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1. Introduction

Operations research or operational research (OR) is a disci-
pline that deals with the application of advanced analytical
methods to help make better decisions. Employing tech-
niques fromothermathematical sciences, such asmathemati-
calmodelling, statistical analysis,mathematical optimization,
and operations research arrives at optimal or near-optimal
solutions to complex decision-making problems. The main
focus of this special issue will be on the new research ideas
and results for the OR. Considering the wide applications of
OR, it seems natural that this journal selected it as the theme
of its special issue.

2. Overview of Works Presented in This
Special Issue

This special issue includes 19 high-quality papers that deal
with different fields in OR. These papers have been accepted
among 54 manuscripts. These papers contain some new,
novel, and innovative techniques and ideas which can be
developed and extended in the further scientific works.

The subjects in data envelopment analysis (DEA) have
occupied three contributions. The DEA is a nonparametric

efficiency estimating technique. One of these papers pro-
posed is “Modified Malmquist productivity index based on
present time value of money.” The other papers were devoted
to interval scale of efficiency and ranking subjects. Also,
two papers have studied road congestion pricing problem.
There are also three contributions on the applications of
fuzzy set theory. Furthermore, fiveworks have been presented
about the differentmethods of optimization. Also, two papers
presented in this special issue are closely related to the risk
models. A new bandwidth allocation model is studied in
one of the published papers. One of the published papers
proposed a model for estimating car delays at bus stops. One
of the contributions reviewed the theories of process control.
Finally, one of the accepted papers considered stochastic 𝑃-
function, stochastic 𝑃

0
-function, and stochastic uniformly 𝑃-

function.

3. Conclusions

The operational research and its applications are one of the
most important fields of appliedmathematics. So, this special
issue focuses on this subject. The aim of this special issue is
to present and extend the applications of the relatively new
approaches and theories for the OR and its applications. The
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editors hope that the special issue will provide new ideas in
the development of OR.
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The classic newsvendor problem focuses onmaximizing the expected profit or minimizing the expected cost when the newsvendor
faces myopic customers. However, it ignores the customer’s bargain-hunting behavior and risk preference measure of the
newsvendor. As a result, we carry out the rational expectation (RE) equilibrium analysis for risk-averse newsvendor facing forward-
looking customers who anticipate future sales and choose purchasing timing to maximize their expected surplus. We propose the
equations satisfied by the RE equilibriumprice and quantity for the risk-averse retailer in general setting and the explicit equilibrium
decisions for the casewhere demand follows the uniformdistribution andutility is a general power function.We identify the impacts
of the system parameters on the RE equilibrium for this specific situation. In particular, we show that the RE equilibrium price for
some risk-averse newsvendors is lower than for a risk-neutral retailer and the RE equilibrium stocking quantity for some risk-averse
newsvendors is higher than for a risk-neutral retailer. We also find that the RE equilibrium sale price for a risk-averse newsvendor
is decreasing in salvage price in some situations.

1. Introduction

1.1. Motivation. Strategic consumer behavior is widely
acknowledged by the retailer and deeply influenced ordering,
pricing, and other marketing decisions for the retailer. A
strategic consumer chooses between a purchase at the initial
full price with the possibility, if inventory remains, of a later
purchase at a salvage price. Recently, it has attracted much
attention by the researchers from supply chain management
and revenue management when the decision maker is risk
neutral. Evidently, not all decision makers are risk neutral.
Indeed, some experimental evidence suggests that for some
products, the so-called high-profit products, the decision
makers are risk averse; see Schweitzer and Cachon [1] for
more details. However, according to our knowledge, few
considered the combined impacts of strategic consumer
behavior and risk aversion on the pricing and ordering
decisions for the newsvendor.

In this paper we study a risk averse retailer’s stocking and
pricing in the presence of strategic consumers.This paper has

three main objectives. First, we obtain the rational expecta-
tion (RE) equilibria under the rational expectations hypoth-
esis firstly proposed by Muth [2] for the risk-averse retailer.
It states that economic outcomes do not dier systematically
from what people expect them to be. We begin with the
classic newsvendor setting, which is a fundamental building
block in the literature, and proceed to incorporate strategic
demand and risk aversion into the model. Second, we would
like to introduce a specific risk averse utility-power utility
to investigate explicitly the impacts of strategic consumer
behavior and risk aversion on newsvendor decisions. The
third objective is to study the impact of systems parameters
on the RE equilibria.

1.2. The Literature Review. The classic newsvendor problem
is a crucial building block of the stochastic inventory theory
because of its simple and elegant structure as well as its
rich managerial insights. It assumes that if any inventory
remains at the end of the period, a discount is used to sell
it or it is disposed of. If the order quantity is smaller than
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the realized demand, the newsvendor loses some profit. The
classic newsvendor model reflects many real situations and
is often used to help make decisions in many industries,
such as fashion and sporting, both at the manufacturing
and sale level. It has been extensively studied over decades
with extensions including different objectives and utility
functions, multiple products with substitution, multiple loca-
tions, different pricing, and marketing strategies. Khouja [3]
builds a taxonomy of the single-period problem literature and
delineates the contribution of the different extensions and
suggests some future directions for research.

One important extension to the classic newsvendor
model is the interface of marketing and operation that pro-
vides an important tool for examining how operational prob-
lem interacts with marketing issues to influence decision-
making at the firm level. There are three research streams
about this extension, one is the newsvendor problem with
pricing whose demand is stimulated by sale price, one is the
newsvendor problemwith inventory whose demand is driven
by inventory, and the other is the newsvendor problem with
marketing whose demand is stimulated by other marketing
instruments. Petruzzi and Dada [4] provided a good review
about the newsvendor problem with pricing that synthesizes
existing results and develops additional results to enrich
existing knowledge base. Yao et al. [5] extended this model to
increasing price elasticity (IPE) mean demand situation and
used this condition to investigate the newsvendor problem
with pricing under stochastic demand distribution class with
increasing generalized failure rate (IGFR) that was presented
in Lariviere and Porteus [6] to study supply coordinationwith
wholesale price contract based on the classic newsvendor
model.

The first paper that takes the inventory as a marketing
measure is by Gerchak andWang [7].They extended the clas-
sical newsvendor model to include endogenous, inventory-
dependent demand for aexogenous price. The demand form
in their paper was multiplicative demand that models actual
demand as a deterministic multiple of a base random
variable with a fixed probability distribution. Balakrishnan
et al. [8] investigated the deterministic counterpart for the
newsvendor problem with inventory. Dana and Petruzzi
[9] extended the classic newsvendor model by assuming
that expected utility maximizing consumers choose between
visiting the firmand consuming an exogenous outside option.
They modeled the stochastic demand as multiplicative form
depending inventory and price and found that the firm holds
more inventories, provides a higher fill rate, attracts more
customers, and earns higher profits when it internalizes the
effect of its inventory on demand. Recently, Balakrishnan
et al. [10] extended the newsvendor problem to general
inventory-dependent demand distribution with given price
and showed that demand stimulation has the effect of increas-
ing the target service level beyond the classical newsvendor
model’s critical ratio. Similar to Dana and Petruzzi [9],
they also addressed the problem of jointly optimizing both
stocking quantity and price for demand-stimulating products
using a multiplicative model to represent the influence of
price and stocking quantity on the demand distribution.
For this model, they showed that the pricing and stocking

decision can be determined sequentially, with the optimal
policy setting higher prices and stock levels than both the
functional policies (demand-driven and critical fractile). Liu
et al. [11] study the impact of supply reliability on a retail firm’s
performance under joint marketing and inventory decisions.
They established a necessary and sufficient condition under
which the maximum unit cost a firm is willing to pay to
improve supply reliability increases in product price and
showed that for two products with the same price, a firm
is willing to pay more to improve supply reliability for the
product with higher product cost. They also found that
a product with a lower marketing cost function always
benefitsmore from improved supply reliability than a product
with a higher marketing cost function. Taylor [12] showed
that when demand is influenced by retailer sales effort, a
properly designed target rebate and return contract achieves
coordination and a win-win outcome. Krishnan et al. [13]
investigated similar problem as Taylor’s [12]. But the retailer
chooses inventories ex ante and promotional effort ex post in
their paper.

Taking advertising as a special marketing instrument,
Gerchak and Parlar [14] studied the newsvendormodel when
multiplicative demand has a distribution with a mean that
is specific concave and increasing in advertising expendi-
ture. They developed a mixed optimization technique which
combines simulation with the first order condition to solve
the previous problem. Khouja and Robbins [15] extended the
model presented by Gerchak and Parlar [14] to three cases of
demand variation as a function of advertising expenditure:
(1) demand has constant variance, (2) demand has constant
coefficient variation, and (3) demand has an increasing coef-
ficient variation. They investigated the newsvendor problem
with advertising under multiplicative demand and obtained
the optimal advertising premium and ordering quantity by
maximizing the expected profit or maximizing the proba-
bility of achieving a target profit under the previous three
situations using particular mean demand and discussed that
the optimal advertising decisions for maximizing profit is
increased with the profit margin. Recently, Wang and Zhou
[16] discussed the supply chain coordination with newsven-
dor under advertisement sensitive demand and proposed
an improved revenue-sharing contract to achieve the supply
chain coordination. Wang et al. [17, 18] investigated the
supply chain coordination with a newsvendor under specific
advertisement and price sensitive demand using improved
revenue sharing contract and combined return and sales
rebate/penalty contract.

It is natural to incorporate the decision maker’s risk
attitude in newsvendor model because anybody has his
own preference when he makes a decision. Many planners
are willing to trade off lower expected profit for downside
protection against possible losses. The literature about risk-
averse newsvendors is fewer than those about risk-neutral
newsvendors. Lau [19] analyzed the classical newsvendor
model under two different objectives. In the first objective,
the focus is on maximizing the decision maker’s expected
utility of total profit.The secondobjective is themaximization
of the probability of achieving a certain level of profit.
Eeckhoudt et al. [20] explored the newsvendor model with
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increasing, concaves and thrice differentiable utility function,
and showed that the optimal ordering quantity in their
environment is smaller than the risk-neutral optimal order-
ing quantity and decrease in risk-aversion level. Keren and
Pliskin [21] derived the first order conditions for optimality
for the problem of a risk-averse expected-utility maximizer
newsvendor. They solved a special case where the utility
function is any increasing differentiable function, and the
random demand is uniformly distributed by using these
conditions. Agrawal and Seshadri [22] explored the effect
of risk aversion on the pricing and ordering decision with
emergency ordering. They modeled the risk aversion as a
twice continuous differentiable and increasing concave utility
function. Chen and Federgruen [23] analyzed the mean-
variance trade-offs in newsvendor model as well as some
standard infinite horizon inventory problems. Choi et al. [24]
studied the same problem, but they explore all kinds of risk
attitudes and focus on the profit and instantiate the case with
shortage penalty and safety-first objective.

Some research papers use the conditional value at risk
(CVaR) as a special risk-averse metrics to investigate the
newsvendor problem. Gotoh and Takano [25] analyzed the
minimization of the CVaR for single and multiple products
cases. Following the condition formean demand presented in
Yao et al. [5], Chen et al. [26] investigated the joint pricing and
ordering strategies for newsvendor under CVaR decision cri-
teria which is based on the maximization of the CVaR. They
provided sufficient conditions for the existence and unique-
ness of optimal policies for both additive and multiplicative
demands and performed the comparative statics which show
the monotone properties and other characteristics of the
optimal pricing and ordering decisions. They also compared
their results with those for a risk-neutral newsvendor. In
addition, Ahmed et al. [27] used the general coherent risk
measure as a risk-averse preference to investigate both the
single period and multiperiod inventory problems.

Behavioral operations management is an emerging area
to the study of operations that explicitly incorporates social
and cognitive psychological theory. It is the study of human
behavior and cognition and their impacts on operating
systems and processes. So far, there are three review papers
about behavior operation. Gino and Pisano [28] explored
the theoretical and practical implications of incorporating
behavioral and cognitive factors into models of operations
management and suggest fruitful avenues for research in
behavioral operations. Bendoly et al. [29] highlighted the-
oretical constructs and empirical phenomena from behav-
ioral economics/judgment and decision making, industrial
and organizational psychology, group dynamics, and sys-
tem dynamics and provided a guide for where to go to
learn more about each body of knowledge. Shen and Su
[30] reviewed current models of customer behavior in the
revenue and suction literature and suggested several future
research directions. Su [31] proposed a decision framework
of bounded rationality, in which decision makers are prone
to errors and biases. He applied this framework to the classic
newsvendor model and characterized the ordering decisions
made by a roundedly rational decision maker. He identified
systematic biases and offered insight into when overordering

and underordering may occur. Su [32] studied the dynamic
pricing of finite inventories with a heterogeneous population
of strategic as well as myopic customers and showed that
depending on the customer composition, optimal price paths
could involve either markups or markdowns. Su and Zhang
[33] investigated the impact of strategic customer behavior
on supply chain performance. Applying rational expectations
hypothesis to the newsvendor model, they analyzed the
previous model by looking for rational expectations (RE)
equilibria, which satisfies (i) given their expectations of future
availability, consumers make their purchase (or waiting)
decisions, (ii) given his expectations of consumers’ willing-
ness to pay, the newsvendor makes his pricing and stocking
decisions, and (iii) everyone’s expectations are consistent
with actual outcomes. They show that in RE equilibrium,
the newsvendor will invest in less inventory and charge a
lower regular sales price. The newsvendor’s performance is
substantially affected by the consumers’ waiting behavior. To
alleviate this impact, they study two mechanisms—quantity
commitment and price commitment—embedded in supply
chain management. Su and Zhang [34] studied the role of
product availability in attracting consumer demand. They
base on a newsvendor but assume that consumers must
incur some search cost in order to visit the seller. The
seller sets an observable price and an unobservable stocking
quantity. Consumers anticipate the likelihood of stockout
and determine whether to visit the seller. They characterize
the RE equilibrium in this game and show that the seller
can improve profits by providing inventory information or
availability guarantees. Lai et al. [35] examine the impact
of a posterior price matching policy in which the seller
guarantees to reimburse the price difference to a consumer
who buys a product before the seller marks it down on
strategic consumer’s purchasing behavior, a seller’s pricing
and inventory decisions and their expected payoffs, assuming
that the seller cannot credibly commit to a price path but can
implement a posterior price matching policy.

Our model differs from the previous papers in the
following aspects. Firstly, we explore the case where the
seller is risk averse and consumers are forward looking.
Secondly, we obtain an analytical solution for a specific
situation where demand follows the uniform distribution
and utility is a power function to illustrate the combined
impacts of strategic consumer behavior and risk aversion on
newsvendor’s decisions. Thirdly, we investigate the influence
of system parameters on RE equilibrium and compare them
to the existing results about the risk-averse newsvendor with
myopic consumers and the risk-neutral newsvendor with
strategic consumers. Based on the analysis of the model,
we obtain the following insights: (1) the RE equilibrium
ordering quantity and sale price are all lower than those
for a risk-averse newsvendor with myopic customers, (2)
the optimal ordering quantity for a risk-averse newsvendor
facing myopic consumers is higher than the RE equilibrium
stocking quantity for a risk-neutral retailer, (3) the RE
equilibrium sale price for some risk-averse newsvendors is
lower than for a risk-neutral retailer, and the RE equilibrium
ordering quantity for some risk-averse newsvendors is higher
than for a risk-neutral retailer, (4) in some situations, the
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Table 1: Notions used in this paper.

𝑐 Product cost
V Customer valuation
𝑝 Retail price
𝑝rn RE equilibrium price for risk-neutral retailer
𝑝ra RE equilibrium price for risk-averse retailer
𝑠 Salvage price
𝑄 Order quantity

𝑄
0

Optimal ordering quantity for risk-averse newsvendor
model with myopic customers

𝑄rn
RE equilibrium ordering quantity for risk-neutral
retailer

𝑄ra
RE equilibrium ordering quantity for risk-averse
retailer

𝑓(⋅), 𝐹(⋅) pdf and cdf of the distribution of stochastic demand 𝜉
𝜋(𝑞) Profit function
𝑈(⋅) Newsvendor’s utility function

sale price in RE equilibrium for risk-averse newsvendor is
decreasing in salvage price.

The remainder of this paper is organized as follows.
Section 2 gives the model and derives RE equilibrium for
a risk-averse newsvendor. Section 3 explores a specific case
where demand follows the uniform distribution and utility is
a power function. Section 4 presents the numerical examples
to illustrate the model. Section 5 concludes the paper with
future researches.

2. The General Model

In this section, we present the risk-averse newsvendor model
with strategic customers. Notions used in this paper are given
in Table 1 at the end of this part.

Our starting point is the classic newsvendormodel.There
is a single risk-averse retailer whomust determine howmany
units of a product to order. The retailer faces a random
demand 𝜉 ≥ 0, which has distribution 𝐹 and probability
density function𝑓. We assume that𝑓 is continuous,𝑓(0) > 0
and 𝐹(0) = 0. The risk-averse retailer has a utility function
𝑈(⋅). We assume 𝑈(0) = 0 and 𝑈(⋅) > 0, 𝑈(⋅) < 0, and
each unit of the product costs 𝑐 but is valued by customer at
V. Leftover units can be sold in an exogenous salvage market
at 𝑠 per unit. We also assume 0 < 𝑠 < 𝑐 < V. Customers
choose between buying immediately at full price or waiting
for the sale at salvage price because they recognize that the
product may become available on the salvage market at price
𝑠. If the regular retail price is too high, customers may find
it worthwhile to wait for the sale, even if the product may be
sold out by then.

Our model setup is similar to that in Su and Zhang
[33]. Sequence of events are as the following. First, the risk-
averse retailer privately forms his beliefs over customers’
reservation prices and then optimally chooses the price and
quantity given these beliefs. We also assume that customers
may observe the retail price but do not observe the ordering

quantity. Then, customers privately form beliefs over their
chances of obtaining the product on the salvage market and
then form their reservation prices based on these beliefs.
Next, the random demand 𝜉 is realized. Then, sales occur
at the full price 𝑝 (provided that the retail price 𝑝 does not
exceed consumers reservation 𝑟). Finally, all remaining units
are sold at the salvage price 𝑠.

We first describe the consumer’s decision problem. Con-
sider a particular consumer who forms the belief that he will
obtain the product with probability 𝜉prob if he waits for the
sale. Based on these expectations, the consumer’s expected
surplus if he faces an actual retail price 𝑝 is

max {V − 𝑝, (V − 𝑠) 𝜉prob} . (1)

The first term is his surplus from buying at the regular price
𝑝, and the second term is his expected surplus if he waits for
the sale, where there is probability 𝜉prob that he earns surplus
V−𝑠 and probability 1−𝜉prob that he earns zero surplus (if the
product is out of stock). Since the consumer chooses themore
attractive option between buying and waiting, he will buy at
price 𝑝 if and only if V − 𝑝 ≥ (V − 𝑠)𝜉prob. In other words,
given his expectations 𝜉prob, the consumer’s reservation price
for the product is

𝑟 (𝜉prob) = V − (V − 𝑠) 𝜉prob. (2)

We consider homogeneous customers who share the same
beliefs 𝜉prob and the same reservation price 𝑟 and assume that
consumers are risk neutral and they do not discount future
payoff.

Next, we consider the retailer’s decision problem to
determine an ordering quantity 𝑄 and a retail price 𝑝.
Suppose that the seller expects that all customers have a
reservation price 𝜉

𝑟
. Given these beliefs, it is clear that he will

choose price and quantity as follows

𝑝 = 𝜉
𝑟
, (3)

𝑄 (𝑝) = argmax
𝑄

𝐸 [𝑈 (𝜋 (𝑄, 𝑝))] , (4)

where 𝜋(𝑄, 𝑝) = 𝑝min(𝑄, 𝜉) + 𝑠(𝑄 − 𝜉)
+
− 𝑐𝑄 = (𝑝 −

𝑐)𝑄 − (𝑝 − 𝑠)(𝑄 − 𝜉)
+ is the profit for the risk-neutral

newsvendor. Notice that given his expectations 𝜉
𝑟
, the retailer

is essentially considering a fixed price and solving a risk-
averse newsvendor problem.

The previous discussion establishes the relationship
between the initial beliefs 𝜉

𝑟
, 𝜉prob and the subsequent

decisions𝑝,𝑄, 𝑟. After demand is realized, sales are generated
according to these decisions. If their reservation price 𝑟
exceeds the retail price 𝑝, consumers are willing to buy at
this price, so regular and salvage sales occur as in the risk-
averse newsvendor model (i.e., min(𝑄, 𝜉) units are sold at
price 𝑝 and the remaining are salvaged at price 𝑠); otherwise,
all customers prefer to wait, no regular sales occur, and all
units are salvaged at price 𝑠. The final requirement of our
model is that these eventual outcomes (in terms of sales)
should be consistent with all initial beliefs. This will be made
clear in the following.
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We can obtain the following rational expectation equilib-
rium through the strategic interaction analysis between the
risk-averse retailer and the customers.

Definition 1. A rational-expectations equilibrium for risk-
averse newsvendor and risk-averse strategic consumers
(𝑝, 𝑄, 𝑟, 𝜉prob, 𝜉𝑟) satisfies the following: (i) V−𝑟 = (V−𝑠)𝜉prob,
(ii) 𝑝 = 𝜉

𝑟
, (iii) 𝑄 = argmax

𝑄
𝐸[𝑈(𝜋(𝑄, 𝑝))], (iv) 𝜉prob =

𝐹(𝑄), and (v) 𝜉
𝑟
= 𝑟.

Conditions (i), (ii), and (iii) assert that under expectations
𝜉prob and 𝜉

𝑟
, the seller and all consumers will rationally

choose the appropriate utility-maximizing actions, as spec-
ified in (2), (3), and (4). The last two conditions require that
expectations must be consistent with outcomes. In (iv), the
expectations 𝜉prob must concur with the actual probability
of obtaining the product if an individual consumer waits for
the sale. This actual probability can be calculated as follows.
In equilibrium, the seller prices the product at consumers
reservation price, so all consumers will buy the product.
Therefore, if an individual consumer waits instead, this
consumer will obtain the product if and only if 𝜉 ≤ 𝑄, which
occurs with probability 𝐹(𝑄), as shown in (iv). Here, we have
implicitly assumed efficient rationing: customerswhowait for
the sale have the highest priority to receive the product in the
salvagemarket.This is reasonable because customers who are
interested in a particular product and eagerly waiting for a
sale are also the ones who are more likely to get the product
when the sale actually takes place. Finally, in (v), the seller
must correctly anticipate consumer’s reservation price.

For risk-neutral newsvendor, Su and Zhang [33] derived
the following result:

𝑝 = V − (V − 𝑠) 𝐹 (𝑄) ,

𝑄 = argmax
𝑄

𝐸 [𝜋 (𝑄)] .
(5)

They concluded that the optimal ordering quantity and
retail price for the risk-neutral newsvendor facing strategic
consumers must satisfy

𝑝rn = 𝑠 + √(V − 𝑠) (𝑐 − 𝑠), (6)

𝐹 (𝑄rn) = √
𝑐 − 𝑠

V − 𝑠
. (7)

In the following proposition, we explore the relationship
between the retail price andordering quantitywith the system
parameters in RE equilibrium.

Proposition 2. Under the RE equilibrium for the risk-neutral
newsvendor, the retail price 𝑝rn is increasing in customer
valuation, ordering cost, but is decreasing in salvage price, while
the ordering quantity 𝑄rn is increasing in customer valuation,
salvage price but is decreasing in ordering cost.

Proof. From (6) and (7), we immediately know that 𝑝rn is
increasing in V and 𝑐, 𝑞rn is decreasing in 𝑐 and increasing
in V.

Taking the derivative of 𝑝rn with respect to 𝑠 leads to

𝑑𝑝rn
𝑑𝑠

= 1 −
V + 𝑐 − 2𝑠

2√(V − 𝑠) (𝑐 − 𝑠)

≥ 1 −
2√(V − 𝑠) (𝑐 − 𝑠)

2√(V − 𝑠) (𝑐 − 𝑠)
= 0.

(8)

Notice that V > 𝑐; therefore, (𝑑𝑝rn/𝑑𝑠) > 0 for all 𝑠 < 𝑐,
and 𝑝rn is strictly increasing in salvage value 𝑠.

Taking the derivative of 𝐹(𝑞rn) with respect to 𝑠 leads to

𝑑𝐹 (𝑞rn)

𝑑𝑠
=

(𝑐 − V)

2(V − 𝑠)2√(𝑐 − 𝑠) / (V − 𝑠)
< 0. (9)

Therefore, 𝐹(𝑞rn) is decreasing in 𝑠; that is, 𝑞rn is increasing
in 𝑠.

The conditions for rational expectation (RE) equilibrium
in Definition 1 can be reduced to a pair of equations for only
𝑝 and 𝑄 in the following proposition.

Proposition 3. In the RE equilibrium, all consumers buy
immediately, and the risk-averse newsvendor’s retail price and
order quantity are characterized by

V − 𝑝 = (V − 𝑠) 𝐹 (𝑄) , (10)

− (𝑐 − 𝑠) ∫

𝑄

0

𝑈

((𝑝 − 𝑠) 𝑥 − (𝑐 − 𝑠)𝑄) 𝑓 (𝑥) 𝑑𝑥

+ (𝑝 − 𝑐) ∫

+∞

𝑄

𝑈

((𝑝 − 𝑐)𝑄)𝑓 (𝑥) 𝑑𝑥 = 0.

(11)

Proof. Notice that the conditions for rational expectation
(RE) equilibrium between risk-averse newsvendor and risk-
neutral strategic consumers in Definition 1 can be reduced to
the following pair of equations for only 𝑝 and 𝑄

V − 𝑝 = (V − 𝑠) 𝐹 (𝑄) ,

𝑄 = argmax
𝑄

𝐸 [𝑈 (𝜋 (𝑄))] .

(12)

From the profit for the risk-neutral newsvendor, we can
get

𝐸 [𝑈 (𝜋 (𝑄))] = ∫

𝑄

0

𝑈 ((𝑝 − 𝑠) 𝑥 − (𝑐 − 𝑠)𝑄) 𝑓 (𝑥) 𝑑𝑥

+ ∫

+∞

𝑄

𝑈 ((𝑝 − 𝑐)𝑄)𝑓 (𝑥) 𝑑𝑥.

(13)
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Hence,

𝑑𝐸 [𝑈 (𝜋 (𝑄))]

𝑑𝑄

= − (𝑐 − 𝑠) ∫

𝑄

0

𝑈

((𝑝 − 𝑠) 𝑥 − (𝑐 − 𝑠)𝑄) 𝑓 (𝑥) 𝑑𝑥

+ (𝑝 − 𝑐) ∫

+∞

𝑄

𝑈

((𝑝 − 𝑐)𝑄)𝑓 (𝑥) 𝑑𝑥,

𝑑
2
𝐸 [𝑈 (𝜋 (𝑄))]

𝑑𝑄2

= (𝑐 − 𝑠)
2
∫

𝑄

0

𝑈

((𝑝 − 𝑠) 𝑥 − (𝑐 − 𝑠)𝑄) 𝑓 (𝑥) 𝑑𝑥

+ (𝑝 − 𝑐)
2
∫

+∞

𝑄

𝑈

((𝑝 − 𝑐)𝑄)𝑓 (𝑥) 𝑑𝑥

− (𝑝 − 𝑠) 𝑓 (𝑄)𝑈

((𝑝 − 𝑐)𝑄) < 0.

(14)

Notice that
𝑑𝐸 [𝑈 (𝜋 (𝑄))]

𝑑𝑄

𝑄=0

> 0, lim
𝑄→+∞

𝑑𝐸 [𝑈 (𝜋 (𝑄))]

𝑑𝑄
< 0.

(15)

Therefore, there must be unique solution of 𝑑𝐸[𝑈(𝜋(𝑄))]/
𝑑𝑄 = 0 in (0, +∞).

From Proposition 3, we cannot know if a risk-averse
newsvendor with a uniformly more concave utility func-
tion sets his 𝑄ra to a lower value than a less risk-averse
newsvendor, so a risk-averse newsvendor with a concave
utility function sets 𝑄ra lower than a newsvendor who is
risk neutral when the retailer faces strategic consumers. We
also cannot know the relation of 𝑝ra between the risk-averse
newsvendors, so the relation of 𝑝ra between risk-averse and
risk-neutral newsvendors. In addition, it is meaningful to
understand fully the interaction between strategic consumers
behavior and risk aversion.

For readers’ convenience, in Table 1 we list the notations
used in this paper.

3. Rational Expectation Equilibrium for Power
Utility and Uniform Distribution

It is instructive to compare the equilibriumprice and quantity
in our model with that in the risk-averse newsvendor model,
where customers are not strategic and are willing to pay their
valuation V for the product (so the retailer also charges V). It is
also significant to compare the equilibriumprice and quantity
in our model with that in the classic newsvendor model or in
the risk-neutral newsvendormodel with strategic consumers.
To derive structural results and generate managerial insights
into the equilibrium decisions of the risk-averse newsvendor
problem with strategic consumers, in the following, we
present the specific results for the case where demand follows
the uniform distribution, and retailer’s utility is a power
function. Without loss of generality, we assume 𝐹(𝑥) is

distributed uniformly in [0, 𝐴] with 𝐴 > 0. The retailer’s
utility is a power function 𝑈(𝑥) = 𝑥𝑘 for some 0 < 𝑘 < 1.
The retailer is more risk averse when 𝑘 is smaller.

The following proposition gives the RE equilibrium order
quantity and retail price for risk-averse newsvendor in the
previous situation.

Proposition 4. Suppose that 𝐹(𝑥) is uniform distribution
and 𝑈(𝑦) = 𝑦

𝑘. In the RE equilibrium, all consumers buy
immediately, and the risk-averse retailer’s price and quantity
are

𝑝ra = 𝑠 +
√(𝑐 − 𝑠)

2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠) − (𝑐 − 𝑠)

2𝑘
,

(16)

𝑄ra =
𝐴(√(𝑐 − 𝑠)

2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠) − (𝑐 − 𝑠))

√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠) + 𝑐 − 𝑠

. (17)

Proof. TheRE equilibrium condition (11) and𝑈(𝑥) = 𝑥𝑘 (0 <
𝑘 < 1) reduce to
𝑑𝐸 [𝑈 (𝜋 (𝑄))]

𝑑𝑄

= −𝑘 (𝑐 − 𝑠) ∫

𝑄

((𝑐−𝑠)/(𝑝−𝑠))𝑄

((𝑝 − 𝑠) 𝑥 − (𝑐 − 𝑠)𝑄)
𝑘−1
𝑓 (𝑥) 𝑑𝑥

+ 𝑘 (𝑝 − 𝑐) ∫

+∞

𝑄

((𝑝 − 𝑐)𝑄)
𝑘−1
𝑓 (𝑥) 𝑑𝑥.

(18)

Notice that the distribution of stochastic demand 𝜉 is uniform
on [0, 𝐴]. Consider that 𝑓(𝑥) = 1/𝐴, and so
𝑑𝐸 [𝑈 (𝜋 (𝑄))]

𝑑𝑄

= −𝑘 (𝑐 − 𝑠) ∫

𝑄

((𝑐−𝑠)/(𝑝−𝑠))𝑄

((𝑝 − 𝑠) 𝑥 − (𝑐 − 𝑠)𝑄)
𝑘−1

𝐴
𝑑𝑥

+ 𝑘 (𝑝 − 𝑐) ∫

𝐴

𝑄

((𝑝 − 𝑐)𝑄)
𝑘−1

𝐴
𝑑𝑥.

(19)

According to 𝑑𝐸[𝑈(𝜋(𝑄))]/𝑑𝑄 = 0, we have

𝑄 =
𝐴𝑘 (𝑝 − 𝑠)

𝑘 (𝑝 − 𝑠) + (𝑐 − 𝑠)
. (20)

From the RE equilibrium condition (10), we know that

𝑝 = V − (V − 𝑠) 𝐹 (𝑄) . (21)

So,

(𝑝 − V) (𝑘 (𝑝 − 𝑠) + 𝑐 − 𝑠)
2
+ 𝑘
2
(𝑝 − 𝑠)

2

(V − 𝑠) = 0. (22)

Let 𝑝 − V = 𝑝 − 𝑠 − (V − 𝑠). The previous equation becomes
equivalently as

𝑘 (𝑝 − 𝑠) + (𝑝 − 𝑠) (𝑐 − 𝑠) − (V − 𝑠) (𝑐 − 𝑠) = 0. (23)

Solving the previous equation yields the desired results.
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The impact of unit ordering cost and customer valuation
on the rational equilibrium price and order quantity for
risk-averse newsvendor in the case where demand follows
the uniform distribution and utility is power function are
summarized in the following proposition.

Proposition 5. Suppose that 𝐹(𝑥) is uniform distribution and
𝑈(𝑦) = 𝑦

𝑘. In RE equilibrium for risk-averse newsvendor,
(i) both the retail price 𝑝ra and the ordering quantity 𝑄ra are
increasing in customer valuation.

(ii)The price𝑝ra in RE equilibrium for risk-averse newsven-
dor is increasing in ordering cost, while the ordering quantity
𝑄ra is decreasing in ordering cost.

Proof. From Proposition 4 and

𝑝ra = 𝑠 +
2 (V − 𝑠)

√1 + 4𝑘 ((V − 𝑠) / (𝑐 − 𝑠)) + 1
,

𝑄ra = 𝐴(1 −
2

√1 + 4𝑘 ((V − 𝑠) / (𝑐 − 𝑠)) + 1
) ,

(24)

the desired results are straight.

This result is similar to the risk-neutral case.
The following proposition compares the RE equilibrium

order quantity and price for risk-averse newsvendor with
the optimal ordering quantity and retail price for risk-
averse newsvendor with myopic customers in the case where
demand follows the uniform distribution and utility is power
function.

Proposition 6. (i) The price 𝑝ra in RE equilibrium is higher
than 𝑐 and lower than V.

(ii) The ordering quantity 𝑄ra in RE equilibrium is lower
than a risk-averse newsvendor model with myopic customers.

Proof. From the RE equilibrium condition (10), we know that
𝑝ra < V. The equation (16) can be reduced to

𝑝ra − 𝑠

𝑐 − 𝑠
=
√1 + 4𝑘 ((V − 𝑠) / (𝑐 − 𝑠)) − 1

2𝑘
. (25)

To obtain the relationship between 𝑝ra and 𝑐, we define a
function

𝑙 (𝑥) =
√1 + 4𝑥 ((V − 𝑠) / (𝑐 − 𝑠)) − 1

2𝑥
. (26)

The derivative of 𝑙(𝑥) is

𝑙

(𝑥) =

−1 − 2𝑥 ((V − 𝑠) / (𝑐 − 𝑠))

2𝑥2√1 + 4𝑘 ((V − 𝑠) / (𝑐 − 𝑠))
< 0. (27)

Hence,

𝑙 (𝑥) < 𝑙 (0)

= lim
𝑘→0

+

√1 + 4𝑥 ((V − 𝑠) / (𝑐 − 𝑠)) − 1

2𝑥
=
V − 𝑠

𝑐 − 𝑠
> 1

(28)

for 𝑥 ∈ (0, 1). Therefore 𝑝ra > 𝑐.

From the proof of Proposition 3, we know that the
optimal ordering quantity in the risk-averse newsvendor
model with myopic customers is

𝑄
0
=

𝐴𝑘 (V − 𝑠)

𝑘 (V − 𝑠) + (𝑐 − 𝑠)
= 𝐴(1 −

1

𝑘 ((V − 𝑠) / (𝑐 − 𝑠)) + 1
) .

(29)

To obtain the relationship between𝑄ra and𝑄0, we define
a function

𝑔 (𝑥) =
√1 + 4𝑥 ((V − 𝑠) / (𝑐 − 𝑠)) + 1

𝑥 ((V − 𝑠) / (𝑐 − 𝑠)) + 1
. (30)

Then we have

𝑔

(𝑥)

= (
V − 𝑠

𝑐 − 𝑠
)(1 − 2 (

V − 𝑠

𝑐 − 𝑠
) 𝑥

−√1 + 4𝑥 (
V − 𝑠

𝑐 − 𝑠
))

× ((𝑥(
V − 𝑠

𝑐 − 𝑠
) + 1)

2

√1 + 4𝑥 (
V − 𝑠

𝑐 − 𝑠
))

−1

< 0.

(31)

Hence, 𝑔(𝑥) < 𝑔(0) = 2 for 𝑥 ∈ (0, 1).
Notice that𝑄ra = 𝐴(1 − (2/√1 + 4𝑘((V − 𝑠)/(𝑐 − 𝑠)) + 1)).

Therefore, 𝑄ra < 𝑄0.

The previous proposition suggests that the impact of
strategic customers on risk-averse newsvendor equilibrium
decisions is the same as in the risk-neutral newsvendor.
In term of price, strategic consumer behavior forces the
risk-averse newsvendor to price below V in order to induce
the strategic consumers to purchase the product in the
regular sale period. Next, in term of quantity, the equilibrium
stocking quantity 𝑄ra for the risk-averse newsvendor is also
lower than in the standard risk-averse newsvendor model for
the purpose of increasing customers’ willingness to pay.

The following proposition characterizes the impact of the
level of risk aversion on the RE equilibrium price and order
quantity for risk-averse newsvendor.

From (7), we know that the RE equilibriumorder quantity
for the risk-neutral retailer is

𝑄rn = 𝐴(1 − √
𝑐 − 𝑠

V − 𝑠
) . (32)

Proposition 7. (i) The RE equilibrium price 𝑝ra is increasing
in the degree of risk aversion.

(ii) For fixed 𝑠, V, and 𝑐, there exists a threshold 𝑘
0
= 1 −

√(𝑐 − 𝑠)/(V − 𝑠) such that the RE equilibrium price 𝑝ra is not
greater than 𝑝rn for 𝑘 ≥ 𝑘0.

(iii)The RE equilibrium ordering quantity𝑄ra is decreasing
in the degree of risk aversion.

(iv) For fixed 𝑠, V, and 𝑐, there exists a threshold 𝑘
1
= 𝑘
0

such that the RE equilibrium price 𝑄ra is not smaller than 𝑄rn
for 𝑘 ≥ 𝑘

1
.
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Proof. The derivative of 𝑝ra with respect to 𝑘 can be written
as

𝑑𝑝ra
𝑑𝑘

=
𝑐 − 𝑠

2𝑘2
−

(𝑐 − 𝑠)
2
+ 2𝑘 (𝑐 − 𝑠) (V − 𝑠)

2𝑘2√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

=

(𝑐 − 𝑠)√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − s)

2𝑘2√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

−
(𝑐 − 𝑠)

2
+ 2𝑘 (𝑐 − 𝑠) (V − 𝑠)

2𝑘2√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

<
(𝑐 − 𝑠)

2
+ 2𝑘 (𝑐 − 𝑠) (V − 𝑠)

2𝑘2√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

−
(𝑐 − 𝑠)

2
+ 2𝑘 (𝑐 − 𝑠) (V − 𝑠)

2𝑘2√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

= 0.

(33)

Therefore, 𝑝ra is decreasing in 𝑘.
Note that

lim
𝑘→0

+

𝑝ra

= lim
𝑘→0

+

2 (𝑐 − 𝑠) (V − 𝑠)

√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠) + 𝑐 − 𝑠

+ 𝑠 = V,

lim
𝑘→1

−

𝑝ra

= 𝑠 +

√(𝑐 − 𝑠)
2
+ 4 (𝑐 − 𝑠) (V − 𝑠) − (𝑐 − 𝑠)

2

= 𝑠 +
2√(𝑐 − 𝑠) (V − 𝑠)

√((𝑐 − 𝑠) / (V − 𝑠)) + 4 + √(𝑐 − 𝑠) / (V − 𝑠)

< 𝑠 + √(𝑐 − 𝑠) (V − 𝑠) = 𝑝rn,

(34)

we know that there exists 𝑘
0
such that the RE equilibrium

price 𝑝ra is not greater than 𝑝rn for 𝑘 ≥ 𝑘
0
and not smaller

than 𝑝rn for 𝑘 ≤ 𝑘0. Solving the equation 𝑝ra = 𝑝rn yields the
𝑘
0
.
To obtain the relationship between𝑄ra and 𝑘, we define a

function

ℎ (𝑘) = √(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠). (35)

Taking derivative of 𝑄ra with 𝑘 leads to

𝑑𝑄ra
𝑑𝑘

=
2𝐴ℎ

(𝑘) (𝑐 − 𝑠)

(ℎ (𝑘) + 𝑐 − 𝑠)
2
. (36)

Since

ℎ

(𝑘) =

2 (𝑐 − 𝑠) (V − 𝑠)

ℎ (𝑘)
, (37)

we have

𝑑𝑄ra
𝑑𝑘

> 0. (38)

Hence, 𝑄ra is increasing in 𝑘. Moreover, since lim
𝑘→0

+𝑄ra =
0 and

lim
𝑘→1

−

𝑄ra =
𝐴 (√1 + 4 ((V − 𝑠) / (𝑐 − 𝑠)) − 1)

√1 + 4 ((V − 𝑠) / (𝑐 − 𝑠)) + 1

= 𝐴(1 −
2

√1 + 4 ((V − 𝑠) / (𝑐 − 𝑠)) + 1
)

> 𝐴(1 − √
𝑐 − 𝑠

V − 𝑠
) = 𝑄rn,

(39)

there exists 𝑘
1
such that the RE equilibrium ordering quantity

𝑄ra is not smaller than 𝑄rn for 𝑘 ≥ 𝑘
1
and not greater than

𝑄rn for 𝑘 ≤ 𝑘
1
. Solving the equation 𝑄ra = 𝑄rn yields the

𝑘
1
= 𝑘
0
.

Eeckhoudt et al. [20] investigated the classic newsvendor
model with increasing, concave, and thrice differentiable util-
ity functions and showed that the optimal ordering quantity
in their environment is smaller than the risk-neutral opti-
mal ordering quantity and decreases in risk-aversion level.
Keren and Pliskin [21] derived the first order conditions for
optimality for the problem of a risk-averse expected-utility
maximizer newsvendor. They solved a special case where
the utility function is any increasing differentiable function,
and the random demand is uniformly distributed by this
condition. They also claimed that a risk-averse newsvendor
with a uniformly more concave utility function sets his order
quantity to a lower value than a less risk-averse newsvendor,
so a risk-averse newsvendor with a concave utility function
sets order quantity less than a newsvendor who is risk
neutral. From Proposition 7, we find that this may not be
true when the strategic consumer behavior is incorporated
into the classic newsvendormodel.The RE equilibrium order
quantity for some risk-averse newsvendor with the uniform
distribution demand and power utility will order more than
the risk-neutral newsvendor. In addition, together with the
results in Proposition 6 we know that the optimal ordering
quantity for some risk-averse newsvendor facing myopic
consumers is higher than in risk-neutral retailer.

In Agrawal and Seshadri [22] it is assumed that the
customers are myopic and if the realized demand is greater
than the ordered quantity, the retailer can make emergency
orders at a higher price (>c) to meet the extra demand. And
if the realized demand is less than the order quantity, the
leftover inventory can be salvaged at a value that is not more
than the cost. So the risk is mainly stemmed from overstock
and some emergency purchase cost occurs for larger demand.
Agrawal and Seshadri [22] showed that for the multiplicative
model, the optimal price for a risk-averse retailer is not lower
than that for a risk-neutral retailer and the optimal order
quantity for a risk-averse retailer is smaller than that for a
risk-neutral retailer. For the additive demandmodel, Agrawal
and Seshadri [22] claimed that the optimal price is lower
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when the retailer is more risk averse, and the impact of risk
aversion on the optimal order quantity is unclear. In our
model, the equilibrium retail price is larger when the retailer
is more risk averse, and the equilibrium order quantity is
smaller when the retailer is more risk averse when he or she
faces strategic consumers. The RE equilibrium retail price
for some risk-averse newsvendors is lower than for the risk-
neutral newsvendors.

The impacts of salvage value on the RE equilibrium price
and order quantity for risk-averse newsvendor in the case
where demand follows the uniform distribution and utility is
power function are summarized in the following proposition.

Proposition 8. (i) The RE equilibrium retail price 𝑝ra is
decreasing in salvage price when V ≥ (4𝑘 + 2)𝑐, and there is
a threshold 𝑠

0
such that 𝑝ra is decreasing in 𝑠 for 𝑠0 < 𝑠 < 𝑐 and

is increasing in 𝑠 for 0 < 𝑠 ≤ 𝑠
0
when V < (4𝑘 + 2)𝑐.

(ii) The RE equilibrium ordering quantity 𝑄ra is increasing
in salvage value.

Proof. The first and second derivatives of 𝑝ra with respect to
𝑠 are, respectively,

𝑑𝑝ra
𝑑𝑠

= 1 +
1

2𝑘
−

(2𝑘 + 1) (𝑐 − 𝑠) + 2𝑘 (V − 𝑠)

2𝑘√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

,

𝑑
2
𝑝ra
𝑑𝑠2

=
4𝑘 + 1

2𝑘√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

−
[(2𝑘 + 1) (𝑐 − 𝑠) + 2𝑘 (V − 𝑠)]

2

2𝑘[(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)]

3/2

= −
4𝑘
2
(V − 𝑐)2

2𝑘[(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)]

3/2
< 0.

(40)

Hence, 𝑝ra is concave in 𝑠. Notice that

lim
𝑠→ 𝑐
−

𝑑𝑝ra
𝑑𝑠

= 1 +
1

2𝑘

− lim
𝑠→ 𝑐
−

(2𝑘 + 1) (𝑐 − 𝑠) + 2𝑘 (V − 𝑠)

2𝑘√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

= −∞,

lim
𝑠→0
+

𝑑𝑝ra
𝑑𝑠

= 1 +
1

2𝑘
− lim
𝑠→0
+

(2𝑘 + 1) (𝑐 − 𝑠) + 2𝑘 (V − 𝑠)

2𝑘√(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠)

= 1 +
1

2𝑘
−
(2𝑘 + 1) 𝑐 + 2𝑘V

2𝑘√𝑐2 + 4𝑘𝑐V

= 2𝑘 ((4𝑘 + 2) 𝑐V − V
2
)

× (√𝑐2 + 4𝑘𝑐V

× ((2𝑘+1)√𝑐
2+4𝑘𝑐V + ((2𝑘+1) 𝑐+2𝑘V)))

−1

.

(41)

Therefore (𝑑𝑝ra/𝑑𝑠) < 0 for V ≥ (4𝑘 + 2)𝑐, and 𝑝ra is
decreasing in 𝑠 for any 𝑠 ∈ (0, 𝑐). lim

𝑠→0
+(𝑑𝑝ra/𝑑𝑠) > 0 for

V < (4𝑘+2)𝑐. Note that𝑝ra is concave in 𝑠.We know that there
exists a point 𝑠

0
in (0, 𝑐) such that (𝑑𝑝ra/𝑑𝑠) < 0 for 𝑠 ∈ (𝑠0, 𝑐)

and (𝑑𝑝ra/𝑑𝑠) > 0 for 𝑠 ∈ (0, 𝑠0). It is easy to see that 𝑝ra is
decreasing in 𝑠 ∈ (𝑠

0
, 𝑐) and 𝑝ra is increasing in 𝑠 ∈ (0, 𝑠0).

To obtain the relationship between 𝑄ra and 𝑠, we define

𝑔 (𝑠) = √(𝑐 − 𝑠)
2
+ 4𝑘 (𝑐 − 𝑠) (V − 𝑠). (42)

Then we have

𝑔

(𝑠) = −

(2𝑘 + 1) (𝑐 − 𝑠) + 2𝑘 (V − 𝑠)

𝑔 (𝑠)
. (43)

Notice that

𝑑𝑄ra
𝑑𝑠

=

2𝐴 (𝑔 (𝑠) + 𝑔

(𝑠) (𝑐 − 𝑠))

(𝑔 (𝑠) + 𝑐 − 𝑠)
2

. (44)

We have

𝑑𝑄ra
𝑑𝑠

=

2𝐴 (𝑔
2
(𝑠) − (2𝑘 + 1) (𝑐 − 𝑠)

2
− 2𝑘 (V − 𝑠) (𝑐 − 𝑠))

𝑔 (𝑠) (𝑔 (𝑠) + 𝑐 − 𝑠)
2

=

4𝑘𝐴 ((𝑐 − 𝑠) (V − 𝑠) − (𝑐 − 𝑠)2)

𝑔 (𝑠) (𝑔 (𝑠) + 𝑐 − 𝑠)
2

> 0.

(45)

So, 𝑄ra is increasing in 𝑠 on (0, 𝑐).

Proposition 8 characterizes the impacts of salvage value
on equilibrium price and quantity. Chen et al. [26] used con-
ditional value at risk as a risk-averse measure to investigate
the combined pricing and ordering problem for newsvendor
facing myopic customers. They showed that for the multi-
plicative demand, the optimal price for a risk-averse retailer
is strictly increasing in 𝑠 under some mild conditions. For
the additive demand, they claimed that the optimal price is
strictly increasing in 𝑠 without any condition. On the other
hand, Proposition 2 presents that theRE equilibriumprice for
risk-neutral newsvendor is strictly increasing in 𝑠. Contrary
to the previous results, our findings show that risk-averse
newsvendor is not always setting higher RE equilibrium retail
price for larger salvage price. The relationship between them
is dependent on other system parameters such as product
cost, customer valuation, and risk-averse degree. Specifically,
RE equilibrium price 𝑝ra is decreasing in salvage price when
the product cost 𝑐 is sufficiently low or when the customer
valuation V is sufficiently high. Otherwise, there exists a
threshold for 𝑠. The RE equilibrium retail price is decreasing
in salvage price when the salvage price is higher than the
threshold and is increasing in salvage price otherwise.That is,
to say that the RE equilibrium retail price for the risk-averse
newsvendor in our model is increasing in salvage price only
for the situation in which the product cost is sufficiently high,
customer valuation is sufficiently low relatively to product
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Figure 1: The effect of risk-averse level on 𝑄
0
and 𝑄ra.

cost, and salvage price is low. In addition, there exists a
threshold for risk-averse level 𝑘 for reasonable fixed V and 𝑐.
That is, the RE equilibrium retail price is decreasing in salvage
price for more risk-averse retailer, and the relation between
the RE equilibrium sale price and salvage price for a less risk-
averse retailer depends on the threshold for 𝑠.

4. Numerical Examples

In this section, we present some numerical examples to
illustrate how the RE equilibrium price and quantity are
affected by the degree of risk-aversion and salvage price.

Firstly, we analyze the impact of risk-averse level on
RE equilibrium quantity and price. Suppose that random
demand 𝜉 is uniform distribution on [0, 10], V = 10, 𝑐 = 4,
and 𝑠 = 2. Then 𝑄rn = 5 and 𝑝rn = 6. According to (17), (20),
and (32), we know that

𝑝ra = 2 +
√1 + 16𝑘 − 1

𝑘
,

𝑄ra =
5(√1 + 16𝑘 − 1)

2

8𝑘
,

𝑄
0
=

40𝑘

4𝑘 + 1
.

(46)

From Figures 1 and 2, we find that 𝑄
0
> 𝑄ra and 𝑝ra < V

for 𝑘 ∈ (0, 1) so as to induce the customers to purchase the
product by lowering the sale price and generating scarcity and
competition among them through restricting the availability
of the product and maintaining an image of exclusivity. In
addition,𝑄

0
and𝑄ra are increasing in 𝑘, and 𝑝ra is decreasing

in 𝑘.
Solving 𝑝ra = 𝑝rn, 𝑄ra = 𝑄rn, and 𝑄0 = 𝑄rn, we

get 𝑘
0
= 0.5, 𝑘

1
= 0.5, and 𝑘

2
= 0.25. So 𝑝ra is lower
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Figure 2: The effect of risk-averse level on 𝑝ra.

than 𝑝rn for 𝑘 ∈ (0.5, 1), and 𝑄ra is higher than 𝑄rn for
𝑘 ∈ (0.5, 1). Furthermore, 𝑄ra is higher than 𝑄rn for 𝑘 ∈

(0.25, 1). These results are contrary to usual results for risk-
averse newsvendor relative to risk-neutral retailer when he
faces myopic newsvendor.

In what follows, we investigate the influence of salvage
price on the RE equilibrium price and quantity with the same
parameters as mentioned previously. According to (16) and
(17), we know that

𝑝ra = 𝑠 +
√(4 − 𝑠)

2
+ 4𝑘 (4 − 𝑠) (10 − 𝑠) − (4 − 𝑠)

2𝑘
,

𝑄ra =
10 (√(4 − 𝑠)

2
+ 4𝑘 (4 − 𝑠) (10 − 𝑠) − (4 − 𝑠))

√(4 − 𝑠)
2
+ 4𝑘 (4 − 𝑠) (10 − 𝑠) + 4 − 𝑠

.

(47)

Solving the equation V = (4𝑘 + 2)𝑐, we get 𝑘∗ = 0.125.
Let 𝑘 = 0.1, 𝑘 = 0.05, and 𝑘 = 0.025 in Figure 3; we find that
the RE equilibrium price is decreasing in salvage price. Let
𝑘 = 0.2, 𝑘 = 0.6, and 𝑘 = 0.8 in Figure 4; we find that the RE
equilibriumprice is firstly increasing in salvage price and then
decreasing. In Figure 5, we observe that the RE equilibrium
quantity is decreasing in salvage price.

In addition, we notice that 𝑠
0
is increasing in 𝑘 from

Figure 4. Letting (𝑑𝑝ra/𝑑𝑠) = 0 where 𝑘 > 𝑘
∗, we can obtain

the following equation:

1 +
1

2𝑘
−

(2𝑘 + 1) (4 − 𝑠
0
) + 2𝑘 (10 − 𝑠

0
)

2𝑘√(4 − 𝑠
0
)
2
+ 4𝑘 (4 − 𝑠

0
) (10 − 𝑠

0
)

= 0. (48)

Its solution is 𝑠
0
= 4−6/(4𝑘+1). So, the changes of 𝑠

0
with 𝑘 is

consistent with our observation. That is to say that the range
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Figure 3: The effect of salvage price on 𝑝ra when 𝑘 ≤ 𝑘
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Figure 4: The effect of salvage price on 𝑝ra when 𝑘 > 𝑘
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is more narrow for more risk-averse retailer in which the RE
equilibrium price is increasing in salvage price.

5. Conclusions

This paper investigates the RE equilibrium decisions for the
risk-averse newsvendor facing strategic consumers. One of
our basic premises is that the newsvendor is risk averse
another is that consumers look ahead and plan purchases
with future opportunities inmind. To derive structural results
and generate managerial insights into the equilibrium deci-
sions of the risk-averse newsvendor problem with strategic
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Figure 5: The effect of salvage price on 𝑄ra.

consumers, we present specific results for the situation in
which demand is a uniformly distributed and utility is a
general power function. We obtain the analytical repre-
sentations for the RE equilibrium price and quantity and
perform the sensitivity analysis to investigate the impacts of
ordering cost, salvage price, and degree of risk-aversion on
the equilibrium. Our analysis complements the work in the
literature and offers managerial insights to the practitioners
or managers. We show that the optimal ordering quantity
for some risk-averse newsvendor facingmyopic consumers is
higher than the RE equilibrium ordering quantity for a risk-
neutral retailer, and the RE equilibrium retail price for some
risk-averse newsvendor is lower than the RE equilibrium
price for risk-neutral retailer, and the stocking quantity in RE
equilibrium for some risk-averse newsvendor is higher than
the RE equilibriumprice for risk-neutral retailer.We also find
the conditions under which the sale price in RE equilibrium
for risk-averse newsvendor is decreasing in salvage price.

The problem studied here can further be researched in
several directions. First, it is meaningful to make clear of
the value of price commitment and quantity commitment
for risk-averse newsvendor facing strategic consumer and
the impacts of contracts on decentralized supply chain with
risk-averse newsvendor facing forward-looking customers.
Second, it is important to investigate the combined effects
of risk-averse level of consumer, consumer’s forward-looking
purchasing behavior, and degree of risk aversion for newsven-
dor. Finally, investigating the optimal decisions for risk-
averse newsvendor facing strategic consumers in competitive
setting would be a very interesting topic.
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Owing to the complexity of the wafer fabrication, the due date assignment of each job presents a challenging problem to the
production planning and scheduling people. To tackle this problem, an effective fuzzy-neural approach is proposed in this study
to improve the performance of internal due date assignment in a wafer fabrication factory. Some innovative treatments are taken
in the proposed methodology. First, principal component analysis (PCA) is applied to construct a series of linear combinations of
the original variables to form a new variable, so that these new variables are unrelated to each other as much as possible, and the
relationship among them can be reflected in a better way. In addition, the simultaneous application of PCA, fuzzy c-means (FCM),
and back propagation network (BPN) further improved the estimation accuracy. Subsequently, the iterative upper bound reduction
(IUBR) approach is proposed to determine the allowance that will be added to the estimated job cycle time. An applied case that
uses data collected from a wafer fabrication factory illustrates this effective fuzzy-neural approach.

1. Introduction

Internal due date assignment is to quote an attractive but
attainable due date for an arriving customer order. However,
the completion time of an order is highly uncertain. It is
therefore difficult to accurately forecast the completion time.
For this reason, an allowance has to be added to the estimated
completion time to reduce the risk [1].

Wafer fabrication is the most technologically complex
step in semiconductor manufacturing, which exacerbates the
difficulties of internal due date assignment [2]. In theory,
this problem is NP-hard. That is why wafer fabrication is
investigated in this study. Internal due date assignment in a
wafer fabrication factory is difficult because of the following
reasons.

(1) Shop floor control in a wafer fabrication factory
is a nontrivial task owing to the complexity of
wafer fabrication. Some wafer fabrication processes
are repeated processes. Thus, wafers need to visit a
machine multiple times. An average job cycle time is
several months with hundreds of hours of standard
deviation. Many studies have shown that accurately

predicting the cycle/completion times for such large
systems is very difficult [1, 3, 4].

(2) In addition, the completion time predicted using
existing approaches is generally unbiased.Thismeans
that if the internal due date is set to be equal to
the mean of the estimated completion time, then the
probability of on-time delivery is only about 50% on
average. To reduce the risk, an allowance or fudge
factor has to be added to the estimated completion
time [5]. The due date allowance factor is determined
on the basis of the feedback information about the
factory status at the time a job arrives at the factory.

(3) Due date assignment, release control, and buffer con-
trol affect each other.Make-to-orderwafer fabrication
factories are confronted with both due date quotation
and production scheduling problems at the same time
[6]. If due date assignment and factory scheduling
are processed separately by two systems, the overall
performance is unlikely to be satisfactory because
the two tasks are actually interrelated. Therefore, the
interaction between due date assignment methods
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and scheduling rules in a wafer fabrication factory
needs to be investigated.

To tackle these problems, some treatments have been
carried out in the literature. First, various research works
have been dedicated to estimate the cycle time using hybrid
approaches. For example, Gupta and Sivakumar [7] presented
look-ahead batch scheduling for the real-time control of
due date objectives. Chen [8] proposed the look-ahead self-
organization map (SOM)-fuzzy back propagation network
(FBPN) approach for this purpose. A set of fuzzy inference
rules were also developed to evaluate the achievability of a
cycle time forecast. Subsequently, Chen et al. [1] added a
selective allowance to the cycle time estimated using the look-
ahead SOM-FBPN approach to determine the internal due
date. Further, Chen [9] showed that the combination of SOM
and FBPN could be improved by a minor adjustment of the
classification results with the estimation error. Chen et al.
[10, 11] proposed a postclassification fuzzy-neural approach
in which a job was not preclassified but rather postclassified
after estimating the cycle time. Experimental results showed
that the postclassification approach was better than the
preclassification approaches in some cases. To balance the
influence of the preclassification results with that of the
postclassifying results, Chen [12] proposed a bidirectional
classifying approach, in which jobs are not only preclassified
but also postclassified. Ankenman et al. [13] proposed ameta-
modeling approach, which integrates discrete-event simula-
tion, adaptive statistical methods, and analytical queueing
analysis to quantify the cycle time-throughput relationship.
Chien et al. [4] used nonlinear regression equations and then
related the forecasting error to some factory conditions and
job attributes with a back propagation network (BPN) to
improve the forecasting accuracy. The major disadvantage of
statistical analysis is the lack of forecasting accuracy [8].

Second, in traditional due date setting rules, the fudge
factor is usually equal to a multiple of the standard deviation
of the predicted cycle time [14]. Recently, Chen et al. [1]
proposed a selective allowance policy in which the allowance
was only assigned to some preselected jobs. In this way,
the sum of the allowances added to all jobs was controlled.
However, even though the probability of on-time delivery in
Chen et al.’s study was only 77% for the testing data, showing
that improving the probability of on-time delivery while
controlling the fudge factor is a real challenge. In addition, the
allowances that were assigned to the chosen jobs in this study
were equal, leaving room for improvement. Another way of
taking this issue into account is to construct a confidence
interval containing the actual completion time [3].The upper
confidence limit sets the internal due date. However, the
probability of a job delivered on time is only 99.7% for
the testing data, under the assumption that residuals follow
a normal distribution. From another point of view, Chen
and Wang [15] incorporated the fuzzy c-means (FCM)-BPN
approach with a nonlinear programming (NLP) model to
construct the inclusion interval of the predicted completion
time. Similarly, the upper inclusion limit sets the internal
due date. An inclusion interval is narrower than a confidence
interval, and the probability of a job delivered on time is 100%,

at least for the training data. Chen and Lin [16] modified this
approach by gathering a group of experts in related fields to
set the due date in a collaborative way. Fuzzy intersection is
applied to combine the due dates into a representative value.

The existing approaches have the following problems.

(1) Some factors used to forecast the job cycle time are
dependent on each other, which may cause problems
in classifying jobs and in fitting the relationship
between the job cycle time and these factors.

(2) In Chen and Wang [15] and Chen and Lin [16], NLP
models are solved to determine the upper bound of
the job cycle time. However, the NLP models involve
complicated constraints and therefore are difficult to
solve. The NLP models will become too huge if many
jobs are to be considered.

To tackle these problems, an effective fuzzy-neural
approach is proposed in this study to improve the perfor-
mance of internal due date assignment in a wafer fabrication
factory. The literature provides probabilistic (stochastic) and
fuzzy methods that can consider the uncertainty or random-
ness in the completion time. However, the longest average
cycle time exceeds three months with a variation of more
than 300 hours. Fitting the cycle time within a future month
with a distribution function is not easy, implying that a
stochastic approach might not be applicable. That is why a
fuzzy approach is proposed in this study.

The effective fuzzy-neural approach has the following
innovative characteristics.

(1) Variable replacement using principal component
analysis (PCA): PCA uses orthogonal transformation
to convert a set of observations of possibly correlated
variables into a set of values of linearly uncorrelated
variables to reflect information in a better way.

(2) Updating the upper bound of the job cycle time
using the iterative upper bound reduction (IUBR)
approach: the IUBR approach is proposed to deter-
mine the upper bound of the completion time fore-
cast. A tight upper bound means that the allowance
assigned to a job is minimized.

Some recent works in this field are relevant. The differ-
ences between the proposedmethodology and thesemethods
are summarized in Table 1.

The remainder of this paper is organized as follows.
Section 2 introduces the proposed methodology which is
composed of four steps. A practical example is used to
validate the effectiveness of the proposed methodology. The
performance of the proposed methodology is evaluated and
comparedwith those of some existing approaches. Finally, the
concluding remarks and some directions for future research
are given in Section 4.

2. Methodology

The operating procedure of the effective fuzzy-neural
approach consists of several steps that will be described in the
following sections.
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Table 1: The differences between this study and some recent references.

Method Data preprocessing
method Forecasting method Upper bound Optimization method Computation

complexity
Chen et al. (2008) [1] SOM FBPN Yes Simulation + fuzzy rules High
Chien et al. (2011) [4] No Nonlinear regression No BPN Low
Chen and Lin (2011) [16] FCM BPN Yes NLP Very high

Chen and Wang (2013) [23] PCA + FCM BPN No An iterative process to
reduce outliers Low

The proposed methodology PCA + FCM BPN Yes IUBR Low
NLP: nonlinear programming.

Variable replacement using 
PCA

Classifying jobs using FCM

Forecasting job cycle times 
using BPN 

Is the upper 
bound lower?

Stop

No

Yes

Determining the upper bound 
of cycle time using IUBR

Figure 1: The flowchart of the proposed methodology.

Step 1. Forming new variables by constructing linear combi-
nations of the original variables using PCA.

Step 2. Classifying jobs using fuzzy c-means (FCM).

Step 3. Forecasting the cycle times of jobs in each category
using a BPN.

Step 4. Determining the upper bound of the cycle time using
the IUBR approach.

A flow chart of the proposed methodology is shown in
Figure 1.

2.1. Step 1: Forming New Variables Using PCA. First, PCA is
used to replace the inputs to the BPN. PCA was invented by

Standardize raw data

Stop

Establish the correlation 
matrix

Determine the number of 
principal components

Calculate the component 
scores matrix

Figure 2: The PCA process.

Pearson [18] as an analogue of the principal axes theorem in
mechanics; it was later independently developed byHotelling
[19]. In the literature, there are more advanced applications
of PCA. For example, Jaiswal et al. [20] used a hybrid of PCA
and partial least squares for face recognition. In Mohtasham
et al. [21], linear and exponential weighted PCA techniques
based on spectral similarity were employed to predict the dye
concentration in coloured fabrics.Theoperating procedure of
PCA consists of several steps that are illustrated in Figure 2.

The references on the combination of PCA, FCM, and
BPN are still very limited [17, 22, 23].

2.2. Step 2: Classifying Jobs Using FCM. After employing
PCA, examples are then classified using FCM. FCM is one
of the most popular fuzzy clustering techniques because it is
efficient, straightforward, and easy to implement. However,
FCM is sensitive to initialization and is easily trapped in local
optima.

The objective function of FCM is to minimize the
weighted sum of squared distances such that the jobs in
a category will be similar (or related) to one another and
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Normalize the input data

Stop

Produce the preliminary 
clustering results

Calculate the center of each 
category

Measure the distance from 
each job to the center of each 

category

Calculate the corresponding 
membership

Do the clustering 
results converge?

Yes

Increase the number of 
clusters

No

Yes

No

Calculate the S-index

Is the S-index
maximized?

Figure 3: The FCM procedure.

different from (or unrelated to) the jobs in other categories. In
FCM, the Euclidean distance between two jobs is measured:

𝑒
𝑗(𝑘)

= √

𝑝

∑

𝑞=1

(𝑧
𝑗𝑝

− 𝑧
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)
2

, 𝑗 = 1 ∼ 𝑛, 𝑘 = 1 ∼ 𝐾, (1)

where

𝑧
(𝑘)

= {𝑧
(𝑘)𝑞

} , 𝑘 = 1 ∼ 𝐾,

𝑧
(𝑘)𝑞

=

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)
𝑧
𝑗𝑞

∑
𝑛

𝑗=1
𝜇
𝑚

𝑗(𝑘)

, 𝑘 = 1 ∼ 𝐾, 𝑞 = 1 ∼ 𝑝.

(2)

The weight of a job is a function of its membership:

𝜇
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=
1

∑
𝐾

𝑔=1
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, 𝑗 = 1 ∼ 𝑛, 𝑘 = 1 ∼ 𝐾.

(3)

However, FCM requires prior knowledge about the number
of clusters in the data, which may not be known for new
data.Then, fuzzy clustering is carried out through an iterative
optimization of the objective function (see Figure 3). The
clustering process stops when themaximumnumber of itera-
tions is reached or the improvement in the objective function

becomes negligible with more iterations. In addition, the S-
index proposed by Xie and Beni [24] is used to give the ideal
number of categories automatically:

𝑆 =
𝐽
𝑚

𝑛 × 𝑒
2
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, (4)
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𝐽
𝑚

=

𝐾

∑

𝑘=1

𝑛

∑

𝑗=1

𝜇
𝑚

𝑗(𝑘)
𝑒
2

𝑗(𝑘)
,

𝑒
2

min = min
𝑘1 ̸= 𝑘2

(∑

all 𝑝
(𝑥
(𝑘1)𝑝

− 𝑥
(𝑘2)𝑝

)
2
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(5)

Chen and Wang [23] found the empirical relationship
between the S-index and the estimation performance.

2.3. Step 3: Forecasting the Cycle Times of Jobs in Each Category
with a BPN. Subsequently, the jobs/examples of a category
are learned with the same BPN. BPN is a popular tool with
applications in a variety of fields. Nevertheless, different
problemsmay require different parameter settings for a given
network architecture. In the literature, researchers have used
BPNs for estimating cycle times and assigning due dates. The
configuration of the BPN is established as follows.
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(1) Inputs: the new factors determined by PCAassociated
with the 𝑗th example/job. These factors have to be
partially normalized so that their values fall within
[0.1, 0.9] [10, 11].

(2) Single hidden layer: generally one or two hidden lay-
ers are more beneficial for the convergence property
of the BPN [25].

(3) The number of neurons in the hidden layer: 1 to 2K.
An increase in the number of hidden-layer nodes
lessens the output errors for the training examples
but increases the errors for novel examples. Such a
phenomenon is often called “overfitting”. There exist
many different approaches such as the pruning algo-
rithm, the polynomial time algorithm, the canonical
decomposition technique, and the network informa-
tion criterion for finding the optimal configuration of
a BPN [26]. In addition, there has been some research
considering the relation among the complexity of
a BPN, the performance for the training data, and
the number of examples, for example, using Akaike’s
information criterion (AIC) [27] or the minimum
description length (MDL) [28].

(4) Activation/transformation function: there are a num-
ber of common activation/transformation functions,
such as identity function, binary step function, bipo-
lar step function, sigmoid functions (binary sigmoid
function and bipolar sigmoid function), and ramp
function. In the proposed methodology, the binary
sigmoid function is used:

𝑓 (𝑥) =
1

1 + 𝑒−𝑥
. (6)

Therefore, the output ranges between 0 and 1.
(5) Output (𝑜

𝑗
): the (normalized) cycle time forecast of

the example. 𝑜
𝑗
is comparedwith the normalized cycle

time 𝑁(CT
𝑗
), for which root mean squared error

(RMSE) is calculated:
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√

∑
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2
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Similarly, ℎ
𝑗𝑙
is derived by transforming the signal

transferred to the hidden layer:
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Some algorithms are applicable for training a BPN in the
backward phase, such as the gradient descent algorithms, the
conjugate gradient algorithms, and the Levenberg-Marquardt
algorithm. In this study, the Levenberg-Marquardt algorithm
is applied. The Levenberg-Marquardt is the most widely
used optimization algorithm. It outperforms simple gradient
descent and other conjugate gradient methods in a wide
variety of problems. The Levenberg-Marquardt algorithm
uses approximation and updates the network parameters in
a Newton-like way, as described below.

The network parameters are placed in vector 𝛽. The
network output 𝑜

𝑗
can be represented with 𝑓(xj,𝛽). The

objective function of the BPN is to minimize RMSE or
equivalently the sum of squared error (SSE):

SSE (𝛽) =

𝑛

∑

𝑗=1

(𝑁 (CT
𝑗
) − 𝑓 (xj,𝛽))

2

. (12)

The Levenberg-Marquardt algorithm is an iterative pro-
cedure. In the beginning, the user should specify the initial
values of the network parameters. In each step, the parameter
vector is replaced by a new estimate, and the network
output by its linearization. When the network converges, the
gradient of the objective function will be zero. It should be
noted that while the Levenberg-Marquardt method is in no
way optimal but is just a heuristic, it works extremely well in
practice.

2.4. Step 4: Establishing the Upper Bound for the Job Cycle
Time Using the IUBR Approach. In order to apply the BPN
obtained at the previous step to determine the internal due
date of a job, the parameter values in the BPN must be
adjusted. To this end, in Chen and Wang [15] and Chen
and Lin [16], the NLP model is constructed to adjust the
connection weights and thresholds in the BPN, which is not
easy to solve. In the IUBR approach, only the threshold of the
output node will be adjusted in an iterative way. This way is
much simpler and can also achieve satisfactory results.

Substituting (9) into (8),
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− ln(
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− 1) . (15)



6 Journal of Applied Mathematics

Assume that the adjustment made to the threshold of the
output node is indicated as Δ𝜃

𝑜. After adjustment, the output
from the new BPN, 𝑜

𝑗
, determines the upper bound of the

cycle time:

𝑜


𝑗
=

1

1 + 𝑒
−𝑛
𝑜

𝑗


, (16)

where

𝑛
𝑜

𝑗


= 𝐼
𝑜

𝑗
− 𝜃
𝑜

= 𝐼
𝑜

𝑗
− (𝜃
𝑜
+ Δ𝜃
𝑜
) . (17)

Substituting (17) into (16),
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Substituting (15) into (18),
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Obviously, the maximum of Δ𝜃
𝑜 establishes the lowest upper

bound.
Since 𝑜
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is the upper bound of the cycle time, 𝑜
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Equation (21) holds for all jobs, so
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𝑜
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𝑗
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𝑜
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According to (19), the optimal value of Δ𝜃
𝑜 should be set to

the maximum possible value:
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𝑗

(ln(
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𝑜
𝑗
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Then the optimization results of the BPN are sensitive to
the initial conditions and may be different for each iteration.
Assume that the optimal value of 𝑜



𝑗
in the 𝑡th iteration is

indicated with 𝑜


𝑗
(𝑡). After some iterations,

𝑜


𝑗
(all iterations) = min

𝑡

𝑜


𝑗
(𝑡) . (24)

In this way, the upper bound of the cycle time is decreased
gradually (see Figure 4). Anothermerit of the IUBR approach
is that it does not rely on the parameters of the BPN.

Actual cycle time

Upper bound 3 (final result) 
Upper bound 4 

Upper bound 2 
Upper bound 1 

Figure 4: The upper bound is reduced in an iterative manner.

2.5. Ensemble Learning. Ensemble learning is based on the
notion of perturbing and combining. An ensemble consists
of a collection of ANNs and combines their predictions to
obtain a final prediction. In FCM, a job can be classified into
several categories to different degrees. In theory, the BPNs of
all categories can be applied to predict the cycle time of a job.
The forecasts obtained by using the BPNsmaynot be the same
and need to be aggregated. To this end, some treatments have
been carried out in the literature.

(1) Linear aggregation [29]:

CTE
𝑗
=

∑
𝐾

𝑘=1
(𝜇
𝑗(𝑘)

⋅ CTE
𝑗
(𝑘))

∑
𝐾

𝑘=1
𝜇
𝑗(𝑘)

=

𝐾

∑

𝑘=1

(𝜇
𝑗(𝑘)

⋅ CTE
𝑗
(𝑘)) ,

(25)

where ∑
𝐾

𝑘=1
𝜇
𝑗(𝑘)

= 1. CTE
𝑗
(𝑘) is the cycle time of job

𝑗 estimated by the BPN of category k.
(2) BPNaggregation [29]: themembership and cycle time

forecast of a job are fed into another BPN to be
aggregated. Consider

CTE
𝑗
= BPN (𝜇

𝑗(1)
,CTE

𝑗
(1) , . . . , 𝜇

𝑗(𝐾)
,CTE

𝑗
(𝐾)) . (26)

(3) Generalized average method [30]: in FCM, the error
is proportional to the distance to the center. For this
reason, a natural way to aggregate the forecasts is

CTE
𝑗
=

∑
𝐾

𝑘=1
2/(𝑚−1)√1/𝜇

𝑗(𝑘)
⋅ CTE

𝑗
(𝑘)

∑
𝐾

𝑘=1
2/(𝑚−1)√1/𝜇

𝑗(𝑘)

. (27)

3. Application and Analyses

Todemonstrate the application of the proposedmethodology,
a real case with the data of 40 jobs from a wafer fabrication
factory located in Taichung City Scientific Park, Taiwan (see
Table 2), was used, where 𝑥

𝑗1
∼ 𝑥
𝑗6

stand for the job
size, factory utilization, the queue length on the route, the
queue length before the bottleneck, the work in progress
(WIP), and the average waiting time. The wafer fabrication
factory produces more than ten products and has a monthly
capacity of 20,000 wafers. The wafer fabrication processes
include photolithography, thermal processes, implantation,
chemical vapor deposition, etching, physical vapor depo-
sition, chemical mechanical polishing, process diagnostics
and control, and cleaning. The production characteristic of
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Table 2: An example.

𝑗 𝑥
𝑗1

𝑥
𝑗2

𝑥
𝑗3

𝑥
𝑗4

𝑥
𝑗5

𝑥
𝑗6

CT
𝑗

1 24 1261 181 781 112 0.92 935
2 24 1263 181 762 127 0.90 958
3 24 1220 176 761 127 0.89 1047
4 23 1282 178 802 127 0.94 1011
5 23 1303 180 780 175 0.93 1068
6 23 1281 183 782 175 0.93 1143
7 23 1242 184 741 163 0.89 1103
8 24 1262 182 681 139 0.86 1250
9 22 1260 182 701 98 0.86 1181
10 22 1260 179 700 257 0.87 1194
11 24 1301 163 722 99 0.84 1260
12 22 1221 184 641 131 0.82 1240
13 23 1323 159 740 247 0.87 1180
14 24 1362 181 782 191 0.95 1227
15 24 1261 181 762 219 0.91 1236
16 23 1321 177 801 219 0.96 1215
17 22 1343 180 822 219 0.97 1228
18 24 1321 177 762 54 0.93 1266
19 25 1343 179 781 54 0.96 1285
20 25 1300 180 740 54 0.92 1272
21 22 1320 181 721 54 0.91 1310
22 24 1321 182 742 49 0.92 1265
23 23 1262 165 680 201 0.80 1308
24 22 1240 161 722 103 0.82 1331
25 23 1183 183 661 53 0.82 1294
26 23 1282 184 701 53 0.88 1314
27 22 1202 177 680 248 0.84 1321
28 23 1202 178 681 248 0.85 1353
29 24 1202 185 701 82 0.86 1226
30 23 1202 158 721 98 0.81 1301
31 24 1343 181 760 67 0.94 1280
32 24 1381 185 801 67 0.97 1286
33 22 1362 156 780 67 0.91 1252
34 23 1282 179 782 223 0.92 1214
35 23 1320 180 782 176 0.93 1251
36 25 1340 176 801 462 0.97 1222
37 23 1320 182 781 168 0.95 1187
38 22 1361 181 781 141 0.94 1205
39 22 1381 179 781 95 0.97 1120
40 23 1363 178 802 179 0.97 1133

“reentry,” which is highly relevant to the semiconductor
industry, is clearly reflected in this problem. It also shows the
difficulties facing production planners and schedulers who
attempt to provide an accurate due date for a product with
a very complicated routing.

The standard deviations of the six inputs are compared
in Figure 5. Note that the variability in 𝑥

𝑗2
, 𝑥
𝑗4
, and 𝑥

𝑗5
is

substantially higher than that in the remaining variables.
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Figure 5: The comparison of the standard deviations of the inputs.

Subsequently, we standardize the data (see Table 3) and
obtain the correlation matrix as

𝑅 =

[
[
[
[
[
[
[

[

0.97 0.10 0.16 0.21 −0.03 0.25

0.10 0.98 0.01 0.70 −0.01 0.78

0.16 0.01 0.98 0.05 −0.07 0.37

0.21 0.70 0.05 0.98 0.15 0.86

−0.03 −0.01 −0.07 0.15 0.98 0.10

0.25 0.78 0.37 0.86 0.10 0.98

]
]
]
]
]
]
]

]

. (28)

The eigenvalues and eigenvectors of 𝑅 are then calculated.
Based on them, the variance contribution rates can be derived
as

𝜂
1
= 46%, 𝜂

2
= 20%, 𝜂

3
= 16%,

𝜂
4
= 14%, 𝜂

5
= 4%, 𝜂

6
= 0%.

(29)

Summing up 𝜂
𝑞
’s, we obtain

𝜂
Σ
(1) = 46%, 𝜂

Σ
(2) = 65%, 𝜂

Σ
(3) = 81%,

𝜂
Σ
(4) = 95%, 𝜂

Σ
(5) = 100%, 𝜂

Σ
(6) = 100%.

(30)

After conducting a Pareto analysis, p is chosen as 3 tomeet the
requirement 𝜂

Σ
(𝑝) ≥ 85% ∼ 90%. The first three principal

components explain roughly 80% of the total variability in
the standardized data, so that it might be a reasonable way
to reduce the dimensions in order to visualize the data.

Subsequently, the component scores are calculated (see
Table 4), which contain the coordinates of the original data
in the new coordinate system defined by the principal
components, and will be used as the new inputs to the FCM-
BPN.

Subsequently, jobs are classified using FCM based on the
new variables. The results of the 𝑆-test are summarized in
Table 5. In this case, the optimal number of job categories
was 5. However, there will be some categories with very few
jobs. For this reason, the second best solution is used, that is,
4 categories, by setting the threshold of membership to 0.3.
The classification results are shown in Table 6.

After preclassification, the three-layer BPN of each cate-
gory was applied to predict the cycle times of jobs belonging
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Table 3: The standardized data.

𝑗 𝑥
𝑗1

𝑥
𝑗2

𝑥
𝑗3

𝑥
𝑗4

𝑥
𝑗5

𝑥
𝑗6

1 0.88 −0.53 0.40 0.74 −0.40 0.37
2 0.88 −0.49 0.48 0.30 −0.22 −0.05
3 0.88 −1.27 −0.17 0.29 −0.22 −0.31
4 −0.22 −0.15 0.07 1.18 −0.22 0.65
5 −0.22 0.24 0.37 0.71 0.35 0.58
6 −0.22 −0.17 0.78 0.74 0.35 0.45
7 −0.22 −0.87 0.90 −0.14 0.21 −0.19
8 0.88 −0.51 0.53 −1.45 −0.08 −0.87
9 −1.32 −0.55 0.60 −1.01 −0.56 −0.81
10 −1.32 −0.54 0.23 −1.03 1.34 −0.55
11 0.88 0.20 −1.87 −0.57 −0.56 −1.19
12 −1.32 −1.25 0.80 −2.33 −0.18 −1.64
13 −0.22 0.60 −2.40 −0.16 1.22 −0.60
14 0.88 1.31 0.47 0.75 0.55 0.94
15 0.88 −0.53 0.40 0.31 0.88 0.19
16 −0.22 0.57 −0.05 1.17 0.88 1.13
17 −1.32 0.97 0.33 1.62 0.88 1.38
18 0.88 0.56 −0.01 0.31 −1.09 0.62
19 1.97 0.96 0.15 0.74 −1.09 1.06
20 1.97 0.19 0.38 −0.16 −1.09 0.36
21 −1.32 0.55 0.51 −0.57 −1.09 0.10
22 0.88 0.55 0.54 −0.13 −1.16 0.32
23 −0.22 −0.52 −1.59 −1.47 0.67 −2.00
24 −1.32 −0.91 −2.11 −0.57 −0.51 −1.54
25 −0.22 −1.95 0.72 −1.89 −1.11 −1.64
26 −0.22 −0.15 0.89 −1.01 −1.11 −0.36
27 −1.32 −1.59 −0.07 −1.47 1.23 −1.26
28 −0.22 −1.60 0.07 −1.47 1.23 −1.11
29 0.88 −1.60 0.93 −1.03 −0.76 −0.87
30 −0.22 −1.59 −2.57 −0.58 −0.56 −1.86
31 0.88 0.97 0.41 0.27 −0.94 0.70
32 0.88 1.65 1.00 1.16 −0.94 1.27
33 −1.32 1.30 −2.73 0.71 −0.94 0.10
34 −0.22 −0.14 0.16 0.74 0.92 0.33
35 −0.22 0.55 0.34 0.75 0.36 0.54
36 1.97 0.91 −0.23 1.17 3.79 1.28
37 −0.22 0.55 0.61 0.73 0.27 0.91
38 −1.32 1.28 0.42 0.72 −0.05 0.81
39 −1.32 1.66 0.14 0.72 −0.60 1.36
40 −0.22 1.33 0.13 1.18 0.40 1.42

to the category according to the new variables. Different net-
work architectures were evaluated to compare the forecasting
performance. The best-fitted network which was selected,
and, therefore, the architecture which presented the best
forecasting accuracy, is composed of three inputs, six hidden
and one output neurons.

The convergence condition in training networks was
established as either the improvement in MSE becomes less
than 10

−6 with one more epoch or 1000 epochs have already
been run. 3/4 of the adopted examples in each category

Table 4: New inputs to the FCM-BPN.

𝑧
𝑗1

𝑧
𝑗2

𝑧
𝑗3

−0.56 0.91 −0.19
−0.13 0.87 −0.34
0.51 0.57 −0.37
−0.97 −0.10 0.20
−0.87 −0.20 −0.26
−0.75 0.14 −0.51
0.57 0.56 −0.66
1.30 1.18 −0.55
1.55 0.31 0.47
1.37 −0.87 −1.04
1.11 −0.59 0.91
3.04 0.63 −0.20
0.51 −2.44 −0.02
−1.94 0.12 −0.43
−0.30 0.35 −1.29
−1.62 −0.84 −0.48
−2.04 −1.24 −0.17
−0.87 0.77 0.89
−1.92 1.34 0.64
−0.58 1.70 0.34
0.22 0.23 1.29
−0.62 1.31 0.73
2.54 −1.26 −0.16
2.39 −1.64 1.20
3.02 1.57 0.14
0.89 1.21 0.66
2.56 −0.74 −1.19
2.19 −0.13 −1.54
1.61 1.90 −0.42
2.72 −1.23 0.87
−1.27 0.99 0.71
−2.56 1.07 0.78
−0.37 −2.44 2.47
−0.60 −0.51 −0.82
−1.06 −0.27 −0.17
−2.54 −1.36 −3.41
−1.31 −0.02 −0.18
−1.32 −0.63 0.67
−1.77 −0.58 1.32
−2.13 −0.66 0.12

are fed as “training examples” into the BPN. The remaining
1/4 is left for testing. For example, category 3 has 8 jobs; 6
of them are randomly chosen for training the BPN while
the remaining 2 jobs are left for testing. The forecasting
accuracy can be evaluated with mean absolute error (MAE),
mean absolute percentage error (MAPE), and RMSE. The
forecasting performances are summarized in Table 7. The
forecasting results are shown in Figure 6. The performance
of the proposed methodology is compared with those of
statistical analysis (i.e., multiple linear regression), BPN,
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Table 5: The results of the 𝑆-test.

Number of categories (𝐾) 𝐽
𝑚

𝑒
2

min 𝑆

2 1.96 0.14 0.34
3 1.21 0.09 0.34
4 0.86 0.07 0.30
5 0.67 0.06 0.26
6 0.53 0.03 0.43

Table 6: The classifying results (𝜇
𝐿
= 0.3).

Category Jobs
1 4–6, 14–17
2 10-11, 13, 23-24, 27, 30, 33
3 1, 18–22, 31-32
4 2-3, 7–9, 12, 25-26, 28-29, 34–40

Table 7: The forecasting performances.

Category MAE (hrs) MAPE RMSE (hrs)
1 20 1.7% 44
2 6 0.5% 14
3 5 0.4% 12
4 8 0.6% 18
Total 11 0.9% 29

Table 8: Comparison of the forecasting performances.

Category MAE (hrs) MAPE RMSE (hrs)
Statistical analysis 73 6.1% 99
BPN 30 2.4% 69
FCM-BPN 15 1.2% 38
PCA-BPN 27 2.3% 67
PCA-FCM-BPN 11 0.9% 29

FCM-BPN, and PCA-BPN in Table 8. The nonlinear nature
of this problem is obvious since the performance of statistical
analysis (a linear approach) is poor. In addition, the simple
combination of PCA and BPN does not have much effect.
The main effect of PCA is to improve the correctness of job
classification, as mentioned in Chen and Wang [23].

Subsequently, the IUBR approach is applied to determine
the upper bound of the cycle time. In the first iteration,
Δ𝜃
𝑜∗

(𝑡) is −0.808, and the upper bounds of the cycle times
are shown in Figure 7.

The process stops after five iterations because the upper
bounds remain unchanged after the fifth iteration.The results
of the five iterations are summarized in Table 9, from which
the allowances which are 25, 33, 54, 48, 56, 57, 58, 44, 54, 53,
42, 46, 55, 48, 47, 50, 48, 41, 36, 39, 30, 41, 31, 24, 34, 29, 27, 13,
37, 24, 47, 15, 34, 50, 44, 49, 53, 50, 53, and 53 added to the cycle
times are derived with an average of 42 (hours). The due date
of a job is then set to the release time plus the upper bound of
the cycle time.

Tomake a comparison, six other allowance determination
policies are also applied to the collected data.
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Figure 6: The forecasting results using PCA-FCM-BPN.
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Figure 7: The upper bounds of the cycle times.

(1) Total work content policy (TWK): in TWK, the due
date allowance factor is estimated based on historical
data by a regression model. There is another product
in the wafer fabrication factory with an average cycle
time of 1278 hours.The total processing time and cycle
time standard deviation of the product are 317 and
87 hours, respectively. The product was adopted as
the comparison basis, and in this case the cycle time
forecast and allowance are determined as follows:

Cycle time forecast = 1278

317
∗ the total processing time,

Allowance = 3 ∗ 87 ∗ (
the total processing time

317
) .

(31)
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Table 9: The results of the five iterations.

Iteration 1
(Δ𝜃
𝑜∗

(𝑡) = −0.808)

Iteration 2
(Δ𝜃
𝑜∗

(𝑡) = −0.669)

Iteration 3
(Δ𝜃
𝑜∗

(𝑡) = −0.446)

Iteration 4
(Δ𝜃
𝑜∗

(𝑡) = −0.446)

Iteration 5
(Δ𝜃
𝑜∗

(𝑡) = −0.446)

987 976 960 960 960
1025 1011 991 991 991
1147 1129 1100 1100 1100
1103 1086 1059 1058 1058
1171 1153 1124 1123 1123
1243 1227 1200 1199 1199
1207 1190 1161 1161 1161
1322 1312 1294 1294 1294
1274 1259 1235 1235 1235
1283 1270 1246 1246 1246
1329 1319 1302 1302 1302
1316 1305 1286 1286 1286
1273 1259 1234 1234 1234
1307 1296 1276 1275 1275
1313 1302 1282 1282 1282
1299 1286 1265 1265 1265
1308 1296 1276 1276 1276
1332 1323 1307 1307 1307
1344 1336 1321 1321 1321
1336 1327 1311 1311 1311
1358 1352 1340 1340 1340
1331 1322 1305 1305 1305
1357 1350 1338 1338 1338
1369 1364 1355 1355 1355
1349 1342 1328 1328 1328
1360 1354 1343 1343 1343
1364 1358 1348 1348 1348
1353 1353 1353 1353 1353
1334 1334 1320 1320 1320
1369 1364 1355 1355 1355
1311 1300 1280 1280 1280
1384 1381 1376 1376 1376
1350 1343 1329 1329 1329
1298 1286 1264 1263 1263
1323 1313 1295 1295 1295
1304 1292 1271 1271 1271
1381 1378 1371 1250 1250
1399 1399 1397 1265 1265
1405 1405 1405 1247 1247
1348 1340 1326 1244 1244

(2) Gamma distribution fitting method (Gamma): the
waiting time of a job is fitted with a Gamma
distribution. For example, the waiting time of a job
with 24 pieces of wafers is fitted with a Gamma
distribution in Figure 8.The 50% and 95% percentiles
are 929 and 1160, respectively, and the total processing
time is 251 hours. So the cycle time forecast is 1160 +

251 = 1411 hours, and allowance is 1160 − 929 = 231

hours.

(3) Constant allowance policy (CON, PCA-FCM-BPN +
CON): add three times the RMSE of the prediction
approach to the completion time forecasts to deter-
mine the due date.
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Figure 8: Fitting the waiting time with a Gamma distribution (jobs
with 24 wafers).

(4) Selective allowance policy (SAP, PCA-FCM-BPN +
SAP): add three times the RMSE of the prediction
approach to the completion time forecasts of a small
quantity of jobs that might encounter difficulties in
keeping the internal due date. Such jobs are chosen in
the following way:

6

∑

𝑖=1

𝑁(𝑥
𝑗𝑖
) ≥ 0.5 ⋅ max

𝑗

6

∑

𝑖=1

𝑁(𝑥
𝑗𝑖
) + 0.5 ⋅ min

𝑗

6

∑

𝑖=1

𝑁(𝑥
𝑗𝑖
) .

(32)

In other words, these jobs are among the 50% per-
centiles.

(5) Random assignment policy (RAP, PCA-FCM-BPN
+ RAP): add the extra allowance to the completion
time forecasts of the same quantity of jobs that are
randomly chosen.

(6) No allowance policy (NAP, PCA-FCM-BPN + NAP):
no allowance will be assigned to any job.

Due date related performances are impacted by the
quality of the due date assignment methods. After applying
the seven allowance determination policies, the following
performance measures are compared:

(1) number of tardy jobs (𝑁
𝑇
);

(2) mean tardiness (𝑇);
(3) sum of allowances.

The comparison results are summarized in Table 10. The
proposed IUBR approach outperforms the other allowance
determination policies.

(1) It guarantees the on-time delivery of the jobs. Both
𝑁
𝑇
and 𝑇 are zeros. Among the other allowance

determination policies, only Gamma and CON can
achieve that at the expense of adding some extra
allowance.

(2) The percentage of reduction in the sum of allowances
over CON is 52%. The advantages over TWK,
Gamma, SAP, and RAP are 79%, 74%, 12%, and 12%,
respectively.The percentage of on-time delivery is not
derived from a greater buffer on the completion time
prediction.

(3) The performance of SAP is not better than that of
RAP, which shows it is not easy to anticipate jobs that
may delay.

(4) Compared with TWK and Gamma, the other policies
effectively reduce the allowances added to the job
cycle times, which is due to the forecasting accuracy
of the PCA-FCM-BPN approach.

4. Conclusions and Directions for
Future Research

Owing to the complexity of thewafer fabrication, the due date
assignment of each job presents a challenging problem to the
production planning and scheduling people. The firm has to
offer a price reduction if the due date is far away from the
expected one. Conversely, the looser the due date is set, the
higher the probability that the job will be completed or deliv-
ered on time is. That is very important to maintain a good
reputation with the customers. This study explores a new
application of fuzzy-neural approaches in the due date assign-
ment problem of the wafer fabrication factory. The proposed
methodology decomposes internal due date assignment in a
wafer fabrication factory into two subproblems: completion
time prediction and allowance determination. To overcome
the problems with the existing approaches, two innovative
treatments are taken in the proposed methodology. First,
PCA is applied to construct a series of linear combinations
of the original variables to form a new variable, so that these
new variables are unrelated to each other as much as possible,
and the relationship among them can be reflected in a better
way.The combination of PCA andBPNalso reduces the space
for storing the input variables in the modeling of the wafer
fabrication system. In addition, the simultaneous application
of PCA, FCM, and BPN further improved the estimation
accuracy. Subsequently, the IUBR approach is proposed to
determine the allowance that will be added to the estimated
job cycle time. Our result is existentially tight.

The validity that the effective fuzzy-neural approach for
internal due date assignment is able to improve on-time
delivery has been proved by the case study. Based on the above
analysis,

(1) the forecasting accuracy (measured with MAE,
MAPE, andRMSE) of the PCA-FCM-BPNwas signif-
icantly better than those of many existing approaches;

(2) it is easier to determine the allowance in the IUBR
method than the method based on NLP;

(3) the bound on the job cycle time is tighter than the
bounds byTWK,Gamma, andCONand simpler than
the bound by Chen and Wang [15], which requires
NLP optimization.
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Table 10: The performances of various allowance determination policies.

TWK Gamma CON SAP RAP NAP (basis) IUBR
Sum of allowances 7982 6479 3480 1914 1914 0 1680
𝑁
𝑇

31 0 0 9 7 14 0
𝑇 (hours) 82 0 0 3.9 2.1 3.5 0

However, there are two limitations that need to be
acknowledged and addressed regarding the present study.

(1) The first limitation concerns the experimental nature
of this research. The proposed methodology was
studied within a short period of time. There is an
apparent danger involved whenever conclusions are
drawn from such a limited sample and then applied
in the highly dynamic semiconductor manufacturing
environment.

(2) The BPN part in the methodology is usually regarded
as a black box. To exploit the knowledge embedded in
the back box, and to facilitate the practical application
of the proposed methodology, some association rules
have to be extracted from the estimation results.

The IUBR approach only modifies the threshold of the
output node. In future studies, other parameters in the
BPN can be modified in similar ways. However, it is a
challenge to make the modification results independent of
the original parameter values. In addition, the concept of
customer satisfaction can be incorporated into the proposed
methodology; thereby, the due date can achieve a higher
level of customer satisfaction. In contrast, the proposed
methodology only guarantees a positive level of customer
satisfaction.
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After investigating the advantages and disadvantages of currentmethods of statistical process control, it becomes important to over-
come the disadvantages and then use the advantages to improve a method for monitoring a process with categorical observations.
An approach which considers uncertainty and vagueness is tried for this study; and for this purpose, fuzzy set theory is inevitable
to use. So, a new approach based on fuzzy set theory is introduced in this research for monitoring attribute quality characteristics.
This approach is then compared with the current related approach to see the difference in performance.

1. Introduction

With regard to the continuous improvement in the products
and service quality as a main factor for customer satisfaction,
improving the tools of monitoring the quality characteristics
has become inevitable. Statistical process control (SPC) is
a well-known methodology for improving the quality. SPC
is a powerful collection of problem-solving tools beneficial
in achieving process stability and enhancing capability and
quality through the reduction of variability [1]. Control chart
is utilized as the most essential tool of SPC that is frequently
employed to determine whether a process is in a state of
statistical control. According to Montgomery [1], the control
chart refers to a graphical display of a quality characteristic
that has been measured or computed from a sample versus
the sample number or time. Variable control charts are used
to monitor continuous characteristics of the products, while
attribute control charts are applied to monitor the quality
characteristics, which are not possible to express in numerical
scale. From the literature, first, it is concluded that there
are some advantages and disadvantages for using attribute
control charts like 𝑝 chart by comparing it to the variable
control chart like 𝑋 − 𝑅. Some advantages of using attribute
control charts are as follows.

(i) Attribute control charts couldmonitormore than one
quality characteristic simultaneously.

(ii) Attribute control charts need less cost and time for
inspection than variable control charts.

Disadvantages of attribute control charts are as follows.

(i) Attribute control charts need larger sample size than
variable control charts.

(ii) Attribute information could not determine the reason
of being out of control, so correction action is mean-
ingful.

However, the binary classification into conforming and
nonconforming used in 𝑝 chart might not be appropriate in
many situations where there might be a number of interme-
diate levels [2]. In this case, for measuring the quality-related
characteristics, it is necessary to use several intermediate lev-
els besides conforming and nonconforming. For example, the
quality of the product can be classified by one of the following
terms: perfect, good, median, poor, and fair, depending on
deviation from specifications. Data obtained in this way are
called categorical data.

Some research has been done for monitoring processes
with categorical observations, such as multinomial distribu-
tion based and grouped data approach which have several
disadvantages as follows:

(i) cannot specify if the change in the quality is a result
of quality improvement or not [3],
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(ii) control limits do not depend on sample size [3],
(iii) for the trinomial distribution, Cochran [4] rules re-

quire all expected frequencies to be at least five. So,
a large sample size is required, but collecting such
sample size is so hard in real applications,

(iv) however, the majority of our information about the
surrounding phenomena is fuzzy and we expressed
them by means of linguistic variable. Furthermore,
the quality level of each product is determined by
the interaction between the linguistic and qualitative
variables which are usually vague, and in each orga-
nization, operators and experts are the responders of
determining the quality level and the estimation of the
quality which they have done mentally in uncertain
situations. So it is necessary to use an approach that
is applicable and capable to register the linguistic
variable and estimate them with appropriate approx-
imation. In fact the main problem is vagueness that
corresponds to the mental affect [5].

2. Statistical and Fuzzy Control Charts

In general, statistical and fuzzy methodologies exist to deal
with the categorical data. Early research on statistical meth-
odologies goes back to Duncan [6] who introduced a chi-
square control chart for monitoring a multinomial process
with categorical data. Later, this type of control chart is
discussed further by Marcucci [7] and Nelson [8]. Marcucci
[7] introduced a statistical approach for the case, where the
proportion of each category is not known before. In the case
of fuzzy methodologies, several approaches are proposed.
Bradshaw Jr. [9], for the first time, used fuzzy sets as a
basic for explaining the measurement of conformity of each
product unit with the specifications. Williams and Zigli
[10] showed that quality assurance techniques, especially in
service industries, are not without imprecision of human
judgments. This imprecision and vagueness can be treated
with the help of fuzzy set theory. Raz and Wang [2] and
Wang and Raz [11] proposed a probabilistic approach and a
membership approach. Kanagawa et al. [12] developed a new
control chart for themonitoring of themean and deviation of
attribute variables. Franceschini and Romano [13] proposed
an approach based on the use of linguistic quantifiers for
constructing control charts. Probabilistic and membership
approach are discussed by Laviolette et al. [14], Almond [15],
and Kandel et al. [16] and reviewed by Woodall et al. [17]
and Taleb and Limam [3]. Gülbay and Kahraman [18–20]
proposed 𝛼-level fuzzy control chart for attributes in order
to reflect the vagueness of data and tightness of inspection.
Cheng [21] proposed an approach to deal with the expert’s
subjective judgments based on the ranking scores assigned by
the individual inspectors to the inspected items. Shu andWu
[22] used resolution identity to construct the control limits of
fuzzy 𝑝 chart using fuzzy data. They also proposed a ranking
method to determine the process condition in linguistic
form such as rather in control or rather out of control.
Pandurangan andVaradharajan [23] proposed a control chart
for fuzzy multinomial processes with variable sample size.

In their approach, control limits for the fuzzy multinomial
chart are obtained using multinomial distribution.

3. Highlights

The principle of fuzzy approaches proposed by Raz and
Wang [2] and other researchers in this field are like the
generalized 𝑝-chart, and each product unit is categorized
with a linguistic variable, whereas each product unit might
belong to several linguistic variables simultaneously in a
vague environment. This statement is declared by Wang and
Raz [11] themselves as “in a term set consisting of 𝑡 linguistic
values, each sample is completely specified by a 𝑡-dimensional
vector with elements corresponding to the number of items
in the sample describing each linguistic value. This vector is
a random variable from a multinomial distribution.” Other
researchers have also indicated that Raz and Wang do not
use fuzzy logic correctly. This disadvantage is also declared
by Kandel et al. [16], Dubois and Prade [24], and Laviolette
et al. [14]. Unfortunately, all of the recent methods model
their approach based on a multinomial distribution without
considering the fact that maybe an item could belong to two
or even more categories at the same time.

4. Materials and Methods

In this research, for the first time, we try to use a fuzzy infer-
ence system to transfer the subjective rating of the quality of
the products by the inspectors to a crisp number, so that we
can use any variable control chart to monitor the quality of
the process. Consider that the attribute characteristics of a
specific product would be considered as a linguistic variable
in the antecedent of an if-then rule which consists of two
terms, good and fair. The quality of the product is considered
as the linguistic variable in the consequent, which consists
of two terms, conforming and nonconforming. Therefore, by
considering the number of linguistic variables and their
terms, it can be concluded that the fuzzy system used in this
approach consists of two if-then rules as below.

Rule 1. If the quality characteristic is “good” then the quality
is “conform”.

Rule 2. If the quality characteristic is “fair” then the quality is
“nonconforming”.

Detailed construction procedures appear in the future
step by step, followed by an example. In the following, we
provide a step by step description of the construction of the
fuzzy inference system and monitor the process.

Step 1 (fuzzify input). Before the rules can be evaluated, the
inputs must be fuzzified according to each of the linguistic
sets. So the second step is to take the inputs (scores), which
are crisp integer numbers and determine the degree to which
they belong to the appropriate fuzzy sets via membership
functions:

𝛼
𝑟
= 𝜇
𝑖
(𝑥

input
) , (1)
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Table 1: Estimated parameters of the “yellowness” and “blackness” membership function.

Yellowness Black
𝛽
0

𝛽
1

𝛽
0

𝛽
1

Coefficient value −3.8672 0.849 Coefficient value 4.0568 −0.716
𝑡-student value 6.01 23.08 𝑡-student value 6.81 25.82
Yellowness: 𝑅-adj = 96.8, 𝐹 = 219.73, 𝑎 = −𝛽1 = −0.849, 𝑐 = 𝛽0/𝑎 = 4.556.
Black: 𝑅-adj = 95.2, 𝐹 = 321.69, 𝑎 = −𝛽1 = 0.716, 𝑐 = 𝛽0/𝑎 = 5.667.

where 𝑖 = “fair”, “good” and 𝑟 = 1, 2 (rules number), then
𝛼
𝑟
which is a single truth value will be applied to the output

function.

Step 2 (apply implication method). A consequent is a fuzzy
set represented by a membership function and is reshaped
using a function associated with the antecedent (𝛼

𝑟
),

𝜇
conseq
𝑟

(𝑢) = min {𝛼
𝑟
, 𝜇
𝑗
(𝑢)} . (2)

The input for the implication process is a single number given
by the antecedent, and the output is a fuzzy set.

Step 3 (aggregate all outputs). Since decisions are based on
the testing of all rules in an FIS, the rules must be combined
in some manner in order to make a decision. Aggregation is
the process by which the fuzzy sets that represent the outputs
of each rule are combined into a single fuzzy set,

𝜇
conseq

(𝑢) = max
𝑟
{𝜇

conseq
𝑟

(𝑢)} . (3)

The input of the aggregation process is the list of truncated
output functions returned by the implication process for each
rule.The output of the aggregation process is one fuzzy set for
each output variable.

Step 4 (defuzzify). The input for the defuzzification process is
a fuzzy set (the aggregate output fuzzy set), and the output is
a single number. As much as fuzziness helps rule evaluation
during the intermediate steps, the final desired output for
each variable is generally a single number. However, the
aggregate of a fuzzy set encompasses a range of output values
and so must be defuzzified in order to resolve a single output
variable from the set.

There are different ways for defuzzifying, the most popu-
lar of which are the center of area (COA) and the mean of
maxima (MOM). We use COA method which returns the
center of area under the curve,

𝑈
COA

=

∫
𝑢
𝑢 ⋅ 𝜇

conseq
(𝑢) ⋅ 𝑑𝑢

∫
𝑢
𝜇conseq (𝑢) ⋅ 𝑑𝑢

. (4)

Step 5 (monitoring). Finally, in the last step we can monitor
the outputs of the fuzzy systems which are crisp continuous
data representing the quality of the product unit with tradi-
tional control charts.

A numerical example is used to evaluate the proposed
approach. After the numerical example, a comparison study
is performed based on average run length (ARL) to compare
the performance of proposed approach with that of current
related approaches.

5. Results and Discussion

In this section, we employmonitoring color problem of boats
as an example to illustrate our approach. A boat factory
intends to monitor the color of its products as one of the
important quality characteristics. The color should be black
and does not have any yellowness. So, the rules are formed as
below.

Rule 1. If the color is black then the quality is conform.

Rule 2. If the color is yellowness then the quality is noncon-
forming.

After collecting 30 observations, “𝑎” and “𝑐” are estimated
by using a regression model as illustrated in Table 1.

Now, by taking a shift in 25 preliminary samples of 20
rated color of boats by inspectors, the parameters “𝑝” and “𝑞”
are determined by using a simulation programming with the
goal of minimizing the ARL

1
as 0.1, 0.2. These values of “𝑝”

and “𝑞” can be used in the future.
Suppose the color of one boat is rated 8 by an inspector,

so we can get the color as “black” with degree of 0.8416 and
“yellowness” with degree of 0.2548.

Accordingly, the consequences of the rules are

𝜇
conseq
1

(𝑢) = min {0.8416, 𝜇black (𝑢)} ,

𝜇
conseq
2

(𝑢) = min {0.2548, 𝜇yellow (𝑢)} .
(5)

So

𝜇
conseq

(𝑢) = max {𝜇conseq
1

(𝑢) , 𝜇
conseq
2

(𝑢)} . (6)

And at the end by using COAdefuzzificationmethodwe have

𝑢
COA

= 0.761. (7)

6. Evaluation Criteria

To compare the performance of different proposed ap-
proaches for monitoring the categorical data, average run
length (ARL) is suggested as an evaluation criteria.

ARL is the average of the number of samples which
should occurr before a sample shows the out-of-control con-
dition. As Montgomery [1] declared, if the observations from
the process are not autocorrelated, ARL could be calculated
based on the following equation for every type of traditional
control chart,

ARL = 1

𝑝
, (8)
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where 𝑝 is the probability of being out of control limits for
each points. It should be noted that there are two different
ARLs: in control and out of control.

In control average run length is shown by ARL
0
. It is the

average of the number of samples which should occurr before
a sample shows an out-of-control condition when the process
is in fact in the state of in-control.

For a traditional type control charts with 3 sigma control
limits, the probability of type I error which is the probability
of being out-of-control of a point when the process is in fact
in the control is equal to 0.0027. So, the ARLwhen the process
is in the control is

ARL
0
=
1

𝑝
=

1

0.0027
≅ 3701. (9)

It means that, averagely, after each 370 points, a point shows
an alarm of out-of-control when the process is in fact in the
state of in control.

An average run length when the process is out-of-control
is shown by ARL

1
. ARL

1
is the average of the number of

samples which take place until a point shows an out-of-
control condition when the process is in fact out-of-control.
ARL
1
could be calculated by the following equation:

ARL
1
=

1

1 − 𝛽
, (10)

where 𝛽 is the probability of not detecting a shift with the first
point after the occurrance of a shift in the process.

7. Comparison Study

Here, by using simulation with MATLAB release R2009a, a
comparison study was run to compare the performance of a
proposed approach with the current related approach. Pro-
posed approach, probabilistic approach proposed by Raz and
Wang [2], generalized 𝑝 chart proposed by Marcucci [7], and
𝛼-cut approach proposed by Gülbay and Kahraman [20] are
considered in the comparison study. AsRaz andWang [2] and
Taleb and Limam [3] declared that the probabilistic approach
has a better performance over the membership approach;
however just the probabilistic approach is considered in this
comparison study. Base variable in this comparison study
consists of four linguistic terms: standard (S), second choice
(SC), third choice (TC), and chipped (C). Each linguistic term
has its own membership function as below:

𝜇S (𝑥) =
{{

{{

{

0 𝑥 ≤ 0

−𝑥 + 1 0 ≤ 𝑥 ≤ 1

0 𝑥 ≥ 1,

𝜇SC (𝑥) =

{{{{{{

{{{{{{

{

0 𝑥 ≤ 0

4𝑥 0 ≤ 𝑥 ≤
1

4

−
4

3
𝑥 +

4

3

1

4
≤ 𝑥 ≤ 1

0 𝑥 ≥ 1,

𝜇TC (𝑥) =

{{{{{{

{{{{{{

{

0 𝑥 ≤ 0

2𝑥 0 ≤ 𝑥 ≤
1

2

−2𝑥 + 2
1

2
≤ 𝑥 ≤ 1

0 𝑥 ≥ 1,

𝜇C (𝑥) =
{{

{{

{

0 𝑥 ≤ 0

𝑥 0 ≤ 𝑥 ≤ 1

0 𝑥 ≥ 1.

(11)

Raz and Wang [2] showed that there are not any theoret-
ical advantages over the using of different transformation
techniques, so in this study fuzzy mode is used as the
transformation technique for probabilistic approach.

Table 2 shows the representative values for different
membership functions based on fuzzy mode and fuzzy
median. It also shows the relationship between the score used
for ranking the production items by the inspectors and the
linguistic terms used to run other approaches.

Asmentioned before, for generating the data and running
the simulation, MATLAB release R2009a has been used. For
generating the data, first random data was generated based
on beta distributionwith parameters 𝛼 and𝛽.Then generated
data was multiplied by 10 and at last by using floor function,
we could have discrete number from 0 to 10,

𝑓 (𝑥) =
1

𝐵 (𝛼, 𝛽)
𝑥
𝛼−1

(1 − 𝑥)
𝛽−1

; 0 ≤ 𝑥 ≤ 1. (12)

The final observations were used as the input of the fuzzy
system. By using Table 1, the data for simulating the other
approaches could be used.

Here a beta distribution with parameter 𝛼 = 9 and 𝛽 = 2

was used. Figure 1 depicted this distribution.
Tables 3, 4, 5, and 6 show theARL

1
which is obtained from

a 10000 replication of generating datawith sample size 5when
there is a shift equal to 0.5𝜎 to 2𝜎 in the process.

Some results could be obtained from this comparison
study as below:

(i) proposed approach has a better performance in every
cases,

(ii) especially in small shifts and small sample size, the
proposed approach could detect the abnormal condi-
tion faster than other approaches,

(iii) comparing between generalized 𝑝 chart and proba-
bilistic approach shows that in every case the general-
ized 𝑝 chart has a better performance,

(iv) 𝛼-cut approach has the weakest performance among
these methods.

8. Conclusion

The first note in this approach is that variable quality charac-
teristics are also better to consider as attribute and categorical
quality characteristics. But, control charts for monitoring
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Table 2: Representative value for linguistic terms.

Score Linguistic term Fuzzy mode Fuzzy median
1–4 S 0 0.293
5-6 SC 0.25 0.387
7-8 TC 0.5 0.5
9-10 C 1 1

Table 3: ARL1 for different approach when there is a shift equal to 0.5𝜎.

Sample size Proposed method Probabilistic Wang Generalized pMarcucci 𝛼-cut Gulbay
5 1.091 14.983 27.911 33.54
10 1.001 5.373 21.276 24.83
15 1.047 3.362 6.573 7.01
20 1.032 2.531 5.217 5.35
50 1.017 1.73 1.525 1.62

Table 4: ARL1 for different approach when there is a shift equal to 1𝜎.

Sample size Proposed method Probabilistic Wang Generalized pMarcucci 𝛼-cut Gulbay
5 1.0073 3.663 3.721 5.12
10 1.016 1.284 1.391 2.01
15 1.001 1.059 1.102 1.65
20 1.001 1.013 1.032 1.23
50 1 1 1 1.12

Table 5: ARL1 for different approach when there is a shift equal to 1.5𝜎.

Sample size Proposed method Probabilistic Wang Generalized pMarcucci 𝛼-cut Gulbay
5 1.0051 1.2172 1.2262 2.011
10 1.0032 1.0041 1.0079 1.0821
15 1.0011 1.0026 1.0038 1.0439
20 1 1.0013 1.0020 1.0091
50 1 1.0007 1.0011 1.0039

Table 6: ARL1 for different approach when there is a shift equal to 2𝜎.

Sample size Proposed method Probabilistic Wang Generalized pMarcucci 𝛼-cut Gulbay
5 1.0009 1.1181 1.1231 1.981
10 1.0008 1.0022 1.0038 1.0616
15 1.0005 1.0015 1.0024 1.0291
20 1 1.0009 1.0011 1.0031
50 1 1.0001 1.0006 1.0021

4

3.5

3

2.5

2

1.5

1

0.5

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 1: A beta distribution with 𝛼 = 9 and 𝛽 = 2.

attribute quality characteristics in comparison to variable
control charts have some disadvantages in structure which
should be solved first. The second note is for monitoring
attribute quality characteristics; which because of mental
inspection and human judgments, have some level of vague-
ness and uncertainty.This research proposed a new approach
to quality control, a fuzzy approach for monitoring the proc-
ess when vagueness and uncertainty arise.The case study and
comparison study show the proposed approach has a better
performance and could detect abnormal shifts in the process,
especially in small shifts and small sample size, faster than
current related approaches.
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It is well known that data envelopment analysis (DEA) models are sensitive to selection of input and output variables. As the
number of variables increases, the ability to discriminate between the decision making units (DMUs) decreases. Thus, to preserve
the discriminatory power of a DEA model, the number of inputs and outputs should be kept at a reasonable level. There are many
cases in which an interval scale output in the sample is derived from the subtraction of nonnegative linear combination of ratio
scale outputs and nonnegative linear combination of ratio scale inputs. There are also cases in which an interval scale input is
derived from the subtraction of nonnegative linear combination of ratio scale inputs and nonnegative linear combination of ratio
scale outputs. Lee and Choi (2010) called such interval scale output and input a cross redundancy. They proved that the addition
or deletion of a cross-redundant output variable does not affect the efficiency estimates yielded by the CCR or BCC models. In
this paper, we present an extension of cross redundancy of interval scale outputs and inputs in DEA models. We prove that the
addition or deletion of a cross-redundant output and input variable does not affect the efficiency estimates yielded by the CCR or
BCC models.

1. Introduction

In many DEA applications, such as income, an interval scale
output in the sample is derived from the subtraction of
nonnegative linear combination of ratio scale outputs and
nonnegative linear combination of ratio scale inputs. There
are also many cases, like cost, in which an interval scale
input is derived from the subtraction of nonnegative linear
combination of ratio scale inputs and nonnegative linear
combination of ratio scale outputs, although the effect of such
dependencies on DEA is not clear. Lee and Choi [1] called
such interval scale output and input a cross redundancy. They
proved that the addition or deletion of a cross-redundant out-
put variable does not affect the efficiency estimates yielded by
the CCR or BCC models. Francisco J. López [2] generalized
the contributions of Lee and Choi by introducing specific
definitions and conducting some additional analysis on the
impact of the presence of other types of linear dependencies

among the inputs and outputs of a DEAmodel. In this paper,
we deal with cross-redundant output and input variables
simultaneously in DEA models. We prove that the addition
or deletion of a cross-redundant output and input variable
does not affect the efficiency estimates yielded by the CCR or
BCC models. The paper is organized as follows. In Section 2,
we introduce preliminaries of DEA. In Section 3, we present
our main results. In Section 4, we will illustrate that the
addition or deletion of cross-redundant output variable and
input variable does not affect the efficiency estimates yielded
by the CCR or BCC models. Conclusions are summarized in
Section 5.

2. Preliminaries

Suppose that we have 𝑛 ≥ 2 peer observed DMUs, {DMU
𝑗
:

𝑗 = 1, 2, . . . , 𝑛} which produce multiple outputs 𝑦
𝑟𝑗
, (𝑟 =
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1, . . . , 𝑠), by utilizing multiple inputs 𝑥
𝑖𝑗
, (𝑖 = 1, . . . , 𝑚).

The input and output vectors of DMU
𝑗
are denoted by

x
𝑗
and y

𝑗
, respectively, and we assume that x

𝑗
and y

𝑗
are

semipositive, that is, x
𝑗
≥ 0, x

𝑗
̸=0 and y

𝑗
≥ 0, 𝑦

𝑗
̸=0 for

𝑖 = 1, . . . , 𝑛. We use (x
𝑗
, y
𝑗
) to descript DMU

𝑗
and specially

use (x
𝑜
, y
𝑜
) (𝑜 element of {1, 2, . . . , 𝑛}) as the DMU under

evaluation.Throughout this paper, vectors will be denoted by
bold letters.

The input-oriented CCR [3] multiplier model evaluates
the efficiency of each DMU

𝑜
by solving the following linear

program:

𝜃
∗
= max u𝑡y

𝑜
,

v𝑡x
𝑜
= 1

s.t. u𝑡y
𝑗
≤ v𝑡x
𝑗
, 𝑗 = 1, . . . , 𝑛,

u ≥ 𝑜, v ≥ 𝑜.

(1)

Because x
𝑗
and y

𝑗
are semipositive for 𝑗 = 1, . . . , 𝑛, 𝜃∗ > 0.

Also since u𝑡y
𝑜
≤ v𝑡x

𝑜
and v𝑡x

𝑜
= 1, we have 𝜃∗ ≤ 1. Thus

0 < 𝜃
∗
≤ 1. 𝜃∗ represents the input-oriented CCR-efficiency

value of DMU
𝑜
.

The output-oriented CCR multiplier model evaluates the
efficiency of each DMU

𝑜
by solving the following linear

program:

𝜑
∗
= min v𝑡x

𝑜
,

u𝑡y
𝑜
= 1

s.t. v𝑡x
𝑗
≥ u𝑡y
𝑗
, 𝑗 = 1, . . . , 𝑛,

u ≥ 0, v ≥ 0.

(2)

Since u𝑡y
𝑜
≤ v𝑡x

𝑜
and u𝑡y

𝑜
= 1, we have 𝜑∗ ≥ 1.

1/𝜑
∗ represents the output-oriented CCR-efficiency value of

DMU
𝑜
. Also 𝜃∗ = 1/𝜑∗ [4].

The input-oriented BCC [4] multiplier model evaluates
the efficiency of each DMU

𝑜
by solving the following linear

program:

𝑧
∗
= max u𝑡y

𝑜
+ 𝑢
𝑜
,

v𝑡x
𝑜
= 1

s.t. u𝑡y
𝑗
+ 𝑢
𝑜
≤ v𝑡x
𝑗
, 𝑗 = 1, . . . , 𝑛,

u ≥ 0, v ≥ 0, 𝑢
𝑜
is free.

(3)

Let (u∗, v∗) be an optimal feasible solution formodel (1); then
(u∗, v∗, 𝑢∗

𝑜
), where 𝑢∗

𝑜
= 0, will be a feasible solution of model

(3). Thus 𝑧∗ ≥ 𝜃∗; therefore, 0 < 𝑧∗ ≤ 1. 𝑧∗ represents the
input-oriented BCC-efficiency value of DMU

𝑜
.

Finally, the output-oriented BCC multiplier model eval-
uates the efficiency of each DMU

𝑜
by solving the following

linear program:

𝑡
∗
= min v𝑡x

𝑜
− V
𝑜
,

u𝑡y
𝑜
= 1

s.t. v𝑡x
𝑗
− V
𝑜
≥ u𝑡y
𝑗
, 𝑗 = 1, . . . , 𝑛,

u ≥ 0, v ≥ 0, V
𝑜
is free.

(4)

It can be easily confirmed that 𝑡∗ ≥ 1. 1/𝑡∗ represents the
output-oriented BCC-efficiency value of DMU

𝑜
.

3. Main Results

In this section, we prove that the addition or deletion
of a cross-redundant output variable and/or input variable
does not affect the efficiency estimates yielded by the BCC
multiplier model in input- and output-oriented versions.
Similarly, it can be proved that the addition or deletion of
cross-redundant variable does not affect efficiency estimates
yielded by the CCR multiplier model in input- and output-
oriented versions.

Theorem 1. Let eachDMUhavem+ 1 inputs and s + 1 outputs,
that is, x

𝑗
= (𝑥
1𝑗
, . . . , 𝑥

(𝑚+1)𝑗
) and y

𝑗
= (𝑦
1𝑗
, . . . , 𝑦

(𝑠+1)𝑗
) for

𝑗 = 1, 2, . . . , n. Let

𝑥
(𝑚+1)𝑗

=

𝑚

∑

𝑖=1

𝛽
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝛼
𝑟
𝑦
𝑟𝑗
; 𝑗 = 1, . . . , 𝑛, (5)

𝑦
(𝑠+1)𝑗

=

𝑠

∑

𝑟=1

𝑎
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

𝑏
𝑖
𝑥
𝑖𝑗
; 𝑗 = 1, . . . , 𝑛, (6)

where 𝛽
𝑖
≥ 0, 𝑏

𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚; 𝛼

𝑟
≥ 0, 𝑎

𝑟
≥ 0, 𝑟 =

1, . . . , 𝑠.

Then the optimal objective function value of the following
model:

𝜌
∗
= max

𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑜
+ 𝑝
𝑜
,

𝑚+1

∑

𝑖=1

𝑞
𝑖
𝑥
𝑖𝑜
= 1,

s.t
𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑜
−

𝑚+1

∑

𝑖=1

𝑞
𝑖
𝑥
𝑖𝑜
− 𝑝
𝑜
≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑝
𝑟
≥ 0, 𝑞

𝑖
≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(7)

is equal to the optimal objective function value of the following
model (3).
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Proof. Let (𝑝∗
1
, . . . , 𝑝

∗

𝑠+1
, 𝑞
∗

1
, . . . , 𝑞

∗

𝑚+1
, 𝑝
∗

𝑜
) be an optimal solu-

tion for model (7); then we have

𝜌
∗
=

𝑠+1

∑

𝑟=1

𝑝
∗

𝑟
𝑦
𝑟𝑜
− 𝑝
∗

𝑜
, (8)

𝑚+1

∑

𝑖=1

𝑞
∗

𝑖
𝑥
𝑖𝑜
= 1, (9)

𝑠+1

∑

𝑟=1

𝑝
∗

𝑟
𝑦
𝑟𝑜
−

𝑚+1

∑

𝑖=1

𝑞
∗

𝑖
𝑥
𝑖𝑜
− 𝑝
∗

𝑜
≤ 0. (10)

By (6) and (9), it follows that

𝜌
∗
=

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
) 𝑦
𝑟𝑜
−

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑜
+ 𝑝
∗

𝑜
. (11)

Also, by (5) and (9) it concludes that

𝑚

∑

𝑖=1

(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝑥
𝑖𝑜
−

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑜
= 1. (12)

Now, let

V
𝑖
=
(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝜌
∗

𝐴𝐵
+
𝑝
∗

𝑠+1
𝑏
𝑖

𝐴
, for 𝑖 = 1, . . . , 𝑚,

𝑢
𝑟
=
(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝜌
∗

𝐴𝐵
+
(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝜌
∗

𝐵
, for 𝑖 = 1, . . . , 𝑚,

𝑢
𝑜
=
𝑝
∗

𝑜
𝜌
∗

𝐴𝐵
,

(13)

where

𝐴 =

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑜
+ 𝑝
∗

𝑜

𝐵 = 1 +

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑜
.

(14)

Then, by (7), we have

V
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚, 𝑢

𝑟
≥ 0, 𝑟 = 1, . . . , 𝑠. (15)

Also, by (12) and (13), we obtain

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑜
=
𝜌
∗

𝐴𝐵

𝑚

∑

𝑖=1

(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝑥
𝑖𝑜

+
1

𝐴

𝑚

∑

𝑖=1

(𝑝
∗

𝑠+1
𝑏
𝑖
) 𝑥
𝑖𝑜
=
𝜌
∗
(𝐵)

𝐴𝐵
+
1

𝐴
(𝐴 − 𝜌

∗
) = 1.

(16)

In addition,

𝜃
∗
≥

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜
− 𝑢
𝑜
=
𝜌
∗

𝐴𝐵

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑜

+
𝑧
∗

2

𝐵

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) −

𝑝
∗

𝑜
𝜌
∗

𝐴𝐵

=
𝜌
∗

𝐴𝐵
(

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑜
− 𝑝
∗

𝑜
) +

𝜌
∗
(𝐵 − 1)

𝐵

=
𝑧
∗

2

𝐴𝐵
(𝐴) +

𝜌
∗
(𝐵 − 1)

𝐵
= 𝜌
∗
.

(17)

Also

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
+ 𝑢
𝑜

=
1

𝐴𝐵

𝑚

∑

𝑖=1

𝜌
∗
(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝑥
𝑖𝑗
+
1

𝐴

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗

−
1

𝐴𝐵

𝑠

∑

𝑟=1

𝜌
∗
(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑗

−
1

𝐵

𝑠

∑

𝑟=1

𝜌
∗
(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
+
1

𝐴𝐵
𝑝
∗

𝑜
𝜌
∗

=
1

𝐴𝐵
[𝜌
∗
(

𝑚

∑

𝑖=1

𝑞
∗

𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑝
∗

𝑟
𝑦
𝑟𝑗
+ 𝑝
∗

𝑜
)

+ 𝜌
∗
(

𝑚

∑

𝑖=1

𝑞
∗

𝑚+1
𝛽
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑝
∗

𝑠+1
𝑎
𝑟
𝑦
𝑟𝑗
)

+𝐵

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗
− 𝐴𝜌
∗

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
] .

(18)

So that by (10) we have

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
+ 𝑢
𝑜

≥
1

𝐴𝐵
[𝜌
∗
(

𝑠

∑

𝑟=1

(𝑝
∗

𝑠+1
𝑎
𝑟
+ 𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

(𝑞
∗

𝑚+1
𝛽
𝑖
+ 𝑝
∗

𝑠+1
𝑏
𝑖
) 𝑥
𝑖𝑗
)
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+ 𝜌
∗
(

𝑚

∑

𝑖=1

𝑞
∗

𝑚+1
𝛽
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑝
∗

𝑠+1
𝑎
𝑟
𝑦
𝑟𝑗
)

+ 𝐵

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗
− 𝐴𝜌
∗

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
]

=
1

𝐴𝐵
[𝜌
∗

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑗
− 𝜌
∗

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗

+ 𝐵

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗
− 𝐴𝜌
∗

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
]

=
1

𝐴𝐵
[(𝐵 − 𝜌

∗
)

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗
+ 𝜌
∗
(1 − 𝐴)

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑗
] .

(19)

Therefore,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
+ 𝑢
𝑜

≥
1

𝐴𝐵
[(𝐵 − 𝜌

∗
)

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗

+ 𝜌
∗
(1 − 𝐴)

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑗
] ≥ 0.

(20)

Consequently, (u, v, 𝑢
𝑜
), where u = (𝑢

1
, . . . , 𝑢

𝑠
) and v =

(V
1
, . . . , V

𝑚
), is a feasible solution for model (1), which for.

𝜃
∗
≥

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜
− 𝑢
𝑜
=
𝜌
∗

𝐴𝐵

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑜

+
𝑧
∗

2

𝐵

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) −

𝑝
∗

𝑜
𝜌
∗

𝐴𝐵

=
𝜌
∗

𝐴𝐵
(

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑜
− 𝑝
∗

𝑜
) +

𝜌
∗
(𝐵 − 1)

𝐵

=
𝑧
∗

2

𝐴𝐵
(𝐴) +

𝜌
∗
(𝐵 − 1)

𝐵
= 𝜌
∗
.

(21)

Now, let (u∗, v∗, 𝑢∗
𝑜
) be an optimal solution for model

(1); then (p, q, 𝑝
𝑜
), where p = (𝑝

1
, . . . , 𝑝

𝑠+1
) and q =

(𝑞
1
, . . . , 𝑞

𝑚+1
), with 𝑝

𝑟
= 𝑢
𝑟
, 𝑟 = 1, . . . , 𝑠; 𝑝

𝑠+1
= 0; 𝑞

𝑖
=

V
𝑖
, 𝑖 = 1, . . . , 𝑚; 𝑞

𝑚+1
= 0; 𝑝

𝑜
= 𝑢
∗

𝑜
, is a feasible solution for

model (2), which for 𝜃∗ = ∑𝑠
𝑟=1
𝑢
∗

𝑟
𝑦
𝑟𝑜
−𝑢
∗

𝑜
= ∑
𝑠+1

𝑟=1
𝑝
𝑟
𝑦
𝑟𝑜
−𝑝
𝑜
≤

𝜌
∗. Thus 𝜃∗ = 𝜌∗.

Theorem 2. Let each DMU have 𝑚 + 1 inputs and 𝑠 + 1

outputs with conditions (5) and (6).

Then the optimal objective function value of the following
model:

𝑤
∗
= min

𝑠+1

∑

𝑟=1

𝑞
𝑖
𝑥
𝑖𝑜
− 𝑞
𝑜
,

𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑜
= 1

s.t
𝑚+1

∑

𝑖=1

𝑞
𝑖
𝑥
𝑖𝑜
−

𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑜
− 𝑞
𝑜
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑝
𝑟
≥ 0, 𝑞

𝑖
≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(22)

is equal to the optimal objective function value of the following
model (4).

Proof. Let (𝑝∗
1
, . . . , 𝑝

∗

𝑠+1
, 𝑞
∗

1
, . . . , 𝑞

∗

𝑚+1
, 𝑞
∗

𝑜
) be an optimal solu-

tion for model (22); then we have

𝜔
∗
=

𝑚+1

∑

𝑖=1

𝑞
∗

𝑖
𝑥
𝑖𝑜
− 𝑞
∗

𝑜
(23)

𝑠+1

∑

𝑟=1

𝑝
∗

𝑟
𝑦
𝑟𝑜
= 1 (24)

𝑚+1

∑

𝑖=1

𝑞
∗

𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑝
∗

𝑟
𝑦
𝑟𝑗
− 𝑞
∗

𝑜
≥ 0. (25)

By (6) and (15), it follows that

𝜔
∗
=

𝑚

∑

𝑖=1

(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝑥
𝑖𝑜
− 𝑞
∗

𝑜
−

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑜
. (26)

Also, by (5) and (16) it concludes that

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑜
−

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑜
= 1. (27)

Now, let

V
𝑖
=
(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝑤
∗

𝐴𝐵
+
𝑤
∗
𝑝
∗

𝑠+1
𝑏
𝑖

𝐵
, for 𝑖 = 1, . . . , 𝑚,

𝑢
𝑟
=
(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑤
∗

𝐴𝐵
+
(𝑞
∗

𝑚+1
𝛼
𝑟
)

𝐴
, for 𝑟 = 1, . . . , 𝑠,

V
𝑜
=
𝑞
∗

𝑜
𝑤
∗

𝐴𝐵
,

(28)

where

𝐴 =

𝑚

∑

𝑖=1

(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝑥
𝑖𝑜
− 𝑞
∗

𝑜
,

𝐵 = 1 +

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑜
.

(29)
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Then, by (7), we have

V
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚,

𝑢
𝑟
≥ 0, 𝑟 = 1, . . . , 𝑠.

(30)

Also, by (26) and (27), we obtain

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜
=
𝑤
∗

𝐴𝐵

𝑚

∑

𝑖=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝛼
𝑟
) 𝑦
𝑟𝑜

+
𝑤
∗

𝐵

𝑚

∑

𝑖=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑜
=
𝑤
∗
(𝐵)

𝐴𝐵
+
(𝐴 − 𝑤

∗
)

𝐴
= 1 .

(31)

In addition
𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
− V
𝑜

=
1

𝐴𝐵

𝑚

∑

𝑖=1

𝑤
∗
(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑖
) 𝑥
𝑖𝑗

+
𝑤
∗

𝐵

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗

−
𝑤
∗

𝐴𝐵

𝑠

∑

𝑟=1

(𝑝
∗

𝑟
+ 𝑝
∗

𝑠+1
𝑎
𝑟
) 𝑦
𝑟𝑗

−
1

𝐴

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
−
1

𝐴𝐵
𝑞
∗

𝑜
𝑤
∗

=
1

𝐴𝐵
[𝑤
∗
(

𝑚

∑

𝑖=1

𝑞
∗

𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑝
∗

𝑟
𝑦
𝑟𝑗
− 𝑞
∗

𝑜
)

+ 𝑤
∗
(

𝑚

∑

𝑖=1

𝑞
∗

𝑚+1
𝛽
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑝
∗

𝑠+1
𝑎
𝑟
𝑦
𝑟𝑗
)

+ 𝐴𝑤
∗

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗
−𝐵

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
] .

(32)

So that by (14), we have

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
− V
𝑜

≥
1

𝐴𝐵
[𝑤
∗
(

𝑠

∑

𝑟=1

(𝑝
∗

𝑠+1
𝑎
𝑟
+ 𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗

−

𝑚

∑

𝑖=1

(𝑞
∗

𝑚+1
𝛽
𝑖
+ 𝑝
∗

𝑠+1
𝑏
𝑖
) 𝑥
𝑖𝑗
)

+ 𝑤
∗
(

𝑚

∑

𝑖=1

𝑞
∗

𝑚+1
𝛽
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑝
∗

𝑠+1
𝑎
𝑟
𝑦
𝑟𝑗
)

+ 𝐴𝑤
∗

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗
− 𝐵

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
]

=
1

𝐴𝐵
[𝑤
∗

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑗
− 𝑤
∗

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗

+ 𝐴𝑤
∗

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗
− 𝐵

𝑠

∑

𝑟=1

(𝑞
∗

𝑚+1
𝛼
𝑟
) 𝑦
𝑟𝑗
]

=
1

𝐴𝐵
[𝑤
∗
(𝐴 − 1)

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗

+ (𝑤
∗
− 𝐵)

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑗
] .

(33)

Therefore,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
− V
𝑜

≥
1

𝐴𝐵
[𝑤
∗
(𝐴 − 1)

𝑚

∑

𝑖=1

𝑝
∗

𝑠+1
𝑏
𝑖
𝑥
𝑖𝑗

+ (𝑤
∗
− 𝐵)

𝑠

∑

𝑟=1

𝑞
∗

𝑚+1
𝛼
𝑟
𝑦
𝑟𝑗
] ≥ 0.

(34)

Consequently, (u, v, V
𝑜
), where u = (𝑢

1
, . . . , 𝑢

𝑠
) and v =

(V
1
, . . . , V

𝑚
), is a feasible solution for model (4), which for

𝑧
∗
≤

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑜
− V
𝑜

=
𝑤
∗

𝐴𝐵

𝑚

∑

𝑖=1

(𝑞
∗

𝑖
+ 𝑞
∗

𝑚+1
𝛽
𝑟
) 𝑥
𝑖𝑜

+
𝑤
∗

𝐵

𝑠

∑

𝑟=1

(𝑝
∗

𝑠+1
𝑏
𝑖
) 𝑥
𝑖𝑜
−
𝑞
∗

𝑜
𝑤
∗

𝐴𝐵

=
𝑤
∗

𝐴𝐵
(𝐴) +

𝑤
∗
(𝐵 − 1)

𝐵
= 𝑤
∗
.

(35)

Now let (u∗, v∗, V∗
𝑜
) be an optimal solution for model (4),

and then (p, q, 𝑝
𝑜
), where p = (𝑝

1
, . . . , 𝑝

𝑠+1
) and q =

(𝑞
1
, . . . , 𝑞

𝑚+1
), with 𝑝

𝑟
= 𝑢
𝑟
, 𝑟 = 1, . . . , 𝑠; 𝑝

𝑠+1
= 0; 𝑞

𝑖
=

V
𝑖
, 𝑖 = 1, . . . , 𝑚; 𝑞

𝑚+1
= 0; 𝑝

𝑜
= V∗
𝑜
, is a feasible solution for

model (22), which for 𝜔∗ ≥ ∑𝑠+1
𝑟=1
𝑝
𝑟
𝑦
𝑟𝑜
− 𝑝
𝑜
= ∑
𝑠

𝑟=1
𝑢
∗

𝑟
𝑦
𝑟𝑜
−

𝑢
∗

𝑜
= 𝑧
∗. Thus 𝑧∗ = 𝑤∗.

Theorem 3. Let each DMUhave𝑚+1 inputs and 𝑠+1 outputs
with conditions (5) and (6).
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Then, the optimal objective function value of the following
model:

𝜌 = max
𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑜
,

𝑚+1

∑

𝑖=1

𝑞
𝑖
𝑥
𝑖𝑜
= 1

s.t
𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑗
−

𝑚+1

∑

𝑖=1

𝑞
𝑖
𝑥
𝑖𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛

𝑝
𝑟
≥ 0, 𝑞

𝑖
≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(36)

is equal to the optimal objective function value of the following
model (1).

Proof. This proof is similar to the proof of Theorem 1.

Theorem4. Let each DMUhave𝑚+1 inputs and 𝑠+1 outputs
with conditions (5) and (6).

Then, the optimal objective function value of the following
model:

𝑤 = min
𝑠+1

∑

𝑟=1

𝑞
𝑖
𝑥
𝑖𝑜
,

𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑜
= 1

s.t
𝑚+1

∑

𝑖=1

𝑞
𝑖
𝑥
𝑖𝑗
−

𝑠+1

∑

𝑟=1

𝑝
𝑟
𝑦
𝑟𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑝
𝑟
≥ 0, 𝑞

𝑖
≥ 0, 𝑟 = 1, . . . , 𝑠 + 1, 𝑖 = 1, . . . , 𝑚 + 1

(37)

is equal to the optimal objective function value of the following
model (2).

Proof. This proof is similar to the proof of Theorem 2.

4. Illustrative Example

In this section, we use the data recorded in Table 1 to illustrate
that the addition or deletion of a cross-redundant output vari-
able and input variable does not affect the efficiency estimates
yielded by the CCR or BCC models. These correspond to 20
DMUs,whose efficiency is assessed using four inputs and four
outputs where

𝑥
4𝑗
= (𝑥
1𝑗
+ 𝑥
2𝑗
+ 2𝑥
3𝑗
)

− (0.5𝑦
1𝑗
+ 0.5𝑦

2𝑗
+ 0.5𝑦

3𝑗
) ;

𝑗 = 1, . . . , 𝑛,

𝑦
4𝑗
= (0.5𝑦

1𝑗
+ 0.5𝑦

2𝑗
+ 0.5𝑦

3𝑗
) − 0.5𝑥

3𝑗
;

𝑗 = 1, . . . , 𝑛.

(38)

Table 1: Dataset.

Inp 1 Inp 2 Inp 3 Inp 4 Out 1 Out 1 Out 3 Out 4
Unit 1 7 1 4 12.75 1 2.5 3 1.25

Unit 2 3 7 4 14.75 2.5 1 3 1.25

Unit 3 6 6 3 14.25 2.5 2 3 2.25

Unit 4 3 1 3 1.75 4 5.5 7 6.75

Unit 5 6 0.5 3 5.25 5 3.5 6 5.75

Unit 6 4 0.5 3 3.5 2 6 6 5.5

Unit 7 1.5 2.5 3 1.5 6 4 7 7

Unit 8 0.5 4 4 6.25 1.5 5 6 4.25

Unit 9 2.75 1.75 4 4 8 3 6 6.5

Unit 10 1 3 3 1 8 3 7 7.5

Unit 11 2 2 3 1.25 5.5 5 7 7.25

Unit 12 2.5 1.5 3 2 7 3 6 6.5

Unit 13 4.5 1.5 6 13 4 2 4 2

Unit 14 2 4 7 16.25 1.5 2 4 0.25

Unit 15 4 3 6 12.25 6.5 3.5 3.5 3.75

Unit 16 2 5 4 8.75 5 3.5 4 4.25

Unit 17 1.5 6 4 8.5 4.5 4.5 5 5

Unit 18 0.5 4 3 3 3.5 5.5 6 6

Unit 19 3.5 0.75 3 2.5 7.5 2.5 6 6.5

Unit 20 6 3.5 4 11 3.5 3.5 6 4.5

Table 2: Example results.

𝜃
∗

𝜌 𝑧
∗

𝜌
∗

Unit 1 0.3461538 0.3461538 0.7500000 0.7500000

Unit 2 0.3214286 0.3214286 0.7500000 0.7500000

Unit 3 0.4285714 0.4285714 1.0000000 1.0000000

Unit 4 1.0000000 1.0000000 1.0000000 1.0000000

Unit 5 1.0000000 1.0000000 1.0000000 1.0000000

Unit 6 1.0000000 1.0000000 1.0000000 1.0000000

Unit 7 1.0000000 1.0000000 1.0000000 1.0000000

Unit 8 1.0000000 1.0000000 1.0000000 1.0000000

Unit 9 0.9973190 0.9973190 1.0000000 1.0000000

Unit 10 1.0000000 1.0000000 1.0000000 1.0000000

Unit 11 1.0000000 1.0000000 1.0000000 1.0000000

Unit 12 1.0000000 1.0000000 1.0000000 1.0000000

Unit 13 0.4444444 0.4444444 0.6666667 0.6666667

Unit 14 0.3809524 0.3809524 0.6666667 0.6666667

Unit 15 0.5607702 0.5607702 0.5714286 0.5594240

Unit 16 0.6052279 0.6052279 0.7500000 0.7500000

Unit 17 0.6847156 0.6847156 0.7500000 0.7500000

Unit 18 1.0000000 1.0000000 1.0000000 1.0000000

Unit 19 1.0000000 1.0000000 1.0000000 1.0000000

Unit 20 0.6428571 0.6428571 0.7500000 0.7500000

In other words, the forth input and the forth output are cross-
redundant variables. In Table 2, 𝜃∗, �̃�, 𝜌∗, and 𝜌, respectively,
record the efficiency measure provided by model (1), model
(3), model (7), and model (36). It is evident from Table 2 that
the addition or deletion of cross-redundant output variable
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and/or input variable does not affect the efficiency estimates
yielded by the input-orientedCCRor BCCmultipliermodels.

5. Conclusions

In this paper, we have studied the effect of the cross redun-
dancy between interval scale input and output variables
on the efficiency estimates yielded by the CCR multiplier
model in input- and output-oriented versions and the BCC
multiplier model in input- and output-oriented versions. We
proved that the addition or deletion of a cross-redundant
output variable and input variable does not affect the effi-
ciency estimates yielded by the input-oriented BCC multi-
plier model and the output-oriented BCC multiplier model.
Similarly, it can be proved that the addition or deletion of
cross-redundant variable does not affect efficiency estimates
yielded by the CCR multiplier model in input- and output-
oriented versions.
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We discuss structuralmodels based onMerton’s framework. First, we observe that the classical assumptions of theMertonmodel are
generally rejected. Secondly, we implement a structural credit riskmodel based on stable non-Gaussian processes as a representative
of subordinated models in order to overcome some drawbacks of the Merton one. Finally, following the KMV-Merton estimation
methodology, we propose an empirical comparison between the results obtained from the classical KMV-Merton model and the
stable Paretian one. In particular, we suggest alternative parameter estimation for subordinated processes, and we optimize the
performance for the stable Paretian model.

1. Introduction

Estimating a borrower’s risk level, namely, the probability
of default (PD), by assigning an appropriate PD is a widely
employed strategy by many financial institutions as well as
the supervisory authorities. PD indicates a probability that
a given counterparty will not be able to meet its obliga-
tions. The incorrect estimation of PD leads to, among other
things, unreasonable ratings and incorrect pricing of financial
instruments, and thereby it is one of the causes of the recent
global financial crisis. Undervaluation of the risk caused the
collapse of the financial system which has been extended
through credit derivatives on the global markets. PD is also
a crucial parameter used in the calculation of economic or
regulatory capital, under the Basel II and Basel III Accords for
banking institutions. These reasons highlight how important
the estimation of PD is and why it has been a significant
research topic for a long time.

The probability of default, as one of the key risk param-
eters in the IRB approach, has many methodologies for its
estimation. In general, we can classify the existing method-
ologies into three groups: structural models, reduced-form
models, and credit-scoring (statistical) models. We will focus
on the first type of models only in this paper. This structural

approach was proposed in 1974 by Robert Merton [1] in his
seminal paper on the valuation of corporate debt. Largely as
a logical extension of the Black-Scholes [2] option pricing
framework in 1973, he introduced a model for assessing the
credit risk of a company by characterizing a company’s equity
as a derivative on its assets.

A number of researchers have examined the contribution
of theMertonmodel over the past several years. An overview
of structural credit risk models can be found in Bluhm
et al. [3] and in Duffie and Singleton [4]. Practitioners
employed by either Moody’s or KMV were the first ones who
analysedMertonmodel carefully.Moreover, theKMVdefault
probability model is summarized by Crosbie and Bohn [5].
Bohn et al. [6] argue that the KMV-Merton model captures
all of the information in traditional agency ratings and well-
known accounting variables. The model’s predictive power
is examined, for instance, by Du and Suo [7] and Hillegeist
et al. [8]. Duffie et al. [9] show that the KMV-Merton model
probabilities have significant predictive power in modelling
default probabilities over time. Farmen et al. [10] investigate
default probabilities and their comparative statics in the
Merton framework using objective probability measure. The
main theoretical models of risky debt valuation built on
Merton [1] and Black and Cox [11] are discussed in Bohn
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[12]. In the literature on bank deposit insurance, a contingent
claim valuation of equity has been used extensively. In this
case, the equity call model is reversed to generate estimates
of the market value of assets from observed share prices.This
approach allows for the calculation of fair deposit insurance
premium. Duan [13] proposes anothermethod for estimating
asset value and volatility which is based on the maximum
likelihood estimation using equity prices.

The Merton model requires a number of simplifying
assumptions (the company can default only at debt’s maturity
time 𝑇 but not before; the model is not able to distinguish
among the different types of debt, constant and flat term
structure of interest rates, etc.). Notwithstanding, one of the
most important drawbacks is an assumption that company
value follows the log-normal distribution. It is well known
that log-returns of equities are not Gaussian distributed, and
several empirical investigations have shown that log-returns
of equities present skew distributions with excess kurtosis
which leads to a greater density in the tails, and that the
normal distribution with a comparatively thinner tail simply
cannot describe this phenomenon (see Mandelbrot [14–16],
Fama [17–19], or Rachev and Mittnik [20]).

The main contribution of this paper is twofold. First, we
introduce a structural credit risk model based on the stable
Paretian distributions as a representative of subordinated
models. Secondly, we show that it is possible to use thismodel
in the Merton’s framework, and we propose an empirical
comparison of the KMVmethodology applied to the Merton
model and our subordinated one. In particular, we prove
that the basic assumption of the Merton model is generally
rejected, and thus the log-returns of the company’s assets
value are notGaussian distributed. For this reason, we discuss
the possibility for using other subordinated processes to
approximate the behaviour of the log-returns of the company
value. Thus, we propose to use the Hurst et al. [21] option
pricing model based on the stable Paretian distributions
which generalizes the standard Merton methodology.

The practical and theoretical appeal of the stable non-
Gaussian approach is given by its attractive properties that
are almost the same as the normal ones. As a matter of
fact, the Gaussian law is a particular stable Paretian one,
and thus the stable Paretian model is a generalization of
the Merton one. The first relevant desirable property of the
stable distributional assumption is that stable distributions
have domain of attraction. The generalized central limit
theorem for the normalized sums of i.i.d. random variables
determines the domain of attraction of each stable law.
Therefore, any distribution in the domain of attraction of a
specified stable distributionwill have properties close to those
of the stable distribution. Another attractive aspect of the
stable Paretian assumption is the stability property; that is,
stable distributions are stable with respect to summation of
i.i.d. random stable variables. Hence, the stability governs the
main properties of the underlying distribution. In addition,
in the empirical financial literature, it is well documented that
the asset returns have a distribution whose tail is heavier than
that of the distributions with finite variance.

The idea of using subordinated stable Paretian processes
goes back to the seminal work of Mandelbrot and Taylor

[22]. Stable laws have been applied in several financial sectors
(see Rachev [23] and Rachev and Mittnik [20]). For these
reasons, the stable Paretian law is the first candidate as a
subordinated model investigating for credit risk modeling,
and in this paper we discuss how to use the Hurst et al. [21]
stable subordinated model in the framework of structural
credit risk models. In particular, as for the Merton model,
we propose two different methodologies for the parameter
estimation: the first is to generalize the maximum likelihood
parameter estimation proposed by Duan [13]; the second is a
generalization of the KMVmethodology.

This paper is organized as follows. In Section 2, we
firstly review the theory and the distributional assumptions
of the Merton model. Subsequently, we introduce the credit
risk models with subordinated processes and describe the
Mandelbrot-Taylor distributional assumptions. Section 3 is
devoted to the parameters estimation for both theMerton and
the subordinatedmodels.We characterize empirical data and
make a comparison between the obtained results in Section 4.
Finally, in the last section, we provide a brief summary.

2. Merton and Subordinated Credit
Risk Models

The core concept of the Merton model [1] introduced in 1974
is to treat company’s equity and debt as a contingent claim
written on company’s assets value. In this framework, the
company is considered to have a very simple capital structure.
It is assumed that the company is financed by one type of
equity with a market value 𝐸

𝑡
at time 𝑡 and a zero-coupon

debt instrument at 𝑡(𝐷
𝑡
) with a face value of 𝐿 maturing

at time 𝑇. (Generally, in a credit risk models framework
we assume one-year time horizon for debt maturity and
subsequent estimation of PD. One year is perceived as being
of sufficient length for a bank to raise additional capital on
account of increase in portfolio credit risk (if any).) The
exercise price of a call option is defined as the value 𝐿.
Let 𝐴

𝑡
be the company’s asset value at time 𝑡. Naturally, the

following accounting identity holds for every time point:

𝐴
𝑡
= 𝐸
𝑡
+ 𝐷
𝑡
. (1)

In the Merton framework the value of company’s equity
at maturity time 𝑇 is given by

𝐸
𝑇
= max [𝐴

𝑇
− 𝐿, 0] . (2)

2.1. The Merton-Black-Scholes Distributional Assumptions.
Under the Merton model, the assets value is assumed to
follow a geometric Brownian motion (GBM) in the following
form:

𝑑𝐴
𝑡
= 𝜇𝐴
𝑡
𝑑𝑡 + 𝜎𝐴

𝑡
𝑑𝑊
𝑡
, (3)

where 𝜇 is the expected return (drift coefficient), 𝜎 is the
volatility (diffusion coefficient), both unobserved, and 𝑊

𝑡
is
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the normal variable 𝑁(0, 1). Using Ito’s lemma, we can obtain
the solution of (3) as follows:

𝐴
𝑇
= 𝐴
𝑡
exp [(𝜇 − 1

2
𝜎
2
) (𝑇 − 𝑡) + 𝜎√(𝑇 − 𝑡)𝑊

𝑡
] ,

(4)

where (𝑇 − 𝑡) is a remaining maturity.
In accordance with the Black-Scholes option pricing

theory [2], the Merton model stipulates that the company’s
equity value satisfies the following equation for pricing the
call option within a risk neutral framework:

𝐸
𝑡
= 𝐴
𝑡
Φ(𝑑
1
) − 𝐿𝑒

−𝑟(𝑇−𝑡)
Φ(𝑑
2
) , (5)

where

𝑑
1
=

ln (𝐴
𝑡
/𝐿) + (𝑟 + (1/2) 𝜎

2
) (𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)

, (6)

𝑑
2
= 𝑑
1
− 𝜎√(𝑇 − 𝑡), (7)

𝑟 is the risk-free interest rate and Φ(⋅) is the cumulative
distribution function of the standard normal variable. (The
Treasury bill yields are commonly used as the risk-free inter-
est rate 𝑟.Their rates are considered an important benchmark
because treasury securities are back by the full faith and credit
of the U.S. Treasury. Therefore, they represent the rate at
which investment is considered risk-free.) Equation (7) is
referred to as the distance-to-default (DD) by Moody’s KMV.
The larger the number in DD is, the less chance the company
will default.

We can estimate PD by rearranging (4) as follows:

PD
𝑡
= 𝑃 [𝐴

𝑇
≤ 𝐿]

= 𝑃 [ln (𝐴
𝑡
) + (𝜇 −

1

2
𝜎
2
) (𝑇 − 𝑡)

+𝜎√(𝑇 − 𝑡) 𝑊
𝑡
≤ ln (𝐿) ]

= ∫

−(ln(𝐴
𝑡
/𝐿)+(𝜇−(1/2)𝜎

2
)(𝑇−𝑡))/𝜎√(𝑇−𝑡)

−∞

𝜙 (𝑥) 𝑑𝑥,

(8)

where 𝜙 is the probability density function of a standard
normal variable. Note that unlike (8), (5) is not a function of
𝜇, but it is a function of 𝑟 (we would get PD under the risk
neutral probabilitymeasure).Whenwe estimate PD, the risk-
free interest rate 𝑟 has to be replacedwith real company drift𝜇
since this step has nothing to dowith option pricing.Thereby,
the default probability of the company under the objective
probability measure is given by

PD
𝑡
= Φ(−𝑑

2
)

= Φ(−

ln (𝐴
𝑡
/𝐿) + (𝜇 − (1/2) 𝜎

2
) (𝑇 − 𝑡)

𝜎√(𝑇 − 𝑡)

) .

(9)

Further discussion on this topic can be found in Delian-
des and Geske [24] who showed that risk neutral PDs can
serve as an upper bound to objective PDs.

2.2. Credit Risk Models with Subordinated Assumptions.
Using subordinated processes, we are usually able to capture
empirically observed anomalies which are presented in the
evolution of return processes over time. That is, we substi-
tute the physical (calendar) time with a so-called intrinsic
(operational) time which provides distribution tail effects
often observed in the market (see Hurst et al. [21] and
Rachev and Mittnik [20]). Thus, if 𝑊 = {𝑊(𝑡), 𝑡 ≥ 0} is
a stochastic process and 𝑇 = {𝑇(𝑡), 𝑡 ≥ 0} is a non-
negative stochastic process defined on the same probability
space and adapted to the same filtration, a new process 𝑍 =

{𝑍(𝑡) = 𝑊(𝑇(𝑡)), 𝑡 ≥ 0} may be formed, and it is defined
as subordinated to 𝑊 by the intrinsic time process 𝑇. Next,
we will suppose that 𝑊 is a standard Brownian motion. In
this case, if the intrinsic time process 𝑇 is the deterministic
physical time, that is, 𝑇(𝑡) = 𝑡, we obtain the classical log-
normal model (see Osborne [25]). Typically, subordinated
models with random intrinsic time are leptokurtic with
heavier tails compared to the normal distribution. Feller [26]
showed that if the intrinsic time process has non-negative
stationary independent increments, then the subordinated
process 𝑍 also has stationary independent increments.

Generally, we assume frictionless markets, where the log-
price process 𝑍 is subordinated to a standard Brownian
motion 𝑊 by the independent intrinsic time process 𝑇.
Therefore, we model the assets price process 𝐴

𝑡
(the com-

pany’s assets value in our case) by a stochastic equation of the
type as follows:

𝐴 (𝑡) = 𝐴 (𝑡
0
) exp{∫

𝑡

𝑡
0

𝜇 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡
0

𝜌 (𝑠) 𝑑𝑇 (𝑠)

+∫

𝑡

𝑡
0

𝜎 (𝑠) 𝑑𝑊 (𝑇 (𝑠))} ,

(10)

where the drift in the physical time scale 𝜇(𝑠), the drift
in the intrinsic time scale 𝜌(𝑠), and the volatility 𝜎(𝑠)

are generally assumed to be constant. The appeal of pro-
cesses subordinated to a standard Brownian motion 𝑊 by
an intrinsic time process 𝑇 with non-negative stationary
independent increments is also due to the option pricing
formula which follows from the classical Black-Scholes one
in a frictionless complete market and a risk-minimizing
strategy in incomplete markets. (In incomplete markets,
there exist nonredundant claims carrying an intrinsic risk.
In order to evaluate a contingent claim, a risk-minimizing
strategy is often applied (see Hofmann et al. [27], Follmer
and Sondermann [28], and Follmer and Schweizer [29]).)
Hurst et al.’s stable subordinated model [21] uses the unique
continuous martingale that makes sense in a discrete setting,
but a priori it is not derived from a risk-minimizing strategy
even if the markets are incomplete (see Rachev and Mittnik
[20]). Following the same notation as inMerton’s framework,
the value of a European call option at time 𝑡 (the value of
company’s equity) with exercise price 𝐿 (face value of a zero-
coupon debt instrument) and time to maturity 𝑡(here, we
change the notation of maturity time from 𝑇 (used in the
Merton’s framework) to t since 𝑇 denotes the intrinsic time
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process in the subordinated option pricing models) is given
by

𝐸
𝑡
= 𝐴 (𝑡

0
) 𝐹
+
(ln(

𝐴 (𝑡
0
)

𝐿
𝑟,𝑡
0
,𝑡

)) − 𝐿
𝑟,𝑡
0,
𝑡
𝐹
−
(ln(

𝐴 (𝑡
0
)

𝐿
𝑟,𝑡
0
,𝑡

)) ,

(11)

where

𝐹
±
(𝑥) = ∫

+∞

0

Φ(
𝑥 ± (1/2) 𝑦

√𝑦
)𝑑𝐹
𝑌
(𝑦) , (12)

Φ(⋅) is the cumulative distribution function of the standard
normal variable, 𝐹

𝑌
is the cumulative distribution function

of a random variable 𝑌 = ∫
𝑡

𝑡
0

𝜎
2
(𝑠)𝑑𝑇(𝑠), and 𝐿

𝑟,𝑡
0
,𝑡

=

𝐿 exp(− ∫𝑡
𝑡
0

𝑟(𝑠)𝑑𝑠) is the discounted exercise price (the right
continuous with left-hand limits (RCLL) time-dependent
function 𝑟(𝑡) defines the short term interest rate). Consid-
ering a continuous distribution of the random variable 𝑌

with density function 𝑓
𝑌
, then 𝐹

±
(𝑥) can now be numerically

integrated over the finite interval [0, 1] the transformation
𝑦 = 𝑢(1 − 𝑢)

−3 (see Rachev and Mittnik [20]); that is,

𝐹
± (𝑥) = ∫

+∞

0

Φ(
𝑥 ± (1/2) 𝜆𝑦

√𝜆𝑦
)𝑓
𝑌
(𝑦) 𝑑𝑦

= ∫

1

0

Φ(
𝑥 ± (1/2) 𝜆𝑢 (1 − 𝑢)

−3

√𝜆𝑢 (1 − 𝑢)
−3

)

× 𝑓
𝑌
(𝑢 (1 − 𝑢)

−3
)
1 + 2𝑢

(1 − 𝑢)
4
𝑑𝑢.

(13)

Moreover, as for the classical Black-Scholes model, in the
case of subordinated models, we can also monitor the vari-
ation in the derivative price with respect to the parameters
that enter into the option formula (i.e., the Greeks). For our
purposes, it is sufficient to define delta, which is given by

delta = Δ
𝐸
=
𝜕𝐸
𝑡

𝜕𝐴
= 𝐹
+
(ln(

𝐴 (𝑡
0
)

𝐿
𝑟,𝑡
0
,𝑡

)) . (14)

Analogously to the Merton model, the probability of
default can be estimated under the risk neutral probability
measure as follows:

PD
𝑡
= 𝐹
+
(ln(

𝐿
𝑟,𝑡
0
,𝑡

𝐴 (𝑡
0
)
))

= ∫

+∞

0

Φ(

ln (𝐿
𝑟,𝑡
0
,𝑡
/𝐴 (𝑡
0
)) + (1/2) 𝑦

√𝑦
)𝑑𝐹
𝑌
(𝑦) .

(15)

Recall that under the risk neutral measure the stationary
increment 𝑍(𝑡 + 𝑠) − 𝑍(𝑡) has mean 𝜇

𝑍,𝑠
= 0 and variance

𝜎
2

𝑍,𝑠
= 𝜇
𝑇,𝑠
𝜎
2, where 𝜎 and 𝜇

𝑇,𝑠
are, respectively, the volatility

and the mean of the increment of the stationary process 𝑇

when they exist (see [21]). The skewness coefficient of this
increment is zero (models are symmetric around the zero
mean). Kurtosis of the subordinated models is defined as
𝑘
𝑍,𝑠

= 3((1 + 𝜎
2

𝑇,𝑠
)/𝜇
𝑇,𝑠
), for all 𝑠 ≥ 0 (where 𝜎2

𝑇,𝑠
is the

variance of the random variable𝑇(𝑡+𝑠)−𝑇(𝑡)when it exists);
that is, subordinated models with intrinsic random time are
leptokurtic. Thereby, the model we consider in the following
presents heavier tails and higher peaks around the origin than
the normal distribution.

2.3. The Mandelbrot-Taylor Distributional Assumptions.
Mandelbrot [14–16] and Mandelbrot and Taylor [22] have
proposed the stable Paretian distribution to estimate the
log-returns. An 𝛼-stable distribution 𝑆

𝛼
= (𝜎, 𝛽, 𝜇) depends

on four parameters: the index of stability 𝛼 ∈ (0, 2] (𝛼 = 2

in the Gaussian case), the skewness parameter 𝛽 ∈ [−1, 1],
the scale parameter 𝜎 ∈ (0, +∞), and the location parameter
𝜇 ∈ (−∞, +∞) (see Samorodnitsky and Taqqu [30] for
further details on stable distributions). Mandelbrot and
Taylor [22] supposed that the intrinsic time process 𝑇 has
stationary independent increments as follows:

𝑇 (𝑡 + 𝑠) − 𝑇 (𝑡)
𝑑

= 𝑆
𝛼/2

(𝑐𝑠
2/𝛼
, 1, 0) , (16)

for all 𝑠, 𝑡 ≥ 0, 𝛼 ∈ (0, 2), and 𝑐 > 0. Here, the index
of stability is 𝛼/2; the scale parameter is 𝑐𝑠𝛼/2; the stable
skewness is 1; and the location parameter is zero. Under the
Mandelbrot-Taylor assumptions; the subordinated process
𝑍(𝑡) = ln(𝐴

𝑡ℎ
) is a symmetric 𝛼-stable Lévy motion with

stationary independent increments as follows:

𝑍 (𝑡 + 𝑠) − 𝑍 (𝑡) = ln(
𝐴
𝑡ℎ

𝐴
(𝑡−𝑠)ℎ

)
𝑑

= 𝑆
𝛼
(]𝑠
1/𝛼
, 0, 0) , (17)

for all 𝑠, 𝑡 > 0, where

] =
𝜎√𝑐

√2(cos (𝜋𝛼/4))1/𝛼
. (18)

If we consider the constant scalar parameter 𝜎, then the
random variable 𝑌 in (11) is as follows:

𝑌 = 𝜎
2
(𝑇 (𝑡) − 𝑇 (𝑡

0
)) = 𝜆𝑉, (19)

where 𝜆 = 𝑐𝜎
2
(𝑡 − 𝑡
0
)
2/𝛼 and 𝑉 = 𝑆

𝛼/2
(1, 1, 0). Hence, with

𝑐 = 2 (cos(𝜋𝛼
4
))

2/𝛼

, (20)

it follows that 𝑍(𝑡) 𝑑= 𝑆
𝛼
(𝜎𝑡
1/𝛼
, 0, 0). Thus, we can estimate

the index of stability 𝛼 and the scalar parameter 𝜎 using the
maximum likelihood method (see [20] and the references
therein). Moreover, considering the density function 𝑓

𝑉
of

the 𝛼/2 stable random variable 𝑉, we obtain the following
expression for 𝐹

±
(𝑥):

𝐹
± (𝑥) = ∫

1

0

Φ(
𝑥 ± (1/2) 𝜆𝑢 (1 − 𝑢)

−3

√𝜆𝑢 (1 − 𝑢)
−3

)

× 𝑓
𝑉
(𝑢 (1 − 𝑢)

−3
)
1 + 2𝑢

(1 − 𝑢)
4
𝑑𝑢.

(21)
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The probability of default under the risk neutral probabil-
ity measure is then given by

PD
𝑡
= ∫

1

0

Φ(

ln (𝐿
𝑟,𝑡
0
,𝑡
/𝐴 (𝑡
0
)) + (1/2) 𝜆𝑢 (1 − 𝑢)

−3

√𝜆𝑢(1 − 𝑢)
−3

)

× 𝑓
𝑉
(𝑢 (1 − 𝑢)

−3
)
1 + 2𝑢

(1 − 𝑢)
4
𝑑𝑢.

(22)

3. Estimation Methodology

While for the Merton model there are just three parameters
necessary for the estimation of default probabilities—namely,
the company’s market value𝐴

𝑡
at time 𝑡, the asset drift 𝜇, and

the asset volatility 𝜎—in the case of the subordinatedmodels,
we have to estimate the company’s market value at time 𝑡 and
the parameters of the subordinated process. Clearly, different
distributional hypothesis of the subordinated model could
require the estimation of several different parameters. For
example, in the 𝛼 stable Lévy process, once the index of
stability 𝛼 is estimated, the scalar parameter 𝜎 is the unique
parameter that should be estimated since the skewness
parameter and the location parameter have been fixed equal
to zero in the model.

3.1. Parameter Estimates for the KMV-Merton Model. The
unknown parameters of KMV-Merton model come from
(5). Since the market value of assets is a random variable
and cannot be observed directly, it is impossible to directly
estimate the drift and the volatility in a movement of log-
returns on 𝐴

𝑡
. Therefore, these three parameters have to be

estimated in a different way. In fact, we use the observed
market value of equity 𝐸

𝑡
along with (5) to estimate them

indirectly.
Generally, the starting point for the two iterativemethod-

ologies proposed in literature (the maximum likelihood
estimation method and the Moody’s KMV method) is based
on the so-called calibration method (see [3, 5, 31] or [32]),
which finds two unknown parameters (𝐴

𝑡
and 𝜎) by solving

the system of two equations as follows:

𝐸
𝑡
= 𝐴
𝑡
Φ(𝑑
1
) − 𝐿𝑒

−𝑟(𝑇−𝑡)
Φ(𝑑
2
) ,

𝜎
𝐸
=
𝐴
𝑡

𝐸
𝑡

Φ(𝑑
1
) 𝜎,

(23)

where 𝜎
𝐸
is the standard deviation of the equity log returns

ln(𝐸
𝑡ℎ
/𝐸
(𝑡−1)ℎ

). Nevertheless, this method does not estimate
asset drift 𝜇; it determines the risk neutral probability of
default PD using the risk free asset 𝑟. As a consequence, Jovan
[33] showed that this method provides different estimates
of probability of defaults for the same obligors compared
to the two following iterative methodologies: the maximum
likelihood estimation method and the Moody KMVmethod.

3.1.1.MaximumLikelihood EstimationMethod. Thismethod-
ology was initially proposed by Duan [13] and enhanced by

Duan et al. [34] later. The time series of daily market value
of equity 𝐸

𝑡
is equal to 𝑛 days, where 𝑡 = (0, . . . , 𝑛). In Duan

et al. [34] the time step ℎ is introduced. Typically, the value
of this coefficient for daily data would be ℎ = 1/250. The
methodology is iterative. Then, the following log-likelihood
function for the estimation of 𝜇 and 𝜎 of model (3), where
𝑡ℎ = (0, . . . , 𝑛ℎ), is defined on the basis of observed values of
𝐸
𝑡
as follows:

𝐿 (𝜃; 𝐴
𝑡ℎ
| 𝐸
𝑡ℎ
) = −

𝑛

2
ln (2𝜋�̂�2ℎ)

−
1

2

𝑛

∑

𝑡=1

(�̂�
𝑡
− (𝜇 − (1/2) �̂�

2
) ℎ)
2

�̂�2ℎ

−

𝑛

∑

𝑡=1

ln (𝐴
𝑡ℎ
) −

𝑛

∑

𝑡=1

ln (Φ (𝑑
1
)) ,

(24)

where

�̂�
𝑡
= ln(

𝐴
𝑡ℎ

𝐴
(𝑡−1)ℎ

) (25)

and where 𝜃 ≡ (𝜇, �̂�) and 𝐴
𝑡ℎ

is estimated from (5). To
launch the iteration process we could insert as initial values
entered into the iteration process the values obtained by
solving the system (23). Despite the fact that these estimates
are not the best ones from a solution point of view, they can
be good enough as the initial values for different kinds of
iterative procedures. Each iteration produces a time series of
daily values 𝐴(𝑖)

𝑡ℎ
, where the debt maturity ranges over 1 ≤

(𝑇 − 𝑡ℎ) ≤ 𝑇. We maximize (24) to obtain estimates of
the unobserved asset drift and volatility 𝜃(𝑖). Since this is an
iterative procedure, we use the new estimates obtained from
(24) and the new market value of assets obtained from (5)
for maximizing (24) once again. The procedure is repeated
until the differences in 𝜇

(𝑖) and �̂�
(𝑖) between the successive

iterations are sufficiently small (i.e., until |𝜇(𝑖+1) − 𝜇
(𝑖)
| +

|�̂�
(𝑖+1)

− �̂�
(𝑖)
| ≤ 𝜀 for a given small 𝜀).

Duan et al. [34] found that the Moody’s KMV method
provides the same estimates as theMLEmethod, even though
they state that the latter method is preferable for inference
statistics.

3.1.2. Moody’s KMV Methodology. This iterative procedure
follows a disclosed part of Moody’s KMV methodology for
a calculation of expected default frequency (see Duan et al.
[34], Duffie et al. [9], Crosbie and Bohn [5], or Vassalou and
Xing [35]). This method is quite similar to the MLE method.
The unique difference is that in order to obtain estimates of
the asset drift and volatility, instead of maximizing the log-
likelihood function, we have explicit formulas.

The first step is exactly the same calculation of the daily
value of 𝐴(𝑖)

𝑡ℎ
, 𝑡ℎ = (0, . . . , 𝑛ℎ) from (5). As the initial values

can be used again, the estimates can be obtained by solving
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the system (23). Then, the arithmetic mean of the sample is
given by

𝑅
(𝑖)

=
1

𝑛

𝑛

∑

𝑡=1

�̂�
(𝑖)

𝑡
, (26)

where �̂�
𝑡
is defined in (25). Another step is the calculation of

estimates of the asset volatility �̂� and the drift 𝜇 of model (3)
which are defined as follows:

�̂�
(𝑖+1)

= √
1

𝑛ℎ

𝑛

∑

𝑡=1

(�̂�
(𝑖)

𝑡
− 𝑅
(𝑖)

)

2

,

𝜇
(𝑖+1)

= 𝑅
(𝑖) 1

ℎ
+
1

2
�̂�
2(𝑖+1)

.

(27)

Since this is again an iterative procedure, we use the
new estimates obtained from (27) to calculate 𝐴

(𝑖+1)

𝑡ℎ
. The

procedure is repeated until the differences in 𝜇 and �̂� among
successive iterations are sufficiently small.

It is worth tomention that theMertonmodel with param-
eters estimated according to the methodology described
above differs from the one actually employed by Moody’s
KMV. How well the Merton model performs substantially
relies on the simplifying assumptions facilitating its imple-
mentation. These simplifying assumptions are not really
realistic in practice, though. That is why Moody’s KMV does
not rely solely on these assumptions. (In 2002, Moody’s Cor-
poration completed acquisition of KMV. KMV Corporation
is now renamed as Moody’s KMV.) Indeed, the founders
of KMV, Oldrich Vasicek and Stephen Kealhofer, developed
a new model called Vasicek-Kealhofer (VK) (see Arora et
al. [36]) to estimate the distance-to-default of an individual
company. One of the most important differences is that
while we use the cumulative normal distribution to convert
distances-to-default into “real” (non risk-neutral) default
probabilities in classical Merton model, Moody’s KMV uses
its large historical database to estimate the real empirical
distribution of distances-to-default, and it calculates default
probabilities based on that distribution.

3.2. Parameter Estimates for Subordinated Models. We can
extend the estimationmethodologies proposed for the KMV-
Merton model in order to estimate the parameters of a
subordinated model.

3.2.1. MaximumLikelihood EstimationMethod. Obviously, in
order to use this method, we have to revise (24). Actually,
(24) can be derived from themore general formula which can
be used for the derivation of log-likelihood functions for any
subordinated model. This formula is defined in the following
way:

𝐿 (𝜃; 𝐴
𝑡ℎ
| 𝐸
𝑡ℎ
)

=

𝑛

∑

𝑡=1

ln (𝑓
𝑍
(�̂�
𝑡
)) −

𝑛

∑

𝑡=1

ln (𝐴
𝑡ℎ
) −

𝑛

∑

𝑡=1

ln (Δ
𝐸
) ,

(28)

where 𝜃 represents the set of the parameters in the density
function𝑓

𝑍
(�̂�
𝑡
)of the stationary increment ln(𝐴

𝑡ℎ
/𝐴
(𝑡−1)ℎ

) =

𝑍(𝑡 + 1) − 𝑍(𝑡), 𝐴
𝑡ℎ

is estimated from (11), �̂�
𝑡
is defined

in (25), and Δ
𝐸
is given by (14). The initial values 𝐴

(1)

𝑡ℎ

of the iteration process could be the ones obtained by
solving the system (23). The procedure continues iteratively
till the distance ‖𝜃(𝑖+1) − 𝜃

(𝑖)
‖ is sufficiently small. Typically,

there are two problems regarding this maximum likelihood
method. The first difficulty is related to computation time.
This method generally presents more local optima, and it can
be very time consuming to reach a global optimum. Secondly,
it is often very problematic to implement this methodology
since many subordinated models do not have close form
equation for the density function 𝑓

𝑍
.

3.2.2. An Extended KMVMethodology. As forMoody’s KMV
iterative methodology, we have first to compute the daily
value of 𝐴(𝑖)

𝑡ℎ
, 𝑡ℎ = (0, . . . , 𝑛ℎ) solving (11), then the other

parameters of the subordinated process 𝜃(𝑖+1) are estimated
on the series �̂�(𝑖)

𝑡
= ln(𝐴(𝑖)

𝑡ℎ
/𝐴
(𝑖)

(𝑡−1)ℎ
) considering the distribu-

tional assumption of the subordinated model. The procedure
continues iteratively till the distance ‖𝜃(𝑖+1) − 𝜃

(𝑖)
‖ is suffi-

ciently small. In particular, for the 𝛼 stable Lévy model, we
first suggest to determine the index of stability 𝛼. Secondly,
the unique parameter that must be estimated is the scalar
parameter 𝜎 since the skewness parameter and the location
parameter are fixed equal to zero. Clearly, even in this case, we
need to insert some initial values𝐴(1)

𝑡ℎ
of the iteration process

that could be the ones obtained by solving the system (23).
Moreover (as for the Merton model—see Duan et al. [34]),
the extendedKMVmethodology provides the same estimates
as the MLE method when the parameter estimates 𝜃(𝑖+1) are
the MLE on the series �̂�(𝑖)

𝑡
.

4. Application and Results

In this section, we first describe the data used in the computa-
tional analysis and apply theMertonmodel. Secondly, we test
the distributional assumption of this model. Finally, we apply
the Stable Lévy model and compare it with the Merton one.
In the application of the models, we use the extended KMV
methodology.

To apply the previous models to a particular company, we
need the market value of equity 𝐸

𝑡
, the face value of the zero-

coupon debt instrument 𝐿, and the risk-free interest rate 𝑟.
For risk-free interest rate we used 13-week Treasury bill and
Thomson Reuters Datastream dataset to obtain the market
value of equity and the face value of the zero-coupon debt
instrument of 24 US companies with strong capitalization in
USmarket. (The companies are (1) Boeing, (2) Cisco Systems,
(3) Chevron, (4) E. I. du Pont de Nemours, (5) Walt Disney,
(6) HomeDepot, (7) Hewlett-Packard, (8) IBM, (9) Intel, (10)
Johnson& Johnson, (11) Coca Cola, (12)McDonalds, (13) 3M,
(14) Merck & Co., (15) Microsoft, (16) Pfizer, (17) Procter &
Gamble, (18) AT & T, (19) UnitedHealth Group, (20) United
Technologies, (21) Verizon Communications, (22) WalMart
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Stores, (23) Exxon Mobil, and (24) Travelers Companies.)
For a sample period we used data from January 3, 2000,
to December 30, 2011. As market value of equity, we used
consolidated market value of a company which is defined as
a share price multiplied by the number of ordinary shares
in issue. Finally, for the face value of the zero-coupon debt
instrument, we used the sum of the short-term debt, current
portion of the long-term debt, and half of the long-term
debt. (There need to be chosen an amount of the debt that
is relevant to a potential default during a one year period.
Total debt is inadequate when not all of it is due in one
year (it is assumed one-year time horizon for debt maturity
and subsequent estimation of PD), as the firm may remain
solvent even when the value of assets falls below its total
liabilities. Using the short-term debt for the default barrier
would be often wrong, for instance, when there are covenants
that force the company to serve other debts when its financial
situation deteriorates. Prior studies generally follow KMV
methodology and choose the short-term debt plus half of
the long-term debt for the default barrier (see Bharath and
Shumway [37], Vassalou and Xing [35] or Duffie et al. [9]).)
While the short-term debt and current portion of the long-
term debt represent that portion of the debt payable within
one year including current portion of the long-term debt and
sinking fund requirements of preferred stock or debentures,
the long-term debt represents all interest bearing financial
obligations excluding amounts due within one year.

4.1. Analysis of the Distributional Assumption of the Com-
pany Value Log-Returns. The Merton model distributional
assumption implies that the unobservable company value
log-returns are Gaussian distributed. In order to test this
assumption, we use the daily log-returns of the companies’
assets value obtained from both the KMV-Merton model
and the alpha stable Lévy model, from January 3, 2000, to
December 30, 2011 (for a total of 3157 daily values).

First of all, we test the Gaussian and the stable non-
Gaussian hypotheses on the company value log-returns
obtained from the KMV-Merton model. Thus, we com-
pute different statistics every day on the last 250 daily
company values (1 year of daily values). Table 1 reports
the average among all the firms and for all the expost
period of different statistics applied to company value log-
returns to test the Gaussian hypothesis and the stable
non-Gaussian hypothesis. In particular we consider the
average of the follwing: the mean, the standard deviation,
the skewness𝐸((𝑋 − 𝐸(𝑋))

3
)/𝐸((𝑋 − 𝐸(𝑋))

2
)
1.5, the kurtosis

𝐸((𝑋 − 𝐸(𝑋))
4
)/𝐸((𝑋 − 𝐸(𝑋))

2
)
2, the percentage of rejection

of the Gaussian hypothesis using the Jarque-Bera (JB) test
(at the 5% significance level) (see [38]), the stable index
of stability “alpha,” the stable index of skewness “beta,” the
stable scalar parameter “sigma,” the stable location parameter
“mu,” and the percentage of rejection of the stable Paretian
hypothesis using the Kolmogorov-Smirnov (K-S) test (at the
5% significance level).

In particular, the results reported in Table 1 suggest that
(1) the returns exhibit heavy tails since the average of the
stability parameters alpha is always less than 2 and the average

Table 1: Average of some statistics for the daily log-returns of the
companies’ assets value obtained from the KMV-Merton model.

Mean 0.00002
St.dev. 0.0196
Skewness −0.6140
Kurtosis 33.4351
JB test (95%) 96.77%
Alpha 1.7089
Beta 0.0062
Sigma 0.0106
Mu 0.0001
K-S test (95%) 16.56%

of kurtosis is much higher than 3; (2) the returns are slightly
asymmetric since the average of the skewness parameter and
the average of the stable parameter beta are always different
from zero; and (3) the Gaussian hypothesis is almost always
rejected for all companieswhile the stable Paretian hypothesis
is generally rejected for four companies of the considered
sample.

Secondly, we test the different distributional hypothesis
of the companies value log-returns obtained by the stable
Lévy model using a Kolmogorov-Smirnov (K-S) test (at the
5% significance level). From this test, we observe almost
the same percentage of rejection (16.55%) we get using the
companies value log-returns as that obtained from theKMV-
Mertonmodel (16.56%). Similarly, we get 98.44% of rejection
of the Gaussian hypothesis applying the Jarque-Bera test to
the companies value log-returns obtained by stable Lévy
model (compared to 96.77% obtained from theKMV-Merton
model).

From this preliminary analysis, we deduce that the clas-
sical distributional hypothesis of the Merton model is almost
never verified. Moreover, the stable non-Gaussian hypothesis
appears more realistic than the Gaussian one. Therefore, it
is appropriate to apply a Stable Lévy model which is able to
capture empirically observed anomalies that contradict the
classical normality assumption. The results we get here are
not a real surprise since the stable Paretian laws generalize
the Gaussian one.

4.2. Estimate of Default Probabilities with KMV-Merton
Model. We used Moody’s KMV methodology (We perform
our analysis using MATLAB.) for the estimation of the
parameters for the Merton model used for the computation
of the probability of default of any company. The results of
the empirical analysis are reported in Figure 1 and Table 2.
In Table 2, there are listed average values of ratio between the
debt and the company’s assets value and average values of risk
neutral PD and distance-to-default obtained from the KMV-
Mertonmodel for any company. In particular, we observe that
generally when the average ratio between debt and company
value is high, we observe an analogous higher probability of
default and a lower distance to default. This aspect could be
a problem when the KMV-Merton model is used to compute
the risk neutral and real probabilities of default of a bank since
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Figure 1: PDs-KMV-Merton model.

financial institutions have significantly greater debt compared
to other companies. Therefore, the Merton model is not
plausible for the estimation of PDs of financial institutions
unless some adjustments are made. (For example, Byström
[39] shows that one of the main implications of his simplified
“spread sheet” version of theMertonmodel is the fact that the
default probability’s insensitivity to the leverage ratio at high
levels of debt makes it possible to apply his model to banks
and other highly leveraged firms.)

Moreover, Figure 1 describes the evolution of the risk
neutral PDs on the monthly basis. These probabilities are
almost null during all the decade. However, we can distin-
guish three periods of increased PDs for some companies
which are as follows: at the beginning of the century after
the high tech crisis and September 11, during the subprime
crisis, and during the country credit risk crisis. During the
first period and the country credit risk crisis, the most
evident grown of PD is due to the Hewlett-Packard firm
(its PD increased up to 2.1% in the first period and to 1%
in the last one). The period with more significant growth
in PDs is dated from September 2008. This might be easily
explained by the subprime mortgage crisis that reached a
critical stage during the first week of September 2008 and
was characterized by severely contracted liquidity in the
global credit markets and insolvency threats to investment
banks and other institutions. Beginning with bankruptcy of
Lehman Brothers on September 14, 2008, the financial crisis
entered an acute phase marked by the failures of prominent

Table 2: Average values of ratio (𝐿/𝐴) and risk neutral PD and DD
obtained from the KMV-Merton model.

Company Average ratio
(𝐿/𝐴)

Average
PD

Average
DD

(1) Boeing 0.1326 0.000830 8.9020
(2) Cisco Systems 0.0262 0.000000 20.6010
(3) Chevron 0.0613 0.000000 13.8524
(4) E. I. du Pont de
Nemours 0.1169 0.000845 9.9706

(5) Walt Disney 0.1312 0.000083 8.5109
(6) Home Depot 0.0600 0.000002 11.8297
(7) Hewlett-Packard 0.0909 0.000511 8.3242
(8) IBM 0.1037 0.000000 11.4799
(9) Intel 0.0099 0.000000 14.2761
(10) Johnson &
Johnson 0.0331 0.000000 22.8225

(11) Coca Cola 0.0615 0.000000 17.5142
(12) McDonalds 0.1031 0.000015 12.2037
(13) 3M 0.0493 0.000000 14.9342
(14) Merck & Co. 0.0611 0.000037 11.1672
(15) Microsoft 0.0068 0.000000 21.4008
(16) Pfizer 0.0815 0.000019 11.0915
(17) Procter &
Gamble 0.1010 0.000000 13.9819

(18) AT&T 0.1619 0.000013 8.4346
(19) UnitedHealth
Group 0.0924 0.002424 10.2912

(20) United
Technologies 0.0800 0.000001 12.1045

(21) Verizon
Communications 0.2117 0.000106 8.8750

(22) Wal Mart Stores 0.0957 0.000000 12.4895
(23) Exxon Mobil 0.0208 0.000000 18.0516
(24) Travelers
Companies 0.1298 0.000035 8.9095

American and European banks and efforts by the American
and European governments to rescue distressed financial
institutions. Among the companies from our sample which
were affected the most by this crisis belong UnitedHealth
Group, E. I. du Pont de Nemours, and Boeing. UnitedHealth
Group is a care company which offers a spectrum of products
and services. This company suffered a jump in PD from 0%
in May 2008 up to 14.6% in November 2008. E. I. du Pont
de Nemours is a chemical company and was the world’s third
largest chemical company based on market capitalization in
2009.This company’s PD increased from 0% in October 2008
to 8.1% in February 2009. Finally, Boeing as a representative
of aerospace industry suffered an increase in PD from 0%
in October 2008 to 6.2% in February 2009. This phase of
financial crisis lasted approximately one year, and in October
2009 the values of PD of observed companies went back to
zero.
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Table 3: Indexes of stability alpha average values of ratio (𝐿/𝐴), and
risk neutral PD and DD obtained from the stable Lévy model.

Company Alpha
Average
ratio
(𝐿/𝐴)

Average
PD

Average
DD

(1) Boeing 1.6619 0.1308 0.0149 8.9153
(2) Cisco Systems 1.5756 0.0262 0.0116 20.4104
(3) Chevron 1.6671 0.0606 0.0067 13.7868
(4) E. I. du Pont de
Nemours 1.6575 0.1169 0.0137 10.0480

(5) Walt Disney 1.5680 0.1305 0.0265 8.5155
(6) Home Depot 1.6101 0.0599 0.0173 11.9741
(7) Hewlett-Packard 1.5850 0.0914 0.0253 8.3069
(8) IBM 1.6110 0.1032 0.0120 11.5404
(9) Intel 1.6411 0.0098 0.0131 14.3321
(10) Johnson &
Johnson 1.5803 0.0330 0.0068 22.9854

(11) Coca Cola 1.5505 0.0614 0.0120 17.6094
(12) McDonalds 1.7570 0.1012 0.0032 12.3247
(13) 3M 1.5590 0.0494 0.0136 14.9028
(14) Merck & Co. 1.5909 0.0610 0.0150 11.1738
(15) Microsoft 1.5459 0.0068 0.0082 21.1204
(16) Pfizer 1.6691 0.0813 0.0085 11.2040
(17) Procter &
Gamble 1.4745 0.1010 0.0204 13.9846

(18) AT&T 1.5985 0.1607 0.0176 8.5163
(19) UnitedHealth
Group 1.5839 0.0925 0.0256 10.3436

(20) United
Technologies 1.6064 0.0798 0.0138 12.0951

(21) Verizon
Communications 1.6645 0.2106 0.0114 8.9470

(22) Wal Mart Stores 1.6398 0.0955 0.0080 12.5641
(23) Exxon Mobil 1.6494 0.0207 0.0060 18.1822
(24) Travelers
Companies 1.4659 0.1291 0.0464 8.9419

4.3. Estimate of Default Probabilities with the Stable Lévy
Model. In order to evaluate the stable Lévy model, we esti-
mate the parameters using the extended KMVmethodology.
First of all, we compute the indices of stability on the daily
log-returns of the companies’ asset values, obtained by the
stable Lévy model, which are reported in Table 3. To evaluate
the stable parameters and the distributions of subordinator
𝑓
𝑉
in (21), we perform a maximum likelihood estimator that

uses the fast Fourier transform (see [1, 20, 40]).The estimated
index of stability is maintained constant for each firm and
for all the period of analysis. Clearly, we could adapt more
dynamically the model requiring that the index of stability
changes periodically with the scalar and location stable
parameters. However, this should require the knowledge of
the subordinator density distribution 𝑓

𝑉
that changes with

the index of stability. Since this distribution is obtained by
inverting the Fourier transform, the iterating procedure of the
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Figure 2: PDs-stable Lévy model.

KMV methodology would require too long computational
time in that case. In Table 3, there are also listed the average
values of ratio between the debt and the company’s assets
value and average values of risk neutral PD and distance-to-
default obtained from the stable Lévymodel for any company.

4.4. Comparison of the TwoModels. In particular, we observe
that there are not very large differences between the com-
pany values obtained by the stable Lévy model and the
company values obtained by the Merton model. This aspect
is important since we couldn’t expect strong differences in
the company values that represent an unobservable objective
variable whose big differences could not be easily justifiable.
This observation implies that there are not large differences
between the two models with respect to the follwing: (1)
the average ratio between debt and company value; (2) the
average distance-to-default.

Figure 3 reports the main differences between the two
models for those companies which present the highest peaks
in default probabilities (E. I. du Pont de Nemours, Walt
Disney, Hewlett-Packard, UnitedHealthGroup, andTravelers
Companies). In particular, Figures 3(a) and 3(b) show that
the main differences in the ratio between the debt and the
company value and between the distances-to-default are con-
centrated during the high volatility period after September
11, 2001. However, this difference (as remarked previously)
is almost null during the big crisis following the Lehman
Brothers bankruptcy. Figures 3(c) and 3(d) show default
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Figure 3: Differences between Stable Lévy model and KMV-Merton model. (a) Difference between stable ratio 𝐿/𝐴 and Gaussian ratio. (b)
Difference between the stable and Gaussian distance-to-default. (c) Probabilities of default during “calm periods.” (d) Probabilities of default
during the crisis.

probabilities of chosen companies during “calm” periods and
during periods of the crisis. In this case, we observe very
big differences among PDs. On one hand, the probabilities of
default computed by theMertonmodel are almost null during
the “calm” periods and increase during one or two months
of the crisis. On the other hand, the probabilities of default
computed by the Lévy stable model are never null during the
“calm” periods and become very high during the months of
the crisis and in the close subsequent periods.

In particular, we observe the biggest difference for the
Travelers Companies for which the Merton model does not
register any significant difference in the default probabilities
while the stable Lévymodel shows the highest values.The rea-
son of this difference is essentially caused by the combination
of two aspects. First, the index of stability of the Travelers
Companies is very small, and that means very fat tails with
high probability of losses. Secondly, the ratio between the
debt and the Travelers Companies value is high.This analysis
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confirms the previous one that shows the average default
probabilities obtained by the stable Lévy model are much
higher than those obtained by the Merton model. This is
not a real surprise because while the probability tails of the
Gaussian distribution tend to zero exponentially, the proba-
bility tails of stable non-Gaussian distribution tend to zero in
polynomial order.Thus the probability of losses computed by
the stable Lévy model is much higher than the one computed
by the Merton model. This effect is also emphasized in
Figure 2 that reports the evolution of default probabilities
during the decade 2001–2011. Figure 2 shows a much higher
sensitivity of these probabilities of all companies with respect
to the periods of crises. Moreover, since all the tests have
shown that the stable non-Gaussian hypothesis appears more
realistic than the Gaussian one, we deduce that the KMV-
Merton model underestimates the probability of default.

5. Conclusion

In this paper, we propose alternative structural credit risk
models, and we discuss how to evaluate the probability of
default of a given firmunder different distributional hypothe-
ses. Finally, we apply and compare the stable Lévy credit risk
model with the Merton one. The empirical analysis suggests
that the probability of default is generally underestimated
by the Merton model. Clearly, these first results should be
further discussed and compared with other distributional
models in a future research.
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The policy of jointly implementing signal control and congestion pricing in the transportation network is investigated. Bilevel
programs are developed to model the simultaneous optimization of signal setting and congestion toll. The upper level aims to
maximize the network reserve capacity or minimize the total travel time, subject to signal setting and toll constraints. The lower
level is a deterministic user equilibrium problem given a plan of signal setting and congestion charge. Then the bilevel programs
are transferred into the equivalent single level programs, and the solution methods are discussed. Finally, a numerical example
is presented to illustrate the concepts and methods, and it is shown that the joint implementation policy can achieve promising
results.

1. Introduction

As a result of urbanization and industrialization, almost all
big cities in the world face serious problems of traffic conges-
tion.Therefore, it becomes more and more important to mit-
igate traffic congestion and to enhance the potential reserve
capacity of road networks. Over the past forty years, many
researchers investigated various management methods, such
as signal control [1–4], congestion pricing [5–13], route gui-
dance [14], and credit management [15, 16] to improve the
network performance.

In the previous studies of traffic management, some
researchers set their objective functions to be the minimiza-
tion of the total travel time over the whole network [8, 15].
Furthermore, enhancing network capacity is also often used
as an alternative objective function in traffic management
[10, 17]. In those cases, network capacity is defined as the
maximal demand that can be accommodated in the network,
without violating capacity constraints of the links.

In the analysis of traffic management, scholars often use
single approach for traffic management, and the combined
methods are seldom utilized. With the rapid development
of intelligent computing and control technologies [18, 19], it
becomes more feasible to jointly implement various traffic

management approaches. Due to lack of analytical research
on the joint implementation of signal control and congestion
pricing, the purpose of this paper is to present a policy of
simultaneously optimizing traffic signal setting and conges-
tion toll. Furthermore, both reserve capacity maximization
and travel timeminimization are used as the objectives of the
policy planner.

The proposed problem is formulated as a Stackelberg
game with the bilevel optimization structure.The upper level
either minimizes total travel time or maximizes network
reserve capacity with both signal setting parameters and con-
gestion tolls as control variables. The lower level is a deter-
ministic user equilibrium (DUE) problem given the signal
setting and tolls assigned by the upper level. After replacing
the lower level traffic assignment problem with its first order
conditions, the proposed bilevel problem can be transferred
into its equivalent single level formulation. By transferring
the objective functions and link cost functions into piecewise
linear functions, the whole problem becomes a linear pro-
gram that can be solved by using commercial computing
package, such as CPLEX.

The remainder of the paper is organised as follows. The
bilevel programs that combine traffic problems are formu-
lated in Section 2. In Section 3, the bilevel models are then
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transferred into single level models, and their linearized for-
mulations are also discussed. Section 4 presents the numeri-
cal example and discussed results. Conclusions are provided
in Section 5.

2. Bilevel Formulation of Improving
Network Capacity with Simultaneous
Implementation of Signal Control and
Congestion Pricing

Let 𝐺 = (𝑁,𝐴) be a directed transportation network defined
by a set 𝑁 of nodes and a set 𝐴 of directed links. Each link
(𝑎 ∈ 𝐴) has an associated flow-dependent travel time, 𝑡

𝑎
(V
𝑎
),

which presents the travel time per unit flow or average travel
time on each link.The travel time function, 𝑡

𝑎
(V
𝑎
), is assumed

to be differentiable and monotonically increasing with the
traffic flow, V

𝑎
. Let𝑊 denote the set of origin-destination (O-

D) pairs and let 𝑃
𝑤
be the set of all paths between O-D pair.

Each feasible path, 𝑝 ∈ 𝑃
𝑤
, between O-D pair has a travel

time 𝑡𝑤
𝑝
= ∑
𝑎∈𝐴

𝑡
𝑎
(V
𝑎
)𝛿
𝑤

𝑎𝑝
. Herein 𝛿

𝑤

𝑎𝑝
equals 1 if the path 𝑝

between O-D pair uses link 𝑎, and 0 otherwise. The existing
demand between O-D pair is denoted as 𝑞𝑤such that q is the
vector of 𝑞𝑤.

The set of signal-controlled intersections is denoted as
𝐼(𝐼 ⊂ 𝑁). Meanwhile, let 𝐴

𝑖
be the set of links entering the

signalized intersection and let 𝐴 be the set of all signal-con-
trolled links, 𝐴 = {𝐴

𝑖
, 𝑖 ∈ 𝐼}.

The signal timing variables for links approaching a given
signalized intersection should satisfy some linear constraints,
which include cycle time, clearance time, and minimum and
maximum green times. These constraints can be mathemati-
cally described in the following form:

G
𝑖
𝜆
𝑖
≥ b
𝑖
, 𝑖 ∈ 𝐼, (1)

where 𝜆
𝑖
is a vector of timing variables associated with signal-

ized intersection. Both thematrixG
𝑖
and vector b

𝑖
depend on

the particular timing specification for intersection, whether it
is stage based or group based. For more detailed descriptions,
the reader may refer to Allsop [20].

In this paper, we allow for link based tolls, which means a
certain amount of toll (𝜏

𝑎
) is imposed on link 𝑎. Let 𝜏 be the

vector of link-based toll, 𝜏
𝑎
. After transferring the monetary

cost 𝜏
𝑎
into the equivalent cost in time unit according to the

value of time (VOT), 𝜌, the generalized travel cost (GTC)
(including both travel time and toll charge) of passing link 𝑎 is
𝑡
𝑎
(V
𝑎
,𝜆) + (𝜏

𝑎
/𝜌). Here, we assume 𝐽(𝐽 ⊆ 𝐴) to be the set of

toll links.

2.1. Bilevel Model of Minimizing Total Travel Time. The travel
time minimization problem over the whole network can be
modelled by a bilevel program, or a Stackelberg game. In such
a leader-follower game, the leader cannot directly control the
decision of the follower, but it can affect the behaviour of the
follower by making its own decisions and anticipating the
results. However, the follower can only react according to the
decisions of the leader. In this study, the transport system
planner is viewed as the leader, and its decision variables are

signal setting and congestion tolls. The followers are travel-
lers, and their route choice behaviours can be characterized
by a deterministic traffic assignment, given the decisions
made by the leader.

The behaviour of the leader, namely, the upper level prob-
lem, is given below

min
k,𝜏,𝜆

∑

𝑎∈𝐴

𝑡
𝑎
(V
𝑎
,𝜆) V
𝑎
(𝜆, 𝜏)

s.t. G
𝑖
𝜆
𝑖
≥ b
𝑖
, 𝑖 ∈ 𝐼

𝜏
𝑢

𝑗
≥ 𝜏
𝑗
≥ 𝜏
𝑙

𝑗
, 𝑗 ∈ 𝐽,

(2)

where k(𝜆, 𝜏) is the vector of link traffic volume. V
𝑎
(𝜆, 𝜏)

represents an equilibrium traffic flow which obtains from the
following lower-level program [5]:

min
k

∑

𝑎∈𝐴

∫

V
𝑎

0

𝑡
𝑎
(𝜔,𝜆) 𝑑𝜔 +∑

𝑗∈𝐽

V
𝑗
𝜏
𝑗

𝜌
(3)

s.t. ∑

𝑝∈𝑃
𝑤

𝑓
𝑤

𝑝
= 𝑞
𝑤
, 𝑤 ∈ 𝑊

V
𝑎
= ∑

𝑤∈𝑊

∑

𝑝∈𝑃
𝑤

𝑓
𝑤

𝑝
𝛿
𝑤

𝑎𝑝
, 𝑎 ∈ 𝐴

𝑓
𝑤

𝑝
≥ 0, 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊.

(4)

2.2. Bilevel Model of Maximizing Network Reserve Capacity.
In this subsection, we introduce the bilevel program of net-
work reserve capacity maximization, which is jointly imple-
menting signal control and congestion pricing. If the current
OD matrix is multiplied by a factor 𝜇, then it becomes 𝜇q.
Given the new demandmatrix 𝜇q, link flow k can be obtained
by solving a traffic assignment based on the vector of the sig-
nal timing variables 𝜆 for all signalized intersections and the
vector 𝜏 of congestion tolls. If the degree of saturation on any
link does not exceed a prescribed benchmark value of that
link at the equilibrium condition, the congestion and emis-
sion in the network are acceptable. Namely, the following
condition has to be satisfied:

V
𝑎
(𝜇,𝜆, 𝜏) ≤ 𝑝

𝑎
𝐶
𝑎
(𝜆) , 𝑎 ∈ 𝐴, (5)

where𝐶
𝑎
(𝜆) is the capacity of link which is dependent on the

signal timings (𝜆). Furthermore, V
𝑎
(𝜇, 𝜆, 𝜏) is the equilibrium

traffic flow of link 𝑎 that depends on the demand multiplier,
signal settings, and congestion tolls. Parameter𝑝𝑎 is themax-
imum acceptable degree of saturation for link 𝑎. The above
constraint should be fulfilled for links at closely spaced inter-
sections, since queues block neighbour intersections and con-
gestion would spread over the whole network.

The largest multiplier of the O-D matrix that can be
accommodated without violating the capacity constraints
can be obtained by maximizing 𝜇 within the feasible region
defined by the constraints for all links. Let the maximum
acceptable value ofODmultiplier𝜇 be𝜇∗.Therefore, if𝜇∗ > 1

the network has reserve capacity of 100(𝜇∗−1)q, and if𝜇∗ < 1

the network is overloaded by 100(1 − 𝜇∗)q.
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The combined signal control and congestion pricing opti-
mization problem is formulated as a bilevel model or a Stack-
elberg game. The leader, namely, the system planner aims to
maximize the network reserve capacity, by setting appropriate
signals and tolls, whereas the follower, namely, travellers fol-
low deterministic user equilibrium in terms of the general-
ized travel cost (GTC), which describes the minimum-cost
path finding behavior of drivers in the transportation net-
works. Consequently, the upper level program is given by

Maximise
𝜇,𝜆,𝜏

𝜇 (6)

subject to V
𝑎
(𝜇,𝜆, 𝜏) ≤ 𝑝

𝑎
𝐶
𝑎 (𝜆) , 𝑎 ∈ 𝐴

G
𝑖
𝜆
𝑖
≥ b
𝑖
, 𝑖 ∈ 𝐼

𝜏
𝑢

𝑗
≥ 𝜏
𝑗
≥ 𝜏
𝑙

𝑗
, 𝑗 ∈ 𝐽,

(7)

where the equilibrium flow V
𝑎
(𝜇,𝜆, 𝜏) is obtained by solving

the following lower-level network equilibrium problem:

min
k

∑

𝑎∈𝐴

∫

V
𝑎

0

𝑡
𝑎
(𝜔,𝜆) 𝑑𝜔 +∑

𝑗∈𝐽

V
𝑗
𝜏
𝑗

𝜌
(8)

subject to ∑

𝑝𝜖𝑃
𝑤

𝜇𝑞
𝑤
, 𝑤𝜖𝑊

V
𝑎
= ∑

𝑤𝜖𝑊

∑

𝑝𝜖𝑃
𝑤

𝑓
𝑤

𝑝
𝛿
𝑎𝑝
, 𝑎𝜖𝐴

𝑓
𝑤

𝑝
≥ 0, 𝑝𝜖𝑃

𝑤
, 𝑤𝜖𝑊.

(9)

3. Transformation to an Equivalent
Single Level Formulation

Obviously, the proposed models are very difficult to solve
due to their bilevel structure. In this section, we transfer the
bilevel models into the single-level program and approximate
them into a set of mixed integer linear programs. Therefore,
they can be solved by commercial software, such as CPLEX.

3.1. Equivalent Single-Level Model of Minimizing Total Travel
Time. First, we replace the user equilibrium traffic assign-
ment problem with its first order condition. Accordingly, the
total travel time minimization problem becomes a single-
level formulation:

min
x,𝜆,𝜏

𝑍 = ∑

𝑎∈𝐴

𝑡
𝑎
(𝑥
𝑎
,𝜆) 𝑥
𝑎 (10)

s.t. G
𝑖
𝜆
𝑖
≥ b
𝑖
, 𝑖 ∈ 𝐼 (11)

𝜏
𝑢

𝑗
≥ 𝜏
𝑗
≥ 𝜏
𝑙

𝑗
, 𝑗 ∈ 𝐽 (12)

∑

𝑝∈𝑃
𝑤

𝑓
𝑤

𝑝
= 𝑞
𝑤
, 𝑤 ∈ 𝑊, (13)

V
𝑎
= ∑

𝑤∈𝑊

∑

𝑝∈𝑃
𝑤

𝑓
𝑤

𝑝
𝛿
𝑤

𝑎𝑝
, 𝑎 ∈ 𝐴, (14)

𝑐
𝑤

𝑝
= ∑

𝑎∈𝐴

𝑡
𝑎
(V
𝑎
,𝜆) 𝛿
𝑤

𝑎𝑝

+∑

𝑗∈𝐽

𝜏
𝑗
𝛿
𝑤

𝑗𝑝

𝜌
,

(15)

𝑓
𝑤

𝑝
(𝑐
𝑤

𝑝
− 𝜋
𝑤
) = 0,

𝑝 ∈ 𝑃
𝑤
, 𝑤 ∈ 𝑊,

(16)

𝑐
𝑤

𝑝
− 𝜋
𝑤
≥ 0, 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊, (17)

𝑓
𝑤

𝑝
≥ 0, 𝑝 ∈ 𝑃

𝑤
, (18)

where𝜋𝑤 represents the least travel cost, including both travel
time and toll of OD pair 𝑤. The symbol 𝑐𝑤

𝑝
denotes the gen-

eralized travel cost in the path 𝑝.
In the above proposed model, constraints (16)–(18) rep-

resent the deterministic route choice behaviour. Clearly this
complementary condition is nonlinear and nonconvex, so it
cannot be put into a linear program. Fortunately, Wang and
Lo [21] formulated it into a set ofmixed-integer constraints, as
below

𝐿𝜑
𝑤

𝑝
+ 𝜀 ≤ 𝑓

𝑤

𝑝
≤ 𝑈 (1 − 𝜑

𝑤

𝑝
) , 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

𝜑
𝑤

𝑝
∈ {0, 1} , 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

𝐿𝜑
𝑤

𝑝
≤ 𝑐
𝑤

𝑝
− 𝜋
𝑤
≤ 𝑈𝜑
𝑤

𝑝
, 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

𝑐
𝑤

𝑝
− 𝜋
𝑤
≥ 0, 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

(19)

where 𝐿 represents a negative constant with a very large abso-
lute value,𝑈 is viewed as a very large positive constant, while
𝜀 is treated a very small positive value. And 𝜑

𝑤

𝑝
is a binary

variable. Specifically, if 𝜑𝑤
𝑝
= 0, one has 𝑓𝑤

𝑝
> 0 and 𝑐𝑤

𝑝
= 𝜋
𝑤.

If 𝜑𝑤
𝑝
= 1, one has 𝑓𝑤

𝑝
= 0 and 𝑐𝑤

𝑝
> 𝜋
𝑤. These two cases of 𝜑𝑤

𝑝

are exactly equivalent to the above complementary condition.
Therefore, conditions (16)–(18) can be replaced by conditions
(19).

If we let 𝑇
𝑎
(𝑥
𝑎
,𝜆) = 𝑡

𝑎
(𝑥
𝑎
,𝜆)𝑥
𝑎
, the objective function

becomes ∑
𝑎∈𝐴

𝑇
𝑎
(𝑥
𝑎
,𝜆). If 𝑡

𝑎
(𝑥
𝑎
,𝜆) and 𝑇

𝑎
(𝑥
𝑎
,𝜆) are trans-

ferred into linear functions, the above problem is a linear
program. Fortunately, 𝑡

𝑎
(𝑥
𝑎
,𝜆) and 𝑇

𝑎
(𝑥
𝑎
,𝜆) can be approxi-

mated by a piecewise linear function with multiple segments.
Let 𝜆
𝑘
be the 𝑘th variable in the vector 𝜆, and 𝐾 is the car-

dinality of 𝜆. The feasible domain of V
𝑎
, [V
𝑎
, V
𝑎
] is partitioned

into 𝑁 segments, and the feasible domain of 𝜆
𝑘
, [𝜆
𝑘
, 𝜆
𝑘
] is

partitioned into 𝑀 segments, respectively. Theoretically, the
accuracy of linearizing 𝑡

𝑎
(𝑥
𝑎
,𝜆) can be guaranteed by setting

sufficiently large 𝑁 and 𝑀. In this study, for each link 𝑎,
a series of values of 𝑉

𝑎,𝑛
are used to partition the feasible

domain of V
𝑎
into many small segments, where V

𝑎
< 𝑉
𝑎,𝑛

<

𝑉
𝑎,𝑛+1

< V
𝑎
, (𝑛 = 1, . . . 𝑁−1).We denote [𝑉

𝑎,𝑛
, 𝑉
𝑎,𝑛+1

] as the
region 𝑛 of V

𝑎
. Similarly a series of values of 𝑍

𝑘,𝑚
are used to

partition the feasible domain of 𝜆
𝑘
intomany small segments,

where 𝜆
𝑘
< 𝑍
𝑘,𝑚

< 𝑍
𝑘,𝑚+1

< 𝜆
𝑘
, (𝑚 = 1, . . . ,𝑀 − 1).

We denote [𝑍
𝑘,𝑚

, 𝑉
𝑘,𝑚+1

] as region 𝑚 of 𝜆
𝑘
. For each

region (𝑛,𝑚
1
, . . . , 𝑚

𝑘
, . . . , 𝑚

𝐾
), the following linear function
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is specified to approximate the nonlinear travel time function,
𝑡
𝑎
(𝑥
𝑎
,𝜆)

𝑡
𝑎
(V
𝑎
, 𝜆) = 𝐸

𝑎

𝑛
V
𝑎
+

𝐾

∑

𝑘=1

𝐹
𝑘

𝑚
𝜆
𝑘
+ 𝐺
𝑎,𝑛

𝑚
1
,...,𝑚
𝑘
,...,𝑚
𝐾

if 𝑈
𝑎,𝑛

≤ V
𝑎
≤ 𝑈
𝑎,𝑛+1

, 𝑍
𝑘,𝑚

≤ 𝜆
𝑘
≤ 𝑍
𝑘,𝑚+1

,

(20)

where 𝐸𝑎
𝑛
and 𝐹𝑘
𝑚
are coefficients.The first-order Taylor series

is applied to approximate the travel time function 𝑡
𝑎
(𝑥
𝑎
,𝜆).

Therefore, the coefficients 𝐸𝑎
𝑛
and 𝐹𝑘

𝑚
are determined by the

derivatives of the travel time function with respect to V
𝑎
and

𝜆
𝑘
that are evaluated at 𝑉

𝑎,𝑛
and 𝑍

𝑘,𝑚
, namely,

𝐸
𝑎

𝑛
=

𝜕𝑡
𝑎

𝜕V
𝑎

(𝑉
𝑎,𝑛
,𝑍
1,𝑚
1
,...,𝑍
𝑘,𝑚
𝑘

,...𝑍
𝐾,𝑚
𝐾
)

.

𝐹
𝑘

𝑚
=

𝜕𝑡
𝑎

𝜕𝜆
𝑖

(𝑉
𝑎,𝑛
,𝑍
1,𝑚
1
,...,𝑍
𝑘,𝑚
𝑘

,...𝑍
𝐾,𝑚
𝐾
)

.

(21)

And the coefficient𝐺𝑎
𝑚
1
,...,𝑚
𝑘
,...,𝑚
𝐾

can be evaluated by equating
the values of the original function and the piecewise linear
approximated function at 𝑈

𝑎,𝑛
and 𝑉

𝜆
𝑘
,𝑚
𝑘

, and thus given by

𝐺
𝑎,𝑛

𝑚
1
,...,𝑚
𝑘
,...,𝑚
𝐾

= 𝑡
𝑎
(𝑉
𝑎,𝑛
, 𝑍
1,𝑚
1

, . . . , 𝑍
𝑘,𝑚
𝑘

, . . . 𝑍
𝐾,𝑚
𝐾

)

− 𝑉
𝑎,𝑛

𝜕𝑡
𝑎

𝜕V
𝑎

(𝑉
𝑎,𝑛
,𝑍
1,𝑚
1
,...,𝑍
𝑘,𝑚
𝑘

,...𝑍
𝐾,𝑚
𝐾
)

−

𝐾

∑

𝑘=1

𝑍
𝑘,𝑚
𝑘

𝜕𝑡
𝑎

𝜕𝜆
𝑘

(𝑉
𝑎,𝑛
,𝑍
1,𝑚
1
,...,𝑍
𝑘,𝑚
𝑘

,...𝑍
𝐾,𝑚
𝐾
)

.

(22)

Subsequently, the piecewise linear travel time function of
each link is transferred into the following equivalent mixed-
integer linear constraints:

𝐿 ⋅ 𝜉
𝑎,𝑛

≤ V
𝑎
− 𝑉
𝑎,𝑛

≤ 𝑈 ⋅ (1 − 𝜉
𝑎,𝑛
) − 𝜀,

𝜃
𝑎,𝑛

= 𝜉
𝑎,𝑛+1

− 𝜉
𝑎,𝑛
,

𝐿 ⋅ 𝜍
𝑚
𝑘

≤ 𝜆
𝑖
− 𝑍
𝑘,𝑚
𝑘

≤ 𝑈 ⋅ (1 − 𝜍
𝑚
𝑘

) − 𝜀,

𝜗
𝑚
𝑘

= 𝜍
𝑚
𝑘
+1
− 𝜉
𝑚
𝑘

,

𝜓
𝑎

𝑛,𝑚
1
,...,𝑚
𝑘
,...,𝑚
𝐾

= 𝜃
𝑎,𝑛

+

𝐾

∑

𝑘=1

𝜗
𝑚
𝑘

,

𝐿 ⋅ (𝐾 + 1 − 𝜓
𝑎,𝑛

𝑚
1
,...,𝑚
𝑘
,...,𝑚
𝐾

) ≤ 𝑡
𝑎
− (𝐸
𝑎

𝑛
V
𝑎
+

𝐾

∑

𝑘=1

𝐹
𝑘

𝑚
𝜆
𝑘
)

≤ 𝑈 ⋅ (𝐾 + 1 − 𝜓
𝑎,𝑛

𝑚
1
,...,𝑚
𝑘
,⋅⋅⋅ ,𝑚
𝐾

) ,

𝜉
𝑎,𝑛

∈ {0, 1} , 𝜍
𝑚
𝑘

∈ {0, 1} , 𝑛 = 1, 2, . . . , 𝑁,

𝑚
𝑘
= 1, 2, . . . ,𝑀, ∀𝑎 ∈ 𝐴,

(23)

where 𝐿 and𝑈 still represent very large negative and positive
constants, respectively. And 𝜀 is still a very small positive

constant. The binary variable 𝜉
𝑎,𝑛

indicates the comparison
between V

𝑎
and 𝑉

𝑎,𝑛
. Specifically, 𝜉

𝑎,𝑛
= 0 indicates V

𝑎
≥ 𝑉
𝑎,𝑛
,

𝜉
𝑎,𝑛

= 1 indicates V
𝑎
< 𝑈
𝑎,𝑛
. Thus 𝜃

𝑎,𝑛
indicates whether V

𝑎

falls in segment 𝑛 or not. If 𝜃
𝑎,𝑛

= 1, V
𝑎
is in segment 𝑛. Simi-

larly, 𝜗
𝑚
𝑘

= 1means 𝜆
𝑘
falls in segment𝑚

𝑘
. If 𝜓𝑎,𝑛
𝑚
1
,...,𝑚
𝑘
,...,𝑚
𝐾

=

𝐾 + 1, then the corresponding approximated linear function
in the region (𝑛,𝑚

1
, . . . , 𝑚

𝑘
, . . . , 𝑚

𝐾
) is utilized, namely, 𝑡

𝑎
=

𝐸
𝑎

𝑛
V
𝑎
+∑
𝐾

𝑘=1
𝐹
𝑘

𝑚
𝜆
𝑘
+𝐺
𝑎,𝑛

𝑚
1
,...,𝑚
𝑘
,...,𝑚
𝐾

. In this way, all the nonlinear
constraints of the single-level formulation have been trans-
ferred into linear ones.

Tracing the same way,𝑇
𝑎
(𝑥
𝑎
,𝜆) can be approximated into

linear functions. Thus the whole problem becomes a mixed
integer linear program, which can be solved by commercial
software, such as CPLEX.

3.2. Equivalent Single-Level Model of Maximizing Network
Reserve Capacity. If the lower level problem is replaced with
its first order condition, the combined signal control and pric-
ing problem with the objective of maximizing reserve capac-
ity can be transferred into a single-level formulation, as below

Maximise
𝜇,𝜆,𝜏

𝜇 (24)

s.t. V
𝑎
(𝜇,𝜆, 𝜏) ≤ 𝑝

𝑎
𝐶
𝑎 (𝜆) , 𝑎 ∈ 𝐴

G
𝑖
𝜆
𝑖
≥ b
𝑖
, 𝑖 ∈ 𝐼,

𝜏
𝑢

𝑗
≥ 𝜏
𝑗
≥ 𝜏
𝑙

𝑗
, 𝑗 ∈ 𝐽,

∑

𝑝∈𝑃
𝑤

𝑓
𝑤

𝑝
= 𝜇𝑞
𝑤
, 𝑤 ∈ 𝑊,

V
𝑎
= ∑

𝑤∈𝑊

∑

𝑝∈𝑃
𝑤

𝑓
𝑤

𝑝
𝛿
𝑤

𝑎𝑝
, 𝑎 ∈ 𝐴,

𝑐
𝑤

𝑝
= ∑

𝑎∈𝐴

𝑡
𝑎
(V
𝑎
,𝜆) 𝛿
𝑤

𝑎𝑝
+∑

𝑗∈𝐽

𝜏
𝑗
𝛿
𝑤

𝑗𝑝

𝜌
,

𝐿𝜑
𝑤

𝑝
+ 𝜀 ≤ 𝑓

𝑤

𝑝
≤ 𝑈 (1 − 𝜑

𝑤

𝑝
) ,

𝑝 ∈ 𝑃
𝑤
, 𝑤 ∈ 𝑊,

𝜑
𝑤

𝑝
∈ {0, 1} , 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

𝐿𝜑
𝑤

𝑝
≤ 𝑐
𝑤

𝑝
− 𝜋
𝑤
≤ 𝑈𝜑
𝑤

𝑝
,

𝑝 ∈ 𝑃
𝑤
, 𝑤 ∈ 𝑊,

𝑐
𝑤

𝑝
− 𝜋
𝑤
≥ 0, 𝑝 ∈ 𝑃

𝑤
, 𝑤 ∈ 𝑊,

𝑓
𝑤

𝑝
≥ 0, 𝑝 ∈ 𝑃

𝑤
,

(25)

where 𝜋𝑤 represents the minimum generalized travel cost of
OD pair𝑤. Notation 𝑐𝑤

𝑝
denotes the generalized travel cost of

path 𝑝. Furthermore, f , c, and𝜋 are vectors of𝑓𝑤
𝑝
, 𝑐𝑤
𝑝
, and 𝜋𝑤,

respectively.
In this program, the objective function is obviously a

linear function.And 𝑡
𝑎
(𝑥
𝑎
,𝜆) can also be linearized as done in

Section 3.1.
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Figure 1: A signal-controlled road network.

Table 1: Input data to the example network.

Link number 𝑎 1 2 3 4
Free-flow time 𝑡0

𝑎
(min) 4.6 5.2 5.1 3.9

Saturation flow 𝑠
𝑎
(veh/min) 52 50 20 80

4. A Numerical Example

Consider an example network, shown in Figure 1, with 7 links
and 6 nodes, of which nodes 𝐸 and 𝐹 are signal-controlled
intersections.The current O-D demand from node𝐴 to node
𝐷 is 10 veh/min and that from 𝐶 to 𝐷 is 20 veh/min. There is
only one path 𝐴𝐵𝐷 for the O-D pair (𝐴, 𝐵),while there are
two paths 𝐶𝐵𝐷 and 𝐶𝐷 for O-D pair (𝐶, 𝐷). The delay for-
mula of links takes the following form:

𝑡
𝑎
(V
𝑎
, 𝜆
𝑎
) = 𝑡
0

𝑎
+ 𝜃
𝑎
× (

V
𝑎

𝜆
𝑎
𝑠
𝑎

) , (26)

where 𝜆
𝑎
is the proportion of a cycle that is effectively green

for link 𝛼, and 𝜆
𝑎
= 1.0 for any link that does not enter into a

signal-controlled junction. The values of 𝑡0
𝑎
, 𝜃
𝑎
, and 𝑠

𝑎
are

given in Table 1.
For the signalized intersections 𝐵, signal control is repre-

sented by two split parameters (proportions of green times)
𝜆
1
and 𝜆

2
. The proportion of green time allocated to link 1 is

𝜆
1
, and the proportion allocated to link 2 is 𝜆

2
. Loss time of

phase transition is ignored, namely, 𝜆
1
+𝜆
2
= 1.Therefore the

capacity of link 1 is 𝜆
1
𝑠
1
, and the capacity of link 2 is 𝜆

2
𝑠
2
.The

lower and upper bounds of the proportion of green time are
0.05 ≤ 𝜆

1
, 𝜆
2
≤ 0.95.

With only signal control, the total travel time in the
network is minimized at 𝜆

1
= 1.00 and 𝜆

2
= 0, which means

green time is fully assigned to link 1. The minimal total travel
time is 271.21min.The corresponding link volume, link travel
time, and volume to capacity ratio are listed in Table 2.

Now we consider the policy of the joint implementation
of signal control and congestion pricing, wherein a toll 𝜏

3
is

charged on link 3. Assume that the value of time is 1.0 $/min
for travellers. Using the model developed in Section 2.1, after

Table 2: Solution of total travel time minimization with signal
control only.

Link number 𝑎 1 2 3 4
Traffic volume (veh/min) 10 0 20 10
Travel time (min) 4.95 4.83 9.00 4.18
Volume to capacity ratio 0.19 NA 1.00 0.13

Table 3: Solution of total travel time minimization with both signal
and pricing.

Link number 𝑎 1 2 3 4
Traffic volume (veh/min) 10 4.70 15.30 14.70
Travel time (min) 5.12 5.78 8.08 4.30
Volume to capacity ratio 0.29 0.28 0.77 0.18

Table 4: Solution of reserve capacity maximization with both signal
and pricing.

Link number 𝑎 1 2 3 4
Traffic volume (veh/min) 23.92 27.0 20.0 50.28
Travel time (min) 6.36 7.29 8.98 5.28
Volume to capacity ratio 1.0 1.0 1.0 0.63

piecewisely linearizing the objective function and the delay
formula, the solution is obtained at 𝜆

1
= 0.66, 𝜆

2
= 0.34, and

𝜏
3
= $2.0. At the optimum, total travel time is 265.36min.

By introducing congestion pricing, the total travel time
decreases by 5.85min. The corresponding link volume, link
travel time, and volume to capacity ratio are listed in Table 3.

Assume that the maximum acceptable level of link vol-
ume is exactly its capacity, and then we investigate the reserve
capacity maximization. If signal control is the only policy, the
solution is given by 𝜆

1
= 1.00 and 𝜆

2
= 0, which is the same

as the case of the total travel timeminimization.Themaximal
demand multiplier is 1.0, and the network has no reserve
capacity. The link volumes are also shown in Table 2. Clearly,
link 3 is the critical link since its volume reaches the capacity.

When signal control and congestion pricing are simul-
taneously implemented, the model developed in Section 2.2
is used to maximize the reserve capacity. After piecewisely
linearizing the delay formula, the solution is obtained at 𝜆

1
=

0.46, 𝜆
2
= 0.54, and 𝜏

3
= $3.59. At the optimum, the reserve

capacity is 2.34. By introducing congestion pricing, the net-
work demand multiplier increases from 1.0 to 2.34. In other
words, the network reserve capacity increases from 0 to 1.34.
In this case, the link volume, link travel time, and volume to
capacity ratio are listed in Table 4. Clearly links 1, 2, and 3 are
critical links, because they will be operated at their full capac-
ities when the network serves 2.34 times the existing demand
levels.

This numerical example shows that the network perfor-
mance (in terms of both reserve capacity maximization and
system time minimization) can be significantly improved by
further introducing congestion pricing, besides implement-
ing signal control.
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5. Conclusions

This paper proposed a joint implementation policy of signal
control and congestion toll optimization in the transportation
network.Theobjective of the systemplanner is either tomini-
mize the total travel time of thewhole network or tomaximize
the reserve capacity of the network. The reserve capacity of
a network is defined as a multiplier that raises the demand
of each OD pair by the same proportion without violating
capacity constraints of all links. The policy is formulated as
two bilevel models, depending on which objective is chosen.
The objective in the upper level is to minimize system travel
time or to maximize reserve capacity. The problem in the
lower level is a traffic assignment problem, considering both
signal setting and congestion pricing. By reformulating the
lower level problem with its first order conditions, we then
transfer the bilevel programs into the equivalent single level
programs. After transferring the objective function of the sys-
tem travel time and the link cost formula into the piecewise
linear functions, the whole problem can be characterized as a
mixed integer program.Thenumerical example indicates that
the network performance can be significantly improved by
further introducing congestion pricing, besides implement-
ing signal control.
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In the course of improving various abilities of data envelopment analysis (DEA) models, many investigations have been carried out
for ranking decision-making units (DMUs). This is an important issue both in theory and practice. There exist a variety of papers
which apply different ranking methods to a real data set. Here the ranking methods are divided into seven groups. As each of the
existingmethods can be viewed fromdifferent aspects, it is possible that somewhat these groups have an overlappingwith the others.
The first group conducts the evaluation by a cross-efficiency matrix where the units are self- and peer-evaluated. In the second one,
the ranking units are based on the optimal weights obtained from multiplier model of DEA technique. In the third group, super-
efficiency methods are dealt with which are based on the idea of excluding the unit under evaluation and analyzing the changes of
frontier.The fourth group involvesmethods based on benchmarking, which adopts the idea of being a useful target for the inefficient
units.The fourth group uses themultivariate statistical techniques, usually applied after conducting the DEA classification.The fifth
research area ranks inefficient units through proportional measures of inefficiency. The sixth approach involves multiple-criteria
decision methodologies with the DEA technique. In the last group, some different methods of ranking units are mentioned.

1. Introduction

Data envelopment analysis as a mathematical tool was ini-
tiated by Farrell [1] and Charnes et al. [2]. They formulated
a linear programming problem with which it is possible to
evaluate decision-making units (DMUs) withmultiple inputs
and outputs. Note that in this technique it is not necessary
to know the production function. In this technique, an LP
problem is solved for each DMU, and the relative efficiency of
each unit obtained as a linear combination of corresponding
optimal weights. In this problem, weights are free to get
their value to show the under evaluation unit in optimistic
viewpoint.Those units with optimal objective function equal
to one are called “best practice.” These units are located
onto the efficient frontier, and those far away from this
frontier are called inefficient. As proved in DEA literature,
at least one of the units is located onto this frontier. Note

that units located unto this frontier can be considered as
benchmarks for inefficient units. Based onwhat Charnes et al.
[2] provided, many extensions to DEA Models are presented
in the literature. As the example of the most important one
Banker et al. [3] can be mentioned. Also, multiplicative and
additive models developed in the literature by Charnes et al.
[4–6]. In that timeThrall [7] provided a complete comparison
of all classic DEA models.

One of the important issues discussed in DEA literature
is ranking efficient units since the efficient units obtained in
the efficiency score of one cannot be compared with each
other on the basis of this criterion any more. Therefore, it
seems necessary to providemodels for further discrimination
among these units. Many papers are presented in the litera-
ture review for ranking the efficient units. Note that Adler and
Golany [8] used principle component analysis for improving
the discrimination ofDEA. But this attemptwas not sufficient
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and just made a reduction in number of efficient units not
rank units completely.Many papers presented in the literature
for ranking efficient units; one of the first papers is Young and
Hamer [9]. One important field in ranking is cross-efficiency;
to name a few, consider Sexton et al. [10], Rödder andReucher
[11], Örkcü and Bal [12], Wu et al. [13], Jahanshahloo et al.
[14], Wang et al. [15], Ramón et al. [16], Guo and Wu [17],
Contreras [18], Wu et al. [19], Zerafat Angiz et al. [20], and
Washio and Yamada [21].

In the literature there exist other methods based on
finding optimal weights in DEA analysis as Jahanshahloo et
al. [22], Wang et al. [23], Alirezaee and Afsharian [24], Liu
andHsuan Peng [25],Wang et al. [26], Hatefi and Torabi [27],
Hosseinzadeh Lotfi et al. [28], Wang et al. [29], and Ramón et
al. [30].

One of the important fields in ranking is super efficiency
presented by Andersen and Petersen [31], Mehrabian et al.
[32], Tone [33], Jahanshahloo et al. [34], Jahanshahloo et
al. [35], Chen and Sherman [36], Amirteimoori et al. [37],
Jahanshahloo et al. [38], Li et al. [39], Sadjadi et al. [40],
Gholam Abri et al. [41], Jahanshahloo et al. [42], Noura et al.
[43], Ashrafi et al. [44], Chen et al. [45], Rezai Balf et al. [46],
and Chen et al. [47].

Another important field in ranking is benchmarking
methods such as Torgersen et al. [48], Sueyoshi [49], Jahan-
shahloo et al. [50], Lu and Lo [51], and Chen and Deng [52].

One important field is using statistical tools for ranking
units first suggested by Friedman and Sinuany-Stern [53] and
Mecit and Alp [54].

One of the significant fields in ranking is unseeing
multicriteria decision-making (MCDM) methodologies and
DEA analysis. To mention a few, consider Joro et al. [55], Li
and Reeves [56], Belton and Stewart [57], Sinuany-Stern et
al. [58], Strassert and Prato [59], Chen [60], Jablonsky [61],
Wang and Jiang [62], and Hosseinzadeh Lotfi et al. [63].

Also there exist some other ranking methods not much
developed and extended in the literature, Seiford and Zhu
[64], Jahanshahloo [65], Jahanshahloo et al. [34], Jahan-
shahloo et al. [66], Jahanshahloo and Afzalinejad [67],
Amirteimoori [68], Kao [69], Khodabakhshi and Aryavash
[70], and Zerafat Angiz et al. [71].

In addition to the theoretical papers presented in ranking
literature there exist a variety of papers which used these new
models in applications such as Charnes et al. [72], Cook and
Kress [73], Cook et al. [74], Martić and Savić [75], De Leeneer
and Pastijn [76], Lins et al. [77], Paralikas and Lygeros [78],
Ali and Nakosteen [79], Martin and Roman [80], Raab and
Feroz [81], Wang et al. [26], Williams and Van Dyke [82],
Jürges and Schneider [83], Giokas and Pentzaropoulos [84],
Darvish et al. [85], Lu and Lo [51], Feroz et al. [86], Sadjadi et
al. [40], Ramón et al. [30], and Sitarz [87].

There exist some papers which reviewed ranking meth-
ods, as Adler et al. [88]. In this paper, most of the ranking
methods, specially the new ones described in the literature,
are reviewed. Here, the different ranking methods are classi-
fied into seven groups after reviewing the basic DEAmethod
in Section 2. In Section 3, the cross-efficiency technique will

be discussed. In this method first suggested by Sexton et
al. [10], the DMUs are self- and peer-assessed. In Section 4,
some of the ranking methods based on optimal weights
obtained from DEA models, common set of weights are
briefly reviewed. Super-efficiency methods first introduced
by Andersen and Petersen [31] will be reviewed in Section 5.
The basic idea is based on the idea of leaving out one unit
and assessing by the remaining units. Section 6 discusses the
evaluation of DMUs through benchmarking, an approach
originating in Torgersen et al. [48]. Section 7 will review
the papers which use the statistical tools for ranking units
first suggested by Friedman and Sinuany-Stern [53] such
as canonical correlation analysis and discriminant analysis.
Section 8 discusses the ranking of units based on multi-
criteria decision-making (MCDM)methodologies and DEA.
Section 9 discusses some different ranking methods existing
in the DEA literature. Section 10 presents the results of the
various methodologies applied to an example.

2. Data Envelopment Analysis

Data envelopment analysis is a mathematical programming
technique for performance evaluation of a set of decision-
making units.

Let a set consists of 𝑛 homogeneous decision-making
units to be evaluated. Assume that each of these units uses
𝑚 inputs 𝑥

𝑖𝑗
(𝑖 = 1, . . . , 𝑚) to produce 𝑠 outputs 𝑦

𝑟𝑗
(𝑟 =

1, . . . , 𝑠). Moreover, 𝑋
𝑗
∈ 𝑅

𝑚 and 𝑌
𝑗
∈ 𝑅

𝑠 are considered
to be nonnegative vectors. We define the set of production
possibility as 𝑇 = {(𝑋, 𝑌) | 𝑋 can produce 𝑌}.

When variable returns to scale form of technology is
assumed we have 𝑇 = 𝑇BCC and

𝑇BCC =

{

{

{

(𝑥, 𝑦) | 𝑥 ≥

𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑗
,

𝑦 ≤

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑗
,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1, 𝜆

𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

,

(1)

and when constant returns to scale form of technology is
assumed we have 𝑇 = 𝑇CCR and

𝑇CCR =

{

{

{

(𝑥, 𝑦) | 𝑥 ≥

𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑗
, 𝑦 ≤

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑗
,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

.

(2)
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The two-phase enveloping problem with constant returns to
scale form of technology, first provided by Charnes et al. [2],
is as follows:

min 𝜃 − 𝜀(

𝑚

∑

𝑖=1

𝑠
−

𝑖
+

𝑠

∑

𝑟=1

𝑠
+

𝑟
)

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

−

𝑖
= 𝜃𝑥

𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

+

𝑟
= 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥, 𝑗 = 1, . . . , 𝑛.

(3)

The two-phase enveloping problem with variable returns to
scale form of technology, first provided by Banker et al. [3], is
as follows:

min 𝜃 − 𝜀(

𝑚

∑

𝑖=1

𝑠
−

𝑖
+

𝑠

∑

𝑟=1

𝑠
+

𝑟
)

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

−

𝑖
= 𝜃𝑥

𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

+

𝑟
= 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(4)

As regards the above-mentioned problems and due to corre-
sponding feasible region it is evident that 𝜃∗CCR ≤ 𝜃

∗BCC.
According to the definition of 𝑇CCR and 𝑇BCC, an envelop

constructed through units called best practice or efficient.
Considering mentioned problems if a DMU

𝑜
is not CCR

(BCC) efficient, it is possible to project this DMU onto
the CCR (BCC) efficiency frontier considering the following
formulas:

𝑥
𝑖𝑜
= 𝜃

∗
𝑥
𝑖𝑜
− 𝑠

−∗

𝑖
=

𝑛

∑

𝑗=1

𝜆
∗

𝑗
𝑥
𝑖𝑗
, 𝑖 = 1, . . . , 𝑚,

𝑦
𝑟𝑜
= 𝑦

𝑟𝑜
+ 𝑠

+∗

𝑟
=

𝑛

∑

𝑗=1

𝜆
∗

𝑗
𝑦
𝑟𝑗
, 𝑟 = 1, . . . , 𝑠.

(5)

The dual model corresponding to the following model is
as follows:

max
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜

s.t.
𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑜
= 1,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑈 ≥ 0, 𝑉 ≥ 0.

(6)

For overcoming the problem of zero weights, and variability
of weights use of assurance region is suggested byThompson
et al. [89–91].

As mentioned in the literature usually there exist more
than one efficient units, and these units cannot be further
compared to each other on basis of efficiency scores. Thus,
it felt necessary to provide new models for ranking these
units. There exist a variety of ranking models in context of
data envelopment analysis. In the remaining of this paper we
review some of these models.

3. Cross-Efficiency Ranking Techniques

Sexton et al. [10] provided a method for ranking units based
on this idea that units are self- and peer-evaluated. For
deriving the cross-efficiency of any DMU

𝑗
using weights

chosen by DMU
𝑜
, they proposed the following equation:

𝜃
𝑜𝑗
=

𝑈
∗

𝑜
𝑌
𝑗

𝑉∗

𝑜
𝑋

𝑗

, (7)

where 𝑈∗
, 𝑉

∗ are optimal weights obtained from the follow-
ing model for DMU

𝑜
under assessment

min 𝑉
𝑡
𝑋

𝑜

s.t. 𝑈
𝑡
𝑌
𝑜
= 1,

𝑈
𝑡
𝑌
𝑗
− 𝑉

𝑡
𝑋

𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑈 ≥ 0, 𝑉 ≥ 0.

(8)

NowDMU
𝑜
received the average cross-efficiency score as

𝜃
𝑜
= ∑

𝑛

𝑗=1
𝜃
𝑜𝑗
/𝑛; for further details about this averaging see

also Green et al. [92]. Doyle and Green [93] also used cross-
efficiency matrix for ranking units. According to this method
for ranking DMUs, many investigations have been done as
reviewed in Adler et al. [88].

Rödder and Reucher [11] presented a consensual peer-
based DEA model for ranking units. As the authors said,
this method is generalized twofold. The first is an optimal
efficiency improving input allocation; the second aim is
the choice of a peer DMU whose corresponding price is
acceptable for the other units. Consider

max 𝑉
∗𝑇

𝑘
𝑊

𝑙

s.t. 𝑈
∗𝑇

𝑘
𝑌
𝑙
− 𝑉

∗𝑇

𝑘
𝑊

𝑙
≤ 0,

𝑊
𝑙
−∑

𝑗

𝜇
𝑙𝑗
𝑋

𝑗
≥ 0,

∑

𝑗

𝜇
𝑙𝑗
𝑌
𝑗
≥ 𝑌

𝑙
,

𝜇
𝑙𝑗
≥ 0, ∀𝑗.

(9)
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The higher the degree of input variation is, the better the
chance to be efficient will be.

Örkcü and Bal [12] provided a goal programming tech-
nique to be used in the second stage of the cross-evaluation.
Their modified model is as follows:

min 𝑎 =

{

{

{

𝑛

∑
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𝜂
𝑗
,

𝑛
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}
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(10)

As the authors noted, there exist alternative optimal solutions.
Wu et al. [13] described the main suffering of cross-

efficiency when the ultimate average cross-efficiency utilized
for ranking units. For removing this shortcoming they elim-
inated the assumption of average and utilized the Shannon
entropy in order to obtain the weights for ultimate cross-
efficiency scores. Jahanshahloo et al. [14] provided a method
for selecting symmetric weights to be used in DEA cross-
efficacy.

Step 1. Efficiency of DMUs needs to be computed.

Step 2. Choose the solutions, in accordance with the sec-
ondary goal for each DMU, as follows:

min 𝑒
𝑇
𝑍
𝑜
𝑒

s.t. 𝑢
𝑜
𝑦
𝑜
= 1,

V
𝑜
𝑋

𝑜
= 𝜃

𝑜
,

𝑢
𝑜
𝑌 − V

𝑜
𝑋 ≤ 0,

𝑢
𝑜𝑖
𝑦
𝑜𝑖
− 𝑢

𝑜𝑗
𝑦
𝑜𝑗
≤ 𝑧

𝑜𝑖𝑗
, ∀𝑖, 𝑗,

𝑢
𝑜𝑗
𝑦
𝑜𝑗
− 𝑢

𝑜𝑖
𝑦
𝑜𝑖
≤ 𝑧

𝑜𝑖𝑗
, ∀𝑖, 𝑗,

𝑢
𝑜
, V

𝑜
≥ 𝑑.

(11)

Step 3. The cross-efficiency for any DMU
𝑗
, using the weights

that DMU
𝑜
has chosen in the previous model, is then used as

follows:

𝜃
𝑜𝑗
=

𝑢
∗

𝑜
𝑌
𝑗

V∗
𝑜
𝑋

𝑗

. (12)

Wang et al. [15] provided a cross-efficiency evaluation based
on ideal and anti-ideal units for ranking. As the authors
mentioned, a DMU could choose a unique set of input and
output weights to make its distance from ideal DMU as
small as possible, or the distance from anti-ideal DMU as
large as possible, or the both. Thus, according to this idea
they proposed the following procedure for cross-efficiency
evaluation.

Model 1. Minimization of the distance from ideal DMU.

Model 2. Maximization of the distance from anti-ideal DMU.

Model 3. Maximization of the distance between ideal DMU
and anti-ideal DMU.

Model 4. Maximization of the relative closeness.

The authors mentioned that the bigger the relative close-
ness of a DMU is the better performance it will have.

In a paper, Ramón et al. [16] selected the profiles of
weights used in cross-efficiency assessment. As the authors
said they tried to prevent unrealistic weighting. They have
discussed the zero weights as they excluded variables from
the evaluation. In the calculation of cross-efficiency scores,
they proposed to ignore the profiles of those weights of the
unit under evaluation that among their alternate optimal
solutions cannot choose nonzeroweights.They also proposed
the “peer-restricted” cross-efficiency evaluation where the
units assessed in a peer evaluation which means profiles of
weights of some inefficient units are not considered. Finally,
the presented approach extended to derive a common set of
weights. Guo and Wu [17] provided a complete ranking of
DMUs with undesirable outputs using restriction in DEA.
As the author mentioned this model is presented to realize
a unique ranking of units by “maximal balanced index”
according to the obtained optimal shadow prices

max
𝑚

∑

𝑖=1

V
𝑖
𝑤
𝑖
+

𝑘

∑

𝑡=1

𝜂
𝑡
ℎ
𝑡
−

𝑠

∑

𝑟=1

𝑢
𝑟
𝑞
𝑟

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
−

𝑘

∑

𝑡=1

𝜂
𝑟
𝑏
𝑡𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛,

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑝
+

𝑘

∑

𝑡=1

𝜂
𝑟
𝑏
𝑡𝑝
= 1,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑝
= EEF

𝑝
,

𝑈, 𝑉, 𝜂 ≥ 0,

(13)



Journal of Applied Mathematics 5

where EEF
𝑝
is the optimal objective function of multiplier

model.
Contreras [18] used cross-evaluation for ranking units

in DEA methodology. The idea is based upon introducing a
model for optimizing the rank position of DMUs

min 𝑟
𝑘𝑘

s.t. 𝜃
𝑘𝑘
= 𝜃

∗

𝑘𝑘
,

𝜃
𝑙𝑘
− 𝜃

𝑗𝑘
+ 𝛿

𝑘

𝑙𝑗
𝛽 ≥ 0, 𝑙 ̸=𝑗,

𝜃
𝑙𝑘
− 𝜃

𝑗𝑘
+ 𝛾

𝑘

𝑙𝑗
𝛽 ≥ 𝜀, 𝑙 ̸=𝑗,

𝛿
𝑘

𝑙𝑗
+ 𝛿

𝑘

𝑗𝑙
≤ 1, 𝑙 ̸=𝑗,

𝛿
𝑘

𝑙𝑗
+ 𝛾

𝑘

𝑗𝑙
= 1, 𝑙 ̸=𝑗,

𝑟
𝑙𝑘
=

𝑛

∑

𝑗=1

𝑗 ̸= 𝑙

𝛿
𝑘

𝑙𝑗
+ 𝛾

𝑘

𝑗𝑙

2
+ 1, 𝑙 = 1, . . . , 𝑛,

𝛾
𝑘

𝑙𝑗
, 𝛿

𝑘

𝑙𝑗
∈ {0, 1} , 𝑙 ̸=𝑗.

(14)

Consider 𝜃
𝑗𝑘
= 𝑈

∗

𝑘
𝑌
𝑗
/𝑉

∗

𝑘
𝑋

𝑗
and solve the following model:

min 𝑟
𝑘𝑘

s.t. 𝜃
∗

𝑘𝑘
⋅

𝑚

∑

ℎ=1

V
ℎ𝑘
𝑥
ℎ𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟𝑘
𝑦
𝑟𝑗
+ 𝛿

𝑘𝑗
𝛽 ≥ 0, 𝑗 ̸=𝑘,

−𝜃
∗

𝑘𝑘
⋅

𝑚

∑

ℎ=1

V
ℎ𝑘
𝑥
ℎ𝑗
+

𝑠

∑

𝑟=1

𝑢
𝑟𝑘
𝑦
𝑟𝑗
+ 𝛿

𝑗𝑘
𝛽 ≥ 0, 𝑗 ̸=𝑘,

𝜃
∗

𝑘𝑘
⋅

𝑚

∑

ℎ=1

V
ℎ𝑘
𝑥
ℎ𝑗
−

𝑠

∑

𝑟=1

𝑢
𝑟𝑘
𝑦
𝑟𝑗
+ 𝛾

𝑘𝑗
𝛽 ≥ 𝜀, 𝑗 ̸=𝑘,

−𝜃
∗

𝑘𝑘
⋅

𝑚

∑

ℎ=1

V
ℎ𝑘
𝑥
ℎ𝑗
+

𝑠

∑

𝑟=1

𝑢
𝑟𝑘
𝑦
𝑟𝑗
+ 𝛾

𝑗𝑘
𝛽 ≥ 𝜀, 𝑗 ̸=𝑘,

𝛿
𝑘

𝑙𝑗
+ 𝛿

𝑘

𝑗𝑙
≤ 1, 𝑙 ̸=𝑗,

𝛿
𝑘

𝑙𝑗
+ 𝛾

𝑘

𝑗𝑙
= 1, 𝑙 ̸=𝑗,

𝑟
𝑘𝑘
= 1 +

1

2

𝑛

∑

𝑗=1

𝑗 ̸=𝑘

𝛿
𝑘𝑗
+ 𝛾

𝑘𝑗
,

𝛾
𝑘𝑗
, 𝛾

𝑗𝑘
, 𝛿

𝑘𝑗
, 𝛿

𝑗𝑘
∈ {0, 1} , 𝑗 ̸=𝑘.

(15)

As it is obvious, nonuniqueness of optimal weight may occur.

Wu et al. [19] proposed a weight balanced DEA model to
reduce differences in weights data and zero weights

min
𝑠

∑

𝑟=1


𝛼
𝑑

𝑟


+

𝑚

∑

𝑖=1


𝛽
𝑑

𝑖



s.t.
𝑚

∑

𝑖=1

𝑤
𝑖𝑑
𝑥
𝑖𝑗
−

𝑠

∑

𝑟=1

𝜇
𝑟𝑑
𝑦
𝑟𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

𝑚

∑

𝑖=1

𝑤
𝑖𝑑
𝑥
𝑖𝑑
= 1,

𝑚

∑

𝑖=1

𝜇
𝑟𝑑
𝑦
𝑟𝑑
= 𝐸

𝑑𝑑
,

𝜇
𝑟𝑑
𝑦
𝑟𝑑
+ 𝛼

𝑑

𝑟
=
𝐸
𝑑𝑑

𝑠
, 𝑟 = 1, . . . , 𝑠,

𝑤
𝑖𝑑
𝑥
𝑖𝑑
+ 𝛽

𝑑

𝑖
=

1

𝑚
, 𝑖 = 1, . . . , 𝑚,

𝑤 ≥ 0, 𝜇 ≥ 0, 𝛽
𝑑
, 𝛼

𝑑 free.

(16)

Therefore, the cross-efficiency score of DMU
𝑗
is the average

of these cross-efficiencies:

𝐸
𝑗
=
1

𝑛

𝑛

∑

𝑑=1

𝐸
𝑑𝑗
, 𝑗 = 1, . . . , 𝑛, (17)

where

𝐸
𝑑𝑗
=

∑
𝑠

𝑟=1
𝜇
∗

𝑟𝑑
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
𝑤

∗

𝑖𝑑
𝑥
𝑖𝑗

. (18)

As it is obvious, nonuniqueness of optimal weight may occur.
Zerafat Angiz et al. [20] introduced a cross-efficiency

matrix based on this idea that ranking order is much more
significant than individual efficiency score. Thus, they have
provided the following procedure.

Step 1. ConsideringCCRmodel, calculate the efficiency score
of all DMUs and consider 𝑍

∗

𝑝𝑝
as the efficiency score of

DMU
𝑝
.

Step 2. Now the cross-efficiency matrix𝑍 can be constructed
by (𝑧∗

𝑗𝑝
)
𝑛×𝑛

. Note that 𝑍∗

𝑝𝑝
is used as the diagonal elements of

𝑍.

Step 3. Convert the cross-efficiency matrix into a cross-
rankingmatrix𝑅 as (𝑟

𝑗𝑝
)
𝑛×𝑛

, in which 𝑟
𝑗𝑝
is the ranking order

of 𝑧∗
𝑗𝑝
in column 𝑝 of matrix 𝑍.

Step 4. Construct the preference matrix 𝑊 as (𝑤
𝑗𝑘
)
𝑛×𝑛

con-
sideringmatrix𝑅where𝑤

𝑗𝑘
is the number of time thatDMU

𝑗

is placed in rank 𝑘.

Step 5. Construct matrix Ω as (𝜃
𝑗𝑝
)
𝑛×𝑛

in which 𝜃
𝑗𝑘

is
calculated by summing the efficiency scores in matrix Z,
corresponds to DMU

𝑗
, being placed in rank 𝑘.
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Step 6. Obtain a common set of weight for final ranking of
DMUs using the following modified method:

max 𝛽 =

∑
𝑛

𝑘=1
𝜇
𝑘
𝜃
𝑗𝑘

𝛽
∗

𝑗

s.t.
𝑛

∑

𝑘=1

𝜇
𝑘
𝜃
𝑗𝑘
≤ 1, 𝑗 = 1, . . . , 𝑛,

𝜇
𝑘
− 𝜇

𝑘+1
≥ 𝑑 (𝑘, 𝜀) , 𝑘 = 1, . . . , 𝑛 − 1,

𝜇
𝑛
≥ 𝑑 (𝑛, 𝜀) ,

(19)

where 𝜃
𝑗𝑘
obtained from Step 5 and 𝛽∗

𝑗
is the optimal solution

of the following model. Finally, the DMUs are ranked based
on their 𝑧∗

𝑗
= ∑

𝑛

𝑘=1
𝜇
∗

𝑘
𝜃
𝑗𝑘
values.

Washio and Yamada [21] discussed that in real cases
finding the best ranking is more significant than acquiring
the most advantage weight and maximizing the efficiency.
Thus they presented a model called rank-based measure
(RBM) for evaluating units from different viewpoint. Thus,
they suggested a method for acquiring those weight resulted
from the best ranking as long as calculating those weight
that maximizes the efficiency score. Finally they applied the
presented model to the cross-efficiency assessment.

4. Ranking Techniques Based on Finding
Optimal Weights in DEA Analysis

Jahanshahloo et al. [22] gave a note on some of the DEA
models for complete ranking using common set of weights.
They proved that by solving only one problem, it is possible
to determine the common set of weights

max 𝑧

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
+ 𝑢

0
− 𝑧

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
≥ 0, 𝑗 ∈ 𝐴,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
+ 𝑢

0
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛, 𝑗 ∉ 𝐴,

𝑈, 𝑉, 𝜂 ≥ 𝜀, 𝑢
0
free,

(20)

where 𝐴 is the set of efficient units of the following model:

max {
∑

𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟1
+ 𝑢

0

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖1

⋅ ⋅ ⋅
∑

𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑛
+ 𝑢

0

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑛

}

s.t.
∑

𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
+ 𝑢

0

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

≤ 1, 𝑗 = 1, . . . , 𝑛,

𝑈, 𝑉, 𝜂 ≥ 𝜀, 𝑢
0
free.

(21)

Note that DMUs can be ranked based on the evaluation of
their efficiencies.

Wang et al. [23] provided an aggregating preference rank-
ing. In this paper use of ordered weighted averaging (OWA)
operator is proposed for aggregating preference rankings. Let

𝑤
𝑗
be the relative importance weight given to the jth ranking

place and V
𝑖𝑗
the vote candidate i receives in the jth ranking

place. The total score of each candidate is defined as

𝑧
𝑖
=

𝑚

∑

𝑖=1

V
𝑖𝑗
𝑊

𝑗
, 𝑖 = 1, . . . , 𝑚. (22)

Alirezaee and Afsharian [24] discussed multiplier model, in
which the variables are considered as shadow prices; note that
∑

𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
and ∑𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
are total revenue and cost of DMU

𝑗

which are considered in optimization problem. The authors
claimed that ∑𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗
− ∑

𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛 is the

profit restriction for DMU
𝑗
. If 𝐹(𝑥, 𝑦) = 0 is considered to be

the efficient production function, then

∑

𝑖

𝜕𝐹

𝜕𝑥
𝑖

𝑥
𝑖
+∑

𝑗

𝜕𝐹

𝜕𝑦
𝑗

𝑦
𝑗
= 0. (23)

They mentioned that the connected profit of the DMU is
zero when shadow prices are derived from the technology
and called this situation as balance situation. As the authors
mentioned therefore in the case that DMU

1
is efficient but

DMU
2
is inefficient or the efficiency score of both DMUs is

the same, and it obtains more negative quantity in balance
index, it can be concluded that DMU

1
has a better rank than

DMU
2
.

Liu and Hsuan Peng [25] in their paper proposed a
method for determining the common set of weights for
ranking units. In common weights analysis methodology
they provided the following model:

Δ
∗
= min ∑

𝑗∈𝐸

Δ
𝑜

𝑗
+ Δ

𝑖

𝑗

s.t.
∑

𝑠

𝑟=1
𝑦
𝑟𝑗
𝑈
𝑟
+ Δ

𝑜

𝑗

∑
𝑚

𝑖=1
𝑥
𝑖𝑗
𝑉
𝑖
− Δ

𝑖

𝑗

= 1, 𝑗 ∈ 𝐸,

Δ
𝑜

𝑗
, Δ

𝑖

𝑗
≥ 0, ∀𝑗 ∈ 𝐸,

𝑈
𝑟
≥ 𝜀, 𝑟 = 1, . . . , 𝑠,

𝑉
𝑖
≥ 𝜀, 𝑖 = 1, . . . , 𝑚.

(24)

The mentioned ratio form the linear equations.
Wang et al. [26] proposed a paper for ranking decision-

making units by imposing a minimum weight restriction
in DEA. The authors noted that using data envelopment
analysis, it is not possible to distinguish between DEA effi-
cient units. Thus, they presented a method for ranking units
using imposing minimum weight restriction for the input-
output data. As they mentioned, these weights restrictions
are decided by a decision maker (DM) or an assessor as
regards the solutions to a series of LP models considered for
determining a maximin weight for each efficient DMU.

Hatefi and Torabi [27] proposed a common weight
multi criteria decision analysis (MCDA)-data envelopment
analysis (DEA) for constructing composite indicators (CIs).
As the authors proved the presented model can discrimi-
nate between efficient units. The obtained common weights
have discriminating power more than those obtained from
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previous models. Finally they studied the robustness and
discriminating power of the proposed method by Spearman’s
rank correlation coefficient.

Hosseinzadeh Lotfi et al. [28] proposed one DEA ranking
model based on applying aggregate units. In doing so artificial
units called aggregate units are defined as follows. The
aggregate unit is shown by DMU

𝑎

𝑥
𝑝

𝑖𝑎
= ∑

𝑘∈𝑅
𝑝

𝑥
𝑖𝑘
, 𝑦

𝑝

𝑟𝑎
= ∑

𝑘∈𝑅
𝑝

𝑦
𝑟𝑘
,

𝑖 = 1, . . . , 𝑚, 𝑟 = 1, . . . , 𝑠,

(25)

where 𝑅
𝑝
= {𝑗 | DMU

𝑗
∈ 𝐸

𝑝
}, 𝐸

𝑝
= 𝐸{DMU

𝑝
}. Note that 𝐸

is the set of efficient units.
First, it is tried to maximize the efficiency score of the

DMU
𝑎
and then to maximize the efficiency score of the

DMU𝑝

𝑎
. For resolving the existence of alternative solutions

the authors presented an approach comprising (𝑚+𝑠) simple
linear problems to achieve the most appropriate optimal
solutions among all alternative optimal solutions. Finally,
they proposed theRI index for ranking all efficientDMUs. Let
𝑈
𝑎
, 𝑉

𝑃
𝑎 and𝑈𝑝

𝑎
, 𝑉

𝑝

𝑎
be the optimal solutions of the multiplier

model for assentDMU
𝑎
andDMU𝑝

𝑎
. Consider 𝜂

𝑎
= ∑

𝑠

𝑟=1
𝑢
𝑟𝑎
−

∑
𝑚

𝑖=1
V
𝑖𝑎
, 𝜂

𝑝

𝑎
= ∑

𝑠

𝑟=1
𝑢
𝑝

𝑟𝑎
− ∑

𝑚

𝑖=1
V
𝑝

𝑖𝑎
, thus RI

𝑝
= 𝜂

𝑜

𝑎
− 𝜂

𝑎
.

Wang et al. [29] presented two nonlinear regression
models for deriving common set of weights for fully rank
units

min 𝑧 =

𝑛

∑

𝑗=1

(𝜃
∗

𝑗
−

∑
𝑠

𝑟=1
𝑢
𝑟
𝑦
𝑟𝑗

∑
𝑚

𝑖=1
V
𝑖
𝑥
𝑖𝑗

)

2

s.t. 𝑈, 𝑉 ≥ 0,

min
𝑛

∑

𝑗=1

(

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
− 𝜃

∗

𝑗

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
)

2

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
(

𝑛

∑

𝑗=1

𝑦
𝑟𝑗
) +

𝑚

∑

𝑖=1

V
𝑖
(

𝑛

∑

𝑗=1

𝑥
𝑖𝑗
) = 𝑛,

𝑈, 𝑉 ≥ 0.

(26)

Ramón et al. [30] aimed at deriving a common set of weights
for ranking units. As the authors mentioned the idea is based
upon minimization of the deviations of the common weights
from the nonzero weights obtained fromDEA. Furthermore,
several norms are used for measuring such differences.

5. Super-Efficiency Ranking Techniques

Super efficiency models introduced in DEA technique are
based upon the idea of leave one out and assessing this unit
trough the remanding units.

Andersen and Petersen [31] introduced a model for rank-
ing efficient units. The proposed model is as follows:

min 𝜃

s.t.
𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑥
𝑖𝑗
≤ 𝜃𝑥

𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛, 𝑗 ̸=𝑜.

(27)

Although this idea is useful for further discriminating
efficient units, it has been shown in the literature that it
may be infeasible and nonstable. Thrall [7] mentioned the
infeasibility of super-efficiency CCRmodel. Also a condition
under which infeasibility occurred in super-efficiency DEA
models is mentioned by Zhu [94], Seiford and Zhu [95], and
Dulá and Hickman [96].

Hashimoto [97] provided a model based on the idea of
one leave out and assurance region for ranking units.

Mehrabian et al. [32] presented a complete ranking for
efficiency units in DEA context. As the authors mentioned
this model does not have difficulties of A.P. model

min 𝑤
𝑝
+ 1

s.t.
𝑛

∑

𝑗=1 𝑗 ̸=𝑝

𝜆
𝑗
𝑥
𝑖𝑗
≤ 𝑥

𝑖𝑝
+ 𝑤

𝑝
1, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1 𝑗 ̸=𝑝

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦

𝑟𝑝
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ̸=𝑝.

(28)

With this method it is not possible to rank nonextreme
efficient units.

Tone [33] presented super efficiency of SBM model. This
model has the advantages of nonradial models, and it is
always feasible and stable

min
∑

𝑚

𝑖=1
𝑥
𝑖
/𝑥

𝑖𝑜

∑
𝑠

𝑟=1
𝑦
𝑟
/𝑦

𝑟𝑜

s.t.
𝑛

∑

𝑗=1𝑗 ̸=𝑜

𝜆
𝑗
𝑥
𝑖𝑗
≤ 𝑥

𝑖
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1𝑗 ̸=𝑜

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦

𝑟
, 𝑟 = 1, . . . , 𝑠,

𝑥
𝑖
≥ 𝑥

𝑖𝑜
, 0 ≤ 𝑦

𝑟
≤ 𝑦

𝑟𝑜
, 𝑖 = 1, . . . , 𝑚, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ̸=𝑜.

(29)
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Jahanshahloo et al. [34] added some ratio constraints to the
multiplier form of A.P. model and introduced a new method
for ranking DMUs

min
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑜

s.t.
𝑚

∑

𝑖=1

V
𝑟
𝑥
𝑖𝑜
= 1,

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑟
𝑥
𝑖𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛, 𝑗 ̸=𝑜,

�̃�
𝑝𝑞

≤

V
𝑝

V
𝑞

≤ 𝑡
𝑝𝑞

, 𝑝, 𝑞 = 1, . . . , 𝑚, 𝑝 < 𝑞,

�̂�
𝑘𝑤

≤
V
𝑘

V
𝑤

≤ ̆𝑡
𝑘𝑤
, 𝑘, 𝑤 = 1, . . . , 𝑠, 𝑘 < 𝑤,

𝑈, 𝑉 ≥ 𝜀.

(30)

DMU
𝑜
is efficient if the optimal objective function of the

previous model is greater than or equal one.
Jahanshahloo et al. [35] presented a method for ranking

efficient units on basis of the idea of one leave out and 𝐿
1

norm. As the authors proved this model is always feasible and
stable

min
𝑚

∑

𝑖=1

𝑥
𝑖
−

𝑠

∑

𝑟=1

𝑦
𝑟
+ 𝛼

s.t.
𝑠

∑

𝑗=1,𝑗 ̸=𝑜

𝜆
𝑗
𝑥
𝑖𝑗
≤ 𝑥

𝑖
, 𝑖 = 1, . . . , 𝑚,

𝑠

∑

𝑗=1,𝑗 ̸=𝑜

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦

𝑟
, 𝑟 = 1, . . . , 𝑠,

𝑥
𝑖
≥ 𝑥

𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

0 ≤ 𝑦
𝑟
≤ 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . 𝑛, 𝑗 ̸=𝑜,

(31)

where 𝛼 = ∑
𝑠

𝑟=1
𝑦
𝑟𝑜
− ∑

𝑚

𝑖=1
𝑥
𝑖𝑜
.

In their paper Chen and Sherman [36] presented a non-
radial super-efficiency method and discussed the advantage
of it. They verified that this model is invariant to units of
input/output measurement. Let 𝐽𝑜 = 𝐽/{DMU

𝑜
}.

Step 1. Solve the followingmodel to find the extreme efficient
units in 𝐽𝑜:

min 𝜃
super
𝑘

s.t. ∑

𝑗 ̸=𝑜,𝑘

𝜆
𝑗
𝑥
𝑖𝑗
≤ 𝜃

super
𝑘

𝑥
𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

∑

𝑗 ̸=𝑜,𝑘

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦

𝑟
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . 𝑛, 𝑗 ̸=𝑜, 𝑘.

(32)

Consider 𝐸𝑜 as the set of efficient units of 𝐽𝑜.

Step 2. Solve the following model:

min 𝜃
super
𝑘

s.t. ∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

𝑜−

𝑖
= 𝜃𝑥

𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

𝑜+

𝑟
= 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐸

𝑜
.

(33)

Consider 𝜃∗ as the optimal solution of the previous model
and solve the following model for 𝑝 ∈ {1, . . . , 𝑚}:

max 𝑠
𝑜−

𝑝

s.t. ∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑝𝑗
+ 𝑠

𝑜−

𝑝
= 𝜃

∗
𝑥
𝑝𝑜
,

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

𝑜−

𝑖
= 𝜃

∗
𝑥
𝑖𝑜
, 𝑖 ̸=𝑝,

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

𝑜+

𝑟
= 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐸

𝑜
.

(34)

According to the obtained optimal solution of the previous
model for 𝑖 = 1, . . . , 𝑚 let 𝑥(1)

𝑖𝑜
, 𝑠

𝑜−∗

𝑖
(0) = 𝑠

𝑜−∗

𝑖
, and 𝜃∗(0) = 𝜃

∗,
𝐼(𝑡) = {𝑖 : 𝑠

𝑜−∗

𝑖
(𝑡 − 1) ̸=0}.

Step 3. Solve the following model:

min 𝜃 (𝑡)

s.t. ∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑖𝑗
≤ 𝜃 (𝑡) 𝑥

(𝑡)

𝑖𝑜
, 𝑖 ∈ 𝐼 (𝑡)

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑖𝑗
= 𝑥

(𝑡)

𝑖𝑜
, 𝑖 ∉ 𝐼 (𝑡) ,

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

𝑜+

𝑟
= 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐸

𝑜
.

(35)

Now according to the optimal solution of the previousmodel,
solve the following model for each 𝑝 ∈ 𝐼(𝑡):

min 𝑠
𝑜−

𝑝
(𝑡)

s.t. ∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

𝑜−

𝑝
(𝑡) = 𝜃

∗
(𝑡) 𝑥

(𝑡)

𝑝𝑜
, 𝑝 ∈ 𝐼 (𝑡) ,

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

𝑜−

𝑝
(𝑡) = 𝜃

∗
(𝑡) 𝑥

(𝑡)

𝑖𝑜
, 𝑖 ̸=𝑝 ∈ 𝐼 (𝑡) ,

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑥
𝑖𝑗
= 𝑥

(𝑡)

𝑖𝑜
, 𝑖 ∉ 𝐼 (𝑡) ,

∑

𝑗∈𝐸
𝑜

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

𝑜+

𝑟
(𝑡) = 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐸

𝑜
.

(36)

Step 4. Let 𝑥(𝑡+1)
𝑖𝑜

= 𝜃
∗
(𝑡)𝑥

(𝑡) for 𝑖 ∈ 𝐼(𝑡) and 𝑥(𝑡+1)
𝑖𝑜

= 𝑥
(𝑡) for

𝑖 ∈ 𝐼(𝑡). If 𝐼(𝑡 + 1) = ø, then stop otherwise; if 𝐼(𝑡 + 1) ̸= ø,
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let 𝑡 = 𝑡 + 1 and go to Step 3. Now define 𝜃𝑜 as the average
RNSE-DEA index

𝜃
𝑜
=
∑

𝑇

𝑡=1
𝑛
𝐼
(𝑇) 𝜃

𝑜

𝑡
+ 𝑛

𝐼
(𝑇) 𝜃

𝑜

𝑡+1

∑
𝑇

𝑡=1
𝑛
𝐼
(𝑇) + 𝑛

𝐼
(𝑇)

. (37)

Amirteimoori et al. [37] provided a distance-based approach
for ranking efficient units. The presented method is a new
method utilized 𝐿

2
norm. As noted in their paper, this new

approach does not have difficulties of other methods

max 𝛽
𝑇
𝑌
𝑝
− 𝛼

𝑇
𝑋

𝑝

s.t. 𝛽
𝑇
𝑌
𝑗
− 𝛼

𝑇
𝑋

𝑗
+ 𝑠

𝑗
= 0, 𝑗 ∈ 𝐸, 𝑗 ̸=𝑝,

𝛼
𝑇
1
𝑚
+ 𝛽

𝑇
1
𝑠
= 1,

𝑠
𝑗
≤ (1 − 𝛾

𝑗
)𝑀, 𝑗 ∈ 𝐸, 𝑗 ̸=𝑝,

∑

𝑗∈𝐸,𝑗 ̸=𝑝

𝛾
𝑗
≥ 𝑚 + 𝑠 + 1,

𝛼 ≥ 𝜀 ⋅ 1
𝑚
, 𝛽 ≥ 𝜀 ⋅ 1

𝑠
,

𝛼
𝑗
∈ {0, 1} , 𝑗 ∈ 𝐸, 𝑗 ̸=𝑝.

(38)

This method cannot rank nonextreme efficient units.

Jahanshahloo et al. [38] presented modified MAJ model
for ranking efficiency units in DEA technique

min 𝑤
𝑝
+ 1

s.t.
𝑛

∑

𝑗=1𝑗 ̸=𝑝

𝜆
𝑗

𝑥
𝑖𝑗

𝑀
𝑖

≤

𝑥
𝑖𝑝

𝑀
𝑖

+ 𝑤
𝑝
1, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1𝑗 ̸=𝑝

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝑦

𝑟𝑝
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ̸=𝑝,

(39)

where 𝑀
𝑖
= Max {𝑥

𝑖𝑗
| DMU

𝑗
is efficient}. It cannot rank

nonextreme efficient units.
Li et al. [39] presented a new method for ranking which

does not have difficulties of earlier methods. The presented
model is always feasible and stable

min 1 +
1

𝑚

𝑚

∑

𝑖=1

𝑠
+

𝑖2

𝑅
−

𝑖

s.t.
𝑛

∑

𝑗=1𝑗 ̸=𝑝

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

−

𝑖1
− 𝑠

+

𝑖2
= 𝑥

𝑖𝑝
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1𝑗 ̸=𝑝

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

+

𝑟
= 𝑦

𝑟𝑝
, 𝑟 = 1, . . . , 𝑠,

𝑠
−

𝑖2
≥ 0, 𝑠

−

𝑖1
≥ 0, 𝑠

+

𝑟
≥ 0, 𝑖 = 1, . . . , 𝑚,

𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ̸=𝑝.

(40)

In this case extreme efficient units cannot be ranked.

In a paper Khodabakhshi [98] addresses super efficiency
on improved outputs. He mentioned that as A.P. model
may be infeasible under variable returns to scale technol-
ogy, using the presented model gives a complete ranking
when getting an input combination for improving outputs is
suitable.

Sadjadi et al. [40] presented a robust super-efficiency
DEA for ranking efficient units. They noted that as in
most of the times exact data do not exist and the sto-
chastic super-efficiency model presented in their paper
incorporates the robust counterpart of super-efficiency
DEA

min 𝜃
RS
𝑜

s.t.
𝑛

∑

𝑗=1𝑗 ̸=𝑜

𝜆
𝑗
𝑥
𝑖𝑗
− 𝜃

RS
𝑜
𝑥
𝑖𝑜

+ 𝜀Ω(

𝑛

∑

𝑗=1

𝑗 ̸=𝑜,𝑗∈𝐽
𝑖

𝜆
2

𝑗
𝑥
2

𝑖𝑗
+ (𝜃

RS
𝑜
𝑥
𝑖𝑜
)
2

)

(1/2)

≤ 0,

𝑖 = 1, . . . , 𝑚

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑦
𝑟𝑗
− 𝜀Ω(𝑦

2

𝑟𝑜
+

𝑛

∑

𝑗=1

𝑗 ̸=𝑜,𝑗∈𝐽
𝑖

𝜆
2

𝑗
𝑦
2

𝑟𝑗
)

(1/2)

≥ 𝑦
𝑟𝑜
,

𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

(41)

where 𝑋,𝑌 are input-output data. This model does not
rank nonextreme efficient units. It may be unstable and
infeasible.

Gholam Abri et al. [41] proposed a model for ranking
efficient units. They used representation theory and rep-
resented the DMU under assessment as a convex combi-
nation of extreme efficient units. As the authors noted it
is expected that the performance of DMU

𝑜
is the same

as the performance of convex combination of extreme
efficient units. Thus, it is possible to represent DMU

𝑜
as

follows:

(𝑋
𝑜
, 𝑌

𝑜
) =

𝑠

∑

𝑗=1

𝜆
𝑗
(𝑋

𝑗
, 𝑌

𝑗
) ,

𝑛

∑

𝑗=1

𝜆
𝑗
= 1, 𝑗 = 1, . . . , 𝑠. (42)

As regards representation theorem, this system has𝑚 + 𝑠 − 1

constraints and 𝑠 variables, (𝜆
1
, . . . , 𝜆

𝑠
). If this system has a
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unique solution we will have 𝜃∗
𝑜
= ∑

𝑛

𝑗=1
= 1, 𝜆

∗

𝑗
𝜃
𝑗
, otherwise

two models should be considered

min
𝑠

∑

𝑗=1

= 1, 𝜆
𝑗
𝜃
𝑗

s.t. (𝑋
𝑜
, 𝑌

𝑜
) =

𝑠

∑

𝑗=1

𝜆
𝑗
(𝑋

𝑗
, 𝑌

𝑗
) ,

𝑠

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑠,

max
𝑠

∑

𝑗=1

= 1, 𝜆
𝑗
𝜃
𝑗

s.t. (𝑋
𝑜
, 𝑌

𝑜
) =

𝑠

∑

𝑗=1

𝜆
𝑗
(𝑋

𝑗
, 𝑌

𝑗
) ,

𝑠

∑

𝑗=1

𝜆
𝑗
= 1,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑠.

(43)

Consider 𝜃
1
and 𝜃

2
as the optimal solution of the above-

mentioned models, respectively. If 𝜃
1
= 𝜃

2
, this is the same

as what has been mentioned previously. If 𝜃
1
< 𝜃

2
, then

mentionedmodels provide an interval which helps rank units
from the worst to the best. Sometimes it will obtain the
ranking score with a bounded interval [𝜃

1
, 𝜃

2
].

Jahanshahloo et al. [42] presented models for ranking
efficient units. The presented models are somehow a modifi-
cation of cross-efficiency model that overcomes the difficulty
of alternative optimal weights.The authors in their paperwith
regard to the changes and also utilizing TOPSIS technique
presented a new super-efficientmethod for ranking units.The
presented model is as follows:

𝜃
𝑖𝑗
= {

𝑈
𝑡
𝑌
𝑖

𝑉𝑡𝑋
𝑖

|
𝑈

𝑡
𝑌
𝑙

𝑉𝑡𝑋
𝑙

≤ 1,

𝑈
𝑡
𝑌
𝑗

𝑉𝑡𝑋
𝑗

= 𝜃
𝑗𝑗
,

𝑙 = 1, . . . , 𝑛, 𝑙 ̸= 𝑖, 𝑈 ≥ 0, 𝑉 ≥ 0} ,

(44)

where 𝜃
𝑗𝑗
is the efficiency score of DMU

𝐽
using correspond-

ing weights. Also 𝜃
𝑖𝑗
is the efficiency of DMU

𝑖
using optimal

weights of DMU
𝑗
. Noura et al. [43] provided a method for

ranking efficient units based on this idea that more effective
and useful units in society should have better rank.

Step 1. For each efficient unit choose the lower and upper
limit for each inputs and outputs. Let 𝐸 be the set of efficient
units

𝑥
∗𝑢

𝑖
= Max

𝑗∈𝐸


𝑥
𝑖𝑗


, 𝑥

∗𝑙

𝑖
= Min

𝑗∈𝐸


𝑥
𝑖𝑗


, 𝑖 = 1, . . . , 𝑚,

𝑦
∗𝑢

𝑟
= Max

𝑗∈𝐸


𝑦
𝑟𝑗


, 𝑦

∗𝑙

𝑟
= Min

𝑗∈𝐸


𝑦
𝑟𝑗


, 𝑟 = 1, . . . , 𝑠.

(45)

Step 2. In accordance with the previous step, here, the utility
inputs and outputs are as follows:

𝑥 = 𝑥
∗𝑙

𝑖
, ∀𝑖 (𝑖 ∈ 𝐷

−

𝑖
) , 𝑥 = 𝑥

∗𝑢

𝑖
, ∀𝑖 (𝑖 ∈ 𝐷

+

𝑖
) ,

𝑦 = 𝑦
∗𝑙

𝑟
, ∀𝑟 (𝑟 ∈ 𝐷

−

𝑜
) , 𝑦 = 𝑦

∗𝑢

𝑟
, ∀𝑟 (𝑟 ∈ 𝐷

+

𝑜
) .

(46)

Step 3. Consider dimensionless (𝑑
𝑖
, 𝑑

𝑟
) introduced as follows

for each efficient unit belonging to 𝐸:

∀𝑖 (𝑖 ∈ 𝐷
+

𝑖
) 𝑑

𝑖𝑗
=

𝑥
𝑖𝑗

𝑥
𝑖𝑗
+ 𝜉

,

∀𝑖 (𝑖 ∈ 𝐷
−

𝑖
) 𝑑

𝑖𝑗
=

𝑥
𝑖

𝑥
𝑖
+ 𝜉

,

∀𝑟 (𝑟 ∈ 𝐷
+

𝑟
) 𝑑

𝑟𝑗
=

𝑦
𝑟𝑗

𝑦
𝑟
+ 𝜉

,

∀𝑟 (𝑟 ∈ 𝐷
−

𝑟
) 𝑑

𝑟𝑗
=

𝑦
𝑟

𝑦
𝑟𝑗
+ 𝜉

,

(47)

where 𝜉 is representative of a small and nonzero number used
for not dividing by zero. Now consider𝐷−𝑗 as follows which
shows that more successful DMU

𝑗
will be if the larger value

of the𝐷
𝑗
is

𝐷
𝑗
= ∑

𝑖∈𝐼

𝑑
𝑖𝑗
+ ∑

𝑟∈𝑅

𝑑
𝑟𝑗
, (48)

where 𝐼 = 𝐷
+

𝑖
∪ 𝐷

−

𝑖
, 𝑅 = 𝐷

+

𝑟
∪ 𝐷

−

𝑟
.

Ashrafi et al. [44] introduced an enhanced Russell mea-
sure of super efficiency for ranking efficient units inDEA.The
linear counterpart of the proposed model is as follows:

max 1

𝑚

𝑚

∑

𝑖=1

𝑢
𝑖

s.t.
𝑠

∑

𝑟=1

V
𝑟
= 𝑠,

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝛼
𝑗
𝑥
𝑖𝑗
≤ 𝑢

𝑖
𝑥
𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝛼
𝑗
𝑦
𝑟𝑗
≤ V

𝑖
𝑦
𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝛼
𝑗
≥ 0, 𝑢

𝑖
≥ 𝛽, 𝑗 = 1, . . . , 𝑛, 𝑗 ̸=𝑘, 𝑖 = 1, . . . , 𝑚,

𝑜 ≤ 𝛽 ≤, V
𝑟
≥ 𝛽, 𝑟 = 1, . . . 𝑠.

(49)

It cannot rank nonextreme efficient units.
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Chen et al. [45] proposed a modified super-efficiency
method for ranking units based on simultaneous input-
output projection.The presentedmodel overcomes the infea-
sibility problem

𝑝
1
= min

𝜃
𝑠𝑟

𝑜

𝜙𝑠𝑟
𝑜

s.t. ∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑥
𝑖𝑗
≤ 𝜃

𝑠𝑟

𝑜
𝑥
𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑦
𝑟𝑗
≥ 𝜙

𝑠𝑟

𝑜
𝑦
𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
= 1,

0 < 𝜃
𝑠𝑟

𝑜
≤ 1, 𝜙

𝑠𝑟

𝑜
≥ 1, 𝑖 = 1, . . . , 𝑚,

𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(50)

Rezai Balf et al. [46] provide a model for ranking units based
on Tchebycheff norm. As proved that this model is always
feasible and stable, it seems to have superiority over other
models

max 𝑉
𝑝

s.t. 𝑉
𝑝
≥

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑥
𝑖𝑗
− 𝑥

𝑖𝑝
, 𝑖 = 1, . . . , 𝑚,

𝑉
𝑝
≥ 𝑦

𝑟𝑝
−

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑦
𝑟𝑗
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

(51)

where

𝑉
𝑝
= Max

{{{

{{{

{

(

𝑛

∑

𝑗=1

𝑗 ̸=𝑜

𝜆
𝑗
𝑥
𝑖𝑗
− 𝑥

𝑖𝑝
)𝑖 = 1, . . . , 𝑚,

(𝑦
𝑟𝑝
−

𝑛

∑

𝑗=1

𝑗 ̸=𝑝

𝜆
𝑗
𝑦
𝑟𝑗
)𝑟 = 1, . . . , 𝑠

}}}

}}}

}

.

(52)

Chen et al. [47] for overcoming the infeasibility problem that
occurred in variable returns to scale super-efficiency DEA
model according to a directional distance function developed
Nerlove-Luenberger (N-L) measure of super-efficiency.

6. Benchmarking Ranking Techniques

Sueyoshi et al. [49] proposes a “benchmark approach” for
baseball evaluation. This method is the combination of DEA

and (Offensive earned-run average) OERA. As the authors
noted, using this method it is possible to select best units
and also their ranking orders. They mentioned that using
only DEAmay result in a shortcoming in assessment as many
efficient units can be identified.Thus, the authors used slack-
adjusted DEA model and OERA to overcome this difficulty.

Jahanshahloo et al. [50] presented a new model for
ranking DMUs based on alteration in reference set. The idea
is based on this fact that efficient units can be the target unit
for inefficient units

min 𝜕
𝑎,𝑏

= 𝜃 − 𝜀(

𝑚

∑

𝑖=1

𝑠
−

𝑖
+

𝑠

∑

𝑟=1

𝑠
+

𝑟
)

s.t. ∑

𝑗∈𝐽−{𝑏}

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

−

𝑖
− 𝜃𝑥

𝑖𝑎
, 𝑖 = 1, . . . , 𝑚,

∑

𝑗∈𝐽−{𝑏}

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

+

𝑟
= 𝑦

𝑟𝑎
, 𝑟 = 1, . . . , 𝑠,

𝜃 free, 𝑠−
𝑖
≥ 0, 𝑠

+

𝑟
≥ 0, 𝑖 = 1, . . . , 𝑚, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐽 − {𝑏} .

(53)

Finally the ranking order for each efficient unit b can be
computing by

℧
𝑏
= ∑

𝑎∈𝐽
𝑛

𝜕
𝑎,𝑏

𝑛
. (54)

Note that this method cannot rank nonextreme efficient
units.

Lu and Lo [51] provided an interactive benchmark model
for ranking units. The idea is based upon considering a fixed
unit as a benchmark and calculating the efficiency of other
units, pair by pair, to this unit.This procedure continueswhen
all units are accounted for as a benchmark unit. Consider
DMU

𝑜
as a unit under evaluation andDMU

𝑏
as a benchmark.

Assume

𝑥
𝑖
= 𝑥

𝑖𝑜
(1 + 𝜙

𝑖
) , 𝑦

𝑟
= 𝑦

𝑟𝑜
(1 − 𝜑

𝑟
) .

min 𝜃
∗𝑏

𝑜
=
1 + (1/𝑚)∑

𝑚

𝑖=1
𝜙
𝑖

1 − (1/𝑠)∑
𝑠

𝑟=1
𝜑
𝑟

s.t. 𝜆
𝑏
𝑥
𝑖𝑏
− 𝑥

𝑖𝑜
𝜙
𝑖
≤ 𝑥

𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,

𝜆
𝑏
𝑦
𝑟𝑏
− 𝑦

𝑟𝑜
𝜑
𝑟
≥ 𝑦

𝑟𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜙
𝑖
≥ 𝑜, 𝜑

𝑟
≤ 𝑦

𝑟𝑜
, 𝑖 = 1, . . . , 𝑚, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(55)

Then using (∑
𝑛

𝑏=1
𝜃
𝑏∗

𝑜
)/𝑛, 𝑜 = 1, . . . , 𝑛, the efficiency of

benchmark DMU
𝑜
can be obtained. Using the following

index which indicates the increment in efficiency of a unit
by moving from peer appraisal to self-appraisal, it is now
possible to rank units. Note that the less the magnitude of
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this index is the better rank for corresponding unit will be
obtained

FPIIBM
𝐾

=

(TEBCC
𝑘

− STDIBM
𝑘

)

(STDIBM
𝑘

)

, (56)

where TEBCC
𝑘

and STDIBM
𝑘

are, respectively, efficiency in BCC
model and normalization of TEIBM of DMU

𝑘
. Chen [52]

provided a paper for ranking efficient and inefficient units
in DEA. They noted that the evaluation of efficient units
is based upon the alterations in efficiency of all inefficient
units by omitting in reference set. At first, solve the following
model which measures the efficiency of DMU

𝑎
when DMU

𝑏

is eliminated from the reference set

min 𝜌
𝑎,𝑏

= 𝜃
𝑠

𝑎
− 𝜀(

𝑚

∑

𝑖=1

𝑠
−

𝑖
+

𝑠

∑

𝑟=1

𝑠
+

𝑟
)

s.t.
𝑛

∑

𝑗=1𝑗 ̸=𝑏

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

−

𝑖
= 𝜃

𝑠

𝑎
𝑥
𝑖𝑎
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1𝑗 ̸=𝑏

𝜆
𝑗
𝑦
𝑟𝑗
− 𝑠

+

𝑟
= 𝑦

𝑟𝑎
, 𝑟 = 1, . . . , 𝑠,

𝑛

∑

𝑗=1𝑗 ̸=𝑏

= 1,

𝜃
𝑠

𝑎
≥ 0, 𝑠

−

𝑖
≥ 0, 𝑠

+

𝑟
≥ 0, 𝑖 = 1, . . . , 𝑚, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 ̸=𝑏.

(57)

Then, again, solve the previous model, this time for calculat-
ing the efficiency score of each inefficient unit when each of
efficient units, in turn, is eliminated from the reference set 𝜂∗

𝑎

and calculate the efficiency change

𝜏
𝑎,𝑏

= 𝜌
∗

𝑎,𝑏
− 𝜂

∗

𝑎
. (58)

Then, calculate the following index called as “MCDE” index
for each efficient and inefficient unit:

𝐸
𝑎
= ∑

𝑏∈𝑉
𝐸

𝑊
∗

𝑏
𝜌
∗

𝑎,𝑏
, 𝐸

𝑏
= ∑

𝑏∈𝑉
𝐼

𝑊
∗

𝑏
𝜌
∗

𝑎,𝑏
. (59)

Now, in accordance with themagnitude of the acquired index
it is possible to rank units.Those units with higher score have
better ranking order.

7. Ranking Techniques by Multivariate
Statistics in the DEA

As described in DEA literature in DEA technique frontier is
taken into consideration rather than central tendency consid-
ered in regression analysis. DEA technique considers that an
envelope encompasses through all the observations as tight as
possible and does not try to fit regression planes in center of
data. In DEA methodology each unit is considered initially
and compared to the efficient frontier, but in regression
analysis a procedure is considered in which a single function
fits to the data. DEA uses different weights for different
units but does not let the units use weights of other units.

Canonical correlation analysis, as Friedman and Sinuany-
Stern [53] noted, can be used for ranking units. This method
is somehow the extension of regression analysis, Adler et al.
[88]. The aim in canonical correlation analysis is to find a
single vector commonweight for the inputs and outputs of all
units. Consider𝑍

𝑗
,𝑊

𝑗
as the composite input and output and

𝑉,𝑈 as corresponding weights, respectively. The presented
model by Tatsuoka and Lohnes [99] is as follows:

max 𝑟
𝑧,𝑤

=

𝑉𝑆
𝑥𝑦
𝑈

(𝑉𝑆
𝑥𝑥
𝑉) (𝑈𝑆

𝑦𝑦
𝑈)

(1/2)

s.t. 𝑉
𝑥𝑥
𝑉 = 1,

𝑈
𝑦𝑦
𝑈 = 1,

(60)

where 𝑆
𝑥𝑥
, 𝑆

𝑦𝑦
, and 𝑆

𝑥𝑦
are respectively defined as the matri-

ces of the sums of squares and sums of products of the
variables.

Friedman and Sinuany-Stern [53] while defining the ratio
of linear combinations of the inputs and outputs, 𝑇

𝑗
=

𝑊
𝑗
/𝑍

𝑗
used canonical correlation analysis. As they noted that

scaling ratio 𝑇
𝑗
of the canonical correlation analysis/DEA is

unbounded.
Sinuany-Stern et al. [100] used linear discriminant analy-

sis for ranking units. They defined

𝐷
𝑗
=

𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
+

𝑚

∑

𝑖=1

V
𝑟
(−𝑥

𝑖𝑗
) . (61)

DMU
𝑗
is said to be efficient if 𝐷

𝑗
> 𝐷

𝑐
where 𝐷

𝑐
is a critical

value based on themidpoint of themeans of the discriminant
function value of the two groups, Morrison [101]. The larger
the amount of𝐷

𝑗
is the better rank DMU

𝑗
will have.

Friedman and Sinuany-Stern [53] noted that as cross-
efficiency/DEA, canonical correlation analysis/DEA and dis-
criminant analysis/DEA, ranking orders may vary from each
other, thus it seems necessary to introduce the combined
ranking (CO/DEA). Combined ranking, for each unit, con-
sidered all the ranks obtained from the above-mentioned
rankings. Moreover, statistical tests are; one for goodness of
fit between DEA and a specific ranking and the other for
testing correlation between variety of ranking orders, Siegel
and Castellan [102].

8. Ranking with Multicriteria
Decision-Making (MCDM) Methodologies
and DEA

Li and Reeves [56] for increasing discrimination power of
DEA presented amultiple-objective linear program (MOLP).
As the authors mentioned using minimax and minsum
efficiency in addition to the standard DEA objective function
help to increase discrimination power of DEA.

Strassert and Prato [59] presented the balancing and
ranking method which uses a three-step procedure for
deriving an overall complete or partial final order of options.
In the first step, derive an outranking matrix for all options
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from the criteria values. Considering this matrix it is possible
to show the frequencywithwhich one option is ranked higher
than the other options. In the second step, by triangularizing
the outranking matrix establish an implicit preordering or
provisional ordering of options.Theoutrankingmatrix shows
the degree to which there is a complete overall order of
options. In the third step, based on information given in an
advantages-disadvantages table, the provisional ordering is
subjected to different screening and balancing operations.

Chen [60] utilized a nonparametric approach, DEA, to
estimate and rank the efficiency of association rules with
multiple criteria in following steps. Proposed postprocessing
approach is as follows.

Step 1. Input data for association rule mining.

Step 2. Mine association rules by using the a priori algorithm
with minimum support and minimum confidence.

Step 3. Determine subjective interestingness measures by
further considering the domain related knowledge.

Step 4. Calculate the preference scores of association rules
discovered in Step 2 by using Cook and Kress’s DEA model.

Step 5. Discriminate the efficient association rules found in
Step 3 by using Obata and Ishii’s [103] discriminate model.

Step 6. Select rules for implementation by considering the
reference scores generated in Step 5 and domain related
knowledge.

Jablonsky [61] presented two original models, super SBM
and AHP, for ranking of efficient units in DEA. As the
authormentioned thesemodels are based onmultiple criteria
decision-making techniques-goal programming and analytic
hierarchy process. Super SBM model for ranking units is as
follows:

min 𝜃
𝐺

𝑞
= 1 + 𝑡𝛾 + (1 − 𝑡) (

∑
𝑚

𝑖=1
𝑠
+

1𝑖

𝑥
𝑖𝑞

+
∑

𝑚

𝑖=1
𝑠
−

2𝑘

𝑦
𝑘𝑞

)

s.t.
𝑛

∑

𝑗=1𝑗 ̸=𝑞

𝜆
𝑗
𝑥
𝑖𝑗
+ 𝑠

−

1𝑖
− 𝑠

+

1𝑖
= 𝑥

𝑖𝑞
, i = 1, . . . , 𝑚,

𝑛

∑

𝑗=1𝑗 ̸=𝑞

𝜆
𝑗
𝑦
𝑘𝑗
+ 𝑠

−

2𝑘
− 𝑠

+

2𝑘
= 𝑦

𝑘𝑞
, 𝑘 = 1, . . . , 𝑟,

𝑠
+

1𝑖
≤ 𝛾, 𝑖 = 1, . . . , 𝑚,

𝑠
−

2𝑘
≤ 𝛾, 𝑘 = 1, . . . , 𝑟,

𝑡 ∈ {0, 1} , 𝜆
𝑗
≥ 0, 𝑆

+

1
, 𝑆

+

2
≥ 0, 𝑆

−

1
, 𝑆

−

2
≥ 0,

𝑗 = 1, . . . , 𝑛.

(62)

Wang and Jiang [62] presented an alternative mixed
integer linear programming models in order to identify
the most efficient units in DEA technique. As the authors

mentioned presented models can make full use of input-
output information with no need to specify any assurance
regions for input and output weights to avoid zero weights

min
𝑚

∑

𝑖=1

V
𝑖
(

𝑛

∑

𝑗=1

𝑥
𝑖𝑗
) −

𝑠

∑

𝑟=1

𝑢
𝑟
(

𝑛

∑

𝑗=1

𝑦
𝑟𝑗
)

s.t.
𝑠

∑

𝑟=1

𝑢
𝑟
𝑦
𝑟𝑗
−

𝑚

∑

𝑖=1

V
𝑖
𝑥
𝑖𝑗
≤ 𝐼

𝑗
, 𝑗 = 1, . . . , 𝑛,

𝑛

∑

𝑗=1

𝐼
𝑗
= 1,

𝐼
𝑗
∈ {0, 1} , 𝑗 = 1, . . . , 𝑛,

𝑢
𝑟
≥

1

(𝑚 + 𝑠)max
𝑗
{𝑦

𝑟𝑗
}

, 𝑟 = 1, . . . , 𝑠,

V
𝑖
≥

1

(𝑚 + 𝑠)max
𝑗
{𝑥

𝑖𝑗
}

, 𝑖 = 1, . . . , 𝑚.

(63)

Hosseinzadeh Lotfi et al. [63] provided an improved three-
stage method for ranking alternatives in multiple criteria
decision analysis. In the first stage, based on the best
and worst weights in the optimistic and pessimistic cases,
obtain the rank position of each alternative, respectively. The
obtained weight in the first stage is not unique; thus it seems
necessary to introduce a secondary goal that is used in the
second stage. Finally, in the third stage, the ranks of the
alternatives compute in the optimistic or pessimistic case. It
is mentionable that the model proposed in the third stage
is a multicriteria decision-making (MCDM) model, and it
is solved by mixed integer programming. As the authors
mentioned and provided in their paper this model can be
converted into an LP problem

min 2𝑛𝑟
𝑜

𝑜
+

𝑛

∑

𝑖=1 𝑖 ̸=𝑜

(𝑛 + 1 − 𝑟
𝑖∗

𝑖
) 𝑟

𝑜

𝑖

s.t.
𝑘

∑

𝑗=1

𝑤
𝑜

𝑗
V
𝑖𝑗
−

𝑘

∑

𝑗=1

𝑤
𝑜

𝑗
V
ℎ𝑗
+ 𝛿

𝑜

𝑖ℎ
𝑀 ≥ 0, 𝑖 = 1, . . . , 𝑛, 𝑖 ̸=ℎ,

𝛿
𝑜

𝑖ℎ
+ 𝛿

𝑜

ℎ𝑖
= 1, 𝑖 = 1, . . . , 𝑛, 𝑖 ̸=ℎ,

𝛿
𝑜

𝑖ℎ
+ 𝛿

𝑜

ℎ𝑘
+ 𝛿

𝑜

𝑘𝑖
≥ 1, 𝑖 = 1, . . . , 𝑛, 𝑖 ̸=ℎ ̸=𝑘,

𝑟
𝑜

𝑖
= 1 +

𝑛

∑

ℎ ̸= 𝑖

𝛿
𝑜

𝑖ℎ
, 𝑖 = 1, . . . , 𝑛,

𝑤
𝑜
∈ 𝜙,

𝛿
𝑜

𝑖ℎ
∈ {0, 1} , 𝑖 = 1, . . . , 𝑛, 𝑖 ̸=ℎ.

(64)

In the previous model, the rank vector 𝑅𝑜 for each alternative
𝑥
𝑜
is computed by the ideal rank.

9. Some Other Ranking Techniques

Seiford and Zhu [64] presented the context-dependent DEA
method for ranking units. Let 𝐽1 = {DMU

𝑗
, 𝑗 = 1, . . . , 𝑛} be



14 Journal of Applied Mathematics

the set of decision-making units. Consider 𝐽𝑙+1 = 𝐽
𝑙
− 𝐸

𝑙 in
which 𝐸𝑙

= {DMU
𝑘
∈ 𝐽

𝑙
| 𝜙

∗
(𝑙, 𝑘) = 1} where 𝜙∗(𝑙, 𝑘) = 1 is

the optimal value of following model:

max
𝜆
𝑗
,𝜙(𝑙,𝑘)

𝜙
∗
(𝑙, 𝑘) = 𝜙 (𝑙, 𝑘)

s.t. ∑

𝑗∈𝐹(𝐽
𝑙

)

𝜆
𝑗
𝑦
𝑗
≥ 𝜙 (𝑙, 𝑘) 𝑦

𝑘
,

s.t. ∑

𝑗∈𝐹(𝐽
𝑙

)

𝜆
𝑗
𝑥
𝑗
≤ 𝜙 (𝑙, 𝑘) 𝑥𝑘,

s.t. 𝜆
𝑗
≥ 0, 𝑗 ∈ 𝐹 (𝐽

𝑙
) .

(65)

The previous model with 𝑙 = 1 is the original CCR model.
Note that DMUs in 𝐸

1 show the first level efficient frontier.
𝑙 = 2 indicates the second level efficient frontier when the
first level efficient frontier is omitted.The following algorithm
finds these efficient frontiers.

Step 1. Set 𝑙 = 1 and evaluate the entire set of DMUs, 𝐽1. In
this way the first level efficient DMU, 𝐸1, is identified.

Step 2. Exclude the efficient DMUs from future DEA runs
and set 𝐽𝑙+1 = 𝐽

𝑙
− 𝐸

𝑙. (If 𝐽𝑙+1 = ø stop).

Step 3. Evaluate the new subset of “inefficient” DMUs, 𝐽𝑙+1,
to obtain a new set of efficient DMUs, 𝐸𝑙+1.

Step 4. Let l = l + 1. Go to Step 2.

When 𝐽𝑙+1 = ø, the algorithm stops.
As the authors proved in this way it is possible to rank

the DMUs in the first efficient frontier based upon their
attractiveness scores and identify the best one.

Jahanshahloo et al. [65] provided a paper for ranking
units using gradient line. As the authors mentioned the
advantage of this model is stability and robustness

max 𝐻
𝑜
= −𝑉

𝑇
𝑋

𝑜
+ 𝑈

𝑇
𝑌
𝑜

s.t. −𝑉
𝑇
𝑋

𝑗
+ 𝑈

𝑇
𝑌
𝑗
≤ 0, 𝑗 = 1, . . . , 𝑛, 𝑗 ̸=𝑜,

𝑉
𝑇
𝑒 + 𝑈

𝑇
𝑒 = 1,

𝑉, 𝑈 ≥ 𝜀1.

(66)

Note that (𝑈∗
, −𝑉

∗
) is the gradient of hyperplane which

supports on ́𝑇
𝑐
, the obtained PPS by omitting theDMUunder

assessment in 𝑇
𝑐
. As the authors proved a unit is efficient

iff the optimal objective function of the following model is
greater than zero. Consider

𝑃
0
= {(𝑋, 𝑌) : 𝑋 = 𝛼𝑋

𝑜
, 𝑌 = 𝛽𝑌

𝑜
}

𝑆
0
= {(𝑋, 𝑌) ∈ 𝑃

0
: 𝑋 = 𝛼𝑋

𝑜
, 𝑌 = 𝛽𝑌

𝑜
, 𝛼 ≥ 0, 𝛽 ≥ 0} .

(67)

Intersection of 𝑆
0
and efficient surface of ́𝑇

𝑐
𝑐 is a half line

where its equation is (−𝑉∗𝑇
𝑋

𝑜
)𝛼 + (𝑈

∗𝑇
𝑌
𝑜
)𝛽 = 0. To rank

DMU
𝑜
the length of connecting arc DMU

𝑜
with intersection

point of line and previous ellipse is calculated in (𝛼, 𝛽) space.
This intersection is as follows:

𝛼
∗
= (

𝐾
2

𝛼
𝐾

2

𝛽

𝐾
2

𝛽
+ (𝑉∗𝑇𝑋

𝑜
/𝑈∗𝑇𝑌

𝑜
)
2
𝐾2

𝛼

)

1/2

,

𝛽
∗
= (

𝑉
∗𝑇
𝑋

𝑜

𝑈∗𝑇𝑌
𝑜

)𝛼
∗
.

(68)

Now, the length of connecting arc DMU
𝑜
to the point

corresponding to 𝛼∗, 𝛽∗ in (𝛼, 𝛽) plan is calculated as follows:
𝐼 = ∫

𝛼
∗

1
(1 + 𝛽)

1/2
𝑑𝛼, where

𝐾
𝛼
= (

∑
𝑛

𝑗=1
𝑥
2

𝑖𝑜
+ ∑

𝑠
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𝑦
2
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∑
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𝑗=1
𝑥
2

𝑖𝑜

)

1/2

,

𝐾
𝛽
= (

∑
𝑛

𝑗=1
𝑥
2

𝑖𝑜
+ ∑

𝑠

𝑟=1
𝑦
2

𝑖𝑜

∑
𝑠

𝑟=1
𝑦2

𝑟𝑜

)

1/2

.

(69)

Jahanshahloo et al. [34] also provided a paper with the
concept of advantage in data envelopment analysis.

In their paper Jahanshahloo et al. [66] consideringMonte
Carlo method presented a new method of ranking.

Step 1. Generate a uniformly distributed sequence of {𝑈
𝑗
}
2𝑛

𝑗=1

on(0, 1).

Step 2. Random numbers should be classified into 𝑁 pairs
like (𝑈

1
, 𝑈



1
), . . . , (𝑈

𝑁
, 𝑈



𝑁
) in a way that each number is used

just one time.

Step 3. Compute𝑋
𝑖
= 𝑎 + 𝑈

𝑖
(𝑏 − 𝑎) and 𝑓(𝑋

𝑖
) > 𝑐𝑈



𝑖
.

Step 4. Estimate the integral 𝐼 by 𝜃
𝐼
= 𝑐(𝑏 − 𝑎)(𝑁

𝐻
/𝑁).

Now consider DMU
𝑜
as an efficient unit measure those

units that are dominated DMU
𝑜
. As for dome DMUs this

would be unbounded, thus the authors, for each unit,
bounded the region. Then, for DMU

𝑜
if (−𝑋

𝑜
, 𝑌

𝑜
) ≥ (−𝑋, 𝑌),

then (−𝑋, 𝑌) is in the RED of DMU
𝑜
. Now by using 𝑉

𝑝
=

𝑉
∗
(𝑁

𝐻
/𝑁) all the hits (the above condition) can be counted,

where 𝑉∗ is the measure of the whole region. Jahanshahloo
andAfzalinejad [67] presented amethod based on distance of
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the unit under evaluation to the full inefficient frontier. They
presented two models, radian and nonradial

min 𝜙

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑖𝑗
= 𝜙𝑥

𝑖𝑜
, 𝑖 = 1, . . . , 𝑚,
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∑
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= 1,
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−
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𝑦
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+

𝑟
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𝑟𝑜
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𝑛
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𝑠
−

𝑖
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𝑟
≥ 0, 𝑖 = 1, . . . , 𝑚, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(70)

Amirteimoori [68] based on the same idea considered both
efficient and antiefficient frontiers for efficiency analysis and
ranking units.

Kao [69] mentioned that determining the weights of
individual criteria in multiple criteria decision analysis in a
way that all alternatives can be compared according to the
aggregate performance of all criteria is of great importance.
As Kao noted this problem relates to search for alternatives
with a shorter and longer distance, respectively, to the ideal
and anti-ideal units. He proposed a measure that considered
the calculation of the relative position of an alternative
between the ideal and anti-ideal for finding an appropriate
rankings.

Khodabakhshi andAryavash [70] presented amethod for
ranking all units using DEA concept.

First, Compute the minimum and maximum efficiency
values of eachDMU in regard to this assumption that the sum
of efficiency values of all DMUs equals to 1.

Second, determine the rank of each DMU in relation to a
combination of itsminimumandmaximumefficiency values.

Zerafat Angiz et al. [71] proposed a technique in order
to aggregate the opinions of experts in voting system. As
the authors mentioned the presented method uses fuzzy
concept, and it is computationally efficient and can fully
rank alternatives. At first, number of votes given to a rank
position was grouped to construct fuzzy numbers, and then
the artificial ideal alternative introduced. Furthermore, by
performing DEA the efficiency measure of alternatives was

obtained considering artificial ideal alternative compared
by each of the alternatives pair by pair. Thus alternatives
are ranked in accordance with their efficiency scores. If
this method cannot completely rank alternatives, weight
restrictions based on fuzzy concept are imposed into the
analysis.

10. Different Applications in Ranking Units

As discussed formerly there exist a variety of ranking meth-
ods and applications in theliterature. Nowadays DEAmodels
are widely used in different areas for efficiency evaluation,
benchmarking and target setting, ranking entities, and so
forth. Ranking units, as one of the important issues in DEA,
has been performed in different areas. Jahanshahloo et al. [42]
ranked cities in Iran to find the best place for creating a data
factory. Hosseinzadeh Lotfi et al. [28] used a new method
for ranking in order to find the best place for power plant
location. Ali andNakosteen [79], Amirteimoori et al. [37] and
Alirezaee and Afsharian [24], Soltanifar and Hosseinzadeh
Lotfi [104], Zerafat Angiz et al. [71], Hosseinzadeh Lotfi
et al. [28], Jahanshahloo [50], Chen and Deng [52], and
Jablonsky [61] used different ranking methods in banking
system. Sadjadi [40] ranked provincial gas companies in Iran.
Mehrabian et al. [32], Li et al. [39], Örkcü and Bal [12], and
Wu et al. [19] ranked different departments of universities.
Jahanshahloo et al. [35], Jahanshahloo and Afzalinejad [67]
utilized the presented models in ranking 28 Chinese cities.
Jahanshahloo at al. [35] provided an application to burden
sharing amongst NATOmember nations. Jahanshahloo et al.
[14] utilized the presented model for ranking nursery homes.
Contreras [18] andWang et al. [23] used the provided ranking
techniques in ranking candidates. Lu and Lo [51] applied their
method on an application to financial holding companies.
Hosseinzadeh Lotfi et al. [63] consider an empirical example
inwhich voters are asked to rank twoout of seven alternatives.
Wang and Jiang [62] utilized the provided method in facility
layout design in manufacturing systems and performance
evaluation of 30OECD countries. Chen [60] used an example
of market basket data in order to illustrate the provided
approach.

11. Application

In this section, some of the reviewed models are applied on
the example used in Soltanifar and Hosseinzadeh Lotfi [104].
Consider twenty commercial banks of Iran with input-output
data tabulated in Table 1 and summarized as follows. Also the
results of CCRmodel are listed in this table. As it can be seen
seven units are efficient, DMUS 1,4, 7, 12, 15, 17, and 20. Inputs
are staff, computer terminal, and space.Outputs are deposits,
loans granted, and charge.

Consider some of the important ranking methods in
literature as follows:

R.M1: A.P. model [31] is based upon the idea of leave
unit evaluation out and measuring the distance of the
unit under evaluation from the production possibility
set constructed by the remaining DMUs.
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Table 1: Inputs, outputs, and efficiency scores.

DMU
𝑝

𝐼
1

𝐼
2

𝐼
3

𝑂
1

𝑂
2

𝑂
3

CCR efficiency
DMU

1
0.950 0.700 0.155 0.190 0.521 0.293 1.0000

DMU
2

0.796 0.600 1.000 0.227 0.627 0.462 0.8333

DMU
3

0.798 0.750 0.513 0.228 0.970 0.261 0.9911

DMU
4

0.865 0.550 0.210 0.193 0.632 1.000 1.0000

DMU
5

0.815 0.850 0.268 0.233 0.722 0.246 0.8974

DMU
6

0.842 0.650 0.500 0.207 0.603 0.569 0.7483

DMU
7

0.719 0.600 0.350 0.182 0.900 0.716 1.0000

DMU
8

0.785 0.750 0.120 0.125 0.234 0.298 0.7978

DMU
9

0.476 0.600 0.135 0.080 0.364 0.244 0.7877

DMU
10

0.678 0.550 0.510 0.082 0.184 0.049 0.290

DMU
11

0.711 1.000 0.305 0.212 0.318 0.403 0.6045

DMU
12

0.811 0.650 0.255 0.123 0.923 0.628 1.0000

DMU
13

0.659 0.850 0.340 0.176 0.645 0.261 0.8166

DMU
14

0.976 0.800 0.540 0.144 0.514 0.243 0.4693

DMU
15

0.685 0.950 0.450 1.000 0.262 0.098 1.0000

DMU
16

0.613 0.900 0.525 0.115 0.402 0.464 0.6390

DMU
17

1.000 0.600 0.205 0.090 1.000 0.161 1.0000

DMU
18

0.634 0.650 0.235 0.059 0.349 0.068 0.4727

DMU
19

0.372 0.700 0.238 0.039 0.190 0.111 0.4088

DMU
20

0.583 0.550 0.500 0.110 0.615 0.764 1.0000

Table 2: Matrix of properties.

𝑝
1

𝑝
2

𝑝
3

𝑝
4

𝑝
5

𝑝
6

𝑝
7

R.M1 — — √ — √ √ —
R.M2 √ — √ √ √ √ √

R.M3 √ — √ √ √ √ √

R.M4 √ — — √ √ √ √

R.M5 √ — √ √ √ — √

R.M6 √ — — √ √ — √

R.M7 √ — — √ √ — √

R.M8 √ — — √ √ √ √

R.M9 √ √ √ √ — — —
R.M10 √ √ √ √ — — —
R.M11 √ — √ √ √ — —
R.M12 √ — √ √ — — √

R.M13 √ — — √ √ — √

R.M14 √ — — — — √ —
R.M15 √ — — √ √ — √

Table 3: Ranking orders.

E.D. R.M1 R.M2 R.M3 R.M4 R.M5 R.M6 R.M7 R.M8
DMU

1
7 7 7 6 7 7 7 6

DMU
4

2 2 2 2 2 2 2 2

DMU
7

5 3 4 3 3 4 3 4

DMU
12

6 6 6 5 6 5 5 5

DMU
15

1 1 1 1 1 1 1 1

DMU
17

3 5 3 5 4 3 4 7

DMU
20

4 4 5 4 5 6 6 3
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Table 4: Ranking orders.

E.D. R.M9 R.M10 R.M11 R.M12 R.M13 R.M14 R.M15
DMU

1
7 7 7 7 7 5 5

DMU
4

2 1 2 2 2 1 2

DMU
7

1 2 3 5 5 2 6

DMU
12

4 3 5 6 6 3 7

DMU
15

3 6 1 1 1 6 1

DMU
17

6 5 4 3 3 6 3

DMU
20

5 4 6 4 4 4 4

R.M2:MAJmodel [32] presented for ranking efficient
which is always stable but might be infeasible in some
cases.
R.M3: Modified MAJ model [38] overcomes the
problem which might occurr in MAJ model.
R.M4: A new model based on the idea of alterations
in the reference set of the inefficient units [50].
R.M5: A model presented by Li et al. [39] which
is a super-efficiency method that does not have the
suffering in previous methods.
R.M6: Slack-basedmodel [33] is based upon the input
and output variables at the same time.
R.M7: SA DEAmodel [49] overcomes the problem of
infeasibility which existed in A.P. model.
R.M8: Cross-efficiency [10] is provided based on
using weights of each unit under evaluation in opti-
mality for other units.
R.M9: A model based on finding common set of
weights [25] which determine the common set of
weights for DMUs and ranked DMUs based this idea.
R.M10: A model based on finding common set of
weights [22, 66] for ranking efficient units.
R.M11: L1-norm model [34, 35, 65], the idea is based
upon the leave-one-out efficient unit and l1-norm
which is always feasible and stable.
R.M12: 𝐿

∞
-norm model Rezai Balf et al. [46] pro-

vided a method with more ability over other existing
methods, based on Tchebycheff norm.
R.M13: An enhanced Russel measure of super-
efficiency model for ranking units [44].
R.M14: A rankingmodel which considers the distance
of unit from the full inefficient frontier [38]
R.M15: Amodified super-efficiencymodel [45] which
overcomes the infeasibility that may happen in prob-
lem. This model is based on simultaneous projection
of input output.

In accordance with properties of different ranking models in
order to rank efficient units, consider Table 2.

𝑝
1
: Feasibility

𝑝
2
: Ranking extreme efficient units

𝑝
3
: Complexity in computation

𝑝
4
: Instability

𝑝
5
: Absence of multiple optimal solution

𝑝
6
: Dependency to 𝜃 and slacks

𝑝
7
: Dependency to the number of efficient and ineffi-

cient units.

In Tables 3 and 4 the rank of efficient units considering
the above mentioned methods is listed. Note that E.D. shows
efficient DMUs (E.D.), and R.M

𝑗
, (𝑗 = 1, . . . , 15) are those

explained previously.

12. Conclusion

In this paper, the DEA ranking was reviewed and classified
into seven general groups. In the first group, those papers
based on a cross-efficiencymatrix were reviewed. In this field,
DMUs have been evaluated by self- and peer pressure. The
second group of papers is based on those papers looking
for optimal weights in DEA analysis. The third one is the
super-efficiency method. By omitting the under evaluation
unit and constructing a new frontier by the remaining units,
the unit under evaluation can get an equal or greater score.
The fourth group is based on benchmarking idea. In this
class, the effect of an efficient unit considered as a target
for inefficient units is investigated. This idea is very useful
for the managers in decision making. Another class, the
fifth one, involves the application of multivariate statistical
tools. The sixth section discusses the ranking methods based
on multicriteria decision-making (MCDM) methodologies
and DEA. The final section includes some various ranking
methods presented in the literature. Finally, in an application,
the result of some of the above-mentioned ranking methods
is presented.
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Consider a large mixed integer linear problem where structure of the constraint matrix is sparse, with independent blocks, and
coupling constraints and variables. There is one of the groups of constraints to make difficult the application of Benders scheme
decomposition. In this work, we propose the following algorithm; a Lagrangian relaxation is made on the mentioned set of
constraints; we presented a process heuristic for the calculation of the multiplier through the resolution of the dual problem,
structured starting from the bundle methods. According to the methodology proposed, for each iteration of the algorithm, we
propose Benders decomposition where quotas are provided for the value function and 𝜀-subgradient.

1. Introduction

Themain objective of this work is to develop a methodology
that combines the Benders decomposition and a heuristic
for calculating the multiplier applied to a relaxed problem to
solve a linear problem of large integer

min 𝑐
𝑡
𝑥 + 𝑑

𝑡
𝑦,

s.t. 𝐴𝑥 + 𝐵𝑦 ≤ 𝑏,

𝑥 ∈ 𝑋
𝑅
, 𝑦 ∈ 𝑌,

(1)

where 𝑋
𝑅
= {𝑥 : 𝐷𝑥 ≤ 𝑑, 𝑥 ≥ 0} and 𝑌 = {𝑦 : 𝐹𝑦 ≤ 𝑓, 𝑦 ≥

0, 𝑦 integer}.
Relaxing a part of the restrictions has been updated by

multiplying the respective heuristic process, solving a local
model of dual relaxed. As the algorithm presented, for each
iteration with the multiplier obtained, apply iterations of
Benders decomposition on the relaxed problem, obtaining an
𝜀-subgradient quotas and lower and upper optimal solution.
The motivation of this work arises from an integer linear

problem from the large expansion planning of the trans-
mission of a digital telecommunication system in an urban
area equivalent to a city the size of Rio de Janeiro/Brazil
[1]. Section 2 gives an outline about decomposition methods
for large scale, with all the relevant features for this work.
Moreover, Section 3 shows the integer linear model in this
work. More details of the methodology regularization and
Benders decomposition are given in Section 4. Section 5
gives an improvement the Approximate Algorithm Bundle.
In Section 6 is presented some conclusion and future works
obtained from this work.

2. Decomposition Methods for Large Scale

The large mixed integer linear programming problem has
highlighted the difficulty to be solved directly through com-
mercial software. In such cases the Lagrangian, combined
with subgradient optimization, is often used to lower levels
to find the optimal value of the objective function. These
quotes can be used, for example, the method of Branch-
and-Bound [2], or just to measure the quality of feasible
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solutions. These properties are currently incorporated in
commercial software [3]. Other strategies are also considered:
obtaining upper bounds [4], more efficient routines on the
generation of cuts and the use of parallel processing [5]. The
Lagrangian was used by [6, 7] with its work on the traveling
salesman problems, and methods of Branch-and-Bound and
implicit enumeration had considerable gain in [8] with the
Lagrangian, in [9]. There are several questions directed to
the Lagrangian in integer linear problems, among them how
to calculate the Lagrange multipliers, how to choose among
the various relaxations of the problem, and how to obtain
viable solutions to the primal problem.Techniques for solving
the Lagrangian dual relaxation of combinatorial optimization
problems in polynomial time by applying the algorithm as a
subroutine of ellipsoids [10] have been presented with [11].
Other methodologies use heuristics decomposition lagrange
combining the solution of the Lagrangian Dual by the
method of subgradient, also considering the feasible solutions
primal heuristics [12]. These techniques were applied to flow
problems in networks “multicommodity” in [13], the capaci-
tated location problems [14].The decomposition Benders [15]
is an exact method, finite, effective when the number of inte-
ger variables is much smaller than the number of continuous
variables in which case the master problem has dimension
much smaller than the original problem. However, for large
problems, the Benders master problem can be difficult to
solve because of the large size. It joins the convergence
speed generally slow, making this method inefficient in many
cases.Moreover, computational experiments have shown that
a general code of Branch-and-Bound applied to solve the
problem Benders master produces a tree often much larger
than for solving the original problem.Thus, the disadvantage
of this decomposition is often the difficulty in solving the
master problem, making it inefficient.

Several papers were presented with the objective of
solving the problem about master with a higher overall
efficiency. Among these, [2, 9, 13, 21, 56, 62] implement
the Benders decomposition with Lagrangian applied in cuts
master problem. [22–25]. This transfers the difficulty of the
master problem in solving iteratively the maximum dual
function. In [26, 27] this method is denied due to lack of
controllability (the optimal solution in the Benders master
problem can never achieve the optimum in relaxed master
problem) in the solution of the relaxedmaster problem.There
are also suggestions on how to get a good initial set of cuts
for the Benders master problem [28, 29]. In [30] suggests the
use of linear relaxation for the Benders master problem in a
number of initial iterations.

Motivated by these failures, [31, 32] developed the “Cross
Decomposition”while exploiting the structures of primal and
dual problems, combining the advantages of Dantzig-Wolfe
decomposition [33, 34] and Benders [34, 35]. Reference [27]
carried out a comparative study of several approaches to the
problem Benders master, presenting an efficient method for
solving a linear problem, the whole “Cross Decomposition”
[31, 32, 36–39].Theoretical aspects of Benders decomposition
together with the “Cross Decomposition” are also discussed
in [36, 40]. Changes in “Cross Decomposition” for integer
linear programming problems were made by [13, 37]. These

changes are made through the generalization of the method
of Kornai and Liptak [41], which eliminates the need to
use the master primal and dual problems. The dynamics of
this decomposition is the subproblems, which iterates the
primal and dual subproblems. Instead of using the last sub-
problem solution as input to another, using an average of all
previous subproblem solutions.The convergence proof of this
methodology is found in [42]. For a certain class of location
problems are presented structured exact solution methods
from the “Cross Decomposition” in [36, 40, 43]. A com-
parison of techniques Kornai and Liptak for Decomposition
and Cross-linear problems with block-angular structures and
computational results is discussed in [16, 44]. Both method-
ologies have also been applied to problems of organizational
planning [45]. Reference [46] presented a simplified algo-
rithm of “Cross Decomposition” for multiple-choice right-
side constraints. Applications involving stochastic transport
problems were addressed in [47], involving comparative
study with other methods.

The update of the multipliers can be made by various
methods. If formulated as a linear problem, the simplex is
traditionally used. Moreover, in general, a dual nondifferen-
tiable and classical approach is the method of subgradient
[1, 23–25, 48], which is knownnot to be amethod of lowering.
Althoughmore complex, the techniques originally developed
for bundle [49–51] are being increasingly used. The method
exploits bundle data from previous iterations, vectors iter-
ated, objective function, and subgradients, the bundle infor-
mation, to produce new iteration. The method of 𝜀-descend
[52] considers the method of programming differentiable
subgradient conjugates [49, 50]. Kiwiel in [53–55] provides
new insight into the method of Bundle based on classical
methods of cutting planes developed by [56, 57]. The basic
idea of generalization of cutting planes is to add a quadratic
regularization to the linear approximation by convex parts
to the objective function; this linearization is generated by
using the subgradient. To avoid a large bundle, it is necessary
to limit it. Reference [58], for example, presented a selection
strategy based on the subgradient multipliers associated with
the localmodel, where the bundle that remains in subgradient
𝑛 + 2, 𝑛 being the size of a variable of the problem, consid-
ered three approaches to specify the quadratic stabilization
process, which are essentially equivalent. The first technique
uses the confidence regions; see [59, 60]. TheMoreau-Yosida
regularization generates the proximal method used by [61]. A
modern synthesis technique using bundle andmetric variable
is made from the concept of Moreau-Yosida regularization
in [62, 63]. Applications in control problems involving
the method of bundle can be found in [64], and other
applications using Lagrangian decomposition, networks, and
comparative tests with other algorithms are developed in
[60] and decompositions of large and parallel optimization in
[65]. Lemarechal according to [66] “is not an exaggeration to
say that 90 percent of the applications of nondifferentiability
appear in decompositions of one form or another, while
the remaining 10 percent are shown via the calculation of
eigenvalues.”Wemention also [67] when C. Lemaréchal says,
“the nondifferentiable optimization has the biggest deficiency
of the speed of convergence.”
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3. Model

Consider the integer linear problem (P), motivated by an
application in a telecommunications system [1], as follows:

]
𝑃
= min

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐷
𝑘
𝑥
𝑘
= 𝑑

𝑘
, 𝑘 = 1, . . . , 4,

𝐹
𝑗
𝑦
𝑗
≤ 𝑓

𝑗
, 𝑗 = 1, 2

𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥
𝑘
≥ 0, 𝑦

𝑗
≥ 0 integer, 𝑘 = 1, . . . , 4 𝑗 = 1, 2,

(P)

where the matrices 𝐴
𝑘
, 𝐵
𝑘
, 𝐶
2
, 𝐶
3
, 𝐶
4
, 𝐷

𝑘
and 𝐹

𝑗
have appro-

priate dimensions with the vectors 𝑐
𝑘
, 𝑑
𝑘
, 𝑒
𝑗
, 𝑓
𝑗
, 𝐾

𝑘
, 𝐾

5
, 𝑥
𝑘

and𝑦
𝑗
.

On the other hand, consider 𝑋 = ∏
4

𝑘=1
𝑋
𝑘
where 𝑋

𝑘
=

{𝑥
𝑘
; 𝐷

𝑘
𝑥
𝑘
− 𝑑

𝑘
= 0 ∧ 𝑥

𝑘
≥ 0, 𝑥

𝑘
integers} and 𝑌 = ∏

2

𝑗=1
𝑌
𝑗

where 𝑌
𝑗
= {𝑦

𝑗
; 𝐹
𝑗
𝑦
𝑗
−𝑓

𝑗
≤ 0 ∧ 𝑦

𝑗
≥ 0, 𝑦

𝑗
integers}, supposed

nonempty and limited, that is finite.
Consider the integer linear programming problem (P):

]
𝑃𝐼
= min

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

(ILP)

A relaxation of the continuous variable 𝑥 (ILP) generates
(ILPx):

]
𝑃
= min

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥 ∈ 𝑋
𝑅
, 𝑦 ∈ 𝑌,

(ILPx)

where𝑋
𝑅
= ∏

4

𝑘=1
𝑋
(𝑘)𝑅

, and𝑋
(𝑘)𝑅

= {𝑥
𝑘
; 𝐷

𝑘
𝑥
𝑘
−𝑑

𝑘
= 0∧𝑥

𝑘
≥

0}.
Also to relax the variable y (ILPy) is obtained is follows:

]
𝑃𝑅

= min
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
,

s.t. 𝐴
𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 = 1, . . . , 4,

𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
= 𝐾

5
,

𝑥 ∈ 𝑋
𝑅
, 𝑦 ∈ 𝑌

𝑅
,

(ILPy)

where 𝑌
(𝑗)

= {𝑦
𝑗
; 𝐹
𝑗
𝑦
𝑗
− 𝑓

𝑗
≤ 0 ∧ 𝑦

𝑗
≥ 0}.

Relaxing the last block of constraints (ILP), we have the
dual

VDI
= max

𝜆

𝜑 (𝜆) , (DI)

where for all 𝜆 defines the dual function.

𝜑 (𝜆) = min
(𝑥,𝑦)∈𝑊

𝐼

ℓ (𝑥, 𝑦, 𝜆)

= min
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗

+ 𝜆
𝑡
(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
+ 𝐶

2
𝑦
2
− 𝐾

5
) ,

s.t. (𝑥, 𝑦) ∈ 𝑊
𝐼
,

(𝜑)

where 𝑊
𝐼
= {(𝑥, 𝑦); 𝑥 ∈ 𝑋

𝑅
, 𝑦 ∈ 𝑌, 𝐴

𝑘
𝑥
𝑘
+ 𝐵

𝑘
𝑦
1
= 𝐾

𝑘
, 𝑘 =

1, . . . , 4}.
The purpose of this relaxation is to ensure separability of

blocks of variables 𝑥
3
and 𝑥

4
, 𝑦
2
over in order, then applying

the Benders decomposition.

4. Methodology Regularization and
Benders Decomposition

Theslow convergence of the algorithms in structuredBenders
decomposition applied large-scale integer linear program-
ming problems motivated the development of the method-
ology to accelerate the classical method. Applies to Benders
decomposition to the large-scale integer linear programming
problemwith a Lagrangian relaxation, to update the Lagrange
multipliers by a Bundle Methods.

4.1. Benders Decomposition for the Relaxed Problem. The
Benders decomposition applied to the relaxed problem (𝜑) is
to reformulate this problem in an equivalent containing only
y-integer variables and a continuous variable. Without loss
of generality, assume that the problem has a finite optimal
solution for all 𝜆.

For each 𝜆, (𝜑) can be rewritten as:

min
𝑦∈𝑄

{

{

{

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ 𝜆

𝑡
𝐶
2
𝑦
2

+min{
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ 𝜆

𝑡
(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) ,

𝐴
𝑘
𝑥
𝑘
= 𝐾

𝑘
− 𝐵

𝑘
𝑦
1
, 𝑘 = 1, . . . , 4, 𝑥 ∈ 𝑋

𝑅
}

}

}

}

,

(𝜑

)

where𝑄 = {𝑦 ∈ 𝑌; ∃𝑥 ∈ 𝑋
𝑅
such that 𝐴

𝑘
𝑥
𝑘
= 𝐾

𝑘
−𝐵

𝑘
𝑦
1
𝑘 =

1, . . . , 4}, nonempty.
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For 𝑦 ∈ 𝑄 with 𝑦
1
fixed, the inner minimization

subproblem (with explicit𝑋
𝑅
)

V
𝐿
= min

𝑥

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ 𝜆

𝑡
(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) ,

s.t. 𝐷
𝑘
𝑥
𝑘
= 𝑑

𝑘
, 𝑘 = 1, . . . , 4,

𝐴
𝑘
𝑥
𝑘
= 𝐾

𝑘
− 𝐵

𝑘
𝑦
1
, 𝑘 = 1, . . . , 4,

𝑥
𝑘
≥ 0, 𝑘 = 1, . . . , 4

(L)

has given its dual

V
𝐷
= max
(V,𝑢)

4

∑

𝑖=1

𝑑
𝑡

𝑖
V
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑖
,

s.t. 𝐷
𝑡

𝑖
V
𝑖
+𝐴

𝑡

𝑖
𝑢
𝑖
≤ 𝑐

𝑖
where 𝑐

𝑖
={

𝑐
𝑖
, 𝑖=1, 2,

𝑐
𝑖
+𝐶

𝑡

𝑖
𝜆, 𝑖=3, 4,

(D)

where 𝑢 = (𝑢
1
, . . . , 𝑢

4
)
𝑡 and V = (V

1
, . . . , V

4
)
𝑡.

We assume that the polyhedral

𝑈 (𝜆)={(V, 𝑢) ; 𝐷
𝑡

𝑖
V
𝑖
+𝐴

𝑡

𝑖
𝑢
𝑖
≤𝑐
𝑖
where 𝑐

𝑖
={

𝑐
𝑖
, 𝑖=1, 2,

𝑐
𝑖
+𝐶

𝑡

𝑖
𝜆, 𝑖=3, 4

}

(2)

are uniformly bounded, if necessary adding dimensions to
variables (V, 𝑢) and 𝜆.

Thus we can define the set {(V𝑞, 𝑢𝑞)𝜆} for all 𝑞 ∈ 𝑃
𝑈(𝜆)

(finite) of extreme points of 𝑈(𝜆). In this case, (𝜑) is equal
to

min
𝑦∈𝑄

{

{

{

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+𝜆

𝑡
𝐶
2
𝑦
2
+max
𝑞∈𝑃
𝑈(𝜆)

{

4

∑

𝑖=1

𝑑
𝑡

𝑖
V
𝑞

𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑞

𝑖
}

}

}

}

.

(𝜑
1
)

Consider that 𝑧
𝐿
(𝜆), the argument of the minimum, has for

any subset𝑃
𝑈(𝜆)

⊆ 𝑃
𝑈(𝜆)

, the relaxed Bendersmaster problem:

𝑧
𝐿
(𝜆) = min

(𝑧,𝑦)

𝑧,

s.t. 𝑧 ≥

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+

4

∑

𝑖=1

𝑑
𝑡

𝑖
V
𝑞

𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑞

𝑖
,

𝑧 ∈ R, 𝑦 ∈ 𝑌, ∀𝑞 ∈ 𝑃


𝑈(𝜆)
.

(MB)

4.2. Quotas. For 𝜆 fixed, consider 𝑧
𝑈
(𝜆) = ∑

2

𝑗=1
𝑒
𝑡

𝑗
𝑦
𝑗
+

𝜆
𝑡
𝐶
2
𝑦
2
+ V

𝐷
upper limit, where V

𝐷
was obtained in relaxed

primal dual subproblem (D) and 𝑧
𝐿
(𝜆) was obtained in

relaxed primal dual subproblem (MB).
Then

𝑧
𝐿 (𝜆) ≤ 𝜑 (𝜆) = min

(𝑥,𝑦)∈𝑊
𝐼

ℓ (𝑥, 𝑦, 𝜆) ≤ 𝑧
𝑈 (𝜆) . (3)

For 𝜆 variable, if we assume that, as done in the algorithm,
the restrictions relaxed Benders master problem will remain
the same from one to another iteration in 𝜆, then 𝑧

𝐿
(𝜆
𝑝+1

) ≥

𝑧
𝐿
(𝜆
𝑝
).

4.3. Regularization Dual Quadratic Problem. The iterative
solution of the dual problem of maximizing into 𝜑 (DI), that
updates the multiplier 𝜆, is done using a local regulated
model, such as the Bundle. However we do not know for each
𝜆, the value of 𝜑(𝜆), we only have lower quotas 𝑧

𝐿
(𝜆) and

upper 𝑧
𝑈
(𝜆).

Suppose that we are in the 𝑝th iteration 𝜆𝑝. Consider the
model

𝑤 (𝜆
𝑝
) = max

(𝑤,𝜌)

𝑤 −
1

2𝑡
𝑝

𝜌 − 𝜆
𝑝

2

,

s.t. 𝑤 ≤ (𝑔
𝑟
)
𝑡
(𝜌 − 𝜆

𝑝
) + 𝑧

𝑈
(𝜌
𝑟
) , 𝑟 ≥ 1,

(FI)

where 𝑡
𝑝
> 0, which determines the size of direction 𝜌 − 𝜆𝑃.

For application of the Bundle method, consider the
following.

(a) The value of 𝑔𝑟 := 𝐶
3
𝑥
𝑟

3
+ 𝐶

4
𝑥
𝑟

4
+ 𝐶

2
𝑦
𝑟

2
− 𝐾

5

corresponds to some 𝜀
𝑟
-subgradient of 𝜑 in 𝜆𝑟.

Indeed, for (𝑥𝑟, 𝑦𝑟) ∈ 𝑊
𝐼
and any 𝜆𝑝,

𝜑 (𝜆
𝑝
) = min

(𝑥,𝑦)∈𝑊
𝐼

ℓ (𝑥, 𝑦, 𝜆
𝑝
)

= ℓ (𝑥
𝑟
, 𝑦
𝑟
, 𝜆
𝑝
) − 𝜀

𝑟
, for some 𝜀

𝑟
≥ 0

(4)

Defining ℓ,

𝜑 (𝜆
𝑝
) = (𝜆

𝑝
− 𝜆)

𝑡

𝑔
𝑟
+ ℓ (𝑥

𝑟
, 𝑦
𝑟
, 𝜆) − 𝜀

𝑟

≥ (𝜆
𝑝
− 𝜆)

𝑡

𝑔
𝑟
+ 𝜑 (𝜆) − 𝜀

𝑟
,

(5)

that is, 𝑔𝑟 ∈ 𝜕
𝜀
𝑟

𝜑(𝜆
𝑝
) (subdifferencial of 𝜑(𝜆𝑝)).

(b) The linear cuts, corresponding to the local polyhedral
model, and also 𝜑(𝜆

𝑟
). This value is replaced by the

upper bound 𝑧
𝑈
(𝜌
𝑟
), provided by the primal relaxed

dual subproblem (D). To get 𝑔𝑟, 𝑧
𝑈
(𝜌
𝑟
), 𝑧

𝐿
(𝜌
𝑟
) may

require a few iterations of the Benders algorithm.

Indeed, consider acceptable (𝑔
𝑟, 𝑧

𝑈
(𝜌
𝑟
), 𝑧

𝐿
(𝜌
𝑟
)) if test

quality of the approximation of 𝜑(𝜌𝑟) is verified as follows:

𝑧
𝑈
(𝜌
𝑟
) − 𝑧

𝐿
(𝜌
𝑟
)

≤ 𝛼 (𝑧
𝑈
(𝜆
𝑝−1

) − 𝑧
𝐿
(𝜆
𝑝−1

)) , for some 0 < 𝛼 < 1.

(6)

It is noted that the convergence Benders method ensures
that the test will be checked in a finite number of iterations
[15]. With this test it is ensured that the maximum error in
calculating 𝜑, from one iteration to another in 𝜆, decreases.
Indirectly we also expect 𝜀

𝑟
→ 0.
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With this set of information, we have the model “approx-
imate”

Ω
𝑝
(𝜌) := min

𝑟
{(𝑔

𝑟
)
𝑡
(𝜌 − 𝜆

𝑝
) + 𝑧

𝑈
(𝜌
𝑟
)} . (7)

Thus, equivalently, (FI) is as follows:

max
𝜌

{Ω
𝑝
(𝜌) −

1

2𝑡
𝑝

𝜌 − 𝜆
𝑝

2

} . (8)

The regularized model (FI) has embedded in it the process
(decomposed) plans secants and intends to determine a
direction of ascent through the accumulated residue, with
the approximate calculation of the dual function 𝜑(𝜆) in
(DI), through Benders decomposition. The lemma and the
proposition that follow seek to justify the existence and
uniqueness of the solution of the quadratic subproblem, like
it’s the aggregate subgradient.

Lemma 1 (see Lemma XV.3.1.1 in [69]). The problem (8) has
a unique solution 𝜌𝑝+1 characterized by

𝜌
𝑝+1

= 𝜆
𝑝
+ 𝑡

𝑝
𝑔
𝑝
, 𝑔

𝑝
∈ 𝜕Ω

𝑝
(𝜌
𝑝+1

) . (9)

Furthermore

Ω (𝜆) ≤ 𝑧
𝐿
(𝜆
𝑝
) + (𝑔

𝑝
)
𝑡

(𝜆 − 𝜆
𝑝
) + 𝑒

𝑝
, ∀𝜆, (10)

where

𝑒
𝑝
= Ω(𝜌

𝑝+1
) − 𝑧

𝐿
(𝜆
𝑝
) − 𝑡

𝑝


𝑔
𝑝



2

. (11)

Proof. Suppose nonempty set generated by linear constraints,
the existence and uniqueness of the solution 𝜌

𝑝+1 following
the definition of a positive quadratic. The optimality condi-
tion for this solution is

0 ∈ 𝜕Ω
𝑝
(𝜌
𝑝+1

) −
1

𝑡
𝑝

(𝜌
𝑝+1

+ 𝜆
𝑝
) . (12)

Then

Ω (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)
𝑡

(𝜆 − 𝜌
𝑝+1

) (13)

which is equivalent to

Ω (𝜆) ≤ 𝑧
𝐿
(𝜆
𝑝
) + (𝑔

𝑝
)
𝑡

(𝜆 − 𝜆
𝑝
) − 𝑧

𝐿
(𝜆
𝑝
)

+ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)
𝑡

(𝜆
𝑝
− 𝜌

𝑝+1
) .

(14)

Considering (9) recognizes the expression (11) of 𝑒
𝑝
.

Proposition 2 (see Lemma XV.3.1.2 in [69]). With the
notation of Lemma 1, consider a quadratic functionΨ : R𝑛 →

R ∪ {∞} satisfying

Ψ (𝜆) ≤ 𝑧
𝐿
(𝜆
𝑝
) + (𝑔

𝑝
)
𝑡

(𝜆 − 𝜆
𝑝
) + 𝑒

𝑝
=: 𝜑 (𝜆) , ∀𝜆, (15)

where equality in 𝜆 = 𝜌
𝑝+1. Then 𝜌𝑝+1 maximizes the function

Ψ̃ (𝜆) := Ψ (𝜆) +
1

2𝑡
𝑝

𝜆 − 𝜆
𝑝

2

. (16)

Proof. Applying (9) and (11) and defining relations Ψ can be
written as follows:

Ψ (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)
𝑡

(𝜆 − 𝜌
𝑝+1

) − Ω (𝜌
𝑝+1

)

+ (𝑔
𝑝
)
𝑡

(𝜌
𝑝+1

− 𝜆
𝑝
) + 𝑧

𝐿
(𝜆
𝑝
) + 𝑒

𝑝
,

∴ Ψ (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)
𝑡

(𝜆 − 𝜌
𝑝+1

)

(17)

with equality in 𝜆 = 𝜌
𝑝+1. Subtracting the term (1/𝑡

𝑝
)(𝜆 −

𝜆
𝑝
) = 0 both sides,

Ψ̃ (𝜆) ≤ Ω (𝜌
𝑝+1

) + (𝑔
𝑝
)
𝑡

(𝜆 − 𝜌
𝑝+1

) −
1

2𝑡
𝑝

𝜆 − 𝜆
𝑝

2

, (18)

even with equality 𝜆 = 𝜌
𝑝+1. Now note that the function of

the right side is maximized when

𝑔
𝑝
−
1

𝑡
𝑝

(𝜆 − 𝜆
𝑝
) = 0, (19)

corresponding to 𝜌𝑝+1, given by (9).

The function 𝜑(𝜆) is known to aggregate linearization
approximation of 𝜑, where the limit on the model Ω, as
described in Lemma 1.

A more convenient way to solve (FI) is to be made
through the dual problem. Define the Lagrangian and their
optimality conditions as follows:

For 𝑑 := 𝜌 − 𝜆
𝑝,

ℓ
∗
(𝑤, 𝑑, 𝜂) = 𝑤 −

1

2𝑡
𝑝

‖𝑑‖
2

− ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
(𝑤 − (𝑔

𝑟
)
𝑡
𝑑 − 𝑧

𝑈
(𝜌
𝑟
)) , 𝜂 ≥ 0

ℓ
∗

𝑤
= 0 ∴ ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
= 1,

ℓ
∗

𝑑
= 0 ∴ −

1

2𝑡
𝑝

𝑑 + ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑔
𝑟
= 0.

(20)

Complementarity,

𝜂
𝑟
[𝑤 − (𝑔

𝑟
)
𝑡
𝑑 − 𝑧

𝑈
(𝜌
𝑟
)] = 0, 𝑟 ≥ 1. (21)

Substituting these equations into ℓ
∗, it has the following

quadratic linear problem:

min ℘ (𝜂) ,

s.t. ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
= 1,

𝜂
𝑟
≥ 0,

(DFI)
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where

℘ (𝜂) =

𝑡
𝑝

2



∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑔
𝑟



2

+ ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑧
𝑈
(𝜌
𝑟
) . (22)

Consider that the optimality conditions have also to
update the multiplier

𝜌 = 𝜆
𝑝
+ 𝑡

𝑝
( ∑

𝑟∈{1,...,ℓ)

𝜂
𝑟
𝑔
𝑟
) , (23)

where 𝜂 is single solution of (DFI).

5. The Approximate Algorithm of Bundle

5.1. Algorithm Partial Benders. At each iteration, the multi-
plier 𝜆 is used in subproblem (D), what, resolved, provides
an upper bound 𝑧

𝑈
and generates a new Benders cut to be

included in the relaxed master problem (MB). Solving this
provides a lower limit 𝑧

𝐿
and a variable y for subproblem

(L), which in turn is resolved in 𝑥. With 𝜆 fixed, this process
is repeated and accumulated up all the cuts in the master
problem Benders (MB), until the test (6) is satisfied. At the
end of this process the values of 𝑥, 𝑦, 𝑧

𝑈
, and 𝑧

𝐿
are taken to

the regularized model, a new update to the multiplier.

Note. We chose to include the quadratic model only the cut
that corresponds to the test (6). However, we can include all
cuts, leaving for future work the selection policy and proper
disposal.

5.2. Approximate Test Armijo. One approach test Armijo [8]
here will determine that the direction of the approximation
increases 𝜑. Thereby,

𝛿
𝑝
:= Ω (𝜌

𝑝+1
) − 𝑧

𝐿
(𝜌
𝑝
) −

1

2𝑡
𝑝


𝜌
𝑝+1

− 𝜆
𝑝

2

, (24)

where 𝜌𝑝+1 = 𝜆
𝑝
+ 𝑡

𝑝
𝑔 andΩ is given by (7).

Approaching the values of 𝜑 by lower quotas (𝑧
𝐿
(𝜆)) and

upper (𝑧
𝑈
(𝜌)) has

𝜑 (𝜌
𝑝+1

) − 𝜑 (𝜆
𝑝
) ≤ 𝑧

𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) . (25)

For 0 < 𝑚
1
< 1 provided, an approximation of the test

Armijo will be satisfied in 𝜌𝑝+1 if

𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) ≥ 𝑚

1
𝛿
𝑝
, (26)

where the left side is positive because

𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) ≥ 𝑧

𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜌
𝑝+1

) ≥ 0. (27)

If we compare this to the test that corresponded to
the exact calculation of the function 𝜑, observed that the
difference between the current and the candidate has been
replaced by an increase as much as 𝛿

𝑝
is an increase of

the exact value. This expects that the test stop approximate
Bundle method will not be anticipated, since also ensures a
good approximation to the function 𝜑.

5.3. Regularization Algorithm for Updating the Multipliers
with Relaxation. Before we present the algorithm and in
order to keep the notation, replace the model (FI) that is
equivalent to

𝑤 (𝜆
𝑝
) = max

(𝑤,𝜌)

𝑤 −
1

2𝑡
𝑝

𝜌 − 𝜆
𝑝

2

,

s.t. 𝑤 ≤ (𝑔
𝑟
)
𝑡
(𝜌 − 𝜌

𝑟
) + 𝑒

𝑟
+ 𝑧

𝑈
(𝜆
𝑝
) , 𝑟 ≥ 1,

(6

)

where

𝑒
𝑟
:= 𝑒 (𝜆

𝑝
, 𝜌
𝑟
, 𝑔
𝑟
) := 𝑧

𝑈
(𝜌
𝑟
) − 𝑧

𝑈
(𝜆
𝑝
) + (𝑔

𝑟
)
𝑡
(𝜌
𝑟
− 𝜆

𝑝
) .

(28)

We used without distinctions 𝑔(𝜌𝑟) and 𝑔
𝑟.

Algorithm 3. Initialization: They are given tolerance stop 𝛿 ≥
0 and 𝜃 > 0. Consider ℓ > 0 the maximum size of the Bundle,
𝑡
1
> 0. Get an initial dual feasible solution 𝜆1, 𝑦0 ∈ 𝑌 and 𝑥0

initial feasible solution (L); that is, for 𝑦 = 𝑦
0, 𝑥0 is solution

of

𝐴
𝑘
𝑥
𝑘
= 𝐾

𝑘
− 𝐵

𝑘
𝑦
1
, 𝑘 = 1, . . . , 4,

𝑥
𝑘
∈ 𝑋

𝑘
, 𝑘 = 1, . . . , 4.

(29)

Calculate 𝑔1 = 𝑔(𝜆
1
). Make 𝑧

𝑈
(𝜆
1
) := ℓ(𝑥

0
, 𝑦
0
, 𝜆
1
). Estimate

𝑧
𝐿
(𝜆
1
), for example, through an iteration of the Benders

method. Choice 𝑚
1

∈ (0, 1) reducing the test Armijo,
𝛼 ∈ (0, 1) is the reduction in quality test approximation 𝜑.
Initialize the set of ascent 𝑃 = 𝜙, the accountant of iterations
𝑝 = 1, and the size of the bundle ℓ = 1. For 𝑒

1
= 0,

corresponding to the initial bundle (𝑔1, 𝑒
1
), and the initial

model

𝜌 → Ω
1
(𝜌) := 𝑧

𝑈
(𝜆
1
) + (𝑔

1
)
𝑡

(𝜌 − 𝜆
1
) . (30)

Step 1 (principal calculation and test stop). Whether 𝜌𝑝+1 is
the unique solution of the quadratic problem such that

𝜌
𝑝+1

= 𝜆
𝑝
+ 𝑡

𝑝
𝑔
𝑝
, where 𝑔𝑝 ∈ 𝜕Ω

𝑝
(𝜌
𝑝+1

) . (31)

Make

𝑒
𝑝
:= Ω

𝑝
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) − 𝑡

𝑝

𝑔
𝑝

2

,

𝛿
𝑝
:= Ω

𝑝
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) −

𝑡
𝑝

2

𝑔
𝑝

2

.

(32)

Calculate through of the algorithm

𝑧
𝑈
(𝜌
𝑝+1

) , 𝑧
𝐿
(𝜌
𝑝+1

) , 𝑔 (𝜌
𝑝+1

) . (33)

If 𝛿
𝑝
≤ 𝛿 and 𝑧

𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜌
𝑝+1

) > 𝜃, stop.

Step 2 (approximation test Armijo). If 𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜆
𝑝
) ≥

𝑚
1
𝛿
𝑝
,𝑚

1
∈ (0, 1) is “serious step”; otherwise, it is “null step,”

check to Step 4.
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Step 3 (serious step).

Make 𝜆𝑝+1 = 𝜌
𝑝+1.

Add 𝑝 the set 𝑃; for 𝑟 = 1, . . . , ℓ.
Permute 𝑒

𝑟
and 𝑒

𝑝
by, respectively,

𝑒
𝑟
+ 𝑧

𝑈
(𝜆
𝑝
) − 𝑧

𝑈
(𝜆
𝑝+1

) + (𝑔
𝑟
)
𝑡
(𝜆
𝑝
− 𝜆

𝑝+1
) ,

𝑒
𝑟
+ 𝑧

𝑈
(𝜆
𝑝
) − 𝑧

𝑈
(𝜆
𝑝+1

) + (𝑔
𝑟
)
𝑡
(𝜆
𝑝
− 𝜆

𝑝+1
) .

(34)

Step 4 (control of bundle size). If ℓ = ℓ, then eliminate at least
two of the bundle elements and insert the element (𝑔𝑝, 𝑒

𝑝
).

Consider (𝑔𝑡, 𝑒
𝑡
)
𝑡=1,...,ℓ

the new bundle obtained (with ℓ =
ℓ).

Step 5. Insert (𝑔ℓ+1, 𝑒
ℓ+1

) to the bundle, where 𝑒
ℓ+1

= 0 in the
case of serious step, and in the case of null step,

𝑒
ℓ+1

= 𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝑈
(𝜆
𝑝
) + (𝑔

ℓ+1
)
𝑡

(𝜌
𝑝+1

− 𝜆
𝑝
) . (35)

Replace ℓ by ℓ + 1, and update the model 𝜌 → Ω
𝑝+1

(𝜌) :=

min
𝑟
{(𝑔

𝑟
)
𝑡
(𝜌 − 𝜆

𝑝+1
) + 𝑧

𝑈
(𝜌
𝑟
)}.

Step 6. Make 𝑝 = 𝑝 + 1, and return to Step 1.

5.4. Partial Benders Algorithm for Integer Linear Problem with
Relaxation. Initialization: make 𝑞 = 1.

Step 1. Solve

V
𝐷
= max
(V𝑖 ,𝑢𝑖)

4

∑

𝑖=1

𝑑
𝑡

𝑖
𝑉
𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑖
,

s.t. 𝐷
𝑡

𝑖
V
𝑖
+ 𝐴

𝑡

𝑖
𝑢
𝑖
≤ 𝑐

𝑖
,

where 𝑐
𝑖
= {

𝑐
𝑖
, 𝑖 = 1, 2,

𝑐
𝑖
+ 𝐶

𝑡

𝑖
𝜌
𝑝+1

, 𝑖 = 3, 4.

(36)

If there is no solution, stop: (𝜑
1
) has no feasible solution.

Otherwise, (V(𝑝,𝑞), 𝑢(𝑝,𝑞)) solution, and then

𝑧
𝑈
(𝜌
𝑝+1

) =

2

∑

𝑗=1

𝑒
𝑡

𝑖
𝑦
𝑗
+ 𝜌

𝑡
𝐶
2
𝑦
2
+ V

𝐷
. (37)

Generate a new constraint (cut) from (𝜌
𝑝+1

, V(𝑝,𝑞), and 𝑢(𝑝,𝑞)).
Continue with Step 2.

Step 2. Solve

min 𝑧,

s.t. 𝑧 ≥

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗
+ (𝜌

𝑝+1
)
𝑡

𝐶
2
𝑦
2
+

4

∑

𝑖=1

𝑑
𝑡

𝑖
V
𝑞

𝑖

+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦)
𝑡
, 𝑧 ∈ R, 𝑦 ∈ 𝑌, ∀𝑞.

(38)

Consider (𝑧
𝐿
(𝜌
𝑝+1

), 𝑦
𝑝+1

) the optimal solution. Continue
with Step 3.

Step 3. Solve

min
4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜌

𝑝+1
)
𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) .

s.t. 𝐴
𝑘
𝑥
𝑘
= 𝑘

𝑘
− 𝐵

𝑘
𝑦
𝑝+1

1
, 𝑘 = 1, . . . , 4.

𝑥
𝑘
∈ 𝑋

𝑅
, 𝑘 = 1, . . . , 4.

(39)

Whether 𝑥𝑝+1 solution; continue with Step 4.

Step 4 (test quality approach 𝜑).

If

𝑧
𝑈
(𝜌
𝑝+1

) − 𝑧
𝐿
(𝜌
𝑝+1

) ≤ 𝛼 (𝑧
𝑈
(𝜆
𝑝
) − 𝑧

𝐿
(𝜆
𝑝
)) (40)

end.

Otherwise, make𝑝+1 = 𝑝, 𝑞 = 𝑞+1, and return to Step 1.

Remarks

(1) The test for stopping the algorithm adds to the usual
tolerance 𝛿 of bundles, the requirement that the
function approximation is reasonable. In fact, for
crude approximations of 𝜑, it is possible to have false
serious steps with error 𝛿 false small, hence the need
for 𝜃-approximation.

(2) The Benders relaxed master problem (MB) should
have some heuristics for selecting cuts, given that
the accumulations of all inequalities explode the
subproblem.

We present Figure 1 of the algorithm for the problemwith
integer linear relaxation.

5.5. About Convergence. We opted to observe that 𝜃 small
enough for the results cited correspond to guarantee the
stability of the algorithm of bundle. This can be observed
by adding a positive parameter 𝜃 → 0, the expression of
errors linearization, and the gains predicted by the model
(see, Lemma 3.2.1 in [69]. Thus if only guarantee the local
convergence. Furthermore, the quality test approximation
(𝜑
1
) should be sufficient for obtaining convergence of the

overall strength because the iterative process to arrive at the
usual formulation of the bundle, with 𝜃 = 0. Undoubtedly,
with the risk of being a high cost computational algorithm,
as already noted. It presents the known result that guarantees
no cycling algorithm Benders.

Theorem 4. The vectors composed of the vertices and their
multipliers (V𝑝, 𝑢𝑝, and 𝜆𝑝) generated at each iteration by the
algorithm are different.

Proof. Suppose that the first (𝑝 ≥ 1) extreme points, say
(V1, 𝑢1), (V2, 𝑢2), . . . , (V𝑝, 𝑢𝑝) the problem generated (D) (𝜆)
and 𝜆1, . . . , 𝜆𝑝 obtained problem regularized (FI).
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Regularization process for
update multiplier 𝜆 

Dual primal subproblem 
relaxed (D)

Relaxed primal 
subproblem (L)

Relaxed primal master 
problem (MB)

Initialization

x

𝜆

(x, y, zL , zU)

{y, (�
q
, u

q
)}

(�
q
, u

q
); zU

y; zL

Test quality (𝜑1)

Figure 1

Then with the Step 2, it has

min 𝑧,
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(41)

The optimal solution of this problem 𝑧, 𝑦, that is, for some
𝑘 (1 ≤ 𝑘 ≤ 𝑝), 𝑠 = 1, . . . , 𝑝
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As 𝑧 is a lower bound on the optimal cost primal relaxed 𝜑,
𝜑 ≥ 𝑧, and with (42),
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(43)

On the other hand, in the next iteration of (D) (𝜆𝑝+1) the
solution (V𝑝+1, 𝑢𝑝+1) is a vertex 𝑈(𝜆). Then
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(44)

where 𝑥 is a solution of (L) (𝜆).
As (𝑥, 𝑦) is a viable solution 𝜑 it has
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Equivalently
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(46)

Combining (43) and (44), it has

4

∑

𝑖=1

𝑏
𝑡

𝑖
V
𝑘

𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑘

𝑖
+ (𝜆

𝑘
)
𝑡

𝐶
2
𝑦
2

≤ 𝜑 −

2

∑

𝑗=1

𝑒
𝑡

𝑗
𝑦
𝑗

≤

4

∑

𝑘=1

𝑐
𝑡

𝑘
𝑥
𝑘
+ (𝜆

𝑝+1
)
𝑡

(𝐶
3
𝑥
3
+ 𝐶

4
𝑥
4
) + (𝜆

𝑝+1
)
𝑡

(𝐶
2
𝑦
2
)

=

4

∑

𝑖=1

𝑏
𝑡

𝑖
V
𝑝+1

𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑝+1

𝑖
+ (𝜆

𝑝+1
)
𝑡

𝐶
2
𝑦
2
.

(47)

If 𝜑 − (∑
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then (𝑥, 𝑦) solves the relaxed integer linear

problem (𝜑).
Otherwise,

4

∑

𝑖=1

𝑏
𝑡

𝑖
V
𝑘

𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑘

𝑖
+ (𝜆

𝑘
)
𝑡

𝐶
2
𝑦
2

<

4

∑

𝑖=1

𝑏
𝑡

𝑖
V
𝑝+1

𝑖
+

4

∑

𝑖=1

(𝐾
𝑖
− 𝐵

𝑖
𝑦
1
)
𝑡
𝑢
𝑝+1

𝑖
+ (𝜆

𝑝+1
)
𝑡

𝐶
2
𝑦
2

(48)

in which case (V𝑘, 𝑢𝑘, 𝜆𝑘) ̸=(V𝑝+1, 𝑢𝑝+1, 𝜆𝑝+1).
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But inequality (42) is as follows:
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On the other hand, of (48),
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(50)

and therefore (V𝑝+1, 𝑢𝑝+1, 𝜆𝑝+1) ̸=(V𝑠, 𝑢𝑠, 𝜆𝑠) 𝑠 = 1, . . . , 𝑝.

Corollary 5. If 𝑞 > 1, the 𝑚th iteration internal, then
𝑦
𝑚+1

̸=𝑦
𝑚.

Proof. Suppose the contrary, that to solve (MB) with 𝑚 cuts,
the solution 𝑦 is repeated. In this case, to solve the problem
(D), we would obtain a vector (V𝑚+1, 𝑢𝑚+1) satisfying
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(51)

for some ℓ = {1, . . . , 𝑚}. However, this only occurs when the
optimality criterion is reached.

6. Conclusion and Future Works

Our main goal was to present an alternative technique
using Lagrangian relaxation in solving a problem in integer
linear programming. The work introduced a new algorithm
structured from a block of relaxation of constraints that the
problem presents difficulties when approached by traditional
techniques Benders. We hope to take advantage of the com-
putational process smoothing over other heuristic algorithms
(Dantzig-Wolfe, subgradient) because its search direction is
determined by processes similar to bundle method, which
has shown proven results superior to those in many large
problems [60]. It seems also unlikely that the technique
of “Cross Decomposition” would be adaptable. As future
works, we investigate other applications in order to verify the
efficiency of the methods on structured problems and extend
the decomposition to nonlinear problems and integer non-
linear, using the Lagrangian heuristic process along with the
regularization. It is expected that other hybridmethodologies
[71–74] can be applied in the solution of the problem (P) [1].
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Recently, various methods have been developed for solving linear programming problems with fuzzy number, such as simplex
method and dual simplexmethod. But their computational complexities are exponential, which is not satisfactory for solving large-
scale fuzzy linear programming problems, especially in the engineering field. A new method which can solve large-scale fuzzy
number linear programming problems is presented in this paper, which is named a revised interior point method. Its idea is similar
to that of interior pointmethod used for solving linear programming problems in crisp environment before, but its feasible direction
and step size are chosen by using trapezoidal fuzzy numbers, linear ranking function, fuzzy vector, and their operations, and its end
condition is involved in linear ranking function.Their correctness and rationality are proved.Moreover, choice of the initial interior
point and some factors influencing the results of this method are also discussed and analyzed. The result of algorithm analysis and
example study that shows proper safety factor parameter, accuracy parameter, and initial interior point of this method may reduce
iterations and they can be selected easily according to the actual needs. Finally, the method proposed in this paper is an alternative
method for solving fuzzy number linear programming problems.

1. Introduction

Linear programming is one of themost widely used decision-
making tools for solving real-word problems. However, real
word situations are characterized by imprecision rather than
exactness. Then, fuzzy linear programming (FLP) has been
developed to treat uncertainty of optimization problems,
such as fuzzy data envelopment analysis and fuzzy network
optimization [1–3]. Since 1970, various attempts have been
made to study FLP problem [4–32]. The concept of FLP
was first proposed by Tanaka et al. [4] in the framework of
the fuzzy decision of Bellman and Zadeh [5]. For solving
FLP, defuzzification methods have been widely studied for
some years and applied to fuzzy control and fuzzy expert
systems. The most common transforming method is ranking
fuzzy numbers method, which is to establish a one-to-one
correspondence between fuzzy numbers and real numbers
according to the definite rule. Then, every fuzzy number
is mapped to a point on the real line. Ranking is a viable

approach for ordering fuzzy numbers. A special version of
ranking function was first proposed by Yager [33].

Then, many researchers have considered various kinds
of FLP problems and have proposed some approaches for
solving these problems [8–28]. Maleki et al., Ganesan and
Veeramani, and Nasseri et al. [8–12] presented simplex meth-
ods for solving fuzzy number linear programming (FNLP)
and linear programming with fuzzy variables (FVLP) using
the concept of comparison of fuzzy numbers and linear
ranking function. This method is similar to the simplex
method that was used for solving linear programming
problems in crisp environment. Nasseri and Khabiri [13]
proposed a revised simplex algorithm for FVLP, which is
useful for sensitivity analysis on FVLP. Furthermore, there is
a revised simplex algorithm for FNLP problems using linear
ranking function proposed [14], which is useful for sensitivity
analysis on FNLP. Nasseri et al. [15] considered a kind of
linear programming which includes the triangular fuzzy
numbers in its parameters and proposed a revised simplex
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algorithm for an extended linear programming problem
which is equivalent to the original fuzzy linear programming
problem. Ebrahimnejad [16] obtained some new results in
FLP and gave a new method to obtain an initial fuzzy
basic feasible solution for solving FLP problems. Nasseri and
Alizadeh [17] thought that finding a basic feasible solution
(BFS) is not straightforward and some works to make the
simplex algorithm start might be needed, so they proposed
a penalty method to solve FVLP problems in which the BFS
is not readily available. Ebrahimnejad et al. [18] proposed
a new method for bounded linear programming with fuzzy
cost coefficients called the bounded fuzzy primal simplex
algorithm. Some scholars [19–25] studied duality in FLP.
Mahdavi-Amiri, Nasseri and Ebrahimnejad presented the
dual simplex algorithm for solving FNLP problem [19, 20]
and the dual simplex algorithm for FVLP problem [21].
Ebrahimnejad et al. [22] introduced another efficientmethod,
primal-dual simplex algorithm, to obtain a fuzzy solution of
FVLP problem. Ebrahimnejad and Nasseri [23] studied dual
simplex algorithm for bounded linear programming with
fuzzy numbers. Ebrahimnejad and Nasseri [24] defined a
new dual problem for the linear programming problem with
trapezoidal fuzzy variables as a linear programming problem
with trapezoidal fuzzy variables and deduced the duality
results such as weak duality, strong duality, and complemen-
tary slackness theorems. Nasseri et al. [25] established the
dual of a linear programming problemwith symmetric trape-
zoidal fuzzy numbers, where the coefficients and variables are
symmetric trapezoidal fuzzy numbers, and developed some
duality results for the fuzzy primal and fuzzy dual problems.
Ebrahimnejad and Nasseri [26] used the complementary
slackness to solve FNLP and FVLP problems without the
need of a simplex tableau. Sigarpich et al. [27] gave a new
method for solving the degeneracy in linear programming
problems with fuzzy variables by a definite linear function for
ranking symmetric triangular fuzzy numbers. Chanas [28]
presented the possibility of the identification of a complete
fuzzy decision in fuzzy linear programming by use of the
parametric programming technique.

Sensitivity analysis is a basic tool for studying per-
turbations in optimization problems. There is considerable
research on sensitivity analysis for somemodels of operations
research and management science such as linear program-
ming and investment analysis. So, many scholars studied the
sensitivity analysis for FVLP [29–31] and FNLP [32]. They
considered the following variations: change in the cost vector,
change in the right-hand side vector, change in the constraint
matrix, addition of a new activity (trapezoidal fuzzy variable),
and addition of a new constraint.

In a word, existing methods solving FNLP problems are
mainly using the concept of comparison of fuzzy numbers
and linear ranking function to change the fuzzy number into
crisp number, using simplex method and its revised method
to solve these FNLPproblems. Because the time complexity of
simplex methods [10, 11] or revised simplex algorithm [14] is
exponential, its iterationswill increase rapidlywith increasing
the number of decision-making variables and constraint
conditions. This paper wants to propose a new interior point
method to improve the efficiency of solving large-scale FNLP

problems, which will revise the feasible direction and step
size as well as terminate condition in common interior point
method by using trapezoidal fuzzy numbers, linear ranking
function, fuzzy vector, and their operations.

This paper is organized as follows. We demonstrate some
preliminaries of fuzzy set theory and the concept of ranking
functions in Section 2.The simplexmethod for solving FNLP
will be reviewed in Section 3. A new interior pointmethod for
solving FNLP will be proposed in Section 4. Example study
and algorithm analysis will be shown in Section 5. Finally, we
will allocate the Section 6 to conclusions.

2. Preliminaries

In this section, we review some necessary concepts of fuzzy
set theory and the ranking function and then present some
definition about fuzzy vectors.

Definition 1 (see [5, 19]). A convex fuzzy set 𝐴 on 𝑅 is a fuzzy
number if the following conditions hold.

(i) Its membership function is piecewise continuous.

(ii) There exist three intervals [𝑎, 𝑏], [𝑏, 𝑐], and [𝑐, 𝑑] such
that 𝜇

𝐴
is increasing on [𝑎, 𝑏], equal to 1 on [𝑏, 𝑐],

decreasing on [𝑐, 𝑑], and equal to 0 elsewhere.

Definition 2 (see [5, 19]). Let 𝐴 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) denote the
trapezoidal fuzzy number, where (𝑎𝐿−𝛼, 𝑎𝑈+𝛽) is the support
of 𝐴 and [𝑎𝐿, 𝑎𝑈] is its core.

Remark 3. Wedenote the set of all trapezoidal fuzzy numbers
by 𝐹(𝑅).

Theorem 4 (see [5, 19]). If 𝑎 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) and �̃� =
(𝑏
𝐿
, 𝑏
𝑈
, 𝛾, 𝜃) are two trapezoidal fuzzy numbers, then

(i) for any 𝑥 > 0, 𝑥 ∈ 𝑅, 𝑥𝑎 = (𝑥𝑎𝐿, 𝑥𝑎𝑈, 𝑥𝛼, 𝑥𝛽),

(ii) for any 𝑥 < 0, 𝑥 ∈ 𝑅, 𝑥𝑎 = (𝑥𝑎𝑈, 𝑥𝑎𝐿, −𝑥𝛽, −𝑥𝛼),

(iii) 𝑎 + �̃� = (𝑎𝐿 + 𝑏𝐿, 𝑎𝑈 + 𝑏𝑈, 𝛼 + 𝛾, 𝛽 + 𝜃).

Definition 5 (see [34]). The function R : 𝐹(𝑅) → 𝑅 which
maps each fuzzy number into the real line is called a ranking
function, where a natural order exists.

Theorem 6 (see [34]). If 𝑎, �̃� ∈ 𝐹(𝑅), then

(i) 𝑎 ≥R �̃� if and only ifR(𝑎) ≥R(�̃�);

(ii) 𝑎 >R �̃� if and only ifR(𝑎) >R(�̃�);
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(iii) 𝑎 =R �̃� if and only ifR(𝑎) =R(�̃�);

(iv) 𝑎 ≤R �̃� if and only ifR(𝑎) ≤R(�̃�).

Definition 7 (see [34]). If a ranking functionR such that

R (𝑘𝑎 + �̃�) = 𝑘R (𝑎) +R (�̃�) (1)

for any 𝑎, �̃� ∈ 𝐹(𝑅), 𝑘 ∈ 𝑅, thenR is a linear ranking function
on 𝐹(𝑅).

Theorem 8 (see [33]). The forms of linear ranking functions
on 𝐹(𝑅) are often given as follows:

(i) R(𝑎) = 𝑐
𝐿
𝑎
𝐿
+𝑐
𝑈
𝑎
𝑈
+𝑐
𝛼
𝛼+𝑐
𝛽
𝛽, where 𝑎 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽)

and 𝑐
𝐿
, 𝑐
𝑈
, 𝑐
𝛼
, 𝑐
𝛽
are constants, at least one of which is

nonzero;

(ii) R(𝑎) = (1/2) ∫1
0
(inf 𝑎
𝜆
+ sup 𝑎

𝜆
)𝑑𝜆, that is, reduced to

R (𝑎) =
𝑎
𝐿
+ 𝑎
𝑈

2
+
1

4
(𝛽 − 𝛼) . (2)

Corollary 9 (see [34]). For any trapezoidal fuzzy number 𝑎,
the relation 𝑎 ≥ 0̃ holds if there exist 𝜀 ≥ 0 and 𝛼 ≥ 0 such that
𝑎 ≥R (−𝜀, 𝜀, 𝛼, 𝛼). One realizes thatR(−𝜀, 𝜀, 𝛼, 𝛼) = 0 (one also
consider that 𝑎 =R 0̃ if and only if R(𝑎) = 0). Thus, without
loss of generality, throughout the paper one lets 0̃ = (0, 0, 0, 0)
as the zero trapezoidal fuzzy number.

Corollary 10 (see [34]). For any two trapezoidal fuzzy num-
bers 𝑎 = (𝑎𝐿, 𝑎𝑈, 𝛼, 𝛽) and �̃� = (𝑏𝐿, 𝑏𝑈, 𝛾, 𝜃), 𝑎 ≥R �̃� if and only
if 𝑎𝐿 + 𝑎𝑈 + (1/2)(𝛽 − 𝛼) ≥ 𝑏𝐿 + 𝑏𝑈 + (1/2)(𝜃 − 𝛾).

Definition 11. A fuzzy vector of 𝑛 dimension on 𝐹(𝑅) is an 𝑛-
tuple on 𝐹(𝑅): 𝑐 = (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
), where the fuzzy number 𝑐

𝑖

is called the 𝑖th component of it, 1 ≤ 𝑖 ≤ 𝑛.

Definition 12. Let 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) and 𝑑 = (𝑑

1
, 𝑑
2
, . . . , 𝑑

𝑛
)

be two fuzzy vectors whose sum is defined as

𝑐 + 𝑑 = (𝑐
1
+ 𝑑
1
, 𝑐
2
+ 𝑑
2
, . . . , 𝑐

𝑛
+ 𝑑
𝑛
) . (3)

Remark 13. It is quite easy to get the following rules:

(i) commutativity: 𝑐 + 𝑑 = 𝑑 + 𝑐;

(ii) associativity: (𝑐 + 𝑑) + 𝑒 = 𝑐 + (𝑑 + 𝑒);

(iii) neutral Element: 0̃ + 𝑐 = 𝑐 + 0̃ = 𝑐.

Definition 14. Let 𝑎 ∈ 𝑅, 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) be a fuzzy vector;

scalar multiplication of 𝑐 by 𝑎 is defined as

𝑎𝑐 = (𝑎𝑐
1
, 𝑎𝑐
2
, . . . , 𝑎𝑐

𝑛
) . (4)

Remark 15. It is quite easy to get the following rules:

(i) distributivity over fuzzy vectors: 𝑎(𝑐 + 𝑑) = 𝑎𝑐 + 𝑎𝑑;
(ii) distributivity over number: (𝑎 + 𝑏)𝑐 =R 𝑎𝑐 + 𝑏𝑐.

Definition 16. Let 𝑐 = (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
); ranking function

operation of 𝑐 is defined as

R (𝑐) = (R (𝑐
1
) ,R (𝑐

2
) , . . . ,R (𝑐

𝑛
)) . (5)

Remark 17. It is quite easy to obtain

R (𝑘𝑐 + 𝑑) = 𝑘R (𝑐) +R (𝑑) , (6)

where 𝑐, 𝑑 ∈ (𝐹(𝑅))𝑛 and 𝑘 ∈ 𝑅.

Definition 18. Let 𝑎 = (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), 𝑐 = (𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
);

vector multiplication of 𝑐 by 𝑎 is defined as

𝑎𝑐
𝑇
= (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) (𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
)
𝑇
=

𝑛

∑

𝑖=1

𝑎
𝑖
𝑐
𝑖
. (7)

3. Simplex Method for Solving Fuzzy Number
Linear Programming

In this section, we recall the definition of FNLP and the fuzzy
primal simplex algorithm to FNLP.

Definition 19 (see [11, 19]). An FNLP problem is defined as
follows

max �̃� =R 𝑐
𝑇
𝑥

s.t. 𝐴𝑥 ≤ 𝑏,

𝑥 ≥ 0,

(8)

where 𝑏 ∈ 𝑅𝑚, 𝑥 ∈ 𝑅𝑛, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑐 ∈ (𝐹(𝑅))𝑛, and R is a
linear ranking function.

Remark 20. There is another equivalent form of (8) as
follows:

max �̃� =R 𝑐
𝑇
𝑥

s.t. 𝐴𝑥 ≤ 𝑏,
(9)

where 𝐴 ∈ 𝑅(𝑚+𝑛)×𝑛 and the other symbols are the same as in
(8).

Algorithm 21 (see [11]). The fuzzy primal simplex algorithm.

Assumption. A basic feasible solution with basis 𝐵 and the
corresponding simplex tableau is at hand.

(i) The basic feasible solution is given by 𝑥
𝐵
= 𝐵
−1
𝑏 and

𝑥
𝑁
= 0. The fuzzy objective value is �̃� =R (𝑐𝐵𝑥𝐵).



4 Journal of Applied Mathematics

(ii) Let �̃�
𝑘
− 𝑐
𝑘
= min

𝑗
{�̃�
𝑗
− 𝑐
𝑗
}, 𝑗 = 1, . . . , 𝑛, 𝑗 ̸= 𝐵

𝑖
, 𝑖 =

1, . . . 𝑚. If �̃�
𝑘
−𝑐
𝑘
≥R 0; then stop.The current solution

is optimal; else go to step (iii).

(iii) If 𝑦
𝑘
≤ 0, then stop; the problem is unbounded.

Otherwise determine the index of the variable 𝑥
𝐵
𝑟

leaving the basis as follows:

𝑏
𝑟

𝑦
𝑟𝑘

= min
1≤𝑖≤𝑚

{
𝑏
𝑖

𝑦
𝑖𝑘

| 𝑦
𝑖𝑘
> 0} . (10)

(iv) Pivot on 𝑦
𝑟𝑘

and update the simplex tableau. Go to
step (ii).

Remark 22. Theidea of this algorithm is to start froma vertex;
each step of its iteration is moving to a better vertex until the
optimal solution is found or infeasible solution is proved.

In Algorithm 21, searching adjacent vertexes is just only
along the edge, and each iteration calculation is very small.
But simplex method should go a long way to reach the
optimal solution along the feasible region boundary through
almost each vertex. For the feasible region of the large-
scale application, a problem may have a lot of vertexes, this
“boundary method” will encounter the problem of huge
calculation generating by iteration. In order to reduce the
iterations, alternative method is moving along the “short
path” in internal of the feasible region. However, the usual
interior pointmethod always needs to consider all the feasible
directions in each step of iteration in order to find the best
one.

Fortunately, we know that Karmarkar’s interior point
method [35] is not searching forward along the surface of
the feasible region but directly approaching to the optimal
solution along search directions in the internal of the feasible
region. But thismethod cannot be used directly to solve FNLP
problems. So, in the next section, we will propose a revised
interior point method, which can be used directly to solve
FNLP problem.

4. A Revised Interior Point Method for Solving
Fuzzy Number Linear Programming

In this section, we propose a revised interior-pointmethod to
solve FNLP problem.

4.1. The Idea of Revised Interior Point Method. The basic idea
of revised interior point is first starting from an interior
point 𝑥0 and getting a subsequent point to increase objective
function value along the feasible direction, then starting
from this interior point, and getting a new subsequent
point to make objective function value increase along other
feasible direction. Repeating the previous steps will produce
a sequence of point {𝑥𝑘} which is subject to 𝑐𝑇𝑥𝑘+1 ≥R 𝑐

𝑇
𝑥
𝑘,

where 𝑐𝑇𝑥𝑘+1 ≥R 𝑐
𝑇
𝑥
𝑘 are the operations of ranking function

and fuzzy vector. When the iteration is subjected to termina-
tion criterion, it will stop.The key of this method is choosing
a feasible direction to improve objective function value.

4.2. The Derivation of Computational Formula. Combined
with the slack variable V, the problem (9) is converted into
the following form:

max �̃� =R 𝑐
𝑇
𝑥

s.t. 𝐴𝑥 + V = 𝑏,

V ≥ 0.

(11)

In the 𝑘th iteration, define V𝑘 ≥ 0, V𝑘 ∈ 𝑅𝑚, subject
to V𝑘 = 𝑏 − 𝐴𝑥𝑘. Then, define the diagonal matrix 𝐷

𝑘
=

diag(1/𝑉𝑘
1
, 1/𝑉
𝑘

2
, . . . , 1/𝑉

𝑘

𝑚
).

Let 𝑤 = 𝐷
𝑘
V, problem (11) is changed as follows:

max �̃� =R 𝑐
𝑇
𝑥

s.t. 𝐴𝑥 + 𝐷−1
𝑘
𝑤 = 𝑏,

𝑤 ≥ 0.

(12)

Choose the search direction 𝑑 = [𝑑
𝑥
𝑑
𝑤
]
𝑇; then it must be

one solution of the following equation:

𝐷
𝑘
𝐴𝑑
𝑥
+ 𝑑
𝑤
= 0, (13)

𝐴
𝑇
𝐷
𝑘
(𝐷
𝑘
𝐴𝑑
𝑥
+ 𝑑
𝑤
) = 0,

𝑑
𝑥
= −(𝐴

𝑇
𝐷
2

𝑘
𝐴)
−1

𝐴
𝑇
𝐷
𝑘
𝑑
𝑤
.

(14)

Then,

𝑐
𝑇
𝑑
𝑥
=R𝑐
𝑇
[−(𝐴
𝑇
𝐷
2

𝑘
𝐴)
−1

𝐴
𝑇
𝐷
𝑘
𝑑
𝑤
]

=R − [𝐷𝑘𝐴(𝐴
𝑇
𝐷
2

𝑘
𝐴)
−1

𝑐]

𝑇

𝑑
𝑤
.

(15)

To maximize 𝑐𝑇𝑑
𝑥
, that is to say, maximize R(𝑐𝑇𝑑

𝑥
), com-

bined with (6) and (7), then

𝑑
𝑤
= −R (𝐷

𝑘
𝐴(𝐴
𝑇
𝐷
2

𝑘
𝐴)
−1

𝑐) = −𝐷
𝑘
𝐴(𝐴
𝑇
𝐷
2

𝑘
𝐴)
−1

R (𝑐) .

(16)

From (13) and (16), we get

𝑑
𝑥
= (𝐴
𝑇
𝐷
2

𝑘
𝐴)
−1

R (𝑐) . (17)

From 𝑤 = 𝐷
𝑘
V,

𝑑V = 𝐷
−1

𝑘
𝑑
𝑤
= −𝐴(𝐴

𝑇
𝐷
2

𝑘
𝐴)
−1

R (𝑐) = −𝐴𝑑
𝑥
. (18)
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After getting the search direction 𝑑
𝑥
, we need to determine

the step size. Let

𝑥
𝑘+1
= 𝑥
𝑘
+ 𝜆𝑑
𝑥
, (19)

where the step size 𝜆 should guarantee that point𝑥𝑘+1 is in the
feasible region; it should satisfy the following inequalities:

𝐴(𝑥
𝑘
+ 𝜆𝑑
𝑥
) < 𝑏,

𝜆𝐴𝑑
𝑥
< 𝑏 − 𝐴𝑥

𝑘
,

−𝜆𝑑V < V
𝑘
.

(20)

Let

𝛼 = min{
𝑉
𝑘

𝑖

−(𝑑V)𝑖

| (𝑑V)𝑖
< 0, 𝑖 ∈ (1, 2, . . . , 𝑚)} . (21)

Take

𝜆 = 𝛾𝛼, (22)

where 𝛾 ∈ (0, 1). Then, we can get 𝑥𝑘+1 from 𝑥𝑘 along the
direction 𝑑

𝑥
, where 𝑐𝑇𝑥𝑘+1 >R 𝑐

𝑇
𝑥
𝑘.

4.3. Steps of the Revised Interior Point Algorithm. From the
idea of revised interior point method and the derivation
of calculation formula, steps of the revised interior point
algorithm to solve model (9) are shown as follows.

Step 1. Give an initial interior point 𝑥0, a safety factor
parameter 𝛾 ∈ (0, 1), accuracy parameter 𝜖 > 0, and iteration
𝑘 = 0.

Step 2. Compute

𝑉
𝑘
= 𝑏 − 𝐴𝑥

𝑘
. (23)

Step 3. Set the diagonal matrix

𝐷
𝑘
= diag( 1

𝑉
𝑘

1

,
1

𝑉
𝑘

2

, . . . ,
1

𝑉𝑘
𝑚

) . (24)

Step 4. Using the vector multiplication of fuzzy vectors (7),
compute

𝑑
𝑥
= (𝐴
𝑇
𝐷
2

𝑘
𝐴)
−1

⋅ 𝑐; (25)

then combined with (6), (5) and (2), the feasible direction is

R (𝑑
𝑥
) = (𝐴

𝑇
𝐷
2

𝑘
𝐴)
−1

R (𝑐) . (26)

Step 5. Compute the vector

𝑑
𝑉
= −𝐴 ⋅R (𝑑

𝑥
) . (27)

Step 6. Let

𝜆 = 𝛾 ⋅min{
𝑉
𝑘

𝑖

−(𝑑
𝑉
)
𝑖

| (𝑑
𝑉
)
𝑖
< 0, 𝑖 ∈ (1, 2, . . . , 𝑚)} . (28)

Step 7. Compute the next point:

𝑥
𝑘+1
= 𝑥
𝑘
+ 𝜆 ⋅R (𝑑

𝑥
) . (29)

Step 8. Using the vector multiplication of fuzzy vec-
tors (7) and ranking function (2), compare R(𝑐𝑇𝑥𝑘+1 −

𝑐
𝑇
𝑥
𝑘
)/R(𝑐𝑇𝑥𝑘) with 𝜖. If R(𝑐𝑇𝑥𝑘+1 − 𝑐𝑇𝑥𝑘)/R(𝑐𝑇𝑥𝑘) < 𝜖,

then algorithm terminates and 𝑥𝑘+1 is the optimal solution;
else 𝑘 := 𝑘 + 1, and go to Step 2.

4.4. Choice of the Initial Interior Point. Generally, set 𝑥0 =
(‖𝑏‖/‖𝑅(𝐴𝑐)‖) ⋅ 𝑅(𝑐) to be the initial interior point. And if
𝑉
0
= 𝑏 − 𝐴𝑥

0
> 0, then go to Step 2 in Section 4.3; other-

wise formulate a new fuzzy number linear programming as
follows:

max �̃� =R 𝑐
𝑇
𝑥 + �̃�𝑥

𝑎

s.t. 𝐴𝑥 − 𝑥
𝑎
𝑒 ≤ 𝑏,

(30)

where �̃� >R 0̃ is a big fuzzy number, 𝑒 = (1, 1, . . . , 1)𝑇 and 𝑥
𝑎

is artificial variable.
And if 𝑥

𝑎

0
> |min{(V

𝑖

0
) | 𝑖 = 1, . . . , 𝑚}|, then (𝑥0, 𝑥0

𝑎
)

must be the interior point of (30). Now, the problem (30) can
be solved by the revised interior point method.

If 𝑥𝑘
𝑎
< 0 in the 𝑘th iteration, stop solving the problem

(30) and set 𝑥𝑘 to be the initial interior point of the problem
(9).

If there is the optimal solution of problem (30), and 𝑥𝑘
𝑎
>

0, then the problem (9) is not feasible.

5. Algorithm Analysis and Example Study

In this section, first we analyze the algorithm. Then, an
example in the practical production is given. At last, we
analyze some factors influencing the results of this method
through the given example.

5.1. Algorithm Analysis. The time complexity of simplex
methods [10, 11] or revised simplex algorithm [14] is expo-
nential. Generally speaking, the simplex method has the
following shortcomings.

(i) Iterations are rising rapidly as the number of planning
variables and constraints increasing.

(ii) The simplex method is terminated in optimal basis of
original and dual programs. Although it has reached
optimal solution in the degenerate case, it often needs
to iterate the basis many times in order to prove that
it is optimal.

As we know, interior point methods (IPMs) are the most
effectivemethods for solving a large-scale linear optimization
problem. Since the creative work of Karmarkar [35], many
researchers have proposed and analyzed various IPMs for
LP and a large amount of results have been reported.
And Karmarkar’s IPM has a polynomial time complexity
and it approaches directly the optimal solution from the
feasible region through the internal. Because the iteration of
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Table 1: The relationship among product demand, production capacity, and pure profit.

Product Daily demand
Manual system Machine system

Production capacity Pure profit Production capacity Pure profit
Shift 1 Shift 2 Shift 1 Shift 2

1 5 3 (8, 10, 2, 6) (10, 12, 1, 17) 4 (6, 8, 1, 5) (9, 11, 1, 5)

2 10 5 (3, 5, 1, 5) (4, 6, 2, 6) 7.5 (2, 4, 2, 6) (4, 7, 1, 3)

Table 2: The interior point value and the corresponding objective function value of each iteration.

Interior point value Objective function value
1 [1.7867 2.9185 1.8563 0.0866 0.2020 0.0878 0.7999 7.24]

𝑇 (81.9560 119.1517 17.6510 98.1049)
2 [1.8604 2.9674 1.8674 0.0432 0.1220 0.0463 0.6698 7.4085]

𝑇 (82.4542 119.8362 17.5584 98.2900)
3 [1.9628 2.9964 1.7165 0.0023 0.0369 0.0023 0.7878 7.4918]

𝑇 (82.6160 120.0960 17.7497 98.7180)
4 [1.9975 2.9984 1.6701 0.0019 0.0022 0.0019 0.8322 7.4949]

𝑇 (82.6559 120.1490 17.8308 98.8179)
5 [1.9980 2.9995 1.6694 0.0007 0.0017 0.0008 0.8314 7.4984]

𝑇 (82.6633 120.1615 17.8300 98.8263)

Karmarkar’s interior point algorithm is less changing as the
number of planning variables and constraints increases, it
is more outstanding to solve the large-scale FNLP problem
by using the revised interior point method proposed in this
paper.

5.2. Example Study

Question. Suppose a factory produces two products rep-
resenting with 1 and 2; they are made by manual system
and machine system in two shift works a day. The detailed
relationship between production capacity and pure profit
is shown in Table 1. The daily demand of users for the
products 1 and 2 is 5 and 10, respectively. So, how to arrange
production to get the maximum pure profit and meet users’
requirements?

Remark 23. In Table 1, the measure unit of daily demand is
ton, the measure unit of production capacity is tons per shift,
and the measure unit of pure profit is thousand dollars per
ton.

Remark 24. In Table 1, the pure profit of each product in each
shift is fuzzy. If its pure profit is about 10 after investigation,
then it may be presented as a trapezoidal fuzzy number, that
is (8, 10, 2, 6).

Solution. (i) Let

𝑥
1
: the output of product 1 in shift 1 produced bymanual
system;

𝑥
2
: the output of product 1 in shift 2 produced bymanual
system;

𝑥
3
: the output of product 2 in shift 1 produced bymanual
system;

𝑥
4
: the output of product 2 in shift 2 produced bymanual
system;

𝑥
5
: the output of product 1 in shift 1 produced by
machine system;

𝑥
6
: the output of product 1 in shift 2 produced by
machine system;

𝑥
7
: the output of product 2 in shift 1 produced by
machine system;

𝑥
8
: the output of product 2 in shift 2 produced by
machine system.

(ii) Now an FNLP model is established as follows:

max �̃� =R (8, 10, 2, 6) 𝑥1 + (10, 12, 1, 17) 𝑥2 + (3, 5, 1, 5) 𝑥3

+ (4, 6, 2, 6) 𝑥
4
+ (6, 8, 1, 5) 𝑥

5
+ (9, 11, 1, 5) 𝑥

6

+ (2, 4, 2, 6) 𝑥7 + (4, 7, 1, 3) 𝑥8

s.t. 𝑥
1
+ 𝑥
2
+ 𝑥
5
+ 𝑥
6
≤ 5

𝑥
3
+ 𝑥
4
+ 𝑥
7
+ 𝑥
8
≤ 10

𝑥
1
≤ 3

𝑥
2
≤ 3

𝑥
3
≤ 5

𝑥
4
≤ 5

𝑥
5
≤ 4

𝑥
6
≤ 4

𝑥
7
≤ 7.5

𝑥
8
≤ 7.5

5𝑥
1
+ 3𝑥
3
≤ 15

5𝑥
2
+ 3𝑥
4
≤ 15

15𝑥
5
+ 8𝑥
7
≤ 60

15𝑥
6
+ 8𝑥
8
≤ 60

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 8.

(31)
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Table 3:The influence of the safety factor parameter 𝛾 on iterations
(𝜖 = 0.1, 𝑥0 = [1 1 1 1 1 1 1 5]𝑇).

Parameter 𝛾 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Iterations 𝐾 75 40 27 20 16 13 11 10 9 9

Table 4:The influence of the accuracy parameter 𝜖 on iterations (𝛾 =
0.5, 𝑥0 = [1 1 1 1 1 1 1 5]𝑇).

Parameter 𝜖 0.9 0.5 0.1 0.01 0.005 0.001
Iterations 𝐾 9 10 13 16 17 19

Remark 25. These inequalities 5𝑥
1
+ 3𝑥
3
≤ 15, 5𝑥

2
+ 3𝑥
4
≤

15, 15𝑥
5
+8𝑥
7
≤ 60, and 15𝑥

6
+8𝑥
8
≤ 60 are simplified from

𝑥
1
/3 + 𝑥

3
/5 ≤ 1, 𝑥

2
/3 + 𝑥

4
/5 ≤ 1, 𝑥

5
/4 + 𝑥

7
/7.5 ≤ 1, and

𝑥
6
/4 + 𝑥

8
/7.5 ≤ 1, respectively, which is convenient for the

following computation.
(iii) Then, solve the FNLP problem (31). If using simple

method, it is complicated. So, we adopt the revised interior
point method proposed in Section 4.3.

Step 1. Given 𝜖 = 0.1, 𝑥0 = [1.7 2.9 1.9 0.1 0.2 0.1 0.7
7.1]
𝑇 and 𝛾 = 0.95, 𝑘 = 0.

Step 2. Compute 𝑉𝑘 = 𝑏 − 𝐴𝑥𝑘, 𝑘 = 0, then

𝑉
0
= [0.1 0.2 1.3 0.1 3.1 4.9 3.8 3.9 74.3 67.9 0.8 0.2 51.4 1.7 1.7 2.9 1.9 0.1 0.2 0.1 0.7 7.1]

𝑇

. (32)

Step 3. Set the diagonal matrix 𝐷
𝑘
= diag(1/𝑉𝑘

1
, 1/𝑉
𝑘

2
, . . . ,

1/𝑉
𝑘

𝑚
), 𝑘 = 0, then

𝐷
0
= diag [ 10 5 0.7692 10 0.3226 0.2041 0.2632 0.2564 0.0135 0.0147 1.25 5 0.0195 0.5882

0.5882 0.3448 0.5263 10 5 10 1.4286 0.1408 ] .

(33)

Step 4. Compute 𝑑
𝑥
= (𝐴
𝑇
𝐷
2

𝑘
𝐴)
−1

⋅ 𝑐, 𝑘 = 0, then

𝑑
𝑥
=

[
[
[
[
[
[
[
[
[
[
[
[
[

[

(0.9980 1.3532 0.2363 1.1384)

(0.0016 0.0021 0.0004 0.0018)

(−2.4963 − 1.8227 2.1001 0.4359)

(−0.0158 − 0.0116 0.0133 0.0028)

(−0.1704 − 0.1244 0.1433 0.0297)

(−1.1411 − 0.8332 0.9600 0.1992)

(−2.0983 − 1.5321 1.7652 0.3664)

(3.4931 4.7841 0.8353 4.0247)

]
]
]
]
]
]
]
]
]
]
]
]
]

]

. (34)

Then combined with (5) and (2), the feasible direction is

R (𝑑
𝑥
) = [1.40113 0.0022 − 2.57555 − 0.01633

−0.1758 − 1.17735 − 2.1649 4.93595]
𝑇
.

(35)

Step 5. Compute the vector 𝑑
𝑉
= −𝐴 ⋅R(𝑑

𝑥
), 𝑘 = 0; then

𝑑
𝑉
= [−0.0726 −0.1531 −0.0726 −0.0155 0.0366 0.0112 −0.0017 0.0102 −0.0837 −0.1172 −0.2532

−0.0439 −0.6945 −0.7841 0.0726 0.0155 −0.0366 −0.0112 0.0017 −0.0102 0.0837 0.1172 ]
𝑇

.

(36)

Step 6. Let 𝜆 = 𝛾 ⋅ min{𝑉𝑘
𝑖
/[−(𝑑
𝑉
)
𝑖
] | (𝑑

𝑉
)
𝑖
< 0, 𝑖 ∈

(1, 2, . . . , 𝑚)}, 𝑘 = 0; then step size 𝜆 = 1.1944.

Step 7. Compute 𝑥𝑘+1 = 𝑥𝑘 + 𝜆 ⋅R(𝑑
𝑥
), 𝑘 = 0; then

𝑥
1
= [1.7867 2.9185 1.8563 0.0866 0.2020 0.0878 0.7999 7.24]

𝑇
.

(37)

Step 8. ComputeR(𝑐𝑇𝑥𝑘+1 − 𝑐𝑇𝑥𝑘)/R(𝑐𝑇𝑥𝑘) = 4.2345 > 𝜖 =
0.1; then 𝑘 = 0 + 1 = 1 and go to Step 2. Repeat the similar
calculation until R(𝑐𝑇𝑥𝑘+1 − 𝑐𝑇𝑥𝑘)/R(𝑐𝑇𝑥𝑘) < 𝜖 = 0.1, and
get the results.

Above all, the number of iteration is 5 and the results are
listed in Table 2.

The optimal solution is [1.9980 2.9995 1.6694 0.0007
0.0017 0.0008 0.8314 7.4984]𝑇 and the optimal fuzzy value
of the objective function is (82.6633 120.1615 17.8300
98.8263). Then, the maximum pure profit is about
R(82.6633 120.1615 17.8300 98.8263) = 121.661475 tho-
usand dollars.

5.3. Analysis of Factors Influencing This Method Results.
Factors influencing the results of this method are mainly
safety factor parameter 𝛾, accuracy parameter 𝜖, and initial
interior point 𝑥0. Take model (31) as an example.

(i) Table 3 focuses on the safety factor parameter 𝛾,
where the values of accuracy parameter 𝜖 and initial
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Table 5: The influence of the initial interior point 𝑥0 on iterations (𝛾 = 0.5, 𝜖 = 0.01).

Initial interior point Iterations 𝐾 Initial interior point Iterations𝐾
[0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1]

𝑇 33 [1 1 1 1 1 1 1 4]
𝑇 16

[1 0.5 0.1 0.1 0.1 0.1 0.1 0.1]
𝑇 31 [1 1.9 2 1 0.7 1.1 1.9 4]

𝑇 15
[1 1 0.1 0.1 0.1 0.1 0.1 1]

𝑇 26 [1.1 2.5 2.2 0.4 0.5 0.6 1.1 5]
𝑇 14

[1 0.5 0.5 0.5 0.5 0.5 0.5 0.5]
𝑇 21 [1.4 2.7 2.2 0.2 0.3 0.3 0.8 6.6]

𝑇 13
[1 1 0.5 0.5 0.5 0.5 0.5 0.5]

𝑇 20 [1.5 2.7 2 0.1 0.3 0.2 0.8 6.7]
𝑇 13

[1 1 0.5 0.5 0.5 0.5 1 1]
𝑇 19 [1.6 2.8 2.1 0.1 0.2 0.2 0.6 7]

𝑇 12
[1 1 1 1 1 1 1 1]

𝑇 18 [1.6 2.8 2 0.1 0.2 0.2 0.7 6.9]
𝑇 12

[1 1 1 1 1 1 1 2]
𝑇 17 [1.7 2.9 1.9 0.1 0.2 0.1 0.7 7.1]

𝑇 11
[1 1 1 1 1 1 1 3]

𝑇 16

Table 6:The influence of the accuracy parameter 𝜖 and safety factor
parameter 𝛾 on iterations (𝑥0 = [1 1 1 1 1 1 1 5]𝑇).

Parameter 𝛾 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Iterations 𝐾
𝜖 = 0.1 52 29 20 16 13 11 9 8 8 7
𝜖 = 0.01 75 40 27 20 16 13 11 10 9 9
𝜖 = 0.001 97 50 33 25 19 16 13 12 11 11

interior point 𝑥0 are fixed. All test problems show
that the selection of a safety factor parameter plays
a significant role in the fast convergence. We can
see that the algorithm converges to the near-optimal
solutions quickly as the safety factor parameter is
increasing.

(ii) Table 4 focuses on the accuracy parameter 𝜖, where
the values of safety factor parameter 𝛾 and initial
interior point 𝑥0 are fixed. All test problems show
that the selection of accuracy parameter plays a
critical role in the fast convergence. We can see that
the algorithm converges slowly to the near-optimal
solutions as the safety factor parameter is decreasing.
Even so, the final result is more accurate. The value of
𝜖 generally depends on the actual need.Therefore, this
method can adjust precision to meet the requirement
according to the actual need.

(iii) Table 5 focuses on the initial interior point 𝑥0, where
the values of safety factor parameter 𝛾 and accuracy
parameter 𝜖 are fixed. All test problems show that
the selection of an initial interior solution plays a
significant role in the fast convergence. We can see
that the algorithm converges to the near-optimal
solutions quickly as the initial interior point is more
and more close to the optimal solution. That is to say,
the iteration is more and more small and tends to be
a constant.

(iv) Table 6 focuses on the safety factor parameter 𝛾 and
accuracy parameter 𝜖, where the values of initial inte-
rior point 𝑥0 is fixed.We can see that the iterations are
smaller as the values of the accuracy parameter and
safety factor parameter are increasing; the influence of
safety factor parameter ismore obvious than accuracy
parameter to the iterations.

6. Conclusions

A new interior point method is presented to solve FNLP
problems using linear ranking function in this paper. Com-
pared with simplex method or revised simplex algorithm,
this method is more outstanding in solving the large scale of
the FNLP problem, for it has a polynomial time complexity.
And some factors influencing the results of this method
are analyzed. The result shows that proper safety factor
parameter, accuracy parameter, and initial interior point of
this method may reduce iterations and they can be selected
easily according to the actual needs. Although a general
method to select the initial point has been given in this
paper, it is not feasible in some cases. For example, under
the condition 𝑉0 = 𝑏 − 𝐴𝑥0 > 0, the matrix 𝐴𝑇𝐷2

𝑘
𝐴

may be singular and not reversible, then the search direction
cannot be obtained, thus the algorithm cannot be performed.
Therefore, futureworkmayput forward an applicable broader
method for the revised initial interior point.
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Process control tools are a widely used approach inmany operations and production processes. Process control chart ranks as one of
themost important theories used in these disciplines.This paper reviewed the bias of quality characteristicsmonitoring. Specifically,
this study tries to provide a comprehensive understanding of theories of process control. The text starts with a theoretical review
of statistical process control theories and follows by a technical introduction to developed tools for process control.

1. Introduction

Statistical process control (SPC) is a collection of seven tools
which is useful in improving the quality level by decreasing
the variability and increasing the stability of the process. The
most well-known tool of SPC is the control charts. Control
chart is a graphical tool based on the measurement data
obtained in the course of time from the process. Based on
the nature of the data obtained from the process, two broad
categories of control charts existed; namely, variable and
attribute control charts. If the quality characteristics of the
product items could be measured as a numerical scale such
as weight and height, variable control chart is appropriate.
On the other hand, if the quality characteristics could not
be measured in numerical scale such as color and softness,
attribute control chart could be utilized. By comparing these
two types of control charts, we can conclude that, firstly,
variable control charts need a smaller sample size than
attribute control charts to construct. Secondly, in variable
control charts, assignable cause could be detected sooner
than attribute control charts. Thirdly, the cost and time for
constructing an attribute control chart are less than a variable
control chart, and finally, in attribute control charts, we could
monitormore than one quality characteristic at the same time
in one control chart. In the following, we technically review
the attribute control charts.

2. Attribute Control Chart

Attribute control charts consist of four different control
charts. If the production items are categorized into two
groups based on the specification limits, the beyond statistical
distribution is binomial, and each item is known as confirm
or nonconfirm with the specification limits. In this case,
proportion of nonconforming items (𝑝 chart) and number
of nonconforming items (𝑛𝑝 chart) are appropriate. If the
number of defect in a period of production time or in
one production item is considered, the beyond statistical
distribution is poison, and the suitable control charts are
known as 𝑐 chart and 𝑢 chart. In the current research, we
concentrated on the p chart.

2.1. The Attribute Control Charts Literature. Selecting the
proper sample size for constructing the attribute control
charts is so important. According to Ryan and Schwertman
[1] the adequate sample size should be selected to ensure
that the normality assumption is not violated. This difficulty
gets more important when the proportion of nonconforming
is small, because in this case the sample size should be
large enough to have at least one item in the categories of
nonconforming items. However, a large sample size is too
hard to collect in some situations where the output rate of the
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process is small, and also it is time consuming and costly. To
overcome this difficulty, Schwertman and Ryan [2] proposed
dual a 𝑛𝑝 chart which consists of two charts. The first chart
has a tighter control limit which requires a smaller sample
size, and the second one is a CUSUM chart.

For overcoming the large sample size, Chen [3] also
proposed an alternative approach. He suggested two charts
which are based on discrete probability integral and arcsine
transformations.

Nelson [4] also proposed an alternative approach. He
suggested counting the number of conforming items between
two consecutive nonconforming items. He assumed that this
observation has an exponential distribution; so, by using a
transformation to a normal distribution, we could monitor
the process.

Several researchers discussed another topic which is
the speed of detecting an abnormal shift in proportion
of nonconforming items. To detect an abnormal shift like
variable control charts, CUSUM chart is a good alternative
approach. Reynolds and Stoumbos [5] proposed two different
CUSUM charts. One is based on binomial distribution, and
the second one is based on a Bernolli variable.

3. Control Charts for Categorical Data

One of themajor areas in SPC ismonitoring the proportion of
the nonconforming units in the production processes. One of
the usual control charts for such cases is the𝑝 chart. Instead of
classifying the production units into two groups (conforming
and nonconforming), suppose that they have been classified
into more than two groups. As an example, they are classified
into three groups: minor defect, major defect, and absent of
defect. If the produced unit has a minor defect, it can be
repaired by low cost and attempts. But if it has a major defect,
it can be repaired by lots of cost, or it must be discarded.

If the produced units classify into more than two groups,
categorical control charts could be used. In the following,
categorical control charts are explained in detail.

3.1. Generalized 𝑝 Chart. Suppose that Π
1
, Π
2
, Π
3
are the

proportion of the process. This case is comparable with the
p chart situation. Case I is when the proportions are known
before. Case II is when the proportions are unknown before
and at first; in phase I when the process is supposed to be in
control, they must be estimated.

For monitoring a multinomial distribution, independent
samples should be collected during the process. Suppose that
𝑋
𝑖1
, 𝑋
𝑖2
, 𝑋
𝑖3
show the number of observations in category 1,

2, and 3, respectively, in period 𝑖. Base period is shown with
𝑖 = 0. 𝑛

𝑖
is the sample size for monitoring period 𝑖.

First, consider case I where the proportions are known
before. A statistical standard approach for solving such a
problem is using Pearson’s goodness of fit statistic as follow
[6]:

𝑌
2

𝑖
=

3

∑

𝑗=1

(𝑋
𝑖𝑗
− 𝑛
𝑖
Π
𝑗
)
2

𝑛
𝑖
Π
𝑗

, (1)

where the process is in the state of in control and 𝑌
2

𝑖
has chi-

square distribution with two degree of freedom.
The control chart based on (1) has an upper control

limit which is determined with a percentile of chi-square
distribution.

It should be noted that in processes with 𝑐 categories, the
upper control limit of summation in (1) should be 𝑐, and the
statistic 𝑌

2

𝑖
has a chi-square distribution with 𝑐-1 degree of

freedom.
Now, consider the secondproblem (case II).Thegoodness

of fit test is not appropriate here. An appropriate statistical
approach is a consistency test between base period and other
periods of the process [7]. This statistic for period 𝑖 is as (2).

Consider the following:
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,

(2)

where 𝑃
𝑘𝑗

= 𝑋
𝑘𝑗
/𝑛
𝑘
is the ratio of each sample. If 𝑛

𝑖
→ ∞

where 𝑛
0
/𝑛
𝑖
is limited and greater than zero, so that 𝑍2

𝑖
has

a chi-square distribution with two degrees of freedom.
Therefore, in case I, the control chart for this case also has
an upper control limit equal to an appropriate percentile of
chi-square distribution.

There is no theoretical rule for sufficient sample size for
using chi-square distribution in such a case. Some rules of
thumb exist to determine enough sample size. The most
famous rule was proposed by Cochran [8]. He declared
that the twenty percent of the frequency of each category
should be greater than 5, and the expected frequency of each
categories should be greater than one.

3.2. Grouped Observations. Even when the quality charac-
teristic is variable, it is more economical to classify it into 𝑘

categories than to measure it exactly. As measuring a variable
characteristic need, cost and time, using gauge for quality
inspection is suggested. As Steiner et al. [9] mentioned:
“usually quality data are gathering in grouped manner.”

3.3. Fuzzy Control Charts. Based on the nature of the quality
characteristics, two broad categories of control charts are
developed, namely, variable and attribute control charts.
Variable control charts are used to monitor continuous char-
acteristics of the products such as length, weight, and voltage
which are measurable on numerical scales. However, it is
not always possible to express the quality characteristics on a
numerical scale. For these characteristics such as appearance,
softness, and color, control charts for attribute are used.
Control chart for proportion nonconforming is one of the
attribute control charts. In this chart, each product unit is
classified as “conforming” or “nonconforming,” depending
upon whether or not they meet specifications. Then, by
using the principles of Shewhart control charts, this chart
called 𝑝-chart is formed. But as Raz and Wang [10, 11] also
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mentioned, the binary classification into “conforming” and
“nonconforming” used in 𝑝-chart might not be appropriate
in many situations where there might be a number of inter-
mediate levels. In this case, for measuring the quality-related
characteristics, it is necessary to use several intermediate
levels besides conforming and nonconforming. For example,
the quality of product can be classified by one of the following
terms: “perfect,” “good,” “medium,” “poor,” and “fair,” depend-
ing on deviation from specifications. Data obtained in this
way are called categorical data, and we can use multinomial
distribution instead of binary distribution. Several statistical
researches have been done in this area.The early research goes
back to Duncan [6, 7], who introduced a chi-square control
chart for monitoring a multinomial process with categorical
data. Later, this type of control chart is discussed further
by Marcucci [12] and Nelson [13]. Marcucci introduced a
statistical approach for a case, where the proportion of each
category is not known before.

But the problem still exists. As we know, the quality
level of each product is determined by the quality inspectors,
and they do this task mentally. For example, one product
might be classified into perfect category by an inspector but
classified into good category by another inspector. It means
that determining the quality level of the product mentally by
the inspectors is in an uncertainty situation. As Yager and
Zadeh [14] also indicated that in fact the main problem is
vagueness that corresponds to the mental affect. Fuzzy set
theory could be used because of the uncertainty situation and
vague environment. In case of monitoring attribute data by
using fuzzy set theory, several researches exist. Raz andWang
[10, 11] proposed an approach based on fuzzy set theory for
monitoring attribute processes when quality characteristics
are classified into mutually exclusive categories. Kanagawa
et al. [15] present a control chart based on the probability den-
sity function existing behind the linguistic data, continuing
the Raz andWang approach. These approaches are discussed
by Laviolette et al. [16], Almond [17], and Kandel et al. [18]
and reviewed by Woodall et al. [19] and Taleb and Limam
[20]. Later, Gülbay et al. [21–23] proposed an 𝛼-level fuzzy
control chart for attributes in order to reflect the vagueness
of data and tightness of inspection. In the following, the most
famous research in the area of fuzzy attribute control charts
will be illustrated in detail.

3.3.1. The Raz and Wang Approach. Constructing a control
chart involves determining the center line (CL), upper control
limit (UCL), and lower control limit (LCL).This is calculated
based on the random sample from the process.When linguis-
tic data are used, it is necessary to state the related fuzzy set by
a representative value. In the following, several approaches to
determine a representative value for a fuzzy set are explained,
and after that probabilistic and fuzzy membership approach
will be presented.

Representative Value. To keep the standard format of the She-
whart control chart, it is necessary to transfer the associated
fuzzy set to a crisp value which we call representative value.
This transformation could be done in different ways. In the

following, four methods which are similar in the principle
to central tendency in statistics are represented. It must be
mentioned that there is no theoretical baseline to select
between these four methods, and the selection is completely
arbitrary. In the following definitions, 𝐹 is the fuzzy subset, 𝑥
is the base variable, and 𝜇

𝐹
(𝑥) is the membership function.

(1)The fuzzymode, 𝑓mode, is the value of the base variable
where the membership is equal to 1:

𝜇
𝐹
(𝑓mode) = 1 (𝑓mode = {𝑥 | 𝜇

𝑓
(𝑥) = 1} , ∀𝑥 ∈ 𝐹) . (3)

The fuzzy mode is unique if 𝜇
𝐹
(𝑥) is unimodal.

In the special casewhere 𝐴 = (𝑎, 𝑏, 𝑐) is a triangular fuzzy
number, the fuzzy mode is equal to 𝑏; so, we could have

𝑓mode = 𝑏. (4)

(2) The 𝛼-level fuzzy midrange, 𝑓mr(𝛼), is the average of
the endpoint of an 𝛼-level cut. An 𝛼-level cut of 𝐹, denoted
by 𝐹
𝑎
, is a nonfuzzy subset of the base variable 𝑥 containing

all the values with a membership function value greater than
or equal to 𝛼. Thus,

𝐹
𝛼
= {𝑥 | 𝜇

𝐹
(𝑥) ≥ 𝛼} . (5)

Note that the fuzzy mode is a special case of the 𝛼-level fuzzy
midrange with 𝛼 = 1.

Suppose that 𝐴 is a triangular fuzzy number. Applying 𝛼-
cut of fuzzy set, the values of 𝑎𝛼 and 𝑐

𝛼 are determined as
follows:

𝑎
𝛼
= 𝑎 + 𝛼 (𝑏 − 𝑎) ,

𝑐
𝛼
= 𝑐 − 𝛼 (𝑐 − 𝑏) .

(6)

So, 𝛼-level fuzzy midrange for a triangular fuzzy number
could be calculated as follows:

𝑓mr (𝛼) =
𝑎
𝛼
+ 𝑐
𝛼

2

⇒ 𝑓mr (𝛼) =
(𝑎 + 𝑐) + 𝛼 [(𝑏 − 𝑎) − (𝑐 − 𝑏)]

2
.

(7)

(3)The fuzzy median, 𝑓med, is the point which divides the
area under the membership function into two equal regions,
satisfying the following equation:

∫

𝑓med

−∞

𝜇
𝐹 (𝑥) 𝑑𝑥 = ∫

+∞

𝑓med

𝜇
𝐹 (𝑥) 𝑑𝑥

=
1

2
∫

+∞

−∞

𝜇
𝐹
(𝑥) 𝑑𝑥.

(8)

(4) The fuzzy average, 𝑓avg, is defined by Zadeh [24] as
follows:

𝑓avg = 𝐴V (𝑥 : 𝐹) =

∫
1

0
𝑥𝜇
𝐹
(𝑥) 𝑑𝑥

∫
1

0
𝜇
𝐹 (𝑥) 𝑑𝑥

. (9)

Generally, two first approaches are simpler in calculation,
especially when the membership function was nonlinear.
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Figure 1: Representative value.

However, when the membership function is too nonsym-
metrical, the result of fuzzy mode might be bias. Fuzzy
midrange ismore flexible, because a different level for 𝛼 could
be selected. When in addition to the place of membership
function, the shape of themembership function is important;
then, the best choice would be fuzzy average, because it has
been calculated from a wide principle.

For comparison, consider a fuzzy set like 𝐴 as follows:

𝜇
𝐴 (𝑥) =

{{{{

{{{{

{

0 𝑥 ≤ 0.2

2.5𝑥 − 0.5 0.2 ≤ 𝑥 ≤ 0.6

−5𝑥 + 4 0.6 ≤ 𝑥 ≤ 0.8

0 𝑥 ≥ 0.8.

(10)

Representative value for 𝐴 would be 𝑓mode = 0.6, 𝑓med =

0.546, 𝑓mr = 0.55, and 𝑓avg = 0.533; Figure 1 shows these
results as well.

Representing a Sample. A sample could involve several
observations which are selected for the inspection. Each
observation is classified with a linguistic term and related
to a known membership function. These separate linguistic
terms need to combine to become a representative value for
the sample. This combination of the observation could be
done both before and after transferring the linguistic terms
to representative values.

In the first case, related fuzzy sets to linguistic terms in a
sample should be added together and then divided into the
number of sample observations.This operation is done based
on the fuzzy mathematics. The result would be a fuzzy set
which might not be similar to any of the preliminary terms
but is the representative of the quality of that sample. Then, a
numerical value as a representative could be calculated by one
of the four transformation techniques which were explained
in the previous section. Suppose that 𝑡 linguistic terms existed
which were shown by 𝐿

𝑖
(𝑖 = 1, 2, . . . , 𝑡). For each linguistic

value, a related fuzzy set such as 𝐹
𝑖
with a membership

function like 𝜇
𝑖
(𝑥
𝑖
) is defined. Consider a sample like 𝑆 with

𝑛 observation 𝑆 = {(𝐹
1
, 𝑘
1
), (𝐹
2
, 𝑘
2
), . . . , (𝐹

𝑡
, 𝑘
𝑡
)}, where 𝑘

𝑖
is

the number of items that classify to linguistic value 𝐿
𝐼
by

quality inspectors and 𝑘
1
+ 𝑘
2
+ ⋅ ⋅ ⋅ + 𝑘

𝑡
= 𝑛. The fuzzy set

which is the mean of a sample fuzzy set is shown byMFs.The
membership function of MFs is 𝜇

𝑠
(𝑥
𝑠
) as follows [25]:

𝜇
𝑆
(𝑥
𝑆
)

= Max
𝑥
𝑆
=(𝑘1𝑥1+𝑘2𝑥2+⋅⋅⋅+𝑘𝑡𝑥𝑡)/𝑛

×{Min[𝜇
1
(𝑥
1
) , 𝜇
2
(𝑥
2
) , . . . , 𝜇

𝑡
(𝑥
𝑡
)]} .

(11)

The representative value of the sample could be calculated by
one of the transformation approach on the 𝜇

𝑠
(𝑥
𝑠
).

If themean of the sample constructs after transferring the
linguistic value to representative value, the calculation would
be easier.The representative value of the𝐹

𝑖
is shown by 𝑟

𝑖
.The

sample mean,𝑀, as the mean of the 𝑟
𝑖
could be calculated as

follows:

𝑀 =
(𝑟
1
𝑘
1
+ 𝑟
2
𝑘
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑡
𝑘
𝑡
)

𝑛
. (12)

The first approach keeps fuzziness more than the second
approach with the need of more calculation especially when
we have a nonlinear membership function. In the following,
an example is provided to show both approaches.

Consider a linguistic variable for the evaluation of the
quality characteristic of a product with a set of terms such as
perfect, good, medium, poor, and bad. Base variable is a level of
quality which standardized in the interval [0, 1]. Zero shows
the best quality and 1 shows the lower quality. Membership
functions associated with each linguistic term are as follows.

𝜇perfect (𝑥) = {
1 − 4𝑥 0 ≤ 𝑥 ≤ 0.25

0 𝑥 ≥ 0.25,

𝜇good (𝑥) =
{{

{{

{

4𝑥 0 ≤ 𝑥 ≤ 0.25

2 − 4𝑥 0.25 ≤ 𝑥 ≤ 0.5

0 𝑥 ≥ 0.5,

𝜇medium (𝑥) =

{{

{{

{

𝑜 𝑥 ≤ 0.25; 𝑥 ≥ 0.75

4𝑥 − 1 0.25 ≤ 𝑥 ≤ 0.5

3 − 4𝑥 0.5 ≤ 𝑥 ≤ 0.75,

𝜇poor (𝑥) =
{{

{{

{

0 𝑥 ≤ 0.5

4𝑥 − 2 0.5 ≤ 𝑥 ≤ 0.75

4 − 4𝑥 0.75 ≤ 𝑥 ≤ 1,

𝜇bad (𝑥) = {
0 𝑥 ≤ 0.75

4𝑥 − 3 0.75 ≤ 𝑥 ≤ 1.

(13)

These membership functions are depicted in Figure 2.
Consider a sample with 10 observations as

𝑆 = {(𝐹perfect, 3) , (𝐹good, 2) ,

(𝐹medium, 2) , (𝐹poor, 2) , (𝐹bad, 1)} .
(14)
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Figure 2: Membership functions for 5 linguistic terms.
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Figure 3: Combined membership function of the sample.

By combining these 10 observations based on the first
approach, fuzzy set associated with the sample mean could
be defined by the following membership function:

𝜇
𝑆 (𝑥) =

{{{{

{{{{

{

0 0 ≤ 𝑥 ≤ 0.2

5𝑥 − 1 0.2 ≤ 𝑥 ≤ 0.4

2.333 − 3.333𝑥 0.4 ≤ 𝑥 ≤ 0.7

0 𝑥 ≥ 0.7.

(15)

Figure 3 also shows this membership function.The represen-
tative value by using fuzzymedian for this set would be 0.426.

By using the second approach, first, the representative
value for each linguistic term must be calculated. By using
the fuzzy median, we have

𝑟perfect = 0.146, 𝑟good = 0.25,

𝑟medium = 0.5, 𝑟poor = 0.75, 𝑟bad = 0.854.

(16)

Finally, sample mean could be calculated as follows:

(0.146 × 3 + 0.25 × 2 + 0.5 × 2

+0.75 × 2 + 0.854 × 1) 10
−1

= 0.429.

(17)

Calculation of the Center Line. Normally, center line could
be calculated as the average of the sample mean. Here, also

both approaches could be used. Suppose 𝑚 sample with 𝑛

observations, then CL would be as follows:

CL =

∑
𝑚

𝑗=1
𝑀
𝑗

𝑚
, (18)

where 𝑀
𝑗
is the sample mean of the 𝑗th sample.

In the following, for determining the control limits, two
approaches are explained, namely, probabilistic approach and
membership approach.

Probabilistic Control Limits. In the traditional control charts,
control limits were determined with a coefficient of the
standard deviation of the process. So, here also we need an
estimation of the standard deviation. For 𝑚 sample with 𝑛

observations, standard deviation is shown by SD
𝑗
for 𝑗th

sample and calculated as follows:

SD
𝑗
= √

1

𝑛 − 1

𝑡

∑

𝑖=1

𝑘
𝑖𝑗
(𝑟
𝑗
−𝑀
𝑗
)
2

, (19)

where 𝑡 is the number of linguistic terms, 𝑟
𝑖
is the representa-

tive value associated with linguistic term 𝐿
𝑖
, and𝑀

𝑗
is the 𝑗th

sample mean. The mean of 𝑚 standard deviation was shown
by MSD and calculated as follows:

MSD =
1

𝑚

𝑚

∑

𝑗=1

SD
𝑗
. (20)

Suppose that sample distribution is approximately normal, or
sample size is large enough (𝑛 > 25).Then, for calculating the
control limits, we could use the standard method. We have

Probabilistic LCL = Max {0, (CL − 𝐴
3
⋅MSD)} ,

Probabilistic UCL = Min {1, (CL + 𝐴
3
⋅MSD)} ,

𝐴
3
=

3

𝐶
4
√𝑛

𝐶
4
= √

2 ((𝑛 − 2) /2)!

𝑛 − 1 ((𝑛 − 3) /2)!
.

(21)

The coefficient𝐴
3
and𝐶

4
and table of other coefficient values

could be found in Montgomery [26] and any other standard
references.

Membership Control Limits. In contrast to the traditional
control charts which are constructed based on the probability
distribution of the sample mean, membership control limits
are based on themembership function. In the following, con-
structing the membership control limits would be explained.

Consider a convex fuzzy set, and suppose that 𝑥
𝑚
is the

fuzzy mode of the membership function. We could define
an inverse membership function which consists of two parts.
One part which is in the left side of 𝑥

𝑚
and is shown by

𝑥
𝑙
(𝛼), and another part which is in the right side of 𝑥

𝑚
and

shown by 𝑥
𝑟
(𝛼). The inverse membership function is defined

as follows: 𝑥
𝑙
(𝛼) is the minimum value of the base variable

𝑥 in which the membership value of them is equal to 𝛼, and
𝑥
𝑟
(𝛼) is the maximum value of the base variable 𝑥 in which
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Figure 4: Deviation of mean for a fuzzy set.

the membership value of them is equal to 𝑎. In other words,
𝑥
𝑙
(𝛼) and 𝑥

𝑟
(𝛼) are the endpoints of 𝛼-cut. Now, a value for

the deviation of fuzzy set which is called mean deviation
and shown as 𝛿 could be calculated as follows by using the
summation, the deviation of left mean, 𝛿

𝑙
, and deviation of

right mean, 𝛿
𝑟
[25]:

𝛿
𝑙
= ∫

1

𝛼=0

[𝑥
𝑚
− 𝑥
𝑙
(𝛼)] ⋅ 𝑑𝛼,

𝛿
𝑟
= ∫

1

𝛼=0

[𝑥
𝑟
(𝛼) − 𝑥

𝑚
] ⋅ 𝑑𝛼,

(22)

where 𝛿
𝑙
and 𝛿

𝑟
are left and right deviations of mean,

respectively. Their values are equal to the area under the
membership function at the left and right side of the mode
point of fuzzy set. For fuzzy set 𝐴, mean deviation 𝛿(𝐴) could
be calculated as follows:

𝛿 (𝐴) = 𝛿
𝑙
(𝐴) + 𝛿

𝑟
(𝐴) = ∫

1

𝛼=0

[𝑥
𝑚
− 𝑥
𝑙
(𝛼)] ⋅ 𝑑𝛼

+ ∫

1

𝛼=0

[𝑥
𝑟
(𝛼) − 𝑥

𝑚
]

= ∫

1

𝛼=0

[𝑥
𝑟 (𝛼) − 𝑥

𝑙 (𝛼)] ⋅ 𝑑𝛼.

(23)

In this equation, 𝛼 is the level of membership. In fact,
deviation of a fuzzy set, is a numerical value which stated
by the dimension of the base variable. Figure 4 presents the
deviation of mean for a fuzzy set.

Suppose that we have 𝑚 sample with 𝑛 observations. At
first, the fuzzy mean of each sample must be calculated by
using fuzzy mathematics, and then, the grand mean of 𝑚
sample must calculated. For determining the control limits
by using the previous equation, at first, the deviation of
grandmean should be calculated.The control limits a known
distance from the center line. This distance is equal to a
coefficient of deviation of the grand mean. We could have

Membership LCL = Max {0, (CL − 𝐾𝛿)} ,

MembershipUCL = Min {1, (CL + 𝐾𝛿)} ,

(24)

where 𝑘 is a coefficient which shows the distance from center
line. The value of 𝑘 could be determined by using the Monte-
Carlo simulation when we suppose that type I error is fixed.

3.3.2. The Kanagawa Approach. Raz and Wang [10, 11] pro-
posed a general approach for designing control chart for
monitoring the mean of the process. This approach is based
on the normal assumption and just monitors the mean of
the process. Kanagawa et al. [15] proposed an approach
for estimating the probability density function beyond the
linguistic data, and by using it, they design control charts for
monitoring both the mean and the variation of the process.

Probability Density Function for Linguistic Data.The objective
is to design a control chart for monitoring the variation as
well as the mean of a process by using the probability density
function (p.d.f). The mentioned probability density function
which is beyond the linguistic variables generates the linguis-
tic data randomly and based on the mental judgment of the
inspectors.

Suppose that for standard data in the interval [0, 1], p.d.f
could be determined based on the Gram-Charlier series:

𝑓 (𝑥) = 𝜙 (𝑥) [1 + 𝛼
1
𝐻
1
(𝑥) + 𝛼

2
𝐻
2
(𝑥) + ⋅ ⋅ ⋅ ] , (25)

where 𝜙(𝑥) is a standard normal probability density function
and𝐻

𝑟
is the Hermite polynomial with the degree of 𝑟:

𝐻
1 (𝑥) = 𝑥

𝐻
2
(𝑥) = 𝑥

2
− 1

𝐻
3
(𝑥) = 𝑥

3
− 3𝑥

...

(26)

The relationship between 𝛼
𝑟
and 𝛽

𝑟
is

𝛼
1
= 𝛽
1

𝛼
2
=

𝛽
2
− 1

2

𝛼
3
=

𝛽
3
− 3𝛽
1

6

...

(27)

Also, the relationship between 𝛽
𝑟
and𝐾

𝑟
would be

𝐾
1
= 𝛽
1

𝐾
2
= 𝛽
2
− 𝛽
2

1

𝐾
3
= 𝛽
3
− 3𝛽
2
𝛽
1
+ 2𝛽
3

1

...

(28)
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Linguistic data could be considered as fuzzy data. So,
based on the Gülbay and Kahraman [23] definition, the
probability of a linguistic data like 𝐿

𝑖
happening is

Pr {𝐿
𝑖
} = ∫
𝑅

𝜇
𝑖
(𝑥) 𝑓 (𝑥) 𝑑𝑥. (29)

When the p.d.f and membership function of the linguistic
variable are known, previous equations helps to calculate the
probability of happening the event of base variable 𝑋 in the
interval [𝑥, 𝑥+𝑑𝑥] with condition of happening the evidence
of 𝐿
𝑖
, as follows:

Pr (𝑋 | 𝐿
𝑖
) 𝑑𝑥 =

𝜇
𝑖 (𝑥) 𝑓 (𝑥) 𝑑𝑥

Pr (𝐿
𝑖
)

. (30)

In addition, if 𝑘
𝑖
is known, 𝛽

𝑟
could be calculated as follows:

𝛽
𝑟
=

1

𝑛

𝑡

∑

𝑖=1

∫

+∞

−∞

𝑘
𝑖
𝑥
𝑟Pr (𝑋 | 𝐿

𝑖
) 𝑑𝑥. (31)

Based on Kanagawa et al. [15], by using the Gram-Charlier
series with degree 𝑟 (𝑟 = 1, 2, . . . , 𝑡) and by using the following
algorithm, we could estimate the p.d.f.

Step 1. By using fuzzymode, the value of scalar number of the
membership function associated with each linguistic value
𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑡
must be determined. Then, 𝑘(0)

𝑟
is calculated

as follows:

𝛽
(0)

𝑟
=

1

𝑛

𝑡

∑

𝑖=1

𝑘
𝑖
𝑥
𝑟

𝑖
. (32)

Continuously, by using (32) other torques must be deter-
mined.

Step 2. The torque which is determined in Step 1 inserts into
the p.d.f.

Step 3. The values of 𝑓(𝑥) insert into (31) and update the
torque.

Step 4. Repeat Steps 2 and 3 until giving the following
condition:

𝛽
(0)

𝑟
=

1

𝑛

𝑡

∑

𝑖=1

𝑘
𝑖
𝑥
𝑟

𝑖
. (33)

Now, by using this assumption where is 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
are

independent random variables from 𝑓(𝑥), 𝛼 upper percent
of normal distribution by using the Cornish-Fisher develop-
ment method would be

𝑍
𝛼
= 𝑢
𝛼
+
𝐾
3
/𝐾
3/2

2

6√𝑛
(𝑢
2

𝛼
− 1)

+
𝐾
4
/𝐾
2

2

24𝑛
(𝑢
3

𝛼
− 3𝑢
𝛼
)

−
𝐾
2

3
/𝐾
3

2

36𝑛
(2𝑢
3

𝛼
− 5𝑢
𝛼
) + ⋅ ⋅ ⋅ ,

(34)

M

= M = p

Lj(𝛼) Rj(𝛼)

𝛼

𝜇(M)

CL

Figure 5: TFN for𝑀 and𝑀
𝑗
for sample 𝑗.

where

𝑍 =
𝑋 − 𝐾

1

(𝐾
2
/𝑛)
1/2

, (35)

and 𝑢
𝛼
shows 𝛼 upper percent of normal distribution with

mean equal to zero and variance equal to 1.

3.3.3. 𝛼-Level Fuzzy Control Chart. As mentioned before in
crisp state, control limits for the proportion of nonconform-
ing could be calculated as (1). In fuzzy state, sample mean𝑀

𝑗

and center line CL could be calculated as follows:

CL = 𝑀
𝑗
=

𝑚

∑

𝑗=1

𝑀
𝑗
,

𝑀
𝑗
=

∑
𝑚

𝑗=1
𝑘
𝑖𝑗
𝑟
𝑖

𝑛
𝑗

, 𝑖 = 1, 2, . . . , 𝑡.

(36)

As CL is a fuzzy set, it could be stated by a triangular fuzzy
number (TFN), where its fuzzy mode is equal to CL. Figure 5
depicted CL as a TFN.

4. Conclusion

To conclude, this study has technically reviewed control
charts. The author in this paper covered the first phase
of developments in the context of control charts. In the
second phase, most of the works are based on hybrid charts
as well as works which are focusing on the use of more
productive charting methods [27]. The second part starts
by 2000s. Clearly, developments of phase two charts are all
based on pure charts which are in phase one and have been
reviewed in this paper. The contribution of this study was
to review pure control charts to show start points to direct
further studies. Further researches could continue reviewing
the developments of control charts in second phase, as well
as using the pure charts of the first phase to modify the
chart’s productivity. The author is continuing this study to
modify the current available control charts, using fuzzy
theory approach.
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We equivalently transform the sum of linear ratios programming problem into bilinear programming problem, then by using the
linear characteristics of convex envelope and concave envelope of double variables product function, linear relaxation programming
of the bilinear programming problem is given, which can determine the lower bound of the optimal value of original problem.
Therefore, a branch and bound algorithm for solving sumof linear ratios programming problem is put forward, and the convergence
of the algorithm is proved. Numerical experiments are reported to show the effectiveness of the proposed algorithm.

1. Introduction

We consider the sum of linear ratios programming problem
as the following form:

(GFP) :
{{{

{{{

{

min𝑓 (𝑥) =
𝑝

∑

𝑖=1

𝑓
𝑖 (𝑥) =

𝑝

∑

𝑖=1

𝑛
𝑖 (𝑥)

𝑑
𝑖
(𝑥)
,

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0,

(1)

where the feasible domain 𝐷 ≜ {𝑥 ∈ 𝑅𝑛 | 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0}
is n-dimensional, nonempty, and bound, 𝐴 ∈ 𝑅𝑚×𝑛, 𝑏 ∈ 𝑅𝑚.
Assume that 𝑛

𝑖
(𝑥) = 𝑐

𝑖

𝑇
𝑥+𝑑
𝑖
≥ 0 and 𝑑

𝑖
(𝑥) = 𝑒

𝑖

𝑇
𝑥+𝑟
𝑖
> 0 in

some rectangle𝑋 which contains𝐷, where 𝑐
𝑖
, 𝑒
𝑖
∈ 𝑅
𝑛
, 𝑑
𝑖
, 𝑟
𝑖
∈

𝑅, 𝑖 = 1, 2, . . . , 𝑝, and 2 ≤ 𝑝 ≪ 𝑛.
Fractional programming is an important branch of non-

linear optimization and it has attracted many researchers’
concern for several decades. Sum of linear ratios problem
is a special class of fractional programming problem; it
has wide applications, such as investment, transportation
scheme, and economic benefits [1–3]. From a research point
view, sum of ratios problems challenge theoretical analysis
and computation because these problems possess multiple
local optima that are not globally optimal solutions; it is
difficult to solve the global solution.

At present there exist a number of algorithms for globally
solving sum of linear ratios problems. When p = 2, Konno
et al. [4] constructed a similar parametric simplex algorithm

which can solve large-scale optimization problems; when
p = 3, Konno and Abe [5] developed parametric simplex
algorithm and constructed an effected heuristic algorithm;
when p > 3, the literature [6] is a sum of linear ratios problem
with coefficients; by using an equivalent transformation and
linearization technique, the original nonconvex program-
ming problem reduces to a series of linear programming
problems to achieve the purpose of solving it. To minimize
the problem, Yanjun et al. [7] use the linearization technique
twice by the nature of exponential and logarithmic functions
to achieve a linear relaxation programming of the original
problem. Benson [8] put forward a new branch and bound
algorithm to solve the equivalent concaveminimum problem
of the original problem. Jiao and Feng [9] present a new
pruning technique. In the literature [10], the numerator and
denominator of the ratios are not necessarily positive. In
this paper, we present a new branch and bound algorithm
for solving the sum of linear ratios problems, and the
convergence of the algorithm is proved. At last, the numerical
experiments are carried out.

This paper is organized as follows. In Section 2, we
show how to convert the problem (GFP) into an equivalent
problem (EP) by a transformed technique. In Section 3,
the linear relaxation programming problem of (EP) is con-
structed. The branching process of the rectangle is given in
Section 4. In Section 5, the branch and bound algorithm for
globally solving (EP) is presented and the convergence of
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the algorithm is proved. In Section 6, some numerical results
are given to show the effectiveness of the present algorithm.
Finally, the conclusion is given.

2. Equivalent Transformation

Because the set D is nonempty and bound, we can construct
the rectangle 𝑋 = [𝑙, 𝑢], which contains the feasible region
of the problem (GFP), 𝑙 = (𝑙

1
, 𝑙
2
, . . . , 𝑙
𝑛
)
𝑇
, 𝑢 = (𝑢

1
, 𝑢
2
, . . . ,

𝑢
𝑛
)
𝑇
, 𝑙
𝑗
and 𝑢
𝑗
is the optimal value of the linear programming

problem (2) and (3), respectively.

min 𝑙 (𝑥
𝑗
) = 𝑥
𝑗
,

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0,

(2)

max 𝑢 (𝑥
𝑗
) = 𝑥
𝑗
,

s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0.

(3)

Firstly, we solve the following 2p linear programming
problems:

min 𝑑
𝑖 (𝑥) ,

s.t. 𝑥 ∈ 𝐷,

max 𝑑
𝑖
(𝑥) ,

s.t. 𝑥 ∈ 𝐷,

𝑖 = 1, 2, . . . , 𝑝.

(4)

The optimal solutions of (4) are 𝑥1
𝑖
and 𝑥2

𝑖
(𝑖 = 1, 2, . . . , 𝑝),

and the optimal value is denoted by 𝑙
𝑖
and 𝑢

𝑖
(𝑖 = 1, 2, . . . , 𝑝)

respectively. Obviously, 𝑥1
𝑖
and 𝑥2

𝑖
are feasible to (GFP). Set

𝑊 = 𝑊 ∪ {𝑥
1

𝑖
, 𝑥
2

𝑖
: 𝑖 = 1, 2, . . . , 𝑝}, where𝑊 represent the set

of the current feasible solution of the problem (GFP). Set

𝐻
0
= {𝑦 ∈ 𝑅

𝑝
| 𝑙
0

𝑖
≤ 𝑦
𝑖
≤ 𝑢
0

𝑖
, 𝑖 = 1, 2, . . . , 𝑝} ,

𝑦 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑝
)
𝑇

,

(5)

where 𝑙0
𝑖
= 1/𝑢

𝑖
, 𝑢0
𝑖
= 1/𝑙

𝑖
. Then the problem (GFP)

is converted into an equivalent nonconvex programming
problem:

EP (𝐻0) :

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

min 𝜑
0
(𝑥, 𝑦) =

𝑝

∑

𝑖=1

𝑦
𝑖
𝑛
𝑖
(𝑥)

=

𝑝

∑

𝑖=1

𝑦
𝑖
(

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑥
𝑗
+ 𝑑
𝑖
) ,

s.t. 𝜑
𝑖
(𝑥, 𝑦) = 𝑦

𝑖
𝑑
𝑖
(𝑥)

= 𝑦
𝑖
(

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑥
𝑗
+ 𝑟
𝑖
)

≥ 1, 𝑖 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷 ∩ 𝑋, 𝑦 ∈ 𝐻
0
.

(6)

Theorem 1 (see [10]). If (𝑥∗, 𝑦∗) is a global optimal solution of
the problem 𝐸𝑃(𝐻0), then 𝑥∗is a global optimal solution of the
problem (GFP), and for every 𝑖 = 1, 2, . . . , 𝑝, when 𝑛

𝑖
(𝑥
∗
) ≥ 0,

𝑦
∗

𝑖
= 1/𝑑

𝑖
(𝑥
∗
); conversely, if 𝑥∗ is a global optimal solution of

the problem (GFP), then (𝑥∗, 𝑦∗) is a global optimal solution
of the problem 𝐸𝑃(𝐻0), where 𝑦∗

𝑖
= 1/𝑑

𝑖
(𝑥
∗
), 𝑖 = 1, 2, . . . , 𝑝.

From Theorem 1, the problems (GFP) and EP(𝐻0) are
equivalent; their global optimal values are equal.Therefore, in
order to solve (GFP), we only need to solve EP(𝐻0) instead.

3. Linear Relaxation Technique

From Section 2, 𝑋 = [𝑙, 𝑢] and 𝐻0 = [𝑙0, 𝑢0] are rectangles;
set

Ω
𝑖
= {(𝑥, 𝑦

𝑖
) | 𝑙 ≤ 𝑥 ≤ 𝑢, 𝑙

0

𝑖
≤ 𝑦
𝑖
≤ 𝑢
0

𝑖
}

= Ω
1𝑖
× Ω
2𝑖
× ⋅ ⋅ ⋅Ω

𝑛𝑖
,

(7)

where

Ω
𝑗𝑖
= {(𝑥

𝑗
, 𝑦
𝑖
) | 𝑙
𝑗
≤ 𝑥
𝑗
≤ 𝑢
𝑗
, 𝑙
0

𝑖
≤ 𝑦
𝑖
≤ 𝑢
0

𝑖
} ,

𝑗 = 1, 2, . . . , 𝑛.

(8)

Because in Ω
𝑗𝑖
we have 𝑥

𝑗
− 𝑙
𝑗
≥ 0, 𝑦

𝑖
− 𝑙
0

𝑖
≥ 0, so

(𝑥
𝑗
− 𝑙
𝑗
) (𝑦
𝑖
− 𝑙
0

𝑖
) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, (9)

expanding it, then we have 𝑥
𝑗
𝑦
𝑖
≥ 𝑙
0

𝑖
𝑥
𝑗
+ 𝑙
𝑗
𝑦
𝑖
− 𝑙
𝑗
𝑙
0

𝑖
, 𝑗 =

1, 2, . . . , 𝑛.
Similarly, we can obtain that 𝑥

𝑗
− 𝑢
𝑗
≤ 0, 𝑦

𝑖
− 𝑢
0

𝑖
≤ 0, so

(𝑥
𝑗
− 𝑢
𝑗
) (𝑦
𝑖
− 𝑢
0

𝑖
) ≥ 0, 𝑗 = 1, 2, . . . , 𝑛, (10)

expanding it, then we have 𝑥
𝑗
𝑦
𝑖
≥ 𝑢
0

𝑖
𝑥
𝑗
+ 𝑢
𝑗
𝑦
𝑖
− 𝑢
𝑗
𝑢
0

𝑖
, 𝑗 =

1, 2, . . . , 𝑛. Let

𝜃
11

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) = 𝑙
0

𝑖
𝑥
𝑗
+ 𝑙
𝑗
𝑦
𝑖
− 𝑙
𝑗
𝑙
0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛,

𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) = 𝑢
0

𝑖
𝑥
𝑗
+ 𝑢
𝑗
𝑦
𝑖
− 𝑢
𝑗
𝑢
0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛.

(11)

Because 𝑥
𝑗
𝑦
𝑖
≥ 𝜃
11

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
), 𝑥
𝑗
𝑦
𝑖
≥ 𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
), 𝑗 = 1, 2, . . . , 𝑛,

we have the following result:

𝑥
𝑗
𝑦
𝑖
≥ max {𝜃11

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
)} , 𝑗 = 1, 2, . . . , 𝑛.

(12)

Similarly, we have (𝑥
𝑗
− 𝑙
𝑗
)(𝑦
𝑖
− 𝑢
0

𝑖
) ≤ 0, (𝑥

𝑗
− 𝑢
𝑗
)(𝑦
𝑖
−

𝑙
0

𝑖
) ≤ 0, 𝑗 = 1, 2, . . . , 𝑛, expanding them, then we have 𝑥

𝑗
𝑦
𝑖
≤

𝑢
0

𝑖
𝑥
𝑗
+ 𝑙
𝑗
𝑦
𝑖
− 𝑙
𝑗
𝑢
0

𝑖
, 𝑥
𝑗
𝑦
𝑖
≤ 𝑙
0

𝑖
𝑥
𝑗
+ 𝑢
𝑗
𝑦
𝑖
− 𝑢
𝑗
𝑙
0

𝑖
; let

𝜃
21

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) = 𝑢
0

𝑖
𝑥
𝑗
+ 𝑙
𝑗
𝑦
𝑖
− 𝑙
𝑗
𝑢
0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛,

𝜃
22

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) = 𝑙
0

𝑖
𝑥
𝑗
+ 𝑢
𝑗
𝑦
𝑖
− 𝑢
𝑗
𝑙
0

𝑖
, 𝑗 = 1, 2, . . . , 𝑛.

(13)

Consequently,

𝑥
𝑗
𝑦
𝑖
≤ min {𝜃21

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
22

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
)} , 𝑗 = 1, 2, . . . , 𝑛.

(14)
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From formulae (12) and (14), the following formula is
obtained:

max {𝜃11
𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
)}

≤ 𝑥
𝑗
𝑦
𝑖

≤ min {𝜃21
𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
22

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
)} .

(15)

In the problemEP(𝐻0), let LB(𝑥) andUB(𝑥), respectively,
represent the lower bound and upper bound of 𝑥; then

LB (𝑐
𝑖𝑗
𝑥
𝑗
𝑦
𝑖
)

= {
𝑐
𝑖𝑗
⋅max {𝜃11

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
)} , 𝑐

𝑖𝑗
≥ 0,

𝑐
𝑖𝑗
⋅min {𝜃21

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
22
(𝑥
𝑗
, 𝑦
𝑖
)} , 𝑐

𝑖𝑗
< 0,

UB (𝑒
𝑖𝑗
𝑥
𝑗
𝑦
𝑖
)

= {
𝑒
𝑖𝑗
⋅min {𝜃21

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
22

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
)} , 𝑒

𝑖𝑗
≥ 0,

𝑒
𝑖𝑗
⋅max {𝜃11

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
)} , 𝑒

𝑖𝑗
< 0.

(16)

From formula (16), we can obtain the linear relaxation
programming problem REP(𝐻0) of the problem EP(𝐻0):

REP (𝐻0) :

{{{{{{{{{{

{{{{{{{{{{

{

min 𝜑
𝑙

0
(𝑥, 𝑦)=

𝑝

∑

𝑖=1

(

𝑛

∑

𝑗=1

LB (𝑐
𝑖𝑗
𝑥
𝑗
𝑦
𝑖
)+𝑑
𝑖
𝑦
𝑖
),

s.t. 𝜑𝑢
𝑖
(𝑥, 𝑦)=

𝑛

∑

𝑗=1

UB (𝑒
𝑖𝑗
𝑥
𝑗
𝑦
𝑖
)+𝑟
𝑖
𝑦
𝑖
≥ 1,

𝑖 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷 ∩ 𝑋, 𝑦 ∈ 𝐻
0
.

(17)

The optimal value of the problem REP(𝐻0) is a lower bound
of the optimal value of the problem EP(𝐻0) in the feasible
region D.

Obviously, the problem REP(𝐻0) can equivalently be
converted into the following linear programming problem
LRP(𝐻0):

LRP (𝐻0) :

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

min 𝑓 (𝑥, 𝑦, 𝑡, 𝑠) =

𝑝

∑

𝑖=1

(

𝑛

∑

𝑗=1

𝑡
𝑗𝑖
+ 𝑑
𝑖
𝑦
𝑖
) ,

s.t.
𝑛

∑

𝑗=1

𝑠
𝑗𝑖
+ 𝑟
𝑖
𝑦
𝑖
≥ 1, 𝑖 = 1, 2, . . . 𝑝,

𝑡
𝑗𝑖
≥ 𝑐
𝑖𝑗
⋅ 𝜃
11

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑐

𝑖𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑡
𝑗𝑖
≥ 𝑐
𝑖𝑗
⋅ 𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑐

𝑖𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑡
𝑗𝑖
≥ 𝑐
𝑖𝑗
⋅ 𝜃
21

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑐

𝑖𝑗
< 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑡
𝑗𝑖
≥ 𝑐
𝑖𝑗
⋅ 𝜃
22

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑐

𝑖𝑗
< 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠
𝑗𝑖
≤ 𝑒
𝑖𝑗
⋅ 𝜃
21

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑒

𝑖𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠
𝑗𝑖
≤ 𝑒
𝑖𝑗
⋅ 𝜃
22

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑒

𝑖𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠
𝑗𝑖
≤ 𝑒
𝑖𝑗
⋅ 𝜃
11

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑒

𝑖𝑗
< 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑠
𝑗𝑖
≤ 𝑒
𝑖𝑗
⋅ 𝜃
12

𝑗𝑖
(𝑥
𝑗
, 𝑦
𝑖
) , 𝑒

𝑖𝑗
< 0, 𝑗 = 1, 2, . . . , 𝑛, 𝑖 = 1, 2, . . . , 𝑝,

𝑥 ∈ 𝐷 ∩ 𝑋, 𝑦 ∈ 𝐻
0
.

(18)

The optimal value of the problem LRP(𝐻0) can be
obtained by solving the linear programming problem
LRP(𝐻0), which is a lower bound of the problem EP(𝐻0) in
feasible region D.

The Determination of Upper Bound. From the process of the
determination of lower bound, by solving LRP(𝐻0), we can
obtain a global optimal solution 𝑥∗; let

𝑦
𝑖

∗
= (

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑥
𝑗

∗
+ 𝑟
𝑖
)

−1

. (19)

It is obvious that (𝑥∗, 𝑦∗) is a feasible solution of EP(𝐻0).
Therefore, 𝜑

0
(𝑥
∗
, 𝑦
∗
) provide an upper bound for the global

optimal value ](𝐻0) of the problem EP(𝐻0).

4. Branching

In this algorithm, the branching process is executed in the
space of 𝑅𝑝 other than in 𝑅𝑛. In general, when 𝑝 ≪ 𝑛, the
amount of computation will decrease so that the efficiency of
computationwill improve.Therefore, we choose the rectangle
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𝐻
0 which contains 𝑦 to branch, and the subrectangle after

branching is also 𝑝-dimensional. Set

𝐻 = {𝑦 ∈ 𝑅
𝑝
| 𝐿
𝑖
≤ 𝑦
𝑖
≤ 𝑈
𝑖
, 𝑖 = 1, 2, . . . , 𝑝} . (20)

Denote the initial rectangle 𝐻0 or subrectangle of it. The
branching rule is as follows:

(i) choose the longest side of 𝐻, that is, 𝑈
𝑠
− 𝐿
𝑠
=

max{𝑈
𝑖
− 𝐿
𝑖
: 𝑖 = 1, 2, . . . , 𝑝};

(ii) let 𝑉
𝑠
= (𝑈
𝑠
+ 𝐿
𝑠
)/2 and

𝐻
1
=

𝑠−1

∏

𝑖=1

[𝐿
𝑖
, 𝑈
𝑖
] × [𝐿 s, 𝑉𝑠] ×

𝑝

∏

𝑖=𝑠+1

[𝐿
𝑖
, 𝑈
𝑖
] ,

𝐻
2
=

𝑠−1

∏

𝑖=1

[𝐿
𝑖
, 𝑈
𝑖
] × [𝑉

𝑠
, 𝑈
𝑠
] ×

𝑝

∏

𝑖=𝑠+1

[𝐿
𝑖
, 𝑈
𝑖
] .

(21)

5. Algorithm and Its Convergence

The branch and bound algorithm of the problem (GFP) is
stated as follows:

Step 1. Choose 𝜀 ≥ 0, the initial rectangle 𝐻0 = {𝑦 ∈ 𝑅𝑝 |
𝑙
0

𝑖
≤ 𝑦
𝑖
≤ 𝑢
0

𝑖
, 𝑖 = 1, 2, . . . , 𝑝}; we can find an optimal solution

𝑥
0 and the optimal value LB(𝐻0) by solving the problem

LRP(𝐻0). Set LB
0
= LB(𝐻0), 𝑥𝑐 = 𝑥0. Set 𝑦𝑐

𝑖
= (∑
𝑛

𝑗=1
𝑒
𝑖𝑗
𝑥
𝑐

𝑗
+

𝑟
𝑖
)
−1, 𝑖 ∈ {1, 2, . . . , 𝑝}, UB

0
= 𝜑
0
(𝑥
𝑐
, 𝑦
𝑐
).

If UB
0
− LB
0
≤ 𝜀, stop. (𝑥𝑐, 𝑦𝑐) and 𝑥𝑐 are global

𝜀-optimal solutions of problems EP(𝐻0) and (GFP), respec-
tively. Otherwise, set 𝑃

0
= {𝐻

0
}, 𝐹 = ⌀, 𝑘 = 1, and go to

Step 2.

Step 2. Set UB
𝑘
= UB

𝑘−1
. Subdivide 𝐻𝑘−1 into two p-

dimensional rectangles 𝐻𝑘,1, 𝐻𝑘,2 ⊆ 𝑅𝑝 via the branching
rule. Set 𝐹 = 𝐹 ∪ {𝐻𝑘−1}.

Step 3. For 𝑗 = 1, 2, compute LB(𝐻𝑗,𝑘). If LB(𝐻𝑗,𝑘) ̸= + ∞,
find an optimal solution 𝑥𝑘,𝑗 of problem LRP(𝐻) with 𝐻 =

𝐻
𝑗,𝑘; set 𝑡 = 0.

Step 4. Set 𝑡 = 𝑡+1. If 𝑡 > 2, go to Step 6. Otherwise, continue.

Step 5. If UB
𝑘
≤ LB(𝐻𝑘,𝑡), set 𝐹 = 𝐹 ∪ {𝐻𝑘,𝑡}; go to Step 4.

Otherwise, set

𝑦
𝑘,𝑡

𝑖
= (

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑥
𝑘,𝑡

𝑗
+ 𝑟
𝑖
)

−1

, 𝑖 ∈ {1, 2, . . . , 𝑝} . (22)

Let UB
𝑘
= min{UB

𝑘
, 𝜑
0
(𝑥
𝑘,𝑡
, 𝑦
𝑘,𝑡
)}. If UB

𝑘
< 𝜑
0
(𝑥
𝑘,𝑡
, 𝑦
𝑘,𝑡
),

go to Step 4. If UB
𝑘
= 𝜑
0
(𝑥
𝑘,𝑡
, 𝑦
𝑘,𝑡
), set 𝑥𝑐 = 𝑥𝑘,𝑡, (𝑥𝑐, 𝑦𝑐) =

(𝑥
𝑘,𝑡
, 𝑦
𝑘,𝑡
). Let

𝐹 = 𝐹 ∪ {𝐻 ∈ 𝑃
𝑘−1
| UB
𝑘
≤ LB (𝐻)} . (23)

Step 6. Set 𝑃
𝑘
= {𝐻 | 𝐻 ∈ (𝑃

𝑘−1
∪ {𝐻
𝑘,1
, 𝐻
𝑘,2
}),𝐻 ∉ 𝐹}.

Step 7. Set LB
𝑘
= min{LB(𝐻) | 𝐻 ∈ 𝑃

𝑘
}. Let𝐻𝑘 ∈ 𝑃

𝑘
satisfy

LB
𝑘
= LB(𝐻𝑘).

If UB
0
−LB
0
≤ 𝜀, stop. (𝑥𝑐, 𝑦𝑐) and 𝑥𝑐 are global 𝜀-optimal

solutions of the problems EP(𝐻0) and (GFP), respectively.
Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 2.

Next, the convergence of the algorithm is stated in the
following theorem.

Theorem 2. (a) If the algorithm is finite, (𝑥𝑐, 𝑦𝑐) and 𝑥𝑐 are
global 𝜀-optimal solutions of the problems 𝐸𝑃(𝐻0) and (GFP),
respectively.

(b) For 𝑘 ≥ 0, let𝑥𝑘 denote the incumbent solution𝑥𝑐 at the
end of step k. If the algorithm is infinite, then {𝑥𝑘} is a feasible
solution sequence, whose every accumulation point is a global
optimal solution of the problem (GFP), and

lim
𝑘→∞

UB
𝑘
= lim
𝑘→∞

LB
𝑘
= ]. (24)

Proof. (a) If the algorithm is finite, without loss of generality,
it terminates in step 𝑘 (𝑘 ≥ 0), since (𝑥𝑐, 𝑦𝑐) is obtained by
solving problem LRP(𝐻), for some 𝐻 ⊆ 𝐻

0 and optimal
solution 𝑥𝑐, set

𝑦
𝑐

𝑖
=

1

∑
𝑛

𝑗=1
𝑒
𝑖𝑗
𝑥
𝑐

𝑗
+ 𝑟
𝑖

, 𝑖 ∈ {1, 2, . . . , 𝑝} , (25)

where 𝑥𝑐 is a feasible solution of the problem (GFP) and
(𝑥
𝑐
, 𝑦
𝑐
) is a feasible solution of problem EP(𝐻0).WhenUB

𝑘
−

LB
𝑘
≤ 𝜀, the algorithm terminates. From Steps 1, 2, and 5,

it is implied that 𝜑
0
(𝑥
𝑐
, 𝑦
𝑐
) − LB

𝑘
≤ 𝜀; by the algorithm, it

shows that LB
𝑘
≤ ]. Since (𝑥𝑐, 𝑦𝑐) is a feasible solution of the

problem EP(𝐻0), therefore, 𝜑
0
(𝑥
𝑐
, 𝑦
𝑐
) ≥ ].

Taken together, it is implied that

] ≤ 𝜑
0
(𝑥
𝑐
, 𝑦
𝑐
) ≤ LB

𝑘
+ 𝜀 ≤ ] + 𝜀. (26)

Therefore,

] ≤ 𝜑
0
(𝑥
𝑐
, 𝑦
𝑐
) ≤ ] + 𝜀. (27)

From the formula 𝑦𝑐
𝑖
= 1/(∑

𝑛

𝑗=1
𝑒
𝑖𝑗
𝑥
𝑐

𝑗
+ 𝑟
𝑖
), 𝑖 = 1, 2, . . . , 𝑝, we

have

𝑓 (𝑥
𝑐
) = 𝜑
0
(𝑥
𝑐
, 𝑦
𝑐
) . (28)

From (27), this implies that

] ≤ 𝑓 (𝑥
𝑐
) ≤ ] + 𝜀. (29)

The proof of (a) is complete.
(b) If the algorithm is infinite, then it generates a sequence

of incumbent solutions of the problem EP(𝐻0), denoted by
{(𝑥
𝑘
, 𝑦
𝑘
)}, for each 𝑘 ≥ 1, (𝑥𝑘, 𝑦𝑘) is obtained by solving the

problem LRP(𝐻). For some 𝐻𝑘 ⊆ 𝐻0 and optimal solution
𝑥
𝑘
∈ 𝐷, set

𝑦
𝑘

𝑖
=

1

∑
𝑛

𝑗=1
𝑒
𝑖𝑗
𝑥
𝑘

𝑗
+ 𝑟
𝑖

, 𝑖 ∈ {1, 2, . . . , 𝑝} . (30)
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Then the sequence {𝑥𝑘} consists of feasible solutions of the
problem (GFP).

Suppose that 𝑥 is an accumulation point of {𝑥𝑘}. Assume
without loss of generality that lim

𝑘→∞
𝑥
𝑘
= 𝑥. Since 𝐷 is a

compact set, 𝑥 ∈ 𝐷. Furthermore, because {𝑥𝑘} is infinite, we
assume without loss of generality that, for each 𝑘,𝐻𝑘+1 ⊆ 𝐻𝑘,
for some point 𝑦 ∈ 𝑅𝑝,

lim
𝑘→∞

𝐻
𝑘
= ⋂

𝑘

𝐻
𝑘
= {𝑦} . (31)

Set 𝐻 = {𝑦}, for each 𝑘; let 𝐻𝑘 = {𝑦 ∈ 𝑅𝑝 | 𝐿𝑘
𝑖
≤ 𝑦
𝑖
≤

𝑈
𝑘

𝑖
, 𝑖 = 1, 2, . . . , 𝑝}. Since 𝐻𝑘+1 ⊆ 𝐻𝑘 ⊆ 𝐻0, from Step 5,

we know that {LB(𝐻𝑘)} is a nonincreasing sequence, and
lim
𝑘→∞

LB(𝐻𝑘) is a finite number and satisfies

lim
𝑘→∞

LB (𝐻𝑘) ≤ ]. (32)

For each 𝑘, from Step 3, we know that LB(𝐻𝑘) is equal to
the optimal value of the problem LRP(𝐻𝑘) and that 𝑥𝑘 is an
optimal solution of this problem. From (31), we have

lim
𝑘→∞

𝐿
𝑘
= lim
𝑘→∞

𝑈
𝑘
= {𝑦} = 𝐻. (33)

Since lim
𝑘→∞

𝑥
𝑘
= 𝑥, 𝐿𝑘

𝑖
≤ 1/(∑

𝑛

𝑗=1
𝑒
𝑖𝑗
𝑥
𝑘

𝑗
+ 𝑟
𝑖
) ≤ 𝑈

𝑘

𝑖
, and the

continuity of ∑𝑝
𝑖=1
𝑒
𝑖𝑗
𝑥
𝑘

𝑗
+ 𝑟
𝑖
,

1

∑
𝑛

𝑗=1
𝑒
𝑖𝑗
𝑥
𝑗
+ 𝑟
𝑖

= 𝑦
𝑖
, 𝑖 = 1, 2, . . . , 𝑝. (34)

This implies that (𝑥, 𝑦) is a feasible solution of the problem
EP(𝐻0). Therefore,

𝜑
0
(𝑥, 𝑦) ≥ ]. (35)

Together with (32), we have

𝜑
0
(𝑥, 𝑦) ≥ ] ≥ lim

𝑘→∞

LB (𝐻𝑘) . (36)

Since the branching process is bisection and the branching
process of rectangle is exhaustive, we have

lim
𝑘→∞

LB (𝐻𝑘) = ] = 𝜑
0
(𝑥, 𝑦) . (37)

Therefore, (𝑥, 𝑦) is a global optimal solution of the problem
EP(𝐻0). By Theorem 1, this implies that 𝑥 is a global optimal
solution of the problem (GFP). For each 𝑘, since 𝑥𝑘 is the
incumbent solution of the problem (GFP) at the end of step
𝑘, UB

𝑘
= 𝑓(𝑥

𝑘
); by the continuity of f, we obtain that

lim
𝑘→∞

𝑓 (𝑥
𝑘
) = 𝑓 (𝑥) . (38)

Since 𝑥 is a global optimal solution of the problem (GFP),

𝑓 (𝑥) = ]. (39)

Therefore, lim
𝑘→∞

UB
𝑘
= ]. The proof is complete.

6. Numerical Experiment

The proposed algorithm is programmed in MATLAB 7.8 and
is run in Pentium(R) 4 CPU 3.20GHz. In order to compare
with the algorithm of the literature [10], we perform three
experiments to the literature [10].

Example 1 (see [10]). We choose𝑝 = 𝑛 = 2; for each (𝑥
1
, 𝑥
2
) ∈

𝑅
2, the numerator and denominator are

𝑛
1
(𝑥
1
, 𝑥
2
) = 37𝑥

1
+ 73𝑥

2
+ 13,

𝑛
2
(𝑥
1
, 𝑥
2
) = 63𝑥

1
− 18𝑥

2
+ 39,

𝑑
1
(𝑥
1
, 𝑥
2
) = 13𝑥

1
+ 13𝑥

2
+ 13,

𝑑
2
(𝑥
1
, 𝑥
2
) = 13𝑥

1
+ 26𝑥

2
+ 13,

(40)

and all (𝑥
1
, 𝑥
2
) ∈ 𝐷 satisfy

5𝑥
1
− 3𝑥
2
= 3, 1.5 ≤ 𝑥

1
≤ 3. (41)

From our algorithm, we firstly should solve the following
linear programming problems:

min 𝑑
𝑖 (𝑥) ,

s.t. 𝐴𝑥 ≤ 𝑏,

max 𝑑
𝑖
(𝑥) ,

s.t. 𝐴𝑥 ≤ 𝑏,

𝑖 = 1, 2, . . . , 𝑝,

(42)

of which the optimal solutions denote by 𝑥1
𝑖
, 𝑥
2

𝑖
(𝑖 = 1, 2);

then

𝑊 = 𝑊 ∪ {𝑥
1

𝑖
, 𝑥
2

𝑖
: 𝑖 = 1, 2, . . . , 𝑝} , (43)

where W represent the set of the current feasible solution of
the problem EP(𝐻0), and the optimal value is denoted by 𝑙

𝑖

and 𝑢
𝑖
(𝑖 = 1, 2); then the initial rectangle is

𝐻
0
= [
0.0096 0.0192

0.0064 0.0140
] . (44)

By solving the linear relaxation programming problem
LRP(𝐻0), we obtain the optimal solution 𝑥0 = [2.0016;

2.3360] and the optimal value LB(𝐻0) = 3.9743; then a lower
bound of the original problem is LB(𝐻0) = 3.9743. Set

𝑦
0

𝑖
= (

𝑛

∑

𝑗=1

𝑒
𝑖𝑗
𝑥
0

𝑗
+ 𝑟
𝑖
)

−1

. (45)

Then (𝑥
0
, 𝑦
0
) is a feasible solution of EP(𝐻0), min

{𝜑
0
(𝑥
0
, 𝑦
0
), 𝑓(𝑥) : 𝑥 ∈ 𝑊} = 4.9126, then it provides

an upper bound for the global optimal value of the problem
EP(𝐻0). Next, we choose the rectangle 𝐻0 corresponding
with the lower bound to branch; we obtain the following
rectangles via our algorithm:

𝐻
0,1
= [
0.0096 0.0144

0.0064 0.0140
] , 𝐻

0,2
= [
0.0144 0.0192

0.0064 0.0140
] .

(46)



6 Journal of Applied Mathematics

Table 1

𝜀 Approximate optimal value Optimal value
0.01 4.9027 4.9126

Example 1 1.0𝑒 − 3 4.9116 4.9126
1.0𝑒 − 4 4.9125 4.9126

We solve the linear relaxation programming problem LRP
in rectangles 𝐻0,1 and 𝐻0,2, respectively. In LRP(𝐻0,1), the
optimal solution and the optimal value are [2.2524; 2.7540]
and V = 4.2345; then in rectangle𝐻0,1, the lower bound of the
original problem is LB(𝐻0,1) = 4.2345, and the upper bound
corresponding with the optimal solution is 4.9617 (>4.9126),
so the upper bound is unchanged. In LRP(𝐻0,2), the optimal
solution and the optimal value are [1.8019; 2.0032]; and
V = 4.5548; then in rectangle 𝐻0,2, the lower bound of the
original problem is LB(𝐻0,2) = 4.5548, and the upper bound
corresponding with the optimal solution is 4.9323 (>4.9126),
so the upper bound is also unchanged. Then we choose the
rectangle correspondingwith the lower bound to branch until
the 55th iteration, and we can obtain that

𝐻
55,1
= [
0.0186 0.0189

0.0135 0.0137
] , (47)

we solve the linear programming problem LRP in 𝐻55,1;
the lower bound is 4.9125; it satisfies the terminated rule.
Therefore, the optimal value and the optimal solution of
the original problem are 4.9126 and 𝑥 = [1.5000; 1.5000];
the lower bound of the optimal value is 4.9125, which is
approximate optimal value. The accuracy is 𝜀 = 0.0001.

The above example satisfies (𝑛, 𝑝) = (2, 2), where n denote
the number of variables; our algorithm can have a good
approach within accuracy. In Example 2, (𝑛, 𝑝) = (3, 3); in
Example 3, (𝑛, 𝑝) = (3, 4) we still get good results. Along
with the increase of 𝑛 and 𝑝, the computation complexity is
increasing. For example, in Example 3, (𝑛, 𝑝) = (3, 4), we can
quickly obtain the approximate optimal value and the optimal
value by using this paper’s algorithm, but its effect is poorer
than the former example.The result of Example 1 is shown in
Table 1.

Example 2 (see [10]).

min
3𝑥
1
+ 5𝑥
2
+ 3𝑥
3
+ 50

3𝑥
1
+ 4𝑥
2
+ 5𝑥
3
+ 50

+
3𝑥
1
+ 4𝑥
2
+ 50

4𝑥
1
+ 3𝑥
2
+ 2𝑥
3
+ 50

+
4𝑥
1
+ 2𝑥
2
+ 4𝑥
3
+ 50

5𝑥
1
+ 4𝑥
2
+ 3𝑥
3
+ 50

,

s.t. 2𝑥
1
+ 𝑥
2
+ 5𝑥
3
≤ 10,

𝑥
1
+ 6𝑥
2
+ 2𝑥
3
≤ 10,

9𝑥
1
+ 7𝑥
2
+ 3𝑥
3
≥ 10,

𝑥
1
, 𝑥
2
, 𝑥
3
≥ 0.

(48)

The optimal value is 2.8619.

Example 3 (see [10]).

min
4𝑥
1
+ 3𝑥
2
+ 3𝑥
3
+ 50

3𝑥
2
+ 3𝑥
3
+ 50

+
3𝑥
1
+ 4𝑥
3
+ 50

4𝑥
1
+ 4𝑥
2
+ 5𝑥
3
+ 50

+
𝑥
1
+ 2𝑥
2
+ 4𝑥
3
+ 50

𝑥
1
+ 5𝑥
2
+ 5𝑥
3
+ 50

+
𝑥
1
+ 2𝑥
2
+ 4𝑥
3
+ 50

5𝑥
2
+ 4𝑥
3
+ 50

,

s.t. 2𝑥
1
+ 𝑥
2
+ 5𝑥
3
≤ 10,

𝑥
1
+ 6𝑥
2
+ 3𝑥
3
≤ 10,

9𝑥
1
+ 7𝑥
2
+ 3𝑥
3
≥ 10,

𝑥
1
, 𝑥
2
, 𝑥
3
≥ 0.

(49)

The optimal value is 3.7109.

We choose 𝜀 = 1.0𝑒 − 4; then the approximate optimal
solution satisfying accuracy and the iteration times and CPU
running time are obtained. The results of our algorithm are
shown in Table 2. But the results of the literature [10] are
shown in Table 3.

According to Tables 2 and 3, in Example 1, although
the optimal solution (3, 4)𝑇 of the literature [10] is feasible,
its optimal value 5 is bigger than 4.9126 of our algorithm;
in Example 2, the optimal solution (0, 3.3333, 0)𝑇 of the
literature [10] turns out to be infeasible; in Example 2, the
optimal value 4.0000 which corresponds to the optimal
solution (0, 0.625, 1.875)𝑇 of the literature [10] is actually
3.8384, but it is still bigger than 3.7109 of our algorithm.

From the above comparison we know that the optimal
values of our algorithm are much lesser than in the literature
[10], and except for Example 1, the iterations of Examples 2
and 3 are much lesser than in the literature [10]. Although
our running time is longer than the literature [10], if we can
solve the more accurate optimal solution, the price we pay is
acceptable.

In conclusion, our algorithm is feasible and effective, and
to some degree, it is better than in the literature [10].

7. Conclusion

In this paper, the solving of the sum of linear ratios program-
ming problem is discussed.Theproblem is equivalently trans-
formed into bilinear programming problem, then by using
the linear characteristics of convex envelope and concave
envelope of double variables product, the linear relaxation
programming of the bilinear programming problem is given,
which can determine the lower bound of the optimal value of
original problem. Therefore, a branch and bound algorithm
for solving sum of linear ratios programming problem is
proposed and the convergence of the algorithm is proved.
Numerical results show the effectiveness of the algorithm,
and our algorithm is better than the calculation results of the
literature [10].
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Table 2

Example The optimal solution within accuracy or one solution among solutions
𝑥
1

𝑥
2

𝑥
3

1 1.5000 1.5000
2 5.0000 0.0000 0.0000
3 0.0000 1.6667 0.0000
Example Approximate optimal value The number of iterations CPU (s)
1 4.9125 113 201.626020
2 2.8619 12 28.294344
3 3.7087 5 4.190375

Table 3

Example The optimal solution within accuracy or one solution among solutions
𝑥
1

𝑥
2

𝑥
3

1 3 4
2 0 3.3333 0
3 0 0.625 1.875
Example Approximate optimal value The number of iterations CPU (s)
1 5 32 1.089285
2 3.0029 80 8.566259
3 4.0000 58 2.968694
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Deterministic inventory model, the economic order quantity (EOQ), reveals that carrying inventory or ordering frequency follows
a relation of tradeoff. For probabilistic demand, the tradeoff surface among annual order, expected inventory and shortage are
useful because they quantify what the firmmust pay in terms of ordering workload and inventory investment to meet the customer
service desired. Based on a triobjective inventorymodel, this paper employs the successive approximation to obtain efficient control
policies outlining tradeoffs among conflicting objectives. The nondominated solutions obtained by successive approximation are
further used to plot a 3D scatterplot for exploring the relationships between objectives. Visualization of the tradeoffs displayed by
the scatterplots justifies the computation effort done in the experiment, although several iterations needed to reach a nondominated
solution make the solution procedure lengthy and tedious. Information elicited from the inverse relationships may help managers
make deliberate inventory decisions. For the future work, developing an efficient and effective solution procedure for tradeoff
analysis in multiobjective inventory management seems imperative.

1. Introduction

Inventory control is an important activity that appears in any
kind of organization. For this reason, it has been studied
extensively in the past several decades. Most inventory
models aggregate different cost concepts, such as ordering
cost, carrying cost, and shortage cost, into a single-objective
formulation. Optimal decisions about when to order and
how much to order are then solved by single-objective
optimization techniques. However the insight gained from
the oldest inventory model, economic order quantity (EOQ),
reveals that inventorymanagement should be considered as a
biobjective optimization problem to strike a balance between
inventory carrying and annual orders. Practically speaking,
inventory decisions involve tradeoffs related to operational
efficiency and customer service.

Brown [1, 2] first examined the tradeoff between invest-
ment in working stock and annual ordering cost. He intro-
duced the concept of exchange curve shown in Figure 1.
The curve demonstrates how capital invested in working
stocks can be traded for operating expenses of ordering.
Points below the curve are infeasible, and decisions located
above the curve are suboptimal. Suboptimal policies can
be improved by moving back to the curve (i.e., seeking
possible improvement from point A to B or C). Starr and
Miller [3] determined tradeoffs between two performance
measures: (i) number of orders per year (workload) and (ii)
average investment in inventory in the case of multiple items.
Gardner and Dannenbring [4] introduced customer service
as another measure, along with workload and inventory
investment, and generalized above exchange curve analysis
to the optimal policy surface in case of probabilistic demand.
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Figure 1: The exchange curve for deterministic inventory model.

The model and solution technique they used is still based
on single-objective optimization. Bookbinder and Chen [5]
proposed a multiobjective formulation for analyzing multi-
echelon inventory and distribution systems.They argued that
points on exchange curve or policy surface are equivalent
to the nondominated solutions concept of multiobjective
optimization. Although it could be the first multiple criteria
generalizations of earlier studies, the model was solved by
classical optimization techniques.

To a certain extent, the aforementioned tradeoff analysis
of inventory management is developed by single-objective
optimization.Themotivation of this study aims to develop an
intrinsically multiobjective approach for building the trade-
off surface of probabilistic inventory systems. Differences
between traditional andmultiobjective approach are not only
in their problem formulations, but also the latter simulta-
neously treats several objectives analytically or heuristically
under certain notion of multiobjective optimality [6, 7].

Gutiérrez et al. [8] considered a dynamic single facility
single-item lot size problem. Although the total demand is
assumed to be a fixed value, the distribution of this demand
among different periods is unknown.They determined all the
Pareto-optimal or nondominated production plans that are
robust to any possible occurrence of all scenarios. Gutiérrez
et al. [9] presented the characterization of the nondominated
optimal solution set and use it to correct the solutionmethod
previously proposed by Bookbinder and Chen [5].

For themultiobjective exchange curve, Tsou [7] presented
a two-stage framework consisting of multiobjective particle
swarm optimization (MOPSO) and technique for order
preference by similarity to ideal solution (TOPSIS). At the
first stage, MOPSO is used to generate the tradeoff (or
nondominated) front of the triobjective inventory model in
Agrell [10]. Then, a preferred solution is selected by TOP-
SIS according to subjective preferences of decision makers.
Tsou and Kao [11] also developed a metaheuristic based on
electromagnetism-like mechanism (EM) to approximate the
Pareto-optimal front without using any prior or interactive
preference. They showed that the metaheuristic can find
similar Pareto-optimal solutions as the popular interactive
procedure Step method (STEM) did [12]. Tsou [13] further

showed that evolutionary Pareto optimizers could generate
tradeoff solutions potentially ignored by the well-known
simultaneous method.

Nevertheless, we recently notice that the tradeoff solu-
tions of the above studies actually laid on an exchange curve,
instead of forming a tradeoff surface in the 3D objective
space. It apparently indicates that some of the objectives,
including minimization of expected annual cost, expected
annual number of stockout occasions, and expected annual
number of items stocked out, are not conflicting with each
other. Among which, the last two objectives are redundant
because they relate to the same concept of shortage but
different measures. Consequently, such a kind of triobjective
models was not properly justified in the above studies.

This paper first presents a triobjective model without
redundancy in the next section.Nonredundancy is assured by
dropping all the marginal cost parameters out of the classical
fixed order model. After that, a successive approximation
procedure based on the Lagrange method is utilized to
iteratively search for nondominated solutions and efficient
control policies. Tradeoffs among workload, inventory, and
shortage are visualized by three-dimensional scatterplots.
Although it is a time-consuming job to use the successive
approximation to find the tradeoff surfaces of multiobjective
model, all solutions found are ensured to be Pareto-optimal
in comparison with other search methods, such as genetic
algorithms. Finally, conclusions and directions for future
research are drawn out accordingly.

2. Model Building and Solution Procedures

2.1. A Triobjective Model. The reorder point lot size system,
(𝑟, 𝑄), is a popular control method under probabilistic
demand. An order of size 𝑄 will be triggered immediately
whenever the inventory position drops to the reorder point
𝑟 or lower. Classical (𝑟, 𝑄) model minimizes a lump-sum
cost including ordering cost, carrying cost, and stockout cost
[14]. The triobjective model below intrinsically restores the
nature of conflicts among objectives that are to minimize the
workload, inventory, and shortage. Also,multiobjective (𝑟, 𝑄)
model does not run into the incommensurate issue while
aggregating objectives of different measures into a single one.
The notations used here are described as follows.

𝐷 is the average annual demand,

𝐿 is the lead time,

𝐷
𝐿
is the lead time demand. It is normally distributed

with mean 𝜇
𝐿
and standard deviation 𝜎

𝐿
,

𝑆𝑆 is the safety stock, which is proportional to the
standard deviation of lead time demand.That is, 𝑆𝑆 =
𝑘𝜎
𝐿
, where 𝑘 represents the safety factor,

𝑟 is the aforementioned reorder point, which equals
to the average lead time demand plus the safety stock.
That is, 𝑟 = 𝜇

𝐿
+𝑘𝜎
𝐿
, and𝜑(𝑧) is the probability density

function of standard normal distribution.
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A multiobjective (𝑟, 𝑄)model is formulated as follows:

Min
𝑘,𝑄

𝑊 =
𝐷

𝑄
, (1)

Min
𝑘,𝑄

𝐼 =
𝑄

2
+ 𝑘𝜎
𝐿
, (2)

Min
𝑘,𝑄

𝑆 =
𝐷𝜎
𝐿

𝑄
∫

∞

𝑘

(𝑧 − 𝑘) 𝜑 (𝑧) 𝑑𝑧 (3)

subject to the following:

0 ≤ 𝑄 ≤ 𝐷, (4)

0 ≤ 𝑘 ≤
𝐷

𝜎
. (5)

Equation (1) represents the number of annual order
(in cycles per year, also called workload). Equation (2) is
the sum of cycle and safety stocks (in units carrying per
year). Equation (3) denotes the average number of demand
not covered from stock annually (in units short per year).
Inequality (4) ensures that the order size (units per order)
should be nonnegative and not more than the average annual
demand. Inequality (5) guarantees that the safety stock (in
units) will not be greater than the average annual demand and
should be nonnegative.

The notion of optimality in single-objective optimization
is straightforward, because the optimal solution is the one
that realizes themaximum (or theminimum) of the objective
function. However, the optimality for a multiobjective opti-
mization problem is not so easy to understand because not
all feasible solutions can be compared completely. Generally
speaking, multiobjective optimization problems rarely have
solutions that simultaneously optimize all of the objectives; as
a result we are trying to optimize each objective to the greatest
extent possible. There exists a set of solutions, referred as
nondominated solutions, which are better than others in the
search space when considering all the objectives. For the
minimization problem (in Section 2.1), a control parameter
𝑥
1
= (𝑘
1
, 𝑄
1
) is said to strongly dominate 𝑥2 = (𝑘

2
, 𝑄
2
)

(denoted by 𝑥1 ≺ 𝑥2) if and only if𝑊(𝑥1) < 𝑊(𝑥2), 𝐼(𝑥1) <
𝐼(𝑥
2
), and 𝑆(𝑥1) < 𝑆(𝑥2). That is, solution 𝑥1 is strictly better

than solution 𝑥2 in all the cost and service objectives ([15,
pp. 32]). Less stringently, a decision vector 𝑥1 dominates 𝑥2
(denoted by 𝑥1 ⪯ 𝑥2) if and only if𝑊(𝑥1) ≤ 𝑊(𝑥2), 𝐼(𝑥1) ≤
𝐼(𝑥
2
), 𝑆(𝑥1) ≤ 𝑆(𝑥2) and at least one of above inequality

is strictly held ([15, pp. 28]). For other multiobjective (or
multicriteria) concepts, please refer to Ehrgott [16].

Undoubtedly, we are not interested in solutions domi-
nated by other solutions. Solutions that are not dominated
by any other solutions are called nondominated in objective
space or efficient in decision space. Itmeans that the improve-
ment of some objective could only be achieved at the expense
of other objectives. This coincides with the exchange curve
concept mentioned earlier. In a multiobjective optimization
problem, there are normally a large number of nondominated
solutions due to the conflicts among objectives. Hence, it is
difficult to find the whole set of nondominated solutions.

And because the nondominated set is usually unknown,
most optimizers try to find a finite number of nondominated
solutions to approximate the set. The successive approxima-
tion approach stated below can be used to search for the
nondominated solutions of the triobjective inventory model.

2.2. Successive Approximation Based on Lagrange Method. A
single objective transformation is first developed as follows.
Equation (3) is kept as the objective function and treats (1)
and (2) as constraints. That is,

Min
𝑘,𝑄

𝑆

subject to 𝑊 = 𝑊


𝐼 = 𝐼

,

(6)

where𝑊 and 𝐼 are budgets on workload and inventory.
To solve this equality constrained optimization problem,

the Lagrangemethod is employed here. After introducing the
Lagrangianmultipliers 𝜆

𝑊
and 𝜆

𝐼
, the Lagrangian function is

as follows:

𝐿 (𝑘, 𝑄, 𝜆
𝑊
, 𝜆
𝐼
) =

𝐷𝜎
𝐿

𝑄
∫

∞

𝑘

(𝑧 − 𝑘) 𝜑 (𝑧) 𝑑𝑧

+𝜆
𝐼
(
𝑄

2
+ 𝑘𝜎
𝐿
− 𝐼

)+𝜆
𝑊
(
𝐷

𝑄
−𝑊

) .

(7)

Some simplifying notations are introduced before presenting
the successive approximation algorithm. Let

𝑃 = ∫

∞

𝑘

𝜑 (𝑧) 𝑑𝑧, (8)

𝐸 = 𝜎
𝐿
∫

∞

𝑘

(𝑧 − 𝑘) 𝜑 (𝑧) 𝑑𝑧, (9)

𝑃 is the probability of a stockout per order cycle and
𝐸 is the expected number of shortage per order cycle.
Simple algebra provides the following equations used in the
successive approximation:

𝜆
𝐼
=

𝐷𝑃

2 (𝐼 − 𝑘𝜎)
, (10)

𝑃 =
𝜆
𝐼
𝑄

𝐷
, (11)

𝜆
𝑊
=
1

𝑊
(
𝜆
𝐼
𝑄

2
−
𝐷𝐸

𝑄
) , (12)

𝑄 = √
2𝐷 (𝐸 + 𝜆

𝑊
)

𝜆
𝐼

. (13)

To search for the efficient (𝑘
𝑖
, 𝑄
𝑖
) policy, the search steps are

proposed as follows.
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Satisfied 
constraints

Return outputs

Yes

No

Set 𝑘 = 0, 𝑃 = 0.5

Compute 𝜆𝐼 by (10)

Set 𝑃 = 0.5

Compute 𝑄 by (11)

Compute 𝜆𝑊 by (12)

Update 𝑄 by (13)

Update 𝑃 by (11)

Update 𝑘 which is

imputed by 𝑃

Update 𝜆𝐼

Update 𝐸 by (9)

Update 𝜆𝑊

Set 𝐸 =
1

√2𝜋
𝜎

Figure 2: Flow chart of the search algorithm.

Step 1. Initialize 𝜆
𝐼
: Compute 𝜆

𝐼
using (10) with 𝑘 = 0 and

𝑃 = 0.5.

Step 2. Initialize 𝑄: Compute 𝑄 using (11) with 𝑃 = 0.5.

Step 3. Initialize 𝜆
𝑊
: Compute 𝜆

𝑊
using (12) with 𝐸 =

(1/√2𝜋)𝜎 corresponds to zero safety stock.

Step 4. Update 𝑄: Compute 𝑄 using (13).

Step 5. Update 𝑃 and 𝑘: Compute 𝑃 with (11) and look up 𝑘
imputed by 𝑃.

Step 6. Check constraints: If both workload and investment
constraints are satisfied, then output the results. Otherwise,
update 𝜆

𝐼
, 𝐸 (using (9)), and 𝜆

𝑊
, then go back to Step 4.

The search beginswith an initial guess of zero safety stock.
This allows us to use (10) to derive an initial 𝜆

𝐼
, which in

turn, determines the initial 𝑄 using (11). However, (12)-(13)
for 𝜆
𝑊

and 𝑄 are interdependent, preventing their use in
the initialization phase. Rearranging (11), however, we can
derive an equation for 𝑄 which does not require an estimate
of 𝜆
𝑊
. The 𝑄 based on (11) is then used to provide an initial

estimate of 𝜆
𝑊
from (13). Thereafter the search progresses by

iteratively updating values for 𝑄, 𝑃 (and correspondingly 𝑘),
𝜆
𝐼
, and 𝜆

𝑊
, using (13), (11), (10), and (12), respectively, until

both the workload and investment constraints are satisfied.
The flow chart of the above search algorithm is shown in
Figure 2.

3. Numerical Results

Pharmaceutical inventory data with four items (Table 1) were
fed into the triobjectivemodel.The successive approximation
was coded in R [17], and all computation was executed on
a laptop computer. Ten representative solutions for each
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Table 1: The pharmaceutical data.

Item 𝐷 𝜎
𝐿

1 3412 53.354
2 490 5.027
3 4736 57.911
4 200 2.969

Table 2: Tradeoff solutions of Item 1 generated by successive
approximation.

Sol. no. Efficient solution Nondominated solution Iter
𝑄 𝑘 𝑊 𝐼 𝑆

1 94.804 0.049 35.990 50.000 720.207 81⋆

2 162.532 0.351 20.993 99.992 277.522 20†

3 98.804 0.986 35.990 99.999 164.354 34
4 83.238 1.094 40.991 99.999 151.799 41
5 162.51 1.287 20.996 149.931 52.407 20†

6 94.798 1.923 35.992 149.993 19.999 27
7 131.234 2.517 25.999 199.92 2.635 26
8 213.250 2.686 16.000 249.915 0.948 41
9 110.065 3.653 31.000 249.922 0.052 32
10 110.065 4.590 31.000 299.911 0.001 40
Min. 83.238 0.049 16.000 50.000 0.001 20
Max. 213.250 4.590 40.991 299.911 720.207 81
† and ⋆ represent the minimum and the maximum numbers of iterations,
respectively.

item generated by successive approximation are shown in
Tables 2, 3, 4, and 5.The columns of nondominated solutions
demonstrate that the improvement of some objective(s) could
only be achieved at the expense of other objectives. For
example, solution 3, compared to solution 4, in Table 2 gets
better in workload at the expense of shortage.

Three-dimensional scatterplots for each item are illus-
trated in Figures 3, 4, 5, and 6. Any one can visually
check the tradeoffs displayed in scatterplots by adding planes
parallel to I-S orW-S plane. With a fixed workload, expected
shortage decreases as expected inventory increases. At a fixed
inventory level, increases in workload lead to a reduction
of expected shortage. All these findings are intuitive and
straightforward.

For the computation effort, we notice that only one
solution in Table 2 can be obtained after at least twenty
iterations. And the largest iterations to reach a nondominated
solution is eighty-one. Ranges of other items are between
eight to sixty-six iterations. Hence, creating the scatterplot of
workload, inventory, and shortage by successive approxima-
tion is lengthy and tedious.

The quality of a set of tradeoff solutions is evaluated
quantitatively in terms of accuracy and diversity. A metric
called hypervolume (𝐻) is used to demonstrate the accuracy
of the nondominated solutions. It calculates the size of the
area that is dominated by a nondominated set and is defined
as follows.The idea is that the larger the area the solutions can

Table 3: Tradeoff solutions of Item 2 generated by successive
approximation.

Sol. no. Efficient solution Nondominated solution Iter
𝑄 𝑘 𝑊 𝐼 𝑆

1 18.8519 0.114 25.9921 9.9989 45.0181 15
†

2 23.3406 0.6575 20.9935 14.9757 16.193 15
†

3 30.6264 0.9159 15.9992 19.9176 7.8443 17

4 13.6139 1.6284 35.9927 14.9929 3.9316 21

5 11.9541 1.794 40.9901 14.9954 2.9865 22

6 18.8469 2.0863 25.999 19.9113 0.8779 21

7 15.8077 2.3897 30.9976 19.917 0.4372 21

8 11.9532 2.781 40.9934 19.9568 0.1671 22

9 18.8462 3.0794 26 24.9033 0.0376 30

10 30.625 3.8973 16 34.9042 0.0009 60
⋆

Min. 11.9532 0.114 15.9992 9.9989 0.0009 15

Max. 30.6264 3.8973 40.9934 34.9042 45.0181 60

† and ⋆ represent the minimum and the maximum numbers of iterations,
respectively.

Table 4: Tradeoff solutions of Item 3 generated by successive
approximation.

Sol. no. Efficient solution Nondominated solution Iter
𝑄 𝑘 𝑊 𝐼 𝑆

1 296.134 0.032 15.993 149.924 354.824 8†

2 430.546 0.598 11 249.913 107.77 25
3 789.333 0.954 6 449.91 31.58 59⋆

4 152.82 1.27 30.991 149.964 87.038 21

5 225.525 1.505 21 199.918 35.237 25

6 152.781 2.133 30.999 199.911 10.597 24

7 115.534 2.455 40.992 199.945 5.463 24

8 296 2.623 16 299.901 1.26 50

9 131.556 3.18 36 249.913 0.416 30

10 152.774 3.86 31 299.91 0.024 41

Min. 115.512 0.032 6 149.924 0.024 8

Max. 789.333 3.86 40.992 499.91 354.824 59

† and ⋆ represent the minimum and the maximum numbers of iterations,
respectively.

dominate in the objective space, the better it is [18]:

𝑀

∏

𝑖=1

(𝑓
max
𝑖
− 𝑓

min
𝑖
) , (14)

where𝑀 is the number of objectives. Figure 7 shows the pic-
torial explanation of 𝐻 in which 𝑂 represents the reference
point and 𝑆 is the nondominated set.

Keeping the nondominated set as diverse as possible
is very important. Here spacing (𝑆) and maximum spread
(𝐷) are used to evaluate the distribution and spread of
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Table 5: Tradeoff solutions of Item 4 generated by successive
approximation.

Sol. no. Efficient solution Nondominated solution Iter
𝑄 𝑘 𝑊 𝐼 𝑆

1 18.1965 0.2896 10.9911 9.9582 8.8351 10†

2 5.5568 0.7482 35.9916 5 14.059 36

3 33.3333 1.0901 6 19.9032 1.2465 28

4 12.5064 1.2415 15.9918 9.9393 2.4446 15

5 9.527 1.7531 20.993 9.9686 1.0003 18

6 7.6947 2.0674 25.9918 9.9854 0.546 20

7 5.5571 2.4315 35.9902 9.9978 0.2642 24

8 33.3333 2.7747 6 24.9047 0.0148 66⋆

9 12.5 2.9139 16 14.9015 0.0245 28

10 7.6925 3.7241 25.9993 14.9032 0.0018 25

Min. 5.5568 0.2896 6 5 0.0018 10

Max. 33.3333 3.7241 35.9916 24.9047 14.059 66

† and ⋆ represent the minimum and the maximum numbers of iterations,
respectively.

the nondominated fronts generated by successive approxima-
tion:

𝑆 = √
1


𝐴


|𝐴|

∑

𝑖=1

(𝑑
𝑖
− 𝑑)
2

,

𝐷 = √

3

∑

𝑘=1

(
|𝐴|

max
𝑖=1

𝑓
𝑖

𝑘
−

|𝐴|

min
𝑖=1

𝑓
𝑖

𝑘
)

2

,

(15)

where 𝑑
𝑖
= min

𝑗∈𝐴∧𝑗 ̸= 𝑖
∑
3

𝑘=1
|𝑓
𝑖

𝑘
− 𝑓
𝑗

𝑘
|, 𝑓𝑖
𝑘
represents the 𝑘th

criterion function value of the nondominated solution 𝑖, and
𝑑 is the mean value of the absolute distance measure where
𝑑 = ∑

|𝐴|

𝑖=1
(𝑑
𝑖
/|𝐴|).

Larger above measures are better except for the spacing.
Table 6 shows the results of the successive approximation
method. If there is a reference solutions set known to
decision makers or generated by other solution procedures,
one can use the figures in Table 6 to compare successive
approximation with the benchmark that he/she is interested
in. After verifying the validity of nondominated (𝑊, 𝐼, 𝑆)
solutions generated by successive approximation, they can
be used to construct a tradeoff surface for inventory control.
It helps managers choose an appropriate control policy for
probabilistic demand, such as the fund level tied in inventory
versus the service level under fixed workload.

4. Conclusions and Suggestions

Tradeoff analysis in inventory management is useful in
quantifying what the firm must pay in terms of workload
and investment to meet the desired customer service. A
triobjective model is presented first to generate the effi-
cient (𝑘, 𝑄) policies in decision space that correspond to
the nondominated (𝑊, 𝐼, 𝑆) solutions in objective space.
Nonredundancy is assured by dropping all the marginal cost
parameters out of the classical fixed order model. Such that
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Figure 3: Scatterplot of Item 1 nondominated solutions from
successive approximation.

Table 6: Performance measures of the successive approximation
approach.

ID Accuracy Distribution
𝐻 Spacing Spread

1 42,694,515 0.091 1.532
2 7,215,908 0.097 1.232
3 68,798,878 0.121 1.637
4 476,041 0.105 1.362

leads to a triobjective model which intends to minimize the
workload, inventory, and shortage that are all conflictingwith
each other.

To solve the triobjective model, successive approxima-
tion approach is employed in this paper. The successive
approximation is in an attempt to build the optimal tradeoff
surface under probabilistic demand. Successive approxima-
tion can be used to obtain the nondominated solutions of
workload, inventory, and shortage. Specifically, lots of trial
and error involve in deriving the edge of each objective with
a Lagrangian model. Several iterations needed to reach a
nondominated solution for all items make the creating of
scatterplot of workload, inventory, and shortage by successive
approximation lengthy and tedious.However, visualization of
the tradeoffs displayed by the scatterplots of Figures 3, 4, 5,
and 6 justifies the computation effort done in the experiment.
The inverse relationship among workload, inventory, and
shortage conforms to our intuition.

The quality of a set of tradeoff solutions has to be
evaluated quantitatively when comparing to other bench-
marks, although developing an efficient and effective solution
procedure for tradeoff analysis of multiobjective inventory
management will be our future work. After verifying the
validity of nondominated (𝑊, 𝐼, 𝑆) solutions, they can be used
to construct a tradeoff surface that helps managers choose
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Figure 4: Scatterplot of Item 2 nondominated solutions from
successive approximation.
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Figure 5: Scatterplot of Item 3 nondominated solutions from
successive approximation.

an appropriate control policy for probabilistic demand. For
example, a commondebate on the fund level tied in inventory
versus the service level under fixed workload usually arises
between warehousing and sales departments. By utilizing
the information coming from the tradeoff surface, deliberate
decisions among conflicting objectives can be easily made.

Moreover, the tradeoff surface under multi-item context
deserves closer attention to bridge the gap between inventory
theory and managerial practice, because too much atten-
tion was focused on the single-item problem in view of
the past literature. Finally, multiechelon inventory and/or
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Figure 6: Scatterplot of Item 4 nondominated solutions from
successive approximation.
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Figure 7: The hypervolume index in the minimization problem.

distribution systems are very common in business logistics.
It is worthwhile to study themultiobjective inventory policies
of different parties in a supply chain.
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Anew entropymeasure of interval-valued intuitionistic fuzzy set (IVIFS) is proposed by using cotangent function, which overcomes
several limitations in the existing methods for calculating entropy of IVIFS. The efficiency of the new entropy is demonstrated by
comparing it with several classical entropies.Moreover, an entropy weightmodel is established to determine the entropy weights for
fuzzy multicriteria group decision-making (FMCGDMs) problems, which depends on incomplete weight information of criteria
in IVIFSs setting. Finally, an illustrative supplier selection problem is used to demonstrate the practicality and effectiveness of the
proposed method. It is capable of the handling the FMCGDM problems with incomplete known weights for criteria.

1. Introduction

The theory of fuzzy sets (FSs) proposed by Zadeh [1] has
achieved a great success in various fields. A lot of generalized
forms of FSs have been proposed. The classical sets include
interval-valued fuzzy sets (IVFSs) [2], intuitionistic fuzzy sets
(IFSs) [3, 4], interval-valued intuitionistic fuzzy sets (IVIFSs)
[5], R-fuzzy sets [6], and intuitionistic linguistic fuzzy sets
(ILFSs) [7]. From [4, 8–10], it turns out that IVFS theory
is equivalent to IFS theory, and IVIFS theory extends IFS
theory.

As an important topic in the theory of fuzzy sets, entropy
measures of IFSs have been investigated widely by many
researchers from different views. Burillo and Bustince [11]
introduced the notion that entropy of IVFSs and IFSs can
be used to evaluate the degree of intuitionism of an IVFS or
IFS. Szmidt and Kacprzyk [12] proposed a nonprobabilistic-
type entropy measure with a geometric interpretation of
IFSs. Hung and Yang [13] gave their axiomatic definitions of
entropy of IFSs and IVFSs by using the concept of probability.
Wei et al. [14] gave a new entropy measure for IVIFSs to
overcome the disadvantages of those three entropy measures
defined independently by Szmidt and Kacprzyk [12], Wang
and Lei [15], and Huang and Liu [16]. Different entropy
formulas for IFS [15, 17], IVFS [18, 19], and vague set [16, 20,
21] were also proposed by other researchers.

The entropy of IFSs has been applied widely in decision
making [22, 23]. On the one hand, due to the increasing
complexity of the social-economic environment and a lack of
information about the problem domains, the decision infor-
mation may be provided with IVIFSs, whose membership
degree and nonmembership degree are intervals, instead of
real numbers. Entropy is concerned as ameasure of fuzziness.
Therefore, it is highly necessary and significant to study the
entropy of IVIFSs. And on the other hand, a proper assess-
ment of attributeweights plays an essential role in theMADM
process [24]. In terms of determining weights, the entropy
method is one of the most representative approaches, which
expresses the relative intensities of attribute importance to
signify the average intrinsic information transmitted to the
DM [22, 25, 26]. The following are some of the research
findings.

Ye [27] proposed two entropy measures for IVIFSs and
established an entropy weight model, which could be used
to determine the criteria weights on alternatives. Zhang et al.
[28] proposed a new information entropy measure of IVIFS
by using membership interval and nonmembership interval
of IVIFSs, which compliedwith the extended formofDe Luca
and Termini [29] axioms for fuzzy entropy.Wei et al. [14] also
proposed an entropymeasure for IVIFSs, and they applied the
new entropy measure to solve problem onmulticriteria fuzzy
decision making.
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However, the entropy is seldom applied in multiexpert
and multicriteria decision making, which is one of the
most important branches of decision-making method. Due
to limited investigation on multiexpert and multicriteria
decision-making issues, this study proposed a novel formula
to calculate the entropy of an IVIFS on the basis of the
argument on the relationship among the entropies of IFSs
given in [27, 30]. For interval-valued intuitionistic fuzzy
multicriteria group decision-making problem, in which the
information on the weights of criteria is incomplete, a linear
fuzzy programming model based on intuitionistic fuzzy
entropy is constructed to obtain the criteria weights.

The rest of this paper is organized as follows. In Section 2,
we introduce some basic notions of IFS and IVIFSs. In
Section 3, we propose a new entropy measure of interval-
valued intuitionistic fuzzy set by using cotangent function. In
Section 4, the method and procedure for solving FMCGDM
problems with the new entropy measure of interval-valued
intuitionistic fuzzy set are developed in detail. An illustrative
supplier selection problem was employed to demonstrate
how to apply the proposed approach in Section 5. Short
conclusion is given in Section 6.

2. Interval-Valued Intuitionistic Fuzzy Sets

Definition 1 (see [3]). Let 𝑋 be an ordinary finite nonempty
set. An intuitionistic fuzzy set (IFS) in 𝑋 is an object of the
form:

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (1)

where

𝜇
𝐴

: 𝑋 → [0, 1] , ]
𝐴
: 𝑋 → [0, 1] (2)

with the condition 0 ≤ 𝜇
𝐴
(𝑥) + ]

𝐴
(𝑥) ≤ 1, for all 𝑥 ∈ 𝑋.

The numbers 𝜇
𝐴
(𝑥), ]

𝐴
(𝑥) denote the degree of mem-

bership and nonmembership of the element 𝑥 in the set 𝐴,
respectively.

For each IFS, we call 𝜋
𝐴
(𝑥) = 1 − 𝜇

𝐴
(𝑥) − ]

𝐴
(𝑥) the

intuitionistic index of the element 𝑥 in the set 𝐴. It also
denotes the hesitancy degree of 𝑥 to 𝐴.

Definition 2 (see [5]). Let 𝐷[0, 1] be the set of all closed
subintervals of the interval [0, 1], and let 𝑋 be an ordinary
finite nonempty set. An interval-valued intuitionistic fuzzy
set (IVIFS) in𝑋 is an object of the form:

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , ]̃

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑋} , (3)

𝑥 in the set 𝐴, where 𝜇
𝐴

: 𝑋 → 𝐷[0, 1], ]̃
𝐴

: 𝑋 → 𝐷[0, 1],
with the condition 0 ≤ sup(𝜇

𝐴
(𝑥)) + sup(]̃

𝐴
(𝑥)) ≤ 1, for all

𝑥 ∈ 𝑋.

The intervals 𝜇
𝐴
(𝑥), ]̃

𝐴
(𝑥) denote the degree of mem-

bership and nonmembership of the element 𝑥 in the set 𝐴,
respectively.

For convenience, let 𝜇
𝐴
(𝑥) = [𝜇

𝐴𝐿
(𝑥), 𝜇
𝐴𝑈

(𝑥)], ]̃
𝐴
(𝑥) =

[]
𝐴𝐿

(𝑥), ]
𝐴𝑈

(𝑥)], then

𝐴 = {⟨𝑥, [𝜇
𝐴𝐿

(𝑥) , 𝜇
𝐴𝑈

(𝑥)] , []
𝐴𝐿

(𝑥) , ]
𝐴𝑈

(𝑥)]⟩ | 𝑥 ∈ 𝑋} ,

(4)

where 0 ≤ 𝜇
𝐴𝑈

(𝑥) + ]
𝐴𝑈

(𝑥) ≤ 1, 𝜇
𝐴𝐿

(𝑥) ≥ 0, and ]
𝐴𝐿

(𝑥) ≥ 0.
For each element 𝑥, we can compute the intuitionistic

index of an intuitionistic fuzzy interval of 𝑥 ∈ 𝑋 in𝐴 defined
as follows:

�̃�
𝐴
(𝑥) = 1 − 𝜇

𝐴
(𝑥) − ]̃

𝐴
(𝑥)

= [1 − 𝜇
𝐴𝑈

(𝑥) − ]
𝐴𝑈

(𝑥) , 1 − 𝜇
𝐴𝐿

(𝑥) − ]
𝐴𝐿

(𝑥)] .

(5)

For convenience, an IVIFS value is denoted by𝐴 = ([𝑎, 𝑏],

[𝑐, 𝑑]).

Definition 3 (see [5]). Assume 𝐴, 𝐵 ∈ IVIFS(𝑋), then some
operations can be defined as follows:

𝐴 ∪ 𝐵 = {⟨𝑥
𝑖
, [𝜇
𝐴𝐿

(𝑥
𝑖
) ∨ 𝜇
𝐵𝐿

(𝑥
𝑖
) , 𝜇
𝐴𝑈

(𝑥
𝑖
) ∨ 𝜇
𝐵𝑈

(𝑥
𝑖
)] ,

[]
𝐴𝐿

(𝑥
𝑖
) ∧ ]
𝐵𝐿

(𝑥
𝑖
) , ]
𝐴𝑈

(𝑥
𝑖
) ∧ ]
𝐵𝑈

(𝑥
𝑖
)]⟩} ,

𝐴 ∩ 𝐵 = {⟨𝑥
𝑖
, [𝜇
𝐴𝐿

(𝑥
𝑖
) ∧ 𝜇
𝐵𝐿

(𝑥
𝑖
) , 𝜇
𝐴𝑈

(𝑥
𝑖
) ∧ 𝜇
𝐵𝑈

(𝑥
𝑖
)] ,

[]
𝐴𝐿

(𝑥
𝑖
) ∨ ]
𝐵𝐿

(𝑥
𝑖
) , ]
𝐴𝑈

(𝑥
𝑖
) ∨ ]
𝐵𝑈

(𝑥
𝑖
)]⟩} .

(6)

The following expressions are defined in [5] for all 𝐴, 𝐵 ∈

IVFSs(𝑋):

𝐴 ⊆ 𝐵 if and only if 𝜇
𝐴𝐿

≤ 𝜇
𝐵𝐿
, 𝜇
𝐴𝑈

≤ 𝜇
𝐵𝑈

, ]
𝐴𝐿

≥ ]
𝐵𝐿
, and

]
𝐴𝑈

≥ ]
𝐵𝑈

for all 𝑥 ∈ 𝑋;
𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴 for all 𝑥 ∈ 𝑋;
𝐴
𝐶

= {⟨𝑥, []
𝐴𝐿

(𝑥), ]
𝐴𝑈

(𝑥)], [𝜇
𝐴𝐿

(𝑥), 𝜇
𝐴𝑈

(𝑥)]⟩ | 𝑥 ∈

𝑋}.

In the following, we introduce two weighted aggregation
operators related to IVIFSs.

Definition 4 (see [31]). Let 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛) ∈ IVIFS(𝑋).

The weighted geometric average operator (IVIF-WGA oper-
ator) is defined by

𝐹
𝑤
(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= ([

[

𝑛

∏

𝑗=1

𝜇
𝐴
𝑗
𝐿
(𝑥)
𝑤
𝑗 ,

𝑛

∏

𝑗=1

𝜇
𝐴
𝑗
𝑈
(𝑥)
𝑤
𝑗]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − ]
𝐴
𝑗
𝐿
(𝑥))

𝑤
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − ]
𝐴
𝑗
𝑈
(𝑥))

𝑤
𝑗

]

]

) ,

(7)

where𝑤
𝑗
is the weight of 𝐴

𝑗
(𝑗 = 1, 2, . . . , 𝑛), 𝑤

𝑗
∈ [0, 1] and

∑
𝑛

𝑗=1
𝑤
𝑗
= 1. Particularly, if 𝑤

𝑗
= 1/𝑛 (𝑗 = 1, 2, . . . , 𝑛), then

𝐹
𝑤
is called a geometric average operator for IVIFSs.
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Definition 5 (see [31]). Let 𝐴
𝑗
(𝑗 = 1, 2, . . . , 𝑛) ∈ IVIFS(𝑋).

The hybrid averaging operator (IVIF-HA operator) is defined
by

𝐻
𝑤
(𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛
)

= ([

[

𝑛

∏

𝑗=1

𝜇
𝐵
𝑗
𝐿(𝑥)
𝑤
𝑗 ,

𝑛

∏

𝑗=1

𝜇
𝐵
𝑗
𝑈(𝑥)
𝑤
𝑗]

]

,

[

[

1 −

𝑛

∏

𝑗=1

(1 − ]
𝐵
𝑗
𝐿
(𝑥))

𝑤
𝑗

, 1 −

𝑛

∏

𝑗=1

(1 − ]
𝐵
𝑗
𝑈
(𝑥))

𝑤
𝑗

]

]

) ,

(8)

where 𝑤
𝑗
is the weight of 𝐵

𝑗
(𝑗 = 1, 2, . . . , 𝑛), 𝑤

𝑗
∈ [0, 1]

and ∑
𝑛

𝑗=1
𝑤
𝑗

= 1. 𝐵
𝑗
is the 𝑗th largest one of all values

(𝑛𝜔
1
𝐴
1
, 𝑛𝜔
2
𝐴
2
, . . . , 𝑛𝜔

𝑛
𝐴
𝑛
), and 𝜔

𝑘
is the weight of 𝐴

𝑘
(𝑘 =

1, 2, . . . , 𝑛), satisfying 𝜔
𝑘

∈ [0, 1] and ∑
𝑛

𝑘=1
𝜔
𝑘

= 1. 𝑛 is a
balance factor. Here, 𝑊 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑛
)
𝑇 can be obtained

by the following formula:

𝑤
𝑗
= 𝑄(

𝑗

𝑙
) − 𝑄(

(𝑗 − 1)

𝑙
) , 𝑗 = 1, 2, . . . , 𝑛, (9)

where

𝑄 =

{{{{

{{{{

{

0, 𝑟 < 𝑎,

𝑟 − 𝑎

𝑎 − 𝑏
, 𝑎 ≤ 𝑟 ≤ 𝑏,

1, 𝑟 > 𝑏.

(10)

We utilize the principle of antonym pairs most, at least
half, asmany as possible, where the parameters (𝑎, 𝑏) are equal
to (0.3,0.8), (0,05), and (0.5,1), respectively.

Definition 6 (see [32]). Let 𝐴 = ([𝑎, 𝑏], [𝑐, 𝑑]) be an interval-
valued intuitionistic fuzzy number. A score function 𝑆 of an
interval-valued intuitionistic fuzzy value can be represented
as follows:

𝑆 (𝐴) =
𝑎 − 𝑐 + 𝑏 − 𝑑

2
. (11)

Definition 7 (see [32]). Let 𝐴
1
= ([𝑎
1
, 𝑏
1
], [𝑐
1
, 𝑑
1
]) and 𝐴

2
=

([𝑎
2
, 𝑏
2
], [𝑐
2
, 𝑑
2
]) be two interval-valued intuitionistic fuzzy

values, and let 𝑆(𝐴
1
) = (𝑎

1
− 𝑐
1
+ 𝑏
1
− 𝑑
1
)/2 and 𝑆(𝐴

2
) =

(𝑎
2
− 𝑐
2
+ 𝑏
2
− 𝑑
2
)/2 be the scores of 𝐴

1
and 𝐴

2
, respectively,

then if 𝑆(𝐴
1
) < 𝑆(𝐴

2
), 𝐴
1
is smaller than 𝐴

2
, denoted by

𝐴
1
< 𝐴
2
.

3. Interval-Valued Intuitionistic
Fuzzy Entropy

Definition 8 (see [23]). A real-valued function 𝐸 : IVIFS(𝑋)

→ [0, 1] is called an entropy measure on IVIFS(𝑋) if it
satisfies the following axiomatic requirements:

(P1) 𝐸(𝐴) = 0, if and only if 𝐴 is a crisp set;
(P2) 𝐸(𝐴) = 1, if and only if 𝜇

𝐴
(𝑥
𝑖
) = ]̃
𝐴
(𝑥
𝑖
) for all 𝑥

𝑖
∈ 𝑋;

(P3) 𝐸(𝐴) = 𝐸(𝐴
𝐶
) for all 𝑥

𝑖
∈ IVIFS(𝑋);

(P4) 𝐸(𝐴) ≤ 𝐸(𝐵) if𝐴 is less fuzzy than𝐵; that is, 𝜇
𝐴𝐿

(𝑥
𝑖
) ≤

]
𝐴𝐿

(𝑥
𝑖
), 𝜇
𝐴𝑈

(𝑥
𝑖
) ≤ ]
𝐴𝑈

(𝑥
𝑖
), and 𝐴 ⊆ 𝐵 for all 𝑥

𝑖
∈ 𝑋

or 𝜇
𝐴𝐿

(𝑥
𝑖
) ≥ ]
𝐴𝐿

(𝑥
𝑖
), 𝜇
𝐴𝑈

(𝑥
𝑖
) ≥ ]
𝐴𝑈

(𝑥
𝑖
), and 𝐵 ⊆ 𝐴

for all 𝑥
𝑖
∈ 𝑋.

3.1. The Limitations of the Existing Interval-Valued Intuitionis-
tic Fuzzy Entropy. Let us suppose that 𝐸(𝐴

𝑖
) is the entropy of

IVIFSs.
Vlachos’ entropy measure [30] is as follows

𝐸
1
(𝐴)

= 1−√
1

2𝑛

𝑛

∑

𝑖=1

(
𝜇𝐴𝐿 (𝑥𝑖)−]𝐴𝐿 (𝑥𝑖)

)
2
+(

𝜇𝐴𝑈 (𝑥𝑖)−]𝐴𝑈 (𝑥𝑖)
)
2
.

(12)

Example 9. Let 𝐴 = ([0.4, 0.5], [0.3, 0.4]) and 𝐵 = ([0.1, 0.2],

[0, 0.1]) be two IVIFSs in𝑋.
Intuitively, we can see that 𝐵 is more fuzzy than 𝐴. If we

calculate the 𝐸
1
(𝐴) and 𝐸

1
(𝐵) by (12), then we can obtain

𝐸
1
(𝐴) = 1 − √

1

2
(|0.4 − 0.3|

2
+ |0.5 − 0.4|

2
) = 0.9,

𝐸
1
(𝐵) = 1 − √

1

2
(|0.1 − 0|

2
+ |0.2 − 0.1|

2
) = 0.9,

(13)

which indicate that 𝐸1(𝐴) = 𝐸
1
(𝐵) and is not consistent with

our intuition.
Ye’s entropy measures [27] are as follows

𝐸
2
(𝐴)

= {sin
𝜋×[1+𝜇

𝐴𝐿
(𝑥
𝑖
)+𝑝𝑊

𝜇𝐴
(𝑥
𝑖
)−]
𝐴𝐿

(𝑥
𝑖
)−𝑞𝑊]𝐴 (𝑥𝑖)]

4

+sin
𝜋×[1−𝜇

𝐴𝐿
(𝑥
𝑖
)−𝑝𝑊

𝜇𝐴
(𝑥
𝑖
)+]
𝐴𝐿

(𝑥
𝑖
)+𝑞𝑊]𝐴 (𝑥𝑖)]

4
−1}

×
1

√2 − 1

,

(14)

where𝑝, 𝑞 ∈ [0, 1] are two fixed numbers,𝑊
𝜇𝐴

(𝑥) = 𝜇
𝐴𝑈

(𝑥)−

𝜇
𝐴𝐿

(𝑥), and𝑊]𝐴(𝑥) = ]
𝐴𝑈

(𝑥) − ]
𝐴𝐿

(𝑥).

Example 10. Let𝐴 = ([0.5, 0.5], [0.1, 0.1]) and 𝐵 = ([0.6, 0.6],

[0.2, 0.2]) be two IVIFSs in𝑋.
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Intuitively, 𝐴 is more fuzzy than 𝐵. Now the 𝐸
2
(𝐴) and

𝐸
2
(𝐵) can be gained by (14) and take 𝑝 = 𝑞 = 0.5, and the

results are

𝐸
2
(𝐴) = {sin 𝜋 × [1 + 0.5 − 0.1]

4

+ sin 𝜋 × [1 − 0.5 + 0.1]

4
− 1}

×
1

√2 − 1

= 0.833,

𝐸
2
(𝐵) = {sin 𝜋 × [1 + 0.6 − 0.2]

4

+ sin 𝜋 × [1 − 0.6 + 0.2]

4
− 1}

×
1

√2 − 1

= 0.833,

(15)

which indicate that 𝐸
2
(𝐴) = 𝐸

2
(𝐵) and are not consistent

with our intuition.

3.2. New Interval-Valued Intuitionistic Fuzzy Entropy Based
on Cotangent Function. A new interval-valued intuitionistic
fuzzy entropy measure is introduced as follows.

Definition 11. Assuming that𝐴 ∈ IVIFS(𝑋), then an interval-
valued intuitionistic fuzzy entropy measure can be defined as

𝐸 (𝐴)

=
1

𝑛

𝑛

∑

𝑖=1

cot(1

4
𝜋 + (

1

2

𝜇𝐴𝐿 (𝑥𝑖) − ]
𝐴𝐿

(𝑥
𝑖
)

+𝜇
𝐴𝑈

(𝑥
𝑖
) − ]
𝐴𝑈

(𝑥
𝑖
)
 )

×(4 (1 + 𝜋
𝐴
(𝑥
𝑖
)))
−1
𝜋)

=
1

𝑛

𝑛

∑

𝑖=1

cot(1

4
𝜋 + (

𝜇𝐴𝐿 (𝑥𝑖) − ]
𝐴𝐿

(𝑥
𝑖
)

+𝜇
𝐴𝑈

(𝑥
𝑖
) − ]
𝐴𝑈

(𝑥
𝑖
)
)

× (4 (4 − 𝜇
𝐴𝐿

(𝑥
𝑖
) − ]
𝐴𝐿

(𝑥
𝑖
)

−𝜇
𝐴𝑈

(𝑥
𝑖
) − ]
𝐴𝑈

(𝑥
𝑖
))
−1
) 𝜋) .

(16)

Theorem 12. Themapping𝐸(𝐴), defined by (16), is an entropy
measure for IVIFSs.

Proof. In order for (16) to be qualified as a sensible measure
of interval-valued intuitionistic fuzzy entropy, it must satisfy
the conditions (P1)–(P4) in Definition 8.

Let 0 ≤ 𝜇
𝐴
(𝑥
𝑖
), ]̃
𝐴
(𝑥
𝑖
), and �̃�

𝐴
(𝑥
𝑖
) ≤ 1; we have 0 ≤

|𝜇
𝐴𝐿

(𝑥
𝑖
) − ]
𝐴𝐿

(𝑥
𝑖
) + 𝜇
𝐴𝑈

(𝑥
𝑖
) − ]
𝐴𝑈

(𝑥
𝑖
)| ≤ 2. It follows that

(0 ≤ |𝜇
𝐴𝐿

(𝑥
𝑖
)−]
𝐴𝐿

(𝑥
𝑖
)+𝜇
𝐴𝑈

(𝑥
𝑖
)−]
𝐴𝑈

(𝑥
𝑖
)|/8(1+𝜋

𝐴
(𝑥
𝑖
)))𝜋 ≤

(1/4)𝜋. Thus 0 ≤ 𝐸(𝐴) ≤ 1.

(P1) Let𝐴 be a crisp set.Thenwe have �̃�
𝐴
(𝑥
𝑖
) = 0,𝜇

𝐴
(𝑥
𝑖
) =

1, and ]̃
𝐴
(𝑥
𝑖
) = 0 or �̃�

𝐴
(𝑥
𝑖
) = 0, 𝜇

𝐴
(𝑥
𝑖
) = 0, and

]̃
𝐴
(𝑥
𝑖
) = 1. So 𝐸(𝐴) = 0.

(P2) Let 𝜇
𝐴
(𝑥
𝑖
) = ]̃
𝐵
(𝑥
𝑖
), then 𝐸(𝐴) = 1.

(P3) It is clear that 𝐴𝐶 = {⟨𝑥
𝑖
, []
𝐴𝐿

(𝑥
𝑖
), ]
𝐴𝑈

(𝑥
𝑖
)], [𝜇
𝐴𝐿

(𝑥
𝑖
),

𝜇
𝐴𝑈

(𝑥
𝑖
)]⟩ | 𝑥

𝑖
∈ 𝑋}. By applying (11), we have 𝐸(𝐴) =

𝐸(𝐴
𝐶
).

(P4) In order to show that (11) fulfill the requirement of
(P4), it is suffice to to prove the following function:

𝜇𝐴𝐿 (𝑥𝑖) − ]
𝐴𝐿

(𝑥
𝑖
) + 𝜇
𝐴𝑈

(𝑥
𝑖
) − ]
𝐴𝑈

(𝑥
𝑖
)


4 (4 − 𝜇
𝐴𝐿

(𝑥
𝑖
) − ]
𝐴𝐿

(𝑥
𝑖
) − 𝜇
𝐴𝑈

(𝑥
𝑖
) − ]
𝐴𝑈

(𝑥
𝑖
))

≥

𝜇𝐵𝐿 (𝑥𝑖) − ]
𝐵𝐿

(𝑥
𝑖
) + 𝜇
𝐵𝑈

(𝑥
𝑖
) − ]
𝐵𝑈

(𝑥
𝑖
)


4 (4 − 𝜇
𝐵𝐿

(𝑥
𝑖
) − ]
𝐵𝐿

(𝑥
𝑖
) − 𝜇
𝐵𝑈

(𝑥
𝑖
) − ]
𝐵𝑈

(𝑥
𝑖
))

,

(17)

where function 𝐸 is monotonic decreasing.
Suppose that 𝜇

𝐵𝐿
(𝑥
𝑖
) ≤ ]

𝐵𝐿
(𝑥
𝑖
), 𝜇
𝐵𝑈

(𝑥
𝑖
) ≤ ]

𝐵𝑈
(𝑥
𝑖
), and

𝐴 ⊆ 𝐵, in order to prove (17); namely, we prove that

(2 − 𝜇
𝐴𝐿

(𝑥
𝑖
) − 𝜇
𝐴𝑈

(𝑥
𝑖
)) (2 − ]

𝐵𝐿
(𝑥
𝑖
) − ]
𝐵𝑈

(𝑥
𝑖
))

≥ (2 − 𝜇
𝐵𝐿

(𝑥
𝑖
) − 𝜇
𝐵𝑈

(𝑥
𝑖
)) (2 − ]

𝐴𝐿
(𝑥
𝑖
) − ]
𝐴𝑈

(𝑥
𝑖
)) .

(18)

If 𝜇
𝐴𝐿

(𝑥
𝑖
) ≤ 𝜇
𝐵𝐿

(𝑥
𝑖
) and 𝜇

𝐴𝑈
(𝑥
𝑖
) ≤ 𝜇
𝐵𝑈

(𝑥
𝑖
), then 2−𝜇

𝐴𝐿
(𝑥
𝑖
)−

𝜇
𝐴𝑈

(𝑥
𝑖
) ≥ 2 − 𝜇

𝐵𝐿
(𝑥
𝑖
) − 𝜇
𝐵𝑈

(𝑥
𝑖
) ≥ 0. If ]

𝐴𝐿
(𝑥
𝑖
) ≥ ]
𝐵𝐿

(𝑥
𝑖
) and

𝜇
𝐴𝑈

(𝑥
𝑖
) ≥ 𝜇
𝐵𝑈

(𝑥
𝑖
), then we have 2 − ]

𝐵𝐿
(𝑥
𝑖
) − ]
𝐵𝑈

(𝑥
𝑖
) ≥ 2 −

]
𝐴𝐿

(𝑥
𝑖
)−]
𝐴𝑈

(𝑥
𝑖
) ≥ 0. So we can get that (18) holds.Therefore,

𝐸(𝐴) ≤ 𝐸(𝐵).
Similarly, when 𝜇

𝐵𝐿
(𝑥
𝑖
) ≥ ]
𝐵𝐿

(𝑥
𝑖
), 𝜇
𝐵𝑈

(𝑥
𝑖
) ≥ ]
𝐵𝑈

(𝑥
𝑖
), and

𝐵 ⊆ 𝐴, we can also prove that 𝐸(𝐴) ≤ 𝐸(𝐵).

Example 13. Let𝐴 = ([0.4, 0.5], [0.3, 0.4]) and 𝐵 = ([0.1, 0.2],

[0, 0.1]) be two IVIFSs in𝑋.
Intuitively, we can see that 𝐵 is more fuzzy than 𝐴. Now

we calculate the𝐸(𝐴) and𝐸(𝐵) by (16), andwe can obtain that

𝐸 (𝐴) = cot(1

4
𝜋 +

|0.4 − 0.3 + 0.5 − 0.4|

4 (4 − 0.4 − 0.3 − 0.5 − 0.4)
𝜋) = 0.877,

𝐸 (𝐵) = cot(1

4
𝜋 +

|0.1 − 0 + 0.2 − 0.1|

4 (4 − 0.1 − 0 − 0.2 − 0.1)
𝜋) = 0.916,

(19)

which indicate that 𝐸(𝐴) < 𝐸(𝐵) and are consistent with our
intuition.

Example 14. Let𝐴 = ([0.5, 0.5], [0.1, 0.1]) and 𝐵 = ([0.6, 0.6],

[0.2, 0.2]) be two IVIFSs in𝑋.
Intuitively, we can see that 𝐴 is more fuzzy than 𝐵. Now

we calculate the𝐸(𝐴) and𝐸(𝐵) by (16), andwe can obtain that

𝐸 (𝐴) = cot(1

4
𝜋 +

|0.5 − 0.1 + 0.5 − 0.1|

4 (4 − 0.5 − 0.1 − 0.5 − 0.1)
𝜋) = 0.628,

𝐸 (𝐵) = cot(1

4
𝜋 +

|0.6 − 0.2 + 0.6 − 0.2|

4 (4 − 0.6 − 0.2 − 0.6 − 0.2)
𝜋) = 0.577,

(20)

which indicate that 𝐸(𝐴) > 𝐸(𝐵) and are consistent with our
intuition.
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4. Fuzzy Multicriteria Group Decision-Making
Method Based on the New Interval-Valued
Intuitionistic Fuzzy Entropy

In this section, we propose a method for fuzzy group
decision-making problems based on the interval-valued intu-
itionistic fuzzy entropy.

Consider an interval-valued intuitionistic fuzzy multicri-
teria group decision-making problem. Assume that there are
𝑛 alternatives 𝑋 = {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} and 𝑚 decision criteria

𝐶 = {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑚
}with weight vector𝑊 = (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇

associatedwith𝐶, where𝑤
𝑗
∈ [0, 1] and∑

𝑚

𝑗=1
𝑤
𝑗
= 1. Assume

that there are 𝑡 decision makers 𝐷 = {𝑑
1
, 𝑑
2
, . . . , 𝑑

𝑡
} whose

corresponding weight vector is 𝜆 = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑡
)
𝑇, where

𝜆
𝑘
∈ [0, 1] and ∑

𝑡

𝑘=1
𝜆
𝑘
= 1. In this case, the characteristic of

the alternative𝐴
𝑖
of the 𝑘th decision maker 𝑑

𝑘
is represented

by the following IVIFS:

𝐴
𝑘

𝑖
= {⟨𝐶

𝑘

𝑗
, [𝜇
𝐴
𝑘

𝑖
𝐿
(𝐶
𝑘

𝑗
) , 𝜇
𝐴
𝑘

𝑖
𝑈
(𝐶
𝑘

𝑗
)] ,

[]
𝐴
𝑘

𝑖
𝐿
(𝐶
𝑘

𝑗
) , ]
𝐴
𝑘

𝑖
𝑈
(𝐶
𝑘

𝑗
)]⟩ | 𝐶

𝑘

𝑗
∈ 𝐶} ,

(21)

where 0≤𝜇
𝐴
𝑘

𝑖
𝑈
(𝐶
𝑘

𝑗
)+]
𝐴
𝑘

𝑖
𝑈
(𝐶
𝑘

𝑗
) ≤ 1, 𝜇

𝐴
𝑘

𝑖
𝐿
(𝐶
𝑘

𝑗
) ≥ 0, 𝜇

𝐴
𝑘

𝑖
𝐿
(𝐶
𝑘

𝑗
) ≥

0, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and 𝑘 = 1, 2, . . . , 𝑡.
The IVIFS value that is the pair of intervals 𝜇

𝐴
𝑘

𝑖

(𝐶
𝑘

𝑗
) =

[𝑎
𝑘

𝑖𝑗
, 𝑏
𝑘

𝑖𝑗
], ]
𝐴
𝑘

𝑖

(𝐶
𝑘

𝑗
) = [𝑐

𝑘

𝑖𝑗
, 𝑑
𝑘

𝑖𝑗
] for 𝐶

𝑘

𝑗
∈ 𝐶 is denoted by

𝑟
𝑘

𝑖𝑗
= ([𝑎
𝑘

𝑖𝑗
, 𝑏
𝑘

𝑖𝑗
], [𝑐
𝑘

𝑖𝑗
, 𝑑
𝑘

𝑖𝑗
]). Here, we can elicit the interval-valued

intuitionistic fuzzy decision matrix 𝑅
𝑘
= (𝑟
𝑘

𝑖𝑗
)
𝑛×𝑚

.
If the information about weight 𝑤

𝑗
of the criterion

𝐶
𝑗
(𝑗 = 1, 2, . . . , 𝑚) is incomplete, for determining the

criterion weight from the decision matrix we can establish a
model of interval-valued intuitionistic fuzzy entropy weights.

For the criteria𝐶
𝑗
, the entropy of the alternative𝐴

𝑖
of the

𝑘th decision maker can be given as

𝐸 (𝑟
𝑘

𝑖𝑗
)

= cot(1

4
𝜋 + (


𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) + 𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)

)

× (4 (4 − 𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
)

−𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)))
−1

𝜋) .

(22)

And the entropy for the alternative𝐴𝑘
𝑖
of the kth decision

maker is given as

𝐸 (𝐴
𝑘

𝑖
)

=

𝑚

∑

𝑗=1

cot(1

4
𝜋 + (


𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
)

+𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)

)

× (4 (4 − 𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
)

−𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)))
−1

𝜋) .

(23)

As each alternative is made in a fair competitive envi-
ronment, and the fuzzy entropy of each alternative is from
a same criteria weight coefficient, the alternatives should be
combined. The overall entropy for the alternative 𝐴

𝑖
is given

as

𝐸 (𝐴
𝑖
)

=

𝑡

∑

𝑘=1

𝑚

∑

𝑗=1

cot(1

4
𝜋 + (


𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
)

+𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)

)

× (4 (4 − 𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
)

−𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)))
−1

𝜋) .

(24)

According to the entropy theory, if the entropy value for
an alternative is smaller across alternatives, it can provide
decision makers with the useful information. Therefore, the
criteria should be assigned to a bigger weight value. Then the
smaller the value of (24) is, the better the weight we should
assign to the criteria.

Let𝐻 be the set of incomplete information about criteria
weights; to get the optimal weight vector, the followingmodel
can be constructed:

min 𝐸 (𝐴)

=

𝑛

∑

𝑖=1

𝑡

∑

𝑘=1

𝑚

∑

𝑗=1

𝑤
𝑗

× cot(1

4
𝜋 + (


𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
)

+𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)

)

× (4 (4 − 𝜇
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝐿

(𝑟
𝑘

𝑖𝑗
)

−𝜇
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
) − ]
𝐴𝑈

(𝑟
𝑘

𝑖𝑗
)))
−1

𝜋) ,

s.t. 𝑤 ∈ 𝐻,

𝑚

∑

𝑗=1

𝑤
𝑗
= 1, 𝑤

𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑚.

(25)

By solving model (25) with Lingo software, we get the
optimal solution (𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇.

In summary, the main procedure of the decision method
proposed is listed in the following.

Step 1. Calculate the weight vector𝑊 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
)
𝑇 by

solving model (25).
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Step 2. Aggregate the values of each decision maker, and
utilize the IVIF-WGA operator to derive the values 𝑧

𝑘

𝑖
(𝑖 =

1, 2, . . . , 𝑛) of each decision maker as follows:

𝑧
𝑘

𝑖
= 𝐹
𝑤
(𝑟
𝑘

𝑖1
, 𝑟
𝑘

𝑖2
, . . . , 𝑟

𝑘

𝑖𝑚
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . , 𝑡.

(26)

Step 3. Aggregate the values of all decisionmakers, andutilize
the IVIF-HA operator to derive the collective values 𝑧

𝑖
of the

alternative 𝑥
𝑖
as follows

𝑧
𝑖
= 𝐻
𝜆
(𝑧
1

𝑖
, 𝑧
2

𝑖
, . . . , 𝑧

𝑡

𝑖
) , 𝑖 = 1, 2, . . . , 𝑛, (27)

where the associated weighting vector 𝜆 = (𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑡
) of

the IVIF-HA operator.

Step 4. Calculate the scores 𝑆(𝑧
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) of the

collective overall values to rank all the alternatives 𝐴
𝑖
(𝑖 =

1, 2, . . . , 𝑛) and then to select the best one(s).

5. An Illustration for Solving the Supplier
Selection Problem

This section adopts a supplier selection problem in [33, 34]
to demonstrate how to apply the proposed approach. With
continual business development, globalized markets become
increasingly competitive. Establishing effective supply chain
management (SCM) becomes a critical activity because a
sound SCM system can reduce supply chain risk, maximize

revenue, optimize business processes, and allow a company
to maintain a dominant position in the market [34, 35].
On the other hand, it is a hard problem since supplier
selection is typically a multicriteria group decision-making
problem involving several conflicting criteria on which deci-
sion maker’s knowledge is usually vague and imprecise [34].
Previous research concerning supplier selection often used
exact numbers to measure criterion weights. In this study,
considering that the decision maker may have difficulty in
eliciting precise criterion weights, the proposed approach is
proposed to select appropriate supplier in group decision-
making environment. It should be noted that, as suggested
and illustrated byMerigo andGil-Lafuente [36], the proposed
approach can be easily applied to a host of practical decision
problems that involve choosing an optimal alternative from
a list of alternatives when multiple attributes must be consid-
ered.

Suppose that a high-tech company which manufactures
electronic products intends to evaluate and select a supplier
of USB connectors. There are four suppliers 𝑥

1
, 𝑥
2
, 𝑥
3
, and

𝑥
4
which are chosen as candidates. A committee of three

decision makers 𝑑
1
, 𝑑
2
, and 𝑑

3
is established, which are

an engineering expert, financial expert, and quality control
expert, respectively. Four evaluated criteria are considered,
including finance (𝑐

1
), performance (𝑐

2
), technique (𝑐

3
), and

organizational culture (𝑐
4
). The expert weight vector is given

by 𝜆 = (0.35, 0.35, 0.3)
𝑇. The interval-valued intuitionistic

fuzzy decision matrices of criterion values are constructed as
follows:

𝑅
1
=

[
[
[

[

([0.3, 0.4] , [0.4, 0.6]) ([0.6, 0.7] , [0.1, 0.2]) ([0.5, 0.7] , [0.2, 0.3]) ([0.7, 0.8] , [0.0, 0.1])

([0.7, 0.8] , [0.1, 0.2]) ([0.6, 0.7] , [0.2, 0.3]) ([0.2, 0.3] , [0.4, 0.6]) ([0.5, 0.6] , [0.1, 0.3])

([0.5, 0.8] , [0.1, 0.2]) ([0.7, 0.8] , [0.0, 0.1]) ([0.5, 0.5] , [0.4, 0.5]) ([0.2, 0.3] , [0.2, 0.4])

([0.2, 0.3] , [0.4, 0.5]) ([0.5, 0.7] , [0.1, 0.3]) ([0.6, 0.7] , [0.1, 0.2]) ([0.4, 0.5] , [0.1, 0.3])

]
]
]

]

,

𝑅
2
=

[
[
[

[

([0.4, 0.5] , [0.3, 0.4]) ([0.5, 0.6] , [0.2, 0.2]) ([0.6, 0.7] , [0.2, 0.3]) ([0.7, 0.8] , [0.1, 0.2])

([0.6, 0.8] , [0.1, 0.2]) ([0.5, 0.6] , [0.3, 0.4]) ([0.4, 0.5] , [0.3, 0.4]) ([0.4, 0.6] , [0.3, 0.4])

([0.5, 0.6] , [0.3, 0.4]) ([0.5, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.3, 0.4]) ([0.3, 0.4] , [0.2, 0.5])

([0.5, 0.6] , [0.3, 0.4]) ([0.7, 0.8] , [0.0, 0.1]) ([0.4, 0.5] , [0.2, 0.4]) ([0.5, 0.7] , [0.1, 0.2])

]
]
]

]

,

𝑅
3
=

[
[
[

[

([0.4, 0.6] , [0.3, 0.4]) ([0.5, 0.7] , [0.1, 0.2]) ([0.5, 0.6] , [0.2, 0.4]) ([0.6, 0.8] , [0.1, 0.2])

([0.5, 0.8] , [0.1, 0.2]) ([0.3, 0.5] , [0.2, 0.3]) ([0.3, 0.6] , [0.2, 0.4]) ([0.4, 0.5] , [0.2, 0.4])

([0.5, 0.6] , [0.0, 0.1]) ([0.5, 0.8] , [0.1, 0.2]) ([0.4, 0.7] , [0.2, 0.3]) ([0.2, 0.4] , [0.2, 0.3])

([0.5, 0.7] , [0.1, 0.3]) ([0.4, 0.6] , [0.0, 0.1]) ([0.3, 0.5] , [0.2, 0.4]) ([0.7, 0.9] , [0.0, 0.1])

]
]
]

]

.

(28)

The incomplete information about the criterion weights
are as follows (in this problem, the criterion weights are
incomplete information. The specific weight calculation
method can be found in [34]):

𝐻 = {0.228 ≤ 𝑤
1
≤ 0.8758, 0.2285 ≤ 𝑤

2
≤ 0.8789,

0.1642 ≤ 𝑤
3
≤ 0.7979, 0.1419 ≤ 𝑤

4
≤ 0.7824} .

(29)

Step 1. Calculate the weight vector 𝑊 = (𝑤
1
, 𝑤
2
, 𝑤
3
, 𝑤
4
)
𝑇 by

solving model (25) as follows:

𝑊 = (0.228, 0.4659, 0.1642, 0.1419)
𝑇
. (30)

Step 2. Aggregate the values of each decision maker, andu-
tilize the IVIF-WGA operator to derive the values 𝑧

𝑘

𝑖
(𝑖 =

1, 2, . . . , 𝑛) of each decision maker.
The integrated values for alternatives 𝑥

1
, 𝑥
2
, 𝑥
3
and 𝑥

4
of

decision maker 𝑑
1
are, respectively,

𝑧
1

1
= ([0.508, 0.628] , [0.183, 0.320]) ,

𝑧
1

2
= ([0.506, 0.614] , [0.203, 0.342]) ,

𝑧
1

3
= ([0.514, 0.644] , [0.130, 0.249]) ,

𝑧
1

4
= ([0.405, 0.550] , [0.179, 0.337]) .

(31)
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The integrated values for alternatives 𝑥
1
, 𝑥
2
, 𝑥
3
and 𝑥

4
of

decision maker 𝑑
2
are, respectively,

𝑧
2

1
= ([0.514, 0.615] , [0.211, 0.267]) ,

𝑧
2

2
= ([0.487, 0.622] , [0.259, 0.359]) ,

𝑧
2

3
= ([0.439, 0.584] , [0.198, 0.331]) ,

𝑧
2

4
= ([0.546, 0.649] , [0.124, 0.259]) .

(32)

The integrated values for alternatives 𝑥
1
, 𝑥
2
, 𝑥
3
and 𝑥

4
of

decision maker 𝑑
3
are, respectively,

𝑧
3

1
= ([0.488, 0.672] , [0.166, 0.285]) ,

𝑧
3

2
= ([0.351, 0.573] , [0.178, 0.312]) ,

𝑧
3

3
= ([0.423, 0.664] , [0.111, 0.211]) ,

𝑧
3

4
= ([0.435, 0.639] , [0.06, 0.205]) .

(33)

Step 3. Aggregate the values of all decisionmakers, andutilize
the IVIF-HA operator to derive the collective values 𝑧

𝑖
of the

alternative 𝑥
𝑖
.

Theweighting vector of the IVIL-HAoperator is obtained
by the principle of antonym pairs many and (𝑎, 𝑏) equal to
(0.3, 0.8). So we can obtain 𝜔 = (0.243, 0.514, 0.243) and the
integrated values as follows:

𝑧
1
= ([0.489, 0.617] , [0.202, 0.297]) ,

𝑧
2
= ([0.436, 0.593] , [0.236, 0.357]) ,

𝑧
3
= ([0.430, 0.625] , [0.144, 0.262]) ,

𝑧
4
= ([0.463, 0.606] , [0.129, 0.278]) .

(34)

Step 4. Calculate the scores 𝑆(𝑧
𝑖
) (𝑖 = 1, 2, 3, 4) of the

collective overall values 𝑧
𝑖
(𝑖 = 1, 2, 3, 4) as follows:

𝑆 (𝑧
1
) = 0.607, 𝑆 (𝑧

2
) = 0.436,

𝑆 (𝑧
3
) = 0.649, 𝑆 (𝑧

4
) = 0.663.

(35)

Step 5. Rank all the alternatives 𝐴
𝑖
(𝑖 = 1, 2, 3, 4) in

accordance with the score 𝑆(𝑧
𝑖
) of the collective overall

interval-valued intuitionistic fuzzy values 𝑧
𝑖
(𝑖 = 1, 2, 3, 4):

𝐴
4
≻ 𝐴
3
≻ 𝐴
1
≻ 𝐴
2
, and thus the best alternative is 𝐴

4
.

6. Conclusion

In this paper, a new entropy measure of IVIFS is proposed
by using cotangent function, which can overcome limitations
of some existing methods. And we provide several numerical
examples to illustrate its validity. For interval-valued intu-
itionistic fuzzy multicriteria group decision-making problem
with incomplete information on the weights of criteria,
an entropy weight model is established to determine the
entropy weights. In addition, the method and procedure are
developed to solve FMCGDM problems. Finally, the supplier
selection problem is used as an example to demonstrate how
to apply the proposed multicriteria group decision-making
approach.
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Expected residualminimization (ERM)modelwhichminimizes an expected residual function defined by anNCP function has been
studied in the literature for solving stochastic complementarity problems. In this paper, we first give the definitions of stochastic
𝑃-function, stochastic 𝑃

0
-function, and stochastic uniformly 𝑃-function. Furthermore, the conditions such that the function is a

stochastic 𝑃(𝑃
0
)-function are considered. We then study the boundedness of solution set and global error bounds of the expected

residual functions defined by the “Fischer-Burmeister” (FB) function and “min” function. The conclusion indicates that solutions
of the ERM model are robust in the sense that they may have a minimum sensitivity with respect to random parameter variations
in stochastic complementarity problems. On the other hand, we employ quasi-Monte Carlo methods and derivative-free methods
to solve ERMmodel.

1. Introduction

Given a vector-valued function𝐹 : R𝑛 × Ω → R𝑛, the stochas-
tic complementarity problems, denoted by SCP(𝐹(𝑥, 𝜔)), are
to find a vector 𝑥

∗ such that

𝑥
∗

≥ 0, 𝐹 (𝑥
∗
, 𝜔) ≥ 0,

(𝑥
∗
)
𝑇
𝐹 (𝑥
∗
, 𝜔) = 0, 𝜔 ∈ Ω a.s.,

(1)

where 𝜔 ∈ Ω ⊆ R𝑚 is a random vector with given probability
distribution P and “a.s.” means “almost surely” under the
given probability measure. Particularly, when 𝐹 is an affine
function of 𝑥 for any 𝜔, that is,

𝐹 (𝑥, 𝜔) = 𝑀 (𝜔) 𝑥 + 𝑞 (𝜔) , 𝜔 ∈ Ω, (2)

where 𝑀(𝜔) ∈ R𝑛×𝑛 and 𝑞(𝜔) ∈ R𝑛, the SCP(𝐹(𝑥, 𝜔)) is
called stochastic linear complementarity problems, denoted
by SLCP(𝑀(𝜔), 𝑞(𝜔)). Correspondingly, problem (1) is called
stochastic nonlinear complementarity problem, denoted by
SNCP(𝐹(𝑥, 𝜔)) if 𝐹 can not be denoted by an affine function
of 𝑥 for any 𝜔. The deterministic problems, which are called
complementarity problems (denoted by CP(𝐹(𝑥))), have

been intensively studied. More information about theoretical
analysis, numerical algorithms and applications especially in
economics and engineering can be found in comprehensive
books [1, 2].

In practical applications, some elements may involve
stochastic factors. In fact, due to stochastic factors, the
function value of 𝐹 depends not only on 𝑥, but also on
random vectors. Hence, problem (1) does not have solution
in general for almost all 𝜔 ∈ Ω. To solve these problems,
researchers focus on giving reasonable deterministic refor-
mulations for SCP(𝐹(𝑥, 𝜔)). Certainly, different deterministic
formulations may yield different solutions that are optimal
in different senses. In the study of SCP(𝐹(𝑥, 𝜔)), three types
of formulations have been proposed; the expected value
(EV) formulation, the expected residualminimization (ERM)
formulation, and the SMPEC formulation [3].

The EV formulation is studied by Gürkan et al. [4]. The
problem considered in [4] is actually a stochastic variational
inequality problem. When applied to the SCP(𝐹(𝑥, 𝜔)), the
EV model can be stated as follows:

𝑥
∗

≥ 0, E [𝐹 (𝑥
∗
, 𝜔)] ≥ 0, (𝑥

∗
)
𝑇E [𝐹 (𝑥

∗
, 𝜔)] = 0, (3)

where Emeans expectation with respect to 𝜔.
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TheERMmodel is first proposed byChen and Fukushima
[5] for solving the SLCP(𝑀(𝜔), 𝑞(𝜔)). By employing an NCP
function 𝜙, the SCP(𝐹(𝑥, 𝜔)) (1) is transformed equivalently
to the stochastic equations

Φ (𝑥, 𝜔) = 0, 𝜔 ∈ Ω a.s., (4)

where Φ : R𝑛 × Ω → R𝑛 is defined by

Φ (𝑥, 𝜔) := (

𝜙 (𝑥
1
, 𝐹
1

(𝑥, 𝜔))

...
𝜙 (𝑥
𝑛
, 𝐹
𝑛

(𝑥, 𝜔))

) , (5)

and 𝑥
𝑖
denotes the 𝑖th component of the vector 𝑥. Here 𝜙 :

R𝑛 → R is an NCP function which has the property

𝜙 (𝑎, 𝑏) = 0 ⇐⇒ 𝑎 ≥ 0, 𝑏 ≥ 0, 𝑎𝑏 = 0. (6)

Then the ERM formulation for (1) is given by

min
𝑥∈R𝑛
+

𝜃 (𝑥) := E [‖Φ (𝑥, 𝜔)‖
2
] . (7)

The NCP functions employed in [5] include the Fischer-
Burmeister function, which is defined by

𝜙FB (𝑎, 𝑏) := √𝑎2 + 𝑏2 − (𝑎 + 𝑏) (8)

and the min function

𝜙min (𝑎, 𝑏) := min {𝑎, 𝑏} . (9)

In particular, it is known [6, 7] that there exist the following
relations between these two functions:

2

√2 + 2

𝜙min
 ≤

𝜙FB
 ≤ (√2 + 2)

𝜙min
 . (10)

As observed in [5], the ERM formulations with different
NCP functions may have different properties. Subsequently,
the ERM formulation for SCP(𝐹(𝑥, 𝜔)) has been studied in
[6, 8–13]. Note that Fang et al. [8] propose a new concept of
stochastic matrice: 𝑀(⋅) is called a stochastic 𝑅

0
matrix if

P {𝜔 : 𝑥 ≥ 0, 𝑀 (𝜔) 𝑥 ≥ 0, 𝑥
𝑇
𝑀 (𝜔) 𝑥 = 0} = 1 ⇒ 𝑥 = 0.

(11)

Moreover, Zhang and Chen [11] introduce a new concept
of stochastic 𝑅

0
function, which can be regarded as a

generalization of the stochastic 𝑅
0
matrix given in [8].

Throughout this paper, we suppose that the sample space
Ω is nonempty and compact set and that the function 𝐹(𝑥, 𝜔)

is continuous with respect to 𝑥 and 𝜔. On the other hand, we
will use the following notations: 𝐼(𝑥) = {𝑖 : 𝑥

𝑖
= 0} and

𝐽(𝑥) = {𝑖 : 𝑥
𝑖

̸= 0} for a given vector 𝑥 ∈ R𝑛. ⟨𝑙, 𝑛⟩ represents
the set {𝑙, 𝑙 + 1, . . . , 𝑙 + 𝑛} for natural numbers 𝑙 and 𝑢 with
𝑙 < 𝑢. 𝑥

+
= max{𝑥, 0} for any given vector 𝑥. ‖ ⋅ ‖ refers to the

Euclidean norm.
The remainder of the paper is organized as follows:

in Section 2, we introduce the concepts of a stochastic 𝑃-
function, a stochastic𝑃

0
-function, and a stochastic uniformly

𝑃-function, which can be regarded as a generalization of
the deterministic 𝑃, 𝑃

0
-function, and uniformly 𝑃-function

or an extension of stochastic 𝑃 matrix and stochastic 𝑃
0

matrix [14]. In addition, some properties of a stochastic
𝑃(𝑃
0
)-function are given. In Section 3, we show the suffi-

cient conditions for the solution set of ERM problem to
be nonempty and bounded. In Section 4, we discuss error
bounds of SCP(𝐹(𝑥, 𝜔)). In Section 5, an algorithm will be
given to solve ERM model. We then give conclusions in
Section 6.

2. Stochastic 𝑃(𝑃
0
)-Function

It is well known that the 𝑃-function, 𝑃
0
-function, and

uniformly𝑃-function play an important role in the nonlinear
complementarity problems theory [1]. We will introduce
a new concept of stochastic 𝑃-function, 𝑃

0
-function, and

uniformly 𝑃-function, which can be regarded as a general-
ization of their deterministic form or stochastic 𝑃 matrix and
stochastic 𝑃

0
matrix.

Definition 1 (see [14]). 𝑀(⋅) is called a stochastic𝑃(𝑃
0
)-matrix

if there exists 𝑖 ∈ 𝐽(𝑥) such that, for every 𝑥 ̸= 0 in R𝑛,

P {𝜔 : 𝑥
𝑖
(𝑀 (𝜔) 𝑥)

𝑖
> 0 (≥ 0)} > 0. (12)

Definition 2. A function 𝐹 : R𝑛 × Ω → R𝑛 is a stochastic
𝑃(𝑃
0
)-function if there exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that,

for every 𝑥 ̸= 𝑦 in R𝑛,

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} > 0.

(13)

Definition 3. A function 𝐹 : R𝑛 × Ω → R𝑛 is a stochastic
uniformly 𝑃-function if there exists a positive constant 𝛼 and
𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that, for every 𝑥 ̸= 𝑦 in R𝑛,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≥ 𝛼

𝑥 − 𝑦


2
} > 0.

(14)

Clearly, every stochastic uniformly 𝑃-function must be a
stochastic 𝑃-function, which in turn must be a stochastic 𝑃

0
-

function. We further cite the definition of “equicoercive” in
[11]. More information about this definition can be found in
[11].

Definition 4 (see [11]). We say that 𝐹 : R𝑛 × Ω → R𝑛 is
equicoercive on D ⊆ R𝑛, if, for any {𝑥

𝑘
} ⊆ D satisfying

‖𝑥
𝑘
‖ → ∞, the existence of {𝜔

𝑘
} ⊆ suppΩ with

lim
𝑘→∞

𝐹
𝑖
(𝑥
𝑘
, 𝜔
𝑘
) = ∞(lim

𝑘→∞
(−𝐹
𝑖
(𝑥
𝑘
, 𝜔
𝑘
))
+

= ∞) for
some 𝑖 ∈ ⟨1, 𝑛⟩ implies that

P {𝜔 : lim
𝑘→∞

𝐹
𝑖
(𝑥
𝑘
, 𝜔) = ∞}

> 0 (P {𝜔 : lim
𝑘→∞

(−𝐹
𝑖
(𝑥
𝑘
, 𝜔))
+

= ∞} > 0) ,

(15)
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where

suppΩ

:= {𝜔 ∈ Ω : ∫
𝐵
𝜔
(𝜔,])∩Ω

𝑑𝐹 (𝜔) > 0 for any ] > 0}

(16)

and 𝐵
𝜔
(𝜔, ]) := {𝜔 : ‖𝜔 − 𝜔‖ < ]} and 𝐹(𝜔) is the distribution

function of 𝜔.

More details about suppΩ were included in [8].

Proposition 5. If 𝐹 is a stochastic 𝑃
0
-function, then 𝐹 + 𝜀𝑥 is

a stochastic 𝑃-function for every 𝜀 > 0.

Proof. From the definition of stochastic 𝑃
0
-function, there

exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that, for every 𝑥 ̸= 𝑦,

𝑥
𝑖

̸= 𝑦
𝑖
, P {𝜔 : (𝑥

𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≥ 0} > 0.

(17)

Hence, we have

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) + 𝜀𝑥

𝑖
− (𝐹
𝑖
(𝑦, 𝜔) + 𝜀𝑦

𝑖
)) > 0}

= P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) + 𝜀(𝑥

𝑖
− 𝑦
𝑖
)
2
> 0}

≥ P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≥ 0} > 0.

(18)

This proposition gives the relationship between stochastic
𝑃
0
-function and stochastic 𝑃-function.

Proposition 6. Let 𝐹 be an affine function of 𝑥 for any 𝜔 ∈ Ω

defined by (2).Then 𝐹 is a stochastic 𝑃(𝑃
0
)-function if and only

if 𝑀(⋅) is a stochastic 𝑃(𝑃
0
) matrix.

Proof. By the definition of stochastic 𝑃(𝑃
0
)-function, we

have that there exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that, for every
𝑥 ̸= 𝑦,

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} > 0,

(19)

which is equivalent to

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝑀 (𝜔) (𝑥 − 𝑦))

𝑖
> 0 (≥ 0)} > 0,

(20)

when𝐹 is defined by (2). Set 𝑧 = 𝑥−𝑦; then 𝑧 ̸= 0, andwe have
that formulation (20) holds if and only if there exists 𝑖 ∈ 𝐽(𝑧)

such that, for every 𝑧 ̸= 0,

P {𝜔 : 𝑧
𝑖
(𝑀 (𝜔) 𝑧)

𝑖
> 0 (≥ 0)} > 0. (21)

Hence, 𝑀(⋅) is a stochastic 𝑃(𝑃
0
) matrix.

Proposition 7. 𝐹 is a stochastic 𝑃(𝑃
0
)-function if and only if

there exists a 𝜔 ∈ suppΩ such that 𝐹(⋅, 𝜔) is a 𝑃(𝑃
0
)-function.

Proof. For the “if ” part, suppose on the contrary that𝐹 is not
a stochastic 𝑃(𝑃

0
)-function, and then there exist 𝑥, 𝑦, 𝑥 ̸= 𝑦 in

R𝑛 for any 𝑖 ∈ ⟨1, 𝑛⟩ satisfying

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} = 0.

(22)

On the other hand, since 𝐹(⋅, 𝜔) is a 𝑃(𝑃
0
)-function, then

for 𝑥, 𝑦 there exist 𝑖 ∈ 𝐽(𝑥, 𝑦), 𝑖 ∈ ⟨1, 𝑛⟩ such that

(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0) . (23)

Notice that 𝜔 ∈ suppΩ, by the definition of suppΩ in (16),
we have

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} > 0. (24)

This contradicts formulation (22).Therefore, 𝐹 is a stochastic
𝑃(𝑃
0
)-function.
Now for the “only if ” part, suppose on the contrary that

there does not exist a 𝜔 ∈ suppΩ such that 𝐹(⋅, 𝜔) is a 𝑃(𝑃
0
)-

function. Then for any 𝑖 ∈ ⟨1, 𝑛⟩, 𝜔 ∈ suppΩ, there exists
𝑥, 𝑦, 𝑥 ̸= 𝑦 in R𝑛, such that

𝑥
𝑖

̸= 𝑦
𝑖
,

(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≤ 0 (< 0) ,

(25)

which means that

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 ∈ suppΩ : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔))

> 0 (≥ 0) } = 0.

(26)

By the definition of suppΩ in (16), we have P{𝜔 ∈ Ω \

suppΩ} = 0. Hence, formulation (26) is equivalent to

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 ∈ Ω : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} = 0,

(27)

which contradicts definition (20). Therefore, there exists a
𝜔 ∈ suppΩ such that 𝐹(⋅, 𝜔) is a 𝑃(𝑃

0
)-function.

Theorem 8. Suppose that 𝑓(𝑥) := E[𝐹(𝑥, 𝜔)] is a 𝑃(𝑃
0
)-

function. Then 𝐹 is a stochastic 𝑃(𝑃
0
)-function.

Proof. Suppose on the contrary that 𝐹 is not a stochastic
𝑃(𝑃
0
)-function, then there exist 𝑥, 𝑦, 𝑥 ̸= 𝑦 in R𝑛 for any 𝑖 ∈

⟨1, 𝑛⟩ satisfying

𝑥
𝑖

̸= 𝑦
𝑖
,

P {𝜔 : (𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖 (𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) > 0 (≥ 0)} = 0.

(28)

This means that

(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔)) ≤ 0 (< 0) (29)
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always holds for any 𝑖 ∈ ⟨1, 𝑛⟩ and 𝜔 ∈ Ω. Furthermore,
following from (29), we have

E [(𝑥
𝑖
− 𝑦
𝑖
) (𝐹
𝑖
(𝑥, 𝜔) − 𝐹

𝑖
(𝑦, 𝜔))] ≤ 0 (< 0) , (30)

that is

(𝑥
𝑖
− 𝑦
𝑖
) (𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑦)) ≤ 0 (< 0) , (31)

which contradicts the definition of𝑃(𝑃
0
)-function.Therefore,

𝐹 is a stochastic 𝑃(𝑃
0
)-function.

Note that there is at most one solution (may not be
a solution) for the EV model stochastic complementarity
problems if 𝑓(𝑥) := E[𝐹(𝑥, 𝜔)] is a 𝑃(𝑃

0
)-function.

3. Boundedness of Solution Set

Theorem 9. Suppose that 𝐹 is a stochastic uniformly 𝑃-
function and 𝐹 is equicoercive on R𝑛. Then the solution set
of ERM model (7) defined by 𝜙min and 𝜙FB is nonempty and
bounded.

Proof. Suppose on the contrary that the ERMmodel defined
by 𝜙min is not bounded.Thus there exist a sequence {𝑥

𝑘
} ⊂ R𝑛
+

with ‖𝑥
𝑘
‖ → ∞ (𝑘 → ∞) and a constant 𝑐 ∈ R

+
, such that

𝜃 (𝑥
𝑘
) ≤ 𝑐, for ∀𝑘. (32)

Define the index set 𝐼 ⊆ {1, . . . , 𝑛} by

𝐼 := {𝑖 | {𝑥
𝑘

𝑖
} is unbounded} . (33)

By assumption, we have 𝐼 ̸= 0. We now define a sequence
{𝑦
𝑘
} ⊆ R𝑛 as follows:

𝑦
𝑘

𝑖
:= {

0 if 𝑖 ∈ 𝐼,

𝑥
𝑘

𝑖
if 𝑖 ∉ 𝐼.

(34)

From the definition of 𝑦
𝑘 and the fact that 𝐹 is a stochastic

uniformly 𝑃-function, we obtain that for any 𝑥
𝑘
, 𝑦
𝑘, there

exists 𝑖 such that

P {𝜔 : (𝑥
𝑘

𝑖
− 𝑦
𝑘

𝑖
) (𝐹
𝑖
(𝑥
𝑘
, 𝜔) − 𝐹

𝑖
(𝑦
𝑘
, 𝜔))

≥ 𝛼

𝑥
𝑘

− 𝑦
𝑘

2

} > 0,

(35)

and hence there are 𝜔
𝑘

∈ suppΩ satisfying

(𝑥
𝑘

𝑖
− 𝑦
𝑘

𝑖
) (𝐹
𝑖
(𝑥
𝑘
, 𝜔
𝑘
) − 𝐹
𝑖
(𝑦
𝑘
, 𝜔
𝑘
)) ≥ 𝛼


𝑥
𝑘

− 𝑦
𝑘

2

. (36)

Take subsequence 𝑥
𝑘
𝑖 , 𝑦
𝑘
𝑖 such that the corresponding sub-

script of (36) is 𝑗. Noting that 𝑗 ∈ 𝐼 and taking (36) into
account, we have

𝛼∑

𝑗∈𝐼

(𝑥
𝑘
𝑖

𝑗
)
2

≤ 𝑥
𝑘
𝑖

𝑗
(𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔
𝑘
𝑖) − 𝐹

𝑗
(𝑦
𝑘
𝑖 , 𝜔
𝑘
𝑖))

≤ √∑

𝑗∈𝐼

(𝑥
𝑘
𝑖

𝑗
)
2

⋅
√

∑

𝑗∈𝐼


𝐹
𝑗
(𝑥𝑘𝑖 , 𝜔

𝑘
𝑖) − 𝐹

𝑗
(𝑦𝑘𝑖 , 𝜔

𝑘
𝑖)


,

(37)

from which we get

𝛼√∑

𝑗∈𝐼

(𝑥
𝑘
𝑖

𝑗
)
2

≤
√

∑

𝑗∈𝐼


𝐹
𝑗
(𝑥𝑘𝑖 , 𝜔

𝑘
𝑖) − 𝐹

𝑗
(𝑦𝑘𝑖 , 𝜔

𝑘
𝑖)


. (38)

By definition, the sequence {𝑦
𝑘
𝑖} remains bounded. From the

continuity of 𝐹, it follows that the sequence {𝐹
𝑗
(𝑦
𝑘
𝑖 , 𝜔
𝑘
𝑖)} is

also bounded for every 𝑗 ∈ 𝐼. Hence, taking a limit in (38),
we obtain that there is at least one index 𝑗 ∈ 𝐼 such that

𝑥
𝑘
𝑖

𝑗
→ ∞, 𝐹

𝑗
(𝑥
𝑘
𝑖 , 𝜔
𝑘
𝑖) → ∞. (39)

Since 𝐹 is equicoercive on R𝑛, we have

P{𝜔 : lim
𝑘
𝑖
→∞

𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔) = ∞} > 0. (40)

Let

Ω
1

= {𝜔 : lim
𝑘
𝑖
→∞

min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)) = ∞} . (41)

ThenP{Ω
1
} > 0. By Fatou’s Lemma [15], we have

E
Ω
1

[lim inf
𝑘
𝑖
→∞

(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

]

≤ lim inf
𝑘
𝑖
→∞

E
Ω
1

[(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

] .

(42)

Since

lim inf
𝑘
𝑖
→∞

(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

= ∞ (43)

on Ω
1
andP{Ω

1
} > 0, then the left-hand side of formulation

(42) is infinite. Therefore,

lim inf
𝑘
𝑖
→∞

E
Ω
1

[(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

] = ∞. (44)

Moreover, it is easy to find

𝜃 (𝑥
𝑘
𝑖) = E [


Φ(𝑥
𝑘
𝑖 , 𝐹(𝑥
𝑘
𝑖 , 𝜔))



2

]

≥ E
Ω
1

[(min (𝑥
𝑘
𝑖

𝑗
, 𝐹
𝑗
(𝑥
𝑘
𝑖 , 𝜔)))

2

]

→ ∞

(45)

as 𝑘
𝑖

→ ∞. This contradicts formulation (32). Hence, the
solution set of ERM model (7) defined by 𝜙min is nonempty
and bounded. Similar results about 𝜙FB can be obtained by
relation formulation (10).

4. Robust Solution

As we show, both EV model and ERM model give decisions
by a deterministic formulation. However, the decisions may
not be the best or may be even infeasible for each individual
event. In fact, we should take risk into account to make
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a priori decision in many cases. Naturally, it is necessary to
know how good or how bad the decision which we have given
can be. In this section, we study the robustness of solutions of
the ERM model. Let SOL(𝐹(𝑥, 𝜔)) denote the solution set of
SCP(𝐹(𝑥, 𝜔)), and define the distance from a point 𝑥 to the
set SOL(𝐹(𝑥, 𝜔)) by

dist (𝑥, SOL (𝐹 (𝑥, 𝜔))) := inf
𝑥

∈SOL(𝐹(𝑥,𝜔))


𝑥 − 𝑥


. (46)

Theorem 10. Assume that Ω = {𝜔
1
, 𝜔
2
, . . . , 𝜔

𝑁
} ⊂ R𝑚,

and 𝜔 takes values 𝜔
1
, . . . , 𝜔

𝑁 with respective probabilities
𝑝
1
, . . . , 𝑝

𝑁
. Furthermore, suppose that for every𝜔 ∈ Ω,𝐹(𝑥, 𝜔)

is uniformly P-function and Lipschitz continuous with respect
to 𝑥. Then there is a constant 𝐶 > 0 such that

E [dist (𝑥, SOL (𝐹 (𝑥, 𝜔)))] ≤ 𝐶 ⋅ √𝜃 (𝑥), (47)

where 𝜃(𝑥) is defined by 𝜙min or 𝜙FB.

Proof. For any fixed 𝜔
𝑖, since 𝐹(𝑥, 𝜔

𝑖
) is uniformly 𝑃-

function and Lipschitz continuous, from Corollary 3.19 of
[16], we have unique solution 𝑥(𝜔

𝑖
) of CP(𝐹(𝑥, 𝜔

𝑖
)), and there

exists a constant 𝐶
𝑖
such that


𝑥 − 𝑥 (𝜔

𝑖
)


≤ 𝐶
𝑖


min {𝑥, 𝐹 (𝑥, 𝜔

𝑖
)}


. (48)

Letting 𝐶 := ((√2 + 2)/2)max{𝐶
1
, . . . , 𝐶

𝑁
}, we have

E2 [dist (𝑥, SOL (𝐹 (𝑥, 𝜔)))]

= E2 [
𝑥 − 𝑥 (𝜔

𝑖
)

]

≤ E [

𝑥 − 𝑥 (𝜔

𝑖
)


2

]

≤

𝑁

∑

𝑖=1

𝑝
𝑖
⋅ 𝐶
2

𝑖


min {𝑥, 𝐹 (𝑥, 𝜔

𝑖
)}



2

≤

𝑁

∑

𝑖=1

𝑝
𝑖
⋅ 𝐶
2

𝑖
⋅ (

√2 + 2

2
)

2

×

𝑛

∑

𝑗=1

(√𝐹
2

𝑗
(𝑥, 𝜔𝑖) + 𝑥

2

𝑗
− (𝐹
𝑗
(𝑥, 𝜔
𝑖
) + 𝑥
𝑗
))

2

≤ 𝐶
2

𝑁

∑

𝑖=1

𝑝
𝑖

𝑛

∑

𝑗=1

(√𝐹
2

𝑗
(𝑥, 𝜔𝑖) + 𝑥

2

𝑗
− (𝐹
𝑗
(𝑥, 𝜔
𝑖
) + 𝑥
𝑗
))

2

= 𝐶
2
𝜃 (𝑥) ,

(49)

where the first inequality follows from Cauchy-Schwarz
inequality, the second inequality follows from formulation
(48), and the third inequality follows from formulation (10).
This completes the proof of the theorem.

Theorem 10 particularly shows that for the solution 𝑥
∗ of

(7),

E [dist (𝑥
∗
, SOL (𝐹 (𝑥, 𝜔)))] ≤ 𝐶 ⋅ √𝜃 (𝑥

∗
). (50)

This inequality indicates that the expected distance to the
solution set SOL(𝐹(𝑥, 𝜔)) for 𝜔 ∈ Ω is also likely to be small
at the solution 𝑥

∗ of (7). In other words, we may expect
that a solution of the ERM formulation (7) has a minimum
sensitivity with respect to random parameter variations in
SCP(𝐹(𝑥, 𝜔)). In this sense, solutions of (7) can be regarded
as robust solutions for SCP(𝐹(𝑥, 𝜔)).

5. Quasi-Monte Carlo and Derivative-Free
Methods for Solving ERM Model

Note that the ERM model (7) included an expectation func-
tion,which is generally difficult to be evaluated exactly.Hence
in this section, we first employ a quasi-Monte Carlo method
to obtain approximation problems of (7) for numerical
integration. Then, we consider derivative-free methods to
solve these approximation problems.

By the quasi-Monte Carlo method, we obtain the follow-
ing approximation problem of (7):

min
𝑥∈R𝑛
+

𝜃
𝑁

(𝑥) :=
1

𝑁
∑

𝜔
𝑖
∈Ω
𝑁


Φ (𝑥, 𝜔

𝑖
)


2

𝜌 (𝜔
𝑖
) , (51)

where Ω
𝑁

= {𝜔
𝑖

| 𝑖 = 1, 2, . . . , 𝑁} is a set of observations
generated by a quasi-Monte Carlo method such that Ω

𝑁
⊆

Ω and 𝜌(𝜔) stands for the probability density function.
In the rest of this paper, we assume that the probability
density function 𝜌 is continuous on Ω. For each 𝑁, 𝜃

𝑁
(𝑥)

is continuously differentiable function. We denote by 𝑥
𝑁 the

optimal solutions of approximation problems (51). We are
interested in the situation where the first-order derivatives of
𝜃
𝑁

(𝑥) cannot be explicitly calculated or approximated.

Condition 1. Given a point 𝑥
0

≥ 0, the level set

𝐿 := {𝑥 ≥ 0 | 𝑓 (𝑥) ≤ 𝑓 (𝑥
0
)} (52)

is compact.

Condition 2. If {𝑥
𝑁

𝑘
} and {𝑦

𝑁

𝑘
} are sequences of points such

that 𝑥
𝑁

𝑘
≥ 0, 𝑦

𝑁

𝑘
≥ 0 converging to some 𝑥

𝑁 and 𝐼
𝑁

𝑘
⊆

𝐼(𝑥
𝑁

) := {𝑖 | 𝑥
𝑁

𝑖
= 0} for all 𝑘, then

{dist (𝑇
𝐼
𝑁

𝑘

(𝑥
𝑁

𝑘
) , 𝑇
𝐼
𝑁

𝑘

(𝑦
𝑁

𝑘
))} → 0, (53)

where dist(𝑇
1
, 𝑇
2
) = max

𝑑
1
∈𝑇
1
:‖𝑑
1
‖=1

{min
𝑑
2
∈𝑇
2

‖𝑑
1

− 𝑑
2
‖} and

𝑇
𝐼
𝑁

𝑘

(𝑥) := {𝑑
𝑁

𝑘
∈ R𝑛 | 𝑑

𝑁

𝑘,𝑖
≥ 0, ∀𝑖 ∈ 𝐼

𝑁

𝑘
}.

Condition 3. For every 𝑥
𝑁

≥ 0 there exist scalars 𝛿 > 0, and
𝜂 > 0 such that

min
𝑧≥0

‖𝑧 − 𝑥‖ ≤ 𝜂

𝑛

∑

𝑖=1

max (−𝑥
𝑖
, 0) ,

∀𝑥 ∈ {𝑥 ∈ R𝑛 | ‖𝑥 − 𝑥‖ ≤ 𝛿} .

(54)

Condition 4. Given 𝑥
𝑁

𝑘
and 𝜖

𝑁

𝑘
> 0, the set of search

directions

𝐷
𝑁

𝑘
= {𝑑
𝑁,𝑗

𝑘
, 𝑗 = 1, . . . , 𝑟

𝑁

𝑘
} , with 

𝑑
𝑁,𝑗

𝑘


= 1, (55)
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satisfing 𝑟
𝑁

𝑘
is uniformly bounded and cone{𝐷𝑁

𝑘
} = 𝑇(𝑥

𝑁

𝑘
;

𝜖
𝑁

𝑘
). Here,

cone {𝐷
𝑁

𝑘
}

= {𝑑
𝑁,1

𝑘
𝛽
1

+ ⋅ ⋅ ⋅ + 𝑑
𝑁,𝑟
𝑁

𝑘

𝑘
𝛽
𝑟
𝑁

𝑘 : 𝛽
1

≥ 0, . . . , 𝛽
𝑟
𝑁

𝑘 ≥ 0} ,

𝑇 (𝑥
𝑁

𝑘
; 𝜖
𝑁

𝑘
) = {𝑑

𝑁

𝑘
∈ R𝑛 | 𝑑

𝑁

𝑘,𝑖
≥ 0, 𝑥

𝑁

𝑘,𝑖
≤ 𝜖
𝑁

𝑘
} .

(56)

Under Conditions 1, 2, and 3 and by choosing 𝐷
𝑁

𝑘

satisfying Condition 4 with 𝜖
𝑁

𝑘
→ 0, then the following

generated iterates have at least one cluster point that is a
stationary point of (51) for each 𝑁.

Algorithm 11. Parameters: 𝑥
𝑁

0
≥ 0, �̃�

𝑁

0
> 0, 𝛾

𝑁
> 0, 𝜃

𝑁

1
∈

(0, 1), 𝜃
𝑁

2
∈ (0, 1), 𝜖

𝑁

0
> 0.

Step 1. Set 𝑘
𝑁

= 0.

Step 2. Choose a set of directions 𝐷
𝑁

𝑘
= {𝑑
𝑁,𝑗

𝑘
, 𝑗 = 1, . . . , 𝑟

𝑁

𝑘
}

satisfying Condition 4.

Step 3.

(a) Set 𝑗 = 1, 𝑦
𝑁,𝑗

𝑘
= 𝑥
𝑁

𝑘
, �̃�
𝑁,𝑗

𝑘
= �̃�
𝑁

𝑘
.

(b) Compute the maximum stepsize 𝛼
𝑁,𝑗

𝑘
such that 𝑦

𝑁,𝑗

𝑖,𝑘
+

𝛼
𝑁,𝑗

𝑘
𝑑
𝑁,𝑗

𝑖,𝑘
≥ 0 for all 𝑖. Set �̂�

𝑁,𝑗

𝑘
= min{𝛼

𝑁,𝑗

𝑘
, �̃�
𝑁,𝑗

𝑘
}.

(c) If �̂�
𝑁,𝑗

𝑘
> 0 and 𝜃

𝑁
(𝑦
𝑁,𝑗

𝑘
) ≤ 𝜃

𝑁
(𝑦
𝑁,𝑗

𝑘
) − 𝛾(�̂�

𝑁,𝑗

𝑘
)
2,

set �̃�
𝑁,𝑗+1

𝑘
= 𝛼
𝑁,𝑗

𝑘
; otherwise set 𝛼

𝑁,𝑗

𝑘
= 0, 𝑦

𝑁,𝑗+1

𝑘
=

𝑦
𝑁,𝑗

𝑘
, �̃�
𝑁,𝑗+1

𝑘
= 𝜃
𝑁

1
�̃�
𝑁,𝑗

𝑘
.

(d) If 𝛼
𝑁,𝑗

𝑘
= 𝛼
𝑁,𝑗

𝑘
, set 𝜖
𝑁

𝑘+1
= 𝜖
𝑁

𝑘
, and go to Step 4.

(e) If 𝑗 < 𝑟
𝑁

𝑘
, set 𝑗 = 𝑗 + 1, and go to Step 3(b). Otherwise

set 𝜖
𝑁

𝑘+1
= 𝜃
𝑁

2
𝜖
𝑁

𝑘
and go to Step 4.

Step 4. Find 𝑥
𝑁

𝑘+1
≥ 0 such that 𝜃

𝑁
(𝑥
𝑁

𝑘+1
) ≤ 𝜃

𝑁
(𝑦
𝑁,𝑗+1

𝑘
). Set

�̃�
𝑁

𝑘+1
= �̃�
𝑁,𝑗+1

𝑘
, 𝑟
𝑘

= 𝑗, 𝑘 = 𝑘 + 1, and go to Step 2.

For this algorithm, it is easy to proof that if 𝑥
𝑁

𝑘
is the

sequence produced by algorithm under Conditions 1–4, then
𝑥
𝑁

𝑘
is bounded and there exists at least one cluster pointwhich

is a stationary point of problem (51) for each 𝑁.

6. Conclusions

The SCP(𝐹(𝑥, 𝜔)) has a wide range of applications in engi-
neering and economics. Therefore, it is meaningful and
interesting to study this problem. In this paper, we give the
definitions of stochastic 𝑃-function, stochastic 𝑃

0
-function

and stochastic uniformly 𝑃-function, which can be regarded
as a generalization of the deterministic formulation or an
extension of a stochastic 𝑅

0
function given in [11]. Moreover,

we consider the conditions when the function is a stochastic
𝑃(𝑃
0
)-function. Furthermore, we show that the involved

function being a stochastic uniformly 𝑃-function and equi-
coercive [11] are sufficient conditions for the solution set of the
expected residualminimization problem to be nonempty and
bounded. Finally, we illustrate that the ERM formulation pro-
duces robust solutions with minimum sensitivity in violation
of feasibility with respect to random parameter variations
in SCP(𝐹(𝑥, 𝜔)). On the other hand, we employ a quasi-
Monte Carlo method to obtain approximation problems of
(7) for dealing numerical integration and further consider
derivative-free methods to solve these approximation prob-
lems.
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This paper proposes a model for estimating car delays at bus stops under mixed traffic using probability theory and queuing theory.
The roadway is divided to serve motorized and nonmotorized traffic streams. Bus stops are located on the nonmotorized lanes.
When buses dwell at the stop, they block the bicycles. Thus, two conflict points between car stream and other traffic stream are
identified. The first conflict point occurs as bicycles merge to the motorized lane to avoid waiting behind the stopping buses. The
second occurs as buses merge back to the motorized lane.The average car delay is estimated as the sum of the average delay at these
two conflict points and the delay resulting from following the slower bicycles thatmerged into themotorized lane. Data are collected
to calibrate and validate the developed model from one site in Beijing.The sensitivity of car delay to various operation conditions is
examined.The results show that both bus stream and bicycle stream have significant effects on car delay. At bus volumes above 200
vehicles per hour, the curbside stop design is not appropriate because of the long car delays. It can be replaced by the bus bay design.

1. Introduction

As the first point of contact between the passenger and the
public transit service, the bus stop is a critical element in
a transit system’s overall goal of providing timely, safe, and
convenient transportation. In the past several decades, traffic
planners, designers, and scholars have paid much attention
to the location, design, and operations of bus stops [1–5]. A
prominent achievement of this research is a set of guidelines
for use in designing and locating bus stops, sponsored by
TCRP in the United States [1]. Other researchers mainly
focused on the effects of bus stops on traffic flow. For
example,Wong et al. analyzed the delay at a signal-controlled
intersection with a bus stop upstream [6]. Fernández applied
themicroscopic traffic simulationmodel to study operational
impacts on bus stops such as capacity, delays, queues, and
waiting times [7]. Tang et al. used the macrodynamic model
to analyze the effects of bus stop on traffic flow [8]. Most
existing research of bus stops analyzes only the mixed traffic
flowbetween buses and cars without including nonmotorized
vehicles. This might be the reason that the car-bus conflict
at bus stops is usually regarded as more important than the
motorized vehicle-bicycle conflict. Another reason might be

the low proportion of cycling among all travel modes in
developed countries.

As a developing country, China has its own traffic char-
acteristics. A mix of nonmotorized and motorized vehicles is
an important traffic type in China. Some surveys show that
the nonmotorized vehicle, especially the bicycle, is one of the
most widely used traffic tools in Chinese daily travel activity.
Typically, there are three types of bus stops in urban areas:
curbside stops, bus bays, and bus boarders [9]. The curbside
stop is the most common type on minor roadways in many
Chinese cities. Figure 1 shows the mixed traffic streams at
a typical curbside stop. There are two lanes on the urban
roadway: the bicycle lane and the motorized lane, and there
are three types of traffic streams: bicycle, bus, and car. Bus
stops are usually located on the bicycle lane. When a bus
dwells at the curbside stop, it blocks the bicycles. Bicycles
merge to the motorized lane to avoid waiting behind the
stopping bus. Thus, the presence of a stopped bus creates a
temporary conflict between bicycles and cars. In addition,
the car-bus conflict takes place when a bus departs from
the stop to the motorized lane. Similar phenomena may
be found in other Asian developing countries, for example,
India, Malaysia, Vietnam, and Cambodia.
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Curbside stop

Figure 1: Curbside stop with mixed traffic streams of buses, cars,
and bicycles.

Due to the special features ofmixed traffic, the application
of existing traffic models for bus stops, developed by devel-
oped countries, has not produced a clear effect on Chinese
traffic management and control. Therefore, it is necessary to
deeply study the mixed traffic flow between nonmotorized
vehicles and motorized vehicles.

On the mixed traffic, till now, much research has been
conducted on basic segments and intersections [10, 11], but
the correlative research on bus stops is much less in the
literature. In recent years, some researchers have realized this,
and correlativework is being done, but it still has a longway to
go. Koshy and Arasan used simulation technique to study the
impact of bus stop type on the speeds of other vehicles under
heterogeneous conditions [9]. Yang et al. established car
capacity models near a curbside stop with bicycles based on
gap acceptance theory and conflict technique [12, 13]. How-
ever, little information was found in the literature on delay
time near bus stops with mixed traffic flow.This paper inves-
tigates car delay time near a curbside stop undermixed traffic
conditions. Firstly, mixed traffic flow characteristics near bus
stops are analyzed. Then, the delay model based on probabil-
ity and queuing theory is proposed. Next, the delay model is
validated by field data in Beijing. In addition, the sensitivity of
car delay to various operation conditions is examined. Finally,
conclusions and future researches are given.

2. Mixed Traffic Flow Characteristics near
Curbside Stops

2.1. Bus Stream: M/M/𝑘 Queuing Model. Consider a road
link near the bus stop as shown in Figure 1. A sophisticated
queuing theory model can be developed on the assumption
that the simple bus stream system can be represented by an
M/M/𝑘 queue. The service counter is the bus stop. The input
into the system in equilibrium, as well as the output, is formed
by the buses approaching from upstream, which are assumed
to arrive at random; that is, there are negative exponentially
distributed arrival headways with mean 1/𝜆

𝑏
seconds. The

dwelling time at the stop is the service time, which is
also assumed to be independent and negative exponential
distributed random variables with mean 𝑡

𝑏
seconds. Finally,

the “𝑘” in M/M/𝑘 stands for 𝑘 identical servers, that is, the
number of existing berths at the bus stop.

For the M/M/𝑘 system as a general property, the proba-
bility of the busy system is given by the following equation.
That is, the probability of one or more buses at the stop is

𝑝
𝑠
= 1 − (

𝑘−1

∑

𝑗=0

𝜌
𝑗

𝑏

𝑗!
+

𝜌
𝑘

𝑏

𝑘!
⋅

𝑘

𝑘 − 𝜌
𝑏

)

−1

. (1)

BC

Bus stop
Bus stream Nonmotorized lane

Motorized lane

Figure 2: Conflict among cars, buses and bicycles at a curbside stop.

Note that, here, 𝜌
𝑏

= 𝜆
𝑏
𝑡
𝑏
, and for the existence of a

steady-state solution, 𝜆
𝑏
< 𝑘/𝑡
𝑏
. The subscript “𝑏” stands for

bus stream passing the stop and the subscript “𝑠” stands for
bus stream at the stop.

And the expected number in the system at steady state;
that is, the expected number of buses both in service and in
queue at the stop is

𝐿 = 𝐸 (𝑁) =
𝜌
𝑘

𝑏

𝑘!
⋅

𝑘𝜌
𝑏

(𝑘 − 𝜌
𝑏
)
2
(1 − 𝑝

𝑠
) + 𝜌
𝑏
. (2)

2.2. Conflict between Different Streams. At the curbside stop
with mixed traffic flow, there are three streams among buses,
bicycles, and cars. As shown in Figure 2, car stream is directly
affected by two conflicts. One is the interaction between car
stream and bicycle stream at point B when one or more
buses dwell at the stop. The other is the conflict between car
stream and bus stream at point C as buses merge back to the
motorized lane.

When a bus dwells at the curbside stop in the nonmotor-
ized lane, the nonmotorized lane is blocked by a stopped bus.
A lane change for bicycles from the nonmotorized lane to the
motorized lane is “essential” when bicyclists approach to the
last stopped bus. As a result, forced lane changing maneuvers
take place. Bicycles in the nonmotorized lane would force the
subsequent car in the motorized lane to slow down for the
lane-changing execution. Field observations indicate that this
cooperative lane changing and priority-sharing behavior is
prevalent between bicycles and cars near bus stops [13]. As
the acceptable gap of bicycles is approximate to the follow-up
time of successive cars, the bicycle-car conflict near a bus top
is similar to the conflict at merges under low speed or high
flow conditions. In the saturated traffic flow, gap acceptance
theory completely loses its applicability; waiting vehicles
generally perform forced lane-changing maneuvers and pass
the conflict point alternately [14, 15]. That is to say, they
comply with the FIFO (first-in-first-out) discipline under low
speed condition. Near a curbside stop, the vehicles usually
pass the conflicting areas with a low speed because there is
a serious conflict among different streams. The conflicting
areas near a curbside stop can also be considered in such a
way that the FIFO discipline is applied.

3. Delay Model for Car Stream near the Stop
under Mixed Traffic Flow

The average delay to car stream near the stop under mixed
traffic conditions is estimated as the sum of the average
delay at these two conflict points and the delay resulting
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from following the slower bicycle traffic that merged into the
motorized lanes.

3.1. Delay Resulting from following the Slower Bicycles from
Point B to Point C. Both car stream and bicycle stream are
assumed to arrive at random, that is, negative exponentially
distributed arrival headways. Let 𝑡

𝑛
denote the time that a

bicycle (nonmotorized vehicle) arrives at point B, and 𝑡
𝑐

denote the time that a car arrives at point B behind the bicycle.
Let 𝑍 be a nonnegative random variable representing the
difference between 𝑡

𝑐
and 𝑡
𝑛
:

𝑍 = 𝑡
𝑐
− 𝑡
𝑛
. (3)

Then, the probability that𝑍 is not more than a given time
𝑧 can be expressed as

𝑃 (𝑍 ≤ 𝑧) = ∬
𝑡
𝑐
−𝑡
𝑛
≤𝑧

𝑓 (𝑡
𝑛
) 𝑓 (𝑡
𝑐
) 𝑑𝑡
𝑐
𝑑𝑡
𝑛

= ∫

+∞

0

∫

𝑧+𝑡
𝑛

0

𝑓 (𝑡
𝑛
) 𝑓 (𝑡
𝑐
) 𝑑𝑡
𝑐
𝑑𝑡
𝑛

= ∫

+∞

0

∫

𝑧+𝑡
𝑛

0

𝜆
𝑛
𝑒
−𝜆
𝑛
𝑡
𝑛 ⋅ 𝜆
𝑐
𝑒
−𝜆
𝑐
𝑡
𝑐𝑑𝑡
𝑐
𝑑𝑡
𝑛

= 1 −
𝜆
𝑛

𝜆
𝑛
+ 𝜆
𝑐

𝑒
−𝜆
𝑐
𝑧
.

(4)

Then, the probability density function of 𝑍 is

𝑓 (𝑧) =
𝑑𝐹 (𝑧)

𝑑𝑧
=

𝑑𝑃 (𝑍 ≤ 𝑧)

𝑑𝑧
=

𝜆
𝑛
𝜆
𝑐

𝜆
𝑛
+ 𝜆
𝑐

𝑒
−𝜆
𝑐
𝑧
. (5)

As shown in Figure 2, it may occur that a car follows
the slower bicycles when a bicyclist rides at section BC. The
distance from B to C can be obtained by the formula:

𝑙BC = 𝑙
𝑏
⋅ 𝐿, (6)

where 𝑙
𝑏
is the minimum headway distance of successively

stopped buses at the stop and 𝐿 is the expected number of
buses at the stop which can be given as (2).

The phenomenon that a car follows the slower bicycle
takes place only when one or more buses berth the stop
and 𝑍 falls within limits, 0 ≤ 𝑍 ≤ 𝑧max. The minimum
value, 0, represents the condition that a car begins to follow
a bicycle from point B. The maximum value, 𝑧max, represents
the condition that a car begins to follow a bicycle from point
C. If 𝑍 is less than 𝑧max, a car must decelerate to follow the
preceding bicycle before point C. 𝑧max can be calculated as

𝑧max = 𝑙BC (
1

V
1𝑛

−
1

V
1𝑐

) , (7)

where V
1𝑐
and V
1𝑛
are the free-flow velocity for car stream and

bicycle stream near a curbside stop, respectively. It is noted
that (1/V

1𝑛
− 1/V
1𝑐
) is the delay for a car driving one meter

when it decelerates to follow the slower bicycle.
Let a car with the free-flow velocity catch up with its

preceding bicycle at the time 𝑡. In this case, the distance that

the car drives from time 𝑡
𝑐
to 𝑡 is equal to the distance that the

bicyclist rides from time 𝑡
𝑛
to 𝑡, which can be expressed as

𝑙
1
= V
1𝑛

(𝑡 − 𝑡
𝑛
) = V
1𝑐
(𝑡 − 𝑡
𝑐
) . (8)

Combined with (3), (7), and (8), 𝑙
1
can be given as

𝑙
1
=

𝑍

(1/V
1𝑛

− 1/V
1𝑐
)
= 𝑍 ⋅

𝑙BC
𝑧max

. (9)

Thus, the remaining distance that a car must decelerate to
follow its preceding bicycle in section BC is

𝑙
2
= 𝑙BC − 𝑙

1
= 𝑙BC − 𝑍 ⋅

𝑙BC
𝑧max

. (10)

The expected value that a car decelerates to follow the
preceding bicycle can be calculated as

𝐸 (𝑙
2
) = 𝑙BC −

𝑙BC
𝑧max

∫

𝑧max

0

𝑧𝑓 (𝑧) 𝑑𝑧

= 𝑙BC −
𝜆
𝑛
𝑙BC

(𝜆
𝑛
+ 𝜆
𝑐
) 𝜆
𝑐
𝑧max

× (1 − 𝑒
−𝜆
𝑐
𝑧max − 𝜆

𝑐
𝑧max𝑒
−𝜆
𝑐
𝑧max) .

(11)

It occurs that a car follows the slower bicycles only when
one or more buses berth the stop. Thus, combined with (1),
(7), and (11), the delay resulting from following the slower
bicycles can be calculated as

𝑑BC = 𝑝
𝑠
⋅ 𝐸 (𝑙
2
) ⋅ (

1

V
1𝑛

−
1

V
1𝑐

)

= 𝑝
𝑠
[𝑧max−

𝜆
𝑛

(𝜆
𝑛
+ 𝜆
𝑐
) 𝜆
𝑐

(1−𝑒
−𝜆
𝑐
𝑧max−𝜆

𝑐
𝑧max𝑒
−𝜆
𝑐
𝑧max)] .

(12)

3.2. Delay at Two Conflict Points. As shown in Figure 2, for
the conflicting point B, if one ormore buses berth the stop, the
car-bicycle conflict takes place.The conflicting areas near bus
stops can be considered in such away that the FIFOdiscipline
is applied. Because different stream has different service time
passing the conflicting area, the car-bicycle conflict at point
B can be represented by the advancedMarkovian model with
no priorities but unequal arrival rates and unequal service
rates for customers of two major types. Similarly, the car-
bus conflict at point C can be described by the advanced
Markovian model.

It is assumed that each stream arrives as a Poisson process
to a single exponential channel, and there are two types of
customers with no priorities but unequal arrival rates (𝜆

1
, 𝜆
2
)

and unequal service rates (𝜇
1
, 𝜇
2
, and 𝜇

2
> 𝜇
1
). Here, service

rate (𝜇) is the reciprocal value of the mean service time (𝑠),
that is, 𝜇

1
= 1/𝑠
1
, 𝜇
2
= 1/𝑠
2
. Then, the expected waiting time

for each type of customers in queue at steady state [16] is

𝑊
𝑞
1

=
(𝜆
1
+ 𝜆
2
) 𝑠
2

1
[1 − 𝜆

2
𝑠
2
(1 − 𝑠

2
/𝑠
1
)]

(1 − 𝜆
1
𝑠
1
− 𝜆
2
𝑠
2
)

, (13)

𝑊
𝑞
2

=

(𝜆
1
+ 𝜆
2
) 𝑠
2

1
[𝑠
2

2
/𝑠
2

1
+ (1 − 𝑠

2
/𝑠
1
) (𝜆
1
𝑠
2
)]

(1 − 𝜆
1
𝑠
1
− 𝜆
2
𝑠
2
)

. (14)
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3.2.1. Delay Resulting from the Car-Bicycle Conflict at Point B.
Traffic conditions near a curbside stop are classified into two
types: inexistence and existence of stopped bus at the stop.
The probabilities of these two conditions can be obtained
by using (1). Under the former condition, the bicycle stream
and the car stream at point B have no conflict and car travel
time is not affected by the bicycle stream. Under the latter
condition, the car-bicycle conflict at point B leads to an effect
on car travel time by the bicycle stream. In this case, the car-
bicycle conflict at point B can be represented by the advanced
Markovian model. The car delay caused by the car-bicycle
conflict is equal to the expected waiting time in the queue
system for mixed streams between cars and bicycles,𝑊

𝑐,B. As
the mean service time for car stream at point B is larger than
that for bicycle stream,𝑊

𝑐,B can be obtained by (13).Thus, the
car delay at the point B can be given as

𝑑B = 𝑝
𝑠
𝑊
𝑐,B + (1 − 𝑝

𝑠
) ⋅ 0

= 𝑝
𝑠
𝑠
2

𝑐
(𝜆
𝑐
+ 𝜆
𝑛
)
1 − (1 − 𝑠

𝑛
/𝑠
𝑐
) 𝜆
𝑛
𝑠
𝑛

1 − 𝜆
𝑐
𝑠
𝑐
− 𝜆
𝑛
𝑠
𝑛

,

(15)

where 𝜆
𝑛
and 𝜆

𝑐
are the arrival rate of bicycle stream and car

stream approaching the conflicting point B, respectively. 𝑠
𝑛

and 𝑠
𝑐
are the mean service time of bicycle stream and car

stream passing the point B, respectively.

3.2.2. Delay Resulting from the Car-Bus Conflict at Point C. As
buses merge back to the motorized lane, the car-bus conflict
takes place.The car-bus conflict at point C can be represented
by the advanced Markovian model. The car delay caused by
the car-bus conflict is equal to the expected waiting time in
the queue system for mixed streams between cars and buses,
𝑊
𝑐,C. As themean service time for car stream at point C is less

than that for bus stream, 𝑊
𝑐,C can be obtained by (14). Thus,

the car delay at the point C can be given as

𝑑C = 𝑊
𝑐,C = 𝑠

2

𝑏
(𝜆
𝑐
+ 𝜆
𝑏
)

𝑠
2

𝑐
/𝑠
2

𝑏
+ (1 − 𝑠

𝑐
/𝑠


𝑏
) 𝜆
𝑏
𝑠
𝑐

1 − 𝜆
𝑏
𝑠


𝑏
− 𝜆
𝑐
𝑠
𝑐

, (16)

where 𝜆
𝑏
and 𝜆

𝑐
are the arrival rate of bus stream and car

stream, respectively. 𝑠
𝑏
and 𝑠
𝑐
are the mean service time of

bus stream and car stream passing the point C, respectively.

4. Model Validation and Comparison

In order to calibrate the proposed model of car delay at
the curbside stop under mixed traffic conditions, field data
collected at a bus stop in Beijing were employed. Video
cameras were used to record traffic operations at the bus stop.
Vehicle type, flows, and travel times were recorded for each
vehicle passing through the stop. In addition, the dwell time
of bus stream and the headways in the conflicting area were
also recorded. Data were collected in the spring of 2008 in
one direction over 3 minutes categorized into a group.

The basic parameter used to compute car delay at a stop
under mixed traffic is the service time for each stream. The
service time was directly measured for each vehicle at the
conflicting point using video during this study. The service
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Figure 3: Comparison of measured average travel time and esti-
mated average travel time.

time in this paper is the follow-up headway for vehicles
in this approach if no vehicle is waiting on the conflicting
approach and is equal to the minimum saturation headway.
On the basis of field survey and video process, the minimum
saturation headways for bicycle stream, car stream, and bus
stream are 0.90 s, 2.04 s, and 4.27 s, respectively. Here, the
relatively low value for bicycle stream is the result of cycling
parallel behavior and group behavior. In addition, 𝑙

𝑏
= 12m,

V
1𝑛

= 4.5m/s, and V
1𝑐

= 10m/s on the surveyed curbside
stops in Beijing.

The data collected in field study are used to validate the
model, as shown in Figure 3. To facilitate comparison, the
line where the measured average travel time equals to the
estimated average travel time is superimposed on each figure.
And it is found that scatter dots fluctuates narrowly around
the line. In addition, the mean percent error between the
estimated travel times and the measured times is −6.6%,
and the mean absolute percentage error is 12.7%. Thus, the
proposed delay model at the stop with mixed traffic flow is
desirable. Before the applications, however, it is noted that the
model should be estimated using the specified field data.

5. Effects of Individual Traffic Stream on
Car Delay

Differences in the arrival rate of bicycle stream affect car
delay time near the curbside stop are shown in Figure 4. Here,
the curbside stop has two berths; that is to say, bus stream
system can be considered as an M/M/2 queue. In addition,
𝜆
𝑏

= 0.03 veh/s, 𝑠
𝑏

= 25 s, 𝑙
𝑏

= 12m, V
1𝑛

= 4.5m/s, and
V
1𝑐

= 10m/s, and the minimum saturation headways for
bicycle stream, car stream, and bus stream are 0.90 s, 2.04 s,
and 4.27 s, respectively. Bicycle stream headways follow the
negative exponential distribution. At the same car flow rate,
the probability of the car-bicycle conflict increases with the
increasing bicycle stream, which finally lead to the increase
of car delays.
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Figures 5 and 6 give the effects of bus stream on car delay
time. Firstly, as shown in Figure 5, the probability of one or
more stopped buses at the stop increases with the increasing
bus flow rate, and so does also the probability of the car-
bus conflict. This extends car travel time. Similarly, Figure 6
displays car delay with different dwelling times of bus stream.
As the dwelling time of bus stream increases, the probability
of one or more stopped buses at the stop increases. This
increases the delay time for car stream on the basis of (12)
and (15).

In addition, Figures 4, 5, and 6 all show that car delay
increases with the creasing car flow rate. Meanwhile, a
comparison of these three figures indicates that bus flow rate
has themost significant effect on car delays.This is because all
parts of car delay (including 𝑑B, 𝑑BC, and 𝑑C) increase as bus
flow rate increases. As shown in Figure 7, especially, at high
bus flow rates, as the queuing systems are near the threshold
values of equilibrium conditions; that is, 𝜆

𝑐
𝑠
𝑐
+𝜆
𝑛
𝑠
𝑛
or 𝜆
𝑏
𝑠
𝑏
/𝑘

is near to one, 𝑑B and 𝑑BC will become infinite. The results
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are consistent with observed phenomena that car delays are
very long under high flow and slow speed conditions. In this
case, most drivers would give way to bicyclists merging into
the motorized lane as bicycles have advantages of small size,
light weight, flexible action, and so on [12].

6. Conclusion

Delay time to cars at a bus stop with mixed traffic flow is
investigated on the basis of queuing theory and probability
theory. Bus stream system can be represented by an M/M/𝑘
queue. Meanwhile, the conflict between different streams at
the stop can be described by the advanced Markovian model
with no priorities but unequal service rates for customers.
The delay resulting from following the slower bicycles can
be obtained by the joint distribution of bivariate continuous
randomvariable.The analysis shows that both bus stream and
bicycle stream have significant effects on car delay. Car delay
near the stop under mixed traffic condition is the function of
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three types of traffic streams with buses, cars, and bicycles. At
bus volumes above approximately 200 vehicles per hour, the
curbside stop design is unreasonable because of the long car
delays.Therefore, in this case, it can be replaced by the bus bay
design. The proposed model may be applicable to design and
operational analysis of bus stops in other Asian developing
countries.

Although this study has given valuable insights into car
delay at the bus stop with mixed traffic flow, possible further
research work is suggested. Firstly, we assume that bicycles
have no priority over cars when bus berths at the stop in this
paper.However, field observations show that sometimes a few
bicyclists or drivers politely allow others to proceed. Bunker
and Troutbeck [17] studied minor stream delays at a limited
priority freewaymerge.Weneed to present a newdelaymodel
which assumes limited priority for different streams near bus
stops. In addition, the plan and design problems of bus stops
with mixed traffic flow should be further researched.
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Previous studies of road congestion pricing problem assume that transportation networks are managed by a central administrative
authority with an objective of improving the performance of the whole network. In practice, a transportation network may be
comprised of multiple independent local regions with relative independent objectives. In this paper, we investigate the cooperative
and competitive behaviors among multiple regions in congestion pricing considering stochastic conditions; especially demand
uncertainty is taken into account in transportation modelling. The corresponding congestion pricing models are formulated as a
bilevel programming problem. In the upper level, congestion pricing model either aims to maximize the regional social welfare
in competitive schemes or attempts to maximize the total social welfare of multiple regions in cooperative schemes. In the lower
level, travellers are assumed to follow a reliability-based stochastic user equilibrium principle considering risks of late arrival under
uncertain conditions. Numerical examples are carried out to compare the effects of different pricing schemes and to analyze the
impact of travel time reliability. It is found that cooperative pricing strategy performs better than competitive strategy in improving
network performance, and the pricing effects of both schemes are quite sensitive to travel time reliability.

1. Introduction

Congestion pricing is widely regarded as an effective strategy
to alleviate traffic congestion in transportation networks. It
is also viewed as one of the most efficient means by trans-
portation economists as it employs the price mechanism.
Congestion pricing, thus, has been paid extensive attention
in the literature [1]. In the congestion pricing scheme, the
decision maker (e.g. road authority) aims to optimize system
performance, where the travelers’ path choice decisions are
considered.

Previous studies of congestion pricing mainly focused on
enhancing the system performance of the entire transporta-
tion network [2–8] and few of them considered interactions
among different stakeholders [9]. Researchers also studied
parking pricing and parking permission management, based
on the assumption that all parking facilities are controlled
by a central authority [6, 7, 10, 11]. Actually, a transportation
network may be comprised of several regions, where the

authority in each region manages its own subnetwork inde-
pendently. Thus conventional pricing models may be inap-
plicable for the pricing problem in a real network spanning
multiple regions, because the regional authorities optimize
the toll levels in order to achieve their selfish objectives rather
than improve the performance of the whole network [9].
There are a number of significant efforts on the investigation
of such competition of road pricing problem (e.g., [9, 12–
14]). However, these analyses are carried out under deter-
ministic condition; that is, the demand and supply sides of
a transportation network are assumed to be deterministic.
As such, traffic demand is either treated as a deterministic
value in the fixed demand case or assumed as a deterministic
function of the average travel time/cost in the elastic demand
case [15]. On the supply side, the link capacity is also treated
as a fixed value. The congestion pricing problem under
deterministic condition could be perfectly solved by the
theory of marginal cost pricing (MPC) [16, 17]. Specifically,
if a marginal cost toll is allowed to be charged on each link



2 Journal of Applied Mathematics

of the network, the corresponding traffic flow pattern will
be driven toward a social optimum (SO) under deterministic
user equilibrium (UE) path choice principle [18] or stochastic
user equilibrium (SUE) path choice principle [19]. Regardless
of the perfect features of MPC, congestion pricing under
deterministic condition cannot capture the uncertain factors
of transportation networks.

It is well known that transportation networks are inher-
ently stochastic in reality. In recent studies, more and more
researchers found that network uncertainty might exert an
important impact on the transportation management and
overlooking this factor leads to a suboptimal optimization
scheme [20, 21]. Therefore, in this paper, we aim to study the
pricing problem of multiple regions on a stochastic network
with demand uncertainty.The literature review provided here
by no means presents a comprehensive survey to general
pricing problems; instead, it focuses on the pricingmodel and
the traffic equilibrium with network uncertainty, particularly
demand uncertainty.

In the past decades, network uncertainties have been
widely recognized and extensively studied in the literature
of transportation field. In a realistic transportation network,
there are a variety of uncertainty sources in both demand
and supply sides. In demand side, traffic demand of a study
period (e.g. morning peak) fluctuates from day to day due to
travelers’ variant activities. In supply side, the link capacities
degrade due to various incidents, such as traffic accidents,
roadworks, earthquakes, and signal failures. Under uncertain
conditions, the travel time during a particular period varies
from day to day. Confronted with the travel time variations,
travelers have to consider the risk of being late to their
destination while making their path choice decisions. To
resist the disturbance of network uncertainties, travelers take
into account not only the travel time/cost but also the travel
time reliability for path choices. That is to say, travel time
reliability also exerts an important impact on travelers’ path
choice decisions. The corresponding reliability-based traffic
assignment problems have been attracting an increasing
attention in the literature [22–28]. From the viewpoint of
a decision maker, the enhancement of network reliability is
also an important target while making road pricing schemes.
Thus, under network uncertainties, how to formulate the
congestion pricingmodel is an interesting and practical topic.

A few studies have been carried out to account for the
congestion pricing problem under uncertainty. For example,
Li et al. [29] proposed a reliability-based optimal toll design
model with respect to stochastic link capacities and OD
demand with varied toll levels. Boyles et al. [30] obtained
first-best tolls in static transportation networks with day-
to-day variation in network capacity. Sumalee and Xu [15]
proposed a closed-form formulation to calculate the first-best
marginal cost toll for the stochastic network under demand
uncertainty. Gardner et al. [31] presented a road pricing
framework for representing uncertainty in long-term travel
demand and in day-to-day network capacity. All these studies
indicated that the congestion pricing scheme under network
uncertainties is different from that under a deterministic
condition. Therefore, the investigation of congestion pricing

problem under network uncertainties could help the decision
maker make appropriate toll design.

The task of this study is to model the competitive and
cooperative behaviors of pricing problem among multiple
regions under demand uncertainty. The network uncertainty
may bring two challenges for the road pricing problem
among multiple regions. On the one hand, road pricing can
alleviate the traffic congestion in terms of minimizing the
expected total travel time related to the stochastic flows.
On the other hand, travelers’ reliability-based path choice
behaviors may play an important role in the pricing scheme
by influencing the flowpattern and the optimization objective
simultaneously. To account for the two potential impacts,
we formulated the stochastic pricing models among multiple
regions based on the conceptual framework proposed by
Zhang et al. [9].

The rest of the paper is organized as follows. In the next
section, the road congestion pricing optimization models are
formulated to characterize the competitive and cooperative
behaviors among multiple regions. Then, a heuristic solution
algorithm is proposed in Section 3. Numerical examples and
results are discussed in Section 4. Finally, conclusions and
further studies are given in Section 5.

2. Model Formulation

This section builds the road congestion pricing models
among multiple regions on the stochastic network with day-
to-day demand fluctuations. It first investigates the impact of
demanduncertainty on the flowpatterns in terms of themean
and covariance of the flow distributions. A reliability-based
traffic assignmentmodel based on the stochastic flowpatterns
is proposed to characterize the travelers’ path choice behav-
iors considering their own risk preference. Subsequently, we
propose the competitive and cooperative pricing schemes for
stochastic road pricing problem amongmultiple regions.The
optimization objective for the pricing model is to maximize
the social welfare (equal to the total user benefit minus the
mean total travel time).

2.1. DemandUncertainty and FlowDistribution. It is assumed
that the daily traffic demands during the same study period
(e.g. morning peak, 8:00 am-9:00 am) between all OD pairs
are multivariate random variables. For each OD pair 𝑟𝑠 ∈ R,
the random traffic demand is expressed as

𝑄
𝑟𝑠
= 𝑞
𝑟𝑠
+ 𝜀
𝑟𝑠
, ∀𝑟s ∈ R,

𝑐V
𝑟𝑠
=
𝜎
𝑞

𝑟𝑠

𝑞
𝑟𝑠

, ∀𝑟𝑠 ∈ R,
(1)

where 𝑞
𝑟𝑠
is themean (or expected) OD demand betweenOD

pair 𝑟𝑠, 𝐸[𝑄
𝑟𝑠
] = 𝑞

𝑟𝑠
; 𝜀
𝑟𝑠
is the random term with 𝐸[𝜀

𝑟𝑠
] =

0; R is the set of OD pairs. For convenience, denote Q and q
as the |R|-vectors of (. . . , 𝑄

𝑟𝑠
, . . . )
𝑇 and (. . . , 𝑞

𝑟𝑠
, . . . )
𝑇 for all

𝑟𝑠 ∈ R, respectively.The covariance between OD demand𝑄
𝑟𝑠

and 𝑄
𝑟𝑠
 is denoted as

𝜎
𝑞

𝑟𝑠,𝑟𝑠

= cov [𝑄

𝑟𝑠
, 𝑄
𝑟𝑠
] , ∀𝑟𝑠, 𝑟𝑠


∈ R. (2)
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The corresponding covariancematrix of traffic demands of all
OD pairs can be expressed as

Σ
q
= {𝜎
𝑞

𝑟𝑠,𝑟𝑠

}
|R|×|R|

. (3)

The value of 𝜎𝑞
𝑟𝑠,𝑟𝑠

may be positive, zero, or negative. It is

assumed that the OD demands of all OD pairs follow multi-
variate normal distribution, that is Q ∼ MVN(q, Σq

, ), where
q and Σq are fixed and known. Let 𝐹𝑘

𝑟𝑠
be the random traffic

flow on path 𝑘 ∈ K
𝑟𝑠
with its mean 𝑓

𝑘

𝑟𝑠
= 𝐸[𝐹

𝑘

𝑟𝑠
], where

K
𝑟𝑠
is the path set between OD pair 𝑟𝑠 and K = ⋃

𝑟𝑠∈R K𝑟𝑠.
For convenience, F and f are denoted as the |K|-vectors of
(. . . , 𝐹

𝑘

𝑟𝑠
, . . . )
𝑇 and (. . . , 𝑓𝑘

𝑟𝑠
, . . . )
𝑇 for all 𝑘 ∈ K

𝑟𝑠
and 𝑟𝑠 ∈

R, respectively. The path flows and OD demands satisfy the
following flow conservation condition:

Q = ΛF, (4)

whereΛ is theOD-path incidencematrix.Then, the following
conservation conditions hold:

q = 𝐸 [Q] = 𝐸 [ΛF] = Λ𝐸 [F] = Λf . (5)

Equation (5) can be rewritten as

𝑞
𝑟𝑠
= ∑

𝑘∈K
𝑟𝑠

𝑓
𝑘

𝑟𝑠
, ∀𝑟𝑠 ∈ R. (6)

It is assumed that the path flow is a product of the correspond-
ing path choice proportion and the OD demand as follows
[27]:

𝐹
𝑘

𝑟𝑠
= 𝑝
𝑘

𝑟𝑠
𝑄
𝑟𝑠
, ∀𝑘 ∈ K

𝑟𝑠
, 𝑟𝑠 ∈ R, (7)

where 𝑝𝑘
𝑟𝑠
is the path choice proportion of the traffic flow on

path 𝑘 ∈ K
𝑟𝑠
of vehicle, which is assumed to be constant of

the probability [24]. Then, it follows from (7) that

𝑓
𝑘

𝑟𝑠
= 𝑝
𝑘

𝑟𝑠
𝑞
𝑟𝑠
, ∀𝑘 ∈ K

𝑟𝑠
, 𝑟𝑠 ∈ R. (8)

The covariance between 𝐹𝑘
𝑟𝑠
and 𝐹𝑘



𝑟𝑠
 can be deduced as

𝜎
𝑓,𝑘,𝑘


𝑟𝑠,𝑟𝑠

= cov [𝐹𝑘

𝑟𝑠
, 𝐹
𝑘


𝑟𝑠
]

= 𝑝
𝑘

𝑟𝑠
𝑝
𝑘


𝑟𝑠
 cov [𝑄𝑟𝑠, 𝑄𝑟𝑠] = 𝑝

𝑘

𝑟𝑠
𝑝
𝑘


𝑟𝑠
𝜎
𝑞

𝑟𝑠,𝑟𝑠

,

∀𝑘 ∈ K
𝑟𝑠
, 𝑘

∈ K
𝑟𝑠
 , 𝑟𝑠, 𝑟𝑠


∈ R.

(9)

The corresponding covariance matrix of path flows can be
expressed as

Σ
f
= {𝜎
𝑓,𝑘,𝑘


𝑟𝑠,𝑟𝑠

}
|K|×|K|

. (10)

According to (4), the covariance conservation condition
between path flows and OD demands is expressed as

Σ
q
= ΛΣ

f
Λ
𝑇
. (11)

Denote 𝛿𝑘,𝑎
𝑟𝑠

as the element of the link-path incidence matrix.
𝛿
𝑘,𝑎

𝑟𝑠
= 1, if path 𝑘 uses link 𝑎; otherwise, 𝛿𝑘,𝑎

𝑟𝑠
= 0. Then, the

conservation condition of the estimated link and path flows
is expressed as

𝑉
𝑎
= ∑

𝑟𝑠∈R
∑

𝑘∈K
𝑟𝑠

𝛿
𝑘,𝑎

𝑟𝑠
𝐹
𝑘

𝑟𝑠
, ∀𝑎 ∈ A, (12)

where 𝑉
𝑎
is the random traffic flow on link 𝑎. The mean link

flow is denoted as V
𝑎
= 𝐸[𝑉

𝑎
]. It follows from (12) that

V
𝑎
= ∑

𝑟𝑠∈R
∑

𝑘∈K
𝑟𝑠

𝛿
𝑘,𝑎

𝑟𝑠
𝑓
𝑘

𝑟𝑠

= ∑

𝑟𝑠∈R
∑

𝑘∈K
𝑟𝑠

𝛿
𝑘,𝑎

𝑟𝑠
𝑝
𝑘

𝑟𝑠
𝑞
𝑟𝑠
, ∀𝑎 ∈ A.

(13)

It can be seen from (13) that the mean link flow is a linear
function with respect to the path choice proportions, which
can be expressed as follows:

V
𝑎
= V
𝑎
(p) , ∀𝑎 ∈ A, (14)

where p is denoted as the |K|-vector of path choice pro-
portions (. . . , 𝑝𝑘

𝑟𝑠
, . . . )
𝑇, all 𝑘 ∈ K

𝑟𝑠
and 𝑟𝑠 ∈ R. Also, the

conservation condition of the link and path flow covariance
can be obtained as

𝜎
V
𝑎,𝑎
 =cov [𝑉𝑎, 𝑉𝑎] = cov[ ∑

𝑟𝑠∈R
∑

𝑘∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝐹
𝑘

𝑟𝑠
, ∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘

,𝑎


𝑟𝑠
 𝐹
𝑘


𝑟𝑠
]

= ∑

𝑟𝑠∈R
∑

𝑘∈K
∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘

,𝑎


𝑟𝑠
 cov [𝐹𝑘

𝑟𝑠
, 𝐹
𝑘


𝑟𝑠
]

= ∑

𝑟𝑠∈R
∑

𝑘∈K
∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘

,𝑎


𝑟𝑠
 𝜎
𝑓,𝑘,𝑘


𝑟𝑠,𝑟𝑠


= ∑

𝑟𝑠∈R
∑

𝑘∈K
∑

𝑟𝑠

∈R

∑

𝑘

∈K
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘

,𝑎


𝑟𝑠
 𝑝
𝑘

𝑟𝑠
𝑝
𝑘


𝑟𝑠
𝜎
𝑞

𝑟𝑠,𝑟𝑠

, ∀𝑎, 𝑎


∈ A,

(15)

where 𝜎V
𝑎,𝑎
 is the covariance between link flows 𝑉

𝑎
and 𝑉

𝑎
 ,

𝑎, 𝑎

∈ A. It can be seen from (15) that the covariance

of link flows is a function with respect to the path choice
proportions, which is expressed as:

𝜎
V
𝑎,𝑎
 = 𝜎

V
𝑎,𝑎
 (p) , ∀𝑎, 𝑎


∈ A. (16)

2.2. Reliability-Based Traffic Assignment Problem. Under
demand uncertainty, the link and path travel times stochas-
tically fluctuate from day to day, indicated as 𝑇

𝑎
(𝑉
𝑎
(p), 𝑢
𝑎
)

and 𝑇𝑘
𝑟𝑠
, respectively. Let A ⊆ A be a subset of links which

are implemented the congestion pricing scheme and u =

(. . . , 𝑢
𝑎
, . . . )
𝑇
𝑎 ∈ A denote the vector of link tolls, where 𝑢

𝑎
is

the toll on link a ∈ A. Then, the link travel time function for
link 𝑎 ∈ A can be defined as the following modified Bureau
of Public Roads (BPR) function:

𝑇
𝑎
(𝑉
𝑎
(p) , 𝑢

𝑎
) = 𝑡
0

𝑎
(1 + 𝛼(

𝑉
𝑎
(p)
𝑐
𝑎

)

𝑛

) +
1

𝛽
𝑢
𝑎
, ∀𝑎 ∈ A,

(17)



4 Journal of Applied Mathematics

where 𝛼 is a parameter of link performance function and 𝛽 >
0 is a constant which represents the value of time (VOT). To
facilitate the presentation of the essential idea, it is assumed
that the VOTs of all travelers are same. For other links, the
original BPR function is used as the link time function:

𝑇
𝑎
(𝑉
𝑎
(p) , 𝑢

𝑎
) = 𝑡
0

𝑎
(1 + 𝛼(

𝑉
𝑎
(p)
𝑐
𝑎

)

𝑛

) , ∀𝑎 ∈ A \ A,

(18)

where A \ A represents the link set, for which toll is not
charged on the link. According to the method in Clark and
Watling [24], (16) and (17), the mean and covariance of link
travel times can be deduced, which are the functions with
respect top andu.Themeanpath travel time can be expressed
as a function with respect to p and u as follows:

𝑡
𝑘

𝑟𝑠
(p, u) = ∑

𝑎∈A
𝛿
𝑘,𝑎

𝑟𝑠
𝑡
𝑎 (p, u) , ∀𝑘 ∈ K

𝑟𝑠
, 𝑟𝑠 ∈ R, (19)

where 𝑡
𝑎
(p,u) is the travel cost on 𝑎 ∈ A; 𝑡𝑘

𝑟𝑠
(p, u) is the travel

cost on path 𝑘 ∈ K
𝑟𝑠
. Similarly, the variance of path travel

times can be expressed as

𝜎
𝑡,𝑘

𝑟𝑠
(p,u) = cov [𝑇𝑘

𝑟𝑠
, 𝑇
𝑘

𝑟𝑠
]

= cov[∑
𝑎∈A

𝛿
𝑘,𝑎

𝑟𝑠
𝑇
𝑎
(p, u) , ∑

𝑎

∈A
𝛿
𝑘,𝑎


𝑟𝑠
𝑇
𝑎
 (p,u)]

= ∑

𝑎∈A
∑

𝑎

∈A
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘,𝑎


𝑟𝑠
cov [𝑇

𝑎
(p, u) , 𝑇

𝑎
 (p, u)]

= ∑

𝑎∈A
∑

𝑎

∈A
𝛿
𝑘,𝑎

𝑟𝑠
𝛿
𝑘,𝑎


𝑟𝑠
𝜎
𝑡

𝑎,𝑎
 (p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(20)

where 𝑇𝑘
𝑟𝑠
is the path travel time on path 𝑘 ∈ K

𝑟𝑠
, 𝐸[𝑇𝑘
𝑟𝑠
] = 𝑡
𝑘

𝑟𝑠
;

𝑇
𝑎
and 𝑇

𝑎
 are link travel times on links 𝑎 ∈ A and 𝑎 ∈ A,

respectively; 𝜎𝑡
𝑎,𝑎
 is the covariance of link travel times on 𝑎 ∈

A and 𝑎 ∈ A.
Since travelers’ path choice decisions will be influenced

by the uncertain OD demand variations, the decision of road
pricing is also dependent on such stochasticity. To consider
this effect, a reliability-based stochastic user equilibrium
(RSUE) model [27] is adopted to account for the travelers’
reliability-based path choice behaviors in the road pricing
problem. In this RSUE model, the effective travel time, �̂�𝑘

𝑟𝑠
,

is used as the path choice criterion, which is defined as the
summation of themean travel time, 𝑡𝑘

𝑟𝑠
, and the safety margin

𝑠
𝑘

𝑟𝑠
[32]:

�̂�
𝑘

𝑟𝑠
(p, u) = 𝑡𝑘

𝑟𝑠
(p,u) + 𝑠𝑘

𝑟𝑠
(p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R. (21)

The value of 𝑠𝑘
𝑟𝑠

can be obtained by solving the following
chance-constrained minimization problem:

min
𝑠
𝑘

𝑟𝑠

�̂�
𝑘

𝑟𝑠
= 𝑡
𝑘

𝑟𝑠
+ 𝑠
𝑘

𝑟𝑠

s.t. Pr [𝑇𝑘
𝑟𝑠
≤ �̂�
𝑘

𝑟𝑠
] ≥ 𝜌 ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(22)

where 𝜌 is the confidence level of travel time reliability. A
high value of 𝜌 means that the travelers would prefer setting
a large safety margin of path travel time in order to guarantee
a high on-time arrival probability. On the other hand, a low
value of 𝜌means the travelers would prefer tolerating a high
risk of on-time arrival. The effective path travel time can be
calculated that

�̂�
𝑘

𝑟𝑠
(p,u) = 𝑡𝑘

𝑟𝑠
(p, u) + Φ−1 (𝜌) 𝜎𝑡,𝑘

𝑟𝑠
(p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(23)

whereΦ−1(⋅) is the inverse of cumulative function of standard
normal distribution.

The reliability-based stochastic user equilibrium could
be reached, in which for each OD pair no traveler can
decrease his/her perceived disutility by unilaterally changing
their paths. In the Logit-based RSUE model, the path choice
proportion 𝑝𝑘

𝑟𝑠
, which is defined in (7), can thus be specified

by the following formula:

𝑝
𝑘

𝑟𝑠
=

exp (−𝜃�̂�𝑘
𝑟𝑠
(p, u))

∑
𝑗∈K
𝑟𝑠

exp (−𝜃�̂�𝑗𝑟𝑠 (p, u))

= 𝑤
𝑘

𝑟𝑠
(p, u) , ∀𝑘 ∈ K, 𝑟𝑠 ∈ R,

(24)

where 𝜃 is the dispersion parameter on travelers’ perception
errors of effective travel time. For the sake of convenience, we
denote the path choice function 𝑝𝑘

𝑟𝑠
as 𝑤𝑘
𝑟𝑠
(p, u) and the set

notation can be denoted as:

𝑊(p, u) = (. . . , 𝑤𝑘
𝑟𝑠
(p,u) , . . .)

𝑇

. (25)

Meanwhile, it is well known that level of service on the
network would exert an impact on the OD demand [33].
Therefore, the mean OD demand is viewed as a function with
respect to the expected disutility of travel for each OD pair:

𝑞
𝑟𝑠
(𝜋) = 𝑞

𝑟𝑠
exp (−𝜂𝜋) , (26)

where 𝑞
𝑟𝑠
indicates the potential demand for OD pair 𝑟𝑠, and

𝜂 denotes the elastic coefficient. The expected disutility can
be attained by

𝜋
𝑟𝑠
= −

1

𝜃
In ∑
𝑖

exp (−𝜃 ⋅ �̂�𝑘
𝑟𝑠
(p, u)) . (27)

Then, the vector form of (24) considering elastic demand
yields the following fixed point problem:

(
p
q) = (

𝑊(p, u)
q (t̂𝑘
𝑟𝑠
(p, u))) . (28)

2.3. Optimization of Congestion Charges in a Single Region.
Recently, an increasing number of transportation researchers
have recognized that demand uncertainty plays an important
role in the decision making of transportation management.
Under demanduncertainty, the expected value of total system
travel time, as an important measure, is always adopted to
evaluate the system performance. Meanwhile, the variation
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of total network travel time could bring troubles for trans-
portation planning as well as the mean total travel time.
Theoretically, the uncertainty of demand will directly lead to
variation of the travel time, which influences decisionmaking
for administrators and travelers. For decision maker, it is
difficult to evaluate the level of service of the road as travel
time stochastically fluctuates from day to day. On the other
hand, for the travelers, the variation of the travel time may
result in late arrival to the destination, which influences their
path and departure time choices. In this regard, the variation
of total travel time should be considered in the optimization
objective for the pricing problem. To facilitate the model
formulation, we only take into account the minimization of
mean total travel time as the objective of the pricing problem.
This is not to deny the importance of the higher moment of
the total travel time.

The congestionmodels in previous studies are assumed to
alleviate the traffic congestion over the whole network, which
is managed by a central authority. Therefore, the central
authority will be concerned with the mean total travel time
cost on the network.The corresponding road pricing is objec-
tived comprises of the total user benefit and the mean total
travel time cost:

max
u

SW = ∑

𝑟𝑠∈R
∫

𝑞
𝑟𝑠
(u)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔 − 𝐸 [TTT (p,u)] , (29)

where at RSUE the mean of total travel time (𝐸[TTT(p,u)])
can be calculated as

𝐸 [TTT (p,u)] = 𝐸[∑
𝑎∈A

(𝑇
𝑎 (p) −

1

𝛼
𝑢
𝑎
) ⋅ 𝑉
𝑎 (p (u))] .

(30)

Equation (30) can be calculated using the method proposed
by Clark and Watling [24]. It is noticeable that the following
mathematical inequality generally holds:

𝐸[∑

𝑎∈A
(𝑇
𝑎 (p) −

1

𝛼
𝑢
𝑎
) ⋅ 𝑉
𝑎 (p (u))]

̸= ∑

𝑎∈A
𝐸 [𝑇
𝑎 (p) −

1

𝛼
𝑢
𝑎
] ⋅ 𝐸 [𝑉

𝑎 (p (u))] .
(31)

In practice, the regional road systems may be freely managed
by the separate transportation authorities on the optimiza-
tions of toll level and toll location. Here, we introduce
the stochastic pricing problem where only one local region
performs pricing scheme. As stated by Zhang et al. [9],
the optimization objective function for single region pricing
scheme is different from that of the centric pricing scheme
with a central authority. The former aims to maximize the
social welfare just for its own residents, who live in its local
administrative region whereas the later concerns the social
benefit of all users on the whole network. In this study, we
extend the objective function to the stochastic traffic network
and consider the stochastic flows resulted from the demand
uncertainty. The regional authority only takes into account
the trips with origins that locate at its own regime.Thepricing

problem considering reliability-based user equilibrium can
be formulated as follows (Model A):

max
u

SW = ∑

𝑟𝑠∈R𝑖
∫

𝑞
𝑟𝑠
(u)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔

+ 𝐸[

[

∑

𝑎∈A𝑖
u
𝑎
⋅ 𝑉
𝑎
(p (u𝑖))

− ∑

𝑟𝑠∈R𝑖
∑

𝑘∈K
𝐹
𝑘

𝑟𝑠
(p (u)) ⋅ 𝑇𝑘

𝑟𝑠
(p (u))]

]

(32)

subject to

(
p
q) = (

𝑊(p, u)
q (t̂𝑘
𝑟𝑠
(p, u))) , (33)

𝑢
𝑎
≤ 𝑢
𝑎
≤ 𝑢
𝑎
, ∀𝑎 ∈ A𝑖, (34)

where R𝑖 denotes the OD pairs with the origins in region; A𝑖

denotes the links in region 𝑖. In the optimization problem, u
is the decision variable, and the path choice proportion (p)
is the constant probability, which can be determined by the
fixed point problem in (33).The constraint (34) sets the upper
and lower bounds for the toll charges.

It should be stressed that the social benefit expressed in
(32) concerns only the local region 𝑖 that implements conges-
tion pricing, while the stochastic equilibrium flow pattern is
characterized by the choice decisions of all users in all regions
in the network.

2.4. Competitive Behavior of Pricing Problem among Multiple
Regions. In this section, we study the competitive behavior
of the scenario that several local authorities implement con-
gestion pricing independently. Let 𝐼 = {1, 2, . . . , |𝐼|} indicate
the set of regions in which congestion pricing schemes are
implemented, and 𝑖 ∈ 𝐼. Let R𝑖 denote the set of O-D pairs
for all residents living in this region, which is a subset of R,
and R = ∪

𝑖∈𝐼
R𝑖. The set of candidate toll links A𝑖 is a subset

of A. Let u𝑖 be the set of tolls 𝑢
𝑎
on the links 𝑎 ∈ A𝑖, and u =

∪
𝑖∈𝐼
u𝑖. Based on the current decisions of other regions, each

region designs its own pricing scheme with the objective of
maximizing its own social benefit. Once an authority makes
change of it’s toll levels, other authorities will make their best
responses of adjusting their toll levels. The competition with
thesesmutual responses can be characterized as a Nash game.

The optimal toll levels for a specific regional authority
𝑖 can be obtained by solving a similar optimization model
as proposed in Section 2.3. For region 𝑖, its authority aims
to maximize its own social welfare by setting toll char-
ges in its regime, in which the network users follow the
reliability-based stochastic user equilibriumprinciple. Taking
the viewpoint of region 𝑖, the Nash equilibrium model is
formulated as follows (Model B):

max
u𝑖

SW (u𝑖 | u𝑖 \ u)
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= ∑

𝑟𝑠∈R𝑖
∫

𝑞
𝑟𝑠
(u𝑖)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔

+ 𝐸[

[

∑

𝑎∈A𝑖
𝑢
𝑎
⋅ 𝑉
𝑎
(p (u𝑖))

− ∑

𝑟𝑠∈R𝑖
∑

𝑘∈K
𝐹
𝑘

𝑟𝑠
(p (u𝑖)) ⋅ 𝑇𝑘

𝑟𝑠
(p (u𝑖))]

]

(35)

subject to constraints (33) and (34).
In this pricing scheme, eventually, all the regions are self-

best responding to each other, named a Nash equilibrium,
that no player can change his pricing strategy unilaterally to
obtain a better result. The outcome of the Nash game can be
obtained by iteratively solving the above pricing problem for
all the players.

2.5. Cooperative Congestion Pricing among Multiple Regions.
In Section 2.4, we propose a Nash equilibrium model to
capture the competitive behavior among the authorities in
different regions. Each authority sets its own pricing objec-
tive to improve the social welfare independently. But such
competitionmay actually be detrimental to the travelers from
other regions of the increasing travel burden. In this regard,
the competitive pricing scheme may do harms to traffic
efficiency of the whole network. Therefore, the cooperative
manner is recommended. We propose a pricing model in
which the local authorities cooperate to maximize the total
social welfare of travelers in the regions that implement the
pricing schemes. All elements used in this subsection are
the same as those in Section 2.4, except that the regional
authorities behave in a cooperative manner. The congestion
pricing model is formulated as follows (Model C):

max
u𝑖

SW

= ∑

𝑖∈𝐼

{ ∑

𝑟𝑠∈R𝑖
∫

𝑞
𝑟𝑠
(u𝑖)

0

𝑞
−1

𝑟𝑠
(𝜔) 𝑑𝜔}

+∑

𝑖∈𝐼

{

{

{

𝐸[

[

∑

𝑎∈A𝑖
𝑢
𝑎
⋅ 𝑉
𝑎
(p (u𝑖))

− ∑

𝑟𝑠∈R𝑖
∑

𝑘∈K
𝐹
𝑘

𝑟𝑠
(p (u𝑖)) ⋅ 𝑇𝑘

𝑟𝑠
(p (u𝑖))]

]

}

}

}

,

(36)

where the constraints are also the traffic flow equilibrium
constraint and the boundary constraint for the design vari-
able, which is formulated by (33) and (34).

It should be stressed that, as pointed out by Zhang et al.
[9], whether such cooperation can be achieved depends on
the benefit gain of each player under the cooperative manner.
If all regional authorities can benefit from the cooperation,
the agreement of the cooperationwould be achieved easily. In

contrast, when some regions suffer a loss in the cooperative
scheme, they prefer competing with other regions. However,
if the regions that gainmore benefit are willing to compensate
the regions that suffer loss, the alliance may still hold.

In this section, we propose the competitive and cooper-
ative congestion pricing models under demand uncertainty.
To the best of our knowledge, Zhang et al. [9] have made
comprehensive analyses of noncooperative behaviors of the
road pricing problem among multiple regions. The proposed
models differ from the most related studies, such as Zhang
et al. [9], of the traffic conditions. Our models are based
on the stochastic traffic flows and the corresponding RSUE
principle, while the model in Zhang et al. [9] is based on
the deterministic traffic flows following the user equilib-
rium principle. This study makes twofold contribution to
the literature. First, travelers’ reliability-based path choice
behaviors can be reflected by the RSUE constraint (33).
It makes an obvious difference from the user equilibrium
principle in previous studies by considering travelers’ risk-
taking behavior. Generally, the risk-taking preference is
important for a stochastic transport system because it exerts
an important impact on both individual travel activity and
system-level decision making. Furthermore, the competitive
and cooperative behaviors of the pricing problem on a
stochastic network have been discussed by incorporating the
mean total travel time into the optimization objectives.

3. Solution Algorithm

The proposed pricing optimization models are inherently
bilevel programs, in which the upper level is to optimize
the pricing objective and the lower level is the RSUE
traffic assignment. As the proposed bilevel program is by
nature nonlinear and non-convex, the global optimal solu-
tion is difficult to be obtained by using the conventional
optimization algorithms. Existing effective algorithms for
solving the nonconvex bilevel programming problems are
meta-heuristic, including the genetic algorithm, simulated
annealing method, and sequential quadratic programming,
to name but a few. These methods search the local optimal
solution in an evolutionary manner based on the traffic flow
patterns in the lower-level program. The lower-level traffic
assignment problem formulated as the fixed-point problem
can be solved by the Method of Successive Averages [25, 26].

Since the transportation assignment problem is inte-
grated as a nonlinear constraint, we develop a heuristic
solution algorithm, which combines the penalty function
method, to solve the proposed models. The penalty function
method is used to cope with the equilibrium constraint
and the boundary constraint. The constrained optimization
problem can be further transformed into an unconstrained
one as follows:

minu 𝜇
(𝑗)

1

min {u, u}
2
+ 𝜇
(𝑗)

2
‖min {u, u}‖2

+ 𝜇
(𝑗)

3
‖p −𝑊(p, u)‖2 − SW (p, u) ,

(37)
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where𝜇
1
, 𝜇
2
, and𝜇

3
are three positive penalty coefficients, ‖⋅‖

is the Euclidean normof a vector. For convenience, denote the
penalty term as follows:

𝑦 = 𝜇
(𝑗)

1

min {u, u}
2
+ 𝜇
(𝑗)

2
‖min {u, u}‖2

+ 𝜇
(𝑗)

3
‖p −𝑊(p, u)‖2.

(38)

Obviously, it is difficult to obtain the gradient of the objective
function (37) due to the complexity of 𝑔

1
(p, u), 𝑔

2
(p, u),

and 𝑊(p, u). Therefore, some derivative-free optimization
methods could be employed for solving the minimization
problem (37), such as the simplex search method [34] and
generalized pattern search methods [35, 36]. In this paper,
the simplex search method [34] is used to solve the uncon-
strained optimization problem (37), which is available in the
Matlab optimization toolbox by the subroutine “fminsearch”.
The flowchart of this method is shown in Figure 1.

4. Numerical Examples

4.1. Preliminary. The numerical examples are used to illus-
trate: (a) the difference between two pricing strategies (b)
effects of travelers’ reliability-based path choice behavior on
pricing schemes. In the numerical study, a small network
shown in Figure 2 is employed to demonstrate the property
of the proposed model. There are 6 nodes, 10 links, and 4
O-D pairs on the network. The network is partitioned into
two regions, A and B, by dash line X-X. The candidate links
to be charged are depicted with block dash-dot lines. The
potential traffic demand for each OD pair and the coefficient
of standard deviation (S.D.) of the actual demand are given in
Table 1. Table 2 provides the link performance parameters, 𝑡0

𝑎

and 𝑐
𝑎
.

The elastic coefficient of demand function, 𝜂, is set as 0.05
and the dispersion parameter, 𝜃, is set as 0.1. For the sake of
simplicity, it is assumed that the traffic demands between two
OD pairs are independent with each other (i.e. 𝜎𝑞

𝑟𝑠,𝑟

𝑠

= 0).

𝛼 = 0.15, 𝑛 = 1, 𝛽 = 1, and 𝜂 = 0.05 in (17), (18), and (26).
Meanwhile, the path flows, and link and path travel times
are all assumed mutually independent and follow normal
distributions. The convergence stopping tolerance 𝜏 is set as
10
−3. The solution code is run onWindows 7 system with the

following attributes: Intel Core i5-2520 2.5 GHz×2 and 4GB
RAM.

4.2. Pricing Outcomes of Cooperative and Competitive
Schemes. The pricing outcomes of cooperative and compet-
itive schemes can be obtained by solving Models B and C,
respectively. Let SWA, SWB, SWT denote the social welfare
for Region A, B, and the whole network respectively. The
network is comprised of two regions that both are considered
in the cooperative pricing scheme. So the pricing objective
in Model C is equivalent to that in (29), which is proposed
for the conventional stochastic pricing model with a central
authority. As mentioned by Shao et al. [25], the mean values
of stochastic flows will be equal to those in the deterministic
traffic scenario if the following conditions are satisfied: a
linear link travel time function is adopted and the travel time

Initialization: u(0) , 𝜇(0)
1

, 𝜇(0)
2

, 𝜇(0)
3

, 𝜉 > 1 (enlarge parameter)

Yes

No

Optimal toll levels u

𝑦
(𝑗)
< 𝜏?

𝜇
(𝑗+1)

1
= 𝜉𝜇

(𝑗)

1
, 𝜇
(𝑗+1)

2
= 𝜉𝜇

(𝑗)

2
, 𝜇
(𝑗+1)

3
= 𝜉𝜇

(𝑗)

3
𝑗 = 𝑗 + 1

and 𝑗 = 0 (iteration number)

minu 𝜇
(𝑗)

1
‖min{u, u}‖2+𝜇(𝑗)

2
‖min{u, u}‖2+𝜇(𝑗)

3
‖p − 𝑊(p, u)‖2 − 𝑆𝑊(p,u)

Figure 1: The flowchart of the proposed solution algorithm.
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Figure 2: A small network for numerical examples.

Table 1: Potential OD demands in the network.

OD pair 2→ 1 2→ 5 6→ 5 6→ 1
𝑞
𝑟𝑠

800 500 500 600
Coefficient of S.D. 0.5 0.5 1.0 1.0

reliability is set as risk neutral (𝜌 = 50%). It should be stressed
that, in spite of this, the optimization objective for stochastic
pricing scheme is still different from deterministic pricing
scheme due to the fact that the deviations of both flow and
travel time are taken into account in the objective function.
Two scenarios of different travelers’ risk-taking behaviors,
namely 𝜌 = 50% and 𝜌 = 90%, are constructed to test the
pricing effects of two pricing schemes. The pricing results for
cooperative and competitive schemes are provided in Table 3.
Before comparing the results of two pricing schemes, we first
introduce the equilibrium of competitive pricing.

In the competitive scheme, both regions compete with
each other to maximize their own social benefit. The author-
ity in Region A sets pricing scheme on links 1 and 2, and
the authority in Region B implements a pricing scheme on
links 8 and 10. Each region makes a response to the actions
in other regions by updating its tolls. If the toll levels in one
region change, another region would respond by adjusting
its own pricing scheme.This iterative process continues until
reaching a Nash equilibrium. As the competition initiator,
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Table 2: Parameters used in link performance functions.

Number 1 2 3 4 5 6 7 8 9 10
𝑡
0

𝑎
8.0 4.0 4.0 10.0 10.0 14.0 14.0 4.0 4.0 8.0

𝑐
𝑎

300 300 300 400 400 400 400 300 300 200

Table 3: Pricing results for cooperative and competitive schemes.

Confidence level
(𝜌) Pricing scheme Optimal solutions Social welfare of

region A
Social welfare of

region B
Total Social
welfare

𝑢
1

𝑢
2

𝑢
8

𝑢
10 (SWA) (SWB) (SWT)

50% cooperation 16.36 7.81 7.55 17.78 12997.12 9374.28 22371.40
competition 13.83 12.32 13.37 14.36 12754.40 9259.83 22014.23

90% cooperation 15.79 7.03 6.81 17.20 12965.86 9416.70 22382.56
competition 13.40 12.13 13.19 13.99 12708.41 9268.52 21976.93

Region A makes the toll scheme in the first instance. At first
competition round, tolls in Region B are zero.

In this example, we illustrate the iterative competition
process under the scenario that the confidence level of the
travel time reliability is set as 90%. The competition reaches
an equilibrium state after seven iterations. The reaction
process and the optimal solution of the Nash game are given
in Table 4. At equilibrium, social welfares for Region A and
B are 12708.41 and 9268.52, respectively, and the total social
welfare for the whole network is 21976.93.

As shown in Table 3, the pricing results in terms of
optimal solution and social welfares are different between
cooperative and competitive schemes since different objec-
tives are considered in the two pricing optimizations. When
the confidence level is fixed at 50%, under cooperation, the
social welfare for Region A is 12997.12, the social welfare for
Region B is 9374.28, and the total social welfare is 22371.40.
However, under competition, the social welfare for Region A
is 12754.40, the social welfare for Region B is 9259.83, and the
total social welfare is 22014.23. Compared with cooperation,
the competition makes Region, A and B suffer benefit losses
about 242.7 and 114.5, respectively, and leads a degradation
of the network system performance and so do the pricing
results of the risk-aversion case with high travelers’ travel
time reliability (𝜌 = 90%). Therefore, it clearly reveals that
the pricing effect in terms of system performance of the
cooperative scheme is better than that of competitive scheme.
Moreover, by comparing the results between two scenarios
represented different travel time reliabilities, it can be seen
that the pricing outcomes are different since the stochastic
patterns depend on the travel time reliability. In the next
subsection, wewill discuss the impact of travel time reliability
on the pricing effects of two pricing schemes.

4.3. Effects on Travelers’ Reliability-Based Path Choice Behav-
iors. The proposed model was carried out under different
values of 𝜌 that represent different risk-taking path choice
behaviors. In this impact analysis, the travel time reliability
increases from 10% to 90% that each step is 10%. Three
travelers’ risk-taking behaviors are considered, namely risk-
prone behavior (𝜌 < 50%), risk-neutral behavior (𝜌 = 50%),

and risk-averse behavior (𝜌 > 50%). A higher confidence
level for travel time reliability means travelers will pay more
attention to guaranteeing the on-time arrival by setting larger
safety margins. For the case of 𝜌 = 50%, the proposed pricing
model can be regarded to be carried out under conventional
path choice behavior assumptions; that is, travelers take the
mean path travel time as the path choice criteria. Figure 3
depicts the variation of the social welfare for each region
with different travel time reliability. The variation of whole
network performance with travel time reliability is shown
in Figure 4. Benefit gain/loss of the cooperative scheme
changing with travel time reliability is given in Figure 5.

From Figure 3, it can be found that the social welfare of
Region B increases gradually with the travel time reliability
no matter what the pricing scheme is the Meanwhile, the
increase of social welfare in the cooperative scheme is
more apparent and dramatical than that in the competitive
scheme.The contrast, the social welfare of RegionAdecreases
monotonically as the increase of the travel time reliability
under both pricing schemes. Moreover, the reduction of
social welfare under competition is more quick and obvious
than that under cooperation. To evaluate the impact of travel
time reliability on the network performance properly, we
can pay attention to Figure 4, namely the variation of total
welfare. For cooperation, the total social welfare increases
from 22352.15 to 22382.56 as the travelers put more emphasis
on the travel time reliability. However, for competition, the
total social welfare decreases from 22039.82 to 21976.91 as
the increase of the travel time reliability. On the whole,
the total social welfare under the cooperative scheme is
more than that of the competitive scheme no matter what
travelers’ risk-taking behavior is. Although these impact
analysis tests are network-specific, they cannot deny the fact
that cooperation is more beneficial to improving the network
system performance for all users.

The difference of social welfare between two pricing
schemes is plotted in Figure 5 to illustrate the impact of travel
time reliability. The difference of the social welfare is defined
as the value of social welfare in cooperation minus social
welfare in competition. A positive value means a benefit gain
in cooperation, and vice visa. As shown in Figure 5, both



Journal of Applied Mathematics 9

Table 4: The process of the competitive congestion pricing (𝜌 = 90%).

Iteration Reactor Optimal solutions Social welfare of
region A

Social welfare of
region A

Total Social
welfare

𝑢
1

𝑢
2

𝑢
8

𝑢
10 (SWA) (SWB) (SWT)

1 A 13.31 12.17 0.00 0.00 13900.31 6912.76 20813.06
2 B 13.31 12.17 13.19 13.98 12707.82 9265.94 21973.76
3 A 13.41 12.12 13.19 13.98 12708.11 9269.08 21977.19
4 B 13.41 12.12 13.18 13.97 12708.50 9269.28 21977.78
5 A 13.40 12.13 13.18 13.98 12708.80 9268.41 21977.21
6 B 13.40 12.13 13.19 13.99 12708.41 9268.52 21976.93
7 A 13.40 12.13 13.19 13.99 12708.41 9268.52 21976.93
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Figure 3: Social welfare for each region with different travel time
reliability.

regions and the whole network benefit from the cooperative
manner under all different travel time reliability scenarios.
Obviously, the higher travel time reliability, the higher benefit
gain. In this regard, both regions would prefer a cooperative
manner so as to obtain more benefit for themselves. Here, it
should be pointed out that the result in this example does not
mean that the regionswill always benefit from the cooperative
schemes, which have been demonstrated by the analyses in
Zhang et al. [9]. From the above discussion, it is clear that
the resultant competitive and cooperative pricing schemes
are different for different risk-taking path choice behaviors.
This finding indicates that different risk-taking path choice
behaviors lead to different optimal toll levels and clearly
proves that the reliability-based path choice behaviors should
be considered in congestion pricing problems, particular for
transportation network with demand uncertainty.
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Figure 4: Total social welfare with different travel time reliability.

5. Conclusions and Further Studies

This paper proposed two new optimization models for
congestion pricing problem on stochastic transportation
networkswith demand uncertainty.We analyze the stochastic
road pricing schemes on a network with multiple regions.
In practice, there may be several independent regions in a
transportation network; regional authorities either prefer to
maximize the system performance for the whole network or
to maximize their own benefits separately. The cooperative
and competitive behaviors among multiple regional deci-
sion makers have been investigated. Two pricing strategies,
cooperation and competition, can be formulated as bi-level
programs, in which stochastic flow equilibrium is considered.
Different from most conventional modelling approaches of
congestion pricing, the traffic demand of the study period
was assumed to fluctuate from day to day. As a result, the
travel time also varies accordingly. Under such circumstance,
the conventional second-best congestion pricing model was
extended to capture the effects of uncertainty for both
the decision makers and the travelers. On one hand, the
authorities aim tomaximize the social welfare through setting
the toll charges on the candidate links. The social welfare
here is comprised of the total user benefit and the mean total
travel time cost, which are dependent on the stochastic flow
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Figure 5: Benefit losses/gains in cooperation with different travel
time reliability.

pattern. On the other hand, the travelers were assumed to
minimize their effective travel time for path choices, which
explicitly accounts for the risk-taking path choice behaviors
under uncertainty condition. Such path choice behavior
is formulated as an equality constraint for the congestion
pricing optimization problem by a fixed point formulation.

A heuristic solution algorithm is proposed in this
paper. The proposed algorithm employs the penalty function
method for constrained optimization problem, namely equi-
librium flow constraint. Numerical examples demonstrated
that, on stochastic network, the cooperative pricing scheme is
more beneficial to improve the system performance than the
competitive scheme. Meanwhile, both two pricing schemes
were quite sensitive to the travelers’ risk-taking path choice
behaviors; that is, the travel time reliability plays an important
role in determining the pricing effects.

Further studies could be carried out to extend the pro-
posed model in the following aspects. First, the proposed
model is formulated under demand uncertainty. How to
simultaneously consider demand and supply uncertainties in
the congestion pricing problem reveals important investiga-
tions. Furthermore, in the proposed model, the toll charges
schemes are determined on the fixed locations of links. How
to optimize toll charge locations as well as toll levels could
be an interesting extension. Finally, the proposed solution
algorithm is heuristic by nature. It is necessary to propose a
more efficient solution algorithm in further investigations.
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A new nonmonotone filter trust region method is introduced for solving optimization problems with equality constraints. This
method directly uses the dominated area of the filter as an acceptability criterion for trial points and allows the dominated area
decreasing nonmonotonically. Compared with the filter-type method, our method has more flexible criteria and can avoidMaratos
effect in a certain degree. Under reasonable assumptions, we prove that the given algorithm is globally convergent to a first order
stationary point for all possible choices of the starting point. Numerical tests are presented to show the effectiveness of the proposed
algorithm.

1. Introduction

We analyze an algorithm for solving optimization problems
where a smooth objective function is to beminimized subject
to smooth nonlinear equality constraints. More formally, we
consider the problem,

min 𝑓 (𝑥) ,

s.t. 𝑐
𝑖
(𝑥) = 0, 𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚} ,

(𝑃)

where𝑥 ∈ 𝑅𝑛, the functions𝑓 : 𝑅𝑛 → 𝑅 and 𝑐
𝑖
(𝑖 ∈ 𝐼) : 𝑅

𝑛
→

𝑅 are all twice continuously differentiable. For convenience,
let 𝑔(𝑥) = ∇𝑓(𝑥), 𝑐(𝑥) = (𝑐

1
(𝑥), 𝑐
2
(𝑥), . . . , 𝑐

𝑚
(𝑥))
𝑇 and

𝐴(𝑥) = (∇𝑐
1
(𝑥), ∇𝑐

2
(𝑥), . . . , ∇𝑐

𝑚
(𝑥)), and 𝑓

𝑘
refers to 𝑓(𝑥

𝑘
),

𝑐
𝑘
to 𝑐(𝑥

𝑘
), 𝑔
𝑘
to 𝑔(𝑥

𝑘
) and 𝐴

𝑘
to 𝐴(𝑥

𝑘
), and so forth.

There are many trust region methods for equality con-
strained nonlinear programming (𝑃), for example, Byrd et
al. [1], Dennis Jr. et al. [2] and Powell and Yuan [3], but
in these works, a penalty or augmented Lagrange func-
tion is always used to test the acceptability of the iterates.
However, there are several difficulties associated with the
use of penalty function, and in particular the choice of the
penalty parameter. Hence, in 2002, Fletcher and Leyffer [4]
proposed a class of filter method, which does not require
any penalty parameter and has promising numerical results.
Consequently, filter technique has been employed to many

approaches, for instance, SLP methods [5], SQPmethods [6–
8], interior point approaches [9], bundle techniques [10], and
so on.

Filter technique, in fact, exhibits a certain degree of non-
monotonicity.The nonmonotone technique was proposed by
Grippo et al. in 1986 [11] and combined with many other
methods. M. Ulbrich and S. Ulbrich [12] proposed a class
of penalty-function-free nonmonotone trust region methods
for nonlinear equality constrained optimizationwithout filter
technique. Su and Pu [13] introduced a nonmonotone trust
region method which used the nonmonotone technique in
the traditional filter criteria. Su and Yu [14] presented a
nonmonotone method without penalty function or filter.
Gould and Toint [15] directly used the dominated area of the
filter as an acceptability criteria for trial points and obtained
the global convergence properties.We refer the reader [16–18]
for some works about this issue.

Motivated by the ideas and methods above, we propose
a modified nonmonotone filter trust region method for
solving problem (𝑃). Similar to the Byrd-Omojokun class of
algorithms, each step is decomposed into the sum of two
distinct components, a quasi-normal step and a tangential
step. The main contribution of our paper is to employ the
nonmonotone idea to the dominated area of the filter so
that the new and more flexible criteria is given, which is
different from that ofGould andToint [15] and Su andPu [13].
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Under usual assumptions, we prove that the given algorithm
is globally convergent to first order stationary points.

This paper is organized as follows. In Section 2, we
introduce the fraction of Cauchy decrease and the composite
SQP step. The new nonmonotone filter technique is given in
Section 3. In Section 4, we propose the new nonmonotone
filter method and present the global convergence properties
in Section 5. Some numerical results are reported in the last
section.

2. The Fraction of Cauchy Decrease and
the Composite SQP Step

Consider the following unconstraint minimization optimiza-
tion problem:

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) , (1)

where 𝑓 : 𝑅𝑛 → 𝑅 is a continuously differentiable function.
A trust region algorithm for solving the above problem is an
iterate procedure that computes a trial step as an approximate
solution to the following subproblems:

min 𝑞 (𝑑) = 𝑔
𝑇
𝑑 +
1

2
𝑑
𝑇
𝐻𝑑,

s.t. ‖𝑑‖ ≤ Δ,

(2)

where 𝐻 is the Hessian matrix ∇2𝑓(𝑥) or an approximate to
it and Δ > 0 is a given trust region radius.

To assure the global convergence, the step is required only
to satisfy a fraction of Cauchy decrease condition.Thismeans
that 𝑑 must predict via the quadratic model function 𝑞(𝑑)
at least as much as a fraction of the decreased given by the
Cauchy step on 𝑞(𝑑); that is, there exists a constant 𝜎 > 0
fixed across all iterations, such that

𝑞 (0) − 𝑞 (𝑑) ≥ 𝜎 (𝑞 (0) − 𝑞 (𝑑
𝑐𝑝
)) , (3)

where 𝑑𝑐𝑝 is the steepest descent step for 𝑞(𝑑) inside the trust
region.

Lemma 1. If the trial step 𝑑 satisfies a fraction of Cauchy
decrease condition, then

𝑞 (0) − 𝑞 (𝑑) ≥
𝜎

2

∇𝑓 (𝑥)
min{Δ,

∇𝑓 (𝑥)


‖𝐻‖
} . (4)

Proof (see Powell [19] for the proof). Now, we turn to explain
the composite SQP step. Given an approximate estimate of
the solution 𝑥

𝑘
at 𝑘th iteration, following Dennis Jr. et al. [2]

and M. Ulbrich and S. Ulbrich [12], we obtain the trial step
𝑑
𝑘
= 𝑑
𝑛

𝑘
+ 𝑑
𝑡

𝑘
by computing a quasi-normal step 𝑑𝑛

𝑘
and a

tangential step 𝑑𝑡
𝑘
. The purpose of the quasi-normal step 𝑑𝑛

𝑘

is to improve feasibility. To improve optimality, we seek 𝑑𝑡
𝑘

in the tangential space of the linearized constraints in such a
way that it provides sufficient decrease for a quadratic model
of the objective function𝑓(𝑥). Let 𝑞

𝑘
(𝑑) = 𝑔

𝑇

𝑘
𝑑+(1/2)𝑑

𝑇
𝐻
𝑘
𝑑,

where𝐻
𝑘
is a symmetric approximation of ∇2𝑓(𝑥).

𝑑
𝑛

𝑘
is the solution to the subproblem

min 1

2


𝑐
𝑘
+ 𝐴
𝑇

𝑘
𝑑
𝑛

2

+
𝜉

2

𝑑
𝑛

2
,

s.t. 𝑑
𝑛 ≤ Δ 𝑘,

(5)

where Δ
𝑘
is a trust region radius and 𝐴

𝑘
= ∇𝑐(𝑥

𝑘
) ∈

𝑅
𝑛×𝑚
, 𝜉 > 0. In order to improve the value of the objective

function, we solve the following subproblem to get 𝑑𝑡
𝑘
:

min 𝑞
𝑘
(𝑑
𝑛

𝑘
+ 𝑑
𝑡
) ,

s.t. 𝐴𝑇
𝑘
𝑑
𝑡
= 0


𝑑
𝑡
≤ Δ
𝑘
.

(6)

Then we get the current trial step 𝑑
𝑘
= 𝑑
𝑛

𝑘
+ 𝑑
𝑡

𝑘
. Let 𝑑𝑡

𝑘
=

𝑊
𝑘
𝑑
𝑡

𝑘
, where 𝑑

𝑡

𝑘
∈ 𝑅
𝑛−𝑚 and𝑊

𝑘
∈ 𝑅
𝑛×(𝑛−𝑚) denote a matrix

whose columns form a basis of the null space of 𝐴𝑇
𝑘
. We refer

to [2] for a more detailed discussion of this issue.
In usual way that impose a trust region in step-

decomposition methods, the quasi-normal step 𝑑𝑛
𝑘
and the

tangential step 𝑑𝑡
𝑘
are required to satisfy

𝑑
𝑛 ≤ 𝜅Δ 𝑘,


𝑑
𝑛

𝑘
+ 𝑑
𝑡
≤ Δ
𝑘
, (7)

where 0 < 𝜅 < 1. Here, to simplify the proof, we only impose
a trust region on ‖ 𝑑𝑛 ‖≤ Δ

𝑘
and ‖ 𝑑𝑡 ‖≤ Δ

𝑘
, which is natural.

Note that 𝑊𝑇
𝑘
∇𝑞
𝑘
(𝑑
𝑡
) is the reduced gradient of 𝑞

𝑘
in

terms of the representation 𝑑𝑡 = 𝑊
𝑘
𝑠 of the tangential step:

∇
𝑠
(𝑞
𝑘
(𝑊
𝑘
𝑠)) = 𝑊

𝑇

𝑘
∇𝑞
𝑘
(𝑊
𝑘
𝑠) = 𝑊

𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑡
) . (8)

Define

𝑔 (𝑥) = 𝑊(𝑥)
𝑇
𝑔 (𝑥) . (9)

Then the first order necessary optimality conditions (Karush-
Kuhn-Tucker or KKT conditions) at a local solution 𝑥 ∈ 𝑅𝑛
of problem (𝑃) can be written as

𝑐 (𝑥) = 0, 𝑔 (𝑥) = 0. (10)

3. A New Nonmonotone Filter Technique

In filter method, originally proposed by Fletcher and Leyffer
[4], the acceptability of iterates is determined by comparing
the value of constraint violation and the objective function
with previous iterates collected in a filter. Define the violation
function ℎ(𝑥) by ℎ(𝑥) =‖ 𝑐(𝑥)‖2

2
, it is easy to see that ℎ(𝑥) = 0

if and only if𝑥 is a feasible point, so a trial point should reduce
either the value of constraint violation or that of the objective
function 𝑓.

In the process of the algorithm,weneed to decidewhether
the trial point 𝑥+

𝑘
is any better than 𝑥

𝑘
as an approximate

solution to the problem (𝑃). If we decide that this is the case,
we say that the iteration 𝑘 is successful and choose 𝑥+

𝑘
as
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𝑓(𝑥)

ℎ (𝑥)

𝑁𝑊(ℱ𝑘)

𝑓
ℱ𝑘
max

𝑓
ℱ𝑘
min

ℎ
ℱ𝑘
min ℎ

ℱ𝑘
max

𝒟(ℱ𝑘)

𝑆𝐸(ℱ𝑘)

𝑆𝑊(ℱ𝑘)

Figure 1

the next iterate. Let us denote by S the set of all successful
iterations, that is,

S = {𝑘
𝑥𝑘+1 = 𝑥

+

𝑘
} . (11)

In traditional filter method, a point 𝑥 is called acceptable
to the filter if and only if

ℎ (𝑥) ≤ 𝛽ℎ
𝑗
or 𝑓 (𝑥) ≤ 𝑓

𝑗
− 𝛾ℎ
𝑗
, ∀ (ℎ

𝑗
, 𝑓
𝑗
) ∈ F, (12)

where 0 < 𝛾 < 𝛽 < 1,F denotes the filter set. Define

D (F) = {(ℎ, 𝑓)

ℎ > ℎ
𝑗
and𝑓 > 𝑓

𝑗
, ∃𝑗 ∈ F} . (13)

A trial point 𝑥+
𝑘
is accepted if and only if (ℎ+

𝑘
, 𝑓
+

𝑘
) ∉ D(F

𝑘
).

Now, similar to the idea of Gould and Toint [15], we give a
new modified nonmonotone filter technique. For any (ℎ, 𝑓)-
pair, define an area that represents its contribution to the area
of D(F), we hope this contribution is positive; that is, the
area of D(F) is increasing. For convenience, we partition
the right half-plane [0, +∞] × [−∞, +∞] into four different
regions (see Figure 1). DefineD(F

𝑘
)
𝑐 to be the complement

ofD(F
𝑘
). Let

ℎ
F
𝑘

min
def
= min
𝑗∈F
𝑘

ℎ
𝑗
, ℎ

F
𝑘

max
def
= max
𝑗∈F
𝑘

ℎ
𝑗
,

𝑓
F
𝑘

min
def
= min
𝑗∈F
𝑘

𝑓
𝑗
, 𝑓

F
𝑘

max
def
= max
𝑗∈F
𝑘

𝑓
𝑗
.

(14)

These four parts are

(1) the dominated part of the filter:𝑁𝐸(F
𝑘
)
def
= D(F

𝑘
);

(2) the undominated part of lower left corner of the half
plane:

𝑆𝑊 (F
𝑘
)
def
= D(F

𝑘
)
𝑐
∩ [0, ℎ

F
𝑘

max] × [−∞,𝑓
F
𝑘

max] , (15)

(3) the undominated upper left corner: 𝑁𝑊(F
𝑘
)

def
=

[0, ℎ
F
𝑘

min) × (𝑓
F
𝑘

max, +∞];

(4) the undominated lower right corner: 𝑆𝐸(F
𝑘
)

def
=

(ℎF𝑘max, +∞] × [−∞,𝑓
F
𝑘

min).

𝑓(𝑥)

ℎ (𝑥)

𝑓
ℱ𝑘
max

𝑓
ℱ𝑘
min

ℎ
ℱ𝑘
min ℎ

ℱ𝑘
max

𝑓
𝒫𝑘
max

𝑓
𝒫𝑘
min

(ℎ+𝑘 , 𝑓+𝑘 )
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(ℎ+𝑘 , 𝑓+𝑘 )

𝑓
ℱ𝑘
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Figure 2

Consider the trial point 𝑥+
𝑘
, if the filter is empty, then define

its contribution to the area of the filter by

𝛼 (𝑥
+

𝑘
,F
𝑘
)
def
= 𝜅
𝐹

2
, (16)

where 𝜅
𝐹
> 0 is a constant. If the filter is not empty, then

define the contribution of 𝑥+
𝑘
to the area of the filter by four

different formulae.
If (ℎ+
𝑘
, 𝑓
+

𝑘
) ∈ 𝑆𝑊(F

𝑘
), assume

𝛼 (𝑥
+

𝑘
,F
𝑘
)
def
= area (D(F

𝑘
)
𝑐
∩ [ℎ
+

𝑘
, ℎ

F
𝑘

max + 𝜅𝐹]

× [𝑓
+

𝑘
, 𝑓

F
𝑘

max + 𝜅𝐹]) .

(17)

If (ℎ+
𝑘
, 𝑓
+

𝑘
) ∈ 𝑁𝑊(F

𝑘
), assume

𝛼 (𝑥
+

𝑘
,F
𝑘
)
def
= 𝜅
𝐹
(ℎ

F
𝑘

min − ℎ
+

𝑘
) . (18)

If (ℎ+
𝑘
, 𝑓
+

𝑘
) ∈ 𝑆𝐸(F

𝑘
), assume

𝛼 (𝑥
+

𝑘
,F
𝑘
)
def
= 𝜅
𝐹
(𝑓

F
𝑘

min − 𝑓
+

𝑘
) . (19)

If (ℎ+
𝑘
, 𝑓
+

𝑘
) ∈ 𝑁𝐸(F

𝑘
) = D(F

𝑘
), assume

𝛼 (𝑥
+

𝑘
,F
𝑘
)
def
= −area (D (F

𝑘
) ∩ [ℎ

+

𝑘
− ℎ

P
𝑘

min]

× [𝑓
+

𝑘
− 𝑓

P
𝑘

min]) ,

(20)

where P
𝑘
= {(ℎ, 𝑓) ∈ F

𝑘
|ℎ
𝑗
< ℎ
+

𝑘
, 𝑓
𝑗
< 𝑓
+

𝑘
}, and ℎP𝑘min

def
=

min
𝑗∈P
𝑘

ℎ
𝑗
, 𝑓

P
𝑘

min
def
= min
𝑗∈P
𝑘

𝑓
𝑗
.

Figure 2 illustrate the corresponding areas in the filter.
Horizontally dashed surfaces indicate a positive contribution
and vertically dashed ones a negative contribution. Note that
𝛼(𝑥,F) is a continuous function of (ℎ(𝑥), 𝑓(𝑥)).
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Next, we should consider the updating of the filter. If
(ℎ
𝑘
, 𝑓
𝑘
) ∉ D(F

𝑘
), then

F
𝑘+1
← F

𝑘
∪ (ℎ
𝑘
, 𝑓
𝑘
) . (21)

If (ℎ
𝑘
, 𝑓
𝑘
) ∈ D(F

𝑘
), then

F
𝑘+1
← (F

𝑘
\P
𝑘
) ∪ (ℎ

P
𝑘

min, 𝑓𝑘) ∪ (ℎ𝑘, 𝑓
P
𝑘

min) . (22)

We now return to the question of deciding whether a trial
point 𝑥+

𝑘
is acceptable for the filter or not. We will insist that

this is a necessary condition for the iteration 𝑘 to be successful
in the sense that 𝑥

𝑘+1
= 𝑥
+

𝑘
. If we consider an iterate 𝑥

𝑘
, there

must exist a predecessor iteration such that 𝑥+
𝑝(𝑘)
= 𝑥
𝑝(𝑘)+1

=

𝑥
𝑘
. Under the monotonic situation, a trial point 𝑥+

𝑘
would be

accepted whenever it results in an sufficient increase in the
dominated area of the filter, that means 𝑥+

𝑘
would be accepted

whenever

𝛼
𝑘
≥ 𝛾F(ℎ

+

𝑘
)
2

, (23)

where 𝛼
𝑘

def
= 𝛼(𝑥

+

𝑘
,F
𝑘
), 𝛾F ∈ (0, 1) is a constant. Under the

nonmonotonic situation, we relax condition (23) to be

max
{{{

{{{

{

𝛼
𝑘
,

𝑘

∑

𝑗=𝑟(𝑘)+1

𝑗∈U

𝜆
𝑝(𝑗)
𝛼
𝑝(𝑗)

}}}

}}}

}

≥ 𝛾F(ℎ
+

𝑘
)
2

, (24)

where𝛼
𝑝(𝑗)

def
= 𝛼(𝑥

𝑗
,F
𝑝(𝑗)
), U = {𝑘| filter is updated for

(ℎ
𝑘
, 𝑓
𝑘
)}, 𝑟(𝑘) ≤ 𝑘 is some reference iteration forU, 𝑟(𝑘) ∈ U,

U ⊆ S, 𝜆
𝑝(𝑗)
∈ [0, 1], ∑

𝑘

𝑗=𝑟(𝑘)+1, 𝑗∈U 𝜆𝑝(𝑗) = 1.
Compared to condition (2.21) [15], our condition (24) is

more flexible if 𝛼
𝑘
is negative.

According to condition (24), it is possible to accept 𝑥+
𝑘

even though it may be dominated. Then 𝑥+
𝑘
will be accepted

if either (23) or (24) holds.

4. The New Nonmonotone Filter Trust
Region Algorithm

Our algorithm is based on the usual trust region technique;
define the predict reduction for the function 𝑞

𝑘
(𝑥) to be

pred (𝑑
𝑘
) = 𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
) (25)

and the actual reduction

ared (𝑑
𝑘
) = 𝑓 (𝑥

𝑘
) − 𝑓 (𝑥

+

𝑘
) . (26)

Moreover, let 𝑟
𝑘
= ared(𝑑

𝑘
)/pred(𝑑

𝑘
), if there exists a nonzero

constant 𝜂
1
such that 𝑟

𝑘
≥ 𝜂
1
and condition (23) and (24)

hold, the trial point𝑥+
𝑘
will be called acceptable.Then the next

trial point 𝑥
𝑘+1

is obtained, and for its feasibility, we consider
the condition

ℎ
𝑘+1
≤ 𝜂
3
min {𝜇, 𝛼

1
Δ
2+𝛼
2

𝑘
} (27)

is true or not, where 𝜂
3
and 𝜇 are all positive constants, if it

is not true, then turn to the feasibility restoration phase and
define

𝑟
𝑗

𝑘
=


𝑐(𝑥
𝑗

𝑘
)


2

−

𝑐(𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
)


2


𝑐(𝑥
𝑗

𝑘
)


2

−

𝑐(𝑥
𝑗

𝑘
) + 𝐴(𝑥

𝑗

𝑘
)
𝑇
𝑑
𝑗

𝑘



2
. (28)

A formal description of the algorithm is given as follows.
Algorithm A 𝑆𝑡𝑒𝑝 0. Choose an initial point 𝑥

0
∈ 𝑅
𝑛, a

symmetric matrix 𝐻
0
∈ 𝑅
𝑛×𝑛, let Δ

0
> 0, 𝜖

𝑡
> 0, 𝜂

2
, 𝜂
3
∈

(0, 1), 𝛼
1
, 𝛼
2
∈ [0, 1], 𝜂

1
> 0, 0 < 𝛾

0
< 𝛾
1
< 1 ≤ 𝛾

2
< 𝛾
3
≤

2, 0 < 𝜉 < 1, 𝛾F ∈ (0, 1), 𝜇 > 0, compute 𝑓(𝑥
0
), ℎ(𝑥

0
), let

𝑘 = 0,F
0
= 0.

Step 1. Compute 𝑐
𝑘
, 𝐴
𝑘
,𝑊
𝑘
, 𝑓
𝑘
, ℎ
𝑘
, 𝑔
𝑘
, 𝑔
𝑘
= 𝑊
𝑇

𝑘
𝑔
𝑘
.

Step 2. If ‖ 𝑔
𝑘
‖ +ℎ
𝑘
≤ 𝜖
𝑡
, stop.

Step 3. Solve the subproblems (5) and (6) to get the quasi-
normal step 𝑑𝑛

𝑘
and the tangential step 𝑑𝑡

𝑘
. Let 𝑑

𝑘
= 𝑑
𝑛

𝑘
+

𝑑
𝑡

𝑘
, 𝑥
+

𝑘
= 𝑥
𝑘
+ 𝑑
𝑘
.

Step 4. If 𝑟
𝑘
< 𝜂
1
, let 𝑥
𝑘+1
= 𝑥
𝑘
, then go to Step 8.

Step 5. If 𝑥
𝑘
+ 𝑑
𝑘
is not acceptable to the filter, go to Step 8.

Otherwise 𝑥
𝑘+1
= 𝑥
+

𝑘
and update the filter according to

(21) and (22), the trust region radius and 𝐻
𝑘
, then get the

corresponding ℎ
𝑘+1
, 𝑓
𝑘+1

.

Step 6. If ℎ
𝑘+1
≤ 𝜂
3
min{𝜇, 𝛼

1
Δ
2+𝛼
2

𝑘
}, 𝑘 = 𝑘 + 1 and go to

Step 1, otherwise go to Step 7.

Step 7. By restoration Algorithm B to get 𝑑𝑟
𝑘
, then the trial

point 𝑥𝑟
𝑘
= 𝑥
𝑘
+ 𝑑
𝑟

𝑘
.

Step 8. Update the trust region radius by AlgorithmC, let 𝑘 =
𝑘 + 1 and go to Step 3.

We aim to reduce the value of ℎ(𝑥) in the restoration
Algorithm B, that is to get 𝑐(𝑥𝑟

𝑘
) = 0 by Newton-typemethod.

Algorithm B 𝑆𝑡𝑒𝑝 0. Let 𝑥0
𝑘
= 𝑥
𝑘
, Δ
0

𝑘
= Δ
𝑘
, 𝑗 = 0, 𝜂

2
, 𝜂
3
∈

(0, 1), 𝛼
1
, 𝛼
2
∈ [0, 1], 𝜇 > 0.

Step 1. If ℎ(𝑥𝑗
𝑘
) ≤ 𝜂
3
min{ℎF𝑘

𝑘
, 𝛼
1
Δ
2+𝛼
2

𝑘
} and 𝑥𝑗

𝑘
is acceptable

by the filter, then 𝑥𝑟
𝑘
= 𝑥
𝑗

𝑘
, stop.

Step 2. Compute

min 
𝑐(𝑥
𝑗

𝑘
) + 𝐴(𝑥

𝑗

𝑘
)
𝑇
𝑑
𝑗

𝑘



2

,

s.t. 
𝑑
𝑗

𝑘


≤ Δ
𝑗

𝑘

(29)

to get 𝑑𝑗
𝑘
, then compute 𝑟𝑗

𝑘
.

Step 3. If 𝑟𝑗
𝑘
≤ 𝜂
2
, 𝑥𝑗+1
𝑘
= 𝑥
𝑗

𝑘
, Δ
𝑗+1

𝑘
= Δ
𝑗

𝑘
/2, 𝑗 = 𝑗 + 1 and go

to Step 2.
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Step 4. If 𝑟𝑗
𝑘
> 𝜂
2
, 𝑥𝑗+1
𝑘
= 𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
, Δ
𝑗+1

𝑘
= 2Δ
𝑗

𝑘
, 𝑗 = 𝑗 + 1,

compute 𝐴𝑗+1
𝑘

and go to Step 1, where ℎF𝑘
𝑘
= min{min

𝑗∈F
𝑘

{ℎ
𝑗
|ℎ
𝑗
> 0}, 𝜇}.

Algorithm C (updating the trust region radius). Given 𝜂
1
>

0, 0 < 𝛾
0
< 𝛾
1
< 1 ≤ 𝛾

2
< 𝛾
3
≤ 2, we have the following.

(1) If 𝑟
𝑘
< 𝜂
1
or 𝑥+
𝑘
is not acceptable to the filter, Δ

𝑘+1
∈

[𝛾
0
Δ
𝑘
, 𝛾
1
Δ
𝑘
].

(2) If 𝑥+
𝑘
is acceptable to the filter but does not satisfiy

condition (27), Δ
𝑘+1
∈ (Δ
𝑘
, 𝛾
2
Δ
𝑘
).

(3) If 𝑥+
𝑘

is acceptable to the filter and satisfies
(27), Δ

𝑘+1
∈ [𝛾
2
Δ
𝑘
, 𝛾
3
Δ
𝑘
].

From the description above and the idea of the algorithm,
we can see that our algorithm is more flexible. Every suc-
cessful iterate must be any better than the predecessor one in
some degree according to the traditional filter method. But
our algorithm relaxes this demand by using the nonmono-
tone technique and also avoids Maratos effect in a certain
degree.Moreover, AlgorithmCallows a relativelywide choice
of the trust region.

5. The Convergence Properties

In this section, to present a proof of global convergence of
algorithm, we always assume that the following conditions
hold.

Assumption

(A1) The objective function𝑓 and the constraint functions
𝑐
𝑖
(𝑖 ∈ 𝐼 = {1, 2, . . . , 𝑚}) are twice continuously

differentiable.
(A2) For all 𝑘, 𝑥

𝑘
, and 𝑥

𝑘
+ 𝑑
𝑘
all remain in a closed,

bounded convex subset Ω ⊂ 𝑅𝑛.
(A3) Thematrix𝐴(𝑥) = ∇𝑐(𝑥) is nonsingular matrix for all

𝑥 ∈ Ω.
(A4) The matrices (𝐴(𝑥)𝑇𝐴(𝑥))−1, 𝑊(𝑥), (𝑊𝑇𝑊)−1 are

uniformly bounded in Ω, where 𝑊(𝑥) denotes a
matrix whose columns form a basis of the null space
of 𝐴(𝑥)𝑇.

(A5) The matrix𝐻
𝑘
is uniformly bounded.

By the assumptions, we can suppose there exist constants
V
0
, V
1
, V
2
, V
3
such that ‖ 𝑓(𝑥) ‖≤ V

0
, ‖ 𝑔(𝑥) ‖≤ V

0
, ‖ 𝑐(𝑥) ‖≤

V
0
, ‖ 𝐴(𝑥) ‖≤ V

0
, ‖ 𝐴(𝑥)

𝑇
𝐴(𝑥)
−1
‖≤ V
1
, ‖ 𝑊(𝑥) ‖≤ V

2
, ‖

𝐻
𝑘
‖≤ V
3
, ‖ 𝑊
𝑇

𝑘
𝐻
𝑘
‖≤ V
3
, ‖ 𝑊
𝑇

𝑘
𝐻
𝑘
𝑊
𝑘
‖≤ V
3
.

By (A1) and (A2), it holds

𝑓min ≤ 𝑓𝑘, 0 ≤ ℎ𝑘 ≤ ℎmax ∀𝑘, (30)

where 𝑓min, ℎmax > 0, hence in the (ℎ, 𝑓)-plane, the (ℎ, 𝑓)-
pair lies in the area [0, ℎmax] × [𝑓min, +∞].

From (A1), (A2), and (A3), it exists a constant ] such that
𝑓 (𝑥𝑘 + 𝑑𝑘) − 𝑞𝑘 (𝑑𝑘)

 ≤ ]Δ
2

𝑘
. (31)

Lemma 2. At the current iterate 𝑥
𝑘
, let the trial point com-

ponent 𝑑𝑛
𝑘
actually be normal to the tangential space. Under

the problem assumptions, there exists a constant 𝑘
1
> 0

independent of the iterates such that
𝑑
𝑛

𝑘

 ≤ 𝛼1
𝑐𝑘
 . (32)

Proof. It is similar to the proof of Lemma 2 in [13].

Lemma 3. Under Assumptions, there exist positive constants
𝑘
2
, 𝑘
3
, 𝑘
4
independent of the iterates such that

𝑐𝑘


2
−

𝑐
𝑘
+ 𝐴
𝑇

𝑘
𝑑
𝑛

𝑘



2

≥ 𝑘
2

𝑐𝑘
min {𝑘

3

𝑐𝑘
 , Δ 𝑘} ,

𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)

≥
𝜎

2


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

min {𝑘

4


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

, Δ
𝑘
} .

(33)

Proof. The proof is an application of Lemma 1 to the two
subproblems (5) and (6).

Lemma 4. Suppose that Assumptions hold, then restoration
Algorithm B is well defined.

Proof. The conclusion is obvious, if ℎ𝑗
𝑘
→ 0. Otherwise it

exists 𝜖 > 0 such that for all 𝑗, it holds ℎ𝑗
𝑘
> 𝜖. Consider the

set

𝐾 =

{

{

{

𝑗



𝑟
𝑗

𝑘
=


𝑐
𝑗

𝑘



2

−

𝑐 (𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
)


2


𝑐
𝑗

𝑘



2

−

𝑐
𝑗

𝑘
+ (𝐴
𝑗

𝑘
)
𝑇
𝑑
𝑗

𝑘



2
> 𝜂
2
> 0

}

}

}

, (34)

where 𝑐𝑗
𝑘
= 𝑐(𝑥

𝑗

𝑘
), 𝐴
𝑗

𝑘
= 𝐴(𝑥

𝑗

𝑘
). By Lemma 3 and the

definition of ℎ
𝑘
, we have

+∞ >

∞

∑

𝑗=1

(ℎ
𝑗−1

𝑘
− ℎ
𝑗

𝑘
) ≥ ∑

𝑗∈𝐾

(

𝑐
𝑗

𝑘



2

−


𝑐
𝑗

𝑘
+ (𝐴
𝑗

𝑘
)
𝑇

𝑑
𝑗

𝑘



2

)

≥ 𝜂
2
𝑘
2
∑

𝑗∈𝐾

𝑐𝑘
min {𝑘

3

𝑐𝑘
 , Δ
𝑗

𝑘
} .

(35)

By ℎ𝑗
𝑘
> 𝜖, it holds Δ𝑗

𝑘
→ 0 for 𝑗 ∈ 𝐾. From Algorithm B, we

can obtain that Δ𝑗
𝑘
→ 0 for all 𝑗.

On the other side,


𝑐
𝑗

𝑘



2

−

𝑐 (𝑥
𝑗

𝑘
+ 𝑑
𝑗

𝑘
)


2

=

𝑐
𝑗

𝑘



2

−


𝑐
𝑗

𝑘
+ (𝐴
𝑗

𝑘
)
𝑇

𝑑
𝑗

𝑘



2

+ 𝑜 (Δ
𝑗

𝑘
)

(36)

for Δ𝑗
𝑘
→ 0. By the algorithm, the radius Δ𝑗

𝑘
should be

satisfied Δ𝑗+1
𝑘
> Δ
𝑗

𝑘
, that is contradicted to Δ𝑗

𝑘
→ 0. The

proof is complete.

Now, we analyze the impact of the criteria (23) and (24).
Once a trial point is accepted as a new iterate, it must be
provided some improvement, and we formalize this by saying
that iterate 𝑥

𝑘
= 𝑥
𝑝(𝑘)+1

improves on iterate 𝑥
𝑖(𝑘)

. That is
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the trial point 𝑥
𝑘
is accepted at iterate 𝑝(𝑘); it happens under

two situations, one is by the criteria (23), that is,

𝑖 (𝑘) = 𝑝 (𝑘) if 𝑝 (𝑘) ∉ A (37)

the other is by the criteria (24), that is,

𝑖 (𝑘) = 𝑝 (𝑘) if 𝑝 (𝑘) ∉ A. (38)

Now consider any iterate 𝑥
𝑘
, it improved on 𝑥

𝑖(𝑘)
, which

was itself accepted because it improved on 𝑥
𝑖(𝑖(𝑘))

, and so on,
until back to𝑥

0
. Hencewemay construct a chain of successful

iterations indexed byC
𝑘
= {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑞
} for each 𝑘, such that

𝑥
𝑙
1

= 𝑥
0
, 𝑥

𝑙
𝑞

= 𝑥
𝑘
, 𝑥

𝑙
𝑗

= 𝑥
𝑖(𝑙
𝑗+1
)
, 𝑗 = 1, 2, . . . , 𝑞 − 1,

(39)

where 𝑙
1
is the smallest index in the chain of successful

iterations.

Lemma 5. Suppose that Assumptions hold and Algorithm A
does not terminate finitely, apply Algorithm A to the problem
(𝑃), then for all 𝑘 andC

𝑘
= {𝑙
1
, 𝑙
2
, . . . , 𝑙
𝑞
}, it holds

area (D (F
𝑘
)) ≥ 𝛾F

𝑞

∑

𝑗=1

ℎ
2

𝑙
𝑗

. (40)

Proof. For ∀𝑙
𝑗
∈ C
𝑘
, if 𝑝(𝑙

𝑗
) ∈ A, by (24), 𝑖(𝑙

𝑗
) = 𝑟(𝑝(𝑙

𝑗
)) =

𝑙
𝑗−1

, then

max
{{{

{{{

{

𝛼
𝑝(𝑙
𝑗
)
,

𝑙
𝑗

∑

𝑖=𝑙
𝑗−1
+1

𝑖∈U

𝜆
𝑝(𝑖)
𝛼
𝑝(𝑖)

}}}

}}}

}

≥ 𝛾Fℎ
2

𝑙
𝑗

. (41)

If max{𝛼
𝑝(𝑙
𝑗
)
, ∑
𝑙
𝑗

𝑖=𝑙
𝑗−1
+1, 𝑖∈U

𝜆
𝑝(𝑖)
𝛼
𝑝(𝑖)
} = 𝛼
𝑝(𝑙
𝑗
)
,

𝛼
𝑝(𝑙
𝑗
)
≥ 𝛾Fℎ

2

𝑙
𝑗

. (42)

If max{𝛼
𝑝(𝑙
𝑗
)
, ∑
𝑙
𝑗

𝑖=𝑙
𝑗−1
+1, 𝑖∈U

𝜆
𝑝(𝑖)
𝛼
𝑝(𝑖)
} = ∑

𝑙
𝑗

𝑖=𝑙
𝑗−1
+1, 𝑖∈U

𝜆
𝑝(𝑖)

𝛼
𝑝(𝑖)

,

𝑙
𝑗

∑

𝑖=𝑙
𝑗−1
+1

𝑖∈U

𝛼
𝑝(𝑖)
≥ 𝛾Fℎ

2

𝑙
𝑗

. (43)

If 𝑝(𝑙
𝑗
) ∉ A, 𝑙

𝑗−1
= 𝑝(𝑙
𝑗
). ByU ⊆ S, it holds

{𝑙
𝑗−1
+ 1, . . . , 𝑙

𝑗
} ∩U ⊆ {𝑙

𝑗−1
+ 1, . . . , 𝑙

𝑗
} ∩S = {𝑙

𝑗
} . (44)

Then from (23), 𝛼
𝑝(𝑖)
≥ 𝛾Fℎ

2

𝑙
𝑗

. It implies (43). Moreover

area (D (F
𝑘
)) ≥

𝑘

∑

𝑖=0

𝑖∈U

𝛼
𝑝(𝑖)
=

𝑞

∑

𝑗=0

(

𝑙
𝑗

∑

𝑖=𝑙
𝑗−1
+1

𝑖∈U

𝛼
𝑝(𝑖)
). (45)

Together with (42) and (43), the result follows.

Lemma 6. Suppose that Assumptions hold. If Algorithm A
does not terminate finitely and the filter contains infinite
iterates, then lim

𝑘→∞
ℎ
𝑘
= 0.

Proof. Suppose by contradiction that there exists a constant
𝜖 > 0 and infinite sequence {𝑘

𝑖
} ⊆ S such that ℎ

𝑘
𝑖

≥ 𝜖 for
all 𝑖. Because there are infinite iterations in the filter, we have
|S| = ∞, then ℎ

𝑙
𝑞

≥ 𝜖 for ∀𝑞.

area (D (F
𝑘
)) ≥ 𝛾F ⋅ 𝑞 ⋅ 𝜖

2
. (46)

Then by (31), area(D(F
𝑘
)) is upper bounded for each 𝑘. That

means it exists 𝜅max
F ≥ 0 such that area(D(F

𝑘
)) ≤ 𝜅

max
F , so

𝑖 ≤ (𝜅
max
F /𝛾F𝜖

2
). Hence 𝑖 must be finite, it contradicts to the

infinity of {𝑘
𝑖
}. The proof is complete.

Lemma 7. Suppose that Assumptions hold and Algorithm A
terminate finitely, then ℎ

𝑘
= 0.

Proof. From the Algorithm A and the definition of filter, the
conclusion follows.

Lemma 8. For any trial point 𝑥
𝑘+1
̸=𝑥
𝑘
, there must be one

accepted by the filter.

Lemma 9. Suppose that Assumptions hold, there exists 𝑘
5
> 0

independent of the iterates such that

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑛

𝑘
) ≥ −𝑘

5

𝑐𝑘
 . (47)

Proof. By (32), the assumptions and 𝑑
𝑛

𝑘

 ≤ Δmax, it is obvious
that

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑛

𝑘
) = −𝑔

𝑇

𝑘
𝑑
𝑛

𝑘
−
1

2
(𝑑
𝑛

𝑘
)
𝑇
𝐻
𝑘
𝑑
𝑛

𝑘

≥ −
𝑑
𝑛

𝑘

 (
𝑔𝑘
 +
1

2

𝐻𝑘


𝑑
𝑛

𝑘

)

≥ −𝑘
1

𝑐𝑘
 (]0 + ]3Δmax)

def
= −𝑘
5

𝑐𝑘
 .

(48)

The proof is complete.

Lemma 10. Suppose that Assumptions hold and 𝑔𝑘
 ≥ 𝜖𝑡, if

Δ
𝑘
≤ min{(

𝜖
𝑡

2𝑘
1
]
3√𝜂3𝛼1

)

2/(2+𝛼
2
)

,
𝑘
4
𝜖
𝑡

2
,

(
]
0

𝑘
1
]
3√𝜂3𝛼1

)

2/(2+𝛼
2
)

,

(
𝜎𝜖
𝑡

16𝑘
1
]
0√𝜂3𝛼1

)

2/𝛼
2

}
def
= 𝛿
1

(49)

one can deduce

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
) ≥
𝜎𝜖
𝑡

8
Δ
𝑘

def
= 𝜎Δ

𝑘
. (50)
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Proof. By the assumptions and the definition of 𝑑𝑛
𝑘
, it holds


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

=

𝑊
𝑇

𝑘
(𝑔
𝑘
+ 𝐻
𝑘
𝑑
𝑛

𝑘
)

≥
𝑔𝑘
 −

𝑊
𝑇

𝑘
𝐻
𝑘
𝑑
𝑛

𝑘



≥ 𝜖
𝑡
− ]
3
𝑘
1

𝑐𝑘


≥ 𝜖
𝑡
− ]
3
𝑘
1√𝜂3𝛼1Δ

1+(𝛼
2
/2)

𝑘
≥
𝜖
𝑡

2
.

(51)

From Lemma 3, 𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
) ≥ (𝜎/4)𝜖

𝑡
min{Δ

𝑘
, 𝑘
4
𝜖
𝑡
/2} ≥

(𝜎𝜖
𝑡
/4)Δ
𝑘
. Together with

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑛

𝑘
) = − 𝑔

𝑇

𝑘
𝑑
𝑛

𝑘
−
1

2
(𝑑
𝑛

𝑘
)
𝑇
𝐻
𝑘
𝑑
𝑛

𝑘

≥ −
𝑔𝑘


𝑑
𝑛

𝑘

 −
1

2

𝐻𝑘


𝑑
𝑛

𝑘



2

≥ − 𝑘
1
]
0√𝜂3𝛼1Δ

1+(𝛼
2
/2)

𝑘
− 𝑘
2

1
]
3
𝜂
3
𝛼
1
Δ
2+𝛼
2

𝑘

≥ − 2𝑘
1
]
0√𝜂3𝛼1Δ

1+(𝛼
2
/2)

𝑘

≥ −
𝜎𝜖
𝑡

8
Δ
𝑘

(52)

then 𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
) ≥ −(𝜎𝜖

𝑡
/8)Δ
𝑘
+ (𝜎𝜖
𝑡
/4)Δ
𝑘
= (𝜎𝜖
𝑡
/8)Δ
𝑘
=

𝜎Δ
𝑘
. It is the conclusion.

Lemma 11. Suppose the conditions of Lemma 10 hold, if

Δ
𝑘
≤ min{𝛿

1
,
(1 − 𝜂

1
) 𝜎

]
}

def
= 𝛿
2

(53)

then 𝑟
𝑘
≥ 𝜂
1
.

Proof. From the definition of 𝑟
𝑘
and Lemma 10, together with

(31), we have

𝑟𝑘 − 1
 =

𝑓 (𝑥𝑘 + 𝑑𝑘) − 𝑞𝑘 (𝑑𝑘)


𝑞𝑘 (0) − 𝑞𝑘 (𝑑𝑘)


≤
]Δ2
𝑘

𝜎Δ
𝑘

≤ 1 − 𝜂
1
. (54)

It is obvious that 𝑟
𝑘
≥ 𝜂
1
.

Lemma 12. Suppose the conditions of Lemmas 10 and 11 hold,
if

ℎ
𝑘
≤ (𝜂
3
𝛼
1
)
−1/(1+𝛼

2
)
(
𝜂
1
𝜎

√𝛾F

)

(2+𝛼
2
)/(1+𝛼

2
)

(55)

then

𝑓 (𝑥
+

𝑘
) ≤ 𝑓 (𝑥

𝑘
) − √𝛾Fℎ𝑘. (56)

Proof. By Lemmas 3, 10, and 11, together with ‖ 𝑔
𝑘
‖≥ 𝜖
𝑡
, it

holds

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

+

𝑘
) ≥ 𝜂
1
(𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
)) ≥ 𝜂

1
𝜎Δ
𝑘
. (57)

From the Algorithm, ℎ
𝑘
≤ 𝜂
3
𝛼
1
Δ
2+𝛼
2

𝑘
, then

𝑓 (𝑥
𝑘
) − 𝑓 (𝑥

+

𝑘
) ≥ 𝜂
1
𝜎(
ℎ
𝑘

𝜂
3
𝛼
1

)

1/(2+𝛼
2
)

. (58)

Hence 𝑓(𝑥
𝑘
) − 𝑓(𝑥

+

𝑘
) ≥ √𝛾Fℎ𝑘.

Theorem 13. Suppose the assumptions hold, there must exist
Δmin > 0 such that for each 𝑘, it holds

Δ
𝑘
≥ Δmin. (59)

Proof. Let 𝑘
1
be large enough such that ℎ

𝑘
1

≤ 𝜖
𝑡
, it is true by

Lemmas 6 and 7. Suppose by contradiction that the index 𝑗 is
the first one after 𝑘

1
, which satisfies

Δ
𝑗
≤ 𝛾
0
min
{

{

{

𝛿
2
, (
(1 − √𝛾F) ℎ

𝐹

𝜂
3
𝛼
1

)

1/(2+𝛼
2
)

, Δ
𝑘
1

}

}

}

def
= 𝛾
0
𝛿
3
,

(60)

where ℎ𝐹 def
= min

𝑖∈Uℎ𝑖 is the smallest value of violation
function in filter. Then Δ

𝑗
≤ 𝛾
0
Δ
𝑘
1

. By the above analysis,
we know 𝑗 ≥ 𝑘

1
+ 1, that is 𝑗 − 1 ≥ 𝑘

1
. From the Algorithm

and (60), it concludes

Δ
𝑗−1
≤
1

𝛾
0

Δ
𝑗
≤ 𝛿
3
. (61)

By (60) and (61), (53) can be obtained. In Lemma 11, let 𝑗 − 1
instead of 𝑘, it deduces

𝑟
𝑗−1
≥ 𝜂
1
. (62)

Based on Lemma 12, together with (60), (61), and the algo-
rithm, we can see

ℎ
+

𝑗−1
≤ 𝜂
3
𝛼
1
Δ
2+𝛼
2

𝑗−1
≤ (1 − √𝛾F) ℎ

𝐹
. (63)

It can be seen that (53) is true for 𝑗 − 1 ≥ 𝑘, with (55), we can
deduce

𝑓
+

𝑗−1
≤ 𝑓
𝑗−1
− √𝛾Fℎ𝑗−1. (64)

Thatmeans 𝑥+
𝑗−1

can be accepted by the filter. From above and
(55), we know Δ

𝑗
≥ Δ
𝑗−1

. Hence the index 𝑗 is not the first
one after 𝑘

1
which satisfied (60), that is a contradiction. So,

for any 𝑘 > 𝑘
1
, it holds Δ

𝑘
≥ 𝛾
0
𝛿
3
. Define

Δmin = min {Δ
0
, . . . , Δ

𝑘
1

, 𝛾
0
𝛿
3
} (65)

we can see that

Δ
𝑘
≥ Δmin (66)

holds for each 𝑘. The proof is complete.

Lemma 14. Suppose that Assumptions hold and Algorithm A
does not terminate finitely, then lim inf

𝑘→∞

𝑔𝑘
 = 0.

Proof. Suppose by contradiction that for 𝜖
𝑡
, there exists a

constant 𝑘 > 0 such that ‖ 𝑔
𝑘
‖≥ 𝜖
𝑡
.

By Assumption (A3) and (A4), 𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

≥
𝑔𝑘
 −

]
3
𝑘
1
‖ 𝑐
𝑘
‖. From Lemma 6, we know ℎ

𝑘
→ 0. Hence there

exists �̃� > 0 such that

𝑐𝑘
 ≤

2𝜖
𝑡

3]
3
𝑘
1

(67)
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for 𝑘 > �̃�. Then ‖ 𝑊𝑇
𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
) ‖≥ (1/3) ‖ 𝑔

𝑘
‖≥ (1/3)𝜖

𝑡
for

𝑘 > �̂�
def
= max{𝑘, �̃�}.

It is obvious that

𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
) = 𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑛

𝑘
) + 𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
) .

(68)

By the proof of Lemma 9, it holds |𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑛

𝑘
)| ≤

]
0
‖ 𝑑
𝑛

𝑘
‖ +(1/2)]

3
‖ 𝑑
𝑛

𝑘
‖
2. Together with Lemma 6 and the

definition of 𝑑
𝑘
, we have

lim
𝑘→∞

(𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑛

𝑘
)) = 0. (69)

By the Algorithm, we can get

+∞ >

∞

∑

𝑘=0

(𝑓
𝑘
− 𝑓
𝑘+1
) ≥ 𝜂
1

∞

∑

𝑘=0

(𝑞
𝑘 (0) − 𝑞𝑘 (𝑑𝑘)) . (70)

Then

lim
𝑘→∞

(𝑞
𝑘
(0) − 𝑞

𝑘
(𝑑
𝑘
)) = 0. (71)

By (68), (69), and (71), it deduces

lim
𝑘→∞

(𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)) = 0. (72)

Based on the assumptions, Lemma 3 andTheorem 13, for 𝑘 >
�̂�, it holds

𝑞
𝑘
(𝑑
𝑛

𝑘
) − 𝑞
𝑘
(𝑑
𝑘
)

≥
𝜎

2


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

min {Δ

𝑘
, 𝑘
4


𝑊
𝑇

𝑘
∇𝑞
𝑘
(𝑑
𝑛

𝑘
)

}

≥
𝜎𝜖
𝑡

6
min{Δmin,

𝑘
4
𝜖
𝑡

6
} > 0,

(73)

which contradicts (72). The conclusion follows.

Theorem 15. Suppose the assumptions hold, and apply the
algorithm to problem (𝑃), then

lim inf
𝑘→∞

(ℎ
𝑘
+
𝑔𝑘
) = 0, (74)

where 𝑔
𝑘
= 𝑊
𝑇

𝑘
𝑔
𝑘
, 𝑔
𝑘
= ∇𝑓(𝑥

𝑘
), 𝑊(𝑥) denotes a matrix

whose columns form a basis of the null space of 𝐴(𝑥)𝑇.

Proof. If the algorithm terminates finitely, it is obvious that it
holds. Otherwise, by Lemmas 6 and 14, the conclusion also
can be obtained.

Theorem 16. Suppose the assumptions hold, and {𝑥
𝑘
} is the

infinite sequence obtained by the algorithm, then there must
exist a subsequence such that

lim
𝑗→∞

𝑥
𝑘
𝑗

= 𝑥
∗

(75)

and 𝑥∗ satisfies the one order KKT condition of (𝑃).

Table 1

Problem 𝑛 𝑚 NF NG L’s NF L’s NG
HS6 2 1 11 11 20 12
HS7 2 1 9 3 15 11
HS8 2 2 7 4 — —
HS9 2 1 6 6 6 6
HS26 3 1 24 24 42 24
HS39 4 2 15 9 26 19
HS40 4 3 7 5 7 5
HS42 4 2 8 8 11 11
HS78 5 3 6 6 8 7

Proof. By Assumption (A1), there exist a subsequence {𝑘
𝑗
}

and 𝑥∗, such that lim
𝑗→∞

𝑥
𝑘
𝑗

= 𝑥
∗. Together with Assump-

tion (A3) and (A4), it hods lim
𝑗→∞

𝑊
𝑇

𝑘
𝑗

𝑔
𝑘
𝑗

= 0, which means
for large enough 𝑗, 𝑔

𝑘
𝑗

lies in the space spaned by the columns
of 𝐴𝑇
𝑘
𝑗

. That is there exists 𝜆
𝑘
𝑗

such that

lim
𝑗→∞

𝑔
𝑘
𝑗

+ 𝐴
𝑇

𝑘
𝑗

𝜆
𝑘
𝑗

= 0. (76)

The conclusion follows.

6. Some Numerical Experiments

(1) Updating of𝐻
𝑘
is done by𝐻

𝑘+1
= 𝐻
𝑘
+(𝑦
𝑇

𝑘
𝑦
𝑘
/𝑦
𝑇

𝑘
𝑠
𝑘
)−

(𝐻
𝑘
𝑠
𝑘
𝑠
𝑇

𝑘
𝐻
𝑘
/𝑠
𝑇

𝑘
𝐻
𝑘
𝑠
𝑘
), where 𝑦

𝑘
= 𝜃
𝑘
𝑦
𝑘
+ (1 − 𝜃

𝑘
)𝐻
𝑘
𝑠
𝑘

𝜃
𝑘
=

{{

{{

{

1 𝑠
𝑇

𝑘
𝑦
𝑘
≥ 0.2𝑠

𝑇

𝑘
𝐻
𝑘
𝑠
𝑘

0.8𝑠
𝑇

𝑘
𝐻
𝑘
𝑠
𝑘

𝑠
𝑇

𝑘
𝐻
𝑘
𝑠
𝑘
− 𝑠
𝑇

𝑘
𝑦
𝑘

(77)

and 𝑦
𝑘
= 𝑔
𝑘+1
− 𝑔
𝑘
+ (𝐴
𝑘+1
− 𝐴
𝑘
)𝜌
𝑘
, 𝑠
𝑘
= 𝑥
𝑘+1
−

𝑥
𝑘
𝜌
𝑘
is the multipluser of corresponding quadratic

subproblems.
(2) We assume the error toleration is 10−5.
(3) The algorithm parameters were set as follows: 𝐻

0
=

𝐼 ∈ 𝑅
𝑛×𝑛, 𝜂
1
= 0.25, 𝜂

2
= 0.25, 𝜂

3
= 0.1, 𝛼

1
= 𝛼
2
= 0.5,

𝛾 = 0.02, 𝜌 = 0.5, 𝜉 = 10−6, 𝛾
0
= 0.1, 𝛾

1
= 0.5, 𝛾

2
= 2,

𝛾
𝐹
= 10
−4, Δ
0
= 1. The program is written in Matlab.

The numerical results for the test problems are listed in
Table 1.

In Table 1, the problems are numbered in the same way
as in Schittkowski [20] and Hock and Schittkowski [21]. For
example, “S216” is the problem (216) in Schittkowski [20]
and “HS6” is the problem (6) in Hock and Schittkowski
[21]. NF, NG represent the numbers of function and gradient
calculations and “L’s” is the solution in [22]. The numerical
results show that the our algorithm is more effective than the
L’s for most test examples. Moreover, the higher the level of
nonmonotonic, the better the numerical results. The results
show that the new algorithm is robust and effective, andmore
flexible for the acceptance of the the trial iterate.
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Wächter, “Global convergence of a trust-region SQP-filter
algorithm for general nonlinear programming,” SIAM Journal
on Optimization, vol. 13, no. 3, pp. 635–659, 2002.

[7] R. Fletcher, S. Leyffer, and P. L. Toint, “On the global conver-
gence of a filter-SQP algorithm,” SIAM Journal onOptimization,
vol. 13, no. 1, pp. 44–59, 2002.

[8] S. Ulbrich, “On the superlinear local convergence of a filter-SQP
method,”Mathematical Programming B, vol. 100, no. 1, pp. 217–
245, 2004.

[9] M. Ulbrich, S. Ulbrich, and L. N. Vicente, “A globally con-
vergent primal-dual interior-point filter method for nonlinear
programming,” Mathematical Programming A, vol. 100, no. 2,
pp. 379–410, 2004.

[10] R. Fletcher and S. Leyffer, “A bundle filter method for non-
smooth nonlinear optimization,” Tech. Rep. NA/195, Depart-
ment ofMathematics, University of Dundee, Dundee, Scotland,
December 1999.

[11] L. Grippo, F. Lampariello, and S. Lucidi, “A nonmonotone
line search technique for Newton’s method,” SIAM Journal on
Numerical Analysis, vol. 23, no. 4, pp. 707–716, 1986.

[12] M. Ulbrich and S. Ulbrich, “Non-monotone trust region meth-
ods for nonlinear equality constrained optimization without a
penalty function,” Mathematical Programming B, vol. 95, no. 1,
pp. 103–135, 2003.

[13] K. Su and D. Pu, “A nonmonotone filter trust regionmethod for
nonlinear constrained optimization,” Journal of Computational
and Applied Mathematics, vol. 223, no. 1, pp. 230–239, 2009.

[14] K. Su and Z. Yu, “A modified SQP method with nonmonotone
technique and its global convergence,”Computers &Mathemat-
ics with Applications, vol. 57, no. 2, pp. 240–247, 2009.

[15] N. I. M. Gould and P. L. Toint, “Global convergence of a non-
monotone trust-region filter algorithm for nonlinear program-
ming,” inMultiscale optimization methods and applications, vol.
82, pp. 125–150, Springer, New York, NY, USA, 2006.

[16] Z. Chen andX. Zhang, “A nonmonotone trust-region algorithm
with nonmonotone penalty parameters for constrained opti-
mization,” Journal of Computational and Applied Mathematics,
vol. 172, no. 1, pp. 7–39, 2004.

[17] Z. W. Chen, “A penalty-free-type nonmonotone trust-region
method for nonlinear constrained optimization,”AppliedMath-
ematics and Computation, vol. 173, no. 2, pp. 1014–1046, 2006.

[18] F. A. M. Gomes, M. C. Maciel, and J. M. Mart́ınez, “Nonlinear
programming algorithms using trust regions and augmented
Lagrangians with nonmonotone penalty parameters,” Mathe-
matical Programming A, vol. 84, no. 1, pp. 161–200, 1999.

[19] M. J. D. Powell, “Convergence properties of a class of minimiza-
tion algorithms,” inNonlinear Programming, pp. 1–27, Academic
Press, New York, NY, USA, 1974.

[20] K. Schittkowski,MoreTest Examples forNonlinear Programming
Codes, vol. 282, Springer, Berlin, Germany, 1987.

[21] W. Hock and K. Schittkowski, Test Examples for Nonlinear Pro-
gramming Codes, vol. 187, Springer, Berlin, Germany, 1981.

[22] M. Lalee, J. Nocedal, and T. Plantenga, “On the implementation
of an algorithm for large-scale equality constrained optimiza-
tion,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 682–706,
1998.



Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2013, Article ID 607190, 8 pages
http://dx.doi.org/10.1155/2013/607190

Research Article
Modified Malmquist Productivity Index Based on
Present Time Value of Money

Farhad Hosseinzadeh Lotfi,1 Golamreza Jahanshahloo,1

Mohsen Vaez-Ghasemi,1 and Zohreh Moghaddas2

1 Department of Mathematics, Islamic Azad University, Science and Research Branch, P.O. Box 14155/4933, Tehran, Iran
2Department of Electrical, Computer and Biomedical Engineering, Islamic Azad University, Qazvin Branch,
P.O. Box 34185/1416, Qazvin, Iran

Correspondence should be addressed to Farhad Hosseinzadeh Lotfi; farhad@hosseinzadeh.ir

Received 9 September 2012; Revised 11 December 2012; Accepted 30 December 2012

Academic Editor: Mohammad Khodabakhshi

Copyright © 2013 Farhad Hosseinzadeh Lotfi et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Data envelopment analysis (DEA) models can calculate the Malmquist Productivity Index (MPI). Classic Malmquist Productivity
Index shows regress and progress of a DMU in different periods with efficiency and technology variations without considering the
present value of money. This issue is of major importance since while a currency of in previous year is not equal to that of now
this would yield bias results which can affect the correct interpretation. The index developed here is defined in terms of Modified
Malmquist Productivity Index model, which can calculate progress and regress by using the factor of present time value of money.
The incorporation of present time value of money is also calculated within the framework of data envelopment analysis.This factor
is fundamental and should be considered in DEA Malmquist Productivity Index. Moreover, here, differences between presented
models are compared to those of previous ones indeed, biased results will be shown in the case study in banks, and problem and
solution have been investigated in the literature.

1. Introduction

Data envelopment analysis is mathematical programming
technique for obtaining relative efficiency of a set of decision
making units (DMUs). Nowadays DEA is widely used in
various fields. Utilizing data envelopment analysis (DEA)
methodology it is also possible to estimate the Malmquist
Productivity Index. As one of the major sources of economic
development is productivity growth thus having a compre-
hensive interpretation of those factors affects productivity is
very influential and leading.

Malmquist [1], in 1953, published a quantity index for
use in consumption analysis. In this index input distance
functions are used to make comparison among two or more
consumption bundles. Later in 1982, in production analysis
Caves et al. [2], introduced Malmquist Productivity Index
on basis of what malmquist has proposed. Nowadays appli-
cations which use the Malmquist Productivity Index have

become widespread in the literature. In recent years, among
researchers who are studying firmperformance, themeasure-
ment and analysis of productivity change have enjoyed a great
deal of attention.

As measuring productivity change gains an important
attention in the literature Färe et al. [3] in a paper com-
pletely discussed productivity growth, technical progress, and
efficiency change. They applied these factors in evaluating
industrialized countries. Maniadakis and Thanassoulis [4]
developed a productivity index that is an extension of the
work on malmquist indexes. They evolved a productivity
index which is applicable when input prices are known and
producers are cost minimisers. In doing so, they developed a
productivity index that accounts not only for technical effi-
ciency and technological variations but also for allocative
efficiency and for the effects of input price variations. Grifell-
Tatjé and Lovell [5] provided a paper in order to adopt a
different approach to the use of DEA with panel data and
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create a malmquist index of productivity change and provide
a new decomposition for it. Grifell-Tatjé et al. [6] provided a
newMalmquist Productivity Index called a quasi-Malmquist
productivity index which incorporates all slacks on the
selected side and replaces conventional radial efficiencymea-
sures with the new nonradial efficiency ones. Also, Chen [7],
on bases of the fact that DEA-based Malmquist Productivity
Index measures the technical and productivity changes over
time, has extended the Malmquist Productivity Index into
a nonradial index where the decision maker’s preference
over performance improvement can also be incorporated.
The advantage of this index is that by the nonzero slacks it
eliminates possible inefficiency.

Since malmquist indexes of productivity are generally
estimated using index number techniques or nonparametric
frontier approaches Fuentes et al. [8] aimed to estimate
malmquist indexes in a similar way using parametric-deter-
ministic or parametric-stochastic frontier approaches. They
adopted an output distance function and showed that using
the estimated parameters, several radial distance functions
can be calculated and moreover combined for estimating
and decomposing the productivity indexes. Orea [9] in his
paper provided a parametric decomposition of a general-
ized Malmquist Productivity Index which considers scale
economies. As he said in his research the contribution of
scale economies to productivity change is evaluated without
recourse to scale efficiency measures, which are neither
bounded for globally increasing, decreasing, or constant
returns to scale technologies nor for ray-homogeneous tech-
nologies. Lin et al. [10] in their article considered 117 branches
of a certain bank in Taiwan and introduced data envelopment
analysis to assess the operating performances of business
units of this bank. Their work, in determining operation
strategies, provides the reference for a bank’s managers. In
their investigationWang and Lin [11] established an analytical
hierarchy framework for helping banks in order to choose
merger strategies. Also, The consistent fuzzy preference rela-
tion is used for improving effectiveness and decision-making
consistency. The obtained analytical results shed light on the
issue that, in strategy selection, risk management and finan-
cial composition of banks are the main considerations. Wu et
al. [12] for banking performance evaluation proposed a fuzzy
multiple criteria decision-making (FMCDM) approach. Also,
the three MCDM analytical tools of SAW, TOPSIS, and
VIKORwere respectively adopted to rank the banking perfor-
mance and improve the gaps with three banks as an empirical
example. Ng et al. [13] indicated that in the banking industry,
it is desirable to identify potential bank failure or high-risk
banks.Thus, in their paper they have proposed a fuzzyCMAC
(cerebellar model articulation controller) model based on
compositional rule of inference, called FCMAC-CRI(S), as
an innovative way for tackling the problem using localized
learning.

Here the aim is to become more precise in calculating
Malmquist Productivity Index since in this subject inaccurate
inputs would lead to biased results of efficiency. Considering
the Malmquist Productivity Index which is used to compute
the progress and regress of entities in successive periods we
emphasize that it is ofmajor significance to pay concentration

while the Malmquist Productivity Index is being calculated
for DMUs which have similar performances in time 𝑡 and
time 𝑡 + 1. It would be definitely not fair enough to merely
consider efficiency variations and technological variations.
The fact is that a specific value of money in time 𝑡 is not
equal to that value in time 𝑡 + 1, that is, (10$)

𝑡
̸= (10$)

𝑡+1
.

Thus if technological variations and efficiency variations in
time 𝑡 and time 𝑡 + 1 have the same performances, then, the
interest rate needs to be considered in time 𝑡 + 1. The index
developed here is defined in terms of Modified Malmquist
Productivity Index model (MMPI), which can calculate
progress and regress by using the factor of present time value
of money. The incorporation of present time value of money
is also calculated within the framework of data envelopment
analysis.

The current paper proceeds as follows. In the next section,
Malmquist Productivity Index will be briefly reviewed.Then,
in Section 3, the proposed method, Modified Malmquist
Productivity Index, which is based on the present time value
of money, will be discussed. An illustrative example is docu-
mented in Section 4 in which main findings are highlighted,
and Section 5 concludes the paper with conclusions and
recommendation.

2. Malmquist Productivity Index

Utilizing DEA methodology it is possible to estimate the
Malmquist Productivity Index. As is, DEA models are linear
programming (LP) models with which the production fron-
tier can be estimated. Those DMUs located onto this frontier
are called efficient and others referred to as inefficient. The
degree of efficiency for each DMUs can be obtained on the
basis of the Euclidean distance of their input-output ratio
from the estimated frontier. Since efficient DMUs construct
production frontier thus it can obviously change over time.
What Malmquist DEA approach does is to calculate the
efficiency measure for one year relative to that of the prior
year, while the frontier may change from time to time (time 𝑡
and time 𝑡 + 1). Thus it can be said that the frontier function
has shifted from frontier 𝑡 to frontier 𝑡 + 1.

Let DMU
𝑙
denote a unit from a total 𝑛 units that relative

efficiency is being evaluated. Define 𝑥
𝑙
∈ 𝑅
𝑚

+
and 𝑦

𝑙
∈ 𝑅
𝑠

+

as semipositive input and output vectors of DMU
𝑙
. The most

general way of characterization of production technology is
production possibility set 𝑇, which is defined with a set of
semipositive (𝑥, 𝑦) as

𝑇=

{

{

{

(𝑥, 𝑦) | 𝑥 ≥

𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑗
, 𝑦≤

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑗
, 𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛

}

}

}

.

(1)

As existed in the literatureMalmquist Productivity Index can
be calculated via several functions, such as distance function:

𝐷(𝑋
𝑙
, 𝑌
𝑙
) = Min {𝜃 : (𝜃𝑋

𝑙
, 𝑌
𝑙
) ∈ 𝑇} . (2)
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The resultant distance function can be computed by
solving linear programming problems. Consider an input-
oriented CCR model as follows:

𝐷
𝑓
(𝑥
𝑘

𝑙
, 𝑦
𝑘

𝑙
) = min 𝜃

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑓

𝑖𝑗
≤ 𝜃𝑥
𝑘

𝑖𝑙
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑓

𝑟𝑗
≥ 𝑦
𝑘

𝑟𝑙
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

(3)

in which 𝑙 is the unit under assessment and each of 𝑘 and
𝑓 varies between time 𝑡 and time 𝑡 + 1. As an instance for
assessingDMU

𝑙
consider 𝑘 = 𝑡 and𝑓 = 𝑡+1,𝐷𝑡+1(𝑥𝑡

𝑙
, 𝑦
𝑡

𝑙
); this

means that DMU
𝑙
is considered in time 𝑡 while technology is

considered in time 𝑡 + 1. Considering this notification, four
LP problems can be defined.

In regards of this subject, Caves et al. [2] have introduced
the Malmquist Productivity Index as follows in which the
results obtained from the mentioned models are being used:

𝑀(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
, 𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
)

= (

𝐷
𝑡
(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
)𝐷
𝑡+1
(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
)

𝐷𝑡 (𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
)𝐷𝑡+1 (𝑥

𝑡

𝑙
, 𝑦
𝑡

𝑙
)

)

1/2

,

(4)

in which 𝑥𝑡
𝑙
and 𝑦𝑡

𝑙
are the input and output vectors for unit 𝑙,

used in period 𝑡. Also, 𝑥𝑡+1
𝑙

and 𝑦𝑡+1
𝑙

are the input and output
vectors for unit 𝑙, used in period 𝑡 + 1. This index measures
the productivity of unit l at the production (𝑥𝑡+𝑙

𝑙
, 𝑦
𝑡+𝑙

𝑙
) relative

to (𝑥𝑡
𝑙
, 𝑦
𝑡

𝑙
).

The previously equation can be further decomposed into
two componentsmentioned: one formeasuring the change in
technical efficiency and the other for measuring the technical
change which means the technology frontier shift between
the two time periods, 𝑡 and 𝑡 + 𝑙:

𝑀(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
, 𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
)

=

𝐷
𝑡+1
(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
)

𝐷𝑡 (𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
)

[

𝐷
𝑡
(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
)𝐷
𝑡
(𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
)

𝐷𝑡+1 (𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
)𝐷𝑡+1 (𝑥

𝑡

𝑙
, 𝑦
𝑡

𝑙
)
]

1/2

.

(5)

The interpretation of this equation is that 𝑀(𝑥𝑡+1
𝑙
, 𝑦
𝑡+1

𝑙
,

𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
) > 1 indicates an improvement in total productivity,

𝑀(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
, 𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
) < 1 indicates a decline, and𝑀(𝑥𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
,

𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
) = 1 shows an unchanged productivity growth, see

Caves et al. [2], and Chen [7].

3. Main Subject

In performance assessment inaccurate inputs would lead to
biased results of efficiency. Malmquist Productivity Index is
used for computing the progress and regress of entities in

successive periods. It is of great importance to pay attention
when Malmquist Productivity Index is being calculated for
DMUs with similar performances in time 𝑡 and time 𝑡 + 1.
Thus, a question is brought forth for discussion: would it
be fair enough to merely consider efficiency variations and
technological variations? Of course not. The fact is that an
specific value of money in time 𝑡 is not equal to that value
in time 𝑡 + 1, that is, (10$)

𝑡
̸= (10$)

𝑡+1
. Thus if technological

variations and efficiency variations in time 𝑡 and time 𝑡 + 1
have the same performances, then, the interest rate needs to
be considered in time 𝑡 + 1.

For instance consider a bank with a large financial capital
in a year which has a performance lower than the interest rate
in the country; it would definitely have regressed even if it
have a high efficiency and positive technological variations.
In this case the correspondingMalmquist Productivity Index
is greater than one.

Here “single payment compound” is utilized for calculat-
ing the time value of money in two successive years. If one
has 𝐴$ in time 𝑓, corresponding value will be 𝐴 × (1 + 𝑒)𝑛
in time 𝑙 where 𝑛 = 𝑙 − 𝑓 and 𝑒 is the interest rate in time
𝑓 to 𝑙. If 𝑛 > 0 then 𝐴

𝑙
× (1 + 𝑒)

𝑛
= 𝐴
𝑓
and if 𝑛 < 0 then

𝐴
𝑙
= 𝐴
𝑓
× (1 + 𝑒)

𝑛 which means that 𝐴
𝑙
× (1/(1 + 𝑒)

−𝑛
) =

𝐴
𝑓
. It makes no difference to multiply (1 + 𝑒)𝑛 to 𝐴

𝑓
or

divide 𝐴
𝑙
by (1 + 𝑒)𝑛. This means those DMUs have inputs

and (or) outputs influenced by time value of money should
be compared on equal terms with one an other. Thus it is
necessary to make these changes first and then consider the
observations and compare them to the efficient frontiers. As
said before in order to make these values equal it is possible
to make the changes in either side of the equation. Consider
𝑓 = 𝑡 and 𝑙 = 𝑡 + 1; in this case 𝑛 = 𝑡 + 1 − 𝑡; thus the vale
of money will be 𝐴 × (1 + 𝑒) in time 𝑡 + 1. As in Malmquist
Productivity Index times 𝑡 and 𝑡 + 1 are compared with each
other thus always 𝑛 = 1.

For clarity consider the following example. If one has 12$
in time 𝑡 and 14$ in time 𝑡 + 1, while all the factors, specially
time value of money, are the same in these two time periods,
thus progress had happed. But, if the value of 12$ in time 𝑡
is equal to the value of 15$ in time 𝑡 + 1, therefore a regress
had happened. Thus, it is necessary to consider time value of
money for those factors which is impressible while evaluating
the progress or the regress of units.

It should be noted that if productivity is calculated in suc-
cessive months the interest rate has been computed on basis
of months.

This procedure will be performed for those factors on
which time value of money is impressive.

Therefore, consider a situation in time 𝑡 in which from the
𝑥units of inputs, with the interest value of 𝑒,𝑦units of outputs
have been produced. In this situation, certainly, in time 𝑡 + 1
with the interest value of é the inputs (𝑥) and the outputs (𝑦)
are not the same as those of in time 𝑡. Thus, considering
the time value of money for those factors on which it leaves
impression, the results may be different to those acquired
without regarding the time value of money. As a result, at
first, the interest rate ofmoney is expected to be accounted for
them, and efficiency variations and technological variations
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should be calculated. For those factors on which interest
value is not impressive, such as number of personals and
equipment, there is no need to be dealt with like this, and they
should be treated similar to the precedent.

Consider the previously-mentioned discussion with the
time value of money is being incorporated into the analysis,
the following four LPs will be presented for assessing Modi-
fied Malmquist Productivity Index.

Under constant returns to scale, the LP for𝐷𝑡(𝑥𝑡
𝑙
, 𝑦
𝑡

𝑙
), with

𝑚 inputs and 𝑠 outputs, is as follows:

𝐷
𝑡

(𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
) = min 𝜃

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑡

𝑖𝑗
≤ 𝜃𝑥
𝑡

𝑖𝑙
, 𝑖 = 1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑡

𝑟𝑗
≥ 𝑦
𝑡

𝑟𝑙
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(6)

Similarly, the other three LP problems become

𝐷
𝑡+1

(𝑥
𝑡

𝑙
, 𝑦
𝑡

𝑙
) = min 𝜃

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑡+1

𝑖𝑗
≤ 𝜃𝑥
𝑡

𝑖𝑙
, 𝑖 ∈ 𝐼

1
,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑡+1

𝑟𝑗
≥ 𝑦
𝑡

𝑟𝑙
, 𝑟 ∈ 𝑅

1
,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑡+1

𝑖𝑗
≤ 𝜃(1 + 𝑒)

1
𝑥
𝑡

𝑖𝑙
, 𝑖 ∈ 𝐼

2
,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑡+1

𝑟𝑗
≥ (1 + 𝑒)

1
𝑦
𝑡

𝑟𝑙
, 𝑟 ∈ 𝑅

2
,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

(7)

where 𝐼
1
and 𝑅

1
show the subsets of inputs and outputs,

respectively for which time value of money the nonimpress-
ible and 𝐼

2
and 𝑅

2
shows the subsets of inputs and outputs,

respectively, for which is the time value of money is influen-
tial. It also should be mentioned that 𝐼 = {1, . . . , 𝑚}, 𝑅 =

{1, . . . , 𝑠} and 𝐼 = 𝐼
1
∪ 𝐼
2
, 𝑅 = 𝑅

1
∪ 𝑅
2

𝐷
𝑡+1

(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
) = min 𝜃

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑡+1

𝑖𝑗
≤ 𝜃𝑥
𝑡+1

𝑖𝑙
, 𝑖=1, . . . , 𝑚,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑡+1

𝑟𝑗
≥ 𝑦
𝑡+1

𝑟𝑙𝑜
, 𝑟 = 1, . . . , 𝑠,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

(8)

𝐷
𝑡

(𝑥
𝑡+1

𝑙
, 𝑦
𝑡+1

𝑙
) = min 𝜃

s.t.
𝑛

∑

𝑗=1

𝜆
𝑗
𝑥
𝑡

𝑖𝑗
≤ 𝜃𝑥
𝑡+1

𝑖𝑙
, 𝑖 ∈ 𝐼

1
,

𝑛

∑

𝑗=1

𝜆
𝑗
𝑦
𝑡

𝑟𝑗
≥ 𝑦
𝑡+1

𝑟𝑙
, 𝑟 ∈ 𝑅

1
,

𝑛

∑

𝑗=1

𝜆
𝑗
(1 + 𝑒)

1
𝑥
𝑡

𝑖𝑗
≤ 𝜃𝑥
𝑡+1

𝑖𝑙
, 𝑖 ∈ 𝐼

2
,

𝑛

∑

𝑗=1

𝜆
𝑗
(1 + 𝑒)

1
𝑦
𝑡

𝑟𝑗
≥ 𝑦
𝑡+1

𝑟𝑙
, 𝑟 ∈ 𝑅

2
,

𝜆
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛.

(9)

In model (7) subsets of inputs and outputs are the same
as what has been discussed previously.

It is noteworthy of attention that in models (6) and (8)
time value of money is not included. Time value of money
does not influence the procedure since two similar periods
are being compared with each other and since time value
of money is fixed in a period. Moreover, according to the
aforesaid formula (1 + 𝑒)𝑛, when 𝑛 is equal to zero, one is
multiplied to the input and output parameters. But, inmodels
(7) and (9), which are considered in various periods, the
time value of money, for the indexes under the influence of
it, is calculated by “single payment compound” factor. The
Modified Malmquist Productivity Index is calculated like the
preceding classic analysis through the following formula:

𝑀(𝑥
𝑡+1

𝑖
, 𝑦
𝑡+1

𝑖
, 𝑥
𝑡

𝑖
, 𝑦
𝑡

𝑖
)

=

𝐷
𝑡+1

(𝑥
𝑡+1

𝑖
, 𝑦
𝑡+1

𝑖
)

𝐷
𝑡

(𝑥
𝑡

𝑖
, 𝑦
𝑡

𝑖
)

[

[

𝐷
𝑡

(𝑥
𝑡+1

𝑖
, 𝑦
𝑡+1

𝑖
)𝐷
𝑡

(𝑥
𝑡

𝑖
, 𝑦
𝑡

𝑖
)

𝐷
𝑡+1

(𝑥
𝑡+1

𝑖
, 𝑦
𝑡+1

𝑖
)𝐷
𝑡+1

(𝑥
𝑡

𝑖
, 𝑦
𝑡

𝑖
)

]

]

1/2

.

(10)

Considering the aforesaid discussion, in regards of (10)
it can be concluded that 𝑀(𝑥𝑡+1

𝑖
, 𝑦
𝑡+1

𝑖
, 𝑥
𝑡

𝑖
, 𝑦
𝑡

𝑖
) > 1 indicates

productivity gain,𝑀(𝑥𝑡+1
𝑖
, 𝑦
𝑡+1

𝑖
, 𝑥
𝑡

𝑖
, 𝑦
𝑡

𝑖
) < 1 indicates produc-

tivity loss, and𝑀(𝑥𝑡+1
𝑖
, 𝑦
𝑡+1

𝑖
, 𝑥
𝑡

𝑖
, 𝑦
𝑡

𝑖
) = 1 means no change in

productivity from time 𝑡 to time 𝑡 + 1.

4. Application

In early work in this field, productivity change was explained
in terms of technical change, and efficiency change but in
this paper according to the mentioned discussion it has
been convinced that present time value of money plays an
influential role in showing the progress or regress of an entity;
thus this factor should also be accounted for.

Here an application of the methodology to the Iranian
banks in the period of 2006 to 2009 has been exam-
ined. Employing the Malmquist Productivity Index which
is calculated based on data envelopment analysis’ models,
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Table 1: Description.

Index Status
Input

Asses quality (𝐼
1
) Nonimpressible

Rate of deposit growth (𝐼
2
) Nonimpressible

Total possessing (𝐼
3
) Impressible

Personal costs (𝐼
4
) Impressible

Interest payment (𝐼
5
) Impressible

Output
Profit marginal (𝑂

1
) Nonimpressible

Rate of revenue growth (𝑂
2
) Nonimpressible

Received commission (𝑂
3
) Impressible

Share-holders equity (𝑂
4
) Impressible

Acquired interest (𝑂
5
) Impressible

Total revenue (𝑂
6
) Impressible

productivity measure can be computed. The incorporation
of present time value of money is also calculated within
the framework of data envelopment analysis as showed in
previous section.

Over the last years, the standard structural analysis that
has taken place in the productivity measurement has been
developed in terms of technical change and efficiency change,
but the actuality is that present time value of money should
also be incorporated into the analysis. In Table 1 we give a
brief explanation about variables. The input-output indexes
are listed in Tables 2–5. Also, it is specified as to whether they
are under the influence of the time value ofmoney. As you can
see, for some indexes like “Asses quality” and “rate of deposit
growth” time value of money is not influential and they are
indicated as “nonimpressible” and for some other as “total
possessing” and “personal costs”, it is observable and it should
be considered into the analysis.These indexes are indicated as
“impressible.”

According to the presented models and aforesaid discus-
sions, the present time value of money is also incorporated
into the analysis within the framework of data envelopment
analysis. As shown in previous section, Modified Malmquist
Productivity Index has been calculated and the results of
these two analysis are gathered in Tables 6–10.

As it was shown in the following tables MMPI model
yields different results in comparison to those of MPI. On
regards of the interest rate in 2006-2007, 2007-2008, and
2008-2009 it can be found out that on basis of the first wrong
picture which shows a progress in some of the banks, all of
them in the first period of analysis have made regress. That
means that those banks have shown lower performance in
contrast to that of classic model. Thus, one of the influential
factors which should be incorporated while progress and
regress of organizations are being analyzed is to calculate the
interest rate and time value of money. It is worthy of attention
that in developing countries interest rate has a great amount,
and its effect on economics transactions has a significant role.
In this application the interest rates of 2006-2007, 2007-2008,
and 2008-2009 are 16%, 18.4%, and 12.5%, respectively.

4
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Figure 1: Malmquist Productivity Index.
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Figure 2: Modified Malmquist Productivity Index.
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Figure 3: Malmquist changes for DMU
1
.

In the second period due to the reduction of interest
value and corresponding variations of time value of money,
the performance of banks has been improved somehow. But,
while the acquired results have being compared to those
obtained from classic model, which shows five banks has
made progress, in modified analysis only three banks have
progressed.

Considering the acquired results from modified analysis
in the third period it has been revealed that all banks have
regressed. By inclusion of the interest rate in modified model
for those banks which are under evaluation, a warning bell
rings which shows the weak performance of Iranian banks in
successive periods while this factor has been considered.
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Table 2: Inputs and outputs (2006).

DMUs 𝐼
1

𝐼
2

𝐼
3

𝐼
4

𝐼
5

𝑂
1

𝑂
2

𝑂
3

𝑂
4

𝑂
5

𝑂
6

1 0.824 0.350 90906777 1546117 3733535 0.021 0.359 474259 2314028 5456846 6242343
2 0.916 0.381 42765690 761666 1531782 0.039 0.381 147729 1227237 2986501 3281831
3 0.848 0.297 61415068 1012123 2713555 0.037 0.364 172220 2192410 4774258 5165554
4 0.914 0.280 31843148 562000 1322229 0.027 0.417 136994 1116026 2109188 2380064
5 0.857 0.419 39809905 612876 1580745 0.028 0.397 188265 1323499 2583767 2862649
6 0.882 0.360 9190113 209150 322760 0.056 0.854 42873 650130 772256 860719

Table 3: Inputs and outputs (2007).

DMUs 𝐼
1

𝐼
2

𝐼
3

𝐼
4

𝐼
5

𝑂
1

𝑂
2

𝑂
3

𝑂
4

𝑂
5

𝑂
6

1 0.845 0.259 106959115 2045491 4746010 0.016 0.272 460303 2292258 6279449 7943232
2 0.912 0.240 52281855 988163 2202181 0.029 0.227 215136 1125702 3568242 4026108
3 0.866 0.240 66852215 1267093 3450791 0.027 0.106 178679 1962481 5209039 5711620
4 0.915 0.273 38858011 719412 1737239 0.030 0.323 181317 1234487 2815229 3148523
5 0.956 0.361 66933174 987139 2039642 0.027 0.328 222179 2262840 3456352 3802313
6 0.887 0.735 13969634 317444 329968 0.060 0.376 76364 998289 1025285 1184574

MMPI DMU6

DMU61
0.9
0.8
0.7
0.6
0.5
0.4
0.3
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0.1

0

MPI DMU6

2006-2007 2007-2008 2008-2009

Figure 4: Malmquist changes for DMU
6
.

While the increasing interest rate is being incorporated,
in the event that the technology has not changed, banks
encountered a regress, and this difficulty should be prevented
and an immediate action must be taken.

In the following, performance of each bank is being
compared to that of itself in different periods. It can also be
discussed that if the performance in 2006 is being compared
to that of 2009 in the corresponding model 𝑛 should be
replaced with 3; that means a computation of three periods
for interest rate.

As it can be seen in the following figures, variations in
classic and Modified Malmquist Productivity Indexes have
major differences. In classic analysis, except DMU

1
, other

DMUs have similar variations, but in that of modified one
variations have various procedures. Variations in classic
Malmquist Productivity Index are described in Figure 1.

Also, variations in Modified Malmquist Productivity
Index are depicted in Figure 2. In the following, variations in
classic and Modified Malmquist Productivity Indexes will be
specifically discussed for two DMUs (DMU

1
and DMU

6
).

For the first bank (DMU
1
), variations of Malmquist

Productivity Index is as what has been seen in Figure 3. The
progress that DMU

1
, in classic models, has made is totally

different from that of the modified analysis, and the variance
of variations in themodified approach is more rationale.That
means, all of the under-assessment banks in years of analysis
do not have significant technological variations. Thus, the
correspondingMalmquist Index has amore stable procedure.
This fact in modified analysis is considerable. Now, consider
Figure 4 which shows variations in classic and modified
approaches for DMU

6
. Modified Malmquist Productivity

Index in the third period has revealed a lower regress in com-
parison to that of second period. Whereas, in classic analysis
it witnessed an intense decrease while being compared to the
second period. As a consequence of considering the present
time value of money according to the aforesaid discussion
it has been shown that regarding the modified analysis has
led to different results while Malmquist Productivity Index is
being calculated.

5. Conclusion

Classic Malmquist Productivity Index, in different periods,
without considering the present value of money, shows
regress and progress of a DMU while considering efficiency
and technology variations. This shortcoming would yield
biased results which can affect the correct interpretation
since a currency in last year in not equal to the that of this.
Noted that performance assessment with inaccurate inputs
would lead to biased results of efficiency. This shortcoming
would affect Malmquist Productivity Index which is used to
compute the progress and regress of entities in successive
periods.Thus it is obvious that it would not be fair enough to
merely consider efficiency and technological variations. The
index developed here has been defined in terms of Modified
Malmquist Productivity Index (MMPI) model, which can
calculate progress and regress by using the factor of present
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Table 4: Inputs and outputs (2008).

DMUs 𝐼
1

𝐼
2

𝐼
3

𝐼
4

𝐼
5

𝑂
1

𝑂
2

𝑂
3

𝑂
4

𝑂
5

𝑂
6

1 0.838 0.268 16281551 2622188 6131088 0.025 0.494 716748 8012504 9522348 11869855
2 0.922 0.498 94278569 1240252 3380231 0.030 0.617 330604 3972909 5549420 6509109
3 0.787 0.406 128550383 1903395 4582403 0.041 0.728 595662 5648607 8656018 9870337
4 0.940 0.327 62867728 990467 2241437 0.034 0.461 328427 2365168 3985100 4600389
5 0.960 0.326 88157665 1258469 2891489 0.026 0.464 384005 2267367 4916408 5567726
6 0.790 0.464 20262710 491521 732181 0.056 0.606 110347 1088278 1691760 1902707

Table 5: Inputs and outputs (2009).

DMUs 𝐼
1

𝐼
2

𝐼
3

𝐼
4

𝐼
5

𝑂
1

𝑂
2

𝑂
3

𝑂
4

𝑂
5

𝑂
6

1 0.872 0.243 215200038 3624698 8301843 0.014 0.319 2189673 6770928 11133284 15660622
2 0.967 0.388 146756030 1688724 4416677 0.037 0.307 470243 4327269 7275909 8507807
3 0.823 0.188 149243454 2223659 5216403 0.035 0.166 756999 5142175 10133005 11504037
4 0.933 0.226 83332310 1124923 3350167 0.026 0.416 501502 2639362 5286830 6512891
5 0.971 0.245 114430158 1516034 3951486 0.024 0.327 701409 2940119 6342139 7387085
6 0.853 0.385 27618519 651419 1256218 0.031 0.221 154685 1136311 2005444 2323583

Table 6: Malmquist index comparison of 2007 to 2006.

DMUs MPI MPI status MMPI MMPI status Differences
1 1.134 Progress 0.864 Regress Changed
2 0.988 Regress 0.935 Regress Equable
3 0.997 Regress 0.855 Regress Equable
4 0.844 Regress 0.816 Regress Equable
5 1.025 Progress 0.897 Regress Changed
6 0.634 Regress 0.480 Regress Equable

Table 7: Malmquist index comparison of 2008 to 2007.

DMUs MPI MPI status MMPI MPI status Differences
1 3.704 Progress 1.090 Progress Equable
2 1.338 Progress 0.967 Regress Changed
3 1.609 Progress 0.963 Regress Changed
4 1.199 Progress 1.010 Progress Equable
5 1.243 Progress 1.056 Progress Equable
6 0.927 Regress 0.649 Regress Equable

Table 8: Malmquist index comparison in 2009 to 2008.

DMUs MPI MPI Status MMPI MMPI Status Differences
1 0.530 Regress 0.289 Regress Equable
2 0.804 Regress 0.816 Regress Equable
3 0.944 Regress 0.687 Regress Equable
4 0.996 Regress 0.828 Regress Equable
5 1.150 Progress 0.917 Regress Changed
6 0.430 Regress 0.461 Regress Equable

time value ofmoney. It should be noted that the incorporation
of present time value of money is also calculated within
the framework of data envelopment analysis. In the case
study presented here the major concentration is showing the
true progress and regress of bank branches. Moreover, those

Table 9: Malmquist Productivity Index.

DMUs MPI
(2006-2007)

MPI
(2007-2008)

MPI
(2008-2009)

1 1.134 3.704 0.530
2 0.988 1.338 0.804
3 0.997 1.609 0.944
4 0.844 1.199 0.996
5 1.025 1.243 1.150
6 0.634 0.927 0.430

Table 10: Modified Malmquist Productivity Index.

DMUs MMPI
(2006-2007)

MMPI
(2007-2008)

MMPI
(2008-2009)

1 0.864 1.090 0.289
2 0.935 0.967 0.816
3 0.855 0.963 0.687
4 0.816 1.010 0.828
5 0.897 1.056 0.917
6 0.480 0.649 0.461

factors on which the time value of money is impressible are
mainly financial ones that are under the influence of the
interest rate. Thus while considering Time Value of Money,
further investigations of other concepts relevant to DEA can
also be considered from this point of view.
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A new bandwidth allocationmodel is studied in this paper. In this model, a system, such as a communication network, is composed
of a finite number of users, and they compete for limited bandwidth resources. Each user adopts the decision that maximizes his
or her own benefit characterized by the utility function. The decision space of each user is subject to constraints. In addition,
some users form a group, and their joint decision space is also subject to constraints. Under the assumption that each user’s utility
function satisfies some continuity and concavity conditions, the existence, uniqueness, and fairness, in some appropriate sense, of
the Nash equilibrium point in the allocation game are proved. An algorithm yielding a sequence converging to the equilibrium
point is proposed. Finally, a numerical example with detailed analysis is provided to illustrate the effectiveness of our work.

1. Introduction

With the widespread use of internet and the increasing
popularity of mobile devices, more and more people can
get online at almost anytime and anywhere. An immediate
challenge facing the significant increment of online users is
the support of quality of service (QoS). Over the past decade
considerable efforts have been made to ensure the smooth
operation of the networking systems. For example, the load
balancing problems were considered by Anselmi et al. [1] and
Ayesta et al. [2].The routing problems were studied by La and
Anantharam [3], Richman and Shimkin [4], Boulogne et al.
[5], andKorilis et al. [6–8].Niyato andHossain [9] studied the
practical issue such as the admission control for the wireless
broadband standard. Ganesh et al. [10] and Yaı̈che et al. [11]
considered the pricing issues. In modeling the networking
problems, quite often the bandwidth availability is the main
concern and has its role in the associated performance
measure.The network system quantifies the results caused by
different operation scenarios and seeks the approach leading
to the greatest benefits in some sense. Since the benefit of
any network user inevitably involves that of other users, its

evaluation ismostly carried out in the context of game theory.
In the survey paper Altman et al. collected a long list of
networking models based on game theoretic formulation.
Interested readers are referred to [12] and the rich reference
therein.

As mentioned above, the bandwidth availability is the
major concern inmanynetworking problems.Thebandwidth
allocation is thus the core issue as far as the quality of service
is concerned. While the bandwidth allocation problem was
considered by many authors in different contexts of network-
ing protocols or communication standards (see e.g., [9, 11, 13,
14]), at a high level of abstraction the problem can be regarded
as the classical resources distribution problem studied in
many professional fields such as economics, management
science, and operations research. Given a finite number of
units competing for the limited resources, how does each unit
decide its share based on its own utility function? Lazar et al.
[15] formulated this problem for the network composed of
noncooperative users. Under certain monotonicity, differen-
tiability, and convexity assumptions on the cost function the
unique existence and certain fairness property of the Nash
equilibriumpoint (NEP)were proved. An algorithmbased on
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Gauss-Seidel and Jacobi schemes was proposed and proved
to yield a sequence converging to the NEP. However, the
framework in [15] assumes only the natural constraint for
the bandwidth allocation. That is, the feasible bandwidth of
any user falls within the interval lower bounded by zero and
upper bounded by the bandwidth available for that user. In
practice some techniques such as the bandwidth throttling
and bandwidth/traffic shaping [16] are available to provide
more adaptive bandwidth control. To address this issue,
Rhee and Konstantopoulos [17, 18] relaxed the assumption
and allowed some prespecified numbers for the upper and
lower bounds of the bandwidth.This relaxation increases the
flexibility of flow control and helps theQoS satisfaction by the
networking system.On the other hand, inmodern broadband
communication systems some users might form a group and
expect the group-wise QoS, in addition to the user-wise one.
For example, the customers of an internet service provider
(ISP) might include the individuals and a company with
many employees. To maintain the QoS, parameters would
be assigned to bound the bandwidth of each individual and
each employee. Furthermore the ISP and the company would
set the constraint for the employee-averaged, or equivalently,
employee-totaled bandwidth, as shown in Figure 1. A similar
concept of group constraint can be seen in the cost-effective
broadband access network such as the Ethernet-based passive
optical network (EPON) [19, 20]. This system is composed
of an optical line terminal (OLT) and many optical network
units (ONUs). The OLT is situated in the central office and
ONUs are distributed over the remote areas for multimedia
communication with the subscribers. In the upload process
each ONU adopts the time division multiplexing access
(TDMA) protocol to transmit data frames to the OLT, in the
sense that each ONU only transmits the data during the time
slots specifically scheduled for it [21]. The protocol avoids
the frame collisions between different ONUs at the cost of
imposing the upper bound for the time-average flow of each
ONU and the upper bound for the total flow of all ONUs.

In light of the bandwidth sharing mechanism in EPON
and other similar systems, we extend the existing results to
include the user-grouping constraint for better model fitting.
Suppose each user has his or her own utility function that
describes the relation between the allocated bandwidth and
the resultant benefit to that user. Following the standard
assumptions, (1) the function depends on the bandwidth of
the user, and on the bandwidth of other users only through
their total bandwidth, and (2) the function satisfies certain
continuity and concavity properties; we show the unique
existence and the fairness with some appropriate sense,
of the NEP in the allocation game. The contributions of
our work are twofold. First, a novel concept called user-
grouping NEP is proposed. This concept is corresponding
to the new introduction of the group constraint, under
which the uniqueness of NEP proved in [15, 17] no longer
holds. Based on this concept we give a new definition for
the equilibrium point and prove its uniqueness under our
assumptions. The fairness of the allocation based on the
user-grouping NEP is also proved. Second, we show that the
Gauss-Seidel type algorithm in [15, 18] can be modified to
yield a sequence converging to the user-grouping NEP. Since

Figure 1: The system bandwidth allocation r = (𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
)

subject to user-wise constraints: 𝑟
𝑖
≤ 𝑟
𝑖
≤ 𝑟
𝑖 for 𝑖 ∈ {1, 2, . . . , 𝑛}, and

a user-grouping constraint 𝑅
𝑔
≤ ∑
𝑚

𝑖=1
𝑟
𝑖
≤ 𝑅
𝑔
. The total allocation

𝑅 = ∑
𝑛

𝑖=1
𝑟
𝑖
is less than 𝑇, the total bandwidth.

the bandwidth allocation is of central concern in networking
systems, our results might result in the reinvestigation and
reformulation of other networking issues such that more
practical approaches can be developed.

2. Preliminaries

Suppose a networking system has 𝑛 users and they compete
for the system bandwidth. Each user is assigned with the
bandwidth subject to predecided upper and lower bounds.
In addition, 𝑚 of the 𝑛 users form a group and the total
bandwidth of the 𝑚 users is also subject to a predecided
constraint. We would like to design the system bandwidth
allocation policy that optimizes the performance index of
each user in the game-theoretical sense. For convenience, we
use the list of nomenclature shown at the end of the paper.

Assume the utility function for each user depends on
the bandwidth of that user and the total bandwidth of other
users. That is, the utility function for user 𝑖 in N can be
written as 𝑈

𝑖
(𝑟
𝑖
, 𝑅). Also, assume the utility function satisfies

the following continuity and concavity properties [18].

Assumption 1. For each utility function 𝑈
𝑖
(𝑟
𝑖
, 𝑅)

(a) 𝑈
𝑖
(𝑟
𝑖
, 𝑅) is continuously differentiable with respect to

𝑟
𝑖
;

(b) (𝜕/𝜕𝑟
𝑖
)𝑈
𝑖
(𝑟
𝑖
, 𝑅) is strictly decreasing with respect to 𝑟

𝑖

and nonincreasing with respect to 𝑅.

Nowwe define the allocation function. For user 𝑖 inN\M
with the available bandwidth 𝑇

𝑖
, the allocation function 𝐴

𝑖
is

defined as

𝐴
𝑖
(𝑇
𝑖
) = arg max

𝑟
𝑖
≤𝑟≤𝑟
𝑖

𝑈
𝑖
(𝑟, 𝑟 + 𝑇 − 𝑇

𝑖
) . (1)

For user 𝑖 in M with the available bandwidth 𝑇
𝑖
and inside-

group information 𝑇𝑔
𝑖
, the allocation function A

𝑖
is defined

as

A
𝑖
(𝑇
𝑖
, 𝑇
𝑔

𝑖
) = arg max

𝑟
𝑖
≤𝑟≤𝑟
𝑖
, 𝑅
𝑔
≤𝑇
𝑔

𝑖
+𝑟≤𝑅
𝑔

𝑈
𝑖
(𝑟, 𝑟 + 𝑇 − 𝑇

𝑖
) . (2)
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Assumption 2. The bandwidth allocation with the constraint
parameters has the following properties:

(a) 𝑇
𝑖
> A
𝑖
(𝑇
𝑖
, 𝑇
𝑔

𝑖
) for each feasible 𝑇

𝑖
and 𝑇𝑔

𝑖
where

𝑖 ∈M, and 𝑇
𝑖
> 𝐴
𝑖
(𝑇
𝑖
) for each feasible 𝑇

𝑖
where

𝑖 ∈N \M;
(b) ∑𝑚

𝑖=1
𝑟
𝑖
> 𝑅
𝑔
> 𝑅
𝑔
> ∑
𝑚

𝑖=1
𝑟
𝑖
.

In our framework, the classicalNash equilibriumpoint (NEP)
in the allocation game is defined as

r∗ := (𝑟∗
1
, 𝑟
∗

2
, . . . , 𝑟

∗

𝑛
) , (3)

where

𝑟
∗

𝑖
∈ argmax

𝑟∈𝐶
𝑖

𝑈
𝑖
(𝑟, 𝑟 + ∑

𝑗 /=𝑖

𝑟
∗

𝑗
) . (4)

Note that 𝐶
𝑖
is {𝑟 | 𝑟

𝑖
≤ 𝑟 ≤ 𝑟

𝑖
, 𝑅
𝑔
≤ 𝑟 + ∑

𝑗∈M\{𝑖} 𝑟
∗

𝑗
≤ 𝑅
𝑔
} if

𝑖 ∈ M and is {𝑟 | 𝑟
𝑖
≤ 𝑟 ≤ 𝑟

𝑖
} otherwise. The user-grouping

NEP is defined as

r∗
𝑔
:= (

𝑅
∗

𝑔

𝑚
, 𝑟
∗

𝑚+1
, 𝑟
∗

𝑚+2
, . . . , 𝑟

∗

𝑛
) , (5)

where

𝑅
∗

𝑔
:=

𝑚

∑

𝑖=1

𝑟
∗

𝑖
. (6)

Remark 3. The definitions (3)-(4) reflect the central concept
of the well-studied constrained NEP. That is, given the
constrained strategy space 𝐶

𝑖
for each user 𝑖 ∈ N, 𝑟∗

𝑖
is

defined as the maximizer of the utility function of user 𝑖
provided that the strategy 𝑟∗

𝑗
is adopted by user 𝑗 for each

𝑗 ∈ N \ {𝑖}. Note that the bandwidth of users in the group
M should satisfy the extra group constraint and thus 𝑟∗

𝑖

might lose its uniqueness in 𝐶
𝑖
as the group constraint is

active. The novel concept of user-grouping NEP in (5)-(6) is
thus proposed to compensate the property of the equilibrium
point. We will show in Section 3.1 that our setting ensures the
uniqueness of the user-grouping NEP.

Remark 4. Suppose 𝑇∗
𝑖
:= 𝑇 − ∑

𝑛

𝑗 /=𝑖
𝑟
∗

𝑗
. Also, let 𝑇𝑔∗

𝑖
:= 𝑅
𝑔
−

∑
𝑚

𝑗 /=𝑖
𝑟
∗

𝑗
, then

𝑟
∗

𝑖
:= {

A
𝑖
(𝑇
∗

𝑖
, 𝑇
𝑔∗

𝑖
) if 𝑖 ∈M

𝐴
𝑖
(𝑇
∗

𝑖
) if 𝑖 ∈N \M.

(7)

By part (a) in Assumption 2 we have

𝑟
∗

𝑖
< 𝑇
∗

𝑖
= 𝑇 −

𝑛

∑

𝑗 /=𝑖

𝑟
∗

𝑗
. (8)

Consequently,

𝑅
∗
:=

𝑛

∑

𝑖=1

𝑟
∗

𝑖
< 𝑇. (9)

Thismeans that the NEP, or r∗, satisfies the natural constraint
𝑅
∗
≤ 𝑇 and the constraint is always inactive. Part (b) in

Assumption 2 is a natural condition such that the constraint
𝑅
𝑔
≤ ∑
𝑚

𝑖=1
𝑟
𝑖
≤ 𝑅
𝑔
makes sense.

The existence of the NEP in our setting is guaranteed by
Rosen’s result in the following.

Theorem 5 (see [22,Theorem 1]). An equilibrium point exists
for every concave 𝑛-person game.

Theorem 5 can be obtained using the classical Kakutani
fixed point theorem and in some sense generalizes Nash’s
setting on the strategy space of the users [23, 24]. In the
next section we delve into other properties and propose an
algorithm to locate the NEP.

3. Main Results

3.1. Uniqueness. Our first result is concerned with the
uniqueness of the user-groupingNEP.This property as shown
in [18, page 13] is not implied by the uniqueness theorem in
[22]. For the NEP r∗ = (𝑟

∗

1
, 𝑟
∗

2
, . . . , 𝑟

∗

𝑛
) defined in (3)-(4),

the Karash-Kuhn-Tucker (KKT) conditionsmust be satisfied.
That is, for each 𝑖 ∈N\M there exist KKTmultipliers 𝜆

∗

𝑖
and

𝜆
∗

𝑖
(see e.g., [25, page 458]) such that

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
∗

𝑖
, 𝑅
∗
) + 𝜆
∗

𝑖
− 𝜆
∗

𝑖
= 0, (10)

𝜆
∗

𝑖
(𝑟
∗

𝑖
− 𝑟
𝑖
) = 0, (11)

𝜆
∗

𝑖
(𝑟
𝑖
− 𝑟
∗

𝑖
) = 0, (12)

𝑟
𝑖
≤ 𝑟
∗

𝑖
≤ 𝑟
𝑖
, (13)

𝜆
∗

𝑖
≥ 0, 𝜆

∗

𝑖
≥ 0. (14)

In addition, for each 𝑖 ∈ M there exist KKT multipliers 𝜆
∗

𝑖

and 𝜆∗
𝑖
satisfying (11)–(14), and 𝛾∗

𝑖
and 𝛾∗
𝑖
satisfying

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
∗

𝑖
, 𝑅
∗
) + 𝜆
∗

𝑖
− 𝜆
∗

𝑖
+ 𝛾
∗

𝑖
− 𝛾
∗

𝑖
= 0, (15)

𝛾
∗

𝑖
(𝑅
∗

𝑔
− 𝑅
𝑔
) = 0, (16)

𝛾
∗

𝑖
(𝑅
𝑔
− 𝑅
∗

𝑔
) = 0, (17)

𝑅
𝑔
≤ 𝑅
∗

𝑔
≤ 𝑅
𝑔
, (18)

𝛾
∗

𝑖
≥ 0, 𝛾

∗

𝑖
≥ 0, (19)

where 𝑅∗
𝑔
is defined in (6).

Lemma 6. For each 𝑖 ∈N \M, let 𝑟(1)
𝑖
:= 𝐴
𝑖
(𝑇
(1)

𝑖
) and 𝑟(2)

𝑖
:=

𝐴
𝑖
(𝑇
(2)

𝑖
) for some feasible 𝑇(1)

𝑖
and 𝑇(2)

𝑖
, then

𝑟
(1)

𝑖
> 𝑟
(2)

𝑖
⇒ 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖
≥ 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
, (20)
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where the nonnegative KKT multipliers 𝜆
(1)

𝑖
, 𝜆(1)
𝑖
, 𝜆
(2)

𝑖
and 𝜆(2)

𝑖

satisfy

𝜆
(1)

𝑖
(𝑟
(1)

𝑖
− 𝑟
𝑖
) = 0, 𝜆

(1)

𝑖
(𝑟
𝑖
− 𝑟
(1)

𝑖
) = 0, (21)

𝜆
(2)

𝑖
(𝑟
(2)

𝑖
− 𝑟
𝑖
) = 0, 𝜆

(2)

𝑖
(𝑟
𝑖
− 𝑟
(2)

𝑖
) = 0. (22)

Proof. Since 𝑟(1)
𝑖

and 𝑟(2)
𝑖

are both feasible, 𝑟(1)
𝑖

> 𝑟
(2)

𝑖
implies

𝜆
(1)

𝑖
= 0 and 𝜆

(2)

𝑖
= 0 by (21) and (22), respectively. Conse-

quently, the result follows since 𝜆
(1)

𝑖
≥ 0 and 𝜆(2)

𝑖
≥ 0.

Theorem 7. The user-grouping NEP defined in (5) is unique.

Proof. Suppose r(1) = (𝑟(1)
1
, 𝑟
(1)

2
, . . . , 𝑟

(1)

𝑛
) and r(2) = (𝑟(2)

1
, 𝑟
(2)

2
,

. . . , 𝑟
(2)

𝑛
) are both the equilibrium points. Let 𝑅(1) = ∑𝑛

𝑖=1
𝑟
(1)

𝑖

and 𝑅(2) = ∑𝑛
𝑖=1
𝑟
(2)

𝑖
. We can thus write for 𝑖 ∈N \M that

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(1)

𝑖
, 𝑅
(1)
) + 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖
= 0,

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(2)

𝑖
, 𝑅
(2)
) + 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
= 0,

(23)

where 𝜆
(1)

𝑖
, 𝜆(1)
𝑖
, 𝜆
(2)

𝑖
, 𝜆(2)
𝑖

are the associated KKT multipliers.
Assume that 𝑅(1) > 𝑅(2). If there exists 𝑖 ∈ N \M such that
𝑟
(1)

𝑖
> 𝑟
(2)

𝑖
, by Lemma 6 and Assumption 1 we have

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(1)

𝑖
, 𝑅
(1)
) + 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖

> −
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(2)

𝑖
, 𝑅
(2)
) + 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
,

(24)

which is a contradiction. We thus have 𝑟(1)
𝑖

≤ 𝑟
(2)

𝑖
for 𝑖 in

N \M. This implies 𝑅(1)
𝑔
:= ∑
𝑚

𝑖=1
𝑟
(1)

𝑖
> ∑
𝑚

𝑖=2
𝑟
(2)

𝑖
= 𝑅
(2)

𝑔
. Note

that, for 𝑖 ∈M,

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(1)

𝑖
, 𝑅
(1)
) + 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖
+ 𝛾
(1)

𝑖
− 𝛾
(1)

𝑖
= 0,

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(2)

𝑖
, 𝑅
(2)
) + 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
+ 𝛾
(2)

𝑖
− 𝛾
(2)

𝑖
= 0.

(25)

With similar arguments in proving Lemma 6 we can show
that

𝑅
(1)

𝑔
> 𝑅
(2)

𝑔
⇒ 𝛾
(1)

𝑖
− 𝛾
(1)

𝑖
≥ 𝛾
(2)

𝑖
− 𝛾
(2)

𝑖
. (26)

If 𝑟(1)
𝑖
> 𝑟
(2)

𝑖
for some 𝑖 ∈M, we have

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(1)

𝑖
, 𝑅
(1)
) + 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖
+ 𝛾
(1)

𝑖
− 𝛾
(1)

𝑖

> −
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(2)

𝑖
, 𝑅
(2)
) + 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
+ 𝛾
(2)

𝑖
− 𝛾
(2)

𝑖
,

(27)

which is a contradiction. We thus have 𝑟(𝑖)
𝑖

≤ 𝑟
(2)

𝑖
for each

𝑖 ∈ M and therefore 𝑅(1)
𝑔

≤ 𝑅
(2)

𝑔
, also a contradiction. With

analogous arguments we can show that assuming 𝑅(1) < 𝑅(2)

also leads to a contradiction. Therefore 𝑅(1) = 𝑅
(2) and by

Lemma 6 𝑟(1)
𝑖
= 𝑟
(2)

𝑖
for 𝑖 ∈ N \M. This implies 𝑅(1)

𝑔
= 𝑅
(2)

𝑔
;

therefore r∗
𝑔
is unique.

3.2. Fairness. A bandwidth allocation r = (𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
) is

said to be fair if for any feasible 𝑡
1
and 𝑡
2

A
𝑖
(𝑡
1
, 𝑡
2
) ≥ A

𝑗
(𝑡
1
, 𝑡
2
) ⇒ 𝑟

𝑖
≥ 𝑟
𝑗
, (28)

where 𝑖, 𝑗 ∈M, and for any feasible 𝑡

𝐴
𝑖
(𝑡) ≥ 𝐴

𝑗
(𝑡) ⇒ 𝑟

𝑖
≥ 𝑟
𝑗
, (29)

where 𝑖, 𝑗 ∈ N \ M. This definition suggests that a fair
allocation guarantees the user in greater need of bandwidth
actually obtains more bandwidth.

Theorem 8. The bandwidth allocation based on the NEP
defined in (3)-(4) is fair.

Proof. Suppose 𝑖 ∈ M. Let 𝑟(1)
𝑖

= A
𝑖
(𝑇
(1)

𝑖
, 𝑡) and 𝑟(2)

𝑖
=

A
𝑖
(𝑇
(1)

𝑖
+ Δ𝑇, 𝑡 + Δ𝑇). We thus have

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(1)

𝑖
, 𝑅
(1)
) + 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖
+ 𝛾
(1)

𝑖
− 𝛾
(1)

𝑖
= 0,

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(2)

𝑖
, 𝑅
(2)
) + 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
+ 𝛾
(2)

𝑖
− 𝛾
(2)

𝑖
= 0.

(30)

Assume 𝑟(2)
𝑖
− Δ𝑇 > 𝑟

(1)

𝑖
, which implies 𝑟(2)

𝑖
> 𝑟
(1)

𝑖
and by

Lemma 6 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
≥ 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖
. Also,

𝑅
(2)
:= 𝑟
(2)

𝑖
+ 𝑅
(2)

−𝑖
> 𝑟
(1)

𝑖
+ Δ𝑇 + 𝑅

(2)

−𝑖

= 𝑟
(1)

𝑖
+ 𝑅
(1)

−𝑖
:= 𝑅
(1)
.

(31)

Similarly,

𝑅
(2)

𝑔
:= 𝑟
(2)

𝑖
+

𝑚

∑

𝑗 /=𝑖

𝑟
(2)

𝑗
> 𝑟
(1)

𝑖
+ Δ𝑇 +

𝑚

∑

𝑗 /=𝑖

𝑟
(2)

𝑗

= 𝑟
(1)

𝑖
+

𝑚

∑

𝑗 /=𝑖

𝑟
(1)

𝑗
:= 𝑅
(1)

𝑔
.

(32)

Note that (32) implies 𝛾(2)
𝑖
− 𝛾
(2)

𝑖
≥ 𝛾
(1)

𝑖
− 𝛾
(1)

𝑖
. We then have

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(2)

𝑖
, 𝑟
(2)

𝑖
+ 𝑅
(2)

−𝑖
) + 𝜆
(2)

𝑖
− 𝜆
(2)

𝑖
+ 𝛾
(2)

𝑖
− 𝛾
(2)

𝑖

> −
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
(1)

𝑖
, 𝑟
(1)

𝑖
+ 𝑅
(1)

−𝑖
) + 𝜆
(1)

𝑖
− 𝜆
(1)

𝑖
+ 𝛾
(1)

𝑖
− 𝛾
(1)

𝑖
,

(33)

which is a contradiction. Therefore, 𝑟(2)
𝑖
− Δ𝑇 ≤ 𝑟

(1)

𝑖
, which

implies

𝑇
(1)

𝑖
+ Δ𝑇 − 𝑟

(2)

𝑖
≥ 𝑇
(1)

𝑖
− 𝑟
(1)

𝑖
, (34)
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namely,

𝑇
(1)

𝑖
+ Δ𝑇 −A

𝑖
(𝑇
(1)

𝑖
+ Δ𝑇, 𝑡 + Δ𝑇) ≥ 𝑇

(1)

𝑖
−A
𝑖
(𝑇
(1)

𝑖
, 𝑡) .

(35)

To show the allocation based on r∗ is fair, consider first the
case that 𝑖, 𝑗 ∈ M. By definition 𝑟∗

𝑖
= A
𝑖
(𝑇
∗

𝑖
, 𝑇
𝑔∗

𝑖
), 𝑟∗
𝑗
:=

A
𝑗
(𝑇
∗

𝑗
, 𝑇
𝑔∗

𝑗
) where 𝑇∗

𝑖
, 𝑇𝑔∗
𝑖
, 𝑇∗
𝑗
and 𝑇𝑔∗

𝑗
are all feasible. With

𝑅
∗ defined in (9) we have

𝑇 − 𝑅
∗
= 𝑇
∗

𝑖
−A
𝑖
(𝑇
∗

𝑖
, 𝑇
𝑔∗

𝑖
) = 𝑇
∗

𝑗
−A
𝑗
(𝑇
∗

𝑗
, 𝑇
𝑔∗

𝑖
) , (36)

which equals the remaining bandwidth of the system after
allocation. GivenA

𝑖
(𝑇
∗

𝑖
, 𝑇
𝑔∗

𝑖
) > A

𝑗
(𝑇
∗

𝑖
, 𝑇
𝑔∗

𝑖
), we have

𝑇
∗

𝑖
−A
𝑗
(𝑇
∗

𝑖
, 𝑇
𝑔∗

𝑖
) > 𝑇
∗

𝑖
−A
𝑖
(𝑇
∗

𝑖
, 𝑇
𝑔∗

𝑖
)

= 𝑇
∗

𝑗
−A
𝑗
(𝑇
∗

𝑗
, 𝑇
𝑔∗

𝑗
) .

(37)

Note that

𝑇
∗

𝑖
− 𝑇
∗

𝑗
= 𝑇
𝑔∗

𝑖
− 𝑇
𝑔∗

𝑗
= 𝑟
∗

𝑖
− 𝑟
∗

𝑗
:= Δ𝑇

∗
. (38)

Equations (35) and (37) imply Δ𝑇∗ > 0; hence 𝑟∗
𝑖
> 𝑟
∗

𝑗
. The

case for 𝑖, 𝑗 ∈ N \ M can be similarly proved and is thus
ignored (see [18, Theorem 2.3] for details).

3.3. Algorithm. In this section we analyze the scheme to
identify the user-groupingNash equilibrium point.We say an
individual update is implemented on user 𝑖 if the bandwidth
of each user other than 𝑖 is fixed and the bandwidth of
user 𝑖 is updated to maximize his or her utility function. In
addition, we say a batch update occurs in the collection K
of users if the bandwidth of each user not in K is fixed and
the individual update is sequentially implemented on each
user in K repeatedly till an equilibrium is reached. Here
K is either M or N \ M. If K = M the batch update is
implemented assuming no group constraint, namely,𝑅

𝑔
= ∞

and 𝑅
𝑔
= 0. Note that the batch update is guaranteed to reach

an equilibrium (see [15] and [18, Section 2.4]). As a result,
suppose r𝑘 = (𝑟

𝑘

1
, 𝑟
𝑘

1
, . . . , 𝑟

𝑘

𝑛
) is the system allocation at step

𝑘. If an individual update occurs at user 𝑖 ∈ N \M at step
𝑘 + 1, that means 𝑟𝑘+1

𝑗
= 𝑟
𝑘

𝑗
for 𝑗 ∈N \ {𝑖}, and

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
𝑘+1

𝑖
, 𝑅
𝑘+1
) + 𝜆
𝑘+1

𝑖
− 𝜆
𝑘+1

𝑖
= 0, (39)

for someKKTmultipliers 𝜆
𝑘+1

𝑖
and 𝜆
𝑘+1

𝑖
and𝑅𝑘+1 = ∑𝑛

𝑖=1
𝑟
𝑘+1

𝑖
.

If a batch update occurs at the group of users at step 𝑘+1, that
means 𝑟𝑘+1

𝑗
= 𝑟
𝑘

𝑗
for each 𝑗 ∈ N \M, and we can write for

each 𝑖 ∈M

−
𝜕

𝜕𝑟
𝑖

𝑈
𝑖
(𝑟
𝑘+1

𝑖
, 𝑅
𝑘+1
) + 𝜆
𝑘+1

𝑖
− 𝜆
𝑘+1

𝑖
+ 𝛾
𝑘+1

𝑖
− 𝛾
𝑘+1

𝑖
= 0, (40)

where 𝜆
𝑘+1

𝑖
, 𝜆
𝑘+1

𝑖
, 𝛾𝑘+1
𝑖

and 𝛾
𝑘+1

𝑖
are the associated KKT

multipliers. We now show that a repeated implementation of

sequential batch updates on users inM and users inN \M,
as outline in Algorithm 1, yields a sequence converging to the
user-grouping NEP r∗

𝑔
in (5). Define first the error measure

𝑒(r𝑘
𝑔
) between r𝑘

𝑔
and r∗
𝑔
as

𝑒 (r𝑘
𝑔
) =

𝑛

∑

𝑖=𝑚+1


𝑟
𝑘

𝑖
− 𝑟
∗

𝑖


+

𝑅
𝑘

𝑔
− 𝑅
∗

𝑔


+

𝑅
𝑘
− 𝑅
∗
, (41)

where 𝑅𝑘
𝑔
:= ∑
𝑚

𝑖=1
𝑟
𝑘

𝑖
. 𝑅∗
𝑔
and 𝑅∗ are defined in (6) and (9),

respectively.

Lemma 9. The error measure 𝑒(r𝑘
𝑔
) defined in (41) is nonin-

creasing, namely, 𝑒(r𝑘+1
𝑔
) ≤ 𝑒(r𝑘

𝑔
) for any positive integer 𝑘.

Proof. If at step 𝑘 + 1 an individual update occurs at 𝑖 ∈
N \M, (39) is satisfied. Since (10) is also satisfied, we have
by Lemma 6 and part (b) in Assumption 1 that

𝑅
𝑘+1

≥ 𝑅
∗
⇒ 𝑟
𝑘+1

𝑖
≤ 𝑟
∗

𝑖
,

𝑅
𝑘+1

≤ 𝑅
∗
⇒ 𝑟
𝑘+1

𝑖
≥ 𝑟
∗

𝑖
.

(42)

Under the assumption

𝑒 (r𝑘+1
𝑔
) − 𝑒 (r𝑘

𝑔
) =


𝑟
𝑘+1

𝑖
− 𝑟
∗
−

𝑟
𝑘

𝑖
− 𝑟
∗

+

𝑅
𝑘+1

− 𝑅
∗
−

𝑅
𝑘
− 𝑅
∗
.

(43)

Suppose 𝑅𝑘+1 ≥ 𝑅∗. If 𝑅𝑘 ≥ 𝑅𝑘+1, then

𝑒 (r𝑘+1
𝑔
) − 𝑒 (r𝑘

𝑔
) = − (𝑟

𝑘+1

𝑖
− 𝑟
∗
) −


𝑟
𝑘

𝑖
− 𝑟
∗
+ 𝑅
𝑘+1

− 𝑅
𝑘

⇒ {
= 0 if 𝑟𝑘

𝑖
< 𝑟
∗

𝑖

< 0 o.w.
(44)

Since 𝑅𝑘 < 𝑅𝑘+1 implies 𝑟𝑘
𝑖
< 𝑟
𝑘+1

𝑖
, we have

𝑒 (r𝑘+1
𝑔
) − 𝑒 (r𝑘

𝑔
) = −𝑟

𝑘+1

𝑖
+ 𝑟
𝑘

𝑖
+ 𝑅
𝑘+1

− 𝑅
∗
−

𝑅
𝑘
− 𝑅
∗

⇒ {
= 0 if 𝑅𝑘 > 𝑅∗
< 0 o.w.

(45)

Using similar arguments we can analyze the case for 𝑅𝑘+1 <
𝑅
∗ and obtain also that 𝑒(r𝑘+1

𝑔
) ≤ 𝑒(r𝑘

𝑔
). If at step 𝑘 + 1 a batch

update occurs, (15) and (40) hold for each 𝑖 ∈ M. Suppose
𝑅
𝑘+1

≥ 𝑅
∗. If there exists an 𝑖 ∈ M such that 𝑟𝑘+1

𝑖
> 𝑟
∗

𝑖
then

part (b) in Assumption 1 implies

𝛾
𝑘+1

𝑖
− 𝛾
𝑘+1

𝑖
< 𝛾
∗

𝑖
− 𝛾
∗

𝑖
; (46)

therefore by (26)𝑅∗
𝑔
≥ 𝑅
𝑘+1

𝑔
. If no such 𝑖 exists, namely, 𝑟𝑘+1

𝑖
≤

𝑟
∗ for each 𝑖 ∈ M, then naturally 𝑅𝑘+1

𝑔
≤ 𝑅
∗

𝑔
. A similar result

can be derived for the case 𝑅𝑘+1 ≤ 𝑅∗. We then have

𝑅
𝑘+1

≥ 𝑅
∗
⇒ 𝑅

𝑘+1

𝑔
≤ 𝑅
∗

𝑔
, (47)

𝑅
𝑘+1

≤ 𝑅
∗
⇒ 𝑅

𝑘+1
≥ 𝑅
∗

𝑔
. (48)
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Table 1: The parameters of 𝛼
𝑖
for 𝑖 ∈N = {1, 2, . . . , 100}.

𝑖 𝛼
𝑖

1–10 .6111 .7052 .0283 .5209 .2591 .5082 .9732 .8182 .8588 .8966
11–20 .2995 .8800 .2552 .1921 .1866 .8611 .4446 .3866 .8320 .2065
21–30 .8978 .4595 .1634 .2687 .5207 .7724 .3874 .0444 .9868 .5230
31–40 .8437 .8919 .6856 .5178 .4420 .3801 .0318 .2159 .0853 .7969
41–50 .4018 .0498 .3165 .8712 .9314 .4257 .8662 .4806 .9083 .2505
51–60 .5266 .2448 .8384 .5257 .3498 .2571 .1688 .5992 .8110 .8489
61–70 .8448 .2350 .5083 .6694 .0907 .5430 .2980 .3818 .5339 .4265
71–80 .2320 .0284 .0260 .2743 .6945 .3300 .7505 .7957 .0537 .0092
81–90 .7281 .6644 .5853 .9190 .1673 .9720 .2196 .0382 .7078 .2290
91–100 .3526 .7095 .5887 .1088 .6468 .7311 .8634 .0226 .5252 .1512

Now

𝑒 (r𝑘+1
𝑔
) − 𝑒 (r𝑘

𝑔
) =


𝑅
𝑘+1

𝑔
− 𝑅
∗

𝑔


−

𝑅
𝑘

𝑔
− 𝑅
∗

𝑔



+

𝑅
𝑘+1

− 𝑅
∗
−

𝑅
𝑘
− 𝑅
∗
.

(49)

Assume 𝑅𝑘+1 ≥ 𝑅∗. If 𝑅𝑘 ≥ 𝑅𝑘+1 then

𝑒 (r𝑘+1
𝑔
) − 𝑒 (r𝑘

𝑔
) = − (𝑅

𝑘+1

𝑔
− 𝑅
∗

𝑔
) −


𝑅
𝑘

𝑔
− 𝑅
∗

𝑔


+ 𝑅
𝑘+1

− 𝑅
𝑘

⇒ {
= 0 if 𝑅𝑘

𝑔
< 𝑅
∗

𝑔

< 0 o.w.
(50)

If 𝑅𝑘 < 𝑅𝑘+1, which is equivalent to 𝑅𝑘
𝑔
< 𝑅
𝑘+1

𝑔
, then

𝑒 (r𝑘+1
𝑔
) − 𝑒 (r𝑘

𝑔
) = −𝑅

𝑘+1

𝑔
+ 𝑅
𝑘

𝑔
+ 𝑅
𝑘+1

− 𝑅
∗
−

𝑅
𝑘
− 𝑅
∗

⇒ {
= 0 if 𝑅𝑘 > 𝑅∗
< 0 o.w.

(51)

Applying similar arguments again we can analyze the case for
𝑅
𝑘+1

< 𝑅
∗ and obtain also that 𝑒(r𝑘+1

𝑔
) ≤ 𝑒(r𝑘

𝑔
).

Theorem 10. Algorithm 1 yields a sequence {r𝑘
𝑔
}
∞

𝑘=1
converging

to r∗
𝑔
, the user-groupingNEP of the bandwidth allocation game.

Proof. In the light of Lemma 9, we only need to show that
for each positive integer 𝑘, r𝑘

𝑔
/= r∗
𝑔
implies the existence of a

finite integer 𝑘
1
such that 𝑒(r𝑘+𝑘1

𝑔
) < 𝑒(r𝑘

𝑔
). Suppose it is not

the case then there exists some 𝑘 such that 𝑒(r𝑘+𝑘2
𝑔

) = 𝑒(r𝑘
𝑔
) for

any positive integer 𝑘
2
, where r𝑘

𝑔
/= r∗
𝑔
. Consider the update

scheme that, at step 𝑘 + 𝑖 − 𝑚 for 𝑖 ∈ N \M, the individual
update occurs at user 𝑖, and at step 𝑘 + 𝑛 + 1 − 𝑚 the batch
update takes place for users inM. Without loss of generality
we assume 𝑅𝑘+𝑛+1−𝑚 ≥ 𝑅∗, then 𝑅

𝑔
(𝑘 + 𝑛 + 1 − 𝑚) ≤ 𝑅

∗

𝑔
by

(47). Since 𝑒(r𝑘+𝑛+1−𝑚
𝑔

) = 𝑒(r𝑘+𝑛−𝑚
𝑔

), (50) together with (51)
implies 𝑅𝑘+𝑛−𝑚 ≥ 𝑅

∗; hence 𝑅𝑘+𝑛−𝑚
𝑔

≤ 𝑅
∗

𝑔
. That is, 𝑅⋅ − 𝑅∗

and 𝑅⋅
𝑔
− 𝑅
∗

𝑔
do not change their signs as the step number is

increased from 𝑘+𝑛−𝑚 to 𝑘+𝑛+1−𝑚. Moreover, 𝑅𝑘+𝑛−𝑚 ≥
𝑅
∗ implies 𝑟𝑘+𝑛−𝑚

𝑛
≤ 𝑟
∗

𝑛
. Since 𝑒(r𝑘+𝑛+1−𝑚

𝑔
) = 𝑒(r𝑘+𝑖−𝑚−1

𝑔
) for

𝑖 ∈ N \M, (44) and (45) together imply 𝑅𝑘+𝑖−𝑚 ≥ 𝑅
∗ and

thus 𝑟𝑘+𝑖−𝑚
𝑖

≤ 𝑟
∗

𝑖
, for 𝑖 ∈ N \M. As a result, 𝑟𝑘+𝑛−𝑚

𝑖
≤ 𝑟
∗

𝑖
for

𝑖 ∈N \M. Note that 𝑅𝑘+𝑛−𝑚
𝑔

≤ 𝑅
∗

𝑔
and

𝑅
𝑘+𝑛−𝑚

= 𝑅
𝑘+𝑛−𝑚

𝑔
+

𝑛

∑

𝑖=𝑚+1

𝑟
𝑘+𝑛−𝑚

𝑖

≥ 𝑅
∗
= 𝑅
∗

𝑔
+

𝑛

∑

𝑖=𝑚+1

𝑟
∗

𝑖
.

(52)

We conclude that𝑅𝑘+𝑛−𝑚
𝑔

= 𝑅
∗

𝑔
and 𝑟𝑘+𝑛−𝑚
𝑖

= 𝑟
∗

𝑖
for 𝑖 ∈N\M,

namely, r𝑘
𝑔
= r∗
𝑔
, a contradiction.

4. A Numerical Example

Consider a data communication network system with 100
users. Suppose 30 of them form a group. We then have N =

{1, 2, . . . , 100} and M = {1, 2, . . . , 30}. The adopted utility
function is

𝑈
𝑖
(𝑟
𝑖
, 𝑅) = 𝑟

𝛼
𝑖

𝑖
(𝑇 − 𝑅) , (53)

where the parameters 𝛼
𝑖
’s are listed in Table 1. Note that

the utility function, known as the generalized power function
[26], has the continuity and concavity properties required
by Assumption 1. In particular, it can be shown [18, page 11]
easily that the maximizer

argmax
𝑟
𝑈
𝑖
(𝑟, 𝑅) =

𝛼
𝑖

1 + 𝛼
𝑖

𝑇
𝑖
< 𝑇
𝑖
, (54)

and thus part (a) in Assumption 2 is satisfied. Suppose the
total available bandwidth 𝑇 = 6000, and the upper and lower
bounds for total bandwidth allocated to the group is 𝑅

𝑔
=

2000 and 𝑅
𝑔
= 800, respectively. Assume that the individual

bandwidth constraint for each user in Table 2 is used. Clearly
these parameters satisfy the natural requirements of part
(b) in Assumption 2. Applying Algorithm 1 yields a dynamic
bandwidth allocation evolving with the implementation step,
as shown in Figure 2. The left part of the figure shows the
evolution of total bandwidth allocated to the group, which is
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(P1) Initiate the algorithm with a feasible r
𝑔
and set 𝑠 = 0.

(P2) (if current step is 𝑘) Perform a batch update for users inM at step 𝑘 + 1
by assigning 𝑟𝑘+1

𝑗
= 𝑟
𝑘

𝑗
for all 𝑗 ∈N \M,

to reach 𝑟𝑘+1
𝑖

= A
𝑖
(𝑇
𝑘+1

𝑖
, 𝑇
𝑔,𝑘+1

𝑖
) for all 𝑖 ∈M.

(P3) (if current step is �̂�) Perform an individual update at user 𝑖 inN \M

by assigning 𝑟�̂�+1
𝑗

= 𝑟
�̂�

𝑗
for all 𝑗 ∈N \ {𝑖},

to reach 𝑟�̂�+1
𝑖

= 𝐴
𝑖
(𝑇
�̂�

𝑖
), and let �̂� = �̂� + 1.

Sequentially implement this whole procedure till each user inN \M

is updated.
(P4) Repeat (P3) to complete a batch update at users inN \M.
(P5) Set 𝑠 = 𝑠 + 1 and record the current r

𝑔
asR(𝑠).

If ‖R(𝑠) −R(𝑠 − 1)‖ < 𝜀 then stops, otherwise go to (P2).

Algorithm 1: The scheme to locate the user-grouping NEP.

(a) (b)

Figure 2: The sequence generated by Algorithm 1 for the example.

composed of user 1, user 2, up to user 30. At the beginning
of the algorithm, an initial feasible bandwidth allocation is
allocated to each user of the system. Fix the total bandwidth
allocated to the users not in the group and find the optimal
total bandwidth 𝑅

𝑔
. In the example 𝑅

𝑔
is 3950.3. Since this

value is greater than the upper bound 𝑅
𝑔
= 2000. 𝑅

𝑔
is

replaced with 𝑅
𝑔
. Fix this 𝑅

𝑔
we have the total available

bandwidth 𝑇 − 𝑅
𝑔
= 6000 − 2000 = 4000 for users not

in the group. Based on this availability of the bandwidth we
can find the equilibrium point for users not in the group.
In the example we have, for instance, the bandwidth 𝑟

70
=

50, 𝑟
90

= 57.554, and 𝑟
100

= 38.0004. Now fix the total
bandwidth of the users not in the group, and find the optimal

bandwidth 𝑅
𝑔
again. In the example we obtain 𝑅

𝑔
= 2115.8.

Since this value is greater than the upper bound 𝑅
𝑔
= 2000,

𝑅
𝑔
is replaced with 𝑅

𝑔
again. Note that the current optimal

bandwidth allocation for each user outside the group is found
based on the condition that the total bandwidth for the group
is 𝑅
𝑔
. The current 𝑅

𝑔
and 𝑟

𝑚+1
, . . . , 𝑟

𝑛
is thus the 𝑅∗

𝑔
and

𝑟
∗

𝑚+1
, . . . , 𝑟

∗

𝑛
for the user-grouping NEP in (5).

5. Conclusion

We have proposed a novel bandwidth allocationmodel based
on game theory. The consideration of the user-grouping
constraint distinguishes this model from the abundant ones
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Table 2: The bandwidth constraint for each user.

User (𝑖) 1–10 11–20 21–30 31–70 71–90 91–100
Upper bound (𝑟

𝑖
) 100 200 290 50 78 100

Lower bound (𝑟
𝑖
) 10 20 30 5 10 22

concerning similar allocation issues. Suppose each user com-
petes for the system bandwidth resources and is granted with
a constrained decision space. In particular, some users are
united in one group and the total bandwidth allocated to the
group is constrained as well. Given the appropriate constraint
parameters and the utility function satisfyingmild continuity
and concavity conditions for each user, we have shown
the unique existence of the user-grouping Nash equilibrium
point for the allocation game. In addition, we have shown
the fairness, in a proper sense, of the allocation based on
this equilibrium point. Finally, we have proposed an iterative
algorithm and proved that a sequence converging to the
point can be generated by the algorithm. A practical example
illustrating a network satisfying our settings has been given to
show how the equilibrium point can be located successfully.

Nomenclature

N: The index set for the users, that is,
N := {1, 2, . . . , 𝑛}

M: The index set for the users in the group,
that is,M := {1, 2, . . . , 𝑚}

N \M: The index set for the users not in the
group, that is,N \M := {𝑚,𝑚 + 1, . . . , 𝑛}

𝑟
𝑖
: The bandwidth allocated to user 𝑖
𝑟
𝑖
: Lower bound for 𝑟

𝑖

𝑟
𝑖
: Upper bound for 𝑟

𝑖

𝑅
𝑔
: Total bandwidth allocated to the group

members, that is, 𝑅
𝑔
:= 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑚

𝑅
𝑔
: Lower bound for 𝑅

𝑔

𝑅
𝑔
: Upper bound for 𝑅

𝑔

𝑇: Total bandwidth available in the system
𝑅: Total bandwidth allocated, that is,

𝑅 := 𝑟
1
+ 𝑟
2
+ ⋅ ⋅ ⋅ + 𝑟

𝑛

𝑅
−𝑖
: Total bandwidth allocated, excluding to

user 𝑖, that is, 𝑅
−𝑖
:= 𝑟
1
+ ⋅ ⋅ ⋅ + 𝑟

𝑖−1
+ 𝑟
𝑖+1
+

⋅ ⋅ ⋅ + 𝑟
𝑛

𝑇
𝑖
: Total bandwidth available for user 𝑖, that

is, 𝑇
𝑖
:= 𝑇 − 𝑅

−𝑖

𝑇
𝑔

𝑖
: Inside-group information for user 𝑖 ∈M,

that is, 𝑇𝑔
𝑖
:= 𝑅
𝑔
− ∑
𝑚

𝑗 /=𝑖
𝑟
𝑗
.
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