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Special numbers and polynomials play an extremely impor-
tant role in the development of several branches ofmathemat-
ics, physics, and engineering.They havemany algebraic oper-
ations. Because of their finite evaluation schemes and closure
under addition, multiplication, differentiation, integration,
and composition, they are richly utilized in computational
models of scientific and engineering problems. This issue
contributes to the field of special functions and polynomials.
An importance is placed on vital and important develop-
ments in classical analysis, number theory, mathematical
analysis, mathematical physics, differential equations, and
other parts of the natural sciences.

One of the aims of this special issue was to survey
special numbers, special functions, and polynomials, where
the essentiality of the certain class of analytic functions,
generalized hypergeometric functions, Hurwitz-Lerch Zeta
functions, Faber polynomial coefficients, the peak of noncen-
tral Stirling numbers of the first kind, and structure between
engineering mathematics are highlighted.

All manuscripts submitted to this special issue are sub-
jected to a quick and closed peer-review process. The guest
editors initially examined themanuscripts to check suitability
of papers. Based on referees, who are well-known mathe-
maticians, of this special issue, we got the best articles to be
included in this issue. The results and properties of accepted
papers are very interesting, well defined, and mathematically

correct. The work is a relevant contribution to the fields of
analysis and number theory.

Serkan Araci
Mehmet Acikgoz

Cenap Özel
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Volume 2015, Article ID 573893, 1 page
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We locate the peak of the distribution of noncentral Stirling numbers of the first kind by determining the value of the index
corresponding to the maximum value of the distribution.

1. Introduction

In 1982, Koutras [1] introduced the noncentral Stirling num-
bers of the first and second kind as a natural extension
of the definition of the classical Stirling numbers, namely,
the expression of the factorial (𝑥)

𝑛
in terms of powers of

𝑥 and vice versa. These numbers are, respectively, denoted
by 𝑠

𝑎
(𝑛, 𝑘) and 𝑆

𝑎
(𝑛, 𝑘) which are defined by means of the

following inverse relations:

(𝑡)
𝑛
=

𝑛

∑
𝑘=0

1

𝑘!
[
𝑑
𝑘

𝑑𝑡𝑘
(𝑡)V]

𝑡=𝑎

(𝑡 − 𝑎)
𝑘

, (1)

(𝑡 − 𝑎)
𝑛

=

𝑛

∑
𝑘=0

1

𝑘!
[Δ
𝑘

(𝑡 − 𝑎)
𝑛

]
𝑡=0

(𝑡)
𝑘
, (2)

where 𝑎, 𝑡 are any real numbers, 𝑛 is a nonnegative integer,
and

𝑠
𝑎
(𝑛, 𝑘) =

1

𝑘!
[
𝑑
𝑘

𝑑𝑡𝑘
(𝑡)V]

𝑡=𝑎

,

𝑆
𝑎
(𝑛, 𝑘) =

1

𝑘!
[Δ
𝑘

(𝑡 − 𝑎)
𝑛

]
𝑡=0

.

(3)

The numbers satisfy the following recurrence relations:

𝑠
𝑎
(𝑛 + 1, 𝑘) = 𝑠

𝑎
(𝑛, 𝑘 − 1) + (𝑎 − 𝑛) 𝑠

𝑎
(𝑛, 𝑘) , (4)

𝑆
𝑎
(𝑛 + 1, 𝑘) = 𝑆

𝑎
(𝑛, 𝑘 − 1) + (𝑘 − 𝑎) 𝑆

𝑎
(𝑛, 𝑘) (5)

and have initial conditions

𝑠
𝑎
(0, 0) = 1, 𝑠

𝑎
(𝑛, 0) = (𝑎)

𝑛
, 𝑠

𝑎
(0, 𝑘) = 0, 𝑛, 𝑘 ̸= 0,

𝑆
𝑎
(0, 0) = 1, 𝑆

𝑎
(𝑛, 0) = (−𝑎)

𝑛

, 𝑆
𝑎
(0, 𝑘) = 0, 𝑛, 𝑘 ̸= 0.

(6)

It is worth mentioning that for a given negative binomial
distribution 𝑌 and the sum 𝑋 = 𝑋

1
+ 𝑋

2
+ ⋅ ⋅ ⋅ + 𝑋

𝑘
of

𝑘 independent random variables following the logarithmic
distribution, the numbers 𝑠

𝑎
(𝑛, 𝑘) appeared in the distribu-

tion of the sum 𝑊 = 𝑋 + 𝑌, while the numbers 𝑆
𝑎
(𝑛, 𝑘)

appeared in the distribution of the sum 𝑍 = 𝑋 + �̂� where
𝑋 is the sum of 𝑘 independent random variables following
the truncated Poisson distribution away from zero and �̂� is
a Poisson random variable. More precisely, the probability
distributions of𝑊 and 𝑍 are given, respectively, by

𝑃 [𝑊 = 𝑛] =
𝑘!

(1 − 𝜃)
−𝑠

(− log (1 − 𝜃))
𝑘

𝜃𝑛

𝑛!
(−1)

𝑛−𝑘

𝑠
−𝑠
(𝑛, 𝑘) ,

𝑃 [𝑍 = 𝑛] =
𝑘!

𝑒𝑚 (𝑒𝑙 − 1)
𝑘

𝑙𝑛

𝑛!
(−1)

𝑛−𝑘

𝑆
−𝑚/𝑙

(𝑛, 𝑘) .

(7)

For a more detailed discussion of noncentral Stirling num-
bers, one may see [1].

Determining the location of the maximum of Stirling
numbers is an interesting problem to consider. In [2], Mezö
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obtained results for the so-called 𝑟-Stirling numbers which
are natural generalizations of Stirling numbers. He showed
that the sequences of 𝑟-Stirling numbers of the first and
second kinds are strictly log-concave. Using the theorem of
Erdös and Stone [3] he was able to establish that the largest
index for which the sequence of 𝑟-Stirling numbers of the first
kind assumes its maximum is given by the approximation

𝐾
(1)

𝑛,𝑟
= 𝑟 + [log(𝑛 − 1

𝑟 − 1
) −

1

𝑟
+ 𝑜 (1)] . (8)

Following the methods of Mezö, we establish strict log-
concavity and hence unimodality of the sequence of noncen-
tral Stirling numbers of the first kind and, eventually, obtain
an estimating index at which the maximum element of the
sequence of noncentral Stirling numbers of the first kind
occurs.

2. Explicit Formula

In this section, we establish an explicit formula in symmetric
function form which is necessary in locating the maximum
of noncentral Stirling numbers of the first kind.

Let 𝑓
𝑖
(𝑥), 𝑖 = 1, 2, . . . , 𝑛 be differentiable functions and let

𝐹
𝑛
(𝑥) = ∏

𝑛

𝑖=1
𝑓
𝑖
(𝑥). It can easily be verified that, for all 𝑛 ≥ 3,

𝐹
󸀠

𝑛
(𝑥) = ∑

1≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−1
≤𝑛

𝑖∈N
𝑛
\{𝑗
1
,𝑗
2
,...,𝑗
𝑛−1
}

𝑓
󸀠

𝑖
(𝑥)

𝑛−1

∏
𝑘=1

𝑓
𝑗
𝑘
(𝑥) . (9)

Now, consider the following derivative of (𝜉𝑗 + 𝑎)
𝑛
when 𝑛 =

1, 2:

𝑑

𝑑𝜉
(𝜉𝑗 + 𝑎)

1
= 𝑗,

𝑑

𝑑𝜉
(𝜉𝑗 + 𝑎)

2
= (𝜉𝑗 + 𝑎) 𝑗 + (𝜉𝑗 + 𝑎 − 1) 𝑗.

(10)

Then, for 𝑛 ≥ 3 and using (9), we get

1

𝑗𝑛
𝑑

𝑑𝜉
(𝜉𝑗 + 𝑎)

𝑛
= ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−1
≤𝑛−1

𝑛−1

∏
𝑘=1

(𝜉 +
𝑎 − 𝑗

𝑘

𝑗
) . (11)

Then, we have the following lemma.

Lemma 1. For any nonnegative integers 𝑛 and 𝑘, one has

1

𝑗𝑛
𝑑𝑘

𝑑𝜉𝑘
(𝜉𝑗 + 𝑎)

𝑛
= ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑘!

𝑛−𝑘

∏
𝑞=1

(𝜉 +
𝑎 − 𝑗

𝑞

𝑗
) .

(12)

Proof. We prove by induction on 𝑘. For 𝑘 = 0, (12) clearly
holds. For 𝑘 = 1, (12) can easily be verified using (11). Suppose
for𝑚 ≥ 1,

1

𝑗𝑛
𝑑
𝑚

𝑑𝜉𝑚
(𝜉𝑗 + 𝑎)

𝑛
= ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑚
≤𝑛−1

𝑚!

𝑛−𝑚

∏
𝑞=1

(𝜉 +
𝑎 − 𝑗

𝑞

𝑗
) .

(13)

Then,

1

𝑗𝑛
𝑑𝑚+1

𝑑𝜉𝑚+1
(𝜉𝑗 + 𝑎)

𝑛

= 𝑚! ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑚
≤𝑛−1

𝑑

𝑑𝜉

𝑛−𝑚

∏
𝑞=1

(𝜉 +
𝑎 − 𝑗

𝑞

𝑗
) ,

(14)

where the sum has ( 𝑛
𝑛−𝑚

) = 𝑛(𝑛 − 1)(𝑛 − 2) ⋅ ⋅ ⋅ (𝑛 −𝑚 + 1)/𝑚!

terms and its summand

𝑑

𝑑𝜉

𝑛−𝑚

∏
𝑞=1

(𝜉 +
𝑎 − 𝑗

𝑞

𝑗
) = ∑

𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛−𝑚−1

𝑛−𝑚−1

∏
𝑞=1

(𝜉 +
𝑎 − 𝑖

𝑞

𝑗
) ,

(15)

𝑖
𝑞

∈ {𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛−𝑚
} has ( 𝑛−𝑚

𝑛−𝑚−1
) = (𝑛 − 𝑚)(𝑛 − 𝑚 −

1)!/(𝑛 − 𝑚 − 1)! = 𝑛 − 𝑚 terms. Therefore, the expansion
of (𝑑𝑚+1/𝑑𝜉𝑚+1)(𝜉𝑗 + 𝑎)

𝑛
has a total of 𝑛(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 −

𝑚 + 1)(𝑛 − 𝑚)/𝑚! terms of the form ∏
𝑛−𝑚−1

𝑞=1
(𝜉 + (𝑎 −

𝑗
𝑞
)/𝑗). However, if the sum is evaluated over all possible

combinations 𝑗
1
𝑗
2
⋅ ⋅ ⋅ 𝑗

𝑛−𝑚−1
such that 0 ≤ 𝑗

1
< 𝑗
2
< ⋅ ⋅ ⋅ <

𝑗
𝑛−𝑚−1

≤ 𝑛 − 1, then the sum has ( 𝑛

𝑛−𝑚−1
) = 𝑛(𝑛 − 1) ⋅ ⋅ ⋅ (𝑛 −

𝑚)(𝑛 − 𝑚 − 1!)/(𝑚 + 1)!(𝑛 − 𝑚 − 1)! = (1/(𝑚 + 1))(𝑛(𝑛 −

1) ⋅ ⋅ ⋅ (𝑛 − 𝑚)/𝑚!) distinct terms. It follows that every term
∏
𝑛−𝑚−1

𝑞=1
(𝜉 + (𝑎 − 𝑗

𝑞
)/𝑗) appears𝑚 + 1 times in the expansion

of (1/𝑗𝑛)(𝑑𝑚+1/𝑑𝜉𝑚+1)(𝜉𝑗 + 𝑎)
𝑛
. Thus we have

1

𝑗𝑛
𝑑𝑚+1

𝑑𝜉𝑚+1
(𝜉𝑗 + 𝑎)

𝑛

= 𝑚! ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑚−1
≤𝑛−1

𝑚 + 1

𝑛−𝑚

∏
𝑞=1

(𝜉 +
𝑎 − 𝑗

𝑞

𝑗
)

= (𝑚 + 1)! ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑚−1
≤𝑛−1

𝑛−𝑚

∏
𝑞=1

(𝜉 +
𝑎 − 𝑗

𝑞

𝑗
) .

(16)

Lemma 2. Let 𝑠(𝑛, 𝑘; 𝑎) =

(1/𝑘!)lim
𝜉→0

((∑
𝑘

𝑗=0
(−1)

𝑘−𝑗

( 𝑘
𝑗
) (𝑑𝑘/𝑑𝜉𝑘)(𝜉𝑗 + 𝑎)

𝑛
)/𝑘!).

Then

𝑠 (𝑛, 𝑘; 𝑎) = ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝑎 − 𝑗
𝑞
) . (17)

Proof. Using Lemma 1,

𝑠 (𝑛, 𝑘; 𝑎)

=
1

𝑘!
lim
𝜉→0

((

𝑘

∑
𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
) 𝑗
𝑛

∑
0≤𝑗
1
<⋅⋅⋅<𝑗

𝑛−𝑘≤𝑛−1

𝑘!

×

𝑛−𝑘

∏
𝑞=1

(𝜉 +
𝑎 − 𝑗

𝑞

𝑗
)) (𝑘!)

−1

) .

(18)
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Note that ∏𝑛−𝑘
𝑞=1

(𝜉 + (𝑎 − 𝑗
𝑞
)/𝑗) = (1/𝑗𝑛−𝑘)∏

𝑛−𝑘

𝑞=1
(𝜉𝑗 + 𝑎 − 𝑗

𝑞
).

Hence, the expression at the right-hand side of (18) becomes

1

𝑘!
lim
𝜉→0

[

[

𝑘

∑
𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
) 𝑗
𝑘

× ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝜉𝑗 + 𝑎 − 𝑗
𝑞
)]

]

=
1

𝑘!
[

[

𝑘

∑
𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
) 𝑗
𝑘

× ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝑎 − 𝑗
𝑞
)]

]

,

(19)

which boils down to

∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝑎 − 𝑗
𝑞
) , (20)

since

1

𝑘!

𝑘

∑
𝑗=0

(−1)
𝑘−𝑗

(
𝑘

𝑗
) 𝑗
𝑘

= 𝑆 (𝑘, 𝑘) = 1, (21)

where 𝑆(𝑛, 𝑘) denote the Stirling numbers of the second kind.

Theorem 3. The noncentral Stirling numbers of the first kind
equal

𝑠
𝑎
(𝑛, 𝑘) = 𝑠 (𝑛, 𝑘; 𝑎) = ∑

0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝑎 − 𝑗
𝑞
) . (22)

Proof. We know that

∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘+1
≤𝑛

𝑛−𝑘+1

∏
𝑞=1

(𝑎 − 𝑗
𝑞
) (23)

is equal to the sumof the products (𝑎−𝑗
1
)(𝑎−𝑗

2
) ⋅ ⋅ ⋅ (𝑎−𝑗

𝑛+1−𝑘
)

where the sum is evaluated overall possible combinations
𝑗
1
𝑗
2
⋅ ⋅ ⋅ 𝑗

𝑛+1−𝑘
, 𝑗
𝑖
∈ {0, 1, 2, . . . , 𝑛}. These possible combina-

tions can be divided into two: the combinations with 𝑗
𝑖
= 𝑛

for some 𝑖 ∈ {1, 2, . . . , 𝑛 − 𝑘 + 1} and the combinations with
𝑗
𝑖

̸= 𝑛 for all 𝑖 ∈ {0, 1, 2, . . . , 𝑛 − 𝑘 + 1}. Thus

∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘+1
≤𝑛

𝑛−𝑘+1

∏
𝑞=1

(𝑎 − 𝑗
𝑞
) (24)

is equal to

∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘+1
≤𝑛−1

𝑛−𝑘+1

∏
𝑞=1

(𝑎 − 𝑗
𝑞
) + (𝑎 − 𝑛)

× ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝑎 − 𝑗
𝑞
) .

(25)

This implies that

𝑠 (𝑛 + 1, 𝑘; 𝑎) = 𝑠 (𝑛, 𝑘 − 1; 𝑎) + (𝑎 − 𝑛) 𝑠 (𝑛, 𝑘; 𝑎) . (26)

This is exactly the triangular recurrence relation in (4) for
𝑠
𝑎
(𝑛, 𝑘). This proves the theorem.

The explicit formula inTheorem 3 is necessary in locating
the peak of the distribution of noncentral Stirling numbers of
the first kind. Besides, this explicit formula can also be used
to give certain combinatorial interpretation of 𝑠

𝑎
(𝑛, 𝑘).

A 0-1 tableau, as defined in [4] by deMédicis and Leroux,
is a pair 𝜑 = (𝜆, 𝑓), where

𝜆 = (𝜆
1
≥ 𝜆

2
≥ ⋅ ⋅ ⋅ ≥ 𝜆

𝑘
) (27)

is a partition of an integer𝑚, and𝑓 = (𝑓
𝑖𝑗
)
1≤𝑗≤𝜆

𝑖

is a “filling” of
the cells of corresponding Ferrers diagram of shape 𝜆with 0’s
and 1’s, such that there is exactly one 1 in each column. Using
the partition 𝜆 = (5, 3, 3, 2, 1) we can construct 60 distinct 0-
1 tableaux. One of these 0-1 tableaux is given in the following
figure with 𝑓

14
= 𝑓
15

= 𝑓
23

= 𝑓
31

= 𝑓
42

= 1, 𝑓
𝑖𝑗
= 0 elsewhere

(1 ≤ 𝑗 ≤ 𝜆
𝑖
):

0 0 0 1 1
0 0 1
1 0 0
0 1
0

(28)

Also, as defined in [4], an 𝐴-tableau is a list 𝜙 of column 𝑐

of a Ferrers diagram of a partition 𝜆 (by decreasing order of
length) such that the lengths |𝑐| are part of the sequence 𝐴 =

(𝑎
𝑖
)
𝑖≥0

, 𝑎
𝑖
∈ 𝑍+ ∪ {0}. If 𝑇𝑑𝐴(ℎ, 𝑟) is the set of𝐴-tableaux with

exactly 𝑟 distinct columns whose lengths are in the set 𝐴 =

{𝑎
0
, 𝑎
1
, . . . , 𝑎

ℎ
}, then |𝑇𝑑𝐴(ℎ, 𝑟)| = ( ℎ+1

𝑟
). Now, transforming

each column 𝑐 of an 𝐴-tableau in 𝑇𝑑𝐴(𝑛 − 1, 𝑛 − 𝑘) into a
column of length 𝜔(|𝑐|), we obtain a new tableau which is
called 𝐴

𝜔
-tableau. If 𝜔(|𝑐|) = |𝑐|, then the 𝐴

𝜔
-tableau is

simply the 𝐴-tableau. Now, we define an 𝐴
𝜔
(0, 1)-tableau to

be a 0-1 tableau which is constructed by filling up the cells of
an 𝐴

𝜔
-tableau with 0’s and 1’s such that there is only one 1 in

each column. We use 𝑇𝑑𝐴𝜔(0,1)(𝑛 − 1, 𝑛 − 𝑘) to denote the set
of such 𝐴

𝜔
(0, 1)-tableaux.

It can easily be seen that every (𝑛 − 𝑘) combination
𝑗
1
𝑗
2
⋅ ⋅ ⋅ 𝑗

𝑛−𝑘
of the set {0, 1, 2, . . . , 𝑛 − 1} can be represented

geometrically by an element 𝜙 in 𝑇𝑑𝐴(𝑛 − 1, 𝑛 − 𝑘) with 𝑗
𝑖

as the length of (𝑛 − 𝑘 − 𝑖 + 1)th column of 𝜙 where 𝐴 =

{0, 1, 2, . . . , 𝑛 − 1}. Hence, with 𝜔(|𝑐|) = 𝑎 − |𝑐|, (22) may be
written as

𝑠
𝑎
(𝑛, 𝑘) = ∑

𝜙∈𝑇𝑑
𝐴
(𝑛−1,𝑛−𝑘)

∏
𝑐∈𝜙

𝜔 (|𝑐|) . (29)

Thus, using (29), we can easily prove the following theorem.

Theorem4. Thenumber of𝐴
𝜔
(0, 1)-tableaux in𝑇𝑑𝐴𝜔(0,1)(𝑛−

1, 𝑛−𝑘) where𝐴 = {0, 1, 2, . . . , 𝑛 − 1} such that 𝜔(|𝑐|) = 𝑎− |𝑐|

is equal to 𝑠
𝑎
(𝑛, 𝑘).
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Let 𝜙 be an 𝐴-tableau in 𝑇𝑑𝐴(𝑛 − 1, 𝑛 − 𝑘) with 𝐴 =

{0, 1, 2, . . . , 𝑛 − 1}, and

𝜔
𝐴
(𝜙) = ∏

𝑐∈𝜙

𝜔 (|𝑐|)

=

𝑛−𝑘

∏
𝑖=1

(𝑎 − 𝑗
𝑖
) , 𝑗

𝑖
∈ {0, 1, 2, . . . , 𝑛 − 1} .

(30)

If 𝑎 = 𝑎
1
+ 𝑎
2
for some 𝑎

1
and 𝑎

2
, then, with 𝜔∗(𝑗) = 𝑎

2
− 𝑗,

𝜔
𝐴
(𝜙) =

𝑛−𝑘

∏
𝑖=1

(𝑎
1
+ 𝜔
∗

(𝑗
𝑖
))

=

𝑛−𝑘

∑
𝑟=0

𝑎
𝑛−𝑘−𝑟

1
∑

𝑗
𝑖
≤𝑞
1
<𝑞
2
<⋅⋅⋅<𝑞

𝑟
≤𝑗
𝑛−𝑘

𝑟

∏
𝑖=1

𝜔
∗

(𝑞
𝑖
) .

(31)

Suppose 𝐵
𝜙
is the set of all 𝐴-tableaux corresponding to 𝜙

such that for each 𝜓 ∈ 𝐵
𝜙
either

𝜓 has no column whose weight is 𝑎
1
, or

𝜓 has one column whose weight is 𝑎
1
, or

...

𝜓 has 𝑛 − 𝑘 columns whose weights are 𝑎
1
. Then, we

may write

𝜔
𝐴
(𝜙) = ∑

𝜓∈𝐵
𝜙

𝜔
𝐴
(𝜓) . (32)

Now, if 𝑟 columns in 𝜓 have weights other than 𝑎
1
, then

𝜔
𝐴
(𝜓) = 𝑎

𝑛−𝑘−𝑟

1

𝑟

∏
𝑖=1

𝜔
∗

(𝑞
𝑖
) , (33)

where 𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑟
∈ {𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛−𝑘
}. Hence, (29) may be

written as

𝑠
𝑎
(𝑛, 𝑘) = ∑

𝜙∈𝑇𝑑
𝐴
(𝑛−1,𝑛−𝑘)

∑
𝜓∈𝐵
𝜙

𝜔
𝐴
(𝜓) . (34)

Note that for each 𝑟, there correspond ( 𝑛−𝑘
𝑟
) tableaux with 𝑟

distinct columns havingweights𝑤∗(𝑞
𝑖
), 𝑞
𝑖
∈ {𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛−𝑘
}.

Since𝑇𝑑𝐴(𝑛−1, 𝑛−𝑘) has ( 𝑛
𝑘
) elements, for each 𝜙 ∈ 𝑇𝑑𝐴(𝑛−

1, 𝑛 − 𝑘), the total number of 𝐴-tableaux 𝜓 corresponding to
𝜙 is

(
𝑛

𝑘
)(

𝑛 − 𝑘

𝑟
) (35)

elements. However, only ( 𝑛
𝑟
) tableaux in 𝐵

𝜙
with 𝑟 distinct

columns of weights other than 𝑎
1
are distinct. Hence, every

distinct tableau 𝜓 appears

( 𝑛
𝑘
) ( 𝑛−𝑘

𝑟
)

( 𝑛
𝑟
)

= (
𝑛 − 𝑟

𝑘
) (36)

times in the collection. Consequently, we obtain

𝑠
𝑎
(𝑛, 𝑘) =

𝑛−𝑘

∑
𝑟=0

(
𝑛 − 𝑟

𝑘
) 𝑎
𝑛−𝑘−𝑟

1
∑
𝜓∈𝐵
𝑟

∏
𝑐∈𝜓

𝜔
∗

(|𝑐|) , (37)

where 𝐵
𝑟
denotes the set of all tableaux 𝜓 having 𝑟 distinct

columns whose lengths are in the set {0, 1, 2, . . . , 𝑛 − 1}.
Reindexing the double sum, we get

𝑠
𝑎
(𝑛, 𝑘) =

𝑛

∑
𝑗=𝑘

(
𝑗

𝑘
) 𝑎
𝑗−𝑘

1
∑

𝜓
∗
∈𝐵
𝑛−𝑗

∏
𝑐∈𝜓
∗

𝜔
∗

(|𝑐|) . (38)

Clearly, 𝐵
𝑛−𝑗

= 𝑇𝑑𝐴(𝑛 − 1, 𝑛 − 𝑗). Thus, using (22), we obtain
the following theorem.

Theorem 5. The numbers 𝑠
𝑎
(𝑛, 𝑘) satisfy the following iden-

tity:

𝑠
𝑎
(𝑛, 𝑘) =

𝑛

∑
𝑗=𝑘

(
𝑗

𝑘
) 𝑎
𝑗−𝑘

1
𝑠
𝑎
2

(𝑛, 𝑗) , (39)

where 𝑎 = 𝑎
1
+ 𝑎
2
for some numbers 𝑎

1
and 𝑎

2
.

The next theorem contains certain convolution-type for-
mula for 𝑠

𝑎
(𝑛, 𝑘) which will be proved using the combina-

torics of 𝐴-tableau.

Theorem 6. The numbers 𝑠
𝑎
(𝑛, 𝑘) have convolution formula

𝑠
𝑎
(𝑚 + 𝑗, 𝑛) =

𝑛

∑
𝑘=0

𝑠
𝑎
(𝑚, 𝑘) 𝑠

𝑎−𝑚
(𝑗, 𝑛 − 𝑘) . (40)

Proof. Suppose that 𝜙
1
is a tableau with exactly𝑚−𝑘 distinct

columns whose lengths are in the set𝐴
1
= {0, 1, 2, . . . , 𝑚 − 1}

and𝜙
2
is a tableauwith exactly 𝑗−𝑛+𝑘distinct columnswhose

lengths are in the set 𝐴
2
= {𝑚,𝑚 + 1,𝑚 + 2, . . . , 𝑚 + 𝑗 − 1}.

Then 𝜙
1
∈ 𝑇𝑑𝐴1(𝑚−1,𝑚−𝑘) and 𝜙

2
∈ 𝑇𝑑𝐴2(𝑗 − 1, 𝑗 − 𝑛+ 𝑘).

Notice that by joining the columns of 𝜙
1
and 𝜙

2
, we obtain an

𝐴-tableau 𝜙 with 𝑚 + 𝑗 − 𝑛 distinct columns whose lengths
are in the set 𝐴 = {0, 1, 2, . . . , 𝑚 + 𝑗 − 1}; that is, 𝜙 ∈ 𝑇𝑑

𝐴

(𝑚 +

𝑗 − 1,𝑚 + 𝑗 − 𝑛). Hence

∑

𝜙∈𝑇𝑑
𝐴
(𝑚+𝑗−1,𝑚+𝑗−𝑛)

𝜔
𝐴
(𝜙)

=

𝑛

∑
𝑘=0

{

{

{

∑

𝜙
1
∈𝑇𝑑
𝐴1 (𝑚−1,𝑚−𝑘)

𝜔
𝐴
1

(𝜙
1
)
}

}

}

×
{

{

{

∑

𝜙
2
∈𝑇𝑑
𝐴2 (𝑗−1,𝑗−𝑛+𝑘)

𝜔
𝐴
2

(𝜙
2
)
}

}

}

.

(41)
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Note that

∑

𝜙
2
∈𝑇𝑑
𝐴2 (𝑗−1,𝑗−𝑛+𝑘)

𝜔
𝐴
2

(𝜙
2
)

= ∑
𝑚≤𝑔
1
<𝑔
2
<⋅⋅⋅<𝑔

𝑗−𝑛+𝑘
≤𝑚+𝑗−1

𝑗−𝑛+𝑘

∏
𝑞=1

(𝑎 − 𝑔
𝑞
)

= ∑
0≤𝑔
1
<𝑔
2
<⋅⋅⋅<𝑔

𝑛−𝑘−𝑗
≤𝑗−1

𝑗−𝑛+𝑘

∏
𝑞=1

(𝑎 − (𝑚 + 𝑔
𝑞
))

= 𝑠
𝑎−𝑚

(𝑗, 𝑛 − 𝑘) .

(42)

Also, using (29), we have

∑

𝜙
1
∈𝑇𝑑
𝐴1 (𝑚−1,𝑚−𝑘)

𝜔
𝐴
1

(𝜙
1
) = 𝑠

𝑎
(𝑚, 𝑘)

∑

𝜙∈𝑇𝑑
𝐴
(𝑚+𝑗−1,𝑚+𝑗−𝑛)

𝜔
𝐴
(𝜙) = 𝑠

𝑎
(𝑚 + 𝑗, 𝑛) .

(43)

Thus,

𝑠
𝑎
(𝑚 + 𝑗, 𝑛) =

𝑛

∑
𝑘=0

𝑠
𝑎
(𝑚, 𝑘) 𝑠

𝑎−𝑚
(𝑗, 𝑛 − 𝑘) . (44)

The following theorem gives another form of convolution
formula.

Theorem 7. The numbers 𝑠
𝑎
(𝑛, 𝑘) satisfy the second form of

convolution formula

𝑠
𝑎
(𝑛 + 1,𝑚 + 𝑗 + 1) =

𝑛

∑
𝑘=0

𝑠
𝑎
(𝑘, 𝑛) 𝑠

𝑎−(𝑘+1)
(𝑛 − 𝑘, 𝑗) . (45)

Proof. Let

𝜙
1
be a tableau with 𝑘−𝑚 columns whose lengths are

in 𝐴
1
= {0, 1, . . . , 𝑘 − 1},

𝜙
2
be a tableau with 𝑛 − 𝑘 − 𝑗 columns whose lengths

are in 𝐴
2
= {𝑘 + 1, . . . , 𝑛}.

Then 𝜙
1
∈ 𝑇𝑑𝐴1(𝑘 − 1, 𝑘 − 𝑚); 𝜙

2
∈ 𝑇𝑑𝐴2(𝑛 − 𝑘 − 1, 𝑛 − 𝑘 −

𝑗). Using the same argument above, we can easily obtain the
convolution formula.

3. The Maximum of Noncentral Stirling
Numbers of the First Kind

We are now ready to locate the maximum of 𝑠
𝑎
(𝑛, 𝑘). First, let

us consider the following theorem on Newton’s inequality [5]
which is a good tool in proving log-concavity or unimodality
of certain combinatorial sequences.

Theorem 8. If the polynomial 𝑎
1
𝑥+𝑎

2
𝑥2 + ⋅ ⋅ ⋅ + 𝑎

𝑛
𝑥𝑛 has only

real zeros then

𝑎
2

𝑘
≥ 𝑎
𝑘+1

𝑎
𝑘−1

𝑘

𝑘 − 1

𝑛 − 𝑘 + 1

𝑛 − 𝑘
(𝑘 = 2, . . . , 𝑛 − 1) . (46)

Now, consider the following polynomial:
𝑛

∑
𝑘=0

𝑠
𝑎
(𝑛, 𝑘) (𝑡 + 𝑎)

𝑘

. (47)

This polynomial is just the expansion of the factorial
⟨𝑡⟩
𝑛

= 𝑡(𝑡 + 1)(𝑡 + 2) ⋅ ⋅ ⋅ (𝑡 + 𝑛 − 1) which has real roots
0, −1, −2, . . . , −𝑛+1. If we replace 𝑡 by 𝑡−𝑎, we see at once that
the roots of the polynomial∑𝑛

𝑘=0
𝑠
𝑎
(𝑛, 𝑘)𝑡𝑘 are 𝑎, 𝑎−1, . . . , 𝑎−

𝑛 + 1. Applying Newton’s Inequality completes the proof of
the following theorem.

Theorem 9. The sequence {𝑠
𝑎
(𝑛, 𝑘)}

𝑛

𝑘=0
is strictly log-concave

and, hence, unimodal.

By replacing 𝑡 with −𝑡, the relation in (1) may be written
as

⟨𝑡⟩
𝑛
=

𝑛

∑
𝑘=0

(−1)
𝑛−𝑘

𝑠
𝑎
(𝑛, 𝑘) (𝑡 + 𝑎)

𝑘

, (48)

where ⟨𝑡⟩
𝑛
= 𝑡(𝑡 + 1)(𝑡 + 2) ⋅ ⋅ ⋅ (𝑡 + 𝑛 − 1). Note that, from

Theorem 3 with 𝑎 < 0,

𝑠
𝑎
(𝑛, 𝑘) = (−1)

𝑛−𝑘

∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝑏 + 𝑗
𝑞
) , (49)

where 𝑏 = −𝑎 > 0. Now, we define the signless noncentral
Stirling number of the first kind, denoted by |𝑠

𝑎
(𝑛, 𝑘)|, as

󵄨󵄨󵄨󵄨𝑠𝑎 (𝑛, 𝑘)
󵄨󵄨󵄨󵄨 = (−1)

𝑛−𝑘

𝑠
𝑎
(𝑛, 𝑘)

= ∑
0≤𝑗
1
<𝑗
2
<⋅⋅⋅<𝑗

𝑛−𝑘
≤𝑛−1

𝑛−𝑘

∏
𝑞=1

(𝑏 + 𝑗
𝑞
) .

(50)

To introduce themain result of this paper, we need to state
first the following theorem of Erdös and Stone [3].

Theorem 10 (see [3]). Let 𝑢
1

< 𝑢
2

< ⋅ ⋅ ⋅ be an infinite
sequence of positive real numbers such that

∞

∑
𝑖=1

1

𝑢
𝑖

= ∞,

∞

∑
𝑖=1

1

𝑢2
𝑖

< ∞. (51)

Denote by ∑
𝑛,𝑘

the sum of the product of the first 𝑛 of them
taken 𝑘 at a time and denote by 𝐾

𝑛
the largest value of 𝑘 for

which ∑
𝑛,𝑘

assumes its maximum value. Then

𝐾
𝑛
= 𝑛 − [

𝑛

∑
𝑖=1

1

𝑢
𝑖

−

𝑛

∑
𝑖=1

1

𝑢2
𝑖

(1 +
1

𝑢
𝑖

)

−1

+ 𝑜 (1)] . (52)

We also need to recall the asymptotic expansion of
harmonic numbers which is given by

1

1
+
1

2
+ ⋅ ⋅ ⋅ +

1

𝑛
= log 𝑛 + 𝛾 + 𝑜 (1) , (53)

where 𝛾 is the Euler-Mascheroni constant.
The following theorem contains a formula that deter-

mines the value of the index corresponding to the maximum
of the sequence {|𝑠

𝑎
(𝑛, 𝑘)|}

𝑛

𝑘=0
.
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Theorem 11. The largest index for which the sequence
{|𝑠
𝑎
(𝑛, 𝑘)|}

𝑛

𝑘=0
assumes its maximum is given by the approxi-

mation

𝑘
𝑎,𝑛

= [log(𝑏 + 𝑛

𝑏
) + 𝑜 (1)] , (54)

where [𝑥] is the integer part of 𝑥 and 𝑏 = −𝑎, 𝑎 < 0.

Proof. Using Theorem 10 and by (50), we see that |𝑠
𝑎
(𝑛, 𝑘)| =

∑
𝑛−1,𝑛−𝑘

. Denoting by 𝑘
𝑎,𝑛

for which ∑
𝑛,𝑛−𝑘

is maximum and
with 𝑢

1
= 𝑏 + 0, 𝑢

2
= 𝑏 + 1, . . . , 𝑢

𝑛−1
= 𝑏 + 𝑛 − 1 we have

𝑘
𝑎,𝑛

= [

𝑛−1

∑
𝑖=0

1

𝑏 + 𝑖
−

𝑛−1

∑
𝑖=0

1

(𝑏 + 𝑖)
2
(1 +

1

𝑏 + 𝑖
)
−1

+ 𝑜 (1)]

= [

𝑛−1

∑
𝑖=0

1

𝑏 + 𝑖
−

𝑛−1

∑
𝑖=0

1

(𝑏 + 𝑖) (𝑏 + 𝑖 + 1)
+ 𝑜 (1)]

= [

𝑛−1

∑
𝑖=0

1

𝑏 + 𝑖 + 1
+ 𝑜 (1)] .

(55)

But using (53), we see that

𝑛−1

∑
𝑖=0

1

𝑏 + 𝑖 + 1
= log (𝑏 + 𝑛) − log 𝑏. (56)

From this we get

𝑘
𝑎,𝑛

= [log(𝑏 + 𝑛

𝑏
) + 𝑜 (1)] . (57)

For the case in which 𝑎 > 0 we will only consider the
sequence of noncentral Stirling numbers of the first kind for
which 𝑎 ≥ 𝑛.

Theorem 12. The maximizing index for which the maximum
noncentral Stirling number occurs for 𝑎 ≥ 𝑛 is given by the
approximation

𝑘
𝑎,𝑛

= [log( 𝑎 + 1

𝑎 − 𝑛 + 1
) + 𝑜 (1)] . (58)

Proof. From the definition, for 𝑎 ≥ 𝑛,𝑠
𝑎
(𝑛, 𝑘) > 0 and by

Theorem 3, 𝑠
𝑎
(𝑛, 𝑘) is the sum of the products (𝑎 − 𝑗

1
)(𝑎 −

𝑗
2
) ⋅ ⋅ ⋅ (𝑎−𝑗

𝑛−𝑘
)where 𝑗

𝑖
’s are taken from the set {0, 1, 2, . . . , 𝑛−

1}. By Theorem 10, 𝑠
𝑎
(𝑛, 𝑘) = ∑

𝑛,𝑛−𝑘
. Thus with 𝑢

1
= 𝑎, 𝑢

2
=

𝑎 − 1, . . . , 𝑢
𝑛−1

= 𝑎 − 𝑛 + 1 we have

𝑘
𝑎,𝑛

= [

𝑛−1

∑
𝑖=0

1

𝑎 − 𝑖
−

𝑛−1

∑
𝑖=0

1

(𝑎 − 𝑖)
2
(1 +

1

𝑎 − 𝑖
)
−1

+ 𝑜 (1)]

= [

𝑛−1

∑
𝑖=0

1

𝑎 − 𝑖
−

𝑛−1

∑
𝑖=0

1

(𝑎 − 𝑖) (𝑎 − 𝑖 + 1)
+ 𝑜 (1)]

= [

𝑛−1

∑
𝑖=0

1

𝑎 − 𝑖 + 1
+ 𝑜 (1)] .

(59)

Table 1: Values of 𝑠
−1
(𝑛, 𝑘).

𝑛/𝑘 0 1 2 3
0 1
1 1
2 2 1
3 6 6 1
4 24 35 10 1
5 120 225 85 15
6 720 1624 735 175
7 5040 13132 6769 1960
8 40320 109584 118124 67284
9 362880 1026576 1172700 723680
10 3628800 10628640 12753576 8409500

Again, using (53), we get

𝑘
𝑎,𝑛

= [log( 𝑎 + 1

𝑎 − 𝑛 + 1
) + 𝑜 (1)] . (60)

Example 13. The maximum element of the sequence
{𝑠
−1
(9, 𝑘)}

9

𝑘=0
occurs at (Table 1)

𝑘
−1,9

= [log(1 + 8

1
) + 𝑜 (1)]

= [log 9 + 𝑜 (1)]

≈ 2.

(61)

Example 14. The maximum element of the sequence
{𝑠
10
(10, 𝑘)}

10

𝑘=0
occurs at (Table 2)

𝑘
10,10

= [log( 10 + 1

10 − 10 + 1
) + 𝑜 (1)]

= [log 11 + 𝑜 (1)]

≈ 2.

(62)

We know that the classical Stirling numbers of the first
kind are special cases of 𝑠

𝑎
(𝑛, 𝑘) by taking 𝑎 = 0. However,

formulas in Theorems 11 and 12 do not hold when 𝑎 = 0.
Hence, these formulas are not applicable to determine the
maximum of the classical Stirling numbers. Here, we derive a
formula that determines the value of the index corresponding
to the maximum of the signless Stirling numbers of the first
kind.

The signless Stirling numbers of the first kind [6] are the
sum of all products of 𝑛 − 𝑘 different integers taken from
{1, 2, 3, . . . , 𝑛 − 1}. That is,

|𝑠 (𝑛, 𝑘)| = ∑
1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑛−𝑘
≤𝑛−1

𝑖
1
𝑖
2
⋅ ⋅ ⋅ 𝑖
𝑛−𝑘

. (63)
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Table 2: Values of 𝑠
10
(𝑛, 𝑘).

𝑛/𝑘 0 1 2 3
0 1
1 10 1
2 90 19 1
3 720 242 27 1
4 5040 2414 431 34
5 30240 19524 5000 635
6 151200 127860 44524 8175
7 604800 662640 305956 77224
8 1814400 2592720 1580508 537628
9 3628800 6999840 5753736 2655764
10 3628800 10628640 12753576 8409500

Table 3: Values of |𝑠(𝑛, 𝑘)| for 0 ≤ 𝑛 ≤ 10.

𝑠(𝑛, 𝑘) 0 1 2 3 4 5
0 1
1 0 1
2 0 1 1
3 0 2 3 1
4 0 6 11 6 1
5 0 24 50 35 10 1
6 0 120 274 225 85 15
7 0 720 1764 1624 735 175
8 0 540 13068 13132 6769 1960
9 0 40320 109584 118124 67284 22449
10 0 362880 1026576 1172700 723680 269325

Using Theorem 10, |𝑠(𝑛, 𝑘)| = ∑
𝑛−1,𝑛−𝑘

. We use 𝑘
𝑛
to denote

the largest value of 𝑘 for which ∑
𝑛−1,𝑛−𝑘

is maximum. With
𝑢
1
= 1, 𝑢

2
= 2, . . . , 𝑢

𝑛−1
= 𝑛 − 1 we have

𝑘
𝑛
= 1 + [

𝑛−1

∑
𝑖=1

1

𝑖
−

𝑛−1

∑
𝑖=1

1

𝑖2
(1 +

1

𝑖
)
−1

+ 𝑜 (1)]

= 1 + [

𝑛−1

∑
𝑖=1

1

𝑖
−

𝑛−1

∑
𝑖=1

(
1

𝑖
−

1

𝑖 + 1
) + 𝑜 (1)]

= 1 + [

𝑛−1

∑
𝑖=1

1

𝑖 + 1
+ 𝑜 (1)] .

(64)

Using (53), we see that

𝑛−1

∑
𝑖=1

1

1 + 𝑖
= log 𝑛 − log 1 + 𝛾 + 𝑜 (1) . (65)

Therefore, we have

𝑘
𝑛
= [log 𝑛 + 𝛾 + 𝑜 (1)] . (66)

Example 15. It is shown in Table 3 that the maximum value
of |𝑠(𝑛, 𝑘)| when 𝑛 = 7 occurs at 𝑘 = 2. Using (66), it

can be verified that the maximum element of the sequence
{|𝑠(7, 𝑘)|}

7

𝑘=0
occurs at

𝑘
7
= [log 7 + 𝛾 + 𝑜 (1)]

= [1.95 + 0.5772 + 𝑜 (1)]

= [2.53 + 𝑜 (1)]

≈ 2.

(67)

Moreover, when 𝑛 = 10, the maximum value occurs at

𝑘
10

= [log 10 + 𝛾 + 𝑜 (1)]

= [2.30 + 0.5772 + 𝑜 (1)]

= [2.8772 + 𝑜 (1)]

≈ 3.

(68)

Recently, a paper by Cakić et al. [7] established explicit
formulas for multiparameter noncentral Stirling numbers
which are expressible in symmetric function forms. One may
then try to investigate the location of the maximum value of
these numbers using the Erdös-Stone theorem.
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[2] I. Mezö, “On the maximum of 𝑟-Stirling numbers,” Advances in
Applied Mathematics, vol. 41, no. 3, pp. 293–306, 2008.

[3] P. Erdös, “On a conjecture of Hammersley,” Journal of the
London Mathematical Society, vol. 28, pp. 232–236, 1953.

[4] A. de Médicis and P. Leroux, “Generalized Stirling numbers,
convolution formulae and 𝑝, 𝑞-analogues,” Canadian Journal of
Mathematics, vol. 47, no. 3, pp. 474–499, 1995.

[5] E. H. Lieb, “Concavity properties and a generating function for
Stirling numbers,” Journal of CombinatorialTheory, vol. 5, no. 2,
pp. 203–206, 1968.

[6] L. Comtet, Advanced Combinatorics, Reidel, Dordrecht, The
Netherlands, 1974.
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formulas and combinatorial identities for generalized Stirling
numbers,”Mediterranean Journal of Mathematics, vol. 10, no. 1,
pp. 57–72, 2013.



Research Article
A Domain-Specific Architecture for Elementary
Function Evaluation

Anuroop Sharma and Christopher Kumar Anand

Department of Computing and Software, McMaster University, Hamilton, ON, Canada L8S 4K1

Correspondence should be addressed to Christopher Kumar Anand; anandc@mcmaster.ca

Received 25 December 2014; Accepted 3 August 2015

Academic Editor: Serkan Araci

Copyright © 2015 A. Sharma and C. K. Anand.This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose a Domain-Specific Architecture for elementary function computation to improve throughput while reducing power
consumption as a model for more general applications: support fine-grained parallelism by eliminating branches, and eliminate the
duplication required by coprocessors by decomposing computation into instructions which fit existing pipelined execution models
and standard register files. Our example instruction architecture (ISA) extension supports scalar and vector/SIMD implementations
of table-based methods of calculating all common special functions, with the aim of improving throughput by (1) eliminating the
need for tables in memory, (2) eliminating all branches for special cases, and (3) reducing the total number of instructions. Two
new instructions are required, a table lookup instruction and an extended-precision floating-point multiply-add instruction with
special treatment for exceptional inputs. To estimate the performance impact of these instructions, we implemented them in a
modified Cell/B.E. SPU simulator and observed an average throughput improvement of 2.5 times for optimized loops mapping
single functions over long vectors.

1. Introduction

Elementary function libraries are often called from perfor-
mance-critical code sections and hence contribute greatly to
the efficiency of numerical applications, and the performance
of these and libraries for linear algebra largely determine
the performance of important applications. Current hardware
trends impact this performance as

(i) longer pipelines and wider superscalar dispatch
favour implementations which distribute computa-
tion across different execution units and present the
compiler with more opportunities for parallel execu-
tion but make branches more expensive;

(ii) Single-Instruction-Multiple-Data (SIMD)parallelism
makes handling cases via branches very expensive;

(iii) memory throughput and latency which are not
advancing as fast as computational throughput hinder
the use of lookup tables;

(iv) power constraints limit performance more than area.

The last point is interesting and gives rise to the notion of
“dark silicon” in which circuits are designed to be un- or
underused to save power. The consequences of these thermal
limitations versus silicon usage have been analyzed [1], and
a number of performance-stretching approaches have been
proposed [2] including the integration of specialized copro-
cessors.

Our proposal is less radical: instead of adding special-
ized coprocessors, add novel fully pipelined instructions to
existing CPUs and GPUs, use the existing register file, reuse
existing silicon for expensive operations, for example, fused
multiply-add operations, and eliminate costly branches but
add embedded lookup tables which are a very effective use
of dark silicon. In the present paper, we demonstrate this
approach for elementary function evaluation, that is, libm
functions and especially vector versions of them.

To optimize performance, our approach takes the suc-
cessful accurate table approach of Gal et al. [3, 4] coupled
with algorithmic optimizations [5, 6] and branch and table
unifications [7] to reduce all fixed-power-, logarithm-, and
exponential-family functions to a hardware-based lookup
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followed by a handful of floating-point operations, mostly
fused multiply-add instructions evaluating a single polyno-
mial. Other functions like pow require multiple such basic
stages, but no functions require branches to handle excep-
tional cases, including subnormal and infinite values.

Although fixed powers (including square roots and recip-
rocals) of most finite inputs can be efficiently computed using
Newton-Raphson iteration following a software or hardware
estimate [8], such iterations necessarily introduce NaN inter-
mediate values, which can only be corrected using additional
instructions (branches, predication, or selection). Therefore,
our proposed implementations avoid iterative methods.

For evaluation of the approach, the proposed instructions
were implemented in a Cell/B.E. [9] SPU simulator, and algo-
rithms for a standard math function library were developed
that leverage these proposed additions.Overall, we found that
the new instructions would result in an average 2.5 times
throughput improvement on this architecture versus current
published performance results (Mathematical Acceleration
Subsystem, 5.0, IBM). Given the simple data dependency
graphs involved, we expect similar improvements from
implementing these instructions on all two-way SIMD archi-
tectures supporting fused multiply-add instructions. Higher-
way SIMD architectures would likely benefit more.

In the following, the main approach is developed, and
the construction of two representative functions, log𝑥 and
log(𝑥 + 1), is given in detail, providing insight by example
into the nature of the implementation. In some sense these
represent the hardest case; although the trigonometric func-
tions require multiple tables, and there is some computation
of the lookup keys, the hardware instructions themselves are
simpler. For a complete specification of the algorithms used,
see [10].

2. New Instructions

Driven by hardware floating-point instructions, the advent
of software pipelining and shortening of pipeline stages
favoured iterative algorithms (see, e.g., [11]); the long-running
trend towards parallelism has engendered a search for shared
execution units [12] and in a more general sense a focus on
throughput rather than low latency. In terms of algorithmic
development for elementary functions, thismakes combining
short-latency seed or table value lookups with standard
floating-point operations attractive, exposing the whole com-
putation to software pipelining by the scheduler.

In proposing Instruction Set Architecture (ISA) exten-
sions, one must consider four constraints:

(i) the limit on the number of instructions imposed by
the size of the machine word, and the desire for fast
(i.e., simple) instruction decoding,

(ii) the limit on arguments and results imposed by the
architected number of ports on the register file,

(iii) the limit on total latency required to prevent an
increase in maximum pipeline depth,

(iv) the need to balance increased functionality with
increased area and power usage.

x

f(x)

i

(ii) and (iii)1

c

· · ·fmaX fma fma

fma or fm
lookup fn 1 lookup fn 2

Figure 1: Data flow graph with instructions on vertices, for log𝑥,
roots, and reciprocals. Most functions follow the same basic pattern
or are a composition of such patterns.

As new lithography methods cause processor sizes to shrink,
the relative cost of increasing core area for new instructions is
reduced.Thenet costmay even be negative if the new instruc-
tions can reduce code anddata size, thereby reducing pressure
on the memory interface (which is more difficult to scale).

To achieve a performance benefit, ISA extensions should
do one or more of the following:

(i) reduce the number of machine instructions in com-
piled code,

(ii) move computation away from bottleneck execution
units or dispatch queues, or

(iii) reduce register pressure.

Considering the above limitations and ideals, we propose
adding two instructions, the motivation for which follows
below:

d = fmaX a b c: an extended-range floating-point
multiply-add, with the first argument having 12 expo-
nent bits and 51 mantissa bits, and nonstandard
exception handling;
t1 = lookup a b f t: an enhanced table lookup based
on one or two arguments, and containing immediate
argument specifying the function number and the
sequence of the lookup, for example, the first lookup
used for range reduction or the second lookup used
for function reconstruction.

It is easiest to see them used in an example. Figure 1
describes the data flow graph (omitting register constants),
which is identical for a majority of the elementary functions.
The correct lookup is specified as an immediate argument
to lookup, the final operation being fma for the log func-
tions and fm otherwise. All of the floating-point instructions
also take constant arguments which are not shown. For
example, the fmaX takes an argument which is −1.

The dotted box in Figure 1 represents a varying number of
fused multiply-adds used to evaluate a polynomial after the
multiplicative range reduction performed by the fmaX. The
most common size for these polynomials is order three, so
the result of the polynomial (the left branch) is available four
floating-point operations later (typically about 24–28 cycles)
than the result 1/𝑐. The second lookup instruction performs
a second lookup, for example, the log 𝑥 looks up log

2
𝑐 and

substitutes exceptional results (±∞, NaN) when necessary.
The final fma or fm instruction combines the polynomial
approximation on the reduced interval with the table value.
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The gray lines indicate two possible data flows for three
possible implementations:

(i) the second lookup instruction is a second lookup,
using the same input;

(ii) the second lookup instruction retrieves a value saved
by the first lookup (in final or intermediate form)
from a FIFO queue;

(iii) the second lookup instruction retrieves a value saved
in a slot according to an immediate tag which is also
present in the corresponding first lookup.

In the first case, the dependency is direct. In the second two
cases the dependency is indirect, via registers internal to the
execution unit handling the lookups.

All instruction variations have two register inputs and
one or no outputs, so they will be compatible with existing
in-flight instruction and register tracking. On lean in-order
architectures, the variants with indirect dependencies—(ii)
and (iii)—reduce register pressure and simplify modulo loop
scheduling. This would be most effective in dedicated com-
putational cores like the SPUs in which preemptive context
switching is restricted.

The variant (iii) requires additional instruction decode
logic but may be preferred over (ii) because tags allow
lookup instructions to execute in different orders, and for
wide superscalar processors, the tags can be used by the unit
assignment logic to ensure that matching lookup instruc-
tions are routed to the same units. On Very Long Instruction
Word machines, the position of lookups could replace or
augment the tag.

In low-power environments, the known long minimum
latency between the lookups would enable hardware design-
ers to use lower power but longer latency implementations of
most of the second lookup instructions.

To facilitate scheduling, it is recommended that the FIFO
or tag set be sized to the power of two greater than or equal
to the latency of a floating-point operation. In this case,
the number of registers required will be less than twice the
unrolling factor, which is much lower than what is possible
for code generated without access to such instructions. The
combination of small instruction counts and reduced register
pressure eliminate the obstacles to inlining of these functions.

We recommend that lookups be handled by either a
load/store unit, or, for vector implementations with a com-
plex integer unit, by that unit. This code will be limited by
floating-point instruction dispatch, so moving computation
out of this unit will increase performance.

2.1. Exceptional Values. A key advantage of the proposed
new instructions is that the complications associated with
exceptional values (0, ∞, NaN, and values with over- or
underflow at intermediate stages) are internal to the instruc-
tions, eliminating branches and predicated execution.

Iterative methods with table-based seed values cannot
achieve this in most cases because

(1) in 0 and ±∞ cases the iteration multiplies 0 by ∞
producing a NaN;

(2) to prevent over/underflow for high and low input
exponents, matched adjustments are required before
and after polynomial evaluation or iterations.

By using the table-based instruction twice, once to look up
the value used in range reduction and once to look up the
value of the function corresponding to the reduction, and
introducing an extended-range floating-point representation
with special handling for exceptions, we can handle both
types of exceptions without extra instructions.

In the case of finite inputs, the value 2−𝑒/𝑐, such that

2−𝑒

𝑐
⋅ 𝑥 − 1 ∈ [−2

−𝑁

, 2
−𝑁

] , (1)

returned by the first lookup is a normal extended-range
value. In the case of subnormal inputs, extended-range are
required to represent this lookup value because normal IEEE
value would saturate to ∞. Treatment of the large inputs
which produce IEEE subnormal as their approximate recip-
rocals can be handled (similar to normal inputs) using the
extended-range representation. The extended-range number
is biased by +2047, and the top binary value (4095) is
reserved for ±∞ and NaNs and 0 is reserved for ±0 similar
to IEEE floating point. When these values are supplied as
the first argument of fmaX, they override the normal values,
and fmaX simply returns the corresponding IEEE bit pattern.

The second lookup instruction returns an IEEE double
except when used for divide, in which case it also returns an
extended-range result.

In Table 2, we summarize how each case is handled and
describe it in detail in the following section. Each cell in
Table 2 contains the value used in the reduction, followed
by the corresponding function value. The first is given as an
extended-range floating-point number which trades one bit
of stored precision in the mantissa with a doubling of the
exponent range. In all cases arising in this library, the extra bit
would be one of several zero bits, so no actual loss of precision
occurs. For the purposes of elementary function evaluation,
subnormal extended-range floating-point numbers are not
needed, so they do not need to be supported in the floating-
point execution unit. As a result, themodifications to support
extended-range numbers as inputs are minor.

Take, for example, the first cell in the table, recip com-
puting 1/𝑥 for a normal positive input. Although the abstract
values are both 2−𝑒/𝑐, the bit patterns for the two lookups
are different, meaning that 1/𝑐must be representable in both
formats. In the next cell, however, for some subnormal inputs,
2
−𝑒

/𝑐 is representable in the extended range, but not in IEEE
floating point, because the addition of subnormal numbers
makes the exponent range asymmetrical. As a result, the
second value may be saturated to∞. The remaining cells in
this row show that, for ±∞ input, we return 0 from both
lookups, but for ±0 inputs the first lookup returns 0 and
the second lookup returns ±∞. In the last column we see
that, for negative inputs, the returned values change the sign.
This ensures that intermediate values are always positive and
allows the polynomial approximation to be optimized to
give correctly rounded results on more boundary cases. Both
lookups return quiet NaN outputs for NaN inputs.
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Contrast this with the handling of approximate reciprocal
instructions. For the instructions to be useful as approxi-
mations 0 inputs should return∞ approximations and vice
versa, but if the approximation is improved using Newton-
Raphson, then the multiplication of the input by the approx-
imation produces a NaN which propagates to the final result.

The other cases are similar in treating 0 and ∞ inputs
specially. Noteworthy variations are that log

2
𝑥 multiplica-

tively shifts subnormal inputs into the normal range so that
the normal approximation can be used and then additively
shifts the result of the second lookup to compensate, and 2𝑥
returns 0 and 1 for subnormal inputs, because the polynomial
approximation produces the correct result for the whole
subnormal range.

In Table 2, we list the handling of exceptional cases.
All exceptional values detected in the first argument are
converted to the IEEE equivalent and are returned as the
output of the fmaX, as indicated by subscript

𝑓
(for final).The

subscripted NaNs are special bit patterns required to produce
the special outputs needed for exceptional cases. For example,
when fmaX is executed with NaN

1
as the first argument (one

of the multiplicands) and the other two arguments are finite
IEEE values, the result is 2 (in IEEE floating-point format):

fmaX NaN
1
finite
1
finite
2
= NaN

1
⋅ finite

1
+ finite

2
= 2. (2)

If the result of multiplication is an ∞ and the addend is
∞ with the opposite sign, then the result is zero, although
normally it would be a NaN. If the addend is a NaN, then
the result is zero. For the other values, indicated by “𝑐” in
Table 2, fmaX operates as a usual fused multiply-accumulate
except that the first argument (amultiplicand) is an extended-
range floating-point number. For example, the fused multi-
plication and addition of finite arguments saturate to ±∞ in
the usual way.

Finally, for exponential functions, which return fixed
finite values for a wide range of inputs (including infinities),
it is necessary to override the range reduction so that it
produces an output which results in a constant value after
the polynomial approximation. In the case of exponential,
any finite value which results in a nonzero polynomial value
will do, because the second lookup instruction returns 0 or
∞ and multiplication by any finite value will return 0 as
required.

Lookup Internals. The lookup instructions perform similar
operations for each of the elementary functions we have con-
sidered. The function number is an immediate argument. In
assembly language each function could be a different macro,
while in high level languages the pair could be represented by
a single function returning a tuple or struct.

A simplified data flow for the most complicated case,
log
2
𝑥, is represented in Figure 2. The simplification is the

elimination of the many single-bit operations necessary to
keep track of exceptional conditions, while the operations
to substitute special values are still shown. Critically, the
diagram demonstrates that the operations around the core
lookup operations are all of low complexity. The graph is
explained in the following, where letter labels correspond
to the blue colored labels in Figure 2. This representation is

for variant (ii) or (iii) for the second lookup and includes a
dotted line on the centre-right of the figure at (a), delineating
a possible set of values to save at the end of the first lookup
where the part of the data flow below the line is computed in
the second lookup instruction.

Starting from the top of the graph, the input (b) is used to
generate two values (c) and (d), 2−𝑒/𝜇 and 𝑒+log

2
𝜇 in the case

of log
2
𝑥. The heart of the operation is two lookup operations

(e) and (f), with a common index. In implementation (i)
the lookups would be implemented separately, while in the
shared implementations (ii) and (iii), the lookups could be
implemented more efficiently together.

Partial decoding of subnormal inputs (g) is required for
all of the functions except the exponential functions. Only the
leading nonzero bits are needed for subnormal values, and
only the leading bits are needed for normal values, but the
number of leading zero bits (h) is required to properly form
the exponent for themultiplicative reduction.Theonly switch
(i) needed for the first lookup output switches between the
reciprocal exponents valid in the normal and subnormal
cases, respectively. Accurate range reduction for subnormal
requires both extreme end points, for example, 1/2 and 1,
because these values are exactly representable. As a result, two
exponent values are required, and we accommodate this by
storing an exponent bit (j) in addition to the 51 mantissa bits.

On the right hand side, the lookup (e) for the second
lookup operation also looks up a 4-bit rotation, which also
serves as a flag. We need 4 bits because the table size 212
implies that we may have a variation in the exponent of the
leading nonzero bit of up to 11 for nonzero table values. This
allows us to encode in 30 bits the floating mantissa used to
construct the second lookup output. This table will always
contain a 0 and is encoded as a 12 in the bitRot field. In
all other cases, the next operation concatenates the implied
1 for this floating-point format. This gives us an effective 31
bits of significance (l), which is then rotated into the correct
position in a 42-bit fixed point number. Only the high-order
bit overlaps the integer part of the answer generated from the
exponent bits, so this value needs to be padded. Because the
output is an IEEE float, the contribution of the (padded) value
to the mantissa of the output will depend on the sign of the
integer exponent part. This sign is computed by adding 1 (m)
to the biased exponent, in which case the high-order bit is 1
if and only if the exponent is positive. This bit (n) is used to
control the sign reversal of the integer part (o) and the sign of
the sign reversal of the fractional part, which is optimized by
padding (p) after xoring (q) but before the +1 (r) required to
negate a two’s-complement integer.

The integer part has now been computed for normal
inputs, but we need to switch (s) in the value for subnormal
inputs which we obtain by biasing the number of leading
zeros computed as part of the first step. The apparent 75-bit
add (t) is really only 11 bits with 10 of the bits coming from
padding on one side. This fixed-point number may contain
leading zeros, but the maximum number is log

2
((maximum

integer part) − (smallest nonzero table value)) = 22, for the
tested table size. As a result the normalization (u) only needs
to check for up to 22 leading zero bits, and if it detects
that number set a flag to substitute a zero for the exponent
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Table 1: Accuracy, throughput, and table size (for SPU/double precision).

Function Cycles/double
new

Cycles/double
SPU Speedup (%) Max error (ulps) Table size (𝑁) Poly order log

2
𝑀

recip 3 11.3 376 0.500 2048 3 ∞

div 3.5 14.9 425 1.333 recip 3
sqrt 3 15.4 513 0.500 4096 3 18
rsqrt 3 14.6 486 0.503 4096 3 ∞

cbrt 8.3 13.3 160 0.500 8192 3 18
rcbrt 10 16.1 161 0.501 rcbrt 3 ∞

qdrt 7.5 27.6 368 0.500 8192 3 18
rqdrt 8.3 19.6 229 0.501 rqdrt 3 18
log2 2.5 14.6 584 0.500 4096 3 18
log21p 3.5 n/a n/a 1.106 log2 3
log 3.5 13.8 394 1.184 log2 3
log1p 4.5 22.5 500 1.726 log2 3
exp2 4.5 13.0 288 1.791 256 4 18
exp2m1 5.5 n/a n/a 1.29 exp2 4
exp 5.0 14.4 288 1.55 exp2 4
expm1 5.5 19.5 354 1.80 exp2 4
atan2 7.5 23.4 311 0.955 4096 2 18
atan 7.5 18.5 246 0.955 atan2 2 + 3
asin 11 27.2 247 1.706 atan2 2 + 3 + 3
acos 11 27.1 246 0.790 atan2 2 + 3 + 3
sin 11 16.6 150 1.474 128 3 + 3 52
cos 10 15.3 153 1.025 sin 3 + 3
tan 24.5 27.6 113 2.051 sin 3 + 3 + 3

(v) (the mantissa is automatically zero). The final switches
substitute special values for ±∞ and a quiet NaN.

If the variants (ii) and (iii) are implemented, either the
hidden registers must be saved on context/core switches, or
such switches must be disabled during execution of these
instructions, or execution of these instructions must be
limited to one thread at a time.

3. Evaluation

Two types of simulations of these instructions were carried
out. First, to test accuracy, our existing Cell/B.E. functional
interpreter, see [13], was extended to include the new instruc-
tions. Second, we simulated the log lookups and fmaX using
logical operations on bits, that is, a hardware simulation
without timing, and verified that the results match the
interpreter.

Performance. Since the dependency graphs (as typified by
Figure 1) are close to linear and therefore easy to sched-
ule optimally, the throughput and latency of software-
pipelined loops will be essentially proportional to the num-
ber of floating-point instructions. Table 1 lists the expected
throughput for vector math functions with and without
the new instructions. Figure 3 demonstrated the relative
measured performance improvements. Overall, the addition

of hardware instructions to the SPU results in a mean 2.5×
throughput improvement for the whole function library.
Performance improvements on other architectures will vary
but would be similar, since the acceleration is primarily the
result of eliminating instructions for handling exceptional
cases.

Accuracy. We tested each of the functions by simulating
execution for 20000 pseudorandom inputs over their natural
ranges or [−1000𝜋, 1000𝜋] for trigonometric functions and
comparing each value to a 500-digit-precision Maple [14]
reference. Table 1 shows a maximum 2.051 ulp error, with
many functions close to correct rounding. This is well within
theOpenCL specifications [15] and shows very good accuracy
for functions designed primarily for high throughput and
small code size. For applications requiring even higher accu-
racy, larger tables could be used and polynomials with better
rounding properties could be searched for using the lattice-
basis-reduction method of [16].

4. Conclusion

We have demonstrated considerable performance improve-
ments for fixed power, exponential, and logarithm calcula-
tions by using novel table lookup and fused multiply-add
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Table 2: (a) Values returned by lookup instructions, for IEEE floating-point inputs (−1)𝑠2𝑒𝑓, which rounds to the nearest integer 𝐼 =
rnd((−1)𝑠2𝑒𝑓). In case of exp2, inputs <−1074 are treated as −∞ and inputs >1024 are treated as∞. For inputs <−1022, we create subnormal
numbers for the second lookup. (b, c) Treatment of exceptional values by fmaX follows from that of addition and multiplication. The first
argument is given by the row and the second by the column. Conventional treatment is indicated by a “𝑐” and unusual handling by specific
constant values.

(a)

Function Finite > 0 +∞ −∞ ±0 Finite < 0

recip (2
−𝑒

/𝑐)ext, (2
−𝑒

/𝑐)sat 0, 0 0, 0 0, ±∞ (−2
−𝑒

/𝑐)ext, (−2
−𝑒

/𝑐)sat

sqrt (2
−𝑒

/𝑐)ext, 2
𝑒/2

/𝑐 0,∞ 0, NaN 0, 0 0, NaN

rsqrt (2−𝑒/𝑐)ext, 2
−𝑒/2/𝑐 0, 0 0, NaN 0,∞ 0, NaN

log2 (2−𝑒/𝑐)ext, 𝑒 + log2𝑐 0,∞ 0, NaN 0, −∞ 0, NaN

exp2 𝑐, 2𝐼 ⋅ 2𝑐 0,∞ NaN, 0 0, 1 𝑐, 2−𝐼 ⋅ 2𝑐

(b)

+ext Finite −∞ ∞ NaN
Finite 𝑐 𝑐 𝑐 0

−∞ 𝑐 𝑐 0 0

∞ 𝑐 0 𝑐 0

NaN 𝑐 𝑐 𝑐 0

(c)

∗ext Finite −∞ ∞ NaN
Finite ̸= 0 𝑐 2 2 2
−∞ −∞

𝑓
−∞
𝑓

−∞
𝑓
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∞ ∞
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Figure 3: Throughput, measured in cycles per double, for imple-
mentations of elementary function with (upper bars) and without
(lower bars) the novel instructions proposed in this paper.

instructions in simple branch-free accurate-table-based algo-
rithms. Performance improved less for trigonometric func-
tions, but this improvement will grow with more cores
and/or wider SIMD. These calculations ignored the effect of
reduced power consumption caused by reducing instruction
dispatch and function calls and branching and reducing
memory accesses for large tables, which will mean that these
algorithms will continue to scale longer than conventional
ones.

For target applications, just three added opcodes pack a
lot of performance improvement, but designing the instruc-
tions required insights into the algorithms, and even a new
algorithm [7] for the calculation of these functions.We invite
experts in areas such as cryptography and data compression
to try a similar approach.
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Using notions of composita and composition of generating functions, we show an easy way to obtain explicit formulas for some
current polynomials. Particularly, we consider the Meixner polynomials of the first and second kinds.

1. Introduction

There are many authors who have studied polynomials and
their properties (see [1–10]). The polynomials are applied in
many areas ofmathematics, for instance, continued fractions,
operator theory, analytic functions, interpolation, approxi-
mation theory, numerical analysis, electrostatics, statistical
quantummechanics, special functions, number theory, com-
binatorics, stochastic processes, sorting, and data compres-
sion.

The research area of obtaining explicit formulas for
polynomials has received much attention from Srivastava
[11, 12], Cenkci [13], Boyadzhiev [14], and Kruchinin [15–17].

The main purpose of this paper is to obtain explicit
formulas for the Meixner polynomials of the first and second
kinds.

In this paper we use a method based on a notion of
composita, which was presented in [18].

Definition 1. Suppose 𝐹(𝑡) = ∑
𝑛>0

𝑓(𝑛)𝑡
𝑛 is the generating

function, in which there is no free term 𝑓(0) = 0. From this
generating function we can write the following condition:

[𝐹 (𝑡)]
𝑘

= ∑
𝑛>0

𝐹 (𝑛, 𝑘) 𝑡
𝑛

. (1)

The expression 𝐹(𝑛, 𝑘) is composita [19] and it is denoted
by 𝐹Δ(𝑛, 𝑘). Below we show some required rules and opera-
tions with compositae.

Theorem 2. Suppose 𝐹(𝑡) = ∑
𝑛>0

𝑓(𝑛)𝑡
𝑛 is the generating

function, and 𝐹Δ(𝑛, 𝑘) is composita of 𝐹(𝑡), and 𝛼 is constant.
For the generating function 𝐴(𝑡) = 𝛼𝐹(𝑡) composita is equal to

𝐴
Δ

(𝑛, 𝑘) = 𝛼
𝑘

𝐹
Δ

(𝑛, 𝑘) . (2)

Theorem 3. Suppose 𝐹(𝑡) = ∑
𝑛>0

𝑓(𝑛)𝑡𝑛 is the generating
function, and 𝐹Δ(𝑛, 𝑘) is composita of 𝐹(𝑡), and 𝛼 is constant.
For the generating function 𝐴(𝑡) = 𝐹(𝛼𝑡) composita is equal to

𝐴
Δ

(𝑛, 𝑘) = 𝛼
𝑛

𝐹
Δ

(𝑛, 𝑘) . (3)

Theorem 4. Suppose 𝐹(𝑡) = ∑
𝑛>0

𝑓(𝑛)𝑡𝑛, 𝑅(𝑡) = ∑
𝑛>0

𝑟(𝑛)𝑡𝑛

are generating functions, and 𝐹Δ(𝑛, 𝑘), 𝑅Δ(𝑛, 𝑘) are their
compositae. Then for the composition of generating functions
𝐴(𝑡) = 𝑅(𝐹(𝑡)) composita is equal to

𝐴
Δ

(𝑛, 𝑘) =

𝑛

∑
𝑚=𝑘

𝐹
Δ

(𝑛,𝑚)𝐺
Δ

(𝑚, 𝑘) . (4)

Theorem 5. Suppose 𝐹(𝑡) = ∑
𝑛>0

𝑓(𝑛)𝑡𝑛, 𝑅(𝑡) = ∑
𝑛⩾0

𝑟(𝑛)𝑡𝑛

are generating functions, and 𝐹Δ(𝑛, 𝑘) is composita of 𝐹(𝑡).
Then for the composition of generating functions 𝐴(𝑡) =

𝑅(𝐹(𝑡)) coefficients of generating functions 𝐴(𝑡) = ∑
𝑛≥0

𝑎(𝑛)𝑡𝑛

are

𝑎 (𝑛) =

𝑛

∑
𝑘=1

𝐹
Δ

(𝑛, 𝑘) 𝑟 (𝑘) ,

𝑎 (0) = 𝑟 (0) .

(5)
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Theorem 6. Suppose 𝐹(𝑡) = ∑
𝑛>0

𝑓(𝑛)𝑡𝑛, 𝑅(𝑡) = ∑
𝑛⩾0

𝑟(𝑛)𝑡𝑛

are generating functions. Then for the product of generating
functions 𝐴(𝑡) = 𝐹(𝑡)𝑅(𝑡) coefficients of generating functions
𝐴(𝑡) = ∑

𝑛≥0
𝑎(𝑛)𝑡𝑛 are

𝑎 (𝑛) =

𝑛

∑
𝑘=0

𝑓 (𝑘) 𝑟 (𝑛 − 𝑘) . (6)

In this paper we consider an application of this math-
ematical tool for the Bessel polynomials and the Meixner
polynomials of the first and second kinds.

2. Bessel Polynomials

Krall and Frink [20] considered a new class of polynomials.
Since the polynomials connected with the Bessel function,
they called them the Bessel polynomials.The explicit formula
for the Bessel polynomials is

𝑦
𝑛
(𝑥) =

𝑛

∑
𝑘=0

(𝑛 + 𝑘)!

(𝑛 − 𝑘)!𝑘!
(
𝑥

2
)
𝑘

. (7)

ThenCarlitz [21] defined a class of polynomials associated
with the Bessel polynomials by

𝑝
𝑛
(𝑥) = 𝑥

𝑛

𝑦
𝑛−1

(
1

𝑥
) . (8)

The 𝑝
𝑛
(𝑥) is defined by the explicit formula [22]

𝑝
𝑛
(𝑥) =

𝑛

∑
𝑘=1

(2𝑛 − 𝑘 − 1)!

(𝑘 − 1)! (𝑛 − 𝑘)!
(
1

2
)
𝑛−𝑘

𝑥
𝑘 (9)

and by the following generating function:
∞

∑
𝑛=0

𝑝
𝑛
(𝑥)

𝑛!
𝑡
𝑛

= 𝑒
𝑥(1−√1−2𝑡)

. (10)

Using the notion of composita, we can obtain an explicit
formula (9) from the generating function (10).

For the generating function 𝐶(𝑡) = (1 − √1 − 4𝑡)/2

composita is given as follows (see [19]):

𝐶
Δ

(𝑛, 𝑘) =
𝑘

𝑛
(
2𝑛 − 𝑘 − 1

𝑛 − 1
) . (11)

We represent 𝑒𝑥(1−√1−2𝑡) as the composition of generating
functions 𝐴(𝐵(𝑡)), where

𝐴 (𝑡) = 𝑥 (1 − √1 − 2𝑡) = 2𝑥𝐶(
𝑡

2
) ,

𝐵 (𝑡) = 𝑒
𝑡

=

∞

∑
𝑛=0

1

𝑛!
𝑡
𝑛

.

(12)

Then, using rules (2) and (3), we obtain composita of𝐴(𝑡):

𝐴
Δ

(𝑛, 𝑘) = (2𝑥)
𝑘

(
1

2
)
𝑛

𝐶
Δ

(𝑛, 𝑘) = 2
𝑘−𝑛

𝑥
𝑘
𝑘

𝑛
(
2𝑛 − 𝑘 − 1

𝑛 − 1
) .

(13)

Coefficients of the generating function𝐵(𝑡) = ∑
∞

𝑛=0
𝑏(𝑛)𝑡𝑛

are equal to

𝑏 (𝑛) =
1

𝑛!
. (14)

Then, using (5), we obtain the explicit formula

𝑝
𝑛
(𝑥) = 𝑛!

𝑛

∑
𝑘=1

𝐴
Δ

(𝑛, 𝑘) 𝑏 (𝑘) =

𝑛

∑
𝑘=1

(2𝑛 − 𝑘 − 1)!

(𝑘 − 1)! (𝑛 − 𝑘)!
2
𝑘−𝑛

𝑥
𝑘

,

(15)

which coincides with the explicit formula (9).

3. Meixner Polynomials of the First Kind

TheMeixner polynomials of the first kind are defined by the
following recurrence relation [23, 24]:

𝑚
𝑛+1

(𝑥; 𝛽, 𝑐) =
(𝑐 − 1)

𝑛

𝑐𝑛

⋅ ((𝑥 − 𝑏
𝑛
)𝑚
𝑛
(𝑥; 𝛽, 𝑐) − 𝜆

𝑛
𝑚
𝑛−1

(𝑥; 𝛽, 𝑐)) ,

(16)

where

𝑚
0
(𝑥; 𝛽, 𝑐) = 1,

𝑚
1
(𝑥; 𝛽, 𝑐) = 𝑥 − 𝑏

0
,

𝑏
𝑛
=

(1 + 𝑐) 𝑛 + 𝛽𝑐

1 − 𝑐
,

𝜆
𝑛
=

𝑐𝑛 (𝑛 + 𝛽 − 1)

(1 − 𝑐)
2

.

(17)

Using (16), we obtain the first few Meixner polynomials
of the first kind:

𝑚
0
(𝑥; 𝛽, 𝑐) = 1;

𝑚
1
(𝑥; 𝛽, 𝑐) =

𝑥 (𝑐 − 1) + 𝛽𝑐

𝑐
;

𝑚
2
(𝑥; 𝛽, 𝑐)

=
𝑥2 (𝑐 − 1)

2

+ 𝑥 ((2𝛽 + 1) 𝑐2 − 2𝛽𝑐 − 1) + (𝛽 + 1) 𝛽𝑐2

𝑐2
.

(18)

The Meixner polynomials of the first kind are defined by
the following generating function [22]:

∞

∑
𝑛=0

𝑚
𝑛
(𝑥; 𝛽, 𝑐)

𝑛!
𝑡
𝑛

= (1 −
𝑡

𝑐
)
𝑥

(1 − 𝑡)
−𝑥−𝛽

. (19)

Using the notion of composita, we can obtain an explicit
formula𝑚

𝑛
(𝑥; 𝛽, 𝑐) from the generating function (19).
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First, we represent the generating function (19) as a prod-
uct of generating functions 𝐴(𝑡) 𝐵(𝑡), where the functions
𝐴(𝑡) and 𝐵(𝑡) are expanded by binomial theorem:

𝐴 (𝑡) = (1 −
𝑡

𝑐
)
𝑥

=

∞

∑
𝑛=0

(
𝑥

𝑛
) (−1)

𝑛

𝑐
−𝑛

𝑡
𝑛

,

𝐵 (𝑡) = (1 − 𝑡)
−𝑥−𝛽

=

∞

∑
𝑛=0

(
−𝑥 − 𝛽

𝑛
) (−1)

𝑛

𝑡
𝑛

.

(20)

Coefficients of the generating functions 𝐴(𝑡) =

∑
∞

𝑛=0
𝑎(𝑛)𝑡𝑛 and 𝐵(𝑡) = ∑

∞

𝑛=0
𝑏(𝑛)𝑡𝑛 are, respectively, given as

follows:

𝑎 (𝑛) = (
𝑥

𝑛
) (−1)

𝑛

𝑐
−𝑛

,

𝑏 (𝑛) = (
−𝑥 − 𝛽

𝑛
) (−1)

𝑛

.

(21)

Then, using (6), we obtain a new explicit formula for the
Meixner polynomials of the first kind:

𝑚
𝑛
(𝑥; 𝛽, 𝑐) = 𝑛!

𝑛

∑
𝑘=0

𝑎 (𝑘) 𝑏 (𝑛 − 𝑘)

= (−1)
𝑛

𝑛!

𝑛

∑
𝑘=0

(
𝑥

𝑘
)(

−𝑥 − 𝛽

𝑛 − 𝑘
) 𝑐
−𝑘

.

(22)

4. Meixner Polynomials of the Second Kind

The Meixner polynomials of the second kind are defined by
the following recurrence relation [23, 24]:

𝑀
𝑛+1

(𝑥; 𝛿, 𝜂) = (𝑥 − 𝑏
𝑛
)𝑀
𝑛
(𝑥; 𝛿, 𝜂) − 𝜆

𝑛
𝑀
𝑛−1

(𝑥; 𝛿, 𝜂) ,

(23)

where
𝑀
0
(𝑥; 𝛿, 𝜂) = 1,

𝑀
1
(𝑥; 𝛿, 𝜂) = 𝑥 − 𝑏

0
,

𝑏
𝑛
= (2𝑛 + 𝜂) 𝛿,

𝜆
𝑛
= (𝛿
2

+ 1) 𝑛 (𝑛 + 𝜂 − 1) .

(24)

Using (23), we get the first few Meixner polynomials of
the second kind:

𝑀
0
(𝑥; 𝛿, 𝜂) = 1;

𝑀
1
(𝑥; 𝛿, 𝜂) = 𝑥 − 𝛿𝜂;

𝑀
2
(𝑥; 𝛿, 𝜂) = 𝑥

2

− 𝑥2𝛿 (1 + 𝜂) + 𝜂 ((𝜂 + 1) 𝛿
2

− 1) .

(25)

The Meixner polynomials of the second kind are defined
by the following generating function [22]:

∞

∑
𝑛=0

𝑀
𝑛
(𝑥; 𝛿, 𝜂)

𝑛!
𝑡
𝑛

= ((1 + 𝛿𝑡)
2

+ 𝑡
2

)
−𝜂/2

⋅ exp(𝑥tan−1 ( 𝑡

1 + 𝛿𝑡
)) .

(26)

Using the notion of composita, we can obtain an explicit
formula𝑀

𝑛
(𝑥; 𝛿, 𝜂) from the generating function (26).

We represent the generating function (26) as a product of
generating functions 𝐴(𝑡) 𝐵(𝑡), where

𝐴 (𝑡) = ((1 + 𝛿𝑡)
2

+ 𝑡
2

)
−𝜂/2

= (1 + 2𝛿𝑡 + (𝛿
2

+ 1) 𝑡
2

)
−𝜂/2

,

𝐵 (𝑡) = exp (𝑥tan−1 ( 𝑡

1 + 𝛿𝑡
)) .

(27)

Next we represent 𝐴(𝑡) as a composition of generating
functions 𝐴

1
(𝐴
2
(𝑡)) and we expand 𝐴

1
(𝑡) by binomial

theorem:

𝐴
1
(𝑡) = (1 + 𝑡)

−𝜂/2

=

∞

∑
𝑛=0

(
−
𝜂

2
𝑛

) 𝑡
𝑛

,

𝐴
2
(𝑡) = 2𝛿𝑡 + (𝛿

2

+ 1) 𝑡
2

.

(28)

Coefficients of generating function 𝐴
1
(𝑡) = ∑

∞

𝑛=0
𝑎
1
(𝑛)𝑡𝑛

are

𝑎
1
(𝑛) = (

−
𝜂

2
𝑛

) . (29)

The composita for the generating function 𝑎𝑥 + 𝑏𝑥2 is
given as follows (see [15]):

𝑎
2𝑘−𝑛

𝑏
𝑛−𝑘

(
𝑘

𝑛 − 𝑘
) . (30)

Then composita of the generating function 𝐴
2
(𝑡) equals

𝐴
Δ

2
(𝑛, 𝑘) = (2𝛿)

2𝑘−𝑛

(𝛿
2

+ 1)
𝑛−𝑘

(
𝑘

𝑛 − 𝑘
) . (31)

Using (5), we obtain coefficients of the generating func-
tion 𝐴(𝑡) = ∑

∞

𝑛=0
𝑎(𝑛)𝑡𝑛:

𝑎 (0) = 𝑎
1
(0) ,

𝑎 (𝑛) =

𝑛

∑
𝑘=1

𝐴
Δ

2
(𝑛, 𝑘) 𝑎

1
(𝑘) .

(32)

Therefore, we get the following expression:

𝑎 (0) = 1,

𝑎 (𝑛) =

𝑛

∑
𝑘=1

(2𝛿)
2𝑘−𝑛

(𝛿
2

+ 1)
𝑛−𝑘

(
𝑘

𝑛 − 𝑘
)(

−
𝜂

2
𝑘

) .
(33)

Next we represent 𝐵(𝑡) as a composition of generating
functions 𝐵

1
(𝐵
2
(𝑡)), where

𝐵
1
(𝑡) = 𝑒

𝑡

=

∞

∑
𝑛=0

1

𝑛!
𝑡
𝑛

,

𝐵
2
(𝑡) = 𝑥tan−1 ( 𝑡

1 + 𝛿𝑡
) .

(34)
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We also represent 𝐵
2
(𝑡) as a composition of generating

functions 𝑥𝐶
1
(𝐶
2
(𝑡)), where

𝐶
1
(𝑡) = tan−1 (𝑡) ,

𝐶
2
(𝑡) =

𝑡

1 + 𝛿𝑡
.

(35)

The composita for the generating function tan−1(𝑡) is
given as follows (see [19]):

((−1)
(3𝑛+𝑘)/2

+ (−1)
(𝑛−𝑘)/2

)
𝑘!

2𝑘+1

𝑛

∑
𝑗=𝑘

2𝑗

𝑗!
(
𝑛 − 1

𝑗 − 1
)[

𝑗

𝑘
] , (36)

where [
𝑗

𝑘
] is the Stirling number of the first kind.

Then composita of generating function 𝐶
1
(𝑡) equals

𝐶
Δ

1
(𝑛, 𝑘) = ((−1)

(3𝑛+𝑘)/2

+ (−1)
(𝑛−𝑘)/2

)
𝑘!

2𝑘+1

⋅

𝑛

∑
𝑗=𝑘

2𝑗

𝑗!
(
𝑛 − 1

𝑗 − 1
)[

𝑗

𝑘
] .

(37)

The composita for the generating function 𝑎𝑡/(1 − 𝑏𝑡) is
given as follows (see [19]):

(
𝑛 − 1

𝑘 − 1
) 𝑎
𝑘

𝑏
𝑛−𝑘

. (38)

Therefore, composita of generating function𝐶
2
(𝑡) is equal

to

𝐶
Δ

2
(𝑛, 𝑘) = (

𝑛 − 1

𝑘 − 1
) (−𝛿)

𝑛−𝑘

. (39)

Using rules (4) and (2), we obtain composita of generating
function 𝐵

2
(𝑡):

𝐵
Δ

2
(𝑛, 𝑘) = 𝑥

𝑘

𝑛

∑
𝑚=𝑘

𝐶
Δ

2
(𝑛,𝑚) 𝐶

Δ

1
(𝑚, 𝑘) . (40)

Coefficients of generating function 𝐵
1
(𝑡) = ∑

∞

𝑛=0
𝑏
1
(𝑛)𝑡𝑛

are defined by

𝑏
1
(𝑛) =

1

𝑛!
. (41)

Then, using rule (5), we obtain coefficients of generating
function 𝐵(𝑡) = ∑

∞

𝑛=0
𝑏(𝑛)𝑡𝑛:

𝑏 (0) = 𝑏
1
(0) ,

𝑏 (𝑛) =

𝑛

∑
𝑘=1

𝐵
Δ

2
(𝑛, 𝑘) 𝑏

1
(𝑘) .

(42)

After some transformations, we obtain the following
expression:

𝑏 (0) = 1,

𝑏 (𝑛) =

𝑛

∑
𝑘=1

𝑥𝑘

𝑛

𝑛

∑
𝑚=𝑘

(
𝑛

𝑚
)𝛿
𝑛−𝑚

(
1 + (−1)

𝑚+𝑘

(−1)
(𝑚+𝑘)/2−𝑛

)

⋅

𝑚

∑
𝑗=𝑘

2𝑗−𝑘−1

(𝑗 − 1)!
(
𝑚

𝑗
)[

𝑗

𝑘
] .

(43)

Therefore, using (6), we obtain a new explicit formula for
the Meixner polynomials of the second kind:

𝑀
𝑛
(𝑥; 𝛿, 𝜂) = 𝑛!

𝑛

∑
𝑘=0

𝑎 (𝑘) 𝑏 (𝑛 − 𝑘) . (44)
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Applying the Faber polynomial coefficient expansions to certain classes of meromorphic bistarlike functions, we demonstrate the
unpredictability of their early coefficients and also obtain general coefficient estimates for such functions subject to a given gap
series condition. Our results improve some of the coefficient bounds published earlier.

Let Σ be the family of functions 𝑔 of the form

𝑔 (𝑧) =
1

𝑧
+ 𝑏
0
+

∞

∑
𝑛=1

𝑏
𝑛
𝑧
𝑛 (1)

that are univalent in the punctured unit disk D := {𝑧 : 0 <

|𝑧| < 1}.
For the real constants 𝐴 and 𝐵 (0 ≤ 𝐵 ≤ 1; −𝐵 ≤ 𝐴 < 𝐵),

let Σ(𝐴, 𝐵) consist of functions 𝑔 ∈ Σ so that

𝑧𝑔
󸀠

(𝑧)

𝑔 (𝑧)
= −

1 + 𝐴𝜑 (𝑧)

1 + 𝐵𝜑 (𝑧)
, (2)

where 𝜑(𝑧) = ∑
∞

𝑛=1
𝑐
𝑛
𝑧𝑛 is a Schwarz function; that is, 𝜑(𝑧) is

analytic in the open unit disk |𝑧| < 1 and |𝜑(𝑧)| ≤ |𝑧| < 1.
Note that |𝑐

𝑛
| ≤ 1 (Duren [1]) and the functions in Σ(𝐴, 𝐵)

are meromorphic starlike in the punctured unit disk D (e.g.,
see Clunie [2] and Karunakaran [3]). It has been proved by
Libera and Livingston [4] and Karunakaran [3] that |𝑏

𝑛
| ≤

(𝐵 − 𝐴)/(𝑛 + 1) for 𝑔 ∈ Σ[𝐴, 𝐵].

The coefficients of ℎ = 𝑔
−1, the inverse map of 𝑔, are

given by the Faber polynomial expansion (e.g., see Airault
and Bouali [5] or Airault and Ren [6, page 349])

ℎ (𝑤) = 𝑔
−1

(𝑤) =
1

𝑤
+

∞

∑
𝑛=0

𝐵
𝑛
𝑤
𝑛

=
1

𝑤
− 𝑏
0
− ∑
𝑛≥1

1

𝑛
𝐾
𝑛

𝑛+1
(𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑛
) 𝑤
𝑛

,

(3)

where 𝑤 ∈ D,

𝐾
𝑛

𝑛+1
(𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑛
)

= 𝑛𝑏
𝑛−1

0
𝑏
1
+ 𝑛 (𝑛 − 1) 𝑏

𝑛−2

0
𝑏
2

+
1

2
𝑛 (𝑛 − 1) (𝑛 − 2) 𝑏

𝑛−3

0
(𝑏
3
+ 𝑏
2

1
)

+
𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3)

3!
𝑏
𝑛−4

0
(𝑏
4
+ 3𝑏
1
𝑏
2
)

+ ∑
𝑗≥5

𝑏
𝑛−𝑗

0
𝑉
𝑗
,

(4)

and 𝑉
𝑗
is a homogeneous polynomial of degree 𝑗 in the

variables 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
.
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In 1923, Löwner [7] proved that the inverse of the Koebe
function 𝑘(𝑧) = 𝑧/(1−𝑧)

2 provides the best upper bounds for
the coefficients of the inverses of analytic univalent functions.
Although the estimates for the coefficients of the inverses
of analytic univalent functions have been obtained in a
surprisingly straightforward way (e.g., see [8, page 104]),
the case turns out to be a challenge when the biunivalency
condition is imposed on these functions. A function is said
to be biunivalent in a given domain if both the function
and its inverse are univalent there. By the same token, a
function is said to be bistarlike in a given domain if both the
function and its inverse are starlike there. Finding bounds
for the coefficients of classes of biunivalent functions dates
back to 1967 (see Lewin [9]). The interest on the bounds
for the coefficients of subclasses of biunivalent functions
picked up by the publications [10–14] where the estimates
for the first two coefficients of certain classes of biunivalent
functions were provided. Not much is known about the
higher coefficients of the subclasses biunivalent functions as
Ali et al. [13] also declared that finding the bounds for |𝑎

𝑛
|,

𝑛 ≥ 4, is an open problem. In this paper, we use the Faber
polynomial expansions of the functions 𝑔 and ℎ = 𝑔

−1 in
Σ(𝐴, 𝐵) to obtain bounds for their general coefficients |𝑎

𝑛
| and

provide estimates for the early coefficients of these types of
functions.

We will need the following well-known two lemmas, the
first of which can be found in [15] (also see Duren [1]).

Lemma 1. Let 𝑝(𝑧) = 1 + ∑
∞

𝑛=1
𝑝
𝑛
𝑧𝑛 be so that 𝑅𝑒(𝑝(𝑧)) > 0

for |𝑧| < 1. If 𝛼 ≥ −1/2, then

󵄨󵄨󵄨󵄨󵄨
𝑝
2
+ 𝛼𝑝
2

1

󵄨󵄨󵄨󵄨󵄨
≤ 2 + 𝛼

󵄨󵄨󵄨󵄨𝑝1
󵄨󵄨󵄨󵄨
2

. (5)

Consequently, we have the following lemma, in which we
will provide a short proof for the sake of completeness.

Lemma 2. Consider the Schwarz function 𝜑(𝑧) = ∑
∞

𝑛=1
𝑐
𝑛
𝑧𝑛,

where |𝜑(𝑧)| < 1 for |𝑧| < 1. If 𝛾 ≥ 0, then

󵄨󵄨󵄨󵄨󵄨
𝑐
2
+ 𝛾𝑐
2

1

󵄨󵄨󵄨󵄨󵄨
≤ 1 + (𝛾 − 1)

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨
2

. (6)

Proof. Write

𝑝 (𝑧) =
[1 + 𝜑 (𝑧)]

[1 − 𝜑 (𝑧)]
, (7)

where 𝑝(𝑧) = 1+∑
∞

𝑛=1
𝑝
𝑛
𝑧𝑛 is so that Re(𝑝(𝑧)) > 0 for |𝑧| < 1.

Comparing the corresponding coefficients of powers of 𝑧 in
𝑝(𝑧) = [1 + 𝜑(𝑧)]/[1 − 𝜑(𝑧)] shows that 𝑝

1
= 2𝑐
1
and 𝑝

2
=

2(𝑐
2
+ 𝑐2
1
).

By substituting for 𝑝
1
= 2𝑐
1
and 𝑝

2
= 2(𝑐
2
+ 𝑐2
1
) in (5), we

obtain
󵄨󵄨󵄨󵄨󵄨
2 (𝑐
2
+ 𝑐
2

1
) + 𝛼 (2𝑐

1
)
2󵄨󵄨󵄨󵄨󵄨
≤ 2 + 𝛼

󵄨󵄨󵄨󵄨2𝑐1
󵄨󵄨󵄨󵄨
2 (8)

or
󵄨󵄨󵄨󵄨󵄨
𝑐
2
+ (1 + 2𝛼) 𝑐

2

1

󵄨󵄨󵄨󵄨󵄨
≤ 1 + 2𝛼

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨
2

. (9)

Now, (6) follows upon substitution of 𝛾 = 1 + 2𝛼 ≥ 0 in the
above inequality.

In the following theorem, we will observe the unpre-
dictability of the early coefficients of the functions 𝑔 and its
inverse map ℎ = 𝑔−1 in Σ[𝐴, 𝐵], providing an estimate for the
general coefficients of such functions.

Theorem 3. For 0 ≤ 𝐵 ≤ 1 and −𝐵 ≤ 𝐴 < 𝐵, let the function
𝑔 and its inverse map ℎ = 𝑔−1 be in Σ[𝐴, 𝐵]. Then,

(𝑖)
󵄨󵄨󵄨󵄨𝑏0

󵄨󵄨󵄨󵄨 ≤
{

{

{

𝐵 − 𝐴

√2𝐵 − 𝐴
, 𝑖𝑓 2𝐵 − 𝐴 ≥ 1;

𝐵 − 𝐴, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(𝑖𝑖)
󵄨󵄨󵄨󵄨𝑏1

󵄨󵄨󵄨󵄨

≤

{{

{{

{

𝐵 − 𝐴

2
−
1 − 𝐴 − 2𝐵

2 (𝐵 − 𝐴)
|𝑏
0
|
2

, 𝑖𝑓 0 ≤ 𝐴 ≤ 1 − 2𝐵;

𝐵 − 𝐴

2
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(𝑖𝑖𝑖)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
1
±

2𝐵 − 𝐴

2 (𝐵 − 𝐴)
𝑏
2

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
𝐵 − 𝐴

2
,

(𝑖V) 󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

𝐵 − 𝐴

𝑛 + 1
; 𝑖𝑓 𝑏

𝑘
= 0 𝑓𝑜𝑟 0 ≤ 𝑘 ≤ 𝑛 − 1.

(10)

Proof. Consider the function 𝑔 ∈ Σ given by (1). Therefore
(see [5, 6])

𝑧𝑔󸀠 (𝑧)

𝑔 (𝑧)
= −1 −

∞

∑
𝑛=0

𝐹
𝑛+1

(𝑏
0
, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) 𝑧
𝑛+1

, (11)

where 𝐹
𝑛+1

(𝑏
0
, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) is a Faber polynomial of degree

𝑛 + 1. We note that 𝐹
1
= −𝑏
0
, 𝐹
2
= 𝑏2
0
− 2𝑏
1
, 𝐹
3
= −𝑏3
0
+

3𝑏
1
𝑏
0
− 3𝑏
2
, 𝐹
4
= 𝑏4
0
− 4𝑏2
0
𝑏
1
+ 4𝑏
0
𝑏
2
+ 2𝑏2
1
− 4𝑏
3
, and 𝐹

5
=

−𝑏5
0
+ 5𝑏3
0
𝑏
1
− 5𝑏2
0
𝑏
2
− 5𝑏
0
𝑏2
1
+ 5𝑏
1
𝑏
2
+ 5𝑏
0
𝑏
3
− 5𝑏
4
. In general

(Bouali [16, page 52]),

𝐹
𝑛+1

(𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑛
)

= ∑
𝑖
1
+2𝑖
2
+⋅⋅⋅+(𝑛+1)𝑖

𝑛+1
=𝑛+1

𝐴 (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛+1
) 𝑏
𝑖
1

0
𝑏
𝑖
2

1
⋅ ⋅ ⋅ 𝑏
𝑖
𝑛+1

𝑛
,

(12)

where

𝐴 (𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛+1
)

:= (−1)
(𝑛+1)+2𝑖

1
+⋅⋅⋅+(𝑛+2)𝑖

𝑛+1

(𝑖
1
+ 𝑖
2
+ ⋅ ⋅ ⋅ + 𝑖

𝑛+1
− 1)! (𝑛 + 1)

(𝑖
1
!) (𝑖
2
!) ⋅ ⋅ ⋅ (𝑖

𝑛+1
!)

.

(13)
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Similarly, for the inverse map ℎ = 𝑔−1, we have

𝑤ℎ󸀠 (𝑤)

ℎ (𝑤)
= −1 −

∞

∑
𝑛=1

𝐹
𝑛+1

(𝐵
0
, 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
) 𝑤
𝑛+1

, (14)

where𝐹
𝑛+1

(𝐵
0
, 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
) is a Faber polynomial of degree

𝑛 + 1 given by

𝐹
𝑛+1

= −
𝑛 (𝑛 − (𝑛 + 1))!

𝑛! (𝑛 − 2𝑛)!
𝐵
𝑛

0

−
𝑛 (𝑛 − (𝑛 + 1))!

(𝑛 − 2)! (𝑛 − (2𝑛 − 1))!
𝐵
𝑛−2

0
𝐵
1

−
𝑛 (𝑛 − (𝑛 + 1))!

(𝑛 − 3)! (𝑛 − (2𝑛 − 2))!
𝐵
𝑛−3

0
𝐵
2

−
𝑛 (𝑛 − (𝑛 + 1))!

(𝑛 − 4)! (𝑛 − (2𝑛 − 3))!
𝐵
𝑛−4

0

⋅ (𝐵
3
+
𝑛 − (2𝑛 − 3)

2
𝐵
2

1
) − ∑
𝑗≥5

𝐵
𝑛−𝑗

0
𝐾
𝑗
,

(15)

where 𝐾
𝑗
is a homogeneous polynomial of degree 𝑗 in the

variables 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛−1
and

𝐵
0
= −𝑏
0
, 𝐵

𝑛
= −

1

𝑛
𝐾
𝑛

𝑛+1
(𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑛
) . (16)

Since both 𝑔 and its inverse map ℎ = 𝑔−1 are in Σ[𝐴, 𝐵], the
Faber polynomial expansion yields (also see Duren [1, pages
118-119])

𝑧𝑔
󸀠

(𝑧)

𝑔 (𝑧)
= −

1 + 𝐴𝜑 (𝑧)

1 + 𝐵𝜑 (𝑧)

= −1 +

∞

∑
𝑛=1

(𝐴 − 𝐵)𝐾
−1

𝑛
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
, 𝐵) 𝑧
𝑛

,

(17)

𝑤ℎ󸀠 (𝑤)

ℎ (𝑤)
= −

1 + 𝐴𝜓 (𝑤)

1 + 𝐵𝜓 (𝑤)

= −1 +

∞

∑
𝑛=1

(𝐴 − 𝐵)𝐾
−1

𝑛
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛
, 𝐵) 𝑤

𝑛

,

(18)

where 𝜑(𝑧) = ∑
∞

𝑛=1
𝑐
𝑛
𝑧𝑛 and 𝜓(𝑤) = ∑

∞

𝑛=1
𝑑
𝑛
𝑤𝑛 are two

Schwarz functions; that is, |𝜑(𝑧)| < 1 for |𝑧| < 1 and |𝜓(𝑤)| <
1 for |𝑤| < 1.

In general (see Airault [17] or Airault and Bouali [5]), the
coefficients 𝐾𝑝

𝑛
(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
, 𝐵) are given by

𝐾
𝑝

𝑛
(𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
, 𝐵)

=
𝑝!

(𝑝 − 𝑛)!𝑛!
𝑘
𝑛

1
𝐵
𝑛−1

+
𝑝!

(𝑝 − 𝑛 + 1)! (𝑛 − 2)!
𝑘
𝑛−2

1
𝑘
2
𝐵
𝑛−2

+
𝑝!

(𝑝 − 𝑛 + 2)! (𝑛 − 3)!
𝑘
𝑛−3

1
𝑘
3
𝐵
𝑛−3

+
𝑝!

(𝑝 − 𝑛 + 3)! (𝑛 − 4)!
𝑘
𝑛−4

1

⋅ [𝑘
4
𝐵
𝑛−4

+
𝑝 − 𝑛 + 3

2
𝑘
2

2
𝐵]

+
𝑝!

(𝑝 − 𝑛 + 4)! (𝑛 − 5)!
𝑘
𝑛−5

1

⋅ [𝑘
5
𝐵
𝑛−5

+ (𝑝 − 𝑛 + 4) 𝑘
2
𝑘
3
𝐵]

+ ∑
𝑗≥6

𝑘
𝑛−𝑗

1
𝑋
𝑗
,

(19)

where 𝑋
𝑗
is a homogeneous polynomial of degree 𝑗 in the

variables 𝑘
2
, 𝑘
3
, . . . , 𝑘

𝑛
.

Comparing the corresponding coefficients of (11) and (17)
implies

−𝐹
𝑛+1

(𝑏
0
, 𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
) = (𝐴 − 𝐵)𝐾

−1

𝑛+1
(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛+1
, 𝐵) .

(20)

Similarly, comparing the corresponding coefficients of
(14) and (18) gives

− 𝐹
𝑛+1

(𝐵
0
, 𝐵
1
, 𝐵
2
, . . . , 𝐵

𝑛
)

= (𝐴 − 𝐵)𝐾
−1

𝑛+1
(𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑛+1
, 𝐵) .

(21)

Substituting 𝑛 = 0, 𝑛 = 1, and 𝑛 = 2 in (16), (20), and (21),
respectively, yields

𝑏
0
= (𝐴 − 𝐵) 𝑐

1
,

−𝑏
0
= (𝐴 − 𝐵) 𝑑

1
,

(22)

2𝑏
1
− 𝑏
2

0
= (𝐵 − 𝐴) (𝑐

2

1
𝐵 − 𝑐
2
) ,

2𝑏
1
+ 𝑏
2

0
= (𝐴 − 𝐵) (𝑑

2

1
𝐵 − 𝑑
2
) .

(23)

Taking the absolute values of either equation in (22), we
obtain |𝑏

0
| ≤ 𝐵 − 𝐴. Obviously, from (22), we note that

𝑐
1
= −𝑑
1
. Solving the equations in (23) for 𝑏2

0
and then adding

them gives

2𝑏
2

0
= (𝐵 − 𝐴) (𝑐

2
+ 𝑑
2
− 𝐵𝑐
2

1
− 𝐵𝑑
2

1
) . (24)
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Now, in light of (22), we conclude that

2𝑏
2

0
= (𝐵 − 𝐴) (𝑐

2
+ 𝑑
2
−

2𝐵

(𝐵 − 𝐴)
2
𝑏
2

0
) . (25)

Once again, solving for 𝑏2
0
and taking the square root of both

sides, we obtain

󵄨󵄨󵄨󵄨𝑏0
󵄨󵄨󵄨󵄨 ≤

√
(𝐵 − 𝐴)

2

(𝑐
2
+ 𝑑
2
)

2 (2𝐵 − 𝐴)
≤

𝐵 − 𝐴

√2𝐵 − 𝐴
. (26)

Now, the first part of Theorem 3 follows since for 2𝐵 − 𝐴 > 1

it is easy to see that

𝐵 − 𝐴

√2𝐵 − 𝐴
< 𝐵 − 𝐴. (27)

Adding the equations in (23) and using the fact that 𝑐
1
= −𝑑
1
,

we obtain

4𝑏
1
= (𝐵 − 𝐴) [(𝑑

2
− 𝑐
2
) − (𝑑

2

1
− 𝑐
2

1
) 𝐵] = (𝐵 − 𝐴) (𝑑

2
− 𝑐
2
) .

(28)

Dividing by 4 and taking the absolute values of both sides
yield

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 ≤

𝐵 − 𝐴

2
. (29)

On the other hand, from the second equations in (22) and
(23), we obtain

2𝑏
1
= (𝐵 − 𝐴) (𝑑

2
+ 𝐴𝑑
2

1
− 2𝐵𝑑

2

1
) . (30)

Taking the absolute values of both sides and applying
Lemma 2, it follows that

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 ≤

1

2
(𝐵 − 𝐴) (

󵄨󵄨󵄨󵄨󵄨
𝑑
2
+ 𝐴𝑑
2

1

󵄨󵄨󵄨󵄨󵄨
+ 2𝐵

󵄨󵄨󵄨󵄨𝑑1
󵄨󵄨󵄨󵄨
2

)

≤
1

2
(𝐵 − 𝐴) (1 + (𝐴 − 1)

󵄨󵄨󵄨󵄨𝑑1
󵄨󵄨󵄨󵄨
2

+ 2𝐵
󵄨󵄨󵄨󵄨𝑑1

󵄨󵄨󵄨󵄨
2

)

=
𝐵 − 𝐴

2
−
1 − 𝐴 − 2𝐵

2 (𝐵 − 𝐴)

󵄨󵄨󵄨󵄨𝑏0
󵄨󵄨󵄨󵄨
2

.

(31)

This concludes the second part of Theorem 3 since for 0 <

𝐴 < 1 − 2𝐵 we have
𝐵 − 𝐴

2
−
1 − 𝐴 − 2𝐵

2 (𝐵 − 𝐴)

󵄨󵄨󵄨󵄨𝑏0
󵄨󵄨󵄨󵄨
2

<
𝐵 − 𝐴

2
. (32)

Substituting (22) in (23), we obtain

2𝑏
1
− 𝑏
2

0
= (𝐵 − 𝐴) (

𝐵

(𝐵 − 𝐴)
2
𝑏
2

0
− 𝑐
2
) ,

2𝑏
1
+ 𝑏
2

0
= (𝐴 − 𝐵) (

𝐵

(𝐴 − 𝐵)
2
𝑏
2

0
− 𝑑
2
) .

(33)

Following a simple algebraic manipulation, we obtain the
coefficient body

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑏
1
±

2𝐵 − 𝐴

2 (𝐵 − 𝐴)
𝑏
2

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
𝐵 − 𝐴

2
. (34)

Finally, for 𝑏
𝑘
= 0, 0 ≤ 𝑘 ≤ 𝑛 − 1, (20) yields

(𝑛 + 1) 𝑏
𝑛
= (𝐴 − 𝐵) 𝑐

𝑛+1
. (35)

Solving for 𝑏
𝑛
and taking the absolute values of both sides, we

obtain

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 ≤

𝐵 − 𝐴

𝑛 + 1
. (36)

Remark 4. The estimate |𝑏
0
| ≤ (𝐵 − 𝐴)/√2𝐵 − 𝐴 given by

Theorem 3(i) is better than that given in ([14,Theorem 2(i)]).

Remark 5. In ([3,Theorem 1]), the bound |𝑏
𝑛
| ≤ (𝐵−𝐴)/(𝑛+1)

was declared to be sharp for the coefficients of the function
𝑔 ∈ Σ[𝐴, 𝐵].The coefficient estimates |𝑏

0
| ≤ (𝐵−𝐴)/√2𝐵 − 𝐴

and |𝑏
1
| ≤ (𝐵 − 𝐴)/2 − ((1 − 𝐴 − 2𝐵)/2(𝐵 − 𝐴))|𝑏

0
|2 given by

Theorem 3 show that the coefficient bound |𝑏
𝑛
| ≤ (𝐵−𝐴)/(𝑛+

1) is not sharp for the meromorphic bistarlike functions, that
is, if both 𝑔 and its inverse map 𝑔

−1 are in Σ[𝐴, 𝐵]. Finding
sharp coefficient bound formeromorphic bistarlike functions
remains an open problem.
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We obtain some properties related to the coefficient bounds for certain subclass of analytic functions. We also work on the
differential subordination for a certain class of functions.

1. Introductions

Let 𝐻 denote the class of functions

𝑓 (𝑧) = 𝑧 +

∞

∑
𝜅=2

𝑎
𝜅
𝑧
𝜅

, (1)

which is analytic in the unit disc 𝑈 = {𝑧 ∈ C : |𝑧| < 1}. Let

𝐻[𝑎, 𝑛] = {𝑝 ∈ 𝐻 : 𝑝 (𝑧) = 𝑎 + 𝑎
𝑛
𝑧
𝑛

+𝑎
𝑛+1

𝑧
𝑛+1

+ ⋅ ⋅ ⋅ , 𝑛 ∈ N, 𝑎 ̸= 0} .

(2)

Now let 𝐻(𝛽) be the class of functions defined by

𝐹 (𝑧) = 𝑧
𝛽

+

∞

∑
𝜅=2

𝜆
𝜅
𝑎
𝜅
𝑧
𝛽+𝜅−1

, 𝛽 ∈ N,

𝜆
𝜅
= 𝛽
𝜅−1

, 𝑧 ̸=
1

𝛽
, 𝛽 |𝑧| < 1.

(3)

The Hadamard product 𝑓 ∗ 𝑔 of two functions 𝑓 and 𝑔 is
defined by

(𝑓 ∗ 𝑔) (𝑧) =

∞

∑
𝑘=0

𝑎
𝑘
𝑏
𝑘
𝑧
𝑘

, (4)

where 𝑓(𝑧) = ∑
∞

𝑘=0
𝑎
𝑘
𝑧𝑘 and 𝑔(𝑧) = ∑

∞

𝑘=0
𝑏
𝑘
𝑧𝑘 are analytic in

𝑈.

Let 𝜓(𝑧) = 𝑧
𝛽 + ∑

∞

𝜅=2
𝑎
𝜅
𝑧𝛽+𝜅−1, 𝛽 ∈ N, and then 𝜓(𝑧) is

analytic in the open unit disc𝑈. The function 𝐹(𝑧) defined in
(3) is equivalent to

𝜓 (𝑧) ∗
𝑧
𝛽

1 − 𝛽𝑧
, 𝑧 ̸=

1

𝛽
, 𝛽 ∈ N, 𝛽 |𝑧| < 1, (5)

where ∗ is the Hadamard product and 𝐹(𝑧) is analytic in the
open unit disc 𝑈.

We introduce a class of functions

𝑄
(𝚥) (𝛼, 𝜏, 𝛾; 𝛽)

= {𝐹 (𝑧) ∈ 𝐻 (𝛽) : R𝑒

×{
𝛼[𝐹(𝑧)]

(𝚥)

[𝑧𝛽]
(𝚥)

+
𝜏[𝐹(𝑧)]

(𝚥+1)

[𝑧𝛽]
(𝚥+1)

} > 𝛾, 𝑧 ∈ 𝑈} ,

(6)

where

𝑧 ̸= 0 𝛽 > 𝚥, 𝚥 ∈ N ∪ {0} also 𝛼 + 𝜏 ̸= 𝛾. (7)

Authors like Saitoh [1] and Owa [2, 3] had previously stud-
ied the properties of the class of functions 𝑄(0)(𝛼, 𝜏, 𝛾; 1).
They obtained many interesting results and Wang et al. [4]
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studied the extreme points, coefficient bounds, and radius of
univalency of the same class of functions. They obtained the
following theorem among other results.

Theorem 1 (see [4]). Let 𝑓(𝑧) ∈ 𝐻. A function 𝑓(𝑧) ∈

𝑄(0)(𝛼, 𝜏, 𝛾; 1) if and only if 𝑓(𝑧) can be expressed as

𝑓 (𝑧) =
1

𝛼 + 𝜏
∫
|𝑥|

[ (2𝛾 − 𝛼 − 𝜏) 𝑧 + 2 (𝛼 + 𝜏 − 𝛾)

×

∞

∑
𝜅=0

(𝛼 + 𝜏) 𝑥
𝜅

𝑧
𝜅+1

(𝜅 + 1) 𝜏 + 𝛼
] 𝑑𝜇 (𝑥) ,

(8)

where 𝜇(𝑥) is the probability measure defined on
𝜒 = {𝑥 : |𝑥| = 1} . (9)

For fixed𝛼, 𝜏, and 𝛾, the class𝑄(0)(𝛼, 𝜏, 𝛾; 1) and the probability
measure {𝜇} defined on 𝜒 are one-to-one by expression (8).

Recently, Hayami et al. [5] studied the coefficient esti-
mates of the class of function 𝑓(𝑧) ∈ 𝐻 in the open unit
disc 𝑈. They derived results based on properties of the class
of functions 𝑓(𝑧) ∈ 𝐻[𝑎, 𝑛], 𝑎 ̸= 0. Xu et al. [6] used the prin-
ciple of differential subordination and the Dziok-Srivastava
convolution operator to investigate some analytic propert-
ies of certain subclass of analytic functions. We also note that
Stanciu et al. [7] used the properties of the class of functions
𝑓(𝑧) ∈ 𝐻[𝑎, 𝑛], 𝑎 ̸= 0, to investigate the analytic and univalent
properties of the following integral operator:

Θ
𝛼,𝛽

(𝑧) = (𝛽∫
𝑧

0

𝑡
𝛽−𝛼−1

[𝑓 (𝑡)]
𝛼

𝑔 (𝑡) 𝑑𝑡)

1/𝛽

, (10)

where (𝛼 ∈ C, 𝛽 ∈ C \ {0}, 𝑓 ∈ 𝐻, 𝑔 ∈ 𝐻[1, 𝑛]).
Motivated by the work in [1–7], we used the properties of

the class of function 𝑓(𝑧) ∈ 𝐻[𝑎, 𝑛], 𝑎 ̸= 0, to investigate the
coefficient estimates of the class of functions 𝐹(𝑧) ∈ 𝐻(𝛽) in
the open unit disc 𝑈. We also use the principle of differential
subordination to investigate some properties of the class of
functions 𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽).

We state the following known results required to prove
our work.

Definition 2. If 𝑔 and ℎ are analytic in 𝑈, then 𝑔 is said to
be subordinate to ℎ, written as 𝑔 ≺ ℎ or 𝑔(𝑧) ≺ ℎ(𝑧). If 𝑔 is
univalent in 𝑈, then 𝑔(0) = ℎ(0) and 𝑔(𝑈) ⊂ ℎ(𝑈).

Theorem 3 (see [8]). Consider 𝑝 ∈ 𝐻[1, 𝑛] if and only if there
is probability measure {𝜇} on 𝜒 such that

𝑝 (𝑧) = ∫
|𝑥|=1

1 + 𝑥𝑧

1 − 𝑥𝑧
𝑑𝜇 (𝑥) , (|𝑧| < 1) (11)

and𝜒 = {𝑥 : |𝑥| = 1}.The correspondence between𝐻[1, 𝑛] and
the set of probability measures {𝜇} on 𝜒 given by Hallenbeck [9]
is one-to-one.

Theorem 4 (see [10, 11]). Let ℎ(𝑧) be convex in 𝑈, ℎ(0) = 𝑎,
𝑐 ̸= 0, andR𝑒{𝑐} ≥ 0. If 𝑔(𝑧) ∈ 𝐻[𝑎, 𝑛] and

𝑔 (𝑧) +
𝑧𝑔󸀠 (𝑧)

𝑐
≺ ℎ (𝑧) , (12)

then

𝑔 (𝑧) ≺ 𝑞 (𝑧) =
𝑐𝑧
−𝑐/𝜅

𝜅
∫
𝑧

0

𝑡
(𝑐−𝜅)/𝜅

ℎ (𝑡) 𝑑𝑡 ≺ ℎ (𝑧) . (13)

The function 𝑞 is convex and the best (𝑎, 𝑛)-dominant.

Lemma 5 (see [10]). Let ℎ be starlike in 𝑈, with ℎ(0) = 0 and
𝑎 ̸= 0. If 𝑝 ∈ 𝐻[𝑎, 𝑛] satisfies

𝑧𝑝󸀠 (𝑧)

𝑝 (𝑧)
≺ ℎ (𝑧) , (14)

then

𝑝 (𝑧) ≺ 𝑞 (𝑧) = 𝑎 exp [
1

𝑛
∫
𝑧

0

ℎ (𝜉) 𝜉
−1

𝑑𝜉] (15)

and 𝑞 is the best (𝑎, 𝑛)-dominant.

Lemma 6 (see [12]). Let 𝑝 ∈ [1, 𝑛], with R𝑒{𝑝(𝑧)} > 0 in 𝑈.
Then, for |𝑧| = 𝑟 < 1,

(i) (1 − 𝑟)/(1 + 𝑟) ≤ R𝑒{𝑝(𝑧)} ≤ |𝑝(𝑧)| ≤ (1 + 𝑟)/(1 − 𝑟),

(ii) |𝑝󸀠(𝑧)| ≤ 2R𝑒{𝑝(𝑧)}/(1 − 𝑟2).

Remark 7. The combination (i) and (ii) of Lemma 6 gives

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧𝑝󸀠 (𝑧)

𝑝 (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

2𝑟R𝑒 {𝑝 (𝑧)}

(1 − 𝑟)
2

. (16)

Remark 8. For convenience, we limit our result to the prin-
cipal branch and otherwise stated the constrains on 𝛽, 𝚥, 𝛼, 𝜏,
𝛾, and 𝜆

𝜅
which remain the same throughout this paper.

2. Coefficient Bounds of the Class of
Functions 𝑄

(𝚥)

(𝛼,𝜏,𝛾;𝛽)

We begin with the following result.

Theorem 9. Let 𝐹(𝑧) be as defined in (3). A function 𝐹(𝑧) ∈

𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽), if and only if 𝑧𝚥[𝐹(𝑧)]
(𝚥) can be expressed as

𝑧
𝚥

[𝐹 (𝑧)]
(𝚥)

=

𝛽

𝑃
𝚥

(𝛼 + 𝜏)
∫
|𝑥|=1

[ (2𝛾 − 𝛼 − 𝜏) 𝑧
𝛽

+ 2 (𝛼 + 𝜏 − 𝛾)

×

∞

∑
𝜅=0

(𝛽 − 𝚥) (𝛼 + 𝜏) 𝑥
𝜅𝑧𝛽+𝜅

(𝛼 + 𝜏) (𝛽 − 𝚥) + 𝜅𝜏
] 𝑑𝜇 (𝑥) ,

(17)

where 𝑛𝑃
𝑟

= 𝑛!/(𝑛 − 𝑟)! and {𝜇} is the probability measure
defined on 𝜒 = {𝑥 : |𝑥| = 1}.
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Proof. If 𝐹(𝑧) ∈ 𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽), then

𝑝 (𝑧)

=

(𝜏[𝐹 (𝑧)]
(𝚥+1)

/[𝑧𝛽]
(𝚥+1)

) + (𝛼[𝐹 (𝑧)]
(𝚥)

/[𝑧𝛽]
(𝚥)

) − 𝛾

𝛼 + 𝜏 − 𝛾

∈ 𝐻 [1, 𝑛] .

(18)

ByTheorem 3,

(𝜏[𝐹 (𝑧)]
(𝚥+1)

/[𝑧𝛽]
(𝚥+1)

) + (𝛼[𝐹 (𝑧)]
(𝚥)

/[𝑧𝛽]
(𝚥)

) − 𝛾

𝛼 + 𝜏 − 𝛾

= ∫
|𝑥|=1

1 + 𝑥𝑧

1 − 𝑥𝑧
𝑑𝜇 (𝑥) ,

(19)

and (19) can be written as

[𝐹 (𝑧)]
(𝚥+1)

[𝑧𝛽]
(𝚥+1)

+
𝛼[𝐹 (𝑧)]

(𝚥)

𝜏[𝑧𝛽]
(𝚥)

=
1

𝜏
∫
|𝑥|=1

(𝛼 + 𝜏) + (𝛼 + 𝜏 − 2𝛾) 𝑥𝑧

1 − 𝑥𝑧
𝑑𝜇 (𝑥)

(20)

which yields

𝑧
((𝛼+𝜏)(𝚥−𝛽)+𝜏)/𝜏

∫
𝑧

0

[
[𝐹 (𝜉)]

(𝚥+1)

[𝜉𝛽]
(𝚥+1)

+
𝛼[𝐹 (𝜉)]

(𝚥)

𝜏[𝜉𝛽]
(𝚥)

]

× 𝜉
((𝛼+𝜏)(𝛽−𝚥)−𝜏)/𝜏

𝑑𝜉

=
1

𝜏
∫
|𝑥|=1

𝑧
((𝛼+𝜏)(𝚥−𝛽)+𝜏)/𝜏

× ∫
𝑧

0

(𝛼 + 𝜏) + (𝛼 + 𝜏 − 2𝛾) 𝑥𝜉

1 − 𝑥𝜉

× 𝜉
((𝛼+𝜏)(𝛽−𝚥)−𝜏)/𝜏

𝑑𝜉 𝑑𝜇 (𝑥) ,

(21)

and so the expression (17).

If 𝑧𝚥[𝐹(𝑧)]
(𝚥) can be expressed as (17), reverse calculation

shows that 𝐹(𝑧) ∈ 𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽).

Corollary 10. Let 𝐹 be defined as in (3). A function 𝐹(𝑧) ∈

𝑄(0)(𝛼, 𝜏, 𝛾; 𝛽) if and only if 𝐹(𝑧) can be expressed as

𝐹 (𝑧) =
1

𝛼 + 𝜏
∫
|𝑥|=1

[ (2𝛾 − 𝛼 − 𝜏) 𝑧
𝛽

+ 2 (𝛼 + 𝜏 − 𝛾)

×

∞

∑
𝜅=0

(𝛼 + 𝜏) 𝑥
𝜅𝑧𝛽+𝜅

𝛼𝛽 + 𝜏 (𝜅 + 𝛽)
] 𝑑𝜇 (𝑥) ,

(22)

where {𝜇} is the probability measure defined on 𝜒 = {𝑥 : |𝑥| =

1}.

Proof. It is as in Theorem 9.

Corollary 11. Let 𝐹(𝑧) be as defined in (3). If 𝐹(𝑧) ∈ 𝑄(𝚥)(𝛼, 𝜏,

𝛾; 𝛽), then, for 𝜅 ≥ 2 and 𝑛𝑃
𝑟
= 𝑛!/(𝑛 − 𝑟)!, we have

󵄨󵄨󵄨󵄨𝑎𝜅
󵄨󵄨󵄨󵄨 ≤ 𝐻 (𝛼, 𝜏, 𝛾; 𝛽) , (23)

where

𝐻(𝛼, 𝜏, 𝛾; 𝛽) =
2 (𝛼 + 𝜏 − 𝛾) (𝛽 − 𝚥) [

𝛽

𝑃
𝚥
]

𝜆
𝜅
[ [𝛽+𝜅−1]𝑃

𝚥
] [(𝛼 + 𝜏) (𝛽 − 𝚥) + 𝜏 (𝜅 − 1)]

.

(24)

Proof. Let 𝐹(𝑧) ∈ 𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽) from (17) and

𝑧
𝚥

[𝐹
𝑥
(𝑧)]
(𝚥)

𝛽𝑃
𝚥

= 𝑧
𝛽

+

∞

∑
𝜅=2

2 (𝛼 + 𝜏 − 𝛾) (𝛽 − 𝚥) 𝑥𝜅−1𝑧𝛽+𝜅−1

(𝛼 + 𝜏) (𝛽 − 𝚥) + 𝜏 (𝜅 − 1)
(|𝑥| = 1) .

(25)

Comparing the coefficient yields the result.

Theorem12. Let𝐺(𝑧) ∈ 𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽) andΨ(𝑧) = 𝐺(𝑧)/(𝛼+

𝜏 − 𝛾). Then for |𝑧| = 𝑟 < 1 we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧Ψ󸀠 (𝑧)

Ψ (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

∑
∞

𝜅=2
2 (𝛽 − 𝚥) [[𝜅 − 1] 𝑟

𝜅−1]

1 + ∑
∞

𝜅=2
2 (𝛽 − 𝚥) 𝑟𝜅−1

≤
2𝑟R𝑒 {Ψ (𝑧)}

(1 − 𝑟)
2

.

(26)

Proof. Since 𝐺(𝑧) ∈ 𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽), then

𝐺 (𝑧) ≡
𝜏[𝐹(𝑧)]

(𝚥+1)

[𝑧𝛽]
(𝚥+1)

+
𝛼[𝐹(𝑧)]

(𝚥)

[𝑧𝛽]
(𝚥)

− 𝛾, (27)

and then
𝑧Ψ󸀠 (𝑧)

Ψ (𝑧)
=

∑
∞

𝜅=2
𝜗 (𝛼, 𝜏, 𝛾; 𝛽) [𝜅 − 1] 𝑎

𝜅
𝑧𝜅−1

1 + ∑
∞

𝜅=2
𝜗 (𝛼, 𝜏, 𝛾; 𝛽) 𝑎

𝜅
𝑧𝜅−1

, (28)

where

𝜗 (𝛼, 𝜏, 𝛾; 𝛽) =
𝜆
𝜅
[ [𝛽+𝜅−1]𝑃

𝚥
] [(𝛼 + 𝜏) (𝛽 − 𝚥) + 𝜏 (𝜅 − 1)]

(𝛼 + 𝜏 − 𝛾) [
𝛽

𝑃
(𝚥)

]
.

(29)

From (23) and (28), we got
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧Ψ󸀠 (𝑧)

Ψ (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

∑
∞

𝜅=2
2 (𝛽 − 𝚥) [𝜅 − 1] 𝑟

𝜅−1

1 + ∑
∞

𝜅=2
2 (𝛽 − 𝚥) 𝑟𝜅−1

(𝜅 ≥ 2) . (30)

The application of Remark 7 to (27) gives
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧Ψ󸀠 (𝑧)

Ψ (𝑧)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

2𝑟R𝑒 {Ψ (𝑧)}

(1 − 𝑟)
2

. (31)

Since
∞

∑
𝜅=2

2 (𝛽 − 𝚥) [𝜅 − 1] 𝑟
𝜅−1

< 2𝑟R𝑒 {Ψ (𝑧)} ,

1 +

∞

∑
𝜅=2

2 (𝛽 − 𝚥) 𝑟
𝜅−1

> (1 − 𝑟)
2

,

(32)

thenTheorem 12 is proved.
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3. Application of Differential Subordination to
the Function 𝑄

(𝚥)

(𝛼, 𝜏, 𝛾; 𝛽)

Here we calculate some subordinate properties of the class
𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽).

Theorem 13. Let𝐺(𝑧) ∈ 𝑄(𝚥)(𝛼, 𝜏, 𝛾; 𝛽) and let ℎ(𝑧) be starlike
in 𝑈 with ℎ(0) = 0 and 𝛼 + 𝜏 ̸= 𝛾. If

{
𝑧𝐺󸀠 (𝑧)

𝐺 (𝑧)
} ≺ ℎ (𝑧) , (33)

then

𝐺 (𝑧) ≺ 𝑞 (𝑧) = (𝛼 + 𝜏 − 𝛾) exp [𝑛
−1

∫
𝑧

0

ℎ (𝜉) 𝜉
−1

𝑑𝜉, ] (34)

and 𝑞 is the best ([𝛼 + 𝜏 − 𝛾], 𝑛)-dominant.

Proof. Let 𝐺(𝑧) ∈ 𝑄(𝛼, 𝜏, 𝛾; 𝛽); then

𝐺 (𝑧) = (𝛼 + 𝜏 − 𝛾) +

∞

∑
𝜅=2

𝜆
𝜅
[ [𝛽+𝜅−1]𝑃

𝚥+1
] 𝑎
𝜅
𝑧𝜅−1

𝛽𝑃
𝚥+1

. (35)

Since 𝐺(𝑧) is analytic in 𝑈 and 𝐺(0) = 𝛼 + 𝜏 − 𝛾, it suffices to
show that

{
𝑧𝐺
󸀠

(𝑧)

𝐺 (𝑧)
} ≺ ℎ (𝑧) . (36)

Following the same argument in [10] (pages 76 and 77), (36)
is true. Application of Lemma 5 provesTheorem 13 with 𝑞(𝑧)

as the best ([𝛼 + 𝜏 − 𝛾], 𝑛)-dominant.

Example 14. Let ℎ(𝑧) = √𝑧/(1 − 𝑧); if

{
𝑧𝐺󸀠 (𝑧)

𝐺 (𝑧)
} ≺

√𝑧

1 − 𝑧
(37)

then

𝐺 (𝑧) ≺ (𝛼 + 𝜏 − 𝛾) {
1 + √𝑧

1 − √𝑧
}

1/𝑛

, 𝛼 + 𝜏 ̸= 𝛾, (38)

and 𝑞 is the best (𝛼 + 𝜏 − 𝛾, 𝑛)-dominant.

Solution. If ℎ(𝑧) = √𝑧/(1 − 𝑧) and 𝑧 = 𝑟𝑒𝑖𝜃, 0 < 𝜃 < 𝜋, then
simple calculation shows that ℎ(0) = 0 and ℎ(𝑧) is starlike and
the argument in [10] shows (37). The proof also follows from
Lemma 5.

Theorem 15. Let 𝐺(𝑧) ∈ 𝑄
(𝚥)(𝛼, 𝜏, 0; 𝛽) and −1 ≤ 𝐵 < 𝐴 ≤ 1,

𝛽 > 𝚥 + 1 with 𝛼 + 𝜏 ̸= 0. If

𝐺 (𝑧) ≺ (𝛼 + 𝜏)
1 + 𝐴𝑧

1 + 𝐵𝑧
, (39)

then
[𝐹(𝑧)]

(𝚥)

[𝑧𝛽]
(𝚥)

≺
(𝛼 + 𝜏) (𝛽 − 𝚥)

𝜏𝜅
𝑧
(𝛼+𝜏)(𝚥−𝛽)/𝜏𝜅

× ∫
𝑧

0

𝜉
(𝛼(𝛽−𝚥)+𝜏(𝛽−𝚥−𝜅))/𝜏𝜅

(
1 + 𝐴𝜉

1 + 𝐵𝜉
)𝑑𝜉.

(40)

Proof. Let 𝐺(𝑧) ∈ 𝑄
(𝚥)(𝛼, 𝜏, 0; 𝛽), and, from (6),

1

(𝛼 + 𝜏)
𝐺 (𝑧) = 1 +

∞

∑
𝜅=2

𝐶
𝜅
𝑎
𝜅
𝑧
𝜅−1

, (41)

where

𝐶
𝜅
=

𝜆
𝜅
[ (𝛽+𝜅−1)𝑃

𝚥+1
] ⋅ [(𝛼 + 𝜏) (𝛽 − 𝚥) + 𝜏 (𝜅 − 1)]

(𝛼 + 𝜏) [
𝛽

𝑃
𝚥+1

]
. (42)

Let 𝑔(𝑧) = [𝐹(𝑧)]
(𝚥)

/[𝑧𝛽]
(𝚥); then 𝑔(𝑧) = 1 + ∑

∞

𝜅=2
𝜛
𝜅
𝑎
𝜅
𝑧𝜅−1,

where 𝜛
𝜅
= 𝜆
𝜅
[
(𝛽+𝜅−1)

𝑃
𝚥+1

]/[
(𝛽)

𝑃
𝚥
], and from (39) we have

𝑔 (𝑧) +
𝜏

(𝛼 + 𝜏) (𝛽 − 𝚥)
𝑧𝑔
󸀠

(𝑧) ≺ (
1 + 𝐴𝑧

1 + 𝐵𝑧
) = ℎ (𝑧) , (43)

and ℎ(𝑧) is convex and univalent in 𝑈. So, by Lemma 6,

𝑔 (𝑧) ≺
(𝛼 + 𝜏) (𝛽 − 𝚥)

𝜏𝜅
𝑧
−(𝛼+𝜏)(𝛽−𝚥)/𝜏𝜅

× ∫
𝑧

0

𝜉
(𝛼(𝛽−𝚥)+𝜏(𝛽−𝚥−𝜅))/𝜏𝜅

(
1 + 𝐴𝜉

1 + 𝐵𝜉
)𝑑𝜉.

(44)

This completes the proof of Theorem 15.

Corollary 16. Let

𝑄
(0)

(𝛼, 𝜏, 0; 𝛽) =
𝛼 (𝐹 (𝑧))

𝑧𝛽
+

𝜏[𝐹 (𝑧)]
󸀠

[𝑧𝛽]
󸀠

. (45)

If

𝑄
(0)

(𝛼, 𝜏, 0; 𝛽) ≺ (𝛼 + 𝜏) (
1 + 𝐴𝑧

1 + 𝐵𝑧
) , (46)

then

𝐹 (𝑧)

𝑧𝛽
≺

𝛼𝛽 + 𝜏 (𝛽 − 𝜅)

𝜏𝜅
𝑧
−𝛽(𝛼+𝜏)/𝜏𝜅

× ∫
𝑧

0

𝜉
(𝛽(𝛼+𝜏)−𝜏𝜅)/𝜏𝜅

(
1 + 𝐴𝜉

1 + 𝐵𝜉
)𝑑𝜉.

(47)

Proof. The result follows fromTheorem 15.
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We introduce a new class ofmeromorphically analytic functions, which is defined bymeans of aHadamard product (or convolution)
involving some suitably normalized meromorphically functions related to Cho-Kwon-Srivastava operator. A characterization
property giving the coefficient bounds is obtained for this class of functions.The other related properties, which are investigated in
this paper, include distortion and the radii of starlikeness and convexity. We also consider several applications of our main results
to generalized hypergeometric functions.

1. Introduction

A meromorphic function is a single-valued function that is
analytic in all but possibly a discrete subset of its domain, and
at those singularities it must go to infinity like a polynomial
(i.e., these exceptional points must be poles and not essential
singularities). A simpler definition states that a meromorphic
function 𝑓(𝑧) is a function of the form

𝑓 (𝑧) =
𝑔 (𝑧)

ℎ (𝑧)
, (1)

where 𝑔(𝑧) and ℎ(𝑧) are entire functions with ℎ(𝑧) ̸= 0 (see
[1, page 64]). A meromorphic function therefore may only
have finite-order, isolated poles and zeros and no essential
singularities in its domain. An equivalent definition of a
meromorphic function is a complex analytic map to the
Riemann sphere. For example, the gamma function is mero-
morphic in the whole complex plane C.

In the present paper, we initiate the study of functions
which are meromorphic in the punctured disk 𝑈∗ = {𝑧 : 0 <

|𝑧| < 1} with a Laurent expansion about the origin; see [2].

Let𝐴 be the class of analytic functions ℎ(𝑧)with ℎ(0) = 1,
which are convex and univalent in the open unit disk 𝑈 =

𝑈
∗ ∪ {0} and for which

R {ℎ (𝑧)} > 0, (𝑧 ∈ 𝑈
∗

) . (2)

For functions 𝑓 and 𝑔 analytic in 𝑈, we say that 𝑓 is subor-
dinate to 𝑔 and write

𝑓 ≺ 𝑔 in 𝑈 or 𝑓 (𝑧) ≺ 𝑔 (𝑧) , (𝑧 ∈ 𝑈
∗

) (3)

if there exists an analytic function 𝑤(𝑧) in 𝑈 such that

|𝑤 (𝑧)| ≤ |𝑧| , 𝑓 (𝑧) = 𝑔 (𝑤 (𝑧)) , (𝑧 ∈ 𝑈
∗

) . (4)

Furthermore, if the function 𝑔 is univalent in 𝑈, then

𝑓 (𝑧) ≺ 𝑔 (𝑧) ⇐⇒ 𝑓 (0) = 𝑔 (0) ,

𝑓 (𝑈) ⊆ 𝑔 (𝑈) , (𝑧 ∈ 𝑈
∗

) .
(5)

This paper is divided into two sections; the first intro-
duces a new class of meromorphically analytic functions,
which is defined by means of a Hadamard product (or
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convolution) involving linear operator. The second section
highlights some applications of the main results involving
generalized hypergeometric functions.

2. Preliminaries

Let Σ denote the class of meromorphic functions 𝑓(𝑧) nor-
malized by

𝑓 (𝑧) =
1

𝑧
+

∞

∑
𝑛=1

𝑎
𝑛
𝑧
𝑛

, (6)

which are analytic in the punctured unit disk 𝑈∗ = {𝑧 : 0 <

|𝑧| < 1}. For 0 ≤ 𝛽, we denote by 𝑆∗(𝛽) and 𝑘(𝛽) the sub-
classes of Σ consisting of all meromorphic functions which
are, respectively, starlike of order 𝛽 and convex of order 𝛽 in
𝑈.

For functions 𝑓
𝑗
(𝑧) (𝑗 = 1; 2) defined by

𝑓
𝑗
(𝑧) =

1

𝑧
+

∞

∑
𝑛=1

𝑎
𝑛,𝑗
𝑧
𝑛

, (7)

we denote the Hadamard product (or convolution) of 𝑓
1
(𝑧)

and 𝑓
2
(𝑧) by

(𝑓
1
∗ 𝑓
2
) =

1

𝑧
+

∞

∑
𝑛=1

𝑎
𝑛,1
𝑎
𝑛,2
𝑧
𝑛

. (8)

Cho et al. [3] andGhanimandDarus [4] studied the following
function:

𝑞
𝜆,𝜇

(𝑧) =
1

𝑧
+

∞

∑
𝑛=1

(
𝜆

𝑛 + 1 + 𝜆
)

𝜇

𝑧
𝑛

, (𝜆 > 0, 𝜇 ≥ 0) . (9)

Corresponding to the function 𝑞
𝜆,𝜇
(𝑧) and using the

Hadamard product for 𝑓(𝑧) ∈ Σ, we define a new linear
operator 𝐿(𝜆, 𝜇) on Σ by

𝐿
𝜆,𝜇
𝑓 (𝑧) = (𝑓 (𝑧) ∗ 𝑞

𝜆,𝜇
(𝑧))

=
1

𝑧
+

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

.
(10)

TheHadamard product or convolution of the functions𝑓
given by (10) with the functions 𝐿

𝑡,𝑎
𝑔 and 𝐿

𝑡,𝑎
ℎ given, respec-

tively, by

𝐿
𝜆,𝜇
𝑔 (𝑧) =

1

𝑧
+

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

,

(𝑧 ∈ 𝑈∗, 𝑔 (𝑧) ∈ Σ) ,

𝐿
𝜆,𝜇
ℎ (𝑧) =

1

𝑧
+

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

,

(𝑧 ∈ 𝑈
∗

, ℎ (𝑧) ∈ Σ) ,

(11)

can be expressed as follows:

𝐿
𝜆,𝜇

(𝑓 ∗ 𝑔) (𝑧) =
1

𝑧
+

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑎𝑛𝑏𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

,

(𝑧 ∈ 𝑈∗) ,

𝐿
𝜆,𝜇

(𝑓 ∗ ℎ) (𝑧) =
1

𝑧
+

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑎𝑛𝑐𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

,

(𝑧 ∈ 𝑈
∗

) .

(12)

By applying the subordination definition, we introduce
here a new classΣ𝜇

𝜆
(𝜌, 𝐴, 𝐵) ofmeromorphic functions, which

is defined as follows.

Definition 1. A function 𝑓 ∈ Σ of the form (6) is said to be in
the class Σ𝜇

𝜆
(𝜌, 𝐴, 𝐵) if it satisfies the following subordination

property:

𝜌
𝐿
𝜆,𝜇

(𝑓 ∗ 𝑔) (𝑧)

𝐿
𝜆,𝜇

(𝑓 ∗ ℎ) (𝑧)
≺ 𝜌 −

(𝐴 − 𝐵) 𝑧

1 + 𝐵𝑧
, (𝑧 ∈ 𝑈

∗

) , (13)

where −1 ≤ 𝐵 < 𝐴 ≤ 1, 𝜌 > 0, with condition 0 ≤ |𝑐
𝑛
| ≤ |𝑏
𝑛
|

and 𝐿(𝜆, 𝜇)(𝑓 ∗ ℎ)(𝑧) ̸= 0.

As for the second result of this paper on applications
involving generalized hypergeometric functions, we need to
utilize the well-known Gaussian hypergeometric function.
One denotes 𝜙(𝛼, 𝛽; 𝑧) the class of the function given by

𝜙 (𝛼, 𝛽; 𝑧) =
1

𝑧
+

∞

∑
𝑛=0

(𝛼)
𝑛+1

(𝛽)
𝑛+1

𝑧
𝑛

, (14)

for𝛽 ̸= 0, −1, −2, . . ., and𝛼 ∈ C\{0}, where (𝜆)𝑛 = 𝜆(𝜆 + 1)
𝑛+1

is the Pochhammer symbol. We note that

𝜙 (𝛼, 𝛽; 𝑧) =
1

𝑧 2
𝐹
1
(1, 𝛼, 𝛽; 𝑧) , (15)

where

2
𝐹
1
(𝑏, 𝛼, 𝛽; 𝑧) =

∞

∑
𝑛=0

(𝑏)
𝑛
(𝛼)
𝑛

(𝛽)
𝑛

𝑧𝑛

𝑛!
(16)

is the well-known Gaussian hypergeometric function.
Corresponding to the functions 𝜙(𝛼, 𝛽; 𝑧) and 𝑞

𝜆,𝜇
(𝑧)

given in (9) and using the Hadamard product for 𝑓(𝑧) ∈ Σ,
we define a new linear operator 𝐿(𝛼, 𝛽, 𝜆, 𝜇) on Σ by

𝐿 (𝛼, 𝛽, 𝜆, 𝜇) 𝑓 (𝑧) = (𝑓 (𝑧) ∗ 𝜙 (𝛼, 𝛽; 𝑧) ∗ 𝑞
𝜆,𝜇

(𝑧))

=
1

𝑧
+

∞

∑
𝑛=1

(𝛼)
𝑛+1

(𝛽)
𝑛+1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 𝑧
𝑛

.

(17)

The meromorphic functions with the generalized hypergeo-
metric functions were considered recently by Cho and Kim
[5], Dziok and Srivastava [6, 7], Ghanim [8], Ghanim et al.
[9, 10], and Liu and Srivastava [11, 12].
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Now, it follows from (17) that

𝑧(𝐿 (𝛼, 𝛽, 𝜆, 𝜇) 𝑓 (𝑧))
󸀠

= 𝛼𝐿 (𝛼 + 1, 𝛽, 𝜆, 𝜇) 𝑓 (𝑧)

− (𝛼 + 1) 𝐿 (𝛼, 𝛽, 𝜆, 𝜇) 𝑓 (𝑧) .
(18)

The subordination relation (13) in conjunction with (17)
takes the following form:

𝜌
𝐿 (𝛼 + 1, 𝛽, 𝜆, 𝜇) 𝑓 (𝑧)

𝐿 (𝛼, 𝛽, 𝜆, 𝜇) 𝑓 (𝑧)
≺ 𝜌 −

(𝐴 − 𝐵) 𝑧

1 + 𝐵𝑧
,

(0 ≤ 𝐵 < 𝐴 ≤ 1, 𝜌 > 0) .

(19)

Definition 2. A function 𝑓 ∈ Σ of the form (6) is said to be
in the class Σ𝜇

𝜆
(𝜌, 𝛼, 𝛽, 𝐴, 𝐵) if it satisfies the subordination

relation (19) above.

3. Characterization and Other
Related Properties

In this section, we begin by proving a characterization
property which provides a necessary and sufficient condition
for a function 𝑓 ∈ Σ of the form (6) to belong to the class
Σ
𝜇

𝜆
(𝜌, 𝐴, 𝐵) of meromorphically analytic functions.

Theorem 3. The function 𝑓 ∈ Σ is said to be a member of the
class Σ𝜇

𝜆
(𝜌, 𝐴, 𝐵) if and only if it satisfies

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

(𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵)

−
󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤ 𝐴 − 𝐵.

(20)

The equality is attained for the function 𝑓
𝑛
(𝑧) given by

𝑓
𝑛
(𝑧) =

1

𝑧

+

∞

∑
𝑛=1

(𝐴 − 𝐵) (𝑛 + 𝜆 + 1)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

𝑧
𝑛

.

(21)

Proof. Let 𝑓 of the form (6) belong to the class Σ𝜇
𝜆
(𝜌, 𝐴, 𝐵).

Then, in view of (12), we find that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜌

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

𝑎
𝑛
(𝑏
𝑛
− 𝑐
𝑛
) 𝑧
𝑛+1

× ((𝐴 − 𝐵)

−

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

× (𝜌𝐵𝑏
𝑛
+ 𝑐
𝑛
{(𝐴 − 𝐵) − 𝜌𝐵}) 𝑎

𝑛
𝑧
𝑛+1

)

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜌

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

𝑎
𝑛
(𝑏
𝑛
− 𝑐
𝑛
)
󵄨󵄨󵄨󵄨󵄨
𝑧
𝑛+1

󵄨󵄨󵄨󵄨󵄨

× ((𝐴 − 𝐵)

−

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

× (𝜌𝐵𝑏
𝑛
+ 𝑐
𝑛
{(𝐴 − 𝐵) − 𝜌𝐵}) 𝑎

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑧
𝑛+1

󵄨󵄨󵄨󵄨󵄨
)

−1

≤ 1.

(22)

Putting |𝑧| = 𝑟 (0 ≤ 𝑟 < 1) and noting the fact that
the denominator in the above inequality remains positive by
virtue of the constraints stated in (13) for all 𝑟 ∈ [0, 1), we
easily arrive at the desired inequality (20) by letting 𝑧 → 1.

Conversely, if we assume that the inequality (20) holds
true in the simplified form (22), it can readily be shown that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜌 {((𝑓 ∗ 𝑔) (𝑧)) − ((𝑓 ∗ ℎ) (𝑧))}

𝜌𝐵 ((𝑓 ∗ 𝑔) (𝑧)) + {𝜌 (𝐴 − 𝐵) − 𝜌𝐵} ((𝑓 ∗ ℎ) (𝑧))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
< 1,

(𝑧 ∈ 𝑈∗) ,

(23)

which is equivalent to our condition of theorem, so that 𝑓 ∈

Σ
𝜇

𝜆
(𝜌, 𝐴, 𝐵), hence the theorem.

Theorem 3 immediately yields the following result.

Corollary 4. If the function 𝑓 ∈ Σ belongs to the class
Σ
𝜇

𝜆
(𝜌, 𝐴, 𝐵), then

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤

(𝐴 − 𝐵) (𝑛 + 𝜆 + 1)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

, 𝑛 ≥ 1,

(24)

where the equality holds true for the functions 𝑓
𝑛
(𝑧) given by

(21).

We now state the following growth and distortion prop-
erties for the class Σ𝜇

𝜆
(𝜌, 𝐴, 𝐵).

Theorem 5. If the function 𝑓 defined by (6) is in the class
Σ
𝜇

𝜆
(𝜌, 𝐴, 𝐵), then, for 0 < |𝑧| = 𝑟 < 1, one has

1

𝑟
−

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

𝑟

≤
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨

≤
1

𝑟
+

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

𝑟,
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1

𝑟2
−

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

≤
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨

≤
1

𝑟2
+

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

.

(25)

Proof. Since 𝑓 ∈ Σ
𝜇

𝜆
(𝜌, 𝐴, 𝐵), Theorem 3 readily yields the

inequality
∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

.

(26)

Thus, for 0 < |𝑧| = 𝑟 < 1 and utilizing (26), we have

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 =

1

|𝑧|
+

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛

≤
1

𝑟
+ 𝑟

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

≤
1

𝑟
+ 𝑟

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

,

󵄨󵄨󵄨󵄨𝑓 (𝑧)
󵄨󵄨󵄨󵄨 =

1

|𝑧|
−

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛

≥
1

𝑟
− 𝑟

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

≥
1

𝑟
− 𝑟

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

.

(27)

Also fromTheorem 3, we get
∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 ≤
(𝐴 − 𝐵) (2 + 𝜆)

𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

.

(28)

Hence

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
=

1

|𝑧|
2
+

∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 |𝑧|
𝑛−1

≤
1

𝑟2
+

∞

∑
𝑛=1

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨

≤
1

𝑟2
+

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

,

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠

(𝑧)
󵄨󵄨󵄨󵄨󵄨
=

1

|𝑧|
2
−

∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨 |𝑧|
𝑛−1

≥
1

𝑟2
−

∞

∑
𝑛=1

𝑛
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨

≥
1

𝑟2
−

(𝐴 − 𝐵) (2 + 𝜆)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐1
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

.

(29)

This completes the proof of Theorem 5.

We next determine the radii of meromorphic starlikeness
and meromorphic convexity of the class Σ𝜇

𝜆
(𝜌, 𝐴, 𝐵), which

are given byTheorems 6 and 7 below.

Theorem 6. If the function 𝑓 defined by (6) is in the class
Σ
𝜇

𝜆
(𝜌, 𝐴, 𝐵), then 𝑓 is meromorphic starlike of order 𝛿 in the

disk |𝑧| < 𝑟
1
, where

𝑟
1
= inf
𝑛≥1

{(1 − 𝛿)

× (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

× ((𝐴 − 𝐵) (𝑛 + 2 − 𝛿))
−1

}
1/(𝑛+1)

.

(30)

The equality is attained for the function 𝑓
𝑛
(𝑧) given by (21).

Proof. It suffices to prove that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧(𝑓(𝑧))
󸀠

𝑓 (𝑧)
+ 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1 − 𝛿. (31)

For |𝑧| < 𝑟
1
, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧(𝑓(𝑧))
󸀠

𝑓 (𝑧)
+ 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
∞

𝑛=1
(𝑛 + 1) (𝜆/(𝑛 + 1 + 𝜆))

𝜇

𝑎
𝑛
𝑧𝑛

1/𝑧 + ∑
∞

𝑛=1
(𝜆/(𝑛 + 1 + 𝜆))

𝜇

𝑎
𝑛
𝑧𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑
∞

𝑛=1
(𝑛 + 1) (𝜆/(𝑛 + 𝜆 + 1))

𝜇

𝑎
𝑛
𝑧𝑛+1

1 + ∑
∞

𝑛=1
(𝜆/(𝑛 + 𝜆 + 1))

𝜇

𝑎
𝑛
𝑧𝑛+1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
∑
∞

𝑛=1
(𝑛 + 1) (𝜆/(𝑛 + 𝜆 + 1))

𝜇 󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛+1

1 + ∑
∞

𝑛=1
(𝜆/(𝑛 + 𝜆 + 1))

𝜇 󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛+1

.

(32)

Hence (32) holds true for
∞

∑
𝑛=1

(𝑛 + 1) (
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛+1

≤ (1 − 𝛿) (1 −

∞

∑
𝑛=1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛+1

)

(33)

or

∑
∞

𝑛=1
(𝑛 + 2 − 𝛿) (𝜆/(𝑛 + 𝜆 + 1))

𝜇 󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 |𝑧|
𝑛+1

(1 − 𝛿)
≤ 1. (34)

With the aid of (20) and (34), it is true to say that for fixed 𝑛

(𝑛 + 2 − 𝛿) (𝜆/(𝑛 + 1 + 𝜆))
𝜇

|𝑧|
𝑛+1

(1 − 𝛿)

≤ (
𝜆

𝑛 + 𝜆 + 1
)

𝜇

× (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) +

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

× (𝐴 − 𝐵)
−1

, 𝑛 ≥ 1.

(35)
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Solving (35) for |𝑧|, we obtain

|𝑧| ≤ {(1 − 𝛿)

× (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) +

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

× ((𝑛 + 2 − 𝛿) (𝐴 − 𝐵))
−1

}
𝑛+1

.

(36)

This completes the proof of Theorem 6.

Theorem 7. If the function 𝑓 defined by (6) is in the class
Σ
𝜇

𝜆
(𝜌, 𝐴, 𝐵), then 𝑓 is meromorphic convex of order 𝛿 in the

disk |𝑧| < 𝑟
2
, where

𝑟
2
= inf
𝑛≥1

{(1 − 𝛿)

× (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

× (𝑛 (𝑛 + 2 − 𝛿) (𝐴 − 𝐵))
−1

}
1/(𝑛+1)

.

(37)

The equality is attained for the function 𝑓
𝑛
(𝑧) given by (21).

Proof. By using the same technique employed in the proof of
Theorem 6, we can show that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧(𝑓 (𝑧))
󸀠󸀠

(𝑓 (𝑧))
󸀠
+ 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 1 − 𝛿. (38)

For |𝑧| < 𝑟
1
and with the aid of Theorem 3, we have the

assertion of Theorem 7.

4. Applications Involving Generalized
Hypergeometric Functions

Theorem 8. The function 𝑓 ∈ Σ is said to be a member of the
class Σ𝜇

𝜆
(𝜌, 𝛼, 𝛽, 𝐴, 𝐵) if and only if it satisfies

∞

∑
𝑛=1

(𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

×
(𝛼)
𝑛+1

(𝛽)
𝑛+1

(
𝜆

𝑛 + 𝜆 + 1
)

𝜇

󵄨󵄨󵄨󵄨𝑎𝑛
󵄨󵄨󵄨󵄨 ≤ 𝐴 − 𝐵.

(39)

The equality is attained for the function 𝑓
𝑛
(𝑧) given by

𝑓
𝑛
(𝑧)

=
1

𝑧

+

∞

∑
𝑛=1

(𝐴 − 𝐵) (𝑛 + 𝜆 + 1)
𝜇

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

𝑧
𝑛

,

𝑛 ≥ 1.

(40)

Proof. By using the same technique employed in the proof of
Theorem 3 along with Definition 2, we can proveTheorem 8.

The following consequences of Theorem 8 can be
deduced by applying (39) and (40) along with Definition 2.

Corollary 9. If the function 𝑓 ∈ Σ belongs to the class
Σ
𝜇

𝜆
(𝜌, 𝛼, 𝛽, 𝐴, 𝐵), then
󵄨󵄨󵄨󵄨𝑎𝑛

󵄨󵄨󵄨󵄨

≤
(𝐴 − 𝐵) (𝑛 + 𝜆 + 1)

𝜇

(𝛽)
𝑛+1

𝜆𝜇 (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵)) (𝛼)

𝑛+1

,

𝑛 ≥ 1,

(41)

where the equality holds true for the functions 𝑓
𝑛
(𝑧) given by

(40).

Corollary 10. If the function 𝑓 defined by (6) is in the class
Σ
𝜇

𝜆
(𝜌, 𝛼, 𝛽, 𝐴, 𝐵), then 𝑓 is meromorphic starlike of order 𝛿 in

the disk |𝑧| < 𝑟
3
, where

𝑟
3
= inf
𝑛≥1

{(1 − 𝛿)

× (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

× ((𝐴 − 𝐵) (𝑛 + 2 − 𝛿))
−1

}
1/(𝑛+1)

.

(42)

The equality is attained for the function 𝑓
𝑛
(𝑧) given by (40).

Corollary 11. If the function 𝑓 defined by (6) is in the class
Σ
𝜇

𝜆
(𝜌, 𝛼, 𝛽, 𝐴, 𝐵), then 𝑓 is meromorphic convex of order 𝛿 in

the disk |𝑧| < 𝑟
4
, where

𝑟
4
= inf
𝑛≥1

{(1 − 𝛿)

× (𝜌
󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨 (1 + 𝐵) −

󵄨󵄨󵄨󵄨𝑐𝑛
󵄨󵄨󵄨󵄨 (𝜌 (1 + 𝐵) + 𝐴 − 𝐵))

× (𝑛 (𝑛 + 2 − 𝛿) (𝐴 − 𝐵))
−1

}
1/(𝑛+1)

.

(43)

The equality is attained for the function 𝑓
𝑛
(𝑧) given by (40).
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We derive several new expansion formulas for a new family of the 𝜆-generalized Hurwitz-Lerch zeta functions which were
introduced by Srivastava (2014). These expansion formulas are obtained by making use of some important fractional calculus
theorems such as the generalized Leibniz rules, the Taylor-like expansions in terms of different functions, and the generalized
chain rule. Several (known or new) special cases are also considered.

1. Introduction

The Hurwitz-Lerch Zeta function Φ(𝑧, 𝑠, 𝑎) which is one of
the fundamentally important higher transcendental func-
tions is defined by (see, e.g., [1, p. 121 et seq.]; see also [2] and
[3, p. 194 et seq.])

Φ (𝑧, 𝑠, 𝑎) :=

∞

∑
𝑛=0

𝑧𝑛

(𝑛 + 𝑎)
𝑠

(𝑎 ∈ C \ Z
−

0
; 𝑠 ∈ C when |𝑧| < 1;

R (𝑠) > 1 when |𝑧| = 1) .

(1)

TheHurwitz-Lerch zeta function contains, as its special cases,
the Riemann zeta function 𝜁(𝑠), the Hurwitz zeta function
𝜁(𝑠, 𝑎), and the Lerch zeta function ℓ

𝑠
(𝜉) defined by

𝜁 (𝑠) :=

∞

∑
𝑛=1

1

𝑛𝑠
= Φ (1, 𝑠, 1) = 𝜁 (𝑠, 1) (R (𝑠) > 1) ,

𝜁 (𝑠, 𝑎) :=

∞

∑
𝑛=0

1

(𝑛 + 𝑎)
𝑠

= Φ (1, 𝑠, 𝑎) (R (𝑠) > 1; 𝑎 ∈ C \ Z
−

0
) ,

ℓ
𝑠
(𝜉) :=

∞

∑
𝑛=0

e2𝑛𝜋𝑖𝜉

(𝑛 + 1)
𝑠
= Φ (e2𝜋𝑖𝜉, 𝑠, 1) (R (𝑠) > 1; 𝜉 ∈ R) ,

(2)

respectively, but also such other important functions of
Analytic Number Theory as the Polylogarithmic function (or
de Jonquière’s function) Li

𝑠
(𝑧):

Li
𝑠
(𝑧) :=

∞

∑
𝑛=1

𝑧𝑛

𝑛𝑠
= 𝑧Φ (𝑧, 𝑠, 1)

(𝑠 ∈ C when |𝑧| < 1; R (𝑠) > 1 when |𝑧| = 1)

(3)

and the Lipschitz-Lerch zeta function 𝜙(𝜉, 𝑎, 𝑠) (see [1, p. 122,
Equation 2.5 (11)]):

𝜙 (𝜉, 𝑎, 𝑠) :=

∞

∑
𝑛=0

e2𝑛𝜋𝑖𝜉

(𝑛 + 𝑎)
𝑠
= Φ (e2𝜋𝑖𝜉, 𝑠, 𝑎)

(𝑎 ∈ C \ Z
−

0
; R (𝑠) > 0 when 𝜉 ∈ R \ Z; R (𝑠) > 1

when 𝜉 ∈ Z) .

(4)
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Indeed, the Hurwitz-Lerch zeta functionΦ(𝑧, 𝑠, 𝑎) defined in
(5) can be continued meromorphically to the whole complex
𝑠-plane, except for a simple pole at 𝑠 = 1 with its residue 1. It
is also well known that

Φ (𝑧, 𝑠, 𝑎) =
1

Γ (𝑠)
∫
∞

0

𝑡𝑠−1e−𝑎𝑡

1 − 𝑧e−𝑡
d𝑡

(R (𝑎) > 0;R (𝑠) > 0 when |𝑧| ≦ 1 (𝑧 ̸= 1) ;R (𝑠) > 1

when 𝑧 = 1) .
(5)

Motivated by the works of Goyal and Laddha [4], Lin and
Srivastava [5], Garg et al. [6], and other authors, Srivastava
et al. [7] (see also [8]) investigated various properties of a
natural multiparameter extension and generalization of the
Hurwitz-Lerch zeta functionΦ(𝑧, 𝑠, 𝑎)defined by (5) (see also
[9]). In particular, they considered the following function:

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎) :=

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝑛𝜌
𝑗

𝑛!∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝑛𝜎
𝑗

𝑧𝑛

(𝑛 + 𝑎)
𝑠

(𝑝, 𝑞 ∈ N
0
; 𝜆

𝑗
∈ C (𝑗 = 1, . . . , 𝑝) ;

𝑎, 𝜇
𝑗
∈ C \ Z

−

0
(𝑗 = 1, . . . , 𝑞) ;

𝜌
𝑗
, 𝜎

𝑘
∈ R

+

(𝑗 = 1, . . . , 𝑝; 𝑘 = 1, . . . , 𝑞) ;

Δ > −1 when 𝑠, 𝑧 ∈ C;

Δ = −1, 𝑠 ∈ C when |𝑧| < ∇
∗

;

Δ = −1, R (Ξ) >
1

2
when |𝑧| = ∇

∗

)

(6)

with

∇
∗

:= (

𝑝

∏
𝑗=1

𝜌
−𝜌
𝑗

𝑗
) ⋅ (

𝑞

∏
𝑗=1

𝜎
𝜎
𝑗

𝑗
) ,

Δ :=

𝑞

∑
𝑗=1

𝜎
𝑗
−

𝑝

∑
𝑗=1

𝜌
𝑗
,

Ξ := 𝑠 +

𝑞

∑
𝑗=1

𝜇
𝑗
−

𝑝

∑
𝑗=1

𝜆
𝑗
+
𝑝 − 𝑞

2
.

(7)

Here, and for the remainder of this paper, (𝜆)
𝜅
denotes

the Pochhammer symbol defined, in terms of the Gamma
function, by

(𝜆)
𝜅
:=
Γ (𝜆 + 𝜅)

Γ (𝜆)

=
{

{

{

𝜆 (𝜆 + 1) ⋅ ⋅ ⋅ (𝜆 + 𝑛 − 1) (𝜅 = 𝑛 ∈ N; 𝜆 ∈ C)

1 (𝜅 = 0; 𝜆 ∈ C \ {0}) .

(8)

It is being understood conventionally that (0)
0
:= 1 and

assumed tacitly that the Γ-quotient exists (see, for details,
[10, p. 21 et seq.]). In terms of the extended Hurwitz-Lerch
zeta function defined by (6), the following generalization of
several known integral representations arising from (5) was
given by Srivastava et al. [7] as follows:

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎)

=
1

Γ (𝑠)
∫
∞

0

𝑡
𝑠−1e−𝑎𝑡

⋅
𝑝
Ψ
∗

𝑞
[
(𝜆

1
, 𝜌

1
) , . . . , (𝜆

𝑝
, 𝜌

𝑝
) ;

(𝜇
1
, 𝜎

1
) , . . . , (𝜇

𝑞
, 𝜎

𝑞
) ;
𝑧e−𝑡] d𝑡

(min {R (𝑎) ,R (𝑠)} > 0) ,

(9)

provided that the integral exists.

Definition 1. The function
𝑙
Ψ∗

𝑚
or

𝑙
Ψ
𝑚
(𝑙, 𝑚 ∈ N

0
) involved

in the right-hand side of (9) is the well-known Fox-Wright
function, which is a generalization of the familiar generalized
hypergeometric function

𝑙
𝐹
𝑚
(𝑙, 𝑚 ∈ N

0
), with 𝑙 numer-

ator parameters 𝑎
1
, . . . , 𝑎

𝑙
and 𝑚 denominator parameters

𝑏
1
, . . . , 𝑏

𝑚
such that

𝑎
𝑗
∈ C (𝑗 = 1, . . . , 𝑙) , 𝑏

𝑗
∈ C \ Z

−

0
(𝑗 = 1, . . . , 𝑚) ,

(10)

defined by (see, for details, [11, p. 21 et seq.] and [10, p. 50 et
seq.])

𝑙
Ψ
∗

𝑚
[
(𝑎

1
, 𝐴

1
) , . . . , (𝑎

𝑙
, 𝐴

𝑙
) ;

(𝑏
1
, 𝐵

1
) , . . . , (𝑏

𝑚
, 𝐵

𝑚
) ;
𝑧 ]

:=

∞

∑
𝑛=0

(𝑎
1
)
𝐴
1
𝑛
⋅ ⋅ ⋅ (𝑎

𝑙
)
𝐴
𝑙
𝑛

(𝑏
1
)
𝐵
1
𝑛
⋅ ⋅ ⋅ (𝑏

𝑚
)
𝐵
𝑚
𝑛

𝑧
𝑛

𝑛!

=
Γ (𝑏

1
) ⋅ ⋅ ⋅ Γ (𝑏

𝑚
)

Γ (𝑎
1
) ⋅ ⋅ ⋅ Γ (𝑎

𝑙
) 𝑙
Ψ
𝑚
[
(𝑎

1
, 𝐴

1
) , . . . , (𝑎

𝑙
, 𝐴

𝑙
) ;

(𝑏
1
, 𝐵

1
) , . . . , (𝑏

𝑚
, 𝐵

𝑚
) ;
𝑧 ]

(𝐴
𝑗
> 0 (𝑗 = 1, . . . , 𝑙) ; 𝐵

𝑗
> 0 (𝑗 = 1, . . . , 𝑚) ;

1 +

𝑚

∑
𝑗=1

𝐵
𝑗
−

𝑙

∑
𝑗=1

𝐴
𝑗
≧ 0) ,

(11)

where the equality in the convergence condition holds true
for suitably bounded values of |𝑧| given by

|𝑧| < ∇ := (

𝑙

∏
𝑗=1

𝐴
−𝐴
𝑗

𝑗
) ⋅ (

𝑚

∏
𝑗=1

𝐵
𝐵
𝑗

𝑗
) . (12)

Recently, Srivastava [12] introduced and investigated a
significantly more general class of Hurwitz-Lerch zeta type
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functions by suitably modifying the integral representation
formula (9). Srivastava considered the following function:

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

=
1

Γ (𝑠)
∫
∞

0

𝑡
𝑠−1 exp(−𝑎𝑡 − 𝑏

𝑡𝜆
)

⋅
𝑝
Ψ
∗

𝑞
[
(𝜆

1
, 𝜌

1
) , . . . , (𝜆

𝑝
, 𝜌

𝑝
) ;

(𝜇
1
, 𝜎

1
) , . . . , (𝜇

𝑞
, 𝜎

𝑞
) ;
𝑧e−𝑡] d𝑡

(min {R (𝑎) ,R (𝑠)} > 0; R (𝑏) ≧ 0; 𝜆 ≧ 0) ,

(13)

so that, clearly, we have the following relationship:

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 0, 𝜆)

= Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎)

= e𝑏Φ(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 0) .

(14)

In its special case when

𝑝 − 1 = 𝑞 = 0, (𝜆
1
= 𝜇; 𝜌

1
= 1) , (15)

the definition (13) would reduce to the following form:

Θ
𝜆

𝜇
(𝑧, 𝑠, 𝑎; 𝑏)

:=
1

Γ (𝑠)
∫
∞

0

𝑡
𝑠−1 exp(−𝑎𝑡 − 𝑏

𝑡𝜆
) (1 − 𝑧e−𝑡)

−𝜇

d𝑡

(min {R (𝑎) ,R (𝑠)} > 0; R (𝑏) ≧ 0; 𝜆 ≧ 0; 𝜇 ∈ C) ,

(16)

where we have assumed further that

R (𝑠) > 0 when 𝑏 = 0, |𝑧| ≦ 1 (𝑧 ̸= 1) (17)

or

R (𝑠 − 𝜇) > 0 when 𝑏 = 0, 𝑧 = 1, (18)

provided that the integral (16) exists. The function
Θ𝜆

𝜇
(𝑧, 𝑠, 𝑎; 𝑏) was studied by Raina and Chhajed [13, Eq.

(1.6)] and, more recently, by Srivastava et al. [14].
As a particular interesting case of the function

Θ𝜆

𝜇
(𝑧, 𝑠, 𝑎; 𝑏), we recall the following function:

Θ
𝜆

𝜇
(𝑧, 𝑠, 𝑎; 0) = Φ

∗

𝜇
(𝑧, 𝑠, 𝑎) =

1

Γ (𝑠)
∫
∞

0

𝑡𝑠−1e−𝑎𝑡

(1 − 𝑧e−𝑡)𝜇
d𝑡

(R (𝑎) > 0; R (𝑠) > 0 when |𝑧| ≦ 1 (𝑧 ̸= 1) ;

R (𝑠 − 𝜇) > 0 when 𝑧 = 1) .

(19)

The functionΦ∗

𝜇
(𝑧, 𝑠, 𝑎)was introduced byGoyal and Laddha

[4] as follows:

Φ
∗

𝜇
(𝑧, 𝑠, 𝑎) :=

∞

∑
𝑛=0

(𝜇)
𝑛

(𝑎 + 𝑛)
𝑠

𝑧𝑛

𝑛!
. (20)

Another special case of the function Θ𝜆

𝜇
(𝑧, 𝑠, 𝑎; 𝑏) that is

worthy to mention occurs when 𝜆 = 𝜇 = 1 and 𝑧 = 1. We
have

Θ
1

1
(1, 𝑠, 𝑎; 𝑏)

= 𝜁
𝑏
(𝑠, 𝑎)

:=
1

Γ (𝑠)
∫
∞

0

𝑡𝑠−1

1 − e−𝑡
exp(−𝑎𝑡 − 𝑏

𝑡
) d𝑡,

(21)

where the function 𝜁
𝑏
(𝑠, 𝑎) is the extended Hurwitz zeta

function introduced by Chaudhry and Zubair [15].
In his work, Srivastava [12, p. 1489, Eq. (2.1)] also

derived the following series representation of the function
Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆):

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

=
1

𝜆Γ (𝑠)

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

(𝑎 + 𝑛)
𝑠

⋅ ∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

⋅ 𝐻
2,0

0,2
[(𝑎 + 𝑛) 𝑏

1/𝜆

| (𝑠, 1), (0,
1

𝜆
)]

𝑧
𝑛

𝑛!
(𝜆 > 0) ,

(22)

provided that both sides of (22) exist.

Definition 2. The𝐻-function involved in the right-hand side
of (22) is the well-known Fox’s 𝐻-function defined by [16,
Definition 1.1] (see also [10, 17])

𝐻
𝑚,𝑛

p,q (𝑧)

= 𝐻
𝑚,𝑛

p,q [𝑧 |
(𝑎

1
, 𝐴

1
) , . . . , (𝑎p, 𝐴p)

(𝑏
1
, 𝐵

1
) , . . . , (𝑏q, 𝐵q)

]

=
1

2𝜋𝑖
∫
L

Ξ (𝑠) 𝑧
−𝑠d𝑠 (𝑧 ∈ C \ {0} ;

󵄨󵄨󵄨󵄨arg (𝑧)
󵄨󵄨󵄨󵄨 < 𝜋) ,

(23)

where

Ξ (𝑠) =
∏

𝑚

𝑗=1
Γ (𝑏

𝑗
+ 𝐵

𝑗
𝑠) ⋅ ∏

𝑛

𝑗=1
Γ (1 − 𝑎

𝑗
− 𝐴

𝑗
𝑠)

∏
p

𝑗=𝑛+1
Γ (𝑎

𝑗
+ 𝐴

𝑗
𝑠) ⋅ ∏

q

𝑗=𝑚+1
Γ (1 − 𝑏

𝑗
− 𝐵

𝑗
𝑠)
.

(24)

An empty product is interpreted as 1, 𝑚, 𝑛, p, and q are
integers such that 1 ≦ 𝑚 ≦ q, 0 ≦ 𝑛 ≦ p, 𝐴

𝑗
> 0 (𝑗 =

1, . . . , p), 𝐵
𝑗
> 0 (𝑗 = 1, . . . , q), 𝑎

𝑗
∈ C (𝑗 = 1, . . . , p),

𝑏
𝑗
∈ C (𝑗 = 1, . . . , q), andL is a suitable Mellin-Barnes type

contour separating the poles of the gamma functions

{Γ (𝑏
𝑗
+ 𝐵

𝑗
𝑠)}

𝑚

𝑗=1

(25)

from the poles of the gamma functions

{Γ (1 − 𝑎
𝑗
+ 𝐴

𝑗
𝑠)}

𝑛

𝑗=1

. (26)
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It is important to recall that Srivastava [12, p. 1490,
Eq. (2.10)] presented another series representation for the
function Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) involving the Laguerre
polynomials 𝐿(𝛼)

𝑛
(𝑥) of order 𝛼 and degree 𝑛 in 𝑥 generated

by (see, for details, [10])

(1 − 𝑡)
−𝛼−1 exp(− 𝑥𝑡

1 − 𝑡
)

=

∞

∑
𝑛=0

𝐿
(𝛼)

𝑛
(𝑥) 𝑡

𝑛

(|𝑡| < 1; 𝛼 ∈ C) .

(27)

Explicitly, it was proven by Srivastava [12, p. 1490, Eq. (2.10)]
that

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

=
e−𝑏

Γ (𝑠)

∞

∑
𝑛=0

𝑛

∑
𝑘=0

(−1)
𝑘

(
𝑛

𝑘
) ⋅ Γ (𝑠 + 𝜆 (𝛼 + 𝑘 + 1))

⋅ 𝐿
(𝛼)

𝑛
(𝑏)Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠 + 𝜆 (𝛼 + 𝑗 + 1) , 𝑎)

(R (𝑎) > 0; R (𝑠 + 𝜆𝛼) > −𝜆) ,

(28)

provided that each member of (28) exists and

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎) (29)

being given by (9).
Motivated by a number of recent works by the present

authors [18–20] and also of those of several other authors [4–
9, 21, 22], this paper aims to provide many new relationships
involving the new family of the 𝜆-generalized Hurwitz-Lerch
zeta functionΦ(𝜌

1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆).

2. Pochhammer Contour Integral
Representation for Fractional Derivative

Themost familiar representation for the fractional derivative
of order 𝛼 of 𝑧𝑝𝑓(𝑧) is the Riemann-Liouville integral [23]
(see also [24–26]); that is,

D
𝛼

𝑧
{𝑧

𝑝

𝑓 (𝑧)} =
1

Γ (−𝛼)
∫
𝑧

0

𝑓 (𝜉) 𝜉
𝑝

(𝜉 − 𝑧)
−𝛼−1d𝜉

(R (𝛼) < 0; R (𝑝) > 1) ,

(30)

where the integration is carried out along a straight line from
0 to 𝑧 in the complex 𝜉-plane. By integrating by part𝑚 times,
we obtain

D
𝛼

𝑧
{𝑧

𝑝

𝑓 (𝑧)} =
d𝑚

d𝑧𝑚
{D

𝛼−𝑚

𝑧
{𝑧

𝑝

𝑓 (𝑧)}} . (31)

This allows us to modify the restrictionR(𝛼) < 0 toR(𝛼) <
𝑚 (see [26]).

Another representation for the fractional derivative is
based on the Cauchy integral formula. This representation,

Im(𝜉)

Branch line for

Branch line for

exp[−(a + 1)ln(g(𝜉) − g(z))]

exp[p(ln(g(𝜉)))]

C1

C2

C3

C4

Re(𝜉)

z

a

g
−1(0)

Figure 1: Pochhammer’s contour.

too, has beenwidely used inmany interesting papers (see, e.g.,
the works of Osler [27–30]).

The relatively less restrictive representation of the frac-
tional derivative according to parameters appears to be the
one based on the Pochhammer’s contour integral introduced
by Tremblay [31, 32].

Definition 3. Let 𝑓(𝑧) be analytic in a simply-connected
region R of the complex 𝑧-plane. Let 𝑔(𝑧) be regular and
univalent onR and let𝑔−1(0) be an interior point ofR.Then,
if 𝛼 is not a negative integer, 𝑝 is not an integer, and 𝑧 is in
R \ {𝑔−1(0)}, we define the fractional derivative of order 𝛼 of
𝑔(𝑧)

𝑝

𝑓(𝑧) with respect to 𝑔(𝑧) by

𝐷
𝛼

𝑔(𝑧)
{[𝑔 (𝑧)]

𝑝

𝑓 (𝑧)}

=
e−𝑖𝜋𝑝Γ (1 + 𝛼)
4𝜋 sin (𝜋𝑝)

× ∫
𝐶(𝑧+,𝑔

−1
(0)+,𝑧−,𝑔

−1
(0)−;𝐹(𝑎),𝐹(𝑎))

⋅
𝑓 (𝜉) [𝑔 (𝜉)]

𝑝

𝑔󸀠 (𝜉)

[𝑔 (𝜉) − 𝑔 (𝑧)]
𝛼+1

d𝜉.

(32)

For nonintegers 𝛼 and 𝑝, the functions 𝑔(𝜉)𝑝 and [𝑔(𝜉) −
𝑔(𝑧)]

−𝛼−1 in the integrand have two branch lines which begin,
respectively, at 𝜉 = 𝑧 and 𝜉 = 𝑔−1(0), and both branches pass
through the point 𝜉 = 𝑎 without crossing the Pochhammer
contour𝑃(𝑎) = {𝐶

1
∪𝐶

2
∪𝐶

3
∪𝐶

4
} at any other point as shown

in Figure 1. Here, 𝐹(𝑎) denotes the principal value of the
integrand in (32) at the beginning and the ending point of the
Pochhammer contour 𝑃(𝑎) which is closed on the Riemann
surface of the multiple-valued function 𝐹(𝜉).

Remark 4. InDefinition 3, the function𝑓(𝑧)must be analytic
at 𝜉 = 𝑔

−1(0). However, it is interesting to note here that if
we could also allow 𝑓(𝑧) to have an essential singularity at
𝜉 = 𝑔−1(0), then (32) would still be valid.

Remark 5. In case the Pochhammer contour never crosses
the singularities at 𝜉 = 𝑔−1(0) and 𝜉 = 𝑧 in (32), then we
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know that the integral is analytic for all 𝑝 and for all 𝛼 and
for 𝑧 in R \ {𝑔−1(0)}. Indeed, in this case, the only possible
singularities of𝐷𝛼

𝑔(𝑧)
{[𝑔(𝑧)]

𝑝

𝑓(𝑧)} are 𝛼 = −1, −2, −3, . . . and
𝑝 = 0, ±1, ±2, . . ., which can directly be identified from the
coefficient of the integral (32). However, by integrating by
parts 𝑁 times the integral in (32) by two different ways, we
can show that𝛼 = −1, −2, . . . and𝑝 = 0, 1, 2, . . . are removable
singularities (see, for details, [31]).

It is well known that [33, p. 83, Equation (2.4)]

𝐷
𝛼

𝑧
{𝑧

𝑝

} =
Γ (1 + 𝑝)

Γ (1 + 𝑝 − 𝛼)
𝑧
𝑝−𝛼

(R (𝑝) > −1) . (33)

Adopting the Pochhammer based representation for the
fractional derivative modifies the restriction to the case when
𝑝 is not a negative integer.

Now, by using (33) in conjunction with the series repre-
sentation (22) for Φ(𝜌

1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆), we obtain the
following important fractional derivative formula that will
play an important role in our present investigation:

𝐷
𝛼

𝑧
{𝑧

𝛽−1

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=
1

𝜆Γ (𝑠)

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

(𝑎 + 𝑛)
𝑠

⋅ ∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

⋅ 𝐻
2,0

0,2
[(𝑎 + 𝑛)

𝑏
1/𝜆

| (𝑠, 1), (0,
1

𝜆
)]𝐷

𝛼

𝑧
{𝑧

𝛽−1
𝑧𝑛

𝑛!
}

=
Γ (𝛽)

𝜆Γ (𝑠) Γ (𝛽 − 𝛼)

∞

∑
𝑛=0

(𝛽)
𝑛

(𝛽 − 𝛼)
𝑛

⋅

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

(𝑎 + 𝑛)
𝑠

⋅ ∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

⋅ 𝐻
2,0

0,2
[(𝑎 + 𝑛) 𝑏

1/𝜆

| (𝑠, 1), (0,
1

𝜆
)]

𝑧
𝑛+𝛽−𝛼−1

𝑛!

=
Γ (𝛽)

Γ (𝛽 − 𝛼)
𝑧
𝛽−𝛼−1

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝛽;𝜇
1
,...,𝜇
𝑞
,𝛽−𝛼

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

(𝜆 > 0; 𝛽 − 1 not a negative integer) .
(34)

3. Important Results Involving
Fractional Calculus

In this section, we recall six fundamental theorems related
to fractional calculus that will play central roles in our
work. Each of these theorems is a fundamental formula
related to the generalized chain rule for fractional derivatives,
the Taylor-like expansions in terms of different types of
functions, and the generalized Leibniz rules for fractional
derivatives.

First of all, Osler [27, p. 290, Theorem 2] discovered a
fundamental relation fromwhich he deduced the generalized

chain rule for the fractional derivatives.This result is recalled
here as Theorem 6 below.

Theorem 6. Let 𝑓(𝑔−1(𝑧)) and 𝑓(ℎ−1(𝑧)) be defined and
analytic in the simply-connected region R of the complex 𝑧-
plane and let the origin be an interior or boundary point of
R. Suppose also that 𝑔−1(𝑧) and ℎ−1(𝑧) are regular univalent
functions on R and that ℎ−1(0) = 𝑔−1(0). Let ∮𝑓(𝑔−1(𝑧))d𝑧
vanish over simple closed contour inR∪{0} through the origin.
Then the following relation holds true:

𝐷
𝛼

𝑔(𝑧)
{𝑓 (𝑧)} = 𝐷

𝛼

ℎ(𝑧)
{
𝑓 (𝑧) 𝑔

󸀠(𝑧)

ℎ󸀠(𝑧)
(
ℎ(𝑤) − ℎ(𝑧)

𝑔(𝑤) − 𝑔(𝑧)
)

𝛼+1

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=𝑧
.

(35)

Relation (35) allows us to obtain very easily known
and new summation formulas involving special functions of
mathematical physics.

By applying the relation (35), Gaboury and Tremblay [34]
proved the following corollarywhichwill be useful in the next
section.

Corollary 7. Under the hypotheses of Theorem 6, let 𝑝 be a
positive integer. Then the following relation holds true:

𝑧
𝑝
𝑂
𝛼

𝛽
{𝑓 (𝑧)}

= 𝑝(𝑧
𝑝−1

)
−𝛼

⋅
𝑧

𝑂
𝛼

𝛽
{𝑓 (𝑧) (𝑧

𝑝−1

)
𝛼

𝑝−1

∏
𝑠=1

(1 −
𝑧

𝑤
e−(2𝜋𝑖𝑠)/𝑝)

𝛽−𝛼−1

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=𝑧

,

(36)

where

𝑔(𝑧)
𝑂
𝛼

𝛽
{⋅ ⋅ ⋅ } :=

Γ (𝛽)

Γ (𝛼)
[𝑔 (𝑧)]

1−𝛽

𝐷
𝛼−𝛽

𝑔(𝑧)
{[𝑔 (𝑧)]

𝛼−1

⋅ ⋅ ⋅ } .

(37)

Next, in the year 1971, Osler [35] obtained the following
generalized Taylor-like series expansion involving fractional
derivatives.

Theorem 8. Let 𝑓(𝑧) be an analytic function in a simply-
connected regionR. Let 𝛼 and 𝛾 be arbitrary complex numbers
and let

𝜃 (𝑧) = (𝑧 − 𝑧
0
) 𝑞 (𝑧) (38)

with 𝑞(𝑧) a regular and univalent function without any zero in
R. Let 𝑎 be a positive real number and let

𝐾

={0, 1, . . . , [𝑐] ([𝑐] 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑛𝑜𝑡 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑐)} .

(39)

Let 𝑏 and 𝑧
0
be two points inR such that 𝑏 ̸= 𝑧

0
and let

𝜔 = exp (2𝜋𝑖
𝑎
) . (40)
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Then the following relationship holds true:

∑
𝑘∈𝐾

𝑐
−1

𝜔
−𝛾𝑘

𝑓 (𝜃
−1

(𝜃 (𝑧) 𝜔
𝑘

))

=

∞

∑
𝑛=−∞

[𝜃 (𝑧)]
𝑐𝑛+𝛾

Γ (𝑐𝑛 + 𝛾 + 1)

⋅𝐷
𝑐𝑛+𝛾

𝑧−𝑏
{𝑓 (𝑧) 𝜃

󸀠

(𝑧) (
𝑧−𝑧

0

𝜃 (𝑧)
)

𝑐𝑛+𝛾+1

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
0

(
󵄨󵄨󵄨󵄨𝑧−𝑧0

󵄨󵄨󵄨󵄨=
󵄨󵄨󵄨󵄨𝑧0
󵄨󵄨󵄨󵄨) .

(41)

In particular, if 0 < 𝑐 ≦ 1 and 𝜃(𝑧) = (𝑧 − 𝑧
0
), then 𝑘 = 0

and the formula (41) reduces to the following form:

𝑓 (𝑧) = 𝑐

∞

∑
𝑛=−∞

(𝑧 − 𝑧
0
)
𝑐𝑛+𝛾

Γ(𝑐𝑛 + 𝛾 + 1)
𝐷

𝑐𝑛+𝛾

𝑧−𝑏
{𝑓(𝑧)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
0

. (42)

This last formula (42) is usually referred to as the Taylor-
Riemann formula and has been studied in several papers
[29, 36–39].

We next recall that Tremblay et al. [40] discovered the
power series of an analytic function 𝑓(𝑧) in terms of the
rational expression ((𝑧−𝑧

1
)/(𝑧−𝑧

2
)), where 𝑧

1
and 𝑧

2
are two

arbitrary points inside the regionR of analyticity of 𝑓(𝑧). In
particular, they obtained the following result.

Theorem 9. (i) Let 𝑐 be real and positive and let

𝜔 = exp(2𝜋𝑖
𝑎
) . (43)

(ii) Let 𝑓(𝑧) be analytic in the simply-connected region R
with 𝑧

1
and 𝑧

2
being interior points of R. (iii) Let the set of

curves

{𝐶 (𝑡) : 𝐶 (𝑡) ⊂R, 0 < 𝑡 ≦ 𝑟} (44)

be defined by

𝐶 (𝑡) = 𝐶
1
(𝑡) ∪ 𝐶

2
(𝑡)

= {𝑧 :
󵄨󵄨󵄨󵄨𝜆𝑡 (𝑧1, 𝑧2; 𝑧)

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜆
𝑡
(𝑧

1
, 𝑧

2
;
𝑧
1
+ 𝑧

2

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
} ,

(45)

where

𝜆
𝑡
(𝑧

1
, 𝑧

2
; 𝑧) = [𝑧 −

𝑧
1
+ 𝑧

2

2
+ 𝑡 (

𝑧
1
− 𝑧

2

2
)]

⋅ [𝑧 − (
𝑧
1
+ 𝑧

2

2
) − 𝑡 (

𝑧
1
− 𝑧

2

2
)] ,

(46)

which are the Bernoulli type lemniscates (see Figure 2) with
center located at (𝑧

1
+ 𝑧

2
)/2 and with double-loops in which

one loop 𝐶
1
(𝑡) leads around the focus point

𝑧
1
+ 𝑧

2

2
+ (

𝑧
1
− 𝑧

2

2
) 𝑡 (47)

and the other loop 𝐶
2
(𝑡) encircles the focus point
𝑧
1
+ 𝑧

2

2
− (

𝑧
1
− 𝑧

2

2
) 𝑡 (48)

Im(𝜉)

Branch line for

Branch line for

C1

C2

z1

z2

Re(𝜉)

z

c =
z1 + z2

2

(𝜉 − z2)
𝜇
𝜃(𝜉)

a−𝛾−1

(𝜉 − z1)
�
𝜃(𝜉)

a−𝛾−1

Figure 2: Multiloops contour.

for each 𝑡 such that 0 < 𝑡 ≦ 𝑟. (iv) Let

[(𝑧 − 𝑧
1
) (𝑧 − 𝑧

2
)]

𝜆

= exp (𝜆 ln (𝜃 ((𝑧 − 𝑧
1
) (𝑧 − 𝑧

2
))))

(49)

denote the principal branch of that function which is continu-
ous and inside 𝐶(𝑟), cut by the respective two branch lines 𝐿

±

defined by

𝐿
±
=

{{{

{{{

{

{𝑧 : 𝑧 =
𝑧
1
+ 𝑧

2

2
± 𝑡 (

𝑧
1
− 𝑧

2

2
)} (0 ≦ 𝑡 ≦ 1)

{𝑧 : 𝑧 =
𝑧
1
+ 𝑧

2

2
± 𝑖𝑡 (

𝑧
1
− 𝑧

2

2
)} (𝑡 < 0)

(50)

such that ln((𝑧−𝑧
1
)(𝑧−𝑧

2
)) is real when (𝑧−𝑧

1
)(𝑧−𝑧

2
) > 0. (v)

Let 𝑓(𝑧) satisfy the conditions of Definition 3 for the existence
of the fractional derivative of (𝑧 − 𝑧

2
)
𝑝

𝑓(𝑧) of order 𝛼 for 𝑧 ∈
R \ {𝐿

+
∪ 𝐿

−
}, denoted by𝐷𝛼

𝑧−𝑧
2

{(𝑧 − 𝑧
2
)
𝑝

𝑓(𝑧)}, where 𝛼 and
𝑝 are real or complex numbers. (vi) Let

𝐾 = {𝑘 : 𝑘 ∈ N, arg(𝜆
𝑡
(𝑧

1
, 𝑧

2
,
𝑧
1
+ 𝑧

2

2
))

< arg(𝜆
𝑡
(𝑧

1
, 𝑧

2
,
𝑧
1
+ 𝑧

2

2
)) +

2𝜋𝑘

𝑎

< arg(𝜆
𝑡
(𝑧

1
, 𝑧

2
,
𝑧
1
+ 𝑧

2

2
)) + 2𝜋} .

(51)

Then, for arbitrary complex numbers 𝜇,],𝛾 and for 𝑧 on 𝐶
1
(1)

defined by

𝜉 =
𝑧
1
+ 𝑧

2

2
+
𝑧
1
− 𝑧

2

2
√1 + e𝑖𝜃 (−𝜋 < 𝜃 < 𝜋) ,

∑
𝑘∈𝐾

𝑐−1𝜔−𝛾𝑘

𝑧
1
− 𝑧

2

𝑓 (𝜙
−1

(𝜔
𝑘

𝜙 (𝑧)))

× [𝜙
−1

(𝜔
𝑘

𝜙(𝑧)) − 𝑧
1
]
]
[𝜙

−1

(𝜔
𝑘

𝜙(𝑧)) − 𝑧
2
]
𝜇

=

∞

∑
𝑛=−∞

e𝑖𝜋𝑐(𝑛+1)sin [(𝜇 + 𝑐𝑛 + 𝛾) 𝜋]
sin [(𝜇 − 𝑐 + 𝛾) 𝜋] Γ (1 − ] + 𝑐𝑛 + 𝛾)

⋅𝐷
−]+𝑐𝑛+𝛾
𝑧−𝑧
2

{(𝑧 − 𝑧
2
)
𝜇+𝑐𝑛+𝛾−1

𝑓(𝑧)}
󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
1

[𝜙 (𝑧)]
𝑐𝑛+𝛾

,

(52)
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where

𝜙 (𝑧) =
𝑧 − 𝑧

1

𝑧 − 𝑧
2

. (53)

The case 0 < 𝑐 ≦ 1 of Theorem 9 reduces to the following
form:

𝑐−1𝑓 (𝑧) (𝑧 − 𝑧
1
)
]
(𝑧 − 𝑧

2
)
𝜇

𝑧
1
− 𝑧

2

=

∞

∑
𝑛=−∞

e𝑖𝜋𝑐(𝑛+1) sin [(𝜇 + 𝑐𝑛 + 𝛾) 𝜋]
sin [(𝜇 − 𝑐 + 𝛾) 𝜋] Γ (1 − ] + 𝑐𝑛 + 𝛾)

⋅𝐷
−]+𝑐𝑛+𝛾
𝑧−𝑧
2

{(𝑧 − 𝑧
2
)
𝜇+𝑐𝑛+𝛾−1

𝑓(𝑧)}
󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
1

(
𝑧 − 𝑧

1

𝑧 − 𝑧
2

)

𝑐𝑛+𝛾

.

(54)

Tremblay and Fugère [41] developed the power series
of an analytic function 𝑓(𝑧) in terms of the function (𝑧 −
𝑧
1
)(𝑧 − 𝑧

2
), where 𝑧

1
and 𝑧

2
are two arbitrary points inside

the analyticity region R of 𝑓(𝑧). Explicitly, they gave the
following theorem.

Theorem 10. Under the assumptions ofTheorem 9, the follow-
ing expansion formula holds true:

∑
𝑘∈𝐾

𝑐
−1

𝜔
−𝛾𝑘

[(
𝑧
2
− 𝑧

1
+ √Δ

𝑘

2
)

𝛼

(
𝑧
1
− 𝑧

2
+ √Δ

𝑘

2
)

𝛽

⋅ 𝑓 (
𝑧
1
+ 𝑧

2
+ √Δ

𝑘

2
)

− e𝑖𝜋(𝛼−𝛽)
sin [(𝛼 + 𝑐 − 𝛾) 𝜋]
sin [(𝛽 + 𝑐 − 𝛾) 𝜋]

⋅ (
𝑧
2
− 𝑧

1
− √Δ

𝑘

2
)

𝛼

×(
𝑧
1
− 𝑧

2
− √Δ

𝑘

2
)

𝛽

𝑓(
𝑧
1
+ 𝑧

2
− √Δ

𝑘

2
)]

=

∞

∑
𝑛=−∞

sin [(𝛽 − 𝑐𝑛 − 𝛾) 𝜋]
sin [(𝛽 − 𝑐 − 𝛾) 𝜋]

e−𝑖𝜋𝑐(𝑛+1)[𝜃 (𝑧)]𝑐𝑛+𝛾

Γ (1 − 𝛼 + 𝑐𝑛 + 𝛾)

⋅ 𝐷
−𝛼+𝑐𝑛+𝛾

𝑧−𝑧
2

×{(𝑧−𝑧
2
)
𝛽−𝑐𝑛−𝛾−1

(
𝜃 (𝑧)

(𝑧−𝑧
2
) (𝑧−𝑧

1
)
)

−𝑐𝑛−𝛾−1

𝜃
󸀠

(𝑧)𝑓 (𝑧)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
1

,

(55)

where

Δ
𝑘
= (𝑧

1
− 𝑧

2
)
2

+ 4𝑉 (𝜔
𝑘

𝜃 (𝑧)) ,

𝑉 (𝑧) =

∞

∑
𝑟=1

𝐷
𝑟−1

𝑧
{[𝑞 (𝑧)]

−𝑟

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑧=0

𝑧𝑟

𝑟!
,

𝜃 (𝑧) = (𝑧 − 𝑧
1
) (𝑧 − 𝑧

2
) 𝑞 ((𝑧 − 𝑧

1
) (𝑧 − 𝑧

2
)) .

(56)

As a special case, if we set 0 < 𝑐 ≦ 1, 𝑞(𝑧) = 1 (𝜃(𝑧) =

(𝑧 − 𝑧
1
)(𝑧 − 𝑧

2
)), and 𝑧

2
= 0 in (55), we obtain

𝑓 (𝑧) = 𝑐𝑧
−𝛽

(𝑧 − 𝑧
1
)
−𝛼

×

∞

∑
𝑛=−∞

sin [(𝛽 − 𝑐𝑛 − 𝛾) 𝜋]
sin [(𝛽 + 𝑐 − 𝛾) 𝜋]

e𝑖𝜋𝑐(𝑛+1)[𝑧(𝑧 − 𝑧
1
)]
𝑐𝑛+𝛾

Γ (1 − 𝛼 + 𝑐𝑛 + 𝛾)

⋅𝐷
−𝛼+𝑐𝑛+𝛾

𝑧
{𝑧

𝛽−𝑐𝑛−𝛾−1

(𝑧 + 𝑤 − 𝑧
1
)𝑓(𝑧)}

󵄨󵄨󵄨󵄨󵄨
𝑧=𝑧
1

(𝑤=𝑧)

.

(57)

Finally, we give two generalized Leibniz rules for frac-
tional derivatives. Theorem 11 is a slightly modified theorem
obtained in 1970 by Osler [28]. Theorem 12 was given,
some years ago, by Tremblay et al. [42] with the help of
the properties of Pochhammer’s contour representation for
fractional derivatives.

Theorem 11. (i) Let R be a simply-connected region contain-
ing the origin. (ii) Let 𝑢(𝑧) and V(𝑧) satisfy the conditions of
Definition 3 for the existence of the fractional derivative. Then,
forR(𝑝 + 𝑞) > −1 and 𝛾 ∈ C, the following Leibniz rule holds
true:

𝐷
𝛼

𝑧
{𝑧

𝑝+𝑞

𝑢 (𝑧) V (𝑧)}

=

∞

∑
𝑛=−∞

(
𝛼

𝛾 + 𝑛
)𝐷

𝛼−𝛾−𝑛

𝑧
{𝑧

𝑝

𝑢 (𝑧)}𝐷
𝛾+𝑛

𝑧
{𝑧

𝑞V (𝑧)} .
(58)

Theorem 12. (i) LetR be a simply-connected region contain-
ing the origin. (ii) Let 𝑢(𝑧) and V(𝑧) satisfy the conditions of
Definition 3 for the existence of the fractional derivative. (iii)
Let U ⊂ R be the region of analyticity of the function 𝑢(𝑧)
and letV ⊂R be the region of analyticity of the function V(𝑧).
Then, for

𝑧 ̸= 0, 𝑧 ∈ U ∩V, R (1 − 𝛽) > 0, (59)

the following product rule holds true:

𝐷
𝛼

𝑧
{𝑧

𝛼+𝛽−1

𝑢 (𝑧) V (𝑧)}

=
𝑧Γ (1 + 𝛼) sin (𝛽𝜋) sin (𝜇𝜋) sin [(𝛼 + 𝛽 − 𝜇) 𝜋]
sin [(𝛼 + 𝛽) 𝜋] sin [(𝛽 − 𝜇 − ]) 𝜋] sin [(𝜇 + ]) 𝜋]

⋅

∞

∑
𝑛=−∞

𝐷𝛼+]+1−𝑛
𝑧

{𝑧𝛼+𝛽−𝜇−1−𝑛𝑢 (𝑧)}𝐷
−1−]+𝑛
𝑧

{𝑧𝜇−1+𝑛V (𝑧)}
Γ (2 + 𝛼 + ] − 𝑛) Γ (−] + 𝑛)

.

(60)

4. Main Expansion Formulas

This section is devoted to the presentation of the new relations
involving the new family of the 𝜆-generalized Hurwitz-Lerch
zeta functionΦ(𝜌

1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆).
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Theorem 13. Under the hypotheses of Corollary 7, let 𝑘 be a
positive integer. Then the following relation holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,1/𝑘,𝜎

1
,...,𝜎
𝑞
,1/𝑘)

𝜆
1
,...,𝜆
𝑝
,𝛼;𝜇
1
,...,𝜇
𝑞
,𝛽

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

=
𝑘Γ (𝛽) Γ (𝑘𝛼)

𝜆Γ (𝑠) Γ (𝛼) Γ (𝛽 + (𝑘 − 1) 𝛼)

⋅

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

(𝑘𝛼)
𝑛
𝐻2,0

0,2
[(𝑎+𝑛) 𝑏

1/𝜆 | (𝑠, 1) , (0, (1/𝜆))]

(𝑎 + 𝑛)
𝑠

⋅ ∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

(𝛽 + (𝑘 − 1) 𝛼)
𝑛

×
𝑧𝑛

𝑛!

⋅ 𝐹
(𝑘−1)

𝐷
[𝑘𝛼 + 𝑛, 1 + 𝛼 − 𝛽, . . . , 1 + 𝛼 − 𝛽; 𝛽 + (𝑘 − 1) 𝛼 + 𝑛;

e−2𝜋𝑖/𝑘, . . . , e−2(𝑘−1)𝜋𝑖/𝑘] ,
(61)

where 𝜆 > 0 and 𝐹(𝑛)
𝐷

denotes the Lauricella function of 𝑛
variables defined by [11, p. 60]

𝐹
(𝑛)

𝐷
[𝑎, 𝑏

1
, . . . , 𝑏

𝑛
; 𝑐; 𝑥

1
, . . . , 𝑥

𝑛
]

=

∞

∑
𝑚
1
,...,𝑚
𝑛
=0

(𝑎)
𝑚
1
+⋅⋅⋅+𝑚

𝑛

(𝑏
1
)
𝑚
1

⋅ ⋅ ⋅ (𝑏
𝑛
)
𝑚
𝑛

(𝑐)
𝑚
1
+⋅⋅⋅+𝑚

𝑛

𝑥
𝑚
1

1

𝑚
1
!
⋅ ⋅ ⋅

𝑥
𝑚
𝑛

𝑛

𝑚
𝑛
!

(max {󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 , . . . ,

󵄨󵄨󵄨󵄨𝑥𝑛
󵄨󵄨󵄨󵄨} < 1) ,

(62)

provided that both sides of (61) exist.

Proof. Putting 𝑝 = 𝑘 and letting 𝑓(𝑧) =

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) in Corollary 7, we get

𝑧
𝑘
𝑂
𝛼

𝛽
{Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=
𝑘

(𝑧𝑘−1)
𝛼

⋅
𝑧
𝑂
𝛼

𝛽
{Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) (𝑧
𝑘−1

)
𝛼

⋅

𝑘−1

∏
𝑠=1

(1 −
𝑧

𝑤
e−2𝜋𝑖𝑠/𝑘)

𝛽−𝛼−1

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑤=𝑧

.

(63)

With the help of the definition of
𝑧
𝑂𝛼

𝛽
given by (37), we find

for the left-hand side of (63) that

𝑧
𝑘
𝑂
𝛼

𝛽
{Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

= Φ
(𝜌
1
,...,𝜌
𝑝
,1/𝑘,𝜎

1
,...,𝜎
𝑞
,1/𝑘)

𝜆
1
,...,𝜆
𝑝
,𝛼;𝜇
1
,...,𝜇
𝑞
,𝛽

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) .

(64)

We now expand each factor in the product in (63) in
power series and replace the generalized Hurwitz-Lerch zeta

function by its 𝐻-function series representation. We, thus,
find for the right-hand side of (63) that

𝑘

(𝑧𝑘−1)
𝛼

𝑧

𝑂
𝛼

𝛽

×
{

{

{

1

𝜆Γ (𝑠)

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

𝑧𝑛+(𝑘−1)𝛼

𝑛!(𝑎 + 𝑛)
𝑠

⋅ ∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

𝐻
2,0

0,2

× [(𝑎 + 𝑛) 𝑏
1/𝜆

| (𝑠, 1), (0,
1

𝜆
)]

⋅

∞

∑
𝑚
1
,...,𝑚
𝑘−1

=0

(1 + 𝛼 − 𝛽)
𝑚
1

⋅ ⋅ ⋅ (1 + 𝛼 − 𝛽)
𝑚
𝑘−1

⋅
((𝑧/𝑤) e−2𝜋𝑖/𝑘)

𝑚
1

𝑚
1
!

⋅ ⋅ ⋅
((𝑧/𝑤) e−2(𝑘−1)𝜋𝑖/𝑘)

𝑚
𝑘−1

𝑚
𝑘−1
!

}}}}

}}}}

}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑤=𝑧

=
𝑘

𝜆Γ (𝑠) (𝑧𝑘−1)
𝛼

×

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

𝑛!(𝑎 + 𝑛)
𝑠

⋅ ∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

𝐻
2,0

0,2

× [(𝑎 + 𝑛) 𝑏
1/𝜆

| (𝑠, 1) , (0,
1

𝜆
)]

⋅

∞

∑
𝑚
1
,...,𝑚
𝑘−1

=0

(1 + 𝛼 − 𝛽)
𝑚
1

⋅ ⋅ ⋅ (1 + 𝛼 − 𝛽)
𝑚
𝑘−1

𝑧𝑚1+⋅⋅⋅+𝑚𝑘−1

⋅
(e−2𝜋𝑖/𝑘)

𝑚
1

𝑚
1
!

⋅ ⋅ ⋅
(e−2(𝑘−1)𝜋𝑖/𝑘)

𝑚
𝑘−1

𝑚
𝑘−1
!

×
𝑧

𝑂
𝛼

𝛽
{𝑧

𝑚
1
+⋅⋅⋅+𝑚

𝑘−1
+𝑛+(𝑘−1)𝛼

}

=
𝑘

𝜆Γ (𝑠)

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

(𝑎 + 𝑛)
𝑠

∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

𝐻
2,0

0,2

× [(𝑎 + 𝑛) 𝑏
1/𝜆

| (𝑠, 1), (0,
1

𝜆
)]

𝑧
𝑛

𝑛!

⋅

∞

∑
𝑚
1
,...,𝑚
𝑘−1

=0

(1 + 𝛼 − 𝛽)
𝑚
1

⋅ ⋅ ⋅ (1 + 𝛼 − 𝛽)
𝑚
𝑘−1

×
(e−2𝜋𝑖/𝑘)

𝑚
1

𝑚
1
!

⋅ ⋅ ⋅
(e−2(𝑘−1)𝜋𝑖/𝑘)

𝑚
𝑘−1

𝑚
𝑘−1
!

⋅
Γ (𝛽) Γ (𝑚

1
+ ⋅ ⋅ ⋅ + 𝑚

𝑘−1
+ 𝑛 + 𝑘𝛼)

Γ (𝛼) Γ (𝛽 + 𝑚
1
+ ⋅ ⋅ ⋅ + 𝑚

𝑘−1
+ 𝑛 + 𝑘𝛼)
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=
𝑘Γ (𝛽) Γ (𝑘𝛼)

𝜆Γ (𝑠) Γ (𝛼) Γ (𝛽 + (𝑘 − 1) 𝛼)

⋅

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝜌
𝑗
𝑛

(𝑘𝛼)
𝑛
𝐻2,0

0,2
[(𝑎+𝑛) 𝑏

1/𝜆 | (𝑠, 1) , (0, 1/𝜆)]

(𝑎 + 𝑛)
𝑠

⋅ ∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝜎
𝑗
𝑛

(𝛽 + (𝑘 − 1) 𝛼)
𝑛

×
𝑧𝑛

𝑛!

⋅

∞

∑
𝑚
1
,...,𝑚
𝑘−1

=0

(𝑛+𝑘𝛼)
𝑚
1
+⋅⋅⋅+𝑚

𝑘−1

(1+𝛼−𝛽)
𝑚
1

⋅ ⋅ ⋅ (1+𝛼−𝛽)
𝑚
𝑘−1

(𝛽 + (𝑘 − 1) 𝛼)
𝑚
1
+⋅⋅⋅+𝑚

𝑘−1

⋅
(e−2𝜋𝑖/𝑘)

𝑚
1

𝑚
1
!

⋅ ⋅ ⋅
(e−2(𝑘−1)𝜋𝑖/𝑘)

𝑚
𝑘−1

𝑚
𝑘−1
!

.

(65)

Finally, by combining (64) and (65), we obtain the result
(61) asserted byTheorem 13.

We now shift our focus on the different Taylor-like
expansions in terms of different types of functions involving
the new family of the 𝜆-generalized Hurwitz-Lerch zeta
functionΦ(𝜌

1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆).

Theorem 14. Under the assumptions ofTheorem 8, the follow-
ing expansion formula holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

= 𝑐

∞

∑
𝑛=−∞

𝑧−𝑐𝑛
0
(𝑧 − 𝑧

0
)
𝑐𝑛

Γ (𝑐𝑛 + 1) Γ (1 − 𝑐𝑛)

⋅ Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,1;𝜇
1
,...,𝜇
𝑞
,1−𝑐𝑛

(𝑧
0
, 𝑠, 𝑎; 𝑏, 𝜆)

(
󵄨󵄨󵄨󵄨𝑧 − 𝑧0

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑧0
󵄨󵄨󵄨󵄨 ; 𝜆 > 0) ,

(66)

provided that both members of (66) exist.

Proof. Setting 𝑓(𝑧) = Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) in Theo-
rem 8 with 𝑏 = 𝛾 = 0, 0 < 𝑐 ≦ 1, and 𝜃(𝑧) = 𝑧 − 𝑧

0
, we

have

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

= 𝑐

∞

∑
𝑛=−∞

(𝑧 − 𝑧
0
)
𝑐𝑛

Γ (1 + 𝑐𝑛)

⋅𝐷
𝑐𝑛

𝑧
{Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
0

(67)

for 𝑧
0
̸= 0 and for 𝑧 such that |𝑧 − 𝑧

0
| = |𝑧

0
|.

Now, by making use of (34) with 𝛽 = 1 and 𝛼 = 𝑐𝑛, we
find that

𝐷
𝑐𝑛

𝑧
{Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
0

=
𝑧−𝑐𝑛
0

Γ (1 − 𝑐𝑛)
Φ

(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,1;𝜇
1
,...,𝜇
𝑞
,1−𝑐𝑛

(𝑧
0
, 𝑠, 𝑎; 𝑏, 𝜆) .

(68)

By combining (67) and (68), we get the result (66) asserted by
Theorem 14.

Theorem 15. Under the hypotheses ofTheorem 9, the following
expansion formula holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

= 𝑐𝑧
−𝛼

(𝑧 − 𝑧
1
)
−𝛽

𝑧
𝛼+𝛽

1

⋅

∞

∑
𝑛=−∞

e𝑖𝜋𝑐(𝑛+1) sin [(𝛼 + 𝑐𝑛 + 𝛾) 𝜋] Γ (𝛼 + 𝑐𝑛 + 𝛾)
sin [(𝛼 − 𝑐 + 𝛾) 𝜋] Γ (1 − 𝛽 + 𝑐𝑛 + 𝛾) Γ (𝛼 + 𝛽)

⋅ Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝛼+𝑐𝑛+𝛾;𝜇

1
,...,𝜇
𝑞
,𝛼+𝛽

(𝑧
1
, 𝑠, 𝑎; 𝑏, 𝜆) (

𝑧 − 𝑧
1

𝑧
)
𝑐𝑛+𝛾

(69)

for 𝜆 > 0 and for 𝑧 on 𝐶
1
(1) defined by

𝑧 =
𝑧
1

2
+
𝑧
1

2
√1 + e𝑖𝜃 (−𝜋 < 𝜃 < 𝜋) , (70)

provided that both sides of (69) exist.

Proof. By taking 𝑓(𝑧) = Φ(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) in Theo-
rem 9 with 𝑧

2
= 0, 𝜇 = 𝛼, ] = 𝛽, and 0 < 𝑐 ≦ 1, we find

that

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

= 𝑐(𝑧 − 𝑧
1
)
−𝛽

𝑧
−𝛼

𝑧
1

⋅

∞

∑
𝑛=−∞

e𝑖𝜋𝑐(𝑛+1) sin [(𝛼 + 𝑐𝑛 + 𝛾) 𝜋]
sin [(𝛼 − 𝑐 + 𝛾) 𝜋] Γ (1 − 𝛽 + 𝑐𝑛 + 𝛾)

⋅ (
𝑧 − 𝑧

1

𝑧
)
𝑐𝑛+𝛾

⋅𝐷
−𝛽+𝑐𝑛+𝛾

𝑧
{𝑧

𝛼+𝑐𝑛+𝛾−1

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
1

.

(71)

Now, with the help of the relation (34) with 𝛼󳨃→ −𝛽 + 𝑐𝑛 + 𝛾

and 𝛽󳨃→ 𝛼 + 𝑐𝑛 + 𝛾 − 1, we have

𝐷
−𝛽+𝑐𝑛+𝛾

𝑧
{𝑧

𝛼+𝑐𝑛+𝛾−1

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
1

= 𝑧
𝛼+𝛽−1

1

Γ (𝛼 + 𝑐𝑛 + 𝛾)

Γ (𝛼 + 𝛽)

× Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝛼+𝑐𝑛+𝛾;𝜇

1
,...,𝜇
𝑞
,𝛼+𝛽

(𝑧
1
, 𝑠, 𝑎; 𝑏, 𝜆) .

(72)

Thus, by combining (71) and (72), we are led to the assertion
(69) of Theorem 15.
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Theorem 16. Under the hypotheses of Theorem 10, the follow-
ing expansion formula holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

= 𝑐𝑧
−𝛽+𝛾

(𝑧 − 𝑧
1
)
−𝛼+𝛾

𝑧
𝛽+𝛼−2𝛾−1

1

⋅

∞

∑
𝑛=−∞

sin [(𝛽 − 𝑐𝑛 − 𝛾) 𝜋] e𝑖𝜋𝑐(𝑛+1)

sin [(𝛽 + 𝑐 − 𝛾) 𝜋] Γ (1 − 𝛼 + 𝑐𝑛 + 𝛾)

⋅ (
𝑧(𝑧 − 𝑧

1
)

𝑧2
1

)

𝑐𝑛

Γ (𝛽 − 𝑐𝑛 − 𝛾)

Γ (𝛽 + 𝛼 − 2𝑐𝑛 − 2𝛾)

⋅ [(𝑧 − 𝑧
1
)Φ

(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝛽−𝑐𝑛−𝛾;𝜇

1
,...,𝜇
𝑞
,𝛽+𝛼−2𝑐𝑛−2𝛾

(𝑧
1
, 𝑠, 𝑎; 𝑏, 𝜆)

+ (
𝛽 − 𝑐𝑛 − 𝛾

𝛼 + 𝛽 − 2𝑐𝑛 − 2𝛾
) 𝑧

1

⋅Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,1+𝛽−𝑐𝑛−𝛾;𝜇

1
,...,𝜇
𝑞
,1+𝛽+𝛼−2𝑐𝑛−2𝛾

(𝑧
1
, 𝑠, 𝑎; 𝑏, 𝜆)]

(73)

for 𝜆 > 0 and for 𝑧 on 𝐶
1
(1) defined by

𝑧 =
𝑧
1

2
+
𝑧
1

2
√1 + ei𝜃 (−𝜋 < 𝜃 < 𝜋) , (74)

provided that both sides of (73) exist.

Proof. Putting 𝑓(𝑧) = Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) in Theo-
rem 10 with 𝑧

2
= 0, 0 < 𝑐 ≦ 1, 𝑞(𝑧) = 1, and 𝜃(𝑧) =

(𝑧 − 𝑧
1
)(𝑧 − 𝑧

2
), we find that

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

= 𝑐𝑧
−𝛽

(𝑧 − 𝑧
1
)
−𝛼

⋅

∞

∑
𝑛=−∞

sin [(𝛽 − 𝑐𝑛 − 𝛾) 𝜋]
sin [(𝛽 + 𝑐 − 𝛾) 𝜋]

e𝑖𝜋𝑐(𝑛+1)[𝑧(𝑧 − 𝑧
1
)]
𝑐𝑛+𝛾

Γ (1 − 𝛼 + 𝑐𝑛 + 𝛾)

⋅ 𝐷
−𝛼+𝑐𝑛+𝛾

𝑧

×{𝑧
𝛽−𝑐𝑛−𝛾−1

(𝑧+𝑤−𝑧
1
)Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨 𝑧=𝑧1
(𝑤=𝑧)

.

(75)

With the help of the relations in (34), we have

𝐷
−𝛼+𝑐𝑛+𝛾

𝑧

× {𝑧
𝛽−𝑐𝑛−𝛾−1

(𝑧+𝑤−𝑧
1
)Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨 𝑧=𝑧1
(𝑤=𝑧)

= 𝐷
−𝛼+𝑐𝑛+𝛾

𝑧
{𝑧

𝛽−𝑐𝑛−𝛾

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
1

+ (𝑧 − 𝑧
1
)𝐷

−𝛼+𝑐𝑛+𝛾

𝑧

× {𝑧
𝛽−𝑐𝑛−𝛾−1

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}
󵄨󵄨󵄨󵄨󵄨󵄨𝑧=𝑧
1

= 𝑧
𝛽+𝛼−2𝑐𝑛−2𝛾

1

× (
Γ (1 + 𝛽 − 𝑐𝑛 − 𝛾)

Γ (1 + 𝛽 + 𝛼 − 2𝑐𝑛 − 2𝛾)

⋅ Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,1+𝛽−𝑐𝑛−𝛾;𝜇

1
,...,𝜇
𝑞
,1+𝛽+𝛼−2𝑐𝑛−2𝛾

(𝑧
1
, 𝑠, 𝑎; 𝑏, 𝜆)

+ (
𝑧 − 𝑧

1

𝑧
1

)
Γ (𝛽 − 𝑐𝑛 − 𝛾)

Γ (𝛽 + 𝛼 − 2𝑐𝑛 − 2𝛾)

⋅Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝛽−𝑐𝑛−𝛾;𝜇

1
,...,𝜇
𝑞
,𝛽+𝛼−2𝑐𝑛−2𝛾

(𝑧
1
, 𝑠, 𝑎; 𝑏, 𝜆) ) .

(76)

Thus, by combining (75) and (76), we obtain the desired result
(73).

Finally, from the two generalized Leibniz rules for
fractional derivatives given in Section 3, we obtain the
following two expansion formulas involving the new
family of the 𝜆-generalized Hurwitz-Lerch zeta function
Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆).

Theorem 17. Under the hypotheses of Theorem 11, the follow-
ing expansion formula holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,];𝜇
1
,...,𝜇
𝑞
,𝜏
(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

=
Γ (𝜏) Γ (1 + ] − 𝜏) sin (𝛾𝜋)

𝜋

⋅

∞

∑
𝑛=−∞

(−1)
𝑛

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,1;𝜇
1
,...,𝜇
𝑞
,1−𝛾−𝑛

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

(𝛾 + 𝑛) Γ (1 + ] − 𝜏 − 𝛾 − 𝑛) Γ (𝜏 + 𝛾 + 𝑛)
,

(77)

provided that both members of (77) exist.

Proof. Setting 𝑢(𝑧) = 𝑧]−1 and V(𝑧) = Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎;
𝑏, 𝜆) in Theorem 11 with 𝑝 = 𝑞 = 0 and 𝛼 = ] − 𝜏, we obtain

𝐷
]−𝜏
𝑧

{𝑧
]−1
Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=

∞

∑
𝑛=−∞

(
] − 𝜏
𝛾 + 𝑛

)𝐷
]−𝜏−𝛾−𝑛
𝑧

{𝑧
]−1
}

⋅ 𝐷
𝛾+𝑛

𝑧
{Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)} ,

(78)

which, with the help of (33) and (34), yields

𝐷
]−𝜏
𝑧

{𝑧
]−1
Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=
Γ (])
Γ (𝜏)

𝑧
𝜏−1

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,];𝜇
1
,...,𝜇
𝑞
,𝜏
(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) ,
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𝐷
]−𝜏−𝛾−𝑛
𝑧

{𝑧
]−1
} =

Γ (])
Γ (𝜏 + 𝛾 + 𝑛)

𝑧
𝜏+𝛾+𝑛−1

,

𝐷
𝛾+𝑛

𝑧
{Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=
𝑧−𝛾−𝑛

Γ (1 − 𝛾 − 𝑛)
Φ

(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,1;𝜇
1
,...,𝜇
𝑞
,1−𝛾−𝑛

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) .

(79)

Combining (79) with (78) and making some elementary
simplifications, the asserted result (77) follows.

Theorem 18. Under the hypotheses of Theorem 12, the follow-
ing expansion formula holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,];𝜇
1
,...,𝜇
𝑞
,𝜏
(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)

= (Γ (𝜏) Γ (1 + ] − 𝜏) sin (𝛽𝜋)

× sin [(] − 𝜏 + 𝛽 − 𝜃) 𝜋])

× (Γ (]) Γ (𝜏 − 𝛾 − 𝜃 − 1) Γ (1 + 𝛾 + 𝜃)

× sin [(] − 𝜏 + 𝛽) 𝜋] sin [(𝛽 − 𝜃 − 𝛾) 𝜋])−1

⋅
sin (𝜃𝜋)

sin [(𝜃 + 𝛾) 𝜋]

∞

∑
𝑛=−∞

Γ (] − 𝜃 − 𝑛) Γ (𝜃 + 𝑛)
Γ (2 + ] − 𝜏 + 𝛾 − 𝑛) Γ (−𝛾 + 𝑛)

⋅ Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝜃+𝑛;𝜇

1
,...,𝜇
𝑞
,1+𝜃+𝛾

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) ,

(80)

provided that both members of (80) exist.

Proof. Upon first substituting 𝜇 󳨃→ 𝜃 and ] 󳨃→ 𝛾 in
Theorem 12 and then setting

𝛼 = ] − 𝜏, 𝑢 (𝑧) = 𝑧
𝜏−𝛽

,

V (𝑧) = Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) ,

(81)

in which both 𝑢(𝑧) and V(𝑧) satisfy the conditions of Theo-
rem 12, we have

𝐷
]−𝜏
𝑧

{𝑧
]−1
Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=
𝑧Γ (1 + ] − 𝜏) sin (𝛽𝜋) sin (𝜃𝜋) sin [(] − 𝜏 + 𝛽 − 𝜃) 𝜋]
sin [(] − 𝜏 + 𝛽) 𝜋] sin [(𝛽 − 𝜃 − 𝛾) 𝜋] sin [(𝜃 + 𝛾) 𝜋]

⋅

∞

∑
𝑛=−∞

𝐷]−𝜏+𝛾+1−𝑛
𝑧

{𝑧]−𝜃−1−𝑛}

Γ (2 + ] − 𝜏 + 𝛾 − 𝑛) Γ (−𝛾 + 𝑛)

⋅ 𝐷
−1−𝛾+𝑛

𝑧
{𝑧

𝜃−1+𝑛

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)} .

(82)

Now, by using (33) and (34), we find that

𝐷
]−𝜏
𝑧

{𝑧
]−1
Φ

(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=
Γ (])
Γ (𝜏)

𝑧
𝜏−1

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,];𝜇
1
,...,𝜇
𝑞
,𝜏
(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) ,

𝐷
]−𝜏+𝛾+1−𝑛
𝑧

{𝑧
]−𝜃−1−𝑛

} =
Γ (] − 𝜃 − 𝑛)

Γ (𝜏 − 𝛾 − 𝜃 − 1)
𝑧
𝜏−𝛾−𝜃−2

,

𝐷
−1−𝛾+𝑛

𝑧
{𝑧

𝜃−1+𝑛

Φ
(𝜌
1
,...,𝜌
𝑝
,𝜎
1
,...,𝜎
𝑞
)

𝜆
1
,...,𝜆
𝑝
;𝜇
1
,...,𝜇
𝑞

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆)}

=
Γ (𝜃 + 𝑛)

Γ (1 + 𝜃 + 𝛾)

× 𝑧
𝜃+𝛾

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝜃+𝑛;𝜇

1
,...,𝜇
𝑞
,1+𝜃+𝛾

(𝑧, 𝑠, 𝑎; 𝑏, 𝜆) .

(83)

Thus, finally, the result (80) follows by combining (83) and
(82).

5. Corollaries and Consequences

We conclude this paper by presenting some special cases of
the main results. These special cases and consequences are
given in the form of the following corollaries.

Setting 𝑘 = 3 inTheorem 13 and using the fact that [12, p.
1496, Remark 7]

lim
𝑏→0

𝐻
2,0

0,2
[(𝑎 + 𝑛) 𝑏

1/𝜆

| (𝑠, 1) , (0,
1

𝜆
)] = 𝜆Γ (𝑠)

(𝜆 > 0) ,

(84)

we obtain the following corollary given recently by Srivastava
et al. [19].

Corollary 19. Under the hypotheses ofTheorem 13, the follow-
ing expansion formula holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,1/3,𝜎

1
,...,𝜎
𝑞
,1/3)

𝜆
1
,...,𝜆
𝑝
,𝛼;𝜇
1
,...,𝜇
𝑞
,𝛽

(𝑧, 𝑠, 𝑎)

=
3Γ (𝛽) Γ (3𝛼)

Γ (𝛼) Γ (𝛽 + 𝛼)

⋅

∞

∑
𝑛=0

∏
𝑝

𝑗=1
(𝜆

𝑗
)
𝑛𝜌
𝑗

𝑛!∏
𝑞

𝑗=1
(𝜇

𝑗
)
𝑛𝜎
𝑗

(3𝛼)
𝑛

(𝛽 + 𝛼)
𝑛

𝑧𝑛

(𝑛 + 𝑎)
𝑠

⋅ 𝐹
1
[3𝛼 + 𝑛, 1 + 𝛼 − 𝛽, 1 + 𝛼 − 𝛽; 𝛽 + 2𝛼 + 𝑛; −1, 1] ,

(85)

where 𝐹
1
denotes the first Appell function defined by [11, p. 22]

𝐹
1
[𝑎, 𝑏

1
, 𝑏

2
; 𝑐; 𝑥

1
, 𝑥

2
]

=

∞

∑
𝑚
1
,𝑚
2
=0

(𝑎)
𝑚
1
+𝑚
2

(𝑏
1
)
𝑚
1

(𝑏
2
)
𝑚
2

(𝑐)
𝑚
1
+𝑚
2

𝑥
𝑚
1

1

𝑚
1
!

𝑥
𝑚
2

2

𝑚
2
!

(max {󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨 ,
󵄨󵄨󵄨󵄨𝑥2
󵄨󵄨󵄨󵄨} < 1) ,

(86)

provided that both sides of (85) exist.
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Putting 𝑝 − 1 = 𝑞 = 0 and setting 𝜌
1
= 1 and 𝜆

1
= 𝜇 in

Theorem 15 reduces to the following expansion formula given
recently by Srivastava et al. [20].

Corollary 20. Under the hypotheses ofTheorem 15, the follow-
ing expansion formula holds true:

Θ
𝜆

𝜇
(𝑧, 𝑠, 𝑎; 𝑏)

= 𝑐𝑧
−𝛼

(𝑧 − 𝑧
1
)
−𝛽

𝑧
𝛼+𝛽

1

⋅

∞

∑
𝑛=−∞

e𝑖𝜋𝑐(𝑛+1) sin [(𝛼 + 𝑐𝑛 + 𝛾) 𝜋] Γ (𝛼 + 𝑐𝑛 + 𝛾)
sin [(𝛼 − 𝑐 + 𝛾) 𝜋] Γ (1 − 𝛽 + 𝑐𝑛 + 𝛾) Γ (𝛼 + 𝛽)

⋅ Φ
(1,1,1)

𝜇,𝛼+𝑐𝑛+𝛾;𝛼+𝛽
(𝑧

1
, 𝑠, 𝑎; 𝑏, 𝜆) (

𝑧 − 𝑧
1

𝑧
)
𝑐𝑛+𝛾

(87)

for 𝜆 > 0 and for 𝑧 on 𝐶
1
(1) defined by

𝑧 =
𝑧
1

2
+
𝑧
1

2
√1 + e𝑖𝜃 (−𝜋 < 𝜃 < 𝜋) , (88)

provided that both sides of (69) exist.

Letting 𝑏 = 0 in Theorem 18, we deduce the following
expansion formula obtained by Srivastava et al. [19].

Corollary 21. Under the hypotheses ofTheorem 18, the follow-
ing expansion formula holds true:

Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,];𝜇
1
,...,𝜇
𝑞
,𝜏
(𝑧, 𝑠, 𝑎)

=
Γ (𝜏) Γ (1 + ] − 𝜏)

Γ (]) Γ (𝜏 − 𝛾 − 𝜃 − 1)

⋅ (sin𝛽𝜋 sin [(] − 𝜏 + 𝛽 − 𝜃) 𝜋] sin 𝜃𝜋)

× (Γ (1 + 𝛾 + 𝜃) sin [(] − 𝜏 + 𝛽) 𝜋]

× sin [(𝛽 − 𝜃 − 𝛾) 𝜋] sin [(𝜃 + 𝛾) 𝜋])−1

⋅

∞

∑
𝑛=−∞

Γ (]−𝜃−𝑛) Γ (𝜃+𝑛)Φ
(𝜌
1
,...,𝜌
𝑝
,1,𝜎
1
,...,𝜎
𝑞
,1)

𝜆
1
,...,𝜆
𝑝
,𝜃+𝑛;𝜇

1
,...,𝜇
𝑞
,1+𝜃+𝜆

(𝑧, 𝑠, 𝑎)

Γ (2 + ] − 𝜏 + 𝛾 − 𝑛) Γ (−𝛾 + 𝑛)
(89)

provided that both members of (89) exist.
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[33] K. S. Miller and B. Ross, An Introduction of the Fractional
Calculus and Fractional Differential Equations, John Wiley and
Sons, Singapore, 1993.

[34] S. Gaboury and R. Tremblay, “Summation formulas obtained by
means of the generalized chain rule for fractional derivatives,”
Submitted to Journal of Complex Analysis.

[35] T. J. Osler, “Taylor’s series generalized for fractional derivatives
and applications,” SIAM Journal on Mathematical Analysis, vol.
2, pp. 37–48, 1971.

[36] G. H. Hardy, “Riemann’s forms of Taylor’s series,” Journal of the
London Mathematical Society, vol. 20, no. 1, pp. 48–57, 1945.

[37] O. Heaviside, Electromagnetic Theory, vol. 2, Dover Publishing
Company, New York, NY, USA, 1950.

[38] B. Riemann, Versuch einer Allgemeinen Auffasung der Inte-
gration und Differentiation, The Collected Works of Bernhard
Riemann, Dover Publishing Company, New York, NY, USA,
1953.

[39] Y. Watanabe, “Zum Riemanschen binomischen Lehrsatz,” Pro-
ceedings of the Physico-Mathematical Society of Japan, vol. 14, pp.
22–35, 1932.

[40] R. Tremblay, S. Gaboury, and B.-J. Fugère, “Taylor-like expan-
sion in terms of a rational function obtained by means of frac-
tional derivatives,” Integral Transforms and Special Functions,
vol. 24, no. 1, pp. 50–64, 2013.

[41] R. Tremblay and B.-J. Fugère, “The use of fractional derivatives
to expand analytical functions in terms of quadratic functions
with applications to special functions,” Applied Mathematics
and Computation, vol. 187, no. 1, pp. 507–529, 2007.

[42] R. Tremblay, S. Gaboury, and B.-J. Fugère, “A new Leibniz rule
and its integral analogue for fractional derivatives,” Integral
Transforms and Special Functions, vol. 24, no. 2, pp. 111–128, 2013.




