle layer neurons of surge margin model.
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Figure 7: Precision test for surge margin prediction model in Matlab environment.
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Figure 8: Precision test of surge margin prediction model in VC++ environment.

prediction model is capable of tracking the relative surge
margin satisfactorily (dynamic error within 5% for 𝑆mf and
1% for, 𝑆mc), where “pre” means the predicted one.

4. How to Set Up an Angle of
Attack Prediction Model

As discussed above, the inlet distorted index caused by flight
angle of attack determines the loss of the surge margin. For
adapting the changes of angle of attack that cannot be prede-
fined due to time delay, an OSW-LSSVR model is proposed
to estimate the 𝑑 step ahead value and it can pull new samples

into an online training set, called a scrolling window, to adapt
large variations in engine states and envelope points. The
OSW-LSSVR algorithm and angle of attack predictionmodel
are, respectively, described as follows.

4.1. OSW-LSSVR Algorithm. In order to realize an online
LSSVR, after obtaining a new training data pair (x

𝑛
, y

𝑛
), a new

predictor is needed to be reconstructed according to (14). For
reducing the computational complexity to solve (14) directly,
an iterative strategy [29, 30] is adopted here.

A concept 𝑃 is firstly introduced as an index set, and
corresponding training data of which are utilized to construct
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the predictor at 𝑛th iteration. | ⋅ | represents the cardinality.
And the corresponding training data set or scrolling window
set is defined as

x𝑃 = {x𝑃
𝑖
} , |𝑃| ≤ 𝑙, (26)

where 𝑙 ∈ 𝑁 is denoted as the storage capacity of training
samples in the scrolling window.

So for the 𝑛th iteration, it follows that

R𝑛
= [

K
𝑃𝑃

k
𝑃𝑛

k𝑇
𝑃𝑛

𝑘
𝑛𝑛

]

−1

, (27)

where K
𝑃𝑃

is a relative weighted kernel matrix in which

K
𝑃𝑃,𝑖𝑗

= 𝑘 (𝑥
𝑃

𝑖
, 𝑥

𝑃

𝑗
) +

𝛿
𝑖𝑗

𝛾
with 𝛿

𝑖𝑗
= {

1, 𝑖 = 𝑗,

0, 𝑖 ̸=𝑗,

𝑘
𝑛𝑛

= 𝑘 (x
𝑛
, x

𝑛
) +

1

𝛾
, k

𝑃𝑛
=

(
(
(
(
(
(
(

(

𝑘(x𝑃
1
, x

𝑛
) +

1

𝛾

...
𝑘 (x𝑃

𝑖
, x

𝑛
) +

1

𝛾

...
𝑘 (x𝑃

|𝑃|
, x

𝑛
) +

1

𝛾

)
)
)
)
)
)
)

)

.

(28)

Then, R𝑛 can be obtained as

R𝑛
= [

R𝑛−1 0
0𝑇 0

] + 𝜆 [
𝛽

−1
] [𝛽

𝑇
−1] , (29)

where 𝛽 = R𝑛−1
[

1

k𝑃𝑛 ], 𝜆 = (𝑘
𝑛𝑛
− [1 k𝑇

𝑃𝑛
]
𝑇

𝛽
𝑇
)
−1

, x𝑃
1
∈ x𝑃.

Assuming that a and 𝑏 at the 𝑛−1th iteration are computed
with the equation [

𝛼𝑛−1
𝑃

𝑏
𝑛−1

] = R𝑛−1
[
Y𝑃
0
] , the formulation of

computing a and 𝑏 at the 𝑛th iteration can be expressed as

[

[

𝛼
𝑛

𝑃

𝛼
𝑛

𝑏
𝑛

]

]

= R𝑛 [

[

Y
𝑃

𝑦
𝑛

0

]

]

= [

[

R𝑛−1
[
Y
𝑃

0
]

0

]

]

+ 𝜆(𝛽
𝑇
[
Y
𝑃

0
] − 𝑦

𝑛
)[
𝛽

−1
]

= [

[

𝛼
𝑛−1

𝑃

𝑏
𝑛−1

0

]

]

+ 𝜆(𝛽
𝑇
[
Y
𝑃

0
] − 𝑦

𝑛
)[
𝛽

−1
] .

(30)

From (29) and (30),R, a, and 𝑏 can be efficiently updated,
and the predictor at the 𝑛th irritation is

𝑓
𝑛
(x) = ∑

𝑖∈𝑃

𝛼
𝑛

𝑃,𝑖
𝑘 (x𝑃

𝑖
, x) + 𝑏

𝑛
. (31)

The 𝑛th predictor in (31) is utilized to estimate the output
value of x

𝑛
, denoted as 𝑦

𝑛
. If a criterion followed is defined as:
𝑦𝑛 − 𝑦

𝑛

 < 𝜀, (32)

where 𝜀 is a threshold which can control the tradeoff between
the prediction accuracy and the parsimoniousness.

Then, x
𝑛
will be discarded. Otherwise, it will be chosen as

a new support vector to the scrolling window.

Remark 3. Different from the above online LSSVR proposed
in [30] in which only considering current samples. For
meeting a 𝑑 step ahead prediction model, some special
improvement must be made and described as follows.

(a) As the output value in the futuremoment is unknown,
the criterion proposed above cannot be realized when
directly using |𝛼(𝑘 + 𝑑) − �̃�(𝑘 + 𝑑)| < 𝜀. Provided that
the current attack angle has closer features with the
one needing to predict at the 𝑑-step ahead moment,
the criterion at 𝑘 + 𝑑 moment is replaced with the
one at current moment. In other words, |𝛼(𝑘) −

�̃�(𝑘)| < 𝜀 is taken as the criterion of predictionmodel.
For showing the precision more clearly, a relative
deviation 𝑒(𝑘) is taken as a new threshold rule as
follows:

𝑒 (𝑘) =



𝛼 (𝑘) − �̃� (𝑘)

𝛼 (𝑘)


× 100% < 𝜀


. (33)

(b) For enhancing the real-time ability for the online
LSSVR, the 𝑙 for a scrolling window should be kept
constant, but in [30] the value is not limited. Mean-
while, a simple but efficient judge logic is adopted to
determine whether the new sample or support vector
can be accepted as the support vector. If the number
of training samples is still not more than 𝑙, x

𝑛
will be

taken as support vector directly when x
𝑛
is added into

the scrolling window. Otherwise, x𝑃min would be given
away before x

𝑛
is put into the scrolling window, where

x𝑃min = 𝑥
𝑃

𝑖


min (𝑦

𝑃

𝑖
− 𝑦

𝑃

𝑖


< 𝜀) . (34)

(c) As𝑑 step ahead information is impossible to get, some
offline samples need to be gathered in advance for
starting the online training process. In this study case,
as said above not less than 25 samples are needed.

4.2. Angle of Attack Prediction Model. With the above OSW-
LSSVR algorithm, the online angle of attack predictionmodel
can be devised, and a 3-order prediction model with OSW-
LSSVR is set up as follows:

Y
(𝑘) = AOA (X

(𝑘 − 𝑑)) , (35)

where X
= [𝛼(𝑘 − 𝑑 − 2), 𝛼(𝑘 − 1 − 𝑑), 𝛼(𝑘 − 𝑑), 𝛿

𝑧
(𝑘 − 𝑑)],

and Y
= [�̃�(𝑘), �̃�(𝑘 − 1)].

Thus, for predicting the value, the 𝑘 + 𝑑moment is easily
gotten as

Y
(𝑘 + 𝑑) = AOA (X

(𝑘)) , (36)

whereX
(𝑘) = [𝛼(𝑘−2), 𝛼(𝑘−1), 𝛼(𝑘), 𝛿

𝑧
(𝑘)], andY

(𝑘+𝑑) =

[�̃�(𝑘 + 𝑑), �̃�(𝑘 + 𝑑 − 1)].
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Figure 9: Model precision test at𝐻 = 4 km,𝑀
𝑎
= 0.5.
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Figure 10: Model precision test at𝐻 = 5 km,𝑀
𝑎
= 0.55.

As discussed above, the threshold determination is con-
ducted through (33) to decide whether the scrolling window
should be updated. If 𝑒(𝑘) is smaller than 𝜀, it means that the
prediction has a satisfactory precision, and 𝛼(𝑘 + 𝑑) can be
accurately predicted without updating the scrolling window
and vice versa. Modulated by trial and error, parameters in
the OSW-LSSVR model are as follows.

Rolling window capacity 𝑙 = 80, threshold value 𝜀

=

0.0048, kernel parameter V = 1.6, and penalty factor 𝛾 =

2
24. Where the selection principle of 𝑙 is to keep the rolling
window capacity as small as possible, so as to optimize the
instantaneity of the online model.

As shown in Figures 9 and 10, in the envelop point of𝐻 =

4 km,𝑀
𝑎
= 0.5, and𝐻 = 5 km,𝑀

𝑎
= 0.55, the angle of attack

prediction model is verified, respectively. For simulating the
dynamic change of angle of attack in super maneuver flight,
the elevator is sufficiently excited to get a variation range of
angle of attack from −10∘ to +50∘. The correlation curves are
shown in Figures 9(a) and 10(a), including about 1990 groups
of samples for the actual and predicted one. The model can
quickly and accurately predict the angle of attack at 𝑘 + 𝑑

moment. And also seen clearly from Figures 9(b) and 10(b),
the relative testing errors are within 1%, which means a much
better prediction effect compared to the effects reported in
the literatures [6, 7].

5. Direct Engine Surge Margin Control

Based on the above surge margin prediction model, a direct
surge margin control can be implemented, and the structure
of it has been shown in Figure 2. A quasi-PID or ILQR
method [31] is used to design this novel controller. Here, we
just consider the surge margin of the fan as an application.
And the ILQR robust control method, direct surge margin
controller design, and the digital simulation are, respectively,
introduced as follows.

5.1. ILQR Robust Control. Provided is that an engine dynam-
ics with surge margin estimation can be formulated as
follows:

̇x = Ax + G
1
(x) + Bu,

y = Cx + G
2
(x) + 𝜔,

(37)

where x, y, and u are denoted as system state, output, and
input vector, respectively, and 𝐺

1
(x), 𝐺

2
(x) are defined as

nonlinear compensation items for system state and output
dynamics accordingly. Note that 𝐺

1
(x) and 𝐺

2
(x) represent

differences between a nonlinear engine model and its linear
one, due to variations in states and flight conditions, and 𝜔
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Figure 11: ILQR control structure.

represents the estimation and measured errors produced in
surge margin prediction.

Take the augmented state vector as x = [x𝑇 ∫
𝑡

𝑜
e𝑇𝑑𝜏]

𝑇

=

[x𝑇 ∫
𝑡

𝑜
(r − y)𝑇𝑑𝜏]

𝑇

, while r is a set-point command (37)
which is easily transformed to

̇x = Ax + G
1
(x) + Bu,

y = Cx + G
2
(x) + 𝜔,

(38)

where u = u, A = [ A 0
−C 0 ] , B = [ B

−D ] , C = [𝐶 0], G
1
(x) =

[
G1(𝑥)
−G2(𝑥) ] , G2

(x) = G
2
(x), and 𝜔 = 𝜔.

Generally for aeroengines, a bounded condition is guar-
anteed as [32]


[

G
1
(𝑥)

G
2
(𝑥) + 𝜔

]

∞

< +∞. (39)

Based on the lemma proposed in [31], for (38) a relative
LQR regulator can be easily designed so that all states can
converge to a bounded area, that is,

‖x‖∞ =



[x𝑇 ∫

𝑡

0

e𝑇𝑑𝜏]
𝑇∞

< +∞. (40)

And it means that e ∈ 𝐿
∞
. Furthermore, e ∈ 𝐿

2
and

e ∈ 𝐶
1 can also be guaranteed for engines. Therefore based

on Barbalat lemma, the output can track the command with
limited conditions followed by

lim
𝑡→∞

e = lim
𝑡→∞

(r − y) = 0, when E (𝜔) = 0. (41)

Otherwise,

lim
𝑡→∞

e = lim
𝑡→∞

(r − y) < 𝜎, when |E (𝜔)| = 𝜎. (42)

Consider a well-known LQR problem for the system (37)
as

min
u

{



Q1/2x
R1/2u

2

= ∫

∞

0

(x𝑇Qx + u𝑇u) 𝑑𝑡} , (43)

where Q = Q𝑇
≥ 0 and R = R𝑇

> 0 are proper dimension
weighted matrices. Thus, an ILQR controller can be derived

as u = Kx where K = R−1B𝑇P and P satisfies the following
Riccati equation

A𝑇P + PA − PBR−1B𝑇P +Q = 0. (44)

K can be divided by x and ∫
𝑡

0
e𝑑𝜏 as a block matrix K =

[K
𝑥

K
𝑒
]; so we obtain the following quasi-PID control type

[33]:

u = Kx = [K𝑥
K
𝑒]
[

[

x

∫

𝑡

0

e𝑑𝜏
]

]

= K
𝑥
x + K

𝑒
∫

𝑡

0

e 𝑑𝜏. (45)

And the structure of an ILQR controller is shown in Figure 11.

Remark 4. Aswell known, LQRmethodhas better robustness
with infinite magnitude margin and phase margin over 60∘.
However, LQR controllers cannot have the ability to eliminate
the steady state error in control problems to trace some
command signals. For nonlinear plants such as aeroengines
with significant nonlinearity and wide variant states range,
simple robust linearmethods like LQR is not able tomaintain
a good controllability [34, 35]. So an improved type of the
above ILQR method is utilized here. In an ILQR control
design, the tracing errors are augmented into the state vector
so as to realize a convergence to the references signals. So the
ILQR control method can be regarded as an improved LQR
type; therefore it has not only has robustness to adapt large
variation of engine power states and envelope changes, but
also has capability to eliminate the steady state error when
engine command signals change.

5.2. Design of Direct Surge Margin Control. Firstly, at the
design point of 𝐻 = 0 km, 𝑀

𝑎
= 0, and Pla = 70

∘, a state-
space model of the engine dynamics is established. And the
actuators dynamics of u = [𝑊fb, 𝐴8

]
𝑇 is also considered in

it. Thus, a nonlinear model augmented with the actuator is
gotten as follows:

̇x = Ax + G1 (x) + Bu,

y = Cx + G2 (x) + 𝜔,
(46)

where x = [𝑁
𝑓
, 𝑁

𝑐
,𝑊fb, 𝐴8

]
𝑇, u = [𝑊fb, 𝐴8

]
𝑇, and

y = [𝑁
𝑓
, 𝑆mf]

𝑇. Through some conventional identification
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Figure 12: Effects of the ILQR control at the design point.

method, the system matrices in (44) can be obtained as
follows:

A =
[
[
[

[

−2.3264 1.3350 1.4160 0.9059

0.3056 −3.9053 0.1613 0.5929

0 0 −10 0

0 0 0 −5

]
]
]

]

,

B =
[
[
[

[

0 0

0 0

10 0

0 5

]
]
]

]

,

C = [
0.0121 0.9597 −0.0042 0.0017

8.3219 −13.7904 4.1979 −0.6527
] .

(47)

For reducing the number of parameters needing to
modulate, positive diagonal matrices are chosen for Q =

Q𝑇
≥ 0 and R = R𝑇

> 0, in which the former is related
to output performance of the controlled system, and the
latter is related to control input performance of the controlled
system.The ranges of two matrices are roughly given to meet
that of a stabilized closed-loop system. Then, they can be
modulated by trial and error according to the dynamic and
static performance of the closed system. Ultimately, the two

weightedmatrices are selected asQ = diag[1, 1, 0.1, 0.2, 10, 2]
andR = diag[0.5, 0.5], where diag[]means diagonalmatrices:

K
𝑒
= [

29.5095 12.0353

7.2756 −0.3396
] ,

K
𝑥
= [

−26.7581 8.2457 −5.8700 0.2909

−0.6300 −2.7712 0.0010 −0.4108
] .

(48)

The control effects of the above controller are verified
firstly in the design point, as shown in Figure 12, and the
commands are set as 𝑆mf = 20%,𝑁

𝑐
= 99%. Figures 12(a) and

12(b) present the response curves of 𝑆mf and𝑁
𝑐
, and Figures

12(c) and 12(d) show the response curves of 𝑊fb and 𝐴
8
. As

can be seen from these figures, when a step command signal
is given at 𝑡 = 5 s, the closed system can response quickly to
reach the control objective within 4 seconds. Besides, there
are no static errors for two controlled variables (see Figures
12(a) and 12(b)).

For validating the robustness of this ILQR controller,
some test results are also given in other envelope points
in the scope of the super maneuver envelope range. It can
be seen clearly that at the envelope point of (𝐻 = 4Km,
𝑀

𝑎
= 0.6) and (𝐻 = 5Km, 𝑀

𝑎
= 0.5), the closed system

designed by ILQR method still has excellent dynamic and
static performance. Figures 13(a) and 13(b) show a fast, small
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Figure 13: Control effects in other envelope points.

overshoot, and convergent trackingwith respect to command
signals, whereas Figures 13(c) and 13(d) illustrate acceptable
and feasible control input performances. These results give
a proof in good robustness of this control method, and it is
qualified for application in the direct surge margin control
under variant power states and at different envelope point.

6. Control Simulations and Validations

To validate effectiveness of the new method, some super-
maneuver flight tasks are simulated with a flight condition
in low altitudes and velocities, and for maintaining a stable
and efficient operation, the fan surge margin command is
usually expected to be 15%. The direct surge margin control
is compared to the conventional control as shown in Figures
14 and 15. The conventional engine controller is a bivariate
controller designed by ILQR, and the control inputs are
𝐴
8
and 𝑊fb, and the controlled variables are 𝜋

𝑡
and 𝑁

𝑐
.

Figures 14(a) and 15(a) depict the response curves of fan
surge margin 𝑆mf. “-no” indicates the conventional control
response, “-DSC” represents the response of the direct surge
margin control, and “-pre” represents the estimation of the
angle of attack. Figures 14(b) and 15(b) illustrate different

curves of the angle of attack 𝛼, the elevator angle 𝛿
𝑧
, inlet

distorted index DC
60
, fan and compressor surge margin loss,

compressor surge margin 𝑆mc, relative corrected speed 𝑁
𝑓
,

relative corrected speed 𝑁
𝑐
, main fuel flow 𝑊fb, and throat

area of nozzle 𝐴
8
.

Figure 14 demonstrates the simulation results under the
condition of 𝐻 = 4 km, 𝑀

𝑎
= 0.6. At 𝑡 = 0 s, the

conventional control and the direct surge margin control are,
respectively, adopted to begin a high attack angle task. Then,
the elevator 𝛿

𝑧
is pulled along with some predefined path file

(a negative degree means an upward shift of the elevator).
When the elevator shifts downwards, the angle of attack 𝛼 is
increased, so DC

60
is accordingly increased and vice versa,

and the variation of DC
60

is monotonically related with the
surge margin loss of fan and compressor. Moreover, from the
attack angle response curves, one can see that a real time and
precisely prediction for 𝛼 at 𝑑 steps ahead moment is verified
here.

As also can be observed from Figure 14(a), while using
the conventional control, 𝑆mf changes very violently during
the super maneuver flight, and in some time even less than
10% indicting that the cooperating work point is very close
to the surge border. So, it fails to meet the safe requirements
for engine in the super maneuver flight. On the contrary, the
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Figure 14: Effects of direct surge margin control at𝐻 = 4 km,𝑀
𝑎
= 0.6.

novel control can keep the surge margin 𝑆mf always around
15%, that is, an ideal engine stability control effect. In order
to keep the surge margin at 15% overall the super maneuver
flight, a combined regulation is applied via𝑊fb and𝐴

8
. Since

a direct correlation [1–3] between 𝑆mf and𝐴8
, themodulation

of 𝐴
8
serves as a more important role. So one can obviously

observe that the bigger is the 𝐴
8
, the larger is the surge

margin. But for the changes of 𝑊fb, a bit similar tendency is
found either in the new control or the conventional one, as

the main physical contribution of it is the proper controlling
of 𝑁

𝑐
, which can ensure that there is no great thrust loss in

the super maneuver flight.
For validating the robustness of this new control law,

simulation results at 𝐻 = 5 km, 𝑀
𝑎
= 0.5 are also given

in Figure 15. Similarly through a fast adjustment of elevator
angle 𝛿

𝑧
, a maneuvering flight is originated from an level

flight. Directly using the predicted surge margin, Figure 15
clearly presents that the new control scheme can successfully
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Figure 15: Effects of direct surge margin control at𝐻 = 5 km,𝑀
𝑎
= 0.5.

achieve a real-time adjustment of the cooperating point of the
engine. In the entire super maneuver mission, the fan surge
margin is controlled slightly around 15%; that is to say, the
cooperating work point can always keep a safe distance from
the surge border. Nevertheless, when using that conventional
method, since surge margin is not well considered or better
estimated, safety margin of the engine cannot be sustained in
the large maneuver flight.

7. Conclusions

Considering the special stability need in super-maneuver
flights, a novel direct surgemargin controller is proposed and
designed based on a surge margin prediction model and a
ILQR robust controlmethodwhich is capable of guaranteeing
a good robustness and performance in a large variation of
power states and flight conditions for the closed-loop system.
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In terms of the surgemargin predictionmodel, aweighted
surge margin feature selection algorithm based on LSSVR is
proposed to get a group of optimal measurable inputs for its
baseline model, and an angle of attack model with an online
scrolling window LSSVR method is proposed to estimate the
inlet distortion index in super maneuver states. Furthermore,
the surge margin in distortion states could be computed in
real time by aid of the surge margin baseline and angle of
attack prediction.

All these contributions are verified to effectively realize a
high stability control with the flight conditions of low altitude,
low speed, and high angle of attack.

Nomenclature

Variables

𝑆
𝑚
: Surge margin/%

𝐻: Flight height/km
𝑀

𝑎
: March number/-

Pla: Power lever angle/∘
𝑊fb: Main fuel flow/kg⋅s−1
𝑊cor: Corrected air mass flow
𝐴
8
: Nozzle throat area/m2

𝑃: Total pressure/Pa
𝑇: Total temperature/K
𝑁
𝑓
: Relative fan corrected speed/%

𝑁
𝑐
: Relative compressor corrected speed/%

𝜏: Delay time/s
𝜋: Pressure ratio/-
𝛼: Angle of attack/∘
𝛿
𝑧
: Elevator angle/∘

DC
60
: Inlet distortion index/-

𝐹: Engine thrust/N.

Subscripts

𝑓: Fan
𝑐: Compressor
𝑡: Turbine
𝑠: A value on surge border
𝑜: A value on cooperation working point
2: Fan inlet cross-section
22: Fan outlet cross-section
3: Compressor outlet cross-section
8: Nozzle throat cross-section.
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A combined forecast with weights adaptively selected and errors calibrated byHiddenMarkovmodel (HMM) is proposed tomodel
the day-ahead electricity price. Firstly several singlemodels were built to forecast the electricity price separately.Then the validation
errors from every individual model were transformed into two discrete sequences: an emission sequence and a state sequence to
build the HMM, obtaining a transmissionmatrix and an emissionmatrix, representing the forecasting ability state of the individual
models. The combining weights of the individual models were decided by the state transmission matrixes in HMM and the best
predict sample ratio of each individual among all the models in the validation set. The individual forecasts were averaged to get
the combining forecast with the weights obtained above. The residuals of combining forecast were calibrated by the possible error
calculated by the emission matrix of HMM. A case study of day-ahead electricity market of Pennsylvania-New Jersey-Maryland
(PJM), USA, suggests that the proposed method outperforms individual techniques of price forecasting, such as support vector
machine (SVM), generalized regression neural networks (GRNN), day-ahead modeling, and self-organized map (SOM) similar
days modeling.

1. Introduction

Since the 1990s, themonopoly vertically integrated utilities of
electric power industries around the world have been dereg-
ulated into competitive markets, aiming to break monopoly
and increase operation efficiency. It is crucial for all partic-
ipants in the market to predict the electricity price with high
accuracy. Their bid actions depend on the forecasting and
their benefits therefore are affected by the forecasting; thus
price forecasting draws great interests.

Electricity price is affected by various uncertainties, such
as power load, weather, and bidders’ expectations. These
influential factors interact and have an intricate impact on
price. Electricity price is more volatile than load with unex-
pected spikes (unusual prices), high frequency, and multiple
seasonality (e.g., daily and weekly periodicity). So it is more
difficult to be predicted than power load. There are primarily
two categories of electricity price forecasting modeling, time
series modeling, and artificial intelligence (AI) modeling.

Time series modeling forecasts future price with avail-
able historical prices by mining the relation information
contained in the data, such as autoregressive moving aver-
age (ARMA), generalized autoregressive conditional het-
eroscedasticity (GARCH). Contreras et al. [1] used an ARMA
model to forecast next-day electricity prices for mainland
Spain and Californian markets. A novel technique was
proposed to forecast day-ahead electricity prices based on
wavelet transform and ARIMAmodels in [2]. A more robust
time series modeling, GARCHmodel, was developed to fore-
cast day-ahead electricity prices in [3, 4]. Time series model-
ing tries to mine the information contained in previous data
however pays less attention to external influence leading to
undesirable forecasting for the unstable characteristic of
prices.

AI modeling usually exploits more circumstance influ-
ence factors than time series modeling and thus presents
more desirable results. Artificial neural networks (ANNs)
were developed to forecast electricity prices and showed
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better performance than time seriesmodeling [5, 6]. AnANN
modeling based on similar days was proposed to forecast
day-ahead electricity prices in Pennsylvania-New Jersey-
Maryland (PJM)market [7]. A technique with combining the
Probability Neural Network (PNN) and Orthogonal Experi-
mental Design (OED) was developed in [8] showing better
performance than its counterparts.

Limited by the complexity of AI model, information
contained in the historical prices is not made full use of. A
hybrid model with support vector machines (SVM) to cap-
ture the nonlinear patterns and ARIMA to solve the residuals
regression estimation problems was proposed in [9] showing
the great potential of hybridmodeling. Another hybridmodel
combining SVM and GARCH was developed in [10] to
forecast the day-ahead price of the PJM market.

Time series modeling and AI modeling have different
weaknesses and strengthens in price forecasting since they
place different emphasis on the exploitation method for the
influence information of electricity price. Several predictions
by different methods were suggested to combine to smooth
the fluctuations which often occur in single model forecast-
ing. The performance of the traditional combined forecast
models relies on the combining weights of individual models,
which usual are fixed and determined by historical perfor-
mances of the models. Fixed weights are not always the best
choice because the forecasting abilities of individual models
vary along with the circumstance. Sometimes one model
shows better performance, other times it does not. So it is nec-
essary to select the combining weights of individual models
according to their performance under certain circumstance.
However it is a big challenge to analysis the circumstance and
therefore to determine the proper combining weights of indi-
vidual models under that circumstance. On the other hand,
neither the single model nor the combining model can make
full use of the influence information, and the modeling resid-
uals usually contain information which have not be exploited
by themodels. It helps to improve the forecasting accuracy by
analyzing the residual series and then to estimate the residual
of next step [11].

A Markov chain is a random process which undergoes
transitions from one state to another. It has an important
character: the next state depends only on the current state and
not on the sequence of events that preceded it. Markov chain
can be used to analyze the performance of forecasting [12–
14]. A hidden Markov model (HMM) is a statistical Markov
model in which the system being modeled is assumed to be
a Markov process with unobserved (hidden) states. We can
apply HMM to exploit the information contained in the fore-
casting error sequence. The forecasting errors can be treated
as the observations of the HMM, and the forecasting abilities
of a model under certain circumstance can be looked as the
states [15]. In this paper a hybridmethod consisting of a com-
bining model with adaptive weights based circumstance and
an error calibration technique was proposed to forecast the
day-ahead electricity price. Several individual models were
developed to forecast electricity price, respectively; then their
performances under different circumstances were evaluated
to build Hidden Markov models (HMMs). Together with
the general past performance of the individual models,

the state sequences of theHMMswere proposed to decide the
combining weights; the emission sequences of HMMs were
exploited to calibrate the errors by the combining model.

The rest of the paper is organized as follows. In Section 2,
we describe the fundamental of HMM and the principle
for combined forecast by HMM; Section 3 demonstrates the
approach of combined modeling and error calibration with
HMM. Experiments of the proposed technique and com-
pared methods are showed in Section 4. Finally, the conclu-
sions are presented in Section 5.

2. Principle of Combined Forecast with
Weights Selected by HMM

In this section the basic ideas of combined forecast with
weights selected by HMM are discussed.

2.1. Principle of HMM. HMMcan be regard as a dual random
process, a sequence of emissions that can be seen, and the
other invisible sequence of state in which the emissions are
generated. There are two kinds of HMM, discrete HMM and
continuous HMM.Here we discuss the former and apply it to
build combining model. For simplicity and emphasis we just
give a brief introduction of discrete HMM. More details of
HMMprinciple and howHMMworks can be read in [15, 16].

Discrete HMM can be described by series parameters of
five dimensions: 𝜆 = (S,O,A,B,𝜋), where

(1) S: a set of states where the observation locates, 𝑆 = {𝑆
1
,

. . . , 𝑆
𝑛
}, and 𝑛 is the number of the states;

(2) O: a set of emissions or observations, O = {𝑂
1
, . . . ,

𝑂
𝑚
}, and 𝑚 is the number of the potential observa-

tions (or emissions) in each state;
(3) A: a transition matrix which describes the probability

of a transition from a given state to another state,A =
(𝑎
𝑖𝑗
)
𝑛×𝑛

, and here, 𝑎
𝑖𝑗
= 𝑝(𝑆

𝑡+1
= 𝜃
𝑗
/𝑆
𝑡
= 𝜃
𝑖
);

(4) B: an emission matrix, whose 𝑖, 𝑘 entry gives the
probability of emitting symbol 𝑂

𝑘
given that the

model is in state 𝑆
𝑗
. B = (𝑏

𝑗𝑘
)
𝑚×𝑛

, where 𝑏
𝑗𝑘
= 𝑝(𝑂

𝑡
=

V
𝑘
/𝑆
𝑡
= 𝜃
𝑗
);

(5) 𝜋: a vector of initial state distribution,𝜋 = (𝜋
1
, 𝜋
2
, . . . ,

𝜋
𝑛
).

HMMmainly aims to resolve three problems:

(1) to evaluate the most likely state path of a given
sequence of emissions;

(2) to estimate transition and emission probabilities of a
given sequence of emissions;

(3) to calculate the posterior probability that the model is
in a particular state at any point in the sequence.

2.2. Combined Forecast byHMM. Thebasic idea of combined
forecasting is to give a weighted sum of forecasting by
different models to reduce the defects of individual modeling
method. In this paper, we useHMM to determine the weights
of combining models.
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In electricity price forecasting, a sequence of errors gen-
erated from price modeling can be considered as a HMM
process. The intervals in which the error of each forecasting
locates form the sequence of observations or the emission
sequence; the forecasting abilities of the individualmodels are
regarded as the state of HMMs. The HMMs are built accord-
ing to the validation errors of the individual models. Then
the next states of the HMMs which depict the abilities of the
individual models are used to decide the combining weights.
The possible next emissions of individuals are averaged with
combining weights and then used to calibrate the combined
forecast.

2.3. Error Calibration by HMM. With the state probability
vector of the next step assessed in Section 2.2 and the emis-
sion matrix B of HMM, the probabilities of emissions in the
next step can be calculated. Since the different emissions
present the range intervals where the error falls in as men-
tioned in Section 2.2, we can convert the emissions and their
probabilities to expected value of forecasting error. Then the
expected value is used for error calibration of the combined
modeling.

3. Approach of Combined Forecasting and
Error Calibration by HMM

This part depicts how to build a combined model with
error calibration based on HMM techniques. As showed in
Figure 1. Considering that the hourly prices in different hours
shows great difference, we build 24 combining models to
forecast the hourly prices one by one. For any hour price’s
modeling, the approach is the same, so we just take an hour
as an example to show the modeling approach.The following
7 steps consist of the proposed method.

Step 1 (initiate). Including data pretreating and candidate
models selection.

We cluster the experimental data into three sets: a training
set, a validation set, and a test set.The first one is used to train
models, the second one is used to tune models’ parameters
according to their performances, and the last one is applied
to evaluate the modeling algorithms.

𝑁 candidate models (𝑀
1
,𝑀
2
,𝑀
3
, . . . ,𝑀

𝑛
) are selected

for combining forecast.

Step 2. Individual modeling for combined forecast.
The following process is repeated for each individual

model.

Substep 1. Build the individual model and calculate the
validation error vector e and forecasting price p.

We train the𝑀
𝑖
model with the training set, then tune the

parameters in𝑀
𝑖
with the validation set, and after that test𝑀

𝑖

with the test set. In the above steps, we get the validation error
vector e (see (1)) and forecasting price p (see (3)) separately

e = (𝑒
𝑖,1
, 𝑒
𝑖,2
, . . . , 𝑒

𝑖,𝑑
) , (1)

Combining forecast and error calibration

Individual modeling

Estimate the possible

Calculate the emissions
sequence and state sequence

Obtain the
combining weights

of the next step

Estimate the state
probabilities of the

next step

Predict price of
the next day p

Calculate validation

Calculate the
emission of
the next step

Get the final forecast

Calculate the possible
error of combining

forecast

Get the
combining

forecast

Initiate

Finish individual
modeling

Yes

N
o

Train and validate Mi

Estimate transition
matrix A and emission

matrix B

forecasting error of Mi

Select candidate models set Mi for combination

Select candidate models set {Mi} for combination

error vector e

Figure 1: Flow chart of electricity price forecasting by the proposed
method.

where 𝑒
𝑙,𝑘

is validation error by 𝑀
𝑖
for the 𝑘th hour on the

𝑙th day, and 𝑑 is the number of days in the validation set, and
error 𝑒

𝑖𝑗
is calculated by

𝑒
𝑖𝑗
=
𝑦
𝑖𝑗
− 𝑦
𝑖𝑗

𝑦
𝑖𝑗

, (2)

where 𝑦
𝑖𝑗
is the forecast price and 𝑦

𝑖𝑗
is the actual price

p = (𝑝
𝑖,1
, 𝑝
𝑖,2
, . . . , 𝑝

𝑖,𝐷
) , (3)
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where 𝑝
𝑙,𝑘
is the forecasting price with𝑀

𝑖
for the 𝑘th hour on

the 𝑙th day and𝐷 is the number of days in the test set.

Substep 2. Calculate the emission sequence and the state
sequence of 𝑀

𝑖
. In this step, for each model we transform

the error sequence into discrete emission (observations)
sequence and class the states according to the error in which
denotes the forecasting abilities of the model.

Substep 3. Calculate the emission sequence and the state
sequence of𝑀

𝑖
.

In this step, we transform the error sequence into discrete
emission sequence and obtain the state sequence according to
the performance of modeling which denotes the forecasting
abilities of the model.

As discrete HMMs are discussed here, the emission
sequence needs to be discretized. Here we divide the range, in
which 𝑒 spreads, into several intervals. Then marks the inter-
vals where 𝑒 falls in with the emission values (elements of the
emission set). Then we get the emission vector s𝑒 according
to the intervals in which each 𝑒 falls:

s𝑒 = (𝑠𝑒
𝑖,1
, 𝑠
𝑒

𝑖,2
, . . . , 𝑠

𝑒

𝑖,𝑑
) , (4)

where 𝑠𝑠
𝑖,𝑗
is the emission of the model𝑀

𝑖
; 𝑠𝑠
𝑖,𝑗
∈ O, O is the

emission set.
Thenwe begin to calculate the statematrix s𝑠 according to

certain criterions based on themodel’s performance. For sim-
plicity, we just set three states to reveal the ability of themodel
forecasting, as follows: 𝑈: the state of underestimate (when
target price is significantly underestimated); 𝐶: the state of
proper prediction (when target price is estimatedwith accept-
able accuracy), and𝐻: the state of overestimate (when target
price is significantly overestimated):

s𝑠 = (𝑠𝑠
𝑖,1
, 𝑠
𝑠

𝑖,2
, . . . , 𝑠

𝑠

𝑖,𝑑
) , (5)

where 𝑠𝑠
𝑖,𝑗

is the state of the individual candidate in the 𝑖th
hour of the 𝑗th day and 𝑠𝑠

𝑖,𝑗
∈ S, S is the state set.

Substep 4. Estimate transition matrix A and emission matrix
B.

In this step, themaximum likelihood estimate of the tran-
sitionmatrixA and emissionmatrixB are calculated with the
known s𝑒 and s𝑠.The process can be easily accomplished with
the function of hmmestimate in Matlab (those who interested
in its theory see the following: Durbin, R., S. Eddy, A. Krogh,
and G. Mitchison, Biological Sequence Analysis, Cambridge,
UK: CambridgeUniversity Press, 1998.), so wewill not intend
to give a detailed description here.

Given an initial state distribution, with the state sequence
and the emission sequence, we can estimate the transition
matrix A (see (6)) and the emission matrix B (see (7)) for
HMM of the 𝑖th hour:

A = [
[

𝑎
11

⋅ ⋅ ⋅ 𝑎
1𝑚

⋅ ⋅ ⋅ 𝑎
𝑖𝑗

⋅ ⋅ ⋅

𝑎
𝑚1

⋅ ⋅ ⋅ 𝑎
𝑚𝑚

]

]

= [

[

a
1

⋅ ⋅ ⋅

a
𝑚

]

]

, (6)

where 𝑎
𝑖𝑗
is the transition probability from the 𝑖th state to the

𝑗th state and𝑚 is the number of states:

B = [
[

𝑏
11

⋅ ⋅ ⋅ 𝑏
1𝑘

𝑏
𝑖𝑗

𝑏
𝑚1

⋅ ⋅ ⋅ 𝑏
𝑚𝑘

]

]

= [

[

b
1

b
𝑚

]

]

, (7)

where 𝑏
𝑖𝑗
is the probability of the 𝑗th emitting symbol under

the state 𝑆
𝑖
and 𝑘 is the classes of the emissions.

Substep 5. Obtain the probabilities of the next state.
In Substep 4, we have obtained the transition matrix

A and the emission matrix B. As discussed previously the
matrix of A describes the probability of a transition from a
given state to another state; matrix B gives the probability of
emitting symbol under different states. So for a given state 𝑠𝑠

𝑖,𝑗

(suppose 𝑠𝑠
𝑖,𝑗
= 𝑛, 1 ≤ 𝑛 ≤ 𝑚) in the 𝑖th hour on the 𝑡th day, the

probabilities of the next state (in the 𝑖th hour on the (𝑡 + 1)th
day) are the vector a

𝑛
in the transition matrix A.

Step 3. Calculate probabilities of the next emission and
estimate the possible error generated by the model.

The probabilities of the next state a
𝑖
obtained in Substep

4 are multiplied with the emission matrix to calculate the
probabilities of the next emission.

The emission probabilities then are transformed to con-
tinuous possible error 𝑔

𝑖
with the intervals defined in Substep

3.

Step 4. Calculate the combining weights of the next step.
In this step, the combiningweights of the differentmodels

are settled. The number of samples under the proper state of
each individual for the validation set is used to evaluate the
abilities of these models, as shown by

𝑐
𝑖
=

𝑛
𝑖

∑
𝑚

𝑖
𝑛
𝑖

, (8)

where 𝑐
𝑖
denotes the historical forecasting ability of𝑀

𝑖
, and

𝑛
𝑖
is the number of samples in state of 𝐶 by model𝑀

𝑖
among

the validation set.
The proper forecasting probability 𝑎

𝑖
in the vector a

𝑛
and

the abilities 𝑐
𝑖
are used to calculate the combining weights, as

shown by

𝑤
𝑖
=

𝑎
𝑖
× 𝑐
𝑖

∑
𝑖
𝑎
𝑖
× 𝑐
𝑖

, (9)

where 𝑤
𝑖
is the combining weight of model 𝑀

𝑖
in the next

step and 𝑎
𝑖
is the proper forecasting probability of the𝑀

𝑖
.

Step 5. Get the combined forecast.
The forecasts from individual models are averaged with

the weights obtained in Step 4 to get a combined forecast, as
shown by

𝑓 = ∑

𝑖

𝑓
𝑖
× 𝑤
𝑖
, (10)

where 𝑓 is the combined forecast and 𝑓
𝑖
is the forecast by𝑀

𝑖
.
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Step 6. Calculate the expected value of forecasting error of
the combined model.

The possible errors from individual models are averaged
with the combining weights obtained in Step 5 to get possible
error of combined forecast, as shown by

𝑔 = ∑

𝑖

𝑔
𝑖
× 𝑤
𝑖
, (11)

where 𝑔 is the possible error of the combined forecast and 𝑔
𝑖

is the possible error from𝑀
𝑖
.

Step 7. Obtain the final forecast with expected value of error
to calibrate the combined forecast, as shown by

𝑝 = 𝑓 − 𝑔. (12)

4. Numerical Results

4.1. Individual Models Building for Combined Forecast. The
proposed method is validated on the day-ahead electricity
market of PJM. Considering electricity price in summer is
more volatile than in other seasons, we apply the method to
forecast the hourly price of August 2010.The data in July serve
as validation data, and date in June serve as training data.
New prices and loads are appended in modeling process to
accommodate the models to the new circumstance.

In order to consider the influences from different aspects,
we select various methods as candidates for modeling. Here
we choose intelligent algorithmmodeling (SVM, generalized
regression neural networks (GRNN)), time series modeling
(GARCH and GARCHX), and two direct methods as mod-
eling candidates. One direct method is day-ahead modeling,
in which we take the hourly price of the previous day as the
forecasting price. The other direct method is SOM similar
days modeling, in which we find the similar days by SOM
from the validation set and then average the hourly prices of
the similar days as the forecasting price. For simplicity, we use
𝑀
1
to𝑀
6
to represent the SVM,GRNN,GARCH,GARCHX,

day-ahead modeling, and SOM similar days modeling,
respectively.

The performance of intelligent algorithm is sensitive to
the input, so themodeling data are pretreated to eliminate the
scale effects before modeling. All the numeric data are scaled
to [0, 1], as shown by

𝑥


𝑖𝑗
=

(𝑥
𝑖𝑗
− 𝑥

min
𝑗
)

(𝑥max
𝑗

− 𝑥min
𝑗
)
, (13)

where 𝑥
𝑖𝑗
is the scaled value of the 𝑗th attribute of the 𝑖th sam-

ple,𝑥
𝑖𝑗
is the raw sample value,𝑥min

𝑗
is theminimumof the 𝑗th

attribute of all the samples (all the data from 1 Jan. to July
31), and 𝑥max

𝑗
is the maximum of the 𝑗th attribute of all the

samples (ditto).
The input for SVM, GRNN, and SOM model is

{𝐿
𝑖
, 𝐿
𝑖−24
, 𝑃
𝑖−24
, 𝑃
𝑖−48
, 𝑃
𝑖−168

, 𝑃
𝑖−192

, 𝑤
𝑖
, 𝑤
𝑖−24
}. 𝐿
𝑖
is the fore-

cast load of the target hour (it can be predicted day-ahead
with high accuracy, so here we use the actual load as forecast

Table 1: Parameters of the candidate models and validation MAPE.

Model Parameter Value of parameter MAPE/%
𝑀1 𝐶, 𝑛

𝑢
, 𝑒, 𝑔 200, 0.2, 0.00002, 0.004 8.32

𝑀2 𝑟 0.05 11.10
𝑀3 𝑟, 𝑚, 𝑝, 𝑞 2, 1, 1, 1 12.59
𝑀4 𝑟, 𝑚, 𝑝, 𝑞 2, 1, 1, 1 12.04
𝑀5 — — 12.79
𝑀6 Layer dimension [4, 4] 12.38

load); 𝑃
𝑖−24

is the price 24 hour previous to the target hour,
and so on.𝑤

𝑖𝑗
is a daily variable reflecting the price fluctuation

with different day types. 𝑤
𝑖𝑗
can be calculated by

𝑤
𝑖𝑗
=
∑
𝑘
𝑝
𝑖𝑗𝑘

30
, 𝑖 = 1, 2, . . . , 7, 𝑗 = 1, 2, . . . , 24,

𝑘 = 1, 2, . . . , 30,

(14)

where 𝑝
𝑖𝑗𝑘

is the 𝑗th hourly price on the 𝑖th day of the 𝑘th
week in 2010. As data from August 1 to August 31 are applied
to test the model, the prices of previous 30 weeks are used to
calculate 𝑤

𝑖𝑗
.

The exogenous variables in GARCHX are 𝑤
𝑖𝑗
and 𝑤

𝑖,𝑗−1
.

The parameters of individual models and MAPE (for the
validation set) are listed in Table 1. From Table 1, we can see
that SVM outperforms the other models. The rest models
have close results.

Figure 2 is the distribution of the validation error of
the candidates. It can be seen that SVM outperforms other
candidates obviously, and day-ahead modeling with right
tailed is different with other candidates.

Table 2 is the correlation coefficient between the valida-
tion errors of candidates.

From Table 2, we can see that 𝑀
3
, 𝑀
4
, and 𝑀

5
show

high correlation. Since each model has some contribution we
mainly focus on the work of selection of combining weights
and the error calibration, so all the six models are taken in as
candidates for combined model.

4.2. Build HMMwith Validation Errors of the IndividualMod-
els. In this part, HMM are built with the information of the
validation error series of the selected models. As discussed
in Step 2 of Section 3, the validation error sequence of𝑀

𝑖
is

discretized to build HMM. Considering that most of the
errors fall in the range [−0.08, 0.08], we divide the range into
5 intervals, as shown by

𝑠
𝑒

𝑖𝑗
=

{{{{{{{

{{{{{{{

{

1 𝑒 < −0.08

2 −0.08 ≤ 𝑒 < −0.04

3 −0.04 ≤ 𝑒 < 0.04

4 0.04 ≤ 𝑒 < 0.08

5 𝑒 ≥ 0.08.

(15)

With process detailedly described in Substeps 3 and 4 of
Section 3, we get the transition matrix A and the emission
matrix B for𝑀

𝑖
.
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Figure 2: Validation error distribution of the candidate models.

4.3. SelectingWeights for Combined Forecast. Suppose that we
have obtained all the forecasting errors of the 6 models of the
𝑖th hour on the 𝑑th day, as well as the forecasting price of the
𝑖th hour on the (𝑡+1)th day (𝑡 > 𝑑). For eachmodel, we sepa-
rate the range where errors fall into three zones,𝑈, 𝐶, and𝐻,
as discussed in Substep 3, indicating the forecasting ability of
the model under certain circumstance. As shown by

𝑠
𝑠

𝑖𝑗
=

{{

{{

{

1 −0.04 > 𝑒

2 −0.04 ≤ 𝑒 < 0.04

3 0.04 ≤ 𝑒.

(16)

Given 𝑠𝑠
𝑡,𝑖
, the model state of the 𝑖th hour on the 𝑡th

day, the state probabilities of the next day of the same hour
can be easily obtained from the transition matrix A. Then
the probabilities and historical abilities of the individuals are
multiplied to generate the combination weights, according to
(9). The combined forecast can be obtained by multiplying
the forecasting of different models and the corresponding
probabilities of their probable states, according to (10).

4.4. Calibrate the Combined Forecast with the Possible Com-
bining Error. In this step, the possible errors of the next step
by different candidates are estimated by their emissionmatrix
B as described in Substep 4 in Section 3; they are exploited to
calibrate the combined forecast, according to (11).
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Figure 3: Forecasting by different models.

4.5. Performance Comparison and Analysis. Table 3 shows
the performance of the different modeling. It can be seen that
the combinationmodel significantly outperforms all the indi-
vidual models. 𝑀

1
and 𝑀

2
also have the better forecasting

than other individual models, just the same as the perfor-
mance in the validation set.
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Figure 4: Error calibration effects contrast.

Table 2: Correlation coefficients of validation error sequences between the candidate models.

𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 Mean
𝑀1 — 0.63 0.52 0.47 0.34 0.66 0.44
𝑀2 0.63 — 0.62 0.62 0.57 0.66 0.52
𝑀3 0.52 0.62 — 0.91 0.78 0.62 0.57
𝑀4 0.47 0.62 0.91 — 0.89 0.56 0.57
𝑀5 0.34 0.57 0.78 0.89 — 0.46 0.51
𝑀6 0.66 0.66 0.62 0.56 0.46 — 0.49
Mean 0.44 0.52 0.57 0.57 0.51 0.49 —

Table 3: Test MAPE of the candidate models.

Model 𝑀1 𝑀2 𝑀3 𝑀4 𝑀5 𝑀6 Combination Calibration
MAPE/% 9.46 9.78 13.83 11.30 11.87 11.70 9.03 8.85

Figure 3 is the comparison between the actual prices,
forecasting by SVM and combined forecast with error cal-
ibration techniques. The forecasting by other models is not
listed in the figure for simplicity since they are not as good as
SVM. We can see from Figure 3 that most of the prices have
been properly predicted by the combination model. Some
extreme prices are too low or too high to model by both the
two models. The hourly prices are overestimated by SVM,
especially which have high prices on the previous day.

The effects of errors calibration is shown in Figure 4. The
colors in Figure 4 show the value of the forecasting error: red
color denotes big positive 𝑒 (high overestimation) and blue
color denotes big negative 𝑒 (markedly underestimation), as
the color bar lying on the right presents. We can see the most
difference of the forecasting error from the black circle of the
right part of Figure 4. The calibration reduces extreme errors
(too high or too low) of the combinedmodel; also it increases
the number of proper forecasts, whose errors fall around zero,
displayed by the grey color zone.

Figure 5 lists the error distributions by different models.
The errors spread the range of [−0.4, 0.6]. The minimum
and maximum of errors reveal that some prices are not
properly forecasted by some models. If we probe it deeply,
we can find that SOM similar day modeling and day-ahead
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Figure 5: Histogram of errors by the different models.

modeling have more extreme errors and SVM and GRNN
have more desirable performance, but the calibration has the
best performance. From Figure 5 we can see that all models
tend to overestimate the price as the right tail in histogram
shows. The errors in the combined model and calibration
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model centralizes around zero, and near half of the prices
(more than 300 points) are forecasted with relative error in
the interval [−0.05, 0.05]. SVMandGRNNalso predict prices
well, more than 250 errors fall in the [−0.05, 0.05]. Day-ahead
modeling acts the worst; it has the least number of errors
falling in the [−0.05, 0.05].

5. Conclusions

This paper proposes a comprehensive combined forecast
technique for day-ahead price by HMM. Several models,
SVM,GRNN,GARCH,GARCHX, day-aheadmodeling, and
SOM similar day modeling are selected as candidate models.
The error distribution of each model is exploited to calculate
the state of HMM and the intervals where minimum errors
fall mark with emissions of HMM. Then the state sequence
and emission sequence are used to estimate HMM. Given a
state of current hour, the state probabilities of the combina-
tion modeling of next day can be obtained from transition
matrix A. These probabilities are regarded as combination
weights for the combined forecast.Then theHMMare used to
calculate the weights of combined model and to calibrate the
error of the combined model.

The combined forecast can adapt to the varieties of cir-
cumstance by changing its weights dynamically with HMM,
and the error calibration technique helps to reduce the error
generated by combined model. The case study to forecast
summer prices in PJM market shows that the proposed
method outperforms other comparison methods, including
SVM.
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This paper investigates the problems of stability and 𝑙
1
-gain controller design for positive switched systems with time-varying delays

via delta operator approach.Thepurpose is to design a switching signal and a state feedback controller such that the resulting closed-
loop system is exponentially stablewith 𝑙

1
-gain performance. Based on the average dwell time approach, a sufficient condition for the

existence of an 𝑙
1
-gain controller for the considered system is established by constructing an appropriate copositive type Lyapunov-

Krasovskii functional in delta domain. Moreover, the obtained conditions can unify some previously suggested relevant methods
in the literature of both continuous- and discrete-time systems into the delta operator framework. Finally, a numerical example is
presented to explicitly demonstrate the effectiveness and feasibility of the proposed method.

1. Introduction

Positive systems mean that their states and outputs are
nonnegative whenever the initial conditions and inputs are
nonnegative [1, 2]. A positive switched system consists of a
family of positive subsystems and a switching signal, coordi-
nating the operation of various subsystems to specify when
and how the switching takes place among the subsystems.
Recently, due to the broad applications in communication
systems [3, 4], formation flying [5], viral mutation dynamics
under drug treatment [2], and systems theories [6–10],
positive systems have been highlighted and investigated by
many researchers [11–14]. It has been shown that a linear
copositive Lyapunov functional is powerful for the analysis
and synthesis of positive systems [15–17].

The delta operator, a novel method with good finite word
length performance under fast sampling rates, has drawn
considerable interest in the past three decades. As we know,
the standard shift operator was mostly adopted in the study
of control theories for discrete-time systems. However, the
dynamic response of a discrete system does not converge
smoothly to its continuous counterpart when the sampling
period tends to zero; namely, data are taken at high sampling
rates. Until Goodwin et al. proposed a delta operator method

in [18] to take the place of the traditional shift operator, the
above problem is avoided. It was shown that delta operator
requires smaller word length when implemented in fixed-
point digital control processors than shift operator does
[19]. The delta operator model can be regarded as a useful
approach to deal with discrete-time systems under high
sampling rates through the analysis methods of continuous-
time systems [20–23]. Based on significant early investi-
gations such as [24–26] studying the basic properties and
performance of delta operator model, numerical properties
and practical applications of delta operator model have been
extensively investigated [27–29].The delta operator is defined
by

𝛿𝑥 (𝑡) =

{{{

{{{

{

𝑑𝑥 (𝑡)

𝑑𝑡
, 𝑇 = 0

(𝑥 (𝑡 + 𝑇) − 𝑥 (𝑡))

𝑇
, 𝑇 ̸= 0,

(1)

where 𝑇 is a sampling period. When 𝑇 → 0, the delta
operator model will approach the continuous system before
discretization and reflect a quasicontinuous performance.

In real engineering, time delays are involved in many
fields, such as mechanics, medicine, chemistry, biology,
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physics, economics, engineering, and control theory [30–33].
The existence of time delay may give rise to the deterioration
of system performance and instability. Many results have
been reported for time-delay systems [34–39].

In addition, exogenous disturbances are commonly
unavoidable in practical process, and the output will be
inevitably affected by the disturbance in a system. Because of
the peculiar nonnegative property of positive systems, the 𝑙

1
-

gain (or 𝐿
1
-gain) index [39] can characterize the disturbance

rejection property, by means of which we can limit the effect
of disturbance in a prescribed level. Some results on 𝑙

1
-gain

(or 𝐿
1
-gain) analysis and control for positive systems have

been reported in the literature [39, 40]. However, few results
on the issue of 𝑙

1
-gain performance for positive switched

systems via delta operator approach are proposed, which
motivates the current research.

In this paper, we focus our attention on investigating the
stability and 𝑙

1
-gain controller design for positive switched

systemswith time-varying delays via delta operator approach.
The main contributions of this paper are fourfold. (1) The
positive switched systems via delta operator approach are
investigated for the first time. (2) By applying the average
dwell time approach, sufficient conditions of exponential
stability for positive switched delta operator systems are
derived. Moreover, the results obtained can be applied to
both continuous-time systems and discrete-time systems.
(3) 𝑙

1
-gain performance analysis of the underlying system is

developed. (4) A state feedback controller design scheme is
proposed such that the corresponding closed-loop system is
exponentially stable with an 𝑙

1
-gain performance.

The remainder of the paper is as follows. The problem
formulation and some necessary lemmas are provided in
Section 2. In Section 3, the issues of stability, 𝑙

1
-gain perfor-

mance analysis, and control of the underlying system are
developed. A numerical example is presented to demon-
strate the feasibility of the obtained results in Section 4. In
Section 5, concluding remarks are given.

Notations. 𝐴 ⪰ 0 (⪯, ≻, ≺) means that all entries of matrix
𝐴 are nonnegative (nonpositive, positive, and negative); 𝐴 ≻

𝐵 (𝐴 ⪰ 𝐵) means that 𝐴 − 𝐵 ≻ 0 (𝐴 − 𝐵 ⪰ 0); 𝐴𝑇 means
the transpose of matrix𝐴; 𝑅(𝑅

+
) is the set of all real (positive

real) numbers;𝑅𝑛
(𝑅

𝑛

+
) is an 𝑛-dimensional real (positive real)

vector space; 𝑅𝑚×𝑛 is the set of all 𝑚 × 𝑛-dimensional real
matrices;𝑍

+
refers to the set of all positive integers; the vector

1-norm is denoted by ‖𝑥‖ = ∑
𝑛

𝑘=1
|𝑥

𝑘
|, where 𝑥

𝑘
is the 𝑘th

element of 𝑥 ∈ 𝑅
𝑛; 1

𝑛
∈ 𝑅

𝑛 denotes a column vector
with 𝑛 rows containing only 1 entry; 𝑙

1
[𝑘

0
,∞) is the space

of absolute summable sequence on [𝑘
0
,∞); that is, we say

𝑧 : [𝑘
0
,∞) → 𝑅

𝑝 is in 𝑙
1
[𝑘

0
,∞) if ∑∞

𝑘=𝑘0
‖𝑧(𝑘)‖ < ∞.

2. Problem Formulation

Consider the following switched delta operator system with
time-varying delays:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘) ,

(2)

where 𝑥(𝑘) ∈ 𝑅
𝑛 denotes the state; 𝑧(𝑘) ∈ 𝑅

𝑙 is the controlled
output; and 𝑤(𝑘) ∈ 𝑅

𝑤 is the disturbance input, which
belongs to 𝑙

1
[𝑘

0
,∞). 𝑘 means the time 𝑡 = 𝑘𝑇 and 𝑇 > 0 is

the sampling period; 𝑘
0
is the initial time. 𝜎(𝑘) : [𝑘

0
,∞) →

𝑚 = {1, 2, . . . , 𝑚} is the switching signal with𝑚 representing
the number of subsystems. 𝐴

𝑝
, 𝐴

𝑑𝑝
, 𝐶

𝑝
, 𝐷

𝑝
, and 𝐸

𝑝
are

constant matrices with appropriate dimensions. 𝑑
𝑘
denotes

the time-varying discrete delay which satisfies 0 ≤ 𝑑 ≤ 𝑑
𝑘
≤

𝑑 for known integers 𝑑 and 𝑑; {𝜑(𝜃), 𝜃 = −𝑑, −𝑑+1, . . . , 0} is
a given discrete vector-valued initial condition. The switch is
assumed to only occur at the sampling time in this paper.

Remark 1. To illustrate the main advantage of delta operator
systems directly, we consider a typical continuous system
without time delays as follows:

̇𝑥(𝑡) = 𝐴𝑥 (𝑡) + 𝐷𝑤 (𝑡) ,

𝑧 (𝑡) = 𝐶𝑥 (𝑡) + 𝐸𝑤 (𝑡) .

(3)

Using the traditional shift operator approach to discretize
the system, the following discrete form in 𝑧-domain can be
obtained (𝑘 = 0, 1, 2, . . .):

𝑥 ((𝑘 + 1) 𝑇) = 𝐴
𝑧
𝑥 (𝑘𝑇) + 𝐷

𝑧
𝑤 (𝑘𝑇) ,

𝑧 (𝑘𝑇) = 𝐶
𝑧
𝑥 (𝑘𝑇) + 𝐸

𝑧
𝑤 (𝑘𝑇) ,

(4)

where 𝐴
𝑧

= 𝑒
𝐴𝑇, 𝐷

𝑧
= (∫

𝑇

0
𝑒
𝐴𝑡

𝑑𝑡)𝐷, 𝐶
𝑧

= 𝐶, and 𝐸
𝑧

= 𝐸.
When 𝑇 → 0, lim

𝑇→0
𝐴

𝑧
= 𝐼 and lim

𝑇→0
𝐷

𝑧
= 0.

The movement of the system poles towards stable boundary
makes the system defective with the increase in the sampling
rates. However, by utilizing the delta operator approach, we
can obtain the following system expressed in delta domain:

𝛿𝑥 (𝑘𝑇) = 𝐴
𝛿
𝑥 (𝑘𝑇) + 𝐷

𝛿
𝑤 (𝑘𝑇) ,

𝑧 (𝑘𝑇) = 𝐶
𝛿
𝑥 (𝑘𝑇) + 𝐸

𝛿
𝑤 (𝑘𝑇) ,

(5)

where 𝐴
𝛿

= (𝐴
𝑧
− 𝐼)/𝑇, 𝐷

𝛿
= 𝐷

𝑧
/𝑇, 𝐶

𝛿
= 𝐶, and 𝐸

𝛿
= 𝐸.

When 𝑇 → 0, lim
𝑇→0

𝐴
𝛿

= 𝐴 and lim
𝑇→0

𝐷
𝑧

= 𝐷. It
can be seen that the system matrices are the same as those
of the original continuous system, alleviating the problems
encountered with fast sampling.

Remark 2. Since a delta operator system can be regarded as
a quasicontinuous system when 𝑇 → 0, the term 𝛿𝑥(𝑘) can
be utilized like ̇𝑥(𝑡) in normal continuous-time systems.

Definition 3. System (2) is said to be positive if, for any initial
conditions 𝜑(𝜃) ⪰ 0, 𝜃 = −𝑑, −𝑑 + 1, . . . , 0, any inputs
𝑤(𝑘) ⪰ 0, and any switching signals 𝜎(𝑘), the corresponding
trajectories 𝑥(𝑘) ⪰ 0 and 𝑧(𝑘) ⪰ 0 hold for all 𝑘 ≥ 𝑘

0
.

Remark 4. Definition 3 follows the general positivity defini-
tion of a positive system, which means that the state and



Mathematical Problems in Engineering 3

output are nonnegative whenever the initial condition and
input are nonnegative [1, 2].

Lemma 5. System (2) is positive if and only if (𝐼 + 𝑇𝐴
𝑝
) ⪰ 0,

𝐴
𝑑𝑝

⪰ 0, 𝐷
𝑝
⪰ 0, 𝐶

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

Proof. From the definition of delta operator 𝛿, the discrete
form of system (2) can be obtained as follows:

𝑥 (𝑘 + 1) = (𝐼 + 𝑇𝐴
𝜎(𝑘)

) 𝑥 (𝑘) + 𝑇𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
)

+ 𝑇𝐷
𝜎(𝑘)

𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘) .

(6)

Combining Lemma 2 in [41] and Lemma 1 in [42], one can
obtain the remaining proof easily.

Remark 6. When𝑇 → 0, system (2) degenerates to a general
continuous-time positive switched system as follows:

̇𝑥(𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝑑𝜎(𝑡)

𝑥 (𝑡 − 𝑑 (𝑡)) + 𝐷
𝜎(𝑡)

𝑤 (𝑡) ,

𝑥 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝑑

2
, 0] ,

𝑧 (𝑡) = 𝐶
𝜎(𝑡)

𝑥 (𝑡) + 𝐸
𝜎(𝑡)

𝑤 (𝑡) ,

(7)

where 𝑑(𝑡) denotes the time-varying delay which is every-
where time differentiable and satisfies 0 ≤ 𝑑

1
≤ 𝑑(𝑡) ≤ 𝑑

2

and ̇𝑑(𝑡) ≤ 𝑑
𝑑
< 1 for known constants 𝑑

1
, 𝑑

2
, and 𝑑

𝑑
. Then

according to [39], system (7) is positive if and only if 𝐴
𝑝
are

Metzler matrices, and 𝐴
𝑑𝑝

⪰ 0, 𝐶
𝑝
⪰ 0, 𝐷

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0,

for all 𝑝 ∈ 𝑚.

Remark 7. In the light of Lemma 2.1 of [43], it is clear that
the 𝑝th subsystem in system (2) is positive if and only if (𝐼 +

𝑇𝐴
𝑝
) ⪰ 0, Α

𝑑𝑝
⪰ 0, 𝐷

𝑝
⪰ 0, 𝐶

𝑝
⪰ 0, and 𝐸

𝑝
⪰ 0, for all 𝑝 ∈

𝑚. Thus we can have an equivalent expression of Lemma 5:
system (2) is positive under any switching signals if and only
if it consists of a family of positive subsystems.

Definition 8 (see [44]). System (2) with 𝑤(𝑘) = 0 is said to
be exponentially stable under 𝜎(𝑘) if, for constants 𝛼 > 0 and
𝛽 > 0, the solution 𝑥(𝑘) satisfies

‖𝑥 (𝑘)‖ ≤ 𝛼
𝑥 (𝑘

0
)
𝑐𝑒

−𝛽(𝑘−𝑘0), ∀𝑘 ≥ 𝑘
0
, (8)

where ‖𝑥(𝑘
0
)‖

𝑐
= sup

−𝑑≤𝜃≤0
‖𝑥(𝑘

0
+ 𝜃)‖.

Definition 9 (see [45]). For any switching signal 𝜎(𝑘) and any
𝑘
2
> 𝑘

1
≥ 0, let 𝑁

𝜎
(𝑘

1
, 𝑘

2
) denote the number of switches of

𝜎(𝑘) over the interval [𝑘
1
, 𝑘

2
). For given 𝜏

𝑎
> 0 and𝑁

0
≥ 0, if

the inequality

𝑁
𝜎
(𝑘

1
, 𝑘

2
) ≤ 𝑁

0
+

𝑘
2
− 𝑘

1

𝜏
𝑎

(9)

holds, then the positive constant 𝜏
𝑎
is called an average dwell

time and 𝑁
0
is called a chattering bound.

Without loss of generality, one chooses 𝑁
0

= 0 in this
paper.

Definition 10. For 0 < 𝛼 < 1/𝑇 and 𝛾 > 0, system (2) is said
to have a prescribed 𝑙

1
-gain performance level 𝛾 if there exists

a switching signal 𝜎(𝑘) such that the following conditions are
satisfied:

(a) system (2) is exponentially stable when 𝑤(𝑘) = 0;

(b) under zero initial condition, that is, 𝜑(𝜃) = 0, 𝜃 = −𝑑,

−𝑑 + 1, . . . , 0, system (2) satisfies

∞

∑

𝑘=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑘0) ‖𝑧 (𝑘)‖ ≤ 𝛾

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖ ,

∀𝑤 (𝑘) ∈ 𝑙
1
[𝑘

0
,∞) , 𝑤 (𝑘) ̸= 0.

(10)

Remark 11. In Definition 10, as proposed in [39], 𝑙
1
-gain

performance index 𝛾 characterizes system’s suppression to
exogenous disturbances. The smaller the value of 𝛾 is, the
better the performance of the system is, that is, the lesser the
effect of the disturbance input on the control output is.

The purposes of this paper are (1) to find a class of switch-
ing signals 𝜎(𝑘) under which system (2) is exponentially
stable and possesses an 𝑙

1
-gain performance and (2) to deter-

mine a class of switching signals and a state feedback con-
troller 𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘) for the following positive switched

delta operator system with time-varying delays:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
)

+ 𝐵
𝜎(𝑘)

𝑢 (𝑘) + 𝐷
𝜎(𝑘)

𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘)

(11)

such that the resulting closed-loop system is exponentially
stable with an 𝑙

1
-gain performance.

3. Main Results

This section will focus on the problems of stability analysis
and 𝑙

1
-gain controller design for positive switched delta

operator systems with time-varying delays.

3.1. Stability Analysis. First, we consider the following
switched positive delta operator system:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

(12)

where 𝐼 + 𝑇𝐴
𝑝
⪰ 0, 𝐴

𝑑𝑝
⪰ 0 for 𝑝 ∈ 𝑚, and 𝑑

𝑘
is defined the

same as system (2).
Sufficient conditions of exponential stability of system

(12) are provided in the following theorem.
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Theorem 12. Given a positive constant 0 < 𝛼 < 1/𝑇, if there
exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
+ (1 − 𝑇𝛼) 𝜗

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
⪯ 0,

(13)

where ]
𝑝

= []
𝑝1

, ]
𝑝2

, . . . , ]
𝑝𝑛

]
𝑇, 𝜐

𝑝
= [𝜐

𝑝1
, 𝜐

𝑝2
, . . . , 𝜐

𝑝𝑛
]
𝑇, and

𝜗
𝑝

= [𝜗
𝑝1

, 𝜗
𝑝2

, . . . , 𝜗
𝑝𝑛

]
𝑇, then system (12) is exponentially

stable for any switching signals 𝜎(𝑘) with average dwell time

𝜏
𝑎
> 𝜏

∗

𝑎
= −

ln 𝜇

ln (1 − 𝑇𝛼)
, (14)

where 𝜇 ≥ 1 satisfies

]
𝑝
⪯ 𝜇]

𝑞
, 𝜐

𝑝
⪯ 𝜇𝜐

𝑞
, 𝜗

𝑝
⪯ 𝜇𝜗

𝑞
, ∀𝑝, 𝑞 ∈ 𝑚. (15)

Furthermore, the state decay of system (12) is given by

‖𝑥 (𝑘)‖ ≤ 𝑎𝑏
(𝑘−𝑘0)𝑥 (𝑘

0
)
𝑐,

(16)

where

𝑎 =
𝜀
2

𝜀
1

+
𝑇𝜀

3
𝑑

𝜀
1

+
0.5𝑇𝜀

3
(𝑑 + 𝑑 − 1) (𝑑 − 𝑑)

𝜀
1

+
𝑇𝜀

4
𝑑

𝜀
1

,

𝑏 = 𝜇
1/𝜏𝑎 (1 − 𝑇𝛼) ,

𝜀
1
= min

(𝑟,𝑝)∈𝑛×𝑚
{]

𝑝𝑟
} ,

𝜀
2
= max

(𝑟,𝑝)∈𝑛×𝑚
{]

𝑝𝑟
} ,

𝜀
3
= max

(𝑟,𝑝)∈𝑛×𝑚

{𝜐
𝑝𝑟
} ,

𝜀
4
= max

(𝑟,𝑝)∈𝑛×𝑚

{𝜗
𝑝𝑟
} ,

𝑥 (𝑘
0
)
𝑐 = sup

−𝑑≤𝜃≤0

𝑥 (𝑘
0
+ 𝜃)

 , 𝑛 = {1, 2, . . . , 𝑛} .

(17)

Proof. Choose the following piecewise copositive type Lya-
punov functional for the 𝑝th subsystem in system (12):

𝑉
𝑝
(𝑘, 𝑥 (𝑘)) = 𝑉

𝑝1
(𝑘, 𝑥 (𝑘)) + 𝑉

𝑝2
(𝑘, 𝑥 (𝑘)) + 𝑉

𝑝3
(𝑘, 𝑥 (𝑘))

+ 𝑉
𝑝4

(𝑘, 𝑥 (𝑘)) ,

(18)

where

𝑉
𝑝1

(𝑘, 𝑥 (𝑘)) = 𝑥
𝑇
(𝑘) ]

𝑝
,

𝑉
𝑝2

(𝑘, 𝑥 (𝑘)) = 𝑇

𝑘−1

∑

𝑠=𝑘−𝑑𝑘

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝑉
𝑝3

(𝑘, 𝑥 (𝑘)) = 𝑇

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝑉
𝑝4

(𝑘, 𝑥 (𝑘)) = 𝑇

𝑘−1

∑

𝑠=𝑘−𝑑

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝
, ∀𝑝 ∈ 𝑚.

(19)

For simplicity, 𝑉
𝑝
(𝑘, 𝑥(𝑘)) is written as 𝑉

𝑝
(𝑘) (corre-

spondingly, 𝑉(𝑘, 𝑥(𝑘)) is written as 𝑉(𝑘)) in the later section
of the paper.

The Lyapunov function in delta domain has the following
form:

𝛿𝑉
𝑝1

(𝑘, 𝑥 (𝑘)) = 𝛿 (𝑥
𝑇
(𝑘) ]

𝑝
)

= (𝛿𝑥
𝑇
(𝑘)) ]

𝑝

= 𝑥
𝑇
(𝑘) 𝐴

𝑇

𝑝
]
𝑝
+ 𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝐴

𝑇

𝑑𝑝
]
𝑝
,

𝛿𝑉
𝑝2

(𝑘, 𝑥 (𝑘)) =
1

𝑇
[𝑉

𝑝2
(𝑘 + 1) − 𝑉

𝑝2
(𝑘)]

=
1

𝑇

[

[

𝑇

(𝑘+1)−1

∑

𝑠=𝑘+1−𝑑𝑘+1

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

− 𝑇

𝑘−1

∑

𝑠=𝑘−𝑑𝑘

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
]

]

≤ −𝑇𝛼

𝑘−1

∑

𝑠=𝑘−𝑑𝑘

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜐

𝑝

− (1 − 𝑇𝛼)
𝑑+1

𝑥
𝑇
(𝑘 − 𝑑

𝑘
) 𝜐

𝑝

+

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝛿𝑉
𝑝3

(𝑘, 𝑥 (𝑘)) =
1

𝑇
[𝑉

𝑝3
(𝑘 + 1) − 𝑉

𝑝3
(𝑘)]

=
1

𝑇

[

[

𝑇

−𝑑

∑

𝑙=−𝑑+1

(𝑘+1)−1

∑

𝑠=𝑘+1+𝑙

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

−𝑇

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
]

]

= −𝑇𝛼

−𝑑

∑

𝑙=−𝑑+1

𝑘−1

∑

𝑠=𝑘+𝑙

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) (𝑑 − 𝑑) 𝑥
𝑇
(𝑘) 𝜐

𝑝

−

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝
,

𝛿𝑉
𝑝4

(𝑘, 𝑥 (𝑘)) =
1

𝑇
[𝑉

𝑝4
(𝑘 + 1) − 𝑉

𝑝4
(𝑘)]

=
1

𝑇

[

[

𝑇

(𝑘+1)−1

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝

−𝑇

𝑘−1

∑

𝑠=𝑘−𝑑

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝
]

]
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= −𝑇𝛼

𝑘−1

∑

𝑠=𝑘−𝑑

(1 − 𝑇𝛼)
𝑘−𝑠

𝑥
𝑇
(𝑠) 𝜗

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜗

𝑝

− (1 − 𝑇𝛼)
𝑑+1

𝑥
𝑇
(𝑘 − 𝑑) 𝜗

𝑝
.

(20)

According to (20), we have

𝛿𝑉
𝑝
(𝑘, 𝑥 (𝑘)) + 𝛼𝑉

𝑝
(𝑘, 𝑥 (𝑘))

≤ 𝑥
𝑇
(𝑘) 𝐴

𝑇

𝑝
]
𝑝
+ 𝑥

𝑇
(𝑘 − 𝑑

𝑘
) 𝐴

𝑇

𝑑𝑝
]
𝑝
+ 𝛼𝑥

𝑇
(𝑘) ]

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜐

𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝑥
𝑇
(𝑘 − 𝑑

𝑘
) 𝜐

𝑝

+

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) (𝑑 − 𝑑) 𝑥
𝑇
(𝑘) 𝜐

𝑝

−

𝑘−𝑑

∑

𝑠=𝑘+1−𝑑

(1 − 𝑇𝛼)
𝑘+1−𝑠

𝑥
𝑇
(𝑠) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝑥
𝑇
(𝑘) 𝜗

𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝑥
𝑇
(𝑘 − 𝑑) 𝜗

𝑝

≤ 𝑥
𝑇
(𝑘) [𝐴

𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼)

× (𝑑 − 𝑑 + 1) 𝜐
𝑝
+ (1 − 𝑇𝛼) 𝜗

𝑝
]

+ 𝑥
𝑇
(𝑘 − 𝑑

𝑘
) [𝐴

𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
] .

(21)

From (13), we obtain

𝛿𝑉
𝑝
(𝑘) + 𝛼𝑉

𝑝
(𝑘) ≤ 0

⇒ 𝛿𝑉
𝑝
(𝑘) =

𝑉
𝑝
(𝑘 + 1) − 𝑉

𝑝
(𝑘)

𝑇

≤ −𝛼𝑉
𝑝
(𝑘)

⇒ 𝑉
𝑝
(𝑘 + 1) ≤ 𝑉

𝑝
(𝑘) − 𝑇𝛼𝑉

𝑝
(𝑘)

⇒ 𝑉
𝑝
(𝑘 + 1) ≤ (1 − 𝑇𝛼)𝑉

𝑝
(𝑘) .

(22)

Let 𝑘
1

< ⋅ ⋅ ⋅ < 𝑘
𝑔
denote the switching instants of 𝜎(𝑘)

over the interval [𝑘
0
, 𝑘). Consider the following piecewise

Lyapunov functional candidate for system (12):

𝑉 (𝑘) = 𝑉
𝜎(𝑘)

(𝑘) . (23)

From (15) and (18), we obtain

𝑉
𝜎(𝑘𝑖)

(𝑘) ≤ 𝜇𝑉
𝜎(𝑘
−

𝑖
)
(𝑘) , 𝑖 = 1, 2, . . . , 𝑔. (24)

Then, it follows from (22), (24), and the relation 𝑁
𝜎
(𝑘

0
, 𝑘) ≤

(𝑘 − 𝑘
0
)/𝜏

𝑎
that, for [𝑘

𝑖
, 𝑘

𝑖+1
),

𝑉
𝜎(𝑘)

(𝑘) = 𝑉
𝜎(𝑘𝑖)

(𝑘) ≤ (1 − 𝑇𝛼)
(𝑘−𝑘𝑖)𝑉

𝜎(𝑘𝑖)
(𝑘

𝑖
)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖)𝑉

𝜎(𝑘
−

𝑖
)
(𝑘

−

𝑖
)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖)+(𝑘𝑖−𝑘𝑖−1)𝑉

𝜎(𝑘𝑖−1)
(𝑘

𝑖−1
)

= 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖−1)𝑉

𝜎(𝑘𝑖−1)
(𝑘

𝑖−1
)

= 𝜇
𝑁𝜎(𝑘𝑖−1 ,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑘𝑖−1)𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1

)

≤ ⋅ ⋅ ⋅

≤ 𝜇
𝑁𝜎(𝑘0 ,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑘0)𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ 𝜇
(𝑘−𝑘0)/𝜏𝑎(1 − 𝑇𝛼)

(𝑘−𝑘0)𝑉
𝜎(𝑘0)

(𝑘
0
)

≤ (𝜇
1/𝜏𝑎 (1 − 𝑇𝛼))

(𝑘−𝑘0)

𝑉
𝜎(𝑘0)

(𝑘
0
) .

(25)

Considering the definition of 𝑉
𝜎(𝑘)

(𝑘), 𝜀
1
, 𝜀

2
, 𝜀

3
, and 𝜀

4
in

Theorem 12, it yields that

𝑉
𝜎(𝑘)

(𝑘) ≥ 𝜀
1 ‖𝑥 (𝑘)‖ ,

𝑉
𝜎(𝑘0)

(𝑘
0
) ≤ (𝜀

2
+ 𝑇𝜀

3
𝑑 + 0.5𝑇𝜀

3
(𝑑 + 𝑑 − 1)

× (𝑑 − 𝑑) + 𝑇𝜀
4
𝑑) sup

−𝑑≤𝜃≤0

𝑥 (𝑘
0
+ 𝜃)

 .

(26)

Combining (25)-(26), we obtain

‖𝑥 (𝑘)‖ ≤(
𝜀
2

𝜀
1

+
𝑇𝜀

3
𝑑

𝜀
1

+
0.5𝑇𝜀

3
(𝑑 + 𝑑 − 1) (𝑑 − 𝑑)

𝜀
1

+
𝑇𝜀

4
𝑑

𝜀
1

)

× (𝜇
1/𝜏𝑎 (1 − 𝑇𝛼))

(𝑘−𝑘0)𝑥 (𝑘
0
)
𝑐,

(27)

where ‖𝑥(𝑘
0
)‖

𝑐
= sup

−𝑑≤𝜃≤0
‖𝑥(𝑘

0
+ 𝜃)‖.

Therefore, according to Definition 8, system (12) is expo-
nentially stable for any switching signals 𝜎(𝑘) with average
dwell time (14).

This completes the proof.

Remark 13. When 𝜇 = 1 in (15), which leads to ]
𝑝
= ]

𝑞
, 𝜐

𝑝
=

𝜐
𝑞
, 𝜗

𝑝
= 𝜗

𝑞
, for all 𝑝, 𝑞 ∈ 𝑚, and 𝜏

∗

𝑎
= 0 by (14), system (12)

possesses a common copositive type Lyapunov-Krasovskii
functional, and the switching signal can be arbitrary.

When 𝑑
𝑘
= 0, system (12) can be represented by

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) , (28)

where 𝐴
𝑝

= 𝐴
𝑝
+ 𝐴

𝑑𝑝
satisfies 𝐼 + 𝑇𝐴

𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

Then we have the following corollary.
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Corollary 14. Given a positive constant 0 < 𝛼 < 1/𝑇, if there
exist ]

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
⪯ 0, (29)

then system (28) is exponentially stable for any switching
signals 𝜎(𝑘) with average dwell time (14), where 𝜇 ≥ 1 satisfies

]
𝑝
⪯ 𝜇]

𝑞
, ∀𝑝, 𝑞 ∈ 𝑚. (30)

When the sampling period 𝑇 → 0, system (12) becomes a
continuous-time system as follows:

̇𝑥(𝑡) = 𝐴
𝜎(𝑡)

𝑥 (𝑡) + 𝐴
𝑑𝜎(𝑡)

𝑥 (𝑡 − 𝑑 (𝑡)) ,

𝑥 (𝑡
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝑑

2
, 0] ,

(31)

where 𝐴
𝑝
are Metzler matrices and 𝐴

𝑑𝑝
⪰ 0, for all 𝑝 ∈ 𝑚.

𝑑(𝑡) denotes the time-varying delay which satisfies 0 ≤ 𝑑
1

≤

𝑑(𝑡) ≤ 𝑑
2
and ̇𝑑(𝑡) ≤ 𝑑

𝑑
< 1 for known constants 𝑑

1
, 𝑑

2
, and

𝑑
𝑑
.

We can obtain sufficient conditions of exponential stabil-
ity of system (31) byTheorem 12.

Corollary 15. Given a positive constant 𝛼, if there exist
]
𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (𝑑

2
− 𝑑

1
+ 1) 𝜐

𝑝
+ 𝜗

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑑

𝑑
) 𝑒

−𝛼𝑑2𝜐
𝑝
⪯ 0,

(32)

then system (31) is exponentially stable for any switching signals
𝜎(𝑡) with average dwell time

𝜏
𝑎
> 𝜏

∗

𝑎
=
ln 𝜇

𝛼
, (33)

where 𝜇 ≥ 1 satisfies (15).
Let 𝐴

𝜎(𝑘)
= 𝐴

𝜎(𝑘)
+ 𝐼. When the sampling period 𝑇 = 1,

system (12) becomes a discrete-time system as follows:

𝑥 (𝑘 + 1) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

(34)

where 𝐴
𝑝

⪰ 0 and 𝐴
𝑑𝑝

⪰ 0, for all 𝑝 ∈ 𝑚. One can obtain
sufficient conditions of exponential stability of system (34) by
Theorem 12.

Corollary 16. Given a positive constant 0 < 𝛼 < 1, if there
exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝
+ (1 − 𝛼) 𝜗

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝛼)

𝑑+1
𝜐
𝑝
⪯ 0,

(35)

then system (34) is exponentially stable for any switching
signals 𝜎(𝑘) with average dwell time

𝜏
𝑎
> 𝜏

∗

𝑎
= −

ln 𝜇

ln (1 − 𝛼)
, (36)

where 𝜇 ≥ 1 satisfies (15).

3.2. 𝑙
1
-Gain Analysis. The following theorem establishes

sufficient conditions of exponential stability with 𝑙
1
-gain

property for system (2).

Theorem 17. For given positive constants 0 < 𝛼 < 1/𝑇 and 𝛾,
if there exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
, such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝜗
𝑝
+ 𝑐

𝑝
⪯ 0,

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
⪯ 0,

(37)

𝐷
𝑇

𝑝
]
𝑝
+ 𝑒

𝑝
− 𝛾1

𝑤
⪯ 0, (38)

where 1
𝑤

= [1, 1, . . . , 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑤

]
𝑇, 𝑐

𝑝
= [‖𝑐

𝑝1
‖, ‖𝑐

𝑝2
‖, . . . , ‖𝑐

𝑝𝑛
‖]

𝑇, 𝑐
𝑝𝑗

represents the 𝑗th column of matrix 𝐶
𝑝
, 𝑗 ∈ 𝑛 = {1, 2, . . . , 𝑛},

𝑒
𝑝

= [‖𝑒
𝑝1

‖, ‖𝑒
𝑝2

‖, . . . , ‖𝑒
𝑝𝑤

‖]
𝑇, and 𝑒

𝑝𝑗
represents the 𝑗th

column of matrix 𝐸
𝑝
, 𝑗 ∈ 𝑤 = {1, 2, . . . , 𝑤}, then system

(2) is exponentially stable with an 𝑙
1
-gain performance for any

switching signals𝜎(𝑘)with average dwell time (14), where𝜇 ≥ 1

satisfies (15).

Proof. By Theorem 12, the exponential stability of system (2)
with 𝑤(𝑘) = 0 is ensured if (37) holds. To show the weighted
𝑙
1
-gain performance, we choose the Lyapunov functional (18).

From (15), we have

𝑉
𝜎(𝑘𝑖)

(𝑘
𝑖
) ≤ 𝜇𝑉

𝜎(𝑘
−

𝑖
)
(𝑘

−

𝑖
) , ∀𝑖 = 1, 2, . . . . (39)

For any 𝑘 ∈ [𝑘
𝑖
, 𝑘

𝑖+1
), noticing (37)-(38), we have

𝑉 (𝑘) ≤ (1 − 𝑇𝛼)
(𝑘−𝑘𝑖)𝑉

𝜎(𝑘𝑖)
(𝑘

𝑖
) −

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠) ,

(40)

where Λ(𝑠) = ‖𝑧(𝑠)‖ − 𝛾‖𝑤(𝑠)‖.
Combining (39) and (40) leads to

𝑉 (𝑘) ≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖)𝑉

𝜎(𝑘
−

𝑖
)
(𝑘

−

𝑖
) −

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

≤ 𝜇(1 − 𝑇𝛼)
(𝑘−𝑘𝑖−1)𝑉

𝜎(𝑘𝑖−1)
(𝑘

𝑖−1
)

− 𝜇

𝑘𝑖

∑

𝑠=𝑘𝑖−1

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

−

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

= 𝜇
𝑁𝜎(𝑘𝑖−1 ,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑘𝑖−1)𝑉
𝜎(𝑘𝑖−1)

(𝑘
𝑖−1

)

− 𝜇
𝑁𝜎(𝑘𝑖−1 ,𝑘)

𝑘𝑖

∑

𝑠=𝑘𝑖−1

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

−

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

≤ ⋅ ⋅ ⋅
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≤ 𝜇
𝑁𝜎(𝑘0 ,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑘0)𝑉
𝜎(𝑘0)

(𝑘
0
)

− 𝜇
𝑁𝜎(𝑘0 ,𝑘)

𝑘1

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

− 𝜇
𝑁𝜎(𝑘1 ,𝑘)

𝑘2

∑

𝑠=𝑘1

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠) − ⋅ ⋅ ⋅

−

𝑘

∑

𝑠=𝑘𝑖

(1 − 𝑇𝛼)
(𝑘−𝑠)

Λ (𝑠)

= 𝜇
𝑁𝜎(𝑘0 ,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑘0)𝑉
𝜎(𝑘0)

(𝑘
0
)

−

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑠)
Λ (𝑠) .

(41)

Under the zero initial condition, we obtain from (41) that

0 ≤ −

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑠)
Λ (𝑠) ; (42)

namely,

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑠)
‖𝑧 (𝑠)‖

≤ 𝛾

𝑘

∑

𝑠=𝑘0

𝜇
𝑁𝜎(𝑠,𝑘)(1 − 𝑇𝛼)

(𝑘−𝑠)
‖𝑤 (𝑠)‖ .

(43)

Multiplying both sides of (43) by 𝜇
−𝑁𝜎(𝑘0 ,𝑘) yields

𝑘

∑

𝑠=𝑘0

𝜇
−𝑁𝜎(𝑘0 ,𝑠)(1 − 𝑇𝛼)

(𝑘−𝑠)
‖𝑧 (𝑠)‖

≤ 𝛾

𝑘

∑

𝑠=𝑘0

𝜇
−𝑁𝜎(𝑘0 ,𝑠)(1 − 𝑇𝛼)

(𝑘−𝑠)
‖𝑤 (𝑠)‖ .

(44)

Noticing that 𝑁
𝜎(𝑘)

(𝑘
0
, 𝑠) ≤ (𝑠 − 𝑘

0
)/𝜏

𝑎
, we have

𝜇
−𝑁𝜎(𝑘0 ,𝑠) ≥ (1 − 𝑇𝛼)

(𝑠−𝑘0). (45)

Combining (44) and (45) leads to

𝑘

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑠−𝑘0)(1 − 𝑇𝛼)

(𝑘−𝑠)
‖𝑧 (𝑠)‖

≤ 𝛾

𝑘

∑

𝑠=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑠)

‖𝑤 (𝑠)‖ .

(46)

Summing both sides of (46) from 𝑘 = 𝑘
0
to ∞ leads to

∞

∑

𝑘=𝑘0

(1 − 𝑇𝛼)
(𝑘−𝑘0) ‖𝑧 (𝑘)‖ ≤ 𝛾

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖ . (47)

From Definition 10, it can be concluded that system (2) is
exponentially stable with a prescribed 𝑙

1
-gain performance

level 𝛾.
This completes the proof.

Remark 18. When 𝜇 = 1 in Theorem 17, summing both sides
of (44) from 𝑘 = 𝑘

0
to ∞ leads to

∞

∑

𝑘=𝑘0

‖𝑧 (𝑘)‖ ≤ 𝛾

∞

∑

𝑘=𝑘0

‖𝑤 (𝑘)‖ (48)

which gives the standard 𝑙
1
-gain performance.

3.3. Controller Design. In this section, we are interested in
designing a state feedback controller 𝑢(𝑘) = 𝐾

𝜎(𝑘)
𝑥(𝑘) for

positive switched system (11) such that the corresponding
closed-loop system

𝛿𝑥 (𝑘) = (𝐴
𝜎(𝑘)

+ 𝐵
𝜎(𝑘)

𝐾
𝜎(𝑘)

) 𝑥 (𝑘)

+ 𝐴
𝑑𝜎(𝑘)

𝑥 (𝑘 − 𝑑
𝑘
) + 𝐷

𝜎(𝑘)
𝑤 (𝑘) ,

𝑥 (𝑘
0
+ 𝜃) = 𝜑 (𝜃) , 𝜃 = −𝑑, −𝑑 + 1, . . . , 0,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘)

(49)

is exponentially stable with an 𝑙
1
-gain performance.

Theorem 19. Considering system (11), for given positive scalars
0 < 𝛼 < 1/𝑇 and 𝛾, if there exist ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
∈ 𝑅

𝑛

+
and 𝑔

𝑝
∈ 𝑅

𝑛,
such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝑔

𝑝
+ 𝛼]

𝑝
+ (1 − 𝑇𝛼) (𝑑 − 𝑑 + 1) 𝜐

𝑝

+ (1 − 𝑇𝛼) 𝜗
𝑝
+ 𝑐

𝑝
⪯ 0,

(50)

𝐴
𝑇

𝑑𝑝
]
𝑝
− (1 − 𝑇𝛼)

𝑑+1
𝜐
𝑝
⪯ 0, (51)

𝐷
𝑇

𝑝
]
𝑝
+ 𝑒

𝑝
− 𝛾1

𝑤
⪯ 0, (52)

𝐼 + 𝑇 (𝐴
𝑝
+ 𝐵

𝑝
𝐾

𝑝
) ⪰ 0, (53)

where 𝑐
𝑝
and 𝑒

𝑝
have been defined in Theorem 17 and 𝑔

𝑝
=

𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
, then the corresponding closed-loop system (49) is

positive and exponentially stable with a prescribed 𝑙
1
-gain

performance level 𝛾 for any switching signals 𝜎(𝑘)with average
dwell time (14), where 𝜇 ≥ 1 satisfies (15).

Proof. Denote 𝑔
𝑝

= 𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
. Following the proof line of

Theorem 17, one can exactly obtainTheorem 19. It is omitted
here.

This completes the proof.

Consider the controller design of the following positive
switched delta operator system without time delay:

𝛿𝑥 (𝑘) = 𝐴
𝜎(𝑘)

𝑥 (𝑘) + 𝐵
𝜎(𝑘)

𝑢 (𝑘) + 𝐷
𝜎(𝑘)

𝑤 (𝑘) ,

𝑧 (𝑘) = 𝐶
𝜎(𝑘)

𝑥 (𝑘) + 𝐸
𝜎(𝑘)

𝑤 (𝑘) ,

(54)
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where 𝐴
𝜎(𝑘)

= 𝐴
𝜎(𝑘)

+ 𝐴
𝑑𝜎(𝑘)

. Then we directly have the
following corollary.

Corollary 20. Considering system (54), for given positive
scalars 0 < 𝛼 < 1/𝑇 and 𝛾, if there exist ]

𝑝
∈ 𝑅

𝑛

+
and 𝑔

𝑝
∈ 𝑅

𝑛,
such that, for all 𝑝 ∈ 𝑚,

𝐴
𝑇

𝑝
]
𝑝
+ 𝛼]

𝑝
+ 𝑔

𝑝
+ 𝑐

𝑝
⪯ 0,

𝐷
𝑇

𝑝
]
𝑝
+ 𝑒

𝑝
− 𝛾1

𝑤
⪯ 0,

𝐼 + 𝑇 (𝐴
𝑝
+ 𝐵

𝑝
𝐾

𝑝
) ⪰ 0,

(55)

where 𝑐
𝑝
and 𝑒

𝑝
have been defined in Theorem 17 and 𝑔

𝑝
=

𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
, then the corresponding closed-loop system is positive

and exponentially stable with a prescribed 𝑙
1
-gain performance

level 𝛾 for any switching signals 𝜎(𝑘) with average dwell time
(14), where 𝜇 ≥ 1 satisfies (30).

Based onTheorem 19, one is now in a position to present an
effective algorithm for constructing the desired controller.

Algorithm 21. Consider the following.

Step 1. Input the matrices 𝐴
𝑝
, 𝐴

𝑑𝑝
, 𝐵

𝑝
, 𝐶

𝑝
, 𝐷

𝑝
, and 𝐸

𝑝
.

Step 2. Choose the parameters 0 < 𝛼 < 1/𝑇 and 𝛾 > 0. By
solving (50)–(52), one can obtain the solutions of ]

𝑝
, 𝜐

𝑝
, 𝜗

𝑝
,

and 𝑔
𝑝
.

Step 3. By the equation 𝑔
𝑝

= 𝐾
𝑇

𝑝
𝐵
𝑇

𝑝
]
𝑝
with the obtained 𝑔

𝑝

and ]
𝑝
, one can get the gain matrices 𝐾

𝑝
.

Step 4. Check condition (53) inTheorem 19. If it holds, go to
Step 5; otherwise, adjust the parameter 𝛼 and return to Step 2.

Step 5. Construct the feedback controller 𝑢(𝑘) = 𝐾
𝜎(𝑘)

𝑥(𝑘),
where 𝐾

𝑝
, 𝑝 ∈ 𝑚, are the gain matrices.

4. Numerical Example

Consider positive switched delta operator system (11) consist-
ing of two subsystems described by the following.

Subsystem 1:

𝐴
1
= [

1.8 4.5

1.5 −2.8
] , 𝐴

𝑑1
= [

0.5 0.0

0.1 0.0
] , 𝐵

1
= [

0.4

0.1
] ,

𝐶
1
= [0.1 0.2] , 𝐷

1
= [

0.1

0.2
] , 𝐸

1
= [0.1] ,

(56)

Subsystem 2:

𝐴
2
= [

5.2 4.5

3.8 −1.8
] , 𝐴

𝑑2
= [

0.5 0.0

0.1 0.0
] , 𝐵

2
= [

0.5

0.2
] ,

𝐶
2
= [0.2 0.3] , 𝐷

2
= [

0.2

0.1
] , 𝐸

2
= [0.2] ,

(57)
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Figure 1: Switching signal.

and 𝑑 = 2, 𝑑 = 0, 𝛼 = 1.3, 𝛾 = 2, and 𝑇 = 0.25. Then, by
solving (50)–(52) inTheorem 19, we can obtain the following
solutions:

]
1
= [

9.6472

2.5911
] , 𝜐

1
= [

17.4916

1.9008
] , 𝜗

1
= [

0.7312

1.4427
] ,

]
2
= [

6.9694

1.8534
] , 𝜐

2
= [

12.6866

1.3511
] , 𝜗

2
= [

0.3727

1.0628
] ,

(58)

and the state feedback gain matrices can be obtained as
follows:

𝐾
1
= [−14.2263 − 10.7904] ,

𝐾
2
= [−18.2172 − 8.8405] .

(59)

Obviously, condition (53) is satisfied.
According to (15), we have 𝜇 = 2.0193.Then from (14), we

get 𝜏
𝑎
> 𝜏

∗

𝑎
= 1.7880. Choosing 𝜏

𝑎
= 2, the simulation results

are shown in Figures 1 and 2, where the initial conditions
are 𝑥(0) = [0.2 0.3]

𝑇and 𝑥(𝑘) = [0 0]
𝑇, 𝑘 = −2, −1, and

the exogenous disturbance input is 𝑤(𝑘) = 0.05𝑒
−0.5𝑘 which

belongs to 𝑙
1
[0,∞). The switching signal with average dwell

time 𝜏
𝑎

= 2 is shown in Figure 1 and the state responses of
the corresponding closed-loop system are given in Figure 2.
From the simulation results, it can been seen that the closed-
loop system is exponentially stable with a prescribed 𝑙

1
-gain

performance level 𝛾 = 2.

5. Conclusions

In this paper, the stability and 𝑙
1
-gain controller design

problems for positive switched systems with time-varying
delays via delta operator approach have been investigated.
By constructing a copositive type Lyapunov-Krasovskii func-
tional and using the average dwell time approach, we pro-
posed sufficient conditions of exponential stability and 𝑙

1
-

gain performance for the considered system. The desired
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Figure 2: State responses of the closed-loop system.

state feedback 𝑙
1
-gain controller was designed such that the

corresponding closed-loop system is exponentially stable
and satisfies an 𝑙

1
-gain performance. Finally, a numerical

example was presented to demonstrate the feasibility of
the obtained results. In our future work, we will study the
robust stabilization problem of positive switched systems
with uncertainties and time-varying delays via delta operator
approach.
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A novel attitude tracking control scheme is presented for overactuated spacecraft to address the attitude stabilization problem in
presence of reaction wheel installation deviation, external disturbance and uncertain mass of moment inertia. An adaptive sliding
mode control technique is proposed to track the uncertainty. A Lyapunov-based analysis shows that the compensation control law
can guarantee that the desired attitude trajectories are followed in finite-time.The key feature of the proposed control strategy is that
it globally asymptotically stabilizes the system, even in the presence of reaction wheel installation deviation, external disturbances,
and uncertain mass of moment inertia. The attitude track performance using the proposed finite-time compensation control is
evaluated through a numerical example.

1. Introduction

In present, nearly all of the highly accurate slewing maneu-
vers necessitate the use of nonlinear differential equations
for the kinematics and dynamics during the control system
design [1]. However, the attitude tracking problem is further
complicated by the external disturbance and uncertain mass
of moment inertia. To address these issues, there have been
several important developments in the design of feedback
control laws for spacecraftmaneuvering. A number of control
design approaches using adaptive control [2, 3], sliding mode
control [4–7], 𝐻

∞
[8, 9], optimal control [10–13], and data

driven control [14–16] have been proposed. However, few
of them focus on the reaction wheel installation deviation
that are of great theoretical and practical interest. In fact, the
installation deviation is a widespread phenomenon, such as
the actuatormisalignment which is limited by the installation
technique or generated by materials deforms the vehicle
violent vibration during the launching process. In the area
of actuatormisalignment compensation, there currently exist
few unified frameworks for the design of simple control
structures.

Several solutions to actuator installation deviation have
been presented in the literature [17–20]. In [17], the authors

presented a general adaptive tracking attitude controller
design framework for a spacecraft subject to the actuator
installation minor angle deviation. In [18], an adaptive
attitude tracking method is proposed to compensate the
actuator misalignment of nearly 15 degree. And in [19],
a novel algorithm is employed precisely to estimate the
information, such as installation angle of wheel and CMG
alignments. And then the controller design can be on for
the estimation information. Moreover, another recent paper
in [20] proposed an adaptive control approach for satellite
formation flying, in which backstepping technique is used
to synthesize a controller to handle thrust magnitude error
and misalignment. However, the torque is different between
thruster and reaction wheel, one is literal and the other is
time-variable. That is to say that this control strategy is not
suitable for reaction wheel installation deviation compensa-
tion for overactuated spacecraft attitude control.

Treating the uncertain mass of moment inertia caused
by the reaction wheel misalignment is another impossi-
bly avoided problem. In practice, in order to ensure the
reliability of on-orbit spacecraft operation, especially under
high altitude sever external environment, overactuatation is
widely employed to guarantee the control system reliability
service. And finite-time is meanwhile necessary for time
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Figure 1: Structure of the attitude compensation controller.

critical missions. As a result, more and more investigations
also have focused on attitude control design with finite-time
convergence. In [21–23], the finite-time control technique
was applied to design an attitude controller. Feng et al. [24]
proposed a terminal sliding mode controller to solve the sin-
gular problem for a second-order nonlinear dynamic system.
A terminal sliding mode and the Chebyshev neural network
were used in [25] to guarantee that the attitude manoeuvre
was accomplished in finite time, even in the presence of an
unknown inertia matrix, external disturbances, and control
input constraints. Furthermore, two robust sliding mode
controllers were proposed in [26] to realize attitude tracking
in finite-time. Similar finite-time fault tolerant controllers for
spacecrafts were investigated in [27–29].

This work focuses on developing a control scheme to
perform attitude compensation for an overactuated space-
craft with reaction wheel installation deviation, external
disturbances, and uncertain inertia parameters. More specif-
ically, the attitude tracking error is required to be zero in
finite time. The proposed approach is illustrated in Figure 1.
The compensation control module is added to the output
of the nominal controller to compensate for the reaction
wheel misalignment, disturbances, and uncertain moment
of inertia. The proposed scheme solves a difficult problem
of reliable and high accuracy attitude tracking control in
finite time that rejects external disturbances and, at the same
time, compensates for actuator misalignment and system
uncertainties so that the control objective is met.

The remainder of this paper is organized as follows. In
Section 2, we summarize the mathematical model for the
rigid spacecraft attitude and control problem. A compensa-
tion control solutionwith themisalignment, disturbance, and
mass moment of inertia is presented in Section 3. Simulation
results are presented in Section 4. Some conclusions are given
in Section 5.

2. Mathematical Model and
Problem Formulation

The notation adopted throughout this paper is introduced as
follows.The symbol ‖⋅‖ denotes the standard Euclidean norm

or its induced norm; the symbol ‖ ⋅ ‖
∞

denotes the infinite
norm of a vector or matrix. For any given matrix A ∈ R𝑝×𝑞
with full row rank, A† denotes its pseudoinverse.

2.1. Dynamic Model of Rigid Spacecraft. Consider a rigid
space system described by the following attitude kinematics
and dynamics equations [30]:

̇q = 1

2
(q× + 𝑞

0
I
3
)𝜔, (1)

̇𝑞
0
= −

1

2
q𝑇𝜔, (2)

J𝜔 + 𝜔×J𝜔 = u + d, (3)

where𝜔 ∈ R3 is the angular velocity of a body-fixed reference
frame expressed in the body-fixed reference frame, J ∈

R3×3 (positive and definite) is the total inertia matrix of the
spacecraft, u = [𝑢1 𝑢

2
𝑢
3]
𝑇

∈ R3 denotes the combined
control torque produced by the actuators, and d(𝑡) =

[𝑑1 𝑑
2
𝑑
3]
𝑇

∈ R3 denotes the external disturbance torque
from the environment, which is assumed to be unknown
but bounded; 𝑞

0
, q are the scalar and vector components of

the unit quaternion, respectively, with q = [𝑞1 𝑞
2
𝑞
3]
𝑇

∈

R3, satisfying the constraint 𝑞2
0
+ q𝑇q = 1; I

3
represents

the identity matrix with proper dimensions, and for ∀a =

[𝑎1 𝑎
2
𝑎
3]
𝑇, a× denotes a skew-symmetric matrix, more

precisely,

a× = [

[

0 −𝑎
3

𝑎
2

𝑎
3

0 −𝑎
1

−𝑎
2

𝑎
1

0

]

]

. (4)

2.2. ReactionWheel Configuration with InstallationDeviation.
For orbiting spacecraft, loosely speaking, they havemore than
three reaction wheels aligned with the spacecraft body axes.
However, in practice, the configuration of actuators will never
be perfect; that is, to say, whether due to finite manufacturing
tolerances or warping of the spacecraft structure during
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launch, some alignment errors can always exist. Thus, in
this section, the reaction wheels misalignment is taken into
consideration; the faulty dynamics can be described by

J𝜔 = −𝜔
×J𝜔 + (D + ΔD) 𝜏 + d, (5)

where D ∈ R3×𝑁 denotes the actuator distribution matrix,
ΔD denotes the actuator distribution matrix induced by
misalignment, and 𝜏 = [𝜏

1
, . . . , 𝜏

𝑁
]
𝑇
∈ R𝑁 denotes the actual

output torque of the𝑁 reaction wheels.
Due to the rotation of the payload or the existence of

the flywheel installation deviation, the moment of inertia
J is uncertain but positive definite symmetric matrices and
record J = J

0
+ ΔJ, where J

0
denotes the nominal rotational

inertia and ΔJ denotes the uncertain rotational inertia. Here
set 0 < ‖ΔJ‖ ≤ ‖J‖ ≤ 𝐽max < ∞ and 𝐽max is a positive constant.

2.3. Attitude Tracking Model. Assume that the desired atti-
tude to be followed is described with a desired frameT with
respect to I. It is specified by the desired unit quaternion
Qd = (𝑞

𝑑0
, q𝑇d ) ∈ R × R3. The desired angular velocity is

denoted by 𝜔d ∈ R3. Let the error quaternionQe = (𝑒
0
, e𝑇) ∈

R×R3 denote the attitude betweenB andT, and let𝜔e ∈ R3
represent the corresponding error angular velocity. One has

𝜔e = 𝜔 − R̃𝜔d, (6)

where R̃ ∈ R3×3 denote the corresponding rotation matrix
that bringsT ontoB, and

R̃ = (𝑒
2

0
− e𝑇e) I

3
+ 2ee𝑇 − 2𝑒

0
e×. (7)

With (1)–(5), the attitude tracking error dynamics is given
by:

J𝜔e + (𝜔e + R̃𝜔d)
×

J (𝜔e + R̃𝜔d) − J (𝜔×e R̃𝜔d − R̃𝜔d)

= (D + ΔD)E (𝑡) 𝜏 (𝑡) + d (𝑡) ,
(8)

̇𝑒
0
= −

1

2
e𝑇𝜔e, (9)

̇e = 1

2
(e× + 𝑒

0
I
3
)𝜔e. (10)

2.4. Control Objective. The control objective of this work
can be stated as considering the uncertain attitude tracking
system (8)–(10) and design a control law to guarantee that the
attitude tracking error converges to zero in finite-time, even
in the presence of actuator misalignment, uncertain inertia
matrix, and external disturbance d(𝑡).

We present now the main results of this study.

3. Finite-Time Attitude Compensation Control

For the proposed control approach shown in Figure 1, the
nominal control power and the compensation control effort
are presented in this section. First, a finite-time sliding mode
surface is proposed. Then, based on the finite-time sliding

mode surface, a compensation controller is synthesized and
added to the nominal controller to guarantee the global
asymptotic stability of the resulting closed-loop attitude
tracking system with finite-time convergence.

3.1. Finite-Time Sliding Mode Surface Design. We first intro-
duce some lemmas which will be utilized in the subsequent
control development and analysis.

Lemma 1 (see [31]). If 𝑝 ∈ (0, 1), then the following inequality
holds for any vector x = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇
∈ R𝑛:

𝑛

∑

𝑖=1

𝑥𝑖

1+𝑝

≥ (

𝑛

∑

𝑖=1

𝑥𝑖

2

)

(1+𝑝)/2

. (11)

Lemma 2 (see [32]). Suppose that V(x) is a 𝐶
1 smooth

positive-definite function such that

V̇ (x) + 𝜆
1
V (x) + 𝜆

2
V𝛽 (x) ≤ 0, (12)

where 𝜆
1
∈ R+, 𝜆

2
∈ R+, 𝛽 ∈ R+ and 0 < 𝛽 < 1. Then for any

initial value 𝑥(0) = 𝑥
0
, it follows that V(x(𝑡)) = 0 for all the

time 𝑡 ≥ 𝑡
𝐹1
,

𝑡
𝐹1
≤

1

𝜆
1
(1 − 𝛽)

ln
𝜆
1
V1−𝛽 (𝑥

0
) + 𝜆
2

𝜆
2

. (13)

To this end, in this work, a sliding mode surface is
introduced as

s = 𝜔e + 𝜇1e + 𝜇2 sgn (e)
𝑟
, (14)

where s = [𝑠1 𝑠
2
𝑠
3]
𝑇

∈ R3, 𝜇
1
> 0, 𝜇

2
> 0, and 0 < 𝛾 < 1 are

the design parameters and sgn(e) is the sign function defined by

sgn (e)𝑟 = (
𝑒1

𝑟 sgn (𝑒

1
) ,
𝑒2

𝑟 sgn (𝑒

2
) ,
𝑒3

𝑟 sgn (𝑒

3
))
𝑇

.

(15)

Theorem 3. If an controller u(𝑡) is appropriately designed to
let the states reach the sliding surface s, then it has e(𝑡) ≡ 0,
𝑒
0
(𝑡) ≡ 1, and 𝜔e(𝑡) ≡ 0 for all the 𝑡 ≥ 𝑡

𝐹1
.

Proof. From the sliding mode theory [33], it is known that
once the state trajectories of the attitude tracking system
reach the sliding surface, that is, s = 0, it follows that

𝜔e = −𝜇
1
e − 𝜇
2
sgn (e)𝑟. (16)

Consider a candidate Lyapunov function as

𝑉
1
= (1 − 𝑒

0
)
2

+ e𝑇e. (17)

Because the inequality ∑
3

𝑖=0
|𝑒
𝑖
|
𝑟+1

≥ (∑
3

𝑖=0
|𝑒
𝑖
|
2
)
(𝑟+1)/2

holds for 0 < 𝑟 < 1, it is obtained from (15) that

𝑉
1
= −2 ̇𝑒

0
= e𝑇𝜔e = −𝜇

1
e𝑇e − 𝜇

2

3

∑

𝑖=1

𝑒𝑖

𝑟+1 (18)



4 Mathematical Problems in Engineering

which implies that 𝑉
1

= 0 if and only if e = 0. Thus,
𝑉
1
is really a Lyapunov function such that the signal e will

converge to zero and, accordingly, 𝑒
0
tends to±1 as 𝑡 → ∞ by

using the constraint in (18). Note that the equilibrium point
(𝑒
0
, e) = (−1, 0) is not a stable equilibrium point [34]. Then,

by Lemma 1, we obtain

𝑉
1
≤ −𝜇
1
e𝑇e − 𝜇

2
(e𝑇e)

(𝑟+1)/2

. (19)

Because e = (−1, 0)
𝑇 is not the stable equilibrium point,

the signal e will converge to zero. Thus, lim
𝑡→∞

𝑒
0
(𝑡) = 1 can

be obtained from the constraint e𝑇e + 𝑒
2

0
= 1. There exists a

finite time 𝑡 ≥ 0 such that 𝑒
0
(𝑡) > 0 for 𝑡 ≥ 𝑡. Then, for 𝑡 ≥ 𝑡,

one has

(1 − 𝑒
0
)
2

= 2𝑒
2

0
+ e𝑇e − 2𝑒

0

= 2𝑒
0
(𝑒
0
− 1) + e𝑇e − 2 ≤ e𝑇e.

(20)

Then,

𝑉
1
≤ 2e𝑇e. (21)

Using (21), (19) can be further bounded by

𝑉
1
≤ −

1

2
𝜇
1
𝑉
1
− (

1

2
)

(𝑟+1)/2

𝜇
2
𝑉
1

(𝑟+1)/2
. (22)

Using 0.5 < (𝑟+1)/2 < 1 and Lemma 2, one has𝑉
1
(𝑡) ≡ 0

for all 𝑡 ≥ 𝑡
𝐹1
. According to definition of 𝑉

1
(𝑡) in (17), 𝑒

0
(𝑡) ≡

1, e(𝑡) ≡ 0, and 𝜔e(𝑡) ≡ 0 for all 𝑡 ≥ 𝑡
𝐹1

are concluded.
Thereby, the proof is completed here.

3.2. Attitude Compensation Controller Design. Considering
the reaction wheel installation deviation and external distur-
bance, it is obtained from the sliding surface (14) that

J ̇s = D𝜏 + ΔD𝜏 + L − 𝛽q
𝑒
− 0.5 ̇Js. (23)

Because J is unknown but bounded, then ̇J = 0 is
established. Then, L can be represented to be bounded by
‖L‖ ≤ 𝛼

0
+ 𝛼
1
‖𝜔‖ + 𝛼

2
‖𝜔‖
2, where 𝛼

𝑖
, 𝑖 = 1, 2, 3 are positive

constants [35].
In order to facilitate analysis and proof, firstly, define

𝜅 = 𝜆min(DD𝑇), 3‖ΔD‖∞‖D†‖∞ = 𝜀 < 1, and D† is the
pseudoinverse of D. Now, we are ready to present the main
result in Theorem 4.

Theorem 4. Considering the uncertainty attitude tracking
dynamics described by (5) with actuator misalignment ΔD
and external disturbance torque d(𝑡), design an attitude
compensation control law as

𝜏 = 𝜏nom (𝑡) + 𝜏adp (𝑡) + 𝜏mis (𝑡) , (24)

where

𝜏nom (𝑡) = −𝑘
1
𝛽
D𝑇 q𝑒

 s
‖s‖

− 𝐾
D𝑇s
‖s‖2

, (25)

𝜏adp (𝑡) =
D𝑇 (−�̂�

3
− �̂�
4 ‖𝜔‖ − �̂�5‖𝜔‖

2
) s

‖s‖
, (26)

𝜏mis (𝑡) = −
(�̂�
1
− 1) 𝜑 (𝑡)D†s
‖s‖∞

, (27)

where 𝐾 ∈ R+ is control parameter and 𝑘
1
is carefully chosen

such that 𝑘
1
𝜅 − 1 > 0; �̂�

1
is the estimate of 𝜋

1
= 1/(1 − 𝛿); �̂�

3

is the estimate of 𝑘
3
= 𝛼
0
/𝜅; �̂�
4
is the estimate of 𝑘

4
= 𝛼
1
/𝜅;

�̂�
5
is the estimate of 𝑘

5
= 𝛼
2
/𝜅. Moreover, ̇�̂�

1
, �̂�
𝑖
, 𝑖 = 3, 4, 5

are adaptively updated by ̇
�̂�
2
= (‖s𝑇‖/ℓ

4
)�̂�
𝑖
, ̇
�̂�
3
= ‖𝜔‖‖s‖/ℓ

5
,

̇
�̂�
4
= ‖𝜔‖

2
‖s‖/ℓ
6
, and ̇�̂�

1
= 𝑙
1
𝜑(𝑡)‖s‖

∞
, respectively. Then the

system states reach the sliding mode surface s(𝑡) = 0 in finite-
time for any initial state Q(0) and 𝜔(0).

Proof. When s ̸= 0, consider a candidate Lyapunov function:

𝑉
2
=
1

2
s𝑇Js + (1 − 𝜀)

2𝑙
1

�̃�
2

1
+
1

2
𝑙
3
�̃�
2

3
+
1

2
𝑙
4
�̃�
2

4
+
1

2
𝑙
5
�̃�
2

5
, (28)

where �̃�
1
= 𝜋
1
− �̂�
1
, �̃�
𝑖
= 𝑘
𝑖
− �̂�
𝑖
, 𝑖 = 3, 4, 5, and 𝑙

1
, 𝑙
3
, 𝑙
4
, 𝑙
5
are

the positive constants.
Calculating the time-derivative of 𝑉

2
, it yields

𝑉
2
≤ s𝑇J ̇s − (1 − 𝜀)

𝑙
1

�̃� ̇�̂� − 𝑙
3
�̃�
3

̇
�̂�
3
− 𝑙
4
�̃�
4

̇
�̂�
4
− 𝑙
5

̇
�̂�
3

= s (D𝜏nom − 𝛽q
𝑒
) + s (D𝜏adp + L) + s (D𝜏mis + ΔD𝜏)

−
(1 − 𝜀)

𝑙
1

�̃� ̇�̂� − 𝑙
3
�̃�
3

̇
�̂�
3
− 𝑙
4
�̃�
4

̇
�̂�
4
− 𝑙
5

̇
�̂�
3
.

(29)

With (25), it follows that

s (D𝜏nom − 𝛽q
𝑒
) ≤ sD𝜏nom + 𝛽

q𝑒
 ‖s‖

≤ −𝜅𝑘
1
𝛽 ‖s‖ q𝑒

 + 𝛽
q𝑒

 ‖s‖ − 𝐾𝜅

= − (𝑘
1
𝜅𝛽 − 𝛽)

q𝑒
 − 𝜅𝐾

≤ −𝜅𝐾.

(30)

In the same way, with (26), the following equality is
yielded:

s (D𝜏adp + L) ≤ sD𝜏adp + ‖s‖ ‖L‖

≤ −𝜅 (�̂�
3
−
𝛼
0

𝜅
) ‖s‖ − 𝜅 (�̂�4 −

𝛼
1

𝜅
) ‖s‖ ‖𝜔‖

− 𝜅 (�̂�
5
−
𝛼
2

𝜅
) ‖s‖ ‖𝜔‖2

= 𝜅�̃�
3 ‖s‖ + 𝜅�̃�4 ‖s‖ ‖𝜔‖ + 𝜅�̃�5 ‖s‖ ‖𝜔‖

2
.

(31)
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Define 𝜑(𝑡) = ‖D†(𝜏nom + 𝜏adp)‖∞. If the choice of the
control gains is such that 3‖ΔD‖

∞
‖D−1‖

∞
= 𝜀 < 1, using the

inequality xy ≤ 3‖x‖
∞
‖y‖
∞
> 0 for any vector x, y ∈ R𝑛 and

applying (29) lead to

s (D𝜏mis + ΔD𝜏)

= sΔD (𝜏nom + 𝜏adp + 𝜏mis) + sD𝜏mis

≤ 3‖ΔD‖∞

D†∞𝜑 (𝑡) ‖s‖∞ + sΔD𝜏mis + sD𝜏mis

≤ 𝜀𝜑 (𝑡) ‖s‖∞ − (�̂�
1
− 1) 𝜑 (𝑡) ‖s‖∞

+ sΔD[−
(�̂�
1
− 1) 𝜑 (𝑡)D†s
‖s‖∞

]

= (1 − 𝜀) �̃�
1
𝜑 (𝑡) ‖s‖∞.

(32)

Substituting (30)–(32) into (29), consequently, it follows
that

𝑉 ≤ −𝜅𝐾. (33)

And then,

∫

𝑡

0

𝑉
2
(𝜇) 𝑑𝜇 ≤ −𝜅𝐾∫

𝑡

0

𝑑𝜇; that is,

𝑉
2
(𝑡) − 𝑉

2
(0) ≤ −𝜅𝐾𝑡.

(34)

Due to 𝑉
2
(𝑡) ≥ 0, solving (34) leads to 𝑉

2
(𝑡) ≡ 0, for 𝑡 ≥

𝑡
𝐹2
,

𝑡
𝐹2
≤ −

𝑉
2
(𝑡) − 𝑉

2
(0)

𝜅𝐾
. (35)

Then, it can be concluded that the system states reach the
surface s(𝑡) = 0 in finite time.Thereby, the proof is completed
here.

Remark 5. The controller (24) includes three parts: 𝜏adp(𝑡)
is used to compensate for system uncertainty caused by the
external disturbance and moment inertia, 𝜏mis(𝑡) is used
to accommodate actuator misalignment, and 𝜏nom(𝑡) is the
nominal control.

Theorem6. Consider the attitude tracking system given by (5),
(9), and (10). If the control scheme (24) is implemented, then
the attitude tracking maneuver can be accomplished in a finite
time 𝑡

𝐹
= 𝑡
𝐹1

+ 𝑡
𝐹2
; that is, 𝜔e(𝑡) ≡ 0 and e(𝑡) ≡ 0 are

guaranteed for all the time 𝑡 ≥ 𝑡
𝐹
.

Proof. It is obtained from Theorem 4 that all the states of
the attitude tracking system reach the sliding mode surface
s(𝑡) = 0 in finite-time 𝑡

𝐹2
and maintain the motion state on

the slide mode surface. Furthermore, from Theorem 3, it is
obtained that once the system state reaches the slide mode
surface (14) the system state can reach the equilibrium point
(𝑒
0
, e) = (1,0) in finite time 𝑡

𝐹1
. Therefore, for any initial state

Q(0) and𝜔(0), the desired attitude trajectory can be followed
in a finite time 𝑡

𝐹
; that is, e(𝑡) ≡ 0, 𝑒

0
(𝑡) ≡ 1, and 𝜔e(𝑡) ≡ 0

are achieved for all the time 𝑡 ≥ 𝑡
𝐹
. Thereby, the proof is

completed here.

X

Z

−Y

𝛽1 + Δ𝛽1

𝛽3 + Δ𝛽3

𝛽2 + Δ𝛽2

𝛽4 + Δ𝛽4

𝛼1 + Δ𝛼1

𝛼4 + Δ𝛼4

𝛼3 + Δ𝛼3

𝛼2 + Δ𝛼2
X

h4

h1
h2 h3

Figure 2: Configuration of four reaction wheels.

4. Numerical Simulation Results

4.1. ReactionWheel Configuration. To demonstrate the effec-
tiveness and performance of the proposed compensation
control scheme, numerical simulations have been carried out
using the rigid spacecraft system (3) and (6) in conjunction
with the developed compensation control law (24). The
spacecraft is activated by four reaction wheels with a limited
control torque 𝑢max = 0.1N⋅m. The configuration of those
four actuators is shown in Figure 2. 𝛼

𝑖
= 35.26

∘ and 𝛽
𝑖
= 45
∘

are the nominal alignment angles, 𝑖 = 1, 2, 3, 4. Δ𝛼
𝑖
and Δ𝛽

𝑖

are the misalignment angles.
With the configuration shown in Figure 2, the relation

between the actual output torque of reaction wheel and the
total torque acting on the spacecraft is to be calculated as

u (𝑡) = 𝜏
1
(

cos (𝛼
1
+ Δ𝛼
1
) sin (𝛽

1
+ Δ𝛽
1
)

− sin (𝛼
1
+ Δ𝛼
1
)

cos (𝛼
1
+ Δ𝛼
1
) cos (𝛽

1
+ Δ𝛽
1
)

)

+ 𝜏
2
(

− cos (𝛼
2
+ Δ𝛼
2
) cos (𝛽

2
+ Δ𝛽
2
)

− sin (𝛼
2
+ Δ𝛼
2
)

cos (𝛼
2
+ Δ𝛼
2
) sin (𝛽

2
+ Δ𝛽
2
)

)

+ 𝜏
3
(

− cos (𝛼
3
+ Δ𝛼
3
) sin (𝛽

3
+ Δ𝛽
3
)

− sin (𝛼
3
+ Δ𝛼
3
)

− cos (𝛼
3
+ Δ𝛼
3
) cos (𝛽

3
+ Δ𝛽
3
)

)

+ 𝜏
4
(

cos (𝛼
4
+ Δ𝛼
4
) cos (𝛽

4
+ Δ𝛽
4
)

− sin (𝛼
4
+ Δ𝛼
4
)

− cos (𝛼
4
+ Δ𝛼
4
) sin (𝛽

4
+ Δ𝛽
4
)

) .

(36)

Although the misalignment angles exist due to finite-
manufacture technique and vehicle vibration, those angles
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Δ𝛼
𝑖
, Δ𝛽
𝑖
(𝑖 = 1, 2, 3, 4) are small values. They can be

approximated by
cosΔ𝛼

𝑖
≈ 1, sinΔ𝛼

𝑖
≈ Δ𝛼
𝑖
, cosΔ𝛽

𝑖
≈ 1,

sinΔ𝛽
𝑖
≈ Δ𝛽
𝑖
, sinΔ𝛼

𝑖
sinΔ𝛽

𝑖
≈ 0

(𝑖 = 1, 2, 3, 4) .

(37)

Hence, (36) can be re written as
u (𝑡) = D𝜏 (𝑡) + ΔD𝜏 (𝑡) , (38)

whereD and ΔD = (ΔD
1
, ΔD
2
, ΔD
3
, ΔD
4
) are calculated as

D = (
cos𝛼1 sin𝛽1 − cos𝛼2 sin𝛽2 − cos𝛼3 sin𝛽3 cos𝛼4 sin𝛽4
− sin𝛼1 − sin𝛼2 − sin𝛼3 − sin𝛼4

cos𝛼1 cos𝛽1 cos𝛼2 cos𝛽2 − cos𝛼3 cos𝛽3 − cos𝛼4 cos𝛽4
)

=(

√3

3
−
√3

3
−
√3

3

√3

3

−
√3

3
−
√3

3
−
√3

3
−
√3

3
√3

3

√3

3
−
√3

3
−
√3

3

),

ΔD
1
= (

Δ𝛽
1
cos𝛼
1
cos𝛽
1
− Δ𝛼
1
sin𝛼
1
sin𝛽
1

−Δ𝛼
1
cos𝛼
1

−Δ𝛽
1
cos𝛼
1
sin𝛽
1
− Δ𝛽
1
sin𝛼
1
cos𝛽
1

)

ΔD
2
= (

−Δ𝛽
2
cos𝛼
2
cos𝛽
2
+ Δ𝛼
2
sin𝛼
2
sin𝛽
2

−Δ𝛼
2
cos𝛼
2

−Δ𝛽
2
cos𝛼
2
sin𝛽
2
− Δ𝛽
2
sin𝛼
2
cos𝛽
2

)

ΔD
3
= (

−Δ𝛽
3
cos𝛼
3
cos𝛽
3
+ Δ𝛼
3
sin𝛼
3
sin𝛽
3

−Δ𝛼
3
cos𝛼
3

Δ𝛽
3
cos𝛼
3
sin𝛽
3
+ Δ𝛽
3
sin𝛼
3
cos𝛽
3

)

ΔD
4
= (

Δ𝛽
4
cos𝛼
4
cos𝛽
4
− Δ𝛼
4
sin𝛼
4
sin𝛽
4

−Δ𝛼
4
cos𝛼
4

Δ𝛽
4
cos𝛼
4
sin𝛽
4
+ Δ𝛼
4
sin𝛼
4
cos𝛽
4

).

(39)
Remark 7. Theorem 4 gives out the sufficient condition
3‖ΔD‖

∞
‖D†‖
∞

= 𝜀 < 1 of efficacious processes on reaction
wheel installation deviation ΔD for guaranteeing the attitude
controller (24). Particulary, according to the definition ΔD
and matrix norm, then ‖ΔD‖

∞
≤ max

𝑖=1,2,3
𝜃
𝑖
, where

𝜃
1
=

4

∑

𝑖=1

Δ𝛼𝑖 sin𝛼𝑖 sin𝛽𝑖
 +

4

∑

𝑖=1

Δ𝛽𝑖 cos𝛼𝑖 cos𝛽𝑖


=
√6

6

4

∑

𝑖=1

Δ𝛼𝑖
 +

√3

3

4

∑

𝑖=1

Δ𝛽𝑖
 ,

𝜃
2
=

4

∑

𝑖=1

Δ𝛼𝑖 cos𝛼𝑖
 =

√6

3

4

∑

𝑖=1

Δ𝛼𝑖
 ,

𝜃
3
=

4

∑

𝑖=1

Δ𝛼𝑖 sin𝛼𝑖 cos𝛽𝑖
 +

4

∑

𝑖=1

Δ𝛽𝑖 cos𝛼𝑖 sin𝛽𝑖


=
√6

6

4

∑

𝑖=1

Δ𝛼𝑖
 +

√3

3

4

∑

𝑖=1

Δ𝛽𝑖
 .

(40)

On the other hand, inequality 3‖ΔD‖
∞
‖D†‖
∞

= 𝜀 < 1

means that ‖ΔD‖
∞
= 𝜀/(3‖D†‖

∞
) < 1/(3‖D†‖

∞
). Therefore,

the establishment conditions max
𝑖=1,2,3,4

𝜃
𝑖
< 1/3‖D†‖

∞
=

0.2566 rad ofTheorem 4 from (40) can be obtained, that is to
say, the installation deviation angle of any two reactionwheels
is not larger than 0.2566 rad. Relying on this, this largest
installation deviation angle, that is max

𝑖=1,2,3,4
𝜃
𝑖
= 14.7021∘, of

the reaction wheel installation structure is considered in this
paper.

4.2. Simulation Results. The nominal inertia matrix of the
considered spacecraft is specified by [36]

J
0
= (

35 3 −1.5

3 28 2

−1.5 2 30

) kg ⋅m2, (41)

ΔJ = (1 + 𝑒
−0.1𝑡

+ 2𝜗 (𝑡 − 10) − 4𝜗 (𝑡 − 20)) diag (3, 2, 1)
(42)

which incorporated into the model, where 𝜗(⋅) is defined as
𝜗(𝑡 ≥ 0) = 1 and 𝜗(𝑡 < 0) = 0. External disturbance d(𝑡) is
chosen as [35]

d (𝑡) = (‖𝜔‖
2
+ 0.05) (sin 0.8𝑡, cos 0.5𝑡, cos 0.3𝑡)𝑇. (43)

The reactionwheelmisalignment angleΔ𝛼
𝑖
(𝑖 = 1, 2, 3, 4)

can be selected randomly between −4.5∘∼+4.5∘, and Δ𝛽
𝑖
(𝑖 =

1, 2, 3, 4) can be selected randomly between −5.5∘∼+5.5∘.
In this simulation, spacecraft initial parameter

is set as follows: initial angular velocity 𝜔
𝑖
(0) =

[0.1 −0.1 −0.05]
∘

/𝑠, 𝑖 = 1, 2, 3; initial attitude quaternary
q
𝑖
(0) = [0.181 −0.287 0.792 −0.524]

𝑇, 𝑖 = 0, 1, 2, 3; the
corresponding initial roll angle, pitch angle, and yaw angle
are set 0.2∘, −0.4∘ and −0.3∘ respectively. The control gains
are selected by the following list: 𝛽 = 0.7, 𝐾 = 0.05, 𝜅 = 1.05,
𝑘
𝑖
= 1.5 (𝑖 = 1, 3, 4, 5), as 𝑙

𝑖
= 1.5 (𝑖 = 1, 3, 4, 5); moreover,

the initial of the adaptive update laws are ̇�̂�
1
(0) = 1.25,

̇
�̂�
3
(0) = 0.68, ̇

�̂�
4
(0) = 0.42, ̇

�̂�
5
(0) = 0.22.

To demonstrate the effectiveness of the proposed mis-
alignment compensation and disturbance rejection scheme,
a spacecraft is numerically simulated using the proposed
control compensation strategy (24).

We see in Figures 3–8 the controller managed to stabi-
lize the origin equilibrium point in 30 seconds with great
pointing accuracy. Indeed, since the knowledge of spacecraft
inertia parameters was not required and an implicit integral
item was incorporated in the control law design, external
disturbance effect on the attitude control performance can be
compensated efficiently, and also great robustness to system
uncertainties, such as misalignment, can be guaranteed.

We can see in Figures 3 and 4 the time responses
of angle velocity and attitude angle; the proposed control
scheme surely realized the high precision stable control in
the presence of external disturbance, uncertain moment of
inertia, and reaction wheel misalignment, and the pointing
accuracy is superior to 0.01∘; the attitude stable precision
is superior to 0.001∘/s. Meanwhile, from Figures 5 and 6,
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we can see that for compensating the misalignment and
other uncertainties, the designed control commandof control
redundancy configuration for 4 reaction wheels 𝜏 is allocated
to the three-actual-output torque u, and then the purpose of
compensation, attitude high precision control is realized. In
addition, the finite-time control validity is shown in Figure 8.
And from Figure 8, we can see that the spacecraft attitude
control system status has realized the tracking control at
𝑡
𝐹
= 30.5. Thereinto, the spacecraft attitude has arrived at

slide mode surface s at 𝑡
𝐹1

= 25.9; afterwards, the statuses
converge to equilibrium point at 𝑡

𝐹2
= 5.4 under the normal

control 𝜏nom(𝑡). The same validity of finite-time attitude
compensation control strategy proposed in this paper can be
further proved from the time response of the quaternion as
shown in Figure 7.

From the above illustrated simulation results, it is shown
that the proposed scheme can accomplish the attitude stabi-
lization in finite-time in presence of time-varying external
disturbances, uncertain inertial parameters, and even reac-
tion wheel installation deviation.

5. Conclusions and Future Works

Considering the spacecraft issues about reaction misalign-
ment, external disturbances, and parameters uncertainty, in
this paper, a finite-time adaptive attitude compensation con-
trol has been proposed. A quantitative installation deviation
angle analysis has been done and given out the value range
of the reaction wheel misalignment angle. In the end the
system stability and engineering practical value have been
discussed from the perspective of theory and engineering.
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Figure 8: Time response of sliding mode surface.

Numerical simulation of this novel control strategy was
also presented to confirm the advantages and improvements
over existing controllers. The case of actuator misalignment
mentioned in Section 4 had only discussed for four reaction
wheel configuration, but this compensation control scheme is
suitable formore than that reactionwheel number.Moreover,
the actuator faults have not been considered. The latter case
should be as one of subjects for future research. Meanwhile,
the method optimal control approach combined robust
control [37, 38] also can be applied in this field.
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The stabilization problem is investigated in this paper for a class of nonlinear systems with disturbances. The disturbances are
supposed to be classified into two types. One type in the input channel is generated by an exogenous system, which can represent the
constant or harmonic signals with unknown phase andmagnitude.The other type is stochastic disturbance. Two kinds of nonlinear
dynamics in the plants are considered, respectively, which correspond to the known and unknown functions. By integrating the dis-
turbance observers with conventional control method, the first type of disturbances can be estimated and rejected. Simultaneously,
the desired dynamic performances can be guaranteed. An example is given to show the effectiveness of the proposed scheme.

1. Introduction

Though the stochastic stabilization theory emerged in the
1960s [1], the progress has been slow. This was mainly due
to a fundamental theory obstacle in the Lyapunov analysis;
the Itô differentiation introduces not only the gradient but
also the Hessian term of the Lyapunov function. Along with
the advances in differential geometric theory [2] and the
discovery of a simple constructive formula for Lyapunov sta-
bilization [3], the stochastic stabilization problem was reex-
amined and some constructive results have been achieved.
The stabilization of nonlinear stochastic systems was con-
sidered in the work of Florchinger [4–7], who, among other
things, extended the concept of control Lyapunov functions
and Sontag’s stabilization formula to stochastic setting. Pan
and Başer [8] solved the stabilization problem for a class of
strict-feedback systems representative of stabilization results
for deterministic systems. Deng and Krstić [9] developed
a simpler control strategy for strict-feedback systems and
then extended the results on inverse optimal stabilization for
general systems to the stochastic case.The authors of [10] con-
sidered the dissipativity analysis and dissipativity-based slid-
ing mode control for a class of continuous-time switched
stochastic systems and [11] designed multistep predictive

controller for a class of Markov jump convex polyhedron
linear parameter time-varying systems with both constraints
on input and output. The adaptive neural tracking control
problem was the concern in [12] for a class of strict-feed-
back stochastic nonlinear systems with unknown dead zone.
However, most of these results were focused on systems that
only have one kind of disturbance-stochastic disturbance.
In [13], Hinrichsen proposed the stochastic robust control
method for systems with deterministic and stochastic dis-
turbances, which enabled us to deal with a broader class of
systems. However, only stability of the nominal system in
the absence of deterministic disturbances was the concern in
this approach, which means that the stability cannot be gua-
ranteed in the presence of both deterministic and stochastic
disturbances.

Disturbance-observer-based control (DOBC) approach,
which is based on the idea of feed-forward compensation,
appeared in the late 1980s and has attracted considerable
attention in control theory literatures [14–17]. The controller
design of this method can be accomplished in two steps.
First, a disturbance observer is designed to estimate the deter-
ministic disturbance and then compensate it. Second, feed-
back controller is designed to stabilize the nominal sys-
tem without disturbance. DOBC approach has its roots in
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many mechanical applications in the last two decades, in
particular for linear systems [18–20]. Recently, some attempts
have been made to establish theoretic justification of these
DOBC applications and extend DOBC from linear systems
to nonlinear systems [21, 22]. Besides, [23] designed output
feedback controller for a class of Markovian jump repeated
scalar nonlinear systems and [24] investigated the problem
of composite DOBC and 𝐻

∞
control for Markovian jump

systems with nonlinearity and multiple disturbances.
This paper considers the application of DOBC approach

to a class of nonlinear stochastic systems. The nonlinear
dynamics are described by known and unknown nonlinear
functions, respectively. And apart from the stochastic noises,
the deterministic disturbance is supposed to be generated by
an exogenous system as investigated in [18, 19], which is not
confined to be bounded in norm [25]. By using the distur-
bance estimation, the DOBC strategy can be integrated with
the conventional stabilization controllers to reject the deter-
ministic disturbance and globally stabilize the closed-loop
systems in probability. Finally, simulations on anA4D aircraft
model show the effectiveness of the proposed approaches.

2. Problem Statement

The following MIMO stochastic system with nonlinearity is
described as
𝑑𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝐹

0
𝑓 (𝑥 (𝑡) , 𝑡) + 𝐵 [𝑢 (𝑡) + V (𝑡)]} 𝑑𝑡

+ 𝐴
0
𝑥 (𝑡) 𝑑𝜔,

(1)

where 𝑥(𝑡) ∈ 𝑅
𝑛, 𝑢(𝑡) ∈ 𝑅

𝑚 and V(𝑡) ∈ 𝑅
𝑚, are the state,

control input, and disturbance, respectively. 𝑓(𝑥(𝑡), 𝑡) is a
nonlinear vector function satisfying bounded condition as
described in Assumption 1. 𝜔 is an 𝑟-dimensional standard
Brownian motion defined on a complete probability space
(Ω,F,P) with Ω being a sample space, F being a 𝜎-field,
and P being the probability measure. 𝐴, 𝐵, 𝐹

0
, and 𝐴

0
are

given system matrices with corresponding dimensions.

Assumption 1. For any 𝑥
𝑗
(𝑡) ∈ 𝑅

𝑛, 𝑗 = 1, 2, nonlinear
function 𝑓(𝑥(𝑡), 𝑡) satisfy

𝑓 (0, 𝑡) = 0,

𝑓 (𝑥1 (𝑡) , 𝑡) − 𝑓 (𝑥2 (𝑡) , 𝑡)
 ≤

𝑈 (𝑥
1
(𝑡) − 𝑥

2
(𝑡))

 ,

(2)

where 𝑈 is a given constant weighting matrix.

Assumption 2. The disturbance V(𝑡) in the control input path
is supposed to be generated by the following exogenous
systems:

̇𝜛 (𝑡) = 𝑊𝜛 (𝑡) , V (𝑡) = 𝑉𝜛 (𝑡) , (3)

where 𝑊 ∈ 𝑅
𝑟×𝑟, 𝑉 ∈ 𝑅

𝑚×𝑟 are known constant weighting
matrices.

Remark 3. In fact, many kinds of disturbances in engineering
can be described by Assumption 2, for example, unknown
constant and harmonics with unknown phase and magni-
tude.

The following assumption is the necessary condition for
the DOBC problem.

Assumption 4. (𝐴, 𝐵) is controllable and (𝑊, 𝐵𝑉) is observ-
able.

In this paper, we suppose system states are available,
which means that only the estimation of disturbance needs
to be focused on. In this situation, the objective of DOBC
is to design an observer for system (1) to estimate the
unknown disturbance V(𝑡), and then construct a composite
controllerwith the disturbance estimation and a conventional
controller so that the disturbance can be rejected and the
stability in probability of the resulting composite system can
be guaranteed.

3. DOBC for the Case with
Known Nonlinearity

In this section, the nonlinearity function 𝑓(𝑥(𝑡), 𝑡) is sup-
posed to be given and Assumptions 1, 2, and 4 hold. Due to
the fact that the states of system are available, the disturbance
observer is designed as

V̂ (𝑡) = 𝑉𝜛 (𝑡) , 𝜛 (𝑡) = 𝑠 (𝑡) − 𝐿𝑥 (𝑡) , (4)

where 𝜛(𝑡) is the estimation of 𝜛(𝑡) and 𝑠(𝑡) is the auxiliary
variable generated by

𝑑𝑠 (𝑡) = [ (𝑊 + 𝐿𝐵𝑉) (𝑠 (𝑡) − 𝐿𝑥 (𝑡))

+𝐿 (𝐴𝑥 (𝑡) + 𝐹
0
𝑓 (𝑥, 𝑡) + 𝐵𝑢 (𝑡))] 𝑑𝑡.

(5)

Denote the estimation error as 𝑒
𝜛
(𝑡) = 𝜛(𝑡) − 𝜛(𝑡). Based

on (1), (3), (4), and (5), the error dynamics satisfy

𝑑𝑒
𝜛
(𝑡) = (𝑊 + 𝐿𝐵𝑉) 𝑒

𝜛
𝑑𝑡 + 𝐿𝐴

0
𝑥 (𝑡) 𝑑𝜔. (6)

The objective of disturbance rejection can be achieved
by designing the observer gain 𝐿 such that (6) satisfies the
desired stability in probability.

For DOBC strategy, the controller is usually selected as
[22, 26–28]

𝑢 (𝑡) = −V̂ (𝑡) + 𝐾𝑥 (𝑡) , (7)

where V̂(𝑡) is to compensate the disturbance in control input
path and 𝐾 is the conventional feedback gain needed to be
determined later.

By substituting (7) into (1), the closed loop system can be
written in the following form:

𝑑𝑥 (𝑡) = {(𝐴 + 𝐵𝐾) 𝑥 (𝑡) + 𝐹
0
𝑓 (𝑥 (𝑡) , 𝑡) + 𝐵𝑉𝑒

𝜛
(𝑡)} 𝑑𝑡

+ 𝐴
0
𝑥 (𝑡) 𝑑𝜔.

(8)

Combining (8) with (6), the composite system is
described as

𝑑𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝐹𝑓 (𝑥, 𝑡)} 𝑑𝑡 + 𝐴
0
𝑥 (𝑡) 𝑑𝜔, (9)
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where

𝑥 (𝑡) = [
𝑥 (𝑡)

𝑒
𝜛
(𝑡)
] , 𝐴 = [

𝐴 + 𝐵𝐾 𝐵𝑉

0 𝑊 + 𝐿𝐵𝑉
] ,

𝐹 = [
𝐹
0

0
] , 𝐴

0
= [

𝐴
0

0

𝐿𝐴
0
0
] .

(10)

In the following, the objective is to design gain 𝐿 and 𝐾
such that system (9) is asymptotical stabilization in probabil-
ity. For the convenience of research, the following lemma is
presented.

Lemma 5 (see [29, 30]). For a given stochastic system

𝑑𝑥 (𝑡) = 𝑔 (𝑥, 𝑡) 𝑑𝑡 + ℎ (𝑥, 𝑡) 𝑑𝜔, 𝑥 (𝑡
0
) = 𝑥
0
, (11)

if there exists function 𝑉(𝑥, 𝑡) ∈ 𝐶
1,2, 𝜇
1
(⋅), 𝜇
2
(⋅) ∈ K

∞
,

constants 𝑐
1
> 0, and a nonnegative𝑀(𝑥, 𝑡), such that

𝜇
1
(𝑥) ≤ 𝑉 (𝑥, 𝑡) ≤ 𝜇

2
(𝑥) , L𝑉 ≤ −𝑐

1
𝑀(𝑥, 𝑡) , (12)

then, one has the following.
(i) The equilibrium 𝑥 = 0 is globally stable in probability

and the solution 𝑥(𝑡) satisfied 𝑃{lim
𝑡→∞

𝑀(𝑥(𝑡)) =

0} = 1, when 𝑔(0, 𝑡) = 0, ℎ(0, 𝑡) = 0, and 𝑀(𝑥, 𝑡) =

𝑀(𝑥) is continuous.
(ii) The equilibrium 𝑥 = 0 is globally asymptotically stable

in probability, when 𝑔(0, 𝑡) = 0, ℎ(0, 𝑡) = 0, and
𝑀(𝑥, 𝑡) is positive definite.

Here, the differential operator L for differentiable function
𝑉(𝑥, 𝑡) is defined as

L𝑉 =
𝜕𝑉

𝜕𝑥
𝑔 (𝑥, 𝑡) +

1

2
𝑇𝑟{ℎ(𝑥, 𝑡)

𝑇 𝜕
2
𝑉

𝜕𝑥2
ℎ (𝑥, 𝑡)} . (13)

Theorem 6. Consider system (1) with disturbance (3) under
Assumptions 1, 2, and 4. For some 𝜆 > 0, if there exist 𝑃

1
=

𝑃
𝑇

1
> 0, 𝑅

1
and constant 𝛽 > 0 satisfying

[
sym (𝑃

1
𝑊+ 𝑅

1
𝐵𝑉) 𝑉

𝑇
𝐵
𝑇

𝐵𝑉 −𝛽
2
𝐼
] < 0 (14)

and 𝑄
2
= 𝑄
𝑇

2
> 0, 𝑅

2
satisfying

[
[
[

[

Ξ 𝑄
2
𝐴
𝑇

0
𝑄
2
𝐴
𝑇

0
𝑅
𝑇

1
𝑄
2
𝑈
𝑇

𝐴
0
𝑄
2

−𝑄
2

0 0

𝑅
1
𝐴
0
𝑄
2

0 −𝑃
1

0

𝑈𝑄
2

0 0 −𝜆
2
𝐼

]
]
]

]

< 0, (15)

where Ξ = sym(𝐴𝑄
2
+ 𝐵𝑅
2
) + 𝜆
2
𝐹
0
𝐹
𝑇

0
+ 𝛽
2
𝐼, then the closed

loop system (8) under DOBC law (7) with gain 𝐾 = 𝑅
2
𝑄
−1

2

and observer (4) with gain 𝐿 = 𝑃
−1

1
𝑅
1
are global asymptotical

stabilization in probability.

Proof. Define

Σ
1
(𝑒
𝜛
, 𝑡) = 𝑒

𝑇

𝜛
𝑃
1
𝑒
𝜛
,

Σ
2
(𝑥, 𝑡) = 𝑥

𝑇
𝑃
2
𝑥 +

1

𝜆2
∫

𝑡

0

[‖𝑈𝑥 (𝑡)‖
2
−
𝑓 (𝑥, 𝑡)


2

] 𝑑𝜏,

(16)

where 𝑃−1
2

= 𝑄
2
.

It is noted that for all𝑥 and 𝑒
𝜛
,Σ
1
≥ 0,Σ

2
≥ 0. In addition,

along with (6), (8), the It ́o differential of Σ
1
, Σ
2
satisfies

LΣ
1
= 𝑒
𝑇

𝜛
[𝑃
1
(𝑊 + 𝐿𝐵𝑉) + (𝑊 + 𝐿𝐵𝑉)

𝑇
𝑃
1
] 𝑒
𝜛

+ 𝑥
𝑇
𝐴
𝑇

0
𝐿
𝑇
𝑃
1
𝐿𝐴
0
𝑥,

LΣ
2
= 𝑥
𝑇
[𝑃
2
(𝐴 + 𝐵𝐾) + (𝐴 + 𝐵𝐾)

𝑇
𝑃
2
] 𝑥

+ 2𝑥
𝑇
𝑃
2
𝐹
0
𝑓 + 2𝑥

𝑇
𝑃
2
𝐵𝑉𝑒
𝜛
+

1

𝜆2
𝑥
𝑇
𝑈
𝑇
𝑈𝑥

+ 𝑥
𝑇
𝐴
𝑇

0
𝑃
2
𝐴
0
𝑥 −

1

𝜆2
𝑓
𝑇
𝑓.

(17)

Via Young inequality, we get

2𝑥
𝑇
𝑃
2
𝐹
0
𝑓 ≤ 𝜆

2
𝑥
𝑇
𝑃
2
𝐹
0
𝐹
𝑇

0
𝑃
2
𝑥 +

1

𝜆2
𝑓
𝑇
𝑓,

2𝑥
𝑇
𝑃
2
𝐵𝑉𝑒
𝜛
≤ 𝛽
2
𝑥
𝑇
𝑃
2
𝑃
2
𝑥 +

1

𝛽2
𝑒
𝑇

𝜛
𝑉
𝑇
𝐵
𝑇
𝐵𝑉𝑒
𝜛
.

(18)

Then we have

LΣ
2
≤ 𝑥
𝑇
{sym [𝑃

2
(𝐴 + 𝐵𝐾)] + 𝐴

𝑇

0
𝑃
2
𝐴
0
+

1

𝜆2
𝑈
𝑇
𝑈

+ 𝜆
2
𝑃
2
𝐹
0
𝐹
𝑇

0
𝑃
2
+ 𝛽
2
𝑃
2
𝑃
2
} 𝑥 +

1

𝛽2
𝑒
𝑇

𝜛
𝑉
𝑇
𝐵
𝑇
𝐵𝑉𝑒
𝜛
.

(19)

A Lyapunov function candidate for (9) is chosen as
Σ(𝑥, 𝑒

𝜛
, 𝑡) = Σ

1
(𝑒
𝜛
, 𝑡) + Σ

2
(𝑥, 𝑡); hence, it is easy to get

LΣ ≤ 𝑒
𝑇

𝜛
{sym [𝑃

1
(𝑊 + 𝐿𝐵𝑉)] +

1

𝛽2
𝑉
𝑇
𝐵
𝑇
𝐵𝑉} 𝑒

𝜛

+ 𝑥
𝑇
{sym [𝑃

2
(𝐴 + 𝐵𝐾)] + 𝐴

𝑇

0
𝑃
2
𝐴
0
+

1

𝜆2
𝑈
𝑇
𝑈

+ 𝜆
2
𝑃
2
𝐹
0
𝐹
𝑇

0
𝑃
2
+ 𝛽
2
𝑃
2
𝑃
2
+ 𝐴
𝑇

0
𝐿
𝑇
𝑃
1
𝐿𝐴
0
} 𝑥

= 𝑒
𝑇

𝜛
Π
1
𝑒
𝜛
+ 𝑥
𝑇
Π
2
𝑥,

(20)

where

Π
1
= sym [𝑃

1
(𝑊 + 𝐿𝐵𝑉)] +

1

𝛽2
𝑉
𝑇
𝐵
𝑇
𝐵𝑉,

Π
2
= sym [𝑃

2
(𝐴 + 𝐵𝐾)] + 𝐴

𝑇

0
𝑃
2
𝐴
0
+

1

𝜆2
𝑈
𝑇
𝑈

+ 𝜆
2
𝑃
2
𝐹
0
𝐹
𝑇

0
𝑃
2
+ 𝛽
2
𝑃
2
𝑃
2
+ 𝐴
𝑇

0
𝐿
𝑇
𝑃
1
𝐿𝐴
0
.

(21)

Using Lemma 5, it can be verified that system (9) is global
asymptotical stabilization in probability ifΠ

1
< 0 andΠ

2
< 0

hold.
Based on Schur complement, Π

1
< 0 is equivalent to

Π
10
< 0, where

Π
10
= [

sym [𝑃
1
𝑊+ 𝑅

1
𝐵𝑉] 𝑉

𝑇
𝐵
𝑇

𝐵𝑉 −𝛽
2
𝐼
] , (22)
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and Π
2
< 0 is equivalent to Π

21
< 0, where

Π
21
=
[
[
[

[

Ξ
0

𝐴
𝑇

0
𝐴
𝑇

0
𝐿
𝑇
𝑃
1

𝑈
𝑇

∗ −𝑃
−1

2
0 0

∗ ∗ −𝑃
1

0

∗ ∗ ∗ −𝜆
2
𝐼

]
]
]

]

(23)

andΞ
0
= sym[𝑃

2
(𝐴+𝐵𝐾)]+𝜆

2
𝑃
2
𝐹
0
𝐹
𝑇

0
𝑃
2
+𝛽
2
𝑃
2
𝑃
2
. In addition,

∗ represents the corresponding elements in the symmetric
matrix.

Π
21

is premultiplied and postmultiplied simultaneously
by diag{𝑄

2
, 𝐼, 𝐼, 𝐼}; then it is equivalent to Π

20
, where

Π
20
=
[
[
[

[

Ξ 𝑄
2
𝐴
𝑇

0
𝑄
2
𝐴
𝑇

0
𝑅
𝑇

1
𝑄
2
𝑈
𝑇

∗ −𝑄
2

0 0

∗ ∗ −𝑃
1

0

∗ ∗ ∗ −𝜆
2
𝐼

]
]
]

]

(24)

and Ξ = sym[(𝐴 + 𝐵𝐾)𝑄
2
] + 𝜆
2
𝐹
0
𝐹
𝑇

0
+ 𝛽
2
𝐼.

Thus, (14), (15) can be obtained.
On the other hand, (14), (15) hold, meaning that there

exist 𝛼
1
> 0, 𝛼

2
> 2 such that Π

10
< −𝛼

1
𝐼, Π
20

< −𝛼
2
𝐼;

that is, Π
1
< −𝛼
1
𝐼, Π
2
< −𝛼
2
𝐼. Hence, we have

LΣ ≤ 𝑒
𝑇

𝜛
Π
1
𝑒
𝜛
+ 𝑥
𝑇
Π
2
𝑥

≤ −𝛼
1

𝑒𝜛

2

− 𝛼
2‖𝑥‖
2

≤ −min {𝛼
1
, 𝛼
2
} (‖𝑥‖

2
+
𝑒𝜛


2

)

= −min {𝛼
1
, 𝛼
2
} ‖𝑥‖
2
.

(25)

Therefore, the closed-loop system (9) is global asymptotical
stabilization in probability when the control gain is selected
as𝐾 = 𝑅

2
𝑄
−1

2
and observer gain is selected as 𝐿 = 𝑃

−1

1
𝑅
1
.The

proof is completed.

4. DOBC for the Case with
Unknown Nonlinearity

In this section, the nonlinear function 𝑓(𝑥(𝑡), 𝑡) is supposed
to be unknown, which means disturbance observer should
be designed different from Section 3. In this case, the distur-
bance observer can be constructed as

V̂ (𝑡) = 𝑉𝜛 (𝑡) , 𝜛 (𝑡) = 𝑠 (𝑡) − 𝐿𝑥 (𝑡) ,

𝑑𝑠 (𝑡) = (𝑊 + 𝐿𝐵𝑉) (𝑠 (𝑡) − 𝐿𝑥 (𝑡)) + 𝐿 (𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)) 𝑑𝑡.

(26)

Compared with (6), the estimation error 𝑒
𝜛
(𝑡) = 𝜛(𝑡) −

𝜛(𝑡) satisfies

𝑑𝑒
𝜛
(𝑡) = [(𝑊 + 𝐿𝐵𝑉) 𝑒

𝜛
+ 𝐿𝐹
0
𝑓 (𝑥, 𝑡)] 𝑑𝑡 + 𝐿𝐴

0
𝑥 (𝑡) 𝑑𝜔.

(27)

Thus, the composite system combined (8) with (27) is
given by

𝑑𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝐹𝑓 (𝑥, 𝑡)} 𝑑𝑡 + 𝐴
0
𝑥 (𝑡) 𝑑𝜔, (28)

where

𝑥 (𝑡) = [
𝑥 (𝑡)

𝑒
𝜛
(𝑡)
] , 𝐴 = [

𝐴 + 𝐵𝐾 𝐵𝑉

0 𝑊 + 𝐿𝐵𝑉
] ,

𝐹 = [
𝐹
0

𝐿𝐹
0

] , 𝐴
0
= [

𝐴
0

0

𝐿𝐴
0
0
] .

(29)

The objective of this section is similar to Section 3, that is,
to design gain 𝐿 and𝐾 such that system (28) is asymptotically
stable in probability.

Theorem 7. Consider system (1) with disturbance (3) under
Assumptions 1, 2, and 4. For some 𝜆

1
> 0, 𝜆

2
> 0, if there exist

𝑃
1
= 𝑃
𝑇

1
> 0, 𝑅

1
and constant 𝛽 > 0 satisfying

[

[

sym (𝑃
1
𝑊+ 𝑅

1
𝐵𝑉) 𝑅

1
𝐹
0

𝑉
𝑇
𝐵
𝑇

∗ −𝜆
−2

1
𝐼 0

∗ ∗ −𝛽
2
𝐼

]

]

< 0 (30)

and 𝑄
2
= 𝑄
𝑇

2
> 0, 𝑅

2
satisfying

[
[
[
[
[

[

Ξ 𝑄
2
𝐴
𝑇

0
𝑄
2
𝐴
𝑇

0
𝑅
𝑇

1
𝑄
2
𝑈
𝑇
𝑄
2
𝑈
𝑇

∗ −𝑄
2

0 0 0

∗ ∗ −𝑃
1

0 0

∗ ∗ ∗ −𝜆
2

1
𝐼 0

∗ ∗ ∗ ∗ −𝜆
2

2
𝐼

]
]
]
]
]

]

< 0, (31)

where Ξ = sym(𝐴𝑄
2
+ 𝐵𝑅
2
) + 𝜆
2

2
𝐹
0
𝐹
𝑇

0
+ 𝛽
2
𝐼, then the closed

loop system (28) under DOBC law (7) with gain 𝐾 = 𝑅
2
𝑄
−1

2

and observer (26) with gain 𝐿 = 𝑃
−1

1
𝑅
1
is global asymptotical

stabilization in probability.

Proof. Let

Σ
1
(𝑒
𝜛
, 𝑡) = 𝑒

𝑇

𝜛
𝑃
1
𝑒
𝜛
+

1

𝜆2
1

∫

𝑡

0

[‖𝑈𝑥 (𝑡)‖
2
−
𝑓 (𝑥, 𝑡)


2

] 𝑑𝜏,

Σ
2
(𝑥, 𝑡) = 𝑥

𝑇
𝑃
2
𝑥 +

1

𝜆2
2

∫

𝑡

0

[‖𝑈𝑥 (𝑡)‖
2
−
𝑓 (𝑥, 𝑡)


2

] 𝑑𝜏,

(32)

where 𝑃−1
2

= 𝑄
2
. And a Lyapunov function candidate for (28)

is chosen as Σ(𝑥, 𝑒
𝜛
, 𝑡) = Σ

1
(𝑒
𝜛
, 𝑡) + Σ

2
(𝑥, 𝑡). The following

proof procedure can be given similarly to that of the proof
for Theorem 6.

5. Simulation Example

In [21], DOBC strategy was employed to a deterministic
system of A4D aircraft with disturbance, and better system
performance was obtained than some previous results [31].
However, stochastic noise should be considered when higher
precision of system performance was required. In this sec-
tion, the stochastic system that represents the longitudinal
dynamics of A4D aircraft is considered, which is described
as follows:

𝑑𝑥 (𝑡) = {𝐴𝑥 (𝑡) + 𝐹
0
𝑓 (𝑥, 𝑡) + 𝐵 [𝑢 (𝑡) + V (𝑡)]} 𝑑𝑡

+ 𝐴
0
𝑥 (𝑡) 𝑑𝜔

(33)
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Figure 1: System performance using stochastic robust control
strategy.

with the following coefficient:

𝐴 =
[
[
[

[

−0.0605 32.37 0 32.2

−0.00014 −1.475 1 0

−0.0111 −34.72 −2.793 0

0 0 1 0

]
]
]

]

,

𝐹
0
=
[
[
[

[

0

0

0

60

]
]
]

]

, 𝐵 =
[
[
[

[

0

−0.1064

−33.8

0

]
]
]

]

,

𝐴
0
=
[
[
[

[

1 0 0 0

0 0.3 0 0.2

0 0 0 0

0 0 0 0.5

]
]
]

]

.

(34)

The parameter matrices for disturbance V(𝑡) that are des-
cribed by (3) are given by

𝑊 = [
0 5

−5 0
] , 𝑉 = [25 10] . (35)

Case 1 (with known nonlinearity). In this case, the non-
linear dynamic is supposed to be denoted by 𝑓(𝑥, 𝑡) =

sin(10𝜋𝑡)𝑥
2
(𝑡) in the simulation. In order to satisfy Assump-

tion 1,𝑈 is selected as diag{0, 1, 0, 0}. The initial value of state
is taken to be 𝑥(0) = [2, −2, 3, 0] and 𝜆 is selected as 20. Based
onTheorem 6, it can be solved that

𝐿 = [
0 −0.0001 0.0019 0

0 −0.0001 0.0012 0
] ,

𝐾 = [0.2952 2.4053 0.3805 4.8333] .

(36)
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Figure 2: System performance using DOBC strategy for known
nonlinearity.
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Figure 3: Estimation error of disturbance for known nonlinearity.

When the stochastic robust control strategy is applied
to (33), which was first given in [13], it can be shown from
Figure 1 that asymptotical stabilization in probability cannot
be guaranteed in the presence of disturbance V(𝑡). Figures
2 and 3 show the system response and estimation error of
system disturbance for the case with known nonlinearity,
respectively. The simulation results show that asymptotical
stabilization can be achieved using the method proposed in
this paper and that the proposed disturbance observer is fine
and effective.

Case 2 (with unknown nonlinearity). When nonlinear term
𝑓(𝑥, 𝑡) is unknown, we assume 𝑓(𝑥, 𝑡) = 𝑟(𝑡)𝑥

2
(𝑡) in
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Figure 4: System performance using DOBC strategy for unknown
nonlinearity.
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Figure 5: Estimation error of disturbance for unknown nonlinear-
ity.

simulation, where 𝑟(𝑡) is supposed to be stochastic input that
obeys uniform distribution. Based on Theorem 7, it can be
solved that

𝐿 = [
0 0.0001 0.0011 0

0 0.0001 0.0006 0
] ,

𝐾 = [0.2209 0.9695 0.2536 3.1946] .

(37)

It is clear from Figure 4 that all states of system converge
to zero and estimation errors of disturbance also converge to
zero as shown in Figure 5. As has been shown above, we can
see that asymptotical stabilization in probability is guaranteed

and satisfied performance of the closed-loop control systems
is achieved.

6. Conclusion

In this paper, the DOBC approach is investigated for a
class of nonlinear systems with deterministic and stochastic
disturbances. Feasible design procedures are proposed under
different conditions to estimate and reject deterministic
disturbance for the plants with known and unknown nonlin-
earity. Based on the estimation of disturbances, the composite
control laws can guarantee the composite closed-loop sys-
tems to be global asymptotical stabilization in probability in
the presence of disturbances. Simulation for an aircraftmodel
shows the efficiency of the proposed algorithms.
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Voltage model is commonly used in direct torque control (DTC) for flux observing of asynchronous motor. In order to improve
low-speed and dynamic performance of the voltage model, a modified low-pass filter (LPF) algorithm is proposed. Firstly, the
tracking differentiator is brought in to modulate the measured stator current, which suppresses the measurement noise, and then
amplitude and phase compensation is made towards the stator electromotive force (EMF), after which the stator flux is obtained
through a low-pass filter.This method can eliminate the dynamic error of flux filtered by LPF and improve low-speed performance.
Experimental results demonstrate effectiveness and improved dynamic performance of such method.

1. Introduction

The direct torque control technology based on stator flux
orientation has beenwidely used in high-performance induc-
tion motor control system. It has the advantages of simple
structure, not being sensitive to motor parameters, and so
forth [1, 2]. The key of achieving direct torque control of
asynchronous motor effectively lies in the accurate obtaining
of stator flux information; especially observing motor flux
exactly at a low stator frequency is even a big issue of AC
speed regulation [3–5].

In the aspect of robust estimator, scholars have done a
lot of research work. Reference [6] considers the modeling
and adaptive output tracking of an FCTFPM as a nonlinear
system with unknown nonlinearities by utilizing HGO and
RBF neural networks. A fuzzy reliable control strategy has
been presented for the tracking problem of the longitudinal
dynamics of FAHVs model with actuator or sensor faults
and external disturbance. Based on the T-S fuzzy modeling
technology, a T-S fuzzy model has been constructed to
represent the nonlinear dynamics of the FAHVs [7]. Refer-
ence [8] presents a fault tolerant tracking controller for a
VTOL aircraft flight in uncertain conditions. The considered
system contains structured uncertainties which affect the
mechanical parameters of the air vehicle. Reference [9]

investigates the energy-to-peak filtering problem for nonuni-
formly sampled nonlinear systems. The sampled nonlinear
systems aremodeled by T-S fuzzy systems under the discrete-
time framework. Reference [10] is devoted to the ammonia
coverage ratio estimation problem in SCR systems. Reference
[11] studies the state estimation problem for discrete-time
systems subject to network-induced delay. By considering the
occurrence probability for the delay, the exponential mean-
square stability and the𝐻

∞
performance are exploited for the

estimation error system. Reference [12] investigates the 𝐻
∞

filtering problem for T-S fuzzy systems under the discrete-
time framework. By using Finsler’s lemma, a new 𝐻

∞
cri-

terion for discrete-time fuzzy systems is obtained. With the
partition technique, the Lyapunovweightingmatrices and the
parameters to be designed are decoupled.

Voltage model is the basic method of the following stator
flux. It uses an ideal integrator described in formula (1). The
algorithm of this model is simple which only need to know
the stator resistance, which is why the flux observing method
which is based on voltagemodel has always been given special
importance [13, 14]. Consider

𝜓
𝑠
= ∫ (u

𝑠
− i
𝑠
𝑅
𝑠
) 𝑑𝑡. (1)
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Although the voltage model is quite simple, there are still
some problems in practical application [15]. (1) A small DC
bias or drift in the current measurement channel will cause
the integrator saturation. (2) The stator resistance variation
in low stator frequency makes the stator flux amplitude and
phase observations have a big error. (3)The initial value of the
integral produces the dc bias in the observed flux amplitude.

In order to eliminate the effect ofDCbias, it is proposed in
[16] that the pure integrator should be replaced with low-pass
filter, but amplitude and phase error of flux can be introduced
to it. Adopting a programmable cascaded low-pass filter can
overcome the effect of zero drift theoretically [17], but the
cutoff frequency is of high precision. It is difficult to get
the desired effect in practical application, and the dynamic
performance is poor. Using improved PLL to observe the
stator flux is proposed in [18], but this method needs to use
the motor speed information based on permanent magnet
synchronous motor, and the system has two convergence
points meanwhile.

The biggest reason why flux observation is inaccurate is
that the DC bias and unbalanced gain exist in current mea-
surement channel; hence this paper reduces the current mea-
surement interference by using tracking differentiator [19, 20]
to filter the measuring stator current; it also restrains the DC
component of stator current by using low-pass filter instead of
pure integral, and it eliminates the amplitude attenuation and
phase error brought by low-pass filter by using the back EMF
compensation algorithm. Experimental results demonstrate
effectiveness and improved dynamic performance of such
method.

2. Traditional Method of Stator
Flux Estimation

The voltage model for flux observation is obtained according
to the stator voltage equation. Stator voltage equation and flux
equation are expressed as

u
𝑠
= 𝑅
𝑠
i
𝑠
+
𝑑𝜓
𝑠

𝑑𝑡
, (2)

𝜓
𝑠
= ∫ (u

𝑠
− i
𝑠
𝑅
𝑠
) 𝑑𝑡, (3)

where u
𝑠
is the stator voltage,𝑅

𝑠
is the stator resistant, i

𝑠
is the

stator current, and 𝜓
𝑠
is the stator flux.

Equation (3) is called the U-I model or the voltage model
of flux estimator. Since the formula contains a pure integrator,
small DC bias can cause integral saturation which will result
in flux estimation error. So it is usual to replace pure integral
with the first-order low-pass filter in voltage model; namely,
let the integral input signal go through a high-pass filter firstly
to filtrate the DC component.

The stator flux has invariant amplitude in a steady state
revolving in the synchronous frequency, which can be ex-
pressed as

𝜓
𝑠
=
𝜓𝑠
 𝑒
𝑗𝜔𝑒𝑡 =

𝜓𝑠
 ∠𝜔𝑒𝑡, (4)

where 𝜔
𝑒
is the synchronous frequency of the motor.

Equations (2) and (4) become

𝑑𝜓
𝑠

𝑑𝑡
= 𝑗𝜔
𝑒
∗ 𝜓
𝑠
= u
𝑠
− i
𝑠
𝑅
𝑠
,

𝜓
𝑠
=
u
𝑠
− i
𝑠
𝑅
𝑠

𝑗𝜔
𝑒

.

(5)

Equation (5) is the expression of actual stator flux.
When observing stator flux through low-pass filter, the

following equation can be written:

𝑑�̂�
𝑠

𝑑𝑡
+ 𝜔
𝑐
�̂�
𝑠
= 𝑗𝜔
𝑒
∗ �̂�
𝑠
+ 𝜔
𝑐
�̂�
𝑠
= u
𝑠
− i
𝑠
𝑅
𝑠
,

�̂�
𝑠
=
u
𝑠
− i
𝑠
𝑅
𝑠

𝑗𝜔
𝑒
+ 𝜔
𝑐

,

(6)

where �̂�
𝑠
is the stator flux which is observed by low-pass filter

and 𝜔
𝑐
is the cutoff frequency of the low-pass filter.

The connection between the estimated stator flux �̂�
𝑠
and

the actual stator flux 𝜓
𝑠
can be concluded from (5) and (6)

which can be expressed as

�̂�
𝑠
=

𝜔
𝑒

√𝜔2
𝑒
+ 𝜔2
𝑐

𝜓
𝑠
∠𝜃,

𝜃 =
𝜋

2
− arctan

𝜔
𝑒

𝜔
𝑐

.

(7)

From (7), it is clear that errors of flux in the amplitude
and the phase result from the replacement of pure integral
with a low-pass filter. The higher the cutoff frequency is, the
more serious the distortion is shown in the flux amplitude and
phase.

According to the principle of the direct torque control, the
flux error can affect the steady state and dynamic operation
of asynchronous motor directly. Direct torque control selects
the appropriate voltage vector according to the observed flux
and torque. Meanwhile the low-pass filter cuts down the flux
amplitude, so when the observing flux reached a given value,
the actual flux has already been far beyond that, which leads
to the saturation of motor magnetic field. Phase shift of the
observed flux can influence the accurate selection of voltage
vector as well as the control characteristic of the motor.
Besides, the estimation of torque in direct torque control is
also affected by flux value directly. Therefore it is essential to
have amplitude and phase compensation for the result of low-
pass filter. Traditional method of flux observing is shown in
Figure 1.

3. Improved Method of Flux Observing

3.1. Modified Low-Pass Filter (LPF) Compensation Algorithm.
Make amplitude and phase compensation for the result of the
low-pass filter as follows:

�̂�
𝑠
G = 𝜓

𝑠
, (8)

where �̂�
𝑠
is the stator fluxwhich is observed by low-pass filter,

G is the penalty function, and 𝜓
𝑠
is the stator flux.
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Figure 1: Traditional method of flux observing.

According to (7), the penalty functionG can be expressed
as

G =

√𝜔2
𝑒
+ 𝜔2
𝑐

𝜔
𝑒

𝑒
𝑗(arctan(𝜔𝑒/𝜔𝑐−𝜋/2)) =

√𝜔2
𝑒
+ 𝜔2
𝑐

𝜔
𝑒

𝑒
𝑗𝜌(𝜔𝑒),

𝑒
𝑗𝜌(𝜔𝑒) = cos [𝜌 (𝜔

𝑒
)] + 𝑗 sin [𝜌 (𝜔

𝑒
)] ,

cos [𝜌 (𝜔
𝑒
)] =

𝜔
𝑒

√𝜔2
𝑒
+ 𝜔2
𝑐

,

sin [𝜌 (𝜔
𝑒
)] =

𝜔
𝑐

√𝜔2
𝑒
+ 𝜔2
𝑐

,

(9)

where 𝜔
𝑒
is the synchronous frequency of the motor 𝜔

𝑐
is the

cutoff frequency of the low-pass filter.
By choosing appropriate cutoff frequency, this compen-

sation algorithm can make the flux observer have a better
ability in restraining DC drift and also have a strong ability
of anti-interference. But this algorithm has a poor dynamic
performance. The estimation of flux value will have big error
when stator current frequency has a sudden change [21]. For
this reason the sequence of applying the low-pass filtering
algorithm and the flux compensation can be exchanged,
making compensation for the back electromotive force firstly
as follows:

E
𝑠
= u
𝑠
− i
𝑠
𝑅
𝑠
, Ê

𝑠
G = E

𝑠
. (10)

In the 𝛼 − 𝛽 coordinate system, back electromotive force
components 𝑒

𝑠𝛼
and 𝑒
𝑠𝛽
are at 𝜋/2 space angle. Assuming that

the stator flux is in counterclockwise rotation, it passes 𝛼 axis
firstly and then 𝛽 axis. Therefore in a constant flux control
mode, 𝑒

𝑠𝛼
and 𝑒

𝑠𝛽
have the same amplitude and different

phase, which can be rewritten as

𝑒
𝑠𝛼
= 𝑗𝑒
𝑠𝛽
, 𝑒

𝑠𝛽
= −𝑗𝑒

𝑠𝛼
. (11)

Combining (9)∼(11) leads to the following expression:

𝑒
𝑠𝛼
= 𝑒
𝑠𝛼
+
𝜔
𝑐

𝜔
𝑒

𝑒
𝑠𝛽
,

𝑒
𝑠𝛽
= 𝑒
𝑠𝛽
−
𝜔
𝑐

𝜔
𝑒

𝑒
𝑠𝛼
.

(12)

Practice shows that the optimal cutoff frequency for low-
pass filter should be 20%∼30% of the synchronous frequency
𝜔
𝑒
[16]. It is hard to estimate synchronous frequency of

the motor when it is running, whereas the stator current
frequency can be obtained through the detected current
signal, so it can replace the synchronous frequency.Therefore
the cutoff frequency of low-pass filter can be calculated as
follows:

𝜔
𝑐
= 𝜔
0
+ 𝑘𝜔
𝑖
, (13)

where 𝜔
0
is the initial value. It ensures that when rotating

speed is close to zero, the cutoff frequency will not be too
low. 𝜔

𝑖
is the stator current frequency and 𝑘 is coefficient of

proportionality (0.2-0.3).
According to the above, in order to achieve this modified

low-pass filter algorithm, it is necessary to settle on the stator
current frequency𝜔

𝑖
.The space situation of the stator current

in the 𝛼-𝛽 coordinate system can be expressed as

𝜃
𝑖
= arctan(

𝑖
𝑠𝛽

𝑖
𝑠𝛼

) , (14)

where the stator current frequency can be obtained by differ-
entiating 𝜃

𝑖
; the discretization formula is shown as follows:

𝜔
𝑖(𝑘)

=
𝜃
(𝑘)
− 𝜃
(𝑘−1)

Δ𝑇
. (15)

3.2.TrackingDifferentiator. Because of themeasurement noise,
the stator current can affect the precision of flux observation;
therefore, stator current needs to be filtered. Tracking differ-
entiator (TD) is the essential part of ADRC [22]. The initial
purpose of TD is to rationally extract continuous signal and
differential signal from discontinuous or band random noise
signal when it comes to the practical engineering problems.
After a further research on TD, discretization form of TDwas
proposed, making it easier for computer calculation and bet-
ter in filtering.

TD discretization formula can be written as

𝑥
1
(𝑘 + 1) = 𝑥

1
(𝑘) + ℎ ∗ 𝑥

2
(𝑘) ,

𝑥
2
(𝑘 + 1)

= 𝑥
2
(𝑘) + ℎ ∗ 𝑓𝑠𝑡 (𝑥

1
(𝑘) − V (𝑘) , 𝑥

2
(𝑘) , 𝑟, ℎ

1
) ,

(16)
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Figure 2: TD modeling in Simulink.
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Figure 3: Filtering result of TD.

where V(𝑘) is input signal,𝑥
1
is the tracking signal of V(𝑘), and

𝑥
2
is the derivative of 𝑥

1
which can be seen as the derivative

of input signal. Consider
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(17)

where ℎ is integration step and 𝑟 is a parameter that deter-
mines the tracking speed.

In order to validate the filtering performance of tracking
differentiator, as shown in Figure 2, a Simulink simulation
model is built with an interference input signal as follows:

V (𝑡) = sin 𝑡 + 𝑑 (𝑡) , (18)

where 𝑑(𝑡) is the uniformly distributed random disturbance
signal with the amplitude 1% and is used to simulate the
measurement noise of the current sampling.

The simulation results are shown in Figure 3; it can be
seen that the tracking differentiator restores the contaminated
original signal. Hence this paper tries to introduce tracking
differentiator to filter the stator current.

3.3. Build Up Complete Flux Observing Model. Based on the
above analysis, the complete illustrative diagram of stator flux
observing model is shown in Figure 4. The current which
is used to count the back electromotive force is filtered by
tracking differentiator and then compensate the back electro-
motive force, and then get the stator flux through the low-pass
filter. Use the stator flux signal to calculate angular frequency
and cutoff frequency which is fed back to compensation
algorithm and low-pass algorithm.

4. Experimental Verification

4.1. Experimental Platform. In order to verify the perfor-
mance of the flux observing model in this paper, an exper-
imental platform is established for the asynchronous motor
direct torque control system, as shown in Figure 5.The exper-
imental platform is powered by programmable DC supply;
the development suite is the high-voltage motor control and
PFC Development Suite v2.0 from TI Company; the MCU
is TMS320F28335; parameter of the triphase asynchronous
motor is shown in Table 1. The proposed method involves
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Table 1: Motor parameters.

Rated value Parameter value
Rated speed 1725 r/min Stator resistance 11.05Ω
Rated power 184W Rotor resistance 6.11Ω
Rated voltage 220V Self-inductance 0.316423H
Rated torque 1N⋅m Mutual inductance 0.293939H
Rated current 1.3 A Number of pole-pairs 2

some division operations, requiring a higher speed processor.
In this paper, we chose DSP28335, up to 150MHz, which can
meet the requirements.

In the control procedure of experiment, the control pe-
riod is 100𝜇𝑠. The two flux observing methods are compared
in the experiment; the result of the traditional method is
shown in Figure 1, whereas the result of themethod proposed
in this paper is shown in Figure 4. Except the flux observing
method, other conditions are all the same in this experiment.

4.2. Experimental Results. Figures 6 and 7 give the compared
experimental waveforms of the two methods where the tar-
geted motor speeds are both 150 r/min. It can be seen from
Figure 6 that when the targeted motor speed is higher,

the speed waveforms are basically the same of the two meth-
ods. From Figure 7 it can be seen that the current waveforms
are basically the same of the twomethods as well, but current
harmonic wave is smaller in the method proposed in this
paper, which illustrates that the use of tracking differentiator
in filtering has improved the current fluctuation.

With the targeted speed getting slower, the traditional
method can barely guarantee performance of the motor con-
trol; Figures 8 and 9 give the compared experimental wave-
forms of the two methods where the targeted motor speeds
are both 50 r/min. It can be seen from Figure 8 that, in the
traditional method, the motor speed has a huge fluctuation;
that is to say, the DTC has already become invalid; the
motor speed is kept around the targeted one and has a small
fluctuation by using the flux observing method of this paper.
From the current waveforms shown in Figure 9, it is clear that
there are a lot of current harmonic waves and the waveform
also has distortions in the traditional method, but current
waveform in the method of this paper is still in good state.

When the targeted speed is set to be 25 r/min, the exper-
imental result of DTC system using traditional method has
a poor performance, the motor operates intermittently, and
the control is totally invalid, whereas the DTC system based
on flux observing model of this paper can still run smoothly.
Using the method of this paper, the speed and the current
waveforms which are shown in Figure 10 aimed at a speed
of 25 r/min. The experimental results show that the flux
observation method proposed in this paper can improve the
low-speed performance of DTC.

Under the experimental condition that the speed changes
sharply from 150 r/min to 50 r/min in the 4.5 s, Figures 11
and 12 give the current waveforms of two methods. When
the speed turns sharply, it is obvious that the load and
current fluctuation are smaller in the method of this paper.
When the targeted speed is 50 r/min, under the experimental
condition that the load torque changes sharply from 0N⋅m to
0.3N⋅m in the 4.5 s, Figures 13, 14, and 15 show the speed and
stator current and torque waveforms of two methods. When
the load torque changes sharply, the torque of traditional
method has a huge fluctuation, whereas in the method of this
paper the torque has a small fluctuation. Experimental results
demonstrate the improved dynamic performance of such flux
observing method mentioned in this paper.

5. Conclusion

To solve the stator flux observation problem of asynchronous
motor, the observation scheme that compensates for back
EMF firstly and then filters through low-pass filter is pro-
posed; at themean time tracking differentiator is used to filter
the stator current and the simple voltage model is retained,
and all the above lead to the improvement of the dynamic
precision of flux observing. This scheme can improve the
dynamic and low-speed performance of the DTC system of
induction motors. The accuracy of flux observation is less
influenced by the stator frequency mutation, and there is
less current harmonic waves with efficiently restrained torque
fluctuation.
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Figure 6: Motor speed waveform when target speed is 150 r/min.
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Figure 7: Stator current waveform when target speed is 150 r/min.
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Figure 8: Motor speed waveform when target speed is 50 r/min.
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Figure 9: Stator current waveform when target speed is 50 r/min.
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Figure 10: Waveforms with the proposed method when target speed is 25 r/min.
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Figure 11: Motor speed waveform with speed step input from 150 r/min to 50 r/min.
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Figure 12: Stator current waveform with speed step input from 150 r/min to 50 r/min.
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Figure 13: Motor speed waveform with torque input from 0N⋅m to 0.3N⋅m.
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Figure 14: Stator current waveform with torque input from 0N⋅m to 0.3N⋅m.
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Figure 15: Torque waveform with torque input from 0N⋅m to 0.3N⋅m.
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This paper presents a radial basis function (RBF) neural network control scheme for manipulators with actuator nonlinearities.
The control scheme consists of a time-varying sliding mode control (TVSMC) and an RBF neural network compensator. Since
the actuator nonlinearities are usually included in the manipulator driving motor, a compensator using RBF network is proposed
to estimate the actuator nonlinearities and their upper boundaries. Subsequently, an RBF neural network controller that requires
neither the evaluation of off-line dynamical model nor the time-consuming training process is given. In addition, Barbalat Lemma
is introduced to help prove the stability of the closed control system. Considering the SMC controller and the RBF network
compensator as the whole control scheme, the closed-loop system is proved to be uniformly ultimately bounded.Thewhole scheme
provides a general procedure to control the manipulators with actuator nonlinearities. Simulation results verify the effectiveness of
the designed scheme and the theoretical discussion.

1. Introduction

Thepast several decades have seen a rapid increase in parallel
manipulators connected to the control system. It is well
known that parallel manipulators with high rigidity are of
generally higher accuracy and of lower error accumula-
tion than similarly sized serial manipulators. Their closed
kinematics structure allows them to obtain high structural
stiffness and perform high-speed motions. The inertia of
its mobile parts is reduced, since the actuators of a parallel
manipulator are often fixed to its base and the end effectors
can perform movements with higher accelerations. Adaptive
tracking control for a class of nonlinear systems is given
in [1–3], and in [4] a design of the sliding mode surface
integral algorithm is proposed to inhibit the steady-state error
and enhance the robustness. In [5, 6] sliding mode control
(SMC) with low-pass filter is used to keep trajectory tracking
accurately.

It is known that SMC has the intrinsic nature of robust-
ness, good transient fast response, and insensitivity to the
variation of plant parameters and external disturbances in
[7]. Thus, the SMC is considered as an effective approach for

the control of many systems such as uncertain nonlinear
systems in [8], discrete-time nonlinear systems in [9], and
singular stochastic hybrid systems in [10–12]. The control
process of SMC consists of two parts; one part is continuous
and the other discontinuous. When the system reaches the
sliding mode, the system with variable structure control is
insensitive to the external disturbances and the variations of
the plant parameters, and it has been widely applied to the
manipulator systemdue to its operation characteristics for the
sake of fastness, robustness, and stability in large load varia-
tions. All those merits are gotten at the cost of the chattering.
Furthermore, inmany time-variable systems, parameters and
perturbation upper bounds are often uncertain, so switching
control gain should be as high as possible to keep stable [13–
16]. The control algorithm in [17–20] reduces the reaching
phase extremely and achieves better robustness than SMC.
However, in [17] with disturbance observer based on SMC,
the algorithm assumes that the disturbance is produced
by a linear exogenous system, but in fact it is difficult to
accurately predict the uncertainty and disturbance of the
time-variable system. In [18–20], the adaptive sliding mode
control (ASMC) algorithm is proposed with the switching
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Figure 1: Structure of 2-DOF parallel manipulator.

gain excessive the SMC values, which brings themore serious
chattering problems. So the appropriate switching gain is the
key to the accurate control in time-variable system.

Motivated by the above observations, we propose a new
approach to using RBF neural network to estimate the
actuator nonlinearities and their upper boundaries for the
switching gain. In this paper, we aim to solve these problems
by focusing on the accurate tracking problemof the uncertain
mechanical system. Our research begins with a time-variable
SMC (TVSMC) algorithm with the dynamics of the manip-
ulator. The main characteristics of such a TVSMC algorithm
are discussed. To deal with the finite static error brought by
the continuous approximation of the TVSMC algorithm, the
RBF neural network is utilized, a novel Lyapunov function is
introduced, and then a new time-variable stability criterion
is presented. In the numerical simulation, the RBF TVSMC
algorithm and the TVSMC algorithm are compared after
being tested.

2. System Model

The 2-degree-of-freedom parallel manipulator (2-DOF par-
allel manipulator) is made up of three groups of two links in
one platform, in which one group has a base of open chain
mechanism, respectively, installed by the AC servo motor
and a speed reducer drive shown in Figure 1 and coordinate
in Figure 2. The 2-DOF parallel manipulator system can be
described by Laugrange’s equations [21, 22]:

𝐽 ⃛𝜃 + 𝐵 ̈𝜃 +𝑊 ̇𝜃 = 𝑈 + 𝑈
𝑑
. (1)

In (1), 𝜃 ∈ 𝑅
3 stands for a displacement angle of

generalized coordinates, 𝐽 for the symmetric and positive-
definite inertia matrix, 𝐵 for a damping coefficient matrix,
𝑊 for a stiffness coefficient matrix, 𝑈 for a voltage vector
of generalized control input, and 𝑈

𝑑
for a damping voltage

vector of external disturbance.
Defining 𝐽 = 𝐽 + Δ𝐽, 𝐵 = 𝐵 + Δ𝐵, and𝑊 = �̂� + Δ𝑊, the

superscript (∧) stands for the nominal value, and the notation
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Figure 2: Coordinate of 2-DOF parallel manipulator.

(Δ) represents the uncertainty. According to the structural
feature, the effect caused by the model uncertainties can
be merged into the disturbance term, which then can be
regarded as the lumped disturbance in the following form:

𝑑 = 𝑈
𝑑
− Δ𝑊 ̇𝜃 − Δ𝐵 ̈𝜃 − Δ𝐽 ⃛𝜃. (2)

From (2), it is assumed that the lumped disturbance is
bounded by a upper bound; that is, ‖𝑑‖

∞
≤ 𝑑max, where

𝑑max ∈ 𝑅
+ is a constant scalar and ‖ ⋅ ‖

∞
is the infinite norm

of a vector. ̇
�̂� − 2𝐵 is a skew-symmetric matrix (see details in

[23, 24]).
So (1) can be rewritten as

𝐽 ⃛𝜃 + 𝐵 ̈𝜃 + �̂� ̇𝜃 = 𝑈 + 𝑑. (3)

3. TVSMC Design and Parameter Setting

In this paper, we will address the tracking control problem of
the system in (3). For the desired trajectory with the system
states of 𝜃

𝑑
, ̇𝜃
𝑑
, and ̈𝜃

𝑑
, a controller 𝑢 for the system is

designed so that the system states 𝜃
𝑑
, ̇𝜃
𝑑
, and ̈𝜃

𝑑
can track the

desired trajectory in the presence of parametric uncertainty
and external disturbance.

For the given trajectory, the tracking error and tracking
angle are defined as

𝐸 = 𝜃 − 𝜃
𝑑
,

̇𝐸 = ̇𝜃 − ̇𝜃
𝑑
,

̈𝐸 = ̈𝜃 − ̈𝜃
𝑑
,

(4)

with the initial tracking error satisfying 𝐸(0) ̸= 0
3×1

,
̇𝐸(0) ̸= 0

3×1
, and ̈𝐸(0) ̸= 0

3×1
, where the subscript denotes the

appropriate dimensions of the matrix.
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In order to derive the SMC algorithm, the switching
surface can be chosen as

𝑆 = [𝑠1 𝑠
2
𝑠
3]
𝑇

= 𝐶𝐸, (5)

where 𝐶 ∈ 𝑅
3×3 is the matrix with strictly positive every

elements and 𝐸 = (𝐸 ̇𝐸 ̈𝐸)
𝑇. The switching surface is then

determined by 𝑆 = 0
3×1

, which is the desired dynamics.
The input of SMC algorithm is set as

𝑈 = 𝑢eq + 𝑢
𝑛
. (6)
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Figure 6: The desired joints trajectories.

In (6),𝑢eq is the equivalent control.The equivalent control
of the ideal sliding mode is obtained on 𝑆 = 0 with ̇𝑆 = 0; it
can be gotten as

𝑢eq = − (𝐽 (𝐶
1

̇𝐸 + 𝐶
2

̈𝐸) − 𝐵 (𝐶
1
𝐸 + 𝐶

2
̇𝐸)

+ (𝐽 ⃛𝜃
𝑑
+ 𝐵 ̈𝜃
𝑑
+ �̂� ̇𝜃

𝑑
)) .

(7)

𝑢
𝑛
is the switching control:

𝑢
𝑛
= −𝛾 ⋅ sign (𝑆) . (8)

𝛾 = diag(𝛾
1
, 𝛾
2
, 𝛾
3
) ∈ 𝑅

3×3 is the switching gain
matrix with the elements 𝛾

𝑖
> 𝑑max, and the sign(𝑆) =

(sign(𝑠1) sign(𝑠
2
) sign(𝑠

3
))
𝑇 presents the sign function.

Theorem 1. Considering the system in (3) under the lumped
disturbance with an upper boundary of 𝑑max, by adopting the
time-varying sliding mode function in (5) and the correspond-
ing input control in (6), if 𝛾

𝑖
> 𝑑max, then the controlled system

is stable.
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Figure 7: Control voltage generated by TVSMC.

Proof. Consider the following Lyapunov function:

𝑉 =
1

2
𝑆
𝑇
𝐽𝑆. (9)

Differentiating 𝑉 with respect to time yields

𝑉 = 𝑆
𝑇
𝐽 ̇𝑆 +

1

2
𝑆
𝑇 ̇
�̂�𝑆

= 𝑆
𝑇
𝐽 (𝐶
1

̇𝐸 + 𝐶
2

̈𝐸 + ⃛𝐸) +
1

2
𝑆
𝑇 ̇
�̂�𝑆

= 𝑆
𝑇
(𝑈 + 𝑑 + 𝐽 (𝐶

1
̇𝐸 + 𝐶
2

̈𝐸)

−𝐵 ̈𝐸 − �̂� ̇𝐸 − 𝐽 ⃛𝜃
𝑑
− 𝐵 ̈𝜃
𝑑
− �̂� ̇𝜃

𝑑
)

+
1

2
𝑆
𝑇 ̇
�̂� (𝐶
1
𝐸 + 𝐶

2
̇𝐸 + ̈𝐸)

= 𝑆
𝑇
(𝑈 + 𝑑 + 𝐽 (𝐶

1
̇𝐸 + 𝐶
2

̈𝐸) + 𝐵 (𝐶
1
𝐸 + 𝐶

2
̇𝐸)

− (𝐽 ⃛𝜃
𝑑
+ 𝐵 ̈𝜃
𝑑
+ �̂� ̇𝜃

𝑑
)) .

(10)

𝑈 = 𝑢eq + 𝑢
𝑛
is substituted in Lyapunov function, and

for ̇𝐽 − 2𝐵 is a skew-symmetric matrix such that (1/2)𝑆𝑇( ̇
�̂� −

2𝐵)𝑆 = 0. The time derivative of 𝑉 will be

𝑉 = 𝑆
𝑇
(−𝛾 sign (𝑆) + 𝑑)

=

3

∑

𝑖=1

(−𝛾
𝑖
⋅
𝑠𝑖
 + 𝑑
𝑖
𝑠
𝑖
)

≤ −

3

∑

𝑖=1

(𝛾
𝑖
− 𝑑max)

𝑠𝑖
 < 0.

(11)
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Figure 8: Control voltage generated by RBF TVSMC.

As 𝑉 is positively defined and 𝑉 < 0, according to the
Lyapunov stability theory, the TVSMC is stable. And Figure 3
is gotten.

4. RBF SMC Algorithm Design

From Figure 3(b), the process of SMC action is divided
into two states: one is the reaching state and the other is
the sliding state. Then reaching state will be joined to the
sliding state inside the sliding tranche with bandwidth 2𝛾

surrounding the sliding surface, in a finite time limited by the
switching frequency. The system adopts the dynamic of the
surface and reaches the equilibrium point. In a short phrase,
the switching gain depends on 𝛾. Consider the following
saturation function to replace the sign function to decrease
chattering:

sat (𝑆) =
{

{

{

𝑆

|𝑆|∞ + 𝛿
,

𝑠𝑖
 ≤ 𝛿,

sign (𝑆) , otherwise.
(12)

In (12) 𝛿 is tiny positive number and is also the boundary
layer thickness, which can reduce the chattering if appropri-
ately chosen.

On the other hand, radial basis function neural network
based on controller design is one of the popular methods of
high precision control. In the SMC based controller, the RBF
NN is used to approximate the upper boundary of lumped
disturbance (Figure 4).

The upper boundary of the lumped disturbance can be
designed as

𝛾
𝑖
=

4

∑

𝑗=1

𝑤
𝑖𝑗
ℎ
𝑖𝑗
, (13)

where ℎ
𝑖𝑗
is the Gaussian radial basis function.

Here, further consideration will be given about adjusting
the network weights. The weight adjustment is 𝐴

𝑑
=

(1/2)𝐸
𝑇
𝐸.
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Figure 9: Trajectory tracking by TVSMC.

The RBF NN earning algorithm is

Δ𝑤 = −
𝜕𝐴
𝑑

𝜕𝑤
= −𝐸
𝑇 𝜕𝐸

𝜕𝑤

= −𝐸
𝑇 𝜕𝐸

𝜕𝑢

𝜕𝑢

𝜕𝛾

𝜕𝛾

𝜕𝑊

≈ −𝐸
𝑇 sign(𝜕𝜃

𝜕𝑢
)
𝜕𝑢

𝜕𝛾

𝜕𝛾

𝜕𝑊
,

(14)

where the value of (𝜕𝜃/𝜕𝑢) can be substituted by coefficient of
learning rate, 𝜃 is in direct proportion to 𝑢 in step response,
sign(𝜕𝜃/𝜕𝑢) = 1, (𝜕𝑢/𝜕𝛾) = − sign(𝑆), and (𝜕𝛾/𝜕𝑊) = 𝜙.

So Δ𝑤 can be described as follows:

Δ𝑤 ≈ 𝐸
𝑇 sign (𝑆) 𝜙 = (𝐶

−1
)
𝑇 
𝑆
𝑇
⋅ 𝜙. (15)

Theorem 2. Considering the system in (3) under the lumped
disturbance with an upper boundary of 𝑑max, by adopting the
time-varying sliding mode function in (5) and the lumped
disturbance identified by using the RBF neural network in (13),
the controlled system is global asymptotic stable.

Proof. Let optimal network weights be 𝑤∗ and the estimated
upper boundary value of RBF NN be 𝛾; then we get

3

∑

𝑗=1

𝑤
∗

𝑗𝑖
ℎ
𝑗
− 𝛾
𝑖
= 𝜀, |𝜀| < 𝜀

0
, (16)
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Figure 10: Trajectory tracking by RBF TVSMC.

where 𝜀 is a tiny number and 𝜀
0
is tiny positive number, and

let 𝛾
𝑖
− |𝑑
𝑖
| > 𝜀
1
> 𝜀
0
, ̇𝑤 = (𝐶

−1
)
𝑇
|𝑆
𝑇
|𝜙. A neural Lyapunov

function can be designed as

𝑉
1
=
1

2
𝑆
𝑇
𝐽𝑆 +

1

2
(𝑤
∗
− 𝑤)
𝑇

𝐶
𝑇
(𝑤
∗
− 𝑤) . (17)

Differentiating 𝑉
1
with respect to time yields, we get

𝑉 = 𝑆
𝑇
𝐽 ̇𝑆 +

1

2
𝑆
𝑇 ̇
�̂�𝑆 − (𝑤

∗
− 𝑤)
𝑇

𝐶
𝑇

̇𝑤, (18)

with 𝑈 = 𝑢eq + 𝑢
𝑛
and simplifying

𝑉
1
= 𝑆
𝑇
(−𝛾 sign (𝑆) + 𝑑) − (𝑤

∗
− 𝑤)
𝑇

𝐶
𝑇

̇𝑤

= 𝑆
𝑇
(−𝛾 sign (𝑆) + 𝛾 sign (𝑆)

−𝛾 sign (𝑆) + 𝑑) − 𝐶
𝑇
(𝑤
∗
− 𝑤)
𝑇

̇𝑤

≤ −

𝑆
𝑇
(𝑤
𝑇
𝜙 − 𝑤

∗
𝑇

𝜙 + 𝜀)

−

𝑆
𝑇
(𝛾 − |𝑑|) −


𝑆
𝑇
(𝑤
∗
− 𝑤)
𝑇

𝜙

= −

3

∑

𝑖=1

𝑠𝑖
 ⋅ (

6

∑

𝑗=1

(𝑤
𝑖𝑗
− 𝑤
∗

𝑖𝑗
) ℎ
𝑗
)
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Figure 11: Angle displacement error responses controlled by TVSMC.

−

𝑆
𝑇
𝜀 −


𝑆
𝑇
(𝛾 − |𝑑|)

−

3

∑

𝑖=1

𝑠𝑖
 (

6

∑

𝑗=1

(𝑤
𝑖𝑗
− 𝑤
∗

𝑖𝑗
) ℎ
𝑗
)

= −

𝑆
𝑇
𝜀 −


𝑆
𝑇
(𝛾 − |𝑑|)

≤

𝑆
𝑇
𝜀
0
−

𝑆
𝑇
𝜀
1

= −

𝑆
𝑇
(𝜀
1
− 𝜀
0
) ≤ 0.

(19)

Using integral transform in (19), the neural Lyapunov func-
tion can be gotten as

𝑉
1
(𝑡) = 𝑉

1
(0) + ∫

𝑡

0

𝑉
1
𝑑𝜏

≤ 𝑉
1
(0) + ∫

𝑡

0

−

𝑆
𝑇
(𝜀
1
− 𝜀
0
) 𝑑𝜏.

(20)

By the Barbalat Lemma, the system is asymptotically stable.

5. Simulation Tests

The parameters of the 2-DOF parallel manipulator are listed
as follows: joints reduction ratio is 40 : 1, 𝑙

11
= 𝑙
12

= 𝑙
21

=

𝑙
22

= 𝑙
31

= 𝑙
32

= 244mm, back electromotive force
constant is 0.04297V/(s/rad), torque constant is 3.41 N⋅m/A,

resistance factor in driving side is 8.1 × 10−5N⋅m/(rad/s),
winding resistance of electrical machine is 1.025Ω, winding
inductance of electrical machine is 0.03837H, rotational
inertia 𝐽 is 0.39 kg⋅m2, and the uncertain inertia Δ𝐽 ≤

0.1 kg⋅m2. The desired manipulator trajectory is the right
triangle shown in Figure 5, and the desired joints trajectories
are shown in Figure 6.

The trajectory tracking processes controlled by the
TVSMC algorithm and the RBF TVSMC algorithm are
compared in Figures 7–12 with the corresponding angle
displacement in Figure 6.

According to the angle displacement responses in Figures
7 and 8, it can be seen that the maximum control voltage
generated by TVSMC algorithms is 10V, while that by
RBF TVSMC algorithms is no more than 2.5 V. And the
control voltage generated by the RBF TVSMC algorithms
is more stable than the that by TVSMC algorithm. When
we focus on the control accuracy, significant differences
exist in steady-state regime of the closed-loop system as
seen from the angle trajectory tracking responses in Figures
9 and 10. Figure 10 has more accurate trajectory tracking
responses than Figure 9. According to angle displacement
error responses of joint A1 in Figures 11 and 12, we can see that
the angle error of joint stable at origin is within 40 s based on
TVSMC algorithm, but based on RBF TVSMC algorithm it
is not later than 3 s. The average error responses controlled
by the TVSMC algorithm are about 0.3 rad, while for the
RBF SMC algorithm, the average error is less than 0.03 rad,
which proves the precision improvement of the RBF TVSMC
algorithm.
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Figure 12: Angle displacement error responses controlled by RBF
TVSMC.

6. Conclusions

In this paper, the accurate tracking control problemof 2-DOF
parallel manipulator in the presence of parameter variation
and uncertain disturbance is investigated via the TVSMC
technique. An effective method is provided for the param-
eter selection in the TVSMC framework. RBF NN based
time-varying sliding mode control algorithm is proposed
to address the global chattering problem and increase the
control accuracy. Simulation results verify the effectiveness
of the proposed algorithm.

(1) This paper provides a trajectory algorithm of RBF
neural network based time-varying sliding mode control
for 2-DOF parallel manipulator system. And a compensator
using RBF network is proposed to estimate the actuator
nonlinearities and eliminate their upper boundaries. So
that an RBF neural network controller can work properly
requiring neither the evaluation of off-line dynamical model
nor the time-consuming training process. The other article,
“The Implementation to Servomotor Based on RBF Neural
Network Equivalent to Sliding Mode Variable Structure
Control,” provides a trajectory optimization algorithm for
2-DOF parallel manipulator system of servomotor which is

assumed as one linear system.The algorithm of input control
is divided into two parts: one is the sliding mode control
with the linear control and the other is the nonlinear control
of output of the RBF replacing the switching input. (2) This
paper is further research based on the other article, and it
involves the three joints’ trajectories but the other article just
focuses on one joint.
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In, conventional 3-stage start-up method of sensorless brushless direct current motor (BLDCM), the rotor is likely to jitter because
rotor position cannot be obtained, and themotor is apt to lose step when it starts with load.These defects limit its use in engineering
applications. In order to achieve smooth start in specific direction and guarantee start-up success rate with load, a start-up method
based on improved inductance method and electromotive force (EMF) integration is proposed applying different voltage vectors
according to rotor position interval judged by inductance method and determining integrator start-up time according to rotor
initial position and the EMF. Experiments show that the method guarantees smooth acceleration and increases start-up success
rate with load.

1. Introduction

BLDCM drive system has a wide range of applications in
automobiles, such as the electric power steering system, the
main drive system of small electric vehicle, and the new fuel
pump systems of the traditional vehicle, and it is developing
toward sensorless control. Comparing sensorless control
with a position sensor control method, it has advantages
of compact structure and high reliability because of saving
installation space and reducing the sensor signal wires. So in
recent years, the sensorless control of BLDCM has become a
hot spot. At present, themain disadvantage limiting the appli-
cation of sensorless BLDCM is that it is rather hard to start
it directly. Now, a 3-stage start-up method [1] is a successful
approach used in the start-up stage. The three stages are
rotor preposition, acceleration, and switching. Among them,
the rotor preposition mainly involves conducting the two
phases with each other and forcing the rotor to rotate to the
specified location.This method can be applied in cases where
accuracy requirement is not high. For the sensorless BLDCM
drive system used in the automobile, the size of the load
cannot be predicted and the rotor is prevented from running
freely at start-up. The existing start-up method cannot fit the

requirement and also cannot guarantee the start-up success
rate under load [2, 3].

Over the years, in order to solve this problem, many
start-up methods used for detecting the rotor position are
proposed continually by researchers. The electrical induc-
tance method based on stator core magnetic saturation effect
is presented in [4–8], in which six short time pulses are
used to locate and start up the rotor [4, 5]. This method
has advantages of simple hardware circuit design and easy
controlling algorithm, whereby the rotor can be started
without reversal and can be switched smoothly. The theory
introduction, using sensorless BLDCM to determine the
rotor position based on the inductance method, is proposed
by [7]. But it does not offer the whole experiment process.
In [8], the rotor position is estimated by using the change of
the voltage of the nonconducting phase. This method is easy
to be performed and does not need current sensors, but the
precision of the position detection is not satisfied. References
[9, 10] use state observer and Kalman filtering to detect
the motor rotor position. This method has a high degree of
dependence on the motor’s parameter and a huge calculated
amount, which can be realized only by using high-speed DSP.
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Reference [11] introduced a third harmonic detection
method based on virtual neutral point electromotive force.
This method can obtain accurate commutation signal and is
easy to be controlled. But, the position of static rotor cannot
be judged by this method, and this method can be realized
only by using high speed DSP. Several other control methods
are introduced separately in [12–15]. But, all of them just
concern the start-up stage after rotor location and ignore the
problem about the jitter and reversal of the rotor in the initial
stage.

The new start-up method proposed in this paper is as
follows: when the motor is static, it can be prelocated within
the scope of 𝜋/6 by using the improved inductance method
and supplying power to the coil in a specified direction. In
order to know the real rotor position, we should collect the
EMF of the nonconducting phase on time and determine the
time to start the EMF integrator. Applying the inductance
method and the EMF integration to start the initial stage will
prevent the motor from jittering and reversing, which results
in a smooth start-up process and a rapid response.

2. Theory Application Analysis

EMF integration and stator core magnetic saturation effect
are cited in this paper as basis of the theory.

2.1. EMF Integration. EMF integration focuses on comparing
the EMF integration of the nonconducting phase with a
threshold value.When theEMF integration of a phase reaches
the threshold value, it is time to commutate this phase. The
authors in [1, 14] merely provide the demonstration that the
EMF integration has no relation to the rotate speed when the
rotate speed is constant, but do not take into consideration
the condition that the rotate speed is fluctuant in the start-up
initial stage.

2.1.1. Demonstration for Independency between EMF Integra-
tion and the Rotate Speed in Start-Up Stage. Take a bipolar
motor as an example; the instant EMF of the nonconducting
phase can be recorded as

𝑒
𝛼
= 𝑁𝐾

𝑤
𝜙𝑤 (𝑡) . (1)

In this equation, 𝑒
𝛼
is the instant EMF,𝑁 is the number of

turns of phase winding,𝐾
𝑤
is the distribution coefficient, 𝜙 is

the instant air gap flux, and 𝜔(𝑡) is the electric angular speed.
At the beginning of the start-up, air gap flux can be

approximated as trapezoidal wave. Supposing that the param-
eter of the motor is constant, the air gap flux merely relates
to the angle. Using the 𝜋/6 electrical angle after EMF zero-
crossing point can decide the commutation moment, and the
air gap flux reaches the maximum at this moment. Air gap
flux can be written as

𝜙 = 𝜙
𝑝

6𝜃 (𝑡)

𝜋
. (2)

In this equation, 𝜃(𝑡) is the rotor angle and 𝜙
𝑝
is the flux

amplitude of each pole. The EMF integrator begins to work

at the moment the EMF crosses zero. The integrator’s output
voltage is

𝑈 = ∫

𝑡

0

𝑒
𝛼
𝑑𝑡. (3)

It can be deduced from (1)–(3) that

𝑈 = ∫

𝑡

0

𝑒
𝛼
𝑑𝑡 = ∫

𝑡

0

𝑁𝐾
𝑤
𝜙
𝑝

6𝜃 (𝑡)

𝜋
𝑤 (𝑡) 𝑑𝑡. (4)

Based on the timely change of the motor’s angle, the
angular speed can be written as

𝑤 (𝑡) =
𝑑𝜃 (𝑡)

𝑑𝑡
. (5)

If𝐾
𝑒
= (6/𝜋)𝑁𝐾

𝑤
𝜙
𝑝
, it can be deduced from (4)-(5) that

𝑈 = ∫

𝑡

0

𝐾
𝑒
𝜃 (𝑡)

𝑑𝜃 (𝑡)

𝑑𝑡
𝑑𝑡

𝑈 = ∫

𝜋/6

0

𝐾
𝑒
𝜃 (𝑡) 𝑑𝜃 (𝑡)

𝑈 = 𝑈
0
= 𝐾
𝑒

𝜋
2

72
.

(6)

In these equations,𝑈 is the integrator’s output voltage,𝑈
0

is the threshold value, and 𝐾
𝑒
is the EMF coefficient. When

integrator’s output voltage 𝑈 reaches the threshold value 𝑈
0
,

the integrator should stop the integration at once and outputs
the commutation signal.

2.1.2. Significance of Applying EMF Integration in the Start-
Up Stage. From the demonstration in Section 2.1.1, it is clear
that the value of EMF integration is independent of the rotate
speed at the beginning of the start-up. For different motors,
the time of commutation can be adjusted by changing the
threshold value.

The traditional method needs to set the frequency of
commutation before starting.The frequency is decided by the
experiment method with the purpose that rotor can reestab-
lish moment balance again when it is disturbed. Because
this time cannot be changed in the start-up initial stage, the
motor is likely to have commutation error or even start-up
failure. Because the value of EMF integration is independent
of the rotate speed, the time that reaches one integration
value will change according to different loads and constant
commutation frequency will also change with it. In this way,
the motor can be started smoothly in certain range of load.

In the start-up initial stage, applying EMF integration
will also face the condition of inaccurate detection of zero-
crossing point, but this will not lead to a serious error in
commutation because, in the EMF integration, the result
of integration on numerical value is equal to the area that
is included by the EMF wave in corresponding integrating
range and time axis. From the integration principle and the
EMF wave we can see that commutation error will be far
less than the zero-crossing point detection error. Taking the
EMF rising section of one phase as an example, as shown
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Figure 1: Analysis of the error in the method of integrating EMF.

in Figure 1, zero-crossing point detection error is 𝑡
1
and

commutation error is 𝑡
2
; if we use the scheme of commutating

at 𝜋/6 after EMF zero-crossing point, then 𝑡
1
= 𝑡
2
. By

contrast, because the integration threshold value is a constant
value when adopting EMF integration to commutate, then

𝑆
1
= 𝑆
2

𝑆
1
=
1

2
𝑡
1

𝑡
1

𝑡inte
𝐸max

𝑆
2
= 𝑡
2
𝐸max

𝑡
2
=

𝑡
1

2𝑡inte
𝑡
1
.

(7)

In these equations, 𝑡
1
is the zero-crossing point detection

error, 𝑡
2
is the commutation error, 𝑡inte is the perfect integra-

tion section, 𝐸max is the maximum EMF, 𝑆
1
is a zero error

area, and 𝑆
2
is the commutation delay area.

In the actual operation, 𝑡
1
is far less than 𝑡inte and, as a

result, 𝑡
2
is far less than 𝑡

1
, which means that zero-crossing

point detection error has little effect to the commutation
point error.

2.2. Inductance Method Analysis. Using the inductance
method to estimate the rotor position is based on the
characteristic of the stator core magnetic saturation. In terms
of the BLDCM, the flux produced by the stator winding
and the permanent magnet flux affect the saturation degree
of the stator core together. If the stator core is closer to
the pole of the permanent magnet, the magnetization will
be strengthened. If the combined flux has an effect to add
magnetic force, the more saturate the magnetic field is, the
less the winding inductance is and the larger the current is.
If the combined flux has an effect to reduce magnetic force,
the saturation degree of the magnetic field becomes less,
the winding inductance gets larger, and the current becomes
smaller.

In the inductance method, the time of duration of
the voltage vector is an important parameter, because this
method is exactly estimated based on the current response
of stator winding. The current response relies on the time
constant of the stator winding, and time constant 𝜏 can be

Ts

i1(t) corresponding small inductance

i2(t) corresponding big inductance

i

t

Figure 2: Current response curve.

expressed as 𝜏 = 𝐿/𝑅. From the equation, time constant is
proportional to the inductance.

Figure 2 shows the response curve of current 𝑖
1
and 𝑖
2

when the motor rotor is in different positions, and 𝑖
1
and 𝑖
2

can be calculated as follows:

𝑖
1
(𝑡) =

𝑉DC
𝑅eq

(1 − 𝑒
−(𝑡/𝜏1))

𝑖
2
(𝑡) =

𝑉DC
𝑅eq

(1 − 𝑒
−(𝑡/𝜏2)) .

(8)

From these equations, 𝑉DC is the DC side voltage, 𝑅eq is
the equivalent resistance, and 𝜏

1
and 𝜏
2
are the time constants

of equivalent circuit when the voltage is applied. As we can
see, the bigger the time constant is, the smaller the current
is. Because the time constant is small, the conduction time
should be the one when the difference of current is the most
obvious under a different voltage vector.

The current differential Δ
𝑖
of 𝑖
1
and 𝑖
2
can be calculated

as follows in this way:

Δ𝑖 (𝑡) = 𝑖
2
(𝑡) − 𝑖

1
(𝑡) =

𝑉DC
𝑅eq

(𝑒
−(𝑡/𝜏1) − 𝑒

−(𝑡/𝜏2)) . (9)

Because the time constant of the motor is small, it can be
expressed as 𝜏

2
= 𝜏
1
+ Δ, Δ ≈ 0. Take the derivative of (9)

with respect to time, and the point when the difference of the
current is the biggest can be found. In terms of each voltage
vector, conduction time can be expressed as

𝑇
𝑠
= lim
Δ→0

ln (𝜏
1
/ (𝜏
1
+ Δ))

(1/ (𝜏
1
+ Δ)) − (1/𝜏

1
)
= 𝜏
1
. (10)

From the above, we can see that the preferable conduction
time of voltage vector should be the numerical value similar
to the time constant of the motor. But, if the time constant of
themotor is too big, it can bring about a long conduction time
that will force the motor to run. So, reasonable conduction
time should be chosen to ensure the accuracy of preposition.

3. New Method for Start-Up

The inductance method can detect the rotor position in
advance when the motor is static. As power is supplied to
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calculated phases, this method can avoid the consequence of
reversal and jitterwhich can affect the start-up accuracy of the
motor. EMF integration can reflect the real angle of the rotor
and help the motor start successfully with load. This paper is
based on the two advantages above. Firstly, judge the rotor
position based on inductance method and determine the
integrator start-up time according to the rotor position, and
then adjust the commutation frequency to smooth the start-
up process and eliminate jitter. By using this method, rapid
response can also be achieved. Due to the simple arithmetic,
those functions can all be realized by common MCU.

3.1. Identify the Initial Rotor Position. Conventional induc-
tance method adopts two-to-two or three-to-three conduct-
ing methods, applying six-voltage vector in different direc-
tion continually and locating the rotor position in the scope of
𝜋/3. When using the traditional method, there are two prob-
lems: one is that the rotor position cannot be determined pre-
cisely, the other is that applying six-voltage vectors at the same
time will make the arbitration rules complicated and the pro-
gramming code lengthy. The improved inductance method
is adopted in this paper, which can determine the rotor posi-
tion in the scope of𝜋/6 easily and has simple arbitration rules.
It can be linked up with the EMF integration when it starts.
The advantage of EMF integration will be more obvious in
this way. Sampling quantity and calculated amount decrease
and stability increases, which will make the improved effect
of start-up more obvious.

The improved inductance method proposed in this paper
is as follows: when the motor is static, utilize two-to-two
conducting method to apply voltage pulse to the MOSFET.
Assuming that the rotor position is shown in Figure 3, firstly
apply two-voltage vectors 𝑉AB (direction 𝐶) and 𝑉BA (direc-
tion 𝑍) in the opposite direction for a while. 𝐼

2
and 𝐼
5
are

collected and stored as bus current separately. Because the
magnetic saturation of the iron core is different, the sizes of
𝐼
2
and 𝐼
5
are also different. If 𝐼

2
> 𝐼
5
, from the analysis above,

it can be known that the𝑁 pole of the rotor is on the left side
of line I-II. The rotor is located in the scope of 𝜋 for the first
time. Then apply two-voltage vectors 𝑉CB (direction 𝑋) and
𝑉AC (direction 𝑌) for a while and collect bus currents which
can be stored as 𝐼

3
and 𝐼
1
.

According to the arbitration rules in this paper, the rotor
area can be judged in different conditions. The arbitration
rules are as follows: if 𝐼

2
−𝐼
1
> 0, 𝑎 = 1 or 𝑎 = 0. If 𝐼

2
−𝐼
3
> 0,

𝑏 = 1 or 𝑏 = 0. Bring the results into the arbitration formula
𝑦 = 2𝑎 + 𝑏. If 𝑦 = 1, the rotor is in area 1. If 𝑦 = 3, the rotor
is in area 2. If 𝑦 = 2, the rotor is in area 3. The rotor position
in the right side of I-II can be judged in the same way. In this
way, the rotor position can be determined in the range of 𝜋/3.

According to the assumption above, the rotor should be
in area 1. According to the result of location, apply 𝑉BC again
and collect bus current and store it as 𝐼

6
. Now, there are three

positions that the rotor may be in: 𝑌 coordinate or a position
shift from the 𝑌 coordinate by a distance within the range of
𝜋/6.Themethod in this paper is treated as the same condition
of the rotor in 𝑌 coordinate or above the 𝑌 coordinate within
the range𝜋/6. Comparing 𝐼

6
with 𝐼

2
, the rotor position can be

determined in the scope of 𝜋/6. According to the assumption
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Figure 3: The stator magnetomotive force (MMF) and rotor posi-
tion.
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Figure 4: Rotor position.

above, the result now should be 𝐼
2
< 𝐼
6
and the𝑁 pole of the

rotor should be above the 𝑌 coordinate within the range of
𝜋/6. The judgment of the position of other rotor is similar.

3.2. EMF Integration Start-Up. According to the above, the
rotor position is already determined in the range of 𝜋/6
and the voltage vector can be applied to the rotor according
to the torque maximized and predefined rotate direction.
Two conditions will come across when the voltage vector is
applied: the first is the EMF of nonconducting phase that
has already crossed zero, the second is that EMF of noncon-
ducting phase that has not crossed zero.

If the rotor position is in the shadow area in Figure 4(a)
now, the power is supplied towards 𝑍 direction, and the
rotor position has not crossed zero, so the EMF of 𝐶 phase
should be collected.When the voltage vector is𝑉BA, the initial
EMF of 𝐶 phase is minus. The electrical direction should be
constant at this moment until the𝐶 phase EMF appears zero-
crossing point.This zero-crossing point is the common com-
mutation zero-crossing point. Because of the undetermined
load, in order to avoid the condition where commutation is
too rapid and the rotor rotates in reverse with jitter because of
the heavy load, the integrator should be started at themoment
when the zero-crossing point is detected. The result of the
integration is compared with the integration threshold value
on time. If it overflows, themotor will be commutated at once
and proceed into the acceleration process.

If the rotor position is in the shadow area in Figure 4(b)
now and the power is supplied in A direction by utilizing
two-to-two conducting method, now the rotor position is
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between the zero-crossing point and commutation point.The
integrator should be started with the initiator. The result of
integration is compared with the integration threshold value
on time. If it overflows, themotor will be commutated at once
and proceed into the acceleration process.

The commutation error is smaller than the integration
initial error, which has been demonstrated as above. As a
result of it, the accuracy of zero-crossing point detection
should not be worried about. When the integrator is detected
to overflow and commutate, the frequency of energization
and the speed of the rotor are in synchronization. The motor
begins to be accelerated smoothly.

4. Experimental Verification

The 32-bit DSP 28335 is selected as the core to build an
experimental platform to demonstrate the superiority of the
start-up method proposed in this paper. The experimental
platform is shown in Figure 5. The rated speed of the motor
is 5000 r/min. The experiment is divided into two steps: one
is adding inertia load by adopting inertia disc, the other is
adding static load on the load test bed.

4.1. Start-Up Method Application Example. In the scope of
𝜋/6 above 𝑌 coordinate, the current waveform and terminal
voltage waveform of the rotor detected by the method
proposed in this paper are shown in Figure 6.

As shown in the Figure 6(a), 𝐼
2
> 𝐼
5
, 𝐼
2
−𝐼
3
> 0, 𝐼
2
−𝐼
1
< 0,

we can know that the 𝑁 pole of the rotor is in the location
1, according to the arbitration rules proposed in this paper.
Because 𝐼

6
> 𝐼
2
, the rotor should be above the 𝑌 coordinate

in the range of 𝜋/6. After applying the voltage vector, the
integrator is started after 𝐶 EMF crosses zero. A terminal
voltage waveform can be obtained as shown in Figure 6(b).

The current waveform of the rotor in the scope of 𝜋/6
below 𝑌 coordinate obtained by the method of this paper
is shown in Figure 7, and the start-up terminal voltage
waveform on the load test bed without load at this moment is
also shown in it.

As shown in the Figure 7(a), 𝐼
2
> 𝐼
5
, 𝐼
2
−𝐼
3
> 0, 𝐼
2
−𝐼
1
< 0,

we can know that the 𝑁 pole of the rotor is in the location
1, according to the arbitration rules proposed in this paper.
And, because 𝐼

6
< 𝐼
2
, the rotor should be in the range of 𝜋/6

below the 𝑌 coordinate. Start the integrator when applying
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Figure 6: End voltage waveform and currents response under EMF
non-zero crossing.

the voltage vector𝑉BC, and terminal voltage waveform can be
obtained as shown in Figure 7(b).

The rotor position can be known in advance by utilizing
method proposed in this paper. The method can ensure
that the start-up process has no reversal, no jitter, and
commutation signal, and rotor synchronized quickly to get
a better end voltage waveform when it starts.

4.2. Contrast Test. The advantage of the method proposed
in this paper is that the rotor position can be determined
in advance and a different start-up program can be executed
according to the rotor position. Some problems such as jitter
and reversal of the motor are avoided. The application of
integration can also make the motor achieve a nice start-
up effect with heavy or light load. The applied range of
the motor becomes wider and its start-up process becomes
better. Comparedwith the start-up waveform obtained by the
traditional method with different load, the advantage of the
method proposed in this paper can be demonstrated.

The experimental results under inertia disk with the
traditional method and the method proposed in this paper
are shown in Figure 8. Comparing the two figures, it can
be seen that when adding the inertia load, a severe jitter
appears in the start-up stage using the traditional method
and the smooth start-up of the motor is not realized in the
commutation period displayed by the figure. The method of
this paper determines the rotor position in the first period
and it starts according to the actual load condition, which can
make the start-up process more smooth without jitter.

Terminal voltage waveform with no load, rated torque,
and twice the rated torque experimented on the load test bed
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Figure 7: Terminal voltage waveform and currents response under
EMF zero crossing.
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Figure 8: End voltage waveform with two different methods under
inertia disk.
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Figure 9: Terminal voltage waveform with the traditional method
and the method proposed in this paper under load.

with the traditional method and the method of this paper are
shown in Figures 9, 10, and 11.

From the comparison of the three figures above, the
motor performance that use traditional method has serious
fluctuation and bad waveform both in no-load, fractional
load, and overload. When controlling with the method
proposed in this paper, the commutation signal and the
rotor can be synchronized in the first commutation period,
whetherwith fractional load or overload. And, the fluctuation
is small and the start-up is smooth. From the figures above,
the integration time changes with the load can be easily
found.

Current waveforms obtained by two different start-up
methods of the motor are shown in Figure 12.

As can be seen from the results above, the method
proposed in this paper has an obvious advantage over the tra-
ditional method. Firstly, two sets of waveforms of the current
and phase terminal voltage applying themethod of this paper
are shown in the example, while the rotor position in the
beginning of the start is different. It shows that the inductance
method can detect the position of the rotor fast and accurately
and then judge when to apply the EMF. This can ensure that
the process starts smoothly and steady, and also ensure that
the motor commutes precisely. Experiments of the different
rotor position in the start have been carried out to verify the
reliability of thismethod.The results indicate that themethod
is credible. In the following contrast tests, themotor is started
under different load. The comparison waveforms of phase
terminal voltage show clearly that this method is superior
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Figure 10: The end voltage waveform with the traditional method
and the method proposed in this paper with rated torque.
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Figure 11: End voltage waveform with traditional method and
method proposed in this paper under twice the rated torque.
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Figure 12: Comparison of the current of two different methods.

to the traditional method and the starting process is smooth
and fast. The results demonstrate that this method can
guarantee the startability when the motor is under different
load. Due to the improved performance, this method can
expand the application range of sensorless BLDC. At last, two
sets of current waveform are given to show the improvement
of this method. It can be seen from the figure, that this
method can make the current achieve steadily fast and
smoothly without distinct jitter. The comparison of the
current waveform indicates that this method can alleviate the
phenomenon of jitter in the start and smooth the starting pro-
cess.

5. Conclusion

The advantages of the inductance method and the EMF inte-
gration are analyzed in detail in this paper. And, after com-
bining these two methods, a new start-up method for sen-
sorless BLDCM is proposed. The integrator start-up time
is determined by implementing the improved inductance
method and the new arbitration rules. The experiment
demonstrates the advantages of the new start-up method
proposed in this paper compared to the traditional one in
start-up stage. The location of the rotor when the motor is
static is realized, and the commutation signal and the rotor
position can be synchronized at once. It increases the start-
up success rate with load and improves rapidity and stability
of the current response.
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