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Background. In advanced diabetic kidney disease (DKD), iron metabolism and immune dysregulation are abnormal, but the
correlation is not clear. Therefore, we aim to explore the potential mechanism of ferroptosis-related genes in DKD and their
relationship with immune inflammatory response and to identify new diagnostic biomarkers to help treat and diagnose DKD.
Methods. Download data from gene expression omnibus (GEO) database and FerrDb database, and construct random forest
tree (RF) and support vector machine (SVM) model to screen hub ferroptosis genes (DE-FRGs). We used consistent
unsupervised consensus clustering to cluster DKD samples, and enrichment analysis was performed by Gene Set Variation
Analysis (GSVA), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) and then assessed immune
cell infiltration abundance using the single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms.
Ferroptosis scoring system was established based on the Boruta algorithm, and then, core compounds were screened, and
binding sites were predicted by Coremine Medical database. Results. We finally established a 7-gene signature (DUSP1,
PRDX6, PEBP1, ZFP36, GABARAPL1, TSC22D3, and RGS4) that exhibited good stability across different datasets. Consistent
clustering analysis divided the DKD samples into two ferroptosis modification patterns. Meanwhile, autophagy and peroxisome
pathways and immune-related pathways can participate in the regulation of ferroptosis modification patterns. The abundance
of immune cell infiltration differs significantly across patterns. Further, molecular docking results showed that the core
compound could bind to the protein encoded by the core gene. Conclusions. Our findings suggest that ferroptosis modification
plays a crucial role in the diversity and complexity of the DKD immune microenvironment, and the ferroptosis score system
can be used to effectively verify the relationship between ferroptosis and immune cell infiltration in DKD patients. Kaempferol
and quercetin may be potential drugs to improve the immune and inflammatory mechanisms of DKD by affecting ferroptosis.

1. Introduction

Diabetic kidney disease (DKD) is a chronic microvascular dis-
ease. High glucose environments activate inflammatory
immune responses, promote podocyte and mesangial cell
damage, and reduce renal function [1]. However, the regula-
tion of this process is still unclear. Previous studies have found
that activating immune T cells, B cells, and macrophages in
DKD involves some renal biological regulation processes.
However, it does not yet account for the deterioration and

progression of the kidneys in end-stage patients in a high-
glucose setting. The current research point of view is that
malignant changes such as anemia, electrolyte imbalance,
and abnormal lipid metabolism in patients with end-stage
renal disease are closely related to the decline of erythropoietin
(EPO) and glomerular filtration capacity [2]. Lower EPO
levels, especially in the presence of iron deficiency, predict a
rapid loss of kidney function. A new view suggests that DKD
patients have iron overload in addition to iron deficiency.
Abnormal iron accumulation may increase oxidative stress
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and reduce antioxidant capacity, leading to the development
of DKD [3]. Iron is filtered through the glomerulus and reab-
sorbed in the renal tubule. The renal tubular epithelial cells are
active sites for iron ions and reactive oxygen species. Ferropto-
sis occurs when the cell is overloaded, and lipid peroxidation is
increased, producing a lot of reactive oxygen species (ROS)
[4–6]. Ferroptosis is distinct from necrosis, apoptosis, and
autophagy in cellular morphology and function. In morphol-
ogy, ferroptosis mainly occurred in cells, which showed that
the volume of mitochondria decreased, the density of the
bilayer membrane increased, the mitochondrial crista
decreased or disappeared, but the cell membrane was intact,
and the nuclear morphology did not change. Biochemically,
intracellular depletion of glutathione (GSH) can lead to gluta-
thione peroxidase 4 (GPX4) activity [7]. The reduction of
GPX4, in turn, causes GPX4-catalyzed GSH to fail to metabo-
lize lipid oxides. Then, lipids will generate many ROS after Fe
+2 is oxidized in the Fenton reaction, thereby promoting fer-
roptosis in cells [8].

Abnormal iron metabolism can cause renal tubular dys-
function and adversely affect the maintenance of renal func-
tion. For example, Liao et al. found that iron deposition in
the tubular epithelial cells of patients with DKD may pro-
duce nephrotoxicity and damage the kidneys [9]. Li et al.
found that the concentrations of malondialdehyde (MDA)
and 4-hydroxytryptamine (4-HNE) increased in the DKD
model, and ROS increased significantly in renal cortical
proximal tubule epithelial cells (HK2) under a high glucose
environment. Mitochondria shrank, cell membrane density
increased, and mitochondrial crystal decreased [10]. In ani-
mal studies, DKD mouse models show characteristic signs
of iron death. For example, intracellular ACSL4 expression
is upregulated and GPX4 and cysteine/glutamate antitran-
sport system expression is decreased under high glucose
environment, leading to decreased antioxidant capacity and
increased lipid peroxide production [11]. In addition, inhibi-
tion of ferroptosis can delay the development of renal lesions
in diabetic mice. Studies have shown that islets can produce
excessive iron under high glucose conditions. Iron deposi-
tion can cause a Fenton reaction between free iron ions
and hydrogen peroxide, destroying reactive free radicals in
cells and inducing programmed ferroptosis. The above evi-
dence suggests that abnormal iron metabolism may affect
the progression of DKD, but the exact mechanism is unclear
[12]. Iron overload directly or indirectly causes intracellular
lipid peroxidation and impairs cell structure and function.
Relevant evidence suggests that it may be associated with
aberrant oxidative phosphorylation pathway in mitochon-
dria, ATP and TRP, oxidizing cells, and polyunsaturated
fatty acids (PUFA) [13]. The arachidonic acid (AA) is iso-
lated from PUFA by enzymatic action. AA is involved in
inflammation through three metabolic pathways, cyclooxy-
genase (COX), lipooxygenase (LOX), and CYP450 enzymes
[14, 15], which further exacerbates iron drooping. DKD is
associated with systemic and local kidney inflammation.
The levels of inflammatory cytokines such as interleukin-
(IL-) 1, IL-6, tumor necrosis factor- (TNF-) α, monocyte
chemoattractant protein- (MCP-) 1, and macrophage
inflammatory protein- (MIP-) 1β can be activated. Iron

metabolism can regulate inflammatory cytokines in macro-
phages, promote inflammatory polarization through the
TLR4/TRIF pathway, and induce the expression of proin-
flammatory cytokines [16, 17]. Kim et al. used TGF-β1-
stimulated proximal tubular epithelial cells and diabetic
mouse models to conduct in vitro and in vivo experiments.
In animal studies, the expression of xCT and GPX4 mRNA
in diabetes mellitus (DM) biopsies was lower than in con-
trols. Reduced GSH concentration and enhanced lipid per-
oxidation in TGF-β1-stimulated tubular cells were
associated with ferroptosis [18]. Activated T cells are in high
demand for iron, and iron deficiency inhibits T cell prolifer-
ation. Iron overload leads to an imbalance between CD4 and
CD8 T cells, and iron overload can also increase ROS levels
in the body [19]. TGF-β1 secreted by macrophages regulates
the expression of ferroptosis-related target genes ZEB1 and
SLC7A11 by activating SMAD signaling transcription. In
contrast, SLC7A11 gene deletion promotes ferritin atrophy
induced by iron overload-induced ferroptosis in macro-
phages [20–22]. Taken together, we speculate that ferropto-
sis is closely related to the immune status of DKD and
stimulates inflammatory factors to affect the progression of
DKD.

However, the mechanisms underlying abnormal iron
metabolism and immune inflammation in DKD are unclear.
Therefore, further studies on the roles of ferroptosis and
immune status in the pathogenesis of DKD are urgently
needed to elucidate their associated signaling pathways,
which can help provide new molecular targets for the treat-
ment of DKD. In this study, we used the combined dataset to
screen out the core diagnostic genes of ferroptosis and car-
ried out internal and external validation. Then, we identified
two molecular clusters related to ferroptosis modification for
DKD. Then, we investigated the interaction between the two
characteristic modification modes of iron death, the immune
microenvironment, and the bioinformatics enrichment.
After gene clustering, we further verified the relationship
between the clustering effect and the immune microenviron-
ment. To characterize and quantify each subtype, we devel-
oped a ferroptosis scoring system to validate the
association of clustering effects with the abundance of
immune cell infiltration. Finally, network pharmacology
screens core compounds based on hub DE-FRGs and
enriched immune pathways. Then, we used AutoDock Vina
molecular docking software to predict the binding sites of
small ligands to core genes. This way, we can explore the
relationship between abnormal iron metabolism and renal
injury in DKD patients and help make new clinical
decisions.

2. Materials and Methods

2.1. Data Acquisition. From the FerrDb database (http://
www.zhounan.org/ferrdb/), ferroptosis-related genes (FRGs)
include 150 driver genes, 69 suppressor gene, and 123
marker genes [23]. The transcriptome expression profile
datasets GSE96804, GSE104948, GSE47183, and GSE30122
were downloaded from the GEO database (https://www
.ncbi.nlm.nih.gov/geo/) (Table 1). Download the dataset’s
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microarray normalized expression matrix and annotate the
probes using the dataset’s annotation file. After ID conver-
sion, the average expression value is taken as the gene
expression value when multiple searches correspond to one
gene. Using the ComBat algorithm of R software “SVA”
package for batch correction of datasets, log2 transformation
of datasets was performed, and datasets GSE96804 and
GSE104948 were combined as training sets. Datasets
GSE47183 and GSE30122 were used for verification sets.
Thus, all data were freely available. The workflow and data
preprocessing are illustrated in Figure 1.

2.2. Ferroptosis-Related Gene Screening. The “Limma” pack-
age of the R software extracted expression levels of iron
death-related genes in the combined dataset. Differential
genes were screened from DKD and CON samples and
defined as the differentially expressed ferroptosis-related
genes (DE-FRGs). Selection criteria are jlog 2FCj ≥ 1 with
adjusted p − value < 0:05 gene as DE-FRGs. Use R software’s
“HeatMap” packages to create heat maps and R software
“Circos” packages to draw DE-FRGs on the chromosome
position map.

2.3. Diagnosis-Related DE-FRGs with RF and SVM. A ran-
dom forest (RF) generates multiple decision trees and uses
information from each tree to make predictions [24]. We
used stochastic forests for feature selection and the relation-
ship between error rates and classification trees to reveal
genes of greater relative importance than 2 as final signa-
tures. In the meantime, the expression data of DE-FRGs
were applied to the machine learning algorithm of the sup-
port vector machine (SVM) classifier to obtain disease char-
acteristic genes. The aim of SVM algorithm is to identify a
decision hyperplane that makes the distance between the
hyperplane and the instances that are closest to boundary
is maximized. By introducing the concept of “soft margin”
and using “kernel trick,” SVM performs well with linear
indivisibility data [25]. The intersection of the characteristic
genes obtained by the two algorithms is called the hub DE-
FRGs. Estimating the area under the subject operating curve
(AUC) indicated the predictive diagnostic effect. The
receiver operating characteristic (ROC) analysis was per-
formed in RStudio by the pROC package. DE-FRGs have a
diagnostic value in DKD when the area under the curve
(AUC) is@ 0.6 and >0:6. p < 0:05 indicates a statistical
difference.

2.4. Identification of Ferroptosis Modification Pattern.
According to the expression of DE-FRGs, unsupervised clus-
ter analysis was performed to divide DKD samples into
diverse ferroptosis modification patterns. A consistent clus-
tering algorithm evaluated the clustering number and
robustness. The R package “ConsensuClusterPlus” imple-
ments the above steps for 1000 iterations to guarantee the
robustness of classification. Besides, the cumulative distribu-
tion function (CDF) curve of the consensus integral deter-
mines the optimal cluster number, the explicit separation
of the consensus matrix heat map, the characteristics of the
cumulative distribution function diagram, and the reason-

able consensus values among cluster members. Principal
component analysis (PCA) was used to verify the hub DE-
FRG clustering effect.

2.5. GSVA and GO and KEGG Enrichment Analyses. We
used the “GSVA” package to assess enrichment on the heat
map. Downloaded the “c2.cp. kegg.v7.2.symbols.gmt” from
the MSigDB database for analysis. Data were adjusted using
the “limma” software package, and p < 0:05 indicated a sig-
nificant difference among the subgroups. An adjusted p
value < 0.05 among the subgroups was considered statisti-
cally significant. Biological signaling pathways are good at
reflecting on biological changes; we use GO and KEGG
enrichment analyses to determine underlying molecular
mechanisms of DEGs between different ferroptosis modifi-
cation patterns.

2.6. Landscape of Immune Infiltration and Immune
Checkpoint Genes between Ferroptosis Modification
Patterns. The proportions of twenty-three infiltrating
immune cell types were quantified using “GSVA” in R pack-
age based on the ssGSEA strategy. In simple terms, ssGSEA
calculates the individual enrichment score (ES) for each pair
of samples and gene set using GSVA and GSEA base R pack-
ages [26]. Each GSEA ES represents the degree to which
genes in a particular gene concentration are synergistically
upregulated or downregulated in the sample. CIBERSORT
deconvolution algorithm can be calculated according to the
RNA matrix in proportion to the body’s immune cells
(https://cibersort.stanford.edu/) [27]. The abundance of
immune cell infiltration and HLA gene expression among
the distinct modification patterns was compared by the Wil-
cox test. More importantly, we also analyzed differences in
immune checkpoint gene expression. The Spearman correla-
tion analysis was used to analyze the relationship between
hub DE-FRGs and immune cell infiltration.

2.7. Establishment of a Ferroptosis Score Signature. Hub DE-
FRGs with positive and negative correlation with the clusters
were named the ferroptosis gene features A and B, respec-
tively. The Boruta algorithm can achieve dimensionality
reduction of the ferroptosis gene features A and B. Besides,
principal component analysis (PCA) was performed to
extract principal component 1 as the characteristic fraction.
The ferroptosis score index for each sample was then calcu-
lated using a method similar to the gene expression rating as
follows: ferroptosis score =∑PC1B −∑PC1A, where PC1A
represents the first component of feature A, PC1B represents
the first component of feature B, and the scores of ferropto-
sis modification patterns and genotyping were detected [28].
Use R software “ggalluvial” package to draw Sankey.

2.8. Core Target Docking and Traditional Chinese Medicine
(TCM) Prediction. The hub DE-FRGs, GO enrichment, and
immune-related BP of the two groups was imported into
the Coremine Medical database (http://www.coremine
.com/medical/), and drugs with potential immunomodulator
effects were screened [29]. Through the traditional Chinese
medicine system pharmacology database and analysis plat-
form (TCMSP) (http://lsp.nwu.edu.cn/tcmsp.php), the
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potential chemical components of traditional Chinese med-
icine were screened, and the oral bioavailability (OB) was
set to be ≥30% and similar to the drug sex ðDLÞ ≥ 0:20 as
the threshold. Then, the effective targets were deduplicated

and normalized using the UniProt prediction database.
The processed data were imported into the Cytoscape 3.7.1
software to construct a “traditional Chinese medicine-
active ingredient-target-channel-disease” network diagram.

Table 1: Basic information of collected microarray datasets.

GEO Platform Tissue (Homo sapiens)
Samples (number)

Experiment type PMID
Total CON DKD

GSE96804 GPL17586 Glomerulus 61 20 41 Expression profiling by array 30511699

GSE104948 GPL22945; GPL24120 Glomerulus 33 21 12 Expression profiling by array 297247043

GSE99339 GPL19109; GPL19184 Glomerulus 25 11 14 Expression profiling by array 28819298

GSE47183 GPL11670; GPL14663 Glomerulus 31 17 14 Expression profiling by array 24925724

Driver Suppressor Marker
Genes that promote
ferroptosis.

Genes that prevent
ferroptosis.

Genes that indicate the
occurrence of ferroptosis.

Ferroptosis related genes
(342)

GSE96804
(41 vs 20)

GSE104948
(12 vs 21)

Remove batch effects

Integrated data
(53 vs 41)

Limma

Limma

DE-FRGs (12)

Hub DE-FRGs (7)

Pattern-A and pattern-B

DEGs (709)

Cluster-A and Cluster-B

High score and low score

Chinese medicines (52)

TCMSP

Autodock-vina

Traditional chinese medicine

Ferroptosis score

ConsensusClusterPlus

RF and SVM

GSE99339
(14 vs 11)

GSE47183
(14 vs 17)

PCA and GSEA analysis

GO and KEGG

Infiltration of immune cells
(CIBERSORT and ssGSEA)

Infiltration of immune cells
(ssGSEA)

GSAE enrichment analysis

Infiltration of immune cells
(ssGSEA)

Cytoscape

Figure 1: Flowchart of research design and analyzing process of this study.
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2.9. Active Compound-Target Docking. Target proteins were
downloaded from the TCMSP (https://old.tcmsp-e.com/
tcmsp.php), the PDB database (https://www.rcsb.org/), and
UniProt data (https://www.uniprot.org/). Models with less
than 2.5Å ligands binding were selected, and crystal struc-
ture was then entered into the PyMOL software (https://
pymol.org/2/) for ligand dehydration, hydrogenation, and
separation. AutoDock Vina 1.5.6 was then used to build
docking grid boxes of crystal structures for each target.
The molecule with the lowest binding energy in the docking
configuration was selected for visualization and compared
with the interaction between protein and small molecule
ligand to observe its binding effect, such as hydrophobicity,
cation-π, anion-π, π-π stacking, and hydrogen bonding.
According to the docking score of AutoDock Vina, Affinity
represents the strength of the binding force, Affinity > −4
kcal·mol, and the binding force is extremely weak or consid-
ered as no binding force. −7 kcal · mol < Affinity < −4 kcal ·
mol is defined as medium binding force; Affinity < −7 kcal
· mol is defined as a standard with solid binding force [30].

2.10. Statistical Analyses. The R software (version 4.0.5) was
used for the analyses. Comparisons of two groups to deter-
mine significance was done by the Wilcoxon test, and the
significance among more than three groups was identified
using the Kruskal-Wallis test. Evaluation of the models’ pre-
dictive accuracy was done using ROC curves and the corre-
sponding area under ROC curve (AUC) values. Spearman’s
correlation analysis was employed for description of correla-
tions between quantitative variables that were not normally
distributed. Two-tailed p ≤ 0:05 was the threshold for
significance.

3. Results

3.1. Identification of DE-FRGs. PCA clustering was
employed to calculate and form overlapping or predefined
clusters approximately. Before the batch adjustment, the
microarray data sets were validated on multiple platforms.
Following the batch effect, samples from every dataset amal-
gamate into each other. The batch effect was significant
before the combination of datasets GSE96804 and
GSE104948 (Figure 2(a); Comp 1: 78.6% variance, Comp 2:
5.7% variance), after batch calibration (Figure 2(b); Comp
1: 78.6% variance, Comp 2: 5.7% variance). The combined
dataset contains 53 DKD and 41 control (CON) samples,
extracting 138 ferroptosis genes. DE-FRGs were analyzed
using the jlog 2FCj ≥ 1 and adjusted p < 0.05 DE-FRGs. 12
DE-FRGs were obtained, including five upregulated genes
and seven downregulated genes (Figure 2(c)). Chromosomal
localization showed that DE-FRGs were mainly located on
chromosomes 1 and 12. Chromosome 1 contains one sup-
pressor and two mark ferroptosis genes. Ferroptosis driver
genes are located on chromosome 12 Figure 2(d).

3.2. Screening for Hub DE-FRGs. We apply the representa-
tion data of 12 DE-FRGs to the machine learning algorithm
of the RF classifier. All genes were ordered by “average
decreased accuracy” and “average decreased Gini coeffi-

cient.” The larger the two values are, the closer the relation-
ship between DE-FRGs and DKD. RF screening results
showed that there were 7 DE-FRGs with an importance
score > 2, including DUSP1, PRDX6, ZFP36, TSC22D3,
PEBP1, RGS4, and GABARAPL1. Using the SVM algorithm,
we obtained ten feature signatures when the root mean
square error (RMSE) is minimum, including DUSP1,
PRDX6, ZFP36, PEBP1, TSC22D3, GABARAPL1, RGS4,
IL33, RRM2, and ASNS. The blue dots indicate the number
of signatures with the highest accuracy or minimum error.
The intersection genes of the two machine algorithms were
selected as hub DE-FRGs, and seven hub DE-FRGs were
obtained, including Dual specificity phosphatase 1 (DUSP1),
peroxidase 6 (PRDX6), phosphatidylethanolamine-binding
protein 1 (PEBP1), ZFP36 ring finger protein (ZFP36),
glucocorticoid-induced leucine zipper (TSC22D3), GABA
type A receptor-associated protein-like 1 (GABARAPL1),
and regulator of G protein signaling 4 (RGS4)
(Figure 3(a)). To identify the diagnostic efficacy of DUSP1,
PRDX6, PEBP1, ZFP36, TSC22D3, GABARAPL1, and
RGS4 distinguishing between DKD and CON, ROC analysis
was performed by utilizing the data of the internal set. The
AUC was 0.969 for DUSP1, 0.953 for PRDX6, 0.92 for
PEBP1, 0.92 for ZFP36, 0.916 for TSC22D3, 0.903 for
GABARAPL1,and 0.868 for RGS4 (Figure 3(b)). Then, the
Wilcoxon test was used to compare the expression differ-
ences of 7 hub DE-FRGs in DKD samples and CON sam-
ples, and the results showed that DUSP1, PRDX6, PEBP1,
ZFP36, TSC22D3, and GABARAPL1 were significantly
reduced in DKD samples (p < 0:05). RGS4 was significantly
up in DKD samples (p < 0:05) (Figure 3(c)). DUSP1,
TSC22D3, and RGS4 are mark-ferroptosis genes; ZFP36
and PRDX6 are suppressor-ferroptosis genes; PEBP1 and
GABARAPL1 are driver-ferroptosis genes. In the indepen-
dent external set (GSE47183), the AUC of 7 hubs DE-
FRGs was more significant than 0.8 (Figure 3(d)). In the
independent external set (GSE99339), the AUC of 7 hubs
DE-FRGs was more significant than 0.6 (Figure 3(e)). The
box plot showed that the expression of 7 hub DE-FRGs in
DKD and CON samples was consistent with the internal
set (Figure S1(a, b)). Thus, seven hub DE-FRGs might be a
potential diagnostic biomarker of DKD.

3.3. Ferroptosis Modification Patterns Mediated by Hub DE-
FRGs in DKD. To investigate ferroptosis modification pat-
terns in DKD, we performed an unsupervised consensus clus-
tering analysis of DKD samples based on the expression hub
DE-FRG (DUSP1, PRDX6, PEBP1, ZFP36, GABARAP1,
TSC22D3, and RGS4) (Figures 4(a)–4(c)). We identified two
different ferroptosis modification patterns, and the expression
of seven hub DE-FRGs was qualitatively different, including
30 DKD samples in pattern A and 23 DKD samples in pattern
B (Figure 4(d)). Five hub ferroptosis-DEGs have remarkable
differences in expression between 2 ferroptosis modification
patterns (p < 0:05). PRDX6, PEBP1, TSC22D3, and GABAR-
APL1 were significantly upregulated in pattern B. RGS4 was
significantly downregulated in pattern A (Figure 4(e)),
validating the existence of diverse ferroptosis modification
patterns in DKD.
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3.4. Biological Characteristics of Ferroptosis Modification
Patterns. GSVA enrichment was performed to explore the
two clusters’ biological behavior and pathway differences.
Pattern B was significantly enriched in the regulation of
autophagy and peroxisome pathways, and pattern A showed
enrichment in immune-inflammatory pathways
(Figure 5(a)). Examples include the T cell receptor signaling
pathway and chemokine signaling pathway, B cell receptor
signaling pathway, P53 signaling pathway, and primary
immunodeficiency. In order to further interpret the cluster-
ing results from the perspective of fundamental biological
processes, we performed GO and KEGG analyses on genes
that are differentially expressed between pattern A and pat-
tern B. A total of 709 DGEs were obtained. According to
the results of the GO analysis, DGEs were primarily enriched

in cell activation involved in immune response, leukocyte
migration, and T cell activation (Figure 5(b)). The results
of the KEGG analysis showed that these DEGs were signifi-
cantly enriched in PI3K-Akt signaling pathway, comple-
ment, coagulation cascades, ECM-receptor interaction,
Rap1 signaling pathway, proteoglycans in cancer, and
AGE-RAGE signaling pathway in diabetic complications
(Figure 5(c)). These results suggest that DEGs between pat-
terns A and B may be involved in the inflammatory immune
response of DKD.

3.5. Immune Microenvironment Characteristics in Distinct
Ferroptosis Modification Patterns. Based on the CIBERSORT
deconvolution algorithm, we found a significant difference
in the proportion of immune cells between DKD and CON
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Figure 2: Data preprocessing. (a) PCA was used to remove batch effect. (b) Before batch correction and after batch correction. (c) Heat map
showed the transcriptome expression of DE-FRGs between DKD and CON samples. (d) Chromosomal distribution of DE-FRGs in DKD.
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Figure 3: Screening for hub DE-FRGs. (a) DKD disease diagnosis genes were selected by RF and SVM. (b) Subject operating characteristic
curve analysis of hub DE-FRGs in internal set classification model. AUC value and area under ROC curve. (c) The box plot showed the
difference of hub DE-FRG expression between DKD and CON samples. (d, e) The area under the curve of AUC values of GSE47183 and
GSE99339.

7Oxidative Medicine and Cellular Longevity



Consensus CDF
1.0

0.8

0.6

CD
F

0.4

0.2

0.0
0.0 0.2 0.4 0.6

Consensus index
0.8 1.0

2
3
4
5

6
7
8
9

(a)

Delta area
0.5

0.4

0.3

0.2

Re
la

tiv
e c

ha
ng

e i
n 

ar
ea

 u
nd

er
 C

D
F 

cu
re

0.1

0.0

K
2 3 4 5 6 7 8 9

(b)

1
2

Consensus matrix k = 2

(c)

AB

−1.5

−1.0

−0.5

0.0

0.5

1.0

−2 −1 0 1 2
PC1

PC
2

Ferroptosis cluster
A
B

(d)

1

2

3

4

5
⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎⁎⁎ ⁎⁎

G
en

e e
xp

re
ss

io
n

Ferroptosis cluster

A
B

RG
S4

G
A

BA
RA

PL
1

TS
C2

2D
3

ZF
P3

6

PE
BP

1

PR
D

X6

D
U

SP
1

(e)

Figure 4: Unsupervised clustering of hub DE-FRG regulators identified two different ferroptosis modification patterns in DKD. (a)
Cumulative distribution function (CDF) is displayed for k = 2–9. (b) The relative change in area under the CDF curve for k = 2–9. (c)
The correlation between subgroups when cluster numbers k = 2. (d) PCA analysis of transcriptome profiles of two ferroptosis
modification patterns showed significant differences among different modification modes. (e) The expression difference of 7 hub DE-
FRGs in the two ferroptosis patterns. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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(Figure 6(a)). Box plot also shows that macrophages M1 and
M2, B cell memory, T cell CD4 naive, NK cell activated, den-
dritic cell resting, and mast cell resting were significantly
increased in DKD samples, while B cell naive, T cell CD4
memory resting, and mast cell activated were significantly
decreased (p < 0:05) (Figure 6(b)). Furthermore, using the
ssGSEA algorithm to quantify the abundance of immune cell
infiltration in the two ferroptosis modification patterns, we
found that many immune cell infiltration degrees differed
between the two patterns. This conclusion is consistent with
the previous GSVA enrichment results. We found that the
majority of the infiltrated immune cells were rich in pattern
A; however, there was no statistically significant difference in

eosinophil, immature dendritic cell, neutrophil, and type 17
T helper cell between the two patterns (Figure 7(a)). Only
four immune checkpoints (CTLA4, LAG3, PDCD1, and
PDCD1LG2) were retrieved in the combined validation set,
in which CTLA4 was significantly downregulated in pattern
B and PDCD1LG2 was significantly upregulated (p > 0:05)
(Figure 7(b)). HLA gene expression trends showed that
HLA-A, HLA-DMB, HLA-DQB1, and HLA-DQB2 in pat-
tern A were significantly higher expressions than those in
pattern A (p < 0:05) (Figure 7(b)). The correlation heat
map shows that PRDX6 is negatively correlated with
immune cells, while RGS4 is positively correlated with
immune cells (p < 0:05) (Figure 7(c)). According to the
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Figure 5: Enrichment analysis. (a) The heat map was used to visualize the biological processes assessed by GSVA. (b) Function annotation
DEGs using GO terms and (c) KEGG pathway.
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expression level of PRDX6, DKD samples were divided into
the PRDX6 high expression group and PRDX6 low expres-
sion group, and the abundance of immune cell infiltration
was detected. The results showed that the PRDX6 high
expression group had significantly decreased immune cells
except for immature B cell, immature dendritic cell, neutro-
phil, plasmacytoid dendritic cell, type 17 T helper cell, and
type 2 T helper cell (p < 0:05) (Figure S2(a)). In addition to
eosinophil, immature dendritic cell, neutrophil, plasmacy-
toid dendritic cell, and type 17 T helper cell, the abundance
of immune cells in the high expression group of RGS4 was
significantly increased (p < 0:05) (Figure S2(b)). The differ-
ences in immune cell infiltration were consistent with the
distinct ferroptosis modification patterns. High expression
of pattern B DE-FRGs (PRDX6, PEBP1, GABARAPL1, and
TSC22D3) and immune cells and HLA genes was negatively
correlated. The above results proved that ferroptosis modifi-
cation had a negative regulatory role in shaping different
immune microenvironments in DKD.

3.6. Identification of Ferroptosis-Related Gene Clusters and
Ferroptosis Score in DKD. We obtained a total of 709 DEGs
related to patterns A and B. Based on these DEGs, we
repeated the unsupervised consistency cluster analysis to
obtain the gene clusters A and B, with 27 DKD samples in
cluster A and 26 DKD samples in cluster B (Figure S3 (a-
c)). The box plot showed that hub DE-FRGs were expressed
between clusters A and B (Figure S3(d)). Three hub DE-
FRGs (PRDX6, GABARAPL1, and TSC22D3) were signifi-
cantly upregulated in cluster A compared with cluster B.
ZFP36 and RGS4 were significantly upregulated in cluster
B. GSVA enrichment revealed that gene cluster A was
mainly enriched in inositol phosphate metabolism and regu-
lation of autophagy biological functions, while gene cluster B
was related to the biological functions or pathways such as
glycan biosynthesis, glycosaminoglycan biosynthesis, chon-
droitin sulfate, P53 signaling pathway, and primary immu-
nodeficiency (Figure S3(e)). Analysis of ssGSEA immune
cell infiltration showed that immune cell infiltration was sig-
nificantly higher in gene cluster B than in cluster A, except

for plasmacytoid dendritic cells (Figure S3(f)). The box plot
showed that CTLA4 significantly decreased in cluster A,
while PDCD1LG2 significantly increased (p > 0:05) (Figure
S3(g)). HLA-DMB, HLA-DQB1, and HLA-DQB2 were sig-
nificantly decreased in cluster A (p > 0:05), and the conclu-
sion was similar to the ferroptosis modification pattern
(Figure S3(h)). These results once again confirmed that iron
death modification plays an important role in immune reg-
ulation of DKD. We calculated the ferroptosis scores of each
patient with DKD using the equation ∑PC1B −∑PC1A.
According to the ferroptosis scores, the DKD samples were
divided into high score groups and low score groups, as fer-
roptosis scores were significantly lower in pattern A than in
pattern B (p < 0:05) (Figure 8(a)). The ferroptosis scores of
cluster A in the gene cluster were significantly higher than
that of cluster B (p < 0:05) (Figure 8(b)). The ferroptosis
scores of ferroptosis modification pattern and gene cluster
were displayed in an alluvial diagram based on the “ggallu-
vial” package (Figure 8(c)). These partial results showed high
similarity between ferroptosis modification pattern classifi-
cation and gene cluster. Ferroptosis modification pattern A
and gene cluster B mainly belong to low ferroptosis scores,
while pattern B and cluster A mainly belong to high ferrop-
tosis scores. GSEA revealed that high ferroptosis scores were
enriched in ferroptosis-related pathways such as the fatty
acid metabolism and peroxisome signaling pathways
(Figure 8(d)). Low ferroptosis scores were enriched in the
chemokine signaling pathway and ECM-receptor interaction
(Figure 8(e)). Immune cell infiltration was decreased in high
ferroptosis scores, except for immature dendritic cell
(Figure 8(f)). This conclusion is consistent with the pattern
of ferroptosis modification and the immune cell infiltration
of gene clustering. These results indicate that ferroptosis
scores are effective predictors of immune infiltration abun-
dance in DKD.

3.7. Prediction of DKD-Related Potential Core Targets and
Immune-Related Biological Processes in TCM. The biological
processes related to GO and KEGG immunity screened out
by hub DE-FRGs were imported into the Coremine Medical
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Figure 6: Analysis of immune cell infiltration. (a) The bar plot showing the proportion of infiltrated immune cells calculated by the
CIBERSORT algorithm. (b) Box plots showing the abundance of differentially expressed immune cells in CON and DKD. ∗p < 0:05, ∗∗p
< 0:01, and ∗∗∗p < 0:001.
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database. The threshold condition was set as p < 0:05 to
screen out the traditional Chinese medicines related to hub
DE-FRGs and immune-related biological processes. The
predicted results showed the relationship between hub DE-
FRGs (DUSP1, PRDX6, PEBP1, ZFP36, GABARAPL1, and
RGS4) as well as biological processes such as T cell receptor
signaling pathway, natural killer cell-mediated cytotoxicity,
macrophage differentiation, T cell activation, and T cell dif-
ferentiation. A total of 52 Chinese medicines were found to
be closely related to immunity and hub DE-FRGs (Table
S1). TSC22D3 and immune-related TCM were not retrieved.
The results showed that Bombyx mori L (Can Sha), Panax
ginseng C A Mey (Ren Shen), and Hedysarum multijugum
Maxim (Huang Qi) had the highest repeatability. Using the
TCMSP database, compounds were screened with oral
bioavailability ðOBÞ ≥ 30% and drug similarity ðDLÞ ≥ 0:18

as thresholds. The TCMSP database predicted compound
targets, and the effective targets were deweighted and nor-
malized by the UniProt database. A total of 201 potential
targets of drug compounds were predicted by using TCMSP
database, of which 17 targets were involved in the “FoxO sig-
naling pathway” related to diabetic nephropathy. Seven tar-
gets participated in “longevity regulating pathway”; 26
targets were involved in “AGE-RAGE signaling pathway in
diabetic complications”; 6 targets were involved in type 2
DM-related signaling pathway “PPAR signaling pathway”;
13 targets participated in “cell cycle”; 14 targets were
involved in the p53 signaling pathway; 6 targets involved
in Wnt signaling pathway. Use Cytoscape to construct the
“TCM-active component-target-pathway-diseases” action
network (Figure 9). The green triangle represents the medi-
cine, the yellow diamond represents the active ingredient,
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Figure 7: Immune cell landscape in different ferroptosis modification patterns in DKD. (a) Box plots show the differences in immune cell
infiltration calculated by ssGSEA algorithm in different modes of iron death modification. (b) Differential expression of immune checkpoint
genes between different ferroptosis modification patterns. (c) Box plot of differential expression of HLA-related genes. (d) Heat map of the
correlation between core genes and immune cells. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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the blue circles represent compound targets, the red hexagon
represents disease, and the magenta triangle represents
disease-related signaling pathways. Thus, the top two degree
values are that active ingredient kaempferol (MOL000422)

of Ren Shen and quercetin (MOL000098) of Huang Qi, with
each other through acting on multiple different targets to
realize network regulation effect, thus causing complex reg-
ulatory relationship and thus exerting a therapeutic effect.
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Figure 8: Ferroptosis scores in different clusters. (a) Ferroptosis score box plot in ferroptosis modification patterns. (b) Ferroptosis score
box plot in gene clusters. (c) Alluvial diagram of ferroptosis score with different ferroptosis modification patterns and gene clustering. (d,
e) GSEA enrichment analysis of high and low ferroptosis score groups. (f) High and low ferroptosis score group immune cell infiltration.
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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In addition, kaempferol is both the active ingredient of Ren
Shen and Huang Qi and ranks top two in the medium value
of Cytoscape. It is suggested that the active ingredient may
be a potential candidate drug for immunotherapy of DKD.

3.8. Compound-Target Docking. Compounds kaempferol
and quercetin, which ranked the top two in the degree value
of a drug-component-target network, were selected for
molecular docking of disease core targets. The Chem3D soft-
ware was employed to draw the corresponding 3D structure
according to the structural formulas of the two practical
active components and output in mol∗2 format. The 3D
structures of core proteins DUSP1 (PDB: 6APX), PRDX6
(PDB: 1PRX), PEBP1 (PDB: 2QYQ), GABARAPL1 (PDB:
2R2Q), and RGS4 (PDB: 5CFW) were downloaded from
the PDB database and output in PDB format. We did not
retrieve ZFP36 and TSC22D3 proteins that met the inclu-
sion criteria in the PDB and UniProt databases. The Auto-
DockTools 1.5.6 software was used to convert active
components and core proteins into PDBQT format to find
functional pockets; that is, the ligand is combined with one
or more amino acid residues to form H bonds, P-π bonds,
or π-π bonds, and other active sites and calculate the bind-

ing energy. The binding energies of the main active ingredi-
ents and the protein encoded by target genes are all less than
-6.0 kcal/mol (Table 2), indicating good binding activity. The
results of AutoDock Vina docking showed that kaempferol,
the main active component of Ren Shen, formed the most
stable molecular docking with RGS4, and the docking bind-
ing energy was -8.5 kcal/mol. Quercetin, the main active
component of Huang Qi, formed the most stable molecular
docking with PEBP1. The docking combined energy is
-8.6 kcal/mol. Kaempferol forms four hydrogen bonds with
TYR97, ASN140, and MET105 of amino acid residues of
RGS4; CYS136 forms a C-H bond with the ligand; PRO82,
LEU92, ILE146, VAL87, and CYS136 formed p-π conjuga-
tion effect with ligand. Moreover, a p-π hydrophobic stack-
ing interaction is formed between VAL87 and the ligand.
In addition, hydrophobic amino acids surround, such as
LEU94, TYR139, ASN135, MET132, ASP106, and PHE83
(Figure 10(a)). Quercetin forms three hydrogen bonds with
amino acid residues MET105, TYR97, and ASN140 of
RGS4 (PDB: 5CFW). ILE146, PRO82, LEU92, and CYS136
formed a p-π conjugation effect with ligands; VAL87 formed
a p-π hydrophobic interaction with its ligand. There are also
hydrophobic amino acids nearby (Figure 10(b)). It is
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Figure 9: “TCM-active component-target-pathway-disease” action network.

Table 2: Molecular docking binding energy (kcal/mol).

Compound
Binding energy with

PRDX6
Binding energy with

PEBP1
Binding energy with

GABARAPL1
Binding energy with

RGS4
Binding energy with

DUSP1

Kaempferol -6.6 -8.3 -8.1 -8.5 -6.1

Quercetin -6.5 -8.6 -8.3 -8.3 -6.0
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speculated that ASN140, CYS136, and VAL87 play critical
roles in the interaction between RGS4 and the ligand.
Kaempferol forms a hydrogen bond with amino acid residue
TYR120 of PEBP1 and a C-H bond with TYR181; TRP84
and ligand form stable π-π hydrophobic stacking; ALA73
and LEU184 form p-π conjugation effects with ligands.
Moreover, there is a hydrophobic interaction with many
hydrophobic amino acids (Figure 11(a)). Quercetin forms
three hydrogen bonds with amino acid residues TYR120,
LEU184, and ASP70 of PEBP1; TRP84 and TYR181 formed
stable π-π hydrophobic stacking and p-π conjugation with
ligands; LEU184, HIS86, and ALA73 form p-π conjugacy
effects with ligands (Figure 11(b)). It is speculated that
TRP84 and TYR120 play a vital role in the interaction
between PEBP1 and the ligand.

In the crystal structure of the receptor protein molecule
DUSP1 (PDB: 6APX), through a series of simulation calcu-
lations, ARG492 and HIS388 may be the active site residues
of the receptor (Figure S4 (a, b)). The crystal structure of
PRDX6 (PDB: 1PRX) suggests that LYS67 and LYS199
may be the active site residues of the receptor (Figure S5
(a, b)). LEU50 and ARG67 may be active site residues of
the GABARAPL1 (PDB: 2R2Q) receptor (Figure S6 (a, b)).
Our data suggested the direct binding of Chinese herbal

compounds kaempferol and quercetin to its target proteins
DUSP1, PRDX6, PEBP1, GABARAPL1, and RGS4.

4. Discussion

In order to reveal how ferroptosis affects the immune
response of DKD patients and the effect of activation of
immune pathways on immune cells, this study constructed
different ferroptosis abundance clusters. It evaluated the cor-
relation between different ferroptosis abundance clusters
and immune infiltration. We found that the expression of
most ferroptosis regulators was altered after the develop-
ment of DKD. The ferroptosis-related genes (DUSP1,
PRDX6, PEBP1, ZFP36, GABARAPL1, TSC22D3, and
RGS4) were closely related to DKD disease by the random
forest tree and support vector machine model we con-
structed. Ferroptosis marker genes (DUSP1 and TSC22D3),
ferroptosis suppressor genes (ZFP36 and PRDX6), and fer-
roptosis driver genes (PEBP1 and GABARAPL1) were sig-
nificantly decreased, while ferroptosis marker gene RGS4
was significantly increased. When evaluating the model
screening results, it was found that the differential ferropto-
sis genes obtained by the machine algorithm model can dis-
tinguish DKD from regular patients and have better

Pi-Sigma
Pi-Alkyl

Carbon hydrogen bond
Conventional hydrogen bond
Van der waals

Interactions

RGS4-kaempferol

(a)

Unfavorble donor-Donor
Pi-Sigma

Carbon hydrogen bond
Conventional hydrogen bond
Van der waals

Interactions

Pi-Alkyl

RGS4-quercetin

(b)

Figure 10: Molecular docking model of the core active ingredients with RGS4 (PDB: 5CFW). (a) The molecular docking of kaempferol with
RGS4. (b) The molecular docking of quercetin with RGS4.
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diagnostic and distinguishing value, which is conducive to
developing clinical-specific antibodies. These genes have
also been reported in some studies. Animal experiments
have shown that under high glucose (HG) environment,
PRDX6 in mouse podocyte MPC5 is significantly reduced.
PRDX6 overexpression can increase podocyte viability and
inhibit high glucose-induced ROS and MDA production.
It increases the expression of SLC7A11 and GPX4 and
inhibits ferroptosis. Interestingly, PRDX6 reduced the acti-
vation of plasma NF-κB and TNF-α levels in diabetic mice
[31]. These results strongly suggest that PRDX6 can
improve renal function by inhibiting ferroptosis, which
may be closely related to improving inflammatory
response. This conclusion is consistent with the results of
machine algorithm analysis. The decrease of PRDX6 tran-
scriptome level in DKD will aggravate the process of fer-
roptosis and inflammatory response.

Another molecule derived from model evaluation,
PEBP1, also known as RAF-1 kinase inhibitory protein
(RKIP), is a member of the phosphatidylethanolamine-
binding protein family [32]. It is well known that NF-κB sig-
naling is essential in regulating oxidative stress and inflam-
mation. Downregulating, the expression of its pathway
proteins can inhibit the upregulation of inflammatory cyto-
kines [33]. Studies have found that RKIP can act as a nega-
tive regulator of the nuclear factor kappa B (NF-κB)
signaling pathway, inhibit its expression, and slow the
inflammatory response, which undoubtedly has a protective
regulatory effect on DKD [34]. Similarly, ZFP36 obtained
from model screening is a zinc finger protein affecting
TNF-α mRNA’s stability. Zhang et al. found that the inacti-
vation of ZFP36 in mice resulted in a complex inflammatory
syndrome caused by increased TNF-α production [35].
Some studies have reported that the level of ZFP36 in

PEBPI-kaempferol

Pi-Pi stacked
Pi-Alkyl

Pi-Donor hydrogen bond
Conventional hydrogen bond
Van der waals

Interactions

(a)

PEBPI-quercetin

Alkyl
Pi-Alkyl

Pi-Pi stacked
Conventional hydrogen bond
Van der waals

Interactions

(b)

Figure 11: Molecular docking model of the core active ingredients with PEBP1 (PDB: 2QYQ). (a) The molecular docking of kaempferol
with PEBP1. (b) The molecular docking of quercetin with PEBP1.
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diabetic patients was significantly lower than in controls. In
addition, the levels of IL-6 and IL-18 in serum and urine of
patients with proteinuria were significantly increased, while
the level of ZFP36 was significantly lower than that of
patients without proteinuria or microproteinuria. Serum
ZFP36 was negatively correlated with IL-6/IL-18 [36]. Iron
overload aggravates renal cell damage and is closely related
to inflammation and immune regulation. The above evi-
dence undoubtedly confirms that ferroptosis affects renal
function in DKD patients and is related to inflammation.
Processes such as metabolism, hypoxia, and apoptosis are
also involved in disease regulation [37]. For example, the
low expression of ferroptosis-related gene DUSP1 obtained
by screening is related to glucose metabolism disorder, renal
failure, renal hypertrophy, renal fibrosis, and glomerular
apoptosis. At the molecular level, defective DUSP1 expres-
sion activates the JNK pathway, which selectively initiates
mitochondrial fission by regulating mitochondrial fission
factor (Mff) phosphorylation. DUSP1 overexpression sup-
presses glomerular apoptosis and prevents mitochondrial
damage induced by high glucose stress. Mechanically, rein-
troduction of DUSP1 inactivates the JNK pathway and alle-
viates Mff phosphorylation. Inactive Mff disrupts
hyperglycemia-mediated mitochondrial fission and thus
reduces mitochondrial oxidative stress, represses mPTP
opening, weakens proapoptotic leakage into the cytoplasm,
and closes mitochondria-dependent cellular apoptosis in
the setting of diabetes [38]. In addition, as glucose metabo-
lism disorders cause chronic microvascular lesions, insulin
secretion can directly or indirectly affect the progression of
DKD. In this study, RGS4 was found to be significantly
changed in the progression of DKD patients. RGS4 is a
vascular-associated RGS protein that functions as a GTPase
activator of Gq and Gi family members. RGS4 also helps
reduce angiotensin-dependent superoxide production, pre-
vents vascular oxidation, and may be involved in inhibiting
cell signaling through CXC motif chemokine receptors
[39]. According to Bastin et al., in phases I and II of insulin
release from intact mice and isolated islets, loss of RGS4
resulted in A marked deficiency of glucose-stimulated insu-
lin secretion [40]. In addition, the research group previously
found that hypoxia regulation can be involved in the regula-
tion process of DKD. In the results of this study, TSC22D3,
also known as glucocorticoid-induced leucine zipper, is a
glucocorticoid other than DUSP1. One of the reactive anti-
inflammatory molecules regulates intracellular signaling
pathways through HIF-1α and AP-1 [41, 42]. TSC22D3
inhibits hypoxia- and diabetes-induced galectin-1 expression
due to hypoxia and diabetes by disrupting the stability of the
HIF-1α protein. In addition, GABARAPL1, also known as
autophagy-associated protein 8 (ATG8), is a ubiquitin-like
protein involved in autophagosome formation. In our study,
we found that the expression of this gene was downregulated
in DKD samples. Zhang et al. demonstrated that GABAR-
APL1 acts as a tumor suppressor and inhibits Wnt signaling
by mediating Dvl2 degradation through the autophagy path-
way [43]. On the other hand, DM has been reported to
induce Wnt1/β-catenin signaling, promote damage to podo-
cytes, induce epithelial-mesenchymal transition, and worsen

kidney injury and fibrosis [44]. However, whether GABAR-
APL1 can improve the progress of DKD through this path-
way needs further exploration.

In our study, unsupervised consistent clustering analysis
was performed in DKD patients based on hub DE-FRG
expression to obtain two distinct patterns of ferroptosis
modification. Then GSVA was used to analyze the signal
pathway enrichment of the two ferroptosis clustering pat-
terns, and the differential genes between the two patterns
were screened for GO and KEGG enrichment analysis. The
results showed that the hub DE-FRG high expression group
(pattern B) was significantly enriched in autophagy and per-
oxidase pathways, while pattern A was significantly enriched
in immune-related pathways. Growing evidence suggests
that T lymphocyte activation and cytokine-induced inflam-
mation are closely related to type DM and DKD [45].CTLA4
interacts with CD28 on T cells, which is essential for T cell
activation. Previous work suggested that treatment with
CTLA4-Ig (abatacept), a molecule that binds and blocks
B7-1 and is licensed for the treatment of rheumatoid arthri-
tis, could ameliorate DKD. Animal studies have also shown
that CTLA4 enhances autoimmune responses in DM mice
[46, 47]. NF-κB signaling pathway is closely related to apo-
ptosis and participates in the transcriptional regulation of
various apoptosis-related genes, which is an important way
to regulate immunity. There are four major genes in this
pathway, including programmed cell death 1 (PDCD1) and
PDCD1LG2. The abnormal expression of Fas cell surface
death receptor (FAS) and Fas ligand FASLG has been shown
to be associated with some autoimmune diseases [48, 49].
However, our results showed that CTLA4 was significantly
decreased in the high expression group of hub DE-FRGs
(pattern B), while PDCD1LG2 was significantly increased.
Differential analysis of HLA genes also showed that HLA-
A, HLA-DMB, HLA-DQB1, and HLA-DQB2 were signifi-
cantly higher in pattern A than in pattern B. HLA-DQB1
and HLA-DQB2 belonged to HLA class II molecules mainly
distributed on the surface of B cells, monocyte-macrophage,
and dendritic cells, involved in the presentation and immune
regulation of exogenous antigens [50]. GO and KEGG
enrichment analyses also showed that the differential genes
between pattern A and pattern B were mainly enriched in
the immune and glucose metabolism-related pathways.
These results suggest that ferroptosis plays an essential role
in the immune microenvironment of DKD. To validate the
accuracy of ferroptosis clustering and the relationship
between different modification patterns and immune micro-
environment, we performed a second unsupervised DEG
consensus cluster based on subcohort screening, resulting
in two gene clusters. The ferroptosis score of each DKD
patient was calculated, and the DKD patients were divided
into high and low score groups. The relationship between
gene clustering and ferroptosis score and immune microen-
vironment was compared. Gene clustering results were
divided into cluster A and cluster B. Gene cluster B had
low expression of ferroptosis genes, except for RGS4 and
ZFP36. Immune cells were mainly enriched in cluster B,
and HLA-DMA, HLA-DQB1, and HLA-DQB2 were signifi-
cantly increased in cluster B. GSVA enrichment results show
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that cluster B is mainly enriched in glycan biosynthesis, gly-
cosaminoglycan biosynthesis chondroitin sulfate, P53 sig-
naling pathway, and primary immunodeficiency. The
above conclusion is similar to ferroptosis modification pat-
tern A. The infiltration of immune cells in the high ferropto-
sis score group was significantly lower than in the low
ferroptosis score group. GSEA analysis showed that the high
score groups were mainly enriched in ferroptosis-related sig-
naling pathways, such as fatty acid metabolism and peroxi-
some signaling pathways. This result is similar to
ferroptosis modification pattern B enrichment previously
analyzed by GSVA enrichment. Based on the immune char-
acteristics of the above subtypes, the reliability of our classi-
fication of DKD immunophenotypes was further confirmed.
In addition, the ferroptosis score was negatively correlated
with infiltrating immune cells in DKD patients. Ferroptosis
score plays a role in predicting the effectiveness of immuno-
therapy in patients with DKD.

In this study, we found that the infiltration of macro-
phages, dendritic cells, B cells, NK cells, mast cells, CD4 T
cells, and myeloid-derived suppressor cell (MDSC) immune
cells in DKD glomeruli increased significantly but decreased
significantly in ferroptosis modification pattern B and high
ferroptosis score groups. Under high glucose stress, kidney
cells produce proinflammatory responses that promote
innate immune response and uptake of macrophages by
releasing chemokines, cellular adhesion molecules, and dam-
aging risk-associated molecular patterns (DAMPs). Its
action activates and supplements cytokines, enhances innate
immune response, and promotes infiltration of inflamma-
tory cells and mast cells into kidney tissue [51]. As DKD
progresses, the kidney becomes more sensitive to ischemia,
and the infiltration of neutrophils and macrophages in renal
tissue increases. Macrophages can secrete a variety of proin-
flammatory mediators, including interleukin- (IL-) 1β,
tumor necrosis factor- (TNF-) α, monocyte chemokine,
and chemotactic protein- (MCP-) 1, which in turn cause
kidney inflammation and fibrosis, accelerating disease pro-
gression [52, 53]. Myeloid-derived suppressor cells (MDSC)
are a subset of regulatory immune cells that inhibit other
immune cells, including T, B, and NK [54]. There are two
representative subtypes of MDSCs: polymorphonuclear
MDSCs (PMN-MDscs) and monocyte MDSCs (M-MDscs).
Islam et al. found that PMN-MDscs were significantly
increased in DKD patients through clinical studies. The pro-
duction of ROS in DKD PMN-MDSCs was higher than that
of healthy neutrophils or immune cells and increased under
hyperglycemic conditions [55]. These immune responses
promote DKD and decreased renal function. Moreover, we
found that PRDX6 had a negative regulatory relationship
with immune cells, while RGS4 had a positive regulatory
relationship with immune cells. Activated CD8 T cell, regu-
latory T cell, gamma delta T cell, mdsc, CD56 bright natural
killer cell, natural killer cell, activated CD4 T cell, macro-
phage, and type 1 T helper cell (Th1) were negatively corre-
lated with PRDX6 and positively correlated with RGS4.
Moreover, RGS4 was positively correlated with type 2 T
helper cell, activated dendritic cell, natural killer T cell, mast
cell, and T follicular helper cell. CD8+T cells may increase

the expression of IFN-γ and TNF-α through cytotoxic
effects, thus promoting the progression of diabetic kidney
[56]. Activated T cells have a high demand for iron, and iron
deficiency inhibits T cell proliferation, whereas iron overload
leads to an imbalance in the ratio of CD4 and CD8 T cells.
IFN-γ released by CD8+T cells may activate the JAK1-
STAT1 pathway to inhibit SLC7A11 expression, reducing
cystine uptake by tumor cells and leading to iron death
[57]. Alterations of Th1 cytokines in DM are associated with
a worsening proinflammatory state and generation of oxida-
tive stress [58]. Th1 cells can produce large amounts of
interferon-γ (IFN-γ), induce delayed hypersensitivity, acti-
vate macrophages, and promote cellular immunity. Macro-
phages are an essential source of tumor necrosis factor-
alpha (TNF-α) and play a crucial role in forming DKD
[59]. A complete blockade of TNF-α expression was found
in the diabetes-induced model after the knockdown of
TNF-α in macrophages. In addition, macrophage TNF-α
deletion caused decreased hypertrophy and proteinuria
[60]. TGF-β1 secreted by macrophages regulates the expres-
sion of ferroptosis-related target genes ZEB1 and SLC7A11
by activating SMAD signaling transcription, and SLC7A11
gene deletion promotes iron overload-induced ferroptosis
in macrophages [61, 62]. In other words, ferroptosis can be
regulated by adjusting the expression of TGF-β1 in macro-
phages. This study confirms that PRDX6 and RGS4 are
closely related to ferroptosis-mediated immune infiltration
in DKD patients, especially RGS4. These results suggest that
an imbalance between ferroptosis driver genes, suppressor
genes, and marker genes has potential links to multiple
underlying pathogenic factors in kidney disease, with immu-
nity and inflammation as the main correlates, which are
essential for finding multiple targets through ferroptosis
interventions. Therefore, targeting ferroptosis-related
immune cell responses, especially macrophages, is a poten-
tial strategy to improve the efficiency of immunotherapy in
patients with DKD.

Therefore, we predict the small-molecule compounds
kaempferol and quercetin associated with hub DE-FRGs
and enrichment immune pathways and identify possible
binding sites of proteins and ligands through molecular
docking, thereby elucidating the relationship between drug
and protein interactions at the molecular level. The relation-
ship between drug molecules and protein interactions. The
results showed that kaempferol and quercetin could also be
applied to DUSP1, PRDX6, PEBP1, GABARAPL1, and
RGS4 coding protein and play a role in treatment. Sharma
et al. findings suggest that kaempferol inhibits
hyperglycemia-induced activation of RhoA and decreases
oxidative stress, proinflammatory cytokines (TNF-α and
IL-1β), and fibrosis (TGF-β1 expression and extracellular
matrix protein expression) in NRK-52E and RPTEC cells
[63]. In vivo and in vitro studies showed that kaempferol
treatment promoted the release of GLP-1 and insulin and
increased the levels of cAMP and Ca2+ in GLUTag and
MIN6 cells. It also increased GLP-1 and insulin release in
the DKD mouse model. Kaempferol showed the potential
to improve histological changes and renal fibrosis while
reducing the expression levels of TGF-β1, CTGF,
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fibronectin, collagen IV, IL-1β, RhoA, ROCK2, and P-
MYPT1 in DKD renal tissue [64]. Yuan et al. reported that
kaempferol could activate nuclear factor-E2-related factor 2
(Nrf2)/SLC7A11/GPX4 signaling, enhance antioxidant
capacity, inhibit the accumulation of lipid peroxidation in
oxygen-glucose deprivation/reperfusion- (OGD/R-) treated
neurons, and significantly reverse OGD/R-induced ferropto-
sis [65]. Quercetin (3,30,40,5,7-pentahydroxyflavone), a
lipid-soluble compound, is also capable of radical scaveng-
ing, preventing lipid damage, and reducing lipid hydroper-
oxide production [66]. Studies have shown that quercetin
can significantly reduce the expression of glycosylation end
products, collagen IV, laminin, and connective tissue growth
factor; inhibit the proliferation of mesangial cells (MC); and
reduce the thickness of glomerular basement membrane [67,
68]. Quercetin can reduce iron content in pancreatic islets of
diabetic mice. Although xCT is compensatorily upregulated,
GSH and GPX4 are decreased in the DM model, which
induces oxidative stress in pancreatic tissue, whereas querce-
tin can abrogate part of oxidative stress. Moreover, quercetin
decreased the expression of the proapoptotic proteins Bax
and cleaved-caspase 3, increased the expression of the antia-
poptotic protein Bcl-2, and decreased the level of apoptosis
induced by high glucose in mice and MP podocytes
[69–71]. These results suggest that kaempferol and quercetin
may exert immunotherapeutic effects on DKD by regulating
ferroptosis.

This study provides a new direction for studying the
pathogenesis of immune-related DKD. We first introduced
the latest mechanism of ferroptosis in DKD, confirmed that
ferroptosis modification is involved in the regulation of the
immune microenvironment of DKD, and identified and val-
idated a new ferroptosis score to predict the immune infil-
tration in DKD patients. In addition, we verified the
docking binding sites of core compounds and core ferropto-
sis genes through molecular docking, providing guidance
and suggestions for the development of new DKD drugs.

However, this study also has some shortcomings, which
we must admit. Firstly, this study is based on bioinformatics
analysis, and many results are theoretically valid but have
not been verified experimentally, and their accuracy needs
to be verified. The second is the sample size, especially in
the combined analysis. Although the effect of interbatch dif-
ferences is eliminated as much as possible, there are still
other confounding factors that may affect our results. Third,
the markers identified in this study associated with diagnosis
and immunotherapy in patients with DKD are based on data
from public databases, which we did not validate. In the
future, we aim to design studies, conduct cell and animal
experiments, and explore their possible biological
mechanisms.

5. Conclusions

This study found that ferroptosis was associated with various
pathogenic factors represented by immunity and inflamma-
tion in DKD. After accuracy analysis, seven hub ferroptosis
genes (PRDX6, PEBP1, ZFP36, TSC22D3, GABARAPL1,
and RGS4) could distinguish DKD and CON reliably. Based

on immune infiltration analysis to evaluate the effect of fer-
roptosis on DKD, we found that hub ferroptosis genes and
immune infiltration abundance were mainly negatively regu-
lated, among which PRDX6 was significantly negatively reg-
ulated with immune cells. Meanwhile, RGS4 was
significantly positively regulated with immune cell relation-
ship deserves further study. At the same time, our scoring
model of ferroptosis can reasonably predict the relationship
between the clustering effect of ferroptosis and the abun-
dance of immune cells. Finally, based on hub ferroptosis
genes and enriched immune pathways, we predicted that
Ren Shen and Huang Qi were potential drugs that could
potentially affect ferroptosis to improve the immune and
inflammatory mechanisms of DKD, with kaempferol and
quercetin as the main active components.
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