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Nonlinear dynamical systems usually display high complexity. The last decades have seen
a remarkable and fruitful development of nonlinear dynamics, and a large number of
papers have been published in all branches of science. In modeling natural and man-made
systems, it is assumed in general that the system is perfect and that all parameters of
the system are known. However, real systems are usually imperfect, and uncertainties are
present both in system parameters and in the modeling stage. This is associated with the
lack of precise knowledge of the system parameters, random or noisy external loading,
operating conditions, and variabilities in manufacturing processes, among other things.
In many situations, these uncertainties are not important and may be overlooked in the
mathematical modeling of the problem. However in several situations, the uncertainties
can have significant influence on the dynamic response and the stability of the system.
Uncertainties may also be found in system response, even in cases where all parameters
are well established, such as systems exhibiting high sensitivity to initial conditions. This
is particularly important in strongly nonlinear chaotic systems and those with fractal-basin
boundaries. However, the influence of uncertainties in local and global bifurcations and
basins of attractions and on important engineering concepts such as reliability, safety, and
robustness is not well studied in literature. Even the definition of a random bifurcation is still
an open problem in nonlinear dynamics. This is a rather broad topic in nonlinear dynamics.

So, the present special issue is dedicated to the influence of uncertainties in structural
dynamics. In engineering structures, the main sources of uncertainties are: imperfections,
uncertainties in system parameters (mass, damping, and stiffness), uncertainties in the
external load, such as random loads (wind and earthquake), sensitivity to initial conditions,
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and interaction between load and structure. These types of uncertainties coupled to system
nonlinearities may have a marked influence on the structure’s response, particularly in
a dynamic environment. So, it is useful to study their influence on bifurcations, stability
boundaries, and basins of attraction. It is also interesting to discuss their influence on safety
factors, integrity measures, and confiability. These topics are essential for a safe design of
structures and the development of mathematically based safe (but not too conservative)
design codes and methodologies.

This issue comprises 16 contributions from 8 different countries, which give a
picture of the current research on uncertainties in engineering problems. Several aspects
are addressed, including the following: influence of uncertainties on buckling and vibration
of structural elements: trusses, cables, piles, beams, plates, and shells, the consideration
of uncertainties in vibration control, stochastic systems, and numerical algorithms for the
analysis of systems with different types of uncertainties.

The effect of geometric imperfections, unavoidable in real systems, and viscous
damping on the type of nonlinearity (i.e., the hardening or softening behavior) of circular
plates and shallow spherical shells is investigated in the paper written by C. Touzé et al. The
von Kármán large-deflection theory is used to derive the continuous models. Then, nonlinear
normal modes (NNMs) are used for predicting the structures’ nonlinear behavior.

D. S. Sophianopoulos et al. study the local instability of a 2 degree of freedom (DOF)
weakly damped systems using the Liénard-Chipart stability criterion. The individual and
coupling effects of mass and stiffness distribution on the dynamic asymptotic stability due to
mainly infinitesimal damping are examined. The validity of the theoretical findings presented
herein is verified via a nonlinear dynamic analysis.

The nonlinear modeling of cables with flexural stiffness is discussed by W.
Lacarbonara and A. Pacitti. A geometrically exact formulation of cables suffering axis
stretching and flexural curvature is presented. The dynamical formulation is based on
nonlinearly viscoelastic constitutive laws for the tension and bending moment with the
additional constitutive nonlinearity accounting for the no-compression condition.

The paper by D. M. K. N. Kunitaki et al. uses probabilistic and fuzzy arithmetic
approaches for the treatment of uncertainties in the installation of torpedo piles used in
the foundations of mooring lines and risers of floating production systems for offshore oil
exploitation. Methodologies involving, respectively, the Monte Carlo method and concepts
of fuzzy arithmetic are used to assess the sensitivity of the response to the variation of the
uncertain parameters.

The effects of uncertainties in nonlinear damping coefficients on the parametric
vibration of a cantilever beam with a lumped mass are investigated by D. G. Silva and P.
S. Varoto. The effects of a turbulent frictional damping force on the dynamic behavior of
the flexible structure are studied numerically and experimentally. The results indicate that
variations on the damping coefficient significantly alter the dynamics of the structure under
investigation.

The influence of uncertainties on the dynamic buckling loads of structures liable
to asymmetric postbuckling behavior is studied by P. B. Gonçalves and D. M. Santee.
A parametric analysis illustrates the influence of uncertainties in system parameters and
random perturbations of the forcing on the dynamic buckling load. A lower bound for the
buckling loads, obtained by the application of the Melnikov criterion, is proposed, which
compare well with the scatter of buckling loads obtained numerically.

The paper by J. Lew presents an approach to model validation for structures with
significant parameter variations. Model uncertainty of the structural dynamics is quantified
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with the use of a singular value decomposition technique to extract the principal components
of parameter change, and an interval model is generated to represent the system with
parameter uncertainty. A beam structure with an attached subsystem, which has significant
parameter uncertainty, is used to demonstrate the proposed approach.

J. Zhu et al. investigate a robust Kalman filtering design for continuous-time
Markovian jump nonlinear systems with uncertain noise. The statistical characteristics of
system noise and observation noise are time-varying or unmeasurable instead of stationary.
By view of robust estimation, maximum admissible upper bound of the uncertainty to noise
covariance matrix is given based on system state estimation performance. The robustness of
the Kalman filter against noise uncertainty and stability of dynamic systems is studied by
Game theory.

The “Ga-based fuzzy sliding mode controller for nonlinear systems” is studied by
P. C. Chen et al. First, they approximate and describe an uncertain and nonlinear plant for
the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control
rules. Next, the initial values of the consequent parameter vector are decided via a genetic
algorithm. After this, an adaptive fuzzy sliding model controller, designed to simultaneously
stabilize and control the system, is derived. The stability of the nonlinear system is ensured
by the derivation of the stability criterion based upon Lyapunov’s direct method.

The robust active vibration control of flexible structures considering uncertainties in
system parameters is addressed by D. D. Bueno et al. The paper proposes an experimental
methodology for vibration control in a 3D truss structure using PZT wafer stacks and a robust
control algorithm solved by linear matrix inequalities.

The paper written by D. Chen and W. Zhang is concerned with the sliding mode
control for uncertain stochastic neutral systems with multiple delays. A switching surface
is adopted first. Then, by means of linear matrix inequalities, a sufficient condition is derived
to ensure the global stochastic stability of the stochastic system in the sliding mode for all
admissible uncertainties. The synthesized sliding mode controller guarantees the existence
of the sliding mode.

W. T. M. Lima and L. M. Bezerra’s paper presents an implicit time integration
scheme for transient response solution of structures under large deformations and long-time
durations. The influence of different substep sizes on the numerical dissipation of the method
is studied throughout three practical examples. The method shows good performance and
may be considered good for nonlinear transient response of structures.

C. Soize and A. Batou study the identification of stochastic loads applied to a
nonlinear dynamical system for which a few experimental responses are available using an
uncertain computational model. A nonparametric probabilistic approach of both parameter
uncertainties and model uncertainties is implemented to take into account uncertainties, and
the level of uncertainties is identified using the maximum likelihood method. The identified
stochastic simplified computational model which is obtained is then used to perform the
identification of the stochastic loads applied to the real nonlinear dynamical system.

A homotopy perturbation method for solving reaction-diffusion equations is proposed
by L. Mo et al. In this method, the trial function (initial solution) is chosen with some
unknown parameters, which are identified using the method of weighted residuals. Some
examples are given, and the obtained results are compared with the exact solutions.

Z. H. Wang presents, on the basis of Lambert W function, an iterative algorithm for
the calculation of the rightmost roots of the neutral delay differential equations so that the
stability of the delay equations can be determined directly. The application of the method is
illustrated with two examples.
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Finally, dynamical models for computer viruses propagation are proposed by J. R.
C. Piqueira and F. B. Cesar. Data from three different viruses are collected in the Internet,
and two different identification techniques, autoregressive and Fourier analyses, are applied
showing that it is possible to forecast the dynamics of a new virus propagation by using the
data collected from other viruses that formerly infected the network.

José Manoel Balthazar
Paulo Batista Gonçalves

Reyolando M. R. L. F. Brasil
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The effect of geometric imperfections and viscous damping on the type of nonlinearity (i.e., the
hardening or softening behaviour) of circular plates and shallow spherical shells with free edge is
here investigated. The Von Kármán large-deflection theory is used to derive the continuous models.
Then, nonlinear normal modes (NNMs) are used for predicting with accuracy the coefficient,
the sign of which determines the hardening or softening behaviour of the structure. The effect
of geometric imperfections, unavoidable in real systems, is studied by adding a static initial
component in the deflection of a circular plate. Axisymmetric as well as asymmetric imperfections
are investigated, and their effect on the type of nonlinearity of the modes of an imperfect plate is
documented. Transitions from hardening to softening behaviour are predicted quantitatively for
imperfections having the shapes of eigenmodes of a perfect plate. The role of 2:1 internal resonance
in this process is underlined. When damping is included in the calculation, it is found that the
softening behaviour is generally favoured, but its effect remains limited.

Copyright q 2008 Cyril Touzé et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

1. Introduction

When continuous structures such as plates and shells undergo large amplitude motions, the
geometrical nonlinearity leads to a dependence of free oscillation frequencies on vibration
amplitude. The type of nonlinearity describes this dependency, which can be of the hardening
type (the frequency increases with amplitude), or of the softening type (the frequency
decreases). A large amount of literature is devoted to predicting this type of nonlinearity for
continuous structures, and especially for structures with an initial curvature such as arches or
shells because the presence of the quadratic nonlinearity makes the problem more difficult to
solve. On the other hand, the hardening behaviour of flat structures such as beams and plates
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is a clearly established fact, on the theoretical as well as the experimental viewpoint, (see, e.g.,
[1–6]). The presence of the quadratic nonlinearity may change the behaviour from hardening
to softening type, depending on the relative magnitude of quadratic and cubic nonlinear
terms.

Among the available studies concerned with this subject, quite all of them that were
published before 1992 could not be considered as definitive since they generally restrict to the
case of a single-mode vibration through Galerkin method, see, for example, [7–9] for shallow
spherical shells, or [10] for imperfect circular plates. Unfortunately, it has been shown by a
number of more recent investigations that too severe truncations lead to erroneous results in
the prediction of the type of nonlinearity, see, for example, [11, 12], or the abundant literature
on circular cylindrical shells, where the investigators faced this problem for a long time [13–
18]. As a consequence, a large number of modes must mandatory be kept in the truncation of
the partial differential equations (PDEs) of motion, in order to accurately predict the type of
nonlinearity. Recent papers are now available where a reliable prediction is realized, for the
case of buckled beams [19], circular cylindrical shells [20], suspended cables [21], and shallow
spherical shells [22].

However, these last studies are restricted to the case of perfect structures, and the
damping is neglected in the computations; and both of them have an influence on the type
of nonlinearity, so that a complete and thorough theoretical study that could be applied
to real structures need to address the effect of imperfections and damping. The geometric
imperfections have a first-order effect on the linear as well as the nonlinear characteristics of
structures. A large amount of studies are available, where the effect of imperfections on the
eigenfrequencies and on the buckling loads are generally addressed, see, for example, [23–
28] for the case of circular cylindrical shells, [29] for shallow cylindrical panels, and [30] for
the case of rectangular plates. Nonlinear frequency-responses curves are shown in [31, 32] for
clamped circular plates, [33–35] for rectangular plates, [36] for circular cylindrical shells, and
[37] for circular cylindrical panels. Even though the presence of geometric imperfection has
been recognized as a major factor that could make the hardening behaviour of the flat plate
turn to softening behaviour for an imperfection amplitude of a fraction of the plate thickness
[10, 38], a quantitative study, which is not restricted to axisymmetric modes and that does not
perform too crude truncations in the Galerkin expansion, is still missing.

To the authors’ knowledge, the role of the damping in the prediction of the type of
nonlinearity has been only recently detected as an important factor that could change the
behaviour from hardening to softening type [39]. In particular, it is shown in [39] on a simple
two degrees-of-freedom (dofs) system, that the damping generally favours the softening
behaviour. The aim of the present study is thus to apply this theoretical result to the practical
case of a damped shallow spherical shell, so as to quantitatively assess the effect of structural
damping of the viscous type on the type of nonlinearity of a two-dimensional vibrating
structure.

The article is organized as follows. In Section 2, local equations and boundary conditions
for an imperfect circular plate with free edge are given. Then the method used for computing
the type of nonlinearity is explained. Section 3 investigates how typical imperfections may turn
the hardening behaviour of flat plates to softening behaviour. Quantitative results are given
for selected imperfections having the shape of eigenmodes of the perfect structure. Section 4
is devoted to the effect of viscous damping. The particular case of a spherical imperfection is
selected, and the results are shown for three different damping dependances on frequency.
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Figure 1: (a) Top view and (b) cross-section of an imperfect circular plate of radius a and thickness h. (c)
The particular case of a spherical imperfection, with radius of curvature R.

2. Theoretical formulation

2.1. Local equations and boundary conditions

A thin plate of diameter 2a and uniform thickness h is considered, with h � a, and free-
edge boundary condition. The local equations governing the large-amplitude displacement
of a perfect plate, assuming the nonlinear Von Kármán strain-displacement relationship and
neglecting in-plane inertia, are given, for example, in [5, 40]. An initial imperfection, denoted
by w0(r, θ) and associated with zero inital stresses is also considered, see Figure 1. The shape
of this imperfection is arbitrary, and its amplitude is small compared to the diameter (shallow
assumption): w0(r, θ) � a. The local equations for an imperfect plate deduce from the perfect
case [18, 41, 42]. With w(r, θ, t) being the transverse displacement from the imperfect position
at rest, the equations of motion write

DΔΔw + ρhẅ = L(w,F) + L
(
w0, F

)
− cẇ, (2.1a)

ΔΔF = −Eh
2
[
L
(
w,w

)
+ 2L

(
w,w0

)]
, (2.1b)

whereD = Eh3/12(1−ν2) is the flexural rigidity, Δ stands for the laplacian operator, c accounts
for structural damping of the viscous type, F is the Airy stress function, and L is a bilinear
operator, whose expression in polar coordinates reads

L(w,F) = w,rr

(
F,r
r

+
F,θθ
r2

)
+ F,rr

(
w,r

r
+
w,θθ

r2

)
− 2

(
w,rθ

r
−
w,θ

r2

)(
F,rθ
r
−
F,θ
r2

)
. (2.2)

The equations are then written with nondimensional variables, by introducing

r = ar, t = a2
√
ρh/Dt, w = hw, w0 = hw0,

F = Eh3F, c =
[
Eh3/a2]

√
ρh/Dc.

(2.3)
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As nondimensional equations will be used in the remainder of the study, overbars are now
omitted in order to write the dimensionless form of the equations of motion

ΔΔw + ẅ = ε
[
L(w,F) + L

(
w0, F

)
− cẇ

]
, (2.4a)

ΔΔF = −1
2
[
L(w,w) + 2L

(
w,w0

)]
, (2.4b)

where ε = 12(1 − ν2).
The boundary conditions for the case of a free edge write, in nondimensional form [5]

F,r + F,θθ = 0, F,rθ + F,θ = 0, at r = 1, (2.5a)

w,rr + νw,r + νw,θθ = 0, at r = 1, (2.5b)

w,rrr +w,rr −w,r + (2 − ν)w,rθθ − (3 − ν)w,θθ = 0, at r = 1. (2.5c)

In order to discretize the PDEs, a Galerkin procedure is used. As the eigenmodes cannot
be computed analytically because the shape of the imperfection is arbitrary, the eigenmodes
of the perfect plate Ψp(r, θ) are selected as basis functions. Analytical expressions of Ψp(r, θ)
involve Bessel functions and can be found in [5]. The unknown displacement is expanded with

w(r, θ, t) =
+∞∑

p=1

qp(t)Ψp(r, θ), (2.6)

where the time functions qp are now the unknowns. In this expression, the subscript p refers to
a specific mode of the perfect plate, defined by a couple (k, n), where k is the number of nodal
diameters and n the number of nodal circles. If k /= 0, a binary variable is added, indicating the
preferential configuration considered (sine or cosine companion mode). Inserting the expansion
(2.6) into (2.4a) and (2.4b) and using the orthogonality properties of the expansion functions,
the dynamical equations are found to be, for all p = 1 · · ·N,

q̈p + 2ξpωpq̇p + ε

[
+∞∑

i=1

α
p

i qi +
+∞∑

i,j=1

β
p

ijqiqj +
+∞∑

i,j,k=1

Γp
ijk
qiqjqk

]

= 0. (2.7)

Linear coupling terms between the oscillator equations are present, as the natural modes have
not been used for discretizing the PDEs. Analytical expressions of the coupling coefficients
(αpi , β

p

ij ,Γ
p

ijk
) are given in [42]. The generic viscous damping term c of (2.4a) has been

specialized in the discretized equations so as to handle the more general case of a modal
viscous damping term of the form 2ξpωpq̇p, where ξp is the damping factor and ωp the
eigenfrequency of mode p. On the other hand, external forces have been cancelled, as the
remainder of the study will consider free vibrations only.

In order to work with diagonalized linear parts, the matrix of eigenvectors P of the linear
part L = [αpi ]p,i is numerically computed. A linear change of coordinates is processed, q = PX,
where X = [X1 · · ·XN]T is, by definition, the vector of modal coordinates, and N is the number
of expansion function kept in practical application of the Galerkin’s method. Application of



Cyril Touzé et al. 5

P makes the linear part diagonal, so that the discretized equations of motion finally writes,
∀ p = 1 · · ·N,

Ẍp + 2ξpωpẊp +ω2
pXp + ε

[
N∑

i,j=1

g
p

ijXiXj +
N∑

i,j,k=1

h
p

ijk
XiXjXk

]

= 0. (2.8)

The temporal equations (2.8) describe the dynamics of an imperfect circular plate. The
type of nonlinearity can be inferred from these equations. Unfortunately, too severe truncations
in (2.8), for example, by keeping only one degree-of-freedom (dof) (N = 1) when studying the
nonlinear behaviour of the pth mode, lead to incorrect predictions. Nonlinear normal modes
(NNMs) offer a clean framework for deriving a single oscillator equation capturing the correct
type of nonlinearity [12]. This is recalled in Section 3, where the analytical expression of the
coefficient dictating the type of nonlinearity is given.

2.2. Type of nonlinearity

Non-linear oscillators differ from linear ones by the frequency dependence on vibration
amplitude. The type of nonlinearity defines the behaviour, which can be of the hardening or
the softening type.

As shown in [12], NNMs provide an efficient framework for properly truncating
nonlinear oscillator equations like (2.8) and predict the type of nonlinearity (hardening
or softening behaviour). The method has already been successfully applied to the case of
undamped shallow spherical shells in [22]. The main idea is to derive a nonlinear change
of coordinates, allowing one to pass from the modal Xp coordinates to new-defined normal
coordinates Rp, describing the motions in an invariant-based span of the phase space. The
nonlinear change of coordinates is computed from Poincaré and Poincaré-Dulac’s theorems,
by successive elimination of nonessential coupling terms in the nonlinear oscillator equations.
Formally, it reads

Xp = Rp +
N∑

i=1

N∑

j≥i

(
a
p

ijRiRj + b
p

ijSiSj
)
+

N∑

i=1

N∑

j=1

c
p

ijRiSj

+
N∑

i=1

N∑

j≥i

N∑

k≥j

(
r
p

ijk
RiRjRk + s

p

ijk
SiSjSk

)
+

N∑

i=1

N∑

j=1

N∑

k≥j

(
t
p

ijk
SiRjRk + u

p

ijk
RiSjSk

)
,

(2.9a)

Yp = Sp +
N∑

i=1

N∑

j≥i

(
α
p

ijRiRj + β
p

ijSiSj
)
+

N∑

i=1

N∑

j=1

γ
p

ijRiSj

+
N∑

i=1

N∑

j≥i

N∑

k≥j

(
λ
p

ijk
RiRjRk + μ

p

ijk
SiSjSk

)
+

N∑

i=1

N∑

j=1

N∑

k≥j

(
ν
p

ijk
SiRjRk + ζ

p

ijk
RiSjSk

)
.

(2.9b)

A third-order approximation of the complete change of coordinates is thus computed.
The analytical expressions of the introduced coefficients {apij , b

p

ij , c
p

ij , r
p

ijk
, s

p

ijk
, t
p

ijk
, u

p

ijk
, } and

{αpij , β
p

ij , γ
p

ij , λ
p

ijk
, μ

p

ijk
, ν

p

ijk
, ζ

p

ijk
, } are not given here for the sake of brevity. The interested reader

may find them in [12] for the undamped case, and in [39] for the damped case.
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Once the nonlinear change of coordinates operated, proper truncations can be realized.
In particular, keeping only the normal coordinates Rp allows prediction of the correct type of
nonlinearity for the pth mode. The dynamics onto the pth NNM reads

R̈p +ω2
pRp + 2ξpωpṘp +

(
εh

p
ppp +A

p
ppp

)
R3
p + B

p
pppRpṘ

2
p + C

p
pppR

2
pṘp = 0, (2.10)

where A
p
ppp, Bpppp, and C

p
ppp are new coefficients coming from the change of coordinates.

Their expressions involve the quadratic coefficients {gpij} only, together with some of the

transformation coefficients, {apij , b
p

ij , c
p

ij} from (2.9a) and (2.9b) [39]:

A
p
ppp = ε

[
N∑

l≥i
g
p

pl
alpp +

∑

l≤i
g
p

lp
alpp

]

, (2.11a)

B
p
ppp = ε

[
N∑

l≥i
g
p

pl
blpp +

∑

l≤i
g
p

lp
blpp

]

, (2.11b)

C
p
ppp = ε

[
N∑

l≥i
g
p

pl
clpp +

∑

l≤i
g
p

lp
clpp

]

. (2.11c)

The asymptotic third-order approximation of the dynamics onto the pth NNM given
by (2.10) allows one to accurately predict the type of nonlinearity of mode p. A first-order
perturbative development from (2.10) gives the dependence of the nonlinear oscillation
frequency ωNL on the amplitude of vibration a by the relationship:

ωNL = ωp

(
1 + Tpa2), (2.12)

where ωp is the natural angular frequency. In this expression, Tp is the coefficient governing
the type of nonlinearity. If Tp > 0, then hardening behaviour occurs, whereas Tp < 0 implies
softening behaviour. The analytical expression for Tp writes [12, 22]

Tp =
1

8ω2
p

[
3
(
A
p
ppp + εh

p
ppp

)
+ω2

pB
p
ppp

]
. (2.13)

Finally, the method used for deriving the type of nonlinearity can be summarized as
follows. For a geometric imperfection of a given amplitude, the discretization leading to the
nonlinear oscillator (2.8) is first computed. The numerical effort associated to this operation is
the most important but remains acceptable on a standard computer. Then the nonlinear change
of coordinates is computed, which allows derivation of the Ap

ppp and B
p
ppp terms occuring in

(2.13), the sign of which determines the type of nonlinearity. Numerical results are given in
Section 3 for specific imperfections.

3. Effect of imperfections

This section is devoted to numerical results about the effect of typical imperfections on the
type of nonlinearity of imperfect plates. Two typical imperfections are selected. The first one
is axisymmetric and has the shape of mode (0,1), the second one has the shape of the first
asymmetric mode (2,0). Consequently, damping is not considered, so that in each equation we
have: ∀ p = 1 · · ·N, ξp = 0. The study of the effect of damping will be done separately and is
postponed to Section 4.
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(a)

h

a = 1

a(0,1)

(b)

Figure 2: (a) Three-dimensional view and (b) cross-section of the circular plate with geometric imperfection
having the shape of the first axisymmetric mode. As nondimensional quantities are used, a = 1 and the
amplitude a(0,1) of the imperfection is made nondimensional with respect to the thickness h.

3.1. Axisymmetric imperfection

In this section, the particular case of an axisymmetric imperfection having the shape of mode
(0,1) (i.e., with one nodal circle and no nodal diameter) is considered. The expression of the
static deflection writes

w0(r) = a(0,1)Ψ(0,1)(r), (3.1)

where Ψ(0,1)(r) is the mode shape, depending only on the radial coordinate r as a consequence
of axisymmetry, and a(0,1) the considered amplitude. The mode shape Ψ(0,1)(r) depends
on Bessel function [5], and is shown in Figure 2. The eigenmode is normalized so that
∫1

0Ψ
2
(0,1)(r)dr = 1.

Figure 3 shows the effect of the imperfection on the eigenfrequencies, for an imperfection
amplitude from 0 (perfect plate) to 10 h. It is observed that the purely asymmetric modes
(k, 0), having no nodal circle and k nodal diameters, are marginally affected by the
axisymmetric imperfection. The computation has been done by keeping 51 basis functions:
purely asymmetric modes from (2,0) to (10,0), purely axisymmetric modes from (0,1) to
(0,13); and mixed modes from (1,1) to (6,1), (1,2), (2,2), (3,2) and (1,3). More details and
comparisons with a numerical solution based on finite elements are provided in [42, 43]. The
slight dependence of purely asymmetric eigenfrequencies on an axisymmetric imperfection
has already been observed in [44] with the case of the shallow spherical shell.

First, the effect of the imperfection on the axisymmetric modes (0,1) and (0,2) is studied.
In this case, the problem is fully axisymmetric so that all the truncations can be limited to
axisymmetric modes only, which drastically reduces the numerical burden. The result for mode
(0,1) is shown in Figure 4. It is observed that the huge variation of the eigenfrequency with
respect to the amplitude of the imperfection results in a quick turn of the behaviour from the
hardening to the softening type, occuring for an imperfection amplitude of a(0,1) = 0.38 h. This
small value has direct implication for the case of real plates. As the behaviour changes for
a fraction of the plate thickness, it should not be intriging to measure a softening behaviour
with real plates having small imperfections. This result can also be compared to an earlier
result obtained by Hui [10]. Although Hui did not study free-edge boundary condition, he
reported a numerical result for the case of simply supported boundary conditions, where
the behaviour changes for an imperfection amplitude of 0.28 h. The second main observation
inferred from Figure 4 is the occurrence of 2:1 internal resonance between eigenfrequencies,
leading to discontinuities in the coefficient T(0,1) dictating the type of nonlinearity. This fact
has already been observed and commented for the case of shallow spherical shells in [22].
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Figure 3: Nondimensional natural frequencies ω(k,n) of the imperfect plate versus the amplitude of the
imperfection having the shape of mode (0,1).
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Figure 4: Type of nonlinearity for mode (0,1) with an axisymmetric imperfection having the shape of mode
(0,1).

It has also been observed for buckled beams and suspended cables [19, 21]. This is a small
denominator effect typical of internal resonance, that is, when the frequency of the studied
mode (0,1) exactly fulfills the relationship 2ω(0,1) = ω(0,n) with another axisymmetric mode. 2:1
resonance arises here with mode (0,2) at 1.85 h and with mode (0,3) at 5.66 h. On a practical
point of view, one must bear in mind that when 2:1 internal resonance occurs, single-mode
solution does not exist anymore, only coupled solutions are possible. Hence the concept of the
type of nonlinearity, intimately associated with a single dof behaviour, loses its meaning in a
narrow interval around the resonance.

The numerical result for mode (0,2) is shown in Figure 5. Once again, the geometric effect
is important and leads to a change of behaviour occurring at a(0,1) = 0.75 h, that is, for a small
level of imperfection. 2:1 internal resonance also occurs, thus creating narrow region where
hardening behaviour could be observed. This result extends Hui’s analysis since only mode
(0,1) was studied. Moreover, as a single-mode truncation was used in [10], 2:1 resonances were
missed.

Finally, the effect of the imperfection on asymmetric modes is shown in Figure 6 for
modes (2,0) and (4,0). The very slight variation of the eigenfrequencies of these modes versus



Cyril Touzé et al. 9

1

0.5

0

−0.5

−1

0 0.75 1.74 3 4 5.43 6 7 8 9 9.92 11
Amplitude of imperfection a(0,1)/h

(0, 3) (0, 5)(0, 4)

T
(0
,2
)H

ar
d

en
in

g
be

ha
vi

ou
r

So
ft

en
in

g
be

ha
vi

ou
r

Figure 5: Type of nonlinearity for mode (0,2) with an axisymmetric imperfection having the shape of mode
(0,1). 2:1 internal resonances with modes (0,3), (0,4), and (0,5) occurs, respectively, for a(0,1)/h = 1.74, 5.43,
and 9.92.

the axisymmetric imperfection results in a very slight effect of the geometry. It is observed that
before the first 2:1 internal resonance, the type of nonlinearity shows small variations. Hence it
is the behaviour of the other eigenfrequencies and the occurrence of 2:1 internal resonance that
makes, in these cases, the behaviour turn from hardening to softening behaviour. For mode
(2,0), this occurs for an imperfection amplitude of a(0,1) = 0.44 h, where 2:1 resonance with
mode (0,1) is observed. For mode (4,0), the first 2:1 resonance occurs with mode (0,2) at a(0,1) =
1.39 h, but do not change the behaviour. It is the resonance with mode (0,1) at a(0,1) = 4 h which
makes the behaviour turn from hardening to softening.

These results corroborate those obtained on shallow spherical shells [22]. The
fundamental importance of axisymmetric modes in the study of asymmetric ones is confirmed,
showing once again that reduction to single mode has no chance to deliver correct results.
The behaviour of purely asymmetric modes is found to be of the hardening type until the 2:1
internal resonance with mode (0,1) occurs. However, a specificity of mode (2,0) with regard
to all the other purely asymmetric modes is that after this resonance, hardening behaviour
(though with a very small value of T(2,0)) is observed. This was also the case for shallow
spherical shells [22]. Finally, for very large values of the imperfection, the behaviour tends
to be neutral.

3.2. Asymmetric imperfection

In this section, the effect of an imperfection having the shape of mode (2,0) is studied.
Due to the loss of symmetry, degenerated modes are awaited to cease to exist : the equal
eigenfrequencies of the sine and cosine configuration of degenerated modes split. In the
following, distinction is made systematically between the sine or cosine configuration of
companion modes, for example, mode (2,0,C) (resp., (2,0,S)) refers to the cosine (resp., sine)
configuration. More precisely, the imperfection has the shape of (2,0,C) and is shown in
Figure 7.

The behaviour of the eigenfrequencies with the imperfection is shown in Figure 8. As
expected, the variation of the eigenfrequency corresponding to (2,0,C) is huge, whereas (2,0,S)
keep quite a constant value. The symmetry is not completely broken. One can show that only
eigenmodes of the type (2k, n) split. On the other hand, as shown in Figure 8, modes (3,0),
(5,0), and (1,1) are still degenerated.
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Figure 6: Type of nonlinearity for (a): mode (2,0), and (b): mode (4,0) with an axisymmetric imperfection
having the shape of mode (0,1).

The numerical results for type of nonlinearity relative to the two configurations (2,0,C)
and (2,0,S) are shown in Figure 9. The natural frequency of mode (2,0,C) undergoes a huge
variation, which results in a quick change of behaviour, occurring at 0.54 h. Then, a 2:1 internal
resonance with (0,2) is noted, but without a noticeable change in the type of nonlinearity,
as the interval where the discontinuity present is very narrow. In this case, the behaviour
of T(2,0,C) looks like the one observed in the precedent case, that is, the variation of T(0,1)
versus an imperfection having the same shape. On the other hand, the eigenfrequency of mode
(2,0,S) remains quite unchanged, so that the behaviour of T(2,0,S) is not much affected by the
imperfection until the 2:1 internal resonance is encountered. In that case, the resonance occurs
with the other configuration, that is, mode (2,0,C).

Finally, the results for the first two axisymmetric modes (0,1) and (0,2) are shown in
Figure 10. Mode (0,1) shows a very slight variation of its eigenfrequency with respect to the
asymmetric imperfection (2,0,C). Consequently, the type of nonlinearity is not much affected,
until the eigenfrequency of (2,0,C) comes to two times ω(0,1): 2:1 internal resonance occurs,
and the behaviour becomes softening. On the other hand, the eigenfrequency of (0,2) is more
affected by the imperfection. This result in an important decrease of T(0,2) while still remaining
positive. A 2:1 internal resonance with (0,3) is encountered for 3.51 h, and two others 2:1
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Nodal diameters of:
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a = 1

a(2,0,C)

(c)

Figure 7: (a) 3D view, (b) top view, and (c) cross-section along θ = 0 for the plate with imperfection having
the shape of mode (2,0,C).
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Figure 8: Nondimensional natural frequencies ω(k,n) of the imperfect plate versus the amplitude of the
imperfection having the shape of mode (2,0,C).

resonance, with (0,4) and (0,5), occur around 8 h. However, the interval on which the type
of nonlinearity changes its sign is so narrow that it can be neglected. The behaviour is thus
mainly of the hardening type for (0,2).

4. Effect of damping

In this section, the effect of viscous damping on the type of nonlinearity is addressed. The
particular case of the shallow spherical shell is selected to establish the results. The equations
of motion are first briefly recalled. Then specific cases of damping are considered, hence
complementing the results of [22], that were limited to the undamped shell.

4.1. The shallow spherical shell equations

The local equations of motions for the shallow spherical shell can be obtained directly, see [44]
for a thorough presentation. They can also be obtained from (2.4a) and (2.4b), by selecting an
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Figure 9: Type of nonlinearity for (a): mode (2,0,C) and (b): (2,0,S); for an imperfection having the shape
of mode (2,0,C).

imperfection having a spherical shape, as shown in Figure 1(c), see [42]. With R, the radius of
curvature of the spherical shell (R � a to fulfill the shallow assumption), the local equations
write [44]

ΔΔw + εqΔF + ẅ = ε
[
L(w,F) − cẇ + p(r, θ, t)

]
, (4.1a)

ΔΔF −
√
κΔw = −1

2
L(w,w), (4.1b)

where the aspect ratio κ of the shell has been introduced:

κ =
a4

R2h2
, (4.2)

and εq = 12(1 − ν2)
√
κ. The boundary conditions for the case of the spherical shell with free

edge write exactly as in the case of the imperfect circular plates so that (2.5a), (2.5b) and (2.5c)
are still fulfilled [42, 44]. A peculiarity of the spherical shell is that all the involved quantities,
linear (eigenfrequencies and mode shapes), and nonlinear (coupling coefficients and type of
nonlinearity) only depends on κ, which is the only free-geometric parameter. Hence all the
results will be presented as functions of κ.
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Figure 10: Type of nonlinearity for (a): mode (0,1) and (b): (0,2); for an imperfection having the shape of
mode (2,0,C).

A Galerkin expansion is used for discretizing the PDEs of motion. As the eigenmodes
Φp(r, θ) are known analytically [44], they are used for expanding the unknown transverse
displacement:

w(r, θ, t) =
+∞∑

p=1

Xp(t)Φp(r, θ). (4.3)

The modal displacements Xp are the unknowns, and their dynamics are governed by, ∀p ≥ 1

Ẍp + 2ξpωpẊp +ω2
pXp + εq

+∞∑

i,j=1

g̃
p

ijXiXj + ε
+∞∑

i,j,k=1

h̃
p

ijk
XiXjXk = 0. (4.4)

The analytical expressions for the quadratic and cubic coupling coefficients (g̃pij , h̃
p

ijk
) involve

integrals of products of eigenmodes on the surface, they can be found in [22, 44]. As in
Section 3, a modal viscous damping term of the form 2ξpωpẊp is considered, whereas external
forces have been cancelled as only free responses are studied.
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Figure 11: Type of nonlinearity for (a): mode (0,1) and (b): (4,0) versus the aspect ratio κ of a shallow
spherical shell. Increasing values of damping for Case 1 (∀ p = 1 · · ·N, ξp = ξ/ωp) are shown, with ξ = 0
and 0.01 (red), 0.1 (cyan) and 0.3 (violet).

The type of nonlinearity can be inferred from (4.4) by using the NNM method. The
results for an undamped shell have already been computed and are presented in [22].
However, an extension of the NNM-method, taking into account the damping term, has been
proposed in [39]. Amongst other things, it has been shown on a simple two dofs system of
coupled oscillators, that the type of nonlinearity depends on the damping. The aim of this
section is thus to complement the results presented in [22] for documenting the dependence of
a shell on viscous damping and for assessing its effect.

4.2. Numerical results

Three cases are selected in order to derive results for a variety of damping behaviours:

Case 1. For all p = 1 · · ·N, ξp = ξ/ωp;

Case 2. For all p = 1 · · ·N, ξp = ξ;

Case 3. For all p = 1 · · ·N, ξp = ξωp;
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Figure 12: Type of nonlinearity for (a): mode (0,1) and (b): (4,0) versus the aspect ratio κ. Increasing values
of damping for Case 2 (∀ p = 1 · · ·N, ξp = ξ) are shown, with ξ = 0 and 0.01 (red), 0.1 (cyan), and 0.3
(violet).

In the above cases, ξ is a constant value, ranging from 0 to 0.3. Case 1 corresponds to
a decay factor (2ξpωp = 2ξ) that is independent from the frequency, that is, with a constant
2ξ value for any mode. With a small value of ξ, it may model the low-frequency (i.e., below
the critical frequency) behaviour of thin metallic structures such as aluminium plates [45, 46].
Case 2 describes a decay factor that is linear with the frequency, and may model, for instance,
damped structures as glass plates in the low-frequency range [45]. Finally, Case 3 accounts for
a strongly damped structure, with a center manifold limited to a few modes.

The effect of increasing damping is shown for modes (0,1) and (4,0), for Case 1 in
Figure 11, Case 2 in Figure 12, and Case 3 in Figure 13. Mode (0,1) undergoes a rapid change
of behaviour: the transition from hardening to softening type nonlinearity occurs at κ = 1.93.
Then 2:1 internal resonance with mode (0,2) occurs at κ = 36, but the behaviour remains of the
softening type. Mode (4,0) displays a hardening behaviour until the 2:1 resonance with mode
(0,1) at κ = 174.1. The first resonance with (0,2) at κ = 36.9 does not change the behaviour
on a large interval. Adding the damping of Case 1 shows that the discontinuity ocurring
at 2:1 internal resonance is smoothened. However, it happens for a quite large amount of
damping in the structure. Damping values of 0, 1e-4, 1e-3, and 1e-2 have been tested and
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Figure 13: Type of nonlinearity for (a): mode (0,1) and (b): (4,0) versus the aspect ratio κ. Increasing values
of damping for Case 3 (∀ p = 1 · · ·N, ξp = ξωp) are shown, with ξ = 0 and 1e-4 (black), 1e-3 (magenta), and
1e-2 (red).

give exactly the same behaviour so that only one curve is visible in Figure 11. Large values
of the damping term ξ, namely, 0.1 and 0.3 (which correspond to strongly damped structures)
must be selected to see the discontinuity smoothened. Moreover, outside the narrow intervals
where 2:1 resonance occurs, the effect of damping is not visible. As a conclusion for Case 1, it
appears that this kind of damping has a really marginal effect on the type of nonlinearity, so
that undamped results can be estimated as reliable for lightly damped structures with modal
damping factor below 0.1.

Case 2 corresponds to a more damped structure than Case 1. However, it is observed
in Figure 12 that the discontinuity is not smoothened at the 2:1 internal resonance. Inspecting
back the analytical results shows that this is a natural consequence of the expression of the
coefficients of the nonlinear change of coordinates for asymptotic NNMs. When the specific
Case of constant damping factors is selected, small denominators remain present. On the other
hand, outside the regions of 2:1 resonance, the effect of damping is pronounced and enhances
the softening behaviour. But once again, very large values of damping factors such as 0.3 must
be reached to see a prominent influence.

Finally, Case 3 depicts the case of a rapidly increasing decay factor with respect to the
frequency. As the overall damping in the structure is thus larger, smaller values of ξ have been
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selected, namely, 1e-4, 1e-3, and 1e-2. ξ = 1e-4 gives quite coincident results with ξ = 0. But
from ξ = 1e-3, the effect of the damping is very important: the discontinuities are smoothened,
except the larger one occurring for mode (4,0) with mode (0,1). For ξ = 1e-2, 2:1 resonance
are not visible anymore. A particular result with this value is for mode (4,0): the smoothening
effect is so important that the nonlinearity remains of the hardening type. Finally, the fact that
the damping generally favours the softening behaviour cannot be declared as a general rule,
as one counterexample has been exhibited here. From these results, it can be inferred that the
damping has little incidence on the type of nonlinearity for thin structures, until very large
values are attained. It is observed that the damping generally favours the softening behaviour,
but this rule is not true in general. In particular when the transition from hardening to softening
type nonlinearity is due to a 2:1 internal resonance and is not the direct effect of the change of
geometry, a large value of damping may favours hardening behaviour, as observed here for
mode (4,0) in Case 3.

5. Conclusion

The effect of geometric imperfections on the hardening/softening behaviour of circular
plates with a free edge has been studied. Thanks to the NNMs, quantitative results for the
transition from hardening to softening behaviour has been documented, for a number of
modes and for two typical imperfections. Two general rules have been observed from the
numerical results: for modes which eigenfrequency strongly depends on the imperfection,
the type of nonlinearity changes rapidly, and softening behaviour occurs for a very small
imperfection with an amplitude being a fraction of the plate thickness. On the other hand,
some eigenfrequencies show a slight dependence with the considered imperfection. For these,
2:1 internal resonances are the main factor for changing the type of nonlinearity. In a second
part of the paper, the effect of viscous damping on the type of nonlinearity of shallow spherical
shells has been studied. It has been shown quantitatively that this effect is slight for usual
damping values encountered in thin structures.
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[39] C. Touzé and M. Amabili, “Nonlinear normal modes for damped geometrically nonlinear systems:
application to reduced-order modelling of harmonically forced structures,” Journal of Sound and
Vibration, vol. 298, no. 4-5, pp. 958–981, 2006.

[40] G. J. Efstathiades, “A new approach to the large-deflection vibrations of imperfect circular disks using
Galerkin’s procedure,” Journal of Sound and Vibration, vol. 16, no. 2, pp. 231–253, 1971.

[41] G. L. Ostiguy and S. Sassi, “Effects of initial geometric imperfections on dynamic behaviour of
rectangular plates,” Nonlinear Dynamics, vol. 3, no. 3, pp. 165–181, 1992.
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1. Introduction

In previous studies of the 3rd author, based on 2-DOF and 3-DOF cantilevered models [1] un-
der partial follower loading (nonconservative systems), it was shown that in a small region
of divergence instability, flutter (dynamic instability) may occur before divergence (static insta-
bility), if very small damping is included [2, 3]. Bolotin et al. [4] using an aeroelastic model
presented a similar result. Paı̈doussis et al. [5] and Paı̈doussis [6] have shown that flutter may
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occur in an inherently conservative system but for large damping. However, the effect of damp-
ing, being of paramount importance in nonconservative autonomous systems, was in general
ignored when these systems are subjected to a step conservative (potential) loading. This is so
because it was widely accepted that dynamic stability in nondissipative conservative systems,
which are stable, does not change by the inclusion of damping [7].

The local dynamic stability of discrete systems under step conservative loading when
small dissipative forces are included is governed by the matrix-vector differential equation
[8–11]:

Mq̈ + Cq̇ + Vq = 0, (1.1)

where the dot denotes a derivative with respect to time t; q(t) is an n-dimensional state vector
with coordinates qi(t)(i = 1, . . . , n); M, C and V are n×n real symmetric matrices. More specif-
ically, matrix M associated with the total kinetic energy of the system is a function of the con-
centrated masses mi(i = 1, . . . , n), being always positive definite; matrix C the elements of which
are the damping coefficients cij(i, j = 1, . . . , n) may be positive definite, positive semidefinite as in
the case of pervasive damping [12, 13], or indefinite [14–16]; V is a generalized stiffness matrix
with coefficients kij(i, j = 1, . . . , n) whose elements Vij are also linear functions of a suddenly ap-
plied external load λ with constant direction and infinite duration [17], that is, Vij = Vij(λ; kij).
Apparently, due to this type of loading, the system under discussion is autonomous. When the
external loading λ is applied statically, one can obtain the static (divergence) instability or buck-
ling loads λcj (j = 1, . . . , n) by vanishing of the determinant of the stiffness matrix V(λ; kij), that
is,

∣∣V
(
λ; kij

)∣∣ = 0. (1.2)

Clearly, (1.2) yields an nth degree algebraic equation in λ. Assuming distinct critical states, the
matrix V(λ; kij) is positive definite for λ < λc1, positive semidefinite for λ = λc1, and indefinite for
λ > λc1.

Kounadis in two very recent publications [10, 11] has established the conditions under
which the above autonomous dissipative systems under step (conservative) loading may ex-
hibit dynamic bifurcational modes of instability before divergence (static) instability, that is, for
λ < λc1, when infinitesimal damping is included. These bifurcational modes may occur through
either a degenerate Hopf bifurcation (leading to periodic motion around centers) or a generic
Hopf bifurcation (leading to periodic attractors or to flutter). These unexpected findings (im-
plying failure of Ziegler’s kinetic criterion and other singularity phenomena) may occur for a
certain combination of values of the mass (primarily) and stiffness distribution of the system
in connection with a positive semidefinite or an indefinite damping matrix.

The question which now arises is whether there are combinations of values of the above-
mentioned parameters (mass and stiffness distribution) which in connection with the algebraic
structure of damping matrices may lead to dynamic bifurcational modes of instability when the
system under discussion is unloaded. Such local (due to unforced motion) dynamic instability
will be sought through the set of asymptotic stability criteria of Liénard-Chipart [8, 18] which
are elegant and more readily employed than the well-known Routh-Hurwitz stability criteria.

As another main objective of this work, some new dynamic bifurcations related to the
algebraic structure of the damping matrix when the systems are loaded by the above type of
step conservative load will be also discussed, using the Liénard-Chipart criterion by analyzing
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2-DOF models for which a lot of numerical results are available. Finally, the conditions of a
double purely imaginary root leading to a new dynamic bifurcation, whose response is similar
to that of a generic Hopf bifurcation, are properly established.

2. Basic equations

Solution of (1.1) can be sought in the form

q = reρt, (2.1)

where ρ is in general a complex number and r is a complex vector independent of time t.
Introducing q from (2.1) into (1.1), we get

(
ρ2M + ρC + V

)
r = 0. (2.2)

For given stiffness coefficients kij(i, j = 1, . . . , n), the generalized stiffness matrix V is
a linear function of λ. Thus, if matrices M, C, V are given, solutions of (2.2) are intimately
related to the algebraic properties of the matrix-valued function L(ρ) = ρ2M + ρC + V, and
more specifically to the Jacobian eigenvalues [ρ = ρ(λ)] obtained through the vanishing of the
determinant:

∣∣ρ2M + ρC + V
∣∣ = 0, (2.3)

whose expansion gives the characteristic (secular) equation for an N-DOF system:

ρ2n + α1ρ
2n−1 + · · · + α2n−1ρ + α2n = 0, (2.4)

where the real coefficients αi(i = 1, . . . , 2n) are determined by means of Bôcher formula [19].
The eigenvalues (roots) of (2.4) ρj (j = 1, . . . , 2n) are, in general, complex conjugate pairs ρj =
νj ± μji (where νj and μj are real numbers and i =

√
−1) with corresponding complex conjugate

eigenvectors rj and rj(j = 1, . . . , n). Since ρj = ρj(λ), clearly νj = νj(λ), μj = μj(λ), rj = rj(λ),
and rj = rj(λ). Thus, the solutions of (1.1) are of the form

Aeνj tcosμjt, Beνj t sinμjt, (2.5)

where A and B are constants which are determined from the initial conditions. Solutions in
(2.5) are bounded, tending to zero as t→∞, if all eigenvalues of (2.4) have negative real parts,
that is, when νj < 0 for all j. In this case, the algebraic polynomial (2.4) is called a Hurwitz
polynomial (since all its roots have negative real parts) and the origin (q = q̇ = 0) of the system
is asymptotically stable.

2.1. Criteria for asymptotic stability

The necessary and sufficient conditions which assure that all roots of (2.4) have negative real
parts (i.e., vj < 0 for all j) which means that the corresponding polynomial |L(ρ)| is a Hurwitz
polynomial are of great practical importance.
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Consider the more general case of a polynomial in z with real coefficients αi(i = 1, . . . , n):

f(z) = α0z
n + α1z

n−1 + · · · + αn−1z + αn = 0
(
α0 > 0

)
(2.6)

for which we will seek the necessary and sufficient conditions so that all its roots have negative
real parts.

Denoting by zκ(κ = 1, . . . , m) the real roots and by rj ± isj(j = 1, . . . , (n −m)/2); i =
√
−1)

the complex roots of (2.6), we may assure that all these roots in the complex plane lie to the left
of the imaginary axis, that is,

zκ < 0, rj < 0
(
κ = 1, . . . , m; j = 1, . . . ,

n −m
2

)
. (2.7)

Then one can write

f(z) = α0

m∏

κ=1

(
z − zκ

)n−m∏

j=1

(
z2 − 2rjz + r2

j + s
2
j

)
. (2.8)

Since due to inequality (2.7), each term in the last part of (2.8) has positive coefficients, it
is deduced that all coefficients of (2.6) are also positive. However, this (i.e., αi > 0 for all i with
α0 > 0) is a necessary but by no means sufficient condition for all roots of (2.6) to lie in the left
half-plane (i.e., Re(z) < 0).

According to Routh-Hurwitz criterion [18] of asymptotic stability for all roots of (2.6) to
have negative real parts, the necessary and sufficient conditions are

Δ1 > 0,Δ2 > 0, . . . ,Δn > 0 (2.9)

where

Δ1 = α1,Δ2 =

∣∣∣∣∣
α1 α3

α0 α2

∣∣∣∣∣
,Δ3 =

∣∣∣∣∣∣∣

α1 α3 0

α0 α2 α4

0 α1 α3

∣∣∣∣∣∣∣
, . . . ,Δn =

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

α1 α3 α5 · · · · · · · · · · · ·
α0 α2 α4 · · · · · · · · · · · ·
0 α1 α3 · · · · · · · · · · · ·
0 α0 α2 α4 · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · αi

∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣

(2.10)

(with ακ = 0 for κ > n). Note the last equality Δn = αnΔn−1.
It should be noted that when the above necessary conditions αi > 0 (for all i) hold,

inequalities (2.9) are not independent. For instance, for n = 4, the Routh-Hurwitz conditions
reduce to the single inequality Δ3 > 0; for n = 5, they reduce to Δ2 > 0 and Δ4 > 0; while for
n = 6, they reduce also to two inequalities, Δ3 > 0, Δ5 > 0. This case was discussed by Liénard
and Chipart who established the following elegant criterion for asymptotic stability [8].
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The Liénard-Chipart stability criterion

For a polynomial with real coefficients f(z) = α0z
n + α1z

n−1 + · · · + αn−1z + αn = 0 (α0 > 0) to
have all roots with negative real parts, it is necessary and sufficient that

(1) all coefficients of f (z) be positive, that is,

αi > 0 (i = 1, . . . , n); (2.11a)

(2) the determinant inequalities be also positive, that is,

Δn−1 > 0,Δn−3 > 0, . . . , (2.11b)

where Δκ denotes as before the Hurwitz determinant of κth order.

It can be shown that if the Hurwitz determinants of odd order are positive, then those of
even order are also positive, and vice versa. This holds even when only part of the coefficients αi
of f (z) (with α0 > 0) are positive. According to this, the Liénard-Chipart criterion is defined as
follows.

Necessary and sufficient conditions for all roots of the real polynomial f(z) = α0z
n +

α1z
n−1 + · · · + αn−1z + αn = 0, (α0 > 0) to have negative real parts can be given in any one of

the following forms [18]:

(1)

αn > 0, αn−2 > 0, . . . ; with

⎧
⎨

⎩

eitherΔ1 > 0, Δ3 > 0, . . . ,

orΔ2 > 0, Δ4 > 0, . . . ,
(2.12a)

(2)

αn > 0, αn−1 > 0, αn−3 > 0, . . . ; with

⎧
⎨

⎩

eitherΔ1 > 0, Δ3 > 0, . . . ,

orΔ2 > 0, Δ4 > 0, . . . .
(2.12b)

This stability criterion was rediscovered by Fuller [20].
For instance, for a 2-DOF cantilevered model, the characteristic (secular) (2.4) is

ρ4 + α1ρ
3 + α2ρ

2 + α3ρ + α4 = 0 (α0 = 1). (2.13)

According to the last criterion, all roots of (2.13) have negative real parts provided that
α4 > 0, α2 > 0, Δ1 = α1 > 0 and Δ3 = α3(α1α2 − α3) − α2

1α4 > 0. Clearly, from the last inequality,
it follows that α3 > 0. Hence, the positivity of α1 and α3 was assured via the above conditions
(i.e., α4 > 0, α2 > 0, Δ1 > 0, Δ3 > 0).
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Figure 1: 2-DOF autonomous system under conservative loading.

3. Mathematical analysis

Subsequently, using the spring cantilevered dynamical model of 2-DOF shown in Figure 1,
we will examine in detail the effect of violation of one or more of the conditions of Liénard-
Chipart criterion on its asymptotic stability. The response of this dynamic model carrying two
concentrated masses is studied when it is either unloaded or loaded by a suddenly applied load of
constant magnitude and direction with infinite duration. Such autonomous dissipative systems
with infinitesimal damping (including the case of zero loading) are properly discussed. If at
least one root of the secular equation (2.13) has a positive real part, the corresponding solution
(2.5) will contain an exponentially increasing function and the system will become unstable.

The seeking of an imaginary root of the secular equation (2.13) which represents a bor-
der line between dynamic stability and instability is a first but important step in our dis-
cussion. Clearly, an imaginary root gives rise to an oscillatory motion of the form eiμt, (i =√
−1, μ real number) around the trivial state. However, the existence of at least one multiple

imaginary root of the κth order of multiplicity leads to a solution containing functions of the
form eiμt, teiμt, . . . , tκ−1eiμt which increases with time. Hence, the multiple imaginary root on the
imaginary axis of the complex plane denotes local dynamic instability. The discussion of such a
situation is also another objective of this study.

The nonlinear equations of motion for the 2-DOF model of Figure 1 with rigid links of
equal length � are given by [11]

(1 +m)θ̈1 + θ̈2cos
(
θ1 − θ2

)
+ θ̇2

2 sin
(
θ1 − θ2

)
+ c11θ̇1 + c12θ̇2 + kθ1 − θ2 + θ1 − λ sin θ1 = 0,

θ̈2 + θ̈1cos
(
θ1 − θ2

)
− θ̇2

1 sin
(
θ1 − θ2

)
+ c22θ̇2 + c12θ̇1 − θ1 + θ2 − λ sin θ2 = 0,

(3.1)

where m = m1/m2, k = k1/k2, λ = P�/k2.
Linearization of (3.1) after setting

Θ =

[
θ1

θ2

]

= eρt
[
ϕ1

ϕ2

]

= eρtϕ (3.2)
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gives
(
ρ2M + ρC + V

)
ϕ = 0, (3.3)

where

M =

[
m11 m12

m12 m22

]

=

[
1 +m 1

1 1

]

, C =

[
c11 c12

c12 c22

]

, V =

[
V11 V12

V12 V22

]

=

[
k + 1 − λ −1

−1 1 − λ

]

.

(3.4)

Note that in case of a Rayleigh’s dissipative function the damping coefficients are, c11 =
c1 + c2, c12 = −c2, c21 = −c2, and c22 = c2, where ci(i = 1, 2) is dimensionless coefficient for the ith
rigid link. This case (for which det C = |c| = c1c2) is a specific situation of the damping matrix
C which is not discussed herein.

The static buckling (divergence) equation is given by

λ2 − (2 + k)λ + k = 0, (3.5)

whose lowest root is the first buckling load λc1 equal to

λc1 = 0.5
(
k + 2 −

√
k2 + 4

)
. (3.6)

Clearly, for the entire interval of values of k > 0, (3.6) yields 0 ≤ λc1 < 1.
The characteristic (secular) equation is

ρ4 + α1ρ
3 + α2ρ

2 + α3ρ + α4 = 0 , (3.7)

where

α1 =
1
m

(
m11c22 +m22c11 − 2m12c12

)
,

α2 =
1
m

(
m11V22 +m22V11 − 2V12m12 + |c|

)
,

α3 =
1
m

(
c11V22 + c22V11 − 2V12c12

)
,

α4 =
1
m

(
V11V22 − V 2

12

)
.

(3.8)

Let us first examine the effect of violation of Liénard-Chipartcriterion on the system
stabilityin the case of zero loading (i.e., λ = 0). Then expressions in (3.8) due to relations (3.4)
are written as follows:

α1 =
1
m

[
(1 +m)c22 + c11 − 2c12

]
,

α2 =
1
m

[
k +m + 4 + c11c22 − c2

12

]
,

α3 =
1
m

[
c11 + c22(k + 1) + 2c12

]
,

α4 =
k

m
.

(3.9)
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According to Liénard-Chipart criterion, inequalities (2.12a) imply

α4 > 0, α2 > 0, Δ1,Δ3 > 0, (3.10)

where Δ1 = α1 > 0 and Δ3 = α3(α1α2 −α3)−α2
1α4 > 0. Clearly, from the last inequality, it follows

that α3 > 0.
For cii > 0 (i = 1, 2), k > 0, and m > 0 (implying α4 > 0), it is deduced that this criterion

is violated if either one of α1 orα2 is zero or Δ3 is zero. These three cases will be discussed
separately in connection with the algebraic structure of the damping matrix C = [cij].

Case 1 (α1 = 0 with α2 > 0). If α1 = 0 (yielding Δ3 = −α2
3 < 0), then

(1 +m)c22 + c11 − 2c12 = 0. (3.11)

Equation (3.11), being independent of λ and k, is satisfied only when the damping matrix C is
indefinite, that is,

c11c22 − c2
12 < 0

(
cii > 0 for i, j = 1, 2

)
. (3.12)

Indeed, the last inequality due to relation (3.11) implies

(1 +m)2c2
22 + 2(m − 1)c11c22 + c2

11 > 0 (3.13)

which is always satisfied, regardless of the value of c22/c11, since for m > 0, the discriminant of
(3.13) (equal to −16c2

11m) is always negative.
Thus, we have explored the unexpected finding that an unloaded (stable) system becomes

dynamically unstable at any small disturbance in case of an indefinite damping matrix even when
infinitesimal damping is included.

Since all coefficients of (3.7) are positive from the theory of algebraic equations it follows
that this equation cannot have positive root. Also the case of existence of a pair of pure imag-
inary roots associated with Δ3 = 0 is ruled out, since Δ3 < 0 (due to α1 = 0). Hence, (3.7) has
either two negative roots combined with a pair of complex conjugate roots with positive real part
or two pairs of complex conjugate roots with opposite real parts. Both cases imply local dynamic
instability.

Case 2 (α2 = 0 with α1 > 0). If α2 = 0 (implying also Δ3 < 0), then

|c| = −k −m − 4 < 0 (k,m > 0). (3.14)

Namely, the damping matrix [cij] is indefinite but with large negative determinant (rather un-
realistic case). Since the Liénard-Chipart criterion is violated, the model is again locally dy-
namically unstable.

Since all coefficients of (3.7) are positive, from the theory of algebraic equations, it is deduced
that this equation cannot have positive root. Also the case of existence of a pair of pure imagi-
nary roots associated with Δ3 = 0 is ruled out, since Δ3 < 0 (due to α2 = 0). Hence, (3.7) has
either two negative roots combined with a pair of complex conjugate roots with positive real part
or two pairs of complex conjugate roots with opposite real parts. Both cases imply local dynamic
instability.
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Case 3 (Δ3 = 0). In this case, stability conditions in (3.10) are satisfied except for the last one,
since Δ3 = 0 which yields [11]

Δ3 = α3(α1α2 − α3) − α2
1α4 = 0. (3.15)

Note that λ < λc1 implies α4 > 0 (i.e., det V > 0).
This is a necessary condition for the secular (3.7) to have one pair of pure imaginary roots

±μi , (i =
√
−1). Indeed, this can be readily established by inserting ρ = ±μi into (3.7) and then

equating to zero real and imaginary parts.
Consider now the more general case of nonzero loading (i.e., λ/= 0). Using relations in

(3.8), (3.15) can be written as follows:

Aλ2 + Bλ + Γ = 0, (3.16)

where

A =
(
c11 + c22

)
(m + 2)α1 −m

(
c11 + c22

)2 −
[
(1 +m)c22 + c11 − 2c12

]2
, (3.17a)

B = −α1
{
(m + 2)

[
c11 + (k + 1)c22 + 2c12

]
+
(
c11 + c22

)[
k +m + 4 + |c|

]}

+ 2m
[
c11 + (k + 1)c22 + 2c12

](
c11 + c22

)
+ (k + 2)

[
(1 +m)c22 + c11 − 2c12

]2
,

(3.17b)

Γ =
(
k +m + 4 + |c|

)[
c11 + (k + 1)c22 + 2c12

]
α1 −m

[
c11 + (k + 1)c22 + 2c12

]2

− k
[
(1 +m)c22 + c11 − 2c12

]2
,

(3.17c)

where

c11 =
c2

12 + |c|
c22

, α1 = mα1. (3.17d)

For real λ, the discriminant D of (3.16) must be greater than or equal to zero, that is,

D = B2 − 4AΓ ≥ 0. (3.18)

Subsequently, attention is focused on the following: (a) matrix C is positive semidefinite (i.e.,
|c| = 0 with cii > 0, i = 1, 2) and (b) matrix C is indefinite (|c| < 0 with cii > 0, i = 1, 2).

Using the symbolic manipulation of Mathematica [21], one can find that

D = |c|f
(
|c|
)
, (3.19)

where f(|c|) is an algebraic polynomial of 5th degree in |c|.

Case 4 (|c| = 0, f /= 0). For |c| = 0, (3.16) implying D = 0 admits a double root, which due to
(3.17a), (3.17b), (3.17d) is given by

λH1 =
2c2

12 + c12c22(k −m) − c2
22(k +m + 2)

c2
12 − c

2
22 − c12c22m

. (3.20)

Using the Reduce command embedded in Mathematica, one can find the conditions under which
0 < λH1 < λc1, given in the appendix, relation (A.1).
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Case 5 (f = 0, |c|/= 0). Moreover, it was found symbolically that the 5th degree polyno-
mial f(|c|) possesses three real roots (one double and one single), and two pure imaginary
ones. Discussing their nature, one can find that the double root of f(|c|), being equal to
|c| = −(c12 − c22)

2 − c2
22m < 0, yields

c12 =
1
2
[
c11 + (m + 1)c22

]
. (3.21)

Then, the double root of (3.16) becomes

λH2 =
2c11 + c22(k +m + 2)

c11 + c22
(3.22)

which is always greater than λc1 and hence of minor importance for the present analysis.
The third real root of f(|c|), if substituted in (3.16), yields again a double root in λ, always

less than zero, which is rejected. Thus, only the case of a positive semidefinite damping matrix
may lead to an acceptable value of the corresponding load (i.e., 0 < λH < λc1) associated with a
degenerate Hopf bifurcation, as theoretically was shown by Kounadis [10, 11].

Case 6 (λ = 0). If λ = 0, (3.16) implies Γ = 0, which after symbolic manipulation of (3.17c) can
be written in the following form:

Γ =
1
c2

22

(
|c|3 +A2|c|2 +A1|c| +A0

)
= 0, (3.23)

where Ai (i = 0, 1, 2) are given in the appendix, relations (A.2). It is evident that A2 > 0 and
A0 ≥ 0, a fact implying that (3.23) can be satisfied only for |c| ≤ 0 if alsoA1 ≥ 0; otherwise (i.e., if
A1 < 0) the system may be locally stable or unstable. For |c| = 0, one can find the corresponding
values of cii(i = 1, 2), given in (A.3) and (A.4) in the appendix, which are always positive. This
special case, for which the trivial (unloaded) state is associated with a pair of pure imaginary
eigenvalues (necessary condition for a Hopf bifurcation), implies a local dynamic instability.

Conditions for a double imaginary root

For a double imaginary root, the first derivative of the secular equation (3.7) must be also zero,
which yields

4ρ3 + 3α1ρ
2 + 2α2ρ + α3 = 0. (3.24)

Inserting into (3.24) ρ = μi, we obtain μ2 = 0.5α2 = α3/3α1 and thus α3 = 3α1α2/2. Introducing
this expression of α3 into (3.15), it follows that α1 = 0, which also implies that α3 = 0 and hence
(3.24) becomes ρ2 = −0.5α2. If ρ2 = −0.5α2 is inserted into the secular equation ρ4+α2ρ

2+α4 = 0,
for a double imaginary root, it follows that α2

2 − 4α4 = 0 which due to relations (3.8) yields

(
m2 + 4

)
λ2 − 2λ

(
m2 + (2 − k)m + 2k + 8 + (m + 2)|c|

)
|

+ |c|2 + 2(k +m + 4)|c| + (k +m + 4)2 − 4mk = 0.
(3.25)
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For real λ, the discriminant D of (3.25) must satisfy the inequality

D = |c|2 + (4 −mk)|c| − (m + k)2 ≥ 0 (3.26)

which yields

either |c| < 0.5
(
mk − 4 −

√
m2(k2 + 4) + 4k2 + 16

)
,

or |c| > 0.5
(
mk − 4 +

√
m2(k2 + 4) + 4k2 + 16

)
.

(3.27)

Using the conditions found above

α1 = α3 = 0, (3.28)

relations (3.9) yield

(1 +m)c22 + c11 − 2c12 = 0,

c11(1 − λ) + c22(k + 1 − λ) + 2c12 = 0.
(3.29)

Adding the last two equations, we obtain

(2 − λ)c11 + (k +m + 2 − λ)c22 = 0. (3.30)

Since k,m > 0, and λ < λc1 < 1, it follows that both coefficients of c11 and c22 in (3.30) are positive.
Hence, c11 and c22 are of opposite sign (i.e., c11/c22 < 0) and consequently |c| = c11c22 − c2

12 < 0;
thus the 2nd of inequalities (3.27) is excluded.

Solving simultaneously the system of equations α2
2 − 4α4 = 0, α1 = α3 = 0 in k, m, λ,

two ternaries of values for k, m, and λ are obtained, given in the appendix, expressions (A.5).
For all these values to be greater than zero, the Reduce command embedded in Mathematica
[21] yields two sets of conditions, given also in the appendix, relations (A.6). Further symbolic
computations are needed for establishing the conditions for a double pure imaginary root for
loading values less than λc1. Nevertheless, suitable combinations of values of cij , k, and m may
be found. This will be demonstrated in Section 4. The corresponding dynamic response, since
the system is associated with a codimension-2 local bifurcation, is anticipated to be related
to isolated periodic orbits which will be established via a straightforward complete nonlinear
dynamic analysis.

4. Numerical results

In this section, numerical results corresponding to all the above cases of violation of the
Liénard-Chipart stability criterion are given below in tabular and graphical forms.

Case 1 (α1 = 0). (a) λ = 0. For an unloaded system with k = m = 1, choosing c11 = 0.015
and c22 = 0.002, (3.11) yields c12 = 0.0095 and as expected the damping matrix is indef-
inite with determinant |c| = −0.0006025. The two pairs of corresponding eigenvalues are
ρ1,2 = −0.00332577 ± 0.41421i and ρ3,4 = 0.00335877 ± 0.41421i (i =

√
−1), implying local dy-

namic instability. Solving numerically the system of nonlinear equations (3.1), we find that the
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dynamic response of the system is associated with a divergent motion, as depicted in Figure 2,
with the aid of the time series

[τ, θ1(τ)], time velocities [τ, θ̇1(τ)] and phase-plane portraits [θ1(τ), θ̇1(τ)].
(b) λ/= 0. For a system with k = 5 , m = 4, and λ = 0.5 < λc1 = 0.807418 and for c11 =

0.01, c22 = 0.002, (2.13) yields c12 = −0.0175 implying |c| = −2.5625 × 10−4. The trivial state is
locally dynamically unstable, since ρ1,2 = −0.00397748 ± 0.4351i and ρ3,4 = 0.00397748 ± 0.4351i.
The corresponding dynamic response is again related to a divergent (unbounded) motion, as
shown in the phase-plane portraits of Figures 3(a) and 3(b).

Case 2 (α2 = 0). (a) λ = 0: If k = m = 1 relation (3.14) is satisfied, for example, for the damping
coefficients c11 = 0.50, c22 = 2.00, yielding c12 =

√
7 and |c| = −6. For this, rather unrealis-

tic, subcase, the corresponding eigenvalues are equal to ρ1 = −1.86617, ρ2 = −0.102227, and
ρ3,4 = 1.37995 ± 1.8269i (local instability). Hence, the response of the system is also related to a
divergent (unbounded) motion, presented graphically in the phase-plane curves of Figures 4(a)
and 4(b).

(b) λ/= 0. Similarly, for a system with k = 0.10, m = 0.20 (for which λc1 = 0.0487508) in
order that α2 = 0, we must choose an indefinite damping matrix with |c| = −4.25. Setting, for
example, c11 = 2.375, c12 = 3.00, c22 = 2.00, and λ = 0.227273 < λc1, the trivial state is locally
dynamically unstable with ρ1 = −2.46657, ρ2 = −0.00503929, and ρ3,4 = 4.2983 ± 1.6612i. The
system exhibits a divergent (unbounded) motion, as shown in Figures 5(a) and 5(b).

Case 3 (Δ3 = 0 withα1α2 /= 0). (a) Positive semidefinite damping matrix (|c| = 0). Choosing c11 =
0.01, c22 = 0.0004 (and thus c12 = 0.002), the 1st requirement of the 2nd set of conditions
given in the appendix, relation (A.1), is satisfied (i.e., c12 > c22). The 2nd requirement, that
is, m > 2(c12 − c22)/c22, yields m > 8, and hence one can choose m = 10. The 3rd requirement in
(A.1) implies that 0.8333 < k < 3 and thus one can take k = 1. Solving numerically (3.15) with
respect to λ, we obtain the value of λH = 0.307692256 < λc1 = 0.381966, associated with a pair of
pure imaginary eigenvalues, while the other pair has negative real parts. The evolution of both
pairs of eigenvalues in the complex plane as λ varies is presented in Figure 6 for λ < λc1. For
λ = λH , a degenerate Hopf bifurcation occurs and the system exhibits a periodic motion, whose
amplitude depends on the initial conditions. Relevant results in graphical form can be found
in recent publications of the 3rd author [10, 11].

(b) Indefinite damping matrix (|c| < 0). It has been proven by Kounadis [10, 11] that in this
subcase (for λ < λc1) all the necessary and sufficient conditions for a generic Hopf bifurcation are
fulfilled and hence the system experiences a periodic attractor response (stable limit cycles)
with constant final amplitudes regardless of the initial conditions. Numerical results are given
in the aforementioned papers by Kounadis.

(c) Δ3 = 0 and λ = 0. If at the same time |c| = 0, one can find the values of cii(i = 1, 2)
through (A.3) and (A.4) in the appendix, which are always positive. A further investigation of
this case as well as of the case |c| < 0 for the global stability of the system can be performed
through a nonlinear dynamic analysis.

(d) Double pure imaginary eigenvalues. For this special case, three combinations of damp-
ing matrix coefficients cij are examined. These, along with the corresponding critical values
of k, λ and m, satisfying relations (A.5) of the appendix, are given in Table 1. Note that Cases
3(d)1 and 3(d)2 are the outcome of the 1st set from relations (A.5), while Case 3(d)3 is the
outcome from the 2nd set. Clearly, in all cases, λ < λc1.
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Figure 2: (a) Time series [τ, θ1(τ)], (b) time velocities [τ, θ̇1(τ)], and (c) phase-plane portraits [θ1(τ), θ̇1(τ)],
for the system of Case 1(a), exhibiting a divergent motion.
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Figure 3: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 1(b), associated with a diver-
gent motion.
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Figure 4: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 2(a), associated with a diver-
gent motion.
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Figure 5: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 2(b), associated with a diver-
gent motion.

Table 1: Values of damping coefficients (cij) and critical system parameters (k, λcr, m) for three subcases
with double pure imaginary eigenvalues.

Case no. c11 c12 c22 k λcr m λc1|c|

3(d)1 3.45 1.00 −1.40 2.65201108 0.164480292 0.035714286 0.665195
−5.83

3(d)2 3.60 1.00 −1.20 3.178585026 0.244040821 0.333333333 0.711568
−5.32

3(d)3 3.40 1.00 −1.20 2.346316274 0.629282032 0.166666666 0.631633
−5.08

In the three above subcases, the evolution of both pairs of λ-dependent eigenvalues in
the complex plane is depicted in Figures 7, 8, 9(a), and 9(b), from which it is evident that for all
λ < λc1, except for λ < λcr (where a codimension-2 bifurcation occurs), the pairs of eigenvalues
remain always in opposite planes of the Im axis, but symmetric with respect to the Re axis. This
symmetry is always present for the pair with negative real parts, while for the other pair (with
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Figure 9: Evolution of both pairs of eigenvalues in the complex plane (a), and corresponding detail (b), for
the system of Case 3(d)3.
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Figure 10: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 3(d)1, associated with an
isolated periodic orbit.

positive real parts), this feature remains until their imaginary part vanishes simultaneously at
a certain value of the loading λ less than λc1.

The dynamic response of the system for all these subcases is associated with isolated
periodic orbits (whose final amplitude is constant and independent of the initial conditions),
as shown in the phase-plane trajectories of Figures 10, 11, and 12.

The corresponding dynamic bifurcations related to the above double pure imaginary eigen-
values behave like a generic Hopf bifurcation, whose basic feature is the intersection of the λ-
dependent path of one eigenvalue with the imaginary axis. On the other hand, in all the above
subcases, the branches of two consecutive λ-dependent eigenvalues meet the imaginary axis at
the same point with λ = λcr. Namely, the transversality condition is satisfied through two inter-
sected lines at the same point of the imaginary axis, but whose branches in the left (negative)
and right (positive) half planes belong to the 1st and 2nd pairs of eigenvalues, respectively.

Finally, Figure 13 verifies the unexpected phenomenon (Kounadis [11]) of discontinuity
in the dynamic loading λH associated with either a degenerate or a generic Hopf bifurcation.
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Figure 11: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 4c2, associated with an iso-
lated periodic orbit.

5. Concluding remarks

This study discusses in detail the coupling effect of (infinitesimal mainly) damping with the
mass and stiffness distribution in a 2-DOF cantilevered model under step potential loading.
Such an autonomous system may be associated either with a positive semidefinite or indefinite
damping matrix (with positive or negative diagonal elements). Attention is focused on the
violation of the Liénard-Chipart stability criterion when this system is either unloaded or loaded
by a suddenly applied load of constant magnitude and direction with infinite duration (step
potential loading). The most important findings of this study are the following.

(1) Usage of Liénard-Chipart, simple and readily employed, stability criterion compared
to that of Routh-Hurwitz brought into light a variety of new types of dynamic bifurcations
reported below.
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Figure 12: Phase-plane portraits [θi(τ), θ̇i(τ)] (i = 1, 2) for the system of Case 3(a), associated with an
isolated periodic orbit.

(2) The mass and stiffness distribution combined either with a positive semidefinite or
an indefinite damping matrix may have a considerable effect on the asymptotic stability, prior to
divergence instability, even in case of infinitesimal damping.

(3) The cantilevered model when unloaded (being statically stable), strangely enough,
under certain conditions becomes dynamically unstable to any small disturbance leading to a
divergent (unbounded) motion.

(4) The above model when loaded under analogous of the previous conditions exhibits
also a divergent motion at a certain value of the external load.

It is worth noting that both the above cases of divergent motion may occur for negligibly
small negative determinant of the damping (indefinite) matrix when α1 = 0, while for α2 = 0
(regardless of whether

λ = 0 or λ/= 0), the determinant of the damping matrix is negative but finite.
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Figure 13: Plots m versus λH for a system with k = 1 exhibiting a discontinuity for the case of (a) degenerate
and (b) generic Hopf bifurcation.

(5) When Δ3 = 0 and α1α2 /= 0, four distinct responses may occur as follows.

(a) If |c| = 0 (positive semidefinite damping matrix), the system exhibits a periodic mo-
tion associated with a degenerate Hopf bifurcation. Then, the final amplitude of motion
depends on the initial conditions.

(b) When the damping matrix is indefinite (even with infinitesimal but negative determi-
nant, |c| < 0), the system may exhibit a periodic attractor response associated with a
generic Hopf bifurcation. It is of paramount practical importance the case where such
an unexpected dynamic instability occurs at a load λH less than the 1st buckling load.

In both the above cases, it was confirmed the recently reported unexpected finding
[11] of discontinuity of the dynamic loading λH (associated with either a degenerate
or a generic Hopf bifurcation) occurring at a certain value of the mass distribution.
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(c) When at the same time λ = 0, we have a local dynamic instability for |c| ≤ 0, whose
global stability can be established through a nonlinear dynamic analysis.

(d) The case of a double pure imaginary eigenvalue may occur for an indefinite damping ma-
trix with finite determinant and negative ratio of the corresponding diagonal elements.
In this special case, there are two pairs of eigenvalues in the complex plane which
touch the imaginary axis at the same point for a certain value λ = λcr. This situation
yields local instability leading to a motion with final constant amplitude regardless of
the initial conditions. Namely, such a dynamic bifurcation behaves in a way similar
to that of a generic Hopf bifurcation. This new type of dynamic bifurcation was also
verified via a nonlinear dynamic analysis.

Appendix

Results of symbolic computations

(i) Conditions for 0 < λH1 < λc1 from (3.20), with cii > 0 (i = 1, 2), k > 0, m > 0 are
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(ii) Expressions of coefficients Ai(i = 0, 1, 2) of (3.23) are
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and corresponding values of c11, c22 for |c| = 0 (⇔ A0 = 0) are

c22 =
c12

k +m + 2

[
k −m +

√
k2 − 2k(m − 4) + (m + 4)2

]
> 0 ∀c12 /= 0, k > 0, m > 0, (A.3)

c11 =
2c2

12

c22
> 0 ∀c12 /= 0, k > 0, m > 0. (A.4)
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(iii) Values of λ, k, and m for which the secular equation (3.7) has a double pure imagi-
nary pair of roots (eigenvalues) are
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and the corresponding conditions for the above two sets of values to be positive are as follows.
For the 1st set (k1, λ1, m),
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For the 2nd set (k2, λ2, m),
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1. Introduction

Cables are used in a variety of engineering applications such as in suspension or cable-stayed
bridges, power transmission lines, moorings in ocean engineering, or in aerospace deployable
structures. Cables are effectively employed in long-span structures because they can be easily
engineered and are light-weight structural elements with an outstanding stiffness in the axial
direction and a significantly high strength. However, they do possess limitations due to the lack
of out-of-plane stiffness and very light damping that make them often prone to large-amplitude
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vibrations. Another serious limitation is that they cannot resist compression, therefore, they
are always prestressed to resist actions that may produce compression although under severe
dynamic excitations, the low-tension regime is barely unavoidable.

Although a number of works have addressed the problem of modeling the flexural
stiffness in cables, only a few works deal with nonlinear vibrations of general cables in low-
tension regimes. Most of them consider nonlinear vibrations of shallow/taut cables, including
also multiple resonances [1–4]. In [5, 6], a geometrically exact nonlinear model of linearly
elastic nonshallow cables was proposed, and the nonlinear modal characteristics of the free
planar motions were investigated neglecting flexural stiffness as it is commonly done in the
literature. In fact, flexural stiffness appears in modeling cables only when the loosening effect
is considered. When the excitation levels are high, the loss of tension can be such that the
cable suffers local loosening in those segments where the overall tension vanishes and, as
a result, the cable cannot locally sustain loads unless its flexural load-carrying capability is
considered. Most of the times, the flexural rigidity and damping are considered in a cable
model to overcome numerical divergence problems when loosening appears. For instance,
when dealing with the dynamics of submerged cables, some works focus on a general
mechanical formulation for the cable equations (e.g., [7–9]); such equations of motion are then
solved by direct integration schemes. Other works focus on the derivation or modification of
finite-element solution models (e.g., [10]), or even in simplified solution models such as the
lumped mass approach of Chai et al. [11]. Similarly, Wu et al. [12–15] used a model of cables
that includes the linear flexural stiffness contribution, and an approximate strain-displacement
relationship for the elongation, to describe nonlinear vibrations of cables suffering loosening.
Moreover, with the proposed model, the effects of loosening on the nonlinear parametric
responses of taut cables subject to periodic horizontal displacements of the supports were
investigated.

However, the effects of flexural rigidity and viscoelasticity on the nonlinear dynamics
of cables have not been thoroughly investigated, especially when loosening appears. Further-
more, the flexural stiffness has a critical role in stock-bridge dampers used to dissipate energy.
There is a need to have a reliable and accurate mechanical model of cables to assess the global
load-carrying capability under these conditions. There are only a few studies addressing this
challenging modeling problem and they are often based on ad hoc approximations that limit
the physically meaningful dynamic regimes.

In this paper, a nonlinear geometrically exact formulation of cables undergoing axis
stretching and flexural curvature, incorporating a nonlinearly viscoelastic constitutive law and
the no-compression condition, is first presented. The derivation of the mechanical model is
extensively inspired by the seminal work of Antman [16]. Thereafter, the linearization and the
ensuing eigenvalue problem are addressed. Then, the finite-difference computational scheme
is illustrated. Meaningful static responses of cables subject to various loading paths—support
displacements or forces—are investigated in both cable models, here considered, the model
with flexural stiffness and that without flexural resistance.

2. Mechanical formulation for cables with flexural stiffness

In this section, we illustrate the geometrically exact formulation of the equations of motion
of cables suffering axis stretching and bending curvature [16]. Shear deformations are not
considered. Moreover, a planar kinematic model is discussed neglecting out-of-plane bending
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Figure 1: Stress-free configuration B, prestressed configuration B0, and actual configuration B̆ (top). Unit
vectors and rotations of the plane kinematics (bottom left) and internal/external forces in the cable (bottom
right).

and torsion. The prestressed equilibrium is first discussed, then the dynamics around it are
described in the kinematic, dynamic, and constitutive aspects.

2.1. The prestressed cable

The cable is stress-free in the configuration B (Figure 1(a)). This configuration can be any
arbitrary configuration assumed by the cable, for example, on a frictionless horizontal plane
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when it is not subject to forces besides the gravity force. In this state, the internal stresses are
expected to be practically vanishing. In particular, in Figure 1(a), B represents any reference
line along the cable in the stress-free configuration (e.g., the centroidal line) and L is its
undeformed length. Further, we let the arc length, denoted σ, be the coordinate identifying
the material sections of the cable. We consider the fixed Cartesian reference frame (O, e1, e3, e3)
shown in Figure 1(a). When the cable ends are fixed to two points, A and B, and the cable is let
free to hang under the action of gravity, it occupies an equilibrium configuration, here denoted
B0, and considered as the reference configuration for the subsequent dynamic problem. The
arc length in the configuration B0 is denoted s. Let the position vector of the material point P 0

of the cable in the reference configuration B0 be p0. Among the different parameterizations for
p0, we employ σ, and let the Cartesian representation of p0 be p0(σ) := x(σ)e1 + y(σ)e2.

The cable stretch is then simply defined as

p0
σ(σ) = ν

0(σ)a0(σ), (2.1)

where a0 is the unit vector in the tangential direction to B0; the subscript here and henceforth
will denote partial differentiation with respect to the indicated variable. Consequently, the
stretch is

ν0(σ) =
∣
∣pσ(σ)

∣
∣ =

ds

dσ
. (2.2)

We suppose that the cable flexural rigidity is negligible in the equilibrium B0 under its
own weight, hence the stress vector representing the contact force that the cable segment σ > σ1

exerts on the cable segment σ < σ1 through the material section at σ1 has a resultant (integrated
on the domain representing the deformed cable material section) referred to as contact force
and denoted n0. On the other hand, the resultant moment is vanishing. This assumption holds
true because under its own weight (uniformly distributed), the cable will assume a funicular
configuration having the tension carrying the weight.

By denoting f 0, the force per unit reference length σ, the local form of the balance of
linear and angular momentum can be written as

n0
σ(σ) + f 0(σ) = o, p0

σ(σ) × n0(σ) = o. (2.3)

The second part of equation (2.3) implies that n0 is in the same direction as p0
σ = ν0a0, that is,

in the direction of the tangent to the deformed configuration B0; hence, n0(σ) = N0(σ)a0(σ),
where N0 denotes the magnitude of the contact force, commonly referred to as the tension.
Moreover, the unit vector a0 can be expressed as

a0 =
p0
σ∣∣p0
σ

∣∣ =
p0
σ

ν0
. (2.4)

The final balance equation is then rewritten as

[N0(σ)a0(σ)]σ + f 0 = o. (2.5)

The constitutive law relating the tension N0 to the stretch ν0 is introduced in the form

N0(σ) = N̂ 0(ν0, σ). (2.6)
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A few restrictions are imposed on N̂ 0 as N̂ 0(ν0 = 1, σ) = 0, N̂ν > 0. Moreover, for materials
strong in resisting tension, we may require N̂ 0→∞ as ν0→∞.

The governing equilibrium equation is obtained substituting (2.6) into (2.5). The equilib-
rium equation can be projected into the local basis {a0,b0, c0} (with c0 ≡ e3) or the fixed basis
(e1, e2, e3). Using the local basis, accounting for (a0)σ = ν0μ0b0, with μ0 = θ 0

s (the geometric
curvature of B0), and letting f 0 = f 0

1 a0 + f 0
2 b0 yield

N̂ 0
σ + f0

1 = 0, ν0μ0N̂ 0 + f0
2 = 0. (2.7)

On the other hand, projecting (2.5) into the fixed basis (e1, e2, e3) and accounting for a0 =
cos θ0e1 + sin θ0e2 and b0 = − sin θ0e1 + cos θ0e2 yield

[
N̂ 0cos θ0]

σ + b
0
1 = 0,

[
N̂ 0 sin θ0]

σ + b
0
2 = 0, (2.8)

where f 0 = b0
1e1 + b0

2e2.
The relationships between (cos θ0, sin θ0) and (xσ, yσ, ν0) can be obtained considering

p0
σ = xσe1 + yσe2 and a0 = cos θ0e1 + sin θ0e2, that is,

cos θ0 =
xσ
ν0
, sin θ0 =

yσ

ν0
. (2.9)

From the fundamental trigonometric identity (sin2 θ0 + cos2 θ0 = 1), the stretch becomes

ν 0 =
√
x2
σ + y2

σ. The solution for the static configuration B0 under the dead loads and, more
specifically, under the action of gravity, is described in the Appendix. We will discuss cables
suspended from two points at the same level (horizontal cables) or at different levels (inclined
cables).

2.2. The dynamic incremental problem

The transformation from the static configuration B0 to the current configuration B̆ is illustrated
next. We let p(s, t) = p0(s)+u(s, t) be the position vector of the point of the cable in B̆ and let the
arc length in B̆ be denoted s̆. We will treat, to start with, the planar problem (see Figure 1(b)).
Hence, let b(s, t) be the unit vector giving the orientation of the cable cross-section in B̆ so that
the cable-fixed basis in B̆ is (a(s, t),b(s, t)) and θ denotes the rotation angle from (a0, b0) to
(a,b). Therefore, the angle that a makes with e1 is θ̆ = θ0 + θ.

The cable total stretch is obtained, by enforcing the shear strain to vanish, as pσ = ν̆a,
where ν̆ = ds̆/dσ = νν0, that is, the product of the initial stretch and the incremental stretch ν.
To calculate the cable incremental stretch ν that arises in the motion from B0 to B̆, we consider
ps = νa. Then, by letting u(s, t) = u(s, t)a0(s, t) + v(s, t)b0 represent the displacement vector
from B0 to B̆, the position vector is p = p0 + u and its gradient becomes ps = p0

s + us = (1 + us −
μ0v)a0 + (vs + μ0u)b0. Consequently,

ν =
√(

1 + us − μ0v
)2 +

(
vs + μ0u

)2
, (2.10)

a =

(
1 + us − μ0v

)
a0 +

(
vs + μ0u

)
b0

ν
. (2.11)
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Moreover,

sin θ =
ps ·b0

ν
=
vs + μ0u

ν
, cos θ =

ps · a0

ν
=

1 + us − μ0v

ν
. (2.12)

Dividing the left- and right-hand sides of the two preceding equations and considering the
inverse tangent function yield the incremental angle θ as

θ = tan−1
(

vs + μ0u

1 + us − μ0v

)
. (2.13)

Therefore, the flexural curvature μ is

μ =
dθ

ds
=

1
ν2

[(
vss +

(
μ0u
)
s

)(
1 + us − μ0v

)
−
(
uss −

(
μ0v
)
s

)(
vs + μ0u

)]
. (2.14)

The presentation of the kinematic model is complete once the boundary conditions are
prescribed. For generality, we consider the cable supports lying in the (e1, e2)-plane and being
placed at different levels and immovable under the dead loads, x(0) = p0(0) = o, x(L) = p0(L) =
�e1 + he2. On the contrary, the supports prescribe some smooth motions during the dynamic
change of configuration from B0 to B̆.Hence, the time-dependent boundary conditions become

p(0, t) = uA(t) = uA(t)e2, p(L, t) = p0(L) + uB(t) =
(
l + uB(t)

)
e1 + he2. (2.15)

Next, the dynamical aspects of the problem are discussed. We let n̆ = N̆a + H̆b be the
contact force in the cable at s̆, let f be the incremental external forces such that f̆(s, t) = f 0(s) +
f(s, t) indicates the total external force density acting on the cable (per unit reference length s),
and let m̆ be the total flexural moment of the cable at s̆. Please note that here f 0(s) denotes the
force acting in B0, however, referred, for convenience, to the unit reference length s instead of
σ. In the current configuration B̆, the local form of the balance of linear and angular momentum
requires

n̆s(s, t) + f̆(s, t) = ρA0ptt(s, t),

m̆s(s, t) + ps(s, t) × n̆(s, t) = o.
(2.16)

By accounting for ps(s, t) = νa, the balance of angular momentum yields

m̆s + νH̆e3 = o. (2.17)

Further, let N and H be the incremental axial and shear forces such that N̆ = N0 + N and
H̆ ≡ H, since the reactive shear force H0 in B0 is zero. Hence, the total contact force is n̆ =
(N0 + N)a + Hb. Similarly, m is the incremental flexural moment coinciding with the total
flexural moment since the cable flexural stiffness is neglected in the initial static configuration,
therefore, m̆ = m. Since m = Me3, (2.17), solved for H, yields the shear force as H = −Ms/ν.
We can rewrite the equation of motion (2.16) as

(
N̆a −Ms

ν
b
)

s

+ f 0 + f = ρA0ptt. (2.18)
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By considering the equilibrium in B0, (N0a0)s + f 0 = o, and by letting N̆a =N 0a0 +N0(a−a0)+
Na, the equation of motion (2.18) becomes

(Na)s +
[
N 0(a − a0)]

s −
(
Ms

ν
b
)

s

+ f = ρA0ptt. (2.19)

The componential form of (2.19) in the cable-fixed basis (a0,b0) becomes

[
(
N 0 +N

)
s +

Ms

ν

(
μ0 + μ

)
]

cos θ −
[
(
N 0 +N

)(
μ0 + μ

)
−
(
Ms

ν

)

s

]
sin θ −N 0

s + f1 = ρA0utt,

(2.20)
[
(
N 0 +N

)
s +

Ms

ν

(
μ0 + μ

)
]

sin θ +
[
(
N 0 +N

)(
μ0 + μ

)
−
(
Ms

ν

)

s

]
cos θ − μ0N 0 + f2 = ρA0vtt,

(2.21)

where f = f1a0 + f2b0, ρA0ptt = ρA0utta0 + ρA0vttb0.
Suitable nonlinearly viscoelastic constitutive laws for the tension N and the bending

moment M are given in the form

N(s, t) = N̂
(
ν, νt, s

)
, iff ν̆ = ν0ν > 1,

M(s, t) = M̂
(
μ, μt, s

)
.

(2.22)

For materials whose constitutive behavior is linearly viscoelastic also at large strains and
strain rates, the linearized version of the nonlinear constitutive laws can be expressed in the
form

N̂ = EA(ν − 1) +
(
N̂ν̇

)
νt, iff ν̆ = ν0ν > 1,

M̂ = EJμ +
(
M̂μ̇

)
μt.

(2.23)

The constitutive law for N̆ is nonlinear in the sense that, because the cable cannot resist
compression, in those segments of the cable where ν̆ ≤ 1, the total tension vanishes, that is,
N̆ = N0 + N̂ = 0. When a total loss of tension occurs, the cable does not undergo any local
length changes, hence letting ν̆ = ν0ν = 1 yields the incremental stretching in terms of the
prestretching, that is, ν = 1/ν0. In the corresponding cable subdomains, the balance equations
are accordingly modified putting N̆ = 0 and ν̆ = 1. Hence,

−
[
N 0a0]

s −
(
Ms

ν
b
)

s

+ f = ρA0ptt. (2.24)

The strain-displacement relationships (2.10) and (2.14) are substituted into the
constitutive equations (2.22) and these, in turn, are substituted, along with (2.12), into the
equations of (2.20) and (2.21) delivering the final governing equations of motion in the
unknown displacements u and v.
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We finally nondimensionalize the equations of motion introducing the followin nondi-
mensional quantities:

s∗ =
s

�
, u∗ =

u

�
, v∗ =

v

�
, t∗ =

√
H0

ρA0�2
t,

μ0∗ = �μ0, μ∗ = lμ, f∗ =
�f

H0
, k =

EA0

H0
,

N0∗ =
N0

H0
, N∗ =

N

H0
, M∗ =

M

�H0
, Λ =

EJ0

�2H0
.

(2.25)

By dropping the star for notational simplicity and by neglecting the dissipative parts of
the incremental dynamic tension and moment, the nondimensional equations of motion, for
linearly elastic cables, become

N 0
s

[
1 + us − μ0v

ν
− 1
]
−N 0(μ0 + μ

)
(
vs + μ0u

ν

)

+ k
[
νs

1 + us − μ0v

ν
− (ν − 1)

(
μ0 + μ

)
(
vs + μ0u

ν

)]

+ Λ
[
(
μ0 + μ

)
(
μs
ν

)(
1 + us − μ0v

ν

)
+
(
μss
ν
−
νsμs

ν2

)(
vs + μ0u

ν

)]
+ f1 = utt,

(2.26)

N 0
s

[
vs + μ0u

ν

]
+N 0

[
(
μ0 + μ

)1 + us − μ0v

ν2
− μ0

]

+ k
[
(ν − 1)

(
μ0 + μ

)
(

1 + us − μ0v

ν
+ νs

vs + μ0u

ν

)]

+ Λ
[
(
μ0 + μ

)
(
μs
ν

)(
vs + μ0u

ν

)
+
(
μsνs

ν2
−
μss
ν

)(
1 + us − μ0v

ν

)]
+ f2 = vtt,

(2.27)

where the stretch ν and the curvature μ are expressed by (2.10) and (2.14). On the other hand,
the equations of motion in the case of a total decompression, with a linearly elastic material,
become

ν02(
μ0 + μ

)(
1 + us − μ0v

)
(Λμ)s + ν

0(vs + μ0u
)[
ν0(Λμ)s

]
s
−N 0

s + f1 = utt,

ν02(
μ0 + μ

)(
vs + μ0u

)
(Λμ)s − ν

0(1 + us − μ0v
)[
ν0(Λμ)s

]
s
− μ0N 0 + f2 = vtt.

(2.28)

3. The linearization and vibration eigenvalue problem

The linearization of (2.19) can be systematically obtained once we introduce a small parameter,
denoted ε, which suitably quantifies the deviations from the prestressed configuration B0. We
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neglect the dissipative parts of the tension and bending moment and the forcing. We assume
ν = ν(ε), μ = μ(ε), N̂ = N̂(ν(ε)), M̂ = M̂(μ(ε)), us = us(ε), a = a(ε) as continuously
differentiable functions of ε. Further,

ν(0) = 1, μ(0) = 0, N̂
(
ν(0)

)
= 0, M̂

(
μ(0)

)
= 0,

a(0) = a0, b(0) = b0, us(0) = o.

(3.1)

Therefore, the elastic parts of the tension and flexural moment can be expanded in series of ε
as

N̂
(
ν(ε)

)
a(ε) = εEA0ν1a0 +O

(
ε 2),

M̂
(
μ(ε)

)
s

ν(ε)
b(ε) = ε

(
EJ0μ1

)
sb

0 +O
(
ε 2), (3.2)

where ν1 = νε(0) and μ1 = με(0) denote the first-order part of the stretch and the curvature (i.e.,
containing only linear terms in us). On the other hand, the geometric part of the internal force,
expanded in series of ε, yields N0(a(ε) − a0) =N0a1 +O(ε 2), where a1 = aε(0) is the first-order
deviation of a from a0. By retaining only first-order terms in the expansion of the equations of
motion, we obtain the linearized equations of motion

(
EA0ν1a0)

s +
(
N0a1

)
s −
((
EJ0μ1

)
sb

0)
s
= ρA0utt. (3.3)

To calculate ν1, μ1, and a1, we consider (2.10), (2.14), and (2.11), and by differentiating them
with respect to ε and by setting ε = 0, we obtain

ν1 = us − μ0v, μ1 = vss + μ0
su + μ0us, a1 =

(
vs + μ0u

)
b0. (3.4)

The first-order variation of a can be alternatively obtained from a = cos θ(ε)a0 + sin θ(ε)b0 =
a0+εθ1b0+O(ε2), where the first-order variation of θ, given by (2.13), is θ1 = vs+μ0u. Therefore,

[
EA0(us − μ0v

)]
s + μ

0[EJ 0(vss + μ0
su + μ0us

)]
s − μ

0N0(vs + μ0u
)
= ρA0utt,

μ0[EA0(us − μ0v
)]
−
[
EJ 0(vss + μ0

su + μ0us
)]

ss +N
0
s

(
vs + μ0u

)
+N0(vs + μ0u

)
s = ρA

0vtt.

(3.5)

In nondimensional form,
[
k
(
us − μ0v

)]
s + μ

0[Λ
(
vss + μ0

su + μ0us
)]

s − μ
0N 0(vs + μ0u

)
= utt,

μ0k
(
us − μ0v

)
−
[
Λ
(
vss + μ0

su + μ0us
)]

ss +N
0
s

(
vs + μ0u

)
+N 0(vss + μ0

su + μ0us
)
= vtt.

(3.6)

3.1. The cable elastogeometric parameters

The linear as well as nonlinear free motions of linearly elastic nonshallow cables without
flexural stiffness depend on two parameters [5] related to their geometric and elastic stiff-
nesses, namely, γ and k, contrary to shallow cables [1] whose linear motions depend solely
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on Irvine’s elastogeometric parameter λ. Irvine’s parameter combines the two characteristic

parameters of nonshallow cables according to λ2 := γ2k/ηe with ηe =
∫η0

0 sec2 θ0ds, η0 =
L/�. For cables suffering stretching and bending in the plane and made of a linearly elastic
material, the independent governing parameters are three, namely, (γ, k,Λ) or, equivalently,
(γ, λ,Λ).

We discuss in more detail the cable parameters pointing out their mechanical significance
and pertinent ranges of variation. The region of admissible elastic stiffness k in the (γ, λ)-plane
was discussed in [5] considering the isostiffness curves according to the definition of Irvine’s
parameter. The boundaries of the admissible region correspond to k1 = 5 · 102 and k3 = 5 · 104,
respectively. These values were determined considering that k = E/S0 and S0 = H0/A0

denotes the engineering tensile stress at the mid-span section. Hence, the minimum k1 is
attained when S0 is maximum, here taken as the yielding tensile strength Sy. Because typical
working tensile stresses are around 5–10% of Sy, a reasonable value of k is of the order of 103.
However, by considering lower tensile stresses in the static configuration, values of k of the
order of 104 can be reasonably reached.

By assuming a typical circular cross-section, J0 = (A0)2/(4π), hence the nondimensional
flexural stiffness becomes Λ = kA0/(4π�2). Further, it is γ = ρg�/S0 and k = E/S0. Hence, by
considering the following as design data: (i) the sag �, (ii) the material properties (ρ, E), and
(iii) the working tensile stress S0, the parameters γ and k (or λ) are accordingly determined
and are independent of A0 whereas Λ depends on k, �, and A0. Therefore, considering iso-k
curves, the nondimensional flexural stiffness parameter Λ remains constant only if the cable
cross-sectional areas do not vary.

4. Computational scheme: finite-difference versus finite elements

We employ a finite-difference discretization method to path-follow the nonlinear static
solutions of (2.26) and (2.27) with f1 and f2 being time-independent and being applied through
a loading device with a sufficiently slow rate, that is, in a quasistatic fashion. The boundary
conditions at A and B prescribe the displacements and the bending moments. In particular, the
six boundary conditions are as follows:

u(0) = uA, v(0) = vA, u
(
η0) = uB, v

(
η0) = vB, M(0) =M

(
η0) = 0. (4.1)

By considering a grid with n points including the boundary points A and B, the interior
points are n − 2. At the interior points, we enforce the two balance equations, with an ensuing
number of 2(n − 2) field equations. Overall, the number of equations is 2(n + 1). If the problem
is fully formulated in the displacement components (u, v), then the unknowns would be 2n
leading to an overconstrained system of nonlinear equations. The problem is circumvented
by employing a standard mixed approach (in the sense that it is neither the displacement nor
the force method) consisting in taking as unknowns the displacement (u, v) and the bending
moment M resulting into 3n unknowns. The bending moment, treated as unknown in the
balance equations, has to satisfy the constitutive equation which is added explicitly as an
independent equation. Therefore, the overall number of equations comprises the 3(n − 2) field
equations to which the six boundary conditions are to be added, resulting into a system of 3n
equations in 3n unknowns.
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Therefore, the field equations read
[
N0

s +
(
k(ν − 1)

)
s +

Ms

ν

(
μ0 + μ

)
]

cos θ

−
[
(
N0 + k(ν − 1)

)(
μ0 + μ

)
−
(
Ms

ν

)

s

]
sin θ −N0

s + f1 = 0,

[
N0

s +
(
k(ν − 1)

)
s +

Ms

ν

(
μ0 + μ

)
]

sin θ

+
[
(
N0 + k(ν − 1)

)(
μ0 + μ

)
−
(
Ms

ν

)

s

]
cos θ − μ0N0 + f2 = 0,

M −Λ 1
ν2

[
(
vss +

(
μ0u
)
s

)(
1 + us − μ0v

)
−
(
uss −

(
μ0v
)
s

)(
vs + μ0u

)
]
= 0.

(4.2)

To enhance the accuracy of the finite-difference scheme, we employed a five-point
scheme [17] based on an equidistant point grid which can be written, considering the first-
order space derivative, as follows:

1
12 ×Δ

⎡

⎢⎢⎢⎢⎢
⎣

−25 48 −36 16 −3
−3 −10 18 −6 1
1 −8 0 8 −1
−1 6 −18 10 3
3 −16 36 −48 25

⎤

⎥⎥⎥⎥⎥
⎦
, (4.3)

where Δ = si − si−1 denotes the distance between two adjacent points of the grid.
For the chosen n-point grid, we have 3n equations, each expressed as a function of
[(
ui−2, ui−1, ui, ui+1, ui+2

)
,
(
vi−2, vi−1, vi, vi+1, vi+2

)
,
(
Mi−2,Mi−1,Mi,Mi+1,Mi+2

)]
(4.4)

and the external force term fi, where i is the index associated to the grid point. Out of the six
boundary conditions, four equations are kinematic, namely, u0 = uA, un = uB, v0 = vA, vn =
vB, two of them are mechanical, M0 = Mn = 0. Further, mention must be made of the fact that
the discretization at the two points adjacent to the boundary points is not clearly centered.

The problem is solved step-by-step employing a zeroth-order path-following scheme
where the Newton-Raphson iterative scheme is exploited at each load step to find the new
solution point. The procedure was implemented in MATHEMATICA [18]. At each load step,
the external force is increased by Δfi and the solution point of the preceding step is used as
the initial guess in the updated load step; in this sense, the continuation procedure is based on
a zeroth-order predictor. At the end of each load step, the determined solution is expected to
satisfy the balance equations ensuring that the pointwise remainders are below a prescribed
numerical tolerance.

The same analyses have been conducted employing COMSOL [19]. COMSOL Mul-
tiphysics allows to approximate partial-differential equations of various kinds via a finite
element procedure. The number of quadratic Lagrangian finite elements was set to 7680 in
all calculations, for a total number of 76 805 degrees of freedom, and the tolerance was fixed
to 10−6. The high number of finite elements was not strictly needed, it was chosen in all
calculations for accuracy reasons. A close agreement between the finite difference-based (with
number of grid points greater than or equal to 30) and finite element-based results has been
found and it is such that only the outcomes of COMSOL are reported next.
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5. Illustrative examples of nonlinear static responses

It is of interest to investigate into the differences exhibited by the nonlinear structural responses
of cables possessing flexural stiffness and those of cables whose flexural stiffness is neglected.
The objective is to assess the extent of the bending stiffness contribution within the context of
static loading processes. It is clear, however, that the most significant effects are expected to be
exhibited in dynamic regimes, especially near resonances and instabilities.

In this section, we present some illustrative examples of nonlinear responses to three
different loading scenarios. All loading cases are selected so as to induce a gradual loss of
tension that enhances the bending moment contribution. The first case features a horizontal
cable, lying under its own weight between two points at the same level. A constant uniformly
distributed vertical upward load is applied over a central region of the cable. In the other two
cases, the loading path is a prescribed incremental displacement of the right support to the left
so as to loosen the cable. We consider both a horizontal and an inclined cable.

Two different cables are considered in the numerical computations and they have the
following nondimensional governing parameters: η0 = 1.09615, γ = 1.5, k = 1.10 · 104, Λ =
4.43 · 10−4, for the horizontal cable, and γ = 0.47, k = 3.70 · 10 3, Λ = 1.40 · 10−4, for the inclined
cable. These parameters correspond to a steel cable whose initial length is L = 142.5 m for the
first configuration whose span is l = 130 m, Young’s effective modulus is E = 100 GPa; its cross-
sectional area and moment of inertia are A0 = 8 · 10−3 m2 and J 0 = 5.1 · 10−6 m4, respectively.
The height of the inclined cable is h = 30 m and its initial length is L = 136.4 m.

In all loading scenarios, we determine the cable response curves, depicting variations
of the vertical displacement of a control point (point C whose arc length coordinate is s =
1/3L) with the magnitude of the force or support displacement. In particular, the loading
path is discretized into NL steps so that, by indicating with fNL

the load magnitude at the
end of the loading path and with fj the magnitude at the jth step, we let αj = fj/fNL

be
the load multiplier. We monitored the configurations and state of stress at three given load
steps, namely, α = 1/3, 2/3, 1. For each of those three states, the tension, shear force, and
flexural moment distributions along the cable are analyzed so as to point out the influence
of the flexural rigidity throughout a comparison of the results with those obtained using the
standard model that neglects the flexural stiffness.

5.1. Horizontal cable subject to an upward vertical load

The first case is that of a horizontal cable, shown in Figure 2, subject to an upward vertical load,
distributed over a small region centered about the midspan whose length is Δs = 0.1873η0.
The nondimensional load amplitude is varied in the range [0.03, 12]. Because the force per
unit reference length has been nondimensionalized with respect to mg/γ, and γ = 1.5; the
maximum load is fNL

= 8mg and the resultant load becomes F = 8mg(Δs�), which is about
3/2 W, where W = mgL0 is the total weight of the cable. The loading process is discretized into
NL = 400 load steps with a resulting load step Δf = 0.02993.

The response curve in Figure 2 shows a softening behavior of the cable control point in
both models. We further note that the curve representing the model with flexural stiffness is
globally above the curve obtained with the standard cable model as it is to be expected since
the cable with flexural stiffness is clearly stiffer than the purely extensible cable. This difference
in behaviors is exhibited neither at the beginning nor at the end of the loading path whereas



W. Lacarbonara and A. Pacitti 13

0.160.120.080.040
vC

0

4

8

12

f

α = 2/3

α = 1

α = 1/3

A B

f
C

vC

Figure 2: Response curves of the horizontal cable: variation of the vertical displacement of the control point
C with the load magnitude obtained with the flexural stiffness (solid line) and without (dashed line).

the most prominent difference is appreciated when α = 2/3, that is, when the upward load is
nearly equal the weight of the cable.

Figure 3 shows the cable configurations at various load magnitudes, the initial static
configuration B0 (catenary configuration), two intermediate configurations B̆ when α = 1/3
(F � 1/2 W) and α = 2/3 (F � W) and the final configuration at the maximum load
(F � 3/2 W). A region of negative curvatures is localized around the subdomain where the
load is applied upward. In particular, when the load is betweenW and 3/2W, the cable crosses
the horizontal line passing through the supports and the extent of the central segment of the
cable lifted above the horizontal line gradually increases up to the end of the loading path when
it is nearly one third of the cable. At two thirds of the maximum load, the difference introduced
by the flexural stiffness is quite remarkable especially if we consider the displacement of the
midspan point around which we note appreciably different curvatures, sharper in the purely
extensible cable. In Figure 4 (top), we show the tension along the cable whose evolution has
two distinct phases. First, the application of the load tends to decrease uniformly the total
tension in the cable until the load reaches a sufficient value to overcome the weight of the cable
in the central region. At this stage, the curvature is reversed at the midspan and the tension
gradually starts to exhibit sharp decreasing variations thus introducing a lack of uniformity of
distribution. While at the midspan section the curvature (and the bending moment) increases,
the tension tends to vanish; on the other hand, around the midspan, the tension has to balance
part of the total weight of the cable. Concurrently, the shear load exhibits a boundary layer
within the central loaded region, and the magnitude of the jump increases with the load
amplitude. At the peak of the loading path, the bending moment is clearly localized within
the central boundary layer with the peak moment being one order of magnitude higher than
elsewhere in the cable.

5.2. Horizontal and inclined cables subject to support displacements

The right end boundary of the horizontal cable is moved horizontally to the left up to a
nondimensional value of uB = 0.808 (i.e., a dimensional displacement of the considered cable
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Figure 3: Cable configurations under an upward vertical load obtained with the flexural stiffness (solid
lines) and without (dashed lines).
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Figure 4: Tension (top), shear force (middle), and bending moments (bottom) of the cable under an upward
vertical load obtained with the flexural stiffness (solid lines) and without (dashed lines).
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Figure 5: Response curves of the horizontal cable: variation of the vertical displacement of the control point
C with the support displacement obtained with the flexural stiffness (solid line) and without (dashed line).
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Figure 6: Cable configurations under a prescribed displacement of the support.

of 105 m) in NL = 1050 steps. Figure 5 shows the response curve with the prescribed displace-
ment uB on the vertical axis and the displacement of the control point C on the abscissa axis.
Besides, Figure 6 presents the configurations of both cables, with and without flexural stiffness,
at the three load steps (α = 1/3, 2/3, 1) and Figure 7 reports the associated tension, shear force,
and bending moment.

During the whole loading path, a decrease of tension and an increase of shear force
and bending moment are observed in the central region as the two boundaries are brought
closer; further, as in the first loading scenario, the decrease becomes even more remarkable
when the curvature is increasing. At the end of the loading path, the central region presents a
tension that is almost close to zero bringing the cable close to a total loss of tension. Further,
the shear force at the boundaries is appreciable. We also note that, as it has already been
pointed out in previous studies, the standard model of purely extensible cables generates
numerical instabilities when the tension levels are too low while the consideration of flexural
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Figure 7: Tension (top), shear force (middle), and bending moments (bottom) of the cable subject to
displacements of the support obtained with the flexural stiffness (solid lines) and without (dashed lines).

stiffness overcomes this problem. Moreover, the close observation of the differences in the
configurations exhibited by the two cables reveals that the flexural stiffness has an appreciable
influence on the equilibrium configuration even in the static regime, and points out the fact
that it cannot be neglected in those segments of the cable where the tension is very low.

To quantify the differences in the state of stress, let us now consider the midspan section
when α = 1, and let S = N/A0 denote the maximum tensile stress for the cable without
flexural stiffness, and let S = N/A0 + M/W0

f
be the tensile stress of the cable with flexural

stiffness (where W0
f

= J0/
√
A/π is the cable bending modulus). Calculating the relative

percent difference between S and S yields a value about 53% which indicates that we would be
led to underestimate the maximum tensile stress by the same amount with the standard cable
model.

In the last loading scenario, the right support of the inclined cable is moved horizontally
to the left up to a nondimensional value of uB = 0.769 (i.e., a dimensional displacement of the
considered cable of 100 m) in NL = 1000 steps. Figure 8 shows the response curves whereas
Figure 9 presents the configurations of both cables, with and without flexural stiffness, at the
three load steps (α = 1/3, 2/3, 1), and Figure 10 reports the associated tension, shear force, and
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with the support displacement obtained with the flexural stiffness (solid line) and without (dashed line).
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Figure 9: Cable configurations under a prescribed displacement of the support.

bending moment. This case is very similar to that of the horizontal cable although this cable is
shallow and quite taut. The final maximum curvature is smaller than in the other case while
the final lowest tension is bigger. It has to be noticed that, in this case, the most stressed region,
on consideration of the shear force and flexural moment, is more shifted to the left due to the
evident asymmetry of the problem.

6. Natural frequencies of cables with flexural stiffness

This section discusses concisely the vibration behavior of cables without flexural stiffness, in
shallow and nonshallow regimes, with respect to the behavior of cables with flexural stiffness.
To this end, variations of the lowest natural frequencies with Irvine’s parameter λ are here
reported. In Irvine’s theory of shallow cables and in the generalized theory described in
[5], the free motions of cables only depend on the two parameters (γ, λ) which completely
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Figure 10: Tension (top), shear force (middle), and bending moments (bottom) of the cable subject to
displacements of the support obtained with the flexural stiffness (solid lines) and without (dashed lines).

characterize the geometric and elastic properties of linearly elastic cables. Taking into account
the flexural stiffness introduces a new elastogeometric parameter, Λ. In Figure 11, variations of
the lowest natural frequencies with λ/π are shown as obtained with the two relevant models,
with incorporation of the flexural stiffness (solid lines) and without flexural stiffness (dashed
lines). We consider three different regimes: shallow cables with γ = 0.1, transition cables with
γ = 0.75, and nonshallow cables with γ = 1.5. In Figure 11 (top), in the case of shallow cables
(γ = 0.1), differences between the two models are not easily detectable except mild differences
for λ > 0.7π. On the other hand, for nonshallow cables (γ = 1.5), we clearly observe a deviation
of the loci of the eigenfrequencies to higher values with increasing λ. As a matter of a fact,
flexural stiffness effects are expected to be more significant for cables with larger cross-section
areas, that is, in our case, those corresponding to larger values of λ. Here, the assumed data
are γ (that defines the geometric stiffness) and E, Young’s modulus. At the same time, higher
modes present a number of curvature variations, hence a number of nodes, greater than the
lower modes so that the flexural rigidity is expected to impact the frequencies of the higher
modes as it can be seen in Figure 11. Furthermore, the increase of the natural frequencies due
to the flexural stiffness effects do not seem to generate new crossovers.
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Figure 11: Variation of the lowest natural frequencies with λ/π obtained with the flexural stiffness (solid
lines) and without (dashed lines) when γ = 0.1, 0.75, 1.5, respectively.

7. Concluding remarks

A geometrically exact formulation of cables undergoing axis stretching and flexural curvature
has been proposed. The model, in its general form, is suitable to treat more general cable
regimes, such as the loosening regime whereby a local loss of tension occurs.

The equations of motion have been formulated for cables with nonlinearly viscoelastic
constitutive laws and general loading conditions. The particular case of cables with a linearly
elastic constitutive law has been then considered in the numerical calculations conducted
on horizontal and inclined cables by employing a path-following scheme with two different
discretizations: a finite-difference approach and a finite element formulation. In particular,
low-tension regimes have been investigated, and the flexural stiffness influence on shallow
and nonshallow cable behaviors has been studied outlining its importance in the structural
response in the mentioned low-tension regime.

The most remarkable loading case, presented in this paper, is relative to a displacement
of the right support moved toward the left support. It has been shown that an underestimation
of the maximum tensile stress of about 50% would be reached were we to employ the
crude model of purely extensible cables. Although the probability of such a phenomenon is
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low in civil engineering applications since the displacements are expected to be small, the
extreme scenarios here reproduced can certainly concern mooring cables or cables in tethered
space applications. In addition, consideration of the flexural stiffness is important to correctly
evaluate the fatigue life of cables.

Modeling linearly elastic cables with flexural stiffness has led to a new independent
parameter, denoted Λ, which represents the ratio between the flexural and the geometric
stiffnesses. The presence of flexural stiffness modifies the loci of the higher frequencies at
higher stiffnesses, especially in nonshallow cables.

More in-depth investigations are needed to correctly unfold the cables behavior near
instabilities or in the fully developed post-critical scenarios (galloping, parametric reso-
nance,. . ., etc.) whereby loosening phenomena and nonlinear viscoelasticity within the
boundary layers are expected to play a critical role on the response.

Appendix

The static configuration B0

The static configuration under the cable own weight is obtained integrating (2.8) with the inex-
tensibility constraint ν0 = 1 which yields σ = s. By introducing the following nondimensional
variables and parameters:

γ =
mg�

H0
, β =

mg�

V 0
, (A.1)

and integrating the equilibrium equations yields

x(s) =
1
γ

[
sinh−1
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β
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)
− sinh−1

(
γ

β
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1
γ
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γ

β
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)2
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√

1 +
(
γ

β

)2]
,

(A.2)

where H0 is the horizontal projection of the tension at the left support, the star was
dropped, and sinh−1 denotes the inverse function of sinh. The boundary conditions give two
transcendental equations in the unknowns γ and β. For instance, for horizontal cables, the
compatibility condition becomes

η0 γ

2
= sinh

(
γ

2

)
. (A.3)

Typically, η0 is known (the initial cable length as well as the span), hence the compatibility
equation is solved for γ. On the other hand, in the case of inclined cables, imposing the
boundary conditions yields the following transcendental equations:
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(A.4)
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1. Introduction

1.1. Context: offshore platforms, mooring systems, and anchors

Petroleum companies around the world have been faced with the challenge of developing
offshore oil production activities in deep and ultradeep waters. In shallow water, the traditional
solution consists in employing platforms supported by fixed framed structures, such as the
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jackets where the foundation system consists of driven piles [1]. Presently, as oil fields have
been identified in deeper water such as in the Campos Basin (southeastern Brazil), offshore
platforms have included several types of floating units, such as the semisubmersible platforms,
the tension-leg platforms (TLPs), and floating production, storage, and offloading (FPSOs) units
based on ships.

Floating platforms can be maintained in position by different types of mooring
systems, which in turn may employ anchors based on different types of foundation
elements. Semisubmersible platforms and FPSO units, for instance, may be kept in position
by mooring lines in catenary or taut-leg configurations. Mooring lines in a free-hanging
catenary configuration transmit essentially horizontal loads to the foundation system. This
fact introduces a greater flexibility in the selection of the appropriate anchor type. However,
the mooring radius (the horizontal distance, measured at the sea bottom, from the center of the
platform) is relatively large; typically, about two to three times the water depth. Therefore, the
application of catenary configurations may not be feasible in deep or ultradeep waters, due to
the increased weight of the mooring lines, and also due to installation problems that may arise
in congested scenarios with several platforms close together (as is the case of some oil fields in
the Campos Basin).

The taut-leg configuration has been proposed to tackle these constraints. This
configuration, where the lines are not slack, allows the use of smaller line lengths. When
associated with the use of new materials (such as polyester fiber ropes) [2], this leads to
considerable reduction in the weight of the mooring system. Moreover, since at the anchor
point the lines are not in contact with the seabed, and may reach inclinations around 45o, the
mooring radius is typically equal to the water depth, therefore, considerably shorter than in
catenary configurations.

However, taut-leg mooring systems transmit vertical loads to the foundation system.
This is also the case with the tension leg platforms, which are moored by vertical tendons.
Therefore, care should be taken in the selection of anchor types that can withstand vertical
loads.

Amongst the foundation elements that have been applied in deep water systems, two
types of anchors can be mentioned: the suction anchor and the vertically loaded anchor (VLA)
[3]. However, some installation difficulties have been reported for suction anchors, due to
added mass effects and the resonant period for the lifting system at the installation depth
that may approach the dominant wave period at the site [4]. Vertically loaded anchors are
easier to install, but require drag procedures that may hinder their correct positioning, mainly
in congested areas with many others nearby platforms.

1.2. The torpedo pile

The torpedo pile (illustrated in Figure 1) was proposed [5] as a solution to withstand vertical
loads while circumventing the problems associated with other types of anchors. It consists
simply in a metallic pipe, with closed tip, filled with scrap chain, and concrete [6].

The installation does not require drag procedures such as employed in VLAs; the
procedure is quite simple, and is illustrated in Figure 2. First, the installation vessel hangs
the pile (connected to the mooring line) at a specified drop height, above the target point
on the seabed. The design embedment is then reached by simply releasing the pile, letting
it accelerate, fall freely, and then penetrate into the soil.
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Figure 1: Torpedo pile.

Figure 2: Installation of torpedo pile [5].

More than one hanging configuration has been conceived, for instance, one of the
alternatives (considered for the installation of torpedo piles to anchor flexible risers or mobile
drilling units (MODUs)) has a chain loop at the top of the installation line, as shown in Figure 3.
As the pile falls, this loop is pulled and unfolded. Therefore, the torpedo pile presents not only
low cost of manufacture, but also low cost of installation, since the same vessel can transport
and install the pile.

There is another configuration, for permanent mooring of production units, which does
not present the chain loop, but requires two vessels to hang, respectively, the installation line
and the mooring line (to which the torpedo pile is connected). In this configuration, the bottom
end of the installation line is connected to an intermediate point of the mooring line, therefore,
maintaining the pile suspended at the desired drop height. Above this connection point, there
is a trigger that allows the mooring line and the pile to be released, causing the pile to fall
(dragging with it the mooring line), and penetrate the soil.

Another advantage of the torpedo pile concept is that, since it can withstand horizontal
and vertical loads, it can be used with mooring lines in a taut-leg configuration that, as
mentioned before, is the preferred alternative for semisubmersible platforms and FPSO units
in deeper waters and congested scenarios.
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Figure 3: Chain loop [6].

1.3. Objective of the paper

The design of a torpedo pile should employ theoretical models to predict pile penetration
depth, such as the dynamic penetration model proposed by True [7]. This model relies on
soil parameters whose values are assumed as known, fixed, and deterministic.

However, it is well known that the soil properties present a significant degree of
variability that, associated to imprecisions in the determination of their design values, can
affect the accuracy of the response given by the simulation method. The objective of this paper,
therefore, is to study techniques to deal with the uncertainty of the soil parameters, and to
associate these techniques to an analytical/numerical penetration model for the torpedo pile.

Two different approaches are considered for the treatment of uncertainties of the
penetration model. The first is a probabilistic approach, based on the classical Monte Carlo
method. The second is a “possibilistic” approach, derived using concepts from fuzzy arithmetic
and fuzzy sets.

The following sections of the paper begin by describing the theoretical model and
solution procedure considered for the simulation of the pile penetration. Firstly, the analytical
formulation originally presented by True [7] is described; then a numerical solution procedure
in the time domain is described, followed by an application where a pile dropped from a height
of 200 m above the seabed is analyzed for deterministic, fixed values of the soil parameters.

The paper then proceeds by describing the soil parameters that are considered uncertain.
Methodologies to assess the sensitivity of the response to the variation of these uncertain
parameters are then presented, based on the Monte Carlo method (MC) and fuzzy arithmetic
(FA). More important, such methodologies allow the designer to incorporate, into the analysis
method, techniques for the formal treatment of these uncertainties.

Finally, results of applications of these concepts for the treatment of uncertainties are
presented for an actual case study, beginning with results of deterministic parametric studies
in order to assess the sensitivity of the response to the variation of the uncertain parameters.
Results for the “probabilistic” MC approach are then presented, followed by the novel
implementation and application of the approach based on FA. The results and performance
of both approaches are compared, stressing the ability of the latter approach to efficiently deal
with the uncertainties of the model, with outstanding computational efficiency, and therefore,
to comprise an effective design tool.
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2. The Penetration Model

2.1. Original formulation: penetration of projectiles

Studies on the behavior of penetration of projectiles were initially intended for military
applications [8] and were followed by studies on the prediction of final embedment depth
of projectiles into soils [9, 10], and estimation of undrained shear strength [11, 12].

The development of a dynamic penetration model by the US navy was required to
represent the penetration of propellant-embedded plate anchors into seafloor soils [13]. This
kind of anchor is directly positioned on the mud line and an explosion, caused by the propeller
system, pushes the anchor fluke down. In order to fulfill this objective, True [7] took into
account recommendations given by authors of empirical models (such as Young [9]) and
modified traditional bearing capacity formulations (for deep foundations in cohesive soils)
to consider variations in penetration resistance with velocity and penetrator shape.

The analytical model developed in [7] to simulate the dynamic penetration of plate
anchors is based on Newton’s second law. Considering that the penetrator velocity v can be
expressed as v = dz/dt (where z stands for the soil depth), and therefore, its acceleration
dv/dt can be expressed as (dv/dz)(dz/dt), the governing equation can be written as follows:

M′dv

dz
v =Ws − FD − FT − FS + FE, (2.1)

where M′ is the effective mass of the penetrator, given by

M′ =M + 2ρ ·V. (2.2)

In this latter equation, M and V are, respectively, the structural mass and the volume
of the penetrator, and ρ is the mass density of the soil. It can be seen that the term 2ρV is
similar to the “added mass” term of the Morison equation [14], which has been traditionally
employed to calculate hydrodynamic drag and inertia loads on cylinders immersed in fluid.
In the present case, when multiplied by the acceleration at the left-hand side of (2.1), the term
2ρV introduces an additional inertia force that corresponds to the contribution of the soil in
which the penetrator is immersed.

The forces in the right-hand side of (2.1) are Ws (the submerged weight of the
penetrator); FD, FT , and FS (which are, resp., the drag force, the tip resistance, and the side
resistance); and FE (the external driving force applied by the propeller system).

The submerged weight Ws is defined in terms of the weight in air W, volume V, and the
unit weight of soil γ by the following expression:

Ws =W − V · γ. (2.3)

The drag force FD is similar to the longitudinal drag component given by Morison’s
equation [14], which is expressed as:

FD =
1
2
·v · |v| ·Af ·CD · ρ, (2.4)

where Af is the frontal or cross-sectional area of the penetrator and CD is the empirical drag
coefficient, that can have the value of 0.7 as proposed by True according to [13].
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The classic formulation for static bearing capacity of deep pile foundation states that, for
undrained conditions, the tip resistance QT and side resistance QS [15] are defined by

QT = Su ·Nc ·Af,

QS = Su ·α ·As,
(2.5)

where Su is the undrained soil shear strength; Nc is the bearing capacity factor (assumed equals
to 9 for homogeneous clay); α is the dimensionless side adhesion factor; and Af and As are,
respectively, the frontal and lateral areas of the pile.

The dynamic tip and side resistance FT and FS are now considered by the inclusion, in
this classic static formulation, of a side adhesion reduction factor δ, a soil strain rate factor Sė, and
the soil sensitivity value Sti. The latter represents the loss of shear strength that clays suffer when
remolded, and is defined as the ratio of undisturbed and remolded strengths [16]. Thus, the
tip resistance FT and side resistance FS are defined by the following expressions:

FT = Su ·Nc ·Af ·Sė,

FS =
Su ·As · δ

Sti
·Sė.

(2.6)

Values for the side adhesion reduction factor δ were determined in [17] based on results
of model tests. An expression for the strain rate factor Sė was also defined in [17], as a function
of the velocity v and the diameter (or thickness) of the penetrator d, the undrained soil shear
strength Su, and other empirical parameters. This expression can be written as

Sė =

⎛

⎜
⎝

Se

1 +
(

1/
√(

Ce ·v/Su ·d
)
+ C0

)

⎞

⎟
⎠ . (2.7)

Values for the empirical parameters Se (maximum soil strain rate at high velocity
values), Ce (strain rate velocity factor), and C0 (strain rate constant) were also determined
in [17] based on results of model tests.

In the penetration model considered for offshore applications in the Campos Basin [5],
the undrained shear strength Su of the soil is assumed to vary linearly with depth z, according
to the following expression:

Su(z) = Su0 + Suk · z, (2.8)

where Su0 is the undrained shear strength at the mudline; and Suk is the rate of increase with
depth.

Original solution procedure

To solve (2.1), True [7] developed an incremental finite-difference algorithm and considered
that the penetrator is a point object at the ith depth increment, thus some simplifications could
be made:

M′ ·vi ·
vi+1 − vi−1

2Δz
=Ws − FD − FT − FS. (2.9)
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Substituting the expressions for M′, FD, FT , FS, and Ws in (2.9), ignoring the external
driving force FE, and assuming C0 = 0.06 (according to [7]), the following expression is
obtained, which can be applied repeatedly to obtain the velocities of the penetrator at each
depth increment Δz:

vi+1 = vi−1 +
2Δz

vi
(
M + 2ρiV

)

·
(
(
W − V γi

)
−
(

1
2
v2
i AfCDρi

)
− Sui

(
AfNc +

Asδ

Sti

))

·

⎛

⎜
⎝

Se

1 +
(

1/
√(

Cevi/Suid
)
+ 0.06

)

⎞

⎟
⎠ .

(2.10)

The final penetration depth can then be seen as the product of the depth increment Δz
by the number of the increment for which the penetrator velocity drops to zero. It should be
recalled that, as in any numerical solution procedure, the accuracy of the results also depends
on the careful selection of the depth increment. This will depend on the particular example
that is analyzed, and may also involve the use of different increment values to assess the
convergence to an accurate solution.

2.2. Formulation for free-falling pile

A free-falling cylindrical penetrometer, dropped from a given height above the mudline, is
studied in [12] for the prediction of penetration depth and undrained shear strength. Equation
(2.1), with some modifications, is also applied to describe the movement of this penetrometer.
Firstly, since it is free falling and there is no external driving force, the term FE is omitted.
Also, the added mass in (2.2) is considered negligible for slender penetrometers moving along
their long axis, thus, the effective mass is equal to the structural mass (M′ = M). Therefore,
also replacing the velocity v by dz/dt and considering that the acceleration a is equal to
(dv/dz)(dz/dt), (2.1) becomes

Ma =Ws − FD − FT − FS. (2.11)

Obviously, torpedo piles behave similarly to the free-falling penetrometers, therefore,
their motions can also be described by the True formulation [7], with the same considerations
as employed in [12], resulting in (2.11). Moreover, the traditional Morison hydrodynamic
formulation can also be applied to describe the forces acting in the pile while it is still in the
water, before reaching the seabed, and the same submerged weight can be assumed for both
media.

It should be emphasized that such semiempirical formulations incorporate some
assumptions, which in turn leads to uncertainties in the model. However, as mentioned in
the introduction, this work is focused on the influence of the uncertainties in selected soil
parameters. Studies regarding uncertainties associated with the penetration model itself will
be dealt with in future works.
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Solution procedure in the time domain

It can be observed that the procedure originally proposed by True [7], as described in (2.9)
and (2.10), involved the spatial integration of (2.1) to obtain velocities as functions of depth z.
This indeed would be the more natural solution procedure if one is concerned only with the
representation of the isolated pile and the natural random variability of the soil parameters
with depth. However, as will be commented later, there are other sources of uncertainty to be
concerned as well.

Moreover, as will be commented in the final section of this paper, the final goal of
the developments presented here is to incorporate the penetration model (including the
techniques that will be described later, based on fuzzy arithmetic, for the formal treatment
of uncertainties) in a finite element (FE) spatial discretization scheme, associated to a time
domain nonlinear dynamic solver. The idea is to model not only the isolated pile, but also all
the other components of the system being installed (i.e., the mooring line itself and the other
lines and chains involved in the installation procedure), in a complete 3D model submitted to
other loadings such as marine current.

With this scenario in mind, it is more convenient to integrate (2.11) in the time domain.
At the current stage, where the focus is in modeling an isolated pile and evaluating the
uncertainties in the soil parameters, the added mass can still be disregarded as assumed in
[12] and in (2.11). In a posterior implementation of the penetration model in a time domain
solver associated to the full FE model, the dynamic equations will also incorporate the added
mass effects of the complete configuration of the pile with the installation and mooring lines.

The solution in the time domain, in terms of the acceleration an+1, velocity vn+1, and
displacement dn+1, at a given time tn+1, can be accomplished by applying a time-integration
algorithm such as the Chung and Lee explicit method [18] that can be stated as:

M ·an+1 = fn; fn =Ws − FD − FT − FS,

dn+1 = dn + Δtvn + Δt2
(
(1/2 − β)an + βan+1

)
,

vn+1 = vn + Δt
(
(1 − γ)an + γan+1

)
,

(2.12)

where β and γ are algorithmic parameters defined as 1 ≤ β ≤ 28/27, γ = 3/2; and Δt is the time
step, which should not exceed a critical time step (Δtc) in order to maintain the stability of the
numerical solution [18]. The full time domain solution procedure is shown in Algorithm 1. It
should also be recalled that the displacements, velocities, and accelerations are positive in the
downward direction.

Application

The application of the penetration model described above is now illustrated for a problem also
studied in [19], corresponding to a pile dropped from a height of 200 m above the seabed.
The pile and soil data are presented in Tables 1 and 2. It should be emphasized that the
soil parameters and the sensitivity value of 3 are related to a specific deposit and may not
necessarily be representative of general applications.

This application is not intended to represent an actual installation procedure for a
torpedo pile (such as the depicted in Figure 2), since, as mentioned before, the current
implementation of the penetration model represents only the pile. Therefore, in order to take
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(a) Initial calculations
1. Calculate the torpedo mass M.
2. Initialize d0, v0, f0, and a0, where a0 = f0/M.
3. Select the appropriate algorithmic parameter β and time step Δt,
Δt ≤ Δtc and calculate the integration constants,

β1 = Δt2
(

1
2
− β
)
, β2 = Δt2β, γ1 = −1

2
Δt, γ2 =

3
2
Δt.

(b) For each time step (n = 0, 1, . . . ,N − 1).
1. Calculate the forces,
fn =Ws − FD − FT − FS.

2. Calculate the acceleration at time tn+1 = tn + Δt,
an+1 = fn/M.

3. Calculate the displacement at time tn+1 = tn + Δt,
dn+1 = dn + Δtvn + β1an + β2an+1.

4. Calculate the velocity at time tn+1 = tn + Δt,
vn+1 = vn + γ1an + γ2an+1.

5. n← n + 1, go to (1) of step (b).

Algorithm 1: Solution procedure in the time domain.

Table 1: Problem definition: pile data.

W: weight in air 396 kN
Wb: submerged weight 340 kN
d: diameter 0.762 m

Table 2: Problem definition: soil data.

Su0: undrained shear strength at the soil surface 5.0 kPa
Suk: rate of increase with depth 2.0 kPa/m
Sti: sensitivity 3.0
Nc: bearing capacity factor 9.0
δ: side adhesion reduction factor 0.9
Se: empirical maximum strain rate factor 5.0
Ce: empirical strain rate velocity factor 0.02 kN · s/m2

into account the increase on drag effects due to the mooring line and chain loop that are not
explicitly represented, the model employs a value for the drag coefficient CD equal to 2.7,
larger than the value of 0.7 as proposed by True according to [13]. In future works, which
will consider the implementation of a coupled finite element-based, time domain simulation
program, there will be no need to perform this “fudging” of the drag coefficient CD, since
the coupled 3D model will explicitly include the complete installation configuration (e.g., the
mooring line and chain loop for the application in MODUs described earlier).

The time domain solution considered a total time of 15 seconds (enough, as will be seen,
for the pile to fully penetrate the soil). The analysis is performed with a time increment of
0.002 seconds. The value considered for the algorithmic parameter β of the time-integration
algorithm is β = 28/27.

The results are presented in Figure 4, in terms of a graph relating the vertical position of
the pile to its velocity, and in Figure 5 in terms of time histories of depth and velocity. The origin
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Figure 5: Deterministic pile penetration analysis: time histories.

of the graph of Figure 4 corresponds to the pile in its initial position, before being dropped
(therefore, with velocity and displacement equal to zero). It is seen that, as the pile drops in
the water, its velocity increases until it nearly reaches the so-called “terminal velocity” due to
the water drag (of course, this requires the pile to be released from an appropriate height). As
the pile reaches the seabed and begins to penetrate in the soil, the velocity is reduced; when it
returns to zero the penetration is completed and the final depth of the pile tip is reached.

3. Uncertainties of The Soil Parameters

Selected parameters

As stated before in (2.8), for cohesive soils in offshore applications in Campos Basin [5], the
undrained soil shear strength Su is assumed to vary linearly with depth z, in terms of Su0

(undrained shear strength at the mudline) and of Suk (the rate of increase with depth). For the
normally consolidated clay encountered offshore in the Campos Basin [5], typical values that
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may be considered for Su0 and Suk are, respectively, Su0 = 5 kPa and Suk = 2 kPa/m. Therefore,
(2.8) could be written as

Su(z) = 5 + 2 · z (kPa) (3.1)

Actual values for these parameters that affect the undrained soil shear strength Su for
offshore sites may be obtained fromin situ tests (such as CPT—cone penetration tests [20], or
vane tests based on a torsion procedure), or from laboratory tests with undisturbed samples,
such as triaxial and minivane tests. It should also be recalled that the soil sensitivity Sti
represents the loss of shear strength that clays suffer when remolded, and is defined as the
ratio of undisturbed and remolded strengths [16]. Remolded strength values can be obtained
from vane, triaxial, or minivane tests of disturbed soils.

Thus, it can be seen that values for Su (undrained shear strength) and Sti (sensitivity)
are obtained from testing. Traditionally, a deterministic procedure is employed to obtain design
values for these parameters, by calculating the average of values obtained from several tests.
However, it is known that the results of both in-situ or laboratory tests may be influenced by
several factors. The latter tests can be affected by factors such as mechanical disturbance in
the soil samples, in the process of extraction and remolding; by changes in the samples during
storage, and so forth. In-situ tests can also be affected by mechanical interferences, inadequate
execution, and so on.

Therefore, it can be intuitively understood that there is a high degree of local soil
variability, and imprecisions in the determination of the design values of these soil parameters.
Large variations in the response of the torpedo pile, mainly in terms of the final penetration
depth reached by the pile, may be expected due to these uncertainties. The main objective of
this paper, then, is to present a methodology to take into account uncertainties and imprecision
in the values of input parameters that define the physical and numerical models involved in
the design and analysis of torpedo piles.

This work focuses on Su (specifically, the rate of increase with depth Suk) and Sti.
Of course, other parameters (not necessarily related only to the soil) could be considered;
however, those can be dealt with in future works.

Sources of uncertainty

Before proceeding further, it is important to recall some basic concepts regarding sources
of uncertainty. In soil profile modeling, they may be grouped in two types [21–23]: (1)
noncognitive, random natural variability, usually referred as aleatory uncertainty; and (2)
cognitive or epistemic uncertainties, that involve abstraction or subjectivity.

The first group comprises the inherent uncertainty type, due to natural heterogeneity or
in-situ variability of the soil, such as varying depths of strata during soil formation, variation
in mineral composition, and stress history [24]. This corresponds for instance to the natural
variability of the soil strength from point to point vertically at the position where the pile is to
be installed.

The second group includes epistemic uncertainties due to lack of knowledge; in this
case, information about subsurface conditions is few, because soil profile characteristics must
be inferred from field or laboratory investigation of a limited number of samples. It includes
also uncertainties generated from sample disturbance, test imperfections, human factors, and
also, when engineering properties are obtained through correlation with index properties, as
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in the case of CPT tests where empirical models are used to calculate the undrained shear
resistance by applying correlation factors to the cone tip resistance [24].

According to this classification, two major approaches, respectively, probabilistic or
“possibilistic” can be employed to deal with uncertainties [25, 26]. Therefore, the remainder
of this paper will deal with methodologies based on these approaches, to assess the sensitivity
of the response to the variation of the selected parameters and mainly to incorporate, into the
analysis method, techniques for the formal treatment of uncertainties. Section 4 will describe
a probabilistic approach based on the Monte Carlo method and an approach based on fuzzy
arithmetic (FA).

Before proceeding, some additional comments should be presented regarding these
sources of uncertainty. Inherent or natural variability are random by nature and cannot be
reduced by increasing the number of tests [27]. The cognitive, epistemic uncertainties are
reducible; however, for offshore sites, they will usually be present since the cost of performing
in-situ tests at offshore sites is very expensive. Such tests may not be performed for every
installation site and sometimes the values of the parameters are even estimated or extrapolated
from previous tests made at other locations. Moreover, disturbances in these few samples are
very common.

As strange as it may seem to experienced geotechnical engineers, not involved in
deepwater offshore activities, this is precisely what has happened in soil investigations in the
Campos Basin. Those are the reasons why epistemic uncertainties are always added to the natural
variability: the use of limited data, of data arising from disturbed soil samples, and data from
locations other than the one at which the torpedo pile is to be installed. In summary, the fact
that there may be no knowledge of the exact site local soil variability is the very reason why
(as presented in the next section) probabilistic approaches may fail, and is the motivation of
the use of the approach based on FA.

4. Approaches for Treatment of Uncertainties

4.1. Probabilistic approach: the Monte Carlo method

As mentioned before, noncognitive sources of uncertainty involve parameters that can be
treated as random variables, and to which a probabilistic distribution can be associated, based
on statistical data. In such cases, the probabilistic approach is traditionally recommended.

Probabilistic approaches for treatment of uncertainties can be divided in two main
categories. The first one comprises statistical methods that involve simulation, such as the
classical Monte Carlo simulation method and its variants. The second category comprises
nonstatistical methods such as those based on perturbation techniques. For instance, the
stochastic finite element method [26] falls in this latter category; it is based on expanding the
random parameters around their mean values via Taylor series, in order to formulate linear
relationships between some random characteristics of the response and the random input
parameters.

In the implementation of the classical Monte Carlo simulation, N samples of the
uncertain parameters are randomly generated using a given joint probability density function.
The deterministic analysis procedure is employed for each sample of the simulation process
[28], obtaining then N responses that are statistically treated to get the first two statistical
moments of the response (mean and standard deviation values).
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The MC method is completely general, for linear or nonlinear analyses. However, in
general, the accuracy of the statistical response is only adequate when the number of sample
data N is sufficiently large; therefore, it is usually considered too expensive in terms of
computing time. This fact has motivated studies on variants of the classical method, involving
for instance variance reduction techniques and the Neumann expansion [29].

Due to its robustness and ability to effectively treat the noncognitive, random
uncertainties, the classical MC simulation method has been used to calibrate and validate all
other probabilistic techniques. The studies presented in this paper will also employ this method
as a benchmark to compare the performance of the approach based on fuzzy arithmetic, which
will be described in Section 4.2, in the representation of the random uncertainties.

4.2. Fuzzy arithmetic (FA) approach

It is important to recall that the cognitive sources of uncertainty are related not to chance, but
rather to imprecise or vague information, involving subjectivity and/or dependent on expert
judgment. Moreover, the axioms of probability and statistics are not adequate to deal with
such types of uncertainties, which can be more effectively treated by “possibilistic” approaches
employing for instance the theory of fuzzy sets.

The theory of fuzzy sets was introduced by Zadeh in [30] to define classes of objects
with continuous membership graduations or associations in the interval [0, 1]. A fuzzy set
has vague limits, allowing graded changes from one class to another, instead of exact limits
characteristic of ordinary or crisp sets. In classical Boolean algebra, the notion of false and true
values is limited to 1 or zero. In fuzzy logic, values that are “more or less” true or false can be
treated, defined by real numbers that vary continuously from 0 to 1.

The treatment of uncertainties that derive from imprecise information is then possible,
avoiding the use of random information. Therefore, complex systems, that would be hard to
model with the theory of conventional sets, can be easily modeled by fuzzy sets. The fuzzy
set theory allows the representation of imprecise and uncertain measures as fuzzy numbers,
defined as:

A =
{(
x,A(x)

)
, x ∈ R, A(x) ∈ [0, 1]

}
, (4.1)

where x ∈ R is the numeric support of the fuzzy number A, and A(x) ∈ [0, 1] is the
membership function (MF).

Fuzzy numbers are completely characterized by their MFs, that are built based on
knowledge of an expert, who can assign “low,” “probable,” or “high” values for the desired
parameters. Based on this subjective information, MFs can be constructed presenting either
linear or nonlinear shapes. The more usually employed shapes for engineering problems are
triangular, trapezoidal, and sinusoidal; the choice will depend on the type of application, and
will also follow the assessment of the expert. In this work, triangular fuzzy MFs are used,
defined by estimating three values [31]:

(i) a more reliable value, m, to which is attributed a membership degree equals to1;

(ii) an inferior value, a, that most certainly will be exceeded by another value, and to
which is attributed a membership degree equals to 0;

(iii) a superior value, b, that most certainly will not be exceeded by another value, and to
which is also attributed a membership degree equals to 0.
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Figure 6: Triangular fuzzy number.

The membership function can then be defined as zero outside the interval [a, b] of
possible values; taken as linear into this range, increasing from a to m, and decreasing from m to
b. This function is triangular, not necessarily symmetric, and can be defined as parameterized
piecewise linear functions as:

A(x;a,m, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x − a
m − a, ifx ∈ [a,m]

b − x
b −m, ifx ∈ [m, b]

0, otherwise,

(4.2)

where a and b are, respectively, the lower and upper bounds, and m is the dominant value, as
illustrated in Figure 6.

Fuzzy numbers can also be defined by L (left) and R (right) MFs, resulting into the
so-called L-R fuzzy numbers. In this context, a two-parameter modification of an L-type MF
applies to all x ≤ m, whereas the R-MF defines A for x > m, thus yielding

A(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

L

(
m − x
α

)
, ifx ≤ m, α > 0

R

(
x −m
β

)
, ifx > m, β > 0.

(4.3)

Therefore, the fuzzy number can also be identified by the notation A = (m,α, β), where
α and β are the spreads of the number, which represents its uncertainty [32].

Fuzzy arithmetic (FA) operations, involving fuzzy numbers, can be used to propagate
fuzziness from inputs to outputs. General operations can be deduced from the extension
principle, which is used to transform fuzzy sets via functions [32] , and plays a fundamental
role in translating set-based concepts into their fuzzy set counterparts. However, simplified
formulae can be obtained considering the L-R formulation of fuzzy numbers A = (m,α, β)LR
and B = (n, γ, δ)LR. The standard arithmetic operations are computed as follows.
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The addition of triangular fuzzy numbers results in another triangular fuzzy number.
Both addition and subtraction conserves the linearity of the numbers. These operations are
expressed as, respectively,

A + B = (m + n, α + γ, β + δ)LR,

A − B = (m − n, α + δ, β + γ)LR.
(4.4)

The multiplication of two fuzzy numbers produces a quadratic number. However, a
linear approximation can be assumed when the spreads α and β are small in comparison to
the modal or dominant values m. Therefore, this operation can be approximated to

A ·B = (mn,mγ + nα,mδ + nβ)LR (ifA > 0, B > 0),

A ·B = (mn,mα − nδ,mβ − nγ)RL (ifA > 0, B < 0),

A ·B = (mn, nα −mδ, nβ −mγ)RL (ifA < 0, B > 0),

A ·B = (mn,−nβ −mδ,−nα −mγ)RL (ifA < 0, B < 0).

(4.5)

The multiplication of a fuzzy number by a scalar a is defined as:

aA = (am, aα, aβ)LR, (if a is positive),

aA = (am,−aβ,−aα)RL, (if a is negative).
(4.6)

The division between two fuzzy numbers is computed as

A

B
=
(
m

n
,
δm + αn

n2
,
ym + βn

n2

)

LR

. (4.7)

To apply the FA in a given engineering problem, the uncertainty on each variable is
modeled as a triangular fuzzy number; moreover, all the operations related to them have their
expressions replaced by the corresponding FA expressions, as shown above on operations (4.4)
to (4.7) .

5. Implementation and Case Studies

Before proceeding with the study of the approaches described above, this section will begin
with deterministic studies to assess the sensitivity of the response of the penetration model to
the variation of the selected soil parameters. Later, in order to reach the goal of incorporating
the formal treatment of uncertainties in the analysis of the penetration of torpedo piles, this
section will proceed by presenting the application of the probabilistic approach based on the
Monte Carlo method, followed by the implementation and application of the approach based
on FA.

Recalling that uncertainties related to the penetration model involve a combination of
both noncognitive (random, natural variability of soil parameters) and cognitive (epistemic,
due to incomplete or imprecise information), it will be seen that, while the MC method can
effectively deal only with the random uncertainties, the implementation of the fuzzy approach
presented here can represent all sources of uncertainty.
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Figure 7: Deterministic sensitivity studies.

Table 3: Deterministic sensitivity studies: summary of results.

Varied parameter Penetration (m)
−30% −20% −10% 0% 10% 20% 30%

Suk 42.5 39.7 37.5 35.6 34.0 32.6 31.4
Sti 31.2 32.8 34.2 35.6 36.8 37.9 38.9

5.1. Deterministic sensitivity studies

In order to perform an assessment of the sensitivity of the torpedo pile penetration to the
uncertainty of the selected soil parameters, a parametric study is performed by considering the
same problem described in Tables 1 and 2. The penetration model is applied to deterministic
and arbitrary variations on both uncertain parameters: the rate of increase with depth of the
undrained shear strength (Suk) and the soil sensitivity (Sti).

Recalling that according to Table 2, the fixed, “deterministic” values are Suk = 2.0 kPa/m
and Sti = 3. Initially, Suk and Sti are individually increased by 10, 20, and 30%. Then, their
values are reduced, also by 10, 20 and 30%. The results of the analyses for the different values
of the parameters are presented in the graphs of Figure 7, corresponding to analyses where
they are increased and reduced, respectively.

It should be noted that, since the drop height and the characteristics of the pile have not
been changed, the behavior of the pile from the drop point until it reaches the seabed is the
same as observed in Figure 4. Therefore, the graphs of Figure 7 represent only the behavior of
the pile as it penetrates the soil, beginning from the depth of 200 m (that corresponds to the
seabed) until it completes the penetration.

A summary of the results of Figure 7 is presented in Table 3 and Figure 8, in terms of
penetration values (displacement minus the drop height) for each variation of the parameters
Suk and Sti. It can be verified that, as expected, reducing the undrained shear strength (and
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Table 4: Statistical values from available soil data.

Parameter Mean Standard deviation
Suk (kPa/m) 1.9 0.9
Sti (dimensionless) 3.2 1.0

therefore, the soil resistance) leads to the increase on the final depth values. On the other hand,
decreasing the sensitivity values increases the soil resistance and, consequently, reduces the
penetration of the pile.

5.2. Probabilistic analysis using the Monte Carlo method

Statistical treatment of the soil input parameters

In the probabilistic analysis using the MC method, both uncertain parameters (the undrained
shear strength increase rate Suk and soil sensitivity Sti) are varied simultaneously. Their values
are randomly simulated, following a statistical distribution and its associated values of mean
and standard deviation, derived from a given set of soil data from laboratory and/or in situ
tests (in this case, the data were acquired from many tests performed at different sites in a
certain cluster of Campos Basin). This is accomplished by performing a statistical treatment
on the available data, representative of offshore fields in Campos Basin. As a result, for
each uncertain parameter, the mean (which in this case is the sample average) and standard
deviation values were estimated. These values are presented in Table 4.

In order to determine an appropriate probability distribution function for the data,
a normality verification is performed for each parameter. Figure 9 present the results,
respectively, for Suk and Sti. It can be observed that, despite Sti data fits better than Suk,
the normal pdf is not the ideal approximation for them. Hence, other functions are fitted and
verified, as presented in Figure 10. Observing this figure, it can be verified that the lognormal
pdf provides a better fit for both sets of available data. Another advantage of this distribution is
that it does not generate negative values for the soil parameters, which does not have physical
meaning and can generate erroneous results.

The number of simulations in an MC strategy is dictated by the convergence of the mean
value of the considered parameter to the deterministic design value. In the present case, 1000
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Figure 9: Normal probability verification of Suk and Sti data.
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Figure 10: Probability function fitness for Suk and Sti data.

generations were needed to obtain satisfactory convergence. Figure 11 depicts the distribution
of the 1000 randomly generated values of Suk and Sti, following the lognormal distribution.

Results

The probabilistic study then comprises a total number of 1000 analyses with the penetration
model, each taking a randomly generated pair of values for the soil parameters Suk and Sti,
following the lognormal probability distribution with expected values and standard deviations
given in Table 4.

The results of the 1000 analyses are then gathered to proceed to a statistical treatment,
which will represent the penetration value in terms of mean and standard deviation. These
results are presented in Table 5.
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Table 5: Probabilistic MC approach: statistical values of the results.

Median Mean Standard deviation
Penetration (m) 38.5 39.8 10.1

These values will be compared with the results obtained with the approach using
FA, which will be presented in Section 5.3. We recall that the mean value of 39.8 m for the
penetration cannot be directly compared to the “deterministic” value of 35.6 m obtained in
the previous section, since the fixed, “deterministic” values for the soil parameters were
Suk = 2.0 kPa/m and Sti = 3.0, and the mean probabilistic values gathered from the set of
soil data considered are Suk = 1.9 kPa/m and Sti = 3.2. Anyway, the results are consistent
since, as could be observed in the results of the deterministic sensitivity studies summarized
in Figure 8, lower values of Suk and higher values of Sti lead to higher penetration values.

5.3. Fuzzy arithmetic: implementation and application

Implementation

In the computational implementation of the approach using FA, the uncertain variables Suk
and Sti are represented as triangular fuzzy numbers. Therefore, the computational code is
altered, and all operations performed with those parameters in the solution procedure (as
described in Algorithm 1 and (2.2)–(2.6)) have the traditional arithmetic operators replaced
by the fuzzy operators presented in (4.4) to (4.7).

As mentioned in Section 4.2, the fuzzy operations of multiplication and division generate
quadratic numbers; however, when their spreads are small, they can be approximated by linear
ones. Therefore, although (4.5) to (4.7) are approximations for small spreads, they are feasible
for this specific work, since the values of final penetration (dominant value, and the lower and
upper bounds) are more important than the shape of the membership function.

Once these fuzzy operators are implemented in the computational code, it remains to
determine the values that define the triangular membership functions, which represent Suk



20 Mathematical Problems in Engineering

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

0
0 1 2 3 4 5 6 7

90
80
70
60
50
40
30
20
10
0

Suk distribution

Pr
ob

ab
ili

ty

Fr
eq

ue
nc

y

1.03 Certainty: 75% 2.82

1 std. dev. = 2.75

Mean = 1.89

Median = 1.71

−1 std. dev. = 1.04

Figure 12: Definition of bounds for Suk.

0.08

0.07
0.06

0.05
0.04

0.03
0.02

0.01

0
0 1 2 3 4 5 6 7 8

80

70
60

50
40

30
20

10

0

Sti distribution

Pr
ob

ab
ili

ty

Fr
eq

ue
nc

y

2.19 Certainty: 75% 4.28

1 std. dev. = 4.22

Mean = 3.21

Median = 3.03

−1 std. dev. = 2.2

Figure 13: Definition of bounds for Sti.

and Sti as fuzzy numbers. As illustrated in Figure 6 , these values are the lower and upper
bounds a and b, and the dominant value m; they can be derived by investigating the statistical
distribution of the soil parameters, taking the lognormal distribution generated as described
in the previous item.

The lower and upper bounds a and b can be assumed as defining an interval of
confidence of 75% corresponding to one standard deviation below and above the mean. This
criterion provides samples that have consistent values for the uncertain parameters (positive
values, Sti greater than 1.0, etc.), and is illustrated in Figures 12 and 13, for Suk and Sti
distributions, respectively.

Regarding the “dominant” value m, the first choice could be to take the mean value;
however, since the most representative value of a sample with large dispersion is the median,
its value was chosen as m for each parameter. The values thus obtained for a, b, and m that
define the membership functions for Suk and Sti are presented in Table 6 and graphically
represented in Figure 14.

Results

Finally, the evaluation of the uncertain response using this FA approach consists simply in
performing one analysis with the penetration model. The uncertainties embedded in the fuzzy
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Table 6: Membership functions for the parameters Suk and Sti.

Lower bound a Dominant value m Upper bound b
Suk (kPa/m) 1.0 1.7 2.8
Sti (dimensionless) 2.2 3.0 4.3

Table 7: FA approach: results of fuzzy analyses.

Lower bound Dominant value Upper bound
Penetration (m) 30.1 38.6 66.3

numbers that represent the parameters Suk and Sti are incorporated in the calculation of the
terms FT and FS defined in (2.6), at the right-hand side of step b.1 of Algorithm 1, and therefore
are updated and propagated at each time step of the solution procedure presented in that table.
This fact points to the remarkable computational advantage of this approach, compared to the
probabilistic MC method with conventional arithmetic that required a total number of 1000
analyses.

The results of the fuzzy analyses, in terms of lower, dominant, and upper bound for the
final penetration of the torpedo pile are presented in Table 7.

5.4. Comparison of results

This section compares the results of analyses of the torpedo pile with the penetration
model, considering both MC and FA approaches. Before comparing the final pile penetration,
Figure 15 presents the full behavior of the pile as it penetrates the soil, in terms of penetration
x velocity curves, beginning from the depth of 200 m (that corresponds to the seabed) until it
completes the penetration.

Three curves are presented for each approach, corresponding to the “dominant” or
“most probable” result, and a lower and upper “bounds” of the response. For the MC
simulation, the “most probable” curve is represented by taking the median values of
penetration and velocities at each time step of the response; the lower and upper bounds are
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Table 8: Comparison of results.

Method Final penetration (m)

MC Mean – 1 std deviation Median value Mean + 1 std deviation
29.7 (–22.9%) 38.5 49.9 (+29.6%)

FA Lower bound Dominant value Upper bound
30.1 (–22.0%) 38.6 66.3 (+71.8%)

determined, respectively, by taking the mean value and subtracting or adding one standard
deviation (similarly to the procedure applied to determine the bounds of the fuzzy input
parameters).

For the FA approach, the “dominant” curve is represented by taking the “crisp” result,
that is, the values corresponding to a degree of membership equal to one. The lower and upper
bounds are determined by the support of the fuzzy set defined by the values corresponding to
a membership degree greater than zero.

Table 8 summarizes and compares the results presented in Tables 5 and 7 for the MC
and fuzzy approaches. Observing this table and also Figure 15, it can be observed that the
“dominant” or “most probable” results for the final penetration are practically the same;
the difference between the median value of the MC analyses and the dominant value of FA
analyses is insignificant.

Regarding dispersion of results, it should be recalled that MC “lower” and “upper”
results (defined by subtracting and adding one standard deviation to the mean value) cannot
be directly compared to the spreads of the fuzzy results, where lower and upper bounds define
the interval where a value can possibly represent the calculated penetration. Anyway, it can be
noted that the uncertainties of the soil parameters are quite significant and can have a decisive
influence in the design of the torpedo pile.

A better comparison for the final penetration can be graphically assessed in terms of the
probability distribution of the MC simulation, and the membership function that characterizes
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the fuzzy number for the FA approach. Therefore, Figure 16 compares the results obtained
from the MC and FA approaches, in terms of the probability distribution and membership
function. For this example, while the assumed supports of the fuzzy input parameters Suk and
Sti corresponded to a certainty interval of 75% of their lognormal distribution, the support of
the fuzzy number that represents the final penetration corresponds to a certainty interval of
around 80% of the MC distribution.

Finally, the most remarkable comparison in the performance of both methods can be
stated in terms of the total CPU time required. While the MC probabilistic approach required
1000 analyses with the penetration model using the solution procedure of Algorithm 1, only
one analysis was required for the approach employing FA.

6. Final Remarks and Conclusions

The torpedo pile has been acknowledged as a very promising alternative to anchor mooring
systems. It has recently been considered for use not only in mooring lines of floating
production systems, but also for mobile offshore drilling units (MODUs) operating in deep
and ultradeep waters. Therefore, oil exploitation companies are devoting intense research and
design activities in order to deliver efficient mooring solutions using this concept.

One of the main aspects concerning the design of foundation systems are the
uncertainties involved in the determination of values for the soil parameters. For conventional
onshore systems, this aspect has been tackled by performing a large number of tests with soil
samples. However, on deepwater offshore sites the cost of performing such tests may be very
expensive, if not prohibitive; therefore, tests may not be performed for every installation site,
and sometimes results of tests made at other locations are used to estimate or extrapolate the
values of the soil parameters.

This fact can severely affect the effectiveness of the design and analysis of torpedo
piles, leading to large discrepancies in the response of the torpedo pile, mainly in terms of
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the final depth reached by the pile. Therefore, it is very important to develop and employ
methodologies to properly assess the sensitivity of the response to the variation of these
parameters, and to incorporate, into the analysis method, techniques for the formal treatment
of the uncertainties.

The classical probabilistic Monte Carlo simulation could be considered for this purpose,
since it is a sound methodology to estimate the effect of random uncertainties. Nevertheless, in
the problem described in this work, there are a great amount of epistemic uncertainties in the
model equations and parameters, and therefore, MC simulation results provide only a rough
estimation of the uncertainty. In addition, the application of MC simulation requires excessive
computational costs, as has been confirmed in the case study considered in this work. More
than 1000 simulations were needed to obtain the results.

On the other hand, the computational efficiency of the fuzzy arithmetic approach is
outstanding—around three orders of magnitude less. Therefore, the results of the application
of the FA approach demonstrated its ability to provide low-cost approximations of the bounds
of the uncertainties, and therefore, to comprise an effective design tool for the practitioner.

Future developments

In this study, only two soil parameters, the undrained shear strength and soil sensitivity,
were considered as uncertain. Extensions of the fuzzy methodology presented in this work
could consider the treatment of other uncertain parameters, such as for instance, the empirical
maximum soil strain rate factor (Se), the empirical soil strain rate factor (Ce), and the drag
coefficient CD considered for the calculation of the soil drag force as the pile penetrates; this
latter parameter can vary for different anchor or pile shapes. Also, this work did not consider
the uncertainties associated with the penetration model itself. These could also be considered,
since it is a mainly empirical model and involves imprecision in its formulation.

Finally, a promising approach for the design of offshore systems would be to incorporate
the pile penetration model, associated with the fuzzy methodology, in the implementation of
a coupled finite element-based, time domain simulation program. In such implementation,
not only the isolated torpedo pile is considered, but also a full finite-element model of all
components involved in the installation of the pile (i.e., the mooring line itself and the other
lines and chains, illustrated in Figures 2 and 3). The result is a complete 3D model, also
submitted to environmental loadings other than dead weight (such as marine current). In such
coupled model, there will be no need to “fudge” the drag coefficient CD, to account for the
presence of the mooring line and chain loop.

Such computational tool would therefore comprise an efficient tool for the design of
mooring systems based on torpedo piles, and for the simulation of the procedures needed for
the installation of such complex offshore system.
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Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible
structure. A common practice in linear structural dynamics is to consider a linear viscous damping
model as the major energy dissipation mechanism. However, it is well known that different forms
of energy dissipation can affect the structure’s dynamic response. The major goal of this paper is
to address the effects of the turbulent frictional damping force, also known as drag force on the
dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a
lumped-mass on the tip. First, the system’s analytical equation is obtained and solved by employing
a perturbation technique. The solution process considers variations of the drag force coefficient and
its effects on the system’s response. Then, experimental results are presented to demonstrate the
effects of the nonlinear quadratic damping due to the turbulent frictional force on the system’s
dynamic response. In particular, the effects of the quadratic damping on the frequency-response
and amplitude-response curves are investigated. Numerically simulated as well as experimental
results indicate that variations on the drag force coefficient significantly alter the dynamics of the
structure under investigation.
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1. Introduction

Characterization and quantification of uncertainties have been a topic of major importance in
the context of structural dynamics. Generally speaking, the term uncertainty can be associated
to variations of the system’s physical parameters due to inaccuracies present either in the
system’s model or experimental data. In a broad view, the sources of uncertainties can be
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(a) (b)

Figure 1: Physical system under investigation: (a) frontal view, (b) lateral view [19, 21, 23].

grouped into two main categories, namely statistical and nonstatistical [1], where the former
is associated to fluctuations in the system’s parameter mostly due to variations in material
and/or geometry, and the later reflects inaccuracies present in the system’s model caused by
adoption of inappropriate assumptions or variations in numerical errors, for instance. More
recently, a new terminology has been used to this classification by employing the words aleatory
or aleatoric and epistemic [2, 3] to refer to these two groups of uncertainties, respectively. Several
statistical and fuzzy theory-based procedures have been recently proposed (see [4–8]) to
characterize and quantify uncertainties in complex structural systems. Similarly, uncertainties
have also been subject of investigation in wave propagations and vibroacoustics (see [9–11])
as well as aerospace structures (see [3, 12, 13]). In the field of nonlinear structural dynamics,
a reduced number of works have been reported. Nichols et al. [14] has developed a procedure
for the detection of quadratic nonlinearities while Adhikari [2] has discussed uncertainties in
damping models.

Parametrically excited cantilever beams have been extensively investigated in the last
two decades, specially in the case of the principal parametric resonance [15–18]. Although
most of these investigations have dealt with various aspects of the parametric resonance
phenomenon, the majority of analysis was done by neglecting the effects of fluid medium.
In this work, we perform an experimental and theoretical investigation on the effects of the
viscous quadratic damping on the dynamic response of a cantilever beam with tip mass to
a principal parametric resonance [19, 20]. To investigate the quadratic damping effect, the
structure shown in Figure 1 was built. It is composed of a slender stainless steel ASTM A240
beam, with dimensions of 100 mm in length, 20 mm in width, and 1 mm in thickness. The
lumped mass is composed of carbon steel ASTM A36, with dimensions of 10 mm in length,
40 mm in width, and 20 mm in height. The opposite beam’s end is clamped to a rigid base built
from carbon ASTM A36 steel.

Figure 2 depicts the results of an experiment that was carried out by using the
system shown in Figure 1. The experiment consisted of driving the structure into a principal
parametric resonance condition through an input base sinusoidal signal. The structure’s
vibration and interaction with the surrounding fluid medium could be observed through
the smoke-wire arrangement [19] as shown in the sequence of pictures of Figure 2. This
experiment qualitatively indicates that the drag force plays an important role on the dynamics
of the structure under investigation. Thus, this paper is concerned in studying theoretically
and experimentally the effects of variations in the quadratic damping coefficients on the lateral
vibration of a cantilever beam undergoing a principal parametric excitation.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Qualitative effects of quadratic damping on the lateral vibration of the system [19].
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Figure 3: Physical model of the structure under investigation, combined acoustic, and base excitations [19].

2. Mathematical modeling

In a previous work by the authors [21], a general mathematical model for the structure shown
in Figure 1 was developed by using the model shown in Figure 3. According to this model,
the OXYZ orthogonal coordinates system is fixed at the base of the beam at its unstressed
position and directed such that the X axis is taken as the centerline of the beam. The origin O
of the coordinate system may be subject to a dynamic displacement UB(t) in the X direction
that represents the external driving signal.
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2.1. Energy relationships

The beam is modeled as a continuum solid with displacement field described by ui (i = 1, 2, 3)
and uoi (i = 1, 2, 3). The kinetic energy of the lumped-mass system can be described by

T =
1
2

∫

V

ρu̇iu̇idV +
1
2
mou̇

o
i u̇

o
i (2.1)

in which the dot denotes time derivative, ρ and V are, respectively, the material density and
volume of the beam, and mo is the value of the lumped mass. In order to simplify (2.1), the
contribution of the distributed mass of the beam will be ignored as well as the rotatory energy
of the lumped mass. Hence, the kinetic energy is simplified to

T =
1
2
mo

[(
u̇o1

)2 +
(
u̇o3

)2
]
. (2.2)

The task to find T consists in performing several steps. First, the time derivative of the
displacement field must be computed which results in expressions for (u̇1)

2 and (u̇3)
2. Second,

the terms in the right-hand side of the expressions of (u̇1)
2 and (u̇3)

2 are described as functions
of the w(x, t) and its spatial derivatives. Third, a spatial reduction is necessary so that the
deflection on the center of the lumped mass can be obtained. This can be done by using an
expression of the form

w(x, t) = φ(x)wo(t) (2.3)

in which φ(x) represents the first linear natural mode of the structure and wo(t) represents the
modal coordinate associated with this natural mode. As a final result, the expressions for (u̇o1)

2

and (u̇o3)
2 are found and truncated to result in nonlinearities of third order as follows:

(
u̇o1

)2 =
(
A1

)2
w2
oẇ

2
o − 2A1woẇoU̇B +

8
3
A2w

3
oẇoU̇B +

(
U̇B

)2
,

(
u̇o3

)2 = ẇ2
o.

(2.4)

Substituting the expressions of (u̇o1)
2 and (u̇o3)

2 described above into (2.2), the kinetic
energy is then given as

T =
1
2
moẇ

2
o +

1
2
mo

[
(
A1

)2
w2
oẇ

2
o − 2A1woẇoU̇B +

8
3
A2w

3
oẇoU̇B +

(
U̇B

)2
]
, (2.5)

in which A1 and A2 are geometrical constants given as

A1 =
∫L

0

(
∂φ

∂x

)2

dx,

A2 =
∫L

0

(
∂φ

∂x

)4

dx,

(2.6)
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and the first linear mode shape function φ(x) is given as

φ(x) = 1 − cos
(
πx

2L

)
. (2.7)

Once the final expression for the kinetic energy is known, the next step towards the
derivation of equation of motion is obtaining the system’s strain or potential energy which
may be written as function of the stress and strain in the X direction as

U =
1
2

∫∫∫

V

σxxεxxdV. (2.8)

By using the assumption that the material follows the constitutive Hooke law, and ignoring
Poisson’s effects, (2.8) reduces to

U =
1
2

∫∫∫

V

Eε2
xxdV =

1
2

∫L

0

∫

A

Eε2
xxdAdx. (2.9)

However, uc is very small when compared to ur . Therefore, to simplify the analysis, the
contributions of uc and of the gravitational field to the strain energy are ignored, thus giving

U =
1
2

∫L

0

∫

A

E
[
z2(w′′

)2 − z2(w′′
)2(

w
′)2]

dAdx. (2.10)

By writing w(x, t) as a function of φ(x) and wo(t) (see (2.3)), the final expression for the strain
energy truncated cubic terms in the system’s equation of motion is given by

U =
1
2
EIyB1w

2
o −

3
2
EIyB2w

4
o + · · · , (2.11)

where Iy is the area moment of inertial about the Y axis, and the geometrical constants B1 and
B2 are given as

B1 =
∫L

0

(
φ′′

)2
dx,

B2 =
∫L

0

(
φ′′

)2(
φ′
)2
dx.

(2.12)

The last step before deriving the system’s equation of motion consists in obtaining the
expression for the nonconservative forces acting on the system. Herein, it will be considered
the action of two nonconservative forces. The first is the structural damping force which is
modeled in terms of the generalized coordinates as c1ẇo. The second is the aerodynamic drag
damping force acting on the system (when in motion) and is proportional to the squared of
the generalized velocity c2ẇo|ẇo|. Both damping forces act in the negative direction of the
virtual transversal displacement δwo. Therefore, the nonconservative virtual work δWnc which
is done on the system is given by

δWnc =
(
− c1ẇo − c2ẇo

∣∣ẇo

∣∣)δwo. (2.13)

Since the nonconservative virtual work is defined as a function of the nonconservative
generalized force Qnc as δWnc = Qncδwo, the generalized force Qnc is obtained as

Qnc =
δWnc

δwo
= −c1ẇo − c2ẇo

∣∣ẇo

∣∣. (2.14)
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2.2. Equation of motion

In the earlier section, the expressions for the kinetic energy T , strain energy U, and
nonconservative generalized force Qnc were obtained. From these results, it is possible to
derive the system’s equation of motion by using the well-known Lagrange equation [22]
which, in turn, for the system under investigation is written as

d

dt

(
∂T

∂ẇo

)
− ∂T

∂wo
+
∂U

∂ẇo
= Qnc. (2.15)

Through the computation of each term of Lagrange’s equation and substitution of the
result (2.15), the following result is obtained:

(
1 +A2

1w
2
o

)
ẅo +

(
c1

mo
+
c2

mo

∣∣ẇo

∣∣
)
ẇo +

(
A2

1ẇ
2
o −A1ÜB +

EIyB1

mo

)
wo

+

[
4
3
A2ÜB −

(6EIyB2

mo

)]

w3
o =

F(t)
mo

.

(2.16)

Equation (2.16) represents an ordinary inhomogeneous nonlinear time-dependent
differential equation. In addition, this equation holds both the axial contraction and the
curvature nonlinear effects. If both the underlined and double underlined terms are ignored,
this equation reduces to a classical linear damped forced model. On the other hand, if only the
double underlined terms are ignored, this equation reduces to the same equation obtained in
[23] plus a forced term. Still, if the double underlined terms plus the nonlinear damping were
ignored, this equation reduces to the same model obtained in [24] plus a forced term.

Since the present work is focused on the dynamic response of a structure under
parametric sinusoidal excitation, it is considered that this excitation can be written as

ÜB(t) = −Qλ2 cos(λt + ϕ) = −Qo cos(λt + ϕ) (2.17)

in which Qo is the magnitude of the input base acceleration, λ is the parametric excitation
frequency, and ϕ is a phase shift. Then, (2.16) can be rewritten in the dimensional final form as

(
1 +A2

1w
2
o

)
ẅo +

(
c1

mo
+
c2

mo

∣∣ẇo

∣∣
)
ẇo +

(
A2

1ẇ
2
o +A1Qo cos(λt + ϕ) +

EIyB1

mo

)
wo

+
[
− 4

3
A2Qo cos(λt + ϕ) −

6EIyB2

mo

]
w3
o = 0.

(2.18)

From the numerical viewpoint, it is interesting to work with the differential equation
in dimensionless form. Therefore, by setting new dimensionless variables w∗o = A1wo and
t∗ = t/Tn in which Tn is the period of free vibration, the system’s equation of motion is given
by

(
1+w∗2o

)
ẅ∗o+H1ẇ

∗
o+H2ẇ

∗
o

∣∣ẇ∗o
∣∣+

[
1+ẇ∗2o +H3 cos

(
Θt∗+ϕ

)]
w∗o−

[
H5+H4 cos

(
Θt∗+ϕ

)]
w∗3o = 0

(2.19)
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in which

H1 =
c1Tn
mo

, H2 =
c2

moA1
, H3 = QoA1T

2
n,

H4 =
4A2QoT

2
n

3A2
1

, H5 =
6B2EIyT

2
n

moA
2
1

,

Θ = λTn, Ψ = ΩTn.

(2.20)

Further, we will discuss the effects of variations of the dimensionless quadratic damping
coefficient H2 on the response of the parametrically driven cantilever beam.

3. Perturbation analysis and numerical simulations

In order to address the effects of the quadratic damping (H2) on the structure’s response, a
solution of the (2.19) is required. Such a solution is here developed by employing the method
of multiple scales (MME) [19]. For that purpose, it is more convenient to rewrite (2.19) in a
slight different way by considering zero-order (ε0) and first-order (ε1) terms as follows:

ε0ẅ∗o + ε
0(2π)2w∗o = −ε1w∗2o ẅ

∗
o − ε1ẇ∗2o w

∗
o − ε1H1ẇ

∗
o − ε1H2ẇ

∗
o

∣∣ẇ∗o
∣∣

− ε1H3 cos
(
Θt∗ + ϕ

)
w∗o + ε

1H4 cos
(
Θt∗ + ϕ

)
w∗3o + ε1H5w

∗3
o

(3.1)

in which the dimensionless coefficients ε1H1, ε
1H2, . . . , ε

1H5 are defined according to (2.20). To
apply the MME technique, first we express w∗o as

w∗o
(
ε; t∗

)
= w0

(
T0, T1

)
+ εw1

(
T0, T1

)
, (3.2)

where T0 = t is the fast time scale associated with changes occurring at the frequency Θ and
T1 = ε1t is a slow time scale associated with the modulations in amplitude and phase.

As it is known, the principal parametric resonance occurs when the parametric excitation
Θ assumes a value that is equal to twice the undamped natural frequency ωn. Therefore, the
normalized undamped natural frequency ωn = 2π can be written as

(2π)2 =
(

1
2
Θ
)2

− εσ (3.3)

in which εσ is a tuning parameter that flags the proximity of the principal parametric
resonance.

By carrying out the standard details of the method of multiple scales, the first
approximation to the solution of (3.1) is obtained as

w∗o = a
(
T1
)
cos

[
2πT0 + β

(
T1
)]

+O(ε) (3.4)

in which a(T1) and β(T1) are given by

a
′
=
(
− 1

4Θ
εH4a

3 +
1

2Θ
εH3a

)
sin(2β) − 1

2
εH1a −

2
3π

εH2Θa2,

aβ
′
=
(
− 1

2Θ
εH4a

3 +
1

2Θ
εH3a

)
cos(2β) +

ε

8Θ
(
− 6H5 −Θ2)a3 − εσa

Θ

(3.5)
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and (3.5) are known as modulation equations. As stated in [19], steady state motions
correspond to fixed points (constant solutions) of these modulation equations. Mathematically,
this condition is reached when a

′

i = β
′

i = 0. Hence, in steady-state condition the modulation
equations are rewritten as

(
− 1

4Θ
εH4a

3 +
1

2Θ
εH3a

)
sin(2β) − 1

2
εH1a −

2
3π

εH2Θa
2 = 0,

(
− 1

2Θ
εH4a

3 +
1

2Θ
εH3a

)
cos(2β) +

1
8Θ

(
− 6εH5 −Θ2)a3 − εσa

Θ
= 0,

(3.6)

where a describes the steady-state vibration amplitude. Trivial solutions of this system of
equations are immediately apparent and correspond to the case where a = 0. Nontrivial
solutions (a/= 0) are obtained by solving (3.6) in terms of the amplitude a and phase angle
β. The solution process for these quantities is laborious and can be found in detail in the work
by da Silva [19]. The final expression for a is given as

a = ±

√

−2E4E2 ± 2E4

√
E2

2 − 4E4E0

2E4
, (3.7)

where the Ei are given as

E4 = −9π2εH4εH3Θ2εσ − 54π2εH4εH3εH5εσ + 9π2εH2
4εσ

2 − 117
4
π2εH2

4εH
2
3

− 32Θ4εH4εH3εH
2
2 +

9
16
π2εH2

3Θ
4 +

81
4
π2εH2

3εH
2
5 +

27
4
π2εH2

3εH5Θ2,

E2 = 27π2εH4εH
3
3 + 54π2εH2

3εH5εσ + 16Θ4εH2
3εH

2
2 + 9π2εH2

3Θ
2εσ − 36π2εH4εH3εσ

2,

E0 = 36π2εH2
3εσ

2 − 9π2εH4
3 ,

(3.8)

and the phase angle β is written as

β =
1
2

tan−1
(
G1

G2

)
(3.9)

with coefficients G1 and G2 given as

G1 = 8Θ
(
4εH2ΘεH4a

3 − 4εH2ΘεH3a
)
,

G2 = 3π
(
6εH5εH4a

4 + εH4Θ2a4 + 8εH4εσa
2)

+ 3π
(
− 12εH3εH5a

2 − 2εH3Θ2a2 − 16εH3εσ
)
.

(3.10)

Hence, the solution for the modulation equations is given as a function of the parametric
excitation frequency Θ, the frequency tuning parameter εσ, and the dimensionless coefficients
Hi. Particularly, we are interested in investigating the effects of variations of the dimensionless
quadratic damping coefficientH2 on the amplitude of the response. For that purpose, a series of
simulations were performed by varying this parameter on the above equations and computing
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the resulting response. Figure 4 shows the computed response a from (3.7) for different values
of εH2. It is seen that variations of this parameter do not alter the critical points C and E.
Additionally the nonsymmetric shape of the amplitude-frequency curve tends to decrease as
εH2 increases. It is also noticed that two characteristics of the response are strongly influenced
by variations on the quadratic damping coefficient, namely, the amplitude of the response
and stability of the nontrivial ramification CG. The maximum value of the amplitude of
response amax represents an important information of the system under investigation. In this
sense, it is equally important to assess the influence of variations of the nonlinear damping
coefficient on amax. Figure 5 shows the behavior of this parameter when variations on εH2

are introduced. The results were obtained for three different values of the amplitude of the
parametric excitation, represented by the dimensionless coefficient εH3. Figure 5(a) shows that
for small values of εH2 (0 < εH2 < 0.1), amax is relatively insensitive to variations on εH2. The
largest impact of εH2 on amax occurs in the 0.2 < εH2 < 0.5 range, becoming less sensitive
as εH2 approaches the end of the range. Figure 5(b) shows essentially the same trend where
the values of the relative reduction of the amplitude are depicted. As previously pointed out
in Figure 4, the stability of the nontrivial ramification CG is strongly affected by the nonlinear
quadratic damping since it involves the definition of the bifurcation shown in point G. This
bifurcation is responsible for the jump phenomenon when the values of the tuning parameter
εσ are varied in the ascending order. From the numerical solution of (3.7) we can identify
critical values of εH2 in the response-frequency curve that will make the bifurcation disappear.
These critical values can be found from the following expression:

εHcrit
2 = −0.012εH2

3 + 0.14εH3 + 0.14 (3.11)

and they are represented in Figure 6. Hence, from this equation it is possible to estimate
values for the εH2 for a given known excitation condition (εH3) that would make the jump
phenomenon to completely disappear from the system’s response. Figure 7 shows the effects
of variations of the εH2 in the system’s response when the excitation amplitude is varied. It
can be seen that the critical point C is not affected by the different values of εH2. On the other
hand, the vibration amplitude and the stability of the nontrivial ramification CF are strongly
affected when varying the values of the quadratic damping coefficient. It is also interesting to
observe in Figure 7 the magnitude of the response at D and F, here referred to as aD and aF ,
respectively. The value of aD indicates the minimum value of the vibration amplitude as soon
as the parametric resonance occurs, or, if the critical pointC is exceeded. The value of aF reflects
the minimum value of the amplitude at the moment that the principal parametric resonance
condition ceases. The variation of aD and aF with respect to εH2 is shown in Figure 8.

3.1. Response-nonlinear damping curves

In the previous analysis, a series of numerically simulated results have shown in detail how
the nonlinear quadratic damping affects the response of the cantilever beam under parametric
excitation. In this section, we continue to explore these effects from the numerical standpoint
by defining the response-nonlinear damping curves. This curve is obtained from a specific
vibration condition imposed to the structure under test by the excitation mechanism, and
Figure 9 defines three distinct operating regions (marked as I, II, and III) that differ essentially
in terms of the excitation frequency imposed to the system as well as resulting vibration
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Figure 4: Typical response-frequency curve showing the effects of varying the quadratic dimensionless
term H2 and εH1 = 0.0 (nontrivial), εH1 = 0.016 (trivial), εH3 = 2.1352, εH4 = 3.4674, εH5 = 62.7218 [19].
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Figure 5: Influence of quadratic damping variation on the nontrivial response solution a: (a) variation of
the maximum value of a with the nonlinear damping and (b) percent reduction of the maximum value of
a for vacuum operation. Curves obtained for (—) εH1 = 0.0, εH3 = 2.62, εH4 = 4.25, εH5 = 62.72; (· · · )
εH1 = 0.0, εH3 = 2.13, εH4 = 3.46, εH5 = 62.72; (– –) εH1 = 0.0, εH3 = 1.57, εH4 = 2.55, εH5 = 62.72
[19].

amplitude. Two operation points P1 and P2 are chosen in regions I and II, respectively, with
corresponding amplitudes given by aP1 and aP2. Figure 10 shows how variations on εH2 affect
the amplitude aP1. Two ramifications form this curve, one stable (solid line) and one unstable
(dashed line). In case εH2 is decreased to the value εH2 = 0, the structure still remains vibrating
but with an amplitude approximately 4% larger. Similarly, if εH2 increases beyond point P1,
the vibration amplitude decreases on the stable nontrivial ramification until pointC is reached.
At this point, aP1 is reduced by 19%. If εH2 exceeds point C, the nontrivial stable solution
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Figure 7: Typical response-amplitude curve demonstrating the effects of varying the quadratic nonlinear
damping term (εH2) for εσ = −0.73. Also εH1 = 0.0 (nontrivial), εH1 = 0.016 (trivial), and εH5 = 62.7218
[19].

looses stability through a bifurcation and the vibration is extinct. When the structure vibrates
according to point P2, the magnitude of the response is given by aP2. Figure 11 shows the
effects on the system’s response aP2 produced by varying the values of εH2. In this case, a
single stable ramification is observed, and independently on how εH2 is varied the response
continues being nontrivial and stable. On the other hand, there is a strong reduction in the
value of aP2.
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P2. Results obtained with εH1 = 0.0 (nontrivial), εH1 = 0.016 (trivial), εH2 = 0.1, εH3 = 2.1352, εH4 =
3.4674, εH5 = 62.7218 [19].

4. Experimental analysis

This section describes an experimental analysis that was performed on the structure shown
in Figure 1. Initially some basic properties of the cantilever beam-mass system such as first
bending damped natural frequency and modal damping ratio were obtained by standard
modal testing procedures. In this case, the step relaxation method was employed to excite
the system in order to get the driving point frequency response function (FRF) at the beam’s
end point [25]. The resulting values found for the first bending damped natural frequency
and viscous modal damping ratio were ωd = 18.066 Hz and ζm = 0.1272%, respectively. These
results were used to correlate the experimental results with the analytical prediction as well
as in the planning of nonlinear tests. A detailed explanation of this procedure can be found in
[19, 23].
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Once these basic linear characteristics were found, the system of Figure 1 was subjected
to a base driven test according to the experimental setup shown in Figure 12. The beam
carrying the lumped mass at one end is first attached at the opposite end to a steel block
in order to properly simulate the fixed end boundary condition. This assembly is then
mounted on the vibrating table of a B&K type 4810 electrodynamic vibration exciter that
will drive the system in the vertical direction. The excitation signal is provided by the HP
Agilent E1432A data acquisition board that is controlled by the MTS I-Deas 10 modal testing
software. The sinusoidal input signal was first sent to a B&K power amplifier type 2707
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Figure 12: Experimental layout employed to obtain the experimental frequency-response and amplitude-
response curves [19–21].

and further sent to a B&K type 4810 electrodynamic vibration exciter. The beam’s transverse
output signal was monitoring using an HP Agilent oscilloscope type 54621D. To minimize
the rocking and translation, the shaker was clamped securely to the floor in the testing room.
The sensing mechanism employed is three piezoelectric accelerometers, two for monitoring
the base’s motion and one for the beam-mass-system’s motion. The base’s linear translation
motion was measured using an accelerometer B&K model 4371 (9.84 pC/g), and possible
rocking motion about Y axis was measured using a Kistler angular accelerometer model
8836M01 (34μV/rad/s2). The beam-mass-system’s translation motion was measured using
an accelerometer B&K model 4374 (1.06 pC/g) and mass of 0.64 g.

In order to perform a coherent comparative analysis with the theoretical results, four
experimental tests were conducted. In two of these tests, the amplitude of the base excitation
acceleration was maintained constant at 39.24 m/s2 and the sinusoidal excitation signal was
slowly varied upward and downward in the frequency range of interest. The remaining tests
were performed by keeping the excitation frequency constant at 36.132 Hz, and then increasing
the amplitude of the input excitation signal in the power amplifier. It should be noticed that the
excitation frequency of 36.132 Hz corresponds to the so-called principal parametric excitation
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frequency since it is approximately twice the system’s first bending natural frequency thus
satisfying the 2 : 1 relationship that is required to drive such a system into a principal
parametric resonance condition [26].

The process of obtaining the experimental frequency-response curve consists of varying
the excitation frequency while keeping the magnitude of the input base acceleration constant.
The input base acceleration was maintained constant during the tests. A similar process was
used to obtain the amplitude-response curves, however the frequency of excitation was kept
constant and the amplitude was changed in small increments.

Figure 13 shows the experimental and theoretical frequency-response curves for the first
bending mode. The theoretical curve was obtained in the absence of quadratic damping (i.e.,
εH2 = 0.00), while the experimental was obtained in atmospheric conditions.

The theoretical results in the upward direction show that by increasing the excitation
frequency starting at point A, the trivial solution loses stability at point C, which corresponds
to the critical value εσ = −εH3/2, through a subcritical pitchfork bifurcation and jumps up to
pointD. This point belongs to the nontrivial stable branchGDE. From pointD, the steady-state
amplitude of parametric response ã decreases as the excitation frequency is increased, until
point E is reached. From this point, the nontrivial solution loses stability through a supercritical
pitchfork bifurcation and the trivial solution is reached again.

On the other hand, theoretical results in the downward direction show that decreasing
the frequency of excitation form point F, the trivial solution looses stability at point E,
corresponding to the critical value εσ = εH3/2, through a supercritical pitchfork bifurcation,
and the nontrivial stable branch GDE is reached. From the point E, the response amplitude
ã increases as the frequency is decreased. The solution loses stability though a turning point
at point G and the response amplitude jumps down to point B where only the trivial solution
exists thereafter.
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When the theoretical behavior described above is confronted with the experimental
results, it can be claimed that a good qualitative match between theory and experiment
exists, mainly in the vicinity of the bifurcation frequencies. However, quantitatively there is
an enormous difference between the amplitudes of theoretical and experimental results. The
maximum theoretical value for the response amplitude is about ã ≈ 0.225, while the maximum
experimental value is about ã ≈ 0.1, that is, about 125% smaller. This difference suggests the
existence of important dissipative forces acting on the structure.

From this last result, it can be seen that by introducing the nonlinear quadratic damping
a strong reduction of response amplitude has been achieved. Particularly, by using εH2 =
0.333, an excellent agreement between the experimental and theoretical results was obtained.
However, a slight discrepancy was observed in terms of the bifurcation points mainly in the
upward sweep. Consequently, there is no exact agreement around pointC. An analogous result
was obtained for bifurcation point E.

Figure 14 shows the experimental and theoretical amplitude-response curves also for the
first bending mode. Since an exact resonance condition (εσ = 0) is difficult to be achieved, the
theoretical curve was obtained for εσ < 0. In addition, the result shown was obtained in the
absence of quadratic damping (i.e., εH2 = 0.00) while the experimental result was obtained in
atmospheric conditions.

The theoretical results in the upward direction shows that by increasing the excitation
amplitude from point A, the trivial solution loses stability at point C, corresponding to the

critical value εH3 =
√

4εσ2 + εH1
2Θ2, through a subcritical pitchfork bifurcation and jumps up

to point D. This point belongs to the nontrivial stable branch FDE. A further increase in the
excitation amplitude leads to higher response amplitudes tracing the branch DE.

On the other hand, the theoretical results in the downward direction shows that
by decreasing the excitation amplitude from point E, the amplitude response continually
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decreases until point F is reached. Then, the nontrivial solution loses stability through a turning
point bifurcation, leading to a jump down to point B whereby only the trivial solution exists
thereafter.

When the theoretical behavior described above is confronted with the experimental
results, a very good qualitative as well as quantitative disagreement between them exists.
These two characteristics also suggest the existence of important dissipative force acting on the
structure. In order to prove this point, an additional theoretical amplitude-response curve was
obtained, but now, including the nonlinear quadratic damping effects. The results are shown
in Figure 15.

In this last figure, it can be claimed that by introducing the nonlinear quadratic damping
a much better match between theory and experiment was obtained, specially when εH2 =
0.227 is used. However, some discrepancies related to response amplitude, as well as with
the bifurcation point F, were observed. A close view in region between 30 m/s2 and 50 m/s2

revealed 20% difference in the amplitude response. On the other hand, this discrepancy tends
to decrease with the increase of the excitation amplitude. Also, there is a discrepancy related
with the bifurcation point F. In the theoretical prediction, it occurs about 35 m/s2, whereas in
the experimental results it is shown at 30 m/s2 showing a 17% difference.

5. Concluding remarks

This article addressed numerically and experimentally the effects of viscous fluid medium on
the dynamic response of a cantilever beam carrying a lumped mass. Numerically simulated
results showed the effects of variations induced in the nonlinear damping on the acceleration
response of the test structure when it undergoes a principal parametric resonance condition.
Experimental assessment on the effects of quadratic damping due to frictional turbulent force
on the structure’s dynamic response has been obtained. Generally speaking, good agreement
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between experimental and numerically simulated results was achieved in terms of frequency
and amplitude response curves. It was observed that the quadratic damping due to frictional
turbulent force plays an important role in the response of parametrically excited cantilever
beam carrying a lumped mass. The inclusion of the quadratic damping significantly improves
the theoretical predictions, and it should be included in the mathematical models when the
problem involves the principal parametric response. Although the results shown in this paper
were obtained for the first bending mode, similar conclusions may be obtained for higher
natural frequencies.
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Paulo B. Gonçalves1 and Donald Mark Santee2

1Departamento de Engenharia Civil, Pontifı́cia Universidade Católica do Rio de Janeiro (PUC-Rio),
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Structural systems liable to asymmetric bifurcation usually become unstable at static load levels
lower than the linear buckling load of the perfect structure. This is mainly due to the imperfections
present in real structures. The imperfection sensitivity of structures under static loading is well
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forced structure, which exhibits, under increasing static load, asymmetric bifurcation. First, the
integrity of the system under static load is investigated in terms of the evolution of the safe basin
of attraction. Then, the stability boundaries of the harmonically excited structure are obtained,
considering different loading processes. The bifurcations connected with these boundaries are
identified and their influence on the evolution of safe basins is investigated. Then, a parametric
analysis is conducted to investigate the influence of uncertainties in system parameters and random
perturbations of the forcing on the dynamic buckling load. Finally, a safe lower bound for the
buckling load, obtained by the application of the Melnikov criterion, is proposed which compare
well with the scatter of buckling loads obtained numerically.
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1. Introduction

During the past few decades, a considerable effort within the engineering sciences has been
directed towards understanding the behavior of structures that exhibit unstable postbuckling
behavior [1–3]. The main motivation for this comes from a notorious and persistent
discrepancy between theoretical and experimental results of the buckling loads of several
slender structures, being that the experimental results are lower than the theoretical ones.
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A general explanation for this upsetting behavior is given by Koiter in his pioneering work
on the general theory of buckling and postbuckling behavior of elastic structures [4]. He
showed that imperfections in the geometry or in the load might decrease substantially the load
carrying capacity of these structures under slow variation of the applied load. This scenario
becomes even worse if the unavoidable uncertainties in system parameters are also taken
into account. Elishakoff [5] and Kounadis [6], among others, studied imperfection-sensitive
structures under a step load. Because the expressions for the critical load are developed from
a static equilibrium analysis, they actually calculate an upper bound for the load carrying
capacity of the real structure, since they do not take into account the disturbances imposed
upon the imperfect structure during its service life [7]. The influence of these disturbances
on the integrity of the structure can be evaluated by analyzing the evolution of the basin of
attraction of the stable equilibrium configuration as a function of the system parameters. To
take indirectly into account these deleterious effects, lower bounds of buckling loads have
been proposed for design. They are usually based on the scatter of experimental buckling
loads [8, 9]. However, in the past decades researchers have sought to deduce theoretically
well-founded lower bounds for imperfection-sensitive structures under static load. Croll [8]
developed the so-called reduced stiffness method based on the elimination in the potential
energy of the structure of the energy components mostly eroded by the imperfections. Based
on this idea, reliable lower bounds have been deduced for a series of structures [8, 9].

The estimation of the dynamic buckling load of structures with unstable postbuckling
branches—the load corresponding to escape from the safe prebuckling well—considering the
effects of uncertainties and imperfections is a much more difficult task. Structures under
dynamic loads may exhibit both local and global bifurcations that affect in different ways the
load carrying capacity and degree of safety of the structure. Global bifurcations are particularly
important since they control, as shown by Thompson et al. [10–13], the evolution of the basins
of attraction of the solutions in phase space. In addition, compared with the static case, the
number of load control parameters is higher. Finally, experimental results of dynamic buckling
loads of slender structures are rather scarce in literature [14, 15]. Therefore, little is known
on the effects of uncertainties on the load carrying capacity of structures liable to unstable
static buckling. Therefore, the aim of the present work is to shed some light on this problem
by analyzing the behavior of an archetypal model of a harmonically forced structure liable to
asymmetric bifurcation under increasing static load.

First, the evolution of the basin of attraction of the static equilibrium configuration is
studied. Then, the dynamic buckling load under different loading conditions is evaluated and
the different types of bifurcation connected with the instability boundaries in force control
space are identified. Next, a detailed parametric analysis clarifies the influence of uncertainties
in load and system parameters on the dynamic buckling load. Based on these results, a lower
bound is proposed which compares favorably with the scatter of buckling loads obtained in
the analysis.

The evolution of the basins of attraction of these systems is governed in a large extent
by the evolution of the stable and unstable manifolds of the saddle connected with the hilltop
that separates the pre- and postbuckling wells. Thompson et al. have studied this connection
in detail [10–13]. They show that the erosion and stratification of the basin of attraction
increases significantly after the first crossing of the stable and unstable manifolds. The load
level associated with such event can be obtained by the application of the Melnikov criterion,
which measures the distance between the manifolds [16, 17]. It can be applied to lightly
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damped system, which is usually the case of slender structures found in structural engineering.
The present work shows that the zeros of the Melnikov function can be used as a basis for the
deduction of safe lower bounds that can be used effectively in design. Rega and Lenci [18]
discussed recently the use of integrity measures in nonlinear mechanical oscillators based on
the evolution of basins of attraction.

A classical example that illustrates asymmetric buckling behavior in structural system is
the plane frame studied by Roorda [1–3, 19]. Recently, Galvão et al. [20] published a detailed
parametric analysis of this frame structure showing the influence of the system parameters on
its postbuckling behavior and imperfection sensitivity. Another system is the perfect shallow
spherical cap under lateral pressure [21].

Analyses of the dynamics of structures liable to asymmetric bifurcations have been
studied by, among others, Virgin [22] and Donescu et al. [23]. General analyses of the static
buckling behavior of systems with asymmetric postbuckling behavior have been conducted
recently by Ohaki [24] and Banchio and Godoy [25].

2. Formulation of the problem

Consider an SDOF system with quadratic nonlinearity that exhibits under the variation of a
static load parameter a transcritical bifurcation point. The equation of motion of such a system
can be written as

ẍ + 2ηω0 ẋ + ε +ω2
0 x + β x2 = F cos(Ω t) (2.1)

where η is the viscous damping parameter, ω0 =
√
(λcr − λ)/m is the natural frequency of

the statically loaded structure in which λcr is a critical load parameter, λ is an applied load
parameter and m is the mass (this expression describes the load frequency, leading to ω2

0 = 0
at λ = λcr), ε is an imperfection parameter, β is a nonlinearity parameter, F is the magnitude
of the externally applied load, and Ω is the excitation frequency. The dots indicate derivation
with respect to time t.

Equation (2.1) is sometimes called Helmholtz equation [26], meaning a single-well
potential with one escape direction. It applies also to other fields of mechanics such as the
rolling of asymmetric vessels, in which case the critical threshold corresponds to overturning
[10]. In fact, (2.1) is the archetypal model of an asymmetric bifurcation where the parameter ε
is the perturbation responsible for the unfolding [27, 28]. As an example, (2.1) is derived in the
appendix for a structural system liable to asymmetric bifurcation [1–3].

2.1. Analysis of the autonomous system

For the autonomous undamped system, there are two fixed points. They are

x(eq1) =
1
2

−ω2
0 +
√
ω4

0 − 4 β ε

β
, (2.2a)

x(eq2) =
1
2

−ω2
0 −
√
ω4

0 − 4 β ε

β
. (2.2b)
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Figure 1: Equilibrium paths of the perfect and imperfect structures (β = 1).

For the equilibrium branch described by (2.2a), the eigenvalues are

μ1 =

√

−
√
ω4

0 − 4βε,

μ2 = −
√

−
√
ω4

0 − 4βε.

(2.3)

For the equilibrium solution (2.2b), the eigenvalues are

μ1 =

√√
ω4

0 − 4βε,

μ2 = −
√√

ω4
0 − 4βε.

(2.4)

Figure 1 shows, for β > 0, the variation of ω2
0 as a function of the equilibrium position

xeq. Continuous lines correspond to stable equilibrium paths, and dashed lines correspond to
unstable paths. A similar figure, symmetric with respect to the ω2

0 axis, is obtained for β < 0.
For the perfect system and for the imperfect system when β and ε have opposite signs, there are
for any load level two equilibrium positions, a center and a saddle. For the imperfect system,
when β and ε have the same sign, there is a region below and above the critical value (ω2

0 = 0
or λ = λcr) where no solution occurs. This region is bounded by two limit loads corresponding
to saddle-node bifurcations. The limit load defines thus the load carrying capacity of a real
imperfect system. The limit load parameter is given by

λlim = λcr − 2
√
βε. (2.5)

The limit load may be attained only in a slowly evolving, quasistatic, system. Nonzero
initial conditions will further decrease the buckling load. In fact, the limit load is but an upper
bound of the load carrying capacity of the imperfect system under static loading. The area of
the basin of attraction at the critical point is zero. Therefore, any small disturbance leads to
buckling. A good measure of the integrity and safety of the system is the area and topology of
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Figure 2: Variation of the safe region defined by the homoclinic orbit of the saddle corresponding to the
unstable equilibrium point. ε = 0, β = −1.

the basin of attraction [18]. For the undamped autonomous system, bounded solution only
occurs for initial condition within the area defined by the homoclinic orbit of the saddle
connected with the unstable solution in Figure 1. The area enclosed by the homoclinic orbit
is given by

A = 2
∫xmax

xmin

√

2
(
Esaddle − εx −

1
2
ω2

0 x
2 − 1

3
β x3
)
dx, (2.6)

where Esaddle is the total energy of the system at the saddle point, xmin is the coordinate
corresponding to the saddle, given by (2.2b), and xmax is given by

xmax =
2
√
ω4

0 − βε −ω
2
0

2β
. (2.7)

The variation of this area with ω2
0 is illustrated in Figure 2. By expanding (2.6) in Taylor

series, one obtains as a first approximation

A =
6ω5

0

5β2
− 6ω0ε

β
(2.8)

which shows clearly the influence of the nonlinearity, β, and imperfection, ε, on the safe area.
The variation of the safe region with the load parameter λ and the imperfection ε is

illustrated in Figure 3. The curve on the λ-ε plane is the so-called imperfection sensitivity curve
[1–3].

As the load level approaches the critical value, there is not only a swift decrease of the
safe area but also a decrease in the depth of the safe potential well, h, which is given by

h =

√(
ω4

0 − 4 β ε
)3

6 β2
. (2.9)
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Figure 3: Variation of the safe region as a function of the load parameter λ and the imperfection ε. β = −1.

The degree of safety of a given autonomous undamped system can be established by
defining at the stage of design the magnitude of the safe area A. The maximum load, λmax, that
can be applied to the structure with a prescribed safe area A is given approximately by [7]

λmax = λcr −
√

5 β ε −
51/4 Aβ

√√
βε

12 ε
. (2.10)

The consideration of viscous damping changes the eigenvalues but not the equilibrium
solutions of (2.1). For the damped case, the eigenvalues connected with the stable solution
(2.2a) become

μ1 = −ηω0 +

√

η2 ω2
0 −
√
ω4

0 − 4 β ε,

μ2 = −ηω0 −
√

η2 ω2
0 −
√
ω4

0 − 4 β ε.

(2.11)

So, for positive damping, the equilibrium is asymptotically stable.
For solutions (2.2b), the eigenvalues are

μ1 = −ηω0 +

√

η2 ω2
0 +
√
ω4

0 − 4 β ε,

μ2 = −ηω0 −
√

η2 ω2
0 +
√
ω4

0 − 4 β ε,

(2.12)

which is a saddle.
The basin of attraction of the lightly damped system is illustrated in Figure 4, where gray

corresponds to bounded solutions and white to unbounded solutions. Disregarding the infinite
tail that corresponds to initially large amplitude motions, the area of this basin of attraction is
only slightly higher than the area enclosed by the homoclinic orbit. So, (2.6) can be used as a
safe measure of the basin area [7].

Figure 5 shows the variation of the basin area of the damped (η = 0.05) autonomous
system with the nonlinear parameter β and the imperfection magnitude ε.
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Figure 4: Basin of attraction of the damped autonomous system. Gray area: bounded solutions.
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Figure 5: Variation of the basin area as a function of the nonlinearity and imperfections.

2.2. The forced system

This section addresses the problem of calculating the dynamic buckling load of imperfection-
sensitive structures under a harmonic load. Actually, because of the resonance phenomenon
this is one of the worst possible types of dynamic load.

The solution set of (2.1) can be classified in bounded and unbounded solutions.
Unbounded solutions indicate ruin of the structure, as its displacements become increasingly
large and incompatible with the structure’s use and hypotheses embodied into the mathemat-
ical modeling. Unbounded solutions are also called escape solutions, or simply escape. In this
work, as in, for example, the works of Malasoma et al. [29], Thompson [10], and Szemplińska-
Stupnicka [30], one is interested in the values of F and Ω that lead to escape from a given
potential well. The minimum value of F at which escape occurs, when all other parameters are
maintained fixed, is called the escape load, Fe. The underlying dynamics that ultimately leads to
escape can be very complex. Consequently, the escape boundary, which is the set of escape loads
in the parameter space, is rather involved and can even be of fractal nature [7].
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Figure 6: Stability boundaries in force control space. System under harmonic and constant load. η = 0.05, ε
= 0, ω0 = 1, and β = −1.

Figure 6 shows the escape load, Fe, as a function of the forcing frequency, Ω, for η = 0.05,
ε = 0, ω0 = 1, and β = −1. Two loading processes are considered: a suddenly applied harmonic
load (dashed line) and a gradually increasing harmonic load (continuous line). For the suddenly
applied harmonic load, after each load increment, (2.1) is integrated numerically considering
zero initial position and velocity, that is, after each increment the system starts from rest. For
the gradually increasing harmonic load, for a given excitation frequency, the final position and
velocity of the previous load level are taken as the initial conditions for the current load level
(here, a load step of 0.001 is considered). For comparison purposes, Figure 6 also shows the
escape load for a structure under a step load of infinite duration as well as the static critical load.
As the value of the forcing frequency Ω varies, there is a series of valleys associated to super
harmonics of various orders culminating with a deep valley around the natural frequency. For
higher excitation frequencies, the escape load increases and can be, due to the appearance of
new attractors, many times larger than the corresponding static critical load.

The escape is connected with a series of local bifurcations, as illustrated in the bifurcation
diagrams depicted in Figure 7. In the main resonance region, for excitation frequencies smaller
than those corresponding to the minimum escape load, escape occurs due to a saddle-node
(S-N) bifurcation, as illustrated in Figure 7(a) for Ω = 0.70. After this minimum, the initially
stable period one solution undergoes a stable period doubling bifurcation (D1) and escape
occurs just after this solution becomes unstable, as shown in Figure 7(b), for Ω = 1.00. As the
forcing frequency increases, the period doubling bifurcation becomes unstable and initially
escape occurs at this point, as illustrated in Figure 7(c), for Ω = 1.50. Finally, as the forcing
frequency increases even further, a secondary stable branch appears along the bifurcated path
after a saddle-node bifurcation. This solution also becomes unstable (D2). If the bifurcation
load D2 is higher than the bifurcation load D1, the escape load of the slowly evolving system is
then controlled by D2, as illustrated in Figure 7(d), for Ω = 1.90. Here, after D1, escape becomes
unpredictable [10–13]. Figure 8 shows a summary of the bifurcation events connected with the
escape boundary of the slowly evolving system.

The influence of the geometric imperfection parameter ε on the escape load is illustrated
in Figure 9 that depicts the stability boundaries for increasing values of ε. The stability
boundaries show a shift to the lower frequency range as ε increases. This is due to the decrease
in the natural frequency caused by the imperfection. For comparison, the static buckling
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Figure 7: Bifurcation diagrams of the slowly evolving system for selected values of the excitation frequency,
Ω. Bifurcations connected with the stability boundaries in force control space: S-N: saddle-node bifurcation;
D1: first period doubling bifurcation; D2: second period doubling bifurcation; Fe: escape load. η = 0.05, ε =
0, ω0 = 1, and β = −1.

load of the imperfect system is also shown in Figure 9. While in some frequency ranges the
imperfection sensitivity of the escape load is of the same order or even higher than that of the
static case, in other regions the escape load is almost insensitive to imperfections. However, the
escape load of the slowly evolving system represents only an upper bound of the actual load
bearing capacity of the structure under harmonic loading. Because of dynamic perturbations,
an imperfection-sensitive structure can escape at load levels much lower than at the escape
load, as will be shown herein through the analysis of the basins of attraction.
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Figure 9: Influence of the imperfection parameter ε on the static and dynamic buckling loads.

3. Basin of attraction of the forced system and structural stability

Mathematically, the basin of attraction of a periodic solution is the set of all initial conditions
that lead to a solution (attractor) as time goes to infinity. This means that if a periodic solution
has a large compact basin of attraction, it will be stable under finite perturbations. On the other
hand, if it has a small, or fragmented, basin of attraction, small finite perturbations can lead the
solution to escape even if the solution is stable. Thus, a measure of the stability of the structure,
in particular its safety, has to be based on a global view of the behavior of the structure. This
global view can be expressed mathematically by the characteristics of the basin of attraction
and its boundary.

The concept of basin of attraction is based on the limit t→∞. Because of limitations in
the numerical integration, a practical concept for basin of attraction is used. This practical
concept is the basin of r-attraction [10–13]. A basin of r-attraction is the set of all initial conditions
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Figure 11: Variation of the basin area of the damped forced system. Black and gray: steady-state bounded
solutions. White: unbounded solutions. η = 0.5, ε = 0, ω2

0 = 1, β = −1, and Ω = 0.43.

that lead to the neighborhood of the respective periodic solution in r times the forcing period
T = 2π/Ω. As the integration time increases, the basin of r-attraction tends asymptotically to
the basin of attraction. Our experience has shown that a basin of 32-attraction is a reasonable
approximation.

Numerical explorations have shown that the way the basin of attraction changes as
the load level F increases can be classified into one of two groups: (a) it gradually decreases
until it vanishes completely; (b) its shape remains the same as the load level increases, until
it suddenly becomes fractal [7]. In these two types of basin of attraction evolution, the area
decreases as the load increases and becomes zero at F = Fe. The two types of behavior are
illustrated in Figures 10 and 11. One important fact to note is that, even at the eminence of
escape, when the basin of attraction is very small, the periodic solution represented by the
fixed point of the Poincaré map is a stable solution. This shows that when one uses the stability
of the periodic solution as a measure of the structure’s stability, this value furnishes only an
upper bound to the true stable load.
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Figure 12 shows the variation of the basin area parameterized by the basin area of the
corresponding unloaded system, A/A0, as a function of the force ratio F/Fe, for three different
values of Ω.

For higher and lower values of the excitation frequency, the variation of the basin area
becomes smoother, decreasing the relative length of the initial plateau. The variation of the
basin area, as will be shown in the next item, is closely related to the sensitivity of the dynamic
buckling loads to perturbations and uncertainties.

As a safety measure, the designer can specify a maximum erosion level with respect to
the initial safe area of the structure, A0, and determine the corresponding maximum load that
can be applied during the service life of the structure. In the autonomous case, this load level
is given by (2.8). For the system under harmonic excitation, curves of constant A/A0 ratio,
obtained numerically, are depicted in Figure 13 and compared with the previously deduced
escape boundaries. From Figures 12 and 13, one can conclude that the erosion of the safe basin
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area varies with the value the forcing frequency. For the excitation frequency corresponding to
the lowest escape load (Ω ∼= 0.82), the safe area remains practically constant up to the critical
value and then drops suddenly to zero.

4. Influence of uncertainties in system parameters on the dynamic buckling load

4.1. Nondeterministic force

The analysis conducted up to this point considered a harmonic excitation. This is rarely true
in practical situations where loads do not lend themselves to explicit time description, being
random or including at least some kind of noise. So, it is important to know how departures
from an ideally perfect harmonic excitation may affect the performance of the system. Consider
that the applied load is composed of a harmonic deterministic portion plus a random term such
that

Ft(t) = F cos(Ωt) +G(t;F,Ω), (4.1)

where the random term G(t;F,Ω) depends on the deterministic parameters F and Ω.
For the numerical simulation, the following hypotheses about G are adopted in the

present work [7, 31].
(i) A force that varies randomly in time is mathematically a stochastic process. A

stochastic process is a random variable where the probability distribution depends on a
parameter. If the parameter is continuous, the process is called continuous. In the present case,
this parameter is time. If the statistics of the process (mean and variance) are time-independent,
the process is called stationary.

(ii) An ergodic process is a process where the statistics of the random variableG(t;F,Ω) are
the same as the statistics of only a sample of the random process taken along time. An ergodic
process is always stationary, but a stationary process may not be ergodic. In this work, it is
assumed that the random term G(t;F,Ω) is an ergodic process and, consequently, stationary.

Another hypothesis is that G has expected value zero, that is,

E
[
G(t;F,Ω)

]
= 0. (4.2)

The description of a stochastic process is usually made in the frequency domain. Here, it
is assumed that the random term has a spectral density function given by

ΦGG(ω) =
σ2
GG

2ωl
for Ω − ωl

2
< ω < Ω +

ωl

2
, (4.3)

where σ2
GG is the variance of the random force amplitude and ωl is the frequency bandwidth.

Additionally, it is considered that the standard deviation of the random force amplitude
is proportional to the deterministic force amplitude, thus

σGG = aF, (4.4)

where a is the standard deviation parameter. Here, the random force depends on the frequency
and amplitude of the deterministic term.
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Figure 14: Influence of the standard deviation parameter of the radom force, σGG, on the dynamic buckling
load of the structure. Comparison with the dynamic buckling load of the system under deterministic
harmonic forcing.

Physically, the random term is a noise that increases with an increase in the applied
force. Another point to be emphasized is that the random term depends on two prescribed
parameters: the standard deviation parameter a with respect to the deterministic force
amplitude F, and the frequency bandwidth ωl around the forcing frequency Ω. The numerical
methodology used to generate the random force in time domain is presented in the appendix.

The influence of the random noise on the dynamic buckling load is studied considering
the following system parameters: η0 = 0.05, ω2

0 = 1.00, and β0 = −1. For each excitation
frequency, five to ten load samples are considered, depending on the dispersion, and the
dynamic buckling load, Fe, is computed numerically. The results considering two values of
the standard deviation parameter a (0.1F and 0.3F) are shown in Figure 14 and compared with
the results obtained for the deterministic load. Figure 15 shows the results considering two
values of the bandwidth ωl (0.1 and 0.3).

The real values of the systems parameters, such as mass, damping, and stiffness, are
dependent on the quality of the fabrication process. They can be, and usually are, different
from the value assumed at the design stage. In order to quantify the influence of variations
on system parameters in the vicinity of the design values on the dynamic buckling load, a
parametric analysis is carried out herein.

Uncertainties in the following system parameters are considered: ε, η, ω2
0, and β. For

each control parameter, the following probability density function is assumed:

f(α) =

⎧
⎪⎨

⎪⎩

100
2α0 Q

, if α0 −
α0 Q

100
< α < α0 +

α0 Q

100
,

0, otherwise,
(4.5)

where α is the system parameter, α0 is the mean value of the chosen parameter, and Q is a
parameter which expresses the quality of the fabrication process as a percentage of the mean
value, α0.

The mean values (design values) considered in the analysis are ε0 = −0.05, η0 = 0.05, ω2
0

= 1.00, β0 = −1, and Q = 10 (10%). In the parametric analysis, for each excitation frequency,
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Figure 15: Influence of the bandwidth parameter of the radom force, ωl, on the dynamic buckling load of
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forcing
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ten samples of the perturbed parameter are considered and the escape load is computed
considering both a gradually applied harmonic load and a suddenly applied harmonic load,
as in the previous deterministic analysis. An example of such analysis is shown in Figure 16
where the influence of small variations on the system stiffness parameter, and, consequently,
natural frequency (ω0 =

√
(λcr − λ)/m), is considered. Similar distribution is observed when

the other parameters are considered. The scatter of results shows the strong influence of the
stiffness value on the dynamic buckling load and the sensitivity of the load carrying capacity
of the structure to small variations in system parameters.

It is interesting to notice that the scatter of results presented in Figures 14–16 follows
the pattern of variation of the basin area shown in Figure 13. So, it becomes clear that there
is a close relation between the variation of the basin of attraction and the scatter of dynamic
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Figure 17: The change in the stable and unstable manifolds as the load F increases.

buckling loads. It is also clear that, in the present case, the scatter is a function of the excitation
frequency. The results show that the escape load of the perturbed system is mostly lower than
the escape load under deterministic harmonic forcing. One can also observe that the scatter of
buckling loads is highly dependent on the forcing frequency.

5. Stable and unstable manifolds: Melnikov criterion

When an imperfection-sensitive damped structure described by (2.1) is unloaded (F = 0),
the system has only one stable equilibrium point and one saddle point. In this situation, the
saddle point’s stable manifold goes smoothly around the stable equilibrium point defining the
boundary of the basin of attraction of this point. One of the branches of the unstable manifold
lies inside the safe basin of attraction, converging to the stable equilibrium solution. The other
branch lies outside the basin of attraction and tends to infinity.

Figure 17 shows how the stable and unstable manifolds change as a function of the load.
As the load increases, they approach each other and, at a certain load level FM, the stable
and unstable manifolds cross transversally. When the stable and unstable manifolds cross
transversally at one point, they cross at an infinite number of points, thus this crossing indicates
the beginning of the erosion of the basin of attraction [16, 17].

The prediction of the first crossing of the stable and unstable manifolds can be obtained
by the Melnikov function. This function gives a measure of the distance of the stable and unstable
manifolds, when this distance is small [16, 17]. It applies to problems where the damping is
small, which is usually the case of slender structures, and when the algebraic expressions for
the stable and unstable manifolds for zero damping are known.

When both the damping and the externally applied forces are small, the vector field of
the system can be expressed generically as [16]

ẋ =
∂E

∂v
+ ξ g1,

v̇ = −∂E
∂x

+ ξ g2,

(5.1)

where the vector g = g(x, v, t) = (g1, g2), ξ is a small parameter, and E(x, v) is the total energy
of the unforced, undamped system (ξ = 0). Also admit that g(t) is periodic, that is, it satisfies
the relation

g(t + T) = g(t). (5.2)
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The Melnikov function is given by

M
(
t0
)
=
∫∞

−∞
g∗ · ∇E

(
x∗, v∗

)
dt (5.3)

where g∗ = g(x∗, v∗, t+ t0). x∗(t) and v∗(t) are the algebraic expressions of position and velocity
of the stable and unstable manifolds of the conservative system.

The two manifolds cross when this distance is zero, that is,

M
(
t0
)
= 0. (5.4)

Equation (5.4) leads to an algebraic expression that can be used to calculate the load level
FM at which the tangling of the stable and unstable manifolds first occurs. Next, we apply the
Melnikov method to imperfection-sensitive structures whose motion is described by (2.1).

In the case of structures liable to asymmetric bifurcation with no imperfection (ε = 0), it
is possible to obtain an analytic solution for the homoclinic orbit using the law of conservation
of energy [7]. The solution is

xp(t) = −
ω2

0

β

e2ω0 t − 4 eω0 t + 1
e2ω0 t + 2 eω0 t + 1

. (5.5)

The effect of the imperfection parameter ε can be introduced by observing that it does
not change qualitatively the solution (the homoclinic orbit continues to be a homoclinic orbit),
but changes only the position of the center and saddle points. Thus, the approximate solution
can be expressed by

x(t) = A(ε) + L(ε)xp
[
a(ε) t

]
. (5.6)

The coefficients A and L in (5.6) can be obtained by the restrictions

lim
t→∞

x(t) = xsaddle,

x(0) = xmax.
(5.7)

This leads to

A(ε) = − ε

ω2
0

,

L(ε) = 1 −
2 β ε

ω4
0

.

(5.8)

The time scale coefficient a(ε) in (5.6) can be obtained by applying Galerkin method on
the residue

R(t) =
1
2
ẋ2 +

1
2
ω2

0 x
2 + ε x +

1
3
β x3 − Esaddle (5.9)
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Figure 18: Comparison of the scatter of buckling load with the Melnikov load ωl = 0.1 and two values of
σGG.

and by using the weight function δx = x(t). This leads to

a(ε) = 1 −
β ε

ω4
0

. (5.10)

Remembering that v = dx/dt, the Melnikov function becomes

M
(
t0
)
=
∫∞

−∞
F v cos

[
Ω
(
t + t0

)]
dt − 2ηω0

∫∞

−∞
v2dt. (5.11)

In (5.11), F = ξF, η = ξη, and ξ is the small perturbation parameter. By substituting x(t)
into (5.11) and calculating the integrals, one obtains

M
(
t0
)
= F sin

(
Ω t0
)
[
− 6Lπ Ω2

a2 β sinh(π Ω/aω0)

]
− 2ηω0

[6Laω5
0

5 β2

]
. (5.12)

Thus, the first crossing occurs when M(t0) = 0, which leads to

FM =
η

π

[ 2ω6
0

5 βΩ2
−
εω2

0

Ω2

]
sinh

[
π Ω
ω0

+
π Ω β ε

ω5
0

]
. (5.13)

This expression can thus be used to calculate the load level above which the structure’s
basin of attraction starts to loose its integrity.

6. Melnikov lower bound

The algebraic expressions for the Melnikov load given by (5.13) allows the prediction of
the load above which the stable solution’s basin of attraction begins to loose its integrity by
the tangling of the stable and unstable manifolds of the respective saddle point. Figure 18
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Figure 19: Comparing Melnikov load with the buckling load of a realistic imperfection-sensitive structure.

compares the Melnikov load with the scatter of the dynamic buckling results shown in
Figure 14. As one can observe, all results lie above the Melnikov load, indicating that (5.13) can
be considered as a safe lower bound in the whole range of excitation frequencies considered
in the present work. Reference [7] presents similar comparisons considering uncertainties in
all parameters. In all cases, the scatter of results, considering reliable deviations from design
values, lies above the present lower bound.

The uncertainties in the structure’s parameters (stiffness, nonlinearity, natural frequency,
etc.) and random deviations of the applied load make real structures become nondeterministic.
In this sense, the random perturbation of the parameters is a numerical simulation of a real
structure. Note that the random perturbation of 10% of the actual design value generates a
large scatter in the values of the escape loads. Despite the large variation of the escape loads,
the Melnikov load is always smaller indicating that it is a safe lower bound.

Finally, in Figure 19, the lower bound is compared with the curves of constant basin
area, already shown in Figure 13, and the scatter of buckling loads obtained considering
uncertainties in all system parameters, except the external load (Q = 10). The results
corroborate the lower bound character of the Melnikov load. However, if a good quality control
is considered at the fabrication stage, the designer may use a less conservative estimate of the
dynamic buckling load based on the safe basin area. In fact, one can observe in Figure 19 that
almost all results in this numerical experiment are above the curve corresponding to a safe
basin with an area equal to 40% of the reference basin of the unloaded system A0.

7. Conclusions

For a structure liable to asymmetric bifurcation, the critical load of the perfect or imperfect
structure is an upper bound of its buckling load, since it corresponds to a safe basin with
null area. So, any disturbance, however small, leads to buckling. To preserve the integrity
of the structure, the designer should prescribe a nonzero compact basin surrounding the
fixed point of the desired solution. In this paper, initially, the integrity of the structure
under static load is investigated by the variation of the safe basin of attraction as a function
of the system parameters, including initial imperfections. The results show that the safe
basin decreases exponentially as one approaches the critical value. Next, the behavior of
the harmonically excited structure is analyzed and the stability boundaries in force control
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space are obtained considering different loading histories. The results show that uncertainties
in system parameters or small random perturbations of the applied load lead to dynamic
buckling loads that are mostly lower than the load of the unperturbed ideal system. The
scatter of results varies with the forcing frequency and is governed by the variation of the
safe basin of attraction. The variation of the safe basin is dictated by the evolution of the
stable and unstable manifolds of the saddle connected with the safe basin boundary. Melnikov
developed a procedure to determine an approximation for the first crossing of the stable and
unstable manifolds of the saddle-point related to the fundamental stable solution. When the
stable and unstable manifolds cross transversally at one point, they cross transversally at an
infinite number of discrete points. Since the unstable manifold is the fundamental solution’s
basin of attraction boundary, this indicates that the basin of attractions becomes, at least
partially, fractal. Thus, the load level at which the tangling of the stable and unstable manifolds
first occurs can be taken as the load that marks the beginning of the loss of stability of the
structure, consequently a lower bound for the structure load carrying capacity. The proposed
lower bound, based on a mathematical reasoning that accounts for the effects of imperfection
and dynamical perturbations on the structure, compares well with the scatter of dynamic
buckling loads and can be used as a safe design recommendation for imperfection-sensitive
structures under periodic loads. Finally, the proposed procedure can be applied to a variety of
imperfection-sensitive structures, in particular structural systems liable to unstable symmetric
or asymmetric bifurcation.

Appendices

A. Simulation of the random force

In the following, the theoretical fundaments and methodology used to generate the random
force in time domain are presented [7].

The idea of an algorithm to generate a stochastic process sample G(t) comes from the
expression of the process variance in terms of the spectral density function

σ2
GG =

∫∞

−∞
ΦGG(ω)dω (A.1)

Assuming that the process is ergodic, the variance can also be calculated in time domain
as

σ2
GG = lim

T0→∞

1
T0

∫T0

0
g2(t)dt ∼=

1
T0

∫T0

0
g2(t)dt, (A.2)

where T0 is the force duration and g(t) is a sample of the stochastic process G(t).
Based on (A.1) and (A.2), the following relation between the time function g(t) and the

spectral density function is obtained:

1
T0

∫T0

0
g2(t)dt ∼=

∫∞

−∞
ΦGG(ω)dω. (A.3)
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Discretizing (A.3), one obtains

1
N

N−1∑

m=0

g2(mΔt) ∼= 2
N/2∑

k=1

ΦGG

(
kω0
)
ω0, (A.4)

where Δt = T0/N and Δω = ω0 = 2π/T0.
Parceval theorem [31], which relates the amplitude of a stochastic process in time with

the process amplitude on frequency domain, states that

1
N

N−1∑

m=0

g2(mΔt) ∼=
N−1∑

k=0

∣∣Cg(kΔω)
∣∣2, (A.5)

where Cg(ω) is the discrete Fourier transform (DFT) coefficient of the process sample g(t).
Substituting (A.5) on the right-hand side of (A.4) and remembering that, for g(t) to be

real, it is necessary that Cg(N/2 + i) = C∗g(N/2 − i), (A.4) can be rewritten as

2
N/2∑

k=1

∣∣Cg

(
kω0
)∣∣2 ∼= 2

N/2∑

k=1

ΦGG

(
kω0
)
ω0. (A.6)

The above expression is true if

∣∣Cg

(
kω0
)∣∣ =

√
ΦGG

(
kω0
)
ω0, k = 1, . . . ,

N

2
. (A.7)

This expression allows determining the modulus of the coefficients Cg of a discrete
Fourier transform sample of the stochastic process G(t) in a way that it has a specified spectral
density function. Finally, each DFT coefficient of g(t) can be calculated from

Cg

(
kω0
)
=
∣∣Cg

(
kω0
)∣∣cos

(
θk
)
+ i
∣∣Cg

(
kω0
)∣∣sin

(
θk
)
, (A.8)

where the phase angles θk are random variables with constant distribution between 0 and 2π .
Samples of the random variables can be obtained using a random number generator. In order
to use expression (A.8), the following initial values are necessary:

(i) T0: random process duration,

(ii) N: number of points analyzed on the process,

(iii) ΦGG(ω): specified spectral density function.

B. Structural system liable to asymmetric bifurcation

Consider the well-known SDOF structural system shown in Figure 20 comprising an inverted
pendulum of length L and mass m, supported laterally by a linear spring of stiffness K in
both tension and compression and inclined initially at 45 degrees. The structure is loaded by
a vertical dead load of magnitude P (which includes the weight of the mass m). To generate a
family of imperfect systems, a small perturbation moment M is applied to the system. This
can be caused, for example, by a small load eccentricity, or any other moment generating
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Figure 20: Laterally supported inverted pendulum submitted to an axial force P and a small disturbance
M.

disturbance. The effects of various imperfections on the response of the model are very similar.
The rotation of the inverted pendulum is denoted by x.

The potential energy of the system in terms of the rotation x is given by

V = KL2
[√

1 + sin(x) − 1
]2
− PL

[
1 − cos(x)

]
−Mx. (B.1)

The kinetic energy of the pendulum is

T =
mL2

2
ẋ2. (B.2)

By expanding the potential energy in Taylor series and retaining all terms up to the third order,
one obtains the following nonlinear equilibrium equation:

−M +
[
KL2

2
− PL

]
x − 3KL2

8
x2 = 0. (B.3)

If the load imperfection M is not considered in the analysis, one obtains from the linearized
equilibrium equation the following critical load:

Pcr =
KL2

2
. (B.4)

The associated equation of motion is given by

mL2ẍ −M + L
[
Pcr − P

]
x − 3KL2

8
x2 = 0. (B.5)

By introducing the following auxiliary parameters (notice that we use the usual symbols found
in literature for load, imperfection, and nonlinearity parameters):

λcr =
Pcr

L
, λ =

P

L
, ε = − M

mL2
, β = −3K

8m
, (B.6)
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the following equation of motion is obtained:

ẍ + ε +ω2
0 x + β x2 = 0, (B.7)

where

ω0 =

√
λcr − λ
m

. (B.8)

The term Kef = (λcr−λ) is usually referred to as effective stiffness in the technical literature and
the parameter λ is usually referred to as load parameter.
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1. Introduction

Model validation of structural dynamics is of great interest to both government and industry
[1]. Recently, a model validation workshop [2, 3] was organized by Sandia National
Laboratories to address the problem of certification of structures under various forms of
uncertainty. Following their formulation, an integrated system consisting of a beam structure
and an attached subsystem, shown in Figure 1, is the test structure used for study. In this
model the physical elements of the attached three degrees of freedom subsystem are the
only ones exhibiting significant parameter variations, all other parameters are known. The
substructure, along with its nonlinear connection, is considered for calibration, and data are
provided as a basis for the calibration of the substructure model [2].

In the process of certifying structures for use in harsh dynamic environments, it is
often required that not only the main structure be capable of withstanding the loads but also
all the attached substructures. To ensure survivability of all the substructures, Sandia in [2]
has chosen a performance metric in terms of the maximum acceleration magnitude of mass
3, top of the substructure, under a shock force at position x8. For this study, the uncertain
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Figure 1: A beam structure with an attached subsystem.

parameters are the identified modal parameters (frequency, damping, and mode shape) of
subsystem, 15 parameters total.

This paper presents a model validation methodology based on an interval modeling
technique for the structural dynamics problem proposed by Sandia [2]. A singular value
decomposition technique [4] is applied to extract the principal components of parameter
change, where the sensitivity of performance is included in the SVD process. From this
process, an interval model is generated and each interval corresponds to one identified
bounded uncertainty parameter with its associated principal direction. This interval
modeling technique can precisely quantify the uncertainty of a system with significant
parameter uncertainty [4]. The coordinate vector, corresponding to the identified principal
directions, of the validation system can be computed. The coordinate distance between the
validation system and the identified interval model is used as the metric for model validation
[5].

2. Model validation

In the model validation process, first an interval modeling technique, given in the appendix,
is applied for uncertainty quantification. The data used for model uncertainty quantification
are based on the identified modal parameters from 60 virtual experiments [2], generated from
20 identical systems selected from a virtual pool and three levels of random excitation applied
at mass 2. The modal parameter vector of the subsystem is defined as

p =
[
ω1 ω2 ω3 ξ1 ξ2 ξ3 φ11 φ21 φ31 φ12 · · · φ33

]T
, (2.1)

where ωi is the ith natural frequency, ξi is the ith damping ratio, and φji is the jth component
of the ith mode shape. The interval modeling technique in the appendix is applied to generate
an interval model as

P =

{

p | p = p0 +
15∑

j=1

αjqj , αj ∈
[
α−j , α

+
j

]
}

, (2.2)

where p0 is the nominal parameter vector, and αj is the jth identified bounded uncertainty
parameter corresponding to the basis vector qj . The coordinate vector of any validation
system with parameter vector pv can be computed as

βv = U−1Δpv, (2.3)
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Figure 2: Modal parameters of subsystems: (a) natural frequency (rad/sec) of 1st mode, (b) damping ratio
of 3rd mode, (c) 2nd mode shape coefficient of 1st mode. (circels) 60 calibration systems; (asterisks) 60
validation systems.

with

Δpv = pv − p0, U =
[
q1 · · · q15

]
, (2.4)

where U is the basis matrix. The coordinate distance between a validation system and the
interval model is defined as

dv = min
{√[

βv − β(p)
]T[

βv − β(p)
]
, p ∈ P

}
, (2.5)

where β(p) is the coordinate vector of the subsystem with parameter vector p. This distance
represents a metric of performance deviation between a validation system and the identified
interval model since the weighting of performance sensitivity is included in SVD process
[4, 5].

3. Discussion of results

There are 60 sets of identified modal parameters used for model validation [2], generated
from 20 identical systems selected from a virtual pool with three levels of shock input at mass
1. Figure 2 shows three modal parameters of 60 calibration systems and 60 validation systems
as functions of the first uncertainty parameter α1. Variations in the natural frequencies are
significant, around 100%, and increase linearly as the first uncertainty parameter α1 increases.
Natural frequencies of calibration systems and validation systems share same variation
characteristics. Damping and mode shape coefficients of validation systems show bias from
those of calibration systems. For example, the mean value of ξ3 of the validation systems
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Figure 3: Coordinates and parameter bounds of uncertainty parameters: (a) 2nd uncertainty parameter,
(b) 3rd uncertainty parameter, (c) 4th uncertainty parameter. (circles) 60 calibration systems; (asterisks)
60 validation systems; — parameter bounds of interval model.

is around 30% lower than that of the calibration systems when α1 is 0.1. For the second
mode shape coefficient of the first mode in Figure 2, the mean value for the validation
systems is always around 5% lower than that of the calibration systems. Figure 3 shows
the uncertainty parameters α2–α4 and the identified interval bounds as functions of the first
uncertainty parameter α1. The third interval length, normalized to the first interval length
(i.e., α1 = 1), drops to less than 10% (see Figure 3) of the first interval length [4]. The model
uncertainty is dominated by the first uncertainty parameter α1. Natural frequency variations
are the dominant uncertainty corresponding to variations in α1. In contrast to frequency
variations, damping and mode shape variations behave more like random variables, and they
correspond to secondary uncertainties [4]. All α2 and α3 of validation systems are inside the
bounds or close to the boundary of the identified interval model. All α4 of validation systems
are outside the bounds of the interval model, and this bias is mainly contributed from the
bias of mode shape and damping. Figure 4 shows the coordinate distance of 60 validation
systems from interval model. The distance is mainly due to the bias of α4.

Figure 5 shows the performance sensitivity to the identified uncertainty parameters
αi. The sensitivity of performance to the jth uncertainty parameters αj of the ith chosen
subsystem pi is defined as

sαij =
1

a
(
pi
)
∣∣∣∣
∂a

(
pi
)

∂αj

∣∣∣∣, i = 1, . . . , ns, (3.1)

where a(pi) is the maximum acceleration magnitude of the integrated system with subsystem
parameter vector pi, and ns is the number of parameter vectors. This sensitivity represents a
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Figure 4: Coordinate distance of 60 validation systems from interval model: (circls) distance from interval
model; (asterisks) distance contributed from α4 bias.
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Figure 5: Sensitivity of performance to identified uncertainty parameters αj .

percentage change. The average sensitivity corresponding to the jth uncertainty parameters
αj is defined as

sαj =
1
ns

ns∑

i=1

∣∣sαij
∣∣. (3.2)

Figure 5 shows that this sensitivity is between 21% and 69%, corresponding to the original
maximum acceleration magnitude, and the sensitivity to α4 is 39% of the maximum
acceleration. Coordinate distance of all the validation systems is between 0.03 and 0.07. This
means that the maximum acceleration deviation between the validation system and a system
in interval model is insignificant (around 1% to 3%), based on the sensitivity in Figure 5.
All the validation systems are acceptable, based on the coordinate distance corresponding to
performance index of maximum acceleration.

Figure 6 shows the maximum acceleration of the integrated systems with the identified
interval model, 60 calibration systems, and 60 validation systems when an impulse force is
applied at x8 position. The results show that the identified interval model well represents
and covers 60 calibration systems. The maximum acceleration of all the validation systems is
inside the envelope or close to the boundary of the interval model. As expected, the validation
systems are acceptable, based on the coordinate distance results shown in Figure 4. This
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Figure 6: Maximum acceleration with impulse input: (circls) interval system; + 60 calibration systems;
(asterisks) 60 validation systems.

coordinate distance represents a metric of the maximum acceleration deviation (percentage
difference) between a validation system and the identified interval model.

4. Concluding remarks

This paper presents a novel approach for model validation of a system with an attached sub-
system that is exhibiting significant parameter uncertainty. An interval modeling technique
is applied for uncertainty quantification with the performance sensitivity weighting in SVD
process. The coordinate distance, between the validation system and the identified interval
model, is defined as a metric for model validation. This distance represents a metric of the
possible performance deviation of the validation system from a system in interval model.
The results show that all the validation systems provided by Sandia are acceptable, based on
this distance metric. This demonstrates an efficient tool for model validation, based on the
interval model analysis. The proposed technique in this paper can be extended to probability
framework.

Appendix

Model uncertainty quantification

The sensitivity of performance index a, such as maximum acceleration magnitude, to the jth
component of the ith chosen subsystem pi is defined as

sij =
1

a
(
pi
)
∣∣∣∣
∂a

(
pi
)

∂pij

∣∣∣∣σj , i = 1, . . . , ns, (A.1)

where pij is the jth component of parameter vector pi, and σj is the standard deviation of the
jth vector component. This sensitivity represents a percentage change including the factor σj
to account for the size of the parameter variation. The average sensitivity corresponding to
the jth vector component is defined as

sj =
1
ns

ns∑

i=1

∣∣sij
∣∣. (A.2)
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To quantify the parameter uncertainty, an uncertainty matrix is defined as

ΔP =
[
Δp1 Δp2 · · · Δpn

]
, (A.3)

with

Δpj = pj − p0, j = 1, . . . , n, p0 =
1
n

n∑

j=1

pj , (A.4)

where pj is the jth identified parameter vector, and p0 is the nominal parameter vector, which
is computed as the average from n = 60 experiments.

A singular value decomposition (SVD) technique [4] is used to generate an optimal
linear interval model. This SVD process involves the following computational steps.

(1) Compute an initial weighting matrix as

ΔP 1 =W−1
1 ΔP, (A.5)

where W1 is a diagonal matrix with its jth diagonal element as the standard
deviation σj .

(2) Compute the weighting matrix including sensitivity as

ΔPW =W2ΔP 1, (A.6)

where W2 is a diagonal matrix with its jth diagonal element sj .

(3) Use SVD to compute the basis matrix UW for ΔPW ,

ΔPW = UWSV T , S = diag
[
d1 · · · d15

]
. (A.7)

(4) Compute the basis matrix U for ΔP ,

U =W1W
−1
2 UW, U =

[
q1 · · · q15

]
. (A.8)

The singular values dj are in descending order, this leads to a descending order of
perturbation distribution in qj .

(5) Compute the coordinate vector of Δpi corresponding to the basis vectors qj ,

βi = U−1Δpi. (A.9)

(6) Represent each parameter vector as

pi = p0 +
15∑

l=1

βi(l)ql, (A.10)

where βi(l) is the lth element of the coordinate vector βi.

(7) Compute the parameter bounds as

α+j = max
{
β1(j), β2(j), . . . , βn(j)

}
,

α−j = min
{
β1(j), β2(j), . . . , βn(j)

}
.

(A.11)

All the basis vectors, coordinates, and parameter bounds are normalized to the first interval
length [6].
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1. Introduction

Optimal filtering problem has been a hot topic in past decades, within which Kalman
filtering is one of the most popular estimation approaches and considerable effort has been
devoted to its theory and applications. The applications of Kalman filtering theory may be
found in a large spectrum of different fields ranging from various engineering problems to
biology, geoscience, economics, and management [1]. For standard Kalman filtering, one
of the key assumptions is that system noise and observation noise are Gaussian, whose
covariances are known and stationary. However, in many actual problems, the statistical
characteristics (covariances) of noise may be time-varying instead of being stationary, and
in some cases it is impossible to get the exact measurement values, which means that the
noise covariances are uncertain instead of being exactly known; for this reason, the stochastic
noise is called “uncertain.” Consequently, the standard Kalman filter may not be robust
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against modeling uncertainty and disturbances. Thus, the study of a robust state estimation
approach is of practical importance and has been attracting more interest over the past few
years. A useful approach is to use a game-theoretic formulation with which one minimizes
the worst performance stimulated by uncertain factors, and some corresponding results of
robust filtering for linear systems with uncertain noise have been addressed in [2–4].

On the other hand, Markovian jump systems, which are convenient tools for
representing many real-world systems [5], have aroused much attention in recent years.
In the case of fault detection, fault-tolerant control, and multimodal control, discrete jumps
in the continuous dynamics are used to model component failures and sudden switch of
system dynamics. With further study of Markovian jump systems, many achievements have
been made in the last decade on stability analysis [6, 7], filtering [8, 9], and controller
design [10, 11]. Among the efforts towards filtering, Shi et al. [12] and Mahmoud et al. [13]
gave Kalman filtering equations for continuous-time and discrete-time Markovian jump
linear systems with structure uncertainty, respectively. However, in the above-referred
contributions, all the research work is facing the same problem as that of nonjump systems;
both the state equation and output measurement are subjected to stationary Gaussian noise so
that an optimal filtering gain is obtained based on the stationary noise covariance matrix. But
this is only an ideal assumption for Markovian jump systems. As we know, Markovian jump
systems are used to represent a class of systems which are usually accompanied by sudden
changes of working environment or system dynamics. For this reason, noise uncertainty
occurs more frequently or with more probability than in nonjump systems. Moreover, with
the uncertainty to noise covariance matrix increasing, the estimation of system state tends to
be inaccurate or false, which may cause errors in control signals and in worst case may lead
to breakdown of the whole dynamic systems.

To avoid this tragical situation, a direct way dealing with this problem is to redesign
Kalman filter for jump systems by using new noise covariance matrix. But as we have pointed
out above, it is almost impossible to get the real-time information of noise covariance matrix
since it is time-varying or unmeasurable; therefore we could not update Kalman filter gain
online. Another feasible way is to give an admissible bound for estimation performance
of system state so that the predesigned Kalman filter will remain effective and the system
operates in the course of nature as long as the real-time estimation error is within this
precision. To achieve this purpose, we perform the following design method. By using the
view of robust estimation, a maximum bound of noise covariance matrix uncertainty is
obtained through calculation according to admissible bias for estimation performance of
system state. If we could ensure the noise uncertainty to be within this bound via technical
method such as noise control, the estimation of system state can be within a desired precision,
and thus stability of the whole dynamic process can be achieved. It should be noted that in
this research work, we do not mean to eliminate the effect of noise entirely because it is almost
impossible or highly costly to do so in practical environment. Our work focuses on the upper
bound of noise change level; thus it means only that the change to noise covariance matrix is
required to be limited within this bound no matter what the stationary covariance matrix is.

In this paper, robust Kalman filtering for continuous-time Markovian jump nonlinear
systems with uncertain noise is considered. Firstly, we give some assumptions so that the
nonlinear jump systems can be modeled as a linear one by local linearization. Secondly, we
seek the maximum upper bound of nonstructural uncertainty to noise covariance matrix such
that the deviation of performance can be within a prescribed precision. Then, we discuss
the analytical solution of maximum bound using Lagrange method. Finally, we prove the
establishment of saddle inequality, and show that this filter design is a mini-max robust
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filter using game theory. At the end of the paper, an illustrative example is used to show
the validity of our method.

2. Problem Description

Throughout the paper, unless otherwise specified, we denote by (Ω,F, {Ft}t≥0,P) a complete
probability space with filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right-
continuous, and F0 contains all p-null sets). Let |x| stand for the usual Euclidean norm for
a vector x, and let |X| denote the Frobenius norm of a matrix X defined by |X| = λ1/2

max(XXT ),
where λmax(·) is the maximum eigenvalue of matrix and the superscript T represents
transpose. Operator Tr(·) denotes the matrix trace, and we denote by X > 0 (≥ 0) that matrix
X is positive definite (semipositive definite). Let {r(t), t ≥ 0} be a right-continuous Markov
process on the probability space taking values in finite state space S = {1, 2, . . . ,N} with
Π = [πij] being the chain generator, an N ×N matrix. The entries πij , i, j ∈ S, are interpreted
as transition rates such that

P
(
r(t + dt) = j | r(t) = i

)
=

⎧
⎨

⎩
πijdt + o(dt) if i /= j,

1 + πijdt + o(dt) if i = j,
(2.1)

where dt > 0 and limdt→0(o(dt)/dt) = 0. Here, πij > 0 (i /= j) is the transition rate from i to j.
Notice that the total probability axiom imposes πii < 0 and

N∑

j=1

πij = 0, ∀i ∈ S. (2.2)

Consider the following continuous-time Markovian jump nonlinear system with uncertain
noise:

ẋ = f
(
x, r(t)

)
+ω0,

y = h
(
x, r(t)

)
+ υ0,

(2.3)

where x ∈ Rn is state vector, and y ∈ Rm is measurement output. f(·, ·) ∈ Rn and h(·, ·) ∈ Rm

are nonlinear vector functions. ω0 and υ0 are n-dimensional and m-dimensional white noises
and satisfy the following assumption.

Assumption 2.1. For any given time s, t ≥ 0, there are

(1) E[ω0
t ] = 0, E[υ0

t ] = 0,

(2) Cov[ω0
t , ω

0
s] =W

0δt,s = (W + ΔW)δt,s, W ≥ 0, ΔW ≥ 0,

(3) Cov[υ0
t , υ

0
s] = V

0δt,s = (V + ΔV )δt,s, V > 0, ΔV ≥ 0,

(4) E[
(w0

t

υ0
t

)
·(w0T

s υ
0T
s )] =

[W0δt,s 0
0 V 0δt,s

]
.

In Assumption 2.1, W0 ∈ Rn×n and V 0 ∈ Rm×m consist of two parts, where W and V denote
the stationary noise covariance matrix, whose values are exactly known. ΔW and ΔV denote
the noise uncertainty caused by time-varying or sudden switch of system dynamics; they
are unknown but norm-bounded. δ(·, ·) is a Dirac function taking values in {0, 1}. For the
deduction of robust Kalman filter, we introduce the following assumption.
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Assumption 2.2. For any fixed system mode r(t) = i ∈ S and vector σ ∈ Rn, the nonlinear
vector functions f(·, ·), h(·, ·) are assumed to satisfy f(0, i) = h(0, i) = 0 and

∣
∣f(x + σ, i) − f(x, i) −A(i)σ

∣
∣ ≤
∣
∣ΔA(i)

∣
∣|σ|,

∣
∣h(x + σ, i) − h(x, i) − C(i)σ

∣
∣ ≤
∣
∣ΔC(i)

∣
∣|σ|,

(2.4)

where A(i), C(i) are Jacobian matrices of f(·, ·), h(·, ·), and ΔA(i), ΔC(i) satisfy

ΔA(i) = H1(i)F(i)E(i),

ΔC(i) = H2(i)F(i)E(i),
(2.5)

where H1(i), H2(i), and E(i), i ∈ S, are known constant matrices, and F(i), i ∈ S, is
unknown matrix satisfying FT (i)F(i) ≤ I. Establishing Assumption 2.2, the Markovian jump
nonlinear system could be transformed to a nominal linear model via local linearization
technique:

ẋ =
[
A
(
r(t)
)
+ ΔA

(
r(t)
)]
x +ω0,

y = [C
(
r(t)
)
+ ΔC

(
r(t)
)
]x + υ0.

(2.6)

For simplification, we denote A(r(t) = i), H1(r(t) = i), H2(r(t) = i), E(r(t) = i), ΔA(r(t) =
i), C(r(t) = i), and ΔC(r(t) = i) by Ai, H1i, H2i, Ei, ΔAi, Ci, and ΔCi.

Theorem 2.3. Consider stochastically stable Markovian jump system (2.6), and assume that the noise
is stationary,which means that ΔW = ΔV = 0. Then, one has the following standard Kalman filter
(see [12]):

˙̂x = Âix̂ +Ki

[
y − Ĉix̂

]
, (2.7)

where filtering gain Ki is given by the following coupled Riccati equations:

Âi = Ai +
(

1
εi
H1iH

T
1i +W

)
P−1
i ,

Ĉi =
1
εi
H2iH1iP

−1
i + Ci,

AiPi + PiAT
i + εiPiE

T
i EiPi +

N∑

j=1

πijPj +
1
εi
H1iH

T
1i +W = 0,

Ki =
(
QiĈ

T
i +

1
εi
H1iH

T
2i

)(
1
εi
H2iH

T
2i + V

)−1

,

(
Âi −KiĈi

)
Qi +Qi

(
Âi −KiĈi

)T +KiVK
T
i +

N∑

j=1

πijQj +
1
εi
H1iH

T
1i +W = 0.

(2.8)

Here, matricesPi > 0, Qi > 0 and scalar εi are chosen so that tr(Qi) reaches the minimum.
With the above standard Kalman filter gain Ki adopted, the state estimation error is

E
{(
x − x̂

)T(
x − x̂

)}
≤ max

j∈S
tr
(
Qj

)
. (2.9)
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Markovian jump
nonlinear system

Measurement
devices

Observed
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Kalman filter
K1, K2, . . . KN

Measurement error
resources V

System state
estimation
performance J

Figure 1: Standard Kalman filter with stationary noise.

Define the estimation error performance as

J
(
K1, K2, . . . , KN,W,V

)
= max

j∈S
tr
(
Qj

)
. (2.10)

According to Theorem 2.3 and the quality of Kalman filtering, if the noise is stationary (ΔW =
ΔV = 0), the estimation error performance can achieve the minimum value by adopting
standard Kalman filtering (2.7).

Now, we consider that the noise is not stationary, which means that ΔW /= 0 and
ΔV /= 0; thus the new covariance matrix of noise is W0, V 0. If we still adopt the former
predesigned standard Kalman filter gain Ki, the new state estimation error should be Q0

i ,
which satisfies

(
Âi −KiĈi

)
Q0
i +Q

0
i

(
Âi −KiĈi

)T +KiV
0KT

i +
N∑

j=1

πijQ
0
j +

1
εi
H1iH

T
1i +W

0 = 0. (2.11)

Therefore, the new estimation error performance is

J
(
K1, K2, . . . , KN,W

0, V 0) = max
j∈S

tr
(
Q0
j

)
. (2.12)

According to (2.10) and (2.12), the deviation of estimation error performance yielded
by noise uncertainty (ΔW,ΔV ) can be written as

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
= J
(
K1, . . . , KN,W

0, V 0) − J
(
K1, . . . , KN,W,V

)

= max
j∈S

tr
(
Q0
j

)
−max

j∈S
tr
(
Qj

)
≤ r,

(2.13)

where r > 0 is a parameter which is given according to detailed precision request of practical
dynamic process.

Our design purpose is shown in Figures 1 and 2. Suppose that the noise is stationary
with covariance matrix W, V , and that the system filtering performance is J with standard
filtering gain Ki adopted as shown in Figure 1. But now noise is with uncertainty (ΔW,ΔV );
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Systems error resources
W0 =W + ΔW

Controls
Noise control

|ΔW | ≤ a, |ΔV | ≤ b
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Measurement
devices

Observed
measurement

Kalman filter
K1, K2, . . . KN

Measurement error
resources V 0 = V + ΔV

System state
estimation J + ΔJ

Figure 2: Robust Kalman filter with uncertain noise.

the former designed Kalman filter gain Ki will no longer be an optimal one. If we still want
to get the precise estimation of system state so that the dynamic system could remain stable,
there are two choices. One is to update the Kalman filter gain Ki according to new noise
covariance matrix (W + ΔW,V + ΔV ), but this way is impossible or highly costly. Another
way is to still adopt the former designed filtering gain Ki and take some actions in noise
control. Based on this idea, the new estimation performance is J + ΔJ with Ki adopted, and
a deviation ΔJ occurs resulting from noise uncertainty (see Figure 2). For the robustness
of system, which means that ΔJ is less than an admissible precision r, there must besome
limitation to noise uncertainty. Using the view of robust estimation, we are trying to find a
maximum upper bound a, b for the uncertainty to noise covariance matrix. As long as the
noise uncertainty is controlled to satisfy |ΔW | ≤ a, |ΔV | ≤ b via noise control, we will achieve
deviation of estimation performance to be within the admissible precision r, which means
that ΔJ ≤ r; thus the general system has robustness to noise uncertainty, and stability of the
whole dynamic process can be maintained whatever the original stationary noise covariance
matrix (W,V ) is. In the following part of this paper, we seek the solution of maximum upper
bound a, b.

3. Upper Bound of Nonstructural Noise Uncertainty

3.1. Mathematical Expression of Upper Bound

According to (2.8) and (2.11), we have

(
Âi −KiĈi

)
ΔQi + ΔQi

(
Âi −KiĈi

)T +
N∑

j=1

πijΔQj + ΔW +KiΔVKT
i = 0, (3.1)

where ΔQi = Q0
i − Qi. From the above equation, it is easily seen that tr(ΔQi) is a linear

mapping of (ΔW,ΔV ). Define a compact convex set as Ξ = {(ΔW,ΔV ) : 0 ≤ ΔW ≤ ΔW∗, 0 ≤
ΔV ≤ ΔV ∗}; thus the deviation of performance ΔJ(K1, K2, . . . , KN,ΔW,ΔV ) is a mapping
from Ξ to R1, and it has the following facts.
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Fact 1. For any given noise uncertainty (ΔWj,ΔVj) ∈ Ξ, j = 1, 2, if ΔW1 ≤ ΔW2 and ΔV1 ≤
ΔV2, one has

ΔJ
(
K1, K2, . . . , KN,ΔW1,ΔV1

)
≤ ΔJ

(
K1, K2, . . . , KN,ΔW2,ΔV2

)
. (3.2)

Fact 2. Define the maximum admissible deviation of estimation performance r as

r = max
(ΔW,ΔV )∈Ξ

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
. (3.3)

Thus, r could be achieved only by maximum noise uncertainty (ΔW∗,ΔV ∗), which means
that

r = ΔJ
(
K1, K2, . . . , KN,ΔW∗,ΔV ∗

)
. (3.4)

The purpose of the following work is to construct a maximal compact convex set Ξ∗, as long
as the noise uncertainty satisfies (ΔW,ΔV ) ∈ Ξ∗, (2.13) is sure to establish. According to the
finity of mode S, (2.13) is equivalent to

tr
(
Q0
i

)
≤ r + max

j∈S
tr
(
Qj

)
. (3.5)

Therefore, for each mode i ∈ S, there is

tr
(
ΔQi

)
= tr
(
Q0
i

)
− tr
(
Qi

)
≤ r + max

j∈S
tr
(
Qj

)
− tr
(
Qi

)
. (3.6)

Define the maximum upper bound of noise uncertainty as |ΔW | ≤ a, |ΔV | ≤ b; thus

0 ≤ ΔW ≤ aIn, 0 ≤ ΔV ≤ bIm. (3.7)

Substituting the above inequalities into (3.1) and (3.6), one has

a tr
(
Di

)
+ b tr

(
Gi

)
≤ r + max

j∈S
tr
(
Qj

)
− tr
(
Qi

)
, ∀i ∈ S, (3.8)

where matrices Di,Gi > 0, i ∈ S, satisfy the following coupled Riccati equations:

(
Âi −KiĈi

)
Di +Di

(
Âi −KiĈi

)T +
N∑

j=1

πijDj + In = 0,

(
Âi −KiĈi

)
Gi +Gi

(
Âi −KiĈi

)T
+

N∑

j=1

πijGj +KiK
T
i = 0.

(3.9)

According to the above analysis, seeking a maximum upper bound of noise uncertainty
(ΔW,ΔV ) is equivalent to obtaining the optimal solution of a, b:

max a · b
s.t. a · tr

(
Di

)
+ b · tr

(
Gi

)
≤ r + max

j∈S
tr
(
Qj

)
− tr
(
Qi

)
, a ≥ 0, b ≥ 0, i ∈ S. (3.10)

Thus, seeking the optimal solution a, b is transformed to a nonlinear programming problem
with linear inequalities’ constraints. Now, we discuss how to find the analytical solution of
such problem.
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3.2. Analytical Solution

Since Ξ = {(ΔW,ΔV )} is a compact convex set and the inequalities’ constraints in (3.10)
compose a compact set on which a · b is defined as a continuous function, thus the nonlinear
programming problem must have optimal solution a∗, b∗ and the existence of solution is
proved. Next, we will seek the analytical solution a∗, b∗.

Decompose the original nonlinear programming problem (see (3.10)) into N
subproblems:

max a1 · b1

s.t. a1 · tr
(
D1
)
+ b1 · tr

(
G1
)
≤ r + max

j∈S
tr
(
Qj

)
− tr
(
Q1
)

max a2 · b2

s.t. a2 · tr
(
D2
)
+ b2 · tr

(
G2
)
≤ r + max

j∈S
tr
(
Qj

)
− tr
(
Q2
)

...

max aN · bN
s.t. aN · tr

(
DN

)
+ bN · tr

(
GN

)
≤ r + max

j∈S
tr
(
Qj

)
− tr
(
QN

)
.

(3.11)

By using Lagrange method, we have the optimal analytical solution for each subproblem as

a∗i =
r + maxj∈S tr

(
Qj

)
− tr
(
Qi

)

2 tr
(
Di

) ,

b∗i =
r + maxj∈S tr

(
Qj

)
− tr
(
Qi

)

2 tr
(
Gi

) .

(3.12)

Thus, the analytical solution for the original nonlinear programming problem (see (3.10)) is
given as

a∗ = min
i∈S

a∗i = min
i∈S

{
r + maxj∈S tr

(
Qj

)
− tr
(
Qi

)

2tr
(
Di

)

}

,

b∗ = min
i∈S

b∗i = min
i∈S

{
r + maxj∈S tr

(
Qj

)
− tr
(
Qi

)

2tr
(
Gi

)

}

.

(3.13)

Remark 3.1. The analytical solution of the nonlinear programming problem is given by the
above analysis; however, it is only an optimal solution for each subproblem. This analytical
solution in (3.13) is local optimal, but global suboptimal. For the global optimal solution, we
could only get the numerical solution using “fmincon” function in MATLAB software. The
optimal analytical solution of such nonlinear programming problem is still an open problem
in mathematics for further exploration.

Theorem 3.2. ConsiderMarkovian jump system (2.6). If one adopts state estimator (2.7) and Kalman
filter gain (2.8), there exists a maximum admissible compact set Ξ. As long as the uncertainty to noise
covariance matrix satisfies (ΔW,ΔV ) ∈ Ξ, the deviation of system state estimation error performance
ΔJ is within a given precision r.
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Remark 3.3. Take into account the existence of noise uncertainty, and the new noise covariance
matrix is given as (W+ΔW,V +ΔV ). Thus, the former predesigned optimal Kalman filter gain
Ki, which is deduced from stationary noise (W,V ), will no longer be optimal and may cause
distortion of control signals. But, this does not mean that we need to redesign Kalman filter.
According to the above analysis, if we can successfully limit noise uncertainty (ΔW,ΔV )
to be within an admissible compact set Ξ, the predesigned Kalman filter gain Ki can still
be effective though it is not optimal. Moreover, the deviation of estimation performance is
ensured to be within a desirable precision r.

4. Mini-Max Robust Filter

Let K∗1, K
∗
2, . . . , K

∗
N denote the standard Kalman filtering gain according to new noise

covariance matrix pair (W∗, V ∗) = (W +ΔW∗, V +ΔV ∗), which corresponds to the maximum
admissible noise uncertainty (ΔW∗,ΔV ∗); thus K∗1, K

∗
2, . . . , K

∗
N satisfy

AiP
∗
i + P

∗
i A

T
i + εiP

∗
i E

T
i EiP

∗
i +

N∑

j=1

πijP
∗
j +

1
εi
H1iH

T
1i +W

∗ = 0,

K∗i =
(
Q∗i Ĉ

T
i +

1
εi
H1iH

T
2i

)(
1
εi
H2iH

T
2i + V

∗
)−1

,

(
Âi −K∗i Ĉi

)
Q∗i +Q

∗
i

(
Âi −K∗i Ĉi

)T +K∗i V
∗K∗Ti +

N∑

j=1

πijQ
∗
j +

1
εi
H1iH

T
1i +W

∗ = 0.

(4.1)

According to the least-square quality of standard Kalman filtering, we have

ΔJ
(
K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗
)
≤ ΔJ

(
K1, K2, . . . , KN,ΔW∗,ΔV ∗

)
. (4.2)

On the other hand, with the establishment of Fact 1, there is

ΔJ
(
K∗1, K

∗
2, . . . , K

∗
N,ΔW,ΔV

)
≤ ΔJ

(
K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗
)
. (4.3)

Thus, we have the following saddle-point inequality:

ΔJ
(
K∗1, K

∗
2, . . . , K

∗
N,ΔW,ΔV

)
≤ ΔJ

(
K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗
)

≤ ΔJ
(
K1, K2, . . . , KN,ΔW∗,ΔV ∗

)
.

(4.4)

By game theory, we have

min
Ki

max
(ΔW,ΔV )∈Ξ

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
= max

(ΔW,ΔV )∈Ξ
min
Ki

ΔJ
(
K1, K2, . . . , KN,ΔW,ΔV

)
.

(4.5)

This means that the optimal estimation under the worst situation is a mini-max filter. It cannot
only minimize the estimation performance under the largest noise uncertainty (a∗In, b∗Im),
but can also ensure the deviation to be within a given precision r. For this reason, this Kalman
filter design is a robust mini-max filter.
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Remark 4.1. Traditional Kalman filtering design is performed on the basis that noise covari-
ance matrix is stationary and exactly known, and it will fail when the noise covariance matrix
is unknown or has uncertainty. In our method, the filter design could be divided into two
steps. Firstly, we design standard Kalman filter according to the stationary noise covariance
matrix (W,V ), then via some technical methods such as noise control we impose the noise
uncertainty to be within the given bound (ΔW∗,ΔV ∗), which could be presented in the
form of nonstructural (a∗In, b∗Im). In practical dynamic process, when the noise uncertainty
reaches the maximum, the ideal deviation of performance is ΔJ(K∗1, K

∗
2, . . . , K

∗
N,ΔW

∗,ΔV ∗),
and this deviation is less than the worst case ΔJ(K1, K2, . . . , KN,ΔW∗,ΔV ∗) ≤ r, which
ensures the estimation of system states and control signals to beprecise to some extent, and
the synthetical system to be robust and stable. For this reason, the Kalman filter design has
robustness to noise uncertainty, and according to (4.5), this filter is also a mini-max filter .

5. Simulation

Consider the following two-mode Markovian jump system.
Let the system mode r(t) = 1 be given by

ẋ1 = −0.6x1 + 0.5x2 + 0.01 sin
(
x1 + x2

)
+ω0

1,

ẋ2 = 0.7x1 + 0.02 cos
(
x1 − x2

)
+ω0

2,

y = x1 + 0.5x2 + υ0.

(5.1)

Let the system mode r(t) = 2 be given by

ẋ1 = −x1 + 0.6x2 + 0.02 sinx2 +ω0
1,

ẋ2 = 0.8x1 − 1.1x2 + 0.02 cosx1 +ω0
2,

y = x1 + υ0,

(5.2)

where uncertain state and measurement noise are ω0 =
[
ω0

1 ω0
2

]T and υ0; its stationary
covariance matrix is known as W =

[
1 0
0 1

]
, V = 1; system mode transition matrix is Π =[ −0.6 0.6

0.9 −0.9

]
; the admissible bound of performance deviation is r = 0.3.

The detailed algorithm is as follows.

(1) By applying Assumption 2.1, we have A1 =
[ −0.6 0.5

0.7 0

]
, C1 =

[
1 0.5

]
, A2 =

[ −1 0.6
0.8 −1.1

]
, C2 =

[
1 0
]
, H11 =

[
0.1 0.2

]T
, E1 =

[
0.1 0.1

]
, H12 =

[
0.1 0.1

]T , E2 =
[
0.2 0.2

]
.

Notice that ΔCi ≡ 0; thus H21 = H22 = 0.

(2) Solve (2.8) and get Q1, Q2 and K1, K2 : Q1 =
[ 2.6058 1.4207

1.4207 3.1934

]
, Q2 =

[ 2.6573 1.4181
1.4181 2.8473

]
, K1 =

[ 0.8748
1.0921

]
, K2 =

[ 0.6567
0.4866

]
.

(3) Substitute the result to (3.10), using Lagrange method; the upper bound of noise
uncertainty is given as

a∗ = 0.1014, b∗ = 0.1701. (5.3)
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(4) Let the new noise covariance matrix correspond to the maximum uncertainty:

W∗ =W + ΔW =W + a∗ · I2,

V ∗ = V + ΔV = V + b∗ · I1.
(5.4)

(5) Repeat step (2), and we have the correspondent Q∗1, Q
∗
2, K

∗
1, K

∗
2 for new noise

covariance matrix (W∗, V ∗):

Q∗1 =

[
2.7641 1.4417
1.4417 3.2688

]

, Q∗2 =

[
2.6788 1.4458
1.4458 2.9011

]

,

K∗1 =

[
0.8977
1.3021

]

, K∗2 =

[
0.7012
0.5041

]

.

(5.5)

(6) Applying the robust Kalman filtering, there is saddle-point inequality:

ΔJ
(
K∗1, K

∗
2,ΔW,ΔV

)
≤ ΔJ

(
K∗1, K

∗
2,ΔW

∗,ΔV ∗
)

= max
{

tr
(
Q∗1
)
, tr
(
Q∗2
)}
−max

{
tr
(
Q1
)
, tr
(
Q2
)}

= 0.2337 < 0.3

= ΔJ
(
K1, K2,ΔW∗,ΔV ∗

)
.

(5.6)

From the above simulation, it is seen that with the noise uncertainty being limited within the
upper bound a∗, b∗ via noise control, the deviation of system estimation performance is less
than the admissible precision r. Because the analytical solution a∗, b∗ is global suboptimal,
the deviation of system estimation performance (0.2337) is obviously less than admissible
precision (0.3), which means that this solution is a conservative one and the global optimal
solution of a, b could be a little greater than a∗, b∗. Thus, this method allows flexibility to the
designer to some extent.

6. Conclusion

In this paper, robust Kalman filter for continuous-time Markovian jump nonlinear systems
with uncertain noise is considered. For the stability of dynamic system when statistical
information of noise is unavailable, a new design method is given by obtaining the maximum
admissible bound of uncertainty to noise covariance matrix. Based on this, the deviation
of system estimation performance is thus guaranteed to be within a given precision.
Furthermore, the worst performance yielded by noise uncertainty can be minimized by this
method since it is a mini-max robust filter. The analytical solution of the bound to noise
uncertainty is also discussed in this paper, which is a global, suboptimal, and conservative
solution using Lagrange method. The simulation results show the validity of this design.
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Generally, the greatest difficulty encountered when designing a fuzzy sliding mode controller
(FSMC) or an adaptive fuzzy sliding mode controller (AFSMC) capable of rapidly and efficiently
controlling complex and nonlinear systems is how to select the most appropriate initial values
for the parameter vector. In this paper, we describe a method of stability analysis for a GA-based
reference adaptive fuzzy sliding model controller capable of handling these types of problems
for a nonlinear system. First, we approximate and describe an uncertain and nonlinear plant for
the tracking of a reference trajectory via a fuzzy model incorporating fuzzy logic control rules.
Next, the initial values of the consequent parameter vector are decided via a genetic algorithm.
After this, an adaptive fuzzy sliding model controller, designed to simultaneously stabilize and
control the system, is derived. The stability of the nonlinear system is ensured by the derivation
of the stability criterion based upon Lyapunov’s direct method. Finally, an example, a numerical
simulation, is provided to demonstrate the control methodology.
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1. Introduction

Over the past few years, fuzzy control (FC) can be designed without needing an exact
mathematical model of the system to be controlled, and can efficiently control complex
continuous unmodeled or partially modeled processes [1, 2]. There have been significant
research efforts devoted to the analysis and control designs for fuzzy systems (see [3, 4]
and the references therein). The main motivation for this development has been applied to
practical nonlinear systems and engineering problems (see [5–7] and the references therein).
Undoubtedly, Lyapunov’s theory is one of the most common approaches for dealing with the
stability analysis of systems. However, to overcome the conservatism that arises from the use
of Lyapunov’s methods, it has been necessary to develop a number of more effective methods,
for example, fuzzy Lyapunov functions [8, 9]. There are also many important issues that have
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advanced results for T-S fuzzy control systems, such as time delays [10–13], H∞ performance
[3–15], robustness [16, 17], neural networks (NNs), and genetic algorithms (GAs) [18–21].
Furthermore, much work has been published on the design of fuzzy sliding mode controllers
(FSMCs) [22, 23]. An FSMC is composed of an FC and a sliding mode controller (SMC)
[24–26]. An FSMC is a powerful and robust control strategy for the treatment of modeling
uncertainties and external disturbances. Although control performance is good, one still has
to decide on the parameters. This is one of the most important issues in their design.

In the so-called adaptive FSMC (AFSMC), [27–29], an adaptive algorithm is utilized to
find the best high-performance parameters for the FSMC [30, 31]. In recent years, adaptive
fuzzy control system designs have attracted a good deal of attention as a promising way
to approach nonlinear control problems [30, 31]. For adaptive fuzzy control, one initially
constructs a fuzzy model to describe the dynamic characteristics of the controlled system;
then, an FSMC is designed based on the fuzzy model to achieve the control objectives.
After this, adaptive laws are designed (with Lyapunov’s synthesis approach) for tuning the
adjustable parameters of the fuzzy models, and analyzing the stability of the overall system.

Deciding on the fuzzy rules and the initial parameter vector values for the AFSMC is
very important. A genetic algorithm [32–34] is usually used as an optimization technique
in the self-learning or training strategy for deciding on the fuzzy control rules and the
initial values of the parameter vector. This GA-based AFSMC should improve the immediate
response, the stability, and the robustness of the control system.

Another common problem encountered when switching the control input of the FSMC
system is the so-called “chattering” phenomenon. Chattering is eliminated by smoothing the
control discontinuity inside a thin boundary layer, which essentially acts as a low-pass filter
structure for the local dynamics [25]. The boundary-layer function is introduced into these
updated laws to cover parameter and modeling errors, and to guarantee that the state errors
converge within a specified error bound.

In this study, we focus on the design of robust tracking control for a class of nonlinear
uncertain system involving plant uncertainties and external disturbances. First, the nonlinear
system for the tracking of a reference trajectory for the plant [35] is described via fuzzy
models with fuzzy rules. A genetic algorithm is used to find the initial values of the parameter
vector. Then the designed adaptive control laws of the reference adaptive fuzzy sliding mode
controller (RAFSMC) are updated. This GA-based RAFSMC would improve the immediate
response, the stability, and the robustness of the control system. Finally, both the tracking
error and the modeling error approach zero.

2. Reference modeling of a nonlinear dynamic system

The plant is a single-input/single-out nth-order system with n ≥ 1:

ẋ1 = x2,

...

ẋn−1 = xn,

ẋn = f(x) + g(x) ·u + d,

y = x1,

(2.1)

where x = [x1, x2, . . . , xn−1, xn]
T ∈ Rn is the state vector of the system; u ∈ R is the control
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signal; f , g are smooth nonlinear functions; d denotes the external disturbance d(t) which is
unknown but usually bounded.

The states x = [x1, x2, . . . , xn−1, xn]
T are assumed to be available. For example, a single

robot can be represented in the form of (2.1), with n = 2 and x(x1 = θ, x2 = θ̇) being
measurable. Differentiating the output with respect to time for n times (till the control input
u appears), one obtains the input/output form of (2.1):

(n)
y = f(x) + g(x) ·u + d(t). (2.2)

The system is said to have a relative degree n, if g(x) is bounded away from zero.

Assumption 2.1. g(x) is bounded away from zero over a compact set ζ ⊂ Rn,

∣∣g(x)
∣∣ ≥ b > 0, ∀x ∈ ζ. (2.3)

If the control goal is for the plant output y to track a reference trajectory yr , the
reference control input r can be defined by the following reference model:

r =
(n)
yr +αn−1

(n−1)
yr +αn−2

(n−2)
yr + · · · + α1ẏr + α0yr, (2.4)

where αn−1, αn−2, . . . , α1, α0 are chosen such that the polynomial �n + αn−1�
n−1 + αn−2�

n−2 + · · ·+
α1� + α0 is Hurwitz, and � here denotes the complex Laplace variable.

If f(x), g(x) are known, and assumption 2.1 is satisfied, the control law can defined
by

u =
−f(x) − d(x) −

(
αn−1

(n−1)
y + · · · + α1ẏ + α0y

)
+ r

g(x)
, ∀x ∈ S. (2.5)

Substituting (2.5) into (2.1), the linearized system becomes

( (n)
yr −

(n)
y
)
+ αn−1

( (n−1)
yr −

(n−1)
y

)
+ · · · + α1

(
ẏr − ẏ

)
+ α0

(
yr − y

)
= 0. (2.6)

If we define e = yr−y as the tracking error, then the reference control input (2.4) results
in the following error equation:

(n)
e +αn−1

(n−1)
e + · · · + α1ė + α0e = 0. (2.7)

It is clear that e will approach zero if αn−1, αn−2, . . . , α1, α0 are chosen, such that the
polynomial �n + αn−1�

n−1 + αn−2�
n−2 + · · · + α1� + α0 is Hurwitz.
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Fuzzy rule base

Fuzzifi-
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cation
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Figure 1: The fuzzy logic controller system.

3. Development of a GA-based FSMC

In general, people describe the decision-making process using linguistic statements, such
as “IF something happens, THEN do a certain action.” For example, let us look at a rule:
“IF the temperature is high, THEN the power of the heater is low.” In this statement both
“high” and “low” are linguistic terms. Although this kind of linguistic rule is not precise,
humans can use them to make correct decisions. To utilize such fuzzy information in a
scientific way, mathematical representation of the fuzzy information is needed. Fuzzy set
theory and approximate reasoning are two ways that such linguistic information can be dealt
with mathematically. A review of the literature provides the theoretical foundation for the
developed fuzzy logic controller. The configuration of the fuzzy logic controller is shown in
Figure 1.

The basic concepts for fuzzy sets and fuzzy logic are briefly described below.
(1) Fuzzy set, fuzzifier, and membership function. Let X denote the universe of discourse.

A fuzzy set A in X is characterized by a membership function μA : X→ [0, 1], with μA(x)
representing the grade of membership of x ∈ X in fuzzy set A. For example, the Gaussian-
shaped membership function is represented as μA(x) = exp(−((x −m)/σ)2), where m is the
center and σ denotes the spread of the membership function.

(2) Fuzzy rule base and fuzzy inference engine. Each rule Rj in the fuzzy rule base can be
expressed as

Rj : IF x1 is A1j and · · · xn is Anj , THEN y is Bj ; and μRj (χ) =
n⋂

i=1

μAij

(
xi
)
. (3.1)

(3)Deffuzzifier. The defuzzifier maps a fuzzy setA inX to a crisp point x ∈ X. There are
several defuzzification methods described in the literature. The most popular is the weighted
average defuzzification method defined as y =

∑N
j=1θj ·μRj (χ)/

∑N
j=1μRj (χ).

The FSMC is composed of a sliding mode controller and an FLC. This makes it a
powerful and robust control strategy for the treatment of modeling uncertainties and external
disturbances. The sliding mode plant combined with the FLC is shown in Figure 2.

Genetic algorithms (GAs) are parallel, global search techniques derived from the
concepts of evolutionary theory and natural genetics. They emulate biological evolution by
means of genetic operations such as reproduction, crossover, and mutation. GAs are usually
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Figure 2: The sliding mode plant combined with the FLC.
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Figure 3: GA-based FSMC.

used as optimization techniques and it has been shown that they also perform well with
multimodal functions (i.e., functions which have multiple local optima).

Genetic algorithms work with a set of artificial elements (binary strings, e.g.,
0101010101) called a population. An individual (string) is referred to as a chromosome, and a
single bit in the string is called a gene. A new population (called offspring) is generated by the
application of genetic operators to the chromosomes in the old population (called parents).
Each iteration of the genetic operation is referred to as a generation.

A fitness function, specifically the function to be maximized, is used to evaluate
the fitness of an individual. The offspring may have better fitness than their parents.
Consequently, the value of the fitness function increases from generation to generation. In
most genetic algorithms, mutation is a random-work mechanism to avoid the problem of
being trapped in a local optimum. Theoretically, a global optimal solution can be found.

Offspring are generated from the parents until the size of the new population is equal
to that of the old population. This evolutionary procedure continues until the fitness reaches
the desired specifications. However, in a specific application, the fitness specification might
be used to stop the evolutionary process. In most applications, the optimal fitness value is
totally unknown. In this case, the evolutionary process is interrupted either by stabilization
of the fitness value (the variation is below a specific value) or by reaching the maximum
number of generations.

Knowledge acquisition is the most important task in the fuzzy sliding mode controller
design. The initial values of the entries in the consequent parameter vector are decided by
the self-organizing of FSMC system which developed based on GA. The configuration of this
system is shown in Figure 3.
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The learning procedure for the GA-based FSMC is summarized as follows.
(1) The fuzzy rule base of FSMC (with fixed premise parts and random consequence

parts) is constructed. For example, FSMC for system (2.1):

FSMC :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

R
(i)
1 : IFS is PB(4 , 0.424) THENu is û(i)1

(
θ̂
(i)
1

)
,

R
(i)
2 : IFS isPM(3.2 , 0.424) THENu is û(i)2

(
θ̂
(i)
2

)
,

...

R
(i)
N : IFS isPB(−4 , 0.424) THENu is û(i)N

(
θ̂
(i)
N

)
,

(3.2)

where û(i)j is an unknown linguistic label for the control u; θ̂(i)j is the adjustable parameter,
which have to be encoded as binary strings for genetic operations.

(2) Encode each parameter, θ̂(i)j (i = 1, 2, . . . ,M; j = 1, 2, . . . ,N), to a d-bit binary code,

P
(i)
j (h) = (b1

j b
2
j · · · b

d
j )(h) = enc(θ̂(i)j (h)), where b1

j , b
2
j , . . . , b

d
j ∈ {0, 1} and enc(∗) denote the

encoding operator which encodes the real values to the corresponding binary codes and
synthesizes the chromosome of the ith individual.

(3) Establish the population for generation h, Pj(h) = {P (1)
j (h), P (2)

j (h), . . . , P (M)
j (h)},

where M is the population size, and every individual P (i)
j (h) corresponds to a binary-code

parameter of an FSMC candidate.
(4) Evaluate the fitness value of each individual. The fitness function F is defined

as F = 1/(w‖s(k)‖ + v‖u(k)‖ + ε0), where k = int(t/Δt) denotes the iteration instance;
Δt is the sampling period; int(∗) is the rounding off operator; w and v are positive
weights; ε0 is a very small positive constant used to avoid the numerical error of dividing
by zero.

(5) Based on the fitness value of the individual, keep the best and apply the genetic
operators. Assuming that the population size M is 12, pick the top ten-fitted individuals
in Pj(h) to apply as genetic operators, that is, reproduction, crossover, mutation (assuming
the mutation rate is 0.03125), and keep the top two fitted individuals to generate a new
population Pj(h + 1), as the offspring of Pj(h).

(6) Decode each binary code to its real value and use this to calculate the control u,
then apply u to the system (2.1).

(7) Set h = h + 1; go to Step 2, and repeat the aforementioned procedure until F ≥ FM
or h ≥ H, where FM and H denote an acceptable specific fitness value and the top generation
number, respectively, as specified by the designer.

In general, there are at least four methods for the construction of a fuzzy rule base: (1)
from expert knowledge or operator experience; (2) modeling an operator’s control action; (3)
modeling a process; (4) generating fuzzy rules by training, self-organizing, and self-learning
algorithms. In Figure 3, GA is used as the learning and training mechanism. The use of the GA
means that the second, third, and fourth approaches also provide an efficient way to obtain
a fuzzy rule base. Although there are several methods that can provide excellent results
in this kind of modeling [36–38], we are convinced that GAs are the most advantageous
way to extract an optimal, or at least suboptimal fuzzy rule base for the initial values of the
consequent parameter vector of the FSMC or AFSMC.
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Figure 4: GA RAFSMC system.

4. GA-based RAFSMC for nonlinear systems

A schematic representation of the GA RAFSMC system is shown in Figure 4. If f(x), g(x) are
known, we can design the FLC (4.1) to approximate u:

u(θ) =
m∑

k=1

Rk

(
−
(∥∥Si − Cki

∥∥

β

)2)
· θk, (4.1)

where m is the sum of the fuzzy rules, θk, that is, |θk| ≤ θmax indicate the adjustable
consequent parameters of the FLC, and R(S) = [R1(S), R2(S), . . . , Rm(S)]

T is the vector of
fuzzy basis function [23] which is defined as

Rk(S) = Rk

(∥∥Si − Cki

∥∥) =
∏n

i=1μk(‖Si − Cki‖)
∑m

k=1

[
∏n

i=1μk(‖Si − Cki‖)
] , (4.2)

where k = 1, . . . , m and i = 1, . . . , n with μk represent the degree of membership. The Si in μk
can be chosen by

μk
(∥∥Si − Cki

∥∥) = exp
(
−
(∥∥Si − Cki

∥∥

β

)2)
. (4.3)
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Since here n, the sum of input variables, is only one, we know that

Rk(S) =
μk
(
S − Ck

)

∑m
k=1 μk

(
S − Ck

) , (4.4)

where k = 1, . . . , m with μk represent the degree of membership. The S in μk can be chosen
by μk(‖S − Ck‖) = exp(−(‖S − Ck‖/β)2).

From the approximation property of the fuzzy system, an uncertain and nonlinear
plant can be well approximated and described via a fuzzy model with FLC rules to achieve
the control object [14, 39, 40].

Assumption 4.1. For x ∈ ζ ⊂ Rn, there exists an adjustable parameter vector θ = [θ1, θ2,

. . . , θm] T such that the fuzzy system u(S, θ) = θ
T
R(S) can approximate a continuous function

u with accuracy εmax over the set ζ, that is, ∃ θ, such that

sup |u(S, θ) − u(S) | ≤ εmax, ∀S ∈ ζ. (4.5)

Let θ̂ denote the estimate of θ at time t. Now, we can define the estimated control
output û(S, θ̂) by

û(S, θ̂) =
m∑

k=1

θ̂k · Rk(S) = θ̂TR(S), (4.6)

and decide on the initial values of the consequent parameter vector θ̂ = [θ̂1, θ̂2, . . . , θ̂m]
T

based
on the genetic algorithm.

First, define the parameter error vector at time t by θ̃ = θ − θ̂, and then

θ̃TR(S) = u(S, θ) − û(S, θ̂). (4.7)

According to assumption 4.1, we can define the modeling error

ε = u − u(S, θ), (4.8)

where |ε| ≤ εmax.
We can say that

u = û(S, θ̂) + θ̃TR(S) + ε. (4.9)

Now, by substituting (4.9) into (2.5), we obtain the error dynamic equation:

(n)
e +αn−1

(n−1)
e + · · · + α1ė + α0e = g(x) ·

(
θ̃TR(S) + ε

)
. (4.10)
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We now define the augmented error as

S = βn−1
(n−1)
e + · · · + β1ė + β0e, (4.11)

where βn−1, . . . , β1, β0 in (4.11), and αn−1, . . . , α1, α0 in (4.10) are chosen such that

M̂(�) =
βn−1�

n−1 + · · · + β1� + β0

�n + αn−1�n−1 + · · · + α1� + α0
=
N(�)
D(�)

(4.12)

is strictly positive real (SPR) transfer function, and N(�) and D(�) are coprime. Now, S and
g(x)·(θ̃TR(S) + ε) can be related by

L
{
S(t)

}
= M̂(�)·L

{
g(x) ·

(
θ̃TR(S) + ε

)}
, (4.13)

where L{ ·} is the Laplace transform of the function, and � denotes the complex Laplace
transform variable.

If we define em = [e, . . . ,
(n−1)
e ]

T

as the states of (4.10), then (4.10) can be realized as

ėm(t) = Λ · em(t) + b ·
[
g(x) ·

(
θ̃TR(S) + ε

)]
, (4.14)

S(t) = cTem(t), (4.15)

where

Λ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0

0 0 0 · · · 0 1

−α0 −α1 −α2 · · · −αn−2 −αn−1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

n×n

c = [ β0 β1 · · · βn−1]
T , let βn−1 = 1.

, b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0

0
...

0

0

1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

n×1

, (4.16)

According to the Kalman-Yakubovich lemma, when M̂(�) is SPR, there exist symmetric and
positive definite matrices P and Q such that

PΛ + ΛTP = −Q,

Pb = c, for i = 1, . . . , p.
(4.17)

Next, we investigate the asymptotic stability of the origin using Lyapunov’s function
candidates. First, define a Lyapunov candidate function as

V
(
em, θ̃

)
= η · eTmPem + θ̃TH11θ̃, (4.18)
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where η is a positive constant representing the learning rate

θ̃ = [ θ̃1 θ̃2 · · · θ̃m]
T
, H11 = g(x) · Im×m,

θ̃TH11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

g(x) · θ̃1 0 · · · 0

0 g(x) · θ̃2 · · · 0
...

...
. . . 0

0 0 · · · g(x) · θ̃

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

m×m

, m : the sum of the fuzzy rules.
(4.19)

If eTmPem > φ2, the derivate of V ( em , θ̃ ) along the trajectories of the system should
be negative definite for all nonlinearities that satisfy a given sector condition (Lyapunov’s
stability):

V̇
(
em, θ̃

)
= η ·

(
ėTmPem + eTmPėm

)
+ 2θ̃TH11

˙̃θ. (4.20)

As mentioned above θ̃ = θ − θ̂, and we can infer that ˙̃θ = − ˙̂θ, and

V̇ = η ·
(
eTmΛ

TPem + eTmPΛem
)
+ 2η · eTmPb·

[
g(x) ·

(
θ̃TR(S) + ε

)]
+ 2 · θ̃TH11

(
− ˙̂θ
)

= η · eTm(−Q)em + 2η ·S ·
[
g(x) ·

(
θ̃TR(S) + ε

)]
+ 2 · θ̃TH11

(
− ˙̂θ
)
.

(4.21)

In general, chattering must be eliminated for the controller to perform properly. This
can be achieved by smoothing out control discontinuity in a thin boundary layer neighboring
the switching surface. To amend the modeling error ε and the chattering phenomenon,
we propose a modified adaptive law (4.22) with which to tune the adjustable consequent
parameters of the RAFSMC:

˙̂θ = η · |S| ·R(S) · sat
(
S

Φ

)
. (4.22)

The thin boundary layer function sat(S/Φ) is defined as

sat
(
S

Φ

)
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1, if
(
S

Φ

)
> 1,

(
S

Φ

)
, if − 1 ≤

(
S

Φ

)
≤ 1,

−1 , if
(
S

Φ

)
< −1,

(4.23)

where Φ > 0 is the thickness of the boundary layer.
If we substitute (4.22) into (4.21), then (4.21) becomes

V̇ = −η · eTmQem + 2η ·S ·
[
g(x) ·

(
θ̃TR(S) + ε

)]
− 2η · |S| ·

[
g(x) · θ̃TR(S)

]
· sat

(
S

Φ

)
. (4.24)
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When |S| > Φ, then

V̇ = −η · eTmQem + 2η · eTmc ·
(
g(x) · ε

)

≤ −η ·
∥
∥em

∥
∥2 ·Q + 2η ·

∥
∥em

∥
∥ · ‖c‖ ·

∥
∥g(x) · ε

∥
∥

≤ −η ·
∥
∥em

∥
∥ ·
[∥∥em

∥
∥ · Q − 2‖c‖·

∥
∥g(x)· ε

∥
∥].

(4.25)

If μ is positive and small enough, then φ > 0 and σ > 0, such that

{
φQ
√
P
− 2‖c‖ ·

∥
∥g(x) · ε

∥
∥
}
> σ, (4.26)

where eTmPem > φ2.
It is real that V̇ ≤ −η · ‖em‖ ·σ if eTmPem > φ2 and |S| > Φ, and hence V̇ < 0. Thus V will

gradually converge to zero as all the ς.
Based on the above inference and Lyapunov’s stability theory, em will gradually

converge inside the bounded zone |em| ≤ (φ/
√
P,Φ/β0 ). The tracking error and the modeling

error will then both approach zero.

Theorem 4.2. Consider a nonlinear uncertain system
(n)
y = f(x) + g(x) ·u + d that satisfies the

assumptions (θ, θ̂). Suppose that the unknown control input u can be approximated by û(S, θ̂) as
in (4.6). Now, S is given by (4.15), and Q is a symmetric positive definite weighting matrix.

5. Numerical simulation

In this section, the proposed GA-based RAFSMC is demonstrated with an example of the
control methodology.

Consider the problem of balancing an inverted pendulum on a cart as shown in
Figure 5. The dynamic equations of motion of the pendulum are given below [27]:

ẋ1 = x2,

ẋ2 =
g· sin(x1) − aml x2

2 sin(2x1)/2 − a cos(x1) ·u
4l/3 − aml cos2(x1)

,
(5.1)

where x1 denotes the angle (in radian) of the pendulum from the vertical; and x2 is the
angular vector. Thus the gravity constant g = 9.8 m/s2, wherem is the mass of the pendulum,
M is the mass of the cart, l is the length of F (input force), s is the force applied to the cart (in
Newtons), and a = 1/(m +M). The parameters chosen for the pendulum in this simulation
are m =0.1 kg, M =1 kg, and l =0.5 m.

The control objective in this example is to balance the inverted pendulum in the
approximate range x ∈ (−π/2 , π/2). The GA-based RAFSMC designed based on the
procedure discussed above will have the following steps.

Step 1. Specify the response of the control system by defining a suitable sliding surface

S = cTem = 5e + ė [27]. (5.2)
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Inverted-pendulum

θ (angle)

θ (angle velocity)

Hinge

Pole

F (input force)
Cart

Figure 5: Inverted pendulum system.
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Figure 6: Angle response of the pendulum with the initial condition x1(0) = 30◦.

Step 2. Construct the fuzzy rule base (3.2) and the fuzzy models (4.6) based on the genetic
algorithm. After carrying out the abovementioned genetic-based learning procedure, the
number of individual strings is 10, the size of population M is 12, the crossover rate is 0.8333,
the mutation rate is 0.03125, and the maximum number of the generations H is 15. Now, the
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Figure 7: Control force in the pendulum system with the initial x1(0) = 30◦.
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Figure 8: Angle response of the pendulum with the initial condition x1(0) = 60◦.

initial values of the consequent parameter vector θ̂ for the GA-based RAFSMC can be chosen
as follows:

[ 1, 0.6263, 0.4113, 0.2100, 0.0850, 0 ,−0.0850,−0.2100,−0.4113,−0.6263, − 1]T . (5.3)

Step 3. Apply the controller as given by (4.6) to control the nonlinear system (2.1). Now, let
η = 10, Φ = 0.3, and adjust θ̂ by the adaptive law as given by (4.22).

Therefore, based on Theorem 4.2, the proposed GA-based RAFSMC can asymptoti-
cally stabilize the inverted pendulum. The simulation results are illustrated in Figures 6–9.
The initial conditions are x1(0) = 30◦, 60◦, and x2(0) = 0.
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Figure 9: Control force in the pendulum system with the initial condition x1(0) = 60◦.

Figures 6–9 show that the inverted pendulum system (compare with Yoo and Ham
[27]) is rapidly, asymptotically stable because the system trajectory starts from any nonzero
initial state, to rapidly and asymptotically approach the origin.

6. Conclusion

The stability analysis of a GA-based reference adaptive fuzzy sliding model controller for
a nonlinear system is discussed. First, we track the reference trajectory for an uncertain and
nonlinear plant. We make sure that it is well approximated and described via the fuzzy model
involving FLC rules. Then we decide on the initial values of the consequent parameter vector
θ̂ via a GA. Next, an adaptive fuzzy sliding model controller is proposed to simultaneously
stabilize and control the system. A stability criterion is also derived from Lyapunov’s direct
method to ensure stability of the nonlinear system. Finally, we discuss an example and
provide a numerical simulation. From this example, we see that the stability of the inverted
pendulum system is ensured because the trajectories from nonzero initial states approach
to zero by proposed controller design, and the results demonstrate that with this control
methodology we can rapidly and efficiently control a complex and nonlinear system.
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solved by linear matrix inequalities.
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1. Introduction

Lightweight space structures are the future of space vehicles and satellite technology.
Possessing ideal space launching characteristics, such as minimal storage volume and
minimal mass, these lightweight structures will propel the space industry into the next
generation. Space satellites must be expertly controlled from a vibration standpoint because
signal transmission to and from the earth mandates tight tolerances. Vibration control is
critical to mission success as well as satellite longevity [1].
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Large and light space structures are basically flexible due to their low stiffness and
damping. These characteristics may cause problems since flexible structures present many
vibration modes within or beyond the bandwidth of the controller. When only a few
modes are dealt in the controller, spillover may occur because uncontrolled higher modes
or unmodeled modes may become excited. The effects of spillover can occur where structure,
sensors, or actuators are poorly modeled, and the numbers of sensors and actuators are
low.

In order to achieve better dynamic properties, great attention has been paid to the
control of structural vibration using intelligent structures. So, the application of active
vibration control in flexible structures has been increasingly used as a solution for space
structures to achieve the degree of vibration suppression required for precision pointing
accuracy and to guarantee the stability.

In truss structures, active members are integrated because of their multiple functions.
They serve as structural elements, and as load device. As actuators, the active member exerts
internal forces, and as sensor elements, it allows measurement of the elastic strains. The
piezoelectric stack actuators are remarkable because they are light weight, high force, and
low power consumption [2].

Several researchers have proposed the use of piezoelectric material for active vibration
control. In truss structures, the control force can be accomplished by piezoelectric active
members, known as “PZT wafer stacks,” that are mechanically linked in series producing
an axial force in the bar that are positioned.

State space realization is used in modern control formulation to obtain the dynamic
model, but in many cases this model has significant uncertainties in relation to the real
system. These uncertainties can be caused, for instance, by parameter variation during
the operation, or by dynamic uncertainties (nonlinearities, higher modes, noises, etc.). So,
for an efficient experimental control design, it is important to qualify and quantify the
uncertainties.

In this context, this paper proposes a methodology for robust control design
considering uncertainties in the dynamic model, represented by state space realization.
It is designed as an active controller to attenuate vibrations in a truss structures. The
active members are composed by PZT wafer stacks actuators, and the control design is
based on linear quadratic regulator solved through linear matrix inequalities (LMIs). LMI
presents advantages when compared to conventional techniques, and it has contributed to
overcome many difficulties in control design [3]. In the last decade, LMI has been used to
solve many problems that until then were unfeasible through other methodologies, mainly
due to the emergence of powerful algorithms to solve convex optimization problem, for
instance, the interior point method (see Boyd et al. [4] and Gahinet et al. [5]). Sarracini
and Serpa [6] apply Hinfinite control approach solved through LMI for model reduction.
Silva et al. [7] present a consistent formulation for control design based on LMI approach.
Chen and Zhu [8] present a formulation based on H2, H∞, and mixed H2/H∞ control
strategies for a flexible rotor system under seismic excitation by means of linear matrix
inequality (LMI) to attenuate the transient vibration of the flexible rotor system under a
nonstationary seismic excitation and to improve robust performance of the flexible rotor
system.

In the present work, the numerical method of subspace and the Kalman estimator
were used to identify the dynamic model with experimental data and to estimate the state
vector, respectively. Experimental results, obtained through dSPACE control board and the
Simulink/Matlab, are shown in order to validate the proposed approach.
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2. Dynamic modeling of robust control

Modern linear control formulation is based on the state space realization. Using this
formulation, the design of a vibration control for multi-input multioutput (MIMO) system
is similar of simple-input simple-output (SISO) system approach. This realization is
appropriate for experimental applications because there are many numerical methods to
solve it in real time, as for instance, the numerical method of Runge-Kutta. A linear
differential inclusion (LDI) system, in modal state space form, considering the matrices with
appropriate dimensions and assumed to be known, is given by

ẋ(t) = A(t)x(t) + Bw(t)w(t) + Bu(t)u(t) + Einvin(t),

y(t) = C(t)x(t) + Du(t) + Eoutvout(t),
[

A(t) Bw(t)

Bu(t) C(t)

]

∈ Ω,

(2.1)

where Ω is a polytope that is described by a list of vertexes in a convex space, A(t) is the
dynamic matrix, Bw(t) is the matrix of disturbance, Bu(t) is the matrix of control input, C(t)
is the output matrix, w(t) is the vector of disturbance input, u(t) is the vector of control
input, y(t) is the output vector, and vin(t) and vout(t) are stationary zero-mean Gaussian
white process and measurement noises vectors with unit intensity, respectively. In this paper,
some variables, as the matrices in (2.1), are represented as time function to emphasize
the uncertainties in the system parameters. The vectors Ein and Eout are the process and
measurement noise vectors, respectively.

The state vector x(t) of the modal coordinates system consists of n independent
components, xi(t), that represent a state of each mode, where n is the number of modes.
The xi(t) (ith state component), related to (2.3), is defined as [9]

xi(t) =

{
qmi(t)

qmoi(t)

}

, where qmoi(t) = ζi(t)qmi(t) +
q̇mi(t)
ωi(t)

, (2.2)

where qmi and qmoi are named modal displacement and velocity for ith vibration mode,
respectively. Using modal coordinates, these parameters have no physical interpretation.
Also, ζi and ωi are damping factor and natural frequency of the ith mode. These parameters
are represented as time function to emphasize the uncertainties.

The modal state space realization is characterized by the block-diagonal dynamic
matrix and the related input and output matrices [9]:

A(t) = diag(Ami(t)), Bw(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Bwm1(t)

Bwm2(t)

...

Bwmn(t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

, Bu(t) =

⎡

⎢⎢⎢⎢⎢⎢
⎣

Bum1(t)

Bum2(t)

...

Bumn(t)

⎤

⎥⎥⎥⎥⎥⎥
⎦

,

C(t) =
[
Cm1(t) Cm2(t) · · · Cmn(t)

]
,

(2.3)
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where i = 1, 2, . . . , n; Ami, Bwmi, Bumi, and Cmi are 2×2, 2×k, 2×s, and r×2 blocks, respectively;
k is the number of disturbances; s is the number of control inputs; and r is the number of
outputs. These blocks can be obtained in several different forms and also it is possible to
convert it in another realization through a linear transformation. One possible form to block
Ami(t) is

Ami(t) =

[
−ζi(t)ωi(t) ωi(t)

−ωi(t)
(
ζ2
i (t) − 1

)
−ζi(t)ωi(t)

]

. (2.4)

The dynamic model of the truss structure was initially identified using experimental
data through subspace identification method. nI > 1 identification tests were considered to
characterize the uncertainties in the system parameters. The members that include PZT stack
actuator are nominated by active members. It is considered a variation in the properties of
these members caused by the insertion of these actuators. These uncertainties are described
by a polytopic linear differential inclusion (PLDI):

Ω =

[
Ac(t) Bwc(t)

Buc(t) Cc(t)

]

,

Co
{
S1, . . . , Sv

}
,

where Si =

[
Aci Bwci

Buci Cci

]

, i = 1, . . . , v,

(2.5)

where the subscript c is relative to controlled modes; Ω is a polytope described by a list of
vertexes in a convex space Co [4], and v is the number of vertexes of the polytopic system.
Usually, in practical situations, it is very difficult to define the polytopic vertexes, but these
vertexes are not variant in time. So, it is possible to project the vibration control using an
invariant model.

A reduced-order model is obtained by truncating the states. Let x(t) and the state (A(t),
Bw(t), Bu(t), C(t)) be partitioned considering the canonical modal decomposition. From the
Jordan canonical form, the following can be obtained :

{
ẋc(t)

ẋr(t)

}

=

[
Ac(t) 0

0 Ar(t)

]{
xc(t)

xr(t)

}

+

[
Bwc(t)

Bwr(t)

]

w(t) +

[
Buc(t)

Bur(t)

]

u(t),

y(t) =
[
Cc(t) Cr(t)

]
{

xc(t)

xr(t)

}

,

(2.6)

where Ac(t) is given by (2.4) and the subscript r is relative to the residual modes. Generally,
in practical applications, Ein and Eout are not identified, but there are, always, some process
and measurement noises.

3. Control methodology

In this section, a robustness analysis is conduced for understanding the LQR-LMI controller
performance. Controller design can be done through rigorous mathematical optimization
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techniques. One of these, which was originated in the sixties [10], is called modern optimal
control theory that is a time-domain technique.

Control systems robustness is defined as the ability for maintaining satisfactory
stability and performance features in the presence of parameters variations and uncertainties
[11]. Traditional LQR solved by Riccati’s equation can be obtained in text books [12]. In the
following, one presents the procedure for the LQR-LMI approach.

Firstly, mathematical definitions of some terms are given, and LQR control problem is
defined. Then, the LQR problem is represented as an equivalent eigenvalue problem (EVP)
in terms of LMI using the H2 representation of the LQR problem.

3.1. Basic definitions of LMIs and EVPs

A linear matrix inequality has the form

F(z) = F0 +
m∑

i=1

ziFi > 0, (3.1)

where z is a real vector and F0 and Fi are real symmetric matrices. Inequality (3.1) is shorthand
for saying that F(z) is positive definite. A vector z that satisfies inequality (3.1) is known as a
feasible solution of the LMI.

Inequality (3.1) is a convex constraint on z. This property is important because
powerful numerical techniques are available for the solution of problems involving convex
LMIs [4]. On the other hand, no efficient algorithm is available for the solution of nonconvex
problems. Hence, nonconvex inequalities which may arise from a control problem should
be converted to convex LMIs to be solvable numerically. One useful example for such
manipulations is the LMI representation of the following nonconvex inequalities:

Q(z) − S(z)R(z)−1ST (z) > 0, R(z) > 0, (3.2)

where Q, R, and S are affine functions of z, and Q and R are symmetric matrix. Inequality
(3.2) is equivalent to

[
Q(z) S(z)

ST (z) R(z)

]

> 0. (3.3)

This transformation can be achieved easily premultiplying inequality (3.3) by

[
I −SR−1

0 I

]

> 0 (3.4)

and postmultiplying it by its transpose.
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One of the concepts related with LMIs and control problems is the eigenvalue problem.
An eigenvalue problem may have several representations, one of which is given by

min cTz

subject to A(z) > 0,
(3.5)

where A(z) is a symmetric and affine function of z. An LQR problem may be transformed
into this form of the EVP to be represented in terms of LMIs.

3.2. LQR control problem

There are various representations of LQR problem in the literature. Here, definitions are given
in a way that aids the derivation of the specific problem defined above; hence they may not
be the most general forms of LQR problem. The LQR problem is to find the control gain K
that satisfies the optimization

min
K

E
[
yTQ̃y + uT R̃u + yTÑu + uTÑTy

]
,

subject to (2.1) and u(t) = −αKx(t),
(3.6)

where Q̃ ≥ 0 and R̃ > 0 are symmetric weighting matrices, Ñ is the weighting matrix between
input and output vectors, and α is a scalar amplifier. Substituting the output equation in (2.1)
into the optimization problem (3.6), and assuming Ein and Eout as zero vectors; one obtains
another form of the LQR problem

min
K

E
[
xTQx + uTRu + xTNu + uTNTx

]
,

subject to ẋ(t) = A(t)x(t) + Bw(t)w(t) + Bu(t)u(t), u(t) = −αKx(t),
(3.7)

where

Q = CTQ̃C, N = CTQ̃D + CTÑ, R = R̃ + DTQ̃D + DTÑ + ÑD. (3.8)

3.3. EVP representation of the LQR problem

Lyapunov’s stability criteria can be used to state that a system given by (2.1) with control
force u(t) = −αKx(t) = −Gx(t), where G = αK, is stable if there exists a matrix S = ST > 0 that
satisfies

(
A − BuG

)
S + S

(
A − BuG

)T + BwBT
w ≤ 0, (3.9)
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Joint 1

Joint 2 Joint 3

Joint 4

Joint 5

PZT 2 (actuator) PZT 1 (disturbance)

Accelerometer

(a)

(b) (c)

Figure 1: 3D truss structures and PZT wafer stack actuators.

where S that satisfies inequality (3.9) is the optimal state covariance matrix P. So, combining
(3.7) and (3.9) and optimizing S, the H2 optimization problem may be stated as [13]

min
(K,S)

Tr
(
R1/2GSGTR1/2) + Tr(QS) − Tr(GSN) − Tr

(
NTSGT),

subject to AS − BuGS + SAT − SGTBT
u + BwBT

w ≤ 0, S = ST > 0,
(3.10)

where Tr() is the trace of the matrix. This is not an EVP problem since it is not convex because
of the terms involving GS. To obtain a convex version of the problem, two new variables
are introduced X = R1/2GSGTR1/2 and Y = GS. Substituting these variables into (3.10) and
using the transformation given by (3.2) and (3.3), the EVP representation of LQR problem is
obtained as

min
(X,S,Y)

Tr(X) + Tr(QS) − Tr(YN) − Tr(NTYT ),

subject to AS − BuY + SAT − YTBT
u + BwBT

w ≤ 0,
[

X R1/2Y

YTR1/2 S

]

> 0.

(3.11)
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Table 1: Physics and geometric properties of the truss structures.

Length of structural element (mm) 30
Diameter of structural element (mm) 5
Young’s Modulus (GPa) 210
Density (Kg/m3) 7800

The optimal control gain is then computed from G = YS−1, so K = αYS−1. For well-posed
problem with no additional constraints, the S that optimizes (3.11) is identical to the optimal
state covariance matrix P. In this paper, LQR in LMI version was implemented using the LMI
Toolbox of Matlab.

3.4. Kalman states estimator

The Kalman estimator was named after Rudolf E. Kalman, though Thorvald Nicolai Thiele
and Peter Swerling actually developed a similar algorithm earlier. Stanley F. Schmidt is
generally credited with developing the first implementation of a Kalman estimator. It was
during a visit of Kalman to the NASA Ames Research Center that he saw the applicability
of his ideas to the problem of trajectory estimation for the Apollo program, leading to its
incorporation in the Apollo navigation computer. The estimator was developed in papers
by Swerling [14], Kalman [15], and Kalman and Bucy [16]. In control theory, the Kalman
estimator is most commonly referred to as Kalman filter or, mainly, as linear quadratic
estimation (LQE). In this paper, the Kalman estimator gain was obtained using the software
Matlab through command “lqe.”

3.5. Dynamic and modal uncertainties representation

This paper presents a methodology to design a robust control considering dynamic or
modal uncertainties in the state space model. The uncertainty ranges in the parameters
were quantified through experimental identification considering different excitations.
The mathematical model in state space realization was obtained using the numerical
method of subspace identification (N4SID). An expressive part of identification methods
concerns with computing polynomial models, which, typically, give rise to numerically ill-
conditioned mathematical problems, especially for multi-input multioutput systems [17].
N4SID algorithms are then viewed as optimal alternatives. This approach is advantageous,
especially for high-order multivariable systems, where the parameterization is not trivial. The
parameterization is needed to start up classical identification algorithms, which means that
a priori knowledge of the order and of the observability or controllability indices is required
[18].

Using nt (nt > 1) data acquisition tests, it is possible to realize nt model identification
(through N4SID algorithm) and, consequently, nt dynamic models. Each one can be used as a
polytopic vertex, Si (see (2.5)). In this way, it is possible to define the polype Ω to describe the
convex space Co. Considering this convex space to solve the controller, it is possible to obtain
a robust gain, and so to get a controller with the ability for maintaining satisfactory stability
and performance features in the presence of parameters uncertainties and variations.
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(a) (b)

Figure 2: Accelerometer in joint 4 and details of the PZT wafer stack actuator.

(a) (b)

Figure 3: (a) Adapters to connect PZT stacks; (b) structural nodes.

4. Experimental control design

The proposed methodology was experimentally applied in a 3D truss structure, as shown
in Figure 1. The physics and geometric properties of the truss are given in Table 1. The
properties of the PZT wafer stacks elements are shown in Table 2, and the output signals
were obtained with an accelerometer, model 352C22 PCB Piezotronics. Figures 2(a) and 2(b)
show the accelerometer in joint 4, and the detail of the PZT wafer actuator, respectively. In
this application, the PZT 1 was used to apply the disturbance input, w(t), and PZT 2 was
used as control force input, u(t).

The connections of the piezoelectric actuators in the structural elements were made
through adapters, shown in Figure 3(a). Figure 2(b) shows details of this connection. These
adapters were made using aluminum rod in order to connect the structural part and the
PZT wafer actuator. This kind of actuator amplifies the displacement in the axial direction
of the structural member, and it is named active member. The joint connections were made
of copper, with 24 mm of diameter in the geometric format of eight sides, as shown in
Figure 3(b).

The dynamic model represented through state space realization was identified using
the N4SID algorithm considering nt = 6. Therefore, the dynamic uncertainties were
considered through identification of six models, then, the convex space was obtained with
six vertexes (S1, S2, . . . , S6). The order of the model (dimension of state vector) was chosen as
2, so the first mode was identified. Using the first identified mode, the Kalman estimator
gain was computed by the “lqe” command of the Matlab software. It was computed as
L = [463, 9982 65, 8124]T . Considering the weighting matrices Q and R as 5∗I and 1∗I,
respectively, where I is the identity matrix, the controller gain was obtained as G =
[−1, 5426 2, 5514]. The scalar amplifier α was chosen as 80 to the first mode. The controller
was designed to the first mode, however, at the practice test, it was verified that the second
mode also had a significant attenuation in the vibration amplitude.
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Table 2: Physics and geometric properties of PZT wafer stack actuators, based on material designation
APA60 M (Amplified Piezo Actuators, CEDRAT).

Property Unit APA60 M
Displacement (μm) 80
Blocked Force (N) 110
Stiffness (N/μm) 1,38
Resonance Frequency (Free-Free) (Hz) 10400
Response Time (Free-Free) (ms) 0,05
Resonance Frequency (Blocked-Free) (Hz) 2800
Response Time (Blocked-Free) (ms) 0,18
Voltage Range (V) −20 · · · 150
Capacitance (μF) 1,55
Resolution (nm) 0,8
Thermo-Mechanical Behaviour (μm/K) 1,02
Height H (in actuation direction) (mm) 13,0
Length (mm) 26,9
Width (ind. Edges, wires) (mm) 11,5
Mass (g) 20,0
Standard Mechanical Interface [TH] 2 flat surface 5∗10 mm2 with M2.5 threaded hole
Standard Electrical Interface 2 PTFE insulated AWG30 wires 100 mm long with ø 1 banana plug

(1)

(2)

(3)

(4)

(5)

(6)

Truss structure

Accelerometer
Control board
dSPACE1103

Amplifier
MIDE

Amplifier
Veb Metra Mess

LV 103 Control gain
Disturbance

generator

PZT1

PZT2

Figure 4: Disposition of the experimental setup.

To verify the results of the active vibration control, two cases were considered. Figure 4
shows the configuration of the experimental setup used. In the first case, the disturbance
input was a sine signal with frequency of 16 Hz (approximately the first natural frequency).
Figure 5 shows the output signal with and without control obtained in joint 4. Figure 6 shows
the experimental output measured using the accelerometer in joint 4 and the estimated output
through Kalman estimator algorithm. These results were obtained using the dSPACE 1103
control board and the Simulink/Matlab.

In the second case, a disturbance input was considered as a sine signal with frequency
of 26 Hz (approximately the second natural frequency). Figure 7 shows the response in
time domain for the uncontrolled and controlled systems . The controller was applied
approximately after 4.5 seconds. Figures 8 and 9 show the control force in the PZT stack
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Figure 5: Output signal measured in the joint 4 using accelerometer-controlled and uncontrolled systems.
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Figure 6: Estimated output signal in joint 4 through Kalman Estimator and experimental output.

actuator 2 and the output estimated through Kalman estimator, respectively. Figure 10
shows the frequency response function (FRF) of the uncontrolled and controlled truss
structures. It was attenuated approximately by 6 dB and 9 dB to the first and second modes,
respectively.
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Figure 8: Control force applied by PZT wafer stack 2 for the second case of disturbance.

5. Final remarks

Over the last two decades, the use of piezoceramics as actuators and sensors has increased
considerably, since they provide an effective means of high-quality actuation and sensing
mechanism. Piezoceramics have been considered as an alternative due features as low-cost,
light weight, and easy-to-implement for active control of structural vibration.

In this paper, the subspace identification method was used to obtain the parameters
of the system and to characterize the uncertainty ranges present in the model. In the
experimental application, the uncertainties were defined in a polytopic with six vertexes.
The system identification technique was used to identify the model in the state space
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realization that was converted to modal coordinates. The LQR controller solved through
LMI was experimentally implemented and applied in a 3D truss structure that contains
nonlinearities and uncertainties. The disturbance was applied through PZT wafer stack.
LMI techniques that are classified by some authors as postmodern control present many
advantages, mainly due to the facilities of solving numerical problems for complex structure,
where the analytical solution should be difficult to implement. Uncertainties in the dynamic
matrix were considered in order to design a robust active vibration control. However, any
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other uncertain parameter should be added, for instance, damping coefficients. In this case,
it is only needed to consider new vertexes in the box with all uncertain parameters and write
the respective LMIs. The proposed approach showed that an efficient robust controller design
can be obtained for complex structures with nonlinearities and uncertainties.
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1. Introduction

Time delay occurs due to the finite capabilities of information processing and data transmission
among various parts of the system. The phenomena of time delay are often encountered
in various relevant systems, such as HIV infection with drug therapy, aircraft stabilization,
chemical engineering systems, inferred grinding model, manual control, neural network,
nuclear reactor, population dynamic model, rolling mill, ship stabilization, and systems with
lossless transmission lines. It is well known that time delay factors always lead to poor
performance. Hence, problems of stability analysis and stabilization of dynamical systems with
time delays in the state variables and/or control inputs have received considerable interest for
more than three decades [1–6].

In practice, systems are almost always innately “noisy”. Therefore, in order to model a
system realistically, a degree of randomness must be incorporated into the model. Thus, a class
of stochastic systems has received great attention in the past decade [7]. On the other hand, it
has been shown that a lot of practical systems can be modeled by using functional differential
equations of the neutral type [8, 9]. However, the mathematical model always contains some
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uncertain elements. Therefore, uncertain systems have been extensively studied in the past
years [10–12].

To cope with the problem of stability of uncertain stochastic neutral delay systems, most
of the research focused on the retarded functional differential equations and it also seems that
few results are available on the variable structure control.

Sliding mode control (SMC) is a particular type of variable structure control. It provides
an effective alternative to deal with the nonlinear dynamic systems. The main feature of
SMC is its easy realization, control of independent motion, insensitivity to variation in plant
parameters or external perturbations, and wide variety of operational models [13–15].

The purpose of this paper lies in the design of SMC for a class of uncertain stochastic
neutral delay systems. A switching surface, which makes it easy to guarantee the stability of
the uncertain stochastic neutral delay systems in the sliding mode, is first proposed. By means
of linear matrix inequalities (LMIs), a sufficient condition is given such that the stochastic
dynamics in the specified switching surface is globally stochastically stable. And then, based
on this switching surface, a synthesized SMC law is derived to guarantee the existence of
the composite sliding motion. Finally, a numerical example is illustrated to demonstrate the
validity of the proposed SMC.

2. Problem formulation

Consider the following neutral stochastic system with uncertainties and multiple delays:

d
[
Ex(t) − Cx(t − τ)

]
=
[(
A + ΔA(t)

)
x(t) +

(
Ad + ΔAd(t)

)
x(t − h(t)) + Bu(t)

]
dt

+
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]
dw(t),

x(t) = φ(t), t ∈ [−H, 0],

(2.1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, τ is the constant delay, h(t) is the

time-varying differentiable bounded delay satisfying 0 ≤ h(t) ≤ hM,
Δ
h(t)≤ hD < 1,w(t) is anm-

dimensional Brownian motion, H = max{τ, hM}. It is assumed that φ(t) is the initial condition
which is continuous, t ∈ [−H, 0]. In system (2.1), E ∈ R

n×n, C ∈ R
n×n, A ∈ R

n×n, Ad ∈ R
n×n,

B ∈ R
n×m are known real constant matrices. ΔA(t), ΔAd(t), ΔE(t), and ΔEd(t) represent the

structured uncertainties in (2.1), which are assumed to be of the forms

ΔA(t) =MF1(t)NA, ΔAd(t) =MF2(t)NAd
,

[
ΔE(t),ΔEd(t)

]
=MF3(t)

[
NE,NEd

]
,

(2.2)

M, NA, NAd
, NE, and NEd are some given constant matrices, Fl(t) (l = 1, 2, 3) are unknown

real time-varying matrices which have the following structure:
Fl(t) = blockdiag{δl1(t)Irl1 , . . . , δlk(t)Irlk , Fl1(t), . . . , Fls(t)}, δli ∈ R, |δli | ≤ 1, 1 ≤ i ≤ k, and

F�
lj
Flj ≤ I, 1 ≤ j ≤ s.

We define the sets Δl as

Δl =
{
F�l (t)Fl(t) ≤ I, FlNl =NlFl, ∀Nl ∈ Σl

}
, (2.3)
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where Σl = {Nl = blockdiag[Nl1 , . . . ,Nlk , nl1Ifl1 , . . . , nlsIfls ]}, Nli are invertible for 1 ≤ i ≤ k, and
nlj ∈ R, nlj /= 0 for 1 ≤ j ≤ s.

The following useful lemmas will be used to derive the desired LMI-based stability
criteria.

Lemma 2.1 (see [1]). The LMI [ S11 S12
∗ S22

] < 0, with S11 = S�11, S22 = S�22, is equivalent to

S22 < 0, S11 − S12S
−1
22S

�
12 < 0. (2.4)

Lemma 2.2 (see [11]). Let D, E, Fl be real matrices of appropriate dimensions and Fl ∈ Δl. Then for
any block-structured matrixNl ∈ Σl,

DFlE +
(
DFlE

)� ≤ D
(
NlN

�
l

)
D� + E�

(
NlN

�
l

)−1
E. (2.5)

Lemma 2.3 (see [11]). Let A, D, E, Fl, and P be real matrices of appropriate dimensions with P =
P� > 0 and Fl ∈ Δl. Then for any block-structured matrixNl ∈ Σl satisfying P−1 −D(NlN

�
l
)D� > 0,

one has

(
A +DFlE

)�
P
(
A +DFlE

)
≤ A�

(
P−1 −DNlN

�
l D

�
)−1

A + E�
(
NlN

�
l

)−1
E. (2.6)

Lemma 2.4 (see [11]). For any z, y ∈ R
n and for any symmetric positive-definite matrix X ∈ R

n×n,

−2z�y ≤ z�X−1z + y�Xy. (2.7)

Definition 2.5 (see [14]). The nominal stochastic time-delay system of form (2.1) with u(t) = 0
is said to be mean-square asymptotically stable if

lim
t→∞

E|x(t)|2 = 0. (2.8)

Definition 2.6 (see [14]). The uncertain time delay system of the form (2.1) is robustly mean
square stabilized if the nominal system is mean-square asymptotically stable for all admissible
uncertainties.

In order to simplify the treatment of the problem, the operator I : C([−τ, 0],Rn)→R
n is

defined to be

I
(
xt
)
= Ex(t) − Cx(t − τ). (2.9)

The stability of the operator I is defined as follows.

Definition 2.7 (see [9]). The operator I is said to be stable if the zero solution of the
homogeneous difference equation

I
(
xt
)
= 0, t ≥ 0,

X0 = ϕ ∈ {ψ ∈ C[−τ, 0] : Iψ = 0}
(2.10)

is uniformly asymptotically stable.
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If rank(E) = m < n, then it is easy to find that there exist nonsingular constant matrices
K and S, such that

KES−1 =

(
E1 0
0 0

)

, KCS−1 =

(
C1 0
0 C2

)

, (2.11)

where E1 is an m ×m nonsingular matrix, C1 and C2 are m ×m and (n −m) × (n −m) constant
matrices, respectively.

Lemma 2.8 (see [9]). The operator I is stable if ‖E−1
1 C1‖ < 1 and |C2|/= 0, where E1, C1, and C2 are

defined as in (2.11) and ‖·‖ is any matrix norm.

3. Switching surface and controller design

In this work, we choose the switching function as follows:

S(t) = D
[
Ex(t) − Cx(t − τ)

]
+ σ(t), (3.1)

where the auxiliary variable σ(t) satisfies the following:

dσ = −D
[
(A + BK)x(t) +Adx(t − h(t))

]
dt −D

[
ΔEx(t) + ΔEdx(t − h(t))

]
dw(t), (3.2)

where D ∈ R
m×n and K ∈ R

m×n are constant matrices. The matrix K is chosen such that the
matrix A + BK is Hurwitz, and the matrix D is to be designed later so that DB is nonsingular.
As long as the system operates in the sliding mode, it satisfies the equations S(t) = 0 and
Δ
S (t) = 0 [13].

Therefore, the equivalent control ueq(t) in the sliding manifold is given by

ueq = −(DB)−1D
[(
ΔA(t) − BK

)
x(t) + ΔAd(t)x(t − h(t))

]
. (3.3)

Substituting (3.3) into system (2.1), the following equivalent sliding mode dynamics can be
obtained:

d
[
Ex(t) − Cx(t − τ)

]
=
[(
A + BK + ΔA(t) − B(DB)−1DΔA(t)

)
x(t)

+
(
Ad + ΔAd(t) − B(DB)−1DΔAd

)
x(t − h(t))

]
dt

+
[
ΔEx(t) + ΔEdx(t − h(t))

]
dw(t).

(3.4)

Now, we proceed to the first task which is to analyze the robustly stochastic stability of the
sliding motion described by (3.4), and derive a sufficient condition by means of the linear
matrix inequality method.
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4. Robust stabilization in the mean square sense

Theorem 4.1. Consider the equivalent sliding mode dynamics (3.4). If the operator I is stable and there
exist symmetric positive-definite matrices X, Q1, Q2, T1, T2, T3, T4, T5, and T6 satisfying the following
LMIs:

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

Π11 Π12 Π13 E�XB E�XM E�XM 0 0 0

∗ Π22 −C�XAd 0 0 0 C�XB C�XM C�XM
∗ ∗ Π33 0 0 0 0 0 0

∗ ∗ ∗ −B
�XB

2
0 0 0 0 0

∗ ∗ ∗ ∗ −T1 0 0 0 0
∗ ∗ ∗ ∗ ∗ −T2 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −B
�XB

2
0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −T3 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −T4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

< 0, (4.1)

where Π11 = E�X(A + BK) + (A + BK)�XE + Q1 + Q2 +N�
A(T1 + T3 + T5)NA +N�

ET6NE, Π12 =
−(A + BK)�XC,Π13 = E�XAd+N�

Ed
T4NEd ,Π22 = −Q1+N�

AT2NA,Π33 = −(1−hD)Q1+N�
Ad
(T1+

T3 + T5)NAd
+N�

Ed
T4NEd ,

[
−X XM
∗ −T6

]

< 0, (4.2)

⎡

⎣−
X

2
XM

∗ −T5

⎤

⎦ < 0, (4.3)

then the uncertain time delay system of the form (2.1) with the switching surface (3.1) is robustly
stochastically stable and sliding mode matrix D = B�X. In the above LMIs, T takes the form ofNlN

T
l

forNl ∈ Σl.

Proof. Choose a Lyapunov functional candidate V (x(t), t) as

V
(
xt
)
=
(
Ixt
)�(t)P

(
Ixt
)
+
∫ t

t−τ
x�(s)Q1x(s)ds +

∫ t

t−h(t)
x�(s)Q2x(s)ds. (4.4)

Then, the averaged derivative is given by the following expression:

LV
(
xt
)
= 2
[
Ex(t) − Cx(t − τ)

]�
X
[(
A + BK + ΔA(t) − B(DB)−1DΔA(t)

)
x(t)

+
(
Ad + ΔAd(t) − B(DB)−1DΔAd(t)

)
x(t − h(t))

]

+
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]�
P
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]

+ x�(t)Q1x(t) − x�(t − τ)Q1x(t − τ) + x�(t)Q2x(t)

− (1−
Δ
h (t))x�(t − h(t))Q2x(t − h(t)).

(4.5)
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Using Lemma 2.1, inequality (4.2) is equivalent to

X−1 −MT−1
6 M� > 0. (4.6)

Hence, it follows from Lemma 2.3 that
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]�
X
[
ΔE(t)x(t) + ΔEd(t)x(t − h(t))

]

=
{
MF3(t)

[
NEx(t) +NEdx(t − h(t))

]}�
X
{
MF3(t)

[
NEx(t) +NEdx(t − h(t))

]}

≤
[
NEx(t) +NEdx(t − h(t))

]�
T6
[
NEx(t) +NEdx(t − h(t))

]

= x�(t)N�
ET6NEx(t) + x�(t)N�

ET6NEdx(t − h(t)) + x�(t − h(t))N�
Ed
T6NEx(t)

+ x�(t − h(t))N�
Ed
T6NEdx(t − h(t)).

(4.7)

Note that D = B�X, and it follows form Lemma 2.4 that

− 2x�(t)E�XB(DB)−1DΔA(t)x(t) ≤ x�
[
E�XB

(
B�XB

)−1
B�XE + ΔA�(t)XΔA(t)

]
x(t),

− 2x�(t)E�XB(DB)−1DΔAd(t)x(t − h(t))

≤ x�E�XB
(
B�XB

)−1
B�XEx(t) + x�(t − h(t))ΔA�d(t)XΔAd(t)x(t − h(t)),

2x�(t − τ)C�XB(DB)−1DΔA(t)x(t)

≤ x�(t − τ)C�XB(B�XB)−1
B�XCx(t − τ) + x�(t)ΔA�(t)XΔA(t)x(t),

2x�(t − τ)C�XB(DB)−1DΔAd(t)x(t − h(t))

≤ x�(t − τ)C�XB
(
B�XB

)−1
B�XCx(t − τ) + x�(t − h(t))ΔA�d(t)XΔAd(t)x(t − h(t)).

(4.8)

Substituting (4.7) and (4.8) into (4.5), we obtain

LV (x(t)) ≤ X�(t)ΞX(t), (4.9)

where Ξ = Ξ1+M1F1(t)N1+N�
1F1(t)M�

1 +M1F2(t)N2+N�
2F2(t)M�

1 +M2F1(t)N1+N�
1F1(t)M�

2 +
M2F2(t)N2 +N�

2F2(t)M�
2 , X = [x�(t), x�(t − τ), x�(t − h(t))]�,

Ξ1 =

⎡

⎢⎢
⎣

Ξ11 −(A + BK)�XC E�XAd +N�
Ed
T6NEd

∗ Ξ22 −C�XAd

∗ ∗ Ξ33

⎤

⎥⎥
⎦ ,

Ξ11 = E�X(A + BK) + (A + BK)�XE +N�
ET6NE + 2ΔA�(t)XΔA(t) +Q1 +Q2

+ 2E�XB
(
B�XB

)−1
B�XE,

Ξ22 = −Q1 + 2C�XB
(
B�XB

)−1
B�XC,

Ξ33 = −
(
1 − hD

)
Q2 + 2ΔA�d(t)XΔAd(t) +N�

Ed
T6NEd,

M1 =

⎡

⎣
E�XM

0
0

⎤

⎦ , M2 =

⎡

⎣
0

−C�XM
0

⎤

⎦ , N1 =
[
NA 0 0

]
, N2 =

[
0 0 NAd

]
.

(4.10)
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Using Lemmas 2.1 and 2.2, we have

Ξ ≤ Ξ′

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Ξ′11 Π12 Π13 E�XB E�XM E�XM 0 0 0 0 0

∗ Π22 −C�XAd 0 0 0 C�XB C�XM C�XM 0 0

∗ ∗ Ξ′33 0 0 0 0 0 0 0 0

∗ ∗ ∗ −B
�XB

2
0 0 0 0 0 0 0

∗ ∗ ∗ ∗ −T1 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ −T2 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −B
�XB

2
0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −T3 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −T4 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −X
2

0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −X
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

+M3F(t)N3 +N�
3F
�
(t)MT

3 ,

Ξ′11 = E�X(A + BK) + (A + BK)�XE +Q1 +Q2 +N�
A

(
T1 + T3

)
NA +N�

ET6NE,

Ξ′33 = −
(
1 − hD

)
Q1 +NAd

(
T2 + T4

)
NAd

+N�
Ed
T6NEd,

M3 =

[
NA 0 0 0 0 0 0 0 0 0 0

0 0 NAd
0 0 0 0 0 0 0 0

]�
, F(t) =

[
F�1 (t) 0

0 F�2 (t)

]

,

N3 =

⎡

⎣
0 0 0 0 0 0 0 0 0 M�X 0

0 0 0 0 0 0 0 0 0 0 M�X

⎤

⎦ .

(4.11)

With Lemma 2.1, we can see that Ξ′ < 0 is equivalent to LMIs (4.1)–(4.3).
According to Itô’s formula, system (2.1) is robustly stochastically stable. This completes

the proof.

5. Sliding mode control

We now design an SMC law such that the reachability of the specified switching surface is
ensured.

Theorem 5.1. Consider the uncertain stochastic time delay system (2.1). Suppose that the switching
function is given as (3.1) with D = B�X, where X is the solution of LMIs (4.1)–(4.3). Then the
reachability of the sliding surface s(t) = 0 can be guaranteed by the following SMC law:

u(t) = Kx(t) − ρ(t)sgn(s(t)), (5.1)
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where the switching gain ρ(t) is given as

ρ(t) = λ +
∥∥(DB)−1DM

∥∥ ×
(∥∥NAx(t)

∥∥ +
∥∥NAd

x(t − h(t))
∥∥) (5.2)

with λ > 0.

Proof. A Lyapunov functional candidate V (t) is defined as

V (t) =
1
2
S�(t)(DB)−1S(t). (5.3)

Hence we have
Δ
V (t) = S�(t)(DB)−1 Δ

S (t)

= S�(t)(DB)−1D
[
ΔA(t)x(t) + ΔAd(t)x(t − h(t)) − Bρ(t) sgn (s(t))

]

≤
∥∥S(t)

∥∥∥∥(DB)−1DM
∥∥ ×
(∥∥NAx(t)

∥∥ +
∥∥NAd

x(t − h(t))
∥∥) − ρ(t)

∥∥S(t)
∥∥

≤ −λ
∥
∥S(t)

∥
∥ < 0 for

∥
∥S(t)

∥
∥/= 0.

(5.4)

This completes the proof.

6. An illustrative example

Consider neutral stochastic systems (2.1) with

A =

[
2.3 1.2
2 3.4

]

, B =

[
1 0
0 1

]

, C =

[
0.1 0.3
0 0.1

]

,

M =

[
0.2 0
0.3 −0.01

]

, E = I, Ad =

[
0.5 0
0.2 0.3

]

,

NA =

[
0.1 0
0.1 0.2

]

, NAd
=

[
−0.1 0
0.3 0.3

]

, NE =

[
0.4 0
−0.01 0.4

]

,

NEd =

[
0.21 0
0.1 −0.1

]

, h(t) = 0.1 sin t.

(6.1)

We select matrix K = [ −11.3000 −1.2000
−2.0000 −12.4000 ]. Using Matlab LMI control toolbox to solve the LMIs

(4.1)–(4.3), we obtain the following:

X =

[
0.1752 −0.0038
−0.0038 0.1985

]

, Q1 =

[
1.1255 −0.0186
−0.0186 1.2138

]

, Q2 =

[
1.0613 −0.0605
−0.0605 1.2145

]

,

T1 =

[
1.1670 0.0001
0.0001 1.1623

]

, T2 =

[
1.1661 −0.0007
−0.0007 1.1652

]

, T3 =

[
1.1670 0.0001
0.0001 1.1623

]

,

T4 =

[
1.1647 0.0025
0.0025 1.1700

]

, T5 =

[
1.1670 0.0001
0.0001 1.1623

]

, T6 =

[
1.1580 −0.0046
−0.0046 1.1705

]

.

(6.2)
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7. Conclusions

In this paper, we have investigated the sliding mode control problem for uncertain stochastic
neutral systems with multiple delays. The stability criteria are expressed by means of LMIs,
which can be readily tested by some standard numerical packages. Therefore, the developed
result is practical.
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1. Introduction

In the last four decades, the computational mechanics community has accomplished many
researches trying to propose effective methods for nonlinear dynamic analysis in the
framework of the finite element method. For fast transient analyses, for example, impact
problems, explicit methods are largely used. However, for methods conditionally stable, very
small time steps are required to get reasonable solutions. For transient analyses of long-
time duration, as in vibration problems of structural systems, the implicit methods are more
effective. According to Bathe [1], the first implicit integration procedures used are Houbolt,
Newmark, and Wilson-θ. Among these methods, the Newmark method and its particular case,
the trapezoidal rule, became very popular and effective for linear dynamic analysis of practical
problems. The trapezoidal rule scheme is the most effective one because it is a second-order
method and uses single time step. However, in nonlinear dynamic analysis, the trapezoidal
rule becomes considerably unstable. Such instability is due to the pathological growth of the
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total potential energy and angular momentum. The trapezoidal rule integration scheme does
not guarantee the conservation of the energy-momentum along the time duration. To overcome
this adverse characteristic, many implicit algorithms were additionally proposed based on
the following ideas explained by Kuhl and Crisfield in [2]: (a) numeric dissipation [3]; (b)
conservation of energy-momentum throughout the use of Lagrange multipliers [4]; and (c)
imposition, in the algorithm, of energy-momentum conservation [5].

The present work analyzes the application of the trapezoidal rule to nonlinear dynamic
analyses. To keep the conservation of the energy-momentum, the trapezoidal rule is combined
to the three-point backward Euler method. This combination is very much employed in
numerical procedures to solve ordinary and partial differential equations (o.d.e.s and p.d.e.s)
[6]. Bank et al. [7] use this combination to solve first-order o.d.e.s to simulate the behavior
of silicon devices and circuits. Recently, Bathe [8], Bathe and Baig [9] utilized these mixed
algorithms to get solutions of second-order p.d.e.s describing the dynamic equilibrium of
structural systems. They obtained transient responses for beams and plates discretizing them
with solid 2D finite elements. The beams and plates studied by such authors were subjected to
large translations and rotations due to rigid-body motions. In the next sections, the coupling
of the trapezoidal rule and the three-point backward Euler method is explained in details, and
the numerical dissipation is studied in front of different substeps.

2. The implicit-composed algorithm

The equation of motion of a deformable body discretized by the finite element method may be
expressed by the following matricial equation:

Mü + Cu̇ + f(u, t) = p(t), (2.1)

where M is the mass matrix, C is the damping matrix, f is the vector of internal forces, and
p(t) is the vector of external forces. Moreover, ü, u̇, and u are, respectively, the vectors of
acceleration, velocity, and displacement. We assume that M and C are constant matrices and
we observe that (2.1) is a nonlinear equation because the internal force vector f is a function
of the displacement vector u. Vectors and vector components are hereafter written with the
same notation without loss of meaning. In general, time integration algorithms to solve (2.1)
are formulated throughout the finite difference schemes and such schemes show numerical
dissipation. In computational mechanics, numerical dissipation means an unexpected lost of
energy in the numerical solution. This dissipation property may be good in getting better
numerical stabilization for such integration schemes. The implicit-composed scheme divides
the time step in two substeps. In the first substep, the trapezoidal rule is applied while in the
second substep, we make use of the three-point backward Euler method. As the application of
the algorithm aims to nonlinear analyses, it is necessary to establish an incremental-iterative
strategy to get the final solution. In this work, the Newton-Raphson method, in the iterative
phase, is used to dissipate the residual forces. The equation of motion may be written as a
function of the displacements, developed in a Taylor’s series up to the first-order terms, and
an incremental-iterative strategy is established for the time-step dynamic analysis.

3. First substep

At first, it is assumed that the solution of the equation of motion is known at time tn and
we wish to get a solution at time tn+1, such that tn+1 = tn + Δt. Consider tn+γ = tn + γΔt as
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tn tn+γ tn+1

γΔt (1 − γ)Δt

Δt

Figure 1: Generalized substep sizes.

a time instance between tn and tn+1, with γ ∈ (0, 1) according to Figure 1. Applying now the
trapezoidal rule over the time step, γΔt, we can get the velocities and displacements for the
time tn+γ , by means of the following finite difference equations, respectively:

u̇n+γ = u̇n +
ün + ün+γ

2
γΔt, (3.1)

un+γ = un +
u̇n + u̇n+γ

2
γΔt. (3.2)

Substituting (3.1) into (3.2), we obtain

un+γ = u∗n+γ +
γ2Δt2

4
ün+γ (3.3)

with

u∗n+γ = un + γΔtu̇n +
γ2Δt2

4
ün. (3.4)

On the other hand, (3.1) may be rewritten as

u̇n+γ = u̇∗n+γ +
γΔt

2
ün+γ (3.5)

with

u̇∗n+γ = u̇n +
γΔt

2
ün. (3.6)

Therefore, using (3.3) and (3.5), the accelerations and velocities may be obtained as

ün+γ =
4

γ2Δt2
(
un+γ − u∗n+γ

)
, (3.7)

u̇n+γ = u̇∗n+γ +
2
γΔt

(
un+γ − u∗n+γ

)
. (3.8)

The equation of motion (2.1) at time t + γΔt may be rewritten as

Mün+γ + Cu̇n+γ + fn+γ
(
un+γ

)
= pn+γ . (3.9)
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With (3.7), (3.8), and (3.9), the residual force vector rn+γ is defined as

rn+γ =
4

γ2Δt2
M

(
un+γ − u∗n+γ

)
+ C

[
u̇∗n+γ +

2
γΔt

(
un+γ − u∗n+γ

)
]
+ fn+γ − pn+γ . (3.10)

Expanding the resulting equation (3.10) into a Taylor’s series as a function of the displacements
un+λ and considering only the first-order terms, we can get

(
Ki
n+γ +

4
γ2Δt2

M +
2
γΔt

C

)
Δui+1

n+γ

= Pn+γ −
{
fin+γ +M

[
4

γ2Δt2
(
uin+γ − u∗n+γ

)
]
+ C

[
u̇∗n+γ +

2
γΔt

(
uin+γ − u∗n+γ

)
]} (3.11)

with ui+1
n+γ = uin+γ + Δui+1

n+γ and Ki
n+γ = ∂fin+γ/∂u

i
n+γ being the consistent tangent stiffness matrix

at the configuration corresponding to the displacements uin+γ .
Once the displacements are determined, the accelerations and velocities may be obtained

by means of (3.7) and (3.8), respectively. For more details, see the incremental-iterative flow
diagram described in Figure 2.

4. Second substep

Let the derivative [6] of a continuous function g at time t + Δt be written in terms of the
derivatives of the function g at times t, t + γΔt and t + Δt as

ġn+1 = c1gn + c2gn+γ + c3gn+1. (4.1)

In this case, the constants [6] c1, c2, and c3 may be expressed as

c1 =
(1 − γ)
γΔt

; c2 =
−1

(1 − γ)γΔt ; c3 =
(2 − γ)

(1 − γ)Δt . (4.2)

Thus, the velocities as functions of the displacements, and the accelerations as functions of
velocities at time t + Δt may be determined by the following equations in the same order:

u̇n+1 = c1un + c2un+γ + c3un+1,

ün+1 = c1u̇n + c2u̇n+γ + c3u̇n+1.
(4.3)

Figure 3 illustrates the three-point Backward Euler method in which the quantities at tn+1 are
calculated from the values at tn and tn+γ . These equations may be rewritten as

u̇n+1 = u̇∗n+γ + c3un+1, (4.4)

ün+1 = ü∗n+γ + c3u̇n+1 (4.5)

with

u̇∗n+1 = c1un + c2un+γ ,

ü∗n+1 = c1u̇n + c2u̇n+γ .
(4.6)

Substituting (4.4) into (4.5), we obtain

ün+1 = ü∗n+1 + c3u̇
∗
n+1 + c

2
3un+1. (4.7)
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∥∥rn+γ

∥∥ < ε
∥∥fn+γ

∥∥

Calculate the iteration matrix

K̂
(
un+γ

)
= Ki

n+γ +
(
4/γ2Δt2

)
M + (2/γΔt)C

Calculate the displacement increments

K̂
(
un+γ

)
Δu = −rn+γ

Update the kinematics variables
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(
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un+1 = un+γ + (1 − γ)Δtu̇n+γ +
[
(1 − γ)2Δt2/4

]
ün+γ

Residual vector evaluation

rn+1 =M
(
ü∗n+1 + c3u̇

∗
n+1 + c

2
3un+1

)
+ C

(
u̇∗n+1 + c3un+1

)
+ fn+1 − pn+1

Convergence ?
∥∥rn+1
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Calculate the iteration matrix

K̂
(
un+1

)
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K̂
(
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)
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Yes

No

Yes
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Figure 2: Incremental-iterative scheme of the implicit-composed algorithm.

Equation (2.1) at time t + Δt may be rewritten as

Mün+1 + Cu̇n+1 + fn+1
(
un+1

)
= Pn+1. (4.8)
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un
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u̇n+γ
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ün+1 =?

tn tn+γ tn+1

γΔt (1 − γ)Δt

Δt

Figure 3: Three-point backward Euler method.

Putting (4.4) and (4.5) into (4.8), the residual force vector is defined as

rn+1 =M
(
ü∗n+1 + c3u̇

∗
n+1 + c

2
3un+1

)
+ C

(
u̇∗n+1 + c3un+1

)
+ fn+1 − pn+1. (4.9)

Expanding the resulting equation (4.9) in a Taylor’s series up to the first-order terms, as a
function of the displacements un+1, we obtain

(
Ki
n+1 + c

2
3M + c3C

)
Δui+1

n+1 = Pn+1 −
{
fin+1 +M

(
ü∗n+1 + c3u̇

∗
n+1 + c

2
3un+1

)
+ C

(
u̇∗n+1 + c3un+1

)}

(4.10)

with ui+1
n+1 = uin+1+Δu

i+1
n+1. The tangent stiffness matrixKi

n+1 = ∂fin+1/∂u
i
n+1 and the internal forces

fin+1 are obtained in a consistent way at the configuration corresponding to the displacements
uin+1. Once the displacements are determined, the velocities and accelerations may be
calculated according to (4.4) and (4.5), respectively. For more details, examine the incremental-
iterative flow diagram represented in Figure 2. In [8, 9], the prediction displacement adopted
in the first iteration of the second substep is not clear. In the present paper, the trapezoidal rule
is employed to obtain the prediction displacement as

un+1 = un+γ + (1 − γ)Δtu̇n+γ +
(1 − γ)2Δt2

4
ün+γ . (4.11)

In short, the method has the following main characteristics: (a) it has no additional variables,
like Lagrange multipliers, are used; (b) it is suitable to elastic and inelastic analyses; (c) it has
symmetry of the tangent stiffness matrix.

5. Numerical examples

In the following examples, one finite element in 2D space representing a biarticulated bar is
used. The internal forces’ vector and the stiffness matrix of such finite element are obtained
from a total Lagrangian formulation. For more details of such formulation, see [10]. The mass
matrix in the following examples considers the mass of the bar element as massless and lumped
masses concentrated at the two end nodes.

To find the transient response, the incremental iterative scheme illustrated in Figure 2
is used with a convergence tolerance of 10−5 on the norm of the residual forces. The mid-
point time step varies according to different values γ = 0.4, 0.45, 0.5, 0.55, 0.6. The objective
here is to exam the performance of the implicit-composed algorithm described in Section 2



W. T. Matias Silva and L. Mendes Bezerra 7

y

x

θ

l = 3.0443 m

t = 2.2 s
t = 0 s
Δt = 0.1 sm = 10 kg u̇0 = 7.72 ms−1

ü0 = 19.6 ms−2

EA0 = 1010 N
ρ0A0 = 6.57 kgm−1

Figure 4: Rigid pendulum. Data and initial conditions.

for varying γ and when different time step is adopted for long-time duration. With this in
mind, it is important to analyze if the algorithm presents the following undesirable aspects: (1)
excessive errors in the period and in the amplitude of the transient response, (2) strong growth
of the total potential energy and the angular momentum, (3) strong decay of the total potential
energy and the angular momentum, and (4) lack of convergence during the iterative process.

5.1. Rigid pendulum

Among other authors, Crisfield and Shi [11], Kuhl and Crisfield [2] and Bathe [8] analyzed
this example. The geometrical and physical characteristics of the rigid pendulum, the initial
conditions, the boundary conditions and other data of the problem are in Figure 4. The rigid
pendulum was discretized with one biarticulated finite element bar in 2D space with a very
high-axial stiffness. The pendulum has two degrees of freedom restrained and two degrees of
freedom released.

The rigid pendulum has an axial stiffness of EA = 1010 N. The pendulum displacement is
treated as a rigid body rotation around a fixed axis and with a constant angular velocity, where
θ̇ = ωo, u̇o = θ̇l and üo = θ̇ 2l = u̇2

o/l. Consider also the energy conservation, mu̇2
o/2 = mgl.

Therefore, the initial velocity is given by u̇o =
√

2gl = 7.72 m/s, and the initial acceleration
is üo = 2g = 19.6 m/s2. No external force is applied at the free end-node of the pendulum.
Therefore, the total potential energy and the angular momentum are kept constants. The value
of total potential energy is πo = mu̇2

o/2 = 298 Nm, and the angular momentum Ho = lmu̇0. The
period of this pendulum is give by T = π

√
2l/g = 2.47 seconds, which corresponds to an angle

of 360◦, that is, 1 cycle or a complete turnaround in 2.47 seconds.
Three time steps are taken: Δt = 0.01 second, Δt = 0.1 second, and Δt = 0.6 seconds,

corresponding to the following ratios to the period Δt/T = 0.004, 0.04, and 0.24; and also to the
following angles: 1.45◦, 14.5◦ and 87.3◦, respectively. Correspondingly, these angles represent
small, moderate, and large rotations. The transient analysis is carried out for a total time
duration of 50 seconds which means 20 cycles. Figure 5(a) shows the mass trajectories for the
three different time steps adopted; observe the coincidence between the trajectories. Examining
Figure 5(b), for Δt = 0.01 second, the numerical dissipation detected is clearly negligible either
for the total potential energy as well as for the angular momentum.

However, for Δt = 0.1 second, the numerical dissipations along the time are noticeable.
On the other hand, for Δt = 0.6 seconds, an excessive numerical dissipation of the total
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Figure 5: Rigid pendulum. Solution with the implicit-composed algorithm.

potential energy and the angular momentum is observed. Consequently, errors of great
magnitude in the period and in the amplitude response may be observed in Figures 5(c), 5(d),
and 5(e), respectively, for displacements, velocities, and accelerations. Errors in the periods of
the displacements may be noticed for time steps of Δt = 0.1 second and Δt = 0.6 seconds from
the seventh cycle on. Those errors increase along the next cycles.

With respect to velocity and acceleration, it may be observed that there are errors in the
period and in the amplitude for Δt = 0.1 second, and errors increase from the seventh cycle
on. For Δt = 0.6 seconds, the errors are meaningful and the transient responses are short of
precision to represent the physical model under analysis. In Figure 5(f), the magnitude of axial
strains do not exceed ε ≤ 2 × 10−8 due to the hypothesis of rigid-body motion. Figure 5(g)
shows the evolution of the number of iterations along the time necessary to get convergence. It
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Figure 6: Rigid pendulum. Energy-momentum decaying with different substep sizes.

is important to point out that such figure deals with the sum of the iterations corresponding to
the two substeps, that is, [tn; tn+γ] and [tn+γ ; tn+1] with γ = 0.5. Finally, it is worth mentioning
that the algorithm presented here showed numerical stability even when too large time step is
used, for example, for Δt = 0.6 seconds. In this case, no growth was observed for the energy
momentum of the system, as can be seen in Figure 5(b).

To study the influence of the substeps’ sizes γΔt and (1 − γ)Δt over the numerical
dissipation generated by the method, the analysis of this problem is performed with γ = 0.4,
γ = 0.45, γ = 0.5, γ = 0.55, and γ = 0.6. For time step Δt = 0.1 second, the energy-momentum
decays are shown in Figures 6(a) and 6(b), respectively. In both figures, it is noticed that the
numerical dissipations grow proportional to the γ values. In Table 1, such decays are reported
for t = 50 seconds and a time step Δt = 0.1 second. In that table, one can observe how small such
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Table 1: Energy-momentum decaying at t = 50 seconds with Δt = 0.1 second.

γ Total energy Angular momentum
0.40 1.59% 0.79%
0.45 3.27% 1.64%
0.50 5.16% 2.60%
0.55 7.22% 3.67%
0.60 9.43% 4.82%

Table 2: Energy-momentum decaying at t = 50 seconds with Δt = 0.6 seconds.

γ Total energy Angular momentum
0.40 55.86% 33.56%
0.45 71.95% 47.03%
0.50 78.15% 53.25%
0.55 81.96% 57.52%
0.60 84.66% 60.83%

decays are. For time step Δt = 0.6 seconds, the decays of the total potential energy and of the
angular momentum, illustrated in Figures 6(c) and 6(d), also grow with γ . Table 2 shows that
such decays are excessive which means that the solution for this case is inaccurate. Even for
γ < 0.5, the numerical dissipation continues high. Therefore, one can conclude the following.
(a) For γ < 0.5, the numerical dissipation is reduced. (b) For γ > 0.5, the numerical dissipation
grows. (c) For Δt = 0.1 second, there are minor decreases for the potential energy and angular
momentum. (d) For Δt = 0.6 seconds, there are strong decreases for the potential energy and
angular momentum.

5.2. System with five spheres connected with massless rigid rods

Crisfield and Shi [11] analyzed this example. Figure 7(a) shows a chain of pinned bars (truss
element) that is free to fly in the absence of gravity. Initially, the bars lie horizontally with no
velocity in the x-direction but a linear distribution of vertical velocity. Under such conditions,
the chain should remain straight moving downwards and rotating at the same time. The system
is made of 5 spherical masses connected by massless rigid rods.

The geometrical and physical characteristics of the five connected spheres, the initial
conditions, the boundary conditions, and other applicable data are summarized in Figure 7(a).
The initial conditions of the system are (a) an angular velocity of ωo = θ̇o = 1.0 rad/s around
the axis at pole B (node 5) parallel to the z-axis which is equivalent to a linear distribution of
vertical velocities, and (b) a zero-angular acceleration αo = θ̈o = 0.

This system was discretized with four finite elements, biarticulated bar elements in the
2D space. The finite element model has five nodes making a total of 10 degrees of freedom.
There are no constraint nodes. Gravitational forces are not considered, and therefore the total
potential energy and the angular momentum are kept constant along the time considered for
the analysis of this problem, that is, t = 50 seconds Due to the mass symmetry, the center of
mass of the system is in middle of the bar length. Therefore, the system of five concentrated
masses is subjected to large translations and rotations in the xy-plane. The total potential
energy is given by the expression π = 22ml2ω2

o = 0.11×10 8 N·cm, and the angular momentum,
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Figure 7: Four-bar-chain. Solution with the implicit-composed algorithm.

with respect to pole B, is Ho = 44ml 2ωo = 0.22 × 10 8 kg · cm2/s. The components of the
displacement, velocity, and acceleration vectors of node 1 (pole A) may be obtained by the
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Figure 8: Four-bar-chain. Energy-momentum decaying with different sub-step sizes.

following expression:

ux1 = 2l
[
1 − cos

(
ωot

)]
; uy1 = −2l

[
wot + sin

(
ωot

)]
;

u̇x1 = 2lωo

[
sin

(
ωot

)]
; u̇y1 = −2lωo

[
1 + cos

(
ωot

)]
;

üx1 = 2lω2
o

[
cos

(
ωot

)]
; üy1 = 2lω2

o

[
sin

(
ωot

)]
.

(5.1)

The period of this system is given by T = 2π/ωo = 6.28 seconds, which corresponds to
a turnaround of 360◦. Three time steps are used for this example: Δt = 0.01 second, Δt =
0.1 second, and Δt = 1 second, which correspond to the following ratios to the period, that
is, Δt/T = 0.0016, 0.016, and 0.16 in the same order, to the following angles 0.57◦, 5.73◦, and
57.3◦. These angles represent small, moderate, and large rotations, respectively.

The transient analysis is carried out for a total time duration of t = 50 seconds
or, approximately, 8 cycles. Figures 7(b), 7(c), and 7(d) plot as functions of time the x-
displacement, the y-velocity, and the y-acceleration of the node-1, respectively. These transient
responses are compared to the exact solution in (5.1). For the time steps Δt = 0.01 second
and Δt = 0.1 second, there is an excellent agreement to the exact solution. Conversely, for
time step Δt = 1 second, significant errors in the period and in the amplitude are observed.
Note these errors increase in the subsequent cycles. Consequently, the displacement, velocity,
and acceleration obtained for the time step Δt = 1 second are not suitable to represent the
physical problem studied in this example. In Figure 7(e), the magnitude of element-1 axial
strains do not exceed ε ≤ 1.1 × 10−6 due to the hypothesis of rigid-body motion. Figure 7(f)
shows, for Δt = 0.01 second and Δt = 0.1 second, the numerical dissipation of the total potential
energy and the angular momentum are insignificant. However, for Δt = 1 second, an excessive
numerical dissipation is observed and grows along the time. Figure 7(g) shows the number of
iterations necessary to get convergence in the solution. As a final point, it is remarkable that the
algorithm shows numerical stability even for too large time step, for example, Δt = 1 second.
This can be seen in Figure 7(f) noticing that no excessive increase of energy-momentum of the
system is observed.
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Table 3: Energy-momentum decaying at t = 50 seconds with Δt = 1 second.

γ Total energy Angular momentum
0.40 8.24% 4.49%
0.45 11.25% 6.37%
0.50 13.45% 7.86%
0.55 15.19% 9.12%
0.60 16.60% 10.21%

y

x

θ

l = 3.0443 m

m = 10 kg u̇ = 7.72 ms−1

ü = 0 ms−2

EA0 = 104 N
ρ0A0 = 6.57 kgm−1

Figure 9: Elastic pendulum. Data and initial conditions.

For Δt = 1 second, the energy-momentum decay, shown in Figures 8(a) and 8(b),
increases proportional to γ . Table 3 shows these decays for t = 50 seconds. In that table, it
can be observed that the values of these decays are less than 17% for the potential energy and
less than 11% for the angular momentum.

5.3. Elastic pendulum

This example was analyzed by Kuhl and Crisfield [2] and Bathe [8], among other researchers.
The geometrical and physical characteristics of the elastic pendulum, the initial conditions,
the boundary conditions, and other data of the problem are in Figure 9. The pendulum was
discretized with one biarticulated 2D finite element bar which has two degrees of freedom
restrained and two degrees of freedom released. An axial stiffness EA = 104 N is assumed. A
nonzero initial velocity is considered. No gravitational force is assumed to act, and therefore
no external force is applied at the free end-node of the pendulum. Therefore, the total potential
energy and the angular momentum are kept constants along the time. The potential energy
is πo = mu̇2

o/2 = 298 N·m. The angular momentum is Ho = lmu̇o = 235 kg · cm2/s. In this
example, the period is given by T = π

√
2l/g = 2.47 seconds, which corresponds to 1 cycle

or a complete turnaround of the pendulum in 2.47 seconds. In addition, Due to the axial
elastic behavior of the pendulum bar, other oscillation frequency exists, a high axial frequency
corresponding to T = 0.28 seconds. To capture this axial frequency, two time steps are adopted:
Δt = 0.01 second and Δt = 0.05 seconds which correspond to the following ratios to the period;
that is, Δt/T = 0.036 and 0.18, respectively.
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Figure 10: Elastic pendulum. Solution with the implicit-composed algorithm.

Although, in this case, there are oscillations in high frequencies, no sudden growth
is observed in the amplitude of the axial oscillations and in the energy-momentum of
the pendulum system. These can be demonstrated in Figures 10(b) and 10(f), respectively.
Figure 10(a) shows the pendulum trajectories. The complete agreement of the trajectories is
clear. Examining Figure 10(b), for Δt = 0.01 second, the numerical dissipation detected is
minimal either for the total potential energy as well as for the angular momentum. However,
for Δt = 0.05 seconds, there are small numerical dissipations increasing along the time. Figures
10(c) and 10(d) show the displacement and velocity of node 2 in the y-direction, respectively.
In these figures, for both time steps used, the transient responses are almost coincident.
However, in Figure 10(e), significant errors in the amplitude and in the acceleration period
are detected.
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Figure 11: Elastic pendulum. Energy-momentum decaying with different substep sizes.

Table 4: Energy-momentum decaying at t = 30 seconds with Δt = 0.05 seconds.

γ Total energy Angular momentum
0.40 2.03% 0.21%
0.45 2.10% 0.22%
0.50 2.19% 0.25%
0.55 2.25% 0.27%
0.60 2.26% 0.27%

Furthermore, for Δt = 0.05 seconds, Figure 10(f) shows the axial oscillations and depicts
the significant errors in the amplitudes due to numerical dissipation. With this large Δt, it
is impossible to have a more precise response of the system under high frequency. Finally,
Figure 10(g) represents the number of iterations to get convergence in the solutions. For
the time step Δt = 0.05 seconds, the decays of the total potential energy and the angular
momentum, shown in Figures 11(a) and 11(b), respectively, are practically the same for
different substeps used. In Table 4, these decays are reported for t = 30 seconds and it is clear
that the decays are very small and almost at the same amount.

6. Concluding remarks

Concerning the performance of the implicit-composed algorithm applied to nonlinear dynamic
analysis, the following conclusions may be taken. (a) The algorithm is easy to implement
in a computer program. (b) The mathematical formulation of the algorithm is very simple.
(c) The algorithm is effective to deal with large translations and rotations due to rigid-
body motions. (d) For time steps Δt with ratios to the period Δt/T ≤ 0.1, the algorithm
presents an insignificant numerical dissipations, however, for Δt/T > 0.1, an increasing
numerical dissipation is observed. (e) The computational cost of the algorithm is twice greater
than the computational cost of the trapezoidal rule due to the two iterative cycles needed
in each time step. (f) The algorithm preserves the energy-momentum without the need of
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Lagrange multipliers or without any imposition in the algorithm for energy-momentum
conservation. (g) The algorithm allows the user to work with symmetric matrices. (h) The
method is applicable to elastic and inelastic analyses. (i) No additional variables like Lagrange
multipliers are used. (j) For too large time step, even with inaccurate solution, the method is
stable.

From the view of the authors, the excessive numerical dissipation when using a too large
time-step is the major drawback of the present scheme, for applications in nonlinear analyses
in practical problems.
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1. Introduction

This paper is devoted to the identification of a stochastic load applied to a nonlinear dynamical
system for which a few measurements of its responses are available and for which an uncer-
tain simplified computational model is used. In the dynamical system, the uncertainties are
taken into account in the context of the probability theory. Consequently, the uncertain simpli-
fied computational model is in fact a stochastic simplified computational model for which the
input is a stochastic process (stochastic load) and for which the linear operators of the compu-
tational model are random. This identification is then performed using the stochastic simplified
computational model which allows the responses of the real system to be predicted and, then,
the stochastic loads to be identified in minimizing a certain distance between the experimental



2 Mathematical Problems in Engineering

responses and the random responses calculated with the stochastic simplified computational
model. In fact, the methodology presented is developed in the context of the nonlinear dy-
namical analysis of tube bundles in pressurized water reactor. The stochastic loads applied
to the tubes which have to be identified are then induced by the turbulent flow. Since such a
nonlinear dynamical system is very complex, the computational model developed cannot ex-
actly represent the complexity of the system. Consequently, the identification is not performed
using a computational model which has the capability to accurately predict the experimental
responses but is performed using a simplified computational model containing model errors.
In order to perform a robust identification of the stochastic loads with respect to model uncer-
tainties in the nonlinear dynamical computational model, a probabilistic model of uncertainties
allowing both parameter uncertainties and model uncertaintes to be taken into account is in-
troduced. The responses of the computational model are then random and the randomness is
due to the stochastic loads and is due to the stochasticity of the system. In a first step, the prob-
ability model of uncertainties in the computational model is identified using the maximum
likelihood method. We then deduce a stochastic computational model which allows a robust
identification of stochastic loads to be carried out with respect to uncertainties in the nonlinear
computational model. The second step is devoted to the stochastic inverse problem consisting
in identifying the stochastic loads. From a theoretical and methodological point of view, we
then present a complete probabilistic construction and the associated methodology to solve
an inverse problem consisting of the identification of a Gaussian stationary stochastic process
which is the input of a continuous nonlinear dynamical system with random operators and
for which the stochastic output is measured. It should be noted that, if the parametric proba-
bilistic approach is usual to take into account system parameter uncertainties, in the present
paper, both the system parameter uncertainties and the model uncertainties are taken into ac-
count using a nonparametric probabilistic approach consisting in directly modeling the linear
operators of the dynamical system by random operators using the random matrix theory.

Section 2 deals with the construction of the mean computational model. In Section 3, the
probabilistic model of the stochastic loads is introduced. Section 4 is devoted to the identifica-
tion of the stochastic load. The last section presents a numerical validation of the methodology
proposed.

2. Mean computational model

Let Ω be the domain of the dynamical system having a nonlinear behavior due to the presence
of elastic stops located to several points of the part of the boundary of Ω. The domain Ω is
decomposed in two bounded open subdomains of R

3: the subdomain ΩA and the subdomain
ΩB. The subdomain ΩA is constituted of a three-dimensional linear viscoelastic medium with
instantaneous memory and there are elastic stops located at κ points x1, . . . , xκ in the bound-
ary ΓA of ∂ΩA. In addition, the subsystem occupying the subdomain ΩA is fixed on the part
ΓA0 of its boundary ∂ΩA. The outward unit normal of ∂ΩA is denoted by nA. The subdomain
ΩB is constituted of a three-dimensional linear viscoelastic medium with instantaneous mem-
ory, fixed on the part ΓB0 of its boundary ∂ΩB. The outward unit normal of ∂ΩB is denoted by
nB. Consequently, each uncoupled subsystem ΩA and ΩB does not have rigid body displace-
ment. These two subsystems are coupled on the common coupling interface ΓC. One then has
∂ΩA = ΓA0 ∪ΓA∪ΓC and ∂ΩB = ΓB0 ∪ΓB∪ΓC. We are interested in constructing the stationary ran-
dom responses of the nonlinear stochastic dynamical system excited by stationary stochastic
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processes. Consequently, we will not introduce the initial conditions and we will assume that
the time parameter t belongs to R.

2.1. Mean boundary value problems

2.1.1. Mean boundary value problems for the linear subsystem ΩB

Let x = (x1, x2, x3) be the cartesian coordinates and uB(x, t) be the displacement field for the
linear subsystem ΩB at time t. The external prescribed volumetric and surface forces fields ap-
plied to ΩB and to its boundary ΓB are denoted by fBvol(x, t) and fBsurf(x, t). The stress tensor σB(x)
is written as σBij (x) = a

B
ijkh

(x)εB
kh
(uB) + bB

ijkh
(x)εB

kh
(u̇B) where εB

kh
(uB) = (∂uB

k
/∂xh + ∂uBk/∂xh)/2

is the linearized strain tensor. The fourth-order tensors aB(x) and bB(x) verify the usual proper-
ties of symmetry and positiveness [1]. Then, the displacement field uB(t) verifies, for all t ∈ R

and for i = 1, 2, 3, the mean boundary value problem

ρBüBi −
∂σBij

∂xj
= fBvol,i in ΩB,

σBijn
B
j = fBsurf,i on ΓB,

σBijn
B
j = fBcoupl,i on ΓC,

uBi = 0 on ΓB0 ,

(2.1)

in which a dot means the partial time derivative and a double dot means the double partial
time derivative, where fBcoupl = (fBcoupl,1, . . . , f

B
coupl,3) is the forces induced by the subsystem ΩA

on ΩB via the coupling interface ΓC. One has used the classical convention for summations
over repeated latin indices. The parameter ρB(x) is the mass density for the subsystem ΩB.

2.1.2. Mean boundary value problems for the nonlinear subsystem ΩA

Let uA(x, t) be the displacement field for the nonlinear subsystem ΩA at time t. The exter-
nal prescribed volumetric and surface forces fields applied to ΩA and to its boundary ΓA

are denoted by fAvol(x, t) and fAsurf(x, t). Since ΩA is occupied by a linear viscoelastic material
with instantaneous memory, the stress tensor σA(x) is written as σAij (x) = aA

ijkh
(x)εA

kh
(uA) +

bA
ijkh

(x)εA
kh
(u̇A) where εA

kh
(uA) = (∂uA

k
/∂xh + ∂uA

k
/∂xh)/2 is the linearized strain tensor. The

fourth-order tensors aA(x) and bA(x) verify, as above, the usual properties of symmetry and
positiveness. Then, the displacement field uA(t) verifies, for all t ∈ R and for i = 1, 2, 3, the
mean boundary value problem

ρAüAi −
∂σAij

∂xj
= fAvol,i in ΩA,

σAij n
A
j = fAsurf,i −

κ∑

k=1

fNL,k
i

(
u
(
xk, t
))
δ0
(
x − xk

)
on ΓA,

σAij n
A
j = fAcoupl,i on ΓC,

uAi = 0 on ΓA0 ,

(2.2)
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in which fAcoupl = (fAcoupl,1, . . . , f
A
coupl,3) is the forces induced by the subsystem ΩB on ΩA via the

coupling interface ΓC. The forces—fNL,k(u(xk, t)) represent the actions exerted by the elastic
stop located at point xk on the subsystem ΩA and δ0(x − xk) is the surface Dirac measure such
that, for all continuous function g defined on ΓA, one has

∫
ΓAδ0(x − xk)g(x)ds(x) = g(xk). The

parameter ρA(x) is the mass density for the subsystem ΩA.

2.1.3. Interface conditions for the coupling of ΩA with ΩB

The coupling conditions on ΓC are written as

uA = uB on ΓC,

fAcoupl + fBcoupl = 0 on ΓC.
(2.3)

2.2. Mean finite element model

The mean finite element method [2] is applied to the variational formulation of the boundary
value problems defined in Section 2.1.

2.2.1. Mean finite element model for subsystem ΩB

The R
nB vector U

B(t) of the nB DOF of the subsystem ΩB is written as U
B(t) = (UB

p (t),U
B
c (t)),

where U
B
p (t) is the R

nBp vector of the nBp internal DOF and where U
B
c (t) is the R

nBc vector function
of the nBc coupling DOF on the interface. From (2.1), it can be deduced that the mean finite
element model of subsystem ΩB is written as

[
M

B]
Ü
B(t) +

[
D
B]

U̇
B(t) +

[
K
B]

U
B(t) = F

B(t) + F
B
coupl(t), (2.4)

in which [MB], [DB], and [KB] are, respectively, the positive-definite symmetric real positive
(nB×nB) mass, damping, and stiffness matrices. The R

nB vectors F
B(t) and F

B
coupl(t) of the exter-

nal forces and of the coupling forces are written as F
B(t) = (FBp (t), 0) and F

B
coupl(t) = (0,FBc (t)).

2.2.2. Mean finite element model for subsystem ΩA

Similarly to Section 2.2.1, the R
nA vector U

A(t) of the nA DOF of the subsystem ΩA is written as
U
A(t) = (UA

p (t),U
A
c (t)), where U

A
p (t) is the R

nAp vector of the nAp internal DOF and where U
A
c (t)

is the R
nAc -valued function of the nAc coupling DOF. From (2.2), it can be deduced that the mean

finite element model of subsystem ΩA is written as

[
M

A]
Ü
A(t) +

[
D
A]

U̇
A(t) +

[
K
A]

U
A(t) + F

NL(
U
A(t)
)
= F

A(t) + F
A
coupl(t), (2.5)

in which [MA], [DA], and [KA] are, respectively, the positive-definite symmetric real posi-
tive (nA × nA) mass, damping, and stiffness matrices. The R

nA vectors F
A(t), F

A
coupl(t), and

F
NL(UA(t)) of the external forces, of the coupling forces and of the nonlinear forces, are written

as F
A(t) = (FAp (t), 0), F

A
coupl(t) = (0,FAc (t)), and F

NL(UA(t)) = (FNL
p (UA(t)), 0).
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2.2.3. Interface conditions for the coupling of ΩA with ΩB

The finite element discretization of the interface conditions defined by (2.3) yields

U
A
c (t) = U

B
c (t) on ΓC,

F
A
coupl(t) + F

B
coupl(t) = 0 on ΓC.

(2.6)

2.3. Reduced mean matrix model

The continuous linear subsystem ΩB (linear dynamical subsystem) contains elastic modes in
the frequency band of analysis. In addition, the computational model of the continuous linear
subsystem ΩB is uncertain (presence of both the system parameter uncertainties and the model
uncertainties). As we have explained in Section 1, these uncertainties are taken into account us-
ing the nonparametric approach of uncertainties which requires a reduced matrix order model
(see [3–6]). Since we have to represent the effects of this substructure on the nonlinear sub-
structure ΩA through the coupling interface, it is natural to use the Craig Bampton method [7]
in order to reduce the finite element model of subsytem ΩB. Finally, to reduce the computa-
tional cost of the coupled system, subsystem ΩA is also reduced with the same technique.

2.3.1. Reduced mean matrix model for subsystem ΩB

The following change of coordinates is introduced:

[
U
B
p (t)

U
B
c (t)

]

=
[
HB
]
[

yB(t)
U
B
c (t)

]

,
[
HB
]
=

[
[ΦB] [SB]
[0] [I]

]

, (2.7)

in which [ΦB] is the (nBp ×NB) real matrix whose columns are the NB first elastic modes for the
subsystem ΩB with a fixed coupling interface. Those modes (φ1, . . . , φNB) are associated with
the NB first eigenvalues 0 < ω2

1 ≤ · · · ≤ ω
2
NB such that

[
K
B
pp

]
φB = ω2[

M
B
pp

]
φB, (2.8)

where [KB
pp] and [MB

pp] are the internal DOF blocks of the matrices [KB] and [MB], where

[SB] = [KB
pp]
−1[KB

pc] is an (nBp × nBc ) matrix, where [I] is the (nBc × nBc ) unity matrix and where

yB(t) is an R
NB

-vector. Let nBq =NB+nBc . Then, the R
nBq vector qB(t) = (yB(t),UB

c (t)) is a solution
of the reduced mean computational model

[
MB]q̈B(t) +

[
DB]q̇B(t) +

[
KB]qB(t) =

[
HB]T

F
B(t) +

[
HB]T

F
B
coupl(t), (2.9)

in which the matrices [MB] = [HB]T[MB][HB], [DB] = [HB]T[DB][HB], and [KB] =
[HB]T[KB][HB] are positive-definite symmetric real (nBq × nBq ) matrices.
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2.3.2. Reduced mean matrix model for subsystem ΩA

Using the same reduction method and introducing the elastic modes of the linear subsystem
ΩA with fixed interface and without elastic stops, the R

nAq -vector qA(t) = (yA(t),UA
c (t)) verifies

the following matrix equation:

[
MA]q̈A(t) +

[
DA]q̇A(t) +

[
KA]qA(t) +

[
HA]T

F
NL([HA]qA(t)

)

=
[
HA]T

F
A(t) +

[
HA]T

F
A
coupl(t),

(2.10)

in which the matrices [MA] = [HA]T[MA][HA], [DA] = [HA]T[DA][HA], and [KA] =
[HA]T[KA][HA] are positive-definite symmetric real (nAq × nAq ) matrices.

2.3.3. Transient dynamical response of the reduced nonlinear computational model

Let nU = nAp + nBp + nc be the total number of DOF for the nonlinear computational model. The
R
nU-vector U(t) = (UA

p (t),U
B
p (t),Uc(t)) of the mean nonlinear computational model is written

as

[
U(t)

]
= [H]

[
q(t)
]
, (2.11)

in which the matrix [H] is constructed by the assemblage of [HA] and [HB]. Let nq =
NA + NB + nc. Then, using the coupling conditions defined by (2.6), the R

nq-vector q(t) =
(yA(t),yB(t),Uc(t)) is a solution of the reduced nonlinear dynamical system

[M]q̈(t) + [D]q̇(t) + [K]q(t) + FNL(q(t)
)
= F(t), (2.12)

with

[M] =

⎡

⎢⎢
⎣

MA
yy 0 MA

yc

0 MB
yy MB

yc

MA
cy MB

cy MA
cc +M

B
cc

⎤

⎥⎥
⎦ , [D] =

⎡

⎢⎢
⎣

DA
yy 0 DA

yc

0 DB
yy DB

yc

DA
cy DB

cy DA
cc +D

B
cc

⎤

⎥⎥
⎦ , (2.13)

[K] =

⎡

⎢⎢
⎣

KA
yy 0 KA

yc

0 KB
yy KB

yc

KA
cy KB

cy KA
cc +K

B
cc

⎤

⎥⎥
⎦ , (2.14)

FNL(q(t)
)
=

⎡

⎢⎢⎢
⎣

[
ΦA
]T

F
NL
p

([
HA
]
qA(t)

)

0
[
SA
]T

F
NL
p

([
HA
]
qA(t)

)

⎤

⎥⎥⎥
⎦
, (2.15)

F(t) =

⎡

⎢⎢⎢
⎣

[
ΦA
]T

F
A
p (t)

[
ΦB
]T

F
B
p (t)

[
SA
]T

F
A
p (t) +

[
SB
]T

F
B
p (t)

⎤

⎥⎥⎥
⎦
. (2.16)
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3. Stochastic nonlinear computational model including system
uncertainties and identification

In this part, firstly the nonparametric probabilistic approach will be used to take into account
both data uncertainties and model uncertainties in the reduced mean computational model of
the linear subsystem ΩB of the computational model. This approach which has recently been
introduced consists in replacing the mass, damping, and stiffness matrices of reduced mean
computational model by random matrices for which the probability distributions are explic-
itly given by the theory and for which a generator of independent realizations is known. Such
an approach has been validated for many cases. For the details concerning the nonparamet-
ric probabilistic approach, one refers the reader, for instance, to [3–6]. In such an approach,
the levels of uncertainties for the mass, damping, and stiffness random matrices are defined
by the dispersion parameters which are defined below. Secondly, these dispersion parameters
will be identified using the maximum likelihood method. Finally, the stochastic nonlinear com-
putational model will be introduced and deduced from Section 2.2.3. It should be noted that
(2.1) only the linear subsystem ΩB is assumed to be uncertain and (2.2) the mean nonlinear
subsystem ΩA is representative and consequently, that both data uncertainties and model un-
certainties can be neglected. If such an assumption was not verified, then the nonparametric
probabilistic approach of uncertainties could always be implemented without any difficulties
in this nonlinear subsystem (see for instance [8, 9]).

3.1. Stochastic linear subsystem ΩB modeling uncertainties

Therefore, the matrices [MB], [DB], and [KB] of the reduced mean computational model are
replaced by the random matrices [MB], [DB], and [KB] defined on a probability space (Θ,T,P)
and such that

∀θ ∈ Θ,
[
MB(θ)

]
,
[
DB(θ)

]
,
[
KB(θ)

]
∈M

+
nBq
(R),

E
{[

MB
]}

=
[
MB], E

{[
DB
]}

=
[
DB], E

{[
KB
]}

=
[
KB],

E
{∥∥[MB

]−1∥∥2
F

}
< +∞, E

{∥∥[DB
]−1∥∥2

F

}
< +∞, E

{∥∥[KB
]−1∥∥2

F

}
< +∞,

(3.1)

in which M
+
n(R) is the set of all the positive-definite symmetric (n × n) matrices, where E{·}

is the mathematical expectation and where ‖·‖F is the Frobenius norm such that ‖A‖2
F =

tr{[A]∗[A]} with [A]∗ = [A]T , [A] is the conjugate of [A] and tr is the trace for matrices.
Let [PB] be the random matrix denoting [MB], [DB], or [KB]. The probability distribution of
the random matrix [PB] depends on the dispersion parameter δBP related to the coefficient of
variation δ̃BP of the random matrix [PB] by the equation

(
δ̃BP
)2

=
E{
∥∥[PB

]
−
[
PB
]∥∥2

F}
∥∥[PB

]∥∥2
F

=

(
δBP
)2

n + 1

(

1 +

(
tr
[
PB
])2

tr
([

PB
]2)

)

. (3.2)

The dispersion parameter δBP allows the level of uncertainites of the random matrix [PB] to be
controlled. It can be found in [3, 5] an algebraic representation of random matrix [PB] which
allows independent realizations to be explicitly constructed in order to solve the random equa-
tions by the Monte Carlo method. For each random matrix, this random generator depends
only on the mean value, on the dimension of the matrix, and on the dispersion parameter.
Such an approach is used in this paper.
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3.2. Identification of the dispersion parameters

As explained in Section 3.1, the probability distributions of the random matrices (and then of
the random generators) depend on the vector δ = (δBM, δ

B
D, δ

B
K) of the dispersion parameters

which is identified using the measurements. The observation of the stochastic computational
model is defined introducing the nBq × nBq random complex dynamic stiffness matrix [AB(ω)]
of the linear subsystem ΩB written as

[
AB(ω)

]
= −ω2[MB] + iω

[
DB] +

[
KB]. (3.3)

Then the random condensed dynamical stiffness matrix [ZB(ω)] of the linear subsystem ΩB on
the coupling interface is such that [ZB(ω)] = [AB

cc(ω)] − [AB
cy(ω)][A

B
yy(ω)]

−1[AB
yc(ω)]. Taking

into account the properties of the probabilistic model, it can be shown that, for all ω fixed in B,
the random matrix [ZB(ω)] is invertible almost surely and the random variable J(δ) defined
by

J(δ) =
∫

B

∥∥[ZB(ω)
]−1∥∥2

Fdω (3.4)

exists and has a finite mean value. This random variable gives a measure over B of the dynam-
ical effects of subsystem ΩB on the subsystem ΩA at the coupling interface. It should be noted
that the random variable J(δ) depends on δ because the probability distributions of the ran-
dom matrices [MB], [DB], and [KB] depend on δ. Let x 	→ pJ(x,δ) be the probabilty density
function of the random variable J(δ) with respect to dx. For any x fixed in [0,+∞[ and for
any value of the vector δ belonging to the admissible set Cad of the dispersion parameters, the
value pJ(x,δ) of the probability density function is estimated by using the above probabilistic
model and the Monte Carlo simulation. The corresponding deterministic experimental value
Jexp of J(δ) is calculated using experimental data. The method used to identify vector δ is the
maximum likelihood method (see for instance [10]) for the random variable J(δ) for which
Jexp is one realization. We then have to solve the following optimization problem:

δopt = arg max
δ∈Cad

(
pJ
(
Jexp;δ

))
, (3.5)

in which δopt is the identified value of δ.

3.3. Random transient dynamical response of
the stochastic nonlinear computational model

Using the probabilistic model defined in Section 3.1, the deterministic (2.11) to (2.15) give the
following stochastic nonlinear computational model:

[
U(t)

]
= [H]

[
Q(t)

]
, (3.6)

in which, for all fixed t, the vector-valued random variable Q(t) verifies

[M]Q̈(t) + [D]Q̇(t) + [K]Q(t) + FNL(Q(t)
)
= F(t), (3.7)
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and where the random matrices [M], [D], and [K] are written as

[M] =

⎡

⎢⎢
⎣

MA
yy 0 MA

yc

0 MB
yy MB

yc

MA
cy MB

cy MA
cc + MB

cc

⎤

⎥⎥
⎦ , [D] =

⎡

⎢⎢
⎣

DA
yy 0 DA

yc

0 DB
yy DB

yc

DA
cy DB

cy DA
cc + DB

cc

⎤

⎥⎥
⎦ ,

[K] =

⎡

⎢⎢
⎣

KA
yy 0 KA

yc

0 KB
yy KB

yc

KA
cy KB

cy KA
cc + KB

cc

⎤

⎥⎥
⎦ .

(3.8)

4. Identification of stochastic loads

The transient load F(t) defined by F(t) = (FAp (t),F
B
p (t), 0) corresponding to the displacement

vector U(t) = (UA
p (t),U

B
p (t),U

B
c (t)) is modeled by a stochastic process {F(t), t ∈ R}. Since all

the degrees of freedom of the computational model are not excited by this stochastic load, we
then introduce the usual projection operator Proj in order to extract the vector F̃(t) = Proj(F(t))
of the nonzero random components of the random vector F(t). This equation can easily be
inversed and yields F(t) = Lift(F̃(t)).

4.1. Construction of the stochastic load F̃(t)

The stochastic load is modeled by an R
m-valued Gaussian stationary centred second-order

stochastic process {F̃(t), t ∈ R} defined on a probability space (Θ′,T′,P′) different from the
probability space (Θ,T,P). In addition, it is assumed that the stochastic process is mean
square continuous on R, physically realizable (causal) and for which its matrix-valued au-
tocorrelation function τ 	→ [RF̃(τ)] = E{F̃(t + τ)F̃(t)T} is integrable on R. This stochastic
process is then completely defined by its matrix-valued spectral density function [SF̃(ω)] =
(2π)−1∫

R
e−iωτ[RF̃(τ)]dτ which is a continuous and integrable function on R and which is in

values in the set of all the positive (m × m) hermitian matrices. In addition, we will assume
that for all ω in R, the matrix [SF̃(ω)] is with values in the set M

+
m(C) of all the positive definite

(m×m) hermitian matrices. Since the stochastic process is assumed to be physically realizable,
the matrix valued spectral density function must satisfy the following usual inequality [11, 12]:

∫

R

log
(

det
[
SF̃(ω)

])

1 +ω2
> −∞. (4.1)

The numerical simulation of independent realizations {F̃(t, θ′), t ∈ R} for θ′ ∈ Θ′ (trajectories)
can easily be generated by using adapted algorithms (see, e.g., [13, 14]).

4.2. Stochastic equation for simulation of responses

We have to identify the stochastic process F̃ in presence of uncertainties in the linear subsys-
tem ΩB. This identification consists in identifying the matrix-valued spectral density function
[SF̃(ω)] which completely describes the stochastic process. This stochastic inverse problem is
formulated as a stochastic optimization problem. Such an identification is performed using the
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stochastic equation deduced from (3.6) to (3.8) with (2.15) in which the deterministic load F(t)
is replaced by the stochastic load F(t). We then have to construct the R

nU-valued stationary
solution Us(t) = (UA

s (t),U
B
s (t),U

c
s(t)) (corresponding to U(t)) which is written as

[
Us(t)

]
= [H]

[
Qs(t)

]
, (4.2)

in which subindex s is relative to the stationary solution and where the stationary stochastic
process {Qs(t), t ∈ R} satisfies the stochastic equation

[M]Q̈s(t) + [D]Q̇s(t) + [K]Qs(t) + FNL(Qs(t)
)
= [H]TF(t), (4.3)

in which Q̇s(t) and Q̈s(t) are the mean-square first and second derivative of Qs(t). For the
identification of [SF̃], for all t fixed, we introduce the R

μ-valued random variable Zs(t) =
(Zs,1(t), . . . , Zs,μ(t)) which represents the observations of the stochastic computational model
made up of components of the vector-valued random response Us(t). Thus there exists a projec-
tion Proj′ from R

nU into R
μ such that Zs(t) = Proj′(Us(t)). For all θ in Θ, the stationary stochastic

process {Zs(t, θ), t ∈ R} is such that Zs(t, θ) = Proj′([H]Qs(t, θ)), where the stationary stochas-
tic process {Qs(t, θ), t ∈ R} is such that

[M(θ)]Q̈s(t, θ) + [D(θ)]Q̇s(t, θ) + [K(θ)]Qs(t, θ) + FNL(Qs(t, θ)) = [H]T Lift (F̃(t; [SF̃])),
(4.4)

where {F̃(t; [SF̃]), t ∈ R} is a stochastic process defined in Section 4.1. Section 4.3 is devoted
to the identification of [SF̃]. In order to perform this identification, we need to introduce an
observation relative to the stochastic equation and which is useful to construct the cost func-
tion. For all θ ∈ Θ, the matrix-valued spectral density function {[SZs

(ω, θ)], ω ∈ R} can be
estimated. Generating νθ independent realizations of the random matrices [M], [D], and [K],
the matrix-valued spectral density function [SZs

] is estimated by the Monte Carlo simulation
method. For all ω ∈ R, one has

[
SZs

(ω)
]
=

1
νθ

νθ∑

i=1

[
SZs

(
ω, θi

)]
. (4.5)

4.3. Identification of the stochastic loads

The identification [SF̃] is performed in introducing a parametric representation of this function
which is rewritten as

[
SF̃(ω)

]
=
[
S(ω, r)

]
, ω ∈ R, r ∈ Cr , (4.6)

in which Cr ⊂ R
νr is the admissible set of the parameter r with values in R

νr where νr is
the number of unknown scalar parameters which have to be identified and where (ω, r) 	→
[S(ω, r)] is a given function from R × R

νr into M
+
m(C). Therefore, the identification of the

stochastic load {F̃(t), t ∈ R)} consists in identifying the R
νr -valued vector r. Let {Zexp

s (t) =
(Zexp

s,1 (t), . . . , Zexp
s,μ (t)), t ∈ R} be the R

μ-valued stationary stochastic process which is measured
for the manufactured real system and corresponding to the observation stochastic process
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{Zs(t), t ∈ R}. The matrix-valued spectral density function {[SZexp
s
(ω)], ω ∈ R} of this stochas-

tic process is estimated using the periodogram method. Then, the parameter r is estimated in
minimizing the distance D(r) =

∫
B‖[SZs

(ω, r)] − [SZexp
s
(ω)]‖2

Fdω between the matrix-valued
spectral density function calculated with the stochastic computational model and the experi-
mental matrix-valued spectral density function. We then have to solve the following optimiza-
tion problem

ropt = arg min
r∈Cr

D(r), (4.7)

in which ropt is the identified value of the vector r.

5. Application

In this section, a numerical simulation of a simple example is presented in order to validate the
methodology developed in this paper.

5.1. Data for the experimental model

The measurements are generated by an experimental model which is made up of one linear
subsystem and one nonlinear subsystem. The linear subsystem is made up of four parallel
beams fixed at their ends. The nonlinear subsystem is made up of a beam also fixed at its
ends, parallel to the other beams and with one transversal symmetric elastic stop (two identi-
cal stops, see Figure 1). The five beams are linked by three transversal grids, each grid being
modeled by four transversal springs (see Figure 1). Therefore, the coupling interface between
the two subsystems is composed of three points located in the neutral fiber of the beam of
the nonlinear subsystem. Each beam is modeled by eight Euler beam finite elements of equal
lengths for which the DOF of the two nodes at the ends of the beam are locked. The twelve
springs defining the three transversal grids are modeled by twelve spring elements. The two
elastic stops are modeled by two springs. We are only interested in the y-direction displace-
ments of the beam of the nonlinear subsystem (see Figure 1). Consequently, each beam has
14 DOF (y-translation and z-rotation). The total number of the free DOF for the linear sub-
system is then 59 and the total number of the free DOF for the nonlinear subsystem is then
14. The beam of the nonlinear subsystem is exited by seven transversal forces applied follow-
ing the y-direction. The vectors of these seven nonzero components are denoted by fexp. The
stochastic process {fexp(t), t ∈ R} is a second-order centred stationary Gaussian stochastic pro-
cess for which its matrix-valued spectral density function [Sfexp(ω)] is such that (2.1) for all i in
{1, . . . , 7}, [Sfexp(ω)]ii is a constant on the frequency band of analysis B = 2π×[−100, 100] rad/s,
and (2.2) for all i and j in {1, . . . , 7}, |[Sfexp(ω)]ij |2 = γij(ω)[Sfexp(ω)]ii[Sfexp(ω)]jj where γij(ω) =
exp(−|xi −xj |/λ) in which |xi −xj | is the distance between the two excited points and the value
of λ is equal to the quarter of the beam length. In the frequency band of analysis B, there are 21
eigenfrequencies for the linearized coupled system made up of the linear subsystem coupled
with the linear beam of the nonlinear subsystem (nonlinear subsystem without the stops), for
which the first three eigenfrequencies are 5.78 Hz, 15.9 Hz, and 31.1 Hz.

5.2. Data for the mean computational model

This part is devoted to the construction of a simplified mean computational model for the non-
linear dynamical system described in Section 5.1. This simplified mean computational model
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Pobs

y
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x

(a)

Pobs

y

x

(b)

y

z

(c)

Figure 1: (a) Experimental model: 3D view. (b) Transversal view. (c) Tranversal view in the plane of one
grid: the 6 diagonal lines represent the 12 springs.

Pobs

y

x

Figure 2: Mean model.

will be used to identify the stochastic loads. It consists in modeling (2.1) the four beams and the
three transversal grids of the linear subsystem of the experimental model by a unique equiva-
lent linear Euler beam and by three equivalent springs (see Figure 2) and (2.2) the linear beam
with elastic stops of the nonlinear subsystem of the experimental model by a linear beam with
two springs for the elastic stops. The section of the equivalent beam for the linear subsystem
is arbitrarily chosen and its Young’s modulus and its mass density are identified so that the
three first eigenfrequencies of this mean computational model are the same that the three first
eigenfrequencies of the experimental model. Note that only the three first eigenfrequencies are
correctly fitted and consequently, there are model uncertainties in this simplified mean com-
putational model, which are taken into account as explained in Section 3. It should be noted
that the objective of this paper is not to construct an accurate mean computational model in
order to exactly represent the experimental model, but to test the validity of the use of a sim-
plified mean computational model in order to represent a much more complex system. After
identification, the first three eigenfrequencies of the simplified mean computational model are
5.74 Hz, 15.3 Hz, and 30.8 Hz which have to be compared to the first three eigenfrequencies
5.78 Hz, 15.9 Hz, and 31.1 Hz of the experimental model.

5.3. Comparison between the dynamical responses of the experimental model and of
the mean computational model for the same given stochastic load

In this section, it is assumed that the stochastic load is given and the same for the experimen-
tal model and for the simplified mean computational model. Then, for the two models, the
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Figure 3: For point Pobs, power spectral density function (PSD) for (a) the y-displacement and (b) the z-
rotation. Comparison between the experimental model (thin line) and the simplified mean computational
model (thick line).

stationary stochastic responses are calculated in the time interval [0, 220] s using an explicit Eu-
ler integration scheme. Let Pobs be the point of the non-linear subsystem located at the impact
point of the elastic stops. The power spectral density functions of the stochastic y-displacement
and of the stochastic z-rotation in point Pobs (see Figure 3) is estimated using the periodogram
method. It can be seen that the prevision given by the mean simplified computational model
is good enough in the frequency band [0, 50]Hz. Nevertheless, there are significant differences
in the frequency band [50, 100]Hz induced by model uncertainties. This is the reason why the
model uncertainties are taken into account in order to extend the domain of validity of the
simplified mean computational model in the frequency band [50, 100]Hz in order to perform
a robust identification of the stochastic loads.

5.4. System uncertainties modeling and dispersion parameter identification

The nonparametric probabilistic approach of model uncertainties introduced in Section 3.1 is
used for stiffness part of the linear subsystem of the simplified mean computational model. We
then have to identify the dispersion parameter δ = (δBK). Note that the identification procedure
which is proposed is independent of the stochastic loads. The estimation of the probability
density function in (3.5) is carried out with 200 realizations for the Monte Carlo simulation.
Figure 4 shows the likelihood function calculated using (3.5) with Cad = [0,

√
22/34]. The max-

imum is reached for δopt = 0.45.

5.5. Case of an unknown stochastic load and its identification

In this section, the responses of the experimental model are given (those constructed in
Section 5.3) and the stochastic load F̃(t) is assumed to be unknown and has to be identified
using the uncertain simplified computational model, that is to say the stochastic simplified
computational model for which the dispersion parameter has been identified in Section 5.4.
We begin defining a model as simple as possible for the stochastic load F̃(t) introduced in
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Figure 4: Graph of function δ 	→ pJ(Jexp;δ).
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Figure 5: Definition of the stochastic load.

Section 4.1. We have then chosen to model F̃(t) as {F̃(t) = (T(t),M(t)), t ∈ R} in which T(t) is a
y-force and M(t) is a z-moment applied to the middle of the beam of the nonlinear subsystem
(see Figure 5). This force and this moment are independent second-order centred stationary
Gaussian stochastic processes. So, they are both completely defined by their power spectral
density functions [ST(ω)] and [SM(ω)]. The matrix-valued spectral density function of the
stochastic process {F̃(t), t ∈ R} is then defined by

[
SF̃(ω)

]
=

[
ST(ω) 0

0 SM(ω)

]

, ω ∈ R . (5.1)

It is assumed that the function ω 	→ [SF̃(ω)] is constant in the frequency band of analysis B
and is such that (4.1) is verified. The experimental stochastic process {Zexp

s (t), t ∈ R} defined
in Section 4.3 is composed of μ = 7 stochastic y-displacements. Taking into account (4.6), the
function ω 	→ [SF̃(ω)], which is a constant diagonal hermitian matrix, can then be rewritten
for all ω in B as

[
SF̃(ω)

]
=
[
S(ω, r)

]
=

[
r1 0

0 r2

]

, ω ∈ B, r ∈ Cr , (5.2)

in which the admissible set Cr = {r = (r1, r2); r1 > 0, r2 > 0}. This vector r is identified using
the trial method to solve the optimization problem defined by (4.7). Such a method consists in
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Figure 6: Graph of the cost function (r1, r2) 	→ log10(D(r1, r2)).

0 20 40 60 80 100
Frequency (Hz)

10−18

10−16

10−14

10−12

PS
D

(m
2 /

H
z)

(a)

0 20 40 60 80 100
Frequency (Hz)

10−18

10−16

10−14

10−12

10−10

PS
D

(r
ad

2 /
H

z)

(b)

Figure 7: For point Pobs, power spectral density function (PSD) for (a) the stochastic y-displacement and
(b) the stochastic z-rotation: upper and lower envelopes and mean response (mid thin line); experimental
model (thick line).

calculating the cost function D(r) for 100 values of the vector r. Figure 6 shows the graph of the
function r 	→ log10(D(r)) which allows the optimal value ropt to be determined. The confidence
region associated with a probability level Pc = .95 of the reponse of the stochastic simplified
computational model on which the identified stochatic load is applied can then be estimated.
The comparison between the experimental responses with the responses constructed with the
stochastic simplified computational model is given in Figure 7. This figure displays the confi-
dence region of the power spectral density function of the stochastic y-displacement and the
stochastic z-rotation for point Pobs.
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6. Conclusions

We have presented a methodology and its validation to perform the identification of a stochas-
tic loads applied to a complex nonlinear dynamical system for which a few measurements of
its responses are available. To carry out this identification, a simplified computational model of
the real system is introduced. Since such a simplified computational model induces model un-
certainties, a probabilistic model of these uncertainties is introduced in the simplified compu-
tational model. The identification of the stochastic loads is then performed using this stochastic
computational model which takes into account model uncertainties and consequently, we have
validated a method to perform a robust identification with respect to model uncertainties. It
should be noted that the nonlinear dynamical system used for this validation is representative
of real industrial systems and then validates the methodology proposed.
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1. Introduction

In this paper, we consider a reaction-diffusion process governed by the nonlinear ordinary
differential equation [1]:

y′′(x) + yn(x) = 0, 0 < x < L, (1.1)

with boundary conditions

y(0) = y(L) = 0, (1.2)

where y(x) represents the steady-state temperature for the corresponding reaction-diffusion
equation with the reaction term yn; n is the power of the reaction term (heat source), generally
it follows n > 0, L is the length of the sample (heat conductor). The physical interpretation of
(1.1) was given in [1].

Recently, various different analytical methods were applied to nonlinear equations
arising in engineering applications, such as the homotopy perturbation method [2–10], and
exp-function method [11, 12], a complete review is available in [13]. This problem was studied
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by Lesnic using Adomian method [1], and by Mo [14] using variational method. In this paper,
the homotopy perturbation method [2, 3, 13] is applied to the discussed problem, and the
obtained results show that the method is very effective and simple.

2. Homotopy perturbation method

In order to use the homotopy perturbation, we construct a homotopy in the form [2, 3, 13]

(1 − p)
(
y′′ − y′′0

)
+ p

(
y′′ + yn

)
= 0 (2.1)

with initial approximation

y0(x) = ax(1 − x) = ax − ax2, (2.2)

where a is an unkown constant to be further determined. It is obvious that (2.2) satisfies the
boundary conditions.

We rewrite (2.1) in the form of

y′′ + 2a − p
(
2a − yn

)
= 0. (2.3)

We suppose the solution of (2.3) has the form

y(x) = y0(x) + py1(x) + p2y2(x) + · · · . (2.4)

Substituting (2.4) into (1.1) and equating the terms with the identical powers of p, we can solve
y0, y1, y2, . . . sequentially with ease. Setting p = 1, we obtain the approximate solution of (1.1)
in the form of

y(x) = y0(x) + y1(x) + y2(x) + · · · . (2.5)

To illustrate its solution procedure, we consider some special cases.

Case 1 (n = 2). Under such case, we can easily obtain sequentially

y′′0 = −2a,

y′′1 = 2a − y2
0 ,

y′′2 = −2y0y1.

(2.6)

We, therefore, obtain the approximate solution in the form of

y(x) = ax(1 − x) + ax2 − a2
(

1
30
x6 − 1

10
x5 +

1
12
x4
)
−
(
a − 1

60
a2
)
x. (2.7)

In order to identify the unknown constant a in (2.7), we apply the method of weighted
residuals. Subsituting (2.7) into (1.1) results in the following residual:

R(x, a) = y′′(x) + yn(x). (2.8)

It is obvious that R(0, a) = 0 and R(1, a) = 0. We locate at x = 1/3, and set R(1/3, a) = 0,
yielding the result

a = 45.4205. (2.9)
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Figure 1: Comparison of approximate solutions with exact ones. Continued line: approximate solution;
discontinued line: exact solution.
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Case 2 (n = 3). The solution procedure is the same as that for Case 1. We can easily obtain the
following linear equations:

a = 14.2657,

y′′1 = 2a − y3
0 ,

y′′2 = −3y2
0y1.

(2.10)

We obtain the following second-order approximate solution:

y(x) = ax(1 − x) + ax2 − a3
(
− 1

56
x8 +

1
14
x7 − 1

10
x6 +

1
20
x5
)
−
(
a − 1

280
a3
)
x. (2.11)

Similarly, we locate at x = 1/3, and set R(1/3, a) = 0 to identify the unknown constant, which
reads a = 14.2657.

Case 3 (n = 4). By the same manuplation as illustrated in above cases, we obtain

y′′0 = −2a,

y′′1 = 2a − y4
0 ,

y′′2 = −4y3
0y1,

y(x) = ax(1 − x) + ax2 − a4
(

1
90
x10 − 1

18
x9 +

3
28
x8 − 2

21
x7 +

1
30
x6
)
−
(
a − 7.9410−4a4)x.

(2.12)

Using the method of weighted residuals, we set R(1/3a) = 0, resulting in a = 9.6320.

Figure 1 shows the remarkable accuracy of the obtained results.

3. Conclusion

The homotopy perturbation method deforms a complex problem under study to a simple
problem routinely. If initial guess is suitably chosen, one iteration is enough, making the
method a most attractive one. The method is of remarkable simplicity, while the obtained
results are of utter accuracy on the whole solution domain. The method can be applied to
various other nonlinear problems without any difficulty.
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The stability of a delay differential equation can be investigated on the basis of the root location
of the characteristic function. Though a number of stability criteria are available, they usually do
not provide any information about the characteristic root with maximal real part, which is useful
in justifying the stability and in understanding the system performances. Because the characteristic
function is a transcendental function that has an infinite number of roots with no closed form, the
roots can be found out numerically only. While some iterative methods work effectively in finding
a root of a nonlinear equation for a properly chosen initial guess, they do not work in finding the
rightmost root directly from the characteristic function. On the basis of Lambert W function, this
paper presents an effective iterative algorithm for the calculation of the rightmost roots of neutral
delay differential equations so that the stability of the delay equations can be determined directly,
illustrated with two examples.
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1. Introduction

Many engineering systems can be modeled as neutral delay differential equations (NDDEs)
that involve a time delay in the derivative of the highest order [1–9], which are different from
retarded delay differential equations (RDDEs) that do not involve a time delay in the derivative
of the highest order [10–14]. For example, a system, which consists of a mass mounted on a
linear spring to which a pendulum is attached via a hinged massless rod, is used to predict the
dynamic response of structures to external forces using a set of actuators, and it is modeled as
an NDDE if the delay in actuators is taken into consideration [7]. While the RDDEs have been
studied intensively in the literature (see, e.g., [10–14]), the NDDEs have been investigated
relatively few. Analysis shows that, both RDDEs and NDDEs may exhibit very complicated
nonlinear dynamics. For example, a first-order autonomous DDE can exhibit chaotic motion,
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and a first-order autonomous NDDE with a single delay can even admit homoclinic snaking
[5]. Complex behaviors of dynamical systems come out after certain stationary solutions lose
their stability, so stability analysis plays a fundamental role in system dynamics. Usually, the
stability analysis for equilibriums of DDEs can be investigated on the basis of the method of
Lyapunov’s function (al) including the LMI (linear matrix inequality) method, or by means
of the root location of the characteristic functions for equilibriums [10–14]. In particular, the
stability can be studied on the basis of stability switches [7, 8, 10, 14], if the delay effect on the
stability is addressed. In this case, the delay interval is divided into a number of subintervals by
the critical values of delay for which the system changes its equilibriums from stable status to
unstable status, or from unstable status to stable status, as the delay passes through the critical
delays, and the system has the same stability in each subinterval. If a DDE admits a number
of stability switches, then the system can be stabilized or destabilized by adjusting the delay
value only. It is worthy to note that, however, the stability may be very poor in some delay
intervals for which the system is asymptotically stable [14]. Thus, in practical applications, it is
required not only to know whether the time-delay system is asymptotically stable, but also to
know the stability margin. Therefore, a computational algorithm for finding the characteristic
root with maximal real part (rightmost root for short) of an NDDE is preferable.

The characteristic quasipolynomial of a DDE has an infinite number of roots that do not
have closed form, and the roots can be found numerically only. Though the famous Newton-
Raphson method works effectively in finding a root of a nonlinear equation for a properly
chosen initial guess, it does not work in finding the rightmost root of an NDDE directly from the
characteristic quasipolynomial. In [15], an iterative scheme was proposed for the calculation of
the rightmost root of an RDDE, where the rightmost root was assigned to be the rightmost root
of a simplified polynomial resulted from the quasipolynomial in each step of the iteration. The
problem is that the iterative sequence in [15] is frequently not convergent. Recently, the author
shows in [16] that the Newton-Raphson method or the Halley method computes effectively
the rightmost roots of RDDEs if Lambert W function [17] is applied.

In this paper, we are interested in the stability test of NDDEs,

ẋ(t) + Cẋ(t − τ) = Ax(t) + Bx(t − τ), x ∈ R
n, (1.1)

whose characteristic equations are assumed in the form

Δ(λ) :=
(
1 − pe−λτ

)
λn + a1

(
e−λτ

)
λn−1 + · · · + an

(
e−λτ

)
= 0, (1.2)

where p is a constant, and the coefficients aj(z) are polynomials in z. The systems discussed
in [1–9] fall into the category of (1.1). If p = 0, then the trivial solution x = 0 is asymptotically
stable if and only if Δ(λ) has roots with negative real parts only [10–14], which is equivalent
to α < 0, where

α = max{Reλ : Δ(λ) = 0, λ ∈ C}. (1.3)

This may not be the case of NDDEs. If |p| = 1, the condition “Δ(λ) has roots with negative real
parts only” is not equivalent to α < 0, because the infinite characteristic roots with negative
real parts may accumulate on the imaginary axis as shown in Section 2.1. If |p| > 1, Δ(λ)
has always roots with positive real part, so x = 0 is unstable for all given τ > 0. Thus, only
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|p| < 1 is assumed true in this paper, for which “Δ(λ) has roots with negative real parts only”
is equivalent to α < 0.

The aim of this paper is to generalize the iterative method developed in [16] for
calculating the rightmost root of RDDEs to the stability test of NDDEs. The method will be
briefly introduced in Section 2, and two examples will be given in Section 3 to demonstrate the
efficiency of the proposed method. A few concluding remarks will be given in Section 4.

2. An algorithm for calculating the rightmost characteristic root of time-delay systems

A real α corresponds to a real characteristic root or a pair of complex conjugate characteristic
roots. For simplicity, such characteristic root(s) is called the rightmost root in this paper. In this
section, the Newton-Raphson method will be combined with a special function-Lambert W
function to find out the rightmost root of Δ(λ).

2.1. An explicit stability criterion for a first-order RDDE

Let us consider a first-order retarded delay differential equation described by

ẋ(t) + ax(t) + bx(t − τ) = 0. (2.1)

The characteristic equation corresponding to the trivial solution x = 0 is

Δ(λ) := λ + a + be−λτ = 0. (2.2)

On the basis of Lambert W function, the stability condition can be presented explicitly. In fact,
Lambert W function w =W(z) is defined as the solution of a transcendental equation

wew = z, (z ∈ C). (2.3)

It has infinite branches, denoted by Wk(z), k = 0,±1,±2, . . . , respectively. W0(z) is the unique
branch that is analytic at the origin z = 0, and is called the principal branch. For more details
about Lambert W function, it is referred to [17–19].

Now, if Δ(λ) = 0, then (λ+a)eλτ = −b, and τ(λ+a)e(λ+a)τ = −bτeaτ . Thus, the characteristic
roots can be expressed explicitly in terms of Lambert W function [17]

λk = −a +
Wk

(
− bτeaτ

)

τ
, k = 0,±1,±2, . . . . (2.4)

Moreover, it has been proved in [19]: for arbitrary z ∈ C, one has

max
k=0,±1,±2,...

ReWk(z) = ReW0(z), (2.5)

where Re z stands for the real part of z ∈ C. Thus, the rightmost root of (2.1) is λ0, and the
trivial solution, x = 0, of (2.1) is asymptotically stable if and only if Reλ0 < 0, namely,

ReW0(−bτeaτ) < τRea. (2.6)

Such a stability condition can be checked easily, because Maple, Matlab, and Mathematica, the
three popular mathematical softwares, provide a calculator of Lambert W function.
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2.2. A numerical scheme for neutral delay differential equations

It is not possible to gain an explicit form of the rightmost root, as done above, for other delay
differential equations. Thus, an iterative algorithm was proposed in [16] for calculating the
rightmost root of RDDEs whose characteristic equation reads

Δ(λ) := λn + a1
(
e−λτ1 , e−λτ2 , . . . , e−λτm

)
λn−1 + · · · + an

(
e−λτ1 , e−λτ2 , . . . , e−λτm

)
= 0, (2.7)

where the coefficients aj(z1, z2, . . . , zm) are polynomials. The main points of this iterative
method are summarized as follows.

2.2.1. Choice of the initial guess

A properly chosen initial value is important in the applications of iterative methods. For our
problem, one can firstly chose freely a complex number λ0 and then refine it to be the rightmost
root of the following polynomial equation

λn + a1
(
e−λ0τ1 , e−λ0τ2 , . . . , e−λ0τm

)
λn−1 + · · · + an

(
e−λ0τ1 , e−λ0τ2 , . . . , e−λ0τm

)
= 0, (2.8)

where the coefficients aj are assigned to fixed values. Note that the notation λ0 here denotes
the initial guess, rather than the rightmost root given in Section 2.1.

2.2.2. Construction of the algorithm

For certain fixed constants a > 0 and b, define

F(λ) = aλ + b −W0
(
(aλ + b −Δ(λ)

)
eaλ+b

)
, (2.9)

where W0(z) is the principal branch of Lambert W function, and the constants a, b are not
large to avoid numerical problems due to large factor. Then the Newton-Raphson method is
employed to find the rightmost root of Δ(λ) = 0;

λi+1 = λi −
F(λi)
F ′(λi)

, (i = 0, 1, 2, . . .); (2.10)

which has quadratic convergence for unrepeated roots. Alternatively, Halley’s method

λi+1 = λi −
(

1 − 1
2
F(λi)F”(λi)
(
F ′(λi)

)2

)−1 F(λi)
F ′(λi)

, (i = 0, 1, 2, . . .) (2.11)

can be used. This algorithm has order 3 of convergence for unrepeated roots. The iteration is
stopped at step N if

|λN − λN−1| < ε, (2.12)

for a given tolerance ε.
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2.2.3. Verification of the computational result

Due to (2.5), it is expected that λN resulted from (2.10) or (2.11) is the rightmost root of the
delay differential equation, namely, for any root λ of Δ(λ) = 0, one has

Reλ ≤ ReλN. (2.13)

Equation (2.13) is guaranteed if the Nyquist plot of Δ(iω + ReλN)/(1 + iω)n passes through
the origin of the complex plane and the Nyquist plot of Δ(iω + ReλN + μ)/(1 + iω)n does not
encounter the origin for very small μ > 0. The method of Nyquist plot was originally proposed
in [20] for RDDEs, and extended to NDDEs in [21].

Such a scheme works also for the quasipolynomial defined in (1.1) for NDDEs with
|p| < 1.

2.3. Accumulation of the characteristic roots

The different braches of LambertW function can be used to find different roots of Δ(λ) = 0. For
simplicity, let us calculate the roots of a first-order autonomous NDDE ẋ(t) = −ẋ(t − τ) − ax(t)
with

Δ(λ) = λ + λe−λ τ + a. (2.14)

Let Wk(z) be the kth branch of Lambert W function defined in Section 2.1, and define

Fk(λ) = λ + a −Wk

(
− τ λ eaτ

)
/τ, (k = 0,±1,±2, . . .), (2.15)

then all the characteristic roots, computed by using the Newton-Raphson method or Halley’s
method for Fk(λ), have negative real parts, and they accumulate on the imaginary axis as
shown in Table 1. As a result, the solution x = 0 is not stable, though all the roots of Δ(λ) have
negative real parts.

The condition |p| < 1, required in the proposed algorithm for finding the rightmost root,
is not satisfied in this example. The branch W0(z) yields the leftmost root, rather than the
rightmost root.

3. Two illustrative examples

In this section, the iterative method proposed in Section 2 will be applied to calculate the
rightmost roots of two NDDEs discussed in the literature.

3.1. A neutral delayed oscillator

Let us firstly consider the stability of a second-order NDDE [7] arising from structure dynamics

ẍ(t) + 2ξẋ(t) + x(t) + pẍ(t − τ) = 0, (3.1)

where 0 < p < 1. The characteristic equation is

Δ(λ) := λ2 + 2ξλ + 1 + pλ2e−λτ = 0. (3.2)
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Table 1: Numerical calculation of the roots of Δ(λ) in (2.14) with τ = 0.3, a = 0.5.

Branch Characteristic root Branch Characteristic root
−200 −0.2572 × 10−9 − 0.4178 × 104 i 1 −0.3631 × 10−2 + 0.1063 × 102 i

−100 −0.9644 × 10−9 − 0.2084 × 104 i 2 −0.4200 × 10−3 + 0.3147 × 102 i

−20 −0.2498 × 10−5 − 0.4084 × 103 i 3 −0.1517 × 10−3 + 0.5239 × 102 i

−10 −0.1052 × 10−4 − 0.1990 × 103 i 4 −0.7747 × 10−4 + 0.7333 × 102 i

−5 −0.4688 × 10−4 − 0.9427 × 102 i 5 −0.4688 × 10−4 + 0.9427 × 102 i

−4 −0.7747 × 10−4 − 0.7333 × 102 i 10 −0.1052 × 10−4 + 0.1990 × 103 i

−3 −0.1517 × 10−3 − 0.5239 × 102 i 20 −0.2498 × 10−5 + 0.4084 × 103 i

−2 −0.4200 × 10−3 − 0.3147 × 102 i 100 −0.9644 × 10−9 + 0.2084 × 104 i

−1 −0.3631 × 10−2 − 0.1063 × 102 i 200 −0.2572 × 10−9 + 0.4178 × 104 i

0 −0.2410 500 −0.1386 × 10−10 + 0.1046 × 105 i

Each root must be a root of a certain branch of the following equation:

Fk(λ) := 2ξλ + 1 −Wk

(
− λ2(1 + pe−λτ

)
e2ξλ+1) = 0, (k = 0,±1,±2, . . .). (3.3)

Then the rightmost root can be found out from F0(λ) = 0 via the Newton-Raphson method or
Halley’s method. For example, let p = 0.2, ξ = 0.05, and calculate the rightmost root for four
special cases: τ = 1, 5, 7.5, 11.

To this end, one chose freely an initial guess, say λ0 = 1.0 + 3.0 i. Because the simplified
polynomial equation λ2 + 2ξλ + 1 + pλ2e−λ0 = 0, corresponding to (2.8), has two complex roots

−0.5971 × 10−1 + 0.1036 × 10 i, − 0.4813 × 10−1 + 0.1038 × 10 i, (3.4)

the initial guess can be refined as λ0 = −0.4813 × 10−1 + 0.1038 × 10 i for τ = 1. The choice of
an initial guess with negative real part is also understandable from the Nyquist plot. Due to
Figures 1(a), 1(b), where the Nyquist plot does not encounter the origin of the complex plane,
so the trivial solution x = 0 is asymptotically stable, and consequently, the rightmost root must
have negative real part.

With this λ0, the 4th iteration of the Newton-Raphson method gives λ4 = −0.1155 −
0.9220 i. As shown in Figure 1(c), the Nyquist plot of Δ(iω − 0.1155)/(1 + iω)2 passes through
the origin, it follows that λ4 = −0.1155 − 0.9220 i is the rightmost root for τ = 1.

Similarly, starting from λ0 = −0.4813 × 10−1 + 0.1038 × 10 i, the 4th iteration, 6th iteration,
and 4th iteration of the Newton-Raphson method give the rightmost roots 0.3125 × 10−1 +
0.9810 i, −0.6278 × 10−1 − 0.8692 i, and 0.2546 × 10−1 − 0.9986 i for τ = 5, 7.5, 11, respectively.
The numerical results are in agreement with that obtained in [7].

Moreover, as shown in Figure 2, the curve of the real parts of the rightmost roots with
respect to the delay can be produced numerically by means of the proposed algorithm, if the
delay effect on the asymptotical stability is addressed. From Figure 2, where the initial guess is
taken as λ0 = −0.4813× 10−1 + 0.1038× 10 i, we see that the trivial solution x = 0 of (3.1) exhibits
two stability switches in τ ∈ [0, 7], occurs at τ10 = 3.2742, and τ20 = 6.1742, respectively, and
the corresponding rightmost roots can be found to be ±1.1032 i, ±0.9252 i, respectively. This is
the same result as that obtained on the basis of stability switches [7]. In fact, Δ(iω) = 0 gives
(1 − p2)ω4 + (4ξ2 − 2)ω2 + 1 = 0. When p = 0.2, ξ = 0.05, one has two positive roots ω1 = 1.1032
and ω2 = 0.9252, and the corresponding minimal critical delays, determined from Δ(iω) = 0,
are found easily to be τ10 = 3.2742 and τ20 = 6.1742, respectively.
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Figure 1: Graphical test for the rightmost root of (3.1): (a) the Nyquist plot of Δ(iω)/(1 + iω)2; (b) zoomed
around the origin in plot (a); (c) the Nyquist plot of Δ(iω − 0.1155)/(1 + iω)2.
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Figure 2: The solution x = 0 of (3.1) is asymptotically stable if τ ∈ [0, 3.2742) ∪ (6.1742, 7], or it is unstable
if τ ∈ (3.2742, 6.1742).

From Figure 2, we see also that at τ = 2.12, the rightmost root −0.2201 − 0.1061 × 10i has
the smallest negative real part. This fact indicates that a proper chosen delay value can improve
the stability of an NDDE.

3.2. An NDDE with two delays

Now, let us consider an NDDE with two delays [22]

d

dt

(
x(t) − 3

4
x(t − 1) +

1
2
x(t − 2)

)
=

1
4
x(t) +

3
4
x(t − 1) (3.5)

to show that the method work also for NDDEs with multiple delays. The characteristic
equation is

Δ(λ) := λ
(

1 − 3
4
e−λ +

1
2
e−2λ

)
− 1

4
− 3

4
e−λ = 0. (3.6)

As shown in Figure 3(a), the Nyquist plot of Δ(iω)/(1 + iω) encounters the origin of the
complex plane, so the trivial solution x = 0 of (3.5) is unstable, and the rightmost root must
have positive real part. To find out the rightmost root, let

F(λ) = λ − 1
4
−W0

((
λ − 1

4
−Δ(λ)

)
eλ−1/4

)
, (3.7)
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Figure 3: Graphical test for the rightmost root of (3.5): (a) the Nyquist plot of Δ(iω)/(1 + iω); (b) the
Nyquist plot of Δ(iω + 0.7581 + 0.001)/(1 + iω).

where W0(z) is the principal branch of Lambert W function. Then, choose freely an initial
guess, say λ0 = 1.0+ 2.0 i, and refine it as the root of λ(1− 3e−λ0/4+ e−2λ0/2)− 1/4− 3e−λ0/4 = 0,
namely, replace it with λ0 = −0.9513 × 10−1 − 0.2924 i. Then the third iteration of the Newton-
Raphson method gives λ3 = 0.7581. Moreover, the Nyquist plot in Figure 3(b) shows that λ3 =
0.7581 is the rightmost root, because the Nyquist plot of Δ(iω + 0.7581 + 0.001)/(1 + iω) does
not encounter the origin. This result is the same as the one obtained by using DDE-BIFTOOL
[22, 23].

Moreover, when a negative feedback control −ux(t) is performed on to (3.5),

d

dt

(
x(t) − 3

4
x(t − 1) +

1
2
x(t − 2)

)
− 1

4
x(t) − 3

4
x(t − 1) = −ux(t), (3.8)

the unstable equilibrium is stabilized if one chooses, for example, 0.5 < u < 1.5, as shown in
Figure 4.

4. Conclusions

In this paper, the iterative method based on Lambert W function for calculating the rightmost
roots of RDDEs is extended to the stability test of a kind of NDDEs for which the asymptotical
stability is guaranteed if all the characteristic roots have negative real parts. Two illustrative
examples show that the method works effectively. The numerical scheme enables one not
only to know whether the time-delay system is asymptotically stable, but also to know the
stability margin. A rigorous mathematical treatment of the iterative method such as the
convergence of the iterative sequence, however, is not available in this paper and is left for
future consideration.

Though the investigation is made mainly for NDDEs with fixed parameters, the
proposed scheme does work for some NDDEs with a parameter falling in a given interval.
As shown in the first illustrative example from structure dynamics, for example, the iterative
method can produce a plot of the real part of the rightmost root with respect to the delay, from
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Figure 4: The plot of the real part of the rightmost root with respect to the feedback gain u for (3.8).

which one can easily determine for what value of delay the system is asymptotically stable,
and for what value of delay, the system is unstable. It reveals also that a proper chosen delay
value can improve the stability of an NDDE. In the second illustrative example, an interval of
the feedback gain is determined for stabilizing the unstable equilibrium of the NDDE by using
the iterative method.
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sources of uncertainty, contributing to decrease the reliability of vital activities. A lot of antivirus
programs have been developed, but they are limited to detecting and removing infections, based
on previous knowledge of the virus code. In spite of having good adaptation capability, these
programs work just as vaccines against diseases and are not able to prevent new infections based
on the network state. Here, a trial on modeling computer viruses propagation dynamics relates
it to other notable events occurring in the network permitting to establish preventive policies in
the network management. Data from three different viruses are collected in the Internet and two
different identification techniques, autoregressive and Fourier analyses, are applied showing that
it is possible to forecast the dynamics of a new virus propagation by using the data collected from
other viruses that formerly infected the network.
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1. Introduction

A few decades ago, computer viruses arose in the form of programs with simple code and
able to undermine the smooth operation of a machine. Initially, in spite of the large number
of viruses, they caused minor damages to machinery and their spread was very slow. Over
the years, due to the rapid development of technology, such as software and hardware, the
development and popularization of the Internet and the great variety of equipment using
software and networks, viruses have become a major threat [1].

Currently, these virus programs have more complex codes, being able to produce
mutations of themselves, and their detection and removal by antivirus programs became more
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difficult [2]. Their goals go much further than simply damaging a machine. They are capable
of acquiring personal data of users of networks, such as a bank account, and cause severe
damages to large corporations [3].

In view of these concerns, a better understanding of the computer viruses spreading
dynamics is mandatory. To improve the safety and reliability in computer systems and
networks, it is important to have the capacity of recognizing and combating the several types
of infections faster and more effectively [4, 5].

Research actions started at the end of the 80s with the classical paper of Kephart et al.
[6] proposing an ecosystem approach for computational systems. Then, the efforts were
concentrated on the development of antivirus programs, responsible for the detection and
removal of viruses, based on the previous recognition of the infection code based on the models
shown in [2, 7, 8]. These programs have a great upgrading power, but act just as simple
vaccines against diseases [2, 4]. They are not able to predict the behavior of networks when
an infection is established in a machine and, consequently, cannot support preventive attitude
against virus actions based on events of the network.

The first effort to produce models for the spreading of computer viruses based on their
epidemiological counterparts is reported in [7] with the initial ideas for deriving long-term
behaviors considering the graph representing the network connections. Then, with Markov
chains representing the local behavior of infection action in a single node, susceptible-infected-
removed (SIR) models were presented trying to fit the long-term behavior of the viruses
propagation [9].

This kind of approach had some attention in the last five years and the relations between
spreading viruses and topological parameters of the network were studied, being successful
mainly when modeling the propagation by email networks [10]. Besides, SIR models were
modified [5] and applied to guide infection prevention [11, 12], deriving expressions for
epidemiological thresholds [11–13].

This work focuses on the achievement of models for the dynamics of the spread of certain
viruses, mainly taking into account the correlation functions between the several viruses
spreading data, during a certain period of time. Thus, the number of infections from a type
of virus could be foreseen in the short term by comparison with other viruses or with notable
events in the network, which would support preventive policies.

In order to provide simple algorithms to allow operational facility, simple autoregressive
models are chosen [14, 15]. Considering the periodicity of the data collected, Fourier models
are also tried, producing the same results of the autoregressive ones.

2. Methodology

The data to be collected for modeling computer infections propagation are the number of daily,
weekly, and monthly infections for several computer viruses. These numbers are found in
the Internet, for instance, in http://www.avira.com/, and support the development of linear
identification models.

The next step is the choice of a specific virus to be analyzed, in the enormous range of
possibilities. In this work, a premise was taken into consideration: in order to have an efficient
identification, the several chosen viruses need to present similar propagation dynamics. Here,
the high incidence of cases reported and the email spreading compose the chosen criterion.



J. R. C. Piqueira and F. B. Cesar 3

302520151050
Time (days)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
um

be
r

of
in

fe
ct

io
ns

Figure 1: Wormnetsky.p temporal evolution.
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Figure 2: Wormmytob.mr temporal evolution.

Wormnetsky.p, wormmytob.mr, and trdir.stration.ge were chosen, that is, two worms
and a trojan. Figures 1, 2, and 3 show the dynamical evolution of the number of infections with
wormnetsky.p, wormmytob.mr, and trdir.stration.gen, respectively.

First, in order to verify the relations among the viruses, cross-correlation coefficients
are calculated. Considering two signals x(t) and y(t) simultaneously sampled in regular T
intervals, and calling x(nT) and y(nT) their n samples, for a certain time interval containing N
sample periods, the cross-correlation coefficient, ρ, between x(t) and y(t) measures how they
are related with each other in this interval (see [16, page 206]). Table 1 summarizes the cross-
correlation coefficients, calculated for the three pairs of infection signals, for the time interval
of Figures 1, 2, and 3, sampling the data daily.

The results from Table 1 indicate acceptable correlation between the spread of the
viruses chosen, corroborating the visual similarity between the temporal evolution of the three
infections. Due to this, only wormnetsky.p is considered to identify the system parameters to be
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Figure 3: Trdir.stration.gen temporal evolution.

Table 1: Viruses cross-correlation coefficients.

Viruses Cross-correlation coefficient
Wormnetsky.p, wormmytob.mr 0.39312
Wormnetsky.p, trdir.stration.ge 0.40541
Wormmytob.mr, trdir.stration.ge 0.99435

used to provide short-term forecasts for the three viruses. Following this identification strategy,
model accuracy is checked.

3. System identification algorithms

In order to identify the parameters to model the temporal evolution of the infections by the
three types of viruses selected here, two approaches were followed:

(i) using a linear autoregressive model, that is, consider that the current value of a
variable depends only on the former values, up to a certain delay [14, 15];

(ii) identifying the main frequencies of the time series and treating them as Fourier series
[14, 15].

3.1. Autoregressive model

Considering a regularly sampled signal y(k), its estimated value at instant k is given by

y(k) =
d∑

i=1

piy(k − i), (3.1)

where pi are the model parameters to be estimated by using the minimum square method,
and d is the maximum delay to be considered [14, 15], measured by the number of sampling
intervals.
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Figure 4: Wormnetsky.p temporal evolution simulation (d = 10).
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Figure 5: Wormnetsky.p temporal evolution simulation (d = 15).

By using a “free-prediction” strategy, the vector data are divided into two parts: one
is used for the identification of the system parameters and the other for the simulation and
validation of the model. In the case of the data described in Section 2, the 25 first samples
are used for identification and the last 5 for simulation. Different values of d are considered
and Figures 4, 5, and 6 show the results for d equal to 10, 15, and 24, respectively, with the
continuous line representing the real data and the asterisks representing the simulation results.

In order to compare the several chosen delays, Table 2 shows the mean-square estimation
error in each case. Considering these results, from now on, all models will use d = 15.

To have an idea of the efficiency of the adopted identification strategy, the estimated
parameters for wormnetsky.p are used to model the dynamics of wormmytob.mr and
trdir.stration.gen. The results are shown in Figures 7 and 8, respectively, with the continuous
line representing the real data and the asterisks representing the simulation results. Table 3
summarizes the mean-square errors of these simulations.
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Figure 6: Wormnetsky.p temporal evolution simulation (d = 24).

Table 2: Estimation errors in autoregressive models for wormnetsky.p.

d Mean-square estimation error(%)
10 5.5773
15 4.1751
24 6.8542

Table 3: Estimation errors in autoregressive models for wormmytob.mr and trdir.stration.ge.

Virus Mean-square estimation error(%)
Wormmytob.mr 17.142
Trdir.stration.ge 18.32
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Figure 7: Wormmytob.mr temporal evolution simulation.
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Figure 8: Trdir.stration.gen temporal evolution simulation.
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Figure 9: Wormnetsky.p frequency spectrum.

The simulations performed taking into account only the parameters calculated for
the wormnetsky.p show that the short-term estimations of new infections are not precise for
wormmytob.mr and trdir.stration.ge, as expected, because the same model is used for different
viruses. Nevertheless, the model is able to predict with some accuracy the increasing and
decreasing tendencies in their dynamics. This knowledge permits the implementation of
preventive policies, considering only the wormnetsky.p propagation profile.

3.2. Fourier series model

Observing the strong oscillatory character of the three different viruses studied, a model
considering the signals as a sum of cosines was developed. Figures 9, 10, and 11 present
the frequency spectrum for the temporal evolution of the wormnetsky.p, wormmytob.mr, and
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Figure 10: Wormmytob.mr frequency spectrum.
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Figure 11: Trdir.stration.gen frequency spectrum.

trdir.stration.ge propagation. As one can see, the main frequencies of the three dynamic
behaviors are the same.

Figures 9, 10, and 11 indicate that a good set of frequencies for developing the model is F
= [0 0.2 0.3 0.5]. Following the same reasoning used in Section 3.1 for identification, the model
parameters are calculated by using only the data from wormnetsky.p and the predictions of new
infections for wormmytob.mr and trdir.stration.ge are obtained by using the same parameters.

To have an idea about the efficiency of the adopted identification strategy by using
Fourier methods, Figures 12, 13, and 14 show the predicted dynamics of wormnetsky.p,
wormmytob.mr, and trdir.stration.gen, respectively, with the continuous line representing the real
data and the asterisks representing the simulation results. Table 4 summarizes the mean-square
errors of these simulations.
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Figure 12: Wormnetsky.p Fourier model.
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Figure 13: Wormmytob.mr Fourier model.

As in autoregressive models, simulations performed taking into account only the
parameters calculated for the wormnetsky.p show that the short-term estimations of new
infections are not precise for wormmytob.mr and trdir.stration.ge, as expected, because the same
model is used for different viruses. But, again, the model is able to predict with some accuracy
the increasing and decreasing tendencies in their dynamics, allowing to establish preventive
policies by using only the data from wormnetsky.p propagation.

4. Conclusions

Two different models for the dynamics of computer viruses propagation were compared:
autoregressive and Fourier analysis presenting similar results. They provide good predictions
for three different types of infections by using the data collected for just one of them.

In spite of not being totally satisfactory, these models present the possibility of predicting
increasing and decreasing tendencies in the propagation of a certain type of virus by using the
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Figure 14: Trdir.stration.gen Fourier model.

Table 4: Estimation errors in Fourier models for wormnetsky.p, wormmytob.mr, and trdir.stration.ge.

Virus Mean-square estimation error(%)
Wormnetsky.p 7.0354
Wormmytob.mr 16.778
Trdir.stration.ge 18.096

accumulated experience with another one. It seems that this point could be used to predict and
control the infection levels in advance, providing preventive actions in order to increase safety
and reliability.
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