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Expression of Concern
Expression of Concern on “Antigravity, an Answer to Nature’s
Phenomena including the Expansion of the Universe”
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Advances in High Energy Physics would like to express
concern with the article titled “Antigravity, an Answer to
Nature’s Phenomena including the Expansion of the Uni-
verse” [1], which reviews the author’s previous studies.

Following the publication of the review article, con-
cerns have been identified that the discussion is qualitative
and without any concrete model supporting the ideas pre-
sented. The concept that clouds experience anti-gravity
proportional to the temperature of water droplets appears
unsustainable, as well as the idea that thermal energy pro-
duced by the stars can explain the accelerating universe.
Both ideas lack a concrete model, and it is unlikely that
such a model can exist. If the observations presented in
the article are assumed to be correct, a model would be
required to test the hypothesis. The possibility of such
testing is doubtful. We additionally note that the author’s
previous work, reviewed in the article, has not been cited
by other researchers.
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It appears that having our own brane to somehow interact with other branes could give rise to quite an interesting system and that
interaction could lead to some observable effects. We consider the question of whether or not these signatures of interaction
between the branes can be observed. To answer this question, we investigate the effect induced by the inflaton in the WMAP7
data using the warm inflationary model. In this model, slow-roll and perturbation parameters are given in terms of the inflaton
thermal distribution. We show that this distribution depends on the orbital radius of the brane motion under the interaction
potential of other branes in extra dimensions. Thus, an enhancement in the brane inflation can be a signature of an orbital
motion in extra dimensions, and consequently, some signals of other branes can be detected by observational data. According to
experimental data, the N ≃ 50 case leads to ns ≃ 0:96, where N and ns are the number of e-folds and the spectral index,
respectively. This standard case may be found in the range 0:01 < Rtensor‐scalar < 0:22, where Rtensor‐scalar is the tensor-scalar ratio.
We find that at this point, the radial distance between our brane and another brane is R = ð1:5GeVÞ−1 in intermediate and R =
ð0:02225GeVÞ−1 in logamediate inflation.

1. Introduction

Recently, it was argued that the boundary conditions to be
imposed on the quantum state of the whole multiverse could
be such that brane universes could be created in entangled
pairs [1]. Also, the consideration of entanglement between
the quantum states of two or more brane universes in a mul-
tiverse scenario provides us with a completely new paradigm
that opens the door to novel approaches for traditionally
unsolved problems in cosmology, more precisely, the prob-
lems of the cosmological constant, the arrow of time, and
the choice of boundary conditions, amongst others [2]. Some
authors have tried to find direct evidence of the existence of
other brane universes using a dark energy model [3, 4]. Also,
some researchers show that other branes are made observable
for us through interaction with our own brane [5]. In their
paper, the orbital radius of our brane in extra dimensions

can be described according to the interaction potential of
other branes. In some scenarios, the properties of the interac-
tion potential are calculated for a composite quantum state of
two branes whose states are quantum mechanically corre-
lated [1, 2]. It appears that having our own brane to somehow
interact with other branes could give rise to quite an interest-
ing system and that interaction could lead to an orbital
motion in extra dimensions.

This scenario is very close to the well-known DGPmodel.
Dvali et al. [6] proposed a new braneworld model, named the
DGP model, having two branches. One branch is known as
the accelerating branch, i.e., the accelerating phase of the uni-
verse can be explained without adding a cosmological con-
stant or dark energy, whereas the latter one represents the
decelerating branch. In this paper, we generalize this model
and show that by the acceleration of branes, some extra fields
emerge. These fields dissolve into branes and lead to inflation.
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For this reason, these fields could be considered candidates
for inflation.

The main question is the possibility of considering the
properties of other branes against observational data. The
warm inflationary model helps us to perform precision tests
of the universal extra dimensional models and explore the
new physics against observational data. In this scenario, after
the period of inflation, the radiation of the universe becomes
dominant and the reheating epoch will not happen. The
results of this model are compatible with the WMAP7 and
Planck data [7]. In this theory, slow-roll and perturbation
parameters are given in terms of the thermal distribution of
the inflaton. On the other hand, this distribution is given in
terms of the orbital radius of the brane motion [5] in extra
dimensions. As the interaction potential increases, the effect
of the inflaton radiation from the horizon that appears in
the brane-antibrane system on the universe’s inflation
becomes systematically more effective because at higher
energies, there exist more channels for inflaton production
and its decay into particles.

The outline of the paper is as follows. In Section 2, we
consider the effect of the orbital radius of the brane motion
under the interaction potential of the other branes on the
thermal distribution of inflatons. In Section 3, using the
warm inflationary model, we analyze the signature of other
branes against observational data. The last section is devoted
to a summary and conclusion.

2. The Thermal Distribution of Inflatons near
the Appeared Horizon in the Brane-
Antibrane System

Previously, the dynamical behavior of a pair of Dp and anti-
Dp branes which move parallel to each other in the region
that the brane and antibrane annihilation will not occur
was considered [5]. Also, the orbital radius of the brane
motion due to the interaction potential in extra dimensions
was studied. Using these results, we calculate the thermal dis-
tribution of inflatons near the horizon that appears in the
brane-antibrane system and show that the thermal distribu-
tion of inflatons can be given in terms of the orbital radius
of the brane motion in extra dimensions.

The d-dimensional metric in the brane-antibrane system
is expressed as

ds2 = gµνdx
µdxν + gρσdx

ρdxσ + gabdx
adxb, ð1Þ

where gµν and gρσ are the p-dimensional metrics along the
Dp and anti-Dp branes, respectively, and gab is the ðd‐2pÞ
dimensional metric along the transverse coordinates.

Now, let us consider the wave equation of the inflaton in
extra dimensions between two branes:

−
∂2

c2∂χ2 +
∂2

∂r2

( )
B = 0, ð2Þ

where χ and r are the transverse coordinates between the two
branes. This equation corresponds to flat space-time. The
interaction potential between the Dp brane and the anti-Dp
brane in extra dimensions is of the type [5]

V Rð Þ ∼ 64π2μ4

27
, ð3Þ

where μ4 = ð27/32π2ÞT3h
4, hðRÞ = b4/R4, R is the orbital

radius distance between the two branes, T3 the brane tension,
and b the curvature radius of the AdS5 throat. This potential
leads to curved space-time.

There are more models for interbrane potential; however,
we make use of a symmetric model to explain the interaction
between two parallel and similar branes. This helps us to
understand the model better, and we could generalize it by
adding more corrections due to the nonsymmetric part of
potential. However, this is not the main thrust of this work.

Thus, to write the inflaton wave equation in curved
space-time, we should use the following reparameterizations:

r⟶ ρ r, χð Þ,
χ⟶ τ r, χð Þ,

ð4Þ

that lead to the following inflaton wave equation:

∂τ
∂r

� �2
−

∂τ
∂χ

� �2
( )

∂2

c2∂τ2
+

∂ρ
∂r

� �2
−

∂ρ
∂χ

� �2
( )

∂2

∂ρ2

" #
B = 0:

ð5Þ

We can normalize the distance between the two branes to
unity by making the following choices:

ρ r, χð Þ = r
R χð Þ ,

τ = βc2
ðχ
0
d ′t

R ′χ
� �
_R ′χ
� � − β

r2

2
:

ð6Þ

With the above considerations, the wave equation is writ-
ten as

−gð Þ1/2 ∂
∂xμ

gμν −gð Þ1/2 ∂
∂xμ

� �
B = 0, ð7Þ

where x5 = τ and x4 = ρ, and the metric elements are
obtained as

gττ = −
1

β2c2
R
_R

� � 1 − _R
2/c2

� �
ρ2

1 + _R/c2
� 	

ρ2

0
@

1
A,

g44 = R2
1 + _R

2/c2
� �

ρ2

1 − _R/c2
� 	

ρ2

0
@

1
A:

ð8Þ
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The horizon of this system is located at

rhorizon =
cR
_R
, ð9Þ

where c is velocity of light. In Kruskal coordinates, the metric
of the system becomes [8, 9]

ds2 = gμνdx
μdxν + gρσdx

ρdxσ

− rhorizon
e− r/rhorizonð Þ

r
d�ud�v + r2dθ2,

�u = −2rhorizone−u/2rhorizon , �v = −2rhorizone−v/2rhorizon ,

u = χ − r∗, v = χ + r∗, r∗ = −r − rhorizon ln r − rhorizonj j:
ð10Þ

Since the Killing vector in Kruskal coordinates is given by
∂/∂�u on the past horizon H−, the positive frequency normal
mode solution in Kruskal coordinates is approximated by

B∝ e−iω�u, ð11Þ

where ω is the inflaton energy in extra dimensions. Using this
fact that �v = 0 onH− [9], we can estimate the original positive
frequency normal mode on the past horizon as

B∝ e−iω�u =
�uj j

2rhorizon

� �−i2rhorizonω

=
−�u/2rhorizonð Þ−i2rhorizonω region Ið Þ,
−�u/2rhorizonð Þ−i2rhorizonrhorizon region IIð Þ:

8<
:

ð12Þ

In Equation (12), we can use the fact that ð−1Þ−i2rhorizonω
= e2rhorizonω. Using Equation (12), we observe that the inflaton
states in the horizon satisfy the following condition [9, 10]:

Bout − tanh rωBinð Þ systemj iin⊗out = 0,

tanh rω = e−2rhorizonω,
ð13Þ

which actually constitutes a boundary state. In fact, we can
view Hawking radiation as the pair creation of a positive
energy field that goes to infinity and a negative energy field
that falls into the horizon of the brane-antibrane system.
The pair is created in a particular entangled state. So the
Unruh state can be viewed as an entangled thermal state.
The above definition of the positive frequency solution in
terms of Bout and Bin leads to the Bogoliubov transformation
[8–10] for the particle creation and annihilation operators in
the brane-antibrane system and Minkowski space-times in
the exterior region of the system:

d = cosh rωαout − sinh rωα
†
in,

d† = cosh rωα
†
out − sinh rωαin,

tanh rω = e−2πrhorizonω,

ð14Þ

where d† and d are the creation and annihilation operators,
respectively, acting on the Minkowski vacuum, α†out and αout
are the respective operators acting on the brane-antibrane
vacuum outside the event horizon, and α†in and αin are the
respective operators acting on the brane-antibrane vacuum
inside the event horizon.

Thus, we can write the Bogoliubov transformation
between the Minkowski and curved creation and annihila-
tion operators as

d systemj iout⊗in = αout − tanh rωα
†
in

� 	
systemj iout⊗in = 0, ð15Þ

which actually constitutes a boundary state. Now, we assume
that the system vacuum jsystemiout⊗in is related to the flat
vacuum j0iflat by

systemj iout⊗in = F 0j iflat, ð16Þ

where F is a function to be determined later.
From ½αout, α†out� = 1, we obtain ½αout, ðα†outÞm� = ð∂/∂α†outÞ

ðα†outÞm and ½αout, F� = ð∂/∂α†outÞF. Then, using Equations
(15) and (16), we get the following differential equation for
F:

∂F
∂α†out

− tanh rωα
†
inF

� �
= 0, ð17Þ

and the solution is given by

F = etanh rωα
†
outα

†
in : ð18Þ

By substituting Equation (18) into Equation (16) and by
properly normalizing the state vector, we get

systemj iout⊗in =Netanh rωα
†
inα

†
out 0j iflat

=
1

cosh rω
〠
m

tanhmrω mj iout ⊗ �mj iin,
ð19Þ

where jmiin and j�miout are the orthonormal bases (normal
mode solutions) for a particle that acts on Hin and Hout,
respectively, and N is the normalization constant.

Equation (19) expresses that the states inside and outside
the horizon are entangled. However, this entanglement
depends on the event horizon and the horizon is given in
terms of R, the orbital radius of the brane motion in the inter-
action potential of the other brane, rhorizon = cR/R, and conse-
quently, the entanglement changes with the orbital radial
distance between the two branes. We derive the thermal dis-
tribution for inflatons in extra dimensions as the following:

Bh i = out⊗in systemh jα†inαin systemj iout⊗in
=

e−2πrhorizonω

1 − e−2πrhorizonω
:

ð20Þ

The above equation shows that different numbers of
inflatons are produced with different probabilities inside
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and outside of the apparent horizon in the brane-antibrane
system. These probabilities are related to the orbital radial
distance of the two branes and the energy of the inflatons.

3. Considering the Effect of Other Branes on
Cosmic Inflation by Using the Warm
Inflationary Model

In this section, we enter the effects of the interaction
potential between the branes on the results of the derivation
of slow-roll and perturbation parameters and other impor-
tant parameters in the inflationary model [7]. We show that
these parameters are given in terms of the orbital radial
distance between the two branes and describe the shape of
the interaction potential between branes. Also, using the
inflationary model, we discuss the signature of interaction
between branes against observational data.

Previously, it has been shown that in the FRW brane with
the metric

ds2 = gµνdx
µdxν = −dt2 − a2 tð Þdxidxi, ð21Þ

the dynamics of warm inflation is presented by these equa-
tions [7]:

_ρ + 3H P + ρð Þ = −Γ _B

 �2,

_ργ + 4Hργ = −Γ _B

 �2,

H2 =
1
2

_B

 �2 +V Bð Þ
� �

+
1
3
ργ,

V Bð Þ =m2 Bh i2,

ð22Þ

where ρ is the energy density, p is the pressure, ργ is the
energy density of the radiation, Γ is the dissipative coefficient,
hBi is the thermal distribution of the inflaton, and the over-
dot (˙) is the derivative with respect to cosmic time. In the
previous section, we discussed that the thermal distribution
of the inflaton can be given as a function of the orbital radial
distance between branes. Using this fact, we can rewrite the
above equations as

_ρ + 3H P + ρð Þ = −Γ
€RR − _R

2πωR2

 !2

,

_ργ + 4Hργ = −Γ
€RR − _R

2πωR2

 !2

,

H2 =
1
2

€RR − _R

2πωR2

 !2

+ V R, _R
� 	 !

+
1
3
ργ,

V R, _R
� 	

=m2 1 −
_R

2πωR

 !2

:

ð23Þ

Using quantum field theory methods [11, 12], the dissi-
pation coefficient (Γ) in the above equations could be calcu-
lated as

Γ = Γ0
T3

Bh i2 ~ Γ0
4π2ω2T3R2

_R
2 , ð24Þ

where T is the temperature of the thermal bath. During the
inflationary epoch, the energy density ρ is more than the
radiation energy density ρ > ργ; however, it is comparable

with the potential energy density VðB2Þ (ρ ~V) [7]. The
slow-roll approximation (h€Bi ≤ ð3H + ðΓ/3ÞÞh _Bi) [13, 14]
with the condition that inflation radiation production be
quasistable ( _ργ ≤ 4Hργ, _ργ ≤ Γh _Bi) leads to the following
dynamic equations [7]:

3H 1 +
r
3

� �
_B

 �

= −
1
2
′V ,

ργ =
3
4
r _B

 �2 = r

1 + r/3ð Þð Þ2
′V
2

V
= CT4,

H2 =
1
2
V ,

ð25Þ

where r = Γ/3H and C = π2g∗/30 (g∗ are the number of rela-
tivistic degrees of freedom). In the above equations, a prime (′)
denotes a derivative with respect to the field B. Using this
equation and the thermal distribution of the inflaton in Equa-
tion (20), we can obtain the dynamic equations with respect to
R, the orbital radial distance between the two branes:

3H 1 +
r
3

� � €RR − _R

2πωR2

 !
= −

1
2
′V R, _R
� 	

,

ργ =
3
4
r

€RR − _R

2πωR2

 !2

=
r

1 + r/3ð Þð Þ2
′V
2
R, _R
� 	

V R, _R
� 	 = CT4,

H2 =
1
2
V R, _R
� 	

,

ð26Þ

where the prime (′) denotes a derivative with respect to R.
From the above equations, the temperature of the thermal
bath is given by [7]

T = −
r _H

2C 1 + r/3ð Þð Þ

" #1/4
= −

r €RR − _R
� 	

4CπωR2 1 + r/3ð Þð Þ

" #1/4
: ð27Þ

This temperature depends on the orbital radial distance
between the two branes. As the branes come close to each
other, the temperature of the thermal bath increases. The rea-
son for this is as follows: with decreasing distance between the
two branes, the interaction potential increases and more infla-
tons radiate from the apparent horizon of the brane-antibrane
system.
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At this stage, we tend to calculate the dependency of
slow-roll parameters on the orbital radial distance between
different branes. These parameters in warm inflation are [7]

∈ = −
1
H

d
dt

ln Hð Þ,

η = −
€H

H _H
,

ð28Þ

where H = _a/a and a is the scale factor. To calculate these
parameters, we should determine the explicit form of the
scale factor.

Until now, eight possible asymptotic solutions for cos-
mological dynamics have been proposed [15]. Three of these
solutions have a noninflationary scale factor, and another
three solutions give de Sitter, intermediate, and power law
inflationary expansion. Finally, two cases of these solutions
have asymptotic expansion with the scale factor (a = a0 exp
ðAðln tÞλÞ. This version of inflation is named logamediate
inflation [16]. In this paper, we will study the warm tachyon

inflationary model in the scenarios of intermediate and loga-
mediate inflation.

Firstly, let us consider intermediate inflationary expan-
sion. In this model, the expansion of the universe is between
standard de Sitter inflation with the scale factor aðtÞ =
a0 exp ðH0tÞ and power law inflation with the scale factor
aðtÞ = tp, p > 1 (slower than the first one) [17, 18]. The scale
factor of this model has the form below [19–21]:

a = a0 exp Atf
� �

, 0 < f < 1, ð29Þ

where A is a positive constant. The number of e-folds in this
case is [7]

N =
ðt
t1

Hdt = A tf − t f1
� �

, ð30Þ

where t1 is the begining time of inflation. From Equations
(20), (24), (25), (26), (27), and (29), we obtain the Hubble
parameter as

where �ω = ðð6/Γ0Þð2C/3Þ3/4Þ
1/2ðð8ð f AÞ5/8ð1 − f Þ1/8Þ/ð5f + 2ÞÞ

and Γ0 is constant. This equation insists that the evolution
of our brane universe is affected by the number of inflatons

that are radiated from the apparent horizon of the brane-
antibrane system and it changes with an increase or decrease
in the orbital radial distance between the two branes.

The important slow-roll parameters ϵ and η are given by

H = f A
ln Bh i − ln B0h i

�ω

� � 8 f−1ð Þð Þ/ 5f+2ð Þ

= f A
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � 8 f−1ð Þð Þ/ 5f+2ð Þ

∼ f A
−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πrhorizonω
� 	� 	

�ω

� � 8 f−1ð Þð Þ/ 5f+2ð Þ

∼ f A
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

8 f−1ð Þð Þ/ 5f+2ð Þ

,

B = B0 exp �ω 5f+2ð Þ/8
� �

,

ð31Þ

∈ =
1 − f
f A

ln Bh i − ln B0h i
�ω

� �− 8f / 5f+2ð Þð Þ

=
1 − f
f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ

∼
1 − f
f A

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ

∼
1 − f
f A

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ

,
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respectively. These parameters depend on the orbital radial
distance between the branes. With a decrease in this distance,
more inflatons are radiated from the apparent horizon of the

system, the slow-roll parameters increase, and, as a result, the
universe inflates more.

The energy density of radiation in this case has the
following form:

According to this result, the radiation energy density is
given in terms of the orbital radius of the brane motion in
extra dimensions. As the interaction potential increases, the
effect of the inflaton radiation from the apparent horizon in
the brane-antibrane system on cosmic inflation becomes sys-

tematically more effective because at higher energies, there
exist more channels for inflaton production.

Using Equations (30) and (31), the number of e-folds
between the two fields B1 and B is given by

η =
2 − f
f A

ln Bh i − ln B0h i
�ω

� �− 8f / 5f+2ð Þð Þ

=
2 − f
f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ

∼
2 − f
f A

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �

∼
2 − f
f A

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ

,

ð32Þ

ργ = 3 1 − fð Þf A ln Bh i − ln B0h i
�ω

� � 8f−2ð Þ/ 5f+2ð Þ

= 3 1 − fð Þf A ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � 8f−2ð Þ/ 5f+2ð Þ

∼ 3 1 − fð Þf A −2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� � 8f−2ð Þ/ 5f+2ð Þ

∼ 3 1 − fð Þf A
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

8f−2ð Þ/ 5f+2ð Þ

:

ð33Þ

N = A
ln Bh i − ln B0h i

�ω

� �− 8f / 5f+2ð Þð Þ
−

ln B1h i − ln B0h i
�ω

� �− 8f / 5f+2ð Þð Þ" #

= A
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ"

−
ln e−2πr1,horizonω
� 	

/ 1 − e−2πr1,horizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ#

∼ A
−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ"
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This equation depends on hB1i and hB0i. To obtain the
explicit form of the number of e-folds in terms of the orbital
radius distance between the branes, we should find the rela-
tion between hB1i and hB0i. At the begining of the inflation
period where ε = 1, the inflaton in terms of constant param-
eters of the model is

B1h i = B0h i exp �ω
1 − f
f A

� � 5f+2ð Þ/8f !
⟶

e−2πr1,horizonω

1 − e−2πr1,horizonω

=
e−2πr0,horizonω

1 − e−2πr0,horizonω
exp �ω

1 − f
f A

� � 5f+2ð Þ/8f !

⟶ r1,horizonð Þ−1 ∼ r0,horizonð Þ−1 exp

� �ω
1 − f
f A

� � 5f+2ð Þ/8f !
− 1:

ð35Þ

From the above equations, we obtain the inflaton (BðtÞ)
and the distance between the two branes (RðtÞ) in terms of
the number of e-folds:

B tð Þh i = B0h i exp �ω
N
A

+
1 − f
f A

� � 5f+2ð Þ/8f !

⟶
e−2πrhorizonω

1 − e−2πr1,horizonω

=
e−2πr0,horizonω

1 − e−2πr0,horizonω
exp �ω

N
A

+
1 − f
f A

� � 5f+2ð Þ/8f !

⟶ rhorizonð Þ−1 ∼ r0,horizonð Þ−1 exp

� �ω
N
A

+
1 − f
f A

� � 5f+2ð Þ/8f !
− 1⟶ R tð Þ

= R0 exp −
ð
dtrhorizon N , tð Þ

� �
:

ð36Þ

This equation shows that the orbital radial distance
between the brane universes depends on the number of
e-folds. This means that as the distance between the branes
decreases, more inflatons are created near the apparent
horizon of the brane-antibrane system, and the number
of e-folds increases.

In Figure 1, we present the number of e-folds N for the
intermediate scenario as a function of R−1, where R is the
orbital radial distance between branes. In this plot, we choose
R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, A = 1,
and f = 1/2. It is clear that the number of e-folds N is much
larger for a smaller orbital radial distance between the branes.
This is because as the distance between the branes becomes
smaller, the temperature becomes larger and the thermal
radiation of the inflatons enhances.

Now, we will consider tensor and scalar perturbations
that appear during the inflationary period for the warm infla-
tion model. These perturbations may leave an imprint in the
CMB anisotropy and on the LSS [22–26]. The power spec-
trum and spectral index are characteristic of each fluctuation:
Δ2
RðkÞ and ns for scalar perturbations and Δ2

TðkÞ and nT for
tensor perturbations. In warm and cool inflation models,
the scalar power spectrum is given by [7]

Δ2
R =

H
_Bh i

δBh i
 !2

, ð37Þ

where the thermal fluctuation in the warm inflation model
yields [22–26]

δBh i = ΓHT2

4πð Þ3
 !1/4

: ð38Þ

Using Equations (20), (36), (37), and (38), we calculate
the scalar power spectrum as

−
−2πω r1,horizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πr1,horizonω
� 	� 	

�ω

� �− 8f / 5f+2ð Þð Þ#

∼ A
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ2
64

−
2πω R0/ _R0

� 	
− R1/ _R1
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R1/ _R1ð Þω� �� �

�ω

0
@

1
A

− 8f / 5f+2ð Þð Þ375:
ð34Þ
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where k is the comoving wavenumber. With the wavenumber
k = k0 = 0:002Mpc−1, the combined measurement from
WMAP+BAO+SN of Δ2

R is reported by the WMAP7 data
[27–29] as

Δ2
R = 2:455 ± 0:096ð Þ × 10−19: ð40Þ

Using this equation and Equation (39), and choosing
(A = 1, f = 1/2, _R = 0:1, ω = 4:6ðGeVÞ, and Γ0 = 1), we obtain
the radial distance between our brane and another brane,
R = ð1:5GeVÞ−1.

This result is consistent with previous calculations [30].
Another important perturbation parameter is the spectral

index ns which is given by

where we have used the thermal distribution in Equation
(20). In Figure 2, we show the results for the spectral index
in the intermediate scenario as a function of R−1, where R is
the orbital radial distance between the branes. In this plot,
we choose R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R =
0:1,A=1, and f = 1/2. As can be seen from Figure 2, the spec-
tral index decreases rapidly when the distance between the

branes increases. By comparing Figures 1 and 2, we find that
the N ≃ 50 case leads to ns ≃ 0:96. This result is compatible
with the observational data [7, 27–29, 31, 32]. At this point,
the radial distance between our brane and another brane is
R = ð1:5GeVÞ−1.

Using Equation (20), we can calculate the tensor power
spectrum and its spectral index as

Δ2
R = −

Γ3
0

36 4πð Þ3
 !1/2

H3/2

_H
=

Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8

Bh i3 ln Bh i − ln B0h i
�ω

� �− 15f−18ð Þ/ 5f+2ð Þð Þ

=
Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8
e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �− 15f−18ð Þ/ 5f+2ð Þð Þ

∼
Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8
e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω

� 	
/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �− 15f−18ð Þ/ 5f+2ð Þð Þ

∼
Γ3
0

36 4πð Þ3
 !1/2

311 f Að Þ15 1 − fð Þ3
2Cð Þ11

 !1/8
e−2π R/ _Rð Þω

1 − e−2π R/ _Rð Þω

 !3

×
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

− 15f−18ð Þ/ 5f+2ð Þð Þ

,

ð39Þ

ns − 1 = −
dlnΔ2

R

dlnk
=
15f − 18
8f A

ln Bh i − ln B0h i
�ω

� �−8f / 5f+2ð Þ

=
15f − 18
8f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼
15f − 18
8f A

−2πω rhorizon − r0,horizonð Þ + ln e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼
15f − 18
8f A

−2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

−8f / 5f+2ð Þ

,

ð41Þ
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These perturbations depend on the orbital radial distance
between the branes. As we discussed before, these perturba-
tions have a direct effect on the cosmicmicrowave background

(CMB). Thus, we can observe the signature of interaction
between the branes by means of observational data.

Another important parameter is the tensor-scalar ratio
that has the following form:

Δ2
T =

2H2

π2 =
2 f Að Þ2
π2

ln Bh i − ln B0h i
�ω

� � 16 f−1ð Þð Þ/ 5f+2ð Þ

=
2 f Að Þ2
π2

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � 16 f−1ð Þð Þ/ 5f+2ð Þ

∼
2 f Að Þ2
π2

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� � 16 f−1ð Þð Þ/ 5f+2ð Þ

∼
2 f Að Þ2
π2

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

16 f−1ð Þð Þ/ 5f+2ð Þ

,

ð42Þ

nT = −2ε = −
2 − 2f
f A

ln Bh i − ln B0h i
�ω

� �−8f / 5f+2ð Þ

= −
2 − 2f
f A

ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼ −
2 − 2f
f A

−2πω rhorizon − r0,horizonð Þ + ln 1 − e−2πr0,horizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

�ω

� �−8f / 5f+2ð Þ

∼ −
2 − 2f
f A

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

−8f / 5f+2ð Þ

:

ð43Þ

Rtensor‐scalar = −
144 4πð Þ3 f Að Þ4

Γ3
0π

4T2

 !1/2

_HH1/2 =
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

× Bh i3 ln Bh i − ln B0h i
�ω

� � f+2ð Þ/ 5f+2ð Þ

=
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
ln e−2πrhorizonω
� 	

/ 1 − e−2πrhorizonω
� 	� 	

− ln e−2πr0,horizonω
� 	

/ 1 − e−2πr0,horizonω
� 	� 	

�ω

� � f+2ð Þ/ 5f+2ð Þ

∼
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

e−2πrhorizonω

1 − e−2πrhorizonω

� �3

×
−2πω rhorizon − r0,horizonð Þ + ln 1 − e2πr0,horizonω

� 	
/ 1 − e2πrhorizonω
� 	� 	

�ω

� � f+2ð Þ/ 5f+2ð Þ

∼
144 4πð Þ3 f Að Þ4

Γ3
0π

4

 !1/2
311 f Að Þ15 1 − fð Þ3

2Cð Þ11
 !1/8

e−2π R/ _Rð Þω

1 − e−2π R/ _Rð Þω

 !3

×
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �

�ω

0
@

1
A

f+2ð Þ/ 5f+2ð Þ

:

ð44Þ
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In Figure 3, we present the tensor-scalar ratio in the inter-
mediate scenario as a function of R−1, where R is the orbital
radial distance between the branes. In this plot, we choose
R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, C = 70,
Γ0 = 1, A = 1, and f = 1/2. We observe that as the orbital
radius distance between branes increases, the tensor-scalar
ratio increases. By comparing Figures 2 and 3, we notice that
the standard case ns ≃ 0:96 may be found in 0:01 <
Rtensor‐scalar < 0:22, which agrees with the observational data
[7, 27–29, 31, 32]. At this stage, the radial distance between
our brane and another brane is R = ð1:5GeVÞ−1.

Now, we would like to consider the signature of interac-
tion between branes in the context of logamediate inflation
with the scale factor

a tð Þ = a0 exp A ln t½ �λ
� �

, ð45Þ

where A is a constant parameter. This model is converted to
power law inflation for the λ = 1 case. This scenario is applied
in a number of scalar-tensor theories [16]. The effective poten-
tial of this solution is used in dark energy models [33], super-
gravity, Kaluza-Klein theories, and superstring models [16,
34]. The number of e-folds in this case is given by [7]

N =
ðt
t1

Hdt = A ln t½ �λ − ln t1½ �λ
� �

, ð46Þ

where t1 is the beginning time of inflation. From Equa-
tions (20), (24), (25), (26), (27), and (45), we may find the
inflaton B and also the orbital radial distance between the
two branes:

ln Bh i − ln B0h i = ~ωΞ tð Þ⟶ ln
e−2πrhorizonω

1 − e−2πrhorizonω

− ln
e−2πr0,horizonω

1 − e−2πr0,horizonω

= ~ωΞ tð Þ⟶ −2πω rhorizon − r0,horizonð Þ

+ ln
1 − e−2πr0,horizonω

1 − e−2πrhorizonω
∼ ~ωΞ tð Þ

⟶ 2πω
R0
_R0

−
R
_R

� ��

+ ln
1 − e−2π R0/ _R0ð Þω

1 − e−2π R/ _Rð Þω

!
∼ ~ωΞ tð Þ,

ð47Þ

where ~ω = ðð6/Γ0Þð2C/3Þ3/4Þ
1/2ðð−4Þ5λ+3ðλAÞ5Þ1/8 and ΞðtÞ

= γ½ð5λ + 3Þ/8, ln t/4� is the incomplete gamma function
[35, 36]). The potential in terms of the orbital radial distance
between the two branes is presented as

This equation shows that the inflatonic potential on our
brane depends on the orbital radial distance and the interac-
tion potential between the two branes. In fact, the interaction
between branes causes inflation of our universe.

Now, we obtain the slow-roll parameters of the model in
this case:

V =
2λ2A2 ln Ξ−1 ln Bh i − ln B0h ið Þ/~ωð Þ� 	� 
2λ−2

Ξ−1 ln Bh i − ln B0h ið Þ/~ωð Þ� 	2

=
2λ2A2 ln Ξ−1 2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �h i2λ−2

Ξ−1 2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �

0
B@

1
CA

2

:

ð48Þ

∈ =
ln Ξ−1 2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �h i

λA

1−λ

,

η =
2 ln Ξ−1 2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �h i1−λ

λA
:

ð49Þ
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In this case, like the intermediate case, as the distance
between the branes decreases, more inflatons are created in
the brane-antibrane system, the slow-roll parameters increase,
and the universe inflates.

Using Equations (20), (46), and (47), the number of
e-folds between the two fields B1 and BðtÞ can be obtained
as

where R1 is the the orbital radial distance between the two
branes at the begining of the inflationary epoch when ϵ = 1.
Using the above equation, the orbital radial distance between
the two branes in the inflationary period could be obtained in
terms of the number of e-folds as

R − R0 =
~ω _R

2 _R2
0

2πω
Ξ exp

N
A

+ λAð Þλ/ 1−λð Þ
� �1/λ

 !
: ð51Þ

This equation shows that, in this case, like the intermedi-
ate case, the number of e-fields depends on the orbital radial
distance between the branes. This is because as the distance
between the branes decreases, the number of inflatons, which
has direct effects on the number of e-folds, increases.

Also, the scalar and tensor power spectra in this case are
given by

These spectra in the context of logamediate inflation, like
intermediate inflation, change with an increase or decrease in

the orbital radial distance between the branes. The spectral
index in this case has the following forms:

N = A ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ0

B@

− ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R1/ _R1ð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ1CA

= A ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

~ω

0
@

1
A

0
@

1
A

2
4

3
5
λ

− λA½ �λ/ 1−λð Þ

0
B@

1
CA,

ð50Þ

Δ2
R =

Γ3
0

36 4πð Þ3
 !1/2

311 λAð Þ15
2Cð Þ11

 !1/8
e−2πrhorizonω

1 − e−2πrhorizonω

� �−3

× exp −
15
8

ln Ξ−1
2πω R0/ _R0

� 	
− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
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2πω R0/ _R0

� 	
− R/ _R
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1
A

0
@

1
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Δ2
T =

2λ2A ln Ξ−1 2πω R0/ _R0ð Þ− R/ _Rð Þð Þ+ln 1−e−2π R0/ _R0ð Þω� 	
/ 1−e−2π R/ _Rð Þω� 	� 	� 	

/~ω
� 	� 	� 
2−2λ

π2 Ξ−1 2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �2 :
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In Figures 4 and 5, we present the number of e-folds N
and the spectral index for the logamediate inflation scenario
as a function of R−1, where R is the orbital radial distance
between the branes. In these plots, we choose R0 = 0:45
ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, λ = 10, A = 1,
and f = 1/2. In this case, like the intermediate case, we find
that the number of e-folds N and the spectral index are much

larger for smaller orbital radial distance between branes. This
is because as the distance between the branes becomes
smaller, the temperature becomes larger and the thermal
radiation of the inflatons enhances.

Finally, we could find the tensor-scalar ratio in terms of
the orbital radial distance between two branes:

In Figure 6, we present the tensor-scalar ratio in the loga-
mediate scenario as a function of R−1, where R is the orbital
radial distance between the branes. In this plot, we choose
R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ, _R0 = 0:01, _R = 0:1, C = 70,
Γ0 = 1, λ = 10, A = 1, and f = 1/2. In this case, like the inter-
mediate case, with an increase in the orbital radial distance
between branes, the tensor-scalar ratio increases. By compar-
ing Figures 5 and 6, we notice that the standard case ns ≃ 0:96
may be found in 0:01 < Rtensor‐scalar < 0:22, which agrees with
the observational data [7, 27–29, 31, 32]. At this stage, the
radial distance between our brane and another brane is R =
ð0:02225GeVÞ−1.

4. Summary and Discussion

In this research, we calculate the thermal distribution of
inflatons near the apparent horizon in a brane-antibrane sys-

tem and show that the energy density, slow-roll parameters,
number of e-folds, and perturbation parameters can be given
in terms of the orbital radius of the brane motion in extra
dimensions. According to our results, when the distance
between branes increases, the number of e-folds and the
spectral index for both the intermediate and logamediate
models decrease rapidly; however, the tensor-scalar ratio
increases. This is because as the separate distance between
branes decreases, the interaction potential increases, and at
higher energies, there exist more channels for inflaton pro-
duction near the apparent horizon in the brane-antibrane
system; consequently, the effect of inflaton radiation from
this horizon on cosmic inflation becomes systematically
more effective. We find that the N ≃ 50 case leads to
ns≃ 0.96. This standard case may be found in 0:01 <
Rtensor‐scalar < 0:22, which agrees with the observational data
[7, 27–29, 31, 32] (we note that some new observational data

ns − 1 = −
15 λ − 1ð Þ

8λA
ln Ξ−1

2πω R0/ _R0
� 	

− R/ _R
� 	� 	

+ ln 1 − e−2π R0/ _R0ð Þω� �
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,

nT = −
2 ln Ξ−1 2πω R0/ _R0
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− R/ _R
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+ ln 1 − e−2π R0/ _R0ð Þω� �
/ 1 − e−2π R/ _Rð Þω� �� �� �

/~ω
� �� �h i1−λ
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Figure 4: The number of e-folds N in the logamediate inflation
scenario as a function of R−1 for R0 = 0:45ðGeVÞ−1, ω = 4:6ðGeVÞ,
_R0 = 0:01, _R = 0:1, λ = 10, A = 1, and f = 1/2.
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has been obtained, but we believe that our models will fit
this as well. This work in under progress). At this point,
the radial distance between our brane and another brane
is R = ð1:5GeVÞ−1 in the intermediate model and R =
ð0:02225GeVÞ−1 in the logamediate model.
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It was first observed at the end of the last century that the universe is presently accelerating. Ever since, there have been several
attempts to explain this observation theoretically. There are two possible approaches. The more conventional one is to modify
the matter part of the Einstein field equations, and the second one is to modify the geometry part. We shall consider two
phenomenological models based on the former, more conventional approach within the context of general relativity. The
phenomenological models in this paper consider a Λ term firstly a function of €a/a and secondly a function of ρ, where a
and ρ are the scale factor and matter energy density, respectively. Constraining the free parameters of the models with the
latest observational data gives satisfactory values of parameters as considered by us initially. Without any field theoretic
interpretation, we explain the recent observations with a dynamical cosmological constant.

1. Introduction

Type Ia high-redshift supernova observations indicate that
the universe is presently accelerating [1, 2]. This is mostly
thought to be due to the presence of some unknown fluid
known as dark energy. Soon after the first cosmological solu-
tion to the Einstein field equations (EFE), Einstein had put an
additional Λ term (known as the cosmological constant)
which produced a repulsive effect, in order to modify the
EFE so that the cosmological solution could lead to a static
universe. He later called the introduction of this term to be
the greatest blunder of his life. However, after observations
suggested an accelerating universe, there was a revived inter-
est in the Λ term as a possible candidate for the dark energy.
Theoretically, the cosmological constant is assumed to be the
contribution from vacuum energy given by Λ = 8πGρvac,
arising out of quantum vacuum fluctuations of some funda-
mental field. Although the calculated value of ρvac turns out
to be much larger than the value of Λ determined from
observations, but there is no theoretical argument of making
the ρvac term vanish to exactly zero [3]. So Λ models are
favored for dark energy (DE). Λ has also been thought to

be generated from a particle creation effect or dynamical sca-
lar field [4]. If we consider that the Λ term is responsible for
the dark energy, whatever is the generation mechanism, it is
clear that contrary to Einstein, Λ is not a constant but a
dynamical cosmological term [5].

DE is also sometimes considered without the presence of
any fluid orΛ term, just as a consequence of the modification
of the geometric part or the left hand side of the EFE, but
such efforts are not possible in the context of standard gen-
eral relativity (GR) [6, 7]. There are also dynamically evolv-
ing scalar field models which have been used to describe
DE. The popular dynamical physical field models that have
been utilized for this purpose are quintessence [8–11],
k-essence [12–17], phantom [18], and tachyonic field
[19–26]. Phenomenological models of a dynamical Λ term
are also being popularly considered candidates of DE. “Phe-
nomenological” simply means that there is no derivation of
the dynamical Λ term from any underlying quantum field
theory. Such models may be categorized into three types: (i)
kinematic, (ii) hydrodynamic, and (iii) field theoretic. The
first means that Λ is a function of time or scale factor aðtÞ.
The second means that Λ is treated as a barotropic fluid with
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some equation of state (EOS). The third means that Λ is
treated as a new physical classical field with phenomenolog-
ical Lagrangian. We will be concerned here with (i) and (ii)
only. Such kinematic and hydrodynamic models have been
treated in some depth before. A dynamical model with Λ =
αH2, whereHðtÞ = _a/a, has been explored by Mukhopadhyay
et al. [27]. A similar model with _Λ ∼H3 has been considered
in [28, 29]. The main motivation of considering Λ ∼ €a/a and
Λ ∼ ρ is to prove that these two dynamical models are equiv-
alent for both open and closed universes in addition to the
flat space, which has already been proved previously. The
value of Λ obtained theoretically from particle physics is sev-
eral orders of magnitude greater than the observed value for
Λ, if Λ has to be considered dark energy. This is explained in
various models as it is obtained that Λ ∼ 1/t2 for flat space-
time and it is presently very small but nonzero, and this fact
is well supported by our models.

The most frequently used forms of Λ for phenomenologi-
cal models are Λ = αð _a/aÞ2, Λ = βð€a/aÞ, and Λ = 8πGγρ,
where α, β, and γ are constants whose values can be con-
strained from observations. In general, the sign constraints
on β and γ are imposed in order to ensure a positive value
of the matter density parameter Ωm. The first type of model
has been considered by [30–37]. The second model has been
dealt with by [5, 38–40]. The third type of model has been con-
sidered by [41]. The equivalence of these three forms has been
shown by Ray et al. [42, 43], connecting the free parameters of
themodels with thematter density and vacuum energy density
parameters in the first paper and by application of numerical
methods in the later one. This paper is basically an in-depth
extension of the work done by Mukhopadhyay et al. [44]
where they have considered the first type of model and
obtained cosmological solutions for any possible value of the
curvature constant and equation of state parameter ω. They
have also analysed the physical features of the solutions. We
shall do the same for the second and third models and also
compare our results to the latest observational data constrain-
ing our free parameters. The constraints are found to be
exactly compatible with our initial considerations.

The paper is organized as follows. In the second section,
we consider the mathematical model in the background of
an isotropic and homogeneous Friedmann–Lemaître–Rob-
ertson–Walker (FLRW) space-time, which is the generally
used cosmological metric in GR. We calculate the various
cosmological and physical parameters for the two different
phenomenological models in consideration. In the next
section, we constrain the free parameters associated with
the models based on recent observational data. The final
section summarizes the physical insights of the results we
have obtained.

2. Mathematical Model

The Einstein field equation (EFE) in the presence of a cosmo-
logical constant, ΛðtÞ, is given by

Gμv = −8πG Tμv −
Λ

8πGgμv
� �

, ð1Þ

where we shall take the cosmological constant as a function
of time in order to account for the dark energy. We obtain
the EFE for the cosmological FLRW metric:

ds2 = −dt2 + dr2

1 − kr2
+ r2 dθ2 + sin2θdϕ2

� �" #
, ð2Þ

which yields the equations

_a
a

� �2
+ k
a2

= 8πGρ
3 + Λ

3 , ð3Þ

€a
a

� �
= −

4πG ρ + 3pð Þ
3 + Λ

3 , ð4Þ

where aðtÞ and k are the scale factor and curvature constant,
respectively.

The energy-momentum conservation gives

8πG p + ρð Þ _a
a

� �
= −

8πG
3 _ρ −

_Λ

3 : ð5Þ

We consider the barotropic fluid with equation of state
(EOS) of the form:

p = ωρ, ð6Þ

where ω denotes the EOS parameter which can assume spe-
cific values during the evolution of the universe for different
phases. By plugging this relation in equation (4), the energy
density is obtained as

ρ = 3
4πG 1 + 3ωð Þ

Λ

3 −
€a
a

� �
: ð7Þ

Substituting equation (6) into equation (4) multiplied by
a factor of 2/ð1 + 3ωÞ and adding equation (3) to it, we get the
differential equation

_a
a

� �2
+ k
a2

+ 2
1 + 3ω

€a
a

� �
= 1 + ω

1 + 3ω

� �
Λ: ð8Þ

The above equation describes the cosmological
dynamics for a barotropic fluid in the presence of the
cosmological constant Λ.

2.1. Solutions for Phenomenological Model Λ ∼ €a/a. In this
phenomenological model, we consider Λ = βð€a/aÞ, where
β < 0 which is justified in the light of the latest observational
data [45] as shown in Section 3. Using this form of Λ in
equation (8), we obtain

€a
a
= −

1 + 3ωð Þ
2 − 1 + ωð Þβ

_a
a
−

1 + 3ωð Þk
2 − 1 + ωð Þβ

1
a _a

: ð9Þ
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This equation can be simplified to

a _a
d
dt

ln _aa−A
� �� 	

= Ak, ð10Þ

where A = −ðð1 + 3ωÞ/ð2 − ð1 + ωÞβÞÞ. We choose A = −1 ½?�,
such that ω = ð1 − βÞ/ð3 + βÞ. Any arbitrary value can be
taken. We take A = −1 and later B = −1 so that the differential
equation can be solved analytically and complex numerical
calculations may be avoided.

The above equation now takes the form

a _a
d
dt

ln _aað Þ½ � = −k: ð11Þ

The scale factor turns out to be

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0t + A1 − kt2

q
, ð12Þ

where A0 and A1 are integration constants.
As we are considering a universe evolving from a singu-

larity, aðt = 0Þ = 0. This gives A1 = 0. So

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0t − kt2

q
: ð13Þ

We show the evolution of the scale factor with time for
different values of k in Figure 1. As expected, we obtain flat,
open, and closed universes for k = 0, k = −1, and k = 1,
respectively. The Hubble parameter is computed as

H tð Þ = A0 − 2kt
2 A0t − kt2
� � : ð14Þ

The cosmological constant is given by

Λ tð Þ = −
βA0

2

4 A0t − kt2
� �2 : ð15Þ

The variation of the cosmological parameter λ with time
is shown in Figure 2 and is found to be monotonically
decreasing for all considered values of k. The energy density
is given by

ρ tð Þ = 3 − βð Þ
16πG

A2
0

A0t − kt2
� �2 : ð16Þ

The variation of the scale factor and cosmological con-
stant with time has been plotted for k = 0,±1 in Figures 1
and 2.

We obtain a closed universe for k = 1 and an open uni-
verse for k = −1 as expected.

The density parameters for matter, a cosmological con-
stant, and curvature, respectively, can be computed for this
phenomenological model as

Ωm = 8πGρ
3H2 = −

4β
3

k A0t − kt2
� �
A0 − 2kt2
� �2 + 1

4

" #
, ð17Þ

ΩΛ = Λ

3H2 = 4 3 + βð Þ
3

k A0t − kt2
� �
A0 − 2kt2
� �2 + 1

4

" #
, ð18Þ
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Figure 1: Plot of aðtÞ versus t for different values of k.
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Figure 2: Plot of ΛðtÞ versus t for different values of k.
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Ωk = −
k

a2H2 = −
4k A0t − kt2
� �
A0 − 2kt2
� �2 : ð19Þ

We plot the time evolution of the density parameters for
all contributing components, i.e., matter, curvature, and dark
energy, for k = −1 in Figure 3. The contribution to the density
parameter due to curvature increases while contributions due
to Λ and matter decrease, but the overall density parameter
due to all three components remains the same.

We also plot the time evolution of the density parameters
for matter, curvature, and dark energy for k = 1 in Figure 4.
The contribution to the density parameter due to curvature
decreases and is negative while contributions due to Λ and
matter increase, but again the overall density parameter
remains the same.

For the flat space (k = 0), we see from the above
expressions that the sum total of the density parameters of
the above components is equal to 1, such that Ωk = 0, ΩΛ =
−ðβ/3Þ, and Ωm = ð3 + βÞ/3.

Also, for both the limiting cases, t⟶ 0 and∞, the sum
total of the density parameters is equal to 1. In these two
cases, both Ωm and ΩΛ become independent of k. Hence,
for both early and late times, the universe exhibits similar
behaviour as far as the k dependency of Ωm and ΩΛ is
concerned.

In general, it can be observed on taking the sum of equa-
tions (17)–(19) that

Ωm +ΩΛ +Ωk = 1: ð20Þ

This analytical approach is consistent with the observa-
tional constraints Ω = 1 ± 0:016 [45].

2.2. Solutions for the Phenomenological Model Λ ∼ ρ. In this
phenomenological model, we consider Λ = 8πGργ, where
γ > 0 which is consistent with the observation as can be
seen in Section 3. Using this form of Λ in equation (8),
we obtain

€a
_a
= −

1 + 3ω − 2γð Þ
2 1 + γð Þ

_a
a
−

1 + 3ω − 2γð Þ
2 1 + γð Þ

k
a _a

: ð21Þ

This equation can be simplified to

a _a
d
dt

ln _aa−B
� �� 	

= Bk, ð22Þ

where B = ð1 + 3ω − 2γÞ/2ð1 + γÞ. We choose B = −1, such
that ω = ð4γ + 1Þ/3.

The above equation now takes the form

a _a
d
dt

ln _aað Þ½ � = −k: ð23Þ

The scale factor turns out to be

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0 ′t + A1′ − kt2

q
, ð24Þ

where A0 ′ and A1 ′ are integration constants.
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Figure 3: Plot of ΩðtÞ versus t for k = −1.
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Figure 4: Plot of ΩðtÞ versus t for k = +1.
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As we are considering a universe evolving from a singu-
larity, aðt = 0Þ = 0. This gives A1′ = 0. So

a tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A0′t − kt2

q
: ð25Þ

The Hubble parameter is computed as

H tð Þ = A0′ − 2kt
2 A0′t − kt2
� � : ð26Þ

The cosmological constant is given by

Λ tð Þ = −
3γA0′

2

2 1 + 3ω − 2γð Þ A0′t − kt2
� �2 : ð27Þ

Time evolution of the cosmological constant is plotted in
Figure 5 and is found to be monotonically decreasing for all
considered values of k, similar to the β model. The energy
density is given by

ρ tð Þ = 3
16πG 1 + 3ω − 2γð Þ

A0′
2

A0′t − kt2
� �2 : ð28Þ

Variation of the scale factor aðtÞ is the same as shown in
Figure 1.

The density parameters for matter, a cosmological con-
stant, and curvature, respectively, can be computed in a sim-
ilar manner as the above for this phenomenological model as

Ωm = 4γ
1 + γ

k A0′t − kt2
� �

A0′ − 2kt2
� �2 + 1

4

2
64

3
75,

ΩΛ = 4
1 + γ

k A0′t − kt2
� �

A0′ − 2kt2
� �2 + 1

4

2
64

3
75,

Ωk = −
k

a2H2 = −
4k A0′t − kt2
� �

A0′ − 2kt2
� �2 :

ð29Þ

Similar to the previous model, we again plot the time evo-
lution of the density parameters for all contributing compo-
nents, i.e., matter, curvature, and dark energy, for k = −1 in
Figure 6. The contribution to the density parameter due to
curvature increases while contributions due to Λ and matter
decrease, but the overall density parameter due to all three
components remains the same; also, the time evolution of
the density parameters for matter, curvature, and dark energy
for k = 1 has been plotted in Figure 7. Similarly, as for the pre-
vious model, the contribution to the density parameter due to
curvature decreases and is negative while contributions due
to Λ and matter increase, but again the overall density
parameter remains the same.
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Figure 5: Plot of ΛðtÞ versus t for different values of k.
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Figure 6: Plot of ΩðtÞ versus t for k = −1.
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For the flat space (k = 0), we see from the above
expressions that the sum total of the density parameters
of the above components is equal to 1, such that Ωk = 0,
Ωm = 1/ð1 + γÞ, and ΩΛ = γ/ð1 + γÞ.

In the case of t→ 0 and ∞, the sum total of the density
parameters is equal to 1 in a similar manner as for the previ-
ous model.

In general, it can be observed on taking the sum of the
above three equations that

Ωm +ΩΛ +Ωk = 1, ð30Þ

which is again consistent with [45].

3. Constraints on the Different Parameters with
the Latest Observational Results

Although we deal with simple phenomenological models
which are not dependent on any quantum field theory, differ-
ent cosmological pictures can be reflected successfully.

Considering the cosmology of base-Λ-CDM, late uni-
verse parameters can be observed in ranges: Hubble con-
stant H0 = 67:4 ± 0:5 km/s/Mpc and matter density
parameter Ωm0 = 0:315 ± 0:007 [45]. Using the above
ranges of Ωm0, the model parameters can be constrained
as −2:076 ≤ β0≤−2:034 and 2:105 ≤ γ0 ≤ 2:247. Using more
recent data [46] where the present value of the Hubble
parameter is given as H0 = 74:03 ± 1:42 km/s/Mpc, we
obtain −2:0717 ≤ β0≤−2:06 and 1:785 ≤ γ0 ≤ 1:821.

The present value of the cosmological constant Λ0 can be
obtained using the relation Λ0 = 3H2

0γ0Ωm0. It lies within the

range 0:9 × 10−35 s−2 ≤Λ0 ≤ 1:042 × 10−35 s−2, which is in
sync with the observation [45]. We know the quintessence
equation of state as pQ = ωQρQ, ωQ = −ΩΛ = −γΩm. Using
the above ranges we have −0:724 ≤ ωQ≤−0:648. This range
is in good agreement with the accepted range of ωQ which
is −1 ≤ ωQ≤−0:6 [45, 47, 48], although, in either of our
models, we do not consider quintessence and present the
range only as a qualitative check.

Also, there are upcoming observational surveys like the
Euclid survey [49] which is aimed at obtaining more precise
and accurate data concerning dark energy and dark matter.
The survey plans to use redshift selected baryon acoustic
oscillation (BAO) to study dark energy and its time evolu-
tion. The phenomenological models which consider Λ dark
energy in the kinematic and hydrodynamic forms can also
be constrained more stringently using precise data from this
survey. This may decide the fate of these models in future
study.

4. Conclusion

To summarize, the basic philosophy behind the present
paper is to generalize two phenomenological models. Explicit
expressions of aðtÞ, HðtÞ, ρðtÞ, ΛðtÞ, and also the parameter
ΩðtÞ corresponding to matter, curvature, and DE have been
derived. Cosmic evolution of the universe from the very early
time to the late time has been discussed.

The conclusions of the present work can be jotted down
as follows:

(i) The models Λ ∼ €a/a and Λ ∼ ρ are equivalent for
k = ±1

(ii) Both the models exhibit usual cosmological
behaviour for early and late time universes. Initially
chosen values of the model parameters are found
to be in good agreement with the observational data

(iii) Constraints on the different cosmological variables
have been evaluated using our models, and the
results are in good agreement with the observational
results
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We discuss the P −V criticality and phase transition in the extended phase space of anti-de Sitter(AdS) black holes in
four-dimensional Rastall theory and recover the Van der Waals (VdW) analogy of small/large black hole (SBH/LBH) phase
transition when the parameters ωs and ψ satisfy some certain conditions. Later, we further explore the quasinormal modes
(QNMs) of massless scalar perturbations to probe the SBH/LBH phase transition. It is found that it can be detected near the
critical point, where the slopes of the QNM frequencies change drastically in small and large black holes.

1. Introduction

As the most beautiful and simplest theory of gravity,
Einstein’s general relativity (GR) admits the covariant con-
servation of matter energy-momentum tensor. It is worthy
to point out that the idea of the covariant conservation for
spacetime symmetries has been implemented only in the
Minkowski flat or weak field regime of gravity. Nevertheless,
the actual nature of the spacetime geometry and the covari-
ant conservation relation is still debated in the strong
domain of gravity. In 1972, Rastall [1] demonstrated an
adjustment to Einstein’s equation, which results in a violation
of the usual conservation law, and the energy-momentum
tensor satisfies

Tμv
;μ = λRv, ð1Þ

whereR is the Ricci scalar and λ is the Rastall coupling param-
eter, which measures the potential deviation of Rastall theory
fromGR. This theory provides an explanation of the inflation
problem, as the simplest modified gravity scenario to realize
the late-time acceleration and other cosmological problems
[2–5]. It is an interesting result that all electrovacuum solu-
tions of GR automatically meet the equation of motion in

the Rastall gravity. However, it failed if one introduces any
nonvanishing trace matter field. Until now, many works on
the various black hole solutions have been investigated in Ras-
tall theory. The spherically symmetric black hole solutions
were constructed in Refs. [6–10], the rotating black holes
were in Refs. [11, 12], the thermodynamics of black holes
was in Refs. [13–17], and also instability of black holes was
in Refs. [18, 19].

Recently, the study of thermodynamics of AdS black
holes has been generalized to the extended phase space,
where the cosmological constant is related to the thermody-
namic pressure [20, 21].

P = Λ

8π : ð2Þ

In fact, the variation of the cosmological constant is ben-
eficial to the consistency between the first law of black hole
thermodynamics and the Smarr formula. In the extended
phase space, the charged AdS black hole admits a more
direct and precise coincidence between the first-order
small/large black hole (SBH/LBH) phase transition and
Van der Waals (VdW) liquid-gas phase transition, and both
systems share the same critical exponents near the critical
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point [22]. More discussions in this direction can be found
as well in including reentrant phase transitions and some
other phase transitions [23–51].

On the other hand, in the context of the AdS/CFT corre-
spondence, the QNMs of a ðD + 1Þ-dimensional asymptoti-
cally AdS black hole or brane are poles of the retarded
Green’s function in the D-dimensional dual conformal field
theory at strong coupling [52–54]. Then, one can describe
various properties of strongly coupled quark-gluon plasmas
which cannot be studied by traditional perturbative methods
of quantum field theory [55, 56], such as the universal value
1/4π for the ratio of viscosity to the entropy density in
quark-gluon plasma via various gravitational backgrounds
[57]. In the dual-field theory, thermodynamic phase transi-
tion of black holes corresponds to the onset of instability of
a black hole. It is naturally considered that QNMs of black
holes are connected with thermodynamic phase transitions
of strongly coupled field theories [58]. A lot of discussions
have been focused on this topic, and more and more evidence
has been found between thermodynamical phase transitions
and QNMs [50, 59–70]. Recently, the extended phase space
thermodynamics for P − V criticality and phase transition
of d-dimensional AdS black holes in perfect fluid background
have been investigated in Ref. [17], which shows the exis-
tence of Van der Waals analogy of SBH/LBH phase transi-
tion. Motivated by the result, in this paper, we use the
QNM frequencies of a massless scalar perturbation to probe
the Van der Waals-like SBH/LBH phase transition of four-
dimensional AdS black holes surrounded by perfect fluid in
the Rastall theory.

This paper is organized as follows. In Section 2, we review
the thermodynamics of four-dimensional AdS black holes in
the extended phase space and will show the analogy of the
SBH/LBH phase transition with the VdW liquid-gas system.
In Section 3, we will disclose that the phase transition can be
reflected by the QNM frequencies of dynamical perturba-
tions. We end the paper with conclusions and discussions
in Section 4.

2. Thermodynamics and Phase Transition of
AdS Black Holes

Considering (1), the field equation including the negative
cosmological constant Λ reads as [17]

Gμv +Λgμv = k Tμv − λgμvR
� �

, ð3Þ

where these field equations reduce to GR field equations in
the limit of λ→ 0, κ equals to 8πGN , and GN is the Newton
gravitational coupling constant.

In four-dimensional spacetime, the energy-momentum
tensor Tμν of perfect fluid reads as [8, 9]

T u
u =T r

r = −ρs rð Þ,

T θ
θ =T φ

θd−2
= 1
2 1 + 3ωsð Þρs rð Þ:

ð4Þ

Then, the AdS black hole solution in four-dimensional
Rastall theory is [17]

ds2 = −f rð Þdt2 + 1
f rð Þ dr

2 + r2 dθ2 + sin2θdϑ2
� �

, ð5Þ

f rð Þ = 1 − 2M
r

−
Ns

rξ
+ r2

R2
Λ

, ð6Þ

with

ξ = 1 + 3ωs − 6ψ 1 + ωsð Þ
1 − 3ψ 1 + ωsð Þ , ψ = kλ,

1
R2
Λ

= −
Λ

3 1 − 4ψð Þ ,
ð7Þ

where RΛ is the curvature radius in the Rastall gravity and ωs
is the state parameter of fluid. M and Ns are two integration
constants representing the black hole mass and surrounding
field structure parameter, respectively. The subscript “s”
denotes the surrounding field, like the dust, radiation, quin-
tessence, cosmological constant, or phantom field.

Moreover, the integration constant Ns is related to the
energy density ρs [9, 17]:

ρs = −
3WsNs

κr 3 1+ωsð Þ−12ψ 1+ωsð Þð Þ/ 1−3ψ 1+ωsð Þð Þ , ð8Þ

with

Ws = −
1 − 4ψð Þ ψ 1 + ωsð Þ − ωsð Þ

1 − 3ψ 1 + ωsð Þð Þ2 : ð9Þ

Regarding the weak energy condition representing the
positivity of any kind of energy density of the surrounding
field, i.e., ρs ≥ 0, the following condition was imposed:

WsNs ≤ 0, ð10Þ

which implies that for the surrounding field with geomet-
ric parameter Ws > 0, we need Ns < 0 and conversely for
Ws < 0, we need Ns > 0 [9]. When Ns vanishes, (6) reduces
to vacuum AdS black hole solution in the Rastall gravity:

f rð Þ = 1 − 2M
r

+ r2

R2
Λ

: ð11Þ

In the limit of ψ→ 0, namely, λ→ 0, the covariant
derivative of energy-momentum tensor vanishes and the
Rastall gravity becomes the Einstein gravity. We can
recover the Schwarzschild-AdS black hole from (3):

f rð Þ = 1 − 2M
r

+ r2

R2 ,

1
R2 = −

Λ

3 :

ð12Þ
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In terms of horizon radius r+, mass M, Hawking tem-
perature T , and entropy S of the AdS black holes can be
written, respectively, as

M = r+
2 1 − Ns

rξ+
+ r2+
R2
Λ

� �
,

T = 1
4π

1
r+

+ 3r
R2
Λ

+ ξ − 1ð ÞNs

r1+ξ+

� �
,

S = πr2+:

ð13Þ

In the extended phase space, the cosmological constant
is related to the thermodynamic pressure with

P = −
Λ

8π = 3 1 − 4ψð Þ
8πR2

Λ

, ð14Þ

we can obtain the equation of state:

P = 1 − 4ψð Þ
2r+

T −
1

4πr+
−

ξ − 1ð ÞNs

4πr1+ξ+

� 	
, ð15Þ

from the Hawking temperature (13).
As usual, a critical point occurs when P has an inflection

point:

∂P
∂r+






T=Tc ,r+=rc

= ∂2P
∂r2+







T=Tc ,r+=rc

= 0: ð16Þ

The corresponding critical values are obtained as

rc =
1 − ξð Þ 1 + ξð Þ 2 + ξð ÞNs

2

� 	1/ξ
,

Tc =
ξ

2π 1 + ξð Þrc
,

Pc =
1 − 4ψð Þξ

8π2
c 2 + ξð Þ :

ð17Þ

The subscript “c” denotes the values of the physical quan-
tities at the critical points. Evidently, the critical parameters
rc, Tc, and Pc depend on the values of ωs (in [7]), Ns,
and ψ. Regarding the weak energy condition ρs > 0, we
summarize the corresponding constraint conditions of
the positive critical values rc, Tc, and Pc in Table 1.

For instance, we plot the P − r isotherm diagram for
the quintessence surrounding field (ωs = −2/3) [71] and
radiation surrounding field (ωs = 1/3) [72] in the region
of −1 < ωs ≤ 1/3 ∪ ψ < ωs/ð1 + ωsÞ in Figure 1. The dotted
line corresponds to the “idea gas” phase behavior when
P > Pc, and the VdW-like SBH/LBH phase transition
appears in the system when P < Pc.

The behavior of the Gibbs free energy G is important
to determine the thermodynamic phase transition. The
free energy G obeys the following thermodynamic relation
G =M − TS with

G = r+
4 −

2Pπr3+
3 1 − 4ψð Þ −

1 + ξð ÞNs

4rξ−1+
: ð18Þ

Table 1: The positive values of critical points in the case of ρs ≥ 0.

Ns > 0 ∪Ws < 0 ωs<−1 ∪
1

3 + 3ωs
< ψ < 1

4 −1 < ωs <
1
3 ∪

ωs

1 + ωs
< ψ < 1 + 3ωs

6 + 6ωs
None

Ns > 0 ∪Ws < 0 ωs<−1 ∪
1
4 < ψ < 2 + 3ωs

9 + 9ωs
−1 < ωs ≤

1
3 ∪ ψ < ωs

1 + ωs
ωs >

1
3 ∪ ψ < 1

3 + 3ωs

P

1.5

1.0

0.5

0.4 0.6 0.8 1.0
r+

T < T
c

T = T
c

T > T
c

(a) ωs = −2/3
P

r+

T < T
c

T = T
c

T > T
c

0.10

0.08

0.06

0.04

0.02

2 3 4 5

(b) ωs = 1/3

Figure 1: The P − r+ diagrams of four-dimensional AdS black holes with ψ = −5/2 and Ns = −1. The upper dashed line corresponds to the
idea gas phase behavior for T > Tc. The critical temperature case T = Tc is denoted by the solid line. The line below is with temperatures
smaller than the critical temperature. We have Tc = 0:1610 in (a) and Tc = 0:0433 in (b).
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Here, r+ is understood as a function of pressure and
temperature (r+ = r+ðP, TÞ), via the equation of state (15).

3. Perturbations of AdS Black Holes in
Rastall Gravity

Now, we study a massless scalar field perturbation on the
four-dimensional AdS black holes surrounded by perfect
fluid. The test scalar field satisfies the Klein-Gordon
equation:

1ffiffiffiffiffiffi−gp ∂μ
ffiffiffiffiffiffi
−g

p
gμv∂vΦ r, t, θ, ϑð Þð Þ = 0: ð19Þ

Assuming the scalar field with

Φ t, r, θ, ϑð Þ =〠
lm

ϕ rð Þ
r

Ylm θ, ϑð Þe−iωt , ð20Þ

the radial perturbed equation is

d2

dr2∗
+ ω2 −V rð Þ

 !
ϕ rð Þ = 0, ð21Þ

where r∗ is the tortoise coordinate, defined by dr/dr∗ = f ðrÞ.
The effective potential VðrÞ reads as

V rð Þ = f rð Þ f ′ rð Þ
r

+ l l + 1ð Þ
r2

 !
, ð22Þ

where l is the angular momentum eigenvalue related to the
angular momentum operator L2. We only consider the case
of l = 0 in this paper.

At the AdS boundary r→ +∞, the generalized potential
VðrÞ diverges, which leads to ϕðrÞ→ 0.

Near the horizon r+, the scalar field needs to satisfy the
ingoing boundary condition, ϕðrÞ ∼ ðr − r+Þiω/4πT . Following
the same path in Refs. [50, 68–70], we define ϕðrÞ as φðrÞ
exp ½−i Ð ðω/f ðrÞÞr�, where exp ½−i Ð ðω/f ðrÞÞdr� asymptoti-
cally approaches to the ingoing wave near the horizon;
then, (21) becomes

φ″ rð Þ + φ′ rð Þ f ′ rð Þ
f rð Þ −

2iω
r

+ 2
r

 !
−

2iω
rf rð Þφ rð Þ = 0: ð23Þ

In the limit of r→ r+, we can set φðrÞ = 1 and we have
φðrÞ = 0 when r→∞.

It is worthy to point out that without surrounding perfect
fluid (NS = 0), the vacuumAdS black hole solution (11) in the
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Figure 2: For n = 0, (a) real quasinormal frequency and (b) negative imaginary quasinormal frequency as functions of Ns around the AdS
black hole with r+ = 0:2, RΛ = 1, and ψ = −5/2 in the Rastall gravity.
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Figure 3: The T − r+ and G − T diagrams of four-dimensional AdS black holes with ψ = −5/2, Ns = −1, ωs = −2/3, and P = 0:3283.
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Rastall gravity has the similar form with the Schwarzschild-
AdS black hole solution in GR. Under the l = 0 scalar field
perturbation, the quasinormal modes of Schwarzschild-AdS
black hole with the AdS radius R = 1 have been computed
in Ref. [73], where n = 0 fundamental frequency of
Schwarzschild-AdS black hole with r+ = 0:2 equals to
2:47511 − 0:38990i. For the AdS black hole solution (6) in
the Rastall gravity, we also set RΛ = 1 and evaluate the effect
of Ns on the quasinormal frequency, as shown in Figure 2.
In the limit of Ns → 0, these QNMs coincide with the funda-
mental mode 2:47511 − 0:38990i, which plays the role of a
starting point.

By choosing the pressure P < Pc, the T − r+ and G − T
diagrams of four-dimensional AdS black holes are plotted
in Figures 3 and 4. In that case, an inflection point occurs,
which displays that the behavior is reminiscent of the Van
derWaals system. Notice that the similar diagrams have been
presented in Refs. [68, 70], where the point “5” represents
coexistence of small and large black hole and the solid lines
“1-5” or “1-L5” and “5-4” or “R5-4” separately denote small
and large black holes (see Figures 3 and 4). In addition, the
points “L5” and “R5” share the same Gibbs free energy and
temperature with T∗ ≈ 0:13105 for ωs = −2/3 and T∗ ≈
0:04162 for ωs = 1/3.

On the other hand, the QNM frequencies of massless sca-
lar perturbation against the small and large black holes are
shown in Table 2. For the small black hole phase T < T∗,
the absolute values of the imaginary part of QNM frequencies
decrease, while the real part of frequencies increase with the
shrink of the horizon radius from T . In the large black hole
phase T < T∗, the QNM frequencies are characterized by
larger real oscillation frequency and larger damping with
the increase in the horizon radius. These QNM frequencies
for small and large black hole phases are also plotted in
Figures 5 and 6. The arrow denotes the increase in the hori-
zon radius r+.

In addition, the massM of Schwarzschild AdS black hole
from (12) is given as

M = r3+
2R2 + r+

2 : ð24Þ

In the limit r+ → 0, the massM vanishes and (12) reduces
to the pure AdS space:

f AdS rð Þ = 1 + r2

R2 ,

1
R2 = −

Λ

3 :

ð25Þ

In other words, the quasinormal modes of small
Schwarzschild AdS black holes (r+ → 0) can tend to the

T T
⁎

0.0425

0.0420

0.0415

L5 R5
2

31
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+
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0.0414 0.0415 0.0416 0.0417 0.0418 0.0419 0.0420
T

1 3

5
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4

Figure 4: The T − r+ and G − T diagrams of four-dimensional AdS black holes with ψ = −5/2, Ns = −1, ωs = 1/3, and P = 0:0328.

Table 2: The QNM frequencies of (a) (ωs = −2/3) and (b) (ωs = 1/3)
with the change of temperature T and horizon radius r+. The italic
values denote the small black hole phase, while the rest of the
values correspond to the large black hole phase.

(a)

T r+ ω

0.1250 0.275 1.66875-0.02303I

0.1270 0.280 1.66643-0.02462I

0.1288 0.285 1.66407-0.02629I

0.1304 0.290 1.66167-0.02804I

0.1311 1.245 1.97363-0.78752I

0.1312 1.250 1.97610-0.78863I

0.1313 1.255 1.97859-0.78974I

0.1314 1.260 1.98110-0.79083I

(b)

T r+ ω

0.040759 1.700 1.15336-0.219889I

0.041069 1.750 1.14943-0.221412I

0.041308 1.800 1.14140-0.223724I

0.041488 1.850 1.13570-0.224786I

0.041634 3.3525 1.93148-0.263925I

0.041636 3.3550 1.93191-0.263982I

0.041638 3.3575 1.93236-0.264036I

0.041640 3.3600 1.93281-0.264086I
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purely normal modes of empty AdS spacetime, which has
been proven by Konoplya in Ref. [74]. With regard to the
AdS black hole (6) in the Rastall theory, the mass is
obtained:

MRas =
r3+
2R2

Λ

+ r+
2 −

Ns

rξ−1+
: ð26Þ

Evidently, the mass of AdS black hole is divergent in
the limit r+ → 0. Then, this solution (6) cannot reduce
the pure AdS space:

f RAdS rð Þ = 1 + r2

R2
Λ

, ð27Þ

because of the existence of Ns ≠ 0. Therefore, the quasinor-
mal modes of small AdS black holes (r+ → 0) cannot also
tend to the purely AdS spectrum in the Rastall gravity.

In addition, at the critical position P = Pc, a second-order
phase transition occurs. The QNM frequencies of the small
and large black hole phases are shown in Figure 7. The
QNM frequencies of two black hole phases display the simi-
lar trend of decay as increases in the horizon radius r+. In
fact, this phenomenon has also emerged in some other grav-
ity theories [50, 68–70].

4. Concluding Remarks

In the four-dimensional Rastall theory, we reviewed the
P −V criticality and phase transition of AdS black holes
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Figure 5: The real and imaginary parts of frequencies for large and small black holes with ωs = −2/3. The arrow denotes the increase in r+.
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in the extended phase space. Considering the weak energy
condition of energy density ρs ≥ 0, we derived five proper
regions for the parameters ωs and ψ, where the VdW-
like SBH/LBH phase transition could happen for the AdS
black holes. Later, we further calculated the QNMs of
massless scalar perturbations to probe the SBH/LBH phase
transition of AdS black holes surrounded by two special
fields: radiation and quintessence fields, respectively. These
results reveal that when the SBH/LBH phase transition
happens, the slopes of the QNM frequencies change drasti-
cally in the small and large black hole phases with the
increase in r+. In other words, the thermodynamic SBH/LBH
phase transition has been exactly reflected by the variations
of QNM frequencies for corresponding small and large black
holes in the four-dimensional Rastall theory.

Nevertheless, this phenomenon does not appear at the
critical isobaric phase transitions, where the QNM fre-
quencies for both small and large black holes share the
same behavior. This implies that the QNM frequencies
are not suitable to probe the black hole phase transition in
the second order.

In four-dimensional Rastall gravity, charged Kiselev-like
black holes surrounded by perfect fluid have been obtained
by Heydarzade and Darabi [9]. It would be interesting to
derive charged AdS black hole solutions in the Rastall gravity.
Then, we can recover the possible relation between the ther-
modynamical phase transition and QNM frequencies. Simi-
lar discussions for the charged AdS black holes in the
Rastall gravity coupled with a nonlinear electric field also
deserve a new work in the future.
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In this work we are about to investigate the e�ects of quintessence dark energy on evolution of the computational complexity relating 
to the AdS/CFT correspondence. We use “���������� = ������” conjecture for a charged AdS black hole surrounded by the dark 
energy at the quintessence regime. �en we try to �nd some conditions on the quintessence parameters where the Lloyd bound is 
satis�ed in presence of a�ects of the quintessence dark energy on the complexity growth at the late time approximations. We compare 
late time approximation of the action growth by perturbed geometry in small limits of shi� function. Actually we investigate the 
evµolution of complexity when thermo�eld double state on the boundaries is perturbed by local operator corresponding to a shock 
wave geometry as holographically. Furthermore we seek spread of local shock wave on the black hole horizon in presence of the 
quintessence dark energy.

1. Introduction

In the perspective of gauge/gravity duality evolution of all 
dynamical �elds in the anti-de Sitter (AdS) gravity have dual 
pictures in the boundary �eld theories on which the gravity 
has been removed [1]. Actually this duality acts as a dictionary 
for all �eld theory characteristics in the language of black hole 
physics in AdS spacetime. One of important conjectures in the 
holographic context is about computational quantum com-
plexity which implies the minimum quantum gates necessary 
to produce states associated with boundary complexity from 
the reference state. �ese conjectures are based on the behavior 
of a patch created by the light rays emitted from �� on the le� 
boundary and �� on the right side of a two-sided eternal black 
hole, called Wheeler-DeWitt (WDW) patch [2, 3]. �e old 
conjecture states “complexity = volume” (CV), in which the 
volume of a maximal space-like slice in the black hole interior 
that connects �� and �� supposed to be appropriated with com-
putational complexity in its conformal �eld theory dual on the 
boundary [4]. �is conjecture is a result of the behavior of the 
interior volume of black hole which grows linearly with time, 
so it could be translated with the growth of computational 
complexity on the boundary with time [5, 6]. However, if the 
bulk contains a shock wave the interior volume of the black 

hole shrinks for a �nite time interval and shows an opposite 
behavior. In the new conjecture of “complexity = action” (CA), 
computational complexity of a holographic state on the 
boundary pictures is as the on-shell action in WDW patch. 
�is new conjecture has some preferences with respect to the 
old one and solve some problems which the “CV” conjecture 
su�ers. Lloyd showed [7] the growth rate of quantum com-
plexity has an upper bound which is related to the average 
energy of the orthogonal quantum states � such that

In this new conjecture, authors of the works [2, 3] concluded 
that the action growth of WDW patch obeys this bound at late 
time approximation which is provided us to work with 
orthogonal states. At this approximation we can have a general 
and universal form of the above bound for a rotating charged 
black hole as follows [8].

where + and − indicate the lowest and highest energy of states. 
�ese states for a black hole with multiple horizon happen at 
the most outer (�+) and the most inner (�−) horizons.

(1)
�(������)
�� ≤ 2�.

(2)
�A
�� ≤ (� − Ω� − ��)+ − (� − Ω� − ��)−,
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In the other side, shock waves near the horizon of an AdS 
black hole describe chaos in a thermal CFT [9–11] and could 
have interesting e�ects on the boundary complexity. From 
the point of view of holography dictionary the spreading of 
the shock wave near the horizon has butter©y e�ect in the 
boundary �eld theory. �is e�ect could be seen with a sudden 
decay a�er scrambling time �∗ = (�/2�)ln�, in which “�” 
stands for the black hole entropy. It is the necessary time for 
the black hole as the fastest scramblers to render the density 
matrix of a small essentially exactly thermal subsystem. �e 
spreading local shock waves in the bulk arise from throwing 
a few quanta into the horizon which corresponds to perturb 
thermo�eld double state |���⟩ on the boundaries by local 
operators. �e growth of spreading the shock wave on the 
boundary is identi�ed with butter©y velocity “v�” could be 
obtained by solving the equation of motions of perturbed 
geometry. Complexity growth rate and the e�ects of butter©y 
on it, are investigated on various gravity models for the bulk. 
In refs. [2, 3, 8] the authors investigated action growth for 
various AdS black holes and tested the Lloyd bound by con-
sidering the e�ects of charge. �e growth of holographic com-
plexity is studied in massive gravity in ref. [12], and in a more 
variety of other works [13–19]. On the other side, some of 
works have been done about studying the shock wave geom-
etry in di�erent gravity models in the bulk [9–11, 20, 21] and 
e�ects of them were investigated on the action growth by 
obtaining butter©y velocity and comparing them with other 
simple models [22, 23].

Motivation of studying the e�ect of dark energy arises 
from several works in holographic context. For instance Chen 
et al. found that quintessence dark energy can a�ect 
the s-wave and p-wave holographic superconductor [24]. In 
the other side, Kuang et al. studied the holographic fermionic 
spectrum dual to AdS black brane in 4 dimensions in the pres-
ence of quintessence dark energy and showed that this fermi-
onic system exhibits a nonFermi liquid behavior [25]. So it 
would be natural to investigate other aspects of holographic 
e�ects of this quintessence dark energy such as its impact on 
complexity growth or its e�ect on the spread of chaos on 
boundary. Quintessence dark energy introduced by an equa-
tion of state arisen from its energy tensor has a state parameter 
which is varied like −1 < � < −1/3. �is state parameter which 
is a factor to explain the accelerating expansion of the universe, 
could de�ne various regimes and could be �xed by regarding 
some cosmological observations. Here we like to study e�ects 
of this factor on the holographic complexity of a AdS black 
hole which is perturbed with a shock wave matter �eld. It can 
help us to get more profound understanding from the entropy 
of the black hole in presence of the quintessence dark energy 
by attention to some related bounds like Lloyd bound. Also it 
could help us to have more information about quintessence 
state parameter to get a better understanding of late time accel-
eration of the universe. Furthermore it could be interesting 
how the spreading of a chaos could be sensitive for changes of 
�. �is could give a comprehensive and statistical study for 
di�erent regimes of the used gravity theory during the evolu-
tion of the action. Moreover, from [26] we know free param-
eter � emerged from quintessence energy tensor should be 
considered as  thermodynamic variable and so its physical 

insight needs to investigation more. So as next work we are 
interested to study dual CFT perspective of this variable to 
approach to goal of this article.

In the present work we consider the e�ects of quintessence 
dark energy on the AdS black holes geometry, and therefore 
we will see how it changes the action growth rate and butter©y 
velocity in the shock wave geometry. Quintessence dark 
energy is a canonical scalar �eld which is one of the successful 
theories to explain the acceleration phase of the universe 
[27–29]. In this model which was �rst introduced by Kiselev 
[30] an additional energy-momentum tensor of quintessence 
counterpart must be added to the Einstein equation as 
G = �(������� + �quintessence) = �T . �e e�ects of quintessence 
have been studied in a wide range of works and thermody-
namics of the various black holes have been investigated when 
they are surrounded by the dark energy [30–35]. It would be 
challenging to see how it a�ects the holographic characteristics 
as well. Layout of this work is as follows.

We �rst study the action growth in the presence of quintes-
sence dark energy in Section 2. �en we discuss about condi-
tions where the Lloyd bound [7] could be hold with new charge 
associated with this new �eld. In Section 3 we calculate the 
butter©y velocity related to the spreading of perturbation and 
compare the action growth in the presence of a local shock wave 
geometry in the gravity model under consideration. Section 4 
denotes to concluding remarks and outlook of the work.

2. The Rate of Action Growth in Presence of the 
Dark Energy

We consider RN-AdS black hole surrounded by the quintes-
sence dark energy in four dimensional curved space time. It 
could be described by the following action functional.

where the �rst part is related with the bulk action contains 
Einstein-Maxwell Lagrangian density de�ned in the AdS spa-
cetime as follows.

In the above action the cosmological constant is related to the 
AdS space radius � by Λ = −3/�2 in four dimension. �e sec-
ond term in the action (4), L� implies on the lagrangian of the 
quintessence dark energy as a barotropic perfect ©uid de�ned 
by [36]

in which � is the light speed and �0 is integral constant which 
is come from singularity cut-o�. Also the quintessence dark 
energy barotropic index satis�es −1 < � < −1/3   . It comes from 
the quintessence dark energy equation of state as � = ���2 in 
which � is energy density and � is corresponding isotropic 
pressure.

In the other side the Gibbons-Hawking-York (GHY) 
boundary part of the action term within the WDW patch at 
the late time approximation is de�ned by

(3)S = S�� + S��.

(4)S�� = 116��∫�����
4�(√−g[� − 2Λ − ������] + L�).

(5)L� = −��2(1 + �ln( ��0)),
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where ℎ stands for the determinant of induced metric on the 
boundary of AdS bulk and � represents the trace of extrinsic 
curvature. We should note the authors of the work [37] showed 
that “CA” conjecture su�ers from some ambiguities related to 
the null surface’s parametrization and they found joint and 
boundary terms which are absent in this proposal. However 
authors of the works [38, 39] proved that the action growth at 
late time approximation does not need these extra terms. So 
for the present work, all other boundary terms and joint terms 
vanish at late time approximation.

In general, a line element for spherically symmetric static 
geometry in the Schwarzschild coordinates could be given by

with the following solution in presence of the quintessence 
dark energy e�ect [30].

where the positive constant “�” treats as normalization factor 
for density of the quintessence dark energy via � = −3��/2�3(�+1).  
�e electromagnetic tensor �eld ��� is de�ned by 4-vector 
potential �� as ��� = ���� − ����. �is is a gauge �eld and 
so for a spherically symmetric static metric (7) we can take its 
form as spherically symmetric time independent function for 
simplicity reasons as follows.

Substituting the metric solution (7) with (8) one can calculate 
the Ricci scalar as

To study the evolution of WDW action of this model it is 
useful to depict its Penrose diagram at late time approxima-
tion. As the black hole solution (7) has multiple horizons so 
we must consider its behavior between the lowest and the 
highest energy which happen at �− and �+, respectively. In 
Figure 1, we depicted the evolution of WDW patch for black 
hole containing the multiple horizons at late time approxi-
mation [40]. By increasing the time on the boundary the 
patch terminates at location of � = �����(��, ��) for all charged 
black holes. Time transition says us that the action growth 
at late time approximation only relates to the dark blue region 
behind the future horizon in Figure 1. Of course, the tiny 
part above the meet line is in second order �2 which is 
negligible.

Now by studying time dependence behavior of total action 
(3) in the quintessence regime of dark energy, we can evaluate 
holographic complexity growth. By considering the Ricci sca-
lar (10) and the quintessence lagrangian density (5) one can 
calculate the action growth of the bulk such that

(6)S�� = 18��∫boundary�
3�√−ℎ�,

(7)
��2 = −�(�)��2 + ��

2

�(�) + �
2��→� 22,

(8)�(�) = 1 − 2�� −
Λ�2
3 +
�2�
�2 −
�
�3�+1 ,

(9)� = � ��� = −��(1� −
1
�+)��.

(10)� = 4Λ + 3��(3� − 1)�3(�+1) .

in which

and we put �0 ≡ 3�/2. It is simple to show �(�) > 0 and 
�(�) > 0 in quintessence regime −1 < � < −1/3 as follows. By 
setting Ω2/4�� = 1 (11) reads

It is also easy to see (� + (�/3�)) > 0 for quintessence regime 
−1 < � < −1/3.

To obtain the action growth of the boundary part we must 
evaluate the extrinsic curvature associated to the metric solu-
tion (7) for which we have

where the prime � notes to derivative with respect to “�”. By 
this de�nition time derivative of the second part of the action 
(3) leads to the following form.

(11)

�S��
�� =

1
16�� ∫∫

�+

�−
�2(2Λ + 3��(3� − 1)�3(�+1) +

2�2�
�4

+�(�) 1�3�+1 + 
(�)
ln (�)
�3�+1 )���Ω2,

(12)
�(�) = −3��2 (1 + � ln (−�)),

�(�) = 9��
2(� + 1)
2 ,

(13)

�S��
�� = −

1
2�2 (�

3
+ − �3−) − �

2
�
2 (
1
�+ −
1
�−)

− �(3� − 1)4 (
1
�3�+
− 1�3�−
)

− 112�(	 +
�
3�)(
1
�3�+
− 1�3�−
)

− �12�(
ln (�+)
�3�+
− ln (�−)�3�−

).

(14)� = 1�2
�
��(�2√�(�)) = 2� √�(�) + �

�(�)
2√�(�) ,

→
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Figure 1: Penrose diagram for a two sided black hole with multiple 
horizons in which WDW patch evolves at late time approximation 
and terminates at meet point with tL = tR and t = 0. r0 is the null spatial 
in�nity and the wavy lines indicate the singularities at r = 0, also r∞ 
stands for r = −∞.
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in which �± = ��/�± stands for chemical potential, A± = −1/2�3�±
is conjugated potential for parameter “�”. As we expect for � = 0
the second line in the above result vanishes. If we take “�” for 
the average energy of the quantum states then the rate of quan-
tum complexity satis�es the Lloyd bound [7] as

�is satisfaction arises from the conditions � > 0, � > 0 and 
� + �/3� > 0 which are mentioned in the above for the quin-
tessence regime −1 < � < −1/3.

3. Butterfly Effect with Shock Wave Geometry

�e shock wave geometry happens when our black hole solu-
tion is perturbed by a small amount of energy. Study of the 
shock wave geometry can be done by calculating the butter©y 
velocity which is the velocity of shock wave near the horizon. 
To do so we �rst rewrite the black hole solution (7) in the 
Kruskal coordinates system such that

where we de�ned

and ℎ(�, v) = �2 where and from now on we mark outer hori-
zon by �ℎ instead of �+ for simplicity reasons. As we know that 
there are the following relationship between the null Kruskal 
coordinates and the spherical coordinates.

with the thermodynamic parameter � = 1/��� in which � is 
temperature and �� is the Boltzmann constant. Also 
�∗ = ∫ ��/�(�) called as the tortoise spatial radial coordinate. 
For neighborhood of the exterior horizon �ℎ the tortoise coor-
dinate is approximated with the following form.

Now by rewriting the metric (22) in the new coordinates we 
can study the e�ects of disturbance as a shock wave geometry. 
Actually when a scalar operator � acts on the boundary at 
�� < 0 this shock wave creates. If �� be large enough then this 
shock creates a particle of null matter which travels along � = 0
in the bulk. Suppose that the metric has form like (22) for � < 0
but it is changed to a perturbed metric in which v is replaced 
by v + �(��) [8]. �(��) is called the (red) shi� function which 
shows a boundary perturbation in the direction of ��. �is shi� 
function creates some similarities for WDW patch with unper-
turbed geometry at late time approximation which is studied 
in previous section. In fact when the shi� function takes some 
large values then the light rays of WDW patch run into the 
past singularity which is similar to early time approximation, 

(21)
�C
�� ≤
2�
�ℏ .

(22)��2 = −2�(�, v)���v + ℎ(�, v)��→� 22,

(23)�(�, v) = − 4�v
�(�)
[��(�ℎ)]2

,

(24)
� = �(2�/�)(−�+�∗(�)),
v = −�(2�/�)(�+�∗(�)),

(25)�∗ ≈ 1��(�ℎ)
ln(� − �ℎ�ℎ ) + ⋅ ⋅ ⋅ .

Adding (13) and (15) we obtain total growth action for quin-
tessence RN-AdS black hole such as follows.

Solving the horizon equation �(�±) = 0 one can obtain the 
following expressions for charge and mass of the RN-AdS 
black hole.

By attention to these expressions the total growth rate (17) 
could be rewritten as follows.

Looking to the works presented by Brown et al. [2, 3], one can 
infer there are some extra terms due to the presence of quin-
tessence dark energy. If we rewrite this expression with respect 
to thermodynamic variables we �nd

(15)

�S��
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1
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1
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is called as “butterfly velocity”. In fact, this velocity as it is 
mentioned before is the spread of the local perturbation on 
the boundary of space-time. In our case ℎ(�) = �2 and so the 
butter©y velocity (33) reads

Regarding the quintessence dark energy counterpart in the 
present work we see that the butter©y velocity is depend on 
the quintessence parameters such as normalization factor �
and the state parameter �. It could be calculated by attention 
to Hawking temperature � = ��(�ℎ)/4� as

in which �ℎ is the outer horizon. To study the action growth 
in this perturbed geometry two parts must be included: the 
action of WDW patch behind the (I) past and (II) future hori-
zons. By attention to [3, 22] these two parts are de�ned respec-
tively by 

at which �� is the Lyapunov exponent proportional to the 
Hawking temperature and � is the length of the transverse 
direction �. �e upper bound of this coordinate called maxi-
mal transverse coordinate is |�| = v�(���������� − �∗ − ��) that guar-
antees the emergence of shock wave e�ect. Time dependence 
of the action of WDW patch yields:

where A is amplitude of shock wave in (31). As we can see by 
disturbing the geometry the perturbation spreads on the hori-
zon and the action growth get corrected by an extra term 
which has linear dependence to the speed of perturbation. As 
the shock wave initially starts from the le� side boundary of 
our two sided black hole and reaches the right side so the extra 
part depends only on ��. By vanishing any perturbation term 
A→ 0 one can re-derive non-perturbative situation which 
has same rate of growth with respect to both �� and ��.

Now it would be useful to study the e�ect of dark energy 
on the butter©y velocity for the same gravity model. As we can 
see dark energy leads to an extra term to v� which is addressed 
as the last term in (35). Since −1 < � < −1/3 so this term has 
negative sign. Horizon radius �ℎ as we know is a solution of 
�(�ℎ) = 0. In a charged black hole solution with no dark energy 
around it we should set � = 0 in the equation (8) as

and so the corresponding butter©y velocity ṽ� will be obtain 
from (35) without the last term and with di�erent horizon 
radius �̃ℎ obtained from �̃(�̃ℎ) = 0. From (8) and (38) it is 

(34)v� = √���ℎ .

(35)v� = 12 √
1
�2ℎ
+ 3�2 −
�2�
�4ℎ
+ 3���3�+3ℎ

(36)
Sfuture = 2���� ∫ ln �

��(|��|−�∗+��−(|�|/v�))��,

Spast = 2���� ∫ ln �
��(|��|−�∗−��−(|�|/v�))��,

(37)
SWDW = Sfuture + Spast

= 2�(�� + ��) + 2A�v�(���������� − �∗ − ��)2,

(38)�̃(�) = 1 − 2�̃� − Λ�
2

3 + �̃
2
�

�2 .

since for small shi� function similar to the late time approxi-
mation, these light rays meet each other behind the past hori-
zon [3]. Applying some new transformations as

in which �(�) represents the Heaviside step function, the met-
ric line element (22) then takes the new form as follows.

where �(�) denotes to the well known “Dirac” delta function. 
It is simple to see for � = � < 0 the above metric reduces to 
old one (22).

�e injected null matter stress-energy tensor, �matter, can 
be written before the injection of disturbance into the bound-
ary as (22) which in the Kruskal coordinates become

where G is the Einstein tensor. A�er injection this tensor could 
be expressed in the new coordinates such that

By attention to [11, 41] one can consider a massless particle 
at � = 0 which moves in the v-direction with the speed of light, 
the stress-energy tensor of this particle which is corresponds 
to the shock wave stress-energy tensor is:

where � is a dimensionless constant and �(�) is a local source 
of perturbation which for simplicity reasons we take to be as 
Dirac delta function, i.e. �(�) = �(�). By considering the 
stress-energy tensor of this disturbance the Einstein equation 
reads (1/�)G = �matter + �shock which should be solved. �is 
equation at the leading order term near the horizon can be 
solved as follows.

where,

and v� given by

(26)

� = �,
� = v + �(�)�(��),
�� = ��,

(27)
��2 = −2�(�,�)���� + ℎ(�,�)��→� 2

2

+ 2�(�,�)�(
�)�(�)��2,

(28)

1
�G{�,v} = �matter = 2��v���v + �����2 + �vv�v2 + �����→� 22,

(29)

1
�G{�,�} = �matter

= 2(��� − ����(��)�(�))���� + �����2

+ (��� + ����2(��)�2(�)

−2����(��)�(�))��2 + �����→� 2
2.

(30)�(�ℎ���)�� = ��4 �(2�/�)��(�)�(�),

(31)�(�, ��) ∼ �−�(|��|−v��),

(32)� = √�
�(�ℎ)ℎ�(�ℎ)
2 ,

(33)v� = 2��� = √
��(�ℎ)
2ℎ�(�ℎ)
.
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hole solution is surrounded by quintessence dark energy [30]. 
�e e�ects of this kind of dark energy is investigated earlier 
in various works [29–34] and it seems challenging to see how 
it a�ects the holographic characteristics. We found some extra 
terms related to the quintessence dark energy are added to the 
total action growth. Also it is proved that by attention to the 
conjugated potential for the quintessence parameter the Lloyd 
bound [7] is satis�ed for all parameter states de�ned in regime 
of the quintessence dark energy.

We also investigate the action growth of this model for 
shock wave geometry [9]. Actually when the boundary is per-
turbed by a small amount of energy, the geometry in the bulk 
is a�ected. �e local shock wave spreads near the horizon with 
the “butter©y velocity” which could be obtained by the equa-
tion of motion for the new stress-energy tensor. In fact its form 
is same as of the old stress tensor but with an extra term which 
comes from the shock wave and has only �� component. It 
is due to a massless particle moving at null hypersurface � = 0
with the speed of light. We showed that the e�ect of the quin-
tessence dark energy causes to spread the shock wave with 
slower butter©y velocity near the horizon, so the complexity 
growth would be slower as well.
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Advances in High Energy Physics would like to express
concern with the article titled “Antigravity, an Answer to
Nature’s Phenomena including the Expansion of the Uni-
verse” [1], which reviews the author’s previous studies.

Following the publication of the review article, con-
cerns have been identified that the discussion is qualitative
and without any concrete model supporting the ideas pre-
sented. The concept that clouds experience anti-gravity
proportional to the temperature of water droplets appears
unsustainable, as well as the idea that thermal energy pro-
duced by the stars can explain the accelerating universe.
Both ideas lack a concrete model, and it is unlikely that
such a model can exist. If the observations presented in
the article are assumed to be correct, a model would be
required to test the hypothesis. The possibility of such
testing is doubtful. We additionally note that the author’s
previous work, reviewed in the article, has not been cited
by other researchers.
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�e gravitational attraction force being proportional to the mass has been experimentally shown for several hundred years now, 
but no gravitational repulsion has been identi�ed within the accepted scienti�c reasoning. Here, we show that the gravitational 
repulsion force, similar to the gravitational attraction among particles has also been in existence in nature but, yet to be recognized. 
�e results of experiments are shown in detail and are discussed in the recent series of-publications. It is also shown here that this 
gravitational repulsion force is proportional to the temperature which is an indicator of thermal energy of the particle, similar to the 
gravitational attraction that is proportional to the mass of the particle. �e situations where heavy particles such as iodine, tungsten, 
and thorium in vacuum move against gravitational force have already been shown qualitatively. �e increase in time-of-fall of water 
droplets (slowing down of fall) with rise in temperature is also quantitatively discussed. �is article discusses two major phenomena 
observable in nature, clouds and the expansion of universe, which could be more preciously explained by the concept of antigravity.

1. Introduction

Gravity is a one of the fundamental forces identi�ed in 
nature, formulated by Sir Isaac Newton in 1728 as: �e law 
of universal gravitation [1]. However, the concept of 
gravitational repulsion has neither been discerned nor 
identi�ed within the prevailing scienti�c laws and concepts 
until recent past [2–5]. �e gravitational attraction is 
proportional to the mass which has been experimentally 
proved for several hundred years.

�e idea of this short communication is to discuss obser-
vations and results published in three consecutive journal 
articles published by the author and extend its manifestation 
to explain two major physical processes in nature.

Manuscript 1 has shown [2] the upward movement of 
heavy particles in vacuum, in a situation where, all factors 
which are believed to be causing the upward movement of 
particles against the gravitational pull in air: viz—buoyancy 
and the li� force, are eliminated by experimental design. 
Manuscript [2] shows that iodine particles move against grav-
itational pull when they get heated in a vacuum as shown in 
Figure 1. It also cites an example from electronic vacuum tubes 

(also called electronic valves) where evaporated tungsten and 
thorium particles from the heater moves upwards, despite the 
gravitational pull and the strong radial electric �elds and 
deposits in the top of the glass container.

Manuscript 2 discusses [3] the movement of heated water 
droplets in still air against the gravitational pull. �ermal 
image (Figures 2(a) and 2(b)) of the path of heated condensed 
water droplets reveals that, even though the temperature 
gradient does not support (Figure 2(c)) the formation of 
convection air currents, the condensed water droplets slow 
down its motion, turn around, and then move upward against 
gravitational pull.

Manuscript 3 [4] shows the upward movement of heated 
water droplets inside an ice cylinder (Figure 3(a)) which inten-
tionally inhibits air convection. Secondly, the manuscript also 
shows the measurements related to the time-of-fall of a heavy 
water droplet (Figure 3(b)). Two droplets with mass 4 mg and 
9 mg were used in the temperature range of 10°C–60°C.

In considering the equilibrium of the rising and falling 
water-droplet in still air, attention has been given to all relevant 
factors—force of gravity, buoyancy, surface evaporation [6, 7] 
and force due to the temperature pro�le in air [8, 9].
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Here, it is experimentally demonstrated that there exists 
a cryptic force (upward force) which increases with tempera-
ture where a linear increase in time-of-fall (slowing down) is 
observed.

2. Discussion

As a summary of the content of these publications (Figure 4), 
it is concluded that there is a repulsion force, against the direc-
tion of gravitational pull, and further that this repulsion force 
is proportional to the temperature which is a parameter of the 
thermal energy of the particle, similar to the gravitational 
attraction that is proportional to the mass of the particles.

Referring to the results shown in the three manuscripts, 
Figure 4 summarizes the following relationship between two 
arbitrary particles with masses �1, �2, temperatures T1, T2 and 
speci�c heat capacities C1, C2.

Conventional gravitational law reveals that

(1)Attraction force ∝ mass (�1, �2).

�e �ndings in experiments state that

�ermal energy, � is expressed in the following expression

�erefore, resultant forces acting on an object (as in water 
droplet in manuscript 2, Expe. 2) are proportional to the mass 
and heat energy of objects. Generalizing expressions 1 and 2.

For the objects with mass �1, �2 and thermal energy �1, �2
respectively, the above expression can be rewritten as

Similar to gravitational acceleration �, due to the attraction 
force of earth, a gravitational deceleration can also be pro-
posed due to thermal energy.

(2)Repulsion force ∝ thermal energy (�1, �2).

(3)� = � × � × �.

(4)Resultant force between any two arbitrary objects

= ���� ∼ ���� ∝ �(mass, heat energy).

(5)Resultant force = ���� ∼ ���� ∝ �(�1, �2, �1, �2).

(c)

Deposited 
iodine 

(a)

(b)

Vacuum
pump 

Glass 
vacuum chamber

Electric
heater plate 

Iodine

Paper to capture 
evaporated iodine Deposited iodine 

Figure 1:  Figure extracted from reference [2]—Experimental set-up to observe movement of heat-evaporated iodine vapor in vacuum.  
(a) Vacuum deposition chamber. (b) A layer of iodine was gradually heat evaporated (ejected downward direction) inside the vacuum chamber. 
�e electrical heater plate itself covers the iodine particles moving directly in upward direction. �e iodine source was surrounded with a paper 
jacket in order to capture the deposition geometry of iodine. �e paper was placed 50 mm radially away from the iodine source. Pressure in 
the chamber was ~1 × 10−5 mbar, average mean free path is greater than 6.6 m, and air density was approximately 12.6 ng m−3. Pressure at the 
top (�top) of the chamber was higher than at the bottom (�

bottom
), �top > �bottom. (c) Photograph of deposited iodine on the inner top part 

of the paper. Reprinted from “Antigravity—Is it already under our nose?” by C. K. G. Piyadasa, 2011, Canadian Journal of Pure and Applied 
Sciences, Vol. 5, No. 2, pp. 1586, Reprinted by permission of SENRA Academic Publishers, 5919 129 B.
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(a)

(b) (c)
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Figure 2: Figure extracted from reference [3]—�ermal image of the turnaround point (TAP) of the stream of the condensed steam droplets 
(CSD) and the vertical temperature distribution of the middle of TAP area. (a) �ermal image of downward projected CSD taken from the 
cryogenically cooled third generation forward looking infrared (FLIR) thermal camera (3–5 μm). (b) Temperature distribution at the droplet 
turning around area. Color gradient is proportional to the temperature as shown in the plate below (c) temperature distribution along the line AB 
in (b).  Reprinted from “Will rising water droplets change science?” by C. K. G. Piyadasa, 2011, Canadian Journal of Pure and Applied Sciences, 
Vol. 6, No. 2, pp. 1995, Reprinted by permission of SENRA Academic Publishers, 5919 129 B Street Surrey, British Columbia, Canada V3X 0C5.
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Figure 3: Results from the Manuscript 3 [4]. (a) Motion of condensed water droplets in the ice cylinder where the environment supports no 
convection currents. (b) Time-of-fall of water droplet increases with the increase in droplet temperature. Time-of-fall of two water droplets 
in a 5.913 m long metal tube was measured. Temperature of droplets was changed from 10°C to 60°C. Time delays of 44 ms and 48 ms were 
measured for 4 mg and 9 mg droplets for the temperature range of 10°C–60°C, respectively.
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are observed up to about 65 µm [16, 17] and in mist the VMD 
tends to be a little higher than fog. In another words, mist is 
heavier and lies closer to the ground. �e separation among 
these droplets is relatively large compared to their size. �e num-
ber density of these droplets is around 25 droplets per cubic 
centimeter [16]. In these situations, no updra� exists even 
though they (mist & fog) have the same composition as in a 
cloud. �is is further observable in still or in slowly moving 
clouds on a high mountain, especially in the morning where the 
ground is nearly frozen where no convection or updra� exists.

�e repulsive force against the gravitational pull of the 
water droplets is shown in the second and third manuscript. 
�is repulsive property of water droplets against the earth’s 
gravitational pull is also shown in Figures 2 and 3. �is con-
cludes that there exists a repulsive force (with earth) as well 
as gravitational attraction force to the particle depending on 
their thermal energy and the mass where the water droplets 
are in equilibrium.

In addition to attractive and repulsive forces of water-drop-
lets of a cloud with earth, there exist attraction and repulsive 
forces among water droplets within the cloud. �ese forces act-
ing inside the cloud explain the accumulative (¹ocking together) 
nature of the cloud which has not been explained by the classical 
theories. �e equilibrium of these two forces will con�ne the 
droplets to a certain area as a ¹occule. �e repulsiveness does 
not allow shrinking and �nally collapsing the cloud. �e attrac-
tive force keeps the droplets together without dispersion.

Some other observations can be spotted if we think very 
carefully.

For example, the high concentration of Chloro¹uorocarbon 
(CFC—120.9 amu) molecules observed in high altitudes 
(17–50 km) could also be attributed to the antigravity force, 
although it is generally explained as a result of diºusion. CFC 
is four times heavier than average air (average air molecule is 
28.84 amu).

Another similar phenomenon in which the classical the-
ories fail to explain is the rising of water droplets when hot 
water is thrown horizontally in the air in extremely cold 
weather. �e hot water breaks in to tiny droplets as soon as it 
gets in to free air, and these tiny droplets move upwards against 
the gravitational attraction (see video in Supplementary 
Materials (available here)). �e repulsion among hot water 
molecules in the water breaks up the water masses. �ese par-
ticles then move against earth’s gravitational �eld due to its 
thermal energy (antigravity force) as experimentally shown 
by the author in his second and third manuscripts.

2.2. Expanding Universe. Further, even in the observation of 
an “expanding/accelerating universe”, the galaxies are moving 
apart from each other despite the strong gravitational forces 
among massive systems. At present two main theories, big 
bang theory and dark energy, try to interpret this expansion of 
the universe but these interpretations are not very promising. 
If only attraction force due to the gravitational force exists, the 
universe must shrink together and �nally collapse. Instead, it 
is expanding and the galaxies are repelling each other. Hence, 
it is logical to sense a repulsive force among celestial bodies in 
the universe. �is idea was recently published elsewhere [18] 
as “Antigravity could replace dark energy as cause of universe’s 

�e gravitational force is considered a weak force in clas-
sical physics. Any gravitational interaction could be consid-
ered the resultant eºect of the gravitational and antigravitational 
forces inherent in the two bodies under consideration; hence, 
the gravitational force manifests itself as a weak force.

In this proposal, repulsive force depends not only on � and 
� but also on mass (Equation 3). �ermal energy is stored in 
mass/matter and therefore the repulsive force is invariably 
linked with the mass. �erefore, it is reasonable to connect this 
repulsive force with “gravitational repulsion” or “anti-gravity”. 
Further, what we have witnessed here is a “rising up” against 
gravity, it is logical to bring in this antigravity factor. It is also 
worthwhile noting that no other concept of general physics 
could explain the observations, upward motion of iodine 
molecules (nm scale) in vacuum, rise of water-droplets (in µm 
scale) and the delay of fall of water-droplets (in mm scale) with 
the rise in temperature against the direction of gravitational 
pull (i.e., this force acts on against the gravitational pull).

A detailed mathematical analysis will follow this concep-
tual paper in the time to come.

Concept of antigravity can be used to eºectively interpret 
many phenomena. In this manuscript, the following two nat-
ural phenomena that represent two diºerent scopes clouds 
and the expanding universe are selected for discussion. A 
cloud represents a relatively small system compared to the 
expanding universe.

2.1. Clouds. Clouds are ¹oating even though they contain 
water-droplets [10] (condensed water-droplets) which are 899 
times denser than the surrounding air at the altitude 1000 m 
and at temperature 8.5°C. �is ratio (density of water and 
air) becomes 1667 times at altitude of 7000 m (Physics fact 
book https://hypertextbook.com/facts/2007/AllenMa.shtml, 
�e Engineering tool box https://www.engineeringtoolbox.
com/standard-atmosphere-d_604.html) where temperature 
is around −40°C.

�e main argument here, in cloud-physics, is that it is only 
because the updra� (convection currents) in the cloud coun-
teracts the fall of the cloud particles [11–13]. It is also worth 
mentioning that there exists a down dra� similar to updra� 
in clouds [14, 15].

However, the mist and the fog forming at the ground level, 
in still (or undisturbed) air where no updra� (convection cur-
rents) exists, have the same composition as in a cloud. Mist and 
fog usually form on a calm night when the air is too cold to hold 
all its moisture. Volume mean diameter (VMD) of fog droplets 

m1 m2

T1
T2

Repulsion
Attraction

C1 C2

Figure 4:  Forces acting in between two arbitrary particles with 
masses �1, �2, temperatures �1, �2  , and speci�c heat capacities  
�1, �2 . �ere exist attraction (blue arrows) and repulsion forces (red 
arrows) between them.

https://hypertextbook.com/facts/2007/AllenMa.shtml
https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html
https://www.engineeringtoolbox.com/standard-atmosphere-d_604.html
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We investigate a cosmological scenario by finding solutions using first-order formalism in the Horndeski gravity that constrains the
superpotential and implies that no free choice of scalar potential is allowed. Despite this, we show that a de Sitter phase at late-time
cosmology can be realized, where the dark energy sector can be identified. The scalar field equation of state tends to the
cosmological scenario at present time and allows us to conclude that it can simulate the dark energy in the Horndeski gravity.

1. Introduction

Ever since Einstein proposed the General Relativity, it has
been supported by strong observational evidence in many
astrophysical scenarios, namely, Eddington’s measurement
of the deflection of light in 1919 and recent direct observation
of gravitational waves by the LIGO collaboration [1, 2]. How-
ever, we still have fundamental problems that are not well-
understood in General Relativity such as dark matter, dark
energy, and the inflationary phase of the Universe. In recent
years, models have been proposed involving modifications of
General Relativity [3, 4]. In such modifications, some of its
essential properties are maintained such as a second order
of the equations of motion arising from a diffeomorphism-
invariant action and keeping the Lorentz invariance. Due to
these assumptions, the additional propagating degrees of
freedom into the gravity sector consist of including addi-
tional fields (scalars, vectors, or tensors) [5]. These modifica-
tions of the gravity theory taking into account nonminimal
couplings between geometry and matter become one of the
mainstream of modified gravity theories, and the applica-
tions of the nonminimal couplings of matter with gravity
provide a way to solve the cosmological constant problem
[6, 7] and accelerated expansion of the Universe [8, 9]—see

also alternative theories, for instance, involving late-time
[10, 11] and early-time acceleration (inflation) [12] in the
context of supergravity.

Recent investigations about Einstein gravity have called
attention for the coupling of the theory to scalar fields [13].
These efforts led to the development of the well-known Gali-
leons that are scalar-tensor theories [14]. Indeed, these stud-
ies have led to the rediscovery of the Horndeski gravity.

The Horndeski gravity was originally discovered in 1974
[5, 15–18]. It is a general single scalar field-tensor theory
with second-order field equations and second-order energy-
momentum tensor. The Lagrangian-producing second-order
equations of motion as discussed in [4, 16, 18–22] include
four arbitrary functions of the scalar field and its kinetic term
[3, 23]. The term that we are interested in includes a nonmi-
nimal coupling between the standard scalar kinetic term
and the Einstein tensor. Besides the cosmological interest,
recent investigation has also called attention in astrophysics,
such as the search for black hole solutions which develop
Hawking-Page phase transitions at a critical temperature
[18]. Other examples of spherically symmetric solutions in
Horndeski theory in the context of the solar system and fur-
ther astrophysical scenarios can also be found, for instance,
in the study of perihelion shift and light bending [24] and in
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the issues involving properties of spinning gyroscope and
the Gravity Probe B experiment [25]. Some applications in
astrophysical compact objects have also been considered
in [26, 27].

An interesting problem in the cosmological scenario is
the cosmological constant problem that is related to the dis-
crepancy between the natural scale and its measured value.
As discussed in [28], it is possible to address this problem
by using a self-tuning mechanism, which has been analyzed
in the original Horndeski theory for the so-called Fab Four
theory [29, 30]. However, more analyses of the cosmological
self-tuning and the local solutions in the context beyond
Horndeski theories can be found in [31].

In the cosmological scenario, the Horndeski cosmologi-
cal models are able to screen the vacuum energy coming
from any field theory in a space that should be a de Sitter
vacuum [32, 33]. In these models, we can understand that
the current accelerated expansion of the Universe is a
dynamical result evolution of a de Sitter attractor [34]. In
this sense, the Horndeski models involving a de Sitter critical
point for any kind of material content may provide a mech-
anism to alleviate the cosmological problem [35]. Thus, the
models involving nonminimal derivative couplings to grav-
ity have been explored in a variety of extended theories of
gravity [36]. These models show peculiar features, for exam-
ple, an essential mixing of scalar and tensor kinetic terms,
named kinetic braiding, and possessing a rich cosmological
phenomenology that includes a late-time asymptotic de
Sitter state that allows a phantom-divide line crossing with
neither ghost nor gradient instabilities.

In this work, we consider the Horndeski theory in the
cosmological context by using the first-order equation for-
malism that was presented recently for Horndeski gravity
in a brane world scenario [17]. We investigate the second-
order equations through the first-order formalism because,
in general, one simplifies the study of analytical or numerical
solutions. Moreover, the first-order equation formalism is a
fundamental tool in the renormalization group (RG) flow
in holographic cosmology [37–40]. In our case, we consider
the Friedmann equations without curvature and assume dark
energy dominance. In particular, the inflationary context
was analyzed by considering a power-law potential and
using the dynamical system method to investigate the pos-
sible asymptotical regimes of the model [41]. It was shown
that for sloping potentials, there exists a quasi-de-Sitter phase
corresponding to the early inflationary Universe. In our
investigations, by considering numerical methods, we show
that kink-type solutions of first-order equations represent a
de Sitter Universe. We address several important issues in
cosmological observables, such as the Hubble function, the
deceleration parameter, and the dark energy equation of
state. We investigate their evolution at small redshifts for a
general scalar potential written in terms of a superpotential.
Furthermore, as shown in [42], the Horndeski action in the
Friedmann frame without scalar potential cannot describe
the dark matter and dark energy, due the instability, and also
by constraint of gravity waves, the scalar field on the back-
ground evolution is negligible, and the presence of this field
becomes unnecessary for explaining the dark matter and

dark energy. In our case, however, the nature of the scalar
potential in the Horndeski gravity in the Friedmann frame
is much more satisfactory for describing dark energy.

The paper is organized as follows. In Section II, we pres-
ent the first-order formalism in Horndeski theory with a sca-
lar potential given in terms of an implicit superpotential
obtained numerically. In Section III, we use the numerical
method to find cosmological solutions that represent a de
Sitter Universe. In Section IV, we discuss the following cos-
mological observables: the Hubble function, the deceleration
parameter, and the dark energy equation of state at small
redshifts. Finally, in Section V, we present our conclusions.

2. The Horndeski Gravity with a
Scalar Potential

In our present investigation, we shall address the study
of Friedmann-Robertson-Walker (FRW) solutions in the
framework of the Horndeski gravity [13, 15–18, 43] in which
action with a scalar potential reads

I gμν, ϕ
h i

=
ð ffiffiffiffiffiffi

−g
p

d4x
�
kR −

1
2
�
αgμν

− ηGμν

�
∇μϕ∇νϕ −V ϕð Þ

�
:

ð1Þ

Note that we have a nonminimal scalar-tensor coupling
where we can define a new field _ϕ ≡ ψ. This field has dimen-
sion of ðmassÞ2 and the parameters α and η control the
strength of the kinetic couplings; α is dimensionless and η

has dimension of ðmassÞ−2. Thus, the Einstein-Horndeski
field equations can be formally written as in the usual way:

Gμν =
1
2k Tμν, ð2Þ

where Tμν = αT1
μν − gμνVðϕÞ + ηT2

μν with k = ð16πGÞ−1, and
the scalar field equation is given by

∇μ αgμν − ηGμνð Þ∇νϕ½ � = Vϕ: ð3Þ

We shall adopt the notation f ϕϕ⋯ϕðϕÞ ≡ dnf ðϕÞ/dϕn.
In particular, Vϕ ≡ dV/dϕ. The aforementioned energy-

momentum tensors T1
μν and T2

μν take the following form:

T1
μν = ∇μϕ∇νϕ −

1
2gμν∇λϕ∇

λϕ,

T2
μν =

1
2∇μϕ∇νϕR − 2∇λϕ∇ μϕR

λ
ν

� �
− ∇λϕ∇ρϕRμλνρ

− ∇μ∇
λϕ

� �
∇ν∇λϕð Þ + ∇μ∇νϕ

� �
□ϕ

+ 1
2Gμν ∇ϕð Þ2 − gμν

�
−
1
2 ∇λ∇ρϕ
� �

∇λ∇ρϕ
� �

+ 1
2 □ϕð Þ2 − ∇λϕ∇ρϕ

� �
Rλρ

�
:

ð4Þ
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Here, we are interested in investigating the cosmological
implications of theories with extended nonminimal deriva-
tive couplings. Considering the flat FRW metric of the form

ds2 = −dt2 + a2 tð Þδijdxidxj, ð5Þ

the scalar field depends on the cosmic time only, and com-
puting the tt-component of the Einstein-Horndeski field
equation (2) gives

3 _a tð Þ2 4k − 3ηψ2 tð Þ� �
− a2 tð Þ αψ2 tð Þ + 2V ϕð Þ	 


= 0: ð6Þ

The Friedmann equation can be readily found from this
equation and reads as

H2 = α _ϕ
2 + 2V ϕð Þ

3 4k − 3η _ϕ2
� � : ð7Þ

Now, we use the first-order formalism by assuming [11,
44, 45]

H =W ϕð Þ, H ≡
_a
a
,

_ϕ = −Wϕ ϕð Þ,
ð8Þ

where the superpotentialWðϕÞ plays a central role. Through
these equations and equation (7), we can write the scalar
potential as follows:

V ϕð Þ = 3
2W

2 4k − 3ηW2
ϕ

� �
−
α

2W
2
ϕ: ð9Þ

Notice the scalar potential is similar to that found in the
brane world scenario [17]. Now, we proceed with the xx-yy
-zz-components of equation (2) which are given by

_a2 tð Þ ηψ2 tð Þ − 4k
� �

+ a tð Þ	€a tð Þ 2ηψ2 tð Þ − 8k
� �

+ 4η _a tð Þψ tð Þ _ψ tð Þ
 + a2 tð Þ αψ2 tð Þ + 2V ϕð Þ	 

= 0:

ð10Þ

The scalar field equation (3) in the FRW background is
written in the form

€ϕ + 3H _ϕ + 6η _ϕH _H

α + 3ηH2 +
Vϕ ϕð Þ

α + 3ηH2 = 0, ð11Þ

and for Vϕ = 0 reduces to the form found in [22]. Now, com-
bining equation (6) with equation (10), we can write a differ-
ential equation for the superpotential:

2WWϕϕ +W2
ϕ + 3W2 − β = 0, ð12Þ

where β = ð1 − αÞ/η. There is a family of analytical solutions
for the homogeneous case β = 0 given in terms of trigono-
metric functions:

W ϕð Þ = −C1 sin
3
2 ϕ
� �

+ C2 cos
3
2 ϕ
� �� �2/3

: ð13Þ

From equation (8), we can find an approximated solution,
for C1 = 0 and C2 = 1; e.g., the limit of one of the functions is
very small. Here, we assume ϕ ≈ 1 for a cosmological time
around a time scale t∗, to find an acceptable cosmological
solution for the accelerating Universe:

ϕ ≈ 2:41t − ϕ0,
a tð Þ ≈ exp 0:17tð Þ:

ð14Þ

As we shall see below, for arbitrary values of β ≠ 0, we
should apply numerical methods to find exact solutions for
equations (8) and (12).

3. Numerical Solutions

The pair of first-order equations can be solved numerically
for a broader range of Horndeski parameter values as long
as we assume appropriate boundary conditions. In Figure 1,
we show the behavior of the scalar field with a “kink” pro-
file (a) and scale factor (b) associated with the FRW solu-
tions for β = 23:5 with α = 0:06 and η = 0:04 (blue curve)
and β = 15:3 with α = 0:08 and η = 0:06 (red curve). These
regimes of small η and α ≠ 1 are required to produce
acceptable cosmological solutions. Of course, these choices
of parameters lead to a nonhomogeneous limit of equation
(12) where no analytical solutions are known. Thus, we
shall find such cosmological solutions by using numerical
methods. In the present case, we have applied the Runge-
Kutta method to first-order equation (8) for aðtÞ and ϕðtÞ
and second-order equation (12) for WðϕÞ. The bound-
ary conditions we used here were the following: Wð0Þ = 1,
W ′ð0Þ = 1, and ϕð0Þ = 0.

4. Cosmological Observables

In this section we investigate cosmological observables in our
cosmological setup in Horndeski gravity. Several studies in
this context have already been considered and shown to pro-
duce successful models [21, 22, 46], as, for example, in the
description of dark energy [22].

We extend these earlier studies in the context of the first-
order formalism, which is in the direction of connecting
them with cosmological scenarios in fundamental theories
such as supergravity and string theory where de Sitter solu-
tions are hard to find. One of the recent approaches in
order to overcome such difficulty is the holographic renor-
malization group (RG) flow which is written in terms of
first-order equations for a given superpotential [37–40].
The first-order formalism has also been applied, e.g., in f ðRÞ
and f ðR, TÞ gravity [47, 48], but to the best of our knowledge,
this is the first time where it is investigated in Horndeski cos-
mology. In our study, the scalar potential cannot be arbitrary
since it depends on the superpotential that obeys a differen-
tial equation which constrains the possible cosmological sce-
narios. Despite this, as we shall see below, there exists some

3Advances in High Energy Physics



restricted values of parameters that allow describing the cur-
rent acceleration of the Universe. Thus, we shall assume a
dark energy dominance described by the scalar field dynam-
ics at small redshifts.

Let us first focus on the equation of state.
Then, by using the energy-momentum tensor of equation

(2) defined as

Tμν =
α

2k T
1
μν − gμνV ϕð Þ + η

2k T
2
μν, ð15Þ

the tt and xx-yy-zz-components define the effective dark
energy sector with energy density and pressure:

ρDE ≡ Ttt =
α _ϕ

2

4k + V ϕð Þ
2k + 9ηH2 _ϕ

2

4k , ð16Þ

pDE ≡ Txx =
α _ϕ

2

4k −
V ϕð Þ
2k

−
η

2k
1
2
_ϕ
2 3H2 + 2 _H
� �

+ 2H _ϕ€ϕ

� �
,

ð17Þ

where Txx = Tyy = Tzz . To check consistency, it is interesting
to see that using equations (8) and (9), the energy density sat-
isfies ρDE = 3H2, as expected. Thus, the dark energy equation
of the state is given by

ωDE =
pDE
ρDE

=
α _ϕ

2 − 2V ϕð Þ − 2η 1/2ð Þ _ϕ2 3H2 + 2 _H
� �

+ 2H _ϕ€ϕ
h i

α _ϕ
2 + 2V ϕð Þ + 9ηH2 _ϕ

2 :

ð18Þ

In terms of the dark energy density and pressure, the
scalar field equation can be written in the standard form
through the energy-momentum conservation, ∇μT

μ
ν = 0,

that implies

_ρDE + 3H pDE + ρDEð Þ = 0: ð19Þ

This result (19) is in agreement with [46]. We may now
compute another interesting cosmological quantity called

𝜙(t)
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Figure 1: The behavior of the solutions of equation (8): ϕðtÞ (a) for β = 23:5, with α = 0:06 and η = 0:04 (blue curve), and β = 15:3, with
α = 0:08 and η = 0:06 (red curve); aðtÞ (b) for the same values of parameters. The inset shows the behavior of aðtÞ at smaller times.
Particularly, að0Þ = 1, for β = 15:3 (red curve), where t = 0 does not mean the Big Bang. Instead, it means the time at which our formalism
starts to describe the present phase of the Universe.
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decelerate parameter q, which indicates how the Universe
expansion is accelerating and is given by the equation

q = − 1 +
_H

H2

 !
: ð20Þ

Furthermore, combining equation (19) with ρDE = 3H2,
we can write a useful relationship between the deceleration
parameter and the equation of state as follows:

q = 1
2 1 + 3ωDEð Þ: ð21Þ

From this point, we shall make use of the dimensionless
redshift parameter z in place of time variable t in our cosmo-

logical setup since it is used to compare theoretical with obser-
vational results. The redshift parameter is defined as

1 + z = 1
a
: ð22Þ

Thus, time derivatives can now be expressed as

d
dt

= −H zð Þ 1 + zð Þ d
dz

, ð23Þ

and the first-order equation (8) can simply be rewritten in the
new variable z in the form

H zð Þ =W ϕ zð Þð Þ,

ϕ′ zð Þ = −
Wϕ zð Þ

1 + zð ÞW zð Þ :
ð24Þ
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Figure 2: The decelerate parameter q (21) (a) and dark energy equation of state ωDE (25) (b) for β = 23:5, with α = 0:06 and η = 0:04 (blue
curve), and β = 15:3, with α = 0:08 and η = 0:06 (red curve). The Hubble parameter H (c) and scalar field ϕ (d) with the same values of
parameters. All the cosmological observables are given as functions of the redshift z.

5Advances in High Energy Physics



The numerical results are also computed for equation (18)
given in terms of the superpotential

ωDE = −1 + 2α
3
W2

ϕ

W
+ 2ηW2

ϕ +
ηW4

ϕ

3W2 +
4ηW2

ϕWϕϕ

3W : ð25Þ

We summarize as follows. According to Figure 2(b) the
dark energy equation of state ωDE (25) acquires values near
−0.87 (blue curve).

Notice that our cosmological observables here were cal-
culated only in the scalar-tensor sector of the Horndeski
gravity given by the action (1) with no matter contribution.
This sector alone is unable to take into account all phases
of the Universe at high redshifts. Thus, we addressed only
the dark energy (scalar) dominance at low redshifts. But
investigations considering matter contribution to extension
of this theory with several scalar potentials were already con-
sidered in [46]. Such a similar investigation in our model is
out of the scope of this paper and can be addressed elsewhere.
On the other hand, an inflationary phase can be found for a
constant superpotential W =H0 that satisfies (12). The first-
order equation (8) gives the solution aðtÞ = a0 exp ðH0tÞ and
ϕ = const:, which characterizes an exponential inflation with
equation of state ω = −1.

Moreover from equation (25) and using the exact solu-
tion of the superpotential given by equation (13), we can
see that the equation of state ωDE < −1, since in the assumed
limit ϕ ≈ 1, this function is dominated by the following term:

ωDE = −
5
9

1
cos 3/2ð Þϕð Þ
� �8/3

< −1: ð26Þ

This is one of the advantages of the Horndeski gravity,
where a phantom-like behavior is obtained even though the
scalar field has canonical dynamics. This effect is simply
achieved due to the nonminimal coupling of the scalar field
to gravity in the gravitational extension of the Einstein-
Horndeski gravity [46]. It is important to address the phan-
tom cosmology issues since recent observational data [49]
have shown the possibility of ωDE < −1.

The Hubble function in Figure 2(c) develops an increas-
ing behavior between the onset at z = 0:6 and z = 0 (blue
curve). This fact indicates a dark energy phase dominance
starting in a relatively recent time of the cosmological evolu-
tion of the Universe. The scalar field in Figure 2(d) evolves
accordingly, approaching a constant at z = 0 (blue curve
and red curve) which represents a de Sitter Universe [46].

Furthermore, as we can see from Figure 2(a) that qð0Þ =
−0:8 or −0.7 is consistent with supernova observations that
reveal qð0Þ = −0:1 ± 0:4 [50].

5. Conclusions

In the present study, we have taken the advantage of the
first-order formalism in the Horndeski cosmology. This
formalism applied to Horndeski gravity as well as to f ðRÞ
and f ðR, TÞ theories [47, 48] is concerned in reducing the
equations of motion to first-order equations, which simplifies

the solution of the problem from both analytical and numer-
ical perspectives. Besides, the first-order formalism plays
an important role in RG flow in holographic cosmology
[37–40]. Our numerical solutions showed a good agreement
with the current phase of the Universe, where the Hubble
parameter as a function of the redshift has a behavior similar
to the one found in [49]. By using first-order formalism
supported by a constrained superpotential in the Horn-
deski gravity for the FRW background, we have shown
by using numerical methods that late-time cosmology is well
described by the scalar field. The solutions correspond to an
accelerating Universe for small redshifts, which is in agree-
ment with the current observational data that is usually asso-
ciated with a phenomenon driven by a dark energy fluid. The
scalar field nonminimally coupled to the gravity sector pro-
duces kink-type solutions which render a de Sitter Universe
at late-time cosmology, reproducing a dark energy scenario
in Horndeski gravity at first-order formalism.
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In this paper, by applying the deformeddispersion relation in quantumgravity theory,we study the correction of fermions’ tunneling
radiation fromnonstationary symmetric black holes. Firstly, themotion equation of fermions ismodified in the gravitational space-
time. Based on the motion equation, the modified Hamilton-Jacobi equation has been obtained by a semiclassical approximation
method.Then, the tunneling behavior of fermions at the event horizon of nonstationary symmetric Kerr black hole is investigated.
Finally, the results show that, in the nonstationary symmetric background, the correction ofHawking temperature and the tunneling
rate are closely related to the angular parameters of the horizon of the black hole background.

1. Introduction

Since Hawking proposed that black holes can radiate ther-
mally like a black body in 1974 [1, 2], a series of studies
have been carried out on static, stationary, and nonstationary
black holes. Actually, Hawking thermal radiation is a pure
thermal radiation, and the radiation spectrum formed by this
radiation is a pure thermal radiation spectrum, which leads
to the problem of the information loss of black holes. In order
to explain the information loss paradox of black holes, Robin-
son,Wilczek, Kraus, and Parikh havemodifiedHawking pure
thermal radiation spectrum and found that the information
was conserved during Hawking tunneling radiation from
static and stationary black holes, by considering the self-
gravitational interaction and the change of curved space-time
background [3–8]. Subsequently, there are a series of studies
on themassive particles and fermions via tunneling radiation
from black holes [9–56]. However, the actual existence of
black holes in the universe should be nonstationary, so the
issues, such as the thermodynamic properties and the infor-
mation conservation of nonstationary black holes, andmerg-
ing process of black holes, deserve to be studied in depth.

On the other hand, quantum gravity theory suggests that
Lorentz symmetrymay bemodified at high energy. Although
the dispersion relation theory at high energy has not yet been
fully established, it is generally accepted that the scale of this
correction term is equal to or close to the Planck scale. We
have studied fermions’ quantum tunneling radiation from
stationary black holes by using the deformed dispersion rela-
tion and obtained the very interesting results that there was a
correction in the tunneling radiation behavior [57]. However,
the correction is only obtained for fermions’ tunneling radia-
tion at the event horizon of stationary black holes. Therefore,
we generalize the modified dispersion relation to study the
quantum tunneling radiation of nonstationary symmetric
Kerr black holes in this paper and give an effective correction
of thermodynamic characteristics of the black holes.

The remainder of this paper is outlined as follows. In
Section 2, by applying the modified dispersion relation in
quantum gravity theory, we construct new Rarita-Schwinger
equation and obtain the modified Hamilton-Jacobi equation
of fermions by using semiclassical approximation method.
In Section 3, the quantum tunneling radiation of fermions
from nonstationary symmetric Kerr black hole is modified
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correctly, and the tunneling rate and Hawking temperature
are modified. Section 4 ends up with some discussions and
conclusions.

2. The Modified Hamilton-Jacobi Equation

Kerner and Mann studied the quantum tunneling radiation
of the Dirac field using a semiclassical method [20, 21].
Subsequently, this method was extended to study quan-
tum tunneling radiation in various black holes. Since the
kinematic equation of fermions is the Dirac equation but
the Dirac equation is related to the matrix equation, so a
new method is proposed in the literature [22–25] to study
the tunneling radiation of Dirac particles in curved space-
time of static and stationary black holes. This method is
that the Dirac equation is transformed into a simple matrix
equation, and then this matrix equation is converted into
the Hamilton-Jacobi equation in the curved space-time by
applying the relationship between the gamma matrix and
the space-time metric. After this Hamilton-Jacobi equation
was proposed in 2009, it not only promoted the study of
quantum tunneling radiation of dynamic black holes, but
also effectively simplified the research work on quantum
tunneling radiation of fermions. Recently, this Hamilton-
Jacobi equation, combined with the modified Lorentz dis-
persion relation, has been generalized to effectively revise
the quantum tunneling radiation of fermions from the event
horizon of stationary axisymmetric Kerr-Newman de Sitter
black hole and has obtained very meaningful results [57].
However, it only modifies the quantum tunneling radiation
of fermions from the stationary black hole, while the real
black holes existing in the universe are nonstationary, so
the quantum tunneling radiation of fermions from the event
horizon of the dynamic Kerr black hole is modified in this
paper by considering the correction of dispersion relation.

The Lorentz dispersion relation is considered to be one
of the basic relations in modern physics and related to the
correlative theory research of general relativity and quantum
field theory. Research on the quantum gravity theory has
shown that the Lorentz relationship may be modified in the
high energy field. In the study of string theory and quantum
gravity theory, a dispersion relation has been proposed [58–
66]: 𝑃20 = 󳨀→𝑃2 + 𝑚2 − (𝐿𝑃0)𝛼 󳨀→𝑃2. (1)

In the natural units, 𝑃0 and 𝑃 denote the energy and
momentum of particles, respectively. 𝑚 is the rest mass of
particles and 𝐿 is a constant of the Planck scale. 𝛼 = 1 is
used in the Liouville-string model [62–64]. Kruglov got the
modified Dirac equation in the case of 𝛼 = 2 [67]. The
more general motion equation of fermions was proposed
by Rarita and Schwinger and called the Rarita-Schwinger
equation [68]. According to (1), we select 𝛼 = 2, so the Rarita-
Schwinger equation in flat space-time is given by(𝛾𝜇𝜕𝜇 + 𝑚ℏ − 𝜎ℏ𝛾𝑡𝜕𝑡𝛾𝑗𝜕𝑗)𝜓𝛼1 ⋅⋅⋅𝛼𝑘 = 0, (2)

where 𝛾𝜇 is the gamma matrix in flat space-time; 𝑗 and 𝜇
denote space and time coordinates, respectively. According

to the relationship between the covariant derivative of the
curved space-time and the derivative of the flat space-time,
the Rarita-Schwinger equation in the curved space-time of
nonstationary symmetric Kerr black hole can be expressed as(𝛾𝜇𝐷𝜇 + 𝑚ℏ − 𝜎ℏ𝛾v𝐷v𝛾𝑗𝐷𝑗)𝜓𝛼1⋅⋅⋅𝛼𝑘 = 0, (3)

where 𝛾𝜇 is the gamma matrix in the curved space-time, and
v denotes the advanced Eddington coordinate. In (3), when𝑘 = 0, we have 𝜙𝛼1∧𝛼𝑘 = 𝜙, in which case (3) represents the
Dirac equation of a spin of 1/2; when 𝑘 = 1, (3) describes
the motion equation of the fermions with the spin of 3/2.
However, when 𝑚 = 0, the fermions with the spin of 3/2
describe the Gravitino particle in the supersymmetry and
supergravity theory, which are a kind of fermions associated
with the graviton, and the study on such particles is likely to
promote the development of quantum gravity theory.

It is worth noting that (3) satisfies the following condi-
tions: 𝛾𝜇𝛾] + 𝛾]𝛾𝜇 = 2𝑔𝜇]𝐼, (4)𝛾𝜇𝜓𝜇𝛼2⋅⋅⋅𝛼𝑘 = 𝐷𝜇𝜓𝜇𝛼2 ⋅⋅⋅𝛼𝑘 = 𝜓𝜇𝜇𝛼3⋅⋅⋅𝛼𝑘 , (5)

where 𝐼 is the unit matrix. In (3),𝐷𝜇 is defined as𝐷𝜇 ≡ 𝜕𝜇 + Ω𝜇, (6)

where Ω𝜇 is the spin connection. In (3), coupling constant𝜎 ≪ 1, and 𝜎ℏ𝛾v𝐷v𝛾𝑗𝐷𝑗 is very small quantity.
In order to study the tunneling radiation of fermions

in nonstationary curved space-time, 𝑆 is used to represent
the action function of particles, and the wave function of
fermions is written as𝜓𝛼1 ⋅⋅⋅𝛼𝑘 = 𝜉𝛼1 ⋅⋅⋅𝛼𝑘𝑒(𝑖/ℏ)𝑆. (7)

For nonstationary and axisymmetric curved space-time,
there must be 𝜕𝜑𝑆 = 𝑛, (8)

where 𝑛 is the angular momentum parameter of particles’
tunneling radiation and a constant for nonstationary axisym-
metric black holes. Substituting (6), (7), and (8) into (3), ℏ
is considered as a small quantity, and the lowest order is
retained, so we obtain𝑖𝛾𝜇𝜕𝜇𝑆𝜉𝛼1 ⋅⋅⋅𝛼𝑘 + 𝑚𝜉𝛼1 ⋅⋅⋅𝛼𝑘 + 𝜎𝜕v𝑆𝛾v𝛾𝑗𝜕𝑗𝑆𝜉𝛼1 ⋅⋅⋅𝛼𝑘 = 0. (9)

Because of 𝛾𝜇𝜕𝜇𝑆 = 𝛾v𝜕v𝑆 + 𝛾𝑗𝜕𝑗𝑆, (9) is abbreviated toΓ𝜇𝜕𝜇𝑆𝜉𝛼1 ⋅⋅⋅𝛼𝑘 +𝑀𝐷𝜉𝛼1 ⋅⋅⋅𝛼𝑘 = 0, (10)

where Γ𝜇 = 𝛾𝜇 − 𝑖𝜎𝜕v𝑆𝛾v𝛾𝜇,𝑀𝐷 = 𝑚 − 𝜎 (𝜕v𝑆)2 𝑔vv. (11)

We use premultiplication Γ]𝜕]𝑆 to (10) and getΓ]𝜕]𝑆Γ𝜇𝜕𝜇𝑆𝜉𝛼1 ⋅⋅⋅𝛼𝑘 +𝑀𝐷Γ]𝜕]𝑆𝜉𝛼1 ⋅⋅⋅𝛼𝑘 = 0, (12)

where Γ]Γ𝜇 = 𝛾]𝛾𝜇 − 2𝑖𝜎𝜕𝛽𝑆𝛾𝛽𝛾]𝛾𝜇 + O (𝜎2) . (13)
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Now, after exchanging 𝜇 and ] in (12) and comparing them
with (12), we get[𝛾𝜇𝛾] + 𝛾]𝛾𝜇2 𝜕𝜇𝑆𝜕]𝑆 + 𝑚2 − 2𝜎𝑚𝑔vv (𝜕v𝑆)2− 2𝑖𝜎𝜕v𝑆𝑔v𝛽𝜕𝛽𝑆𝛾𝜇𝜕𝜇𝑆] 𝜉𝛼1 ⋅⋅⋅𝛼𝑘 + O (𝜎2)= [𝑔𝜇]𝜕𝜇𝑆𝜕]𝑆 + 𝑚2 − 2𝜎𝑚𝑔vv (𝜕v𝑆)2− 2𝑖𝜎𝜕v𝑆𝑔v𝛽𝜕𝛽𝑆𝛾𝜇𝜕𝜇𝑆] 𝜉𝛼1 ⋅⋅⋅𝛼𝑘 + O (𝜎2) = 0.

(14)

Eq. (14) is further simplified to𝑖𝜎𝛾𝜇𝜕𝜇𝑆𝜉𝛼1 ⋅⋅⋅𝛼𝑘 +𝑀𝜉𝜉𝛼1⋅⋅⋅𝛼𝑘 = 0, (15)

where 𝑀𝜉 = 𝑔𝜇]𝜕𝜇𝑆𝜕]𝑆 + 𝑚2 − 2𝜎𝑚𝑔vv (𝜕v𝑆)22𝜕v𝑆𝑔v𝛽𝜕𝛽𝑆 . (16)

We use premultiplication −𝑖𝜎𝛾𝜇𝜕𝜇𝑆 for (15) and exchange 𝜇
and ]. Then, we add it to (15) and divide that by 2, so we get[𝜎2𝑔𝜇]𝜕𝜇𝑆𝜕]𝑆 +𝑀2𝜉] 𝜉𝛼1⋅⋅⋅𝛼𝑘 = 0. (17)

This is a matrix equation, actually an eigenmatrix equation.
The condition that the equation has a nontrivial solution is
that the value of the determinant corresponding to its matrix
is 0; that is, 𝜎2𝑔𝜇]𝜕𝜇𝑆𝜕]𝑆 +𝑀2𝜉 = 0. (18)

Ignoring O(𝜎2), the modified Hamilton-Jacobi equation can
be obtained from the above equation as𝑔𝜇]𝜕𝜇𝑆𝜕]𝑆 + 𝑚2 − 2𝜎𝑚𝑔vv (𝜕v𝑆)2 = 0. (19)

Obviously, modified Hamilton-Jacobi equation (19) is
entirely different from the previously well-known Hamilton-
Jacobi equation, with the addition of the modified term2𝜎𝑚𝑔vv(𝜕v𝑆)2. Equation (19), derived from the modified
Rarita-Schwinger equation, is not affected by the specific
spin and can describe themotion equation of any fermions in
the semiclassical approximation method. For any fermions
in nonstationary curved space-time, it is convenient to study
and modify characteristics of quantum tunneling radiation
of fermions as long as the properties of the curved space-time
and the action 𝑆 of fermions are known.

3. Fermions’ Tunneling Radiation in
Nonstationary Symmetric Kerr Black Hole

In the advanced Eddington coordinate, the line element of
nonstationary symmetric Kerr black hole is expressed as𝑑𝑠2 = −(1 − 2𝑀𝑟𝜌2 )𝑑𝑟2 + 2𝑑v𝑑𝑟

− 22𝑀𝑟𝑎 sin2𝜃𝜌2 𝑑v𝑑𝜑 − 2𝑎 sin2𝜃𝑑𝑟𝑑𝜑 + 𝜌2𝑑𝜃2

+ [(𝑟2 + 𝑎2) + 2𝑀𝑟𝑎2 sin2𝜃𝜌2 ] sin2𝜃𝑑𝜑2,
(20)

where 𝜌2 = 𝑟2 + 𝑎2 cos2𝜃,𝑀 = 𝑀(v), 𝑎 = 𝑎(v). According to
(20), the inverse tensors metric of the black hole is

𝑔𝜇] = (𝑔00 𝑔01 0 𝑔03𝑔10 𝑔11 0 𝑔130 0 𝑔22 0𝑔30 𝑔31 0 𝑔33), (21)

where 𝑔00 = 𝑎2 sin2𝜃𝜌2 ,
𝑔01 = 𝑔10 = 𝑟2 + 𝑎2𝜌2 ,𝑔03 = 𝑔30 = 𝑎𝜌2 ,𝑔13 = 𝑔31 = 𝑎𝜌2 ,𝑔11 = Δ𝜌2 ,𝑔22 = 1𝜌2 ,𝑔33 = 1𝜌2 sin2𝜃 ,Δ = 𝑟2 + 𝑞2 − 2𝑀𝑟.

(22)

According to (20), the null hypersurface equation of the black
hole is given by 𝑔𝜇] 𝜕𝑓𝜕𝑥𝜇 𝜕𝑓𝜕𝑥] = 0, (23)

Substituting (22) into (23), the equation at the event horizon
of the black hole is expressed as𝑎2𝑟2𝐻 sin2𝜃 + 𝑟2𝐻 − 2𝑚𝑟𝐻 + 𝑎2 + 𝑟󸀠2𝐻 − 2 (𝑟2𝐻 + 𝑎2) ̇𝑟𝐻= 0, (24)

From (24), we have𝑟𝐻= 𝑀 + [𝑚2 − (1 − 2 ̇𝑟𝐻) (𝑎2 + 𝑎2 ̇𝑟𝐻 sin2𝜃 + 𝑟󸀠2𝐻 − 2𝑎2 ̇𝑟𝐻)]1/21 − 2 ̇𝑟𝐻 . (25)

Obviously, the event horizon of the black hole 𝑟𝐻 is associated
with 𝑎(v), 𝑀(v), 𝜕v𝑟|𝑟=𝑟𝐻 = ̇𝑟𝐻, and 𝜕𝜃𝑟|𝑟=𝑟𝐻 = 𝑟󸀠𝐻. Once
we know the characteristics of the event horizon of the black
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hole, we can study the quantum tunneling radiation at the
event horizon.

The motion equation of fermions is given by matrix
equation (3). From the above research, we can conclude that
the motion equation of any half-integer fermions can be
reduced to (19), and (19) is the modified Hamilton-Jacobi
equation, where 𝑆 is the main function of Hamilton, also
known as the action of fermions. Substituting (22) and (8)
into (19), the motion equation of the half-integer fermions in
space-time of the black hole is obtained:𝑔00 (𝜕𝑆𝜕v)2 + 2𝜕𝑆𝜕v 𝜕𝑆𝜕𝑟 + 2𝑔03𝑛𝜕𝑆𝜕v + 2𝑔13𝑛𝜕𝑆𝜕𝑟+ 𝑔11 (𝜕𝑆𝜕𝑟)2 + 𝑔22 (𝜕𝑆𝜕𝜃)2 + 𝑔33𝑛2 + 𝑚2

− 2𝜎𝑚𝑔00 (𝜕𝑆𝜕v)2 = 0.
(26)

Since the space-time of the black hole is axially symmetric,𝑛 is a constant according to 𝑛 = 𝜕𝑆/𝜕𝜑. Equation (26) is
the motion equation of fermions in nonstationary Kerr black
hole. Actually, (26) is amodifiedHamilton-Jacobi equation in
the nonstationary curved space-time, where 𝑆 = 𝑆(v, 𝑟, 𝜃). In
order to solve the equation,we need to use the general tortoise
coordinate transformation as follows:𝑟⋆ = 𝑟 + 12𝜅 [𝑟 − 𝑟𝐻 (v0, 𝜃0)] ,

v⋆ = v − v0,𝜃⋆ = 𝜃 − 𝜃0. (27)

According to (27), we have𝜕𝜕𝑟 = 2𝜅 (𝑟 − 𝑟𝐻) + 𝑟𝐻2𝜅 (𝑟 − 𝑟𝐻) 𝜕𝜕𝑟⋆ ,𝜕𝜕𝜃 = 𝜕𝜕𝜃⋆ − 𝑟󸀠𝐻𝑟𝐻2𝜅 (𝑟 − 𝑟𝐻) 𝜕𝜕𝑟⋆ ,𝜕𝜕v = 𝜕𝜕v⋆ − ̇𝑟𝐻𝑟𝐻2𝜅 (𝑟 − 𝑟𝐻) 𝜕𝜕𝑟⋆ .
(28)

Substituting (27) and (28) into (26) and noticing

𝑆 = 𝑆 (v⋆, 𝑟⋆, 𝜃⋆) ,𝜕𝑆𝜕v⋆ = −𝜔,𝜕𝑆𝜕𝜃⋆ = 𝑝𝜃, (29)

where 𝜔 denotes the energy of fermions’ tunneling radiation,𝑝𝜃 is 𝜃 component of the generalizedmomentumof fermions,𝜎 is a small quantity, and 𝜎 ̇𝑟2 is also a small quantity, the
equation at the horizon of the black hole can be written as𝐴𝐷 ( 𝜕𝑆𝜕𝑟⋆)2 + 2 𝜕𝑆𝜕v⋆ 𝜕𝑆𝜕𝑟⋆ + 𝐵𝐷 𝜕𝜕𝑟⋆ + 2𝜅 (𝑟 − 𝑟𝐻) 𝐶𝐷= 0 (30)

where𝐴 = 12𝜅 (𝑟 − 𝑟𝐻) {𝑔00 ̇𝑟𝐻 + 2 ̇𝑟𝐻 [2𝜅 (𝑟 − 𝑟𝐻) + 1]+ 𝑔11 [2𝜅 (𝑟 − 𝑟𝐻) + 1]2 + 𝑔11 [2𝜅 (𝑟 − 𝑟𝐻) + 1]2+ 𝑔22𝑟󸀠2𝐻} ,𝐵 = 𝑔22𝑝𝜃𝑟󸀠𝐻 − 𝑔13𝑛 − 𝑔03𝑛 ̇𝑟𝐻,𝐶 = 𝑔00𝜔2 + 𝑔22𝑝2𝜃 + 𝑔33𝑛 + 𝑚2 − 2𝜎𝑚𝑔00𝜔2,𝐷 = 𝑔00 ̇𝑟𝐻 − 𝑔01 + 2𝜎𝑚𝑔00 ̇𝑟𝐻.
(31)

When 𝑟 󳨀→ 𝑟𝐻, we have
𝐴( 𝜕𝑆𝜕𝑟⋆)2 + 2 (𝜔 − 𝜔0) 𝜕𝑆𝜕𝑟⋆ = 0, (32)

where

𝐴|𝑟󳨀→𝑟𝐻 = lim
𝑟󳨀→𝑟𝐻
v󳨀→v0
𝜃󳨀→𝜃0

𝑔00 ̇𝑟2𝐻 − 2𝑔01 ̇𝑟𝐻 [2𝜅 (𝑟 − 𝑟𝐻) + 1] + 𝑔11 [2𝜅 (𝑟 − 𝑟𝐻) + 1]2 + 𝑔22𝑟󸀠2𝐻2𝜅 (𝑟 − 𝑟𝐻) (𝑔00 ̇𝑟𝐻 − 𝑔01 + 2𝜎𝑚𝑔00 ̇𝑟𝐻) = 1. (33)

From 𝐴|𝑟󳨀→𝑟𝐻 = 1, we get𝜔0󵄨󵄨󵄨󵄨𝑟󳨀→𝑟𝐻 = 𝑔03𝑛 ̇𝑟𝐻 + 𝑔22𝑝𝜃 ̇𝑟𝐻 − 𝑔13𝑛𝑔00 ̇𝑟𝐻 − 𝑔01 + 2𝜎𝑚𝑔00 ̇𝑟𝐻= 𝑎𝑛 ̇𝑟𝐻 + 𝑝𝜃 ̇𝑟𝐻 − 𝑎𝑛𝑎2 sin2𝜃 ̇𝑟𝐻 − 𝑟2𝐻 − 𝑎2 + 2𝜎𝑚 ̇𝑟𝐻𝑎2 sin2𝜃
= 𝑎𝑛 ̇𝑟𝐻 + 𝑝𝜃 ̇𝑟𝐻 − 𝑎𝑛𝑎2 sin2𝜃 ̇𝑟𝐻 − 𝑟2𝐻 − 𝑎2 (1− 2𝜎𝑚 ̇𝑟𝐻𝑎2 sin2𝜃𝑎2 sin2𝜃 ̇𝑟𝐻 − 𝑟2𝐻 − 𝑎2 + O (𝜎2)) .

(34)
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So the event horizon surface gravity is given by

𝜅 = (1 − 2 ̇𝑟𝐻) 𝑟𝐻 −𝑀𝑎2 sin2𝜃0 ̇𝑟𝐻 (1 + 2𝜎𝑚) − (𝑟2𝐻 + 𝑎2) (1 − 2 ̇𝑟𝐻) + 4𝑀𝑟𝐻 − (𝑟2𝐻 + 𝑎2)= (1 − 2 ̇𝑟𝐻) 𝑟𝐻 −𝑀𝑎2 sin2𝜃0 ̇𝑟𝐻 (1 + 2𝜎𝑚) − (𝑟2𝐻 + 𝑎2) (1 − 2 ̇𝑟𝐻) + 4𝑀𝑟𝐻 (35)

Wenotice 𝑟2𝐻(1−2 ̇𝑟𝐻)−2𝑀𝑟𝐻+𝑎2(1−2 ̇𝑟𝐻+ ̇𝑟2𝐻 sin2𝜃0)+𝑟󸀠2𝐻 = 0
and get𝜅 = (1 − 2 ̇𝑟𝐻) 𝑟𝐻 −𝑀2𝑀𝑟𝐻 − (1 − ̇𝑟𝐻) ̇𝑟𝐻𝑎2 sin2𝜃0 + 𝑟󸀠2𝐻 + 2𝜎𝑚𝑎2 sin2𝜃0= (1 − 2 ̇𝑟𝐻) 𝑟𝐻 −𝑀(1 − 2 ̇𝑟𝐻) [𝑟2𝐻 + 𝑎2 (1 − ̇𝑟𝐻 sin2𝜃0)] + 𝑟󸀠2𝐻 + 2𝜎𝑚𝑎2 sin2𝜃0= (1 − 2 ̇𝑟𝐻) 𝑟𝐻 −𝑀(1 − 2 ̇𝑟𝐻) [𝑟2𝐻 + 𝑎2 (1 − ̇𝑟𝐻 sin2𝜃0)] + 𝑟󸀠2𝐻 × {1

− 2𝜎𝑚𝑎2 sin2𝜃0(1 − 2 ̇𝑟𝐻) [𝑟2𝐻 + 𝑎2 (1 − ̇𝑟𝐻 sin2𝜃0)] + 𝑟󸀠2𝐻 + O (𝜎2)}
(36)

Obviously, the event horizon surface gravity is modified, and
themodified termdepends on 𝜃0. Itmeans that the correction
is made in different angle directions. Due to 𝜕𝑆/𝜕𝑟 = [1 +1/2𝜅(𝑟 − 𝑟𝐻)](𝜕𝑆/𝜕𝑟⋆), we have𝑆 = 𝑖𝜋2𝜅 [(𝜔 − 𝜔0) ± (𝜔 − 𝜔0)] . (37)

Thus, the imaginary part of the total action and the quantum
tunneling rate, respectively, are𝐼𝑚𝑆+ − 𝐼𝑚𝑆− = 𝑖𝜋2𝜅 [(𝜔 − 𝜔0) ± (𝜔 − 𝜔0)] , (38)Γ = Γ𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛Γ𝑎𝑏𝑠𝑝𝑡𝑖𝑜𝑛 = exp [2𝜋𝜅 (𝜔 − 𝜔0)] (39)

Here, as shown in (36), it is clear that 𝜅mentioned above is the
event horizon surface gravity of the black hole. So, the event
horizon temperature of the black hole is given by𝑇|𝑟=𝑟𝐻 = 𝜅2𝜋 . (40)

It is worth noting that the temperature (40) is the modified
Hawking temperature, since 𝜅 in (40) is the modified surface
gravity related to the correction term 2𝜎𝑚𝑎2sin2𝜃0. Obvi-
ously, the correction of tunneling rate, surface gravity, and
Hawking temperature at the event horizon of the black hole
are related not only to the rates of the event horizon changė𝑟𝐻, 𝑟󸀠𝐻, and𝑀(v) of the black hole, but also to the correction
of the angle parameter 𝜃0.
4. Discussion

In this paper, we study the quantum tunneling radiation of
fermions in nonstationary curved space-time by combining

the modified Lorentz dispersion relation and obtain the
modified character of quantum tunneling radiation related to
the effects of the Planck scale. The modified Dirac equation
proposed by Kruglov is first extended to the modified
Rarita-Schwinger equation for the more general fermions,
and the modified Hamilton-Jacobi equation of fermions is
obtained in the semiclassical approximation method. Then,
we study the quantum tunneling radiation of fermions in
curved space-time of nonstationary symmetric Kerr black
hole using themodifiedHamilton-Jacobi equation and obtain
the correction of Hawking temperature and tunneling rate of
fermions. Interestingly, we found that the modified Hawking
temperature at the event horizon of the black hole depends
not only on the rates of the event horizon change ̇𝑟𝐻, 𝑟󸀠𝐻,
and 𝑀(v) of the black hole, but also on the correction
of the angle parameter 𝜃0. It means that the correction of
Hawking radiation not only is the radial property of the black
hole, but also is related to the angular property of the black
hole.

In the study of quantum tunneling radiation of black
holes, people first modified Hawking pure thermal radiation
and then modified character of tunneling radiation from
stationary black holes. With the research on quantum gravity
effect, we combine the deformed dispersion relation to
modify the tunneling radiation of nonstationary symmetric
Kerr black hole effectively. We believe that the correction of
tunneling radiation from other types of curved space-time
will yield some interesting results. This paper only provides a
method to modify quantum tunneling radiation, and further
research is needed.
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A review will be presented on the algebraic extension of the standardTheory of Relativity (GR) to the pseudocomplex formulation
(pc-GR). The pc-GR predicts the existence of a dark energy outside and inside the mass distribution, corresponding to a
modification of the GR-metric. The structure of the emission profile of an accretion disc changes also inside a star. Discussed
are the consequences of the dark energy for cosmological models, permitting different outcomes on the evolution of the universe.

1. Introduction

The Theory of General Relativity (GR) [1] is one of the best
tested known theories [2], mostly in solar system experi-
ments. Also the loss of orbital energy in a binary system [3]
was the first indirect proof for gravitational waves, which
were finally detected in [4]. On April 10, �e Event Horizon
Telescope collaboration announced the first picture taken
from the black hole in M87. This gives us an opportunity to
compare results from the pc-GR to GR.

Nevertheless, the limits of GR may be reached when
strong gravitational fields are present, which can lead to
different interpretations of the sources of gravitational waves
[5, 6].

A first proposal to extend GR was attempted by A.
Einstein [7, 8] who introduced a complex valuedmetric𝐺𝜇] =𝑔𝜇] + 𝑖𝐹𝜇], with 𝐺∗𝜇] = 𝐺]𝜇. The real part corresponds
to the standard metric, while the imaginary part defines
the electromagnetic tensor. With this, A. Einstein intended
to unify GR with Electrodynamics. Another motivation to
extend GR is published in [9, 10], whereM. Born investigated
on how to recover the symmetry between coordinates and
momenta, which are symmetric in Quantum Mechanics but
not in GR. To achieve his goal, he introduced also a complex
metric, where the imaginary part is momentum dependent.

In [11] this was more elaborated, leading to the square of the
length element (𝑐 = 1)

𝑑𝜔2 = 𝑔𝜇] [𝑑𝑥𝜇𝑑𝑥] + 𝑙2𝑑𝑢𝜇𝑑𝑢]] , (1)

which implies maximal acceleration (see also [12]). The
interesting feature is that a minimal length “𝑙” is introduced
as a parameter and Lorentz symmetry is, thus, automatically
maintained; no deformation to small lengths is necessary!

In [13] the GR was algebraically extended to a series of
variables and the solutions for the limit of weak gravitational
fields were investigated. As a conclusion, only real and
pseudocomplex coordinates (called in [13] hyper-complex)
make sense, because all others show either tachyon or ghost
solutions, or both. Thus, even the complex solutions do
not make sense. This was the reason to concentrate on the
pseudocomplex extension.

In pc-GR, all the extended theories, mentioned in the last
paragraph, are contained and the Einstein equations require
an energy-momentum tensor, related to vacuum fluctuations
(dark energy), described by an asymmetric ideal fluid [12].
Due to the lack of a microscopic theory, this dark energy is
treated phenomenologically. One possibility is to choose it
such that no event horizon appears or barely still exists. The
reason to do so is that, in our philosophical understanding,no
theory should have a singularity, even a coordinate singularity
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of the type of an event horizon encountered in a black hole.
Though it is only a coordinate singularity, the existence of
an event horizon implies that even a black hole in a nearby
corner cannot be accessed by an outside observer. Its event
horizon is a consequence of a strong gravitational field.
Because no quantized theory of gravitation exists yet, we are
led to the construction of models for the distribution of the
dark energy.

In [14] the pc-GR was compared to the observation
of the amplitude for the inspiral process. As found, the
fall-off in 𝑟 of the dark energy has to be stronger than
suggested in earlier publications. We will discuss this and
what will change, in the main body of the text. We also will
compare EHT observations with pc-GR, taking into account
the low resolution of 20𝜇𝑎𝑠, as obtained by the EHT. The
main question is if one can discriminate between GR and
pc-GR.

A general principle emerges; namely, that mass not only
curves the space (which leads to the standard GR) but also
changes the space- (vacuum-) structure in its vicinity, which
in turn leads to an important deviation from the classical
solution.

The consequences will be discussed in Section 3. There,
also the cosmological effects are discussed, with different
outcomes for the evolution of the dark energy as function
of time/radius of the universe. Another application treats the
interior of a stars, where first attempts will be reported on
how to stabilize a large mass. In Section 4 conclusions will
be drawn.

2. Pseudocomplex General Relativity (pc-GR)

An algebraic extension of GR consists in a mapping of the
real coordinates to a different type, as, for example, complex
or pseudocomplex (pc) variables

𝑋𝜇 = 𝑥𝜇 + 𝐼𝑦𝜇, (2)

with 𝐼2 = ±1 and where 𝑥𝜇 is the standard coordinate in
space-time and 𝑦𝜇 is the complex component. When 𝐼2 = −1
it denotes complex variables, while when 𝐼2 = +1 it denotes
pseudocomplex (pc) variables. This algebraic mapping is just
one possibility to explore extensions of GR.

In [13] all possible extensions of real coordinates in GR
were considered. It was found that only the extension to
pseudocomplex coordinates (called in [13] hyper-complex)
makes sense, because all others lead to tachyon and/or ghost
solutions, in the limit of weak gravitational fields.

In what follows, some properties of pseudocomplex
variables are resumed, which is important to understand
some of the consequences.

(i) The variables can be expressed alternatively as

𝑋𝜇 = 𝑋𝜇+𝜎+ + 𝑋𝜇−𝜎−
𝜎± = 1

2 (1 ± 𝐼) . (3)

(ii) The 𝜎± satisfy the relations
𝜎2± = 𝜎±,

𝜎+𝜎− = 0. (4)

(iii) Due to the last property in (4), when multiplying one
variable proportional to 𝜎+ by another one propor-
tional to 𝜎−, the result is zero; i.e., there is a zero-
divisor. The variables, therefore, do not form a field
but a ring.

(iv) In both zero-divisor components (𝜎±) the analysis is
very similar to the standard complex analysis.

In pc-GR the metric is also pseudocomplex

𝑔𝜇] = 𝑔+𝜇]𝜎+ + 𝑔−𝜇]𝜎−. (5)

Because 𝜎+𝜎− = 0 in each zero-divisor component one can
construct independently a GR theory.

For a consistent theory, both zero-divisor components
have to be connected! One possibility is to define a modified
variational principle, as done in [15]. Alternatively, one can
implement a constraint; namely, a particle should always
move along a real path; i.e., the pseudocomplex length
element should be real.

The infinitesimal pc length element squared is given by
(see also [16])

𝑑𝜔2 = 𝑔𝜇]𝑑𝑋𝜇𝑑𝑋] = 𝑔+𝜇]𝑑𝑋𝜇+𝑑𝑋]
+𝜎+ + 𝑔−𝜇]𝑑𝑋𝜇−𝑑𝑋]

−𝜎− (6)

as written in the zero-divisor components. In terms of the
pseudoreal and pseudoimaginary components, we have

𝑑𝜔2 = 𝑔𝑠𝜇] (𝑑𝑥𝜇𝑑𝑥] + 𝑑𝑦𝜇𝑑𝑦]) + 𝑔𝑎𝜇] (𝑑𝑥𝜇𝑑𝑦]

+ 𝑑𝑦𝜇𝑑𝑥]) + 𝐼 [𝑔𝑎𝜇] (𝑑𝑥𝜇𝑑𝑥] + 𝑑𝑦𝜇𝑑𝑦])
+ 𝑔𝑠𝜇] (𝑑𝑥𝜇𝑑𝑦] + 𝑑𝑦𝜇𝑑𝑥])] ,

(7)

with 𝑔𝑠𝜇] = (1/2)(𝑔+𝜇𝜇 + 𝑔−𝜇]) and 𝑔𝑎𝜇] = (1/2)(𝑔+𝜇𝜇 − 𝑔−𝜇]). The
upper indices 𝑠 and 𝑎 refer to a symmetric and antisymmetric
combination of the metrics. The case when 𝑔𝜇] = 𝑔+𝜇] = 𝑔−𝜇],
i.e., 𝑔𝑎𝜇] = 0, leads to

𝑔𝜇] (𝑑𝑥𝜇𝑑𝑥] + 𝑑𝑦𝜇𝑑𝑦]) + 𝐼𝑔𝜇] (𝑑𝑥𝜇𝑑𝑦] + 𝑑𝑦𝜇𝑑𝑥]) . (8)

Identifying 𝑦𝜇 = 𝑙𝑢𝜇, where 𝑙 is an infinitesimal length and𝑢𝜇 is the 4-velocity, one obtains the length element defined in
[11]. It also contains the line element as proposed in [9, 10],
where the 𝑦𝜇 is proportional to the momentum component𝑝𝜇 of a particle. However, this identification of 𝑦𝜇 is only valid
in a flat space, where the second term in (8) is just the scalar
product of the 4-velocity (𝑢𝜇 = 𝑑𝑥𝜇/𝑑𝜏) to the 4-acceleration
(𝑦𝜇 = 𝑑2𝑥𝜇/𝑑𝜏2).

The connection between the two zero-divisor compo-
nents is achieved, requiring that the infinitesimal length
element squared in (7) is real; i.e., in terms of the 𝜎±
components it is

(𝜎+ − 𝜎−) (𝑔+𝜇]𝑑𝑋𝜇+𝑑𝑋]
+ − 𝑔−𝜇]𝑑𝑋𝜇−𝑑𝑋]

−) = 0. (9)
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Using the standard variational principle with a Lagrange
multiplier, to account for the constraint, leads to an additional
contribution in the Einstein equations, interpreted as an
energy-momentum tensor.

The action of the pc-GR is given by [16]

𝑆 = ∫𝑑𝑥4√−𝑔 (R + 2𝛼) , (10)

where R is the Riemann scalar. The last term in the action
integral allows to introduce the cosmological constant in
cosmological models, where 𝛼 has to be constant in order
not to violate the Lorentz symmetry. This changes when a
system with a uniquely defined center is considered, which
has spherical (Schwarzschild) or axial (Kerr) symmetry. In
these cases, the 𝛼 is allowed to be a function in 𝑟, for the
Schwarzschild solution, and a function in 𝑟 and 𝜗, for the Kerr
solution.

The variation of the action with respect to the metric 𝑔±𝜇]
leads to the equations of motion

R
±
𝜇] − 1

2𝑔±𝜇]R± = 8𝜋𝑇Λ±𝜇]
with 𝑇Λ±𝜇] = 𝜆𝑢𝜇𝑢] + 𝜆 (𝑦̇𝜇 ̇𝑦] ± 𝑢𝜇𝑦̇] ± 𝑢] ̇𝑦𝜇) + 𝛼𝑔±𝜇],

(11)

in the zero-divisor component, denoted by the independent
unit-elements 𝜎±. These equations still contain the effects of
a minimal length parameter 𝑙, as shown in [11]. Because the
effects of a minimal length scale are difficult to measure,
maybe not possible at all, we neglect them, which corre-
sponds to mapping the above equations to their real part,
giving

R𝜇] − 1
2𝑔±𝜇]R = 8𝜋𝑇Λ𝜇]. (12)

The 𝑇Λ𝜇],R±𝜇] is real and is now given by [16]

𝑇Λ𝜇],𝑅 = (𝜌Λ + 𝑝Λ𝜗 ) 𝑢𝜇𝑢] + 𝑝Λ𝜗 𝑔𝜇] + (𝑝Λ𝑟 − 𝑝Λ𝜗 ) 𝑘𝜇𝑘], (13)

where 𝑝Λ𝜗 and radial 𝑝Λ𝑟 are the tangential and pressure,
respectively. For an isotropic fluid we have 𝑝Λ𝜗 = 𝑝Λ𝑟 =𝑝Λ.
The 𝑢𝜇 are the components of the 4-velocity of the elements
of the fluid and 𝑘𝜇 is a space-like vector (𝑘𝜇𝑘𝜇 = 1) in the
radial direction. It satisfies the relation 𝑢𝜇𝑘𝜇 = 0. The fluid is
anisotropic due to the presence of 𝑦𝜇. The 𝜆 and 𝛼 are related
to the pressures as [16]

𝜆 = 8𝜋𝜆̃,
𝛼 = 8𝜋𝛼̃
𝜆̃ = (𝑝Λ𝜗 + 𝜌Λ) ,
𝛼̃ = 𝑝Λ𝜗 ,

𝜆̃𝑦𝜇𝑦] = (𝑝Λ𝑟 − 𝑝Λ𝜗 ) 𝑘𝜇𝑘].

(14)

The reason why the dark energy outside a mass distribu-
tion has to be an anisotropic fluid is understood contemplat-
ing the Tolman-Oppenheimer-Volkov (TOV) equations [17]

for an isotropic fluid:TheTOV equations relate the derivative
of the dark-energy pressure with respect to 𝑟 (for an isotropic
fluid, the tangential pressure has to be the same as the radial
pressure, i.e., 𝑝Λ𝜗 = 𝑝Λ𝑟 = 𝑝Λ ) to the dark energy density𝜌Λ. Assuming the isotropic fluid and that the equation of
state for the dark energy is 𝑝Λ = −𝜌Λ, the factor (𝑝Λ + 𝜌Λ)
in the TOV equation for 𝑑𝑝Λ/𝑑𝑟 is zero; i.e., the pressure
derivative is zero. As a result the pressure is constant and with
the equation of state also the density is constant, which leads
to a contradiction. Thus, the fluid has to be anisotropic, due
to an additional term, allowing the pressure to fall off as a
function on increasing distance. The additional term in the
radial pressure 𝑑𝑝Λ𝑟 /𝑑𝑟, added to the TOV equation, is given
by (2/𝑟)Δ𝑝Λ = (2/𝑟)(𝑝Λ𝜗 − 𝑝Λ𝑟 ) [18].

For the density one has to apply a phenomenological
model, due to the lack of a quantized theory of gravity. What
helps is to recall one-loop calculations in gravity [19], where
vacuum fluctuations result due to the non-zero back ground
curvature (Casimir effect). Results are presented in [20],
where at large distances the density falls off approximately as1/𝑟6.The semiclassical QuantumMechanics [19] was applied,
which assumes a fixed back-ground metric and is thus only
valid forweak gravitational fields (weak compared to the solar
system). Near the Schwarzschild radius the field is very strong
which is exhibited by a singularity in the energy density,
which is proportional to 1/(1 − 2𝑚/𝑟)2, with 𝑚 a constant
mass parameter [20].

Because we treat the vacuum fluctuations as a classical
ideal anisotropic fluid, we are free to propose a different
fall-off of the negative energy density, which is finite at the
Schwarzschild radius. In earlier publications the density did
fall-off proportional to 1/𝑟5. However, in [14] it is shown
that this fall-off has to be stronger. Thus, in this contribution
we will also discuss a variety of fall-offs as a function of a
parameter 𝑛, i.e., proportional to 𝐵𝑛/𝑟𝑛+2, where 𝐵𝑛 describes
the coupling of the dark energy to the mass.

With the assumeddensity, themetric for theKerr solution
changes to [21, 22]

𝑔00
= −𝑟2 − 2𝑚𝑟 + 𝑎2cos2 𝜗 + 𝐵𝑛/ (𝑛 − 1) (𝑛 − 2) 𝑟𝑛−2

𝑟2 + 𝑎2cos2 𝜗 ,

𝑔11 = 𝑟2 + 𝑎2cos2 𝜗
𝑟2 − 2𝑚𝑟 + 𝑎2 + 𝐵𝑛/ (𝑛 − 1) (𝑛 − 2) 𝑟𝑛−2 ,

𝑔22 = 𝑟2 + 𝑎2cos2 𝜗,
𝑔33
= (𝑟2 + 𝑎2) sin2 𝜗

+ 𝑎2sin4 𝜗 (2𝑚𝑟 − 𝐵𝑛/ (𝑛 − 1) (𝑛 − 2) 𝑟𝑛−2)
𝑟2 + 𝑎2cos2 𝜗 ,

𝑔03
= −𝑎 sin2 𝜗2𝑚𝑟 + 𝑎 (𝐵𝑛/ (𝑛 − 1) (𝑛 − 2) 𝑟𝑛−2) sin2 𝜗

𝑟2 + 𝑎2 cos2 𝜗 ,

(15)
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Figure 1: The orbital frequency of a particle in a circular orbit for the case GR (upper curve) and for 𝑛 = 3 (long dashed curve) and 𝑛 = 4
(short dashed curve) [12, 25].

where 0 ≤ 𝑎 ≤ 𝑚 is the spin parameter of the Kerr solution
and 𝑛 = 3, 4,. . . . For 𝑛 = 2 the old ansatz is achieved.
The Schwarzschild solution is obtained, setting 𝑎 = 0. The
parameter 𝐵𝑛 = 𝑏𝑛𝑚𝑛 measures the coupling of the dark
energy to the central mass. The definition of 𝑛 here is related
to the 𝑛𝑁 in [14] by 𝑛𝑁 = 𝑛 − 1.

When no event horizon is demanded, the parameter 𝐵𝑛
has a lower limit given by

𝐵𝑛 > 2 (𝑛 − 1) (𝑛 − 2)
𝑛 [2 (𝑛 − 1)

𝑛 ]𝑛−1m𝑛 = 𝑏maxm
𝑛. (16)

For the equal sign, an event horizon is located at

𝑟ℎ = 2 (𝑛 − 1)
𝑛 m, (17)

e.g., 4/3 for 𝑛 = 3 and 3/2 for 𝑛 = 4.
3. Applications

3.1.Motion of a Particle in aCircularOrbit. In [23] themotion
of a particle in a circular orbit was investigated. This section
was first discussed in [24, 25].

The main results are resumed in Figures 1 and 2. In
Figure 1 the orbital frequency, in units of 𝑐/𝑚, is depicted
versus the radial distance 𝑟, in units of 𝑚, for a rotational
parameter of 0.9𝑚. The function for the orbital frequency, in
prograde orbits, is given by

𝜔𝑛 = 1
𝑎 + √2𝑟/ℎ𝑛 (𝑟)

ℎ𝑛 (𝑟) = 2
𝑟2 −

𝑛𝐵𝑛(𝑛 − 1) (𝑛 − 2) 𝑟𝑛+1 .
(18)

The upper curve in Figure 1 corresponds to GR while the
two lower ones correspond to pc-GR with 𝑛 = 3 (dashed
curve) and 𝑛 = 4 (dotted curve).The curve shows amaximum
at

𝑟𝜔max
= [ 𝑛 (𝑛 + 2) 𝑏max6 (𝑛 − 1) (𝑛 − 2)]

1/(𝑛−1)

m, (19)

which, for 𝑏𝑛 = 𝑏max as given in (16), is independent of
the value of 𝑎, after which it falls off toward the center and
reaches zero at 𝑟ℎ (Eq. (17)), which is independent on the
rotational parameter 𝑎. After the maximum the curve falls
off toward smaller 𝑟. These features will be important for the
understanding of the emission structure of an accretion disc
(see next subsection).

As one can see, the difference between 𝑛 = 3 and 𝑛 = 4
is minimal and, thus, will not change the qualitative results
as obtained for 𝑛 = 3 in former publications. The position
of the maximum, which gives the position of the dark ring
discussed below, is approximately the same in both cases. For𝑏𝑛 󳨀→ 0 the curve approaches the one for GR.

In Figure 2 the last stable orbit, for 𝑛 = 3, is plotted versus
the rotational parameter 𝑎. The solid enveloping curve is the
result for GR. For 𝑎 = 0 the last stable orbit in GR is at6𝑚, while in pc-GR it is further in. The dark gray shaded
area describes stable orbits in pc-GR and the light gray area
describes unstable orbits. The pc-GR follows closely the GR
with a greater deviation for larger 𝑎. At about 𝑎 = 0.45𝑚 (for𝑛 = 3, for 𝑛 = 4 its value is a little bit larger) all orbits in pc-GR
are stable up to the surface of the star, which is estimated to
lie at approximately (4/3)𝑚. For 𝑎 = 𝑚, in GR the last stable
orbit is at 𝑟 = 𝑚.

3.2. Accretion Discs. In order to connect to actual observa-
tions [26–31], one possibility is to simulate accretion discs
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to GR and the lower curves correspond to pc-GR.The light gray shaded region corresponds to a forbidden area for circular orbits within pc-
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they are allowed until to the surface of the star (for 𝑛 = 3 this limit is approximately 0.4𝑚 and for 𝑛 = 4 it is at 0.5𝑚).

aroundmassive objects as the one in the center of the elliptical
galaxy M87. The underlying theory was published by D. N.
Page and K. S.Thorne [32] in 1974.The basic assumptions are
(see also [33]) the following:

(i) A thin, infinitely extended accretion disc. This is a
simplifying assumption. A real accretion disc can be
a torus. Nevertheless, the structure in the emission
profile will be similar, as discussed here. These discs
are easier to calculate.

(ii) An energy-momentum tensor is proposed which
includes all main ingredients, as mass and electro-
magnetic contributions.

(iii) Conservation laws (energy, angular momentum, and
mass) are imposed in order to obtain the flux func-
tion, the main result of [32].

(iv) The internal energy of the disc is liberated via shears
of neighboring orbitals and distributed from orbitals
of higher frequency to those of lower frequency.

How to deduce finally the flux is described in detail in
[16].

In order to understand within pc-GR the structure of the
emission profile in the accretion disc, we have to get back
to the discussion in the last subsection. The local heating of
the accretion disc is determined by the gradient of orbital
frequency, when going further inward (or outward). At the
maximum, neighboring orbitals have nearly the same orbital
frequency; thus, friction is low. On the other hand, above
and especially below the position of the maximum the change
in orbital frequency is large and the disc gets heated. At the

maximum the heating is minimal which will be noticeable by
a dark ring. Further inside, the heating increases again and a
bright ring is produced.

The above consideration is relevant for 𝑎 larger than
approximately 0.4, as can be seen from Figure 2 (for explana-
tions, see the figure caption) and [23]. For lower values of 𝑎,
in pc-GR the last stable orbit follows the one of GR, but with
lower values for the position of the ISCO. As a consequence,
the particles reach further inside and, due to the decrease of
the potential, more energy is released, producing a brighter
disc. However, the last stable orbit in pc-GR does not reach𝑟𝜔max

. This changes when 𝑎 is a bit larger than 0.4. Now, 𝑟𝜔max
is crossed and the existence of the maximum of 𝜔 has to be
taken into account as explained above.

Some simulations are presented in Figure 3. The line of
sight of the observer to the accretion disc is 80∘ (near to
the edge of the accretion disc), where the angle refers to
the one between the axis of rotation and the line of sight.
Two rotation parameters of the Kerr solution are plotted,
namely, 𝑎 = 0 (no rotation of the star, corresponding to
the Schwarzschild solution) and nearly the maximal rotation𝑎 = 0.9m.

As a global feature, the accretion disc in pc-GR appears
brighter, which is due to the fact that the disc reaches further
inside where the potential is deeper, thus releasing more
gravitational energy, which is then distributed within the
disc.

The reason for the dark fringe and bright ring was
explained above due to the variability of the friction.The dark
ring is the position of the maximum of the orbital frequency.
An observed position of a dark ring can, thus, be used to
determine 𝑛.
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Figure 3: Infinite, counterclockwise rotating geometrically thin accretion disc around static and rotating compact objects viewed from an
inclination of 80∘. The left panel shows the disc model by [32] in pc-Gr, with 𝑎 = 0. The right panel shows the modified model, including
pc-GR correction terms as described in the text.

The differences in the structure of an accretion disc
give us clear observational criteria to distinguish between
GR and pc-GR. There are still others, maybe more realistic
disc models, e.g., a thick disk as described in [36]. In
case there is no disk present, as is probably the case in
SgrA∗, then the synchrotron model of infalling and emitted
gas [37] may be more realistic. However, in all of those
models the above discussed ring structure of the disc will
not change. Unfortunately, this is for the moment the only
clear prediction to differentiate pc-GR from GR. In the next
subsection we will discuss gravitational waves and we will see
pc-GR and GR give different interpretations of the source,
though the final outcome is the same.

Finally, in Figure 4 we compare a disc simulation for GR
(left panel) with pc-GR (right panel), for 𝑎 = 0.6 and a 60∘
inclination angle. The intensity in GR is smaller while in pc-
GR it is much stronger. Also, the maximum of the intensity is
more in line with the EHT data, which reports the maximum
at approximately 3-4𝑚. Otherwise, the ring structure in pc-
GR is lost due to the low resolution of 20𝜇𝑎𝑠 and the cross-
structure of pc-Gr is the same as in GR.

3.3. Gravitational Waves in pc-GR. In [4] the first observed
gravitational wave eventwas reported. In [5] this gravitational
event was investigated within the pc-GR, for 𝑛 = 3.

Using GR and the mass-point approximation for the
two black holes, before the merging, a relation is obtained
between the observed frequency and its temporal change to
the chirping massM𝑐, namely [38],

M𝑐 = M̃𝑐𝐹𝜔 (𝑟) = 𝑐3
𝐺 [ 5

96𝜋8/3
𝑑𝑓gw
𝑑𝑡 𝑓−11/3gw ]

3/5

. (20)

Substituting on the right hand side the observed frequency
and its change and using 𝐹𝜔(𝑟) = 1 for GR, the interpretation
of the source of the gravitational waves is of two black holes
of about 30 solar masses each which fuse to a larger one of
less than 60 solar masses. The difference in energy is radiated

away as gravitational waves. However, these changes are in
pc-GR, where the two black holes can come very near to
each other. Unfortunately, the point mass approximation is
not applicable, though in [5] this approximation was still used
in order to show in which direction the interpretation of the
source changes. In pc-GR (𝑛 = 3) 𝐹𝜔(𝑟) = [1−(3𝑏3/4)(𝑚/𝑟)2],
which for 𝑏𝑛 given by the right hand side of Eq. (16) is exactly
zero. Therefore, a range of the last possible distances of the
two black holes before merging was assumed. On the left
hand side of Eq. (20), the function 𝐹𝜔(𝑟) becomes very small
near where the two in-spiraling black holes merge. Thus, the
chirping mass M̃𝑐 must be much larger than the chirping
massMdeduced inGR. For 𝑛 = 4, the function𝐹𝜔(𝑟) changes
to [1−(𝑏4/3)(𝑚/𝑟)3]; thus, themain conclusions are the same,
though the 𝑟-dependence has changed. We have not yet made
explicit calculations, for one reason: Themodel applied in [5]
has to be modified, because the point approximation is not
very good.

The main result is that the source in pc-GR corresponds
to two black holes with several thousand solar masses. This
may be related to the merger of two primordial galaxies
whose central black hole subsequently merges. One way to
distinguish the two predictions is to look for light events very
far way. If, for observed gravitational wave events in future,
there is a consistent appearance of light events much farther
away as the distance deduced from GR, then this might be in
favor for pc-GR. However, all the prediction depends on the
assumption that the pointmass approximation is still more or
less valid when the two black holes are near together, which is
not very good! In [14] the inspiral frequency was determined
within pc-GR, for various values of 𝑛, which is related to the
one used in [14] by 𝑛𝑁 = 𝑛 − 1. As demonstrated, the wave
form cannot be reproduced satisfactorily for 𝑛 = 3; thus, it
has to be increased and let us investigate the dependence of
the results as a function in 𝑛.

In [6] the Schwarzschild case was considered and the
Regge-Wheeler, for negative parity solutions, [39] and Zerrilli
equations, for positive parity solutions, [40] were solved,
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Figure 4: Infinite, counterclockwise rotating geometrically thin accretion disc around static and rotating compact objects viewed from an
inclination of 60∘ and 𝑎 = 0.6. The left panel is GR and the right one is pc-GR. A resolution of 20𝜇𝑎𝑠 was assumed. A resolution of 20𝜇𝑎𝑠 is
assumed.
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Figure 5: Axial gravitational modes in pc-GR. The vertical axis gives the real part of 𝜔̃ = 𝑚𝜔 while the horizontal axis depicts the negative
of its imaginary part.

using an iteration method [41]. Due to a symmetry, in GR
the two types of solutions have the same frequency spectrum
[40], which unfortunately is lost in pc-GR. For pc-GR, the
spectrum of frequencies for axial modes shows a convergent
behavior for the frequencies, which is shown in Figure 5.
A negative imaginary part indicates a stable mode, which
turns out to be the case. For an increasing imaginary part the
convergence is less sure. Unfortunately, for the polar modes
no convergences for the polar modes were obtained up to
now.

Another problem is to distinguish between GR and pc-
GR. It depends very much on the observation of the ring-
down frequency of the merger [6], which is not very well
measured yet. Without it, we are not able to distinguish
between both theories and various possible scenarios can be
obtained in pc-GR [6, 12].

3.4. Dark Energy in the Universe. The pc-Robertson-Walker
model is presented in detail in [12, 34]. The main results will
be resumed in this subsection.

The line element in gaussian coordinates has the form

𝑑𝜔2 = (𝑑𝑡)2 − 𝑎 (𝑡)2 1
(1 + 𝑘𝑎 (𝑡)2 /4𝑎20)2

(𝑑𝑅2

+ 𝑅2𝑑𝜗2 + 𝑎 (𝑡)2 sin2 𝜗𝑑𝜑2) ,
(21)

where 𝑅 is the radius of the universe and 𝑘 is a parameter
and the energy density of matter was assumed to be homoge-
neous. The value 𝑘 = 0 corresponds to a flat universe, which
will be taken here.

The corresponding Einstein equations were solved and an
equation for the radius 𝑎(𝑡) if the universe was deduced [12]:

𝑎 (𝑡)󸀠󸀠 = 4𝜋𝐺
3 (3𝛽 − 1)Λ𝑎 (𝑡)3(𝛽−1)+1

− 4𝜋𝐺
3 (1 + 3𝛼) 𝜀0𝑎 (𝑡)−3(1+𝛼)+1 ,

(22)

where𝐺 is the gravitational constant and 𝛽, Λ are parameters
of the theory. The equation of state is set as 𝑝 = 𝛼𝜀, where 𝜀 is
the matter density and 𝛼 is set to zero for dust.

Two particular solutions are shown in Figure 6. Shown is
the acceleration of the universe as a function of the radius𝑎(𝑡). The left panel shows the result for 𝛽 = 1/2 and Λ = 3
and on the right hand side the parameters 𝛽 and Λ are set
to 2/3 and 4, respectively. The left figure corresponds to a
solution where the acceleration tends to a constant; i.e., the
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Figure 6: The left panel shows a case where the acceleration of the universe approaches a constant value and the right panel shows a case
where the acceleration slowly approaches zero for 𝑡 󳨀→ ∞. The figures are taken from [12, 34].

universe will expand forever with an increasing acceleration,
while in the right figure the acceleration tends slowly to zero
for very large 𝑎(𝑡). In both examples the universe expands
forever. These are not the only solutions; also one where the
universe collapses again is possible.

These results are not very predictive, because one can
obtain several possible outcomes, depending on the values of𝛽 and Λ. Nevertheless, they show that possible scenarios for
the future of our universe are still possible.

3.5. Interior of Stars. For the description of the interior of
a star one needs the equation of state of matter and the
coupling of the dark-energy with the matter. For the equation
of state one can use the model presented in [42], which also
takes into account nuclear and meson resonances. However,
these approximations will lose their validity when the matter
density is too large.The situation is worse for the dark-energy
contribution and it is twofold: (i) one has to know how the
dark-energy evolves within the star (presence of matter) and
(ii) how it is coupled to the matter itself. Both are not known
and we have to rest on incomplete models. Alternatively, one
can approach the problemwith a very interesting and distinct
model to simulate the dark energy, as done in [43–46], where
compact and dense objects were investigated within the pc-
GR and maximal masses were also deduced.

In [18] a simple coupling model of dark-energy to the
mass density was proposed:

𝜀Λ = 𝛼𝜌𝑚, (23)

where the index Λ refers to the dark energy and 𝜌𝑚 refers
to the mass density. In this proposal the dark energy follows
neatly the mass distribution. The Tolman-Oppenheimer-
Volkoff (TOV) equations have to be solved, which are doubled
in number, one treating the mass part and the other the dark-
energy part (for more details see [12, 18]).

A particular result is shown in Figure 7, showing the
mass of the star versus its radius. Curves are depicted for
various values of the proportionality factor 𝛼. As can be
seen, the model can reproduce stable stars up to 6 solar
masses, which shows that the dark-energy stabilizes stars
with larger masses. However, no stars with larger masses can
be constructed, because for larger values of 𝛼 and/or larger
masses the repulsion due to the dark energy becomes too
large near the surface and outer surface layers are evaporated.

In [35] calculations in one-loop order, using the
monopole approximation, were calculated with the intention
to derive the coupling between the dark energy and matter
density. In Figure 8 the lower curve shows the result of these
calculations and the upper curve shows the approximation
in terms of a polynomial, used in the final calculations.

Finally, in Figure 9 the mass of the star versus its radius 𝑅
is depicted. As can be noted, now stars with up to 200 solar
masses are possible. Higher masses cannot be obtained due
to the limits the model of [42] reaches.

This model also suffers from the approximations made
and a complete description cannot be given. Nevertheless,
now stars with up to 200 solar masses can be stabilized,
which shows that the inclusion of dark-energy in massive
stars may lead to stable stars of any mass! (Though, only
within a phenomenological model.)

4. Conclusions

A report on the recent advances of the pseudocomplex Gen-
eral Relativity (pc-GR) was presented. The theory predicts
a nonzero energy-momentum tensor on the right hand side
of the Einstein equation. The new contribution is related to
vacuum fluctuations, but due to a missing quantized theory
of gravitation one recurs to a phenomenological ansatz.
Calculations in one-loop order, with a constant back-ground
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metric, show that the dark energy density has to increase
toward smaller 𝑟.

Consequences of the theory were presented: (i) the
appearance of a dark ring followed by a bright one in
accretion discs around black holes, (ii) a new interpretation
of the source of the first gravitational event observed, (iii)
possible outcomes of the future evolving universe, and (iv)
attempts to stabilize stars with large masses.

The only robust prediction is the structure in the emission
profile of an accretion disc.
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Greiner, “Pseudo-complex General Relativity: Schwarzschild,
Reissner-Nordström and Kerr solutions,” International Journal
of Modern Physics E, vol. 21, Article ID 1250015, 2012.



Advances in High Energy Physics 11

[22] T. Schönenbach, PhD thesis, Universität Frankfurt am Main,
Germany, 2014.

[23] T. Schönenbach,G. Caspar, P. O. Hess et al., “Experimental tests
of pseudo-complex general relativity,” Monthly Notices of the
Royal Astronomical Society, vol. 430, no. 4, pp. 2999–3009, 2013.

[24] T. Boller, P. O. Hess, A. Müller, and H. Stöcker, “Predictions of
the pseudo-complex theory of gravity for EHT observations – I.
Observational tests,”Monthly Notices of the Royal Astronomical
Society, vol. 485, no. L34, 2019.

[25] P. O. Hess, T. Boller, A. Müller, and H. Stöcker, “Predictions of
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By using the higher-order geodesic deviation equations for charged particles, we apply the method described by Kerner et.al. to
calculate the perihelion advance and trajectory of charged test particles in the Reissner-Nordstrom space-time.The effect of charge
on the perihelion advance is studied and we compared the results with those obtained earlier via the perturbation method. The
advantage of this approximation method is to provide a way to calculate the perihelion advance and orbit of planets in the vicinity
of massive and compact objects without considering Newtonian and post-Newtonian approximations.

1. Introduction

Theproblem of planetsmotion in general relativity is the sub-
ject of many studies in which the planet has been considered
as a test particle moving along its geodesic [1]. Einstein made
the first calculations in this regard for the planet Mercury in
the Schwarzschild space-time which resulted in the equation
for the perihelion advanceΔ𝜑 = 6𝜋𝐺𝑀𝑎 (1 − 𝑒2) , (1)

where 𝐺 is the gravitational constant, 𝑀 is the mass of
the central body, 𝑎 is the length of semi-major axis for
planet’s orbit, and 𝑒 is eccentricity. Derivation of perihelion
advance by using this method leads to a quasielliptic integral
whose calculation is very difficult, which is then evaluated
after expanding the integrand in a power series of the small
parameter 𝐺𝑀/𝑟𝑐2. For the low-eccentricity trajectories of
planets, one can obtain the following approximate formula for
the perihelion advance:Δ𝜑 = 6𝜋𝐺𝑀𝑎 (1 − 𝑒2) ≃ 6𝜋𝐺𝑀𝑎 (1 + 𝑒2 + 𝑒4 + 𝑒6 + ⋅ ⋅ ⋅) , (2)

even for the case of Mercury up to second-order of eccentric-
ity, the perihelion advance differs only by 0.18% error from
its actual value [2]. It should be noted again that Einstein’s
method is only valid for the small values of 𝐺𝑀/𝑟𝑐2.

In what follows, we show that one can obtain the same
results (without taking the complex integrals) only by consid-
ering the successive approximations around a circular orbit
in the equatorial plane as the initial geodesic with constant
angular velocity, which leads to an iterative process of the
solving the geodesic deviation equations of first, second, and
higher-orders [3–5]. Here, instead of the G𝑀/𝑟𝑐2 parameter
the eccentricity, 𝑒, plays the role of the small parameter which
is controlling the maximal deviation from the initial circular
orbit. In this method, we have no constraint on 𝐺𝑀/𝑟𝑐2
anymore. So, one can determine the value of perihelion
advance for largemass objects andwrite it in the higher-order
of 𝐺𝑀/𝑟𝑐2.

Theorbitalmotions of neutral test particles via the higher-
order geodesic deviation equations for Schwarzschild and
Kerr metrics are studied in [2] and [4], respectively. Also,
for massive charged particles in Reissner-Nordstrom metric,
geodesic deviations have been extracted up to first order [6].
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In this paper, by using the higher-order geodesic deviations
for charged particles [7], we are going to obtain the orbital
motion and trajectory of charged particles. We also expect
that our calculations reduce to similar one in Schwarzschild
metric [2] by elimination of charge. In fact, we generalize
the novel method used in [2] for neutral particles in the
Schwarzschildmetric to the charged particles in the Reissner-
Nordstrommetric. Recently, an analytical computation of the
perihelion advance in general relativity via the Homotopy
perturbationmethod has been proposed in [8]. Also, one can
study the perihelion advance of planets in general relativity
and modified theories of gravity by using different methods
in [8–21].

The structure of the paper is as follows. In Section 2, by
using the approximationmethod introduced in [7], we derive
the higher-order geodesic deviation for charged particles. By
using the first-order geodesic deviation equations, the orbital
motion of charged particles is found in Section 3. In Section 4,
we obtain the second-order geodesic deviations and derive
the semi-major axis, eccentricity, and trajectory using the
Taylor expansion around a central geodesic. The obtained
results are discussed in Section 5.

2. The Higher-Order Geodesic
Deviation Method

As is mentioned above, the higher-order geodesic deviation
equations for charged particles have been derived in [7] for
the first time. In this section, we are going to derive the
geometrical set-up used in our work. The geodesic deviation
equation for charged particles is [6]

𝐷2𝑛𝜇𝐷𝑠2 = 𝑅𝜇𝜆]𝜅𝑢𝜆𝑢]𝑛𝜅 + 𝑞𝑚𝐹𝜇]𝐷𝑛]𝐷𝑠 + 𝑞𝑚∇𝜆𝐹𝜇]𝑢]𝑛𝜆, (3)

where𝐷/𝐷𝑠 is the covariant derivative along the curve and 𝑛𝜇
is the separation vector between two particular neighboring
geodesics (see Figure 1). Here, 𝑢𝜇 is the tangent vector to the
geodesic, 𝑅𝜇𝜆]𝜅 is the curvature tensor of space-time, 𝑞 and𝑚 are charge and mass of particles (particles have the same
charge-to-mass ratio, 𝑞/𝑚), and 𝐹𝜇] is the electromagnetic
force acting on the charged particles. For neutral particles, the
above equation reduces to the following geodesic deviation
[22, 23]:

𝐷2𝑛𝜇𝐷𝑠2 = 𝑅𝜇𝜆]𝜅𝑢𝜆𝑢]𝑛𝜅, (4)

which is the well-known equation (Jacobi equation) in
general relativity. We introduce the four-velocity 𝑢𝛼(𝑠, 𝑝) =𝜕𝑥𝛼/𝜕𝑠 as the time-like tangent vector to the world-line and𝑛𝛼(𝑠, 𝑝) = 𝜕𝑥𝛼/𝜕𝑝 as the deviation four-vector as well.
Practically it is often convenient to work with the nontrivial
covariant form. It can be obtained by replacement of the
trivial expressions for the covariant derivatives, the Riemann

curvature tensor, and use of the equation of motion in the
left-hand side of (3) [6]

𝑑2𝑛𝜇𝑑𝑠2 + (2Γ𝜇𝜅]𝑢𝜅 − 𝑞𝑚𝐹𝜇]) 𝑑𝑛]𝑑𝑠+ (𝑢𝜅𝑢𝜎𝜕]Γ𝜇𝜅𝜎 − 𝑞𝑚𝑢𝜅𝜕]𝐹𝜇𝜅) 𝑛] = 0. (5)

The geodesic deviation can be used to compose geodesics𝑥𝜇(𝑠) near a given reference geodesic 𝑥𝜇0 (𝑠), by an iterative
method as follows. Considering this, one can write Taylor
expansion of 𝑥𝜇(𝑠, 𝑝) around the central geodesic and obtain
the first-order and higher-order geodesic deviations for
charged particles

𝑥𝜇 (𝑠, 𝑝) = 𝑥𝜇 (𝑠, 𝑝0) + (𝑝 − 𝑝0) 𝜕𝑥𝜇𝜕𝑝 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑠,𝑝0)+ 12! (𝑝 − 𝑝0)2 𝜕2𝑥𝜇𝜕𝑝2 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨(𝑠,𝑝0) + ⋅ ⋅ ⋅ ,
(6)

and our aim is to obtain an expression in terms of the
deviation vector. As shown in the above equation, the second
term, 𝜕𝑥𝜇/𝜕𝑝, is the definition of deviation vector and shows
the first-order geodesic deviation. But in the third term,𝜕2𝑥𝜇/𝜕𝑝2 is not vector anymore. Therefore, we define the
vector 𝑏𝜇 as follows:

𝑏𝜇 = 𝐷𝑛𝜇𝐷𝑝 = 𝜕𝑛𝜇𝜕𝑝 + Γ𝜇
𝜆]𝑛𝜆𝑛], (7)

to change 𝜕2𝑥𝜇/𝜕𝑝2 into the expression showing the second-
order geodesic deviation. By substituting (7) into (6), one can
obtain the expression in terms of the order of vector deviation

𝑥𝜇 (𝑠, 𝑝) = 𝑥𝜇 (𝑠, 𝑝0) + (𝑝 − 𝑝0) 𝑛𝜇+ 12! (𝑝 − 𝑝0)2 (𝑏𝜇 − Γ𝜇𝜆]𝑛𝜆𝑛]) + ⋅ ⋅ ⋅ (8)

In the above expression, one can make some changes for
simplification. We consider 𝛿𝑛𝑥𝜇(𝑠) as 𝑛-th order of geodesic
deviation and by assuming (𝑝 − 𝑝0) as a small quantity, 𝜖; we
rewrite (8) as follows:

𝑥𝜇 (𝑠, 𝑝) = 𝑥𝜇0 (𝑠) + 𝛿𝑥𝜇 (𝑠) + 12𝛿2𝑥𝜇 (𝑠) + ⋅ ⋅ ⋅ , (9)

where 𝛿𝑥𝜇(𝑠) = 𝜖𝑛𝜇(𝑠) is the first-order geodesic deviation
and 𝛿2𝑥𝜇(𝑠) = 𝜖2(𝑏𝜇 − Γ𝜇]𝜆𝑛]𝑛𝜆) is the second-order geodesic
deviation. In order to obtain the second-order geodesic
deviation equation, one can apply the definition of the
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covariant derivative on (7)(for more details see [7] and
appendix therein)𝐷2𝑏𝜇𝐷𝑠2 + 𝑅𝜇𝜌𝜆𝜎𝑢𝜌𝑢𝜆𝑛𝜎= (𝑅𝜇𝜌𝜆𝜎;] − 𝑅𝜇𝜎]𝜌;𝜆) 𝑢𝜆𝑢𝜎𝑛𝜌𝑛]+ 4𝑅𝜇𝜌𝜆𝜎𝑢𝜆𝐷𝑛𝜌𝐷𝑠 𝑛𝜎 + 𝑞𝑚𝑅𝜇𝜎𝜌]𝐹𝜌𝜆𝑛𝜎𝑢𝜆𝑛]

+ 𝑞𝑚𝐹𝜇𝜌;𝜆𝜎𝑛𝜆𝑢𝜌𝑛𝜎 + 𝑞𝑚𝐹𝜇𝜌𝐷2𝑢𝜌𝐷𝑝2 .
(10)

Similar to the first-order geodesic deviation (5), we can write
(10) in the nonmanifest covariant form𝑑2𝑏𝜇𝑑𝑠2 + (2Γ𝜇𝜅]𝑢𝜅 − 𝑞𝑚𝐹𝜇]) 𝑑𝑏]𝑑𝑠+ (𝑢𝜅𝑢𝜎𝜕]Γ𝜇𝜅𝜎 − 𝑞𝑚𝑢𝜅𝜕]𝐹𝜇𝜅) 𝑏] =+ (Γ𝜏𝜎]𝜕𝜏Γ𝜇𝜆𝜌 + 2Γ𝜇𝜆𝜏𝜕𝜌Γ𝜏𝜎] − 𝜕]𝜕𝜎Γ𝜇𝜆𝜌)⋅ (𝑢𝜆𝑢𝜌𝑛𝜎𝑛] − 𝑢𝜎𝑢]𝑛𝜆𝑛𝜌)

+ 4 (𝜕𝜆Γ𝜇𝜎𝜌 + Γ]𝜎𝜌Γ𝜇𝜆]) 𝑑𝑛𝜎𝑑𝑠 (𝑢𝜆𝑛𝜌 − 𝑢𝜌𝑛𝜆) + 𝑞𝑚⋅ 𝑢]𝑛𝛼𝑛𝛽 (𝜕𝛼𝜕𝛽𝐹𝜇] − 𝐹𝜇𝜌𝜕]Γ𝜌𝛼𝛽 − 𝜕𝜎𝐹𝜇]Γ𝜎𝛼𝛽) + 2 𝑞𝑚⋅ 𝑛𝜎 𝑑𝑛]𝑑𝑠 (𝜕𝜎𝐹𝜇] − 𝐹𝜇𝛽Γ𝛽𝜎]) .

(11)

As it clears, the left-hand side of the second-order geodesic
deviation equation (11) is same to the left-hand side of (5). As
in the case of the second-order geodesic deviation, the higher-
order geodesic deviation equations have the same left-hand
side and different right-hand side. A nonmanifest covariant
form of the third-order geodesic deviation equation is given
in Appendix A.

The successive approximations to the exact geodesic (b)
have been shown in Figure 1. Lines (c) and (d) represent
the first-order approximation, i.e., 𝑥𝜇(𝑠, 𝑝) = 𝑥𝜇(𝑠, 𝑝0) +(𝑝 − 𝑝0)(𝜕𝑥𝜇/𝜕𝑝)|𝑝0 , and the second-order approximation,
i.e., 𝑥𝜇(𝑠, 𝑝) = 𝑥𝜇(𝑠, 𝑝0) + (𝑝 − 𝑝0)(𝜕𝑥𝜇/𝜕𝑝)|𝑝0 + (1/2!)(𝑝 −𝑝0)2(𝜕2𝑥𝜇/𝜕𝑝2)|𝑝0 , respectively.

In the next section,we are going to obtain the components
of 𝑛𝜇 from the first-order geodesic deviation, (5), for a circular
orbit of charged particles.Then by substituting them into (11),
we can solve the second-order geodesic deviation equations,𝑏𝜇. Finally, by substituting 𝑛𝜇 and 𝑏𝜇 into (8), we will find
the relativistic trajectory of charged particles in Reissner-
Nordstrom space-time.

3. The First-Order Geodesic Deviation

3.1. Circular Orbits in Reissner-Nordstrom Metric. The
Reissner-Nordstrom metric is a static exact solution of the

u(s1)

n(s1)

x(s1, 0) x(s1, p0)

u(s0)

n(s0)

x(s0, 0)

x(s0, p0)

(a) (b) (c)(d)

N

N

Figure 1: Deviation of two nearby geodesics in a gravitational field.
Lines (a) and (b) represent the central geodesic 𝑝 = 0 and the
nearby geodesic 𝑝 = 𝑝0, respectively; lines (c) and (d) show the
corresponding first and second-order approximations to the nearby
geodesic (b). Also, 𝑢𝜇 is the unit tangent vector to the central world-
line, 𝑛𝜇 is the separation vector to the curve 𝑠 = 𝑐𝑜𝑛𝑠𝑡, and 𝑁𝜇 =𝑏𝜇 − Γ𝜇

𝜆𝜌
𝑛𝜆𝑛𝜌 is the second-order geodesic deviation [24].

Einstein-Maxwell equations which describes the space-time
around a spherically nonrotating charged source with mass𝑀 and charge 𝑄 (in the natural coordinate with 𝑐 = 1 and𝐺 = 1) 𝑑𝑠2 = −𝐵 (𝑟) 𝑑𝑡2 + 1𝐵 (𝑟)𝑑𝑟2+ 𝑟2 (𝑑𝜃2 + sin2 (𝜃) 𝑑𝜑2) , (12)

where

𝐵 (𝑟) = 1 − 2𝑀𝑟 + 𝑄2𝑟2 . (13)

Also, the vector potential and the electromagnetic field of
Maxwell’s equations are [6]

𝐴 = 𝐴𝜇𝑑𝑥𝜇 = − 𝑄4𝜋𝑟𝑑𝑡,𝐹 = 𝑑𝐴 = 𝑄4𝜋𝑟2 𝑑𝑟 ∧ 𝑑𝑡. (14)

By assuming that 𝑀2 > 𝑄2, we are going to obtain the
equation of motion for test particles which have mass 𝑚 and
charge 𝑞. Now, we consider a circular orbit with a constant
radius 𝑅. On the other hand, we know that the angular
momentum of particles which are bounded to the spherically
symmetric condition is limited to the equatorial plane. For
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this purpose and for simplicity, we limit the space to the plane
of 𝜃 = 𝜋/2 in which the angular momentum is in the 𝑧
direction. By using of the Euler-Lagrange equation, one can
lead to the following constants of motion:𝑑𝜑𝑑𝑠 = 𝑙𝑟2 , (15)𝑑𝑡𝑑𝑠 = 𝜀 − 𝑞𝑄/4𝜋𝑚𝑟1 − 2𝑀/𝑟 + 𝑄2/𝑟2 , (16)

where 𝑙 = 𝐽/𝑚 is the angularmomentumper unitmass, 𝜑̇ = 𝜔
is the angular velocity, and 𝜀 is the energy per unit mass.

Finally, from (12), (15), and (16) one obtains two con-
straints, namely, the conservation of the absolute four-
velocity and the radial acceleration. Now, due to the fact that
the radius of the circular orbit is constant (𝑟 = 𝑅), two
mentioned constraints vanish at all times and this creates two
relations between 𝑅, 𝑙, and 𝜀 as follows:

(𝜀 − 𝑞𝑄4𝜋𝑀𝑅)2 = (1 − 2𝑀𝑅 + 𝑄2𝑅2 )(1 + 𝑙2𝑅2) , (17)

[𝑙2𝑅 −𝑀(1 + 3𝑙2𝑅2 ) + 𝑄2𝑅 (1 + 2𝑙2𝑅2 )]2= ( 𝑞𝑄4𝜋𝑚)2 (1 + 𝑙2𝑅2)(1 − 2𝑀𝑅 + 𝑄2𝑅2 ) . (18)

As we expect by eliminating charge, all obtained equations
reduce to the similar equations in the Schwarzschild metric.

In summary, we obtain the following four-velocity vector for
a circular orbit with radius 𝑅 in an equatorial plane:

𝑢𝑡 = 𝑑𝑡𝑑𝑠 = 𝜀 − 𝑞𝑄/4𝜋𝑚𝑅1 − 2𝑀/𝑅 + 𝑄2/𝑅2 ,𝑢𝑟 = 𝑑𝑟𝑑𝑠 = 0,
𝑢𝜃 = 𝑑𝜃𝑑𝑠 = 0,
𝑢𝜑 = 𝑑𝜑𝑑𝑠 = 𝜔0 = 𝑙𝑅2 .

(19)

In the next subsection, we obtain the orbital motion by using
the higher-order geodesic deviationmethod and compare the
results with the perturbation method.

3.2. First-Order Geodesic Deviation around the Circular
Orbits. Now let us calculate the first-order geodesic deviation
for the components 𝑛𝑡, 𝑛𝑟, 𝑛𝜃, and 𝑛𝜙, by using of (5) in a
matrix form

(𝑚11 𝑚12 𝑚13 𝑚14𝑚21 𝑚22 𝑚23 𝑚24𝑚31 𝑚32 𝑚33 𝑚34𝑚41 𝑚42 𝑚43 𝑚44)(𝑛𝑡𝑛𝑟𝑛𝜃𝑛𝜑) =(0000) , (20)

where the matrix elements are given by

𝑚11 = 𝑑2𝑑𝑠2 ,𝑚12 = 2𝑅𝜀 (𝑀/𝑅 − 𝑄2/𝑅2) − (𝑞𝑄/4𝜋𝑚) (1 − 𝑄2/𝑅2)𝑅2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)2 𝑑𝑑𝑠 ,𝑚13 = 𝑚14 = 0,
𝑚22 = 𝑑2𝑑𝑠2 − 𝑙2𝑅4 (1 − 𝑄2𝑅2 ) + (−2𝑀/𝑅 + 6𝑀2/𝑅2 + 3𝑄2/𝑅2 − 12𝑀𝑄2/𝑅3 + 5𝑄4/𝑅4) (𝜀 − 𝑞𝑄/4𝜋𝑚𝑅)2𝑅2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)2 − 𝑞𝑚𝐹𝑟𝑡,𝑟𝑢𝑡,
𝑚21 = 2𝑅 (𝑀𝑅 − 𝑄2𝑅2 )(𝜀 − 𝑞𝑄4𝜋𝑚𝑅) 𝑑𝑑𝑠 − 𝑞𝑚𝐹𝑟𝑡 𝑑𝑑𝑠 ,𝑚23 = 0,
𝑚24 = −2𝑙𝑅 (1 − 2𝑀𝑅 + 𝑄2𝑅2 ) 𝑑𝑑𝑠 ,𝑚31 = 𝑚32 = 𝑚34 = 0,
𝑚33 = 𝑑2𝑑𝑠2 + 𝑙2𝑅4 ,𝑚41 = 𝑚43 = 0,𝑚42 = 2𝑙𝑅3 𝑑𝑑𝑠 ,𝑚44 = 𝑑2𝑑𝑠2 .

(21)
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As can be seen, the geodesic deviation equation of 𝜃 com-
ponent represents a harmonic oscillator equation with the
angular frequency of 𝜔𝜃 = 𝜔0 = 𝑙/𝑅2. So we consider 𝑛𝜃 as
follows: 𝑛𝜃 (𝑠) = 𝑛𝜃0 cos (𝜔0𝑠) , (22)

which is similar to the Schwarzschild case. So in this case we
can neglect this solution (𝑛𝜃 = 0), because the new plane
of orbit is a new one inclined, or just a change of coordinate
system [4]. Now, by eliminating the derivatives of 𝑛𝑡 and 𝑛𝜙
in the differential equation of 𝑛𝑟, we obtain the following
oscillating equation: 𝑑2𝑛𝑟𝑑𝑠2 + 𝑤2𝑛𝑟 = 0, (23)

with the characteristic frequency

𝜔2 = 𝜔20 (1 − 6𝑀𝑅 + 𝑄2𝑀𝑅 + 3𝑄2𝑅2 + ⋅ ⋅ ⋅) . (24)

By considering 𝑛𝑟0 > 0, we choose the following solution for𝑛𝑟: 𝑛𝑟 = −𝑛𝑟0 cos (𝜔𝑠) . (25)

Also, from the 𝑛𝑡 and 𝑛𝜑 geodesic deviation equations, the
solutions for 𝑛𝑡 and 𝑛𝜑 are given by𝑛𝑡 = 𝑛𝑡0 sin (𝜔𝑠) , (26)𝑛𝜑 = 𝑛𝜑0 sin (𝜔𝑠) , (27)

where the amplitudes depend on 𝑛𝑟0𝑛𝑡0= 2√𝑀𝑅 − 𝑄2𝑅 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)√1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅𝑛𝑟0, (28)

𝑛𝜑0 = 2𝑅√1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅𝑛𝑟0. (29)

In this way, the trajectory and the law of motion are obtained
by 𝑟 = 𝑅 − 𝑛𝑟0 cos (𝜔𝑠) , (30)𝜑 = 𝜔0𝑠 + 𝑛𝜑0 sin (𝜔𝑠) , (31)

𝑡 = 𝜀 − 𝑞𝑄/4𝜋𝑚𝑅1 − 2𝑀/𝑅 + 𝑄2/𝑅2 𝑠 + 𝑛𝑡0 sin (𝜔𝑠) , (32)

where the argument phase of the cosine function is taken by𝑠 = 0 for perihelion and 𝑠 = 𝜋/𝜔 for aphelion. Now, (30) can
be written as

𝑟 = 𝑅 [1 − 𝑛𝑟0𝑅 cos (𝜔𝑠)] . (33)

By direct solution of the Euler-Lagrange equations, the
trajectory of motion for particles is obtained in terms of
centrifugal inertia [25]

𝑟 (𝑡) = 𝑎 (1 − 𝑒2)1 + 𝑒 cos (𝜔0𝑡) ≃ 𝑎 [1 − 𝑒 cos (𝜔0𝑡)] . (34)

Obviously, (33) and (34) show that we have the same results.
It means that if we bring up the eccentricity 𝑒 to 𝑛𝑟0/𝑅 and
the semimajor axis 𝑎 to 𝑅, the same results are extracted,
but there is also a difference that the circular frequency, 𝜔, is
lower than the circular frequency of the unperturbed circular
motion,𝜔0. So, if the circular frequency decreases, the period
increases. Then we obtain an expression for the periastron
shift per one revolution as

△𝜑 = 2𝜋(𝜔0𝜔 − 1) = 2𝜋(3𝑀𝑅 + 272 𝑀2𝑅2 + 1352 𝑀3𝑅3
− 𝑄22𝑀𝑅 − 6𝑄2𝑅2 + ⋅ ⋅ ⋅) . (35)

It can be seen from the above equation that the charge param-
eter,𝑄, decreases the perihelion advance. In the perturbation
method (Einstein’s method), the orbital motion for charged
particles moving in the equatorial plane of the Reissner-
Nordstrom source is given by [20]

△𝜑 = 6𝜋𝑀𝑅 − 𝜋𝑄2𝑀𝑅 , (36)

and comparing (35) with (36) shows that the presented
method can be used in the vicinity of very massive and
compact objects which is having a nonnegligible ratio of𝑀/𝑅.

When the source is neutral and for the small values of𝑀/𝑅, (35) reduces to the standard formula for Perihelion
advance of planets [23]. If we also compare (35) to (2), it
is clear that, in the first-order deviation, we hold only the
terms up to 𝑒2. In order to obtain△𝜑 for the higher values of
the eccentricity, we must go beyond the first-order deviation
equations.Therefore in the next section, we solve the second-
order geodesic deviation equations in Reissner-Nordstrom
space-time.

4. The Second-Order Geodesic Deviation

In this section, by using the first-order geodesic deviation
equation and inserting (25), (26), and (27) into (10) and also
doing a set of hard calculations, a linear equations system for
the second-order geodesic deviation vector 𝑏𝜇 is obtained
(𝑚11 𝑚12 𝑚14𝑚21 𝑚22 𝑚24𝑚41 𝑚42 𝑚44 )(𝑏𝑡𝑏𝑟𝑏𝜑) = (𝑛𝑟0)2(𝐶𝑡 + 𝐶𝑡𝑞𝐶𝑟 + 𝐶𝑟𝑞𝐶𝜑 + 𝐶𝜑𝑞), (37)
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where the constants 𝐶𝑡, 𝐶𝑡𝑞, 𝐶𝑟, 𝐶𝑟q, 𝐶𝜑, and 𝐶𝜑𝑞 contain
quantities depending on𝑀, 𝑅, 𝜔, 𝜔0, 𝑞, and 𝑄
𝐶𝑡 = −6𝑀√𝑀𝑅 − 𝑄2 (2 − 7𝑀/𝑅 + 31𝑄2/3𝑅2 − 5𝑄2/3𝑀𝑅 − 4𝑄4/3𝑀𝑅3 − 𝑄4/𝑀2𝑅2)𝑅5 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2)√1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅 sin (2𝑤𝑠) , (38)

𝐶𝑟 = −3𝑀[6 − 27𝑀/𝑅 + 6𝑀2/𝑅2 + 158𝑄2/3𝑅2 − 22𝑄2/3𝑀𝑅 − 14𝑀𝑄2/𝑅3 − 16𝑄4/3𝑅4 − 4𝑄4/𝑀2𝑅2]2𝑅4 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) cos (2𝜔𝑠)
+ 3𝑀[2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 + 6𝑄2/𝑅2 − 10𝑄2/3𝑀𝑅 − 34𝑀𝑄2/𝑅3 + 4𝑄4/𝑀2𝑅2]2𝑅4 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) , (39)

𝐶𝜑 = −6𝑀𝜔0 [1 − 3𝑀/𝑅 + 2𝑀2/𝑅2 + 5𝑄2/𝑅2 − 4𝑄2/3𝑀𝑅 − 8𝑀𝑄2/3𝑅3 − 𝑄4/𝑅4 − 𝑄4/𝑀𝑅3]𝜔𝑅5 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) sin (2𝜔𝑠) , (40)

𝐶𝑡𝑞 = 𝑞𝑄√𝑀/𝑅 − 𝑄2/𝑅2√1 − 6𝑀/𝑅 + 𝑄2/𝑅2 [3𝑀/𝑅 − 31𝑀2/2𝑅2 + 15𝑀3/𝑅3 + 𝑄2/𝑅2 + 3𝑀𝑄2/𝑅3 − 7𝑀2𝑄2/𝑅4]4𝜋𝑚𝑀𝑅3√1 − 3𝑀/𝑅 + 2𝑄2/𝑅2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) sin (2𝜔𝑠) , (41)

𝐶𝑟𝑞
= 𝑞𝑄√1 − 3𝑀/𝑅 + 2𝑄2/𝑅2 [7𝑀/𝑅 − 61𝑀2/𝑅2 + 169𝑀3/𝑅3 − 150𝑀4/𝑅4 + 3𝑄2/𝑅2 + 11𝑀𝑄2/𝑅3 − 130𝑀2𝑄2/𝑅4 + 198𝑀3𝑄2/𝑅5]4𝜋𝑚𝑀𝑅3 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅 + 𝑄2/𝑅2)⋅ cos (2𝜔𝑠)
− 𝑞𝑄√1 − 3𝑀/𝑅 + 2𝑄2/𝑅2 [𝑀/𝑅 + 5𝑀2/𝑅2 − 45𝑀3/𝑅3 + 54𝑀4/𝑅4 − 3𝑄2/𝑅2 + 21𝑀𝑄2/𝑅3 − 2𝑀2𝑄2/𝑅4 − 54𝑀3𝑄2/𝑅5]4𝜋𝑚𝑀𝑅3 (1 − 3𝑀/𝑅 + 2𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) ,

(42)

𝐶𝜑𝑞 = 0. (43)

Here we have not used any approximation in 𝐶𝑖, (𝑖 =𝑟, 𝜃, 𝜙) but in what follows we neglect terms of higher order
of the small parameters 𝑀/𝑅, 𝑄/𝑀, and 𝑞/𝑚. Solving the
matrix equation (10) for 𝑏𝜇 is similar to the approach used
in the previous section (for the first-order geodesic deviation
vector 𝑛𝜇) which contains the terms with characteristic
frequency 𝜔. Here we are only interested in a particular
solution because of the oscillating general solution with the
angular frequency𝜔 already taken into account for 𝑛𝜇(𝑠).The
particular solution of the above equation which is containing

the oscillating termswith the angular frequency 2𝜔, the linear
terms in the proper time 𝑠, and constants. To obtain the
trajectory𝑥𝜇 according to (9), we need to calculate (1/2)𝛿2𝑥𝜇.
Also for 𝑥𝜇, the perihelion is extracted by 𝜔𝑠 = 2𝑘𝜋 and the
aphelion is derived by 𝜔𝑠 = (1 + 2𝑘)𝜋, where 𝑘 ∈ 𝑍.

In Appendix B, we have put the particular solution of
the above equation, 𝑏𝜇, the second-order geodesic deviation𝛿2𝑥𝜇, and the semimajor axis 𝑎 and eccentricity 𝑒, respec-
tively.

Finally, successive approximation brings us to trajectory
by substituting 𝑠(𝜑) to 𝜑(𝑠)

𝑟𝑅 = 1 − (𝑛𝑟0𝑅 ) cos( 𝜔𝜔0𝜑) + (𝑛𝑟0𝑅 )2 [ (3 − 5𝑀/𝑅 − 30𝑀2/𝑅2 + 72𝑀3/𝑅3 + 7𝑄2/𝑅2 − 7𝑄2/𝑀𝑅)2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2
+ (1 − 7𝑀/𝑅 + 10𝑀2/𝑅2 + 61𝑄2/2𝑅2 − 8𝑄2/3𝑀𝑅)2 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) cos(2𝜔𝜔0 𝜑)+ (3/2)𝑄𝑞32𝜋𝑀𝑚(1 − 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2
+ (19/2)𝑄𝑞32𝜋𝑀𝑚(1 − 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2 cos(2𝜔𝜔0 𝜑)] + ⋅ ⋅ ⋅

(44)



Advances in High Energy Physics 7

In the Schwarzschild limit, we have an elliptical orbit with [2]

𝑎 = 𝑅 + (𝑛𝑟0)2𝑅 [(2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3)(1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2 ] , (45)

𝑒 = 𝑛𝑟0 (1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2𝑅 (1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2 + ((𝑛𝑟0)2 /𝑅) (2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3) = 𝑛𝑟0𝑅 + O((𝑛𝑟0)3𝑅3 ) . (46)

Also, for the Schwarzschild case the shape of the orbit is
described up to second-order of (𝑛𝑟0/𝑅) as𝑟 (𝜑)𝑅 = 1 − (𝑛𝑟0𝑅 ) cos( 𝜔𝜔0𝜑) + (𝑛𝑟0𝑅 )2

⋅ [3 − 5𝑀/𝑅 − 30𝑀2/𝑅2 + 72𝑀3/𝑅32 (1 − 2𝑀/𝑅) (1 − 6𝑀/𝑅)2
+ (1 − 5𝑀/𝑅)2 (1 − 6𝑀/𝑅)cos(2𝜔𝜔0 𝜑)] + ⋅ ⋅ ⋅ .

(47)

which is in agreement with equation (62) of reference [2].

5. Third-Order Geodesic Deviation and
Poincaré-Lindstedt’s Method

In the previous section, we have calculated the trajectory
of charged particles up to second-order. To find a more
accurate trajectory, we need to obtain the higher-order terms
of expansion (9). Using the first and second-order solutions
and third-order equation (A.2) for 𝛿3𝑥𝜇, we have

(𝑚11 𝑚12 𝑚14𝑚21 𝑚22 𝑚24𝑚41 𝑚42 𝑚44)(𝛿3𝑡𝛿3𝑟𝛿3𝜑) = 𝜖3(𝐷𝑡𝐷𝑟𝐷𝜑), (48)

where𝑚𝑖𝑗 are defined in (20) and the coefficients𝐷𝑖0,𝐷𝑖0𝑞,𝐷𝑖1,𝐷𝑖1𝑞,𝐷𝑖3, and𝐷𝑖3𝑞, (𝑖 = 𝑡, 𝑟, 𝜑) are functions of𝑀, 𝑅, 𝑞, and 𝑄𝐷𝑡 = (𝐷𝑡1 + 𝐷𝑡1𝑞) cos (𝜔𝑠) + (𝐷𝑡3 + 𝐷𝑡3𝑞) cos (3𝜔𝑠)+ 𝐷𝑡0 + 𝐷𝑡0𝑞,𝐷𝑟 = (𝐷𝑟1 + 𝐷𝑟1𝑞) cos (𝜔𝑠) + (𝐷𝑟3 + 𝐷𝑟3𝑞) cos (3𝜔𝑠)+ 𝐷𝑟0 + 𝐷𝑟0𝑞,𝐷𝜑 = (𝐷𝜑1 + 𝐷𝜑1𝑞) cos (𝜔𝑠) + (𝐷𝜑3 + 𝐷𝜑3𝑞) cos (3𝜔𝑠)+ 𝐷𝜑0 + 𝐷𝜑0𝑞.
(49)

As one can see the right-hand side of (48) has a frequency that
is the same as the eigenvalues of the differential matrix in the
left-hand side (resonant terms). This makes a new problem,

i.e., infinite solution for 𝛿3𝑟 which is called the secular term
(growing without bound). For avoiding these unbounded
deviations we use the Poincaré’s method. In this method by
replacing 𝜔 by infinite series in power of the infinitesimal
parameter 𝜖 = 𝑛𝑟0/𝑅 as𝜔 󳨀→ 𝜔𝑝 = 𝜔 + 𝜖𝜔1 + 𝜖2𝜔2 + 𝜖3𝜔3 + ⋅ ⋅ ⋅ , (50)

the correction frequencies 𝜔1, 𝜔2, 𝜔3, ⋅ ⋅ ⋅ can be chosen such
that Poincaré’s resonances vanish, by considering a differen-
tial equation for 𝑥𝜇 as𝑑2𝑑𝑠2 (𝛿𝑟 + 12𝛿2𝑟 + 16𝛿3𝑟) + 𝜔2 (𝛿𝑟 + 12𝛿2𝑟 + 16𝛿3𝑟)= 𝐶𝑟0 + 𝐶𝑟0𝑞 + (𝐶𝑟 + 𝐶𝑟𝑞) cos (2𝜔𝑝𝑠)+ (𝐷𝑟1 + 𝐷𝑟1𝑞) cos (𝜔𝑝𝑠)+ (𝐷𝑟3 + 𝐷𝑟3𝑞) cos (3𝜔𝑝𝑠) + 𝐷𝑟0 + 𝐷𝑟0𝑞.

(51)

Now, by developing both of the sides in terms of a series of
the parameter 𝜖, for avoiding the secular terms, we find some
algebraic relations on 𝜔1, 𝜔2, 𝜔3, ⋅ ⋅ ⋅ . In the Schwarzschild
limit, we have [4]

𝜔𝑝 = 𝑀1/2√1 − 6𝑀/𝑅𝑅3/2√1 − 3𝑀/𝑅
− 𝜖2 3𝑀3/2 (6 − 37𝑀/𝑅)4𝑅5/2√1 − 3𝑀/𝑅 (1 − 6𝑀/𝑅)3/2 ,

(52)

where 𝜖2 = (𝑛𝑟0)2/𝑅2. The resonant terms will also
appear at the fifth-order approximation; by terms
cos5(𝑤𝑠), sin3(𝑤𝑠) cos2(𝑤𝑠), etc., this problem can be
solved in a similar way.

Finally, we note that the electric charge of any celestial
body is practically close to zero anyway. Therefore, it is
worth investigating the geodesic deviation and higher-order
geodesic deviations in a more realistic background such as
the Schwarzschild metric in a strong magnetic dipole field or
magnetized black holes [26–28].The study of themwill be the
subject of the future investigations.

6. Conclusion and Discussion

Many of significant successes in general relativity are
obtained by approximation methods. One of the most
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important approximation scheme in general relativity is the
post-Newtonian approximation, an expansion with a small
parameter which is the ratio of the velocity of matter to
the speed of light. A novel approximation method was also
proposed by Kerner et al. which is based on the world-line
deviations [2].

The calculation of the perihelion advance bymeans of the
higher-order geodesic deviation method for neutral particles
in different gravitational fields such as Schwarzschild and
Kerr metric was first studied in several papers [2, 4]. In
the present paper by using of the higher-order geodesic
deviation method for charged particles [7], we applied this
approximation method to charged particles in the Reissner-
Nordstrom space-time.

We first started with an orbital motion which is close
to a circular orbit with constant angular velocity which is
considered as zeroth-approximation (unperturbed circular
orbitalmotion)with the orbital frequency𝜔0. In the next step,
we solved the first- and second-order deviation equations
which reduced to a system of the second-order linear dif-
ferential equations with constant coefficients. The solutions
are harmonic oscillators with characteristic frequency. From
(37), the first- and second-order corrections are oscillating
terms with angular frequency 𝜔 and 2𝜔, respectively.

Finally, we have obtained the new trajectory by adding the
higher-order geodesic deviations (nonlinear effects) to the
circular one (44).The advantage of this approach is to get the
relativistic trajectories of planets without using Newtonian
and post-Newtonian approximations for arbitrary values of
quantity𝑀/𝑅.
Appendix

A.

For solving the third-order geodesic deviation equation, we
should invoke to Poincare’s method. For this purpose, it is
better to write the third-order geodesic deviation as 𝛿3𝑥𝜇.The

third-order geodesic deviation equation 𝛿3𝑥𝜇 is related to the
third-order geodesic deviation vector ℎ𝜇𝛿3𝑥𝜇= 𝜖3 [ℎ𝜇 − 3Γ𝜇

𝜆𝜌
𝑛𝜆𝑏] + (𝜕𝜅Γ𝜇𝜆] − 2Γ𝜇𝜆𝜎Γ𝜎𝜅]) 𝑛𝜅𝑛𝜆𝑛]] , (A.1)

where ℎ𝜇 = 𝐷𝑏𝜇/𝐷𝑝. We derive the third-order geodesic
deviation equation as

𝑑2𝛿3𝑥𝜇𝑑𝑠2 + (2Γ𝜇
𝜆]𝑢𝜆 − 𝑞𝑚𝐹𝜇]) 𝑑𝛿3𝑥]𝑑𝑠 + (𝜕𝜎Γ𝜇𝜆𝜌𝑢𝜆𝑢𝜌− 𝑞𝑚𝑢]𝜕𝜎𝐹𝜇]) 𝛿3𝑥𝜎 =

− 6Γ𝜇
𝜆𝜌

𝑑𝛿𝑥𝜆𝑑𝑠 𝑑𝛿2𝑥𝜌𝑑𝑠 − 3𝛿𝑥𝜎 (𝜕𝜏𝜕𝜎Γ𝜇𝜆𝜌) 𝑢𝜆 (𝛿2𝑥𝜏𝑢𝜌
+ 2𝛿𝑥𝜏 𝑑𝛿𝑥𝜌𝑑𝑠 ) − 6 (𝜕𝜎Γ𝜇𝜆𝜌)(𝛿𝑥𝜎𝑢𝜆 𝑑𝛿2𝑥𝜌𝑑𝑠
+ 𝛿𝑥𝜎 𝑑𝛿𝑥𝜆𝑑𝑠 𝑑𝛿𝑥𝜌𝑑𝑠 + 𝛿2𝑥𝜎𝑢𝜆 𝑑𝛿𝑥𝜌𝑑𝑠 )
− 𝛿𝑥𝜎𝛿𝑥𝜏𝛿𝑥] (𝜕𝜏𝜕𝜎𝜕]Γ𝜇𝜆𝜌) 𝑢𝜆𝑢𝜌 + 𝑞𝑚⋅ 𝑑𝑛]𝑑𝑠 [(𝜕𝜎𝐹𝜇]) 𝛿2𝑥𝜎 + (𝜕𝜎𝜕𝜏𝐹𝜇]) 𝑛𝜎𝑛𝜏] + 𝑞𝑚⋅ 𝑛𝜎 [𝑑𝛿2𝑥]𝑑𝑠 (𝜕𝜎𝐹𝜇]) + (𝜕𝜎𝜕𝜏𝐹𝜇]) 𝛿2𝑥𝜏𝑢]] ,

(A.2)

and by substituting 𝛿3𝑥𝜇 in term of ℎ𝜇 into above equation,
we obtain (72) for case 𝑞 = 0 [2].
B.

The second-order geodesic deviation vector 𝑏𝜇 is
𝑏𝑡 = (𝑛𝑟0)2𝑀(𝜀 − 𝑞𝑄/4𝜋𝑚𝑅)𝑅3 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅)2 [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − (10/3) (𝑄2/𝑀𝑅))(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠

+ (2 − 13𝑀/𝑅 + (79/6) (𝑄2/𝑀𝑅)) sin (2𝜔𝑠)𝜔 − 6𝑞𝑄𝑤𝑠 + 19𝑞𝑄 sin (2𝜔𝑠)32𝜋𝑚𝑀𝜔 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2] ,
(B.1)

𝑏𝑟 = (𝑛𝑟0)2𝑀2𝑅2 (𝑀/𝑅 − 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − (10/3) (𝑄2/𝑀𝑅))(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)
+ (2 + 5𝑀𝑅 − 283 𝑄2𝑀𝑅) cos (2𝜔𝑠) + 3𝑞𝑄 + 19𝑞𝑄 cos (2𝜔𝑠)16𝜋𝑚𝑀(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2] ,

(B.2)

𝑏𝜑 = (𝑛𝑟0)2 𝜔0𝑀𝑅3 (𝑀/𝑅 − 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − (10/3) (𝑄2/𝑀𝑅))(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠
+ (1 − 8𝑀/𝑅) sin (2𝜔𝑠)2𝜔 − 6𝑞𝑄𝑠 + 𝑞𝑄 (31 − 196𝑀/𝑅) sin (2𝜔𝑠)32𝜋𝑚𝑀(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) (1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2] .

(B.3)
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As explained in Section 2 the second-order geodesic
deviation, (𝛿2𝑥 = 𝑏𝜇 − Γ𝜇]𝜆𝑛]𝑛𝜆), is given by

𝛿2𝑡 = (𝑛𝑟0)2𝑀(𝜀 − 𝑞𝑄/4𝜋𝑚𝑅)𝑅3 [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − 10𝑄2/3𝑀𝑅)(1 − 2𝑀/𝑅)2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠
+ (2 − 15𝑀/𝑅 + 14𝑀2/𝑅2 − 79𝑄2/6𝑀𝑅) sin (2𝜔𝑠)𝜔 (1 − 2𝑀/𝑅)3 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)
− 6𝑞𝑄𝜔 + 19𝑞𝑄 sin (2𝜔𝑠)32𝜋𝑚𝑀𝜔 (1 − 2𝑀/𝑅)3 (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀R)2] ,

(B.4)

𝛿2𝑟 = (𝑛𝑟0)2𝑀𝑅2 (𝑀/𝑅 − 𝑄2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [(5 − 33𝑀/𝑅 + 90𝑀2/𝑅2 − 72𝑀3/𝑅3 + 5𝑄2/𝑅2 − 5𝑄2/𝑀𝑅)(1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)
+ (−1 + 9𝑀/𝑅 + 33𝑄2/2𝑅2 − 19𝑀2/𝑅2 − (23/2) (𝑀𝑄2/𝑅3) − 8𝑄2/3𝑀𝑅) cos (2𝜔𝑠)(1 − 2𝑀/𝑅 + 𝑄2/𝑅2)
+ 3𝑞𝑄 + 19𝑄𝑞 cos (2𝜔𝑠)32𝜋𝑚𝑀(1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)] ,

(B.5)

𝛿2𝜑 = (𝑛𝑟0)2𝑀𝜔0𝑅3 (𝑀/𝑅 − 𝑄2/𝑅2) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) [−3 (2 − 5𝑀/𝑅 + 18𝑀2/𝑅2 − 10𝑄2/3𝑀𝑅)(1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅) 𝑠
+ (5 − 32𝑀/𝑅) sin (2𝜔𝑠)2𝜔 − 6𝑞𝑄𝑠 + 𝑞𝑄 (31 − 196𝑀/𝑅) sin (2𝜔𝑠)32𝜋𝑚𝑀(1 − 2𝑀/𝑅) (1 − 3𝑀/𝑅)3/2 (1 − 6𝑀/𝑅 +Q2/𝑀𝑅)] ,

(B.6)

and, also, the semimajor axis 𝑎 and eccentricity 𝑒 are
𝑎 = 𝑅 + (𝑛𝑟0)2𝑅 [(2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3 + 15𝑄2/𝑅2 − 13𝑄2/3𝑀𝑅 − 235𝑀𝑄2/4𝑅3)(1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2 ] , (B.7)

𝑒
= 𝑛𝑟0 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀R)2𝑅 (1 − 2𝑀/𝑅 + 𝑄2/𝑅2) (1 − 𝑄2/𝑀𝑅) (1 − 6𝑀/𝑅 + 𝑄2/𝑀𝑅)2 + ((𝑛𝑟0)2 /𝑅) (2 − 9𝑀/𝑅 + 11𝑀2/𝑅2 + 6𝑀3/𝑅3 + 15𝑄2/𝑅2 − 13𝑄2/3𝑀𝑅 − 235𝑀𝑄2/4𝑅3) , (B.8)

in which for massive central objects we have neglected all
terms of order 𝑞𝑄/4𝜋𝑚𝑀.
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In this paper, we study the cosmological analysis of the modified holographic Ricci dark energy model and reconstruct different
scalar field models in the context of Chern-Simons modified gravity. We investigate the deceleration parameter, which shows
that the universe is in the accelerating expansion phase. The equation of state parameter in this case also favors the fact that
dark energy is the dominant component of universe, which is responsible for the accelerated expansion. A number of scalar
fields, such as quintessence, tachyon, K-essence, and dilaton models, are reconstructed using modified holographic Ricci dark
energy model in the context of dynamical CS modified gravity. The quintessence and K-essence models represent exponentially
increasing behaviors, while tachyon model shows decreasing behavior. Unfortunately, the dilaton model has no numerical solution
for modified holographic Ricci dark energy model in the framework of dynamical Chern-Simons modified gravity.

1. Introduction

A large number of evidences have been provided in the
favor of accelerated expansion of the universe by Type Ia
supernovae [1, 2], Cosmic Microwave Background (CMB)
[3], weak lensing [4], Large Scale Structures [5, 6], and
integrated Sachs-Wolfe effect [7, 8]. It is postulated that
there exists a component in the universe which has negative
pressure and is responsible for the accelerated expansion of
the universe, called dark energy (DE). The most familiar
candidate of DE model is cosmological constant Λ which
satisfies the cosmological observations [9, 10] but fails to
resolve the fine tuning problem and cosmic coincidence [11].
In literature, there are many DE models such as an evolving
canonical scalar field [12, 13] quintessence, the phantom
energy [14, 15], and quintom energy [16–18].

In recent studies, to understand the nature of universe, a
new DE model has been constructed in the context of quan-
tum gravity on holographic principle named holographic
dark energy (HDE) model [19–22]. This principle is exten-
sively used to study the quantum behavior of black holes.The
energy density of HDE is defined as 𝜌 = 3𝑐2𝑀2𝑝𝑙𝐿−2, where 𝑐
is constant, 𝑀𝑝𝑙 is Plank mass, and 𝐿 is supposed to be size

of the universe. For Hubble radius 𝐻−1, this HDE model’s
density is very similar to the observational results. Gao et
al. [23], motivated by the holographic principle, introduced
a new DE model, which was inversely proportional to
Ricci scalar curvature called Ricci dark energy (RDE). Their
investigation shows that RDE model solves the causality
problem and the evolution of density perturbations of matter
power spectra and CMB anisotropy is not much affected
by such modification. Granda and Oliveros [24] introduced
a new infrared cut-off for HDE model and reconstructed
the potentials and fields for different DE models such as
the quintessence, tachyon, K-essence, and dilaton for FRW
universe. Karami and Fehri [25] using Granda and Oliveros
cut-off studied the nonflat FRW universe to find the DE
density, deceleration parameter, and equation of state (EoS).

Jackiw and Pi [26] introduced Chern-Simons (CS) modi-
fied gravity, in which the Einstein-Hilbert action is modified
as the sum of parity-violating CS term and scalar field. Silva
and Santos [27] analyzed the RDE of FRW universe and
found it to be similar to GCG in the context of CS modified
gravity. Jamil and Sarfraz [28] did the same for amended FRW
universe and presented their results graphically. Jawad and
Sohail [29] considering modified QCD ghost dark energy
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model investigated the dynamics of scalar field and potentials
of various scalar field models in the framework of dynamical
CS modified gravity. Jamil and Sarfraz [30] considering
HDE model found the accelerated expansion behavior of
the universe under certain restrictions on the parameter 𝛼.
We studied the correspondence between quintessence, K-
essence, tachyon, and dilaton field models and holographic
dark energy model. Pasqua et al. [31] investigated the HDE,
modified holographic Ricci dark energy (MHRDE), and
another model, which is a combination of higher-order
derivatives of the Hubble parameter in the framework of CS
modified gravity.

In this paper, working on same lines using the MHRDE
model, we explored the energy density, deceleration param-
eter, EoS parameter, and correspondence between different
models. The paper is organized in following order. The basic
formalism of CS modified gravity is discussed in Section 2.
Section 3 is devoted for the investigation of energy density,
deceleration parameter, and EoS parameter. The correspon-
dence between scalar field models such as quintessence,
tachyon, K-essence, and dilaton model is given in Section 4.
Summery and concluding remarks are in the last section.

2. ABC of Chern-Simons Modified Gravity

Jackiw and Pi [26] modify the 4-dimensional GR theory
introducing a Chern-Simons term in Einstein-Hilbert action
given by [32, 33]

𝑆 = ∫𝑑4𝑥√−𝑔[𝜒𝑅 + 𝜁4Θ ∗𝑅𝑅
− 𝜂2 (𝑔𝜇]∇𝜇Θ∇]Θ + 2𝑉 [Θ])] + 𝑆𝑚𝑎𝑡,

(1)

where the terms used in this relation are defined as 𝜒 =(16𝜋𝐺)−1, 𝑅 is the usual Ricci scalar, the term ∗𝑅𝑅 is defined
as ∗𝑅𝑅 = ∗𝑅𝑎𝑏𝑐𝑑𝑅𝑏𝑎𝑐𝑑, is topological invariant, called Pon-
tryagin term where ∗𝑅𝑎𝑏𝑐𝑑 is the dual of Riemann tensor𝑅𝑏𝑎𝑐𝑑 can be expressed as ∗𝑅𝑎𝑏𝑐𝑑 = (1/2)𝜖𝑐𝑑𝑒𝑓𝑅𝑎𝑏𝑒𝑓, ∇𝜇 is
titled as covariant derivative, the dimensionless parameters𝜁 and 𝜂 are treated here as coupling constants, and 𝑉[Θ] is
potential and in the context of string theory it is assumed
that 𝑉[Θ] = 0. The most important term Θ, called CS
coupling field, works as a deformation function of the space-
time which is always other than constant (if Θ is constant
function, then the CS theory reduces to GR).

The variation of Einstein-Hilbert action 𝑆 corresponding
to metric tensor 𝑔𝜇] and scalar field Θ resulted into a set of
field equations of CS modified gravity given by𝐺𝜇] + 𝑙𝐶𝜇] = 𝜒𝑇𝜇], (2)

𝑔𝜇]∇𝜇∇]Θ = −𝜁4∗𝑅𝑅, (3)

where 𝐺𝜇], 𝐶𝜇], 𝑙, and 𝑇𝜇] are called Einstein tensor,
Cotton tensor (C-tensor), coupling constant, and energy-
momentum tensor, respectively. The energy-momentum ten-
sor is a combination of matter part 𝑇𝑚𝜇] and the external field

part 𝑇Θ𝜇]. Themathematical expressions for these terms are as
follows:

𝐶𝜇] = − 12√−𝑔 [𝜐𝜎𝜖𝜎𝜇𝜁𝜂∇𝜁𝑅]𝜂 + 12𝜐𝜎𝜏𝜖𝜎]𝜁𝜂𝑅𝜏𝜇𝜁𝜂]+ (𝜇 ←→ ]) , (4)

𝑇𝑚𝜇] = (𝜌 + 𝑝) 𝑢𝜇𝑢] − 𝑝𝑔𝜇], (5)

𝑇Θ𝜇] = 𝜁 (𝜕𝜇Θ) (𝜕]Θ) − 𝜁2𝑔𝜇] (𝜕𝜆Θ) (𝜕𝜆Θ) . (6)

Here 𝜌 is energy density, 𝑝 is pressure, and 𝑢𝜇 = (1, 0, 0, 0)
denotes standard time-like 4-velocity, respectively. The terms𝜐𝜎 ≡ ∇𝜎Θ and 𝜐𝜎𝜏 ≡ ∇𝜎∇𝜏Θ. On the basis of choice of (𝜁 ̸= 0
and 𝜒 ̸= 0) and (𝜒 ̸= 0 and 𝜁 = 0), this theory is divided into
two distinct theories named dynamical and nondynamical
Chern-Simons modified gravity, respectively.

3. Modified Holographic Ricci Dark
Energy Model

In this paper, we studied FRW universe in the framework of
dynamical CSmodified gravity. By the 00-component of field
equation for FRW universe using (2), we get

𝐻2 = 13𝜌𝐷 + 16Θ̇2. (7)

Here 𝐻 = ̇𝑎/𝑎 is called Hubble parameter and ̇𝑎 is time
derivative of scale factor 𝑎(𝑡). The Pontryagin term ∗𝑅𝑅
vanishes for FRWmetric identically, so (3) takes the form𝑔𝜇]∇𝜇∇]Θ = 𝑔𝜇] [𝜕𝜇𝜕]Θ − Γ𝜌𝜇]𝜕𝜌Θ] = 0. (8)

Keeping in view the fact that Θ is a function of space-time,
we consider Θ = Θ(𝑡); (8) turns out to beΘ̇ = 𝐶𝑎−3. (9)𝐶 is constant of integration other than zero (as if this𝐶 is zero
then the function Θ becomes constant which reduces the CS
theory to GR).

Using holographic principle, Hooft [34] proposed very
simple and convenient model to investigate the issues raised
in DE, named as HDEmodel. This model is used in different
scenarios such as Hubble radius and cosmological conformal
time of particle horizon [35, 36]. An interesting holographic
RDEmodel defined as 𝐿 = |𝑅|−1/2, where 𝑅 is Ricci curvature
scalar, was proposed by Gao et al [37].

In this paper, we use HDE model suggested by Granda
and Oliveros in [22] defined as

𝜌𝑀𝐻𝑅𝐷𝐸 = 2𝛼 − 𝛽 (𝐻̇ + 3𝛼2 𝐻2) , (10)

and here𝛼 and𝛽 are constants. It is worthmentioning here, in
limiting case (𝛼 = 4/3, 𝛽 = 1), that the Granda and Oliveros
IR cut-off reduces to Gao et al.’s IR cut-off. Using (9) and (10)
in (7), we arrive at

𝐻2 = 23 (𝛼 − 𝛽) (𝐻̇ + 3𝛼2 𝐻2) + 16𝐶2𝑎−6 (11)
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and solving the differential equation, the scale factor 𝑎(𝑡) is
explored as

𝑎 (𝑡) = [ 12𝐶1𝐶 (𝛼 − 4) − 3𝐶 (𝛼 − 4)4 𝑡2]1/6 . (12)

To avoid the singular solution, it is provided that 𝛼 ̸= 4. The
Hubble parameter𝐻(𝑡) = ̇𝑎/𝑎 can be evaluated as

𝐻(𝑡) = − 𝐶𝑡 (𝛼 − 4)4 (12𝐶1/𝐶 (𝛼 − 4) − (3/4)𝐶𝑡2 (𝛼 − 4)) . (13)

Since the scale factor has been explored by assuming 𝛽 = 4 in
(10), it takes the form

𝜌𝑀𝐻𝑅𝐷𝐸 = 2𝛼 − 4 (𝐻̇ + 3𝛼2 𝐻2) , (14)

and using corresponding values of 𝐻(𝑡) and 𝐻̇(𝑡), the
expression for MHRDE density turned out to be

𝜌𝑀𝐻𝑅𝐷𝐸 = (𝛼 − 4) (𝐶4𝑡2 (𝛼 − 4)2 (𝛼 − 2) − 32𝐶2𝐶1)3 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)2 . (15)

In terms of redshift parameter, the density is given as

𝜌 (𝑧) = 14 (1 + 𝑧)6 [−𝐶 (𝛼 − 2) + 12𝐶1 (1 + 𝑧)6] . (16)

The energy density of this model is increasing for all values of𝐶, 𝛼 < 2, and 𝐶1 > 0. We plot a graph for different values of
these parameters.

The graphical behavior of the density is exponentially
increasing after 𝑧 > 0 in the context of CS gravity using this
MHRDEmodel.

3.1. Deceleration Parameter. The rate of expansion of the
universe remained unchanged at constant values of ̇𝑎(𝑡) and
deceleration term 𝑞 along with condition imposed on scale
factor 𝑎(𝑡), that is, 𝑎(𝑡) ∝ 𝑡, where 𝑡 is cosmic time. The
Hubble parameter𝐻 remains constant and deceleration term𝑞 = −1, when de Sitter and steady-state universes are
under consideration. Furthermore, the deceleration parame-
ter varies with time for some universes available in literature.
Using the variational values of 𝐻 and 𝑞, we can classify all
the defined universe models whether they are in expansion
or contraction mode and acceleration or deceleration mode:

(1) 𝐻 > 0, 𝑞 > 0, expanding and decelerating
(2) 𝐻 > 0, 𝑞 = 0, expanding, zero deceleration
(3) 𝐻 < 0, 𝑞 = 0, contracting, zero deceleration
(4) 𝐻 < 0, 𝑞 > 0, contracting and decelerating
(5) 𝐻 < 0, 𝑞 < 0, contracting and accelerating
(6) 𝐻 = 0, 𝑞 = 0, static.

The deceleration parameter 𝑞 in terms of Hubble parameter𝐻 is defined as

𝑞 (𝑡) = −1 − 𝐻̇𝐻2 , (17)

where 𝐻̇ represents the derivative of 𝐻 with respect to t,
termed as

𝐻̇ (𝑡) = −𝐶2 (𝛼 − 4)2 (𝐶2𝑡2 (𝛼 − 4)2 + 16𝐶1)3 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)2 . (18)

Substituting these values in (17), we find deceleration param-
eter 𝑞:

𝑞 (𝑡) = 2 + 48𝐶1(𝛼 − 4)2 𝐶2𝑡2 . (19)

Representing in the form of redshift, it becomes

𝑞 (𝑧) = 2 [𝐶 (𝛼 − 4) − 30𝐶1 (1 + 𝑧)6]𝐶 (𝛼 − 4) − 12𝐶1 (1 + 𝑧)6 (20)

It is obvious that the deceleration parameter depends on𝐶, 𝐶1, 𝛼, and redshift parameter 𝑧. At present epoch 𝑧 = 0,
the deceleration parameter 𝑞 < 0 for each case given below:

(1) 𝛼 < 4,𝐶1 < 0,12𝐶1𝛼 − 4 < 𝐶 < 30𝐶1𝛼 − 4 ,(2) 𝛼 > 4,𝐶1 < 0,30𝐶1𝛼 − 4 < 𝐶 < 12𝐶1𝛼 − 4 ,(3) 𝛼 < 4,𝐶1 > 0,30𝐶1𝛼 − 4 < 𝐶 < 12𝐶1𝛼 − 4 ,(4) 𝛼 > 4,𝐶1 > 0,12𝐶1𝛼 − 4 < 𝐶 < 30𝐶1𝛼 − 4 .

(21)

For all these conditions, the model under consideration in CS
gravity advocates that the universe is in accelerated expansion
phase.

3.2. Equation of State Parameter. The nature of component
which is dominating universe can be studied with the EoS
parameter 𝜔. In fact, it illustrates the era of dominance of
universe by certain component. For example, 𝜔 = 0, 1/3, and1 predict that the universe is under dust, radiation, and stiff
fluid influence, respectively. Meanwhile, 𝜔 = −1/3, −1, and𝜔 < −1 stand for quintessence DE, ΛCDM, and Phantom
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eras, respectively. Now, differentiating (15) with respect to
time 𝑡,̇𝜌 (𝑡)
= −2𝐶4𝑡 (𝛼 − 4)3 (𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (𝛼 − 6))3 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)3 . (22)

The conservation equation in CSmodified gravity is given by
[38] ̇𝜌 + 3𝐻 (𝜌 + 𝑝) = 0. (23)

The expression for EoS parameter 𝜔 can be explored using
(23) such that

𝜔 (𝑡) = −1 − ̇𝜌 (𝑡)3𝐻 (𝑡) 𝜌 (𝑡) . (24)

Making use of (13), (18), and (22) in (24), we found analytic
solution of EoS parameter as given below:

𝜔 (𝑡) = −1 − −2𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) − 32𝐶1 (𝛼 − 6)𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) − 32𝐶1 . (25)

The EoS parameter 𝜔 in terms of redshift parameter 𝑧 looks
like

𝜔 (𝑧) = 𝐶 (𝛼 − 2) − 36𝐶1 (1 + 𝑧)6𝐶 (𝛼 − 2) − 12𝐶1 (1 + 𝑧)6 . (26)

Obviously, EoS parameter 𝜔 is a function of variable redshift
parameter 𝑧 depending on𝐶, 𝐶1, and 𝛼. At the present epoch𝑧 = 0 the EoS is𝜔 < −1 for each of the cases described below:(1) 𝐶 < 0,𝐶1 < 0,12𝐶1 + 2𝐶𝐶 < 𝛼 < 24𝐶1 + 2𝐶𝐶 ,

(2) 𝐶 < 0,𝐶1 > 0,24𝐶1 + 2𝐶𝐶 < 𝛼 < 12𝐶1 + 2𝐶𝐶 ,
(3) 𝐶 > 0,𝐶1 < 0,24𝐶1 + 2𝐶𝐶 < 𝛼 < 12𝐶1 + 2𝐶𝐶 ,
(4) 𝐶 > 0,𝐶1 > 0,12𝐶1 + 2𝐶𝐶 < 𝛼 < 24𝐶1 + 2𝐶𝐶 .

(27)

For different values of these parameters, the EoS 𝜔 < −1
favors the fact that the universe is dominated by DE.

4. Study of MHRDE Model Using Scalar
Field Models

In this section, we discuss different scalar field models like
quintessence, tachyon, K-essence, and dilaton models in the
framework of CS modified gravity. To study the behavior
of quantum gravity, we explore the potential and scalar
field.

4.1. Quintessence Model. ADEmodel is developed to explain
the late-time cosmic acceleration called quintessence, which
is a simplest scalar field that has no theoretical problem
like ghosts and Laplacian instabilities appearance [11]. This
model is useful to settle down the issue of fine-tuning
in cosmology considering the time-dependent EoS. Using
this model, we can explain the cosmic acceleration hav-
ing negative pressure when potential energy dominates the
kinetic energy. The energy and pressure densities are defined
as

𝜌𝑄 = 12 ̇𝜙2 + 𝑉 (𝜙) ,
𝑝𝑄 = 12 ̇𝜙2 − 𝑉 (𝜙) , (28)

where the scalar field 𝜙 is differentiated with respect to 𝑡. The
EoS parameter for the quintessence is

𝜔𝜙 = (1/2) ̇𝜙2 − 𝑉 (𝜙)(1/2) ̇𝜙2 + 𝑉 (𝜙) . (29)

The comparison of EoS 𝜔𝜙 formulated for quintessence
model given in (29) and EoS 𝜔 calculated for MHRDEmodal
given in (25) turned as

(1/2) ̇𝜙2 − 𝑉 (𝜙)(1/2) ̇𝜙2 + 𝑉 (𝜙)
= 𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 32𝐶1 (𝛼 − 5)𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) − 32𝐶1 . (30)

Now, equating density of quintessence model given in (28)
and density evaluated from MHRDE model represented in
(15) are expressed as

12 ̇𝜙2 + 𝑉 (𝜙)
= (𝛼 − 4) (𝐶4𝑡2 (𝛼 − 4)2 (𝛼 − 2) − 32𝐶2𝐶1)3 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)2 . (31)

Using (30) and (31), we arrive at

̇𝜙2
= 2𝐶2 (𝛼 − 4) (𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (𝛼 − 6))3 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)2

(32)
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and integrating the last equation with respect to 𝑡,
𝜙 (𝑡)
= √23 [[[−√2 tanh−1( √2𝐶𝑡 (𝛼 − 4)3/2√𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (𝛼 − 6))

+ √𝛼 − 2𝛼 − 4 ln [𝐶(𝐶𝑡 (𝛼2 − 2𝛼 + 8) + √𝛼 − 2
× √𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (𝛼 − 6))]]]] .

(33)

In terms of redshift parameter 𝑧, it turns out to be

𝜙 (𝑧) = − 23 (𝛼 − 4) tanh−1 [[[
(𝛼 − 4)3/2√4𝐶/ (1 + 𝑧)6 + 48𝐶1/ (4 − 𝛼)√8 − 2𝛼√(𝛼 − 4) (−𝑐 (𝛼 − 2) + 24 (1 + 𝑧)6 𝐶1) / (1 + 𝑧)6]]] + (𝛼 − 4)√

2 (𝛼 − 2)3
⋅ log[[[

2𝐶√3 (√𝛼 − 2√ (𝛼 − 4) (−𝑐 (𝛼 − 2) + 24 (1 + 𝑧)
6 𝐶1)(1 + 𝑧)6 + √𝑐 (8 − 6𝛼 + 𝛼2)√4/ (1 + 𝑧)6 + 48𝐶1/𝐶 (4 − 𝛼)2√4 − 𝛼 )]]] .

(34)

Again using (30) and (31), the potential for quintessence
model can be explored as

𝑉 (𝑡) = − 16𝐶2𝐶1 (𝛼 − 4)23 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)2 . (35)

And making it convenient to discuss, we change into redshift
parameter

𝑉(𝑧) = −3𝐶1 (1 + 𝑧)12 . (36)

It is obvious that the potential of quintessence model depends
on the values of constant of integration 𝐶1 only. It shows the
increasing behavior for all𝐶1 < 0 and decreasing behavior for𝐶1 > 0. It is interesting that the parameters 𝐶 and 𝛼 do not
appear in the final expression of potential in the framework
of CS Modified gravity.

4.2. Tachyon Model. Much attention has been given to
tachyon field models in the last few decades in string the-
ory and cosmology [39–45]. In fact, isotropic cosmological
models whose radius depends on time and their potential can
be constructed using minimally coupled scalar field model
[46]. The same procedure for the correspondence between
minimally coupled scalar field models and tachyon can be
utilized to study the similar cosmological evolution [45].The

energy and pressure densities for the tachyon fieldsmodel are
expressed as

𝜌 = 𝑉 (𝜙)√1 − ̇𝜙2 ,
𝑝 = −𝑉 (𝜙)√1 − ̇𝜙2.

(37)

Since𝑝 = 𝜌𝜔, using the above expressions, the EoS parameter
can be evaluated as

𝜔 = ̇𝜙2 − 1 (38)
The comparison of (25) with (38) gives kinetic energy 𝜙(𝑡)
such that

𝜙 (𝑡)
= √ 𝐶1 (6 − 𝛼)𝐶2 (𝛼 − 4)2 (𝛼 − 2)𝐸[[arcsin(𝑡√

𝐶2 (𝛼 − 4)2 (𝛼 − 2)32𝐶1 ) ;
2𝛼 − 6]] .

(39)

The tachyon potential in this case is

𝑉 (𝑡) = 𝐶2 (𝛼 − 4)3 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)2 × √[𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) − 32𝐶1] [𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 32𝐶1 (𝛼 − 5)]. (40)

Now, the kinetic and potential energies of tachyon model in
terms of redshift parameter 𝑧, respectively, are
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𝜙 (𝑧) = 4√2𝐶1 (𝛼 − 6)√𝐶2 (𝛼 − 2) (𝛼 − 4)2𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐𝐸[[[sin
−1 [[[

√𝐶2 (𝛼 − 2) (𝛼 − 4)2 /𝐶1√4/ (1 + 𝑧)6 + 48𝐶1/𝐶 (4 − 𝛼)4√6𝐶 (4 − 𝛼) ]]] , −
2𝛼 − 6]]] , (41)

𝑉 (𝑧) = −14 (1 + 𝑧)6 (𝐶 (𝛼 − 2) − 12 (1 + 𝑧)6 𝐶1)√1 − 12 (1 + 𝑧)6 (−𝑐 (𝛼 − 2) + 24 (1 + 𝑧)6 𝐶2). (42)

To investigate the behavior of potential, we plot a graph of𝑉(𝑧) versus 𝑧.
The graph plotted for the potential 𝑉(𝑧) of tachyon

model against redshift parameter 𝑧 shows the decreasing
behavior irrespective of the values of parameters 𝛼, 𝐶, and𝐶1. This graph is plotted by taking particular values of these
parameters to elaborate the result.

4.3. K-Essence. Armendariz et al. [47] introduced the
dynamical concept of k-essence to explain the fact of acceler-
ated expansion of universe.This model solves the fine-tuning
problem of parameters. Actually, k-essence is developed on
the principle of dynamical attractor solution; that is why
it works as cosmological constant at the onset of matter
domination. The energy and pressure densities of this model
are given as 𝜌 = 𝑉 (𝜙) (−𝑋 + 3𝑋2) ,

𝑝 = 𝑉 (𝜙) (−𝑋 + 𝑋2) . (43)

𝑋 = ̇𝜙2/2; the EoS parameter for this model is

𝜔 = 1 − 𝑋1 − 3𝑋 (44)

Equating (25) and (44), we obtain

𝑋 (𝑡) = 16𝐶1 (𝛼 − 4)𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (3𝛼 − 14) . (45)

Since 𝑋(𝑡) = ̇𝜙2/2, the integration of the above equation
provides 𝜙(𝑡):
𝜙 (𝑡) = 4𝐶1√(𝛼 − 4) (𝛼 − 2) ln [𝐶(𝐶𝑡 (𝛼2 − 6𝛼 + 8)
+ √𝛼 − 2√𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (3𝛼 − 14))] . (46)

Thekinetic energy𝜙 in terms of redshift parameter 𝑧 is turned
as

𝜙 (𝑧) = 4𝐶1𝑐√𝛼 − 2√(𝛼 − 4) 𝐶1
× log[[[

2𝐶√3√ (𝛼 − 4) (−𝐶 (𝛼 − 2) + 48 (1 + 𝑧)
6 𝐶1)(1 + 𝑧)6

+ √𝐶(8 − 6𝛼 + 𝛼2)√4/ (1 + 𝑧)6 + 48𝐶1/𝐶 (4 − 𝛼)2√4 − 𝛼 ]]] .
(47)

The k-essence potential is calculated using (43), (44), and (25)
as𝑉 (𝑡)

= −𝐶2 (𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (3𝛼 − 14))248𝐶1 (𝐶2𝑡2 (𝛼 − 4)2 − 16𝐶1)2 . (48)

Now, we convert this function in terms of redshift parameter𝑧 and investigate its behavior.

𝑉 (𝑧) = −(𝑐 (𝛼 − 2) − 48 (1 + 𝑧)6 𝐶1)248𝐶2 . (49)

The potential 𝑉(𝑧) is increasing function for all values of𝐶 and 𝛼 at value of constant of integration 𝐶1 = −1.
We plot a graph for particular values of these parameters
just for example. After present epoch 𝑧 = 0, it increases
exponentially.

4.4. Dilaton Model. The negative kinetic energy of the phan-
tom field creates the problem of quantum instability. To
resolve this puzzle of instability, dilaton model is proposed
and further used to study the nature of DE.Thedilaton model
is defined as 4-dimensional effective low-energy model in the
context of string theory.Thepressure and energy densities are
presented as 𝜌 = −𝑋 + 𝑐1𝑒𝜆𝜙𝑋2,𝑝 = −𝑋 + 3𝑐1𝑒𝜆𝜙𝑋2. (50)

𝑋 = ̇𝜙2/2, and 𝑐1 and 𝜆 are positive constants. The EoS
parameter 𝜔 = 𝑝/𝜌 for these densities is calculated as

𝜔 = 1 − 𝑐1𝑒𝜆𝜙1 − 3𝑐1𝑒𝜆𝜙 . (51)

The comparison of (25) with (51) yields

𝑐1𝑒𝜆𝜙 ̇𝜙2 = 16𝐶1 (𝛼 − 4)𝐶2𝑡2 (𝛼 − 4)2 (𝛼 − 2) + 16𝐶1 (3𝛼 − 14) . (52)

Solving for 𝜙(𝑡), we arrive at
𝜙 (𝑡) = 2𝜆 ln[[

𝜆2
⋅ √ 16𝐶1𝐶2 (𝛼 − 4) sinh−1(𝑡√𝐶2 (𝛼 − 4)2 (𝛼 − 2)16𝐶1 (3𝛼 − 14) )]] .

(53)
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Figure 1: Density versus redshift parameter.
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Figure 2: Potential versus redshift parameter.

In terms of redshift parameter 𝑧,

𝜙 (𝑧) = 2𝜆 log[[[√
16𝐶1𝐶2 (𝛼 − 2) sinh−1(

√𝐶2 (𝛼 − 4)2 (𝛼 − 2) /𝐶1 (3𝛼 − 14)√4/ (1 + 𝑧)6 + 48𝐶1/𝐶 (4 − 𝛼))4√3𝐶 (4 − 𝛼) ]]] . (54)

Analytically, it is found that there is no combination of
parameters 𝛼, 𝐶, 𝐶1 for which this function is defined.

5. Summary and Discussion

This work is devoted to study the cosmological analysis of
MHRDE model in the context of CS modified gravity. The
energy density for this model is calculated and observed in
Figure 1. From the graph, it is obvious that density of the
universe for MHRDE model is increasing for all values of
CS modified gravity constants 𝐶, 𝛼 < 2, and 𝐶1 > 0. The
deceleration parameter 𝑞 < 0 for the different combination
of 𝐶, 𝐶1, and 𝛼 which advocates the accelerating expansion.
TheEoS parameter𝜔 < −1 is found, which favors the fact that

DE is dominant at present epoch in case of MHRDE model
in the context of CS modified gravity.

Furthermore, we reconstructed different scalar filedmod-
els using MHRDE in the context of dynamical CS modified
gravity and found interesting results plotting them graphi-
cally. It is obvious that the potential of quintessence model
depends only on the value of constant of integration 𝐶1. It
shows the increasing behavior for all 𝐶1 < 0 and decreasing
behavior for 𝐶1 > 0. It is interesting that the potential in (36)
is independent of CS parameter 𝐶 and MHRDE parameter𝛼 identically, although we are working in the framework of
CSmodified gravity usingMHRDEmodel.The graph plotted
in Figure 2 for the potential of tachyon model shows the
exponentially decreasing behavior irrespective of the values
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Figure 3: Potential versus redshift parameter.

of parameters 𝛼, 𝐶, and 𝐶1. In case of k-essence, the potential
is increasing function for all values of C and 𝛼 at particular
value of 𝐶1 = −1. After present epoch 𝑧 = 0, the graph
increases exponentially as given by Figure 3. Analytically, it
is found that there is no combination of parameters 𝛼, 𝐶, 𝐶1
for which 𝜙(𝑧) is defined in case of dilaton model.
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